xref: /openbmc/linux/net/core/filter.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 
81 static const struct bpf_func_proto *
82 bpf_sk_base_func_proto(enum bpf_func_id func_id);
83 
84 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
85 {
86 	if (in_compat_syscall()) {
87 		struct compat_sock_fprog f32;
88 
89 		if (len != sizeof(f32))
90 			return -EINVAL;
91 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
92 			return -EFAULT;
93 		memset(dst, 0, sizeof(*dst));
94 		dst->len = f32.len;
95 		dst->filter = compat_ptr(f32.filter);
96 	} else {
97 		if (len != sizeof(*dst))
98 			return -EINVAL;
99 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
100 			return -EFAULT;
101 	}
102 
103 	return 0;
104 }
105 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
106 
107 /**
108  *	sk_filter_trim_cap - run a packet through a socket filter
109  *	@sk: sock associated with &sk_buff
110  *	@skb: buffer to filter
111  *	@cap: limit on how short the eBPF program may trim the packet
112  *
113  * Run the eBPF program and then cut skb->data to correct size returned by
114  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
115  * than pkt_len we keep whole skb->data. This is the socket level
116  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
117  * be accepted or -EPERM if the packet should be tossed.
118  *
119  */
120 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
121 {
122 	int err;
123 	struct sk_filter *filter;
124 
125 	/*
126 	 * If the skb was allocated from pfmemalloc reserves, only
127 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
128 	 * helping free memory
129 	 */
130 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
131 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
132 		return -ENOMEM;
133 	}
134 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
135 	if (err)
136 		return err;
137 
138 	err = security_sock_rcv_skb(sk, skb);
139 	if (err)
140 		return err;
141 
142 	rcu_read_lock();
143 	filter = rcu_dereference(sk->sk_filter);
144 	if (filter) {
145 		struct sock *save_sk = skb->sk;
146 		unsigned int pkt_len;
147 
148 		skb->sk = sk;
149 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
150 		skb->sk = save_sk;
151 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
152 	}
153 	rcu_read_unlock();
154 
155 	return err;
156 }
157 EXPORT_SYMBOL(sk_filter_trim_cap);
158 
159 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
160 {
161 	return skb_get_poff(skb);
162 }
163 
164 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
165 {
166 	struct nlattr *nla;
167 
168 	if (skb_is_nonlinear(skb))
169 		return 0;
170 
171 	if (skb->len < sizeof(struct nlattr))
172 		return 0;
173 
174 	if (a > skb->len - sizeof(struct nlattr))
175 		return 0;
176 
177 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
178 	if (nla)
179 		return (void *) nla - (void *) skb->data;
180 
181 	return 0;
182 }
183 
184 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
185 {
186 	struct nlattr *nla;
187 
188 	if (skb_is_nonlinear(skb))
189 		return 0;
190 
191 	if (skb->len < sizeof(struct nlattr))
192 		return 0;
193 
194 	if (a > skb->len - sizeof(struct nlattr))
195 		return 0;
196 
197 	nla = (struct nlattr *) &skb->data[a];
198 	if (nla->nla_len > skb->len - a)
199 		return 0;
200 
201 	nla = nla_find_nested(nla, x);
202 	if (nla)
203 		return (void *) nla - (void *) skb->data;
204 
205 	return 0;
206 }
207 
208 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
209 	   data, int, headlen, int, offset)
210 {
211 	u8 tmp, *ptr;
212 	const int len = sizeof(tmp);
213 
214 	if (offset >= 0) {
215 		if (headlen - offset >= len)
216 			return *(u8 *)(data + offset);
217 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
218 			return tmp;
219 	} else {
220 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
221 		if (likely(ptr))
222 			return *(u8 *)ptr;
223 	}
224 
225 	return -EFAULT;
226 }
227 
228 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
229 	   int, offset)
230 {
231 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
232 					 offset);
233 }
234 
235 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
236 	   data, int, headlen, int, offset)
237 {
238 	u16 tmp, *ptr;
239 	const int len = sizeof(tmp);
240 
241 	if (offset >= 0) {
242 		if (headlen - offset >= len)
243 			return get_unaligned_be16(data + offset);
244 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
245 			return be16_to_cpu(tmp);
246 	} else {
247 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
248 		if (likely(ptr))
249 			return get_unaligned_be16(ptr);
250 	}
251 
252 	return -EFAULT;
253 }
254 
255 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
256 	   int, offset)
257 {
258 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
259 					  offset);
260 }
261 
262 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
263 	   data, int, headlen, int, offset)
264 {
265 	u32 tmp, *ptr;
266 	const int len = sizeof(tmp);
267 
268 	if (likely(offset >= 0)) {
269 		if (headlen - offset >= len)
270 			return get_unaligned_be32(data + offset);
271 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
272 			return be32_to_cpu(tmp);
273 	} else {
274 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
275 		if (likely(ptr))
276 			return get_unaligned_be32(ptr);
277 	}
278 
279 	return -EFAULT;
280 }
281 
282 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
283 	   int, offset)
284 {
285 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
286 					  offset);
287 }
288 
289 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
290 			      struct bpf_insn *insn_buf)
291 {
292 	struct bpf_insn *insn = insn_buf;
293 
294 	switch (skb_field) {
295 	case SKF_AD_MARK:
296 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
297 
298 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
299 				      offsetof(struct sk_buff, mark));
300 		break;
301 
302 	case SKF_AD_PKTTYPE:
303 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
304 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
305 #ifdef __BIG_ENDIAN_BITFIELD
306 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
307 #endif
308 		break;
309 
310 	case SKF_AD_QUEUE:
311 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
312 
313 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
314 				      offsetof(struct sk_buff, queue_mapping));
315 		break;
316 
317 	case SKF_AD_VLAN_TAG:
318 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
319 
320 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
321 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
322 				      offsetof(struct sk_buff, vlan_tci));
323 		break;
324 	case SKF_AD_VLAN_TAG_PRESENT:
325 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
326 		if (PKT_VLAN_PRESENT_BIT)
327 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
328 		if (PKT_VLAN_PRESENT_BIT < 7)
329 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
330 		break;
331 	}
332 
333 	return insn - insn_buf;
334 }
335 
336 static bool convert_bpf_extensions(struct sock_filter *fp,
337 				   struct bpf_insn **insnp)
338 {
339 	struct bpf_insn *insn = *insnp;
340 	u32 cnt;
341 
342 	switch (fp->k) {
343 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
344 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
345 
346 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
347 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
348 				      offsetof(struct sk_buff, protocol));
349 		/* A = ntohs(A) [emitting a nop or swap16] */
350 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
351 		break;
352 
353 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
354 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
355 		insn += cnt - 1;
356 		break;
357 
358 	case SKF_AD_OFF + SKF_AD_IFINDEX:
359 	case SKF_AD_OFF + SKF_AD_HATYPE:
360 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
361 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
362 
363 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
364 				      BPF_REG_TMP, BPF_REG_CTX,
365 				      offsetof(struct sk_buff, dev));
366 		/* if (tmp != 0) goto pc + 1 */
367 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
368 		*insn++ = BPF_EXIT_INSN();
369 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
370 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
371 					    offsetof(struct net_device, ifindex));
372 		else
373 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
374 					    offsetof(struct net_device, type));
375 		break;
376 
377 	case SKF_AD_OFF + SKF_AD_MARK:
378 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
379 		insn += cnt - 1;
380 		break;
381 
382 	case SKF_AD_OFF + SKF_AD_RXHASH:
383 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
384 
385 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
386 				    offsetof(struct sk_buff, hash));
387 		break;
388 
389 	case SKF_AD_OFF + SKF_AD_QUEUE:
390 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
391 		insn += cnt - 1;
392 		break;
393 
394 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
395 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
396 					 BPF_REG_A, BPF_REG_CTX, insn);
397 		insn += cnt - 1;
398 		break;
399 
400 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
401 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
402 					 BPF_REG_A, BPF_REG_CTX, insn);
403 		insn += cnt - 1;
404 		break;
405 
406 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
407 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
408 
409 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
410 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
411 				      offsetof(struct sk_buff, vlan_proto));
412 		/* A = ntohs(A) [emitting a nop or swap16] */
413 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
414 		break;
415 
416 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
417 	case SKF_AD_OFF + SKF_AD_NLATTR:
418 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
419 	case SKF_AD_OFF + SKF_AD_CPU:
420 	case SKF_AD_OFF + SKF_AD_RANDOM:
421 		/* arg1 = CTX */
422 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
423 		/* arg2 = A */
424 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
425 		/* arg3 = X */
426 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
427 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
428 		switch (fp->k) {
429 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
430 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
431 			break;
432 		case SKF_AD_OFF + SKF_AD_NLATTR:
433 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
434 			break;
435 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
436 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
437 			break;
438 		case SKF_AD_OFF + SKF_AD_CPU:
439 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
440 			break;
441 		case SKF_AD_OFF + SKF_AD_RANDOM:
442 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
443 			bpf_user_rnd_init_once();
444 			break;
445 		}
446 		break;
447 
448 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
449 		/* A ^= X */
450 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
451 		break;
452 
453 	default:
454 		/* This is just a dummy call to avoid letting the compiler
455 		 * evict __bpf_call_base() as an optimization. Placed here
456 		 * where no-one bothers.
457 		 */
458 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
459 		return false;
460 	}
461 
462 	*insnp = insn;
463 	return true;
464 }
465 
466 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
467 {
468 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
469 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
470 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
471 		      BPF_SIZE(fp->code) == BPF_W;
472 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
473 	const int ip_align = NET_IP_ALIGN;
474 	struct bpf_insn *insn = *insnp;
475 	int offset = fp->k;
476 
477 	if (!indirect &&
478 	    ((unaligned_ok && offset >= 0) ||
479 	     (!unaligned_ok && offset >= 0 &&
480 	      offset + ip_align >= 0 &&
481 	      offset + ip_align % size == 0))) {
482 		bool ldx_off_ok = offset <= S16_MAX;
483 
484 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
485 		if (offset)
486 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
487 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
488 				      size, 2 + endian + (!ldx_off_ok * 2));
489 		if (ldx_off_ok) {
490 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
491 					      BPF_REG_D, offset);
492 		} else {
493 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
494 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
495 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
496 					      BPF_REG_TMP, 0);
497 		}
498 		if (endian)
499 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
500 		*insn++ = BPF_JMP_A(8);
501 	}
502 
503 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
504 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
505 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
506 	if (!indirect) {
507 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
508 	} else {
509 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
510 		if (fp->k)
511 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
512 	}
513 
514 	switch (BPF_SIZE(fp->code)) {
515 	case BPF_B:
516 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
517 		break;
518 	case BPF_H:
519 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
520 		break;
521 	case BPF_W:
522 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
523 		break;
524 	default:
525 		return false;
526 	}
527 
528 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
529 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
530 	*insn   = BPF_EXIT_INSN();
531 
532 	*insnp = insn;
533 	return true;
534 }
535 
536 /**
537  *	bpf_convert_filter - convert filter program
538  *	@prog: the user passed filter program
539  *	@len: the length of the user passed filter program
540  *	@new_prog: allocated 'struct bpf_prog' or NULL
541  *	@new_len: pointer to store length of converted program
542  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
543  *
544  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
545  * style extended BPF (eBPF).
546  * Conversion workflow:
547  *
548  * 1) First pass for calculating the new program length:
549  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
550  *
551  * 2) 2nd pass to remap in two passes: 1st pass finds new
552  *    jump offsets, 2nd pass remapping:
553  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
554  */
555 static int bpf_convert_filter(struct sock_filter *prog, int len,
556 			      struct bpf_prog *new_prog, int *new_len,
557 			      bool *seen_ld_abs)
558 {
559 	int new_flen = 0, pass = 0, target, i, stack_off;
560 	struct bpf_insn *new_insn, *first_insn = NULL;
561 	struct sock_filter *fp;
562 	int *addrs = NULL;
563 	u8 bpf_src;
564 
565 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
566 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
567 
568 	if (len <= 0 || len > BPF_MAXINSNS)
569 		return -EINVAL;
570 
571 	if (new_prog) {
572 		first_insn = new_prog->insnsi;
573 		addrs = kcalloc(len, sizeof(*addrs),
574 				GFP_KERNEL | __GFP_NOWARN);
575 		if (!addrs)
576 			return -ENOMEM;
577 	}
578 
579 do_pass:
580 	new_insn = first_insn;
581 	fp = prog;
582 
583 	/* Classic BPF related prologue emission. */
584 	if (new_prog) {
585 		/* Classic BPF expects A and X to be reset first. These need
586 		 * to be guaranteed to be the first two instructions.
587 		 */
588 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
589 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
590 
591 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
592 		 * In eBPF case it's done by the compiler, here we need to
593 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
594 		 */
595 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
596 		if (*seen_ld_abs) {
597 			/* For packet access in classic BPF, cache skb->data
598 			 * in callee-saved BPF R8 and skb->len - skb->data_len
599 			 * (headlen) in BPF R9. Since classic BPF is read-only
600 			 * on CTX, we only need to cache it once.
601 			 */
602 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
603 						  BPF_REG_D, BPF_REG_CTX,
604 						  offsetof(struct sk_buff, data));
605 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
606 						  offsetof(struct sk_buff, len));
607 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
608 						  offsetof(struct sk_buff, data_len));
609 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
610 		}
611 	} else {
612 		new_insn += 3;
613 	}
614 
615 	for (i = 0; i < len; fp++, i++) {
616 		struct bpf_insn tmp_insns[32] = { };
617 		struct bpf_insn *insn = tmp_insns;
618 
619 		if (addrs)
620 			addrs[i] = new_insn - first_insn;
621 
622 		switch (fp->code) {
623 		/* All arithmetic insns and skb loads map as-is. */
624 		case BPF_ALU | BPF_ADD | BPF_X:
625 		case BPF_ALU | BPF_ADD | BPF_K:
626 		case BPF_ALU | BPF_SUB | BPF_X:
627 		case BPF_ALU | BPF_SUB | BPF_K:
628 		case BPF_ALU | BPF_AND | BPF_X:
629 		case BPF_ALU | BPF_AND | BPF_K:
630 		case BPF_ALU | BPF_OR | BPF_X:
631 		case BPF_ALU | BPF_OR | BPF_K:
632 		case BPF_ALU | BPF_LSH | BPF_X:
633 		case BPF_ALU | BPF_LSH | BPF_K:
634 		case BPF_ALU | BPF_RSH | BPF_X:
635 		case BPF_ALU | BPF_RSH | BPF_K:
636 		case BPF_ALU | BPF_XOR | BPF_X:
637 		case BPF_ALU | BPF_XOR | BPF_K:
638 		case BPF_ALU | BPF_MUL | BPF_X:
639 		case BPF_ALU | BPF_MUL | BPF_K:
640 		case BPF_ALU | BPF_DIV | BPF_X:
641 		case BPF_ALU | BPF_DIV | BPF_K:
642 		case BPF_ALU | BPF_MOD | BPF_X:
643 		case BPF_ALU | BPF_MOD | BPF_K:
644 		case BPF_ALU | BPF_NEG:
645 		case BPF_LD | BPF_ABS | BPF_W:
646 		case BPF_LD | BPF_ABS | BPF_H:
647 		case BPF_LD | BPF_ABS | BPF_B:
648 		case BPF_LD | BPF_IND | BPF_W:
649 		case BPF_LD | BPF_IND | BPF_H:
650 		case BPF_LD | BPF_IND | BPF_B:
651 			/* Check for overloaded BPF extension and
652 			 * directly convert it if found, otherwise
653 			 * just move on with mapping.
654 			 */
655 			if (BPF_CLASS(fp->code) == BPF_LD &&
656 			    BPF_MODE(fp->code) == BPF_ABS &&
657 			    convert_bpf_extensions(fp, &insn))
658 				break;
659 			if (BPF_CLASS(fp->code) == BPF_LD &&
660 			    convert_bpf_ld_abs(fp, &insn)) {
661 				*seen_ld_abs = true;
662 				break;
663 			}
664 
665 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
666 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
667 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
668 				/* Error with exception code on div/mod by 0.
669 				 * For cBPF programs, this was always return 0.
670 				 */
671 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
672 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
673 				*insn++ = BPF_EXIT_INSN();
674 			}
675 
676 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
677 			break;
678 
679 		/* Jump transformation cannot use BPF block macros
680 		 * everywhere as offset calculation and target updates
681 		 * require a bit more work than the rest, i.e. jump
682 		 * opcodes map as-is, but offsets need adjustment.
683 		 */
684 
685 #define BPF_EMIT_JMP							\
686 	do {								\
687 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
688 		s32 off;						\
689 									\
690 		if (target >= len || target < 0)			\
691 			goto err;					\
692 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
693 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
694 		off -= insn - tmp_insns;				\
695 		/* Reject anything not fitting into insn->off. */	\
696 		if (off < off_min || off > off_max)			\
697 			goto err;					\
698 		insn->off = off;					\
699 	} while (0)
700 
701 		case BPF_JMP | BPF_JA:
702 			target = i + fp->k + 1;
703 			insn->code = fp->code;
704 			BPF_EMIT_JMP;
705 			break;
706 
707 		case BPF_JMP | BPF_JEQ | BPF_K:
708 		case BPF_JMP | BPF_JEQ | BPF_X:
709 		case BPF_JMP | BPF_JSET | BPF_K:
710 		case BPF_JMP | BPF_JSET | BPF_X:
711 		case BPF_JMP | BPF_JGT | BPF_K:
712 		case BPF_JMP | BPF_JGT | BPF_X:
713 		case BPF_JMP | BPF_JGE | BPF_K:
714 		case BPF_JMP | BPF_JGE | BPF_X:
715 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
716 				/* BPF immediates are signed, zero extend
717 				 * immediate into tmp register and use it
718 				 * in compare insn.
719 				 */
720 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
721 
722 				insn->dst_reg = BPF_REG_A;
723 				insn->src_reg = BPF_REG_TMP;
724 				bpf_src = BPF_X;
725 			} else {
726 				insn->dst_reg = BPF_REG_A;
727 				insn->imm = fp->k;
728 				bpf_src = BPF_SRC(fp->code);
729 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
730 			}
731 
732 			/* Common case where 'jump_false' is next insn. */
733 			if (fp->jf == 0) {
734 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
735 				target = i + fp->jt + 1;
736 				BPF_EMIT_JMP;
737 				break;
738 			}
739 
740 			/* Convert some jumps when 'jump_true' is next insn. */
741 			if (fp->jt == 0) {
742 				switch (BPF_OP(fp->code)) {
743 				case BPF_JEQ:
744 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
745 					break;
746 				case BPF_JGT:
747 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
748 					break;
749 				case BPF_JGE:
750 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
751 					break;
752 				default:
753 					goto jmp_rest;
754 				}
755 
756 				target = i + fp->jf + 1;
757 				BPF_EMIT_JMP;
758 				break;
759 			}
760 jmp_rest:
761 			/* Other jumps are mapped into two insns: Jxx and JA. */
762 			target = i + fp->jt + 1;
763 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
764 			BPF_EMIT_JMP;
765 			insn++;
766 
767 			insn->code = BPF_JMP | BPF_JA;
768 			target = i + fp->jf + 1;
769 			BPF_EMIT_JMP;
770 			break;
771 
772 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
773 		case BPF_LDX | BPF_MSH | BPF_B: {
774 			struct sock_filter tmp = {
775 				.code	= BPF_LD | BPF_ABS | BPF_B,
776 				.k	= fp->k,
777 			};
778 
779 			*seen_ld_abs = true;
780 
781 			/* X = A */
782 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
783 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
784 			convert_bpf_ld_abs(&tmp, &insn);
785 			insn++;
786 			/* A &= 0xf */
787 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
788 			/* A <<= 2 */
789 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
790 			/* tmp = X */
791 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
792 			/* X = A */
793 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
794 			/* A = tmp */
795 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
796 			break;
797 		}
798 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
799 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
800 		 */
801 		case BPF_RET | BPF_A:
802 		case BPF_RET | BPF_K:
803 			if (BPF_RVAL(fp->code) == BPF_K)
804 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
805 							0, fp->k);
806 			*insn = BPF_EXIT_INSN();
807 			break;
808 
809 		/* Store to stack. */
810 		case BPF_ST:
811 		case BPF_STX:
812 			stack_off = fp->k * 4  + 4;
813 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
814 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
815 					    -stack_off);
816 			/* check_load_and_stores() verifies that classic BPF can
817 			 * load from stack only after write, so tracking
818 			 * stack_depth for ST|STX insns is enough
819 			 */
820 			if (new_prog && new_prog->aux->stack_depth < stack_off)
821 				new_prog->aux->stack_depth = stack_off;
822 			break;
823 
824 		/* Load from stack. */
825 		case BPF_LD | BPF_MEM:
826 		case BPF_LDX | BPF_MEM:
827 			stack_off = fp->k * 4  + 4;
828 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
829 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
830 					    -stack_off);
831 			break;
832 
833 		/* A = K or X = K */
834 		case BPF_LD | BPF_IMM:
835 		case BPF_LDX | BPF_IMM:
836 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
837 					      BPF_REG_A : BPF_REG_X, fp->k);
838 			break;
839 
840 		/* X = A */
841 		case BPF_MISC | BPF_TAX:
842 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
843 			break;
844 
845 		/* A = X */
846 		case BPF_MISC | BPF_TXA:
847 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
848 			break;
849 
850 		/* A = skb->len or X = skb->len */
851 		case BPF_LD | BPF_W | BPF_LEN:
852 		case BPF_LDX | BPF_W | BPF_LEN:
853 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
854 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
855 					    offsetof(struct sk_buff, len));
856 			break;
857 
858 		/* Access seccomp_data fields. */
859 		case BPF_LDX | BPF_ABS | BPF_W:
860 			/* A = *(u32 *) (ctx + K) */
861 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
862 			break;
863 
864 		/* Unknown instruction. */
865 		default:
866 			goto err;
867 		}
868 
869 		insn++;
870 		if (new_prog)
871 			memcpy(new_insn, tmp_insns,
872 			       sizeof(*insn) * (insn - tmp_insns));
873 		new_insn += insn - tmp_insns;
874 	}
875 
876 	if (!new_prog) {
877 		/* Only calculating new length. */
878 		*new_len = new_insn - first_insn;
879 		if (*seen_ld_abs)
880 			*new_len += 4; /* Prologue bits. */
881 		return 0;
882 	}
883 
884 	pass++;
885 	if (new_flen != new_insn - first_insn) {
886 		new_flen = new_insn - first_insn;
887 		if (pass > 2)
888 			goto err;
889 		goto do_pass;
890 	}
891 
892 	kfree(addrs);
893 	BUG_ON(*new_len != new_flen);
894 	return 0;
895 err:
896 	kfree(addrs);
897 	return -EINVAL;
898 }
899 
900 /* Security:
901  *
902  * As we dont want to clear mem[] array for each packet going through
903  * __bpf_prog_run(), we check that filter loaded by user never try to read
904  * a cell if not previously written, and we check all branches to be sure
905  * a malicious user doesn't try to abuse us.
906  */
907 static int check_load_and_stores(const struct sock_filter *filter, int flen)
908 {
909 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
910 	int pc, ret = 0;
911 
912 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
913 
914 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
915 	if (!masks)
916 		return -ENOMEM;
917 
918 	memset(masks, 0xff, flen * sizeof(*masks));
919 
920 	for (pc = 0; pc < flen; pc++) {
921 		memvalid &= masks[pc];
922 
923 		switch (filter[pc].code) {
924 		case BPF_ST:
925 		case BPF_STX:
926 			memvalid |= (1 << filter[pc].k);
927 			break;
928 		case BPF_LD | BPF_MEM:
929 		case BPF_LDX | BPF_MEM:
930 			if (!(memvalid & (1 << filter[pc].k))) {
931 				ret = -EINVAL;
932 				goto error;
933 			}
934 			break;
935 		case BPF_JMP | BPF_JA:
936 			/* A jump must set masks on target */
937 			masks[pc + 1 + filter[pc].k] &= memvalid;
938 			memvalid = ~0;
939 			break;
940 		case BPF_JMP | BPF_JEQ | BPF_K:
941 		case BPF_JMP | BPF_JEQ | BPF_X:
942 		case BPF_JMP | BPF_JGE | BPF_K:
943 		case BPF_JMP | BPF_JGE | BPF_X:
944 		case BPF_JMP | BPF_JGT | BPF_K:
945 		case BPF_JMP | BPF_JGT | BPF_X:
946 		case BPF_JMP | BPF_JSET | BPF_K:
947 		case BPF_JMP | BPF_JSET | BPF_X:
948 			/* A jump must set masks on targets */
949 			masks[pc + 1 + filter[pc].jt] &= memvalid;
950 			masks[pc + 1 + filter[pc].jf] &= memvalid;
951 			memvalid = ~0;
952 			break;
953 		}
954 	}
955 error:
956 	kfree(masks);
957 	return ret;
958 }
959 
960 static bool chk_code_allowed(u16 code_to_probe)
961 {
962 	static const bool codes[] = {
963 		/* 32 bit ALU operations */
964 		[BPF_ALU | BPF_ADD | BPF_K] = true,
965 		[BPF_ALU | BPF_ADD | BPF_X] = true,
966 		[BPF_ALU | BPF_SUB | BPF_K] = true,
967 		[BPF_ALU | BPF_SUB | BPF_X] = true,
968 		[BPF_ALU | BPF_MUL | BPF_K] = true,
969 		[BPF_ALU | BPF_MUL | BPF_X] = true,
970 		[BPF_ALU | BPF_DIV | BPF_K] = true,
971 		[BPF_ALU | BPF_DIV | BPF_X] = true,
972 		[BPF_ALU | BPF_MOD | BPF_K] = true,
973 		[BPF_ALU | BPF_MOD | BPF_X] = true,
974 		[BPF_ALU | BPF_AND | BPF_K] = true,
975 		[BPF_ALU | BPF_AND | BPF_X] = true,
976 		[BPF_ALU | BPF_OR | BPF_K] = true,
977 		[BPF_ALU | BPF_OR | BPF_X] = true,
978 		[BPF_ALU | BPF_XOR | BPF_K] = true,
979 		[BPF_ALU | BPF_XOR | BPF_X] = true,
980 		[BPF_ALU | BPF_LSH | BPF_K] = true,
981 		[BPF_ALU | BPF_LSH | BPF_X] = true,
982 		[BPF_ALU | BPF_RSH | BPF_K] = true,
983 		[BPF_ALU | BPF_RSH | BPF_X] = true,
984 		[BPF_ALU | BPF_NEG] = true,
985 		/* Load instructions */
986 		[BPF_LD | BPF_W | BPF_ABS] = true,
987 		[BPF_LD | BPF_H | BPF_ABS] = true,
988 		[BPF_LD | BPF_B | BPF_ABS] = true,
989 		[BPF_LD | BPF_W | BPF_LEN] = true,
990 		[BPF_LD | BPF_W | BPF_IND] = true,
991 		[BPF_LD | BPF_H | BPF_IND] = true,
992 		[BPF_LD | BPF_B | BPF_IND] = true,
993 		[BPF_LD | BPF_IMM] = true,
994 		[BPF_LD | BPF_MEM] = true,
995 		[BPF_LDX | BPF_W | BPF_LEN] = true,
996 		[BPF_LDX | BPF_B | BPF_MSH] = true,
997 		[BPF_LDX | BPF_IMM] = true,
998 		[BPF_LDX | BPF_MEM] = true,
999 		/* Store instructions */
1000 		[BPF_ST] = true,
1001 		[BPF_STX] = true,
1002 		/* Misc instructions */
1003 		[BPF_MISC | BPF_TAX] = true,
1004 		[BPF_MISC | BPF_TXA] = true,
1005 		/* Return instructions */
1006 		[BPF_RET | BPF_K] = true,
1007 		[BPF_RET | BPF_A] = true,
1008 		/* Jump instructions */
1009 		[BPF_JMP | BPF_JA] = true,
1010 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1011 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1012 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1013 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1014 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1015 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1016 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1017 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1018 	};
1019 
1020 	if (code_to_probe >= ARRAY_SIZE(codes))
1021 		return false;
1022 
1023 	return codes[code_to_probe];
1024 }
1025 
1026 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1027 				unsigned int flen)
1028 {
1029 	if (filter == NULL)
1030 		return false;
1031 	if (flen == 0 || flen > BPF_MAXINSNS)
1032 		return false;
1033 
1034 	return true;
1035 }
1036 
1037 /**
1038  *	bpf_check_classic - verify socket filter code
1039  *	@filter: filter to verify
1040  *	@flen: length of filter
1041  *
1042  * Check the user's filter code. If we let some ugly
1043  * filter code slip through kaboom! The filter must contain
1044  * no references or jumps that are out of range, no illegal
1045  * instructions, and must end with a RET instruction.
1046  *
1047  * All jumps are forward as they are not signed.
1048  *
1049  * Returns 0 if the rule set is legal or -EINVAL if not.
1050  */
1051 static int bpf_check_classic(const struct sock_filter *filter,
1052 			     unsigned int flen)
1053 {
1054 	bool anc_found;
1055 	int pc;
1056 
1057 	/* Check the filter code now */
1058 	for (pc = 0; pc < flen; pc++) {
1059 		const struct sock_filter *ftest = &filter[pc];
1060 
1061 		/* May we actually operate on this code? */
1062 		if (!chk_code_allowed(ftest->code))
1063 			return -EINVAL;
1064 
1065 		/* Some instructions need special checks */
1066 		switch (ftest->code) {
1067 		case BPF_ALU | BPF_DIV | BPF_K:
1068 		case BPF_ALU | BPF_MOD | BPF_K:
1069 			/* Check for division by zero */
1070 			if (ftest->k == 0)
1071 				return -EINVAL;
1072 			break;
1073 		case BPF_ALU | BPF_LSH | BPF_K:
1074 		case BPF_ALU | BPF_RSH | BPF_K:
1075 			if (ftest->k >= 32)
1076 				return -EINVAL;
1077 			break;
1078 		case BPF_LD | BPF_MEM:
1079 		case BPF_LDX | BPF_MEM:
1080 		case BPF_ST:
1081 		case BPF_STX:
1082 			/* Check for invalid memory addresses */
1083 			if (ftest->k >= BPF_MEMWORDS)
1084 				return -EINVAL;
1085 			break;
1086 		case BPF_JMP | BPF_JA:
1087 			/* Note, the large ftest->k might cause loops.
1088 			 * Compare this with conditional jumps below,
1089 			 * where offsets are limited. --ANK (981016)
1090 			 */
1091 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1092 				return -EINVAL;
1093 			break;
1094 		case BPF_JMP | BPF_JEQ | BPF_K:
1095 		case BPF_JMP | BPF_JEQ | BPF_X:
1096 		case BPF_JMP | BPF_JGE | BPF_K:
1097 		case BPF_JMP | BPF_JGE | BPF_X:
1098 		case BPF_JMP | BPF_JGT | BPF_K:
1099 		case BPF_JMP | BPF_JGT | BPF_X:
1100 		case BPF_JMP | BPF_JSET | BPF_K:
1101 		case BPF_JMP | BPF_JSET | BPF_X:
1102 			/* Both conditionals must be safe */
1103 			if (pc + ftest->jt + 1 >= flen ||
1104 			    pc + ftest->jf + 1 >= flen)
1105 				return -EINVAL;
1106 			break;
1107 		case BPF_LD | BPF_W | BPF_ABS:
1108 		case BPF_LD | BPF_H | BPF_ABS:
1109 		case BPF_LD | BPF_B | BPF_ABS:
1110 			anc_found = false;
1111 			if (bpf_anc_helper(ftest) & BPF_ANC)
1112 				anc_found = true;
1113 			/* Ancillary operation unknown or unsupported */
1114 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1115 				return -EINVAL;
1116 		}
1117 	}
1118 
1119 	/* Last instruction must be a RET code */
1120 	switch (filter[flen - 1].code) {
1121 	case BPF_RET | BPF_K:
1122 	case BPF_RET | BPF_A:
1123 		return check_load_and_stores(filter, flen);
1124 	}
1125 
1126 	return -EINVAL;
1127 }
1128 
1129 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1130 				      const struct sock_fprog *fprog)
1131 {
1132 	unsigned int fsize = bpf_classic_proglen(fprog);
1133 	struct sock_fprog_kern *fkprog;
1134 
1135 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1136 	if (!fp->orig_prog)
1137 		return -ENOMEM;
1138 
1139 	fkprog = fp->orig_prog;
1140 	fkprog->len = fprog->len;
1141 
1142 	fkprog->filter = kmemdup(fp->insns, fsize,
1143 				 GFP_KERNEL | __GFP_NOWARN);
1144 	if (!fkprog->filter) {
1145 		kfree(fp->orig_prog);
1146 		return -ENOMEM;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 static void bpf_release_orig_filter(struct bpf_prog *fp)
1153 {
1154 	struct sock_fprog_kern *fprog = fp->orig_prog;
1155 
1156 	if (fprog) {
1157 		kfree(fprog->filter);
1158 		kfree(fprog);
1159 	}
1160 }
1161 
1162 static void __bpf_prog_release(struct bpf_prog *prog)
1163 {
1164 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1165 		bpf_prog_put(prog);
1166 	} else {
1167 		bpf_release_orig_filter(prog);
1168 		bpf_prog_free(prog);
1169 	}
1170 }
1171 
1172 static void __sk_filter_release(struct sk_filter *fp)
1173 {
1174 	__bpf_prog_release(fp->prog);
1175 	kfree(fp);
1176 }
1177 
1178 /**
1179  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1180  *	@rcu: rcu_head that contains the sk_filter to free
1181  */
1182 static void sk_filter_release_rcu(struct rcu_head *rcu)
1183 {
1184 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1185 
1186 	__sk_filter_release(fp);
1187 }
1188 
1189 /**
1190  *	sk_filter_release - release a socket filter
1191  *	@fp: filter to remove
1192  *
1193  *	Remove a filter from a socket and release its resources.
1194  */
1195 static void sk_filter_release(struct sk_filter *fp)
1196 {
1197 	if (refcount_dec_and_test(&fp->refcnt))
1198 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1199 }
1200 
1201 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1202 {
1203 	u32 filter_size = bpf_prog_size(fp->prog->len);
1204 
1205 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1206 	sk_filter_release(fp);
1207 }
1208 
1209 /* try to charge the socket memory if there is space available
1210  * return true on success
1211  */
1212 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1213 {
1214 	u32 filter_size = bpf_prog_size(fp->prog->len);
1215 
1216 	/* same check as in sock_kmalloc() */
1217 	if (filter_size <= sysctl_optmem_max &&
1218 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1219 		atomic_add(filter_size, &sk->sk_omem_alloc);
1220 		return true;
1221 	}
1222 	return false;
1223 }
1224 
1225 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1226 {
1227 	if (!refcount_inc_not_zero(&fp->refcnt))
1228 		return false;
1229 
1230 	if (!__sk_filter_charge(sk, fp)) {
1231 		sk_filter_release(fp);
1232 		return false;
1233 	}
1234 	return true;
1235 }
1236 
1237 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1238 {
1239 	struct sock_filter *old_prog;
1240 	struct bpf_prog *old_fp;
1241 	int err, new_len, old_len = fp->len;
1242 	bool seen_ld_abs = false;
1243 
1244 	/* We are free to overwrite insns et al right here as it
1245 	 * won't be used at this point in time anymore internally
1246 	 * after the migration to the internal BPF instruction
1247 	 * representation.
1248 	 */
1249 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1250 		     sizeof(struct bpf_insn));
1251 
1252 	/* Conversion cannot happen on overlapping memory areas,
1253 	 * so we need to keep the user BPF around until the 2nd
1254 	 * pass. At this time, the user BPF is stored in fp->insns.
1255 	 */
1256 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1257 			   GFP_KERNEL | __GFP_NOWARN);
1258 	if (!old_prog) {
1259 		err = -ENOMEM;
1260 		goto out_err;
1261 	}
1262 
1263 	/* 1st pass: calculate the new program length. */
1264 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1265 				 &seen_ld_abs);
1266 	if (err)
1267 		goto out_err_free;
1268 
1269 	/* Expand fp for appending the new filter representation. */
1270 	old_fp = fp;
1271 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1272 	if (!fp) {
1273 		/* The old_fp is still around in case we couldn't
1274 		 * allocate new memory, so uncharge on that one.
1275 		 */
1276 		fp = old_fp;
1277 		err = -ENOMEM;
1278 		goto out_err_free;
1279 	}
1280 
1281 	fp->len = new_len;
1282 
1283 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1284 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1285 				 &seen_ld_abs);
1286 	if (err)
1287 		/* 2nd bpf_convert_filter() can fail only if it fails
1288 		 * to allocate memory, remapping must succeed. Note,
1289 		 * that at this time old_fp has already been released
1290 		 * by krealloc().
1291 		 */
1292 		goto out_err_free;
1293 
1294 	fp = bpf_prog_select_runtime(fp, &err);
1295 	if (err)
1296 		goto out_err_free;
1297 
1298 	kfree(old_prog);
1299 	return fp;
1300 
1301 out_err_free:
1302 	kfree(old_prog);
1303 out_err:
1304 	__bpf_prog_release(fp);
1305 	return ERR_PTR(err);
1306 }
1307 
1308 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1309 					   bpf_aux_classic_check_t trans)
1310 {
1311 	int err;
1312 
1313 	fp->bpf_func = NULL;
1314 	fp->jited = 0;
1315 
1316 	err = bpf_check_classic(fp->insns, fp->len);
1317 	if (err) {
1318 		__bpf_prog_release(fp);
1319 		return ERR_PTR(err);
1320 	}
1321 
1322 	/* There might be additional checks and transformations
1323 	 * needed on classic filters, f.e. in case of seccomp.
1324 	 */
1325 	if (trans) {
1326 		err = trans(fp->insns, fp->len);
1327 		if (err) {
1328 			__bpf_prog_release(fp);
1329 			return ERR_PTR(err);
1330 		}
1331 	}
1332 
1333 	/* Probe if we can JIT compile the filter and if so, do
1334 	 * the compilation of the filter.
1335 	 */
1336 	bpf_jit_compile(fp);
1337 
1338 	/* JIT compiler couldn't process this filter, so do the
1339 	 * internal BPF translation for the optimized interpreter.
1340 	 */
1341 	if (!fp->jited)
1342 		fp = bpf_migrate_filter(fp);
1343 
1344 	return fp;
1345 }
1346 
1347 /**
1348  *	bpf_prog_create - create an unattached filter
1349  *	@pfp: the unattached filter that is created
1350  *	@fprog: the filter program
1351  *
1352  * Create a filter independent of any socket. We first run some
1353  * sanity checks on it to make sure it does not explode on us later.
1354  * If an error occurs or there is insufficient memory for the filter
1355  * a negative errno code is returned. On success the return is zero.
1356  */
1357 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1358 {
1359 	unsigned int fsize = bpf_classic_proglen(fprog);
1360 	struct bpf_prog *fp;
1361 
1362 	/* Make sure new filter is there and in the right amounts. */
1363 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1364 		return -EINVAL;
1365 
1366 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1367 	if (!fp)
1368 		return -ENOMEM;
1369 
1370 	memcpy(fp->insns, fprog->filter, fsize);
1371 
1372 	fp->len = fprog->len;
1373 	/* Since unattached filters are not copied back to user
1374 	 * space through sk_get_filter(), we do not need to hold
1375 	 * a copy here, and can spare us the work.
1376 	 */
1377 	fp->orig_prog = NULL;
1378 
1379 	/* bpf_prepare_filter() already takes care of freeing
1380 	 * memory in case something goes wrong.
1381 	 */
1382 	fp = bpf_prepare_filter(fp, NULL);
1383 	if (IS_ERR(fp))
1384 		return PTR_ERR(fp);
1385 
1386 	*pfp = fp;
1387 	return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(bpf_prog_create);
1390 
1391 /**
1392  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1393  *	@pfp: the unattached filter that is created
1394  *	@fprog: the filter program
1395  *	@trans: post-classic verifier transformation handler
1396  *	@save_orig: save classic BPF program
1397  *
1398  * This function effectively does the same as bpf_prog_create(), only
1399  * that it builds up its insns buffer from user space provided buffer.
1400  * It also allows for passing a bpf_aux_classic_check_t handler.
1401  */
1402 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1403 			      bpf_aux_classic_check_t trans, bool save_orig)
1404 {
1405 	unsigned int fsize = bpf_classic_proglen(fprog);
1406 	struct bpf_prog *fp;
1407 	int err;
1408 
1409 	/* Make sure new filter is there and in the right amounts. */
1410 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1411 		return -EINVAL;
1412 
1413 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1414 	if (!fp)
1415 		return -ENOMEM;
1416 
1417 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1418 		__bpf_prog_free(fp);
1419 		return -EFAULT;
1420 	}
1421 
1422 	fp->len = fprog->len;
1423 	fp->orig_prog = NULL;
1424 
1425 	if (save_orig) {
1426 		err = bpf_prog_store_orig_filter(fp, fprog);
1427 		if (err) {
1428 			__bpf_prog_free(fp);
1429 			return -ENOMEM;
1430 		}
1431 	}
1432 
1433 	/* bpf_prepare_filter() already takes care of freeing
1434 	 * memory in case something goes wrong.
1435 	 */
1436 	fp = bpf_prepare_filter(fp, trans);
1437 	if (IS_ERR(fp))
1438 		return PTR_ERR(fp);
1439 
1440 	*pfp = fp;
1441 	return 0;
1442 }
1443 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1444 
1445 void bpf_prog_destroy(struct bpf_prog *fp)
1446 {
1447 	__bpf_prog_release(fp);
1448 }
1449 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1450 
1451 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1452 {
1453 	struct sk_filter *fp, *old_fp;
1454 
1455 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1456 	if (!fp)
1457 		return -ENOMEM;
1458 
1459 	fp->prog = prog;
1460 
1461 	if (!__sk_filter_charge(sk, fp)) {
1462 		kfree(fp);
1463 		return -ENOMEM;
1464 	}
1465 	refcount_set(&fp->refcnt, 1);
1466 
1467 	old_fp = rcu_dereference_protected(sk->sk_filter,
1468 					   lockdep_sock_is_held(sk));
1469 	rcu_assign_pointer(sk->sk_filter, fp);
1470 
1471 	if (old_fp)
1472 		sk_filter_uncharge(sk, old_fp);
1473 
1474 	return 0;
1475 }
1476 
1477 static
1478 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1479 {
1480 	unsigned int fsize = bpf_classic_proglen(fprog);
1481 	struct bpf_prog *prog;
1482 	int err;
1483 
1484 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1485 		return ERR_PTR(-EPERM);
1486 
1487 	/* Make sure new filter is there and in the right amounts. */
1488 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1489 		return ERR_PTR(-EINVAL);
1490 
1491 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1492 	if (!prog)
1493 		return ERR_PTR(-ENOMEM);
1494 
1495 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1496 		__bpf_prog_free(prog);
1497 		return ERR_PTR(-EFAULT);
1498 	}
1499 
1500 	prog->len = fprog->len;
1501 
1502 	err = bpf_prog_store_orig_filter(prog, fprog);
1503 	if (err) {
1504 		__bpf_prog_free(prog);
1505 		return ERR_PTR(-ENOMEM);
1506 	}
1507 
1508 	/* bpf_prepare_filter() already takes care of freeing
1509 	 * memory in case something goes wrong.
1510 	 */
1511 	return bpf_prepare_filter(prog, NULL);
1512 }
1513 
1514 /**
1515  *	sk_attach_filter - attach a socket filter
1516  *	@fprog: the filter program
1517  *	@sk: the socket to use
1518  *
1519  * Attach the user's filter code. We first run some sanity checks on
1520  * it to make sure it does not explode on us later. If an error
1521  * occurs or there is insufficient memory for the filter a negative
1522  * errno code is returned. On success the return is zero.
1523  */
1524 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1525 {
1526 	struct bpf_prog *prog = __get_filter(fprog, sk);
1527 	int err;
1528 
1529 	if (IS_ERR(prog))
1530 		return PTR_ERR(prog);
1531 
1532 	err = __sk_attach_prog(prog, sk);
1533 	if (err < 0) {
1534 		__bpf_prog_release(prog);
1535 		return err;
1536 	}
1537 
1538 	return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(sk_attach_filter);
1541 
1542 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1543 {
1544 	struct bpf_prog *prog = __get_filter(fprog, sk);
1545 	int err;
1546 
1547 	if (IS_ERR(prog))
1548 		return PTR_ERR(prog);
1549 
1550 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1551 		err = -ENOMEM;
1552 	else
1553 		err = reuseport_attach_prog(sk, prog);
1554 
1555 	if (err)
1556 		__bpf_prog_release(prog);
1557 
1558 	return err;
1559 }
1560 
1561 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1562 {
1563 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1564 		return ERR_PTR(-EPERM);
1565 
1566 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1567 }
1568 
1569 int sk_attach_bpf(u32 ufd, struct sock *sk)
1570 {
1571 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1572 	int err;
1573 
1574 	if (IS_ERR(prog))
1575 		return PTR_ERR(prog);
1576 
1577 	err = __sk_attach_prog(prog, sk);
1578 	if (err < 0) {
1579 		bpf_prog_put(prog);
1580 		return err;
1581 	}
1582 
1583 	return 0;
1584 }
1585 
1586 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1587 {
1588 	struct bpf_prog *prog;
1589 	int err;
1590 
1591 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1592 		return -EPERM;
1593 
1594 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1595 	if (PTR_ERR(prog) == -EINVAL)
1596 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1597 	if (IS_ERR(prog))
1598 		return PTR_ERR(prog);
1599 
1600 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1601 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1602 		 * bpf prog (e.g. sockmap).  It depends on the
1603 		 * limitation imposed by bpf_prog_load().
1604 		 * Hence, sysctl_optmem_max is not checked.
1605 		 */
1606 		if ((sk->sk_type != SOCK_STREAM &&
1607 		     sk->sk_type != SOCK_DGRAM) ||
1608 		    (sk->sk_protocol != IPPROTO_UDP &&
1609 		     sk->sk_protocol != IPPROTO_TCP) ||
1610 		    (sk->sk_family != AF_INET &&
1611 		     sk->sk_family != AF_INET6)) {
1612 			err = -ENOTSUPP;
1613 			goto err_prog_put;
1614 		}
1615 	} else {
1616 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1617 		if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1618 			err = -ENOMEM;
1619 			goto err_prog_put;
1620 		}
1621 	}
1622 
1623 	err = reuseport_attach_prog(sk, prog);
1624 err_prog_put:
1625 	if (err)
1626 		bpf_prog_put(prog);
1627 
1628 	return err;
1629 }
1630 
1631 void sk_reuseport_prog_free(struct bpf_prog *prog)
1632 {
1633 	if (!prog)
1634 		return;
1635 
1636 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1637 		bpf_prog_put(prog);
1638 	else
1639 		bpf_prog_destroy(prog);
1640 }
1641 
1642 struct bpf_scratchpad {
1643 	union {
1644 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1645 		u8     buff[MAX_BPF_STACK];
1646 	};
1647 };
1648 
1649 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1650 
1651 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1652 					  unsigned int write_len)
1653 {
1654 	return skb_ensure_writable(skb, write_len);
1655 }
1656 
1657 static inline int bpf_try_make_writable(struct sk_buff *skb,
1658 					unsigned int write_len)
1659 {
1660 	int err = __bpf_try_make_writable(skb, write_len);
1661 
1662 	bpf_compute_data_pointers(skb);
1663 	return err;
1664 }
1665 
1666 static int bpf_try_make_head_writable(struct sk_buff *skb)
1667 {
1668 	return bpf_try_make_writable(skb, skb_headlen(skb));
1669 }
1670 
1671 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1672 {
1673 	if (skb_at_tc_ingress(skb))
1674 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1675 }
1676 
1677 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1678 {
1679 	if (skb_at_tc_ingress(skb))
1680 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1681 }
1682 
1683 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1684 	   const void *, from, u32, len, u64, flags)
1685 {
1686 	void *ptr;
1687 
1688 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1689 		return -EINVAL;
1690 	if (unlikely(offset > 0xffff))
1691 		return -EFAULT;
1692 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1693 		return -EFAULT;
1694 
1695 	ptr = skb->data + offset;
1696 	if (flags & BPF_F_RECOMPUTE_CSUM)
1697 		__skb_postpull_rcsum(skb, ptr, len, offset);
1698 
1699 	memcpy(ptr, from, len);
1700 
1701 	if (flags & BPF_F_RECOMPUTE_CSUM)
1702 		__skb_postpush_rcsum(skb, ptr, len, offset);
1703 	if (flags & BPF_F_INVALIDATE_HASH)
1704 		skb_clear_hash(skb);
1705 
1706 	return 0;
1707 }
1708 
1709 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1710 	.func		= bpf_skb_store_bytes,
1711 	.gpl_only	= false,
1712 	.ret_type	= RET_INTEGER,
1713 	.arg1_type	= ARG_PTR_TO_CTX,
1714 	.arg2_type	= ARG_ANYTHING,
1715 	.arg3_type	= ARG_PTR_TO_MEM,
1716 	.arg4_type	= ARG_CONST_SIZE,
1717 	.arg5_type	= ARG_ANYTHING,
1718 };
1719 
1720 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1721 	   void *, to, u32, len)
1722 {
1723 	void *ptr;
1724 
1725 	if (unlikely(offset > 0xffff))
1726 		goto err_clear;
1727 
1728 	ptr = skb_header_pointer(skb, offset, len, to);
1729 	if (unlikely(!ptr))
1730 		goto err_clear;
1731 	if (ptr != to)
1732 		memcpy(to, ptr, len);
1733 
1734 	return 0;
1735 err_clear:
1736 	memset(to, 0, len);
1737 	return -EFAULT;
1738 }
1739 
1740 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1741 	.func		= bpf_skb_load_bytes,
1742 	.gpl_only	= false,
1743 	.ret_type	= RET_INTEGER,
1744 	.arg1_type	= ARG_PTR_TO_CTX,
1745 	.arg2_type	= ARG_ANYTHING,
1746 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1747 	.arg4_type	= ARG_CONST_SIZE,
1748 };
1749 
1750 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1751 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1752 	   void *, to, u32, len)
1753 {
1754 	void *ptr;
1755 
1756 	if (unlikely(offset > 0xffff))
1757 		goto err_clear;
1758 
1759 	if (unlikely(!ctx->skb))
1760 		goto err_clear;
1761 
1762 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1763 	if (unlikely(!ptr))
1764 		goto err_clear;
1765 	if (ptr != to)
1766 		memcpy(to, ptr, len);
1767 
1768 	return 0;
1769 err_clear:
1770 	memset(to, 0, len);
1771 	return -EFAULT;
1772 }
1773 
1774 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1775 	.func		= bpf_flow_dissector_load_bytes,
1776 	.gpl_only	= false,
1777 	.ret_type	= RET_INTEGER,
1778 	.arg1_type	= ARG_PTR_TO_CTX,
1779 	.arg2_type	= ARG_ANYTHING,
1780 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1781 	.arg4_type	= ARG_CONST_SIZE,
1782 };
1783 
1784 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1785 	   u32, offset, void *, to, u32, len, u32, start_header)
1786 {
1787 	u8 *end = skb_tail_pointer(skb);
1788 	u8 *start, *ptr;
1789 
1790 	if (unlikely(offset > 0xffff))
1791 		goto err_clear;
1792 
1793 	switch (start_header) {
1794 	case BPF_HDR_START_MAC:
1795 		if (unlikely(!skb_mac_header_was_set(skb)))
1796 			goto err_clear;
1797 		start = skb_mac_header(skb);
1798 		break;
1799 	case BPF_HDR_START_NET:
1800 		start = skb_network_header(skb);
1801 		break;
1802 	default:
1803 		goto err_clear;
1804 	}
1805 
1806 	ptr = start + offset;
1807 
1808 	if (likely(ptr + len <= end)) {
1809 		memcpy(to, ptr, len);
1810 		return 0;
1811 	}
1812 
1813 err_clear:
1814 	memset(to, 0, len);
1815 	return -EFAULT;
1816 }
1817 
1818 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1819 	.func		= bpf_skb_load_bytes_relative,
1820 	.gpl_only	= false,
1821 	.ret_type	= RET_INTEGER,
1822 	.arg1_type	= ARG_PTR_TO_CTX,
1823 	.arg2_type	= ARG_ANYTHING,
1824 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1825 	.arg4_type	= ARG_CONST_SIZE,
1826 	.arg5_type	= ARG_ANYTHING,
1827 };
1828 
1829 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1830 {
1831 	/* Idea is the following: should the needed direct read/write
1832 	 * test fail during runtime, we can pull in more data and redo
1833 	 * again, since implicitly, we invalidate previous checks here.
1834 	 *
1835 	 * Or, since we know how much we need to make read/writeable,
1836 	 * this can be done once at the program beginning for direct
1837 	 * access case. By this we overcome limitations of only current
1838 	 * headroom being accessible.
1839 	 */
1840 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1841 }
1842 
1843 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1844 	.func		= bpf_skb_pull_data,
1845 	.gpl_only	= false,
1846 	.ret_type	= RET_INTEGER,
1847 	.arg1_type	= ARG_PTR_TO_CTX,
1848 	.arg2_type	= ARG_ANYTHING,
1849 };
1850 
1851 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1852 {
1853 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1854 }
1855 
1856 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1857 	.func		= bpf_sk_fullsock,
1858 	.gpl_only	= false,
1859 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1860 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1861 };
1862 
1863 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1864 					   unsigned int write_len)
1865 {
1866 	int err = __bpf_try_make_writable(skb, write_len);
1867 
1868 	bpf_compute_data_end_sk_skb(skb);
1869 	return err;
1870 }
1871 
1872 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1873 {
1874 	/* Idea is the following: should the needed direct read/write
1875 	 * test fail during runtime, we can pull in more data and redo
1876 	 * again, since implicitly, we invalidate previous checks here.
1877 	 *
1878 	 * Or, since we know how much we need to make read/writeable,
1879 	 * this can be done once at the program beginning for direct
1880 	 * access case. By this we overcome limitations of only current
1881 	 * headroom being accessible.
1882 	 */
1883 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1884 }
1885 
1886 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1887 	.func		= sk_skb_pull_data,
1888 	.gpl_only	= false,
1889 	.ret_type	= RET_INTEGER,
1890 	.arg1_type	= ARG_PTR_TO_CTX,
1891 	.arg2_type	= ARG_ANYTHING,
1892 };
1893 
1894 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1895 	   u64, from, u64, to, u64, flags)
1896 {
1897 	__sum16 *ptr;
1898 
1899 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1900 		return -EINVAL;
1901 	if (unlikely(offset > 0xffff || offset & 1))
1902 		return -EFAULT;
1903 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1904 		return -EFAULT;
1905 
1906 	ptr = (__sum16 *)(skb->data + offset);
1907 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1908 	case 0:
1909 		if (unlikely(from != 0))
1910 			return -EINVAL;
1911 
1912 		csum_replace_by_diff(ptr, to);
1913 		break;
1914 	case 2:
1915 		csum_replace2(ptr, from, to);
1916 		break;
1917 	case 4:
1918 		csum_replace4(ptr, from, to);
1919 		break;
1920 	default:
1921 		return -EINVAL;
1922 	}
1923 
1924 	return 0;
1925 }
1926 
1927 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1928 	.func		= bpf_l3_csum_replace,
1929 	.gpl_only	= false,
1930 	.ret_type	= RET_INTEGER,
1931 	.arg1_type	= ARG_PTR_TO_CTX,
1932 	.arg2_type	= ARG_ANYTHING,
1933 	.arg3_type	= ARG_ANYTHING,
1934 	.arg4_type	= ARG_ANYTHING,
1935 	.arg5_type	= ARG_ANYTHING,
1936 };
1937 
1938 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1939 	   u64, from, u64, to, u64, flags)
1940 {
1941 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1942 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1943 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1944 	__sum16 *ptr;
1945 
1946 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1947 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1948 		return -EINVAL;
1949 	if (unlikely(offset > 0xffff || offset & 1))
1950 		return -EFAULT;
1951 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1952 		return -EFAULT;
1953 
1954 	ptr = (__sum16 *)(skb->data + offset);
1955 	if (is_mmzero && !do_mforce && !*ptr)
1956 		return 0;
1957 
1958 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1959 	case 0:
1960 		if (unlikely(from != 0))
1961 			return -EINVAL;
1962 
1963 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1964 		break;
1965 	case 2:
1966 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1967 		break;
1968 	case 4:
1969 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1970 		break;
1971 	default:
1972 		return -EINVAL;
1973 	}
1974 
1975 	if (is_mmzero && !*ptr)
1976 		*ptr = CSUM_MANGLED_0;
1977 	return 0;
1978 }
1979 
1980 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1981 	.func		= bpf_l4_csum_replace,
1982 	.gpl_only	= false,
1983 	.ret_type	= RET_INTEGER,
1984 	.arg1_type	= ARG_PTR_TO_CTX,
1985 	.arg2_type	= ARG_ANYTHING,
1986 	.arg3_type	= ARG_ANYTHING,
1987 	.arg4_type	= ARG_ANYTHING,
1988 	.arg5_type	= ARG_ANYTHING,
1989 };
1990 
1991 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1992 	   __be32 *, to, u32, to_size, __wsum, seed)
1993 {
1994 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1995 	u32 diff_size = from_size + to_size;
1996 	int i, j = 0;
1997 
1998 	/* This is quite flexible, some examples:
1999 	 *
2000 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2001 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2002 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2003 	 *
2004 	 * Even for diffing, from_size and to_size don't need to be equal.
2005 	 */
2006 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2007 		     diff_size > sizeof(sp->diff)))
2008 		return -EINVAL;
2009 
2010 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2011 		sp->diff[j] = ~from[i];
2012 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2013 		sp->diff[j] = to[i];
2014 
2015 	return csum_partial(sp->diff, diff_size, seed);
2016 }
2017 
2018 static const struct bpf_func_proto bpf_csum_diff_proto = {
2019 	.func		= bpf_csum_diff,
2020 	.gpl_only	= false,
2021 	.pkt_access	= true,
2022 	.ret_type	= RET_INTEGER,
2023 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
2024 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2025 	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
2026 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2027 	.arg5_type	= ARG_ANYTHING,
2028 };
2029 
2030 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2031 {
2032 	/* The interface is to be used in combination with bpf_csum_diff()
2033 	 * for direct packet writes. csum rotation for alignment as well
2034 	 * as emulating csum_sub() can be done from the eBPF program.
2035 	 */
2036 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2037 		return (skb->csum = csum_add(skb->csum, csum));
2038 
2039 	return -ENOTSUPP;
2040 }
2041 
2042 static const struct bpf_func_proto bpf_csum_update_proto = {
2043 	.func		= bpf_csum_update,
2044 	.gpl_only	= false,
2045 	.ret_type	= RET_INTEGER,
2046 	.arg1_type	= ARG_PTR_TO_CTX,
2047 	.arg2_type	= ARG_ANYTHING,
2048 };
2049 
2050 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2051 {
2052 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2053 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2054 	 * is passed as flags, for example.
2055 	 */
2056 	switch (level) {
2057 	case BPF_CSUM_LEVEL_INC:
2058 		__skb_incr_checksum_unnecessary(skb);
2059 		break;
2060 	case BPF_CSUM_LEVEL_DEC:
2061 		__skb_decr_checksum_unnecessary(skb);
2062 		break;
2063 	case BPF_CSUM_LEVEL_RESET:
2064 		__skb_reset_checksum_unnecessary(skb);
2065 		break;
2066 	case BPF_CSUM_LEVEL_QUERY:
2067 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2068 		       skb->csum_level : -EACCES;
2069 	default:
2070 		return -EINVAL;
2071 	}
2072 
2073 	return 0;
2074 }
2075 
2076 static const struct bpf_func_proto bpf_csum_level_proto = {
2077 	.func		= bpf_csum_level,
2078 	.gpl_only	= false,
2079 	.ret_type	= RET_INTEGER,
2080 	.arg1_type	= ARG_PTR_TO_CTX,
2081 	.arg2_type	= ARG_ANYTHING,
2082 };
2083 
2084 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2085 {
2086 	return dev_forward_skb_nomtu(dev, skb);
2087 }
2088 
2089 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2090 				      struct sk_buff *skb)
2091 {
2092 	int ret = ____dev_forward_skb(dev, skb, false);
2093 
2094 	if (likely(!ret)) {
2095 		skb->dev = dev;
2096 		ret = netif_rx(skb);
2097 	}
2098 
2099 	return ret;
2100 }
2101 
2102 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2103 {
2104 	int ret;
2105 
2106 	if (dev_xmit_recursion()) {
2107 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2108 		kfree_skb(skb);
2109 		return -ENETDOWN;
2110 	}
2111 
2112 	skb->dev = dev;
2113 	skb->tstamp = 0;
2114 
2115 	dev_xmit_recursion_inc();
2116 	ret = dev_queue_xmit(skb);
2117 	dev_xmit_recursion_dec();
2118 
2119 	return ret;
2120 }
2121 
2122 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2123 				 u32 flags)
2124 {
2125 	unsigned int mlen = skb_network_offset(skb);
2126 
2127 	if (mlen) {
2128 		__skb_pull(skb, mlen);
2129 
2130 		/* At ingress, the mac header has already been pulled once.
2131 		 * At egress, skb_pospull_rcsum has to be done in case that
2132 		 * the skb is originated from ingress (i.e. a forwarded skb)
2133 		 * to ensure that rcsum starts at net header.
2134 		 */
2135 		if (!skb_at_tc_ingress(skb))
2136 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2137 	}
2138 	skb_pop_mac_header(skb);
2139 	skb_reset_mac_len(skb);
2140 	return flags & BPF_F_INGRESS ?
2141 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2142 }
2143 
2144 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2145 				 u32 flags)
2146 {
2147 	/* Verify that a link layer header is carried */
2148 	if (unlikely(skb->mac_header >= skb->network_header)) {
2149 		kfree_skb(skb);
2150 		return -ERANGE;
2151 	}
2152 
2153 	bpf_push_mac_rcsum(skb);
2154 	return flags & BPF_F_INGRESS ?
2155 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2156 }
2157 
2158 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2159 			  u32 flags)
2160 {
2161 	if (dev_is_mac_header_xmit(dev))
2162 		return __bpf_redirect_common(skb, dev, flags);
2163 	else
2164 		return __bpf_redirect_no_mac(skb, dev, flags);
2165 }
2166 
2167 #if IS_ENABLED(CONFIG_IPV6)
2168 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2169 			    struct net_device *dev, struct bpf_nh_params *nh)
2170 {
2171 	u32 hh_len = LL_RESERVED_SPACE(dev);
2172 	const struct in6_addr *nexthop;
2173 	struct dst_entry *dst = NULL;
2174 	struct neighbour *neigh;
2175 
2176 	if (dev_xmit_recursion()) {
2177 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2178 		goto out_drop;
2179 	}
2180 
2181 	skb->dev = dev;
2182 	skb->tstamp = 0;
2183 
2184 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2185 		struct sk_buff *skb2;
2186 
2187 		skb2 = skb_realloc_headroom(skb, hh_len);
2188 		if (unlikely(!skb2)) {
2189 			kfree_skb(skb);
2190 			return -ENOMEM;
2191 		}
2192 		if (skb->sk)
2193 			skb_set_owner_w(skb2, skb->sk);
2194 		consume_skb(skb);
2195 		skb = skb2;
2196 	}
2197 
2198 	rcu_read_lock_bh();
2199 	if (!nh) {
2200 		dst = skb_dst(skb);
2201 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2202 				      &ipv6_hdr(skb)->daddr);
2203 	} else {
2204 		nexthop = &nh->ipv6_nh;
2205 	}
2206 	neigh = ip_neigh_gw6(dev, nexthop);
2207 	if (likely(!IS_ERR(neigh))) {
2208 		int ret;
2209 
2210 		sock_confirm_neigh(skb, neigh);
2211 		dev_xmit_recursion_inc();
2212 		ret = neigh_output(neigh, skb, false);
2213 		dev_xmit_recursion_dec();
2214 		rcu_read_unlock_bh();
2215 		return ret;
2216 	}
2217 	rcu_read_unlock_bh();
2218 	if (dst)
2219 		IP6_INC_STATS(dev_net(dst->dev),
2220 			      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2221 out_drop:
2222 	kfree_skb(skb);
2223 	return -ENETDOWN;
2224 }
2225 
2226 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2227 				   struct bpf_nh_params *nh)
2228 {
2229 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2230 	struct net *net = dev_net(dev);
2231 	int err, ret = NET_XMIT_DROP;
2232 
2233 	if (!nh) {
2234 		struct dst_entry *dst;
2235 		struct flowi6 fl6 = {
2236 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2237 			.flowi6_mark  = skb->mark,
2238 			.flowlabel    = ip6_flowinfo(ip6h),
2239 			.flowi6_oif   = dev->ifindex,
2240 			.flowi6_proto = ip6h->nexthdr,
2241 			.daddr	      = ip6h->daddr,
2242 			.saddr	      = ip6h->saddr,
2243 		};
2244 
2245 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2246 		if (IS_ERR(dst))
2247 			goto out_drop;
2248 
2249 		skb_dst_set(skb, dst);
2250 	} else if (nh->nh_family != AF_INET6) {
2251 		goto out_drop;
2252 	}
2253 
2254 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2255 	if (unlikely(net_xmit_eval(err)))
2256 		dev->stats.tx_errors++;
2257 	else
2258 		ret = NET_XMIT_SUCCESS;
2259 	goto out_xmit;
2260 out_drop:
2261 	dev->stats.tx_errors++;
2262 	kfree_skb(skb);
2263 out_xmit:
2264 	return ret;
2265 }
2266 #else
2267 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2268 				   struct bpf_nh_params *nh)
2269 {
2270 	kfree_skb(skb);
2271 	return NET_XMIT_DROP;
2272 }
2273 #endif /* CONFIG_IPV6 */
2274 
2275 #if IS_ENABLED(CONFIG_INET)
2276 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2277 			    struct net_device *dev, struct bpf_nh_params *nh)
2278 {
2279 	u32 hh_len = LL_RESERVED_SPACE(dev);
2280 	struct neighbour *neigh;
2281 	bool is_v6gw = false;
2282 
2283 	if (dev_xmit_recursion()) {
2284 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2285 		goto out_drop;
2286 	}
2287 
2288 	skb->dev = dev;
2289 	skb->tstamp = 0;
2290 
2291 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2292 		struct sk_buff *skb2;
2293 
2294 		skb2 = skb_realloc_headroom(skb, hh_len);
2295 		if (unlikely(!skb2)) {
2296 			kfree_skb(skb);
2297 			return -ENOMEM;
2298 		}
2299 		if (skb->sk)
2300 			skb_set_owner_w(skb2, skb->sk);
2301 		consume_skb(skb);
2302 		skb = skb2;
2303 	}
2304 
2305 	rcu_read_lock_bh();
2306 	if (!nh) {
2307 		struct dst_entry *dst = skb_dst(skb);
2308 		struct rtable *rt = container_of(dst, struct rtable, dst);
2309 
2310 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2311 	} else if (nh->nh_family == AF_INET6) {
2312 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2313 		is_v6gw = true;
2314 	} else if (nh->nh_family == AF_INET) {
2315 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2316 	} else {
2317 		rcu_read_unlock_bh();
2318 		goto out_drop;
2319 	}
2320 
2321 	if (likely(!IS_ERR(neigh))) {
2322 		int ret;
2323 
2324 		sock_confirm_neigh(skb, neigh);
2325 		dev_xmit_recursion_inc();
2326 		ret = neigh_output(neigh, skb, is_v6gw);
2327 		dev_xmit_recursion_dec();
2328 		rcu_read_unlock_bh();
2329 		return ret;
2330 	}
2331 	rcu_read_unlock_bh();
2332 out_drop:
2333 	kfree_skb(skb);
2334 	return -ENETDOWN;
2335 }
2336 
2337 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2338 				   struct bpf_nh_params *nh)
2339 {
2340 	const struct iphdr *ip4h = ip_hdr(skb);
2341 	struct net *net = dev_net(dev);
2342 	int err, ret = NET_XMIT_DROP;
2343 
2344 	if (!nh) {
2345 		struct flowi4 fl4 = {
2346 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2347 			.flowi4_mark  = skb->mark,
2348 			.flowi4_tos   = RT_TOS(ip4h->tos),
2349 			.flowi4_oif   = dev->ifindex,
2350 			.flowi4_proto = ip4h->protocol,
2351 			.daddr	      = ip4h->daddr,
2352 			.saddr	      = ip4h->saddr,
2353 		};
2354 		struct rtable *rt;
2355 
2356 		rt = ip_route_output_flow(net, &fl4, NULL);
2357 		if (IS_ERR(rt))
2358 			goto out_drop;
2359 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2360 			ip_rt_put(rt);
2361 			goto out_drop;
2362 		}
2363 
2364 		skb_dst_set(skb, &rt->dst);
2365 	}
2366 
2367 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2368 	if (unlikely(net_xmit_eval(err)))
2369 		dev->stats.tx_errors++;
2370 	else
2371 		ret = NET_XMIT_SUCCESS;
2372 	goto out_xmit;
2373 out_drop:
2374 	dev->stats.tx_errors++;
2375 	kfree_skb(skb);
2376 out_xmit:
2377 	return ret;
2378 }
2379 #else
2380 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2381 				   struct bpf_nh_params *nh)
2382 {
2383 	kfree_skb(skb);
2384 	return NET_XMIT_DROP;
2385 }
2386 #endif /* CONFIG_INET */
2387 
2388 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2389 				struct bpf_nh_params *nh)
2390 {
2391 	struct ethhdr *ethh = eth_hdr(skb);
2392 
2393 	if (unlikely(skb->mac_header >= skb->network_header))
2394 		goto out;
2395 	bpf_push_mac_rcsum(skb);
2396 	if (is_multicast_ether_addr(ethh->h_dest))
2397 		goto out;
2398 
2399 	skb_pull(skb, sizeof(*ethh));
2400 	skb_unset_mac_header(skb);
2401 	skb_reset_network_header(skb);
2402 
2403 	if (skb->protocol == htons(ETH_P_IP))
2404 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2405 	else if (skb->protocol == htons(ETH_P_IPV6))
2406 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2407 out:
2408 	kfree_skb(skb);
2409 	return -ENOTSUPP;
2410 }
2411 
2412 /* Internal, non-exposed redirect flags. */
2413 enum {
2414 	BPF_F_NEIGH	= (1ULL << 1),
2415 	BPF_F_PEER	= (1ULL << 2),
2416 	BPF_F_NEXTHOP	= (1ULL << 3),
2417 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2418 };
2419 
2420 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2421 {
2422 	struct net_device *dev;
2423 	struct sk_buff *clone;
2424 	int ret;
2425 
2426 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2427 		return -EINVAL;
2428 
2429 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2430 	if (unlikely(!dev))
2431 		return -EINVAL;
2432 
2433 	clone = skb_clone(skb, GFP_ATOMIC);
2434 	if (unlikely(!clone))
2435 		return -ENOMEM;
2436 
2437 	/* For direct write, we need to keep the invariant that the skbs
2438 	 * we're dealing with need to be uncloned. Should uncloning fail
2439 	 * here, we need to free the just generated clone to unclone once
2440 	 * again.
2441 	 */
2442 	ret = bpf_try_make_head_writable(skb);
2443 	if (unlikely(ret)) {
2444 		kfree_skb(clone);
2445 		return -ENOMEM;
2446 	}
2447 
2448 	return __bpf_redirect(clone, dev, flags);
2449 }
2450 
2451 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2452 	.func           = bpf_clone_redirect,
2453 	.gpl_only       = false,
2454 	.ret_type       = RET_INTEGER,
2455 	.arg1_type      = ARG_PTR_TO_CTX,
2456 	.arg2_type      = ARG_ANYTHING,
2457 	.arg3_type      = ARG_ANYTHING,
2458 };
2459 
2460 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2461 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2462 
2463 int skb_do_redirect(struct sk_buff *skb)
2464 {
2465 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2466 	struct net *net = dev_net(skb->dev);
2467 	struct net_device *dev;
2468 	u32 flags = ri->flags;
2469 
2470 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2471 	ri->tgt_index = 0;
2472 	ri->flags = 0;
2473 	if (unlikely(!dev))
2474 		goto out_drop;
2475 	if (flags & BPF_F_PEER) {
2476 		const struct net_device_ops *ops = dev->netdev_ops;
2477 
2478 		if (unlikely(!ops->ndo_get_peer_dev ||
2479 			     !skb_at_tc_ingress(skb)))
2480 			goto out_drop;
2481 		dev = ops->ndo_get_peer_dev(dev);
2482 		if (unlikely(!dev ||
2483 			     !(dev->flags & IFF_UP) ||
2484 			     net_eq(net, dev_net(dev))))
2485 			goto out_drop;
2486 		skb->dev = dev;
2487 		return -EAGAIN;
2488 	}
2489 	return flags & BPF_F_NEIGH ?
2490 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2491 				    &ri->nh : NULL) :
2492 	       __bpf_redirect(skb, dev, flags);
2493 out_drop:
2494 	kfree_skb(skb);
2495 	return -EINVAL;
2496 }
2497 
2498 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2499 {
2500 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2501 
2502 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2503 		return TC_ACT_SHOT;
2504 
2505 	ri->flags = flags;
2506 	ri->tgt_index = ifindex;
2507 
2508 	return TC_ACT_REDIRECT;
2509 }
2510 
2511 static const struct bpf_func_proto bpf_redirect_proto = {
2512 	.func           = bpf_redirect,
2513 	.gpl_only       = false,
2514 	.ret_type       = RET_INTEGER,
2515 	.arg1_type      = ARG_ANYTHING,
2516 	.arg2_type      = ARG_ANYTHING,
2517 };
2518 
2519 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2520 {
2521 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2522 
2523 	if (unlikely(flags))
2524 		return TC_ACT_SHOT;
2525 
2526 	ri->flags = BPF_F_PEER;
2527 	ri->tgt_index = ifindex;
2528 
2529 	return TC_ACT_REDIRECT;
2530 }
2531 
2532 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2533 	.func           = bpf_redirect_peer,
2534 	.gpl_only       = false,
2535 	.ret_type       = RET_INTEGER,
2536 	.arg1_type      = ARG_ANYTHING,
2537 	.arg2_type      = ARG_ANYTHING,
2538 };
2539 
2540 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2541 	   int, plen, u64, flags)
2542 {
2543 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2544 
2545 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2546 		return TC_ACT_SHOT;
2547 
2548 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2549 	ri->tgt_index = ifindex;
2550 
2551 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2552 	if (plen)
2553 		memcpy(&ri->nh, params, sizeof(ri->nh));
2554 
2555 	return TC_ACT_REDIRECT;
2556 }
2557 
2558 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2559 	.func		= bpf_redirect_neigh,
2560 	.gpl_only	= false,
2561 	.ret_type	= RET_INTEGER,
2562 	.arg1_type	= ARG_ANYTHING,
2563 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
2564 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2565 	.arg4_type	= ARG_ANYTHING,
2566 };
2567 
2568 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2569 {
2570 	msg->apply_bytes = bytes;
2571 	return 0;
2572 }
2573 
2574 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2575 	.func           = bpf_msg_apply_bytes,
2576 	.gpl_only       = false,
2577 	.ret_type       = RET_INTEGER,
2578 	.arg1_type	= ARG_PTR_TO_CTX,
2579 	.arg2_type      = ARG_ANYTHING,
2580 };
2581 
2582 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2583 {
2584 	msg->cork_bytes = bytes;
2585 	return 0;
2586 }
2587 
2588 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2589 	.func           = bpf_msg_cork_bytes,
2590 	.gpl_only       = false,
2591 	.ret_type       = RET_INTEGER,
2592 	.arg1_type	= ARG_PTR_TO_CTX,
2593 	.arg2_type      = ARG_ANYTHING,
2594 };
2595 
2596 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2597 	   u32, end, u64, flags)
2598 {
2599 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2600 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2601 	struct scatterlist *sge;
2602 	u8 *raw, *to, *from;
2603 	struct page *page;
2604 
2605 	if (unlikely(flags || end <= start))
2606 		return -EINVAL;
2607 
2608 	/* First find the starting scatterlist element */
2609 	i = msg->sg.start;
2610 	do {
2611 		offset += len;
2612 		len = sk_msg_elem(msg, i)->length;
2613 		if (start < offset + len)
2614 			break;
2615 		sk_msg_iter_var_next(i);
2616 	} while (i != msg->sg.end);
2617 
2618 	if (unlikely(start >= offset + len))
2619 		return -EINVAL;
2620 
2621 	first_sge = i;
2622 	/* The start may point into the sg element so we need to also
2623 	 * account for the headroom.
2624 	 */
2625 	bytes_sg_total = start - offset + bytes;
2626 	if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2627 		goto out;
2628 
2629 	/* At this point we need to linearize multiple scatterlist
2630 	 * elements or a single shared page. Either way we need to
2631 	 * copy into a linear buffer exclusively owned by BPF. Then
2632 	 * place the buffer in the scatterlist and fixup the original
2633 	 * entries by removing the entries now in the linear buffer
2634 	 * and shifting the remaining entries. For now we do not try
2635 	 * to copy partial entries to avoid complexity of running out
2636 	 * of sg_entry slots. The downside is reading a single byte
2637 	 * will copy the entire sg entry.
2638 	 */
2639 	do {
2640 		copy += sk_msg_elem(msg, i)->length;
2641 		sk_msg_iter_var_next(i);
2642 		if (bytes_sg_total <= copy)
2643 			break;
2644 	} while (i != msg->sg.end);
2645 	last_sge = i;
2646 
2647 	if (unlikely(bytes_sg_total > copy))
2648 		return -EINVAL;
2649 
2650 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2651 			   get_order(copy));
2652 	if (unlikely(!page))
2653 		return -ENOMEM;
2654 
2655 	raw = page_address(page);
2656 	i = first_sge;
2657 	do {
2658 		sge = sk_msg_elem(msg, i);
2659 		from = sg_virt(sge);
2660 		len = sge->length;
2661 		to = raw + poffset;
2662 
2663 		memcpy(to, from, len);
2664 		poffset += len;
2665 		sge->length = 0;
2666 		put_page(sg_page(sge));
2667 
2668 		sk_msg_iter_var_next(i);
2669 	} while (i != last_sge);
2670 
2671 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2672 
2673 	/* To repair sg ring we need to shift entries. If we only
2674 	 * had a single entry though we can just replace it and
2675 	 * be done. Otherwise walk the ring and shift the entries.
2676 	 */
2677 	WARN_ON_ONCE(last_sge == first_sge);
2678 	shift = last_sge > first_sge ?
2679 		last_sge - first_sge - 1 :
2680 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2681 	if (!shift)
2682 		goto out;
2683 
2684 	i = first_sge;
2685 	sk_msg_iter_var_next(i);
2686 	do {
2687 		u32 move_from;
2688 
2689 		if (i + shift >= NR_MSG_FRAG_IDS)
2690 			move_from = i + shift - NR_MSG_FRAG_IDS;
2691 		else
2692 			move_from = i + shift;
2693 		if (move_from == msg->sg.end)
2694 			break;
2695 
2696 		msg->sg.data[i] = msg->sg.data[move_from];
2697 		msg->sg.data[move_from].length = 0;
2698 		msg->sg.data[move_from].page_link = 0;
2699 		msg->sg.data[move_from].offset = 0;
2700 		sk_msg_iter_var_next(i);
2701 	} while (1);
2702 
2703 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2704 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2705 		      msg->sg.end - shift;
2706 out:
2707 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2708 	msg->data_end = msg->data + bytes;
2709 	return 0;
2710 }
2711 
2712 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2713 	.func		= bpf_msg_pull_data,
2714 	.gpl_only	= false,
2715 	.ret_type	= RET_INTEGER,
2716 	.arg1_type	= ARG_PTR_TO_CTX,
2717 	.arg2_type	= ARG_ANYTHING,
2718 	.arg3_type	= ARG_ANYTHING,
2719 	.arg4_type	= ARG_ANYTHING,
2720 };
2721 
2722 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2723 	   u32, len, u64, flags)
2724 {
2725 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2726 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2727 	u8 *raw, *to, *from;
2728 	struct page *page;
2729 
2730 	if (unlikely(flags))
2731 		return -EINVAL;
2732 
2733 	/* First find the starting scatterlist element */
2734 	i = msg->sg.start;
2735 	do {
2736 		offset += l;
2737 		l = sk_msg_elem(msg, i)->length;
2738 
2739 		if (start < offset + l)
2740 			break;
2741 		sk_msg_iter_var_next(i);
2742 	} while (i != msg->sg.end);
2743 
2744 	if (start >= offset + l)
2745 		return -EINVAL;
2746 
2747 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2748 
2749 	/* If no space available will fallback to copy, we need at
2750 	 * least one scatterlist elem available to push data into
2751 	 * when start aligns to the beginning of an element or two
2752 	 * when it falls inside an element. We handle the start equals
2753 	 * offset case because its the common case for inserting a
2754 	 * header.
2755 	 */
2756 	if (!space || (space == 1 && start != offset))
2757 		copy = msg->sg.data[i].length;
2758 
2759 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2760 			   get_order(copy + len));
2761 	if (unlikely(!page))
2762 		return -ENOMEM;
2763 
2764 	if (copy) {
2765 		int front, back;
2766 
2767 		raw = page_address(page);
2768 
2769 		psge = sk_msg_elem(msg, i);
2770 		front = start - offset;
2771 		back = psge->length - front;
2772 		from = sg_virt(psge);
2773 
2774 		if (front)
2775 			memcpy(raw, from, front);
2776 
2777 		if (back) {
2778 			from += front;
2779 			to = raw + front + len;
2780 
2781 			memcpy(to, from, back);
2782 		}
2783 
2784 		put_page(sg_page(psge));
2785 	} else if (start - offset) {
2786 		psge = sk_msg_elem(msg, i);
2787 		rsge = sk_msg_elem_cpy(msg, i);
2788 
2789 		psge->length = start - offset;
2790 		rsge.length -= psge->length;
2791 		rsge.offset += start;
2792 
2793 		sk_msg_iter_var_next(i);
2794 		sg_unmark_end(psge);
2795 		sg_unmark_end(&rsge);
2796 		sk_msg_iter_next(msg, end);
2797 	}
2798 
2799 	/* Slot(s) to place newly allocated data */
2800 	new = i;
2801 
2802 	/* Shift one or two slots as needed */
2803 	if (!copy) {
2804 		sge = sk_msg_elem_cpy(msg, i);
2805 
2806 		sk_msg_iter_var_next(i);
2807 		sg_unmark_end(&sge);
2808 		sk_msg_iter_next(msg, end);
2809 
2810 		nsge = sk_msg_elem_cpy(msg, i);
2811 		if (rsge.length) {
2812 			sk_msg_iter_var_next(i);
2813 			nnsge = sk_msg_elem_cpy(msg, i);
2814 		}
2815 
2816 		while (i != msg->sg.end) {
2817 			msg->sg.data[i] = sge;
2818 			sge = nsge;
2819 			sk_msg_iter_var_next(i);
2820 			if (rsge.length) {
2821 				nsge = nnsge;
2822 				nnsge = sk_msg_elem_cpy(msg, i);
2823 			} else {
2824 				nsge = sk_msg_elem_cpy(msg, i);
2825 			}
2826 		}
2827 	}
2828 
2829 	/* Place newly allocated data buffer */
2830 	sk_mem_charge(msg->sk, len);
2831 	msg->sg.size += len;
2832 	__clear_bit(new, &msg->sg.copy);
2833 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2834 	if (rsge.length) {
2835 		get_page(sg_page(&rsge));
2836 		sk_msg_iter_var_next(new);
2837 		msg->sg.data[new] = rsge;
2838 	}
2839 
2840 	sk_msg_compute_data_pointers(msg);
2841 	return 0;
2842 }
2843 
2844 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2845 	.func		= bpf_msg_push_data,
2846 	.gpl_only	= false,
2847 	.ret_type	= RET_INTEGER,
2848 	.arg1_type	= ARG_PTR_TO_CTX,
2849 	.arg2_type	= ARG_ANYTHING,
2850 	.arg3_type	= ARG_ANYTHING,
2851 	.arg4_type	= ARG_ANYTHING,
2852 };
2853 
2854 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2855 {
2856 	int prev;
2857 
2858 	do {
2859 		prev = i;
2860 		sk_msg_iter_var_next(i);
2861 		msg->sg.data[prev] = msg->sg.data[i];
2862 	} while (i != msg->sg.end);
2863 
2864 	sk_msg_iter_prev(msg, end);
2865 }
2866 
2867 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2868 {
2869 	struct scatterlist tmp, sge;
2870 
2871 	sk_msg_iter_next(msg, end);
2872 	sge = sk_msg_elem_cpy(msg, i);
2873 	sk_msg_iter_var_next(i);
2874 	tmp = sk_msg_elem_cpy(msg, i);
2875 
2876 	while (i != msg->sg.end) {
2877 		msg->sg.data[i] = sge;
2878 		sk_msg_iter_var_next(i);
2879 		sge = tmp;
2880 		tmp = sk_msg_elem_cpy(msg, i);
2881 	}
2882 }
2883 
2884 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2885 	   u32, len, u64, flags)
2886 {
2887 	u32 i = 0, l = 0, space, offset = 0;
2888 	u64 last = start + len;
2889 	int pop;
2890 
2891 	if (unlikely(flags))
2892 		return -EINVAL;
2893 
2894 	/* First find the starting scatterlist element */
2895 	i = msg->sg.start;
2896 	do {
2897 		offset += l;
2898 		l = sk_msg_elem(msg, i)->length;
2899 
2900 		if (start < offset + l)
2901 			break;
2902 		sk_msg_iter_var_next(i);
2903 	} while (i != msg->sg.end);
2904 
2905 	/* Bounds checks: start and pop must be inside message */
2906 	if (start >= offset + l || last >= msg->sg.size)
2907 		return -EINVAL;
2908 
2909 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2910 
2911 	pop = len;
2912 	/* --------------| offset
2913 	 * -| start      |-------- len -------|
2914 	 *
2915 	 *  |----- a ----|-------- pop -------|----- b ----|
2916 	 *  |______________________________________________| length
2917 	 *
2918 	 *
2919 	 * a:   region at front of scatter element to save
2920 	 * b:   region at back of scatter element to save when length > A + pop
2921 	 * pop: region to pop from element, same as input 'pop' here will be
2922 	 *      decremented below per iteration.
2923 	 *
2924 	 * Two top-level cases to handle when start != offset, first B is non
2925 	 * zero and second B is zero corresponding to when a pop includes more
2926 	 * than one element.
2927 	 *
2928 	 * Then if B is non-zero AND there is no space allocate space and
2929 	 * compact A, B regions into page. If there is space shift ring to
2930 	 * the rigth free'ing the next element in ring to place B, leaving
2931 	 * A untouched except to reduce length.
2932 	 */
2933 	if (start != offset) {
2934 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2935 		int a = start;
2936 		int b = sge->length - pop - a;
2937 
2938 		sk_msg_iter_var_next(i);
2939 
2940 		if (pop < sge->length - a) {
2941 			if (space) {
2942 				sge->length = a;
2943 				sk_msg_shift_right(msg, i);
2944 				nsge = sk_msg_elem(msg, i);
2945 				get_page(sg_page(sge));
2946 				sg_set_page(nsge,
2947 					    sg_page(sge),
2948 					    b, sge->offset + pop + a);
2949 			} else {
2950 				struct page *page, *orig;
2951 				u8 *to, *from;
2952 
2953 				page = alloc_pages(__GFP_NOWARN |
2954 						   __GFP_COMP   | GFP_ATOMIC,
2955 						   get_order(a + b));
2956 				if (unlikely(!page))
2957 					return -ENOMEM;
2958 
2959 				sge->length = a;
2960 				orig = sg_page(sge);
2961 				from = sg_virt(sge);
2962 				to = page_address(page);
2963 				memcpy(to, from, a);
2964 				memcpy(to + a, from + a + pop, b);
2965 				sg_set_page(sge, page, a + b, 0);
2966 				put_page(orig);
2967 			}
2968 			pop = 0;
2969 		} else if (pop >= sge->length - a) {
2970 			pop -= (sge->length - a);
2971 			sge->length = a;
2972 		}
2973 	}
2974 
2975 	/* From above the current layout _must_ be as follows,
2976 	 *
2977 	 * -| offset
2978 	 * -| start
2979 	 *
2980 	 *  |---- pop ---|---------------- b ------------|
2981 	 *  |____________________________________________| length
2982 	 *
2983 	 * Offset and start of the current msg elem are equal because in the
2984 	 * previous case we handled offset != start and either consumed the
2985 	 * entire element and advanced to the next element OR pop == 0.
2986 	 *
2987 	 * Two cases to handle here are first pop is less than the length
2988 	 * leaving some remainder b above. Simply adjust the element's layout
2989 	 * in this case. Or pop >= length of the element so that b = 0. In this
2990 	 * case advance to next element decrementing pop.
2991 	 */
2992 	while (pop) {
2993 		struct scatterlist *sge = sk_msg_elem(msg, i);
2994 
2995 		if (pop < sge->length) {
2996 			sge->length -= pop;
2997 			sge->offset += pop;
2998 			pop = 0;
2999 		} else {
3000 			pop -= sge->length;
3001 			sk_msg_shift_left(msg, i);
3002 		}
3003 		sk_msg_iter_var_next(i);
3004 	}
3005 
3006 	sk_mem_uncharge(msg->sk, len - pop);
3007 	msg->sg.size -= (len - pop);
3008 	sk_msg_compute_data_pointers(msg);
3009 	return 0;
3010 }
3011 
3012 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3013 	.func		= bpf_msg_pop_data,
3014 	.gpl_only	= false,
3015 	.ret_type	= RET_INTEGER,
3016 	.arg1_type	= ARG_PTR_TO_CTX,
3017 	.arg2_type	= ARG_ANYTHING,
3018 	.arg3_type	= ARG_ANYTHING,
3019 	.arg4_type	= ARG_ANYTHING,
3020 };
3021 
3022 #ifdef CONFIG_CGROUP_NET_CLASSID
3023 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3024 {
3025 	return __task_get_classid(current);
3026 }
3027 
3028 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3029 	.func		= bpf_get_cgroup_classid_curr,
3030 	.gpl_only	= false,
3031 	.ret_type	= RET_INTEGER,
3032 };
3033 
3034 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3035 {
3036 	struct sock *sk = skb_to_full_sk(skb);
3037 
3038 	if (!sk || !sk_fullsock(sk))
3039 		return 0;
3040 
3041 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3042 }
3043 
3044 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3045 	.func		= bpf_skb_cgroup_classid,
3046 	.gpl_only	= false,
3047 	.ret_type	= RET_INTEGER,
3048 	.arg1_type	= ARG_PTR_TO_CTX,
3049 };
3050 #endif
3051 
3052 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3053 {
3054 	return task_get_classid(skb);
3055 }
3056 
3057 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3058 	.func           = bpf_get_cgroup_classid,
3059 	.gpl_only       = false,
3060 	.ret_type       = RET_INTEGER,
3061 	.arg1_type      = ARG_PTR_TO_CTX,
3062 };
3063 
3064 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3065 {
3066 	return dst_tclassid(skb);
3067 }
3068 
3069 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3070 	.func           = bpf_get_route_realm,
3071 	.gpl_only       = false,
3072 	.ret_type       = RET_INTEGER,
3073 	.arg1_type      = ARG_PTR_TO_CTX,
3074 };
3075 
3076 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3077 {
3078 	/* If skb_clear_hash() was called due to mangling, we can
3079 	 * trigger SW recalculation here. Later access to hash
3080 	 * can then use the inline skb->hash via context directly
3081 	 * instead of calling this helper again.
3082 	 */
3083 	return skb_get_hash(skb);
3084 }
3085 
3086 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3087 	.func		= bpf_get_hash_recalc,
3088 	.gpl_only	= false,
3089 	.ret_type	= RET_INTEGER,
3090 	.arg1_type	= ARG_PTR_TO_CTX,
3091 };
3092 
3093 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3094 {
3095 	/* After all direct packet write, this can be used once for
3096 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3097 	 */
3098 	skb_clear_hash(skb);
3099 	return 0;
3100 }
3101 
3102 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3103 	.func		= bpf_set_hash_invalid,
3104 	.gpl_only	= false,
3105 	.ret_type	= RET_INTEGER,
3106 	.arg1_type	= ARG_PTR_TO_CTX,
3107 };
3108 
3109 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3110 {
3111 	/* Set user specified hash as L4(+), so that it gets returned
3112 	 * on skb_get_hash() call unless BPF prog later on triggers a
3113 	 * skb_clear_hash().
3114 	 */
3115 	__skb_set_sw_hash(skb, hash, true);
3116 	return 0;
3117 }
3118 
3119 static const struct bpf_func_proto bpf_set_hash_proto = {
3120 	.func		= bpf_set_hash,
3121 	.gpl_only	= false,
3122 	.ret_type	= RET_INTEGER,
3123 	.arg1_type	= ARG_PTR_TO_CTX,
3124 	.arg2_type	= ARG_ANYTHING,
3125 };
3126 
3127 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3128 	   u16, vlan_tci)
3129 {
3130 	int ret;
3131 
3132 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3133 		     vlan_proto != htons(ETH_P_8021AD)))
3134 		vlan_proto = htons(ETH_P_8021Q);
3135 
3136 	bpf_push_mac_rcsum(skb);
3137 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3138 	bpf_pull_mac_rcsum(skb);
3139 
3140 	bpf_compute_data_pointers(skb);
3141 	return ret;
3142 }
3143 
3144 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3145 	.func           = bpf_skb_vlan_push,
3146 	.gpl_only       = false,
3147 	.ret_type       = RET_INTEGER,
3148 	.arg1_type      = ARG_PTR_TO_CTX,
3149 	.arg2_type      = ARG_ANYTHING,
3150 	.arg3_type      = ARG_ANYTHING,
3151 };
3152 
3153 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3154 {
3155 	int ret;
3156 
3157 	bpf_push_mac_rcsum(skb);
3158 	ret = skb_vlan_pop(skb);
3159 	bpf_pull_mac_rcsum(skb);
3160 
3161 	bpf_compute_data_pointers(skb);
3162 	return ret;
3163 }
3164 
3165 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3166 	.func           = bpf_skb_vlan_pop,
3167 	.gpl_only       = false,
3168 	.ret_type       = RET_INTEGER,
3169 	.arg1_type      = ARG_PTR_TO_CTX,
3170 };
3171 
3172 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3173 {
3174 	/* Caller already did skb_cow() with len as headroom,
3175 	 * so no need to do it here.
3176 	 */
3177 	skb_push(skb, len);
3178 	memmove(skb->data, skb->data + len, off);
3179 	memset(skb->data + off, 0, len);
3180 
3181 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3182 	 * needed here as it does not change the skb->csum
3183 	 * result for checksum complete when summing over
3184 	 * zeroed blocks.
3185 	 */
3186 	return 0;
3187 }
3188 
3189 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3190 {
3191 	/* skb_ensure_writable() is not needed here, as we're
3192 	 * already working on an uncloned skb.
3193 	 */
3194 	if (unlikely(!pskb_may_pull(skb, off + len)))
3195 		return -ENOMEM;
3196 
3197 	skb_postpull_rcsum(skb, skb->data + off, len);
3198 	memmove(skb->data + len, skb->data, off);
3199 	__skb_pull(skb, len);
3200 
3201 	return 0;
3202 }
3203 
3204 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3205 {
3206 	bool trans_same = skb->transport_header == skb->network_header;
3207 	int ret;
3208 
3209 	/* There's no need for __skb_push()/__skb_pull() pair to
3210 	 * get to the start of the mac header as we're guaranteed
3211 	 * to always start from here under eBPF.
3212 	 */
3213 	ret = bpf_skb_generic_push(skb, off, len);
3214 	if (likely(!ret)) {
3215 		skb->mac_header -= len;
3216 		skb->network_header -= len;
3217 		if (trans_same)
3218 			skb->transport_header = skb->network_header;
3219 	}
3220 
3221 	return ret;
3222 }
3223 
3224 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3225 {
3226 	bool trans_same = skb->transport_header == skb->network_header;
3227 	int ret;
3228 
3229 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3230 	ret = bpf_skb_generic_pop(skb, off, len);
3231 	if (likely(!ret)) {
3232 		skb->mac_header += len;
3233 		skb->network_header += len;
3234 		if (trans_same)
3235 			skb->transport_header = skb->network_header;
3236 	}
3237 
3238 	return ret;
3239 }
3240 
3241 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3242 {
3243 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3244 	u32 off = skb_mac_header_len(skb);
3245 	int ret;
3246 
3247 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
3248 		return -ENOTSUPP;
3249 
3250 	ret = skb_cow(skb, len_diff);
3251 	if (unlikely(ret < 0))
3252 		return ret;
3253 
3254 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3255 	if (unlikely(ret < 0))
3256 		return ret;
3257 
3258 	if (skb_is_gso(skb)) {
3259 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3260 
3261 		/* SKB_GSO_TCPV4 needs to be changed into
3262 		 * SKB_GSO_TCPV6.
3263 		 */
3264 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3265 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3266 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3267 		}
3268 
3269 		/* Due to IPv6 header, MSS needs to be downgraded. */
3270 		skb_decrease_gso_size(shinfo, len_diff);
3271 		/* Header must be checked, and gso_segs recomputed. */
3272 		shinfo->gso_type |= SKB_GSO_DODGY;
3273 		shinfo->gso_segs = 0;
3274 	}
3275 
3276 	skb->protocol = htons(ETH_P_IPV6);
3277 	skb_clear_hash(skb);
3278 
3279 	return 0;
3280 }
3281 
3282 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3283 {
3284 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3285 	u32 off = skb_mac_header_len(skb);
3286 	int ret;
3287 
3288 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
3289 		return -ENOTSUPP;
3290 
3291 	ret = skb_unclone(skb, GFP_ATOMIC);
3292 	if (unlikely(ret < 0))
3293 		return ret;
3294 
3295 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3296 	if (unlikely(ret < 0))
3297 		return ret;
3298 
3299 	if (skb_is_gso(skb)) {
3300 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3301 
3302 		/* SKB_GSO_TCPV6 needs to be changed into
3303 		 * SKB_GSO_TCPV4.
3304 		 */
3305 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3306 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3307 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3308 		}
3309 
3310 		/* Due to IPv4 header, MSS can be upgraded. */
3311 		skb_increase_gso_size(shinfo, len_diff);
3312 		/* Header must be checked, and gso_segs recomputed. */
3313 		shinfo->gso_type |= SKB_GSO_DODGY;
3314 		shinfo->gso_segs = 0;
3315 	}
3316 
3317 	skb->protocol = htons(ETH_P_IP);
3318 	skb_clear_hash(skb);
3319 
3320 	return 0;
3321 }
3322 
3323 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3324 {
3325 	__be16 from_proto = skb->protocol;
3326 
3327 	if (from_proto == htons(ETH_P_IP) &&
3328 	      to_proto == htons(ETH_P_IPV6))
3329 		return bpf_skb_proto_4_to_6(skb);
3330 
3331 	if (from_proto == htons(ETH_P_IPV6) &&
3332 	      to_proto == htons(ETH_P_IP))
3333 		return bpf_skb_proto_6_to_4(skb);
3334 
3335 	return -ENOTSUPP;
3336 }
3337 
3338 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3339 	   u64, flags)
3340 {
3341 	int ret;
3342 
3343 	if (unlikely(flags))
3344 		return -EINVAL;
3345 
3346 	/* General idea is that this helper does the basic groundwork
3347 	 * needed for changing the protocol, and eBPF program fills the
3348 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3349 	 * and other helpers, rather than passing a raw buffer here.
3350 	 *
3351 	 * The rationale is to keep this minimal and without a need to
3352 	 * deal with raw packet data. F.e. even if we would pass buffers
3353 	 * here, the program still needs to call the bpf_lX_csum_replace()
3354 	 * helpers anyway. Plus, this way we keep also separation of
3355 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3356 	 * care of stores.
3357 	 *
3358 	 * Currently, additional options and extension header space are
3359 	 * not supported, but flags register is reserved so we can adapt
3360 	 * that. For offloads, we mark packet as dodgy, so that headers
3361 	 * need to be verified first.
3362 	 */
3363 	ret = bpf_skb_proto_xlat(skb, proto);
3364 	bpf_compute_data_pointers(skb);
3365 	return ret;
3366 }
3367 
3368 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3369 	.func		= bpf_skb_change_proto,
3370 	.gpl_only	= false,
3371 	.ret_type	= RET_INTEGER,
3372 	.arg1_type	= ARG_PTR_TO_CTX,
3373 	.arg2_type	= ARG_ANYTHING,
3374 	.arg3_type	= ARG_ANYTHING,
3375 };
3376 
3377 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3378 {
3379 	/* We only allow a restricted subset to be changed for now. */
3380 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3381 		     !skb_pkt_type_ok(pkt_type)))
3382 		return -EINVAL;
3383 
3384 	skb->pkt_type = pkt_type;
3385 	return 0;
3386 }
3387 
3388 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3389 	.func		= bpf_skb_change_type,
3390 	.gpl_only	= false,
3391 	.ret_type	= RET_INTEGER,
3392 	.arg1_type	= ARG_PTR_TO_CTX,
3393 	.arg2_type	= ARG_ANYTHING,
3394 };
3395 
3396 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3397 {
3398 	switch (skb->protocol) {
3399 	case htons(ETH_P_IP):
3400 		return sizeof(struct iphdr);
3401 	case htons(ETH_P_IPV6):
3402 		return sizeof(struct ipv6hdr);
3403 	default:
3404 		return ~0U;
3405 	}
3406 }
3407 
3408 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3409 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3410 
3411 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3412 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3413 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3414 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3415 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3416 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3417 
3418 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3419 			    u64 flags)
3420 {
3421 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3422 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3423 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3424 	unsigned int gso_type = SKB_GSO_DODGY;
3425 	int ret;
3426 
3427 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3428 		/* udp gso_size delineates datagrams, only allow if fixed */
3429 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3430 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3431 			return -ENOTSUPP;
3432 	}
3433 
3434 	ret = skb_cow_head(skb, len_diff);
3435 	if (unlikely(ret < 0))
3436 		return ret;
3437 
3438 	if (encap) {
3439 		if (skb->protocol != htons(ETH_P_IP) &&
3440 		    skb->protocol != htons(ETH_P_IPV6))
3441 			return -ENOTSUPP;
3442 
3443 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3444 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3445 			return -EINVAL;
3446 
3447 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3448 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3449 			return -EINVAL;
3450 
3451 		if (skb->encapsulation)
3452 			return -EALREADY;
3453 
3454 		mac_len = skb->network_header - skb->mac_header;
3455 		inner_net = skb->network_header;
3456 		if (inner_mac_len > len_diff)
3457 			return -EINVAL;
3458 		inner_trans = skb->transport_header;
3459 	}
3460 
3461 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3462 	if (unlikely(ret < 0))
3463 		return ret;
3464 
3465 	if (encap) {
3466 		skb->inner_mac_header = inner_net - inner_mac_len;
3467 		skb->inner_network_header = inner_net;
3468 		skb->inner_transport_header = inner_trans;
3469 		skb_set_inner_protocol(skb, skb->protocol);
3470 
3471 		skb->encapsulation = 1;
3472 		skb_set_network_header(skb, mac_len);
3473 
3474 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3475 			gso_type |= SKB_GSO_UDP_TUNNEL;
3476 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3477 			gso_type |= SKB_GSO_GRE;
3478 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3479 			gso_type |= SKB_GSO_IPXIP6;
3480 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3481 			gso_type |= SKB_GSO_IPXIP4;
3482 
3483 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3484 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3485 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3486 					sizeof(struct ipv6hdr) :
3487 					sizeof(struct iphdr);
3488 
3489 			skb_set_transport_header(skb, mac_len + nh_len);
3490 		}
3491 
3492 		/* Match skb->protocol to new outer l3 protocol */
3493 		if (skb->protocol == htons(ETH_P_IP) &&
3494 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3495 			skb->protocol = htons(ETH_P_IPV6);
3496 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3497 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3498 			skb->protocol = htons(ETH_P_IP);
3499 	}
3500 
3501 	if (skb_is_gso(skb)) {
3502 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3503 
3504 		/* Due to header grow, MSS needs to be downgraded. */
3505 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3506 			skb_decrease_gso_size(shinfo, len_diff);
3507 
3508 		/* Header must be checked, and gso_segs recomputed. */
3509 		shinfo->gso_type |= gso_type;
3510 		shinfo->gso_segs = 0;
3511 	}
3512 
3513 	return 0;
3514 }
3515 
3516 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3517 			      u64 flags)
3518 {
3519 	int ret;
3520 
3521 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3522 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3523 		return -EINVAL;
3524 
3525 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3526 		/* udp gso_size delineates datagrams, only allow if fixed */
3527 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3528 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3529 			return -ENOTSUPP;
3530 	}
3531 
3532 	ret = skb_unclone(skb, GFP_ATOMIC);
3533 	if (unlikely(ret < 0))
3534 		return ret;
3535 
3536 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3537 	if (unlikely(ret < 0))
3538 		return ret;
3539 
3540 	if (skb_is_gso(skb)) {
3541 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3542 
3543 		/* Due to header shrink, MSS can be upgraded. */
3544 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3545 			skb_increase_gso_size(shinfo, len_diff);
3546 
3547 		/* Header must be checked, and gso_segs recomputed. */
3548 		shinfo->gso_type |= SKB_GSO_DODGY;
3549 		shinfo->gso_segs = 0;
3550 	}
3551 
3552 	return 0;
3553 }
3554 
3555 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3556 
3557 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3558 	   u32, mode, u64, flags)
3559 {
3560 	u32 len_diff_abs = abs(len_diff);
3561 	bool shrink = len_diff < 0;
3562 	int ret = 0;
3563 
3564 	if (unlikely(flags || mode))
3565 		return -EINVAL;
3566 	if (unlikely(len_diff_abs > 0xfffU))
3567 		return -EFAULT;
3568 
3569 	if (!shrink) {
3570 		ret = skb_cow(skb, len_diff);
3571 		if (unlikely(ret < 0))
3572 			return ret;
3573 		__skb_push(skb, len_diff_abs);
3574 		memset(skb->data, 0, len_diff_abs);
3575 	} else {
3576 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3577 			return -ENOMEM;
3578 		__skb_pull(skb, len_diff_abs);
3579 	}
3580 	bpf_compute_data_end_sk_skb(skb);
3581 	if (tls_sw_has_ctx_rx(skb->sk)) {
3582 		struct strp_msg *rxm = strp_msg(skb);
3583 
3584 		rxm->full_len += len_diff;
3585 	}
3586 	return ret;
3587 }
3588 
3589 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3590 	.func		= sk_skb_adjust_room,
3591 	.gpl_only	= false,
3592 	.ret_type	= RET_INTEGER,
3593 	.arg1_type	= ARG_PTR_TO_CTX,
3594 	.arg2_type	= ARG_ANYTHING,
3595 	.arg3_type	= ARG_ANYTHING,
3596 	.arg4_type	= ARG_ANYTHING,
3597 };
3598 
3599 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3600 	   u32, mode, u64, flags)
3601 {
3602 	u32 len_cur, len_diff_abs = abs(len_diff);
3603 	u32 len_min = bpf_skb_net_base_len(skb);
3604 	u32 len_max = BPF_SKB_MAX_LEN;
3605 	__be16 proto = skb->protocol;
3606 	bool shrink = len_diff < 0;
3607 	u32 off;
3608 	int ret;
3609 
3610 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3611 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3612 		return -EINVAL;
3613 	if (unlikely(len_diff_abs > 0xfffU))
3614 		return -EFAULT;
3615 	if (unlikely(proto != htons(ETH_P_IP) &&
3616 		     proto != htons(ETH_P_IPV6)))
3617 		return -ENOTSUPP;
3618 
3619 	off = skb_mac_header_len(skb);
3620 	switch (mode) {
3621 	case BPF_ADJ_ROOM_NET:
3622 		off += bpf_skb_net_base_len(skb);
3623 		break;
3624 	case BPF_ADJ_ROOM_MAC:
3625 		break;
3626 	default:
3627 		return -ENOTSUPP;
3628 	}
3629 
3630 	len_cur = skb->len - skb_network_offset(skb);
3631 	if ((shrink && (len_diff_abs >= len_cur ||
3632 			len_cur - len_diff_abs < len_min)) ||
3633 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3634 			 !skb_is_gso(skb))))
3635 		return -ENOTSUPP;
3636 
3637 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3638 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3639 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3640 		__skb_reset_checksum_unnecessary(skb);
3641 
3642 	bpf_compute_data_pointers(skb);
3643 	return ret;
3644 }
3645 
3646 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3647 	.func		= bpf_skb_adjust_room,
3648 	.gpl_only	= false,
3649 	.ret_type	= RET_INTEGER,
3650 	.arg1_type	= ARG_PTR_TO_CTX,
3651 	.arg2_type	= ARG_ANYTHING,
3652 	.arg3_type	= ARG_ANYTHING,
3653 	.arg4_type	= ARG_ANYTHING,
3654 };
3655 
3656 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3657 {
3658 	u32 min_len = skb_network_offset(skb);
3659 
3660 	if (skb_transport_header_was_set(skb))
3661 		min_len = skb_transport_offset(skb);
3662 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3663 		min_len = skb_checksum_start_offset(skb) +
3664 			  skb->csum_offset + sizeof(__sum16);
3665 	return min_len;
3666 }
3667 
3668 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3669 {
3670 	unsigned int old_len = skb->len;
3671 	int ret;
3672 
3673 	ret = __skb_grow_rcsum(skb, new_len);
3674 	if (!ret)
3675 		memset(skb->data + old_len, 0, new_len - old_len);
3676 	return ret;
3677 }
3678 
3679 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3680 {
3681 	return __skb_trim_rcsum(skb, new_len);
3682 }
3683 
3684 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3685 					u64 flags)
3686 {
3687 	u32 max_len = BPF_SKB_MAX_LEN;
3688 	u32 min_len = __bpf_skb_min_len(skb);
3689 	int ret;
3690 
3691 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3692 		return -EINVAL;
3693 	if (skb->encapsulation)
3694 		return -ENOTSUPP;
3695 
3696 	/* The basic idea of this helper is that it's performing the
3697 	 * needed work to either grow or trim an skb, and eBPF program
3698 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3699 	 * bpf_lX_csum_replace() and others rather than passing a raw
3700 	 * buffer here. This one is a slow path helper and intended
3701 	 * for replies with control messages.
3702 	 *
3703 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3704 	 * minimal and without protocol specifics so that we are able
3705 	 * to separate concerns as in bpf_skb_store_bytes() should only
3706 	 * be the one responsible for writing buffers.
3707 	 *
3708 	 * It's really expected to be a slow path operation here for
3709 	 * control message replies, so we're implicitly linearizing,
3710 	 * uncloning and drop offloads from the skb by this.
3711 	 */
3712 	ret = __bpf_try_make_writable(skb, skb->len);
3713 	if (!ret) {
3714 		if (new_len > skb->len)
3715 			ret = bpf_skb_grow_rcsum(skb, new_len);
3716 		else if (new_len < skb->len)
3717 			ret = bpf_skb_trim_rcsum(skb, new_len);
3718 		if (!ret && skb_is_gso(skb))
3719 			skb_gso_reset(skb);
3720 	}
3721 	return ret;
3722 }
3723 
3724 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3725 	   u64, flags)
3726 {
3727 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3728 
3729 	bpf_compute_data_pointers(skb);
3730 	return ret;
3731 }
3732 
3733 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3734 	.func		= bpf_skb_change_tail,
3735 	.gpl_only	= false,
3736 	.ret_type	= RET_INTEGER,
3737 	.arg1_type	= ARG_PTR_TO_CTX,
3738 	.arg2_type	= ARG_ANYTHING,
3739 	.arg3_type	= ARG_ANYTHING,
3740 };
3741 
3742 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3743 	   u64, flags)
3744 {
3745 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3746 
3747 	bpf_compute_data_end_sk_skb(skb);
3748 	return ret;
3749 }
3750 
3751 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3752 	.func		= sk_skb_change_tail,
3753 	.gpl_only	= false,
3754 	.ret_type	= RET_INTEGER,
3755 	.arg1_type	= ARG_PTR_TO_CTX,
3756 	.arg2_type	= ARG_ANYTHING,
3757 	.arg3_type	= ARG_ANYTHING,
3758 };
3759 
3760 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3761 					u64 flags)
3762 {
3763 	u32 max_len = BPF_SKB_MAX_LEN;
3764 	u32 new_len = skb->len + head_room;
3765 	int ret;
3766 
3767 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3768 		     new_len < skb->len))
3769 		return -EINVAL;
3770 
3771 	ret = skb_cow(skb, head_room);
3772 	if (likely(!ret)) {
3773 		/* Idea for this helper is that we currently only
3774 		 * allow to expand on mac header. This means that
3775 		 * skb->protocol network header, etc, stay as is.
3776 		 * Compared to bpf_skb_change_tail(), we're more
3777 		 * flexible due to not needing to linearize or
3778 		 * reset GSO. Intention for this helper is to be
3779 		 * used by an L3 skb that needs to push mac header
3780 		 * for redirection into L2 device.
3781 		 */
3782 		__skb_push(skb, head_room);
3783 		memset(skb->data, 0, head_room);
3784 		skb_reset_mac_header(skb);
3785 	}
3786 
3787 	return ret;
3788 }
3789 
3790 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3791 	   u64, flags)
3792 {
3793 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3794 
3795 	bpf_compute_data_pointers(skb);
3796 	return ret;
3797 }
3798 
3799 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3800 	.func		= bpf_skb_change_head,
3801 	.gpl_only	= false,
3802 	.ret_type	= RET_INTEGER,
3803 	.arg1_type	= ARG_PTR_TO_CTX,
3804 	.arg2_type	= ARG_ANYTHING,
3805 	.arg3_type	= ARG_ANYTHING,
3806 };
3807 
3808 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3809 	   u64, flags)
3810 {
3811 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3812 
3813 	bpf_compute_data_end_sk_skb(skb);
3814 	return ret;
3815 }
3816 
3817 static const struct bpf_func_proto sk_skb_change_head_proto = {
3818 	.func		= sk_skb_change_head,
3819 	.gpl_only	= false,
3820 	.ret_type	= RET_INTEGER,
3821 	.arg1_type	= ARG_PTR_TO_CTX,
3822 	.arg2_type	= ARG_ANYTHING,
3823 	.arg3_type	= ARG_ANYTHING,
3824 };
3825 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3826 {
3827 	return xdp_data_meta_unsupported(xdp) ? 0 :
3828 	       xdp->data - xdp->data_meta;
3829 }
3830 
3831 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3832 {
3833 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3834 	unsigned long metalen = xdp_get_metalen(xdp);
3835 	void *data_start = xdp_frame_end + metalen;
3836 	void *data = xdp->data + offset;
3837 
3838 	if (unlikely(data < data_start ||
3839 		     data > xdp->data_end - ETH_HLEN))
3840 		return -EINVAL;
3841 
3842 	if (metalen)
3843 		memmove(xdp->data_meta + offset,
3844 			xdp->data_meta, metalen);
3845 	xdp->data_meta += offset;
3846 	xdp->data = data;
3847 
3848 	return 0;
3849 }
3850 
3851 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3852 	.func		= bpf_xdp_adjust_head,
3853 	.gpl_only	= false,
3854 	.ret_type	= RET_INTEGER,
3855 	.arg1_type	= ARG_PTR_TO_CTX,
3856 	.arg2_type	= ARG_ANYTHING,
3857 };
3858 
3859 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3860 {
3861 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3862 	void *data_end = xdp->data_end + offset;
3863 
3864 	/* Notice that xdp_data_hard_end have reserved some tailroom */
3865 	if (unlikely(data_end > data_hard_end))
3866 		return -EINVAL;
3867 
3868 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
3869 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3870 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3871 		return -EINVAL;
3872 	}
3873 
3874 	if (unlikely(data_end < xdp->data + ETH_HLEN))
3875 		return -EINVAL;
3876 
3877 	/* Clear memory area on grow, can contain uninit kernel memory */
3878 	if (offset > 0)
3879 		memset(xdp->data_end, 0, offset);
3880 
3881 	xdp->data_end = data_end;
3882 
3883 	return 0;
3884 }
3885 
3886 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3887 	.func		= bpf_xdp_adjust_tail,
3888 	.gpl_only	= false,
3889 	.ret_type	= RET_INTEGER,
3890 	.arg1_type	= ARG_PTR_TO_CTX,
3891 	.arg2_type	= ARG_ANYTHING,
3892 };
3893 
3894 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3895 {
3896 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3897 	void *meta = xdp->data_meta + offset;
3898 	unsigned long metalen = xdp->data - meta;
3899 
3900 	if (xdp_data_meta_unsupported(xdp))
3901 		return -ENOTSUPP;
3902 	if (unlikely(meta < xdp_frame_end ||
3903 		     meta > xdp->data))
3904 		return -EINVAL;
3905 	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3906 		     (metalen > 32)))
3907 		return -EACCES;
3908 
3909 	xdp->data_meta = meta;
3910 
3911 	return 0;
3912 }
3913 
3914 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3915 	.func		= bpf_xdp_adjust_meta,
3916 	.gpl_only	= false,
3917 	.ret_type	= RET_INTEGER,
3918 	.arg1_type	= ARG_PTR_TO_CTX,
3919 	.arg2_type	= ARG_ANYTHING,
3920 };
3921 
3922 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3923 			    struct bpf_map *map, struct xdp_buff *xdp)
3924 {
3925 	switch (map->map_type) {
3926 	case BPF_MAP_TYPE_DEVMAP:
3927 	case BPF_MAP_TYPE_DEVMAP_HASH:
3928 		return dev_map_enqueue(fwd, xdp, dev_rx);
3929 	case BPF_MAP_TYPE_CPUMAP:
3930 		return cpu_map_enqueue(fwd, xdp, dev_rx);
3931 	case BPF_MAP_TYPE_XSKMAP:
3932 		return __xsk_map_redirect(fwd, xdp);
3933 	default:
3934 		return -EBADRQC;
3935 	}
3936 	return 0;
3937 }
3938 
3939 void xdp_do_flush(void)
3940 {
3941 	__dev_flush();
3942 	__cpu_map_flush();
3943 	__xsk_map_flush();
3944 }
3945 EXPORT_SYMBOL_GPL(xdp_do_flush);
3946 
3947 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3948 {
3949 	switch (map->map_type) {
3950 	case BPF_MAP_TYPE_DEVMAP:
3951 		return __dev_map_lookup_elem(map, index);
3952 	case BPF_MAP_TYPE_DEVMAP_HASH:
3953 		return __dev_map_hash_lookup_elem(map, index);
3954 	case BPF_MAP_TYPE_CPUMAP:
3955 		return __cpu_map_lookup_elem(map, index);
3956 	case BPF_MAP_TYPE_XSKMAP:
3957 		return __xsk_map_lookup_elem(map, index);
3958 	default:
3959 		return NULL;
3960 	}
3961 }
3962 
3963 void bpf_clear_redirect_map(struct bpf_map *map)
3964 {
3965 	struct bpf_redirect_info *ri;
3966 	int cpu;
3967 
3968 	for_each_possible_cpu(cpu) {
3969 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3970 		/* Avoid polluting remote cacheline due to writes if
3971 		 * not needed. Once we pass this test, we need the
3972 		 * cmpxchg() to make sure it hasn't been changed in
3973 		 * the meantime by remote CPU.
3974 		 */
3975 		if (unlikely(READ_ONCE(ri->map) == map))
3976 			cmpxchg(&ri->map, map, NULL);
3977 	}
3978 }
3979 
3980 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3981 		    struct bpf_prog *xdp_prog)
3982 {
3983 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3984 	struct bpf_map *map = READ_ONCE(ri->map);
3985 	u32 index = ri->tgt_index;
3986 	void *fwd = ri->tgt_value;
3987 	int err;
3988 
3989 	ri->tgt_index = 0;
3990 	ri->tgt_value = NULL;
3991 	WRITE_ONCE(ri->map, NULL);
3992 
3993 	if (unlikely(!map)) {
3994 		fwd = dev_get_by_index_rcu(dev_net(dev), index);
3995 		if (unlikely(!fwd)) {
3996 			err = -EINVAL;
3997 			goto err;
3998 		}
3999 
4000 		err = dev_xdp_enqueue(fwd, xdp, dev);
4001 	} else {
4002 		err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
4003 	}
4004 
4005 	if (unlikely(err))
4006 		goto err;
4007 
4008 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
4009 	return 0;
4010 err:
4011 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
4012 	return err;
4013 }
4014 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4015 
4016 static int xdp_do_generic_redirect_map(struct net_device *dev,
4017 				       struct sk_buff *skb,
4018 				       struct xdp_buff *xdp,
4019 				       struct bpf_prog *xdp_prog,
4020 				       struct bpf_map *map)
4021 {
4022 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4023 	u32 index = ri->tgt_index;
4024 	void *fwd = ri->tgt_value;
4025 	int err = 0;
4026 
4027 	ri->tgt_index = 0;
4028 	ri->tgt_value = NULL;
4029 	WRITE_ONCE(ri->map, NULL);
4030 
4031 	if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
4032 	    map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
4033 		struct bpf_dtab_netdev *dst = fwd;
4034 
4035 		err = dev_map_generic_redirect(dst, skb, xdp_prog);
4036 		if (unlikely(err))
4037 			goto err;
4038 	} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
4039 		struct xdp_sock *xs = fwd;
4040 
4041 		err = xsk_generic_rcv(xs, xdp);
4042 		if (err)
4043 			goto err;
4044 		consume_skb(skb);
4045 	} else {
4046 		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
4047 		err = -EBADRQC;
4048 		goto err;
4049 	}
4050 
4051 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
4052 	return 0;
4053 err:
4054 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
4055 	return err;
4056 }
4057 
4058 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4059 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4060 {
4061 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4062 	struct bpf_map *map = READ_ONCE(ri->map);
4063 	u32 index = ri->tgt_index;
4064 	struct net_device *fwd;
4065 	int err = 0;
4066 
4067 	if (map)
4068 		return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
4069 						   map);
4070 	ri->tgt_index = 0;
4071 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
4072 	if (unlikely(!fwd)) {
4073 		err = -EINVAL;
4074 		goto err;
4075 	}
4076 
4077 	err = xdp_ok_fwd_dev(fwd, skb->len);
4078 	if (unlikely(err))
4079 		goto err;
4080 
4081 	skb->dev = fwd;
4082 	_trace_xdp_redirect(dev, xdp_prog, index);
4083 	generic_xdp_tx(skb, xdp_prog);
4084 	return 0;
4085 err:
4086 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
4087 	return err;
4088 }
4089 
4090 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4091 {
4092 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4093 
4094 	if (unlikely(flags))
4095 		return XDP_ABORTED;
4096 
4097 	ri->flags = flags;
4098 	ri->tgt_index = ifindex;
4099 	ri->tgt_value = NULL;
4100 	WRITE_ONCE(ri->map, NULL);
4101 
4102 	return XDP_REDIRECT;
4103 }
4104 
4105 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4106 	.func           = bpf_xdp_redirect,
4107 	.gpl_only       = false,
4108 	.ret_type       = RET_INTEGER,
4109 	.arg1_type      = ARG_ANYTHING,
4110 	.arg2_type      = ARG_ANYTHING,
4111 };
4112 
4113 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4114 	   u64, flags)
4115 {
4116 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4117 
4118 	/* Lower bits of the flags are used as return code on lookup failure */
4119 	if (unlikely(flags > XDP_TX))
4120 		return XDP_ABORTED;
4121 
4122 	ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
4123 	if (unlikely(!ri->tgt_value)) {
4124 		/* If the lookup fails we want to clear out the state in the
4125 		 * redirect_info struct completely, so that if an eBPF program
4126 		 * performs multiple lookups, the last one always takes
4127 		 * precedence.
4128 		 */
4129 		WRITE_ONCE(ri->map, NULL);
4130 		return flags;
4131 	}
4132 
4133 	ri->flags = flags;
4134 	ri->tgt_index = ifindex;
4135 	WRITE_ONCE(ri->map, map);
4136 
4137 	return XDP_REDIRECT;
4138 }
4139 
4140 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4141 	.func           = bpf_xdp_redirect_map,
4142 	.gpl_only       = false,
4143 	.ret_type       = RET_INTEGER,
4144 	.arg1_type      = ARG_CONST_MAP_PTR,
4145 	.arg2_type      = ARG_ANYTHING,
4146 	.arg3_type      = ARG_ANYTHING,
4147 };
4148 
4149 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4150 				  unsigned long off, unsigned long len)
4151 {
4152 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4153 
4154 	if (unlikely(!ptr))
4155 		return len;
4156 	if (ptr != dst_buff)
4157 		memcpy(dst_buff, ptr, len);
4158 
4159 	return 0;
4160 }
4161 
4162 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4163 	   u64, flags, void *, meta, u64, meta_size)
4164 {
4165 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4166 
4167 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4168 		return -EINVAL;
4169 	if (unlikely(!skb || skb_size > skb->len))
4170 		return -EFAULT;
4171 
4172 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4173 				bpf_skb_copy);
4174 }
4175 
4176 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4177 	.func		= bpf_skb_event_output,
4178 	.gpl_only	= true,
4179 	.ret_type	= RET_INTEGER,
4180 	.arg1_type	= ARG_PTR_TO_CTX,
4181 	.arg2_type	= ARG_CONST_MAP_PTR,
4182 	.arg3_type	= ARG_ANYTHING,
4183 	.arg4_type	= ARG_PTR_TO_MEM,
4184 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4185 };
4186 
4187 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4188 
4189 const struct bpf_func_proto bpf_skb_output_proto = {
4190 	.func		= bpf_skb_event_output,
4191 	.gpl_only	= true,
4192 	.ret_type	= RET_INTEGER,
4193 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4194 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4195 	.arg2_type	= ARG_CONST_MAP_PTR,
4196 	.arg3_type	= ARG_ANYTHING,
4197 	.arg4_type	= ARG_PTR_TO_MEM,
4198 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4199 };
4200 
4201 static unsigned short bpf_tunnel_key_af(u64 flags)
4202 {
4203 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4204 }
4205 
4206 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4207 	   u32, size, u64, flags)
4208 {
4209 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4210 	u8 compat[sizeof(struct bpf_tunnel_key)];
4211 	void *to_orig = to;
4212 	int err;
4213 
4214 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4215 		err = -EINVAL;
4216 		goto err_clear;
4217 	}
4218 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4219 		err = -EPROTO;
4220 		goto err_clear;
4221 	}
4222 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4223 		err = -EINVAL;
4224 		switch (size) {
4225 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4226 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4227 			goto set_compat;
4228 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4229 			/* Fixup deprecated structure layouts here, so we have
4230 			 * a common path later on.
4231 			 */
4232 			if (ip_tunnel_info_af(info) != AF_INET)
4233 				goto err_clear;
4234 set_compat:
4235 			to = (struct bpf_tunnel_key *)compat;
4236 			break;
4237 		default:
4238 			goto err_clear;
4239 		}
4240 	}
4241 
4242 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4243 	to->tunnel_tos = info->key.tos;
4244 	to->tunnel_ttl = info->key.ttl;
4245 	to->tunnel_ext = 0;
4246 
4247 	if (flags & BPF_F_TUNINFO_IPV6) {
4248 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4249 		       sizeof(to->remote_ipv6));
4250 		to->tunnel_label = be32_to_cpu(info->key.label);
4251 	} else {
4252 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4253 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4254 		to->tunnel_label = 0;
4255 	}
4256 
4257 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4258 		memcpy(to_orig, to, size);
4259 
4260 	return 0;
4261 err_clear:
4262 	memset(to_orig, 0, size);
4263 	return err;
4264 }
4265 
4266 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4267 	.func		= bpf_skb_get_tunnel_key,
4268 	.gpl_only	= false,
4269 	.ret_type	= RET_INTEGER,
4270 	.arg1_type	= ARG_PTR_TO_CTX,
4271 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4272 	.arg3_type	= ARG_CONST_SIZE,
4273 	.arg4_type	= ARG_ANYTHING,
4274 };
4275 
4276 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4277 {
4278 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4279 	int err;
4280 
4281 	if (unlikely(!info ||
4282 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4283 		err = -ENOENT;
4284 		goto err_clear;
4285 	}
4286 	if (unlikely(size < info->options_len)) {
4287 		err = -ENOMEM;
4288 		goto err_clear;
4289 	}
4290 
4291 	ip_tunnel_info_opts_get(to, info);
4292 	if (size > info->options_len)
4293 		memset(to + info->options_len, 0, size - info->options_len);
4294 
4295 	return info->options_len;
4296 err_clear:
4297 	memset(to, 0, size);
4298 	return err;
4299 }
4300 
4301 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4302 	.func		= bpf_skb_get_tunnel_opt,
4303 	.gpl_only	= false,
4304 	.ret_type	= RET_INTEGER,
4305 	.arg1_type	= ARG_PTR_TO_CTX,
4306 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4307 	.arg3_type	= ARG_CONST_SIZE,
4308 };
4309 
4310 static struct metadata_dst __percpu *md_dst;
4311 
4312 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4313 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4314 {
4315 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4316 	u8 compat[sizeof(struct bpf_tunnel_key)];
4317 	struct ip_tunnel_info *info;
4318 
4319 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4320 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4321 		return -EINVAL;
4322 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4323 		switch (size) {
4324 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4325 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4326 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4327 			/* Fixup deprecated structure layouts here, so we have
4328 			 * a common path later on.
4329 			 */
4330 			memcpy(compat, from, size);
4331 			memset(compat + size, 0, sizeof(compat) - size);
4332 			from = (const struct bpf_tunnel_key *) compat;
4333 			break;
4334 		default:
4335 			return -EINVAL;
4336 		}
4337 	}
4338 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4339 		     from->tunnel_ext))
4340 		return -EINVAL;
4341 
4342 	skb_dst_drop(skb);
4343 	dst_hold((struct dst_entry *) md);
4344 	skb_dst_set(skb, (struct dst_entry *) md);
4345 
4346 	info = &md->u.tun_info;
4347 	memset(info, 0, sizeof(*info));
4348 	info->mode = IP_TUNNEL_INFO_TX;
4349 
4350 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4351 	if (flags & BPF_F_DONT_FRAGMENT)
4352 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4353 	if (flags & BPF_F_ZERO_CSUM_TX)
4354 		info->key.tun_flags &= ~TUNNEL_CSUM;
4355 	if (flags & BPF_F_SEQ_NUMBER)
4356 		info->key.tun_flags |= TUNNEL_SEQ;
4357 
4358 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4359 	info->key.tos = from->tunnel_tos;
4360 	info->key.ttl = from->tunnel_ttl;
4361 
4362 	if (flags & BPF_F_TUNINFO_IPV6) {
4363 		info->mode |= IP_TUNNEL_INFO_IPV6;
4364 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4365 		       sizeof(from->remote_ipv6));
4366 		info->key.label = cpu_to_be32(from->tunnel_label) &
4367 				  IPV6_FLOWLABEL_MASK;
4368 	} else {
4369 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4370 	}
4371 
4372 	return 0;
4373 }
4374 
4375 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4376 	.func		= bpf_skb_set_tunnel_key,
4377 	.gpl_only	= false,
4378 	.ret_type	= RET_INTEGER,
4379 	.arg1_type	= ARG_PTR_TO_CTX,
4380 	.arg2_type	= ARG_PTR_TO_MEM,
4381 	.arg3_type	= ARG_CONST_SIZE,
4382 	.arg4_type	= ARG_ANYTHING,
4383 };
4384 
4385 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4386 	   const u8 *, from, u32, size)
4387 {
4388 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4389 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4390 
4391 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4392 		return -EINVAL;
4393 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4394 		return -ENOMEM;
4395 
4396 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4397 
4398 	return 0;
4399 }
4400 
4401 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4402 	.func		= bpf_skb_set_tunnel_opt,
4403 	.gpl_only	= false,
4404 	.ret_type	= RET_INTEGER,
4405 	.arg1_type	= ARG_PTR_TO_CTX,
4406 	.arg2_type	= ARG_PTR_TO_MEM,
4407 	.arg3_type	= ARG_CONST_SIZE,
4408 };
4409 
4410 static const struct bpf_func_proto *
4411 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4412 {
4413 	if (!md_dst) {
4414 		struct metadata_dst __percpu *tmp;
4415 
4416 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4417 						METADATA_IP_TUNNEL,
4418 						GFP_KERNEL);
4419 		if (!tmp)
4420 			return NULL;
4421 		if (cmpxchg(&md_dst, NULL, tmp))
4422 			metadata_dst_free_percpu(tmp);
4423 	}
4424 
4425 	switch (which) {
4426 	case BPF_FUNC_skb_set_tunnel_key:
4427 		return &bpf_skb_set_tunnel_key_proto;
4428 	case BPF_FUNC_skb_set_tunnel_opt:
4429 		return &bpf_skb_set_tunnel_opt_proto;
4430 	default:
4431 		return NULL;
4432 	}
4433 }
4434 
4435 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4436 	   u32, idx)
4437 {
4438 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4439 	struct cgroup *cgrp;
4440 	struct sock *sk;
4441 
4442 	sk = skb_to_full_sk(skb);
4443 	if (!sk || !sk_fullsock(sk))
4444 		return -ENOENT;
4445 	if (unlikely(idx >= array->map.max_entries))
4446 		return -E2BIG;
4447 
4448 	cgrp = READ_ONCE(array->ptrs[idx]);
4449 	if (unlikely(!cgrp))
4450 		return -EAGAIN;
4451 
4452 	return sk_under_cgroup_hierarchy(sk, cgrp);
4453 }
4454 
4455 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4456 	.func		= bpf_skb_under_cgroup,
4457 	.gpl_only	= false,
4458 	.ret_type	= RET_INTEGER,
4459 	.arg1_type	= ARG_PTR_TO_CTX,
4460 	.arg2_type	= ARG_CONST_MAP_PTR,
4461 	.arg3_type	= ARG_ANYTHING,
4462 };
4463 
4464 #ifdef CONFIG_SOCK_CGROUP_DATA
4465 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4466 {
4467 	struct cgroup *cgrp;
4468 
4469 	sk = sk_to_full_sk(sk);
4470 	if (!sk || !sk_fullsock(sk))
4471 		return 0;
4472 
4473 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4474 	return cgroup_id(cgrp);
4475 }
4476 
4477 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4478 {
4479 	return __bpf_sk_cgroup_id(skb->sk);
4480 }
4481 
4482 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4483 	.func           = bpf_skb_cgroup_id,
4484 	.gpl_only       = false,
4485 	.ret_type       = RET_INTEGER,
4486 	.arg1_type      = ARG_PTR_TO_CTX,
4487 };
4488 
4489 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4490 					      int ancestor_level)
4491 {
4492 	struct cgroup *ancestor;
4493 	struct cgroup *cgrp;
4494 
4495 	sk = sk_to_full_sk(sk);
4496 	if (!sk || !sk_fullsock(sk))
4497 		return 0;
4498 
4499 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4500 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4501 	if (!ancestor)
4502 		return 0;
4503 
4504 	return cgroup_id(ancestor);
4505 }
4506 
4507 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4508 	   ancestor_level)
4509 {
4510 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4511 }
4512 
4513 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4514 	.func           = bpf_skb_ancestor_cgroup_id,
4515 	.gpl_only       = false,
4516 	.ret_type       = RET_INTEGER,
4517 	.arg1_type      = ARG_PTR_TO_CTX,
4518 	.arg2_type      = ARG_ANYTHING,
4519 };
4520 
4521 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4522 {
4523 	return __bpf_sk_cgroup_id(sk);
4524 }
4525 
4526 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4527 	.func           = bpf_sk_cgroup_id,
4528 	.gpl_only       = false,
4529 	.ret_type       = RET_INTEGER,
4530 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4531 };
4532 
4533 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4534 {
4535 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4536 }
4537 
4538 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4539 	.func           = bpf_sk_ancestor_cgroup_id,
4540 	.gpl_only       = false,
4541 	.ret_type       = RET_INTEGER,
4542 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4543 	.arg2_type      = ARG_ANYTHING,
4544 };
4545 #endif
4546 
4547 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4548 				  unsigned long off, unsigned long len)
4549 {
4550 	memcpy(dst_buff, src_buff + off, len);
4551 	return 0;
4552 }
4553 
4554 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4555 	   u64, flags, void *, meta, u64, meta_size)
4556 {
4557 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4558 
4559 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4560 		return -EINVAL;
4561 	if (unlikely(!xdp ||
4562 		     xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4563 		return -EFAULT;
4564 
4565 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4566 				xdp_size, bpf_xdp_copy);
4567 }
4568 
4569 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4570 	.func		= bpf_xdp_event_output,
4571 	.gpl_only	= true,
4572 	.ret_type	= RET_INTEGER,
4573 	.arg1_type	= ARG_PTR_TO_CTX,
4574 	.arg2_type	= ARG_CONST_MAP_PTR,
4575 	.arg3_type	= ARG_ANYTHING,
4576 	.arg4_type	= ARG_PTR_TO_MEM,
4577 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4578 };
4579 
4580 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4581 
4582 const struct bpf_func_proto bpf_xdp_output_proto = {
4583 	.func		= bpf_xdp_event_output,
4584 	.gpl_only	= true,
4585 	.ret_type	= RET_INTEGER,
4586 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4587 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4588 	.arg2_type	= ARG_CONST_MAP_PTR,
4589 	.arg3_type	= ARG_ANYTHING,
4590 	.arg4_type	= ARG_PTR_TO_MEM,
4591 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4592 };
4593 
4594 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4595 {
4596 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4597 }
4598 
4599 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4600 	.func           = bpf_get_socket_cookie,
4601 	.gpl_only       = false,
4602 	.ret_type       = RET_INTEGER,
4603 	.arg1_type      = ARG_PTR_TO_CTX,
4604 };
4605 
4606 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4607 {
4608 	return __sock_gen_cookie(ctx->sk);
4609 }
4610 
4611 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4612 	.func		= bpf_get_socket_cookie_sock_addr,
4613 	.gpl_only	= false,
4614 	.ret_type	= RET_INTEGER,
4615 	.arg1_type	= ARG_PTR_TO_CTX,
4616 };
4617 
4618 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4619 {
4620 	return __sock_gen_cookie(ctx);
4621 }
4622 
4623 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4624 	.func		= bpf_get_socket_cookie_sock,
4625 	.gpl_only	= false,
4626 	.ret_type	= RET_INTEGER,
4627 	.arg1_type	= ARG_PTR_TO_CTX,
4628 };
4629 
4630 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4631 {
4632 	return sk ? sock_gen_cookie(sk) : 0;
4633 }
4634 
4635 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4636 	.func		= bpf_get_socket_ptr_cookie,
4637 	.gpl_only	= false,
4638 	.ret_type	= RET_INTEGER,
4639 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4640 };
4641 
4642 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4643 {
4644 	return __sock_gen_cookie(ctx->sk);
4645 }
4646 
4647 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4648 	.func		= bpf_get_socket_cookie_sock_ops,
4649 	.gpl_only	= false,
4650 	.ret_type	= RET_INTEGER,
4651 	.arg1_type	= ARG_PTR_TO_CTX,
4652 };
4653 
4654 static u64 __bpf_get_netns_cookie(struct sock *sk)
4655 {
4656 	const struct net *net = sk ? sock_net(sk) : &init_net;
4657 
4658 	return net->net_cookie;
4659 }
4660 
4661 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4662 {
4663 	return __bpf_get_netns_cookie(ctx);
4664 }
4665 
4666 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4667 	.func		= bpf_get_netns_cookie_sock,
4668 	.gpl_only	= false,
4669 	.ret_type	= RET_INTEGER,
4670 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4671 };
4672 
4673 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4674 {
4675 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4676 }
4677 
4678 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4679 	.func		= bpf_get_netns_cookie_sock_addr,
4680 	.gpl_only	= false,
4681 	.ret_type	= RET_INTEGER,
4682 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4683 };
4684 
4685 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4686 {
4687 	struct sock *sk = sk_to_full_sk(skb->sk);
4688 	kuid_t kuid;
4689 
4690 	if (!sk || !sk_fullsock(sk))
4691 		return overflowuid;
4692 	kuid = sock_net_uid(sock_net(sk), sk);
4693 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4694 }
4695 
4696 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4697 	.func           = bpf_get_socket_uid,
4698 	.gpl_only       = false,
4699 	.ret_type       = RET_INTEGER,
4700 	.arg1_type      = ARG_PTR_TO_CTX,
4701 };
4702 
4703 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4704 			   char *optval, int optlen)
4705 {
4706 	char devname[IFNAMSIZ];
4707 	int val, valbool;
4708 	struct net *net;
4709 	int ifindex;
4710 	int ret = 0;
4711 
4712 	if (!sk_fullsock(sk))
4713 		return -EINVAL;
4714 
4715 	sock_owned_by_me(sk);
4716 
4717 	if (level == SOL_SOCKET) {
4718 		if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4719 			return -EINVAL;
4720 		val = *((int *)optval);
4721 		valbool = val ? 1 : 0;
4722 
4723 		/* Only some socketops are supported */
4724 		switch (optname) {
4725 		case SO_RCVBUF:
4726 			val = min_t(u32, val, sysctl_rmem_max);
4727 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4728 			WRITE_ONCE(sk->sk_rcvbuf,
4729 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4730 			break;
4731 		case SO_SNDBUF:
4732 			val = min_t(u32, val, sysctl_wmem_max);
4733 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4734 			WRITE_ONCE(sk->sk_sndbuf,
4735 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4736 			break;
4737 		case SO_MAX_PACING_RATE: /* 32bit version */
4738 			if (val != ~0U)
4739 				cmpxchg(&sk->sk_pacing_status,
4740 					SK_PACING_NONE,
4741 					SK_PACING_NEEDED);
4742 			sk->sk_max_pacing_rate = (val == ~0U) ?
4743 						 ~0UL : (unsigned int)val;
4744 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4745 						 sk->sk_max_pacing_rate);
4746 			break;
4747 		case SO_PRIORITY:
4748 			sk->sk_priority = val;
4749 			break;
4750 		case SO_RCVLOWAT:
4751 			if (val < 0)
4752 				val = INT_MAX;
4753 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4754 			break;
4755 		case SO_MARK:
4756 			if (sk->sk_mark != val) {
4757 				sk->sk_mark = val;
4758 				sk_dst_reset(sk);
4759 			}
4760 			break;
4761 		case SO_BINDTODEVICE:
4762 			optlen = min_t(long, optlen, IFNAMSIZ - 1);
4763 			strncpy(devname, optval, optlen);
4764 			devname[optlen] = 0;
4765 
4766 			ifindex = 0;
4767 			if (devname[0] != '\0') {
4768 				struct net_device *dev;
4769 
4770 				ret = -ENODEV;
4771 
4772 				net = sock_net(sk);
4773 				dev = dev_get_by_name(net, devname);
4774 				if (!dev)
4775 					break;
4776 				ifindex = dev->ifindex;
4777 				dev_put(dev);
4778 			}
4779 			fallthrough;
4780 		case SO_BINDTOIFINDEX:
4781 			if (optname == SO_BINDTOIFINDEX)
4782 				ifindex = val;
4783 			ret = sock_bindtoindex(sk, ifindex, false);
4784 			break;
4785 		case SO_KEEPALIVE:
4786 			if (sk->sk_prot->keepalive)
4787 				sk->sk_prot->keepalive(sk, valbool);
4788 			sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4789 			break;
4790 		default:
4791 			ret = -EINVAL;
4792 		}
4793 #ifdef CONFIG_INET
4794 	} else if (level == SOL_IP) {
4795 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4796 			return -EINVAL;
4797 
4798 		val = *((int *)optval);
4799 		/* Only some options are supported */
4800 		switch (optname) {
4801 		case IP_TOS:
4802 			if (val < -1 || val > 0xff) {
4803 				ret = -EINVAL;
4804 			} else {
4805 				struct inet_sock *inet = inet_sk(sk);
4806 
4807 				if (val == -1)
4808 					val = 0;
4809 				inet->tos = val;
4810 			}
4811 			break;
4812 		default:
4813 			ret = -EINVAL;
4814 		}
4815 #if IS_ENABLED(CONFIG_IPV6)
4816 	} else if (level == SOL_IPV6) {
4817 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4818 			return -EINVAL;
4819 
4820 		val = *((int *)optval);
4821 		/* Only some options are supported */
4822 		switch (optname) {
4823 		case IPV6_TCLASS:
4824 			if (val < -1 || val > 0xff) {
4825 				ret = -EINVAL;
4826 			} else {
4827 				struct ipv6_pinfo *np = inet6_sk(sk);
4828 
4829 				if (val == -1)
4830 					val = 0;
4831 				np->tclass = val;
4832 			}
4833 			break;
4834 		default:
4835 			ret = -EINVAL;
4836 		}
4837 #endif
4838 	} else if (level == SOL_TCP &&
4839 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
4840 		if (optname == TCP_CONGESTION) {
4841 			char name[TCP_CA_NAME_MAX];
4842 
4843 			strncpy(name, optval, min_t(long, optlen,
4844 						    TCP_CA_NAME_MAX-1));
4845 			name[TCP_CA_NAME_MAX-1] = 0;
4846 			ret = tcp_set_congestion_control(sk, name, false, true);
4847 		} else {
4848 			struct inet_connection_sock *icsk = inet_csk(sk);
4849 			struct tcp_sock *tp = tcp_sk(sk);
4850 			unsigned long timeout;
4851 
4852 			if (optlen != sizeof(int))
4853 				return -EINVAL;
4854 
4855 			val = *((int *)optval);
4856 			/* Only some options are supported */
4857 			switch (optname) {
4858 			case TCP_BPF_IW:
4859 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
4860 					ret = -EINVAL;
4861 				else
4862 					tp->snd_cwnd = val;
4863 				break;
4864 			case TCP_BPF_SNDCWND_CLAMP:
4865 				if (val <= 0) {
4866 					ret = -EINVAL;
4867 				} else {
4868 					tp->snd_cwnd_clamp = val;
4869 					tp->snd_ssthresh = val;
4870 				}
4871 				break;
4872 			case TCP_BPF_DELACK_MAX:
4873 				timeout = usecs_to_jiffies(val);
4874 				if (timeout > TCP_DELACK_MAX ||
4875 				    timeout < TCP_TIMEOUT_MIN)
4876 					return -EINVAL;
4877 				inet_csk(sk)->icsk_delack_max = timeout;
4878 				break;
4879 			case TCP_BPF_RTO_MIN:
4880 				timeout = usecs_to_jiffies(val);
4881 				if (timeout > TCP_RTO_MIN ||
4882 				    timeout < TCP_TIMEOUT_MIN)
4883 					return -EINVAL;
4884 				inet_csk(sk)->icsk_rto_min = timeout;
4885 				break;
4886 			case TCP_SAVE_SYN:
4887 				if (val < 0 || val > 1)
4888 					ret = -EINVAL;
4889 				else
4890 					tp->save_syn = val;
4891 				break;
4892 			case TCP_KEEPIDLE:
4893 				ret = tcp_sock_set_keepidle_locked(sk, val);
4894 				break;
4895 			case TCP_KEEPINTVL:
4896 				if (val < 1 || val > MAX_TCP_KEEPINTVL)
4897 					ret = -EINVAL;
4898 				else
4899 					tp->keepalive_intvl = val * HZ;
4900 				break;
4901 			case TCP_KEEPCNT:
4902 				if (val < 1 || val > MAX_TCP_KEEPCNT)
4903 					ret = -EINVAL;
4904 				else
4905 					tp->keepalive_probes = val;
4906 				break;
4907 			case TCP_SYNCNT:
4908 				if (val < 1 || val > MAX_TCP_SYNCNT)
4909 					ret = -EINVAL;
4910 				else
4911 					icsk->icsk_syn_retries = val;
4912 				break;
4913 			case TCP_USER_TIMEOUT:
4914 				if (val < 0)
4915 					ret = -EINVAL;
4916 				else
4917 					icsk->icsk_user_timeout = val;
4918 				break;
4919 			case TCP_NOTSENT_LOWAT:
4920 				tp->notsent_lowat = val;
4921 				sk->sk_write_space(sk);
4922 				break;
4923 			case TCP_WINDOW_CLAMP:
4924 				ret = tcp_set_window_clamp(sk, val);
4925 				break;
4926 			default:
4927 				ret = -EINVAL;
4928 			}
4929 		}
4930 #endif
4931 	} else {
4932 		ret = -EINVAL;
4933 	}
4934 	return ret;
4935 }
4936 
4937 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4938 			   char *optval, int optlen)
4939 {
4940 	if (!sk_fullsock(sk))
4941 		goto err_clear;
4942 
4943 	sock_owned_by_me(sk);
4944 
4945 	if (level == SOL_SOCKET) {
4946 		if (optlen != sizeof(int))
4947 			goto err_clear;
4948 
4949 		switch (optname) {
4950 		case SO_MARK:
4951 			*((int *)optval) = sk->sk_mark;
4952 			break;
4953 		case SO_PRIORITY:
4954 			*((int *)optval) = sk->sk_priority;
4955 			break;
4956 		case SO_BINDTOIFINDEX:
4957 			*((int *)optval) = sk->sk_bound_dev_if;
4958 			break;
4959 		default:
4960 			goto err_clear;
4961 		}
4962 #ifdef CONFIG_INET
4963 	} else if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4964 		struct inet_connection_sock *icsk;
4965 		struct tcp_sock *tp;
4966 
4967 		switch (optname) {
4968 		case TCP_CONGESTION:
4969 			icsk = inet_csk(sk);
4970 
4971 			if (!icsk->icsk_ca_ops || optlen <= 1)
4972 				goto err_clear;
4973 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4974 			optval[optlen - 1] = 0;
4975 			break;
4976 		case TCP_SAVED_SYN:
4977 			tp = tcp_sk(sk);
4978 
4979 			if (optlen <= 0 || !tp->saved_syn ||
4980 			    optlen > tcp_saved_syn_len(tp->saved_syn))
4981 				goto err_clear;
4982 			memcpy(optval, tp->saved_syn->data, optlen);
4983 			break;
4984 		default:
4985 			goto err_clear;
4986 		}
4987 	} else if (level == SOL_IP) {
4988 		struct inet_sock *inet = inet_sk(sk);
4989 
4990 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4991 			goto err_clear;
4992 
4993 		/* Only some options are supported */
4994 		switch (optname) {
4995 		case IP_TOS:
4996 			*((int *)optval) = (int)inet->tos;
4997 			break;
4998 		default:
4999 			goto err_clear;
5000 		}
5001 #if IS_ENABLED(CONFIG_IPV6)
5002 	} else if (level == SOL_IPV6) {
5003 		struct ipv6_pinfo *np = inet6_sk(sk);
5004 
5005 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5006 			goto err_clear;
5007 
5008 		/* Only some options are supported */
5009 		switch (optname) {
5010 		case IPV6_TCLASS:
5011 			*((int *)optval) = (int)np->tclass;
5012 			break;
5013 		default:
5014 			goto err_clear;
5015 		}
5016 #endif
5017 #endif
5018 	} else {
5019 		goto err_clear;
5020 	}
5021 	return 0;
5022 err_clear:
5023 	memset(optval, 0, optlen);
5024 	return -EINVAL;
5025 }
5026 
5027 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5028 	   int, level, int, optname, char *, optval, int, optlen)
5029 {
5030 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5031 }
5032 
5033 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5034 	.func		= bpf_sock_addr_setsockopt,
5035 	.gpl_only	= false,
5036 	.ret_type	= RET_INTEGER,
5037 	.arg1_type	= ARG_PTR_TO_CTX,
5038 	.arg2_type	= ARG_ANYTHING,
5039 	.arg3_type	= ARG_ANYTHING,
5040 	.arg4_type	= ARG_PTR_TO_MEM,
5041 	.arg5_type	= ARG_CONST_SIZE,
5042 };
5043 
5044 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5045 	   int, level, int, optname, char *, optval, int, optlen)
5046 {
5047 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5048 }
5049 
5050 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5051 	.func		= bpf_sock_addr_getsockopt,
5052 	.gpl_only	= false,
5053 	.ret_type	= RET_INTEGER,
5054 	.arg1_type	= ARG_PTR_TO_CTX,
5055 	.arg2_type	= ARG_ANYTHING,
5056 	.arg3_type	= ARG_ANYTHING,
5057 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5058 	.arg5_type	= ARG_CONST_SIZE,
5059 };
5060 
5061 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5062 	   int, level, int, optname, char *, optval, int, optlen)
5063 {
5064 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5065 }
5066 
5067 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5068 	.func		= bpf_sock_ops_setsockopt,
5069 	.gpl_only	= false,
5070 	.ret_type	= RET_INTEGER,
5071 	.arg1_type	= ARG_PTR_TO_CTX,
5072 	.arg2_type	= ARG_ANYTHING,
5073 	.arg3_type	= ARG_ANYTHING,
5074 	.arg4_type	= ARG_PTR_TO_MEM,
5075 	.arg5_type	= ARG_CONST_SIZE,
5076 };
5077 
5078 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5079 				int optname, const u8 **start)
5080 {
5081 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5082 	const u8 *hdr_start;
5083 	int ret;
5084 
5085 	if (syn_skb) {
5086 		/* sk is a request_sock here */
5087 
5088 		if (optname == TCP_BPF_SYN) {
5089 			hdr_start = syn_skb->data;
5090 			ret = tcp_hdrlen(syn_skb);
5091 		} else if (optname == TCP_BPF_SYN_IP) {
5092 			hdr_start = skb_network_header(syn_skb);
5093 			ret = skb_network_header_len(syn_skb) +
5094 				tcp_hdrlen(syn_skb);
5095 		} else {
5096 			/* optname == TCP_BPF_SYN_MAC */
5097 			hdr_start = skb_mac_header(syn_skb);
5098 			ret = skb_mac_header_len(syn_skb) +
5099 				skb_network_header_len(syn_skb) +
5100 				tcp_hdrlen(syn_skb);
5101 		}
5102 	} else {
5103 		struct sock *sk = bpf_sock->sk;
5104 		struct saved_syn *saved_syn;
5105 
5106 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5107 			/* synack retransmit. bpf_sock->syn_skb will
5108 			 * not be available.  It has to resort to
5109 			 * saved_syn (if it is saved).
5110 			 */
5111 			saved_syn = inet_reqsk(sk)->saved_syn;
5112 		else
5113 			saved_syn = tcp_sk(sk)->saved_syn;
5114 
5115 		if (!saved_syn)
5116 			return -ENOENT;
5117 
5118 		if (optname == TCP_BPF_SYN) {
5119 			hdr_start = saved_syn->data +
5120 				saved_syn->mac_hdrlen +
5121 				saved_syn->network_hdrlen;
5122 			ret = saved_syn->tcp_hdrlen;
5123 		} else if (optname == TCP_BPF_SYN_IP) {
5124 			hdr_start = saved_syn->data +
5125 				saved_syn->mac_hdrlen;
5126 			ret = saved_syn->network_hdrlen +
5127 				saved_syn->tcp_hdrlen;
5128 		} else {
5129 			/* optname == TCP_BPF_SYN_MAC */
5130 
5131 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5132 			if (!saved_syn->mac_hdrlen)
5133 				return -ENOENT;
5134 
5135 			hdr_start = saved_syn->data;
5136 			ret = saved_syn->mac_hdrlen +
5137 				saved_syn->network_hdrlen +
5138 				saved_syn->tcp_hdrlen;
5139 		}
5140 	}
5141 
5142 	*start = hdr_start;
5143 	return ret;
5144 }
5145 
5146 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5147 	   int, level, int, optname, char *, optval, int, optlen)
5148 {
5149 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5150 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5151 		int ret, copy_len = 0;
5152 		const u8 *start;
5153 
5154 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5155 		if (ret > 0) {
5156 			copy_len = ret;
5157 			if (optlen < copy_len) {
5158 				copy_len = optlen;
5159 				ret = -ENOSPC;
5160 			}
5161 
5162 			memcpy(optval, start, copy_len);
5163 		}
5164 
5165 		/* Zero out unused buffer at the end */
5166 		memset(optval + copy_len, 0, optlen - copy_len);
5167 
5168 		return ret;
5169 	}
5170 
5171 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5172 }
5173 
5174 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5175 	.func		= bpf_sock_ops_getsockopt,
5176 	.gpl_only	= false,
5177 	.ret_type	= RET_INTEGER,
5178 	.arg1_type	= ARG_PTR_TO_CTX,
5179 	.arg2_type	= ARG_ANYTHING,
5180 	.arg3_type	= ARG_ANYTHING,
5181 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5182 	.arg5_type	= ARG_CONST_SIZE,
5183 };
5184 
5185 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5186 	   int, argval)
5187 {
5188 	struct sock *sk = bpf_sock->sk;
5189 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5190 
5191 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5192 		return -EINVAL;
5193 
5194 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5195 
5196 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5197 }
5198 
5199 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5200 	.func		= bpf_sock_ops_cb_flags_set,
5201 	.gpl_only	= false,
5202 	.ret_type	= RET_INTEGER,
5203 	.arg1_type	= ARG_PTR_TO_CTX,
5204 	.arg2_type	= ARG_ANYTHING,
5205 };
5206 
5207 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5208 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5209 
5210 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5211 	   int, addr_len)
5212 {
5213 #ifdef CONFIG_INET
5214 	struct sock *sk = ctx->sk;
5215 	u32 flags = BIND_FROM_BPF;
5216 	int err;
5217 
5218 	err = -EINVAL;
5219 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5220 		return err;
5221 	if (addr->sa_family == AF_INET) {
5222 		if (addr_len < sizeof(struct sockaddr_in))
5223 			return err;
5224 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5225 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5226 		return __inet_bind(sk, addr, addr_len, flags);
5227 #if IS_ENABLED(CONFIG_IPV6)
5228 	} else if (addr->sa_family == AF_INET6) {
5229 		if (addr_len < SIN6_LEN_RFC2133)
5230 			return err;
5231 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5232 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5233 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5234 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5235 		 */
5236 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5237 #endif /* CONFIG_IPV6 */
5238 	}
5239 #endif /* CONFIG_INET */
5240 
5241 	return -EAFNOSUPPORT;
5242 }
5243 
5244 static const struct bpf_func_proto bpf_bind_proto = {
5245 	.func		= bpf_bind,
5246 	.gpl_only	= false,
5247 	.ret_type	= RET_INTEGER,
5248 	.arg1_type	= ARG_PTR_TO_CTX,
5249 	.arg2_type	= ARG_PTR_TO_MEM,
5250 	.arg3_type	= ARG_CONST_SIZE,
5251 };
5252 
5253 #ifdef CONFIG_XFRM
5254 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5255 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5256 {
5257 	const struct sec_path *sp = skb_sec_path(skb);
5258 	const struct xfrm_state *x;
5259 
5260 	if (!sp || unlikely(index >= sp->len || flags))
5261 		goto err_clear;
5262 
5263 	x = sp->xvec[index];
5264 
5265 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5266 		goto err_clear;
5267 
5268 	to->reqid = x->props.reqid;
5269 	to->spi = x->id.spi;
5270 	to->family = x->props.family;
5271 	to->ext = 0;
5272 
5273 	if (to->family == AF_INET6) {
5274 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5275 		       sizeof(to->remote_ipv6));
5276 	} else {
5277 		to->remote_ipv4 = x->props.saddr.a4;
5278 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5279 	}
5280 
5281 	return 0;
5282 err_clear:
5283 	memset(to, 0, size);
5284 	return -EINVAL;
5285 }
5286 
5287 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5288 	.func		= bpf_skb_get_xfrm_state,
5289 	.gpl_only	= false,
5290 	.ret_type	= RET_INTEGER,
5291 	.arg1_type	= ARG_PTR_TO_CTX,
5292 	.arg2_type	= ARG_ANYTHING,
5293 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5294 	.arg4_type	= ARG_CONST_SIZE,
5295 	.arg5_type	= ARG_ANYTHING,
5296 };
5297 #endif
5298 
5299 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5300 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5301 				  const struct neighbour *neigh,
5302 				  const struct net_device *dev, u32 mtu)
5303 {
5304 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5305 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5306 	params->h_vlan_TCI = 0;
5307 	params->h_vlan_proto = 0;
5308 	if (mtu)
5309 		params->mtu_result = mtu; /* union with tot_len */
5310 
5311 	return 0;
5312 }
5313 #endif
5314 
5315 #if IS_ENABLED(CONFIG_INET)
5316 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5317 			       u32 flags, bool check_mtu)
5318 {
5319 	struct fib_nh_common *nhc;
5320 	struct in_device *in_dev;
5321 	struct neighbour *neigh;
5322 	struct net_device *dev;
5323 	struct fib_result res;
5324 	struct flowi4 fl4;
5325 	u32 mtu = 0;
5326 	int err;
5327 
5328 	dev = dev_get_by_index_rcu(net, params->ifindex);
5329 	if (unlikely(!dev))
5330 		return -ENODEV;
5331 
5332 	/* verify forwarding is enabled on this interface */
5333 	in_dev = __in_dev_get_rcu(dev);
5334 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5335 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5336 
5337 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5338 		fl4.flowi4_iif = 1;
5339 		fl4.flowi4_oif = params->ifindex;
5340 	} else {
5341 		fl4.flowi4_iif = params->ifindex;
5342 		fl4.flowi4_oif = 0;
5343 	}
5344 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5345 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5346 	fl4.flowi4_flags = 0;
5347 
5348 	fl4.flowi4_proto = params->l4_protocol;
5349 	fl4.daddr = params->ipv4_dst;
5350 	fl4.saddr = params->ipv4_src;
5351 	fl4.fl4_sport = params->sport;
5352 	fl4.fl4_dport = params->dport;
5353 	fl4.flowi4_multipath_hash = 0;
5354 
5355 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5356 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5357 		struct fib_table *tb;
5358 
5359 		tb = fib_get_table(net, tbid);
5360 		if (unlikely(!tb))
5361 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5362 
5363 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5364 	} else {
5365 		fl4.flowi4_mark = 0;
5366 		fl4.flowi4_secid = 0;
5367 		fl4.flowi4_tun_key.tun_id = 0;
5368 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5369 
5370 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5371 	}
5372 
5373 	if (err) {
5374 		/* map fib lookup errors to RTN_ type */
5375 		if (err == -EINVAL)
5376 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5377 		if (err == -EHOSTUNREACH)
5378 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5379 		if (err == -EACCES)
5380 			return BPF_FIB_LKUP_RET_PROHIBIT;
5381 
5382 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5383 	}
5384 
5385 	if (res.type != RTN_UNICAST)
5386 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5387 
5388 	if (fib_info_num_path(res.fi) > 1)
5389 		fib_select_path(net, &res, &fl4, NULL);
5390 
5391 	if (check_mtu) {
5392 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5393 		if (params->tot_len > mtu) {
5394 			params->mtu_result = mtu; /* union with tot_len */
5395 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5396 		}
5397 	}
5398 
5399 	nhc = res.nhc;
5400 
5401 	/* do not handle lwt encaps right now */
5402 	if (nhc->nhc_lwtstate)
5403 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5404 
5405 	dev = nhc->nhc_dev;
5406 
5407 	params->rt_metric = res.fi->fib_priority;
5408 	params->ifindex = dev->ifindex;
5409 
5410 	/* xdp and cls_bpf programs are run in RCU-bh so
5411 	 * rcu_read_lock_bh is not needed here
5412 	 */
5413 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5414 		if (nhc->nhc_gw_family)
5415 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5416 
5417 		neigh = __ipv4_neigh_lookup_noref(dev,
5418 						 (__force u32)params->ipv4_dst);
5419 	} else {
5420 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5421 
5422 		params->family = AF_INET6;
5423 		*dst = nhc->nhc_gw.ipv6;
5424 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5425 	}
5426 
5427 	if (!neigh)
5428 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5429 
5430 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5431 }
5432 #endif
5433 
5434 #if IS_ENABLED(CONFIG_IPV6)
5435 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5436 			       u32 flags, bool check_mtu)
5437 {
5438 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5439 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5440 	struct fib6_result res = {};
5441 	struct neighbour *neigh;
5442 	struct net_device *dev;
5443 	struct inet6_dev *idev;
5444 	struct flowi6 fl6;
5445 	int strict = 0;
5446 	int oif, err;
5447 	u32 mtu = 0;
5448 
5449 	/* link local addresses are never forwarded */
5450 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5451 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5452 
5453 	dev = dev_get_by_index_rcu(net, params->ifindex);
5454 	if (unlikely(!dev))
5455 		return -ENODEV;
5456 
5457 	idev = __in6_dev_get_safely(dev);
5458 	if (unlikely(!idev || !idev->cnf.forwarding))
5459 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5460 
5461 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5462 		fl6.flowi6_iif = 1;
5463 		oif = fl6.flowi6_oif = params->ifindex;
5464 	} else {
5465 		oif = fl6.flowi6_iif = params->ifindex;
5466 		fl6.flowi6_oif = 0;
5467 		strict = RT6_LOOKUP_F_HAS_SADDR;
5468 	}
5469 	fl6.flowlabel = params->flowinfo;
5470 	fl6.flowi6_scope = 0;
5471 	fl6.flowi6_flags = 0;
5472 	fl6.mp_hash = 0;
5473 
5474 	fl6.flowi6_proto = params->l4_protocol;
5475 	fl6.daddr = *dst;
5476 	fl6.saddr = *src;
5477 	fl6.fl6_sport = params->sport;
5478 	fl6.fl6_dport = params->dport;
5479 
5480 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5481 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5482 		struct fib6_table *tb;
5483 
5484 		tb = ipv6_stub->fib6_get_table(net, tbid);
5485 		if (unlikely(!tb))
5486 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5487 
5488 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5489 						   strict);
5490 	} else {
5491 		fl6.flowi6_mark = 0;
5492 		fl6.flowi6_secid = 0;
5493 		fl6.flowi6_tun_key.tun_id = 0;
5494 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5495 
5496 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5497 	}
5498 
5499 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5500 		     res.f6i == net->ipv6.fib6_null_entry))
5501 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5502 
5503 	switch (res.fib6_type) {
5504 	/* only unicast is forwarded */
5505 	case RTN_UNICAST:
5506 		break;
5507 	case RTN_BLACKHOLE:
5508 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5509 	case RTN_UNREACHABLE:
5510 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5511 	case RTN_PROHIBIT:
5512 		return BPF_FIB_LKUP_RET_PROHIBIT;
5513 	default:
5514 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5515 	}
5516 
5517 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5518 				    fl6.flowi6_oif != 0, NULL, strict);
5519 
5520 	if (check_mtu) {
5521 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5522 		if (params->tot_len > mtu) {
5523 			params->mtu_result = mtu; /* union with tot_len */
5524 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5525 		}
5526 	}
5527 
5528 	if (res.nh->fib_nh_lws)
5529 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5530 
5531 	if (res.nh->fib_nh_gw_family)
5532 		*dst = res.nh->fib_nh_gw6;
5533 
5534 	dev = res.nh->fib_nh_dev;
5535 	params->rt_metric = res.f6i->fib6_metric;
5536 	params->ifindex = dev->ifindex;
5537 
5538 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5539 	 * not needed here.
5540 	 */
5541 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5542 	if (!neigh)
5543 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5544 
5545 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5546 }
5547 #endif
5548 
5549 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5550 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5551 {
5552 	if (plen < sizeof(*params))
5553 		return -EINVAL;
5554 
5555 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5556 		return -EINVAL;
5557 
5558 	switch (params->family) {
5559 #if IS_ENABLED(CONFIG_INET)
5560 	case AF_INET:
5561 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5562 					   flags, true);
5563 #endif
5564 #if IS_ENABLED(CONFIG_IPV6)
5565 	case AF_INET6:
5566 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5567 					   flags, true);
5568 #endif
5569 	}
5570 	return -EAFNOSUPPORT;
5571 }
5572 
5573 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5574 	.func		= bpf_xdp_fib_lookup,
5575 	.gpl_only	= true,
5576 	.ret_type	= RET_INTEGER,
5577 	.arg1_type      = ARG_PTR_TO_CTX,
5578 	.arg2_type      = ARG_PTR_TO_MEM,
5579 	.arg3_type      = ARG_CONST_SIZE,
5580 	.arg4_type	= ARG_ANYTHING,
5581 };
5582 
5583 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5584 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5585 {
5586 	struct net *net = dev_net(skb->dev);
5587 	int rc = -EAFNOSUPPORT;
5588 	bool check_mtu = false;
5589 
5590 	if (plen < sizeof(*params))
5591 		return -EINVAL;
5592 
5593 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5594 		return -EINVAL;
5595 
5596 	if (params->tot_len)
5597 		check_mtu = true;
5598 
5599 	switch (params->family) {
5600 #if IS_ENABLED(CONFIG_INET)
5601 	case AF_INET:
5602 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5603 		break;
5604 #endif
5605 #if IS_ENABLED(CONFIG_IPV6)
5606 	case AF_INET6:
5607 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5608 		break;
5609 #endif
5610 	}
5611 
5612 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5613 		struct net_device *dev;
5614 
5615 		/* When tot_len isn't provided by user, check skb
5616 		 * against MTU of FIB lookup resulting net_device
5617 		 */
5618 		dev = dev_get_by_index_rcu(net, params->ifindex);
5619 		if (!is_skb_forwardable(dev, skb))
5620 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5621 
5622 		params->mtu_result = dev->mtu; /* union with tot_len */
5623 	}
5624 
5625 	return rc;
5626 }
5627 
5628 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5629 	.func		= bpf_skb_fib_lookup,
5630 	.gpl_only	= true,
5631 	.ret_type	= RET_INTEGER,
5632 	.arg1_type      = ARG_PTR_TO_CTX,
5633 	.arg2_type      = ARG_PTR_TO_MEM,
5634 	.arg3_type      = ARG_CONST_SIZE,
5635 	.arg4_type	= ARG_ANYTHING,
5636 };
5637 
5638 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
5639 					    u32 ifindex)
5640 {
5641 	struct net *netns = dev_net(dev_curr);
5642 
5643 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
5644 	if (ifindex == 0)
5645 		return dev_curr;
5646 
5647 	return dev_get_by_index_rcu(netns, ifindex);
5648 }
5649 
5650 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
5651 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5652 {
5653 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5654 	struct net_device *dev = skb->dev;
5655 	int skb_len, dev_len;
5656 	int mtu;
5657 
5658 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
5659 		return -EINVAL;
5660 
5661 	if (unlikely(flags & BPF_MTU_CHK_SEGS && len_diff))
5662 		return -EINVAL;
5663 
5664 	dev = __dev_via_ifindex(dev, ifindex);
5665 	if (unlikely(!dev))
5666 		return -ENODEV;
5667 
5668 	mtu = READ_ONCE(dev->mtu);
5669 
5670 	dev_len = mtu + dev->hard_header_len;
5671 	skb_len = skb->len + len_diff; /* minus result pass check */
5672 	if (skb_len <= dev_len) {
5673 		ret = BPF_MTU_CHK_RET_SUCCESS;
5674 		goto out;
5675 	}
5676 	/* At this point, skb->len exceed MTU, but as it include length of all
5677 	 * segments, it can still be below MTU.  The SKB can possibly get
5678 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
5679 	 * must choose if segs are to be MTU checked.
5680 	 */
5681 	if (skb_is_gso(skb)) {
5682 		ret = BPF_MTU_CHK_RET_SUCCESS;
5683 
5684 		if (flags & BPF_MTU_CHK_SEGS &&
5685 		    !skb_gso_validate_network_len(skb, mtu))
5686 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
5687 	}
5688 out:
5689 	/* BPF verifier guarantees valid pointer */
5690 	*mtu_len = mtu;
5691 
5692 	return ret;
5693 }
5694 
5695 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
5696 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5697 {
5698 	struct net_device *dev = xdp->rxq->dev;
5699 	int xdp_len = xdp->data_end - xdp->data;
5700 	int ret = BPF_MTU_CHK_RET_SUCCESS;
5701 	int mtu, dev_len;
5702 
5703 	/* XDP variant doesn't support multi-buffer segment check (yet) */
5704 	if (unlikely(flags))
5705 		return -EINVAL;
5706 
5707 	dev = __dev_via_ifindex(dev, ifindex);
5708 	if (unlikely(!dev))
5709 		return -ENODEV;
5710 
5711 	mtu = READ_ONCE(dev->mtu);
5712 
5713 	/* Add L2-header as dev MTU is L3 size */
5714 	dev_len = mtu + dev->hard_header_len;
5715 
5716 	xdp_len += len_diff; /* minus result pass check */
5717 	if (xdp_len > dev_len)
5718 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5719 
5720 	/* BPF verifier guarantees valid pointer */
5721 	*mtu_len = mtu;
5722 
5723 	return ret;
5724 }
5725 
5726 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
5727 	.func		= bpf_skb_check_mtu,
5728 	.gpl_only	= true,
5729 	.ret_type	= RET_INTEGER,
5730 	.arg1_type      = ARG_PTR_TO_CTX,
5731 	.arg2_type      = ARG_ANYTHING,
5732 	.arg3_type      = ARG_PTR_TO_INT,
5733 	.arg4_type      = ARG_ANYTHING,
5734 	.arg5_type      = ARG_ANYTHING,
5735 };
5736 
5737 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
5738 	.func		= bpf_xdp_check_mtu,
5739 	.gpl_only	= true,
5740 	.ret_type	= RET_INTEGER,
5741 	.arg1_type      = ARG_PTR_TO_CTX,
5742 	.arg2_type      = ARG_ANYTHING,
5743 	.arg3_type      = ARG_PTR_TO_INT,
5744 	.arg4_type      = ARG_ANYTHING,
5745 	.arg5_type      = ARG_ANYTHING,
5746 };
5747 
5748 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5749 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5750 {
5751 	int err;
5752 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5753 
5754 	if (!seg6_validate_srh(srh, len, false))
5755 		return -EINVAL;
5756 
5757 	switch (type) {
5758 	case BPF_LWT_ENCAP_SEG6_INLINE:
5759 		if (skb->protocol != htons(ETH_P_IPV6))
5760 			return -EBADMSG;
5761 
5762 		err = seg6_do_srh_inline(skb, srh);
5763 		break;
5764 	case BPF_LWT_ENCAP_SEG6:
5765 		skb_reset_inner_headers(skb);
5766 		skb->encapsulation = 1;
5767 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5768 		break;
5769 	default:
5770 		return -EINVAL;
5771 	}
5772 
5773 	bpf_compute_data_pointers(skb);
5774 	if (err)
5775 		return err;
5776 
5777 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5778 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5779 
5780 	return seg6_lookup_nexthop(skb, NULL, 0);
5781 }
5782 #endif /* CONFIG_IPV6_SEG6_BPF */
5783 
5784 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5785 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5786 			     bool ingress)
5787 {
5788 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5789 }
5790 #endif
5791 
5792 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5793 	   u32, len)
5794 {
5795 	switch (type) {
5796 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5797 	case BPF_LWT_ENCAP_SEG6:
5798 	case BPF_LWT_ENCAP_SEG6_INLINE:
5799 		return bpf_push_seg6_encap(skb, type, hdr, len);
5800 #endif
5801 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5802 	case BPF_LWT_ENCAP_IP:
5803 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5804 #endif
5805 	default:
5806 		return -EINVAL;
5807 	}
5808 }
5809 
5810 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5811 	   void *, hdr, u32, len)
5812 {
5813 	switch (type) {
5814 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5815 	case BPF_LWT_ENCAP_IP:
5816 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5817 #endif
5818 	default:
5819 		return -EINVAL;
5820 	}
5821 }
5822 
5823 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5824 	.func		= bpf_lwt_in_push_encap,
5825 	.gpl_only	= false,
5826 	.ret_type	= RET_INTEGER,
5827 	.arg1_type	= ARG_PTR_TO_CTX,
5828 	.arg2_type	= ARG_ANYTHING,
5829 	.arg3_type	= ARG_PTR_TO_MEM,
5830 	.arg4_type	= ARG_CONST_SIZE
5831 };
5832 
5833 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5834 	.func		= bpf_lwt_xmit_push_encap,
5835 	.gpl_only	= false,
5836 	.ret_type	= RET_INTEGER,
5837 	.arg1_type	= ARG_PTR_TO_CTX,
5838 	.arg2_type	= ARG_ANYTHING,
5839 	.arg3_type	= ARG_PTR_TO_MEM,
5840 	.arg4_type	= ARG_CONST_SIZE
5841 };
5842 
5843 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5844 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5845 	   const void *, from, u32, len)
5846 {
5847 	struct seg6_bpf_srh_state *srh_state =
5848 		this_cpu_ptr(&seg6_bpf_srh_states);
5849 	struct ipv6_sr_hdr *srh = srh_state->srh;
5850 	void *srh_tlvs, *srh_end, *ptr;
5851 	int srhoff = 0;
5852 
5853 	if (srh == NULL)
5854 		return -EINVAL;
5855 
5856 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5857 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5858 
5859 	ptr = skb->data + offset;
5860 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
5861 		srh_state->valid = false;
5862 	else if (ptr < (void *)&srh->flags ||
5863 		 ptr + len > (void *)&srh->segments)
5864 		return -EFAULT;
5865 
5866 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
5867 		return -EFAULT;
5868 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5869 		return -EINVAL;
5870 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5871 
5872 	memcpy(skb->data + offset, from, len);
5873 	return 0;
5874 }
5875 
5876 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5877 	.func		= bpf_lwt_seg6_store_bytes,
5878 	.gpl_only	= false,
5879 	.ret_type	= RET_INTEGER,
5880 	.arg1_type	= ARG_PTR_TO_CTX,
5881 	.arg2_type	= ARG_ANYTHING,
5882 	.arg3_type	= ARG_PTR_TO_MEM,
5883 	.arg4_type	= ARG_CONST_SIZE
5884 };
5885 
5886 static void bpf_update_srh_state(struct sk_buff *skb)
5887 {
5888 	struct seg6_bpf_srh_state *srh_state =
5889 		this_cpu_ptr(&seg6_bpf_srh_states);
5890 	int srhoff = 0;
5891 
5892 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5893 		srh_state->srh = NULL;
5894 	} else {
5895 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5896 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5897 		srh_state->valid = true;
5898 	}
5899 }
5900 
5901 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5902 	   u32, action, void *, param, u32, param_len)
5903 {
5904 	struct seg6_bpf_srh_state *srh_state =
5905 		this_cpu_ptr(&seg6_bpf_srh_states);
5906 	int hdroff = 0;
5907 	int err;
5908 
5909 	switch (action) {
5910 	case SEG6_LOCAL_ACTION_END_X:
5911 		if (!seg6_bpf_has_valid_srh(skb))
5912 			return -EBADMSG;
5913 		if (param_len != sizeof(struct in6_addr))
5914 			return -EINVAL;
5915 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5916 	case SEG6_LOCAL_ACTION_END_T:
5917 		if (!seg6_bpf_has_valid_srh(skb))
5918 			return -EBADMSG;
5919 		if (param_len != sizeof(int))
5920 			return -EINVAL;
5921 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5922 	case SEG6_LOCAL_ACTION_END_DT6:
5923 		if (!seg6_bpf_has_valid_srh(skb))
5924 			return -EBADMSG;
5925 		if (param_len != sizeof(int))
5926 			return -EINVAL;
5927 
5928 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5929 			return -EBADMSG;
5930 		if (!pskb_pull(skb, hdroff))
5931 			return -EBADMSG;
5932 
5933 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5934 		skb_reset_network_header(skb);
5935 		skb_reset_transport_header(skb);
5936 		skb->encapsulation = 0;
5937 
5938 		bpf_compute_data_pointers(skb);
5939 		bpf_update_srh_state(skb);
5940 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5941 	case SEG6_LOCAL_ACTION_END_B6:
5942 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5943 			return -EBADMSG;
5944 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5945 					  param, param_len);
5946 		if (!err)
5947 			bpf_update_srh_state(skb);
5948 
5949 		return err;
5950 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5951 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5952 			return -EBADMSG;
5953 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5954 					  param, param_len);
5955 		if (!err)
5956 			bpf_update_srh_state(skb);
5957 
5958 		return err;
5959 	default:
5960 		return -EINVAL;
5961 	}
5962 }
5963 
5964 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5965 	.func		= bpf_lwt_seg6_action,
5966 	.gpl_only	= false,
5967 	.ret_type	= RET_INTEGER,
5968 	.arg1_type	= ARG_PTR_TO_CTX,
5969 	.arg2_type	= ARG_ANYTHING,
5970 	.arg3_type	= ARG_PTR_TO_MEM,
5971 	.arg4_type	= ARG_CONST_SIZE
5972 };
5973 
5974 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5975 	   s32, len)
5976 {
5977 	struct seg6_bpf_srh_state *srh_state =
5978 		this_cpu_ptr(&seg6_bpf_srh_states);
5979 	struct ipv6_sr_hdr *srh = srh_state->srh;
5980 	void *srh_end, *srh_tlvs, *ptr;
5981 	struct ipv6hdr *hdr;
5982 	int srhoff = 0;
5983 	int ret;
5984 
5985 	if (unlikely(srh == NULL))
5986 		return -EINVAL;
5987 
5988 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5989 			((srh->first_segment + 1) << 4));
5990 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5991 			srh_state->hdrlen);
5992 	ptr = skb->data + offset;
5993 
5994 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5995 		return -EFAULT;
5996 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5997 		return -EFAULT;
5998 
5999 	if (len > 0) {
6000 		ret = skb_cow_head(skb, len);
6001 		if (unlikely(ret < 0))
6002 			return ret;
6003 
6004 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6005 	} else {
6006 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6007 	}
6008 
6009 	bpf_compute_data_pointers(skb);
6010 	if (unlikely(ret < 0))
6011 		return ret;
6012 
6013 	hdr = (struct ipv6hdr *)skb->data;
6014 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6015 
6016 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6017 		return -EINVAL;
6018 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6019 	srh_state->hdrlen += len;
6020 	srh_state->valid = false;
6021 	return 0;
6022 }
6023 
6024 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6025 	.func		= bpf_lwt_seg6_adjust_srh,
6026 	.gpl_only	= false,
6027 	.ret_type	= RET_INTEGER,
6028 	.arg1_type	= ARG_PTR_TO_CTX,
6029 	.arg2_type	= ARG_ANYTHING,
6030 	.arg3_type	= ARG_ANYTHING,
6031 };
6032 #endif /* CONFIG_IPV6_SEG6_BPF */
6033 
6034 #ifdef CONFIG_INET
6035 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6036 			      int dif, int sdif, u8 family, u8 proto)
6037 {
6038 	bool refcounted = false;
6039 	struct sock *sk = NULL;
6040 
6041 	if (family == AF_INET) {
6042 		__be32 src4 = tuple->ipv4.saddr;
6043 		__be32 dst4 = tuple->ipv4.daddr;
6044 
6045 		if (proto == IPPROTO_TCP)
6046 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
6047 					   src4, tuple->ipv4.sport,
6048 					   dst4, tuple->ipv4.dport,
6049 					   dif, sdif, &refcounted);
6050 		else
6051 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6052 					       dst4, tuple->ipv4.dport,
6053 					       dif, sdif, &udp_table, NULL);
6054 #if IS_ENABLED(CONFIG_IPV6)
6055 	} else {
6056 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6057 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6058 
6059 		if (proto == IPPROTO_TCP)
6060 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
6061 					    src6, tuple->ipv6.sport,
6062 					    dst6, ntohs(tuple->ipv6.dport),
6063 					    dif, sdif, &refcounted);
6064 		else if (likely(ipv6_bpf_stub))
6065 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6066 							    src6, tuple->ipv6.sport,
6067 							    dst6, tuple->ipv6.dport,
6068 							    dif, sdif,
6069 							    &udp_table, NULL);
6070 #endif
6071 	}
6072 
6073 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6074 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6075 		sk = NULL;
6076 	}
6077 	return sk;
6078 }
6079 
6080 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6081  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6082  * Returns the socket as an 'unsigned long' to simplify the casting in the
6083  * callers to satisfy BPF_CALL declarations.
6084  */
6085 static struct sock *
6086 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6087 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6088 		 u64 flags)
6089 {
6090 	struct sock *sk = NULL;
6091 	u8 family = AF_UNSPEC;
6092 	struct net *net;
6093 	int sdif;
6094 
6095 	if (len == sizeof(tuple->ipv4))
6096 		family = AF_INET;
6097 	else if (len == sizeof(tuple->ipv6))
6098 		family = AF_INET6;
6099 	else
6100 		return NULL;
6101 
6102 	if (unlikely(family == AF_UNSPEC || flags ||
6103 		     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6104 		goto out;
6105 
6106 	if (family == AF_INET)
6107 		sdif = inet_sdif(skb);
6108 	else
6109 		sdif = inet6_sdif(skb);
6110 
6111 	if ((s32)netns_id < 0) {
6112 		net = caller_net;
6113 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6114 	} else {
6115 		net = get_net_ns_by_id(caller_net, netns_id);
6116 		if (unlikely(!net))
6117 			goto out;
6118 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6119 		put_net(net);
6120 	}
6121 
6122 out:
6123 	return sk;
6124 }
6125 
6126 static struct sock *
6127 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6128 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6129 		u64 flags)
6130 {
6131 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6132 					   ifindex, proto, netns_id, flags);
6133 
6134 	if (sk) {
6135 		sk = sk_to_full_sk(sk);
6136 		if (!sk_fullsock(sk)) {
6137 			sock_gen_put(sk);
6138 			return NULL;
6139 		}
6140 	}
6141 
6142 	return sk;
6143 }
6144 
6145 static struct sock *
6146 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6147 	       u8 proto, u64 netns_id, u64 flags)
6148 {
6149 	struct net *caller_net;
6150 	int ifindex;
6151 
6152 	if (skb->dev) {
6153 		caller_net = dev_net(skb->dev);
6154 		ifindex = skb->dev->ifindex;
6155 	} else {
6156 		caller_net = sock_net(skb->sk);
6157 		ifindex = 0;
6158 	}
6159 
6160 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6161 				netns_id, flags);
6162 }
6163 
6164 static struct sock *
6165 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6166 	      u8 proto, u64 netns_id, u64 flags)
6167 {
6168 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6169 					 flags);
6170 
6171 	if (sk) {
6172 		sk = sk_to_full_sk(sk);
6173 		if (!sk_fullsock(sk)) {
6174 			sock_gen_put(sk);
6175 			return NULL;
6176 		}
6177 	}
6178 
6179 	return sk;
6180 }
6181 
6182 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6183 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6184 {
6185 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6186 					     netns_id, flags);
6187 }
6188 
6189 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6190 	.func		= bpf_skc_lookup_tcp,
6191 	.gpl_only	= false,
6192 	.pkt_access	= true,
6193 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6194 	.arg1_type	= ARG_PTR_TO_CTX,
6195 	.arg2_type	= ARG_PTR_TO_MEM,
6196 	.arg3_type	= ARG_CONST_SIZE,
6197 	.arg4_type	= ARG_ANYTHING,
6198 	.arg5_type	= ARG_ANYTHING,
6199 };
6200 
6201 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6202 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6203 {
6204 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6205 					    netns_id, flags);
6206 }
6207 
6208 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6209 	.func		= bpf_sk_lookup_tcp,
6210 	.gpl_only	= false,
6211 	.pkt_access	= true,
6212 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6213 	.arg1_type	= ARG_PTR_TO_CTX,
6214 	.arg2_type	= ARG_PTR_TO_MEM,
6215 	.arg3_type	= ARG_CONST_SIZE,
6216 	.arg4_type	= ARG_ANYTHING,
6217 	.arg5_type	= ARG_ANYTHING,
6218 };
6219 
6220 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6221 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6222 {
6223 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6224 					    netns_id, flags);
6225 }
6226 
6227 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6228 	.func		= bpf_sk_lookup_udp,
6229 	.gpl_only	= false,
6230 	.pkt_access	= true,
6231 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6232 	.arg1_type	= ARG_PTR_TO_CTX,
6233 	.arg2_type	= ARG_PTR_TO_MEM,
6234 	.arg3_type	= ARG_CONST_SIZE,
6235 	.arg4_type	= ARG_ANYTHING,
6236 	.arg5_type	= ARG_ANYTHING,
6237 };
6238 
6239 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6240 {
6241 	if (sk && sk_is_refcounted(sk))
6242 		sock_gen_put(sk);
6243 	return 0;
6244 }
6245 
6246 static const struct bpf_func_proto bpf_sk_release_proto = {
6247 	.func		= bpf_sk_release,
6248 	.gpl_only	= false,
6249 	.ret_type	= RET_INTEGER,
6250 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6251 };
6252 
6253 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6254 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6255 {
6256 	struct net *caller_net = dev_net(ctx->rxq->dev);
6257 	int ifindex = ctx->rxq->dev->ifindex;
6258 
6259 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6260 					      ifindex, IPPROTO_UDP, netns_id,
6261 					      flags);
6262 }
6263 
6264 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6265 	.func           = bpf_xdp_sk_lookup_udp,
6266 	.gpl_only       = false,
6267 	.pkt_access     = true,
6268 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6269 	.arg1_type      = ARG_PTR_TO_CTX,
6270 	.arg2_type      = ARG_PTR_TO_MEM,
6271 	.arg3_type      = ARG_CONST_SIZE,
6272 	.arg4_type      = ARG_ANYTHING,
6273 	.arg5_type      = ARG_ANYTHING,
6274 };
6275 
6276 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6277 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6278 {
6279 	struct net *caller_net = dev_net(ctx->rxq->dev);
6280 	int ifindex = ctx->rxq->dev->ifindex;
6281 
6282 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6283 					       ifindex, IPPROTO_TCP, netns_id,
6284 					       flags);
6285 }
6286 
6287 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6288 	.func           = bpf_xdp_skc_lookup_tcp,
6289 	.gpl_only       = false,
6290 	.pkt_access     = true,
6291 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6292 	.arg1_type      = ARG_PTR_TO_CTX,
6293 	.arg2_type      = ARG_PTR_TO_MEM,
6294 	.arg3_type      = ARG_CONST_SIZE,
6295 	.arg4_type      = ARG_ANYTHING,
6296 	.arg5_type      = ARG_ANYTHING,
6297 };
6298 
6299 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6300 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6301 {
6302 	struct net *caller_net = dev_net(ctx->rxq->dev);
6303 	int ifindex = ctx->rxq->dev->ifindex;
6304 
6305 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6306 					      ifindex, IPPROTO_TCP, netns_id,
6307 					      flags);
6308 }
6309 
6310 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6311 	.func           = bpf_xdp_sk_lookup_tcp,
6312 	.gpl_only       = false,
6313 	.pkt_access     = true,
6314 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6315 	.arg1_type      = ARG_PTR_TO_CTX,
6316 	.arg2_type      = ARG_PTR_TO_MEM,
6317 	.arg3_type      = ARG_CONST_SIZE,
6318 	.arg4_type      = ARG_ANYTHING,
6319 	.arg5_type      = ARG_ANYTHING,
6320 };
6321 
6322 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6323 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6324 {
6325 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6326 					       sock_net(ctx->sk), 0,
6327 					       IPPROTO_TCP, netns_id, flags);
6328 }
6329 
6330 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6331 	.func		= bpf_sock_addr_skc_lookup_tcp,
6332 	.gpl_only	= false,
6333 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6334 	.arg1_type	= ARG_PTR_TO_CTX,
6335 	.arg2_type	= ARG_PTR_TO_MEM,
6336 	.arg3_type	= ARG_CONST_SIZE,
6337 	.arg4_type	= ARG_ANYTHING,
6338 	.arg5_type	= ARG_ANYTHING,
6339 };
6340 
6341 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6342 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6343 {
6344 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6345 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6346 					      netns_id, flags);
6347 }
6348 
6349 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6350 	.func		= bpf_sock_addr_sk_lookup_tcp,
6351 	.gpl_only	= false,
6352 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6353 	.arg1_type	= ARG_PTR_TO_CTX,
6354 	.arg2_type	= ARG_PTR_TO_MEM,
6355 	.arg3_type	= ARG_CONST_SIZE,
6356 	.arg4_type	= ARG_ANYTHING,
6357 	.arg5_type	= ARG_ANYTHING,
6358 };
6359 
6360 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6361 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6362 {
6363 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6364 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6365 					      netns_id, flags);
6366 }
6367 
6368 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6369 	.func		= bpf_sock_addr_sk_lookup_udp,
6370 	.gpl_only	= false,
6371 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6372 	.arg1_type	= ARG_PTR_TO_CTX,
6373 	.arg2_type	= ARG_PTR_TO_MEM,
6374 	.arg3_type	= ARG_CONST_SIZE,
6375 	.arg4_type	= ARG_ANYTHING,
6376 	.arg5_type	= ARG_ANYTHING,
6377 };
6378 
6379 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6380 				  struct bpf_insn_access_aux *info)
6381 {
6382 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6383 					  icsk_retransmits))
6384 		return false;
6385 
6386 	if (off % size != 0)
6387 		return false;
6388 
6389 	switch (off) {
6390 	case offsetof(struct bpf_tcp_sock, bytes_received):
6391 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6392 		return size == sizeof(__u64);
6393 	default:
6394 		return size == sizeof(__u32);
6395 	}
6396 }
6397 
6398 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6399 				    const struct bpf_insn *si,
6400 				    struct bpf_insn *insn_buf,
6401 				    struct bpf_prog *prog, u32 *target_size)
6402 {
6403 	struct bpf_insn *insn = insn_buf;
6404 
6405 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6406 	do {								\
6407 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6408 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6409 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6410 				      si->dst_reg, si->src_reg,		\
6411 				      offsetof(struct tcp_sock, FIELD)); \
6412 	} while (0)
6413 
6414 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6415 	do {								\
6416 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6417 					  FIELD) >			\
6418 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6419 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6420 					struct inet_connection_sock,	\
6421 					FIELD),				\
6422 				      si->dst_reg, si->src_reg,		\
6423 				      offsetof(				\
6424 					struct inet_connection_sock,	\
6425 					FIELD));			\
6426 	} while (0)
6427 
6428 	if (insn > insn_buf)
6429 		return insn - insn_buf;
6430 
6431 	switch (si->off) {
6432 	case offsetof(struct bpf_tcp_sock, rtt_min):
6433 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6434 			     sizeof(struct minmax));
6435 		BUILD_BUG_ON(sizeof(struct minmax) <
6436 			     sizeof(struct minmax_sample));
6437 
6438 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6439 				      offsetof(struct tcp_sock, rtt_min) +
6440 				      offsetof(struct minmax_sample, v));
6441 		break;
6442 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6443 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6444 		break;
6445 	case offsetof(struct bpf_tcp_sock, srtt_us):
6446 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6447 		break;
6448 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6449 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6450 		break;
6451 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6452 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6453 		break;
6454 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6455 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6456 		break;
6457 	case offsetof(struct bpf_tcp_sock, snd_una):
6458 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6459 		break;
6460 	case offsetof(struct bpf_tcp_sock, mss_cache):
6461 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6462 		break;
6463 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6464 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6465 		break;
6466 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6467 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6468 		break;
6469 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6470 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6471 		break;
6472 	case offsetof(struct bpf_tcp_sock, packets_out):
6473 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6474 		break;
6475 	case offsetof(struct bpf_tcp_sock, retrans_out):
6476 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6477 		break;
6478 	case offsetof(struct bpf_tcp_sock, total_retrans):
6479 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6480 		break;
6481 	case offsetof(struct bpf_tcp_sock, segs_in):
6482 		BPF_TCP_SOCK_GET_COMMON(segs_in);
6483 		break;
6484 	case offsetof(struct bpf_tcp_sock, data_segs_in):
6485 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6486 		break;
6487 	case offsetof(struct bpf_tcp_sock, segs_out):
6488 		BPF_TCP_SOCK_GET_COMMON(segs_out);
6489 		break;
6490 	case offsetof(struct bpf_tcp_sock, data_segs_out):
6491 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6492 		break;
6493 	case offsetof(struct bpf_tcp_sock, lost_out):
6494 		BPF_TCP_SOCK_GET_COMMON(lost_out);
6495 		break;
6496 	case offsetof(struct bpf_tcp_sock, sacked_out):
6497 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
6498 		break;
6499 	case offsetof(struct bpf_tcp_sock, bytes_received):
6500 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
6501 		break;
6502 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6503 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6504 		break;
6505 	case offsetof(struct bpf_tcp_sock, dsack_dups):
6506 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6507 		break;
6508 	case offsetof(struct bpf_tcp_sock, delivered):
6509 		BPF_TCP_SOCK_GET_COMMON(delivered);
6510 		break;
6511 	case offsetof(struct bpf_tcp_sock, delivered_ce):
6512 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6513 		break;
6514 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6515 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6516 		break;
6517 	}
6518 
6519 	return insn - insn_buf;
6520 }
6521 
6522 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6523 {
6524 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6525 		return (unsigned long)sk;
6526 
6527 	return (unsigned long)NULL;
6528 }
6529 
6530 const struct bpf_func_proto bpf_tcp_sock_proto = {
6531 	.func		= bpf_tcp_sock,
6532 	.gpl_only	= false,
6533 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
6534 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6535 };
6536 
6537 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6538 {
6539 	sk = sk_to_full_sk(sk);
6540 
6541 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6542 		return (unsigned long)sk;
6543 
6544 	return (unsigned long)NULL;
6545 }
6546 
6547 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6548 	.func		= bpf_get_listener_sock,
6549 	.gpl_only	= false,
6550 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6551 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6552 };
6553 
6554 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6555 {
6556 	unsigned int iphdr_len;
6557 
6558 	switch (skb_protocol(skb, true)) {
6559 	case cpu_to_be16(ETH_P_IP):
6560 		iphdr_len = sizeof(struct iphdr);
6561 		break;
6562 	case cpu_to_be16(ETH_P_IPV6):
6563 		iphdr_len = sizeof(struct ipv6hdr);
6564 		break;
6565 	default:
6566 		return 0;
6567 	}
6568 
6569 	if (skb_headlen(skb) < iphdr_len)
6570 		return 0;
6571 
6572 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6573 		return 0;
6574 
6575 	return INET_ECN_set_ce(skb);
6576 }
6577 
6578 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6579 				  struct bpf_insn_access_aux *info)
6580 {
6581 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6582 		return false;
6583 
6584 	if (off % size != 0)
6585 		return false;
6586 
6587 	switch (off) {
6588 	default:
6589 		return size == sizeof(__u32);
6590 	}
6591 }
6592 
6593 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6594 				    const struct bpf_insn *si,
6595 				    struct bpf_insn *insn_buf,
6596 				    struct bpf_prog *prog, u32 *target_size)
6597 {
6598 	struct bpf_insn *insn = insn_buf;
6599 
6600 #define BPF_XDP_SOCK_GET(FIELD)						\
6601 	do {								\
6602 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
6603 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
6604 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6605 				      si->dst_reg, si->src_reg,		\
6606 				      offsetof(struct xdp_sock, FIELD)); \
6607 	} while (0)
6608 
6609 	switch (si->off) {
6610 	case offsetof(struct bpf_xdp_sock, queue_id):
6611 		BPF_XDP_SOCK_GET(queue_id);
6612 		break;
6613 	}
6614 
6615 	return insn - insn_buf;
6616 }
6617 
6618 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6619 	.func           = bpf_skb_ecn_set_ce,
6620 	.gpl_only       = false,
6621 	.ret_type       = RET_INTEGER,
6622 	.arg1_type      = ARG_PTR_TO_CTX,
6623 };
6624 
6625 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6626 	   struct tcphdr *, th, u32, th_len)
6627 {
6628 #ifdef CONFIG_SYN_COOKIES
6629 	u32 cookie;
6630 	int ret;
6631 
6632 	if (unlikely(!sk || th_len < sizeof(*th)))
6633 		return -EINVAL;
6634 
6635 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6636 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6637 		return -EINVAL;
6638 
6639 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6640 		return -EINVAL;
6641 
6642 	if (!th->ack || th->rst || th->syn)
6643 		return -ENOENT;
6644 
6645 	if (tcp_synq_no_recent_overflow(sk))
6646 		return -ENOENT;
6647 
6648 	cookie = ntohl(th->ack_seq) - 1;
6649 
6650 	switch (sk->sk_family) {
6651 	case AF_INET:
6652 		if (unlikely(iph_len < sizeof(struct iphdr)))
6653 			return -EINVAL;
6654 
6655 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6656 		break;
6657 
6658 #if IS_BUILTIN(CONFIG_IPV6)
6659 	case AF_INET6:
6660 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6661 			return -EINVAL;
6662 
6663 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6664 		break;
6665 #endif /* CONFIG_IPV6 */
6666 
6667 	default:
6668 		return -EPROTONOSUPPORT;
6669 	}
6670 
6671 	if (ret > 0)
6672 		return 0;
6673 
6674 	return -ENOENT;
6675 #else
6676 	return -ENOTSUPP;
6677 #endif
6678 }
6679 
6680 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6681 	.func		= bpf_tcp_check_syncookie,
6682 	.gpl_only	= true,
6683 	.pkt_access	= true,
6684 	.ret_type	= RET_INTEGER,
6685 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6686 	.arg2_type	= ARG_PTR_TO_MEM,
6687 	.arg3_type	= ARG_CONST_SIZE,
6688 	.arg4_type	= ARG_PTR_TO_MEM,
6689 	.arg5_type	= ARG_CONST_SIZE,
6690 };
6691 
6692 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6693 	   struct tcphdr *, th, u32, th_len)
6694 {
6695 #ifdef CONFIG_SYN_COOKIES
6696 	u32 cookie;
6697 	u16 mss;
6698 
6699 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6700 		return -EINVAL;
6701 
6702 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6703 		return -EINVAL;
6704 
6705 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6706 		return -ENOENT;
6707 
6708 	if (!th->syn || th->ack || th->fin || th->rst)
6709 		return -EINVAL;
6710 
6711 	if (unlikely(iph_len < sizeof(struct iphdr)))
6712 		return -EINVAL;
6713 
6714 	/* Both struct iphdr and struct ipv6hdr have the version field at the
6715 	 * same offset so we can cast to the shorter header (struct iphdr).
6716 	 */
6717 	switch (((struct iphdr *)iph)->version) {
6718 	case 4:
6719 		if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6720 			return -EINVAL;
6721 
6722 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6723 		break;
6724 
6725 #if IS_BUILTIN(CONFIG_IPV6)
6726 	case 6:
6727 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6728 			return -EINVAL;
6729 
6730 		if (sk->sk_family != AF_INET6)
6731 			return -EINVAL;
6732 
6733 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6734 		break;
6735 #endif /* CONFIG_IPV6 */
6736 
6737 	default:
6738 		return -EPROTONOSUPPORT;
6739 	}
6740 	if (mss == 0)
6741 		return -ENOENT;
6742 
6743 	return cookie | ((u64)mss << 32);
6744 #else
6745 	return -EOPNOTSUPP;
6746 #endif /* CONFIG_SYN_COOKIES */
6747 }
6748 
6749 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6750 	.func		= bpf_tcp_gen_syncookie,
6751 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
6752 	.pkt_access	= true,
6753 	.ret_type	= RET_INTEGER,
6754 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6755 	.arg2_type	= ARG_PTR_TO_MEM,
6756 	.arg3_type	= ARG_CONST_SIZE,
6757 	.arg4_type	= ARG_PTR_TO_MEM,
6758 	.arg5_type	= ARG_CONST_SIZE,
6759 };
6760 
6761 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6762 {
6763 	if (!sk || flags != 0)
6764 		return -EINVAL;
6765 	if (!skb_at_tc_ingress(skb))
6766 		return -EOPNOTSUPP;
6767 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6768 		return -ENETUNREACH;
6769 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6770 		return -ESOCKTNOSUPPORT;
6771 	if (sk_is_refcounted(sk) &&
6772 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6773 		return -ENOENT;
6774 
6775 	skb_orphan(skb);
6776 	skb->sk = sk;
6777 	skb->destructor = sock_pfree;
6778 
6779 	return 0;
6780 }
6781 
6782 static const struct bpf_func_proto bpf_sk_assign_proto = {
6783 	.func		= bpf_sk_assign,
6784 	.gpl_only	= false,
6785 	.ret_type	= RET_INTEGER,
6786 	.arg1_type      = ARG_PTR_TO_CTX,
6787 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6788 	.arg3_type	= ARG_ANYTHING,
6789 };
6790 
6791 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6792 				    u8 search_kind, const u8 *magic,
6793 				    u8 magic_len, bool *eol)
6794 {
6795 	u8 kind, kind_len;
6796 
6797 	*eol = false;
6798 
6799 	while (op < opend) {
6800 		kind = op[0];
6801 
6802 		if (kind == TCPOPT_EOL) {
6803 			*eol = true;
6804 			return ERR_PTR(-ENOMSG);
6805 		} else if (kind == TCPOPT_NOP) {
6806 			op++;
6807 			continue;
6808 		}
6809 
6810 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6811 			/* Something is wrong in the received header.
6812 			 * Follow the TCP stack's tcp_parse_options()
6813 			 * and just bail here.
6814 			 */
6815 			return ERR_PTR(-EFAULT);
6816 
6817 		kind_len = op[1];
6818 		if (search_kind == kind) {
6819 			if (!magic_len)
6820 				return op;
6821 
6822 			if (magic_len > kind_len - 2)
6823 				return ERR_PTR(-ENOMSG);
6824 
6825 			if (!memcmp(&op[2], magic, magic_len))
6826 				return op;
6827 		}
6828 
6829 		op += kind_len;
6830 	}
6831 
6832 	return ERR_PTR(-ENOMSG);
6833 }
6834 
6835 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6836 	   void *, search_res, u32, len, u64, flags)
6837 {
6838 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6839 	const u8 *op, *opend, *magic, *search = search_res;
6840 	u8 search_kind, search_len, copy_len, magic_len;
6841 	int ret;
6842 
6843 	/* 2 byte is the minimal option len except TCPOPT_NOP and
6844 	 * TCPOPT_EOL which are useless for the bpf prog to learn
6845 	 * and this helper disallow loading them also.
6846 	 */
6847 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6848 		return -EINVAL;
6849 
6850 	search_kind = search[0];
6851 	search_len = search[1];
6852 
6853 	if (search_len > len || search_kind == TCPOPT_NOP ||
6854 	    search_kind == TCPOPT_EOL)
6855 		return -EINVAL;
6856 
6857 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
6858 		/* 16 or 32 bit magic.  +2 for kind and kind length */
6859 		if (search_len != 4 && search_len != 6)
6860 			return -EINVAL;
6861 		magic = &search[2];
6862 		magic_len = search_len - 2;
6863 	} else {
6864 		if (search_len)
6865 			return -EINVAL;
6866 		magic = NULL;
6867 		magic_len = 0;
6868 	}
6869 
6870 	if (load_syn) {
6871 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6872 		if (ret < 0)
6873 			return ret;
6874 
6875 		opend = op + ret;
6876 		op += sizeof(struct tcphdr);
6877 	} else {
6878 		if (!bpf_sock->skb ||
6879 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6880 			/* This bpf_sock->op cannot call this helper */
6881 			return -EPERM;
6882 
6883 		opend = bpf_sock->skb_data_end;
6884 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
6885 	}
6886 
6887 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
6888 				&eol);
6889 	if (IS_ERR(op))
6890 		return PTR_ERR(op);
6891 
6892 	copy_len = op[1];
6893 	ret = copy_len;
6894 	if (copy_len > len) {
6895 		ret = -ENOSPC;
6896 		copy_len = len;
6897 	}
6898 
6899 	memcpy(search_res, op, copy_len);
6900 	return ret;
6901 }
6902 
6903 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
6904 	.func		= bpf_sock_ops_load_hdr_opt,
6905 	.gpl_only	= false,
6906 	.ret_type	= RET_INTEGER,
6907 	.arg1_type	= ARG_PTR_TO_CTX,
6908 	.arg2_type	= ARG_PTR_TO_MEM,
6909 	.arg3_type	= ARG_CONST_SIZE,
6910 	.arg4_type	= ARG_ANYTHING,
6911 };
6912 
6913 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6914 	   const void *, from, u32, len, u64, flags)
6915 {
6916 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
6917 	const u8 *op, *new_op, *magic = NULL;
6918 	struct sk_buff *skb;
6919 	bool eol;
6920 
6921 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
6922 		return -EPERM;
6923 
6924 	if (len < 2 || flags)
6925 		return -EINVAL;
6926 
6927 	new_op = from;
6928 	new_kind = new_op[0];
6929 	new_kind_len = new_op[1];
6930 
6931 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
6932 	    new_kind == TCPOPT_EOL)
6933 		return -EINVAL;
6934 
6935 	if (new_kind_len > bpf_sock->remaining_opt_len)
6936 		return -ENOSPC;
6937 
6938 	/* 253 is another experimental kind */
6939 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
6940 		if (new_kind_len < 4)
6941 			return -EINVAL;
6942 		/* Match for the 2 byte magic also.
6943 		 * RFC 6994: the magic could be 2 or 4 bytes.
6944 		 * Hence, matching by 2 byte only is on the
6945 		 * conservative side but it is the right
6946 		 * thing to do for the 'search-for-duplication'
6947 		 * purpose.
6948 		 */
6949 		magic = &new_op[2];
6950 		magic_len = 2;
6951 	}
6952 
6953 	/* Check for duplication */
6954 	skb = bpf_sock->skb;
6955 	op = skb->data + sizeof(struct tcphdr);
6956 	opend = bpf_sock->skb_data_end;
6957 
6958 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
6959 				&eol);
6960 	if (!IS_ERR(op))
6961 		return -EEXIST;
6962 
6963 	if (PTR_ERR(op) != -ENOMSG)
6964 		return PTR_ERR(op);
6965 
6966 	if (eol)
6967 		/* The option has been ended.  Treat it as no more
6968 		 * header option can be written.
6969 		 */
6970 		return -ENOSPC;
6971 
6972 	/* No duplication found.  Store the header option. */
6973 	memcpy(opend, from, new_kind_len);
6974 
6975 	bpf_sock->remaining_opt_len -= new_kind_len;
6976 	bpf_sock->skb_data_end += new_kind_len;
6977 
6978 	return 0;
6979 }
6980 
6981 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
6982 	.func		= bpf_sock_ops_store_hdr_opt,
6983 	.gpl_only	= false,
6984 	.ret_type	= RET_INTEGER,
6985 	.arg1_type	= ARG_PTR_TO_CTX,
6986 	.arg2_type	= ARG_PTR_TO_MEM,
6987 	.arg3_type	= ARG_CONST_SIZE,
6988 	.arg4_type	= ARG_ANYTHING,
6989 };
6990 
6991 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6992 	   u32, len, u64, flags)
6993 {
6994 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6995 		return -EPERM;
6996 
6997 	if (flags || len < 2)
6998 		return -EINVAL;
6999 
7000 	if (len > bpf_sock->remaining_opt_len)
7001 		return -ENOSPC;
7002 
7003 	bpf_sock->remaining_opt_len -= len;
7004 
7005 	return 0;
7006 }
7007 
7008 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7009 	.func		= bpf_sock_ops_reserve_hdr_opt,
7010 	.gpl_only	= false,
7011 	.ret_type	= RET_INTEGER,
7012 	.arg1_type	= ARG_PTR_TO_CTX,
7013 	.arg2_type	= ARG_ANYTHING,
7014 	.arg3_type	= ARG_ANYTHING,
7015 };
7016 
7017 #endif /* CONFIG_INET */
7018 
7019 bool bpf_helper_changes_pkt_data(void *func)
7020 {
7021 	if (func == bpf_skb_vlan_push ||
7022 	    func == bpf_skb_vlan_pop ||
7023 	    func == bpf_skb_store_bytes ||
7024 	    func == bpf_skb_change_proto ||
7025 	    func == bpf_skb_change_head ||
7026 	    func == sk_skb_change_head ||
7027 	    func == bpf_skb_change_tail ||
7028 	    func == sk_skb_change_tail ||
7029 	    func == bpf_skb_adjust_room ||
7030 	    func == sk_skb_adjust_room ||
7031 	    func == bpf_skb_pull_data ||
7032 	    func == sk_skb_pull_data ||
7033 	    func == bpf_clone_redirect ||
7034 	    func == bpf_l3_csum_replace ||
7035 	    func == bpf_l4_csum_replace ||
7036 	    func == bpf_xdp_adjust_head ||
7037 	    func == bpf_xdp_adjust_meta ||
7038 	    func == bpf_msg_pull_data ||
7039 	    func == bpf_msg_push_data ||
7040 	    func == bpf_msg_pop_data ||
7041 	    func == bpf_xdp_adjust_tail ||
7042 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7043 	    func == bpf_lwt_seg6_store_bytes ||
7044 	    func == bpf_lwt_seg6_adjust_srh ||
7045 	    func == bpf_lwt_seg6_action ||
7046 #endif
7047 #ifdef CONFIG_INET
7048 	    func == bpf_sock_ops_store_hdr_opt ||
7049 #endif
7050 	    func == bpf_lwt_in_push_encap ||
7051 	    func == bpf_lwt_xmit_push_encap)
7052 		return true;
7053 
7054 	return false;
7055 }
7056 
7057 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7058 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7059 
7060 static const struct bpf_func_proto *
7061 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7062 {
7063 	switch (func_id) {
7064 	/* inet and inet6 sockets are created in a process
7065 	 * context so there is always a valid uid/gid
7066 	 */
7067 	case BPF_FUNC_get_current_uid_gid:
7068 		return &bpf_get_current_uid_gid_proto;
7069 	case BPF_FUNC_get_local_storage:
7070 		return &bpf_get_local_storage_proto;
7071 	case BPF_FUNC_get_socket_cookie:
7072 		return &bpf_get_socket_cookie_sock_proto;
7073 	case BPF_FUNC_get_netns_cookie:
7074 		return &bpf_get_netns_cookie_sock_proto;
7075 	case BPF_FUNC_perf_event_output:
7076 		return &bpf_event_output_data_proto;
7077 	case BPF_FUNC_get_current_pid_tgid:
7078 		return &bpf_get_current_pid_tgid_proto;
7079 	case BPF_FUNC_get_current_comm:
7080 		return &bpf_get_current_comm_proto;
7081 #ifdef CONFIG_CGROUPS
7082 	case BPF_FUNC_get_current_cgroup_id:
7083 		return &bpf_get_current_cgroup_id_proto;
7084 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7085 		return &bpf_get_current_ancestor_cgroup_id_proto;
7086 #endif
7087 #ifdef CONFIG_CGROUP_NET_CLASSID
7088 	case BPF_FUNC_get_cgroup_classid:
7089 		return &bpf_get_cgroup_classid_curr_proto;
7090 #endif
7091 	case BPF_FUNC_sk_storage_get:
7092 		return &bpf_sk_storage_get_cg_sock_proto;
7093 	default:
7094 		return bpf_base_func_proto(func_id);
7095 	}
7096 }
7097 
7098 static const struct bpf_func_proto *
7099 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7100 {
7101 	switch (func_id) {
7102 	/* inet and inet6 sockets are created in a process
7103 	 * context so there is always a valid uid/gid
7104 	 */
7105 	case BPF_FUNC_get_current_uid_gid:
7106 		return &bpf_get_current_uid_gid_proto;
7107 	case BPF_FUNC_bind:
7108 		switch (prog->expected_attach_type) {
7109 		case BPF_CGROUP_INET4_CONNECT:
7110 		case BPF_CGROUP_INET6_CONNECT:
7111 			return &bpf_bind_proto;
7112 		default:
7113 			return NULL;
7114 		}
7115 	case BPF_FUNC_get_socket_cookie:
7116 		return &bpf_get_socket_cookie_sock_addr_proto;
7117 	case BPF_FUNC_get_netns_cookie:
7118 		return &bpf_get_netns_cookie_sock_addr_proto;
7119 	case BPF_FUNC_get_local_storage:
7120 		return &bpf_get_local_storage_proto;
7121 	case BPF_FUNC_perf_event_output:
7122 		return &bpf_event_output_data_proto;
7123 	case BPF_FUNC_get_current_pid_tgid:
7124 		return &bpf_get_current_pid_tgid_proto;
7125 	case BPF_FUNC_get_current_comm:
7126 		return &bpf_get_current_comm_proto;
7127 #ifdef CONFIG_CGROUPS
7128 	case BPF_FUNC_get_current_cgroup_id:
7129 		return &bpf_get_current_cgroup_id_proto;
7130 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7131 		return &bpf_get_current_ancestor_cgroup_id_proto;
7132 #endif
7133 #ifdef CONFIG_CGROUP_NET_CLASSID
7134 	case BPF_FUNC_get_cgroup_classid:
7135 		return &bpf_get_cgroup_classid_curr_proto;
7136 #endif
7137 #ifdef CONFIG_INET
7138 	case BPF_FUNC_sk_lookup_tcp:
7139 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7140 	case BPF_FUNC_sk_lookup_udp:
7141 		return &bpf_sock_addr_sk_lookup_udp_proto;
7142 	case BPF_FUNC_sk_release:
7143 		return &bpf_sk_release_proto;
7144 	case BPF_FUNC_skc_lookup_tcp:
7145 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7146 #endif /* CONFIG_INET */
7147 	case BPF_FUNC_sk_storage_get:
7148 		return &bpf_sk_storage_get_proto;
7149 	case BPF_FUNC_sk_storage_delete:
7150 		return &bpf_sk_storage_delete_proto;
7151 	case BPF_FUNC_setsockopt:
7152 		switch (prog->expected_attach_type) {
7153 		case BPF_CGROUP_INET4_BIND:
7154 		case BPF_CGROUP_INET6_BIND:
7155 		case BPF_CGROUP_INET4_CONNECT:
7156 		case BPF_CGROUP_INET6_CONNECT:
7157 		case BPF_CGROUP_UDP4_RECVMSG:
7158 		case BPF_CGROUP_UDP6_RECVMSG:
7159 		case BPF_CGROUP_UDP4_SENDMSG:
7160 		case BPF_CGROUP_UDP6_SENDMSG:
7161 		case BPF_CGROUP_INET4_GETPEERNAME:
7162 		case BPF_CGROUP_INET6_GETPEERNAME:
7163 		case BPF_CGROUP_INET4_GETSOCKNAME:
7164 		case BPF_CGROUP_INET6_GETSOCKNAME:
7165 			return &bpf_sock_addr_setsockopt_proto;
7166 		default:
7167 			return NULL;
7168 		}
7169 	case BPF_FUNC_getsockopt:
7170 		switch (prog->expected_attach_type) {
7171 		case BPF_CGROUP_INET4_BIND:
7172 		case BPF_CGROUP_INET6_BIND:
7173 		case BPF_CGROUP_INET4_CONNECT:
7174 		case BPF_CGROUP_INET6_CONNECT:
7175 		case BPF_CGROUP_UDP4_RECVMSG:
7176 		case BPF_CGROUP_UDP6_RECVMSG:
7177 		case BPF_CGROUP_UDP4_SENDMSG:
7178 		case BPF_CGROUP_UDP6_SENDMSG:
7179 		case BPF_CGROUP_INET4_GETPEERNAME:
7180 		case BPF_CGROUP_INET6_GETPEERNAME:
7181 		case BPF_CGROUP_INET4_GETSOCKNAME:
7182 		case BPF_CGROUP_INET6_GETSOCKNAME:
7183 			return &bpf_sock_addr_getsockopt_proto;
7184 		default:
7185 			return NULL;
7186 		}
7187 	default:
7188 		return bpf_sk_base_func_proto(func_id);
7189 	}
7190 }
7191 
7192 static const struct bpf_func_proto *
7193 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7194 {
7195 	switch (func_id) {
7196 	case BPF_FUNC_skb_load_bytes:
7197 		return &bpf_skb_load_bytes_proto;
7198 	case BPF_FUNC_skb_load_bytes_relative:
7199 		return &bpf_skb_load_bytes_relative_proto;
7200 	case BPF_FUNC_get_socket_cookie:
7201 		return &bpf_get_socket_cookie_proto;
7202 	case BPF_FUNC_get_socket_uid:
7203 		return &bpf_get_socket_uid_proto;
7204 	case BPF_FUNC_perf_event_output:
7205 		return &bpf_skb_event_output_proto;
7206 	default:
7207 		return bpf_sk_base_func_proto(func_id);
7208 	}
7209 }
7210 
7211 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7212 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7213 
7214 static const struct bpf_func_proto *
7215 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7216 {
7217 	switch (func_id) {
7218 	case BPF_FUNC_get_local_storage:
7219 		return &bpf_get_local_storage_proto;
7220 	case BPF_FUNC_sk_fullsock:
7221 		return &bpf_sk_fullsock_proto;
7222 	case BPF_FUNC_sk_storage_get:
7223 		return &bpf_sk_storage_get_proto;
7224 	case BPF_FUNC_sk_storage_delete:
7225 		return &bpf_sk_storage_delete_proto;
7226 	case BPF_FUNC_perf_event_output:
7227 		return &bpf_skb_event_output_proto;
7228 #ifdef CONFIG_SOCK_CGROUP_DATA
7229 	case BPF_FUNC_skb_cgroup_id:
7230 		return &bpf_skb_cgroup_id_proto;
7231 	case BPF_FUNC_skb_ancestor_cgroup_id:
7232 		return &bpf_skb_ancestor_cgroup_id_proto;
7233 	case BPF_FUNC_sk_cgroup_id:
7234 		return &bpf_sk_cgroup_id_proto;
7235 	case BPF_FUNC_sk_ancestor_cgroup_id:
7236 		return &bpf_sk_ancestor_cgroup_id_proto;
7237 #endif
7238 #ifdef CONFIG_INET
7239 	case BPF_FUNC_sk_lookup_tcp:
7240 		return &bpf_sk_lookup_tcp_proto;
7241 	case BPF_FUNC_sk_lookup_udp:
7242 		return &bpf_sk_lookup_udp_proto;
7243 	case BPF_FUNC_sk_release:
7244 		return &bpf_sk_release_proto;
7245 	case BPF_FUNC_skc_lookup_tcp:
7246 		return &bpf_skc_lookup_tcp_proto;
7247 	case BPF_FUNC_tcp_sock:
7248 		return &bpf_tcp_sock_proto;
7249 	case BPF_FUNC_get_listener_sock:
7250 		return &bpf_get_listener_sock_proto;
7251 	case BPF_FUNC_skb_ecn_set_ce:
7252 		return &bpf_skb_ecn_set_ce_proto;
7253 #endif
7254 	default:
7255 		return sk_filter_func_proto(func_id, prog);
7256 	}
7257 }
7258 
7259 static const struct bpf_func_proto *
7260 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7261 {
7262 	switch (func_id) {
7263 	case BPF_FUNC_skb_store_bytes:
7264 		return &bpf_skb_store_bytes_proto;
7265 	case BPF_FUNC_skb_load_bytes:
7266 		return &bpf_skb_load_bytes_proto;
7267 	case BPF_FUNC_skb_load_bytes_relative:
7268 		return &bpf_skb_load_bytes_relative_proto;
7269 	case BPF_FUNC_skb_pull_data:
7270 		return &bpf_skb_pull_data_proto;
7271 	case BPF_FUNC_csum_diff:
7272 		return &bpf_csum_diff_proto;
7273 	case BPF_FUNC_csum_update:
7274 		return &bpf_csum_update_proto;
7275 	case BPF_FUNC_csum_level:
7276 		return &bpf_csum_level_proto;
7277 	case BPF_FUNC_l3_csum_replace:
7278 		return &bpf_l3_csum_replace_proto;
7279 	case BPF_FUNC_l4_csum_replace:
7280 		return &bpf_l4_csum_replace_proto;
7281 	case BPF_FUNC_clone_redirect:
7282 		return &bpf_clone_redirect_proto;
7283 	case BPF_FUNC_get_cgroup_classid:
7284 		return &bpf_get_cgroup_classid_proto;
7285 	case BPF_FUNC_skb_vlan_push:
7286 		return &bpf_skb_vlan_push_proto;
7287 	case BPF_FUNC_skb_vlan_pop:
7288 		return &bpf_skb_vlan_pop_proto;
7289 	case BPF_FUNC_skb_change_proto:
7290 		return &bpf_skb_change_proto_proto;
7291 	case BPF_FUNC_skb_change_type:
7292 		return &bpf_skb_change_type_proto;
7293 	case BPF_FUNC_skb_adjust_room:
7294 		return &bpf_skb_adjust_room_proto;
7295 	case BPF_FUNC_skb_change_tail:
7296 		return &bpf_skb_change_tail_proto;
7297 	case BPF_FUNC_skb_change_head:
7298 		return &bpf_skb_change_head_proto;
7299 	case BPF_FUNC_skb_get_tunnel_key:
7300 		return &bpf_skb_get_tunnel_key_proto;
7301 	case BPF_FUNC_skb_set_tunnel_key:
7302 		return bpf_get_skb_set_tunnel_proto(func_id);
7303 	case BPF_FUNC_skb_get_tunnel_opt:
7304 		return &bpf_skb_get_tunnel_opt_proto;
7305 	case BPF_FUNC_skb_set_tunnel_opt:
7306 		return bpf_get_skb_set_tunnel_proto(func_id);
7307 	case BPF_FUNC_redirect:
7308 		return &bpf_redirect_proto;
7309 	case BPF_FUNC_redirect_neigh:
7310 		return &bpf_redirect_neigh_proto;
7311 	case BPF_FUNC_redirect_peer:
7312 		return &bpf_redirect_peer_proto;
7313 	case BPF_FUNC_get_route_realm:
7314 		return &bpf_get_route_realm_proto;
7315 	case BPF_FUNC_get_hash_recalc:
7316 		return &bpf_get_hash_recalc_proto;
7317 	case BPF_FUNC_set_hash_invalid:
7318 		return &bpf_set_hash_invalid_proto;
7319 	case BPF_FUNC_set_hash:
7320 		return &bpf_set_hash_proto;
7321 	case BPF_FUNC_perf_event_output:
7322 		return &bpf_skb_event_output_proto;
7323 	case BPF_FUNC_get_smp_processor_id:
7324 		return &bpf_get_smp_processor_id_proto;
7325 	case BPF_FUNC_skb_under_cgroup:
7326 		return &bpf_skb_under_cgroup_proto;
7327 	case BPF_FUNC_get_socket_cookie:
7328 		return &bpf_get_socket_cookie_proto;
7329 	case BPF_FUNC_get_socket_uid:
7330 		return &bpf_get_socket_uid_proto;
7331 	case BPF_FUNC_fib_lookup:
7332 		return &bpf_skb_fib_lookup_proto;
7333 	case BPF_FUNC_check_mtu:
7334 		return &bpf_skb_check_mtu_proto;
7335 	case BPF_FUNC_sk_fullsock:
7336 		return &bpf_sk_fullsock_proto;
7337 	case BPF_FUNC_sk_storage_get:
7338 		return &bpf_sk_storage_get_proto;
7339 	case BPF_FUNC_sk_storage_delete:
7340 		return &bpf_sk_storage_delete_proto;
7341 #ifdef CONFIG_XFRM
7342 	case BPF_FUNC_skb_get_xfrm_state:
7343 		return &bpf_skb_get_xfrm_state_proto;
7344 #endif
7345 #ifdef CONFIG_CGROUP_NET_CLASSID
7346 	case BPF_FUNC_skb_cgroup_classid:
7347 		return &bpf_skb_cgroup_classid_proto;
7348 #endif
7349 #ifdef CONFIG_SOCK_CGROUP_DATA
7350 	case BPF_FUNC_skb_cgroup_id:
7351 		return &bpf_skb_cgroup_id_proto;
7352 	case BPF_FUNC_skb_ancestor_cgroup_id:
7353 		return &bpf_skb_ancestor_cgroup_id_proto;
7354 #endif
7355 #ifdef CONFIG_INET
7356 	case BPF_FUNC_sk_lookup_tcp:
7357 		return &bpf_sk_lookup_tcp_proto;
7358 	case BPF_FUNC_sk_lookup_udp:
7359 		return &bpf_sk_lookup_udp_proto;
7360 	case BPF_FUNC_sk_release:
7361 		return &bpf_sk_release_proto;
7362 	case BPF_FUNC_tcp_sock:
7363 		return &bpf_tcp_sock_proto;
7364 	case BPF_FUNC_get_listener_sock:
7365 		return &bpf_get_listener_sock_proto;
7366 	case BPF_FUNC_skc_lookup_tcp:
7367 		return &bpf_skc_lookup_tcp_proto;
7368 	case BPF_FUNC_tcp_check_syncookie:
7369 		return &bpf_tcp_check_syncookie_proto;
7370 	case BPF_FUNC_skb_ecn_set_ce:
7371 		return &bpf_skb_ecn_set_ce_proto;
7372 	case BPF_FUNC_tcp_gen_syncookie:
7373 		return &bpf_tcp_gen_syncookie_proto;
7374 	case BPF_FUNC_sk_assign:
7375 		return &bpf_sk_assign_proto;
7376 #endif
7377 	default:
7378 		return bpf_sk_base_func_proto(func_id);
7379 	}
7380 }
7381 
7382 static const struct bpf_func_proto *
7383 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7384 {
7385 	switch (func_id) {
7386 	case BPF_FUNC_perf_event_output:
7387 		return &bpf_xdp_event_output_proto;
7388 	case BPF_FUNC_get_smp_processor_id:
7389 		return &bpf_get_smp_processor_id_proto;
7390 	case BPF_FUNC_csum_diff:
7391 		return &bpf_csum_diff_proto;
7392 	case BPF_FUNC_xdp_adjust_head:
7393 		return &bpf_xdp_adjust_head_proto;
7394 	case BPF_FUNC_xdp_adjust_meta:
7395 		return &bpf_xdp_adjust_meta_proto;
7396 	case BPF_FUNC_redirect:
7397 		return &bpf_xdp_redirect_proto;
7398 	case BPF_FUNC_redirect_map:
7399 		return &bpf_xdp_redirect_map_proto;
7400 	case BPF_FUNC_xdp_adjust_tail:
7401 		return &bpf_xdp_adjust_tail_proto;
7402 	case BPF_FUNC_fib_lookup:
7403 		return &bpf_xdp_fib_lookup_proto;
7404 	case BPF_FUNC_check_mtu:
7405 		return &bpf_xdp_check_mtu_proto;
7406 #ifdef CONFIG_INET
7407 	case BPF_FUNC_sk_lookup_udp:
7408 		return &bpf_xdp_sk_lookup_udp_proto;
7409 	case BPF_FUNC_sk_lookup_tcp:
7410 		return &bpf_xdp_sk_lookup_tcp_proto;
7411 	case BPF_FUNC_sk_release:
7412 		return &bpf_sk_release_proto;
7413 	case BPF_FUNC_skc_lookup_tcp:
7414 		return &bpf_xdp_skc_lookup_tcp_proto;
7415 	case BPF_FUNC_tcp_check_syncookie:
7416 		return &bpf_tcp_check_syncookie_proto;
7417 	case BPF_FUNC_tcp_gen_syncookie:
7418 		return &bpf_tcp_gen_syncookie_proto;
7419 #endif
7420 	default:
7421 		return bpf_sk_base_func_proto(func_id);
7422 	}
7423 }
7424 
7425 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7426 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7427 
7428 static const struct bpf_func_proto *
7429 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7430 {
7431 	switch (func_id) {
7432 	case BPF_FUNC_setsockopt:
7433 		return &bpf_sock_ops_setsockopt_proto;
7434 	case BPF_FUNC_getsockopt:
7435 		return &bpf_sock_ops_getsockopt_proto;
7436 	case BPF_FUNC_sock_ops_cb_flags_set:
7437 		return &bpf_sock_ops_cb_flags_set_proto;
7438 	case BPF_FUNC_sock_map_update:
7439 		return &bpf_sock_map_update_proto;
7440 	case BPF_FUNC_sock_hash_update:
7441 		return &bpf_sock_hash_update_proto;
7442 	case BPF_FUNC_get_socket_cookie:
7443 		return &bpf_get_socket_cookie_sock_ops_proto;
7444 	case BPF_FUNC_get_local_storage:
7445 		return &bpf_get_local_storage_proto;
7446 	case BPF_FUNC_perf_event_output:
7447 		return &bpf_event_output_data_proto;
7448 	case BPF_FUNC_sk_storage_get:
7449 		return &bpf_sk_storage_get_proto;
7450 	case BPF_FUNC_sk_storage_delete:
7451 		return &bpf_sk_storage_delete_proto;
7452 #ifdef CONFIG_INET
7453 	case BPF_FUNC_load_hdr_opt:
7454 		return &bpf_sock_ops_load_hdr_opt_proto;
7455 	case BPF_FUNC_store_hdr_opt:
7456 		return &bpf_sock_ops_store_hdr_opt_proto;
7457 	case BPF_FUNC_reserve_hdr_opt:
7458 		return &bpf_sock_ops_reserve_hdr_opt_proto;
7459 	case BPF_FUNC_tcp_sock:
7460 		return &bpf_tcp_sock_proto;
7461 #endif /* CONFIG_INET */
7462 	default:
7463 		return bpf_sk_base_func_proto(func_id);
7464 	}
7465 }
7466 
7467 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7468 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7469 
7470 static const struct bpf_func_proto *
7471 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7472 {
7473 	switch (func_id) {
7474 	case BPF_FUNC_msg_redirect_map:
7475 		return &bpf_msg_redirect_map_proto;
7476 	case BPF_FUNC_msg_redirect_hash:
7477 		return &bpf_msg_redirect_hash_proto;
7478 	case BPF_FUNC_msg_apply_bytes:
7479 		return &bpf_msg_apply_bytes_proto;
7480 	case BPF_FUNC_msg_cork_bytes:
7481 		return &bpf_msg_cork_bytes_proto;
7482 	case BPF_FUNC_msg_pull_data:
7483 		return &bpf_msg_pull_data_proto;
7484 	case BPF_FUNC_msg_push_data:
7485 		return &bpf_msg_push_data_proto;
7486 	case BPF_FUNC_msg_pop_data:
7487 		return &bpf_msg_pop_data_proto;
7488 	case BPF_FUNC_perf_event_output:
7489 		return &bpf_event_output_data_proto;
7490 	case BPF_FUNC_get_current_uid_gid:
7491 		return &bpf_get_current_uid_gid_proto;
7492 	case BPF_FUNC_get_current_pid_tgid:
7493 		return &bpf_get_current_pid_tgid_proto;
7494 	case BPF_FUNC_sk_storage_get:
7495 		return &bpf_sk_storage_get_proto;
7496 	case BPF_FUNC_sk_storage_delete:
7497 		return &bpf_sk_storage_delete_proto;
7498 #ifdef CONFIG_CGROUPS
7499 	case BPF_FUNC_get_current_cgroup_id:
7500 		return &bpf_get_current_cgroup_id_proto;
7501 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7502 		return &bpf_get_current_ancestor_cgroup_id_proto;
7503 #endif
7504 #ifdef CONFIG_CGROUP_NET_CLASSID
7505 	case BPF_FUNC_get_cgroup_classid:
7506 		return &bpf_get_cgroup_classid_curr_proto;
7507 #endif
7508 	default:
7509 		return bpf_sk_base_func_proto(func_id);
7510 	}
7511 }
7512 
7513 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7514 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7515 
7516 static const struct bpf_func_proto *
7517 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7518 {
7519 	switch (func_id) {
7520 	case BPF_FUNC_skb_store_bytes:
7521 		return &bpf_skb_store_bytes_proto;
7522 	case BPF_FUNC_skb_load_bytes:
7523 		return &bpf_skb_load_bytes_proto;
7524 	case BPF_FUNC_skb_pull_data:
7525 		return &sk_skb_pull_data_proto;
7526 	case BPF_FUNC_skb_change_tail:
7527 		return &sk_skb_change_tail_proto;
7528 	case BPF_FUNC_skb_change_head:
7529 		return &sk_skb_change_head_proto;
7530 	case BPF_FUNC_skb_adjust_room:
7531 		return &sk_skb_adjust_room_proto;
7532 	case BPF_FUNC_get_socket_cookie:
7533 		return &bpf_get_socket_cookie_proto;
7534 	case BPF_FUNC_get_socket_uid:
7535 		return &bpf_get_socket_uid_proto;
7536 	case BPF_FUNC_sk_redirect_map:
7537 		return &bpf_sk_redirect_map_proto;
7538 	case BPF_FUNC_sk_redirect_hash:
7539 		return &bpf_sk_redirect_hash_proto;
7540 	case BPF_FUNC_perf_event_output:
7541 		return &bpf_skb_event_output_proto;
7542 #ifdef CONFIG_INET
7543 	case BPF_FUNC_sk_lookup_tcp:
7544 		return &bpf_sk_lookup_tcp_proto;
7545 	case BPF_FUNC_sk_lookup_udp:
7546 		return &bpf_sk_lookup_udp_proto;
7547 	case BPF_FUNC_sk_release:
7548 		return &bpf_sk_release_proto;
7549 	case BPF_FUNC_skc_lookup_tcp:
7550 		return &bpf_skc_lookup_tcp_proto;
7551 #endif
7552 	default:
7553 		return bpf_sk_base_func_proto(func_id);
7554 	}
7555 }
7556 
7557 static const struct bpf_func_proto *
7558 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7559 {
7560 	switch (func_id) {
7561 	case BPF_FUNC_skb_load_bytes:
7562 		return &bpf_flow_dissector_load_bytes_proto;
7563 	default:
7564 		return bpf_sk_base_func_proto(func_id);
7565 	}
7566 }
7567 
7568 static const struct bpf_func_proto *
7569 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7570 {
7571 	switch (func_id) {
7572 	case BPF_FUNC_skb_load_bytes:
7573 		return &bpf_skb_load_bytes_proto;
7574 	case BPF_FUNC_skb_pull_data:
7575 		return &bpf_skb_pull_data_proto;
7576 	case BPF_FUNC_csum_diff:
7577 		return &bpf_csum_diff_proto;
7578 	case BPF_FUNC_get_cgroup_classid:
7579 		return &bpf_get_cgroup_classid_proto;
7580 	case BPF_FUNC_get_route_realm:
7581 		return &bpf_get_route_realm_proto;
7582 	case BPF_FUNC_get_hash_recalc:
7583 		return &bpf_get_hash_recalc_proto;
7584 	case BPF_FUNC_perf_event_output:
7585 		return &bpf_skb_event_output_proto;
7586 	case BPF_FUNC_get_smp_processor_id:
7587 		return &bpf_get_smp_processor_id_proto;
7588 	case BPF_FUNC_skb_under_cgroup:
7589 		return &bpf_skb_under_cgroup_proto;
7590 	default:
7591 		return bpf_sk_base_func_proto(func_id);
7592 	}
7593 }
7594 
7595 static const struct bpf_func_proto *
7596 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7597 {
7598 	switch (func_id) {
7599 	case BPF_FUNC_lwt_push_encap:
7600 		return &bpf_lwt_in_push_encap_proto;
7601 	default:
7602 		return lwt_out_func_proto(func_id, prog);
7603 	}
7604 }
7605 
7606 static const struct bpf_func_proto *
7607 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7608 {
7609 	switch (func_id) {
7610 	case BPF_FUNC_skb_get_tunnel_key:
7611 		return &bpf_skb_get_tunnel_key_proto;
7612 	case BPF_FUNC_skb_set_tunnel_key:
7613 		return bpf_get_skb_set_tunnel_proto(func_id);
7614 	case BPF_FUNC_skb_get_tunnel_opt:
7615 		return &bpf_skb_get_tunnel_opt_proto;
7616 	case BPF_FUNC_skb_set_tunnel_opt:
7617 		return bpf_get_skb_set_tunnel_proto(func_id);
7618 	case BPF_FUNC_redirect:
7619 		return &bpf_redirect_proto;
7620 	case BPF_FUNC_clone_redirect:
7621 		return &bpf_clone_redirect_proto;
7622 	case BPF_FUNC_skb_change_tail:
7623 		return &bpf_skb_change_tail_proto;
7624 	case BPF_FUNC_skb_change_head:
7625 		return &bpf_skb_change_head_proto;
7626 	case BPF_FUNC_skb_store_bytes:
7627 		return &bpf_skb_store_bytes_proto;
7628 	case BPF_FUNC_csum_update:
7629 		return &bpf_csum_update_proto;
7630 	case BPF_FUNC_csum_level:
7631 		return &bpf_csum_level_proto;
7632 	case BPF_FUNC_l3_csum_replace:
7633 		return &bpf_l3_csum_replace_proto;
7634 	case BPF_FUNC_l4_csum_replace:
7635 		return &bpf_l4_csum_replace_proto;
7636 	case BPF_FUNC_set_hash_invalid:
7637 		return &bpf_set_hash_invalid_proto;
7638 	case BPF_FUNC_lwt_push_encap:
7639 		return &bpf_lwt_xmit_push_encap_proto;
7640 	default:
7641 		return lwt_out_func_proto(func_id, prog);
7642 	}
7643 }
7644 
7645 static const struct bpf_func_proto *
7646 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7647 {
7648 	switch (func_id) {
7649 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7650 	case BPF_FUNC_lwt_seg6_store_bytes:
7651 		return &bpf_lwt_seg6_store_bytes_proto;
7652 	case BPF_FUNC_lwt_seg6_action:
7653 		return &bpf_lwt_seg6_action_proto;
7654 	case BPF_FUNC_lwt_seg6_adjust_srh:
7655 		return &bpf_lwt_seg6_adjust_srh_proto;
7656 #endif
7657 	default:
7658 		return lwt_out_func_proto(func_id, prog);
7659 	}
7660 }
7661 
7662 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7663 				    const struct bpf_prog *prog,
7664 				    struct bpf_insn_access_aux *info)
7665 {
7666 	const int size_default = sizeof(__u32);
7667 
7668 	if (off < 0 || off >= sizeof(struct __sk_buff))
7669 		return false;
7670 
7671 	/* The verifier guarantees that size > 0. */
7672 	if (off % size != 0)
7673 		return false;
7674 
7675 	switch (off) {
7676 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7677 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
7678 			return false;
7679 		break;
7680 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7681 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7682 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7683 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7684 	case bpf_ctx_range(struct __sk_buff, data):
7685 	case bpf_ctx_range(struct __sk_buff, data_meta):
7686 	case bpf_ctx_range(struct __sk_buff, data_end):
7687 		if (size != size_default)
7688 			return false;
7689 		break;
7690 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7691 		return false;
7692 	case bpf_ctx_range(struct __sk_buff, tstamp):
7693 		if (size != sizeof(__u64))
7694 			return false;
7695 		break;
7696 	case offsetof(struct __sk_buff, sk):
7697 		if (type == BPF_WRITE || size != sizeof(__u64))
7698 			return false;
7699 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7700 		break;
7701 	default:
7702 		/* Only narrow read access allowed for now. */
7703 		if (type == BPF_WRITE) {
7704 			if (size != size_default)
7705 				return false;
7706 		} else {
7707 			bpf_ctx_record_field_size(info, size_default);
7708 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7709 				return false;
7710 		}
7711 	}
7712 
7713 	return true;
7714 }
7715 
7716 static bool sk_filter_is_valid_access(int off, int size,
7717 				      enum bpf_access_type type,
7718 				      const struct bpf_prog *prog,
7719 				      struct bpf_insn_access_aux *info)
7720 {
7721 	switch (off) {
7722 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7723 	case bpf_ctx_range(struct __sk_buff, data):
7724 	case bpf_ctx_range(struct __sk_buff, data_meta):
7725 	case bpf_ctx_range(struct __sk_buff, data_end):
7726 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7727 	case bpf_ctx_range(struct __sk_buff, tstamp):
7728 	case bpf_ctx_range(struct __sk_buff, wire_len):
7729 		return false;
7730 	}
7731 
7732 	if (type == BPF_WRITE) {
7733 		switch (off) {
7734 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7735 			break;
7736 		default:
7737 			return false;
7738 		}
7739 	}
7740 
7741 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7742 }
7743 
7744 static bool cg_skb_is_valid_access(int off, int size,
7745 				   enum bpf_access_type type,
7746 				   const struct bpf_prog *prog,
7747 				   struct bpf_insn_access_aux *info)
7748 {
7749 	switch (off) {
7750 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7751 	case bpf_ctx_range(struct __sk_buff, data_meta):
7752 	case bpf_ctx_range(struct __sk_buff, wire_len):
7753 		return false;
7754 	case bpf_ctx_range(struct __sk_buff, data):
7755 	case bpf_ctx_range(struct __sk_buff, data_end):
7756 		if (!bpf_capable())
7757 			return false;
7758 		break;
7759 	}
7760 
7761 	if (type == BPF_WRITE) {
7762 		switch (off) {
7763 		case bpf_ctx_range(struct __sk_buff, mark):
7764 		case bpf_ctx_range(struct __sk_buff, priority):
7765 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7766 			break;
7767 		case bpf_ctx_range(struct __sk_buff, tstamp):
7768 			if (!bpf_capable())
7769 				return false;
7770 			break;
7771 		default:
7772 			return false;
7773 		}
7774 	}
7775 
7776 	switch (off) {
7777 	case bpf_ctx_range(struct __sk_buff, data):
7778 		info->reg_type = PTR_TO_PACKET;
7779 		break;
7780 	case bpf_ctx_range(struct __sk_buff, data_end):
7781 		info->reg_type = PTR_TO_PACKET_END;
7782 		break;
7783 	}
7784 
7785 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7786 }
7787 
7788 static bool lwt_is_valid_access(int off, int size,
7789 				enum bpf_access_type type,
7790 				const struct bpf_prog *prog,
7791 				struct bpf_insn_access_aux *info)
7792 {
7793 	switch (off) {
7794 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7795 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7796 	case bpf_ctx_range(struct __sk_buff, data_meta):
7797 	case bpf_ctx_range(struct __sk_buff, tstamp):
7798 	case bpf_ctx_range(struct __sk_buff, wire_len):
7799 		return false;
7800 	}
7801 
7802 	if (type == BPF_WRITE) {
7803 		switch (off) {
7804 		case bpf_ctx_range(struct __sk_buff, mark):
7805 		case bpf_ctx_range(struct __sk_buff, priority):
7806 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7807 			break;
7808 		default:
7809 			return false;
7810 		}
7811 	}
7812 
7813 	switch (off) {
7814 	case bpf_ctx_range(struct __sk_buff, data):
7815 		info->reg_type = PTR_TO_PACKET;
7816 		break;
7817 	case bpf_ctx_range(struct __sk_buff, data_end):
7818 		info->reg_type = PTR_TO_PACKET_END;
7819 		break;
7820 	}
7821 
7822 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7823 }
7824 
7825 /* Attach type specific accesses */
7826 static bool __sock_filter_check_attach_type(int off,
7827 					    enum bpf_access_type access_type,
7828 					    enum bpf_attach_type attach_type)
7829 {
7830 	switch (off) {
7831 	case offsetof(struct bpf_sock, bound_dev_if):
7832 	case offsetof(struct bpf_sock, mark):
7833 	case offsetof(struct bpf_sock, priority):
7834 		switch (attach_type) {
7835 		case BPF_CGROUP_INET_SOCK_CREATE:
7836 		case BPF_CGROUP_INET_SOCK_RELEASE:
7837 			goto full_access;
7838 		default:
7839 			return false;
7840 		}
7841 	case bpf_ctx_range(struct bpf_sock, src_ip4):
7842 		switch (attach_type) {
7843 		case BPF_CGROUP_INET4_POST_BIND:
7844 			goto read_only;
7845 		default:
7846 			return false;
7847 		}
7848 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7849 		switch (attach_type) {
7850 		case BPF_CGROUP_INET6_POST_BIND:
7851 			goto read_only;
7852 		default:
7853 			return false;
7854 		}
7855 	case bpf_ctx_range(struct bpf_sock, src_port):
7856 		switch (attach_type) {
7857 		case BPF_CGROUP_INET4_POST_BIND:
7858 		case BPF_CGROUP_INET6_POST_BIND:
7859 			goto read_only;
7860 		default:
7861 			return false;
7862 		}
7863 	}
7864 read_only:
7865 	return access_type == BPF_READ;
7866 full_access:
7867 	return true;
7868 }
7869 
7870 bool bpf_sock_common_is_valid_access(int off, int size,
7871 				     enum bpf_access_type type,
7872 				     struct bpf_insn_access_aux *info)
7873 {
7874 	switch (off) {
7875 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
7876 		return false;
7877 	default:
7878 		return bpf_sock_is_valid_access(off, size, type, info);
7879 	}
7880 }
7881 
7882 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7883 			      struct bpf_insn_access_aux *info)
7884 {
7885 	const int size_default = sizeof(__u32);
7886 
7887 	if (off < 0 || off >= sizeof(struct bpf_sock))
7888 		return false;
7889 	if (off % size != 0)
7890 		return false;
7891 
7892 	switch (off) {
7893 	case offsetof(struct bpf_sock, state):
7894 	case offsetof(struct bpf_sock, family):
7895 	case offsetof(struct bpf_sock, type):
7896 	case offsetof(struct bpf_sock, protocol):
7897 	case offsetof(struct bpf_sock, dst_port):
7898 	case offsetof(struct bpf_sock, src_port):
7899 	case offsetof(struct bpf_sock, rx_queue_mapping):
7900 	case bpf_ctx_range(struct bpf_sock, src_ip4):
7901 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7902 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
7903 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7904 		bpf_ctx_record_field_size(info, size_default);
7905 		return bpf_ctx_narrow_access_ok(off, size, size_default);
7906 	}
7907 
7908 	return size == size_default;
7909 }
7910 
7911 static bool sock_filter_is_valid_access(int off, int size,
7912 					enum bpf_access_type type,
7913 					const struct bpf_prog *prog,
7914 					struct bpf_insn_access_aux *info)
7915 {
7916 	if (!bpf_sock_is_valid_access(off, size, type, info))
7917 		return false;
7918 	return __sock_filter_check_attach_type(off, type,
7919 					       prog->expected_attach_type);
7920 }
7921 
7922 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7923 			     const struct bpf_prog *prog)
7924 {
7925 	/* Neither direct read nor direct write requires any preliminary
7926 	 * action.
7927 	 */
7928 	return 0;
7929 }
7930 
7931 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
7932 				const struct bpf_prog *prog, int drop_verdict)
7933 {
7934 	struct bpf_insn *insn = insn_buf;
7935 
7936 	if (!direct_write)
7937 		return 0;
7938 
7939 	/* if (!skb->cloned)
7940 	 *       goto start;
7941 	 *
7942 	 * (Fast-path, otherwise approximation that we might be
7943 	 *  a clone, do the rest in helper.)
7944 	 */
7945 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
7946 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
7947 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
7948 
7949 	/* ret = bpf_skb_pull_data(skb, 0); */
7950 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
7951 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
7952 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
7953 			       BPF_FUNC_skb_pull_data);
7954 	/* if (!ret)
7955 	 *      goto restore;
7956 	 * return TC_ACT_SHOT;
7957 	 */
7958 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
7959 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
7960 	*insn++ = BPF_EXIT_INSN();
7961 
7962 	/* restore: */
7963 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
7964 	/* start: */
7965 	*insn++ = prog->insnsi[0];
7966 
7967 	return insn - insn_buf;
7968 }
7969 
7970 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
7971 			  struct bpf_insn *insn_buf)
7972 {
7973 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
7974 	struct bpf_insn *insn = insn_buf;
7975 
7976 	if (!indirect) {
7977 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
7978 	} else {
7979 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
7980 		if (orig->imm)
7981 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
7982 	}
7983 	/* We're guaranteed here that CTX is in R6. */
7984 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
7985 
7986 	switch (BPF_SIZE(orig->code)) {
7987 	case BPF_B:
7988 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
7989 		break;
7990 	case BPF_H:
7991 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
7992 		break;
7993 	case BPF_W:
7994 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
7995 		break;
7996 	}
7997 
7998 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
7999 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8000 	*insn++ = BPF_EXIT_INSN();
8001 
8002 	return insn - insn_buf;
8003 }
8004 
8005 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8006 			       const struct bpf_prog *prog)
8007 {
8008 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8009 }
8010 
8011 static bool tc_cls_act_is_valid_access(int off, int size,
8012 				       enum bpf_access_type type,
8013 				       const struct bpf_prog *prog,
8014 				       struct bpf_insn_access_aux *info)
8015 {
8016 	if (type == BPF_WRITE) {
8017 		switch (off) {
8018 		case bpf_ctx_range(struct __sk_buff, mark):
8019 		case bpf_ctx_range(struct __sk_buff, tc_index):
8020 		case bpf_ctx_range(struct __sk_buff, priority):
8021 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8022 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8023 		case bpf_ctx_range(struct __sk_buff, tstamp):
8024 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8025 			break;
8026 		default:
8027 			return false;
8028 		}
8029 	}
8030 
8031 	switch (off) {
8032 	case bpf_ctx_range(struct __sk_buff, data):
8033 		info->reg_type = PTR_TO_PACKET;
8034 		break;
8035 	case bpf_ctx_range(struct __sk_buff, data_meta):
8036 		info->reg_type = PTR_TO_PACKET_META;
8037 		break;
8038 	case bpf_ctx_range(struct __sk_buff, data_end):
8039 		info->reg_type = PTR_TO_PACKET_END;
8040 		break;
8041 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8042 		return false;
8043 	}
8044 
8045 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8046 }
8047 
8048 static bool __is_valid_xdp_access(int off, int size)
8049 {
8050 	if (off < 0 || off >= sizeof(struct xdp_md))
8051 		return false;
8052 	if (off % size != 0)
8053 		return false;
8054 	if (size != sizeof(__u32))
8055 		return false;
8056 
8057 	return true;
8058 }
8059 
8060 static bool xdp_is_valid_access(int off, int size,
8061 				enum bpf_access_type type,
8062 				const struct bpf_prog *prog,
8063 				struct bpf_insn_access_aux *info)
8064 {
8065 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8066 		switch (off) {
8067 		case offsetof(struct xdp_md, egress_ifindex):
8068 			return false;
8069 		}
8070 	}
8071 
8072 	if (type == BPF_WRITE) {
8073 		if (bpf_prog_is_dev_bound(prog->aux)) {
8074 			switch (off) {
8075 			case offsetof(struct xdp_md, rx_queue_index):
8076 				return __is_valid_xdp_access(off, size);
8077 			}
8078 		}
8079 		return false;
8080 	}
8081 
8082 	switch (off) {
8083 	case offsetof(struct xdp_md, data):
8084 		info->reg_type = PTR_TO_PACKET;
8085 		break;
8086 	case offsetof(struct xdp_md, data_meta):
8087 		info->reg_type = PTR_TO_PACKET_META;
8088 		break;
8089 	case offsetof(struct xdp_md, data_end):
8090 		info->reg_type = PTR_TO_PACKET_END;
8091 		break;
8092 	}
8093 
8094 	return __is_valid_xdp_access(off, size);
8095 }
8096 
8097 void bpf_warn_invalid_xdp_action(u32 act)
8098 {
8099 	const u32 act_max = XDP_REDIRECT;
8100 
8101 	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
8102 		  act > act_max ? "Illegal" : "Driver unsupported",
8103 		  act);
8104 }
8105 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8106 
8107 static bool sock_addr_is_valid_access(int off, int size,
8108 				      enum bpf_access_type type,
8109 				      const struct bpf_prog *prog,
8110 				      struct bpf_insn_access_aux *info)
8111 {
8112 	const int size_default = sizeof(__u32);
8113 
8114 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8115 		return false;
8116 	if (off % size != 0)
8117 		return false;
8118 
8119 	/* Disallow access to IPv6 fields from IPv4 contex and vise
8120 	 * versa.
8121 	 */
8122 	switch (off) {
8123 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8124 		switch (prog->expected_attach_type) {
8125 		case BPF_CGROUP_INET4_BIND:
8126 		case BPF_CGROUP_INET4_CONNECT:
8127 		case BPF_CGROUP_INET4_GETPEERNAME:
8128 		case BPF_CGROUP_INET4_GETSOCKNAME:
8129 		case BPF_CGROUP_UDP4_SENDMSG:
8130 		case BPF_CGROUP_UDP4_RECVMSG:
8131 			break;
8132 		default:
8133 			return false;
8134 		}
8135 		break;
8136 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8137 		switch (prog->expected_attach_type) {
8138 		case BPF_CGROUP_INET6_BIND:
8139 		case BPF_CGROUP_INET6_CONNECT:
8140 		case BPF_CGROUP_INET6_GETPEERNAME:
8141 		case BPF_CGROUP_INET6_GETSOCKNAME:
8142 		case BPF_CGROUP_UDP6_SENDMSG:
8143 		case BPF_CGROUP_UDP6_RECVMSG:
8144 			break;
8145 		default:
8146 			return false;
8147 		}
8148 		break;
8149 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8150 		switch (prog->expected_attach_type) {
8151 		case BPF_CGROUP_UDP4_SENDMSG:
8152 			break;
8153 		default:
8154 			return false;
8155 		}
8156 		break;
8157 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8158 				msg_src_ip6[3]):
8159 		switch (prog->expected_attach_type) {
8160 		case BPF_CGROUP_UDP6_SENDMSG:
8161 			break;
8162 		default:
8163 			return false;
8164 		}
8165 		break;
8166 	}
8167 
8168 	switch (off) {
8169 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8170 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8171 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8172 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8173 				msg_src_ip6[3]):
8174 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
8175 		if (type == BPF_READ) {
8176 			bpf_ctx_record_field_size(info, size_default);
8177 
8178 			if (bpf_ctx_wide_access_ok(off, size,
8179 						   struct bpf_sock_addr,
8180 						   user_ip6))
8181 				return true;
8182 
8183 			if (bpf_ctx_wide_access_ok(off, size,
8184 						   struct bpf_sock_addr,
8185 						   msg_src_ip6))
8186 				return true;
8187 
8188 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8189 				return false;
8190 		} else {
8191 			if (bpf_ctx_wide_access_ok(off, size,
8192 						   struct bpf_sock_addr,
8193 						   user_ip6))
8194 				return true;
8195 
8196 			if (bpf_ctx_wide_access_ok(off, size,
8197 						   struct bpf_sock_addr,
8198 						   msg_src_ip6))
8199 				return true;
8200 
8201 			if (size != size_default)
8202 				return false;
8203 		}
8204 		break;
8205 	case offsetof(struct bpf_sock_addr, sk):
8206 		if (type != BPF_READ)
8207 			return false;
8208 		if (size != sizeof(__u64))
8209 			return false;
8210 		info->reg_type = PTR_TO_SOCKET;
8211 		break;
8212 	default:
8213 		if (type == BPF_READ) {
8214 			if (size != size_default)
8215 				return false;
8216 		} else {
8217 			return false;
8218 		}
8219 	}
8220 
8221 	return true;
8222 }
8223 
8224 static bool sock_ops_is_valid_access(int off, int size,
8225 				     enum bpf_access_type type,
8226 				     const struct bpf_prog *prog,
8227 				     struct bpf_insn_access_aux *info)
8228 {
8229 	const int size_default = sizeof(__u32);
8230 
8231 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8232 		return false;
8233 
8234 	/* The verifier guarantees that size > 0. */
8235 	if (off % size != 0)
8236 		return false;
8237 
8238 	if (type == BPF_WRITE) {
8239 		switch (off) {
8240 		case offsetof(struct bpf_sock_ops, reply):
8241 		case offsetof(struct bpf_sock_ops, sk_txhash):
8242 			if (size != size_default)
8243 				return false;
8244 			break;
8245 		default:
8246 			return false;
8247 		}
8248 	} else {
8249 		switch (off) {
8250 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8251 					bytes_acked):
8252 			if (size != sizeof(__u64))
8253 				return false;
8254 			break;
8255 		case offsetof(struct bpf_sock_ops, sk):
8256 			if (size != sizeof(__u64))
8257 				return false;
8258 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
8259 			break;
8260 		case offsetof(struct bpf_sock_ops, skb_data):
8261 			if (size != sizeof(__u64))
8262 				return false;
8263 			info->reg_type = PTR_TO_PACKET;
8264 			break;
8265 		case offsetof(struct bpf_sock_ops, skb_data_end):
8266 			if (size != sizeof(__u64))
8267 				return false;
8268 			info->reg_type = PTR_TO_PACKET_END;
8269 			break;
8270 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8271 			bpf_ctx_record_field_size(info, size_default);
8272 			return bpf_ctx_narrow_access_ok(off, size,
8273 							size_default);
8274 		default:
8275 			if (size != size_default)
8276 				return false;
8277 			break;
8278 		}
8279 	}
8280 
8281 	return true;
8282 }
8283 
8284 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8285 			   const struct bpf_prog *prog)
8286 {
8287 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8288 }
8289 
8290 static bool sk_skb_is_valid_access(int off, int size,
8291 				   enum bpf_access_type type,
8292 				   const struct bpf_prog *prog,
8293 				   struct bpf_insn_access_aux *info)
8294 {
8295 	switch (off) {
8296 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8297 	case bpf_ctx_range(struct __sk_buff, data_meta):
8298 	case bpf_ctx_range(struct __sk_buff, tstamp):
8299 	case bpf_ctx_range(struct __sk_buff, wire_len):
8300 		return false;
8301 	}
8302 
8303 	if (type == BPF_WRITE) {
8304 		switch (off) {
8305 		case bpf_ctx_range(struct __sk_buff, tc_index):
8306 		case bpf_ctx_range(struct __sk_buff, priority):
8307 			break;
8308 		default:
8309 			return false;
8310 		}
8311 	}
8312 
8313 	switch (off) {
8314 	case bpf_ctx_range(struct __sk_buff, mark):
8315 		return false;
8316 	case bpf_ctx_range(struct __sk_buff, data):
8317 		info->reg_type = PTR_TO_PACKET;
8318 		break;
8319 	case bpf_ctx_range(struct __sk_buff, data_end):
8320 		info->reg_type = PTR_TO_PACKET_END;
8321 		break;
8322 	}
8323 
8324 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8325 }
8326 
8327 static bool sk_msg_is_valid_access(int off, int size,
8328 				   enum bpf_access_type type,
8329 				   const struct bpf_prog *prog,
8330 				   struct bpf_insn_access_aux *info)
8331 {
8332 	if (type == BPF_WRITE)
8333 		return false;
8334 
8335 	if (off % size != 0)
8336 		return false;
8337 
8338 	switch (off) {
8339 	case offsetof(struct sk_msg_md, data):
8340 		info->reg_type = PTR_TO_PACKET;
8341 		if (size != sizeof(__u64))
8342 			return false;
8343 		break;
8344 	case offsetof(struct sk_msg_md, data_end):
8345 		info->reg_type = PTR_TO_PACKET_END;
8346 		if (size != sizeof(__u64))
8347 			return false;
8348 		break;
8349 	case offsetof(struct sk_msg_md, sk):
8350 		if (size != sizeof(__u64))
8351 			return false;
8352 		info->reg_type = PTR_TO_SOCKET;
8353 		break;
8354 	case bpf_ctx_range(struct sk_msg_md, family):
8355 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8356 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
8357 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8358 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8359 	case bpf_ctx_range(struct sk_msg_md, remote_port):
8360 	case bpf_ctx_range(struct sk_msg_md, local_port):
8361 	case bpf_ctx_range(struct sk_msg_md, size):
8362 		if (size != sizeof(__u32))
8363 			return false;
8364 		break;
8365 	default:
8366 		return false;
8367 	}
8368 	return true;
8369 }
8370 
8371 static bool flow_dissector_is_valid_access(int off, int size,
8372 					   enum bpf_access_type type,
8373 					   const struct bpf_prog *prog,
8374 					   struct bpf_insn_access_aux *info)
8375 {
8376 	const int size_default = sizeof(__u32);
8377 
8378 	if (off < 0 || off >= sizeof(struct __sk_buff))
8379 		return false;
8380 
8381 	if (type == BPF_WRITE)
8382 		return false;
8383 
8384 	switch (off) {
8385 	case bpf_ctx_range(struct __sk_buff, data):
8386 		if (size != size_default)
8387 			return false;
8388 		info->reg_type = PTR_TO_PACKET;
8389 		return true;
8390 	case bpf_ctx_range(struct __sk_buff, data_end):
8391 		if (size != size_default)
8392 			return false;
8393 		info->reg_type = PTR_TO_PACKET_END;
8394 		return true;
8395 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8396 		if (size != sizeof(__u64))
8397 			return false;
8398 		info->reg_type = PTR_TO_FLOW_KEYS;
8399 		return true;
8400 	default:
8401 		return false;
8402 	}
8403 }
8404 
8405 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8406 					     const struct bpf_insn *si,
8407 					     struct bpf_insn *insn_buf,
8408 					     struct bpf_prog *prog,
8409 					     u32 *target_size)
8410 
8411 {
8412 	struct bpf_insn *insn = insn_buf;
8413 
8414 	switch (si->off) {
8415 	case offsetof(struct __sk_buff, data):
8416 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8417 				      si->dst_reg, si->src_reg,
8418 				      offsetof(struct bpf_flow_dissector, data));
8419 		break;
8420 
8421 	case offsetof(struct __sk_buff, data_end):
8422 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8423 				      si->dst_reg, si->src_reg,
8424 				      offsetof(struct bpf_flow_dissector, data_end));
8425 		break;
8426 
8427 	case offsetof(struct __sk_buff, flow_keys):
8428 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8429 				      si->dst_reg, si->src_reg,
8430 				      offsetof(struct bpf_flow_dissector, flow_keys));
8431 		break;
8432 	}
8433 
8434 	return insn - insn_buf;
8435 }
8436 
8437 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8438 						  struct bpf_insn *insn)
8439 {
8440 	/* si->dst_reg = skb_shinfo(SKB); */
8441 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8442 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8443 			      BPF_REG_AX, si->src_reg,
8444 			      offsetof(struct sk_buff, end));
8445 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8446 			      si->dst_reg, si->src_reg,
8447 			      offsetof(struct sk_buff, head));
8448 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8449 #else
8450 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8451 			      si->dst_reg, si->src_reg,
8452 			      offsetof(struct sk_buff, end));
8453 #endif
8454 
8455 	return insn;
8456 }
8457 
8458 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8459 				  const struct bpf_insn *si,
8460 				  struct bpf_insn *insn_buf,
8461 				  struct bpf_prog *prog, u32 *target_size)
8462 {
8463 	struct bpf_insn *insn = insn_buf;
8464 	int off;
8465 
8466 	switch (si->off) {
8467 	case offsetof(struct __sk_buff, len):
8468 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8469 				      bpf_target_off(struct sk_buff, len, 4,
8470 						     target_size));
8471 		break;
8472 
8473 	case offsetof(struct __sk_buff, protocol):
8474 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8475 				      bpf_target_off(struct sk_buff, protocol, 2,
8476 						     target_size));
8477 		break;
8478 
8479 	case offsetof(struct __sk_buff, vlan_proto):
8480 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8481 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
8482 						     target_size));
8483 		break;
8484 
8485 	case offsetof(struct __sk_buff, priority):
8486 		if (type == BPF_WRITE)
8487 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8488 					      bpf_target_off(struct sk_buff, priority, 4,
8489 							     target_size));
8490 		else
8491 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8492 					      bpf_target_off(struct sk_buff, priority, 4,
8493 							     target_size));
8494 		break;
8495 
8496 	case offsetof(struct __sk_buff, ingress_ifindex):
8497 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8498 				      bpf_target_off(struct sk_buff, skb_iif, 4,
8499 						     target_size));
8500 		break;
8501 
8502 	case offsetof(struct __sk_buff, ifindex):
8503 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8504 				      si->dst_reg, si->src_reg,
8505 				      offsetof(struct sk_buff, dev));
8506 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8507 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8508 				      bpf_target_off(struct net_device, ifindex, 4,
8509 						     target_size));
8510 		break;
8511 
8512 	case offsetof(struct __sk_buff, hash):
8513 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8514 				      bpf_target_off(struct sk_buff, hash, 4,
8515 						     target_size));
8516 		break;
8517 
8518 	case offsetof(struct __sk_buff, mark):
8519 		if (type == BPF_WRITE)
8520 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8521 					      bpf_target_off(struct sk_buff, mark, 4,
8522 							     target_size));
8523 		else
8524 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8525 					      bpf_target_off(struct sk_buff, mark, 4,
8526 							     target_size));
8527 		break;
8528 
8529 	case offsetof(struct __sk_buff, pkt_type):
8530 		*target_size = 1;
8531 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8532 				      PKT_TYPE_OFFSET());
8533 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8534 #ifdef __BIG_ENDIAN_BITFIELD
8535 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8536 #endif
8537 		break;
8538 
8539 	case offsetof(struct __sk_buff, queue_mapping):
8540 		if (type == BPF_WRITE) {
8541 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8542 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8543 					      bpf_target_off(struct sk_buff,
8544 							     queue_mapping,
8545 							     2, target_size));
8546 		} else {
8547 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8548 					      bpf_target_off(struct sk_buff,
8549 							     queue_mapping,
8550 							     2, target_size));
8551 		}
8552 		break;
8553 
8554 	case offsetof(struct __sk_buff, vlan_present):
8555 		*target_size = 1;
8556 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8557 				      PKT_VLAN_PRESENT_OFFSET());
8558 		if (PKT_VLAN_PRESENT_BIT)
8559 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8560 		if (PKT_VLAN_PRESENT_BIT < 7)
8561 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8562 		break;
8563 
8564 	case offsetof(struct __sk_buff, vlan_tci):
8565 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8566 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
8567 						     target_size));
8568 		break;
8569 
8570 	case offsetof(struct __sk_buff, cb[0]) ...
8571 	     offsetofend(struct __sk_buff, cb[4]) - 1:
8572 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8573 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8574 			      offsetof(struct qdisc_skb_cb, data)) %
8575 			     sizeof(__u64));
8576 
8577 		prog->cb_access = 1;
8578 		off  = si->off;
8579 		off -= offsetof(struct __sk_buff, cb[0]);
8580 		off += offsetof(struct sk_buff, cb);
8581 		off += offsetof(struct qdisc_skb_cb, data);
8582 		if (type == BPF_WRITE)
8583 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8584 					      si->src_reg, off);
8585 		else
8586 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8587 					      si->src_reg, off);
8588 		break;
8589 
8590 	case offsetof(struct __sk_buff, tc_classid):
8591 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8592 
8593 		off  = si->off;
8594 		off -= offsetof(struct __sk_buff, tc_classid);
8595 		off += offsetof(struct sk_buff, cb);
8596 		off += offsetof(struct qdisc_skb_cb, tc_classid);
8597 		*target_size = 2;
8598 		if (type == BPF_WRITE)
8599 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8600 					      si->src_reg, off);
8601 		else
8602 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8603 					      si->src_reg, off);
8604 		break;
8605 
8606 	case offsetof(struct __sk_buff, data):
8607 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8608 				      si->dst_reg, si->src_reg,
8609 				      offsetof(struct sk_buff, data));
8610 		break;
8611 
8612 	case offsetof(struct __sk_buff, data_meta):
8613 		off  = si->off;
8614 		off -= offsetof(struct __sk_buff, data_meta);
8615 		off += offsetof(struct sk_buff, cb);
8616 		off += offsetof(struct bpf_skb_data_end, data_meta);
8617 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8618 				      si->src_reg, off);
8619 		break;
8620 
8621 	case offsetof(struct __sk_buff, data_end):
8622 		off  = si->off;
8623 		off -= offsetof(struct __sk_buff, data_end);
8624 		off += offsetof(struct sk_buff, cb);
8625 		off += offsetof(struct bpf_skb_data_end, data_end);
8626 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8627 				      si->src_reg, off);
8628 		break;
8629 
8630 	case offsetof(struct __sk_buff, tc_index):
8631 #ifdef CONFIG_NET_SCHED
8632 		if (type == BPF_WRITE)
8633 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8634 					      bpf_target_off(struct sk_buff, tc_index, 2,
8635 							     target_size));
8636 		else
8637 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8638 					      bpf_target_off(struct sk_buff, tc_index, 2,
8639 							     target_size));
8640 #else
8641 		*target_size = 2;
8642 		if (type == BPF_WRITE)
8643 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8644 		else
8645 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8646 #endif
8647 		break;
8648 
8649 	case offsetof(struct __sk_buff, napi_id):
8650 #if defined(CONFIG_NET_RX_BUSY_POLL)
8651 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8652 				      bpf_target_off(struct sk_buff, napi_id, 4,
8653 						     target_size));
8654 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8655 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8656 #else
8657 		*target_size = 4;
8658 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8659 #endif
8660 		break;
8661 	case offsetof(struct __sk_buff, family):
8662 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8663 
8664 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8665 				      si->dst_reg, si->src_reg,
8666 				      offsetof(struct sk_buff, sk));
8667 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8668 				      bpf_target_off(struct sock_common,
8669 						     skc_family,
8670 						     2, target_size));
8671 		break;
8672 	case offsetof(struct __sk_buff, remote_ip4):
8673 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8674 
8675 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8676 				      si->dst_reg, si->src_reg,
8677 				      offsetof(struct sk_buff, sk));
8678 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8679 				      bpf_target_off(struct sock_common,
8680 						     skc_daddr,
8681 						     4, target_size));
8682 		break;
8683 	case offsetof(struct __sk_buff, local_ip4):
8684 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8685 					  skc_rcv_saddr) != 4);
8686 
8687 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8688 				      si->dst_reg, si->src_reg,
8689 				      offsetof(struct sk_buff, sk));
8690 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8691 				      bpf_target_off(struct sock_common,
8692 						     skc_rcv_saddr,
8693 						     4, target_size));
8694 		break;
8695 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
8696 	     offsetof(struct __sk_buff, remote_ip6[3]):
8697 #if IS_ENABLED(CONFIG_IPV6)
8698 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8699 					  skc_v6_daddr.s6_addr32[0]) != 4);
8700 
8701 		off = si->off;
8702 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
8703 
8704 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8705 				      si->dst_reg, si->src_reg,
8706 				      offsetof(struct sk_buff, sk));
8707 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8708 				      offsetof(struct sock_common,
8709 					       skc_v6_daddr.s6_addr32[0]) +
8710 				      off);
8711 #else
8712 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8713 #endif
8714 		break;
8715 	case offsetof(struct __sk_buff, local_ip6[0]) ...
8716 	     offsetof(struct __sk_buff, local_ip6[3]):
8717 #if IS_ENABLED(CONFIG_IPV6)
8718 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8719 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8720 
8721 		off = si->off;
8722 		off -= offsetof(struct __sk_buff, local_ip6[0]);
8723 
8724 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8725 				      si->dst_reg, si->src_reg,
8726 				      offsetof(struct sk_buff, sk));
8727 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8728 				      offsetof(struct sock_common,
8729 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8730 				      off);
8731 #else
8732 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8733 #endif
8734 		break;
8735 
8736 	case offsetof(struct __sk_buff, remote_port):
8737 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8738 
8739 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8740 				      si->dst_reg, si->src_reg,
8741 				      offsetof(struct sk_buff, sk));
8742 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8743 				      bpf_target_off(struct sock_common,
8744 						     skc_dport,
8745 						     2, target_size));
8746 #ifndef __BIG_ENDIAN_BITFIELD
8747 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8748 #endif
8749 		break;
8750 
8751 	case offsetof(struct __sk_buff, local_port):
8752 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8753 
8754 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8755 				      si->dst_reg, si->src_reg,
8756 				      offsetof(struct sk_buff, sk));
8757 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8758 				      bpf_target_off(struct sock_common,
8759 						     skc_num, 2, target_size));
8760 		break;
8761 
8762 	case offsetof(struct __sk_buff, tstamp):
8763 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8764 
8765 		if (type == BPF_WRITE)
8766 			*insn++ = BPF_STX_MEM(BPF_DW,
8767 					      si->dst_reg, si->src_reg,
8768 					      bpf_target_off(struct sk_buff,
8769 							     tstamp, 8,
8770 							     target_size));
8771 		else
8772 			*insn++ = BPF_LDX_MEM(BPF_DW,
8773 					      si->dst_reg, si->src_reg,
8774 					      bpf_target_off(struct sk_buff,
8775 							     tstamp, 8,
8776 							     target_size));
8777 		break;
8778 
8779 	case offsetof(struct __sk_buff, gso_segs):
8780 		insn = bpf_convert_shinfo_access(si, insn);
8781 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8782 				      si->dst_reg, si->dst_reg,
8783 				      bpf_target_off(struct skb_shared_info,
8784 						     gso_segs, 2,
8785 						     target_size));
8786 		break;
8787 	case offsetof(struct __sk_buff, gso_size):
8788 		insn = bpf_convert_shinfo_access(si, insn);
8789 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8790 				      si->dst_reg, si->dst_reg,
8791 				      bpf_target_off(struct skb_shared_info,
8792 						     gso_size, 2,
8793 						     target_size));
8794 		break;
8795 	case offsetof(struct __sk_buff, wire_len):
8796 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8797 
8798 		off = si->off;
8799 		off -= offsetof(struct __sk_buff, wire_len);
8800 		off += offsetof(struct sk_buff, cb);
8801 		off += offsetof(struct qdisc_skb_cb, pkt_len);
8802 		*target_size = 4;
8803 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8804 		break;
8805 
8806 	case offsetof(struct __sk_buff, sk):
8807 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8808 				      si->dst_reg, si->src_reg,
8809 				      offsetof(struct sk_buff, sk));
8810 		break;
8811 	}
8812 
8813 	return insn - insn_buf;
8814 }
8815 
8816 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8817 				const struct bpf_insn *si,
8818 				struct bpf_insn *insn_buf,
8819 				struct bpf_prog *prog, u32 *target_size)
8820 {
8821 	struct bpf_insn *insn = insn_buf;
8822 	int off;
8823 
8824 	switch (si->off) {
8825 	case offsetof(struct bpf_sock, bound_dev_if):
8826 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8827 
8828 		if (type == BPF_WRITE)
8829 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8830 					offsetof(struct sock, sk_bound_dev_if));
8831 		else
8832 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8833 				      offsetof(struct sock, sk_bound_dev_if));
8834 		break;
8835 
8836 	case offsetof(struct bpf_sock, mark):
8837 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8838 
8839 		if (type == BPF_WRITE)
8840 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8841 					offsetof(struct sock, sk_mark));
8842 		else
8843 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8844 				      offsetof(struct sock, sk_mark));
8845 		break;
8846 
8847 	case offsetof(struct bpf_sock, priority):
8848 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8849 
8850 		if (type == BPF_WRITE)
8851 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8852 					offsetof(struct sock, sk_priority));
8853 		else
8854 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8855 				      offsetof(struct sock, sk_priority));
8856 		break;
8857 
8858 	case offsetof(struct bpf_sock, family):
8859 		*insn++ = BPF_LDX_MEM(
8860 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8861 			si->dst_reg, si->src_reg,
8862 			bpf_target_off(struct sock_common,
8863 				       skc_family,
8864 				       sizeof_field(struct sock_common,
8865 						    skc_family),
8866 				       target_size));
8867 		break;
8868 
8869 	case offsetof(struct bpf_sock, type):
8870 		*insn++ = BPF_LDX_MEM(
8871 			BPF_FIELD_SIZEOF(struct sock, sk_type),
8872 			si->dst_reg, si->src_reg,
8873 			bpf_target_off(struct sock, sk_type,
8874 				       sizeof_field(struct sock, sk_type),
8875 				       target_size));
8876 		break;
8877 
8878 	case offsetof(struct bpf_sock, protocol):
8879 		*insn++ = BPF_LDX_MEM(
8880 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
8881 			si->dst_reg, si->src_reg,
8882 			bpf_target_off(struct sock, sk_protocol,
8883 				       sizeof_field(struct sock, sk_protocol),
8884 				       target_size));
8885 		break;
8886 
8887 	case offsetof(struct bpf_sock, src_ip4):
8888 		*insn++ = BPF_LDX_MEM(
8889 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8890 			bpf_target_off(struct sock_common, skc_rcv_saddr,
8891 				       sizeof_field(struct sock_common,
8892 						    skc_rcv_saddr),
8893 				       target_size));
8894 		break;
8895 
8896 	case offsetof(struct bpf_sock, dst_ip4):
8897 		*insn++ = BPF_LDX_MEM(
8898 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8899 			bpf_target_off(struct sock_common, skc_daddr,
8900 				       sizeof_field(struct sock_common,
8901 						    skc_daddr),
8902 				       target_size));
8903 		break;
8904 
8905 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8906 #if IS_ENABLED(CONFIG_IPV6)
8907 		off = si->off;
8908 		off -= offsetof(struct bpf_sock, src_ip6[0]);
8909 		*insn++ = BPF_LDX_MEM(
8910 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8911 			bpf_target_off(
8912 				struct sock_common,
8913 				skc_v6_rcv_saddr.s6_addr32[0],
8914 				sizeof_field(struct sock_common,
8915 					     skc_v6_rcv_saddr.s6_addr32[0]),
8916 				target_size) + off);
8917 #else
8918 		(void)off;
8919 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8920 #endif
8921 		break;
8922 
8923 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8924 #if IS_ENABLED(CONFIG_IPV6)
8925 		off = si->off;
8926 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
8927 		*insn++ = BPF_LDX_MEM(
8928 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8929 			bpf_target_off(struct sock_common,
8930 				       skc_v6_daddr.s6_addr32[0],
8931 				       sizeof_field(struct sock_common,
8932 						    skc_v6_daddr.s6_addr32[0]),
8933 				       target_size) + off);
8934 #else
8935 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8936 		*target_size = 4;
8937 #endif
8938 		break;
8939 
8940 	case offsetof(struct bpf_sock, src_port):
8941 		*insn++ = BPF_LDX_MEM(
8942 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
8943 			si->dst_reg, si->src_reg,
8944 			bpf_target_off(struct sock_common, skc_num,
8945 				       sizeof_field(struct sock_common,
8946 						    skc_num),
8947 				       target_size));
8948 		break;
8949 
8950 	case offsetof(struct bpf_sock, dst_port):
8951 		*insn++ = BPF_LDX_MEM(
8952 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
8953 			si->dst_reg, si->src_reg,
8954 			bpf_target_off(struct sock_common, skc_dport,
8955 				       sizeof_field(struct sock_common,
8956 						    skc_dport),
8957 				       target_size));
8958 		break;
8959 
8960 	case offsetof(struct bpf_sock, state):
8961 		*insn++ = BPF_LDX_MEM(
8962 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
8963 			si->dst_reg, si->src_reg,
8964 			bpf_target_off(struct sock_common, skc_state,
8965 				       sizeof_field(struct sock_common,
8966 						    skc_state),
8967 				       target_size));
8968 		break;
8969 	case offsetof(struct bpf_sock, rx_queue_mapping):
8970 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
8971 		*insn++ = BPF_LDX_MEM(
8972 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
8973 			si->dst_reg, si->src_reg,
8974 			bpf_target_off(struct sock, sk_rx_queue_mapping,
8975 				       sizeof_field(struct sock,
8976 						    sk_rx_queue_mapping),
8977 				       target_size));
8978 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
8979 				      1);
8980 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8981 #else
8982 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8983 		*target_size = 2;
8984 #endif
8985 		break;
8986 	}
8987 
8988 	return insn - insn_buf;
8989 }
8990 
8991 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
8992 					 const struct bpf_insn *si,
8993 					 struct bpf_insn *insn_buf,
8994 					 struct bpf_prog *prog, u32 *target_size)
8995 {
8996 	struct bpf_insn *insn = insn_buf;
8997 
8998 	switch (si->off) {
8999 	case offsetof(struct __sk_buff, ifindex):
9000 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9001 				      si->dst_reg, si->src_reg,
9002 				      offsetof(struct sk_buff, dev));
9003 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9004 				      bpf_target_off(struct net_device, ifindex, 4,
9005 						     target_size));
9006 		break;
9007 	default:
9008 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9009 					      target_size);
9010 	}
9011 
9012 	return insn - insn_buf;
9013 }
9014 
9015 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9016 				  const struct bpf_insn *si,
9017 				  struct bpf_insn *insn_buf,
9018 				  struct bpf_prog *prog, u32 *target_size)
9019 {
9020 	struct bpf_insn *insn = insn_buf;
9021 
9022 	switch (si->off) {
9023 	case offsetof(struct xdp_md, data):
9024 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9025 				      si->dst_reg, si->src_reg,
9026 				      offsetof(struct xdp_buff, data));
9027 		break;
9028 	case offsetof(struct xdp_md, data_meta):
9029 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9030 				      si->dst_reg, si->src_reg,
9031 				      offsetof(struct xdp_buff, data_meta));
9032 		break;
9033 	case offsetof(struct xdp_md, data_end):
9034 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9035 				      si->dst_reg, si->src_reg,
9036 				      offsetof(struct xdp_buff, data_end));
9037 		break;
9038 	case offsetof(struct xdp_md, ingress_ifindex):
9039 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9040 				      si->dst_reg, si->src_reg,
9041 				      offsetof(struct xdp_buff, rxq));
9042 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9043 				      si->dst_reg, si->dst_reg,
9044 				      offsetof(struct xdp_rxq_info, dev));
9045 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9046 				      offsetof(struct net_device, ifindex));
9047 		break;
9048 	case offsetof(struct xdp_md, rx_queue_index):
9049 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9050 				      si->dst_reg, si->src_reg,
9051 				      offsetof(struct xdp_buff, rxq));
9052 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9053 				      offsetof(struct xdp_rxq_info,
9054 					       queue_index));
9055 		break;
9056 	case offsetof(struct xdp_md, egress_ifindex):
9057 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9058 				      si->dst_reg, si->src_reg,
9059 				      offsetof(struct xdp_buff, txq));
9060 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9061 				      si->dst_reg, si->dst_reg,
9062 				      offsetof(struct xdp_txq_info, dev));
9063 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9064 				      offsetof(struct net_device, ifindex));
9065 		break;
9066 	}
9067 
9068 	return insn - insn_buf;
9069 }
9070 
9071 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9072  * context Structure, F is Field in context structure that contains a pointer
9073  * to Nested Structure of type NS that has the field NF.
9074  *
9075  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9076  * sure that SIZE is not greater than actual size of S.F.NF.
9077  *
9078  * If offset OFF is provided, the load happens from that offset relative to
9079  * offset of NF.
9080  */
9081 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
9082 	do {								       \
9083 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9084 				      si->src_reg, offsetof(S, F));	       \
9085 		*insn++ = BPF_LDX_MEM(					       \
9086 			SIZE, si->dst_reg, si->dst_reg,			       \
9087 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9088 				       target_size)			       \
9089 				+ OFF);					       \
9090 	} while (0)
9091 
9092 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
9093 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
9094 					     BPF_FIELD_SIZEOF(NS, NF), 0)
9095 
9096 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9097  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9098  *
9099  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9100  * "register" since two registers available in convert_ctx_access are not
9101  * enough: we can't override neither SRC, since it contains value to store, nor
9102  * DST since it contains pointer to context that may be used by later
9103  * instructions. But we need a temporary place to save pointer to nested
9104  * structure whose field we want to store to.
9105  */
9106 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
9107 	do {								       \
9108 		int tmp_reg = BPF_REG_9;				       \
9109 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9110 			--tmp_reg;					       \
9111 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9112 			--tmp_reg;					       \
9113 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
9114 				      offsetof(S, TF));			       \
9115 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
9116 				      si->dst_reg, offsetof(S, F));	       \
9117 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
9118 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9119 				       target_size)			       \
9120 				+ OFF);					       \
9121 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
9122 				      offsetof(S, TF));			       \
9123 	} while (0)
9124 
9125 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9126 						      TF)		       \
9127 	do {								       \
9128 		if (type == BPF_WRITE) {				       \
9129 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9130 							 OFF, TF);	       \
9131 		} else {						       \
9132 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
9133 				S, NS, F, NF, SIZE, OFF);  \
9134 		}							       \
9135 	} while (0)
9136 
9137 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
9138 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
9139 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9140 
9141 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9142 					const struct bpf_insn *si,
9143 					struct bpf_insn *insn_buf,
9144 					struct bpf_prog *prog, u32 *target_size)
9145 {
9146 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9147 	struct bpf_insn *insn = insn_buf;
9148 
9149 	switch (si->off) {
9150 	case offsetof(struct bpf_sock_addr, user_family):
9151 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9152 					    struct sockaddr, uaddr, sa_family);
9153 		break;
9154 
9155 	case offsetof(struct bpf_sock_addr, user_ip4):
9156 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9157 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9158 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9159 		break;
9160 
9161 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9162 		off = si->off;
9163 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9164 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9165 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9166 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9167 			tmp_reg);
9168 		break;
9169 
9170 	case offsetof(struct bpf_sock_addr, user_port):
9171 		/* To get port we need to know sa_family first and then treat
9172 		 * sockaddr as either sockaddr_in or sockaddr_in6.
9173 		 * Though we can simplify since port field has same offset and
9174 		 * size in both structures.
9175 		 * Here we check this invariant and use just one of the
9176 		 * structures if it's true.
9177 		 */
9178 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9179 			     offsetof(struct sockaddr_in6, sin6_port));
9180 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9181 			     sizeof_field(struct sockaddr_in6, sin6_port));
9182 		/* Account for sin6_port being smaller than user_port. */
9183 		port_size = min(port_size, BPF_LDST_BYTES(si));
9184 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9185 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9186 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9187 		break;
9188 
9189 	case offsetof(struct bpf_sock_addr, family):
9190 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9191 					    struct sock, sk, sk_family);
9192 		break;
9193 
9194 	case offsetof(struct bpf_sock_addr, type):
9195 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9196 					    struct sock, sk, sk_type);
9197 		break;
9198 
9199 	case offsetof(struct bpf_sock_addr, protocol):
9200 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9201 					    struct sock, sk, sk_protocol);
9202 		break;
9203 
9204 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
9205 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
9206 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9207 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9208 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9209 		break;
9210 
9211 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9212 				msg_src_ip6[3]):
9213 		off = si->off;
9214 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9215 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9216 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9217 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9218 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9219 		break;
9220 	case offsetof(struct bpf_sock_addr, sk):
9221 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9222 				      si->dst_reg, si->src_reg,
9223 				      offsetof(struct bpf_sock_addr_kern, sk));
9224 		break;
9225 	}
9226 
9227 	return insn - insn_buf;
9228 }
9229 
9230 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9231 				       const struct bpf_insn *si,
9232 				       struct bpf_insn *insn_buf,
9233 				       struct bpf_prog *prog,
9234 				       u32 *target_size)
9235 {
9236 	struct bpf_insn *insn = insn_buf;
9237 	int off;
9238 
9239 /* Helper macro for adding read access to tcp_sock or sock fields. */
9240 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9241 	do {								      \
9242 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9243 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9244 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9245 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9246 			reg--;						      \
9247 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9248 			reg--;						      \
9249 		if (si->dst_reg == si->src_reg) {			      \
9250 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9251 					  offsetof(struct bpf_sock_ops_kern,  \
9252 					  temp));			      \
9253 			fullsock_reg = reg;				      \
9254 			jmp += 2;					      \
9255 		}							      \
9256 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9257 						struct bpf_sock_ops_kern,     \
9258 						is_fullsock),		      \
9259 				      fullsock_reg, si->src_reg,	      \
9260 				      offsetof(struct bpf_sock_ops_kern,      \
9261 					       is_fullsock));		      \
9262 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9263 		if (si->dst_reg == si->src_reg)				      \
9264 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9265 				      offsetof(struct bpf_sock_ops_kern,      \
9266 				      temp));				      \
9267 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9268 						struct bpf_sock_ops_kern, sk),\
9269 				      si->dst_reg, si->src_reg,		      \
9270 				      offsetof(struct bpf_sock_ops_kern, sk));\
9271 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
9272 						       OBJ_FIELD),	      \
9273 				      si->dst_reg, si->dst_reg,		      \
9274 				      offsetof(OBJ, OBJ_FIELD));	      \
9275 		if (si->dst_reg == si->src_reg)	{			      \
9276 			*insn++ = BPF_JMP_A(1);				      \
9277 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9278 				      offsetof(struct bpf_sock_ops_kern,      \
9279 				      temp));				      \
9280 		}							      \
9281 	} while (0)
9282 
9283 #define SOCK_OPS_GET_SK()							      \
9284 	do {								      \
9285 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9286 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9287 			reg--;						      \
9288 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9289 			reg--;						      \
9290 		if (si->dst_reg == si->src_reg) {			      \
9291 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9292 					  offsetof(struct bpf_sock_ops_kern,  \
9293 					  temp));			      \
9294 			fullsock_reg = reg;				      \
9295 			jmp += 2;					      \
9296 		}							      \
9297 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9298 						struct bpf_sock_ops_kern,     \
9299 						is_fullsock),		      \
9300 				      fullsock_reg, si->src_reg,	      \
9301 				      offsetof(struct bpf_sock_ops_kern,      \
9302 					       is_fullsock));		      \
9303 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9304 		if (si->dst_reg == si->src_reg)				      \
9305 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9306 				      offsetof(struct bpf_sock_ops_kern,      \
9307 				      temp));				      \
9308 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9309 						struct bpf_sock_ops_kern, sk),\
9310 				      si->dst_reg, si->src_reg,		      \
9311 				      offsetof(struct bpf_sock_ops_kern, sk));\
9312 		if (si->dst_reg == si->src_reg)	{			      \
9313 			*insn++ = BPF_JMP_A(1);				      \
9314 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9315 				      offsetof(struct bpf_sock_ops_kern,      \
9316 				      temp));				      \
9317 		}							      \
9318 	} while (0)
9319 
9320 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9321 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9322 
9323 /* Helper macro for adding write access to tcp_sock or sock fields.
9324  * The macro is called with two registers, dst_reg which contains a pointer
9325  * to ctx (context) and src_reg which contains the value that should be
9326  * stored. However, we need an additional register since we cannot overwrite
9327  * dst_reg because it may be used later in the program.
9328  * Instead we "borrow" one of the other register. We first save its value
9329  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9330  * it at the end of the macro.
9331  */
9332 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9333 	do {								      \
9334 		int reg = BPF_REG_9;					      \
9335 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9336 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9337 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9338 			reg--;						      \
9339 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9340 			reg--;						      \
9341 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
9342 				      offsetof(struct bpf_sock_ops_kern,      \
9343 					       temp));			      \
9344 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9345 						struct bpf_sock_ops_kern,     \
9346 						is_fullsock),		      \
9347 				      reg, si->dst_reg,			      \
9348 				      offsetof(struct bpf_sock_ops_kern,      \
9349 					       is_fullsock));		      \
9350 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
9351 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9352 						struct bpf_sock_ops_kern, sk),\
9353 				      reg, si->dst_reg,			      \
9354 				      offsetof(struct bpf_sock_ops_kern, sk));\
9355 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
9356 				      reg, si->src_reg,			      \
9357 				      offsetof(OBJ, OBJ_FIELD));	      \
9358 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
9359 				      offsetof(struct bpf_sock_ops_kern,      \
9360 					       temp));			      \
9361 	} while (0)
9362 
9363 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
9364 	do {								      \
9365 		if (TYPE == BPF_WRITE)					      \
9366 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9367 		else							      \
9368 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9369 	} while (0)
9370 
9371 	if (insn > insn_buf)
9372 		return insn - insn_buf;
9373 
9374 	switch (si->off) {
9375 	case offsetof(struct bpf_sock_ops, op):
9376 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9377 						       op),
9378 				      si->dst_reg, si->src_reg,
9379 				      offsetof(struct bpf_sock_ops_kern, op));
9380 		break;
9381 
9382 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
9383 	     offsetof(struct bpf_sock_ops, replylong[3]):
9384 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9385 			     sizeof_field(struct bpf_sock_ops_kern, reply));
9386 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9387 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
9388 		off = si->off;
9389 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
9390 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9391 		if (type == BPF_WRITE)
9392 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9393 					      off);
9394 		else
9395 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9396 					      off);
9397 		break;
9398 
9399 	case offsetof(struct bpf_sock_ops, family):
9400 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9401 
9402 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9403 					      struct bpf_sock_ops_kern, sk),
9404 				      si->dst_reg, si->src_reg,
9405 				      offsetof(struct bpf_sock_ops_kern, sk));
9406 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9407 				      offsetof(struct sock_common, skc_family));
9408 		break;
9409 
9410 	case offsetof(struct bpf_sock_ops, remote_ip4):
9411 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9412 
9413 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9414 						struct bpf_sock_ops_kern, sk),
9415 				      si->dst_reg, si->src_reg,
9416 				      offsetof(struct bpf_sock_ops_kern, sk));
9417 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9418 				      offsetof(struct sock_common, skc_daddr));
9419 		break;
9420 
9421 	case offsetof(struct bpf_sock_ops, local_ip4):
9422 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9423 					  skc_rcv_saddr) != 4);
9424 
9425 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9426 					      struct bpf_sock_ops_kern, sk),
9427 				      si->dst_reg, si->src_reg,
9428 				      offsetof(struct bpf_sock_ops_kern, sk));
9429 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9430 				      offsetof(struct sock_common,
9431 					       skc_rcv_saddr));
9432 		break;
9433 
9434 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9435 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
9436 #if IS_ENABLED(CONFIG_IPV6)
9437 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9438 					  skc_v6_daddr.s6_addr32[0]) != 4);
9439 
9440 		off = si->off;
9441 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9442 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9443 						struct bpf_sock_ops_kern, sk),
9444 				      si->dst_reg, si->src_reg,
9445 				      offsetof(struct bpf_sock_ops_kern, sk));
9446 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9447 				      offsetof(struct sock_common,
9448 					       skc_v6_daddr.s6_addr32[0]) +
9449 				      off);
9450 #else
9451 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9452 #endif
9453 		break;
9454 
9455 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9456 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
9457 #if IS_ENABLED(CONFIG_IPV6)
9458 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9459 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9460 
9461 		off = si->off;
9462 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9463 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9464 						struct bpf_sock_ops_kern, sk),
9465 				      si->dst_reg, si->src_reg,
9466 				      offsetof(struct bpf_sock_ops_kern, sk));
9467 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9468 				      offsetof(struct sock_common,
9469 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9470 				      off);
9471 #else
9472 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9473 #endif
9474 		break;
9475 
9476 	case offsetof(struct bpf_sock_ops, remote_port):
9477 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9478 
9479 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9480 						struct bpf_sock_ops_kern, sk),
9481 				      si->dst_reg, si->src_reg,
9482 				      offsetof(struct bpf_sock_ops_kern, sk));
9483 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9484 				      offsetof(struct sock_common, skc_dport));
9485 #ifndef __BIG_ENDIAN_BITFIELD
9486 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9487 #endif
9488 		break;
9489 
9490 	case offsetof(struct bpf_sock_ops, local_port):
9491 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9492 
9493 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9494 						struct bpf_sock_ops_kern, sk),
9495 				      si->dst_reg, si->src_reg,
9496 				      offsetof(struct bpf_sock_ops_kern, sk));
9497 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9498 				      offsetof(struct sock_common, skc_num));
9499 		break;
9500 
9501 	case offsetof(struct bpf_sock_ops, is_fullsock):
9502 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9503 						struct bpf_sock_ops_kern,
9504 						is_fullsock),
9505 				      si->dst_reg, si->src_reg,
9506 				      offsetof(struct bpf_sock_ops_kern,
9507 					       is_fullsock));
9508 		break;
9509 
9510 	case offsetof(struct bpf_sock_ops, state):
9511 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9512 
9513 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9514 						struct bpf_sock_ops_kern, sk),
9515 				      si->dst_reg, si->src_reg,
9516 				      offsetof(struct bpf_sock_ops_kern, sk));
9517 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9518 				      offsetof(struct sock_common, skc_state));
9519 		break;
9520 
9521 	case offsetof(struct bpf_sock_ops, rtt_min):
9522 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9523 			     sizeof(struct minmax));
9524 		BUILD_BUG_ON(sizeof(struct minmax) <
9525 			     sizeof(struct minmax_sample));
9526 
9527 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9528 						struct bpf_sock_ops_kern, sk),
9529 				      si->dst_reg, si->src_reg,
9530 				      offsetof(struct bpf_sock_ops_kern, sk));
9531 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9532 				      offsetof(struct tcp_sock, rtt_min) +
9533 				      sizeof_field(struct minmax_sample, t));
9534 		break;
9535 
9536 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9537 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9538 				   struct tcp_sock);
9539 		break;
9540 
9541 	case offsetof(struct bpf_sock_ops, sk_txhash):
9542 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9543 					  struct sock, type);
9544 		break;
9545 	case offsetof(struct bpf_sock_ops, snd_cwnd):
9546 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9547 		break;
9548 	case offsetof(struct bpf_sock_ops, srtt_us):
9549 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9550 		break;
9551 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
9552 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9553 		break;
9554 	case offsetof(struct bpf_sock_ops, rcv_nxt):
9555 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9556 		break;
9557 	case offsetof(struct bpf_sock_ops, snd_nxt):
9558 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9559 		break;
9560 	case offsetof(struct bpf_sock_ops, snd_una):
9561 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9562 		break;
9563 	case offsetof(struct bpf_sock_ops, mss_cache):
9564 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9565 		break;
9566 	case offsetof(struct bpf_sock_ops, ecn_flags):
9567 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9568 		break;
9569 	case offsetof(struct bpf_sock_ops, rate_delivered):
9570 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9571 		break;
9572 	case offsetof(struct bpf_sock_ops, rate_interval_us):
9573 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9574 		break;
9575 	case offsetof(struct bpf_sock_ops, packets_out):
9576 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9577 		break;
9578 	case offsetof(struct bpf_sock_ops, retrans_out):
9579 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9580 		break;
9581 	case offsetof(struct bpf_sock_ops, total_retrans):
9582 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9583 		break;
9584 	case offsetof(struct bpf_sock_ops, segs_in):
9585 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9586 		break;
9587 	case offsetof(struct bpf_sock_ops, data_segs_in):
9588 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9589 		break;
9590 	case offsetof(struct bpf_sock_ops, segs_out):
9591 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9592 		break;
9593 	case offsetof(struct bpf_sock_ops, data_segs_out):
9594 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9595 		break;
9596 	case offsetof(struct bpf_sock_ops, lost_out):
9597 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9598 		break;
9599 	case offsetof(struct bpf_sock_ops, sacked_out):
9600 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9601 		break;
9602 	case offsetof(struct bpf_sock_ops, bytes_received):
9603 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9604 		break;
9605 	case offsetof(struct bpf_sock_ops, bytes_acked):
9606 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9607 		break;
9608 	case offsetof(struct bpf_sock_ops, sk):
9609 		SOCK_OPS_GET_SK();
9610 		break;
9611 	case offsetof(struct bpf_sock_ops, skb_data_end):
9612 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9613 						       skb_data_end),
9614 				      si->dst_reg, si->src_reg,
9615 				      offsetof(struct bpf_sock_ops_kern,
9616 					       skb_data_end));
9617 		break;
9618 	case offsetof(struct bpf_sock_ops, skb_data):
9619 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9620 						       skb),
9621 				      si->dst_reg, si->src_reg,
9622 				      offsetof(struct bpf_sock_ops_kern,
9623 					       skb));
9624 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9625 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9626 				      si->dst_reg, si->dst_reg,
9627 				      offsetof(struct sk_buff, data));
9628 		break;
9629 	case offsetof(struct bpf_sock_ops, skb_len):
9630 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9631 						       skb),
9632 				      si->dst_reg, si->src_reg,
9633 				      offsetof(struct bpf_sock_ops_kern,
9634 					       skb));
9635 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9636 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9637 				      si->dst_reg, si->dst_reg,
9638 				      offsetof(struct sk_buff, len));
9639 		break;
9640 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9641 		off = offsetof(struct sk_buff, cb);
9642 		off += offsetof(struct tcp_skb_cb, tcp_flags);
9643 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9644 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9645 						       skb),
9646 				      si->dst_reg, si->src_reg,
9647 				      offsetof(struct bpf_sock_ops_kern,
9648 					       skb));
9649 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9650 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9651 						       tcp_flags),
9652 				      si->dst_reg, si->dst_reg, off);
9653 		break;
9654 	}
9655 	return insn - insn_buf;
9656 }
9657 
9658 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9659 				     const struct bpf_insn *si,
9660 				     struct bpf_insn *insn_buf,
9661 				     struct bpf_prog *prog, u32 *target_size)
9662 {
9663 	struct bpf_insn *insn = insn_buf;
9664 	int off;
9665 
9666 	switch (si->off) {
9667 	case offsetof(struct __sk_buff, data_end):
9668 		off  = si->off;
9669 		off -= offsetof(struct __sk_buff, data_end);
9670 		off += offsetof(struct sk_buff, cb);
9671 		off += offsetof(struct tcp_skb_cb, bpf.data_end);
9672 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9673 				      si->src_reg, off);
9674 		break;
9675 	default:
9676 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9677 					      target_size);
9678 	}
9679 
9680 	return insn - insn_buf;
9681 }
9682 
9683 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9684 				     const struct bpf_insn *si,
9685 				     struct bpf_insn *insn_buf,
9686 				     struct bpf_prog *prog, u32 *target_size)
9687 {
9688 	struct bpf_insn *insn = insn_buf;
9689 #if IS_ENABLED(CONFIG_IPV6)
9690 	int off;
9691 #endif
9692 
9693 	/* convert ctx uses the fact sg element is first in struct */
9694 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9695 
9696 	switch (si->off) {
9697 	case offsetof(struct sk_msg_md, data):
9698 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9699 				      si->dst_reg, si->src_reg,
9700 				      offsetof(struct sk_msg, data));
9701 		break;
9702 	case offsetof(struct sk_msg_md, data_end):
9703 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9704 				      si->dst_reg, si->src_reg,
9705 				      offsetof(struct sk_msg, data_end));
9706 		break;
9707 	case offsetof(struct sk_msg_md, family):
9708 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9709 
9710 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9711 					      struct sk_msg, sk),
9712 				      si->dst_reg, si->src_reg,
9713 				      offsetof(struct sk_msg, sk));
9714 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9715 				      offsetof(struct sock_common, skc_family));
9716 		break;
9717 
9718 	case offsetof(struct sk_msg_md, remote_ip4):
9719 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9720 
9721 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9722 						struct sk_msg, sk),
9723 				      si->dst_reg, si->src_reg,
9724 				      offsetof(struct sk_msg, sk));
9725 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9726 				      offsetof(struct sock_common, skc_daddr));
9727 		break;
9728 
9729 	case offsetof(struct sk_msg_md, local_ip4):
9730 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9731 					  skc_rcv_saddr) != 4);
9732 
9733 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9734 					      struct sk_msg, sk),
9735 				      si->dst_reg, si->src_reg,
9736 				      offsetof(struct sk_msg, sk));
9737 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9738 				      offsetof(struct sock_common,
9739 					       skc_rcv_saddr));
9740 		break;
9741 
9742 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9743 	     offsetof(struct sk_msg_md, remote_ip6[3]):
9744 #if IS_ENABLED(CONFIG_IPV6)
9745 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9746 					  skc_v6_daddr.s6_addr32[0]) != 4);
9747 
9748 		off = si->off;
9749 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9750 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9751 						struct sk_msg, sk),
9752 				      si->dst_reg, si->src_reg,
9753 				      offsetof(struct sk_msg, sk));
9754 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9755 				      offsetof(struct sock_common,
9756 					       skc_v6_daddr.s6_addr32[0]) +
9757 				      off);
9758 #else
9759 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9760 #endif
9761 		break;
9762 
9763 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
9764 	     offsetof(struct sk_msg_md, local_ip6[3]):
9765 #if IS_ENABLED(CONFIG_IPV6)
9766 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9767 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9768 
9769 		off = si->off;
9770 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
9771 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9772 						struct sk_msg, sk),
9773 				      si->dst_reg, si->src_reg,
9774 				      offsetof(struct sk_msg, sk));
9775 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9776 				      offsetof(struct sock_common,
9777 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9778 				      off);
9779 #else
9780 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9781 #endif
9782 		break;
9783 
9784 	case offsetof(struct sk_msg_md, remote_port):
9785 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9786 
9787 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9788 						struct sk_msg, sk),
9789 				      si->dst_reg, si->src_reg,
9790 				      offsetof(struct sk_msg, sk));
9791 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9792 				      offsetof(struct sock_common, skc_dport));
9793 #ifndef __BIG_ENDIAN_BITFIELD
9794 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9795 #endif
9796 		break;
9797 
9798 	case offsetof(struct sk_msg_md, local_port):
9799 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9800 
9801 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9802 						struct sk_msg, sk),
9803 				      si->dst_reg, si->src_reg,
9804 				      offsetof(struct sk_msg, sk));
9805 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9806 				      offsetof(struct sock_common, skc_num));
9807 		break;
9808 
9809 	case offsetof(struct sk_msg_md, size):
9810 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
9811 				      si->dst_reg, si->src_reg,
9812 				      offsetof(struct sk_msg_sg, size));
9813 		break;
9814 
9815 	case offsetof(struct sk_msg_md, sk):
9816 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
9817 				      si->dst_reg, si->src_reg,
9818 				      offsetof(struct sk_msg, sk));
9819 		break;
9820 	}
9821 
9822 	return insn - insn_buf;
9823 }
9824 
9825 const struct bpf_verifier_ops sk_filter_verifier_ops = {
9826 	.get_func_proto		= sk_filter_func_proto,
9827 	.is_valid_access	= sk_filter_is_valid_access,
9828 	.convert_ctx_access	= bpf_convert_ctx_access,
9829 	.gen_ld_abs		= bpf_gen_ld_abs,
9830 };
9831 
9832 const struct bpf_prog_ops sk_filter_prog_ops = {
9833 	.test_run		= bpf_prog_test_run_skb,
9834 };
9835 
9836 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
9837 	.get_func_proto		= tc_cls_act_func_proto,
9838 	.is_valid_access	= tc_cls_act_is_valid_access,
9839 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
9840 	.gen_prologue		= tc_cls_act_prologue,
9841 	.gen_ld_abs		= bpf_gen_ld_abs,
9842 };
9843 
9844 const struct bpf_prog_ops tc_cls_act_prog_ops = {
9845 	.test_run		= bpf_prog_test_run_skb,
9846 };
9847 
9848 const struct bpf_verifier_ops xdp_verifier_ops = {
9849 	.get_func_proto		= xdp_func_proto,
9850 	.is_valid_access	= xdp_is_valid_access,
9851 	.convert_ctx_access	= xdp_convert_ctx_access,
9852 	.gen_prologue		= bpf_noop_prologue,
9853 };
9854 
9855 const struct bpf_prog_ops xdp_prog_ops = {
9856 	.test_run		= bpf_prog_test_run_xdp,
9857 };
9858 
9859 const struct bpf_verifier_ops cg_skb_verifier_ops = {
9860 	.get_func_proto		= cg_skb_func_proto,
9861 	.is_valid_access	= cg_skb_is_valid_access,
9862 	.convert_ctx_access	= bpf_convert_ctx_access,
9863 };
9864 
9865 const struct bpf_prog_ops cg_skb_prog_ops = {
9866 	.test_run		= bpf_prog_test_run_skb,
9867 };
9868 
9869 const struct bpf_verifier_ops lwt_in_verifier_ops = {
9870 	.get_func_proto		= lwt_in_func_proto,
9871 	.is_valid_access	= lwt_is_valid_access,
9872 	.convert_ctx_access	= bpf_convert_ctx_access,
9873 };
9874 
9875 const struct bpf_prog_ops lwt_in_prog_ops = {
9876 	.test_run		= bpf_prog_test_run_skb,
9877 };
9878 
9879 const struct bpf_verifier_ops lwt_out_verifier_ops = {
9880 	.get_func_proto		= lwt_out_func_proto,
9881 	.is_valid_access	= lwt_is_valid_access,
9882 	.convert_ctx_access	= bpf_convert_ctx_access,
9883 };
9884 
9885 const struct bpf_prog_ops lwt_out_prog_ops = {
9886 	.test_run		= bpf_prog_test_run_skb,
9887 };
9888 
9889 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
9890 	.get_func_proto		= lwt_xmit_func_proto,
9891 	.is_valid_access	= lwt_is_valid_access,
9892 	.convert_ctx_access	= bpf_convert_ctx_access,
9893 	.gen_prologue		= tc_cls_act_prologue,
9894 };
9895 
9896 const struct bpf_prog_ops lwt_xmit_prog_ops = {
9897 	.test_run		= bpf_prog_test_run_skb,
9898 };
9899 
9900 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
9901 	.get_func_proto		= lwt_seg6local_func_proto,
9902 	.is_valid_access	= lwt_is_valid_access,
9903 	.convert_ctx_access	= bpf_convert_ctx_access,
9904 };
9905 
9906 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
9907 	.test_run		= bpf_prog_test_run_skb,
9908 };
9909 
9910 const struct bpf_verifier_ops cg_sock_verifier_ops = {
9911 	.get_func_proto		= sock_filter_func_proto,
9912 	.is_valid_access	= sock_filter_is_valid_access,
9913 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
9914 };
9915 
9916 const struct bpf_prog_ops cg_sock_prog_ops = {
9917 };
9918 
9919 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
9920 	.get_func_proto		= sock_addr_func_proto,
9921 	.is_valid_access	= sock_addr_is_valid_access,
9922 	.convert_ctx_access	= sock_addr_convert_ctx_access,
9923 };
9924 
9925 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
9926 };
9927 
9928 const struct bpf_verifier_ops sock_ops_verifier_ops = {
9929 	.get_func_proto		= sock_ops_func_proto,
9930 	.is_valid_access	= sock_ops_is_valid_access,
9931 	.convert_ctx_access	= sock_ops_convert_ctx_access,
9932 };
9933 
9934 const struct bpf_prog_ops sock_ops_prog_ops = {
9935 };
9936 
9937 const struct bpf_verifier_ops sk_skb_verifier_ops = {
9938 	.get_func_proto		= sk_skb_func_proto,
9939 	.is_valid_access	= sk_skb_is_valid_access,
9940 	.convert_ctx_access	= sk_skb_convert_ctx_access,
9941 	.gen_prologue		= sk_skb_prologue,
9942 };
9943 
9944 const struct bpf_prog_ops sk_skb_prog_ops = {
9945 };
9946 
9947 const struct bpf_verifier_ops sk_msg_verifier_ops = {
9948 	.get_func_proto		= sk_msg_func_proto,
9949 	.is_valid_access	= sk_msg_is_valid_access,
9950 	.convert_ctx_access	= sk_msg_convert_ctx_access,
9951 	.gen_prologue		= bpf_noop_prologue,
9952 };
9953 
9954 const struct bpf_prog_ops sk_msg_prog_ops = {
9955 };
9956 
9957 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
9958 	.get_func_proto		= flow_dissector_func_proto,
9959 	.is_valid_access	= flow_dissector_is_valid_access,
9960 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
9961 };
9962 
9963 const struct bpf_prog_ops flow_dissector_prog_ops = {
9964 	.test_run		= bpf_prog_test_run_flow_dissector,
9965 };
9966 
9967 int sk_detach_filter(struct sock *sk)
9968 {
9969 	int ret = -ENOENT;
9970 	struct sk_filter *filter;
9971 
9972 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
9973 		return -EPERM;
9974 
9975 	filter = rcu_dereference_protected(sk->sk_filter,
9976 					   lockdep_sock_is_held(sk));
9977 	if (filter) {
9978 		RCU_INIT_POINTER(sk->sk_filter, NULL);
9979 		sk_filter_uncharge(sk, filter);
9980 		ret = 0;
9981 	}
9982 
9983 	return ret;
9984 }
9985 EXPORT_SYMBOL_GPL(sk_detach_filter);
9986 
9987 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
9988 		  unsigned int len)
9989 {
9990 	struct sock_fprog_kern *fprog;
9991 	struct sk_filter *filter;
9992 	int ret = 0;
9993 
9994 	lock_sock(sk);
9995 	filter = rcu_dereference_protected(sk->sk_filter,
9996 					   lockdep_sock_is_held(sk));
9997 	if (!filter)
9998 		goto out;
9999 
10000 	/* We're copying the filter that has been originally attached,
10001 	 * so no conversion/decode needed anymore. eBPF programs that
10002 	 * have no original program cannot be dumped through this.
10003 	 */
10004 	ret = -EACCES;
10005 	fprog = filter->prog->orig_prog;
10006 	if (!fprog)
10007 		goto out;
10008 
10009 	ret = fprog->len;
10010 	if (!len)
10011 		/* User space only enquires number of filter blocks. */
10012 		goto out;
10013 
10014 	ret = -EINVAL;
10015 	if (len < fprog->len)
10016 		goto out;
10017 
10018 	ret = -EFAULT;
10019 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
10020 		goto out;
10021 
10022 	/* Instead of bytes, the API requests to return the number
10023 	 * of filter blocks.
10024 	 */
10025 	ret = fprog->len;
10026 out:
10027 	release_sock(sk);
10028 	return ret;
10029 }
10030 
10031 #ifdef CONFIG_INET
10032 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10033 				    struct sock_reuseport *reuse,
10034 				    struct sock *sk, struct sk_buff *skb,
10035 				    u32 hash)
10036 {
10037 	reuse_kern->skb = skb;
10038 	reuse_kern->sk = sk;
10039 	reuse_kern->selected_sk = NULL;
10040 	reuse_kern->data_end = skb->data + skb_headlen(skb);
10041 	reuse_kern->hash = hash;
10042 	reuse_kern->reuseport_id = reuse->reuseport_id;
10043 	reuse_kern->bind_inany = reuse->bind_inany;
10044 }
10045 
10046 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10047 				  struct bpf_prog *prog, struct sk_buff *skb,
10048 				  u32 hash)
10049 {
10050 	struct sk_reuseport_kern reuse_kern;
10051 	enum sk_action action;
10052 
10053 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
10054 	action = BPF_PROG_RUN(prog, &reuse_kern);
10055 
10056 	if (action == SK_PASS)
10057 		return reuse_kern.selected_sk;
10058 	else
10059 		return ERR_PTR(-ECONNREFUSED);
10060 }
10061 
10062 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10063 	   struct bpf_map *, map, void *, key, u32, flags)
10064 {
10065 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10066 	struct sock_reuseport *reuse;
10067 	struct sock *selected_sk;
10068 
10069 	selected_sk = map->ops->map_lookup_elem(map, key);
10070 	if (!selected_sk)
10071 		return -ENOENT;
10072 
10073 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10074 	if (!reuse) {
10075 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10076 		if (sk_is_refcounted(selected_sk))
10077 			sock_put(selected_sk);
10078 
10079 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
10080 		 * The only (!reuse) case here is - the sk has already been
10081 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
10082 		 *
10083 		 * Other maps (e.g. sock_map) do not provide this guarantee and
10084 		 * the sk may never be in the reuseport group to begin with.
10085 		 */
10086 		return is_sockarray ? -ENOENT : -EINVAL;
10087 	}
10088 
10089 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10090 		struct sock *sk = reuse_kern->sk;
10091 
10092 		if (sk->sk_protocol != selected_sk->sk_protocol)
10093 			return -EPROTOTYPE;
10094 		else if (sk->sk_family != selected_sk->sk_family)
10095 			return -EAFNOSUPPORT;
10096 
10097 		/* Catch all. Likely bound to a different sockaddr. */
10098 		return -EBADFD;
10099 	}
10100 
10101 	reuse_kern->selected_sk = selected_sk;
10102 
10103 	return 0;
10104 }
10105 
10106 static const struct bpf_func_proto sk_select_reuseport_proto = {
10107 	.func           = sk_select_reuseport,
10108 	.gpl_only       = false,
10109 	.ret_type       = RET_INTEGER,
10110 	.arg1_type	= ARG_PTR_TO_CTX,
10111 	.arg2_type      = ARG_CONST_MAP_PTR,
10112 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
10113 	.arg4_type	= ARG_ANYTHING,
10114 };
10115 
10116 BPF_CALL_4(sk_reuseport_load_bytes,
10117 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10118 	   void *, to, u32, len)
10119 {
10120 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10121 }
10122 
10123 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10124 	.func		= sk_reuseport_load_bytes,
10125 	.gpl_only	= false,
10126 	.ret_type	= RET_INTEGER,
10127 	.arg1_type	= ARG_PTR_TO_CTX,
10128 	.arg2_type	= ARG_ANYTHING,
10129 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10130 	.arg4_type	= ARG_CONST_SIZE,
10131 };
10132 
10133 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10134 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10135 	   void *, to, u32, len, u32, start_header)
10136 {
10137 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10138 					       len, start_header);
10139 }
10140 
10141 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10142 	.func		= sk_reuseport_load_bytes_relative,
10143 	.gpl_only	= false,
10144 	.ret_type	= RET_INTEGER,
10145 	.arg1_type	= ARG_PTR_TO_CTX,
10146 	.arg2_type	= ARG_ANYTHING,
10147 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10148 	.arg4_type	= ARG_CONST_SIZE,
10149 	.arg5_type	= ARG_ANYTHING,
10150 };
10151 
10152 static const struct bpf_func_proto *
10153 sk_reuseport_func_proto(enum bpf_func_id func_id,
10154 			const struct bpf_prog *prog)
10155 {
10156 	switch (func_id) {
10157 	case BPF_FUNC_sk_select_reuseport:
10158 		return &sk_select_reuseport_proto;
10159 	case BPF_FUNC_skb_load_bytes:
10160 		return &sk_reuseport_load_bytes_proto;
10161 	case BPF_FUNC_skb_load_bytes_relative:
10162 		return &sk_reuseport_load_bytes_relative_proto;
10163 	default:
10164 		return bpf_base_func_proto(func_id);
10165 	}
10166 }
10167 
10168 static bool
10169 sk_reuseport_is_valid_access(int off, int size,
10170 			     enum bpf_access_type type,
10171 			     const struct bpf_prog *prog,
10172 			     struct bpf_insn_access_aux *info)
10173 {
10174 	const u32 size_default = sizeof(__u32);
10175 
10176 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10177 	    off % size || type != BPF_READ)
10178 		return false;
10179 
10180 	switch (off) {
10181 	case offsetof(struct sk_reuseport_md, data):
10182 		info->reg_type = PTR_TO_PACKET;
10183 		return size == sizeof(__u64);
10184 
10185 	case offsetof(struct sk_reuseport_md, data_end):
10186 		info->reg_type = PTR_TO_PACKET_END;
10187 		return size == sizeof(__u64);
10188 
10189 	case offsetof(struct sk_reuseport_md, hash):
10190 		return size == size_default;
10191 
10192 	/* Fields that allow narrowing */
10193 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10194 		if (size < sizeof_field(struct sk_buff, protocol))
10195 			return false;
10196 		fallthrough;
10197 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10198 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10199 	case bpf_ctx_range(struct sk_reuseport_md, len):
10200 		bpf_ctx_record_field_size(info, size_default);
10201 		return bpf_ctx_narrow_access_ok(off, size, size_default);
10202 
10203 	default:
10204 		return false;
10205 	}
10206 }
10207 
10208 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
10209 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10210 			      si->dst_reg, si->src_reg,			\
10211 			      bpf_target_off(struct sk_reuseport_kern, F, \
10212 					     sizeof_field(struct sk_reuseport_kern, F), \
10213 					     target_size));		\
10214 	})
10215 
10216 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
10217 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10218 				    struct sk_buff,			\
10219 				    skb,				\
10220 				    SKB_FIELD)
10221 
10222 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
10223 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10224 				    struct sock,			\
10225 				    sk,					\
10226 				    SK_FIELD)
10227 
10228 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10229 					   const struct bpf_insn *si,
10230 					   struct bpf_insn *insn_buf,
10231 					   struct bpf_prog *prog,
10232 					   u32 *target_size)
10233 {
10234 	struct bpf_insn *insn = insn_buf;
10235 
10236 	switch (si->off) {
10237 	case offsetof(struct sk_reuseport_md, data):
10238 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
10239 		break;
10240 
10241 	case offsetof(struct sk_reuseport_md, len):
10242 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
10243 		break;
10244 
10245 	case offsetof(struct sk_reuseport_md, eth_protocol):
10246 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10247 		break;
10248 
10249 	case offsetof(struct sk_reuseport_md, ip_protocol):
10250 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10251 		break;
10252 
10253 	case offsetof(struct sk_reuseport_md, data_end):
10254 		SK_REUSEPORT_LOAD_FIELD(data_end);
10255 		break;
10256 
10257 	case offsetof(struct sk_reuseport_md, hash):
10258 		SK_REUSEPORT_LOAD_FIELD(hash);
10259 		break;
10260 
10261 	case offsetof(struct sk_reuseport_md, bind_inany):
10262 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
10263 		break;
10264 	}
10265 
10266 	return insn - insn_buf;
10267 }
10268 
10269 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10270 	.get_func_proto		= sk_reuseport_func_proto,
10271 	.is_valid_access	= sk_reuseport_is_valid_access,
10272 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
10273 };
10274 
10275 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10276 };
10277 
10278 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10279 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10280 
10281 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10282 	   struct sock *, sk, u64, flags)
10283 {
10284 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10285 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10286 		return -EINVAL;
10287 	if (unlikely(sk && sk_is_refcounted(sk)))
10288 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10289 	if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10290 		return -ESOCKTNOSUPPORT; /* reject connected sockets */
10291 
10292 	/* Check if socket is suitable for packet L3/L4 protocol */
10293 	if (sk && sk->sk_protocol != ctx->protocol)
10294 		return -EPROTOTYPE;
10295 	if (sk && sk->sk_family != ctx->family &&
10296 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10297 		return -EAFNOSUPPORT;
10298 
10299 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10300 		return -EEXIST;
10301 
10302 	/* Select socket as lookup result */
10303 	ctx->selected_sk = sk;
10304 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10305 	return 0;
10306 }
10307 
10308 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10309 	.func		= bpf_sk_lookup_assign,
10310 	.gpl_only	= false,
10311 	.ret_type	= RET_INTEGER,
10312 	.arg1_type	= ARG_PTR_TO_CTX,
10313 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
10314 	.arg3_type	= ARG_ANYTHING,
10315 };
10316 
10317 static const struct bpf_func_proto *
10318 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10319 {
10320 	switch (func_id) {
10321 	case BPF_FUNC_perf_event_output:
10322 		return &bpf_event_output_data_proto;
10323 	case BPF_FUNC_sk_assign:
10324 		return &bpf_sk_lookup_assign_proto;
10325 	case BPF_FUNC_sk_release:
10326 		return &bpf_sk_release_proto;
10327 	default:
10328 		return bpf_sk_base_func_proto(func_id);
10329 	}
10330 }
10331 
10332 static bool sk_lookup_is_valid_access(int off, int size,
10333 				      enum bpf_access_type type,
10334 				      const struct bpf_prog *prog,
10335 				      struct bpf_insn_access_aux *info)
10336 {
10337 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10338 		return false;
10339 	if (off % size != 0)
10340 		return false;
10341 	if (type != BPF_READ)
10342 		return false;
10343 
10344 	switch (off) {
10345 	case offsetof(struct bpf_sk_lookup, sk):
10346 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
10347 		return size == sizeof(__u64);
10348 
10349 	case bpf_ctx_range(struct bpf_sk_lookup, family):
10350 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10351 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10352 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10353 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10354 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10355 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
10356 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10357 		bpf_ctx_record_field_size(info, sizeof(__u32));
10358 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10359 
10360 	default:
10361 		return false;
10362 	}
10363 }
10364 
10365 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10366 					const struct bpf_insn *si,
10367 					struct bpf_insn *insn_buf,
10368 					struct bpf_prog *prog,
10369 					u32 *target_size)
10370 {
10371 	struct bpf_insn *insn = insn_buf;
10372 
10373 	switch (si->off) {
10374 	case offsetof(struct bpf_sk_lookup, sk):
10375 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10376 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
10377 		break;
10378 
10379 	case offsetof(struct bpf_sk_lookup, family):
10380 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10381 				      bpf_target_off(struct bpf_sk_lookup_kern,
10382 						     family, 2, target_size));
10383 		break;
10384 
10385 	case offsetof(struct bpf_sk_lookup, protocol):
10386 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10387 				      bpf_target_off(struct bpf_sk_lookup_kern,
10388 						     protocol, 2, target_size));
10389 		break;
10390 
10391 	case offsetof(struct bpf_sk_lookup, remote_ip4):
10392 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10393 				      bpf_target_off(struct bpf_sk_lookup_kern,
10394 						     v4.saddr, 4, target_size));
10395 		break;
10396 
10397 	case offsetof(struct bpf_sk_lookup, local_ip4):
10398 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10399 				      bpf_target_off(struct bpf_sk_lookup_kern,
10400 						     v4.daddr, 4, target_size));
10401 		break;
10402 
10403 	case bpf_ctx_range_till(struct bpf_sk_lookup,
10404 				remote_ip6[0], remote_ip6[3]): {
10405 #if IS_ENABLED(CONFIG_IPV6)
10406 		int off = si->off;
10407 
10408 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10409 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10410 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10411 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10412 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10413 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10414 #else
10415 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10416 #endif
10417 		break;
10418 	}
10419 	case bpf_ctx_range_till(struct bpf_sk_lookup,
10420 				local_ip6[0], local_ip6[3]): {
10421 #if IS_ENABLED(CONFIG_IPV6)
10422 		int off = si->off;
10423 
10424 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10425 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10426 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10427 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10428 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10429 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10430 #else
10431 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10432 #endif
10433 		break;
10434 	}
10435 	case offsetof(struct bpf_sk_lookup, remote_port):
10436 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10437 				      bpf_target_off(struct bpf_sk_lookup_kern,
10438 						     sport, 2, target_size));
10439 		break;
10440 
10441 	case offsetof(struct bpf_sk_lookup, local_port):
10442 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10443 				      bpf_target_off(struct bpf_sk_lookup_kern,
10444 						     dport, 2, target_size));
10445 		break;
10446 	}
10447 
10448 	return insn - insn_buf;
10449 }
10450 
10451 const struct bpf_prog_ops sk_lookup_prog_ops = {
10452 };
10453 
10454 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10455 	.get_func_proto		= sk_lookup_func_proto,
10456 	.is_valid_access	= sk_lookup_is_valid_access,
10457 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
10458 };
10459 
10460 #endif /* CONFIG_INET */
10461 
10462 DEFINE_BPF_DISPATCHER(xdp)
10463 
10464 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10465 {
10466 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10467 }
10468 
10469 #ifdef CONFIG_DEBUG_INFO_BTF
10470 BTF_ID_LIST_GLOBAL(btf_sock_ids)
10471 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10472 BTF_SOCK_TYPE_xxx
10473 #undef BTF_SOCK_TYPE
10474 #else
10475 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10476 #endif
10477 
10478 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10479 {
10480 	/* tcp6_sock type is not generated in dwarf and hence btf,
10481 	 * trigger an explicit type generation here.
10482 	 */
10483 	BTF_TYPE_EMIT(struct tcp6_sock);
10484 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10485 	    sk->sk_family == AF_INET6)
10486 		return (unsigned long)sk;
10487 
10488 	return (unsigned long)NULL;
10489 }
10490 
10491 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10492 	.func			= bpf_skc_to_tcp6_sock,
10493 	.gpl_only		= false,
10494 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10495 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10496 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10497 };
10498 
10499 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10500 {
10501 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10502 		return (unsigned long)sk;
10503 
10504 	return (unsigned long)NULL;
10505 }
10506 
10507 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10508 	.func			= bpf_skc_to_tcp_sock,
10509 	.gpl_only		= false,
10510 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10511 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10512 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10513 };
10514 
10515 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10516 {
10517 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10518 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
10519 	 */
10520 	BTF_TYPE_EMIT(struct inet_timewait_sock);
10521 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
10522 
10523 #ifdef CONFIG_INET
10524 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10525 		return (unsigned long)sk;
10526 #endif
10527 
10528 #if IS_BUILTIN(CONFIG_IPV6)
10529 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10530 		return (unsigned long)sk;
10531 #endif
10532 
10533 	return (unsigned long)NULL;
10534 }
10535 
10536 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10537 	.func			= bpf_skc_to_tcp_timewait_sock,
10538 	.gpl_only		= false,
10539 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10540 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10541 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10542 };
10543 
10544 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10545 {
10546 #ifdef CONFIG_INET
10547 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10548 		return (unsigned long)sk;
10549 #endif
10550 
10551 #if IS_BUILTIN(CONFIG_IPV6)
10552 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10553 		return (unsigned long)sk;
10554 #endif
10555 
10556 	return (unsigned long)NULL;
10557 }
10558 
10559 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10560 	.func			= bpf_skc_to_tcp_request_sock,
10561 	.gpl_only		= false,
10562 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10563 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10564 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10565 };
10566 
10567 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10568 {
10569 	/* udp6_sock type is not generated in dwarf and hence btf,
10570 	 * trigger an explicit type generation here.
10571 	 */
10572 	BTF_TYPE_EMIT(struct udp6_sock);
10573 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10574 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10575 		return (unsigned long)sk;
10576 
10577 	return (unsigned long)NULL;
10578 }
10579 
10580 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10581 	.func			= bpf_skc_to_udp6_sock,
10582 	.gpl_only		= false,
10583 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10584 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10585 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10586 };
10587 
10588 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
10589 {
10590 	return (unsigned long)sock_from_file(file);
10591 }
10592 
10593 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
10594 BTF_ID(struct, socket)
10595 BTF_ID(struct, file)
10596 
10597 const struct bpf_func_proto bpf_sock_from_file_proto = {
10598 	.func		= bpf_sock_from_file,
10599 	.gpl_only	= false,
10600 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
10601 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
10602 	.arg1_type	= ARG_PTR_TO_BTF_ID,
10603 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
10604 };
10605 
10606 static const struct bpf_func_proto *
10607 bpf_sk_base_func_proto(enum bpf_func_id func_id)
10608 {
10609 	const struct bpf_func_proto *func;
10610 
10611 	switch (func_id) {
10612 	case BPF_FUNC_skc_to_tcp6_sock:
10613 		func = &bpf_skc_to_tcp6_sock_proto;
10614 		break;
10615 	case BPF_FUNC_skc_to_tcp_sock:
10616 		func = &bpf_skc_to_tcp_sock_proto;
10617 		break;
10618 	case BPF_FUNC_skc_to_tcp_timewait_sock:
10619 		func = &bpf_skc_to_tcp_timewait_sock_proto;
10620 		break;
10621 	case BPF_FUNC_skc_to_tcp_request_sock:
10622 		func = &bpf_skc_to_tcp_request_sock_proto;
10623 		break;
10624 	case BPF_FUNC_skc_to_udp6_sock:
10625 		func = &bpf_skc_to_udp6_sock_proto;
10626 		break;
10627 	default:
10628 		return bpf_base_func_proto(func_id);
10629 	}
10630 
10631 	if (!perfmon_capable())
10632 		return NULL;
10633 
10634 	return func;
10635 }
10636