xref: /openbmc/linux/net/core/filter.c (revision 1f9f6a78)
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/in.h>
30 #include <linux/inet.h>
31 #include <linux/netdevice.h>
32 #include <linux/if_packet.h>
33 #include <linux/gfp.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <net/sock.h>
39 #include <linux/errno.h>
40 #include <linux/timer.h>
41 #include <asm/uaccess.h>
42 #include <asm/unaligned.h>
43 #include <linux/filter.h>
44 #include <linux/ratelimit.h>
45 #include <linux/seccomp.h>
46 #include <linux/if_vlan.h>
47 #include <linux/bpf.h>
48 
49 /**
50  *	sk_filter - run a packet through a socket filter
51  *	@sk: sock associated with &sk_buff
52  *	@skb: buffer to filter
53  *
54  * Run the filter code and then cut skb->data to correct size returned by
55  * SK_RUN_FILTER. If pkt_len is 0 we toss packet. If skb->len is smaller
56  * than pkt_len we keep whole skb->data. This is the socket level
57  * wrapper to SK_RUN_FILTER. It returns 0 if the packet should
58  * be accepted or -EPERM if the packet should be tossed.
59  *
60  */
61 int sk_filter(struct sock *sk, struct sk_buff *skb)
62 {
63 	int err;
64 	struct sk_filter *filter;
65 
66 	/*
67 	 * If the skb was allocated from pfmemalloc reserves, only
68 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
69 	 * helping free memory
70 	 */
71 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
72 		return -ENOMEM;
73 
74 	err = security_sock_rcv_skb(sk, skb);
75 	if (err)
76 		return err;
77 
78 	rcu_read_lock();
79 	filter = rcu_dereference(sk->sk_filter);
80 	if (filter) {
81 		unsigned int pkt_len = SK_RUN_FILTER(filter, skb);
82 
83 		err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
84 	}
85 	rcu_read_unlock();
86 
87 	return err;
88 }
89 EXPORT_SYMBOL(sk_filter);
90 
91 static u64 __skb_get_pay_offset(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
92 {
93 	return skb_get_poff((struct sk_buff *)(unsigned long) ctx);
94 }
95 
96 static u64 __skb_get_nlattr(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
97 {
98 	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
99 	struct nlattr *nla;
100 
101 	if (skb_is_nonlinear(skb))
102 		return 0;
103 
104 	if (skb->len < sizeof(struct nlattr))
105 		return 0;
106 
107 	if (a > skb->len - sizeof(struct nlattr))
108 		return 0;
109 
110 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
111 	if (nla)
112 		return (void *) nla - (void *) skb->data;
113 
114 	return 0;
115 }
116 
117 static u64 __skb_get_nlattr_nest(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
118 {
119 	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
120 	struct nlattr *nla;
121 
122 	if (skb_is_nonlinear(skb))
123 		return 0;
124 
125 	if (skb->len < sizeof(struct nlattr))
126 		return 0;
127 
128 	if (a > skb->len - sizeof(struct nlattr))
129 		return 0;
130 
131 	nla = (struct nlattr *) &skb->data[a];
132 	if (nla->nla_len > skb->len - a)
133 		return 0;
134 
135 	nla = nla_find_nested(nla, x);
136 	if (nla)
137 		return (void *) nla - (void *) skb->data;
138 
139 	return 0;
140 }
141 
142 static u64 __get_raw_cpu_id(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
143 {
144 	return raw_smp_processor_id();
145 }
146 
147 /* note that this only generates 32-bit random numbers */
148 static u64 __get_random_u32(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
149 {
150 	return prandom_u32();
151 }
152 
153 static bool convert_bpf_extensions(struct sock_filter *fp,
154 				   struct bpf_insn **insnp)
155 {
156 	struct bpf_insn *insn = *insnp;
157 
158 	switch (fp->k) {
159 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
160 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
161 
162 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
163 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
164 				      offsetof(struct sk_buff, protocol));
165 		/* A = ntohs(A) [emitting a nop or swap16] */
166 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
167 		break;
168 
169 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
170 		*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_A, BPF_REG_CTX,
171 				      PKT_TYPE_OFFSET());
172 		*insn = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, PKT_TYPE_MAX);
173 #ifdef __BIG_ENDIAN_BITFIELD
174 		insn++;
175                 *insn = BPF_ALU32_IMM(BPF_RSH, BPF_REG_A, 5);
176 #endif
177 		break;
178 
179 	case SKF_AD_OFF + SKF_AD_IFINDEX:
180 	case SKF_AD_OFF + SKF_AD_HATYPE:
181 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
182 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
183 		BUILD_BUG_ON(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)) < 0);
184 
185 		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
186 				      BPF_REG_TMP, BPF_REG_CTX,
187 				      offsetof(struct sk_buff, dev));
188 		/* if (tmp != 0) goto pc + 1 */
189 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
190 		*insn++ = BPF_EXIT_INSN();
191 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
192 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
193 					    offsetof(struct net_device, ifindex));
194 		else
195 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
196 					    offsetof(struct net_device, type));
197 		break;
198 
199 	case SKF_AD_OFF + SKF_AD_MARK:
200 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
201 
202 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
203 				    offsetof(struct sk_buff, mark));
204 		break;
205 
206 	case SKF_AD_OFF + SKF_AD_RXHASH:
207 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
208 
209 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
210 				    offsetof(struct sk_buff, hash));
211 		break;
212 
213 	case SKF_AD_OFF + SKF_AD_QUEUE:
214 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
215 
216 		*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
217 				    offsetof(struct sk_buff, queue_mapping));
218 		break;
219 
220 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
221 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
222 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
223 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
224 
225 		/* A = *(u16 *) (CTX + offsetof(vlan_tci)) */
226 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
227 				      offsetof(struct sk_buff, vlan_tci));
228 		if (fp->k == SKF_AD_OFF + SKF_AD_VLAN_TAG) {
229 			*insn = BPF_ALU32_IMM(BPF_AND, BPF_REG_A,
230 					      ~VLAN_TAG_PRESENT);
231 		} else {
232 			/* A >>= 12 */
233 			*insn++ = BPF_ALU32_IMM(BPF_RSH, BPF_REG_A, 12);
234 			/* A &= 1 */
235 			*insn = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 1);
236 		}
237 		break;
238 
239 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
240 	case SKF_AD_OFF + SKF_AD_NLATTR:
241 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
242 	case SKF_AD_OFF + SKF_AD_CPU:
243 	case SKF_AD_OFF + SKF_AD_RANDOM:
244 		/* arg1 = CTX */
245 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
246 		/* arg2 = A */
247 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
248 		/* arg3 = X */
249 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
250 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
251 		switch (fp->k) {
252 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
253 			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
254 			break;
255 		case SKF_AD_OFF + SKF_AD_NLATTR:
256 			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
257 			break;
258 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
259 			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
260 			break;
261 		case SKF_AD_OFF + SKF_AD_CPU:
262 			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
263 			break;
264 		case SKF_AD_OFF + SKF_AD_RANDOM:
265 			*insn = BPF_EMIT_CALL(__get_random_u32);
266 			break;
267 		}
268 		break;
269 
270 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
271 		/* A ^= X */
272 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
273 		break;
274 
275 	default:
276 		/* This is just a dummy call to avoid letting the compiler
277 		 * evict __bpf_call_base() as an optimization. Placed here
278 		 * where no-one bothers.
279 		 */
280 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
281 		return false;
282 	}
283 
284 	*insnp = insn;
285 	return true;
286 }
287 
288 /**
289  *	bpf_convert_filter - convert filter program
290  *	@prog: the user passed filter program
291  *	@len: the length of the user passed filter program
292  *	@new_prog: buffer where converted program will be stored
293  *	@new_len: pointer to store length of converted program
294  *
295  * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
296  * Conversion workflow:
297  *
298  * 1) First pass for calculating the new program length:
299  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
300  *
301  * 2) 2nd pass to remap in two passes: 1st pass finds new
302  *    jump offsets, 2nd pass remapping:
303  *   new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
304  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
305  *
306  * User BPF's register A is mapped to our BPF register 6, user BPF
307  * register X is mapped to BPF register 7; frame pointer is always
308  * register 10; Context 'void *ctx' is stored in register 1, that is,
309  * for socket filters: ctx == 'struct sk_buff *', for seccomp:
310  * ctx == 'struct seccomp_data *'.
311  */
312 int bpf_convert_filter(struct sock_filter *prog, int len,
313 		       struct bpf_insn *new_prog, int *new_len)
314 {
315 	int new_flen = 0, pass = 0, target, i;
316 	struct bpf_insn *new_insn;
317 	struct sock_filter *fp;
318 	int *addrs = NULL;
319 	u8 bpf_src;
320 
321 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
322 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
323 
324 	if (len <= 0 || len > BPF_MAXINSNS)
325 		return -EINVAL;
326 
327 	if (new_prog) {
328 		addrs = kcalloc(len, sizeof(*addrs), GFP_KERNEL);
329 		if (!addrs)
330 			return -ENOMEM;
331 	}
332 
333 do_pass:
334 	new_insn = new_prog;
335 	fp = prog;
336 
337 	if (new_insn)
338 		*new_insn = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
339 	new_insn++;
340 
341 	for (i = 0; i < len; fp++, i++) {
342 		struct bpf_insn tmp_insns[6] = { };
343 		struct bpf_insn *insn = tmp_insns;
344 
345 		if (addrs)
346 			addrs[i] = new_insn - new_prog;
347 
348 		switch (fp->code) {
349 		/* All arithmetic insns and skb loads map as-is. */
350 		case BPF_ALU | BPF_ADD | BPF_X:
351 		case BPF_ALU | BPF_ADD | BPF_K:
352 		case BPF_ALU | BPF_SUB | BPF_X:
353 		case BPF_ALU | BPF_SUB | BPF_K:
354 		case BPF_ALU | BPF_AND | BPF_X:
355 		case BPF_ALU | BPF_AND | BPF_K:
356 		case BPF_ALU | BPF_OR | BPF_X:
357 		case BPF_ALU | BPF_OR | BPF_K:
358 		case BPF_ALU | BPF_LSH | BPF_X:
359 		case BPF_ALU | BPF_LSH | BPF_K:
360 		case BPF_ALU | BPF_RSH | BPF_X:
361 		case BPF_ALU | BPF_RSH | BPF_K:
362 		case BPF_ALU | BPF_XOR | BPF_X:
363 		case BPF_ALU | BPF_XOR | BPF_K:
364 		case BPF_ALU | BPF_MUL | BPF_X:
365 		case BPF_ALU | BPF_MUL | BPF_K:
366 		case BPF_ALU | BPF_DIV | BPF_X:
367 		case BPF_ALU | BPF_DIV | BPF_K:
368 		case BPF_ALU | BPF_MOD | BPF_X:
369 		case BPF_ALU | BPF_MOD | BPF_K:
370 		case BPF_ALU | BPF_NEG:
371 		case BPF_LD | BPF_ABS | BPF_W:
372 		case BPF_LD | BPF_ABS | BPF_H:
373 		case BPF_LD | BPF_ABS | BPF_B:
374 		case BPF_LD | BPF_IND | BPF_W:
375 		case BPF_LD | BPF_IND | BPF_H:
376 		case BPF_LD | BPF_IND | BPF_B:
377 			/* Check for overloaded BPF extension and
378 			 * directly convert it if found, otherwise
379 			 * just move on with mapping.
380 			 */
381 			if (BPF_CLASS(fp->code) == BPF_LD &&
382 			    BPF_MODE(fp->code) == BPF_ABS &&
383 			    convert_bpf_extensions(fp, &insn))
384 				break;
385 
386 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
387 			break;
388 
389 		/* Jump transformation cannot use BPF block macros
390 		 * everywhere as offset calculation and target updates
391 		 * require a bit more work than the rest, i.e. jump
392 		 * opcodes map as-is, but offsets need adjustment.
393 		 */
394 
395 #define BPF_EMIT_JMP							\
396 	do {								\
397 		if (target >= len || target < 0)			\
398 			goto err;					\
399 		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
400 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
401 		insn->off -= insn - tmp_insns;				\
402 	} while (0)
403 
404 		case BPF_JMP | BPF_JA:
405 			target = i + fp->k + 1;
406 			insn->code = fp->code;
407 			BPF_EMIT_JMP;
408 			break;
409 
410 		case BPF_JMP | BPF_JEQ | BPF_K:
411 		case BPF_JMP | BPF_JEQ | BPF_X:
412 		case BPF_JMP | BPF_JSET | BPF_K:
413 		case BPF_JMP | BPF_JSET | BPF_X:
414 		case BPF_JMP | BPF_JGT | BPF_K:
415 		case BPF_JMP | BPF_JGT | BPF_X:
416 		case BPF_JMP | BPF_JGE | BPF_K:
417 		case BPF_JMP | BPF_JGE | BPF_X:
418 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
419 				/* BPF immediates are signed, zero extend
420 				 * immediate into tmp register and use it
421 				 * in compare insn.
422 				 */
423 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
424 
425 				insn->dst_reg = BPF_REG_A;
426 				insn->src_reg = BPF_REG_TMP;
427 				bpf_src = BPF_X;
428 			} else {
429 				insn->dst_reg = BPF_REG_A;
430 				insn->src_reg = BPF_REG_X;
431 				insn->imm = fp->k;
432 				bpf_src = BPF_SRC(fp->code);
433 			}
434 
435 			/* Common case where 'jump_false' is next insn. */
436 			if (fp->jf == 0) {
437 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
438 				target = i + fp->jt + 1;
439 				BPF_EMIT_JMP;
440 				break;
441 			}
442 
443 			/* Convert JEQ into JNE when 'jump_true' is next insn. */
444 			if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
445 				insn->code = BPF_JMP | BPF_JNE | bpf_src;
446 				target = i + fp->jf + 1;
447 				BPF_EMIT_JMP;
448 				break;
449 			}
450 
451 			/* Other jumps are mapped into two insns: Jxx and JA. */
452 			target = i + fp->jt + 1;
453 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
454 			BPF_EMIT_JMP;
455 			insn++;
456 
457 			insn->code = BPF_JMP | BPF_JA;
458 			target = i + fp->jf + 1;
459 			BPF_EMIT_JMP;
460 			break;
461 
462 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
463 		case BPF_LDX | BPF_MSH | BPF_B:
464 			/* tmp = A */
465 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
466 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
467 			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
468 			/* A &= 0xf */
469 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
470 			/* A <<= 2 */
471 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
472 			/* X = A */
473 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
474 			/* A = tmp */
475 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
476 			break;
477 
478 		/* RET_K, RET_A are remaped into 2 insns. */
479 		case BPF_RET | BPF_A:
480 		case BPF_RET | BPF_K:
481 			*insn++ = BPF_MOV32_RAW(BPF_RVAL(fp->code) == BPF_K ?
482 						BPF_K : BPF_X, BPF_REG_0,
483 						BPF_REG_A, fp->k);
484 			*insn = BPF_EXIT_INSN();
485 			break;
486 
487 		/* Store to stack. */
488 		case BPF_ST:
489 		case BPF_STX:
490 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
491 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
492 					    -(BPF_MEMWORDS - fp->k) * 4);
493 			break;
494 
495 		/* Load from stack. */
496 		case BPF_LD | BPF_MEM:
497 		case BPF_LDX | BPF_MEM:
498 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
499 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
500 					    -(BPF_MEMWORDS - fp->k) * 4);
501 			break;
502 
503 		/* A = K or X = K */
504 		case BPF_LD | BPF_IMM:
505 		case BPF_LDX | BPF_IMM:
506 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
507 					      BPF_REG_A : BPF_REG_X, fp->k);
508 			break;
509 
510 		/* X = A */
511 		case BPF_MISC | BPF_TAX:
512 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
513 			break;
514 
515 		/* A = X */
516 		case BPF_MISC | BPF_TXA:
517 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
518 			break;
519 
520 		/* A = skb->len or X = skb->len */
521 		case BPF_LD | BPF_W | BPF_LEN:
522 		case BPF_LDX | BPF_W | BPF_LEN:
523 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
524 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
525 					    offsetof(struct sk_buff, len));
526 			break;
527 
528 		/* Access seccomp_data fields. */
529 		case BPF_LDX | BPF_ABS | BPF_W:
530 			/* A = *(u32 *) (ctx + K) */
531 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
532 			break;
533 
534 		/* Unkown instruction. */
535 		default:
536 			goto err;
537 		}
538 
539 		insn++;
540 		if (new_prog)
541 			memcpy(new_insn, tmp_insns,
542 			       sizeof(*insn) * (insn - tmp_insns));
543 		new_insn += insn - tmp_insns;
544 	}
545 
546 	if (!new_prog) {
547 		/* Only calculating new length. */
548 		*new_len = new_insn - new_prog;
549 		return 0;
550 	}
551 
552 	pass++;
553 	if (new_flen != new_insn - new_prog) {
554 		new_flen = new_insn - new_prog;
555 		if (pass > 2)
556 			goto err;
557 		goto do_pass;
558 	}
559 
560 	kfree(addrs);
561 	BUG_ON(*new_len != new_flen);
562 	return 0;
563 err:
564 	kfree(addrs);
565 	return -EINVAL;
566 }
567 
568 /* Security:
569  *
570  * As we dont want to clear mem[] array for each packet going through
571  * __bpf_prog_run(), we check that filter loaded by user never try to read
572  * a cell if not previously written, and we check all branches to be sure
573  * a malicious user doesn't try to abuse us.
574  */
575 static int check_load_and_stores(const struct sock_filter *filter, int flen)
576 {
577 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
578 	int pc, ret = 0;
579 
580 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
581 
582 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
583 	if (!masks)
584 		return -ENOMEM;
585 
586 	memset(masks, 0xff, flen * sizeof(*masks));
587 
588 	for (pc = 0; pc < flen; pc++) {
589 		memvalid &= masks[pc];
590 
591 		switch (filter[pc].code) {
592 		case BPF_ST:
593 		case BPF_STX:
594 			memvalid |= (1 << filter[pc].k);
595 			break;
596 		case BPF_LD | BPF_MEM:
597 		case BPF_LDX | BPF_MEM:
598 			if (!(memvalid & (1 << filter[pc].k))) {
599 				ret = -EINVAL;
600 				goto error;
601 			}
602 			break;
603 		case BPF_JMP | BPF_JA:
604 			/* A jump must set masks on target */
605 			masks[pc + 1 + filter[pc].k] &= memvalid;
606 			memvalid = ~0;
607 			break;
608 		case BPF_JMP | BPF_JEQ | BPF_K:
609 		case BPF_JMP | BPF_JEQ | BPF_X:
610 		case BPF_JMP | BPF_JGE | BPF_K:
611 		case BPF_JMP | BPF_JGE | BPF_X:
612 		case BPF_JMP | BPF_JGT | BPF_K:
613 		case BPF_JMP | BPF_JGT | BPF_X:
614 		case BPF_JMP | BPF_JSET | BPF_K:
615 		case BPF_JMP | BPF_JSET | BPF_X:
616 			/* A jump must set masks on targets */
617 			masks[pc + 1 + filter[pc].jt] &= memvalid;
618 			masks[pc + 1 + filter[pc].jf] &= memvalid;
619 			memvalid = ~0;
620 			break;
621 		}
622 	}
623 error:
624 	kfree(masks);
625 	return ret;
626 }
627 
628 static bool chk_code_allowed(u16 code_to_probe)
629 {
630 	static const bool codes[] = {
631 		/* 32 bit ALU operations */
632 		[BPF_ALU | BPF_ADD | BPF_K] = true,
633 		[BPF_ALU | BPF_ADD | BPF_X] = true,
634 		[BPF_ALU | BPF_SUB | BPF_K] = true,
635 		[BPF_ALU | BPF_SUB | BPF_X] = true,
636 		[BPF_ALU | BPF_MUL | BPF_K] = true,
637 		[BPF_ALU | BPF_MUL | BPF_X] = true,
638 		[BPF_ALU | BPF_DIV | BPF_K] = true,
639 		[BPF_ALU | BPF_DIV | BPF_X] = true,
640 		[BPF_ALU | BPF_MOD | BPF_K] = true,
641 		[BPF_ALU | BPF_MOD | BPF_X] = true,
642 		[BPF_ALU | BPF_AND | BPF_K] = true,
643 		[BPF_ALU | BPF_AND | BPF_X] = true,
644 		[BPF_ALU | BPF_OR | BPF_K] = true,
645 		[BPF_ALU | BPF_OR | BPF_X] = true,
646 		[BPF_ALU | BPF_XOR | BPF_K] = true,
647 		[BPF_ALU | BPF_XOR | BPF_X] = true,
648 		[BPF_ALU | BPF_LSH | BPF_K] = true,
649 		[BPF_ALU | BPF_LSH | BPF_X] = true,
650 		[BPF_ALU | BPF_RSH | BPF_K] = true,
651 		[BPF_ALU | BPF_RSH | BPF_X] = true,
652 		[BPF_ALU | BPF_NEG] = true,
653 		/* Load instructions */
654 		[BPF_LD | BPF_W | BPF_ABS] = true,
655 		[BPF_LD | BPF_H | BPF_ABS] = true,
656 		[BPF_LD | BPF_B | BPF_ABS] = true,
657 		[BPF_LD | BPF_W | BPF_LEN] = true,
658 		[BPF_LD | BPF_W | BPF_IND] = true,
659 		[BPF_LD | BPF_H | BPF_IND] = true,
660 		[BPF_LD | BPF_B | BPF_IND] = true,
661 		[BPF_LD | BPF_IMM] = true,
662 		[BPF_LD | BPF_MEM] = true,
663 		[BPF_LDX | BPF_W | BPF_LEN] = true,
664 		[BPF_LDX | BPF_B | BPF_MSH] = true,
665 		[BPF_LDX | BPF_IMM] = true,
666 		[BPF_LDX | BPF_MEM] = true,
667 		/* Store instructions */
668 		[BPF_ST] = true,
669 		[BPF_STX] = true,
670 		/* Misc instructions */
671 		[BPF_MISC | BPF_TAX] = true,
672 		[BPF_MISC | BPF_TXA] = true,
673 		/* Return instructions */
674 		[BPF_RET | BPF_K] = true,
675 		[BPF_RET | BPF_A] = true,
676 		/* Jump instructions */
677 		[BPF_JMP | BPF_JA] = true,
678 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
679 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
680 		[BPF_JMP | BPF_JGE | BPF_K] = true,
681 		[BPF_JMP | BPF_JGE | BPF_X] = true,
682 		[BPF_JMP | BPF_JGT | BPF_K] = true,
683 		[BPF_JMP | BPF_JGT | BPF_X] = true,
684 		[BPF_JMP | BPF_JSET | BPF_K] = true,
685 		[BPF_JMP | BPF_JSET | BPF_X] = true,
686 	};
687 
688 	if (code_to_probe >= ARRAY_SIZE(codes))
689 		return false;
690 
691 	return codes[code_to_probe];
692 }
693 
694 /**
695  *	bpf_check_classic - verify socket filter code
696  *	@filter: filter to verify
697  *	@flen: length of filter
698  *
699  * Check the user's filter code. If we let some ugly
700  * filter code slip through kaboom! The filter must contain
701  * no references or jumps that are out of range, no illegal
702  * instructions, and must end with a RET instruction.
703  *
704  * All jumps are forward as they are not signed.
705  *
706  * Returns 0 if the rule set is legal or -EINVAL if not.
707  */
708 int bpf_check_classic(const struct sock_filter *filter, unsigned int flen)
709 {
710 	bool anc_found;
711 	int pc;
712 
713 	if (flen == 0 || flen > BPF_MAXINSNS)
714 		return -EINVAL;
715 
716 	/* Check the filter code now */
717 	for (pc = 0; pc < flen; pc++) {
718 		const struct sock_filter *ftest = &filter[pc];
719 
720 		/* May we actually operate on this code? */
721 		if (!chk_code_allowed(ftest->code))
722 			return -EINVAL;
723 
724 		/* Some instructions need special checks */
725 		switch (ftest->code) {
726 		case BPF_ALU | BPF_DIV | BPF_K:
727 		case BPF_ALU | BPF_MOD | BPF_K:
728 			/* Check for division by zero */
729 			if (ftest->k == 0)
730 				return -EINVAL;
731 			break;
732 		case BPF_LD | BPF_MEM:
733 		case BPF_LDX | BPF_MEM:
734 		case BPF_ST:
735 		case BPF_STX:
736 			/* Check for invalid memory addresses */
737 			if (ftest->k >= BPF_MEMWORDS)
738 				return -EINVAL;
739 			break;
740 		case BPF_JMP | BPF_JA:
741 			/* Note, the large ftest->k might cause loops.
742 			 * Compare this with conditional jumps below,
743 			 * where offsets are limited. --ANK (981016)
744 			 */
745 			if (ftest->k >= (unsigned int)(flen - pc - 1))
746 				return -EINVAL;
747 			break;
748 		case BPF_JMP | BPF_JEQ | BPF_K:
749 		case BPF_JMP | BPF_JEQ | BPF_X:
750 		case BPF_JMP | BPF_JGE | BPF_K:
751 		case BPF_JMP | BPF_JGE | BPF_X:
752 		case BPF_JMP | BPF_JGT | BPF_K:
753 		case BPF_JMP | BPF_JGT | BPF_X:
754 		case BPF_JMP | BPF_JSET | BPF_K:
755 		case BPF_JMP | BPF_JSET | BPF_X:
756 			/* Both conditionals must be safe */
757 			if (pc + ftest->jt + 1 >= flen ||
758 			    pc + ftest->jf + 1 >= flen)
759 				return -EINVAL;
760 			break;
761 		case BPF_LD | BPF_W | BPF_ABS:
762 		case BPF_LD | BPF_H | BPF_ABS:
763 		case BPF_LD | BPF_B | BPF_ABS:
764 			anc_found = false;
765 			if (bpf_anc_helper(ftest) & BPF_ANC)
766 				anc_found = true;
767 			/* Ancillary operation unknown or unsupported */
768 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
769 				return -EINVAL;
770 		}
771 	}
772 
773 	/* Last instruction must be a RET code */
774 	switch (filter[flen - 1].code) {
775 	case BPF_RET | BPF_K:
776 	case BPF_RET | BPF_A:
777 		return check_load_and_stores(filter, flen);
778 	}
779 
780 	return -EINVAL;
781 }
782 EXPORT_SYMBOL(bpf_check_classic);
783 
784 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
785 				      const struct sock_fprog *fprog)
786 {
787 	unsigned int fsize = bpf_classic_proglen(fprog);
788 	struct sock_fprog_kern *fkprog;
789 
790 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
791 	if (!fp->orig_prog)
792 		return -ENOMEM;
793 
794 	fkprog = fp->orig_prog;
795 	fkprog->len = fprog->len;
796 	fkprog->filter = kmemdup(fp->insns, fsize, GFP_KERNEL);
797 	if (!fkprog->filter) {
798 		kfree(fp->orig_prog);
799 		return -ENOMEM;
800 	}
801 
802 	return 0;
803 }
804 
805 static void bpf_release_orig_filter(struct bpf_prog *fp)
806 {
807 	struct sock_fprog_kern *fprog = fp->orig_prog;
808 
809 	if (fprog) {
810 		kfree(fprog->filter);
811 		kfree(fprog);
812 	}
813 }
814 
815 static void __bpf_prog_release(struct bpf_prog *prog)
816 {
817 	if (prog->aux->prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
818 		bpf_prog_put(prog);
819 	} else {
820 		bpf_release_orig_filter(prog);
821 		bpf_prog_free(prog);
822 	}
823 }
824 
825 static void __sk_filter_release(struct sk_filter *fp)
826 {
827 	__bpf_prog_release(fp->prog);
828 	kfree(fp);
829 }
830 
831 /**
832  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
833  *	@rcu: rcu_head that contains the sk_filter to free
834  */
835 static void sk_filter_release_rcu(struct rcu_head *rcu)
836 {
837 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
838 
839 	__sk_filter_release(fp);
840 }
841 
842 /**
843  *	sk_filter_release - release a socket filter
844  *	@fp: filter to remove
845  *
846  *	Remove a filter from a socket and release its resources.
847  */
848 static void sk_filter_release(struct sk_filter *fp)
849 {
850 	if (atomic_dec_and_test(&fp->refcnt))
851 		call_rcu(&fp->rcu, sk_filter_release_rcu);
852 }
853 
854 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
855 {
856 	u32 filter_size = bpf_prog_size(fp->prog->len);
857 
858 	atomic_sub(filter_size, &sk->sk_omem_alloc);
859 	sk_filter_release(fp);
860 }
861 
862 /* try to charge the socket memory if there is space available
863  * return true on success
864  */
865 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
866 {
867 	u32 filter_size = bpf_prog_size(fp->prog->len);
868 
869 	/* same check as in sock_kmalloc() */
870 	if (filter_size <= sysctl_optmem_max &&
871 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
872 		atomic_inc(&fp->refcnt);
873 		atomic_add(filter_size, &sk->sk_omem_alloc);
874 		return true;
875 	}
876 	return false;
877 }
878 
879 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
880 {
881 	struct sock_filter *old_prog;
882 	struct bpf_prog *old_fp;
883 	int err, new_len, old_len = fp->len;
884 
885 	/* We are free to overwrite insns et al right here as it
886 	 * won't be used at this point in time anymore internally
887 	 * after the migration to the internal BPF instruction
888 	 * representation.
889 	 */
890 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
891 		     sizeof(struct bpf_insn));
892 
893 	/* Conversion cannot happen on overlapping memory areas,
894 	 * so we need to keep the user BPF around until the 2nd
895 	 * pass. At this time, the user BPF is stored in fp->insns.
896 	 */
897 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
898 			   GFP_KERNEL);
899 	if (!old_prog) {
900 		err = -ENOMEM;
901 		goto out_err;
902 	}
903 
904 	/* 1st pass: calculate the new program length. */
905 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
906 	if (err)
907 		goto out_err_free;
908 
909 	/* Expand fp for appending the new filter representation. */
910 	old_fp = fp;
911 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
912 	if (!fp) {
913 		/* The old_fp is still around in case we couldn't
914 		 * allocate new memory, so uncharge on that one.
915 		 */
916 		fp = old_fp;
917 		err = -ENOMEM;
918 		goto out_err_free;
919 	}
920 
921 	fp->len = new_len;
922 
923 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
924 	err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
925 	if (err)
926 		/* 2nd bpf_convert_filter() can fail only if it fails
927 		 * to allocate memory, remapping must succeed. Note,
928 		 * that at this time old_fp has already been released
929 		 * by krealloc().
930 		 */
931 		goto out_err_free;
932 
933 	bpf_prog_select_runtime(fp);
934 
935 	kfree(old_prog);
936 	return fp;
937 
938 out_err_free:
939 	kfree(old_prog);
940 out_err:
941 	__bpf_prog_release(fp);
942 	return ERR_PTR(err);
943 }
944 
945 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp)
946 {
947 	int err;
948 
949 	fp->bpf_func = NULL;
950 	fp->jited = false;
951 
952 	err = bpf_check_classic(fp->insns, fp->len);
953 	if (err) {
954 		__bpf_prog_release(fp);
955 		return ERR_PTR(err);
956 	}
957 
958 	/* Probe if we can JIT compile the filter and if so, do
959 	 * the compilation of the filter.
960 	 */
961 	bpf_jit_compile(fp);
962 
963 	/* JIT compiler couldn't process this filter, so do the
964 	 * internal BPF translation for the optimized interpreter.
965 	 */
966 	if (!fp->jited)
967 		fp = bpf_migrate_filter(fp);
968 
969 	return fp;
970 }
971 
972 /**
973  *	bpf_prog_create - create an unattached filter
974  *	@pfp: the unattached filter that is created
975  *	@fprog: the filter program
976  *
977  * Create a filter independent of any socket. We first run some
978  * sanity checks on it to make sure it does not explode on us later.
979  * If an error occurs or there is insufficient memory for the filter
980  * a negative errno code is returned. On success the return is zero.
981  */
982 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
983 {
984 	unsigned int fsize = bpf_classic_proglen(fprog);
985 	struct bpf_prog *fp;
986 
987 	/* Make sure new filter is there and in the right amounts. */
988 	if (fprog->filter == NULL)
989 		return -EINVAL;
990 
991 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
992 	if (!fp)
993 		return -ENOMEM;
994 
995 	memcpy(fp->insns, fprog->filter, fsize);
996 
997 	fp->len = fprog->len;
998 	/* Since unattached filters are not copied back to user
999 	 * space through sk_get_filter(), we do not need to hold
1000 	 * a copy here, and can spare us the work.
1001 	 */
1002 	fp->orig_prog = NULL;
1003 
1004 	/* bpf_prepare_filter() already takes care of freeing
1005 	 * memory in case something goes wrong.
1006 	 */
1007 	fp = bpf_prepare_filter(fp);
1008 	if (IS_ERR(fp))
1009 		return PTR_ERR(fp);
1010 
1011 	*pfp = fp;
1012 	return 0;
1013 }
1014 EXPORT_SYMBOL_GPL(bpf_prog_create);
1015 
1016 void bpf_prog_destroy(struct bpf_prog *fp)
1017 {
1018 	__bpf_prog_release(fp);
1019 }
1020 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1021 
1022 /**
1023  *	sk_attach_filter - attach a socket filter
1024  *	@fprog: the filter program
1025  *	@sk: the socket to use
1026  *
1027  * Attach the user's filter code. We first run some sanity checks on
1028  * it to make sure it does not explode on us later. If an error
1029  * occurs or there is insufficient memory for the filter a negative
1030  * errno code is returned. On success the return is zero.
1031  */
1032 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1033 {
1034 	struct sk_filter *fp, *old_fp;
1035 	unsigned int fsize = bpf_classic_proglen(fprog);
1036 	unsigned int bpf_fsize = bpf_prog_size(fprog->len);
1037 	struct bpf_prog *prog;
1038 	int err;
1039 
1040 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1041 		return -EPERM;
1042 
1043 	/* Make sure new filter is there and in the right amounts. */
1044 	if (fprog->filter == NULL)
1045 		return -EINVAL;
1046 
1047 	prog = bpf_prog_alloc(bpf_fsize, 0);
1048 	if (!prog)
1049 		return -ENOMEM;
1050 
1051 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1052 		__bpf_prog_free(prog);
1053 		return -EFAULT;
1054 	}
1055 
1056 	prog->len = fprog->len;
1057 
1058 	err = bpf_prog_store_orig_filter(prog, fprog);
1059 	if (err) {
1060 		__bpf_prog_free(prog);
1061 		return -ENOMEM;
1062 	}
1063 
1064 	/* bpf_prepare_filter() already takes care of freeing
1065 	 * memory in case something goes wrong.
1066 	 */
1067 	prog = bpf_prepare_filter(prog);
1068 	if (IS_ERR(prog))
1069 		return PTR_ERR(prog);
1070 
1071 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1072 	if (!fp) {
1073 		__bpf_prog_release(prog);
1074 		return -ENOMEM;
1075 	}
1076 	fp->prog = prog;
1077 
1078 	atomic_set(&fp->refcnt, 0);
1079 
1080 	if (!sk_filter_charge(sk, fp)) {
1081 		__sk_filter_release(fp);
1082 		return -ENOMEM;
1083 	}
1084 
1085 	old_fp = rcu_dereference_protected(sk->sk_filter,
1086 					   sock_owned_by_user(sk));
1087 	rcu_assign_pointer(sk->sk_filter, fp);
1088 
1089 	if (old_fp)
1090 		sk_filter_uncharge(sk, old_fp);
1091 
1092 	return 0;
1093 }
1094 EXPORT_SYMBOL_GPL(sk_attach_filter);
1095 
1096 #ifdef CONFIG_BPF_SYSCALL
1097 int sk_attach_bpf(u32 ufd, struct sock *sk)
1098 {
1099 	struct sk_filter *fp, *old_fp;
1100 	struct bpf_prog *prog;
1101 
1102 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1103 		return -EPERM;
1104 
1105 	prog = bpf_prog_get(ufd);
1106 	if (IS_ERR(prog))
1107 		return PTR_ERR(prog);
1108 
1109 	if (prog->aux->prog_type != BPF_PROG_TYPE_SOCKET_FILTER) {
1110 		/* valid fd, but invalid program type */
1111 		bpf_prog_put(prog);
1112 		return -EINVAL;
1113 	}
1114 
1115 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1116 	if (!fp) {
1117 		bpf_prog_put(prog);
1118 		return -ENOMEM;
1119 	}
1120 	fp->prog = prog;
1121 
1122 	atomic_set(&fp->refcnt, 0);
1123 
1124 	if (!sk_filter_charge(sk, fp)) {
1125 		__sk_filter_release(fp);
1126 		return -ENOMEM;
1127 	}
1128 
1129 	old_fp = rcu_dereference_protected(sk->sk_filter,
1130 					   sock_owned_by_user(sk));
1131 	rcu_assign_pointer(sk->sk_filter, fp);
1132 
1133 	if (old_fp)
1134 		sk_filter_uncharge(sk, old_fp);
1135 
1136 	return 0;
1137 }
1138 
1139 /* allow socket filters to call
1140  * bpf_map_lookup_elem(), bpf_map_update_elem(), bpf_map_delete_elem()
1141  */
1142 static const struct bpf_func_proto *sock_filter_func_proto(enum bpf_func_id func_id)
1143 {
1144 	switch (func_id) {
1145 	case BPF_FUNC_map_lookup_elem:
1146 		return &bpf_map_lookup_elem_proto;
1147 	case BPF_FUNC_map_update_elem:
1148 		return &bpf_map_update_elem_proto;
1149 	case BPF_FUNC_map_delete_elem:
1150 		return &bpf_map_delete_elem_proto;
1151 	default:
1152 		return NULL;
1153 	}
1154 }
1155 
1156 static bool sock_filter_is_valid_access(int off, int size, enum bpf_access_type type)
1157 {
1158 	/* skb fields cannot be accessed yet */
1159 	return false;
1160 }
1161 
1162 static struct bpf_verifier_ops sock_filter_ops = {
1163 	.get_func_proto = sock_filter_func_proto,
1164 	.is_valid_access = sock_filter_is_valid_access,
1165 };
1166 
1167 static struct bpf_prog_type_list tl = {
1168 	.ops = &sock_filter_ops,
1169 	.type = BPF_PROG_TYPE_SOCKET_FILTER,
1170 };
1171 
1172 static int __init register_sock_filter_ops(void)
1173 {
1174 	bpf_register_prog_type(&tl);
1175 	return 0;
1176 }
1177 late_initcall(register_sock_filter_ops);
1178 #else
1179 int sk_attach_bpf(u32 ufd, struct sock *sk)
1180 {
1181 	return -EOPNOTSUPP;
1182 }
1183 #endif
1184 int sk_detach_filter(struct sock *sk)
1185 {
1186 	int ret = -ENOENT;
1187 	struct sk_filter *filter;
1188 
1189 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1190 		return -EPERM;
1191 
1192 	filter = rcu_dereference_protected(sk->sk_filter,
1193 					   sock_owned_by_user(sk));
1194 	if (filter) {
1195 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1196 		sk_filter_uncharge(sk, filter);
1197 		ret = 0;
1198 	}
1199 
1200 	return ret;
1201 }
1202 EXPORT_SYMBOL_GPL(sk_detach_filter);
1203 
1204 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
1205 		  unsigned int len)
1206 {
1207 	struct sock_fprog_kern *fprog;
1208 	struct sk_filter *filter;
1209 	int ret = 0;
1210 
1211 	lock_sock(sk);
1212 	filter = rcu_dereference_protected(sk->sk_filter,
1213 					   sock_owned_by_user(sk));
1214 	if (!filter)
1215 		goto out;
1216 
1217 	/* We're copying the filter that has been originally attached,
1218 	 * so no conversion/decode needed anymore.
1219 	 */
1220 	fprog = filter->prog->orig_prog;
1221 
1222 	ret = fprog->len;
1223 	if (!len)
1224 		/* User space only enquires number of filter blocks. */
1225 		goto out;
1226 
1227 	ret = -EINVAL;
1228 	if (len < fprog->len)
1229 		goto out;
1230 
1231 	ret = -EFAULT;
1232 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
1233 		goto out;
1234 
1235 	/* Instead of bytes, the API requests to return the number
1236 	 * of filter blocks.
1237 	 */
1238 	ret = fprog->len;
1239 out:
1240 	release_sock(sk);
1241 	return ret;
1242 }
1243