xref: /openbmc/linux/net/core/filter.c (revision 1083681e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <linux/un.h>
85 #include <net/xdp_sock_drv.h>
86 
87 static const struct bpf_func_proto *
88 bpf_sk_base_func_proto(enum bpf_func_id func_id);
89 
90 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
91 {
92 	if (in_compat_syscall()) {
93 		struct compat_sock_fprog f32;
94 
95 		if (len != sizeof(f32))
96 			return -EINVAL;
97 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
98 			return -EFAULT;
99 		memset(dst, 0, sizeof(*dst));
100 		dst->len = f32.len;
101 		dst->filter = compat_ptr(f32.filter);
102 	} else {
103 		if (len != sizeof(*dst))
104 			return -EINVAL;
105 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
106 			return -EFAULT;
107 	}
108 
109 	return 0;
110 }
111 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
112 
113 /**
114  *	sk_filter_trim_cap - run a packet through a socket filter
115  *	@sk: sock associated with &sk_buff
116  *	@skb: buffer to filter
117  *	@cap: limit on how short the eBPF program may trim the packet
118  *
119  * Run the eBPF program and then cut skb->data to correct size returned by
120  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
121  * than pkt_len we keep whole skb->data. This is the socket level
122  * wrapper to bpf_prog_run. It returns 0 if the packet should
123  * be accepted or -EPERM if the packet should be tossed.
124  *
125  */
126 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
127 {
128 	int err;
129 	struct sk_filter *filter;
130 
131 	/*
132 	 * If the skb was allocated from pfmemalloc reserves, only
133 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
134 	 * helping free memory
135 	 */
136 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
137 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
138 		return -ENOMEM;
139 	}
140 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
141 	if (err)
142 		return err;
143 
144 	err = security_sock_rcv_skb(sk, skb);
145 	if (err)
146 		return err;
147 
148 	rcu_read_lock();
149 	filter = rcu_dereference(sk->sk_filter);
150 	if (filter) {
151 		struct sock *save_sk = skb->sk;
152 		unsigned int pkt_len;
153 
154 		skb->sk = sk;
155 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
156 		skb->sk = save_sk;
157 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
158 	}
159 	rcu_read_unlock();
160 
161 	return err;
162 }
163 EXPORT_SYMBOL(sk_filter_trim_cap);
164 
165 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
166 {
167 	return skb_get_poff(skb);
168 }
169 
170 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
171 {
172 	struct nlattr *nla;
173 
174 	if (skb_is_nonlinear(skb))
175 		return 0;
176 
177 	if (skb->len < sizeof(struct nlattr))
178 		return 0;
179 
180 	if (a > skb->len - sizeof(struct nlattr))
181 		return 0;
182 
183 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
184 	if (nla)
185 		return (void *) nla - (void *) skb->data;
186 
187 	return 0;
188 }
189 
190 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
191 {
192 	struct nlattr *nla;
193 
194 	if (skb_is_nonlinear(skb))
195 		return 0;
196 
197 	if (skb->len < sizeof(struct nlattr))
198 		return 0;
199 
200 	if (a > skb->len - sizeof(struct nlattr))
201 		return 0;
202 
203 	nla = (struct nlattr *) &skb->data[a];
204 	if (nla->nla_len > skb->len - a)
205 		return 0;
206 
207 	nla = nla_find_nested(nla, x);
208 	if (nla)
209 		return (void *) nla - (void *) skb->data;
210 
211 	return 0;
212 }
213 
214 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
215 	   data, int, headlen, int, offset)
216 {
217 	u8 tmp, *ptr;
218 	const int len = sizeof(tmp);
219 
220 	if (offset >= 0) {
221 		if (headlen - offset >= len)
222 			return *(u8 *)(data + offset);
223 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
224 			return tmp;
225 	} else {
226 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
227 		if (likely(ptr))
228 			return *(u8 *)ptr;
229 	}
230 
231 	return -EFAULT;
232 }
233 
234 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
235 	   int, offset)
236 {
237 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
238 					 offset);
239 }
240 
241 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
242 	   data, int, headlen, int, offset)
243 {
244 	__be16 tmp, *ptr;
245 	const int len = sizeof(tmp);
246 
247 	if (offset >= 0) {
248 		if (headlen - offset >= len)
249 			return get_unaligned_be16(data + offset);
250 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
251 			return be16_to_cpu(tmp);
252 	} else {
253 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
254 		if (likely(ptr))
255 			return get_unaligned_be16(ptr);
256 	}
257 
258 	return -EFAULT;
259 }
260 
261 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
262 	   int, offset)
263 {
264 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
265 					  offset);
266 }
267 
268 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
269 	   data, int, headlen, int, offset)
270 {
271 	__be32 tmp, *ptr;
272 	const int len = sizeof(tmp);
273 
274 	if (likely(offset >= 0)) {
275 		if (headlen - offset >= len)
276 			return get_unaligned_be32(data + offset);
277 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
278 			return be32_to_cpu(tmp);
279 	} else {
280 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
281 		if (likely(ptr))
282 			return get_unaligned_be32(ptr);
283 	}
284 
285 	return -EFAULT;
286 }
287 
288 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
289 	   int, offset)
290 {
291 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
292 					  offset);
293 }
294 
295 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
296 			      struct bpf_insn *insn_buf)
297 {
298 	struct bpf_insn *insn = insn_buf;
299 
300 	switch (skb_field) {
301 	case SKF_AD_MARK:
302 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
303 
304 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
305 				      offsetof(struct sk_buff, mark));
306 		break;
307 
308 	case SKF_AD_PKTTYPE:
309 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
310 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
311 #ifdef __BIG_ENDIAN_BITFIELD
312 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
313 #endif
314 		break;
315 
316 	case SKF_AD_QUEUE:
317 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
318 
319 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
320 				      offsetof(struct sk_buff, queue_mapping));
321 		break;
322 
323 	case SKF_AD_VLAN_TAG:
324 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
325 
326 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
327 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
328 				      offsetof(struct sk_buff, vlan_tci));
329 		break;
330 	case SKF_AD_VLAN_TAG_PRESENT:
331 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
332 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
333 				      offsetof(struct sk_buff, vlan_all));
334 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
335 		*insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
336 		break;
337 	}
338 
339 	return insn - insn_buf;
340 }
341 
342 static bool convert_bpf_extensions(struct sock_filter *fp,
343 				   struct bpf_insn **insnp)
344 {
345 	struct bpf_insn *insn = *insnp;
346 	u32 cnt;
347 
348 	switch (fp->k) {
349 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
350 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
351 
352 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
353 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
354 				      offsetof(struct sk_buff, protocol));
355 		/* A = ntohs(A) [emitting a nop or swap16] */
356 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
357 		break;
358 
359 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
360 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
361 		insn += cnt - 1;
362 		break;
363 
364 	case SKF_AD_OFF + SKF_AD_IFINDEX:
365 	case SKF_AD_OFF + SKF_AD_HATYPE:
366 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
367 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
368 
369 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
370 				      BPF_REG_TMP, BPF_REG_CTX,
371 				      offsetof(struct sk_buff, dev));
372 		/* if (tmp != 0) goto pc + 1 */
373 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
374 		*insn++ = BPF_EXIT_INSN();
375 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
376 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
377 					    offsetof(struct net_device, ifindex));
378 		else
379 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
380 					    offsetof(struct net_device, type));
381 		break;
382 
383 	case SKF_AD_OFF + SKF_AD_MARK:
384 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
385 		insn += cnt - 1;
386 		break;
387 
388 	case SKF_AD_OFF + SKF_AD_RXHASH:
389 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
390 
391 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
392 				    offsetof(struct sk_buff, hash));
393 		break;
394 
395 	case SKF_AD_OFF + SKF_AD_QUEUE:
396 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
397 		insn += cnt - 1;
398 		break;
399 
400 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
401 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
402 					 BPF_REG_A, BPF_REG_CTX, insn);
403 		insn += cnt - 1;
404 		break;
405 
406 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
407 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
408 					 BPF_REG_A, BPF_REG_CTX, insn);
409 		insn += cnt - 1;
410 		break;
411 
412 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
413 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
414 
415 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
416 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
417 				      offsetof(struct sk_buff, vlan_proto));
418 		/* A = ntohs(A) [emitting a nop or swap16] */
419 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
420 		break;
421 
422 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
423 	case SKF_AD_OFF + SKF_AD_NLATTR:
424 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
425 	case SKF_AD_OFF + SKF_AD_CPU:
426 	case SKF_AD_OFF + SKF_AD_RANDOM:
427 		/* arg1 = CTX */
428 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
429 		/* arg2 = A */
430 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
431 		/* arg3 = X */
432 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
433 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
434 		switch (fp->k) {
435 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
436 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
437 			break;
438 		case SKF_AD_OFF + SKF_AD_NLATTR:
439 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
440 			break;
441 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
442 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
443 			break;
444 		case SKF_AD_OFF + SKF_AD_CPU:
445 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
446 			break;
447 		case SKF_AD_OFF + SKF_AD_RANDOM:
448 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
449 			bpf_user_rnd_init_once();
450 			break;
451 		}
452 		break;
453 
454 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
455 		/* A ^= X */
456 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
457 		break;
458 
459 	default:
460 		/* This is just a dummy call to avoid letting the compiler
461 		 * evict __bpf_call_base() as an optimization. Placed here
462 		 * where no-one bothers.
463 		 */
464 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
465 		return false;
466 	}
467 
468 	*insnp = insn;
469 	return true;
470 }
471 
472 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
473 {
474 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
475 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
476 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
477 		      BPF_SIZE(fp->code) == BPF_W;
478 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
479 	const int ip_align = NET_IP_ALIGN;
480 	struct bpf_insn *insn = *insnp;
481 	int offset = fp->k;
482 
483 	if (!indirect &&
484 	    ((unaligned_ok && offset >= 0) ||
485 	     (!unaligned_ok && offset >= 0 &&
486 	      offset + ip_align >= 0 &&
487 	      offset + ip_align % size == 0))) {
488 		bool ldx_off_ok = offset <= S16_MAX;
489 
490 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
491 		if (offset)
492 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
493 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
494 				      size, 2 + endian + (!ldx_off_ok * 2));
495 		if (ldx_off_ok) {
496 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
497 					      BPF_REG_D, offset);
498 		} else {
499 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
500 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
501 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
502 					      BPF_REG_TMP, 0);
503 		}
504 		if (endian)
505 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
506 		*insn++ = BPF_JMP_A(8);
507 	}
508 
509 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
510 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
511 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
512 	if (!indirect) {
513 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
514 	} else {
515 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
516 		if (fp->k)
517 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
518 	}
519 
520 	switch (BPF_SIZE(fp->code)) {
521 	case BPF_B:
522 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
523 		break;
524 	case BPF_H:
525 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
526 		break;
527 	case BPF_W:
528 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
529 		break;
530 	default:
531 		return false;
532 	}
533 
534 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
535 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
536 	*insn   = BPF_EXIT_INSN();
537 
538 	*insnp = insn;
539 	return true;
540 }
541 
542 /**
543  *	bpf_convert_filter - convert filter program
544  *	@prog: the user passed filter program
545  *	@len: the length of the user passed filter program
546  *	@new_prog: allocated 'struct bpf_prog' or NULL
547  *	@new_len: pointer to store length of converted program
548  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
549  *
550  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
551  * style extended BPF (eBPF).
552  * Conversion workflow:
553  *
554  * 1) First pass for calculating the new program length:
555  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
556  *
557  * 2) 2nd pass to remap in two passes: 1st pass finds new
558  *    jump offsets, 2nd pass remapping:
559  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
560  */
561 static int bpf_convert_filter(struct sock_filter *prog, int len,
562 			      struct bpf_prog *new_prog, int *new_len,
563 			      bool *seen_ld_abs)
564 {
565 	int new_flen = 0, pass = 0, target, i, stack_off;
566 	struct bpf_insn *new_insn, *first_insn = NULL;
567 	struct sock_filter *fp;
568 	int *addrs = NULL;
569 	u8 bpf_src;
570 
571 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
572 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
573 
574 	if (len <= 0 || len > BPF_MAXINSNS)
575 		return -EINVAL;
576 
577 	if (new_prog) {
578 		first_insn = new_prog->insnsi;
579 		addrs = kcalloc(len, sizeof(*addrs),
580 				GFP_KERNEL | __GFP_NOWARN);
581 		if (!addrs)
582 			return -ENOMEM;
583 	}
584 
585 do_pass:
586 	new_insn = first_insn;
587 	fp = prog;
588 
589 	/* Classic BPF related prologue emission. */
590 	if (new_prog) {
591 		/* Classic BPF expects A and X to be reset first. These need
592 		 * to be guaranteed to be the first two instructions.
593 		 */
594 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
595 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
596 
597 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
598 		 * In eBPF case it's done by the compiler, here we need to
599 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
600 		 */
601 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
602 		if (*seen_ld_abs) {
603 			/* For packet access in classic BPF, cache skb->data
604 			 * in callee-saved BPF R8 and skb->len - skb->data_len
605 			 * (headlen) in BPF R9. Since classic BPF is read-only
606 			 * on CTX, we only need to cache it once.
607 			 */
608 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
609 						  BPF_REG_D, BPF_REG_CTX,
610 						  offsetof(struct sk_buff, data));
611 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
612 						  offsetof(struct sk_buff, len));
613 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
614 						  offsetof(struct sk_buff, data_len));
615 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
616 		}
617 	} else {
618 		new_insn += 3;
619 	}
620 
621 	for (i = 0; i < len; fp++, i++) {
622 		struct bpf_insn tmp_insns[32] = { };
623 		struct bpf_insn *insn = tmp_insns;
624 
625 		if (addrs)
626 			addrs[i] = new_insn - first_insn;
627 
628 		switch (fp->code) {
629 		/* All arithmetic insns and skb loads map as-is. */
630 		case BPF_ALU | BPF_ADD | BPF_X:
631 		case BPF_ALU | BPF_ADD | BPF_K:
632 		case BPF_ALU | BPF_SUB | BPF_X:
633 		case BPF_ALU | BPF_SUB | BPF_K:
634 		case BPF_ALU | BPF_AND | BPF_X:
635 		case BPF_ALU | BPF_AND | BPF_K:
636 		case BPF_ALU | BPF_OR | BPF_X:
637 		case BPF_ALU | BPF_OR | BPF_K:
638 		case BPF_ALU | BPF_LSH | BPF_X:
639 		case BPF_ALU | BPF_LSH | BPF_K:
640 		case BPF_ALU | BPF_RSH | BPF_X:
641 		case BPF_ALU | BPF_RSH | BPF_K:
642 		case BPF_ALU | BPF_XOR | BPF_X:
643 		case BPF_ALU | BPF_XOR | BPF_K:
644 		case BPF_ALU | BPF_MUL | BPF_X:
645 		case BPF_ALU | BPF_MUL | BPF_K:
646 		case BPF_ALU | BPF_DIV | BPF_X:
647 		case BPF_ALU | BPF_DIV | BPF_K:
648 		case BPF_ALU | BPF_MOD | BPF_X:
649 		case BPF_ALU | BPF_MOD | BPF_K:
650 		case BPF_ALU | BPF_NEG:
651 		case BPF_LD | BPF_ABS | BPF_W:
652 		case BPF_LD | BPF_ABS | BPF_H:
653 		case BPF_LD | BPF_ABS | BPF_B:
654 		case BPF_LD | BPF_IND | BPF_W:
655 		case BPF_LD | BPF_IND | BPF_H:
656 		case BPF_LD | BPF_IND | BPF_B:
657 			/* Check for overloaded BPF extension and
658 			 * directly convert it if found, otherwise
659 			 * just move on with mapping.
660 			 */
661 			if (BPF_CLASS(fp->code) == BPF_LD &&
662 			    BPF_MODE(fp->code) == BPF_ABS &&
663 			    convert_bpf_extensions(fp, &insn))
664 				break;
665 			if (BPF_CLASS(fp->code) == BPF_LD &&
666 			    convert_bpf_ld_abs(fp, &insn)) {
667 				*seen_ld_abs = true;
668 				break;
669 			}
670 
671 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
672 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
673 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
674 				/* Error with exception code on div/mod by 0.
675 				 * For cBPF programs, this was always return 0.
676 				 */
677 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
678 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
679 				*insn++ = BPF_EXIT_INSN();
680 			}
681 
682 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
683 			break;
684 
685 		/* Jump transformation cannot use BPF block macros
686 		 * everywhere as offset calculation and target updates
687 		 * require a bit more work than the rest, i.e. jump
688 		 * opcodes map as-is, but offsets need adjustment.
689 		 */
690 
691 #define BPF_EMIT_JMP							\
692 	do {								\
693 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
694 		s32 off;						\
695 									\
696 		if (target >= len || target < 0)			\
697 			goto err;					\
698 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
699 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
700 		off -= insn - tmp_insns;				\
701 		/* Reject anything not fitting into insn->off. */	\
702 		if (off < off_min || off > off_max)			\
703 			goto err;					\
704 		insn->off = off;					\
705 	} while (0)
706 
707 		case BPF_JMP | BPF_JA:
708 			target = i + fp->k + 1;
709 			insn->code = fp->code;
710 			BPF_EMIT_JMP;
711 			break;
712 
713 		case BPF_JMP | BPF_JEQ | BPF_K:
714 		case BPF_JMP | BPF_JEQ | BPF_X:
715 		case BPF_JMP | BPF_JSET | BPF_K:
716 		case BPF_JMP | BPF_JSET | BPF_X:
717 		case BPF_JMP | BPF_JGT | BPF_K:
718 		case BPF_JMP | BPF_JGT | BPF_X:
719 		case BPF_JMP | BPF_JGE | BPF_K:
720 		case BPF_JMP | BPF_JGE | BPF_X:
721 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
722 				/* BPF immediates are signed, zero extend
723 				 * immediate into tmp register and use it
724 				 * in compare insn.
725 				 */
726 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
727 
728 				insn->dst_reg = BPF_REG_A;
729 				insn->src_reg = BPF_REG_TMP;
730 				bpf_src = BPF_X;
731 			} else {
732 				insn->dst_reg = BPF_REG_A;
733 				insn->imm = fp->k;
734 				bpf_src = BPF_SRC(fp->code);
735 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
736 			}
737 
738 			/* Common case where 'jump_false' is next insn. */
739 			if (fp->jf == 0) {
740 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
741 				target = i + fp->jt + 1;
742 				BPF_EMIT_JMP;
743 				break;
744 			}
745 
746 			/* Convert some jumps when 'jump_true' is next insn. */
747 			if (fp->jt == 0) {
748 				switch (BPF_OP(fp->code)) {
749 				case BPF_JEQ:
750 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
751 					break;
752 				case BPF_JGT:
753 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
754 					break;
755 				case BPF_JGE:
756 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
757 					break;
758 				default:
759 					goto jmp_rest;
760 				}
761 
762 				target = i + fp->jf + 1;
763 				BPF_EMIT_JMP;
764 				break;
765 			}
766 jmp_rest:
767 			/* Other jumps are mapped into two insns: Jxx and JA. */
768 			target = i + fp->jt + 1;
769 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
770 			BPF_EMIT_JMP;
771 			insn++;
772 
773 			insn->code = BPF_JMP | BPF_JA;
774 			target = i + fp->jf + 1;
775 			BPF_EMIT_JMP;
776 			break;
777 
778 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
779 		case BPF_LDX | BPF_MSH | BPF_B: {
780 			struct sock_filter tmp = {
781 				.code	= BPF_LD | BPF_ABS | BPF_B,
782 				.k	= fp->k,
783 			};
784 
785 			*seen_ld_abs = true;
786 
787 			/* X = A */
788 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
789 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
790 			convert_bpf_ld_abs(&tmp, &insn);
791 			insn++;
792 			/* A &= 0xf */
793 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
794 			/* A <<= 2 */
795 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
796 			/* tmp = X */
797 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
798 			/* X = A */
799 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
800 			/* A = tmp */
801 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
802 			break;
803 		}
804 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
805 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
806 		 */
807 		case BPF_RET | BPF_A:
808 		case BPF_RET | BPF_K:
809 			if (BPF_RVAL(fp->code) == BPF_K)
810 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
811 							0, fp->k);
812 			*insn = BPF_EXIT_INSN();
813 			break;
814 
815 		/* Store to stack. */
816 		case BPF_ST:
817 		case BPF_STX:
818 			stack_off = fp->k * 4  + 4;
819 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
820 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
821 					    -stack_off);
822 			/* check_load_and_stores() verifies that classic BPF can
823 			 * load from stack only after write, so tracking
824 			 * stack_depth for ST|STX insns is enough
825 			 */
826 			if (new_prog && new_prog->aux->stack_depth < stack_off)
827 				new_prog->aux->stack_depth = stack_off;
828 			break;
829 
830 		/* Load from stack. */
831 		case BPF_LD | BPF_MEM:
832 		case BPF_LDX | BPF_MEM:
833 			stack_off = fp->k * 4  + 4;
834 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
835 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
836 					    -stack_off);
837 			break;
838 
839 		/* A = K or X = K */
840 		case BPF_LD | BPF_IMM:
841 		case BPF_LDX | BPF_IMM:
842 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
843 					      BPF_REG_A : BPF_REG_X, fp->k);
844 			break;
845 
846 		/* X = A */
847 		case BPF_MISC | BPF_TAX:
848 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
849 			break;
850 
851 		/* A = X */
852 		case BPF_MISC | BPF_TXA:
853 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
854 			break;
855 
856 		/* A = skb->len or X = skb->len */
857 		case BPF_LD | BPF_W | BPF_LEN:
858 		case BPF_LDX | BPF_W | BPF_LEN:
859 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
860 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
861 					    offsetof(struct sk_buff, len));
862 			break;
863 
864 		/* Access seccomp_data fields. */
865 		case BPF_LDX | BPF_ABS | BPF_W:
866 			/* A = *(u32 *) (ctx + K) */
867 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
868 			break;
869 
870 		/* Unknown instruction. */
871 		default:
872 			goto err;
873 		}
874 
875 		insn++;
876 		if (new_prog)
877 			memcpy(new_insn, tmp_insns,
878 			       sizeof(*insn) * (insn - tmp_insns));
879 		new_insn += insn - tmp_insns;
880 	}
881 
882 	if (!new_prog) {
883 		/* Only calculating new length. */
884 		*new_len = new_insn - first_insn;
885 		if (*seen_ld_abs)
886 			*new_len += 4; /* Prologue bits. */
887 		return 0;
888 	}
889 
890 	pass++;
891 	if (new_flen != new_insn - first_insn) {
892 		new_flen = new_insn - first_insn;
893 		if (pass > 2)
894 			goto err;
895 		goto do_pass;
896 	}
897 
898 	kfree(addrs);
899 	BUG_ON(*new_len != new_flen);
900 	return 0;
901 err:
902 	kfree(addrs);
903 	return -EINVAL;
904 }
905 
906 /* Security:
907  *
908  * As we dont want to clear mem[] array for each packet going through
909  * __bpf_prog_run(), we check that filter loaded by user never try to read
910  * a cell if not previously written, and we check all branches to be sure
911  * a malicious user doesn't try to abuse us.
912  */
913 static int check_load_and_stores(const struct sock_filter *filter, int flen)
914 {
915 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
916 	int pc, ret = 0;
917 
918 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
919 
920 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
921 	if (!masks)
922 		return -ENOMEM;
923 
924 	memset(masks, 0xff, flen * sizeof(*masks));
925 
926 	for (pc = 0; pc < flen; pc++) {
927 		memvalid &= masks[pc];
928 
929 		switch (filter[pc].code) {
930 		case BPF_ST:
931 		case BPF_STX:
932 			memvalid |= (1 << filter[pc].k);
933 			break;
934 		case BPF_LD | BPF_MEM:
935 		case BPF_LDX | BPF_MEM:
936 			if (!(memvalid & (1 << filter[pc].k))) {
937 				ret = -EINVAL;
938 				goto error;
939 			}
940 			break;
941 		case BPF_JMP | BPF_JA:
942 			/* A jump must set masks on target */
943 			masks[pc + 1 + filter[pc].k] &= memvalid;
944 			memvalid = ~0;
945 			break;
946 		case BPF_JMP | BPF_JEQ | BPF_K:
947 		case BPF_JMP | BPF_JEQ | BPF_X:
948 		case BPF_JMP | BPF_JGE | BPF_K:
949 		case BPF_JMP | BPF_JGE | BPF_X:
950 		case BPF_JMP | BPF_JGT | BPF_K:
951 		case BPF_JMP | BPF_JGT | BPF_X:
952 		case BPF_JMP | BPF_JSET | BPF_K:
953 		case BPF_JMP | BPF_JSET | BPF_X:
954 			/* A jump must set masks on targets */
955 			masks[pc + 1 + filter[pc].jt] &= memvalid;
956 			masks[pc + 1 + filter[pc].jf] &= memvalid;
957 			memvalid = ~0;
958 			break;
959 		}
960 	}
961 error:
962 	kfree(masks);
963 	return ret;
964 }
965 
966 static bool chk_code_allowed(u16 code_to_probe)
967 {
968 	static const bool codes[] = {
969 		/* 32 bit ALU operations */
970 		[BPF_ALU | BPF_ADD | BPF_K] = true,
971 		[BPF_ALU | BPF_ADD | BPF_X] = true,
972 		[BPF_ALU | BPF_SUB | BPF_K] = true,
973 		[BPF_ALU | BPF_SUB | BPF_X] = true,
974 		[BPF_ALU | BPF_MUL | BPF_K] = true,
975 		[BPF_ALU | BPF_MUL | BPF_X] = true,
976 		[BPF_ALU | BPF_DIV | BPF_K] = true,
977 		[BPF_ALU | BPF_DIV | BPF_X] = true,
978 		[BPF_ALU | BPF_MOD | BPF_K] = true,
979 		[BPF_ALU | BPF_MOD | BPF_X] = true,
980 		[BPF_ALU | BPF_AND | BPF_K] = true,
981 		[BPF_ALU | BPF_AND | BPF_X] = true,
982 		[BPF_ALU | BPF_OR | BPF_K] = true,
983 		[BPF_ALU | BPF_OR | BPF_X] = true,
984 		[BPF_ALU | BPF_XOR | BPF_K] = true,
985 		[BPF_ALU | BPF_XOR | BPF_X] = true,
986 		[BPF_ALU | BPF_LSH | BPF_K] = true,
987 		[BPF_ALU | BPF_LSH | BPF_X] = true,
988 		[BPF_ALU | BPF_RSH | BPF_K] = true,
989 		[BPF_ALU | BPF_RSH | BPF_X] = true,
990 		[BPF_ALU | BPF_NEG] = true,
991 		/* Load instructions */
992 		[BPF_LD | BPF_W | BPF_ABS] = true,
993 		[BPF_LD | BPF_H | BPF_ABS] = true,
994 		[BPF_LD | BPF_B | BPF_ABS] = true,
995 		[BPF_LD | BPF_W | BPF_LEN] = true,
996 		[BPF_LD | BPF_W | BPF_IND] = true,
997 		[BPF_LD | BPF_H | BPF_IND] = true,
998 		[BPF_LD | BPF_B | BPF_IND] = true,
999 		[BPF_LD | BPF_IMM] = true,
1000 		[BPF_LD | BPF_MEM] = true,
1001 		[BPF_LDX | BPF_W | BPF_LEN] = true,
1002 		[BPF_LDX | BPF_B | BPF_MSH] = true,
1003 		[BPF_LDX | BPF_IMM] = true,
1004 		[BPF_LDX | BPF_MEM] = true,
1005 		/* Store instructions */
1006 		[BPF_ST] = true,
1007 		[BPF_STX] = true,
1008 		/* Misc instructions */
1009 		[BPF_MISC | BPF_TAX] = true,
1010 		[BPF_MISC | BPF_TXA] = true,
1011 		/* Return instructions */
1012 		[BPF_RET | BPF_K] = true,
1013 		[BPF_RET | BPF_A] = true,
1014 		/* Jump instructions */
1015 		[BPF_JMP | BPF_JA] = true,
1016 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1017 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1018 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1019 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1020 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1021 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1022 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1023 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1024 	};
1025 
1026 	if (code_to_probe >= ARRAY_SIZE(codes))
1027 		return false;
1028 
1029 	return codes[code_to_probe];
1030 }
1031 
1032 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1033 				unsigned int flen)
1034 {
1035 	if (filter == NULL)
1036 		return false;
1037 	if (flen == 0 || flen > BPF_MAXINSNS)
1038 		return false;
1039 
1040 	return true;
1041 }
1042 
1043 /**
1044  *	bpf_check_classic - verify socket filter code
1045  *	@filter: filter to verify
1046  *	@flen: length of filter
1047  *
1048  * Check the user's filter code. If we let some ugly
1049  * filter code slip through kaboom! The filter must contain
1050  * no references or jumps that are out of range, no illegal
1051  * instructions, and must end with a RET instruction.
1052  *
1053  * All jumps are forward as they are not signed.
1054  *
1055  * Returns 0 if the rule set is legal or -EINVAL if not.
1056  */
1057 static int bpf_check_classic(const struct sock_filter *filter,
1058 			     unsigned int flen)
1059 {
1060 	bool anc_found;
1061 	int pc;
1062 
1063 	/* Check the filter code now */
1064 	for (pc = 0; pc < flen; pc++) {
1065 		const struct sock_filter *ftest = &filter[pc];
1066 
1067 		/* May we actually operate on this code? */
1068 		if (!chk_code_allowed(ftest->code))
1069 			return -EINVAL;
1070 
1071 		/* Some instructions need special checks */
1072 		switch (ftest->code) {
1073 		case BPF_ALU | BPF_DIV | BPF_K:
1074 		case BPF_ALU | BPF_MOD | BPF_K:
1075 			/* Check for division by zero */
1076 			if (ftest->k == 0)
1077 				return -EINVAL;
1078 			break;
1079 		case BPF_ALU | BPF_LSH | BPF_K:
1080 		case BPF_ALU | BPF_RSH | BPF_K:
1081 			if (ftest->k >= 32)
1082 				return -EINVAL;
1083 			break;
1084 		case BPF_LD | BPF_MEM:
1085 		case BPF_LDX | BPF_MEM:
1086 		case BPF_ST:
1087 		case BPF_STX:
1088 			/* Check for invalid memory addresses */
1089 			if (ftest->k >= BPF_MEMWORDS)
1090 				return -EINVAL;
1091 			break;
1092 		case BPF_JMP | BPF_JA:
1093 			/* Note, the large ftest->k might cause loops.
1094 			 * Compare this with conditional jumps below,
1095 			 * where offsets are limited. --ANK (981016)
1096 			 */
1097 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1098 				return -EINVAL;
1099 			break;
1100 		case BPF_JMP | BPF_JEQ | BPF_K:
1101 		case BPF_JMP | BPF_JEQ | BPF_X:
1102 		case BPF_JMP | BPF_JGE | BPF_K:
1103 		case BPF_JMP | BPF_JGE | BPF_X:
1104 		case BPF_JMP | BPF_JGT | BPF_K:
1105 		case BPF_JMP | BPF_JGT | BPF_X:
1106 		case BPF_JMP | BPF_JSET | BPF_K:
1107 		case BPF_JMP | BPF_JSET | BPF_X:
1108 			/* Both conditionals must be safe */
1109 			if (pc + ftest->jt + 1 >= flen ||
1110 			    pc + ftest->jf + 1 >= flen)
1111 				return -EINVAL;
1112 			break;
1113 		case BPF_LD | BPF_W | BPF_ABS:
1114 		case BPF_LD | BPF_H | BPF_ABS:
1115 		case BPF_LD | BPF_B | BPF_ABS:
1116 			anc_found = false;
1117 			if (bpf_anc_helper(ftest) & BPF_ANC)
1118 				anc_found = true;
1119 			/* Ancillary operation unknown or unsupported */
1120 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1121 				return -EINVAL;
1122 		}
1123 	}
1124 
1125 	/* Last instruction must be a RET code */
1126 	switch (filter[flen - 1].code) {
1127 	case BPF_RET | BPF_K:
1128 	case BPF_RET | BPF_A:
1129 		return check_load_and_stores(filter, flen);
1130 	}
1131 
1132 	return -EINVAL;
1133 }
1134 
1135 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1136 				      const struct sock_fprog *fprog)
1137 {
1138 	unsigned int fsize = bpf_classic_proglen(fprog);
1139 	struct sock_fprog_kern *fkprog;
1140 
1141 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1142 	if (!fp->orig_prog)
1143 		return -ENOMEM;
1144 
1145 	fkprog = fp->orig_prog;
1146 	fkprog->len = fprog->len;
1147 
1148 	fkprog->filter = kmemdup(fp->insns, fsize,
1149 				 GFP_KERNEL | __GFP_NOWARN);
1150 	if (!fkprog->filter) {
1151 		kfree(fp->orig_prog);
1152 		return -ENOMEM;
1153 	}
1154 
1155 	return 0;
1156 }
1157 
1158 static void bpf_release_orig_filter(struct bpf_prog *fp)
1159 {
1160 	struct sock_fprog_kern *fprog = fp->orig_prog;
1161 
1162 	if (fprog) {
1163 		kfree(fprog->filter);
1164 		kfree(fprog);
1165 	}
1166 }
1167 
1168 static void __bpf_prog_release(struct bpf_prog *prog)
1169 {
1170 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1171 		bpf_prog_put(prog);
1172 	} else {
1173 		bpf_release_orig_filter(prog);
1174 		bpf_prog_free(prog);
1175 	}
1176 }
1177 
1178 static void __sk_filter_release(struct sk_filter *fp)
1179 {
1180 	__bpf_prog_release(fp->prog);
1181 	kfree(fp);
1182 }
1183 
1184 /**
1185  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1186  *	@rcu: rcu_head that contains the sk_filter to free
1187  */
1188 static void sk_filter_release_rcu(struct rcu_head *rcu)
1189 {
1190 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1191 
1192 	__sk_filter_release(fp);
1193 }
1194 
1195 /**
1196  *	sk_filter_release - release a socket filter
1197  *	@fp: filter to remove
1198  *
1199  *	Remove a filter from a socket and release its resources.
1200  */
1201 static void sk_filter_release(struct sk_filter *fp)
1202 {
1203 	if (refcount_dec_and_test(&fp->refcnt))
1204 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1205 }
1206 
1207 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1208 {
1209 	u32 filter_size = bpf_prog_size(fp->prog->len);
1210 
1211 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1212 	sk_filter_release(fp);
1213 }
1214 
1215 /* try to charge the socket memory if there is space available
1216  * return true on success
1217  */
1218 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1219 {
1220 	u32 filter_size = bpf_prog_size(fp->prog->len);
1221 	int optmem_max = READ_ONCE(sysctl_optmem_max);
1222 
1223 	/* same check as in sock_kmalloc() */
1224 	if (filter_size <= optmem_max &&
1225 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1226 		atomic_add(filter_size, &sk->sk_omem_alloc);
1227 		return true;
1228 	}
1229 	return false;
1230 }
1231 
1232 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1233 {
1234 	if (!refcount_inc_not_zero(&fp->refcnt))
1235 		return false;
1236 
1237 	if (!__sk_filter_charge(sk, fp)) {
1238 		sk_filter_release(fp);
1239 		return false;
1240 	}
1241 	return true;
1242 }
1243 
1244 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1245 {
1246 	struct sock_filter *old_prog;
1247 	struct bpf_prog *old_fp;
1248 	int err, new_len, old_len = fp->len;
1249 	bool seen_ld_abs = false;
1250 
1251 	/* We are free to overwrite insns et al right here as it won't be used at
1252 	 * this point in time anymore internally after the migration to the eBPF
1253 	 * instruction representation.
1254 	 */
1255 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1256 		     sizeof(struct bpf_insn));
1257 
1258 	/* Conversion cannot happen on overlapping memory areas,
1259 	 * so we need to keep the user BPF around until the 2nd
1260 	 * pass. At this time, the user BPF is stored in fp->insns.
1261 	 */
1262 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1263 			   GFP_KERNEL | __GFP_NOWARN);
1264 	if (!old_prog) {
1265 		err = -ENOMEM;
1266 		goto out_err;
1267 	}
1268 
1269 	/* 1st pass: calculate the new program length. */
1270 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1271 				 &seen_ld_abs);
1272 	if (err)
1273 		goto out_err_free;
1274 
1275 	/* Expand fp for appending the new filter representation. */
1276 	old_fp = fp;
1277 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1278 	if (!fp) {
1279 		/* The old_fp is still around in case we couldn't
1280 		 * allocate new memory, so uncharge on that one.
1281 		 */
1282 		fp = old_fp;
1283 		err = -ENOMEM;
1284 		goto out_err_free;
1285 	}
1286 
1287 	fp->len = new_len;
1288 
1289 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1290 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1291 				 &seen_ld_abs);
1292 	if (err)
1293 		/* 2nd bpf_convert_filter() can fail only if it fails
1294 		 * to allocate memory, remapping must succeed. Note,
1295 		 * that at this time old_fp has already been released
1296 		 * by krealloc().
1297 		 */
1298 		goto out_err_free;
1299 
1300 	fp = bpf_prog_select_runtime(fp, &err);
1301 	if (err)
1302 		goto out_err_free;
1303 
1304 	kfree(old_prog);
1305 	return fp;
1306 
1307 out_err_free:
1308 	kfree(old_prog);
1309 out_err:
1310 	__bpf_prog_release(fp);
1311 	return ERR_PTR(err);
1312 }
1313 
1314 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1315 					   bpf_aux_classic_check_t trans)
1316 {
1317 	int err;
1318 
1319 	fp->bpf_func = NULL;
1320 	fp->jited = 0;
1321 
1322 	err = bpf_check_classic(fp->insns, fp->len);
1323 	if (err) {
1324 		__bpf_prog_release(fp);
1325 		return ERR_PTR(err);
1326 	}
1327 
1328 	/* There might be additional checks and transformations
1329 	 * needed on classic filters, f.e. in case of seccomp.
1330 	 */
1331 	if (trans) {
1332 		err = trans(fp->insns, fp->len);
1333 		if (err) {
1334 			__bpf_prog_release(fp);
1335 			return ERR_PTR(err);
1336 		}
1337 	}
1338 
1339 	/* Probe if we can JIT compile the filter and if so, do
1340 	 * the compilation of the filter.
1341 	 */
1342 	bpf_jit_compile(fp);
1343 
1344 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1345 	 * for the optimized interpreter.
1346 	 */
1347 	if (!fp->jited)
1348 		fp = bpf_migrate_filter(fp);
1349 
1350 	return fp;
1351 }
1352 
1353 /**
1354  *	bpf_prog_create - create an unattached filter
1355  *	@pfp: the unattached filter that is created
1356  *	@fprog: the filter program
1357  *
1358  * Create a filter independent of any socket. We first run some
1359  * sanity checks on it to make sure it does not explode on us later.
1360  * If an error occurs or there is insufficient memory for the filter
1361  * a negative errno code is returned. On success the return is zero.
1362  */
1363 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1364 {
1365 	unsigned int fsize = bpf_classic_proglen(fprog);
1366 	struct bpf_prog *fp;
1367 
1368 	/* Make sure new filter is there and in the right amounts. */
1369 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1370 		return -EINVAL;
1371 
1372 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1373 	if (!fp)
1374 		return -ENOMEM;
1375 
1376 	memcpy(fp->insns, fprog->filter, fsize);
1377 
1378 	fp->len = fprog->len;
1379 	/* Since unattached filters are not copied back to user
1380 	 * space through sk_get_filter(), we do not need to hold
1381 	 * a copy here, and can spare us the work.
1382 	 */
1383 	fp->orig_prog = NULL;
1384 
1385 	/* bpf_prepare_filter() already takes care of freeing
1386 	 * memory in case something goes wrong.
1387 	 */
1388 	fp = bpf_prepare_filter(fp, NULL);
1389 	if (IS_ERR(fp))
1390 		return PTR_ERR(fp);
1391 
1392 	*pfp = fp;
1393 	return 0;
1394 }
1395 EXPORT_SYMBOL_GPL(bpf_prog_create);
1396 
1397 /**
1398  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1399  *	@pfp: the unattached filter that is created
1400  *	@fprog: the filter program
1401  *	@trans: post-classic verifier transformation handler
1402  *	@save_orig: save classic BPF program
1403  *
1404  * This function effectively does the same as bpf_prog_create(), only
1405  * that it builds up its insns buffer from user space provided buffer.
1406  * It also allows for passing a bpf_aux_classic_check_t handler.
1407  */
1408 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1409 			      bpf_aux_classic_check_t trans, bool save_orig)
1410 {
1411 	unsigned int fsize = bpf_classic_proglen(fprog);
1412 	struct bpf_prog *fp;
1413 	int err;
1414 
1415 	/* Make sure new filter is there and in the right amounts. */
1416 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1417 		return -EINVAL;
1418 
1419 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1420 	if (!fp)
1421 		return -ENOMEM;
1422 
1423 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1424 		__bpf_prog_free(fp);
1425 		return -EFAULT;
1426 	}
1427 
1428 	fp->len = fprog->len;
1429 	fp->orig_prog = NULL;
1430 
1431 	if (save_orig) {
1432 		err = bpf_prog_store_orig_filter(fp, fprog);
1433 		if (err) {
1434 			__bpf_prog_free(fp);
1435 			return -ENOMEM;
1436 		}
1437 	}
1438 
1439 	/* bpf_prepare_filter() already takes care of freeing
1440 	 * memory in case something goes wrong.
1441 	 */
1442 	fp = bpf_prepare_filter(fp, trans);
1443 	if (IS_ERR(fp))
1444 		return PTR_ERR(fp);
1445 
1446 	*pfp = fp;
1447 	return 0;
1448 }
1449 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1450 
1451 void bpf_prog_destroy(struct bpf_prog *fp)
1452 {
1453 	__bpf_prog_release(fp);
1454 }
1455 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1456 
1457 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1458 {
1459 	struct sk_filter *fp, *old_fp;
1460 
1461 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1462 	if (!fp)
1463 		return -ENOMEM;
1464 
1465 	fp->prog = prog;
1466 
1467 	if (!__sk_filter_charge(sk, fp)) {
1468 		kfree(fp);
1469 		return -ENOMEM;
1470 	}
1471 	refcount_set(&fp->refcnt, 1);
1472 
1473 	old_fp = rcu_dereference_protected(sk->sk_filter,
1474 					   lockdep_sock_is_held(sk));
1475 	rcu_assign_pointer(sk->sk_filter, fp);
1476 
1477 	if (old_fp)
1478 		sk_filter_uncharge(sk, old_fp);
1479 
1480 	return 0;
1481 }
1482 
1483 static
1484 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1485 {
1486 	unsigned int fsize = bpf_classic_proglen(fprog);
1487 	struct bpf_prog *prog;
1488 	int err;
1489 
1490 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1491 		return ERR_PTR(-EPERM);
1492 
1493 	/* Make sure new filter is there and in the right amounts. */
1494 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1495 		return ERR_PTR(-EINVAL);
1496 
1497 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1498 	if (!prog)
1499 		return ERR_PTR(-ENOMEM);
1500 
1501 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1502 		__bpf_prog_free(prog);
1503 		return ERR_PTR(-EFAULT);
1504 	}
1505 
1506 	prog->len = fprog->len;
1507 
1508 	err = bpf_prog_store_orig_filter(prog, fprog);
1509 	if (err) {
1510 		__bpf_prog_free(prog);
1511 		return ERR_PTR(-ENOMEM);
1512 	}
1513 
1514 	/* bpf_prepare_filter() already takes care of freeing
1515 	 * memory in case something goes wrong.
1516 	 */
1517 	return bpf_prepare_filter(prog, NULL);
1518 }
1519 
1520 /**
1521  *	sk_attach_filter - attach a socket filter
1522  *	@fprog: the filter program
1523  *	@sk: the socket to use
1524  *
1525  * Attach the user's filter code. We first run some sanity checks on
1526  * it to make sure it does not explode on us later. If an error
1527  * occurs or there is insufficient memory for the filter a negative
1528  * errno code is returned. On success the return is zero.
1529  */
1530 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1531 {
1532 	struct bpf_prog *prog = __get_filter(fprog, sk);
1533 	int err;
1534 
1535 	if (IS_ERR(prog))
1536 		return PTR_ERR(prog);
1537 
1538 	err = __sk_attach_prog(prog, sk);
1539 	if (err < 0) {
1540 		__bpf_prog_release(prog);
1541 		return err;
1542 	}
1543 
1544 	return 0;
1545 }
1546 EXPORT_SYMBOL_GPL(sk_attach_filter);
1547 
1548 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1549 {
1550 	struct bpf_prog *prog = __get_filter(fprog, sk);
1551 	int err;
1552 
1553 	if (IS_ERR(prog))
1554 		return PTR_ERR(prog);
1555 
1556 	if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1557 		err = -ENOMEM;
1558 	else
1559 		err = reuseport_attach_prog(sk, prog);
1560 
1561 	if (err)
1562 		__bpf_prog_release(prog);
1563 
1564 	return err;
1565 }
1566 
1567 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1568 {
1569 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1570 		return ERR_PTR(-EPERM);
1571 
1572 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1573 }
1574 
1575 int sk_attach_bpf(u32 ufd, struct sock *sk)
1576 {
1577 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1578 	int err;
1579 
1580 	if (IS_ERR(prog))
1581 		return PTR_ERR(prog);
1582 
1583 	err = __sk_attach_prog(prog, sk);
1584 	if (err < 0) {
1585 		bpf_prog_put(prog);
1586 		return err;
1587 	}
1588 
1589 	return 0;
1590 }
1591 
1592 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1593 {
1594 	struct bpf_prog *prog;
1595 	int err;
1596 
1597 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1598 		return -EPERM;
1599 
1600 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1601 	if (PTR_ERR(prog) == -EINVAL)
1602 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1603 	if (IS_ERR(prog))
1604 		return PTR_ERR(prog);
1605 
1606 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1607 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1608 		 * bpf prog (e.g. sockmap).  It depends on the
1609 		 * limitation imposed by bpf_prog_load().
1610 		 * Hence, sysctl_optmem_max is not checked.
1611 		 */
1612 		if ((sk->sk_type != SOCK_STREAM &&
1613 		     sk->sk_type != SOCK_DGRAM) ||
1614 		    (sk->sk_protocol != IPPROTO_UDP &&
1615 		     sk->sk_protocol != IPPROTO_TCP) ||
1616 		    (sk->sk_family != AF_INET &&
1617 		     sk->sk_family != AF_INET6)) {
1618 			err = -ENOTSUPP;
1619 			goto err_prog_put;
1620 		}
1621 	} else {
1622 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1623 		if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1624 			err = -ENOMEM;
1625 			goto err_prog_put;
1626 		}
1627 	}
1628 
1629 	err = reuseport_attach_prog(sk, prog);
1630 err_prog_put:
1631 	if (err)
1632 		bpf_prog_put(prog);
1633 
1634 	return err;
1635 }
1636 
1637 void sk_reuseport_prog_free(struct bpf_prog *prog)
1638 {
1639 	if (!prog)
1640 		return;
1641 
1642 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1643 		bpf_prog_put(prog);
1644 	else
1645 		bpf_prog_destroy(prog);
1646 }
1647 
1648 struct bpf_scratchpad {
1649 	union {
1650 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1651 		u8     buff[MAX_BPF_STACK];
1652 	};
1653 };
1654 
1655 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1656 
1657 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1658 					  unsigned int write_len)
1659 {
1660 	return skb_ensure_writable(skb, write_len);
1661 }
1662 
1663 static inline int bpf_try_make_writable(struct sk_buff *skb,
1664 					unsigned int write_len)
1665 {
1666 	int err = __bpf_try_make_writable(skb, write_len);
1667 
1668 	bpf_compute_data_pointers(skb);
1669 	return err;
1670 }
1671 
1672 static int bpf_try_make_head_writable(struct sk_buff *skb)
1673 {
1674 	return bpf_try_make_writable(skb, skb_headlen(skb));
1675 }
1676 
1677 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1678 {
1679 	if (skb_at_tc_ingress(skb))
1680 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1681 }
1682 
1683 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1684 {
1685 	if (skb_at_tc_ingress(skb))
1686 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1687 }
1688 
1689 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1690 	   const void *, from, u32, len, u64, flags)
1691 {
1692 	void *ptr;
1693 
1694 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1695 		return -EINVAL;
1696 	if (unlikely(offset > INT_MAX))
1697 		return -EFAULT;
1698 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1699 		return -EFAULT;
1700 
1701 	ptr = skb->data + offset;
1702 	if (flags & BPF_F_RECOMPUTE_CSUM)
1703 		__skb_postpull_rcsum(skb, ptr, len, offset);
1704 
1705 	memcpy(ptr, from, len);
1706 
1707 	if (flags & BPF_F_RECOMPUTE_CSUM)
1708 		__skb_postpush_rcsum(skb, ptr, len, offset);
1709 	if (flags & BPF_F_INVALIDATE_HASH)
1710 		skb_clear_hash(skb);
1711 
1712 	return 0;
1713 }
1714 
1715 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1716 	.func		= bpf_skb_store_bytes,
1717 	.gpl_only	= false,
1718 	.ret_type	= RET_INTEGER,
1719 	.arg1_type	= ARG_PTR_TO_CTX,
1720 	.arg2_type	= ARG_ANYTHING,
1721 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1722 	.arg4_type	= ARG_CONST_SIZE,
1723 	.arg5_type	= ARG_ANYTHING,
1724 };
1725 
1726 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1727 			  u32 len, u64 flags)
1728 {
1729 	return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1730 }
1731 
1732 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1733 	   void *, to, u32, len)
1734 {
1735 	void *ptr;
1736 
1737 	if (unlikely(offset > INT_MAX))
1738 		goto err_clear;
1739 
1740 	ptr = skb_header_pointer(skb, offset, len, to);
1741 	if (unlikely(!ptr))
1742 		goto err_clear;
1743 	if (ptr != to)
1744 		memcpy(to, ptr, len);
1745 
1746 	return 0;
1747 err_clear:
1748 	memset(to, 0, len);
1749 	return -EFAULT;
1750 }
1751 
1752 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1753 	.func		= bpf_skb_load_bytes,
1754 	.gpl_only	= false,
1755 	.ret_type	= RET_INTEGER,
1756 	.arg1_type	= ARG_PTR_TO_CTX,
1757 	.arg2_type	= ARG_ANYTHING,
1758 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1759 	.arg4_type	= ARG_CONST_SIZE,
1760 };
1761 
1762 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1763 {
1764 	return ____bpf_skb_load_bytes(skb, offset, to, len);
1765 }
1766 
1767 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1768 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1769 	   void *, to, u32, len)
1770 {
1771 	void *ptr;
1772 
1773 	if (unlikely(offset > 0xffff))
1774 		goto err_clear;
1775 
1776 	if (unlikely(!ctx->skb))
1777 		goto err_clear;
1778 
1779 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1780 	if (unlikely(!ptr))
1781 		goto err_clear;
1782 	if (ptr != to)
1783 		memcpy(to, ptr, len);
1784 
1785 	return 0;
1786 err_clear:
1787 	memset(to, 0, len);
1788 	return -EFAULT;
1789 }
1790 
1791 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1792 	.func		= bpf_flow_dissector_load_bytes,
1793 	.gpl_only	= false,
1794 	.ret_type	= RET_INTEGER,
1795 	.arg1_type	= ARG_PTR_TO_CTX,
1796 	.arg2_type	= ARG_ANYTHING,
1797 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1798 	.arg4_type	= ARG_CONST_SIZE,
1799 };
1800 
1801 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1802 	   u32, offset, void *, to, u32, len, u32, start_header)
1803 {
1804 	u8 *end = skb_tail_pointer(skb);
1805 	u8 *start, *ptr;
1806 
1807 	if (unlikely(offset > 0xffff))
1808 		goto err_clear;
1809 
1810 	switch (start_header) {
1811 	case BPF_HDR_START_MAC:
1812 		if (unlikely(!skb_mac_header_was_set(skb)))
1813 			goto err_clear;
1814 		start = skb_mac_header(skb);
1815 		break;
1816 	case BPF_HDR_START_NET:
1817 		start = skb_network_header(skb);
1818 		break;
1819 	default:
1820 		goto err_clear;
1821 	}
1822 
1823 	ptr = start + offset;
1824 
1825 	if (likely(ptr + len <= end)) {
1826 		memcpy(to, ptr, len);
1827 		return 0;
1828 	}
1829 
1830 err_clear:
1831 	memset(to, 0, len);
1832 	return -EFAULT;
1833 }
1834 
1835 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1836 	.func		= bpf_skb_load_bytes_relative,
1837 	.gpl_only	= false,
1838 	.ret_type	= RET_INTEGER,
1839 	.arg1_type	= ARG_PTR_TO_CTX,
1840 	.arg2_type	= ARG_ANYTHING,
1841 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1842 	.arg4_type	= ARG_CONST_SIZE,
1843 	.arg5_type	= ARG_ANYTHING,
1844 };
1845 
1846 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1847 {
1848 	/* Idea is the following: should the needed direct read/write
1849 	 * test fail during runtime, we can pull in more data and redo
1850 	 * again, since implicitly, we invalidate previous checks here.
1851 	 *
1852 	 * Or, since we know how much we need to make read/writeable,
1853 	 * this can be done once at the program beginning for direct
1854 	 * access case. By this we overcome limitations of only current
1855 	 * headroom being accessible.
1856 	 */
1857 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1858 }
1859 
1860 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1861 	.func		= bpf_skb_pull_data,
1862 	.gpl_only	= false,
1863 	.ret_type	= RET_INTEGER,
1864 	.arg1_type	= ARG_PTR_TO_CTX,
1865 	.arg2_type	= ARG_ANYTHING,
1866 };
1867 
1868 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1869 {
1870 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1871 }
1872 
1873 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1874 	.func		= bpf_sk_fullsock,
1875 	.gpl_only	= false,
1876 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1877 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1878 };
1879 
1880 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1881 					   unsigned int write_len)
1882 {
1883 	return __bpf_try_make_writable(skb, write_len);
1884 }
1885 
1886 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1887 {
1888 	/* Idea is the following: should the needed direct read/write
1889 	 * test fail during runtime, we can pull in more data and redo
1890 	 * again, since implicitly, we invalidate previous checks here.
1891 	 *
1892 	 * Or, since we know how much we need to make read/writeable,
1893 	 * this can be done once at the program beginning for direct
1894 	 * access case. By this we overcome limitations of only current
1895 	 * headroom being accessible.
1896 	 */
1897 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1898 }
1899 
1900 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1901 	.func		= sk_skb_pull_data,
1902 	.gpl_only	= false,
1903 	.ret_type	= RET_INTEGER,
1904 	.arg1_type	= ARG_PTR_TO_CTX,
1905 	.arg2_type	= ARG_ANYTHING,
1906 };
1907 
1908 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1909 	   u64, from, u64, to, u64, flags)
1910 {
1911 	__sum16 *ptr;
1912 
1913 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1914 		return -EINVAL;
1915 	if (unlikely(offset > 0xffff || offset & 1))
1916 		return -EFAULT;
1917 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1918 		return -EFAULT;
1919 
1920 	ptr = (__sum16 *)(skb->data + offset);
1921 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1922 	case 0:
1923 		if (unlikely(from != 0))
1924 			return -EINVAL;
1925 
1926 		csum_replace_by_diff(ptr, to);
1927 		break;
1928 	case 2:
1929 		csum_replace2(ptr, from, to);
1930 		break;
1931 	case 4:
1932 		csum_replace4(ptr, from, to);
1933 		break;
1934 	default:
1935 		return -EINVAL;
1936 	}
1937 
1938 	return 0;
1939 }
1940 
1941 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1942 	.func		= bpf_l3_csum_replace,
1943 	.gpl_only	= false,
1944 	.ret_type	= RET_INTEGER,
1945 	.arg1_type	= ARG_PTR_TO_CTX,
1946 	.arg2_type	= ARG_ANYTHING,
1947 	.arg3_type	= ARG_ANYTHING,
1948 	.arg4_type	= ARG_ANYTHING,
1949 	.arg5_type	= ARG_ANYTHING,
1950 };
1951 
1952 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1953 	   u64, from, u64, to, u64, flags)
1954 {
1955 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1956 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1957 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1958 	__sum16 *ptr;
1959 
1960 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1961 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1962 		return -EINVAL;
1963 	if (unlikely(offset > 0xffff || offset & 1))
1964 		return -EFAULT;
1965 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1966 		return -EFAULT;
1967 
1968 	ptr = (__sum16 *)(skb->data + offset);
1969 	if (is_mmzero && !do_mforce && !*ptr)
1970 		return 0;
1971 
1972 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1973 	case 0:
1974 		if (unlikely(from != 0))
1975 			return -EINVAL;
1976 
1977 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1978 		break;
1979 	case 2:
1980 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1981 		break;
1982 	case 4:
1983 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1984 		break;
1985 	default:
1986 		return -EINVAL;
1987 	}
1988 
1989 	if (is_mmzero && !*ptr)
1990 		*ptr = CSUM_MANGLED_0;
1991 	return 0;
1992 }
1993 
1994 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1995 	.func		= bpf_l4_csum_replace,
1996 	.gpl_only	= false,
1997 	.ret_type	= RET_INTEGER,
1998 	.arg1_type	= ARG_PTR_TO_CTX,
1999 	.arg2_type	= ARG_ANYTHING,
2000 	.arg3_type	= ARG_ANYTHING,
2001 	.arg4_type	= ARG_ANYTHING,
2002 	.arg5_type	= ARG_ANYTHING,
2003 };
2004 
2005 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2006 	   __be32 *, to, u32, to_size, __wsum, seed)
2007 {
2008 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
2009 	u32 diff_size = from_size + to_size;
2010 	int i, j = 0;
2011 
2012 	/* This is quite flexible, some examples:
2013 	 *
2014 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2015 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2016 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2017 	 *
2018 	 * Even for diffing, from_size and to_size don't need to be equal.
2019 	 */
2020 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2021 		     diff_size > sizeof(sp->diff)))
2022 		return -EINVAL;
2023 
2024 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2025 		sp->diff[j] = ~from[i];
2026 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2027 		sp->diff[j] = to[i];
2028 
2029 	return csum_partial(sp->diff, diff_size, seed);
2030 }
2031 
2032 static const struct bpf_func_proto bpf_csum_diff_proto = {
2033 	.func		= bpf_csum_diff,
2034 	.gpl_only	= false,
2035 	.pkt_access	= true,
2036 	.ret_type	= RET_INTEGER,
2037 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2038 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2039 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2040 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2041 	.arg5_type	= ARG_ANYTHING,
2042 };
2043 
2044 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2045 {
2046 	/* The interface is to be used in combination with bpf_csum_diff()
2047 	 * for direct packet writes. csum rotation for alignment as well
2048 	 * as emulating csum_sub() can be done from the eBPF program.
2049 	 */
2050 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2051 		return (skb->csum = csum_add(skb->csum, csum));
2052 
2053 	return -ENOTSUPP;
2054 }
2055 
2056 static const struct bpf_func_proto bpf_csum_update_proto = {
2057 	.func		= bpf_csum_update,
2058 	.gpl_only	= false,
2059 	.ret_type	= RET_INTEGER,
2060 	.arg1_type	= ARG_PTR_TO_CTX,
2061 	.arg2_type	= ARG_ANYTHING,
2062 };
2063 
2064 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2065 {
2066 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2067 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2068 	 * is passed as flags, for example.
2069 	 */
2070 	switch (level) {
2071 	case BPF_CSUM_LEVEL_INC:
2072 		__skb_incr_checksum_unnecessary(skb);
2073 		break;
2074 	case BPF_CSUM_LEVEL_DEC:
2075 		__skb_decr_checksum_unnecessary(skb);
2076 		break;
2077 	case BPF_CSUM_LEVEL_RESET:
2078 		__skb_reset_checksum_unnecessary(skb);
2079 		break;
2080 	case BPF_CSUM_LEVEL_QUERY:
2081 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2082 		       skb->csum_level : -EACCES;
2083 	default:
2084 		return -EINVAL;
2085 	}
2086 
2087 	return 0;
2088 }
2089 
2090 static const struct bpf_func_proto bpf_csum_level_proto = {
2091 	.func		= bpf_csum_level,
2092 	.gpl_only	= false,
2093 	.ret_type	= RET_INTEGER,
2094 	.arg1_type	= ARG_PTR_TO_CTX,
2095 	.arg2_type	= ARG_ANYTHING,
2096 };
2097 
2098 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2099 {
2100 	return dev_forward_skb_nomtu(dev, skb);
2101 }
2102 
2103 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2104 				      struct sk_buff *skb)
2105 {
2106 	int ret = ____dev_forward_skb(dev, skb, false);
2107 
2108 	if (likely(!ret)) {
2109 		skb->dev = dev;
2110 		ret = netif_rx(skb);
2111 	}
2112 
2113 	return ret;
2114 }
2115 
2116 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2117 {
2118 	int ret;
2119 
2120 	if (dev_xmit_recursion()) {
2121 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2122 		kfree_skb(skb);
2123 		return -ENETDOWN;
2124 	}
2125 
2126 	skb->dev = dev;
2127 	skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2128 	skb_clear_tstamp(skb);
2129 
2130 	dev_xmit_recursion_inc();
2131 	ret = dev_queue_xmit(skb);
2132 	dev_xmit_recursion_dec();
2133 
2134 	return ret;
2135 }
2136 
2137 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2138 				 u32 flags)
2139 {
2140 	unsigned int mlen = skb_network_offset(skb);
2141 
2142 	if (unlikely(skb->len <= mlen)) {
2143 		kfree_skb(skb);
2144 		return -ERANGE;
2145 	}
2146 
2147 	if (mlen) {
2148 		__skb_pull(skb, mlen);
2149 
2150 		/* At ingress, the mac header has already been pulled once.
2151 		 * At egress, skb_pospull_rcsum has to be done in case that
2152 		 * the skb is originated from ingress (i.e. a forwarded skb)
2153 		 * to ensure that rcsum starts at net header.
2154 		 */
2155 		if (!skb_at_tc_ingress(skb))
2156 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2157 	}
2158 	skb_pop_mac_header(skb);
2159 	skb_reset_mac_len(skb);
2160 	return flags & BPF_F_INGRESS ?
2161 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2162 }
2163 
2164 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2165 				 u32 flags)
2166 {
2167 	/* Verify that a link layer header is carried */
2168 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2169 		kfree_skb(skb);
2170 		return -ERANGE;
2171 	}
2172 
2173 	bpf_push_mac_rcsum(skb);
2174 	return flags & BPF_F_INGRESS ?
2175 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2176 }
2177 
2178 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2179 			  u32 flags)
2180 {
2181 	if (dev_is_mac_header_xmit(dev))
2182 		return __bpf_redirect_common(skb, dev, flags);
2183 	else
2184 		return __bpf_redirect_no_mac(skb, dev, flags);
2185 }
2186 
2187 #if IS_ENABLED(CONFIG_IPV6)
2188 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2189 			    struct net_device *dev, struct bpf_nh_params *nh)
2190 {
2191 	u32 hh_len = LL_RESERVED_SPACE(dev);
2192 	const struct in6_addr *nexthop;
2193 	struct dst_entry *dst = NULL;
2194 	struct neighbour *neigh;
2195 
2196 	if (dev_xmit_recursion()) {
2197 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2198 		goto out_drop;
2199 	}
2200 
2201 	skb->dev = dev;
2202 	skb_clear_tstamp(skb);
2203 
2204 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2205 		skb = skb_expand_head(skb, hh_len);
2206 		if (!skb)
2207 			return -ENOMEM;
2208 	}
2209 
2210 	rcu_read_lock();
2211 	if (!nh) {
2212 		dst = skb_dst(skb);
2213 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2214 				      &ipv6_hdr(skb)->daddr);
2215 	} else {
2216 		nexthop = &nh->ipv6_nh;
2217 	}
2218 	neigh = ip_neigh_gw6(dev, nexthop);
2219 	if (likely(!IS_ERR(neigh))) {
2220 		int ret;
2221 
2222 		sock_confirm_neigh(skb, neigh);
2223 		local_bh_disable();
2224 		dev_xmit_recursion_inc();
2225 		ret = neigh_output(neigh, skb, false);
2226 		dev_xmit_recursion_dec();
2227 		local_bh_enable();
2228 		rcu_read_unlock();
2229 		return ret;
2230 	}
2231 	rcu_read_unlock_bh();
2232 	if (dst)
2233 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2234 out_drop:
2235 	kfree_skb(skb);
2236 	return -ENETDOWN;
2237 }
2238 
2239 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2240 				   struct bpf_nh_params *nh)
2241 {
2242 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2243 	struct net *net = dev_net(dev);
2244 	int err, ret = NET_XMIT_DROP;
2245 
2246 	if (!nh) {
2247 		struct dst_entry *dst;
2248 		struct flowi6 fl6 = {
2249 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2250 			.flowi6_mark  = skb->mark,
2251 			.flowlabel    = ip6_flowinfo(ip6h),
2252 			.flowi6_oif   = dev->ifindex,
2253 			.flowi6_proto = ip6h->nexthdr,
2254 			.daddr	      = ip6h->daddr,
2255 			.saddr	      = ip6h->saddr,
2256 		};
2257 
2258 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2259 		if (IS_ERR(dst))
2260 			goto out_drop;
2261 
2262 		skb_dst_set(skb, dst);
2263 	} else if (nh->nh_family != AF_INET6) {
2264 		goto out_drop;
2265 	}
2266 
2267 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2268 	if (unlikely(net_xmit_eval(err)))
2269 		dev->stats.tx_errors++;
2270 	else
2271 		ret = NET_XMIT_SUCCESS;
2272 	goto out_xmit;
2273 out_drop:
2274 	dev->stats.tx_errors++;
2275 	kfree_skb(skb);
2276 out_xmit:
2277 	return ret;
2278 }
2279 #else
2280 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2281 				   struct bpf_nh_params *nh)
2282 {
2283 	kfree_skb(skb);
2284 	return NET_XMIT_DROP;
2285 }
2286 #endif /* CONFIG_IPV6 */
2287 
2288 #if IS_ENABLED(CONFIG_INET)
2289 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2290 			    struct net_device *dev, struct bpf_nh_params *nh)
2291 {
2292 	u32 hh_len = LL_RESERVED_SPACE(dev);
2293 	struct neighbour *neigh;
2294 	bool is_v6gw = false;
2295 
2296 	if (dev_xmit_recursion()) {
2297 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2298 		goto out_drop;
2299 	}
2300 
2301 	skb->dev = dev;
2302 	skb_clear_tstamp(skb);
2303 
2304 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2305 		skb = skb_expand_head(skb, hh_len);
2306 		if (!skb)
2307 			return -ENOMEM;
2308 	}
2309 
2310 	rcu_read_lock();
2311 	if (!nh) {
2312 		struct dst_entry *dst = skb_dst(skb);
2313 		struct rtable *rt = container_of(dst, struct rtable, dst);
2314 
2315 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2316 	} else if (nh->nh_family == AF_INET6) {
2317 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2318 		is_v6gw = true;
2319 	} else if (nh->nh_family == AF_INET) {
2320 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2321 	} else {
2322 		rcu_read_unlock();
2323 		goto out_drop;
2324 	}
2325 
2326 	if (likely(!IS_ERR(neigh))) {
2327 		int ret;
2328 
2329 		sock_confirm_neigh(skb, neigh);
2330 		local_bh_disable();
2331 		dev_xmit_recursion_inc();
2332 		ret = neigh_output(neigh, skb, is_v6gw);
2333 		dev_xmit_recursion_dec();
2334 		local_bh_enable();
2335 		rcu_read_unlock();
2336 		return ret;
2337 	}
2338 	rcu_read_unlock();
2339 out_drop:
2340 	kfree_skb(skb);
2341 	return -ENETDOWN;
2342 }
2343 
2344 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2345 				   struct bpf_nh_params *nh)
2346 {
2347 	const struct iphdr *ip4h = ip_hdr(skb);
2348 	struct net *net = dev_net(dev);
2349 	int err, ret = NET_XMIT_DROP;
2350 
2351 	if (!nh) {
2352 		struct flowi4 fl4 = {
2353 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2354 			.flowi4_mark  = skb->mark,
2355 			.flowi4_tos   = RT_TOS(ip4h->tos),
2356 			.flowi4_oif   = dev->ifindex,
2357 			.flowi4_proto = ip4h->protocol,
2358 			.daddr	      = ip4h->daddr,
2359 			.saddr	      = ip4h->saddr,
2360 		};
2361 		struct rtable *rt;
2362 
2363 		rt = ip_route_output_flow(net, &fl4, NULL);
2364 		if (IS_ERR(rt))
2365 			goto out_drop;
2366 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2367 			ip_rt_put(rt);
2368 			goto out_drop;
2369 		}
2370 
2371 		skb_dst_set(skb, &rt->dst);
2372 	}
2373 
2374 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2375 	if (unlikely(net_xmit_eval(err)))
2376 		dev->stats.tx_errors++;
2377 	else
2378 		ret = NET_XMIT_SUCCESS;
2379 	goto out_xmit;
2380 out_drop:
2381 	dev->stats.tx_errors++;
2382 	kfree_skb(skb);
2383 out_xmit:
2384 	return ret;
2385 }
2386 #else
2387 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2388 				   struct bpf_nh_params *nh)
2389 {
2390 	kfree_skb(skb);
2391 	return NET_XMIT_DROP;
2392 }
2393 #endif /* CONFIG_INET */
2394 
2395 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2396 				struct bpf_nh_params *nh)
2397 {
2398 	struct ethhdr *ethh = eth_hdr(skb);
2399 
2400 	if (unlikely(skb->mac_header >= skb->network_header))
2401 		goto out;
2402 	bpf_push_mac_rcsum(skb);
2403 	if (is_multicast_ether_addr(ethh->h_dest))
2404 		goto out;
2405 
2406 	skb_pull(skb, sizeof(*ethh));
2407 	skb_unset_mac_header(skb);
2408 	skb_reset_network_header(skb);
2409 
2410 	if (skb->protocol == htons(ETH_P_IP))
2411 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2412 	else if (skb->protocol == htons(ETH_P_IPV6))
2413 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2414 out:
2415 	kfree_skb(skb);
2416 	return -ENOTSUPP;
2417 }
2418 
2419 /* Internal, non-exposed redirect flags. */
2420 enum {
2421 	BPF_F_NEIGH	= (1ULL << 1),
2422 	BPF_F_PEER	= (1ULL << 2),
2423 	BPF_F_NEXTHOP	= (1ULL << 3),
2424 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2425 };
2426 
2427 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2428 {
2429 	struct net_device *dev;
2430 	struct sk_buff *clone;
2431 	int ret;
2432 
2433 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2434 		return -EINVAL;
2435 
2436 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2437 	if (unlikely(!dev))
2438 		return -EINVAL;
2439 
2440 	clone = skb_clone(skb, GFP_ATOMIC);
2441 	if (unlikely(!clone))
2442 		return -ENOMEM;
2443 
2444 	/* For direct write, we need to keep the invariant that the skbs
2445 	 * we're dealing with need to be uncloned. Should uncloning fail
2446 	 * here, we need to free the just generated clone to unclone once
2447 	 * again.
2448 	 */
2449 	ret = bpf_try_make_head_writable(skb);
2450 	if (unlikely(ret)) {
2451 		kfree_skb(clone);
2452 		return -ENOMEM;
2453 	}
2454 
2455 	return __bpf_redirect(clone, dev, flags);
2456 }
2457 
2458 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2459 	.func           = bpf_clone_redirect,
2460 	.gpl_only       = false,
2461 	.ret_type       = RET_INTEGER,
2462 	.arg1_type      = ARG_PTR_TO_CTX,
2463 	.arg2_type      = ARG_ANYTHING,
2464 	.arg3_type      = ARG_ANYTHING,
2465 };
2466 
2467 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2468 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2469 
2470 int skb_do_redirect(struct sk_buff *skb)
2471 {
2472 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2473 	struct net *net = dev_net(skb->dev);
2474 	struct net_device *dev;
2475 	u32 flags = ri->flags;
2476 
2477 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2478 	ri->tgt_index = 0;
2479 	ri->flags = 0;
2480 	if (unlikely(!dev))
2481 		goto out_drop;
2482 	if (flags & BPF_F_PEER) {
2483 		const struct net_device_ops *ops = dev->netdev_ops;
2484 
2485 		if (unlikely(!ops->ndo_get_peer_dev ||
2486 			     !skb_at_tc_ingress(skb)))
2487 			goto out_drop;
2488 		dev = ops->ndo_get_peer_dev(dev);
2489 		if (unlikely(!dev ||
2490 			     !(dev->flags & IFF_UP) ||
2491 			     net_eq(net, dev_net(dev))))
2492 			goto out_drop;
2493 		skb->dev = dev;
2494 		dev_sw_netstats_rx_add(dev, skb->len);
2495 		return -EAGAIN;
2496 	}
2497 	return flags & BPF_F_NEIGH ?
2498 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2499 				    &ri->nh : NULL) :
2500 	       __bpf_redirect(skb, dev, flags);
2501 out_drop:
2502 	kfree_skb(skb);
2503 	return -EINVAL;
2504 }
2505 
2506 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2507 {
2508 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2509 
2510 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2511 		return TC_ACT_SHOT;
2512 
2513 	ri->flags = flags;
2514 	ri->tgt_index = ifindex;
2515 
2516 	return TC_ACT_REDIRECT;
2517 }
2518 
2519 static const struct bpf_func_proto bpf_redirect_proto = {
2520 	.func           = bpf_redirect,
2521 	.gpl_only       = false,
2522 	.ret_type       = RET_INTEGER,
2523 	.arg1_type      = ARG_ANYTHING,
2524 	.arg2_type      = ARG_ANYTHING,
2525 };
2526 
2527 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2528 {
2529 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2530 
2531 	if (unlikely(flags))
2532 		return TC_ACT_SHOT;
2533 
2534 	ri->flags = BPF_F_PEER;
2535 	ri->tgt_index = ifindex;
2536 
2537 	return TC_ACT_REDIRECT;
2538 }
2539 
2540 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2541 	.func           = bpf_redirect_peer,
2542 	.gpl_only       = false,
2543 	.ret_type       = RET_INTEGER,
2544 	.arg1_type      = ARG_ANYTHING,
2545 	.arg2_type      = ARG_ANYTHING,
2546 };
2547 
2548 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2549 	   int, plen, u64, flags)
2550 {
2551 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2552 
2553 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2554 		return TC_ACT_SHOT;
2555 
2556 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2557 	ri->tgt_index = ifindex;
2558 
2559 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2560 	if (plen)
2561 		memcpy(&ri->nh, params, sizeof(ri->nh));
2562 
2563 	return TC_ACT_REDIRECT;
2564 }
2565 
2566 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2567 	.func		= bpf_redirect_neigh,
2568 	.gpl_only	= false,
2569 	.ret_type	= RET_INTEGER,
2570 	.arg1_type	= ARG_ANYTHING,
2571 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2572 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2573 	.arg4_type	= ARG_ANYTHING,
2574 };
2575 
2576 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2577 {
2578 	msg->apply_bytes = bytes;
2579 	return 0;
2580 }
2581 
2582 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2583 	.func           = bpf_msg_apply_bytes,
2584 	.gpl_only       = false,
2585 	.ret_type       = RET_INTEGER,
2586 	.arg1_type	= ARG_PTR_TO_CTX,
2587 	.arg2_type      = ARG_ANYTHING,
2588 };
2589 
2590 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2591 {
2592 	msg->cork_bytes = bytes;
2593 	return 0;
2594 }
2595 
2596 static void sk_msg_reset_curr(struct sk_msg *msg)
2597 {
2598 	u32 i = msg->sg.start;
2599 	u32 len = 0;
2600 
2601 	do {
2602 		len += sk_msg_elem(msg, i)->length;
2603 		sk_msg_iter_var_next(i);
2604 		if (len >= msg->sg.size)
2605 			break;
2606 	} while (i != msg->sg.end);
2607 
2608 	msg->sg.curr = i;
2609 	msg->sg.copybreak = 0;
2610 }
2611 
2612 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2613 	.func           = bpf_msg_cork_bytes,
2614 	.gpl_only       = false,
2615 	.ret_type       = RET_INTEGER,
2616 	.arg1_type	= ARG_PTR_TO_CTX,
2617 	.arg2_type      = ARG_ANYTHING,
2618 };
2619 
2620 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2621 	   u32, end, u64, flags)
2622 {
2623 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2624 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2625 	struct scatterlist *sge;
2626 	u8 *raw, *to, *from;
2627 	struct page *page;
2628 
2629 	if (unlikely(flags || end <= start))
2630 		return -EINVAL;
2631 
2632 	/* First find the starting scatterlist element */
2633 	i = msg->sg.start;
2634 	do {
2635 		offset += len;
2636 		len = sk_msg_elem(msg, i)->length;
2637 		if (start < offset + len)
2638 			break;
2639 		sk_msg_iter_var_next(i);
2640 	} while (i != msg->sg.end);
2641 
2642 	if (unlikely(start >= offset + len))
2643 		return -EINVAL;
2644 
2645 	first_sge = i;
2646 	/* The start may point into the sg element so we need to also
2647 	 * account for the headroom.
2648 	 */
2649 	bytes_sg_total = start - offset + bytes;
2650 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2651 		goto out;
2652 
2653 	/* At this point we need to linearize multiple scatterlist
2654 	 * elements or a single shared page. Either way we need to
2655 	 * copy into a linear buffer exclusively owned by BPF. Then
2656 	 * place the buffer in the scatterlist and fixup the original
2657 	 * entries by removing the entries now in the linear buffer
2658 	 * and shifting the remaining entries. For now we do not try
2659 	 * to copy partial entries to avoid complexity of running out
2660 	 * of sg_entry slots. The downside is reading a single byte
2661 	 * will copy the entire sg entry.
2662 	 */
2663 	do {
2664 		copy += sk_msg_elem(msg, i)->length;
2665 		sk_msg_iter_var_next(i);
2666 		if (bytes_sg_total <= copy)
2667 			break;
2668 	} while (i != msg->sg.end);
2669 	last_sge = i;
2670 
2671 	if (unlikely(bytes_sg_total > copy))
2672 		return -EINVAL;
2673 
2674 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2675 			   get_order(copy));
2676 	if (unlikely(!page))
2677 		return -ENOMEM;
2678 
2679 	raw = page_address(page);
2680 	i = first_sge;
2681 	do {
2682 		sge = sk_msg_elem(msg, i);
2683 		from = sg_virt(sge);
2684 		len = sge->length;
2685 		to = raw + poffset;
2686 
2687 		memcpy(to, from, len);
2688 		poffset += len;
2689 		sge->length = 0;
2690 		put_page(sg_page(sge));
2691 
2692 		sk_msg_iter_var_next(i);
2693 	} while (i != last_sge);
2694 
2695 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2696 
2697 	/* To repair sg ring we need to shift entries. If we only
2698 	 * had a single entry though we can just replace it and
2699 	 * be done. Otherwise walk the ring and shift the entries.
2700 	 */
2701 	WARN_ON_ONCE(last_sge == first_sge);
2702 	shift = last_sge > first_sge ?
2703 		last_sge - first_sge - 1 :
2704 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2705 	if (!shift)
2706 		goto out;
2707 
2708 	i = first_sge;
2709 	sk_msg_iter_var_next(i);
2710 	do {
2711 		u32 move_from;
2712 
2713 		if (i + shift >= NR_MSG_FRAG_IDS)
2714 			move_from = i + shift - NR_MSG_FRAG_IDS;
2715 		else
2716 			move_from = i + shift;
2717 		if (move_from == msg->sg.end)
2718 			break;
2719 
2720 		msg->sg.data[i] = msg->sg.data[move_from];
2721 		msg->sg.data[move_from].length = 0;
2722 		msg->sg.data[move_from].page_link = 0;
2723 		msg->sg.data[move_from].offset = 0;
2724 		sk_msg_iter_var_next(i);
2725 	} while (1);
2726 
2727 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2728 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2729 		      msg->sg.end - shift;
2730 out:
2731 	sk_msg_reset_curr(msg);
2732 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2733 	msg->data_end = msg->data + bytes;
2734 	return 0;
2735 }
2736 
2737 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2738 	.func		= bpf_msg_pull_data,
2739 	.gpl_only	= false,
2740 	.ret_type	= RET_INTEGER,
2741 	.arg1_type	= ARG_PTR_TO_CTX,
2742 	.arg2_type	= ARG_ANYTHING,
2743 	.arg3_type	= ARG_ANYTHING,
2744 	.arg4_type	= ARG_ANYTHING,
2745 };
2746 
2747 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2748 	   u32, len, u64, flags)
2749 {
2750 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2751 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2752 	u8 *raw, *to, *from;
2753 	struct page *page;
2754 
2755 	if (unlikely(flags))
2756 		return -EINVAL;
2757 
2758 	if (unlikely(len == 0))
2759 		return 0;
2760 
2761 	/* First find the starting scatterlist element */
2762 	i = msg->sg.start;
2763 	do {
2764 		offset += l;
2765 		l = sk_msg_elem(msg, i)->length;
2766 
2767 		if (start < offset + l)
2768 			break;
2769 		sk_msg_iter_var_next(i);
2770 	} while (i != msg->sg.end);
2771 
2772 	if (start >= offset + l)
2773 		return -EINVAL;
2774 
2775 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2776 
2777 	/* If no space available will fallback to copy, we need at
2778 	 * least one scatterlist elem available to push data into
2779 	 * when start aligns to the beginning of an element or two
2780 	 * when it falls inside an element. We handle the start equals
2781 	 * offset case because its the common case for inserting a
2782 	 * header.
2783 	 */
2784 	if (!space || (space == 1 && start != offset))
2785 		copy = msg->sg.data[i].length;
2786 
2787 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2788 			   get_order(copy + len));
2789 	if (unlikely(!page))
2790 		return -ENOMEM;
2791 
2792 	if (copy) {
2793 		int front, back;
2794 
2795 		raw = page_address(page);
2796 
2797 		psge = sk_msg_elem(msg, i);
2798 		front = start - offset;
2799 		back = psge->length - front;
2800 		from = sg_virt(psge);
2801 
2802 		if (front)
2803 			memcpy(raw, from, front);
2804 
2805 		if (back) {
2806 			from += front;
2807 			to = raw + front + len;
2808 
2809 			memcpy(to, from, back);
2810 		}
2811 
2812 		put_page(sg_page(psge));
2813 	} else if (start - offset) {
2814 		psge = sk_msg_elem(msg, i);
2815 		rsge = sk_msg_elem_cpy(msg, i);
2816 
2817 		psge->length = start - offset;
2818 		rsge.length -= psge->length;
2819 		rsge.offset += start;
2820 
2821 		sk_msg_iter_var_next(i);
2822 		sg_unmark_end(psge);
2823 		sg_unmark_end(&rsge);
2824 		sk_msg_iter_next(msg, end);
2825 	}
2826 
2827 	/* Slot(s) to place newly allocated data */
2828 	new = i;
2829 
2830 	/* Shift one or two slots as needed */
2831 	if (!copy) {
2832 		sge = sk_msg_elem_cpy(msg, i);
2833 
2834 		sk_msg_iter_var_next(i);
2835 		sg_unmark_end(&sge);
2836 		sk_msg_iter_next(msg, end);
2837 
2838 		nsge = sk_msg_elem_cpy(msg, i);
2839 		if (rsge.length) {
2840 			sk_msg_iter_var_next(i);
2841 			nnsge = sk_msg_elem_cpy(msg, i);
2842 		}
2843 
2844 		while (i != msg->sg.end) {
2845 			msg->sg.data[i] = sge;
2846 			sge = nsge;
2847 			sk_msg_iter_var_next(i);
2848 			if (rsge.length) {
2849 				nsge = nnsge;
2850 				nnsge = sk_msg_elem_cpy(msg, i);
2851 			} else {
2852 				nsge = sk_msg_elem_cpy(msg, i);
2853 			}
2854 		}
2855 	}
2856 
2857 	/* Place newly allocated data buffer */
2858 	sk_mem_charge(msg->sk, len);
2859 	msg->sg.size += len;
2860 	__clear_bit(new, msg->sg.copy);
2861 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2862 	if (rsge.length) {
2863 		get_page(sg_page(&rsge));
2864 		sk_msg_iter_var_next(new);
2865 		msg->sg.data[new] = rsge;
2866 	}
2867 
2868 	sk_msg_reset_curr(msg);
2869 	sk_msg_compute_data_pointers(msg);
2870 	return 0;
2871 }
2872 
2873 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2874 	.func		= bpf_msg_push_data,
2875 	.gpl_only	= false,
2876 	.ret_type	= RET_INTEGER,
2877 	.arg1_type	= ARG_PTR_TO_CTX,
2878 	.arg2_type	= ARG_ANYTHING,
2879 	.arg3_type	= ARG_ANYTHING,
2880 	.arg4_type	= ARG_ANYTHING,
2881 };
2882 
2883 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2884 {
2885 	int prev;
2886 
2887 	do {
2888 		prev = i;
2889 		sk_msg_iter_var_next(i);
2890 		msg->sg.data[prev] = msg->sg.data[i];
2891 	} while (i != msg->sg.end);
2892 
2893 	sk_msg_iter_prev(msg, end);
2894 }
2895 
2896 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2897 {
2898 	struct scatterlist tmp, sge;
2899 
2900 	sk_msg_iter_next(msg, end);
2901 	sge = sk_msg_elem_cpy(msg, i);
2902 	sk_msg_iter_var_next(i);
2903 	tmp = sk_msg_elem_cpy(msg, i);
2904 
2905 	while (i != msg->sg.end) {
2906 		msg->sg.data[i] = sge;
2907 		sk_msg_iter_var_next(i);
2908 		sge = tmp;
2909 		tmp = sk_msg_elem_cpy(msg, i);
2910 	}
2911 }
2912 
2913 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2914 	   u32, len, u64, flags)
2915 {
2916 	u32 i = 0, l = 0, space, offset = 0;
2917 	u64 last = start + len;
2918 	int pop;
2919 
2920 	if (unlikely(flags))
2921 		return -EINVAL;
2922 
2923 	/* First find the starting scatterlist element */
2924 	i = msg->sg.start;
2925 	do {
2926 		offset += l;
2927 		l = sk_msg_elem(msg, i)->length;
2928 
2929 		if (start < offset + l)
2930 			break;
2931 		sk_msg_iter_var_next(i);
2932 	} while (i != msg->sg.end);
2933 
2934 	/* Bounds checks: start and pop must be inside message */
2935 	if (start >= offset + l || last >= msg->sg.size)
2936 		return -EINVAL;
2937 
2938 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2939 
2940 	pop = len;
2941 	/* --------------| offset
2942 	 * -| start      |-------- len -------|
2943 	 *
2944 	 *  |----- a ----|-------- pop -------|----- b ----|
2945 	 *  |______________________________________________| length
2946 	 *
2947 	 *
2948 	 * a:   region at front of scatter element to save
2949 	 * b:   region at back of scatter element to save when length > A + pop
2950 	 * pop: region to pop from element, same as input 'pop' here will be
2951 	 *      decremented below per iteration.
2952 	 *
2953 	 * Two top-level cases to handle when start != offset, first B is non
2954 	 * zero and second B is zero corresponding to when a pop includes more
2955 	 * than one element.
2956 	 *
2957 	 * Then if B is non-zero AND there is no space allocate space and
2958 	 * compact A, B regions into page. If there is space shift ring to
2959 	 * the rigth free'ing the next element in ring to place B, leaving
2960 	 * A untouched except to reduce length.
2961 	 */
2962 	if (start != offset) {
2963 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2964 		int a = start;
2965 		int b = sge->length - pop - a;
2966 
2967 		sk_msg_iter_var_next(i);
2968 
2969 		if (pop < sge->length - a) {
2970 			if (space) {
2971 				sge->length = a;
2972 				sk_msg_shift_right(msg, i);
2973 				nsge = sk_msg_elem(msg, i);
2974 				get_page(sg_page(sge));
2975 				sg_set_page(nsge,
2976 					    sg_page(sge),
2977 					    b, sge->offset + pop + a);
2978 			} else {
2979 				struct page *page, *orig;
2980 				u8 *to, *from;
2981 
2982 				page = alloc_pages(__GFP_NOWARN |
2983 						   __GFP_COMP   | GFP_ATOMIC,
2984 						   get_order(a + b));
2985 				if (unlikely(!page))
2986 					return -ENOMEM;
2987 
2988 				sge->length = a;
2989 				orig = sg_page(sge);
2990 				from = sg_virt(sge);
2991 				to = page_address(page);
2992 				memcpy(to, from, a);
2993 				memcpy(to + a, from + a + pop, b);
2994 				sg_set_page(sge, page, a + b, 0);
2995 				put_page(orig);
2996 			}
2997 			pop = 0;
2998 		} else if (pop >= sge->length - a) {
2999 			pop -= (sge->length - a);
3000 			sge->length = a;
3001 		}
3002 	}
3003 
3004 	/* From above the current layout _must_ be as follows,
3005 	 *
3006 	 * -| offset
3007 	 * -| start
3008 	 *
3009 	 *  |---- pop ---|---------------- b ------------|
3010 	 *  |____________________________________________| length
3011 	 *
3012 	 * Offset and start of the current msg elem are equal because in the
3013 	 * previous case we handled offset != start and either consumed the
3014 	 * entire element and advanced to the next element OR pop == 0.
3015 	 *
3016 	 * Two cases to handle here are first pop is less than the length
3017 	 * leaving some remainder b above. Simply adjust the element's layout
3018 	 * in this case. Or pop >= length of the element so that b = 0. In this
3019 	 * case advance to next element decrementing pop.
3020 	 */
3021 	while (pop) {
3022 		struct scatterlist *sge = sk_msg_elem(msg, i);
3023 
3024 		if (pop < sge->length) {
3025 			sge->length -= pop;
3026 			sge->offset += pop;
3027 			pop = 0;
3028 		} else {
3029 			pop -= sge->length;
3030 			sk_msg_shift_left(msg, i);
3031 		}
3032 		sk_msg_iter_var_next(i);
3033 	}
3034 
3035 	sk_mem_uncharge(msg->sk, len - pop);
3036 	msg->sg.size -= (len - pop);
3037 	sk_msg_reset_curr(msg);
3038 	sk_msg_compute_data_pointers(msg);
3039 	return 0;
3040 }
3041 
3042 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3043 	.func		= bpf_msg_pop_data,
3044 	.gpl_only	= false,
3045 	.ret_type	= RET_INTEGER,
3046 	.arg1_type	= ARG_PTR_TO_CTX,
3047 	.arg2_type	= ARG_ANYTHING,
3048 	.arg3_type	= ARG_ANYTHING,
3049 	.arg4_type	= ARG_ANYTHING,
3050 };
3051 
3052 #ifdef CONFIG_CGROUP_NET_CLASSID
3053 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3054 {
3055 	return __task_get_classid(current);
3056 }
3057 
3058 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3059 	.func		= bpf_get_cgroup_classid_curr,
3060 	.gpl_only	= false,
3061 	.ret_type	= RET_INTEGER,
3062 };
3063 
3064 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3065 {
3066 	struct sock *sk = skb_to_full_sk(skb);
3067 
3068 	if (!sk || !sk_fullsock(sk))
3069 		return 0;
3070 
3071 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3072 }
3073 
3074 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3075 	.func		= bpf_skb_cgroup_classid,
3076 	.gpl_only	= false,
3077 	.ret_type	= RET_INTEGER,
3078 	.arg1_type	= ARG_PTR_TO_CTX,
3079 };
3080 #endif
3081 
3082 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3083 {
3084 	return task_get_classid(skb);
3085 }
3086 
3087 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3088 	.func           = bpf_get_cgroup_classid,
3089 	.gpl_only       = false,
3090 	.ret_type       = RET_INTEGER,
3091 	.arg1_type      = ARG_PTR_TO_CTX,
3092 };
3093 
3094 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3095 {
3096 	return dst_tclassid(skb);
3097 }
3098 
3099 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3100 	.func           = bpf_get_route_realm,
3101 	.gpl_only       = false,
3102 	.ret_type       = RET_INTEGER,
3103 	.arg1_type      = ARG_PTR_TO_CTX,
3104 };
3105 
3106 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3107 {
3108 	/* If skb_clear_hash() was called due to mangling, we can
3109 	 * trigger SW recalculation here. Later access to hash
3110 	 * can then use the inline skb->hash via context directly
3111 	 * instead of calling this helper again.
3112 	 */
3113 	return skb_get_hash(skb);
3114 }
3115 
3116 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3117 	.func		= bpf_get_hash_recalc,
3118 	.gpl_only	= false,
3119 	.ret_type	= RET_INTEGER,
3120 	.arg1_type	= ARG_PTR_TO_CTX,
3121 };
3122 
3123 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3124 {
3125 	/* After all direct packet write, this can be used once for
3126 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3127 	 */
3128 	skb_clear_hash(skb);
3129 	return 0;
3130 }
3131 
3132 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3133 	.func		= bpf_set_hash_invalid,
3134 	.gpl_only	= false,
3135 	.ret_type	= RET_INTEGER,
3136 	.arg1_type	= ARG_PTR_TO_CTX,
3137 };
3138 
3139 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3140 {
3141 	/* Set user specified hash as L4(+), so that it gets returned
3142 	 * on skb_get_hash() call unless BPF prog later on triggers a
3143 	 * skb_clear_hash().
3144 	 */
3145 	__skb_set_sw_hash(skb, hash, true);
3146 	return 0;
3147 }
3148 
3149 static const struct bpf_func_proto bpf_set_hash_proto = {
3150 	.func		= bpf_set_hash,
3151 	.gpl_only	= false,
3152 	.ret_type	= RET_INTEGER,
3153 	.arg1_type	= ARG_PTR_TO_CTX,
3154 	.arg2_type	= ARG_ANYTHING,
3155 };
3156 
3157 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3158 	   u16, vlan_tci)
3159 {
3160 	int ret;
3161 
3162 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3163 		     vlan_proto != htons(ETH_P_8021AD)))
3164 		vlan_proto = htons(ETH_P_8021Q);
3165 
3166 	bpf_push_mac_rcsum(skb);
3167 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3168 	bpf_pull_mac_rcsum(skb);
3169 
3170 	bpf_compute_data_pointers(skb);
3171 	return ret;
3172 }
3173 
3174 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3175 	.func           = bpf_skb_vlan_push,
3176 	.gpl_only       = false,
3177 	.ret_type       = RET_INTEGER,
3178 	.arg1_type      = ARG_PTR_TO_CTX,
3179 	.arg2_type      = ARG_ANYTHING,
3180 	.arg3_type      = ARG_ANYTHING,
3181 };
3182 
3183 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3184 {
3185 	int ret;
3186 
3187 	bpf_push_mac_rcsum(skb);
3188 	ret = skb_vlan_pop(skb);
3189 	bpf_pull_mac_rcsum(skb);
3190 
3191 	bpf_compute_data_pointers(skb);
3192 	return ret;
3193 }
3194 
3195 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3196 	.func           = bpf_skb_vlan_pop,
3197 	.gpl_only       = false,
3198 	.ret_type       = RET_INTEGER,
3199 	.arg1_type      = ARG_PTR_TO_CTX,
3200 };
3201 
3202 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3203 {
3204 	/* Caller already did skb_cow() with len as headroom,
3205 	 * so no need to do it here.
3206 	 */
3207 	skb_push(skb, len);
3208 	memmove(skb->data, skb->data + len, off);
3209 	memset(skb->data + off, 0, len);
3210 
3211 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3212 	 * needed here as it does not change the skb->csum
3213 	 * result for checksum complete when summing over
3214 	 * zeroed blocks.
3215 	 */
3216 	return 0;
3217 }
3218 
3219 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3220 {
3221 	void *old_data;
3222 
3223 	/* skb_ensure_writable() is not needed here, as we're
3224 	 * already working on an uncloned skb.
3225 	 */
3226 	if (unlikely(!pskb_may_pull(skb, off + len)))
3227 		return -ENOMEM;
3228 
3229 	old_data = skb->data;
3230 	__skb_pull(skb, len);
3231 	skb_postpull_rcsum(skb, old_data + off, len);
3232 	memmove(skb->data, old_data, off);
3233 
3234 	return 0;
3235 }
3236 
3237 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3238 {
3239 	bool trans_same = skb->transport_header == skb->network_header;
3240 	int ret;
3241 
3242 	/* There's no need for __skb_push()/__skb_pull() pair to
3243 	 * get to the start of the mac header as we're guaranteed
3244 	 * to always start from here under eBPF.
3245 	 */
3246 	ret = bpf_skb_generic_push(skb, off, len);
3247 	if (likely(!ret)) {
3248 		skb->mac_header -= len;
3249 		skb->network_header -= len;
3250 		if (trans_same)
3251 			skb->transport_header = skb->network_header;
3252 	}
3253 
3254 	return ret;
3255 }
3256 
3257 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3258 {
3259 	bool trans_same = skb->transport_header == skb->network_header;
3260 	int ret;
3261 
3262 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3263 	ret = bpf_skb_generic_pop(skb, off, len);
3264 	if (likely(!ret)) {
3265 		skb->mac_header += len;
3266 		skb->network_header += len;
3267 		if (trans_same)
3268 			skb->transport_header = skb->network_header;
3269 	}
3270 
3271 	return ret;
3272 }
3273 
3274 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3275 {
3276 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3277 	u32 off = skb_mac_header_len(skb);
3278 	int ret;
3279 
3280 	ret = skb_cow(skb, len_diff);
3281 	if (unlikely(ret < 0))
3282 		return ret;
3283 
3284 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3285 	if (unlikely(ret < 0))
3286 		return ret;
3287 
3288 	if (skb_is_gso(skb)) {
3289 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3290 
3291 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3292 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3293 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3294 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3295 		}
3296 	}
3297 
3298 	skb->protocol = htons(ETH_P_IPV6);
3299 	skb_clear_hash(skb);
3300 
3301 	return 0;
3302 }
3303 
3304 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3305 {
3306 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3307 	u32 off = skb_mac_header_len(skb);
3308 	int ret;
3309 
3310 	ret = skb_unclone(skb, GFP_ATOMIC);
3311 	if (unlikely(ret < 0))
3312 		return ret;
3313 
3314 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3315 	if (unlikely(ret < 0))
3316 		return ret;
3317 
3318 	if (skb_is_gso(skb)) {
3319 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3320 
3321 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3322 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3323 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3324 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3325 		}
3326 	}
3327 
3328 	skb->protocol = htons(ETH_P_IP);
3329 	skb_clear_hash(skb);
3330 
3331 	return 0;
3332 }
3333 
3334 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3335 {
3336 	__be16 from_proto = skb->protocol;
3337 
3338 	if (from_proto == htons(ETH_P_IP) &&
3339 	      to_proto == htons(ETH_P_IPV6))
3340 		return bpf_skb_proto_4_to_6(skb);
3341 
3342 	if (from_proto == htons(ETH_P_IPV6) &&
3343 	      to_proto == htons(ETH_P_IP))
3344 		return bpf_skb_proto_6_to_4(skb);
3345 
3346 	return -ENOTSUPP;
3347 }
3348 
3349 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3350 	   u64, flags)
3351 {
3352 	int ret;
3353 
3354 	if (unlikely(flags))
3355 		return -EINVAL;
3356 
3357 	/* General idea is that this helper does the basic groundwork
3358 	 * needed for changing the protocol, and eBPF program fills the
3359 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3360 	 * and other helpers, rather than passing a raw buffer here.
3361 	 *
3362 	 * The rationale is to keep this minimal and without a need to
3363 	 * deal with raw packet data. F.e. even if we would pass buffers
3364 	 * here, the program still needs to call the bpf_lX_csum_replace()
3365 	 * helpers anyway. Plus, this way we keep also separation of
3366 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3367 	 * care of stores.
3368 	 *
3369 	 * Currently, additional options and extension header space are
3370 	 * not supported, but flags register is reserved so we can adapt
3371 	 * that. For offloads, we mark packet as dodgy, so that headers
3372 	 * need to be verified first.
3373 	 */
3374 	ret = bpf_skb_proto_xlat(skb, proto);
3375 	bpf_compute_data_pointers(skb);
3376 	return ret;
3377 }
3378 
3379 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3380 	.func		= bpf_skb_change_proto,
3381 	.gpl_only	= false,
3382 	.ret_type	= RET_INTEGER,
3383 	.arg1_type	= ARG_PTR_TO_CTX,
3384 	.arg2_type	= ARG_ANYTHING,
3385 	.arg3_type	= ARG_ANYTHING,
3386 };
3387 
3388 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3389 {
3390 	/* We only allow a restricted subset to be changed for now. */
3391 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3392 		     !skb_pkt_type_ok(pkt_type)))
3393 		return -EINVAL;
3394 
3395 	skb->pkt_type = pkt_type;
3396 	return 0;
3397 }
3398 
3399 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3400 	.func		= bpf_skb_change_type,
3401 	.gpl_only	= false,
3402 	.ret_type	= RET_INTEGER,
3403 	.arg1_type	= ARG_PTR_TO_CTX,
3404 	.arg2_type	= ARG_ANYTHING,
3405 };
3406 
3407 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3408 {
3409 	switch (skb->protocol) {
3410 	case htons(ETH_P_IP):
3411 		return sizeof(struct iphdr);
3412 	case htons(ETH_P_IPV6):
3413 		return sizeof(struct ipv6hdr);
3414 	default:
3415 		return ~0U;
3416 	}
3417 }
3418 
3419 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3420 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3421 
3422 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK	(BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3423 					 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3424 
3425 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3426 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3427 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3428 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3429 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3430 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3431 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3432 					 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3433 
3434 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3435 			    u64 flags)
3436 {
3437 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3438 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3439 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3440 	unsigned int gso_type = SKB_GSO_DODGY;
3441 	int ret;
3442 
3443 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3444 		/* udp gso_size delineates datagrams, only allow if fixed */
3445 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3446 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3447 			return -ENOTSUPP;
3448 	}
3449 
3450 	ret = skb_cow_head(skb, len_diff);
3451 	if (unlikely(ret < 0))
3452 		return ret;
3453 
3454 	if (encap) {
3455 		if (skb->protocol != htons(ETH_P_IP) &&
3456 		    skb->protocol != htons(ETH_P_IPV6))
3457 			return -ENOTSUPP;
3458 
3459 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3460 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3461 			return -EINVAL;
3462 
3463 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3464 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3465 			return -EINVAL;
3466 
3467 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3468 		    inner_mac_len < ETH_HLEN)
3469 			return -EINVAL;
3470 
3471 		if (skb->encapsulation)
3472 			return -EALREADY;
3473 
3474 		mac_len = skb->network_header - skb->mac_header;
3475 		inner_net = skb->network_header;
3476 		if (inner_mac_len > len_diff)
3477 			return -EINVAL;
3478 		inner_trans = skb->transport_header;
3479 	}
3480 
3481 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3482 	if (unlikely(ret < 0))
3483 		return ret;
3484 
3485 	if (encap) {
3486 		skb->inner_mac_header = inner_net - inner_mac_len;
3487 		skb->inner_network_header = inner_net;
3488 		skb->inner_transport_header = inner_trans;
3489 
3490 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3491 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3492 		else
3493 			skb_set_inner_protocol(skb, skb->protocol);
3494 
3495 		skb->encapsulation = 1;
3496 		skb_set_network_header(skb, mac_len);
3497 
3498 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3499 			gso_type |= SKB_GSO_UDP_TUNNEL;
3500 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3501 			gso_type |= SKB_GSO_GRE;
3502 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3503 			gso_type |= SKB_GSO_IPXIP6;
3504 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3505 			gso_type |= SKB_GSO_IPXIP4;
3506 
3507 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3508 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3509 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3510 					sizeof(struct ipv6hdr) :
3511 					sizeof(struct iphdr);
3512 
3513 			skb_set_transport_header(skb, mac_len + nh_len);
3514 		}
3515 
3516 		/* Match skb->protocol to new outer l3 protocol */
3517 		if (skb->protocol == htons(ETH_P_IP) &&
3518 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3519 			skb->protocol = htons(ETH_P_IPV6);
3520 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3521 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3522 			skb->protocol = htons(ETH_P_IP);
3523 	}
3524 
3525 	if (skb_is_gso(skb)) {
3526 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3527 
3528 		/* Due to header grow, MSS needs to be downgraded. */
3529 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3530 			skb_decrease_gso_size(shinfo, len_diff);
3531 
3532 		/* Header must be checked, and gso_segs recomputed. */
3533 		shinfo->gso_type |= gso_type;
3534 		shinfo->gso_segs = 0;
3535 	}
3536 
3537 	return 0;
3538 }
3539 
3540 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3541 			      u64 flags)
3542 {
3543 	int ret;
3544 
3545 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3546 			       BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3547 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3548 		return -EINVAL;
3549 
3550 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3551 		/* udp gso_size delineates datagrams, only allow if fixed */
3552 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3553 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3554 			return -ENOTSUPP;
3555 	}
3556 
3557 	ret = skb_unclone(skb, GFP_ATOMIC);
3558 	if (unlikely(ret < 0))
3559 		return ret;
3560 
3561 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3562 	if (unlikely(ret < 0))
3563 		return ret;
3564 
3565 	/* Match skb->protocol to new outer l3 protocol */
3566 	if (skb->protocol == htons(ETH_P_IP) &&
3567 	    flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3568 		skb->protocol = htons(ETH_P_IPV6);
3569 	else if (skb->protocol == htons(ETH_P_IPV6) &&
3570 		 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3571 		skb->protocol = htons(ETH_P_IP);
3572 
3573 	if (skb_is_gso(skb)) {
3574 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3575 
3576 		/* Due to header shrink, MSS can be upgraded. */
3577 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3578 			skb_increase_gso_size(shinfo, len_diff);
3579 
3580 		/* Header must be checked, and gso_segs recomputed. */
3581 		shinfo->gso_type |= SKB_GSO_DODGY;
3582 		shinfo->gso_segs = 0;
3583 	}
3584 
3585 	return 0;
3586 }
3587 
3588 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3589 
3590 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3591 	   u32, mode, u64, flags)
3592 {
3593 	u32 len_diff_abs = abs(len_diff);
3594 	bool shrink = len_diff < 0;
3595 	int ret = 0;
3596 
3597 	if (unlikely(flags || mode))
3598 		return -EINVAL;
3599 	if (unlikely(len_diff_abs > 0xfffU))
3600 		return -EFAULT;
3601 
3602 	if (!shrink) {
3603 		ret = skb_cow(skb, len_diff);
3604 		if (unlikely(ret < 0))
3605 			return ret;
3606 		__skb_push(skb, len_diff_abs);
3607 		memset(skb->data, 0, len_diff_abs);
3608 	} else {
3609 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3610 			return -ENOMEM;
3611 		__skb_pull(skb, len_diff_abs);
3612 	}
3613 	if (tls_sw_has_ctx_rx(skb->sk)) {
3614 		struct strp_msg *rxm = strp_msg(skb);
3615 
3616 		rxm->full_len += len_diff;
3617 	}
3618 	return ret;
3619 }
3620 
3621 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3622 	.func		= sk_skb_adjust_room,
3623 	.gpl_only	= false,
3624 	.ret_type	= RET_INTEGER,
3625 	.arg1_type	= ARG_PTR_TO_CTX,
3626 	.arg2_type	= ARG_ANYTHING,
3627 	.arg3_type	= ARG_ANYTHING,
3628 	.arg4_type	= ARG_ANYTHING,
3629 };
3630 
3631 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3632 	   u32, mode, u64, flags)
3633 {
3634 	u32 len_cur, len_diff_abs = abs(len_diff);
3635 	u32 len_min = bpf_skb_net_base_len(skb);
3636 	u32 len_max = BPF_SKB_MAX_LEN;
3637 	__be16 proto = skb->protocol;
3638 	bool shrink = len_diff < 0;
3639 	u32 off;
3640 	int ret;
3641 
3642 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3643 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3644 		return -EINVAL;
3645 	if (unlikely(len_diff_abs > 0xfffU))
3646 		return -EFAULT;
3647 	if (unlikely(proto != htons(ETH_P_IP) &&
3648 		     proto != htons(ETH_P_IPV6)))
3649 		return -ENOTSUPP;
3650 
3651 	off = skb_mac_header_len(skb);
3652 	switch (mode) {
3653 	case BPF_ADJ_ROOM_NET:
3654 		off += bpf_skb_net_base_len(skb);
3655 		break;
3656 	case BPF_ADJ_ROOM_MAC:
3657 		break;
3658 	default:
3659 		return -ENOTSUPP;
3660 	}
3661 
3662 	if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3663 		if (!shrink)
3664 			return -EINVAL;
3665 
3666 		switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3667 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3668 			len_min = sizeof(struct iphdr);
3669 			break;
3670 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3671 			len_min = sizeof(struct ipv6hdr);
3672 			break;
3673 		default:
3674 			return -EINVAL;
3675 		}
3676 	}
3677 
3678 	len_cur = skb->len - skb_network_offset(skb);
3679 	if ((shrink && (len_diff_abs >= len_cur ||
3680 			len_cur - len_diff_abs < len_min)) ||
3681 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3682 			 !skb_is_gso(skb))))
3683 		return -ENOTSUPP;
3684 
3685 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3686 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3687 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3688 		__skb_reset_checksum_unnecessary(skb);
3689 
3690 	bpf_compute_data_pointers(skb);
3691 	return ret;
3692 }
3693 
3694 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3695 	.func		= bpf_skb_adjust_room,
3696 	.gpl_only	= false,
3697 	.ret_type	= RET_INTEGER,
3698 	.arg1_type	= ARG_PTR_TO_CTX,
3699 	.arg2_type	= ARG_ANYTHING,
3700 	.arg3_type	= ARG_ANYTHING,
3701 	.arg4_type	= ARG_ANYTHING,
3702 };
3703 
3704 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3705 {
3706 	u32 min_len = skb_network_offset(skb);
3707 
3708 	if (skb_transport_header_was_set(skb))
3709 		min_len = skb_transport_offset(skb);
3710 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3711 		min_len = skb_checksum_start_offset(skb) +
3712 			  skb->csum_offset + sizeof(__sum16);
3713 	return min_len;
3714 }
3715 
3716 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3717 {
3718 	unsigned int old_len = skb->len;
3719 	int ret;
3720 
3721 	ret = __skb_grow_rcsum(skb, new_len);
3722 	if (!ret)
3723 		memset(skb->data + old_len, 0, new_len - old_len);
3724 	return ret;
3725 }
3726 
3727 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3728 {
3729 	return __skb_trim_rcsum(skb, new_len);
3730 }
3731 
3732 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3733 					u64 flags)
3734 {
3735 	u32 max_len = BPF_SKB_MAX_LEN;
3736 	u32 min_len = __bpf_skb_min_len(skb);
3737 	int ret;
3738 
3739 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3740 		return -EINVAL;
3741 	if (skb->encapsulation)
3742 		return -ENOTSUPP;
3743 
3744 	/* The basic idea of this helper is that it's performing the
3745 	 * needed work to either grow or trim an skb, and eBPF program
3746 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3747 	 * bpf_lX_csum_replace() and others rather than passing a raw
3748 	 * buffer here. This one is a slow path helper and intended
3749 	 * for replies with control messages.
3750 	 *
3751 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3752 	 * minimal and without protocol specifics so that we are able
3753 	 * to separate concerns as in bpf_skb_store_bytes() should only
3754 	 * be the one responsible for writing buffers.
3755 	 *
3756 	 * It's really expected to be a slow path operation here for
3757 	 * control message replies, so we're implicitly linearizing,
3758 	 * uncloning and drop offloads from the skb by this.
3759 	 */
3760 	ret = __bpf_try_make_writable(skb, skb->len);
3761 	if (!ret) {
3762 		if (new_len > skb->len)
3763 			ret = bpf_skb_grow_rcsum(skb, new_len);
3764 		else if (new_len < skb->len)
3765 			ret = bpf_skb_trim_rcsum(skb, new_len);
3766 		if (!ret && skb_is_gso(skb))
3767 			skb_gso_reset(skb);
3768 	}
3769 	return ret;
3770 }
3771 
3772 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3773 	   u64, flags)
3774 {
3775 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3776 
3777 	bpf_compute_data_pointers(skb);
3778 	return ret;
3779 }
3780 
3781 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3782 	.func		= bpf_skb_change_tail,
3783 	.gpl_only	= false,
3784 	.ret_type	= RET_INTEGER,
3785 	.arg1_type	= ARG_PTR_TO_CTX,
3786 	.arg2_type	= ARG_ANYTHING,
3787 	.arg3_type	= ARG_ANYTHING,
3788 };
3789 
3790 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3791 	   u64, flags)
3792 {
3793 	return __bpf_skb_change_tail(skb, new_len, flags);
3794 }
3795 
3796 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3797 	.func		= sk_skb_change_tail,
3798 	.gpl_only	= false,
3799 	.ret_type	= RET_INTEGER,
3800 	.arg1_type	= ARG_PTR_TO_CTX,
3801 	.arg2_type	= ARG_ANYTHING,
3802 	.arg3_type	= ARG_ANYTHING,
3803 };
3804 
3805 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3806 					u64 flags)
3807 {
3808 	u32 max_len = BPF_SKB_MAX_LEN;
3809 	u32 new_len = skb->len + head_room;
3810 	int ret;
3811 
3812 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3813 		     new_len < skb->len))
3814 		return -EINVAL;
3815 
3816 	ret = skb_cow(skb, head_room);
3817 	if (likely(!ret)) {
3818 		/* Idea for this helper is that we currently only
3819 		 * allow to expand on mac header. This means that
3820 		 * skb->protocol network header, etc, stay as is.
3821 		 * Compared to bpf_skb_change_tail(), we're more
3822 		 * flexible due to not needing to linearize or
3823 		 * reset GSO. Intention for this helper is to be
3824 		 * used by an L3 skb that needs to push mac header
3825 		 * for redirection into L2 device.
3826 		 */
3827 		__skb_push(skb, head_room);
3828 		memset(skb->data, 0, head_room);
3829 		skb_reset_mac_header(skb);
3830 		skb_reset_mac_len(skb);
3831 	}
3832 
3833 	return ret;
3834 }
3835 
3836 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3837 	   u64, flags)
3838 {
3839 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3840 
3841 	bpf_compute_data_pointers(skb);
3842 	return ret;
3843 }
3844 
3845 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3846 	.func		= bpf_skb_change_head,
3847 	.gpl_only	= false,
3848 	.ret_type	= RET_INTEGER,
3849 	.arg1_type	= ARG_PTR_TO_CTX,
3850 	.arg2_type	= ARG_ANYTHING,
3851 	.arg3_type	= ARG_ANYTHING,
3852 };
3853 
3854 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3855 	   u64, flags)
3856 {
3857 	return __bpf_skb_change_head(skb, head_room, flags);
3858 }
3859 
3860 static const struct bpf_func_proto sk_skb_change_head_proto = {
3861 	.func		= sk_skb_change_head,
3862 	.gpl_only	= false,
3863 	.ret_type	= RET_INTEGER,
3864 	.arg1_type	= ARG_PTR_TO_CTX,
3865 	.arg2_type	= ARG_ANYTHING,
3866 	.arg3_type	= ARG_ANYTHING,
3867 };
3868 
3869 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3870 {
3871 	return xdp_get_buff_len(xdp);
3872 }
3873 
3874 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3875 	.func		= bpf_xdp_get_buff_len,
3876 	.gpl_only	= false,
3877 	.ret_type	= RET_INTEGER,
3878 	.arg1_type	= ARG_PTR_TO_CTX,
3879 };
3880 
3881 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3882 
3883 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3884 	.func		= bpf_xdp_get_buff_len,
3885 	.gpl_only	= false,
3886 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3887 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3888 };
3889 
3890 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3891 {
3892 	return xdp_data_meta_unsupported(xdp) ? 0 :
3893 	       xdp->data - xdp->data_meta;
3894 }
3895 
3896 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3897 {
3898 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3899 	unsigned long metalen = xdp_get_metalen(xdp);
3900 	void *data_start = xdp_frame_end + metalen;
3901 	void *data = xdp->data + offset;
3902 
3903 	if (unlikely(data < data_start ||
3904 		     data > xdp->data_end - ETH_HLEN))
3905 		return -EINVAL;
3906 
3907 	if (metalen)
3908 		memmove(xdp->data_meta + offset,
3909 			xdp->data_meta, metalen);
3910 	xdp->data_meta += offset;
3911 	xdp->data = data;
3912 
3913 	return 0;
3914 }
3915 
3916 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3917 	.func		= bpf_xdp_adjust_head,
3918 	.gpl_only	= false,
3919 	.ret_type	= RET_INTEGER,
3920 	.arg1_type	= ARG_PTR_TO_CTX,
3921 	.arg2_type	= ARG_ANYTHING,
3922 };
3923 
3924 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3925 		      void *buf, unsigned long len, bool flush)
3926 {
3927 	unsigned long ptr_len, ptr_off = 0;
3928 	skb_frag_t *next_frag, *end_frag;
3929 	struct skb_shared_info *sinfo;
3930 	void *src, *dst;
3931 	u8 *ptr_buf;
3932 
3933 	if (likely(xdp->data_end - xdp->data >= off + len)) {
3934 		src = flush ? buf : xdp->data + off;
3935 		dst = flush ? xdp->data + off : buf;
3936 		memcpy(dst, src, len);
3937 		return;
3938 	}
3939 
3940 	sinfo = xdp_get_shared_info_from_buff(xdp);
3941 	end_frag = &sinfo->frags[sinfo->nr_frags];
3942 	next_frag = &sinfo->frags[0];
3943 
3944 	ptr_len = xdp->data_end - xdp->data;
3945 	ptr_buf = xdp->data;
3946 
3947 	while (true) {
3948 		if (off < ptr_off + ptr_len) {
3949 			unsigned long copy_off = off - ptr_off;
3950 			unsigned long copy_len = min(len, ptr_len - copy_off);
3951 
3952 			src = flush ? buf : ptr_buf + copy_off;
3953 			dst = flush ? ptr_buf + copy_off : buf;
3954 			memcpy(dst, src, copy_len);
3955 
3956 			off += copy_len;
3957 			len -= copy_len;
3958 			buf += copy_len;
3959 		}
3960 
3961 		if (!len || next_frag == end_frag)
3962 			break;
3963 
3964 		ptr_off += ptr_len;
3965 		ptr_buf = skb_frag_address(next_frag);
3966 		ptr_len = skb_frag_size(next_frag);
3967 		next_frag++;
3968 	}
3969 }
3970 
3971 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3972 {
3973 	u32 size = xdp->data_end - xdp->data;
3974 	struct skb_shared_info *sinfo;
3975 	void *addr = xdp->data;
3976 	int i;
3977 
3978 	if (unlikely(offset > 0xffff || len > 0xffff))
3979 		return ERR_PTR(-EFAULT);
3980 
3981 	if (unlikely(offset + len > xdp_get_buff_len(xdp)))
3982 		return ERR_PTR(-EINVAL);
3983 
3984 	if (likely(offset < size)) /* linear area */
3985 		goto out;
3986 
3987 	sinfo = xdp_get_shared_info_from_buff(xdp);
3988 	offset -= size;
3989 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3990 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3991 
3992 		if  (offset < frag_size) {
3993 			addr = skb_frag_address(&sinfo->frags[i]);
3994 			size = frag_size;
3995 			break;
3996 		}
3997 		offset -= frag_size;
3998 	}
3999 out:
4000 	return offset + len <= size ? addr + offset : NULL;
4001 }
4002 
4003 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4004 	   void *, buf, u32, len)
4005 {
4006 	void *ptr;
4007 
4008 	ptr = bpf_xdp_pointer(xdp, offset, len);
4009 	if (IS_ERR(ptr))
4010 		return PTR_ERR(ptr);
4011 
4012 	if (!ptr)
4013 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4014 	else
4015 		memcpy(buf, ptr, len);
4016 
4017 	return 0;
4018 }
4019 
4020 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4021 	.func		= bpf_xdp_load_bytes,
4022 	.gpl_only	= false,
4023 	.ret_type	= RET_INTEGER,
4024 	.arg1_type	= ARG_PTR_TO_CTX,
4025 	.arg2_type	= ARG_ANYTHING,
4026 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4027 	.arg4_type	= ARG_CONST_SIZE,
4028 };
4029 
4030 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4031 {
4032 	return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4033 }
4034 
4035 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4036 	   void *, buf, u32, len)
4037 {
4038 	void *ptr;
4039 
4040 	ptr = bpf_xdp_pointer(xdp, offset, len);
4041 	if (IS_ERR(ptr))
4042 		return PTR_ERR(ptr);
4043 
4044 	if (!ptr)
4045 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4046 	else
4047 		memcpy(ptr, buf, len);
4048 
4049 	return 0;
4050 }
4051 
4052 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4053 	.func		= bpf_xdp_store_bytes,
4054 	.gpl_only	= false,
4055 	.ret_type	= RET_INTEGER,
4056 	.arg1_type	= ARG_PTR_TO_CTX,
4057 	.arg2_type	= ARG_ANYTHING,
4058 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4059 	.arg4_type	= ARG_CONST_SIZE,
4060 };
4061 
4062 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4063 {
4064 	return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4065 }
4066 
4067 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4068 {
4069 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4070 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4071 	struct xdp_rxq_info *rxq = xdp->rxq;
4072 	unsigned int tailroom;
4073 
4074 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4075 		return -EOPNOTSUPP;
4076 
4077 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4078 	if (unlikely(offset > tailroom))
4079 		return -EINVAL;
4080 
4081 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4082 	skb_frag_size_add(frag, offset);
4083 	sinfo->xdp_frags_size += offset;
4084 	if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4085 		xsk_buff_get_tail(xdp)->data_end += offset;
4086 
4087 	return 0;
4088 }
4089 
4090 static void bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4091 				   struct xdp_mem_info *mem_info, bool release)
4092 {
4093 	struct xdp_buff *zc_frag = xsk_buff_get_tail(xdp);
4094 
4095 	if (release) {
4096 		xsk_buff_del_tail(zc_frag);
4097 		__xdp_return(NULL, mem_info, false, zc_frag);
4098 	} else {
4099 		zc_frag->data_end -= shrink;
4100 	}
4101 }
4102 
4103 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4104 				int shrink)
4105 {
4106 	struct xdp_mem_info *mem_info = &xdp->rxq->mem;
4107 	bool release = skb_frag_size(frag) == shrink;
4108 
4109 	if (mem_info->type == MEM_TYPE_XSK_BUFF_POOL) {
4110 		bpf_xdp_shrink_data_zc(xdp, shrink, mem_info, release);
4111 		goto out;
4112 	}
4113 
4114 	if (release) {
4115 		struct page *page = skb_frag_page(frag);
4116 
4117 		__xdp_return(page_address(page), mem_info, false, NULL);
4118 	}
4119 
4120 out:
4121 	return release;
4122 }
4123 
4124 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4125 {
4126 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4127 	int i, n_frags_free = 0, len_free = 0;
4128 
4129 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4130 		return -EINVAL;
4131 
4132 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4133 		skb_frag_t *frag = &sinfo->frags[i];
4134 		int shrink = min_t(int, offset, skb_frag_size(frag));
4135 
4136 		len_free += shrink;
4137 		offset -= shrink;
4138 		if (bpf_xdp_shrink_data(xdp, frag, shrink)) {
4139 			n_frags_free++;
4140 		} else {
4141 			skb_frag_size_sub(frag, shrink);
4142 			break;
4143 		}
4144 	}
4145 	sinfo->nr_frags -= n_frags_free;
4146 	sinfo->xdp_frags_size -= len_free;
4147 
4148 	if (unlikely(!sinfo->nr_frags)) {
4149 		xdp_buff_clear_frags_flag(xdp);
4150 		xdp->data_end -= offset;
4151 	}
4152 
4153 	return 0;
4154 }
4155 
4156 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4157 {
4158 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4159 	void *data_end = xdp->data_end + offset;
4160 
4161 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4162 		if (offset < 0)
4163 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4164 
4165 		return bpf_xdp_frags_increase_tail(xdp, offset);
4166 	}
4167 
4168 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4169 	if (unlikely(data_end > data_hard_end))
4170 		return -EINVAL;
4171 
4172 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4173 		return -EINVAL;
4174 
4175 	/* Clear memory area on grow, can contain uninit kernel memory */
4176 	if (offset > 0)
4177 		memset(xdp->data_end, 0, offset);
4178 
4179 	xdp->data_end = data_end;
4180 
4181 	return 0;
4182 }
4183 
4184 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4185 	.func		= bpf_xdp_adjust_tail,
4186 	.gpl_only	= false,
4187 	.ret_type	= RET_INTEGER,
4188 	.arg1_type	= ARG_PTR_TO_CTX,
4189 	.arg2_type	= ARG_ANYTHING,
4190 };
4191 
4192 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4193 {
4194 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4195 	void *meta = xdp->data_meta + offset;
4196 	unsigned long metalen = xdp->data - meta;
4197 
4198 	if (xdp_data_meta_unsupported(xdp))
4199 		return -ENOTSUPP;
4200 	if (unlikely(meta < xdp_frame_end ||
4201 		     meta > xdp->data))
4202 		return -EINVAL;
4203 	if (unlikely(xdp_metalen_invalid(metalen)))
4204 		return -EACCES;
4205 
4206 	xdp->data_meta = meta;
4207 
4208 	return 0;
4209 }
4210 
4211 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4212 	.func		= bpf_xdp_adjust_meta,
4213 	.gpl_only	= false,
4214 	.ret_type	= RET_INTEGER,
4215 	.arg1_type	= ARG_PTR_TO_CTX,
4216 	.arg2_type	= ARG_ANYTHING,
4217 };
4218 
4219 /**
4220  * DOC: xdp redirect
4221  *
4222  * XDP_REDIRECT works by a three-step process, implemented in the functions
4223  * below:
4224  *
4225  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4226  *    of the redirect and store it (along with some other metadata) in a per-CPU
4227  *    struct bpf_redirect_info.
4228  *
4229  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4230  *    call xdp_do_redirect() which will use the information in struct
4231  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4232  *    bulk queue structure.
4233  *
4234  * 3. Before exiting its NAPI poll loop, the driver will call
4235  *    xdp_do_flush(), which will flush all the different bulk queues,
4236  *    thus completing the redirect. Note that xdp_do_flush() must be
4237  *    called before napi_complete_done() in the driver, as the
4238  *    XDP_REDIRECT logic relies on being inside a single NAPI instance
4239  *    through to the xdp_do_flush() call for RCU protection of all
4240  *    in-kernel data structures.
4241  */
4242 /*
4243  * Pointers to the map entries will be kept around for this whole sequence of
4244  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4245  * the core code; instead, the RCU protection relies on everything happening
4246  * inside a single NAPI poll sequence, which means it's between a pair of calls
4247  * to local_bh_disable()/local_bh_enable().
4248  *
4249  * The map entries are marked as __rcu and the map code makes sure to
4250  * dereference those pointers with rcu_dereference_check() in a way that works
4251  * for both sections that to hold an rcu_read_lock() and sections that are
4252  * called from NAPI without a separate rcu_read_lock(). The code below does not
4253  * use RCU annotations, but relies on those in the map code.
4254  */
4255 void xdp_do_flush(void)
4256 {
4257 	__dev_flush();
4258 	__cpu_map_flush();
4259 	__xsk_map_flush();
4260 }
4261 EXPORT_SYMBOL_GPL(xdp_do_flush);
4262 
4263 void bpf_clear_redirect_map(struct bpf_map *map)
4264 {
4265 	struct bpf_redirect_info *ri;
4266 	int cpu;
4267 
4268 	for_each_possible_cpu(cpu) {
4269 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4270 		/* Avoid polluting remote cacheline due to writes if
4271 		 * not needed. Once we pass this test, we need the
4272 		 * cmpxchg() to make sure it hasn't been changed in
4273 		 * the meantime by remote CPU.
4274 		 */
4275 		if (unlikely(READ_ONCE(ri->map) == map))
4276 			cmpxchg(&ri->map, map, NULL);
4277 	}
4278 }
4279 
4280 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4281 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4282 
4283 u32 xdp_master_redirect(struct xdp_buff *xdp)
4284 {
4285 	struct net_device *master, *slave;
4286 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4287 
4288 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4289 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4290 	if (slave && slave != xdp->rxq->dev) {
4291 		/* The target device is different from the receiving device, so
4292 		 * redirect it to the new device.
4293 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4294 		 * drivers to unmap the packet from their rx ring.
4295 		 */
4296 		ri->tgt_index = slave->ifindex;
4297 		ri->map_id = INT_MAX;
4298 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4299 		return XDP_REDIRECT;
4300 	}
4301 	return XDP_TX;
4302 }
4303 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4304 
4305 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4306 					struct net_device *dev,
4307 					struct xdp_buff *xdp,
4308 					struct bpf_prog *xdp_prog)
4309 {
4310 	enum bpf_map_type map_type = ri->map_type;
4311 	void *fwd = ri->tgt_value;
4312 	u32 map_id = ri->map_id;
4313 	int err;
4314 
4315 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4316 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4317 
4318 	err = __xsk_map_redirect(fwd, xdp);
4319 	if (unlikely(err))
4320 		goto err;
4321 
4322 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4323 	return 0;
4324 err:
4325 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4326 	return err;
4327 }
4328 
4329 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4330 						   struct net_device *dev,
4331 						   struct xdp_frame *xdpf,
4332 						   struct bpf_prog *xdp_prog)
4333 {
4334 	enum bpf_map_type map_type = ri->map_type;
4335 	void *fwd = ri->tgt_value;
4336 	u32 map_id = ri->map_id;
4337 	u32 flags = ri->flags;
4338 	struct bpf_map *map;
4339 	int err;
4340 
4341 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4342 	ri->flags = 0;
4343 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4344 
4345 	if (unlikely(!xdpf)) {
4346 		err = -EOVERFLOW;
4347 		goto err;
4348 	}
4349 
4350 	switch (map_type) {
4351 	case BPF_MAP_TYPE_DEVMAP:
4352 		fallthrough;
4353 	case BPF_MAP_TYPE_DEVMAP_HASH:
4354 		if (unlikely(flags & BPF_F_BROADCAST)) {
4355 			map = READ_ONCE(ri->map);
4356 
4357 			/* The map pointer is cleared when the map is being torn
4358 			 * down by bpf_clear_redirect_map()
4359 			 */
4360 			if (unlikely(!map)) {
4361 				err = -ENOENT;
4362 				break;
4363 			}
4364 
4365 			WRITE_ONCE(ri->map, NULL);
4366 			err = dev_map_enqueue_multi(xdpf, dev, map,
4367 						    flags & BPF_F_EXCLUDE_INGRESS);
4368 		} else {
4369 			err = dev_map_enqueue(fwd, xdpf, dev);
4370 		}
4371 		break;
4372 	case BPF_MAP_TYPE_CPUMAP:
4373 		err = cpu_map_enqueue(fwd, xdpf, dev);
4374 		break;
4375 	case BPF_MAP_TYPE_UNSPEC:
4376 		if (map_id == INT_MAX) {
4377 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4378 			if (unlikely(!fwd)) {
4379 				err = -EINVAL;
4380 				break;
4381 			}
4382 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4383 			break;
4384 		}
4385 		fallthrough;
4386 	default:
4387 		err = -EBADRQC;
4388 	}
4389 
4390 	if (unlikely(err))
4391 		goto err;
4392 
4393 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4394 	return 0;
4395 err:
4396 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4397 	return err;
4398 }
4399 
4400 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4401 		    struct bpf_prog *xdp_prog)
4402 {
4403 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4404 	enum bpf_map_type map_type = ri->map_type;
4405 
4406 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4407 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4408 
4409 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4410 				       xdp_prog);
4411 }
4412 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4413 
4414 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4415 			  struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4416 {
4417 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4418 	enum bpf_map_type map_type = ri->map_type;
4419 
4420 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4421 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4422 
4423 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4424 }
4425 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4426 
4427 static int xdp_do_generic_redirect_map(struct net_device *dev,
4428 				       struct sk_buff *skb,
4429 				       struct xdp_buff *xdp,
4430 				       struct bpf_prog *xdp_prog, void *fwd,
4431 				       enum bpf_map_type map_type, u32 map_id,
4432 				       u32 flags)
4433 {
4434 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4435 	struct bpf_map *map;
4436 	int err;
4437 
4438 	switch (map_type) {
4439 	case BPF_MAP_TYPE_DEVMAP:
4440 		fallthrough;
4441 	case BPF_MAP_TYPE_DEVMAP_HASH:
4442 		if (unlikely(flags & BPF_F_BROADCAST)) {
4443 			map = READ_ONCE(ri->map);
4444 
4445 			/* The map pointer is cleared when the map is being torn
4446 			 * down by bpf_clear_redirect_map()
4447 			 */
4448 			if (unlikely(!map)) {
4449 				err = -ENOENT;
4450 				break;
4451 			}
4452 
4453 			WRITE_ONCE(ri->map, NULL);
4454 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4455 						     flags & BPF_F_EXCLUDE_INGRESS);
4456 		} else {
4457 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4458 		}
4459 		if (unlikely(err))
4460 			goto err;
4461 		break;
4462 	case BPF_MAP_TYPE_XSKMAP:
4463 		err = xsk_generic_rcv(fwd, xdp);
4464 		if (err)
4465 			goto err;
4466 		consume_skb(skb);
4467 		break;
4468 	case BPF_MAP_TYPE_CPUMAP:
4469 		err = cpu_map_generic_redirect(fwd, skb);
4470 		if (unlikely(err))
4471 			goto err;
4472 		break;
4473 	default:
4474 		err = -EBADRQC;
4475 		goto err;
4476 	}
4477 
4478 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4479 	return 0;
4480 err:
4481 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4482 	return err;
4483 }
4484 
4485 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4486 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4487 {
4488 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4489 	enum bpf_map_type map_type = ri->map_type;
4490 	void *fwd = ri->tgt_value;
4491 	u32 map_id = ri->map_id;
4492 	u32 flags = ri->flags;
4493 	int err;
4494 
4495 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4496 	ri->flags = 0;
4497 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4498 
4499 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4500 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4501 		if (unlikely(!fwd)) {
4502 			err = -EINVAL;
4503 			goto err;
4504 		}
4505 
4506 		err = xdp_ok_fwd_dev(fwd, skb->len);
4507 		if (unlikely(err))
4508 			goto err;
4509 
4510 		skb->dev = fwd;
4511 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4512 		generic_xdp_tx(skb, xdp_prog);
4513 		return 0;
4514 	}
4515 
4516 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4517 err:
4518 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4519 	return err;
4520 }
4521 
4522 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4523 {
4524 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4525 
4526 	if (unlikely(flags))
4527 		return XDP_ABORTED;
4528 
4529 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4530 	 * by map_idr) is used for ifindex based XDP redirect.
4531 	 */
4532 	ri->tgt_index = ifindex;
4533 	ri->map_id = INT_MAX;
4534 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4535 
4536 	return XDP_REDIRECT;
4537 }
4538 
4539 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4540 	.func           = bpf_xdp_redirect,
4541 	.gpl_only       = false,
4542 	.ret_type       = RET_INTEGER,
4543 	.arg1_type      = ARG_ANYTHING,
4544 	.arg2_type      = ARG_ANYTHING,
4545 };
4546 
4547 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4548 	   u64, flags)
4549 {
4550 	return map->ops->map_redirect(map, key, flags);
4551 }
4552 
4553 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4554 	.func           = bpf_xdp_redirect_map,
4555 	.gpl_only       = false,
4556 	.ret_type       = RET_INTEGER,
4557 	.arg1_type      = ARG_CONST_MAP_PTR,
4558 	.arg2_type      = ARG_ANYTHING,
4559 	.arg3_type      = ARG_ANYTHING,
4560 };
4561 
4562 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4563 				  unsigned long off, unsigned long len)
4564 {
4565 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4566 
4567 	if (unlikely(!ptr))
4568 		return len;
4569 	if (ptr != dst_buff)
4570 		memcpy(dst_buff, ptr, len);
4571 
4572 	return 0;
4573 }
4574 
4575 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4576 	   u64, flags, void *, meta, u64, meta_size)
4577 {
4578 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4579 
4580 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4581 		return -EINVAL;
4582 	if (unlikely(!skb || skb_size > skb->len))
4583 		return -EFAULT;
4584 
4585 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4586 				bpf_skb_copy);
4587 }
4588 
4589 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4590 	.func		= bpf_skb_event_output,
4591 	.gpl_only	= true,
4592 	.ret_type	= RET_INTEGER,
4593 	.arg1_type	= ARG_PTR_TO_CTX,
4594 	.arg2_type	= ARG_CONST_MAP_PTR,
4595 	.arg3_type	= ARG_ANYTHING,
4596 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4597 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4598 };
4599 
4600 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4601 
4602 const struct bpf_func_proto bpf_skb_output_proto = {
4603 	.func		= bpf_skb_event_output,
4604 	.gpl_only	= true,
4605 	.ret_type	= RET_INTEGER,
4606 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4607 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4608 	.arg2_type	= ARG_CONST_MAP_PTR,
4609 	.arg3_type	= ARG_ANYTHING,
4610 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4611 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4612 };
4613 
4614 static unsigned short bpf_tunnel_key_af(u64 flags)
4615 {
4616 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4617 }
4618 
4619 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4620 	   u32, size, u64, flags)
4621 {
4622 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4623 	u8 compat[sizeof(struct bpf_tunnel_key)];
4624 	void *to_orig = to;
4625 	int err;
4626 
4627 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4628 					 BPF_F_TUNINFO_FLAGS)))) {
4629 		err = -EINVAL;
4630 		goto err_clear;
4631 	}
4632 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4633 		err = -EPROTO;
4634 		goto err_clear;
4635 	}
4636 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4637 		err = -EINVAL;
4638 		switch (size) {
4639 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4640 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4641 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4642 			goto set_compat;
4643 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4644 			/* Fixup deprecated structure layouts here, so we have
4645 			 * a common path later on.
4646 			 */
4647 			if (ip_tunnel_info_af(info) != AF_INET)
4648 				goto err_clear;
4649 set_compat:
4650 			to = (struct bpf_tunnel_key *)compat;
4651 			break;
4652 		default:
4653 			goto err_clear;
4654 		}
4655 	}
4656 
4657 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4658 	to->tunnel_tos = info->key.tos;
4659 	to->tunnel_ttl = info->key.ttl;
4660 	if (flags & BPF_F_TUNINFO_FLAGS)
4661 		to->tunnel_flags = info->key.tun_flags;
4662 	else
4663 		to->tunnel_ext = 0;
4664 
4665 	if (flags & BPF_F_TUNINFO_IPV6) {
4666 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4667 		       sizeof(to->remote_ipv6));
4668 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4669 		       sizeof(to->local_ipv6));
4670 		to->tunnel_label = be32_to_cpu(info->key.label);
4671 	} else {
4672 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4673 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4674 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4675 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4676 		to->tunnel_label = 0;
4677 	}
4678 
4679 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4680 		memcpy(to_orig, to, size);
4681 
4682 	return 0;
4683 err_clear:
4684 	memset(to_orig, 0, size);
4685 	return err;
4686 }
4687 
4688 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4689 	.func		= bpf_skb_get_tunnel_key,
4690 	.gpl_only	= false,
4691 	.ret_type	= RET_INTEGER,
4692 	.arg1_type	= ARG_PTR_TO_CTX,
4693 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4694 	.arg3_type	= ARG_CONST_SIZE,
4695 	.arg4_type	= ARG_ANYTHING,
4696 };
4697 
4698 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4699 {
4700 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4701 	int err;
4702 
4703 	if (unlikely(!info ||
4704 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4705 		err = -ENOENT;
4706 		goto err_clear;
4707 	}
4708 	if (unlikely(size < info->options_len)) {
4709 		err = -ENOMEM;
4710 		goto err_clear;
4711 	}
4712 
4713 	ip_tunnel_info_opts_get(to, info);
4714 	if (size > info->options_len)
4715 		memset(to + info->options_len, 0, size - info->options_len);
4716 
4717 	return info->options_len;
4718 err_clear:
4719 	memset(to, 0, size);
4720 	return err;
4721 }
4722 
4723 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4724 	.func		= bpf_skb_get_tunnel_opt,
4725 	.gpl_only	= false,
4726 	.ret_type	= RET_INTEGER,
4727 	.arg1_type	= ARG_PTR_TO_CTX,
4728 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4729 	.arg3_type	= ARG_CONST_SIZE,
4730 };
4731 
4732 static struct metadata_dst __percpu *md_dst;
4733 
4734 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4735 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4736 {
4737 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4738 	u8 compat[sizeof(struct bpf_tunnel_key)];
4739 	struct ip_tunnel_info *info;
4740 
4741 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4742 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4743 			       BPF_F_NO_TUNNEL_KEY)))
4744 		return -EINVAL;
4745 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4746 		switch (size) {
4747 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4748 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4749 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4750 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4751 			/* Fixup deprecated structure layouts here, so we have
4752 			 * a common path later on.
4753 			 */
4754 			memcpy(compat, from, size);
4755 			memset(compat + size, 0, sizeof(compat) - size);
4756 			from = (const struct bpf_tunnel_key *) compat;
4757 			break;
4758 		default:
4759 			return -EINVAL;
4760 		}
4761 	}
4762 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4763 		     from->tunnel_ext))
4764 		return -EINVAL;
4765 
4766 	skb_dst_drop(skb);
4767 	dst_hold((struct dst_entry *) md);
4768 	skb_dst_set(skb, (struct dst_entry *) md);
4769 
4770 	info = &md->u.tun_info;
4771 	memset(info, 0, sizeof(*info));
4772 	info->mode = IP_TUNNEL_INFO_TX;
4773 
4774 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4775 	if (flags & BPF_F_DONT_FRAGMENT)
4776 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4777 	if (flags & BPF_F_ZERO_CSUM_TX)
4778 		info->key.tun_flags &= ~TUNNEL_CSUM;
4779 	if (flags & BPF_F_SEQ_NUMBER)
4780 		info->key.tun_flags |= TUNNEL_SEQ;
4781 	if (flags & BPF_F_NO_TUNNEL_KEY)
4782 		info->key.tun_flags &= ~TUNNEL_KEY;
4783 
4784 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4785 	info->key.tos = from->tunnel_tos;
4786 	info->key.ttl = from->tunnel_ttl;
4787 
4788 	if (flags & BPF_F_TUNINFO_IPV6) {
4789 		info->mode |= IP_TUNNEL_INFO_IPV6;
4790 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4791 		       sizeof(from->remote_ipv6));
4792 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4793 		       sizeof(from->local_ipv6));
4794 		info->key.label = cpu_to_be32(from->tunnel_label) &
4795 				  IPV6_FLOWLABEL_MASK;
4796 	} else {
4797 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4798 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4799 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4800 	}
4801 
4802 	return 0;
4803 }
4804 
4805 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4806 	.func		= bpf_skb_set_tunnel_key,
4807 	.gpl_only	= false,
4808 	.ret_type	= RET_INTEGER,
4809 	.arg1_type	= ARG_PTR_TO_CTX,
4810 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4811 	.arg3_type	= ARG_CONST_SIZE,
4812 	.arg4_type	= ARG_ANYTHING,
4813 };
4814 
4815 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4816 	   const u8 *, from, u32, size)
4817 {
4818 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4819 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4820 
4821 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4822 		return -EINVAL;
4823 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4824 		return -ENOMEM;
4825 
4826 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4827 
4828 	return 0;
4829 }
4830 
4831 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4832 	.func		= bpf_skb_set_tunnel_opt,
4833 	.gpl_only	= false,
4834 	.ret_type	= RET_INTEGER,
4835 	.arg1_type	= ARG_PTR_TO_CTX,
4836 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4837 	.arg3_type	= ARG_CONST_SIZE,
4838 };
4839 
4840 static const struct bpf_func_proto *
4841 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4842 {
4843 	if (!md_dst) {
4844 		struct metadata_dst __percpu *tmp;
4845 
4846 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4847 						METADATA_IP_TUNNEL,
4848 						GFP_KERNEL);
4849 		if (!tmp)
4850 			return NULL;
4851 		if (cmpxchg(&md_dst, NULL, tmp))
4852 			metadata_dst_free_percpu(tmp);
4853 	}
4854 
4855 	switch (which) {
4856 	case BPF_FUNC_skb_set_tunnel_key:
4857 		return &bpf_skb_set_tunnel_key_proto;
4858 	case BPF_FUNC_skb_set_tunnel_opt:
4859 		return &bpf_skb_set_tunnel_opt_proto;
4860 	default:
4861 		return NULL;
4862 	}
4863 }
4864 
4865 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4866 	   u32, idx)
4867 {
4868 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4869 	struct cgroup *cgrp;
4870 	struct sock *sk;
4871 
4872 	sk = skb_to_full_sk(skb);
4873 	if (!sk || !sk_fullsock(sk))
4874 		return -ENOENT;
4875 	if (unlikely(idx >= array->map.max_entries))
4876 		return -E2BIG;
4877 
4878 	cgrp = READ_ONCE(array->ptrs[idx]);
4879 	if (unlikely(!cgrp))
4880 		return -EAGAIN;
4881 
4882 	return sk_under_cgroup_hierarchy(sk, cgrp);
4883 }
4884 
4885 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4886 	.func		= bpf_skb_under_cgroup,
4887 	.gpl_only	= false,
4888 	.ret_type	= RET_INTEGER,
4889 	.arg1_type	= ARG_PTR_TO_CTX,
4890 	.arg2_type	= ARG_CONST_MAP_PTR,
4891 	.arg3_type	= ARG_ANYTHING,
4892 };
4893 
4894 #ifdef CONFIG_SOCK_CGROUP_DATA
4895 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4896 {
4897 	struct cgroup *cgrp;
4898 
4899 	sk = sk_to_full_sk(sk);
4900 	if (!sk || !sk_fullsock(sk))
4901 		return 0;
4902 
4903 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4904 	return cgroup_id(cgrp);
4905 }
4906 
4907 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4908 {
4909 	return __bpf_sk_cgroup_id(skb->sk);
4910 }
4911 
4912 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4913 	.func           = bpf_skb_cgroup_id,
4914 	.gpl_only       = false,
4915 	.ret_type       = RET_INTEGER,
4916 	.arg1_type      = ARG_PTR_TO_CTX,
4917 };
4918 
4919 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4920 					      int ancestor_level)
4921 {
4922 	struct cgroup *ancestor;
4923 	struct cgroup *cgrp;
4924 
4925 	sk = sk_to_full_sk(sk);
4926 	if (!sk || !sk_fullsock(sk))
4927 		return 0;
4928 
4929 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4930 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4931 	if (!ancestor)
4932 		return 0;
4933 
4934 	return cgroup_id(ancestor);
4935 }
4936 
4937 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4938 	   ancestor_level)
4939 {
4940 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4941 }
4942 
4943 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4944 	.func           = bpf_skb_ancestor_cgroup_id,
4945 	.gpl_only       = false,
4946 	.ret_type       = RET_INTEGER,
4947 	.arg1_type      = ARG_PTR_TO_CTX,
4948 	.arg2_type      = ARG_ANYTHING,
4949 };
4950 
4951 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4952 {
4953 	return __bpf_sk_cgroup_id(sk);
4954 }
4955 
4956 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4957 	.func           = bpf_sk_cgroup_id,
4958 	.gpl_only       = false,
4959 	.ret_type       = RET_INTEGER,
4960 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4961 };
4962 
4963 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4964 {
4965 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4966 }
4967 
4968 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4969 	.func           = bpf_sk_ancestor_cgroup_id,
4970 	.gpl_only       = false,
4971 	.ret_type       = RET_INTEGER,
4972 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4973 	.arg2_type      = ARG_ANYTHING,
4974 };
4975 #endif
4976 
4977 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4978 				  unsigned long off, unsigned long len)
4979 {
4980 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4981 
4982 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
4983 	return 0;
4984 }
4985 
4986 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4987 	   u64, flags, void *, meta, u64, meta_size)
4988 {
4989 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4990 
4991 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4992 		return -EINVAL;
4993 
4994 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4995 		return -EFAULT;
4996 
4997 	return bpf_event_output(map, flags, meta, meta_size, xdp,
4998 				xdp_size, bpf_xdp_copy);
4999 }
5000 
5001 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5002 	.func		= bpf_xdp_event_output,
5003 	.gpl_only	= true,
5004 	.ret_type	= RET_INTEGER,
5005 	.arg1_type	= ARG_PTR_TO_CTX,
5006 	.arg2_type	= ARG_CONST_MAP_PTR,
5007 	.arg3_type	= ARG_ANYTHING,
5008 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5009 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5010 };
5011 
5012 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5013 
5014 const struct bpf_func_proto bpf_xdp_output_proto = {
5015 	.func		= bpf_xdp_event_output,
5016 	.gpl_only	= true,
5017 	.ret_type	= RET_INTEGER,
5018 	.arg1_type	= ARG_PTR_TO_BTF_ID,
5019 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
5020 	.arg2_type	= ARG_CONST_MAP_PTR,
5021 	.arg3_type	= ARG_ANYTHING,
5022 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5023 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5024 };
5025 
5026 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5027 {
5028 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5029 }
5030 
5031 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5032 	.func           = bpf_get_socket_cookie,
5033 	.gpl_only       = false,
5034 	.ret_type       = RET_INTEGER,
5035 	.arg1_type      = ARG_PTR_TO_CTX,
5036 };
5037 
5038 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5039 {
5040 	return __sock_gen_cookie(ctx->sk);
5041 }
5042 
5043 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5044 	.func		= bpf_get_socket_cookie_sock_addr,
5045 	.gpl_only	= false,
5046 	.ret_type	= RET_INTEGER,
5047 	.arg1_type	= ARG_PTR_TO_CTX,
5048 };
5049 
5050 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5051 {
5052 	return __sock_gen_cookie(ctx);
5053 }
5054 
5055 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5056 	.func		= bpf_get_socket_cookie_sock,
5057 	.gpl_only	= false,
5058 	.ret_type	= RET_INTEGER,
5059 	.arg1_type	= ARG_PTR_TO_CTX,
5060 };
5061 
5062 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5063 {
5064 	return sk ? sock_gen_cookie(sk) : 0;
5065 }
5066 
5067 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5068 	.func		= bpf_get_socket_ptr_cookie,
5069 	.gpl_only	= false,
5070 	.ret_type	= RET_INTEGER,
5071 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5072 };
5073 
5074 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5075 {
5076 	return __sock_gen_cookie(ctx->sk);
5077 }
5078 
5079 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5080 	.func		= bpf_get_socket_cookie_sock_ops,
5081 	.gpl_only	= false,
5082 	.ret_type	= RET_INTEGER,
5083 	.arg1_type	= ARG_PTR_TO_CTX,
5084 };
5085 
5086 static u64 __bpf_get_netns_cookie(struct sock *sk)
5087 {
5088 	const struct net *net = sk ? sock_net(sk) : &init_net;
5089 
5090 	return net->net_cookie;
5091 }
5092 
5093 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5094 {
5095 	return __bpf_get_netns_cookie(ctx);
5096 }
5097 
5098 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5099 	.func		= bpf_get_netns_cookie_sock,
5100 	.gpl_only	= false,
5101 	.ret_type	= RET_INTEGER,
5102 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5103 };
5104 
5105 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5106 {
5107 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5108 }
5109 
5110 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5111 	.func		= bpf_get_netns_cookie_sock_addr,
5112 	.gpl_only	= false,
5113 	.ret_type	= RET_INTEGER,
5114 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5115 };
5116 
5117 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5118 {
5119 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5120 }
5121 
5122 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5123 	.func		= bpf_get_netns_cookie_sock_ops,
5124 	.gpl_only	= false,
5125 	.ret_type	= RET_INTEGER,
5126 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5127 };
5128 
5129 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5130 {
5131 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5132 }
5133 
5134 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5135 	.func		= bpf_get_netns_cookie_sk_msg,
5136 	.gpl_only	= false,
5137 	.ret_type	= RET_INTEGER,
5138 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5139 };
5140 
5141 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5142 {
5143 	struct sock *sk = sk_to_full_sk(skb->sk);
5144 	kuid_t kuid;
5145 
5146 	if (!sk || !sk_fullsock(sk))
5147 		return overflowuid;
5148 	kuid = sock_net_uid(sock_net(sk), sk);
5149 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5150 }
5151 
5152 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5153 	.func           = bpf_get_socket_uid,
5154 	.gpl_only       = false,
5155 	.ret_type       = RET_INTEGER,
5156 	.arg1_type      = ARG_PTR_TO_CTX,
5157 };
5158 
5159 static int sol_socket_sockopt(struct sock *sk, int optname,
5160 			      char *optval, int *optlen,
5161 			      bool getopt)
5162 {
5163 	switch (optname) {
5164 	case SO_REUSEADDR:
5165 	case SO_SNDBUF:
5166 	case SO_RCVBUF:
5167 	case SO_KEEPALIVE:
5168 	case SO_PRIORITY:
5169 	case SO_REUSEPORT:
5170 	case SO_RCVLOWAT:
5171 	case SO_MARK:
5172 	case SO_MAX_PACING_RATE:
5173 	case SO_BINDTOIFINDEX:
5174 	case SO_TXREHASH:
5175 		if (*optlen != sizeof(int))
5176 			return -EINVAL;
5177 		break;
5178 	case SO_BINDTODEVICE:
5179 		break;
5180 	default:
5181 		return -EINVAL;
5182 	}
5183 
5184 	if (getopt) {
5185 		if (optname == SO_BINDTODEVICE)
5186 			return -EINVAL;
5187 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5188 				     KERNEL_SOCKPTR(optval),
5189 				     KERNEL_SOCKPTR(optlen));
5190 	}
5191 
5192 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5193 			     KERNEL_SOCKPTR(optval), *optlen);
5194 }
5195 
5196 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5197 				  char *optval, int optlen)
5198 {
5199 	struct tcp_sock *tp = tcp_sk(sk);
5200 	unsigned long timeout;
5201 	int val;
5202 
5203 	if (optlen != sizeof(int))
5204 		return -EINVAL;
5205 
5206 	val = *(int *)optval;
5207 
5208 	/* Only some options are supported */
5209 	switch (optname) {
5210 	case TCP_BPF_IW:
5211 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5212 			return -EINVAL;
5213 		tcp_snd_cwnd_set(tp, val);
5214 		break;
5215 	case TCP_BPF_SNDCWND_CLAMP:
5216 		if (val <= 0)
5217 			return -EINVAL;
5218 		tp->snd_cwnd_clamp = val;
5219 		tp->snd_ssthresh = val;
5220 		break;
5221 	case TCP_BPF_DELACK_MAX:
5222 		timeout = usecs_to_jiffies(val);
5223 		if (timeout > TCP_DELACK_MAX ||
5224 		    timeout < TCP_TIMEOUT_MIN)
5225 			return -EINVAL;
5226 		inet_csk(sk)->icsk_delack_max = timeout;
5227 		break;
5228 	case TCP_BPF_RTO_MIN:
5229 		timeout = usecs_to_jiffies(val);
5230 		if (timeout > TCP_RTO_MIN ||
5231 		    timeout < TCP_TIMEOUT_MIN)
5232 			return -EINVAL;
5233 		inet_csk(sk)->icsk_rto_min = timeout;
5234 		break;
5235 	default:
5236 		return -EINVAL;
5237 	}
5238 
5239 	return 0;
5240 }
5241 
5242 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5243 				      int *optlen, bool getopt)
5244 {
5245 	struct tcp_sock *tp;
5246 	int ret;
5247 
5248 	if (*optlen < 2)
5249 		return -EINVAL;
5250 
5251 	if (getopt) {
5252 		if (!inet_csk(sk)->icsk_ca_ops)
5253 			return -EINVAL;
5254 		/* BPF expects NULL-terminated tcp-cc string */
5255 		optval[--(*optlen)] = '\0';
5256 		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5257 					 KERNEL_SOCKPTR(optval),
5258 					 KERNEL_SOCKPTR(optlen));
5259 	}
5260 
5261 	/* "cdg" is the only cc that alloc a ptr
5262 	 * in inet_csk_ca area.  The bpf-tcp-cc may
5263 	 * overwrite this ptr after switching to cdg.
5264 	 */
5265 	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5266 		return -ENOTSUPP;
5267 
5268 	/* It stops this looping
5269 	 *
5270 	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5271 	 * bpf_setsockopt(tcp_cc)" => .init => ....
5272 	 *
5273 	 * The second bpf_setsockopt(tcp_cc) is not allowed
5274 	 * in order to break the loop when both .init
5275 	 * are the same bpf prog.
5276 	 *
5277 	 * This applies even the second bpf_setsockopt(tcp_cc)
5278 	 * does not cause a loop.  This limits only the first
5279 	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5280 	 * pick a fallback cc (eg. peer does not support ECN)
5281 	 * and the second '.init' cannot fallback to
5282 	 * another.
5283 	 */
5284 	tp = tcp_sk(sk);
5285 	if (tp->bpf_chg_cc_inprogress)
5286 		return -EBUSY;
5287 
5288 	tp->bpf_chg_cc_inprogress = 1;
5289 	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5290 				KERNEL_SOCKPTR(optval), *optlen);
5291 	tp->bpf_chg_cc_inprogress = 0;
5292 	return ret;
5293 }
5294 
5295 static int sol_tcp_sockopt(struct sock *sk, int optname,
5296 			   char *optval, int *optlen,
5297 			   bool getopt)
5298 {
5299 	if (sk->sk_protocol != IPPROTO_TCP)
5300 		return -EINVAL;
5301 
5302 	switch (optname) {
5303 	case TCP_NODELAY:
5304 	case TCP_MAXSEG:
5305 	case TCP_KEEPIDLE:
5306 	case TCP_KEEPINTVL:
5307 	case TCP_KEEPCNT:
5308 	case TCP_SYNCNT:
5309 	case TCP_WINDOW_CLAMP:
5310 	case TCP_THIN_LINEAR_TIMEOUTS:
5311 	case TCP_USER_TIMEOUT:
5312 	case TCP_NOTSENT_LOWAT:
5313 	case TCP_SAVE_SYN:
5314 		if (*optlen != sizeof(int))
5315 			return -EINVAL;
5316 		break;
5317 	case TCP_CONGESTION:
5318 		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5319 	case TCP_SAVED_SYN:
5320 		if (*optlen < 1)
5321 			return -EINVAL;
5322 		break;
5323 	default:
5324 		if (getopt)
5325 			return -EINVAL;
5326 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5327 	}
5328 
5329 	if (getopt) {
5330 		if (optname == TCP_SAVED_SYN) {
5331 			struct tcp_sock *tp = tcp_sk(sk);
5332 
5333 			if (!tp->saved_syn ||
5334 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5335 				return -EINVAL;
5336 			memcpy(optval, tp->saved_syn->data, *optlen);
5337 			/* It cannot free tp->saved_syn here because it
5338 			 * does not know if the user space still needs it.
5339 			 */
5340 			return 0;
5341 		}
5342 
5343 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5344 					 KERNEL_SOCKPTR(optval),
5345 					 KERNEL_SOCKPTR(optlen));
5346 	}
5347 
5348 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5349 				 KERNEL_SOCKPTR(optval), *optlen);
5350 }
5351 
5352 static int sol_ip_sockopt(struct sock *sk, int optname,
5353 			  char *optval, int *optlen,
5354 			  bool getopt)
5355 {
5356 	if (sk->sk_family != AF_INET)
5357 		return -EINVAL;
5358 
5359 	switch (optname) {
5360 	case IP_TOS:
5361 		if (*optlen != sizeof(int))
5362 			return -EINVAL;
5363 		break;
5364 	default:
5365 		return -EINVAL;
5366 	}
5367 
5368 	if (getopt)
5369 		return do_ip_getsockopt(sk, SOL_IP, optname,
5370 					KERNEL_SOCKPTR(optval),
5371 					KERNEL_SOCKPTR(optlen));
5372 
5373 	return do_ip_setsockopt(sk, SOL_IP, optname,
5374 				KERNEL_SOCKPTR(optval), *optlen);
5375 }
5376 
5377 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5378 			    char *optval, int *optlen,
5379 			    bool getopt)
5380 {
5381 	if (sk->sk_family != AF_INET6)
5382 		return -EINVAL;
5383 
5384 	switch (optname) {
5385 	case IPV6_TCLASS:
5386 	case IPV6_AUTOFLOWLABEL:
5387 		if (*optlen != sizeof(int))
5388 			return -EINVAL;
5389 		break;
5390 	default:
5391 		return -EINVAL;
5392 	}
5393 
5394 	if (getopt)
5395 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5396 						      KERNEL_SOCKPTR(optval),
5397 						      KERNEL_SOCKPTR(optlen));
5398 
5399 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5400 					      KERNEL_SOCKPTR(optval), *optlen);
5401 }
5402 
5403 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5404 			    char *optval, int optlen)
5405 {
5406 	if (!sk_fullsock(sk))
5407 		return -EINVAL;
5408 
5409 	if (level == SOL_SOCKET)
5410 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5411 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5412 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5413 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5414 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5415 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5416 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5417 
5418 	return -EINVAL;
5419 }
5420 
5421 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5422 			   char *optval, int optlen)
5423 {
5424 	if (sk_fullsock(sk))
5425 		sock_owned_by_me(sk);
5426 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5427 }
5428 
5429 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5430 			    char *optval, int optlen)
5431 {
5432 	int err, saved_optlen = optlen;
5433 
5434 	if (!sk_fullsock(sk)) {
5435 		err = -EINVAL;
5436 		goto done;
5437 	}
5438 
5439 	if (level == SOL_SOCKET)
5440 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5441 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5442 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5443 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5444 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5445 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5446 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5447 	else
5448 		err = -EINVAL;
5449 
5450 done:
5451 	if (err)
5452 		optlen = 0;
5453 	if (optlen < saved_optlen)
5454 		memset(optval + optlen, 0, saved_optlen - optlen);
5455 	return err;
5456 }
5457 
5458 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5459 			   char *optval, int optlen)
5460 {
5461 	if (sk_fullsock(sk))
5462 		sock_owned_by_me(sk);
5463 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5464 }
5465 
5466 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5467 	   int, optname, char *, optval, int, optlen)
5468 {
5469 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5470 }
5471 
5472 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5473 	.func		= bpf_sk_setsockopt,
5474 	.gpl_only	= false,
5475 	.ret_type	= RET_INTEGER,
5476 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5477 	.arg2_type	= ARG_ANYTHING,
5478 	.arg3_type	= ARG_ANYTHING,
5479 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5480 	.arg5_type	= ARG_CONST_SIZE,
5481 };
5482 
5483 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5484 	   int, optname, char *, optval, int, optlen)
5485 {
5486 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5487 }
5488 
5489 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5490 	.func		= bpf_sk_getsockopt,
5491 	.gpl_only	= false,
5492 	.ret_type	= RET_INTEGER,
5493 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5494 	.arg2_type	= ARG_ANYTHING,
5495 	.arg3_type	= ARG_ANYTHING,
5496 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5497 	.arg5_type	= ARG_CONST_SIZE,
5498 };
5499 
5500 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5501 	   int, optname, char *, optval, int, optlen)
5502 {
5503 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5504 }
5505 
5506 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5507 	.func		= bpf_unlocked_sk_setsockopt,
5508 	.gpl_only	= false,
5509 	.ret_type	= RET_INTEGER,
5510 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5511 	.arg2_type	= ARG_ANYTHING,
5512 	.arg3_type	= ARG_ANYTHING,
5513 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5514 	.arg5_type	= ARG_CONST_SIZE,
5515 };
5516 
5517 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5518 	   int, optname, char *, optval, int, optlen)
5519 {
5520 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5521 }
5522 
5523 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5524 	.func		= bpf_unlocked_sk_getsockopt,
5525 	.gpl_only	= false,
5526 	.ret_type	= RET_INTEGER,
5527 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5528 	.arg2_type	= ARG_ANYTHING,
5529 	.arg3_type	= ARG_ANYTHING,
5530 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5531 	.arg5_type	= ARG_CONST_SIZE,
5532 };
5533 
5534 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5535 	   int, level, int, optname, char *, optval, int, optlen)
5536 {
5537 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5538 }
5539 
5540 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5541 	.func		= bpf_sock_addr_setsockopt,
5542 	.gpl_only	= false,
5543 	.ret_type	= RET_INTEGER,
5544 	.arg1_type	= ARG_PTR_TO_CTX,
5545 	.arg2_type	= ARG_ANYTHING,
5546 	.arg3_type	= ARG_ANYTHING,
5547 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5548 	.arg5_type	= ARG_CONST_SIZE,
5549 };
5550 
5551 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5552 	   int, level, int, optname, char *, optval, int, optlen)
5553 {
5554 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5555 }
5556 
5557 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5558 	.func		= bpf_sock_addr_getsockopt,
5559 	.gpl_only	= false,
5560 	.ret_type	= RET_INTEGER,
5561 	.arg1_type	= ARG_PTR_TO_CTX,
5562 	.arg2_type	= ARG_ANYTHING,
5563 	.arg3_type	= ARG_ANYTHING,
5564 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5565 	.arg5_type	= ARG_CONST_SIZE,
5566 };
5567 
5568 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5569 	   int, level, int, optname, char *, optval, int, optlen)
5570 {
5571 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5572 }
5573 
5574 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5575 	.func		= bpf_sock_ops_setsockopt,
5576 	.gpl_only	= false,
5577 	.ret_type	= RET_INTEGER,
5578 	.arg1_type	= ARG_PTR_TO_CTX,
5579 	.arg2_type	= ARG_ANYTHING,
5580 	.arg3_type	= ARG_ANYTHING,
5581 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5582 	.arg5_type	= ARG_CONST_SIZE,
5583 };
5584 
5585 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5586 				int optname, const u8 **start)
5587 {
5588 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5589 	const u8 *hdr_start;
5590 	int ret;
5591 
5592 	if (syn_skb) {
5593 		/* sk is a request_sock here */
5594 
5595 		if (optname == TCP_BPF_SYN) {
5596 			hdr_start = syn_skb->data;
5597 			ret = tcp_hdrlen(syn_skb);
5598 		} else if (optname == TCP_BPF_SYN_IP) {
5599 			hdr_start = skb_network_header(syn_skb);
5600 			ret = skb_network_header_len(syn_skb) +
5601 				tcp_hdrlen(syn_skb);
5602 		} else {
5603 			/* optname == TCP_BPF_SYN_MAC */
5604 			hdr_start = skb_mac_header(syn_skb);
5605 			ret = skb_mac_header_len(syn_skb) +
5606 				skb_network_header_len(syn_skb) +
5607 				tcp_hdrlen(syn_skb);
5608 		}
5609 	} else {
5610 		struct sock *sk = bpf_sock->sk;
5611 		struct saved_syn *saved_syn;
5612 
5613 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5614 			/* synack retransmit. bpf_sock->syn_skb will
5615 			 * not be available.  It has to resort to
5616 			 * saved_syn (if it is saved).
5617 			 */
5618 			saved_syn = inet_reqsk(sk)->saved_syn;
5619 		else
5620 			saved_syn = tcp_sk(sk)->saved_syn;
5621 
5622 		if (!saved_syn)
5623 			return -ENOENT;
5624 
5625 		if (optname == TCP_BPF_SYN) {
5626 			hdr_start = saved_syn->data +
5627 				saved_syn->mac_hdrlen +
5628 				saved_syn->network_hdrlen;
5629 			ret = saved_syn->tcp_hdrlen;
5630 		} else if (optname == TCP_BPF_SYN_IP) {
5631 			hdr_start = saved_syn->data +
5632 				saved_syn->mac_hdrlen;
5633 			ret = saved_syn->network_hdrlen +
5634 				saved_syn->tcp_hdrlen;
5635 		} else {
5636 			/* optname == TCP_BPF_SYN_MAC */
5637 
5638 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5639 			if (!saved_syn->mac_hdrlen)
5640 				return -ENOENT;
5641 
5642 			hdr_start = saved_syn->data;
5643 			ret = saved_syn->mac_hdrlen +
5644 				saved_syn->network_hdrlen +
5645 				saved_syn->tcp_hdrlen;
5646 		}
5647 	}
5648 
5649 	*start = hdr_start;
5650 	return ret;
5651 }
5652 
5653 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5654 	   int, level, int, optname, char *, optval, int, optlen)
5655 {
5656 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5657 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5658 		int ret, copy_len = 0;
5659 		const u8 *start;
5660 
5661 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5662 		if (ret > 0) {
5663 			copy_len = ret;
5664 			if (optlen < copy_len) {
5665 				copy_len = optlen;
5666 				ret = -ENOSPC;
5667 			}
5668 
5669 			memcpy(optval, start, copy_len);
5670 		}
5671 
5672 		/* Zero out unused buffer at the end */
5673 		memset(optval + copy_len, 0, optlen - copy_len);
5674 
5675 		return ret;
5676 	}
5677 
5678 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5679 }
5680 
5681 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5682 	.func		= bpf_sock_ops_getsockopt,
5683 	.gpl_only	= false,
5684 	.ret_type	= RET_INTEGER,
5685 	.arg1_type	= ARG_PTR_TO_CTX,
5686 	.arg2_type	= ARG_ANYTHING,
5687 	.arg3_type	= ARG_ANYTHING,
5688 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5689 	.arg5_type	= ARG_CONST_SIZE,
5690 };
5691 
5692 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5693 	   int, argval)
5694 {
5695 	struct sock *sk = bpf_sock->sk;
5696 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5697 
5698 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5699 		return -EINVAL;
5700 
5701 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5702 
5703 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5704 }
5705 
5706 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5707 	.func		= bpf_sock_ops_cb_flags_set,
5708 	.gpl_only	= false,
5709 	.ret_type	= RET_INTEGER,
5710 	.arg1_type	= ARG_PTR_TO_CTX,
5711 	.arg2_type	= ARG_ANYTHING,
5712 };
5713 
5714 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5715 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5716 
5717 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5718 	   int, addr_len)
5719 {
5720 #ifdef CONFIG_INET
5721 	struct sock *sk = ctx->sk;
5722 	u32 flags = BIND_FROM_BPF;
5723 	int err;
5724 
5725 	err = -EINVAL;
5726 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5727 		return err;
5728 	if (addr->sa_family == AF_INET) {
5729 		if (addr_len < sizeof(struct sockaddr_in))
5730 			return err;
5731 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5732 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5733 		return __inet_bind(sk, addr, addr_len, flags);
5734 #if IS_ENABLED(CONFIG_IPV6)
5735 	} else if (addr->sa_family == AF_INET6) {
5736 		if (addr_len < SIN6_LEN_RFC2133)
5737 			return err;
5738 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5739 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5740 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5741 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5742 		 */
5743 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5744 #endif /* CONFIG_IPV6 */
5745 	}
5746 #endif /* CONFIG_INET */
5747 
5748 	return -EAFNOSUPPORT;
5749 }
5750 
5751 static const struct bpf_func_proto bpf_bind_proto = {
5752 	.func		= bpf_bind,
5753 	.gpl_only	= false,
5754 	.ret_type	= RET_INTEGER,
5755 	.arg1_type	= ARG_PTR_TO_CTX,
5756 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5757 	.arg3_type	= ARG_CONST_SIZE,
5758 };
5759 
5760 #ifdef CONFIG_XFRM
5761 
5762 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5763     (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5764 
5765 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5766 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5767 
5768 #endif
5769 
5770 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5771 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5772 {
5773 	const struct sec_path *sp = skb_sec_path(skb);
5774 	const struct xfrm_state *x;
5775 
5776 	if (!sp || unlikely(index >= sp->len || flags))
5777 		goto err_clear;
5778 
5779 	x = sp->xvec[index];
5780 
5781 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5782 		goto err_clear;
5783 
5784 	to->reqid = x->props.reqid;
5785 	to->spi = x->id.spi;
5786 	to->family = x->props.family;
5787 	to->ext = 0;
5788 
5789 	if (to->family == AF_INET6) {
5790 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5791 		       sizeof(to->remote_ipv6));
5792 	} else {
5793 		to->remote_ipv4 = x->props.saddr.a4;
5794 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5795 	}
5796 
5797 	return 0;
5798 err_clear:
5799 	memset(to, 0, size);
5800 	return -EINVAL;
5801 }
5802 
5803 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5804 	.func		= bpf_skb_get_xfrm_state,
5805 	.gpl_only	= false,
5806 	.ret_type	= RET_INTEGER,
5807 	.arg1_type	= ARG_PTR_TO_CTX,
5808 	.arg2_type	= ARG_ANYTHING,
5809 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5810 	.arg4_type	= ARG_CONST_SIZE,
5811 	.arg5_type	= ARG_ANYTHING,
5812 };
5813 #endif
5814 
5815 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5816 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5817 {
5818 	params->h_vlan_TCI = 0;
5819 	params->h_vlan_proto = 0;
5820 	if (mtu)
5821 		params->mtu_result = mtu; /* union with tot_len */
5822 
5823 	return 0;
5824 }
5825 #endif
5826 
5827 #if IS_ENABLED(CONFIG_INET)
5828 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5829 			       u32 flags, bool check_mtu)
5830 {
5831 	struct fib_nh_common *nhc;
5832 	struct in_device *in_dev;
5833 	struct neighbour *neigh;
5834 	struct net_device *dev;
5835 	struct fib_result res;
5836 	struct flowi4 fl4;
5837 	u32 mtu = 0;
5838 	int err;
5839 
5840 	dev = dev_get_by_index_rcu(net, params->ifindex);
5841 	if (unlikely(!dev))
5842 		return -ENODEV;
5843 
5844 	/* verify forwarding is enabled on this interface */
5845 	in_dev = __in_dev_get_rcu(dev);
5846 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5847 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5848 
5849 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5850 		fl4.flowi4_iif = 1;
5851 		fl4.flowi4_oif = params->ifindex;
5852 	} else {
5853 		fl4.flowi4_iif = params->ifindex;
5854 		fl4.flowi4_oif = 0;
5855 	}
5856 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5857 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5858 	fl4.flowi4_flags = 0;
5859 
5860 	fl4.flowi4_proto = params->l4_protocol;
5861 	fl4.daddr = params->ipv4_dst;
5862 	fl4.saddr = params->ipv4_src;
5863 	fl4.fl4_sport = params->sport;
5864 	fl4.fl4_dport = params->dport;
5865 	fl4.flowi4_multipath_hash = 0;
5866 
5867 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5868 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5869 		struct fib_table *tb;
5870 
5871 		if (flags & BPF_FIB_LOOKUP_TBID) {
5872 			tbid = params->tbid;
5873 			/* zero out for vlan output */
5874 			params->tbid = 0;
5875 		}
5876 
5877 		tb = fib_get_table(net, tbid);
5878 		if (unlikely(!tb))
5879 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5880 
5881 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5882 	} else {
5883 		fl4.flowi4_mark = 0;
5884 		fl4.flowi4_secid = 0;
5885 		fl4.flowi4_tun_key.tun_id = 0;
5886 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5887 
5888 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5889 	}
5890 
5891 	if (err) {
5892 		/* map fib lookup errors to RTN_ type */
5893 		if (err == -EINVAL)
5894 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5895 		if (err == -EHOSTUNREACH)
5896 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5897 		if (err == -EACCES)
5898 			return BPF_FIB_LKUP_RET_PROHIBIT;
5899 
5900 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5901 	}
5902 
5903 	if (res.type != RTN_UNICAST)
5904 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5905 
5906 	if (fib_info_num_path(res.fi) > 1)
5907 		fib_select_path(net, &res, &fl4, NULL);
5908 
5909 	if (check_mtu) {
5910 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5911 		if (params->tot_len > mtu) {
5912 			params->mtu_result = mtu; /* union with tot_len */
5913 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5914 		}
5915 	}
5916 
5917 	nhc = res.nhc;
5918 
5919 	/* do not handle lwt encaps right now */
5920 	if (nhc->nhc_lwtstate)
5921 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5922 
5923 	dev = nhc->nhc_dev;
5924 
5925 	params->rt_metric = res.fi->fib_priority;
5926 	params->ifindex = dev->ifindex;
5927 
5928 	if (flags & BPF_FIB_LOOKUP_SRC)
5929 		params->ipv4_src = fib_result_prefsrc(net, &res);
5930 
5931 	/* xdp and cls_bpf programs are run in RCU-bh so
5932 	 * rcu_read_lock_bh is not needed here
5933 	 */
5934 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5935 		if (nhc->nhc_gw_family)
5936 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5937 	} else {
5938 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5939 
5940 		params->family = AF_INET6;
5941 		*dst = nhc->nhc_gw.ipv6;
5942 	}
5943 
5944 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5945 		goto set_fwd_params;
5946 
5947 	if (likely(nhc->nhc_gw_family != AF_INET6))
5948 		neigh = __ipv4_neigh_lookup_noref(dev,
5949 						  (__force u32)params->ipv4_dst);
5950 	else
5951 		neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
5952 
5953 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
5954 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5955 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5956 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5957 
5958 set_fwd_params:
5959 	return bpf_fib_set_fwd_params(params, mtu);
5960 }
5961 #endif
5962 
5963 #if IS_ENABLED(CONFIG_IPV6)
5964 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5965 			       u32 flags, bool check_mtu)
5966 {
5967 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5968 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5969 	struct fib6_result res = {};
5970 	struct neighbour *neigh;
5971 	struct net_device *dev;
5972 	struct inet6_dev *idev;
5973 	struct flowi6 fl6;
5974 	int strict = 0;
5975 	int oif, err;
5976 	u32 mtu = 0;
5977 
5978 	/* link local addresses are never forwarded */
5979 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5980 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5981 
5982 	dev = dev_get_by_index_rcu(net, params->ifindex);
5983 	if (unlikely(!dev))
5984 		return -ENODEV;
5985 
5986 	idev = __in6_dev_get_safely(dev);
5987 	if (unlikely(!idev || !idev->cnf.forwarding))
5988 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5989 
5990 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5991 		fl6.flowi6_iif = 1;
5992 		oif = fl6.flowi6_oif = params->ifindex;
5993 	} else {
5994 		oif = fl6.flowi6_iif = params->ifindex;
5995 		fl6.flowi6_oif = 0;
5996 		strict = RT6_LOOKUP_F_HAS_SADDR;
5997 	}
5998 	fl6.flowlabel = params->flowinfo;
5999 	fl6.flowi6_scope = 0;
6000 	fl6.flowi6_flags = 0;
6001 	fl6.mp_hash = 0;
6002 
6003 	fl6.flowi6_proto = params->l4_protocol;
6004 	fl6.daddr = *dst;
6005 	fl6.saddr = *src;
6006 	fl6.fl6_sport = params->sport;
6007 	fl6.fl6_dport = params->dport;
6008 
6009 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
6010 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6011 		struct fib6_table *tb;
6012 
6013 		if (flags & BPF_FIB_LOOKUP_TBID) {
6014 			tbid = params->tbid;
6015 			/* zero out for vlan output */
6016 			params->tbid = 0;
6017 		}
6018 
6019 		tb = ipv6_stub->fib6_get_table(net, tbid);
6020 		if (unlikely(!tb))
6021 			return BPF_FIB_LKUP_RET_NOT_FWDED;
6022 
6023 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6024 						   strict);
6025 	} else {
6026 		fl6.flowi6_mark = 0;
6027 		fl6.flowi6_secid = 0;
6028 		fl6.flowi6_tun_key.tun_id = 0;
6029 		fl6.flowi6_uid = sock_net_uid(net, NULL);
6030 
6031 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6032 	}
6033 
6034 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6035 		     res.f6i == net->ipv6.fib6_null_entry))
6036 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6037 
6038 	switch (res.fib6_type) {
6039 	/* only unicast is forwarded */
6040 	case RTN_UNICAST:
6041 		break;
6042 	case RTN_BLACKHOLE:
6043 		return BPF_FIB_LKUP_RET_BLACKHOLE;
6044 	case RTN_UNREACHABLE:
6045 		return BPF_FIB_LKUP_RET_UNREACHABLE;
6046 	case RTN_PROHIBIT:
6047 		return BPF_FIB_LKUP_RET_PROHIBIT;
6048 	default:
6049 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6050 	}
6051 
6052 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6053 				    fl6.flowi6_oif != 0, NULL, strict);
6054 
6055 	if (check_mtu) {
6056 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6057 		if (params->tot_len > mtu) {
6058 			params->mtu_result = mtu; /* union with tot_len */
6059 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6060 		}
6061 	}
6062 
6063 	if (res.nh->fib_nh_lws)
6064 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6065 
6066 	if (res.nh->fib_nh_gw_family)
6067 		*dst = res.nh->fib_nh_gw6;
6068 
6069 	dev = res.nh->fib_nh_dev;
6070 	params->rt_metric = res.f6i->fib6_metric;
6071 	params->ifindex = dev->ifindex;
6072 
6073 	if (flags & BPF_FIB_LOOKUP_SRC) {
6074 		if (res.f6i->fib6_prefsrc.plen) {
6075 			*src = res.f6i->fib6_prefsrc.addr;
6076 		} else {
6077 			err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6078 								&fl6.daddr, 0,
6079 								src);
6080 			if (err)
6081 				return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6082 		}
6083 	}
6084 
6085 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6086 		goto set_fwd_params;
6087 
6088 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6089 	 * not needed here.
6090 	 */
6091 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6092 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6093 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6094 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6095 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6096 
6097 set_fwd_params:
6098 	return bpf_fib_set_fwd_params(params, mtu);
6099 }
6100 #endif
6101 
6102 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6103 			     BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6104 			     BPF_FIB_LOOKUP_SRC)
6105 
6106 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6107 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6108 {
6109 	if (plen < sizeof(*params))
6110 		return -EINVAL;
6111 
6112 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6113 		return -EINVAL;
6114 
6115 	switch (params->family) {
6116 #if IS_ENABLED(CONFIG_INET)
6117 	case AF_INET:
6118 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6119 					   flags, true);
6120 #endif
6121 #if IS_ENABLED(CONFIG_IPV6)
6122 	case AF_INET6:
6123 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6124 					   flags, true);
6125 #endif
6126 	}
6127 	return -EAFNOSUPPORT;
6128 }
6129 
6130 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6131 	.func		= bpf_xdp_fib_lookup,
6132 	.gpl_only	= true,
6133 	.ret_type	= RET_INTEGER,
6134 	.arg1_type      = ARG_PTR_TO_CTX,
6135 	.arg2_type      = ARG_PTR_TO_MEM,
6136 	.arg3_type      = ARG_CONST_SIZE,
6137 	.arg4_type	= ARG_ANYTHING,
6138 };
6139 
6140 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6141 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6142 {
6143 	struct net *net = dev_net(skb->dev);
6144 	int rc = -EAFNOSUPPORT;
6145 	bool check_mtu = false;
6146 
6147 	if (plen < sizeof(*params))
6148 		return -EINVAL;
6149 
6150 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6151 		return -EINVAL;
6152 
6153 	if (params->tot_len)
6154 		check_mtu = true;
6155 
6156 	switch (params->family) {
6157 #if IS_ENABLED(CONFIG_INET)
6158 	case AF_INET:
6159 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6160 		break;
6161 #endif
6162 #if IS_ENABLED(CONFIG_IPV6)
6163 	case AF_INET6:
6164 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6165 		break;
6166 #endif
6167 	}
6168 
6169 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6170 		struct net_device *dev;
6171 
6172 		/* When tot_len isn't provided by user, check skb
6173 		 * against MTU of FIB lookup resulting net_device
6174 		 */
6175 		dev = dev_get_by_index_rcu(net, params->ifindex);
6176 		if (!is_skb_forwardable(dev, skb))
6177 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6178 
6179 		params->mtu_result = dev->mtu; /* union with tot_len */
6180 	}
6181 
6182 	return rc;
6183 }
6184 
6185 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6186 	.func		= bpf_skb_fib_lookup,
6187 	.gpl_only	= true,
6188 	.ret_type	= RET_INTEGER,
6189 	.arg1_type      = ARG_PTR_TO_CTX,
6190 	.arg2_type      = ARG_PTR_TO_MEM,
6191 	.arg3_type      = ARG_CONST_SIZE,
6192 	.arg4_type	= ARG_ANYTHING,
6193 };
6194 
6195 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6196 					    u32 ifindex)
6197 {
6198 	struct net *netns = dev_net(dev_curr);
6199 
6200 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6201 	if (ifindex == 0)
6202 		return dev_curr;
6203 
6204 	return dev_get_by_index_rcu(netns, ifindex);
6205 }
6206 
6207 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6208 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6209 {
6210 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6211 	struct net_device *dev = skb->dev;
6212 	int skb_len, dev_len;
6213 	int mtu;
6214 
6215 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6216 		return -EINVAL;
6217 
6218 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6219 		return -EINVAL;
6220 
6221 	dev = __dev_via_ifindex(dev, ifindex);
6222 	if (unlikely(!dev))
6223 		return -ENODEV;
6224 
6225 	mtu = READ_ONCE(dev->mtu);
6226 
6227 	dev_len = mtu + dev->hard_header_len;
6228 
6229 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6230 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6231 
6232 	skb_len += len_diff; /* minus result pass check */
6233 	if (skb_len <= dev_len) {
6234 		ret = BPF_MTU_CHK_RET_SUCCESS;
6235 		goto out;
6236 	}
6237 	/* At this point, skb->len exceed MTU, but as it include length of all
6238 	 * segments, it can still be below MTU.  The SKB can possibly get
6239 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6240 	 * must choose if segs are to be MTU checked.
6241 	 */
6242 	if (skb_is_gso(skb)) {
6243 		ret = BPF_MTU_CHK_RET_SUCCESS;
6244 
6245 		if (flags & BPF_MTU_CHK_SEGS &&
6246 		    !skb_gso_validate_network_len(skb, mtu))
6247 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6248 	}
6249 out:
6250 	/* BPF verifier guarantees valid pointer */
6251 	*mtu_len = mtu;
6252 
6253 	return ret;
6254 }
6255 
6256 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6257 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6258 {
6259 	struct net_device *dev = xdp->rxq->dev;
6260 	int xdp_len = xdp->data_end - xdp->data;
6261 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6262 	int mtu, dev_len;
6263 
6264 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6265 	if (unlikely(flags))
6266 		return -EINVAL;
6267 
6268 	dev = __dev_via_ifindex(dev, ifindex);
6269 	if (unlikely(!dev))
6270 		return -ENODEV;
6271 
6272 	mtu = READ_ONCE(dev->mtu);
6273 
6274 	/* Add L2-header as dev MTU is L3 size */
6275 	dev_len = mtu + dev->hard_header_len;
6276 
6277 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6278 	if (*mtu_len)
6279 		xdp_len = *mtu_len + dev->hard_header_len;
6280 
6281 	xdp_len += len_diff; /* minus result pass check */
6282 	if (xdp_len > dev_len)
6283 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6284 
6285 	/* BPF verifier guarantees valid pointer */
6286 	*mtu_len = mtu;
6287 
6288 	return ret;
6289 }
6290 
6291 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6292 	.func		= bpf_skb_check_mtu,
6293 	.gpl_only	= true,
6294 	.ret_type	= RET_INTEGER,
6295 	.arg1_type      = ARG_PTR_TO_CTX,
6296 	.arg2_type      = ARG_ANYTHING,
6297 	.arg3_type      = ARG_PTR_TO_INT,
6298 	.arg4_type      = ARG_ANYTHING,
6299 	.arg5_type      = ARG_ANYTHING,
6300 };
6301 
6302 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6303 	.func		= bpf_xdp_check_mtu,
6304 	.gpl_only	= true,
6305 	.ret_type	= RET_INTEGER,
6306 	.arg1_type      = ARG_PTR_TO_CTX,
6307 	.arg2_type      = ARG_ANYTHING,
6308 	.arg3_type      = ARG_PTR_TO_INT,
6309 	.arg4_type      = ARG_ANYTHING,
6310 	.arg5_type      = ARG_ANYTHING,
6311 };
6312 
6313 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6314 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6315 {
6316 	int err;
6317 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6318 
6319 	if (!seg6_validate_srh(srh, len, false))
6320 		return -EINVAL;
6321 
6322 	switch (type) {
6323 	case BPF_LWT_ENCAP_SEG6_INLINE:
6324 		if (skb->protocol != htons(ETH_P_IPV6))
6325 			return -EBADMSG;
6326 
6327 		err = seg6_do_srh_inline(skb, srh);
6328 		break;
6329 	case BPF_LWT_ENCAP_SEG6:
6330 		skb_reset_inner_headers(skb);
6331 		skb->encapsulation = 1;
6332 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6333 		break;
6334 	default:
6335 		return -EINVAL;
6336 	}
6337 
6338 	bpf_compute_data_pointers(skb);
6339 	if (err)
6340 		return err;
6341 
6342 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6343 
6344 	return seg6_lookup_nexthop(skb, NULL, 0);
6345 }
6346 #endif /* CONFIG_IPV6_SEG6_BPF */
6347 
6348 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6349 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6350 			     bool ingress)
6351 {
6352 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6353 }
6354 #endif
6355 
6356 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6357 	   u32, len)
6358 {
6359 	switch (type) {
6360 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6361 	case BPF_LWT_ENCAP_SEG6:
6362 	case BPF_LWT_ENCAP_SEG6_INLINE:
6363 		return bpf_push_seg6_encap(skb, type, hdr, len);
6364 #endif
6365 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6366 	case BPF_LWT_ENCAP_IP:
6367 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6368 #endif
6369 	default:
6370 		return -EINVAL;
6371 	}
6372 }
6373 
6374 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6375 	   void *, hdr, u32, len)
6376 {
6377 	switch (type) {
6378 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6379 	case BPF_LWT_ENCAP_IP:
6380 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6381 #endif
6382 	default:
6383 		return -EINVAL;
6384 	}
6385 }
6386 
6387 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6388 	.func		= bpf_lwt_in_push_encap,
6389 	.gpl_only	= false,
6390 	.ret_type	= RET_INTEGER,
6391 	.arg1_type	= ARG_PTR_TO_CTX,
6392 	.arg2_type	= ARG_ANYTHING,
6393 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6394 	.arg4_type	= ARG_CONST_SIZE
6395 };
6396 
6397 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6398 	.func		= bpf_lwt_xmit_push_encap,
6399 	.gpl_only	= false,
6400 	.ret_type	= RET_INTEGER,
6401 	.arg1_type	= ARG_PTR_TO_CTX,
6402 	.arg2_type	= ARG_ANYTHING,
6403 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6404 	.arg4_type	= ARG_CONST_SIZE
6405 };
6406 
6407 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6408 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6409 	   const void *, from, u32, len)
6410 {
6411 	struct seg6_bpf_srh_state *srh_state =
6412 		this_cpu_ptr(&seg6_bpf_srh_states);
6413 	struct ipv6_sr_hdr *srh = srh_state->srh;
6414 	void *srh_tlvs, *srh_end, *ptr;
6415 	int srhoff = 0;
6416 
6417 	if (srh == NULL)
6418 		return -EINVAL;
6419 
6420 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6421 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6422 
6423 	ptr = skb->data + offset;
6424 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6425 		srh_state->valid = false;
6426 	else if (ptr < (void *)&srh->flags ||
6427 		 ptr + len > (void *)&srh->segments)
6428 		return -EFAULT;
6429 
6430 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6431 		return -EFAULT;
6432 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6433 		return -EINVAL;
6434 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6435 
6436 	memcpy(skb->data + offset, from, len);
6437 	return 0;
6438 }
6439 
6440 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6441 	.func		= bpf_lwt_seg6_store_bytes,
6442 	.gpl_only	= false,
6443 	.ret_type	= RET_INTEGER,
6444 	.arg1_type	= ARG_PTR_TO_CTX,
6445 	.arg2_type	= ARG_ANYTHING,
6446 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6447 	.arg4_type	= ARG_CONST_SIZE
6448 };
6449 
6450 static void bpf_update_srh_state(struct sk_buff *skb)
6451 {
6452 	struct seg6_bpf_srh_state *srh_state =
6453 		this_cpu_ptr(&seg6_bpf_srh_states);
6454 	int srhoff = 0;
6455 
6456 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6457 		srh_state->srh = NULL;
6458 	} else {
6459 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6460 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6461 		srh_state->valid = true;
6462 	}
6463 }
6464 
6465 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6466 	   u32, action, void *, param, u32, param_len)
6467 {
6468 	struct seg6_bpf_srh_state *srh_state =
6469 		this_cpu_ptr(&seg6_bpf_srh_states);
6470 	int hdroff = 0;
6471 	int err;
6472 
6473 	switch (action) {
6474 	case SEG6_LOCAL_ACTION_END_X:
6475 		if (!seg6_bpf_has_valid_srh(skb))
6476 			return -EBADMSG;
6477 		if (param_len != sizeof(struct in6_addr))
6478 			return -EINVAL;
6479 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6480 	case SEG6_LOCAL_ACTION_END_T:
6481 		if (!seg6_bpf_has_valid_srh(skb))
6482 			return -EBADMSG;
6483 		if (param_len != sizeof(int))
6484 			return -EINVAL;
6485 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6486 	case SEG6_LOCAL_ACTION_END_DT6:
6487 		if (!seg6_bpf_has_valid_srh(skb))
6488 			return -EBADMSG;
6489 		if (param_len != sizeof(int))
6490 			return -EINVAL;
6491 
6492 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6493 			return -EBADMSG;
6494 		if (!pskb_pull(skb, hdroff))
6495 			return -EBADMSG;
6496 
6497 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6498 		skb_reset_network_header(skb);
6499 		skb_reset_transport_header(skb);
6500 		skb->encapsulation = 0;
6501 
6502 		bpf_compute_data_pointers(skb);
6503 		bpf_update_srh_state(skb);
6504 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6505 	case SEG6_LOCAL_ACTION_END_B6:
6506 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6507 			return -EBADMSG;
6508 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6509 					  param, param_len);
6510 		if (!err)
6511 			bpf_update_srh_state(skb);
6512 
6513 		return err;
6514 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6515 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6516 			return -EBADMSG;
6517 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6518 					  param, param_len);
6519 		if (!err)
6520 			bpf_update_srh_state(skb);
6521 
6522 		return err;
6523 	default:
6524 		return -EINVAL;
6525 	}
6526 }
6527 
6528 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6529 	.func		= bpf_lwt_seg6_action,
6530 	.gpl_only	= false,
6531 	.ret_type	= RET_INTEGER,
6532 	.arg1_type	= ARG_PTR_TO_CTX,
6533 	.arg2_type	= ARG_ANYTHING,
6534 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6535 	.arg4_type	= ARG_CONST_SIZE
6536 };
6537 
6538 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6539 	   s32, len)
6540 {
6541 	struct seg6_bpf_srh_state *srh_state =
6542 		this_cpu_ptr(&seg6_bpf_srh_states);
6543 	struct ipv6_sr_hdr *srh = srh_state->srh;
6544 	void *srh_end, *srh_tlvs, *ptr;
6545 	struct ipv6hdr *hdr;
6546 	int srhoff = 0;
6547 	int ret;
6548 
6549 	if (unlikely(srh == NULL))
6550 		return -EINVAL;
6551 
6552 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6553 			((srh->first_segment + 1) << 4));
6554 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6555 			srh_state->hdrlen);
6556 	ptr = skb->data + offset;
6557 
6558 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6559 		return -EFAULT;
6560 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6561 		return -EFAULT;
6562 
6563 	if (len > 0) {
6564 		ret = skb_cow_head(skb, len);
6565 		if (unlikely(ret < 0))
6566 			return ret;
6567 
6568 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6569 	} else {
6570 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6571 	}
6572 
6573 	bpf_compute_data_pointers(skb);
6574 	if (unlikely(ret < 0))
6575 		return ret;
6576 
6577 	hdr = (struct ipv6hdr *)skb->data;
6578 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6579 
6580 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6581 		return -EINVAL;
6582 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6583 	srh_state->hdrlen += len;
6584 	srh_state->valid = false;
6585 	return 0;
6586 }
6587 
6588 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6589 	.func		= bpf_lwt_seg6_adjust_srh,
6590 	.gpl_only	= false,
6591 	.ret_type	= RET_INTEGER,
6592 	.arg1_type	= ARG_PTR_TO_CTX,
6593 	.arg2_type	= ARG_ANYTHING,
6594 	.arg3_type	= ARG_ANYTHING,
6595 };
6596 #endif /* CONFIG_IPV6_SEG6_BPF */
6597 
6598 #ifdef CONFIG_INET
6599 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6600 			      int dif, int sdif, u8 family, u8 proto)
6601 {
6602 	struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6603 	bool refcounted = false;
6604 	struct sock *sk = NULL;
6605 
6606 	if (family == AF_INET) {
6607 		__be32 src4 = tuple->ipv4.saddr;
6608 		__be32 dst4 = tuple->ipv4.daddr;
6609 
6610 		if (proto == IPPROTO_TCP)
6611 			sk = __inet_lookup(net, hinfo, NULL, 0,
6612 					   src4, tuple->ipv4.sport,
6613 					   dst4, tuple->ipv4.dport,
6614 					   dif, sdif, &refcounted);
6615 		else
6616 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6617 					       dst4, tuple->ipv4.dport,
6618 					       dif, sdif, net->ipv4.udp_table, NULL);
6619 #if IS_ENABLED(CONFIG_IPV6)
6620 	} else {
6621 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6622 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6623 
6624 		if (proto == IPPROTO_TCP)
6625 			sk = __inet6_lookup(net, hinfo, NULL, 0,
6626 					    src6, tuple->ipv6.sport,
6627 					    dst6, ntohs(tuple->ipv6.dport),
6628 					    dif, sdif, &refcounted);
6629 		else if (likely(ipv6_bpf_stub))
6630 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6631 							    src6, tuple->ipv6.sport,
6632 							    dst6, tuple->ipv6.dport,
6633 							    dif, sdif,
6634 							    net->ipv4.udp_table, NULL);
6635 #endif
6636 	}
6637 
6638 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6639 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6640 		sk = NULL;
6641 	}
6642 	return sk;
6643 }
6644 
6645 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6646  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6647  */
6648 static struct sock *
6649 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6650 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6651 		 u64 flags, int sdif)
6652 {
6653 	struct sock *sk = NULL;
6654 	struct net *net;
6655 	u8 family;
6656 
6657 	if (len == sizeof(tuple->ipv4))
6658 		family = AF_INET;
6659 	else if (len == sizeof(tuple->ipv6))
6660 		family = AF_INET6;
6661 	else
6662 		return NULL;
6663 
6664 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6665 		goto out;
6666 
6667 	if (sdif < 0) {
6668 		if (family == AF_INET)
6669 			sdif = inet_sdif(skb);
6670 		else
6671 			sdif = inet6_sdif(skb);
6672 	}
6673 
6674 	if ((s32)netns_id < 0) {
6675 		net = caller_net;
6676 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6677 	} else {
6678 		net = get_net_ns_by_id(caller_net, netns_id);
6679 		if (unlikely(!net))
6680 			goto out;
6681 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6682 		put_net(net);
6683 	}
6684 
6685 out:
6686 	return sk;
6687 }
6688 
6689 static struct sock *
6690 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6691 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6692 		u64 flags, int sdif)
6693 {
6694 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6695 					   ifindex, proto, netns_id, flags,
6696 					   sdif);
6697 
6698 	if (sk) {
6699 		struct sock *sk2 = sk_to_full_sk(sk);
6700 
6701 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6702 		 * sock refcnt is decremented to prevent a request_sock leak.
6703 		 */
6704 		if (!sk_fullsock(sk2))
6705 			sk2 = NULL;
6706 		if (sk2 != sk) {
6707 			sock_gen_put(sk);
6708 			/* Ensure there is no need to bump sk2 refcnt */
6709 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6710 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6711 				return NULL;
6712 			}
6713 			sk = sk2;
6714 		}
6715 	}
6716 
6717 	return sk;
6718 }
6719 
6720 static struct sock *
6721 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6722 	       u8 proto, u64 netns_id, u64 flags)
6723 {
6724 	struct net *caller_net;
6725 	int ifindex;
6726 
6727 	if (skb->dev) {
6728 		caller_net = dev_net(skb->dev);
6729 		ifindex = skb->dev->ifindex;
6730 	} else {
6731 		caller_net = sock_net(skb->sk);
6732 		ifindex = 0;
6733 	}
6734 
6735 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6736 				netns_id, flags, -1);
6737 }
6738 
6739 static struct sock *
6740 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6741 	      u8 proto, u64 netns_id, u64 flags)
6742 {
6743 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6744 					 flags);
6745 
6746 	if (sk) {
6747 		struct sock *sk2 = sk_to_full_sk(sk);
6748 
6749 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6750 		 * sock refcnt is decremented to prevent a request_sock leak.
6751 		 */
6752 		if (!sk_fullsock(sk2))
6753 			sk2 = NULL;
6754 		if (sk2 != sk) {
6755 			sock_gen_put(sk);
6756 			/* Ensure there is no need to bump sk2 refcnt */
6757 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6758 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6759 				return NULL;
6760 			}
6761 			sk = sk2;
6762 		}
6763 	}
6764 
6765 	return sk;
6766 }
6767 
6768 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6769 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6770 {
6771 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6772 					     netns_id, flags);
6773 }
6774 
6775 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6776 	.func		= bpf_skc_lookup_tcp,
6777 	.gpl_only	= false,
6778 	.pkt_access	= true,
6779 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6780 	.arg1_type	= ARG_PTR_TO_CTX,
6781 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6782 	.arg3_type	= ARG_CONST_SIZE,
6783 	.arg4_type	= ARG_ANYTHING,
6784 	.arg5_type	= ARG_ANYTHING,
6785 };
6786 
6787 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6788 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6789 {
6790 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6791 					    netns_id, flags);
6792 }
6793 
6794 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6795 	.func		= bpf_sk_lookup_tcp,
6796 	.gpl_only	= false,
6797 	.pkt_access	= true,
6798 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6799 	.arg1_type	= ARG_PTR_TO_CTX,
6800 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6801 	.arg3_type	= ARG_CONST_SIZE,
6802 	.arg4_type	= ARG_ANYTHING,
6803 	.arg5_type	= ARG_ANYTHING,
6804 };
6805 
6806 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6807 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6808 {
6809 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6810 					    netns_id, flags);
6811 }
6812 
6813 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6814 	.func		= bpf_sk_lookup_udp,
6815 	.gpl_only	= false,
6816 	.pkt_access	= true,
6817 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6818 	.arg1_type	= ARG_PTR_TO_CTX,
6819 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6820 	.arg3_type	= ARG_CONST_SIZE,
6821 	.arg4_type	= ARG_ANYTHING,
6822 	.arg5_type	= ARG_ANYTHING,
6823 };
6824 
6825 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6826 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6827 {
6828 	struct net_device *dev = skb->dev;
6829 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6830 	struct net *caller_net = dev_net(dev);
6831 
6832 	return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6833 					       ifindex, IPPROTO_TCP, netns_id,
6834 					       flags, sdif);
6835 }
6836 
6837 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6838 	.func		= bpf_tc_skc_lookup_tcp,
6839 	.gpl_only	= false,
6840 	.pkt_access	= true,
6841 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6842 	.arg1_type	= ARG_PTR_TO_CTX,
6843 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6844 	.arg3_type	= ARG_CONST_SIZE,
6845 	.arg4_type	= ARG_ANYTHING,
6846 	.arg5_type	= ARG_ANYTHING,
6847 };
6848 
6849 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6850 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6851 {
6852 	struct net_device *dev = skb->dev;
6853 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6854 	struct net *caller_net = dev_net(dev);
6855 
6856 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6857 					      ifindex, IPPROTO_TCP, netns_id,
6858 					      flags, sdif);
6859 }
6860 
6861 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6862 	.func		= bpf_tc_sk_lookup_tcp,
6863 	.gpl_only	= false,
6864 	.pkt_access	= true,
6865 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6866 	.arg1_type	= ARG_PTR_TO_CTX,
6867 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6868 	.arg3_type	= ARG_CONST_SIZE,
6869 	.arg4_type	= ARG_ANYTHING,
6870 	.arg5_type	= ARG_ANYTHING,
6871 };
6872 
6873 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6874 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6875 {
6876 	struct net_device *dev = skb->dev;
6877 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6878 	struct net *caller_net = dev_net(dev);
6879 
6880 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6881 					      ifindex, IPPROTO_UDP, netns_id,
6882 					      flags, sdif);
6883 }
6884 
6885 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6886 	.func		= bpf_tc_sk_lookup_udp,
6887 	.gpl_only	= false,
6888 	.pkt_access	= true,
6889 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6890 	.arg1_type	= ARG_PTR_TO_CTX,
6891 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6892 	.arg3_type	= ARG_CONST_SIZE,
6893 	.arg4_type	= ARG_ANYTHING,
6894 	.arg5_type	= ARG_ANYTHING,
6895 };
6896 
6897 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6898 {
6899 	if (sk && sk_is_refcounted(sk))
6900 		sock_gen_put(sk);
6901 	return 0;
6902 }
6903 
6904 static const struct bpf_func_proto bpf_sk_release_proto = {
6905 	.func		= bpf_sk_release,
6906 	.gpl_only	= false,
6907 	.ret_type	= RET_INTEGER,
6908 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6909 };
6910 
6911 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6912 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6913 {
6914 	struct net_device *dev = ctx->rxq->dev;
6915 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6916 	struct net *caller_net = dev_net(dev);
6917 
6918 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6919 					      ifindex, IPPROTO_UDP, netns_id,
6920 					      flags, sdif);
6921 }
6922 
6923 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6924 	.func           = bpf_xdp_sk_lookup_udp,
6925 	.gpl_only       = false,
6926 	.pkt_access     = true,
6927 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6928 	.arg1_type      = ARG_PTR_TO_CTX,
6929 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6930 	.arg3_type      = ARG_CONST_SIZE,
6931 	.arg4_type      = ARG_ANYTHING,
6932 	.arg5_type      = ARG_ANYTHING,
6933 };
6934 
6935 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6936 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6937 {
6938 	struct net_device *dev = ctx->rxq->dev;
6939 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6940 	struct net *caller_net = dev_net(dev);
6941 
6942 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6943 					       ifindex, IPPROTO_TCP, netns_id,
6944 					       flags, sdif);
6945 }
6946 
6947 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6948 	.func           = bpf_xdp_skc_lookup_tcp,
6949 	.gpl_only       = false,
6950 	.pkt_access     = true,
6951 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6952 	.arg1_type      = ARG_PTR_TO_CTX,
6953 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6954 	.arg3_type      = ARG_CONST_SIZE,
6955 	.arg4_type      = ARG_ANYTHING,
6956 	.arg5_type      = ARG_ANYTHING,
6957 };
6958 
6959 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6960 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6961 {
6962 	struct net_device *dev = ctx->rxq->dev;
6963 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6964 	struct net *caller_net = dev_net(dev);
6965 
6966 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6967 					      ifindex, IPPROTO_TCP, netns_id,
6968 					      flags, sdif);
6969 }
6970 
6971 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6972 	.func           = bpf_xdp_sk_lookup_tcp,
6973 	.gpl_only       = false,
6974 	.pkt_access     = true,
6975 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6976 	.arg1_type      = ARG_PTR_TO_CTX,
6977 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6978 	.arg3_type      = ARG_CONST_SIZE,
6979 	.arg4_type      = ARG_ANYTHING,
6980 	.arg5_type      = ARG_ANYTHING,
6981 };
6982 
6983 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6984 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6985 {
6986 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6987 					       sock_net(ctx->sk), 0,
6988 					       IPPROTO_TCP, netns_id, flags,
6989 					       -1);
6990 }
6991 
6992 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6993 	.func		= bpf_sock_addr_skc_lookup_tcp,
6994 	.gpl_only	= false,
6995 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6996 	.arg1_type	= ARG_PTR_TO_CTX,
6997 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6998 	.arg3_type	= ARG_CONST_SIZE,
6999 	.arg4_type	= ARG_ANYTHING,
7000 	.arg5_type	= ARG_ANYTHING,
7001 };
7002 
7003 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7004 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7005 {
7006 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7007 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
7008 					      netns_id, flags, -1);
7009 }
7010 
7011 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7012 	.func		= bpf_sock_addr_sk_lookup_tcp,
7013 	.gpl_only	= false,
7014 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7015 	.arg1_type	= ARG_PTR_TO_CTX,
7016 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7017 	.arg3_type	= ARG_CONST_SIZE,
7018 	.arg4_type	= ARG_ANYTHING,
7019 	.arg5_type	= ARG_ANYTHING,
7020 };
7021 
7022 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7023 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7024 {
7025 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7026 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
7027 					      netns_id, flags, -1);
7028 }
7029 
7030 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7031 	.func		= bpf_sock_addr_sk_lookup_udp,
7032 	.gpl_only	= false,
7033 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7034 	.arg1_type	= ARG_PTR_TO_CTX,
7035 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7036 	.arg3_type	= ARG_CONST_SIZE,
7037 	.arg4_type	= ARG_ANYTHING,
7038 	.arg5_type	= ARG_ANYTHING,
7039 };
7040 
7041 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7042 				  struct bpf_insn_access_aux *info)
7043 {
7044 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7045 					  icsk_retransmits))
7046 		return false;
7047 
7048 	if (off % size != 0)
7049 		return false;
7050 
7051 	switch (off) {
7052 	case offsetof(struct bpf_tcp_sock, bytes_received):
7053 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7054 		return size == sizeof(__u64);
7055 	default:
7056 		return size == sizeof(__u32);
7057 	}
7058 }
7059 
7060 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7061 				    const struct bpf_insn *si,
7062 				    struct bpf_insn *insn_buf,
7063 				    struct bpf_prog *prog, u32 *target_size)
7064 {
7065 	struct bpf_insn *insn = insn_buf;
7066 
7067 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
7068 	do {								\
7069 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
7070 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7071 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7072 				      si->dst_reg, si->src_reg,		\
7073 				      offsetof(struct tcp_sock, FIELD)); \
7074 	} while (0)
7075 
7076 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
7077 	do {								\
7078 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
7079 					  FIELD) >			\
7080 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7081 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
7082 					struct inet_connection_sock,	\
7083 					FIELD),				\
7084 				      si->dst_reg, si->src_reg,		\
7085 				      offsetof(				\
7086 					struct inet_connection_sock,	\
7087 					FIELD));			\
7088 	} while (0)
7089 
7090 	BTF_TYPE_EMIT(struct bpf_tcp_sock);
7091 
7092 	switch (si->off) {
7093 	case offsetof(struct bpf_tcp_sock, rtt_min):
7094 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7095 			     sizeof(struct minmax));
7096 		BUILD_BUG_ON(sizeof(struct minmax) <
7097 			     sizeof(struct minmax_sample));
7098 
7099 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7100 				      offsetof(struct tcp_sock, rtt_min) +
7101 				      offsetof(struct minmax_sample, v));
7102 		break;
7103 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
7104 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7105 		break;
7106 	case offsetof(struct bpf_tcp_sock, srtt_us):
7107 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
7108 		break;
7109 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7110 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7111 		break;
7112 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
7113 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7114 		break;
7115 	case offsetof(struct bpf_tcp_sock, snd_nxt):
7116 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7117 		break;
7118 	case offsetof(struct bpf_tcp_sock, snd_una):
7119 		BPF_TCP_SOCK_GET_COMMON(snd_una);
7120 		break;
7121 	case offsetof(struct bpf_tcp_sock, mss_cache):
7122 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
7123 		break;
7124 	case offsetof(struct bpf_tcp_sock, ecn_flags):
7125 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7126 		break;
7127 	case offsetof(struct bpf_tcp_sock, rate_delivered):
7128 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7129 		break;
7130 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
7131 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7132 		break;
7133 	case offsetof(struct bpf_tcp_sock, packets_out):
7134 		BPF_TCP_SOCK_GET_COMMON(packets_out);
7135 		break;
7136 	case offsetof(struct bpf_tcp_sock, retrans_out):
7137 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
7138 		break;
7139 	case offsetof(struct bpf_tcp_sock, total_retrans):
7140 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
7141 		break;
7142 	case offsetof(struct bpf_tcp_sock, segs_in):
7143 		BPF_TCP_SOCK_GET_COMMON(segs_in);
7144 		break;
7145 	case offsetof(struct bpf_tcp_sock, data_segs_in):
7146 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7147 		break;
7148 	case offsetof(struct bpf_tcp_sock, segs_out):
7149 		BPF_TCP_SOCK_GET_COMMON(segs_out);
7150 		break;
7151 	case offsetof(struct bpf_tcp_sock, data_segs_out):
7152 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7153 		break;
7154 	case offsetof(struct bpf_tcp_sock, lost_out):
7155 		BPF_TCP_SOCK_GET_COMMON(lost_out);
7156 		break;
7157 	case offsetof(struct bpf_tcp_sock, sacked_out):
7158 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
7159 		break;
7160 	case offsetof(struct bpf_tcp_sock, bytes_received):
7161 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
7162 		break;
7163 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7164 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7165 		break;
7166 	case offsetof(struct bpf_tcp_sock, dsack_dups):
7167 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7168 		break;
7169 	case offsetof(struct bpf_tcp_sock, delivered):
7170 		BPF_TCP_SOCK_GET_COMMON(delivered);
7171 		break;
7172 	case offsetof(struct bpf_tcp_sock, delivered_ce):
7173 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7174 		break;
7175 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7176 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7177 		break;
7178 	}
7179 
7180 	return insn - insn_buf;
7181 }
7182 
7183 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7184 {
7185 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7186 		return (unsigned long)sk;
7187 
7188 	return (unsigned long)NULL;
7189 }
7190 
7191 const struct bpf_func_proto bpf_tcp_sock_proto = {
7192 	.func		= bpf_tcp_sock,
7193 	.gpl_only	= false,
7194 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
7195 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7196 };
7197 
7198 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7199 {
7200 	sk = sk_to_full_sk(sk);
7201 
7202 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7203 		return (unsigned long)sk;
7204 
7205 	return (unsigned long)NULL;
7206 }
7207 
7208 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7209 	.func		= bpf_get_listener_sock,
7210 	.gpl_only	= false,
7211 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7212 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7213 };
7214 
7215 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7216 {
7217 	unsigned int iphdr_len;
7218 
7219 	switch (skb_protocol(skb, true)) {
7220 	case cpu_to_be16(ETH_P_IP):
7221 		iphdr_len = sizeof(struct iphdr);
7222 		break;
7223 	case cpu_to_be16(ETH_P_IPV6):
7224 		iphdr_len = sizeof(struct ipv6hdr);
7225 		break;
7226 	default:
7227 		return 0;
7228 	}
7229 
7230 	if (skb_headlen(skb) < iphdr_len)
7231 		return 0;
7232 
7233 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7234 		return 0;
7235 
7236 	return INET_ECN_set_ce(skb);
7237 }
7238 
7239 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7240 				  struct bpf_insn_access_aux *info)
7241 {
7242 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7243 		return false;
7244 
7245 	if (off % size != 0)
7246 		return false;
7247 
7248 	switch (off) {
7249 	default:
7250 		return size == sizeof(__u32);
7251 	}
7252 }
7253 
7254 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7255 				    const struct bpf_insn *si,
7256 				    struct bpf_insn *insn_buf,
7257 				    struct bpf_prog *prog, u32 *target_size)
7258 {
7259 	struct bpf_insn *insn = insn_buf;
7260 
7261 #define BPF_XDP_SOCK_GET(FIELD)						\
7262 	do {								\
7263 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7264 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7265 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7266 				      si->dst_reg, si->src_reg,		\
7267 				      offsetof(struct xdp_sock, FIELD)); \
7268 	} while (0)
7269 
7270 	switch (si->off) {
7271 	case offsetof(struct bpf_xdp_sock, queue_id):
7272 		BPF_XDP_SOCK_GET(queue_id);
7273 		break;
7274 	}
7275 
7276 	return insn - insn_buf;
7277 }
7278 
7279 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7280 	.func           = bpf_skb_ecn_set_ce,
7281 	.gpl_only       = false,
7282 	.ret_type       = RET_INTEGER,
7283 	.arg1_type      = ARG_PTR_TO_CTX,
7284 };
7285 
7286 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7287 	   struct tcphdr *, th, u32, th_len)
7288 {
7289 #ifdef CONFIG_SYN_COOKIES
7290 	u32 cookie;
7291 	int ret;
7292 
7293 	if (unlikely(!sk || th_len < sizeof(*th)))
7294 		return -EINVAL;
7295 
7296 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7297 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7298 		return -EINVAL;
7299 
7300 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7301 		return -EINVAL;
7302 
7303 	if (!th->ack || th->rst || th->syn)
7304 		return -ENOENT;
7305 
7306 	if (unlikely(iph_len < sizeof(struct iphdr)))
7307 		return -EINVAL;
7308 
7309 	if (tcp_synq_no_recent_overflow(sk))
7310 		return -ENOENT;
7311 
7312 	cookie = ntohl(th->ack_seq) - 1;
7313 
7314 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7315 	 * same offset so we can cast to the shorter header (struct iphdr).
7316 	 */
7317 	switch (((struct iphdr *)iph)->version) {
7318 	case 4:
7319 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7320 			return -EINVAL;
7321 
7322 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7323 		break;
7324 
7325 #if IS_BUILTIN(CONFIG_IPV6)
7326 	case 6:
7327 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7328 			return -EINVAL;
7329 
7330 		if (sk->sk_family != AF_INET6)
7331 			return -EINVAL;
7332 
7333 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7334 		break;
7335 #endif /* CONFIG_IPV6 */
7336 
7337 	default:
7338 		return -EPROTONOSUPPORT;
7339 	}
7340 
7341 	if (ret > 0)
7342 		return 0;
7343 
7344 	return -ENOENT;
7345 #else
7346 	return -ENOTSUPP;
7347 #endif
7348 }
7349 
7350 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7351 	.func		= bpf_tcp_check_syncookie,
7352 	.gpl_only	= true,
7353 	.pkt_access	= true,
7354 	.ret_type	= RET_INTEGER,
7355 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7356 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7357 	.arg3_type	= ARG_CONST_SIZE,
7358 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7359 	.arg5_type	= ARG_CONST_SIZE,
7360 };
7361 
7362 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7363 	   struct tcphdr *, th, u32, th_len)
7364 {
7365 #ifdef CONFIG_SYN_COOKIES
7366 	u32 cookie;
7367 	u16 mss;
7368 
7369 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7370 		return -EINVAL;
7371 
7372 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7373 		return -EINVAL;
7374 
7375 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7376 		return -ENOENT;
7377 
7378 	if (!th->syn || th->ack || th->fin || th->rst)
7379 		return -EINVAL;
7380 
7381 	if (unlikely(iph_len < sizeof(struct iphdr)))
7382 		return -EINVAL;
7383 
7384 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7385 	 * same offset so we can cast to the shorter header (struct iphdr).
7386 	 */
7387 	switch (((struct iphdr *)iph)->version) {
7388 	case 4:
7389 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7390 			return -EINVAL;
7391 
7392 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7393 		break;
7394 
7395 #if IS_BUILTIN(CONFIG_IPV6)
7396 	case 6:
7397 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7398 			return -EINVAL;
7399 
7400 		if (sk->sk_family != AF_INET6)
7401 			return -EINVAL;
7402 
7403 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7404 		break;
7405 #endif /* CONFIG_IPV6 */
7406 
7407 	default:
7408 		return -EPROTONOSUPPORT;
7409 	}
7410 	if (mss == 0)
7411 		return -ENOENT;
7412 
7413 	return cookie | ((u64)mss << 32);
7414 #else
7415 	return -EOPNOTSUPP;
7416 #endif /* CONFIG_SYN_COOKIES */
7417 }
7418 
7419 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7420 	.func		= bpf_tcp_gen_syncookie,
7421 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7422 	.pkt_access	= true,
7423 	.ret_type	= RET_INTEGER,
7424 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7425 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7426 	.arg3_type	= ARG_CONST_SIZE,
7427 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7428 	.arg5_type	= ARG_CONST_SIZE,
7429 };
7430 
7431 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7432 {
7433 	if (!sk || flags != 0)
7434 		return -EINVAL;
7435 	if (!skb_at_tc_ingress(skb))
7436 		return -EOPNOTSUPP;
7437 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7438 		return -ENETUNREACH;
7439 	if (sk_unhashed(sk))
7440 		return -EOPNOTSUPP;
7441 	if (sk_is_refcounted(sk) &&
7442 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7443 		return -ENOENT;
7444 
7445 	skb_orphan(skb);
7446 	skb->sk = sk;
7447 	skb->destructor = sock_pfree;
7448 
7449 	return 0;
7450 }
7451 
7452 static const struct bpf_func_proto bpf_sk_assign_proto = {
7453 	.func		= bpf_sk_assign,
7454 	.gpl_only	= false,
7455 	.ret_type	= RET_INTEGER,
7456 	.arg1_type      = ARG_PTR_TO_CTX,
7457 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7458 	.arg3_type	= ARG_ANYTHING,
7459 };
7460 
7461 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7462 				    u8 search_kind, const u8 *magic,
7463 				    u8 magic_len, bool *eol)
7464 {
7465 	u8 kind, kind_len;
7466 
7467 	*eol = false;
7468 
7469 	while (op < opend) {
7470 		kind = op[0];
7471 
7472 		if (kind == TCPOPT_EOL) {
7473 			*eol = true;
7474 			return ERR_PTR(-ENOMSG);
7475 		} else if (kind == TCPOPT_NOP) {
7476 			op++;
7477 			continue;
7478 		}
7479 
7480 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7481 			/* Something is wrong in the received header.
7482 			 * Follow the TCP stack's tcp_parse_options()
7483 			 * and just bail here.
7484 			 */
7485 			return ERR_PTR(-EFAULT);
7486 
7487 		kind_len = op[1];
7488 		if (search_kind == kind) {
7489 			if (!magic_len)
7490 				return op;
7491 
7492 			if (magic_len > kind_len - 2)
7493 				return ERR_PTR(-ENOMSG);
7494 
7495 			if (!memcmp(&op[2], magic, magic_len))
7496 				return op;
7497 		}
7498 
7499 		op += kind_len;
7500 	}
7501 
7502 	return ERR_PTR(-ENOMSG);
7503 }
7504 
7505 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7506 	   void *, search_res, u32, len, u64, flags)
7507 {
7508 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7509 	const u8 *op, *opend, *magic, *search = search_res;
7510 	u8 search_kind, search_len, copy_len, magic_len;
7511 	int ret;
7512 
7513 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7514 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7515 	 * and this helper disallow loading them also.
7516 	 */
7517 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7518 		return -EINVAL;
7519 
7520 	search_kind = search[0];
7521 	search_len = search[1];
7522 
7523 	if (search_len > len || search_kind == TCPOPT_NOP ||
7524 	    search_kind == TCPOPT_EOL)
7525 		return -EINVAL;
7526 
7527 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7528 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7529 		if (search_len != 4 && search_len != 6)
7530 			return -EINVAL;
7531 		magic = &search[2];
7532 		magic_len = search_len - 2;
7533 	} else {
7534 		if (search_len)
7535 			return -EINVAL;
7536 		magic = NULL;
7537 		magic_len = 0;
7538 	}
7539 
7540 	if (load_syn) {
7541 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7542 		if (ret < 0)
7543 			return ret;
7544 
7545 		opend = op + ret;
7546 		op += sizeof(struct tcphdr);
7547 	} else {
7548 		if (!bpf_sock->skb ||
7549 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7550 			/* This bpf_sock->op cannot call this helper */
7551 			return -EPERM;
7552 
7553 		opend = bpf_sock->skb_data_end;
7554 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7555 	}
7556 
7557 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7558 				&eol);
7559 	if (IS_ERR(op))
7560 		return PTR_ERR(op);
7561 
7562 	copy_len = op[1];
7563 	ret = copy_len;
7564 	if (copy_len > len) {
7565 		ret = -ENOSPC;
7566 		copy_len = len;
7567 	}
7568 
7569 	memcpy(search_res, op, copy_len);
7570 	return ret;
7571 }
7572 
7573 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7574 	.func		= bpf_sock_ops_load_hdr_opt,
7575 	.gpl_only	= false,
7576 	.ret_type	= RET_INTEGER,
7577 	.arg1_type	= ARG_PTR_TO_CTX,
7578 	.arg2_type	= ARG_PTR_TO_MEM,
7579 	.arg3_type	= ARG_CONST_SIZE,
7580 	.arg4_type	= ARG_ANYTHING,
7581 };
7582 
7583 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7584 	   const void *, from, u32, len, u64, flags)
7585 {
7586 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7587 	const u8 *op, *new_op, *magic = NULL;
7588 	struct sk_buff *skb;
7589 	bool eol;
7590 
7591 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7592 		return -EPERM;
7593 
7594 	if (len < 2 || flags)
7595 		return -EINVAL;
7596 
7597 	new_op = from;
7598 	new_kind = new_op[0];
7599 	new_kind_len = new_op[1];
7600 
7601 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7602 	    new_kind == TCPOPT_EOL)
7603 		return -EINVAL;
7604 
7605 	if (new_kind_len > bpf_sock->remaining_opt_len)
7606 		return -ENOSPC;
7607 
7608 	/* 253 is another experimental kind */
7609 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7610 		if (new_kind_len < 4)
7611 			return -EINVAL;
7612 		/* Match for the 2 byte magic also.
7613 		 * RFC 6994: the magic could be 2 or 4 bytes.
7614 		 * Hence, matching by 2 byte only is on the
7615 		 * conservative side but it is the right
7616 		 * thing to do for the 'search-for-duplication'
7617 		 * purpose.
7618 		 */
7619 		magic = &new_op[2];
7620 		magic_len = 2;
7621 	}
7622 
7623 	/* Check for duplication */
7624 	skb = bpf_sock->skb;
7625 	op = skb->data + sizeof(struct tcphdr);
7626 	opend = bpf_sock->skb_data_end;
7627 
7628 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7629 				&eol);
7630 	if (!IS_ERR(op))
7631 		return -EEXIST;
7632 
7633 	if (PTR_ERR(op) != -ENOMSG)
7634 		return PTR_ERR(op);
7635 
7636 	if (eol)
7637 		/* The option has been ended.  Treat it as no more
7638 		 * header option can be written.
7639 		 */
7640 		return -ENOSPC;
7641 
7642 	/* No duplication found.  Store the header option. */
7643 	memcpy(opend, from, new_kind_len);
7644 
7645 	bpf_sock->remaining_opt_len -= new_kind_len;
7646 	bpf_sock->skb_data_end += new_kind_len;
7647 
7648 	return 0;
7649 }
7650 
7651 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7652 	.func		= bpf_sock_ops_store_hdr_opt,
7653 	.gpl_only	= false,
7654 	.ret_type	= RET_INTEGER,
7655 	.arg1_type	= ARG_PTR_TO_CTX,
7656 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7657 	.arg3_type	= ARG_CONST_SIZE,
7658 	.arg4_type	= ARG_ANYTHING,
7659 };
7660 
7661 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7662 	   u32, len, u64, flags)
7663 {
7664 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7665 		return -EPERM;
7666 
7667 	if (flags || len < 2)
7668 		return -EINVAL;
7669 
7670 	if (len > bpf_sock->remaining_opt_len)
7671 		return -ENOSPC;
7672 
7673 	bpf_sock->remaining_opt_len -= len;
7674 
7675 	return 0;
7676 }
7677 
7678 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7679 	.func		= bpf_sock_ops_reserve_hdr_opt,
7680 	.gpl_only	= false,
7681 	.ret_type	= RET_INTEGER,
7682 	.arg1_type	= ARG_PTR_TO_CTX,
7683 	.arg2_type	= ARG_ANYTHING,
7684 	.arg3_type	= ARG_ANYTHING,
7685 };
7686 
7687 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7688 	   u64, tstamp, u32, tstamp_type)
7689 {
7690 	/* skb_clear_delivery_time() is done for inet protocol */
7691 	if (skb->protocol != htons(ETH_P_IP) &&
7692 	    skb->protocol != htons(ETH_P_IPV6))
7693 		return -EOPNOTSUPP;
7694 
7695 	switch (tstamp_type) {
7696 	case BPF_SKB_TSTAMP_DELIVERY_MONO:
7697 		if (!tstamp)
7698 			return -EINVAL;
7699 		skb->tstamp = tstamp;
7700 		skb->mono_delivery_time = 1;
7701 		break;
7702 	case BPF_SKB_TSTAMP_UNSPEC:
7703 		if (tstamp)
7704 			return -EINVAL;
7705 		skb->tstamp = 0;
7706 		skb->mono_delivery_time = 0;
7707 		break;
7708 	default:
7709 		return -EINVAL;
7710 	}
7711 
7712 	return 0;
7713 }
7714 
7715 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7716 	.func           = bpf_skb_set_tstamp,
7717 	.gpl_only       = false,
7718 	.ret_type       = RET_INTEGER,
7719 	.arg1_type      = ARG_PTR_TO_CTX,
7720 	.arg2_type      = ARG_ANYTHING,
7721 	.arg3_type      = ARG_ANYTHING,
7722 };
7723 
7724 #ifdef CONFIG_SYN_COOKIES
7725 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7726 	   struct tcphdr *, th, u32, th_len)
7727 {
7728 	u32 cookie;
7729 	u16 mss;
7730 
7731 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7732 		return -EINVAL;
7733 
7734 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7735 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7736 
7737 	return cookie | ((u64)mss << 32);
7738 }
7739 
7740 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7741 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7742 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7743 	.pkt_access	= true,
7744 	.ret_type	= RET_INTEGER,
7745 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7746 	.arg1_size	= sizeof(struct iphdr),
7747 	.arg2_type	= ARG_PTR_TO_MEM,
7748 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7749 };
7750 
7751 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7752 	   struct tcphdr *, th, u32, th_len)
7753 {
7754 #if IS_BUILTIN(CONFIG_IPV6)
7755 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7756 		sizeof(struct ipv6hdr);
7757 	u32 cookie;
7758 	u16 mss;
7759 
7760 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7761 		return -EINVAL;
7762 
7763 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7764 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7765 
7766 	return cookie | ((u64)mss << 32);
7767 #else
7768 	return -EPROTONOSUPPORT;
7769 #endif
7770 }
7771 
7772 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7773 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7774 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7775 	.pkt_access	= true,
7776 	.ret_type	= RET_INTEGER,
7777 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7778 	.arg1_size	= sizeof(struct ipv6hdr),
7779 	.arg2_type	= ARG_PTR_TO_MEM,
7780 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7781 };
7782 
7783 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7784 	   struct tcphdr *, th)
7785 {
7786 	u32 cookie = ntohl(th->ack_seq) - 1;
7787 
7788 	if (__cookie_v4_check(iph, th, cookie) > 0)
7789 		return 0;
7790 
7791 	return -EACCES;
7792 }
7793 
7794 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7795 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7796 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7797 	.pkt_access	= true,
7798 	.ret_type	= RET_INTEGER,
7799 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7800 	.arg1_size	= sizeof(struct iphdr),
7801 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7802 	.arg2_size	= sizeof(struct tcphdr),
7803 };
7804 
7805 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7806 	   struct tcphdr *, th)
7807 {
7808 #if IS_BUILTIN(CONFIG_IPV6)
7809 	u32 cookie = ntohl(th->ack_seq) - 1;
7810 
7811 	if (__cookie_v6_check(iph, th, cookie) > 0)
7812 		return 0;
7813 
7814 	return -EACCES;
7815 #else
7816 	return -EPROTONOSUPPORT;
7817 #endif
7818 }
7819 
7820 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7821 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7822 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7823 	.pkt_access	= true,
7824 	.ret_type	= RET_INTEGER,
7825 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7826 	.arg1_size	= sizeof(struct ipv6hdr),
7827 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7828 	.arg2_size	= sizeof(struct tcphdr),
7829 };
7830 #endif /* CONFIG_SYN_COOKIES */
7831 
7832 #endif /* CONFIG_INET */
7833 
7834 bool bpf_helper_changes_pkt_data(void *func)
7835 {
7836 	if (func == bpf_skb_vlan_push ||
7837 	    func == bpf_skb_vlan_pop ||
7838 	    func == bpf_skb_store_bytes ||
7839 	    func == bpf_skb_change_proto ||
7840 	    func == bpf_skb_change_head ||
7841 	    func == sk_skb_change_head ||
7842 	    func == bpf_skb_change_tail ||
7843 	    func == sk_skb_change_tail ||
7844 	    func == bpf_skb_adjust_room ||
7845 	    func == sk_skb_adjust_room ||
7846 	    func == bpf_skb_pull_data ||
7847 	    func == sk_skb_pull_data ||
7848 	    func == bpf_clone_redirect ||
7849 	    func == bpf_l3_csum_replace ||
7850 	    func == bpf_l4_csum_replace ||
7851 	    func == bpf_xdp_adjust_head ||
7852 	    func == bpf_xdp_adjust_meta ||
7853 	    func == bpf_msg_pull_data ||
7854 	    func == bpf_msg_push_data ||
7855 	    func == bpf_msg_pop_data ||
7856 	    func == bpf_xdp_adjust_tail ||
7857 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7858 	    func == bpf_lwt_seg6_store_bytes ||
7859 	    func == bpf_lwt_seg6_adjust_srh ||
7860 	    func == bpf_lwt_seg6_action ||
7861 #endif
7862 #ifdef CONFIG_INET
7863 	    func == bpf_sock_ops_store_hdr_opt ||
7864 #endif
7865 	    func == bpf_lwt_in_push_encap ||
7866 	    func == bpf_lwt_xmit_push_encap)
7867 		return true;
7868 
7869 	return false;
7870 }
7871 
7872 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7873 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7874 
7875 static const struct bpf_func_proto *
7876 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7877 {
7878 	const struct bpf_func_proto *func_proto;
7879 
7880 	func_proto = cgroup_common_func_proto(func_id, prog);
7881 	if (func_proto)
7882 		return func_proto;
7883 
7884 	func_proto = cgroup_current_func_proto(func_id, prog);
7885 	if (func_proto)
7886 		return func_proto;
7887 
7888 	switch (func_id) {
7889 	case BPF_FUNC_get_socket_cookie:
7890 		return &bpf_get_socket_cookie_sock_proto;
7891 	case BPF_FUNC_get_netns_cookie:
7892 		return &bpf_get_netns_cookie_sock_proto;
7893 	case BPF_FUNC_perf_event_output:
7894 		return &bpf_event_output_data_proto;
7895 	case BPF_FUNC_sk_storage_get:
7896 		return &bpf_sk_storage_get_cg_sock_proto;
7897 	case BPF_FUNC_ktime_get_coarse_ns:
7898 		return &bpf_ktime_get_coarse_ns_proto;
7899 	default:
7900 		return bpf_base_func_proto(func_id);
7901 	}
7902 }
7903 
7904 static const struct bpf_func_proto *
7905 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7906 {
7907 	const struct bpf_func_proto *func_proto;
7908 
7909 	func_proto = cgroup_common_func_proto(func_id, prog);
7910 	if (func_proto)
7911 		return func_proto;
7912 
7913 	func_proto = cgroup_current_func_proto(func_id, prog);
7914 	if (func_proto)
7915 		return func_proto;
7916 
7917 	switch (func_id) {
7918 	case BPF_FUNC_bind:
7919 		switch (prog->expected_attach_type) {
7920 		case BPF_CGROUP_INET4_CONNECT:
7921 		case BPF_CGROUP_INET6_CONNECT:
7922 			return &bpf_bind_proto;
7923 		default:
7924 			return NULL;
7925 		}
7926 	case BPF_FUNC_get_socket_cookie:
7927 		return &bpf_get_socket_cookie_sock_addr_proto;
7928 	case BPF_FUNC_get_netns_cookie:
7929 		return &bpf_get_netns_cookie_sock_addr_proto;
7930 	case BPF_FUNC_perf_event_output:
7931 		return &bpf_event_output_data_proto;
7932 #ifdef CONFIG_INET
7933 	case BPF_FUNC_sk_lookup_tcp:
7934 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7935 	case BPF_FUNC_sk_lookup_udp:
7936 		return &bpf_sock_addr_sk_lookup_udp_proto;
7937 	case BPF_FUNC_sk_release:
7938 		return &bpf_sk_release_proto;
7939 	case BPF_FUNC_skc_lookup_tcp:
7940 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7941 #endif /* CONFIG_INET */
7942 	case BPF_FUNC_sk_storage_get:
7943 		return &bpf_sk_storage_get_proto;
7944 	case BPF_FUNC_sk_storage_delete:
7945 		return &bpf_sk_storage_delete_proto;
7946 	case BPF_FUNC_setsockopt:
7947 		switch (prog->expected_attach_type) {
7948 		case BPF_CGROUP_INET4_BIND:
7949 		case BPF_CGROUP_INET6_BIND:
7950 		case BPF_CGROUP_INET4_CONNECT:
7951 		case BPF_CGROUP_INET6_CONNECT:
7952 		case BPF_CGROUP_UDP4_RECVMSG:
7953 		case BPF_CGROUP_UDP6_RECVMSG:
7954 		case BPF_CGROUP_UDP4_SENDMSG:
7955 		case BPF_CGROUP_UDP6_SENDMSG:
7956 		case BPF_CGROUP_INET4_GETPEERNAME:
7957 		case BPF_CGROUP_INET6_GETPEERNAME:
7958 		case BPF_CGROUP_INET4_GETSOCKNAME:
7959 		case BPF_CGROUP_INET6_GETSOCKNAME:
7960 			return &bpf_sock_addr_setsockopt_proto;
7961 		default:
7962 			return NULL;
7963 		}
7964 	case BPF_FUNC_getsockopt:
7965 		switch (prog->expected_attach_type) {
7966 		case BPF_CGROUP_INET4_BIND:
7967 		case BPF_CGROUP_INET6_BIND:
7968 		case BPF_CGROUP_INET4_CONNECT:
7969 		case BPF_CGROUP_INET6_CONNECT:
7970 		case BPF_CGROUP_UDP4_RECVMSG:
7971 		case BPF_CGROUP_UDP6_RECVMSG:
7972 		case BPF_CGROUP_UDP4_SENDMSG:
7973 		case BPF_CGROUP_UDP6_SENDMSG:
7974 		case BPF_CGROUP_INET4_GETPEERNAME:
7975 		case BPF_CGROUP_INET6_GETPEERNAME:
7976 		case BPF_CGROUP_INET4_GETSOCKNAME:
7977 		case BPF_CGROUP_INET6_GETSOCKNAME:
7978 			return &bpf_sock_addr_getsockopt_proto;
7979 		default:
7980 			return NULL;
7981 		}
7982 	default:
7983 		return bpf_sk_base_func_proto(func_id);
7984 	}
7985 }
7986 
7987 static const struct bpf_func_proto *
7988 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7989 {
7990 	switch (func_id) {
7991 	case BPF_FUNC_skb_load_bytes:
7992 		return &bpf_skb_load_bytes_proto;
7993 	case BPF_FUNC_skb_load_bytes_relative:
7994 		return &bpf_skb_load_bytes_relative_proto;
7995 	case BPF_FUNC_get_socket_cookie:
7996 		return &bpf_get_socket_cookie_proto;
7997 	case BPF_FUNC_get_socket_uid:
7998 		return &bpf_get_socket_uid_proto;
7999 	case BPF_FUNC_perf_event_output:
8000 		return &bpf_skb_event_output_proto;
8001 	default:
8002 		return bpf_sk_base_func_proto(func_id);
8003 	}
8004 }
8005 
8006 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8007 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8008 
8009 static const struct bpf_func_proto *
8010 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8011 {
8012 	const struct bpf_func_proto *func_proto;
8013 
8014 	func_proto = cgroup_common_func_proto(func_id, prog);
8015 	if (func_proto)
8016 		return func_proto;
8017 
8018 	switch (func_id) {
8019 	case BPF_FUNC_sk_fullsock:
8020 		return &bpf_sk_fullsock_proto;
8021 	case BPF_FUNC_sk_storage_get:
8022 		return &bpf_sk_storage_get_proto;
8023 	case BPF_FUNC_sk_storage_delete:
8024 		return &bpf_sk_storage_delete_proto;
8025 	case BPF_FUNC_perf_event_output:
8026 		return &bpf_skb_event_output_proto;
8027 #ifdef CONFIG_SOCK_CGROUP_DATA
8028 	case BPF_FUNC_skb_cgroup_id:
8029 		return &bpf_skb_cgroup_id_proto;
8030 	case BPF_FUNC_skb_ancestor_cgroup_id:
8031 		return &bpf_skb_ancestor_cgroup_id_proto;
8032 	case BPF_FUNC_sk_cgroup_id:
8033 		return &bpf_sk_cgroup_id_proto;
8034 	case BPF_FUNC_sk_ancestor_cgroup_id:
8035 		return &bpf_sk_ancestor_cgroup_id_proto;
8036 #endif
8037 #ifdef CONFIG_INET
8038 	case BPF_FUNC_sk_lookup_tcp:
8039 		return &bpf_sk_lookup_tcp_proto;
8040 	case BPF_FUNC_sk_lookup_udp:
8041 		return &bpf_sk_lookup_udp_proto;
8042 	case BPF_FUNC_sk_release:
8043 		return &bpf_sk_release_proto;
8044 	case BPF_FUNC_skc_lookup_tcp:
8045 		return &bpf_skc_lookup_tcp_proto;
8046 	case BPF_FUNC_tcp_sock:
8047 		return &bpf_tcp_sock_proto;
8048 	case BPF_FUNC_get_listener_sock:
8049 		return &bpf_get_listener_sock_proto;
8050 	case BPF_FUNC_skb_ecn_set_ce:
8051 		return &bpf_skb_ecn_set_ce_proto;
8052 #endif
8053 	default:
8054 		return sk_filter_func_proto(func_id, prog);
8055 	}
8056 }
8057 
8058 static const struct bpf_func_proto *
8059 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8060 {
8061 	switch (func_id) {
8062 	case BPF_FUNC_skb_store_bytes:
8063 		return &bpf_skb_store_bytes_proto;
8064 	case BPF_FUNC_skb_load_bytes:
8065 		return &bpf_skb_load_bytes_proto;
8066 	case BPF_FUNC_skb_load_bytes_relative:
8067 		return &bpf_skb_load_bytes_relative_proto;
8068 	case BPF_FUNC_skb_pull_data:
8069 		return &bpf_skb_pull_data_proto;
8070 	case BPF_FUNC_csum_diff:
8071 		return &bpf_csum_diff_proto;
8072 	case BPF_FUNC_csum_update:
8073 		return &bpf_csum_update_proto;
8074 	case BPF_FUNC_csum_level:
8075 		return &bpf_csum_level_proto;
8076 	case BPF_FUNC_l3_csum_replace:
8077 		return &bpf_l3_csum_replace_proto;
8078 	case BPF_FUNC_l4_csum_replace:
8079 		return &bpf_l4_csum_replace_proto;
8080 	case BPF_FUNC_clone_redirect:
8081 		return &bpf_clone_redirect_proto;
8082 	case BPF_FUNC_get_cgroup_classid:
8083 		return &bpf_get_cgroup_classid_proto;
8084 	case BPF_FUNC_skb_vlan_push:
8085 		return &bpf_skb_vlan_push_proto;
8086 	case BPF_FUNC_skb_vlan_pop:
8087 		return &bpf_skb_vlan_pop_proto;
8088 	case BPF_FUNC_skb_change_proto:
8089 		return &bpf_skb_change_proto_proto;
8090 	case BPF_FUNC_skb_change_type:
8091 		return &bpf_skb_change_type_proto;
8092 	case BPF_FUNC_skb_adjust_room:
8093 		return &bpf_skb_adjust_room_proto;
8094 	case BPF_FUNC_skb_change_tail:
8095 		return &bpf_skb_change_tail_proto;
8096 	case BPF_FUNC_skb_change_head:
8097 		return &bpf_skb_change_head_proto;
8098 	case BPF_FUNC_skb_get_tunnel_key:
8099 		return &bpf_skb_get_tunnel_key_proto;
8100 	case BPF_FUNC_skb_set_tunnel_key:
8101 		return bpf_get_skb_set_tunnel_proto(func_id);
8102 	case BPF_FUNC_skb_get_tunnel_opt:
8103 		return &bpf_skb_get_tunnel_opt_proto;
8104 	case BPF_FUNC_skb_set_tunnel_opt:
8105 		return bpf_get_skb_set_tunnel_proto(func_id);
8106 	case BPF_FUNC_redirect:
8107 		return &bpf_redirect_proto;
8108 	case BPF_FUNC_redirect_neigh:
8109 		return &bpf_redirect_neigh_proto;
8110 	case BPF_FUNC_redirect_peer:
8111 		return &bpf_redirect_peer_proto;
8112 	case BPF_FUNC_get_route_realm:
8113 		return &bpf_get_route_realm_proto;
8114 	case BPF_FUNC_get_hash_recalc:
8115 		return &bpf_get_hash_recalc_proto;
8116 	case BPF_FUNC_set_hash_invalid:
8117 		return &bpf_set_hash_invalid_proto;
8118 	case BPF_FUNC_set_hash:
8119 		return &bpf_set_hash_proto;
8120 	case BPF_FUNC_perf_event_output:
8121 		return &bpf_skb_event_output_proto;
8122 	case BPF_FUNC_get_smp_processor_id:
8123 		return &bpf_get_smp_processor_id_proto;
8124 	case BPF_FUNC_skb_under_cgroup:
8125 		return &bpf_skb_under_cgroup_proto;
8126 	case BPF_FUNC_get_socket_cookie:
8127 		return &bpf_get_socket_cookie_proto;
8128 	case BPF_FUNC_get_socket_uid:
8129 		return &bpf_get_socket_uid_proto;
8130 	case BPF_FUNC_fib_lookup:
8131 		return &bpf_skb_fib_lookup_proto;
8132 	case BPF_FUNC_check_mtu:
8133 		return &bpf_skb_check_mtu_proto;
8134 	case BPF_FUNC_sk_fullsock:
8135 		return &bpf_sk_fullsock_proto;
8136 	case BPF_FUNC_sk_storage_get:
8137 		return &bpf_sk_storage_get_proto;
8138 	case BPF_FUNC_sk_storage_delete:
8139 		return &bpf_sk_storage_delete_proto;
8140 #ifdef CONFIG_XFRM
8141 	case BPF_FUNC_skb_get_xfrm_state:
8142 		return &bpf_skb_get_xfrm_state_proto;
8143 #endif
8144 #ifdef CONFIG_CGROUP_NET_CLASSID
8145 	case BPF_FUNC_skb_cgroup_classid:
8146 		return &bpf_skb_cgroup_classid_proto;
8147 #endif
8148 #ifdef CONFIG_SOCK_CGROUP_DATA
8149 	case BPF_FUNC_skb_cgroup_id:
8150 		return &bpf_skb_cgroup_id_proto;
8151 	case BPF_FUNC_skb_ancestor_cgroup_id:
8152 		return &bpf_skb_ancestor_cgroup_id_proto;
8153 #endif
8154 #ifdef CONFIG_INET
8155 	case BPF_FUNC_sk_lookup_tcp:
8156 		return &bpf_tc_sk_lookup_tcp_proto;
8157 	case BPF_FUNC_sk_lookup_udp:
8158 		return &bpf_tc_sk_lookup_udp_proto;
8159 	case BPF_FUNC_sk_release:
8160 		return &bpf_sk_release_proto;
8161 	case BPF_FUNC_tcp_sock:
8162 		return &bpf_tcp_sock_proto;
8163 	case BPF_FUNC_get_listener_sock:
8164 		return &bpf_get_listener_sock_proto;
8165 	case BPF_FUNC_skc_lookup_tcp:
8166 		return &bpf_tc_skc_lookup_tcp_proto;
8167 	case BPF_FUNC_tcp_check_syncookie:
8168 		return &bpf_tcp_check_syncookie_proto;
8169 	case BPF_FUNC_skb_ecn_set_ce:
8170 		return &bpf_skb_ecn_set_ce_proto;
8171 	case BPF_FUNC_tcp_gen_syncookie:
8172 		return &bpf_tcp_gen_syncookie_proto;
8173 	case BPF_FUNC_sk_assign:
8174 		return &bpf_sk_assign_proto;
8175 	case BPF_FUNC_skb_set_tstamp:
8176 		return &bpf_skb_set_tstamp_proto;
8177 #ifdef CONFIG_SYN_COOKIES
8178 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8179 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8180 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8181 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8182 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8183 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8184 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8185 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8186 #endif
8187 #endif
8188 	default:
8189 		return bpf_sk_base_func_proto(func_id);
8190 	}
8191 }
8192 
8193 static const struct bpf_func_proto *
8194 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8195 {
8196 	switch (func_id) {
8197 	case BPF_FUNC_perf_event_output:
8198 		return &bpf_xdp_event_output_proto;
8199 	case BPF_FUNC_get_smp_processor_id:
8200 		return &bpf_get_smp_processor_id_proto;
8201 	case BPF_FUNC_csum_diff:
8202 		return &bpf_csum_diff_proto;
8203 	case BPF_FUNC_xdp_adjust_head:
8204 		return &bpf_xdp_adjust_head_proto;
8205 	case BPF_FUNC_xdp_adjust_meta:
8206 		return &bpf_xdp_adjust_meta_proto;
8207 	case BPF_FUNC_redirect:
8208 		return &bpf_xdp_redirect_proto;
8209 	case BPF_FUNC_redirect_map:
8210 		return &bpf_xdp_redirect_map_proto;
8211 	case BPF_FUNC_xdp_adjust_tail:
8212 		return &bpf_xdp_adjust_tail_proto;
8213 	case BPF_FUNC_xdp_get_buff_len:
8214 		return &bpf_xdp_get_buff_len_proto;
8215 	case BPF_FUNC_xdp_load_bytes:
8216 		return &bpf_xdp_load_bytes_proto;
8217 	case BPF_FUNC_xdp_store_bytes:
8218 		return &bpf_xdp_store_bytes_proto;
8219 	case BPF_FUNC_fib_lookup:
8220 		return &bpf_xdp_fib_lookup_proto;
8221 	case BPF_FUNC_check_mtu:
8222 		return &bpf_xdp_check_mtu_proto;
8223 #ifdef CONFIG_INET
8224 	case BPF_FUNC_sk_lookup_udp:
8225 		return &bpf_xdp_sk_lookup_udp_proto;
8226 	case BPF_FUNC_sk_lookup_tcp:
8227 		return &bpf_xdp_sk_lookup_tcp_proto;
8228 	case BPF_FUNC_sk_release:
8229 		return &bpf_sk_release_proto;
8230 	case BPF_FUNC_skc_lookup_tcp:
8231 		return &bpf_xdp_skc_lookup_tcp_proto;
8232 	case BPF_FUNC_tcp_check_syncookie:
8233 		return &bpf_tcp_check_syncookie_proto;
8234 	case BPF_FUNC_tcp_gen_syncookie:
8235 		return &bpf_tcp_gen_syncookie_proto;
8236 #ifdef CONFIG_SYN_COOKIES
8237 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8238 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8239 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8240 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8241 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8242 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8243 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8244 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8245 #endif
8246 #endif
8247 	default:
8248 		return bpf_sk_base_func_proto(func_id);
8249 	}
8250 
8251 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8252 	/* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8253 	 * kfuncs are defined in two different modules, and we want to be able
8254 	 * to use them interchangably with the same BTF type ID. Because modules
8255 	 * can't de-duplicate BTF IDs between each other, we need the type to be
8256 	 * referenced in the vmlinux BTF or the verifier will get confused about
8257 	 * the different types. So we add this dummy type reference which will
8258 	 * be included in vmlinux BTF, allowing both modules to refer to the
8259 	 * same type ID.
8260 	 */
8261 	BTF_TYPE_EMIT(struct nf_conn___init);
8262 #endif
8263 }
8264 
8265 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8266 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8267 
8268 static const struct bpf_func_proto *
8269 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8270 {
8271 	const struct bpf_func_proto *func_proto;
8272 
8273 	func_proto = cgroup_common_func_proto(func_id, prog);
8274 	if (func_proto)
8275 		return func_proto;
8276 
8277 	switch (func_id) {
8278 	case BPF_FUNC_setsockopt:
8279 		return &bpf_sock_ops_setsockopt_proto;
8280 	case BPF_FUNC_getsockopt:
8281 		return &bpf_sock_ops_getsockopt_proto;
8282 	case BPF_FUNC_sock_ops_cb_flags_set:
8283 		return &bpf_sock_ops_cb_flags_set_proto;
8284 	case BPF_FUNC_sock_map_update:
8285 		return &bpf_sock_map_update_proto;
8286 	case BPF_FUNC_sock_hash_update:
8287 		return &bpf_sock_hash_update_proto;
8288 	case BPF_FUNC_get_socket_cookie:
8289 		return &bpf_get_socket_cookie_sock_ops_proto;
8290 	case BPF_FUNC_perf_event_output:
8291 		return &bpf_event_output_data_proto;
8292 	case BPF_FUNC_sk_storage_get:
8293 		return &bpf_sk_storage_get_proto;
8294 	case BPF_FUNC_sk_storage_delete:
8295 		return &bpf_sk_storage_delete_proto;
8296 	case BPF_FUNC_get_netns_cookie:
8297 		return &bpf_get_netns_cookie_sock_ops_proto;
8298 #ifdef CONFIG_INET
8299 	case BPF_FUNC_load_hdr_opt:
8300 		return &bpf_sock_ops_load_hdr_opt_proto;
8301 	case BPF_FUNC_store_hdr_opt:
8302 		return &bpf_sock_ops_store_hdr_opt_proto;
8303 	case BPF_FUNC_reserve_hdr_opt:
8304 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8305 	case BPF_FUNC_tcp_sock:
8306 		return &bpf_tcp_sock_proto;
8307 #endif /* CONFIG_INET */
8308 	default:
8309 		return bpf_sk_base_func_proto(func_id);
8310 	}
8311 }
8312 
8313 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8314 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8315 
8316 static const struct bpf_func_proto *
8317 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8318 {
8319 	switch (func_id) {
8320 	case BPF_FUNC_msg_redirect_map:
8321 		return &bpf_msg_redirect_map_proto;
8322 	case BPF_FUNC_msg_redirect_hash:
8323 		return &bpf_msg_redirect_hash_proto;
8324 	case BPF_FUNC_msg_apply_bytes:
8325 		return &bpf_msg_apply_bytes_proto;
8326 	case BPF_FUNC_msg_cork_bytes:
8327 		return &bpf_msg_cork_bytes_proto;
8328 	case BPF_FUNC_msg_pull_data:
8329 		return &bpf_msg_pull_data_proto;
8330 	case BPF_FUNC_msg_push_data:
8331 		return &bpf_msg_push_data_proto;
8332 	case BPF_FUNC_msg_pop_data:
8333 		return &bpf_msg_pop_data_proto;
8334 	case BPF_FUNC_perf_event_output:
8335 		return &bpf_event_output_data_proto;
8336 	case BPF_FUNC_get_current_uid_gid:
8337 		return &bpf_get_current_uid_gid_proto;
8338 	case BPF_FUNC_get_current_pid_tgid:
8339 		return &bpf_get_current_pid_tgid_proto;
8340 	case BPF_FUNC_sk_storage_get:
8341 		return &bpf_sk_storage_get_proto;
8342 	case BPF_FUNC_sk_storage_delete:
8343 		return &bpf_sk_storage_delete_proto;
8344 	case BPF_FUNC_get_netns_cookie:
8345 		return &bpf_get_netns_cookie_sk_msg_proto;
8346 #ifdef CONFIG_CGROUP_NET_CLASSID
8347 	case BPF_FUNC_get_cgroup_classid:
8348 		return &bpf_get_cgroup_classid_curr_proto;
8349 #endif
8350 	default:
8351 		return bpf_sk_base_func_proto(func_id);
8352 	}
8353 }
8354 
8355 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8356 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8357 
8358 static const struct bpf_func_proto *
8359 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8360 {
8361 	switch (func_id) {
8362 	case BPF_FUNC_skb_store_bytes:
8363 		return &bpf_skb_store_bytes_proto;
8364 	case BPF_FUNC_skb_load_bytes:
8365 		return &bpf_skb_load_bytes_proto;
8366 	case BPF_FUNC_skb_pull_data:
8367 		return &sk_skb_pull_data_proto;
8368 	case BPF_FUNC_skb_change_tail:
8369 		return &sk_skb_change_tail_proto;
8370 	case BPF_FUNC_skb_change_head:
8371 		return &sk_skb_change_head_proto;
8372 	case BPF_FUNC_skb_adjust_room:
8373 		return &sk_skb_adjust_room_proto;
8374 	case BPF_FUNC_get_socket_cookie:
8375 		return &bpf_get_socket_cookie_proto;
8376 	case BPF_FUNC_get_socket_uid:
8377 		return &bpf_get_socket_uid_proto;
8378 	case BPF_FUNC_sk_redirect_map:
8379 		return &bpf_sk_redirect_map_proto;
8380 	case BPF_FUNC_sk_redirect_hash:
8381 		return &bpf_sk_redirect_hash_proto;
8382 	case BPF_FUNC_perf_event_output:
8383 		return &bpf_skb_event_output_proto;
8384 #ifdef CONFIG_INET
8385 	case BPF_FUNC_sk_lookup_tcp:
8386 		return &bpf_sk_lookup_tcp_proto;
8387 	case BPF_FUNC_sk_lookup_udp:
8388 		return &bpf_sk_lookup_udp_proto;
8389 	case BPF_FUNC_sk_release:
8390 		return &bpf_sk_release_proto;
8391 	case BPF_FUNC_skc_lookup_tcp:
8392 		return &bpf_skc_lookup_tcp_proto;
8393 #endif
8394 	default:
8395 		return bpf_sk_base_func_proto(func_id);
8396 	}
8397 }
8398 
8399 static const struct bpf_func_proto *
8400 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8401 {
8402 	switch (func_id) {
8403 	case BPF_FUNC_skb_load_bytes:
8404 		return &bpf_flow_dissector_load_bytes_proto;
8405 	default:
8406 		return bpf_sk_base_func_proto(func_id);
8407 	}
8408 }
8409 
8410 static const struct bpf_func_proto *
8411 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8412 {
8413 	switch (func_id) {
8414 	case BPF_FUNC_skb_load_bytes:
8415 		return &bpf_skb_load_bytes_proto;
8416 	case BPF_FUNC_skb_pull_data:
8417 		return &bpf_skb_pull_data_proto;
8418 	case BPF_FUNC_csum_diff:
8419 		return &bpf_csum_diff_proto;
8420 	case BPF_FUNC_get_cgroup_classid:
8421 		return &bpf_get_cgroup_classid_proto;
8422 	case BPF_FUNC_get_route_realm:
8423 		return &bpf_get_route_realm_proto;
8424 	case BPF_FUNC_get_hash_recalc:
8425 		return &bpf_get_hash_recalc_proto;
8426 	case BPF_FUNC_perf_event_output:
8427 		return &bpf_skb_event_output_proto;
8428 	case BPF_FUNC_get_smp_processor_id:
8429 		return &bpf_get_smp_processor_id_proto;
8430 	case BPF_FUNC_skb_under_cgroup:
8431 		return &bpf_skb_under_cgroup_proto;
8432 	default:
8433 		return bpf_sk_base_func_proto(func_id);
8434 	}
8435 }
8436 
8437 static const struct bpf_func_proto *
8438 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8439 {
8440 	switch (func_id) {
8441 	case BPF_FUNC_lwt_push_encap:
8442 		return &bpf_lwt_in_push_encap_proto;
8443 	default:
8444 		return lwt_out_func_proto(func_id, prog);
8445 	}
8446 }
8447 
8448 static const struct bpf_func_proto *
8449 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8450 {
8451 	switch (func_id) {
8452 	case BPF_FUNC_skb_get_tunnel_key:
8453 		return &bpf_skb_get_tunnel_key_proto;
8454 	case BPF_FUNC_skb_set_tunnel_key:
8455 		return bpf_get_skb_set_tunnel_proto(func_id);
8456 	case BPF_FUNC_skb_get_tunnel_opt:
8457 		return &bpf_skb_get_tunnel_opt_proto;
8458 	case BPF_FUNC_skb_set_tunnel_opt:
8459 		return bpf_get_skb_set_tunnel_proto(func_id);
8460 	case BPF_FUNC_redirect:
8461 		return &bpf_redirect_proto;
8462 	case BPF_FUNC_clone_redirect:
8463 		return &bpf_clone_redirect_proto;
8464 	case BPF_FUNC_skb_change_tail:
8465 		return &bpf_skb_change_tail_proto;
8466 	case BPF_FUNC_skb_change_head:
8467 		return &bpf_skb_change_head_proto;
8468 	case BPF_FUNC_skb_store_bytes:
8469 		return &bpf_skb_store_bytes_proto;
8470 	case BPF_FUNC_csum_update:
8471 		return &bpf_csum_update_proto;
8472 	case BPF_FUNC_csum_level:
8473 		return &bpf_csum_level_proto;
8474 	case BPF_FUNC_l3_csum_replace:
8475 		return &bpf_l3_csum_replace_proto;
8476 	case BPF_FUNC_l4_csum_replace:
8477 		return &bpf_l4_csum_replace_proto;
8478 	case BPF_FUNC_set_hash_invalid:
8479 		return &bpf_set_hash_invalid_proto;
8480 	case BPF_FUNC_lwt_push_encap:
8481 		return &bpf_lwt_xmit_push_encap_proto;
8482 	default:
8483 		return lwt_out_func_proto(func_id, prog);
8484 	}
8485 }
8486 
8487 static const struct bpf_func_proto *
8488 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8489 {
8490 	switch (func_id) {
8491 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8492 	case BPF_FUNC_lwt_seg6_store_bytes:
8493 		return &bpf_lwt_seg6_store_bytes_proto;
8494 	case BPF_FUNC_lwt_seg6_action:
8495 		return &bpf_lwt_seg6_action_proto;
8496 	case BPF_FUNC_lwt_seg6_adjust_srh:
8497 		return &bpf_lwt_seg6_adjust_srh_proto;
8498 #endif
8499 	default:
8500 		return lwt_out_func_proto(func_id, prog);
8501 	}
8502 }
8503 
8504 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8505 				    const struct bpf_prog *prog,
8506 				    struct bpf_insn_access_aux *info)
8507 {
8508 	const int size_default = sizeof(__u32);
8509 
8510 	if (off < 0 || off >= sizeof(struct __sk_buff))
8511 		return false;
8512 
8513 	/* The verifier guarantees that size > 0. */
8514 	if (off % size != 0)
8515 		return false;
8516 
8517 	switch (off) {
8518 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8519 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8520 			return false;
8521 		break;
8522 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8523 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8524 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8525 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8526 	case bpf_ctx_range(struct __sk_buff, data):
8527 	case bpf_ctx_range(struct __sk_buff, data_meta):
8528 	case bpf_ctx_range(struct __sk_buff, data_end):
8529 		if (size != size_default)
8530 			return false;
8531 		break;
8532 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8533 		return false;
8534 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8535 		if (type == BPF_WRITE || size != sizeof(__u64))
8536 			return false;
8537 		break;
8538 	case bpf_ctx_range(struct __sk_buff, tstamp):
8539 		if (size != sizeof(__u64))
8540 			return false;
8541 		break;
8542 	case offsetof(struct __sk_buff, sk):
8543 		if (type == BPF_WRITE || size != sizeof(__u64))
8544 			return false;
8545 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8546 		break;
8547 	case offsetof(struct __sk_buff, tstamp_type):
8548 		return false;
8549 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8550 		/* Explicitly prohibit access to padding in __sk_buff. */
8551 		return false;
8552 	default:
8553 		/* Only narrow read access allowed for now. */
8554 		if (type == BPF_WRITE) {
8555 			if (size != size_default)
8556 				return false;
8557 		} else {
8558 			bpf_ctx_record_field_size(info, size_default);
8559 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8560 				return false;
8561 		}
8562 	}
8563 
8564 	return true;
8565 }
8566 
8567 static bool sk_filter_is_valid_access(int off, int size,
8568 				      enum bpf_access_type type,
8569 				      const struct bpf_prog *prog,
8570 				      struct bpf_insn_access_aux *info)
8571 {
8572 	switch (off) {
8573 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8574 	case bpf_ctx_range(struct __sk_buff, data):
8575 	case bpf_ctx_range(struct __sk_buff, data_meta):
8576 	case bpf_ctx_range(struct __sk_buff, data_end):
8577 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8578 	case bpf_ctx_range(struct __sk_buff, tstamp):
8579 	case bpf_ctx_range(struct __sk_buff, wire_len):
8580 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8581 		return false;
8582 	}
8583 
8584 	if (type == BPF_WRITE) {
8585 		switch (off) {
8586 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8587 			break;
8588 		default:
8589 			return false;
8590 		}
8591 	}
8592 
8593 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8594 }
8595 
8596 static bool cg_skb_is_valid_access(int off, int size,
8597 				   enum bpf_access_type type,
8598 				   const struct bpf_prog *prog,
8599 				   struct bpf_insn_access_aux *info)
8600 {
8601 	switch (off) {
8602 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8603 	case bpf_ctx_range(struct __sk_buff, data_meta):
8604 	case bpf_ctx_range(struct __sk_buff, wire_len):
8605 		return false;
8606 	case bpf_ctx_range(struct __sk_buff, data):
8607 	case bpf_ctx_range(struct __sk_buff, data_end):
8608 		if (!bpf_capable())
8609 			return false;
8610 		break;
8611 	}
8612 
8613 	if (type == BPF_WRITE) {
8614 		switch (off) {
8615 		case bpf_ctx_range(struct __sk_buff, mark):
8616 		case bpf_ctx_range(struct __sk_buff, priority):
8617 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8618 			break;
8619 		case bpf_ctx_range(struct __sk_buff, tstamp):
8620 			if (!bpf_capable())
8621 				return false;
8622 			break;
8623 		default:
8624 			return false;
8625 		}
8626 	}
8627 
8628 	switch (off) {
8629 	case bpf_ctx_range(struct __sk_buff, data):
8630 		info->reg_type = PTR_TO_PACKET;
8631 		break;
8632 	case bpf_ctx_range(struct __sk_buff, data_end):
8633 		info->reg_type = PTR_TO_PACKET_END;
8634 		break;
8635 	}
8636 
8637 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8638 }
8639 
8640 static bool lwt_is_valid_access(int off, int size,
8641 				enum bpf_access_type type,
8642 				const struct bpf_prog *prog,
8643 				struct bpf_insn_access_aux *info)
8644 {
8645 	switch (off) {
8646 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8647 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8648 	case bpf_ctx_range(struct __sk_buff, data_meta):
8649 	case bpf_ctx_range(struct __sk_buff, tstamp):
8650 	case bpf_ctx_range(struct __sk_buff, wire_len):
8651 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8652 		return false;
8653 	}
8654 
8655 	if (type == BPF_WRITE) {
8656 		switch (off) {
8657 		case bpf_ctx_range(struct __sk_buff, mark):
8658 		case bpf_ctx_range(struct __sk_buff, priority):
8659 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8660 			break;
8661 		default:
8662 			return false;
8663 		}
8664 	}
8665 
8666 	switch (off) {
8667 	case bpf_ctx_range(struct __sk_buff, data):
8668 		info->reg_type = PTR_TO_PACKET;
8669 		break;
8670 	case bpf_ctx_range(struct __sk_buff, data_end):
8671 		info->reg_type = PTR_TO_PACKET_END;
8672 		break;
8673 	}
8674 
8675 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8676 }
8677 
8678 /* Attach type specific accesses */
8679 static bool __sock_filter_check_attach_type(int off,
8680 					    enum bpf_access_type access_type,
8681 					    enum bpf_attach_type attach_type)
8682 {
8683 	switch (off) {
8684 	case offsetof(struct bpf_sock, bound_dev_if):
8685 	case offsetof(struct bpf_sock, mark):
8686 	case offsetof(struct bpf_sock, priority):
8687 		switch (attach_type) {
8688 		case BPF_CGROUP_INET_SOCK_CREATE:
8689 		case BPF_CGROUP_INET_SOCK_RELEASE:
8690 			goto full_access;
8691 		default:
8692 			return false;
8693 		}
8694 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8695 		switch (attach_type) {
8696 		case BPF_CGROUP_INET4_POST_BIND:
8697 			goto read_only;
8698 		default:
8699 			return false;
8700 		}
8701 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8702 		switch (attach_type) {
8703 		case BPF_CGROUP_INET6_POST_BIND:
8704 			goto read_only;
8705 		default:
8706 			return false;
8707 		}
8708 	case bpf_ctx_range(struct bpf_sock, src_port):
8709 		switch (attach_type) {
8710 		case BPF_CGROUP_INET4_POST_BIND:
8711 		case BPF_CGROUP_INET6_POST_BIND:
8712 			goto read_only;
8713 		default:
8714 			return false;
8715 		}
8716 	}
8717 read_only:
8718 	return access_type == BPF_READ;
8719 full_access:
8720 	return true;
8721 }
8722 
8723 bool bpf_sock_common_is_valid_access(int off, int size,
8724 				     enum bpf_access_type type,
8725 				     struct bpf_insn_access_aux *info)
8726 {
8727 	switch (off) {
8728 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8729 		return false;
8730 	default:
8731 		return bpf_sock_is_valid_access(off, size, type, info);
8732 	}
8733 }
8734 
8735 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8736 			      struct bpf_insn_access_aux *info)
8737 {
8738 	const int size_default = sizeof(__u32);
8739 	int field_size;
8740 
8741 	if (off < 0 || off >= sizeof(struct bpf_sock))
8742 		return false;
8743 	if (off % size != 0)
8744 		return false;
8745 
8746 	switch (off) {
8747 	case offsetof(struct bpf_sock, state):
8748 	case offsetof(struct bpf_sock, family):
8749 	case offsetof(struct bpf_sock, type):
8750 	case offsetof(struct bpf_sock, protocol):
8751 	case offsetof(struct bpf_sock, src_port):
8752 	case offsetof(struct bpf_sock, rx_queue_mapping):
8753 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8754 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8755 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8756 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8757 		bpf_ctx_record_field_size(info, size_default);
8758 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8759 	case bpf_ctx_range(struct bpf_sock, dst_port):
8760 		field_size = size == size_default ?
8761 			size_default : sizeof_field(struct bpf_sock, dst_port);
8762 		bpf_ctx_record_field_size(info, field_size);
8763 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8764 	case offsetofend(struct bpf_sock, dst_port) ...
8765 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8766 		return false;
8767 	}
8768 
8769 	return size == size_default;
8770 }
8771 
8772 static bool sock_filter_is_valid_access(int off, int size,
8773 					enum bpf_access_type type,
8774 					const struct bpf_prog *prog,
8775 					struct bpf_insn_access_aux *info)
8776 {
8777 	if (!bpf_sock_is_valid_access(off, size, type, info))
8778 		return false;
8779 	return __sock_filter_check_attach_type(off, type,
8780 					       prog->expected_attach_type);
8781 }
8782 
8783 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8784 			     const struct bpf_prog *prog)
8785 {
8786 	/* Neither direct read nor direct write requires any preliminary
8787 	 * action.
8788 	 */
8789 	return 0;
8790 }
8791 
8792 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8793 				const struct bpf_prog *prog, int drop_verdict)
8794 {
8795 	struct bpf_insn *insn = insn_buf;
8796 
8797 	if (!direct_write)
8798 		return 0;
8799 
8800 	/* if (!skb->cloned)
8801 	 *       goto start;
8802 	 *
8803 	 * (Fast-path, otherwise approximation that we might be
8804 	 *  a clone, do the rest in helper.)
8805 	 */
8806 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8807 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8808 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8809 
8810 	/* ret = bpf_skb_pull_data(skb, 0); */
8811 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8812 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8813 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8814 			       BPF_FUNC_skb_pull_data);
8815 	/* if (!ret)
8816 	 *      goto restore;
8817 	 * return TC_ACT_SHOT;
8818 	 */
8819 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8820 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8821 	*insn++ = BPF_EXIT_INSN();
8822 
8823 	/* restore: */
8824 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8825 	/* start: */
8826 	*insn++ = prog->insnsi[0];
8827 
8828 	return insn - insn_buf;
8829 }
8830 
8831 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8832 			  struct bpf_insn *insn_buf)
8833 {
8834 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8835 	struct bpf_insn *insn = insn_buf;
8836 
8837 	if (!indirect) {
8838 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8839 	} else {
8840 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8841 		if (orig->imm)
8842 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8843 	}
8844 	/* We're guaranteed here that CTX is in R6. */
8845 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8846 
8847 	switch (BPF_SIZE(orig->code)) {
8848 	case BPF_B:
8849 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8850 		break;
8851 	case BPF_H:
8852 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8853 		break;
8854 	case BPF_W:
8855 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8856 		break;
8857 	}
8858 
8859 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8860 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8861 	*insn++ = BPF_EXIT_INSN();
8862 
8863 	return insn - insn_buf;
8864 }
8865 
8866 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8867 			       const struct bpf_prog *prog)
8868 {
8869 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8870 }
8871 
8872 static bool tc_cls_act_is_valid_access(int off, int size,
8873 				       enum bpf_access_type type,
8874 				       const struct bpf_prog *prog,
8875 				       struct bpf_insn_access_aux *info)
8876 {
8877 	if (type == BPF_WRITE) {
8878 		switch (off) {
8879 		case bpf_ctx_range(struct __sk_buff, mark):
8880 		case bpf_ctx_range(struct __sk_buff, tc_index):
8881 		case bpf_ctx_range(struct __sk_buff, priority):
8882 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8883 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8884 		case bpf_ctx_range(struct __sk_buff, tstamp):
8885 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8886 			break;
8887 		default:
8888 			return false;
8889 		}
8890 	}
8891 
8892 	switch (off) {
8893 	case bpf_ctx_range(struct __sk_buff, data):
8894 		info->reg_type = PTR_TO_PACKET;
8895 		break;
8896 	case bpf_ctx_range(struct __sk_buff, data_meta):
8897 		info->reg_type = PTR_TO_PACKET_META;
8898 		break;
8899 	case bpf_ctx_range(struct __sk_buff, data_end):
8900 		info->reg_type = PTR_TO_PACKET_END;
8901 		break;
8902 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8903 		return false;
8904 	case offsetof(struct __sk_buff, tstamp_type):
8905 		/* The convert_ctx_access() on reading and writing
8906 		 * __sk_buff->tstamp depends on whether the bpf prog
8907 		 * has used __sk_buff->tstamp_type or not.
8908 		 * Thus, we need to set prog->tstamp_type_access
8909 		 * earlier during is_valid_access() here.
8910 		 */
8911 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
8912 		return size == sizeof(__u8);
8913 	}
8914 
8915 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8916 }
8917 
8918 DEFINE_MUTEX(nf_conn_btf_access_lock);
8919 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8920 
8921 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
8922 			      const struct bpf_reg_state *reg,
8923 			      int off, int size);
8924 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8925 
8926 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8927 					const struct bpf_reg_state *reg,
8928 					int off, int size)
8929 {
8930 	int ret = -EACCES;
8931 
8932 	mutex_lock(&nf_conn_btf_access_lock);
8933 	if (nfct_btf_struct_access)
8934 		ret = nfct_btf_struct_access(log, reg, off, size);
8935 	mutex_unlock(&nf_conn_btf_access_lock);
8936 
8937 	return ret;
8938 }
8939 
8940 static bool __is_valid_xdp_access(int off, int size)
8941 {
8942 	if (off < 0 || off >= sizeof(struct xdp_md))
8943 		return false;
8944 	if (off % size != 0)
8945 		return false;
8946 	if (size != sizeof(__u32))
8947 		return false;
8948 
8949 	return true;
8950 }
8951 
8952 static bool xdp_is_valid_access(int off, int size,
8953 				enum bpf_access_type type,
8954 				const struct bpf_prog *prog,
8955 				struct bpf_insn_access_aux *info)
8956 {
8957 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8958 		switch (off) {
8959 		case offsetof(struct xdp_md, egress_ifindex):
8960 			return false;
8961 		}
8962 	}
8963 
8964 	if (type == BPF_WRITE) {
8965 		if (bpf_prog_is_offloaded(prog->aux)) {
8966 			switch (off) {
8967 			case offsetof(struct xdp_md, rx_queue_index):
8968 				return __is_valid_xdp_access(off, size);
8969 			}
8970 		}
8971 		return false;
8972 	}
8973 
8974 	switch (off) {
8975 	case offsetof(struct xdp_md, data):
8976 		info->reg_type = PTR_TO_PACKET;
8977 		break;
8978 	case offsetof(struct xdp_md, data_meta):
8979 		info->reg_type = PTR_TO_PACKET_META;
8980 		break;
8981 	case offsetof(struct xdp_md, data_end):
8982 		info->reg_type = PTR_TO_PACKET_END;
8983 		break;
8984 	}
8985 
8986 	return __is_valid_xdp_access(off, size);
8987 }
8988 
8989 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8990 {
8991 	const u32 act_max = XDP_REDIRECT;
8992 
8993 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8994 		     act > act_max ? "Illegal" : "Driver unsupported",
8995 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8996 }
8997 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8998 
8999 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9000 				 const struct bpf_reg_state *reg,
9001 				 int off, int size)
9002 {
9003 	int ret = -EACCES;
9004 
9005 	mutex_lock(&nf_conn_btf_access_lock);
9006 	if (nfct_btf_struct_access)
9007 		ret = nfct_btf_struct_access(log, reg, off, size);
9008 	mutex_unlock(&nf_conn_btf_access_lock);
9009 
9010 	return ret;
9011 }
9012 
9013 static bool sock_addr_is_valid_access(int off, int size,
9014 				      enum bpf_access_type type,
9015 				      const struct bpf_prog *prog,
9016 				      struct bpf_insn_access_aux *info)
9017 {
9018 	const int size_default = sizeof(__u32);
9019 
9020 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9021 		return false;
9022 	if (off % size != 0)
9023 		return false;
9024 
9025 	/* Disallow access to IPv6 fields from IPv4 contex and vise
9026 	 * versa.
9027 	 */
9028 	switch (off) {
9029 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9030 		switch (prog->expected_attach_type) {
9031 		case BPF_CGROUP_INET4_BIND:
9032 		case BPF_CGROUP_INET4_CONNECT:
9033 		case BPF_CGROUP_INET4_GETPEERNAME:
9034 		case BPF_CGROUP_INET4_GETSOCKNAME:
9035 		case BPF_CGROUP_UDP4_SENDMSG:
9036 		case BPF_CGROUP_UDP4_RECVMSG:
9037 			break;
9038 		default:
9039 			return false;
9040 		}
9041 		break;
9042 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9043 		switch (prog->expected_attach_type) {
9044 		case BPF_CGROUP_INET6_BIND:
9045 		case BPF_CGROUP_INET6_CONNECT:
9046 		case BPF_CGROUP_INET6_GETPEERNAME:
9047 		case BPF_CGROUP_INET6_GETSOCKNAME:
9048 		case BPF_CGROUP_UDP6_SENDMSG:
9049 		case BPF_CGROUP_UDP6_RECVMSG:
9050 			break;
9051 		default:
9052 			return false;
9053 		}
9054 		break;
9055 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9056 		switch (prog->expected_attach_type) {
9057 		case BPF_CGROUP_UDP4_SENDMSG:
9058 			break;
9059 		default:
9060 			return false;
9061 		}
9062 		break;
9063 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9064 				msg_src_ip6[3]):
9065 		switch (prog->expected_attach_type) {
9066 		case BPF_CGROUP_UDP6_SENDMSG:
9067 			break;
9068 		default:
9069 			return false;
9070 		}
9071 		break;
9072 	}
9073 
9074 	switch (off) {
9075 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9076 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9077 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9078 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9079 				msg_src_ip6[3]):
9080 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
9081 		if (type == BPF_READ) {
9082 			bpf_ctx_record_field_size(info, size_default);
9083 
9084 			if (bpf_ctx_wide_access_ok(off, size,
9085 						   struct bpf_sock_addr,
9086 						   user_ip6))
9087 				return true;
9088 
9089 			if (bpf_ctx_wide_access_ok(off, size,
9090 						   struct bpf_sock_addr,
9091 						   msg_src_ip6))
9092 				return true;
9093 
9094 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9095 				return false;
9096 		} else {
9097 			if (bpf_ctx_wide_access_ok(off, size,
9098 						   struct bpf_sock_addr,
9099 						   user_ip6))
9100 				return true;
9101 
9102 			if (bpf_ctx_wide_access_ok(off, size,
9103 						   struct bpf_sock_addr,
9104 						   msg_src_ip6))
9105 				return true;
9106 
9107 			if (size != size_default)
9108 				return false;
9109 		}
9110 		break;
9111 	case offsetof(struct bpf_sock_addr, sk):
9112 		if (type != BPF_READ)
9113 			return false;
9114 		if (size != sizeof(__u64))
9115 			return false;
9116 		info->reg_type = PTR_TO_SOCKET;
9117 		break;
9118 	default:
9119 		if (type == BPF_READ) {
9120 			if (size != size_default)
9121 				return false;
9122 		} else {
9123 			return false;
9124 		}
9125 	}
9126 
9127 	return true;
9128 }
9129 
9130 static bool sock_ops_is_valid_access(int off, int size,
9131 				     enum bpf_access_type type,
9132 				     const struct bpf_prog *prog,
9133 				     struct bpf_insn_access_aux *info)
9134 {
9135 	const int size_default = sizeof(__u32);
9136 
9137 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9138 		return false;
9139 
9140 	/* The verifier guarantees that size > 0. */
9141 	if (off % size != 0)
9142 		return false;
9143 
9144 	if (type == BPF_WRITE) {
9145 		switch (off) {
9146 		case offsetof(struct bpf_sock_ops, reply):
9147 		case offsetof(struct bpf_sock_ops, sk_txhash):
9148 			if (size != size_default)
9149 				return false;
9150 			break;
9151 		default:
9152 			return false;
9153 		}
9154 	} else {
9155 		switch (off) {
9156 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9157 					bytes_acked):
9158 			if (size != sizeof(__u64))
9159 				return false;
9160 			break;
9161 		case offsetof(struct bpf_sock_ops, sk):
9162 			if (size != sizeof(__u64))
9163 				return false;
9164 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
9165 			break;
9166 		case offsetof(struct bpf_sock_ops, skb_data):
9167 			if (size != sizeof(__u64))
9168 				return false;
9169 			info->reg_type = PTR_TO_PACKET;
9170 			break;
9171 		case offsetof(struct bpf_sock_ops, skb_data_end):
9172 			if (size != sizeof(__u64))
9173 				return false;
9174 			info->reg_type = PTR_TO_PACKET_END;
9175 			break;
9176 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9177 			bpf_ctx_record_field_size(info, size_default);
9178 			return bpf_ctx_narrow_access_ok(off, size,
9179 							size_default);
9180 		case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9181 			if (size != sizeof(__u64))
9182 				return false;
9183 			break;
9184 		default:
9185 			if (size != size_default)
9186 				return false;
9187 			break;
9188 		}
9189 	}
9190 
9191 	return true;
9192 }
9193 
9194 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9195 			   const struct bpf_prog *prog)
9196 {
9197 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9198 }
9199 
9200 static bool sk_skb_is_valid_access(int off, int size,
9201 				   enum bpf_access_type type,
9202 				   const struct bpf_prog *prog,
9203 				   struct bpf_insn_access_aux *info)
9204 {
9205 	switch (off) {
9206 	case bpf_ctx_range(struct __sk_buff, tc_classid):
9207 	case bpf_ctx_range(struct __sk_buff, data_meta):
9208 	case bpf_ctx_range(struct __sk_buff, tstamp):
9209 	case bpf_ctx_range(struct __sk_buff, wire_len):
9210 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
9211 		return false;
9212 	}
9213 
9214 	if (type == BPF_WRITE) {
9215 		switch (off) {
9216 		case bpf_ctx_range(struct __sk_buff, tc_index):
9217 		case bpf_ctx_range(struct __sk_buff, priority):
9218 			break;
9219 		default:
9220 			return false;
9221 		}
9222 	}
9223 
9224 	switch (off) {
9225 	case bpf_ctx_range(struct __sk_buff, mark):
9226 		return false;
9227 	case bpf_ctx_range(struct __sk_buff, data):
9228 		info->reg_type = PTR_TO_PACKET;
9229 		break;
9230 	case bpf_ctx_range(struct __sk_buff, data_end):
9231 		info->reg_type = PTR_TO_PACKET_END;
9232 		break;
9233 	}
9234 
9235 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9236 }
9237 
9238 static bool sk_msg_is_valid_access(int off, int size,
9239 				   enum bpf_access_type type,
9240 				   const struct bpf_prog *prog,
9241 				   struct bpf_insn_access_aux *info)
9242 {
9243 	if (type == BPF_WRITE)
9244 		return false;
9245 
9246 	if (off % size != 0)
9247 		return false;
9248 
9249 	switch (off) {
9250 	case offsetof(struct sk_msg_md, data):
9251 		info->reg_type = PTR_TO_PACKET;
9252 		if (size != sizeof(__u64))
9253 			return false;
9254 		break;
9255 	case offsetof(struct sk_msg_md, data_end):
9256 		info->reg_type = PTR_TO_PACKET_END;
9257 		if (size != sizeof(__u64))
9258 			return false;
9259 		break;
9260 	case offsetof(struct sk_msg_md, sk):
9261 		if (size != sizeof(__u64))
9262 			return false;
9263 		info->reg_type = PTR_TO_SOCKET;
9264 		break;
9265 	case bpf_ctx_range(struct sk_msg_md, family):
9266 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9267 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9268 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9269 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9270 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9271 	case bpf_ctx_range(struct sk_msg_md, local_port):
9272 	case bpf_ctx_range(struct sk_msg_md, size):
9273 		if (size != sizeof(__u32))
9274 			return false;
9275 		break;
9276 	default:
9277 		return false;
9278 	}
9279 	return true;
9280 }
9281 
9282 static bool flow_dissector_is_valid_access(int off, int size,
9283 					   enum bpf_access_type type,
9284 					   const struct bpf_prog *prog,
9285 					   struct bpf_insn_access_aux *info)
9286 {
9287 	const int size_default = sizeof(__u32);
9288 
9289 	if (off < 0 || off >= sizeof(struct __sk_buff))
9290 		return false;
9291 
9292 	if (type == BPF_WRITE)
9293 		return false;
9294 
9295 	switch (off) {
9296 	case bpf_ctx_range(struct __sk_buff, data):
9297 		if (size != size_default)
9298 			return false;
9299 		info->reg_type = PTR_TO_PACKET;
9300 		return true;
9301 	case bpf_ctx_range(struct __sk_buff, data_end):
9302 		if (size != size_default)
9303 			return false;
9304 		info->reg_type = PTR_TO_PACKET_END;
9305 		return true;
9306 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9307 		if (size != sizeof(__u64))
9308 			return false;
9309 		info->reg_type = PTR_TO_FLOW_KEYS;
9310 		return true;
9311 	default:
9312 		return false;
9313 	}
9314 }
9315 
9316 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9317 					     const struct bpf_insn *si,
9318 					     struct bpf_insn *insn_buf,
9319 					     struct bpf_prog *prog,
9320 					     u32 *target_size)
9321 
9322 {
9323 	struct bpf_insn *insn = insn_buf;
9324 
9325 	switch (si->off) {
9326 	case offsetof(struct __sk_buff, data):
9327 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9328 				      si->dst_reg, si->src_reg,
9329 				      offsetof(struct bpf_flow_dissector, data));
9330 		break;
9331 
9332 	case offsetof(struct __sk_buff, data_end):
9333 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9334 				      si->dst_reg, si->src_reg,
9335 				      offsetof(struct bpf_flow_dissector, data_end));
9336 		break;
9337 
9338 	case offsetof(struct __sk_buff, flow_keys):
9339 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9340 				      si->dst_reg, si->src_reg,
9341 				      offsetof(struct bpf_flow_dissector, flow_keys));
9342 		break;
9343 	}
9344 
9345 	return insn - insn_buf;
9346 }
9347 
9348 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9349 						     struct bpf_insn *insn)
9350 {
9351 	__u8 value_reg = si->dst_reg;
9352 	__u8 skb_reg = si->src_reg;
9353 	/* AX is needed because src_reg and dst_reg could be the same */
9354 	__u8 tmp_reg = BPF_REG_AX;
9355 
9356 	*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9357 			      SKB_BF_MONO_TC_OFFSET);
9358 	*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9359 				SKB_MONO_DELIVERY_TIME_MASK, 2);
9360 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9361 	*insn++ = BPF_JMP_A(1);
9362 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9363 
9364 	return insn;
9365 }
9366 
9367 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9368 						  struct bpf_insn *insn)
9369 {
9370 	/* si->dst_reg = skb_shinfo(SKB); */
9371 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9372 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9373 			      BPF_REG_AX, skb_reg,
9374 			      offsetof(struct sk_buff, end));
9375 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9376 			      dst_reg, skb_reg,
9377 			      offsetof(struct sk_buff, head));
9378 	*insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9379 #else
9380 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9381 			      dst_reg, skb_reg,
9382 			      offsetof(struct sk_buff, end));
9383 #endif
9384 
9385 	return insn;
9386 }
9387 
9388 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9389 						const struct bpf_insn *si,
9390 						struct bpf_insn *insn)
9391 {
9392 	__u8 value_reg = si->dst_reg;
9393 	__u8 skb_reg = si->src_reg;
9394 
9395 #ifdef CONFIG_NET_XGRESS
9396 	/* If the tstamp_type is read,
9397 	 * the bpf prog is aware the tstamp could have delivery time.
9398 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9399 	 */
9400 	if (!prog->tstamp_type_access) {
9401 		/* AX is needed because src_reg and dst_reg could be the same */
9402 		__u8 tmp_reg = BPF_REG_AX;
9403 
9404 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9405 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9406 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9407 		*insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9408 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9409 		/* skb->tc_at_ingress && skb->mono_delivery_time,
9410 		 * read 0 as the (rcv) timestamp.
9411 		 */
9412 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9413 		*insn++ = BPF_JMP_A(1);
9414 	}
9415 #endif
9416 
9417 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9418 			      offsetof(struct sk_buff, tstamp));
9419 	return insn;
9420 }
9421 
9422 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9423 						 const struct bpf_insn *si,
9424 						 struct bpf_insn *insn)
9425 {
9426 	__u8 value_reg = si->src_reg;
9427 	__u8 skb_reg = si->dst_reg;
9428 
9429 #ifdef CONFIG_NET_XGRESS
9430 	/* If the tstamp_type is read,
9431 	 * the bpf prog is aware the tstamp could have delivery time.
9432 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9433 	 * Otherwise, writing at ingress will have to clear the
9434 	 * mono_delivery_time bit also.
9435 	 */
9436 	if (!prog->tstamp_type_access) {
9437 		__u8 tmp_reg = BPF_REG_AX;
9438 
9439 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9440 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9441 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9442 		/* goto <store> */
9443 		*insn++ = BPF_JMP_A(2);
9444 		/* <clear>: mono_delivery_time */
9445 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9446 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9447 	}
9448 #endif
9449 
9450 	/* <store>: skb->tstamp = tstamp */
9451 	*insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9452 			       skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9453 	return insn;
9454 }
9455 
9456 #define BPF_EMIT_STORE(size, si, off)					\
9457 	BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM,		\
9458 		     (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9459 
9460 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9461 				  const struct bpf_insn *si,
9462 				  struct bpf_insn *insn_buf,
9463 				  struct bpf_prog *prog, u32 *target_size)
9464 {
9465 	struct bpf_insn *insn = insn_buf;
9466 	int off;
9467 
9468 	switch (si->off) {
9469 	case offsetof(struct __sk_buff, len):
9470 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9471 				      bpf_target_off(struct sk_buff, len, 4,
9472 						     target_size));
9473 		break;
9474 
9475 	case offsetof(struct __sk_buff, protocol):
9476 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9477 				      bpf_target_off(struct sk_buff, protocol, 2,
9478 						     target_size));
9479 		break;
9480 
9481 	case offsetof(struct __sk_buff, vlan_proto):
9482 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9483 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9484 						     target_size));
9485 		break;
9486 
9487 	case offsetof(struct __sk_buff, priority):
9488 		if (type == BPF_WRITE)
9489 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9490 						 bpf_target_off(struct sk_buff, priority, 4,
9491 								target_size));
9492 		else
9493 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9494 					      bpf_target_off(struct sk_buff, priority, 4,
9495 							     target_size));
9496 		break;
9497 
9498 	case offsetof(struct __sk_buff, ingress_ifindex):
9499 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9500 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9501 						     target_size));
9502 		break;
9503 
9504 	case offsetof(struct __sk_buff, ifindex):
9505 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9506 				      si->dst_reg, si->src_reg,
9507 				      offsetof(struct sk_buff, dev));
9508 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9509 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9510 				      bpf_target_off(struct net_device, ifindex, 4,
9511 						     target_size));
9512 		break;
9513 
9514 	case offsetof(struct __sk_buff, hash):
9515 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9516 				      bpf_target_off(struct sk_buff, hash, 4,
9517 						     target_size));
9518 		break;
9519 
9520 	case offsetof(struct __sk_buff, mark):
9521 		if (type == BPF_WRITE)
9522 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9523 						 bpf_target_off(struct sk_buff, mark, 4,
9524 								target_size));
9525 		else
9526 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9527 					      bpf_target_off(struct sk_buff, mark, 4,
9528 							     target_size));
9529 		break;
9530 
9531 	case offsetof(struct __sk_buff, pkt_type):
9532 		*target_size = 1;
9533 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9534 				      PKT_TYPE_OFFSET);
9535 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9536 #ifdef __BIG_ENDIAN_BITFIELD
9537 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9538 #endif
9539 		break;
9540 
9541 	case offsetof(struct __sk_buff, queue_mapping):
9542 		if (type == BPF_WRITE) {
9543 			u32 off = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9544 
9545 			if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9546 				*insn++ = BPF_JMP_A(0); /* noop */
9547 				break;
9548 			}
9549 
9550 			if (BPF_CLASS(si->code) == BPF_STX)
9551 				*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9552 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9553 		} else {
9554 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9555 					      bpf_target_off(struct sk_buff,
9556 							     queue_mapping,
9557 							     2, target_size));
9558 		}
9559 		break;
9560 
9561 	case offsetof(struct __sk_buff, vlan_present):
9562 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9563 				      bpf_target_off(struct sk_buff,
9564 						     vlan_all, 4, target_size));
9565 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9566 		*insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9567 		break;
9568 
9569 	case offsetof(struct __sk_buff, vlan_tci):
9570 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9571 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9572 						     target_size));
9573 		break;
9574 
9575 	case offsetof(struct __sk_buff, cb[0]) ...
9576 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9577 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9578 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9579 			      offsetof(struct qdisc_skb_cb, data)) %
9580 			     sizeof(__u64));
9581 
9582 		prog->cb_access = 1;
9583 		off  = si->off;
9584 		off -= offsetof(struct __sk_buff, cb[0]);
9585 		off += offsetof(struct sk_buff, cb);
9586 		off += offsetof(struct qdisc_skb_cb, data);
9587 		if (type == BPF_WRITE)
9588 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9589 		else
9590 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9591 					      si->src_reg, off);
9592 		break;
9593 
9594 	case offsetof(struct __sk_buff, tc_classid):
9595 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9596 
9597 		off  = si->off;
9598 		off -= offsetof(struct __sk_buff, tc_classid);
9599 		off += offsetof(struct sk_buff, cb);
9600 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9601 		*target_size = 2;
9602 		if (type == BPF_WRITE)
9603 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9604 		else
9605 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9606 					      si->src_reg, off);
9607 		break;
9608 
9609 	case offsetof(struct __sk_buff, data):
9610 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9611 				      si->dst_reg, si->src_reg,
9612 				      offsetof(struct sk_buff, data));
9613 		break;
9614 
9615 	case offsetof(struct __sk_buff, data_meta):
9616 		off  = si->off;
9617 		off -= offsetof(struct __sk_buff, data_meta);
9618 		off += offsetof(struct sk_buff, cb);
9619 		off += offsetof(struct bpf_skb_data_end, data_meta);
9620 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9621 				      si->src_reg, off);
9622 		break;
9623 
9624 	case offsetof(struct __sk_buff, data_end):
9625 		off  = si->off;
9626 		off -= offsetof(struct __sk_buff, data_end);
9627 		off += offsetof(struct sk_buff, cb);
9628 		off += offsetof(struct bpf_skb_data_end, data_end);
9629 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9630 				      si->src_reg, off);
9631 		break;
9632 
9633 	case offsetof(struct __sk_buff, tc_index):
9634 #ifdef CONFIG_NET_SCHED
9635 		if (type == BPF_WRITE)
9636 			*insn++ = BPF_EMIT_STORE(BPF_H, si,
9637 						 bpf_target_off(struct sk_buff, tc_index, 2,
9638 								target_size));
9639 		else
9640 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9641 					      bpf_target_off(struct sk_buff, tc_index, 2,
9642 							     target_size));
9643 #else
9644 		*target_size = 2;
9645 		if (type == BPF_WRITE)
9646 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9647 		else
9648 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9649 #endif
9650 		break;
9651 
9652 	case offsetof(struct __sk_buff, napi_id):
9653 #if defined(CONFIG_NET_RX_BUSY_POLL)
9654 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9655 				      bpf_target_off(struct sk_buff, napi_id, 4,
9656 						     target_size));
9657 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9658 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9659 #else
9660 		*target_size = 4;
9661 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9662 #endif
9663 		break;
9664 	case offsetof(struct __sk_buff, family):
9665 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9666 
9667 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9668 				      si->dst_reg, si->src_reg,
9669 				      offsetof(struct sk_buff, sk));
9670 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9671 				      bpf_target_off(struct sock_common,
9672 						     skc_family,
9673 						     2, target_size));
9674 		break;
9675 	case offsetof(struct __sk_buff, remote_ip4):
9676 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9677 
9678 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9679 				      si->dst_reg, si->src_reg,
9680 				      offsetof(struct sk_buff, sk));
9681 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9682 				      bpf_target_off(struct sock_common,
9683 						     skc_daddr,
9684 						     4, target_size));
9685 		break;
9686 	case offsetof(struct __sk_buff, local_ip4):
9687 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9688 					  skc_rcv_saddr) != 4);
9689 
9690 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9691 				      si->dst_reg, si->src_reg,
9692 				      offsetof(struct sk_buff, sk));
9693 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9694 				      bpf_target_off(struct sock_common,
9695 						     skc_rcv_saddr,
9696 						     4, target_size));
9697 		break;
9698 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9699 	     offsetof(struct __sk_buff, remote_ip6[3]):
9700 #if IS_ENABLED(CONFIG_IPV6)
9701 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9702 					  skc_v6_daddr.s6_addr32[0]) != 4);
9703 
9704 		off = si->off;
9705 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9706 
9707 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9708 				      si->dst_reg, si->src_reg,
9709 				      offsetof(struct sk_buff, sk));
9710 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9711 				      offsetof(struct sock_common,
9712 					       skc_v6_daddr.s6_addr32[0]) +
9713 				      off);
9714 #else
9715 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9716 #endif
9717 		break;
9718 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9719 	     offsetof(struct __sk_buff, local_ip6[3]):
9720 #if IS_ENABLED(CONFIG_IPV6)
9721 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9722 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9723 
9724 		off = si->off;
9725 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9726 
9727 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9728 				      si->dst_reg, si->src_reg,
9729 				      offsetof(struct sk_buff, sk));
9730 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9731 				      offsetof(struct sock_common,
9732 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9733 				      off);
9734 #else
9735 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9736 #endif
9737 		break;
9738 
9739 	case offsetof(struct __sk_buff, remote_port):
9740 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9741 
9742 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9743 				      si->dst_reg, si->src_reg,
9744 				      offsetof(struct sk_buff, sk));
9745 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9746 				      bpf_target_off(struct sock_common,
9747 						     skc_dport,
9748 						     2, target_size));
9749 #ifndef __BIG_ENDIAN_BITFIELD
9750 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9751 #endif
9752 		break;
9753 
9754 	case offsetof(struct __sk_buff, local_port):
9755 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9756 
9757 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9758 				      si->dst_reg, si->src_reg,
9759 				      offsetof(struct sk_buff, sk));
9760 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9761 				      bpf_target_off(struct sock_common,
9762 						     skc_num, 2, target_size));
9763 		break;
9764 
9765 	case offsetof(struct __sk_buff, tstamp):
9766 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9767 
9768 		if (type == BPF_WRITE)
9769 			insn = bpf_convert_tstamp_write(prog, si, insn);
9770 		else
9771 			insn = bpf_convert_tstamp_read(prog, si, insn);
9772 		break;
9773 
9774 	case offsetof(struct __sk_buff, tstamp_type):
9775 		insn = bpf_convert_tstamp_type_read(si, insn);
9776 		break;
9777 
9778 	case offsetof(struct __sk_buff, gso_segs):
9779 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9780 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9781 				      si->dst_reg, si->dst_reg,
9782 				      bpf_target_off(struct skb_shared_info,
9783 						     gso_segs, 2,
9784 						     target_size));
9785 		break;
9786 	case offsetof(struct __sk_buff, gso_size):
9787 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9788 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9789 				      si->dst_reg, si->dst_reg,
9790 				      bpf_target_off(struct skb_shared_info,
9791 						     gso_size, 2,
9792 						     target_size));
9793 		break;
9794 	case offsetof(struct __sk_buff, wire_len):
9795 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9796 
9797 		off = si->off;
9798 		off -= offsetof(struct __sk_buff, wire_len);
9799 		off += offsetof(struct sk_buff, cb);
9800 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9801 		*target_size = 4;
9802 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9803 		break;
9804 
9805 	case offsetof(struct __sk_buff, sk):
9806 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9807 				      si->dst_reg, si->src_reg,
9808 				      offsetof(struct sk_buff, sk));
9809 		break;
9810 	case offsetof(struct __sk_buff, hwtstamp):
9811 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9812 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9813 
9814 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9815 		*insn++ = BPF_LDX_MEM(BPF_DW,
9816 				      si->dst_reg, si->dst_reg,
9817 				      bpf_target_off(struct skb_shared_info,
9818 						     hwtstamps, 8,
9819 						     target_size));
9820 		break;
9821 	}
9822 
9823 	return insn - insn_buf;
9824 }
9825 
9826 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9827 				const struct bpf_insn *si,
9828 				struct bpf_insn *insn_buf,
9829 				struct bpf_prog *prog, u32 *target_size)
9830 {
9831 	struct bpf_insn *insn = insn_buf;
9832 	int off;
9833 
9834 	switch (si->off) {
9835 	case offsetof(struct bpf_sock, bound_dev_if):
9836 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9837 
9838 		if (type == BPF_WRITE)
9839 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9840 						 offsetof(struct sock, sk_bound_dev_if));
9841 		else
9842 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9843 				      offsetof(struct sock, sk_bound_dev_if));
9844 		break;
9845 
9846 	case offsetof(struct bpf_sock, mark):
9847 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9848 
9849 		if (type == BPF_WRITE)
9850 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9851 						 offsetof(struct sock, sk_mark));
9852 		else
9853 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9854 				      offsetof(struct sock, sk_mark));
9855 		break;
9856 
9857 	case offsetof(struct bpf_sock, priority):
9858 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9859 
9860 		if (type == BPF_WRITE)
9861 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9862 						 offsetof(struct sock, sk_priority));
9863 		else
9864 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9865 				      offsetof(struct sock, sk_priority));
9866 		break;
9867 
9868 	case offsetof(struct bpf_sock, family):
9869 		*insn++ = BPF_LDX_MEM(
9870 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9871 			si->dst_reg, si->src_reg,
9872 			bpf_target_off(struct sock_common,
9873 				       skc_family,
9874 				       sizeof_field(struct sock_common,
9875 						    skc_family),
9876 				       target_size));
9877 		break;
9878 
9879 	case offsetof(struct bpf_sock, type):
9880 		*insn++ = BPF_LDX_MEM(
9881 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9882 			si->dst_reg, si->src_reg,
9883 			bpf_target_off(struct sock, sk_type,
9884 				       sizeof_field(struct sock, sk_type),
9885 				       target_size));
9886 		break;
9887 
9888 	case offsetof(struct bpf_sock, protocol):
9889 		*insn++ = BPF_LDX_MEM(
9890 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9891 			si->dst_reg, si->src_reg,
9892 			bpf_target_off(struct sock, sk_protocol,
9893 				       sizeof_field(struct sock, sk_protocol),
9894 				       target_size));
9895 		break;
9896 
9897 	case offsetof(struct bpf_sock, src_ip4):
9898 		*insn++ = BPF_LDX_MEM(
9899 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9900 			bpf_target_off(struct sock_common, skc_rcv_saddr,
9901 				       sizeof_field(struct sock_common,
9902 						    skc_rcv_saddr),
9903 				       target_size));
9904 		break;
9905 
9906 	case offsetof(struct bpf_sock, dst_ip4):
9907 		*insn++ = BPF_LDX_MEM(
9908 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9909 			bpf_target_off(struct sock_common, skc_daddr,
9910 				       sizeof_field(struct sock_common,
9911 						    skc_daddr),
9912 				       target_size));
9913 		break;
9914 
9915 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9916 #if IS_ENABLED(CONFIG_IPV6)
9917 		off = si->off;
9918 		off -= offsetof(struct bpf_sock, src_ip6[0]);
9919 		*insn++ = BPF_LDX_MEM(
9920 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9921 			bpf_target_off(
9922 				struct sock_common,
9923 				skc_v6_rcv_saddr.s6_addr32[0],
9924 				sizeof_field(struct sock_common,
9925 					     skc_v6_rcv_saddr.s6_addr32[0]),
9926 				target_size) + off);
9927 #else
9928 		(void)off;
9929 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9930 #endif
9931 		break;
9932 
9933 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9934 #if IS_ENABLED(CONFIG_IPV6)
9935 		off = si->off;
9936 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9937 		*insn++ = BPF_LDX_MEM(
9938 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9939 			bpf_target_off(struct sock_common,
9940 				       skc_v6_daddr.s6_addr32[0],
9941 				       sizeof_field(struct sock_common,
9942 						    skc_v6_daddr.s6_addr32[0]),
9943 				       target_size) + off);
9944 #else
9945 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9946 		*target_size = 4;
9947 #endif
9948 		break;
9949 
9950 	case offsetof(struct bpf_sock, src_port):
9951 		*insn++ = BPF_LDX_MEM(
9952 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9953 			si->dst_reg, si->src_reg,
9954 			bpf_target_off(struct sock_common, skc_num,
9955 				       sizeof_field(struct sock_common,
9956 						    skc_num),
9957 				       target_size));
9958 		break;
9959 
9960 	case offsetof(struct bpf_sock, dst_port):
9961 		*insn++ = BPF_LDX_MEM(
9962 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9963 			si->dst_reg, si->src_reg,
9964 			bpf_target_off(struct sock_common, skc_dport,
9965 				       sizeof_field(struct sock_common,
9966 						    skc_dport),
9967 				       target_size));
9968 		break;
9969 
9970 	case offsetof(struct bpf_sock, state):
9971 		*insn++ = BPF_LDX_MEM(
9972 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9973 			si->dst_reg, si->src_reg,
9974 			bpf_target_off(struct sock_common, skc_state,
9975 				       sizeof_field(struct sock_common,
9976 						    skc_state),
9977 				       target_size));
9978 		break;
9979 	case offsetof(struct bpf_sock, rx_queue_mapping):
9980 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9981 		*insn++ = BPF_LDX_MEM(
9982 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9983 			si->dst_reg, si->src_reg,
9984 			bpf_target_off(struct sock, sk_rx_queue_mapping,
9985 				       sizeof_field(struct sock,
9986 						    sk_rx_queue_mapping),
9987 				       target_size));
9988 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9989 				      1);
9990 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9991 #else
9992 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9993 		*target_size = 2;
9994 #endif
9995 		break;
9996 	}
9997 
9998 	return insn - insn_buf;
9999 }
10000 
10001 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10002 					 const struct bpf_insn *si,
10003 					 struct bpf_insn *insn_buf,
10004 					 struct bpf_prog *prog, u32 *target_size)
10005 {
10006 	struct bpf_insn *insn = insn_buf;
10007 
10008 	switch (si->off) {
10009 	case offsetof(struct __sk_buff, ifindex):
10010 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10011 				      si->dst_reg, si->src_reg,
10012 				      offsetof(struct sk_buff, dev));
10013 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10014 				      bpf_target_off(struct net_device, ifindex, 4,
10015 						     target_size));
10016 		break;
10017 	default:
10018 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10019 					      target_size);
10020 	}
10021 
10022 	return insn - insn_buf;
10023 }
10024 
10025 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10026 				  const struct bpf_insn *si,
10027 				  struct bpf_insn *insn_buf,
10028 				  struct bpf_prog *prog, u32 *target_size)
10029 {
10030 	struct bpf_insn *insn = insn_buf;
10031 
10032 	switch (si->off) {
10033 	case offsetof(struct xdp_md, data):
10034 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10035 				      si->dst_reg, si->src_reg,
10036 				      offsetof(struct xdp_buff, data));
10037 		break;
10038 	case offsetof(struct xdp_md, data_meta):
10039 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10040 				      si->dst_reg, si->src_reg,
10041 				      offsetof(struct xdp_buff, data_meta));
10042 		break;
10043 	case offsetof(struct xdp_md, data_end):
10044 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10045 				      si->dst_reg, si->src_reg,
10046 				      offsetof(struct xdp_buff, data_end));
10047 		break;
10048 	case offsetof(struct xdp_md, ingress_ifindex):
10049 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10050 				      si->dst_reg, si->src_reg,
10051 				      offsetof(struct xdp_buff, rxq));
10052 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10053 				      si->dst_reg, si->dst_reg,
10054 				      offsetof(struct xdp_rxq_info, dev));
10055 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10056 				      offsetof(struct net_device, ifindex));
10057 		break;
10058 	case offsetof(struct xdp_md, rx_queue_index):
10059 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10060 				      si->dst_reg, si->src_reg,
10061 				      offsetof(struct xdp_buff, rxq));
10062 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10063 				      offsetof(struct xdp_rxq_info,
10064 					       queue_index));
10065 		break;
10066 	case offsetof(struct xdp_md, egress_ifindex):
10067 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10068 				      si->dst_reg, si->src_reg,
10069 				      offsetof(struct xdp_buff, txq));
10070 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10071 				      si->dst_reg, si->dst_reg,
10072 				      offsetof(struct xdp_txq_info, dev));
10073 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10074 				      offsetof(struct net_device, ifindex));
10075 		break;
10076 	}
10077 
10078 	return insn - insn_buf;
10079 }
10080 
10081 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10082  * context Structure, F is Field in context structure that contains a pointer
10083  * to Nested Structure of type NS that has the field NF.
10084  *
10085  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10086  * sure that SIZE is not greater than actual size of S.F.NF.
10087  *
10088  * If offset OFF is provided, the load happens from that offset relative to
10089  * offset of NF.
10090  */
10091 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
10092 	do {								       \
10093 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
10094 				      si->src_reg, offsetof(S, F));	       \
10095 		*insn++ = BPF_LDX_MEM(					       \
10096 			SIZE, si->dst_reg, si->dst_reg,			       \
10097 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10098 				       target_size)			       \
10099 				+ OFF);					       \
10100 	} while (0)
10101 
10102 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
10103 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
10104 					     BPF_FIELD_SIZEOF(NS, NF), 0)
10105 
10106 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10107  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10108  *
10109  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10110  * "register" since two registers available in convert_ctx_access are not
10111  * enough: we can't override neither SRC, since it contains value to store, nor
10112  * DST since it contains pointer to context that may be used by later
10113  * instructions. But we need a temporary place to save pointer to nested
10114  * structure whose field we want to store to.
10115  */
10116 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
10117 	do {								       \
10118 		int tmp_reg = BPF_REG_9;				       \
10119 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10120 			--tmp_reg;					       \
10121 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10122 			--tmp_reg;					       \
10123 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
10124 				      offsetof(S, TF));			       \
10125 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
10126 				      si->dst_reg, offsetof(S, F));	       \
10127 		*insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code),   \
10128 				       tmp_reg, si->src_reg,		       \
10129 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10130 				       target_size)			       \
10131 				       + OFF,				       \
10132 				       si->imm);			       \
10133 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
10134 				      offsetof(S, TF));			       \
10135 	} while (0)
10136 
10137 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10138 						      TF)		       \
10139 	do {								       \
10140 		if (type == BPF_WRITE) {				       \
10141 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
10142 							 OFF, TF);	       \
10143 		} else {						       \
10144 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
10145 				S, NS, F, NF, SIZE, OFF);  \
10146 		}							       \
10147 	} while (0)
10148 
10149 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
10150 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
10151 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
10152 
10153 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10154 					const struct bpf_insn *si,
10155 					struct bpf_insn *insn_buf,
10156 					struct bpf_prog *prog, u32 *target_size)
10157 {
10158 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10159 	struct bpf_insn *insn = insn_buf;
10160 
10161 	switch (si->off) {
10162 	case offsetof(struct bpf_sock_addr, user_family):
10163 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10164 					    struct sockaddr, uaddr, sa_family);
10165 		break;
10166 
10167 	case offsetof(struct bpf_sock_addr, user_ip4):
10168 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10169 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10170 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10171 		break;
10172 
10173 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10174 		off = si->off;
10175 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10176 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10177 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10178 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10179 			tmp_reg);
10180 		break;
10181 
10182 	case offsetof(struct bpf_sock_addr, user_port):
10183 		/* To get port we need to know sa_family first and then treat
10184 		 * sockaddr as either sockaddr_in or sockaddr_in6.
10185 		 * Though we can simplify since port field has same offset and
10186 		 * size in both structures.
10187 		 * Here we check this invariant and use just one of the
10188 		 * structures if it's true.
10189 		 */
10190 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10191 			     offsetof(struct sockaddr_in6, sin6_port));
10192 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10193 			     sizeof_field(struct sockaddr_in6, sin6_port));
10194 		/* Account for sin6_port being smaller than user_port. */
10195 		port_size = min(port_size, BPF_LDST_BYTES(si));
10196 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10197 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10198 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10199 		break;
10200 
10201 	case offsetof(struct bpf_sock_addr, family):
10202 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10203 					    struct sock, sk, sk_family);
10204 		break;
10205 
10206 	case offsetof(struct bpf_sock_addr, type):
10207 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10208 					    struct sock, sk, sk_type);
10209 		break;
10210 
10211 	case offsetof(struct bpf_sock_addr, protocol):
10212 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10213 					    struct sock, sk, sk_protocol);
10214 		break;
10215 
10216 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
10217 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
10218 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10219 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10220 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10221 		break;
10222 
10223 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10224 				msg_src_ip6[3]):
10225 		off = si->off;
10226 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10227 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10228 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10229 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10230 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10231 		break;
10232 	case offsetof(struct bpf_sock_addr, sk):
10233 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10234 				      si->dst_reg, si->src_reg,
10235 				      offsetof(struct bpf_sock_addr_kern, sk));
10236 		break;
10237 	}
10238 
10239 	return insn - insn_buf;
10240 }
10241 
10242 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10243 				       const struct bpf_insn *si,
10244 				       struct bpf_insn *insn_buf,
10245 				       struct bpf_prog *prog,
10246 				       u32 *target_size)
10247 {
10248 	struct bpf_insn *insn = insn_buf;
10249 	int off;
10250 
10251 /* Helper macro for adding read access to tcp_sock or sock fields. */
10252 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10253 	do {								      \
10254 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10255 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10256 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10257 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10258 			reg--;						      \
10259 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10260 			reg--;						      \
10261 		if (si->dst_reg == si->src_reg) {			      \
10262 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10263 					  offsetof(struct bpf_sock_ops_kern,  \
10264 					  temp));			      \
10265 			fullsock_reg = reg;				      \
10266 			jmp += 2;					      \
10267 		}							      \
10268 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10269 						struct bpf_sock_ops_kern,     \
10270 						is_fullsock),		      \
10271 				      fullsock_reg, si->src_reg,	      \
10272 				      offsetof(struct bpf_sock_ops_kern,      \
10273 					       is_fullsock));		      \
10274 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10275 		if (si->dst_reg == si->src_reg)				      \
10276 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10277 				      offsetof(struct bpf_sock_ops_kern,      \
10278 				      temp));				      \
10279 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10280 						struct bpf_sock_ops_kern, sk),\
10281 				      si->dst_reg, si->src_reg,		      \
10282 				      offsetof(struct bpf_sock_ops_kern, sk));\
10283 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10284 						       OBJ_FIELD),	      \
10285 				      si->dst_reg, si->dst_reg,		      \
10286 				      offsetof(OBJ, OBJ_FIELD));	      \
10287 		if (si->dst_reg == si->src_reg)	{			      \
10288 			*insn++ = BPF_JMP_A(1);				      \
10289 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10290 				      offsetof(struct bpf_sock_ops_kern,      \
10291 				      temp));				      \
10292 		}							      \
10293 	} while (0)
10294 
10295 #define SOCK_OPS_GET_SK()							      \
10296 	do {								      \
10297 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10298 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10299 			reg--;						      \
10300 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10301 			reg--;						      \
10302 		if (si->dst_reg == si->src_reg) {			      \
10303 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10304 					  offsetof(struct bpf_sock_ops_kern,  \
10305 					  temp));			      \
10306 			fullsock_reg = reg;				      \
10307 			jmp += 2;					      \
10308 		}							      \
10309 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10310 						struct bpf_sock_ops_kern,     \
10311 						is_fullsock),		      \
10312 				      fullsock_reg, si->src_reg,	      \
10313 				      offsetof(struct bpf_sock_ops_kern,      \
10314 					       is_fullsock));		      \
10315 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10316 		if (si->dst_reg == si->src_reg)				      \
10317 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10318 				      offsetof(struct bpf_sock_ops_kern,      \
10319 				      temp));				      \
10320 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10321 						struct bpf_sock_ops_kern, sk),\
10322 				      si->dst_reg, si->src_reg,		      \
10323 				      offsetof(struct bpf_sock_ops_kern, sk));\
10324 		if (si->dst_reg == si->src_reg)	{			      \
10325 			*insn++ = BPF_JMP_A(1);				      \
10326 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10327 				      offsetof(struct bpf_sock_ops_kern,      \
10328 				      temp));				      \
10329 		}							      \
10330 	} while (0)
10331 
10332 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10333 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10334 
10335 /* Helper macro for adding write access to tcp_sock or sock fields.
10336  * The macro is called with two registers, dst_reg which contains a pointer
10337  * to ctx (context) and src_reg which contains the value that should be
10338  * stored. However, we need an additional register since we cannot overwrite
10339  * dst_reg because it may be used later in the program.
10340  * Instead we "borrow" one of the other register. We first save its value
10341  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10342  * it at the end of the macro.
10343  */
10344 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10345 	do {								      \
10346 		int reg = BPF_REG_9;					      \
10347 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10348 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10349 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10350 			reg--;						      \
10351 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10352 			reg--;						      \
10353 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10354 				      offsetof(struct bpf_sock_ops_kern,      \
10355 					       temp));			      \
10356 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10357 						struct bpf_sock_ops_kern,     \
10358 						is_fullsock),		      \
10359 				      reg, si->dst_reg,			      \
10360 				      offsetof(struct bpf_sock_ops_kern,      \
10361 					       is_fullsock));		      \
10362 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10363 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10364 						struct bpf_sock_ops_kern, sk),\
10365 				      reg, si->dst_reg,			      \
10366 				      offsetof(struct bpf_sock_ops_kern, sk));\
10367 		*insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) |     \
10368 				       BPF_MEM | BPF_CLASS(si->code),	      \
10369 				       reg, si->src_reg,		      \
10370 				       offsetof(OBJ, OBJ_FIELD),	      \
10371 				       si->imm);			      \
10372 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10373 				      offsetof(struct bpf_sock_ops_kern,      \
10374 					       temp));			      \
10375 	} while (0)
10376 
10377 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10378 	do {								      \
10379 		if (TYPE == BPF_WRITE)					      \
10380 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10381 		else							      \
10382 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10383 	} while (0)
10384 
10385 	switch (si->off) {
10386 	case offsetof(struct bpf_sock_ops, op):
10387 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10388 						       op),
10389 				      si->dst_reg, si->src_reg,
10390 				      offsetof(struct bpf_sock_ops_kern, op));
10391 		break;
10392 
10393 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10394 	     offsetof(struct bpf_sock_ops, replylong[3]):
10395 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10396 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10397 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10398 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10399 		off = si->off;
10400 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10401 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10402 		if (type == BPF_WRITE)
10403 			*insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10404 		else
10405 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10406 					      off);
10407 		break;
10408 
10409 	case offsetof(struct bpf_sock_ops, family):
10410 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10411 
10412 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10413 					      struct bpf_sock_ops_kern, sk),
10414 				      si->dst_reg, si->src_reg,
10415 				      offsetof(struct bpf_sock_ops_kern, sk));
10416 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10417 				      offsetof(struct sock_common, skc_family));
10418 		break;
10419 
10420 	case offsetof(struct bpf_sock_ops, remote_ip4):
10421 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10422 
10423 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10424 						struct bpf_sock_ops_kern, sk),
10425 				      si->dst_reg, si->src_reg,
10426 				      offsetof(struct bpf_sock_ops_kern, sk));
10427 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10428 				      offsetof(struct sock_common, skc_daddr));
10429 		break;
10430 
10431 	case offsetof(struct bpf_sock_ops, local_ip4):
10432 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10433 					  skc_rcv_saddr) != 4);
10434 
10435 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10436 					      struct bpf_sock_ops_kern, sk),
10437 				      si->dst_reg, si->src_reg,
10438 				      offsetof(struct bpf_sock_ops_kern, sk));
10439 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10440 				      offsetof(struct sock_common,
10441 					       skc_rcv_saddr));
10442 		break;
10443 
10444 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10445 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10446 #if IS_ENABLED(CONFIG_IPV6)
10447 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10448 					  skc_v6_daddr.s6_addr32[0]) != 4);
10449 
10450 		off = si->off;
10451 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10452 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10453 						struct bpf_sock_ops_kern, sk),
10454 				      si->dst_reg, si->src_reg,
10455 				      offsetof(struct bpf_sock_ops_kern, sk));
10456 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10457 				      offsetof(struct sock_common,
10458 					       skc_v6_daddr.s6_addr32[0]) +
10459 				      off);
10460 #else
10461 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10462 #endif
10463 		break;
10464 
10465 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10466 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10467 #if IS_ENABLED(CONFIG_IPV6)
10468 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10469 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10470 
10471 		off = si->off;
10472 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10473 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10474 						struct bpf_sock_ops_kern, sk),
10475 				      si->dst_reg, si->src_reg,
10476 				      offsetof(struct bpf_sock_ops_kern, sk));
10477 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10478 				      offsetof(struct sock_common,
10479 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10480 				      off);
10481 #else
10482 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10483 #endif
10484 		break;
10485 
10486 	case offsetof(struct bpf_sock_ops, remote_port):
10487 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10488 
10489 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10490 						struct bpf_sock_ops_kern, sk),
10491 				      si->dst_reg, si->src_reg,
10492 				      offsetof(struct bpf_sock_ops_kern, sk));
10493 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10494 				      offsetof(struct sock_common, skc_dport));
10495 #ifndef __BIG_ENDIAN_BITFIELD
10496 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10497 #endif
10498 		break;
10499 
10500 	case offsetof(struct bpf_sock_ops, local_port):
10501 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10502 
10503 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10504 						struct bpf_sock_ops_kern, sk),
10505 				      si->dst_reg, si->src_reg,
10506 				      offsetof(struct bpf_sock_ops_kern, sk));
10507 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10508 				      offsetof(struct sock_common, skc_num));
10509 		break;
10510 
10511 	case offsetof(struct bpf_sock_ops, is_fullsock):
10512 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10513 						struct bpf_sock_ops_kern,
10514 						is_fullsock),
10515 				      si->dst_reg, si->src_reg,
10516 				      offsetof(struct bpf_sock_ops_kern,
10517 					       is_fullsock));
10518 		break;
10519 
10520 	case offsetof(struct bpf_sock_ops, state):
10521 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10522 
10523 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10524 						struct bpf_sock_ops_kern, sk),
10525 				      si->dst_reg, si->src_reg,
10526 				      offsetof(struct bpf_sock_ops_kern, sk));
10527 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10528 				      offsetof(struct sock_common, skc_state));
10529 		break;
10530 
10531 	case offsetof(struct bpf_sock_ops, rtt_min):
10532 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10533 			     sizeof(struct minmax));
10534 		BUILD_BUG_ON(sizeof(struct minmax) <
10535 			     sizeof(struct minmax_sample));
10536 
10537 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10538 						struct bpf_sock_ops_kern, sk),
10539 				      si->dst_reg, si->src_reg,
10540 				      offsetof(struct bpf_sock_ops_kern, sk));
10541 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10542 				      offsetof(struct tcp_sock, rtt_min) +
10543 				      sizeof_field(struct minmax_sample, t));
10544 		break;
10545 
10546 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10547 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10548 				   struct tcp_sock);
10549 		break;
10550 
10551 	case offsetof(struct bpf_sock_ops, sk_txhash):
10552 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10553 					  struct sock, type);
10554 		break;
10555 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10556 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10557 		break;
10558 	case offsetof(struct bpf_sock_ops, srtt_us):
10559 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10560 		break;
10561 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10562 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10563 		break;
10564 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10565 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10566 		break;
10567 	case offsetof(struct bpf_sock_ops, snd_nxt):
10568 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10569 		break;
10570 	case offsetof(struct bpf_sock_ops, snd_una):
10571 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10572 		break;
10573 	case offsetof(struct bpf_sock_ops, mss_cache):
10574 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10575 		break;
10576 	case offsetof(struct bpf_sock_ops, ecn_flags):
10577 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10578 		break;
10579 	case offsetof(struct bpf_sock_ops, rate_delivered):
10580 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10581 		break;
10582 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10583 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10584 		break;
10585 	case offsetof(struct bpf_sock_ops, packets_out):
10586 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10587 		break;
10588 	case offsetof(struct bpf_sock_ops, retrans_out):
10589 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10590 		break;
10591 	case offsetof(struct bpf_sock_ops, total_retrans):
10592 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10593 		break;
10594 	case offsetof(struct bpf_sock_ops, segs_in):
10595 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10596 		break;
10597 	case offsetof(struct bpf_sock_ops, data_segs_in):
10598 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10599 		break;
10600 	case offsetof(struct bpf_sock_ops, segs_out):
10601 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10602 		break;
10603 	case offsetof(struct bpf_sock_ops, data_segs_out):
10604 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10605 		break;
10606 	case offsetof(struct bpf_sock_ops, lost_out):
10607 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10608 		break;
10609 	case offsetof(struct bpf_sock_ops, sacked_out):
10610 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10611 		break;
10612 	case offsetof(struct bpf_sock_ops, bytes_received):
10613 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10614 		break;
10615 	case offsetof(struct bpf_sock_ops, bytes_acked):
10616 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10617 		break;
10618 	case offsetof(struct bpf_sock_ops, sk):
10619 		SOCK_OPS_GET_SK();
10620 		break;
10621 	case offsetof(struct bpf_sock_ops, skb_data_end):
10622 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10623 						       skb_data_end),
10624 				      si->dst_reg, si->src_reg,
10625 				      offsetof(struct bpf_sock_ops_kern,
10626 					       skb_data_end));
10627 		break;
10628 	case offsetof(struct bpf_sock_ops, skb_data):
10629 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10630 						       skb),
10631 				      si->dst_reg, si->src_reg,
10632 				      offsetof(struct bpf_sock_ops_kern,
10633 					       skb));
10634 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10635 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10636 				      si->dst_reg, si->dst_reg,
10637 				      offsetof(struct sk_buff, data));
10638 		break;
10639 	case offsetof(struct bpf_sock_ops, skb_len):
10640 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10641 						       skb),
10642 				      si->dst_reg, si->src_reg,
10643 				      offsetof(struct bpf_sock_ops_kern,
10644 					       skb));
10645 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10646 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10647 				      si->dst_reg, si->dst_reg,
10648 				      offsetof(struct sk_buff, len));
10649 		break;
10650 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10651 		off = offsetof(struct sk_buff, cb);
10652 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10653 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10654 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10655 						       skb),
10656 				      si->dst_reg, si->src_reg,
10657 				      offsetof(struct bpf_sock_ops_kern,
10658 					       skb));
10659 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10660 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10661 						       tcp_flags),
10662 				      si->dst_reg, si->dst_reg, off);
10663 		break;
10664 	case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10665 		struct bpf_insn *jmp_on_null_skb;
10666 
10667 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10668 						       skb),
10669 				      si->dst_reg, si->src_reg,
10670 				      offsetof(struct bpf_sock_ops_kern,
10671 					       skb));
10672 		/* Reserve one insn to test skb == NULL */
10673 		jmp_on_null_skb = insn++;
10674 		insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10675 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10676 				      bpf_target_off(struct skb_shared_info,
10677 						     hwtstamps, 8,
10678 						     target_size));
10679 		*jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10680 					       insn - jmp_on_null_skb - 1);
10681 		break;
10682 	}
10683 	}
10684 	return insn - insn_buf;
10685 }
10686 
10687 /* data_end = skb->data + skb_headlen() */
10688 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10689 						    struct bpf_insn *insn)
10690 {
10691 	int reg;
10692 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10693 			   offsetof(struct sk_skb_cb, temp_reg);
10694 
10695 	if (si->src_reg == si->dst_reg) {
10696 		/* We need an extra register, choose and save a register. */
10697 		reg = BPF_REG_9;
10698 		if (si->src_reg == reg || si->dst_reg == reg)
10699 			reg--;
10700 		if (si->src_reg == reg || si->dst_reg == reg)
10701 			reg--;
10702 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10703 	} else {
10704 		reg = si->dst_reg;
10705 	}
10706 
10707 	/* reg = skb->data */
10708 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10709 			      reg, si->src_reg,
10710 			      offsetof(struct sk_buff, data));
10711 	/* AX = skb->len */
10712 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10713 			      BPF_REG_AX, si->src_reg,
10714 			      offsetof(struct sk_buff, len));
10715 	/* reg = skb->data + skb->len */
10716 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10717 	/* AX = skb->data_len */
10718 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10719 			      BPF_REG_AX, si->src_reg,
10720 			      offsetof(struct sk_buff, data_len));
10721 
10722 	/* reg = skb->data + skb->len - skb->data_len */
10723 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10724 
10725 	if (si->src_reg == si->dst_reg) {
10726 		/* Restore the saved register */
10727 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10728 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10729 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10730 	}
10731 
10732 	return insn;
10733 }
10734 
10735 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10736 				     const struct bpf_insn *si,
10737 				     struct bpf_insn *insn_buf,
10738 				     struct bpf_prog *prog, u32 *target_size)
10739 {
10740 	struct bpf_insn *insn = insn_buf;
10741 	int off;
10742 
10743 	switch (si->off) {
10744 	case offsetof(struct __sk_buff, data_end):
10745 		insn = bpf_convert_data_end_access(si, insn);
10746 		break;
10747 	case offsetof(struct __sk_buff, cb[0]) ...
10748 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10749 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10750 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10751 			      offsetof(struct sk_skb_cb, data)) %
10752 			     sizeof(__u64));
10753 
10754 		prog->cb_access = 1;
10755 		off  = si->off;
10756 		off -= offsetof(struct __sk_buff, cb[0]);
10757 		off += offsetof(struct sk_buff, cb);
10758 		off += offsetof(struct sk_skb_cb, data);
10759 		if (type == BPF_WRITE)
10760 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10761 		else
10762 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10763 					      si->src_reg, off);
10764 		break;
10765 
10766 
10767 	default:
10768 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10769 					      target_size);
10770 	}
10771 
10772 	return insn - insn_buf;
10773 }
10774 
10775 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10776 				     const struct bpf_insn *si,
10777 				     struct bpf_insn *insn_buf,
10778 				     struct bpf_prog *prog, u32 *target_size)
10779 {
10780 	struct bpf_insn *insn = insn_buf;
10781 #if IS_ENABLED(CONFIG_IPV6)
10782 	int off;
10783 #endif
10784 
10785 	/* convert ctx uses the fact sg element is first in struct */
10786 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10787 
10788 	switch (si->off) {
10789 	case offsetof(struct sk_msg_md, data):
10790 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10791 				      si->dst_reg, si->src_reg,
10792 				      offsetof(struct sk_msg, data));
10793 		break;
10794 	case offsetof(struct sk_msg_md, data_end):
10795 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10796 				      si->dst_reg, si->src_reg,
10797 				      offsetof(struct sk_msg, data_end));
10798 		break;
10799 	case offsetof(struct sk_msg_md, family):
10800 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10801 
10802 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10803 					      struct sk_msg, sk),
10804 				      si->dst_reg, si->src_reg,
10805 				      offsetof(struct sk_msg, sk));
10806 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10807 				      offsetof(struct sock_common, skc_family));
10808 		break;
10809 
10810 	case offsetof(struct sk_msg_md, remote_ip4):
10811 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10812 
10813 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10814 						struct sk_msg, sk),
10815 				      si->dst_reg, si->src_reg,
10816 				      offsetof(struct sk_msg, sk));
10817 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10818 				      offsetof(struct sock_common, skc_daddr));
10819 		break;
10820 
10821 	case offsetof(struct sk_msg_md, local_ip4):
10822 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10823 					  skc_rcv_saddr) != 4);
10824 
10825 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10826 					      struct sk_msg, sk),
10827 				      si->dst_reg, si->src_reg,
10828 				      offsetof(struct sk_msg, sk));
10829 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10830 				      offsetof(struct sock_common,
10831 					       skc_rcv_saddr));
10832 		break;
10833 
10834 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10835 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10836 #if IS_ENABLED(CONFIG_IPV6)
10837 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10838 					  skc_v6_daddr.s6_addr32[0]) != 4);
10839 
10840 		off = si->off;
10841 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10842 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10843 						struct sk_msg, sk),
10844 				      si->dst_reg, si->src_reg,
10845 				      offsetof(struct sk_msg, sk));
10846 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10847 				      offsetof(struct sock_common,
10848 					       skc_v6_daddr.s6_addr32[0]) +
10849 				      off);
10850 #else
10851 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10852 #endif
10853 		break;
10854 
10855 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10856 	     offsetof(struct sk_msg_md, local_ip6[3]):
10857 #if IS_ENABLED(CONFIG_IPV6)
10858 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10859 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10860 
10861 		off = si->off;
10862 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10863 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10864 						struct sk_msg, sk),
10865 				      si->dst_reg, si->src_reg,
10866 				      offsetof(struct sk_msg, sk));
10867 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10868 				      offsetof(struct sock_common,
10869 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10870 				      off);
10871 #else
10872 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10873 #endif
10874 		break;
10875 
10876 	case offsetof(struct sk_msg_md, remote_port):
10877 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10878 
10879 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10880 						struct sk_msg, sk),
10881 				      si->dst_reg, si->src_reg,
10882 				      offsetof(struct sk_msg, sk));
10883 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10884 				      offsetof(struct sock_common, skc_dport));
10885 #ifndef __BIG_ENDIAN_BITFIELD
10886 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10887 #endif
10888 		break;
10889 
10890 	case offsetof(struct sk_msg_md, local_port):
10891 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10892 
10893 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10894 						struct sk_msg, sk),
10895 				      si->dst_reg, si->src_reg,
10896 				      offsetof(struct sk_msg, sk));
10897 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10898 				      offsetof(struct sock_common, skc_num));
10899 		break;
10900 
10901 	case offsetof(struct sk_msg_md, size):
10902 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10903 				      si->dst_reg, si->src_reg,
10904 				      offsetof(struct sk_msg_sg, size));
10905 		break;
10906 
10907 	case offsetof(struct sk_msg_md, sk):
10908 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10909 				      si->dst_reg, si->src_reg,
10910 				      offsetof(struct sk_msg, sk));
10911 		break;
10912 	}
10913 
10914 	return insn - insn_buf;
10915 }
10916 
10917 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10918 	.get_func_proto		= sk_filter_func_proto,
10919 	.is_valid_access	= sk_filter_is_valid_access,
10920 	.convert_ctx_access	= bpf_convert_ctx_access,
10921 	.gen_ld_abs		= bpf_gen_ld_abs,
10922 };
10923 
10924 const struct bpf_prog_ops sk_filter_prog_ops = {
10925 	.test_run		= bpf_prog_test_run_skb,
10926 };
10927 
10928 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10929 	.get_func_proto		= tc_cls_act_func_proto,
10930 	.is_valid_access	= tc_cls_act_is_valid_access,
10931 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10932 	.gen_prologue		= tc_cls_act_prologue,
10933 	.gen_ld_abs		= bpf_gen_ld_abs,
10934 	.btf_struct_access	= tc_cls_act_btf_struct_access,
10935 };
10936 
10937 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10938 	.test_run		= bpf_prog_test_run_skb,
10939 };
10940 
10941 const struct bpf_verifier_ops xdp_verifier_ops = {
10942 	.get_func_proto		= xdp_func_proto,
10943 	.is_valid_access	= xdp_is_valid_access,
10944 	.convert_ctx_access	= xdp_convert_ctx_access,
10945 	.gen_prologue		= bpf_noop_prologue,
10946 	.btf_struct_access	= xdp_btf_struct_access,
10947 };
10948 
10949 const struct bpf_prog_ops xdp_prog_ops = {
10950 	.test_run		= bpf_prog_test_run_xdp,
10951 };
10952 
10953 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10954 	.get_func_proto		= cg_skb_func_proto,
10955 	.is_valid_access	= cg_skb_is_valid_access,
10956 	.convert_ctx_access	= bpf_convert_ctx_access,
10957 };
10958 
10959 const struct bpf_prog_ops cg_skb_prog_ops = {
10960 	.test_run		= bpf_prog_test_run_skb,
10961 };
10962 
10963 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10964 	.get_func_proto		= lwt_in_func_proto,
10965 	.is_valid_access	= lwt_is_valid_access,
10966 	.convert_ctx_access	= bpf_convert_ctx_access,
10967 };
10968 
10969 const struct bpf_prog_ops lwt_in_prog_ops = {
10970 	.test_run		= bpf_prog_test_run_skb,
10971 };
10972 
10973 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10974 	.get_func_proto		= lwt_out_func_proto,
10975 	.is_valid_access	= lwt_is_valid_access,
10976 	.convert_ctx_access	= bpf_convert_ctx_access,
10977 };
10978 
10979 const struct bpf_prog_ops lwt_out_prog_ops = {
10980 	.test_run		= bpf_prog_test_run_skb,
10981 };
10982 
10983 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10984 	.get_func_proto		= lwt_xmit_func_proto,
10985 	.is_valid_access	= lwt_is_valid_access,
10986 	.convert_ctx_access	= bpf_convert_ctx_access,
10987 	.gen_prologue		= tc_cls_act_prologue,
10988 };
10989 
10990 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10991 	.test_run		= bpf_prog_test_run_skb,
10992 };
10993 
10994 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10995 	.get_func_proto		= lwt_seg6local_func_proto,
10996 	.is_valid_access	= lwt_is_valid_access,
10997 	.convert_ctx_access	= bpf_convert_ctx_access,
10998 };
10999 
11000 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11001 	.test_run		= bpf_prog_test_run_skb,
11002 };
11003 
11004 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11005 	.get_func_proto		= sock_filter_func_proto,
11006 	.is_valid_access	= sock_filter_is_valid_access,
11007 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
11008 };
11009 
11010 const struct bpf_prog_ops cg_sock_prog_ops = {
11011 };
11012 
11013 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11014 	.get_func_proto		= sock_addr_func_proto,
11015 	.is_valid_access	= sock_addr_is_valid_access,
11016 	.convert_ctx_access	= sock_addr_convert_ctx_access,
11017 };
11018 
11019 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11020 };
11021 
11022 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11023 	.get_func_proto		= sock_ops_func_proto,
11024 	.is_valid_access	= sock_ops_is_valid_access,
11025 	.convert_ctx_access	= sock_ops_convert_ctx_access,
11026 };
11027 
11028 const struct bpf_prog_ops sock_ops_prog_ops = {
11029 };
11030 
11031 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11032 	.get_func_proto		= sk_skb_func_proto,
11033 	.is_valid_access	= sk_skb_is_valid_access,
11034 	.convert_ctx_access	= sk_skb_convert_ctx_access,
11035 	.gen_prologue		= sk_skb_prologue,
11036 };
11037 
11038 const struct bpf_prog_ops sk_skb_prog_ops = {
11039 };
11040 
11041 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11042 	.get_func_proto		= sk_msg_func_proto,
11043 	.is_valid_access	= sk_msg_is_valid_access,
11044 	.convert_ctx_access	= sk_msg_convert_ctx_access,
11045 	.gen_prologue		= bpf_noop_prologue,
11046 };
11047 
11048 const struct bpf_prog_ops sk_msg_prog_ops = {
11049 };
11050 
11051 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11052 	.get_func_proto		= flow_dissector_func_proto,
11053 	.is_valid_access	= flow_dissector_is_valid_access,
11054 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
11055 };
11056 
11057 const struct bpf_prog_ops flow_dissector_prog_ops = {
11058 	.test_run		= bpf_prog_test_run_flow_dissector,
11059 };
11060 
11061 int sk_detach_filter(struct sock *sk)
11062 {
11063 	int ret = -ENOENT;
11064 	struct sk_filter *filter;
11065 
11066 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
11067 		return -EPERM;
11068 
11069 	filter = rcu_dereference_protected(sk->sk_filter,
11070 					   lockdep_sock_is_held(sk));
11071 	if (filter) {
11072 		RCU_INIT_POINTER(sk->sk_filter, NULL);
11073 		sk_filter_uncharge(sk, filter);
11074 		ret = 0;
11075 	}
11076 
11077 	return ret;
11078 }
11079 EXPORT_SYMBOL_GPL(sk_detach_filter);
11080 
11081 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11082 {
11083 	struct sock_fprog_kern *fprog;
11084 	struct sk_filter *filter;
11085 	int ret = 0;
11086 
11087 	sockopt_lock_sock(sk);
11088 	filter = rcu_dereference_protected(sk->sk_filter,
11089 					   lockdep_sock_is_held(sk));
11090 	if (!filter)
11091 		goto out;
11092 
11093 	/* We're copying the filter that has been originally attached,
11094 	 * so no conversion/decode needed anymore. eBPF programs that
11095 	 * have no original program cannot be dumped through this.
11096 	 */
11097 	ret = -EACCES;
11098 	fprog = filter->prog->orig_prog;
11099 	if (!fprog)
11100 		goto out;
11101 
11102 	ret = fprog->len;
11103 	if (!len)
11104 		/* User space only enquires number of filter blocks. */
11105 		goto out;
11106 
11107 	ret = -EINVAL;
11108 	if (len < fprog->len)
11109 		goto out;
11110 
11111 	ret = -EFAULT;
11112 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11113 		goto out;
11114 
11115 	/* Instead of bytes, the API requests to return the number
11116 	 * of filter blocks.
11117 	 */
11118 	ret = fprog->len;
11119 out:
11120 	sockopt_release_sock(sk);
11121 	return ret;
11122 }
11123 
11124 #ifdef CONFIG_INET
11125 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11126 				    struct sock_reuseport *reuse,
11127 				    struct sock *sk, struct sk_buff *skb,
11128 				    struct sock *migrating_sk,
11129 				    u32 hash)
11130 {
11131 	reuse_kern->skb = skb;
11132 	reuse_kern->sk = sk;
11133 	reuse_kern->selected_sk = NULL;
11134 	reuse_kern->migrating_sk = migrating_sk;
11135 	reuse_kern->data_end = skb->data + skb_headlen(skb);
11136 	reuse_kern->hash = hash;
11137 	reuse_kern->reuseport_id = reuse->reuseport_id;
11138 	reuse_kern->bind_inany = reuse->bind_inany;
11139 }
11140 
11141 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11142 				  struct bpf_prog *prog, struct sk_buff *skb,
11143 				  struct sock *migrating_sk,
11144 				  u32 hash)
11145 {
11146 	struct sk_reuseport_kern reuse_kern;
11147 	enum sk_action action;
11148 
11149 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11150 	action = bpf_prog_run(prog, &reuse_kern);
11151 
11152 	if (action == SK_PASS)
11153 		return reuse_kern.selected_sk;
11154 	else
11155 		return ERR_PTR(-ECONNREFUSED);
11156 }
11157 
11158 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11159 	   struct bpf_map *, map, void *, key, u32, flags)
11160 {
11161 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11162 	struct sock_reuseport *reuse;
11163 	struct sock *selected_sk;
11164 
11165 	selected_sk = map->ops->map_lookup_elem(map, key);
11166 	if (!selected_sk)
11167 		return -ENOENT;
11168 
11169 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11170 	if (!reuse) {
11171 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11172 		if (sk_is_refcounted(selected_sk))
11173 			sock_put(selected_sk);
11174 
11175 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
11176 		 * The only (!reuse) case here is - the sk has already been
11177 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
11178 		 *
11179 		 * Other maps (e.g. sock_map) do not provide this guarantee and
11180 		 * the sk may never be in the reuseport group to begin with.
11181 		 */
11182 		return is_sockarray ? -ENOENT : -EINVAL;
11183 	}
11184 
11185 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11186 		struct sock *sk = reuse_kern->sk;
11187 
11188 		if (sk->sk_protocol != selected_sk->sk_protocol)
11189 			return -EPROTOTYPE;
11190 		else if (sk->sk_family != selected_sk->sk_family)
11191 			return -EAFNOSUPPORT;
11192 
11193 		/* Catch all. Likely bound to a different sockaddr. */
11194 		return -EBADFD;
11195 	}
11196 
11197 	reuse_kern->selected_sk = selected_sk;
11198 
11199 	return 0;
11200 }
11201 
11202 static const struct bpf_func_proto sk_select_reuseport_proto = {
11203 	.func           = sk_select_reuseport,
11204 	.gpl_only       = false,
11205 	.ret_type       = RET_INTEGER,
11206 	.arg1_type	= ARG_PTR_TO_CTX,
11207 	.arg2_type      = ARG_CONST_MAP_PTR,
11208 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
11209 	.arg4_type	= ARG_ANYTHING,
11210 };
11211 
11212 BPF_CALL_4(sk_reuseport_load_bytes,
11213 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11214 	   void *, to, u32, len)
11215 {
11216 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11217 }
11218 
11219 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11220 	.func		= sk_reuseport_load_bytes,
11221 	.gpl_only	= false,
11222 	.ret_type	= RET_INTEGER,
11223 	.arg1_type	= ARG_PTR_TO_CTX,
11224 	.arg2_type	= ARG_ANYTHING,
11225 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11226 	.arg4_type	= ARG_CONST_SIZE,
11227 };
11228 
11229 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11230 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11231 	   void *, to, u32, len, u32, start_header)
11232 {
11233 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11234 					       len, start_header);
11235 }
11236 
11237 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11238 	.func		= sk_reuseport_load_bytes_relative,
11239 	.gpl_only	= false,
11240 	.ret_type	= RET_INTEGER,
11241 	.arg1_type	= ARG_PTR_TO_CTX,
11242 	.arg2_type	= ARG_ANYTHING,
11243 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11244 	.arg4_type	= ARG_CONST_SIZE,
11245 	.arg5_type	= ARG_ANYTHING,
11246 };
11247 
11248 static const struct bpf_func_proto *
11249 sk_reuseport_func_proto(enum bpf_func_id func_id,
11250 			const struct bpf_prog *prog)
11251 {
11252 	switch (func_id) {
11253 	case BPF_FUNC_sk_select_reuseport:
11254 		return &sk_select_reuseport_proto;
11255 	case BPF_FUNC_skb_load_bytes:
11256 		return &sk_reuseport_load_bytes_proto;
11257 	case BPF_FUNC_skb_load_bytes_relative:
11258 		return &sk_reuseport_load_bytes_relative_proto;
11259 	case BPF_FUNC_get_socket_cookie:
11260 		return &bpf_get_socket_ptr_cookie_proto;
11261 	case BPF_FUNC_ktime_get_coarse_ns:
11262 		return &bpf_ktime_get_coarse_ns_proto;
11263 	default:
11264 		return bpf_base_func_proto(func_id);
11265 	}
11266 }
11267 
11268 static bool
11269 sk_reuseport_is_valid_access(int off, int size,
11270 			     enum bpf_access_type type,
11271 			     const struct bpf_prog *prog,
11272 			     struct bpf_insn_access_aux *info)
11273 {
11274 	const u32 size_default = sizeof(__u32);
11275 
11276 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11277 	    off % size || type != BPF_READ)
11278 		return false;
11279 
11280 	switch (off) {
11281 	case offsetof(struct sk_reuseport_md, data):
11282 		info->reg_type = PTR_TO_PACKET;
11283 		return size == sizeof(__u64);
11284 
11285 	case offsetof(struct sk_reuseport_md, data_end):
11286 		info->reg_type = PTR_TO_PACKET_END;
11287 		return size == sizeof(__u64);
11288 
11289 	case offsetof(struct sk_reuseport_md, hash):
11290 		return size == size_default;
11291 
11292 	case offsetof(struct sk_reuseport_md, sk):
11293 		info->reg_type = PTR_TO_SOCKET;
11294 		return size == sizeof(__u64);
11295 
11296 	case offsetof(struct sk_reuseport_md, migrating_sk):
11297 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11298 		return size == sizeof(__u64);
11299 
11300 	/* Fields that allow narrowing */
11301 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11302 		if (size < sizeof_field(struct sk_buff, protocol))
11303 			return false;
11304 		fallthrough;
11305 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11306 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11307 	case bpf_ctx_range(struct sk_reuseport_md, len):
11308 		bpf_ctx_record_field_size(info, size_default);
11309 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11310 
11311 	default:
11312 		return false;
11313 	}
11314 }
11315 
11316 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11317 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11318 			      si->dst_reg, si->src_reg,			\
11319 			      bpf_target_off(struct sk_reuseport_kern, F, \
11320 					     sizeof_field(struct sk_reuseport_kern, F), \
11321 					     target_size));		\
11322 	})
11323 
11324 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11325 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11326 				    struct sk_buff,			\
11327 				    skb,				\
11328 				    SKB_FIELD)
11329 
11330 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11331 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11332 				    struct sock,			\
11333 				    sk,					\
11334 				    SK_FIELD)
11335 
11336 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11337 					   const struct bpf_insn *si,
11338 					   struct bpf_insn *insn_buf,
11339 					   struct bpf_prog *prog,
11340 					   u32 *target_size)
11341 {
11342 	struct bpf_insn *insn = insn_buf;
11343 
11344 	switch (si->off) {
11345 	case offsetof(struct sk_reuseport_md, data):
11346 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11347 		break;
11348 
11349 	case offsetof(struct sk_reuseport_md, len):
11350 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11351 		break;
11352 
11353 	case offsetof(struct sk_reuseport_md, eth_protocol):
11354 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11355 		break;
11356 
11357 	case offsetof(struct sk_reuseport_md, ip_protocol):
11358 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11359 		break;
11360 
11361 	case offsetof(struct sk_reuseport_md, data_end):
11362 		SK_REUSEPORT_LOAD_FIELD(data_end);
11363 		break;
11364 
11365 	case offsetof(struct sk_reuseport_md, hash):
11366 		SK_REUSEPORT_LOAD_FIELD(hash);
11367 		break;
11368 
11369 	case offsetof(struct sk_reuseport_md, bind_inany):
11370 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11371 		break;
11372 
11373 	case offsetof(struct sk_reuseport_md, sk):
11374 		SK_REUSEPORT_LOAD_FIELD(sk);
11375 		break;
11376 
11377 	case offsetof(struct sk_reuseport_md, migrating_sk):
11378 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11379 		break;
11380 	}
11381 
11382 	return insn - insn_buf;
11383 }
11384 
11385 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11386 	.get_func_proto		= sk_reuseport_func_proto,
11387 	.is_valid_access	= sk_reuseport_is_valid_access,
11388 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11389 };
11390 
11391 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11392 };
11393 
11394 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11395 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11396 
11397 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11398 	   struct sock *, sk, u64, flags)
11399 {
11400 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11401 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11402 		return -EINVAL;
11403 	if (unlikely(sk && sk_is_refcounted(sk)))
11404 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11405 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11406 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11407 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11408 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11409 
11410 	/* Check if socket is suitable for packet L3/L4 protocol */
11411 	if (sk && sk->sk_protocol != ctx->protocol)
11412 		return -EPROTOTYPE;
11413 	if (sk && sk->sk_family != ctx->family &&
11414 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11415 		return -EAFNOSUPPORT;
11416 
11417 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11418 		return -EEXIST;
11419 
11420 	/* Select socket as lookup result */
11421 	ctx->selected_sk = sk;
11422 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11423 	return 0;
11424 }
11425 
11426 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11427 	.func		= bpf_sk_lookup_assign,
11428 	.gpl_only	= false,
11429 	.ret_type	= RET_INTEGER,
11430 	.arg1_type	= ARG_PTR_TO_CTX,
11431 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11432 	.arg3_type	= ARG_ANYTHING,
11433 };
11434 
11435 static const struct bpf_func_proto *
11436 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11437 {
11438 	switch (func_id) {
11439 	case BPF_FUNC_perf_event_output:
11440 		return &bpf_event_output_data_proto;
11441 	case BPF_FUNC_sk_assign:
11442 		return &bpf_sk_lookup_assign_proto;
11443 	case BPF_FUNC_sk_release:
11444 		return &bpf_sk_release_proto;
11445 	default:
11446 		return bpf_sk_base_func_proto(func_id);
11447 	}
11448 }
11449 
11450 static bool sk_lookup_is_valid_access(int off, int size,
11451 				      enum bpf_access_type type,
11452 				      const struct bpf_prog *prog,
11453 				      struct bpf_insn_access_aux *info)
11454 {
11455 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11456 		return false;
11457 	if (off % size != 0)
11458 		return false;
11459 	if (type != BPF_READ)
11460 		return false;
11461 
11462 	switch (off) {
11463 	case offsetof(struct bpf_sk_lookup, sk):
11464 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11465 		return size == sizeof(__u64);
11466 
11467 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11468 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11469 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11470 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11471 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11472 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11473 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11474 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11475 		bpf_ctx_record_field_size(info, sizeof(__u32));
11476 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11477 
11478 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11479 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11480 		if (size == sizeof(__u32))
11481 			return true;
11482 		bpf_ctx_record_field_size(info, sizeof(__be16));
11483 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11484 
11485 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11486 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11487 		/* Allow access to zero padding for backward compatibility */
11488 		bpf_ctx_record_field_size(info, sizeof(__u16));
11489 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11490 
11491 	default:
11492 		return false;
11493 	}
11494 }
11495 
11496 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11497 					const struct bpf_insn *si,
11498 					struct bpf_insn *insn_buf,
11499 					struct bpf_prog *prog,
11500 					u32 *target_size)
11501 {
11502 	struct bpf_insn *insn = insn_buf;
11503 
11504 	switch (si->off) {
11505 	case offsetof(struct bpf_sk_lookup, sk):
11506 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11507 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11508 		break;
11509 
11510 	case offsetof(struct bpf_sk_lookup, family):
11511 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11512 				      bpf_target_off(struct bpf_sk_lookup_kern,
11513 						     family, 2, target_size));
11514 		break;
11515 
11516 	case offsetof(struct bpf_sk_lookup, protocol):
11517 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11518 				      bpf_target_off(struct bpf_sk_lookup_kern,
11519 						     protocol, 2, target_size));
11520 		break;
11521 
11522 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11523 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11524 				      bpf_target_off(struct bpf_sk_lookup_kern,
11525 						     v4.saddr, 4, target_size));
11526 		break;
11527 
11528 	case offsetof(struct bpf_sk_lookup, local_ip4):
11529 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11530 				      bpf_target_off(struct bpf_sk_lookup_kern,
11531 						     v4.daddr, 4, target_size));
11532 		break;
11533 
11534 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11535 				remote_ip6[0], remote_ip6[3]): {
11536 #if IS_ENABLED(CONFIG_IPV6)
11537 		int off = si->off;
11538 
11539 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11540 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11541 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11542 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11543 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11544 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11545 #else
11546 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11547 #endif
11548 		break;
11549 	}
11550 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11551 				local_ip6[0], local_ip6[3]): {
11552 #if IS_ENABLED(CONFIG_IPV6)
11553 		int off = si->off;
11554 
11555 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11556 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11557 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11558 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11559 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11560 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11561 #else
11562 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11563 #endif
11564 		break;
11565 	}
11566 	case offsetof(struct bpf_sk_lookup, remote_port):
11567 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11568 				      bpf_target_off(struct bpf_sk_lookup_kern,
11569 						     sport, 2, target_size));
11570 		break;
11571 
11572 	case offsetofend(struct bpf_sk_lookup, remote_port):
11573 		*target_size = 2;
11574 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11575 		break;
11576 
11577 	case offsetof(struct bpf_sk_lookup, local_port):
11578 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11579 				      bpf_target_off(struct bpf_sk_lookup_kern,
11580 						     dport, 2, target_size));
11581 		break;
11582 
11583 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11584 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11585 				      bpf_target_off(struct bpf_sk_lookup_kern,
11586 						     ingress_ifindex, 4, target_size));
11587 		break;
11588 	}
11589 
11590 	return insn - insn_buf;
11591 }
11592 
11593 const struct bpf_prog_ops sk_lookup_prog_ops = {
11594 	.test_run = bpf_prog_test_run_sk_lookup,
11595 };
11596 
11597 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11598 	.get_func_proto		= sk_lookup_func_proto,
11599 	.is_valid_access	= sk_lookup_is_valid_access,
11600 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11601 };
11602 
11603 #endif /* CONFIG_INET */
11604 
11605 DEFINE_BPF_DISPATCHER(xdp)
11606 
11607 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11608 {
11609 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11610 }
11611 
11612 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11613 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11614 BTF_SOCK_TYPE_xxx
11615 #undef BTF_SOCK_TYPE
11616 
11617 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11618 {
11619 	/* tcp6_sock type is not generated in dwarf and hence btf,
11620 	 * trigger an explicit type generation here.
11621 	 */
11622 	BTF_TYPE_EMIT(struct tcp6_sock);
11623 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11624 	    sk->sk_family == AF_INET6)
11625 		return (unsigned long)sk;
11626 
11627 	return (unsigned long)NULL;
11628 }
11629 
11630 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11631 	.func			= bpf_skc_to_tcp6_sock,
11632 	.gpl_only		= false,
11633 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11634 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11635 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11636 };
11637 
11638 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11639 {
11640 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11641 		return (unsigned long)sk;
11642 
11643 	return (unsigned long)NULL;
11644 }
11645 
11646 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11647 	.func			= bpf_skc_to_tcp_sock,
11648 	.gpl_only		= false,
11649 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11650 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11651 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11652 };
11653 
11654 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11655 {
11656 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11657 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11658 	 */
11659 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11660 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11661 
11662 #ifdef CONFIG_INET
11663 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11664 		return (unsigned long)sk;
11665 #endif
11666 
11667 #if IS_BUILTIN(CONFIG_IPV6)
11668 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11669 		return (unsigned long)sk;
11670 #endif
11671 
11672 	return (unsigned long)NULL;
11673 }
11674 
11675 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11676 	.func			= bpf_skc_to_tcp_timewait_sock,
11677 	.gpl_only		= false,
11678 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11679 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11680 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11681 };
11682 
11683 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11684 {
11685 #ifdef CONFIG_INET
11686 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11687 		return (unsigned long)sk;
11688 #endif
11689 
11690 #if IS_BUILTIN(CONFIG_IPV6)
11691 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11692 		return (unsigned long)sk;
11693 #endif
11694 
11695 	return (unsigned long)NULL;
11696 }
11697 
11698 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11699 	.func			= bpf_skc_to_tcp_request_sock,
11700 	.gpl_only		= false,
11701 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11702 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11703 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11704 };
11705 
11706 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11707 {
11708 	/* udp6_sock type is not generated in dwarf and hence btf,
11709 	 * trigger an explicit type generation here.
11710 	 */
11711 	BTF_TYPE_EMIT(struct udp6_sock);
11712 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11713 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11714 		return (unsigned long)sk;
11715 
11716 	return (unsigned long)NULL;
11717 }
11718 
11719 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11720 	.func			= bpf_skc_to_udp6_sock,
11721 	.gpl_only		= false,
11722 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11723 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11724 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11725 };
11726 
11727 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11728 {
11729 	/* unix_sock type is not generated in dwarf and hence btf,
11730 	 * trigger an explicit type generation here.
11731 	 */
11732 	BTF_TYPE_EMIT(struct unix_sock);
11733 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11734 		return (unsigned long)sk;
11735 
11736 	return (unsigned long)NULL;
11737 }
11738 
11739 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11740 	.func			= bpf_skc_to_unix_sock,
11741 	.gpl_only		= false,
11742 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11743 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11744 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11745 };
11746 
11747 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11748 {
11749 	BTF_TYPE_EMIT(struct mptcp_sock);
11750 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11751 }
11752 
11753 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11754 	.func		= bpf_skc_to_mptcp_sock,
11755 	.gpl_only	= false,
11756 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11757 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11758 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11759 };
11760 
11761 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11762 {
11763 	return (unsigned long)sock_from_file(file);
11764 }
11765 
11766 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11767 BTF_ID(struct, socket)
11768 BTF_ID(struct, file)
11769 
11770 const struct bpf_func_proto bpf_sock_from_file_proto = {
11771 	.func		= bpf_sock_from_file,
11772 	.gpl_only	= false,
11773 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11774 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11775 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11776 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11777 };
11778 
11779 static const struct bpf_func_proto *
11780 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11781 {
11782 	const struct bpf_func_proto *func;
11783 
11784 	switch (func_id) {
11785 	case BPF_FUNC_skc_to_tcp6_sock:
11786 		func = &bpf_skc_to_tcp6_sock_proto;
11787 		break;
11788 	case BPF_FUNC_skc_to_tcp_sock:
11789 		func = &bpf_skc_to_tcp_sock_proto;
11790 		break;
11791 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11792 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11793 		break;
11794 	case BPF_FUNC_skc_to_tcp_request_sock:
11795 		func = &bpf_skc_to_tcp_request_sock_proto;
11796 		break;
11797 	case BPF_FUNC_skc_to_udp6_sock:
11798 		func = &bpf_skc_to_udp6_sock_proto;
11799 		break;
11800 	case BPF_FUNC_skc_to_unix_sock:
11801 		func = &bpf_skc_to_unix_sock_proto;
11802 		break;
11803 	case BPF_FUNC_skc_to_mptcp_sock:
11804 		func = &bpf_skc_to_mptcp_sock_proto;
11805 		break;
11806 	case BPF_FUNC_ktime_get_coarse_ns:
11807 		return &bpf_ktime_get_coarse_ns_proto;
11808 	default:
11809 		return bpf_base_func_proto(func_id);
11810 	}
11811 
11812 	if (!perfmon_capable())
11813 		return NULL;
11814 
11815 	return func;
11816 }
11817 
11818 __diag_push();
11819 __diag_ignore_all("-Wmissing-prototypes",
11820 		  "Global functions as their definitions will be in vmlinux BTF");
11821 __bpf_kfunc int bpf_dynptr_from_skb(struct sk_buff *skb, u64 flags,
11822 				    struct bpf_dynptr_kern *ptr__uninit)
11823 {
11824 	if (flags) {
11825 		bpf_dynptr_set_null(ptr__uninit);
11826 		return -EINVAL;
11827 	}
11828 
11829 	bpf_dynptr_init(ptr__uninit, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
11830 
11831 	return 0;
11832 }
11833 
11834 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_buff *xdp, u64 flags,
11835 				    struct bpf_dynptr_kern *ptr__uninit)
11836 {
11837 	if (flags) {
11838 		bpf_dynptr_set_null(ptr__uninit);
11839 		return -EINVAL;
11840 	}
11841 
11842 	bpf_dynptr_init(ptr__uninit, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
11843 
11844 	return 0;
11845 }
11846 
11847 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
11848 					   const u8 *sun_path, u32 sun_path__sz)
11849 {
11850 	struct sockaddr_un *un;
11851 
11852 	if (sa_kern->sk->sk_family != AF_UNIX)
11853 		return -EINVAL;
11854 
11855 	/* We do not allow changing the address to unnamed or larger than the
11856 	 * maximum allowed address size for a unix sockaddr.
11857 	 */
11858 	if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
11859 		return -EINVAL;
11860 
11861 	un = (struct sockaddr_un *)sa_kern->uaddr;
11862 	memcpy(un->sun_path, sun_path, sun_path__sz);
11863 	sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
11864 
11865 	return 0;
11866 }
11867 __diag_pop();
11868 
11869 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
11870 			       struct bpf_dynptr_kern *ptr__uninit)
11871 {
11872 	int err;
11873 
11874 	err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
11875 	if (err)
11876 		return err;
11877 
11878 	bpf_dynptr_set_rdonly(ptr__uninit);
11879 
11880 	return 0;
11881 }
11882 
11883 BTF_SET8_START(bpf_kfunc_check_set_skb)
11884 BTF_ID_FLAGS(func, bpf_dynptr_from_skb)
11885 BTF_SET8_END(bpf_kfunc_check_set_skb)
11886 
11887 BTF_SET8_START(bpf_kfunc_check_set_xdp)
11888 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
11889 BTF_SET8_END(bpf_kfunc_check_set_xdp)
11890 
11891 BTF_SET8_START(bpf_kfunc_check_set_sock_addr)
11892 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
11893 BTF_SET8_END(bpf_kfunc_check_set_sock_addr)
11894 
11895 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
11896 	.owner = THIS_MODULE,
11897 	.set = &bpf_kfunc_check_set_skb,
11898 };
11899 
11900 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
11901 	.owner = THIS_MODULE,
11902 	.set = &bpf_kfunc_check_set_xdp,
11903 };
11904 
11905 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
11906 	.owner = THIS_MODULE,
11907 	.set = &bpf_kfunc_check_set_sock_addr,
11908 };
11909 
11910 static int __init bpf_kfunc_init(void)
11911 {
11912 	int ret;
11913 
11914 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
11915 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
11916 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
11917 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
11918 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
11919 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
11920 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
11921 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
11922 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
11923 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
11924 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
11925 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
11926 						&bpf_kfunc_set_sock_addr);
11927 }
11928 late_initcall(bpf_kfunc_init);
11929 
11930 /* Disables missing prototype warnings */
11931 __diag_push();
11932 __diag_ignore_all("-Wmissing-prototypes",
11933 		  "Global functions as their definitions will be in vmlinux BTF");
11934 
11935 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
11936  *
11937  * The function expects a non-NULL pointer to a socket, and invokes the
11938  * protocol specific socket destroy handlers.
11939  *
11940  * The helper can only be called from BPF contexts that have acquired the socket
11941  * locks.
11942  *
11943  * Parameters:
11944  * @sock: Pointer to socket to be destroyed
11945  *
11946  * Return:
11947  * On error, may return EPROTONOSUPPORT, EINVAL.
11948  * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
11949  * 0 otherwise
11950  */
11951 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
11952 {
11953 	struct sock *sk = (struct sock *)sock;
11954 
11955 	/* The locking semantics that allow for synchronous execution of the
11956 	 * destroy handlers are only supported for TCP and UDP.
11957 	 * Supporting protocols will need to acquire sock lock in the BPF context
11958 	 * prior to invoking this kfunc.
11959 	 */
11960 	if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
11961 					   sk->sk_protocol != IPPROTO_UDP))
11962 		return -EOPNOTSUPP;
11963 
11964 	return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
11965 }
11966 
11967 __diag_pop()
11968 
11969 BTF_SET8_START(bpf_sk_iter_kfunc_ids)
11970 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
11971 BTF_SET8_END(bpf_sk_iter_kfunc_ids)
11972 
11973 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
11974 {
11975 	if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
11976 	    prog->expected_attach_type != BPF_TRACE_ITER)
11977 		return -EACCES;
11978 	return 0;
11979 }
11980 
11981 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
11982 	.owner = THIS_MODULE,
11983 	.set   = &bpf_sk_iter_kfunc_ids,
11984 	.filter = tracing_iter_filter,
11985 };
11986 
11987 static int init_subsystem(void)
11988 {
11989 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
11990 }
11991 late_initcall(init_subsystem);
11992