xref: /openbmc/linux/net/core/filter.c (revision 40970f7a)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/sock_diag.h>
30 #include <linux/in.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_packet.h>
34 #include <linux/if_arp.h>
35 #include <linux/gfp.h>
36 #include <net/inet_common.h>
37 #include <net/ip.h>
38 #include <net/protocol.h>
39 #include <net/netlink.h>
40 #include <linux/skbuff.h>
41 #include <net/sock.h>
42 #include <net/flow_dissector.h>
43 #include <linux/errno.h>
44 #include <linux/timer.h>
45 #include <linux/uaccess.h>
46 #include <asm/unaligned.h>
47 #include <asm/cmpxchg.h>
48 #include <linux/filter.h>
49 #include <linux/ratelimit.h>
50 #include <linux/seccomp.h>
51 #include <linux/if_vlan.h>
52 #include <linux/bpf.h>
53 #include <net/sch_generic.h>
54 #include <net/cls_cgroup.h>
55 #include <net/dst_metadata.h>
56 #include <net/dst.h>
57 #include <net/sock_reuseport.h>
58 #include <net/busy_poll.h>
59 #include <net/tcp.h>
60 #include <net/xfrm.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/ip_fib.h>
65 #include <net/flow.h>
66 #include <net/arp.h>
67 #include <net/ipv6.h>
68 #include <linux/seg6_local.h>
69 #include <net/seg6.h>
70 #include <net/seg6_local.h>
71 
72 /**
73  *	sk_filter_trim_cap - run a packet through a socket filter
74  *	@sk: sock associated with &sk_buff
75  *	@skb: buffer to filter
76  *	@cap: limit on how short the eBPF program may trim the packet
77  *
78  * Run the eBPF program and then cut skb->data to correct size returned by
79  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
80  * than pkt_len we keep whole skb->data. This is the socket level
81  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
82  * be accepted or -EPERM if the packet should be tossed.
83  *
84  */
85 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
86 {
87 	int err;
88 	struct sk_filter *filter;
89 
90 	/*
91 	 * If the skb was allocated from pfmemalloc reserves, only
92 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
93 	 * helping free memory
94 	 */
95 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
96 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
97 		return -ENOMEM;
98 	}
99 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
100 	if (err)
101 		return err;
102 
103 	err = security_sock_rcv_skb(sk, skb);
104 	if (err)
105 		return err;
106 
107 	rcu_read_lock();
108 	filter = rcu_dereference(sk->sk_filter);
109 	if (filter) {
110 		struct sock *save_sk = skb->sk;
111 		unsigned int pkt_len;
112 
113 		skb->sk = sk;
114 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
115 		skb->sk = save_sk;
116 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
117 	}
118 	rcu_read_unlock();
119 
120 	return err;
121 }
122 EXPORT_SYMBOL(sk_filter_trim_cap);
123 
124 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
125 {
126 	return skb_get_poff(skb);
127 }
128 
129 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
130 {
131 	struct nlattr *nla;
132 
133 	if (skb_is_nonlinear(skb))
134 		return 0;
135 
136 	if (skb->len < sizeof(struct nlattr))
137 		return 0;
138 
139 	if (a > skb->len - sizeof(struct nlattr))
140 		return 0;
141 
142 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
143 	if (nla)
144 		return (void *) nla - (void *) skb->data;
145 
146 	return 0;
147 }
148 
149 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
150 {
151 	struct nlattr *nla;
152 
153 	if (skb_is_nonlinear(skb))
154 		return 0;
155 
156 	if (skb->len < sizeof(struct nlattr))
157 		return 0;
158 
159 	if (a > skb->len - sizeof(struct nlattr))
160 		return 0;
161 
162 	nla = (struct nlattr *) &skb->data[a];
163 	if (nla->nla_len > skb->len - a)
164 		return 0;
165 
166 	nla = nla_find_nested(nla, x);
167 	if (nla)
168 		return (void *) nla - (void *) skb->data;
169 
170 	return 0;
171 }
172 
173 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
174 	   data, int, headlen, int, offset)
175 {
176 	u8 tmp, *ptr;
177 	const int len = sizeof(tmp);
178 
179 	if (offset >= 0) {
180 		if (headlen - offset >= len)
181 			return *(u8 *)(data + offset);
182 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
183 			return tmp;
184 	} else {
185 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
186 		if (likely(ptr))
187 			return *(u8 *)ptr;
188 	}
189 
190 	return -EFAULT;
191 }
192 
193 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
194 	   int, offset)
195 {
196 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
197 					 offset);
198 }
199 
200 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
201 	   data, int, headlen, int, offset)
202 {
203 	u16 tmp, *ptr;
204 	const int len = sizeof(tmp);
205 
206 	if (offset >= 0) {
207 		if (headlen - offset >= len)
208 			return get_unaligned_be16(data + offset);
209 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
210 			return be16_to_cpu(tmp);
211 	} else {
212 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
213 		if (likely(ptr))
214 			return get_unaligned_be16(ptr);
215 	}
216 
217 	return -EFAULT;
218 }
219 
220 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
221 	   int, offset)
222 {
223 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
224 					  offset);
225 }
226 
227 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
228 	   data, int, headlen, int, offset)
229 {
230 	u32 tmp, *ptr;
231 	const int len = sizeof(tmp);
232 
233 	if (likely(offset >= 0)) {
234 		if (headlen - offset >= len)
235 			return get_unaligned_be32(data + offset);
236 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
237 			return be32_to_cpu(tmp);
238 	} else {
239 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
240 		if (likely(ptr))
241 			return get_unaligned_be32(ptr);
242 	}
243 
244 	return -EFAULT;
245 }
246 
247 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
248 	   int, offset)
249 {
250 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
251 					  offset);
252 }
253 
254 BPF_CALL_0(bpf_get_raw_cpu_id)
255 {
256 	return raw_smp_processor_id();
257 }
258 
259 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
260 	.func		= bpf_get_raw_cpu_id,
261 	.gpl_only	= false,
262 	.ret_type	= RET_INTEGER,
263 };
264 
265 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
266 			      struct bpf_insn *insn_buf)
267 {
268 	struct bpf_insn *insn = insn_buf;
269 
270 	switch (skb_field) {
271 	case SKF_AD_MARK:
272 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
273 
274 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
275 				      offsetof(struct sk_buff, mark));
276 		break;
277 
278 	case SKF_AD_PKTTYPE:
279 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
280 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
281 #ifdef __BIG_ENDIAN_BITFIELD
282 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
283 #endif
284 		break;
285 
286 	case SKF_AD_QUEUE:
287 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
288 
289 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
290 				      offsetof(struct sk_buff, queue_mapping));
291 		break;
292 
293 	case SKF_AD_VLAN_TAG:
294 	case SKF_AD_VLAN_TAG_PRESENT:
295 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
296 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
297 
298 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
299 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
300 				      offsetof(struct sk_buff, vlan_tci));
301 		if (skb_field == SKF_AD_VLAN_TAG) {
302 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
303 						~VLAN_TAG_PRESENT);
304 		} else {
305 			/* dst_reg >>= 12 */
306 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
307 			/* dst_reg &= 1 */
308 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
309 		}
310 		break;
311 	}
312 
313 	return insn - insn_buf;
314 }
315 
316 static bool convert_bpf_extensions(struct sock_filter *fp,
317 				   struct bpf_insn **insnp)
318 {
319 	struct bpf_insn *insn = *insnp;
320 	u32 cnt;
321 
322 	switch (fp->k) {
323 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
324 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
325 
326 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
327 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
328 				      offsetof(struct sk_buff, protocol));
329 		/* A = ntohs(A) [emitting a nop or swap16] */
330 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
331 		break;
332 
333 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
334 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
335 		insn += cnt - 1;
336 		break;
337 
338 	case SKF_AD_OFF + SKF_AD_IFINDEX:
339 	case SKF_AD_OFF + SKF_AD_HATYPE:
340 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
341 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
342 
343 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
344 				      BPF_REG_TMP, BPF_REG_CTX,
345 				      offsetof(struct sk_buff, dev));
346 		/* if (tmp != 0) goto pc + 1 */
347 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
348 		*insn++ = BPF_EXIT_INSN();
349 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
350 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
351 					    offsetof(struct net_device, ifindex));
352 		else
353 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
354 					    offsetof(struct net_device, type));
355 		break;
356 
357 	case SKF_AD_OFF + SKF_AD_MARK:
358 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
359 		insn += cnt - 1;
360 		break;
361 
362 	case SKF_AD_OFF + SKF_AD_RXHASH:
363 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
364 
365 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
366 				    offsetof(struct sk_buff, hash));
367 		break;
368 
369 	case SKF_AD_OFF + SKF_AD_QUEUE:
370 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
371 		insn += cnt - 1;
372 		break;
373 
374 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
375 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
376 					 BPF_REG_A, BPF_REG_CTX, insn);
377 		insn += cnt - 1;
378 		break;
379 
380 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
381 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
382 					 BPF_REG_A, BPF_REG_CTX, insn);
383 		insn += cnt - 1;
384 		break;
385 
386 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
387 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
388 
389 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
390 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
391 				      offsetof(struct sk_buff, vlan_proto));
392 		/* A = ntohs(A) [emitting a nop or swap16] */
393 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
394 		break;
395 
396 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
397 	case SKF_AD_OFF + SKF_AD_NLATTR:
398 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
399 	case SKF_AD_OFF + SKF_AD_CPU:
400 	case SKF_AD_OFF + SKF_AD_RANDOM:
401 		/* arg1 = CTX */
402 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
403 		/* arg2 = A */
404 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
405 		/* arg3 = X */
406 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
407 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
408 		switch (fp->k) {
409 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
410 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
411 			break;
412 		case SKF_AD_OFF + SKF_AD_NLATTR:
413 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
414 			break;
415 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
416 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
417 			break;
418 		case SKF_AD_OFF + SKF_AD_CPU:
419 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
420 			break;
421 		case SKF_AD_OFF + SKF_AD_RANDOM:
422 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
423 			bpf_user_rnd_init_once();
424 			break;
425 		}
426 		break;
427 
428 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
429 		/* A ^= X */
430 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
431 		break;
432 
433 	default:
434 		/* This is just a dummy call to avoid letting the compiler
435 		 * evict __bpf_call_base() as an optimization. Placed here
436 		 * where no-one bothers.
437 		 */
438 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
439 		return false;
440 	}
441 
442 	*insnp = insn;
443 	return true;
444 }
445 
446 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
447 {
448 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
449 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
450 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
451 		      BPF_SIZE(fp->code) == BPF_W;
452 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
453 	const int ip_align = NET_IP_ALIGN;
454 	struct bpf_insn *insn = *insnp;
455 	int offset = fp->k;
456 
457 	if (!indirect &&
458 	    ((unaligned_ok && offset >= 0) ||
459 	     (!unaligned_ok && offset >= 0 &&
460 	      offset + ip_align >= 0 &&
461 	      offset + ip_align % size == 0))) {
462 		bool ldx_off_ok = offset <= S16_MAX;
463 
464 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
465 		*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
466 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
467 				      size, 2 + endian + (!ldx_off_ok * 2));
468 		if (ldx_off_ok) {
469 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
470 					      BPF_REG_D, offset);
471 		} else {
472 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
473 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
474 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
475 					      BPF_REG_TMP, 0);
476 		}
477 		if (endian)
478 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
479 		*insn++ = BPF_JMP_A(8);
480 	}
481 
482 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
483 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
484 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
485 	if (!indirect) {
486 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
487 	} else {
488 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
489 		if (fp->k)
490 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
491 	}
492 
493 	switch (BPF_SIZE(fp->code)) {
494 	case BPF_B:
495 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
496 		break;
497 	case BPF_H:
498 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
499 		break;
500 	case BPF_W:
501 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
502 		break;
503 	default:
504 		return false;
505 	}
506 
507 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
508 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
509 	*insn   = BPF_EXIT_INSN();
510 
511 	*insnp = insn;
512 	return true;
513 }
514 
515 /**
516  *	bpf_convert_filter - convert filter program
517  *	@prog: the user passed filter program
518  *	@len: the length of the user passed filter program
519  *	@new_prog: allocated 'struct bpf_prog' or NULL
520  *	@new_len: pointer to store length of converted program
521  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
522  *
523  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
524  * style extended BPF (eBPF).
525  * Conversion workflow:
526  *
527  * 1) First pass for calculating the new program length:
528  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
529  *
530  * 2) 2nd pass to remap in two passes: 1st pass finds new
531  *    jump offsets, 2nd pass remapping:
532  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
533  */
534 static int bpf_convert_filter(struct sock_filter *prog, int len,
535 			      struct bpf_prog *new_prog, int *new_len,
536 			      bool *seen_ld_abs)
537 {
538 	int new_flen = 0, pass = 0, target, i, stack_off;
539 	struct bpf_insn *new_insn, *first_insn = NULL;
540 	struct sock_filter *fp;
541 	int *addrs = NULL;
542 	u8 bpf_src;
543 
544 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
545 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
546 
547 	if (len <= 0 || len > BPF_MAXINSNS)
548 		return -EINVAL;
549 
550 	if (new_prog) {
551 		first_insn = new_prog->insnsi;
552 		addrs = kcalloc(len, sizeof(*addrs),
553 				GFP_KERNEL | __GFP_NOWARN);
554 		if (!addrs)
555 			return -ENOMEM;
556 	}
557 
558 do_pass:
559 	new_insn = first_insn;
560 	fp = prog;
561 
562 	/* Classic BPF related prologue emission. */
563 	if (new_prog) {
564 		/* Classic BPF expects A and X to be reset first. These need
565 		 * to be guaranteed to be the first two instructions.
566 		 */
567 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
568 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
569 
570 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
571 		 * In eBPF case it's done by the compiler, here we need to
572 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
573 		 */
574 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
575 		if (*seen_ld_abs) {
576 			/* For packet access in classic BPF, cache skb->data
577 			 * in callee-saved BPF R8 and skb->len - skb->data_len
578 			 * (headlen) in BPF R9. Since classic BPF is read-only
579 			 * on CTX, we only need to cache it once.
580 			 */
581 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
582 						  BPF_REG_D, BPF_REG_CTX,
583 						  offsetof(struct sk_buff, data));
584 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
585 						  offsetof(struct sk_buff, len));
586 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
587 						  offsetof(struct sk_buff, data_len));
588 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
589 		}
590 	} else {
591 		new_insn += 3;
592 	}
593 
594 	for (i = 0; i < len; fp++, i++) {
595 		struct bpf_insn tmp_insns[32] = { };
596 		struct bpf_insn *insn = tmp_insns;
597 
598 		if (addrs)
599 			addrs[i] = new_insn - first_insn;
600 
601 		switch (fp->code) {
602 		/* All arithmetic insns and skb loads map as-is. */
603 		case BPF_ALU | BPF_ADD | BPF_X:
604 		case BPF_ALU | BPF_ADD | BPF_K:
605 		case BPF_ALU | BPF_SUB | BPF_X:
606 		case BPF_ALU | BPF_SUB | BPF_K:
607 		case BPF_ALU | BPF_AND | BPF_X:
608 		case BPF_ALU | BPF_AND | BPF_K:
609 		case BPF_ALU | BPF_OR | BPF_X:
610 		case BPF_ALU | BPF_OR | BPF_K:
611 		case BPF_ALU | BPF_LSH | BPF_X:
612 		case BPF_ALU | BPF_LSH | BPF_K:
613 		case BPF_ALU | BPF_RSH | BPF_X:
614 		case BPF_ALU | BPF_RSH | BPF_K:
615 		case BPF_ALU | BPF_XOR | BPF_X:
616 		case BPF_ALU | BPF_XOR | BPF_K:
617 		case BPF_ALU | BPF_MUL | BPF_X:
618 		case BPF_ALU | BPF_MUL | BPF_K:
619 		case BPF_ALU | BPF_DIV | BPF_X:
620 		case BPF_ALU | BPF_DIV | BPF_K:
621 		case BPF_ALU | BPF_MOD | BPF_X:
622 		case BPF_ALU | BPF_MOD | BPF_K:
623 		case BPF_ALU | BPF_NEG:
624 		case BPF_LD | BPF_ABS | BPF_W:
625 		case BPF_LD | BPF_ABS | BPF_H:
626 		case BPF_LD | BPF_ABS | BPF_B:
627 		case BPF_LD | BPF_IND | BPF_W:
628 		case BPF_LD | BPF_IND | BPF_H:
629 		case BPF_LD | BPF_IND | BPF_B:
630 			/* Check for overloaded BPF extension and
631 			 * directly convert it if found, otherwise
632 			 * just move on with mapping.
633 			 */
634 			if (BPF_CLASS(fp->code) == BPF_LD &&
635 			    BPF_MODE(fp->code) == BPF_ABS &&
636 			    convert_bpf_extensions(fp, &insn))
637 				break;
638 			if (BPF_CLASS(fp->code) == BPF_LD &&
639 			    convert_bpf_ld_abs(fp, &insn)) {
640 				*seen_ld_abs = true;
641 				break;
642 			}
643 
644 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
645 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
646 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
647 				/* Error with exception code on div/mod by 0.
648 				 * For cBPF programs, this was always return 0.
649 				 */
650 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
651 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
652 				*insn++ = BPF_EXIT_INSN();
653 			}
654 
655 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
656 			break;
657 
658 		/* Jump transformation cannot use BPF block macros
659 		 * everywhere as offset calculation and target updates
660 		 * require a bit more work than the rest, i.e. jump
661 		 * opcodes map as-is, but offsets need adjustment.
662 		 */
663 
664 #define BPF_EMIT_JMP							\
665 	do {								\
666 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
667 		s32 off;						\
668 									\
669 		if (target >= len || target < 0)			\
670 			goto err;					\
671 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
672 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
673 		off -= insn - tmp_insns;				\
674 		/* Reject anything not fitting into insn->off. */	\
675 		if (off < off_min || off > off_max)			\
676 			goto err;					\
677 		insn->off = off;					\
678 	} while (0)
679 
680 		case BPF_JMP | BPF_JA:
681 			target = i + fp->k + 1;
682 			insn->code = fp->code;
683 			BPF_EMIT_JMP;
684 			break;
685 
686 		case BPF_JMP | BPF_JEQ | BPF_K:
687 		case BPF_JMP | BPF_JEQ | BPF_X:
688 		case BPF_JMP | BPF_JSET | BPF_K:
689 		case BPF_JMP | BPF_JSET | BPF_X:
690 		case BPF_JMP | BPF_JGT | BPF_K:
691 		case BPF_JMP | BPF_JGT | BPF_X:
692 		case BPF_JMP | BPF_JGE | BPF_K:
693 		case BPF_JMP | BPF_JGE | BPF_X:
694 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
695 				/* BPF immediates are signed, zero extend
696 				 * immediate into tmp register and use it
697 				 * in compare insn.
698 				 */
699 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
700 
701 				insn->dst_reg = BPF_REG_A;
702 				insn->src_reg = BPF_REG_TMP;
703 				bpf_src = BPF_X;
704 			} else {
705 				insn->dst_reg = BPF_REG_A;
706 				insn->imm = fp->k;
707 				bpf_src = BPF_SRC(fp->code);
708 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
709 			}
710 
711 			/* Common case where 'jump_false' is next insn. */
712 			if (fp->jf == 0) {
713 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
714 				target = i + fp->jt + 1;
715 				BPF_EMIT_JMP;
716 				break;
717 			}
718 
719 			/* Convert some jumps when 'jump_true' is next insn. */
720 			if (fp->jt == 0) {
721 				switch (BPF_OP(fp->code)) {
722 				case BPF_JEQ:
723 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
724 					break;
725 				case BPF_JGT:
726 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
727 					break;
728 				case BPF_JGE:
729 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
730 					break;
731 				default:
732 					goto jmp_rest;
733 				}
734 
735 				target = i + fp->jf + 1;
736 				BPF_EMIT_JMP;
737 				break;
738 			}
739 jmp_rest:
740 			/* Other jumps are mapped into two insns: Jxx and JA. */
741 			target = i + fp->jt + 1;
742 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
743 			BPF_EMIT_JMP;
744 			insn++;
745 
746 			insn->code = BPF_JMP | BPF_JA;
747 			target = i + fp->jf + 1;
748 			BPF_EMIT_JMP;
749 			break;
750 
751 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
752 		case BPF_LDX | BPF_MSH | BPF_B: {
753 			struct sock_filter tmp = {
754 				.code	= BPF_LD | BPF_ABS | BPF_B,
755 				.k	= fp->k,
756 			};
757 
758 			*seen_ld_abs = true;
759 
760 			/* X = A */
761 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
762 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
763 			convert_bpf_ld_abs(&tmp, &insn);
764 			insn++;
765 			/* A &= 0xf */
766 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
767 			/* A <<= 2 */
768 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
769 			/* tmp = X */
770 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
771 			/* X = A */
772 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
773 			/* A = tmp */
774 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
775 			break;
776 		}
777 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
778 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
779 		 */
780 		case BPF_RET | BPF_A:
781 		case BPF_RET | BPF_K:
782 			if (BPF_RVAL(fp->code) == BPF_K)
783 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
784 							0, fp->k);
785 			*insn = BPF_EXIT_INSN();
786 			break;
787 
788 		/* Store to stack. */
789 		case BPF_ST:
790 		case BPF_STX:
791 			stack_off = fp->k * 4  + 4;
792 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
793 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
794 					    -stack_off);
795 			/* check_load_and_stores() verifies that classic BPF can
796 			 * load from stack only after write, so tracking
797 			 * stack_depth for ST|STX insns is enough
798 			 */
799 			if (new_prog && new_prog->aux->stack_depth < stack_off)
800 				new_prog->aux->stack_depth = stack_off;
801 			break;
802 
803 		/* Load from stack. */
804 		case BPF_LD | BPF_MEM:
805 		case BPF_LDX | BPF_MEM:
806 			stack_off = fp->k * 4  + 4;
807 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
808 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
809 					    -stack_off);
810 			break;
811 
812 		/* A = K or X = K */
813 		case BPF_LD | BPF_IMM:
814 		case BPF_LDX | BPF_IMM:
815 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
816 					      BPF_REG_A : BPF_REG_X, fp->k);
817 			break;
818 
819 		/* X = A */
820 		case BPF_MISC | BPF_TAX:
821 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
822 			break;
823 
824 		/* A = X */
825 		case BPF_MISC | BPF_TXA:
826 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
827 			break;
828 
829 		/* A = skb->len or X = skb->len */
830 		case BPF_LD | BPF_W | BPF_LEN:
831 		case BPF_LDX | BPF_W | BPF_LEN:
832 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
833 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
834 					    offsetof(struct sk_buff, len));
835 			break;
836 
837 		/* Access seccomp_data fields. */
838 		case BPF_LDX | BPF_ABS | BPF_W:
839 			/* A = *(u32 *) (ctx + K) */
840 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
841 			break;
842 
843 		/* Unknown instruction. */
844 		default:
845 			goto err;
846 		}
847 
848 		insn++;
849 		if (new_prog)
850 			memcpy(new_insn, tmp_insns,
851 			       sizeof(*insn) * (insn - tmp_insns));
852 		new_insn += insn - tmp_insns;
853 	}
854 
855 	if (!new_prog) {
856 		/* Only calculating new length. */
857 		*new_len = new_insn - first_insn;
858 		if (*seen_ld_abs)
859 			*new_len += 4; /* Prologue bits. */
860 		return 0;
861 	}
862 
863 	pass++;
864 	if (new_flen != new_insn - first_insn) {
865 		new_flen = new_insn - first_insn;
866 		if (pass > 2)
867 			goto err;
868 		goto do_pass;
869 	}
870 
871 	kfree(addrs);
872 	BUG_ON(*new_len != new_flen);
873 	return 0;
874 err:
875 	kfree(addrs);
876 	return -EINVAL;
877 }
878 
879 /* Security:
880  *
881  * As we dont want to clear mem[] array for each packet going through
882  * __bpf_prog_run(), we check that filter loaded by user never try to read
883  * a cell if not previously written, and we check all branches to be sure
884  * a malicious user doesn't try to abuse us.
885  */
886 static int check_load_and_stores(const struct sock_filter *filter, int flen)
887 {
888 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
889 	int pc, ret = 0;
890 
891 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
892 
893 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
894 	if (!masks)
895 		return -ENOMEM;
896 
897 	memset(masks, 0xff, flen * sizeof(*masks));
898 
899 	for (pc = 0; pc < flen; pc++) {
900 		memvalid &= masks[pc];
901 
902 		switch (filter[pc].code) {
903 		case BPF_ST:
904 		case BPF_STX:
905 			memvalid |= (1 << filter[pc].k);
906 			break;
907 		case BPF_LD | BPF_MEM:
908 		case BPF_LDX | BPF_MEM:
909 			if (!(memvalid & (1 << filter[pc].k))) {
910 				ret = -EINVAL;
911 				goto error;
912 			}
913 			break;
914 		case BPF_JMP | BPF_JA:
915 			/* A jump must set masks on target */
916 			masks[pc + 1 + filter[pc].k] &= memvalid;
917 			memvalid = ~0;
918 			break;
919 		case BPF_JMP | BPF_JEQ | BPF_K:
920 		case BPF_JMP | BPF_JEQ | BPF_X:
921 		case BPF_JMP | BPF_JGE | BPF_K:
922 		case BPF_JMP | BPF_JGE | BPF_X:
923 		case BPF_JMP | BPF_JGT | BPF_K:
924 		case BPF_JMP | BPF_JGT | BPF_X:
925 		case BPF_JMP | BPF_JSET | BPF_K:
926 		case BPF_JMP | BPF_JSET | BPF_X:
927 			/* A jump must set masks on targets */
928 			masks[pc + 1 + filter[pc].jt] &= memvalid;
929 			masks[pc + 1 + filter[pc].jf] &= memvalid;
930 			memvalid = ~0;
931 			break;
932 		}
933 	}
934 error:
935 	kfree(masks);
936 	return ret;
937 }
938 
939 static bool chk_code_allowed(u16 code_to_probe)
940 {
941 	static const bool codes[] = {
942 		/* 32 bit ALU operations */
943 		[BPF_ALU | BPF_ADD | BPF_K] = true,
944 		[BPF_ALU | BPF_ADD | BPF_X] = true,
945 		[BPF_ALU | BPF_SUB | BPF_K] = true,
946 		[BPF_ALU | BPF_SUB | BPF_X] = true,
947 		[BPF_ALU | BPF_MUL | BPF_K] = true,
948 		[BPF_ALU | BPF_MUL | BPF_X] = true,
949 		[BPF_ALU | BPF_DIV | BPF_K] = true,
950 		[BPF_ALU | BPF_DIV | BPF_X] = true,
951 		[BPF_ALU | BPF_MOD | BPF_K] = true,
952 		[BPF_ALU | BPF_MOD | BPF_X] = true,
953 		[BPF_ALU | BPF_AND | BPF_K] = true,
954 		[BPF_ALU | BPF_AND | BPF_X] = true,
955 		[BPF_ALU | BPF_OR | BPF_K] = true,
956 		[BPF_ALU | BPF_OR | BPF_X] = true,
957 		[BPF_ALU | BPF_XOR | BPF_K] = true,
958 		[BPF_ALU | BPF_XOR | BPF_X] = true,
959 		[BPF_ALU | BPF_LSH | BPF_K] = true,
960 		[BPF_ALU | BPF_LSH | BPF_X] = true,
961 		[BPF_ALU | BPF_RSH | BPF_K] = true,
962 		[BPF_ALU | BPF_RSH | BPF_X] = true,
963 		[BPF_ALU | BPF_NEG] = true,
964 		/* Load instructions */
965 		[BPF_LD | BPF_W | BPF_ABS] = true,
966 		[BPF_LD | BPF_H | BPF_ABS] = true,
967 		[BPF_LD | BPF_B | BPF_ABS] = true,
968 		[BPF_LD | BPF_W | BPF_LEN] = true,
969 		[BPF_LD | BPF_W | BPF_IND] = true,
970 		[BPF_LD | BPF_H | BPF_IND] = true,
971 		[BPF_LD | BPF_B | BPF_IND] = true,
972 		[BPF_LD | BPF_IMM] = true,
973 		[BPF_LD | BPF_MEM] = true,
974 		[BPF_LDX | BPF_W | BPF_LEN] = true,
975 		[BPF_LDX | BPF_B | BPF_MSH] = true,
976 		[BPF_LDX | BPF_IMM] = true,
977 		[BPF_LDX | BPF_MEM] = true,
978 		/* Store instructions */
979 		[BPF_ST] = true,
980 		[BPF_STX] = true,
981 		/* Misc instructions */
982 		[BPF_MISC | BPF_TAX] = true,
983 		[BPF_MISC | BPF_TXA] = true,
984 		/* Return instructions */
985 		[BPF_RET | BPF_K] = true,
986 		[BPF_RET | BPF_A] = true,
987 		/* Jump instructions */
988 		[BPF_JMP | BPF_JA] = true,
989 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
990 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
991 		[BPF_JMP | BPF_JGE | BPF_K] = true,
992 		[BPF_JMP | BPF_JGE | BPF_X] = true,
993 		[BPF_JMP | BPF_JGT | BPF_K] = true,
994 		[BPF_JMP | BPF_JGT | BPF_X] = true,
995 		[BPF_JMP | BPF_JSET | BPF_K] = true,
996 		[BPF_JMP | BPF_JSET | BPF_X] = true,
997 	};
998 
999 	if (code_to_probe >= ARRAY_SIZE(codes))
1000 		return false;
1001 
1002 	return codes[code_to_probe];
1003 }
1004 
1005 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1006 				unsigned int flen)
1007 {
1008 	if (filter == NULL)
1009 		return false;
1010 	if (flen == 0 || flen > BPF_MAXINSNS)
1011 		return false;
1012 
1013 	return true;
1014 }
1015 
1016 /**
1017  *	bpf_check_classic - verify socket filter code
1018  *	@filter: filter to verify
1019  *	@flen: length of filter
1020  *
1021  * Check the user's filter code. If we let some ugly
1022  * filter code slip through kaboom! The filter must contain
1023  * no references or jumps that are out of range, no illegal
1024  * instructions, and must end with a RET instruction.
1025  *
1026  * All jumps are forward as they are not signed.
1027  *
1028  * Returns 0 if the rule set is legal or -EINVAL if not.
1029  */
1030 static int bpf_check_classic(const struct sock_filter *filter,
1031 			     unsigned int flen)
1032 {
1033 	bool anc_found;
1034 	int pc;
1035 
1036 	/* Check the filter code now */
1037 	for (pc = 0; pc < flen; pc++) {
1038 		const struct sock_filter *ftest = &filter[pc];
1039 
1040 		/* May we actually operate on this code? */
1041 		if (!chk_code_allowed(ftest->code))
1042 			return -EINVAL;
1043 
1044 		/* Some instructions need special checks */
1045 		switch (ftest->code) {
1046 		case BPF_ALU | BPF_DIV | BPF_K:
1047 		case BPF_ALU | BPF_MOD | BPF_K:
1048 			/* Check for division by zero */
1049 			if (ftest->k == 0)
1050 				return -EINVAL;
1051 			break;
1052 		case BPF_ALU | BPF_LSH | BPF_K:
1053 		case BPF_ALU | BPF_RSH | BPF_K:
1054 			if (ftest->k >= 32)
1055 				return -EINVAL;
1056 			break;
1057 		case BPF_LD | BPF_MEM:
1058 		case BPF_LDX | BPF_MEM:
1059 		case BPF_ST:
1060 		case BPF_STX:
1061 			/* Check for invalid memory addresses */
1062 			if (ftest->k >= BPF_MEMWORDS)
1063 				return -EINVAL;
1064 			break;
1065 		case BPF_JMP | BPF_JA:
1066 			/* Note, the large ftest->k might cause loops.
1067 			 * Compare this with conditional jumps below,
1068 			 * where offsets are limited. --ANK (981016)
1069 			 */
1070 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1071 				return -EINVAL;
1072 			break;
1073 		case BPF_JMP | BPF_JEQ | BPF_K:
1074 		case BPF_JMP | BPF_JEQ | BPF_X:
1075 		case BPF_JMP | BPF_JGE | BPF_K:
1076 		case BPF_JMP | BPF_JGE | BPF_X:
1077 		case BPF_JMP | BPF_JGT | BPF_K:
1078 		case BPF_JMP | BPF_JGT | BPF_X:
1079 		case BPF_JMP | BPF_JSET | BPF_K:
1080 		case BPF_JMP | BPF_JSET | BPF_X:
1081 			/* Both conditionals must be safe */
1082 			if (pc + ftest->jt + 1 >= flen ||
1083 			    pc + ftest->jf + 1 >= flen)
1084 				return -EINVAL;
1085 			break;
1086 		case BPF_LD | BPF_W | BPF_ABS:
1087 		case BPF_LD | BPF_H | BPF_ABS:
1088 		case BPF_LD | BPF_B | BPF_ABS:
1089 			anc_found = false;
1090 			if (bpf_anc_helper(ftest) & BPF_ANC)
1091 				anc_found = true;
1092 			/* Ancillary operation unknown or unsupported */
1093 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1094 				return -EINVAL;
1095 		}
1096 	}
1097 
1098 	/* Last instruction must be a RET code */
1099 	switch (filter[flen - 1].code) {
1100 	case BPF_RET | BPF_K:
1101 	case BPF_RET | BPF_A:
1102 		return check_load_and_stores(filter, flen);
1103 	}
1104 
1105 	return -EINVAL;
1106 }
1107 
1108 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1109 				      const struct sock_fprog *fprog)
1110 {
1111 	unsigned int fsize = bpf_classic_proglen(fprog);
1112 	struct sock_fprog_kern *fkprog;
1113 
1114 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1115 	if (!fp->orig_prog)
1116 		return -ENOMEM;
1117 
1118 	fkprog = fp->orig_prog;
1119 	fkprog->len = fprog->len;
1120 
1121 	fkprog->filter = kmemdup(fp->insns, fsize,
1122 				 GFP_KERNEL | __GFP_NOWARN);
1123 	if (!fkprog->filter) {
1124 		kfree(fp->orig_prog);
1125 		return -ENOMEM;
1126 	}
1127 
1128 	return 0;
1129 }
1130 
1131 static void bpf_release_orig_filter(struct bpf_prog *fp)
1132 {
1133 	struct sock_fprog_kern *fprog = fp->orig_prog;
1134 
1135 	if (fprog) {
1136 		kfree(fprog->filter);
1137 		kfree(fprog);
1138 	}
1139 }
1140 
1141 static void __bpf_prog_release(struct bpf_prog *prog)
1142 {
1143 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1144 		bpf_prog_put(prog);
1145 	} else {
1146 		bpf_release_orig_filter(prog);
1147 		bpf_prog_free(prog);
1148 	}
1149 }
1150 
1151 static void __sk_filter_release(struct sk_filter *fp)
1152 {
1153 	__bpf_prog_release(fp->prog);
1154 	kfree(fp);
1155 }
1156 
1157 /**
1158  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1159  *	@rcu: rcu_head that contains the sk_filter to free
1160  */
1161 static void sk_filter_release_rcu(struct rcu_head *rcu)
1162 {
1163 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1164 
1165 	__sk_filter_release(fp);
1166 }
1167 
1168 /**
1169  *	sk_filter_release - release a socket filter
1170  *	@fp: filter to remove
1171  *
1172  *	Remove a filter from a socket and release its resources.
1173  */
1174 static void sk_filter_release(struct sk_filter *fp)
1175 {
1176 	if (refcount_dec_and_test(&fp->refcnt))
1177 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1178 }
1179 
1180 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1181 {
1182 	u32 filter_size = bpf_prog_size(fp->prog->len);
1183 
1184 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1185 	sk_filter_release(fp);
1186 }
1187 
1188 /* try to charge the socket memory if there is space available
1189  * return true on success
1190  */
1191 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1192 {
1193 	u32 filter_size = bpf_prog_size(fp->prog->len);
1194 
1195 	/* same check as in sock_kmalloc() */
1196 	if (filter_size <= sysctl_optmem_max &&
1197 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1198 		atomic_add(filter_size, &sk->sk_omem_alloc);
1199 		return true;
1200 	}
1201 	return false;
1202 }
1203 
1204 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1205 {
1206 	if (!refcount_inc_not_zero(&fp->refcnt))
1207 		return false;
1208 
1209 	if (!__sk_filter_charge(sk, fp)) {
1210 		sk_filter_release(fp);
1211 		return false;
1212 	}
1213 	return true;
1214 }
1215 
1216 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1217 {
1218 	struct sock_filter *old_prog;
1219 	struct bpf_prog *old_fp;
1220 	int err, new_len, old_len = fp->len;
1221 	bool seen_ld_abs = false;
1222 
1223 	/* We are free to overwrite insns et al right here as it
1224 	 * won't be used at this point in time anymore internally
1225 	 * after the migration to the internal BPF instruction
1226 	 * representation.
1227 	 */
1228 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1229 		     sizeof(struct bpf_insn));
1230 
1231 	/* Conversion cannot happen on overlapping memory areas,
1232 	 * so we need to keep the user BPF around until the 2nd
1233 	 * pass. At this time, the user BPF is stored in fp->insns.
1234 	 */
1235 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1236 			   GFP_KERNEL | __GFP_NOWARN);
1237 	if (!old_prog) {
1238 		err = -ENOMEM;
1239 		goto out_err;
1240 	}
1241 
1242 	/* 1st pass: calculate the new program length. */
1243 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1244 				 &seen_ld_abs);
1245 	if (err)
1246 		goto out_err_free;
1247 
1248 	/* Expand fp for appending the new filter representation. */
1249 	old_fp = fp;
1250 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1251 	if (!fp) {
1252 		/* The old_fp is still around in case we couldn't
1253 		 * allocate new memory, so uncharge on that one.
1254 		 */
1255 		fp = old_fp;
1256 		err = -ENOMEM;
1257 		goto out_err_free;
1258 	}
1259 
1260 	fp->len = new_len;
1261 
1262 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1263 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1264 				 &seen_ld_abs);
1265 	if (err)
1266 		/* 2nd bpf_convert_filter() can fail only if it fails
1267 		 * to allocate memory, remapping must succeed. Note,
1268 		 * that at this time old_fp has already been released
1269 		 * by krealloc().
1270 		 */
1271 		goto out_err_free;
1272 
1273 	fp = bpf_prog_select_runtime(fp, &err);
1274 	if (err)
1275 		goto out_err_free;
1276 
1277 	kfree(old_prog);
1278 	return fp;
1279 
1280 out_err_free:
1281 	kfree(old_prog);
1282 out_err:
1283 	__bpf_prog_release(fp);
1284 	return ERR_PTR(err);
1285 }
1286 
1287 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1288 					   bpf_aux_classic_check_t trans)
1289 {
1290 	int err;
1291 
1292 	fp->bpf_func = NULL;
1293 	fp->jited = 0;
1294 
1295 	err = bpf_check_classic(fp->insns, fp->len);
1296 	if (err) {
1297 		__bpf_prog_release(fp);
1298 		return ERR_PTR(err);
1299 	}
1300 
1301 	/* There might be additional checks and transformations
1302 	 * needed on classic filters, f.e. in case of seccomp.
1303 	 */
1304 	if (trans) {
1305 		err = trans(fp->insns, fp->len);
1306 		if (err) {
1307 			__bpf_prog_release(fp);
1308 			return ERR_PTR(err);
1309 		}
1310 	}
1311 
1312 	/* Probe if we can JIT compile the filter and if so, do
1313 	 * the compilation of the filter.
1314 	 */
1315 	bpf_jit_compile(fp);
1316 
1317 	/* JIT compiler couldn't process this filter, so do the
1318 	 * internal BPF translation for the optimized interpreter.
1319 	 */
1320 	if (!fp->jited)
1321 		fp = bpf_migrate_filter(fp);
1322 
1323 	return fp;
1324 }
1325 
1326 /**
1327  *	bpf_prog_create - create an unattached filter
1328  *	@pfp: the unattached filter that is created
1329  *	@fprog: the filter program
1330  *
1331  * Create a filter independent of any socket. We first run some
1332  * sanity checks on it to make sure it does not explode on us later.
1333  * If an error occurs or there is insufficient memory for the filter
1334  * a negative errno code is returned. On success the return is zero.
1335  */
1336 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1337 {
1338 	unsigned int fsize = bpf_classic_proglen(fprog);
1339 	struct bpf_prog *fp;
1340 
1341 	/* Make sure new filter is there and in the right amounts. */
1342 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1343 		return -EINVAL;
1344 
1345 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1346 	if (!fp)
1347 		return -ENOMEM;
1348 
1349 	memcpy(fp->insns, fprog->filter, fsize);
1350 
1351 	fp->len = fprog->len;
1352 	/* Since unattached filters are not copied back to user
1353 	 * space through sk_get_filter(), we do not need to hold
1354 	 * a copy here, and can spare us the work.
1355 	 */
1356 	fp->orig_prog = NULL;
1357 
1358 	/* bpf_prepare_filter() already takes care of freeing
1359 	 * memory in case something goes wrong.
1360 	 */
1361 	fp = bpf_prepare_filter(fp, NULL);
1362 	if (IS_ERR(fp))
1363 		return PTR_ERR(fp);
1364 
1365 	*pfp = fp;
1366 	return 0;
1367 }
1368 EXPORT_SYMBOL_GPL(bpf_prog_create);
1369 
1370 /**
1371  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1372  *	@pfp: the unattached filter that is created
1373  *	@fprog: the filter program
1374  *	@trans: post-classic verifier transformation handler
1375  *	@save_orig: save classic BPF program
1376  *
1377  * This function effectively does the same as bpf_prog_create(), only
1378  * that it builds up its insns buffer from user space provided buffer.
1379  * It also allows for passing a bpf_aux_classic_check_t handler.
1380  */
1381 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1382 			      bpf_aux_classic_check_t trans, bool save_orig)
1383 {
1384 	unsigned int fsize = bpf_classic_proglen(fprog);
1385 	struct bpf_prog *fp;
1386 	int err;
1387 
1388 	/* Make sure new filter is there and in the right amounts. */
1389 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1390 		return -EINVAL;
1391 
1392 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1393 	if (!fp)
1394 		return -ENOMEM;
1395 
1396 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1397 		__bpf_prog_free(fp);
1398 		return -EFAULT;
1399 	}
1400 
1401 	fp->len = fprog->len;
1402 	fp->orig_prog = NULL;
1403 
1404 	if (save_orig) {
1405 		err = bpf_prog_store_orig_filter(fp, fprog);
1406 		if (err) {
1407 			__bpf_prog_free(fp);
1408 			return -ENOMEM;
1409 		}
1410 	}
1411 
1412 	/* bpf_prepare_filter() already takes care of freeing
1413 	 * memory in case something goes wrong.
1414 	 */
1415 	fp = bpf_prepare_filter(fp, trans);
1416 	if (IS_ERR(fp))
1417 		return PTR_ERR(fp);
1418 
1419 	*pfp = fp;
1420 	return 0;
1421 }
1422 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1423 
1424 void bpf_prog_destroy(struct bpf_prog *fp)
1425 {
1426 	__bpf_prog_release(fp);
1427 }
1428 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1429 
1430 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1431 {
1432 	struct sk_filter *fp, *old_fp;
1433 
1434 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1435 	if (!fp)
1436 		return -ENOMEM;
1437 
1438 	fp->prog = prog;
1439 
1440 	if (!__sk_filter_charge(sk, fp)) {
1441 		kfree(fp);
1442 		return -ENOMEM;
1443 	}
1444 	refcount_set(&fp->refcnt, 1);
1445 
1446 	old_fp = rcu_dereference_protected(sk->sk_filter,
1447 					   lockdep_sock_is_held(sk));
1448 	rcu_assign_pointer(sk->sk_filter, fp);
1449 
1450 	if (old_fp)
1451 		sk_filter_uncharge(sk, old_fp);
1452 
1453 	return 0;
1454 }
1455 
1456 static
1457 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1458 {
1459 	unsigned int fsize = bpf_classic_proglen(fprog);
1460 	struct bpf_prog *prog;
1461 	int err;
1462 
1463 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1464 		return ERR_PTR(-EPERM);
1465 
1466 	/* Make sure new filter is there and in the right amounts. */
1467 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1468 		return ERR_PTR(-EINVAL);
1469 
1470 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1471 	if (!prog)
1472 		return ERR_PTR(-ENOMEM);
1473 
1474 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1475 		__bpf_prog_free(prog);
1476 		return ERR_PTR(-EFAULT);
1477 	}
1478 
1479 	prog->len = fprog->len;
1480 
1481 	err = bpf_prog_store_orig_filter(prog, fprog);
1482 	if (err) {
1483 		__bpf_prog_free(prog);
1484 		return ERR_PTR(-ENOMEM);
1485 	}
1486 
1487 	/* bpf_prepare_filter() already takes care of freeing
1488 	 * memory in case something goes wrong.
1489 	 */
1490 	return bpf_prepare_filter(prog, NULL);
1491 }
1492 
1493 /**
1494  *	sk_attach_filter - attach a socket filter
1495  *	@fprog: the filter program
1496  *	@sk: the socket to use
1497  *
1498  * Attach the user's filter code. We first run some sanity checks on
1499  * it to make sure it does not explode on us later. If an error
1500  * occurs or there is insufficient memory for the filter a negative
1501  * errno code is returned. On success the return is zero.
1502  */
1503 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1504 {
1505 	struct bpf_prog *prog = __get_filter(fprog, sk);
1506 	int err;
1507 
1508 	if (IS_ERR(prog))
1509 		return PTR_ERR(prog);
1510 
1511 	err = __sk_attach_prog(prog, sk);
1512 	if (err < 0) {
1513 		__bpf_prog_release(prog);
1514 		return err;
1515 	}
1516 
1517 	return 0;
1518 }
1519 EXPORT_SYMBOL_GPL(sk_attach_filter);
1520 
1521 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1522 {
1523 	struct bpf_prog *prog = __get_filter(fprog, sk);
1524 	int err;
1525 
1526 	if (IS_ERR(prog))
1527 		return PTR_ERR(prog);
1528 
1529 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1530 		err = -ENOMEM;
1531 	else
1532 		err = reuseport_attach_prog(sk, prog);
1533 
1534 	if (err)
1535 		__bpf_prog_release(prog);
1536 
1537 	return err;
1538 }
1539 
1540 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1541 {
1542 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1543 		return ERR_PTR(-EPERM);
1544 
1545 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1546 }
1547 
1548 int sk_attach_bpf(u32 ufd, struct sock *sk)
1549 {
1550 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1551 	int err;
1552 
1553 	if (IS_ERR(prog))
1554 		return PTR_ERR(prog);
1555 
1556 	err = __sk_attach_prog(prog, sk);
1557 	if (err < 0) {
1558 		bpf_prog_put(prog);
1559 		return err;
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1566 {
1567 	struct bpf_prog *prog;
1568 	int err;
1569 
1570 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1571 		return -EPERM;
1572 
1573 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1574 	if (IS_ERR(prog) && PTR_ERR(prog) == -EINVAL)
1575 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1576 	if (IS_ERR(prog))
1577 		return PTR_ERR(prog);
1578 
1579 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1580 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1581 		 * bpf prog (e.g. sockmap).  It depends on the
1582 		 * limitation imposed by bpf_prog_load().
1583 		 * Hence, sysctl_optmem_max is not checked.
1584 		 */
1585 		if ((sk->sk_type != SOCK_STREAM &&
1586 		     sk->sk_type != SOCK_DGRAM) ||
1587 		    (sk->sk_protocol != IPPROTO_UDP &&
1588 		     sk->sk_protocol != IPPROTO_TCP) ||
1589 		    (sk->sk_family != AF_INET &&
1590 		     sk->sk_family != AF_INET6)) {
1591 			err = -ENOTSUPP;
1592 			goto err_prog_put;
1593 		}
1594 	} else {
1595 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1596 		if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1597 			err = -ENOMEM;
1598 			goto err_prog_put;
1599 		}
1600 	}
1601 
1602 	err = reuseport_attach_prog(sk, prog);
1603 err_prog_put:
1604 	if (err)
1605 		bpf_prog_put(prog);
1606 
1607 	return err;
1608 }
1609 
1610 void sk_reuseport_prog_free(struct bpf_prog *prog)
1611 {
1612 	if (!prog)
1613 		return;
1614 
1615 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1616 		bpf_prog_put(prog);
1617 	else
1618 		bpf_prog_destroy(prog);
1619 }
1620 
1621 struct bpf_scratchpad {
1622 	union {
1623 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1624 		u8     buff[MAX_BPF_STACK];
1625 	};
1626 };
1627 
1628 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1629 
1630 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1631 					  unsigned int write_len)
1632 {
1633 	return skb_ensure_writable(skb, write_len);
1634 }
1635 
1636 static inline int bpf_try_make_writable(struct sk_buff *skb,
1637 					unsigned int write_len)
1638 {
1639 	int err = __bpf_try_make_writable(skb, write_len);
1640 
1641 	bpf_compute_data_pointers(skb);
1642 	return err;
1643 }
1644 
1645 static int bpf_try_make_head_writable(struct sk_buff *skb)
1646 {
1647 	return bpf_try_make_writable(skb, skb_headlen(skb));
1648 }
1649 
1650 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1651 {
1652 	if (skb_at_tc_ingress(skb))
1653 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1654 }
1655 
1656 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1657 {
1658 	if (skb_at_tc_ingress(skb))
1659 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1660 }
1661 
1662 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1663 	   const void *, from, u32, len, u64, flags)
1664 {
1665 	void *ptr;
1666 
1667 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1668 		return -EINVAL;
1669 	if (unlikely(offset > 0xffff))
1670 		return -EFAULT;
1671 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1672 		return -EFAULT;
1673 
1674 	ptr = skb->data + offset;
1675 	if (flags & BPF_F_RECOMPUTE_CSUM)
1676 		__skb_postpull_rcsum(skb, ptr, len, offset);
1677 
1678 	memcpy(ptr, from, len);
1679 
1680 	if (flags & BPF_F_RECOMPUTE_CSUM)
1681 		__skb_postpush_rcsum(skb, ptr, len, offset);
1682 	if (flags & BPF_F_INVALIDATE_HASH)
1683 		skb_clear_hash(skb);
1684 
1685 	return 0;
1686 }
1687 
1688 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1689 	.func		= bpf_skb_store_bytes,
1690 	.gpl_only	= false,
1691 	.ret_type	= RET_INTEGER,
1692 	.arg1_type	= ARG_PTR_TO_CTX,
1693 	.arg2_type	= ARG_ANYTHING,
1694 	.arg3_type	= ARG_PTR_TO_MEM,
1695 	.arg4_type	= ARG_CONST_SIZE,
1696 	.arg5_type	= ARG_ANYTHING,
1697 };
1698 
1699 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1700 	   void *, to, u32, len)
1701 {
1702 	void *ptr;
1703 
1704 	if (unlikely(offset > 0xffff))
1705 		goto err_clear;
1706 
1707 	ptr = skb_header_pointer(skb, offset, len, to);
1708 	if (unlikely(!ptr))
1709 		goto err_clear;
1710 	if (ptr != to)
1711 		memcpy(to, ptr, len);
1712 
1713 	return 0;
1714 err_clear:
1715 	memset(to, 0, len);
1716 	return -EFAULT;
1717 }
1718 
1719 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1720 	.func		= bpf_skb_load_bytes,
1721 	.gpl_only	= false,
1722 	.ret_type	= RET_INTEGER,
1723 	.arg1_type	= ARG_PTR_TO_CTX,
1724 	.arg2_type	= ARG_ANYTHING,
1725 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1726 	.arg4_type	= ARG_CONST_SIZE,
1727 };
1728 
1729 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1730 	   u32, offset, void *, to, u32, len, u32, start_header)
1731 {
1732 	u8 *end = skb_tail_pointer(skb);
1733 	u8 *net = skb_network_header(skb);
1734 	u8 *mac = skb_mac_header(skb);
1735 	u8 *ptr;
1736 
1737 	if (unlikely(offset > 0xffff || len > (end - mac)))
1738 		goto err_clear;
1739 
1740 	switch (start_header) {
1741 	case BPF_HDR_START_MAC:
1742 		ptr = mac + offset;
1743 		break;
1744 	case BPF_HDR_START_NET:
1745 		ptr = net + offset;
1746 		break;
1747 	default:
1748 		goto err_clear;
1749 	}
1750 
1751 	if (likely(ptr >= mac && ptr + len <= end)) {
1752 		memcpy(to, ptr, len);
1753 		return 0;
1754 	}
1755 
1756 err_clear:
1757 	memset(to, 0, len);
1758 	return -EFAULT;
1759 }
1760 
1761 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1762 	.func		= bpf_skb_load_bytes_relative,
1763 	.gpl_only	= false,
1764 	.ret_type	= RET_INTEGER,
1765 	.arg1_type	= ARG_PTR_TO_CTX,
1766 	.arg2_type	= ARG_ANYTHING,
1767 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1768 	.arg4_type	= ARG_CONST_SIZE,
1769 	.arg5_type	= ARG_ANYTHING,
1770 };
1771 
1772 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1773 {
1774 	/* Idea is the following: should the needed direct read/write
1775 	 * test fail during runtime, we can pull in more data and redo
1776 	 * again, since implicitly, we invalidate previous checks here.
1777 	 *
1778 	 * Or, since we know how much we need to make read/writeable,
1779 	 * this can be done once at the program beginning for direct
1780 	 * access case. By this we overcome limitations of only current
1781 	 * headroom being accessible.
1782 	 */
1783 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1784 }
1785 
1786 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1787 	.func		= bpf_skb_pull_data,
1788 	.gpl_only	= false,
1789 	.ret_type	= RET_INTEGER,
1790 	.arg1_type	= ARG_PTR_TO_CTX,
1791 	.arg2_type	= ARG_ANYTHING,
1792 };
1793 
1794 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1795 					   unsigned int write_len)
1796 {
1797 	int err = __bpf_try_make_writable(skb, write_len);
1798 
1799 	bpf_compute_data_end_sk_skb(skb);
1800 	return err;
1801 }
1802 
1803 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1804 {
1805 	/* Idea is the following: should the needed direct read/write
1806 	 * test fail during runtime, we can pull in more data and redo
1807 	 * again, since implicitly, we invalidate previous checks here.
1808 	 *
1809 	 * Or, since we know how much we need to make read/writeable,
1810 	 * this can be done once at the program beginning for direct
1811 	 * access case. By this we overcome limitations of only current
1812 	 * headroom being accessible.
1813 	 */
1814 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1815 }
1816 
1817 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1818 	.func		= sk_skb_pull_data,
1819 	.gpl_only	= false,
1820 	.ret_type	= RET_INTEGER,
1821 	.arg1_type	= ARG_PTR_TO_CTX,
1822 	.arg2_type	= ARG_ANYTHING,
1823 };
1824 
1825 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1826 	   u64, from, u64, to, u64, flags)
1827 {
1828 	__sum16 *ptr;
1829 
1830 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1831 		return -EINVAL;
1832 	if (unlikely(offset > 0xffff || offset & 1))
1833 		return -EFAULT;
1834 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1835 		return -EFAULT;
1836 
1837 	ptr = (__sum16 *)(skb->data + offset);
1838 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1839 	case 0:
1840 		if (unlikely(from != 0))
1841 			return -EINVAL;
1842 
1843 		csum_replace_by_diff(ptr, to);
1844 		break;
1845 	case 2:
1846 		csum_replace2(ptr, from, to);
1847 		break;
1848 	case 4:
1849 		csum_replace4(ptr, from, to);
1850 		break;
1851 	default:
1852 		return -EINVAL;
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1859 	.func		= bpf_l3_csum_replace,
1860 	.gpl_only	= false,
1861 	.ret_type	= RET_INTEGER,
1862 	.arg1_type	= ARG_PTR_TO_CTX,
1863 	.arg2_type	= ARG_ANYTHING,
1864 	.arg3_type	= ARG_ANYTHING,
1865 	.arg4_type	= ARG_ANYTHING,
1866 	.arg5_type	= ARG_ANYTHING,
1867 };
1868 
1869 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1870 	   u64, from, u64, to, u64, flags)
1871 {
1872 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1873 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1874 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1875 	__sum16 *ptr;
1876 
1877 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1878 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1879 		return -EINVAL;
1880 	if (unlikely(offset > 0xffff || offset & 1))
1881 		return -EFAULT;
1882 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1883 		return -EFAULT;
1884 
1885 	ptr = (__sum16 *)(skb->data + offset);
1886 	if (is_mmzero && !do_mforce && !*ptr)
1887 		return 0;
1888 
1889 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1890 	case 0:
1891 		if (unlikely(from != 0))
1892 			return -EINVAL;
1893 
1894 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1895 		break;
1896 	case 2:
1897 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1898 		break;
1899 	case 4:
1900 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1901 		break;
1902 	default:
1903 		return -EINVAL;
1904 	}
1905 
1906 	if (is_mmzero && !*ptr)
1907 		*ptr = CSUM_MANGLED_0;
1908 	return 0;
1909 }
1910 
1911 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1912 	.func		= bpf_l4_csum_replace,
1913 	.gpl_only	= false,
1914 	.ret_type	= RET_INTEGER,
1915 	.arg1_type	= ARG_PTR_TO_CTX,
1916 	.arg2_type	= ARG_ANYTHING,
1917 	.arg3_type	= ARG_ANYTHING,
1918 	.arg4_type	= ARG_ANYTHING,
1919 	.arg5_type	= ARG_ANYTHING,
1920 };
1921 
1922 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1923 	   __be32 *, to, u32, to_size, __wsum, seed)
1924 {
1925 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1926 	u32 diff_size = from_size + to_size;
1927 	int i, j = 0;
1928 
1929 	/* This is quite flexible, some examples:
1930 	 *
1931 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1932 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
1933 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1934 	 *
1935 	 * Even for diffing, from_size and to_size don't need to be equal.
1936 	 */
1937 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1938 		     diff_size > sizeof(sp->diff)))
1939 		return -EINVAL;
1940 
1941 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1942 		sp->diff[j] = ~from[i];
1943 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1944 		sp->diff[j] = to[i];
1945 
1946 	return csum_partial(sp->diff, diff_size, seed);
1947 }
1948 
1949 static const struct bpf_func_proto bpf_csum_diff_proto = {
1950 	.func		= bpf_csum_diff,
1951 	.gpl_only	= false,
1952 	.pkt_access	= true,
1953 	.ret_type	= RET_INTEGER,
1954 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1955 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1956 	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
1957 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1958 	.arg5_type	= ARG_ANYTHING,
1959 };
1960 
1961 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1962 {
1963 	/* The interface is to be used in combination with bpf_csum_diff()
1964 	 * for direct packet writes. csum rotation for alignment as well
1965 	 * as emulating csum_sub() can be done from the eBPF program.
1966 	 */
1967 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1968 		return (skb->csum = csum_add(skb->csum, csum));
1969 
1970 	return -ENOTSUPP;
1971 }
1972 
1973 static const struct bpf_func_proto bpf_csum_update_proto = {
1974 	.func		= bpf_csum_update,
1975 	.gpl_only	= false,
1976 	.ret_type	= RET_INTEGER,
1977 	.arg1_type	= ARG_PTR_TO_CTX,
1978 	.arg2_type	= ARG_ANYTHING,
1979 };
1980 
1981 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1982 {
1983 	return dev_forward_skb(dev, skb);
1984 }
1985 
1986 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1987 				      struct sk_buff *skb)
1988 {
1989 	int ret = ____dev_forward_skb(dev, skb);
1990 
1991 	if (likely(!ret)) {
1992 		skb->dev = dev;
1993 		ret = netif_rx(skb);
1994 	}
1995 
1996 	return ret;
1997 }
1998 
1999 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2000 {
2001 	int ret;
2002 
2003 	if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
2004 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2005 		kfree_skb(skb);
2006 		return -ENETDOWN;
2007 	}
2008 
2009 	skb->dev = dev;
2010 
2011 	__this_cpu_inc(xmit_recursion);
2012 	ret = dev_queue_xmit(skb);
2013 	__this_cpu_dec(xmit_recursion);
2014 
2015 	return ret;
2016 }
2017 
2018 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2019 				 u32 flags)
2020 {
2021 	/* skb->mac_len is not set on normal egress */
2022 	unsigned int mlen = skb->network_header - skb->mac_header;
2023 
2024 	__skb_pull(skb, mlen);
2025 
2026 	/* At ingress, the mac header has already been pulled once.
2027 	 * At egress, skb_pospull_rcsum has to be done in case that
2028 	 * the skb is originated from ingress (i.e. a forwarded skb)
2029 	 * to ensure that rcsum starts at net header.
2030 	 */
2031 	if (!skb_at_tc_ingress(skb))
2032 		skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2033 	skb_pop_mac_header(skb);
2034 	skb_reset_mac_len(skb);
2035 	return flags & BPF_F_INGRESS ?
2036 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2037 }
2038 
2039 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2040 				 u32 flags)
2041 {
2042 	/* Verify that a link layer header is carried */
2043 	if (unlikely(skb->mac_header >= skb->network_header)) {
2044 		kfree_skb(skb);
2045 		return -ERANGE;
2046 	}
2047 
2048 	bpf_push_mac_rcsum(skb);
2049 	return flags & BPF_F_INGRESS ?
2050 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2051 }
2052 
2053 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2054 			  u32 flags)
2055 {
2056 	if (dev_is_mac_header_xmit(dev))
2057 		return __bpf_redirect_common(skb, dev, flags);
2058 	else
2059 		return __bpf_redirect_no_mac(skb, dev, flags);
2060 }
2061 
2062 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2063 {
2064 	struct net_device *dev;
2065 	struct sk_buff *clone;
2066 	int ret;
2067 
2068 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2069 		return -EINVAL;
2070 
2071 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2072 	if (unlikely(!dev))
2073 		return -EINVAL;
2074 
2075 	clone = skb_clone(skb, GFP_ATOMIC);
2076 	if (unlikely(!clone))
2077 		return -ENOMEM;
2078 
2079 	/* For direct write, we need to keep the invariant that the skbs
2080 	 * we're dealing with need to be uncloned. Should uncloning fail
2081 	 * here, we need to free the just generated clone to unclone once
2082 	 * again.
2083 	 */
2084 	ret = bpf_try_make_head_writable(skb);
2085 	if (unlikely(ret)) {
2086 		kfree_skb(clone);
2087 		return -ENOMEM;
2088 	}
2089 
2090 	return __bpf_redirect(clone, dev, flags);
2091 }
2092 
2093 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2094 	.func           = bpf_clone_redirect,
2095 	.gpl_only       = false,
2096 	.ret_type       = RET_INTEGER,
2097 	.arg1_type      = ARG_PTR_TO_CTX,
2098 	.arg2_type      = ARG_ANYTHING,
2099 	.arg3_type      = ARG_ANYTHING,
2100 };
2101 
2102 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2103 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2104 
2105 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2106 {
2107 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2108 
2109 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2110 		return TC_ACT_SHOT;
2111 
2112 	ri->ifindex = ifindex;
2113 	ri->flags = flags;
2114 
2115 	return TC_ACT_REDIRECT;
2116 }
2117 
2118 int skb_do_redirect(struct sk_buff *skb)
2119 {
2120 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2121 	struct net_device *dev;
2122 
2123 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
2124 	ri->ifindex = 0;
2125 	if (unlikely(!dev)) {
2126 		kfree_skb(skb);
2127 		return -EINVAL;
2128 	}
2129 
2130 	return __bpf_redirect(skb, dev, ri->flags);
2131 }
2132 
2133 static const struct bpf_func_proto bpf_redirect_proto = {
2134 	.func           = bpf_redirect,
2135 	.gpl_only       = false,
2136 	.ret_type       = RET_INTEGER,
2137 	.arg1_type      = ARG_ANYTHING,
2138 	.arg2_type      = ARG_ANYTHING,
2139 };
2140 
2141 BPF_CALL_4(bpf_sk_redirect_hash, struct sk_buff *, skb,
2142 	   struct bpf_map *, map, void *, key, u64, flags)
2143 {
2144 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2145 
2146 	/* If user passes invalid input drop the packet. */
2147 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2148 		return SK_DROP;
2149 
2150 	tcb->bpf.flags = flags;
2151 	tcb->bpf.sk_redir = __sock_hash_lookup_elem(map, key);
2152 	if (!tcb->bpf.sk_redir)
2153 		return SK_DROP;
2154 
2155 	return SK_PASS;
2156 }
2157 
2158 static const struct bpf_func_proto bpf_sk_redirect_hash_proto = {
2159 	.func           = bpf_sk_redirect_hash,
2160 	.gpl_only       = false,
2161 	.ret_type       = RET_INTEGER,
2162 	.arg1_type	= ARG_PTR_TO_CTX,
2163 	.arg2_type      = ARG_CONST_MAP_PTR,
2164 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
2165 	.arg4_type      = ARG_ANYTHING,
2166 };
2167 
2168 BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb,
2169 	   struct bpf_map *, map, u32, key, u64, flags)
2170 {
2171 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2172 
2173 	/* If user passes invalid input drop the packet. */
2174 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2175 		return SK_DROP;
2176 
2177 	tcb->bpf.flags = flags;
2178 	tcb->bpf.sk_redir = __sock_map_lookup_elem(map, key);
2179 	if (!tcb->bpf.sk_redir)
2180 		return SK_DROP;
2181 
2182 	return SK_PASS;
2183 }
2184 
2185 struct sock *do_sk_redirect_map(struct sk_buff *skb)
2186 {
2187 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2188 
2189 	return tcb->bpf.sk_redir;
2190 }
2191 
2192 static const struct bpf_func_proto bpf_sk_redirect_map_proto = {
2193 	.func           = bpf_sk_redirect_map,
2194 	.gpl_only       = false,
2195 	.ret_type       = RET_INTEGER,
2196 	.arg1_type	= ARG_PTR_TO_CTX,
2197 	.arg2_type      = ARG_CONST_MAP_PTR,
2198 	.arg3_type      = ARG_ANYTHING,
2199 	.arg4_type      = ARG_ANYTHING,
2200 };
2201 
2202 BPF_CALL_4(bpf_msg_redirect_hash, struct sk_msg_buff *, msg,
2203 	   struct bpf_map *, map, void *, key, u64, flags)
2204 {
2205 	/* If user passes invalid input drop the packet. */
2206 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2207 		return SK_DROP;
2208 
2209 	msg->flags = flags;
2210 	msg->sk_redir = __sock_hash_lookup_elem(map, key);
2211 	if (!msg->sk_redir)
2212 		return SK_DROP;
2213 
2214 	return SK_PASS;
2215 }
2216 
2217 static const struct bpf_func_proto bpf_msg_redirect_hash_proto = {
2218 	.func           = bpf_msg_redirect_hash,
2219 	.gpl_only       = false,
2220 	.ret_type       = RET_INTEGER,
2221 	.arg1_type	= ARG_PTR_TO_CTX,
2222 	.arg2_type      = ARG_CONST_MAP_PTR,
2223 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
2224 	.arg4_type      = ARG_ANYTHING,
2225 };
2226 
2227 BPF_CALL_4(bpf_msg_redirect_map, struct sk_msg_buff *, msg,
2228 	   struct bpf_map *, map, u32, key, u64, flags)
2229 {
2230 	/* If user passes invalid input drop the packet. */
2231 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2232 		return SK_DROP;
2233 
2234 	msg->flags = flags;
2235 	msg->sk_redir = __sock_map_lookup_elem(map, key);
2236 	if (!msg->sk_redir)
2237 		return SK_DROP;
2238 
2239 	return SK_PASS;
2240 }
2241 
2242 struct sock *do_msg_redirect_map(struct sk_msg_buff *msg)
2243 {
2244 	return msg->sk_redir;
2245 }
2246 
2247 static const struct bpf_func_proto bpf_msg_redirect_map_proto = {
2248 	.func           = bpf_msg_redirect_map,
2249 	.gpl_only       = false,
2250 	.ret_type       = RET_INTEGER,
2251 	.arg1_type	= ARG_PTR_TO_CTX,
2252 	.arg2_type      = ARG_CONST_MAP_PTR,
2253 	.arg3_type      = ARG_ANYTHING,
2254 	.arg4_type      = ARG_ANYTHING,
2255 };
2256 
2257 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg_buff *, msg, u32, bytes)
2258 {
2259 	msg->apply_bytes = bytes;
2260 	return 0;
2261 }
2262 
2263 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2264 	.func           = bpf_msg_apply_bytes,
2265 	.gpl_only       = false,
2266 	.ret_type       = RET_INTEGER,
2267 	.arg1_type	= ARG_PTR_TO_CTX,
2268 	.arg2_type      = ARG_ANYTHING,
2269 };
2270 
2271 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg_buff *, msg, u32, bytes)
2272 {
2273 	msg->cork_bytes = bytes;
2274 	return 0;
2275 }
2276 
2277 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2278 	.func           = bpf_msg_cork_bytes,
2279 	.gpl_only       = false,
2280 	.ret_type       = RET_INTEGER,
2281 	.arg1_type	= ARG_PTR_TO_CTX,
2282 	.arg2_type      = ARG_ANYTHING,
2283 };
2284 
2285 BPF_CALL_4(bpf_msg_pull_data,
2286 	   struct sk_msg_buff *, msg, u32, start, u32, end, u64, flags)
2287 {
2288 	unsigned int len = 0, offset = 0, copy = 0;
2289 	struct scatterlist *sg = msg->sg_data;
2290 	int first_sg, last_sg, i, shift;
2291 	unsigned char *p, *to, *from;
2292 	int bytes = end - start;
2293 	struct page *page;
2294 
2295 	if (unlikely(flags || end <= start))
2296 		return -EINVAL;
2297 
2298 	/* First find the starting scatterlist element */
2299 	i = msg->sg_start;
2300 	do {
2301 		len = sg[i].length;
2302 		offset += len;
2303 		if (start < offset + len)
2304 			break;
2305 		i++;
2306 		if (i == MAX_SKB_FRAGS)
2307 			i = 0;
2308 	} while (i != msg->sg_end);
2309 
2310 	if (unlikely(start >= offset + len))
2311 		return -EINVAL;
2312 
2313 	if (!msg->sg_copy[i] && bytes <= len)
2314 		goto out;
2315 
2316 	first_sg = i;
2317 
2318 	/* At this point we need to linearize multiple scatterlist
2319 	 * elements or a single shared page. Either way we need to
2320 	 * copy into a linear buffer exclusively owned by BPF. Then
2321 	 * place the buffer in the scatterlist and fixup the original
2322 	 * entries by removing the entries now in the linear buffer
2323 	 * and shifting the remaining entries. For now we do not try
2324 	 * to copy partial entries to avoid complexity of running out
2325 	 * of sg_entry slots. The downside is reading a single byte
2326 	 * will copy the entire sg entry.
2327 	 */
2328 	do {
2329 		copy += sg[i].length;
2330 		i++;
2331 		if (i == MAX_SKB_FRAGS)
2332 			i = 0;
2333 		if (bytes < copy)
2334 			break;
2335 	} while (i != msg->sg_end);
2336 	last_sg = i;
2337 
2338 	if (unlikely(copy < end - start))
2339 		return -EINVAL;
2340 
2341 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC, get_order(copy));
2342 	if (unlikely(!page))
2343 		return -ENOMEM;
2344 	p = page_address(page);
2345 	offset = 0;
2346 
2347 	i = first_sg;
2348 	do {
2349 		from = sg_virt(&sg[i]);
2350 		len = sg[i].length;
2351 		to = p + offset;
2352 
2353 		memcpy(to, from, len);
2354 		offset += len;
2355 		sg[i].length = 0;
2356 		put_page(sg_page(&sg[i]));
2357 
2358 		i++;
2359 		if (i == MAX_SKB_FRAGS)
2360 			i = 0;
2361 	} while (i != last_sg);
2362 
2363 	sg[first_sg].length = copy;
2364 	sg_set_page(&sg[first_sg], page, copy, 0);
2365 
2366 	/* To repair sg ring we need to shift entries. If we only
2367 	 * had a single entry though we can just replace it and
2368 	 * be done. Otherwise walk the ring and shift the entries.
2369 	 */
2370 	shift = last_sg - first_sg - 1;
2371 	if (!shift)
2372 		goto out;
2373 
2374 	i = first_sg + 1;
2375 	do {
2376 		int move_from;
2377 
2378 		if (i + shift >= MAX_SKB_FRAGS)
2379 			move_from = i + shift - MAX_SKB_FRAGS;
2380 		else
2381 			move_from = i + shift;
2382 
2383 		if (move_from == msg->sg_end)
2384 			break;
2385 
2386 		sg[i] = sg[move_from];
2387 		sg[move_from].length = 0;
2388 		sg[move_from].page_link = 0;
2389 		sg[move_from].offset = 0;
2390 
2391 		i++;
2392 		if (i == MAX_SKB_FRAGS)
2393 			i = 0;
2394 	} while (1);
2395 	msg->sg_end -= shift;
2396 	if (msg->sg_end < 0)
2397 		msg->sg_end += MAX_SKB_FRAGS;
2398 out:
2399 	msg->data = sg_virt(&sg[i]) + start - offset;
2400 	msg->data_end = msg->data + bytes;
2401 
2402 	return 0;
2403 }
2404 
2405 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2406 	.func		= bpf_msg_pull_data,
2407 	.gpl_only	= false,
2408 	.ret_type	= RET_INTEGER,
2409 	.arg1_type	= ARG_PTR_TO_CTX,
2410 	.arg2_type	= ARG_ANYTHING,
2411 	.arg3_type	= ARG_ANYTHING,
2412 	.arg4_type	= ARG_ANYTHING,
2413 };
2414 
2415 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2416 {
2417 	return task_get_classid(skb);
2418 }
2419 
2420 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2421 	.func           = bpf_get_cgroup_classid,
2422 	.gpl_only       = false,
2423 	.ret_type       = RET_INTEGER,
2424 	.arg1_type      = ARG_PTR_TO_CTX,
2425 };
2426 
2427 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2428 {
2429 	return dst_tclassid(skb);
2430 }
2431 
2432 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2433 	.func           = bpf_get_route_realm,
2434 	.gpl_only       = false,
2435 	.ret_type       = RET_INTEGER,
2436 	.arg1_type      = ARG_PTR_TO_CTX,
2437 };
2438 
2439 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2440 {
2441 	/* If skb_clear_hash() was called due to mangling, we can
2442 	 * trigger SW recalculation here. Later access to hash
2443 	 * can then use the inline skb->hash via context directly
2444 	 * instead of calling this helper again.
2445 	 */
2446 	return skb_get_hash(skb);
2447 }
2448 
2449 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2450 	.func		= bpf_get_hash_recalc,
2451 	.gpl_only	= false,
2452 	.ret_type	= RET_INTEGER,
2453 	.arg1_type	= ARG_PTR_TO_CTX,
2454 };
2455 
2456 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2457 {
2458 	/* After all direct packet write, this can be used once for
2459 	 * triggering a lazy recalc on next skb_get_hash() invocation.
2460 	 */
2461 	skb_clear_hash(skb);
2462 	return 0;
2463 }
2464 
2465 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2466 	.func		= bpf_set_hash_invalid,
2467 	.gpl_only	= false,
2468 	.ret_type	= RET_INTEGER,
2469 	.arg1_type	= ARG_PTR_TO_CTX,
2470 };
2471 
2472 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2473 {
2474 	/* Set user specified hash as L4(+), so that it gets returned
2475 	 * on skb_get_hash() call unless BPF prog later on triggers a
2476 	 * skb_clear_hash().
2477 	 */
2478 	__skb_set_sw_hash(skb, hash, true);
2479 	return 0;
2480 }
2481 
2482 static const struct bpf_func_proto bpf_set_hash_proto = {
2483 	.func		= bpf_set_hash,
2484 	.gpl_only	= false,
2485 	.ret_type	= RET_INTEGER,
2486 	.arg1_type	= ARG_PTR_TO_CTX,
2487 	.arg2_type	= ARG_ANYTHING,
2488 };
2489 
2490 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2491 	   u16, vlan_tci)
2492 {
2493 	int ret;
2494 
2495 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2496 		     vlan_proto != htons(ETH_P_8021AD)))
2497 		vlan_proto = htons(ETH_P_8021Q);
2498 
2499 	bpf_push_mac_rcsum(skb);
2500 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2501 	bpf_pull_mac_rcsum(skb);
2502 
2503 	bpf_compute_data_pointers(skb);
2504 	return ret;
2505 }
2506 
2507 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2508 	.func           = bpf_skb_vlan_push,
2509 	.gpl_only       = false,
2510 	.ret_type       = RET_INTEGER,
2511 	.arg1_type      = ARG_PTR_TO_CTX,
2512 	.arg2_type      = ARG_ANYTHING,
2513 	.arg3_type      = ARG_ANYTHING,
2514 };
2515 
2516 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2517 {
2518 	int ret;
2519 
2520 	bpf_push_mac_rcsum(skb);
2521 	ret = skb_vlan_pop(skb);
2522 	bpf_pull_mac_rcsum(skb);
2523 
2524 	bpf_compute_data_pointers(skb);
2525 	return ret;
2526 }
2527 
2528 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2529 	.func           = bpf_skb_vlan_pop,
2530 	.gpl_only       = false,
2531 	.ret_type       = RET_INTEGER,
2532 	.arg1_type      = ARG_PTR_TO_CTX,
2533 };
2534 
2535 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2536 {
2537 	/* Caller already did skb_cow() with len as headroom,
2538 	 * so no need to do it here.
2539 	 */
2540 	skb_push(skb, len);
2541 	memmove(skb->data, skb->data + len, off);
2542 	memset(skb->data + off, 0, len);
2543 
2544 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
2545 	 * needed here as it does not change the skb->csum
2546 	 * result for checksum complete when summing over
2547 	 * zeroed blocks.
2548 	 */
2549 	return 0;
2550 }
2551 
2552 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2553 {
2554 	/* skb_ensure_writable() is not needed here, as we're
2555 	 * already working on an uncloned skb.
2556 	 */
2557 	if (unlikely(!pskb_may_pull(skb, off + len)))
2558 		return -ENOMEM;
2559 
2560 	skb_postpull_rcsum(skb, skb->data + off, len);
2561 	memmove(skb->data + len, skb->data, off);
2562 	__skb_pull(skb, len);
2563 
2564 	return 0;
2565 }
2566 
2567 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2568 {
2569 	bool trans_same = skb->transport_header == skb->network_header;
2570 	int ret;
2571 
2572 	/* There's no need for __skb_push()/__skb_pull() pair to
2573 	 * get to the start of the mac header as we're guaranteed
2574 	 * to always start from here under eBPF.
2575 	 */
2576 	ret = bpf_skb_generic_push(skb, off, len);
2577 	if (likely(!ret)) {
2578 		skb->mac_header -= len;
2579 		skb->network_header -= len;
2580 		if (trans_same)
2581 			skb->transport_header = skb->network_header;
2582 	}
2583 
2584 	return ret;
2585 }
2586 
2587 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2588 {
2589 	bool trans_same = skb->transport_header == skb->network_header;
2590 	int ret;
2591 
2592 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
2593 	ret = bpf_skb_generic_pop(skb, off, len);
2594 	if (likely(!ret)) {
2595 		skb->mac_header += len;
2596 		skb->network_header += len;
2597 		if (trans_same)
2598 			skb->transport_header = skb->network_header;
2599 	}
2600 
2601 	return ret;
2602 }
2603 
2604 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2605 {
2606 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2607 	u32 off = skb_mac_header_len(skb);
2608 	int ret;
2609 
2610 	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2611 	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2612 		return -ENOTSUPP;
2613 
2614 	ret = skb_cow(skb, len_diff);
2615 	if (unlikely(ret < 0))
2616 		return ret;
2617 
2618 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2619 	if (unlikely(ret < 0))
2620 		return ret;
2621 
2622 	if (skb_is_gso(skb)) {
2623 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2624 
2625 		/* SKB_GSO_TCPV4 needs to be changed into
2626 		 * SKB_GSO_TCPV6.
2627 		 */
2628 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
2629 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
2630 			shinfo->gso_type |=  SKB_GSO_TCPV6;
2631 		}
2632 
2633 		/* Due to IPv6 header, MSS needs to be downgraded. */
2634 		skb_decrease_gso_size(shinfo, len_diff);
2635 		/* Header must be checked, and gso_segs recomputed. */
2636 		shinfo->gso_type |= SKB_GSO_DODGY;
2637 		shinfo->gso_segs = 0;
2638 	}
2639 
2640 	skb->protocol = htons(ETH_P_IPV6);
2641 	skb_clear_hash(skb);
2642 
2643 	return 0;
2644 }
2645 
2646 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2647 {
2648 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2649 	u32 off = skb_mac_header_len(skb);
2650 	int ret;
2651 
2652 	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2653 	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2654 		return -ENOTSUPP;
2655 
2656 	ret = skb_unclone(skb, GFP_ATOMIC);
2657 	if (unlikely(ret < 0))
2658 		return ret;
2659 
2660 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2661 	if (unlikely(ret < 0))
2662 		return ret;
2663 
2664 	if (skb_is_gso(skb)) {
2665 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2666 
2667 		/* SKB_GSO_TCPV6 needs to be changed into
2668 		 * SKB_GSO_TCPV4.
2669 		 */
2670 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
2671 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
2672 			shinfo->gso_type |=  SKB_GSO_TCPV4;
2673 		}
2674 
2675 		/* Due to IPv4 header, MSS can be upgraded. */
2676 		skb_increase_gso_size(shinfo, len_diff);
2677 		/* Header must be checked, and gso_segs recomputed. */
2678 		shinfo->gso_type |= SKB_GSO_DODGY;
2679 		shinfo->gso_segs = 0;
2680 	}
2681 
2682 	skb->protocol = htons(ETH_P_IP);
2683 	skb_clear_hash(skb);
2684 
2685 	return 0;
2686 }
2687 
2688 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2689 {
2690 	__be16 from_proto = skb->protocol;
2691 
2692 	if (from_proto == htons(ETH_P_IP) &&
2693 	      to_proto == htons(ETH_P_IPV6))
2694 		return bpf_skb_proto_4_to_6(skb);
2695 
2696 	if (from_proto == htons(ETH_P_IPV6) &&
2697 	      to_proto == htons(ETH_P_IP))
2698 		return bpf_skb_proto_6_to_4(skb);
2699 
2700 	return -ENOTSUPP;
2701 }
2702 
2703 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2704 	   u64, flags)
2705 {
2706 	int ret;
2707 
2708 	if (unlikely(flags))
2709 		return -EINVAL;
2710 
2711 	/* General idea is that this helper does the basic groundwork
2712 	 * needed for changing the protocol, and eBPF program fills the
2713 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2714 	 * and other helpers, rather than passing a raw buffer here.
2715 	 *
2716 	 * The rationale is to keep this minimal and without a need to
2717 	 * deal with raw packet data. F.e. even if we would pass buffers
2718 	 * here, the program still needs to call the bpf_lX_csum_replace()
2719 	 * helpers anyway. Plus, this way we keep also separation of
2720 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
2721 	 * care of stores.
2722 	 *
2723 	 * Currently, additional options and extension header space are
2724 	 * not supported, but flags register is reserved so we can adapt
2725 	 * that. For offloads, we mark packet as dodgy, so that headers
2726 	 * need to be verified first.
2727 	 */
2728 	ret = bpf_skb_proto_xlat(skb, proto);
2729 	bpf_compute_data_pointers(skb);
2730 	return ret;
2731 }
2732 
2733 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2734 	.func		= bpf_skb_change_proto,
2735 	.gpl_only	= false,
2736 	.ret_type	= RET_INTEGER,
2737 	.arg1_type	= ARG_PTR_TO_CTX,
2738 	.arg2_type	= ARG_ANYTHING,
2739 	.arg3_type	= ARG_ANYTHING,
2740 };
2741 
2742 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2743 {
2744 	/* We only allow a restricted subset to be changed for now. */
2745 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2746 		     !skb_pkt_type_ok(pkt_type)))
2747 		return -EINVAL;
2748 
2749 	skb->pkt_type = pkt_type;
2750 	return 0;
2751 }
2752 
2753 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2754 	.func		= bpf_skb_change_type,
2755 	.gpl_only	= false,
2756 	.ret_type	= RET_INTEGER,
2757 	.arg1_type	= ARG_PTR_TO_CTX,
2758 	.arg2_type	= ARG_ANYTHING,
2759 };
2760 
2761 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2762 {
2763 	switch (skb->protocol) {
2764 	case htons(ETH_P_IP):
2765 		return sizeof(struct iphdr);
2766 	case htons(ETH_P_IPV6):
2767 		return sizeof(struct ipv6hdr);
2768 	default:
2769 		return ~0U;
2770 	}
2771 }
2772 
2773 static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
2774 {
2775 	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2776 	int ret;
2777 
2778 	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2779 	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2780 		return -ENOTSUPP;
2781 
2782 	ret = skb_cow(skb, len_diff);
2783 	if (unlikely(ret < 0))
2784 		return ret;
2785 
2786 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2787 	if (unlikely(ret < 0))
2788 		return ret;
2789 
2790 	if (skb_is_gso(skb)) {
2791 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2792 
2793 		/* Due to header grow, MSS needs to be downgraded. */
2794 		skb_decrease_gso_size(shinfo, len_diff);
2795 		/* Header must be checked, and gso_segs recomputed. */
2796 		shinfo->gso_type |= SKB_GSO_DODGY;
2797 		shinfo->gso_segs = 0;
2798 	}
2799 
2800 	return 0;
2801 }
2802 
2803 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
2804 {
2805 	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2806 	int ret;
2807 
2808 	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2809 	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2810 		return -ENOTSUPP;
2811 
2812 	ret = skb_unclone(skb, GFP_ATOMIC);
2813 	if (unlikely(ret < 0))
2814 		return ret;
2815 
2816 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2817 	if (unlikely(ret < 0))
2818 		return ret;
2819 
2820 	if (skb_is_gso(skb)) {
2821 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2822 
2823 		/* Due to header shrink, MSS can be upgraded. */
2824 		skb_increase_gso_size(shinfo, len_diff);
2825 		/* Header must be checked, and gso_segs recomputed. */
2826 		shinfo->gso_type |= SKB_GSO_DODGY;
2827 		shinfo->gso_segs = 0;
2828 	}
2829 
2830 	return 0;
2831 }
2832 
2833 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
2834 {
2835 	return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
2836 			  SKB_MAX_ALLOC;
2837 }
2838 
2839 static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
2840 {
2841 	bool trans_same = skb->transport_header == skb->network_header;
2842 	u32 len_cur, len_diff_abs = abs(len_diff);
2843 	u32 len_min = bpf_skb_net_base_len(skb);
2844 	u32 len_max = __bpf_skb_max_len(skb);
2845 	__be16 proto = skb->protocol;
2846 	bool shrink = len_diff < 0;
2847 	int ret;
2848 
2849 	if (unlikely(len_diff_abs > 0xfffU))
2850 		return -EFAULT;
2851 	if (unlikely(proto != htons(ETH_P_IP) &&
2852 		     proto != htons(ETH_P_IPV6)))
2853 		return -ENOTSUPP;
2854 
2855 	len_cur = skb->len - skb_network_offset(skb);
2856 	if (skb_transport_header_was_set(skb) && !trans_same)
2857 		len_cur = skb_network_header_len(skb);
2858 	if ((shrink && (len_diff_abs >= len_cur ||
2859 			len_cur - len_diff_abs < len_min)) ||
2860 	    (!shrink && (skb->len + len_diff_abs > len_max &&
2861 			 !skb_is_gso(skb))))
2862 		return -ENOTSUPP;
2863 
2864 	ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
2865 		       bpf_skb_net_grow(skb, len_diff_abs);
2866 
2867 	bpf_compute_data_pointers(skb);
2868 	return ret;
2869 }
2870 
2871 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
2872 	   u32, mode, u64, flags)
2873 {
2874 	if (unlikely(flags))
2875 		return -EINVAL;
2876 	if (likely(mode == BPF_ADJ_ROOM_NET))
2877 		return bpf_skb_adjust_net(skb, len_diff);
2878 
2879 	return -ENOTSUPP;
2880 }
2881 
2882 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
2883 	.func		= bpf_skb_adjust_room,
2884 	.gpl_only	= false,
2885 	.ret_type	= RET_INTEGER,
2886 	.arg1_type	= ARG_PTR_TO_CTX,
2887 	.arg2_type	= ARG_ANYTHING,
2888 	.arg3_type	= ARG_ANYTHING,
2889 	.arg4_type	= ARG_ANYTHING,
2890 };
2891 
2892 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
2893 {
2894 	u32 min_len = skb_network_offset(skb);
2895 
2896 	if (skb_transport_header_was_set(skb))
2897 		min_len = skb_transport_offset(skb);
2898 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2899 		min_len = skb_checksum_start_offset(skb) +
2900 			  skb->csum_offset + sizeof(__sum16);
2901 	return min_len;
2902 }
2903 
2904 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
2905 {
2906 	unsigned int old_len = skb->len;
2907 	int ret;
2908 
2909 	ret = __skb_grow_rcsum(skb, new_len);
2910 	if (!ret)
2911 		memset(skb->data + old_len, 0, new_len - old_len);
2912 	return ret;
2913 }
2914 
2915 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
2916 {
2917 	return __skb_trim_rcsum(skb, new_len);
2918 }
2919 
2920 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
2921 					u64 flags)
2922 {
2923 	u32 max_len = __bpf_skb_max_len(skb);
2924 	u32 min_len = __bpf_skb_min_len(skb);
2925 	int ret;
2926 
2927 	if (unlikely(flags || new_len > max_len || new_len < min_len))
2928 		return -EINVAL;
2929 	if (skb->encapsulation)
2930 		return -ENOTSUPP;
2931 
2932 	/* The basic idea of this helper is that it's performing the
2933 	 * needed work to either grow or trim an skb, and eBPF program
2934 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
2935 	 * bpf_lX_csum_replace() and others rather than passing a raw
2936 	 * buffer here. This one is a slow path helper and intended
2937 	 * for replies with control messages.
2938 	 *
2939 	 * Like in bpf_skb_change_proto(), we want to keep this rather
2940 	 * minimal and without protocol specifics so that we are able
2941 	 * to separate concerns as in bpf_skb_store_bytes() should only
2942 	 * be the one responsible for writing buffers.
2943 	 *
2944 	 * It's really expected to be a slow path operation here for
2945 	 * control message replies, so we're implicitly linearizing,
2946 	 * uncloning and drop offloads from the skb by this.
2947 	 */
2948 	ret = __bpf_try_make_writable(skb, skb->len);
2949 	if (!ret) {
2950 		if (new_len > skb->len)
2951 			ret = bpf_skb_grow_rcsum(skb, new_len);
2952 		else if (new_len < skb->len)
2953 			ret = bpf_skb_trim_rcsum(skb, new_len);
2954 		if (!ret && skb_is_gso(skb))
2955 			skb_gso_reset(skb);
2956 	}
2957 	return ret;
2958 }
2959 
2960 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2961 	   u64, flags)
2962 {
2963 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
2964 
2965 	bpf_compute_data_pointers(skb);
2966 	return ret;
2967 }
2968 
2969 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
2970 	.func		= bpf_skb_change_tail,
2971 	.gpl_only	= false,
2972 	.ret_type	= RET_INTEGER,
2973 	.arg1_type	= ARG_PTR_TO_CTX,
2974 	.arg2_type	= ARG_ANYTHING,
2975 	.arg3_type	= ARG_ANYTHING,
2976 };
2977 
2978 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2979 	   u64, flags)
2980 {
2981 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
2982 
2983 	bpf_compute_data_end_sk_skb(skb);
2984 	return ret;
2985 }
2986 
2987 static const struct bpf_func_proto sk_skb_change_tail_proto = {
2988 	.func		= sk_skb_change_tail,
2989 	.gpl_only	= false,
2990 	.ret_type	= RET_INTEGER,
2991 	.arg1_type	= ARG_PTR_TO_CTX,
2992 	.arg2_type	= ARG_ANYTHING,
2993 	.arg3_type	= ARG_ANYTHING,
2994 };
2995 
2996 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
2997 					u64 flags)
2998 {
2999 	u32 max_len = __bpf_skb_max_len(skb);
3000 	u32 new_len = skb->len + head_room;
3001 	int ret;
3002 
3003 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3004 		     new_len < skb->len))
3005 		return -EINVAL;
3006 
3007 	ret = skb_cow(skb, head_room);
3008 	if (likely(!ret)) {
3009 		/* Idea for this helper is that we currently only
3010 		 * allow to expand on mac header. This means that
3011 		 * skb->protocol network header, etc, stay as is.
3012 		 * Compared to bpf_skb_change_tail(), we're more
3013 		 * flexible due to not needing to linearize or
3014 		 * reset GSO. Intention for this helper is to be
3015 		 * used by an L3 skb that needs to push mac header
3016 		 * for redirection into L2 device.
3017 		 */
3018 		__skb_push(skb, head_room);
3019 		memset(skb->data, 0, head_room);
3020 		skb_reset_mac_header(skb);
3021 	}
3022 
3023 	return ret;
3024 }
3025 
3026 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3027 	   u64, flags)
3028 {
3029 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3030 
3031 	bpf_compute_data_pointers(skb);
3032 	return ret;
3033 }
3034 
3035 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3036 	.func		= bpf_skb_change_head,
3037 	.gpl_only	= false,
3038 	.ret_type	= RET_INTEGER,
3039 	.arg1_type	= ARG_PTR_TO_CTX,
3040 	.arg2_type	= ARG_ANYTHING,
3041 	.arg3_type	= ARG_ANYTHING,
3042 };
3043 
3044 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3045 	   u64, flags)
3046 {
3047 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3048 
3049 	bpf_compute_data_end_sk_skb(skb);
3050 	return ret;
3051 }
3052 
3053 static const struct bpf_func_proto sk_skb_change_head_proto = {
3054 	.func		= sk_skb_change_head,
3055 	.gpl_only	= false,
3056 	.ret_type	= RET_INTEGER,
3057 	.arg1_type	= ARG_PTR_TO_CTX,
3058 	.arg2_type	= ARG_ANYTHING,
3059 	.arg3_type	= ARG_ANYTHING,
3060 };
3061 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3062 {
3063 	return xdp_data_meta_unsupported(xdp) ? 0 :
3064 	       xdp->data - xdp->data_meta;
3065 }
3066 
3067 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3068 {
3069 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3070 	unsigned long metalen = xdp_get_metalen(xdp);
3071 	void *data_start = xdp_frame_end + metalen;
3072 	void *data = xdp->data + offset;
3073 
3074 	if (unlikely(data < data_start ||
3075 		     data > xdp->data_end - ETH_HLEN))
3076 		return -EINVAL;
3077 
3078 	if (metalen)
3079 		memmove(xdp->data_meta + offset,
3080 			xdp->data_meta, metalen);
3081 	xdp->data_meta += offset;
3082 	xdp->data = data;
3083 
3084 	return 0;
3085 }
3086 
3087 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3088 	.func		= bpf_xdp_adjust_head,
3089 	.gpl_only	= false,
3090 	.ret_type	= RET_INTEGER,
3091 	.arg1_type	= ARG_PTR_TO_CTX,
3092 	.arg2_type	= ARG_ANYTHING,
3093 };
3094 
3095 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3096 {
3097 	void *data_end = xdp->data_end + offset;
3098 
3099 	/* only shrinking is allowed for now. */
3100 	if (unlikely(offset >= 0))
3101 		return -EINVAL;
3102 
3103 	if (unlikely(data_end < xdp->data + ETH_HLEN))
3104 		return -EINVAL;
3105 
3106 	xdp->data_end = data_end;
3107 
3108 	return 0;
3109 }
3110 
3111 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3112 	.func		= bpf_xdp_adjust_tail,
3113 	.gpl_only	= false,
3114 	.ret_type	= RET_INTEGER,
3115 	.arg1_type	= ARG_PTR_TO_CTX,
3116 	.arg2_type	= ARG_ANYTHING,
3117 };
3118 
3119 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3120 {
3121 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3122 	void *meta = xdp->data_meta + offset;
3123 	unsigned long metalen = xdp->data - meta;
3124 
3125 	if (xdp_data_meta_unsupported(xdp))
3126 		return -ENOTSUPP;
3127 	if (unlikely(meta < xdp_frame_end ||
3128 		     meta > xdp->data))
3129 		return -EINVAL;
3130 	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3131 		     (metalen > 32)))
3132 		return -EACCES;
3133 
3134 	xdp->data_meta = meta;
3135 
3136 	return 0;
3137 }
3138 
3139 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3140 	.func		= bpf_xdp_adjust_meta,
3141 	.gpl_only	= false,
3142 	.ret_type	= RET_INTEGER,
3143 	.arg1_type	= ARG_PTR_TO_CTX,
3144 	.arg2_type	= ARG_ANYTHING,
3145 };
3146 
3147 static int __bpf_tx_xdp(struct net_device *dev,
3148 			struct bpf_map *map,
3149 			struct xdp_buff *xdp,
3150 			u32 index)
3151 {
3152 	struct xdp_frame *xdpf;
3153 	int err, sent;
3154 
3155 	if (!dev->netdev_ops->ndo_xdp_xmit) {
3156 		return -EOPNOTSUPP;
3157 	}
3158 
3159 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
3160 	if (unlikely(err))
3161 		return err;
3162 
3163 	xdpf = convert_to_xdp_frame(xdp);
3164 	if (unlikely(!xdpf))
3165 		return -EOVERFLOW;
3166 
3167 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, 1, &xdpf, XDP_XMIT_FLUSH);
3168 	if (sent <= 0)
3169 		return sent;
3170 	return 0;
3171 }
3172 
3173 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3174 			    struct bpf_map *map,
3175 			    struct xdp_buff *xdp,
3176 			    u32 index)
3177 {
3178 	int err;
3179 
3180 	switch (map->map_type) {
3181 	case BPF_MAP_TYPE_DEVMAP: {
3182 		struct bpf_dtab_netdev *dst = fwd;
3183 
3184 		err = dev_map_enqueue(dst, xdp, dev_rx);
3185 		if (err)
3186 			return err;
3187 		__dev_map_insert_ctx(map, index);
3188 		break;
3189 	}
3190 	case BPF_MAP_TYPE_CPUMAP: {
3191 		struct bpf_cpu_map_entry *rcpu = fwd;
3192 
3193 		err = cpu_map_enqueue(rcpu, xdp, dev_rx);
3194 		if (err)
3195 			return err;
3196 		__cpu_map_insert_ctx(map, index);
3197 		break;
3198 	}
3199 	case BPF_MAP_TYPE_XSKMAP: {
3200 		struct xdp_sock *xs = fwd;
3201 
3202 		err = __xsk_map_redirect(map, xdp, xs);
3203 		return err;
3204 	}
3205 	default:
3206 		break;
3207 	}
3208 	return 0;
3209 }
3210 
3211 void xdp_do_flush_map(void)
3212 {
3213 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3214 	struct bpf_map *map = ri->map_to_flush;
3215 
3216 	ri->map_to_flush = NULL;
3217 	if (map) {
3218 		switch (map->map_type) {
3219 		case BPF_MAP_TYPE_DEVMAP:
3220 			__dev_map_flush(map);
3221 			break;
3222 		case BPF_MAP_TYPE_CPUMAP:
3223 			__cpu_map_flush(map);
3224 			break;
3225 		case BPF_MAP_TYPE_XSKMAP:
3226 			__xsk_map_flush(map);
3227 			break;
3228 		default:
3229 			break;
3230 		}
3231 	}
3232 }
3233 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
3234 
3235 static void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3236 {
3237 	switch (map->map_type) {
3238 	case BPF_MAP_TYPE_DEVMAP:
3239 		return __dev_map_lookup_elem(map, index);
3240 	case BPF_MAP_TYPE_CPUMAP:
3241 		return __cpu_map_lookup_elem(map, index);
3242 	case BPF_MAP_TYPE_XSKMAP:
3243 		return __xsk_map_lookup_elem(map, index);
3244 	default:
3245 		return NULL;
3246 	}
3247 }
3248 
3249 void bpf_clear_redirect_map(struct bpf_map *map)
3250 {
3251 	struct bpf_redirect_info *ri;
3252 	int cpu;
3253 
3254 	for_each_possible_cpu(cpu) {
3255 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3256 		/* Avoid polluting remote cacheline due to writes if
3257 		 * not needed. Once we pass this test, we need the
3258 		 * cmpxchg() to make sure it hasn't been changed in
3259 		 * the meantime by remote CPU.
3260 		 */
3261 		if (unlikely(READ_ONCE(ri->map) == map))
3262 			cmpxchg(&ri->map, map, NULL);
3263 	}
3264 }
3265 
3266 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
3267 			       struct bpf_prog *xdp_prog, struct bpf_map *map)
3268 {
3269 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3270 	u32 index = ri->ifindex;
3271 	void *fwd = NULL;
3272 	int err;
3273 
3274 	ri->ifindex = 0;
3275 	WRITE_ONCE(ri->map, NULL);
3276 
3277 	fwd = __xdp_map_lookup_elem(map, index);
3278 	if (!fwd) {
3279 		err = -EINVAL;
3280 		goto err;
3281 	}
3282 	if (ri->map_to_flush && ri->map_to_flush != map)
3283 		xdp_do_flush_map();
3284 
3285 	err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
3286 	if (unlikely(err))
3287 		goto err;
3288 
3289 	ri->map_to_flush = map;
3290 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3291 	return 0;
3292 err:
3293 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3294 	return err;
3295 }
3296 
3297 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3298 		    struct bpf_prog *xdp_prog)
3299 {
3300 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3301 	struct bpf_map *map = READ_ONCE(ri->map);
3302 	struct net_device *fwd;
3303 	u32 index = ri->ifindex;
3304 	int err;
3305 
3306 	if (map)
3307 		return xdp_do_redirect_map(dev, xdp, xdp_prog, map);
3308 
3309 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
3310 	ri->ifindex = 0;
3311 	if (unlikely(!fwd)) {
3312 		err = -EINVAL;
3313 		goto err;
3314 	}
3315 
3316 	err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
3317 	if (unlikely(err))
3318 		goto err;
3319 
3320 	_trace_xdp_redirect(dev, xdp_prog, index);
3321 	return 0;
3322 err:
3323 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3324 	return err;
3325 }
3326 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3327 
3328 static int xdp_do_generic_redirect_map(struct net_device *dev,
3329 				       struct sk_buff *skb,
3330 				       struct xdp_buff *xdp,
3331 				       struct bpf_prog *xdp_prog,
3332 				       struct bpf_map *map)
3333 {
3334 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3335 	u32 index = ri->ifindex;
3336 	void *fwd = NULL;
3337 	int err = 0;
3338 
3339 	ri->ifindex = 0;
3340 	WRITE_ONCE(ri->map, NULL);
3341 
3342 	fwd = __xdp_map_lookup_elem(map, index);
3343 	if (unlikely(!fwd)) {
3344 		err = -EINVAL;
3345 		goto err;
3346 	}
3347 
3348 	if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
3349 		struct bpf_dtab_netdev *dst = fwd;
3350 
3351 		err = dev_map_generic_redirect(dst, skb, xdp_prog);
3352 		if (unlikely(err))
3353 			goto err;
3354 	} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3355 		struct xdp_sock *xs = fwd;
3356 
3357 		err = xsk_generic_rcv(xs, xdp);
3358 		if (err)
3359 			goto err;
3360 		consume_skb(skb);
3361 	} else {
3362 		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3363 		err = -EBADRQC;
3364 		goto err;
3365 	}
3366 
3367 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3368 	return 0;
3369 err:
3370 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3371 	return err;
3372 }
3373 
3374 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3375 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3376 {
3377 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3378 	struct bpf_map *map = READ_ONCE(ri->map);
3379 	u32 index = ri->ifindex;
3380 	struct net_device *fwd;
3381 	int err = 0;
3382 
3383 	if (map)
3384 		return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3385 						   map);
3386 	ri->ifindex = 0;
3387 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
3388 	if (unlikely(!fwd)) {
3389 		err = -EINVAL;
3390 		goto err;
3391 	}
3392 
3393 	err = xdp_ok_fwd_dev(fwd, skb->len);
3394 	if (unlikely(err))
3395 		goto err;
3396 
3397 	skb->dev = fwd;
3398 	_trace_xdp_redirect(dev, xdp_prog, index);
3399 	generic_xdp_tx(skb, xdp_prog);
3400 	return 0;
3401 err:
3402 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3403 	return err;
3404 }
3405 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
3406 
3407 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3408 {
3409 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3410 
3411 	if (unlikely(flags))
3412 		return XDP_ABORTED;
3413 
3414 	ri->ifindex = ifindex;
3415 	ri->flags = flags;
3416 	WRITE_ONCE(ri->map, NULL);
3417 
3418 	return XDP_REDIRECT;
3419 }
3420 
3421 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3422 	.func           = bpf_xdp_redirect,
3423 	.gpl_only       = false,
3424 	.ret_type       = RET_INTEGER,
3425 	.arg1_type      = ARG_ANYTHING,
3426 	.arg2_type      = ARG_ANYTHING,
3427 };
3428 
3429 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3430 	   u64, flags)
3431 {
3432 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3433 
3434 	if (unlikely(flags))
3435 		return XDP_ABORTED;
3436 
3437 	ri->ifindex = ifindex;
3438 	ri->flags = flags;
3439 	WRITE_ONCE(ri->map, map);
3440 
3441 	return XDP_REDIRECT;
3442 }
3443 
3444 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3445 	.func           = bpf_xdp_redirect_map,
3446 	.gpl_only       = false,
3447 	.ret_type       = RET_INTEGER,
3448 	.arg1_type      = ARG_CONST_MAP_PTR,
3449 	.arg2_type      = ARG_ANYTHING,
3450 	.arg3_type      = ARG_ANYTHING,
3451 };
3452 
3453 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3454 				  unsigned long off, unsigned long len)
3455 {
3456 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3457 
3458 	if (unlikely(!ptr))
3459 		return len;
3460 	if (ptr != dst_buff)
3461 		memcpy(dst_buff, ptr, len);
3462 
3463 	return 0;
3464 }
3465 
3466 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3467 	   u64, flags, void *, meta, u64, meta_size)
3468 {
3469 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3470 
3471 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3472 		return -EINVAL;
3473 	if (unlikely(skb_size > skb->len))
3474 		return -EFAULT;
3475 
3476 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3477 				bpf_skb_copy);
3478 }
3479 
3480 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3481 	.func		= bpf_skb_event_output,
3482 	.gpl_only	= true,
3483 	.ret_type	= RET_INTEGER,
3484 	.arg1_type	= ARG_PTR_TO_CTX,
3485 	.arg2_type	= ARG_CONST_MAP_PTR,
3486 	.arg3_type	= ARG_ANYTHING,
3487 	.arg4_type	= ARG_PTR_TO_MEM,
3488 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3489 };
3490 
3491 static unsigned short bpf_tunnel_key_af(u64 flags)
3492 {
3493 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3494 }
3495 
3496 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3497 	   u32, size, u64, flags)
3498 {
3499 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3500 	u8 compat[sizeof(struct bpf_tunnel_key)];
3501 	void *to_orig = to;
3502 	int err;
3503 
3504 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3505 		err = -EINVAL;
3506 		goto err_clear;
3507 	}
3508 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3509 		err = -EPROTO;
3510 		goto err_clear;
3511 	}
3512 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3513 		err = -EINVAL;
3514 		switch (size) {
3515 		case offsetof(struct bpf_tunnel_key, tunnel_label):
3516 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3517 			goto set_compat;
3518 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3519 			/* Fixup deprecated structure layouts here, so we have
3520 			 * a common path later on.
3521 			 */
3522 			if (ip_tunnel_info_af(info) != AF_INET)
3523 				goto err_clear;
3524 set_compat:
3525 			to = (struct bpf_tunnel_key *)compat;
3526 			break;
3527 		default:
3528 			goto err_clear;
3529 		}
3530 	}
3531 
3532 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
3533 	to->tunnel_tos = info->key.tos;
3534 	to->tunnel_ttl = info->key.ttl;
3535 	to->tunnel_ext = 0;
3536 
3537 	if (flags & BPF_F_TUNINFO_IPV6) {
3538 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3539 		       sizeof(to->remote_ipv6));
3540 		to->tunnel_label = be32_to_cpu(info->key.label);
3541 	} else {
3542 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3543 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3544 		to->tunnel_label = 0;
3545 	}
3546 
3547 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3548 		memcpy(to_orig, to, size);
3549 
3550 	return 0;
3551 err_clear:
3552 	memset(to_orig, 0, size);
3553 	return err;
3554 }
3555 
3556 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3557 	.func		= bpf_skb_get_tunnel_key,
3558 	.gpl_only	= false,
3559 	.ret_type	= RET_INTEGER,
3560 	.arg1_type	= ARG_PTR_TO_CTX,
3561 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
3562 	.arg3_type	= ARG_CONST_SIZE,
3563 	.arg4_type	= ARG_ANYTHING,
3564 };
3565 
3566 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3567 {
3568 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3569 	int err;
3570 
3571 	if (unlikely(!info ||
3572 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3573 		err = -ENOENT;
3574 		goto err_clear;
3575 	}
3576 	if (unlikely(size < info->options_len)) {
3577 		err = -ENOMEM;
3578 		goto err_clear;
3579 	}
3580 
3581 	ip_tunnel_info_opts_get(to, info);
3582 	if (size > info->options_len)
3583 		memset(to + info->options_len, 0, size - info->options_len);
3584 
3585 	return info->options_len;
3586 err_clear:
3587 	memset(to, 0, size);
3588 	return err;
3589 }
3590 
3591 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3592 	.func		= bpf_skb_get_tunnel_opt,
3593 	.gpl_only	= false,
3594 	.ret_type	= RET_INTEGER,
3595 	.arg1_type	= ARG_PTR_TO_CTX,
3596 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
3597 	.arg3_type	= ARG_CONST_SIZE,
3598 };
3599 
3600 static struct metadata_dst __percpu *md_dst;
3601 
3602 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3603 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3604 {
3605 	struct metadata_dst *md = this_cpu_ptr(md_dst);
3606 	u8 compat[sizeof(struct bpf_tunnel_key)];
3607 	struct ip_tunnel_info *info;
3608 
3609 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3610 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3611 		return -EINVAL;
3612 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3613 		switch (size) {
3614 		case offsetof(struct bpf_tunnel_key, tunnel_label):
3615 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3616 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3617 			/* Fixup deprecated structure layouts here, so we have
3618 			 * a common path later on.
3619 			 */
3620 			memcpy(compat, from, size);
3621 			memset(compat + size, 0, sizeof(compat) - size);
3622 			from = (const struct bpf_tunnel_key *) compat;
3623 			break;
3624 		default:
3625 			return -EINVAL;
3626 		}
3627 	}
3628 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3629 		     from->tunnel_ext))
3630 		return -EINVAL;
3631 
3632 	skb_dst_drop(skb);
3633 	dst_hold((struct dst_entry *) md);
3634 	skb_dst_set(skb, (struct dst_entry *) md);
3635 
3636 	info = &md->u.tun_info;
3637 	memset(info, 0, sizeof(*info));
3638 	info->mode = IP_TUNNEL_INFO_TX;
3639 
3640 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3641 	if (flags & BPF_F_DONT_FRAGMENT)
3642 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3643 	if (flags & BPF_F_ZERO_CSUM_TX)
3644 		info->key.tun_flags &= ~TUNNEL_CSUM;
3645 	if (flags & BPF_F_SEQ_NUMBER)
3646 		info->key.tun_flags |= TUNNEL_SEQ;
3647 
3648 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
3649 	info->key.tos = from->tunnel_tos;
3650 	info->key.ttl = from->tunnel_ttl;
3651 
3652 	if (flags & BPF_F_TUNINFO_IPV6) {
3653 		info->mode |= IP_TUNNEL_INFO_IPV6;
3654 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3655 		       sizeof(from->remote_ipv6));
3656 		info->key.label = cpu_to_be32(from->tunnel_label) &
3657 				  IPV6_FLOWLABEL_MASK;
3658 	} else {
3659 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3660 	}
3661 
3662 	return 0;
3663 }
3664 
3665 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3666 	.func		= bpf_skb_set_tunnel_key,
3667 	.gpl_only	= false,
3668 	.ret_type	= RET_INTEGER,
3669 	.arg1_type	= ARG_PTR_TO_CTX,
3670 	.arg2_type	= ARG_PTR_TO_MEM,
3671 	.arg3_type	= ARG_CONST_SIZE,
3672 	.arg4_type	= ARG_ANYTHING,
3673 };
3674 
3675 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3676 	   const u8 *, from, u32, size)
3677 {
3678 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
3679 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
3680 
3681 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3682 		return -EINVAL;
3683 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3684 		return -ENOMEM;
3685 
3686 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
3687 
3688 	return 0;
3689 }
3690 
3691 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3692 	.func		= bpf_skb_set_tunnel_opt,
3693 	.gpl_only	= false,
3694 	.ret_type	= RET_INTEGER,
3695 	.arg1_type	= ARG_PTR_TO_CTX,
3696 	.arg2_type	= ARG_PTR_TO_MEM,
3697 	.arg3_type	= ARG_CONST_SIZE,
3698 };
3699 
3700 static const struct bpf_func_proto *
3701 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3702 {
3703 	if (!md_dst) {
3704 		struct metadata_dst __percpu *tmp;
3705 
3706 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
3707 						METADATA_IP_TUNNEL,
3708 						GFP_KERNEL);
3709 		if (!tmp)
3710 			return NULL;
3711 		if (cmpxchg(&md_dst, NULL, tmp))
3712 			metadata_dst_free_percpu(tmp);
3713 	}
3714 
3715 	switch (which) {
3716 	case BPF_FUNC_skb_set_tunnel_key:
3717 		return &bpf_skb_set_tunnel_key_proto;
3718 	case BPF_FUNC_skb_set_tunnel_opt:
3719 		return &bpf_skb_set_tunnel_opt_proto;
3720 	default:
3721 		return NULL;
3722 	}
3723 }
3724 
3725 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
3726 	   u32, idx)
3727 {
3728 	struct bpf_array *array = container_of(map, struct bpf_array, map);
3729 	struct cgroup *cgrp;
3730 	struct sock *sk;
3731 
3732 	sk = skb_to_full_sk(skb);
3733 	if (!sk || !sk_fullsock(sk))
3734 		return -ENOENT;
3735 	if (unlikely(idx >= array->map.max_entries))
3736 		return -E2BIG;
3737 
3738 	cgrp = READ_ONCE(array->ptrs[idx]);
3739 	if (unlikely(!cgrp))
3740 		return -EAGAIN;
3741 
3742 	return sk_under_cgroup_hierarchy(sk, cgrp);
3743 }
3744 
3745 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
3746 	.func		= bpf_skb_under_cgroup,
3747 	.gpl_only	= false,
3748 	.ret_type	= RET_INTEGER,
3749 	.arg1_type	= ARG_PTR_TO_CTX,
3750 	.arg2_type	= ARG_CONST_MAP_PTR,
3751 	.arg3_type	= ARG_ANYTHING,
3752 };
3753 
3754 #ifdef CONFIG_SOCK_CGROUP_DATA
3755 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
3756 {
3757 	struct sock *sk = skb_to_full_sk(skb);
3758 	struct cgroup *cgrp;
3759 
3760 	if (!sk || !sk_fullsock(sk))
3761 		return 0;
3762 
3763 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
3764 	return cgrp->kn->id.id;
3765 }
3766 
3767 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
3768 	.func           = bpf_skb_cgroup_id,
3769 	.gpl_only       = false,
3770 	.ret_type       = RET_INTEGER,
3771 	.arg1_type      = ARG_PTR_TO_CTX,
3772 };
3773 
3774 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
3775 	   ancestor_level)
3776 {
3777 	struct sock *sk = skb_to_full_sk(skb);
3778 	struct cgroup *ancestor;
3779 	struct cgroup *cgrp;
3780 
3781 	if (!sk || !sk_fullsock(sk))
3782 		return 0;
3783 
3784 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
3785 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
3786 	if (!ancestor)
3787 		return 0;
3788 
3789 	return ancestor->kn->id.id;
3790 }
3791 
3792 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
3793 	.func           = bpf_skb_ancestor_cgroup_id,
3794 	.gpl_only       = false,
3795 	.ret_type       = RET_INTEGER,
3796 	.arg1_type      = ARG_PTR_TO_CTX,
3797 	.arg2_type      = ARG_ANYTHING,
3798 };
3799 #endif
3800 
3801 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
3802 				  unsigned long off, unsigned long len)
3803 {
3804 	memcpy(dst_buff, src_buff + off, len);
3805 	return 0;
3806 }
3807 
3808 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
3809 	   u64, flags, void *, meta, u64, meta_size)
3810 {
3811 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3812 
3813 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3814 		return -EINVAL;
3815 	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
3816 		return -EFAULT;
3817 
3818 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
3819 				xdp_size, bpf_xdp_copy);
3820 }
3821 
3822 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
3823 	.func		= bpf_xdp_event_output,
3824 	.gpl_only	= true,
3825 	.ret_type	= RET_INTEGER,
3826 	.arg1_type	= ARG_PTR_TO_CTX,
3827 	.arg2_type	= ARG_CONST_MAP_PTR,
3828 	.arg3_type	= ARG_ANYTHING,
3829 	.arg4_type	= ARG_PTR_TO_MEM,
3830 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3831 };
3832 
3833 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
3834 {
3835 	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
3836 }
3837 
3838 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
3839 	.func           = bpf_get_socket_cookie,
3840 	.gpl_only       = false,
3841 	.ret_type       = RET_INTEGER,
3842 	.arg1_type      = ARG_PTR_TO_CTX,
3843 };
3844 
3845 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
3846 {
3847 	return sock_gen_cookie(ctx->sk);
3848 }
3849 
3850 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
3851 	.func		= bpf_get_socket_cookie_sock_addr,
3852 	.gpl_only	= false,
3853 	.ret_type	= RET_INTEGER,
3854 	.arg1_type	= ARG_PTR_TO_CTX,
3855 };
3856 
3857 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
3858 {
3859 	return sock_gen_cookie(ctx->sk);
3860 }
3861 
3862 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
3863 	.func		= bpf_get_socket_cookie_sock_ops,
3864 	.gpl_only	= false,
3865 	.ret_type	= RET_INTEGER,
3866 	.arg1_type	= ARG_PTR_TO_CTX,
3867 };
3868 
3869 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
3870 {
3871 	struct sock *sk = sk_to_full_sk(skb->sk);
3872 	kuid_t kuid;
3873 
3874 	if (!sk || !sk_fullsock(sk))
3875 		return overflowuid;
3876 	kuid = sock_net_uid(sock_net(sk), sk);
3877 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
3878 }
3879 
3880 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
3881 	.func           = bpf_get_socket_uid,
3882 	.gpl_only       = false,
3883 	.ret_type       = RET_INTEGER,
3884 	.arg1_type      = ARG_PTR_TO_CTX,
3885 };
3886 
3887 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3888 	   int, level, int, optname, char *, optval, int, optlen)
3889 {
3890 	struct sock *sk = bpf_sock->sk;
3891 	int ret = 0;
3892 	int val;
3893 
3894 	if (!sk_fullsock(sk))
3895 		return -EINVAL;
3896 
3897 	if (level == SOL_SOCKET) {
3898 		if (optlen != sizeof(int))
3899 			return -EINVAL;
3900 		val = *((int *)optval);
3901 
3902 		/* Only some socketops are supported */
3903 		switch (optname) {
3904 		case SO_RCVBUF:
3905 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
3906 			sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
3907 			break;
3908 		case SO_SNDBUF:
3909 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
3910 			sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
3911 			break;
3912 		case SO_MAX_PACING_RATE:
3913 			sk->sk_max_pacing_rate = val;
3914 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
3915 						 sk->sk_max_pacing_rate);
3916 			break;
3917 		case SO_PRIORITY:
3918 			sk->sk_priority = val;
3919 			break;
3920 		case SO_RCVLOWAT:
3921 			if (val < 0)
3922 				val = INT_MAX;
3923 			sk->sk_rcvlowat = val ? : 1;
3924 			break;
3925 		case SO_MARK:
3926 			sk->sk_mark = val;
3927 			break;
3928 		default:
3929 			ret = -EINVAL;
3930 		}
3931 #ifdef CONFIG_INET
3932 	} else if (level == SOL_IP) {
3933 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
3934 			return -EINVAL;
3935 
3936 		val = *((int *)optval);
3937 		/* Only some options are supported */
3938 		switch (optname) {
3939 		case IP_TOS:
3940 			if (val < -1 || val > 0xff) {
3941 				ret = -EINVAL;
3942 			} else {
3943 				struct inet_sock *inet = inet_sk(sk);
3944 
3945 				if (val == -1)
3946 					val = 0;
3947 				inet->tos = val;
3948 			}
3949 			break;
3950 		default:
3951 			ret = -EINVAL;
3952 		}
3953 #if IS_ENABLED(CONFIG_IPV6)
3954 	} else if (level == SOL_IPV6) {
3955 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
3956 			return -EINVAL;
3957 
3958 		val = *((int *)optval);
3959 		/* Only some options are supported */
3960 		switch (optname) {
3961 		case IPV6_TCLASS:
3962 			if (val < -1 || val > 0xff) {
3963 				ret = -EINVAL;
3964 			} else {
3965 				struct ipv6_pinfo *np = inet6_sk(sk);
3966 
3967 				if (val == -1)
3968 					val = 0;
3969 				np->tclass = val;
3970 			}
3971 			break;
3972 		default:
3973 			ret = -EINVAL;
3974 		}
3975 #endif
3976 	} else if (level == SOL_TCP &&
3977 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
3978 		if (optname == TCP_CONGESTION) {
3979 			char name[TCP_CA_NAME_MAX];
3980 			bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
3981 
3982 			strncpy(name, optval, min_t(long, optlen,
3983 						    TCP_CA_NAME_MAX-1));
3984 			name[TCP_CA_NAME_MAX-1] = 0;
3985 			ret = tcp_set_congestion_control(sk, name, false,
3986 							 reinit);
3987 		} else {
3988 			struct tcp_sock *tp = tcp_sk(sk);
3989 
3990 			if (optlen != sizeof(int))
3991 				return -EINVAL;
3992 
3993 			val = *((int *)optval);
3994 			/* Only some options are supported */
3995 			switch (optname) {
3996 			case TCP_BPF_IW:
3997 				if (val <= 0 || tp->data_segs_out > 0)
3998 					ret = -EINVAL;
3999 				else
4000 					tp->snd_cwnd = val;
4001 				break;
4002 			case TCP_BPF_SNDCWND_CLAMP:
4003 				if (val <= 0) {
4004 					ret = -EINVAL;
4005 				} else {
4006 					tp->snd_cwnd_clamp = val;
4007 					tp->snd_ssthresh = val;
4008 				}
4009 				break;
4010 			default:
4011 				ret = -EINVAL;
4012 			}
4013 		}
4014 #endif
4015 	} else {
4016 		ret = -EINVAL;
4017 	}
4018 	return ret;
4019 }
4020 
4021 static const struct bpf_func_proto bpf_setsockopt_proto = {
4022 	.func		= bpf_setsockopt,
4023 	.gpl_only	= false,
4024 	.ret_type	= RET_INTEGER,
4025 	.arg1_type	= ARG_PTR_TO_CTX,
4026 	.arg2_type	= ARG_ANYTHING,
4027 	.arg3_type	= ARG_ANYTHING,
4028 	.arg4_type	= ARG_PTR_TO_MEM,
4029 	.arg5_type	= ARG_CONST_SIZE,
4030 };
4031 
4032 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4033 	   int, level, int, optname, char *, optval, int, optlen)
4034 {
4035 	struct sock *sk = bpf_sock->sk;
4036 
4037 	if (!sk_fullsock(sk))
4038 		goto err_clear;
4039 
4040 #ifdef CONFIG_INET
4041 	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4042 		if (optname == TCP_CONGESTION) {
4043 			struct inet_connection_sock *icsk = inet_csk(sk);
4044 
4045 			if (!icsk->icsk_ca_ops || optlen <= 1)
4046 				goto err_clear;
4047 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4048 			optval[optlen - 1] = 0;
4049 		} else {
4050 			goto err_clear;
4051 		}
4052 	} else if (level == SOL_IP) {
4053 		struct inet_sock *inet = inet_sk(sk);
4054 
4055 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4056 			goto err_clear;
4057 
4058 		/* Only some options are supported */
4059 		switch (optname) {
4060 		case IP_TOS:
4061 			*((int *)optval) = (int)inet->tos;
4062 			break;
4063 		default:
4064 			goto err_clear;
4065 		}
4066 #if IS_ENABLED(CONFIG_IPV6)
4067 	} else if (level == SOL_IPV6) {
4068 		struct ipv6_pinfo *np = inet6_sk(sk);
4069 
4070 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4071 			goto err_clear;
4072 
4073 		/* Only some options are supported */
4074 		switch (optname) {
4075 		case IPV6_TCLASS:
4076 			*((int *)optval) = (int)np->tclass;
4077 			break;
4078 		default:
4079 			goto err_clear;
4080 		}
4081 #endif
4082 	} else {
4083 		goto err_clear;
4084 	}
4085 	return 0;
4086 #endif
4087 err_clear:
4088 	memset(optval, 0, optlen);
4089 	return -EINVAL;
4090 }
4091 
4092 static const struct bpf_func_proto bpf_getsockopt_proto = {
4093 	.func		= bpf_getsockopt,
4094 	.gpl_only	= false,
4095 	.ret_type	= RET_INTEGER,
4096 	.arg1_type	= ARG_PTR_TO_CTX,
4097 	.arg2_type	= ARG_ANYTHING,
4098 	.arg3_type	= ARG_ANYTHING,
4099 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
4100 	.arg5_type	= ARG_CONST_SIZE,
4101 };
4102 
4103 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4104 	   int, argval)
4105 {
4106 	struct sock *sk = bpf_sock->sk;
4107 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4108 
4109 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4110 		return -EINVAL;
4111 
4112 	if (val)
4113 		tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4114 
4115 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4116 }
4117 
4118 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4119 	.func		= bpf_sock_ops_cb_flags_set,
4120 	.gpl_only	= false,
4121 	.ret_type	= RET_INTEGER,
4122 	.arg1_type	= ARG_PTR_TO_CTX,
4123 	.arg2_type	= ARG_ANYTHING,
4124 };
4125 
4126 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4127 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4128 
4129 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4130 	   int, addr_len)
4131 {
4132 #ifdef CONFIG_INET
4133 	struct sock *sk = ctx->sk;
4134 	int err;
4135 
4136 	/* Binding to port can be expensive so it's prohibited in the helper.
4137 	 * Only binding to IP is supported.
4138 	 */
4139 	err = -EINVAL;
4140 	if (addr->sa_family == AF_INET) {
4141 		if (addr_len < sizeof(struct sockaddr_in))
4142 			return err;
4143 		if (((struct sockaddr_in *)addr)->sin_port != htons(0))
4144 			return err;
4145 		return __inet_bind(sk, addr, addr_len, true, false);
4146 #if IS_ENABLED(CONFIG_IPV6)
4147 	} else if (addr->sa_family == AF_INET6) {
4148 		if (addr_len < SIN6_LEN_RFC2133)
4149 			return err;
4150 		if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
4151 			return err;
4152 		/* ipv6_bpf_stub cannot be NULL, since it's called from
4153 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4154 		 */
4155 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
4156 #endif /* CONFIG_IPV6 */
4157 	}
4158 #endif /* CONFIG_INET */
4159 
4160 	return -EAFNOSUPPORT;
4161 }
4162 
4163 static const struct bpf_func_proto bpf_bind_proto = {
4164 	.func		= bpf_bind,
4165 	.gpl_only	= false,
4166 	.ret_type	= RET_INTEGER,
4167 	.arg1_type	= ARG_PTR_TO_CTX,
4168 	.arg2_type	= ARG_PTR_TO_MEM,
4169 	.arg3_type	= ARG_CONST_SIZE,
4170 };
4171 
4172 #ifdef CONFIG_XFRM
4173 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4174 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
4175 {
4176 	const struct sec_path *sp = skb_sec_path(skb);
4177 	const struct xfrm_state *x;
4178 
4179 	if (!sp || unlikely(index >= sp->len || flags))
4180 		goto err_clear;
4181 
4182 	x = sp->xvec[index];
4183 
4184 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4185 		goto err_clear;
4186 
4187 	to->reqid = x->props.reqid;
4188 	to->spi = x->id.spi;
4189 	to->family = x->props.family;
4190 	to->ext = 0;
4191 
4192 	if (to->family == AF_INET6) {
4193 		memcpy(to->remote_ipv6, x->props.saddr.a6,
4194 		       sizeof(to->remote_ipv6));
4195 	} else {
4196 		to->remote_ipv4 = x->props.saddr.a4;
4197 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4198 	}
4199 
4200 	return 0;
4201 err_clear:
4202 	memset(to, 0, size);
4203 	return -EINVAL;
4204 }
4205 
4206 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4207 	.func		= bpf_skb_get_xfrm_state,
4208 	.gpl_only	= false,
4209 	.ret_type	= RET_INTEGER,
4210 	.arg1_type	= ARG_PTR_TO_CTX,
4211 	.arg2_type	= ARG_ANYTHING,
4212 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4213 	.arg4_type	= ARG_CONST_SIZE,
4214 	.arg5_type	= ARG_ANYTHING,
4215 };
4216 #endif
4217 
4218 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4219 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4220 				  const struct neighbour *neigh,
4221 				  const struct net_device *dev)
4222 {
4223 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
4224 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4225 	params->h_vlan_TCI = 0;
4226 	params->h_vlan_proto = 0;
4227 	params->ifindex = dev->ifindex;
4228 
4229 	return 0;
4230 }
4231 #endif
4232 
4233 #if IS_ENABLED(CONFIG_INET)
4234 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4235 			       u32 flags, bool check_mtu)
4236 {
4237 	struct in_device *in_dev;
4238 	struct neighbour *neigh;
4239 	struct net_device *dev;
4240 	struct fib_result res;
4241 	struct fib_nh *nh;
4242 	struct flowi4 fl4;
4243 	int err;
4244 	u32 mtu;
4245 
4246 	dev = dev_get_by_index_rcu(net, params->ifindex);
4247 	if (unlikely(!dev))
4248 		return -ENODEV;
4249 
4250 	/* verify forwarding is enabled on this interface */
4251 	in_dev = __in_dev_get_rcu(dev);
4252 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4253 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4254 
4255 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4256 		fl4.flowi4_iif = 1;
4257 		fl4.flowi4_oif = params->ifindex;
4258 	} else {
4259 		fl4.flowi4_iif = params->ifindex;
4260 		fl4.flowi4_oif = 0;
4261 	}
4262 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4263 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4264 	fl4.flowi4_flags = 0;
4265 
4266 	fl4.flowi4_proto = params->l4_protocol;
4267 	fl4.daddr = params->ipv4_dst;
4268 	fl4.saddr = params->ipv4_src;
4269 	fl4.fl4_sport = params->sport;
4270 	fl4.fl4_dport = params->dport;
4271 
4272 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
4273 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4274 		struct fib_table *tb;
4275 
4276 		tb = fib_get_table(net, tbid);
4277 		if (unlikely(!tb))
4278 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4279 
4280 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4281 	} else {
4282 		fl4.flowi4_mark = 0;
4283 		fl4.flowi4_secid = 0;
4284 		fl4.flowi4_tun_key.tun_id = 0;
4285 		fl4.flowi4_uid = sock_net_uid(net, NULL);
4286 
4287 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4288 	}
4289 
4290 	if (err) {
4291 		/* map fib lookup errors to RTN_ type */
4292 		if (err == -EINVAL)
4293 			return BPF_FIB_LKUP_RET_BLACKHOLE;
4294 		if (err == -EHOSTUNREACH)
4295 			return BPF_FIB_LKUP_RET_UNREACHABLE;
4296 		if (err == -EACCES)
4297 			return BPF_FIB_LKUP_RET_PROHIBIT;
4298 
4299 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4300 	}
4301 
4302 	if (res.type != RTN_UNICAST)
4303 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4304 
4305 	if (res.fi->fib_nhs > 1)
4306 		fib_select_path(net, &res, &fl4, NULL);
4307 
4308 	if (check_mtu) {
4309 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4310 		if (params->tot_len > mtu)
4311 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4312 	}
4313 
4314 	nh = &res.fi->fib_nh[res.nh_sel];
4315 
4316 	/* do not handle lwt encaps right now */
4317 	if (nh->nh_lwtstate)
4318 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4319 
4320 	dev = nh->nh_dev;
4321 	if (nh->nh_gw)
4322 		params->ipv4_dst = nh->nh_gw;
4323 
4324 	params->rt_metric = res.fi->fib_priority;
4325 
4326 	/* xdp and cls_bpf programs are run in RCU-bh so
4327 	 * rcu_read_lock_bh is not needed here
4328 	 */
4329 	neigh = __ipv4_neigh_lookup_noref(dev, (__force u32)params->ipv4_dst);
4330 	if (!neigh)
4331 		return BPF_FIB_LKUP_RET_NO_NEIGH;
4332 
4333 	return bpf_fib_set_fwd_params(params, neigh, dev);
4334 }
4335 #endif
4336 
4337 #if IS_ENABLED(CONFIG_IPV6)
4338 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4339 			       u32 flags, bool check_mtu)
4340 {
4341 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4342 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4343 	struct neighbour *neigh;
4344 	struct net_device *dev;
4345 	struct inet6_dev *idev;
4346 	struct fib6_info *f6i;
4347 	struct flowi6 fl6;
4348 	int strict = 0;
4349 	int oif;
4350 	u32 mtu;
4351 
4352 	/* link local addresses are never forwarded */
4353 	if (rt6_need_strict(dst) || rt6_need_strict(src))
4354 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4355 
4356 	dev = dev_get_by_index_rcu(net, params->ifindex);
4357 	if (unlikely(!dev))
4358 		return -ENODEV;
4359 
4360 	idev = __in6_dev_get_safely(dev);
4361 	if (unlikely(!idev || !net->ipv6.devconf_all->forwarding))
4362 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4363 
4364 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4365 		fl6.flowi6_iif = 1;
4366 		oif = fl6.flowi6_oif = params->ifindex;
4367 	} else {
4368 		oif = fl6.flowi6_iif = params->ifindex;
4369 		fl6.flowi6_oif = 0;
4370 		strict = RT6_LOOKUP_F_HAS_SADDR;
4371 	}
4372 	fl6.flowlabel = params->flowinfo;
4373 	fl6.flowi6_scope = 0;
4374 	fl6.flowi6_flags = 0;
4375 	fl6.mp_hash = 0;
4376 
4377 	fl6.flowi6_proto = params->l4_protocol;
4378 	fl6.daddr = *dst;
4379 	fl6.saddr = *src;
4380 	fl6.fl6_sport = params->sport;
4381 	fl6.fl6_dport = params->dport;
4382 
4383 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
4384 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4385 		struct fib6_table *tb;
4386 
4387 		tb = ipv6_stub->fib6_get_table(net, tbid);
4388 		if (unlikely(!tb))
4389 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4390 
4391 		f6i = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, strict);
4392 	} else {
4393 		fl6.flowi6_mark = 0;
4394 		fl6.flowi6_secid = 0;
4395 		fl6.flowi6_tun_key.tun_id = 0;
4396 		fl6.flowi6_uid = sock_net_uid(net, NULL);
4397 
4398 		f6i = ipv6_stub->fib6_lookup(net, oif, &fl6, strict);
4399 	}
4400 
4401 	if (unlikely(IS_ERR_OR_NULL(f6i) || f6i == net->ipv6.fib6_null_entry))
4402 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4403 
4404 	if (unlikely(f6i->fib6_flags & RTF_REJECT)) {
4405 		switch (f6i->fib6_type) {
4406 		case RTN_BLACKHOLE:
4407 			return BPF_FIB_LKUP_RET_BLACKHOLE;
4408 		case RTN_UNREACHABLE:
4409 			return BPF_FIB_LKUP_RET_UNREACHABLE;
4410 		case RTN_PROHIBIT:
4411 			return BPF_FIB_LKUP_RET_PROHIBIT;
4412 		default:
4413 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4414 		}
4415 	}
4416 
4417 	if (f6i->fib6_type != RTN_UNICAST)
4418 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4419 
4420 	if (f6i->fib6_nsiblings && fl6.flowi6_oif == 0)
4421 		f6i = ipv6_stub->fib6_multipath_select(net, f6i, &fl6,
4422 						       fl6.flowi6_oif, NULL,
4423 						       strict);
4424 
4425 	if (check_mtu) {
4426 		mtu = ipv6_stub->ip6_mtu_from_fib6(f6i, dst, src);
4427 		if (params->tot_len > mtu)
4428 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4429 	}
4430 
4431 	if (f6i->fib6_nh.nh_lwtstate)
4432 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4433 
4434 	if (f6i->fib6_flags & RTF_GATEWAY)
4435 		*dst = f6i->fib6_nh.nh_gw;
4436 
4437 	dev = f6i->fib6_nh.nh_dev;
4438 	params->rt_metric = f6i->fib6_metric;
4439 
4440 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4441 	 * not needed here. Can not use __ipv6_neigh_lookup_noref here
4442 	 * because we need to get nd_tbl via the stub
4443 	 */
4444 	neigh = ___neigh_lookup_noref(ipv6_stub->nd_tbl, neigh_key_eq128,
4445 				      ndisc_hashfn, dst, dev);
4446 	if (!neigh)
4447 		return BPF_FIB_LKUP_RET_NO_NEIGH;
4448 
4449 	return bpf_fib_set_fwd_params(params, neigh, dev);
4450 }
4451 #endif
4452 
4453 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4454 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
4455 {
4456 	if (plen < sizeof(*params))
4457 		return -EINVAL;
4458 
4459 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4460 		return -EINVAL;
4461 
4462 	switch (params->family) {
4463 #if IS_ENABLED(CONFIG_INET)
4464 	case AF_INET:
4465 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4466 					   flags, true);
4467 #endif
4468 #if IS_ENABLED(CONFIG_IPV6)
4469 	case AF_INET6:
4470 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4471 					   flags, true);
4472 #endif
4473 	}
4474 	return -EAFNOSUPPORT;
4475 }
4476 
4477 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4478 	.func		= bpf_xdp_fib_lookup,
4479 	.gpl_only	= true,
4480 	.ret_type	= RET_INTEGER,
4481 	.arg1_type      = ARG_PTR_TO_CTX,
4482 	.arg2_type      = ARG_PTR_TO_MEM,
4483 	.arg3_type      = ARG_CONST_SIZE,
4484 	.arg4_type	= ARG_ANYTHING,
4485 };
4486 
4487 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4488 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
4489 {
4490 	struct net *net = dev_net(skb->dev);
4491 	int rc = -EAFNOSUPPORT;
4492 
4493 	if (plen < sizeof(*params))
4494 		return -EINVAL;
4495 
4496 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4497 		return -EINVAL;
4498 
4499 	switch (params->family) {
4500 #if IS_ENABLED(CONFIG_INET)
4501 	case AF_INET:
4502 		rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4503 		break;
4504 #endif
4505 #if IS_ENABLED(CONFIG_IPV6)
4506 	case AF_INET6:
4507 		rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4508 		break;
4509 #endif
4510 	}
4511 
4512 	if (!rc) {
4513 		struct net_device *dev;
4514 
4515 		dev = dev_get_by_index_rcu(net, params->ifindex);
4516 		if (!is_skb_forwardable(dev, skb))
4517 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4518 	}
4519 
4520 	return rc;
4521 }
4522 
4523 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4524 	.func		= bpf_skb_fib_lookup,
4525 	.gpl_only	= true,
4526 	.ret_type	= RET_INTEGER,
4527 	.arg1_type      = ARG_PTR_TO_CTX,
4528 	.arg2_type      = ARG_PTR_TO_MEM,
4529 	.arg3_type      = ARG_CONST_SIZE,
4530 	.arg4_type	= ARG_ANYTHING,
4531 };
4532 
4533 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4534 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
4535 {
4536 	int err;
4537 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
4538 
4539 	if (!seg6_validate_srh(srh, len))
4540 		return -EINVAL;
4541 
4542 	switch (type) {
4543 	case BPF_LWT_ENCAP_SEG6_INLINE:
4544 		if (skb->protocol != htons(ETH_P_IPV6))
4545 			return -EBADMSG;
4546 
4547 		err = seg6_do_srh_inline(skb, srh);
4548 		break;
4549 	case BPF_LWT_ENCAP_SEG6:
4550 		skb_reset_inner_headers(skb);
4551 		skb->encapsulation = 1;
4552 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
4553 		break;
4554 	default:
4555 		return -EINVAL;
4556 	}
4557 
4558 	bpf_compute_data_pointers(skb);
4559 	if (err)
4560 		return err;
4561 
4562 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4563 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
4564 
4565 	return seg6_lookup_nexthop(skb, NULL, 0);
4566 }
4567 #endif /* CONFIG_IPV6_SEG6_BPF */
4568 
4569 BPF_CALL_4(bpf_lwt_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
4570 	   u32, len)
4571 {
4572 	switch (type) {
4573 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4574 	case BPF_LWT_ENCAP_SEG6:
4575 	case BPF_LWT_ENCAP_SEG6_INLINE:
4576 		return bpf_push_seg6_encap(skb, type, hdr, len);
4577 #endif
4578 	default:
4579 		return -EINVAL;
4580 	}
4581 }
4582 
4583 static const struct bpf_func_proto bpf_lwt_push_encap_proto = {
4584 	.func		= bpf_lwt_push_encap,
4585 	.gpl_only	= false,
4586 	.ret_type	= RET_INTEGER,
4587 	.arg1_type	= ARG_PTR_TO_CTX,
4588 	.arg2_type	= ARG_ANYTHING,
4589 	.arg3_type	= ARG_PTR_TO_MEM,
4590 	.arg4_type	= ARG_CONST_SIZE
4591 };
4592 
4593 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4594 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
4595 	   const void *, from, u32, len)
4596 {
4597 	struct seg6_bpf_srh_state *srh_state =
4598 		this_cpu_ptr(&seg6_bpf_srh_states);
4599 	struct ipv6_sr_hdr *srh = srh_state->srh;
4600 	void *srh_tlvs, *srh_end, *ptr;
4601 	int srhoff = 0;
4602 
4603 	if (srh == NULL)
4604 		return -EINVAL;
4605 
4606 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
4607 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
4608 
4609 	ptr = skb->data + offset;
4610 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
4611 		srh_state->valid = false;
4612 	else if (ptr < (void *)&srh->flags ||
4613 		 ptr + len > (void *)&srh->segments)
4614 		return -EFAULT;
4615 
4616 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
4617 		return -EFAULT;
4618 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4619 		return -EINVAL;
4620 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4621 
4622 	memcpy(skb->data + offset, from, len);
4623 	return 0;
4624 }
4625 
4626 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
4627 	.func		= bpf_lwt_seg6_store_bytes,
4628 	.gpl_only	= false,
4629 	.ret_type	= RET_INTEGER,
4630 	.arg1_type	= ARG_PTR_TO_CTX,
4631 	.arg2_type	= ARG_ANYTHING,
4632 	.arg3_type	= ARG_PTR_TO_MEM,
4633 	.arg4_type	= ARG_CONST_SIZE
4634 };
4635 
4636 static void bpf_update_srh_state(struct sk_buff *skb)
4637 {
4638 	struct seg6_bpf_srh_state *srh_state =
4639 		this_cpu_ptr(&seg6_bpf_srh_states);
4640 	int srhoff = 0;
4641 
4642 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
4643 		srh_state->srh = NULL;
4644 	} else {
4645 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4646 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
4647 		srh_state->valid = true;
4648 	}
4649 }
4650 
4651 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
4652 	   u32, action, void *, param, u32, param_len)
4653 {
4654 	struct seg6_bpf_srh_state *srh_state =
4655 		this_cpu_ptr(&seg6_bpf_srh_states);
4656 	int hdroff = 0;
4657 	int err;
4658 
4659 	switch (action) {
4660 	case SEG6_LOCAL_ACTION_END_X:
4661 		if (!seg6_bpf_has_valid_srh(skb))
4662 			return -EBADMSG;
4663 		if (param_len != sizeof(struct in6_addr))
4664 			return -EINVAL;
4665 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
4666 	case SEG6_LOCAL_ACTION_END_T:
4667 		if (!seg6_bpf_has_valid_srh(skb))
4668 			return -EBADMSG;
4669 		if (param_len != sizeof(int))
4670 			return -EINVAL;
4671 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
4672 	case SEG6_LOCAL_ACTION_END_DT6:
4673 		if (!seg6_bpf_has_valid_srh(skb))
4674 			return -EBADMSG;
4675 		if (param_len != sizeof(int))
4676 			return -EINVAL;
4677 
4678 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
4679 			return -EBADMSG;
4680 		if (!pskb_pull(skb, hdroff))
4681 			return -EBADMSG;
4682 
4683 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
4684 		skb_reset_network_header(skb);
4685 		skb_reset_transport_header(skb);
4686 		skb->encapsulation = 0;
4687 
4688 		bpf_compute_data_pointers(skb);
4689 		bpf_update_srh_state(skb);
4690 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
4691 	case SEG6_LOCAL_ACTION_END_B6:
4692 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
4693 			return -EBADMSG;
4694 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
4695 					  param, param_len);
4696 		if (!err)
4697 			bpf_update_srh_state(skb);
4698 
4699 		return err;
4700 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
4701 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
4702 			return -EBADMSG;
4703 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
4704 					  param, param_len);
4705 		if (!err)
4706 			bpf_update_srh_state(skb);
4707 
4708 		return err;
4709 	default:
4710 		return -EINVAL;
4711 	}
4712 }
4713 
4714 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
4715 	.func		= bpf_lwt_seg6_action,
4716 	.gpl_only	= false,
4717 	.ret_type	= RET_INTEGER,
4718 	.arg1_type	= ARG_PTR_TO_CTX,
4719 	.arg2_type	= ARG_ANYTHING,
4720 	.arg3_type	= ARG_PTR_TO_MEM,
4721 	.arg4_type	= ARG_CONST_SIZE
4722 };
4723 
4724 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
4725 	   s32, len)
4726 {
4727 	struct seg6_bpf_srh_state *srh_state =
4728 		this_cpu_ptr(&seg6_bpf_srh_states);
4729 	struct ipv6_sr_hdr *srh = srh_state->srh;
4730 	void *srh_end, *srh_tlvs, *ptr;
4731 	struct ipv6hdr *hdr;
4732 	int srhoff = 0;
4733 	int ret;
4734 
4735 	if (unlikely(srh == NULL))
4736 		return -EINVAL;
4737 
4738 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
4739 			((srh->first_segment + 1) << 4));
4740 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
4741 			srh_state->hdrlen);
4742 	ptr = skb->data + offset;
4743 
4744 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
4745 		return -EFAULT;
4746 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
4747 		return -EFAULT;
4748 
4749 	if (len > 0) {
4750 		ret = skb_cow_head(skb, len);
4751 		if (unlikely(ret < 0))
4752 			return ret;
4753 
4754 		ret = bpf_skb_net_hdr_push(skb, offset, len);
4755 	} else {
4756 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
4757 	}
4758 
4759 	bpf_compute_data_pointers(skb);
4760 	if (unlikely(ret < 0))
4761 		return ret;
4762 
4763 	hdr = (struct ipv6hdr *)skb->data;
4764 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4765 
4766 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4767 		return -EINVAL;
4768 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4769 	srh_state->hdrlen += len;
4770 	srh_state->valid = false;
4771 	return 0;
4772 }
4773 
4774 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
4775 	.func		= bpf_lwt_seg6_adjust_srh,
4776 	.gpl_only	= false,
4777 	.ret_type	= RET_INTEGER,
4778 	.arg1_type	= ARG_PTR_TO_CTX,
4779 	.arg2_type	= ARG_ANYTHING,
4780 	.arg3_type	= ARG_ANYTHING,
4781 };
4782 #endif /* CONFIG_IPV6_SEG6_BPF */
4783 
4784 bool bpf_helper_changes_pkt_data(void *func)
4785 {
4786 	if (func == bpf_skb_vlan_push ||
4787 	    func == bpf_skb_vlan_pop ||
4788 	    func == bpf_skb_store_bytes ||
4789 	    func == bpf_skb_change_proto ||
4790 	    func == bpf_skb_change_head ||
4791 	    func == sk_skb_change_head ||
4792 	    func == bpf_skb_change_tail ||
4793 	    func == sk_skb_change_tail ||
4794 	    func == bpf_skb_adjust_room ||
4795 	    func == bpf_skb_pull_data ||
4796 	    func == sk_skb_pull_data ||
4797 	    func == bpf_clone_redirect ||
4798 	    func == bpf_l3_csum_replace ||
4799 	    func == bpf_l4_csum_replace ||
4800 	    func == bpf_xdp_adjust_head ||
4801 	    func == bpf_xdp_adjust_meta ||
4802 	    func == bpf_msg_pull_data ||
4803 	    func == bpf_xdp_adjust_tail ||
4804 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4805 	    func == bpf_lwt_seg6_store_bytes ||
4806 	    func == bpf_lwt_seg6_adjust_srh ||
4807 	    func == bpf_lwt_seg6_action ||
4808 #endif
4809 	    func == bpf_lwt_push_encap)
4810 		return true;
4811 
4812 	return false;
4813 }
4814 
4815 static const struct bpf_func_proto *
4816 bpf_base_func_proto(enum bpf_func_id func_id)
4817 {
4818 	switch (func_id) {
4819 	case BPF_FUNC_map_lookup_elem:
4820 		return &bpf_map_lookup_elem_proto;
4821 	case BPF_FUNC_map_update_elem:
4822 		return &bpf_map_update_elem_proto;
4823 	case BPF_FUNC_map_delete_elem:
4824 		return &bpf_map_delete_elem_proto;
4825 	case BPF_FUNC_get_prandom_u32:
4826 		return &bpf_get_prandom_u32_proto;
4827 	case BPF_FUNC_get_smp_processor_id:
4828 		return &bpf_get_raw_smp_processor_id_proto;
4829 	case BPF_FUNC_get_numa_node_id:
4830 		return &bpf_get_numa_node_id_proto;
4831 	case BPF_FUNC_tail_call:
4832 		return &bpf_tail_call_proto;
4833 	case BPF_FUNC_ktime_get_ns:
4834 		return &bpf_ktime_get_ns_proto;
4835 	case BPF_FUNC_trace_printk:
4836 		if (capable(CAP_SYS_ADMIN))
4837 			return bpf_get_trace_printk_proto();
4838 		/* else: fall through */
4839 	default:
4840 		return NULL;
4841 	}
4842 }
4843 
4844 static const struct bpf_func_proto *
4845 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4846 {
4847 	switch (func_id) {
4848 	/* inet and inet6 sockets are created in a process
4849 	 * context so there is always a valid uid/gid
4850 	 */
4851 	case BPF_FUNC_get_current_uid_gid:
4852 		return &bpf_get_current_uid_gid_proto;
4853 	case BPF_FUNC_get_local_storage:
4854 		return &bpf_get_local_storage_proto;
4855 	default:
4856 		return bpf_base_func_proto(func_id);
4857 	}
4858 }
4859 
4860 static const struct bpf_func_proto *
4861 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4862 {
4863 	switch (func_id) {
4864 	/* inet and inet6 sockets are created in a process
4865 	 * context so there is always a valid uid/gid
4866 	 */
4867 	case BPF_FUNC_get_current_uid_gid:
4868 		return &bpf_get_current_uid_gid_proto;
4869 	case BPF_FUNC_bind:
4870 		switch (prog->expected_attach_type) {
4871 		case BPF_CGROUP_INET4_CONNECT:
4872 		case BPF_CGROUP_INET6_CONNECT:
4873 			return &bpf_bind_proto;
4874 		default:
4875 			return NULL;
4876 		}
4877 	case BPF_FUNC_get_socket_cookie:
4878 		return &bpf_get_socket_cookie_sock_addr_proto;
4879 	case BPF_FUNC_get_local_storage:
4880 		return &bpf_get_local_storage_proto;
4881 	default:
4882 		return bpf_base_func_proto(func_id);
4883 	}
4884 }
4885 
4886 static const struct bpf_func_proto *
4887 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4888 {
4889 	switch (func_id) {
4890 	case BPF_FUNC_skb_load_bytes:
4891 		return &bpf_skb_load_bytes_proto;
4892 	case BPF_FUNC_skb_load_bytes_relative:
4893 		return &bpf_skb_load_bytes_relative_proto;
4894 	case BPF_FUNC_get_socket_cookie:
4895 		return &bpf_get_socket_cookie_proto;
4896 	case BPF_FUNC_get_socket_uid:
4897 		return &bpf_get_socket_uid_proto;
4898 	default:
4899 		return bpf_base_func_proto(func_id);
4900 	}
4901 }
4902 
4903 static const struct bpf_func_proto *
4904 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4905 {
4906 	switch (func_id) {
4907 	case BPF_FUNC_get_local_storage:
4908 		return &bpf_get_local_storage_proto;
4909 	default:
4910 		return sk_filter_func_proto(func_id, prog);
4911 	}
4912 }
4913 
4914 static const struct bpf_func_proto *
4915 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4916 {
4917 	switch (func_id) {
4918 	case BPF_FUNC_skb_store_bytes:
4919 		return &bpf_skb_store_bytes_proto;
4920 	case BPF_FUNC_skb_load_bytes:
4921 		return &bpf_skb_load_bytes_proto;
4922 	case BPF_FUNC_skb_load_bytes_relative:
4923 		return &bpf_skb_load_bytes_relative_proto;
4924 	case BPF_FUNC_skb_pull_data:
4925 		return &bpf_skb_pull_data_proto;
4926 	case BPF_FUNC_csum_diff:
4927 		return &bpf_csum_diff_proto;
4928 	case BPF_FUNC_csum_update:
4929 		return &bpf_csum_update_proto;
4930 	case BPF_FUNC_l3_csum_replace:
4931 		return &bpf_l3_csum_replace_proto;
4932 	case BPF_FUNC_l4_csum_replace:
4933 		return &bpf_l4_csum_replace_proto;
4934 	case BPF_FUNC_clone_redirect:
4935 		return &bpf_clone_redirect_proto;
4936 	case BPF_FUNC_get_cgroup_classid:
4937 		return &bpf_get_cgroup_classid_proto;
4938 	case BPF_FUNC_skb_vlan_push:
4939 		return &bpf_skb_vlan_push_proto;
4940 	case BPF_FUNC_skb_vlan_pop:
4941 		return &bpf_skb_vlan_pop_proto;
4942 	case BPF_FUNC_skb_change_proto:
4943 		return &bpf_skb_change_proto_proto;
4944 	case BPF_FUNC_skb_change_type:
4945 		return &bpf_skb_change_type_proto;
4946 	case BPF_FUNC_skb_adjust_room:
4947 		return &bpf_skb_adjust_room_proto;
4948 	case BPF_FUNC_skb_change_tail:
4949 		return &bpf_skb_change_tail_proto;
4950 	case BPF_FUNC_skb_get_tunnel_key:
4951 		return &bpf_skb_get_tunnel_key_proto;
4952 	case BPF_FUNC_skb_set_tunnel_key:
4953 		return bpf_get_skb_set_tunnel_proto(func_id);
4954 	case BPF_FUNC_skb_get_tunnel_opt:
4955 		return &bpf_skb_get_tunnel_opt_proto;
4956 	case BPF_FUNC_skb_set_tunnel_opt:
4957 		return bpf_get_skb_set_tunnel_proto(func_id);
4958 	case BPF_FUNC_redirect:
4959 		return &bpf_redirect_proto;
4960 	case BPF_FUNC_get_route_realm:
4961 		return &bpf_get_route_realm_proto;
4962 	case BPF_FUNC_get_hash_recalc:
4963 		return &bpf_get_hash_recalc_proto;
4964 	case BPF_FUNC_set_hash_invalid:
4965 		return &bpf_set_hash_invalid_proto;
4966 	case BPF_FUNC_set_hash:
4967 		return &bpf_set_hash_proto;
4968 	case BPF_FUNC_perf_event_output:
4969 		return &bpf_skb_event_output_proto;
4970 	case BPF_FUNC_get_smp_processor_id:
4971 		return &bpf_get_smp_processor_id_proto;
4972 	case BPF_FUNC_skb_under_cgroup:
4973 		return &bpf_skb_under_cgroup_proto;
4974 	case BPF_FUNC_get_socket_cookie:
4975 		return &bpf_get_socket_cookie_proto;
4976 	case BPF_FUNC_get_socket_uid:
4977 		return &bpf_get_socket_uid_proto;
4978 	case BPF_FUNC_fib_lookup:
4979 		return &bpf_skb_fib_lookup_proto;
4980 #ifdef CONFIG_XFRM
4981 	case BPF_FUNC_skb_get_xfrm_state:
4982 		return &bpf_skb_get_xfrm_state_proto;
4983 #endif
4984 #ifdef CONFIG_SOCK_CGROUP_DATA
4985 	case BPF_FUNC_skb_cgroup_id:
4986 		return &bpf_skb_cgroup_id_proto;
4987 	case BPF_FUNC_skb_ancestor_cgroup_id:
4988 		return &bpf_skb_ancestor_cgroup_id_proto;
4989 #endif
4990 	default:
4991 		return bpf_base_func_proto(func_id);
4992 	}
4993 }
4994 
4995 static const struct bpf_func_proto *
4996 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4997 {
4998 	switch (func_id) {
4999 	case BPF_FUNC_perf_event_output:
5000 		return &bpf_xdp_event_output_proto;
5001 	case BPF_FUNC_get_smp_processor_id:
5002 		return &bpf_get_smp_processor_id_proto;
5003 	case BPF_FUNC_csum_diff:
5004 		return &bpf_csum_diff_proto;
5005 	case BPF_FUNC_xdp_adjust_head:
5006 		return &bpf_xdp_adjust_head_proto;
5007 	case BPF_FUNC_xdp_adjust_meta:
5008 		return &bpf_xdp_adjust_meta_proto;
5009 	case BPF_FUNC_redirect:
5010 		return &bpf_xdp_redirect_proto;
5011 	case BPF_FUNC_redirect_map:
5012 		return &bpf_xdp_redirect_map_proto;
5013 	case BPF_FUNC_xdp_adjust_tail:
5014 		return &bpf_xdp_adjust_tail_proto;
5015 	case BPF_FUNC_fib_lookup:
5016 		return &bpf_xdp_fib_lookup_proto;
5017 	default:
5018 		return bpf_base_func_proto(func_id);
5019 	}
5020 }
5021 
5022 static const struct bpf_func_proto *
5023 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5024 {
5025 	switch (func_id) {
5026 	case BPF_FUNC_setsockopt:
5027 		return &bpf_setsockopt_proto;
5028 	case BPF_FUNC_getsockopt:
5029 		return &bpf_getsockopt_proto;
5030 	case BPF_FUNC_sock_ops_cb_flags_set:
5031 		return &bpf_sock_ops_cb_flags_set_proto;
5032 	case BPF_FUNC_sock_map_update:
5033 		return &bpf_sock_map_update_proto;
5034 	case BPF_FUNC_sock_hash_update:
5035 		return &bpf_sock_hash_update_proto;
5036 	case BPF_FUNC_get_socket_cookie:
5037 		return &bpf_get_socket_cookie_sock_ops_proto;
5038 	case BPF_FUNC_get_local_storage:
5039 		return &bpf_get_local_storage_proto;
5040 	default:
5041 		return bpf_base_func_proto(func_id);
5042 	}
5043 }
5044 
5045 static const struct bpf_func_proto *
5046 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5047 {
5048 	switch (func_id) {
5049 	case BPF_FUNC_msg_redirect_map:
5050 		return &bpf_msg_redirect_map_proto;
5051 	case BPF_FUNC_msg_redirect_hash:
5052 		return &bpf_msg_redirect_hash_proto;
5053 	case BPF_FUNC_msg_apply_bytes:
5054 		return &bpf_msg_apply_bytes_proto;
5055 	case BPF_FUNC_msg_cork_bytes:
5056 		return &bpf_msg_cork_bytes_proto;
5057 	case BPF_FUNC_msg_pull_data:
5058 		return &bpf_msg_pull_data_proto;
5059 	case BPF_FUNC_get_local_storage:
5060 		return &bpf_get_local_storage_proto;
5061 	default:
5062 		return bpf_base_func_proto(func_id);
5063 	}
5064 }
5065 
5066 static const struct bpf_func_proto *
5067 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5068 {
5069 	switch (func_id) {
5070 	case BPF_FUNC_skb_store_bytes:
5071 		return &bpf_skb_store_bytes_proto;
5072 	case BPF_FUNC_skb_load_bytes:
5073 		return &bpf_skb_load_bytes_proto;
5074 	case BPF_FUNC_skb_pull_data:
5075 		return &sk_skb_pull_data_proto;
5076 	case BPF_FUNC_skb_change_tail:
5077 		return &sk_skb_change_tail_proto;
5078 	case BPF_FUNC_skb_change_head:
5079 		return &sk_skb_change_head_proto;
5080 	case BPF_FUNC_get_socket_cookie:
5081 		return &bpf_get_socket_cookie_proto;
5082 	case BPF_FUNC_get_socket_uid:
5083 		return &bpf_get_socket_uid_proto;
5084 	case BPF_FUNC_sk_redirect_map:
5085 		return &bpf_sk_redirect_map_proto;
5086 	case BPF_FUNC_sk_redirect_hash:
5087 		return &bpf_sk_redirect_hash_proto;
5088 	case BPF_FUNC_get_local_storage:
5089 		return &bpf_get_local_storage_proto;
5090 	default:
5091 		return bpf_base_func_proto(func_id);
5092 	}
5093 }
5094 
5095 static const struct bpf_func_proto *
5096 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5097 {
5098 	switch (func_id) {
5099 	case BPF_FUNC_skb_load_bytes:
5100 		return &bpf_skb_load_bytes_proto;
5101 	case BPF_FUNC_skb_pull_data:
5102 		return &bpf_skb_pull_data_proto;
5103 	case BPF_FUNC_csum_diff:
5104 		return &bpf_csum_diff_proto;
5105 	case BPF_FUNC_get_cgroup_classid:
5106 		return &bpf_get_cgroup_classid_proto;
5107 	case BPF_FUNC_get_route_realm:
5108 		return &bpf_get_route_realm_proto;
5109 	case BPF_FUNC_get_hash_recalc:
5110 		return &bpf_get_hash_recalc_proto;
5111 	case BPF_FUNC_perf_event_output:
5112 		return &bpf_skb_event_output_proto;
5113 	case BPF_FUNC_get_smp_processor_id:
5114 		return &bpf_get_smp_processor_id_proto;
5115 	case BPF_FUNC_skb_under_cgroup:
5116 		return &bpf_skb_under_cgroup_proto;
5117 	default:
5118 		return bpf_base_func_proto(func_id);
5119 	}
5120 }
5121 
5122 static const struct bpf_func_proto *
5123 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5124 {
5125 	switch (func_id) {
5126 	case BPF_FUNC_lwt_push_encap:
5127 		return &bpf_lwt_push_encap_proto;
5128 	default:
5129 		return lwt_out_func_proto(func_id, prog);
5130 	}
5131 }
5132 
5133 static const struct bpf_func_proto *
5134 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5135 {
5136 	switch (func_id) {
5137 	case BPF_FUNC_skb_get_tunnel_key:
5138 		return &bpf_skb_get_tunnel_key_proto;
5139 	case BPF_FUNC_skb_set_tunnel_key:
5140 		return bpf_get_skb_set_tunnel_proto(func_id);
5141 	case BPF_FUNC_skb_get_tunnel_opt:
5142 		return &bpf_skb_get_tunnel_opt_proto;
5143 	case BPF_FUNC_skb_set_tunnel_opt:
5144 		return bpf_get_skb_set_tunnel_proto(func_id);
5145 	case BPF_FUNC_redirect:
5146 		return &bpf_redirect_proto;
5147 	case BPF_FUNC_clone_redirect:
5148 		return &bpf_clone_redirect_proto;
5149 	case BPF_FUNC_skb_change_tail:
5150 		return &bpf_skb_change_tail_proto;
5151 	case BPF_FUNC_skb_change_head:
5152 		return &bpf_skb_change_head_proto;
5153 	case BPF_FUNC_skb_store_bytes:
5154 		return &bpf_skb_store_bytes_proto;
5155 	case BPF_FUNC_csum_update:
5156 		return &bpf_csum_update_proto;
5157 	case BPF_FUNC_l3_csum_replace:
5158 		return &bpf_l3_csum_replace_proto;
5159 	case BPF_FUNC_l4_csum_replace:
5160 		return &bpf_l4_csum_replace_proto;
5161 	case BPF_FUNC_set_hash_invalid:
5162 		return &bpf_set_hash_invalid_proto;
5163 	default:
5164 		return lwt_out_func_proto(func_id, prog);
5165 	}
5166 }
5167 
5168 static const struct bpf_func_proto *
5169 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5170 {
5171 	switch (func_id) {
5172 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5173 	case BPF_FUNC_lwt_seg6_store_bytes:
5174 		return &bpf_lwt_seg6_store_bytes_proto;
5175 	case BPF_FUNC_lwt_seg6_action:
5176 		return &bpf_lwt_seg6_action_proto;
5177 	case BPF_FUNC_lwt_seg6_adjust_srh:
5178 		return &bpf_lwt_seg6_adjust_srh_proto;
5179 #endif
5180 	default:
5181 		return lwt_out_func_proto(func_id, prog);
5182 	}
5183 }
5184 
5185 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
5186 				    const struct bpf_prog *prog,
5187 				    struct bpf_insn_access_aux *info)
5188 {
5189 	const int size_default = sizeof(__u32);
5190 
5191 	if (off < 0 || off >= sizeof(struct __sk_buff))
5192 		return false;
5193 
5194 	/* The verifier guarantees that size > 0. */
5195 	if (off % size != 0)
5196 		return false;
5197 
5198 	switch (off) {
5199 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5200 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
5201 			return false;
5202 		break;
5203 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
5204 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
5205 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
5206 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
5207 	case bpf_ctx_range(struct __sk_buff, data):
5208 	case bpf_ctx_range(struct __sk_buff, data_meta):
5209 	case bpf_ctx_range(struct __sk_buff, data_end):
5210 		if (size != size_default)
5211 			return false;
5212 		break;
5213 	default:
5214 		/* Only narrow read access allowed for now. */
5215 		if (type == BPF_WRITE) {
5216 			if (size != size_default)
5217 				return false;
5218 		} else {
5219 			bpf_ctx_record_field_size(info, size_default);
5220 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
5221 				return false;
5222 		}
5223 	}
5224 
5225 	return true;
5226 }
5227 
5228 static bool sk_filter_is_valid_access(int off, int size,
5229 				      enum bpf_access_type type,
5230 				      const struct bpf_prog *prog,
5231 				      struct bpf_insn_access_aux *info)
5232 {
5233 	switch (off) {
5234 	case bpf_ctx_range(struct __sk_buff, tc_classid):
5235 	case bpf_ctx_range(struct __sk_buff, data):
5236 	case bpf_ctx_range(struct __sk_buff, data_meta):
5237 	case bpf_ctx_range(struct __sk_buff, data_end):
5238 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5239 		return false;
5240 	}
5241 
5242 	if (type == BPF_WRITE) {
5243 		switch (off) {
5244 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5245 			break;
5246 		default:
5247 			return false;
5248 		}
5249 	}
5250 
5251 	return bpf_skb_is_valid_access(off, size, type, prog, info);
5252 }
5253 
5254 static bool lwt_is_valid_access(int off, int size,
5255 				enum bpf_access_type type,
5256 				const struct bpf_prog *prog,
5257 				struct bpf_insn_access_aux *info)
5258 {
5259 	switch (off) {
5260 	case bpf_ctx_range(struct __sk_buff, tc_classid):
5261 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5262 	case bpf_ctx_range(struct __sk_buff, data_meta):
5263 		return false;
5264 	}
5265 
5266 	if (type == BPF_WRITE) {
5267 		switch (off) {
5268 		case bpf_ctx_range(struct __sk_buff, mark):
5269 		case bpf_ctx_range(struct __sk_buff, priority):
5270 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5271 			break;
5272 		default:
5273 			return false;
5274 		}
5275 	}
5276 
5277 	switch (off) {
5278 	case bpf_ctx_range(struct __sk_buff, data):
5279 		info->reg_type = PTR_TO_PACKET;
5280 		break;
5281 	case bpf_ctx_range(struct __sk_buff, data_end):
5282 		info->reg_type = PTR_TO_PACKET_END;
5283 		break;
5284 	}
5285 
5286 	return bpf_skb_is_valid_access(off, size, type, prog, info);
5287 }
5288 
5289 /* Attach type specific accesses */
5290 static bool __sock_filter_check_attach_type(int off,
5291 					    enum bpf_access_type access_type,
5292 					    enum bpf_attach_type attach_type)
5293 {
5294 	switch (off) {
5295 	case offsetof(struct bpf_sock, bound_dev_if):
5296 	case offsetof(struct bpf_sock, mark):
5297 	case offsetof(struct bpf_sock, priority):
5298 		switch (attach_type) {
5299 		case BPF_CGROUP_INET_SOCK_CREATE:
5300 			goto full_access;
5301 		default:
5302 			return false;
5303 		}
5304 	case bpf_ctx_range(struct bpf_sock, src_ip4):
5305 		switch (attach_type) {
5306 		case BPF_CGROUP_INET4_POST_BIND:
5307 			goto read_only;
5308 		default:
5309 			return false;
5310 		}
5311 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5312 		switch (attach_type) {
5313 		case BPF_CGROUP_INET6_POST_BIND:
5314 			goto read_only;
5315 		default:
5316 			return false;
5317 		}
5318 	case bpf_ctx_range(struct bpf_sock, src_port):
5319 		switch (attach_type) {
5320 		case BPF_CGROUP_INET4_POST_BIND:
5321 		case BPF_CGROUP_INET6_POST_BIND:
5322 			goto read_only;
5323 		default:
5324 			return false;
5325 		}
5326 	}
5327 read_only:
5328 	return access_type == BPF_READ;
5329 full_access:
5330 	return true;
5331 }
5332 
5333 static bool __sock_filter_check_size(int off, int size,
5334 				     struct bpf_insn_access_aux *info)
5335 {
5336 	const int size_default = sizeof(__u32);
5337 
5338 	switch (off) {
5339 	case bpf_ctx_range(struct bpf_sock, src_ip4):
5340 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5341 		bpf_ctx_record_field_size(info, size_default);
5342 		return bpf_ctx_narrow_access_ok(off, size, size_default);
5343 	}
5344 
5345 	return size == size_default;
5346 }
5347 
5348 static bool sock_filter_is_valid_access(int off, int size,
5349 					enum bpf_access_type type,
5350 					const struct bpf_prog *prog,
5351 					struct bpf_insn_access_aux *info)
5352 {
5353 	if (off < 0 || off >= sizeof(struct bpf_sock))
5354 		return false;
5355 	if (off % size != 0)
5356 		return false;
5357 	if (!__sock_filter_check_attach_type(off, type,
5358 					     prog->expected_attach_type))
5359 		return false;
5360 	if (!__sock_filter_check_size(off, size, info))
5361 		return false;
5362 	return true;
5363 }
5364 
5365 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
5366 				const struct bpf_prog *prog, int drop_verdict)
5367 {
5368 	struct bpf_insn *insn = insn_buf;
5369 
5370 	if (!direct_write)
5371 		return 0;
5372 
5373 	/* if (!skb->cloned)
5374 	 *       goto start;
5375 	 *
5376 	 * (Fast-path, otherwise approximation that we might be
5377 	 *  a clone, do the rest in helper.)
5378 	 */
5379 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
5380 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
5381 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
5382 
5383 	/* ret = bpf_skb_pull_data(skb, 0); */
5384 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
5385 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
5386 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
5387 			       BPF_FUNC_skb_pull_data);
5388 	/* if (!ret)
5389 	 *      goto restore;
5390 	 * return TC_ACT_SHOT;
5391 	 */
5392 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
5393 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
5394 	*insn++ = BPF_EXIT_INSN();
5395 
5396 	/* restore: */
5397 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
5398 	/* start: */
5399 	*insn++ = prog->insnsi[0];
5400 
5401 	return insn - insn_buf;
5402 }
5403 
5404 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
5405 			  struct bpf_insn *insn_buf)
5406 {
5407 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
5408 	struct bpf_insn *insn = insn_buf;
5409 
5410 	/* We're guaranteed here that CTX is in R6. */
5411 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
5412 	if (!indirect) {
5413 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
5414 	} else {
5415 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
5416 		if (orig->imm)
5417 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
5418 	}
5419 
5420 	switch (BPF_SIZE(orig->code)) {
5421 	case BPF_B:
5422 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
5423 		break;
5424 	case BPF_H:
5425 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
5426 		break;
5427 	case BPF_W:
5428 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
5429 		break;
5430 	}
5431 
5432 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
5433 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
5434 	*insn++ = BPF_EXIT_INSN();
5435 
5436 	return insn - insn_buf;
5437 }
5438 
5439 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
5440 			       const struct bpf_prog *prog)
5441 {
5442 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
5443 }
5444 
5445 static bool tc_cls_act_is_valid_access(int off, int size,
5446 				       enum bpf_access_type type,
5447 				       const struct bpf_prog *prog,
5448 				       struct bpf_insn_access_aux *info)
5449 {
5450 	if (type == BPF_WRITE) {
5451 		switch (off) {
5452 		case bpf_ctx_range(struct __sk_buff, mark):
5453 		case bpf_ctx_range(struct __sk_buff, tc_index):
5454 		case bpf_ctx_range(struct __sk_buff, priority):
5455 		case bpf_ctx_range(struct __sk_buff, tc_classid):
5456 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5457 			break;
5458 		default:
5459 			return false;
5460 		}
5461 	}
5462 
5463 	switch (off) {
5464 	case bpf_ctx_range(struct __sk_buff, data):
5465 		info->reg_type = PTR_TO_PACKET;
5466 		break;
5467 	case bpf_ctx_range(struct __sk_buff, data_meta):
5468 		info->reg_type = PTR_TO_PACKET_META;
5469 		break;
5470 	case bpf_ctx_range(struct __sk_buff, data_end):
5471 		info->reg_type = PTR_TO_PACKET_END;
5472 		break;
5473 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5474 		return false;
5475 	}
5476 
5477 	return bpf_skb_is_valid_access(off, size, type, prog, info);
5478 }
5479 
5480 static bool __is_valid_xdp_access(int off, int size)
5481 {
5482 	if (off < 0 || off >= sizeof(struct xdp_md))
5483 		return false;
5484 	if (off % size != 0)
5485 		return false;
5486 	if (size != sizeof(__u32))
5487 		return false;
5488 
5489 	return true;
5490 }
5491 
5492 static bool xdp_is_valid_access(int off, int size,
5493 				enum bpf_access_type type,
5494 				const struct bpf_prog *prog,
5495 				struct bpf_insn_access_aux *info)
5496 {
5497 	if (type == BPF_WRITE) {
5498 		if (bpf_prog_is_dev_bound(prog->aux)) {
5499 			switch (off) {
5500 			case offsetof(struct xdp_md, rx_queue_index):
5501 				return __is_valid_xdp_access(off, size);
5502 			}
5503 		}
5504 		return false;
5505 	}
5506 
5507 	switch (off) {
5508 	case offsetof(struct xdp_md, data):
5509 		info->reg_type = PTR_TO_PACKET;
5510 		break;
5511 	case offsetof(struct xdp_md, data_meta):
5512 		info->reg_type = PTR_TO_PACKET_META;
5513 		break;
5514 	case offsetof(struct xdp_md, data_end):
5515 		info->reg_type = PTR_TO_PACKET_END;
5516 		break;
5517 	}
5518 
5519 	return __is_valid_xdp_access(off, size);
5520 }
5521 
5522 void bpf_warn_invalid_xdp_action(u32 act)
5523 {
5524 	const u32 act_max = XDP_REDIRECT;
5525 
5526 	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
5527 		  act > act_max ? "Illegal" : "Driver unsupported",
5528 		  act);
5529 }
5530 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
5531 
5532 static bool sock_addr_is_valid_access(int off, int size,
5533 				      enum bpf_access_type type,
5534 				      const struct bpf_prog *prog,
5535 				      struct bpf_insn_access_aux *info)
5536 {
5537 	const int size_default = sizeof(__u32);
5538 
5539 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
5540 		return false;
5541 	if (off % size != 0)
5542 		return false;
5543 
5544 	/* Disallow access to IPv6 fields from IPv4 contex and vise
5545 	 * versa.
5546 	 */
5547 	switch (off) {
5548 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
5549 		switch (prog->expected_attach_type) {
5550 		case BPF_CGROUP_INET4_BIND:
5551 		case BPF_CGROUP_INET4_CONNECT:
5552 		case BPF_CGROUP_UDP4_SENDMSG:
5553 			break;
5554 		default:
5555 			return false;
5556 		}
5557 		break;
5558 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
5559 		switch (prog->expected_attach_type) {
5560 		case BPF_CGROUP_INET6_BIND:
5561 		case BPF_CGROUP_INET6_CONNECT:
5562 		case BPF_CGROUP_UDP6_SENDMSG:
5563 			break;
5564 		default:
5565 			return false;
5566 		}
5567 		break;
5568 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
5569 		switch (prog->expected_attach_type) {
5570 		case BPF_CGROUP_UDP4_SENDMSG:
5571 			break;
5572 		default:
5573 			return false;
5574 		}
5575 		break;
5576 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
5577 				msg_src_ip6[3]):
5578 		switch (prog->expected_attach_type) {
5579 		case BPF_CGROUP_UDP6_SENDMSG:
5580 			break;
5581 		default:
5582 			return false;
5583 		}
5584 		break;
5585 	}
5586 
5587 	switch (off) {
5588 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
5589 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
5590 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
5591 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
5592 				msg_src_ip6[3]):
5593 		/* Only narrow read access allowed for now. */
5594 		if (type == BPF_READ) {
5595 			bpf_ctx_record_field_size(info, size_default);
5596 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
5597 				return false;
5598 		} else {
5599 			if (size != size_default)
5600 				return false;
5601 		}
5602 		break;
5603 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
5604 		if (size != size_default)
5605 			return false;
5606 		break;
5607 	default:
5608 		if (type == BPF_READ) {
5609 			if (size != size_default)
5610 				return false;
5611 		} else {
5612 			return false;
5613 		}
5614 	}
5615 
5616 	return true;
5617 }
5618 
5619 static bool sock_ops_is_valid_access(int off, int size,
5620 				     enum bpf_access_type type,
5621 				     const struct bpf_prog *prog,
5622 				     struct bpf_insn_access_aux *info)
5623 {
5624 	const int size_default = sizeof(__u32);
5625 
5626 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
5627 		return false;
5628 
5629 	/* The verifier guarantees that size > 0. */
5630 	if (off % size != 0)
5631 		return false;
5632 
5633 	if (type == BPF_WRITE) {
5634 		switch (off) {
5635 		case offsetof(struct bpf_sock_ops, reply):
5636 		case offsetof(struct bpf_sock_ops, sk_txhash):
5637 			if (size != size_default)
5638 				return false;
5639 			break;
5640 		default:
5641 			return false;
5642 		}
5643 	} else {
5644 		switch (off) {
5645 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
5646 					bytes_acked):
5647 			if (size != sizeof(__u64))
5648 				return false;
5649 			break;
5650 		default:
5651 			if (size != size_default)
5652 				return false;
5653 			break;
5654 		}
5655 	}
5656 
5657 	return true;
5658 }
5659 
5660 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
5661 			   const struct bpf_prog *prog)
5662 {
5663 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
5664 }
5665 
5666 static bool sk_skb_is_valid_access(int off, int size,
5667 				   enum bpf_access_type type,
5668 				   const struct bpf_prog *prog,
5669 				   struct bpf_insn_access_aux *info)
5670 {
5671 	switch (off) {
5672 	case bpf_ctx_range(struct __sk_buff, tc_classid):
5673 	case bpf_ctx_range(struct __sk_buff, data_meta):
5674 		return false;
5675 	}
5676 
5677 	if (type == BPF_WRITE) {
5678 		switch (off) {
5679 		case bpf_ctx_range(struct __sk_buff, tc_index):
5680 		case bpf_ctx_range(struct __sk_buff, priority):
5681 			break;
5682 		default:
5683 			return false;
5684 		}
5685 	}
5686 
5687 	switch (off) {
5688 	case bpf_ctx_range(struct __sk_buff, mark):
5689 		return false;
5690 	case bpf_ctx_range(struct __sk_buff, data):
5691 		info->reg_type = PTR_TO_PACKET;
5692 		break;
5693 	case bpf_ctx_range(struct __sk_buff, data_end):
5694 		info->reg_type = PTR_TO_PACKET_END;
5695 		break;
5696 	}
5697 
5698 	return bpf_skb_is_valid_access(off, size, type, prog, info);
5699 }
5700 
5701 static bool sk_msg_is_valid_access(int off, int size,
5702 				   enum bpf_access_type type,
5703 				   const struct bpf_prog *prog,
5704 				   struct bpf_insn_access_aux *info)
5705 {
5706 	if (type == BPF_WRITE)
5707 		return false;
5708 
5709 	switch (off) {
5710 	case offsetof(struct sk_msg_md, data):
5711 		info->reg_type = PTR_TO_PACKET;
5712 		if (size != sizeof(__u64))
5713 			return false;
5714 		break;
5715 	case offsetof(struct sk_msg_md, data_end):
5716 		info->reg_type = PTR_TO_PACKET_END;
5717 		if (size != sizeof(__u64))
5718 			return false;
5719 		break;
5720 	default:
5721 		if (size != sizeof(__u32))
5722 			return false;
5723 	}
5724 
5725 	if (off < 0 || off >= sizeof(struct sk_msg_md))
5726 		return false;
5727 	if (off % size != 0)
5728 		return false;
5729 
5730 	return true;
5731 }
5732 
5733 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
5734 				  const struct bpf_insn *si,
5735 				  struct bpf_insn *insn_buf,
5736 				  struct bpf_prog *prog, u32 *target_size)
5737 {
5738 	struct bpf_insn *insn = insn_buf;
5739 	int off;
5740 
5741 	switch (si->off) {
5742 	case offsetof(struct __sk_buff, len):
5743 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5744 				      bpf_target_off(struct sk_buff, len, 4,
5745 						     target_size));
5746 		break;
5747 
5748 	case offsetof(struct __sk_buff, protocol):
5749 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5750 				      bpf_target_off(struct sk_buff, protocol, 2,
5751 						     target_size));
5752 		break;
5753 
5754 	case offsetof(struct __sk_buff, vlan_proto):
5755 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5756 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
5757 						     target_size));
5758 		break;
5759 
5760 	case offsetof(struct __sk_buff, priority):
5761 		if (type == BPF_WRITE)
5762 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5763 					      bpf_target_off(struct sk_buff, priority, 4,
5764 							     target_size));
5765 		else
5766 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5767 					      bpf_target_off(struct sk_buff, priority, 4,
5768 							     target_size));
5769 		break;
5770 
5771 	case offsetof(struct __sk_buff, ingress_ifindex):
5772 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5773 				      bpf_target_off(struct sk_buff, skb_iif, 4,
5774 						     target_size));
5775 		break;
5776 
5777 	case offsetof(struct __sk_buff, ifindex):
5778 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
5779 				      si->dst_reg, si->src_reg,
5780 				      offsetof(struct sk_buff, dev));
5781 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
5782 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5783 				      bpf_target_off(struct net_device, ifindex, 4,
5784 						     target_size));
5785 		break;
5786 
5787 	case offsetof(struct __sk_buff, hash):
5788 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5789 				      bpf_target_off(struct sk_buff, hash, 4,
5790 						     target_size));
5791 		break;
5792 
5793 	case offsetof(struct __sk_buff, mark):
5794 		if (type == BPF_WRITE)
5795 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5796 					      bpf_target_off(struct sk_buff, mark, 4,
5797 							     target_size));
5798 		else
5799 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5800 					      bpf_target_off(struct sk_buff, mark, 4,
5801 							     target_size));
5802 		break;
5803 
5804 	case offsetof(struct __sk_buff, pkt_type):
5805 		*target_size = 1;
5806 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
5807 				      PKT_TYPE_OFFSET());
5808 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
5809 #ifdef __BIG_ENDIAN_BITFIELD
5810 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
5811 #endif
5812 		break;
5813 
5814 	case offsetof(struct __sk_buff, queue_mapping):
5815 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5816 				      bpf_target_off(struct sk_buff, queue_mapping, 2,
5817 						     target_size));
5818 		break;
5819 
5820 	case offsetof(struct __sk_buff, vlan_present):
5821 	case offsetof(struct __sk_buff, vlan_tci):
5822 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
5823 
5824 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5825 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
5826 						     target_size));
5827 		if (si->off == offsetof(struct __sk_buff, vlan_tci)) {
5828 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg,
5829 						~VLAN_TAG_PRESENT);
5830 		} else {
5831 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12);
5832 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
5833 		}
5834 		break;
5835 
5836 	case offsetof(struct __sk_buff, cb[0]) ...
5837 	     offsetofend(struct __sk_buff, cb[4]) - 1:
5838 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
5839 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
5840 			      offsetof(struct qdisc_skb_cb, data)) %
5841 			     sizeof(__u64));
5842 
5843 		prog->cb_access = 1;
5844 		off  = si->off;
5845 		off -= offsetof(struct __sk_buff, cb[0]);
5846 		off += offsetof(struct sk_buff, cb);
5847 		off += offsetof(struct qdisc_skb_cb, data);
5848 		if (type == BPF_WRITE)
5849 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
5850 					      si->src_reg, off);
5851 		else
5852 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
5853 					      si->src_reg, off);
5854 		break;
5855 
5856 	case offsetof(struct __sk_buff, tc_classid):
5857 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
5858 
5859 		off  = si->off;
5860 		off -= offsetof(struct __sk_buff, tc_classid);
5861 		off += offsetof(struct sk_buff, cb);
5862 		off += offsetof(struct qdisc_skb_cb, tc_classid);
5863 		*target_size = 2;
5864 		if (type == BPF_WRITE)
5865 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
5866 					      si->src_reg, off);
5867 		else
5868 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
5869 					      si->src_reg, off);
5870 		break;
5871 
5872 	case offsetof(struct __sk_buff, data):
5873 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
5874 				      si->dst_reg, si->src_reg,
5875 				      offsetof(struct sk_buff, data));
5876 		break;
5877 
5878 	case offsetof(struct __sk_buff, data_meta):
5879 		off  = si->off;
5880 		off -= offsetof(struct __sk_buff, data_meta);
5881 		off += offsetof(struct sk_buff, cb);
5882 		off += offsetof(struct bpf_skb_data_end, data_meta);
5883 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
5884 				      si->src_reg, off);
5885 		break;
5886 
5887 	case offsetof(struct __sk_buff, data_end):
5888 		off  = si->off;
5889 		off -= offsetof(struct __sk_buff, data_end);
5890 		off += offsetof(struct sk_buff, cb);
5891 		off += offsetof(struct bpf_skb_data_end, data_end);
5892 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
5893 				      si->src_reg, off);
5894 		break;
5895 
5896 	case offsetof(struct __sk_buff, tc_index):
5897 #ifdef CONFIG_NET_SCHED
5898 		if (type == BPF_WRITE)
5899 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
5900 					      bpf_target_off(struct sk_buff, tc_index, 2,
5901 							     target_size));
5902 		else
5903 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5904 					      bpf_target_off(struct sk_buff, tc_index, 2,
5905 							     target_size));
5906 #else
5907 		*target_size = 2;
5908 		if (type == BPF_WRITE)
5909 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
5910 		else
5911 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5912 #endif
5913 		break;
5914 
5915 	case offsetof(struct __sk_buff, napi_id):
5916 #if defined(CONFIG_NET_RX_BUSY_POLL)
5917 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5918 				      bpf_target_off(struct sk_buff, napi_id, 4,
5919 						     target_size));
5920 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
5921 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5922 #else
5923 		*target_size = 4;
5924 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5925 #endif
5926 		break;
5927 	case offsetof(struct __sk_buff, family):
5928 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
5929 
5930 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5931 				      si->dst_reg, si->src_reg,
5932 				      offsetof(struct sk_buff, sk));
5933 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5934 				      bpf_target_off(struct sock_common,
5935 						     skc_family,
5936 						     2, target_size));
5937 		break;
5938 	case offsetof(struct __sk_buff, remote_ip4):
5939 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
5940 
5941 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5942 				      si->dst_reg, si->src_reg,
5943 				      offsetof(struct sk_buff, sk));
5944 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5945 				      bpf_target_off(struct sock_common,
5946 						     skc_daddr,
5947 						     4, target_size));
5948 		break;
5949 	case offsetof(struct __sk_buff, local_ip4):
5950 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5951 					  skc_rcv_saddr) != 4);
5952 
5953 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5954 				      si->dst_reg, si->src_reg,
5955 				      offsetof(struct sk_buff, sk));
5956 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5957 				      bpf_target_off(struct sock_common,
5958 						     skc_rcv_saddr,
5959 						     4, target_size));
5960 		break;
5961 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
5962 	     offsetof(struct __sk_buff, remote_ip6[3]):
5963 #if IS_ENABLED(CONFIG_IPV6)
5964 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5965 					  skc_v6_daddr.s6_addr32[0]) != 4);
5966 
5967 		off = si->off;
5968 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
5969 
5970 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5971 				      si->dst_reg, si->src_reg,
5972 				      offsetof(struct sk_buff, sk));
5973 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5974 				      offsetof(struct sock_common,
5975 					       skc_v6_daddr.s6_addr32[0]) +
5976 				      off);
5977 #else
5978 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
5979 #endif
5980 		break;
5981 	case offsetof(struct __sk_buff, local_ip6[0]) ...
5982 	     offsetof(struct __sk_buff, local_ip6[3]):
5983 #if IS_ENABLED(CONFIG_IPV6)
5984 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5985 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
5986 
5987 		off = si->off;
5988 		off -= offsetof(struct __sk_buff, local_ip6[0]);
5989 
5990 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5991 				      si->dst_reg, si->src_reg,
5992 				      offsetof(struct sk_buff, sk));
5993 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5994 				      offsetof(struct sock_common,
5995 					       skc_v6_rcv_saddr.s6_addr32[0]) +
5996 				      off);
5997 #else
5998 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
5999 #endif
6000 		break;
6001 
6002 	case offsetof(struct __sk_buff, remote_port):
6003 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6004 
6005 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6006 				      si->dst_reg, si->src_reg,
6007 				      offsetof(struct sk_buff, sk));
6008 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6009 				      bpf_target_off(struct sock_common,
6010 						     skc_dport,
6011 						     2, target_size));
6012 #ifndef __BIG_ENDIAN_BITFIELD
6013 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6014 #endif
6015 		break;
6016 
6017 	case offsetof(struct __sk_buff, local_port):
6018 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6019 
6020 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6021 				      si->dst_reg, si->src_reg,
6022 				      offsetof(struct sk_buff, sk));
6023 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6024 				      bpf_target_off(struct sock_common,
6025 						     skc_num, 2, target_size));
6026 		break;
6027 	}
6028 
6029 	return insn - insn_buf;
6030 }
6031 
6032 static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
6033 					  const struct bpf_insn *si,
6034 					  struct bpf_insn *insn_buf,
6035 					  struct bpf_prog *prog, u32 *target_size)
6036 {
6037 	struct bpf_insn *insn = insn_buf;
6038 	int off;
6039 
6040 	switch (si->off) {
6041 	case offsetof(struct bpf_sock, bound_dev_if):
6042 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
6043 
6044 		if (type == BPF_WRITE)
6045 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6046 					offsetof(struct sock, sk_bound_dev_if));
6047 		else
6048 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6049 				      offsetof(struct sock, sk_bound_dev_if));
6050 		break;
6051 
6052 	case offsetof(struct bpf_sock, mark):
6053 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);
6054 
6055 		if (type == BPF_WRITE)
6056 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6057 					offsetof(struct sock, sk_mark));
6058 		else
6059 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6060 				      offsetof(struct sock, sk_mark));
6061 		break;
6062 
6063 	case offsetof(struct bpf_sock, priority):
6064 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);
6065 
6066 		if (type == BPF_WRITE)
6067 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6068 					offsetof(struct sock, sk_priority));
6069 		else
6070 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6071 				      offsetof(struct sock, sk_priority));
6072 		break;
6073 
6074 	case offsetof(struct bpf_sock, family):
6075 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);
6076 
6077 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6078 				      offsetof(struct sock, sk_family));
6079 		break;
6080 
6081 	case offsetof(struct bpf_sock, type):
6082 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6083 				      offsetof(struct sock, __sk_flags_offset));
6084 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
6085 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
6086 		break;
6087 
6088 	case offsetof(struct bpf_sock, protocol):
6089 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6090 				      offsetof(struct sock, __sk_flags_offset));
6091 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
6092 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
6093 		break;
6094 
6095 	case offsetof(struct bpf_sock, src_ip4):
6096 		*insn++ = BPF_LDX_MEM(
6097 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
6098 			bpf_target_off(struct sock_common, skc_rcv_saddr,
6099 				       FIELD_SIZEOF(struct sock_common,
6100 						    skc_rcv_saddr),
6101 				       target_size));
6102 		break;
6103 
6104 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6105 #if IS_ENABLED(CONFIG_IPV6)
6106 		off = si->off;
6107 		off -= offsetof(struct bpf_sock, src_ip6[0]);
6108 		*insn++ = BPF_LDX_MEM(
6109 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
6110 			bpf_target_off(
6111 				struct sock_common,
6112 				skc_v6_rcv_saddr.s6_addr32[0],
6113 				FIELD_SIZEOF(struct sock_common,
6114 					     skc_v6_rcv_saddr.s6_addr32[0]),
6115 				target_size) + off);
6116 #else
6117 		(void)off;
6118 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6119 #endif
6120 		break;
6121 
6122 	case offsetof(struct bpf_sock, src_port):
6123 		*insn++ = BPF_LDX_MEM(
6124 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
6125 			si->dst_reg, si->src_reg,
6126 			bpf_target_off(struct sock_common, skc_num,
6127 				       FIELD_SIZEOF(struct sock_common,
6128 						    skc_num),
6129 				       target_size));
6130 		break;
6131 	}
6132 
6133 	return insn - insn_buf;
6134 }
6135 
6136 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
6137 					 const struct bpf_insn *si,
6138 					 struct bpf_insn *insn_buf,
6139 					 struct bpf_prog *prog, u32 *target_size)
6140 {
6141 	struct bpf_insn *insn = insn_buf;
6142 
6143 	switch (si->off) {
6144 	case offsetof(struct __sk_buff, ifindex):
6145 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
6146 				      si->dst_reg, si->src_reg,
6147 				      offsetof(struct sk_buff, dev));
6148 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6149 				      bpf_target_off(struct net_device, ifindex, 4,
6150 						     target_size));
6151 		break;
6152 	default:
6153 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
6154 					      target_size);
6155 	}
6156 
6157 	return insn - insn_buf;
6158 }
6159 
6160 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
6161 				  const struct bpf_insn *si,
6162 				  struct bpf_insn *insn_buf,
6163 				  struct bpf_prog *prog, u32 *target_size)
6164 {
6165 	struct bpf_insn *insn = insn_buf;
6166 
6167 	switch (si->off) {
6168 	case offsetof(struct xdp_md, data):
6169 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
6170 				      si->dst_reg, si->src_reg,
6171 				      offsetof(struct xdp_buff, data));
6172 		break;
6173 	case offsetof(struct xdp_md, data_meta):
6174 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
6175 				      si->dst_reg, si->src_reg,
6176 				      offsetof(struct xdp_buff, data_meta));
6177 		break;
6178 	case offsetof(struct xdp_md, data_end):
6179 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
6180 				      si->dst_reg, si->src_reg,
6181 				      offsetof(struct xdp_buff, data_end));
6182 		break;
6183 	case offsetof(struct xdp_md, ingress_ifindex):
6184 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
6185 				      si->dst_reg, si->src_reg,
6186 				      offsetof(struct xdp_buff, rxq));
6187 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
6188 				      si->dst_reg, si->dst_reg,
6189 				      offsetof(struct xdp_rxq_info, dev));
6190 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6191 				      offsetof(struct net_device, ifindex));
6192 		break;
6193 	case offsetof(struct xdp_md, rx_queue_index):
6194 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
6195 				      si->dst_reg, si->src_reg,
6196 				      offsetof(struct xdp_buff, rxq));
6197 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6198 				      offsetof(struct xdp_rxq_info,
6199 					       queue_index));
6200 		break;
6201 	}
6202 
6203 	return insn - insn_buf;
6204 }
6205 
6206 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
6207  * context Structure, F is Field in context structure that contains a pointer
6208  * to Nested Structure of type NS that has the field NF.
6209  *
6210  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
6211  * sure that SIZE is not greater than actual size of S.F.NF.
6212  *
6213  * If offset OFF is provided, the load happens from that offset relative to
6214  * offset of NF.
6215  */
6216 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
6217 	do {								       \
6218 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
6219 				      si->src_reg, offsetof(S, F));	       \
6220 		*insn++ = BPF_LDX_MEM(					       \
6221 			SIZE, si->dst_reg, si->dst_reg,			       \
6222 			bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),	       \
6223 				       target_size)			       \
6224 				+ OFF);					       \
6225 	} while (0)
6226 
6227 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
6228 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
6229 					     BPF_FIELD_SIZEOF(NS, NF), 0)
6230 
6231 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
6232  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
6233  *
6234  * It doesn't support SIZE argument though since narrow stores are not
6235  * supported for now.
6236  *
6237  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
6238  * "register" since two registers available in convert_ctx_access are not
6239  * enough: we can't override neither SRC, since it contains value to store, nor
6240  * DST since it contains pointer to context that may be used by later
6241  * instructions. But we need a temporary place to save pointer to nested
6242  * structure whose field we want to store to.
6243  */
6244 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF, TF)		       \
6245 	do {								       \
6246 		int tmp_reg = BPF_REG_9;				       \
6247 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
6248 			--tmp_reg;					       \
6249 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
6250 			--tmp_reg;					       \
6251 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
6252 				      offsetof(S, TF));			       \
6253 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
6254 				      si->dst_reg, offsetof(S, F));	       \
6255 		*insn++ = BPF_STX_MEM(					       \
6256 			BPF_FIELD_SIZEOF(NS, NF), tmp_reg, si->src_reg,	       \
6257 			bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),	       \
6258 				       target_size)			       \
6259 				+ OFF);					       \
6260 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
6261 				      offsetof(S, TF));			       \
6262 	} while (0)
6263 
6264 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
6265 						      TF)		       \
6266 	do {								       \
6267 		if (type == BPF_WRITE) {				       \
6268 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF,    \
6269 							 TF);		       \
6270 		} else {						       \
6271 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
6272 				S, NS, F, NF, SIZE, OFF);  \
6273 		}							       \
6274 	} while (0)
6275 
6276 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
6277 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
6278 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
6279 
6280 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
6281 					const struct bpf_insn *si,
6282 					struct bpf_insn *insn_buf,
6283 					struct bpf_prog *prog, u32 *target_size)
6284 {
6285 	struct bpf_insn *insn = insn_buf;
6286 	int off;
6287 
6288 	switch (si->off) {
6289 	case offsetof(struct bpf_sock_addr, user_family):
6290 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
6291 					    struct sockaddr, uaddr, sa_family);
6292 		break;
6293 
6294 	case offsetof(struct bpf_sock_addr, user_ip4):
6295 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6296 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
6297 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
6298 		break;
6299 
6300 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6301 		off = si->off;
6302 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
6303 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6304 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
6305 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
6306 			tmp_reg);
6307 		break;
6308 
6309 	case offsetof(struct bpf_sock_addr, user_port):
6310 		/* To get port we need to know sa_family first and then treat
6311 		 * sockaddr as either sockaddr_in or sockaddr_in6.
6312 		 * Though we can simplify since port field has same offset and
6313 		 * size in both structures.
6314 		 * Here we check this invariant and use just one of the
6315 		 * structures if it's true.
6316 		 */
6317 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
6318 			     offsetof(struct sockaddr_in6, sin6_port));
6319 		BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) !=
6320 			     FIELD_SIZEOF(struct sockaddr_in6, sin6_port));
6321 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
6322 						     struct sockaddr_in6, uaddr,
6323 						     sin6_port, tmp_reg);
6324 		break;
6325 
6326 	case offsetof(struct bpf_sock_addr, family):
6327 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
6328 					    struct sock, sk, sk_family);
6329 		break;
6330 
6331 	case offsetof(struct bpf_sock_addr, type):
6332 		SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
6333 			struct bpf_sock_addr_kern, struct sock, sk,
6334 			__sk_flags_offset, BPF_W, 0);
6335 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
6336 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
6337 		break;
6338 
6339 	case offsetof(struct bpf_sock_addr, protocol):
6340 		SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
6341 			struct bpf_sock_addr_kern, struct sock, sk,
6342 			__sk_flags_offset, BPF_W, 0);
6343 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
6344 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
6345 					SK_FL_PROTO_SHIFT);
6346 		break;
6347 
6348 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
6349 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
6350 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6351 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
6352 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
6353 		break;
6354 
6355 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6356 				msg_src_ip6[3]):
6357 		off = si->off;
6358 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
6359 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
6360 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6361 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
6362 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
6363 		break;
6364 	}
6365 
6366 	return insn - insn_buf;
6367 }
6368 
6369 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
6370 				       const struct bpf_insn *si,
6371 				       struct bpf_insn *insn_buf,
6372 				       struct bpf_prog *prog,
6373 				       u32 *target_size)
6374 {
6375 	struct bpf_insn *insn = insn_buf;
6376 	int off;
6377 
6378 	switch (si->off) {
6379 	case offsetof(struct bpf_sock_ops, op) ...
6380 	     offsetof(struct bpf_sock_ops, replylong[3]):
6381 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
6382 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
6383 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
6384 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
6385 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
6386 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
6387 		off = si->off;
6388 		off -= offsetof(struct bpf_sock_ops, op);
6389 		off += offsetof(struct bpf_sock_ops_kern, op);
6390 		if (type == BPF_WRITE)
6391 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6392 					      off);
6393 		else
6394 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6395 					      off);
6396 		break;
6397 
6398 	case offsetof(struct bpf_sock_ops, family):
6399 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
6400 
6401 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6402 					      struct bpf_sock_ops_kern, sk),
6403 				      si->dst_reg, si->src_reg,
6404 				      offsetof(struct bpf_sock_ops_kern, sk));
6405 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6406 				      offsetof(struct sock_common, skc_family));
6407 		break;
6408 
6409 	case offsetof(struct bpf_sock_ops, remote_ip4):
6410 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
6411 
6412 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6413 						struct bpf_sock_ops_kern, sk),
6414 				      si->dst_reg, si->src_reg,
6415 				      offsetof(struct bpf_sock_ops_kern, sk));
6416 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6417 				      offsetof(struct sock_common, skc_daddr));
6418 		break;
6419 
6420 	case offsetof(struct bpf_sock_ops, local_ip4):
6421 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6422 					  skc_rcv_saddr) != 4);
6423 
6424 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6425 					      struct bpf_sock_ops_kern, sk),
6426 				      si->dst_reg, si->src_reg,
6427 				      offsetof(struct bpf_sock_ops_kern, sk));
6428 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6429 				      offsetof(struct sock_common,
6430 					       skc_rcv_saddr));
6431 		break;
6432 
6433 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
6434 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
6435 #if IS_ENABLED(CONFIG_IPV6)
6436 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6437 					  skc_v6_daddr.s6_addr32[0]) != 4);
6438 
6439 		off = si->off;
6440 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
6441 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6442 						struct bpf_sock_ops_kern, sk),
6443 				      si->dst_reg, si->src_reg,
6444 				      offsetof(struct bpf_sock_ops_kern, sk));
6445 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6446 				      offsetof(struct sock_common,
6447 					       skc_v6_daddr.s6_addr32[0]) +
6448 				      off);
6449 #else
6450 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6451 #endif
6452 		break;
6453 
6454 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
6455 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
6456 #if IS_ENABLED(CONFIG_IPV6)
6457 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6458 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
6459 
6460 		off = si->off;
6461 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
6462 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6463 						struct bpf_sock_ops_kern, sk),
6464 				      si->dst_reg, si->src_reg,
6465 				      offsetof(struct bpf_sock_ops_kern, sk));
6466 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6467 				      offsetof(struct sock_common,
6468 					       skc_v6_rcv_saddr.s6_addr32[0]) +
6469 				      off);
6470 #else
6471 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6472 #endif
6473 		break;
6474 
6475 	case offsetof(struct bpf_sock_ops, remote_port):
6476 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6477 
6478 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6479 						struct bpf_sock_ops_kern, sk),
6480 				      si->dst_reg, si->src_reg,
6481 				      offsetof(struct bpf_sock_ops_kern, sk));
6482 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6483 				      offsetof(struct sock_common, skc_dport));
6484 #ifndef __BIG_ENDIAN_BITFIELD
6485 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6486 #endif
6487 		break;
6488 
6489 	case offsetof(struct bpf_sock_ops, local_port):
6490 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6491 
6492 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6493 						struct bpf_sock_ops_kern, sk),
6494 				      si->dst_reg, si->src_reg,
6495 				      offsetof(struct bpf_sock_ops_kern, sk));
6496 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6497 				      offsetof(struct sock_common, skc_num));
6498 		break;
6499 
6500 	case offsetof(struct bpf_sock_ops, is_fullsock):
6501 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6502 						struct bpf_sock_ops_kern,
6503 						is_fullsock),
6504 				      si->dst_reg, si->src_reg,
6505 				      offsetof(struct bpf_sock_ops_kern,
6506 					       is_fullsock));
6507 		break;
6508 
6509 	case offsetof(struct bpf_sock_ops, state):
6510 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);
6511 
6512 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6513 						struct bpf_sock_ops_kern, sk),
6514 				      si->dst_reg, si->src_reg,
6515 				      offsetof(struct bpf_sock_ops_kern, sk));
6516 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
6517 				      offsetof(struct sock_common, skc_state));
6518 		break;
6519 
6520 	case offsetof(struct bpf_sock_ops, rtt_min):
6521 		BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
6522 			     sizeof(struct minmax));
6523 		BUILD_BUG_ON(sizeof(struct minmax) <
6524 			     sizeof(struct minmax_sample));
6525 
6526 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6527 						struct bpf_sock_ops_kern, sk),
6528 				      si->dst_reg, si->src_reg,
6529 				      offsetof(struct bpf_sock_ops_kern, sk));
6530 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6531 				      offsetof(struct tcp_sock, rtt_min) +
6532 				      FIELD_SIZEOF(struct minmax_sample, t));
6533 		break;
6534 
6535 /* Helper macro for adding read access to tcp_sock or sock fields. */
6536 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
6537 	do {								      \
6538 		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
6539 			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
6540 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
6541 						struct bpf_sock_ops_kern,     \
6542 						is_fullsock),		      \
6543 				      si->dst_reg, si->src_reg,		      \
6544 				      offsetof(struct bpf_sock_ops_kern,      \
6545 					       is_fullsock));		      \
6546 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);	      \
6547 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
6548 						struct bpf_sock_ops_kern, sk),\
6549 				      si->dst_reg, si->src_reg,		      \
6550 				      offsetof(struct bpf_sock_ops_kern, sk));\
6551 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
6552 						       OBJ_FIELD),	      \
6553 				      si->dst_reg, si->dst_reg,		      \
6554 				      offsetof(OBJ, OBJ_FIELD));	      \
6555 	} while (0)
6556 
6557 /* Helper macro for adding write access to tcp_sock or sock fields.
6558  * The macro is called with two registers, dst_reg which contains a pointer
6559  * to ctx (context) and src_reg which contains the value that should be
6560  * stored. However, we need an additional register since we cannot overwrite
6561  * dst_reg because it may be used later in the program.
6562  * Instead we "borrow" one of the other register. We first save its value
6563  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
6564  * it at the end of the macro.
6565  */
6566 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
6567 	do {								      \
6568 		int reg = BPF_REG_9;					      \
6569 		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
6570 			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
6571 		if (si->dst_reg == reg || si->src_reg == reg)		      \
6572 			reg--;						      \
6573 		if (si->dst_reg == reg || si->src_reg == reg)		      \
6574 			reg--;						      \
6575 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
6576 				      offsetof(struct bpf_sock_ops_kern,      \
6577 					       temp));			      \
6578 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
6579 						struct bpf_sock_ops_kern,     \
6580 						is_fullsock),		      \
6581 				      reg, si->dst_reg,			      \
6582 				      offsetof(struct bpf_sock_ops_kern,      \
6583 					       is_fullsock));		      \
6584 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
6585 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
6586 						struct bpf_sock_ops_kern, sk),\
6587 				      reg, si->dst_reg,			      \
6588 				      offsetof(struct bpf_sock_ops_kern, sk));\
6589 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
6590 				      reg, si->src_reg,			      \
6591 				      offsetof(OBJ, OBJ_FIELD));	      \
6592 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
6593 				      offsetof(struct bpf_sock_ops_kern,      \
6594 					       temp));			      \
6595 	} while (0)
6596 
6597 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
6598 	do {								      \
6599 		if (TYPE == BPF_WRITE)					      \
6600 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
6601 		else							      \
6602 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
6603 	} while (0)
6604 
6605 	case offsetof(struct bpf_sock_ops, snd_cwnd):
6606 		SOCK_OPS_GET_FIELD(snd_cwnd, snd_cwnd, struct tcp_sock);
6607 		break;
6608 
6609 	case offsetof(struct bpf_sock_ops, srtt_us):
6610 		SOCK_OPS_GET_FIELD(srtt_us, srtt_us, struct tcp_sock);
6611 		break;
6612 
6613 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
6614 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
6615 				   struct tcp_sock);
6616 		break;
6617 
6618 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
6619 		SOCK_OPS_GET_FIELD(snd_ssthresh, snd_ssthresh, struct tcp_sock);
6620 		break;
6621 
6622 	case offsetof(struct bpf_sock_ops, rcv_nxt):
6623 		SOCK_OPS_GET_FIELD(rcv_nxt, rcv_nxt, struct tcp_sock);
6624 		break;
6625 
6626 	case offsetof(struct bpf_sock_ops, snd_nxt):
6627 		SOCK_OPS_GET_FIELD(snd_nxt, snd_nxt, struct tcp_sock);
6628 		break;
6629 
6630 	case offsetof(struct bpf_sock_ops, snd_una):
6631 		SOCK_OPS_GET_FIELD(snd_una, snd_una, struct tcp_sock);
6632 		break;
6633 
6634 	case offsetof(struct bpf_sock_ops, mss_cache):
6635 		SOCK_OPS_GET_FIELD(mss_cache, mss_cache, struct tcp_sock);
6636 		break;
6637 
6638 	case offsetof(struct bpf_sock_ops, ecn_flags):
6639 		SOCK_OPS_GET_FIELD(ecn_flags, ecn_flags, struct tcp_sock);
6640 		break;
6641 
6642 	case offsetof(struct bpf_sock_ops, rate_delivered):
6643 		SOCK_OPS_GET_FIELD(rate_delivered, rate_delivered,
6644 				   struct tcp_sock);
6645 		break;
6646 
6647 	case offsetof(struct bpf_sock_ops, rate_interval_us):
6648 		SOCK_OPS_GET_FIELD(rate_interval_us, rate_interval_us,
6649 				   struct tcp_sock);
6650 		break;
6651 
6652 	case offsetof(struct bpf_sock_ops, packets_out):
6653 		SOCK_OPS_GET_FIELD(packets_out, packets_out, struct tcp_sock);
6654 		break;
6655 
6656 	case offsetof(struct bpf_sock_ops, retrans_out):
6657 		SOCK_OPS_GET_FIELD(retrans_out, retrans_out, struct tcp_sock);
6658 		break;
6659 
6660 	case offsetof(struct bpf_sock_ops, total_retrans):
6661 		SOCK_OPS_GET_FIELD(total_retrans, total_retrans,
6662 				   struct tcp_sock);
6663 		break;
6664 
6665 	case offsetof(struct bpf_sock_ops, segs_in):
6666 		SOCK_OPS_GET_FIELD(segs_in, segs_in, struct tcp_sock);
6667 		break;
6668 
6669 	case offsetof(struct bpf_sock_ops, data_segs_in):
6670 		SOCK_OPS_GET_FIELD(data_segs_in, data_segs_in, struct tcp_sock);
6671 		break;
6672 
6673 	case offsetof(struct bpf_sock_ops, segs_out):
6674 		SOCK_OPS_GET_FIELD(segs_out, segs_out, struct tcp_sock);
6675 		break;
6676 
6677 	case offsetof(struct bpf_sock_ops, data_segs_out):
6678 		SOCK_OPS_GET_FIELD(data_segs_out, data_segs_out,
6679 				   struct tcp_sock);
6680 		break;
6681 
6682 	case offsetof(struct bpf_sock_ops, lost_out):
6683 		SOCK_OPS_GET_FIELD(lost_out, lost_out, struct tcp_sock);
6684 		break;
6685 
6686 	case offsetof(struct bpf_sock_ops, sacked_out):
6687 		SOCK_OPS_GET_FIELD(sacked_out, sacked_out, struct tcp_sock);
6688 		break;
6689 
6690 	case offsetof(struct bpf_sock_ops, sk_txhash):
6691 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
6692 					  struct sock, type);
6693 		break;
6694 
6695 	case offsetof(struct bpf_sock_ops, bytes_received):
6696 		SOCK_OPS_GET_FIELD(bytes_received, bytes_received,
6697 				   struct tcp_sock);
6698 		break;
6699 
6700 	case offsetof(struct bpf_sock_ops, bytes_acked):
6701 		SOCK_OPS_GET_FIELD(bytes_acked, bytes_acked, struct tcp_sock);
6702 		break;
6703 
6704 	}
6705 	return insn - insn_buf;
6706 }
6707 
6708 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
6709 				     const struct bpf_insn *si,
6710 				     struct bpf_insn *insn_buf,
6711 				     struct bpf_prog *prog, u32 *target_size)
6712 {
6713 	struct bpf_insn *insn = insn_buf;
6714 	int off;
6715 
6716 	switch (si->off) {
6717 	case offsetof(struct __sk_buff, data_end):
6718 		off  = si->off;
6719 		off -= offsetof(struct __sk_buff, data_end);
6720 		off += offsetof(struct sk_buff, cb);
6721 		off += offsetof(struct tcp_skb_cb, bpf.data_end);
6722 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
6723 				      si->src_reg, off);
6724 		break;
6725 	default:
6726 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
6727 					      target_size);
6728 	}
6729 
6730 	return insn - insn_buf;
6731 }
6732 
6733 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
6734 				     const struct bpf_insn *si,
6735 				     struct bpf_insn *insn_buf,
6736 				     struct bpf_prog *prog, u32 *target_size)
6737 {
6738 	struct bpf_insn *insn = insn_buf;
6739 #if IS_ENABLED(CONFIG_IPV6)
6740 	int off;
6741 #endif
6742 
6743 	switch (si->off) {
6744 	case offsetof(struct sk_msg_md, data):
6745 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data),
6746 				      si->dst_reg, si->src_reg,
6747 				      offsetof(struct sk_msg_buff, data));
6748 		break;
6749 	case offsetof(struct sk_msg_md, data_end):
6750 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data_end),
6751 				      si->dst_reg, si->src_reg,
6752 				      offsetof(struct sk_msg_buff, data_end));
6753 		break;
6754 	case offsetof(struct sk_msg_md, family):
6755 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
6756 
6757 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6758 					      struct sk_msg_buff, sk),
6759 				      si->dst_reg, si->src_reg,
6760 				      offsetof(struct sk_msg_buff, sk));
6761 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6762 				      offsetof(struct sock_common, skc_family));
6763 		break;
6764 
6765 	case offsetof(struct sk_msg_md, remote_ip4):
6766 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
6767 
6768 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6769 						struct sk_msg_buff, sk),
6770 				      si->dst_reg, si->src_reg,
6771 				      offsetof(struct sk_msg_buff, sk));
6772 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6773 				      offsetof(struct sock_common, skc_daddr));
6774 		break;
6775 
6776 	case offsetof(struct sk_msg_md, local_ip4):
6777 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6778 					  skc_rcv_saddr) != 4);
6779 
6780 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6781 					      struct sk_msg_buff, sk),
6782 				      si->dst_reg, si->src_reg,
6783 				      offsetof(struct sk_msg_buff, sk));
6784 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6785 				      offsetof(struct sock_common,
6786 					       skc_rcv_saddr));
6787 		break;
6788 
6789 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
6790 	     offsetof(struct sk_msg_md, remote_ip6[3]):
6791 #if IS_ENABLED(CONFIG_IPV6)
6792 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6793 					  skc_v6_daddr.s6_addr32[0]) != 4);
6794 
6795 		off = si->off;
6796 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
6797 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6798 						struct sk_msg_buff, sk),
6799 				      si->dst_reg, si->src_reg,
6800 				      offsetof(struct sk_msg_buff, sk));
6801 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6802 				      offsetof(struct sock_common,
6803 					       skc_v6_daddr.s6_addr32[0]) +
6804 				      off);
6805 #else
6806 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6807 #endif
6808 		break;
6809 
6810 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
6811 	     offsetof(struct sk_msg_md, local_ip6[3]):
6812 #if IS_ENABLED(CONFIG_IPV6)
6813 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6814 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
6815 
6816 		off = si->off;
6817 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
6818 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6819 						struct sk_msg_buff, sk),
6820 				      si->dst_reg, si->src_reg,
6821 				      offsetof(struct sk_msg_buff, sk));
6822 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6823 				      offsetof(struct sock_common,
6824 					       skc_v6_rcv_saddr.s6_addr32[0]) +
6825 				      off);
6826 #else
6827 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6828 #endif
6829 		break;
6830 
6831 	case offsetof(struct sk_msg_md, remote_port):
6832 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6833 
6834 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6835 						struct sk_msg_buff, sk),
6836 				      si->dst_reg, si->src_reg,
6837 				      offsetof(struct sk_msg_buff, sk));
6838 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6839 				      offsetof(struct sock_common, skc_dport));
6840 #ifndef __BIG_ENDIAN_BITFIELD
6841 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6842 #endif
6843 		break;
6844 
6845 	case offsetof(struct sk_msg_md, local_port):
6846 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6847 
6848 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6849 						struct sk_msg_buff, sk),
6850 				      si->dst_reg, si->src_reg,
6851 				      offsetof(struct sk_msg_buff, sk));
6852 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6853 				      offsetof(struct sock_common, skc_num));
6854 		break;
6855 	}
6856 
6857 	return insn - insn_buf;
6858 }
6859 
6860 const struct bpf_verifier_ops sk_filter_verifier_ops = {
6861 	.get_func_proto		= sk_filter_func_proto,
6862 	.is_valid_access	= sk_filter_is_valid_access,
6863 	.convert_ctx_access	= bpf_convert_ctx_access,
6864 	.gen_ld_abs		= bpf_gen_ld_abs,
6865 };
6866 
6867 const struct bpf_prog_ops sk_filter_prog_ops = {
6868 	.test_run		= bpf_prog_test_run_skb,
6869 };
6870 
6871 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
6872 	.get_func_proto		= tc_cls_act_func_proto,
6873 	.is_valid_access	= tc_cls_act_is_valid_access,
6874 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
6875 	.gen_prologue		= tc_cls_act_prologue,
6876 	.gen_ld_abs		= bpf_gen_ld_abs,
6877 };
6878 
6879 const struct bpf_prog_ops tc_cls_act_prog_ops = {
6880 	.test_run		= bpf_prog_test_run_skb,
6881 };
6882 
6883 const struct bpf_verifier_ops xdp_verifier_ops = {
6884 	.get_func_proto		= xdp_func_proto,
6885 	.is_valid_access	= xdp_is_valid_access,
6886 	.convert_ctx_access	= xdp_convert_ctx_access,
6887 };
6888 
6889 const struct bpf_prog_ops xdp_prog_ops = {
6890 	.test_run		= bpf_prog_test_run_xdp,
6891 };
6892 
6893 const struct bpf_verifier_ops cg_skb_verifier_ops = {
6894 	.get_func_proto		= cg_skb_func_proto,
6895 	.is_valid_access	= sk_filter_is_valid_access,
6896 	.convert_ctx_access	= bpf_convert_ctx_access,
6897 };
6898 
6899 const struct bpf_prog_ops cg_skb_prog_ops = {
6900 	.test_run		= bpf_prog_test_run_skb,
6901 };
6902 
6903 const struct bpf_verifier_ops lwt_in_verifier_ops = {
6904 	.get_func_proto		= lwt_in_func_proto,
6905 	.is_valid_access	= lwt_is_valid_access,
6906 	.convert_ctx_access	= bpf_convert_ctx_access,
6907 };
6908 
6909 const struct bpf_prog_ops lwt_in_prog_ops = {
6910 	.test_run		= bpf_prog_test_run_skb,
6911 };
6912 
6913 const struct bpf_verifier_ops lwt_out_verifier_ops = {
6914 	.get_func_proto		= lwt_out_func_proto,
6915 	.is_valid_access	= lwt_is_valid_access,
6916 	.convert_ctx_access	= bpf_convert_ctx_access,
6917 };
6918 
6919 const struct bpf_prog_ops lwt_out_prog_ops = {
6920 	.test_run		= bpf_prog_test_run_skb,
6921 };
6922 
6923 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
6924 	.get_func_proto		= lwt_xmit_func_proto,
6925 	.is_valid_access	= lwt_is_valid_access,
6926 	.convert_ctx_access	= bpf_convert_ctx_access,
6927 	.gen_prologue		= tc_cls_act_prologue,
6928 };
6929 
6930 const struct bpf_prog_ops lwt_xmit_prog_ops = {
6931 	.test_run		= bpf_prog_test_run_skb,
6932 };
6933 
6934 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
6935 	.get_func_proto		= lwt_seg6local_func_proto,
6936 	.is_valid_access	= lwt_is_valid_access,
6937 	.convert_ctx_access	= bpf_convert_ctx_access,
6938 };
6939 
6940 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
6941 	.test_run		= bpf_prog_test_run_skb,
6942 };
6943 
6944 const struct bpf_verifier_ops cg_sock_verifier_ops = {
6945 	.get_func_proto		= sock_filter_func_proto,
6946 	.is_valid_access	= sock_filter_is_valid_access,
6947 	.convert_ctx_access	= sock_filter_convert_ctx_access,
6948 };
6949 
6950 const struct bpf_prog_ops cg_sock_prog_ops = {
6951 };
6952 
6953 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
6954 	.get_func_proto		= sock_addr_func_proto,
6955 	.is_valid_access	= sock_addr_is_valid_access,
6956 	.convert_ctx_access	= sock_addr_convert_ctx_access,
6957 };
6958 
6959 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
6960 };
6961 
6962 const struct bpf_verifier_ops sock_ops_verifier_ops = {
6963 	.get_func_proto		= sock_ops_func_proto,
6964 	.is_valid_access	= sock_ops_is_valid_access,
6965 	.convert_ctx_access	= sock_ops_convert_ctx_access,
6966 };
6967 
6968 const struct bpf_prog_ops sock_ops_prog_ops = {
6969 };
6970 
6971 const struct bpf_verifier_ops sk_skb_verifier_ops = {
6972 	.get_func_proto		= sk_skb_func_proto,
6973 	.is_valid_access	= sk_skb_is_valid_access,
6974 	.convert_ctx_access	= sk_skb_convert_ctx_access,
6975 	.gen_prologue		= sk_skb_prologue,
6976 };
6977 
6978 const struct bpf_prog_ops sk_skb_prog_ops = {
6979 };
6980 
6981 const struct bpf_verifier_ops sk_msg_verifier_ops = {
6982 	.get_func_proto		= sk_msg_func_proto,
6983 	.is_valid_access	= sk_msg_is_valid_access,
6984 	.convert_ctx_access	= sk_msg_convert_ctx_access,
6985 };
6986 
6987 const struct bpf_prog_ops sk_msg_prog_ops = {
6988 };
6989 
6990 int sk_detach_filter(struct sock *sk)
6991 {
6992 	int ret = -ENOENT;
6993 	struct sk_filter *filter;
6994 
6995 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
6996 		return -EPERM;
6997 
6998 	filter = rcu_dereference_protected(sk->sk_filter,
6999 					   lockdep_sock_is_held(sk));
7000 	if (filter) {
7001 		RCU_INIT_POINTER(sk->sk_filter, NULL);
7002 		sk_filter_uncharge(sk, filter);
7003 		ret = 0;
7004 	}
7005 
7006 	return ret;
7007 }
7008 EXPORT_SYMBOL_GPL(sk_detach_filter);
7009 
7010 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
7011 		  unsigned int len)
7012 {
7013 	struct sock_fprog_kern *fprog;
7014 	struct sk_filter *filter;
7015 	int ret = 0;
7016 
7017 	lock_sock(sk);
7018 	filter = rcu_dereference_protected(sk->sk_filter,
7019 					   lockdep_sock_is_held(sk));
7020 	if (!filter)
7021 		goto out;
7022 
7023 	/* We're copying the filter that has been originally attached,
7024 	 * so no conversion/decode needed anymore. eBPF programs that
7025 	 * have no original program cannot be dumped through this.
7026 	 */
7027 	ret = -EACCES;
7028 	fprog = filter->prog->orig_prog;
7029 	if (!fprog)
7030 		goto out;
7031 
7032 	ret = fprog->len;
7033 	if (!len)
7034 		/* User space only enquires number of filter blocks. */
7035 		goto out;
7036 
7037 	ret = -EINVAL;
7038 	if (len < fprog->len)
7039 		goto out;
7040 
7041 	ret = -EFAULT;
7042 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
7043 		goto out;
7044 
7045 	/* Instead of bytes, the API requests to return the number
7046 	 * of filter blocks.
7047 	 */
7048 	ret = fprog->len;
7049 out:
7050 	release_sock(sk);
7051 	return ret;
7052 }
7053 
7054 #ifdef CONFIG_INET
7055 struct sk_reuseport_kern {
7056 	struct sk_buff *skb;
7057 	struct sock *sk;
7058 	struct sock *selected_sk;
7059 	void *data_end;
7060 	u32 hash;
7061 	u32 reuseport_id;
7062 	bool bind_inany;
7063 };
7064 
7065 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
7066 				    struct sock_reuseport *reuse,
7067 				    struct sock *sk, struct sk_buff *skb,
7068 				    u32 hash)
7069 {
7070 	reuse_kern->skb = skb;
7071 	reuse_kern->sk = sk;
7072 	reuse_kern->selected_sk = NULL;
7073 	reuse_kern->data_end = skb->data + skb_headlen(skb);
7074 	reuse_kern->hash = hash;
7075 	reuse_kern->reuseport_id = reuse->reuseport_id;
7076 	reuse_kern->bind_inany = reuse->bind_inany;
7077 }
7078 
7079 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
7080 				  struct bpf_prog *prog, struct sk_buff *skb,
7081 				  u32 hash)
7082 {
7083 	struct sk_reuseport_kern reuse_kern;
7084 	enum sk_action action;
7085 
7086 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
7087 	action = BPF_PROG_RUN(prog, &reuse_kern);
7088 
7089 	if (action == SK_PASS)
7090 		return reuse_kern.selected_sk;
7091 	else
7092 		return ERR_PTR(-ECONNREFUSED);
7093 }
7094 
7095 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
7096 	   struct bpf_map *, map, void *, key, u32, flags)
7097 {
7098 	struct sock_reuseport *reuse;
7099 	struct sock *selected_sk;
7100 
7101 	selected_sk = map->ops->map_lookup_elem(map, key);
7102 	if (!selected_sk)
7103 		return -ENOENT;
7104 
7105 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
7106 	if (!reuse)
7107 		/* selected_sk is unhashed (e.g. by close()) after the
7108 		 * above map_lookup_elem().  Treat selected_sk has already
7109 		 * been removed from the map.
7110 		 */
7111 		return -ENOENT;
7112 
7113 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
7114 		struct sock *sk;
7115 
7116 		if (unlikely(!reuse_kern->reuseport_id))
7117 			/* There is a small race between adding the
7118 			 * sk to the map and setting the
7119 			 * reuse_kern->reuseport_id.
7120 			 * Treat it as the sk has not been added to
7121 			 * the bpf map yet.
7122 			 */
7123 			return -ENOENT;
7124 
7125 		sk = reuse_kern->sk;
7126 		if (sk->sk_protocol != selected_sk->sk_protocol)
7127 			return -EPROTOTYPE;
7128 		else if (sk->sk_family != selected_sk->sk_family)
7129 			return -EAFNOSUPPORT;
7130 
7131 		/* Catch all. Likely bound to a different sockaddr. */
7132 		return -EBADFD;
7133 	}
7134 
7135 	reuse_kern->selected_sk = selected_sk;
7136 
7137 	return 0;
7138 }
7139 
7140 static const struct bpf_func_proto sk_select_reuseport_proto = {
7141 	.func           = sk_select_reuseport,
7142 	.gpl_only       = false,
7143 	.ret_type       = RET_INTEGER,
7144 	.arg1_type	= ARG_PTR_TO_CTX,
7145 	.arg2_type      = ARG_CONST_MAP_PTR,
7146 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
7147 	.arg4_type	= ARG_ANYTHING,
7148 };
7149 
7150 BPF_CALL_4(sk_reuseport_load_bytes,
7151 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
7152 	   void *, to, u32, len)
7153 {
7154 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
7155 }
7156 
7157 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
7158 	.func		= sk_reuseport_load_bytes,
7159 	.gpl_only	= false,
7160 	.ret_type	= RET_INTEGER,
7161 	.arg1_type	= ARG_PTR_TO_CTX,
7162 	.arg2_type	= ARG_ANYTHING,
7163 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
7164 	.arg4_type	= ARG_CONST_SIZE,
7165 };
7166 
7167 BPF_CALL_5(sk_reuseport_load_bytes_relative,
7168 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
7169 	   void *, to, u32, len, u32, start_header)
7170 {
7171 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
7172 					       len, start_header);
7173 }
7174 
7175 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
7176 	.func		= sk_reuseport_load_bytes_relative,
7177 	.gpl_only	= false,
7178 	.ret_type	= RET_INTEGER,
7179 	.arg1_type	= ARG_PTR_TO_CTX,
7180 	.arg2_type	= ARG_ANYTHING,
7181 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
7182 	.arg4_type	= ARG_CONST_SIZE,
7183 	.arg5_type	= ARG_ANYTHING,
7184 };
7185 
7186 static const struct bpf_func_proto *
7187 sk_reuseport_func_proto(enum bpf_func_id func_id,
7188 			const struct bpf_prog *prog)
7189 {
7190 	switch (func_id) {
7191 	case BPF_FUNC_sk_select_reuseport:
7192 		return &sk_select_reuseport_proto;
7193 	case BPF_FUNC_skb_load_bytes:
7194 		return &sk_reuseport_load_bytes_proto;
7195 	case BPF_FUNC_skb_load_bytes_relative:
7196 		return &sk_reuseport_load_bytes_relative_proto;
7197 	default:
7198 		return bpf_base_func_proto(func_id);
7199 	}
7200 }
7201 
7202 static bool
7203 sk_reuseport_is_valid_access(int off, int size,
7204 			     enum bpf_access_type type,
7205 			     const struct bpf_prog *prog,
7206 			     struct bpf_insn_access_aux *info)
7207 {
7208 	const u32 size_default = sizeof(__u32);
7209 
7210 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
7211 	    off % size || type != BPF_READ)
7212 		return false;
7213 
7214 	switch (off) {
7215 	case offsetof(struct sk_reuseport_md, data):
7216 		info->reg_type = PTR_TO_PACKET;
7217 		return size == sizeof(__u64);
7218 
7219 	case offsetof(struct sk_reuseport_md, data_end):
7220 		info->reg_type = PTR_TO_PACKET_END;
7221 		return size == sizeof(__u64);
7222 
7223 	case offsetof(struct sk_reuseport_md, hash):
7224 		return size == size_default;
7225 
7226 	/* Fields that allow narrowing */
7227 	case offsetof(struct sk_reuseport_md, eth_protocol):
7228 		if (size < FIELD_SIZEOF(struct sk_buff, protocol))
7229 			return false;
7230 		/* fall through */
7231 	case offsetof(struct sk_reuseport_md, ip_protocol):
7232 	case offsetof(struct sk_reuseport_md, bind_inany):
7233 	case offsetof(struct sk_reuseport_md, len):
7234 		bpf_ctx_record_field_size(info, size_default);
7235 		return bpf_ctx_narrow_access_ok(off, size, size_default);
7236 
7237 	default:
7238 		return false;
7239 	}
7240 }
7241 
7242 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
7243 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
7244 			      si->dst_reg, si->src_reg,			\
7245 			      bpf_target_off(struct sk_reuseport_kern, F, \
7246 					     FIELD_SIZEOF(struct sk_reuseport_kern, F), \
7247 					     target_size));		\
7248 	})
7249 
7250 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
7251 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
7252 				    struct sk_buff,			\
7253 				    skb,				\
7254 				    SKB_FIELD)
7255 
7256 #define SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(SK_FIELD, BPF_SIZE, EXTRA_OFF) \
7257 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(struct sk_reuseport_kern,	\
7258 					     struct sock,		\
7259 					     sk,			\
7260 					     SK_FIELD, BPF_SIZE, EXTRA_OFF)
7261 
7262 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
7263 					   const struct bpf_insn *si,
7264 					   struct bpf_insn *insn_buf,
7265 					   struct bpf_prog *prog,
7266 					   u32 *target_size)
7267 {
7268 	struct bpf_insn *insn = insn_buf;
7269 
7270 	switch (si->off) {
7271 	case offsetof(struct sk_reuseport_md, data):
7272 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
7273 		break;
7274 
7275 	case offsetof(struct sk_reuseport_md, len):
7276 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
7277 		break;
7278 
7279 	case offsetof(struct sk_reuseport_md, eth_protocol):
7280 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
7281 		break;
7282 
7283 	case offsetof(struct sk_reuseport_md, ip_protocol):
7284 		BUILD_BUG_ON(hweight_long(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
7285 		SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(__sk_flags_offset,
7286 						    BPF_W, 0);
7287 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7288 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
7289 					SK_FL_PROTO_SHIFT);
7290 		/* SK_FL_PROTO_MASK and SK_FL_PROTO_SHIFT are endian
7291 		 * aware.  No further narrowing or masking is needed.
7292 		 */
7293 		*target_size = 1;
7294 		break;
7295 
7296 	case offsetof(struct sk_reuseport_md, data_end):
7297 		SK_REUSEPORT_LOAD_FIELD(data_end);
7298 		break;
7299 
7300 	case offsetof(struct sk_reuseport_md, hash):
7301 		SK_REUSEPORT_LOAD_FIELD(hash);
7302 		break;
7303 
7304 	case offsetof(struct sk_reuseport_md, bind_inany):
7305 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
7306 		break;
7307 	}
7308 
7309 	return insn - insn_buf;
7310 }
7311 
7312 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
7313 	.get_func_proto		= sk_reuseport_func_proto,
7314 	.is_valid_access	= sk_reuseport_is_valid_access,
7315 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
7316 };
7317 
7318 const struct bpf_prog_ops sk_reuseport_prog_ops = {
7319 };
7320 #endif /* CONFIG_INET */
7321