xref: /openbmc/linux/net/core/filter.c (revision 56d06fa2)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/in.h>
30 #include <linux/inet.h>
31 #include <linux/netdevice.h>
32 #include <linux/if_packet.h>
33 #include <linux/gfp.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <asm/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <linux/filter.h>
45 #include <linux/ratelimit.h>
46 #include <linux/seccomp.h>
47 #include <linux/if_vlan.h>
48 #include <linux/bpf.h>
49 #include <net/sch_generic.h>
50 #include <net/cls_cgroup.h>
51 #include <net/dst_metadata.h>
52 #include <net/dst.h>
53 #include <net/sock_reuseport.h>
54 
55 /**
56  *	sk_filter - run a packet through a socket filter
57  *	@sk: sock associated with &sk_buff
58  *	@skb: buffer to filter
59  *
60  * Run the eBPF program and then cut skb->data to correct size returned by
61  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
62  * than pkt_len we keep whole skb->data. This is the socket level
63  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
64  * be accepted or -EPERM if the packet should be tossed.
65  *
66  */
67 int sk_filter(struct sock *sk, struct sk_buff *skb)
68 {
69 	int err;
70 	struct sk_filter *filter;
71 
72 	/*
73 	 * If the skb was allocated from pfmemalloc reserves, only
74 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
75 	 * helping free memory
76 	 */
77 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
78 		return -ENOMEM;
79 
80 	err = security_sock_rcv_skb(sk, skb);
81 	if (err)
82 		return err;
83 
84 	rcu_read_lock();
85 	filter = rcu_dereference(sk->sk_filter);
86 	if (filter) {
87 		unsigned int pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
88 
89 		err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
90 	}
91 	rcu_read_unlock();
92 
93 	return err;
94 }
95 EXPORT_SYMBOL(sk_filter);
96 
97 static u64 __skb_get_pay_offset(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
98 {
99 	return skb_get_poff((struct sk_buff *)(unsigned long) ctx);
100 }
101 
102 static u64 __skb_get_nlattr(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
103 {
104 	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
105 	struct nlattr *nla;
106 
107 	if (skb_is_nonlinear(skb))
108 		return 0;
109 
110 	if (skb->len < sizeof(struct nlattr))
111 		return 0;
112 
113 	if (a > skb->len - sizeof(struct nlattr))
114 		return 0;
115 
116 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
117 	if (nla)
118 		return (void *) nla - (void *) skb->data;
119 
120 	return 0;
121 }
122 
123 static u64 __skb_get_nlattr_nest(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
124 {
125 	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
126 	struct nlattr *nla;
127 
128 	if (skb_is_nonlinear(skb))
129 		return 0;
130 
131 	if (skb->len < sizeof(struct nlattr))
132 		return 0;
133 
134 	if (a > skb->len - sizeof(struct nlattr))
135 		return 0;
136 
137 	nla = (struct nlattr *) &skb->data[a];
138 	if (nla->nla_len > skb->len - a)
139 		return 0;
140 
141 	nla = nla_find_nested(nla, x);
142 	if (nla)
143 		return (void *) nla - (void *) skb->data;
144 
145 	return 0;
146 }
147 
148 static u64 __get_raw_cpu_id(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
149 {
150 	return raw_smp_processor_id();
151 }
152 
153 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
154 			      struct bpf_insn *insn_buf)
155 {
156 	struct bpf_insn *insn = insn_buf;
157 
158 	switch (skb_field) {
159 	case SKF_AD_MARK:
160 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
161 
162 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
163 				      offsetof(struct sk_buff, mark));
164 		break;
165 
166 	case SKF_AD_PKTTYPE:
167 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
168 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
169 #ifdef __BIG_ENDIAN_BITFIELD
170 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
171 #endif
172 		break;
173 
174 	case SKF_AD_QUEUE:
175 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
176 
177 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
178 				      offsetof(struct sk_buff, queue_mapping));
179 		break;
180 
181 	case SKF_AD_VLAN_TAG:
182 	case SKF_AD_VLAN_TAG_PRESENT:
183 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
184 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
185 
186 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
187 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
188 				      offsetof(struct sk_buff, vlan_tci));
189 		if (skb_field == SKF_AD_VLAN_TAG) {
190 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
191 						~VLAN_TAG_PRESENT);
192 		} else {
193 			/* dst_reg >>= 12 */
194 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
195 			/* dst_reg &= 1 */
196 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
197 		}
198 		break;
199 	}
200 
201 	return insn - insn_buf;
202 }
203 
204 static bool convert_bpf_extensions(struct sock_filter *fp,
205 				   struct bpf_insn **insnp)
206 {
207 	struct bpf_insn *insn = *insnp;
208 	u32 cnt;
209 
210 	switch (fp->k) {
211 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
212 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
213 
214 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
215 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
216 				      offsetof(struct sk_buff, protocol));
217 		/* A = ntohs(A) [emitting a nop or swap16] */
218 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
219 		break;
220 
221 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
222 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
223 		insn += cnt - 1;
224 		break;
225 
226 	case SKF_AD_OFF + SKF_AD_IFINDEX:
227 	case SKF_AD_OFF + SKF_AD_HATYPE:
228 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
229 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
230 		BUILD_BUG_ON(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)) < 0);
231 
232 		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
233 				      BPF_REG_TMP, BPF_REG_CTX,
234 				      offsetof(struct sk_buff, dev));
235 		/* if (tmp != 0) goto pc + 1 */
236 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
237 		*insn++ = BPF_EXIT_INSN();
238 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
239 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
240 					    offsetof(struct net_device, ifindex));
241 		else
242 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
243 					    offsetof(struct net_device, type));
244 		break;
245 
246 	case SKF_AD_OFF + SKF_AD_MARK:
247 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
248 		insn += cnt - 1;
249 		break;
250 
251 	case SKF_AD_OFF + SKF_AD_RXHASH:
252 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
253 
254 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
255 				    offsetof(struct sk_buff, hash));
256 		break;
257 
258 	case SKF_AD_OFF + SKF_AD_QUEUE:
259 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
260 		insn += cnt - 1;
261 		break;
262 
263 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
264 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
265 					 BPF_REG_A, BPF_REG_CTX, insn);
266 		insn += cnt - 1;
267 		break;
268 
269 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
270 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
271 					 BPF_REG_A, BPF_REG_CTX, insn);
272 		insn += cnt - 1;
273 		break;
274 
275 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
276 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
277 
278 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
279 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
280 				      offsetof(struct sk_buff, vlan_proto));
281 		/* A = ntohs(A) [emitting a nop or swap16] */
282 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
283 		break;
284 
285 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
286 	case SKF_AD_OFF + SKF_AD_NLATTR:
287 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
288 	case SKF_AD_OFF + SKF_AD_CPU:
289 	case SKF_AD_OFF + SKF_AD_RANDOM:
290 		/* arg1 = CTX */
291 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
292 		/* arg2 = A */
293 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
294 		/* arg3 = X */
295 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
296 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
297 		switch (fp->k) {
298 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
299 			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
300 			break;
301 		case SKF_AD_OFF + SKF_AD_NLATTR:
302 			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
303 			break;
304 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
305 			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
306 			break;
307 		case SKF_AD_OFF + SKF_AD_CPU:
308 			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
309 			break;
310 		case SKF_AD_OFF + SKF_AD_RANDOM:
311 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
312 			bpf_user_rnd_init_once();
313 			break;
314 		}
315 		break;
316 
317 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
318 		/* A ^= X */
319 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
320 		break;
321 
322 	default:
323 		/* This is just a dummy call to avoid letting the compiler
324 		 * evict __bpf_call_base() as an optimization. Placed here
325 		 * where no-one bothers.
326 		 */
327 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
328 		return false;
329 	}
330 
331 	*insnp = insn;
332 	return true;
333 }
334 
335 /**
336  *	bpf_convert_filter - convert filter program
337  *	@prog: the user passed filter program
338  *	@len: the length of the user passed filter program
339  *	@new_prog: buffer where converted program will be stored
340  *	@new_len: pointer to store length of converted program
341  *
342  * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
343  * Conversion workflow:
344  *
345  * 1) First pass for calculating the new program length:
346  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
347  *
348  * 2) 2nd pass to remap in two passes: 1st pass finds new
349  *    jump offsets, 2nd pass remapping:
350  *   new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
351  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
352  */
353 static int bpf_convert_filter(struct sock_filter *prog, int len,
354 			      struct bpf_insn *new_prog, int *new_len)
355 {
356 	int new_flen = 0, pass = 0, target, i;
357 	struct bpf_insn *new_insn;
358 	struct sock_filter *fp;
359 	int *addrs = NULL;
360 	u8 bpf_src;
361 
362 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
363 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
364 
365 	if (len <= 0 || len > BPF_MAXINSNS)
366 		return -EINVAL;
367 
368 	if (new_prog) {
369 		addrs = kcalloc(len, sizeof(*addrs),
370 				GFP_KERNEL | __GFP_NOWARN);
371 		if (!addrs)
372 			return -ENOMEM;
373 	}
374 
375 do_pass:
376 	new_insn = new_prog;
377 	fp = prog;
378 
379 	/* Classic BPF related prologue emission. */
380 	if (new_insn) {
381 		/* Classic BPF expects A and X to be reset first. These need
382 		 * to be guaranteed to be the first two instructions.
383 		 */
384 		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
385 		*new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
386 
387 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
388 		 * In eBPF case it's done by the compiler, here we need to
389 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
390 		 */
391 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
392 	} else {
393 		new_insn += 3;
394 	}
395 
396 	for (i = 0; i < len; fp++, i++) {
397 		struct bpf_insn tmp_insns[6] = { };
398 		struct bpf_insn *insn = tmp_insns;
399 
400 		if (addrs)
401 			addrs[i] = new_insn - new_prog;
402 
403 		switch (fp->code) {
404 		/* All arithmetic insns and skb loads map as-is. */
405 		case BPF_ALU | BPF_ADD | BPF_X:
406 		case BPF_ALU | BPF_ADD | BPF_K:
407 		case BPF_ALU | BPF_SUB | BPF_X:
408 		case BPF_ALU | BPF_SUB | BPF_K:
409 		case BPF_ALU | BPF_AND | BPF_X:
410 		case BPF_ALU | BPF_AND | BPF_K:
411 		case BPF_ALU | BPF_OR | BPF_X:
412 		case BPF_ALU | BPF_OR | BPF_K:
413 		case BPF_ALU | BPF_LSH | BPF_X:
414 		case BPF_ALU | BPF_LSH | BPF_K:
415 		case BPF_ALU | BPF_RSH | BPF_X:
416 		case BPF_ALU | BPF_RSH | BPF_K:
417 		case BPF_ALU | BPF_XOR | BPF_X:
418 		case BPF_ALU | BPF_XOR | BPF_K:
419 		case BPF_ALU | BPF_MUL | BPF_X:
420 		case BPF_ALU | BPF_MUL | BPF_K:
421 		case BPF_ALU | BPF_DIV | BPF_X:
422 		case BPF_ALU | BPF_DIV | BPF_K:
423 		case BPF_ALU | BPF_MOD | BPF_X:
424 		case BPF_ALU | BPF_MOD | BPF_K:
425 		case BPF_ALU | BPF_NEG:
426 		case BPF_LD | BPF_ABS | BPF_W:
427 		case BPF_LD | BPF_ABS | BPF_H:
428 		case BPF_LD | BPF_ABS | BPF_B:
429 		case BPF_LD | BPF_IND | BPF_W:
430 		case BPF_LD | BPF_IND | BPF_H:
431 		case BPF_LD | BPF_IND | BPF_B:
432 			/* Check for overloaded BPF extension and
433 			 * directly convert it if found, otherwise
434 			 * just move on with mapping.
435 			 */
436 			if (BPF_CLASS(fp->code) == BPF_LD &&
437 			    BPF_MODE(fp->code) == BPF_ABS &&
438 			    convert_bpf_extensions(fp, &insn))
439 				break;
440 
441 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
442 			break;
443 
444 		/* Jump transformation cannot use BPF block macros
445 		 * everywhere as offset calculation and target updates
446 		 * require a bit more work than the rest, i.e. jump
447 		 * opcodes map as-is, but offsets need adjustment.
448 		 */
449 
450 #define BPF_EMIT_JMP							\
451 	do {								\
452 		if (target >= len || target < 0)			\
453 			goto err;					\
454 		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
455 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
456 		insn->off -= insn - tmp_insns;				\
457 	} while (0)
458 
459 		case BPF_JMP | BPF_JA:
460 			target = i + fp->k + 1;
461 			insn->code = fp->code;
462 			BPF_EMIT_JMP;
463 			break;
464 
465 		case BPF_JMP | BPF_JEQ | BPF_K:
466 		case BPF_JMP | BPF_JEQ | BPF_X:
467 		case BPF_JMP | BPF_JSET | BPF_K:
468 		case BPF_JMP | BPF_JSET | BPF_X:
469 		case BPF_JMP | BPF_JGT | BPF_K:
470 		case BPF_JMP | BPF_JGT | BPF_X:
471 		case BPF_JMP | BPF_JGE | BPF_K:
472 		case BPF_JMP | BPF_JGE | BPF_X:
473 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
474 				/* BPF immediates are signed, zero extend
475 				 * immediate into tmp register and use it
476 				 * in compare insn.
477 				 */
478 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
479 
480 				insn->dst_reg = BPF_REG_A;
481 				insn->src_reg = BPF_REG_TMP;
482 				bpf_src = BPF_X;
483 			} else {
484 				insn->dst_reg = BPF_REG_A;
485 				insn->imm = fp->k;
486 				bpf_src = BPF_SRC(fp->code);
487 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
488 			}
489 
490 			/* Common case where 'jump_false' is next insn. */
491 			if (fp->jf == 0) {
492 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
493 				target = i + fp->jt + 1;
494 				BPF_EMIT_JMP;
495 				break;
496 			}
497 
498 			/* Convert JEQ into JNE when 'jump_true' is next insn. */
499 			if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
500 				insn->code = BPF_JMP | BPF_JNE | bpf_src;
501 				target = i + fp->jf + 1;
502 				BPF_EMIT_JMP;
503 				break;
504 			}
505 
506 			/* Other jumps are mapped into two insns: Jxx and JA. */
507 			target = i + fp->jt + 1;
508 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
509 			BPF_EMIT_JMP;
510 			insn++;
511 
512 			insn->code = BPF_JMP | BPF_JA;
513 			target = i + fp->jf + 1;
514 			BPF_EMIT_JMP;
515 			break;
516 
517 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
518 		case BPF_LDX | BPF_MSH | BPF_B:
519 			/* tmp = A */
520 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
521 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
522 			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
523 			/* A &= 0xf */
524 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
525 			/* A <<= 2 */
526 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
527 			/* X = A */
528 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
529 			/* A = tmp */
530 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
531 			break;
532 
533 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
534 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
535 		 */
536 		case BPF_RET | BPF_A:
537 		case BPF_RET | BPF_K:
538 			if (BPF_RVAL(fp->code) == BPF_K)
539 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
540 							0, fp->k);
541 			*insn = BPF_EXIT_INSN();
542 			break;
543 
544 		/* Store to stack. */
545 		case BPF_ST:
546 		case BPF_STX:
547 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
548 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
549 					    -(BPF_MEMWORDS - fp->k) * 4);
550 			break;
551 
552 		/* Load from stack. */
553 		case BPF_LD | BPF_MEM:
554 		case BPF_LDX | BPF_MEM:
555 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
556 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
557 					    -(BPF_MEMWORDS - fp->k) * 4);
558 			break;
559 
560 		/* A = K or X = K */
561 		case BPF_LD | BPF_IMM:
562 		case BPF_LDX | BPF_IMM:
563 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
564 					      BPF_REG_A : BPF_REG_X, fp->k);
565 			break;
566 
567 		/* X = A */
568 		case BPF_MISC | BPF_TAX:
569 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
570 			break;
571 
572 		/* A = X */
573 		case BPF_MISC | BPF_TXA:
574 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
575 			break;
576 
577 		/* A = skb->len or X = skb->len */
578 		case BPF_LD | BPF_W | BPF_LEN:
579 		case BPF_LDX | BPF_W | BPF_LEN:
580 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
581 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
582 					    offsetof(struct sk_buff, len));
583 			break;
584 
585 		/* Access seccomp_data fields. */
586 		case BPF_LDX | BPF_ABS | BPF_W:
587 			/* A = *(u32 *) (ctx + K) */
588 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
589 			break;
590 
591 		/* Unknown instruction. */
592 		default:
593 			goto err;
594 		}
595 
596 		insn++;
597 		if (new_prog)
598 			memcpy(new_insn, tmp_insns,
599 			       sizeof(*insn) * (insn - tmp_insns));
600 		new_insn += insn - tmp_insns;
601 	}
602 
603 	if (!new_prog) {
604 		/* Only calculating new length. */
605 		*new_len = new_insn - new_prog;
606 		return 0;
607 	}
608 
609 	pass++;
610 	if (new_flen != new_insn - new_prog) {
611 		new_flen = new_insn - new_prog;
612 		if (pass > 2)
613 			goto err;
614 		goto do_pass;
615 	}
616 
617 	kfree(addrs);
618 	BUG_ON(*new_len != new_flen);
619 	return 0;
620 err:
621 	kfree(addrs);
622 	return -EINVAL;
623 }
624 
625 /* Security:
626  *
627  * As we dont want to clear mem[] array for each packet going through
628  * __bpf_prog_run(), we check that filter loaded by user never try to read
629  * a cell if not previously written, and we check all branches to be sure
630  * a malicious user doesn't try to abuse us.
631  */
632 static int check_load_and_stores(const struct sock_filter *filter, int flen)
633 {
634 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
635 	int pc, ret = 0;
636 
637 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
638 
639 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
640 	if (!masks)
641 		return -ENOMEM;
642 
643 	memset(masks, 0xff, flen * sizeof(*masks));
644 
645 	for (pc = 0; pc < flen; pc++) {
646 		memvalid &= masks[pc];
647 
648 		switch (filter[pc].code) {
649 		case BPF_ST:
650 		case BPF_STX:
651 			memvalid |= (1 << filter[pc].k);
652 			break;
653 		case BPF_LD | BPF_MEM:
654 		case BPF_LDX | BPF_MEM:
655 			if (!(memvalid & (1 << filter[pc].k))) {
656 				ret = -EINVAL;
657 				goto error;
658 			}
659 			break;
660 		case BPF_JMP | BPF_JA:
661 			/* A jump must set masks on target */
662 			masks[pc + 1 + filter[pc].k] &= memvalid;
663 			memvalid = ~0;
664 			break;
665 		case BPF_JMP | BPF_JEQ | BPF_K:
666 		case BPF_JMP | BPF_JEQ | BPF_X:
667 		case BPF_JMP | BPF_JGE | BPF_K:
668 		case BPF_JMP | BPF_JGE | BPF_X:
669 		case BPF_JMP | BPF_JGT | BPF_K:
670 		case BPF_JMP | BPF_JGT | BPF_X:
671 		case BPF_JMP | BPF_JSET | BPF_K:
672 		case BPF_JMP | BPF_JSET | BPF_X:
673 			/* A jump must set masks on targets */
674 			masks[pc + 1 + filter[pc].jt] &= memvalid;
675 			masks[pc + 1 + filter[pc].jf] &= memvalid;
676 			memvalid = ~0;
677 			break;
678 		}
679 	}
680 error:
681 	kfree(masks);
682 	return ret;
683 }
684 
685 static bool chk_code_allowed(u16 code_to_probe)
686 {
687 	static const bool codes[] = {
688 		/* 32 bit ALU operations */
689 		[BPF_ALU | BPF_ADD | BPF_K] = true,
690 		[BPF_ALU | BPF_ADD | BPF_X] = true,
691 		[BPF_ALU | BPF_SUB | BPF_K] = true,
692 		[BPF_ALU | BPF_SUB | BPF_X] = true,
693 		[BPF_ALU | BPF_MUL | BPF_K] = true,
694 		[BPF_ALU | BPF_MUL | BPF_X] = true,
695 		[BPF_ALU | BPF_DIV | BPF_K] = true,
696 		[BPF_ALU | BPF_DIV | BPF_X] = true,
697 		[BPF_ALU | BPF_MOD | BPF_K] = true,
698 		[BPF_ALU | BPF_MOD | BPF_X] = true,
699 		[BPF_ALU | BPF_AND | BPF_K] = true,
700 		[BPF_ALU | BPF_AND | BPF_X] = true,
701 		[BPF_ALU | BPF_OR | BPF_K] = true,
702 		[BPF_ALU | BPF_OR | BPF_X] = true,
703 		[BPF_ALU | BPF_XOR | BPF_K] = true,
704 		[BPF_ALU | BPF_XOR | BPF_X] = true,
705 		[BPF_ALU | BPF_LSH | BPF_K] = true,
706 		[BPF_ALU | BPF_LSH | BPF_X] = true,
707 		[BPF_ALU | BPF_RSH | BPF_K] = true,
708 		[BPF_ALU | BPF_RSH | BPF_X] = true,
709 		[BPF_ALU | BPF_NEG] = true,
710 		/* Load instructions */
711 		[BPF_LD | BPF_W | BPF_ABS] = true,
712 		[BPF_LD | BPF_H | BPF_ABS] = true,
713 		[BPF_LD | BPF_B | BPF_ABS] = true,
714 		[BPF_LD | BPF_W | BPF_LEN] = true,
715 		[BPF_LD | BPF_W | BPF_IND] = true,
716 		[BPF_LD | BPF_H | BPF_IND] = true,
717 		[BPF_LD | BPF_B | BPF_IND] = true,
718 		[BPF_LD | BPF_IMM] = true,
719 		[BPF_LD | BPF_MEM] = true,
720 		[BPF_LDX | BPF_W | BPF_LEN] = true,
721 		[BPF_LDX | BPF_B | BPF_MSH] = true,
722 		[BPF_LDX | BPF_IMM] = true,
723 		[BPF_LDX | BPF_MEM] = true,
724 		/* Store instructions */
725 		[BPF_ST] = true,
726 		[BPF_STX] = true,
727 		/* Misc instructions */
728 		[BPF_MISC | BPF_TAX] = true,
729 		[BPF_MISC | BPF_TXA] = true,
730 		/* Return instructions */
731 		[BPF_RET | BPF_K] = true,
732 		[BPF_RET | BPF_A] = true,
733 		/* Jump instructions */
734 		[BPF_JMP | BPF_JA] = true,
735 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
736 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
737 		[BPF_JMP | BPF_JGE | BPF_K] = true,
738 		[BPF_JMP | BPF_JGE | BPF_X] = true,
739 		[BPF_JMP | BPF_JGT | BPF_K] = true,
740 		[BPF_JMP | BPF_JGT | BPF_X] = true,
741 		[BPF_JMP | BPF_JSET | BPF_K] = true,
742 		[BPF_JMP | BPF_JSET | BPF_X] = true,
743 	};
744 
745 	if (code_to_probe >= ARRAY_SIZE(codes))
746 		return false;
747 
748 	return codes[code_to_probe];
749 }
750 
751 /**
752  *	bpf_check_classic - verify socket filter code
753  *	@filter: filter to verify
754  *	@flen: length of filter
755  *
756  * Check the user's filter code. If we let some ugly
757  * filter code slip through kaboom! The filter must contain
758  * no references or jumps that are out of range, no illegal
759  * instructions, and must end with a RET instruction.
760  *
761  * All jumps are forward as they are not signed.
762  *
763  * Returns 0 if the rule set is legal or -EINVAL if not.
764  */
765 static int bpf_check_classic(const struct sock_filter *filter,
766 			     unsigned int flen)
767 {
768 	bool anc_found;
769 	int pc;
770 
771 	if (flen == 0 || flen > BPF_MAXINSNS)
772 		return -EINVAL;
773 
774 	/* Check the filter code now */
775 	for (pc = 0; pc < flen; pc++) {
776 		const struct sock_filter *ftest = &filter[pc];
777 
778 		/* May we actually operate on this code? */
779 		if (!chk_code_allowed(ftest->code))
780 			return -EINVAL;
781 
782 		/* Some instructions need special checks */
783 		switch (ftest->code) {
784 		case BPF_ALU | BPF_DIV | BPF_K:
785 		case BPF_ALU | BPF_MOD | BPF_K:
786 			/* Check for division by zero */
787 			if (ftest->k == 0)
788 				return -EINVAL;
789 			break;
790 		case BPF_ALU | BPF_LSH | BPF_K:
791 		case BPF_ALU | BPF_RSH | BPF_K:
792 			if (ftest->k >= 32)
793 				return -EINVAL;
794 			break;
795 		case BPF_LD | BPF_MEM:
796 		case BPF_LDX | BPF_MEM:
797 		case BPF_ST:
798 		case BPF_STX:
799 			/* Check for invalid memory addresses */
800 			if (ftest->k >= BPF_MEMWORDS)
801 				return -EINVAL;
802 			break;
803 		case BPF_JMP | BPF_JA:
804 			/* Note, the large ftest->k might cause loops.
805 			 * Compare this with conditional jumps below,
806 			 * where offsets are limited. --ANK (981016)
807 			 */
808 			if (ftest->k >= (unsigned int)(flen - pc - 1))
809 				return -EINVAL;
810 			break;
811 		case BPF_JMP | BPF_JEQ | BPF_K:
812 		case BPF_JMP | BPF_JEQ | BPF_X:
813 		case BPF_JMP | BPF_JGE | BPF_K:
814 		case BPF_JMP | BPF_JGE | BPF_X:
815 		case BPF_JMP | BPF_JGT | BPF_K:
816 		case BPF_JMP | BPF_JGT | BPF_X:
817 		case BPF_JMP | BPF_JSET | BPF_K:
818 		case BPF_JMP | BPF_JSET | BPF_X:
819 			/* Both conditionals must be safe */
820 			if (pc + ftest->jt + 1 >= flen ||
821 			    pc + ftest->jf + 1 >= flen)
822 				return -EINVAL;
823 			break;
824 		case BPF_LD | BPF_W | BPF_ABS:
825 		case BPF_LD | BPF_H | BPF_ABS:
826 		case BPF_LD | BPF_B | BPF_ABS:
827 			anc_found = false;
828 			if (bpf_anc_helper(ftest) & BPF_ANC)
829 				anc_found = true;
830 			/* Ancillary operation unknown or unsupported */
831 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
832 				return -EINVAL;
833 		}
834 	}
835 
836 	/* Last instruction must be a RET code */
837 	switch (filter[flen - 1].code) {
838 	case BPF_RET | BPF_K:
839 	case BPF_RET | BPF_A:
840 		return check_load_and_stores(filter, flen);
841 	}
842 
843 	return -EINVAL;
844 }
845 
846 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
847 				      const struct sock_fprog *fprog)
848 {
849 	unsigned int fsize = bpf_classic_proglen(fprog);
850 	struct sock_fprog_kern *fkprog;
851 
852 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
853 	if (!fp->orig_prog)
854 		return -ENOMEM;
855 
856 	fkprog = fp->orig_prog;
857 	fkprog->len = fprog->len;
858 
859 	fkprog->filter = kmemdup(fp->insns, fsize,
860 				 GFP_KERNEL | __GFP_NOWARN);
861 	if (!fkprog->filter) {
862 		kfree(fp->orig_prog);
863 		return -ENOMEM;
864 	}
865 
866 	return 0;
867 }
868 
869 static void bpf_release_orig_filter(struct bpf_prog *fp)
870 {
871 	struct sock_fprog_kern *fprog = fp->orig_prog;
872 
873 	if (fprog) {
874 		kfree(fprog->filter);
875 		kfree(fprog);
876 	}
877 }
878 
879 static void __bpf_prog_release(struct bpf_prog *prog)
880 {
881 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
882 		bpf_prog_put(prog);
883 	} else {
884 		bpf_release_orig_filter(prog);
885 		bpf_prog_free(prog);
886 	}
887 }
888 
889 static void __sk_filter_release(struct sk_filter *fp)
890 {
891 	__bpf_prog_release(fp->prog);
892 	kfree(fp);
893 }
894 
895 /**
896  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
897  *	@rcu: rcu_head that contains the sk_filter to free
898  */
899 static void sk_filter_release_rcu(struct rcu_head *rcu)
900 {
901 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
902 
903 	__sk_filter_release(fp);
904 }
905 
906 /**
907  *	sk_filter_release - release a socket filter
908  *	@fp: filter to remove
909  *
910  *	Remove a filter from a socket and release its resources.
911  */
912 static void sk_filter_release(struct sk_filter *fp)
913 {
914 	if (atomic_dec_and_test(&fp->refcnt))
915 		call_rcu(&fp->rcu, sk_filter_release_rcu);
916 }
917 
918 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
919 {
920 	u32 filter_size = bpf_prog_size(fp->prog->len);
921 
922 	atomic_sub(filter_size, &sk->sk_omem_alloc);
923 	sk_filter_release(fp);
924 }
925 
926 /* try to charge the socket memory if there is space available
927  * return true on success
928  */
929 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
930 {
931 	u32 filter_size = bpf_prog_size(fp->prog->len);
932 
933 	/* same check as in sock_kmalloc() */
934 	if (filter_size <= sysctl_optmem_max &&
935 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
936 		atomic_inc(&fp->refcnt);
937 		atomic_add(filter_size, &sk->sk_omem_alloc);
938 		return true;
939 	}
940 	return false;
941 }
942 
943 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
944 {
945 	struct sock_filter *old_prog;
946 	struct bpf_prog *old_fp;
947 	int err, new_len, old_len = fp->len;
948 
949 	/* We are free to overwrite insns et al right here as it
950 	 * won't be used at this point in time anymore internally
951 	 * after the migration to the internal BPF instruction
952 	 * representation.
953 	 */
954 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
955 		     sizeof(struct bpf_insn));
956 
957 	/* Conversion cannot happen on overlapping memory areas,
958 	 * so we need to keep the user BPF around until the 2nd
959 	 * pass. At this time, the user BPF is stored in fp->insns.
960 	 */
961 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
962 			   GFP_KERNEL | __GFP_NOWARN);
963 	if (!old_prog) {
964 		err = -ENOMEM;
965 		goto out_err;
966 	}
967 
968 	/* 1st pass: calculate the new program length. */
969 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
970 	if (err)
971 		goto out_err_free;
972 
973 	/* Expand fp for appending the new filter representation. */
974 	old_fp = fp;
975 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
976 	if (!fp) {
977 		/* The old_fp is still around in case we couldn't
978 		 * allocate new memory, so uncharge on that one.
979 		 */
980 		fp = old_fp;
981 		err = -ENOMEM;
982 		goto out_err_free;
983 	}
984 
985 	fp->len = new_len;
986 
987 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
988 	err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
989 	if (err)
990 		/* 2nd bpf_convert_filter() can fail only if it fails
991 		 * to allocate memory, remapping must succeed. Note,
992 		 * that at this time old_fp has already been released
993 		 * by krealloc().
994 		 */
995 		goto out_err_free;
996 
997 	bpf_prog_select_runtime(fp);
998 
999 	kfree(old_prog);
1000 	return fp;
1001 
1002 out_err_free:
1003 	kfree(old_prog);
1004 out_err:
1005 	__bpf_prog_release(fp);
1006 	return ERR_PTR(err);
1007 }
1008 
1009 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1010 					   bpf_aux_classic_check_t trans)
1011 {
1012 	int err;
1013 
1014 	fp->bpf_func = NULL;
1015 	fp->jited = 0;
1016 
1017 	err = bpf_check_classic(fp->insns, fp->len);
1018 	if (err) {
1019 		__bpf_prog_release(fp);
1020 		return ERR_PTR(err);
1021 	}
1022 
1023 	/* There might be additional checks and transformations
1024 	 * needed on classic filters, f.e. in case of seccomp.
1025 	 */
1026 	if (trans) {
1027 		err = trans(fp->insns, fp->len);
1028 		if (err) {
1029 			__bpf_prog_release(fp);
1030 			return ERR_PTR(err);
1031 		}
1032 	}
1033 
1034 	/* Probe if we can JIT compile the filter and if so, do
1035 	 * the compilation of the filter.
1036 	 */
1037 	bpf_jit_compile(fp);
1038 
1039 	/* JIT compiler couldn't process this filter, so do the
1040 	 * internal BPF translation for the optimized interpreter.
1041 	 */
1042 	if (!fp->jited)
1043 		fp = bpf_migrate_filter(fp);
1044 
1045 	return fp;
1046 }
1047 
1048 /**
1049  *	bpf_prog_create - create an unattached filter
1050  *	@pfp: the unattached filter that is created
1051  *	@fprog: the filter program
1052  *
1053  * Create a filter independent of any socket. We first run some
1054  * sanity checks on it to make sure it does not explode on us later.
1055  * If an error occurs or there is insufficient memory for the filter
1056  * a negative errno code is returned. On success the return is zero.
1057  */
1058 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1059 {
1060 	unsigned int fsize = bpf_classic_proglen(fprog);
1061 	struct bpf_prog *fp;
1062 
1063 	/* Make sure new filter is there and in the right amounts. */
1064 	if (fprog->filter == NULL)
1065 		return -EINVAL;
1066 
1067 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1068 	if (!fp)
1069 		return -ENOMEM;
1070 
1071 	memcpy(fp->insns, fprog->filter, fsize);
1072 
1073 	fp->len = fprog->len;
1074 	/* Since unattached filters are not copied back to user
1075 	 * space through sk_get_filter(), we do not need to hold
1076 	 * a copy here, and can spare us the work.
1077 	 */
1078 	fp->orig_prog = NULL;
1079 
1080 	/* bpf_prepare_filter() already takes care of freeing
1081 	 * memory in case something goes wrong.
1082 	 */
1083 	fp = bpf_prepare_filter(fp, NULL);
1084 	if (IS_ERR(fp))
1085 		return PTR_ERR(fp);
1086 
1087 	*pfp = fp;
1088 	return 0;
1089 }
1090 EXPORT_SYMBOL_GPL(bpf_prog_create);
1091 
1092 /**
1093  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1094  *	@pfp: the unattached filter that is created
1095  *	@fprog: the filter program
1096  *	@trans: post-classic verifier transformation handler
1097  *	@save_orig: save classic BPF program
1098  *
1099  * This function effectively does the same as bpf_prog_create(), only
1100  * that it builds up its insns buffer from user space provided buffer.
1101  * It also allows for passing a bpf_aux_classic_check_t handler.
1102  */
1103 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1104 			      bpf_aux_classic_check_t trans, bool save_orig)
1105 {
1106 	unsigned int fsize = bpf_classic_proglen(fprog);
1107 	struct bpf_prog *fp;
1108 	int err;
1109 
1110 	/* Make sure new filter is there and in the right amounts. */
1111 	if (fprog->filter == NULL)
1112 		return -EINVAL;
1113 
1114 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1115 	if (!fp)
1116 		return -ENOMEM;
1117 
1118 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1119 		__bpf_prog_free(fp);
1120 		return -EFAULT;
1121 	}
1122 
1123 	fp->len = fprog->len;
1124 	fp->orig_prog = NULL;
1125 
1126 	if (save_orig) {
1127 		err = bpf_prog_store_orig_filter(fp, fprog);
1128 		if (err) {
1129 			__bpf_prog_free(fp);
1130 			return -ENOMEM;
1131 		}
1132 	}
1133 
1134 	/* bpf_prepare_filter() already takes care of freeing
1135 	 * memory in case something goes wrong.
1136 	 */
1137 	fp = bpf_prepare_filter(fp, trans);
1138 	if (IS_ERR(fp))
1139 		return PTR_ERR(fp);
1140 
1141 	*pfp = fp;
1142 	return 0;
1143 }
1144 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1145 
1146 void bpf_prog_destroy(struct bpf_prog *fp)
1147 {
1148 	__bpf_prog_release(fp);
1149 }
1150 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1151 
1152 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk,
1153 			    bool locked)
1154 {
1155 	struct sk_filter *fp, *old_fp;
1156 
1157 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1158 	if (!fp)
1159 		return -ENOMEM;
1160 
1161 	fp->prog = prog;
1162 	atomic_set(&fp->refcnt, 0);
1163 
1164 	if (!sk_filter_charge(sk, fp)) {
1165 		kfree(fp);
1166 		return -ENOMEM;
1167 	}
1168 
1169 	old_fp = rcu_dereference_protected(sk->sk_filter, locked);
1170 	rcu_assign_pointer(sk->sk_filter, fp);
1171 	if (old_fp)
1172 		sk_filter_uncharge(sk, old_fp);
1173 
1174 	return 0;
1175 }
1176 
1177 static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
1178 {
1179 	struct bpf_prog *old_prog;
1180 	int err;
1181 
1182 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1183 		return -ENOMEM;
1184 
1185 	if (sk_unhashed(sk) && sk->sk_reuseport) {
1186 		err = reuseport_alloc(sk);
1187 		if (err)
1188 			return err;
1189 	} else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
1190 		/* The socket wasn't bound with SO_REUSEPORT */
1191 		return -EINVAL;
1192 	}
1193 
1194 	old_prog = reuseport_attach_prog(sk, prog);
1195 	if (old_prog)
1196 		bpf_prog_destroy(old_prog);
1197 
1198 	return 0;
1199 }
1200 
1201 static
1202 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1203 {
1204 	unsigned int fsize = bpf_classic_proglen(fprog);
1205 	unsigned int bpf_fsize = bpf_prog_size(fprog->len);
1206 	struct bpf_prog *prog;
1207 	int err;
1208 
1209 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1210 		return ERR_PTR(-EPERM);
1211 
1212 	/* Make sure new filter is there and in the right amounts. */
1213 	if (fprog->filter == NULL)
1214 		return ERR_PTR(-EINVAL);
1215 
1216 	prog = bpf_prog_alloc(bpf_fsize, 0);
1217 	if (!prog)
1218 		return ERR_PTR(-ENOMEM);
1219 
1220 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1221 		__bpf_prog_free(prog);
1222 		return ERR_PTR(-EFAULT);
1223 	}
1224 
1225 	prog->len = fprog->len;
1226 
1227 	err = bpf_prog_store_orig_filter(prog, fprog);
1228 	if (err) {
1229 		__bpf_prog_free(prog);
1230 		return ERR_PTR(-ENOMEM);
1231 	}
1232 
1233 	/* bpf_prepare_filter() already takes care of freeing
1234 	 * memory in case something goes wrong.
1235 	 */
1236 	return bpf_prepare_filter(prog, NULL);
1237 }
1238 
1239 /**
1240  *	sk_attach_filter - attach a socket filter
1241  *	@fprog: the filter program
1242  *	@sk: the socket to use
1243  *
1244  * Attach the user's filter code. We first run some sanity checks on
1245  * it to make sure it does not explode on us later. If an error
1246  * occurs or there is insufficient memory for the filter a negative
1247  * errno code is returned. On success the return is zero.
1248  */
1249 int __sk_attach_filter(struct sock_fprog *fprog, struct sock *sk,
1250 		       bool locked)
1251 {
1252 	struct bpf_prog *prog = __get_filter(fprog, sk);
1253 	int err;
1254 
1255 	if (IS_ERR(prog))
1256 		return PTR_ERR(prog);
1257 
1258 	err = __sk_attach_prog(prog, sk, locked);
1259 	if (err < 0) {
1260 		__bpf_prog_release(prog);
1261 		return err;
1262 	}
1263 
1264 	return 0;
1265 }
1266 EXPORT_SYMBOL_GPL(__sk_attach_filter);
1267 
1268 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1269 {
1270 	return __sk_attach_filter(fprog, sk, sock_owned_by_user(sk));
1271 }
1272 
1273 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1274 {
1275 	struct bpf_prog *prog = __get_filter(fprog, sk);
1276 	int err;
1277 
1278 	if (IS_ERR(prog))
1279 		return PTR_ERR(prog);
1280 
1281 	err = __reuseport_attach_prog(prog, sk);
1282 	if (err < 0) {
1283 		__bpf_prog_release(prog);
1284 		return err;
1285 	}
1286 
1287 	return 0;
1288 }
1289 
1290 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1291 {
1292 	struct bpf_prog *prog;
1293 
1294 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1295 		return ERR_PTR(-EPERM);
1296 
1297 	prog = bpf_prog_get(ufd);
1298 	if (IS_ERR(prog))
1299 		return prog;
1300 
1301 	if (prog->type != BPF_PROG_TYPE_SOCKET_FILTER) {
1302 		bpf_prog_put(prog);
1303 		return ERR_PTR(-EINVAL);
1304 	}
1305 
1306 	return prog;
1307 }
1308 
1309 int sk_attach_bpf(u32 ufd, struct sock *sk)
1310 {
1311 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1312 	int err;
1313 
1314 	if (IS_ERR(prog))
1315 		return PTR_ERR(prog);
1316 
1317 	err = __sk_attach_prog(prog, sk, sock_owned_by_user(sk));
1318 	if (err < 0) {
1319 		bpf_prog_put(prog);
1320 		return err;
1321 	}
1322 
1323 	return 0;
1324 }
1325 
1326 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1327 {
1328 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1329 	int err;
1330 
1331 	if (IS_ERR(prog))
1332 		return PTR_ERR(prog);
1333 
1334 	err = __reuseport_attach_prog(prog, sk);
1335 	if (err < 0) {
1336 		bpf_prog_put(prog);
1337 		return err;
1338 	}
1339 
1340 	return 0;
1341 }
1342 
1343 struct bpf_scratchpad {
1344 	union {
1345 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1346 		u8     buff[MAX_BPF_STACK];
1347 	};
1348 };
1349 
1350 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1351 
1352 static u64 bpf_skb_store_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 flags)
1353 {
1354 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1355 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1356 	int offset = (int) r2;
1357 	void *from = (void *) (long) r3;
1358 	unsigned int len = (unsigned int) r4;
1359 	void *ptr;
1360 
1361 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1362 		return -EINVAL;
1363 
1364 	/* bpf verifier guarantees that:
1365 	 * 'from' pointer points to bpf program stack
1366 	 * 'len' bytes of it were initialized
1367 	 * 'len' > 0
1368 	 * 'skb' is a valid pointer to 'struct sk_buff'
1369 	 *
1370 	 * so check for invalid 'offset' and too large 'len'
1371 	 */
1372 	if (unlikely((u32) offset > 0xffff || len > sizeof(sp->buff)))
1373 		return -EFAULT;
1374 	if (unlikely(skb_try_make_writable(skb, offset + len)))
1375 		return -EFAULT;
1376 
1377 	ptr = skb_header_pointer(skb, offset, len, sp->buff);
1378 	if (unlikely(!ptr))
1379 		return -EFAULT;
1380 
1381 	if (flags & BPF_F_RECOMPUTE_CSUM)
1382 		skb_postpull_rcsum(skb, ptr, len);
1383 
1384 	memcpy(ptr, from, len);
1385 
1386 	if (ptr == sp->buff)
1387 		/* skb_store_bits cannot return -EFAULT here */
1388 		skb_store_bits(skb, offset, ptr, len);
1389 
1390 	if (flags & BPF_F_RECOMPUTE_CSUM)
1391 		skb_postpush_rcsum(skb, ptr, len);
1392 	if (flags & BPF_F_INVALIDATE_HASH)
1393 		skb_clear_hash(skb);
1394 
1395 	return 0;
1396 }
1397 
1398 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1399 	.func		= bpf_skb_store_bytes,
1400 	.gpl_only	= false,
1401 	.ret_type	= RET_INTEGER,
1402 	.arg1_type	= ARG_PTR_TO_CTX,
1403 	.arg2_type	= ARG_ANYTHING,
1404 	.arg3_type	= ARG_PTR_TO_STACK,
1405 	.arg4_type	= ARG_CONST_STACK_SIZE,
1406 	.arg5_type	= ARG_ANYTHING,
1407 };
1408 
1409 static u64 bpf_skb_load_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1410 {
1411 	const struct sk_buff *skb = (const struct sk_buff *)(unsigned long) r1;
1412 	int offset = (int) r2;
1413 	void *to = (void *)(unsigned long) r3;
1414 	unsigned int len = (unsigned int) r4;
1415 	void *ptr;
1416 
1417 	if (unlikely((u32) offset > 0xffff || len > MAX_BPF_STACK))
1418 		return -EFAULT;
1419 
1420 	ptr = skb_header_pointer(skb, offset, len, to);
1421 	if (unlikely(!ptr))
1422 		return -EFAULT;
1423 	if (ptr != to)
1424 		memcpy(to, ptr, len);
1425 
1426 	return 0;
1427 }
1428 
1429 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1430 	.func		= bpf_skb_load_bytes,
1431 	.gpl_only	= false,
1432 	.ret_type	= RET_INTEGER,
1433 	.arg1_type	= ARG_PTR_TO_CTX,
1434 	.arg2_type	= ARG_ANYTHING,
1435 	.arg3_type	= ARG_PTR_TO_STACK,
1436 	.arg4_type	= ARG_CONST_STACK_SIZE,
1437 };
1438 
1439 static u64 bpf_l3_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1440 {
1441 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1442 	int offset = (int) r2;
1443 	__sum16 sum, *ptr;
1444 
1445 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1446 		return -EINVAL;
1447 	if (unlikely((u32) offset > 0xffff))
1448 		return -EFAULT;
1449 	if (unlikely(skb_try_make_writable(skb, offset + sizeof(sum))))
1450 		return -EFAULT;
1451 
1452 	ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
1453 	if (unlikely(!ptr))
1454 		return -EFAULT;
1455 
1456 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1457 	case 0:
1458 		if (unlikely(from != 0))
1459 			return -EINVAL;
1460 
1461 		csum_replace_by_diff(ptr, to);
1462 		break;
1463 	case 2:
1464 		csum_replace2(ptr, from, to);
1465 		break;
1466 	case 4:
1467 		csum_replace4(ptr, from, to);
1468 		break;
1469 	default:
1470 		return -EINVAL;
1471 	}
1472 
1473 	if (ptr == &sum)
1474 		/* skb_store_bits guaranteed to not return -EFAULT here */
1475 		skb_store_bits(skb, offset, ptr, sizeof(sum));
1476 
1477 	return 0;
1478 }
1479 
1480 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1481 	.func		= bpf_l3_csum_replace,
1482 	.gpl_only	= false,
1483 	.ret_type	= RET_INTEGER,
1484 	.arg1_type	= ARG_PTR_TO_CTX,
1485 	.arg2_type	= ARG_ANYTHING,
1486 	.arg3_type	= ARG_ANYTHING,
1487 	.arg4_type	= ARG_ANYTHING,
1488 	.arg5_type	= ARG_ANYTHING,
1489 };
1490 
1491 static u64 bpf_l4_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1492 {
1493 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1494 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1495 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1496 	int offset = (int) r2;
1497 	__sum16 sum, *ptr;
1498 
1499 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_PSEUDO_HDR |
1500 			       BPF_F_HDR_FIELD_MASK)))
1501 		return -EINVAL;
1502 	if (unlikely((u32) offset > 0xffff))
1503 		return -EFAULT;
1504 	if (unlikely(skb_try_make_writable(skb, offset + sizeof(sum))))
1505 		return -EFAULT;
1506 
1507 	ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
1508 	if (unlikely(!ptr))
1509 		return -EFAULT;
1510 	if (is_mmzero && !*ptr)
1511 		return 0;
1512 
1513 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1514 	case 0:
1515 		if (unlikely(from != 0))
1516 			return -EINVAL;
1517 
1518 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1519 		break;
1520 	case 2:
1521 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1522 		break;
1523 	case 4:
1524 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1525 		break;
1526 	default:
1527 		return -EINVAL;
1528 	}
1529 
1530 	if (is_mmzero && !*ptr)
1531 		*ptr = CSUM_MANGLED_0;
1532 	if (ptr == &sum)
1533 		/* skb_store_bits guaranteed to not return -EFAULT here */
1534 		skb_store_bits(skb, offset, ptr, sizeof(sum));
1535 
1536 	return 0;
1537 }
1538 
1539 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1540 	.func		= bpf_l4_csum_replace,
1541 	.gpl_only	= false,
1542 	.ret_type	= RET_INTEGER,
1543 	.arg1_type	= ARG_PTR_TO_CTX,
1544 	.arg2_type	= ARG_ANYTHING,
1545 	.arg3_type	= ARG_ANYTHING,
1546 	.arg4_type	= ARG_ANYTHING,
1547 	.arg5_type	= ARG_ANYTHING,
1548 };
1549 
1550 static u64 bpf_csum_diff(u64 r1, u64 from_size, u64 r3, u64 to_size, u64 seed)
1551 {
1552 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1553 	u64 diff_size = from_size + to_size;
1554 	__be32 *from = (__be32 *) (long) r1;
1555 	__be32 *to   = (__be32 *) (long) r3;
1556 	int i, j = 0;
1557 
1558 	/* This is quite flexible, some examples:
1559 	 *
1560 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1561 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
1562 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1563 	 *
1564 	 * Even for diffing, from_size and to_size don't need to be equal.
1565 	 */
1566 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1567 		     diff_size > sizeof(sp->diff)))
1568 		return -EINVAL;
1569 
1570 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1571 		sp->diff[j] = ~from[i];
1572 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1573 		sp->diff[j] = to[i];
1574 
1575 	return csum_partial(sp->diff, diff_size, seed);
1576 }
1577 
1578 static const struct bpf_func_proto bpf_csum_diff_proto = {
1579 	.func		= bpf_csum_diff,
1580 	.gpl_only	= false,
1581 	.ret_type	= RET_INTEGER,
1582 	.arg1_type	= ARG_PTR_TO_STACK,
1583 	.arg2_type	= ARG_CONST_STACK_SIZE_OR_ZERO,
1584 	.arg3_type	= ARG_PTR_TO_STACK,
1585 	.arg4_type	= ARG_CONST_STACK_SIZE_OR_ZERO,
1586 	.arg5_type	= ARG_ANYTHING,
1587 };
1588 
1589 static u64 bpf_clone_redirect(u64 r1, u64 ifindex, u64 flags, u64 r4, u64 r5)
1590 {
1591 	struct sk_buff *skb = (struct sk_buff *) (long) r1, *skb2;
1592 	struct net_device *dev;
1593 
1594 	if (unlikely(flags & ~(BPF_F_INGRESS)))
1595 		return -EINVAL;
1596 
1597 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
1598 	if (unlikely(!dev))
1599 		return -EINVAL;
1600 
1601 	skb2 = skb_clone(skb, GFP_ATOMIC);
1602 	if (unlikely(!skb2))
1603 		return -ENOMEM;
1604 
1605 	if (flags & BPF_F_INGRESS) {
1606 		if (skb_at_tc_ingress(skb2))
1607 			skb_postpush_rcsum(skb2, skb_mac_header(skb2),
1608 					   skb2->mac_len);
1609 		return dev_forward_skb(dev, skb2);
1610 	}
1611 
1612 	skb2->dev = dev;
1613 	return dev_queue_xmit(skb2);
1614 }
1615 
1616 static const struct bpf_func_proto bpf_clone_redirect_proto = {
1617 	.func           = bpf_clone_redirect,
1618 	.gpl_only       = false,
1619 	.ret_type       = RET_INTEGER,
1620 	.arg1_type      = ARG_PTR_TO_CTX,
1621 	.arg2_type      = ARG_ANYTHING,
1622 	.arg3_type      = ARG_ANYTHING,
1623 };
1624 
1625 struct redirect_info {
1626 	u32 ifindex;
1627 	u32 flags;
1628 };
1629 
1630 static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1631 
1632 static u64 bpf_redirect(u64 ifindex, u64 flags, u64 r3, u64 r4, u64 r5)
1633 {
1634 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1635 
1636 	if (unlikely(flags & ~(BPF_F_INGRESS)))
1637 		return TC_ACT_SHOT;
1638 
1639 	ri->ifindex = ifindex;
1640 	ri->flags = flags;
1641 
1642 	return TC_ACT_REDIRECT;
1643 }
1644 
1645 int skb_do_redirect(struct sk_buff *skb)
1646 {
1647 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1648 	struct net_device *dev;
1649 
1650 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
1651 	ri->ifindex = 0;
1652 	if (unlikely(!dev)) {
1653 		kfree_skb(skb);
1654 		return -EINVAL;
1655 	}
1656 
1657 	if (ri->flags & BPF_F_INGRESS) {
1658 		if (skb_at_tc_ingress(skb))
1659 			skb_postpush_rcsum(skb, skb_mac_header(skb),
1660 					   skb->mac_len);
1661 		return dev_forward_skb(dev, skb);
1662 	}
1663 
1664 	skb->dev = dev;
1665 	return dev_queue_xmit(skb);
1666 }
1667 
1668 static const struct bpf_func_proto bpf_redirect_proto = {
1669 	.func           = bpf_redirect,
1670 	.gpl_only       = false,
1671 	.ret_type       = RET_INTEGER,
1672 	.arg1_type      = ARG_ANYTHING,
1673 	.arg2_type      = ARG_ANYTHING,
1674 };
1675 
1676 static u64 bpf_get_cgroup_classid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1677 {
1678 	return task_get_classid((struct sk_buff *) (unsigned long) r1);
1679 }
1680 
1681 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
1682 	.func           = bpf_get_cgroup_classid,
1683 	.gpl_only       = false,
1684 	.ret_type       = RET_INTEGER,
1685 	.arg1_type      = ARG_PTR_TO_CTX,
1686 };
1687 
1688 static u64 bpf_get_route_realm(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1689 {
1690 	return dst_tclassid((struct sk_buff *) (unsigned long) r1);
1691 }
1692 
1693 static const struct bpf_func_proto bpf_get_route_realm_proto = {
1694 	.func           = bpf_get_route_realm,
1695 	.gpl_only       = false,
1696 	.ret_type       = RET_INTEGER,
1697 	.arg1_type      = ARG_PTR_TO_CTX,
1698 };
1699 
1700 static u64 bpf_skb_vlan_push(u64 r1, u64 r2, u64 vlan_tci, u64 r4, u64 r5)
1701 {
1702 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1703 	__be16 vlan_proto = (__force __be16) r2;
1704 
1705 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
1706 		     vlan_proto != htons(ETH_P_8021AD)))
1707 		vlan_proto = htons(ETH_P_8021Q);
1708 
1709 	return skb_vlan_push(skb, vlan_proto, vlan_tci);
1710 }
1711 
1712 const struct bpf_func_proto bpf_skb_vlan_push_proto = {
1713 	.func           = bpf_skb_vlan_push,
1714 	.gpl_only       = false,
1715 	.ret_type       = RET_INTEGER,
1716 	.arg1_type      = ARG_PTR_TO_CTX,
1717 	.arg2_type      = ARG_ANYTHING,
1718 	.arg3_type      = ARG_ANYTHING,
1719 };
1720 EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1721 
1722 static u64 bpf_skb_vlan_pop(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1723 {
1724 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1725 
1726 	return skb_vlan_pop(skb);
1727 }
1728 
1729 const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
1730 	.func           = bpf_skb_vlan_pop,
1731 	.gpl_only       = false,
1732 	.ret_type       = RET_INTEGER,
1733 	.arg1_type      = ARG_PTR_TO_CTX,
1734 };
1735 EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
1736 
1737 bool bpf_helper_changes_skb_data(void *func)
1738 {
1739 	if (func == bpf_skb_vlan_push)
1740 		return true;
1741 	if (func == bpf_skb_vlan_pop)
1742 		return true;
1743 	if (func == bpf_skb_store_bytes)
1744 		return true;
1745 	if (func == bpf_l3_csum_replace)
1746 		return true;
1747 	if (func == bpf_l4_csum_replace)
1748 		return true;
1749 
1750 	return false;
1751 }
1752 
1753 static unsigned short bpf_tunnel_key_af(u64 flags)
1754 {
1755 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
1756 }
1757 
1758 static u64 bpf_skb_get_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
1759 {
1760 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1761 	struct bpf_tunnel_key *to = (struct bpf_tunnel_key *) (long) r2;
1762 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
1763 	u8 compat[sizeof(struct bpf_tunnel_key)];
1764 
1765 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6))))
1766 		return -EINVAL;
1767 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags))
1768 		return -EPROTO;
1769 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
1770 		switch (size) {
1771 		case offsetof(struct bpf_tunnel_key, tunnel_label):
1772 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
1773 			goto set_compat;
1774 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
1775 			/* Fixup deprecated structure layouts here, so we have
1776 			 * a common path later on.
1777 			 */
1778 			if (ip_tunnel_info_af(info) != AF_INET)
1779 				return -EINVAL;
1780 set_compat:
1781 			to = (struct bpf_tunnel_key *)compat;
1782 			break;
1783 		default:
1784 			return -EINVAL;
1785 		}
1786 	}
1787 
1788 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
1789 	to->tunnel_tos = info->key.tos;
1790 	to->tunnel_ttl = info->key.ttl;
1791 
1792 	if (flags & BPF_F_TUNINFO_IPV6) {
1793 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
1794 		       sizeof(to->remote_ipv6));
1795 		to->tunnel_label = be32_to_cpu(info->key.label);
1796 	} else {
1797 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
1798 	}
1799 
1800 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
1801 		memcpy((void *)(long) r2, to, size);
1802 
1803 	return 0;
1804 }
1805 
1806 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
1807 	.func		= bpf_skb_get_tunnel_key,
1808 	.gpl_only	= false,
1809 	.ret_type	= RET_INTEGER,
1810 	.arg1_type	= ARG_PTR_TO_CTX,
1811 	.arg2_type	= ARG_PTR_TO_STACK,
1812 	.arg3_type	= ARG_CONST_STACK_SIZE,
1813 	.arg4_type	= ARG_ANYTHING,
1814 };
1815 
1816 static u64 bpf_skb_get_tunnel_opt(u64 r1, u64 r2, u64 size, u64 r4, u64 r5)
1817 {
1818 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1819 	u8 *to = (u8 *) (long) r2;
1820 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
1821 
1822 	if (unlikely(!info ||
1823 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT)))
1824 		return -ENOENT;
1825 	if (unlikely(size < info->options_len))
1826 		return -ENOMEM;
1827 
1828 	ip_tunnel_info_opts_get(to, info);
1829 
1830 	return info->options_len;
1831 }
1832 
1833 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
1834 	.func		= bpf_skb_get_tunnel_opt,
1835 	.gpl_only	= false,
1836 	.ret_type	= RET_INTEGER,
1837 	.arg1_type	= ARG_PTR_TO_CTX,
1838 	.arg2_type	= ARG_PTR_TO_STACK,
1839 	.arg3_type	= ARG_CONST_STACK_SIZE,
1840 };
1841 
1842 static struct metadata_dst __percpu *md_dst;
1843 
1844 static u64 bpf_skb_set_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
1845 {
1846 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1847 	struct bpf_tunnel_key *from = (struct bpf_tunnel_key *) (long) r2;
1848 	struct metadata_dst *md = this_cpu_ptr(md_dst);
1849 	u8 compat[sizeof(struct bpf_tunnel_key)];
1850 	struct ip_tunnel_info *info;
1851 
1852 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
1853 			       BPF_F_DONT_FRAGMENT)))
1854 		return -EINVAL;
1855 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
1856 		switch (size) {
1857 		case offsetof(struct bpf_tunnel_key, tunnel_label):
1858 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
1859 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
1860 			/* Fixup deprecated structure layouts here, so we have
1861 			 * a common path later on.
1862 			 */
1863 			memcpy(compat, from, size);
1864 			memset(compat + size, 0, sizeof(compat) - size);
1865 			from = (struct bpf_tunnel_key *)compat;
1866 			break;
1867 		default:
1868 			return -EINVAL;
1869 		}
1870 	}
1871 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
1872 		     from->tunnel_ext))
1873 		return -EINVAL;
1874 
1875 	skb_dst_drop(skb);
1876 	dst_hold((struct dst_entry *) md);
1877 	skb_dst_set(skb, (struct dst_entry *) md);
1878 
1879 	info = &md->u.tun_info;
1880 	info->mode = IP_TUNNEL_INFO_TX;
1881 
1882 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
1883 	if (flags & BPF_F_DONT_FRAGMENT)
1884 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
1885 
1886 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
1887 	info->key.tos = from->tunnel_tos;
1888 	info->key.ttl = from->tunnel_ttl;
1889 
1890 	if (flags & BPF_F_TUNINFO_IPV6) {
1891 		info->mode |= IP_TUNNEL_INFO_IPV6;
1892 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
1893 		       sizeof(from->remote_ipv6));
1894 		info->key.label = cpu_to_be32(from->tunnel_label) &
1895 				  IPV6_FLOWLABEL_MASK;
1896 	} else {
1897 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
1898 		if (flags & BPF_F_ZERO_CSUM_TX)
1899 			info->key.tun_flags &= ~TUNNEL_CSUM;
1900 	}
1901 
1902 	return 0;
1903 }
1904 
1905 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
1906 	.func		= bpf_skb_set_tunnel_key,
1907 	.gpl_only	= false,
1908 	.ret_type	= RET_INTEGER,
1909 	.arg1_type	= ARG_PTR_TO_CTX,
1910 	.arg2_type	= ARG_PTR_TO_STACK,
1911 	.arg3_type	= ARG_CONST_STACK_SIZE,
1912 	.arg4_type	= ARG_ANYTHING,
1913 };
1914 
1915 static u64 bpf_skb_set_tunnel_opt(u64 r1, u64 r2, u64 size, u64 r4, u64 r5)
1916 {
1917 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1918 	u8 *from = (u8 *) (long) r2;
1919 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
1920 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
1921 
1922 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
1923 		return -EINVAL;
1924 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
1925 		return -ENOMEM;
1926 
1927 	ip_tunnel_info_opts_set(info, from, size);
1928 
1929 	return 0;
1930 }
1931 
1932 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
1933 	.func		= bpf_skb_set_tunnel_opt,
1934 	.gpl_only	= false,
1935 	.ret_type	= RET_INTEGER,
1936 	.arg1_type	= ARG_PTR_TO_CTX,
1937 	.arg2_type	= ARG_PTR_TO_STACK,
1938 	.arg3_type	= ARG_CONST_STACK_SIZE,
1939 };
1940 
1941 static const struct bpf_func_proto *
1942 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
1943 {
1944 	if (!md_dst) {
1945 		/* Race is not possible, since it's called from verifier
1946 		 * that is holding verifier mutex.
1947 		 */
1948 		md_dst = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
1949 						   GFP_KERNEL);
1950 		if (!md_dst)
1951 			return NULL;
1952 	}
1953 
1954 	switch (which) {
1955 	case BPF_FUNC_skb_set_tunnel_key:
1956 		return &bpf_skb_set_tunnel_key_proto;
1957 	case BPF_FUNC_skb_set_tunnel_opt:
1958 		return &bpf_skb_set_tunnel_opt_proto;
1959 	default:
1960 		return NULL;
1961 	}
1962 }
1963 
1964 static const struct bpf_func_proto *
1965 sk_filter_func_proto(enum bpf_func_id func_id)
1966 {
1967 	switch (func_id) {
1968 	case BPF_FUNC_map_lookup_elem:
1969 		return &bpf_map_lookup_elem_proto;
1970 	case BPF_FUNC_map_update_elem:
1971 		return &bpf_map_update_elem_proto;
1972 	case BPF_FUNC_map_delete_elem:
1973 		return &bpf_map_delete_elem_proto;
1974 	case BPF_FUNC_get_prandom_u32:
1975 		return &bpf_get_prandom_u32_proto;
1976 	case BPF_FUNC_get_smp_processor_id:
1977 		return &bpf_get_smp_processor_id_proto;
1978 	case BPF_FUNC_tail_call:
1979 		return &bpf_tail_call_proto;
1980 	case BPF_FUNC_ktime_get_ns:
1981 		return &bpf_ktime_get_ns_proto;
1982 	case BPF_FUNC_trace_printk:
1983 		if (capable(CAP_SYS_ADMIN))
1984 			return bpf_get_trace_printk_proto();
1985 	default:
1986 		return NULL;
1987 	}
1988 }
1989 
1990 static const struct bpf_func_proto *
1991 tc_cls_act_func_proto(enum bpf_func_id func_id)
1992 {
1993 	switch (func_id) {
1994 	case BPF_FUNC_skb_store_bytes:
1995 		return &bpf_skb_store_bytes_proto;
1996 	case BPF_FUNC_skb_load_bytes:
1997 		return &bpf_skb_load_bytes_proto;
1998 	case BPF_FUNC_csum_diff:
1999 		return &bpf_csum_diff_proto;
2000 	case BPF_FUNC_l3_csum_replace:
2001 		return &bpf_l3_csum_replace_proto;
2002 	case BPF_FUNC_l4_csum_replace:
2003 		return &bpf_l4_csum_replace_proto;
2004 	case BPF_FUNC_clone_redirect:
2005 		return &bpf_clone_redirect_proto;
2006 	case BPF_FUNC_get_cgroup_classid:
2007 		return &bpf_get_cgroup_classid_proto;
2008 	case BPF_FUNC_skb_vlan_push:
2009 		return &bpf_skb_vlan_push_proto;
2010 	case BPF_FUNC_skb_vlan_pop:
2011 		return &bpf_skb_vlan_pop_proto;
2012 	case BPF_FUNC_skb_get_tunnel_key:
2013 		return &bpf_skb_get_tunnel_key_proto;
2014 	case BPF_FUNC_skb_set_tunnel_key:
2015 		return bpf_get_skb_set_tunnel_proto(func_id);
2016 	case BPF_FUNC_skb_get_tunnel_opt:
2017 		return &bpf_skb_get_tunnel_opt_proto;
2018 	case BPF_FUNC_skb_set_tunnel_opt:
2019 		return bpf_get_skb_set_tunnel_proto(func_id);
2020 	case BPF_FUNC_redirect:
2021 		return &bpf_redirect_proto;
2022 	case BPF_FUNC_get_route_realm:
2023 		return &bpf_get_route_realm_proto;
2024 	default:
2025 		return sk_filter_func_proto(func_id);
2026 	}
2027 }
2028 
2029 static bool __is_valid_access(int off, int size, enum bpf_access_type type)
2030 {
2031 	/* check bounds */
2032 	if (off < 0 || off >= sizeof(struct __sk_buff))
2033 		return false;
2034 
2035 	/* disallow misaligned access */
2036 	if (off % size != 0)
2037 		return false;
2038 
2039 	/* all __sk_buff fields are __u32 */
2040 	if (size != 4)
2041 		return false;
2042 
2043 	return true;
2044 }
2045 
2046 static bool sk_filter_is_valid_access(int off, int size,
2047 				      enum bpf_access_type type)
2048 {
2049 	if (off == offsetof(struct __sk_buff, tc_classid))
2050 		return false;
2051 
2052 	if (type == BPF_WRITE) {
2053 		switch (off) {
2054 		case offsetof(struct __sk_buff, cb[0]) ...
2055 			offsetof(struct __sk_buff, cb[4]):
2056 			break;
2057 		default:
2058 			return false;
2059 		}
2060 	}
2061 
2062 	return __is_valid_access(off, size, type);
2063 }
2064 
2065 static bool tc_cls_act_is_valid_access(int off, int size,
2066 				       enum bpf_access_type type)
2067 {
2068 	if (type == BPF_WRITE) {
2069 		switch (off) {
2070 		case offsetof(struct __sk_buff, mark):
2071 		case offsetof(struct __sk_buff, tc_index):
2072 		case offsetof(struct __sk_buff, priority):
2073 		case offsetof(struct __sk_buff, cb[0]) ...
2074 		     offsetof(struct __sk_buff, cb[4]):
2075 		case offsetof(struct __sk_buff, tc_classid):
2076 			break;
2077 		default:
2078 			return false;
2079 		}
2080 	}
2081 	return __is_valid_access(off, size, type);
2082 }
2083 
2084 static u32 bpf_net_convert_ctx_access(enum bpf_access_type type, int dst_reg,
2085 				      int src_reg, int ctx_off,
2086 				      struct bpf_insn *insn_buf,
2087 				      struct bpf_prog *prog)
2088 {
2089 	struct bpf_insn *insn = insn_buf;
2090 
2091 	switch (ctx_off) {
2092 	case offsetof(struct __sk_buff, len):
2093 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
2094 
2095 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
2096 				      offsetof(struct sk_buff, len));
2097 		break;
2098 
2099 	case offsetof(struct __sk_buff, protocol):
2100 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
2101 
2102 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
2103 				      offsetof(struct sk_buff, protocol));
2104 		break;
2105 
2106 	case offsetof(struct __sk_buff, vlan_proto):
2107 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
2108 
2109 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
2110 				      offsetof(struct sk_buff, vlan_proto));
2111 		break;
2112 
2113 	case offsetof(struct __sk_buff, priority):
2114 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);
2115 
2116 		if (type == BPF_WRITE)
2117 			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
2118 					      offsetof(struct sk_buff, priority));
2119 		else
2120 			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
2121 					      offsetof(struct sk_buff, priority));
2122 		break;
2123 
2124 	case offsetof(struct __sk_buff, ingress_ifindex):
2125 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, skb_iif) != 4);
2126 
2127 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
2128 				      offsetof(struct sk_buff, skb_iif));
2129 		break;
2130 
2131 	case offsetof(struct __sk_buff, ifindex):
2132 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
2133 
2134 		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
2135 				      dst_reg, src_reg,
2136 				      offsetof(struct sk_buff, dev));
2137 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
2138 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, dst_reg,
2139 				      offsetof(struct net_device, ifindex));
2140 		break;
2141 
2142 	case offsetof(struct __sk_buff, hash):
2143 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
2144 
2145 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
2146 				      offsetof(struct sk_buff, hash));
2147 		break;
2148 
2149 	case offsetof(struct __sk_buff, mark):
2150 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
2151 
2152 		if (type == BPF_WRITE)
2153 			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
2154 					      offsetof(struct sk_buff, mark));
2155 		else
2156 			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
2157 					      offsetof(struct sk_buff, mark));
2158 		break;
2159 
2160 	case offsetof(struct __sk_buff, pkt_type):
2161 		return convert_skb_access(SKF_AD_PKTTYPE, dst_reg, src_reg, insn);
2162 
2163 	case offsetof(struct __sk_buff, queue_mapping):
2164 		return convert_skb_access(SKF_AD_QUEUE, dst_reg, src_reg, insn);
2165 
2166 	case offsetof(struct __sk_buff, vlan_present):
2167 		return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
2168 					  dst_reg, src_reg, insn);
2169 
2170 	case offsetof(struct __sk_buff, vlan_tci):
2171 		return convert_skb_access(SKF_AD_VLAN_TAG,
2172 					  dst_reg, src_reg, insn);
2173 
2174 	case offsetof(struct __sk_buff, cb[0]) ...
2175 		offsetof(struct __sk_buff, cb[4]):
2176 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
2177 
2178 		prog->cb_access = 1;
2179 		ctx_off -= offsetof(struct __sk_buff, cb[0]);
2180 		ctx_off += offsetof(struct sk_buff, cb);
2181 		ctx_off += offsetof(struct qdisc_skb_cb, data);
2182 		if (type == BPF_WRITE)
2183 			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
2184 		else
2185 			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
2186 		break;
2187 
2188 	case offsetof(struct __sk_buff, tc_classid):
2189 		ctx_off -= offsetof(struct __sk_buff, tc_classid);
2190 		ctx_off += offsetof(struct sk_buff, cb);
2191 		ctx_off += offsetof(struct qdisc_skb_cb, tc_classid);
2192 		if (type == BPF_WRITE)
2193 			*insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg, ctx_off);
2194 		else
2195 			*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg, ctx_off);
2196 		break;
2197 
2198 	case offsetof(struct __sk_buff, tc_index):
2199 #ifdef CONFIG_NET_SCHED
2200 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tc_index) != 2);
2201 
2202 		if (type == BPF_WRITE)
2203 			*insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg,
2204 					      offsetof(struct sk_buff, tc_index));
2205 		else
2206 			*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
2207 					      offsetof(struct sk_buff, tc_index));
2208 		break;
2209 #else
2210 		if (type == BPF_WRITE)
2211 			*insn++ = BPF_MOV64_REG(dst_reg, dst_reg);
2212 		else
2213 			*insn++ = BPF_MOV64_IMM(dst_reg, 0);
2214 		break;
2215 #endif
2216 	}
2217 
2218 	return insn - insn_buf;
2219 }
2220 
2221 static const struct bpf_verifier_ops sk_filter_ops = {
2222 	.get_func_proto = sk_filter_func_proto,
2223 	.is_valid_access = sk_filter_is_valid_access,
2224 	.convert_ctx_access = bpf_net_convert_ctx_access,
2225 };
2226 
2227 static const struct bpf_verifier_ops tc_cls_act_ops = {
2228 	.get_func_proto = tc_cls_act_func_proto,
2229 	.is_valid_access = tc_cls_act_is_valid_access,
2230 	.convert_ctx_access = bpf_net_convert_ctx_access,
2231 };
2232 
2233 static struct bpf_prog_type_list sk_filter_type __read_mostly = {
2234 	.ops = &sk_filter_ops,
2235 	.type = BPF_PROG_TYPE_SOCKET_FILTER,
2236 };
2237 
2238 static struct bpf_prog_type_list sched_cls_type __read_mostly = {
2239 	.ops = &tc_cls_act_ops,
2240 	.type = BPF_PROG_TYPE_SCHED_CLS,
2241 };
2242 
2243 static struct bpf_prog_type_list sched_act_type __read_mostly = {
2244 	.ops = &tc_cls_act_ops,
2245 	.type = BPF_PROG_TYPE_SCHED_ACT,
2246 };
2247 
2248 static int __init register_sk_filter_ops(void)
2249 {
2250 	bpf_register_prog_type(&sk_filter_type);
2251 	bpf_register_prog_type(&sched_cls_type);
2252 	bpf_register_prog_type(&sched_act_type);
2253 
2254 	return 0;
2255 }
2256 late_initcall(register_sk_filter_ops);
2257 
2258 int __sk_detach_filter(struct sock *sk, bool locked)
2259 {
2260 	int ret = -ENOENT;
2261 	struct sk_filter *filter;
2262 
2263 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
2264 		return -EPERM;
2265 
2266 	filter = rcu_dereference_protected(sk->sk_filter, locked);
2267 	if (filter) {
2268 		RCU_INIT_POINTER(sk->sk_filter, NULL);
2269 		sk_filter_uncharge(sk, filter);
2270 		ret = 0;
2271 	}
2272 
2273 	return ret;
2274 }
2275 EXPORT_SYMBOL_GPL(__sk_detach_filter);
2276 
2277 int sk_detach_filter(struct sock *sk)
2278 {
2279 	return __sk_detach_filter(sk, sock_owned_by_user(sk));
2280 }
2281 
2282 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
2283 		  unsigned int len)
2284 {
2285 	struct sock_fprog_kern *fprog;
2286 	struct sk_filter *filter;
2287 	int ret = 0;
2288 
2289 	lock_sock(sk);
2290 	filter = rcu_dereference_protected(sk->sk_filter,
2291 					   sock_owned_by_user(sk));
2292 	if (!filter)
2293 		goto out;
2294 
2295 	/* We're copying the filter that has been originally attached,
2296 	 * so no conversion/decode needed anymore. eBPF programs that
2297 	 * have no original program cannot be dumped through this.
2298 	 */
2299 	ret = -EACCES;
2300 	fprog = filter->prog->orig_prog;
2301 	if (!fprog)
2302 		goto out;
2303 
2304 	ret = fprog->len;
2305 	if (!len)
2306 		/* User space only enquires number of filter blocks. */
2307 		goto out;
2308 
2309 	ret = -EINVAL;
2310 	if (len < fprog->len)
2311 		goto out;
2312 
2313 	ret = -EFAULT;
2314 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
2315 		goto out;
2316 
2317 	/* Instead of bytes, the API requests to return the number
2318 	 * of filter blocks.
2319 	 */
2320 	ret = fprog->len;
2321 out:
2322 	release_sock(sk);
2323 	return ret;
2324 }
2325