xref: /openbmc/linux/net/core/filter.c (revision 34facb04)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <net/sch_generic.h>
51 #include <net/cls_cgroup.h>
52 #include <net/dst_metadata.h>
53 #include <net/dst.h>
54 #include <net/sock_reuseport.h>
55 #include <net/busy_poll.h>
56 #include <net/tcp.h>
57 #include <net/xfrm.h>
58 #include <net/udp.h>
59 #include <linux/bpf_trace.h>
60 #include <net/xdp_sock.h>
61 #include <linux/inetdevice.h>
62 #include <net/inet_hashtables.h>
63 #include <net/inet6_hashtables.h>
64 #include <net/ip_fib.h>
65 #include <net/nexthop.h>
66 #include <net/flow.h>
67 #include <net/arp.h>
68 #include <net/ipv6.h>
69 #include <net/net_namespace.h>
70 #include <linux/seg6_local.h>
71 #include <net/seg6.h>
72 #include <net/seg6_local.h>
73 #include <net/lwtunnel.h>
74 #include <net/ipv6_stubs.h>
75 #include <net/bpf_sk_storage.h>
76 
77 /**
78  *	sk_filter_trim_cap - run a packet through a socket filter
79  *	@sk: sock associated with &sk_buff
80  *	@skb: buffer to filter
81  *	@cap: limit on how short the eBPF program may trim the packet
82  *
83  * Run the eBPF program and then cut skb->data to correct size returned by
84  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
85  * than pkt_len we keep whole skb->data. This is the socket level
86  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
87  * be accepted or -EPERM if the packet should be tossed.
88  *
89  */
90 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
91 {
92 	int err;
93 	struct sk_filter *filter;
94 
95 	/*
96 	 * If the skb was allocated from pfmemalloc reserves, only
97 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
98 	 * helping free memory
99 	 */
100 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
101 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
102 		return -ENOMEM;
103 	}
104 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
105 	if (err)
106 		return err;
107 
108 	err = security_sock_rcv_skb(sk, skb);
109 	if (err)
110 		return err;
111 
112 	rcu_read_lock();
113 	filter = rcu_dereference(sk->sk_filter);
114 	if (filter) {
115 		struct sock *save_sk = skb->sk;
116 		unsigned int pkt_len;
117 
118 		skb->sk = sk;
119 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
120 		skb->sk = save_sk;
121 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
122 	}
123 	rcu_read_unlock();
124 
125 	return err;
126 }
127 EXPORT_SYMBOL(sk_filter_trim_cap);
128 
129 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
130 {
131 	return skb_get_poff(skb);
132 }
133 
134 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
135 {
136 	struct nlattr *nla;
137 
138 	if (skb_is_nonlinear(skb))
139 		return 0;
140 
141 	if (skb->len < sizeof(struct nlattr))
142 		return 0;
143 
144 	if (a > skb->len - sizeof(struct nlattr))
145 		return 0;
146 
147 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
148 	if (nla)
149 		return (void *) nla - (void *) skb->data;
150 
151 	return 0;
152 }
153 
154 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
155 {
156 	struct nlattr *nla;
157 
158 	if (skb_is_nonlinear(skb))
159 		return 0;
160 
161 	if (skb->len < sizeof(struct nlattr))
162 		return 0;
163 
164 	if (a > skb->len - sizeof(struct nlattr))
165 		return 0;
166 
167 	nla = (struct nlattr *) &skb->data[a];
168 	if (nla->nla_len > skb->len - a)
169 		return 0;
170 
171 	nla = nla_find_nested(nla, x);
172 	if (nla)
173 		return (void *) nla - (void *) skb->data;
174 
175 	return 0;
176 }
177 
178 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
179 	   data, int, headlen, int, offset)
180 {
181 	u8 tmp, *ptr;
182 	const int len = sizeof(tmp);
183 
184 	if (offset >= 0) {
185 		if (headlen - offset >= len)
186 			return *(u8 *)(data + offset);
187 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
188 			return tmp;
189 	} else {
190 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
191 		if (likely(ptr))
192 			return *(u8 *)ptr;
193 	}
194 
195 	return -EFAULT;
196 }
197 
198 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
199 	   int, offset)
200 {
201 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
202 					 offset);
203 }
204 
205 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
206 	   data, int, headlen, int, offset)
207 {
208 	u16 tmp, *ptr;
209 	const int len = sizeof(tmp);
210 
211 	if (offset >= 0) {
212 		if (headlen - offset >= len)
213 			return get_unaligned_be16(data + offset);
214 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
215 			return be16_to_cpu(tmp);
216 	} else {
217 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
218 		if (likely(ptr))
219 			return get_unaligned_be16(ptr);
220 	}
221 
222 	return -EFAULT;
223 }
224 
225 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
226 	   int, offset)
227 {
228 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
229 					  offset);
230 }
231 
232 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
233 	   data, int, headlen, int, offset)
234 {
235 	u32 tmp, *ptr;
236 	const int len = sizeof(tmp);
237 
238 	if (likely(offset >= 0)) {
239 		if (headlen - offset >= len)
240 			return get_unaligned_be32(data + offset);
241 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
242 			return be32_to_cpu(tmp);
243 	} else {
244 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
245 		if (likely(ptr))
246 			return get_unaligned_be32(ptr);
247 	}
248 
249 	return -EFAULT;
250 }
251 
252 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
253 	   int, offset)
254 {
255 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
256 					  offset);
257 }
258 
259 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
260 			      struct bpf_insn *insn_buf)
261 {
262 	struct bpf_insn *insn = insn_buf;
263 
264 	switch (skb_field) {
265 	case SKF_AD_MARK:
266 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
267 
268 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
269 				      offsetof(struct sk_buff, mark));
270 		break;
271 
272 	case SKF_AD_PKTTYPE:
273 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
274 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
275 #ifdef __BIG_ENDIAN_BITFIELD
276 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
277 #endif
278 		break;
279 
280 	case SKF_AD_QUEUE:
281 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
282 
283 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
284 				      offsetof(struct sk_buff, queue_mapping));
285 		break;
286 
287 	case SKF_AD_VLAN_TAG:
288 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
289 
290 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
291 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
292 				      offsetof(struct sk_buff, vlan_tci));
293 		break;
294 	case SKF_AD_VLAN_TAG_PRESENT:
295 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
296 		if (PKT_VLAN_PRESENT_BIT)
297 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
298 		if (PKT_VLAN_PRESENT_BIT < 7)
299 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
300 		break;
301 	}
302 
303 	return insn - insn_buf;
304 }
305 
306 static bool convert_bpf_extensions(struct sock_filter *fp,
307 				   struct bpf_insn **insnp)
308 {
309 	struct bpf_insn *insn = *insnp;
310 	u32 cnt;
311 
312 	switch (fp->k) {
313 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
314 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
315 
316 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
317 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
318 				      offsetof(struct sk_buff, protocol));
319 		/* A = ntohs(A) [emitting a nop or swap16] */
320 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
321 		break;
322 
323 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
324 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
325 		insn += cnt - 1;
326 		break;
327 
328 	case SKF_AD_OFF + SKF_AD_IFINDEX:
329 	case SKF_AD_OFF + SKF_AD_HATYPE:
330 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
331 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
332 
333 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
334 				      BPF_REG_TMP, BPF_REG_CTX,
335 				      offsetof(struct sk_buff, dev));
336 		/* if (tmp != 0) goto pc + 1 */
337 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
338 		*insn++ = BPF_EXIT_INSN();
339 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
340 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
341 					    offsetof(struct net_device, ifindex));
342 		else
343 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
344 					    offsetof(struct net_device, type));
345 		break;
346 
347 	case SKF_AD_OFF + SKF_AD_MARK:
348 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
349 		insn += cnt - 1;
350 		break;
351 
352 	case SKF_AD_OFF + SKF_AD_RXHASH:
353 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
354 
355 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
356 				    offsetof(struct sk_buff, hash));
357 		break;
358 
359 	case SKF_AD_OFF + SKF_AD_QUEUE:
360 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
361 		insn += cnt - 1;
362 		break;
363 
364 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
365 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
366 					 BPF_REG_A, BPF_REG_CTX, insn);
367 		insn += cnt - 1;
368 		break;
369 
370 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
371 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
372 					 BPF_REG_A, BPF_REG_CTX, insn);
373 		insn += cnt - 1;
374 		break;
375 
376 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
377 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
378 
379 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
380 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
381 				      offsetof(struct sk_buff, vlan_proto));
382 		/* A = ntohs(A) [emitting a nop or swap16] */
383 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
384 		break;
385 
386 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
387 	case SKF_AD_OFF + SKF_AD_NLATTR:
388 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
389 	case SKF_AD_OFF + SKF_AD_CPU:
390 	case SKF_AD_OFF + SKF_AD_RANDOM:
391 		/* arg1 = CTX */
392 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
393 		/* arg2 = A */
394 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
395 		/* arg3 = X */
396 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
397 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
398 		switch (fp->k) {
399 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
400 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
401 			break;
402 		case SKF_AD_OFF + SKF_AD_NLATTR:
403 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
404 			break;
405 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
406 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
407 			break;
408 		case SKF_AD_OFF + SKF_AD_CPU:
409 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
410 			break;
411 		case SKF_AD_OFF + SKF_AD_RANDOM:
412 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
413 			bpf_user_rnd_init_once();
414 			break;
415 		}
416 		break;
417 
418 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
419 		/* A ^= X */
420 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
421 		break;
422 
423 	default:
424 		/* This is just a dummy call to avoid letting the compiler
425 		 * evict __bpf_call_base() as an optimization. Placed here
426 		 * where no-one bothers.
427 		 */
428 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
429 		return false;
430 	}
431 
432 	*insnp = insn;
433 	return true;
434 }
435 
436 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
437 {
438 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
439 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
440 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
441 		      BPF_SIZE(fp->code) == BPF_W;
442 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
443 	const int ip_align = NET_IP_ALIGN;
444 	struct bpf_insn *insn = *insnp;
445 	int offset = fp->k;
446 
447 	if (!indirect &&
448 	    ((unaligned_ok && offset >= 0) ||
449 	     (!unaligned_ok && offset >= 0 &&
450 	      offset + ip_align >= 0 &&
451 	      offset + ip_align % size == 0))) {
452 		bool ldx_off_ok = offset <= S16_MAX;
453 
454 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
455 		if (offset)
456 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
457 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
458 				      size, 2 + endian + (!ldx_off_ok * 2));
459 		if (ldx_off_ok) {
460 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
461 					      BPF_REG_D, offset);
462 		} else {
463 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
464 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
465 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
466 					      BPF_REG_TMP, 0);
467 		}
468 		if (endian)
469 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
470 		*insn++ = BPF_JMP_A(8);
471 	}
472 
473 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
474 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
475 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
476 	if (!indirect) {
477 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
478 	} else {
479 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
480 		if (fp->k)
481 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
482 	}
483 
484 	switch (BPF_SIZE(fp->code)) {
485 	case BPF_B:
486 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
487 		break;
488 	case BPF_H:
489 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
490 		break;
491 	case BPF_W:
492 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
493 		break;
494 	default:
495 		return false;
496 	}
497 
498 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
499 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
500 	*insn   = BPF_EXIT_INSN();
501 
502 	*insnp = insn;
503 	return true;
504 }
505 
506 /**
507  *	bpf_convert_filter - convert filter program
508  *	@prog: the user passed filter program
509  *	@len: the length of the user passed filter program
510  *	@new_prog: allocated 'struct bpf_prog' or NULL
511  *	@new_len: pointer to store length of converted program
512  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
513  *
514  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
515  * style extended BPF (eBPF).
516  * Conversion workflow:
517  *
518  * 1) First pass for calculating the new program length:
519  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
520  *
521  * 2) 2nd pass to remap in two passes: 1st pass finds new
522  *    jump offsets, 2nd pass remapping:
523  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
524  */
525 static int bpf_convert_filter(struct sock_filter *prog, int len,
526 			      struct bpf_prog *new_prog, int *new_len,
527 			      bool *seen_ld_abs)
528 {
529 	int new_flen = 0, pass = 0, target, i, stack_off;
530 	struct bpf_insn *new_insn, *first_insn = NULL;
531 	struct sock_filter *fp;
532 	int *addrs = NULL;
533 	u8 bpf_src;
534 
535 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
536 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
537 
538 	if (len <= 0 || len > BPF_MAXINSNS)
539 		return -EINVAL;
540 
541 	if (new_prog) {
542 		first_insn = new_prog->insnsi;
543 		addrs = kcalloc(len, sizeof(*addrs),
544 				GFP_KERNEL | __GFP_NOWARN);
545 		if (!addrs)
546 			return -ENOMEM;
547 	}
548 
549 do_pass:
550 	new_insn = first_insn;
551 	fp = prog;
552 
553 	/* Classic BPF related prologue emission. */
554 	if (new_prog) {
555 		/* Classic BPF expects A and X to be reset first. These need
556 		 * to be guaranteed to be the first two instructions.
557 		 */
558 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
559 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
560 
561 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
562 		 * In eBPF case it's done by the compiler, here we need to
563 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
564 		 */
565 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
566 		if (*seen_ld_abs) {
567 			/* For packet access in classic BPF, cache skb->data
568 			 * in callee-saved BPF R8 and skb->len - skb->data_len
569 			 * (headlen) in BPF R9. Since classic BPF is read-only
570 			 * on CTX, we only need to cache it once.
571 			 */
572 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
573 						  BPF_REG_D, BPF_REG_CTX,
574 						  offsetof(struct sk_buff, data));
575 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
576 						  offsetof(struct sk_buff, len));
577 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
578 						  offsetof(struct sk_buff, data_len));
579 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
580 		}
581 	} else {
582 		new_insn += 3;
583 	}
584 
585 	for (i = 0; i < len; fp++, i++) {
586 		struct bpf_insn tmp_insns[32] = { };
587 		struct bpf_insn *insn = tmp_insns;
588 
589 		if (addrs)
590 			addrs[i] = new_insn - first_insn;
591 
592 		switch (fp->code) {
593 		/* All arithmetic insns and skb loads map as-is. */
594 		case BPF_ALU | BPF_ADD | BPF_X:
595 		case BPF_ALU | BPF_ADD | BPF_K:
596 		case BPF_ALU | BPF_SUB | BPF_X:
597 		case BPF_ALU | BPF_SUB | BPF_K:
598 		case BPF_ALU | BPF_AND | BPF_X:
599 		case BPF_ALU | BPF_AND | BPF_K:
600 		case BPF_ALU | BPF_OR | BPF_X:
601 		case BPF_ALU | BPF_OR | BPF_K:
602 		case BPF_ALU | BPF_LSH | BPF_X:
603 		case BPF_ALU | BPF_LSH | BPF_K:
604 		case BPF_ALU | BPF_RSH | BPF_X:
605 		case BPF_ALU | BPF_RSH | BPF_K:
606 		case BPF_ALU | BPF_XOR | BPF_X:
607 		case BPF_ALU | BPF_XOR | BPF_K:
608 		case BPF_ALU | BPF_MUL | BPF_X:
609 		case BPF_ALU | BPF_MUL | BPF_K:
610 		case BPF_ALU | BPF_DIV | BPF_X:
611 		case BPF_ALU | BPF_DIV | BPF_K:
612 		case BPF_ALU | BPF_MOD | BPF_X:
613 		case BPF_ALU | BPF_MOD | BPF_K:
614 		case BPF_ALU | BPF_NEG:
615 		case BPF_LD | BPF_ABS | BPF_W:
616 		case BPF_LD | BPF_ABS | BPF_H:
617 		case BPF_LD | BPF_ABS | BPF_B:
618 		case BPF_LD | BPF_IND | BPF_W:
619 		case BPF_LD | BPF_IND | BPF_H:
620 		case BPF_LD | BPF_IND | BPF_B:
621 			/* Check for overloaded BPF extension and
622 			 * directly convert it if found, otherwise
623 			 * just move on with mapping.
624 			 */
625 			if (BPF_CLASS(fp->code) == BPF_LD &&
626 			    BPF_MODE(fp->code) == BPF_ABS &&
627 			    convert_bpf_extensions(fp, &insn))
628 				break;
629 			if (BPF_CLASS(fp->code) == BPF_LD &&
630 			    convert_bpf_ld_abs(fp, &insn)) {
631 				*seen_ld_abs = true;
632 				break;
633 			}
634 
635 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
636 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
637 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
638 				/* Error with exception code on div/mod by 0.
639 				 * For cBPF programs, this was always return 0.
640 				 */
641 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
642 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
643 				*insn++ = BPF_EXIT_INSN();
644 			}
645 
646 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
647 			break;
648 
649 		/* Jump transformation cannot use BPF block macros
650 		 * everywhere as offset calculation and target updates
651 		 * require a bit more work than the rest, i.e. jump
652 		 * opcodes map as-is, but offsets need adjustment.
653 		 */
654 
655 #define BPF_EMIT_JMP							\
656 	do {								\
657 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
658 		s32 off;						\
659 									\
660 		if (target >= len || target < 0)			\
661 			goto err;					\
662 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
663 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
664 		off -= insn - tmp_insns;				\
665 		/* Reject anything not fitting into insn->off. */	\
666 		if (off < off_min || off > off_max)			\
667 			goto err;					\
668 		insn->off = off;					\
669 	} while (0)
670 
671 		case BPF_JMP | BPF_JA:
672 			target = i + fp->k + 1;
673 			insn->code = fp->code;
674 			BPF_EMIT_JMP;
675 			break;
676 
677 		case BPF_JMP | BPF_JEQ | BPF_K:
678 		case BPF_JMP | BPF_JEQ | BPF_X:
679 		case BPF_JMP | BPF_JSET | BPF_K:
680 		case BPF_JMP | BPF_JSET | BPF_X:
681 		case BPF_JMP | BPF_JGT | BPF_K:
682 		case BPF_JMP | BPF_JGT | BPF_X:
683 		case BPF_JMP | BPF_JGE | BPF_K:
684 		case BPF_JMP | BPF_JGE | BPF_X:
685 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
686 				/* BPF immediates are signed, zero extend
687 				 * immediate into tmp register and use it
688 				 * in compare insn.
689 				 */
690 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
691 
692 				insn->dst_reg = BPF_REG_A;
693 				insn->src_reg = BPF_REG_TMP;
694 				bpf_src = BPF_X;
695 			} else {
696 				insn->dst_reg = BPF_REG_A;
697 				insn->imm = fp->k;
698 				bpf_src = BPF_SRC(fp->code);
699 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
700 			}
701 
702 			/* Common case where 'jump_false' is next insn. */
703 			if (fp->jf == 0) {
704 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
705 				target = i + fp->jt + 1;
706 				BPF_EMIT_JMP;
707 				break;
708 			}
709 
710 			/* Convert some jumps when 'jump_true' is next insn. */
711 			if (fp->jt == 0) {
712 				switch (BPF_OP(fp->code)) {
713 				case BPF_JEQ:
714 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
715 					break;
716 				case BPF_JGT:
717 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
718 					break;
719 				case BPF_JGE:
720 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
721 					break;
722 				default:
723 					goto jmp_rest;
724 				}
725 
726 				target = i + fp->jf + 1;
727 				BPF_EMIT_JMP;
728 				break;
729 			}
730 jmp_rest:
731 			/* Other jumps are mapped into two insns: Jxx and JA. */
732 			target = i + fp->jt + 1;
733 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
734 			BPF_EMIT_JMP;
735 			insn++;
736 
737 			insn->code = BPF_JMP | BPF_JA;
738 			target = i + fp->jf + 1;
739 			BPF_EMIT_JMP;
740 			break;
741 
742 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
743 		case BPF_LDX | BPF_MSH | BPF_B: {
744 			struct sock_filter tmp = {
745 				.code	= BPF_LD | BPF_ABS | BPF_B,
746 				.k	= fp->k,
747 			};
748 
749 			*seen_ld_abs = true;
750 
751 			/* X = A */
752 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
753 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
754 			convert_bpf_ld_abs(&tmp, &insn);
755 			insn++;
756 			/* A &= 0xf */
757 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
758 			/* A <<= 2 */
759 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
760 			/* tmp = X */
761 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
762 			/* X = A */
763 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
764 			/* A = tmp */
765 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
766 			break;
767 		}
768 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
769 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
770 		 */
771 		case BPF_RET | BPF_A:
772 		case BPF_RET | BPF_K:
773 			if (BPF_RVAL(fp->code) == BPF_K)
774 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
775 							0, fp->k);
776 			*insn = BPF_EXIT_INSN();
777 			break;
778 
779 		/* Store to stack. */
780 		case BPF_ST:
781 		case BPF_STX:
782 			stack_off = fp->k * 4  + 4;
783 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
784 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
785 					    -stack_off);
786 			/* check_load_and_stores() verifies that classic BPF can
787 			 * load from stack only after write, so tracking
788 			 * stack_depth for ST|STX insns is enough
789 			 */
790 			if (new_prog && new_prog->aux->stack_depth < stack_off)
791 				new_prog->aux->stack_depth = stack_off;
792 			break;
793 
794 		/* Load from stack. */
795 		case BPF_LD | BPF_MEM:
796 		case BPF_LDX | BPF_MEM:
797 			stack_off = fp->k * 4  + 4;
798 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
799 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
800 					    -stack_off);
801 			break;
802 
803 		/* A = K or X = K */
804 		case BPF_LD | BPF_IMM:
805 		case BPF_LDX | BPF_IMM:
806 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
807 					      BPF_REG_A : BPF_REG_X, fp->k);
808 			break;
809 
810 		/* X = A */
811 		case BPF_MISC | BPF_TAX:
812 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
813 			break;
814 
815 		/* A = X */
816 		case BPF_MISC | BPF_TXA:
817 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
818 			break;
819 
820 		/* A = skb->len or X = skb->len */
821 		case BPF_LD | BPF_W | BPF_LEN:
822 		case BPF_LDX | BPF_W | BPF_LEN:
823 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
824 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
825 					    offsetof(struct sk_buff, len));
826 			break;
827 
828 		/* Access seccomp_data fields. */
829 		case BPF_LDX | BPF_ABS | BPF_W:
830 			/* A = *(u32 *) (ctx + K) */
831 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
832 			break;
833 
834 		/* Unknown instruction. */
835 		default:
836 			goto err;
837 		}
838 
839 		insn++;
840 		if (new_prog)
841 			memcpy(new_insn, tmp_insns,
842 			       sizeof(*insn) * (insn - tmp_insns));
843 		new_insn += insn - tmp_insns;
844 	}
845 
846 	if (!new_prog) {
847 		/* Only calculating new length. */
848 		*new_len = new_insn - first_insn;
849 		if (*seen_ld_abs)
850 			*new_len += 4; /* Prologue bits. */
851 		return 0;
852 	}
853 
854 	pass++;
855 	if (new_flen != new_insn - first_insn) {
856 		new_flen = new_insn - first_insn;
857 		if (pass > 2)
858 			goto err;
859 		goto do_pass;
860 	}
861 
862 	kfree(addrs);
863 	BUG_ON(*new_len != new_flen);
864 	return 0;
865 err:
866 	kfree(addrs);
867 	return -EINVAL;
868 }
869 
870 /* Security:
871  *
872  * As we dont want to clear mem[] array for each packet going through
873  * __bpf_prog_run(), we check that filter loaded by user never try to read
874  * a cell if not previously written, and we check all branches to be sure
875  * a malicious user doesn't try to abuse us.
876  */
877 static int check_load_and_stores(const struct sock_filter *filter, int flen)
878 {
879 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
880 	int pc, ret = 0;
881 
882 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
883 
884 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
885 	if (!masks)
886 		return -ENOMEM;
887 
888 	memset(masks, 0xff, flen * sizeof(*masks));
889 
890 	for (pc = 0; pc < flen; pc++) {
891 		memvalid &= masks[pc];
892 
893 		switch (filter[pc].code) {
894 		case BPF_ST:
895 		case BPF_STX:
896 			memvalid |= (1 << filter[pc].k);
897 			break;
898 		case BPF_LD | BPF_MEM:
899 		case BPF_LDX | BPF_MEM:
900 			if (!(memvalid & (1 << filter[pc].k))) {
901 				ret = -EINVAL;
902 				goto error;
903 			}
904 			break;
905 		case BPF_JMP | BPF_JA:
906 			/* A jump must set masks on target */
907 			masks[pc + 1 + filter[pc].k] &= memvalid;
908 			memvalid = ~0;
909 			break;
910 		case BPF_JMP | BPF_JEQ | BPF_K:
911 		case BPF_JMP | BPF_JEQ | BPF_X:
912 		case BPF_JMP | BPF_JGE | BPF_K:
913 		case BPF_JMP | BPF_JGE | BPF_X:
914 		case BPF_JMP | BPF_JGT | BPF_K:
915 		case BPF_JMP | BPF_JGT | BPF_X:
916 		case BPF_JMP | BPF_JSET | BPF_K:
917 		case BPF_JMP | BPF_JSET | BPF_X:
918 			/* A jump must set masks on targets */
919 			masks[pc + 1 + filter[pc].jt] &= memvalid;
920 			masks[pc + 1 + filter[pc].jf] &= memvalid;
921 			memvalid = ~0;
922 			break;
923 		}
924 	}
925 error:
926 	kfree(masks);
927 	return ret;
928 }
929 
930 static bool chk_code_allowed(u16 code_to_probe)
931 {
932 	static const bool codes[] = {
933 		/* 32 bit ALU operations */
934 		[BPF_ALU | BPF_ADD | BPF_K] = true,
935 		[BPF_ALU | BPF_ADD | BPF_X] = true,
936 		[BPF_ALU | BPF_SUB | BPF_K] = true,
937 		[BPF_ALU | BPF_SUB | BPF_X] = true,
938 		[BPF_ALU | BPF_MUL | BPF_K] = true,
939 		[BPF_ALU | BPF_MUL | BPF_X] = true,
940 		[BPF_ALU | BPF_DIV | BPF_K] = true,
941 		[BPF_ALU | BPF_DIV | BPF_X] = true,
942 		[BPF_ALU | BPF_MOD | BPF_K] = true,
943 		[BPF_ALU | BPF_MOD | BPF_X] = true,
944 		[BPF_ALU | BPF_AND | BPF_K] = true,
945 		[BPF_ALU | BPF_AND | BPF_X] = true,
946 		[BPF_ALU | BPF_OR | BPF_K] = true,
947 		[BPF_ALU | BPF_OR | BPF_X] = true,
948 		[BPF_ALU | BPF_XOR | BPF_K] = true,
949 		[BPF_ALU | BPF_XOR | BPF_X] = true,
950 		[BPF_ALU | BPF_LSH | BPF_K] = true,
951 		[BPF_ALU | BPF_LSH | BPF_X] = true,
952 		[BPF_ALU | BPF_RSH | BPF_K] = true,
953 		[BPF_ALU | BPF_RSH | BPF_X] = true,
954 		[BPF_ALU | BPF_NEG] = true,
955 		/* Load instructions */
956 		[BPF_LD | BPF_W | BPF_ABS] = true,
957 		[BPF_LD | BPF_H | BPF_ABS] = true,
958 		[BPF_LD | BPF_B | BPF_ABS] = true,
959 		[BPF_LD | BPF_W | BPF_LEN] = true,
960 		[BPF_LD | BPF_W | BPF_IND] = true,
961 		[BPF_LD | BPF_H | BPF_IND] = true,
962 		[BPF_LD | BPF_B | BPF_IND] = true,
963 		[BPF_LD | BPF_IMM] = true,
964 		[BPF_LD | BPF_MEM] = true,
965 		[BPF_LDX | BPF_W | BPF_LEN] = true,
966 		[BPF_LDX | BPF_B | BPF_MSH] = true,
967 		[BPF_LDX | BPF_IMM] = true,
968 		[BPF_LDX | BPF_MEM] = true,
969 		/* Store instructions */
970 		[BPF_ST] = true,
971 		[BPF_STX] = true,
972 		/* Misc instructions */
973 		[BPF_MISC | BPF_TAX] = true,
974 		[BPF_MISC | BPF_TXA] = true,
975 		/* Return instructions */
976 		[BPF_RET | BPF_K] = true,
977 		[BPF_RET | BPF_A] = true,
978 		/* Jump instructions */
979 		[BPF_JMP | BPF_JA] = true,
980 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
981 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
982 		[BPF_JMP | BPF_JGE | BPF_K] = true,
983 		[BPF_JMP | BPF_JGE | BPF_X] = true,
984 		[BPF_JMP | BPF_JGT | BPF_K] = true,
985 		[BPF_JMP | BPF_JGT | BPF_X] = true,
986 		[BPF_JMP | BPF_JSET | BPF_K] = true,
987 		[BPF_JMP | BPF_JSET | BPF_X] = true,
988 	};
989 
990 	if (code_to_probe >= ARRAY_SIZE(codes))
991 		return false;
992 
993 	return codes[code_to_probe];
994 }
995 
996 static bool bpf_check_basics_ok(const struct sock_filter *filter,
997 				unsigned int flen)
998 {
999 	if (filter == NULL)
1000 		return false;
1001 	if (flen == 0 || flen > BPF_MAXINSNS)
1002 		return false;
1003 
1004 	return true;
1005 }
1006 
1007 /**
1008  *	bpf_check_classic - verify socket filter code
1009  *	@filter: filter to verify
1010  *	@flen: length of filter
1011  *
1012  * Check the user's filter code. If we let some ugly
1013  * filter code slip through kaboom! The filter must contain
1014  * no references or jumps that are out of range, no illegal
1015  * instructions, and must end with a RET instruction.
1016  *
1017  * All jumps are forward as they are not signed.
1018  *
1019  * Returns 0 if the rule set is legal or -EINVAL if not.
1020  */
1021 static int bpf_check_classic(const struct sock_filter *filter,
1022 			     unsigned int flen)
1023 {
1024 	bool anc_found;
1025 	int pc;
1026 
1027 	/* Check the filter code now */
1028 	for (pc = 0; pc < flen; pc++) {
1029 		const struct sock_filter *ftest = &filter[pc];
1030 
1031 		/* May we actually operate on this code? */
1032 		if (!chk_code_allowed(ftest->code))
1033 			return -EINVAL;
1034 
1035 		/* Some instructions need special checks */
1036 		switch (ftest->code) {
1037 		case BPF_ALU | BPF_DIV | BPF_K:
1038 		case BPF_ALU | BPF_MOD | BPF_K:
1039 			/* Check for division by zero */
1040 			if (ftest->k == 0)
1041 				return -EINVAL;
1042 			break;
1043 		case BPF_ALU | BPF_LSH | BPF_K:
1044 		case BPF_ALU | BPF_RSH | BPF_K:
1045 			if (ftest->k >= 32)
1046 				return -EINVAL;
1047 			break;
1048 		case BPF_LD | BPF_MEM:
1049 		case BPF_LDX | BPF_MEM:
1050 		case BPF_ST:
1051 		case BPF_STX:
1052 			/* Check for invalid memory addresses */
1053 			if (ftest->k >= BPF_MEMWORDS)
1054 				return -EINVAL;
1055 			break;
1056 		case BPF_JMP | BPF_JA:
1057 			/* Note, the large ftest->k might cause loops.
1058 			 * Compare this with conditional jumps below,
1059 			 * where offsets are limited. --ANK (981016)
1060 			 */
1061 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1062 				return -EINVAL;
1063 			break;
1064 		case BPF_JMP | BPF_JEQ | BPF_K:
1065 		case BPF_JMP | BPF_JEQ | BPF_X:
1066 		case BPF_JMP | BPF_JGE | BPF_K:
1067 		case BPF_JMP | BPF_JGE | BPF_X:
1068 		case BPF_JMP | BPF_JGT | BPF_K:
1069 		case BPF_JMP | BPF_JGT | BPF_X:
1070 		case BPF_JMP | BPF_JSET | BPF_K:
1071 		case BPF_JMP | BPF_JSET | BPF_X:
1072 			/* Both conditionals must be safe */
1073 			if (pc + ftest->jt + 1 >= flen ||
1074 			    pc + ftest->jf + 1 >= flen)
1075 				return -EINVAL;
1076 			break;
1077 		case BPF_LD | BPF_W | BPF_ABS:
1078 		case BPF_LD | BPF_H | BPF_ABS:
1079 		case BPF_LD | BPF_B | BPF_ABS:
1080 			anc_found = false;
1081 			if (bpf_anc_helper(ftest) & BPF_ANC)
1082 				anc_found = true;
1083 			/* Ancillary operation unknown or unsupported */
1084 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1085 				return -EINVAL;
1086 		}
1087 	}
1088 
1089 	/* Last instruction must be a RET code */
1090 	switch (filter[flen - 1].code) {
1091 	case BPF_RET | BPF_K:
1092 	case BPF_RET | BPF_A:
1093 		return check_load_and_stores(filter, flen);
1094 	}
1095 
1096 	return -EINVAL;
1097 }
1098 
1099 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1100 				      const struct sock_fprog *fprog)
1101 {
1102 	unsigned int fsize = bpf_classic_proglen(fprog);
1103 	struct sock_fprog_kern *fkprog;
1104 
1105 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1106 	if (!fp->orig_prog)
1107 		return -ENOMEM;
1108 
1109 	fkprog = fp->orig_prog;
1110 	fkprog->len = fprog->len;
1111 
1112 	fkprog->filter = kmemdup(fp->insns, fsize,
1113 				 GFP_KERNEL | __GFP_NOWARN);
1114 	if (!fkprog->filter) {
1115 		kfree(fp->orig_prog);
1116 		return -ENOMEM;
1117 	}
1118 
1119 	return 0;
1120 }
1121 
1122 static void bpf_release_orig_filter(struct bpf_prog *fp)
1123 {
1124 	struct sock_fprog_kern *fprog = fp->orig_prog;
1125 
1126 	if (fprog) {
1127 		kfree(fprog->filter);
1128 		kfree(fprog);
1129 	}
1130 }
1131 
1132 static void __bpf_prog_release(struct bpf_prog *prog)
1133 {
1134 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1135 		bpf_prog_put(prog);
1136 	} else {
1137 		bpf_release_orig_filter(prog);
1138 		bpf_prog_free(prog);
1139 	}
1140 }
1141 
1142 static void __sk_filter_release(struct sk_filter *fp)
1143 {
1144 	__bpf_prog_release(fp->prog);
1145 	kfree(fp);
1146 }
1147 
1148 /**
1149  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1150  *	@rcu: rcu_head that contains the sk_filter to free
1151  */
1152 static void sk_filter_release_rcu(struct rcu_head *rcu)
1153 {
1154 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1155 
1156 	__sk_filter_release(fp);
1157 }
1158 
1159 /**
1160  *	sk_filter_release - release a socket filter
1161  *	@fp: filter to remove
1162  *
1163  *	Remove a filter from a socket and release its resources.
1164  */
1165 static void sk_filter_release(struct sk_filter *fp)
1166 {
1167 	if (refcount_dec_and_test(&fp->refcnt))
1168 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1169 }
1170 
1171 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1172 {
1173 	u32 filter_size = bpf_prog_size(fp->prog->len);
1174 
1175 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1176 	sk_filter_release(fp);
1177 }
1178 
1179 /* try to charge the socket memory if there is space available
1180  * return true on success
1181  */
1182 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1183 {
1184 	u32 filter_size = bpf_prog_size(fp->prog->len);
1185 
1186 	/* same check as in sock_kmalloc() */
1187 	if (filter_size <= sysctl_optmem_max &&
1188 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1189 		atomic_add(filter_size, &sk->sk_omem_alloc);
1190 		return true;
1191 	}
1192 	return false;
1193 }
1194 
1195 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1196 {
1197 	if (!refcount_inc_not_zero(&fp->refcnt))
1198 		return false;
1199 
1200 	if (!__sk_filter_charge(sk, fp)) {
1201 		sk_filter_release(fp);
1202 		return false;
1203 	}
1204 	return true;
1205 }
1206 
1207 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1208 {
1209 	struct sock_filter *old_prog;
1210 	struct bpf_prog *old_fp;
1211 	int err, new_len, old_len = fp->len;
1212 	bool seen_ld_abs = false;
1213 
1214 	/* We are free to overwrite insns et al right here as it
1215 	 * won't be used at this point in time anymore internally
1216 	 * after the migration to the internal BPF instruction
1217 	 * representation.
1218 	 */
1219 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1220 		     sizeof(struct bpf_insn));
1221 
1222 	/* Conversion cannot happen on overlapping memory areas,
1223 	 * so we need to keep the user BPF around until the 2nd
1224 	 * pass. At this time, the user BPF is stored in fp->insns.
1225 	 */
1226 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1227 			   GFP_KERNEL | __GFP_NOWARN);
1228 	if (!old_prog) {
1229 		err = -ENOMEM;
1230 		goto out_err;
1231 	}
1232 
1233 	/* 1st pass: calculate the new program length. */
1234 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1235 				 &seen_ld_abs);
1236 	if (err)
1237 		goto out_err_free;
1238 
1239 	/* Expand fp for appending the new filter representation. */
1240 	old_fp = fp;
1241 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1242 	if (!fp) {
1243 		/* The old_fp is still around in case we couldn't
1244 		 * allocate new memory, so uncharge on that one.
1245 		 */
1246 		fp = old_fp;
1247 		err = -ENOMEM;
1248 		goto out_err_free;
1249 	}
1250 
1251 	fp->len = new_len;
1252 
1253 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1254 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1255 				 &seen_ld_abs);
1256 	if (err)
1257 		/* 2nd bpf_convert_filter() can fail only if it fails
1258 		 * to allocate memory, remapping must succeed. Note,
1259 		 * that at this time old_fp has already been released
1260 		 * by krealloc().
1261 		 */
1262 		goto out_err_free;
1263 
1264 	fp = bpf_prog_select_runtime(fp, &err);
1265 	if (err)
1266 		goto out_err_free;
1267 
1268 	kfree(old_prog);
1269 	return fp;
1270 
1271 out_err_free:
1272 	kfree(old_prog);
1273 out_err:
1274 	__bpf_prog_release(fp);
1275 	return ERR_PTR(err);
1276 }
1277 
1278 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1279 					   bpf_aux_classic_check_t trans)
1280 {
1281 	int err;
1282 
1283 	fp->bpf_func = NULL;
1284 	fp->jited = 0;
1285 
1286 	err = bpf_check_classic(fp->insns, fp->len);
1287 	if (err) {
1288 		__bpf_prog_release(fp);
1289 		return ERR_PTR(err);
1290 	}
1291 
1292 	/* There might be additional checks and transformations
1293 	 * needed on classic filters, f.e. in case of seccomp.
1294 	 */
1295 	if (trans) {
1296 		err = trans(fp->insns, fp->len);
1297 		if (err) {
1298 			__bpf_prog_release(fp);
1299 			return ERR_PTR(err);
1300 		}
1301 	}
1302 
1303 	/* Probe if we can JIT compile the filter and if so, do
1304 	 * the compilation of the filter.
1305 	 */
1306 	bpf_jit_compile(fp);
1307 
1308 	/* JIT compiler couldn't process this filter, so do the
1309 	 * internal BPF translation for the optimized interpreter.
1310 	 */
1311 	if (!fp->jited)
1312 		fp = bpf_migrate_filter(fp);
1313 
1314 	return fp;
1315 }
1316 
1317 /**
1318  *	bpf_prog_create - create an unattached filter
1319  *	@pfp: the unattached filter that is created
1320  *	@fprog: the filter program
1321  *
1322  * Create a filter independent of any socket. We first run some
1323  * sanity checks on it to make sure it does not explode on us later.
1324  * If an error occurs or there is insufficient memory for the filter
1325  * a negative errno code is returned. On success the return is zero.
1326  */
1327 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1328 {
1329 	unsigned int fsize = bpf_classic_proglen(fprog);
1330 	struct bpf_prog *fp;
1331 
1332 	/* Make sure new filter is there and in the right amounts. */
1333 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1334 		return -EINVAL;
1335 
1336 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1337 	if (!fp)
1338 		return -ENOMEM;
1339 
1340 	memcpy(fp->insns, fprog->filter, fsize);
1341 
1342 	fp->len = fprog->len;
1343 	/* Since unattached filters are not copied back to user
1344 	 * space through sk_get_filter(), we do not need to hold
1345 	 * a copy here, and can spare us the work.
1346 	 */
1347 	fp->orig_prog = NULL;
1348 
1349 	/* bpf_prepare_filter() already takes care of freeing
1350 	 * memory in case something goes wrong.
1351 	 */
1352 	fp = bpf_prepare_filter(fp, NULL);
1353 	if (IS_ERR(fp))
1354 		return PTR_ERR(fp);
1355 
1356 	*pfp = fp;
1357 	return 0;
1358 }
1359 EXPORT_SYMBOL_GPL(bpf_prog_create);
1360 
1361 /**
1362  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1363  *	@pfp: the unattached filter that is created
1364  *	@fprog: the filter program
1365  *	@trans: post-classic verifier transformation handler
1366  *	@save_orig: save classic BPF program
1367  *
1368  * This function effectively does the same as bpf_prog_create(), only
1369  * that it builds up its insns buffer from user space provided buffer.
1370  * It also allows for passing a bpf_aux_classic_check_t handler.
1371  */
1372 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1373 			      bpf_aux_classic_check_t trans, bool save_orig)
1374 {
1375 	unsigned int fsize = bpf_classic_proglen(fprog);
1376 	struct bpf_prog *fp;
1377 	int err;
1378 
1379 	/* Make sure new filter is there and in the right amounts. */
1380 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1381 		return -EINVAL;
1382 
1383 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1384 	if (!fp)
1385 		return -ENOMEM;
1386 
1387 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1388 		__bpf_prog_free(fp);
1389 		return -EFAULT;
1390 	}
1391 
1392 	fp->len = fprog->len;
1393 	fp->orig_prog = NULL;
1394 
1395 	if (save_orig) {
1396 		err = bpf_prog_store_orig_filter(fp, fprog);
1397 		if (err) {
1398 			__bpf_prog_free(fp);
1399 			return -ENOMEM;
1400 		}
1401 	}
1402 
1403 	/* bpf_prepare_filter() already takes care of freeing
1404 	 * memory in case something goes wrong.
1405 	 */
1406 	fp = bpf_prepare_filter(fp, trans);
1407 	if (IS_ERR(fp))
1408 		return PTR_ERR(fp);
1409 
1410 	*pfp = fp;
1411 	return 0;
1412 }
1413 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1414 
1415 void bpf_prog_destroy(struct bpf_prog *fp)
1416 {
1417 	__bpf_prog_release(fp);
1418 }
1419 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1420 
1421 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1422 {
1423 	struct sk_filter *fp, *old_fp;
1424 
1425 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1426 	if (!fp)
1427 		return -ENOMEM;
1428 
1429 	fp->prog = prog;
1430 
1431 	if (!__sk_filter_charge(sk, fp)) {
1432 		kfree(fp);
1433 		return -ENOMEM;
1434 	}
1435 	refcount_set(&fp->refcnt, 1);
1436 
1437 	old_fp = rcu_dereference_protected(sk->sk_filter,
1438 					   lockdep_sock_is_held(sk));
1439 	rcu_assign_pointer(sk->sk_filter, fp);
1440 
1441 	if (old_fp)
1442 		sk_filter_uncharge(sk, old_fp);
1443 
1444 	return 0;
1445 }
1446 
1447 static
1448 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1449 {
1450 	unsigned int fsize = bpf_classic_proglen(fprog);
1451 	struct bpf_prog *prog;
1452 	int err;
1453 
1454 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1455 		return ERR_PTR(-EPERM);
1456 
1457 	/* Make sure new filter is there and in the right amounts. */
1458 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1459 		return ERR_PTR(-EINVAL);
1460 
1461 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1462 	if (!prog)
1463 		return ERR_PTR(-ENOMEM);
1464 
1465 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1466 		__bpf_prog_free(prog);
1467 		return ERR_PTR(-EFAULT);
1468 	}
1469 
1470 	prog->len = fprog->len;
1471 
1472 	err = bpf_prog_store_orig_filter(prog, fprog);
1473 	if (err) {
1474 		__bpf_prog_free(prog);
1475 		return ERR_PTR(-ENOMEM);
1476 	}
1477 
1478 	/* bpf_prepare_filter() already takes care of freeing
1479 	 * memory in case something goes wrong.
1480 	 */
1481 	return bpf_prepare_filter(prog, NULL);
1482 }
1483 
1484 /**
1485  *	sk_attach_filter - attach a socket filter
1486  *	@fprog: the filter program
1487  *	@sk: the socket to use
1488  *
1489  * Attach the user's filter code. We first run some sanity checks on
1490  * it to make sure it does not explode on us later. If an error
1491  * occurs or there is insufficient memory for the filter a negative
1492  * errno code is returned. On success the return is zero.
1493  */
1494 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1495 {
1496 	struct bpf_prog *prog = __get_filter(fprog, sk);
1497 	int err;
1498 
1499 	if (IS_ERR(prog))
1500 		return PTR_ERR(prog);
1501 
1502 	err = __sk_attach_prog(prog, sk);
1503 	if (err < 0) {
1504 		__bpf_prog_release(prog);
1505 		return err;
1506 	}
1507 
1508 	return 0;
1509 }
1510 EXPORT_SYMBOL_GPL(sk_attach_filter);
1511 
1512 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1513 {
1514 	struct bpf_prog *prog = __get_filter(fprog, sk);
1515 	int err;
1516 
1517 	if (IS_ERR(prog))
1518 		return PTR_ERR(prog);
1519 
1520 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1521 		err = -ENOMEM;
1522 	else
1523 		err = reuseport_attach_prog(sk, prog);
1524 
1525 	if (err)
1526 		__bpf_prog_release(prog);
1527 
1528 	return err;
1529 }
1530 
1531 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1532 {
1533 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1534 		return ERR_PTR(-EPERM);
1535 
1536 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1537 }
1538 
1539 int sk_attach_bpf(u32 ufd, struct sock *sk)
1540 {
1541 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1542 	int err;
1543 
1544 	if (IS_ERR(prog))
1545 		return PTR_ERR(prog);
1546 
1547 	err = __sk_attach_prog(prog, sk);
1548 	if (err < 0) {
1549 		bpf_prog_put(prog);
1550 		return err;
1551 	}
1552 
1553 	return 0;
1554 }
1555 
1556 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1557 {
1558 	struct bpf_prog *prog;
1559 	int err;
1560 
1561 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1562 		return -EPERM;
1563 
1564 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1565 	if (PTR_ERR(prog) == -EINVAL)
1566 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1567 	if (IS_ERR(prog))
1568 		return PTR_ERR(prog);
1569 
1570 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1571 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1572 		 * bpf prog (e.g. sockmap).  It depends on the
1573 		 * limitation imposed by bpf_prog_load().
1574 		 * Hence, sysctl_optmem_max is not checked.
1575 		 */
1576 		if ((sk->sk_type != SOCK_STREAM &&
1577 		     sk->sk_type != SOCK_DGRAM) ||
1578 		    (sk->sk_protocol != IPPROTO_UDP &&
1579 		     sk->sk_protocol != IPPROTO_TCP) ||
1580 		    (sk->sk_family != AF_INET &&
1581 		     sk->sk_family != AF_INET6)) {
1582 			err = -ENOTSUPP;
1583 			goto err_prog_put;
1584 		}
1585 	} else {
1586 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1587 		if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1588 			err = -ENOMEM;
1589 			goto err_prog_put;
1590 		}
1591 	}
1592 
1593 	err = reuseport_attach_prog(sk, prog);
1594 err_prog_put:
1595 	if (err)
1596 		bpf_prog_put(prog);
1597 
1598 	return err;
1599 }
1600 
1601 void sk_reuseport_prog_free(struct bpf_prog *prog)
1602 {
1603 	if (!prog)
1604 		return;
1605 
1606 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1607 		bpf_prog_put(prog);
1608 	else
1609 		bpf_prog_destroy(prog);
1610 }
1611 
1612 struct bpf_scratchpad {
1613 	union {
1614 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1615 		u8     buff[MAX_BPF_STACK];
1616 	};
1617 };
1618 
1619 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1620 
1621 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1622 					  unsigned int write_len)
1623 {
1624 	return skb_ensure_writable(skb, write_len);
1625 }
1626 
1627 static inline int bpf_try_make_writable(struct sk_buff *skb,
1628 					unsigned int write_len)
1629 {
1630 	int err = __bpf_try_make_writable(skb, write_len);
1631 
1632 	bpf_compute_data_pointers(skb);
1633 	return err;
1634 }
1635 
1636 static int bpf_try_make_head_writable(struct sk_buff *skb)
1637 {
1638 	return bpf_try_make_writable(skb, skb_headlen(skb));
1639 }
1640 
1641 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1642 {
1643 	if (skb_at_tc_ingress(skb))
1644 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1645 }
1646 
1647 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1648 {
1649 	if (skb_at_tc_ingress(skb))
1650 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1651 }
1652 
1653 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1654 	   const void *, from, u32, len, u64, flags)
1655 {
1656 	void *ptr;
1657 
1658 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1659 		return -EINVAL;
1660 	if (unlikely(offset > 0xffff))
1661 		return -EFAULT;
1662 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1663 		return -EFAULT;
1664 
1665 	ptr = skb->data + offset;
1666 	if (flags & BPF_F_RECOMPUTE_CSUM)
1667 		__skb_postpull_rcsum(skb, ptr, len, offset);
1668 
1669 	memcpy(ptr, from, len);
1670 
1671 	if (flags & BPF_F_RECOMPUTE_CSUM)
1672 		__skb_postpush_rcsum(skb, ptr, len, offset);
1673 	if (flags & BPF_F_INVALIDATE_HASH)
1674 		skb_clear_hash(skb);
1675 
1676 	return 0;
1677 }
1678 
1679 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1680 	.func		= bpf_skb_store_bytes,
1681 	.gpl_only	= false,
1682 	.ret_type	= RET_INTEGER,
1683 	.arg1_type	= ARG_PTR_TO_CTX,
1684 	.arg2_type	= ARG_ANYTHING,
1685 	.arg3_type	= ARG_PTR_TO_MEM,
1686 	.arg4_type	= ARG_CONST_SIZE,
1687 	.arg5_type	= ARG_ANYTHING,
1688 };
1689 
1690 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1691 	   void *, to, u32, len)
1692 {
1693 	void *ptr;
1694 
1695 	if (unlikely(offset > 0xffff))
1696 		goto err_clear;
1697 
1698 	ptr = skb_header_pointer(skb, offset, len, to);
1699 	if (unlikely(!ptr))
1700 		goto err_clear;
1701 	if (ptr != to)
1702 		memcpy(to, ptr, len);
1703 
1704 	return 0;
1705 err_clear:
1706 	memset(to, 0, len);
1707 	return -EFAULT;
1708 }
1709 
1710 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1711 	.func		= bpf_skb_load_bytes,
1712 	.gpl_only	= false,
1713 	.ret_type	= RET_INTEGER,
1714 	.arg1_type	= ARG_PTR_TO_CTX,
1715 	.arg2_type	= ARG_ANYTHING,
1716 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1717 	.arg4_type	= ARG_CONST_SIZE,
1718 };
1719 
1720 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1721 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1722 	   void *, to, u32, len)
1723 {
1724 	void *ptr;
1725 
1726 	if (unlikely(offset > 0xffff))
1727 		goto err_clear;
1728 
1729 	if (unlikely(!ctx->skb))
1730 		goto err_clear;
1731 
1732 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1733 	if (unlikely(!ptr))
1734 		goto err_clear;
1735 	if (ptr != to)
1736 		memcpy(to, ptr, len);
1737 
1738 	return 0;
1739 err_clear:
1740 	memset(to, 0, len);
1741 	return -EFAULT;
1742 }
1743 
1744 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1745 	.func		= bpf_flow_dissector_load_bytes,
1746 	.gpl_only	= false,
1747 	.ret_type	= RET_INTEGER,
1748 	.arg1_type	= ARG_PTR_TO_CTX,
1749 	.arg2_type	= ARG_ANYTHING,
1750 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1751 	.arg4_type	= ARG_CONST_SIZE,
1752 };
1753 
1754 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1755 	   u32, offset, void *, to, u32, len, u32, start_header)
1756 {
1757 	u8 *end = skb_tail_pointer(skb);
1758 	u8 *start, *ptr;
1759 
1760 	if (unlikely(offset > 0xffff))
1761 		goto err_clear;
1762 
1763 	switch (start_header) {
1764 	case BPF_HDR_START_MAC:
1765 		if (unlikely(!skb_mac_header_was_set(skb)))
1766 			goto err_clear;
1767 		start = skb_mac_header(skb);
1768 		break;
1769 	case BPF_HDR_START_NET:
1770 		start = skb_network_header(skb);
1771 		break;
1772 	default:
1773 		goto err_clear;
1774 	}
1775 
1776 	ptr = start + offset;
1777 
1778 	if (likely(ptr + len <= end)) {
1779 		memcpy(to, ptr, len);
1780 		return 0;
1781 	}
1782 
1783 err_clear:
1784 	memset(to, 0, len);
1785 	return -EFAULT;
1786 }
1787 
1788 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1789 	.func		= bpf_skb_load_bytes_relative,
1790 	.gpl_only	= false,
1791 	.ret_type	= RET_INTEGER,
1792 	.arg1_type	= ARG_PTR_TO_CTX,
1793 	.arg2_type	= ARG_ANYTHING,
1794 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1795 	.arg4_type	= ARG_CONST_SIZE,
1796 	.arg5_type	= ARG_ANYTHING,
1797 };
1798 
1799 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1800 {
1801 	/* Idea is the following: should the needed direct read/write
1802 	 * test fail during runtime, we can pull in more data and redo
1803 	 * again, since implicitly, we invalidate previous checks here.
1804 	 *
1805 	 * Or, since we know how much we need to make read/writeable,
1806 	 * this can be done once at the program beginning for direct
1807 	 * access case. By this we overcome limitations of only current
1808 	 * headroom being accessible.
1809 	 */
1810 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1811 }
1812 
1813 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1814 	.func		= bpf_skb_pull_data,
1815 	.gpl_only	= false,
1816 	.ret_type	= RET_INTEGER,
1817 	.arg1_type	= ARG_PTR_TO_CTX,
1818 	.arg2_type	= ARG_ANYTHING,
1819 };
1820 
1821 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1822 {
1823 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1824 }
1825 
1826 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1827 	.func		= bpf_sk_fullsock,
1828 	.gpl_only	= false,
1829 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1830 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1831 };
1832 
1833 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1834 					   unsigned int write_len)
1835 {
1836 	int err = __bpf_try_make_writable(skb, write_len);
1837 
1838 	bpf_compute_data_end_sk_skb(skb);
1839 	return err;
1840 }
1841 
1842 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1843 {
1844 	/* Idea is the following: should the needed direct read/write
1845 	 * test fail during runtime, we can pull in more data and redo
1846 	 * again, since implicitly, we invalidate previous checks here.
1847 	 *
1848 	 * Or, since we know how much we need to make read/writeable,
1849 	 * this can be done once at the program beginning for direct
1850 	 * access case. By this we overcome limitations of only current
1851 	 * headroom being accessible.
1852 	 */
1853 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1854 }
1855 
1856 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1857 	.func		= sk_skb_pull_data,
1858 	.gpl_only	= false,
1859 	.ret_type	= RET_INTEGER,
1860 	.arg1_type	= ARG_PTR_TO_CTX,
1861 	.arg2_type	= ARG_ANYTHING,
1862 };
1863 
1864 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1865 	   u64, from, u64, to, u64, flags)
1866 {
1867 	__sum16 *ptr;
1868 
1869 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1870 		return -EINVAL;
1871 	if (unlikely(offset > 0xffff || offset & 1))
1872 		return -EFAULT;
1873 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1874 		return -EFAULT;
1875 
1876 	ptr = (__sum16 *)(skb->data + offset);
1877 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1878 	case 0:
1879 		if (unlikely(from != 0))
1880 			return -EINVAL;
1881 
1882 		csum_replace_by_diff(ptr, to);
1883 		break;
1884 	case 2:
1885 		csum_replace2(ptr, from, to);
1886 		break;
1887 	case 4:
1888 		csum_replace4(ptr, from, to);
1889 		break;
1890 	default:
1891 		return -EINVAL;
1892 	}
1893 
1894 	return 0;
1895 }
1896 
1897 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1898 	.func		= bpf_l3_csum_replace,
1899 	.gpl_only	= false,
1900 	.ret_type	= RET_INTEGER,
1901 	.arg1_type	= ARG_PTR_TO_CTX,
1902 	.arg2_type	= ARG_ANYTHING,
1903 	.arg3_type	= ARG_ANYTHING,
1904 	.arg4_type	= ARG_ANYTHING,
1905 	.arg5_type	= ARG_ANYTHING,
1906 };
1907 
1908 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1909 	   u64, from, u64, to, u64, flags)
1910 {
1911 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1912 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1913 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1914 	__sum16 *ptr;
1915 
1916 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1917 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1918 		return -EINVAL;
1919 	if (unlikely(offset > 0xffff || offset & 1))
1920 		return -EFAULT;
1921 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1922 		return -EFAULT;
1923 
1924 	ptr = (__sum16 *)(skb->data + offset);
1925 	if (is_mmzero && !do_mforce && !*ptr)
1926 		return 0;
1927 
1928 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1929 	case 0:
1930 		if (unlikely(from != 0))
1931 			return -EINVAL;
1932 
1933 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1934 		break;
1935 	case 2:
1936 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1937 		break;
1938 	case 4:
1939 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1940 		break;
1941 	default:
1942 		return -EINVAL;
1943 	}
1944 
1945 	if (is_mmzero && !*ptr)
1946 		*ptr = CSUM_MANGLED_0;
1947 	return 0;
1948 }
1949 
1950 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1951 	.func		= bpf_l4_csum_replace,
1952 	.gpl_only	= false,
1953 	.ret_type	= RET_INTEGER,
1954 	.arg1_type	= ARG_PTR_TO_CTX,
1955 	.arg2_type	= ARG_ANYTHING,
1956 	.arg3_type	= ARG_ANYTHING,
1957 	.arg4_type	= ARG_ANYTHING,
1958 	.arg5_type	= ARG_ANYTHING,
1959 };
1960 
1961 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1962 	   __be32 *, to, u32, to_size, __wsum, seed)
1963 {
1964 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1965 	u32 diff_size = from_size + to_size;
1966 	int i, j = 0;
1967 
1968 	/* This is quite flexible, some examples:
1969 	 *
1970 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1971 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
1972 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1973 	 *
1974 	 * Even for diffing, from_size and to_size don't need to be equal.
1975 	 */
1976 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1977 		     diff_size > sizeof(sp->diff)))
1978 		return -EINVAL;
1979 
1980 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1981 		sp->diff[j] = ~from[i];
1982 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1983 		sp->diff[j] = to[i];
1984 
1985 	return csum_partial(sp->diff, diff_size, seed);
1986 }
1987 
1988 static const struct bpf_func_proto bpf_csum_diff_proto = {
1989 	.func		= bpf_csum_diff,
1990 	.gpl_only	= false,
1991 	.pkt_access	= true,
1992 	.ret_type	= RET_INTEGER,
1993 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1994 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1995 	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
1996 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1997 	.arg5_type	= ARG_ANYTHING,
1998 };
1999 
2000 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2001 {
2002 	/* The interface is to be used in combination with bpf_csum_diff()
2003 	 * for direct packet writes. csum rotation for alignment as well
2004 	 * as emulating csum_sub() can be done from the eBPF program.
2005 	 */
2006 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2007 		return (skb->csum = csum_add(skb->csum, csum));
2008 
2009 	return -ENOTSUPP;
2010 }
2011 
2012 static const struct bpf_func_proto bpf_csum_update_proto = {
2013 	.func		= bpf_csum_update,
2014 	.gpl_only	= false,
2015 	.ret_type	= RET_INTEGER,
2016 	.arg1_type	= ARG_PTR_TO_CTX,
2017 	.arg2_type	= ARG_ANYTHING,
2018 };
2019 
2020 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2021 {
2022 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2023 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2024 	 * is passed as flags, for example.
2025 	 */
2026 	switch (level) {
2027 	case BPF_CSUM_LEVEL_INC:
2028 		__skb_incr_checksum_unnecessary(skb);
2029 		break;
2030 	case BPF_CSUM_LEVEL_DEC:
2031 		__skb_decr_checksum_unnecessary(skb);
2032 		break;
2033 	case BPF_CSUM_LEVEL_RESET:
2034 		__skb_reset_checksum_unnecessary(skb);
2035 		break;
2036 	case BPF_CSUM_LEVEL_QUERY:
2037 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2038 		       skb->csum_level : -EACCES;
2039 	default:
2040 		return -EINVAL;
2041 	}
2042 
2043 	return 0;
2044 }
2045 
2046 static const struct bpf_func_proto bpf_csum_level_proto = {
2047 	.func		= bpf_csum_level,
2048 	.gpl_only	= false,
2049 	.ret_type	= RET_INTEGER,
2050 	.arg1_type	= ARG_PTR_TO_CTX,
2051 	.arg2_type	= ARG_ANYTHING,
2052 };
2053 
2054 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2055 {
2056 	return dev_forward_skb(dev, skb);
2057 }
2058 
2059 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2060 				      struct sk_buff *skb)
2061 {
2062 	int ret = ____dev_forward_skb(dev, skb);
2063 
2064 	if (likely(!ret)) {
2065 		skb->dev = dev;
2066 		ret = netif_rx(skb);
2067 	}
2068 
2069 	return ret;
2070 }
2071 
2072 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2073 {
2074 	int ret;
2075 
2076 	if (dev_xmit_recursion()) {
2077 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2078 		kfree_skb(skb);
2079 		return -ENETDOWN;
2080 	}
2081 
2082 	skb->dev = dev;
2083 	skb->tstamp = 0;
2084 
2085 	dev_xmit_recursion_inc();
2086 	ret = dev_queue_xmit(skb);
2087 	dev_xmit_recursion_dec();
2088 
2089 	return ret;
2090 }
2091 
2092 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2093 				 u32 flags)
2094 {
2095 	unsigned int mlen = skb_network_offset(skb);
2096 
2097 	if (mlen) {
2098 		__skb_pull(skb, mlen);
2099 
2100 		/* At ingress, the mac header has already been pulled once.
2101 		 * At egress, skb_pospull_rcsum has to be done in case that
2102 		 * the skb is originated from ingress (i.e. a forwarded skb)
2103 		 * to ensure that rcsum starts at net header.
2104 		 */
2105 		if (!skb_at_tc_ingress(skb))
2106 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2107 	}
2108 	skb_pop_mac_header(skb);
2109 	skb_reset_mac_len(skb);
2110 	return flags & BPF_F_INGRESS ?
2111 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2112 }
2113 
2114 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2115 				 u32 flags)
2116 {
2117 	/* Verify that a link layer header is carried */
2118 	if (unlikely(skb->mac_header >= skb->network_header)) {
2119 		kfree_skb(skb);
2120 		return -ERANGE;
2121 	}
2122 
2123 	bpf_push_mac_rcsum(skb);
2124 	return flags & BPF_F_INGRESS ?
2125 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2126 }
2127 
2128 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2129 			  u32 flags)
2130 {
2131 	if (dev_is_mac_header_xmit(dev))
2132 		return __bpf_redirect_common(skb, dev, flags);
2133 	else
2134 		return __bpf_redirect_no_mac(skb, dev, flags);
2135 }
2136 
2137 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2138 {
2139 	struct net_device *dev;
2140 	struct sk_buff *clone;
2141 	int ret;
2142 
2143 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2144 		return -EINVAL;
2145 
2146 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2147 	if (unlikely(!dev))
2148 		return -EINVAL;
2149 
2150 	clone = skb_clone(skb, GFP_ATOMIC);
2151 	if (unlikely(!clone))
2152 		return -ENOMEM;
2153 
2154 	/* For direct write, we need to keep the invariant that the skbs
2155 	 * we're dealing with need to be uncloned. Should uncloning fail
2156 	 * here, we need to free the just generated clone to unclone once
2157 	 * again.
2158 	 */
2159 	ret = bpf_try_make_head_writable(skb);
2160 	if (unlikely(ret)) {
2161 		kfree_skb(clone);
2162 		return -ENOMEM;
2163 	}
2164 
2165 	return __bpf_redirect(clone, dev, flags);
2166 }
2167 
2168 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2169 	.func           = bpf_clone_redirect,
2170 	.gpl_only       = false,
2171 	.ret_type       = RET_INTEGER,
2172 	.arg1_type      = ARG_PTR_TO_CTX,
2173 	.arg2_type      = ARG_ANYTHING,
2174 	.arg3_type      = ARG_ANYTHING,
2175 };
2176 
2177 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2178 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2179 
2180 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2181 {
2182 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2183 
2184 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2185 		return TC_ACT_SHOT;
2186 
2187 	ri->flags = flags;
2188 	ri->tgt_index = ifindex;
2189 
2190 	return TC_ACT_REDIRECT;
2191 }
2192 
2193 int skb_do_redirect(struct sk_buff *skb)
2194 {
2195 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2196 	struct net_device *dev;
2197 
2198 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->tgt_index);
2199 	ri->tgt_index = 0;
2200 	if (unlikely(!dev)) {
2201 		kfree_skb(skb);
2202 		return -EINVAL;
2203 	}
2204 
2205 	return __bpf_redirect(skb, dev, ri->flags);
2206 }
2207 
2208 static const struct bpf_func_proto bpf_redirect_proto = {
2209 	.func           = bpf_redirect,
2210 	.gpl_only       = false,
2211 	.ret_type       = RET_INTEGER,
2212 	.arg1_type      = ARG_ANYTHING,
2213 	.arg2_type      = ARG_ANYTHING,
2214 };
2215 
2216 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2217 {
2218 	msg->apply_bytes = bytes;
2219 	return 0;
2220 }
2221 
2222 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2223 	.func           = bpf_msg_apply_bytes,
2224 	.gpl_only       = false,
2225 	.ret_type       = RET_INTEGER,
2226 	.arg1_type	= ARG_PTR_TO_CTX,
2227 	.arg2_type      = ARG_ANYTHING,
2228 };
2229 
2230 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2231 {
2232 	msg->cork_bytes = bytes;
2233 	return 0;
2234 }
2235 
2236 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2237 	.func           = bpf_msg_cork_bytes,
2238 	.gpl_only       = false,
2239 	.ret_type       = RET_INTEGER,
2240 	.arg1_type	= ARG_PTR_TO_CTX,
2241 	.arg2_type      = ARG_ANYTHING,
2242 };
2243 
2244 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2245 	   u32, end, u64, flags)
2246 {
2247 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2248 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2249 	struct scatterlist *sge;
2250 	u8 *raw, *to, *from;
2251 	struct page *page;
2252 
2253 	if (unlikely(flags || end <= start))
2254 		return -EINVAL;
2255 
2256 	/* First find the starting scatterlist element */
2257 	i = msg->sg.start;
2258 	do {
2259 		offset += len;
2260 		len = sk_msg_elem(msg, i)->length;
2261 		if (start < offset + len)
2262 			break;
2263 		sk_msg_iter_var_next(i);
2264 	} while (i != msg->sg.end);
2265 
2266 	if (unlikely(start >= offset + len))
2267 		return -EINVAL;
2268 
2269 	first_sge = i;
2270 	/* The start may point into the sg element so we need to also
2271 	 * account for the headroom.
2272 	 */
2273 	bytes_sg_total = start - offset + bytes;
2274 	if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2275 		goto out;
2276 
2277 	/* At this point we need to linearize multiple scatterlist
2278 	 * elements or a single shared page. Either way we need to
2279 	 * copy into a linear buffer exclusively owned by BPF. Then
2280 	 * place the buffer in the scatterlist and fixup the original
2281 	 * entries by removing the entries now in the linear buffer
2282 	 * and shifting the remaining entries. For now we do not try
2283 	 * to copy partial entries to avoid complexity of running out
2284 	 * of sg_entry slots. The downside is reading a single byte
2285 	 * will copy the entire sg entry.
2286 	 */
2287 	do {
2288 		copy += sk_msg_elem(msg, i)->length;
2289 		sk_msg_iter_var_next(i);
2290 		if (bytes_sg_total <= copy)
2291 			break;
2292 	} while (i != msg->sg.end);
2293 	last_sge = i;
2294 
2295 	if (unlikely(bytes_sg_total > copy))
2296 		return -EINVAL;
2297 
2298 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2299 			   get_order(copy));
2300 	if (unlikely(!page))
2301 		return -ENOMEM;
2302 
2303 	raw = page_address(page);
2304 	i = first_sge;
2305 	do {
2306 		sge = sk_msg_elem(msg, i);
2307 		from = sg_virt(sge);
2308 		len = sge->length;
2309 		to = raw + poffset;
2310 
2311 		memcpy(to, from, len);
2312 		poffset += len;
2313 		sge->length = 0;
2314 		put_page(sg_page(sge));
2315 
2316 		sk_msg_iter_var_next(i);
2317 	} while (i != last_sge);
2318 
2319 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2320 
2321 	/* To repair sg ring we need to shift entries. If we only
2322 	 * had a single entry though we can just replace it and
2323 	 * be done. Otherwise walk the ring and shift the entries.
2324 	 */
2325 	WARN_ON_ONCE(last_sge == first_sge);
2326 	shift = last_sge > first_sge ?
2327 		last_sge - first_sge - 1 :
2328 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2329 	if (!shift)
2330 		goto out;
2331 
2332 	i = first_sge;
2333 	sk_msg_iter_var_next(i);
2334 	do {
2335 		u32 move_from;
2336 
2337 		if (i + shift >= NR_MSG_FRAG_IDS)
2338 			move_from = i + shift - NR_MSG_FRAG_IDS;
2339 		else
2340 			move_from = i + shift;
2341 		if (move_from == msg->sg.end)
2342 			break;
2343 
2344 		msg->sg.data[i] = msg->sg.data[move_from];
2345 		msg->sg.data[move_from].length = 0;
2346 		msg->sg.data[move_from].page_link = 0;
2347 		msg->sg.data[move_from].offset = 0;
2348 		sk_msg_iter_var_next(i);
2349 	} while (1);
2350 
2351 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2352 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2353 		      msg->sg.end - shift;
2354 out:
2355 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2356 	msg->data_end = msg->data + bytes;
2357 	return 0;
2358 }
2359 
2360 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2361 	.func		= bpf_msg_pull_data,
2362 	.gpl_only	= false,
2363 	.ret_type	= RET_INTEGER,
2364 	.arg1_type	= ARG_PTR_TO_CTX,
2365 	.arg2_type	= ARG_ANYTHING,
2366 	.arg3_type	= ARG_ANYTHING,
2367 	.arg4_type	= ARG_ANYTHING,
2368 };
2369 
2370 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2371 	   u32, len, u64, flags)
2372 {
2373 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2374 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2375 	u8 *raw, *to, *from;
2376 	struct page *page;
2377 
2378 	if (unlikely(flags))
2379 		return -EINVAL;
2380 
2381 	/* First find the starting scatterlist element */
2382 	i = msg->sg.start;
2383 	do {
2384 		offset += l;
2385 		l = sk_msg_elem(msg, i)->length;
2386 
2387 		if (start < offset + l)
2388 			break;
2389 		sk_msg_iter_var_next(i);
2390 	} while (i != msg->sg.end);
2391 
2392 	if (start >= offset + l)
2393 		return -EINVAL;
2394 
2395 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2396 
2397 	/* If no space available will fallback to copy, we need at
2398 	 * least one scatterlist elem available to push data into
2399 	 * when start aligns to the beginning of an element or two
2400 	 * when it falls inside an element. We handle the start equals
2401 	 * offset case because its the common case for inserting a
2402 	 * header.
2403 	 */
2404 	if (!space || (space == 1 && start != offset))
2405 		copy = msg->sg.data[i].length;
2406 
2407 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2408 			   get_order(copy + len));
2409 	if (unlikely(!page))
2410 		return -ENOMEM;
2411 
2412 	if (copy) {
2413 		int front, back;
2414 
2415 		raw = page_address(page);
2416 
2417 		psge = sk_msg_elem(msg, i);
2418 		front = start - offset;
2419 		back = psge->length - front;
2420 		from = sg_virt(psge);
2421 
2422 		if (front)
2423 			memcpy(raw, from, front);
2424 
2425 		if (back) {
2426 			from += front;
2427 			to = raw + front + len;
2428 
2429 			memcpy(to, from, back);
2430 		}
2431 
2432 		put_page(sg_page(psge));
2433 	} else if (start - offset) {
2434 		psge = sk_msg_elem(msg, i);
2435 		rsge = sk_msg_elem_cpy(msg, i);
2436 
2437 		psge->length = start - offset;
2438 		rsge.length -= psge->length;
2439 		rsge.offset += start;
2440 
2441 		sk_msg_iter_var_next(i);
2442 		sg_unmark_end(psge);
2443 		sg_unmark_end(&rsge);
2444 		sk_msg_iter_next(msg, end);
2445 	}
2446 
2447 	/* Slot(s) to place newly allocated data */
2448 	new = i;
2449 
2450 	/* Shift one or two slots as needed */
2451 	if (!copy) {
2452 		sge = sk_msg_elem_cpy(msg, i);
2453 
2454 		sk_msg_iter_var_next(i);
2455 		sg_unmark_end(&sge);
2456 		sk_msg_iter_next(msg, end);
2457 
2458 		nsge = sk_msg_elem_cpy(msg, i);
2459 		if (rsge.length) {
2460 			sk_msg_iter_var_next(i);
2461 			nnsge = sk_msg_elem_cpy(msg, i);
2462 		}
2463 
2464 		while (i != msg->sg.end) {
2465 			msg->sg.data[i] = sge;
2466 			sge = nsge;
2467 			sk_msg_iter_var_next(i);
2468 			if (rsge.length) {
2469 				nsge = nnsge;
2470 				nnsge = sk_msg_elem_cpy(msg, i);
2471 			} else {
2472 				nsge = sk_msg_elem_cpy(msg, i);
2473 			}
2474 		}
2475 	}
2476 
2477 	/* Place newly allocated data buffer */
2478 	sk_mem_charge(msg->sk, len);
2479 	msg->sg.size += len;
2480 	__clear_bit(new, &msg->sg.copy);
2481 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2482 	if (rsge.length) {
2483 		get_page(sg_page(&rsge));
2484 		sk_msg_iter_var_next(new);
2485 		msg->sg.data[new] = rsge;
2486 	}
2487 
2488 	sk_msg_compute_data_pointers(msg);
2489 	return 0;
2490 }
2491 
2492 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2493 	.func		= bpf_msg_push_data,
2494 	.gpl_only	= false,
2495 	.ret_type	= RET_INTEGER,
2496 	.arg1_type	= ARG_PTR_TO_CTX,
2497 	.arg2_type	= ARG_ANYTHING,
2498 	.arg3_type	= ARG_ANYTHING,
2499 	.arg4_type	= ARG_ANYTHING,
2500 };
2501 
2502 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2503 {
2504 	int prev;
2505 
2506 	do {
2507 		prev = i;
2508 		sk_msg_iter_var_next(i);
2509 		msg->sg.data[prev] = msg->sg.data[i];
2510 	} while (i != msg->sg.end);
2511 
2512 	sk_msg_iter_prev(msg, end);
2513 }
2514 
2515 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2516 {
2517 	struct scatterlist tmp, sge;
2518 
2519 	sk_msg_iter_next(msg, end);
2520 	sge = sk_msg_elem_cpy(msg, i);
2521 	sk_msg_iter_var_next(i);
2522 	tmp = sk_msg_elem_cpy(msg, i);
2523 
2524 	while (i != msg->sg.end) {
2525 		msg->sg.data[i] = sge;
2526 		sk_msg_iter_var_next(i);
2527 		sge = tmp;
2528 		tmp = sk_msg_elem_cpy(msg, i);
2529 	}
2530 }
2531 
2532 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2533 	   u32, len, u64, flags)
2534 {
2535 	u32 i = 0, l = 0, space, offset = 0;
2536 	u64 last = start + len;
2537 	int pop;
2538 
2539 	if (unlikely(flags))
2540 		return -EINVAL;
2541 
2542 	/* First find the starting scatterlist element */
2543 	i = msg->sg.start;
2544 	do {
2545 		offset += l;
2546 		l = sk_msg_elem(msg, i)->length;
2547 
2548 		if (start < offset + l)
2549 			break;
2550 		sk_msg_iter_var_next(i);
2551 	} while (i != msg->sg.end);
2552 
2553 	/* Bounds checks: start and pop must be inside message */
2554 	if (start >= offset + l || last >= msg->sg.size)
2555 		return -EINVAL;
2556 
2557 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2558 
2559 	pop = len;
2560 	/* --------------| offset
2561 	 * -| start      |-------- len -------|
2562 	 *
2563 	 *  |----- a ----|-------- pop -------|----- b ----|
2564 	 *  |______________________________________________| length
2565 	 *
2566 	 *
2567 	 * a:   region at front of scatter element to save
2568 	 * b:   region at back of scatter element to save when length > A + pop
2569 	 * pop: region to pop from element, same as input 'pop' here will be
2570 	 *      decremented below per iteration.
2571 	 *
2572 	 * Two top-level cases to handle when start != offset, first B is non
2573 	 * zero and second B is zero corresponding to when a pop includes more
2574 	 * than one element.
2575 	 *
2576 	 * Then if B is non-zero AND there is no space allocate space and
2577 	 * compact A, B regions into page. If there is space shift ring to
2578 	 * the rigth free'ing the next element in ring to place B, leaving
2579 	 * A untouched except to reduce length.
2580 	 */
2581 	if (start != offset) {
2582 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2583 		int a = start;
2584 		int b = sge->length - pop - a;
2585 
2586 		sk_msg_iter_var_next(i);
2587 
2588 		if (pop < sge->length - a) {
2589 			if (space) {
2590 				sge->length = a;
2591 				sk_msg_shift_right(msg, i);
2592 				nsge = sk_msg_elem(msg, i);
2593 				get_page(sg_page(sge));
2594 				sg_set_page(nsge,
2595 					    sg_page(sge),
2596 					    b, sge->offset + pop + a);
2597 			} else {
2598 				struct page *page, *orig;
2599 				u8 *to, *from;
2600 
2601 				page = alloc_pages(__GFP_NOWARN |
2602 						   __GFP_COMP   | GFP_ATOMIC,
2603 						   get_order(a + b));
2604 				if (unlikely(!page))
2605 					return -ENOMEM;
2606 
2607 				sge->length = a;
2608 				orig = sg_page(sge);
2609 				from = sg_virt(sge);
2610 				to = page_address(page);
2611 				memcpy(to, from, a);
2612 				memcpy(to + a, from + a + pop, b);
2613 				sg_set_page(sge, page, a + b, 0);
2614 				put_page(orig);
2615 			}
2616 			pop = 0;
2617 		} else if (pop >= sge->length - a) {
2618 			pop -= (sge->length - a);
2619 			sge->length = a;
2620 		}
2621 	}
2622 
2623 	/* From above the current layout _must_ be as follows,
2624 	 *
2625 	 * -| offset
2626 	 * -| start
2627 	 *
2628 	 *  |---- pop ---|---------------- b ------------|
2629 	 *  |____________________________________________| length
2630 	 *
2631 	 * Offset and start of the current msg elem are equal because in the
2632 	 * previous case we handled offset != start and either consumed the
2633 	 * entire element and advanced to the next element OR pop == 0.
2634 	 *
2635 	 * Two cases to handle here are first pop is less than the length
2636 	 * leaving some remainder b above. Simply adjust the element's layout
2637 	 * in this case. Or pop >= length of the element so that b = 0. In this
2638 	 * case advance to next element decrementing pop.
2639 	 */
2640 	while (pop) {
2641 		struct scatterlist *sge = sk_msg_elem(msg, i);
2642 
2643 		if (pop < sge->length) {
2644 			sge->length -= pop;
2645 			sge->offset += pop;
2646 			pop = 0;
2647 		} else {
2648 			pop -= sge->length;
2649 			sk_msg_shift_left(msg, i);
2650 		}
2651 		sk_msg_iter_var_next(i);
2652 	}
2653 
2654 	sk_mem_uncharge(msg->sk, len - pop);
2655 	msg->sg.size -= (len - pop);
2656 	sk_msg_compute_data_pointers(msg);
2657 	return 0;
2658 }
2659 
2660 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2661 	.func		= bpf_msg_pop_data,
2662 	.gpl_only	= false,
2663 	.ret_type	= RET_INTEGER,
2664 	.arg1_type	= ARG_PTR_TO_CTX,
2665 	.arg2_type	= ARG_ANYTHING,
2666 	.arg3_type	= ARG_ANYTHING,
2667 	.arg4_type	= ARG_ANYTHING,
2668 };
2669 
2670 #ifdef CONFIG_CGROUP_NET_CLASSID
2671 BPF_CALL_0(bpf_get_cgroup_classid_curr)
2672 {
2673 	return __task_get_classid(current);
2674 }
2675 
2676 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
2677 	.func		= bpf_get_cgroup_classid_curr,
2678 	.gpl_only	= false,
2679 	.ret_type	= RET_INTEGER,
2680 };
2681 #endif
2682 
2683 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2684 {
2685 	return task_get_classid(skb);
2686 }
2687 
2688 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2689 	.func           = bpf_get_cgroup_classid,
2690 	.gpl_only       = false,
2691 	.ret_type       = RET_INTEGER,
2692 	.arg1_type      = ARG_PTR_TO_CTX,
2693 };
2694 
2695 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2696 {
2697 	return dst_tclassid(skb);
2698 }
2699 
2700 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2701 	.func           = bpf_get_route_realm,
2702 	.gpl_only       = false,
2703 	.ret_type       = RET_INTEGER,
2704 	.arg1_type      = ARG_PTR_TO_CTX,
2705 };
2706 
2707 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2708 {
2709 	/* If skb_clear_hash() was called due to mangling, we can
2710 	 * trigger SW recalculation here. Later access to hash
2711 	 * can then use the inline skb->hash via context directly
2712 	 * instead of calling this helper again.
2713 	 */
2714 	return skb_get_hash(skb);
2715 }
2716 
2717 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2718 	.func		= bpf_get_hash_recalc,
2719 	.gpl_only	= false,
2720 	.ret_type	= RET_INTEGER,
2721 	.arg1_type	= ARG_PTR_TO_CTX,
2722 };
2723 
2724 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2725 {
2726 	/* After all direct packet write, this can be used once for
2727 	 * triggering a lazy recalc on next skb_get_hash() invocation.
2728 	 */
2729 	skb_clear_hash(skb);
2730 	return 0;
2731 }
2732 
2733 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2734 	.func		= bpf_set_hash_invalid,
2735 	.gpl_only	= false,
2736 	.ret_type	= RET_INTEGER,
2737 	.arg1_type	= ARG_PTR_TO_CTX,
2738 };
2739 
2740 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2741 {
2742 	/* Set user specified hash as L4(+), so that it gets returned
2743 	 * on skb_get_hash() call unless BPF prog later on triggers a
2744 	 * skb_clear_hash().
2745 	 */
2746 	__skb_set_sw_hash(skb, hash, true);
2747 	return 0;
2748 }
2749 
2750 static const struct bpf_func_proto bpf_set_hash_proto = {
2751 	.func		= bpf_set_hash,
2752 	.gpl_only	= false,
2753 	.ret_type	= RET_INTEGER,
2754 	.arg1_type	= ARG_PTR_TO_CTX,
2755 	.arg2_type	= ARG_ANYTHING,
2756 };
2757 
2758 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2759 	   u16, vlan_tci)
2760 {
2761 	int ret;
2762 
2763 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2764 		     vlan_proto != htons(ETH_P_8021AD)))
2765 		vlan_proto = htons(ETH_P_8021Q);
2766 
2767 	bpf_push_mac_rcsum(skb);
2768 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2769 	bpf_pull_mac_rcsum(skb);
2770 
2771 	bpf_compute_data_pointers(skb);
2772 	return ret;
2773 }
2774 
2775 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2776 	.func           = bpf_skb_vlan_push,
2777 	.gpl_only       = false,
2778 	.ret_type       = RET_INTEGER,
2779 	.arg1_type      = ARG_PTR_TO_CTX,
2780 	.arg2_type      = ARG_ANYTHING,
2781 	.arg3_type      = ARG_ANYTHING,
2782 };
2783 
2784 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2785 {
2786 	int ret;
2787 
2788 	bpf_push_mac_rcsum(skb);
2789 	ret = skb_vlan_pop(skb);
2790 	bpf_pull_mac_rcsum(skb);
2791 
2792 	bpf_compute_data_pointers(skb);
2793 	return ret;
2794 }
2795 
2796 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2797 	.func           = bpf_skb_vlan_pop,
2798 	.gpl_only       = false,
2799 	.ret_type       = RET_INTEGER,
2800 	.arg1_type      = ARG_PTR_TO_CTX,
2801 };
2802 
2803 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2804 {
2805 	/* Caller already did skb_cow() with len as headroom,
2806 	 * so no need to do it here.
2807 	 */
2808 	skb_push(skb, len);
2809 	memmove(skb->data, skb->data + len, off);
2810 	memset(skb->data + off, 0, len);
2811 
2812 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
2813 	 * needed here as it does not change the skb->csum
2814 	 * result for checksum complete when summing over
2815 	 * zeroed blocks.
2816 	 */
2817 	return 0;
2818 }
2819 
2820 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2821 {
2822 	/* skb_ensure_writable() is not needed here, as we're
2823 	 * already working on an uncloned skb.
2824 	 */
2825 	if (unlikely(!pskb_may_pull(skb, off + len)))
2826 		return -ENOMEM;
2827 
2828 	skb_postpull_rcsum(skb, skb->data + off, len);
2829 	memmove(skb->data + len, skb->data, off);
2830 	__skb_pull(skb, len);
2831 
2832 	return 0;
2833 }
2834 
2835 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2836 {
2837 	bool trans_same = skb->transport_header == skb->network_header;
2838 	int ret;
2839 
2840 	/* There's no need for __skb_push()/__skb_pull() pair to
2841 	 * get to the start of the mac header as we're guaranteed
2842 	 * to always start from here under eBPF.
2843 	 */
2844 	ret = bpf_skb_generic_push(skb, off, len);
2845 	if (likely(!ret)) {
2846 		skb->mac_header -= len;
2847 		skb->network_header -= len;
2848 		if (trans_same)
2849 			skb->transport_header = skb->network_header;
2850 	}
2851 
2852 	return ret;
2853 }
2854 
2855 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2856 {
2857 	bool trans_same = skb->transport_header == skb->network_header;
2858 	int ret;
2859 
2860 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
2861 	ret = bpf_skb_generic_pop(skb, off, len);
2862 	if (likely(!ret)) {
2863 		skb->mac_header += len;
2864 		skb->network_header += len;
2865 		if (trans_same)
2866 			skb->transport_header = skb->network_header;
2867 	}
2868 
2869 	return ret;
2870 }
2871 
2872 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2873 {
2874 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2875 	u32 off = skb_mac_header_len(skb);
2876 	int ret;
2877 
2878 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2879 		return -ENOTSUPP;
2880 
2881 	ret = skb_cow(skb, len_diff);
2882 	if (unlikely(ret < 0))
2883 		return ret;
2884 
2885 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2886 	if (unlikely(ret < 0))
2887 		return ret;
2888 
2889 	if (skb_is_gso(skb)) {
2890 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2891 
2892 		/* SKB_GSO_TCPV4 needs to be changed into
2893 		 * SKB_GSO_TCPV6.
2894 		 */
2895 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
2896 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
2897 			shinfo->gso_type |=  SKB_GSO_TCPV6;
2898 		}
2899 
2900 		/* Due to IPv6 header, MSS needs to be downgraded. */
2901 		skb_decrease_gso_size(shinfo, len_diff);
2902 		/* Header must be checked, and gso_segs recomputed. */
2903 		shinfo->gso_type |= SKB_GSO_DODGY;
2904 		shinfo->gso_segs = 0;
2905 	}
2906 
2907 	skb->protocol = htons(ETH_P_IPV6);
2908 	skb_clear_hash(skb);
2909 
2910 	return 0;
2911 }
2912 
2913 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2914 {
2915 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2916 	u32 off = skb_mac_header_len(skb);
2917 	int ret;
2918 
2919 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2920 		return -ENOTSUPP;
2921 
2922 	ret = skb_unclone(skb, GFP_ATOMIC);
2923 	if (unlikely(ret < 0))
2924 		return ret;
2925 
2926 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2927 	if (unlikely(ret < 0))
2928 		return ret;
2929 
2930 	if (skb_is_gso(skb)) {
2931 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2932 
2933 		/* SKB_GSO_TCPV6 needs to be changed into
2934 		 * SKB_GSO_TCPV4.
2935 		 */
2936 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
2937 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
2938 			shinfo->gso_type |=  SKB_GSO_TCPV4;
2939 		}
2940 
2941 		/* Due to IPv4 header, MSS can be upgraded. */
2942 		skb_increase_gso_size(shinfo, len_diff);
2943 		/* Header must be checked, and gso_segs recomputed. */
2944 		shinfo->gso_type |= SKB_GSO_DODGY;
2945 		shinfo->gso_segs = 0;
2946 	}
2947 
2948 	skb->protocol = htons(ETH_P_IP);
2949 	skb_clear_hash(skb);
2950 
2951 	return 0;
2952 }
2953 
2954 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2955 {
2956 	__be16 from_proto = skb->protocol;
2957 
2958 	if (from_proto == htons(ETH_P_IP) &&
2959 	      to_proto == htons(ETH_P_IPV6))
2960 		return bpf_skb_proto_4_to_6(skb);
2961 
2962 	if (from_proto == htons(ETH_P_IPV6) &&
2963 	      to_proto == htons(ETH_P_IP))
2964 		return bpf_skb_proto_6_to_4(skb);
2965 
2966 	return -ENOTSUPP;
2967 }
2968 
2969 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2970 	   u64, flags)
2971 {
2972 	int ret;
2973 
2974 	if (unlikely(flags))
2975 		return -EINVAL;
2976 
2977 	/* General idea is that this helper does the basic groundwork
2978 	 * needed for changing the protocol, and eBPF program fills the
2979 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2980 	 * and other helpers, rather than passing a raw buffer here.
2981 	 *
2982 	 * The rationale is to keep this minimal and without a need to
2983 	 * deal with raw packet data. F.e. even if we would pass buffers
2984 	 * here, the program still needs to call the bpf_lX_csum_replace()
2985 	 * helpers anyway. Plus, this way we keep also separation of
2986 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
2987 	 * care of stores.
2988 	 *
2989 	 * Currently, additional options and extension header space are
2990 	 * not supported, but flags register is reserved so we can adapt
2991 	 * that. For offloads, we mark packet as dodgy, so that headers
2992 	 * need to be verified first.
2993 	 */
2994 	ret = bpf_skb_proto_xlat(skb, proto);
2995 	bpf_compute_data_pointers(skb);
2996 	return ret;
2997 }
2998 
2999 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3000 	.func		= bpf_skb_change_proto,
3001 	.gpl_only	= false,
3002 	.ret_type	= RET_INTEGER,
3003 	.arg1_type	= ARG_PTR_TO_CTX,
3004 	.arg2_type	= ARG_ANYTHING,
3005 	.arg3_type	= ARG_ANYTHING,
3006 };
3007 
3008 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3009 {
3010 	/* We only allow a restricted subset to be changed for now. */
3011 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3012 		     !skb_pkt_type_ok(pkt_type)))
3013 		return -EINVAL;
3014 
3015 	skb->pkt_type = pkt_type;
3016 	return 0;
3017 }
3018 
3019 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3020 	.func		= bpf_skb_change_type,
3021 	.gpl_only	= false,
3022 	.ret_type	= RET_INTEGER,
3023 	.arg1_type	= ARG_PTR_TO_CTX,
3024 	.arg2_type	= ARG_ANYTHING,
3025 };
3026 
3027 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3028 {
3029 	switch (skb->protocol) {
3030 	case htons(ETH_P_IP):
3031 		return sizeof(struct iphdr);
3032 	case htons(ETH_P_IPV6):
3033 		return sizeof(struct ipv6hdr);
3034 	default:
3035 		return ~0U;
3036 	}
3037 }
3038 
3039 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3040 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3041 
3042 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3043 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3044 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3045 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3046 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3047 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3048 
3049 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3050 			    u64 flags)
3051 {
3052 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3053 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3054 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3055 	unsigned int gso_type = SKB_GSO_DODGY;
3056 	int ret;
3057 
3058 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3059 		/* udp gso_size delineates datagrams, only allow if fixed */
3060 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3061 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3062 			return -ENOTSUPP;
3063 	}
3064 
3065 	ret = skb_cow_head(skb, len_diff);
3066 	if (unlikely(ret < 0))
3067 		return ret;
3068 
3069 	if (encap) {
3070 		if (skb->protocol != htons(ETH_P_IP) &&
3071 		    skb->protocol != htons(ETH_P_IPV6))
3072 			return -ENOTSUPP;
3073 
3074 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3075 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3076 			return -EINVAL;
3077 
3078 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3079 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3080 			return -EINVAL;
3081 
3082 		if (skb->encapsulation)
3083 			return -EALREADY;
3084 
3085 		mac_len = skb->network_header - skb->mac_header;
3086 		inner_net = skb->network_header;
3087 		if (inner_mac_len > len_diff)
3088 			return -EINVAL;
3089 		inner_trans = skb->transport_header;
3090 	}
3091 
3092 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3093 	if (unlikely(ret < 0))
3094 		return ret;
3095 
3096 	if (encap) {
3097 		skb->inner_mac_header = inner_net - inner_mac_len;
3098 		skb->inner_network_header = inner_net;
3099 		skb->inner_transport_header = inner_trans;
3100 		skb_set_inner_protocol(skb, skb->protocol);
3101 
3102 		skb->encapsulation = 1;
3103 		skb_set_network_header(skb, mac_len);
3104 
3105 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3106 			gso_type |= SKB_GSO_UDP_TUNNEL;
3107 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3108 			gso_type |= SKB_GSO_GRE;
3109 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3110 			gso_type |= SKB_GSO_IPXIP6;
3111 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3112 			gso_type |= SKB_GSO_IPXIP4;
3113 
3114 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3115 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3116 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3117 					sizeof(struct ipv6hdr) :
3118 					sizeof(struct iphdr);
3119 
3120 			skb_set_transport_header(skb, mac_len + nh_len);
3121 		}
3122 
3123 		/* Match skb->protocol to new outer l3 protocol */
3124 		if (skb->protocol == htons(ETH_P_IP) &&
3125 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3126 			skb->protocol = htons(ETH_P_IPV6);
3127 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3128 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3129 			skb->protocol = htons(ETH_P_IP);
3130 	}
3131 
3132 	if (skb_is_gso(skb)) {
3133 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3134 
3135 		/* Due to header grow, MSS needs to be downgraded. */
3136 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3137 			skb_decrease_gso_size(shinfo, len_diff);
3138 
3139 		/* Header must be checked, and gso_segs recomputed. */
3140 		shinfo->gso_type |= gso_type;
3141 		shinfo->gso_segs = 0;
3142 	}
3143 
3144 	return 0;
3145 }
3146 
3147 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3148 			      u64 flags)
3149 {
3150 	int ret;
3151 
3152 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3153 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3154 		return -EINVAL;
3155 
3156 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3157 		/* udp gso_size delineates datagrams, only allow if fixed */
3158 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3159 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3160 			return -ENOTSUPP;
3161 	}
3162 
3163 	ret = skb_unclone(skb, GFP_ATOMIC);
3164 	if (unlikely(ret < 0))
3165 		return ret;
3166 
3167 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3168 	if (unlikely(ret < 0))
3169 		return ret;
3170 
3171 	if (skb_is_gso(skb)) {
3172 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3173 
3174 		/* Due to header shrink, MSS can be upgraded. */
3175 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3176 			skb_increase_gso_size(shinfo, len_diff);
3177 
3178 		/* Header must be checked, and gso_segs recomputed. */
3179 		shinfo->gso_type |= SKB_GSO_DODGY;
3180 		shinfo->gso_segs = 0;
3181 	}
3182 
3183 	return 0;
3184 }
3185 
3186 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3187 {
3188 	return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3189 			  SKB_MAX_ALLOC;
3190 }
3191 
3192 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3193 	   u32, mode, u64, flags)
3194 {
3195 	u32 len_cur, len_diff_abs = abs(len_diff);
3196 	u32 len_min = bpf_skb_net_base_len(skb);
3197 	u32 len_max = __bpf_skb_max_len(skb);
3198 	__be16 proto = skb->protocol;
3199 	bool shrink = len_diff < 0;
3200 	u32 off;
3201 	int ret;
3202 
3203 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3204 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3205 		return -EINVAL;
3206 	if (unlikely(len_diff_abs > 0xfffU))
3207 		return -EFAULT;
3208 	if (unlikely(proto != htons(ETH_P_IP) &&
3209 		     proto != htons(ETH_P_IPV6)))
3210 		return -ENOTSUPP;
3211 
3212 	off = skb_mac_header_len(skb);
3213 	switch (mode) {
3214 	case BPF_ADJ_ROOM_NET:
3215 		off += bpf_skb_net_base_len(skb);
3216 		break;
3217 	case BPF_ADJ_ROOM_MAC:
3218 		break;
3219 	default:
3220 		return -ENOTSUPP;
3221 	}
3222 
3223 	len_cur = skb->len - skb_network_offset(skb);
3224 	if ((shrink && (len_diff_abs >= len_cur ||
3225 			len_cur - len_diff_abs < len_min)) ||
3226 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3227 			 !skb_is_gso(skb))))
3228 		return -ENOTSUPP;
3229 
3230 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3231 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3232 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3233 		__skb_reset_checksum_unnecessary(skb);
3234 
3235 	bpf_compute_data_pointers(skb);
3236 	return ret;
3237 }
3238 
3239 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3240 	.func		= bpf_skb_adjust_room,
3241 	.gpl_only	= false,
3242 	.ret_type	= RET_INTEGER,
3243 	.arg1_type	= ARG_PTR_TO_CTX,
3244 	.arg2_type	= ARG_ANYTHING,
3245 	.arg3_type	= ARG_ANYTHING,
3246 	.arg4_type	= ARG_ANYTHING,
3247 };
3248 
3249 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3250 {
3251 	u32 min_len = skb_network_offset(skb);
3252 
3253 	if (skb_transport_header_was_set(skb))
3254 		min_len = skb_transport_offset(skb);
3255 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3256 		min_len = skb_checksum_start_offset(skb) +
3257 			  skb->csum_offset + sizeof(__sum16);
3258 	return min_len;
3259 }
3260 
3261 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3262 {
3263 	unsigned int old_len = skb->len;
3264 	int ret;
3265 
3266 	ret = __skb_grow_rcsum(skb, new_len);
3267 	if (!ret)
3268 		memset(skb->data + old_len, 0, new_len - old_len);
3269 	return ret;
3270 }
3271 
3272 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3273 {
3274 	return __skb_trim_rcsum(skb, new_len);
3275 }
3276 
3277 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3278 					u64 flags)
3279 {
3280 	u32 max_len = __bpf_skb_max_len(skb);
3281 	u32 min_len = __bpf_skb_min_len(skb);
3282 	int ret;
3283 
3284 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3285 		return -EINVAL;
3286 	if (skb->encapsulation)
3287 		return -ENOTSUPP;
3288 
3289 	/* The basic idea of this helper is that it's performing the
3290 	 * needed work to either grow or trim an skb, and eBPF program
3291 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3292 	 * bpf_lX_csum_replace() and others rather than passing a raw
3293 	 * buffer here. This one is a slow path helper and intended
3294 	 * for replies with control messages.
3295 	 *
3296 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3297 	 * minimal and without protocol specifics so that we are able
3298 	 * to separate concerns as in bpf_skb_store_bytes() should only
3299 	 * be the one responsible for writing buffers.
3300 	 *
3301 	 * It's really expected to be a slow path operation here for
3302 	 * control message replies, so we're implicitly linearizing,
3303 	 * uncloning and drop offloads from the skb by this.
3304 	 */
3305 	ret = __bpf_try_make_writable(skb, skb->len);
3306 	if (!ret) {
3307 		if (new_len > skb->len)
3308 			ret = bpf_skb_grow_rcsum(skb, new_len);
3309 		else if (new_len < skb->len)
3310 			ret = bpf_skb_trim_rcsum(skb, new_len);
3311 		if (!ret && skb_is_gso(skb))
3312 			skb_gso_reset(skb);
3313 	}
3314 	return ret;
3315 }
3316 
3317 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3318 	   u64, flags)
3319 {
3320 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3321 
3322 	bpf_compute_data_pointers(skb);
3323 	return ret;
3324 }
3325 
3326 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3327 	.func		= bpf_skb_change_tail,
3328 	.gpl_only	= false,
3329 	.ret_type	= RET_INTEGER,
3330 	.arg1_type	= ARG_PTR_TO_CTX,
3331 	.arg2_type	= ARG_ANYTHING,
3332 	.arg3_type	= ARG_ANYTHING,
3333 };
3334 
3335 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3336 	   u64, flags)
3337 {
3338 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3339 
3340 	bpf_compute_data_end_sk_skb(skb);
3341 	return ret;
3342 }
3343 
3344 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3345 	.func		= sk_skb_change_tail,
3346 	.gpl_only	= false,
3347 	.ret_type	= RET_INTEGER,
3348 	.arg1_type	= ARG_PTR_TO_CTX,
3349 	.arg2_type	= ARG_ANYTHING,
3350 	.arg3_type	= ARG_ANYTHING,
3351 };
3352 
3353 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3354 					u64 flags)
3355 {
3356 	u32 max_len = __bpf_skb_max_len(skb);
3357 	u32 new_len = skb->len + head_room;
3358 	int ret;
3359 
3360 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3361 		     new_len < skb->len))
3362 		return -EINVAL;
3363 
3364 	ret = skb_cow(skb, head_room);
3365 	if (likely(!ret)) {
3366 		/* Idea for this helper is that we currently only
3367 		 * allow to expand on mac header. This means that
3368 		 * skb->protocol network header, etc, stay as is.
3369 		 * Compared to bpf_skb_change_tail(), we're more
3370 		 * flexible due to not needing to linearize or
3371 		 * reset GSO. Intention for this helper is to be
3372 		 * used by an L3 skb that needs to push mac header
3373 		 * for redirection into L2 device.
3374 		 */
3375 		__skb_push(skb, head_room);
3376 		memset(skb->data, 0, head_room);
3377 		skb_reset_mac_header(skb);
3378 	}
3379 
3380 	return ret;
3381 }
3382 
3383 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3384 	   u64, flags)
3385 {
3386 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3387 
3388 	bpf_compute_data_pointers(skb);
3389 	return ret;
3390 }
3391 
3392 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3393 	.func		= bpf_skb_change_head,
3394 	.gpl_only	= false,
3395 	.ret_type	= RET_INTEGER,
3396 	.arg1_type	= ARG_PTR_TO_CTX,
3397 	.arg2_type	= ARG_ANYTHING,
3398 	.arg3_type	= ARG_ANYTHING,
3399 };
3400 
3401 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3402 	   u64, flags)
3403 {
3404 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3405 
3406 	bpf_compute_data_end_sk_skb(skb);
3407 	return ret;
3408 }
3409 
3410 static const struct bpf_func_proto sk_skb_change_head_proto = {
3411 	.func		= sk_skb_change_head,
3412 	.gpl_only	= false,
3413 	.ret_type	= RET_INTEGER,
3414 	.arg1_type	= ARG_PTR_TO_CTX,
3415 	.arg2_type	= ARG_ANYTHING,
3416 	.arg3_type	= ARG_ANYTHING,
3417 };
3418 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3419 {
3420 	return xdp_data_meta_unsupported(xdp) ? 0 :
3421 	       xdp->data - xdp->data_meta;
3422 }
3423 
3424 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3425 {
3426 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3427 	unsigned long metalen = xdp_get_metalen(xdp);
3428 	void *data_start = xdp_frame_end + metalen;
3429 	void *data = xdp->data + offset;
3430 
3431 	if (unlikely(data < data_start ||
3432 		     data > xdp->data_end - ETH_HLEN))
3433 		return -EINVAL;
3434 
3435 	if (metalen)
3436 		memmove(xdp->data_meta + offset,
3437 			xdp->data_meta, metalen);
3438 	xdp->data_meta += offset;
3439 	xdp->data = data;
3440 
3441 	return 0;
3442 }
3443 
3444 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3445 	.func		= bpf_xdp_adjust_head,
3446 	.gpl_only	= false,
3447 	.ret_type	= RET_INTEGER,
3448 	.arg1_type	= ARG_PTR_TO_CTX,
3449 	.arg2_type	= ARG_ANYTHING,
3450 };
3451 
3452 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3453 {
3454 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3455 	void *data_end = xdp->data_end + offset;
3456 
3457 	/* Notice that xdp_data_hard_end have reserved some tailroom */
3458 	if (unlikely(data_end > data_hard_end))
3459 		return -EINVAL;
3460 
3461 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
3462 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3463 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3464 		return -EINVAL;
3465 	}
3466 
3467 	if (unlikely(data_end < xdp->data + ETH_HLEN))
3468 		return -EINVAL;
3469 
3470 	/* Clear memory area on grow, can contain uninit kernel memory */
3471 	if (offset > 0)
3472 		memset(xdp->data_end, 0, offset);
3473 
3474 	xdp->data_end = data_end;
3475 
3476 	return 0;
3477 }
3478 
3479 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3480 	.func		= bpf_xdp_adjust_tail,
3481 	.gpl_only	= false,
3482 	.ret_type	= RET_INTEGER,
3483 	.arg1_type	= ARG_PTR_TO_CTX,
3484 	.arg2_type	= ARG_ANYTHING,
3485 };
3486 
3487 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3488 {
3489 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3490 	void *meta = xdp->data_meta + offset;
3491 	unsigned long metalen = xdp->data - meta;
3492 
3493 	if (xdp_data_meta_unsupported(xdp))
3494 		return -ENOTSUPP;
3495 	if (unlikely(meta < xdp_frame_end ||
3496 		     meta > xdp->data))
3497 		return -EINVAL;
3498 	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3499 		     (metalen > 32)))
3500 		return -EACCES;
3501 
3502 	xdp->data_meta = meta;
3503 
3504 	return 0;
3505 }
3506 
3507 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3508 	.func		= bpf_xdp_adjust_meta,
3509 	.gpl_only	= false,
3510 	.ret_type	= RET_INTEGER,
3511 	.arg1_type	= ARG_PTR_TO_CTX,
3512 	.arg2_type	= ARG_ANYTHING,
3513 };
3514 
3515 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3516 			    struct bpf_map *map, struct xdp_buff *xdp)
3517 {
3518 	switch (map->map_type) {
3519 	case BPF_MAP_TYPE_DEVMAP:
3520 	case BPF_MAP_TYPE_DEVMAP_HASH:
3521 		return dev_map_enqueue(fwd, xdp, dev_rx);
3522 	case BPF_MAP_TYPE_CPUMAP:
3523 		return cpu_map_enqueue(fwd, xdp, dev_rx);
3524 	case BPF_MAP_TYPE_XSKMAP:
3525 		return __xsk_map_redirect(fwd, xdp);
3526 	default:
3527 		return -EBADRQC;
3528 	}
3529 	return 0;
3530 }
3531 
3532 void xdp_do_flush(void)
3533 {
3534 	__dev_flush();
3535 	__cpu_map_flush();
3536 	__xsk_map_flush();
3537 }
3538 EXPORT_SYMBOL_GPL(xdp_do_flush);
3539 
3540 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3541 {
3542 	switch (map->map_type) {
3543 	case BPF_MAP_TYPE_DEVMAP:
3544 		return __dev_map_lookup_elem(map, index);
3545 	case BPF_MAP_TYPE_DEVMAP_HASH:
3546 		return __dev_map_hash_lookup_elem(map, index);
3547 	case BPF_MAP_TYPE_CPUMAP:
3548 		return __cpu_map_lookup_elem(map, index);
3549 	case BPF_MAP_TYPE_XSKMAP:
3550 		return __xsk_map_lookup_elem(map, index);
3551 	default:
3552 		return NULL;
3553 	}
3554 }
3555 
3556 void bpf_clear_redirect_map(struct bpf_map *map)
3557 {
3558 	struct bpf_redirect_info *ri;
3559 	int cpu;
3560 
3561 	for_each_possible_cpu(cpu) {
3562 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3563 		/* Avoid polluting remote cacheline due to writes if
3564 		 * not needed. Once we pass this test, we need the
3565 		 * cmpxchg() to make sure it hasn't been changed in
3566 		 * the meantime by remote CPU.
3567 		 */
3568 		if (unlikely(READ_ONCE(ri->map) == map))
3569 			cmpxchg(&ri->map, map, NULL);
3570 	}
3571 }
3572 
3573 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3574 		    struct bpf_prog *xdp_prog)
3575 {
3576 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3577 	struct bpf_map *map = READ_ONCE(ri->map);
3578 	u32 index = ri->tgt_index;
3579 	void *fwd = ri->tgt_value;
3580 	int err;
3581 
3582 	ri->tgt_index = 0;
3583 	ri->tgt_value = NULL;
3584 	WRITE_ONCE(ri->map, NULL);
3585 
3586 	if (unlikely(!map)) {
3587 		fwd = dev_get_by_index_rcu(dev_net(dev), index);
3588 		if (unlikely(!fwd)) {
3589 			err = -EINVAL;
3590 			goto err;
3591 		}
3592 
3593 		err = dev_xdp_enqueue(fwd, xdp, dev);
3594 	} else {
3595 		err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
3596 	}
3597 
3598 	if (unlikely(err))
3599 		goto err;
3600 
3601 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3602 	return 0;
3603 err:
3604 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3605 	return err;
3606 }
3607 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3608 
3609 static int xdp_do_generic_redirect_map(struct net_device *dev,
3610 				       struct sk_buff *skb,
3611 				       struct xdp_buff *xdp,
3612 				       struct bpf_prog *xdp_prog,
3613 				       struct bpf_map *map)
3614 {
3615 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3616 	u32 index = ri->tgt_index;
3617 	void *fwd = ri->tgt_value;
3618 	int err = 0;
3619 
3620 	ri->tgt_index = 0;
3621 	ri->tgt_value = NULL;
3622 	WRITE_ONCE(ri->map, NULL);
3623 
3624 	if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
3625 	    map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
3626 		struct bpf_dtab_netdev *dst = fwd;
3627 
3628 		err = dev_map_generic_redirect(dst, skb, xdp_prog);
3629 		if (unlikely(err))
3630 			goto err;
3631 	} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3632 		struct xdp_sock *xs = fwd;
3633 
3634 		err = xsk_generic_rcv(xs, xdp);
3635 		if (err)
3636 			goto err;
3637 		consume_skb(skb);
3638 	} else {
3639 		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3640 		err = -EBADRQC;
3641 		goto err;
3642 	}
3643 
3644 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3645 	return 0;
3646 err:
3647 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3648 	return err;
3649 }
3650 
3651 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3652 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3653 {
3654 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3655 	struct bpf_map *map = READ_ONCE(ri->map);
3656 	u32 index = ri->tgt_index;
3657 	struct net_device *fwd;
3658 	int err = 0;
3659 
3660 	if (map)
3661 		return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3662 						   map);
3663 	ri->tgt_index = 0;
3664 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
3665 	if (unlikely(!fwd)) {
3666 		err = -EINVAL;
3667 		goto err;
3668 	}
3669 
3670 	err = xdp_ok_fwd_dev(fwd, skb->len);
3671 	if (unlikely(err))
3672 		goto err;
3673 
3674 	skb->dev = fwd;
3675 	_trace_xdp_redirect(dev, xdp_prog, index);
3676 	generic_xdp_tx(skb, xdp_prog);
3677 	return 0;
3678 err:
3679 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3680 	return err;
3681 }
3682 
3683 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3684 {
3685 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3686 
3687 	if (unlikely(flags))
3688 		return XDP_ABORTED;
3689 
3690 	ri->flags = flags;
3691 	ri->tgt_index = ifindex;
3692 	ri->tgt_value = NULL;
3693 	WRITE_ONCE(ri->map, NULL);
3694 
3695 	return XDP_REDIRECT;
3696 }
3697 
3698 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3699 	.func           = bpf_xdp_redirect,
3700 	.gpl_only       = false,
3701 	.ret_type       = RET_INTEGER,
3702 	.arg1_type      = ARG_ANYTHING,
3703 	.arg2_type      = ARG_ANYTHING,
3704 };
3705 
3706 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3707 	   u64, flags)
3708 {
3709 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3710 
3711 	/* Lower bits of the flags are used as return code on lookup failure */
3712 	if (unlikely(flags > XDP_TX))
3713 		return XDP_ABORTED;
3714 
3715 	ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
3716 	if (unlikely(!ri->tgt_value)) {
3717 		/* If the lookup fails we want to clear out the state in the
3718 		 * redirect_info struct completely, so that if an eBPF program
3719 		 * performs multiple lookups, the last one always takes
3720 		 * precedence.
3721 		 */
3722 		WRITE_ONCE(ri->map, NULL);
3723 		return flags;
3724 	}
3725 
3726 	ri->flags = flags;
3727 	ri->tgt_index = ifindex;
3728 	WRITE_ONCE(ri->map, map);
3729 
3730 	return XDP_REDIRECT;
3731 }
3732 
3733 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3734 	.func           = bpf_xdp_redirect_map,
3735 	.gpl_only       = false,
3736 	.ret_type       = RET_INTEGER,
3737 	.arg1_type      = ARG_CONST_MAP_PTR,
3738 	.arg2_type      = ARG_ANYTHING,
3739 	.arg3_type      = ARG_ANYTHING,
3740 };
3741 
3742 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3743 				  unsigned long off, unsigned long len)
3744 {
3745 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3746 
3747 	if (unlikely(!ptr))
3748 		return len;
3749 	if (ptr != dst_buff)
3750 		memcpy(dst_buff, ptr, len);
3751 
3752 	return 0;
3753 }
3754 
3755 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3756 	   u64, flags, void *, meta, u64, meta_size)
3757 {
3758 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3759 
3760 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3761 		return -EINVAL;
3762 	if (unlikely(!skb || skb_size > skb->len))
3763 		return -EFAULT;
3764 
3765 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3766 				bpf_skb_copy);
3767 }
3768 
3769 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3770 	.func		= bpf_skb_event_output,
3771 	.gpl_only	= true,
3772 	.ret_type	= RET_INTEGER,
3773 	.arg1_type	= ARG_PTR_TO_CTX,
3774 	.arg2_type	= ARG_CONST_MAP_PTR,
3775 	.arg3_type	= ARG_ANYTHING,
3776 	.arg4_type	= ARG_PTR_TO_MEM,
3777 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3778 };
3779 
3780 static int bpf_skb_output_btf_ids[5];
3781 const struct bpf_func_proto bpf_skb_output_proto = {
3782 	.func		= bpf_skb_event_output,
3783 	.gpl_only	= true,
3784 	.ret_type	= RET_INTEGER,
3785 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3786 	.arg2_type	= ARG_CONST_MAP_PTR,
3787 	.arg3_type	= ARG_ANYTHING,
3788 	.arg4_type	= ARG_PTR_TO_MEM,
3789 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3790 	.btf_id		= bpf_skb_output_btf_ids,
3791 };
3792 
3793 static unsigned short bpf_tunnel_key_af(u64 flags)
3794 {
3795 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3796 }
3797 
3798 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3799 	   u32, size, u64, flags)
3800 {
3801 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3802 	u8 compat[sizeof(struct bpf_tunnel_key)];
3803 	void *to_orig = to;
3804 	int err;
3805 
3806 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3807 		err = -EINVAL;
3808 		goto err_clear;
3809 	}
3810 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3811 		err = -EPROTO;
3812 		goto err_clear;
3813 	}
3814 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3815 		err = -EINVAL;
3816 		switch (size) {
3817 		case offsetof(struct bpf_tunnel_key, tunnel_label):
3818 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3819 			goto set_compat;
3820 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3821 			/* Fixup deprecated structure layouts here, so we have
3822 			 * a common path later on.
3823 			 */
3824 			if (ip_tunnel_info_af(info) != AF_INET)
3825 				goto err_clear;
3826 set_compat:
3827 			to = (struct bpf_tunnel_key *)compat;
3828 			break;
3829 		default:
3830 			goto err_clear;
3831 		}
3832 	}
3833 
3834 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
3835 	to->tunnel_tos = info->key.tos;
3836 	to->tunnel_ttl = info->key.ttl;
3837 	to->tunnel_ext = 0;
3838 
3839 	if (flags & BPF_F_TUNINFO_IPV6) {
3840 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3841 		       sizeof(to->remote_ipv6));
3842 		to->tunnel_label = be32_to_cpu(info->key.label);
3843 	} else {
3844 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3845 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3846 		to->tunnel_label = 0;
3847 	}
3848 
3849 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3850 		memcpy(to_orig, to, size);
3851 
3852 	return 0;
3853 err_clear:
3854 	memset(to_orig, 0, size);
3855 	return err;
3856 }
3857 
3858 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3859 	.func		= bpf_skb_get_tunnel_key,
3860 	.gpl_only	= false,
3861 	.ret_type	= RET_INTEGER,
3862 	.arg1_type	= ARG_PTR_TO_CTX,
3863 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
3864 	.arg3_type	= ARG_CONST_SIZE,
3865 	.arg4_type	= ARG_ANYTHING,
3866 };
3867 
3868 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3869 {
3870 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3871 	int err;
3872 
3873 	if (unlikely(!info ||
3874 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3875 		err = -ENOENT;
3876 		goto err_clear;
3877 	}
3878 	if (unlikely(size < info->options_len)) {
3879 		err = -ENOMEM;
3880 		goto err_clear;
3881 	}
3882 
3883 	ip_tunnel_info_opts_get(to, info);
3884 	if (size > info->options_len)
3885 		memset(to + info->options_len, 0, size - info->options_len);
3886 
3887 	return info->options_len;
3888 err_clear:
3889 	memset(to, 0, size);
3890 	return err;
3891 }
3892 
3893 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3894 	.func		= bpf_skb_get_tunnel_opt,
3895 	.gpl_only	= false,
3896 	.ret_type	= RET_INTEGER,
3897 	.arg1_type	= ARG_PTR_TO_CTX,
3898 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
3899 	.arg3_type	= ARG_CONST_SIZE,
3900 };
3901 
3902 static struct metadata_dst __percpu *md_dst;
3903 
3904 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3905 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3906 {
3907 	struct metadata_dst *md = this_cpu_ptr(md_dst);
3908 	u8 compat[sizeof(struct bpf_tunnel_key)];
3909 	struct ip_tunnel_info *info;
3910 
3911 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3912 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3913 		return -EINVAL;
3914 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3915 		switch (size) {
3916 		case offsetof(struct bpf_tunnel_key, tunnel_label):
3917 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3918 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3919 			/* Fixup deprecated structure layouts here, so we have
3920 			 * a common path later on.
3921 			 */
3922 			memcpy(compat, from, size);
3923 			memset(compat + size, 0, sizeof(compat) - size);
3924 			from = (const struct bpf_tunnel_key *) compat;
3925 			break;
3926 		default:
3927 			return -EINVAL;
3928 		}
3929 	}
3930 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3931 		     from->tunnel_ext))
3932 		return -EINVAL;
3933 
3934 	skb_dst_drop(skb);
3935 	dst_hold((struct dst_entry *) md);
3936 	skb_dst_set(skb, (struct dst_entry *) md);
3937 
3938 	info = &md->u.tun_info;
3939 	memset(info, 0, sizeof(*info));
3940 	info->mode = IP_TUNNEL_INFO_TX;
3941 
3942 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3943 	if (flags & BPF_F_DONT_FRAGMENT)
3944 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3945 	if (flags & BPF_F_ZERO_CSUM_TX)
3946 		info->key.tun_flags &= ~TUNNEL_CSUM;
3947 	if (flags & BPF_F_SEQ_NUMBER)
3948 		info->key.tun_flags |= TUNNEL_SEQ;
3949 
3950 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
3951 	info->key.tos = from->tunnel_tos;
3952 	info->key.ttl = from->tunnel_ttl;
3953 
3954 	if (flags & BPF_F_TUNINFO_IPV6) {
3955 		info->mode |= IP_TUNNEL_INFO_IPV6;
3956 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3957 		       sizeof(from->remote_ipv6));
3958 		info->key.label = cpu_to_be32(from->tunnel_label) &
3959 				  IPV6_FLOWLABEL_MASK;
3960 	} else {
3961 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3962 	}
3963 
3964 	return 0;
3965 }
3966 
3967 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3968 	.func		= bpf_skb_set_tunnel_key,
3969 	.gpl_only	= false,
3970 	.ret_type	= RET_INTEGER,
3971 	.arg1_type	= ARG_PTR_TO_CTX,
3972 	.arg2_type	= ARG_PTR_TO_MEM,
3973 	.arg3_type	= ARG_CONST_SIZE,
3974 	.arg4_type	= ARG_ANYTHING,
3975 };
3976 
3977 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3978 	   const u8 *, from, u32, size)
3979 {
3980 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
3981 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
3982 
3983 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3984 		return -EINVAL;
3985 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3986 		return -ENOMEM;
3987 
3988 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
3989 
3990 	return 0;
3991 }
3992 
3993 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3994 	.func		= bpf_skb_set_tunnel_opt,
3995 	.gpl_only	= false,
3996 	.ret_type	= RET_INTEGER,
3997 	.arg1_type	= ARG_PTR_TO_CTX,
3998 	.arg2_type	= ARG_PTR_TO_MEM,
3999 	.arg3_type	= ARG_CONST_SIZE,
4000 };
4001 
4002 static const struct bpf_func_proto *
4003 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4004 {
4005 	if (!md_dst) {
4006 		struct metadata_dst __percpu *tmp;
4007 
4008 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4009 						METADATA_IP_TUNNEL,
4010 						GFP_KERNEL);
4011 		if (!tmp)
4012 			return NULL;
4013 		if (cmpxchg(&md_dst, NULL, tmp))
4014 			metadata_dst_free_percpu(tmp);
4015 	}
4016 
4017 	switch (which) {
4018 	case BPF_FUNC_skb_set_tunnel_key:
4019 		return &bpf_skb_set_tunnel_key_proto;
4020 	case BPF_FUNC_skb_set_tunnel_opt:
4021 		return &bpf_skb_set_tunnel_opt_proto;
4022 	default:
4023 		return NULL;
4024 	}
4025 }
4026 
4027 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4028 	   u32, idx)
4029 {
4030 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4031 	struct cgroup *cgrp;
4032 	struct sock *sk;
4033 
4034 	sk = skb_to_full_sk(skb);
4035 	if (!sk || !sk_fullsock(sk))
4036 		return -ENOENT;
4037 	if (unlikely(idx >= array->map.max_entries))
4038 		return -E2BIG;
4039 
4040 	cgrp = READ_ONCE(array->ptrs[idx]);
4041 	if (unlikely(!cgrp))
4042 		return -EAGAIN;
4043 
4044 	return sk_under_cgroup_hierarchy(sk, cgrp);
4045 }
4046 
4047 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4048 	.func		= bpf_skb_under_cgroup,
4049 	.gpl_only	= false,
4050 	.ret_type	= RET_INTEGER,
4051 	.arg1_type	= ARG_PTR_TO_CTX,
4052 	.arg2_type	= ARG_CONST_MAP_PTR,
4053 	.arg3_type	= ARG_ANYTHING,
4054 };
4055 
4056 #ifdef CONFIG_SOCK_CGROUP_DATA
4057 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4058 {
4059 	struct cgroup *cgrp;
4060 
4061 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4062 	return cgroup_id(cgrp);
4063 }
4064 
4065 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4066 {
4067 	struct sock *sk = skb_to_full_sk(skb);
4068 
4069 	if (!sk || !sk_fullsock(sk))
4070 		return 0;
4071 
4072 	return __bpf_sk_cgroup_id(sk);
4073 }
4074 
4075 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4076 	.func           = bpf_skb_cgroup_id,
4077 	.gpl_only       = false,
4078 	.ret_type       = RET_INTEGER,
4079 	.arg1_type      = ARG_PTR_TO_CTX,
4080 };
4081 
4082 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4083 					      int ancestor_level)
4084 {
4085 	struct cgroup *ancestor;
4086 	struct cgroup *cgrp;
4087 
4088 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4089 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4090 	if (!ancestor)
4091 		return 0;
4092 
4093 	return cgroup_id(ancestor);
4094 }
4095 
4096 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4097 	   ancestor_level)
4098 {
4099 	struct sock *sk = skb_to_full_sk(skb);
4100 
4101 	if (!sk || !sk_fullsock(sk))
4102 		return 0;
4103 
4104 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4105 }
4106 
4107 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4108 	.func           = bpf_skb_ancestor_cgroup_id,
4109 	.gpl_only       = false,
4110 	.ret_type       = RET_INTEGER,
4111 	.arg1_type      = ARG_PTR_TO_CTX,
4112 	.arg2_type      = ARG_ANYTHING,
4113 };
4114 
4115 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4116 {
4117 	return __bpf_sk_cgroup_id(sk);
4118 }
4119 
4120 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4121 	.func           = bpf_sk_cgroup_id,
4122 	.gpl_only       = false,
4123 	.ret_type       = RET_INTEGER,
4124 	.arg1_type      = ARG_PTR_TO_SOCKET,
4125 };
4126 
4127 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4128 {
4129 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4130 }
4131 
4132 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4133 	.func           = bpf_sk_ancestor_cgroup_id,
4134 	.gpl_only       = false,
4135 	.ret_type       = RET_INTEGER,
4136 	.arg1_type      = ARG_PTR_TO_SOCKET,
4137 	.arg2_type      = ARG_ANYTHING,
4138 };
4139 #endif
4140 
4141 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4142 				  unsigned long off, unsigned long len)
4143 {
4144 	memcpy(dst_buff, src_buff + off, len);
4145 	return 0;
4146 }
4147 
4148 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4149 	   u64, flags, void *, meta, u64, meta_size)
4150 {
4151 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4152 
4153 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4154 		return -EINVAL;
4155 	if (unlikely(!xdp ||
4156 		     xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4157 		return -EFAULT;
4158 
4159 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4160 				xdp_size, bpf_xdp_copy);
4161 }
4162 
4163 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4164 	.func		= bpf_xdp_event_output,
4165 	.gpl_only	= true,
4166 	.ret_type	= RET_INTEGER,
4167 	.arg1_type	= ARG_PTR_TO_CTX,
4168 	.arg2_type	= ARG_CONST_MAP_PTR,
4169 	.arg3_type	= ARG_ANYTHING,
4170 	.arg4_type	= ARG_PTR_TO_MEM,
4171 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4172 };
4173 
4174 static int bpf_xdp_output_btf_ids[5];
4175 const struct bpf_func_proto bpf_xdp_output_proto = {
4176 	.func		= bpf_xdp_event_output,
4177 	.gpl_only	= true,
4178 	.ret_type	= RET_INTEGER,
4179 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4180 	.arg2_type	= ARG_CONST_MAP_PTR,
4181 	.arg3_type	= ARG_ANYTHING,
4182 	.arg4_type	= ARG_PTR_TO_MEM,
4183 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4184 	.btf_id		= bpf_xdp_output_btf_ids,
4185 };
4186 
4187 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4188 {
4189 	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
4190 }
4191 
4192 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4193 	.func           = bpf_get_socket_cookie,
4194 	.gpl_only       = false,
4195 	.ret_type       = RET_INTEGER,
4196 	.arg1_type      = ARG_PTR_TO_CTX,
4197 };
4198 
4199 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4200 {
4201 	return sock_gen_cookie(ctx->sk);
4202 }
4203 
4204 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4205 	.func		= bpf_get_socket_cookie_sock_addr,
4206 	.gpl_only	= false,
4207 	.ret_type	= RET_INTEGER,
4208 	.arg1_type	= ARG_PTR_TO_CTX,
4209 };
4210 
4211 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4212 {
4213 	return sock_gen_cookie(ctx);
4214 }
4215 
4216 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4217 	.func		= bpf_get_socket_cookie_sock,
4218 	.gpl_only	= false,
4219 	.ret_type	= RET_INTEGER,
4220 	.arg1_type	= ARG_PTR_TO_CTX,
4221 };
4222 
4223 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4224 {
4225 	return sock_gen_cookie(ctx->sk);
4226 }
4227 
4228 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4229 	.func		= bpf_get_socket_cookie_sock_ops,
4230 	.gpl_only	= false,
4231 	.ret_type	= RET_INTEGER,
4232 	.arg1_type	= ARG_PTR_TO_CTX,
4233 };
4234 
4235 static u64 __bpf_get_netns_cookie(struct sock *sk)
4236 {
4237 #ifdef CONFIG_NET_NS
4238 	return net_gen_cookie(sk ? sk->sk_net.net : &init_net);
4239 #else
4240 	return 0;
4241 #endif
4242 }
4243 
4244 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4245 {
4246 	return __bpf_get_netns_cookie(ctx);
4247 }
4248 
4249 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4250 	.func		= bpf_get_netns_cookie_sock,
4251 	.gpl_only	= false,
4252 	.ret_type	= RET_INTEGER,
4253 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4254 };
4255 
4256 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4257 {
4258 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4259 }
4260 
4261 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4262 	.func		= bpf_get_netns_cookie_sock_addr,
4263 	.gpl_only	= false,
4264 	.ret_type	= RET_INTEGER,
4265 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4266 };
4267 
4268 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4269 {
4270 	struct sock *sk = sk_to_full_sk(skb->sk);
4271 	kuid_t kuid;
4272 
4273 	if (!sk || !sk_fullsock(sk))
4274 		return overflowuid;
4275 	kuid = sock_net_uid(sock_net(sk), sk);
4276 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4277 }
4278 
4279 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4280 	.func           = bpf_get_socket_uid,
4281 	.gpl_only       = false,
4282 	.ret_type       = RET_INTEGER,
4283 	.arg1_type      = ARG_PTR_TO_CTX,
4284 };
4285 
4286 #define SOCKOPT_CC_REINIT (1 << 0)
4287 
4288 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4289 			   char *optval, int optlen, u32 flags)
4290 {
4291 	char devname[IFNAMSIZ];
4292 	struct net *net;
4293 	int ifindex;
4294 	int ret = 0;
4295 	int val;
4296 
4297 	if (!sk_fullsock(sk))
4298 		return -EINVAL;
4299 
4300 	sock_owned_by_me(sk);
4301 
4302 	if (level == SOL_SOCKET) {
4303 		if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4304 			return -EINVAL;
4305 		val = *((int *)optval);
4306 
4307 		/* Only some socketops are supported */
4308 		switch (optname) {
4309 		case SO_RCVBUF:
4310 			val = min_t(u32, val, sysctl_rmem_max);
4311 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4312 			WRITE_ONCE(sk->sk_rcvbuf,
4313 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4314 			break;
4315 		case SO_SNDBUF:
4316 			val = min_t(u32, val, sysctl_wmem_max);
4317 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4318 			WRITE_ONCE(sk->sk_sndbuf,
4319 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4320 			break;
4321 		case SO_MAX_PACING_RATE: /* 32bit version */
4322 			if (val != ~0U)
4323 				cmpxchg(&sk->sk_pacing_status,
4324 					SK_PACING_NONE,
4325 					SK_PACING_NEEDED);
4326 			sk->sk_max_pacing_rate = (val == ~0U) ? ~0UL : val;
4327 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4328 						 sk->sk_max_pacing_rate);
4329 			break;
4330 		case SO_PRIORITY:
4331 			sk->sk_priority = val;
4332 			break;
4333 		case SO_RCVLOWAT:
4334 			if (val < 0)
4335 				val = INT_MAX;
4336 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4337 			break;
4338 		case SO_MARK:
4339 			if (sk->sk_mark != val) {
4340 				sk->sk_mark = val;
4341 				sk_dst_reset(sk);
4342 			}
4343 			break;
4344 		case SO_BINDTODEVICE:
4345 			optlen = min_t(long, optlen, IFNAMSIZ - 1);
4346 			strncpy(devname, optval, optlen);
4347 			devname[optlen] = 0;
4348 
4349 			ifindex = 0;
4350 			if (devname[0] != '\0') {
4351 				struct net_device *dev;
4352 
4353 				ret = -ENODEV;
4354 
4355 				net = sock_net(sk);
4356 				dev = dev_get_by_name(net, devname);
4357 				if (!dev)
4358 					break;
4359 				ifindex = dev->ifindex;
4360 				dev_put(dev);
4361 			}
4362 			ret = sock_bindtoindex(sk, ifindex, false);
4363 			break;
4364 		default:
4365 			ret = -EINVAL;
4366 		}
4367 #ifdef CONFIG_INET
4368 	} else if (level == SOL_IP) {
4369 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4370 			return -EINVAL;
4371 
4372 		val = *((int *)optval);
4373 		/* Only some options are supported */
4374 		switch (optname) {
4375 		case IP_TOS:
4376 			if (val < -1 || val > 0xff) {
4377 				ret = -EINVAL;
4378 			} else {
4379 				struct inet_sock *inet = inet_sk(sk);
4380 
4381 				if (val == -1)
4382 					val = 0;
4383 				inet->tos = val;
4384 			}
4385 			break;
4386 		default:
4387 			ret = -EINVAL;
4388 		}
4389 #if IS_ENABLED(CONFIG_IPV6)
4390 	} else if (level == SOL_IPV6) {
4391 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4392 			return -EINVAL;
4393 
4394 		val = *((int *)optval);
4395 		/* Only some options are supported */
4396 		switch (optname) {
4397 		case IPV6_TCLASS:
4398 			if (val < -1 || val > 0xff) {
4399 				ret = -EINVAL;
4400 			} else {
4401 				struct ipv6_pinfo *np = inet6_sk(sk);
4402 
4403 				if (val == -1)
4404 					val = 0;
4405 				np->tclass = val;
4406 			}
4407 			break;
4408 		default:
4409 			ret = -EINVAL;
4410 		}
4411 #endif
4412 	} else if (level == SOL_TCP &&
4413 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
4414 		if (optname == TCP_CONGESTION) {
4415 			char name[TCP_CA_NAME_MAX];
4416 			bool reinit = flags & SOCKOPT_CC_REINIT;
4417 
4418 			strncpy(name, optval, min_t(long, optlen,
4419 						    TCP_CA_NAME_MAX-1));
4420 			name[TCP_CA_NAME_MAX-1] = 0;
4421 			ret = tcp_set_congestion_control(sk, name, false,
4422 							 reinit, true);
4423 		} else {
4424 			struct tcp_sock *tp = tcp_sk(sk);
4425 
4426 			if (optlen != sizeof(int))
4427 				return -EINVAL;
4428 
4429 			val = *((int *)optval);
4430 			/* Only some options are supported */
4431 			switch (optname) {
4432 			case TCP_BPF_IW:
4433 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
4434 					ret = -EINVAL;
4435 				else
4436 					tp->snd_cwnd = val;
4437 				break;
4438 			case TCP_BPF_SNDCWND_CLAMP:
4439 				if (val <= 0) {
4440 					ret = -EINVAL;
4441 				} else {
4442 					tp->snd_cwnd_clamp = val;
4443 					tp->snd_ssthresh = val;
4444 				}
4445 				break;
4446 			case TCP_SAVE_SYN:
4447 				if (val < 0 || val > 1)
4448 					ret = -EINVAL;
4449 				else
4450 					tp->save_syn = val;
4451 				break;
4452 			default:
4453 				ret = -EINVAL;
4454 			}
4455 		}
4456 #endif
4457 	} else {
4458 		ret = -EINVAL;
4459 	}
4460 	return ret;
4461 }
4462 
4463 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4464 			   char *optval, int optlen)
4465 {
4466 	if (!sk_fullsock(sk))
4467 		goto err_clear;
4468 
4469 	sock_owned_by_me(sk);
4470 
4471 #ifdef CONFIG_INET
4472 	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4473 		struct inet_connection_sock *icsk;
4474 		struct tcp_sock *tp;
4475 
4476 		switch (optname) {
4477 		case TCP_CONGESTION:
4478 			icsk = inet_csk(sk);
4479 
4480 			if (!icsk->icsk_ca_ops || optlen <= 1)
4481 				goto err_clear;
4482 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4483 			optval[optlen - 1] = 0;
4484 			break;
4485 		case TCP_SAVED_SYN:
4486 			tp = tcp_sk(sk);
4487 
4488 			if (optlen <= 0 || !tp->saved_syn ||
4489 			    optlen > tp->saved_syn[0])
4490 				goto err_clear;
4491 			memcpy(optval, tp->saved_syn + 1, optlen);
4492 			break;
4493 		default:
4494 			goto err_clear;
4495 		}
4496 	} else if (level == SOL_IP) {
4497 		struct inet_sock *inet = inet_sk(sk);
4498 
4499 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4500 			goto err_clear;
4501 
4502 		/* Only some options are supported */
4503 		switch (optname) {
4504 		case IP_TOS:
4505 			*((int *)optval) = (int)inet->tos;
4506 			break;
4507 		default:
4508 			goto err_clear;
4509 		}
4510 #if IS_ENABLED(CONFIG_IPV6)
4511 	} else if (level == SOL_IPV6) {
4512 		struct ipv6_pinfo *np = inet6_sk(sk);
4513 
4514 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4515 			goto err_clear;
4516 
4517 		/* Only some options are supported */
4518 		switch (optname) {
4519 		case IPV6_TCLASS:
4520 			*((int *)optval) = (int)np->tclass;
4521 			break;
4522 		default:
4523 			goto err_clear;
4524 		}
4525 #endif
4526 	} else {
4527 		goto err_clear;
4528 	}
4529 	return 0;
4530 #endif
4531 err_clear:
4532 	memset(optval, 0, optlen);
4533 	return -EINVAL;
4534 }
4535 
4536 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
4537 	   int, level, int, optname, char *, optval, int, optlen)
4538 {
4539 	u32 flags = 0;
4540 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen,
4541 			       flags);
4542 }
4543 
4544 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
4545 	.func		= bpf_sock_addr_setsockopt,
4546 	.gpl_only	= false,
4547 	.ret_type	= RET_INTEGER,
4548 	.arg1_type	= ARG_PTR_TO_CTX,
4549 	.arg2_type	= ARG_ANYTHING,
4550 	.arg3_type	= ARG_ANYTHING,
4551 	.arg4_type	= ARG_PTR_TO_MEM,
4552 	.arg5_type	= ARG_CONST_SIZE,
4553 };
4554 
4555 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
4556 	   int, level, int, optname, char *, optval, int, optlen)
4557 {
4558 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
4559 }
4560 
4561 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
4562 	.func		= bpf_sock_addr_getsockopt,
4563 	.gpl_only	= false,
4564 	.ret_type	= RET_INTEGER,
4565 	.arg1_type	= ARG_PTR_TO_CTX,
4566 	.arg2_type	= ARG_ANYTHING,
4567 	.arg3_type	= ARG_ANYTHING,
4568 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
4569 	.arg5_type	= ARG_CONST_SIZE,
4570 };
4571 
4572 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4573 	   int, level, int, optname, char *, optval, int, optlen)
4574 {
4575 	u32 flags = 0;
4576 	if (bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN)
4577 		flags |= SOCKOPT_CC_REINIT;
4578 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen,
4579 			       flags);
4580 }
4581 
4582 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
4583 	.func		= bpf_sock_ops_setsockopt,
4584 	.gpl_only	= false,
4585 	.ret_type	= RET_INTEGER,
4586 	.arg1_type	= ARG_PTR_TO_CTX,
4587 	.arg2_type	= ARG_ANYTHING,
4588 	.arg3_type	= ARG_ANYTHING,
4589 	.arg4_type	= ARG_PTR_TO_MEM,
4590 	.arg5_type	= ARG_CONST_SIZE,
4591 };
4592 
4593 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4594 	   int, level, int, optname, char *, optval, int, optlen)
4595 {
4596 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
4597 }
4598 
4599 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
4600 	.func		= bpf_sock_ops_getsockopt,
4601 	.gpl_only	= false,
4602 	.ret_type	= RET_INTEGER,
4603 	.arg1_type	= ARG_PTR_TO_CTX,
4604 	.arg2_type	= ARG_ANYTHING,
4605 	.arg3_type	= ARG_ANYTHING,
4606 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
4607 	.arg5_type	= ARG_CONST_SIZE,
4608 };
4609 
4610 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4611 	   int, argval)
4612 {
4613 	struct sock *sk = bpf_sock->sk;
4614 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4615 
4616 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4617 		return -EINVAL;
4618 
4619 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4620 
4621 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4622 }
4623 
4624 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4625 	.func		= bpf_sock_ops_cb_flags_set,
4626 	.gpl_only	= false,
4627 	.ret_type	= RET_INTEGER,
4628 	.arg1_type	= ARG_PTR_TO_CTX,
4629 	.arg2_type	= ARG_ANYTHING,
4630 };
4631 
4632 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4633 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4634 
4635 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4636 	   int, addr_len)
4637 {
4638 #ifdef CONFIG_INET
4639 	struct sock *sk = ctx->sk;
4640 	u32 flags = BIND_FROM_BPF;
4641 	int err;
4642 
4643 	err = -EINVAL;
4644 	if (addr_len < offsetofend(struct sockaddr, sa_family))
4645 		return err;
4646 	if (addr->sa_family == AF_INET) {
4647 		if (addr_len < sizeof(struct sockaddr_in))
4648 			return err;
4649 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
4650 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
4651 		return __inet_bind(sk, addr, addr_len, flags);
4652 #if IS_ENABLED(CONFIG_IPV6)
4653 	} else if (addr->sa_family == AF_INET6) {
4654 		if (addr_len < SIN6_LEN_RFC2133)
4655 			return err;
4656 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
4657 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
4658 		/* ipv6_bpf_stub cannot be NULL, since it's called from
4659 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4660 		 */
4661 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
4662 #endif /* CONFIG_IPV6 */
4663 	}
4664 #endif /* CONFIG_INET */
4665 
4666 	return -EAFNOSUPPORT;
4667 }
4668 
4669 static const struct bpf_func_proto bpf_bind_proto = {
4670 	.func		= bpf_bind,
4671 	.gpl_only	= false,
4672 	.ret_type	= RET_INTEGER,
4673 	.arg1_type	= ARG_PTR_TO_CTX,
4674 	.arg2_type	= ARG_PTR_TO_MEM,
4675 	.arg3_type	= ARG_CONST_SIZE,
4676 };
4677 
4678 #ifdef CONFIG_XFRM
4679 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4680 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
4681 {
4682 	const struct sec_path *sp = skb_sec_path(skb);
4683 	const struct xfrm_state *x;
4684 
4685 	if (!sp || unlikely(index >= sp->len || flags))
4686 		goto err_clear;
4687 
4688 	x = sp->xvec[index];
4689 
4690 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4691 		goto err_clear;
4692 
4693 	to->reqid = x->props.reqid;
4694 	to->spi = x->id.spi;
4695 	to->family = x->props.family;
4696 	to->ext = 0;
4697 
4698 	if (to->family == AF_INET6) {
4699 		memcpy(to->remote_ipv6, x->props.saddr.a6,
4700 		       sizeof(to->remote_ipv6));
4701 	} else {
4702 		to->remote_ipv4 = x->props.saddr.a4;
4703 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4704 	}
4705 
4706 	return 0;
4707 err_clear:
4708 	memset(to, 0, size);
4709 	return -EINVAL;
4710 }
4711 
4712 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4713 	.func		= bpf_skb_get_xfrm_state,
4714 	.gpl_only	= false,
4715 	.ret_type	= RET_INTEGER,
4716 	.arg1_type	= ARG_PTR_TO_CTX,
4717 	.arg2_type	= ARG_ANYTHING,
4718 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4719 	.arg4_type	= ARG_CONST_SIZE,
4720 	.arg5_type	= ARG_ANYTHING,
4721 };
4722 #endif
4723 
4724 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4725 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4726 				  const struct neighbour *neigh,
4727 				  const struct net_device *dev)
4728 {
4729 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
4730 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4731 	params->h_vlan_TCI = 0;
4732 	params->h_vlan_proto = 0;
4733 	params->ifindex = dev->ifindex;
4734 
4735 	return 0;
4736 }
4737 #endif
4738 
4739 #if IS_ENABLED(CONFIG_INET)
4740 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4741 			       u32 flags, bool check_mtu)
4742 {
4743 	struct fib_nh_common *nhc;
4744 	struct in_device *in_dev;
4745 	struct neighbour *neigh;
4746 	struct net_device *dev;
4747 	struct fib_result res;
4748 	struct flowi4 fl4;
4749 	int err;
4750 	u32 mtu;
4751 
4752 	dev = dev_get_by_index_rcu(net, params->ifindex);
4753 	if (unlikely(!dev))
4754 		return -ENODEV;
4755 
4756 	/* verify forwarding is enabled on this interface */
4757 	in_dev = __in_dev_get_rcu(dev);
4758 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4759 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4760 
4761 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4762 		fl4.flowi4_iif = 1;
4763 		fl4.flowi4_oif = params->ifindex;
4764 	} else {
4765 		fl4.flowi4_iif = params->ifindex;
4766 		fl4.flowi4_oif = 0;
4767 	}
4768 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4769 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4770 	fl4.flowi4_flags = 0;
4771 
4772 	fl4.flowi4_proto = params->l4_protocol;
4773 	fl4.daddr = params->ipv4_dst;
4774 	fl4.saddr = params->ipv4_src;
4775 	fl4.fl4_sport = params->sport;
4776 	fl4.fl4_dport = params->dport;
4777 
4778 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
4779 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4780 		struct fib_table *tb;
4781 
4782 		tb = fib_get_table(net, tbid);
4783 		if (unlikely(!tb))
4784 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4785 
4786 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4787 	} else {
4788 		fl4.flowi4_mark = 0;
4789 		fl4.flowi4_secid = 0;
4790 		fl4.flowi4_tun_key.tun_id = 0;
4791 		fl4.flowi4_uid = sock_net_uid(net, NULL);
4792 
4793 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4794 	}
4795 
4796 	if (err) {
4797 		/* map fib lookup errors to RTN_ type */
4798 		if (err == -EINVAL)
4799 			return BPF_FIB_LKUP_RET_BLACKHOLE;
4800 		if (err == -EHOSTUNREACH)
4801 			return BPF_FIB_LKUP_RET_UNREACHABLE;
4802 		if (err == -EACCES)
4803 			return BPF_FIB_LKUP_RET_PROHIBIT;
4804 
4805 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4806 	}
4807 
4808 	if (res.type != RTN_UNICAST)
4809 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4810 
4811 	if (fib_info_num_path(res.fi) > 1)
4812 		fib_select_path(net, &res, &fl4, NULL);
4813 
4814 	if (check_mtu) {
4815 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4816 		if (params->tot_len > mtu)
4817 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4818 	}
4819 
4820 	nhc = res.nhc;
4821 
4822 	/* do not handle lwt encaps right now */
4823 	if (nhc->nhc_lwtstate)
4824 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4825 
4826 	dev = nhc->nhc_dev;
4827 
4828 	params->rt_metric = res.fi->fib_priority;
4829 
4830 	/* xdp and cls_bpf programs are run in RCU-bh so
4831 	 * rcu_read_lock_bh is not needed here
4832 	 */
4833 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
4834 		if (nhc->nhc_gw_family)
4835 			params->ipv4_dst = nhc->nhc_gw.ipv4;
4836 
4837 		neigh = __ipv4_neigh_lookup_noref(dev,
4838 						 (__force u32)params->ipv4_dst);
4839 	} else {
4840 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
4841 
4842 		params->family = AF_INET6;
4843 		*dst = nhc->nhc_gw.ipv6;
4844 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4845 	}
4846 
4847 	if (!neigh)
4848 		return BPF_FIB_LKUP_RET_NO_NEIGH;
4849 
4850 	return bpf_fib_set_fwd_params(params, neigh, dev);
4851 }
4852 #endif
4853 
4854 #if IS_ENABLED(CONFIG_IPV6)
4855 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4856 			       u32 flags, bool check_mtu)
4857 {
4858 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4859 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4860 	struct fib6_result res = {};
4861 	struct neighbour *neigh;
4862 	struct net_device *dev;
4863 	struct inet6_dev *idev;
4864 	struct flowi6 fl6;
4865 	int strict = 0;
4866 	int oif, err;
4867 	u32 mtu;
4868 
4869 	/* link local addresses are never forwarded */
4870 	if (rt6_need_strict(dst) || rt6_need_strict(src))
4871 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4872 
4873 	dev = dev_get_by_index_rcu(net, params->ifindex);
4874 	if (unlikely(!dev))
4875 		return -ENODEV;
4876 
4877 	idev = __in6_dev_get_safely(dev);
4878 	if (unlikely(!idev || !idev->cnf.forwarding))
4879 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4880 
4881 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4882 		fl6.flowi6_iif = 1;
4883 		oif = fl6.flowi6_oif = params->ifindex;
4884 	} else {
4885 		oif = fl6.flowi6_iif = params->ifindex;
4886 		fl6.flowi6_oif = 0;
4887 		strict = RT6_LOOKUP_F_HAS_SADDR;
4888 	}
4889 	fl6.flowlabel = params->flowinfo;
4890 	fl6.flowi6_scope = 0;
4891 	fl6.flowi6_flags = 0;
4892 	fl6.mp_hash = 0;
4893 
4894 	fl6.flowi6_proto = params->l4_protocol;
4895 	fl6.daddr = *dst;
4896 	fl6.saddr = *src;
4897 	fl6.fl6_sport = params->sport;
4898 	fl6.fl6_dport = params->dport;
4899 
4900 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
4901 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4902 		struct fib6_table *tb;
4903 
4904 		tb = ipv6_stub->fib6_get_table(net, tbid);
4905 		if (unlikely(!tb))
4906 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4907 
4908 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
4909 						   strict);
4910 	} else {
4911 		fl6.flowi6_mark = 0;
4912 		fl6.flowi6_secid = 0;
4913 		fl6.flowi6_tun_key.tun_id = 0;
4914 		fl6.flowi6_uid = sock_net_uid(net, NULL);
4915 
4916 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
4917 	}
4918 
4919 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
4920 		     res.f6i == net->ipv6.fib6_null_entry))
4921 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4922 
4923 	switch (res.fib6_type) {
4924 	/* only unicast is forwarded */
4925 	case RTN_UNICAST:
4926 		break;
4927 	case RTN_BLACKHOLE:
4928 		return BPF_FIB_LKUP_RET_BLACKHOLE;
4929 	case RTN_UNREACHABLE:
4930 		return BPF_FIB_LKUP_RET_UNREACHABLE;
4931 	case RTN_PROHIBIT:
4932 		return BPF_FIB_LKUP_RET_PROHIBIT;
4933 	default:
4934 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4935 	}
4936 
4937 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
4938 				    fl6.flowi6_oif != 0, NULL, strict);
4939 
4940 	if (check_mtu) {
4941 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
4942 		if (params->tot_len > mtu)
4943 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4944 	}
4945 
4946 	if (res.nh->fib_nh_lws)
4947 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4948 
4949 	if (res.nh->fib_nh_gw_family)
4950 		*dst = res.nh->fib_nh_gw6;
4951 
4952 	dev = res.nh->fib_nh_dev;
4953 	params->rt_metric = res.f6i->fib6_metric;
4954 
4955 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4956 	 * not needed here.
4957 	 */
4958 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4959 	if (!neigh)
4960 		return BPF_FIB_LKUP_RET_NO_NEIGH;
4961 
4962 	return bpf_fib_set_fwd_params(params, neigh, dev);
4963 }
4964 #endif
4965 
4966 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4967 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
4968 {
4969 	if (plen < sizeof(*params))
4970 		return -EINVAL;
4971 
4972 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4973 		return -EINVAL;
4974 
4975 	switch (params->family) {
4976 #if IS_ENABLED(CONFIG_INET)
4977 	case AF_INET:
4978 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4979 					   flags, true);
4980 #endif
4981 #if IS_ENABLED(CONFIG_IPV6)
4982 	case AF_INET6:
4983 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4984 					   flags, true);
4985 #endif
4986 	}
4987 	return -EAFNOSUPPORT;
4988 }
4989 
4990 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4991 	.func		= bpf_xdp_fib_lookup,
4992 	.gpl_only	= true,
4993 	.ret_type	= RET_INTEGER,
4994 	.arg1_type      = ARG_PTR_TO_CTX,
4995 	.arg2_type      = ARG_PTR_TO_MEM,
4996 	.arg3_type      = ARG_CONST_SIZE,
4997 	.arg4_type	= ARG_ANYTHING,
4998 };
4999 
5000 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5001 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5002 {
5003 	struct net *net = dev_net(skb->dev);
5004 	int rc = -EAFNOSUPPORT;
5005 
5006 	if (plen < sizeof(*params))
5007 		return -EINVAL;
5008 
5009 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5010 		return -EINVAL;
5011 
5012 	switch (params->family) {
5013 #if IS_ENABLED(CONFIG_INET)
5014 	case AF_INET:
5015 		rc = bpf_ipv4_fib_lookup(net, params, flags, false);
5016 		break;
5017 #endif
5018 #if IS_ENABLED(CONFIG_IPV6)
5019 	case AF_INET6:
5020 		rc = bpf_ipv6_fib_lookup(net, params, flags, false);
5021 		break;
5022 #endif
5023 	}
5024 
5025 	if (!rc) {
5026 		struct net_device *dev;
5027 
5028 		dev = dev_get_by_index_rcu(net, params->ifindex);
5029 		if (!is_skb_forwardable(dev, skb))
5030 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5031 	}
5032 
5033 	return rc;
5034 }
5035 
5036 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5037 	.func		= bpf_skb_fib_lookup,
5038 	.gpl_only	= true,
5039 	.ret_type	= RET_INTEGER,
5040 	.arg1_type      = ARG_PTR_TO_CTX,
5041 	.arg2_type      = ARG_PTR_TO_MEM,
5042 	.arg3_type      = ARG_CONST_SIZE,
5043 	.arg4_type	= ARG_ANYTHING,
5044 };
5045 
5046 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5047 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5048 {
5049 	int err;
5050 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5051 
5052 	if (!seg6_validate_srh(srh, len, false))
5053 		return -EINVAL;
5054 
5055 	switch (type) {
5056 	case BPF_LWT_ENCAP_SEG6_INLINE:
5057 		if (skb->protocol != htons(ETH_P_IPV6))
5058 			return -EBADMSG;
5059 
5060 		err = seg6_do_srh_inline(skb, srh);
5061 		break;
5062 	case BPF_LWT_ENCAP_SEG6:
5063 		skb_reset_inner_headers(skb);
5064 		skb->encapsulation = 1;
5065 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5066 		break;
5067 	default:
5068 		return -EINVAL;
5069 	}
5070 
5071 	bpf_compute_data_pointers(skb);
5072 	if (err)
5073 		return err;
5074 
5075 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5076 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5077 
5078 	return seg6_lookup_nexthop(skb, NULL, 0);
5079 }
5080 #endif /* CONFIG_IPV6_SEG6_BPF */
5081 
5082 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5083 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5084 			     bool ingress)
5085 {
5086 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5087 }
5088 #endif
5089 
5090 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5091 	   u32, len)
5092 {
5093 	switch (type) {
5094 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5095 	case BPF_LWT_ENCAP_SEG6:
5096 	case BPF_LWT_ENCAP_SEG6_INLINE:
5097 		return bpf_push_seg6_encap(skb, type, hdr, len);
5098 #endif
5099 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5100 	case BPF_LWT_ENCAP_IP:
5101 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5102 #endif
5103 	default:
5104 		return -EINVAL;
5105 	}
5106 }
5107 
5108 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5109 	   void *, hdr, u32, len)
5110 {
5111 	switch (type) {
5112 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5113 	case BPF_LWT_ENCAP_IP:
5114 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5115 #endif
5116 	default:
5117 		return -EINVAL;
5118 	}
5119 }
5120 
5121 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5122 	.func		= bpf_lwt_in_push_encap,
5123 	.gpl_only	= false,
5124 	.ret_type	= RET_INTEGER,
5125 	.arg1_type	= ARG_PTR_TO_CTX,
5126 	.arg2_type	= ARG_ANYTHING,
5127 	.arg3_type	= ARG_PTR_TO_MEM,
5128 	.arg4_type	= ARG_CONST_SIZE
5129 };
5130 
5131 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5132 	.func		= bpf_lwt_xmit_push_encap,
5133 	.gpl_only	= false,
5134 	.ret_type	= RET_INTEGER,
5135 	.arg1_type	= ARG_PTR_TO_CTX,
5136 	.arg2_type	= ARG_ANYTHING,
5137 	.arg3_type	= ARG_PTR_TO_MEM,
5138 	.arg4_type	= ARG_CONST_SIZE
5139 };
5140 
5141 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5142 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5143 	   const void *, from, u32, len)
5144 {
5145 	struct seg6_bpf_srh_state *srh_state =
5146 		this_cpu_ptr(&seg6_bpf_srh_states);
5147 	struct ipv6_sr_hdr *srh = srh_state->srh;
5148 	void *srh_tlvs, *srh_end, *ptr;
5149 	int srhoff = 0;
5150 
5151 	if (srh == NULL)
5152 		return -EINVAL;
5153 
5154 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5155 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5156 
5157 	ptr = skb->data + offset;
5158 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
5159 		srh_state->valid = false;
5160 	else if (ptr < (void *)&srh->flags ||
5161 		 ptr + len > (void *)&srh->segments)
5162 		return -EFAULT;
5163 
5164 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
5165 		return -EFAULT;
5166 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5167 		return -EINVAL;
5168 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5169 
5170 	memcpy(skb->data + offset, from, len);
5171 	return 0;
5172 }
5173 
5174 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5175 	.func		= bpf_lwt_seg6_store_bytes,
5176 	.gpl_only	= false,
5177 	.ret_type	= RET_INTEGER,
5178 	.arg1_type	= ARG_PTR_TO_CTX,
5179 	.arg2_type	= ARG_ANYTHING,
5180 	.arg3_type	= ARG_PTR_TO_MEM,
5181 	.arg4_type	= ARG_CONST_SIZE
5182 };
5183 
5184 static void bpf_update_srh_state(struct sk_buff *skb)
5185 {
5186 	struct seg6_bpf_srh_state *srh_state =
5187 		this_cpu_ptr(&seg6_bpf_srh_states);
5188 	int srhoff = 0;
5189 
5190 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5191 		srh_state->srh = NULL;
5192 	} else {
5193 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5194 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5195 		srh_state->valid = true;
5196 	}
5197 }
5198 
5199 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5200 	   u32, action, void *, param, u32, param_len)
5201 {
5202 	struct seg6_bpf_srh_state *srh_state =
5203 		this_cpu_ptr(&seg6_bpf_srh_states);
5204 	int hdroff = 0;
5205 	int err;
5206 
5207 	switch (action) {
5208 	case SEG6_LOCAL_ACTION_END_X:
5209 		if (!seg6_bpf_has_valid_srh(skb))
5210 			return -EBADMSG;
5211 		if (param_len != sizeof(struct in6_addr))
5212 			return -EINVAL;
5213 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5214 	case SEG6_LOCAL_ACTION_END_T:
5215 		if (!seg6_bpf_has_valid_srh(skb))
5216 			return -EBADMSG;
5217 		if (param_len != sizeof(int))
5218 			return -EINVAL;
5219 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5220 	case SEG6_LOCAL_ACTION_END_DT6:
5221 		if (!seg6_bpf_has_valid_srh(skb))
5222 			return -EBADMSG;
5223 		if (param_len != sizeof(int))
5224 			return -EINVAL;
5225 
5226 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5227 			return -EBADMSG;
5228 		if (!pskb_pull(skb, hdroff))
5229 			return -EBADMSG;
5230 
5231 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5232 		skb_reset_network_header(skb);
5233 		skb_reset_transport_header(skb);
5234 		skb->encapsulation = 0;
5235 
5236 		bpf_compute_data_pointers(skb);
5237 		bpf_update_srh_state(skb);
5238 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5239 	case SEG6_LOCAL_ACTION_END_B6:
5240 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5241 			return -EBADMSG;
5242 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5243 					  param, param_len);
5244 		if (!err)
5245 			bpf_update_srh_state(skb);
5246 
5247 		return err;
5248 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5249 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5250 			return -EBADMSG;
5251 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5252 					  param, param_len);
5253 		if (!err)
5254 			bpf_update_srh_state(skb);
5255 
5256 		return err;
5257 	default:
5258 		return -EINVAL;
5259 	}
5260 }
5261 
5262 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5263 	.func		= bpf_lwt_seg6_action,
5264 	.gpl_only	= false,
5265 	.ret_type	= RET_INTEGER,
5266 	.arg1_type	= ARG_PTR_TO_CTX,
5267 	.arg2_type	= ARG_ANYTHING,
5268 	.arg3_type	= ARG_PTR_TO_MEM,
5269 	.arg4_type	= ARG_CONST_SIZE
5270 };
5271 
5272 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5273 	   s32, len)
5274 {
5275 	struct seg6_bpf_srh_state *srh_state =
5276 		this_cpu_ptr(&seg6_bpf_srh_states);
5277 	struct ipv6_sr_hdr *srh = srh_state->srh;
5278 	void *srh_end, *srh_tlvs, *ptr;
5279 	struct ipv6hdr *hdr;
5280 	int srhoff = 0;
5281 	int ret;
5282 
5283 	if (unlikely(srh == NULL))
5284 		return -EINVAL;
5285 
5286 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5287 			((srh->first_segment + 1) << 4));
5288 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5289 			srh_state->hdrlen);
5290 	ptr = skb->data + offset;
5291 
5292 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5293 		return -EFAULT;
5294 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5295 		return -EFAULT;
5296 
5297 	if (len > 0) {
5298 		ret = skb_cow_head(skb, len);
5299 		if (unlikely(ret < 0))
5300 			return ret;
5301 
5302 		ret = bpf_skb_net_hdr_push(skb, offset, len);
5303 	} else {
5304 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5305 	}
5306 
5307 	bpf_compute_data_pointers(skb);
5308 	if (unlikely(ret < 0))
5309 		return ret;
5310 
5311 	hdr = (struct ipv6hdr *)skb->data;
5312 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5313 
5314 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5315 		return -EINVAL;
5316 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5317 	srh_state->hdrlen += len;
5318 	srh_state->valid = false;
5319 	return 0;
5320 }
5321 
5322 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5323 	.func		= bpf_lwt_seg6_adjust_srh,
5324 	.gpl_only	= false,
5325 	.ret_type	= RET_INTEGER,
5326 	.arg1_type	= ARG_PTR_TO_CTX,
5327 	.arg2_type	= ARG_ANYTHING,
5328 	.arg3_type	= ARG_ANYTHING,
5329 };
5330 #endif /* CONFIG_IPV6_SEG6_BPF */
5331 
5332 #ifdef CONFIG_INET
5333 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5334 			      int dif, int sdif, u8 family, u8 proto)
5335 {
5336 	bool refcounted = false;
5337 	struct sock *sk = NULL;
5338 
5339 	if (family == AF_INET) {
5340 		__be32 src4 = tuple->ipv4.saddr;
5341 		__be32 dst4 = tuple->ipv4.daddr;
5342 
5343 		if (proto == IPPROTO_TCP)
5344 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5345 					   src4, tuple->ipv4.sport,
5346 					   dst4, tuple->ipv4.dport,
5347 					   dif, sdif, &refcounted);
5348 		else
5349 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5350 					       dst4, tuple->ipv4.dport,
5351 					       dif, sdif, &udp_table, NULL);
5352 #if IS_ENABLED(CONFIG_IPV6)
5353 	} else {
5354 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5355 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5356 
5357 		if (proto == IPPROTO_TCP)
5358 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5359 					    src6, tuple->ipv6.sport,
5360 					    dst6, ntohs(tuple->ipv6.dport),
5361 					    dif, sdif, &refcounted);
5362 		else if (likely(ipv6_bpf_stub))
5363 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5364 							    src6, tuple->ipv6.sport,
5365 							    dst6, tuple->ipv6.dport,
5366 							    dif, sdif,
5367 							    &udp_table, NULL);
5368 #endif
5369 	}
5370 
5371 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5372 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5373 		sk = NULL;
5374 	}
5375 	return sk;
5376 }
5377 
5378 /* bpf_skc_lookup performs the core lookup for different types of sockets,
5379  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5380  * Returns the socket as an 'unsigned long' to simplify the casting in the
5381  * callers to satisfy BPF_CALL declarations.
5382  */
5383 static struct sock *
5384 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5385 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5386 		 u64 flags)
5387 {
5388 	struct sock *sk = NULL;
5389 	u8 family = AF_UNSPEC;
5390 	struct net *net;
5391 	int sdif;
5392 
5393 	if (len == sizeof(tuple->ipv4))
5394 		family = AF_INET;
5395 	else if (len == sizeof(tuple->ipv6))
5396 		family = AF_INET6;
5397 	else
5398 		return NULL;
5399 
5400 	if (unlikely(family == AF_UNSPEC || flags ||
5401 		     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5402 		goto out;
5403 
5404 	if (family == AF_INET)
5405 		sdif = inet_sdif(skb);
5406 	else
5407 		sdif = inet6_sdif(skb);
5408 
5409 	if ((s32)netns_id < 0) {
5410 		net = caller_net;
5411 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5412 	} else {
5413 		net = get_net_ns_by_id(caller_net, netns_id);
5414 		if (unlikely(!net))
5415 			goto out;
5416 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5417 		put_net(net);
5418 	}
5419 
5420 out:
5421 	return sk;
5422 }
5423 
5424 static struct sock *
5425 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5426 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5427 		u64 flags)
5428 {
5429 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5430 					   ifindex, proto, netns_id, flags);
5431 
5432 	if (sk) {
5433 		sk = sk_to_full_sk(sk);
5434 		if (!sk_fullsock(sk)) {
5435 			sock_gen_put(sk);
5436 			return NULL;
5437 		}
5438 	}
5439 
5440 	return sk;
5441 }
5442 
5443 static struct sock *
5444 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5445 	       u8 proto, u64 netns_id, u64 flags)
5446 {
5447 	struct net *caller_net;
5448 	int ifindex;
5449 
5450 	if (skb->dev) {
5451 		caller_net = dev_net(skb->dev);
5452 		ifindex = skb->dev->ifindex;
5453 	} else {
5454 		caller_net = sock_net(skb->sk);
5455 		ifindex = 0;
5456 	}
5457 
5458 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
5459 				netns_id, flags);
5460 }
5461 
5462 static struct sock *
5463 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5464 	      u8 proto, u64 netns_id, u64 flags)
5465 {
5466 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
5467 					 flags);
5468 
5469 	if (sk) {
5470 		sk = sk_to_full_sk(sk);
5471 		if (!sk_fullsock(sk)) {
5472 			sock_gen_put(sk);
5473 			return NULL;
5474 		}
5475 	}
5476 
5477 	return sk;
5478 }
5479 
5480 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
5481 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5482 {
5483 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
5484 					     netns_id, flags);
5485 }
5486 
5487 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
5488 	.func		= bpf_skc_lookup_tcp,
5489 	.gpl_only	= false,
5490 	.pkt_access	= true,
5491 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
5492 	.arg1_type	= ARG_PTR_TO_CTX,
5493 	.arg2_type	= ARG_PTR_TO_MEM,
5494 	.arg3_type	= ARG_CONST_SIZE,
5495 	.arg4_type	= ARG_ANYTHING,
5496 	.arg5_type	= ARG_ANYTHING,
5497 };
5498 
5499 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
5500 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5501 {
5502 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
5503 					    netns_id, flags);
5504 }
5505 
5506 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
5507 	.func		= bpf_sk_lookup_tcp,
5508 	.gpl_only	= false,
5509 	.pkt_access	= true,
5510 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5511 	.arg1_type	= ARG_PTR_TO_CTX,
5512 	.arg2_type	= ARG_PTR_TO_MEM,
5513 	.arg3_type	= ARG_CONST_SIZE,
5514 	.arg4_type	= ARG_ANYTHING,
5515 	.arg5_type	= ARG_ANYTHING,
5516 };
5517 
5518 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
5519 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5520 {
5521 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
5522 					    netns_id, flags);
5523 }
5524 
5525 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
5526 	.func		= bpf_sk_lookup_udp,
5527 	.gpl_only	= false,
5528 	.pkt_access	= true,
5529 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5530 	.arg1_type	= ARG_PTR_TO_CTX,
5531 	.arg2_type	= ARG_PTR_TO_MEM,
5532 	.arg3_type	= ARG_CONST_SIZE,
5533 	.arg4_type	= ARG_ANYTHING,
5534 	.arg5_type	= ARG_ANYTHING,
5535 };
5536 
5537 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
5538 {
5539 	if (sk_is_refcounted(sk))
5540 		sock_gen_put(sk);
5541 	return 0;
5542 }
5543 
5544 static const struct bpf_func_proto bpf_sk_release_proto = {
5545 	.func		= bpf_sk_release,
5546 	.gpl_only	= false,
5547 	.ret_type	= RET_INTEGER,
5548 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5549 };
5550 
5551 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
5552 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5553 {
5554 	struct net *caller_net = dev_net(ctx->rxq->dev);
5555 	int ifindex = ctx->rxq->dev->ifindex;
5556 
5557 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5558 					      ifindex, IPPROTO_UDP, netns_id,
5559 					      flags);
5560 }
5561 
5562 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
5563 	.func           = bpf_xdp_sk_lookup_udp,
5564 	.gpl_only       = false,
5565 	.pkt_access     = true,
5566 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5567 	.arg1_type      = ARG_PTR_TO_CTX,
5568 	.arg2_type      = ARG_PTR_TO_MEM,
5569 	.arg3_type      = ARG_CONST_SIZE,
5570 	.arg4_type      = ARG_ANYTHING,
5571 	.arg5_type      = ARG_ANYTHING,
5572 };
5573 
5574 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
5575 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5576 {
5577 	struct net *caller_net = dev_net(ctx->rxq->dev);
5578 	int ifindex = ctx->rxq->dev->ifindex;
5579 
5580 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
5581 					       ifindex, IPPROTO_TCP, netns_id,
5582 					       flags);
5583 }
5584 
5585 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
5586 	.func           = bpf_xdp_skc_lookup_tcp,
5587 	.gpl_only       = false,
5588 	.pkt_access     = true,
5589 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5590 	.arg1_type      = ARG_PTR_TO_CTX,
5591 	.arg2_type      = ARG_PTR_TO_MEM,
5592 	.arg3_type      = ARG_CONST_SIZE,
5593 	.arg4_type      = ARG_ANYTHING,
5594 	.arg5_type      = ARG_ANYTHING,
5595 };
5596 
5597 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
5598 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5599 {
5600 	struct net *caller_net = dev_net(ctx->rxq->dev);
5601 	int ifindex = ctx->rxq->dev->ifindex;
5602 
5603 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5604 					      ifindex, IPPROTO_TCP, netns_id,
5605 					      flags);
5606 }
5607 
5608 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
5609 	.func           = bpf_xdp_sk_lookup_tcp,
5610 	.gpl_only       = false,
5611 	.pkt_access     = true,
5612 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5613 	.arg1_type      = ARG_PTR_TO_CTX,
5614 	.arg2_type      = ARG_PTR_TO_MEM,
5615 	.arg3_type      = ARG_CONST_SIZE,
5616 	.arg4_type      = ARG_ANYTHING,
5617 	.arg5_type      = ARG_ANYTHING,
5618 };
5619 
5620 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5621 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5622 {
5623 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
5624 					       sock_net(ctx->sk), 0,
5625 					       IPPROTO_TCP, netns_id, flags);
5626 }
5627 
5628 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
5629 	.func		= bpf_sock_addr_skc_lookup_tcp,
5630 	.gpl_only	= false,
5631 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
5632 	.arg1_type	= ARG_PTR_TO_CTX,
5633 	.arg2_type	= ARG_PTR_TO_MEM,
5634 	.arg3_type	= ARG_CONST_SIZE,
5635 	.arg4_type	= ARG_ANYTHING,
5636 	.arg5_type	= ARG_ANYTHING,
5637 };
5638 
5639 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5640 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5641 {
5642 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5643 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
5644 					      netns_id, flags);
5645 }
5646 
5647 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
5648 	.func		= bpf_sock_addr_sk_lookup_tcp,
5649 	.gpl_only	= false,
5650 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5651 	.arg1_type	= ARG_PTR_TO_CTX,
5652 	.arg2_type	= ARG_PTR_TO_MEM,
5653 	.arg3_type	= ARG_CONST_SIZE,
5654 	.arg4_type	= ARG_ANYTHING,
5655 	.arg5_type	= ARG_ANYTHING,
5656 };
5657 
5658 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
5659 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5660 {
5661 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5662 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
5663 					      netns_id, flags);
5664 }
5665 
5666 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
5667 	.func		= bpf_sock_addr_sk_lookup_udp,
5668 	.gpl_only	= false,
5669 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5670 	.arg1_type	= ARG_PTR_TO_CTX,
5671 	.arg2_type	= ARG_PTR_TO_MEM,
5672 	.arg3_type	= ARG_CONST_SIZE,
5673 	.arg4_type	= ARG_ANYTHING,
5674 	.arg5_type	= ARG_ANYTHING,
5675 };
5676 
5677 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5678 				  struct bpf_insn_access_aux *info)
5679 {
5680 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
5681 					  icsk_retransmits))
5682 		return false;
5683 
5684 	if (off % size != 0)
5685 		return false;
5686 
5687 	switch (off) {
5688 	case offsetof(struct bpf_tcp_sock, bytes_received):
5689 	case offsetof(struct bpf_tcp_sock, bytes_acked):
5690 		return size == sizeof(__u64);
5691 	default:
5692 		return size == sizeof(__u32);
5693 	}
5694 }
5695 
5696 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
5697 				    const struct bpf_insn *si,
5698 				    struct bpf_insn *insn_buf,
5699 				    struct bpf_prog *prog, u32 *target_size)
5700 {
5701 	struct bpf_insn *insn = insn_buf;
5702 
5703 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
5704 	do {								\
5705 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
5706 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
5707 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
5708 				      si->dst_reg, si->src_reg,		\
5709 				      offsetof(struct tcp_sock, FIELD)); \
5710 	} while (0)
5711 
5712 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
5713 	do {								\
5714 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
5715 					  FIELD) >			\
5716 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
5717 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
5718 					struct inet_connection_sock,	\
5719 					FIELD),				\
5720 				      si->dst_reg, si->src_reg,		\
5721 				      offsetof(				\
5722 					struct inet_connection_sock,	\
5723 					FIELD));			\
5724 	} while (0)
5725 
5726 	if (insn > insn_buf)
5727 		return insn - insn_buf;
5728 
5729 	switch (si->off) {
5730 	case offsetof(struct bpf_tcp_sock, rtt_min):
5731 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
5732 			     sizeof(struct minmax));
5733 		BUILD_BUG_ON(sizeof(struct minmax) <
5734 			     sizeof(struct minmax_sample));
5735 
5736 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5737 				      offsetof(struct tcp_sock, rtt_min) +
5738 				      offsetof(struct minmax_sample, v));
5739 		break;
5740 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
5741 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
5742 		break;
5743 	case offsetof(struct bpf_tcp_sock, srtt_us):
5744 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
5745 		break;
5746 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
5747 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
5748 		break;
5749 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
5750 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
5751 		break;
5752 	case offsetof(struct bpf_tcp_sock, snd_nxt):
5753 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
5754 		break;
5755 	case offsetof(struct bpf_tcp_sock, snd_una):
5756 		BPF_TCP_SOCK_GET_COMMON(snd_una);
5757 		break;
5758 	case offsetof(struct bpf_tcp_sock, mss_cache):
5759 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
5760 		break;
5761 	case offsetof(struct bpf_tcp_sock, ecn_flags):
5762 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
5763 		break;
5764 	case offsetof(struct bpf_tcp_sock, rate_delivered):
5765 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
5766 		break;
5767 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
5768 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
5769 		break;
5770 	case offsetof(struct bpf_tcp_sock, packets_out):
5771 		BPF_TCP_SOCK_GET_COMMON(packets_out);
5772 		break;
5773 	case offsetof(struct bpf_tcp_sock, retrans_out):
5774 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
5775 		break;
5776 	case offsetof(struct bpf_tcp_sock, total_retrans):
5777 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
5778 		break;
5779 	case offsetof(struct bpf_tcp_sock, segs_in):
5780 		BPF_TCP_SOCK_GET_COMMON(segs_in);
5781 		break;
5782 	case offsetof(struct bpf_tcp_sock, data_segs_in):
5783 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
5784 		break;
5785 	case offsetof(struct bpf_tcp_sock, segs_out):
5786 		BPF_TCP_SOCK_GET_COMMON(segs_out);
5787 		break;
5788 	case offsetof(struct bpf_tcp_sock, data_segs_out):
5789 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
5790 		break;
5791 	case offsetof(struct bpf_tcp_sock, lost_out):
5792 		BPF_TCP_SOCK_GET_COMMON(lost_out);
5793 		break;
5794 	case offsetof(struct bpf_tcp_sock, sacked_out):
5795 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
5796 		break;
5797 	case offsetof(struct bpf_tcp_sock, bytes_received):
5798 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
5799 		break;
5800 	case offsetof(struct bpf_tcp_sock, bytes_acked):
5801 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
5802 		break;
5803 	case offsetof(struct bpf_tcp_sock, dsack_dups):
5804 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
5805 		break;
5806 	case offsetof(struct bpf_tcp_sock, delivered):
5807 		BPF_TCP_SOCK_GET_COMMON(delivered);
5808 		break;
5809 	case offsetof(struct bpf_tcp_sock, delivered_ce):
5810 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
5811 		break;
5812 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
5813 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
5814 		break;
5815 	}
5816 
5817 	return insn - insn_buf;
5818 }
5819 
5820 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
5821 {
5822 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
5823 		return (unsigned long)sk;
5824 
5825 	return (unsigned long)NULL;
5826 }
5827 
5828 const struct bpf_func_proto bpf_tcp_sock_proto = {
5829 	.func		= bpf_tcp_sock,
5830 	.gpl_only	= false,
5831 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
5832 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5833 };
5834 
5835 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
5836 {
5837 	sk = sk_to_full_sk(sk);
5838 
5839 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
5840 		return (unsigned long)sk;
5841 
5842 	return (unsigned long)NULL;
5843 }
5844 
5845 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
5846 	.func		= bpf_get_listener_sock,
5847 	.gpl_only	= false,
5848 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5849 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5850 };
5851 
5852 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
5853 {
5854 	unsigned int iphdr_len;
5855 
5856 	if (skb->protocol == cpu_to_be16(ETH_P_IP))
5857 		iphdr_len = sizeof(struct iphdr);
5858 	else if (skb->protocol == cpu_to_be16(ETH_P_IPV6))
5859 		iphdr_len = sizeof(struct ipv6hdr);
5860 	else
5861 		return 0;
5862 
5863 	if (skb_headlen(skb) < iphdr_len)
5864 		return 0;
5865 
5866 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
5867 		return 0;
5868 
5869 	return INET_ECN_set_ce(skb);
5870 }
5871 
5872 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5873 				  struct bpf_insn_access_aux *info)
5874 {
5875 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
5876 		return false;
5877 
5878 	if (off % size != 0)
5879 		return false;
5880 
5881 	switch (off) {
5882 	default:
5883 		return size == sizeof(__u32);
5884 	}
5885 }
5886 
5887 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
5888 				    const struct bpf_insn *si,
5889 				    struct bpf_insn *insn_buf,
5890 				    struct bpf_prog *prog, u32 *target_size)
5891 {
5892 	struct bpf_insn *insn = insn_buf;
5893 
5894 #define BPF_XDP_SOCK_GET(FIELD)						\
5895 	do {								\
5896 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
5897 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
5898 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
5899 				      si->dst_reg, si->src_reg,		\
5900 				      offsetof(struct xdp_sock, FIELD)); \
5901 	} while (0)
5902 
5903 	switch (si->off) {
5904 	case offsetof(struct bpf_xdp_sock, queue_id):
5905 		BPF_XDP_SOCK_GET(queue_id);
5906 		break;
5907 	}
5908 
5909 	return insn - insn_buf;
5910 }
5911 
5912 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
5913 	.func           = bpf_skb_ecn_set_ce,
5914 	.gpl_only       = false,
5915 	.ret_type       = RET_INTEGER,
5916 	.arg1_type      = ARG_PTR_TO_CTX,
5917 };
5918 
5919 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5920 	   struct tcphdr *, th, u32, th_len)
5921 {
5922 #ifdef CONFIG_SYN_COOKIES
5923 	u32 cookie;
5924 	int ret;
5925 
5926 	if (unlikely(th_len < sizeof(*th)))
5927 		return -EINVAL;
5928 
5929 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
5930 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5931 		return -EINVAL;
5932 
5933 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
5934 		return -EINVAL;
5935 
5936 	if (!th->ack || th->rst || th->syn)
5937 		return -ENOENT;
5938 
5939 	if (tcp_synq_no_recent_overflow(sk))
5940 		return -ENOENT;
5941 
5942 	cookie = ntohl(th->ack_seq) - 1;
5943 
5944 	switch (sk->sk_family) {
5945 	case AF_INET:
5946 		if (unlikely(iph_len < sizeof(struct iphdr)))
5947 			return -EINVAL;
5948 
5949 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
5950 		break;
5951 
5952 #if IS_BUILTIN(CONFIG_IPV6)
5953 	case AF_INET6:
5954 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
5955 			return -EINVAL;
5956 
5957 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
5958 		break;
5959 #endif /* CONFIG_IPV6 */
5960 
5961 	default:
5962 		return -EPROTONOSUPPORT;
5963 	}
5964 
5965 	if (ret > 0)
5966 		return 0;
5967 
5968 	return -ENOENT;
5969 #else
5970 	return -ENOTSUPP;
5971 #endif
5972 }
5973 
5974 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
5975 	.func		= bpf_tcp_check_syncookie,
5976 	.gpl_only	= true,
5977 	.pkt_access	= true,
5978 	.ret_type	= RET_INTEGER,
5979 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5980 	.arg2_type	= ARG_PTR_TO_MEM,
5981 	.arg3_type	= ARG_CONST_SIZE,
5982 	.arg4_type	= ARG_PTR_TO_MEM,
5983 	.arg5_type	= ARG_CONST_SIZE,
5984 };
5985 
5986 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5987 	   struct tcphdr *, th, u32, th_len)
5988 {
5989 #ifdef CONFIG_SYN_COOKIES
5990 	u32 cookie;
5991 	u16 mss;
5992 
5993 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
5994 		return -EINVAL;
5995 
5996 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5997 		return -EINVAL;
5998 
5999 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6000 		return -ENOENT;
6001 
6002 	if (!th->syn || th->ack || th->fin || th->rst)
6003 		return -EINVAL;
6004 
6005 	if (unlikely(iph_len < sizeof(struct iphdr)))
6006 		return -EINVAL;
6007 
6008 	/* Both struct iphdr and struct ipv6hdr have the version field at the
6009 	 * same offset so we can cast to the shorter header (struct iphdr).
6010 	 */
6011 	switch (((struct iphdr *)iph)->version) {
6012 	case 4:
6013 		if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6014 			return -EINVAL;
6015 
6016 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6017 		break;
6018 
6019 #if IS_BUILTIN(CONFIG_IPV6)
6020 	case 6:
6021 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6022 			return -EINVAL;
6023 
6024 		if (sk->sk_family != AF_INET6)
6025 			return -EINVAL;
6026 
6027 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6028 		break;
6029 #endif /* CONFIG_IPV6 */
6030 
6031 	default:
6032 		return -EPROTONOSUPPORT;
6033 	}
6034 	if (mss == 0)
6035 		return -ENOENT;
6036 
6037 	return cookie | ((u64)mss << 32);
6038 #else
6039 	return -EOPNOTSUPP;
6040 #endif /* CONFIG_SYN_COOKIES */
6041 }
6042 
6043 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6044 	.func		= bpf_tcp_gen_syncookie,
6045 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
6046 	.pkt_access	= true,
6047 	.ret_type	= RET_INTEGER,
6048 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6049 	.arg2_type	= ARG_PTR_TO_MEM,
6050 	.arg3_type	= ARG_CONST_SIZE,
6051 	.arg4_type	= ARG_PTR_TO_MEM,
6052 	.arg5_type	= ARG_CONST_SIZE,
6053 };
6054 
6055 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6056 {
6057 	if (flags != 0)
6058 		return -EINVAL;
6059 	if (!skb_at_tc_ingress(skb))
6060 		return -EOPNOTSUPP;
6061 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6062 		return -ENETUNREACH;
6063 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6064 		return -ESOCKTNOSUPPORT;
6065 	if (sk_is_refcounted(sk) &&
6066 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6067 		return -ENOENT;
6068 
6069 	skb_orphan(skb);
6070 	skb->sk = sk;
6071 	skb->destructor = sock_pfree;
6072 
6073 	return 0;
6074 }
6075 
6076 static const struct bpf_func_proto bpf_sk_assign_proto = {
6077 	.func		= bpf_sk_assign,
6078 	.gpl_only	= false,
6079 	.ret_type	= RET_INTEGER,
6080 	.arg1_type      = ARG_PTR_TO_CTX,
6081 	.arg2_type      = ARG_PTR_TO_SOCK_COMMON,
6082 	.arg3_type	= ARG_ANYTHING,
6083 };
6084 
6085 #endif /* CONFIG_INET */
6086 
6087 bool bpf_helper_changes_pkt_data(void *func)
6088 {
6089 	if (func == bpf_skb_vlan_push ||
6090 	    func == bpf_skb_vlan_pop ||
6091 	    func == bpf_skb_store_bytes ||
6092 	    func == bpf_skb_change_proto ||
6093 	    func == bpf_skb_change_head ||
6094 	    func == sk_skb_change_head ||
6095 	    func == bpf_skb_change_tail ||
6096 	    func == sk_skb_change_tail ||
6097 	    func == bpf_skb_adjust_room ||
6098 	    func == bpf_skb_pull_data ||
6099 	    func == sk_skb_pull_data ||
6100 	    func == bpf_clone_redirect ||
6101 	    func == bpf_l3_csum_replace ||
6102 	    func == bpf_l4_csum_replace ||
6103 	    func == bpf_xdp_adjust_head ||
6104 	    func == bpf_xdp_adjust_meta ||
6105 	    func == bpf_msg_pull_data ||
6106 	    func == bpf_msg_push_data ||
6107 	    func == bpf_msg_pop_data ||
6108 	    func == bpf_xdp_adjust_tail ||
6109 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6110 	    func == bpf_lwt_seg6_store_bytes ||
6111 	    func == bpf_lwt_seg6_adjust_srh ||
6112 	    func == bpf_lwt_seg6_action ||
6113 #endif
6114 	    func == bpf_lwt_in_push_encap ||
6115 	    func == bpf_lwt_xmit_push_encap)
6116 		return true;
6117 
6118 	return false;
6119 }
6120 
6121 const struct bpf_func_proto bpf_event_output_data_proto __weak;
6122 
6123 static const struct bpf_func_proto *
6124 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6125 {
6126 	switch (func_id) {
6127 	/* inet and inet6 sockets are created in a process
6128 	 * context so there is always a valid uid/gid
6129 	 */
6130 	case BPF_FUNC_get_current_uid_gid:
6131 		return &bpf_get_current_uid_gid_proto;
6132 	case BPF_FUNC_get_local_storage:
6133 		return &bpf_get_local_storage_proto;
6134 	case BPF_FUNC_get_socket_cookie:
6135 		return &bpf_get_socket_cookie_sock_proto;
6136 	case BPF_FUNC_get_netns_cookie:
6137 		return &bpf_get_netns_cookie_sock_proto;
6138 	case BPF_FUNC_perf_event_output:
6139 		return &bpf_event_output_data_proto;
6140 	case BPF_FUNC_get_current_pid_tgid:
6141 		return &bpf_get_current_pid_tgid_proto;
6142 	case BPF_FUNC_get_current_comm:
6143 		return &bpf_get_current_comm_proto;
6144 #ifdef CONFIG_CGROUPS
6145 	case BPF_FUNC_get_current_cgroup_id:
6146 		return &bpf_get_current_cgroup_id_proto;
6147 	case BPF_FUNC_get_current_ancestor_cgroup_id:
6148 		return &bpf_get_current_ancestor_cgroup_id_proto;
6149 #endif
6150 #ifdef CONFIG_CGROUP_NET_CLASSID
6151 	case BPF_FUNC_get_cgroup_classid:
6152 		return &bpf_get_cgroup_classid_curr_proto;
6153 #endif
6154 	default:
6155 		return bpf_base_func_proto(func_id);
6156 	}
6157 }
6158 
6159 static const struct bpf_func_proto *
6160 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6161 {
6162 	switch (func_id) {
6163 	/* inet and inet6 sockets are created in a process
6164 	 * context so there is always a valid uid/gid
6165 	 */
6166 	case BPF_FUNC_get_current_uid_gid:
6167 		return &bpf_get_current_uid_gid_proto;
6168 	case BPF_FUNC_bind:
6169 		switch (prog->expected_attach_type) {
6170 		case BPF_CGROUP_INET4_CONNECT:
6171 		case BPF_CGROUP_INET6_CONNECT:
6172 			return &bpf_bind_proto;
6173 		default:
6174 			return NULL;
6175 		}
6176 	case BPF_FUNC_get_socket_cookie:
6177 		return &bpf_get_socket_cookie_sock_addr_proto;
6178 	case BPF_FUNC_get_netns_cookie:
6179 		return &bpf_get_netns_cookie_sock_addr_proto;
6180 	case BPF_FUNC_get_local_storage:
6181 		return &bpf_get_local_storage_proto;
6182 	case BPF_FUNC_perf_event_output:
6183 		return &bpf_event_output_data_proto;
6184 	case BPF_FUNC_get_current_pid_tgid:
6185 		return &bpf_get_current_pid_tgid_proto;
6186 	case BPF_FUNC_get_current_comm:
6187 		return &bpf_get_current_comm_proto;
6188 #ifdef CONFIG_CGROUPS
6189 	case BPF_FUNC_get_current_cgroup_id:
6190 		return &bpf_get_current_cgroup_id_proto;
6191 	case BPF_FUNC_get_current_ancestor_cgroup_id:
6192 		return &bpf_get_current_ancestor_cgroup_id_proto;
6193 #endif
6194 #ifdef CONFIG_CGROUP_NET_CLASSID
6195 	case BPF_FUNC_get_cgroup_classid:
6196 		return &bpf_get_cgroup_classid_curr_proto;
6197 #endif
6198 #ifdef CONFIG_INET
6199 	case BPF_FUNC_sk_lookup_tcp:
6200 		return &bpf_sock_addr_sk_lookup_tcp_proto;
6201 	case BPF_FUNC_sk_lookup_udp:
6202 		return &bpf_sock_addr_sk_lookup_udp_proto;
6203 	case BPF_FUNC_sk_release:
6204 		return &bpf_sk_release_proto;
6205 	case BPF_FUNC_skc_lookup_tcp:
6206 		return &bpf_sock_addr_skc_lookup_tcp_proto;
6207 #endif /* CONFIG_INET */
6208 	case BPF_FUNC_sk_storage_get:
6209 		return &bpf_sk_storage_get_proto;
6210 	case BPF_FUNC_sk_storage_delete:
6211 		return &bpf_sk_storage_delete_proto;
6212 	case BPF_FUNC_setsockopt:
6213 		switch (prog->expected_attach_type) {
6214 		case BPF_CGROUP_INET4_CONNECT:
6215 		case BPF_CGROUP_INET6_CONNECT:
6216 			return &bpf_sock_addr_setsockopt_proto;
6217 		default:
6218 			return NULL;
6219 		}
6220 	case BPF_FUNC_getsockopt:
6221 		switch (prog->expected_attach_type) {
6222 		case BPF_CGROUP_INET4_CONNECT:
6223 		case BPF_CGROUP_INET6_CONNECT:
6224 			return &bpf_sock_addr_getsockopt_proto;
6225 		default:
6226 			return NULL;
6227 		}
6228 	default:
6229 		return bpf_base_func_proto(func_id);
6230 	}
6231 }
6232 
6233 static const struct bpf_func_proto *
6234 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6235 {
6236 	switch (func_id) {
6237 	case BPF_FUNC_skb_load_bytes:
6238 		return &bpf_skb_load_bytes_proto;
6239 	case BPF_FUNC_skb_load_bytes_relative:
6240 		return &bpf_skb_load_bytes_relative_proto;
6241 	case BPF_FUNC_get_socket_cookie:
6242 		return &bpf_get_socket_cookie_proto;
6243 	case BPF_FUNC_get_socket_uid:
6244 		return &bpf_get_socket_uid_proto;
6245 	case BPF_FUNC_perf_event_output:
6246 		return &bpf_skb_event_output_proto;
6247 	default:
6248 		return bpf_base_func_proto(func_id);
6249 	}
6250 }
6251 
6252 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
6253 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
6254 
6255 static const struct bpf_func_proto *
6256 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6257 {
6258 	switch (func_id) {
6259 	case BPF_FUNC_get_local_storage:
6260 		return &bpf_get_local_storage_proto;
6261 	case BPF_FUNC_sk_fullsock:
6262 		return &bpf_sk_fullsock_proto;
6263 	case BPF_FUNC_sk_storage_get:
6264 		return &bpf_sk_storage_get_proto;
6265 	case BPF_FUNC_sk_storage_delete:
6266 		return &bpf_sk_storage_delete_proto;
6267 	case BPF_FUNC_perf_event_output:
6268 		return &bpf_skb_event_output_proto;
6269 #ifdef CONFIG_SOCK_CGROUP_DATA
6270 	case BPF_FUNC_skb_cgroup_id:
6271 		return &bpf_skb_cgroup_id_proto;
6272 	case BPF_FUNC_skb_ancestor_cgroup_id:
6273 		return &bpf_skb_ancestor_cgroup_id_proto;
6274 	case BPF_FUNC_sk_cgroup_id:
6275 		return &bpf_sk_cgroup_id_proto;
6276 	case BPF_FUNC_sk_ancestor_cgroup_id:
6277 		return &bpf_sk_ancestor_cgroup_id_proto;
6278 #endif
6279 #ifdef CONFIG_INET
6280 	case BPF_FUNC_sk_lookup_tcp:
6281 		return &bpf_sk_lookup_tcp_proto;
6282 	case BPF_FUNC_sk_lookup_udp:
6283 		return &bpf_sk_lookup_udp_proto;
6284 	case BPF_FUNC_sk_release:
6285 		return &bpf_sk_release_proto;
6286 	case BPF_FUNC_skc_lookup_tcp:
6287 		return &bpf_skc_lookup_tcp_proto;
6288 	case BPF_FUNC_tcp_sock:
6289 		return &bpf_tcp_sock_proto;
6290 	case BPF_FUNC_get_listener_sock:
6291 		return &bpf_get_listener_sock_proto;
6292 	case BPF_FUNC_skb_ecn_set_ce:
6293 		return &bpf_skb_ecn_set_ce_proto;
6294 #endif
6295 	default:
6296 		return sk_filter_func_proto(func_id, prog);
6297 	}
6298 }
6299 
6300 static const struct bpf_func_proto *
6301 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6302 {
6303 	switch (func_id) {
6304 	case BPF_FUNC_skb_store_bytes:
6305 		return &bpf_skb_store_bytes_proto;
6306 	case BPF_FUNC_skb_load_bytes:
6307 		return &bpf_skb_load_bytes_proto;
6308 	case BPF_FUNC_skb_load_bytes_relative:
6309 		return &bpf_skb_load_bytes_relative_proto;
6310 	case BPF_FUNC_skb_pull_data:
6311 		return &bpf_skb_pull_data_proto;
6312 	case BPF_FUNC_csum_diff:
6313 		return &bpf_csum_diff_proto;
6314 	case BPF_FUNC_csum_update:
6315 		return &bpf_csum_update_proto;
6316 	case BPF_FUNC_csum_level:
6317 		return &bpf_csum_level_proto;
6318 	case BPF_FUNC_l3_csum_replace:
6319 		return &bpf_l3_csum_replace_proto;
6320 	case BPF_FUNC_l4_csum_replace:
6321 		return &bpf_l4_csum_replace_proto;
6322 	case BPF_FUNC_clone_redirect:
6323 		return &bpf_clone_redirect_proto;
6324 	case BPF_FUNC_get_cgroup_classid:
6325 		return &bpf_get_cgroup_classid_proto;
6326 	case BPF_FUNC_skb_vlan_push:
6327 		return &bpf_skb_vlan_push_proto;
6328 	case BPF_FUNC_skb_vlan_pop:
6329 		return &bpf_skb_vlan_pop_proto;
6330 	case BPF_FUNC_skb_change_proto:
6331 		return &bpf_skb_change_proto_proto;
6332 	case BPF_FUNC_skb_change_type:
6333 		return &bpf_skb_change_type_proto;
6334 	case BPF_FUNC_skb_adjust_room:
6335 		return &bpf_skb_adjust_room_proto;
6336 	case BPF_FUNC_skb_change_tail:
6337 		return &bpf_skb_change_tail_proto;
6338 	case BPF_FUNC_skb_change_head:
6339 		return &bpf_skb_change_head_proto;
6340 	case BPF_FUNC_skb_get_tunnel_key:
6341 		return &bpf_skb_get_tunnel_key_proto;
6342 	case BPF_FUNC_skb_set_tunnel_key:
6343 		return bpf_get_skb_set_tunnel_proto(func_id);
6344 	case BPF_FUNC_skb_get_tunnel_opt:
6345 		return &bpf_skb_get_tunnel_opt_proto;
6346 	case BPF_FUNC_skb_set_tunnel_opt:
6347 		return bpf_get_skb_set_tunnel_proto(func_id);
6348 	case BPF_FUNC_redirect:
6349 		return &bpf_redirect_proto;
6350 	case BPF_FUNC_get_route_realm:
6351 		return &bpf_get_route_realm_proto;
6352 	case BPF_FUNC_get_hash_recalc:
6353 		return &bpf_get_hash_recalc_proto;
6354 	case BPF_FUNC_set_hash_invalid:
6355 		return &bpf_set_hash_invalid_proto;
6356 	case BPF_FUNC_set_hash:
6357 		return &bpf_set_hash_proto;
6358 	case BPF_FUNC_perf_event_output:
6359 		return &bpf_skb_event_output_proto;
6360 	case BPF_FUNC_get_smp_processor_id:
6361 		return &bpf_get_smp_processor_id_proto;
6362 	case BPF_FUNC_skb_under_cgroup:
6363 		return &bpf_skb_under_cgroup_proto;
6364 	case BPF_FUNC_get_socket_cookie:
6365 		return &bpf_get_socket_cookie_proto;
6366 	case BPF_FUNC_get_socket_uid:
6367 		return &bpf_get_socket_uid_proto;
6368 	case BPF_FUNC_fib_lookup:
6369 		return &bpf_skb_fib_lookup_proto;
6370 	case BPF_FUNC_sk_fullsock:
6371 		return &bpf_sk_fullsock_proto;
6372 	case BPF_FUNC_sk_storage_get:
6373 		return &bpf_sk_storage_get_proto;
6374 	case BPF_FUNC_sk_storage_delete:
6375 		return &bpf_sk_storage_delete_proto;
6376 #ifdef CONFIG_XFRM
6377 	case BPF_FUNC_skb_get_xfrm_state:
6378 		return &bpf_skb_get_xfrm_state_proto;
6379 #endif
6380 #ifdef CONFIG_SOCK_CGROUP_DATA
6381 	case BPF_FUNC_skb_cgroup_id:
6382 		return &bpf_skb_cgroup_id_proto;
6383 	case BPF_FUNC_skb_ancestor_cgroup_id:
6384 		return &bpf_skb_ancestor_cgroup_id_proto;
6385 #endif
6386 #ifdef CONFIG_INET
6387 	case BPF_FUNC_sk_lookup_tcp:
6388 		return &bpf_sk_lookup_tcp_proto;
6389 	case BPF_FUNC_sk_lookup_udp:
6390 		return &bpf_sk_lookup_udp_proto;
6391 	case BPF_FUNC_sk_release:
6392 		return &bpf_sk_release_proto;
6393 	case BPF_FUNC_tcp_sock:
6394 		return &bpf_tcp_sock_proto;
6395 	case BPF_FUNC_get_listener_sock:
6396 		return &bpf_get_listener_sock_proto;
6397 	case BPF_FUNC_skc_lookup_tcp:
6398 		return &bpf_skc_lookup_tcp_proto;
6399 	case BPF_FUNC_tcp_check_syncookie:
6400 		return &bpf_tcp_check_syncookie_proto;
6401 	case BPF_FUNC_skb_ecn_set_ce:
6402 		return &bpf_skb_ecn_set_ce_proto;
6403 	case BPF_FUNC_tcp_gen_syncookie:
6404 		return &bpf_tcp_gen_syncookie_proto;
6405 	case BPF_FUNC_sk_assign:
6406 		return &bpf_sk_assign_proto;
6407 #endif
6408 	default:
6409 		return bpf_base_func_proto(func_id);
6410 	}
6411 }
6412 
6413 static const struct bpf_func_proto *
6414 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6415 {
6416 	switch (func_id) {
6417 	case BPF_FUNC_perf_event_output:
6418 		return &bpf_xdp_event_output_proto;
6419 	case BPF_FUNC_get_smp_processor_id:
6420 		return &bpf_get_smp_processor_id_proto;
6421 	case BPF_FUNC_csum_diff:
6422 		return &bpf_csum_diff_proto;
6423 	case BPF_FUNC_xdp_adjust_head:
6424 		return &bpf_xdp_adjust_head_proto;
6425 	case BPF_FUNC_xdp_adjust_meta:
6426 		return &bpf_xdp_adjust_meta_proto;
6427 	case BPF_FUNC_redirect:
6428 		return &bpf_xdp_redirect_proto;
6429 	case BPF_FUNC_redirect_map:
6430 		return &bpf_xdp_redirect_map_proto;
6431 	case BPF_FUNC_xdp_adjust_tail:
6432 		return &bpf_xdp_adjust_tail_proto;
6433 	case BPF_FUNC_fib_lookup:
6434 		return &bpf_xdp_fib_lookup_proto;
6435 #ifdef CONFIG_INET
6436 	case BPF_FUNC_sk_lookup_udp:
6437 		return &bpf_xdp_sk_lookup_udp_proto;
6438 	case BPF_FUNC_sk_lookup_tcp:
6439 		return &bpf_xdp_sk_lookup_tcp_proto;
6440 	case BPF_FUNC_sk_release:
6441 		return &bpf_sk_release_proto;
6442 	case BPF_FUNC_skc_lookup_tcp:
6443 		return &bpf_xdp_skc_lookup_tcp_proto;
6444 	case BPF_FUNC_tcp_check_syncookie:
6445 		return &bpf_tcp_check_syncookie_proto;
6446 	case BPF_FUNC_tcp_gen_syncookie:
6447 		return &bpf_tcp_gen_syncookie_proto;
6448 #endif
6449 	default:
6450 		return bpf_base_func_proto(func_id);
6451 	}
6452 }
6453 
6454 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
6455 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
6456 
6457 static const struct bpf_func_proto *
6458 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6459 {
6460 	switch (func_id) {
6461 	case BPF_FUNC_setsockopt:
6462 		return &bpf_sock_ops_setsockopt_proto;
6463 	case BPF_FUNC_getsockopt:
6464 		return &bpf_sock_ops_getsockopt_proto;
6465 	case BPF_FUNC_sock_ops_cb_flags_set:
6466 		return &bpf_sock_ops_cb_flags_set_proto;
6467 	case BPF_FUNC_sock_map_update:
6468 		return &bpf_sock_map_update_proto;
6469 	case BPF_FUNC_sock_hash_update:
6470 		return &bpf_sock_hash_update_proto;
6471 	case BPF_FUNC_get_socket_cookie:
6472 		return &bpf_get_socket_cookie_sock_ops_proto;
6473 	case BPF_FUNC_get_local_storage:
6474 		return &bpf_get_local_storage_proto;
6475 	case BPF_FUNC_perf_event_output:
6476 		return &bpf_event_output_data_proto;
6477 	case BPF_FUNC_sk_storage_get:
6478 		return &bpf_sk_storage_get_proto;
6479 	case BPF_FUNC_sk_storage_delete:
6480 		return &bpf_sk_storage_delete_proto;
6481 #ifdef CONFIG_INET
6482 	case BPF_FUNC_tcp_sock:
6483 		return &bpf_tcp_sock_proto;
6484 #endif /* CONFIG_INET */
6485 	default:
6486 		return bpf_base_func_proto(func_id);
6487 	}
6488 }
6489 
6490 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
6491 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
6492 
6493 static const struct bpf_func_proto *
6494 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6495 {
6496 	switch (func_id) {
6497 	case BPF_FUNC_msg_redirect_map:
6498 		return &bpf_msg_redirect_map_proto;
6499 	case BPF_FUNC_msg_redirect_hash:
6500 		return &bpf_msg_redirect_hash_proto;
6501 	case BPF_FUNC_msg_apply_bytes:
6502 		return &bpf_msg_apply_bytes_proto;
6503 	case BPF_FUNC_msg_cork_bytes:
6504 		return &bpf_msg_cork_bytes_proto;
6505 	case BPF_FUNC_msg_pull_data:
6506 		return &bpf_msg_pull_data_proto;
6507 	case BPF_FUNC_msg_push_data:
6508 		return &bpf_msg_push_data_proto;
6509 	case BPF_FUNC_msg_pop_data:
6510 		return &bpf_msg_pop_data_proto;
6511 	case BPF_FUNC_perf_event_output:
6512 		return &bpf_event_output_data_proto;
6513 	case BPF_FUNC_get_current_uid_gid:
6514 		return &bpf_get_current_uid_gid_proto;
6515 	case BPF_FUNC_get_current_pid_tgid:
6516 		return &bpf_get_current_pid_tgid_proto;
6517 	case BPF_FUNC_sk_storage_get:
6518 		return &bpf_sk_storage_get_proto;
6519 	case BPF_FUNC_sk_storage_delete:
6520 		return &bpf_sk_storage_delete_proto;
6521 #ifdef CONFIG_CGROUPS
6522 	case BPF_FUNC_get_current_cgroup_id:
6523 		return &bpf_get_current_cgroup_id_proto;
6524 	case BPF_FUNC_get_current_ancestor_cgroup_id:
6525 		return &bpf_get_current_ancestor_cgroup_id_proto;
6526 #endif
6527 #ifdef CONFIG_CGROUP_NET_CLASSID
6528 	case BPF_FUNC_get_cgroup_classid:
6529 		return &bpf_get_cgroup_classid_curr_proto;
6530 #endif
6531 	default:
6532 		return bpf_base_func_proto(func_id);
6533 	}
6534 }
6535 
6536 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
6537 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
6538 
6539 static const struct bpf_func_proto *
6540 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6541 {
6542 	switch (func_id) {
6543 	case BPF_FUNC_skb_store_bytes:
6544 		return &bpf_skb_store_bytes_proto;
6545 	case BPF_FUNC_skb_load_bytes:
6546 		return &bpf_skb_load_bytes_proto;
6547 	case BPF_FUNC_skb_pull_data:
6548 		return &sk_skb_pull_data_proto;
6549 	case BPF_FUNC_skb_change_tail:
6550 		return &sk_skb_change_tail_proto;
6551 	case BPF_FUNC_skb_change_head:
6552 		return &sk_skb_change_head_proto;
6553 	case BPF_FUNC_get_socket_cookie:
6554 		return &bpf_get_socket_cookie_proto;
6555 	case BPF_FUNC_get_socket_uid:
6556 		return &bpf_get_socket_uid_proto;
6557 	case BPF_FUNC_sk_redirect_map:
6558 		return &bpf_sk_redirect_map_proto;
6559 	case BPF_FUNC_sk_redirect_hash:
6560 		return &bpf_sk_redirect_hash_proto;
6561 	case BPF_FUNC_perf_event_output:
6562 		return &bpf_skb_event_output_proto;
6563 #ifdef CONFIG_INET
6564 	case BPF_FUNC_sk_lookup_tcp:
6565 		return &bpf_sk_lookup_tcp_proto;
6566 	case BPF_FUNC_sk_lookup_udp:
6567 		return &bpf_sk_lookup_udp_proto;
6568 	case BPF_FUNC_sk_release:
6569 		return &bpf_sk_release_proto;
6570 	case BPF_FUNC_skc_lookup_tcp:
6571 		return &bpf_skc_lookup_tcp_proto;
6572 #endif
6573 	default:
6574 		return bpf_base_func_proto(func_id);
6575 	}
6576 }
6577 
6578 static const struct bpf_func_proto *
6579 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6580 {
6581 	switch (func_id) {
6582 	case BPF_FUNC_skb_load_bytes:
6583 		return &bpf_flow_dissector_load_bytes_proto;
6584 	default:
6585 		return bpf_base_func_proto(func_id);
6586 	}
6587 }
6588 
6589 static const struct bpf_func_proto *
6590 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6591 {
6592 	switch (func_id) {
6593 	case BPF_FUNC_skb_load_bytes:
6594 		return &bpf_skb_load_bytes_proto;
6595 	case BPF_FUNC_skb_pull_data:
6596 		return &bpf_skb_pull_data_proto;
6597 	case BPF_FUNC_csum_diff:
6598 		return &bpf_csum_diff_proto;
6599 	case BPF_FUNC_get_cgroup_classid:
6600 		return &bpf_get_cgroup_classid_proto;
6601 	case BPF_FUNC_get_route_realm:
6602 		return &bpf_get_route_realm_proto;
6603 	case BPF_FUNC_get_hash_recalc:
6604 		return &bpf_get_hash_recalc_proto;
6605 	case BPF_FUNC_perf_event_output:
6606 		return &bpf_skb_event_output_proto;
6607 	case BPF_FUNC_get_smp_processor_id:
6608 		return &bpf_get_smp_processor_id_proto;
6609 	case BPF_FUNC_skb_under_cgroup:
6610 		return &bpf_skb_under_cgroup_proto;
6611 	default:
6612 		return bpf_base_func_proto(func_id);
6613 	}
6614 }
6615 
6616 static const struct bpf_func_proto *
6617 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6618 {
6619 	switch (func_id) {
6620 	case BPF_FUNC_lwt_push_encap:
6621 		return &bpf_lwt_in_push_encap_proto;
6622 	default:
6623 		return lwt_out_func_proto(func_id, prog);
6624 	}
6625 }
6626 
6627 static const struct bpf_func_proto *
6628 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6629 {
6630 	switch (func_id) {
6631 	case BPF_FUNC_skb_get_tunnel_key:
6632 		return &bpf_skb_get_tunnel_key_proto;
6633 	case BPF_FUNC_skb_set_tunnel_key:
6634 		return bpf_get_skb_set_tunnel_proto(func_id);
6635 	case BPF_FUNC_skb_get_tunnel_opt:
6636 		return &bpf_skb_get_tunnel_opt_proto;
6637 	case BPF_FUNC_skb_set_tunnel_opt:
6638 		return bpf_get_skb_set_tunnel_proto(func_id);
6639 	case BPF_FUNC_redirect:
6640 		return &bpf_redirect_proto;
6641 	case BPF_FUNC_clone_redirect:
6642 		return &bpf_clone_redirect_proto;
6643 	case BPF_FUNC_skb_change_tail:
6644 		return &bpf_skb_change_tail_proto;
6645 	case BPF_FUNC_skb_change_head:
6646 		return &bpf_skb_change_head_proto;
6647 	case BPF_FUNC_skb_store_bytes:
6648 		return &bpf_skb_store_bytes_proto;
6649 	case BPF_FUNC_csum_update:
6650 		return &bpf_csum_update_proto;
6651 	case BPF_FUNC_csum_level:
6652 		return &bpf_csum_level_proto;
6653 	case BPF_FUNC_l3_csum_replace:
6654 		return &bpf_l3_csum_replace_proto;
6655 	case BPF_FUNC_l4_csum_replace:
6656 		return &bpf_l4_csum_replace_proto;
6657 	case BPF_FUNC_set_hash_invalid:
6658 		return &bpf_set_hash_invalid_proto;
6659 	case BPF_FUNC_lwt_push_encap:
6660 		return &bpf_lwt_xmit_push_encap_proto;
6661 	default:
6662 		return lwt_out_func_proto(func_id, prog);
6663 	}
6664 }
6665 
6666 static const struct bpf_func_proto *
6667 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6668 {
6669 	switch (func_id) {
6670 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6671 	case BPF_FUNC_lwt_seg6_store_bytes:
6672 		return &bpf_lwt_seg6_store_bytes_proto;
6673 	case BPF_FUNC_lwt_seg6_action:
6674 		return &bpf_lwt_seg6_action_proto;
6675 	case BPF_FUNC_lwt_seg6_adjust_srh:
6676 		return &bpf_lwt_seg6_adjust_srh_proto;
6677 #endif
6678 	default:
6679 		return lwt_out_func_proto(func_id, prog);
6680 	}
6681 }
6682 
6683 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
6684 				    const struct bpf_prog *prog,
6685 				    struct bpf_insn_access_aux *info)
6686 {
6687 	const int size_default = sizeof(__u32);
6688 
6689 	if (off < 0 || off >= sizeof(struct __sk_buff))
6690 		return false;
6691 
6692 	/* The verifier guarantees that size > 0. */
6693 	if (off % size != 0)
6694 		return false;
6695 
6696 	switch (off) {
6697 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6698 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
6699 			return false;
6700 		break;
6701 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
6702 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
6703 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
6704 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
6705 	case bpf_ctx_range(struct __sk_buff, data):
6706 	case bpf_ctx_range(struct __sk_buff, data_meta):
6707 	case bpf_ctx_range(struct __sk_buff, data_end):
6708 		if (size != size_default)
6709 			return false;
6710 		break;
6711 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6712 		return false;
6713 	case bpf_ctx_range(struct __sk_buff, tstamp):
6714 		if (size != sizeof(__u64))
6715 			return false;
6716 		break;
6717 	case offsetof(struct __sk_buff, sk):
6718 		if (type == BPF_WRITE || size != sizeof(__u64))
6719 			return false;
6720 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
6721 		break;
6722 	default:
6723 		/* Only narrow read access allowed for now. */
6724 		if (type == BPF_WRITE) {
6725 			if (size != size_default)
6726 				return false;
6727 		} else {
6728 			bpf_ctx_record_field_size(info, size_default);
6729 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6730 				return false;
6731 		}
6732 	}
6733 
6734 	return true;
6735 }
6736 
6737 static bool sk_filter_is_valid_access(int off, int size,
6738 				      enum bpf_access_type type,
6739 				      const struct bpf_prog *prog,
6740 				      struct bpf_insn_access_aux *info)
6741 {
6742 	switch (off) {
6743 	case bpf_ctx_range(struct __sk_buff, tc_classid):
6744 	case bpf_ctx_range(struct __sk_buff, data):
6745 	case bpf_ctx_range(struct __sk_buff, data_meta):
6746 	case bpf_ctx_range(struct __sk_buff, data_end):
6747 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6748 	case bpf_ctx_range(struct __sk_buff, tstamp):
6749 	case bpf_ctx_range(struct __sk_buff, wire_len):
6750 		return false;
6751 	}
6752 
6753 	if (type == BPF_WRITE) {
6754 		switch (off) {
6755 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6756 			break;
6757 		default:
6758 			return false;
6759 		}
6760 	}
6761 
6762 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6763 }
6764 
6765 static bool cg_skb_is_valid_access(int off, int size,
6766 				   enum bpf_access_type type,
6767 				   const struct bpf_prog *prog,
6768 				   struct bpf_insn_access_aux *info)
6769 {
6770 	switch (off) {
6771 	case bpf_ctx_range(struct __sk_buff, tc_classid):
6772 	case bpf_ctx_range(struct __sk_buff, data_meta):
6773 	case bpf_ctx_range(struct __sk_buff, wire_len):
6774 		return false;
6775 	case bpf_ctx_range(struct __sk_buff, data):
6776 	case bpf_ctx_range(struct __sk_buff, data_end):
6777 		if (!bpf_capable())
6778 			return false;
6779 		break;
6780 	}
6781 
6782 	if (type == BPF_WRITE) {
6783 		switch (off) {
6784 		case bpf_ctx_range(struct __sk_buff, mark):
6785 		case bpf_ctx_range(struct __sk_buff, priority):
6786 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6787 			break;
6788 		case bpf_ctx_range(struct __sk_buff, tstamp):
6789 			if (!bpf_capable())
6790 				return false;
6791 			break;
6792 		default:
6793 			return false;
6794 		}
6795 	}
6796 
6797 	switch (off) {
6798 	case bpf_ctx_range(struct __sk_buff, data):
6799 		info->reg_type = PTR_TO_PACKET;
6800 		break;
6801 	case bpf_ctx_range(struct __sk_buff, data_end):
6802 		info->reg_type = PTR_TO_PACKET_END;
6803 		break;
6804 	}
6805 
6806 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6807 }
6808 
6809 static bool lwt_is_valid_access(int off, int size,
6810 				enum bpf_access_type type,
6811 				const struct bpf_prog *prog,
6812 				struct bpf_insn_access_aux *info)
6813 {
6814 	switch (off) {
6815 	case bpf_ctx_range(struct __sk_buff, tc_classid):
6816 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6817 	case bpf_ctx_range(struct __sk_buff, data_meta):
6818 	case bpf_ctx_range(struct __sk_buff, tstamp):
6819 	case bpf_ctx_range(struct __sk_buff, wire_len):
6820 		return false;
6821 	}
6822 
6823 	if (type == BPF_WRITE) {
6824 		switch (off) {
6825 		case bpf_ctx_range(struct __sk_buff, mark):
6826 		case bpf_ctx_range(struct __sk_buff, priority):
6827 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6828 			break;
6829 		default:
6830 			return false;
6831 		}
6832 	}
6833 
6834 	switch (off) {
6835 	case bpf_ctx_range(struct __sk_buff, data):
6836 		info->reg_type = PTR_TO_PACKET;
6837 		break;
6838 	case bpf_ctx_range(struct __sk_buff, data_end):
6839 		info->reg_type = PTR_TO_PACKET_END;
6840 		break;
6841 	}
6842 
6843 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6844 }
6845 
6846 /* Attach type specific accesses */
6847 static bool __sock_filter_check_attach_type(int off,
6848 					    enum bpf_access_type access_type,
6849 					    enum bpf_attach_type attach_type)
6850 {
6851 	switch (off) {
6852 	case offsetof(struct bpf_sock, bound_dev_if):
6853 	case offsetof(struct bpf_sock, mark):
6854 	case offsetof(struct bpf_sock, priority):
6855 		switch (attach_type) {
6856 		case BPF_CGROUP_INET_SOCK_CREATE:
6857 			goto full_access;
6858 		default:
6859 			return false;
6860 		}
6861 	case bpf_ctx_range(struct bpf_sock, src_ip4):
6862 		switch (attach_type) {
6863 		case BPF_CGROUP_INET4_POST_BIND:
6864 			goto read_only;
6865 		default:
6866 			return false;
6867 		}
6868 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6869 		switch (attach_type) {
6870 		case BPF_CGROUP_INET6_POST_BIND:
6871 			goto read_only;
6872 		default:
6873 			return false;
6874 		}
6875 	case bpf_ctx_range(struct bpf_sock, src_port):
6876 		switch (attach_type) {
6877 		case BPF_CGROUP_INET4_POST_BIND:
6878 		case BPF_CGROUP_INET6_POST_BIND:
6879 			goto read_only;
6880 		default:
6881 			return false;
6882 		}
6883 	}
6884 read_only:
6885 	return access_type == BPF_READ;
6886 full_access:
6887 	return true;
6888 }
6889 
6890 bool bpf_sock_common_is_valid_access(int off, int size,
6891 				     enum bpf_access_type type,
6892 				     struct bpf_insn_access_aux *info)
6893 {
6894 	switch (off) {
6895 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
6896 		return false;
6897 	default:
6898 		return bpf_sock_is_valid_access(off, size, type, info);
6899 	}
6900 }
6901 
6902 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6903 			      struct bpf_insn_access_aux *info)
6904 {
6905 	const int size_default = sizeof(__u32);
6906 
6907 	if (off < 0 || off >= sizeof(struct bpf_sock))
6908 		return false;
6909 	if (off % size != 0)
6910 		return false;
6911 
6912 	switch (off) {
6913 	case offsetof(struct bpf_sock, state):
6914 	case offsetof(struct bpf_sock, family):
6915 	case offsetof(struct bpf_sock, type):
6916 	case offsetof(struct bpf_sock, protocol):
6917 	case offsetof(struct bpf_sock, dst_port):
6918 	case offsetof(struct bpf_sock, src_port):
6919 	case offsetof(struct bpf_sock, rx_queue_mapping):
6920 	case bpf_ctx_range(struct bpf_sock, src_ip4):
6921 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6922 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
6923 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
6924 		bpf_ctx_record_field_size(info, size_default);
6925 		return bpf_ctx_narrow_access_ok(off, size, size_default);
6926 	}
6927 
6928 	return size == size_default;
6929 }
6930 
6931 static bool sock_filter_is_valid_access(int off, int size,
6932 					enum bpf_access_type type,
6933 					const struct bpf_prog *prog,
6934 					struct bpf_insn_access_aux *info)
6935 {
6936 	if (!bpf_sock_is_valid_access(off, size, type, info))
6937 		return false;
6938 	return __sock_filter_check_attach_type(off, type,
6939 					       prog->expected_attach_type);
6940 }
6941 
6942 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
6943 			     const struct bpf_prog *prog)
6944 {
6945 	/* Neither direct read nor direct write requires any preliminary
6946 	 * action.
6947 	 */
6948 	return 0;
6949 }
6950 
6951 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
6952 				const struct bpf_prog *prog, int drop_verdict)
6953 {
6954 	struct bpf_insn *insn = insn_buf;
6955 
6956 	if (!direct_write)
6957 		return 0;
6958 
6959 	/* if (!skb->cloned)
6960 	 *       goto start;
6961 	 *
6962 	 * (Fast-path, otherwise approximation that we might be
6963 	 *  a clone, do the rest in helper.)
6964 	 */
6965 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
6966 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
6967 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
6968 
6969 	/* ret = bpf_skb_pull_data(skb, 0); */
6970 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
6971 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
6972 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
6973 			       BPF_FUNC_skb_pull_data);
6974 	/* if (!ret)
6975 	 *      goto restore;
6976 	 * return TC_ACT_SHOT;
6977 	 */
6978 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
6979 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
6980 	*insn++ = BPF_EXIT_INSN();
6981 
6982 	/* restore: */
6983 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
6984 	/* start: */
6985 	*insn++ = prog->insnsi[0];
6986 
6987 	return insn - insn_buf;
6988 }
6989 
6990 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
6991 			  struct bpf_insn *insn_buf)
6992 {
6993 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
6994 	struct bpf_insn *insn = insn_buf;
6995 
6996 	/* We're guaranteed here that CTX is in R6. */
6997 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
6998 	if (!indirect) {
6999 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
7000 	} else {
7001 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
7002 		if (orig->imm)
7003 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
7004 	}
7005 
7006 	switch (BPF_SIZE(orig->code)) {
7007 	case BPF_B:
7008 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
7009 		break;
7010 	case BPF_H:
7011 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
7012 		break;
7013 	case BPF_W:
7014 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
7015 		break;
7016 	}
7017 
7018 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
7019 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
7020 	*insn++ = BPF_EXIT_INSN();
7021 
7022 	return insn - insn_buf;
7023 }
7024 
7025 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
7026 			       const struct bpf_prog *prog)
7027 {
7028 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
7029 }
7030 
7031 static bool tc_cls_act_is_valid_access(int off, int size,
7032 				       enum bpf_access_type type,
7033 				       const struct bpf_prog *prog,
7034 				       struct bpf_insn_access_aux *info)
7035 {
7036 	if (type == BPF_WRITE) {
7037 		switch (off) {
7038 		case bpf_ctx_range(struct __sk_buff, mark):
7039 		case bpf_ctx_range(struct __sk_buff, tc_index):
7040 		case bpf_ctx_range(struct __sk_buff, priority):
7041 		case bpf_ctx_range(struct __sk_buff, tc_classid):
7042 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7043 		case bpf_ctx_range(struct __sk_buff, tstamp):
7044 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
7045 			break;
7046 		default:
7047 			return false;
7048 		}
7049 	}
7050 
7051 	switch (off) {
7052 	case bpf_ctx_range(struct __sk_buff, data):
7053 		info->reg_type = PTR_TO_PACKET;
7054 		break;
7055 	case bpf_ctx_range(struct __sk_buff, data_meta):
7056 		info->reg_type = PTR_TO_PACKET_META;
7057 		break;
7058 	case bpf_ctx_range(struct __sk_buff, data_end):
7059 		info->reg_type = PTR_TO_PACKET_END;
7060 		break;
7061 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7062 		return false;
7063 	}
7064 
7065 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7066 }
7067 
7068 static bool __is_valid_xdp_access(int off, int size)
7069 {
7070 	if (off < 0 || off >= sizeof(struct xdp_md))
7071 		return false;
7072 	if (off % size != 0)
7073 		return false;
7074 	if (size != sizeof(__u32))
7075 		return false;
7076 
7077 	return true;
7078 }
7079 
7080 static bool xdp_is_valid_access(int off, int size,
7081 				enum bpf_access_type type,
7082 				const struct bpf_prog *prog,
7083 				struct bpf_insn_access_aux *info)
7084 {
7085 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
7086 		switch (off) {
7087 		case offsetof(struct xdp_md, egress_ifindex):
7088 			return false;
7089 		}
7090 	}
7091 
7092 	if (type == BPF_WRITE) {
7093 		if (bpf_prog_is_dev_bound(prog->aux)) {
7094 			switch (off) {
7095 			case offsetof(struct xdp_md, rx_queue_index):
7096 				return __is_valid_xdp_access(off, size);
7097 			}
7098 		}
7099 		return false;
7100 	}
7101 
7102 	switch (off) {
7103 	case offsetof(struct xdp_md, data):
7104 		info->reg_type = PTR_TO_PACKET;
7105 		break;
7106 	case offsetof(struct xdp_md, data_meta):
7107 		info->reg_type = PTR_TO_PACKET_META;
7108 		break;
7109 	case offsetof(struct xdp_md, data_end):
7110 		info->reg_type = PTR_TO_PACKET_END;
7111 		break;
7112 	}
7113 
7114 	return __is_valid_xdp_access(off, size);
7115 }
7116 
7117 void bpf_warn_invalid_xdp_action(u32 act)
7118 {
7119 	const u32 act_max = XDP_REDIRECT;
7120 
7121 	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
7122 		  act > act_max ? "Illegal" : "Driver unsupported",
7123 		  act);
7124 }
7125 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
7126 
7127 static bool sock_addr_is_valid_access(int off, int size,
7128 				      enum bpf_access_type type,
7129 				      const struct bpf_prog *prog,
7130 				      struct bpf_insn_access_aux *info)
7131 {
7132 	const int size_default = sizeof(__u32);
7133 
7134 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
7135 		return false;
7136 	if (off % size != 0)
7137 		return false;
7138 
7139 	/* Disallow access to IPv6 fields from IPv4 contex and vise
7140 	 * versa.
7141 	 */
7142 	switch (off) {
7143 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7144 		switch (prog->expected_attach_type) {
7145 		case BPF_CGROUP_INET4_BIND:
7146 		case BPF_CGROUP_INET4_CONNECT:
7147 		case BPF_CGROUP_INET4_GETPEERNAME:
7148 		case BPF_CGROUP_INET4_GETSOCKNAME:
7149 		case BPF_CGROUP_UDP4_SENDMSG:
7150 		case BPF_CGROUP_UDP4_RECVMSG:
7151 			break;
7152 		default:
7153 			return false;
7154 		}
7155 		break;
7156 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7157 		switch (prog->expected_attach_type) {
7158 		case BPF_CGROUP_INET6_BIND:
7159 		case BPF_CGROUP_INET6_CONNECT:
7160 		case BPF_CGROUP_INET6_GETPEERNAME:
7161 		case BPF_CGROUP_INET6_GETSOCKNAME:
7162 		case BPF_CGROUP_UDP6_SENDMSG:
7163 		case BPF_CGROUP_UDP6_RECVMSG:
7164 			break;
7165 		default:
7166 			return false;
7167 		}
7168 		break;
7169 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7170 		switch (prog->expected_attach_type) {
7171 		case BPF_CGROUP_UDP4_SENDMSG:
7172 			break;
7173 		default:
7174 			return false;
7175 		}
7176 		break;
7177 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7178 				msg_src_ip6[3]):
7179 		switch (prog->expected_attach_type) {
7180 		case BPF_CGROUP_UDP6_SENDMSG:
7181 			break;
7182 		default:
7183 			return false;
7184 		}
7185 		break;
7186 	}
7187 
7188 	switch (off) {
7189 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7190 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7191 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7192 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7193 				msg_src_ip6[3]):
7194 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
7195 		if (type == BPF_READ) {
7196 			bpf_ctx_record_field_size(info, size_default);
7197 
7198 			if (bpf_ctx_wide_access_ok(off, size,
7199 						   struct bpf_sock_addr,
7200 						   user_ip6))
7201 				return true;
7202 
7203 			if (bpf_ctx_wide_access_ok(off, size,
7204 						   struct bpf_sock_addr,
7205 						   msg_src_ip6))
7206 				return true;
7207 
7208 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7209 				return false;
7210 		} else {
7211 			if (bpf_ctx_wide_access_ok(off, size,
7212 						   struct bpf_sock_addr,
7213 						   user_ip6))
7214 				return true;
7215 
7216 			if (bpf_ctx_wide_access_ok(off, size,
7217 						   struct bpf_sock_addr,
7218 						   msg_src_ip6))
7219 				return true;
7220 
7221 			if (size != size_default)
7222 				return false;
7223 		}
7224 		break;
7225 	case offsetof(struct bpf_sock_addr, sk):
7226 		if (type != BPF_READ)
7227 			return false;
7228 		if (size != sizeof(__u64))
7229 			return false;
7230 		info->reg_type = PTR_TO_SOCKET;
7231 		break;
7232 	default:
7233 		if (type == BPF_READ) {
7234 			if (size != size_default)
7235 				return false;
7236 		} else {
7237 			return false;
7238 		}
7239 	}
7240 
7241 	return true;
7242 }
7243 
7244 static bool sock_ops_is_valid_access(int off, int size,
7245 				     enum bpf_access_type type,
7246 				     const struct bpf_prog *prog,
7247 				     struct bpf_insn_access_aux *info)
7248 {
7249 	const int size_default = sizeof(__u32);
7250 
7251 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
7252 		return false;
7253 
7254 	/* The verifier guarantees that size > 0. */
7255 	if (off % size != 0)
7256 		return false;
7257 
7258 	if (type == BPF_WRITE) {
7259 		switch (off) {
7260 		case offsetof(struct bpf_sock_ops, reply):
7261 		case offsetof(struct bpf_sock_ops, sk_txhash):
7262 			if (size != size_default)
7263 				return false;
7264 			break;
7265 		default:
7266 			return false;
7267 		}
7268 	} else {
7269 		switch (off) {
7270 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
7271 					bytes_acked):
7272 			if (size != sizeof(__u64))
7273 				return false;
7274 			break;
7275 		case offsetof(struct bpf_sock_ops, sk):
7276 			if (size != sizeof(__u64))
7277 				return false;
7278 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
7279 			break;
7280 		default:
7281 			if (size != size_default)
7282 				return false;
7283 			break;
7284 		}
7285 	}
7286 
7287 	return true;
7288 }
7289 
7290 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
7291 			   const struct bpf_prog *prog)
7292 {
7293 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
7294 }
7295 
7296 static bool sk_skb_is_valid_access(int off, int size,
7297 				   enum bpf_access_type type,
7298 				   const struct bpf_prog *prog,
7299 				   struct bpf_insn_access_aux *info)
7300 {
7301 	switch (off) {
7302 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7303 	case bpf_ctx_range(struct __sk_buff, data_meta):
7304 	case bpf_ctx_range(struct __sk_buff, tstamp):
7305 	case bpf_ctx_range(struct __sk_buff, wire_len):
7306 		return false;
7307 	}
7308 
7309 	if (type == BPF_WRITE) {
7310 		switch (off) {
7311 		case bpf_ctx_range(struct __sk_buff, tc_index):
7312 		case bpf_ctx_range(struct __sk_buff, priority):
7313 			break;
7314 		default:
7315 			return false;
7316 		}
7317 	}
7318 
7319 	switch (off) {
7320 	case bpf_ctx_range(struct __sk_buff, mark):
7321 		return false;
7322 	case bpf_ctx_range(struct __sk_buff, data):
7323 		info->reg_type = PTR_TO_PACKET;
7324 		break;
7325 	case bpf_ctx_range(struct __sk_buff, data_end):
7326 		info->reg_type = PTR_TO_PACKET_END;
7327 		break;
7328 	}
7329 
7330 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7331 }
7332 
7333 static bool sk_msg_is_valid_access(int off, int size,
7334 				   enum bpf_access_type type,
7335 				   const struct bpf_prog *prog,
7336 				   struct bpf_insn_access_aux *info)
7337 {
7338 	if (type == BPF_WRITE)
7339 		return false;
7340 
7341 	if (off % size != 0)
7342 		return false;
7343 
7344 	switch (off) {
7345 	case offsetof(struct sk_msg_md, data):
7346 		info->reg_type = PTR_TO_PACKET;
7347 		if (size != sizeof(__u64))
7348 			return false;
7349 		break;
7350 	case offsetof(struct sk_msg_md, data_end):
7351 		info->reg_type = PTR_TO_PACKET_END;
7352 		if (size != sizeof(__u64))
7353 			return false;
7354 		break;
7355 	case offsetof(struct sk_msg_md, sk):
7356 		if (size != sizeof(__u64))
7357 			return false;
7358 		info->reg_type = PTR_TO_SOCKET;
7359 		break;
7360 	case bpf_ctx_range(struct sk_msg_md, family):
7361 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
7362 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
7363 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
7364 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
7365 	case bpf_ctx_range(struct sk_msg_md, remote_port):
7366 	case bpf_ctx_range(struct sk_msg_md, local_port):
7367 	case bpf_ctx_range(struct sk_msg_md, size):
7368 		if (size != sizeof(__u32))
7369 			return false;
7370 		break;
7371 	default:
7372 		return false;
7373 	}
7374 	return true;
7375 }
7376 
7377 static bool flow_dissector_is_valid_access(int off, int size,
7378 					   enum bpf_access_type type,
7379 					   const struct bpf_prog *prog,
7380 					   struct bpf_insn_access_aux *info)
7381 {
7382 	const int size_default = sizeof(__u32);
7383 
7384 	if (off < 0 || off >= sizeof(struct __sk_buff))
7385 		return false;
7386 
7387 	if (type == BPF_WRITE)
7388 		return false;
7389 
7390 	switch (off) {
7391 	case bpf_ctx_range(struct __sk_buff, data):
7392 		if (size != size_default)
7393 			return false;
7394 		info->reg_type = PTR_TO_PACKET;
7395 		return true;
7396 	case bpf_ctx_range(struct __sk_buff, data_end):
7397 		if (size != size_default)
7398 			return false;
7399 		info->reg_type = PTR_TO_PACKET_END;
7400 		return true;
7401 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7402 		if (size != sizeof(__u64))
7403 			return false;
7404 		info->reg_type = PTR_TO_FLOW_KEYS;
7405 		return true;
7406 	default:
7407 		return false;
7408 	}
7409 }
7410 
7411 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
7412 					     const struct bpf_insn *si,
7413 					     struct bpf_insn *insn_buf,
7414 					     struct bpf_prog *prog,
7415 					     u32 *target_size)
7416 
7417 {
7418 	struct bpf_insn *insn = insn_buf;
7419 
7420 	switch (si->off) {
7421 	case offsetof(struct __sk_buff, data):
7422 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
7423 				      si->dst_reg, si->src_reg,
7424 				      offsetof(struct bpf_flow_dissector, data));
7425 		break;
7426 
7427 	case offsetof(struct __sk_buff, data_end):
7428 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
7429 				      si->dst_reg, si->src_reg,
7430 				      offsetof(struct bpf_flow_dissector, data_end));
7431 		break;
7432 
7433 	case offsetof(struct __sk_buff, flow_keys):
7434 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
7435 				      si->dst_reg, si->src_reg,
7436 				      offsetof(struct bpf_flow_dissector, flow_keys));
7437 		break;
7438 	}
7439 
7440 	return insn - insn_buf;
7441 }
7442 
7443 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
7444 						  struct bpf_insn *insn)
7445 {
7446 	/* si->dst_reg = skb_shinfo(SKB); */
7447 #ifdef NET_SKBUFF_DATA_USES_OFFSET
7448 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7449 			      BPF_REG_AX, si->src_reg,
7450 			      offsetof(struct sk_buff, end));
7451 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
7452 			      si->dst_reg, si->src_reg,
7453 			      offsetof(struct sk_buff, head));
7454 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
7455 #else
7456 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7457 			      si->dst_reg, si->src_reg,
7458 			      offsetof(struct sk_buff, end));
7459 #endif
7460 
7461 	return insn;
7462 }
7463 
7464 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
7465 				  const struct bpf_insn *si,
7466 				  struct bpf_insn *insn_buf,
7467 				  struct bpf_prog *prog, u32 *target_size)
7468 {
7469 	struct bpf_insn *insn = insn_buf;
7470 	int off;
7471 
7472 	switch (si->off) {
7473 	case offsetof(struct __sk_buff, len):
7474 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7475 				      bpf_target_off(struct sk_buff, len, 4,
7476 						     target_size));
7477 		break;
7478 
7479 	case offsetof(struct __sk_buff, protocol):
7480 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7481 				      bpf_target_off(struct sk_buff, protocol, 2,
7482 						     target_size));
7483 		break;
7484 
7485 	case offsetof(struct __sk_buff, vlan_proto):
7486 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7487 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
7488 						     target_size));
7489 		break;
7490 
7491 	case offsetof(struct __sk_buff, priority):
7492 		if (type == BPF_WRITE)
7493 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7494 					      bpf_target_off(struct sk_buff, priority, 4,
7495 							     target_size));
7496 		else
7497 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7498 					      bpf_target_off(struct sk_buff, priority, 4,
7499 							     target_size));
7500 		break;
7501 
7502 	case offsetof(struct __sk_buff, ingress_ifindex):
7503 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7504 				      bpf_target_off(struct sk_buff, skb_iif, 4,
7505 						     target_size));
7506 		break;
7507 
7508 	case offsetof(struct __sk_buff, ifindex):
7509 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7510 				      si->dst_reg, si->src_reg,
7511 				      offsetof(struct sk_buff, dev));
7512 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
7513 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7514 				      bpf_target_off(struct net_device, ifindex, 4,
7515 						     target_size));
7516 		break;
7517 
7518 	case offsetof(struct __sk_buff, hash):
7519 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7520 				      bpf_target_off(struct sk_buff, hash, 4,
7521 						     target_size));
7522 		break;
7523 
7524 	case offsetof(struct __sk_buff, mark):
7525 		if (type == BPF_WRITE)
7526 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7527 					      bpf_target_off(struct sk_buff, mark, 4,
7528 							     target_size));
7529 		else
7530 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7531 					      bpf_target_off(struct sk_buff, mark, 4,
7532 							     target_size));
7533 		break;
7534 
7535 	case offsetof(struct __sk_buff, pkt_type):
7536 		*target_size = 1;
7537 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7538 				      PKT_TYPE_OFFSET());
7539 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
7540 #ifdef __BIG_ENDIAN_BITFIELD
7541 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
7542 #endif
7543 		break;
7544 
7545 	case offsetof(struct __sk_buff, queue_mapping):
7546 		if (type == BPF_WRITE) {
7547 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
7548 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7549 					      bpf_target_off(struct sk_buff,
7550 							     queue_mapping,
7551 							     2, target_size));
7552 		} else {
7553 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7554 					      bpf_target_off(struct sk_buff,
7555 							     queue_mapping,
7556 							     2, target_size));
7557 		}
7558 		break;
7559 
7560 	case offsetof(struct __sk_buff, vlan_present):
7561 		*target_size = 1;
7562 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7563 				      PKT_VLAN_PRESENT_OFFSET());
7564 		if (PKT_VLAN_PRESENT_BIT)
7565 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
7566 		if (PKT_VLAN_PRESENT_BIT < 7)
7567 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
7568 		break;
7569 
7570 	case offsetof(struct __sk_buff, vlan_tci):
7571 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7572 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
7573 						     target_size));
7574 		break;
7575 
7576 	case offsetof(struct __sk_buff, cb[0]) ...
7577 	     offsetofend(struct __sk_buff, cb[4]) - 1:
7578 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
7579 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
7580 			      offsetof(struct qdisc_skb_cb, data)) %
7581 			     sizeof(__u64));
7582 
7583 		prog->cb_access = 1;
7584 		off  = si->off;
7585 		off -= offsetof(struct __sk_buff, cb[0]);
7586 		off += offsetof(struct sk_buff, cb);
7587 		off += offsetof(struct qdisc_skb_cb, data);
7588 		if (type == BPF_WRITE)
7589 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
7590 					      si->src_reg, off);
7591 		else
7592 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
7593 					      si->src_reg, off);
7594 		break;
7595 
7596 	case offsetof(struct __sk_buff, tc_classid):
7597 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
7598 
7599 		off  = si->off;
7600 		off -= offsetof(struct __sk_buff, tc_classid);
7601 		off += offsetof(struct sk_buff, cb);
7602 		off += offsetof(struct qdisc_skb_cb, tc_classid);
7603 		*target_size = 2;
7604 		if (type == BPF_WRITE)
7605 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
7606 					      si->src_reg, off);
7607 		else
7608 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
7609 					      si->src_reg, off);
7610 		break;
7611 
7612 	case offsetof(struct __sk_buff, data):
7613 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
7614 				      si->dst_reg, si->src_reg,
7615 				      offsetof(struct sk_buff, data));
7616 		break;
7617 
7618 	case offsetof(struct __sk_buff, data_meta):
7619 		off  = si->off;
7620 		off -= offsetof(struct __sk_buff, data_meta);
7621 		off += offsetof(struct sk_buff, cb);
7622 		off += offsetof(struct bpf_skb_data_end, data_meta);
7623 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7624 				      si->src_reg, off);
7625 		break;
7626 
7627 	case offsetof(struct __sk_buff, data_end):
7628 		off  = si->off;
7629 		off -= offsetof(struct __sk_buff, data_end);
7630 		off += offsetof(struct sk_buff, cb);
7631 		off += offsetof(struct bpf_skb_data_end, data_end);
7632 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7633 				      si->src_reg, off);
7634 		break;
7635 
7636 	case offsetof(struct __sk_buff, tc_index):
7637 #ifdef CONFIG_NET_SCHED
7638 		if (type == BPF_WRITE)
7639 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7640 					      bpf_target_off(struct sk_buff, tc_index, 2,
7641 							     target_size));
7642 		else
7643 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7644 					      bpf_target_off(struct sk_buff, tc_index, 2,
7645 							     target_size));
7646 #else
7647 		*target_size = 2;
7648 		if (type == BPF_WRITE)
7649 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
7650 		else
7651 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7652 #endif
7653 		break;
7654 
7655 	case offsetof(struct __sk_buff, napi_id):
7656 #if defined(CONFIG_NET_RX_BUSY_POLL)
7657 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7658 				      bpf_target_off(struct sk_buff, napi_id, 4,
7659 						     target_size));
7660 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
7661 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7662 #else
7663 		*target_size = 4;
7664 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7665 #endif
7666 		break;
7667 	case offsetof(struct __sk_buff, family):
7668 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
7669 
7670 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7671 				      si->dst_reg, si->src_reg,
7672 				      offsetof(struct sk_buff, sk));
7673 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7674 				      bpf_target_off(struct sock_common,
7675 						     skc_family,
7676 						     2, target_size));
7677 		break;
7678 	case offsetof(struct __sk_buff, remote_ip4):
7679 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
7680 
7681 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7682 				      si->dst_reg, si->src_reg,
7683 				      offsetof(struct sk_buff, sk));
7684 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7685 				      bpf_target_off(struct sock_common,
7686 						     skc_daddr,
7687 						     4, target_size));
7688 		break;
7689 	case offsetof(struct __sk_buff, local_ip4):
7690 		BUILD_BUG_ON(sizeof_field(struct sock_common,
7691 					  skc_rcv_saddr) != 4);
7692 
7693 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7694 				      si->dst_reg, si->src_reg,
7695 				      offsetof(struct sk_buff, sk));
7696 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7697 				      bpf_target_off(struct sock_common,
7698 						     skc_rcv_saddr,
7699 						     4, target_size));
7700 		break;
7701 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
7702 	     offsetof(struct __sk_buff, remote_ip6[3]):
7703 #if IS_ENABLED(CONFIG_IPV6)
7704 		BUILD_BUG_ON(sizeof_field(struct sock_common,
7705 					  skc_v6_daddr.s6_addr32[0]) != 4);
7706 
7707 		off = si->off;
7708 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
7709 
7710 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7711 				      si->dst_reg, si->src_reg,
7712 				      offsetof(struct sk_buff, sk));
7713 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7714 				      offsetof(struct sock_common,
7715 					       skc_v6_daddr.s6_addr32[0]) +
7716 				      off);
7717 #else
7718 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7719 #endif
7720 		break;
7721 	case offsetof(struct __sk_buff, local_ip6[0]) ...
7722 	     offsetof(struct __sk_buff, local_ip6[3]):
7723 #if IS_ENABLED(CONFIG_IPV6)
7724 		BUILD_BUG_ON(sizeof_field(struct sock_common,
7725 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
7726 
7727 		off = si->off;
7728 		off -= offsetof(struct __sk_buff, local_ip6[0]);
7729 
7730 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7731 				      si->dst_reg, si->src_reg,
7732 				      offsetof(struct sk_buff, sk));
7733 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7734 				      offsetof(struct sock_common,
7735 					       skc_v6_rcv_saddr.s6_addr32[0]) +
7736 				      off);
7737 #else
7738 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7739 #endif
7740 		break;
7741 
7742 	case offsetof(struct __sk_buff, remote_port):
7743 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
7744 
7745 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7746 				      si->dst_reg, si->src_reg,
7747 				      offsetof(struct sk_buff, sk));
7748 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7749 				      bpf_target_off(struct sock_common,
7750 						     skc_dport,
7751 						     2, target_size));
7752 #ifndef __BIG_ENDIAN_BITFIELD
7753 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
7754 #endif
7755 		break;
7756 
7757 	case offsetof(struct __sk_buff, local_port):
7758 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
7759 
7760 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7761 				      si->dst_reg, si->src_reg,
7762 				      offsetof(struct sk_buff, sk));
7763 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7764 				      bpf_target_off(struct sock_common,
7765 						     skc_num, 2, target_size));
7766 		break;
7767 
7768 	case offsetof(struct __sk_buff, tstamp):
7769 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
7770 
7771 		if (type == BPF_WRITE)
7772 			*insn++ = BPF_STX_MEM(BPF_DW,
7773 					      si->dst_reg, si->src_reg,
7774 					      bpf_target_off(struct sk_buff,
7775 							     tstamp, 8,
7776 							     target_size));
7777 		else
7778 			*insn++ = BPF_LDX_MEM(BPF_DW,
7779 					      si->dst_reg, si->src_reg,
7780 					      bpf_target_off(struct sk_buff,
7781 							     tstamp, 8,
7782 							     target_size));
7783 		break;
7784 
7785 	case offsetof(struct __sk_buff, gso_segs):
7786 		insn = bpf_convert_shinfo_access(si, insn);
7787 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
7788 				      si->dst_reg, si->dst_reg,
7789 				      bpf_target_off(struct skb_shared_info,
7790 						     gso_segs, 2,
7791 						     target_size));
7792 		break;
7793 	case offsetof(struct __sk_buff, gso_size):
7794 		insn = bpf_convert_shinfo_access(si, insn);
7795 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
7796 				      si->dst_reg, si->dst_reg,
7797 				      bpf_target_off(struct skb_shared_info,
7798 						     gso_size, 2,
7799 						     target_size));
7800 		break;
7801 	case offsetof(struct __sk_buff, wire_len):
7802 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
7803 
7804 		off = si->off;
7805 		off -= offsetof(struct __sk_buff, wire_len);
7806 		off += offsetof(struct sk_buff, cb);
7807 		off += offsetof(struct qdisc_skb_cb, pkt_len);
7808 		*target_size = 4;
7809 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
7810 		break;
7811 
7812 	case offsetof(struct __sk_buff, sk):
7813 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7814 				      si->dst_reg, si->src_reg,
7815 				      offsetof(struct sk_buff, sk));
7816 		break;
7817 	}
7818 
7819 	return insn - insn_buf;
7820 }
7821 
7822 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
7823 				const struct bpf_insn *si,
7824 				struct bpf_insn *insn_buf,
7825 				struct bpf_prog *prog, u32 *target_size)
7826 {
7827 	struct bpf_insn *insn = insn_buf;
7828 	int off;
7829 
7830 	switch (si->off) {
7831 	case offsetof(struct bpf_sock, bound_dev_if):
7832 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
7833 
7834 		if (type == BPF_WRITE)
7835 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7836 					offsetof(struct sock, sk_bound_dev_if));
7837 		else
7838 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7839 				      offsetof(struct sock, sk_bound_dev_if));
7840 		break;
7841 
7842 	case offsetof(struct bpf_sock, mark):
7843 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
7844 
7845 		if (type == BPF_WRITE)
7846 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7847 					offsetof(struct sock, sk_mark));
7848 		else
7849 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7850 				      offsetof(struct sock, sk_mark));
7851 		break;
7852 
7853 	case offsetof(struct bpf_sock, priority):
7854 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
7855 
7856 		if (type == BPF_WRITE)
7857 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7858 					offsetof(struct sock, sk_priority));
7859 		else
7860 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7861 				      offsetof(struct sock, sk_priority));
7862 		break;
7863 
7864 	case offsetof(struct bpf_sock, family):
7865 		*insn++ = BPF_LDX_MEM(
7866 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
7867 			si->dst_reg, si->src_reg,
7868 			bpf_target_off(struct sock_common,
7869 				       skc_family,
7870 				       sizeof_field(struct sock_common,
7871 						    skc_family),
7872 				       target_size));
7873 		break;
7874 
7875 	case offsetof(struct bpf_sock, type):
7876 		*insn++ = BPF_LDX_MEM(
7877 			BPF_FIELD_SIZEOF(struct sock, sk_type),
7878 			si->dst_reg, si->src_reg,
7879 			bpf_target_off(struct sock, sk_type,
7880 				       sizeof_field(struct sock, sk_type),
7881 				       target_size));
7882 		break;
7883 
7884 	case offsetof(struct bpf_sock, protocol):
7885 		*insn++ = BPF_LDX_MEM(
7886 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
7887 			si->dst_reg, si->src_reg,
7888 			bpf_target_off(struct sock, sk_protocol,
7889 				       sizeof_field(struct sock, sk_protocol),
7890 				       target_size));
7891 		break;
7892 
7893 	case offsetof(struct bpf_sock, src_ip4):
7894 		*insn++ = BPF_LDX_MEM(
7895 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7896 			bpf_target_off(struct sock_common, skc_rcv_saddr,
7897 				       sizeof_field(struct sock_common,
7898 						    skc_rcv_saddr),
7899 				       target_size));
7900 		break;
7901 
7902 	case offsetof(struct bpf_sock, dst_ip4):
7903 		*insn++ = BPF_LDX_MEM(
7904 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7905 			bpf_target_off(struct sock_common, skc_daddr,
7906 				       sizeof_field(struct sock_common,
7907 						    skc_daddr),
7908 				       target_size));
7909 		break;
7910 
7911 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7912 #if IS_ENABLED(CONFIG_IPV6)
7913 		off = si->off;
7914 		off -= offsetof(struct bpf_sock, src_ip6[0]);
7915 		*insn++ = BPF_LDX_MEM(
7916 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7917 			bpf_target_off(
7918 				struct sock_common,
7919 				skc_v6_rcv_saddr.s6_addr32[0],
7920 				sizeof_field(struct sock_common,
7921 					     skc_v6_rcv_saddr.s6_addr32[0]),
7922 				target_size) + off);
7923 #else
7924 		(void)off;
7925 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7926 #endif
7927 		break;
7928 
7929 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7930 #if IS_ENABLED(CONFIG_IPV6)
7931 		off = si->off;
7932 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
7933 		*insn++ = BPF_LDX_MEM(
7934 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7935 			bpf_target_off(struct sock_common,
7936 				       skc_v6_daddr.s6_addr32[0],
7937 				       sizeof_field(struct sock_common,
7938 						    skc_v6_daddr.s6_addr32[0]),
7939 				       target_size) + off);
7940 #else
7941 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7942 		*target_size = 4;
7943 #endif
7944 		break;
7945 
7946 	case offsetof(struct bpf_sock, src_port):
7947 		*insn++ = BPF_LDX_MEM(
7948 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
7949 			si->dst_reg, si->src_reg,
7950 			bpf_target_off(struct sock_common, skc_num,
7951 				       sizeof_field(struct sock_common,
7952 						    skc_num),
7953 				       target_size));
7954 		break;
7955 
7956 	case offsetof(struct bpf_sock, dst_port):
7957 		*insn++ = BPF_LDX_MEM(
7958 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
7959 			si->dst_reg, si->src_reg,
7960 			bpf_target_off(struct sock_common, skc_dport,
7961 				       sizeof_field(struct sock_common,
7962 						    skc_dport),
7963 				       target_size));
7964 		break;
7965 
7966 	case offsetof(struct bpf_sock, state):
7967 		*insn++ = BPF_LDX_MEM(
7968 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
7969 			si->dst_reg, si->src_reg,
7970 			bpf_target_off(struct sock_common, skc_state,
7971 				       sizeof_field(struct sock_common,
7972 						    skc_state),
7973 				       target_size));
7974 		break;
7975 	case offsetof(struct bpf_sock, rx_queue_mapping):
7976 #ifdef CONFIG_XPS
7977 		*insn++ = BPF_LDX_MEM(
7978 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
7979 			si->dst_reg, si->src_reg,
7980 			bpf_target_off(struct sock, sk_rx_queue_mapping,
7981 				       sizeof_field(struct sock,
7982 						    sk_rx_queue_mapping),
7983 				       target_size));
7984 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
7985 				      1);
7986 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
7987 #else
7988 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
7989 		*target_size = 2;
7990 #endif
7991 		break;
7992 	}
7993 
7994 	return insn - insn_buf;
7995 }
7996 
7997 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
7998 					 const struct bpf_insn *si,
7999 					 struct bpf_insn *insn_buf,
8000 					 struct bpf_prog *prog, u32 *target_size)
8001 {
8002 	struct bpf_insn *insn = insn_buf;
8003 
8004 	switch (si->off) {
8005 	case offsetof(struct __sk_buff, ifindex):
8006 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8007 				      si->dst_reg, si->src_reg,
8008 				      offsetof(struct sk_buff, dev));
8009 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8010 				      bpf_target_off(struct net_device, ifindex, 4,
8011 						     target_size));
8012 		break;
8013 	default:
8014 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
8015 					      target_size);
8016 	}
8017 
8018 	return insn - insn_buf;
8019 }
8020 
8021 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
8022 				  const struct bpf_insn *si,
8023 				  struct bpf_insn *insn_buf,
8024 				  struct bpf_prog *prog, u32 *target_size)
8025 {
8026 	struct bpf_insn *insn = insn_buf;
8027 
8028 	switch (si->off) {
8029 	case offsetof(struct xdp_md, data):
8030 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
8031 				      si->dst_reg, si->src_reg,
8032 				      offsetof(struct xdp_buff, data));
8033 		break;
8034 	case offsetof(struct xdp_md, data_meta):
8035 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
8036 				      si->dst_reg, si->src_reg,
8037 				      offsetof(struct xdp_buff, data_meta));
8038 		break;
8039 	case offsetof(struct xdp_md, data_end):
8040 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
8041 				      si->dst_reg, si->src_reg,
8042 				      offsetof(struct xdp_buff, data_end));
8043 		break;
8044 	case offsetof(struct xdp_md, ingress_ifindex):
8045 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8046 				      si->dst_reg, si->src_reg,
8047 				      offsetof(struct xdp_buff, rxq));
8048 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
8049 				      si->dst_reg, si->dst_reg,
8050 				      offsetof(struct xdp_rxq_info, dev));
8051 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8052 				      offsetof(struct net_device, ifindex));
8053 		break;
8054 	case offsetof(struct xdp_md, rx_queue_index):
8055 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8056 				      si->dst_reg, si->src_reg,
8057 				      offsetof(struct xdp_buff, rxq));
8058 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8059 				      offsetof(struct xdp_rxq_info,
8060 					       queue_index));
8061 		break;
8062 	case offsetof(struct xdp_md, egress_ifindex):
8063 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
8064 				      si->dst_reg, si->src_reg,
8065 				      offsetof(struct xdp_buff, txq));
8066 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
8067 				      si->dst_reg, si->dst_reg,
8068 				      offsetof(struct xdp_txq_info, dev));
8069 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8070 				      offsetof(struct net_device, ifindex));
8071 		break;
8072 	}
8073 
8074 	return insn - insn_buf;
8075 }
8076 
8077 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
8078  * context Structure, F is Field in context structure that contains a pointer
8079  * to Nested Structure of type NS that has the field NF.
8080  *
8081  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
8082  * sure that SIZE is not greater than actual size of S.F.NF.
8083  *
8084  * If offset OFF is provided, the load happens from that offset relative to
8085  * offset of NF.
8086  */
8087 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
8088 	do {								       \
8089 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
8090 				      si->src_reg, offsetof(S, F));	       \
8091 		*insn++ = BPF_LDX_MEM(					       \
8092 			SIZE, si->dst_reg, si->dst_reg,			       \
8093 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
8094 				       target_size)			       \
8095 				+ OFF);					       \
8096 	} while (0)
8097 
8098 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
8099 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
8100 					     BPF_FIELD_SIZEOF(NS, NF), 0)
8101 
8102 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
8103  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
8104  *
8105  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
8106  * "register" since two registers available in convert_ctx_access are not
8107  * enough: we can't override neither SRC, since it contains value to store, nor
8108  * DST since it contains pointer to context that may be used by later
8109  * instructions. But we need a temporary place to save pointer to nested
8110  * structure whose field we want to store to.
8111  */
8112 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
8113 	do {								       \
8114 		int tmp_reg = BPF_REG_9;				       \
8115 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
8116 			--tmp_reg;					       \
8117 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
8118 			--tmp_reg;					       \
8119 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
8120 				      offsetof(S, TF));			       \
8121 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
8122 				      si->dst_reg, offsetof(S, F));	       \
8123 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
8124 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
8125 				       target_size)			       \
8126 				+ OFF);					       \
8127 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
8128 				      offsetof(S, TF));			       \
8129 	} while (0)
8130 
8131 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
8132 						      TF)		       \
8133 	do {								       \
8134 		if (type == BPF_WRITE) {				       \
8135 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
8136 							 OFF, TF);	       \
8137 		} else {						       \
8138 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
8139 				S, NS, F, NF, SIZE, OFF);  \
8140 		}							       \
8141 	} while (0)
8142 
8143 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
8144 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
8145 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
8146 
8147 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
8148 					const struct bpf_insn *si,
8149 					struct bpf_insn *insn_buf,
8150 					struct bpf_prog *prog, u32 *target_size)
8151 {
8152 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
8153 	struct bpf_insn *insn = insn_buf;
8154 
8155 	switch (si->off) {
8156 	case offsetof(struct bpf_sock_addr, user_family):
8157 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8158 					    struct sockaddr, uaddr, sa_family);
8159 		break;
8160 
8161 	case offsetof(struct bpf_sock_addr, user_ip4):
8162 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8163 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
8164 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
8165 		break;
8166 
8167 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8168 		off = si->off;
8169 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
8170 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8171 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
8172 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
8173 			tmp_reg);
8174 		break;
8175 
8176 	case offsetof(struct bpf_sock_addr, user_port):
8177 		/* To get port we need to know sa_family first and then treat
8178 		 * sockaddr as either sockaddr_in or sockaddr_in6.
8179 		 * Though we can simplify since port field has same offset and
8180 		 * size in both structures.
8181 		 * Here we check this invariant and use just one of the
8182 		 * structures if it's true.
8183 		 */
8184 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
8185 			     offsetof(struct sockaddr_in6, sin6_port));
8186 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
8187 			     sizeof_field(struct sockaddr_in6, sin6_port));
8188 		/* Account for sin6_port being smaller than user_port. */
8189 		port_size = min(port_size, BPF_LDST_BYTES(si));
8190 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8191 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
8192 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
8193 		break;
8194 
8195 	case offsetof(struct bpf_sock_addr, family):
8196 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8197 					    struct sock, sk, sk_family);
8198 		break;
8199 
8200 	case offsetof(struct bpf_sock_addr, type):
8201 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8202 					    struct sock, sk, sk_type);
8203 		break;
8204 
8205 	case offsetof(struct bpf_sock_addr, protocol):
8206 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8207 					    struct sock, sk, sk_protocol);
8208 		break;
8209 
8210 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
8211 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
8212 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8213 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
8214 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
8215 		break;
8216 
8217 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8218 				msg_src_ip6[3]):
8219 		off = si->off;
8220 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
8221 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
8222 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8223 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
8224 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
8225 		break;
8226 	case offsetof(struct bpf_sock_addr, sk):
8227 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
8228 				      si->dst_reg, si->src_reg,
8229 				      offsetof(struct bpf_sock_addr_kern, sk));
8230 		break;
8231 	}
8232 
8233 	return insn - insn_buf;
8234 }
8235 
8236 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
8237 				       const struct bpf_insn *si,
8238 				       struct bpf_insn *insn_buf,
8239 				       struct bpf_prog *prog,
8240 				       u32 *target_size)
8241 {
8242 	struct bpf_insn *insn = insn_buf;
8243 	int off;
8244 
8245 /* Helper macro for adding read access to tcp_sock or sock fields. */
8246 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
8247 	do {								      \
8248 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
8249 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
8250 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
8251 						struct bpf_sock_ops_kern,     \
8252 						is_fullsock),		      \
8253 				      si->dst_reg, si->src_reg,		      \
8254 				      offsetof(struct bpf_sock_ops_kern,      \
8255 					       is_fullsock));		      \
8256 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);	      \
8257 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
8258 						struct bpf_sock_ops_kern, sk),\
8259 				      si->dst_reg, si->src_reg,		      \
8260 				      offsetof(struct bpf_sock_ops_kern, sk));\
8261 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
8262 						       OBJ_FIELD),	      \
8263 				      si->dst_reg, si->dst_reg,		      \
8264 				      offsetof(OBJ, OBJ_FIELD));	      \
8265 	} while (0)
8266 
8267 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
8268 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
8269 
8270 /* Helper macro for adding write access to tcp_sock or sock fields.
8271  * The macro is called with two registers, dst_reg which contains a pointer
8272  * to ctx (context) and src_reg which contains the value that should be
8273  * stored. However, we need an additional register since we cannot overwrite
8274  * dst_reg because it may be used later in the program.
8275  * Instead we "borrow" one of the other register. We first save its value
8276  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
8277  * it at the end of the macro.
8278  */
8279 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
8280 	do {								      \
8281 		int reg = BPF_REG_9;					      \
8282 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
8283 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
8284 		if (si->dst_reg == reg || si->src_reg == reg)		      \
8285 			reg--;						      \
8286 		if (si->dst_reg == reg || si->src_reg == reg)		      \
8287 			reg--;						      \
8288 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
8289 				      offsetof(struct bpf_sock_ops_kern,      \
8290 					       temp));			      \
8291 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
8292 						struct bpf_sock_ops_kern,     \
8293 						is_fullsock),		      \
8294 				      reg, si->dst_reg,			      \
8295 				      offsetof(struct bpf_sock_ops_kern,      \
8296 					       is_fullsock));		      \
8297 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
8298 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
8299 						struct bpf_sock_ops_kern, sk),\
8300 				      reg, si->dst_reg,			      \
8301 				      offsetof(struct bpf_sock_ops_kern, sk));\
8302 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
8303 				      reg, si->src_reg,			      \
8304 				      offsetof(OBJ, OBJ_FIELD));	      \
8305 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
8306 				      offsetof(struct bpf_sock_ops_kern,      \
8307 					       temp));			      \
8308 	} while (0)
8309 
8310 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
8311 	do {								      \
8312 		if (TYPE == BPF_WRITE)					      \
8313 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
8314 		else							      \
8315 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
8316 	} while (0)
8317 
8318 	if (insn > insn_buf)
8319 		return insn - insn_buf;
8320 
8321 	switch (si->off) {
8322 	case offsetof(struct bpf_sock_ops, op) ...
8323 	     offsetof(struct bpf_sock_ops, replylong[3]):
8324 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, op) !=
8325 			     sizeof_field(struct bpf_sock_ops_kern, op));
8326 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
8327 			     sizeof_field(struct bpf_sock_ops_kern, reply));
8328 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
8329 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
8330 		off = si->off;
8331 		off -= offsetof(struct bpf_sock_ops, op);
8332 		off += offsetof(struct bpf_sock_ops_kern, op);
8333 		if (type == BPF_WRITE)
8334 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8335 					      off);
8336 		else
8337 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8338 					      off);
8339 		break;
8340 
8341 	case offsetof(struct bpf_sock_ops, family):
8342 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8343 
8344 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8345 					      struct bpf_sock_ops_kern, sk),
8346 				      si->dst_reg, si->src_reg,
8347 				      offsetof(struct bpf_sock_ops_kern, sk));
8348 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8349 				      offsetof(struct sock_common, skc_family));
8350 		break;
8351 
8352 	case offsetof(struct bpf_sock_ops, remote_ip4):
8353 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8354 
8355 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8356 						struct bpf_sock_ops_kern, sk),
8357 				      si->dst_reg, si->src_reg,
8358 				      offsetof(struct bpf_sock_ops_kern, sk));
8359 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8360 				      offsetof(struct sock_common, skc_daddr));
8361 		break;
8362 
8363 	case offsetof(struct bpf_sock_ops, local_ip4):
8364 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8365 					  skc_rcv_saddr) != 4);
8366 
8367 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8368 					      struct bpf_sock_ops_kern, sk),
8369 				      si->dst_reg, si->src_reg,
8370 				      offsetof(struct bpf_sock_ops_kern, sk));
8371 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8372 				      offsetof(struct sock_common,
8373 					       skc_rcv_saddr));
8374 		break;
8375 
8376 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
8377 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
8378 #if IS_ENABLED(CONFIG_IPV6)
8379 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8380 					  skc_v6_daddr.s6_addr32[0]) != 4);
8381 
8382 		off = si->off;
8383 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
8384 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8385 						struct bpf_sock_ops_kern, sk),
8386 				      si->dst_reg, si->src_reg,
8387 				      offsetof(struct bpf_sock_ops_kern, sk));
8388 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8389 				      offsetof(struct sock_common,
8390 					       skc_v6_daddr.s6_addr32[0]) +
8391 				      off);
8392 #else
8393 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8394 #endif
8395 		break;
8396 
8397 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
8398 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
8399 #if IS_ENABLED(CONFIG_IPV6)
8400 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8401 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8402 
8403 		off = si->off;
8404 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
8405 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8406 						struct bpf_sock_ops_kern, sk),
8407 				      si->dst_reg, si->src_reg,
8408 				      offsetof(struct bpf_sock_ops_kern, sk));
8409 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8410 				      offsetof(struct sock_common,
8411 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8412 				      off);
8413 #else
8414 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8415 #endif
8416 		break;
8417 
8418 	case offsetof(struct bpf_sock_ops, remote_port):
8419 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8420 
8421 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8422 						struct bpf_sock_ops_kern, sk),
8423 				      si->dst_reg, si->src_reg,
8424 				      offsetof(struct bpf_sock_ops_kern, sk));
8425 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8426 				      offsetof(struct sock_common, skc_dport));
8427 #ifndef __BIG_ENDIAN_BITFIELD
8428 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8429 #endif
8430 		break;
8431 
8432 	case offsetof(struct bpf_sock_ops, local_port):
8433 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8434 
8435 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8436 						struct bpf_sock_ops_kern, sk),
8437 				      si->dst_reg, si->src_reg,
8438 				      offsetof(struct bpf_sock_ops_kern, sk));
8439 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8440 				      offsetof(struct sock_common, skc_num));
8441 		break;
8442 
8443 	case offsetof(struct bpf_sock_ops, is_fullsock):
8444 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8445 						struct bpf_sock_ops_kern,
8446 						is_fullsock),
8447 				      si->dst_reg, si->src_reg,
8448 				      offsetof(struct bpf_sock_ops_kern,
8449 					       is_fullsock));
8450 		break;
8451 
8452 	case offsetof(struct bpf_sock_ops, state):
8453 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
8454 
8455 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8456 						struct bpf_sock_ops_kern, sk),
8457 				      si->dst_reg, si->src_reg,
8458 				      offsetof(struct bpf_sock_ops_kern, sk));
8459 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
8460 				      offsetof(struct sock_common, skc_state));
8461 		break;
8462 
8463 	case offsetof(struct bpf_sock_ops, rtt_min):
8464 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
8465 			     sizeof(struct minmax));
8466 		BUILD_BUG_ON(sizeof(struct minmax) <
8467 			     sizeof(struct minmax_sample));
8468 
8469 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8470 						struct bpf_sock_ops_kern, sk),
8471 				      si->dst_reg, si->src_reg,
8472 				      offsetof(struct bpf_sock_ops_kern, sk));
8473 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8474 				      offsetof(struct tcp_sock, rtt_min) +
8475 				      sizeof_field(struct minmax_sample, t));
8476 		break;
8477 
8478 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
8479 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
8480 				   struct tcp_sock);
8481 		break;
8482 
8483 	case offsetof(struct bpf_sock_ops, sk_txhash):
8484 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
8485 					  struct sock, type);
8486 		break;
8487 	case offsetof(struct bpf_sock_ops, snd_cwnd):
8488 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
8489 		break;
8490 	case offsetof(struct bpf_sock_ops, srtt_us):
8491 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
8492 		break;
8493 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
8494 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
8495 		break;
8496 	case offsetof(struct bpf_sock_ops, rcv_nxt):
8497 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
8498 		break;
8499 	case offsetof(struct bpf_sock_ops, snd_nxt):
8500 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
8501 		break;
8502 	case offsetof(struct bpf_sock_ops, snd_una):
8503 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
8504 		break;
8505 	case offsetof(struct bpf_sock_ops, mss_cache):
8506 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
8507 		break;
8508 	case offsetof(struct bpf_sock_ops, ecn_flags):
8509 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
8510 		break;
8511 	case offsetof(struct bpf_sock_ops, rate_delivered):
8512 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
8513 		break;
8514 	case offsetof(struct bpf_sock_ops, rate_interval_us):
8515 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
8516 		break;
8517 	case offsetof(struct bpf_sock_ops, packets_out):
8518 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
8519 		break;
8520 	case offsetof(struct bpf_sock_ops, retrans_out):
8521 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
8522 		break;
8523 	case offsetof(struct bpf_sock_ops, total_retrans):
8524 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
8525 		break;
8526 	case offsetof(struct bpf_sock_ops, segs_in):
8527 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
8528 		break;
8529 	case offsetof(struct bpf_sock_ops, data_segs_in):
8530 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
8531 		break;
8532 	case offsetof(struct bpf_sock_ops, segs_out):
8533 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
8534 		break;
8535 	case offsetof(struct bpf_sock_ops, data_segs_out):
8536 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
8537 		break;
8538 	case offsetof(struct bpf_sock_ops, lost_out):
8539 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
8540 		break;
8541 	case offsetof(struct bpf_sock_ops, sacked_out):
8542 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
8543 		break;
8544 	case offsetof(struct bpf_sock_ops, bytes_received):
8545 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
8546 		break;
8547 	case offsetof(struct bpf_sock_ops, bytes_acked):
8548 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
8549 		break;
8550 	case offsetof(struct bpf_sock_ops, sk):
8551 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8552 						struct bpf_sock_ops_kern,
8553 						is_fullsock),
8554 				      si->dst_reg, si->src_reg,
8555 				      offsetof(struct bpf_sock_ops_kern,
8556 					       is_fullsock));
8557 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8558 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8559 						struct bpf_sock_ops_kern, sk),
8560 				      si->dst_reg, si->src_reg,
8561 				      offsetof(struct bpf_sock_ops_kern, sk));
8562 		break;
8563 	}
8564 	return insn - insn_buf;
8565 }
8566 
8567 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
8568 				     const struct bpf_insn *si,
8569 				     struct bpf_insn *insn_buf,
8570 				     struct bpf_prog *prog, u32 *target_size)
8571 {
8572 	struct bpf_insn *insn = insn_buf;
8573 	int off;
8574 
8575 	switch (si->off) {
8576 	case offsetof(struct __sk_buff, data_end):
8577 		off  = si->off;
8578 		off -= offsetof(struct __sk_buff, data_end);
8579 		off += offsetof(struct sk_buff, cb);
8580 		off += offsetof(struct tcp_skb_cb, bpf.data_end);
8581 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8582 				      si->src_reg, off);
8583 		break;
8584 	default:
8585 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
8586 					      target_size);
8587 	}
8588 
8589 	return insn - insn_buf;
8590 }
8591 
8592 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
8593 				     const struct bpf_insn *si,
8594 				     struct bpf_insn *insn_buf,
8595 				     struct bpf_prog *prog, u32 *target_size)
8596 {
8597 	struct bpf_insn *insn = insn_buf;
8598 #if IS_ENABLED(CONFIG_IPV6)
8599 	int off;
8600 #endif
8601 
8602 	/* convert ctx uses the fact sg element is first in struct */
8603 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
8604 
8605 	switch (si->off) {
8606 	case offsetof(struct sk_msg_md, data):
8607 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
8608 				      si->dst_reg, si->src_reg,
8609 				      offsetof(struct sk_msg, data));
8610 		break;
8611 	case offsetof(struct sk_msg_md, data_end):
8612 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
8613 				      si->dst_reg, si->src_reg,
8614 				      offsetof(struct sk_msg, data_end));
8615 		break;
8616 	case offsetof(struct sk_msg_md, family):
8617 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8618 
8619 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8620 					      struct sk_msg, sk),
8621 				      si->dst_reg, si->src_reg,
8622 				      offsetof(struct sk_msg, sk));
8623 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8624 				      offsetof(struct sock_common, skc_family));
8625 		break;
8626 
8627 	case offsetof(struct sk_msg_md, remote_ip4):
8628 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8629 
8630 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8631 						struct sk_msg, sk),
8632 				      si->dst_reg, si->src_reg,
8633 				      offsetof(struct sk_msg, sk));
8634 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8635 				      offsetof(struct sock_common, skc_daddr));
8636 		break;
8637 
8638 	case offsetof(struct sk_msg_md, local_ip4):
8639 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8640 					  skc_rcv_saddr) != 4);
8641 
8642 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8643 					      struct sk_msg, sk),
8644 				      si->dst_reg, si->src_reg,
8645 				      offsetof(struct sk_msg, sk));
8646 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8647 				      offsetof(struct sock_common,
8648 					       skc_rcv_saddr));
8649 		break;
8650 
8651 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
8652 	     offsetof(struct sk_msg_md, remote_ip6[3]):
8653 #if IS_ENABLED(CONFIG_IPV6)
8654 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8655 					  skc_v6_daddr.s6_addr32[0]) != 4);
8656 
8657 		off = si->off;
8658 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
8659 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8660 						struct sk_msg, sk),
8661 				      si->dst_reg, si->src_reg,
8662 				      offsetof(struct sk_msg, sk));
8663 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8664 				      offsetof(struct sock_common,
8665 					       skc_v6_daddr.s6_addr32[0]) +
8666 				      off);
8667 #else
8668 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8669 #endif
8670 		break;
8671 
8672 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
8673 	     offsetof(struct sk_msg_md, local_ip6[3]):
8674 #if IS_ENABLED(CONFIG_IPV6)
8675 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8676 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8677 
8678 		off = si->off;
8679 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
8680 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8681 						struct sk_msg, sk),
8682 				      si->dst_reg, si->src_reg,
8683 				      offsetof(struct sk_msg, sk));
8684 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8685 				      offsetof(struct sock_common,
8686 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8687 				      off);
8688 #else
8689 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8690 #endif
8691 		break;
8692 
8693 	case offsetof(struct sk_msg_md, remote_port):
8694 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8695 
8696 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8697 						struct sk_msg, sk),
8698 				      si->dst_reg, si->src_reg,
8699 				      offsetof(struct sk_msg, sk));
8700 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8701 				      offsetof(struct sock_common, skc_dport));
8702 #ifndef __BIG_ENDIAN_BITFIELD
8703 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8704 #endif
8705 		break;
8706 
8707 	case offsetof(struct sk_msg_md, local_port):
8708 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8709 
8710 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8711 						struct sk_msg, sk),
8712 				      si->dst_reg, si->src_reg,
8713 				      offsetof(struct sk_msg, sk));
8714 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8715 				      offsetof(struct sock_common, skc_num));
8716 		break;
8717 
8718 	case offsetof(struct sk_msg_md, size):
8719 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
8720 				      si->dst_reg, si->src_reg,
8721 				      offsetof(struct sk_msg_sg, size));
8722 		break;
8723 
8724 	case offsetof(struct sk_msg_md, sk):
8725 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
8726 				      si->dst_reg, si->src_reg,
8727 				      offsetof(struct sk_msg, sk));
8728 		break;
8729 	}
8730 
8731 	return insn - insn_buf;
8732 }
8733 
8734 const struct bpf_verifier_ops sk_filter_verifier_ops = {
8735 	.get_func_proto		= sk_filter_func_proto,
8736 	.is_valid_access	= sk_filter_is_valid_access,
8737 	.convert_ctx_access	= bpf_convert_ctx_access,
8738 	.gen_ld_abs		= bpf_gen_ld_abs,
8739 };
8740 
8741 const struct bpf_prog_ops sk_filter_prog_ops = {
8742 	.test_run		= bpf_prog_test_run_skb,
8743 };
8744 
8745 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
8746 	.get_func_proto		= tc_cls_act_func_proto,
8747 	.is_valid_access	= tc_cls_act_is_valid_access,
8748 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
8749 	.gen_prologue		= tc_cls_act_prologue,
8750 	.gen_ld_abs		= bpf_gen_ld_abs,
8751 };
8752 
8753 const struct bpf_prog_ops tc_cls_act_prog_ops = {
8754 	.test_run		= bpf_prog_test_run_skb,
8755 };
8756 
8757 const struct bpf_verifier_ops xdp_verifier_ops = {
8758 	.get_func_proto		= xdp_func_proto,
8759 	.is_valid_access	= xdp_is_valid_access,
8760 	.convert_ctx_access	= xdp_convert_ctx_access,
8761 	.gen_prologue		= bpf_noop_prologue,
8762 };
8763 
8764 const struct bpf_prog_ops xdp_prog_ops = {
8765 	.test_run		= bpf_prog_test_run_xdp,
8766 };
8767 
8768 const struct bpf_verifier_ops cg_skb_verifier_ops = {
8769 	.get_func_proto		= cg_skb_func_proto,
8770 	.is_valid_access	= cg_skb_is_valid_access,
8771 	.convert_ctx_access	= bpf_convert_ctx_access,
8772 };
8773 
8774 const struct bpf_prog_ops cg_skb_prog_ops = {
8775 	.test_run		= bpf_prog_test_run_skb,
8776 };
8777 
8778 const struct bpf_verifier_ops lwt_in_verifier_ops = {
8779 	.get_func_proto		= lwt_in_func_proto,
8780 	.is_valid_access	= lwt_is_valid_access,
8781 	.convert_ctx_access	= bpf_convert_ctx_access,
8782 };
8783 
8784 const struct bpf_prog_ops lwt_in_prog_ops = {
8785 	.test_run		= bpf_prog_test_run_skb,
8786 };
8787 
8788 const struct bpf_verifier_ops lwt_out_verifier_ops = {
8789 	.get_func_proto		= lwt_out_func_proto,
8790 	.is_valid_access	= lwt_is_valid_access,
8791 	.convert_ctx_access	= bpf_convert_ctx_access,
8792 };
8793 
8794 const struct bpf_prog_ops lwt_out_prog_ops = {
8795 	.test_run		= bpf_prog_test_run_skb,
8796 };
8797 
8798 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
8799 	.get_func_proto		= lwt_xmit_func_proto,
8800 	.is_valid_access	= lwt_is_valid_access,
8801 	.convert_ctx_access	= bpf_convert_ctx_access,
8802 	.gen_prologue		= tc_cls_act_prologue,
8803 };
8804 
8805 const struct bpf_prog_ops lwt_xmit_prog_ops = {
8806 	.test_run		= bpf_prog_test_run_skb,
8807 };
8808 
8809 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
8810 	.get_func_proto		= lwt_seg6local_func_proto,
8811 	.is_valid_access	= lwt_is_valid_access,
8812 	.convert_ctx_access	= bpf_convert_ctx_access,
8813 };
8814 
8815 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
8816 	.test_run		= bpf_prog_test_run_skb,
8817 };
8818 
8819 const struct bpf_verifier_ops cg_sock_verifier_ops = {
8820 	.get_func_proto		= sock_filter_func_proto,
8821 	.is_valid_access	= sock_filter_is_valid_access,
8822 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
8823 };
8824 
8825 const struct bpf_prog_ops cg_sock_prog_ops = {
8826 };
8827 
8828 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
8829 	.get_func_proto		= sock_addr_func_proto,
8830 	.is_valid_access	= sock_addr_is_valid_access,
8831 	.convert_ctx_access	= sock_addr_convert_ctx_access,
8832 };
8833 
8834 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
8835 };
8836 
8837 const struct bpf_verifier_ops sock_ops_verifier_ops = {
8838 	.get_func_proto		= sock_ops_func_proto,
8839 	.is_valid_access	= sock_ops_is_valid_access,
8840 	.convert_ctx_access	= sock_ops_convert_ctx_access,
8841 };
8842 
8843 const struct bpf_prog_ops sock_ops_prog_ops = {
8844 };
8845 
8846 const struct bpf_verifier_ops sk_skb_verifier_ops = {
8847 	.get_func_proto		= sk_skb_func_proto,
8848 	.is_valid_access	= sk_skb_is_valid_access,
8849 	.convert_ctx_access	= sk_skb_convert_ctx_access,
8850 	.gen_prologue		= sk_skb_prologue,
8851 };
8852 
8853 const struct bpf_prog_ops sk_skb_prog_ops = {
8854 };
8855 
8856 const struct bpf_verifier_ops sk_msg_verifier_ops = {
8857 	.get_func_proto		= sk_msg_func_proto,
8858 	.is_valid_access	= sk_msg_is_valid_access,
8859 	.convert_ctx_access	= sk_msg_convert_ctx_access,
8860 	.gen_prologue		= bpf_noop_prologue,
8861 };
8862 
8863 const struct bpf_prog_ops sk_msg_prog_ops = {
8864 };
8865 
8866 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
8867 	.get_func_proto		= flow_dissector_func_proto,
8868 	.is_valid_access	= flow_dissector_is_valid_access,
8869 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
8870 };
8871 
8872 const struct bpf_prog_ops flow_dissector_prog_ops = {
8873 	.test_run		= bpf_prog_test_run_flow_dissector,
8874 };
8875 
8876 int sk_detach_filter(struct sock *sk)
8877 {
8878 	int ret = -ENOENT;
8879 	struct sk_filter *filter;
8880 
8881 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
8882 		return -EPERM;
8883 
8884 	filter = rcu_dereference_protected(sk->sk_filter,
8885 					   lockdep_sock_is_held(sk));
8886 	if (filter) {
8887 		RCU_INIT_POINTER(sk->sk_filter, NULL);
8888 		sk_filter_uncharge(sk, filter);
8889 		ret = 0;
8890 	}
8891 
8892 	return ret;
8893 }
8894 EXPORT_SYMBOL_GPL(sk_detach_filter);
8895 
8896 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
8897 		  unsigned int len)
8898 {
8899 	struct sock_fprog_kern *fprog;
8900 	struct sk_filter *filter;
8901 	int ret = 0;
8902 
8903 	lock_sock(sk);
8904 	filter = rcu_dereference_protected(sk->sk_filter,
8905 					   lockdep_sock_is_held(sk));
8906 	if (!filter)
8907 		goto out;
8908 
8909 	/* We're copying the filter that has been originally attached,
8910 	 * so no conversion/decode needed anymore. eBPF programs that
8911 	 * have no original program cannot be dumped through this.
8912 	 */
8913 	ret = -EACCES;
8914 	fprog = filter->prog->orig_prog;
8915 	if (!fprog)
8916 		goto out;
8917 
8918 	ret = fprog->len;
8919 	if (!len)
8920 		/* User space only enquires number of filter blocks. */
8921 		goto out;
8922 
8923 	ret = -EINVAL;
8924 	if (len < fprog->len)
8925 		goto out;
8926 
8927 	ret = -EFAULT;
8928 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
8929 		goto out;
8930 
8931 	/* Instead of bytes, the API requests to return the number
8932 	 * of filter blocks.
8933 	 */
8934 	ret = fprog->len;
8935 out:
8936 	release_sock(sk);
8937 	return ret;
8938 }
8939 
8940 #ifdef CONFIG_INET
8941 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
8942 				    struct sock_reuseport *reuse,
8943 				    struct sock *sk, struct sk_buff *skb,
8944 				    u32 hash)
8945 {
8946 	reuse_kern->skb = skb;
8947 	reuse_kern->sk = sk;
8948 	reuse_kern->selected_sk = NULL;
8949 	reuse_kern->data_end = skb->data + skb_headlen(skb);
8950 	reuse_kern->hash = hash;
8951 	reuse_kern->reuseport_id = reuse->reuseport_id;
8952 	reuse_kern->bind_inany = reuse->bind_inany;
8953 }
8954 
8955 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
8956 				  struct bpf_prog *prog, struct sk_buff *skb,
8957 				  u32 hash)
8958 {
8959 	struct sk_reuseport_kern reuse_kern;
8960 	enum sk_action action;
8961 
8962 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
8963 	action = BPF_PROG_RUN(prog, &reuse_kern);
8964 
8965 	if (action == SK_PASS)
8966 		return reuse_kern.selected_sk;
8967 	else
8968 		return ERR_PTR(-ECONNREFUSED);
8969 }
8970 
8971 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
8972 	   struct bpf_map *, map, void *, key, u32, flags)
8973 {
8974 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
8975 	struct sock_reuseport *reuse;
8976 	struct sock *selected_sk;
8977 
8978 	selected_sk = map->ops->map_lookup_elem(map, key);
8979 	if (!selected_sk)
8980 		return -ENOENT;
8981 
8982 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
8983 	if (!reuse) {
8984 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
8985 		if (sk_is_refcounted(selected_sk))
8986 			sock_put(selected_sk);
8987 
8988 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
8989 		 * The only (!reuse) case here is - the sk has already been
8990 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
8991 		 *
8992 		 * Other maps (e.g. sock_map) do not provide this guarantee and
8993 		 * the sk may never be in the reuseport group to begin with.
8994 		 */
8995 		return is_sockarray ? -ENOENT : -EINVAL;
8996 	}
8997 
8998 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
8999 		struct sock *sk = reuse_kern->sk;
9000 
9001 		if (sk->sk_protocol != selected_sk->sk_protocol)
9002 			return -EPROTOTYPE;
9003 		else if (sk->sk_family != selected_sk->sk_family)
9004 			return -EAFNOSUPPORT;
9005 
9006 		/* Catch all. Likely bound to a different sockaddr. */
9007 		return -EBADFD;
9008 	}
9009 
9010 	reuse_kern->selected_sk = selected_sk;
9011 
9012 	return 0;
9013 }
9014 
9015 static const struct bpf_func_proto sk_select_reuseport_proto = {
9016 	.func           = sk_select_reuseport,
9017 	.gpl_only       = false,
9018 	.ret_type       = RET_INTEGER,
9019 	.arg1_type	= ARG_PTR_TO_CTX,
9020 	.arg2_type      = ARG_CONST_MAP_PTR,
9021 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
9022 	.arg4_type	= ARG_ANYTHING,
9023 };
9024 
9025 BPF_CALL_4(sk_reuseport_load_bytes,
9026 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9027 	   void *, to, u32, len)
9028 {
9029 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
9030 }
9031 
9032 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
9033 	.func		= sk_reuseport_load_bytes,
9034 	.gpl_only	= false,
9035 	.ret_type	= RET_INTEGER,
9036 	.arg1_type	= ARG_PTR_TO_CTX,
9037 	.arg2_type	= ARG_ANYTHING,
9038 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
9039 	.arg4_type	= ARG_CONST_SIZE,
9040 };
9041 
9042 BPF_CALL_5(sk_reuseport_load_bytes_relative,
9043 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9044 	   void *, to, u32, len, u32, start_header)
9045 {
9046 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
9047 					       len, start_header);
9048 }
9049 
9050 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
9051 	.func		= sk_reuseport_load_bytes_relative,
9052 	.gpl_only	= false,
9053 	.ret_type	= RET_INTEGER,
9054 	.arg1_type	= ARG_PTR_TO_CTX,
9055 	.arg2_type	= ARG_ANYTHING,
9056 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
9057 	.arg4_type	= ARG_CONST_SIZE,
9058 	.arg5_type	= ARG_ANYTHING,
9059 };
9060 
9061 static const struct bpf_func_proto *
9062 sk_reuseport_func_proto(enum bpf_func_id func_id,
9063 			const struct bpf_prog *prog)
9064 {
9065 	switch (func_id) {
9066 	case BPF_FUNC_sk_select_reuseport:
9067 		return &sk_select_reuseport_proto;
9068 	case BPF_FUNC_skb_load_bytes:
9069 		return &sk_reuseport_load_bytes_proto;
9070 	case BPF_FUNC_skb_load_bytes_relative:
9071 		return &sk_reuseport_load_bytes_relative_proto;
9072 	default:
9073 		return bpf_base_func_proto(func_id);
9074 	}
9075 }
9076 
9077 static bool
9078 sk_reuseport_is_valid_access(int off, int size,
9079 			     enum bpf_access_type type,
9080 			     const struct bpf_prog *prog,
9081 			     struct bpf_insn_access_aux *info)
9082 {
9083 	const u32 size_default = sizeof(__u32);
9084 
9085 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
9086 	    off % size || type != BPF_READ)
9087 		return false;
9088 
9089 	switch (off) {
9090 	case offsetof(struct sk_reuseport_md, data):
9091 		info->reg_type = PTR_TO_PACKET;
9092 		return size == sizeof(__u64);
9093 
9094 	case offsetof(struct sk_reuseport_md, data_end):
9095 		info->reg_type = PTR_TO_PACKET_END;
9096 		return size == sizeof(__u64);
9097 
9098 	case offsetof(struct sk_reuseport_md, hash):
9099 		return size == size_default;
9100 
9101 	/* Fields that allow narrowing */
9102 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
9103 		if (size < sizeof_field(struct sk_buff, protocol))
9104 			return false;
9105 		/* fall through */
9106 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
9107 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
9108 	case bpf_ctx_range(struct sk_reuseport_md, len):
9109 		bpf_ctx_record_field_size(info, size_default);
9110 		return bpf_ctx_narrow_access_ok(off, size, size_default);
9111 
9112 	default:
9113 		return false;
9114 	}
9115 }
9116 
9117 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
9118 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
9119 			      si->dst_reg, si->src_reg,			\
9120 			      bpf_target_off(struct sk_reuseport_kern, F, \
9121 					     sizeof_field(struct sk_reuseport_kern, F), \
9122 					     target_size));		\
9123 	})
9124 
9125 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
9126 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
9127 				    struct sk_buff,			\
9128 				    skb,				\
9129 				    SKB_FIELD)
9130 
9131 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
9132 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
9133 				    struct sock,			\
9134 				    sk,					\
9135 				    SK_FIELD)
9136 
9137 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
9138 					   const struct bpf_insn *si,
9139 					   struct bpf_insn *insn_buf,
9140 					   struct bpf_prog *prog,
9141 					   u32 *target_size)
9142 {
9143 	struct bpf_insn *insn = insn_buf;
9144 
9145 	switch (si->off) {
9146 	case offsetof(struct sk_reuseport_md, data):
9147 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
9148 		break;
9149 
9150 	case offsetof(struct sk_reuseport_md, len):
9151 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
9152 		break;
9153 
9154 	case offsetof(struct sk_reuseport_md, eth_protocol):
9155 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
9156 		break;
9157 
9158 	case offsetof(struct sk_reuseport_md, ip_protocol):
9159 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
9160 		break;
9161 
9162 	case offsetof(struct sk_reuseport_md, data_end):
9163 		SK_REUSEPORT_LOAD_FIELD(data_end);
9164 		break;
9165 
9166 	case offsetof(struct sk_reuseport_md, hash):
9167 		SK_REUSEPORT_LOAD_FIELD(hash);
9168 		break;
9169 
9170 	case offsetof(struct sk_reuseport_md, bind_inany):
9171 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
9172 		break;
9173 	}
9174 
9175 	return insn - insn_buf;
9176 }
9177 
9178 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
9179 	.get_func_proto		= sk_reuseport_func_proto,
9180 	.is_valid_access	= sk_reuseport_is_valid_access,
9181 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
9182 };
9183 
9184 const struct bpf_prog_ops sk_reuseport_prog_ops = {
9185 };
9186 #endif /* CONFIG_INET */
9187 
9188 DEFINE_BPF_DISPATCHER(xdp)
9189 
9190 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
9191 {
9192 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
9193 }
9194