xref: /openbmc/linux/net/core/filter.c (revision 4e508b25)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/fcntl.h>
25 #include <linux/socket.h>
26 #include <linux/sock_diag.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_arp.h>
32 #include <linux/gfp.h>
33 #include <net/inet_common.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <linux/skmsg.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 #include <net/xdp.h>
81 #include <net/mptcp.h>
82 
83 static const struct bpf_func_proto *
84 bpf_sk_base_func_proto(enum bpf_func_id func_id);
85 
86 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
87 {
88 	if (in_compat_syscall()) {
89 		struct compat_sock_fprog f32;
90 
91 		if (len != sizeof(f32))
92 			return -EINVAL;
93 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
94 			return -EFAULT;
95 		memset(dst, 0, sizeof(*dst));
96 		dst->len = f32.len;
97 		dst->filter = compat_ptr(f32.filter);
98 	} else {
99 		if (len != sizeof(*dst))
100 			return -EINVAL;
101 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
102 			return -EFAULT;
103 	}
104 
105 	return 0;
106 }
107 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
108 
109 /**
110  *	sk_filter_trim_cap - run a packet through a socket filter
111  *	@sk: sock associated with &sk_buff
112  *	@skb: buffer to filter
113  *	@cap: limit on how short the eBPF program may trim the packet
114  *
115  * Run the eBPF program and then cut skb->data to correct size returned by
116  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
117  * than pkt_len we keep whole skb->data. This is the socket level
118  * wrapper to bpf_prog_run. It returns 0 if the packet should
119  * be accepted or -EPERM if the packet should be tossed.
120  *
121  */
122 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
123 {
124 	int err;
125 	struct sk_filter *filter;
126 
127 	/*
128 	 * If the skb was allocated from pfmemalloc reserves, only
129 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
130 	 * helping free memory
131 	 */
132 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
133 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
134 		return -ENOMEM;
135 	}
136 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
137 	if (err)
138 		return err;
139 
140 	err = security_sock_rcv_skb(sk, skb);
141 	if (err)
142 		return err;
143 
144 	rcu_read_lock();
145 	filter = rcu_dereference(sk->sk_filter);
146 	if (filter) {
147 		struct sock *save_sk = skb->sk;
148 		unsigned int pkt_len;
149 
150 		skb->sk = sk;
151 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
152 		skb->sk = save_sk;
153 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
154 	}
155 	rcu_read_unlock();
156 
157 	return err;
158 }
159 EXPORT_SYMBOL(sk_filter_trim_cap);
160 
161 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
162 {
163 	return skb_get_poff(skb);
164 }
165 
166 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
167 {
168 	struct nlattr *nla;
169 
170 	if (skb_is_nonlinear(skb))
171 		return 0;
172 
173 	if (skb->len < sizeof(struct nlattr))
174 		return 0;
175 
176 	if (a > skb->len - sizeof(struct nlattr))
177 		return 0;
178 
179 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
180 	if (nla)
181 		return (void *) nla - (void *) skb->data;
182 
183 	return 0;
184 }
185 
186 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
187 {
188 	struct nlattr *nla;
189 
190 	if (skb_is_nonlinear(skb))
191 		return 0;
192 
193 	if (skb->len < sizeof(struct nlattr))
194 		return 0;
195 
196 	if (a > skb->len - sizeof(struct nlattr))
197 		return 0;
198 
199 	nla = (struct nlattr *) &skb->data[a];
200 	if (nla->nla_len > skb->len - a)
201 		return 0;
202 
203 	nla = nla_find_nested(nla, x);
204 	if (nla)
205 		return (void *) nla - (void *) skb->data;
206 
207 	return 0;
208 }
209 
210 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
211 	   data, int, headlen, int, offset)
212 {
213 	u8 tmp, *ptr;
214 	const int len = sizeof(tmp);
215 
216 	if (offset >= 0) {
217 		if (headlen - offset >= len)
218 			return *(u8 *)(data + offset);
219 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
220 			return tmp;
221 	} else {
222 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
223 		if (likely(ptr))
224 			return *(u8 *)ptr;
225 	}
226 
227 	return -EFAULT;
228 }
229 
230 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
231 	   int, offset)
232 {
233 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
234 					 offset);
235 }
236 
237 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
238 	   data, int, headlen, int, offset)
239 {
240 	__be16 tmp, *ptr;
241 	const int len = sizeof(tmp);
242 
243 	if (offset >= 0) {
244 		if (headlen - offset >= len)
245 			return get_unaligned_be16(data + offset);
246 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
247 			return be16_to_cpu(tmp);
248 	} else {
249 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
250 		if (likely(ptr))
251 			return get_unaligned_be16(ptr);
252 	}
253 
254 	return -EFAULT;
255 }
256 
257 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
258 	   int, offset)
259 {
260 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
261 					  offset);
262 }
263 
264 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
265 	   data, int, headlen, int, offset)
266 {
267 	__be32 tmp, *ptr;
268 	const int len = sizeof(tmp);
269 
270 	if (likely(offset >= 0)) {
271 		if (headlen - offset >= len)
272 			return get_unaligned_be32(data + offset);
273 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
274 			return be32_to_cpu(tmp);
275 	} else {
276 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
277 		if (likely(ptr))
278 			return get_unaligned_be32(ptr);
279 	}
280 
281 	return -EFAULT;
282 }
283 
284 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
285 	   int, offset)
286 {
287 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
288 					  offset);
289 }
290 
291 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
292 			      struct bpf_insn *insn_buf)
293 {
294 	struct bpf_insn *insn = insn_buf;
295 
296 	switch (skb_field) {
297 	case SKF_AD_MARK:
298 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
299 
300 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
301 				      offsetof(struct sk_buff, mark));
302 		break;
303 
304 	case SKF_AD_PKTTYPE:
305 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
306 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
307 #ifdef __BIG_ENDIAN_BITFIELD
308 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
309 #endif
310 		break;
311 
312 	case SKF_AD_QUEUE:
313 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
314 
315 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
316 				      offsetof(struct sk_buff, queue_mapping));
317 		break;
318 
319 	case SKF_AD_VLAN_TAG:
320 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
321 
322 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
323 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
324 				      offsetof(struct sk_buff, vlan_tci));
325 		break;
326 	case SKF_AD_VLAN_TAG_PRESENT:
327 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET);
328 		if (PKT_VLAN_PRESENT_BIT)
329 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
330 		if (PKT_VLAN_PRESENT_BIT < 7)
331 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
332 		break;
333 	}
334 
335 	return insn - insn_buf;
336 }
337 
338 static bool convert_bpf_extensions(struct sock_filter *fp,
339 				   struct bpf_insn **insnp)
340 {
341 	struct bpf_insn *insn = *insnp;
342 	u32 cnt;
343 
344 	switch (fp->k) {
345 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
346 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
347 
348 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
349 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
350 				      offsetof(struct sk_buff, protocol));
351 		/* A = ntohs(A) [emitting a nop or swap16] */
352 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
353 		break;
354 
355 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
356 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
357 		insn += cnt - 1;
358 		break;
359 
360 	case SKF_AD_OFF + SKF_AD_IFINDEX:
361 	case SKF_AD_OFF + SKF_AD_HATYPE:
362 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
363 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
364 
365 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
366 				      BPF_REG_TMP, BPF_REG_CTX,
367 				      offsetof(struct sk_buff, dev));
368 		/* if (tmp != 0) goto pc + 1 */
369 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
370 		*insn++ = BPF_EXIT_INSN();
371 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
372 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
373 					    offsetof(struct net_device, ifindex));
374 		else
375 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
376 					    offsetof(struct net_device, type));
377 		break;
378 
379 	case SKF_AD_OFF + SKF_AD_MARK:
380 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
381 		insn += cnt - 1;
382 		break;
383 
384 	case SKF_AD_OFF + SKF_AD_RXHASH:
385 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
386 
387 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
388 				    offsetof(struct sk_buff, hash));
389 		break;
390 
391 	case SKF_AD_OFF + SKF_AD_QUEUE:
392 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
393 		insn += cnt - 1;
394 		break;
395 
396 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
397 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
398 					 BPF_REG_A, BPF_REG_CTX, insn);
399 		insn += cnt - 1;
400 		break;
401 
402 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
403 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
404 					 BPF_REG_A, BPF_REG_CTX, insn);
405 		insn += cnt - 1;
406 		break;
407 
408 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
409 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
410 
411 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
412 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
413 				      offsetof(struct sk_buff, vlan_proto));
414 		/* A = ntohs(A) [emitting a nop or swap16] */
415 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
416 		break;
417 
418 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
419 	case SKF_AD_OFF + SKF_AD_NLATTR:
420 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
421 	case SKF_AD_OFF + SKF_AD_CPU:
422 	case SKF_AD_OFF + SKF_AD_RANDOM:
423 		/* arg1 = CTX */
424 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
425 		/* arg2 = A */
426 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
427 		/* arg3 = X */
428 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
429 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
430 		switch (fp->k) {
431 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
432 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
433 			break;
434 		case SKF_AD_OFF + SKF_AD_NLATTR:
435 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
436 			break;
437 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
438 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
439 			break;
440 		case SKF_AD_OFF + SKF_AD_CPU:
441 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
442 			break;
443 		case SKF_AD_OFF + SKF_AD_RANDOM:
444 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
445 			bpf_user_rnd_init_once();
446 			break;
447 		}
448 		break;
449 
450 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
451 		/* A ^= X */
452 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
453 		break;
454 
455 	default:
456 		/* This is just a dummy call to avoid letting the compiler
457 		 * evict __bpf_call_base() as an optimization. Placed here
458 		 * where no-one bothers.
459 		 */
460 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
461 		return false;
462 	}
463 
464 	*insnp = insn;
465 	return true;
466 }
467 
468 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
469 {
470 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
471 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
472 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
473 		      BPF_SIZE(fp->code) == BPF_W;
474 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
475 	const int ip_align = NET_IP_ALIGN;
476 	struct bpf_insn *insn = *insnp;
477 	int offset = fp->k;
478 
479 	if (!indirect &&
480 	    ((unaligned_ok && offset >= 0) ||
481 	     (!unaligned_ok && offset >= 0 &&
482 	      offset + ip_align >= 0 &&
483 	      offset + ip_align % size == 0))) {
484 		bool ldx_off_ok = offset <= S16_MAX;
485 
486 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
487 		if (offset)
488 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
489 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
490 				      size, 2 + endian + (!ldx_off_ok * 2));
491 		if (ldx_off_ok) {
492 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
493 					      BPF_REG_D, offset);
494 		} else {
495 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
496 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
497 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
498 					      BPF_REG_TMP, 0);
499 		}
500 		if (endian)
501 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
502 		*insn++ = BPF_JMP_A(8);
503 	}
504 
505 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
506 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
507 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
508 	if (!indirect) {
509 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
510 	} else {
511 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
512 		if (fp->k)
513 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
514 	}
515 
516 	switch (BPF_SIZE(fp->code)) {
517 	case BPF_B:
518 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
519 		break;
520 	case BPF_H:
521 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
522 		break;
523 	case BPF_W:
524 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
525 		break;
526 	default:
527 		return false;
528 	}
529 
530 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
531 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
532 	*insn   = BPF_EXIT_INSN();
533 
534 	*insnp = insn;
535 	return true;
536 }
537 
538 /**
539  *	bpf_convert_filter - convert filter program
540  *	@prog: the user passed filter program
541  *	@len: the length of the user passed filter program
542  *	@new_prog: allocated 'struct bpf_prog' or NULL
543  *	@new_len: pointer to store length of converted program
544  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
545  *
546  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
547  * style extended BPF (eBPF).
548  * Conversion workflow:
549  *
550  * 1) First pass for calculating the new program length:
551  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
552  *
553  * 2) 2nd pass to remap in two passes: 1st pass finds new
554  *    jump offsets, 2nd pass remapping:
555  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
556  */
557 static int bpf_convert_filter(struct sock_filter *prog, int len,
558 			      struct bpf_prog *new_prog, int *new_len,
559 			      bool *seen_ld_abs)
560 {
561 	int new_flen = 0, pass = 0, target, i, stack_off;
562 	struct bpf_insn *new_insn, *first_insn = NULL;
563 	struct sock_filter *fp;
564 	int *addrs = NULL;
565 	u8 bpf_src;
566 
567 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
568 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
569 
570 	if (len <= 0 || len > BPF_MAXINSNS)
571 		return -EINVAL;
572 
573 	if (new_prog) {
574 		first_insn = new_prog->insnsi;
575 		addrs = kcalloc(len, sizeof(*addrs),
576 				GFP_KERNEL | __GFP_NOWARN);
577 		if (!addrs)
578 			return -ENOMEM;
579 	}
580 
581 do_pass:
582 	new_insn = first_insn;
583 	fp = prog;
584 
585 	/* Classic BPF related prologue emission. */
586 	if (new_prog) {
587 		/* Classic BPF expects A and X to be reset first. These need
588 		 * to be guaranteed to be the first two instructions.
589 		 */
590 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
591 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
592 
593 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
594 		 * In eBPF case it's done by the compiler, here we need to
595 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
596 		 */
597 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
598 		if (*seen_ld_abs) {
599 			/* For packet access in classic BPF, cache skb->data
600 			 * in callee-saved BPF R8 and skb->len - skb->data_len
601 			 * (headlen) in BPF R9. Since classic BPF is read-only
602 			 * on CTX, we only need to cache it once.
603 			 */
604 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
605 						  BPF_REG_D, BPF_REG_CTX,
606 						  offsetof(struct sk_buff, data));
607 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
608 						  offsetof(struct sk_buff, len));
609 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
610 						  offsetof(struct sk_buff, data_len));
611 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
612 		}
613 	} else {
614 		new_insn += 3;
615 	}
616 
617 	for (i = 0; i < len; fp++, i++) {
618 		struct bpf_insn tmp_insns[32] = { };
619 		struct bpf_insn *insn = tmp_insns;
620 
621 		if (addrs)
622 			addrs[i] = new_insn - first_insn;
623 
624 		switch (fp->code) {
625 		/* All arithmetic insns and skb loads map as-is. */
626 		case BPF_ALU | BPF_ADD | BPF_X:
627 		case BPF_ALU | BPF_ADD | BPF_K:
628 		case BPF_ALU | BPF_SUB | BPF_X:
629 		case BPF_ALU | BPF_SUB | BPF_K:
630 		case BPF_ALU | BPF_AND | BPF_X:
631 		case BPF_ALU | BPF_AND | BPF_K:
632 		case BPF_ALU | BPF_OR | BPF_X:
633 		case BPF_ALU | BPF_OR | BPF_K:
634 		case BPF_ALU | BPF_LSH | BPF_X:
635 		case BPF_ALU | BPF_LSH | BPF_K:
636 		case BPF_ALU | BPF_RSH | BPF_X:
637 		case BPF_ALU | BPF_RSH | BPF_K:
638 		case BPF_ALU | BPF_XOR | BPF_X:
639 		case BPF_ALU | BPF_XOR | BPF_K:
640 		case BPF_ALU | BPF_MUL | BPF_X:
641 		case BPF_ALU | BPF_MUL | BPF_K:
642 		case BPF_ALU | BPF_DIV | BPF_X:
643 		case BPF_ALU | BPF_DIV | BPF_K:
644 		case BPF_ALU | BPF_MOD | BPF_X:
645 		case BPF_ALU | BPF_MOD | BPF_K:
646 		case BPF_ALU | BPF_NEG:
647 		case BPF_LD | BPF_ABS | BPF_W:
648 		case BPF_LD | BPF_ABS | BPF_H:
649 		case BPF_LD | BPF_ABS | BPF_B:
650 		case BPF_LD | BPF_IND | BPF_W:
651 		case BPF_LD | BPF_IND | BPF_H:
652 		case BPF_LD | BPF_IND | BPF_B:
653 			/* Check for overloaded BPF extension and
654 			 * directly convert it if found, otherwise
655 			 * just move on with mapping.
656 			 */
657 			if (BPF_CLASS(fp->code) == BPF_LD &&
658 			    BPF_MODE(fp->code) == BPF_ABS &&
659 			    convert_bpf_extensions(fp, &insn))
660 				break;
661 			if (BPF_CLASS(fp->code) == BPF_LD &&
662 			    convert_bpf_ld_abs(fp, &insn)) {
663 				*seen_ld_abs = true;
664 				break;
665 			}
666 
667 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
668 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
669 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
670 				/* Error with exception code on div/mod by 0.
671 				 * For cBPF programs, this was always return 0.
672 				 */
673 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
674 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
675 				*insn++ = BPF_EXIT_INSN();
676 			}
677 
678 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
679 			break;
680 
681 		/* Jump transformation cannot use BPF block macros
682 		 * everywhere as offset calculation and target updates
683 		 * require a bit more work than the rest, i.e. jump
684 		 * opcodes map as-is, but offsets need adjustment.
685 		 */
686 
687 #define BPF_EMIT_JMP							\
688 	do {								\
689 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
690 		s32 off;						\
691 									\
692 		if (target >= len || target < 0)			\
693 			goto err;					\
694 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
695 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
696 		off -= insn - tmp_insns;				\
697 		/* Reject anything not fitting into insn->off. */	\
698 		if (off < off_min || off > off_max)			\
699 			goto err;					\
700 		insn->off = off;					\
701 	} while (0)
702 
703 		case BPF_JMP | BPF_JA:
704 			target = i + fp->k + 1;
705 			insn->code = fp->code;
706 			BPF_EMIT_JMP;
707 			break;
708 
709 		case BPF_JMP | BPF_JEQ | BPF_K:
710 		case BPF_JMP | BPF_JEQ | BPF_X:
711 		case BPF_JMP | BPF_JSET | BPF_K:
712 		case BPF_JMP | BPF_JSET | BPF_X:
713 		case BPF_JMP | BPF_JGT | BPF_K:
714 		case BPF_JMP | BPF_JGT | BPF_X:
715 		case BPF_JMP | BPF_JGE | BPF_K:
716 		case BPF_JMP | BPF_JGE | BPF_X:
717 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
718 				/* BPF immediates are signed, zero extend
719 				 * immediate into tmp register and use it
720 				 * in compare insn.
721 				 */
722 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
723 
724 				insn->dst_reg = BPF_REG_A;
725 				insn->src_reg = BPF_REG_TMP;
726 				bpf_src = BPF_X;
727 			} else {
728 				insn->dst_reg = BPF_REG_A;
729 				insn->imm = fp->k;
730 				bpf_src = BPF_SRC(fp->code);
731 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
732 			}
733 
734 			/* Common case where 'jump_false' is next insn. */
735 			if (fp->jf == 0) {
736 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
737 				target = i + fp->jt + 1;
738 				BPF_EMIT_JMP;
739 				break;
740 			}
741 
742 			/* Convert some jumps when 'jump_true' is next insn. */
743 			if (fp->jt == 0) {
744 				switch (BPF_OP(fp->code)) {
745 				case BPF_JEQ:
746 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
747 					break;
748 				case BPF_JGT:
749 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
750 					break;
751 				case BPF_JGE:
752 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
753 					break;
754 				default:
755 					goto jmp_rest;
756 				}
757 
758 				target = i + fp->jf + 1;
759 				BPF_EMIT_JMP;
760 				break;
761 			}
762 jmp_rest:
763 			/* Other jumps are mapped into two insns: Jxx and JA. */
764 			target = i + fp->jt + 1;
765 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
766 			BPF_EMIT_JMP;
767 			insn++;
768 
769 			insn->code = BPF_JMP | BPF_JA;
770 			target = i + fp->jf + 1;
771 			BPF_EMIT_JMP;
772 			break;
773 
774 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
775 		case BPF_LDX | BPF_MSH | BPF_B: {
776 			struct sock_filter tmp = {
777 				.code	= BPF_LD | BPF_ABS | BPF_B,
778 				.k	= fp->k,
779 			};
780 
781 			*seen_ld_abs = true;
782 
783 			/* X = A */
784 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
785 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
786 			convert_bpf_ld_abs(&tmp, &insn);
787 			insn++;
788 			/* A &= 0xf */
789 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
790 			/* A <<= 2 */
791 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
792 			/* tmp = X */
793 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
794 			/* X = A */
795 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
796 			/* A = tmp */
797 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
798 			break;
799 		}
800 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
801 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
802 		 */
803 		case BPF_RET | BPF_A:
804 		case BPF_RET | BPF_K:
805 			if (BPF_RVAL(fp->code) == BPF_K)
806 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
807 							0, fp->k);
808 			*insn = BPF_EXIT_INSN();
809 			break;
810 
811 		/* Store to stack. */
812 		case BPF_ST:
813 		case BPF_STX:
814 			stack_off = fp->k * 4  + 4;
815 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
816 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
817 					    -stack_off);
818 			/* check_load_and_stores() verifies that classic BPF can
819 			 * load from stack only after write, so tracking
820 			 * stack_depth for ST|STX insns is enough
821 			 */
822 			if (new_prog && new_prog->aux->stack_depth < stack_off)
823 				new_prog->aux->stack_depth = stack_off;
824 			break;
825 
826 		/* Load from stack. */
827 		case BPF_LD | BPF_MEM:
828 		case BPF_LDX | BPF_MEM:
829 			stack_off = fp->k * 4  + 4;
830 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
831 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
832 					    -stack_off);
833 			break;
834 
835 		/* A = K or X = K */
836 		case BPF_LD | BPF_IMM:
837 		case BPF_LDX | BPF_IMM:
838 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
839 					      BPF_REG_A : BPF_REG_X, fp->k);
840 			break;
841 
842 		/* X = A */
843 		case BPF_MISC | BPF_TAX:
844 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
845 			break;
846 
847 		/* A = X */
848 		case BPF_MISC | BPF_TXA:
849 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
850 			break;
851 
852 		/* A = skb->len or X = skb->len */
853 		case BPF_LD | BPF_W | BPF_LEN:
854 		case BPF_LDX | BPF_W | BPF_LEN:
855 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
856 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
857 					    offsetof(struct sk_buff, len));
858 			break;
859 
860 		/* Access seccomp_data fields. */
861 		case BPF_LDX | BPF_ABS | BPF_W:
862 			/* A = *(u32 *) (ctx + K) */
863 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
864 			break;
865 
866 		/* Unknown instruction. */
867 		default:
868 			goto err;
869 		}
870 
871 		insn++;
872 		if (new_prog)
873 			memcpy(new_insn, tmp_insns,
874 			       sizeof(*insn) * (insn - tmp_insns));
875 		new_insn += insn - tmp_insns;
876 	}
877 
878 	if (!new_prog) {
879 		/* Only calculating new length. */
880 		*new_len = new_insn - first_insn;
881 		if (*seen_ld_abs)
882 			*new_len += 4; /* Prologue bits. */
883 		return 0;
884 	}
885 
886 	pass++;
887 	if (new_flen != new_insn - first_insn) {
888 		new_flen = new_insn - first_insn;
889 		if (pass > 2)
890 			goto err;
891 		goto do_pass;
892 	}
893 
894 	kfree(addrs);
895 	BUG_ON(*new_len != new_flen);
896 	return 0;
897 err:
898 	kfree(addrs);
899 	return -EINVAL;
900 }
901 
902 /* Security:
903  *
904  * As we dont want to clear mem[] array for each packet going through
905  * __bpf_prog_run(), we check that filter loaded by user never try to read
906  * a cell if not previously written, and we check all branches to be sure
907  * a malicious user doesn't try to abuse us.
908  */
909 static int check_load_and_stores(const struct sock_filter *filter, int flen)
910 {
911 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
912 	int pc, ret = 0;
913 
914 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
915 
916 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
917 	if (!masks)
918 		return -ENOMEM;
919 
920 	memset(masks, 0xff, flen * sizeof(*masks));
921 
922 	for (pc = 0; pc < flen; pc++) {
923 		memvalid &= masks[pc];
924 
925 		switch (filter[pc].code) {
926 		case BPF_ST:
927 		case BPF_STX:
928 			memvalid |= (1 << filter[pc].k);
929 			break;
930 		case BPF_LD | BPF_MEM:
931 		case BPF_LDX | BPF_MEM:
932 			if (!(memvalid & (1 << filter[pc].k))) {
933 				ret = -EINVAL;
934 				goto error;
935 			}
936 			break;
937 		case BPF_JMP | BPF_JA:
938 			/* A jump must set masks on target */
939 			masks[pc + 1 + filter[pc].k] &= memvalid;
940 			memvalid = ~0;
941 			break;
942 		case BPF_JMP | BPF_JEQ | BPF_K:
943 		case BPF_JMP | BPF_JEQ | BPF_X:
944 		case BPF_JMP | BPF_JGE | BPF_K:
945 		case BPF_JMP | BPF_JGE | BPF_X:
946 		case BPF_JMP | BPF_JGT | BPF_K:
947 		case BPF_JMP | BPF_JGT | BPF_X:
948 		case BPF_JMP | BPF_JSET | BPF_K:
949 		case BPF_JMP | BPF_JSET | BPF_X:
950 			/* A jump must set masks on targets */
951 			masks[pc + 1 + filter[pc].jt] &= memvalid;
952 			masks[pc + 1 + filter[pc].jf] &= memvalid;
953 			memvalid = ~0;
954 			break;
955 		}
956 	}
957 error:
958 	kfree(masks);
959 	return ret;
960 }
961 
962 static bool chk_code_allowed(u16 code_to_probe)
963 {
964 	static const bool codes[] = {
965 		/* 32 bit ALU operations */
966 		[BPF_ALU | BPF_ADD | BPF_K] = true,
967 		[BPF_ALU | BPF_ADD | BPF_X] = true,
968 		[BPF_ALU | BPF_SUB | BPF_K] = true,
969 		[BPF_ALU | BPF_SUB | BPF_X] = true,
970 		[BPF_ALU | BPF_MUL | BPF_K] = true,
971 		[BPF_ALU | BPF_MUL | BPF_X] = true,
972 		[BPF_ALU | BPF_DIV | BPF_K] = true,
973 		[BPF_ALU | BPF_DIV | BPF_X] = true,
974 		[BPF_ALU | BPF_MOD | BPF_K] = true,
975 		[BPF_ALU | BPF_MOD | BPF_X] = true,
976 		[BPF_ALU | BPF_AND | BPF_K] = true,
977 		[BPF_ALU | BPF_AND | BPF_X] = true,
978 		[BPF_ALU | BPF_OR | BPF_K] = true,
979 		[BPF_ALU | BPF_OR | BPF_X] = true,
980 		[BPF_ALU | BPF_XOR | BPF_K] = true,
981 		[BPF_ALU | BPF_XOR | BPF_X] = true,
982 		[BPF_ALU | BPF_LSH | BPF_K] = true,
983 		[BPF_ALU | BPF_LSH | BPF_X] = true,
984 		[BPF_ALU | BPF_RSH | BPF_K] = true,
985 		[BPF_ALU | BPF_RSH | BPF_X] = true,
986 		[BPF_ALU | BPF_NEG] = true,
987 		/* Load instructions */
988 		[BPF_LD | BPF_W | BPF_ABS] = true,
989 		[BPF_LD | BPF_H | BPF_ABS] = true,
990 		[BPF_LD | BPF_B | BPF_ABS] = true,
991 		[BPF_LD | BPF_W | BPF_LEN] = true,
992 		[BPF_LD | BPF_W | BPF_IND] = true,
993 		[BPF_LD | BPF_H | BPF_IND] = true,
994 		[BPF_LD | BPF_B | BPF_IND] = true,
995 		[BPF_LD | BPF_IMM] = true,
996 		[BPF_LD | BPF_MEM] = true,
997 		[BPF_LDX | BPF_W | BPF_LEN] = true,
998 		[BPF_LDX | BPF_B | BPF_MSH] = true,
999 		[BPF_LDX | BPF_IMM] = true,
1000 		[BPF_LDX | BPF_MEM] = true,
1001 		/* Store instructions */
1002 		[BPF_ST] = true,
1003 		[BPF_STX] = true,
1004 		/* Misc instructions */
1005 		[BPF_MISC | BPF_TAX] = true,
1006 		[BPF_MISC | BPF_TXA] = true,
1007 		/* Return instructions */
1008 		[BPF_RET | BPF_K] = true,
1009 		[BPF_RET | BPF_A] = true,
1010 		/* Jump instructions */
1011 		[BPF_JMP | BPF_JA] = true,
1012 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1013 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1014 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1015 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1016 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1017 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1018 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1019 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1020 	};
1021 
1022 	if (code_to_probe >= ARRAY_SIZE(codes))
1023 		return false;
1024 
1025 	return codes[code_to_probe];
1026 }
1027 
1028 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1029 				unsigned int flen)
1030 {
1031 	if (filter == NULL)
1032 		return false;
1033 	if (flen == 0 || flen > BPF_MAXINSNS)
1034 		return false;
1035 
1036 	return true;
1037 }
1038 
1039 /**
1040  *	bpf_check_classic - verify socket filter code
1041  *	@filter: filter to verify
1042  *	@flen: length of filter
1043  *
1044  * Check the user's filter code. If we let some ugly
1045  * filter code slip through kaboom! The filter must contain
1046  * no references or jumps that are out of range, no illegal
1047  * instructions, and must end with a RET instruction.
1048  *
1049  * All jumps are forward as they are not signed.
1050  *
1051  * Returns 0 if the rule set is legal or -EINVAL if not.
1052  */
1053 static int bpf_check_classic(const struct sock_filter *filter,
1054 			     unsigned int flen)
1055 {
1056 	bool anc_found;
1057 	int pc;
1058 
1059 	/* Check the filter code now */
1060 	for (pc = 0; pc < flen; pc++) {
1061 		const struct sock_filter *ftest = &filter[pc];
1062 
1063 		/* May we actually operate on this code? */
1064 		if (!chk_code_allowed(ftest->code))
1065 			return -EINVAL;
1066 
1067 		/* Some instructions need special checks */
1068 		switch (ftest->code) {
1069 		case BPF_ALU | BPF_DIV | BPF_K:
1070 		case BPF_ALU | BPF_MOD | BPF_K:
1071 			/* Check for division by zero */
1072 			if (ftest->k == 0)
1073 				return -EINVAL;
1074 			break;
1075 		case BPF_ALU | BPF_LSH | BPF_K:
1076 		case BPF_ALU | BPF_RSH | BPF_K:
1077 			if (ftest->k >= 32)
1078 				return -EINVAL;
1079 			break;
1080 		case BPF_LD | BPF_MEM:
1081 		case BPF_LDX | BPF_MEM:
1082 		case BPF_ST:
1083 		case BPF_STX:
1084 			/* Check for invalid memory addresses */
1085 			if (ftest->k >= BPF_MEMWORDS)
1086 				return -EINVAL;
1087 			break;
1088 		case BPF_JMP | BPF_JA:
1089 			/* Note, the large ftest->k might cause loops.
1090 			 * Compare this with conditional jumps below,
1091 			 * where offsets are limited. --ANK (981016)
1092 			 */
1093 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1094 				return -EINVAL;
1095 			break;
1096 		case BPF_JMP | BPF_JEQ | BPF_K:
1097 		case BPF_JMP | BPF_JEQ | BPF_X:
1098 		case BPF_JMP | BPF_JGE | BPF_K:
1099 		case BPF_JMP | BPF_JGE | BPF_X:
1100 		case BPF_JMP | BPF_JGT | BPF_K:
1101 		case BPF_JMP | BPF_JGT | BPF_X:
1102 		case BPF_JMP | BPF_JSET | BPF_K:
1103 		case BPF_JMP | BPF_JSET | BPF_X:
1104 			/* Both conditionals must be safe */
1105 			if (pc + ftest->jt + 1 >= flen ||
1106 			    pc + ftest->jf + 1 >= flen)
1107 				return -EINVAL;
1108 			break;
1109 		case BPF_LD | BPF_W | BPF_ABS:
1110 		case BPF_LD | BPF_H | BPF_ABS:
1111 		case BPF_LD | BPF_B | BPF_ABS:
1112 			anc_found = false;
1113 			if (bpf_anc_helper(ftest) & BPF_ANC)
1114 				anc_found = true;
1115 			/* Ancillary operation unknown or unsupported */
1116 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1117 				return -EINVAL;
1118 		}
1119 	}
1120 
1121 	/* Last instruction must be a RET code */
1122 	switch (filter[flen - 1].code) {
1123 	case BPF_RET | BPF_K:
1124 	case BPF_RET | BPF_A:
1125 		return check_load_and_stores(filter, flen);
1126 	}
1127 
1128 	return -EINVAL;
1129 }
1130 
1131 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1132 				      const struct sock_fprog *fprog)
1133 {
1134 	unsigned int fsize = bpf_classic_proglen(fprog);
1135 	struct sock_fprog_kern *fkprog;
1136 
1137 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1138 	if (!fp->orig_prog)
1139 		return -ENOMEM;
1140 
1141 	fkprog = fp->orig_prog;
1142 	fkprog->len = fprog->len;
1143 
1144 	fkprog->filter = kmemdup(fp->insns, fsize,
1145 				 GFP_KERNEL | __GFP_NOWARN);
1146 	if (!fkprog->filter) {
1147 		kfree(fp->orig_prog);
1148 		return -ENOMEM;
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 static void bpf_release_orig_filter(struct bpf_prog *fp)
1155 {
1156 	struct sock_fprog_kern *fprog = fp->orig_prog;
1157 
1158 	if (fprog) {
1159 		kfree(fprog->filter);
1160 		kfree(fprog);
1161 	}
1162 }
1163 
1164 static void __bpf_prog_release(struct bpf_prog *prog)
1165 {
1166 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1167 		bpf_prog_put(prog);
1168 	} else {
1169 		bpf_release_orig_filter(prog);
1170 		bpf_prog_free(prog);
1171 	}
1172 }
1173 
1174 static void __sk_filter_release(struct sk_filter *fp)
1175 {
1176 	__bpf_prog_release(fp->prog);
1177 	kfree(fp);
1178 }
1179 
1180 /**
1181  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1182  *	@rcu: rcu_head that contains the sk_filter to free
1183  */
1184 static void sk_filter_release_rcu(struct rcu_head *rcu)
1185 {
1186 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1187 
1188 	__sk_filter_release(fp);
1189 }
1190 
1191 /**
1192  *	sk_filter_release - release a socket filter
1193  *	@fp: filter to remove
1194  *
1195  *	Remove a filter from a socket and release its resources.
1196  */
1197 static void sk_filter_release(struct sk_filter *fp)
1198 {
1199 	if (refcount_dec_and_test(&fp->refcnt))
1200 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1201 }
1202 
1203 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1204 {
1205 	u32 filter_size = bpf_prog_size(fp->prog->len);
1206 
1207 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1208 	sk_filter_release(fp);
1209 }
1210 
1211 /* try to charge the socket memory if there is space available
1212  * return true on success
1213  */
1214 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1215 {
1216 	u32 filter_size = bpf_prog_size(fp->prog->len);
1217 
1218 	/* same check as in sock_kmalloc() */
1219 	if (filter_size <= sysctl_optmem_max &&
1220 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1221 		atomic_add(filter_size, &sk->sk_omem_alloc);
1222 		return true;
1223 	}
1224 	return false;
1225 }
1226 
1227 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1228 {
1229 	if (!refcount_inc_not_zero(&fp->refcnt))
1230 		return false;
1231 
1232 	if (!__sk_filter_charge(sk, fp)) {
1233 		sk_filter_release(fp);
1234 		return false;
1235 	}
1236 	return true;
1237 }
1238 
1239 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1240 {
1241 	struct sock_filter *old_prog;
1242 	struct bpf_prog *old_fp;
1243 	int err, new_len, old_len = fp->len;
1244 	bool seen_ld_abs = false;
1245 
1246 	/* We are free to overwrite insns et al right here as it won't be used at
1247 	 * this point in time anymore internally after the migration to the eBPF
1248 	 * instruction representation.
1249 	 */
1250 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1251 		     sizeof(struct bpf_insn));
1252 
1253 	/* Conversion cannot happen on overlapping memory areas,
1254 	 * so we need to keep the user BPF around until the 2nd
1255 	 * pass. At this time, the user BPF is stored in fp->insns.
1256 	 */
1257 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1258 			   GFP_KERNEL | __GFP_NOWARN);
1259 	if (!old_prog) {
1260 		err = -ENOMEM;
1261 		goto out_err;
1262 	}
1263 
1264 	/* 1st pass: calculate the new program length. */
1265 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1266 				 &seen_ld_abs);
1267 	if (err)
1268 		goto out_err_free;
1269 
1270 	/* Expand fp for appending the new filter representation. */
1271 	old_fp = fp;
1272 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1273 	if (!fp) {
1274 		/* The old_fp is still around in case we couldn't
1275 		 * allocate new memory, so uncharge on that one.
1276 		 */
1277 		fp = old_fp;
1278 		err = -ENOMEM;
1279 		goto out_err_free;
1280 	}
1281 
1282 	fp->len = new_len;
1283 
1284 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1285 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1286 				 &seen_ld_abs);
1287 	if (err)
1288 		/* 2nd bpf_convert_filter() can fail only if it fails
1289 		 * to allocate memory, remapping must succeed. Note,
1290 		 * that at this time old_fp has already been released
1291 		 * by krealloc().
1292 		 */
1293 		goto out_err_free;
1294 
1295 	fp = bpf_prog_select_runtime(fp, &err);
1296 	if (err)
1297 		goto out_err_free;
1298 
1299 	kfree(old_prog);
1300 	return fp;
1301 
1302 out_err_free:
1303 	kfree(old_prog);
1304 out_err:
1305 	__bpf_prog_release(fp);
1306 	return ERR_PTR(err);
1307 }
1308 
1309 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1310 					   bpf_aux_classic_check_t trans)
1311 {
1312 	int err;
1313 
1314 	fp->bpf_func = NULL;
1315 	fp->jited = 0;
1316 
1317 	err = bpf_check_classic(fp->insns, fp->len);
1318 	if (err) {
1319 		__bpf_prog_release(fp);
1320 		return ERR_PTR(err);
1321 	}
1322 
1323 	/* There might be additional checks and transformations
1324 	 * needed on classic filters, f.e. in case of seccomp.
1325 	 */
1326 	if (trans) {
1327 		err = trans(fp->insns, fp->len);
1328 		if (err) {
1329 			__bpf_prog_release(fp);
1330 			return ERR_PTR(err);
1331 		}
1332 	}
1333 
1334 	/* Probe if we can JIT compile the filter and if so, do
1335 	 * the compilation of the filter.
1336 	 */
1337 	bpf_jit_compile(fp);
1338 
1339 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1340 	 * for the optimized interpreter.
1341 	 */
1342 	if (!fp->jited)
1343 		fp = bpf_migrate_filter(fp);
1344 
1345 	return fp;
1346 }
1347 
1348 /**
1349  *	bpf_prog_create - create an unattached filter
1350  *	@pfp: the unattached filter that is created
1351  *	@fprog: the filter program
1352  *
1353  * Create a filter independent of any socket. We first run some
1354  * sanity checks on it to make sure it does not explode on us later.
1355  * If an error occurs or there is insufficient memory for the filter
1356  * a negative errno code is returned. On success the return is zero.
1357  */
1358 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1359 {
1360 	unsigned int fsize = bpf_classic_proglen(fprog);
1361 	struct bpf_prog *fp;
1362 
1363 	/* Make sure new filter is there and in the right amounts. */
1364 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1365 		return -EINVAL;
1366 
1367 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1368 	if (!fp)
1369 		return -ENOMEM;
1370 
1371 	memcpy(fp->insns, fprog->filter, fsize);
1372 
1373 	fp->len = fprog->len;
1374 	/* Since unattached filters are not copied back to user
1375 	 * space through sk_get_filter(), we do not need to hold
1376 	 * a copy here, and can spare us the work.
1377 	 */
1378 	fp->orig_prog = NULL;
1379 
1380 	/* bpf_prepare_filter() already takes care of freeing
1381 	 * memory in case something goes wrong.
1382 	 */
1383 	fp = bpf_prepare_filter(fp, NULL);
1384 	if (IS_ERR(fp))
1385 		return PTR_ERR(fp);
1386 
1387 	*pfp = fp;
1388 	return 0;
1389 }
1390 EXPORT_SYMBOL_GPL(bpf_prog_create);
1391 
1392 /**
1393  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1394  *	@pfp: the unattached filter that is created
1395  *	@fprog: the filter program
1396  *	@trans: post-classic verifier transformation handler
1397  *	@save_orig: save classic BPF program
1398  *
1399  * This function effectively does the same as bpf_prog_create(), only
1400  * that it builds up its insns buffer from user space provided buffer.
1401  * It also allows for passing a bpf_aux_classic_check_t handler.
1402  */
1403 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1404 			      bpf_aux_classic_check_t trans, bool save_orig)
1405 {
1406 	unsigned int fsize = bpf_classic_proglen(fprog);
1407 	struct bpf_prog *fp;
1408 	int err;
1409 
1410 	/* Make sure new filter is there and in the right amounts. */
1411 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1412 		return -EINVAL;
1413 
1414 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1415 	if (!fp)
1416 		return -ENOMEM;
1417 
1418 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1419 		__bpf_prog_free(fp);
1420 		return -EFAULT;
1421 	}
1422 
1423 	fp->len = fprog->len;
1424 	fp->orig_prog = NULL;
1425 
1426 	if (save_orig) {
1427 		err = bpf_prog_store_orig_filter(fp, fprog);
1428 		if (err) {
1429 			__bpf_prog_free(fp);
1430 			return -ENOMEM;
1431 		}
1432 	}
1433 
1434 	/* bpf_prepare_filter() already takes care of freeing
1435 	 * memory in case something goes wrong.
1436 	 */
1437 	fp = bpf_prepare_filter(fp, trans);
1438 	if (IS_ERR(fp))
1439 		return PTR_ERR(fp);
1440 
1441 	*pfp = fp;
1442 	return 0;
1443 }
1444 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1445 
1446 void bpf_prog_destroy(struct bpf_prog *fp)
1447 {
1448 	__bpf_prog_release(fp);
1449 }
1450 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1451 
1452 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1453 {
1454 	struct sk_filter *fp, *old_fp;
1455 
1456 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1457 	if (!fp)
1458 		return -ENOMEM;
1459 
1460 	fp->prog = prog;
1461 
1462 	if (!__sk_filter_charge(sk, fp)) {
1463 		kfree(fp);
1464 		return -ENOMEM;
1465 	}
1466 	refcount_set(&fp->refcnt, 1);
1467 
1468 	old_fp = rcu_dereference_protected(sk->sk_filter,
1469 					   lockdep_sock_is_held(sk));
1470 	rcu_assign_pointer(sk->sk_filter, fp);
1471 
1472 	if (old_fp)
1473 		sk_filter_uncharge(sk, old_fp);
1474 
1475 	return 0;
1476 }
1477 
1478 static
1479 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1480 {
1481 	unsigned int fsize = bpf_classic_proglen(fprog);
1482 	struct bpf_prog *prog;
1483 	int err;
1484 
1485 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1486 		return ERR_PTR(-EPERM);
1487 
1488 	/* Make sure new filter is there and in the right amounts. */
1489 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1490 		return ERR_PTR(-EINVAL);
1491 
1492 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1493 	if (!prog)
1494 		return ERR_PTR(-ENOMEM);
1495 
1496 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1497 		__bpf_prog_free(prog);
1498 		return ERR_PTR(-EFAULT);
1499 	}
1500 
1501 	prog->len = fprog->len;
1502 
1503 	err = bpf_prog_store_orig_filter(prog, fprog);
1504 	if (err) {
1505 		__bpf_prog_free(prog);
1506 		return ERR_PTR(-ENOMEM);
1507 	}
1508 
1509 	/* bpf_prepare_filter() already takes care of freeing
1510 	 * memory in case something goes wrong.
1511 	 */
1512 	return bpf_prepare_filter(prog, NULL);
1513 }
1514 
1515 /**
1516  *	sk_attach_filter - attach a socket filter
1517  *	@fprog: the filter program
1518  *	@sk: the socket to use
1519  *
1520  * Attach the user's filter code. We first run some sanity checks on
1521  * it to make sure it does not explode on us later. If an error
1522  * occurs or there is insufficient memory for the filter a negative
1523  * errno code is returned. On success the return is zero.
1524  */
1525 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1526 {
1527 	struct bpf_prog *prog = __get_filter(fprog, sk);
1528 	int err;
1529 
1530 	if (IS_ERR(prog))
1531 		return PTR_ERR(prog);
1532 
1533 	err = __sk_attach_prog(prog, sk);
1534 	if (err < 0) {
1535 		__bpf_prog_release(prog);
1536 		return err;
1537 	}
1538 
1539 	return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(sk_attach_filter);
1542 
1543 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1544 {
1545 	struct bpf_prog *prog = __get_filter(fprog, sk);
1546 	int err;
1547 
1548 	if (IS_ERR(prog))
1549 		return PTR_ERR(prog);
1550 
1551 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1552 		err = -ENOMEM;
1553 	else
1554 		err = reuseport_attach_prog(sk, prog);
1555 
1556 	if (err)
1557 		__bpf_prog_release(prog);
1558 
1559 	return err;
1560 }
1561 
1562 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1563 {
1564 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1565 		return ERR_PTR(-EPERM);
1566 
1567 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1568 }
1569 
1570 int sk_attach_bpf(u32 ufd, struct sock *sk)
1571 {
1572 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1573 	int err;
1574 
1575 	if (IS_ERR(prog))
1576 		return PTR_ERR(prog);
1577 
1578 	err = __sk_attach_prog(prog, sk);
1579 	if (err < 0) {
1580 		bpf_prog_put(prog);
1581 		return err;
1582 	}
1583 
1584 	return 0;
1585 }
1586 
1587 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1588 {
1589 	struct bpf_prog *prog;
1590 	int err;
1591 
1592 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1593 		return -EPERM;
1594 
1595 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1596 	if (PTR_ERR(prog) == -EINVAL)
1597 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1598 	if (IS_ERR(prog))
1599 		return PTR_ERR(prog);
1600 
1601 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1602 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1603 		 * bpf prog (e.g. sockmap).  It depends on the
1604 		 * limitation imposed by bpf_prog_load().
1605 		 * Hence, sysctl_optmem_max is not checked.
1606 		 */
1607 		if ((sk->sk_type != SOCK_STREAM &&
1608 		     sk->sk_type != SOCK_DGRAM) ||
1609 		    (sk->sk_protocol != IPPROTO_UDP &&
1610 		     sk->sk_protocol != IPPROTO_TCP) ||
1611 		    (sk->sk_family != AF_INET &&
1612 		     sk->sk_family != AF_INET6)) {
1613 			err = -ENOTSUPP;
1614 			goto err_prog_put;
1615 		}
1616 	} else {
1617 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1618 		if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1619 			err = -ENOMEM;
1620 			goto err_prog_put;
1621 		}
1622 	}
1623 
1624 	err = reuseport_attach_prog(sk, prog);
1625 err_prog_put:
1626 	if (err)
1627 		bpf_prog_put(prog);
1628 
1629 	return err;
1630 }
1631 
1632 void sk_reuseport_prog_free(struct bpf_prog *prog)
1633 {
1634 	if (!prog)
1635 		return;
1636 
1637 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1638 		bpf_prog_put(prog);
1639 	else
1640 		bpf_prog_destroy(prog);
1641 }
1642 
1643 struct bpf_scratchpad {
1644 	union {
1645 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1646 		u8     buff[MAX_BPF_STACK];
1647 	};
1648 };
1649 
1650 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1651 
1652 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1653 					  unsigned int write_len)
1654 {
1655 	return skb_ensure_writable(skb, write_len);
1656 }
1657 
1658 static inline int bpf_try_make_writable(struct sk_buff *skb,
1659 					unsigned int write_len)
1660 {
1661 	int err = __bpf_try_make_writable(skb, write_len);
1662 
1663 	bpf_compute_data_pointers(skb);
1664 	return err;
1665 }
1666 
1667 static int bpf_try_make_head_writable(struct sk_buff *skb)
1668 {
1669 	return bpf_try_make_writable(skb, skb_headlen(skb));
1670 }
1671 
1672 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1673 {
1674 	if (skb_at_tc_ingress(skb))
1675 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1676 }
1677 
1678 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1679 {
1680 	if (skb_at_tc_ingress(skb))
1681 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1682 }
1683 
1684 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1685 	   const void *, from, u32, len, u64, flags)
1686 {
1687 	void *ptr;
1688 
1689 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1690 		return -EINVAL;
1691 	if (unlikely(offset > INT_MAX))
1692 		return -EFAULT;
1693 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1694 		return -EFAULT;
1695 
1696 	ptr = skb->data + offset;
1697 	if (flags & BPF_F_RECOMPUTE_CSUM)
1698 		__skb_postpull_rcsum(skb, ptr, len, offset);
1699 
1700 	memcpy(ptr, from, len);
1701 
1702 	if (flags & BPF_F_RECOMPUTE_CSUM)
1703 		__skb_postpush_rcsum(skb, ptr, len, offset);
1704 	if (flags & BPF_F_INVALIDATE_HASH)
1705 		skb_clear_hash(skb);
1706 
1707 	return 0;
1708 }
1709 
1710 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1711 	.func		= bpf_skb_store_bytes,
1712 	.gpl_only	= false,
1713 	.ret_type	= RET_INTEGER,
1714 	.arg1_type	= ARG_PTR_TO_CTX,
1715 	.arg2_type	= ARG_ANYTHING,
1716 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1717 	.arg4_type	= ARG_CONST_SIZE,
1718 	.arg5_type	= ARG_ANYTHING,
1719 };
1720 
1721 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1722 	   void *, to, u32, len)
1723 {
1724 	void *ptr;
1725 
1726 	if (unlikely(offset > INT_MAX))
1727 		goto err_clear;
1728 
1729 	ptr = skb_header_pointer(skb, offset, len, to);
1730 	if (unlikely(!ptr))
1731 		goto err_clear;
1732 	if (ptr != to)
1733 		memcpy(to, ptr, len);
1734 
1735 	return 0;
1736 err_clear:
1737 	memset(to, 0, len);
1738 	return -EFAULT;
1739 }
1740 
1741 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1742 	.func		= bpf_skb_load_bytes,
1743 	.gpl_only	= false,
1744 	.ret_type	= RET_INTEGER,
1745 	.arg1_type	= ARG_PTR_TO_CTX,
1746 	.arg2_type	= ARG_ANYTHING,
1747 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1748 	.arg4_type	= ARG_CONST_SIZE,
1749 };
1750 
1751 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1752 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1753 	   void *, to, u32, len)
1754 {
1755 	void *ptr;
1756 
1757 	if (unlikely(offset > 0xffff))
1758 		goto err_clear;
1759 
1760 	if (unlikely(!ctx->skb))
1761 		goto err_clear;
1762 
1763 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1764 	if (unlikely(!ptr))
1765 		goto err_clear;
1766 	if (ptr != to)
1767 		memcpy(to, ptr, len);
1768 
1769 	return 0;
1770 err_clear:
1771 	memset(to, 0, len);
1772 	return -EFAULT;
1773 }
1774 
1775 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1776 	.func		= bpf_flow_dissector_load_bytes,
1777 	.gpl_only	= false,
1778 	.ret_type	= RET_INTEGER,
1779 	.arg1_type	= ARG_PTR_TO_CTX,
1780 	.arg2_type	= ARG_ANYTHING,
1781 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1782 	.arg4_type	= ARG_CONST_SIZE,
1783 };
1784 
1785 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1786 	   u32, offset, void *, to, u32, len, u32, start_header)
1787 {
1788 	u8 *end = skb_tail_pointer(skb);
1789 	u8 *start, *ptr;
1790 
1791 	if (unlikely(offset > 0xffff))
1792 		goto err_clear;
1793 
1794 	switch (start_header) {
1795 	case BPF_HDR_START_MAC:
1796 		if (unlikely(!skb_mac_header_was_set(skb)))
1797 			goto err_clear;
1798 		start = skb_mac_header(skb);
1799 		break;
1800 	case BPF_HDR_START_NET:
1801 		start = skb_network_header(skb);
1802 		break;
1803 	default:
1804 		goto err_clear;
1805 	}
1806 
1807 	ptr = start + offset;
1808 
1809 	if (likely(ptr + len <= end)) {
1810 		memcpy(to, ptr, len);
1811 		return 0;
1812 	}
1813 
1814 err_clear:
1815 	memset(to, 0, len);
1816 	return -EFAULT;
1817 }
1818 
1819 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1820 	.func		= bpf_skb_load_bytes_relative,
1821 	.gpl_only	= false,
1822 	.ret_type	= RET_INTEGER,
1823 	.arg1_type	= ARG_PTR_TO_CTX,
1824 	.arg2_type	= ARG_ANYTHING,
1825 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1826 	.arg4_type	= ARG_CONST_SIZE,
1827 	.arg5_type	= ARG_ANYTHING,
1828 };
1829 
1830 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1831 {
1832 	/* Idea is the following: should the needed direct read/write
1833 	 * test fail during runtime, we can pull in more data and redo
1834 	 * again, since implicitly, we invalidate previous checks here.
1835 	 *
1836 	 * Or, since we know how much we need to make read/writeable,
1837 	 * this can be done once at the program beginning for direct
1838 	 * access case. By this we overcome limitations of only current
1839 	 * headroom being accessible.
1840 	 */
1841 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1842 }
1843 
1844 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1845 	.func		= bpf_skb_pull_data,
1846 	.gpl_only	= false,
1847 	.ret_type	= RET_INTEGER,
1848 	.arg1_type	= ARG_PTR_TO_CTX,
1849 	.arg2_type	= ARG_ANYTHING,
1850 };
1851 
1852 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1853 {
1854 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1855 }
1856 
1857 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1858 	.func		= bpf_sk_fullsock,
1859 	.gpl_only	= false,
1860 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1861 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1862 };
1863 
1864 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1865 					   unsigned int write_len)
1866 {
1867 	return __bpf_try_make_writable(skb, write_len);
1868 }
1869 
1870 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1871 {
1872 	/* Idea is the following: should the needed direct read/write
1873 	 * test fail during runtime, we can pull in more data and redo
1874 	 * again, since implicitly, we invalidate previous checks here.
1875 	 *
1876 	 * Or, since we know how much we need to make read/writeable,
1877 	 * this can be done once at the program beginning for direct
1878 	 * access case. By this we overcome limitations of only current
1879 	 * headroom being accessible.
1880 	 */
1881 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1882 }
1883 
1884 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1885 	.func		= sk_skb_pull_data,
1886 	.gpl_only	= false,
1887 	.ret_type	= RET_INTEGER,
1888 	.arg1_type	= ARG_PTR_TO_CTX,
1889 	.arg2_type	= ARG_ANYTHING,
1890 };
1891 
1892 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1893 	   u64, from, u64, to, u64, flags)
1894 {
1895 	__sum16 *ptr;
1896 
1897 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1898 		return -EINVAL;
1899 	if (unlikely(offset > 0xffff || offset & 1))
1900 		return -EFAULT;
1901 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1902 		return -EFAULT;
1903 
1904 	ptr = (__sum16 *)(skb->data + offset);
1905 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1906 	case 0:
1907 		if (unlikely(from != 0))
1908 			return -EINVAL;
1909 
1910 		csum_replace_by_diff(ptr, to);
1911 		break;
1912 	case 2:
1913 		csum_replace2(ptr, from, to);
1914 		break;
1915 	case 4:
1916 		csum_replace4(ptr, from, to);
1917 		break;
1918 	default:
1919 		return -EINVAL;
1920 	}
1921 
1922 	return 0;
1923 }
1924 
1925 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1926 	.func		= bpf_l3_csum_replace,
1927 	.gpl_only	= false,
1928 	.ret_type	= RET_INTEGER,
1929 	.arg1_type	= ARG_PTR_TO_CTX,
1930 	.arg2_type	= ARG_ANYTHING,
1931 	.arg3_type	= ARG_ANYTHING,
1932 	.arg4_type	= ARG_ANYTHING,
1933 	.arg5_type	= ARG_ANYTHING,
1934 };
1935 
1936 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1937 	   u64, from, u64, to, u64, flags)
1938 {
1939 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1940 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1941 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1942 	__sum16 *ptr;
1943 
1944 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1945 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1946 		return -EINVAL;
1947 	if (unlikely(offset > 0xffff || offset & 1))
1948 		return -EFAULT;
1949 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1950 		return -EFAULT;
1951 
1952 	ptr = (__sum16 *)(skb->data + offset);
1953 	if (is_mmzero && !do_mforce && !*ptr)
1954 		return 0;
1955 
1956 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1957 	case 0:
1958 		if (unlikely(from != 0))
1959 			return -EINVAL;
1960 
1961 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1962 		break;
1963 	case 2:
1964 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1965 		break;
1966 	case 4:
1967 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1968 		break;
1969 	default:
1970 		return -EINVAL;
1971 	}
1972 
1973 	if (is_mmzero && !*ptr)
1974 		*ptr = CSUM_MANGLED_0;
1975 	return 0;
1976 }
1977 
1978 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1979 	.func		= bpf_l4_csum_replace,
1980 	.gpl_only	= false,
1981 	.ret_type	= RET_INTEGER,
1982 	.arg1_type	= ARG_PTR_TO_CTX,
1983 	.arg2_type	= ARG_ANYTHING,
1984 	.arg3_type	= ARG_ANYTHING,
1985 	.arg4_type	= ARG_ANYTHING,
1986 	.arg5_type	= ARG_ANYTHING,
1987 };
1988 
1989 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1990 	   __be32 *, to, u32, to_size, __wsum, seed)
1991 {
1992 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1993 	u32 diff_size = from_size + to_size;
1994 	int i, j = 0;
1995 
1996 	/* This is quite flexible, some examples:
1997 	 *
1998 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1999 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2000 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2001 	 *
2002 	 * Even for diffing, from_size and to_size don't need to be equal.
2003 	 */
2004 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2005 		     diff_size > sizeof(sp->diff)))
2006 		return -EINVAL;
2007 
2008 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2009 		sp->diff[j] = ~from[i];
2010 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2011 		sp->diff[j] = to[i];
2012 
2013 	return csum_partial(sp->diff, diff_size, seed);
2014 }
2015 
2016 static const struct bpf_func_proto bpf_csum_diff_proto = {
2017 	.func		= bpf_csum_diff,
2018 	.gpl_only	= false,
2019 	.pkt_access	= true,
2020 	.ret_type	= RET_INTEGER,
2021 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2022 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2023 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2024 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2025 	.arg5_type	= ARG_ANYTHING,
2026 };
2027 
2028 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2029 {
2030 	/* The interface is to be used in combination with bpf_csum_diff()
2031 	 * for direct packet writes. csum rotation for alignment as well
2032 	 * as emulating csum_sub() can be done from the eBPF program.
2033 	 */
2034 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2035 		return (skb->csum = csum_add(skb->csum, csum));
2036 
2037 	return -ENOTSUPP;
2038 }
2039 
2040 static const struct bpf_func_proto bpf_csum_update_proto = {
2041 	.func		= bpf_csum_update,
2042 	.gpl_only	= false,
2043 	.ret_type	= RET_INTEGER,
2044 	.arg1_type	= ARG_PTR_TO_CTX,
2045 	.arg2_type	= ARG_ANYTHING,
2046 };
2047 
2048 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2049 {
2050 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2051 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2052 	 * is passed as flags, for example.
2053 	 */
2054 	switch (level) {
2055 	case BPF_CSUM_LEVEL_INC:
2056 		__skb_incr_checksum_unnecessary(skb);
2057 		break;
2058 	case BPF_CSUM_LEVEL_DEC:
2059 		__skb_decr_checksum_unnecessary(skb);
2060 		break;
2061 	case BPF_CSUM_LEVEL_RESET:
2062 		__skb_reset_checksum_unnecessary(skb);
2063 		break;
2064 	case BPF_CSUM_LEVEL_QUERY:
2065 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2066 		       skb->csum_level : -EACCES;
2067 	default:
2068 		return -EINVAL;
2069 	}
2070 
2071 	return 0;
2072 }
2073 
2074 static const struct bpf_func_proto bpf_csum_level_proto = {
2075 	.func		= bpf_csum_level,
2076 	.gpl_only	= false,
2077 	.ret_type	= RET_INTEGER,
2078 	.arg1_type	= ARG_PTR_TO_CTX,
2079 	.arg2_type	= ARG_ANYTHING,
2080 };
2081 
2082 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2083 {
2084 	return dev_forward_skb_nomtu(dev, skb);
2085 }
2086 
2087 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2088 				      struct sk_buff *skb)
2089 {
2090 	int ret = ____dev_forward_skb(dev, skb, false);
2091 
2092 	if (likely(!ret)) {
2093 		skb->dev = dev;
2094 		ret = netif_rx(skb);
2095 	}
2096 
2097 	return ret;
2098 }
2099 
2100 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2101 {
2102 	int ret;
2103 
2104 	if (dev_xmit_recursion()) {
2105 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2106 		kfree_skb(skb);
2107 		return -ENETDOWN;
2108 	}
2109 
2110 	skb->dev = dev;
2111 	skb_clear_tstamp(skb);
2112 
2113 	dev_xmit_recursion_inc();
2114 	ret = dev_queue_xmit(skb);
2115 	dev_xmit_recursion_dec();
2116 
2117 	return ret;
2118 }
2119 
2120 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2121 				 u32 flags)
2122 {
2123 	unsigned int mlen = skb_network_offset(skb);
2124 
2125 	if (mlen) {
2126 		__skb_pull(skb, mlen);
2127 
2128 		/* At ingress, the mac header has already been pulled once.
2129 		 * At egress, skb_pospull_rcsum has to be done in case that
2130 		 * the skb is originated from ingress (i.e. a forwarded skb)
2131 		 * to ensure that rcsum starts at net header.
2132 		 */
2133 		if (!skb_at_tc_ingress(skb))
2134 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2135 	}
2136 	skb_pop_mac_header(skb);
2137 	skb_reset_mac_len(skb);
2138 	return flags & BPF_F_INGRESS ?
2139 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2140 }
2141 
2142 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2143 				 u32 flags)
2144 {
2145 	/* Verify that a link layer header is carried */
2146 	if (unlikely(skb->mac_header >= skb->network_header)) {
2147 		kfree_skb(skb);
2148 		return -ERANGE;
2149 	}
2150 
2151 	bpf_push_mac_rcsum(skb);
2152 	return flags & BPF_F_INGRESS ?
2153 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2154 }
2155 
2156 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2157 			  u32 flags)
2158 {
2159 	if (dev_is_mac_header_xmit(dev))
2160 		return __bpf_redirect_common(skb, dev, flags);
2161 	else
2162 		return __bpf_redirect_no_mac(skb, dev, flags);
2163 }
2164 
2165 #if IS_ENABLED(CONFIG_IPV6)
2166 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2167 			    struct net_device *dev, struct bpf_nh_params *nh)
2168 {
2169 	u32 hh_len = LL_RESERVED_SPACE(dev);
2170 	const struct in6_addr *nexthop;
2171 	struct dst_entry *dst = NULL;
2172 	struct neighbour *neigh;
2173 
2174 	if (dev_xmit_recursion()) {
2175 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2176 		goto out_drop;
2177 	}
2178 
2179 	skb->dev = dev;
2180 	skb_clear_tstamp(skb);
2181 
2182 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2183 		skb = skb_expand_head(skb, hh_len);
2184 		if (!skb)
2185 			return -ENOMEM;
2186 	}
2187 
2188 	rcu_read_lock_bh();
2189 	if (!nh) {
2190 		dst = skb_dst(skb);
2191 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2192 				      &ipv6_hdr(skb)->daddr);
2193 	} else {
2194 		nexthop = &nh->ipv6_nh;
2195 	}
2196 	neigh = ip_neigh_gw6(dev, nexthop);
2197 	if (likely(!IS_ERR(neigh))) {
2198 		int ret;
2199 
2200 		sock_confirm_neigh(skb, neigh);
2201 		dev_xmit_recursion_inc();
2202 		ret = neigh_output(neigh, skb, false);
2203 		dev_xmit_recursion_dec();
2204 		rcu_read_unlock_bh();
2205 		return ret;
2206 	}
2207 	rcu_read_unlock_bh();
2208 	if (dst)
2209 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2210 out_drop:
2211 	kfree_skb(skb);
2212 	return -ENETDOWN;
2213 }
2214 
2215 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2216 				   struct bpf_nh_params *nh)
2217 {
2218 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2219 	struct net *net = dev_net(dev);
2220 	int err, ret = NET_XMIT_DROP;
2221 
2222 	if (!nh) {
2223 		struct dst_entry *dst;
2224 		struct flowi6 fl6 = {
2225 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2226 			.flowi6_mark  = skb->mark,
2227 			.flowlabel    = ip6_flowinfo(ip6h),
2228 			.flowi6_oif   = dev->ifindex,
2229 			.flowi6_proto = ip6h->nexthdr,
2230 			.daddr	      = ip6h->daddr,
2231 			.saddr	      = ip6h->saddr,
2232 		};
2233 
2234 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2235 		if (IS_ERR(dst))
2236 			goto out_drop;
2237 
2238 		skb_dst_set(skb, dst);
2239 	} else if (nh->nh_family != AF_INET6) {
2240 		goto out_drop;
2241 	}
2242 
2243 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2244 	if (unlikely(net_xmit_eval(err)))
2245 		dev->stats.tx_errors++;
2246 	else
2247 		ret = NET_XMIT_SUCCESS;
2248 	goto out_xmit;
2249 out_drop:
2250 	dev->stats.tx_errors++;
2251 	kfree_skb(skb);
2252 out_xmit:
2253 	return ret;
2254 }
2255 #else
2256 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2257 				   struct bpf_nh_params *nh)
2258 {
2259 	kfree_skb(skb);
2260 	return NET_XMIT_DROP;
2261 }
2262 #endif /* CONFIG_IPV6 */
2263 
2264 #if IS_ENABLED(CONFIG_INET)
2265 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2266 			    struct net_device *dev, struct bpf_nh_params *nh)
2267 {
2268 	u32 hh_len = LL_RESERVED_SPACE(dev);
2269 	struct neighbour *neigh;
2270 	bool is_v6gw = false;
2271 
2272 	if (dev_xmit_recursion()) {
2273 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2274 		goto out_drop;
2275 	}
2276 
2277 	skb->dev = dev;
2278 	skb_clear_tstamp(skb);
2279 
2280 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2281 		skb = skb_expand_head(skb, hh_len);
2282 		if (!skb)
2283 			return -ENOMEM;
2284 	}
2285 
2286 	rcu_read_lock_bh();
2287 	if (!nh) {
2288 		struct dst_entry *dst = skb_dst(skb);
2289 		struct rtable *rt = container_of(dst, struct rtable, dst);
2290 
2291 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2292 	} else if (nh->nh_family == AF_INET6) {
2293 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2294 		is_v6gw = true;
2295 	} else if (nh->nh_family == AF_INET) {
2296 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2297 	} else {
2298 		rcu_read_unlock_bh();
2299 		goto out_drop;
2300 	}
2301 
2302 	if (likely(!IS_ERR(neigh))) {
2303 		int ret;
2304 
2305 		sock_confirm_neigh(skb, neigh);
2306 		dev_xmit_recursion_inc();
2307 		ret = neigh_output(neigh, skb, is_v6gw);
2308 		dev_xmit_recursion_dec();
2309 		rcu_read_unlock_bh();
2310 		return ret;
2311 	}
2312 	rcu_read_unlock_bh();
2313 out_drop:
2314 	kfree_skb(skb);
2315 	return -ENETDOWN;
2316 }
2317 
2318 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2319 				   struct bpf_nh_params *nh)
2320 {
2321 	const struct iphdr *ip4h = ip_hdr(skb);
2322 	struct net *net = dev_net(dev);
2323 	int err, ret = NET_XMIT_DROP;
2324 
2325 	if (!nh) {
2326 		struct flowi4 fl4 = {
2327 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2328 			.flowi4_mark  = skb->mark,
2329 			.flowi4_tos   = RT_TOS(ip4h->tos),
2330 			.flowi4_oif   = dev->ifindex,
2331 			.flowi4_proto = ip4h->protocol,
2332 			.daddr	      = ip4h->daddr,
2333 			.saddr	      = ip4h->saddr,
2334 		};
2335 		struct rtable *rt;
2336 
2337 		rt = ip_route_output_flow(net, &fl4, NULL);
2338 		if (IS_ERR(rt))
2339 			goto out_drop;
2340 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2341 			ip_rt_put(rt);
2342 			goto out_drop;
2343 		}
2344 
2345 		skb_dst_set(skb, &rt->dst);
2346 	}
2347 
2348 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2349 	if (unlikely(net_xmit_eval(err)))
2350 		dev->stats.tx_errors++;
2351 	else
2352 		ret = NET_XMIT_SUCCESS;
2353 	goto out_xmit;
2354 out_drop:
2355 	dev->stats.tx_errors++;
2356 	kfree_skb(skb);
2357 out_xmit:
2358 	return ret;
2359 }
2360 #else
2361 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2362 				   struct bpf_nh_params *nh)
2363 {
2364 	kfree_skb(skb);
2365 	return NET_XMIT_DROP;
2366 }
2367 #endif /* CONFIG_INET */
2368 
2369 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2370 				struct bpf_nh_params *nh)
2371 {
2372 	struct ethhdr *ethh = eth_hdr(skb);
2373 
2374 	if (unlikely(skb->mac_header >= skb->network_header))
2375 		goto out;
2376 	bpf_push_mac_rcsum(skb);
2377 	if (is_multicast_ether_addr(ethh->h_dest))
2378 		goto out;
2379 
2380 	skb_pull(skb, sizeof(*ethh));
2381 	skb_unset_mac_header(skb);
2382 	skb_reset_network_header(skb);
2383 
2384 	if (skb->protocol == htons(ETH_P_IP))
2385 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2386 	else if (skb->protocol == htons(ETH_P_IPV6))
2387 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2388 out:
2389 	kfree_skb(skb);
2390 	return -ENOTSUPP;
2391 }
2392 
2393 /* Internal, non-exposed redirect flags. */
2394 enum {
2395 	BPF_F_NEIGH	= (1ULL << 1),
2396 	BPF_F_PEER	= (1ULL << 2),
2397 	BPF_F_NEXTHOP	= (1ULL << 3),
2398 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2399 };
2400 
2401 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2402 {
2403 	struct net_device *dev;
2404 	struct sk_buff *clone;
2405 	int ret;
2406 
2407 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2408 		return -EINVAL;
2409 
2410 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2411 	if (unlikely(!dev))
2412 		return -EINVAL;
2413 
2414 	clone = skb_clone(skb, GFP_ATOMIC);
2415 	if (unlikely(!clone))
2416 		return -ENOMEM;
2417 
2418 	/* For direct write, we need to keep the invariant that the skbs
2419 	 * we're dealing with need to be uncloned. Should uncloning fail
2420 	 * here, we need to free the just generated clone to unclone once
2421 	 * again.
2422 	 */
2423 	ret = bpf_try_make_head_writable(skb);
2424 	if (unlikely(ret)) {
2425 		kfree_skb(clone);
2426 		return -ENOMEM;
2427 	}
2428 
2429 	return __bpf_redirect(clone, dev, flags);
2430 }
2431 
2432 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2433 	.func           = bpf_clone_redirect,
2434 	.gpl_only       = false,
2435 	.ret_type       = RET_INTEGER,
2436 	.arg1_type      = ARG_PTR_TO_CTX,
2437 	.arg2_type      = ARG_ANYTHING,
2438 	.arg3_type      = ARG_ANYTHING,
2439 };
2440 
2441 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2442 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2443 
2444 int skb_do_redirect(struct sk_buff *skb)
2445 {
2446 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2447 	struct net *net = dev_net(skb->dev);
2448 	struct net_device *dev;
2449 	u32 flags = ri->flags;
2450 
2451 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2452 	ri->tgt_index = 0;
2453 	ri->flags = 0;
2454 	if (unlikely(!dev))
2455 		goto out_drop;
2456 	if (flags & BPF_F_PEER) {
2457 		const struct net_device_ops *ops = dev->netdev_ops;
2458 
2459 		if (unlikely(!ops->ndo_get_peer_dev ||
2460 			     !skb_at_tc_ingress(skb)))
2461 			goto out_drop;
2462 		dev = ops->ndo_get_peer_dev(dev);
2463 		if (unlikely(!dev ||
2464 			     !(dev->flags & IFF_UP) ||
2465 			     net_eq(net, dev_net(dev))))
2466 			goto out_drop;
2467 		skb->dev = dev;
2468 		return -EAGAIN;
2469 	}
2470 	return flags & BPF_F_NEIGH ?
2471 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2472 				    &ri->nh : NULL) :
2473 	       __bpf_redirect(skb, dev, flags);
2474 out_drop:
2475 	kfree_skb(skb);
2476 	return -EINVAL;
2477 }
2478 
2479 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2480 {
2481 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2482 
2483 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2484 		return TC_ACT_SHOT;
2485 
2486 	ri->flags = flags;
2487 	ri->tgt_index = ifindex;
2488 
2489 	return TC_ACT_REDIRECT;
2490 }
2491 
2492 static const struct bpf_func_proto bpf_redirect_proto = {
2493 	.func           = bpf_redirect,
2494 	.gpl_only       = false,
2495 	.ret_type       = RET_INTEGER,
2496 	.arg1_type      = ARG_ANYTHING,
2497 	.arg2_type      = ARG_ANYTHING,
2498 };
2499 
2500 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2501 {
2502 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2503 
2504 	if (unlikely(flags))
2505 		return TC_ACT_SHOT;
2506 
2507 	ri->flags = BPF_F_PEER;
2508 	ri->tgt_index = ifindex;
2509 
2510 	return TC_ACT_REDIRECT;
2511 }
2512 
2513 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2514 	.func           = bpf_redirect_peer,
2515 	.gpl_only       = false,
2516 	.ret_type       = RET_INTEGER,
2517 	.arg1_type      = ARG_ANYTHING,
2518 	.arg2_type      = ARG_ANYTHING,
2519 };
2520 
2521 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2522 	   int, plen, u64, flags)
2523 {
2524 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2525 
2526 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2527 		return TC_ACT_SHOT;
2528 
2529 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2530 	ri->tgt_index = ifindex;
2531 
2532 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2533 	if (plen)
2534 		memcpy(&ri->nh, params, sizeof(ri->nh));
2535 
2536 	return TC_ACT_REDIRECT;
2537 }
2538 
2539 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2540 	.func		= bpf_redirect_neigh,
2541 	.gpl_only	= false,
2542 	.ret_type	= RET_INTEGER,
2543 	.arg1_type	= ARG_ANYTHING,
2544 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2545 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2546 	.arg4_type	= ARG_ANYTHING,
2547 };
2548 
2549 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2550 {
2551 	msg->apply_bytes = bytes;
2552 	return 0;
2553 }
2554 
2555 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2556 	.func           = bpf_msg_apply_bytes,
2557 	.gpl_only       = false,
2558 	.ret_type       = RET_INTEGER,
2559 	.arg1_type	= ARG_PTR_TO_CTX,
2560 	.arg2_type      = ARG_ANYTHING,
2561 };
2562 
2563 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2564 {
2565 	msg->cork_bytes = bytes;
2566 	return 0;
2567 }
2568 
2569 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2570 	.func           = bpf_msg_cork_bytes,
2571 	.gpl_only       = false,
2572 	.ret_type       = RET_INTEGER,
2573 	.arg1_type	= ARG_PTR_TO_CTX,
2574 	.arg2_type      = ARG_ANYTHING,
2575 };
2576 
2577 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2578 	   u32, end, u64, flags)
2579 {
2580 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2581 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2582 	struct scatterlist *sge;
2583 	u8 *raw, *to, *from;
2584 	struct page *page;
2585 
2586 	if (unlikely(flags || end <= start))
2587 		return -EINVAL;
2588 
2589 	/* First find the starting scatterlist element */
2590 	i = msg->sg.start;
2591 	do {
2592 		offset += len;
2593 		len = sk_msg_elem(msg, i)->length;
2594 		if (start < offset + len)
2595 			break;
2596 		sk_msg_iter_var_next(i);
2597 	} while (i != msg->sg.end);
2598 
2599 	if (unlikely(start >= offset + len))
2600 		return -EINVAL;
2601 
2602 	first_sge = i;
2603 	/* The start may point into the sg element so we need to also
2604 	 * account for the headroom.
2605 	 */
2606 	bytes_sg_total = start - offset + bytes;
2607 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2608 		goto out;
2609 
2610 	/* At this point we need to linearize multiple scatterlist
2611 	 * elements or a single shared page. Either way we need to
2612 	 * copy into a linear buffer exclusively owned by BPF. Then
2613 	 * place the buffer in the scatterlist and fixup the original
2614 	 * entries by removing the entries now in the linear buffer
2615 	 * and shifting the remaining entries. For now we do not try
2616 	 * to copy partial entries to avoid complexity of running out
2617 	 * of sg_entry slots. The downside is reading a single byte
2618 	 * will copy the entire sg entry.
2619 	 */
2620 	do {
2621 		copy += sk_msg_elem(msg, i)->length;
2622 		sk_msg_iter_var_next(i);
2623 		if (bytes_sg_total <= copy)
2624 			break;
2625 	} while (i != msg->sg.end);
2626 	last_sge = i;
2627 
2628 	if (unlikely(bytes_sg_total > copy))
2629 		return -EINVAL;
2630 
2631 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2632 			   get_order(copy));
2633 	if (unlikely(!page))
2634 		return -ENOMEM;
2635 
2636 	raw = page_address(page);
2637 	i = first_sge;
2638 	do {
2639 		sge = sk_msg_elem(msg, i);
2640 		from = sg_virt(sge);
2641 		len = sge->length;
2642 		to = raw + poffset;
2643 
2644 		memcpy(to, from, len);
2645 		poffset += len;
2646 		sge->length = 0;
2647 		put_page(sg_page(sge));
2648 
2649 		sk_msg_iter_var_next(i);
2650 	} while (i != last_sge);
2651 
2652 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2653 
2654 	/* To repair sg ring we need to shift entries. If we only
2655 	 * had a single entry though we can just replace it and
2656 	 * be done. Otherwise walk the ring and shift the entries.
2657 	 */
2658 	WARN_ON_ONCE(last_sge == first_sge);
2659 	shift = last_sge > first_sge ?
2660 		last_sge - first_sge - 1 :
2661 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2662 	if (!shift)
2663 		goto out;
2664 
2665 	i = first_sge;
2666 	sk_msg_iter_var_next(i);
2667 	do {
2668 		u32 move_from;
2669 
2670 		if (i + shift >= NR_MSG_FRAG_IDS)
2671 			move_from = i + shift - NR_MSG_FRAG_IDS;
2672 		else
2673 			move_from = i + shift;
2674 		if (move_from == msg->sg.end)
2675 			break;
2676 
2677 		msg->sg.data[i] = msg->sg.data[move_from];
2678 		msg->sg.data[move_from].length = 0;
2679 		msg->sg.data[move_from].page_link = 0;
2680 		msg->sg.data[move_from].offset = 0;
2681 		sk_msg_iter_var_next(i);
2682 	} while (1);
2683 
2684 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2685 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2686 		      msg->sg.end - shift;
2687 out:
2688 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2689 	msg->data_end = msg->data + bytes;
2690 	return 0;
2691 }
2692 
2693 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2694 	.func		= bpf_msg_pull_data,
2695 	.gpl_only	= false,
2696 	.ret_type	= RET_INTEGER,
2697 	.arg1_type	= ARG_PTR_TO_CTX,
2698 	.arg2_type	= ARG_ANYTHING,
2699 	.arg3_type	= ARG_ANYTHING,
2700 	.arg4_type	= ARG_ANYTHING,
2701 };
2702 
2703 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2704 	   u32, len, u64, flags)
2705 {
2706 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2707 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2708 	u8 *raw, *to, *from;
2709 	struct page *page;
2710 
2711 	if (unlikely(flags))
2712 		return -EINVAL;
2713 
2714 	if (unlikely(len == 0))
2715 		return 0;
2716 
2717 	/* First find the starting scatterlist element */
2718 	i = msg->sg.start;
2719 	do {
2720 		offset += l;
2721 		l = sk_msg_elem(msg, i)->length;
2722 
2723 		if (start < offset + l)
2724 			break;
2725 		sk_msg_iter_var_next(i);
2726 	} while (i != msg->sg.end);
2727 
2728 	if (start >= offset + l)
2729 		return -EINVAL;
2730 
2731 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2732 
2733 	/* If no space available will fallback to copy, we need at
2734 	 * least one scatterlist elem available to push data into
2735 	 * when start aligns to the beginning of an element or two
2736 	 * when it falls inside an element. We handle the start equals
2737 	 * offset case because its the common case for inserting a
2738 	 * header.
2739 	 */
2740 	if (!space || (space == 1 && start != offset))
2741 		copy = msg->sg.data[i].length;
2742 
2743 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2744 			   get_order(copy + len));
2745 	if (unlikely(!page))
2746 		return -ENOMEM;
2747 
2748 	if (copy) {
2749 		int front, back;
2750 
2751 		raw = page_address(page);
2752 
2753 		psge = sk_msg_elem(msg, i);
2754 		front = start - offset;
2755 		back = psge->length - front;
2756 		from = sg_virt(psge);
2757 
2758 		if (front)
2759 			memcpy(raw, from, front);
2760 
2761 		if (back) {
2762 			from += front;
2763 			to = raw + front + len;
2764 
2765 			memcpy(to, from, back);
2766 		}
2767 
2768 		put_page(sg_page(psge));
2769 	} else if (start - offset) {
2770 		psge = sk_msg_elem(msg, i);
2771 		rsge = sk_msg_elem_cpy(msg, i);
2772 
2773 		psge->length = start - offset;
2774 		rsge.length -= psge->length;
2775 		rsge.offset += start;
2776 
2777 		sk_msg_iter_var_next(i);
2778 		sg_unmark_end(psge);
2779 		sg_unmark_end(&rsge);
2780 		sk_msg_iter_next(msg, end);
2781 	}
2782 
2783 	/* Slot(s) to place newly allocated data */
2784 	new = i;
2785 
2786 	/* Shift one or two slots as needed */
2787 	if (!copy) {
2788 		sge = sk_msg_elem_cpy(msg, i);
2789 
2790 		sk_msg_iter_var_next(i);
2791 		sg_unmark_end(&sge);
2792 		sk_msg_iter_next(msg, end);
2793 
2794 		nsge = sk_msg_elem_cpy(msg, i);
2795 		if (rsge.length) {
2796 			sk_msg_iter_var_next(i);
2797 			nnsge = sk_msg_elem_cpy(msg, i);
2798 		}
2799 
2800 		while (i != msg->sg.end) {
2801 			msg->sg.data[i] = sge;
2802 			sge = nsge;
2803 			sk_msg_iter_var_next(i);
2804 			if (rsge.length) {
2805 				nsge = nnsge;
2806 				nnsge = sk_msg_elem_cpy(msg, i);
2807 			} else {
2808 				nsge = sk_msg_elem_cpy(msg, i);
2809 			}
2810 		}
2811 	}
2812 
2813 	/* Place newly allocated data buffer */
2814 	sk_mem_charge(msg->sk, len);
2815 	msg->sg.size += len;
2816 	__clear_bit(new, msg->sg.copy);
2817 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2818 	if (rsge.length) {
2819 		get_page(sg_page(&rsge));
2820 		sk_msg_iter_var_next(new);
2821 		msg->sg.data[new] = rsge;
2822 	}
2823 
2824 	sk_msg_compute_data_pointers(msg);
2825 	return 0;
2826 }
2827 
2828 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2829 	.func		= bpf_msg_push_data,
2830 	.gpl_only	= false,
2831 	.ret_type	= RET_INTEGER,
2832 	.arg1_type	= ARG_PTR_TO_CTX,
2833 	.arg2_type	= ARG_ANYTHING,
2834 	.arg3_type	= ARG_ANYTHING,
2835 	.arg4_type	= ARG_ANYTHING,
2836 };
2837 
2838 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2839 {
2840 	int prev;
2841 
2842 	do {
2843 		prev = i;
2844 		sk_msg_iter_var_next(i);
2845 		msg->sg.data[prev] = msg->sg.data[i];
2846 	} while (i != msg->sg.end);
2847 
2848 	sk_msg_iter_prev(msg, end);
2849 }
2850 
2851 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2852 {
2853 	struct scatterlist tmp, sge;
2854 
2855 	sk_msg_iter_next(msg, end);
2856 	sge = sk_msg_elem_cpy(msg, i);
2857 	sk_msg_iter_var_next(i);
2858 	tmp = sk_msg_elem_cpy(msg, i);
2859 
2860 	while (i != msg->sg.end) {
2861 		msg->sg.data[i] = sge;
2862 		sk_msg_iter_var_next(i);
2863 		sge = tmp;
2864 		tmp = sk_msg_elem_cpy(msg, i);
2865 	}
2866 }
2867 
2868 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2869 	   u32, len, u64, flags)
2870 {
2871 	u32 i = 0, l = 0, space, offset = 0;
2872 	u64 last = start + len;
2873 	int pop;
2874 
2875 	if (unlikely(flags))
2876 		return -EINVAL;
2877 
2878 	/* First find the starting scatterlist element */
2879 	i = msg->sg.start;
2880 	do {
2881 		offset += l;
2882 		l = sk_msg_elem(msg, i)->length;
2883 
2884 		if (start < offset + l)
2885 			break;
2886 		sk_msg_iter_var_next(i);
2887 	} while (i != msg->sg.end);
2888 
2889 	/* Bounds checks: start and pop must be inside message */
2890 	if (start >= offset + l || last >= msg->sg.size)
2891 		return -EINVAL;
2892 
2893 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2894 
2895 	pop = len;
2896 	/* --------------| offset
2897 	 * -| start      |-------- len -------|
2898 	 *
2899 	 *  |----- a ----|-------- pop -------|----- b ----|
2900 	 *  |______________________________________________| length
2901 	 *
2902 	 *
2903 	 * a:   region at front of scatter element to save
2904 	 * b:   region at back of scatter element to save when length > A + pop
2905 	 * pop: region to pop from element, same as input 'pop' here will be
2906 	 *      decremented below per iteration.
2907 	 *
2908 	 * Two top-level cases to handle when start != offset, first B is non
2909 	 * zero and second B is zero corresponding to when a pop includes more
2910 	 * than one element.
2911 	 *
2912 	 * Then if B is non-zero AND there is no space allocate space and
2913 	 * compact A, B regions into page. If there is space shift ring to
2914 	 * the rigth free'ing the next element in ring to place B, leaving
2915 	 * A untouched except to reduce length.
2916 	 */
2917 	if (start != offset) {
2918 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2919 		int a = start;
2920 		int b = sge->length - pop - a;
2921 
2922 		sk_msg_iter_var_next(i);
2923 
2924 		if (pop < sge->length - a) {
2925 			if (space) {
2926 				sge->length = a;
2927 				sk_msg_shift_right(msg, i);
2928 				nsge = sk_msg_elem(msg, i);
2929 				get_page(sg_page(sge));
2930 				sg_set_page(nsge,
2931 					    sg_page(sge),
2932 					    b, sge->offset + pop + a);
2933 			} else {
2934 				struct page *page, *orig;
2935 				u8 *to, *from;
2936 
2937 				page = alloc_pages(__GFP_NOWARN |
2938 						   __GFP_COMP   | GFP_ATOMIC,
2939 						   get_order(a + b));
2940 				if (unlikely(!page))
2941 					return -ENOMEM;
2942 
2943 				sge->length = a;
2944 				orig = sg_page(sge);
2945 				from = sg_virt(sge);
2946 				to = page_address(page);
2947 				memcpy(to, from, a);
2948 				memcpy(to + a, from + a + pop, b);
2949 				sg_set_page(sge, page, a + b, 0);
2950 				put_page(orig);
2951 			}
2952 			pop = 0;
2953 		} else if (pop >= sge->length - a) {
2954 			pop -= (sge->length - a);
2955 			sge->length = a;
2956 		}
2957 	}
2958 
2959 	/* From above the current layout _must_ be as follows,
2960 	 *
2961 	 * -| offset
2962 	 * -| start
2963 	 *
2964 	 *  |---- pop ---|---------------- b ------------|
2965 	 *  |____________________________________________| length
2966 	 *
2967 	 * Offset and start of the current msg elem are equal because in the
2968 	 * previous case we handled offset != start and either consumed the
2969 	 * entire element and advanced to the next element OR pop == 0.
2970 	 *
2971 	 * Two cases to handle here are first pop is less than the length
2972 	 * leaving some remainder b above. Simply adjust the element's layout
2973 	 * in this case. Or pop >= length of the element so that b = 0. In this
2974 	 * case advance to next element decrementing pop.
2975 	 */
2976 	while (pop) {
2977 		struct scatterlist *sge = sk_msg_elem(msg, i);
2978 
2979 		if (pop < sge->length) {
2980 			sge->length -= pop;
2981 			sge->offset += pop;
2982 			pop = 0;
2983 		} else {
2984 			pop -= sge->length;
2985 			sk_msg_shift_left(msg, i);
2986 		}
2987 		sk_msg_iter_var_next(i);
2988 	}
2989 
2990 	sk_mem_uncharge(msg->sk, len - pop);
2991 	msg->sg.size -= (len - pop);
2992 	sk_msg_compute_data_pointers(msg);
2993 	return 0;
2994 }
2995 
2996 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2997 	.func		= bpf_msg_pop_data,
2998 	.gpl_only	= false,
2999 	.ret_type	= RET_INTEGER,
3000 	.arg1_type	= ARG_PTR_TO_CTX,
3001 	.arg2_type	= ARG_ANYTHING,
3002 	.arg3_type	= ARG_ANYTHING,
3003 	.arg4_type	= ARG_ANYTHING,
3004 };
3005 
3006 #ifdef CONFIG_CGROUP_NET_CLASSID
3007 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3008 {
3009 	return __task_get_classid(current);
3010 }
3011 
3012 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3013 	.func		= bpf_get_cgroup_classid_curr,
3014 	.gpl_only	= false,
3015 	.ret_type	= RET_INTEGER,
3016 };
3017 
3018 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3019 {
3020 	struct sock *sk = skb_to_full_sk(skb);
3021 
3022 	if (!sk || !sk_fullsock(sk))
3023 		return 0;
3024 
3025 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3026 }
3027 
3028 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3029 	.func		= bpf_skb_cgroup_classid,
3030 	.gpl_only	= false,
3031 	.ret_type	= RET_INTEGER,
3032 	.arg1_type	= ARG_PTR_TO_CTX,
3033 };
3034 #endif
3035 
3036 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3037 {
3038 	return task_get_classid(skb);
3039 }
3040 
3041 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3042 	.func           = bpf_get_cgroup_classid,
3043 	.gpl_only       = false,
3044 	.ret_type       = RET_INTEGER,
3045 	.arg1_type      = ARG_PTR_TO_CTX,
3046 };
3047 
3048 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3049 {
3050 	return dst_tclassid(skb);
3051 }
3052 
3053 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3054 	.func           = bpf_get_route_realm,
3055 	.gpl_only       = false,
3056 	.ret_type       = RET_INTEGER,
3057 	.arg1_type      = ARG_PTR_TO_CTX,
3058 };
3059 
3060 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3061 {
3062 	/* If skb_clear_hash() was called due to mangling, we can
3063 	 * trigger SW recalculation here. Later access to hash
3064 	 * can then use the inline skb->hash via context directly
3065 	 * instead of calling this helper again.
3066 	 */
3067 	return skb_get_hash(skb);
3068 }
3069 
3070 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3071 	.func		= bpf_get_hash_recalc,
3072 	.gpl_only	= false,
3073 	.ret_type	= RET_INTEGER,
3074 	.arg1_type	= ARG_PTR_TO_CTX,
3075 };
3076 
3077 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3078 {
3079 	/* After all direct packet write, this can be used once for
3080 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3081 	 */
3082 	skb_clear_hash(skb);
3083 	return 0;
3084 }
3085 
3086 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3087 	.func		= bpf_set_hash_invalid,
3088 	.gpl_only	= false,
3089 	.ret_type	= RET_INTEGER,
3090 	.arg1_type	= ARG_PTR_TO_CTX,
3091 };
3092 
3093 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3094 {
3095 	/* Set user specified hash as L4(+), so that it gets returned
3096 	 * on skb_get_hash() call unless BPF prog later on triggers a
3097 	 * skb_clear_hash().
3098 	 */
3099 	__skb_set_sw_hash(skb, hash, true);
3100 	return 0;
3101 }
3102 
3103 static const struct bpf_func_proto bpf_set_hash_proto = {
3104 	.func		= bpf_set_hash,
3105 	.gpl_only	= false,
3106 	.ret_type	= RET_INTEGER,
3107 	.arg1_type	= ARG_PTR_TO_CTX,
3108 	.arg2_type	= ARG_ANYTHING,
3109 };
3110 
3111 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3112 	   u16, vlan_tci)
3113 {
3114 	int ret;
3115 
3116 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3117 		     vlan_proto != htons(ETH_P_8021AD)))
3118 		vlan_proto = htons(ETH_P_8021Q);
3119 
3120 	bpf_push_mac_rcsum(skb);
3121 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3122 	bpf_pull_mac_rcsum(skb);
3123 
3124 	bpf_compute_data_pointers(skb);
3125 	return ret;
3126 }
3127 
3128 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3129 	.func           = bpf_skb_vlan_push,
3130 	.gpl_only       = false,
3131 	.ret_type       = RET_INTEGER,
3132 	.arg1_type      = ARG_PTR_TO_CTX,
3133 	.arg2_type      = ARG_ANYTHING,
3134 	.arg3_type      = ARG_ANYTHING,
3135 };
3136 
3137 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3138 {
3139 	int ret;
3140 
3141 	bpf_push_mac_rcsum(skb);
3142 	ret = skb_vlan_pop(skb);
3143 	bpf_pull_mac_rcsum(skb);
3144 
3145 	bpf_compute_data_pointers(skb);
3146 	return ret;
3147 }
3148 
3149 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3150 	.func           = bpf_skb_vlan_pop,
3151 	.gpl_only       = false,
3152 	.ret_type       = RET_INTEGER,
3153 	.arg1_type      = ARG_PTR_TO_CTX,
3154 };
3155 
3156 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3157 {
3158 	/* Caller already did skb_cow() with len as headroom,
3159 	 * so no need to do it here.
3160 	 */
3161 	skb_push(skb, len);
3162 	memmove(skb->data, skb->data + len, off);
3163 	memset(skb->data + off, 0, len);
3164 
3165 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3166 	 * needed here as it does not change the skb->csum
3167 	 * result for checksum complete when summing over
3168 	 * zeroed blocks.
3169 	 */
3170 	return 0;
3171 }
3172 
3173 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3174 {
3175 	/* skb_ensure_writable() is not needed here, as we're
3176 	 * already working on an uncloned skb.
3177 	 */
3178 	if (unlikely(!pskb_may_pull(skb, off + len)))
3179 		return -ENOMEM;
3180 
3181 	skb_postpull_rcsum(skb, skb->data + off, len);
3182 	memmove(skb->data + len, skb->data, off);
3183 	__skb_pull(skb, len);
3184 
3185 	return 0;
3186 }
3187 
3188 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3189 {
3190 	bool trans_same = skb->transport_header == skb->network_header;
3191 	int ret;
3192 
3193 	/* There's no need for __skb_push()/__skb_pull() pair to
3194 	 * get to the start of the mac header as we're guaranteed
3195 	 * to always start from here under eBPF.
3196 	 */
3197 	ret = bpf_skb_generic_push(skb, off, len);
3198 	if (likely(!ret)) {
3199 		skb->mac_header -= len;
3200 		skb->network_header -= len;
3201 		if (trans_same)
3202 			skb->transport_header = skb->network_header;
3203 	}
3204 
3205 	return ret;
3206 }
3207 
3208 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3209 {
3210 	bool trans_same = skb->transport_header == skb->network_header;
3211 	int ret;
3212 
3213 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3214 	ret = bpf_skb_generic_pop(skb, off, len);
3215 	if (likely(!ret)) {
3216 		skb->mac_header += len;
3217 		skb->network_header += len;
3218 		if (trans_same)
3219 			skb->transport_header = skb->network_header;
3220 	}
3221 
3222 	return ret;
3223 }
3224 
3225 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3226 {
3227 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3228 	u32 off = skb_mac_header_len(skb);
3229 	int ret;
3230 
3231 	ret = skb_cow(skb, len_diff);
3232 	if (unlikely(ret < 0))
3233 		return ret;
3234 
3235 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3236 	if (unlikely(ret < 0))
3237 		return ret;
3238 
3239 	if (skb_is_gso(skb)) {
3240 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3241 
3242 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3243 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3244 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3245 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3246 		}
3247 	}
3248 
3249 	skb->protocol = htons(ETH_P_IPV6);
3250 	skb_clear_hash(skb);
3251 
3252 	return 0;
3253 }
3254 
3255 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3256 {
3257 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3258 	u32 off = skb_mac_header_len(skb);
3259 	int ret;
3260 
3261 	ret = skb_unclone(skb, GFP_ATOMIC);
3262 	if (unlikely(ret < 0))
3263 		return ret;
3264 
3265 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3266 	if (unlikely(ret < 0))
3267 		return ret;
3268 
3269 	if (skb_is_gso(skb)) {
3270 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3271 
3272 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3273 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3274 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3275 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3276 		}
3277 	}
3278 
3279 	skb->protocol = htons(ETH_P_IP);
3280 	skb_clear_hash(skb);
3281 
3282 	return 0;
3283 }
3284 
3285 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3286 {
3287 	__be16 from_proto = skb->protocol;
3288 
3289 	if (from_proto == htons(ETH_P_IP) &&
3290 	      to_proto == htons(ETH_P_IPV6))
3291 		return bpf_skb_proto_4_to_6(skb);
3292 
3293 	if (from_proto == htons(ETH_P_IPV6) &&
3294 	      to_proto == htons(ETH_P_IP))
3295 		return bpf_skb_proto_6_to_4(skb);
3296 
3297 	return -ENOTSUPP;
3298 }
3299 
3300 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3301 	   u64, flags)
3302 {
3303 	int ret;
3304 
3305 	if (unlikely(flags))
3306 		return -EINVAL;
3307 
3308 	/* General idea is that this helper does the basic groundwork
3309 	 * needed for changing the protocol, and eBPF program fills the
3310 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3311 	 * and other helpers, rather than passing a raw buffer here.
3312 	 *
3313 	 * The rationale is to keep this minimal and without a need to
3314 	 * deal with raw packet data. F.e. even if we would pass buffers
3315 	 * here, the program still needs to call the bpf_lX_csum_replace()
3316 	 * helpers anyway. Plus, this way we keep also separation of
3317 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3318 	 * care of stores.
3319 	 *
3320 	 * Currently, additional options and extension header space are
3321 	 * not supported, but flags register is reserved so we can adapt
3322 	 * that. For offloads, we mark packet as dodgy, so that headers
3323 	 * need to be verified first.
3324 	 */
3325 	ret = bpf_skb_proto_xlat(skb, proto);
3326 	bpf_compute_data_pointers(skb);
3327 	return ret;
3328 }
3329 
3330 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3331 	.func		= bpf_skb_change_proto,
3332 	.gpl_only	= false,
3333 	.ret_type	= RET_INTEGER,
3334 	.arg1_type	= ARG_PTR_TO_CTX,
3335 	.arg2_type	= ARG_ANYTHING,
3336 	.arg3_type	= ARG_ANYTHING,
3337 };
3338 
3339 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3340 {
3341 	/* We only allow a restricted subset to be changed for now. */
3342 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3343 		     !skb_pkt_type_ok(pkt_type)))
3344 		return -EINVAL;
3345 
3346 	skb->pkt_type = pkt_type;
3347 	return 0;
3348 }
3349 
3350 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3351 	.func		= bpf_skb_change_type,
3352 	.gpl_only	= false,
3353 	.ret_type	= RET_INTEGER,
3354 	.arg1_type	= ARG_PTR_TO_CTX,
3355 	.arg2_type	= ARG_ANYTHING,
3356 };
3357 
3358 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3359 {
3360 	switch (skb->protocol) {
3361 	case htons(ETH_P_IP):
3362 		return sizeof(struct iphdr);
3363 	case htons(ETH_P_IPV6):
3364 		return sizeof(struct ipv6hdr);
3365 	default:
3366 		return ~0U;
3367 	}
3368 }
3369 
3370 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3371 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3372 
3373 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3374 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3375 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3376 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3377 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3378 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3379 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3380 
3381 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3382 			    u64 flags)
3383 {
3384 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3385 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3386 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3387 	unsigned int gso_type = SKB_GSO_DODGY;
3388 	int ret;
3389 
3390 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3391 		/* udp gso_size delineates datagrams, only allow if fixed */
3392 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3393 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3394 			return -ENOTSUPP;
3395 	}
3396 
3397 	ret = skb_cow_head(skb, len_diff);
3398 	if (unlikely(ret < 0))
3399 		return ret;
3400 
3401 	if (encap) {
3402 		if (skb->protocol != htons(ETH_P_IP) &&
3403 		    skb->protocol != htons(ETH_P_IPV6))
3404 			return -ENOTSUPP;
3405 
3406 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3407 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3408 			return -EINVAL;
3409 
3410 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3411 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3412 			return -EINVAL;
3413 
3414 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3415 		    inner_mac_len < ETH_HLEN)
3416 			return -EINVAL;
3417 
3418 		if (skb->encapsulation)
3419 			return -EALREADY;
3420 
3421 		mac_len = skb->network_header - skb->mac_header;
3422 		inner_net = skb->network_header;
3423 		if (inner_mac_len > len_diff)
3424 			return -EINVAL;
3425 		inner_trans = skb->transport_header;
3426 	}
3427 
3428 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3429 	if (unlikely(ret < 0))
3430 		return ret;
3431 
3432 	if (encap) {
3433 		skb->inner_mac_header = inner_net - inner_mac_len;
3434 		skb->inner_network_header = inner_net;
3435 		skb->inner_transport_header = inner_trans;
3436 
3437 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3438 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3439 		else
3440 			skb_set_inner_protocol(skb, skb->protocol);
3441 
3442 		skb->encapsulation = 1;
3443 		skb_set_network_header(skb, mac_len);
3444 
3445 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3446 			gso_type |= SKB_GSO_UDP_TUNNEL;
3447 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3448 			gso_type |= SKB_GSO_GRE;
3449 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3450 			gso_type |= SKB_GSO_IPXIP6;
3451 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3452 			gso_type |= SKB_GSO_IPXIP4;
3453 
3454 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3455 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3456 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3457 					sizeof(struct ipv6hdr) :
3458 					sizeof(struct iphdr);
3459 
3460 			skb_set_transport_header(skb, mac_len + nh_len);
3461 		}
3462 
3463 		/* Match skb->protocol to new outer l3 protocol */
3464 		if (skb->protocol == htons(ETH_P_IP) &&
3465 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3466 			skb->protocol = htons(ETH_P_IPV6);
3467 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3468 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3469 			skb->protocol = htons(ETH_P_IP);
3470 	}
3471 
3472 	if (skb_is_gso(skb)) {
3473 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3474 
3475 		/* Due to header grow, MSS needs to be downgraded. */
3476 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3477 			skb_decrease_gso_size(shinfo, len_diff);
3478 
3479 		/* Header must be checked, and gso_segs recomputed. */
3480 		shinfo->gso_type |= gso_type;
3481 		shinfo->gso_segs = 0;
3482 	}
3483 
3484 	return 0;
3485 }
3486 
3487 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3488 			      u64 flags)
3489 {
3490 	int ret;
3491 
3492 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3493 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3494 		return -EINVAL;
3495 
3496 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3497 		/* udp gso_size delineates datagrams, only allow if fixed */
3498 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3499 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3500 			return -ENOTSUPP;
3501 	}
3502 
3503 	ret = skb_unclone(skb, GFP_ATOMIC);
3504 	if (unlikely(ret < 0))
3505 		return ret;
3506 
3507 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3508 	if (unlikely(ret < 0))
3509 		return ret;
3510 
3511 	if (skb_is_gso(skb)) {
3512 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3513 
3514 		/* Due to header shrink, MSS can be upgraded. */
3515 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3516 			skb_increase_gso_size(shinfo, len_diff);
3517 
3518 		/* Header must be checked, and gso_segs recomputed. */
3519 		shinfo->gso_type |= SKB_GSO_DODGY;
3520 		shinfo->gso_segs = 0;
3521 	}
3522 
3523 	return 0;
3524 }
3525 
3526 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3527 
3528 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3529 	   u32, mode, u64, flags)
3530 {
3531 	u32 len_diff_abs = abs(len_diff);
3532 	bool shrink = len_diff < 0;
3533 	int ret = 0;
3534 
3535 	if (unlikely(flags || mode))
3536 		return -EINVAL;
3537 	if (unlikely(len_diff_abs > 0xfffU))
3538 		return -EFAULT;
3539 
3540 	if (!shrink) {
3541 		ret = skb_cow(skb, len_diff);
3542 		if (unlikely(ret < 0))
3543 			return ret;
3544 		__skb_push(skb, len_diff_abs);
3545 		memset(skb->data, 0, len_diff_abs);
3546 	} else {
3547 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3548 			return -ENOMEM;
3549 		__skb_pull(skb, len_diff_abs);
3550 	}
3551 	if (tls_sw_has_ctx_rx(skb->sk)) {
3552 		struct strp_msg *rxm = strp_msg(skb);
3553 
3554 		rxm->full_len += len_diff;
3555 	}
3556 	return ret;
3557 }
3558 
3559 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3560 	.func		= sk_skb_adjust_room,
3561 	.gpl_only	= false,
3562 	.ret_type	= RET_INTEGER,
3563 	.arg1_type	= ARG_PTR_TO_CTX,
3564 	.arg2_type	= ARG_ANYTHING,
3565 	.arg3_type	= ARG_ANYTHING,
3566 	.arg4_type	= ARG_ANYTHING,
3567 };
3568 
3569 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3570 	   u32, mode, u64, flags)
3571 {
3572 	u32 len_cur, len_diff_abs = abs(len_diff);
3573 	u32 len_min = bpf_skb_net_base_len(skb);
3574 	u32 len_max = BPF_SKB_MAX_LEN;
3575 	__be16 proto = skb->protocol;
3576 	bool shrink = len_diff < 0;
3577 	u32 off;
3578 	int ret;
3579 
3580 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3581 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3582 		return -EINVAL;
3583 	if (unlikely(len_diff_abs > 0xfffU))
3584 		return -EFAULT;
3585 	if (unlikely(proto != htons(ETH_P_IP) &&
3586 		     proto != htons(ETH_P_IPV6)))
3587 		return -ENOTSUPP;
3588 
3589 	off = skb_mac_header_len(skb);
3590 	switch (mode) {
3591 	case BPF_ADJ_ROOM_NET:
3592 		off += bpf_skb_net_base_len(skb);
3593 		break;
3594 	case BPF_ADJ_ROOM_MAC:
3595 		break;
3596 	default:
3597 		return -ENOTSUPP;
3598 	}
3599 
3600 	len_cur = skb->len - skb_network_offset(skb);
3601 	if ((shrink && (len_diff_abs >= len_cur ||
3602 			len_cur - len_diff_abs < len_min)) ||
3603 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3604 			 !skb_is_gso(skb))))
3605 		return -ENOTSUPP;
3606 
3607 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3608 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3609 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3610 		__skb_reset_checksum_unnecessary(skb);
3611 
3612 	bpf_compute_data_pointers(skb);
3613 	return ret;
3614 }
3615 
3616 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3617 	.func		= bpf_skb_adjust_room,
3618 	.gpl_only	= false,
3619 	.ret_type	= RET_INTEGER,
3620 	.arg1_type	= ARG_PTR_TO_CTX,
3621 	.arg2_type	= ARG_ANYTHING,
3622 	.arg3_type	= ARG_ANYTHING,
3623 	.arg4_type	= ARG_ANYTHING,
3624 };
3625 
3626 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3627 {
3628 	u32 min_len = skb_network_offset(skb);
3629 
3630 	if (skb_transport_header_was_set(skb))
3631 		min_len = skb_transport_offset(skb);
3632 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3633 		min_len = skb_checksum_start_offset(skb) +
3634 			  skb->csum_offset + sizeof(__sum16);
3635 	return min_len;
3636 }
3637 
3638 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3639 {
3640 	unsigned int old_len = skb->len;
3641 	int ret;
3642 
3643 	ret = __skb_grow_rcsum(skb, new_len);
3644 	if (!ret)
3645 		memset(skb->data + old_len, 0, new_len - old_len);
3646 	return ret;
3647 }
3648 
3649 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3650 {
3651 	return __skb_trim_rcsum(skb, new_len);
3652 }
3653 
3654 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3655 					u64 flags)
3656 {
3657 	u32 max_len = BPF_SKB_MAX_LEN;
3658 	u32 min_len = __bpf_skb_min_len(skb);
3659 	int ret;
3660 
3661 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3662 		return -EINVAL;
3663 	if (skb->encapsulation)
3664 		return -ENOTSUPP;
3665 
3666 	/* The basic idea of this helper is that it's performing the
3667 	 * needed work to either grow or trim an skb, and eBPF program
3668 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3669 	 * bpf_lX_csum_replace() and others rather than passing a raw
3670 	 * buffer here. This one is a slow path helper and intended
3671 	 * for replies with control messages.
3672 	 *
3673 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3674 	 * minimal and without protocol specifics so that we are able
3675 	 * to separate concerns as in bpf_skb_store_bytes() should only
3676 	 * be the one responsible for writing buffers.
3677 	 *
3678 	 * It's really expected to be a slow path operation here for
3679 	 * control message replies, so we're implicitly linearizing,
3680 	 * uncloning and drop offloads from the skb by this.
3681 	 */
3682 	ret = __bpf_try_make_writable(skb, skb->len);
3683 	if (!ret) {
3684 		if (new_len > skb->len)
3685 			ret = bpf_skb_grow_rcsum(skb, new_len);
3686 		else if (new_len < skb->len)
3687 			ret = bpf_skb_trim_rcsum(skb, new_len);
3688 		if (!ret && skb_is_gso(skb))
3689 			skb_gso_reset(skb);
3690 	}
3691 	return ret;
3692 }
3693 
3694 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3695 	   u64, flags)
3696 {
3697 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3698 
3699 	bpf_compute_data_pointers(skb);
3700 	return ret;
3701 }
3702 
3703 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3704 	.func		= bpf_skb_change_tail,
3705 	.gpl_only	= false,
3706 	.ret_type	= RET_INTEGER,
3707 	.arg1_type	= ARG_PTR_TO_CTX,
3708 	.arg2_type	= ARG_ANYTHING,
3709 	.arg3_type	= ARG_ANYTHING,
3710 };
3711 
3712 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3713 	   u64, flags)
3714 {
3715 	return __bpf_skb_change_tail(skb, new_len, flags);
3716 }
3717 
3718 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3719 	.func		= sk_skb_change_tail,
3720 	.gpl_only	= false,
3721 	.ret_type	= RET_INTEGER,
3722 	.arg1_type	= ARG_PTR_TO_CTX,
3723 	.arg2_type	= ARG_ANYTHING,
3724 	.arg3_type	= ARG_ANYTHING,
3725 };
3726 
3727 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3728 					u64 flags)
3729 {
3730 	u32 max_len = BPF_SKB_MAX_LEN;
3731 	u32 new_len = skb->len + head_room;
3732 	int ret;
3733 
3734 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3735 		     new_len < skb->len))
3736 		return -EINVAL;
3737 
3738 	ret = skb_cow(skb, head_room);
3739 	if (likely(!ret)) {
3740 		/* Idea for this helper is that we currently only
3741 		 * allow to expand on mac header. This means that
3742 		 * skb->protocol network header, etc, stay as is.
3743 		 * Compared to bpf_skb_change_tail(), we're more
3744 		 * flexible due to not needing to linearize or
3745 		 * reset GSO. Intention for this helper is to be
3746 		 * used by an L3 skb that needs to push mac header
3747 		 * for redirection into L2 device.
3748 		 */
3749 		__skb_push(skb, head_room);
3750 		memset(skb->data, 0, head_room);
3751 		skb_reset_mac_header(skb);
3752 		skb_reset_mac_len(skb);
3753 	}
3754 
3755 	return ret;
3756 }
3757 
3758 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3759 	   u64, flags)
3760 {
3761 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3762 
3763 	bpf_compute_data_pointers(skb);
3764 	return ret;
3765 }
3766 
3767 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3768 	.func		= bpf_skb_change_head,
3769 	.gpl_only	= false,
3770 	.ret_type	= RET_INTEGER,
3771 	.arg1_type	= ARG_PTR_TO_CTX,
3772 	.arg2_type	= ARG_ANYTHING,
3773 	.arg3_type	= ARG_ANYTHING,
3774 };
3775 
3776 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3777 	   u64, flags)
3778 {
3779 	return __bpf_skb_change_head(skb, head_room, flags);
3780 }
3781 
3782 static const struct bpf_func_proto sk_skb_change_head_proto = {
3783 	.func		= sk_skb_change_head,
3784 	.gpl_only	= false,
3785 	.ret_type	= RET_INTEGER,
3786 	.arg1_type	= ARG_PTR_TO_CTX,
3787 	.arg2_type	= ARG_ANYTHING,
3788 	.arg3_type	= ARG_ANYTHING,
3789 };
3790 
3791 BPF_CALL_1(bpf_xdp_get_buff_len, struct  xdp_buff*, xdp)
3792 {
3793 	return xdp_get_buff_len(xdp);
3794 }
3795 
3796 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3797 	.func		= bpf_xdp_get_buff_len,
3798 	.gpl_only	= false,
3799 	.ret_type	= RET_INTEGER,
3800 	.arg1_type	= ARG_PTR_TO_CTX,
3801 };
3802 
3803 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3804 
3805 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3806 	.func		= bpf_xdp_get_buff_len,
3807 	.gpl_only	= false,
3808 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3809 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3810 };
3811 
3812 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3813 {
3814 	return xdp_data_meta_unsupported(xdp) ? 0 :
3815 	       xdp->data - xdp->data_meta;
3816 }
3817 
3818 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3819 {
3820 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3821 	unsigned long metalen = xdp_get_metalen(xdp);
3822 	void *data_start = xdp_frame_end + metalen;
3823 	void *data = xdp->data + offset;
3824 
3825 	if (unlikely(data < data_start ||
3826 		     data > xdp->data_end - ETH_HLEN))
3827 		return -EINVAL;
3828 
3829 	if (metalen)
3830 		memmove(xdp->data_meta + offset,
3831 			xdp->data_meta, metalen);
3832 	xdp->data_meta += offset;
3833 	xdp->data = data;
3834 
3835 	return 0;
3836 }
3837 
3838 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3839 	.func		= bpf_xdp_adjust_head,
3840 	.gpl_only	= false,
3841 	.ret_type	= RET_INTEGER,
3842 	.arg1_type	= ARG_PTR_TO_CTX,
3843 	.arg2_type	= ARG_ANYTHING,
3844 };
3845 
3846 static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3847 			     void *buf, unsigned long len, bool flush)
3848 {
3849 	unsigned long ptr_len, ptr_off = 0;
3850 	skb_frag_t *next_frag, *end_frag;
3851 	struct skb_shared_info *sinfo;
3852 	void *src, *dst;
3853 	u8 *ptr_buf;
3854 
3855 	if (likely(xdp->data_end - xdp->data >= off + len)) {
3856 		src = flush ? buf : xdp->data + off;
3857 		dst = flush ? xdp->data + off : buf;
3858 		memcpy(dst, src, len);
3859 		return;
3860 	}
3861 
3862 	sinfo = xdp_get_shared_info_from_buff(xdp);
3863 	end_frag = &sinfo->frags[sinfo->nr_frags];
3864 	next_frag = &sinfo->frags[0];
3865 
3866 	ptr_len = xdp->data_end - xdp->data;
3867 	ptr_buf = xdp->data;
3868 
3869 	while (true) {
3870 		if (off < ptr_off + ptr_len) {
3871 			unsigned long copy_off = off - ptr_off;
3872 			unsigned long copy_len = min(len, ptr_len - copy_off);
3873 
3874 			src = flush ? buf : ptr_buf + copy_off;
3875 			dst = flush ? ptr_buf + copy_off : buf;
3876 			memcpy(dst, src, copy_len);
3877 
3878 			off += copy_len;
3879 			len -= copy_len;
3880 			buf += copy_len;
3881 		}
3882 
3883 		if (!len || next_frag == end_frag)
3884 			break;
3885 
3886 		ptr_off += ptr_len;
3887 		ptr_buf = skb_frag_address(next_frag);
3888 		ptr_len = skb_frag_size(next_frag);
3889 		next_frag++;
3890 	}
3891 }
3892 
3893 static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3894 {
3895 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3896 	u32 size = xdp->data_end - xdp->data;
3897 	void *addr = xdp->data;
3898 	int i;
3899 
3900 	if (unlikely(offset > 0xffff || len > 0xffff))
3901 		return ERR_PTR(-EFAULT);
3902 
3903 	if (offset + len > xdp_get_buff_len(xdp))
3904 		return ERR_PTR(-EINVAL);
3905 
3906 	if (offset < size) /* linear area */
3907 		goto out;
3908 
3909 	offset -= size;
3910 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3911 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3912 
3913 		if  (offset < frag_size) {
3914 			addr = skb_frag_address(&sinfo->frags[i]);
3915 			size = frag_size;
3916 			break;
3917 		}
3918 		offset -= frag_size;
3919 	}
3920 out:
3921 	return offset + len <= size ? addr + offset : NULL;
3922 }
3923 
3924 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3925 	   void *, buf, u32, len)
3926 {
3927 	void *ptr;
3928 
3929 	ptr = bpf_xdp_pointer(xdp, offset, len);
3930 	if (IS_ERR(ptr))
3931 		return PTR_ERR(ptr);
3932 
3933 	if (!ptr)
3934 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3935 	else
3936 		memcpy(buf, ptr, len);
3937 
3938 	return 0;
3939 }
3940 
3941 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3942 	.func		= bpf_xdp_load_bytes,
3943 	.gpl_only	= false,
3944 	.ret_type	= RET_INTEGER,
3945 	.arg1_type	= ARG_PTR_TO_CTX,
3946 	.arg2_type	= ARG_ANYTHING,
3947 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
3948 	.arg4_type	= ARG_CONST_SIZE,
3949 };
3950 
3951 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
3952 	   void *, buf, u32, len)
3953 {
3954 	void *ptr;
3955 
3956 	ptr = bpf_xdp_pointer(xdp, offset, len);
3957 	if (IS_ERR(ptr))
3958 		return PTR_ERR(ptr);
3959 
3960 	if (!ptr)
3961 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
3962 	else
3963 		memcpy(ptr, buf, len);
3964 
3965 	return 0;
3966 }
3967 
3968 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
3969 	.func		= bpf_xdp_store_bytes,
3970 	.gpl_only	= false,
3971 	.ret_type	= RET_INTEGER,
3972 	.arg1_type	= ARG_PTR_TO_CTX,
3973 	.arg2_type	= ARG_ANYTHING,
3974 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
3975 	.arg4_type	= ARG_CONST_SIZE,
3976 };
3977 
3978 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
3979 {
3980 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3981 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
3982 	struct xdp_rxq_info *rxq = xdp->rxq;
3983 	unsigned int tailroom;
3984 
3985 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
3986 		return -EOPNOTSUPP;
3987 
3988 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
3989 	if (unlikely(offset > tailroom))
3990 		return -EINVAL;
3991 
3992 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
3993 	skb_frag_size_add(frag, offset);
3994 	sinfo->xdp_frags_size += offset;
3995 
3996 	return 0;
3997 }
3998 
3999 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4000 {
4001 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4002 	int i, n_frags_free = 0, len_free = 0;
4003 
4004 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4005 		return -EINVAL;
4006 
4007 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4008 		skb_frag_t *frag = &sinfo->frags[i];
4009 		int shrink = min_t(int, offset, skb_frag_size(frag));
4010 
4011 		len_free += shrink;
4012 		offset -= shrink;
4013 
4014 		if (skb_frag_size(frag) == shrink) {
4015 			struct page *page = skb_frag_page(frag);
4016 
4017 			__xdp_return(page_address(page), &xdp->rxq->mem,
4018 				     false, NULL);
4019 			n_frags_free++;
4020 		} else {
4021 			skb_frag_size_sub(frag, shrink);
4022 			break;
4023 		}
4024 	}
4025 	sinfo->nr_frags -= n_frags_free;
4026 	sinfo->xdp_frags_size -= len_free;
4027 
4028 	if (unlikely(!sinfo->nr_frags)) {
4029 		xdp_buff_clear_frags_flag(xdp);
4030 		xdp->data_end -= offset;
4031 	}
4032 
4033 	return 0;
4034 }
4035 
4036 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4037 {
4038 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4039 	void *data_end = xdp->data_end + offset;
4040 
4041 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4042 		if (offset < 0)
4043 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4044 
4045 		return bpf_xdp_frags_increase_tail(xdp, offset);
4046 	}
4047 
4048 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4049 	if (unlikely(data_end > data_hard_end))
4050 		return -EINVAL;
4051 
4052 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
4053 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
4054 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
4055 		return -EINVAL;
4056 	}
4057 
4058 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4059 		return -EINVAL;
4060 
4061 	/* Clear memory area on grow, can contain uninit kernel memory */
4062 	if (offset > 0)
4063 		memset(xdp->data_end, 0, offset);
4064 
4065 	xdp->data_end = data_end;
4066 
4067 	return 0;
4068 }
4069 
4070 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4071 	.func		= bpf_xdp_adjust_tail,
4072 	.gpl_only	= false,
4073 	.ret_type	= RET_INTEGER,
4074 	.arg1_type	= ARG_PTR_TO_CTX,
4075 	.arg2_type	= ARG_ANYTHING,
4076 };
4077 
4078 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4079 {
4080 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4081 	void *meta = xdp->data_meta + offset;
4082 	unsigned long metalen = xdp->data - meta;
4083 
4084 	if (xdp_data_meta_unsupported(xdp))
4085 		return -ENOTSUPP;
4086 	if (unlikely(meta < xdp_frame_end ||
4087 		     meta > xdp->data))
4088 		return -EINVAL;
4089 	if (unlikely(xdp_metalen_invalid(metalen)))
4090 		return -EACCES;
4091 
4092 	xdp->data_meta = meta;
4093 
4094 	return 0;
4095 }
4096 
4097 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4098 	.func		= bpf_xdp_adjust_meta,
4099 	.gpl_only	= false,
4100 	.ret_type	= RET_INTEGER,
4101 	.arg1_type	= ARG_PTR_TO_CTX,
4102 	.arg2_type	= ARG_ANYTHING,
4103 };
4104 
4105 /* XDP_REDIRECT works by a three-step process, implemented in the functions
4106  * below:
4107  *
4108  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4109  *    of the redirect and store it (along with some other metadata) in a per-CPU
4110  *    struct bpf_redirect_info.
4111  *
4112  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4113  *    call xdp_do_redirect() which will use the information in struct
4114  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4115  *    bulk queue structure.
4116  *
4117  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
4118  *    which will flush all the different bulk queues, thus completing the
4119  *    redirect.
4120  *
4121  * Pointers to the map entries will be kept around for this whole sequence of
4122  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4123  * the core code; instead, the RCU protection relies on everything happening
4124  * inside a single NAPI poll sequence, which means it's between a pair of calls
4125  * to local_bh_disable()/local_bh_enable().
4126  *
4127  * The map entries are marked as __rcu and the map code makes sure to
4128  * dereference those pointers with rcu_dereference_check() in a way that works
4129  * for both sections that to hold an rcu_read_lock() and sections that are
4130  * called from NAPI without a separate rcu_read_lock(). The code below does not
4131  * use RCU annotations, but relies on those in the map code.
4132  */
4133 void xdp_do_flush(void)
4134 {
4135 	__dev_flush();
4136 	__cpu_map_flush();
4137 	__xsk_map_flush();
4138 }
4139 EXPORT_SYMBOL_GPL(xdp_do_flush);
4140 
4141 void bpf_clear_redirect_map(struct bpf_map *map)
4142 {
4143 	struct bpf_redirect_info *ri;
4144 	int cpu;
4145 
4146 	for_each_possible_cpu(cpu) {
4147 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4148 		/* Avoid polluting remote cacheline due to writes if
4149 		 * not needed. Once we pass this test, we need the
4150 		 * cmpxchg() to make sure it hasn't been changed in
4151 		 * the meantime by remote CPU.
4152 		 */
4153 		if (unlikely(READ_ONCE(ri->map) == map))
4154 			cmpxchg(&ri->map, map, NULL);
4155 	}
4156 }
4157 
4158 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4159 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4160 
4161 u32 xdp_master_redirect(struct xdp_buff *xdp)
4162 {
4163 	struct net_device *master, *slave;
4164 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4165 
4166 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4167 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4168 	if (slave && slave != xdp->rxq->dev) {
4169 		/* The target device is different from the receiving device, so
4170 		 * redirect it to the new device.
4171 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4172 		 * drivers to unmap the packet from their rx ring.
4173 		 */
4174 		ri->tgt_index = slave->ifindex;
4175 		ri->map_id = INT_MAX;
4176 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4177 		return XDP_REDIRECT;
4178 	}
4179 	return XDP_TX;
4180 }
4181 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4182 
4183 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4184 					struct net_device *dev,
4185 					struct xdp_buff *xdp,
4186 					struct bpf_prog *xdp_prog)
4187 {
4188 	enum bpf_map_type map_type = ri->map_type;
4189 	void *fwd = ri->tgt_value;
4190 	u32 map_id = ri->map_id;
4191 	int err;
4192 
4193 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4194 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4195 
4196 	err = __xsk_map_redirect(fwd, xdp);
4197 	if (unlikely(err))
4198 		goto err;
4199 
4200 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4201 	return 0;
4202 err:
4203 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4204 	return err;
4205 }
4206 
4207 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4208 						   struct net_device *dev,
4209 						   struct xdp_frame *xdpf,
4210 						   struct bpf_prog *xdp_prog)
4211 {
4212 	enum bpf_map_type map_type = ri->map_type;
4213 	void *fwd = ri->tgt_value;
4214 	u32 map_id = ri->map_id;
4215 	struct bpf_map *map;
4216 	int err;
4217 
4218 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4219 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4220 
4221 	if (unlikely(!xdpf)) {
4222 		err = -EOVERFLOW;
4223 		goto err;
4224 	}
4225 
4226 	switch (map_type) {
4227 	case BPF_MAP_TYPE_DEVMAP:
4228 		fallthrough;
4229 	case BPF_MAP_TYPE_DEVMAP_HASH:
4230 		map = READ_ONCE(ri->map);
4231 		if (unlikely(map)) {
4232 			WRITE_ONCE(ri->map, NULL);
4233 			err = dev_map_enqueue_multi(xdpf, dev, map,
4234 						    ri->flags & BPF_F_EXCLUDE_INGRESS);
4235 		} else {
4236 			err = dev_map_enqueue(fwd, xdpf, dev);
4237 		}
4238 		break;
4239 	case BPF_MAP_TYPE_CPUMAP:
4240 		err = cpu_map_enqueue(fwd, xdpf, dev);
4241 		break;
4242 	case BPF_MAP_TYPE_UNSPEC:
4243 		if (map_id == INT_MAX) {
4244 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4245 			if (unlikely(!fwd)) {
4246 				err = -EINVAL;
4247 				break;
4248 			}
4249 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4250 			break;
4251 		}
4252 		fallthrough;
4253 	default:
4254 		err = -EBADRQC;
4255 	}
4256 
4257 	if (unlikely(err))
4258 		goto err;
4259 
4260 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4261 	return 0;
4262 err:
4263 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4264 	return err;
4265 }
4266 
4267 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4268 		    struct bpf_prog *xdp_prog)
4269 {
4270 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4271 	enum bpf_map_type map_type = ri->map_type;
4272 
4273 	/* XDP_REDIRECT is not fully supported yet for xdp frags since
4274 	 * not all XDP capable drivers can map non-linear xdp_frame in
4275 	 * ndo_xdp_xmit.
4276 	 */
4277 	if (unlikely(xdp_buff_has_frags(xdp) &&
4278 		     map_type != BPF_MAP_TYPE_CPUMAP))
4279 		return -EOPNOTSUPP;
4280 
4281 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4282 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4283 
4284 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4285 				       xdp_prog);
4286 }
4287 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4288 
4289 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4290 			  struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4291 {
4292 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4293 	enum bpf_map_type map_type = ri->map_type;
4294 
4295 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4296 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4297 
4298 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4299 }
4300 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4301 
4302 static int xdp_do_generic_redirect_map(struct net_device *dev,
4303 				       struct sk_buff *skb,
4304 				       struct xdp_buff *xdp,
4305 				       struct bpf_prog *xdp_prog,
4306 				       void *fwd,
4307 				       enum bpf_map_type map_type, u32 map_id)
4308 {
4309 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4310 	struct bpf_map *map;
4311 	int err;
4312 
4313 	switch (map_type) {
4314 	case BPF_MAP_TYPE_DEVMAP:
4315 		fallthrough;
4316 	case BPF_MAP_TYPE_DEVMAP_HASH:
4317 		map = READ_ONCE(ri->map);
4318 		if (unlikely(map)) {
4319 			WRITE_ONCE(ri->map, NULL);
4320 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4321 						     ri->flags & BPF_F_EXCLUDE_INGRESS);
4322 		} else {
4323 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4324 		}
4325 		if (unlikely(err))
4326 			goto err;
4327 		break;
4328 	case BPF_MAP_TYPE_XSKMAP:
4329 		err = xsk_generic_rcv(fwd, xdp);
4330 		if (err)
4331 			goto err;
4332 		consume_skb(skb);
4333 		break;
4334 	case BPF_MAP_TYPE_CPUMAP:
4335 		err = cpu_map_generic_redirect(fwd, skb);
4336 		if (unlikely(err))
4337 			goto err;
4338 		break;
4339 	default:
4340 		err = -EBADRQC;
4341 		goto err;
4342 	}
4343 
4344 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4345 	return 0;
4346 err:
4347 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4348 	return err;
4349 }
4350 
4351 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4352 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4353 {
4354 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4355 	enum bpf_map_type map_type = ri->map_type;
4356 	void *fwd = ri->tgt_value;
4357 	u32 map_id = ri->map_id;
4358 	int err;
4359 
4360 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4361 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4362 
4363 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4364 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4365 		if (unlikely(!fwd)) {
4366 			err = -EINVAL;
4367 			goto err;
4368 		}
4369 
4370 		err = xdp_ok_fwd_dev(fwd, skb->len);
4371 		if (unlikely(err))
4372 			goto err;
4373 
4374 		skb->dev = fwd;
4375 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4376 		generic_xdp_tx(skb, xdp_prog);
4377 		return 0;
4378 	}
4379 
4380 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4381 err:
4382 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4383 	return err;
4384 }
4385 
4386 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4387 {
4388 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4389 
4390 	if (unlikely(flags))
4391 		return XDP_ABORTED;
4392 
4393 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4394 	 * by map_idr) is used for ifindex based XDP redirect.
4395 	 */
4396 	ri->tgt_index = ifindex;
4397 	ri->map_id = INT_MAX;
4398 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4399 
4400 	return XDP_REDIRECT;
4401 }
4402 
4403 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4404 	.func           = bpf_xdp_redirect,
4405 	.gpl_only       = false,
4406 	.ret_type       = RET_INTEGER,
4407 	.arg1_type      = ARG_ANYTHING,
4408 	.arg2_type      = ARG_ANYTHING,
4409 };
4410 
4411 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4412 	   u64, flags)
4413 {
4414 	return map->ops->map_redirect(map, ifindex, flags);
4415 }
4416 
4417 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4418 	.func           = bpf_xdp_redirect_map,
4419 	.gpl_only       = false,
4420 	.ret_type       = RET_INTEGER,
4421 	.arg1_type      = ARG_CONST_MAP_PTR,
4422 	.arg2_type      = ARG_ANYTHING,
4423 	.arg3_type      = ARG_ANYTHING,
4424 };
4425 
4426 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4427 				  unsigned long off, unsigned long len)
4428 {
4429 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4430 
4431 	if (unlikely(!ptr))
4432 		return len;
4433 	if (ptr != dst_buff)
4434 		memcpy(dst_buff, ptr, len);
4435 
4436 	return 0;
4437 }
4438 
4439 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4440 	   u64, flags, void *, meta, u64, meta_size)
4441 {
4442 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4443 
4444 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4445 		return -EINVAL;
4446 	if (unlikely(!skb || skb_size > skb->len))
4447 		return -EFAULT;
4448 
4449 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4450 				bpf_skb_copy);
4451 }
4452 
4453 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4454 	.func		= bpf_skb_event_output,
4455 	.gpl_only	= true,
4456 	.ret_type	= RET_INTEGER,
4457 	.arg1_type	= ARG_PTR_TO_CTX,
4458 	.arg2_type	= ARG_CONST_MAP_PTR,
4459 	.arg3_type	= ARG_ANYTHING,
4460 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4461 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4462 };
4463 
4464 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4465 
4466 const struct bpf_func_proto bpf_skb_output_proto = {
4467 	.func		= bpf_skb_event_output,
4468 	.gpl_only	= true,
4469 	.ret_type	= RET_INTEGER,
4470 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4471 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4472 	.arg2_type	= ARG_CONST_MAP_PTR,
4473 	.arg3_type	= ARG_ANYTHING,
4474 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4475 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4476 };
4477 
4478 static unsigned short bpf_tunnel_key_af(u64 flags)
4479 {
4480 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4481 }
4482 
4483 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4484 	   u32, size, u64, flags)
4485 {
4486 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4487 	u8 compat[sizeof(struct bpf_tunnel_key)];
4488 	void *to_orig = to;
4489 	int err;
4490 
4491 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4492 		err = -EINVAL;
4493 		goto err_clear;
4494 	}
4495 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4496 		err = -EPROTO;
4497 		goto err_clear;
4498 	}
4499 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4500 		err = -EINVAL;
4501 		switch (size) {
4502 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4503 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4504 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4505 			goto set_compat;
4506 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4507 			/* Fixup deprecated structure layouts here, so we have
4508 			 * a common path later on.
4509 			 */
4510 			if (ip_tunnel_info_af(info) != AF_INET)
4511 				goto err_clear;
4512 set_compat:
4513 			to = (struct bpf_tunnel_key *)compat;
4514 			break;
4515 		default:
4516 			goto err_clear;
4517 		}
4518 	}
4519 
4520 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4521 	to->tunnel_tos = info->key.tos;
4522 	to->tunnel_ttl = info->key.ttl;
4523 	to->tunnel_ext = 0;
4524 
4525 	if (flags & BPF_F_TUNINFO_IPV6) {
4526 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4527 		       sizeof(to->remote_ipv6));
4528 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4529 		       sizeof(to->local_ipv6));
4530 		to->tunnel_label = be32_to_cpu(info->key.label);
4531 	} else {
4532 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4533 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4534 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4535 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4536 		to->tunnel_label = 0;
4537 	}
4538 
4539 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4540 		memcpy(to_orig, to, size);
4541 
4542 	return 0;
4543 err_clear:
4544 	memset(to_orig, 0, size);
4545 	return err;
4546 }
4547 
4548 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4549 	.func		= bpf_skb_get_tunnel_key,
4550 	.gpl_only	= false,
4551 	.ret_type	= RET_INTEGER,
4552 	.arg1_type	= ARG_PTR_TO_CTX,
4553 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4554 	.arg3_type	= ARG_CONST_SIZE,
4555 	.arg4_type	= ARG_ANYTHING,
4556 };
4557 
4558 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4559 {
4560 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4561 	int err;
4562 
4563 	if (unlikely(!info ||
4564 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4565 		err = -ENOENT;
4566 		goto err_clear;
4567 	}
4568 	if (unlikely(size < info->options_len)) {
4569 		err = -ENOMEM;
4570 		goto err_clear;
4571 	}
4572 
4573 	ip_tunnel_info_opts_get(to, info);
4574 	if (size > info->options_len)
4575 		memset(to + info->options_len, 0, size - info->options_len);
4576 
4577 	return info->options_len;
4578 err_clear:
4579 	memset(to, 0, size);
4580 	return err;
4581 }
4582 
4583 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4584 	.func		= bpf_skb_get_tunnel_opt,
4585 	.gpl_only	= false,
4586 	.ret_type	= RET_INTEGER,
4587 	.arg1_type	= ARG_PTR_TO_CTX,
4588 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4589 	.arg3_type	= ARG_CONST_SIZE,
4590 };
4591 
4592 static struct metadata_dst __percpu *md_dst;
4593 
4594 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4595 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4596 {
4597 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4598 	u8 compat[sizeof(struct bpf_tunnel_key)];
4599 	struct ip_tunnel_info *info;
4600 
4601 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4602 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4603 		return -EINVAL;
4604 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4605 		switch (size) {
4606 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4607 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4608 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4609 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4610 			/* Fixup deprecated structure layouts here, so we have
4611 			 * a common path later on.
4612 			 */
4613 			memcpy(compat, from, size);
4614 			memset(compat + size, 0, sizeof(compat) - size);
4615 			from = (const struct bpf_tunnel_key *) compat;
4616 			break;
4617 		default:
4618 			return -EINVAL;
4619 		}
4620 	}
4621 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4622 		     from->tunnel_ext))
4623 		return -EINVAL;
4624 
4625 	skb_dst_drop(skb);
4626 	dst_hold((struct dst_entry *) md);
4627 	skb_dst_set(skb, (struct dst_entry *) md);
4628 
4629 	info = &md->u.tun_info;
4630 	memset(info, 0, sizeof(*info));
4631 	info->mode = IP_TUNNEL_INFO_TX;
4632 
4633 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4634 	if (flags & BPF_F_DONT_FRAGMENT)
4635 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4636 	if (flags & BPF_F_ZERO_CSUM_TX)
4637 		info->key.tun_flags &= ~TUNNEL_CSUM;
4638 	if (flags & BPF_F_SEQ_NUMBER)
4639 		info->key.tun_flags |= TUNNEL_SEQ;
4640 
4641 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4642 	info->key.tos = from->tunnel_tos;
4643 	info->key.ttl = from->tunnel_ttl;
4644 
4645 	if (flags & BPF_F_TUNINFO_IPV6) {
4646 		info->mode |= IP_TUNNEL_INFO_IPV6;
4647 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4648 		       sizeof(from->remote_ipv6));
4649 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4650 		       sizeof(from->local_ipv6));
4651 		info->key.label = cpu_to_be32(from->tunnel_label) &
4652 				  IPV6_FLOWLABEL_MASK;
4653 	} else {
4654 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4655 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4656 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4657 	}
4658 
4659 	return 0;
4660 }
4661 
4662 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4663 	.func		= bpf_skb_set_tunnel_key,
4664 	.gpl_only	= false,
4665 	.ret_type	= RET_INTEGER,
4666 	.arg1_type	= ARG_PTR_TO_CTX,
4667 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4668 	.arg3_type	= ARG_CONST_SIZE,
4669 	.arg4_type	= ARG_ANYTHING,
4670 };
4671 
4672 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4673 	   const u8 *, from, u32, size)
4674 {
4675 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4676 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4677 
4678 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4679 		return -EINVAL;
4680 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4681 		return -ENOMEM;
4682 
4683 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4684 
4685 	return 0;
4686 }
4687 
4688 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4689 	.func		= bpf_skb_set_tunnel_opt,
4690 	.gpl_only	= false,
4691 	.ret_type	= RET_INTEGER,
4692 	.arg1_type	= ARG_PTR_TO_CTX,
4693 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4694 	.arg3_type	= ARG_CONST_SIZE,
4695 };
4696 
4697 static const struct bpf_func_proto *
4698 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4699 {
4700 	if (!md_dst) {
4701 		struct metadata_dst __percpu *tmp;
4702 
4703 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4704 						METADATA_IP_TUNNEL,
4705 						GFP_KERNEL);
4706 		if (!tmp)
4707 			return NULL;
4708 		if (cmpxchg(&md_dst, NULL, tmp))
4709 			metadata_dst_free_percpu(tmp);
4710 	}
4711 
4712 	switch (which) {
4713 	case BPF_FUNC_skb_set_tunnel_key:
4714 		return &bpf_skb_set_tunnel_key_proto;
4715 	case BPF_FUNC_skb_set_tunnel_opt:
4716 		return &bpf_skb_set_tunnel_opt_proto;
4717 	default:
4718 		return NULL;
4719 	}
4720 }
4721 
4722 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4723 	   u32, idx)
4724 {
4725 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4726 	struct cgroup *cgrp;
4727 	struct sock *sk;
4728 
4729 	sk = skb_to_full_sk(skb);
4730 	if (!sk || !sk_fullsock(sk))
4731 		return -ENOENT;
4732 	if (unlikely(idx >= array->map.max_entries))
4733 		return -E2BIG;
4734 
4735 	cgrp = READ_ONCE(array->ptrs[idx]);
4736 	if (unlikely(!cgrp))
4737 		return -EAGAIN;
4738 
4739 	return sk_under_cgroup_hierarchy(sk, cgrp);
4740 }
4741 
4742 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4743 	.func		= bpf_skb_under_cgroup,
4744 	.gpl_only	= false,
4745 	.ret_type	= RET_INTEGER,
4746 	.arg1_type	= ARG_PTR_TO_CTX,
4747 	.arg2_type	= ARG_CONST_MAP_PTR,
4748 	.arg3_type	= ARG_ANYTHING,
4749 };
4750 
4751 #ifdef CONFIG_SOCK_CGROUP_DATA
4752 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4753 {
4754 	struct cgroup *cgrp;
4755 
4756 	sk = sk_to_full_sk(sk);
4757 	if (!sk || !sk_fullsock(sk))
4758 		return 0;
4759 
4760 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4761 	return cgroup_id(cgrp);
4762 }
4763 
4764 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4765 {
4766 	return __bpf_sk_cgroup_id(skb->sk);
4767 }
4768 
4769 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4770 	.func           = bpf_skb_cgroup_id,
4771 	.gpl_only       = false,
4772 	.ret_type       = RET_INTEGER,
4773 	.arg1_type      = ARG_PTR_TO_CTX,
4774 };
4775 
4776 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4777 					      int ancestor_level)
4778 {
4779 	struct cgroup *ancestor;
4780 	struct cgroup *cgrp;
4781 
4782 	sk = sk_to_full_sk(sk);
4783 	if (!sk || !sk_fullsock(sk))
4784 		return 0;
4785 
4786 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4787 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4788 	if (!ancestor)
4789 		return 0;
4790 
4791 	return cgroup_id(ancestor);
4792 }
4793 
4794 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4795 	   ancestor_level)
4796 {
4797 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4798 }
4799 
4800 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4801 	.func           = bpf_skb_ancestor_cgroup_id,
4802 	.gpl_only       = false,
4803 	.ret_type       = RET_INTEGER,
4804 	.arg1_type      = ARG_PTR_TO_CTX,
4805 	.arg2_type      = ARG_ANYTHING,
4806 };
4807 
4808 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4809 {
4810 	return __bpf_sk_cgroup_id(sk);
4811 }
4812 
4813 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4814 	.func           = bpf_sk_cgroup_id,
4815 	.gpl_only       = false,
4816 	.ret_type       = RET_INTEGER,
4817 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4818 };
4819 
4820 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4821 {
4822 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4823 }
4824 
4825 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4826 	.func           = bpf_sk_ancestor_cgroup_id,
4827 	.gpl_only       = false,
4828 	.ret_type       = RET_INTEGER,
4829 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4830 	.arg2_type      = ARG_ANYTHING,
4831 };
4832 #endif
4833 
4834 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4835 				  unsigned long off, unsigned long len)
4836 {
4837 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4838 
4839 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
4840 	return 0;
4841 }
4842 
4843 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4844 	   u64, flags, void *, meta, u64, meta_size)
4845 {
4846 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4847 
4848 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4849 		return -EINVAL;
4850 
4851 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4852 		return -EFAULT;
4853 
4854 	return bpf_event_output(map, flags, meta, meta_size, xdp,
4855 				xdp_size, bpf_xdp_copy);
4856 }
4857 
4858 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4859 	.func		= bpf_xdp_event_output,
4860 	.gpl_only	= true,
4861 	.ret_type	= RET_INTEGER,
4862 	.arg1_type	= ARG_PTR_TO_CTX,
4863 	.arg2_type	= ARG_CONST_MAP_PTR,
4864 	.arg3_type	= ARG_ANYTHING,
4865 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4866 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4867 };
4868 
4869 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4870 
4871 const struct bpf_func_proto bpf_xdp_output_proto = {
4872 	.func		= bpf_xdp_event_output,
4873 	.gpl_only	= true,
4874 	.ret_type	= RET_INTEGER,
4875 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4876 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4877 	.arg2_type	= ARG_CONST_MAP_PTR,
4878 	.arg3_type	= ARG_ANYTHING,
4879 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4880 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4881 };
4882 
4883 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4884 {
4885 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4886 }
4887 
4888 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4889 	.func           = bpf_get_socket_cookie,
4890 	.gpl_only       = false,
4891 	.ret_type       = RET_INTEGER,
4892 	.arg1_type      = ARG_PTR_TO_CTX,
4893 };
4894 
4895 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4896 {
4897 	return __sock_gen_cookie(ctx->sk);
4898 }
4899 
4900 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4901 	.func		= bpf_get_socket_cookie_sock_addr,
4902 	.gpl_only	= false,
4903 	.ret_type	= RET_INTEGER,
4904 	.arg1_type	= ARG_PTR_TO_CTX,
4905 };
4906 
4907 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4908 {
4909 	return __sock_gen_cookie(ctx);
4910 }
4911 
4912 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4913 	.func		= bpf_get_socket_cookie_sock,
4914 	.gpl_only	= false,
4915 	.ret_type	= RET_INTEGER,
4916 	.arg1_type	= ARG_PTR_TO_CTX,
4917 };
4918 
4919 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4920 {
4921 	return sk ? sock_gen_cookie(sk) : 0;
4922 }
4923 
4924 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4925 	.func		= bpf_get_socket_ptr_cookie,
4926 	.gpl_only	= false,
4927 	.ret_type	= RET_INTEGER,
4928 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4929 };
4930 
4931 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4932 {
4933 	return __sock_gen_cookie(ctx->sk);
4934 }
4935 
4936 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4937 	.func		= bpf_get_socket_cookie_sock_ops,
4938 	.gpl_only	= false,
4939 	.ret_type	= RET_INTEGER,
4940 	.arg1_type	= ARG_PTR_TO_CTX,
4941 };
4942 
4943 static u64 __bpf_get_netns_cookie(struct sock *sk)
4944 {
4945 	const struct net *net = sk ? sock_net(sk) : &init_net;
4946 
4947 	return net->net_cookie;
4948 }
4949 
4950 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4951 {
4952 	return __bpf_get_netns_cookie(ctx);
4953 }
4954 
4955 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4956 	.func		= bpf_get_netns_cookie_sock,
4957 	.gpl_only	= false,
4958 	.ret_type	= RET_INTEGER,
4959 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4960 };
4961 
4962 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4963 {
4964 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4965 }
4966 
4967 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4968 	.func		= bpf_get_netns_cookie_sock_addr,
4969 	.gpl_only	= false,
4970 	.ret_type	= RET_INTEGER,
4971 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4972 };
4973 
4974 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4975 {
4976 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4977 }
4978 
4979 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4980 	.func		= bpf_get_netns_cookie_sock_ops,
4981 	.gpl_only	= false,
4982 	.ret_type	= RET_INTEGER,
4983 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4984 };
4985 
4986 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
4987 {
4988 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4989 }
4990 
4991 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
4992 	.func		= bpf_get_netns_cookie_sk_msg,
4993 	.gpl_only	= false,
4994 	.ret_type	= RET_INTEGER,
4995 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4996 };
4997 
4998 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4999 {
5000 	struct sock *sk = sk_to_full_sk(skb->sk);
5001 	kuid_t kuid;
5002 
5003 	if (!sk || !sk_fullsock(sk))
5004 		return overflowuid;
5005 	kuid = sock_net_uid(sock_net(sk), sk);
5006 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5007 }
5008 
5009 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5010 	.func           = bpf_get_socket_uid,
5011 	.gpl_only       = false,
5012 	.ret_type       = RET_INTEGER,
5013 	.arg1_type      = ARG_PTR_TO_CTX,
5014 };
5015 
5016 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5017 			    char *optval, int optlen)
5018 {
5019 	char devname[IFNAMSIZ];
5020 	int val, valbool;
5021 	struct net *net;
5022 	int ifindex;
5023 	int ret = 0;
5024 
5025 	if (!sk_fullsock(sk))
5026 		return -EINVAL;
5027 
5028 	if (level == SOL_SOCKET) {
5029 		if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
5030 			return -EINVAL;
5031 		val = *((int *)optval);
5032 		valbool = val ? 1 : 0;
5033 
5034 		/* Only some socketops are supported */
5035 		switch (optname) {
5036 		case SO_RCVBUF:
5037 			val = min_t(u32, val, sysctl_rmem_max);
5038 			val = min_t(int, val, INT_MAX / 2);
5039 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
5040 			WRITE_ONCE(sk->sk_rcvbuf,
5041 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
5042 			break;
5043 		case SO_SNDBUF:
5044 			val = min_t(u32, val, sysctl_wmem_max);
5045 			val = min_t(int, val, INT_MAX / 2);
5046 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
5047 			WRITE_ONCE(sk->sk_sndbuf,
5048 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
5049 			break;
5050 		case SO_MAX_PACING_RATE: /* 32bit version */
5051 			if (val != ~0U)
5052 				cmpxchg(&sk->sk_pacing_status,
5053 					SK_PACING_NONE,
5054 					SK_PACING_NEEDED);
5055 			sk->sk_max_pacing_rate = (val == ~0U) ?
5056 						 ~0UL : (unsigned int)val;
5057 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
5058 						 sk->sk_max_pacing_rate);
5059 			break;
5060 		case SO_PRIORITY:
5061 			sk->sk_priority = val;
5062 			break;
5063 		case SO_RCVLOWAT:
5064 			if (val < 0)
5065 				val = INT_MAX;
5066 			if (sk->sk_socket && sk->sk_socket->ops->set_rcvlowat)
5067 				ret = sk->sk_socket->ops->set_rcvlowat(sk, val);
5068 			else
5069 				WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
5070 			break;
5071 		case SO_MARK:
5072 			if (sk->sk_mark != val) {
5073 				sk->sk_mark = val;
5074 				sk_dst_reset(sk);
5075 			}
5076 			break;
5077 		case SO_BINDTODEVICE:
5078 			optlen = min_t(long, optlen, IFNAMSIZ - 1);
5079 			strncpy(devname, optval, optlen);
5080 			devname[optlen] = 0;
5081 
5082 			ifindex = 0;
5083 			if (devname[0] != '\0') {
5084 				struct net_device *dev;
5085 
5086 				ret = -ENODEV;
5087 
5088 				net = sock_net(sk);
5089 				dev = dev_get_by_name(net, devname);
5090 				if (!dev)
5091 					break;
5092 				ifindex = dev->ifindex;
5093 				dev_put(dev);
5094 			}
5095 			fallthrough;
5096 		case SO_BINDTOIFINDEX:
5097 			if (optname == SO_BINDTOIFINDEX)
5098 				ifindex = val;
5099 			ret = sock_bindtoindex(sk, ifindex, false);
5100 			break;
5101 		case SO_KEEPALIVE:
5102 			if (sk->sk_prot->keepalive)
5103 				sk->sk_prot->keepalive(sk, valbool);
5104 			sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
5105 			break;
5106 		case SO_REUSEPORT:
5107 			sk->sk_reuseport = valbool;
5108 			break;
5109 		case SO_TXREHASH:
5110 			if (val < -1 || val > 1) {
5111 				ret = -EINVAL;
5112 				break;
5113 			}
5114 			sk->sk_txrehash = (u8)val;
5115 			break;
5116 		default:
5117 			ret = -EINVAL;
5118 		}
5119 #ifdef CONFIG_INET
5120 	} else if (level == SOL_IP) {
5121 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5122 			return -EINVAL;
5123 
5124 		val = *((int *)optval);
5125 		/* Only some options are supported */
5126 		switch (optname) {
5127 		case IP_TOS:
5128 			if (val < -1 || val > 0xff) {
5129 				ret = -EINVAL;
5130 			} else {
5131 				struct inet_sock *inet = inet_sk(sk);
5132 
5133 				if (val == -1)
5134 					val = 0;
5135 				inet->tos = val;
5136 			}
5137 			break;
5138 		default:
5139 			ret = -EINVAL;
5140 		}
5141 #if IS_ENABLED(CONFIG_IPV6)
5142 	} else if (level == SOL_IPV6) {
5143 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5144 			return -EINVAL;
5145 
5146 		val = *((int *)optval);
5147 		/* Only some options are supported */
5148 		switch (optname) {
5149 		case IPV6_TCLASS:
5150 			if (val < -1 || val > 0xff) {
5151 				ret = -EINVAL;
5152 			} else {
5153 				struct ipv6_pinfo *np = inet6_sk(sk);
5154 
5155 				if (val == -1)
5156 					val = 0;
5157 				np->tclass = val;
5158 			}
5159 			break;
5160 		default:
5161 			ret = -EINVAL;
5162 		}
5163 #endif
5164 	} else if (level == SOL_TCP &&
5165 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
5166 		if (optname == TCP_CONGESTION) {
5167 			char name[TCP_CA_NAME_MAX];
5168 
5169 			strncpy(name, optval, min_t(long, optlen,
5170 						    TCP_CA_NAME_MAX-1));
5171 			name[TCP_CA_NAME_MAX-1] = 0;
5172 			ret = tcp_set_congestion_control(sk, name, false, true);
5173 		} else {
5174 			struct inet_connection_sock *icsk = inet_csk(sk);
5175 			struct tcp_sock *tp = tcp_sk(sk);
5176 			unsigned long timeout;
5177 
5178 			if (optlen != sizeof(int))
5179 				return -EINVAL;
5180 
5181 			val = *((int *)optval);
5182 			/* Only some options are supported */
5183 			switch (optname) {
5184 			case TCP_BPF_IW:
5185 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
5186 					ret = -EINVAL;
5187 				else
5188 					tcp_snd_cwnd_set(tp, val);
5189 				break;
5190 			case TCP_BPF_SNDCWND_CLAMP:
5191 				if (val <= 0) {
5192 					ret = -EINVAL;
5193 				} else {
5194 					tp->snd_cwnd_clamp = val;
5195 					tp->snd_ssthresh = val;
5196 				}
5197 				break;
5198 			case TCP_BPF_DELACK_MAX:
5199 				timeout = usecs_to_jiffies(val);
5200 				if (timeout > TCP_DELACK_MAX ||
5201 				    timeout < TCP_TIMEOUT_MIN)
5202 					return -EINVAL;
5203 				inet_csk(sk)->icsk_delack_max = timeout;
5204 				break;
5205 			case TCP_BPF_RTO_MIN:
5206 				timeout = usecs_to_jiffies(val);
5207 				if (timeout > TCP_RTO_MIN ||
5208 				    timeout < TCP_TIMEOUT_MIN)
5209 					return -EINVAL;
5210 				inet_csk(sk)->icsk_rto_min = timeout;
5211 				break;
5212 			case TCP_SAVE_SYN:
5213 				if (val < 0 || val > 1)
5214 					ret = -EINVAL;
5215 				else
5216 					tp->save_syn = val;
5217 				break;
5218 			case TCP_KEEPIDLE:
5219 				ret = tcp_sock_set_keepidle_locked(sk, val);
5220 				break;
5221 			case TCP_KEEPINTVL:
5222 				if (val < 1 || val > MAX_TCP_KEEPINTVL)
5223 					ret = -EINVAL;
5224 				else
5225 					tp->keepalive_intvl = val * HZ;
5226 				break;
5227 			case TCP_KEEPCNT:
5228 				if (val < 1 || val > MAX_TCP_KEEPCNT)
5229 					ret = -EINVAL;
5230 				else
5231 					tp->keepalive_probes = val;
5232 				break;
5233 			case TCP_SYNCNT:
5234 				if (val < 1 || val > MAX_TCP_SYNCNT)
5235 					ret = -EINVAL;
5236 				else
5237 					icsk->icsk_syn_retries = val;
5238 				break;
5239 			case TCP_USER_TIMEOUT:
5240 				if (val < 0)
5241 					ret = -EINVAL;
5242 				else
5243 					icsk->icsk_user_timeout = val;
5244 				break;
5245 			case TCP_NOTSENT_LOWAT:
5246 				tp->notsent_lowat = val;
5247 				sk->sk_write_space(sk);
5248 				break;
5249 			case TCP_WINDOW_CLAMP:
5250 				ret = tcp_set_window_clamp(sk, val);
5251 				break;
5252 			default:
5253 				ret = -EINVAL;
5254 			}
5255 		}
5256 #endif
5257 	} else {
5258 		ret = -EINVAL;
5259 	}
5260 	return ret;
5261 }
5262 
5263 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5264 			   char *optval, int optlen)
5265 {
5266 	if (sk_fullsock(sk))
5267 		sock_owned_by_me(sk);
5268 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5269 }
5270 
5271 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5272 			    char *optval, int optlen)
5273 {
5274 	if (!sk_fullsock(sk))
5275 		goto err_clear;
5276 
5277 	if (level == SOL_SOCKET) {
5278 		if (optlen != sizeof(int))
5279 			goto err_clear;
5280 
5281 		switch (optname) {
5282 		case SO_RCVBUF:
5283 			*((int *)optval) = sk->sk_rcvbuf;
5284 			break;
5285 		case SO_SNDBUF:
5286 			*((int *)optval) = sk->sk_sndbuf;
5287 			break;
5288 		case SO_MARK:
5289 			*((int *)optval) = sk->sk_mark;
5290 			break;
5291 		case SO_PRIORITY:
5292 			*((int *)optval) = sk->sk_priority;
5293 			break;
5294 		case SO_BINDTOIFINDEX:
5295 			*((int *)optval) = sk->sk_bound_dev_if;
5296 			break;
5297 		case SO_REUSEPORT:
5298 			*((int *)optval) = sk->sk_reuseport;
5299 			break;
5300 		case SO_TXREHASH:
5301 			*((int *)optval) = sk->sk_txrehash;
5302 			break;
5303 		default:
5304 			goto err_clear;
5305 		}
5306 #ifdef CONFIG_INET
5307 	} else if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
5308 		struct inet_connection_sock *icsk;
5309 		struct tcp_sock *tp;
5310 
5311 		switch (optname) {
5312 		case TCP_CONGESTION:
5313 			icsk = inet_csk(sk);
5314 
5315 			if (!icsk->icsk_ca_ops || optlen <= 1)
5316 				goto err_clear;
5317 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
5318 			optval[optlen - 1] = 0;
5319 			break;
5320 		case TCP_SAVED_SYN:
5321 			tp = tcp_sk(sk);
5322 
5323 			if (optlen <= 0 || !tp->saved_syn ||
5324 			    optlen > tcp_saved_syn_len(tp->saved_syn))
5325 				goto err_clear;
5326 			memcpy(optval, tp->saved_syn->data, optlen);
5327 			break;
5328 		default:
5329 			goto err_clear;
5330 		}
5331 	} else if (level == SOL_IP) {
5332 		struct inet_sock *inet = inet_sk(sk);
5333 
5334 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5335 			goto err_clear;
5336 
5337 		/* Only some options are supported */
5338 		switch (optname) {
5339 		case IP_TOS:
5340 			*((int *)optval) = (int)inet->tos;
5341 			break;
5342 		default:
5343 			goto err_clear;
5344 		}
5345 #if IS_ENABLED(CONFIG_IPV6)
5346 	} else if (level == SOL_IPV6) {
5347 		struct ipv6_pinfo *np = inet6_sk(sk);
5348 
5349 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5350 			goto err_clear;
5351 
5352 		/* Only some options are supported */
5353 		switch (optname) {
5354 		case IPV6_TCLASS:
5355 			*((int *)optval) = (int)np->tclass;
5356 			break;
5357 		default:
5358 			goto err_clear;
5359 		}
5360 #endif
5361 #endif
5362 	} else {
5363 		goto err_clear;
5364 	}
5365 	return 0;
5366 err_clear:
5367 	memset(optval, 0, optlen);
5368 	return -EINVAL;
5369 }
5370 
5371 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5372 			   char *optval, int optlen)
5373 {
5374 	if (sk_fullsock(sk))
5375 		sock_owned_by_me(sk);
5376 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5377 }
5378 
5379 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5380 	   int, optname, char *, optval, int, optlen)
5381 {
5382 	if (level == SOL_TCP && optname == TCP_CONGESTION) {
5383 		if (optlen >= sizeof("cdg") - 1 &&
5384 		    !strncmp("cdg", optval, optlen))
5385 			return -ENOTSUPP;
5386 	}
5387 
5388 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5389 }
5390 
5391 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5392 	.func		= bpf_sk_setsockopt,
5393 	.gpl_only	= false,
5394 	.ret_type	= RET_INTEGER,
5395 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5396 	.arg2_type	= ARG_ANYTHING,
5397 	.arg3_type	= ARG_ANYTHING,
5398 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5399 	.arg5_type	= ARG_CONST_SIZE,
5400 };
5401 
5402 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5403 	   int, optname, char *, optval, int, optlen)
5404 {
5405 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5406 }
5407 
5408 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5409 	.func		= bpf_sk_getsockopt,
5410 	.gpl_only	= false,
5411 	.ret_type	= RET_INTEGER,
5412 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5413 	.arg2_type	= ARG_ANYTHING,
5414 	.arg3_type	= ARG_ANYTHING,
5415 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5416 	.arg5_type	= ARG_CONST_SIZE,
5417 };
5418 
5419 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5420 	   int, optname, char *, optval, int, optlen)
5421 {
5422 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5423 }
5424 
5425 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5426 	.func		= bpf_unlocked_sk_setsockopt,
5427 	.gpl_only	= false,
5428 	.ret_type	= RET_INTEGER,
5429 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5430 	.arg2_type	= ARG_ANYTHING,
5431 	.arg3_type	= ARG_ANYTHING,
5432 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5433 	.arg5_type	= ARG_CONST_SIZE,
5434 };
5435 
5436 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5437 	   int, optname, char *, optval, int, optlen)
5438 {
5439 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5440 }
5441 
5442 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5443 	.func		= bpf_unlocked_sk_getsockopt,
5444 	.gpl_only	= false,
5445 	.ret_type	= RET_INTEGER,
5446 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5447 	.arg2_type	= ARG_ANYTHING,
5448 	.arg3_type	= ARG_ANYTHING,
5449 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5450 	.arg5_type	= ARG_CONST_SIZE,
5451 };
5452 
5453 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5454 	   int, level, int, optname, char *, optval, int, optlen)
5455 {
5456 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5457 }
5458 
5459 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5460 	.func		= bpf_sock_addr_setsockopt,
5461 	.gpl_only	= false,
5462 	.ret_type	= RET_INTEGER,
5463 	.arg1_type	= ARG_PTR_TO_CTX,
5464 	.arg2_type	= ARG_ANYTHING,
5465 	.arg3_type	= ARG_ANYTHING,
5466 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5467 	.arg5_type	= ARG_CONST_SIZE,
5468 };
5469 
5470 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5471 	   int, level, int, optname, char *, optval, int, optlen)
5472 {
5473 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5474 }
5475 
5476 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5477 	.func		= bpf_sock_addr_getsockopt,
5478 	.gpl_only	= false,
5479 	.ret_type	= RET_INTEGER,
5480 	.arg1_type	= ARG_PTR_TO_CTX,
5481 	.arg2_type	= ARG_ANYTHING,
5482 	.arg3_type	= ARG_ANYTHING,
5483 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5484 	.arg5_type	= ARG_CONST_SIZE,
5485 };
5486 
5487 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5488 	   int, level, int, optname, char *, optval, int, optlen)
5489 {
5490 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5491 }
5492 
5493 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5494 	.func		= bpf_sock_ops_setsockopt,
5495 	.gpl_only	= false,
5496 	.ret_type	= RET_INTEGER,
5497 	.arg1_type	= ARG_PTR_TO_CTX,
5498 	.arg2_type	= ARG_ANYTHING,
5499 	.arg3_type	= ARG_ANYTHING,
5500 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5501 	.arg5_type	= ARG_CONST_SIZE,
5502 };
5503 
5504 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5505 				int optname, const u8 **start)
5506 {
5507 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5508 	const u8 *hdr_start;
5509 	int ret;
5510 
5511 	if (syn_skb) {
5512 		/* sk is a request_sock here */
5513 
5514 		if (optname == TCP_BPF_SYN) {
5515 			hdr_start = syn_skb->data;
5516 			ret = tcp_hdrlen(syn_skb);
5517 		} else if (optname == TCP_BPF_SYN_IP) {
5518 			hdr_start = skb_network_header(syn_skb);
5519 			ret = skb_network_header_len(syn_skb) +
5520 				tcp_hdrlen(syn_skb);
5521 		} else {
5522 			/* optname == TCP_BPF_SYN_MAC */
5523 			hdr_start = skb_mac_header(syn_skb);
5524 			ret = skb_mac_header_len(syn_skb) +
5525 				skb_network_header_len(syn_skb) +
5526 				tcp_hdrlen(syn_skb);
5527 		}
5528 	} else {
5529 		struct sock *sk = bpf_sock->sk;
5530 		struct saved_syn *saved_syn;
5531 
5532 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5533 			/* synack retransmit. bpf_sock->syn_skb will
5534 			 * not be available.  It has to resort to
5535 			 * saved_syn (if it is saved).
5536 			 */
5537 			saved_syn = inet_reqsk(sk)->saved_syn;
5538 		else
5539 			saved_syn = tcp_sk(sk)->saved_syn;
5540 
5541 		if (!saved_syn)
5542 			return -ENOENT;
5543 
5544 		if (optname == TCP_BPF_SYN) {
5545 			hdr_start = saved_syn->data +
5546 				saved_syn->mac_hdrlen +
5547 				saved_syn->network_hdrlen;
5548 			ret = saved_syn->tcp_hdrlen;
5549 		} else if (optname == TCP_BPF_SYN_IP) {
5550 			hdr_start = saved_syn->data +
5551 				saved_syn->mac_hdrlen;
5552 			ret = saved_syn->network_hdrlen +
5553 				saved_syn->tcp_hdrlen;
5554 		} else {
5555 			/* optname == TCP_BPF_SYN_MAC */
5556 
5557 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5558 			if (!saved_syn->mac_hdrlen)
5559 				return -ENOENT;
5560 
5561 			hdr_start = saved_syn->data;
5562 			ret = saved_syn->mac_hdrlen +
5563 				saved_syn->network_hdrlen +
5564 				saved_syn->tcp_hdrlen;
5565 		}
5566 	}
5567 
5568 	*start = hdr_start;
5569 	return ret;
5570 }
5571 
5572 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5573 	   int, level, int, optname, char *, optval, int, optlen)
5574 {
5575 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5576 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5577 		int ret, copy_len = 0;
5578 		const u8 *start;
5579 
5580 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5581 		if (ret > 0) {
5582 			copy_len = ret;
5583 			if (optlen < copy_len) {
5584 				copy_len = optlen;
5585 				ret = -ENOSPC;
5586 			}
5587 
5588 			memcpy(optval, start, copy_len);
5589 		}
5590 
5591 		/* Zero out unused buffer at the end */
5592 		memset(optval + copy_len, 0, optlen - copy_len);
5593 
5594 		return ret;
5595 	}
5596 
5597 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5598 }
5599 
5600 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5601 	.func		= bpf_sock_ops_getsockopt,
5602 	.gpl_only	= false,
5603 	.ret_type	= RET_INTEGER,
5604 	.arg1_type	= ARG_PTR_TO_CTX,
5605 	.arg2_type	= ARG_ANYTHING,
5606 	.arg3_type	= ARG_ANYTHING,
5607 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5608 	.arg5_type	= ARG_CONST_SIZE,
5609 };
5610 
5611 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5612 	   int, argval)
5613 {
5614 	struct sock *sk = bpf_sock->sk;
5615 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5616 
5617 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5618 		return -EINVAL;
5619 
5620 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5621 
5622 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5623 }
5624 
5625 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5626 	.func		= bpf_sock_ops_cb_flags_set,
5627 	.gpl_only	= false,
5628 	.ret_type	= RET_INTEGER,
5629 	.arg1_type	= ARG_PTR_TO_CTX,
5630 	.arg2_type	= ARG_ANYTHING,
5631 };
5632 
5633 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5634 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5635 
5636 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5637 	   int, addr_len)
5638 {
5639 #ifdef CONFIG_INET
5640 	struct sock *sk = ctx->sk;
5641 	u32 flags = BIND_FROM_BPF;
5642 	int err;
5643 
5644 	err = -EINVAL;
5645 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5646 		return err;
5647 	if (addr->sa_family == AF_INET) {
5648 		if (addr_len < sizeof(struct sockaddr_in))
5649 			return err;
5650 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5651 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5652 		return __inet_bind(sk, addr, addr_len, flags);
5653 #if IS_ENABLED(CONFIG_IPV6)
5654 	} else if (addr->sa_family == AF_INET6) {
5655 		if (addr_len < SIN6_LEN_RFC2133)
5656 			return err;
5657 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5658 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5659 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5660 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5661 		 */
5662 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5663 #endif /* CONFIG_IPV6 */
5664 	}
5665 #endif /* CONFIG_INET */
5666 
5667 	return -EAFNOSUPPORT;
5668 }
5669 
5670 static const struct bpf_func_proto bpf_bind_proto = {
5671 	.func		= bpf_bind,
5672 	.gpl_only	= false,
5673 	.ret_type	= RET_INTEGER,
5674 	.arg1_type	= ARG_PTR_TO_CTX,
5675 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5676 	.arg3_type	= ARG_CONST_SIZE,
5677 };
5678 
5679 #ifdef CONFIG_XFRM
5680 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5681 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5682 {
5683 	const struct sec_path *sp = skb_sec_path(skb);
5684 	const struct xfrm_state *x;
5685 
5686 	if (!sp || unlikely(index >= sp->len || flags))
5687 		goto err_clear;
5688 
5689 	x = sp->xvec[index];
5690 
5691 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5692 		goto err_clear;
5693 
5694 	to->reqid = x->props.reqid;
5695 	to->spi = x->id.spi;
5696 	to->family = x->props.family;
5697 	to->ext = 0;
5698 
5699 	if (to->family == AF_INET6) {
5700 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5701 		       sizeof(to->remote_ipv6));
5702 	} else {
5703 		to->remote_ipv4 = x->props.saddr.a4;
5704 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5705 	}
5706 
5707 	return 0;
5708 err_clear:
5709 	memset(to, 0, size);
5710 	return -EINVAL;
5711 }
5712 
5713 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5714 	.func		= bpf_skb_get_xfrm_state,
5715 	.gpl_only	= false,
5716 	.ret_type	= RET_INTEGER,
5717 	.arg1_type	= ARG_PTR_TO_CTX,
5718 	.arg2_type	= ARG_ANYTHING,
5719 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5720 	.arg4_type	= ARG_CONST_SIZE,
5721 	.arg5_type	= ARG_ANYTHING,
5722 };
5723 #endif
5724 
5725 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5726 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5727 				  const struct neighbour *neigh,
5728 				  const struct net_device *dev, u32 mtu)
5729 {
5730 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5731 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5732 	params->h_vlan_TCI = 0;
5733 	params->h_vlan_proto = 0;
5734 	if (mtu)
5735 		params->mtu_result = mtu; /* union with tot_len */
5736 
5737 	return 0;
5738 }
5739 #endif
5740 
5741 #if IS_ENABLED(CONFIG_INET)
5742 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5743 			       u32 flags, bool check_mtu)
5744 {
5745 	struct fib_nh_common *nhc;
5746 	struct in_device *in_dev;
5747 	struct neighbour *neigh;
5748 	struct net_device *dev;
5749 	struct fib_result res;
5750 	struct flowi4 fl4;
5751 	u32 mtu = 0;
5752 	int err;
5753 
5754 	dev = dev_get_by_index_rcu(net, params->ifindex);
5755 	if (unlikely(!dev))
5756 		return -ENODEV;
5757 
5758 	/* verify forwarding is enabled on this interface */
5759 	in_dev = __in_dev_get_rcu(dev);
5760 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5761 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5762 
5763 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5764 		fl4.flowi4_iif = 1;
5765 		fl4.flowi4_oif = params->ifindex;
5766 	} else {
5767 		fl4.flowi4_iif = params->ifindex;
5768 		fl4.flowi4_oif = 0;
5769 	}
5770 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5771 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5772 	fl4.flowi4_flags = 0;
5773 
5774 	fl4.flowi4_proto = params->l4_protocol;
5775 	fl4.daddr = params->ipv4_dst;
5776 	fl4.saddr = params->ipv4_src;
5777 	fl4.fl4_sport = params->sport;
5778 	fl4.fl4_dport = params->dport;
5779 	fl4.flowi4_multipath_hash = 0;
5780 
5781 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5782 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5783 		struct fib_table *tb;
5784 
5785 		tb = fib_get_table(net, tbid);
5786 		if (unlikely(!tb))
5787 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5788 
5789 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5790 	} else {
5791 		fl4.flowi4_mark = 0;
5792 		fl4.flowi4_secid = 0;
5793 		fl4.flowi4_tun_key.tun_id = 0;
5794 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5795 
5796 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5797 	}
5798 
5799 	if (err) {
5800 		/* map fib lookup errors to RTN_ type */
5801 		if (err == -EINVAL)
5802 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5803 		if (err == -EHOSTUNREACH)
5804 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5805 		if (err == -EACCES)
5806 			return BPF_FIB_LKUP_RET_PROHIBIT;
5807 
5808 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5809 	}
5810 
5811 	if (res.type != RTN_UNICAST)
5812 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5813 
5814 	if (fib_info_num_path(res.fi) > 1)
5815 		fib_select_path(net, &res, &fl4, NULL);
5816 
5817 	if (check_mtu) {
5818 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5819 		if (params->tot_len > mtu) {
5820 			params->mtu_result = mtu; /* union with tot_len */
5821 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5822 		}
5823 	}
5824 
5825 	nhc = res.nhc;
5826 
5827 	/* do not handle lwt encaps right now */
5828 	if (nhc->nhc_lwtstate)
5829 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5830 
5831 	dev = nhc->nhc_dev;
5832 
5833 	params->rt_metric = res.fi->fib_priority;
5834 	params->ifindex = dev->ifindex;
5835 
5836 	/* xdp and cls_bpf programs are run in RCU-bh so
5837 	 * rcu_read_lock_bh is not needed here
5838 	 */
5839 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5840 		if (nhc->nhc_gw_family)
5841 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5842 
5843 		neigh = __ipv4_neigh_lookup_noref(dev,
5844 						 (__force u32)params->ipv4_dst);
5845 	} else {
5846 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5847 
5848 		params->family = AF_INET6;
5849 		*dst = nhc->nhc_gw.ipv6;
5850 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5851 	}
5852 
5853 	if (!neigh)
5854 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5855 
5856 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5857 }
5858 #endif
5859 
5860 #if IS_ENABLED(CONFIG_IPV6)
5861 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5862 			       u32 flags, bool check_mtu)
5863 {
5864 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5865 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5866 	struct fib6_result res = {};
5867 	struct neighbour *neigh;
5868 	struct net_device *dev;
5869 	struct inet6_dev *idev;
5870 	struct flowi6 fl6;
5871 	int strict = 0;
5872 	int oif, err;
5873 	u32 mtu = 0;
5874 
5875 	/* link local addresses are never forwarded */
5876 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5877 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5878 
5879 	dev = dev_get_by_index_rcu(net, params->ifindex);
5880 	if (unlikely(!dev))
5881 		return -ENODEV;
5882 
5883 	idev = __in6_dev_get_safely(dev);
5884 	if (unlikely(!idev || !idev->cnf.forwarding))
5885 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5886 
5887 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5888 		fl6.flowi6_iif = 1;
5889 		oif = fl6.flowi6_oif = params->ifindex;
5890 	} else {
5891 		oif = fl6.flowi6_iif = params->ifindex;
5892 		fl6.flowi6_oif = 0;
5893 		strict = RT6_LOOKUP_F_HAS_SADDR;
5894 	}
5895 	fl6.flowlabel = params->flowinfo;
5896 	fl6.flowi6_scope = 0;
5897 	fl6.flowi6_flags = 0;
5898 	fl6.mp_hash = 0;
5899 
5900 	fl6.flowi6_proto = params->l4_protocol;
5901 	fl6.daddr = *dst;
5902 	fl6.saddr = *src;
5903 	fl6.fl6_sport = params->sport;
5904 	fl6.fl6_dport = params->dport;
5905 
5906 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5907 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5908 		struct fib6_table *tb;
5909 
5910 		tb = ipv6_stub->fib6_get_table(net, tbid);
5911 		if (unlikely(!tb))
5912 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5913 
5914 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5915 						   strict);
5916 	} else {
5917 		fl6.flowi6_mark = 0;
5918 		fl6.flowi6_secid = 0;
5919 		fl6.flowi6_tun_key.tun_id = 0;
5920 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5921 
5922 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5923 	}
5924 
5925 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5926 		     res.f6i == net->ipv6.fib6_null_entry))
5927 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5928 
5929 	switch (res.fib6_type) {
5930 	/* only unicast is forwarded */
5931 	case RTN_UNICAST:
5932 		break;
5933 	case RTN_BLACKHOLE:
5934 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5935 	case RTN_UNREACHABLE:
5936 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5937 	case RTN_PROHIBIT:
5938 		return BPF_FIB_LKUP_RET_PROHIBIT;
5939 	default:
5940 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5941 	}
5942 
5943 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5944 				    fl6.flowi6_oif != 0, NULL, strict);
5945 
5946 	if (check_mtu) {
5947 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5948 		if (params->tot_len > mtu) {
5949 			params->mtu_result = mtu; /* union with tot_len */
5950 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5951 		}
5952 	}
5953 
5954 	if (res.nh->fib_nh_lws)
5955 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5956 
5957 	if (res.nh->fib_nh_gw_family)
5958 		*dst = res.nh->fib_nh_gw6;
5959 
5960 	dev = res.nh->fib_nh_dev;
5961 	params->rt_metric = res.f6i->fib6_metric;
5962 	params->ifindex = dev->ifindex;
5963 
5964 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5965 	 * not needed here.
5966 	 */
5967 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5968 	if (!neigh)
5969 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5970 
5971 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5972 }
5973 #endif
5974 
5975 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5976 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5977 {
5978 	if (plen < sizeof(*params))
5979 		return -EINVAL;
5980 
5981 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5982 		return -EINVAL;
5983 
5984 	switch (params->family) {
5985 #if IS_ENABLED(CONFIG_INET)
5986 	case AF_INET:
5987 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5988 					   flags, true);
5989 #endif
5990 #if IS_ENABLED(CONFIG_IPV6)
5991 	case AF_INET6:
5992 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5993 					   flags, true);
5994 #endif
5995 	}
5996 	return -EAFNOSUPPORT;
5997 }
5998 
5999 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6000 	.func		= bpf_xdp_fib_lookup,
6001 	.gpl_only	= true,
6002 	.ret_type	= RET_INTEGER,
6003 	.arg1_type      = ARG_PTR_TO_CTX,
6004 	.arg2_type      = ARG_PTR_TO_MEM,
6005 	.arg3_type      = ARG_CONST_SIZE,
6006 	.arg4_type	= ARG_ANYTHING,
6007 };
6008 
6009 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6010 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6011 {
6012 	struct net *net = dev_net(skb->dev);
6013 	int rc = -EAFNOSUPPORT;
6014 	bool check_mtu = false;
6015 
6016 	if (plen < sizeof(*params))
6017 		return -EINVAL;
6018 
6019 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
6020 		return -EINVAL;
6021 
6022 	if (params->tot_len)
6023 		check_mtu = true;
6024 
6025 	switch (params->family) {
6026 #if IS_ENABLED(CONFIG_INET)
6027 	case AF_INET:
6028 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6029 		break;
6030 #endif
6031 #if IS_ENABLED(CONFIG_IPV6)
6032 	case AF_INET6:
6033 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6034 		break;
6035 #endif
6036 	}
6037 
6038 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6039 		struct net_device *dev;
6040 
6041 		/* When tot_len isn't provided by user, check skb
6042 		 * against MTU of FIB lookup resulting net_device
6043 		 */
6044 		dev = dev_get_by_index_rcu(net, params->ifindex);
6045 		if (!is_skb_forwardable(dev, skb))
6046 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6047 
6048 		params->mtu_result = dev->mtu; /* union with tot_len */
6049 	}
6050 
6051 	return rc;
6052 }
6053 
6054 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6055 	.func		= bpf_skb_fib_lookup,
6056 	.gpl_only	= true,
6057 	.ret_type	= RET_INTEGER,
6058 	.arg1_type      = ARG_PTR_TO_CTX,
6059 	.arg2_type      = ARG_PTR_TO_MEM,
6060 	.arg3_type      = ARG_CONST_SIZE,
6061 	.arg4_type	= ARG_ANYTHING,
6062 };
6063 
6064 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6065 					    u32 ifindex)
6066 {
6067 	struct net *netns = dev_net(dev_curr);
6068 
6069 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6070 	if (ifindex == 0)
6071 		return dev_curr;
6072 
6073 	return dev_get_by_index_rcu(netns, ifindex);
6074 }
6075 
6076 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6077 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6078 {
6079 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6080 	struct net_device *dev = skb->dev;
6081 	int skb_len, dev_len;
6082 	int mtu;
6083 
6084 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6085 		return -EINVAL;
6086 
6087 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6088 		return -EINVAL;
6089 
6090 	dev = __dev_via_ifindex(dev, ifindex);
6091 	if (unlikely(!dev))
6092 		return -ENODEV;
6093 
6094 	mtu = READ_ONCE(dev->mtu);
6095 
6096 	dev_len = mtu + dev->hard_header_len;
6097 
6098 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6099 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6100 
6101 	skb_len += len_diff; /* minus result pass check */
6102 	if (skb_len <= dev_len) {
6103 		ret = BPF_MTU_CHK_RET_SUCCESS;
6104 		goto out;
6105 	}
6106 	/* At this point, skb->len exceed MTU, but as it include length of all
6107 	 * segments, it can still be below MTU.  The SKB can possibly get
6108 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6109 	 * must choose if segs are to be MTU checked.
6110 	 */
6111 	if (skb_is_gso(skb)) {
6112 		ret = BPF_MTU_CHK_RET_SUCCESS;
6113 
6114 		if (flags & BPF_MTU_CHK_SEGS &&
6115 		    !skb_gso_validate_network_len(skb, mtu))
6116 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6117 	}
6118 out:
6119 	/* BPF verifier guarantees valid pointer */
6120 	*mtu_len = mtu;
6121 
6122 	return ret;
6123 }
6124 
6125 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6126 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6127 {
6128 	struct net_device *dev = xdp->rxq->dev;
6129 	int xdp_len = xdp->data_end - xdp->data;
6130 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6131 	int mtu, dev_len;
6132 
6133 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6134 	if (unlikely(flags))
6135 		return -EINVAL;
6136 
6137 	dev = __dev_via_ifindex(dev, ifindex);
6138 	if (unlikely(!dev))
6139 		return -ENODEV;
6140 
6141 	mtu = READ_ONCE(dev->mtu);
6142 
6143 	/* Add L2-header as dev MTU is L3 size */
6144 	dev_len = mtu + dev->hard_header_len;
6145 
6146 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6147 	if (*mtu_len)
6148 		xdp_len = *mtu_len + dev->hard_header_len;
6149 
6150 	xdp_len += len_diff; /* minus result pass check */
6151 	if (xdp_len > dev_len)
6152 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6153 
6154 	/* BPF verifier guarantees valid pointer */
6155 	*mtu_len = mtu;
6156 
6157 	return ret;
6158 }
6159 
6160 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6161 	.func		= bpf_skb_check_mtu,
6162 	.gpl_only	= true,
6163 	.ret_type	= RET_INTEGER,
6164 	.arg1_type      = ARG_PTR_TO_CTX,
6165 	.arg2_type      = ARG_ANYTHING,
6166 	.arg3_type      = ARG_PTR_TO_INT,
6167 	.arg4_type      = ARG_ANYTHING,
6168 	.arg5_type      = ARG_ANYTHING,
6169 };
6170 
6171 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6172 	.func		= bpf_xdp_check_mtu,
6173 	.gpl_only	= true,
6174 	.ret_type	= RET_INTEGER,
6175 	.arg1_type      = ARG_PTR_TO_CTX,
6176 	.arg2_type      = ARG_ANYTHING,
6177 	.arg3_type      = ARG_PTR_TO_INT,
6178 	.arg4_type      = ARG_ANYTHING,
6179 	.arg5_type      = ARG_ANYTHING,
6180 };
6181 
6182 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6183 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6184 {
6185 	int err;
6186 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6187 
6188 	if (!seg6_validate_srh(srh, len, false))
6189 		return -EINVAL;
6190 
6191 	switch (type) {
6192 	case BPF_LWT_ENCAP_SEG6_INLINE:
6193 		if (skb->protocol != htons(ETH_P_IPV6))
6194 			return -EBADMSG;
6195 
6196 		err = seg6_do_srh_inline(skb, srh);
6197 		break;
6198 	case BPF_LWT_ENCAP_SEG6:
6199 		skb_reset_inner_headers(skb);
6200 		skb->encapsulation = 1;
6201 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6202 		break;
6203 	default:
6204 		return -EINVAL;
6205 	}
6206 
6207 	bpf_compute_data_pointers(skb);
6208 	if (err)
6209 		return err;
6210 
6211 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6212 
6213 	return seg6_lookup_nexthop(skb, NULL, 0);
6214 }
6215 #endif /* CONFIG_IPV6_SEG6_BPF */
6216 
6217 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6218 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6219 			     bool ingress)
6220 {
6221 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6222 }
6223 #endif
6224 
6225 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6226 	   u32, len)
6227 {
6228 	switch (type) {
6229 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6230 	case BPF_LWT_ENCAP_SEG6:
6231 	case BPF_LWT_ENCAP_SEG6_INLINE:
6232 		return bpf_push_seg6_encap(skb, type, hdr, len);
6233 #endif
6234 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6235 	case BPF_LWT_ENCAP_IP:
6236 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6237 #endif
6238 	default:
6239 		return -EINVAL;
6240 	}
6241 }
6242 
6243 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6244 	   void *, hdr, u32, len)
6245 {
6246 	switch (type) {
6247 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6248 	case BPF_LWT_ENCAP_IP:
6249 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6250 #endif
6251 	default:
6252 		return -EINVAL;
6253 	}
6254 }
6255 
6256 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6257 	.func		= bpf_lwt_in_push_encap,
6258 	.gpl_only	= false,
6259 	.ret_type	= RET_INTEGER,
6260 	.arg1_type	= ARG_PTR_TO_CTX,
6261 	.arg2_type	= ARG_ANYTHING,
6262 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6263 	.arg4_type	= ARG_CONST_SIZE
6264 };
6265 
6266 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6267 	.func		= bpf_lwt_xmit_push_encap,
6268 	.gpl_only	= false,
6269 	.ret_type	= RET_INTEGER,
6270 	.arg1_type	= ARG_PTR_TO_CTX,
6271 	.arg2_type	= ARG_ANYTHING,
6272 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6273 	.arg4_type	= ARG_CONST_SIZE
6274 };
6275 
6276 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6277 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6278 	   const void *, from, u32, len)
6279 {
6280 	struct seg6_bpf_srh_state *srh_state =
6281 		this_cpu_ptr(&seg6_bpf_srh_states);
6282 	struct ipv6_sr_hdr *srh = srh_state->srh;
6283 	void *srh_tlvs, *srh_end, *ptr;
6284 	int srhoff = 0;
6285 
6286 	if (srh == NULL)
6287 		return -EINVAL;
6288 
6289 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6290 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6291 
6292 	ptr = skb->data + offset;
6293 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6294 		srh_state->valid = false;
6295 	else if (ptr < (void *)&srh->flags ||
6296 		 ptr + len > (void *)&srh->segments)
6297 		return -EFAULT;
6298 
6299 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6300 		return -EFAULT;
6301 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6302 		return -EINVAL;
6303 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6304 
6305 	memcpy(skb->data + offset, from, len);
6306 	return 0;
6307 }
6308 
6309 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6310 	.func		= bpf_lwt_seg6_store_bytes,
6311 	.gpl_only	= false,
6312 	.ret_type	= RET_INTEGER,
6313 	.arg1_type	= ARG_PTR_TO_CTX,
6314 	.arg2_type	= ARG_ANYTHING,
6315 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6316 	.arg4_type	= ARG_CONST_SIZE
6317 };
6318 
6319 static void bpf_update_srh_state(struct sk_buff *skb)
6320 {
6321 	struct seg6_bpf_srh_state *srh_state =
6322 		this_cpu_ptr(&seg6_bpf_srh_states);
6323 	int srhoff = 0;
6324 
6325 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6326 		srh_state->srh = NULL;
6327 	} else {
6328 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6329 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6330 		srh_state->valid = true;
6331 	}
6332 }
6333 
6334 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6335 	   u32, action, void *, param, u32, param_len)
6336 {
6337 	struct seg6_bpf_srh_state *srh_state =
6338 		this_cpu_ptr(&seg6_bpf_srh_states);
6339 	int hdroff = 0;
6340 	int err;
6341 
6342 	switch (action) {
6343 	case SEG6_LOCAL_ACTION_END_X:
6344 		if (!seg6_bpf_has_valid_srh(skb))
6345 			return -EBADMSG;
6346 		if (param_len != sizeof(struct in6_addr))
6347 			return -EINVAL;
6348 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6349 	case SEG6_LOCAL_ACTION_END_T:
6350 		if (!seg6_bpf_has_valid_srh(skb))
6351 			return -EBADMSG;
6352 		if (param_len != sizeof(int))
6353 			return -EINVAL;
6354 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6355 	case SEG6_LOCAL_ACTION_END_DT6:
6356 		if (!seg6_bpf_has_valid_srh(skb))
6357 			return -EBADMSG;
6358 		if (param_len != sizeof(int))
6359 			return -EINVAL;
6360 
6361 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6362 			return -EBADMSG;
6363 		if (!pskb_pull(skb, hdroff))
6364 			return -EBADMSG;
6365 
6366 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6367 		skb_reset_network_header(skb);
6368 		skb_reset_transport_header(skb);
6369 		skb->encapsulation = 0;
6370 
6371 		bpf_compute_data_pointers(skb);
6372 		bpf_update_srh_state(skb);
6373 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6374 	case SEG6_LOCAL_ACTION_END_B6:
6375 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6376 			return -EBADMSG;
6377 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6378 					  param, param_len);
6379 		if (!err)
6380 			bpf_update_srh_state(skb);
6381 
6382 		return err;
6383 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6384 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6385 			return -EBADMSG;
6386 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6387 					  param, param_len);
6388 		if (!err)
6389 			bpf_update_srh_state(skb);
6390 
6391 		return err;
6392 	default:
6393 		return -EINVAL;
6394 	}
6395 }
6396 
6397 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6398 	.func		= bpf_lwt_seg6_action,
6399 	.gpl_only	= false,
6400 	.ret_type	= RET_INTEGER,
6401 	.arg1_type	= ARG_PTR_TO_CTX,
6402 	.arg2_type	= ARG_ANYTHING,
6403 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6404 	.arg4_type	= ARG_CONST_SIZE
6405 };
6406 
6407 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6408 	   s32, len)
6409 {
6410 	struct seg6_bpf_srh_state *srh_state =
6411 		this_cpu_ptr(&seg6_bpf_srh_states);
6412 	struct ipv6_sr_hdr *srh = srh_state->srh;
6413 	void *srh_end, *srh_tlvs, *ptr;
6414 	struct ipv6hdr *hdr;
6415 	int srhoff = 0;
6416 	int ret;
6417 
6418 	if (unlikely(srh == NULL))
6419 		return -EINVAL;
6420 
6421 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6422 			((srh->first_segment + 1) << 4));
6423 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6424 			srh_state->hdrlen);
6425 	ptr = skb->data + offset;
6426 
6427 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6428 		return -EFAULT;
6429 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6430 		return -EFAULT;
6431 
6432 	if (len > 0) {
6433 		ret = skb_cow_head(skb, len);
6434 		if (unlikely(ret < 0))
6435 			return ret;
6436 
6437 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6438 	} else {
6439 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6440 	}
6441 
6442 	bpf_compute_data_pointers(skb);
6443 	if (unlikely(ret < 0))
6444 		return ret;
6445 
6446 	hdr = (struct ipv6hdr *)skb->data;
6447 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6448 
6449 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6450 		return -EINVAL;
6451 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6452 	srh_state->hdrlen += len;
6453 	srh_state->valid = false;
6454 	return 0;
6455 }
6456 
6457 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6458 	.func		= bpf_lwt_seg6_adjust_srh,
6459 	.gpl_only	= false,
6460 	.ret_type	= RET_INTEGER,
6461 	.arg1_type	= ARG_PTR_TO_CTX,
6462 	.arg2_type	= ARG_ANYTHING,
6463 	.arg3_type	= ARG_ANYTHING,
6464 };
6465 #endif /* CONFIG_IPV6_SEG6_BPF */
6466 
6467 #ifdef CONFIG_INET
6468 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6469 			      int dif, int sdif, u8 family, u8 proto)
6470 {
6471 	bool refcounted = false;
6472 	struct sock *sk = NULL;
6473 
6474 	if (family == AF_INET) {
6475 		__be32 src4 = tuple->ipv4.saddr;
6476 		__be32 dst4 = tuple->ipv4.daddr;
6477 
6478 		if (proto == IPPROTO_TCP)
6479 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
6480 					   src4, tuple->ipv4.sport,
6481 					   dst4, tuple->ipv4.dport,
6482 					   dif, sdif, &refcounted);
6483 		else
6484 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6485 					       dst4, tuple->ipv4.dport,
6486 					       dif, sdif, &udp_table, NULL);
6487 #if IS_ENABLED(CONFIG_IPV6)
6488 	} else {
6489 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6490 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6491 
6492 		if (proto == IPPROTO_TCP)
6493 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
6494 					    src6, tuple->ipv6.sport,
6495 					    dst6, ntohs(tuple->ipv6.dport),
6496 					    dif, sdif, &refcounted);
6497 		else if (likely(ipv6_bpf_stub))
6498 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6499 							    src6, tuple->ipv6.sport,
6500 							    dst6, tuple->ipv6.dport,
6501 							    dif, sdif,
6502 							    &udp_table, NULL);
6503 #endif
6504 	}
6505 
6506 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6507 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6508 		sk = NULL;
6509 	}
6510 	return sk;
6511 }
6512 
6513 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6514  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6515  */
6516 static struct sock *
6517 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6518 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6519 		 u64 flags)
6520 {
6521 	struct sock *sk = NULL;
6522 	struct net *net;
6523 	u8 family;
6524 	int sdif;
6525 
6526 	if (len == sizeof(tuple->ipv4))
6527 		family = AF_INET;
6528 	else if (len == sizeof(tuple->ipv6))
6529 		family = AF_INET6;
6530 	else
6531 		return NULL;
6532 
6533 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6534 		goto out;
6535 
6536 	if (family == AF_INET)
6537 		sdif = inet_sdif(skb);
6538 	else
6539 		sdif = inet6_sdif(skb);
6540 
6541 	if ((s32)netns_id < 0) {
6542 		net = caller_net;
6543 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6544 	} else {
6545 		net = get_net_ns_by_id(caller_net, netns_id);
6546 		if (unlikely(!net))
6547 			goto out;
6548 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6549 		put_net(net);
6550 	}
6551 
6552 out:
6553 	return sk;
6554 }
6555 
6556 static struct sock *
6557 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6558 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6559 		u64 flags)
6560 {
6561 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6562 					   ifindex, proto, netns_id, flags);
6563 
6564 	if (sk) {
6565 		struct sock *sk2 = sk_to_full_sk(sk);
6566 
6567 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6568 		 * sock refcnt is decremented to prevent a request_sock leak.
6569 		 */
6570 		if (!sk_fullsock(sk2))
6571 			sk2 = NULL;
6572 		if (sk2 != sk) {
6573 			sock_gen_put(sk);
6574 			/* Ensure there is no need to bump sk2 refcnt */
6575 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6576 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6577 				return NULL;
6578 			}
6579 			sk = sk2;
6580 		}
6581 	}
6582 
6583 	return sk;
6584 }
6585 
6586 static struct sock *
6587 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6588 	       u8 proto, u64 netns_id, u64 flags)
6589 {
6590 	struct net *caller_net;
6591 	int ifindex;
6592 
6593 	if (skb->dev) {
6594 		caller_net = dev_net(skb->dev);
6595 		ifindex = skb->dev->ifindex;
6596 	} else {
6597 		caller_net = sock_net(skb->sk);
6598 		ifindex = 0;
6599 	}
6600 
6601 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6602 				netns_id, flags);
6603 }
6604 
6605 static struct sock *
6606 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6607 	      u8 proto, u64 netns_id, u64 flags)
6608 {
6609 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6610 					 flags);
6611 
6612 	if (sk) {
6613 		struct sock *sk2 = sk_to_full_sk(sk);
6614 
6615 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6616 		 * sock refcnt is decremented to prevent a request_sock leak.
6617 		 */
6618 		if (!sk_fullsock(sk2))
6619 			sk2 = NULL;
6620 		if (sk2 != sk) {
6621 			sock_gen_put(sk);
6622 			/* Ensure there is no need to bump sk2 refcnt */
6623 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6624 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6625 				return NULL;
6626 			}
6627 			sk = sk2;
6628 		}
6629 	}
6630 
6631 	return sk;
6632 }
6633 
6634 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6635 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6636 {
6637 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6638 					     netns_id, flags);
6639 }
6640 
6641 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6642 	.func		= bpf_skc_lookup_tcp,
6643 	.gpl_only	= false,
6644 	.pkt_access	= true,
6645 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6646 	.arg1_type	= ARG_PTR_TO_CTX,
6647 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6648 	.arg3_type	= ARG_CONST_SIZE,
6649 	.arg4_type	= ARG_ANYTHING,
6650 	.arg5_type	= ARG_ANYTHING,
6651 };
6652 
6653 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6654 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6655 {
6656 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6657 					    netns_id, flags);
6658 }
6659 
6660 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6661 	.func		= bpf_sk_lookup_tcp,
6662 	.gpl_only	= false,
6663 	.pkt_access	= true,
6664 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6665 	.arg1_type	= ARG_PTR_TO_CTX,
6666 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6667 	.arg3_type	= ARG_CONST_SIZE,
6668 	.arg4_type	= ARG_ANYTHING,
6669 	.arg5_type	= ARG_ANYTHING,
6670 };
6671 
6672 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6673 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6674 {
6675 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6676 					    netns_id, flags);
6677 }
6678 
6679 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6680 	.func		= bpf_sk_lookup_udp,
6681 	.gpl_only	= false,
6682 	.pkt_access	= true,
6683 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6684 	.arg1_type	= ARG_PTR_TO_CTX,
6685 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6686 	.arg3_type	= ARG_CONST_SIZE,
6687 	.arg4_type	= ARG_ANYTHING,
6688 	.arg5_type	= ARG_ANYTHING,
6689 };
6690 
6691 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6692 {
6693 	if (sk && sk_is_refcounted(sk))
6694 		sock_gen_put(sk);
6695 	return 0;
6696 }
6697 
6698 static const struct bpf_func_proto bpf_sk_release_proto = {
6699 	.func		= bpf_sk_release,
6700 	.gpl_only	= false,
6701 	.ret_type	= RET_INTEGER,
6702 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6703 };
6704 
6705 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6706 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6707 {
6708 	struct net *caller_net = dev_net(ctx->rxq->dev);
6709 	int ifindex = ctx->rxq->dev->ifindex;
6710 
6711 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6712 					      ifindex, IPPROTO_UDP, netns_id,
6713 					      flags);
6714 }
6715 
6716 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6717 	.func           = bpf_xdp_sk_lookup_udp,
6718 	.gpl_only       = false,
6719 	.pkt_access     = true,
6720 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6721 	.arg1_type      = ARG_PTR_TO_CTX,
6722 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6723 	.arg3_type      = ARG_CONST_SIZE,
6724 	.arg4_type      = ARG_ANYTHING,
6725 	.arg5_type      = ARG_ANYTHING,
6726 };
6727 
6728 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6729 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6730 {
6731 	struct net *caller_net = dev_net(ctx->rxq->dev);
6732 	int ifindex = ctx->rxq->dev->ifindex;
6733 
6734 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6735 					       ifindex, IPPROTO_TCP, netns_id,
6736 					       flags);
6737 }
6738 
6739 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6740 	.func           = bpf_xdp_skc_lookup_tcp,
6741 	.gpl_only       = false,
6742 	.pkt_access     = true,
6743 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6744 	.arg1_type      = ARG_PTR_TO_CTX,
6745 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6746 	.arg3_type      = ARG_CONST_SIZE,
6747 	.arg4_type      = ARG_ANYTHING,
6748 	.arg5_type      = ARG_ANYTHING,
6749 };
6750 
6751 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6752 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6753 {
6754 	struct net *caller_net = dev_net(ctx->rxq->dev);
6755 	int ifindex = ctx->rxq->dev->ifindex;
6756 
6757 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6758 					      ifindex, IPPROTO_TCP, netns_id,
6759 					      flags);
6760 }
6761 
6762 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6763 	.func           = bpf_xdp_sk_lookup_tcp,
6764 	.gpl_only       = false,
6765 	.pkt_access     = true,
6766 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6767 	.arg1_type      = ARG_PTR_TO_CTX,
6768 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6769 	.arg3_type      = ARG_CONST_SIZE,
6770 	.arg4_type      = ARG_ANYTHING,
6771 	.arg5_type      = ARG_ANYTHING,
6772 };
6773 
6774 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6775 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6776 {
6777 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6778 					       sock_net(ctx->sk), 0,
6779 					       IPPROTO_TCP, netns_id, flags);
6780 }
6781 
6782 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6783 	.func		= bpf_sock_addr_skc_lookup_tcp,
6784 	.gpl_only	= false,
6785 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6786 	.arg1_type	= ARG_PTR_TO_CTX,
6787 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6788 	.arg3_type	= ARG_CONST_SIZE,
6789 	.arg4_type	= ARG_ANYTHING,
6790 	.arg5_type	= ARG_ANYTHING,
6791 };
6792 
6793 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6794 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6795 {
6796 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6797 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6798 					      netns_id, flags);
6799 }
6800 
6801 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6802 	.func		= bpf_sock_addr_sk_lookup_tcp,
6803 	.gpl_only	= false,
6804 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6805 	.arg1_type	= ARG_PTR_TO_CTX,
6806 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6807 	.arg3_type	= ARG_CONST_SIZE,
6808 	.arg4_type	= ARG_ANYTHING,
6809 	.arg5_type	= ARG_ANYTHING,
6810 };
6811 
6812 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6813 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6814 {
6815 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6816 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6817 					      netns_id, flags);
6818 }
6819 
6820 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6821 	.func		= bpf_sock_addr_sk_lookup_udp,
6822 	.gpl_only	= false,
6823 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6824 	.arg1_type	= ARG_PTR_TO_CTX,
6825 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6826 	.arg3_type	= ARG_CONST_SIZE,
6827 	.arg4_type	= ARG_ANYTHING,
6828 	.arg5_type	= ARG_ANYTHING,
6829 };
6830 
6831 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6832 				  struct bpf_insn_access_aux *info)
6833 {
6834 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6835 					  icsk_retransmits))
6836 		return false;
6837 
6838 	if (off % size != 0)
6839 		return false;
6840 
6841 	switch (off) {
6842 	case offsetof(struct bpf_tcp_sock, bytes_received):
6843 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6844 		return size == sizeof(__u64);
6845 	default:
6846 		return size == sizeof(__u32);
6847 	}
6848 }
6849 
6850 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6851 				    const struct bpf_insn *si,
6852 				    struct bpf_insn *insn_buf,
6853 				    struct bpf_prog *prog, u32 *target_size)
6854 {
6855 	struct bpf_insn *insn = insn_buf;
6856 
6857 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6858 	do {								\
6859 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6860 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6861 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6862 				      si->dst_reg, si->src_reg,		\
6863 				      offsetof(struct tcp_sock, FIELD)); \
6864 	} while (0)
6865 
6866 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6867 	do {								\
6868 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6869 					  FIELD) >			\
6870 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6871 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6872 					struct inet_connection_sock,	\
6873 					FIELD),				\
6874 				      si->dst_reg, si->src_reg,		\
6875 				      offsetof(				\
6876 					struct inet_connection_sock,	\
6877 					FIELD));			\
6878 	} while (0)
6879 
6880 	if (insn > insn_buf)
6881 		return insn - insn_buf;
6882 
6883 	switch (si->off) {
6884 	case offsetof(struct bpf_tcp_sock, rtt_min):
6885 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6886 			     sizeof(struct minmax));
6887 		BUILD_BUG_ON(sizeof(struct minmax) <
6888 			     sizeof(struct minmax_sample));
6889 
6890 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6891 				      offsetof(struct tcp_sock, rtt_min) +
6892 				      offsetof(struct minmax_sample, v));
6893 		break;
6894 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6895 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6896 		break;
6897 	case offsetof(struct bpf_tcp_sock, srtt_us):
6898 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6899 		break;
6900 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6901 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6902 		break;
6903 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6904 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6905 		break;
6906 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6907 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6908 		break;
6909 	case offsetof(struct bpf_tcp_sock, snd_una):
6910 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6911 		break;
6912 	case offsetof(struct bpf_tcp_sock, mss_cache):
6913 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6914 		break;
6915 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6916 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6917 		break;
6918 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6919 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6920 		break;
6921 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6922 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6923 		break;
6924 	case offsetof(struct bpf_tcp_sock, packets_out):
6925 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6926 		break;
6927 	case offsetof(struct bpf_tcp_sock, retrans_out):
6928 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6929 		break;
6930 	case offsetof(struct bpf_tcp_sock, total_retrans):
6931 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6932 		break;
6933 	case offsetof(struct bpf_tcp_sock, segs_in):
6934 		BPF_TCP_SOCK_GET_COMMON(segs_in);
6935 		break;
6936 	case offsetof(struct bpf_tcp_sock, data_segs_in):
6937 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6938 		break;
6939 	case offsetof(struct bpf_tcp_sock, segs_out):
6940 		BPF_TCP_SOCK_GET_COMMON(segs_out);
6941 		break;
6942 	case offsetof(struct bpf_tcp_sock, data_segs_out):
6943 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6944 		break;
6945 	case offsetof(struct bpf_tcp_sock, lost_out):
6946 		BPF_TCP_SOCK_GET_COMMON(lost_out);
6947 		break;
6948 	case offsetof(struct bpf_tcp_sock, sacked_out):
6949 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
6950 		break;
6951 	case offsetof(struct bpf_tcp_sock, bytes_received):
6952 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
6953 		break;
6954 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6955 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6956 		break;
6957 	case offsetof(struct bpf_tcp_sock, dsack_dups):
6958 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6959 		break;
6960 	case offsetof(struct bpf_tcp_sock, delivered):
6961 		BPF_TCP_SOCK_GET_COMMON(delivered);
6962 		break;
6963 	case offsetof(struct bpf_tcp_sock, delivered_ce):
6964 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6965 		break;
6966 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6967 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6968 		break;
6969 	}
6970 
6971 	return insn - insn_buf;
6972 }
6973 
6974 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6975 {
6976 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6977 		return (unsigned long)sk;
6978 
6979 	return (unsigned long)NULL;
6980 }
6981 
6982 const struct bpf_func_proto bpf_tcp_sock_proto = {
6983 	.func		= bpf_tcp_sock,
6984 	.gpl_only	= false,
6985 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
6986 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6987 };
6988 
6989 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6990 {
6991 	sk = sk_to_full_sk(sk);
6992 
6993 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6994 		return (unsigned long)sk;
6995 
6996 	return (unsigned long)NULL;
6997 }
6998 
6999 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7000 	.func		= bpf_get_listener_sock,
7001 	.gpl_only	= false,
7002 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7003 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7004 };
7005 
7006 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7007 {
7008 	unsigned int iphdr_len;
7009 
7010 	switch (skb_protocol(skb, true)) {
7011 	case cpu_to_be16(ETH_P_IP):
7012 		iphdr_len = sizeof(struct iphdr);
7013 		break;
7014 	case cpu_to_be16(ETH_P_IPV6):
7015 		iphdr_len = sizeof(struct ipv6hdr);
7016 		break;
7017 	default:
7018 		return 0;
7019 	}
7020 
7021 	if (skb_headlen(skb) < iphdr_len)
7022 		return 0;
7023 
7024 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7025 		return 0;
7026 
7027 	return INET_ECN_set_ce(skb);
7028 }
7029 
7030 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7031 				  struct bpf_insn_access_aux *info)
7032 {
7033 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7034 		return false;
7035 
7036 	if (off % size != 0)
7037 		return false;
7038 
7039 	switch (off) {
7040 	default:
7041 		return size == sizeof(__u32);
7042 	}
7043 }
7044 
7045 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7046 				    const struct bpf_insn *si,
7047 				    struct bpf_insn *insn_buf,
7048 				    struct bpf_prog *prog, u32 *target_size)
7049 {
7050 	struct bpf_insn *insn = insn_buf;
7051 
7052 #define BPF_XDP_SOCK_GET(FIELD)						\
7053 	do {								\
7054 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7055 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7056 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7057 				      si->dst_reg, si->src_reg,		\
7058 				      offsetof(struct xdp_sock, FIELD)); \
7059 	} while (0)
7060 
7061 	switch (si->off) {
7062 	case offsetof(struct bpf_xdp_sock, queue_id):
7063 		BPF_XDP_SOCK_GET(queue_id);
7064 		break;
7065 	}
7066 
7067 	return insn - insn_buf;
7068 }
7069 
7070 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7071 	.func           = bpf_skb_ecn_set_ce,
7072 	.gpl_only       = false,
7073 	.ret_type       = RET_INTEGER,
7074 	.arg1_type      = ARG_PTR_TO_CTX,
7075 };
7076 
7077 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7078 	   struct tcphdr *, th, u32, th_len)
7079 {
7080 #ifdef CONFIG_SYN_COOKIES
7081 	u32 cookie;
7082 	int ret;
7083 
7084 	if (unlikely(!sk || th_len < sizeof(*th)))
7085 		return -EINVAL;
7086 
7087 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7088 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7089 		return -EINVAL;
7090 
7091 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7092 		return -EINVAL;
7093 
7094 	if (!th->ack || th->rst || th->syn)
7095 		return -ENOENT;
7096 
7097 	if (unlikely(iph_len < sizeof(struct iphdr)))
7098 		return -EINVAL;
7099 
7100 	if (tcp_synq_no_recent_overflow(sk))
7101 		return -ENOENT;
7102 
7103 	cookie = ntohl(th->ack_seq) - 1;
7104 
7105 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7106 	 * same offset so we can cast to the shorter header (struct iphdr).
7107 	 */
7108 	switch (((struct iphdr *)iph)->version) {
7109 	case 4:
7110 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7111 			return -EINVAL;
7112 
7113 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7114 		break;
7115 
7116 #if IS_BUILTIN(CONFIG_IPV6)
7117 	case 6:
7118 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7119 			return -EINVAL;
7120 
7121 		if (sk->sk_family != AF_INET6)
7122 			return -EINVAL;
7123 
7124 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7125 		break;
7126 #endif /* CONFIG_IPV6 */
7127 
7128 	default:
7129 		return -EPROTONOSUPPORT;
7130 	}
7131 
7132 	if (ret > 0)
7133 		return 0;
7134 
7135 	return -ENOENT;
7136 #else
7137 	return -ENOTSUPP;
7138 #endif
7139 }
7140 
7141 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7142 	.func		= bpf_tcp_check_syncookie,
7143 	.gpl_only	= true,
7144 	.pkt_access	= true,
7145 	.ret_type	= RET_INTEGER,
7146 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7147 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7148 	.arg3_type	= ARG_CONST_SIZE,
7149 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7150 	.arg5_type	= ARG_CONST_SIZE,
7151 };
7152 
7153 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7154 	   struct tcphdr *, th, u32, th_len)
7155 {
7156 #ifdef CONFIG_SYN_COOKIES
7157 	u32 cookie;
7158 	u16 mss;
7159 
7160 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7161 		return -EINVAL;
7162 
7163 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7164 		return -EINVAL;
7165 
7166 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7167 		return -ENOENT;
7168 
7169 	if (!th->syn || th->ack || th->fin || th->rst)
7170 		return -EINVAL;
7171 
7172 	if (unlikely(iph_len < sizeof(struct iphdr)))
7173 		return -EINVAL;
7174 
7175 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7176 	 * same offset so we can cast to the shorter header (struct iphdr).
7177 	 */
7178 	switch (((struct iphdr *)iph)->version) {
7179 	case 4:
7180 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7181 			return -EINVAL;
7182 
7183 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7184 		break;
7185 
7186 #if IS_BUILTIN(CONFIG_IPV6)
7187 	case 6:
7188 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7189 			return -EINVAL;
7190 
7191 		if (sk->sk_family != AF_INET6)
7192 			return -EINVAL;
7193 
7194 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7195 		break;
7196 #endif /* CONFIG_IPV6 */
7197 
7198 	default:
7199 		return -EPROTONOSUPPORT;
7200 	}
7201 	if (mss == 0)
7202 		return -ENOENT;
7203 
7204 	return cookie | ((u64)mss << 32);
7205 #else
7206 	return -EOPNOTSUPP;
7207 #endif /* CONFIG_SYN_COOKIES */
7208 }
7209 
7210 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7211 	.func		= bpf_tcp_gen_syncookie,
7212 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7213 	.pkt_access	= true,
7214 	.ret_type	= RET_INTEGER,
7215 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7216 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7217 	.arg3_type	= ARG_CONST_SIZE,
7218 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7219 	.arg5_type	= ARG_CONST_SIZE,
7220 };
7221 
7222 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7223 {
7224 	if (!sk || flags != 0)
7225 		return -EINVAL;
7226 	if (!skb_at_tc_ingress(skb))
7227 		return -EOPNOTSUPP;
7228 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7229 		return -ENETUNREACH;
7230 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7231 		return -ESOCKTNOSUPPORT;
7232 	if (sk_is_refcounted(sk) &&
7233 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7234 		return -ENOENT;
7235 
7236 	skb_orphan(skb);
7237 	skb->sk = sk;
7238 	skb->destructor = sock_pfree;
7239 
7240 	return 0;
7241 }
7242 
7243 static const struct bpf_func_proto bpf_sk_assign_proto = {
7244 	.func		= bpf_sk_assign,
7245 	.gpl_only	= false,
7246 	.ret_type	= RET_INTEGER,
7247 	.arg1_type      = ARG_PTR_TO_CTX,
7248 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7249 	.arg3_type	= ARG_ANYTHING,
7250 };
7251 
7252 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7253 				    u8 search_kind, const u8 *magic,
7254 				    u8 magic_len, bool *eol)
7255 {
7256 	u8 kind, kind_len;
7257 
7258 	*eol = false;
7259 
7260 	while (op < opend) {
7261 		kind = op[0];
7262 
7263 		if (kind == TCPOPT_EOL) {
7264 			*eol = true;
7265 			return ERR_PTR(-ENOMSG);
7266 		} else if (kind == TCPOPT_NOP) {
7267 			op++;
7268 			continue;
7269 		}
7270 
7271 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7272 			/* Something is wrong in the received header.
7273 			 * Follow the TCP stack's tcp_parse_options()
7274 			 * and just bail here.
7275 			 */
7276 			return ERR_PTR(-EFAULT);
7277 
7278 		kind_len = op[1];
7279 		if (search_kind == kind) {
7280 			if (!magic_len)
7281 				return op;
7282 
7283 			if (magic_len > kind_len - 2)
7284 				return ERR_PTR(-ENOMSG);
7285 
7286 			if (!memcmp(&op[2], magic, magic_len))
7287 				return op;
7288 		}
7289 
7290 		op += kind_len;
7291 	}
7292 
7293 	return ERR_PTR(-ENOMSG);
7294 }
7295 
7296 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7297 	   void *, search_res, u32, len, u64, flags)
7298 {
7299 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7300 	const u8 *op, *opend, *magic, *search = search_res;
7301 	u8 search_kind, search_len, copy_len, magic_len;
7302 	int ret;
7303 
7304 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7305 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7306 	 * and this helper disallow loading them also.
7307 	 */
7308 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7309 		return -EINVAL;
7310 
7311 	search_kind = search[0];
7312 	search_len = search[1];
7313 
7314 	if (search_len > len || search_kind == TCPOPT_NOP ||
7315 	    search_kind == TCPOPT_EOL)
7316 		return -EINVAL;
7317 
7318 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7319 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7320 		if (search_len != 4 && search_len != 6)
7321 			return -EINVAL;
7322 		magic = &search[2];
7323 		magic_len = search_len - 2;
7324 	} else {
7325 		if (search_len)
7326 			return -EINVAL;
7327 		magic = NULL;
7328 		magic_len = 0;
7329 	}
7330 
7331 	if (load_syn) {
7332 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7333 		if (ret < 0)
7334 			return ret;
7335 
7336 		opend = op + ret;
7337 		op += sizeof(struct tcphdr);
7338 	} else {
7339 		if (!bpf_sock->skb ||
7340 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7341 			/* This bpf_sock->op cannot call this helper */
7342 			return -EPERM;
7343 
7344 		opend = bpf_sock->skb_data_end;
7345 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7346 	}
7347 
7348 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7349 				&eol);
7350 	if (IS_ERR(op))
7351 		return PTR_ERR(op);
7352 
7353 	copy_len = op[1];
7354 	ret = copy_len;
7355 	if (copy_len > len) {
7356 		ret = -ENOSPC;
7357 		copy_len = len;
7358 	}
7359 
7360 	memcpy(search_res, op, copy_len);
7361 	return ret;
7362 }
7363 
7364 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7365 	.func		= bpf_sock_ops_load_hdr_opt,
7366 	.gpl_only	= false,
7367 	.ret_type	= RET_INTEGER,
7368 	.arg1_type	= ARG_PTR_TO_CTX,
7369 	.arg2_type	= ARG_PTR_TO_MEM,
7370 	.arg3_type	= ARG_CONST_SIZE,
7371 	.arg4_type	= ARG_ANYTHING,
7372 };
7373 
7374 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7375 	   const void *, from, u32, len, u64, flags)
7376 {
7377 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7378 	const u8 *op, *new_op, *magic = NULL;
7379 	struct sk_buff *skb;
7380 	bool eol;
7381 
7382 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7383 		return -EPERM;
7384 
7385 	if (len < 2 || flags)
7386 		return -EINVAL;
7387 
7388 	new_op = from;
7389 	new_kind = new_op[0];
7390 	new_kind_len = new_op[1];
7391 
7392 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7393 	    new_kind == TCPOPT_EOL)
7394 		return -EINVAL;
7395 
7396 	if (new_kind_len > bpf_sock->remaining_opt_len)
7397 		return -ENOSPC;
7398 
7399 	/* 253 is another experimental kind */
7400 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7401 		if (new_kind_len < 4)
7402 			return -EINVAL;
7403 		/* Match for the 2 byte magic also.
7404 		 * RFC 6994: the magic could be 2 or 4 bytes.
7405 		 * Hence, matching by 2 byte only is on the
7406 		 * conservative side but it is the right
7407 		 * thing to do for the 'search-for-duplication'
7408 		 * purpose.
7409 		 */
7410 		magic = &new_op[2];
7411 		magic_len = 2;
7412 	}
7413 
7414 	/* Check for duplication */
7415 	skb = bpf_sock->skb;
7416 	op = skb->data + sizeof(struct tcphdr);
7417 	opend = bpf_sock->skb_data_end;
7418 
7419 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7420 				&eol);
7421 	if (!IS_ERR(op))
7422 		return -EEXIST;
7423 
7424 	if (PTR_ERR(op) != -ENOMSG)
7425 		return PTR_ERR(op);
7426 
7427 	if (eol)
7428 		/* The option has been ended.  Treat it as no more
7429 		 * header option can be written.
7430 		 */
7431 		return -ENOSPC;
7432 
7433 	/* No duplication found.  Store the header option. */
7434 	memcpy(opend, from, new_kind_len);
7435 
7436 	bpf_sock->remaining_opt_len -= new_kind_len;
7437 	bpf_sock->skb_data_end += new_kind_len;
7438 
7439 	return 0;
7440 }
7441 
7442 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7443 	.func		= bpf_sock_ops_store_hdr_opt,
7444 	.gpl_only	= false,
7445 	.ret_type	= RET_INTEGER,
7446 	.arg1_type	= ARG_PTR_TO_CTX,
7447 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7448 	.arg3_type	= ARG_CONST_SIZE,
7449 	.arg4_type	= ARG_ANYTHING,
7450 };
7451 
7452 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7453 	   u32, len, u64, flags)
7454 {
7455 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7456 		return -EPERM;
7457 
7458 	if (flags || len < 2)
7459 		return -EINVAL;
7460 
7461 	if (len > bpf_sock->remaining_opt_len)
7462 		return -ENOSPC;
7463 
7464 	bpf_sock->remaining_opt_len -= len;
7465 
7466 	return 0;
7467 }
7468 
7469 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7470 	.func		= bpf_sock_ops_reserve_hdr_opt,
7471 	.gpl_only	= false,
7472 	.ret_type	= RET_INTEGER,
7473 	.arg1_type	= ARG_PTR_TO_CTX,
7474 	.arg2_type	= ARG_ANYTHING,
7475 	.arg3_type	= ARG_ANYTHING,
7476 };
7477 
7478 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7479 	   u64, tstamp, u32, tstamp_type)
7480 {
7481 	/* skb_clear_delivery_time() is done for inet protocol */
7482 	if (skb->protocol != htons(ETH_P_IP) &&
7483 	    skb->protocol != htons(ETH_P_IPV6))
7484 		return -EOPNOTSUPP;
7485 
7486 	switch (tstamp_type) {
7487 	case BPF_SKB_TSTAMP_DELIVERY_MONO:
7488 		if (!tstamp)
7489 			return -EINVAL;
7490 		skb->tstamp = tstamp;
7491 		skb->mono_delivery_time = 1;
7492 		break;
7493 	case BPF_SKB_TSTAMP_UNSPEC:
7494 		if (tstamp)
7495 			return -EINVAL;
7496 		skb->tstamp = 0;
7497 		skb->mono_delivery_time = 0;
7498 		break;
7499 	default:
7500 		return -EINVAL;
7501 	}
7502 
7503 	return 0;
7504 }
7505 
7506 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7507 	.func           = bpf_skb_set_tstamp,
7508 	.gpl_only       = false,
7509 	.ret_type       = RET_INTEGER,
7510 	.arg1_type      = ARG_PTR_TO_CTX,
7511 	.arg2_type      = ARG_ANYTHING,
7512 	.arg3_type      = ARG_ANYTHING,
7513 };
7514 
7515 #ifdef CONFIG_SYN_COOKIES
7516 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7517 	   struct tcphdr *, th, u32, th_len)
7518 {
7519 	u32 cookie;
7520 	u16 mss;
7521 
7522 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7523 		return -EINVAL;
7524 
7525 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7526 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7527 
7528 	return cookie | ((u64)mss << 32);
7529 }
7530 
7531 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7532 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7533 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7534 	.pkt_access	= true,
7535 	.ret_type	= RET_INTEGER,
7536 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7537 	.arg1_size	= sizeof(struct iphdr),
7538 	.arg2_type	= ARG_PTR_TO_MEM,
7539 	.arg3_type	= ARG_CONST_SIZE,
7540 };
7541 
7542 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7543 	   struct tcphdr *, th, u32, th_len)
7544 {
7545 #if IS_BUILTIN(CONFIG_IPV6)
7546 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7547 		sizeof(struct ipv6hdr);
7548 	u32 cookie;
7549 	u16 mss;
7550 
7551 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7552 		return -EINVAL;
7553 
7554 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7555 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7556 
7557 	return cookie | ((u64)mss << 32);
7558 #else
7559 	return -EPROTONOSUPPORT;
7560 #endif
7561 }
7562 
7563 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7564 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7565 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7566 	.pkt_access	= true,
7567 	.ret_type	= RET_INTEGER,
7568 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7569 	.arg1_size	= sizeof(struct ipv6hdr),
7570 	.arg2_type	= ARG_PTR_TO_MEM,
7571 	.arg3_type	= ARG_CONST_SIZE,
7572 };
7573 
7574 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7575 	   struct tcphdr *, th)
7576 {
7577 	u32 cookie = ntohl(th->ack_seq) - 1;
7578 
7579 	if (__cookie_v4_check(iph, th, cookie) > 0)
7580 		return 0;
7581 
7582 	return -EACCES;
7583 }
7584 
7585 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7586 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7587 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7588 	.pkt_access	= true,
7589 	.ret_type	= RET_INTEGER,
7590 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7591 	.arg1_size	= sizeof(struct iphdr),
7592 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7593 	.arg2_size	= sizeof(struct tcphdr),
7594 };
7595 
7596 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7597 	   struct tcphdr *, th)
7598 {
7599 #if IS_BUILTIN(CONFIG_IPV6)
7600 	u32 cookie = ntohl(th->ack_seq) - 1;
7601 
7602 	if (__cookie_v6_check(iph, th, cookie) > 0)
7603 		return 0;
7604 
7605 	return -EACCES;
7606 #else
7607 	return -EPROTONOSUPPORT;
7608 #endif
7609 }
7610 
7611 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7612 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7613 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7614 	.pkt_access	= true,
7615 	.ret_type	= RET_INTEGER,
7616 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7617 	.arg1_size	= sizeof(struct ipv6hdr),
7618 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7619 	.arg2_size	= sizeof(struct tcphdr),
7620 };
7621 #endif /* CONFIG_SYN_COOKIES */
7622 
7623 #endif /* CONFIG_INET */
7624 
7625 bool bpf_helper_changes_pkt_data(void *func)
7626 {
7627 	if (func == bpf_skb_vlan_push ||
7628 	    func == bpf_skb_vlan_pop ||
7629 	    func == bpf_skb_store_bytes ||
7630 	    func == bpf_skb_change_proto ||
7631 	    func == bpf_skb_change_head ||
7632 	    func == sk_skb_change_head ||
7633 	    func == bpf_skb_change_tail ||
7634 	    func == sk_skb_change_tail ||
7635 	    func == bpf_skb_adjust_room ||
7636 	    func == sk_skb_adjust_room ||
7637 	    func == bpf_skb_pull_data ||
7638 	    func == sk_skb_pull_data ||
7639 	    func == bpf_clone_redirect ||
7640 	    func == bpf_l3_csum_replace ||
7641 	    func == bpf_l4_csum_replace ||
7642 	    func == bpf_xdp_adjust_head ||
7643 	    func == bpf_xdp_adjust_meta ||
7644 	    func == bpf_msg_pull_data ||
7645 	    func == bpf_msg_push_data ||
7646 	    func == bpf_msg_pop_data ||
7647 	    func == bpf_xdp_adjust_tail ||
7648 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7649 	    func == bpf_lwt_seg6_store_bytes ||
7650 	    func == bpf_lwt_seg6_adjust_srh ||
7651 	    func == bpf_lwt_seg6_action ||
7652 #endif
7653 #ifdef CONFIG_INET
7654 	    func == bpf_sock_ops_store_hdr_opt ||
7655 #endif
7656 	    func == bpf_lwt_in_push_encap ||
7657 	    func == bpf_lwt_xmit_push_encap)
7658 		return true;
7659 
7660 	return false;
7661 }
7662 
7663 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7664 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7665 
7666 static const struct bpf_func_proto *
7667 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7668 {
7669 	switch (func_id) {
7670 	/* inet and inet6 sockets are created in a process
7671 	 * context so there is always a valid uid/gid
7672 	 */
7673 	case BPF_FUNC_get_current_uid_gid:
7674 		return &bpf_get_current_uid_gid_proto;
7675 	case BPF_FUNC_get_local_storage:
7676 		return &bpf_get_local_storage_proto;
7677 	case BPF_FUNC_get_socket_cookie:
7678 		return &bpf_get_socket_cookie_sock_proto;
7679 	case BPF_FUNC_get_netns_cookie:
7680 		return &bpf_get_netns_cookie_sock_proto;
7681 	case BPF_FUNC_perf_event_output:
7682 		return &bpf_event_output_data_proto;
7683 	case BPF_FUNC_get_current_pid_tgid:
7684 		return &bpf_get_current_pid_tgid_proto;
7685 	case BPF_FUNC_get_current_comm:
7686 		return &bpf_get_current_comm_proto;
7687 #ifdef CONFIG_CGROUPS
7688 	case BPF_FUNC_get_current_cgroup_id:
7689 		return &bpf_get_current_cgroup_id_proto;
7690 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7691 		return &bpf_get_current_ancestor_cgroup_id_proto;
7692 #endif
7693 #ifdef CONFIG_CGROUP_NET_CLASSID
7694 	case BPF_FUNC_get_cgroup_classid:
7695 		return &bpf_get_cgroup_classid_curr_proto;
7696 #endif
7697 	case BPF_FUNC_sk_storage_get:
7698 		return &bpf_sk_storage_get_cg_sock_proto;
7699 	case BPF_FUNC_ktime_get_coarse_ns:
7700 		return &bpf_ktime_get_coarse_ns_proto;
7701 	default:
7702 		return bpf_base_func_proto(func_id);
7703 	}
7704 }
7705 
7706 static const struct bpf_func_proto *
7707 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7708 {
7709 	switch (func_id) {
7710 	/* inet and inet6 sockets are created in a process
7711 	 * context so there is always a valid uid/gid
7712 	 */
7713 	case BPF_FUNC_get_current_uid_gid:
7714 		return &bpf_get_current_uid_gid_proto;
7715 	case BPF_FUNC_bind:
7716 		switch (prog->expected_attach_type) {
7717 		case BPF_CGROUP_INET4_CONNECT:
7718 		case BPF_CGROUP_INET6_CONNECT:
7719 			return &bpf_bind_proto;
7720 		default:
7721 			return NULL;
7722 		}
7723 	case BPF_FUNC_get_socket_cookie:
7724 		return &bpf_get_socket_cookie_sock_addr_proto;
7725 	case BPF_FUNC_get_netns_cookie:
7726 		return &bpf_get_netns_cookie_sock_addr_proto;
7727 	case BPF_FUNC_get_local_storage:
7728 		return &bpf_get_local_storage_proto;
7729 	case BPF_FUNC_perf_event_output:
7730 		return &bpf_event_output_data_proto;
7731 	case BPF_FUNC_get_current_pid_tgid:
7732 		return &bpf_get_current_pid_tgid_proto;
7733 	case BPF_FUNC_get_current_comm:
7734 		return &bpf_get_current_comm_proto;
7735 #ifdef CONFIG_CGROUPS
7736 	case BPF_FUNC_get_current_cgroup_id:
7737 		return &bpf_get_current_cgroup_id_proto;
7738 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7739 		return &bpf_get_current_ancestor_cgroup_id_proto;
7740 #endif
7741 #ifdef CONFIG_CGROUP_NET_CLASSID
7742 	case BPF_FUNC_get_cgroup_classid:
7743 		return &bpf_get_cgroup_classid_curr_proto;
7744 #endif
7745 #ifdef CONFIG_INET
7746 	case BPF_FUNC_sk_lookup_tcp:
7747 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7748 	case BPF_FUNC_sk_lookup_udp:
7749 		return &bpf_sock_addr_sk_lookup_udp_proto;
7750 	case BPF_FUNC_sk_release:
7751 		return &bpf_sk_release_proto;
7752 	case BPF_FUNC_skc_lookup_tcp:
7753 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7754 #endif /* CONFIG_INET */
7755 	case BPF_FUNC_sk_storage_get:
7756 		return &bpf_sk_storage_get_proto;
7757 	case BPF_FUNC_sk_storage_delete:
7758 		return &bpf_sk_storage_delete_proto;
7759 	case BPF_FUNC_setsockopt:
7760 		switch (prog->expected_attach_type) {
7761 		case BPF_CGROUP_INET4_BIND:
7762 		case BPF_CGROUP_INET6_BIND:
7763 		case BPF_CGROUP_INET4_CONNECT:
7764 		case BPF_CGROUP_INET6_CONNECT:
7765 		case BPF_CGROUP_UDP4_RECVMSG:
7766 		case BPF_CGROUP_UDP6_RECVMSG:
7767 		case BPF_CGROUP_UDP4_SENDMSG:
7768 		case BPF_CGROUP_UDP6_SENDMSG:
7769 		case BPF_CGROUP_INET4_GETPEERNAME:
7770 		case BPF_CGROUP_INET6_GETPEERNAME:
7771 		case BPF_CGROUP_INET4_GETSOCKNAME:
7772 		case BPF_CGROUP_INET6_GETSOCKNAME:
7773 			return &bpf_sock_addr_setsockopt_proto;
7774 		default:
7775 			return NULL;
7776 		}
7777 	case BPF_FUNC_getsockopt:
7778 		switch (prog->expected_attach_type) {
7779 		case BPF_CGROUP_INET4_BIND:
7780 		case BPF_CGROUP_INET6_BIND:
7781 		case BPF_CGROUP_INET4_CONNECT:
7782 		case BPF_CGROUP_INET6_CONNECT:
7783 		case BPF_CGROUP_UDP4_RECVMSG:
7784 		case BPF_CGROUP_UDP6_RECVMSG:
7785 		case BPF_CGROUP_UDP4_SENDMSG:
7786 		case BPF_CGROUP_UDP6_SENDMSG:
7787 		case BPF_CGROUP_INET4_GETPEERNAME:
7788 		case BPF_CGROUP_INET6_GETPEERNAME:
7789 		case BPF_CGROUP_INET4_GETSOCKNAME:
7790 		case BPF_CGROUP_INET6_GETSOCKNAME:
7791 			return &bpf_sock_addr_getsockopt_proto;
7792 		default:
7793 			return NULL;
7794 		}
7795 	default:
7796 		return bpf_sk_base_func_proto(func_id);
7797 	}
7798 }
7799 
7800 static const struct bpf_func_proto *
7801 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7802 {
7803 	switch (func_id) {
7804 	case BPF_FUNC_skb_load_bytes:
7805 		return &bpf_skb_load_bytes_proto;
7806 	case BPF_FUNC_skb_load_bytes_relative:
7807 		return &bpf_skb_load_bytes_relative_proto;
7808 	case BPF_FUNC_get_socket_cookie:
7809 		return &bpf_get_socket_cookie_proto;
7810 	case BPF_FUNC_get_socket_uid:
7811 		return &bpf_get_socket_uid_proto;
7812 	case BPF_FUNC_perf_event_output:
7813 		return &bpf_skb_event_output_proto;
7814 	default:
7815 		return bpf_sk_base_func_proto(func_id);
7816 	}
7817 }
7818 
7819 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7820 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7821 
7822 static const struct bpf_func_proto *
7823 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7824 {
7825 	switch (func_id) {
7826 	case BPF_FUNC_get_local_storage:
7827 		return &bpf_get_local_storage_proto;
7828 	case BPF_FUNC_sk_fullsock:
7829 		return &bpf_sk_fullsock_proto;
7830 	case BPF_FUNC_sk_storage_get:
7831 		return &bpf_sk_storage_get_proto;
7832 	case BPF_FUNC_sk_storage_delete:
7833 		return &bpf_sk_storage_delete_proto;
7834 	case BPF_FUNC_perf_event_output:
7835 		return &bpf_skb_event_output_proto;
7836 #ifdef CONFIG_SOCK_CGROUP_DATA
7837 	case BPF_FUNC_skb_cgroup_id:
7838 		return &bpf_skb_cgroup_id_proto;
7839 	case BPF_FUNC_skb_ancestor_cgroup_id:
7840 		return &bpf_skb_ancestor_cgroup_id_proto;
7841 	case BPF_FUNC_sk_cgroup_id:
7842 		return &bpf_sk_cgroup_id_proto;
7843 	case BPF_FUNC_sk_ancestor_cgroup_id:
7844 		return &bpf_sk_ancestor_cgroup_id_proto;
7845 #endif
7846 #ifdef CONFIG_INET
7847 	case BPF_FUNC_sk_lookup_tcp:
7848 		return &bpf_sk_lookup_tcp_proto;
7849 	case BPF_FUNC_sk_lookup_udp:
7850 		return &bpf_sk_lookup_udp_proto;
7851 	case BPF_FUNC_sk_release:
7852 		return &bpf_sk_release_proto;
7853 	case BPF_FUNC_skc_lookup_tcp:
7854 		return &bpf_skc_lookup_tcp_proto;
7855 	case BPF_FUNC_tcp_sock:
7856 		return &bpf_tcp_sock_proto;
7857 	case BPF_FUNC_get_listener_sock:
7858 		return &bpf_get_listener_sock_proto;
7859 	case BPF_FUNC_skb_ecn_set_ce:
7860 		return &bpf_skb_ecn_set_ce_proto;
7861 #endif
7862 	default:
7863 		return sk_filter_func_proto(func_id, prog);
7864 	}
7865 }
7866 
7867 static const struct bpf_func_proto *
7868 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7869 {
7870 	switch (func_id) {
7871 	case BPF_FUNC_skb_store_bytes:
7872 		return &bpf_skb_store_bytes_proto;
7873 	case BPF_FUNC_skb_load_bytes:
7874 		return &bpf_skb_load_bytes_proto;
7875 	case BPF_FUNC_skb_load_bytes_relative:
7876 		return &bpf_skb_load_bytes_relative_proto;
7877 	case BPF_FUNC_skb_pull_data:
7878 		return &bpf_skb_pull_data_proto;
7879 	case BPF_FUNC_csum_diff:
7880 		return &bpf_csum_diff_proto;
7881 	case BPF_FUNC_csum_update:
7882 		return &bpf_csum_update_proto;
7883 	case BPF_FUNC_csum_level:
7884 		return &bpf_csum_level_proto;
7885 	case BPF_FUNC_l3_csum_replace:
7886 		return &bpf_l3_csum_replace_proto;
7887 	case BPF_FUNC_l4_csum_replace:
7888 		return &bpf_l4_csum_replace_proto;
7889 	case BPF_FUNC_clone_redirect:
7890 		return &bpf_clone_redirect_proto;
7891 	case BPF_FUNC_get_cgroup_classid:
7892 		return &bpf_get_cgroup_classid_proto;
7893 	case BPF_FUNC_skb_vlan_push:
7894 		return &bpf_skb_vlan_push_proto;
7895 	case BPF_FUNC_skb_vlan_pop:
7896 		return &bpf_skb_vlan_pop_proto;
7897 	case BPF_FUNC_skb_change_proto:
7898 		return &bpf_skb_change_proto_proto;
7899 	case BPF_FUNC_skb_change_type:
7900 		return &bpf_skb_change_type_proto;
7901 	case BPF_FUNC_skb_adjust_room:
7902 		return &bpf_skb_adjust_room_proto;
7903 	case BPF_FUNC_skb_change_tail:
7904 		return &bpf_skb_change_tail_proto;
7905 	case BPF_FUNC_skb_change_head:
7906 		return &bpf_skb_change_head_proto;
7907 	case BPF_FUNC_skb_get_tunnel_key:
7908 		return &bpf_skb_get_tunnel_key_proto;
7909 	case BPF_FUNC_skb_set_tunnel_key:
7910 		return bpf_get_skb_set_tunnel_proto(func_id);
7911 	case BPF_FUNC_skb_get_tunnel_opt:
7912 		return &bpf_skb_get_tunnel_opt_proto;
7913 	case BPF_FUNC_skb_set_tunnel_opt:
7914 		return bpf_get_skb_set_tunnel_proto(func_id);
7915 	case BPF_FUNC_redirect:
7916 		return &bpf_redirect_proto;
7917 	case BPF_FUNC_redirect_neigh:
7918 		return &bpf_redirect_neigh_proto;
7919 	case BPF_FUNC_redirect_peer:
7920 		return &bpf_redirect_peer_proto;
7921 	case BPF_FUNC_get_route_realm:
7922 		return &bpf_get_route_realm_proto;
7923 	case BPF_FUNC_get_hash_recalc:
7924 		return &bpf_get_hash_recalc_proto;
7925 	case BPF_FUNC_set_hash_invalid:
7926 		return &bpf_set_hash_invalid_proto;
7927 	case BPF_FUNC_set_hash:
7928 		return &bpf_set_hash_proto;
7929 	case BPF_FUNC_perf_event_output:
7930 		return &bpf_skb_event_output_proto;
7931 	case BPF_FUNC_get_smp_processor_id:
7932 		return &bpf_get_smp_processor_id_proto;
7933 	case BPF_FUNC_skb_under_cgroup:
7934 		return &bpf_skb_under_cgroup_proto;
7935 	case BPF_FUNC_get_socket_cookie:
7936 		return &bpf_get_socket_cookie_proto;
7937 	case BPF_FUNC_get_socket_uid:
7938 		return &bpf_get_socket_uid_proto;
7939 	case BPF_FUNC_fib_lookup:
7940 		return &bpf_skb_fib_lookup_proto;
7941 	case BPF_FUNC_check_mtu:
7942 		return &bpf_skb_check_mtu_proto;
7943 	case BPF_FUNC_sk_fullsock:
7944 		return &bpf_sk_fullsock_proto;
7945 	case BPF_FUNC_sk_storage_get:
7946 		return &bpf_sk_storage_get_proto;
7947 	case BPF_FUNC_sk_storage_delete:
7948 		return &bpf_sk_storage_delete_proto;
7949 #ifdef CONFIG_XFRM
7950 	case BPF_FUNC_skb_get_xfrm_state:
7951 		return &bpf_skb_get_xfrm_state_proto;
7952 #endif
7953 #ifdef CONFIG_CGROUP_NET_CLASSID
7954 	case BPF_FUNC_skb_cgroup_classid:
7955 		return &bpf_skb_cgroup_classid_proto;
7956 #endif
7957 #ifdef CONFIG_SOCK_CGROUP_DATA
7958 	case BPF_FUNC_skb_cgroup_id:
7959 		return &bpf_skb_cgroup_id_proto;
7960 	case BPF_FUNC_skb_ancestor_cgroup_id:
7961 		return &bpf_skb_ancestor_cgroup_id_proto;
7962 #endif
7963 #ifdef CONFIG_INET
7964 	case BPF_FUNC_sk_lookup_tcp:
7965 		return &bpf_sk_lookup_tcp_proto;
7966 	case BPF_FUNC_sk_lookup_udp:
7967 		return &bpf_sk_lookup_udp_proto;
7968 	case BPF_FUNC_sk_release:
7969 		return &bpf_sk_release_proto;
7970 	case BPF_FUNC_tcp_sock:
7971 		return &bpf_tcp_sock_proto;
7972 	case BPF_FUNC_get_listener_sock:
7973 		return &bpf_get_listener_sock_proto;
7974 	case BPF_FUNC_skc_lookup_tcp:
7975 		return &bpf_skc_lookup_tcp_proto;
7976 	case BPF_FUNC_tcp_check_syncookie:
7977 		return &bpf_tcp_check_syncookie_proto;
7978 	case BPF_FUNC_skb_ecn_set_ce:
7979 		return &bpf_skb_ecn_set_ce_proto;
7980 	case BPF_FUNC_tcp_gen_syncookie:
7981 		return &bpf_tcp_gen_syncookie_proto;
7982 	case BPF_FUNC_sk_assign:
7983 		return &bpf_sk_assign_proto;
7984 	case BPF_FUNC_skb_set_tstamp:
7985 		return &bpf_skb_set_tstamp_proto;
7986 #ifdef CONFIG_SYN_COOKIES
7987 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7988 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7989 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7990 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7991 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7992 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7993 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7994 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
7995 #endif
7996 #endif
7997 	default:
7998 		return bpf_sk_base_func_proto(func_id);
7999 	}
8000 }
8001 
8002 static const struct bpf_func_proto *
8003 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8004 {
8005 	switch (func_id) {
8006 	case BPF_FUNC_perf_event_output:
8007 		return &bpf_xdp_event_output_proto;
8008 	case BPF_FUNC_get_smp_processor_id:
8009 		return &bpf_get_smp_processor_id_proto;
8010 	case BPF_FUNC_csum_diff:
8011 		return &bpf_csum_diff_proto;
8012 	case BPF_FUNC_xdp_adjust_head:
8013 		return &bpf_xdp_adjust_head_proto;
8014 	case BPF_FUNC_xdp_adjust_meta:
8015 		return &bpf_xdp_adjust_meta_proto;
8016 	case BPF_FUNC_redirect:
8017 		return &bpf_xdp_redirect_proto;
8018 	case BPF_FUNC_redirect_map:
8019 		return &bpf_xdp_redirect_map_proto;
8020 	case BPF_FUNC_xdp_adjust_tail:
8021 		return &bpf_xdp_adjust_tail_proto;
8022 	case BPF_FUNC_xdp_get_buff_len:
8023 		return &bpf_xdp_get_buff_len_proto;
8024 	case BPF_FUNC_xdp_load_bytes:
8025 		return &bpf_xdp_load_bytes_proto;
8026 	case BPF_FUNC_xdp_store_bytes:
8027 		return &bpf_xdp_store_bytes_proto;
8028 	case BPF_FUNC_fib_lookup:
8029 		return &bpf_xdp_fib_lookup_proto;
8030 	case BPF_FUNC_check_mtu:
8031 		return &bpf_xdp_check_mtu_proto;
8032 #ifdef CONFIG_INET
8033 	case BPF_FUNC_sk_lookup_udp:
8034 		return &bpf_xdp_sk_lookup_udp_proto;
8035 	case BPF_FUNC_sk_lookup_tcp:
8036 		return &bpf_xdp_sk_lookup_tcp_proto;
8037 	case BPF_FUNC_sk_release:
8038 		return &bpf_sk_release_proto;
8039 	case BPF_FUNC_skc_lookup_tcp:
8040 		return &bpf_xdp_skc_lookup_tcp_proto;
8041 	case BPF_FUNC_tcp_check_syncookie:
8042 		return &bpf_tcp_check_syncookie_proto;
8043 	case BPF_FUNC_tcp_gen_syncookie:
8044 		return &bpf_tcp_gen_syncookie_proto;
8045 #ifdef CONFIG_SYN_COOKIES
8046 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8047 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8048 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8049 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8050 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8051 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8052 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8053 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8054 #endif
8055 #endif
8056 	default:
8057 		return bpf_sk_base_func_proto(func_id);
8058 	}
8059 }
8060 
8061 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8062 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8063 
8064 static const struct bpf_func_proto *
8065 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8066 {
8067 	switch (func_id) {
8068 	case BPF_FUNC_setsockopt:
8069 		return &bpf_sock_ops_setsockopt_proto;
8070 	case BPF_FUNC_getsockopt:
8071 		return &bpf_sock_ops_getsockopt_proto;
8072 	case BPF_FUNC_sock_ops_cb_flags_set:
8073 		return &bpf_sock_ops_cb_flags_set_proto;
8074 	case BPF_FUNC_sock_map_update:
8075 		return &bpf_sock_map_update_proto;
8076 	case BPF_FUNC_sock_hash_update:
8077 		return &bpf_sock_hash_update_proto;
8078 	case BPF_FUNC_get_socket_cookie:
8079 		return &bpf_get_socket_cookie_sock_ops_proto;
8080 	case BPF_FUNC_get_local_storage:
8081 		return &bpf_get_local_storage_proto;
8082 	case BPF_FUNC_perf_event_output:
8083 		return &bpf_event_output_data_proto;
8084 	case BPF_FUNC_sk_storage_get:
8085 		return &bpf_sk_storage_get_proto;
8086 	case BPF_FUNC_sk_storage_delete:
8087 		return &bpf_sk_storage_delete_proto;
8088 	case BPF_FUNC_get_netns_cookie:
8089 		return &bpf_get_netns_cookie_sock_ops_proto;
8090 #ifdef CONFIG_INET
8091 	case BPF_FUNC_load_hdr_opt:
8092 		return &bpf_sock_ops_load_hdr_opt_proto;
8093 	case BPF_FUNC_store_hdr_opt:
8094 		return &bpf_sock_ops_store_hdr_opt_proto;
8095 	case BPF_FUNC_reserve_hdr_opt:
8096 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8097 	case BPF_FUNC_tcp_sock:
8098 		return &bpf_tcp_sock_proto;
8099 #endif /* CONFIG_INET */
8100 	default:
8101 		return bpf_sk_base_func_proto(func_id);
8102 	}
8103 }
8104 
8105 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8106 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8107 
8108 static const struct bpf_func_proto *
8109 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8110 {
8111 	switch (func_id) {
8112 	case BPF_FUNC_msg_redirect_map:
8113 		return &bpf_msg_redirect_map_proto;
8114 	case BPF_FUNC_msg_redirect_hash:
8115 		return &bpf_msg_redirect_hash_proto;
8116 	case BPF_FUNC_msg_apply_bytes:
8117 		return &bpf_msg_apply_bytes_proto;
8118 	case BPF_FUNC_msg_cork_bytes:
8119 		return &bpf_msg_cork_bytes_proto;
8120 	case BPF_FUNC_msg_pull_data:
8121 		return &bpf_msg_pull_data_proto;
8122 	case BPF_FUNC_msg_push_data:
8123 		return &bpf_msg_push_data_proto;
8124 	case BPF_FUNC_msg_pop_data:
8125 		return &bpf_msg_pop_data_proto;
8126 	case BPF_FUNC_perf_event_output:
8127 		return &bpf_event_output_data_proto;
8128 	case BPF_FUNC_get_current_uid_gid:
8129 		return &bpf_get_current_uid_gid_proto;
8130 	case BPF_FUNC_get_current_pid_tgid:
8131 		return &bpf_get_current_pid_tgid_proto;
8132 	case BPF_FUNC_sk_storage_get:
8133 		return &bpf_sk_storage_get_proto;
8134 	case BPF_FUNC_sk_storage_delete:
8135 		return &bpf_sk_storage_delete_proto;
8136 	case BPF_FUNC_get_netns_cookie:
8137 		return &bpf_get_netns_cookie_sk_msg_proto;
8138 #ifdef CONFIG_CGROUPS
8139 	case BPF_FUNC_get_current_cgroup_id:
8140 		return &bpf_get_current_cgroup_id_proto;
8141 	case BPF_FUNC_get_current_ancestor_cgroup_id:
8142 		return &bpf_get_current_ancestor_cgroup_id_proto;
8143 #endif
8144 #ifdef CONFIG_CGROUP_NET_CLASSID
8145 	case BPF_FUNC_get_cgroup_classid:
8146 		return &bpf_get_cgroup_classid_curr_proto;
8147 #endif
8148 	default:
8149 		return bpf_sk_base_func_proto(func_id);
8150 	}
8151 }
8152 
8153 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8154 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8155 
8156 static const struct bpf_func_proto *
8157 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8158 {
8159 	switch (func_id) {
8160 	case BPF_FUNC_skb_store_bytes:
8161 		return &bpf_skb_store_bytes_proto;
8162 	case BPF_FUNC_skb_load_bytes:
8163 		return &bpf_skb_load_bytes_proto;
8164 	case BPF_FUNC_skb_pull_data:
8165 		return &sk_skb_pull_data_proto;
8166 	case BPF_FUNC_skb_change_tail:
8167 		return &sk_skb_change_tail_proto;
8168 	case BPF_FUNC_skb_change_head:
8169 		return &sk_skb_change_head_proto;
8170 	case BPF_FUNC_skb_adjust_room:
8171 		return &sk_skb_adjust_room_proto;
8172 	case BPF_FUNC_get_socket_cookie:
8173 		return &bpf_get_socket_cookie_proto;
8174 	case BPF_FUNC_get_socket_uid:
8175 		return &bpf_get_socket_uid_proto;
8176 	case BPF_FUNC_sk_redirect_map:
8177 		return &bpf_sk_redirect_map_proto;
8178 	case BPF_FUNC_sk_redirect_hash:
8179 		return &bpf_sk_redirect_hash_proto;
8180 	case BPF_FUNC_perf_event_output:
8181 		return &bpf_skb_event_output_proto;
8182 #ifdef CONFIG_INET
8183 	case BPF_FUNC_sk_lookup_tcp:
8184 		return &bpf_sk_lookup_tcp_proto;
8185 	case BPF_FUNC_sk_lookup_udp:
8186 		return &bpf_sk_lookup_udp_proto;
8187 	case BPF_FUNC_sk_release:
8188 		return &bpf_sk_release_proto;
8189 	case BPF_FUNC_skc_lookup_tcp:
8190 		return &bpf_skc_lookup_tcp_proto;
8191 #endif
8192 	default:
8193 		return bpf_sk_base_func_proto(func_id);
8194 	}
8195 }
8196 
8197 static const struct bpf_func_proto *
8198 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8199 {
8200 	switch (func_id) {
8201 	case BPF_FUNC_skb_load_bytes:
8202 		return &bpf_flow_dissector_load_bytes_proto;
8203 	default:
8204 		return bpf_sk_base_func_proto(func_id);
8205 	}
8206 }
8207 
8208 static const struct bpf_func_proto *
8209 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8210 {
8211 	switch (func_id) {
8212 	case BPF_FUNC_skb_load_bytes:
8213 		return &bpf_skb_load_bytes_proto;
8214 	case BPF_FUNC_skb_pull_data:
8215 		return &bpf_skb_pull_data_proto;
8216 	case BPF_FUNC_csum_diff:
8217 		return &bpf_csum_diff_proto;
8218 	case BPF_FUNC_get_cgroup_classid:
8219 		return &bpf_get_cgroup_classid_proto;
8220 	case BPF_FUNC_get_route_realm:
8221 		return &bpf_get_route_realm_proto;
8222 	case BPF_FUNC_get_hash_recalc:
8223 		return &bpf_get_hash_recalc_proto;
8224 	case BPF_FUNC_perf_event_output:
8225 		return &bpf_skb_event_output_proto;
8226 	case BPF_FUNC_get_smp_processor_id:
8227 		return &bpf_get_smp_processor_id_proto;
8228 	case BPF_FUNC_skb_under_cgroup:
8229 		return &bpf_skb_under_cgroup_proto;
8230 	default:
8231 		return bpf_sk_base_func_proto(func_id);
8232 	}
8233 }
8234 
8235 static const struct bpf_func_proto *
8236 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8237 {
8238 	switch (func_id) {
8239 	case BPF_FUNC_lwt_push_encap:
8240 		return &bpf_lwt_in_push_encap_proto;
8241 	default:
8242 		return lwt_out_func_proto(func_id, prog);
8243 	}
8244 }
8245 
8246 static const struct bpf_func_proto *
8247 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8248 {
8249 	switch (func_id) {
8250 	case BPF_FUNC_skb_get_tunnel_key:
8251 		return &bpf_skb_get_tunnel_key_proto;
8252 	case BPF_FUNC_skb_set_tunnel_key:
8253 		return bpf_get_skb_set_tunnel_proto(func_id);
8254 	case BPF_FUNC_skb_get_tunnel_opt:
8255 		return &bpf_skb_get_tunnel_opt_proto;
8256 	case BPF_FUNC_skb_set_tunnel_opt:
8257 		return bpf_get_skb_set_tunnel_proto(func_id);
8258 	case BPF_FUNC_redirect:
8259 		return &bpf_redirect_proto;
8260 	case BPF_FUNC_clone_redirect:
8261 		return &bpf_clone_redirect_proto;
8262 	case BPF_FUNC_skb_change_tail:
8263 		return &bpf_skb_change_tail_proto;
8264 	case BPF_FUNC_skb_change_head:
8265 		return &bpf_skb_change_head_proto;
8266 	case BPF_FUNC_skb_store_bytes:
8267 		return &bpf_skb_store_bytes_proto;
8268 	case BPF_FUNC_csum_update:
8269 		return &bpf_csum_update_proto;
8270 	case BPF_FUNC_csum_level:
8271 		return &bpf_csum_level_proto;
8272 	case BPF_FUNC_l3_csum_replace:
8273 		return &bpf_l3_csum_replace_proto;
8274 	case BPF_FUNC_l4_csum_replace:
8275 		return &bpf_l4_csum_replace_proto;
8276 	case BPF_FUNC_set_hash_invalid:
8277 		return &bpf_set_hash_invalid_proto;
8278 	case BPF_FUNC_lwt_push_encap:
8279 		return &bpf_lwt_xmit_push_encap_proto;
8280 	default:
8281 		return lwt_out_func_proto(func_id, prog);
8282 	}
8283 }
8284 
8285 static const struct bpf_func_proto *
8286 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8287 {
8288 	switch (func_id) {
8289 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8290 	case BPF_FUNC_lwt_seg6_store_bytes:
8291 		return &bpf_lwt_seg6_store_bytes_proto;
8292 	case BPF_FUNC_lwt_seg6_action:
8293 		return &bpf_lwt_seg6_action_proto;
8294 	case BPF_FUNC_lwt_seg6_adjust_srh:
8295 		return &bpf_lwt_seg6_adjust_srh_proto;
8296 #endif
8297 	default:
8298 		return lwt_out_func_proto(func_id, prog);
8299 	}
8300 }
8301 
8302 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8303 				    const struct bpf_prog *prog,
8304 				    struct bpf_insn_access_aux *info)
8305 {
8306 	const int size_default = sizeof(__u32);
8307 
8308 	if (off < 0 || off >= sizeof(struct __sk_buff))
8309 		return false;
8310 
8311 	/* The verifier guarantees that size > 0. */
8312 	if (off % size != 0)
8313 		return false;
8314 
8315 	switch (off) {
8316 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8317 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8318 			return false;
8319 		break;
8320 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8321 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8322 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8323 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8324 	case bpf_ctx_range(struct __sk_buff, data):
8325 	case bpf_ctx_range(struct __sk_buff, data_meta):
8326 	case bpf_ctx_range(struct __sk_buff, data_end):
8327 		if (size != size_default)
8328 			return false;
8329 		break;
8330 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8331 		return false;
8332 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8333 		if (type == BPF_WRITE || size != sizeof(__u64))
8334 			return false;
8335 		break;
8336 	case bpf_ctx_range(struct __sk_buff, tstamp):
8337 		if (size != sizeof(__u64))
8338 			return false;
8339 		break;
8340 	case offsetof(struct __sk_buff, sk):
8341 		if (type == BPF_WRITE || size != sizeof(__u64))
8342 			return false;
8343 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8344 		break;
8345 	case offsetof(struct __sk_buff, tstamp_type):
8346 		return false;
8347 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8348 		/* Explicitly prohibit access to padding in __sk_buff. */
8349 		return false;
8350 	default:
8351 		/* Only narrow read access allowed for now. */
8352 		if (type == BPF_WRITE) {
8353 			if (size != size_default)
8354 				return false;
8355 		} else {
8356 			bpf_ctx_record_field_size(info, size_default);
8357 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8358 				return false;
8359 		}
8360 	}
8361 
8362 	return true;
8363 }
8364 
8365 static bool sk_filter_is_valid_access(int off, int size,
8366 				      enum bpf_access_type type,
8367 				      const struct bpf_prog *prog,
8368 				      struct bpf_insn_access_aux *info)
8369 {
8370 	switch (off) {
8371 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8372 	case bpf_ctx_range(struct __sk_buff, data):
8373 	case bpf_ctx_range(struct __sk_buff, data_meta):
8374 	case bpf_ctx_range(struct __sk_buff, data_end):
8375 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8376 	case bpf_ctx_range(struct __sk_buff, tstamp):
8377 	case bpf_ctx_range(struct __sk_buff, wire_len):
8378 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8379 		return false;
8380 	}
8381 
8382 	if (type == BPF_WRITE) {
8383 		switch (off) {
8384 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8385 			break;
8386 		default:
8387 			return false;
8388 		}
8389 	}
8390 
8391 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8392 }
8393 
8394 static bool cg_skb_is_valid_access(int off, int size,
8395 				   enum bpf_access_type type,
8396 				   const struct bpf_prog *prog,
8397 				   struct bpf_insn_access_aux *info)
8398 {
8399 	switch (off) {
8400 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8401 	case bpf_ctx_range(struct __sk_buff, data_meta):
8402 	case bpf_ctx_range(struct __sk_buff, wire_len):
8403 		return false;
8404 	case bpf_ctx_range(struct __sk_buff, data):
8405 	case bpf_ctx_range(struct __sk_buff, data_end):
8406 		if (!bpf_capable())
8407 			return false;
8408 		break;
8409 	}
8410 
8411 	if (type == BPF_WRITE) {
8412 		switch (off) {
8413 		case bpf_ctx_range(struct __sk_buff, mark):
8414 		case bpf_ctx_range(struct __sk_buff, priority):
8415 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8416 			break;
8417 		case bpf_ctx_range(struct __sk_buff, tstamp):
8418 			if (!bpf_capable())
8419 				return false;
8420 			break;
8421 		default:
8422 			return false;
8423 		}
8424 	}
8425 
8426 	switch (off) {
8427 	case bpf_ctx_range(struct __sk_buff, data):
8428 		info->reg_type = PTR_TO_PACKET;
8429 		break;
8430 	case bpf_ctx_range(struct __sk_buff, data_end):
8431 		info->reg_type = PTR_TO_PACKET_END;
8432 		break;
8433 	}
8434 
8435 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8436 }
8437 
8438 static bool lwt_is_valid_access(int off, int size,
8439 				enum bpf_access_type type,
8440 				const struct bpf_prog *prog,
8441 				struct bpf_insn_access_aux *info)
8442 {
8443 	switch (off) {
8444 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8445 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8446 	case bpf_ctx_range(struct __sk_buff, data_meta):
8447 	case bpf_ctx_range(struct __sk_buff, tstamp):
8448 	case bpf_ctx_range(struct __sk_buff, wire_len):
8449 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8450 		return false;
8451 	}
8452 
8453 	if (type == BPF_WRITE) {
8454 		switch (off) {
8455 		case bpf_ctx_range(struct __sk_buff, mark):
8456 		case bpf_ctx_range(struct __sk_buff, priority):
8457 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8458 			break;
8459 		default:
8460 			return false;
8461 		}
8462 	}
8463 
8464 	switch (off) {
8465 	case bpf_ctx_range(struct __sk_buff, data):
8466 		info->reg_type = PTR_TO_PACKET;
8467 		break;
8468 	case bpf_ctx_range(struct __sk_buff, data_end):
8469 		info->reg_type = PTR_TO_PACKET_END;
8470 		break;
8471 	}
8472 
8473 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8474 }
8475 
8476 /* Attach type specific accesses */
8477 static bool __sock_filter_check_attach_type(int off,
8478 					    enum bpf_access_type access_type,
8479 					    enum bpf_attach_type attach_type)
8480 {
8481 	switch (off) {
8482 	case offsetof(struct bpf_sock, bound_dev_if):
8483 	case offsetof(struct bpf_sock, mark):
8484 	case offsetof(struct bpf_sock, priority):
8485 		switch (attach_type) {
8486 		case BPF_CGROUP_INET_SOCK_CREATE:
8487 		case BPF_CGROUP_INET_SOCK_RELEASE:
8488 			goto full_access;
8489 		default:
8490 			return false;
8491 		}
8492 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8493 		switch (attach_type) {
8494 		case BPF_CGROUP_INET4_POST_BIND:
8495 			goto read_only;
8496 		default:
8497 			return false;
8498 		}
8499 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8500 		switch (attach_type) {
8501 		case BPF_CGROUP_INET6_POST_BIND:
8502 			goto read_only;
8503 		default:
8504 			return false;
8505 		}
8506 	case bpf_ctx_range(struct bpf_sock, src_port):
8507 		switch (attach_type) {
8508 		case BPF_CGROUP_INET4_POST_BIND:
8509 		case BPF_CGROUP_INET6_POST_BIND:
8510 			goto read_only;
8511 		default:
8512 			return false;
8513 		}
8514 	}
8515 read_only:
8516 	return access_type == BPF_READ;
8517 full_access:
8518 	return true;
8519 }
8520 
8521 bool bpf_sock_common_is_valid_access(int off, int size,
8522 				     enum bpf_access_type type,
8523 				     struct bpf_insn_access_aux *info)
8524 {
8525 	switch (off) {
8526 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8527 		return false;
8528 	default:
8529 		return bpf_sock_is_valid_access(off, size, type, info);
8530 	}
8531 }
8532 
8533 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8534 			      struct bpf_insn_access_aux *info)
8535 {
8536 	const int size_default = sizeof(__u32);
8537 	int field_size;
8538 
8539 	if (off < 0 || off >= sizeof(struct bpf_sock))
8540 		return false;
8541 	if (off % size != 0)
8542 		return false;
8543 
8544 	switch (off) {
8545 	case offsetof(struct bpf_sock, state):
8546 	case offsetof(struct bpf_sock, family):
8547 	case offsetof(struct bpf_sock, type):
8548 	case offsetof(struct bpf_sock, protocol):
8549 	case offsetof(struct bpf_sock, src_port):
8550 	case offsetof(struct bpf_sock, rx_queue_mapping):
8551 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8552 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8553 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8554 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8555 		bpf_ctx_record_field_size(info, size_default);
8556 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8557 	case bpf_ctx_range(struct bpf_sock, dst_port):
8558 		field_size = size == size_default ?
8559 			size_default : sizeof_field(struct bpf_sock, dst_port);
8560 		bpf_ctx_record_field_size(info, field_size);
8561 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8562 	case offsetofend(struct bpf_sock, dst_port) ...
8563 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8564 		return false;
8565 	}
8566 
8567 	return size == size_default;
8568 }
8569 
8570 static bool sock_filter_is_valid_access(int off, int size,
8571 					enum bpf_access_type type,
8572 					const struct bpf_prog *prog,
8573 					struct bpf_insn_access_aux *info)
8574 {
8575 	if (!bpf_sock_is_valid_access(off, size, type, info))
8576 		return false;
8577 	return __sock_filter_check_attach_type(off, type,
8578 					       prog->expected_attach_type);
8579 }
8580 
8581 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8582 			     const struct bpf_prog *prog)
8583 {
8584 	/* Neither direct read nor direct write requires any preliminary
8585 	 * action.
8586 	 */
8587 	return 0;
8588 }
8589 
8590 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8591 				const struct bpf_prog *prog, int drop_verdict)
8592 {
8593 	struct bpf_insn *insn = insn_buf;
8594 
8595 	if (!direct_write)
8596 		return 0;
8597 
8598 	/* if (!skb->cloned)
8599 	 *       goto start;
8600 	 *
8601 	 * (Fast-path, otherwise approximation that we might be
8602 	 *  a clone, do the rest in helper.)
8603 	 */
8604 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8605 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8606 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8607 
8608 	/* ret = bpf_skb_pull_data(skb, 0); */
8609 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8610 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8611 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8612 			       BPF_FUNC_skb_pull_data);
8613 	/* if (!ret)
8614 	 *      goto restore;
8615 	 * return TC_ACT_SHOT;
8616 	 */
8617 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8618 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8619 	*insn++ = BPF_EXIT_INSN();
8620 
8621 	/* restore: */
8622 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8623 	/* start: */
8624 	*insn++ = prog->insnsi[0];
8625 
8626 	return insn - insn_buf;
8627 }
8628 
8629 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8630 			  struct bpf_insn *insn_buf)
8631 {
8632 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8633 	struct bpf_insn *insn = insn_buf;
8634 
8635 	if (!indirect) {
8636 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8637 	} else {
8638 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8639 		if (orig->imm)
8640 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8641 	}
8642 	/* We're guaranteed here that CTX is in R6. */
8643 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8644 
8645 	switch (BPF_SIZE(orig->code)) {
8646 	case BPF_B:
8647 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8648 		break;
8649 	case BPF_H:
8650 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8651 		break;
8652 	case BPF_W:
8653 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8654 		break;
8655 	}
8656 
8657 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8658 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8659 	*insn++ = BPF_EXIT_INSN();
8660 
8661 	return insn - insn_buf;
8662 }
8663 
8664 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8665 			       const struct bpf_prog *prog)
8666 {
8667 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8668 }
8669 
8670 static bool tc_cls_act_is_valid_access(int off, int size,
8671 				       enum bpf_access_type type,
8672 				       const struct bpf_prog *prog,
8673 				       struct bpf_insn_access_aux *info)
8674 {
8675 	if (type == BPF_WRITE) {
8676 		switch (off) {
8677 		case bpf_ctx_range(struct __sk_buff, mark):
8678 		case bpf_ctx_range(struct __sk_buff, tc_index):
8679 		case bpf_ctx_range(struct __sk_buff, priority):
8680 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8681 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8682 		case bpf_ctx_range(struct __sk_buff, tstamp):
8683 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8684 			break;
8685 		default:
8686 			return false;
8687 		}
8688 	}
8689 
8690 	switch (off) {
8691 	case bpf_ctx_range(struct __sk_buff, data):
8692 		info->reg_type = PTR_TO_PACKET;
8693 		break;
8694 	case bpf_ctx_range(struct __sk_buff, data_meta):
8695 		info->reg_type = PTR_TO_PACKET_META;
8696 		break;
8697 	case bpf_ctx_range(struct __sk_buff, data_end):
8698 		info->reg_type = PTR_TO_PACKET_END;
8699 		break;
8700 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8701 		return false;
8702 	case offsetof(struct __sk_buff, tstamp_type):
8703 		/* The convert_ctx_access() on reading and writing
8704 		 * __sk_buff->tstamp depends on whether the bpf prog
8705 		 * has used __sk_buff->tstamp_type or not.
8706 		 * Thus, we need to set prog->tstamp_type_access
8707 		 * earlier during is_valid_access() here.
8708 		 */
8709 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
8710 		return size == sizeof(__u8);
8711 	}
8712 
8713 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8714 }
8715 
8716 static bool __is_valid_xdp_access(int off, int size)
8717 {
8718 	if (off < 0 || off >= sizeof(struct xdp_md))
8719 		return false;
8720 	if (off % size != 0)
8721 		return false;
8722 	if (size != sizeof(__u32))
8723 		return false;
8724 
8725 	return true;
8726 }
8727 
8728 static bool xdp_is_valid_access(int off, int size,
8729 				enum bpf_access_type type,
8730 				const struct bpf_prog *prog,
8731 				struct bpf_insn_access_aux *info)
8732 {
8733 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8734 		switch (off) {
8735 		case offsetof(struct xdp_md, egress_ifindex):
8736 			return false;
8737 		}
8738 	}
8739 
8740 	if (type == BPF_WRITE) {
8741 		if (bpf_prog_is_dev_bound(prog->aux)) {
8742 			switch (off) {
8743 			case offsetof(struct xdp_md, rx_queue_index):
8744 				return __is_valid_xdp_access(off, size);
8745 			}
8746 		}
8747 		return false;
8748 	}
8749 
8750 	switch (off) {
8751 	case offsetof(struct xdp_md, data):
8752 		info->reg_type = PTR_TO_PACKET;
8753 		break;
8754 	case offsetof(struct xdp_md, data_meta):
8755 		info->reg_type = PTR_TO_PACKET_META;
8756 		break;
8757 	case offsetof(struct xdp_md, data_end):
8758 		info->reg_type = PTR_TO_PACKET_END;
8759 		break;
8760 	}
8761 
8762 	return __is_valid_xdp_access(off, size);
8763 }
8764 
8765 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8766 {
8767 	const u32 act_max = XDP_REDIRECT;
8768 
8769 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8770 		     act > act_max ? "Illegal" : "Driver unsupported",
8771 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8772 }
8773 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8774 
8775 static bool sock_addr_is_valid_access(int off, int size,
8776 				      enum bpf_access_type type,
8777 				      const struct bpf_prog *prog,
8778 				      struct bpf_insn_access_aux *info)
8779 {
8780 	const int size_default = sizeof(__u32);
8781 
8782 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8783 		return false;
8784 	if (off % size != 0)
8785 		return false;
8786 
8787 	/* Disallow access to IPv6 fields from IPv4 contex and vise
8788 	 * versa.
8789 	 */
8790 	switch (off) {
8791 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8792 		switch (prog->expected_attach_type) {
8793 		case BPF_CGROUP_INET4_BIND:
8794 		case BPF_CGROUP_INET4_CONNECT:
8795 		case BPF_CGROUP_INET4_GETPEERNAME:
8796 		case BPF_CGROUP_INET4_GETSOCKNAME:
8797 		case BPF_CGROUP_UDP4_SENDMSG:
8798 		case BPF_CGROUP_UDP4_RECVMSG:
8799 			break;
8800 		default:
8801 			return false;
8802 		}
8803 		break;
8804 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8805 		switch (prog->expected_attach_type) {
8806 		case BPF_CGROUP_INET6_BIND:
8807 		case BPF_CGROUP_INET6_CONNECT:
8808 		case BPF_CGROUP_INET6_GETPEERNAME:
8809 		case BPF_CGROUP_INET6_GETSOCKNAME:
8810 		case BPF_CGROUP_UDP6_SENDMSG:
8811 		case BPF_CGROUP_UDP6_RECVMSG:
8812 			break;
8813 		default:
8814 			return false;
8815 		}
8816 		break;
8817 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8818 		switch (prog->expected_attach_type) {
8819 		case BPF_CGROUP_UDP4_SENDMSG:
8820 			break;
8821 		default:
8822 			return false;
8823 		}
8824 		break;
8825 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8826 				msg_src_ip6[3]):
8827 		switch (prog->expected_attach_type) {
8828 		case BPF_CGROUP_UDP6_SENDMSG:
8829 			break;
8830 		default:
8831 			return false;
8832 		}
8833 		break;
8834 	}
8835 
8836 	switch (off) {
8837 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8838 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8839 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8840 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8841 				msg_src_ip6[3]):
8842 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
8843 		if (type == BPF_READ) {
8844 			bpf_ctx_record_field_size(info, size_default);
8845 
8846 			if (bpf_ctx_wide_access_ok(off, size,
8847 						   struct bpf_sock_addr,
8848 						   user_ip6))
8849 				return true;
8850 
8851 			if (bpf_ctx_wide_access_ok(off, size,
8852 						   struct bpf_sock_addr,
8853 						   msg_src_ip6))
8854 				return true;
8855 
8856 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8857 				return false;
8858 		} else {
8859 			if (bpf_ctx_wide_access_ok(off, size,
8860 						   struct bpf_sock_addr,
8861 						   user_ip6))
8862 				return true;
8863 
8864 			if (bpf_ctx_wide_access_ok(off, size,
8865 						   struct bpf_sock_addr,
8866 						   msg_src_ip6))
8867 				return true;
8868 
8869 			if (size != size_default)
8870 				return false;
8871 		}
8872 		break;
8873 	case offsetof(struct bpf_sock_addr, sk):
8874 		if (type != BPF_READ)
8875 			return false;
8876 		if (size != sizeof(__u64))
8877 			return false;
8878 		info->reg_type = PTR_TO_SOCKET;
8879 		break;
8880 	default:
8881 		if (type == BPF_READ) {
8882 			if (size != size_default)
8883 				return false;
8884 		} else {
8885 			return false;
8886 		}
8887 	}
8888 
8889 	return true;
8890 }
8891 
8892 static bool sock_ops_is_valid_access(int off, int size,
8893 				     enum bpf_access_type type,
8894 				     const struct bpf_prog *prog,
8895 				     struct bpf_insn_access_aux *info)
8896 {
8897 	const int size_default = sizeof(__u32);
8898 
8899 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8900 		return false;
8901 
8902 	/* The verifier guarantees that size > 0. */
8903 	if (off % size != 0)
8904 		return false;
8905 
8906 	if (type == BPF_WRITE) {
8907 		switch (off) {
8908 		case offsetof(struct bpf_sock_ops, reply):
8909 		case offsetof(struct bpf_sock_ops, sk_txhash):
8910 			if (size != size_default)
8911 				return false;
8912 			break;
8913 		default:
8914 			return false;
8915 		}
8916 	} else {
8917 		switch (off) {
8918 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8919 					bytes_acked):
8920 			if (size != sizeof(__u64))
8921 				return false;
8922 			break;
8923 		case offsetof(struct bpf_sock_ops, sk):
8924 			if (size != sizeof(__u64))
8925 				return false;
8926 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
8927 			break;
8928 		case offsetof(struct bpf_sock_ops, skb_data):
8929 			if (size != sizeof(__u64))
8930 				return false;
8931 			info->reg_type = PTR_TO_PACKET;
8932 			break;
8933 		case offsetof(struct bpf_sock_ops, skb_data_end):
8934 			if (size != sizeof(__u64))
8935 				return false;
8936 			info->reg_type = PTR_TO_PACKET_END;
8937 			break;
8938 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8939 			bpf_ctx_record_field_size(info, size_default);
8940 			return bpf_ctx_narrow_access_ok(off, size,
8941 							size_default);
8942 		default:
8943 			if (size != size_default)
8944 				return false;
8945 			break;
8946 		}
8947 	}
8948 
8949 	return true;
8950 }
8951 
8952 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8953 			   const struct bpf_prog *prog)
8954 {
8955 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8956 }
8957 
8958 static bool sk_skb_is_valid_access(int off, int size,
8959 				   enum bpf_access_type type,
8960 				   const struct bpf_prog *prog,
8961 				   struct bpf_insn_access_aux *info)
8962 {
8963 	switch (off) {
8964 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8965 	case bpf_ctx_range(struct __sk_buff, data_meta):
8966 	case bpf_ctx_range(struct __sk_buff, tstamp):
8967 	case bpf_ctx_range(struct __sk_buff, wire_len):
8968 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8969 		return false;
8970 	}
8971 
8972 	if (type == BPF_WRITE) {
8973 		switch (off) {
8974 		case bpf_ctx_range(struct __sk_buff, tc_index):
8975 		case bpf_ctx_range(struct __sk_buff, priority):
8976 			break;
8977 		default:
8978 			return false;
8979 		}
8980 	}
8981 
8982 	switch (off) {
8983 	case bpf_ctx_range(struct __sk_buff, mark):
8984 		return false;
8985 	case bpf_ctx_range(struct __sk_buff, data):
8986 		info->reg_type = PTR_TO_PACKET;
8987 		break;
8988 	case bpf_ctx_range(struct __sk_buff, data_end):
8989 		info->reg_type = PTR_TO_PACKET_END;
8990 		break;
8991 	}
8992 
8993 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8994 }
8995 
8996 static bool sk_msg_is_valid_access(int off, int size,
8997 				   enum bpf_access_type type,
8998 				   const struct bpf_prog *prog,
8999 				   struct bpf_insn_access_aux *info)
9000 {
9001 	if (type == BPF_WRITE)
9002 		return false;
9003 
9004 	if (off % size != 0)
9005 		return false;
9006 
9007 	switch (off) {
9008 	case offsetof(struct sk_msg_md, data):
9009 		info->reg_type = PTR_TO_PACKET;
9010 		if (size != sizeof(__u64))
9011 			return false;
9012 		break;
9013 	case offsetof(struct sk_msg_md, data_end):
9014 		info->reg_type = PTR_TO_PACKET_END;
9015 		if (size != sizeof(__u64))
9016 			return false;
9017 		break;
9018 	case offsetof(struct sk_msg_md, sk):
9019 		if (size != sizeof(__u64))
9020 			return false;
9021 		info->reg_type = PTR_TO_SOCKET;
9022 		break;
9023 	case bpf_ctx_range(struct sk_msg_md, family):
9024 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9025 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9026 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9027 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9028 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9029 	case bpf_ctx_range(struct sk_msg_md, local_port):
9030 	case bpf_ctx_range(struct sk_msg_md, size):
9031 		if (size != sizeof(__u32))
9032 			return false;
9033 		break;
9034 	default:
9035 		return false;
9036 	}
9037 	return true;
9038 }
9039 
9040 static bool flow_dissector_is_valid_access(int off, int size,
9041 					   enum bpf_access_type type,
9042 					   const struct bpf_prog *prog,
9043 					   struct bpf_insn_access_aux *info)
9044 {
9045 	const int size_default = sizeof(__u32);
9046 
9047 	if (off < 0 || off >= sizeof(struct __sk_buff))
9048 		return false;
9049 
9050 	if (type == BPF_WRITE)
9051 		return false;
9052 
9053 	switch (off) {
9054 	case bpf_ctx_range(struct __sk_buff, data):
9055 		if (size != size_default)
9056 			return false;
9057 		info->reg_type = PTR_TO_PACKET;
9058 		return true;
9059 	case bpf_ctx_range(struct __sk_buff, data_end):
9060 		if (size != size_default)
9061 			return false;
9062 		info->reg_type = PTR_TO_PACKET_END;
9063 		return true;
9064 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9065 		if (size != sizeof(__u64))
9066 			return false;
9067 		info->reg_type = PTR_TO_FLOW_KEYS;
9068 		return true;
9069 	default:
9070 		return false;
9071 	}
9072 }
9073 
9074 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9075 					     const struct bpf_insn *si,
9076 					     struct bpf_insn *insn_buf,
9077 					     struct bpf_prog *prog,
9078 					     u32 *target_size)
9079 
9080 {
9081 	struct bpf_insn *insn = insn_buf;
9082 
9083 	switch (si->off) {
9084 	case offsetof(struct __sk_buff, data):
9085 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9086 				      si->dst_reg, si->src_reg,
9087 				      offsetof(struct bpf_flow_dissector, data));
9088 		break;
9089 
9090 	case offsetof(struct __sk_buff, data_end):
9091 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9092 				      si->dst_reg, si->src_reg,
9093 				      offsetof(struct bpf_flow_dissector, data_end));
9094 		break;
9095 
9096 	case offsetof(struct __sk_buff, flow_keys):
9097 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9098 				      si->dst_reg, si->src_reg,
9099 				      offsetof(struct bpf_flow_dissector, flow_keys));
9100 		break;
9101 	}
9102 
9103 	return insn - insn_buf;
9104 }
9105 
9106 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9107 						     struct bpf_insn *insn)
9108 {
9109 	__u8 value_reg = si->dst_reg;
9110 	__u8 skb_reg = si->src_reg;
9111 	/* AX is needed because src_reg and dst_reg could be the same */
9112 	__u8 tmp_reg = BPF_REG_AX;
9113 
9114 	*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9115 			      PKT_VLAN_PRESENT_OFFSET);
9116 	*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9117 				SKB_MONO_DELIVERY_TIME_MASK, 2);
9118 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9119 	*insn++ = BPF_JMP_A(1);
9120 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9121 
9122 	return insn;
9123 }
9124 
9125 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
9126 						  struct bpf_insn *insn)
9127 {
9128 	/* si->dst_reg = skb_shinfo(SKB); */
9129 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9130 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9131 			      BPF_REG_AX, si->src_reg,
9132 			      offsetof(struct sk_buff, end));
9133 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9134 			      si->dst_reg, si->src_reg,
9135 			      offsetof(struct sk_buff, head));
9136 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9137 #else
9138 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9139 			      si->dst_reg, si->src_reg,
9140 			      offsetof(struct sk_buff, end));
9141 #endif
9142 
9143 	return insn;
9144 }
9145 
9146 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9147 						const struct bpf_insn *si,
9148 						struct bpf_insn *insn)
9149 {
9150 	__u8 value_reg = si->dst_reg;
9151 	__u8 skb_reg = si->src_reg;
9152 
9153 #ifdef CONFIG_NET_CLS_ACT
9154 	/* If the tstamp_type is read,
9155 	 * the bpf prog is aware the tstamp could have delivery time.
9156 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9157 	 */
9158 	if (!prog->tstamp_type_access) {
9159 		/* AX is needed because src_reg and dst_reg could be the same */
9160 		__u8 tmp_reg = BPF_REG_AX;
9161 
9162 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9163 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9164 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9165 		*insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9166 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9167 		/* skb->tc_at_ingress && skb->mono_delivery_time,
9168 		 * read 0 as the (rcv) timestamp.
9169 		 */
9170 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9171 		*insn++ = BPF_JMP_A(1);
9172 	}
9173 #endif
9174 
9175 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9176 			      offsetof(struct sk_buff, tstamp));
9177 	return insn;
9178 }
9179 
9180 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9181 						 const struct bpf_insn *si,
9182 						 struct bpf_insn *insn)
9183 {
9184 	__u8 value_reg = si->src_reg;
9185 	__u8 skb_reg = si->dst_reg;
9186 
9187 #ifdef CONFIG_NET_CLS_ACT
9188 	/* If the tstamp_type is read,
9189 	 * the bpf prog is aware the tstamp could have delivery time.
9190 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9191 	 * Otherwise, writing at ingress will have to clear the
9192 	 * mono_delivery_time bit also.
9193 	 */
9194 	if (!prog->tstamp_type_access) {
9195 		__u8 tmp_reg = BPF_REG_AX;
9196 
9197 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9198 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9199 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9200 		/* goto <store> */
9201 		*insn++ = BPF_JMP_A(2);
9202 		/* <clear>: mono_delivery_time */
9203 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9204 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, PKT_VLAN_PRESENT_OFFSET);
9205 	}
9206 #endif
9207 
9208 	/* <store>: skb->tstamp = tstamp */
9209 	*insn++ = BPF_STX_MEM(BPF_DW, skb_reg, value_reg,
9210 			      offsetof(struct sk_buff, tstamp));
9211 	return insn;
9212 }
9213 
9214 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9215 				  const struct bpf_insn *si,
9216 				  struct bpf_insn *insn_buf,
9217 				  struct bpf_prog *prog, u32 *target_size)
9218 {
9219 	struct bpf_insn *insn = insn_buf;
9220 	int off;
9221 
9222 	switch (si->off) {
9223 	case offsetof(struct __sk_buff, len):
9224 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9225 				      bpf_target_off(struct sk_buff, len, 4,
9226 						     target_size));
9227 		break;
9228 
9229 	case offsetof(struct __sk_buff, protocol):
9230 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9231 				      bpf_target_off(struct sk_buff, protocol, 2,
9232 						     target_size));
9233 		break;
9234 
9235 	case offsetof(struct __sk_buff, vlan_proto):
9236 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9237 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9238 						     target_size));
9239 		break;
9240 
9241 	case offsetof(struct __sk_buff, priority):
9242 		if (type == BPF_WRITE)
9243 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9244 					      bpf_target_off(struct sk_buff, priority, 4,
9245 							     target_size));
9246 		else
9247 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9248 					      bpf_target_off(struct sk_buff, priority, 4,
9249 							     target_size));
9250 		break;
9251 
9252 	case offsetof(struct __sk_buff, ingress_ifindex):
9253 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9254 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9255 						     target_size));
9256 		break;
9257 
9258 	case offsetof(struct __sk_buff, ifindex):
9259 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9260 				      si->dst_reg, si->src_reg,
9261 				      offsetof(struct sk_buff, dev));
9262 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9263 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9264 				      bpf_target_off(struct net_device, ifindex, 4,
9265 						     target_size));
9266 		break;
9267 
9268 	case offsetof(struct __sk_buff, hash):
9269 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9270 				      bpf_target_off(struct sk_buff, hash, 4,
9271 						     target_size));
9272 		break;
9273 
9274 	case offsetof(struct __sk_buff, mark):
9275 		if (type == BPF_WRITE)
9276 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9277 					      bpf_target_off(struct sk_buff, mark, 4,
9278 							     target_size));
9279 		else
9280 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9281 					      bpf_target_off(struct sk_buff, mark, 4,
9282 							     target_size));
9283 		break;
9284 
9285 	case offsetof(struct __sk_buff, pkt_type):
9286 		*target_size = 1;
9287 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9288 				      PKT_TYPE_OFFSET);
9289 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9290 #ifdef __BIG_ENDIAN_BITFIELD
9291 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9292 #endif
9293 		break;
9294 
9295 	case offsetof(struct __sk_buff, queue_mapping):
9296 		if (type == BPF_WRITE) {
9297 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9298 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9299 					      bpf_target_off(struct sk_buff,
9300 							     queue_mapping,
9301 							     2, target_size));
9302 		} else {
9303 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9304 					      bpf_target_off(struct sk_buff,
9305 							     queue_mapping,
9306 							     2, target_size));
9307 		}
9308 		break;
9309 
9310 	case offsetof(struct __sk_buff, vlan_present):
9311 		*target_size = 1;
9312 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9313 				      PKT_VLAN_PRESENT_OFFSET);
9314 		if (PKT_VLAN_PRESENT_BIT)
9315 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
9316 		if (PKT_VLAN_PRESENT_BIT < 7)
9317 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
9318 		break;
9319 
9320 	case offsetof(struct __sk_buff, vlan_tci):
9321 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9322 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9323 						     target_size));
9324 		break;
9325 
9326 	case offsetof(struct __sk_buff, cb[0]) ...
9327 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9328 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9329 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9330 			      offsetof(struct qdisc_skb_cb, data)) %
9331 			     sizeof(__u64));
9332 
9333 		prog->cb_access = 1;
9334 		off  = si->off;
9335 		off -= offsetof(struct __sk_buff, cb[0]);
9336 		off += offsetof(struct sk_buff, cb);
9337 		off += offsetof(struct qdisc_skb_cb, data);
9338 		if (type == BPF_WRITE)
9339 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9340 					      si->src_reg, off);
9341 		else
9342 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9343 					      si->src_reg, off);
9344 		break;
9345 
9346 	case offsetof(struct __sk_buff, tc_classid):
9347 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9348 
9349 		off  = si->off;
9350 		off -= offsetof(struct __sk_buff, tc_classid);
9351 		off += offsetof(struct sk_buff, cb);
9352 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9353 		*target_size = 2;
9354 		if (type == BPF_WRITE)
9355 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
9356 					      si->src_reg, off);
9357 		else
9358 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9359 					      si->src_reg, off);
9360 		break;
9361 
9362 	case offsetof(struct __sk_buff, data):
9363 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9364 				      si->dst_reg, si->src_reg,
9365 				      offsetof(struct sk_buff, data));
9366 		break;
9367 
9368 	case offsetof(struct __sk_buff, data_meta):
9369 		off  = si->off;
9370 		off -= offsetof(struct __sk_buff, data_meta);
9371 		off += offsetof(struct sk_buff, cb);
9372 		off += offsetof(struct bpf_skb_data_end, data_meta);
9373 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9374 				      si->src_reg, off);
9375 		break;
9376 
9377 	case offsetof(struct __sk_buff, data_end):
9378 		off  = si->off;
9379 		off -= offsetof(struct __sk_buff, data_end);
9380 		off += offsetof(struct sk_buff, cb);
9381 		off += offsetof(struct bpf_skb_data_end, data_end);
9382 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9383 				      si->src_reg, off);
9384 		break;
9385 
9386 	case offsetof(struct __sk_buff, tc_index):
9387 #ifdef CONFIG_NET_SCHED
9388 		if (type == BPF_WRITE)
9389 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9390 					      bpf_target_off(struct sk_buff, tc_index, 2,
9391 							     target_size));
9392 		else
9393 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9394 					      bpf_target_off(struct sk_buff, tc_index, 2,
9395 							     target_size));
9396 #else
9397 		*target_size = 2;
9398 		if (type == BPF_WRITE)
9399 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9400 		else
9401 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9402 #endif
9403 		break;
9404 
9405 	case offsetof(struct __sk_buff, napi_id):
9406 #if defined(CONFIG_NET_RX_BUSY_POLL)
9407 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9408 				      bpf_target_off(struct sk_buff, napi_id, 4,
9409 						     target_size));
9410 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9411 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9412 #else
9413 		*target_size = 4;
9414 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9415 #endif
9416 		break;
9417 	case offsetof(struct __sk_buff, family):
9418 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9419 
9420 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9421 				      si->dst_reg, si->src_reg,
9422 				      offsetof(struct sk_buff, sk));
9423 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9424 				      bpf_target_off(struct sock_common,
9425 						     skc_family,
9426 						     2, target_size));
9427 		break;
9428 	case offsetof(struct __sk_buff, remote_ip4):
9429 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9430 
9431 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9432 				      si->dst_reg, si->src_reg,
9433 				      offsetof(struct sk_buff, sk));
9434 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9435 				      bpf_target_off(struct sock_common,
9436 						     skc_daddr,
9437 						     4, target_size));
9438 		break;
9439 	case offsetof(struct __sk_buff, local_ip4):
9440 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9441 					  skc_rcv_saddr) != 4);
9442 
9443 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9444 				      si->dst_reg, si->src_reg,
9445 				      offsetof(struct sk_buff, sk));
9446 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9447 				      bpf_target_off(struct sock_common,
9448 						     skc_rcv_saddr,
9449 						     4, target_size));
9450 		break;
9451 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9452 	     offsetof(struct __sk_buff, remote_ip6[3]):
9453 #if IS_ENABLED(CONFIG_IPV6)
9454 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9455 					  skc_v6_daddr.s6_addr32[0]) != 4);
9456 
9457 		off = si->off;
9458 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9459 
9460 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9461 				      si->dst_reg, si->src_reg,
9462 				      offsetof(struct sk_buff, sk));
9463 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9464 				      offsetof(struct sock_common,
9465 					       skc_v6_daddr.s6_addr32[0]) +
9466 				      off);
9467 #else
9468 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9469 #endif
9470 		break;
9471 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9472 	     offsetof(struct __sk_buff, local_ip6[3]):
9473 #if IS_ENABLED(CONFIG_IPV6)
9474 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9475 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9476 
9477 		off = si->off;
9478 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9479 
9480 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9481 				      si->dst_reg, si->src_reg,
9482 				      offsetof(struct sk_buff, sk));
9483 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9484 				      offsetof(struct sock_common,
9485 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9486 				      off);
9487 #else
9488 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9489 #endif
9490 		break;
9491 
9492 	case offsetof(struct __sk_buff, remote_port):
9493 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9494 
9495 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9496 				      si->dst_reg, si->src_reg,
9497 				      offsetof(struct sk_buff, sk));
9498 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9499 				      bpf_target_off(struct sock_common,
9500 						     skc_dport,
9501 						     2, target_size));
9502 #ifndef __BIG_ENDIAN_BITFIELD
9503 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9504 #endif
9505 		break;
9506 
9507 	case offsetof(struct __sk_buff, local_port):
9508 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9509 
9510 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9511 				      si->dst_reg, si->src_reg,
9512 				      offsetof(struct sk_buff, sk));
9513 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9514 				      bpf_target_off(struct sock_common,
9515 						     skc_num, 2, target_size));
9516 		break;
9517 
9518 	case offsetof(struct __sk_buff, tstamp):
9519 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9520 
9521 		if (type == BPF_WRITE)
9522 			insn = bpf_convert_tstamp_write(prog, si, insn);
9523 		else
9524 			insn = bpf_convert_tstamp_read(prog, si, insn);
9525 		break;
9526 
9527 	case offsetof(struct __sk_buff, tstamp_type):
9528 		insn = bpf_convert_tstamp_type_read(si, insn);
9529 		break;
9530 
9531 	case offsetof(struct __sk_buff, gso_segs):
9532 		insn = bpf_convert_shinfo_access(si, insn);
9533 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9534 				      si->dst_reg, si->dst_reg,
9535 				      bpf_target_off(struct skb_shared_info,
9536 						     gso_segs, 2,
9537 						     target_size));
9538 		break;
9539 	case offsetof(struct __sk_buff, gso_size):
9540 		insn = bpf_convert_shinfo_access(si, insn);
9541 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9542 				      si->dst_reg, si->dst_reg,
9543 				      bpf_target_off(struct skb_shared_info,
9544 						     gso_size, 2,
9545 						     target_size));
9546 		break;
9547 	case offsetof(struct __sk_buff, wire_len):
9548 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9549 
9550 		off = si->off;
9551 		off -= offsetof(struct __sk_buff, wire_len);
9552 		off += offsetof(struct sk_buff, cb);
9553 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9554 		*target_size = 4;
9555 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9556 		break;
9557 
9558 	case offsetof(struct __sk_buff, sk):
9559 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9560 				      si->dst_reg, si->src_reg,
9561 				      offsetof(struct sk_buff, sk));
9562 		break;
9563 	case offsetof(struct __sk_buff, hwtstamp):
9564 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9565 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9566 
9567 		insn = bpf_convert_shinfo_access(si, insn);
9568 		*insn++ = BPF_LDX_MEM(BPF_DW,
9569 				      si->dst_reg, si->dst_reg,
9570 				      bpf_target_off(struct skb_shared_info,
9571 						     hwtstamps, 8,
9572 						     target_size));
9573 		break;
9574 	}
9575 
9576 	return insn - insn_buf;
9577 }
9578 
9579 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9580 				const struct bpf_insn *si,
9581 				struct bpf_insn *insn_buf,
9582 				struct bpf_prog *prog, u32 *target_size)
9583 {
9584 	struct bpf_insn *insn = insn_buf;
9585 	int off;
9586 
9587 	switch (si->off) {
9588 	case offsetof(struct bpf_sock, bound_dev_if):
9589 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9590 
9591 		if (type == BPF_WRITE)
9592 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9593 					offsetof(struct sock, sk_bound_dev_if));
9594 		else
9595 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9596 				      offsetof(struct sock, sk_bound_dev_if));
9597 		break;
9598 
9599 	case offsetof(struct bpf_sock, mark):
9600 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9601 
9602 		if (type == BPF_WRITE)
9603 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9604 					offsetof(struct sock, sk_mark));
9605 		else
9606 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9607 				      offsetof(struct sock, sk_mark));
9608 		break;
9609 
9610 	case offsetof(struct bpf_sock, priority):
9611 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9612 
9613 		if (type == BPF_WRITE)
9614 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9615 					offsetof(struct sock, sk_priority));
9616 		else
9617 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9618 				      offsetof(struct sock, sk_priority));
9619 		break;
9620 
9621 	case offsetof(struct bpf_sock, family):
9622 		*insn++ = BPF_LDX_MEM(
9623 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9624 			si->dst_reg, si->src_reg,
9625 			bpf_target_off(struct sock_common,
9626 				       skc_family,
9627 				       sizeof_field(struct sock_common,
9628 						    skc_family),
9629 				       target_size));
9630 		break;
9631 
9632 	case offsetof(struct bpf_sock, type):
9633 		*insn++ = BPF_LDX_MEM(
9634 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9635 			si->dst_reg, si->src_reg,
9636 			bpf_target_off(struct sock, sk_type,
9637 				       sizeof_field(struct sock, sk_type),
9638 				       target_size));
9639 		break;
9640 
9641 	case offsetof(struct bpf_sock, protocol):
9642 		*insn++ = BPF_LDX_MEM(
9643 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9644 			si->dst_reg, si->src_reg,
9645 			bpf_target_off(struct sock, sk_protocol,
9646 				       sizeof_field(struct sock, sk_protocol),
9647 				       target_size));
9648 		break;
9649 
9650 	case offsetof(struct bpf_sock, src_ip4):
9651 		*insn++ = BPF_LDX_MEM(
9652 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9653 			bpf_target_off(struct sock_common, skc_rcv_saddr,
9654 				       sizeof_field(struct sock_common,
9655 						    skc_rcv_saddr),
9656 				       target_size));
9657 		break;
9658 
9659 	case offsetof(struct bpf_sock, dst_ip4):
9660 		*insn++ = BPF_LDX_MEM(
9661 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9662 			bpf_target_off(struct sock_common, skc_daddr,
9663 				       sizeof_field(struct sock_common,
9664 						    skc_daddr),
9665 				       target_size));
9666 		break;
9667 
9668 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9669 #if IS_ENABLED(CONFIG_IPV6)
9670 		off = si->off;
9671 		off -= offsetof(struct bpf_sock, src_ip6[0]);
9672 		*insn++ = BPF_LDX_MEM(
9673 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9674 			bpf_target_off(
9675 				struct sock_common,
9676 				skc_v6_rcv_saddr.s6_addr32[0],
9677 				sizeof_field(struct sock_common,
9678 					     skc_v6_rcv_saddr.s6_addr32[0]),
9679 				target_size) + off);
9680 #else
9681 		(void)off;
9682 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9683 #endif
9684 		break;
9685 
9686 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9687 #if IS_ENABLED(CONFIG_IPV6)
9688 		off = si->off;
9689 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9690 		*insn++ = BPF_LDX_MEM(
9691 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9692 			bpf_target_off(struct sock_common,
9693 				       skc_v6_daddr.s6_addr32[0],
9694 				       sizeof_field(struct sock_common,
9695 						    skc_v6_daddr.s6_addr32[0]),
9696 				       target_size) + off);
9697 #else
9698 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9699 		*target_size = 4;
9700 #endif
9701 		break;
9702 
9703 	case offsetof(struct bpf_sock, src_port):
9704 		*insn++ = BPF_LDX_MEM(
9705 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9706 			si->dst_reg, si->src_reg,
9707 			bpf_target_off(struct sock_common, skc_num,
9708 				       sizeof_field(struct sock_common,
9709 						    skc_num),
9710 				       target_size));
9711 		break;
9712 
9713 	case offsetof(struct bpf_sock, dst_port):
9714 		*insn++ = BPF_LDX_MEM(
9715 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9716 			si->dst_reg, si->src_reg,
9717 			bpf_target_off(struct sock_common, skc_dport,
9718 				       sizeof_field(struct sock_common,
9719 						    skc_dport),
9720 				       target_size));
9721 		break;
9722 
9723 	case offsetof(struct bpf_sock, state):
9724 		*insn++ = BPF_LDX_MEM(
9725 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9726 			si->dst_reg, si->src_reg,
9727 			bpf_target_off(struct sock_common, skc_state,
9728 				       sizeof_field(struct sock_common,
9729 						    skc_state),
9730 				       target_size));
9731 		break;
9732 	case offsetof(struct bpf_sock, rx_queue_mapping):
9733 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9734 		*insn++ = BPF_LDX_MEM(
9735 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9736 			si->dst_reg, si->src_reg,
9737 			bpf_target_off(struct sock, sk_rx_queue_mapping,
9738 				       sizeof_field(struct sock,
9739 						    sk_rx_queue_mapping),
9740 				       target_size));
9741 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9742 				      1);
9743 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9744 #else
9745 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9746 		*target_size = 2;
9747 #endif
9748 		break;
9749 	}
9750 
9751 	return insn - insn_buf;
9752 }
9753 
9754 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9755 					 const struct bpf_insn *si,
9756 					 struct bpf_insn *insn_buf,
9757 					 struct bpf_prog *prog, u32 *target_size)
9758 {
9759 	struct bpf_insn *insn = insn_buf;
9760 
9761 	switch (si->off) {
9762 	case offsetof(struct __sk_buff, ifindex):
9763 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9764 				      si->dst_reg, si->src_reg,
9765 				      offsetof(struct sk_buff, dev));
9766 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9767 				      bpf_target_off(struct net_device, ifindex, 4,
9768 						     target_size));
9769 		break;
9770 	default:
9771 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9772 					      target_size);
9773 	}
9774 
9775 	return insn - insn_buf;
9776 }
9777 
9778 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9779 				  const struct bpf_insn *si,
9780 				  struct bpf_insn *insn_buf,
9781 				  struct bpf_prog *prog, u32 *target_size)
9782 {
9783 	struct bpf_insn *insn = insn_buf;
9784 
9785 	switch (si->off) {
9786 	case offsetof(struct xdp_md, data):
9787 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9788 				      si->dst_reg, si->src_reg,
9789 				      offsetof(struct xdp_buff, data));
9790 		break;
9791 	case offsetof(struct xdp_md, data_meta):
9792 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9793 				      si->dst_reg, si->src_reg,
9794 				      offsetof(struct xdp_buff, data_meta));
9795 		break;
9796 	case offsetof(struct xdp_md, data_end):
9797 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9798 				      si->dst_reg, si->src_reg,
9799 				      offsetof(struct xdp_buff, data_end));
9800 		break;
9801 	case offsetof(struct xdp_md, ingress_ifindex):
9802 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9803 				      si->dst_reg, si->src_reg,
9804 				      offsetof(struct xdp_buff, rxq));
9805 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9806 				      si->dst_reg, si->dst_reg,
9807 				      offsetof(struct xdp_rxq_info, dev));
9808 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9809 				      offsetof(struct net_device, ifindex));
9810 		break;
9811 	case offsetof(struct xdp_md, rx_queue_index):
9812 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9813 				      si->dst_reg, si->src_reg,
9814 				      offsetof(struct xdp_buff, rxq));
9815 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9816 				      offsetof(struct xdp_rxq_info,
9817 					       queue_index));
9818 		break;
9819 	case offsetof(struct xdp_md, egress_ifindex):
9820 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9821 				      si->dst_reg, si->src_reg,
9822 				      offsetof(struct xdp_buff, txq));
9823 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9824 				      si->dst_reg, si->dst_reg,
9825 				      offsetof(struct xdp_txq_info, dev));
9826 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9827 				      offsetof(struct net_device, ifindex));
9828 		break;
9829 	}
9830 
9831 	return insn - insn_buf;
9832 }
9833 
9834 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9835  * context Structure, F is Field in context structure that contains a pointer
9836  * to Nested Structure of type NS that has the field NF.
9837  *
9838  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9839  * sure that SIZE is not greater than actual size of S.F.NF.
9840  *
9841  * If offset OFF is provided, the load happens from that offset relative to
9842  * offset of NF.
9843  */
9844 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
9845 	do {								       \
9846 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9847 				      si->src_reg, offsetof(S, F));	       \
9848 		*insn++ = BPF_LDX_MEM(					       \
9849 			SIZE, si->dst_reg, si->dst_reg,			       \
9850 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9851 				       target_size)			       \
9852 				+ OFF);					       \
9853 	} while (0)
9854 
9855 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
9856 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
9857 					     BPF_FIELD_SIZEOF(NS, NF), 0)
9858 
9859 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9860  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9861  *
9862  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9863  * "register" since two registers available in convert_ctx_access are not
9864  * enough: we can't override neither SRC, since it contains value to store, nor
9865  * DST since it contains pointer to context that may be used by later
9866  * instructions. But we need a temporary place to save pointer to nested
9867  * structure whose field we want to store to.
9868  */
9869 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
9870 	do {								       \
9871 		int tmp_reg = BPF_REG_9;				       \
9872 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9873 			--tmp_reg;					       \
9874 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9875 			--tmp_reg;					       \
9876 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
9877 				      offsetof(S, TF));			       \
9878 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
9879 				      si->dst_reg, offsetof(S, F));	       \
9880 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
9881 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9882 				       target_size)			       \
9883 				+ OFF);					       \
9884 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
9885 				      offsetof(S, TF));			       \
9886 	} while (0)
9887 
9888 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9889 						      TF)		       \
9890 	do {								       \
9891 		if (type == BPF_WRITE) {				       \
9892 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9893 							 OFF, TF);	       \
9894 		} else {						       \
9895 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
9896 				S, NS, F, NF, SIZE, OFF);  \
9897 		}							       \
9898 	} while (0)
9899 
9900 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
9901 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
9902 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9903 
9904 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9905 					const struct bpf_insn *si,
9906 					struct bpf_insn *insn_buf,
9907 					struct bpf_prog *prog, u32 *target_size)
9908 {
9909 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9910 	struct bpf_insn *insn = insn_buf;
9911 
9912 	switch (si->off) {
9913 	case offsetof(struct bpf_sock_addr, user_family):
9914 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9915 					    struct sockaddr, uaddr, sa_family);
9916 		break;
9917 
9918 	case offsetof(struct bpf_sock_addr, user_ip4):
9919 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9920 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9921 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9922 		break;
9923 
9924 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9925 		off = si->off;
9926 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9927 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9928 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9929 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9930 			tmp_reg);
9931 		break;
9932 
9933 	case offsetof(struct bpf_sock_addr, user_port):
9934 		/* To get port we need to know sa_family first and then treat
9935 		 * sockaddr as either sockaddr_in or sockaddr_in6.
9936 		 * Though we can simplify since port field has same offset and
9937 		 * size in both structures.
9938 		 * Here we check this invariant and use just one of the
9939 		 * structures if it's true.
9940 		 */
9941 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9942 			     offsetof(struct sockaddr_in6, sin6_port));
9943 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9944 			     sizeof_field(struct sockaddr_in6, sin6_port));
9945 		/* Account for sin6_port being smaller than user_port. */
9946 		port_size = min(port_size, BPF_LDST_BYTES(si));
9947 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9948 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9949 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9950 		break;
9951 
9952 	case offsetof(struct bpf_sock_addr, family):
9953 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9954 					    struct sock, sk, sk_family);
9955 		break;
9956 
9957 	case offsetof(struct bpf_sock_addr, type):
9958 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9959 					    struct sock, sk, sk_type);
9960 		break;
9961 
9962 	case offsetof(struct bpf_sock_addr, protocol):
9963 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9964 					    struct sock, sk, sk_protocol);
9965 		break;
9966 
9967 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
9968 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
9969 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9970 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9971 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9972 		break;
9973 
9974 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9975 				msg_src_ip6[3]):
9976 		off = si->off;
9977 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9978 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9979 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9980 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9981 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9982 		break;
9983 	case offsetof(struct bpf_sock_addr, sk):
9984 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9985 				      si->dst_reg, si->src_reg,
9986 				      offsetof(struct bpf_sock_addr_kern, sk));
9987 		break;
9988 	}
9989 
9990 	return insn - insn_buf;
9991 }
9992 
9993 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9994 				       const struct bpf_insn *si,
9995 				       struct bpf_insn *insn_buf,
9996 				       struct bpf_prog *prog,
9997 				       u32 *target_size)
9998 {
9999 	struct bpf_insn *insn = insn_buf;
10000 	int off;
10001 
10002 /* Helper macro for adding read access to tcp_sock or sock fields. */
10003 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10004 	do {								      \
10005 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10006 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10007 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10008 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10009 			reg--;						      \
10010 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10011 			reg--;						      \
10012 		if (si->dst_reg == si->src_reg) {			      \
10013 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10014 					  offsetof(struct bpf_sock_ops_kern,  \
10015 					  temp));			      \
10016 			fullsock_reg = reg;				      \
10017 			jmp += 2;					      \
10018 		}							      \
10019 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10020 						struct bpf_sock_ops_kern,     \
10021 						is_fullsock),		      \
10022 				      fullsock_reg, si->src_reg,	      \
10023 				      offsetof(struct bpf_sock_ops_kern,      \
10024 					       is_fullsock));		      \
10025 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10026 		if (si->dst_reg == si->src_reg)				      \
10027 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10028 				      offsetof(struct bpf_sock_ops_kern,      \
10029 				      temp));				      \
10030 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10031 						struct bpf_sock_ops_kern, sk),\
10032 				      si->dst_reg, si->src_reg,		      \
10033 				      offsetof(struct bpf_sock_ops_kern, sk));\
10034 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10035 						       OBJ_FIELD),	      \
10036 				      si->dst_reg, si->dst_reg,		      \
10037 				      offsetof(OBJ, OBJ_FIELD));	      \
10038 		if (si->dst_reg == si->src_reg)	{			      \
10039 			*insn++ = BPF_JMP_A(1);				      \
10040 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10041 				      offsetof(struct bpf_sock_ops_kern,      \
10042 				      temp));				      \
10043 		}							      \
10044 	} while (0)
10045 
10046 #define SOCK_OPS_GET_SK()							      \
10047 	do {								      \
10048 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10049 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10050 			reg--;						      \
10051 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10052 			reg--;						      \
10053 		if (si->dst_reg == si->src_reg) {			      \
10054 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10055 					  offsetof(struct bpf_sock_ops_kern,  \
10056 					  temp));			      \
10057 			fullsock_reg = reg;				      \
10058 			jmp += 2;					      \
10059 		}							      \
10060 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10061 						struct bpf_sock_ops_kern,     \
10062 						is_fullsock),		      \
10063 				      fullsock_reg, si->src_reg,	      \
10064 				      offsetof(struct bpf_sock_ops_kern,      \
10065 					       is_fullsock));		      \
10066 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10067 		if (si->dst_reg == si->src_reg)				      \
10068 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10069 				      offsetof(struct bpf_sock_ops_kern,      \
10070 				      temp));				      \
10071 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10072 						struct bpf_sock_ops_kern, sk),\
10073 				      si->dst_reg, si->src_reg,		      \
10074 				      offsetof(struct bpf_sock_ops_kern, sk));\
10075 		if (si->dst_reg == si->src_reg)	{			      \
10076 			*insn++ = BPF_JMP_A(1);				      \
10077 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10078 				      offsetof(struct bpf_sock_ops_kern,      \
10079 				      temp));				      \
10080 		}							      \
10081 	} while (0)
10082 
10083 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10084 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10085 
10086 /* Helper macro for adding write access to tcp_sock or sock fields.
10087  * The macro is called with two registers, dst_reg which contains a pointer
10088  * to ctx (context) and src_reg which contains the value that should be
10089  * stored. However, we need an additional register since we cannot overwrite
10090  * dst_reg because it may be used later in the program.
10091  * Instead we "borrow" one of the other register. We first save its value
10092  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10093  * it at the end of the macro.
10094  */
10095 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10096 	do {								      \
10097 		int reg = BPF_REG_9;					      \
10098 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10099 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10100 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10101 			reg--;						      \
10102 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10103 			reg--;						      \
10104 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10105 				      offsetof(struct bpf_sock_ops_kern,      \
10106 					       temp));			      \
10107 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10108 						struct bpf_sock_ops_kern,     \
10109 						is_fullsock),		      \
10110 				      reg, si->dst_reg,			      \
10111 				      offsetof(struct bpf_sock_ops_kern,      \
10112 					       is_fullsock));		      \
10113 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10114 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10115 						struct bpf_sock_ops_kern, sk),\
10116 				      reg, si->dst_reg,			      \
10117 				      offsetof(struct bpf_sock_ops_kern, sk));\
10118 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
10119 				      reg, si->src_reg,			      \
10120 				      offsetof(OBJ, OBJ_FIELD));	      \
10121 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10122 				      offsetof(struct bpf_sock_ops_kern,      \
10123 					       temp));			      \
10124 	} while (0)
10125 
10126 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10127 	do {								      \
10128 		if (TYPE == BPF_WRITE)					      \
10129 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10130 		else							      \
10131 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10132 	} while (0)
10133 
10134 	if (insn > insn_buf)
10135 		return insn - insn_buf;
10136 
10137 	switch (si->off) {
10138 	case offsetof(struct bpf_sock_ops, op):
10139 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10140 						       op),
10141 				      si->dst_reg, si->src_reg,
10142 				      offsetof(struct bpf_sock_ops_kern, op));
10143 		break;
10144 
10145 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10146 	     offsetof(struct bpf_sock_ops, replylong[3]):
10147 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10148 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10149 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10150 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10151 		off = si->off;
10152 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10153 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10154 		if (type == BPF_WRITE)
10155 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
10156 					      off);
10157 		else
10158 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10159 					      off);
10160 		break;
10161 
10162 	case offsetof(struct bpf_sock_ops, family):
10163 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10164 
10165 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10166 					      struct bpf_sock_ops_kern, sk),
10167 				      si->dst_reg, si->src_reg,
10168 				      offsetof(struct bpf_sock_ops_kern, sk));
10169 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10170 				      offsetof(struct sock_common, skc_family));
10171 		break;
10172 
10173 	case offsetof(struct bpf_sock_ops, remote_ip4):
10174 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10175 
10176 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10177 						struct bpf_sock_ops_kern, sk),
10178 				      si->dst_reg, si->src_reg,
10179 				      offsetof(struct bpf_sock_ops_kern, sk));
10180 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10181 				      offsetof(struct sock_common, skc_daddr));
10182 		break;
10183 
10184 	case offsetof(struct bpf_sock_ops, local_ip4):
10185 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10186 					  skc_rcv_saddr) != 4);
10187 
10188 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10189 					      struct bpf_sock_ops_kern, sk),
10190 				      si->dst_reg, si->src_reg,
10191 				      offsetof(struct bpf_sock_ops_kern, sk));
10192 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10193 				      offsetof(struct sock_common,
10194 					       skc_rcv_saddr));
10195 		break;
10196 
10197 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10198 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10199 #if IS_ENABLED(CONFIG_IPV6)
10200 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10201 					  skc_v6_daddr.s6_addr32[0]) != 4);
10202 
10203 		off = si->off;
10204 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10205 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10206 						struct bpf_sock_ops_kern, sk),
10207 				      si->dst_reg, si->src_reg,
10208 				      offsetof(struct bpf_sock_ops_kern, sk));
10209 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10210 				      offsetof(struct sock_common,
10211 					       skc_v6_daddr.s6_addr32[0]) +
10212 				      off);
10213 #else
10214 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10215 #endif
10216 		break;
10217 
10218 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10219 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10220 #if IS_ENABLED(CONFIG_IPV6)
10221 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10222 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10223 
10224 		off = si->off;
10225 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10226 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10227 						struct bpf_sock_ops_kern, sk),
10228 				      si->dst_reg, si->src_reg,
10229 				      offsetof(struct bpf_sock_ops_kern, sk));
10230 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10231 				      offsetof(struct sock_common,
10232 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10233 				      off);
10234 #else
10235 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10236 #endif
10237 		break;
10238 
10239 	case offsetof(struct bpf_sock_ops, remote_port):
10240 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10241 
10242 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10243 						struct bpf_sock_ops_kern, sk),
10244 				      si->dst_reg, si->src_reg,
10245 				      offsetof(struct bpf_sock_ops_kern, sk));
10246 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10247 				      offsetof(struct sock_common, skc_dport));
10248 #ifndef __BIG_ENDIAN_BITFIELD
10249 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10250 #endif
10251 		break;
10252 
10253 	case offsetof(struct bpf_sock_ops, local_port):
10254 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10255 
10256 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10257 						struct bpf_sock_ops_kern, sk),
10258 				      si->dst_reg, si->src_reg,
10259 				      offsetof(struct bpf_sock_ops_kern, sk));
10260 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10261 				      offsetof(struct sock_common, skc_num));
10262 		break;
10263 
10264 	case offsetof(struct bpf_sock_ops, is_fullsock):
10265 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10266 						struct bpf_sock_ops_kern,
10267 						is_fullsock),
10268 				      si->dst_reg, si->src_reg,
10269 				      offsetof(struct bpf_sock_ops_kern,
10270 					       is_fullsock));
10271 		break;
10272 
10273 	case offsetof(struct bpf_sock_ops, state):
10274 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10275 
10276 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10277 						struct bpf_sock_ops_kern, sk),
10278 				      si->dst_reg, si->src_reg,
10279 				      offsetof(struct bpf_sock_ops_kern, sk));
10280 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10281 				      offsetof(struct sock_common, skc_state));
10282 		break;
10283 
10284 	case offsetof(struct bpf_sock_ops, rtt_min):
10285 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10286 			     sizeof(struct minmax));
10287 		BUILD_BUG_ON(sizeof(struct minmax) <
10288 			     sizeof(struct minmax_sample));
10289 
10290 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10291 						struct bpf_sock_ops_kern, sk),
10292 				      si->dst_reg, si->src_reg,
10293 				      offsetof(struct bpf_sock_ops_kern, sk));
10294 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10295 				      offsetof(struct tcp_sock, rtt_min) +
10296 				      sizeof_field(struct minmax_sample, t));
10297 		break;
10298 
10299 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10300 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10301 				   struct tcp_sock);
10302 		break;
10303 
10304 	case offsetof(struct bpf_sock_ops, sk_txhash):
10305 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10306 					  struct sock, type);
10307 		break;
10308 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10309 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10310 		break;
10311 	case offsetof(struct bpf_sock_ops, srtt_us):
10312 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10313 		break;
10314 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10315 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10316 		break;
10317 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10318 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10319 		break;
10320 	case offsetof(struct bpf_sock_ops, snd_nxt):
10321 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10322 		break;
10323 	case offsetof(struct bpf_sock_ops, snd_una):
10324 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10325 		break;
10326 	case offsetof(struct bpf_sock_ops, mss_cache):
10327 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10328 		break;
10329 	case offsetof(struct bpf_sock_ops, ecn_flags):
10330 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10331 		break;
10332 	case offsetof(struct bpf_sock_ops, rate_delivered):
10333 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10334 		break;
10335 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10336 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10337 		break;
10338 	case offsetof(struct bpf_sock_ops, packets_out):
10339 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10340 		break;
10341 	case offsetof(struct bpf_sock_ops, retrans_out):
10342 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10343 		break;
10344 	case offsetof(struct bpf_sock_ops, total_retrans):
10345 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10346 		break;
10347 	case offsetof(struct bpf_sock_ops, segs_in):
10348 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10349 		break;
10350 	case offsetof(struct bpf_sock_ops, data_segs_in):
10351 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10352 		break;
10353 	case offsetof(struct bpf_sock_ops, segs_out):
10354 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10355 		break;
10356 	case offsetof(struct bpf_sock_ops, data_segs_out):
10357 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10358 		break;
10359 	case offsetof(struct bpf_sock_ops, lost_out):
10360 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10361 		break;
10362 	case offsetof(struct bpf_sock_ops, sacked_out):
10363 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10364 		break;
10365 	case offsetof(struct bpf_sock_ops, bytes_received):
10366 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10367 		break;
10368 	case offsetof(struct bpf_sock_ops, bytes_acked):
10369 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10370 		break;
10371 	case offsetof(struct bpf_sock_ops, sk):
10372 		SOCK_OPS_GET_SK();
10373 		break;
10374 	case offsetof(struct bpf_sock_ops, skb_data_end):
10375 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10376 						       skb_data_end),
10377 				      si->dst_reg, si->src_reg,
10378 				      offsetof(struct bpf_sock_ops_kern,
10379 					       skb_data_end));
10380 		break;
10381 	case offsetof(struct bpf_sock_ops, skb_data):
10382 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10383 						       skb),
10384 				      si->dst_reg, si->src_reg,
10385 				      offsetof(struct bpf_sock_ops_kern,
10386 					       skb));
10387 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10388 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10389 				      si->dst_reg, si->dst_reg,
10390 				      offsetof(struct sk_buff, data));
10391 		break;
10392 	case offsetof(struct bpf_sock_ops, skb_len):
10393 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10394 						       skb),
10395 				      si->dst_reg, si->src_reg,
10396 				      offsetof(struct bpf_sock_ops_kern,
10397 					       skb));
10398 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10399 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10400 				      si->dst_reg, si->dst_reg,
10401 				      offsetof(struct sk_buff, len));
10402 		break;
10403 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10404 		off = offsetof(struct sk_buff, cb);
10405 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10406 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10407 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10408 						       skb),
10409 				      si->dst_reg, si->src_reg,
10410 				      offsetof(struct bpf_sock_ops_kern,
10411 					       skb));
10412 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10413 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10414 						       tcp_flags),
10415 				      si->dst_reg, si->dst_reg, off);
10416 		break;
10417 	}
10418 	return insn - insn_buf;
10419 }
10420 
10421 /* data_end = skb->data + skb_headlen() */
10422 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10423 						    struct bpf_insn *insn)
10424 {
10425 	int reg;
10426 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10427 			   offsetof(struct sk_skb_cb, temp_reg);
10428 
10429 	if (si->src_reg == si->dst_reg) {
10430 		/* We need an extra register, choose and save a register. */
10431 		reg = BPF_REG_9;
10432 		if (si->src_reg == reg || si->dst_reg == reg)
10433 			reg--;
10434 		if (si->src_reg == reg || si->dst_reg == reg)
10435 			reg--;
10436 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10437 	} else {
10438 		reg = si->dst_reg;
10439 	}
10440 
10441 	/* reg = skb->data */
10442 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10443 			      reg, si->src_reg,
10444 			      offsetof(struct sk_buff, data));
10445 	/* AX = skb->len */
10446 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10447 			      BPF_REG_AX, si->src_reg,
10448 			      offsetof(struct sk_buff, len));
10449 	/* reg = skb->data + skb->len */
10450 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10451 	/* AX = skb->data_len */
10452 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10453 			      BPF_REG_AX, si->src_reg,
10454 			      offsetof(struct sk_buff, data_len));
10455 
10456 	/* reg = skb->data + skb->len - skb->data_len */
10457 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10458 
10459 	if (si->src_reg == si->dst_reg) {
10460 		/* Restore the saved register */
10461 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10462 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10463 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10464 	}
10465 
10466 	return insn;
10467 }
10468 
10469 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10470 				     const struct bpf_insn *si,
10471 				     struct bpf_insn *insn_buf,
10472 				     struct bpf_prog *prog, u32 *target_size)
10473 {
10474 	struct bpf_insn *insn = insn_buf;
10475 	int off;
10476 
10477 	switch (si->off) {
10478 	case offsetof(struct __sk_buff, data_end):
10479 		insn = bpf_convert_data_end_access(si, insn);
10480 		break;
10481 	case offsetof(struct __sk_buff, cb[0]) ...
10482 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10483 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10484 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10485 			      offsetof(struct sk_skb_cb, data)) %
10486 			     sizeof(__u64));
10487 
10488 		prog->cb_access = 1;
10489 		off  = si->off;
10490 		off -= offsetof(struct __sk_buff, cb[0]);
10491 		off += offsetof(struct sk_buff, cb);
10492 		off += offsetof(struct sk_skb_cb, data);
10493 		if (type == BPF_WRITE)
10494 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
10495 					      si->src_reg, off);
10496 		else
10497 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10498 					      si->src_reg, off);
10499 		break;
10500 
10501 
10502 	default:
10503 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10504 					      target_size);
10505 	}
10506 
10507 	return insn - insn_buf;
10508 }
10509 
10510 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10511 				     const struct bpf_insn *si,
10512 				     struct bpf_insn *insn_buf,
10513 				     struct bpf_prog *prog, u32 *target_size)
10514 {
10515 	struct bpf_insn *insn = insn_buf;
10516 #if IS_ENABLED(CONFIG_IPV6)
10517 	int off;
10518 #endif
10519 
10520 	/* convert ctx uses the fact sg element is first in struct */
10521 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10522 
10523 	switch (si->off) {
10524 	case offsetof(struct sk_msg_md, data):
10525 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10526 				      si->dst_reg, si->src_reg,
10527 				      offsetof(struct sk_msg, data));
10528 		break;
10529 	case offsetof(struct sk_msg_md, data_end):
10530 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10531 				      si->dst_reg, si->src_reg,
10532 				      offsetof(struct sk_msg, data_end));
10533 		break;
10534 	case offsetof(struct sk_msg_md, family):
10535 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10536 
10537 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10538 					      struct sk_msg, sk),
10539 				      si->dst_reg, si->src_reg,
10540 				      offsetof(struct sk_msg, sk));
10541 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10542 				      offsetof(struct sock_common, skc_family));
10543 		break;
10544 
10545 	case offsetof(struct sk_msg_md, remote_ip4):
10546 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10547 
10548 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10549 						struct sk_msg, sk),
10550 				      si->dst_reg, si->src_reg,
10551 				      offsetof(struct sk_msg, sk));
10552 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10553 				      offsetof(struct sock_common, skc_daddr));
10554 		break;
10555 
10556 	case offsetof(struct sk_msg_md, local_ip4):
10557 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10558 					  skc_rcv_saddr) != 4);
10559 
10560 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10561 					      struct sk_msg, sk),
10562 				      si->dst_reg, si->src_reg,
10563 				      offsetof(struct sk_msg, sk));
10564 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10565 				      offsetof(struct sock_common,
10566 					       skc_rcv_saddr));
10567 		break;
10568 
10569 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10570 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10571 #if IS_ENABLED(CONFIG_IPV6)
10572 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10573 					  skc_v6_daddr.s6_addr32[0]) != 4);
10574 
10575 		off = si->off;
10576 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10577 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10578 						struct sk_msg, sk),
10579 				      si->dst_reg, si->src_reg,
10580 				      offsetof(struct sk_msg, sk));
10581 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10582 				      offsetof(struct sock_common,
10583 					       skc_v6_daddr.s6_addr32[0]) +
10584 				      off);
10585 #else
10586 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10587 #endif
10588 		break;
10589 
10590 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10591 	     offsetof(struct sk_msg_md, local_ip6[3]):
10592 #if IS_ENABLED(CONFIG_IPV6)
10593 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10594 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10595 
10596 		off = si->off;
10597 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10598 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10599 						struct sk_msg, sk),
10600 				      si->dst_reg, si->src_reg,
10601 				      offsetof(struct sk_msg, sk));
10602 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10603 				      offsetof(struct sock_common,
10604 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10605 				      off);
10606 #else
10607 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10608 #endif
10609 		break;
10610 
10611 	case offsetof(struct sk_msg_md, remote_port):
10612 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10613 
10614 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10615 						struct sk_msg, sk),
10616 				      si->dst_reg, si->src_reg,
10617 				      offsetof(struct sk_msg, sk));
10618 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10619 				      offsetof(struct sock_common, skc_dport));
10620 #ifndef __BIG_ENDIAN_BITFIELD
10621 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10622 #endif
10623 		break;
10624 
10625 	case offsetof(struct sk_msg_md, local_port):
10626 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10627 
10628 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10629 						struct sk_msg, sk),
10630 				      si->dst_reg, si->src_reg,
10631 				      offsetof(struct sk_msg, sk));
10632 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10633 				      offsetof(struct sock_common, skc_num));
10634 		break;
10635 
10636 	case offsetof(struct sk_msg_md, size):
10637 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10638 				      si->dst_reg, si->src_reg,
10639 				      offsetof(struct sk_msg_sg, size));
10640 		break;
10641 
10642 	case offsetof(struct sk_msg_md, sk):
10643 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10644 				      si->dst_reg, si->src_reg,
10645 				      offsetof(struct sk_msg, sk));
10646 		break;
10647 	}
10648 
10649 	return insn - insn_buf;
10650 }
10651 
10652 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10653 	.get_func_proto		= sk_filter_func_proto,
10654 	.is_valid_access	= sk_filter_is_valid_access,
10655 	.convert_ctx_access	= bpf_convert_ctx_access,
10656 	.gen_ld_abs		= bpf_gen_ld_abs,
10657 };
10658 
10659 const struct bpf_prog_ops sk_filter_prog_ops = {
10660 	.test_run		= bpf_prog_test_run_skb,
10661 };
10662 
10663 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10664 	.get_func_proto		= tc_cls_act_func_proto,
10665 	.is_valid_access	= tc_cls_act_is_valid_access,
10666 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10667 	.gen_prologue		= tc_cls_act_prologue,
10668 	.gen_ld_abs		= bpf_gen_ld_abs,
10669 };
10670 
10671 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10672 	.test_run		= bpf_prog_test_run_skb,
10673 };
10674 
10675 const struct bpf_verifier_ops xdp_verifier_ops = {
10676 	.get_func_proto		= xdp_func_proto,
10677 	.is_valid_access	= xdp_is_valid_access,
10678 	.convert_ctx_access	= xdp_convert_ctx_access,
10679 	.gen_prologue		= bpf_noop_prologue,
10680 };
10681 
10682 const struct bpf_prog_ops xdp_prog_ops = {
10683 	.test_run		= bpf_prog_test_run_xdp,
10684 };
10685 
10686 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10687 	.get_func_proto		= cg_skb_func_proto,
10688 	.is_valid_access	= cg_skb_is_valid_access,
10689 	.convert_ctx_access	= bpf_convert_ctx_access,
10690 };
10691 
10692 const struct bpf_prog_ops cg_skb_prog_ops = {
10693 	.test_run		= bpf_prog_test_run_skb,
10694 };
10695 
10696 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10697 	.get_func_proto		= lwt_in_func_proto,
10698 	.is_valid_access	= lwt_is_valid_access,
10699 	.convert_ctx_access	= bpf_convert_ctx_access,
10700 };
10701 
10702 const struct bpf_prog_ops lwt_in_prog_ops = {
10703 	.test_run		= bpf_prog_test_run_skb,
10704 };
10705 
10706 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10707 	.get_func_proto		= lwt_out_func_proto,
10708 	.is_valid_access	= lwt_is_valid_access,
10709 	.convert_ctx_access	= bpf_convert_ctx_access,
10710 };
10711 
10712 const struct bpf_prog_ops lwt_out_prog_ops = {
10713 	.test_run		= bpf_prog_test_run_skb,
10714 };
10715 
10716 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10717 	.get_func_proto		= lwt_xmit_func_proto,
10718 	.is_valid_access	= lwt_is_valid_access,
10719 	.convert_ctx_access	= bpf_convert_ctx_access,
10720 	.gen_prologue		= tc_cls_act_prologue,
10721 };
10722 
10723 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10724 	.test_run		= bpf_prog_test_run_skb,
10725 };
10726 
10727 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10728 	.get_func_proto		= lwt_seg6local_func_proto,
10729 	.is_valid_access	= lwt_is_valid_access,
10730 	.convert_ctx_access	= bpf_convert_ctx_access,
10731 };
10732 
10733 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10734 	.test_run		= bpf_prog_test_run_skb,
10735 };
10736 
10737 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10738 	.get_func_proto		= sock_filter_func_proto,
10739 	.is_valid_access	= sock_filter_is_valid_access,
10740 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
10741 };
10742 
10743 const struct bpf_prog_ops cg_sock_prog_ops = {
10744 };
10745 
10746 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10747 	.get_func_proto		= sock_addr_func_proto,
10748 	.is_valid_access	= sock_addr_is_valid_access,
10749 	.convert_ctx_access	= sock_addr_convert_ctx_access,
10750 };
10751 
10752 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10753 };
10754 
10755 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10756 	.get_func_proto		= sock_ops_func_proto,
10757 	.is_valid_access	= sock_ops_is_valid_access,
10758 	.convert_ctx_access	= sock_ops_convert_ctx_access,
10759 };
10760 
10761 const struct bpf_prog_ops sock_ops_prog_ops = {
10762 };
10763 
10764 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10765 	.get_func_proto		= sk_skb_func_proto,
10766 	.is_valid_access	= sk_skb_is_valid_access,
10767 	.convert_ctx_access	= sk_skb_convert_ctx_access,
10768 	.gen_prologue		= sk_skb_prologue,
10769 };
10770 
10771 const struct bpf_prog_ops sk_skb_prog_ops = {
10772 };
10773 
10774 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10775 	.get_func_proto		= sk_msg_func_proto,
10776 	.is_valid_access	= sk_msg_is_valid_access,
10777 	.convert_ctx_access	= sk_msg_convert_ctx_access,
10778 	.gen_prologue		= bpf_noop_prologue,
10779 };
10780 
10781 const struct bpf_prog_ops sk_msg_prog_ops = {
10782 };
10783 
10784 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10785 	.get_func_proto		= flow_dissector_func_proto,
10786 	.is_valid_access	= flow_dissector_is_valid_access,
10787 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
10788 };
10789 
10790 const struct bpf_prog_ops flow_dissector_prog_ops = {
10791 	.test_run		= bpf_prog_test_run_flow_dissector,
10792 };
10793 
10794 int sk_detach_filter(struct sock *sk)
10795 {
10796 	int ret = -ENOENT;
10797 	struct sk_filter *filter;
10798 
10799 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
10800 		return -EPERM;
10801 
10802 	filter = rcu_dereference_protected(sk->sk_filter,
10803 					   lockdep_sock_is_held(sk));
10804 	if (filter) {
10805 		RCU_INIT_POINTER(sk->sk_filter, NULL);
10806 		sk_filter_uncharge(sk, filter);
10807 		ret = 0;
10808 	}
10809 
10810 	return ret;
10811 }
10812 EXPORT_SYMBOL_GPL(sk_detach_filter);
10813 
10814 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
10815 		  unsigned int len)
10816 {
10817 	struct sock_fprog_kern *fprog;
10818 	struct sk_filter *filter;
10819 	int ret = 0;
10820 
10821 	lock_sock(sk);
10822 	filter = rcu_dereference_protected(sk->sk_filter,
10823 					   lockdep_sock_is_held(sk));
10824 	if (!filter)
10825 		goto out;
10826 
10827 	/* We're copying the filter that has been originally attached,
10828 	 * so no conversion/decode needed anymore. eBPF programs that
10829 	 * have no original program cannot be dumped through this.
10830 	 */
10831 	ret = -EACCES;
10832 	fprog = filter->prog->orig_prog;
10833 	if (!fprog)
10834 		goto out;
10835 
10836 	ret = fprog->len;
10837 	if (!len)
10838 		/* User space only enquires number of filter blocks. */
10839 		goto out;
10840 
10841 	ret = -EINVAL;
10842 	if (len < fprog->len)
10843 		goto out;
10844 
10845 	ret = -EFAULT;
10846 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
10847 		goto out;
10848 
10849 	/* Instead of bytes, the API requests to return the number
10850 	 * of filter blocks.
10851 	 */
10852 	ret = fprog->len;
10853 out:
10854 	release_sock(sk);
10855 	return ret;
10856 }
10857 
10858 #ifdef CONFIG_INET
10859 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10860 				    struct sock_reuseport *reuse,
10861 				    struct sock *sk, struct sk_buff *skb,
10862 				    struct sock *migrating_sk,
10863 				    u32 hash)
10864 {
10865 	reuse_kern->skb = skb;
10866 	reuse_kern->sk = sk;
10867 	reuse_kern->selected_sk = NULL;
10868 	reuse_kern->migrating_sk = migrating_sk;
10869 	reuse_kern->data_end = skb->data + skb_headlen(skb);
10870 	reuse_kern->hash = hash;
10871 	reuse_kern->reuseport_id = reuse->reuseport_id;
10872 	reuse_kern->bind_inany = reuse->bind_inany;
10873 }
10874 
10875 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10876 				  struct bpf_prog *prog, struct sk_buff *skb,
10877 				  struct sock *migrating_sk,
10878 				  u32 hash)
10879 {
10880 	struct sk_reuseport_kern reuse_kern;
10881 	enum sk_action action;
10882 
10883 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10884 	action = bpf_prog_run(prog, &reuse_kern);
10885 
10886 	if (action == SK_PASS)
10887 		return reuse_kern.selected_sk;
10888 	else
10889 		return ERR_PTR(-ECONNREFUSED);
10890 }
10891 
10892 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10893 	   struct bpf_map *, map, void *, key, u32, flags)
10894 {
10895 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10896 	struct sock_reuseport *reuse;
10897 	struct sock *selected_sk;
10898 
10899 	selected_sk = map->ops->map_lookup_elem(map, key);
10900 	if (!selected_sk)
10901 		return -ENOENT;
10902 
10903 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10904 	if (!reuse) {
10905 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10906 		if (sk_is_refcounted(selected_sk))
10907 			sock_put(selected_sk);
10908 
10909 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
10910 		 * The only (!reuse) case here is - the sk has already been
10911 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
10912 		 *
10913 		 * Other maps (e.g. sock_map) do not provide this guarantee and
10914 		 * the sk may never be in the reuseport group to begin with.
10915 		 */
10916 		return is_sockarray ? -ENOENT : -EINVAL;
10917 	}
10918 
10919 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10920 		struct sock *sk = reuse_kern->sk;
10921 
10922 		if (sk->sk_protocol != selected_sk->sk_protocol)
10923 			return -EPROTOTYPE;
10924 		else if (sk->sk_family != selected_sk->sk_family)
10925 			return -EAFNOSUPPORT;
10926 
10927 		/* Catch all. Likely bound to a different sockaddr. */
10928 		return -EBADFD;
10929 	}
10930 
10931 	reuse_kern->selected_sk = selected_sk;
10932 
10933 	return 0;
10934 }
10935 
10936 static const struct bpf_func_proto sk_select_reuseport_proto = {
10937 	.func           = sk_select_reuseport,
10938 	.gpl_only       = false,
10939 	.ret_type       = RET_INTEGER,
10940 	.arg1_type	= ARG_PTR_TO_CTX,
10941 	.arg2_type      = ARG_CONST_MAP_PTR,
10942 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
10943 	.arg4_type	= ARG_ANYTHING,
10944 };
10945 
10946 BPF_CALL_4(sk_reuseport_load_bytes,
10947 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10948 	   void *, to, u32, len)
10949 {
10950 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10951 }
10952 
10953 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10954 	.func		= sk_reuseport_load_bytes,
10955 	.gpl_only	= false,
10956 	.ret_type	= RET_INTEGER,
10957 	.arg1_type	= ARG_PTR_TO_CTX,
10958 	.arg2_type	= ARG_ANYTHING,
10959 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10960 	.arg4_type	= ARG_CONST_SIZE,
10961 };
10962 
10963 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10964 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10965 	   void *, to, u32, len, u32, start_header)
10966 {
10967 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10968 					       len, start_header);
10969 }
10970 
10971 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10972 	.func		= sk_reuseport_load_bytes_relative,
10973 	.gpl_only	= false,
10974 	.ret_type	= RET_INTEGER,
10975 	.arg1_type	= ARG_PTR_TO_CTX,
10976 	.arg2_type	= ARG_ANYTHING,
10977 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10978 	.arg4_type	= ARG_CONST_SIZE,
10979 	.arg5_type	= ARG_ANYTHING,
10980 };
10981 
10982 static const struct bpf_func_proto *
10983 sk_reuseport_func_proto(enum bpf_func_id func_id,
10984 			const struct bpf_prog *prog)
10985 {
10986 	switch (func_id) {
10987 	case BPF_FUNC_sk_select_reuseport:
10988 		return &sk_select_reuseport_proto;
10989 	case BPF_FUNC_skb_load_bytes:
10990 		return &sk_reuseport_load_bytes_proto;
10991 	case BPF_FUNC_skb_load_bytes_relative:
10992 		return &sk_reuseport_load_bytes_relative_proto;
10993 	case BPF_FUNC_get_socket_cookie:
10994 		return &bpf_get_socket_ptr_cookie_proto;
10995 	case BPF_FUNC_ktime_get_coarse_ns:
10996 		return &bpf_ktime_get_coarse_ns_proto;
10997 	default:
10998 		return bpf_base_func_proto(func_id);
10999 	}
11000 }
11001 
11002 static bool
11003 sk_reuseport_is_valid_access(int off, int size,
11004 			     enum bpf_access_type type,
11005 			     const struct bpf_prog *prog,
11006 			     struct bpf_insn_access_aux *info)
11007 {
11008 	const u32 size_default = sizeof(__u32);
11009 
11010 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11011 	    off % size || type != BPF_READ)
11012 		return false;
11013 
11014 	switch (off) {
11015 	case offsetof(struct sk_reuseport_md, data):
11016 		info->reg_type = PTR_TO_PACKET;
11017 		return size == sizeof(__u64);
11018 
11019 	case offsetof(struct sk_reuseport_md, data_end):
11020 		info->reg_type = PTR_TO_PACKET_END;
11021 		return size == sizeof(__u64);
11022 
11023 	case offsetof(struct sk_reuseport_md, hash):
11024 		return size == size_default;
11025 
11026 	case offsetof(struct sk_reuseport_md, sk):
11027 		info->reg_type = PTR_TO_SOCKET;
11028 		return size == sizeof(__u64);
11029 
11030 	case offsetof(struct sk_reuseport_md, migrating_sk):
11031 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11032 		return size == sizeof(__u64);
11033 
11034 	/* Fields that allow narrowing */
11035 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11036 		if (size < sizeof_field(struct sk_buff, protocol))
11037 			return false;
11038 		fallthrough;
11039 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11040 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11041 	case bpf_ctx_range(struct sk_reuseport_md, len):
11042 		bpf_ctx_record_field_size(info, size_default);
11043 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11044 
11045 	default:
11046 		return false;
11047 	}
11048 }
11049 
11050 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11051 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11052 			      si->dst_reg, si->src_reg,			\
11053 			      bpf_target_off(struct sk_reuseport_kern, F, \
11054 					     sizeof_field(struct sk_reuseport_kern, F), \
11055 					     target_size));		\
11056 	})
11057 
11058 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11059 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11060 				    struct sk_buff,			\
11061 				    skb,				\
11062 				    SKB_FIELD)
11063 
11064 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11065 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11066 				    struct sock,			\
11067 				    sk,					\
11068 				    SK_FIELD)
11069 
11070 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11071 					   const struct bpf_insn *si,
11072 					   struct bpf_insn *insn_buf,
11073 					   struct bpf_prog *prog,
11074 					   u32 *target_size)
11075 {
11076 	struct bpf_insn *insn = insn_buf;
11077 
11078 	switch (si->off) {
11079 	case offsetof(struct sk_reuseport_md, data):
11080 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11081 		break;
11082 
11083 	case offsetof(struct sk_reuseport_md, len):
11084 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11085 		break;
11086 
11087 	case offsetof(struct sk_reuseport_md, eth_protocol):
11088 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11089 		break;
11090 
11091 	case offsetof(struct sk_reuseport_md, ip_protocol):
11092 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11093 		break;
11094 
11095 	case offsetof(struct sk_reuseport_md, data_end):
11096 		SK_REUSEPORT_LOAD_FIELD(data_end);
11097 		break;
11098 
11099 	case offsetof(struct sk_reuseport_md, hash):
11100 		SK_REUSEPORT_LOAD_FIELD(hash);
11101 		break;
11102 
11103 	case offsetof(struct sk_reuseport_md, bind_inany):
11104 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11105 		break;
11106 
11107 	case offsetof(struct sk_reuseport_md, sk):
11108 		SK_REUSEPORT_LOAD_FIELD(sk);
11109 		break;
11110 
11111 	case offsetof(struct sk_reuseport_md, migrating_sk):
11112 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11113 		break;
11114 	}
11115 
11116 	return insn - insn_buf;
11117 }
11118 
11119 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11120 	.get_func_proto		= sk_reuseport_func_proto,
11121 	.is_valid_access	= sk_reuseport_is_valid_access,
11122 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11123 };
11124 
11125 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11126 };
11127 
11128 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11129 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11130 
11131 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11132 	   struct sock *, sk, u64, flags)
11133 {
11134 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11135 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11136 		return -EINVAL;
11137 	if (unlikely(sk && sk_is_refcounted(sk)))
11138 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11139 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11140 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11141 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11142 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11143 
11144 	/* Check if socket is suitable for packet L3/L4 protocol */
11145 	if (sk && sk->sk_protocol != ctx->protocol)
11146 		return -EPROTOTYPE;
11147 	if (sk && sk->sk_family != ctx->family &&
11148 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11149 		return -EAFNOSUPPORT;
11150 
11151 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11152 		return -EEXIST;
11153 
11154 	/* Select socket as lookup result */
11155 	ctx->selected_sk = sk;
11156 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11157 	return 0;
11158 }
11159 
11160 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11161 	.func		= bpf_sk_lookup_assign,
11162 	.gpl_only	= false,
11163 	.ret_type	= RET_INTEGER,
11164 	.arg1_type	= ARG_PTR_TO_CTX,
11165 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11166 	.arg3_type	= ARG_ANYTHING,
11167 };
11168 
11169 static const struct bpf_func_proto *
11170 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11171 {
11172 	switch (func_id) {
11173 	case BPF_FUNC_perf_event_output:
11174 		return &bpf_event_output_data_proto;
11175 	case BPF_FUNC_sk_assign:
11176 		return &bpf_sk_lookup_assign_proto;
11177 	case BPF_FUNC_sk_release:
11178 		return &bpf_sk_release_proto;
11179 	default:
11180 		return bpf_sk_base_func_proto(func_id);
11181 	}
11182 }
11183 
11184 static bool sk_lookup_is_valid_access(int off, int size,
11185 				      enum bpf_access_type type,
11186 				      const struct bpf_prog *prog,
11187 				      struct bpf_insn_access_aux *info)
11188 {
11189 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11190 		return false;
11191 	if (off % size != 0)
11192 		return false;
11193 	if (type != BPF_READ)
11194 		return false;
11195 
11196 	switch (off) {
11197 	case offsetof(struct bpf_sk_lookup, sk):
11198 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11199 		return size == sizeof(__u64);
11200 
11201 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11202 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11203 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11204 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11205 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11206 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11207 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11208 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11209 		bpf_ctx_record_field_size(info, sizeof(__u32));
11210 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11211 
11212 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11213 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11214 		if (size == sizeof(__u32))
11215 			return true;
11216 		bpf_ctx_record_field_size(info, sizeof(__be16));
11217 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11218 
11219 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11220 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11221 		/* Allow access to zero padding for backward compatibility */
11222 		bpf_ctx_record_field_size(info, sizeof(__u16));
11223 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11224 
11225 	default:
11226 		return false;
11227 	}
11228 }
11229 
11230 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11231 					const struct bpf_insn *si,
11232 					struct bpf_insn *insn_buf,
11233 					struct bpf_prog *prog,
11234 					u32 *target_size)
11235 {
11236 	struct bpf_insn *insn = insn_buf;
11237 
11238 	switch (si->off) {
11239 	case offsetof(struct bpf_sk_lookup, sk):
11240 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11241 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11242 		break;
11243 
11244 	case offsetof(struct bpf_sk_lookup, family):
11245 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11246 				      bpf_target_off(struct bpf_sk_lookup_kern,
11247 						     family, 2, target_size));
11248 		break;
11249 
11250 	case offsetof(struct bpf_sk_lookup, protocol):
11251 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11252 				      bpf_target_off(struct bpf_sk_lookup_kern,
11253 						     protocol, 2, target_size));
11254 		break;
11255 
11256 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11257 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11258 				      bpf_target_off(struct bpf_sk_lookup_kern,
11259 						     v4.saddr, 4, target_size));
11260 		break;
11261 
11262 	case offsetof(struct bpf_sk_lookup, local_ip4):
11263 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11264 				      bpf_target_off(struct bpf_sk_lookup_kern,
11265 						     v4.daddr, 4, target_size));
11266 		break;
11267 
11268 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11269 				remote_ip6[0], remote_ip6[3]): {
11270 #if IS_ENABLED(CONFIG_IPV6)
11271 		int off = si->off;
11272 
11273 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11274 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11275 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11276 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11277 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11278 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11279 #else
11280 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11281 #endif
11282 		break;
11283 	}
11284 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11285 				local_ip6[0], local_ip6[3]): {
11286 #if IS_ENABLED(CONFIG_IPV6)
11287 		int off = si->off;
11288 
11289 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11290 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11291 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11292 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11293 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11294 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11295 #else
11296 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11297 #endif
11298 		break;
11299 	}
11300 	case offsetof(struct bpf_sk_lookup, remote_port):
11301 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11302 				      bpf_target_off(struct bpf_sk_lookup_kern,
11303 						     sport, 2, target_size));
11304 		break;
11305 
11306 	case offsetofend(struct bpf_sk_lookup, remote_port):
11307 		*target_size = 2;
11308 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11309 		break;
11310 
11311 	case offsetof(struct bpf_sk_lookup, local_port):
11312 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11313 				      bpf_target_off(struct bpf_sk_lookup_kern,
11314 						     dport, 2, target_size));
11315 		break;
11316 
11317 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11318 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11319 				      bpf_target_off(struct bpf_sk_lookup_kern,
11320 						     ingress_ifindex, 4, target_size));
11321 		break;
11322 	}
11323 
11324 	return insn - insn_buf;
11325 }
11326 
11327 const struct bpf_prog_ops sk_lookup_prog_ops = {
11328 	.test_run = bpf_prog_test_run_sk_lookup,
11329 };
11330 
11331 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11332 	.get_func_proto		= sk_lookup_func_proto,
11333 	.is_valid_access	= sk_lookup_is_valid_access,
11334 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11335 };
11336 
11337 #endif /* CONFIG_INET */
11338 
11339 DEFINE_BPF_DISPATCHER(xdp)
11340 
11341 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11342 {
11343 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11344 }
11345 
11346 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11347 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11348 BTF_SOCK_TYPE_xxx
11349 #undef BTF_SOCK_TYPE
11350 
11351 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11352 {
11353 	/* tcp6_sock type is not generated in dwarf and hence btf,
11354 	 * trigger an explicit type generation here.
11355 	 */
11356 	BTF_TYPE_EMIT(struct tcp6_sock);
11357 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11358 	    sk->sk_family == AF_INET6)
11359 		return (unsigned long)sk;
11360 
11361 	return (unsigned long)NULL;
11362 }
11363 
11364 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11365 	.func			= bpf_skc_to_tcp6_sock,
11366 	.gpl_only		= false,
11367 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11368 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11369 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11370 };
11371 
11372 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11373 {
11374 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11375 		return (unsigned long)sk;
11376 
11377 	return (unsigned long)NULL;
11378 }
11379 
11380 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11381 	.func			= bpf_skc_to_tcp_sock,
11382 	.gpl_only		= false,
11383 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11384 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11385 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11386 };
11387 
11388 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11389 {
11390 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11391 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11392 	 */
11393 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11394 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11395 
11396 #ifdef CONFIG_INET
11397 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11398 		return (unsigned long)sk;
11399 #endif
11400 
11401 #if IS_BUILTIN(CONFIG_IPV6)
11402 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11403 		return (unsigned long)sk;
11404 #endif
11405 
11406 	return (unsigned long)NULL;
11407 }
11408 
11409 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11410 	.func			= bpf_skc_to_tcp_timewait_sock,
11411 	.gpl_only		= false,
11412 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11413 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11414 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11415 };
11416 
11417 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11418 {
11419 #ifdef CONFIG_INET
11420 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11421 		return (unsigned long)sk;
11422 #endif
11423 
11424 #if IS_BUILTIN(CONFIG_IPV6)
11425 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11426 		return (unsigned long)sk;
11427 #endif
11428 
11429 	return (unsigned long)NULL;
11430 }
11431 
11432 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11433 	.func			= bpf_skc_to_tcp_request_sock,
11434 	.gpl_only		= false,
11435 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11436 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11437 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11438 };
11439 
11440 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11441 {
11442 	/* udp6_sock type is not generated in dwarf and hence btf,
11443 	 * trigger an explicit type generation here.
11444 	 */
11445 	BTF_TYPE_EMIT(struct udp6_sock);
11446 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11447 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11448 		return (unsigned long)sk;
11449 
11450 	return (unsigned long)NULL;
11451 }
11452 
11453 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11454 	.func			= bpf_skc_to_udp6_sock,
11455 	.gpl_only		= false,
11456 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11457 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11458 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11459 };
11460 
11461 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11462 {
11463 	/* unix_sock type is not generated in dwarf and hence btf,
11464 	 * trigger an explicit type generation here.
11465 	 */
11466 	BTF_TYPE_EMIT(struct unix_sock);
11467 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11468 		return (unsigned long)sk;
11469 
11470 	return (unsigned long)NULL;
11471 }
11472 
11473 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11474 	.func			= bpf_skc_to_unix_sock,
11475 	.gpl_only		= false,
11476 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11477 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11478 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11479 };
11480 
11481 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11482 {
11483 	BTF_TYPE_EMIT(struct mptcp_sock);
11484 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11485 }
11486 
11487 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11488 	.func		= bpf_skc_to_mptcp_sock,
11489 	.gpl_only	= false,
11490 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11491 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11492 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11493 };
11494 
11495 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11496 {
11497 	return (unsigned long)sock_from_file(file);
11498 }
11499 
11500 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11501 BTF_ID(struct, socket)
11502 BTF_ID(struct, file)
11503 
11504 const struct bpf_func_proto bpf_sock_from_file_proto = {
11505 	.func		= bpf_sock_from_file,
11506 	.gpl_only	= false,
11507 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11508 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11509 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11510 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11511 };
11512 
11513 static const struct bpf_func_proto *
11514 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11515 {
11516 	const struct bpf_func_proto *func;
11517 
11518 	switch (func_id) {
11519 	case BPF_FUNC_skc_to_tcp6_sock:
11520 		func = &bpf_skc_to_tcp6_sock_proto;
11521 		break;
11522 	case BPF_FUNC_skc_to_tcp_sock:
11523 		func = &bpf_skc_to_tcp_sock_proto;
11524 		break;
11525 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11526 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11527 		break;
11528 	case BPF_FUNC_skc_to_tcp_request_sock:
11529 		func = &bpf_skc_to_tcp_request_sock_proto;
11530 		break;
11531 	case BPF_FUNC_skc_to_udp6_sock:
11532 		func = &bpf_skc_to_udp6_sock_proto;
11533 		break;
11534 	case BPF_FUNC_skc_to_unix_sock:
11535 		func = &bpf_skc_to_unix_sock_proto;
11536 		break;
11537 	case BPF_FUNC_skc_to_mptcp_sock:
11538 		func = &bpf_skc_to_mptcp_sock_proto;
11539 		break;
11540 	case BPF_FUNC_ktime_get_coarse_ns:
11541 		return &bpf_ktime_get_coarse_ns_proto;
11542 	default:
11543 		return bpf_base_func_proto(func_id);
11544 	}
11545 
11546 	if (!perfmon_capable())
11547 		return NULL;
11548 
11549 	return func;
11550 }
11551