xref: /openbmc/linux/net/core/filter.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/fcntl.h>
25 #include <linux/socket.h>
26 #include <linux/sock_diag.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_arp.h>
32 #include <linux/gfp.h>
33 #include <net/inet_common.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <linux/skmsg.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 #include <net/xdp.h>
81 
82 static const struct bpf_func_proto *
83 bpf_sk_base_func_proto(enum bpf_func_id func_id);
84 
85 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
86 {
87 	if (in_compat_syscall()) {
88 		struct compat_sock_fprog f32;
89 
90 		if (len != sizeof(f32))
91 			return -EINVAL;
92 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
93 			return -EFAULT;
94 		memset(dst, 0, sizeof(*dst));
95 		dst->len = f32.len;
96 		dst->filter = compat_ptr(f32.filter);
97 	} else {
98 		if (len != sizeof(*dst))
99 			return -EINVAL;
100 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
101 			return -EFAULT;
102 	}
103 
104 	return 0;
105 }
106 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
107 
108 /**
109  *	sk_filter_trim_cap - run a packet through a socket filter
110  *	@sk: sock associated with &sk_buff
111  *	@skb: buffer to filter
112  *	@cap: limit on how short the eBPF program may trim the packet
113  *
114  * Run the eBPF program and then cut skb->data to correct size returned by
115  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
116  * than pkt_len we keep whole skb->data. This is the socket level
117  * wrapper to bpf_prog_run. It returns 0 if the packet should
118  * be accepted or -EPERM if the packet should be tossed.
119  *
120  */
121 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
122 {
123 	int err;
124 	struct sk_filter *filter;
125 
126 	/*
127 	 * If the skb was allocated from pfmemalloc reserves, only
128 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
129 	 * helping free memory
130 	 */
131 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
132 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
133 		return -ENOMEM;
134 	}
135 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
136 	if (err)
137 		return err;
138 
139 	err = security_sock_rcv_skb(sk, skb);
140 	if (err)
141 		return err;
142 
143 	rcu_read_lock();
144 	filter = rcu_dereference(sk->sk_filter);
145 	if (filter) {
146 		struct sock *save_sk = skb->sk;
147 		unsigned int pkt_len;
148 
149 		skb->sk = sk;
150 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
151 		skb->sk = save_sk;
152 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
153 	}
154 	rcu_read_unlock();
155 
156 	return err;
157 }
158 EXPORT_SYMBOL(sk_filter_trim_cap);
159 
160 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
161 {
162 	return skb_get_poff(skb);
163 }
164 
165 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
166 {
167 	struct nlattr *nla;
168 
169 	if (skb_is_nonlinear(skb))
170 		return 0;
171 
172 	if (skb->len < sizeof(struct nlattr))
173 		return 0;
174 
175 	if (a > skb->len - sizeof(struct nlattr))
176 		return 0;
177 
178 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
179 	if (nla)
180 		return (void *) nla - (void *) skb->data;
181 
182 	return 0;
183 }
184 
185 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
186 {
187 	struct nlattr *nla;
188 
189 	if (skb_is_nonlinear(skb))
190 		return 0;
191 
192 	if (skb->len < sizeof(struct nlattr))
193 		return 0;
194 
195 	if (a > skb->len - sizeof(struct nlattr))
196 		return 0;
197 
198 	nla = (struct nlattr *) &skb->data[a];
199 	if (nla->nla_len > skb->len - a)
200 		return 0;
201 
202 	nla = nla_find_nested(nla, x);
203 	if (nla)
204 		return (void *) nla - (void *) skb->data;
205 
206 	return 0;
207 }
208 
209 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
210 	   data, int, headlen, int, offset)
211 {
212 	u8 tmp, *ptr;
213 	const int len = sizeof(tmp);
214 
215 	if (offset >= 0) {
216 		if (headlen - offset >= len)
217 			return *(u8 *)(data + offset);
218 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
219 			return tmp;
220 	} else {
221 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
222 		if (likely(ptr))
223 			return *(u8 *)ptr;
224 	}
225 
226 	return -EFAULT;
227 }
228 
229 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
230 	   int, offset)
231 {
232 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
233 					 offset);
234 }
235 
236 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
237 	   data, int, headlen, int, offset)
238 {
239 	u16 tmp, *ptr;
240 	const int len = sizeof(tmp);
241 
242 	if (offset >= 0) {
243 		if (headlen - offset >= len)
244 			return get_unaligned_be16(data + offset);
245 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
246 			return be16_to_cpu(tmp);
247 	} else {
248 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
249 		if (likely(ptr))
250 			return get_unaligned_be16(ptr);
251 	}
252 
253 	return -EFAULT;
254 }
255 
256 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
257 	   int, offset)
258 {
259 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
260 					  offset);
261 }
262 
263 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
264 	   data, int, headlen, int, offset)
265 {
266 	u32 tmp, *ptr;
267 	const int len = sizeof(tmp);
268 
269 	if (likely(offset >= 0)) {
270 		if (headlen - offset >= len)
271 			return get_unaligned_be32(data + offset);
272 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
273 			return be32_to_cpu(tmp);
274 	} else {
275 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
276 		if (likely(ptr))
277 			return get_unaligned_be32(ptr);
278 	}
279 
280 	return -EFAULT;
281 }
282 
283 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
284 	   int, offset)
285 {
286 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
287 					  offset);
288 }
289 
290 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
291 			      struct bpf_insn *insn_buf)
292 {
293 	struct bpf_insn *insn = insn_buf;
294 
295 	switch (skb_field) {
296 	case SKF_AD_MARK:
297 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
298 
299 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
300 				      offsetof(struct sk_buff, mark));
301 		break;
302 
303 	case SKF_AD_PKTTYPE:
304 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
305 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
306 #ifdef __BIG_ENDIAN_BITFIELD
307 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
308 #endif
309 		break;
310 
311 	case SKF_AD_QUEUE:
312 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
313 
314 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
315 				      offsetof(struct sk_buff, queue_mapping));
316 		break;
317 
318 	case SKF_AD_VLAN_TAG:
319 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
320 
321 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
322 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
323 				      offsetof(struct sk_buff, vlan_tci));
324 		break;
325 	case SKF_AD_VLAN_TAG_PRESENT:
326 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET);
327 		if (PKT_VLAN_PRESENT_BIT)
328 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
329 		if (PKT_VLAN_PRESENT_BIT < 7)
330 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
331 		break;
332 	}
333 
334 	return insn - insn_buf;
335 }
336 
337 static bool convert_bpf_extensions(struct sock_filter *fp,
338 				   struct bpf_insn **insnp)
339 {
340 	struct bpf_insn *insn = *insnp;
341 	u32 cnt;
342 
343 	switch (fp->k) {
344 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
345 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
346 
347 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
348 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
349 				      offsetof(struct sk_buff, protocol));
350 		/* A = ntohs(A) [emitting a nop or swap16] */
351 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
352 		break;
353 
354 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
355 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
356 		insn += cnt - 1;
357 		break;
358 
359 	case SKF_AD_OFF + SKF_AD_IFINDEX:
360 	case SKF_AD_OFF + SKF_AD_HATYPE:
361 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
362 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
363 
364 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
365 				      BPF_REG_TMP, BPF_REG_CTX,
366 				      offsetof(struct sk_buff, dev));
367 		/* if (tmp != 0) goto pc + 1 */
368 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
369 		*insn++ = BPF_EXIT_INSN();
370 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
371 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
372 					    offsetof(struct net_device, ifindex));
373 		else
374 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
375 					    offsetof(struct net_device, type));
376 		break;
377 
378 	case SKF_AD_OFF + SKF_AD_MARK:
379 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
380 		insn += cnt - 1;
381 		break;
382 
383 	case SKF_AD_OFF + SKF_AD_RXHASH:
384 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
385 
386 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
387 				    offsetof(struct sk_buff, hash));
388 		break;
389 
390 	case SKF_AD_OFF + SKF_AD_QUEUE:
391 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
392 		insn += cnt - 1;
393 		break;
394 
395 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
396 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
397 					 BPF_REG_A, BPF_REG_CTX, insn);
398 		insn += cnt - 1;
399 		break;
400 
401 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
402 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
403 					 BPF_REG_A, BPF_REG_CTX, insn);
404 		insn += cnt - 1;
405 		break;
406 
407 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
408 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
409 
410 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
411 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
412 				      offsetof(struct sk_buff, vlan_proto));
413 		/* A = ntohs(A) [emitting a nop or swap16] */
414 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
415 		break;
416 
417 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
418 	case SKF_AD_OFF + SKF_AD_NLATTR:
419 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
420 	case SKF_AD_OFF + SKF_AD_CPU:
421 	case SKF_AD_OFF + SKF_AD_RANDOM:
422 		/* arg1 = CTX */
423 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
424 		/* arg2 = A */
425 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
426 		/* arg3 = X */
427 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
428 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
429 		switch (fp->k) {
430 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
431 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
432 			break;
433 		case SKF_AD_OFF + SKF_AD_NLATTR:
434 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
435 			break;
436 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
437 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
438 			break;
439 		case SKF_AD_OFF + SKF_AD_CPU:
440 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
441 			break;
442 		case SKF_AD_OFF + SKF_AD_RANDOM:
443 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
444 			bpf_user_rnd_init_once();
445 			break;
446 		}
447 		break;
448 
449 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
450 		/* A ^= X */
451 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
452 		break;
453 
454 	default:
455 		/* This is just a dummy call to avoid letting the compiler
456 		 * evict __bpf_call_base() as an optimization. Placed here
457 		 * where no-one bothers.
458 		 */
459 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
460 		return false;
461 	}
462 
463 	*insnp = insn;
464 	return true;
465 }
466 
467 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
468 {
469 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
470 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
471 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
472 		      BPF_SIZE(fp->code) == BPF_W;
473 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
474 	const int ip_align = NET_IP_ALIGN;
475 	struct bpf_insn *insn = *insnp;
476 	int offset = fp->k;
477 
478 	if (!indirect &&
479 	    ((unaligned_ok && offset >= 0) ||
480 	     (!unaligned_ok && offset >= 0 &&
481 	      offset + ip_align >= 0 &&
482 	      offset + ip_align % size == 0))) {
483 		bool ldx_off_ok = offset <= S16_MAX;
484 
485 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
486 		if (offset)
487 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
488 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
489 				      size, 2 + endian + (!ldx_off_ok * 2));
490 		if (ldx_off_ok) {
491 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
492 					      BPF_REG_D, offset);
493 		} else {
494 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
495 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
496 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
497 					      BPF_REG_TMP, 0);
498 		}
499 		if (endian)
500 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
501 		*insn++ = BPF_JMP_A(8);
502 	}
503 
504 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
505 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
506 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
507 	if (!indirect) {
508 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
509 	} else {
510 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
511 		if (fp->k)
512 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
513 	}
514 
515 	switch (BPF_SIZE(fp->code)) {
516 	case BPF_B:
517 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
518 		break;
519 	case BPF_H:
520 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
521 		break;
522 	case BPF_W:
523 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
524 		break;
525 	default:
526 		return false;
527 	}
528 
529 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
530 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
531 	*insn   = BPF_EXIT_INSN();
532 
533 	*insnp = insn;
534 	return true;
535 }
536 
537 /**
538  *	bpf_convert_filter - convert filter program
539  *	@prog: the user passed filter program
540  *	@len: the length of the user passed filter program
541  *	@new_prog: allocated 'struct bpf_prog' or NULL
542  *	@new_len: pointer to store length of converted program
543  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
544  *
545  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
546  * style extended BPF (eBPF).
547  * Conversion workflow:
548  *
549  * 1) First pass for calculating the new program length:
550  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
551  *
552  * 2) 2nd pass to remap in two passes: 1st pass finds new
553  *    jump offsets, 2nd pass remapping:
554  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
555  */
556 static int bpf_convert_filter(struct sock_filter *prog, int len,
557 			      struct bpf_prog *new_prog, int *new_len,
558 			      bool *seen_ld_abs)
559 {
560 	int new_flen = 0, pass = 0, target, i, stack_off;
561 	struct bpf_insn *new_insn, *first_insn = NULL;
562 	struct sock_filter *fp;
563 	int *addrs = NULL;
564 	u8 bpf_src;
565 
566 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
567 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
568 
569 	if (len <= 0 || len > BPF_MAXINSNS)
570 		return -EINVAL;
571 
572 	if (new_prog) {
573 		first_insn = new_prog->insnsi;
574 		addrs = kcalloc(len, sizeof(*addrs),
575 				GFP_KERNEL | __GFP_NOWARN);
576 		if (!addrs)
577 			return -ENOMEM;
578 	}
579 
580 do_pass:
581 	new_insn = first_insn;
582 	fp = prog;
583 
584 	/* Classic BPF related prologue emission. */
585 	if (new_prog) {
586 		/* Classic BPF expects A and X to be reset first. These need
587 		 * to be guaranteed to be the first two instructions.
588 		 */
589 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
590 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
591 
592 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
593 		 * In eBPF case it's done by the compiler, here we need to
594 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
595 		 */
596 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
597 		if (*seen_ld_abs) {
598 			/* For packet access in classic BPF, cache skb->data
599 			 * in callee-saved BPF R8 and skb->len - skb->data_len
600 			 * (headlen) in BPF R9. Since classic BPF is read-only
601 			 * on CTX, we only need to cache it once.
602 			 */
603 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
604 						  BPF_REG_D, BPF_REG_CTX,
605 						  offsetof(struct sk_buff, data));
606 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
607 						  offsetof(struct sk_buff, len));
608 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
609 						  offsetof(struct sk_buff, data_len));
610 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
611 		}
612 	} else {
613 		new_insn += 3;
614 	}
615 
616 	for (i = 0; i < len; fp++, i++) {
617 		struct bpf_insn tmp_insns[32] = { };
618 		struct bpf_insn *insn = tmp_insns;
619 
620 		if (addrs)
621 			addrs[i] = new_insn - first_insn;
622 
623 		switch (fp->code) {
624 		/* All arithmetic insns and skb loads map as-is. */
625 		case BPF_ALU | BPF_ADD | BPF_X:
626 		case BPF_ALU | BPF_ADD | BPF_K:
627 		case BPF_ALU | BPF_SUB | BPF_X:
628 		case BPF_ALU | BPF_SUB | BPF_K:
629 		case BPF_ALU | BPF_AND | BPF_X:
630 		case BPF_ALU | BPF_AND | BPF_K:
631 		case BPF_ALU | BPF_OR | BPF_X:
632 		case BPF_ALU | BPF_OR | BPF_K:
633 		case BPF_ALU | BPF_LSH | BPF_X:
634 		case BPF_ALU | BPF_LSH | BPF_K:
635 		case BPF_ALU | BPF_RSH | BPF_X:
636 		case BPF_ALU | BPF_RSH | BPF_K:
637 		case BPF_ALU | BPF_XOR | BPF_X:
638 		case BPF_ALU | BPF_XOR | BPF_K:
639 		case BPF_ALU | BPF_MUL | BPF_X:
640 		case BPF_ALU | BPF_MUL | BPF_K:
641 		case BPF_ALU | BPF_DIV | BPF_X:
642 		case BPF_ALU | BPF_DIV | BPF_K:
643 		case BPF_ALU | BPF_MOD | BPF_X:
644 		case BPF_ALU | BPF_MOD | BPF_K:
645 		case BPF_ALU | BPF_NEG:
646 		case BPF_LD | BPF_ABS | BPF_W:
647 		case BPF_LD | BPF_ABS | BPF_H:
648 		case BPF_LD | BPF_ABS | BPF_B:
649 		case BPF_LD | BPF_IND | BPF_W:
650 		case BPF_LD | BPF_IND | BPF_H:
651 		case BPF_LD | BPF_IND | BPF_B:
652 			/* Check for overloaded BPF extension and
653 			 * directly convert it if found, otherwise
654 			 * just move on with mapping.
655 			 */
656 			if (BPF_CLASS(fp->code) == BPF_LD &&
657 			    BPF_MODE(fp->code) == BPF_ABS &&
658 			    convert_bpf_extensions(fp, &insn))
659 				break;
660 			if (BPF_CLASS(fp->code) == BPF_LD &&
661 			    convert_bpf_ld_abs(fp, &insn)) {
662 				*seen_ld_abs = true;
663 				break;
664 			}
665 
666 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
667 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
668 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
669 				/* Error with exception code on div/mod by 0.
670 				 * For cBPF programs, this was always return 0.
671 				 */
672 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
673 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
674 				*insn++ = BPF_EXIT_INSN();
675 			}
676 
677 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
678 			break;
679 
680 		/* Jump transformation cannot use BPF block macros
681 		 * everywhere as offset calculation and target updates
682 		 * require a bit more work than the rest, i.e. jump
683 		 * opcodes map as-is, but offsets need adjustment.
684 		 */
685 
686 #define BPF_EMIT_JMP							\
687 	do {								\
688 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
689 		s32 off;						\
690 									\
691 		if (target >= len || target < 0)			\
692 			goto err;					\
693 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
694 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
695 		off -= insn - tmp_insns;				\
696 		/* Reject anything not fitting into insn->off. */	\
697 		if (off < off_min || off > off_max)			\
698 			goto err;					\
699 		insn->off = off;					\
700 	} while (0)
701 
702 		case BPF_JMP | BPF_JA:
703 			target = i + fp->k + 1;
704 			insn->code = fp->code;
705 			BPF_EMIT_JMP;
706 			break;
707 
708 		case BPF_JMP | BPF_JEQ | BPF_K:
709 		case BPF_JMP | BPF_JEQ | BPF_X:
710 		case BPF_JMP | BPF_JSET | BPF_K:
711 		case BPF_JMP | BPF_JSET | BPF_X:
712 		case BPF_JMP | BPF_JGT | BPF_K:
713 		case BPF_JMP | BPF_JGT | BPF_X:
714 		case BPF_JMP | BPF_JGE | BPF_K:
715 		case BPF_JMP | BPF_JGE | BPF_X:
716 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
717 				/* BPF immediates are signed, zero extend
718 				 * immediate into tmp register and use it
719 				 * in compare insn.
720 				 */
721 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
722 
723 				insn->dst_reg = BPF_REG_A;
724 				insn->src_reg = BPF_REG_TMP;
725 				bpf_src = BPF_X;
726 			} else {
727 				insn->dst_reg = BPF_REG_A;
728 				insn->imm = fp->k;
729 				bpf_src = BPF_SRC(fp->code);
730 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
731 			}
732 
733 			/* Common case where 'jump_false' is next insn. */
734 			if (fp->jf == 0) {
735 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
736 				target = i + fp->jt + 1;
737 				BPF_EMIT_JMP;
738 				break;
739 			}
740 
741 			/* Convert some jumps when 'jump_true' is next insn. */
742 			if (fp->jt == 0) {
743 				switch (BPF_OP(fp->code)) {
744 				case BPF_JEQ:
745 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
746 					break;
747 				case BPF_JGT:
748 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
749 					break;
750 				case BPF_JGE:
751 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
752 					break;
753 				default:
754 					goto jmp_rest;
755 				}
756 
757 				target = i + fp->jf + 1;
758 				BPF_EMIT_JMP;
759 				break;
760 			}
761 jmp_rest:
762 			/* Other jumps are mapped into two insns: Jxx and JA. */
763 			target = i + fp->jt + 1;
764 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
765 			BPF_EMIT_JMP;
766 			insn++;
767 
768 			insn->code = BPF_JMP | BPF_JA;
769 			target = i + fp->jf + 1;
770 			BPF_EMIT_JMP;
771 			break;
772 
773 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
774 		case BPF_LDX | BPF_MSH | BPF_B: {
775 			struct sock_filter tmp = {
776 				.code	= BPF_LD | BPF_ABS | BPF_B,
777 				.k	= fp->k,
778 			};
779 
780 			*seen_ld_abs = true;
781 
782 			/* X = A */
783 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
784 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
785 			convert_bpf_ld_abs(&tmp, &insn);
786 			insn++;
787 			/* A &= 0xf */
788 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
789 			/* A <<= 2 */
790 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
791 			/* tmp = X */
792 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
793 			/* X = A */
794 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
795 			/* A = tmp */
796 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
797 			break;
798 		}
799 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
800 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
801 		 */
802 		case BPF_RET | BPF_A:
803 		case BPF_RET | BPF_K:
804 			if (BPF_RVAL(fp->code) == BPF_K)
805 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
806 							0, fp->k);
807 			*insn = BPF_EXIT_INSN();
808 			break;
809 
810 		/* Store to stack. */
811 		case BPF_ST:
812 		case BPF_STX:
813 			stack_off = fp->k * 4  + 4;
814 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
815 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
816 					    -stack_off);
817 			/* check_load_and_stores() verifies that classic BPF can
818 			 * load from stack only after write, so tracking
819 			 * stack_depth for ST|STX insns is enough
820 			 */
821 			if (new_prog && new_prog->aux->stack_depth < stack_off)
822 				new_prog->aux->stack_depth = stack_off;
823 			break;
824 
825 		/* Load from stack. */
826 		case BPF_LD | BPF_MEM:
827 		case BPF_LDX | BPF_MEM:
828 			stack_off = fp->k * 4  + 4;
829 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
830 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
831 					    -stack_off);
832 			break;
833 
834 		/* A = K or X = K */
835 		case BPF_LD | BPF_IMM:
836 		case BPF_LDX | BPF_IMM:
837 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
838 					      BPF_REG_A : BPF_REG_X, fp->k);
839 			break;
840 
841 		/* X = A */
842 		case BPF_MISC | BPF_TAX:
843 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
844 			break;
845 
846 		/* A = X */
847 		case BPF_MISC | BPF_TXA:
848 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
849 			break;
850 
851 		/* A = skb->len or X = skb->len */
852 		case BPF_LD | BPF_W | BPF_LEN:
853 		case BPF_LDX | BPF_W | BPF_LEN:
854 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
855 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
856 					    offsetof(struct sk_buff, len));
857 			break;
858 
859 		/* Access seccomp_data fields. */
860 		case BPF_LDX | BPF_ABS | BPF_W:
861 			/* A = *(u32 *) (ctx + K) */
862 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
863 			break;
864 
865 		/* Unknown instruction. */
866 		default:
867 			goto err;
868 		}
869 
870 		insn++;
871 		if (new_prog)
872 			memcpy(new_insn, tmp_insns,
873 			       sizeof(*insn) * (insn - tmp_insns));
874 		new_insn += insn - tmp_insns;
875 	}
876 
877 	if (!new_prog) {
878 		/* Only calculating new length. */
879 		*new_len = new_insn - first_insn;
880 		if (*seen_ld_abs)
881 			*new_len += 4; /* Prologue bits. */
882 		return 0;
883 	}
884 
885 	pass++;
886 	if (new_flen != new_insn - first_insn) {
887 		new_flen = new_insn - first_insn;
888 		if (pass > 2)
889 			goto err;
890 		goto do_pass;
891 	}
892 
893 	kfree(addrs);
894 	BUG_ON(*new_len != new_flen);
895 	return 0;
896 err:
897 	kfree(addrs);
898 	return -EINVAL;
899 }
900 
901 /* Security:
902  *
903  * As we dont want to clear mem[] array for each packet going through
904  * __bpf_prog_run(), we check that filter loaded by user never try to read
905  * a cell if not previously written, and we check all branches to be sure
906  * a malicious user doesn't try to abuse us.
907  */
908 static int check_load_and_stores(const struct sock_filter *filter, int flen)
909 {
910 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
911 	int pc, ret = 0;
912 
913 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
914 
915 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
916 	if (!masks)
917 		return -ENOMEM;
918 
919 	memset(masks, 0xff, flen * sizeof(*masks));
920 
921 	for (pc = 0; pc < flen; pc++) {
922 		memvalid &= masks[pc];
923 
924 		switch (filter[pc].code) {
925 		case BPF_ST:
926 		case BPF_STX:
927 			memvalid |= (1 << filter[pc].k);
928 			break;
929 		case BPF_LD | BPF_MEM:
930 		case BPF_LDX | BPF_MEM:
931 			if (!(memvalid & (1 << filter[pc].k))) {
932 				ret = -EINVAL;
933 				goto error;
934 			}
935 			break;
936 		case BPF_JMP | BPF_JA:
937 			/* A jump must set masks on target */
938 			masks[pc + 1 + filter[pc].k] &= memvalid;
939 			memvalid = ~0;
940 			break;
941 		case BPF_JMP | BPF_JEQ | BPF_K:
942 		case BPF_JMP | BPF_JEQ | BPF_X:
943 		case BPF_JMP | BPF_JGE | BPF_K:
944 		case BPF_JMP | BPF_JGE | BPF_X:
945 		case BPF_JMP | BPF_JGT | BPF_K:
946 		case BPF_JMP | BPF_JGT | BPF_X:
947 		case BPF_JMP | BPF_JSET | BPF_K:
948 		case BPF_JMP | BPF_JSET | BPF_X:
949 			/* A jump must set masks on targets */
950 			masks[pc + 1 + filter[pc].jt] &= memvalid;
951 			masks[pc + 1 + filter[pc].jf] &= memvalid;
952 			memvalid = ~0;
953 			break;
954 		}
955 	}
956 error:
957 	kfree(masks);
958 	return ret;
959 }
960 
961 static bool chk_code_allowed(u16 code_to_probe)
962 {
963 	static const bool codes[] = {
964 		/* 32 bit ALU operations */
965 		[BPF_ALU | BPF_ADD | BPF_K] = true,
966 		[BPF_ALU | BPF_ADD | BPF_X] = true,
967 		[BPF_ALU | BPF_SUB | BPF_K] = true,
968 		[BPF_ALU | BPF_SUB | BPF_X] = true,
969 		[BPF_ALU | BPF_MUL | BPF_K] = true,
970 		[BPF_ALU | BPF_MUL | BPF_X] = true,
971 		[BPF_ALU | BPF_DIV | BPF_K] = true,
972 		[BPF_ALU | BPF_DIV | BPF_X] = true,
973 		[BPF_ALU | BPF_MOD | BPF_K] = true,
974 		[BPF_ALU | BPF_MOD | BPF_X] = true,
975 		[BPF_ALU | BPF_AND | BPF_K] = true,
976 		[BPF_ALU | BPF_AND | BPF_X] = true,
977 		[BPF_ALU | BPF_OR | BPF_K] = true,
978 		[BPF_ALU | BPF_OR | BPF_X] = true,
979 		[BPF_ALU | BPF_XOR | BPF_K] = true,
980 		[BPF_ALU | BPF_XOR | BPF_X] = true,
981 		[BPF_ALU | BPF_LSH | BPF_K] = true,
982 		[BPF_ALU | BPF_LSH | BPF_X] = true,
983 		[BPF_ALU | BPF_RSH | BPF_K] = true,
984 		[BPF_ALU | BPF_RSH | BPF_X] = true,
985 		[BPF_ALU | BPF_NEG] = true,
986 		/* Load instructions */
987 		[BPF_LD | BPF_W | BPF_ABS] = true,
988 		[BPF_LD | BPF_H | BPF_ABS] = true,
989 		[BPF_LD | BPF_B | BPF_ABS] = true,
990 		[BPF_LD | BPF_W | BPF_LEN] = true,
991 		[BPF_LD | BPF_W | BPF_IND] = true,
992 		[BPF_LD | BPF_H | BPF_IND] = true,
993 		[BPF_LD | BPF_B | BPF_IND] = true,
994 		[BPF_LD | BPF_IMM] = true,
995 		[BPF_LD | BPF_MEM] = true,
996 		[BPF_LDX | BPF_W | BPF_LEN] = true,
997 		[BPF_LDX | BPF_B | BPF_MSH] = true,
998 		[BPF_LDX | BPF_IMM] = true,
999 		[BPF_LDX | BPF_MEM] = true,
1000 		/* Store instructions */
1001 		[BPF_ST] = true,
1002 		[BPF_STX] = true,
1003 		/* Misc instructions */
1004 		[BPF_MISC | BPF_TAX] = true,
1005 		[BPF_MISC | BPF_TXA] = true,
1006 		/* Return instructions */
1007 		[BPF_RET | BPF_K] = true,
1008 		[BPF_RET | BPF_A] = true,
1009 		/* Jump instructions */
1010 		[BPF_JMP | BPF_JA] = true,
1011 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1012 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1013 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1014 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1015 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1016 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1017 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1018 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1019 	};
1020 
1021 	if (code_to_probe >= ARRAY_SIZE(codes))
1022 		return false;
1023 
1024 	return codes[code_to_probe];
1025 }
1026 
1027 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1028 				unsigned int flen)
1029 {
1030 	if (filter == NULL)
1031 		return false;
1032 	if (flen == 0 || flen > BPF_MAXINSNS)
1033 		return false;
1034 
1035 	return true;
1036 }
1037 
1038 /**
1039  *	bpf_check_classic - verify socket filter code
1040  *	@filter: filter to verify
1041  *	@flen: length of filter
1042  *
1043  * Check the user's filter code. If we let some ugly
1044  * filter code slip through kaboom! The filter must contain
1045  * no references or jumps that are out of range, no illegal
1046  * instructions, and must end with a RET instruction.
1047  *
1048  * All jumps are forward as they are not signed.
1049  *
1050  * Returns 0 if the rule set is legal or -EINVAL if not.
1051  */
1052 static int bpf_check_classic(const struct sock_filter *filter,
1053 			     unsigned int flen)
1054 {
1055 	bool anc_found;
1056 	int pc;
1057 
1058 	/* Check the filter code now */
1059 	for (pc = 0; pc < flen; pc++) {
1060 		const struct sock_filter *ftest = &filter[pc];
1061 
1062 		/* May we actually operate on this code? */
1063 		if (!chk_code_allowed(ftest->code))
1064 			return -EINVAL;
1065 
1066 		/* Some instructions need special checks */
1067 		switch (ftest->code) {
1068 		case BPF_ALU | BPF_DIV | BPF_K:
1069 		case BPF_ALU | BPF_MOD | BPF_K:
1070 			/* Check for division by zero */
1071 			if (ftest->k == 0)
1072 				return -EINVAL;
1073 			break;
1074 		case BPF_ALU | BPF_LSH | BPF_K:
1075 		case BPF_ALU | BPF_RSH | BPF_K:
1076 			if (ftest->k >= 32)
1077 				return -EINVAL;
1078 			break;
1079 		case BPF_LD | BPF_MEM:
1080 		case BPF_LDX | BPF_MEM:
1081 		case BPF_ST:
1082 		case BPF_STX:
1083 			/* Check for invalid memory addresses */
1084 			if (ftest->k >= BPF_MEMWORDS)
1085 				return -EINVAL;
1086 			break;
1087 		case BPF_JMP | BPF_JA:
1088 			/* Note, the large ftest->k might cause loops.
1089 			 * Compare this with conditional jumps below,
1090 			 * where offsets are limited. --ANK (981016)
1091 			 */
1092 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1093 				return -EINVAL;
1094 			break;
1095 		case BPF_JMP | BPF_JEQ | BPF_K:
1096 		case BPF_JMP | BPF_JEQ | BPF_X:
1097 		case BPF_JMP | BPF_JGE | BPF_K:
1098 		case BPF_JMP | BPF_JGE | BPF_X:
1099 		case BPF_JMP | BPF_JGT | BPF_K:
1100 		case BPF_JMP | BPF_JGT | BPF_X:
1101 		case BPF_JMP | BPF_JSET | BPF_K:
1102 		case BPF_JMP | BPF_JSET | BPF_X:
1103 			/* Both conditionals must be safe */
1104 			if (pc + ftest->jt + 1 >= flen ||
1105 			    pc + ftest->jf + 1 >= flen)
1106 				return -EINVAL;
1107 			break;
1108 		case BPF_LD | BPF_W | BPF_ABS:
1109 		case BPF_LD | BPF_H | BPF_ABS:
1110 		case BPF_LD | BPF_B | BPF_ABS:
1111 			anc_found = false;
1112 			if (bpf_anc_helper(ftest) & BPF_ANC)
1113 				anc_found = true;
1114 			/* Ancillary operation unknown or unsupported */
1115 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1116 				return -EINVAL;
1117 		}
1118 	}
1119 
1120 	/* Last instruction must be a RET code */
1121 	switch (filter[flen - 1].code) {
1122 	case BPF_RET | BPF_K:
1123 	case BPF_RET | BPF_A:
1124 		return check_load_and_stores(filter, flen);
1125 	}
1126 
1127 	return -EINVAL;
1128 }
1129 
1130 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1131 				      const struct sock_fprog *fprog)
1132 {
1133 	unsigned int fsize = bpf_classic_proglen(fprog);
1134 	struct sock_fprog_kern *fkprog;
1135 
1136 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1137 	if (!fp->orig_prog)
1138 		return -ENOMEM;
1139 
1140 	fkprog = fp->orig_prog;
1141 	fkprog->len = fprog->len;
1142 
1143 	fkprog->filter = kmemdup(fp->insns, fsize,
1144 				 GFP_KERNEL | __GFP_NOWARN);
1145 	if (!fkprog->filter) {
1146 		kfree(fp->orig_prog);
1147 		return -ENOMEM;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 static void bpf_release_orig_filter(struct bpf_prog *fp)
1154 {
1155 	struct sock_fprog_kern *fprog = fp->orig_prog;
1156 
1157 	if (fprog) {
1158 		kfree(fprog->filter);
1159 		kfree(fprog);
1160 	}
1161 }
1162 
1163 static void __bpf_prog_release(struct bpf_prog *prog)
1164 {
1165 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1166 		bpf_prog_put(prog);
1167 	} else {
1168 		bpf_release_orig_filter(prog);
1169 		bpf_prog_free(prog);
1170 	}
1171 }
1172 
1173 static void __sk_filter_release(struct sk_filter *fp)
1174 {
1175 	__bpf_prog_release(fp->prog);
1176 	kfree(fp);
1177 }
1178 
1179 /**
1180  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1181  *	@rcu: rcu_head that contains the sk_filter to free
1182  */
1183 static void sk_filter_release_rcu(struct rcu_head *rcu)
1184 {
1185 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1186 
1187 	__sk_filter_release(fp);
1188 }
1189 
1190 /**
1191  *	sk_filter_release - release a socket filter
1192  *	@fp: filter to remove
1193  *
1194  *	Remove a filter from a socket and release its resources.
1195  */
1196 static void sk_filter_release(struct sk_filter *fp)
1197 {
1198 	if (refcount_dec_and_test(&fp->refcnt))
1199 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1200 }
1201 
1202 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1203 {
1204 	u32 filter_size = bpf_prog_size(fp->prog->len);
1205 
1206 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1207 	sk_filter_release(fp);
1208 }
1209 
1210 /* try to charge the socket memory if there is space available
1211  * return true on success
1212  */
1213 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1214 {
1215 	u32 filter_size = bpf_prog_size(fp->prog->len);
1216 
1217 	/* same check as in sock_kmalloc() */
1218 	if (filter_size <= sysctl_optmem_max &&
1219 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1220 		atomic_add(filter_size, &sk->sk_omem_alloc);
1221 		return true;
1222 	}
1223 	return false;
1224 }
1225 
1226 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1227 {
1228 	if (!refcount_inc_not_zero(&fp->refcnt))
1229 		return false;
1230 
1231 	if (!__sk_filter_charge(sk, fp)) {
1232 		sk_filter_release(fp);
1233 		return false;
1234 	}
1235 	return true;
1236 }
1237 
1238 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1239 {
1240 	struct sock_filter *old_prog;
1241 	struct bpf_prog *old_fp;
1242 	int err, new_len, old_len = fp->len;
1243 	bool seen_ld_abs = false;
1244 
1245 	/* We are free to overwrite insns et al right here as it won't be used at
1246 	 * this point in time anymore internally after the migration to the eBPF
1247 	 * instruction representation.
1248 	 */
1249 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1250 		     sizeof(struct bpf_insn));
1251 
1252 	/* Conversion cannot happen on overlapping memory areas,
1253 	 * so we need to keep the user BPF around until the 2nd
1254 	 * pass. At this time, the user BPF is stored in fp->insns.
1255 	 */
1256 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1257 			   GFP_KERNEL | __GFP_NOWARN);
1258 	if (!old_prog) {
1259 		err = -ENOMEM;
1260 		goto out_err;
1261 	}
1262 
1263 	/* 1st pass: calculate the new program length. */
1264 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1265 				 &seen_ld_abs);
1266 	if (err)
1267 		goto out_err_free;
1268 
1269 	/* Expand fp for appending the new filter representation. */
1270 	old_fp = fp;
1271 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1272 	if (!fp) {
1273 		/* The old_fp is still around in case we couldn't
1274 		 * allocate new memory, so uncharge on that one.
1275 		 */
1276 		fp = old_fp;
1277 		err = -ENOMEM;
1278 		goto out_err_free;
1279 	}
1280 
1281 	fp->len = new_len;
1282 
1283 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1284 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1285 				 &seen_ld_abs);
1286 	if (err)
1287 		/* 2nd bpf_convert_filter() can fail only if it fails
1288 		 * to allocate memory, remapping must succeed. Note,
1289 		 * that at this time old_fp has already been released
1290 		 * by krealloc().
1291 		 */
1292 		goto out_err_free;
1293 
1294 	fp = bpf_prog_select_runtime(fp, &err);
1295 	if (err)
1296 		goto out_err_free;
1297 
1298 	kfree(old_prog);
1299 	return fp;
1300 
1301 out_err_free:
1302 	kfree(old_prog);
1303 out_err:
1304 	__bpf_prog_release(fp);
1305 	return ERR_PTR(err);
1306 }
1307 
1308 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1309 					   bpf_aux_classic_check_t trans)
1310 {
1311 	int err;
1312 
1313 	fp->bpf_func = NULL;
1314 	fp->jited = 0;
1315 
1316 	err = bpf_check_classic(fp->insns, fp->len);
1317 	if (err) {
1318 		__bpf_prog_release(fp);
1319 		return ERR_PTR(err);
1320 	}
1321 
1322 	/* There might be additional checks and transformations
1323 	 * needed on classic filters, f.e. in case of seccomp.
1324 	 */
1325 	if (trans) {
1326 		err = trans(fp->insns, fp->len);
1327 		if (err) {
1328 			__bpf_prog_release(fp);
1329 			return ERR_PTR(err);
1330 		}
1331 	}
1332 
1333 	/* Probe if we can JIT compile the filter and if so, do
1334 	 * the compilation of the filter.
1335 	 */
1336 	bpf_jit_compile(fp);
1337 
1338 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1339 	 * for the optimized interpreter.
1340 	 */
1341 	if (!fp->jited)
1342 		fp = bpf_migrate_filter(fp);
1343 
1344 	return fp;
1345 }
1346 
1347 /**
1348  *	bpf_prog_create - create an unattached filter
1349  *	@pfp: the unattached filter that is created
1350  *	@fprog: the filter program
1351  *
1352  * Create a filter independent of any socket. We first run some
1353  * sanity checks on it to make sure it does not explode on us later.
1354  * If an error occurs or there is insufficient memory for the filter
1355  * a negative errno code is returned. On success the return is zero.
1356  */
1357 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1358 {
1359 	unsigned int fsize = bpf_classic_proglen(fprog);
1360 	struct bpf_prog *fp;
1361 
1362 	/* Make sure new filter is there and in the right amounts. */
1363 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1364 		return -EINVAL;
1365 
1366 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1367 	if (!fp)
1368 		return -ENOMEM;
1369 
1370 	memcpy(fp->insns, fprog->filter, fsize);
1371 
1372 	fp->len = fprog->len;
1373 	/* Since unattached filters are not copied back to user
1374 	 * space through sk_get_filter(), we do not need to hold
1375 	 * a copy here, and can spare us the work.
1376 	 */
1377 	fp->orig_prog = NULL;
1378 
1379 	/* bpf_prepare_filter() already takes care of freeing
1380 	 * memory in case something goes wrong.
1381 	 */
1382 	fp = bpf_prepare_filter(fp, NULL);
1383 	if (IS_ERR(fp))
1384 		return PTR_ERR(fp);
1385 
1386 	*pfp = fp;
1387 	return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(bpf_prog_create);
1390 
1391 /**
1392  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1393  *	@pfp: the unattached filter that is created
1394  *	@fprog: the filter program
1395  *	@trans: post-classic verifier transformation handler
1396  *	@save_orig: save classic BPF program
1397  *
1398  * This function effectively does the same as bpf_prog_create(), only
1399  * that it builds up its insns buffer from user space provided buffer.
1400  * It also allows for passing a bpf_aux_classic_check_t handler.
1401  */
1402 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1403 			      bpf_aux_classic_check_t trans, bool save_orig)
1404 {
1405 	unsigned int fsize = bpf_classic_proglen(fprog);
1406 	struct bpf_prog *fp;
1407 	int err;
1408 
1409 	/* Make sure new filter is there and in the right amounts. */
1410 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1411 		return -EINVAL;
1412 
1413 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1414 	if (!fp)
1415 		return -ENOMEM;
1416 
1417 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1418 		__bpf_prog_free(fp);
1419 		return -EFAULT;
1420 	}
1421 
1422 	fp->len = fprog->len;
1423 	fp->orig_prog = NULL;
1424 
1425 	if (save_orig) {
1426 		err = bpf_prog_store_orig_filter(fp, fprog);
1427 		if (err) {
1428 			__bpf_prog_free(fp);
1429 			return -ENOMEM;
1430 		}
1431 	}
1432 
1433 	/* bpf_prepare_filter() already takes care of freeing
1434 	 * memory in case something goes wrong.
1435 	 */
1436 	fp = bpf_prepare_filter(fp, trans);
1437 	if (IS_ERR(fp))
1438 		return PTR_ERR(fp);
1439 
1440 	*pfp = fp;
1441 	return 0;
1442 }
1443 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1444 
1445 void bpf_prog_destroy(struct bpf_prog *fp)
1446 {
1447 	__bpf_prog_release(fp);
1448 }
1449 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1450 
1451 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1452 {
1453 	struct sk_filter *fp, *old_fp;
1454 
1455 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1456 	if (!fp)
1457 		return -ENOMEM;
1458 
1459 	fp->prog = prog;
1460 
1461 	if (!__sk_filter_charge(sk, fp)) {
1462 		kfree(fp);
1463 		return -ENOMEM;
1464 	}
1465 	refcount_set(&fp->refcnt, 1);
1466 
1467 	old_fp = rcu_dereference_protected(sk->sk_filter,
1468 					   lockdep_sock_is_held(sk));
1469 	rcu_assign_pointer(sk->sk_filter, fp);
1470 
1471 	if (old_fp)
1472 		sk_filter_uncharge(sk, old_fp);
1473 
1474 	return 0;
1475 }
1476 
1477 static
1478 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1479 {
1480 	unsigned int fsize = bpf_classic_proglen(fprog);
1481 	struct bpf_prog *prog;
1482 	int err;
1483 
1484 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1485 		return ERR_PTR(-EPERM);
1486 
1487 	/* Make sure new filter is there and in the right amounts. */
1488 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1489 		return ERR_PTR(-EINVAL);
1490 
1491 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1492 	if (!prog)
1493 		return ERR_PTR(-ENOMEM);
1494 
1495 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1496 		__bpf_prog_free(prog);
1497 		return ERR_PTR(-EFAULT);
1498 	}
1499 
1500 	prog->len = fprog->len;
1501 
1502 	err = bpf_prog_store_orig_filter(prog, fprog);
1503 	if (err) {
1504 		__bpf_prog_free(prog);
1505 		return ERR_PTR(-ENOMEM);
1506 	}
1507 
1508 	/* bpf_prepare_filter() already takes care of freeing
1509 	 * memory in case something goes wrong.
1510 	 */
1511 	return bpf_prepare_filter(prog, NULL);
1512 }
1513 
1514 /**
1515  *	sk_attach_filter - attach a socket filter
1516  *	@fprog: the filter program
1517  *	@sk: the socket to use
1518  *
1519  * Attach the user's filter code. We first run some sanity checks on
1520  * it to make sure it does not explode on us later. If an error
1521  * occurs or there is insufficient memory for the filter a negative
1522  * errno code is returned. On success the return is zero.
1523  */
1524 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1525 {
1526 	struct bpf_prog *prog = __get_filter(fprog, sk);
1527 	int err;
1528 
1529 	if (IS_ERR(prog))
1530 		return PTR_ERR(prog);
1531 
1532 	err = __sk_attach_prog(prog, sk);
1533 	if (err < 0) {
1534 		__bpf_prog_release(prog);
1535 		return err;
1536 	}
1537 
1538 	return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(sk_attach_filter);
1541 
1542 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1543 {
1544 	struct bpf_prog *prog = __get_filter(fprog, sk);
1545 	int err;
1546 
1547 	if (IS_ERR(prog))
1548 		return PTR_ERR(prog);
1549 
1550 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1551 		err = -ENOMEM;
1552 	else
1553 		err = reuseport_attach_prog(sk, prog);
1554 
1555 	if (err)
1556 		__bpf_prog_release(prog);
1557 
1558 	return err;
1559 }
1560 
1561 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1562 {
1563 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1564 		return ERR_PTR(-EPERM);
1565 
1566 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1567 }
1568 
1569 int sk_attach_bpf(u32 ufd, struct sock *sk)
1570 {
1571 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1572 	int err;
1573 
1574 	if (IS_ERR(prog))
1575 		return PTR_ERR(prog);
1576 
1577 	err = __sk_attach_prog(prog, sk);
1578 	if (err < 0) {
1579 		bpf_prog_put(prog);
1580 		return err;
1581 	}
1582 
1583 	return 0;
1584 }
1585 
1586 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1587 {
1588 	struct bpf_prog *prog;
1589 	int err;
1590 
1591 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1592 		return -EPERM;
1593 
1594 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1595 	if (PTR_ERR(prog) == -EINVAL)
1596 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1597 	if (IS_ERR(prog))
1598 		return PTR_ERR(prog);
1599 
1600 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1601 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1602 		 * bpf prog (e.g. sockmap).  It depends on the
1603 		 * limitation imposed by bpf_prog_load().
1604 		 * Hence, sysctl_optmem_max is not checked.
1605 		 */
1606 		if ((sk->sk_type != SOCK_STREAM &&
1607 		     sk->sk_type != SOCK_DGRAM) ||
1608 		    (sk->sk_protocol != IPPROTO_UDP &&
1609 		     sk->sk_protocol != IPPROTO_TCP) ||
1610 		    (sk->sk_family != AF_INET &&
1611 		     sk->sk_family != AF_INET6)) {
1612 			err = -ENOTSUPP;
1613 			goto err_prog_put;
1614 		}
1615 	} else {
1616 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1617 		if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1618 			err = -ENOMEM;
1619 			goto err_prog_put;
1620 		}
1621 	}
1622 
1623 	err = reuseport_attach_prog(sk, prog);
1624 err_prog_put:
1625 	if (err)
1626 		bpf_prog_put(prog);
1627 
1628 	return err;
1629 }
1630 
1631 void sk_reuseport_prog_free(struct bpf_prog *prog)
1632 {
1633 	if (!prog)
1634 		return;
1635 
1636 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1637 		bpf_prog_put(prog);
1638 	else
1639 		bpf_prog_destroy(prog);
1640 }
1641 
1642 struct bpf_scratchpad {
1643 	union {
1644 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1645 		u8     buff[MAX_BPF_STACK];
1646 	};
1647 };
1648 
1649 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1650 
1651 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1652 					  unsigned int write_len)
1653 {
1654 	return skb_ensure_writable(skb, write_len);
1655 }
1656 
1657 static inline int bpf_try_make_writable(struct sk_buff *skb,
1658 					unsigned int write_len)
1659 {
1660 	int err = __bpf_try_make_writable(skb, write_len);
1661 
1662 	bpf_compute_data_pointers(skb);
1663 	return err;
1664 }
1665 
1666 static int bpf_try_make_head_writable(struct sk_buff *skb)
1667 {
1668 	return bpf_try_make_writable(skb, skb_headlen(skb));
1669 }
1670 
1671 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1672 {
1673 	if (skb_at_tc_ingress(skb))
1674 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1675 }
1676 
1677 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1678 {
1679 	if (skb_at_tc_ingress(skb))
1680 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1681 }
1682 
1683 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1684 	   const void *, from, u32, len, u64, flags)
1685 {
1686 	void *ptr;
1687 
1688 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1689 		return -EINVAL;
1690 	if (unlikely(offset > 0xffff))
1691 		return -EFAULT;
1692 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1693 		return -EFAULT;
1694 
1695 	ptr = skb->data + offset;
1696 	if (flags & BPF_F_RECOMPUTE_CSUM)
1697 		__skb_postpull_rcsum(skb, ptr, len, offset);
1698 
1699 	memcpy(ptr, from, len);
1700 
1701 	if (flags & BPF_F_RECOMPUTE_CSUM)
1702 		__skb_postpush_rcsum(skb, ptr, len, offset);
1703 	if (flags & BPF_F_INVALIDATE_HASH)
1704 		skb_clear_hash(skb);
1705 
1706 	return 0;
1707 }
1708 
1709 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1710 	.func		= bpf_skb_store_bytes,
1711 	.gpl_only	= false,
1712 	.ret_type	= RET_INTEGER,
1713 	.arg1_type	= ARG_PTR_TO_CTX,
1714 	.arg2_type	= ARG_ANYTHING,
1715 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1716 	.arg4_type	= ARG_CONST_SIZE,
1717 	.arg5_type	= ARG_ANYTHING,
1718 };
1719 
1720 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1721 	   void *, to, u32, len)
1722 {
1723 	void *ptr;
1724 
1725 	if (unlikely(offset > 0xffff))
1726 		goto err_clear;
1727 
1728 	ptr = skb_header_pointer(skb, offset, len, to);
1729 	if (unlikely(!ptr))
1730 		goto err_clear;
1731 	if (ptr != to)
1732 		memcpy(to, ptr, len);
1733 
1734 	return 0;
1735 err_clear:
1736 	memset(to, 0, len);
1737 	return -EFAULT;
1738 }
1739 
1740 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1741 	.func		= bpf_skb_load_bytes,
1742 	.gpl_only	= false,
1743 	.ret_type	= RET_INTEGER,
1744 	.arg1_type	= ARG_PTR_TO_CTX,
1745 	.arg2_type	= ARG_ANYTHING,
1746 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1747 	.arg4_type	= ARG_CONST_SIZE,
1748 };
1749 
1750 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1751 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1752 	   void *, to, u32, len)
1753 {
1754 	void *ptr;
1755 
1756 	if (unlikely(offset > 0xffff))
1757 		goto err_clear;
1758 
1759 	if (unlikely(!ctx->skb))
1760 		goto err_clear;
1761 
1762 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1763 	if (unlikely(!ptr))
1764 		goto err_clear;
1765 	if (ptr != to)
1766 		memcpy(to, ptr, len);
1767 
1768 	return 0;
1769 err_clear:
1770 	memset(to, 0, len);
1771 	return -EFAULT;
1772 }
1773 
1774 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1775 	.func		= bpf_flow_dissector_load_bytes,
1776 	.gpl_only	= false,
1777 	.ret_type	= RET_INTEGER,
1778 	.arg1_type	= ARG_PTR_TO_CTX,
1779 	.arg2_type	= ARG_ANYTHING,
1780 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1781 	.arg4_type	= ARG_CONST_SIZE,
1782 };
1783 
1784 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1785 	   u32, offset, void *, to, u32, len, u32, start_header)
1786 {
1787 	u8 *end = skb_tail_pointer(skb);
1788 	u8 *start, *ptr;
1789 
1790 	if (unlikely(offset > 0xffff))
1791 		goto err_clear;
1792 
1793 	switch (start_header) {
1794 	case BPF_HDR_START_MAC:
1795 		if (unlikely(!skb_mac_header_was_set(skb)))
1796 			goto err_clear;
1797 		start = skb_mac_header(skb);
1798 		break;
1799 	case BPF_HDR_START_NET:
1800 		start = skb_network_header(skb);
1801 		break;
1802 	default:
1803 		goto err_clear;
1804 	}
1805 
1806 	ptr = start + offset;
1807 
1808 	if (likely(ptr + len <= end)) {
1809 		memcpy(to, ptr, len);
1810 		return 0;
1811 	}
1812 
1813 err_clear:
1814 	memset(to, 0, len);
1815 	return -EFAULT;
1816 }
1817 
1818 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1819 	.func		= bpf_skb_load_bytes_relative,
1820 	.gpl_only	= false,
1821 	.ret_type	= RET_INTEGER,
1822 	.arg1_type	= ARG_PTR_TO_CTX,
1823 	.arg2_type	= ARG_ANYTHING,
1824 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1825 	.arg4_type	= ARG_CONST_SIZE,
1826 	.arg5_type	= ARG_ANYTHING,
1827 };
1828 
1829 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1830 {
1831 	/* Idea is the following: should the needed direct read/write
1832 	 * test fail during runtime, we can pull in more data and redo
1833 	 * again, since implicitly, we invalidate previous checks here.
1834 	 *
1835 	 * Or, since we know how much we need to make read/writeable,
1836 	 * this can be done once at the program beginning for direct
1837 	 * access case. By this we overcome limitations of only current
1838 	 * headroom being accessible.
1839 	 */
1840 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1841 }
1842 
1843 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1844 	.func		= bpf_skb_pull_data,
1845 	.gpl_only	= false,
1846 	.ret_type	= RET_INTEGER,
1847 	.arg1_type	= ARG_PTR_TO_CTX,
1848 	.arg2_type	= ARG_ANYTHING,
1849 };
1850 
1851 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1852 {
1853 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1854 }
1855 
1856 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1857 	.func		= bpf_sk_fullsock,
1858 	.gpl_only	= false,
1859 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1860 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1861 };
1862 
1863 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1864 					   unsigned int write_len)
1865 {
1866 	return __bpf_try_make_writable(skb, write_len);
1867 }
1868 
1869 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1870 {
1871 	/* Idea is the following: should the needed direct read/write
1872 	 * test fail during runtime, we can pull in more data and redo
1873 	 * again, since implicitly, we invalidate previous checks here.
1874 	 *
1875 	 * Or, since we know how much we need to make read/writeable,
1876 	 * this can be done once at the program beginning for direct
1877 	 * access case. By this we overcome limitations of only current
1878 	 * headroom being accessible.
1879 	 */
1880 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1881 }
1882 
1883 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1884 	.func		= sk_skb_pull_data,
1885 	.gpl_only	= false,
1886 	.ret_type	= RET_INTEGER,
1887 	.arg1_type	= ARG_PTR_TO_CTX,
1888 	.arg2_type	= ARG_ANYTHING,
1889 };
1890 
1891 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1892 	   u64, from, u64, to, u64, flags)
1893 {
1894 	__sum16 *ptr;
1895 
1896 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1897 		return -EINVAL;
1898 	if (unlikely(offset > 0xffff || offset & 1))
1899 		return -EFAULT;
1900 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1901 		return -EFAULT;
1902 
1903 	ptr = (__sum16 *)(skb->data + offset);
1904 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1905 	case 0:
1906 		if (unlikely(from != 0))
1907 			return -EINVAL;
1908 
1909 		csum_replace_by_diff(ptr, to);
1910 		break;
1911 	case 2:
1912 		csum_replace2(ptr, from, to);
1913 		break;
1914 	case 4:
1915 		csum_replace4(ptr, from, to);
1916 		break;
1917 	default:
1918 		return -EINVAL;
1919 	}
1920 
1921 	return 0;
1922 }
1923 
1924 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1925 	.func		= bpf_l3_csum_replace,
1926 	.gpl_only	= false,
1927 	.ret_type	= RET_INTEGER,
1928 	.arg1_type	= ARG_PTR_TO_CTX,
1929 	.arg2_type	= ARG_ANYTHING,
1930 	.arg3_type	= ARG_ANYTHING,
1931 	.arg4_type	= ARG_ANYTHING,
1932 	.arg5_type	= ARG_ANYTHING,
1933 };
1934 
1935 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1936 	   u64, from, u64, to, u64, flags)
1937 {
1938 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1939 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1940 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1941 	__sum16 *ptr;
1942 
1943 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1944 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1945 		return -EINVAL;
1946 	if (unlikely(offset > 0xffff || offset & 1))
1947 		return -EFAULT;
1948 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1949 		return -EFAULT;
1950 
1951 	ptr = (__sum16 *)(skb->data + offset);
1952 	if (is_mmzero && !do_mforce && !*ptr)
1953 		return 0;
1954 
1955 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1956 	case 0:
1957 		if (unlikely(from != 0))
1958 			return -EINVAL;
1959 
1960 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1961 		break;
1962 	case 2:
1963 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1964 		break;
1965 	case 4:
1966 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1967 		break;
1968 	default:
1969 		return -EINVAL;
1970 	}
1971 
1972 	if (is_mmzero && !*ptr)
1973 		*ptr = CSUM_MANGLED_0;
1974 	return 0;
1975 }
1976 
1977 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1978 	.func		= bpf_l4_csum_replace,
1979 	.gpl_only	= false,
1980 	.ret_type	= RET_INTEGER,
1981 	.arg1_type	= ARG_PTR_TO_CTX,
1982 	.arg2_type	= ARG_ANYTHING,
1983 	.arg3_type	= ARG_ANYTHING,
1984 	.arg4_type	= ARG_ANYTHING,
1985 	.arg5_type	= ARG_ANYTHING,
1986 };
1987 
1988 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1989 	   __be32 *, to, u32, to_size, __wsum, seed)
1990 {
1991 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1992 	u32 diff_size = from_size + to_size;
1993 	int i, j = 0;
1994 
1995 	/* This is quite flexible, some examples:
1996 	 *
1997 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1998 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
1999 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2000 	 *
2001 	 * Even for diffing, from_size and to_size don't need to be equal.
2002 	 */
2003 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2004 		     diff_size > sizeof(sp->diff)))
2005 		return -EINVAL;
2006 
2007 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2008 		sp->diff[j] = ~from[i];
2009 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2010 		sp->diff[j] = to[i];
2011 
2012 	return csum_partial(sp->diff, diff_size, seed);
2013 }
2014 
2015 static const struct bpf_func_proto bpf_csum_diff_proto = {
2016 	.func		= bpf_csum_diff,
2017 	.gpl_only	= false,
2018 	.pkt_access	= true,
2019 	.ret_type	= RET_INTEGER,
2020 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2021 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2022 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2023 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2024 	.arg5_type	= ARG_ANYTHING,
2025 };
2026 
2027 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2028 {
2029 	/* The interface is to be used in combination with bpf_csum_diff()
2030 	 * for direct packet writes. csum rotation for alignment as well
2031 	 * as emulating csum_sub() can be done from the eBPF program.
2032 	 */
2033 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2034 		return (skb->csum = csum_add(skb->csum, csum));
2035 
2036 	return -ENOTSUPP;
2037 }
2038 
2039 static const struct bpf_func_proto bpf_csum_update_proto = {
2040 	.func		= bpf_csum_update,
2041 	.gpl_only	= false,
2042 	.ret_type	= RET_INTEGER,
2043 	.arg1_type	= ARG_PTR_TO_CTX,
2044 	.arg2_type	= ARG_ANYTHING,
2045 };
2046 
2047 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2048 {
2049 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2050 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2051 	 * is passed as flags, for example.
2052 	 */
2053 	switch (level) {
2054 	case BPF_CSUM_LEVEL_INC:
2055 		__skb_incr_checksum_unnecessary(skb);
2056 		break;
2057 	case BPF_CSUM_LEVEL_DEC:
2058 		__skb_decr_checksum_unnecessary(skb);
2059 		break;
2060 	case BPF_CSUM_LEVEL_RESET:
2061 		__skb_reset_checksum_unnecessary(skb);
2062 		break;
2063 	case BPF_CSUM_LEVEL_QUERY:
2064 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2065 		       skb->csum_level : -EACCES;
2066 	default:
2067 		return -EINVAL;
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 static const struct bpf_func_proto bpf_csum_level_proto = {
2074 	.func		= bpf_csum_level,
2075 	.gpl_only	= false,
2076 	.ret_type	= RET_INTEGER,
2077 	.arg1_type	= ARG_PTR_TO_CTX,
2078 	.arg2_type	= ARG_ANYTHING,
2079 };
2080 
2081 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2082 {
2083 	return dev_forward_skb_nomtu(dev, skb);
2084 }
2085 
2086 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2087 				      struct sk_buff *skb)
2088 {
2089 	int ret = ____dev_forward_skb(dev, skb, false);
2090 
2091 	if (likely(!ret)) {
2092 		skb->dev = dev;
2093 		ret = netif_rx(skb);
2094 	}
2095 
2096 	return ret;
2097 }
2098 
2099 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2100 {
2101 	int ret;
2102 
2103 	if (dev_xmit_recursion()) {
2104 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2105 		kfree_skb(skb);
2106 		return -ENETDOWN;
2107 	}
2108 
2109 	skb->dev = dev;
2110 	skb_clear_tstamp(skb);
2111 
2112 	dev_xmit_recursion_inc();
2113 	ret = dev_queue_xmit(skb);
2114 	dev_xmit_recursion_dec();
2115 
2116 	return ret;
2117 }
2118 
2119 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2120 				 u32 flags)
2121 {
2122 	unsigned int mlen = skb_network_offset(skb);
2123 
2124 	if (mlen) {
2125 		__skb_pull(skb, mlen);
2126 
2127 		/* At ingress, the mac header has already been pulled once.
2128 		 * At egress, skb_pospull_rcsum has to be done in case that
2129 		 * the skb is originated from ingress (i.e. a forwarded skb)
2130 		 * to ensure that rcsum starts at net header.
2131 		 */
2132 		if (!skb_at_tc_ingress(skb))
2133 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2134 	}
2135 	skb_pop_mac_header(skb);
2136 	skb_reset_mac_len(skb);
2137 	return flags & BPF_F_INGRESS ?
2138 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2139 }
2140 
2141 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2142 				 u32 flags)
2143 {
2144 	/* Verify that a link layer header is carried */
2145 	if (unlikely(skb->mac_header >= skb->network_header)) {
2146 		kfree_skb(skb);
2147 		return -ERANGE;
2148 	}
2149 
2150 	bpf_push_mac_rcsum(skb);
2151 	return flags & BPF_F_INGRESS ?
2152 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2153 }
2154 
2155 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2156 			  u32 flags)
2157 {
2158 	if (dev_is_mac_header_xmit(dev))
2159 		return __bpf_redirect_common(skb, dev, flags);
2160 	else
2161 		return __bpf_redirect_no_mac(skb, dev, flags);
2162 }
2163 
2164 #if IS_ENABLED(CONFIG_IPV6)
2165 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2166 			    struct net_device *dev, struct bpf_nh_params *nh)
2167 {
2168 	u32 hh_len = LL_RESERVED_SPACE(dev);
2169 	const struct in6_addr *nexthop;
2170 	struct dst_entry *dst = NULL;
2171 	struct neighbour *neigh;
2172 
2173 	if (dev_xmit_recursion()) {
2174 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2175 		goto out_drop;
2176 	}
2177 
2178 	skb->dev = dev;
2179 	skb_clear_tstamp(skb);
2180 
2181 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2182 		skb = skb_expand_head(skb, hh_len);
2183 		if (!skb)
2184 			return -ENOMEM;
2185 	}
2186 
2187 	rcu_read_lock_bh();
2188 	if (!nh) {
2189 		dst = skb_dst(skb);
2190 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2191 				      &ipv6_hdr(skb)->daddr);
2192 	} else {
2193 		nexthop = &nh->ipv6_nh;
2194 	}
2195 	neigh = ip_neigh_gw6(dev, nexthop);
2196 	if (likely(!IS_ERR(neigh))) {
2197 		int ret;
2198 
2199 		sock_confirm_neigh(skb, neigh);
2200 		dev_xmit_recursion_inc();
2201 		ret = neigh_output(neigh, skb, false);
2202 		dev_xmit_recursion_dec();
2203 		rcu_read_unlock_bh();
2204 		return ret;
2205 	}
2206 	rcu_read_unlock_bh();
2207 	if (dst)
2208 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2209 out_drop:
2210 	kfree_skb(skb);
2211 	return -ENETDOWN;
2212 }
2213 
2214 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2215 				   struct bpf_nh_params *nh)
2216 {
2217 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2218 	struct net *net = dev_net(dev);
2219 	int err, ret = NET_XMIT_DROP;
2220 
2221 	if (!nh) {
2222 		struct dst_entry *dst;
2223 		struct flowi6 fl6 = {
2224 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2225 			.flowi6_mark  = skb->mark,
2226 			.flowlabel    = ip6_flowinfo(ip6h),
2227 			.flowi6_oif   = dev->ifindex,
2228 			.flowi6_proto = ip6h->nexthdr,
2229 			.daddr	      = ip6h->daddr,
2230 			.saddr	      = ip6h->saddr,
2231 		};
2232 
2233 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2234 		if (IS_ERR(dst))
2235 			goto out_drop;
2236 
2237 		skb_dst_set(skb, dst);
2238 	} else if (nh->nh_family != AF_INET6) {
2239 		goto out_drop;
2240 	}
2241 
2242 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2243 	if (unlikely(net_xmit_eval(err)))
2244 		dev->stats.tx_errors++;
2245 	else
2246 		ret = NET_XMIT_SUCCESS;
2247 	goto out_xmit;
2248 out_drop:
2249 	dev->stats.tx_errors++;
2250 	kfree_skb(skb);
2251 out_xmit:
2252 	return ret;
2253 }
2254 #else
2255 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2256 				   struct bpf_nh_params *nh)
2257 {
2258 	kfree_skb(skb);
2259 	return NET_XMIT_DROP;
2260 }
2261 #endif /* CONFIG_IPV6 */
2262 
2263 #if IS_ENABLED(CONFIG_INET)
2264 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2265 			    struct net_device *dev, struct bpf_nh_params *nh)
2266 {
2267 	u32 hh_len = LL_RESERVED_SPACE(dev);
2268 	struct neighbour *neigh;
2269 	bool is_v6gw = false;
2270 
2271 	if (dev_xmit_recursion()) {
2272 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2273 		goto out_drop;
2274 	}
2275 
2276 	skb->dev = dev;
2277 	skb_clear_tstamp(skb);
2278 
2279 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2280 		skb = skb_expand_head(skb, hh_len);
2281 		if (!skb)
2282 			return -ENOMEM;
2283 	}
2284 
2285 	rcu_read_lock_bh();
2286 	if (!nh) {
2287 		struct dst_entry *dst = skb_dst(skb);
2288 		struct rtable *rt = container_of(dst, struct rtable, dst);
2289 
2290 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2291 	} else if (nh->nh_family == AF_INET6) {
2292 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2293 		is_v6gw = true;
2294 	} else if (nh->nh_family == AF_INET) {
2295 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2296 	} else {
2297 		rcu_read_unlock_bh();
2298 		goto out_drop;
2299 	}
2300 
2301 	if (likely(!IS_ERR(neigh))) {
2302 		int ret;
2303 
2304 		sock_confirm_neigh(skb, neigh);
2305 		dev_xmit_recursion_inc();
2306 		ret = neigh_output(neigh, skb, is_v6gw);
2307 		dev_xmit_recursion_dec();
2308 		rcu_read_unlock_bh();
2309 		return ret;
2310 	}
2311 	rcu_read_unlock_bh();
2312 out_drop:
2313 	kfree_skb(skb);
2314 	return -ENETDOWN;
2315 }
2316 
2317 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2318 				   struct bpf_nh_params *nh)
2319 {
2320 	const struct iphdr *ip4h = ip_hdr(skb);
2321 	struct net *net = dev_net(dev);
2322 	int err, ret = NET_XMIT_DROP;
2323 
2324 	if (!nh) {
2325 		struct flowi4 fl4 = {
2326 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2327 			.flowi4_mark  = skb->mark,
2328 			.flowi4_tos   = RT_TOS(ip4h->tos),
2329 			.flowi4_oif   = dev->ifindex,
2330 			.flowi4_proto = ip4h->protocol,
2331 			.daddr	      = ip4h->daddr,
2332 			.saddr	      = ip4h->saddr,
2333 		};
2334 		struct rtable *rt;
2335 
2336 		rt = ip_route_output_flow(net, &fl4, NULL);
2337 		if (IS_ERR(rt))
2338 			goto out_drop;
2339 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2340 			ip_rt_put(rt);
2341 			goto out_drop;
2342 		}
2343 
2344 		skb_dst_set(skb, &rt->dst);
2345 	}
2346 
2347 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2348 	if (unlikely(net_xmit_eval(err)))
2349 		dev->stats.tx_errors++;
2350 	else
2351 		ret = NET_XMIT_SUCCESS;
2352 	goto out_xmit;
2353 out_drop:
2354 	dev->stats.tx_errors++;
2355 	kfree_skb(skb);
2356 out_xmit:
2357 	return ret;
2358 }
2359 #else
2360 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2361 				   struct bpf_nh_params *nh)
2362 {
2363 	kfree_skb(skb);
2364 	return NET_XMIT_DROP;
2365 }
2366 #endif /* CONFIG_INET */
2367 
2368 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2369 				struct bpf_nh_params *nh)
2370 {
2371 	struct ethhdr *ethh = eth_hdr(skb);
2372 
2373 	if (unlikely(skb->mac_header >= skb->network_header))
2374 		goto out;
2375 	bpf_push_mac_rcsum(skb);
2376 	if (is_multicast_ether_addr(ethh->h_dest))
2377 		goto out;
2378 
2379 	skb_pull(skb, sizeof(*ethh));
2380 	skb_unset_mac_header(skb);
2381 	skb_reset_network_header(skb);
2382 
2383 	if (skb->protocol == htons(ETH_P_IP))
2384 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2385 	else if (skb->protocol == htons(ETH_P_IPV6))
2386 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2387 out:
2388 	kfree_skb(skb);
2389 	return -ENOTSUPP;
2390 }
2391 
2392 /* Internal, non-exposed redirect flags. */
2393 enum {
2394 	BPF_F_NEIGH	= (1ULL << 1),
2395 	BPF_F_PEER	= (1ULL << 2),
2396 	BPF_F_NEXTHOP	= (1ULL << 3),
2397 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2398 };
2399 
2400 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2401 {
2402 	struct net_device *dev;
2403 	struct sk_buff *clone;
2404 	int ret;
2405 
2406 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2407 		return -EINVAL;
2408 
2409 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2410 	if (unlikely(!dev))
2411 		return -EINVAL;
2412 
2413 	clone = skb_clone(skb, GFP_ATOMIC);
2414 	if (unlikely(!clone))
2415 		return -ENOMEM;
2416 
2417 	/* For direct write, we need to keep the invariant that the skbs
2418 	 * we're dealing with need to be uncloned. Should uncloning fail
2419 	 * here, we need to free the just generated clone to unclone once
2420 	 * again.
2421 	 */
2422 	ret = bpf_try_make_head_writable(skb);
2423 	if (unlikely(ret)) {
2424 		kfree_skb(clone);
2425 		return -ENOMEM;
2426 	}
2427 
2428 	return __bpf_redirect(clone, dev, flags);
2429 }
2430 
2431 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2432 	.func           = bpf_clone_redirect,
2433 	.gpl_only       = false,
2434 	.ret_type       = RET_INTEGER,
2435 	.arg1_type      = ARG_PTR_TO_CTX,
2436 	.arg2_type      = ARG_ANYTHING,
2437 	.arg3_type      = ARG_ANYTHING,
2438 };
2439 
2440 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2441 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2442 
2443 int skb_do_redirect(struct sk_buff *skb)
2444 {
2445 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2446 	struct net *net = dev_net(skb->dev);
2447 	struct net_device *dev;
2448 	u32 flags = ri->flags;
2449 
2450 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2451 	ri->tgt_index = 0;
2452 	ri->flags = 0;
2453 	if (unlikely(!dev))
2454 		goto out_drop;
2455 	if (flags & BPF_F_PEER) {
2456 		const struct net_device_ops *ops = dev->netdev_ops;
2457 
2458 		if (unlikely(!ops->ndo_get_peer_dev ||
2459 			     !skb_at_tc_ingress(skb)))
2460 			goto out_drop;
2461 		dev = ops->ndo_get_peer_dev(dev);
2462 		if (unlikely(!dev ||
2463 			     !(dev->flags & IFF_UP) ||
2464 			     net_eq(net, dev_net(dev))))
2465 			goto out_drop;
2466 		skb->dev = dev;
2467 		return -EAGAIN;
2468 	}
2469 	return flags & BPF_F_NEIGH ?
2470 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2471 				    &ri->nh : NULL) :
2472 	       __bpf_redirect(skb, dev, flags);
2473 out_drop:
2474 	kfree_skb(skb);
2475 	return -EINVAL;
2476 }
2477 
2478 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2479 {
2480 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2481 
2482 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2483 		return TC_ACT_SHOT;
2484 
2485 	ri->flags = flags;
2486 	ri->tgt_index = ifindex;
2487 
2488 	return TC_ACT_REDIRECT;
2489 }
2490 
2491 static const struct bpf_func_proto bpf_redirect_proto = {
2492 	.func           = bpf_redirect,
2493 	.gpl_only       = false,
2494 	.ret_type       = RET_INTEGER,
2495 	.arg1_type      = ARG_ANYTHING,
2496 	.arg2_type      = ARG_ANYTHING,
2497 };
2498 
2499 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2500 {
2501 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2502 
2503 	if (unlikely(flags))
2504 		return TC_ACT_SHOT;
2505 
2506 	ri->flags = BPF_F_PEER;
2507 	ri->tgt_index = ifindex;
2508 
2509 	return TC_ACT_REDIRECT;
2510 }
2511 
2512 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2513 	.func           = bpf_redirect_peer,
2514 	.gpl_only       = false,
2515 	.ret_type       = RET_INTEGER,
2516 	.arg1_type      = ARG_ANYTHING,
2517 	.arg2_type      = ARG_ANYTHING,
2518 };
2519 
2520 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2521 	   int, plen, u64, flags)
2522 {
2523 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2524 
2525 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2526 		return TC_ACT_SHOT;
2527 
2528 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2529 	ri->tgt_index = ifindex;
2530 
2531 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2532 	if (plen)
2533 		memcpy(&ri->nh, params, sizeof(ri->nh));
2534 
2535 	return TC_ACT_REDIRECT;
2536 }
2537 
2538 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2539 	.func		= bpf_redirect_neigh,
2540 	.gpl_only	= false,
2541 	.ret_type	= RET_INTEGER,
2542 	.arg1_type	= ARG_ANYTHING,
2543 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2544 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2545 	.arg4_type	= ARG_ANYTHING,
2546 };
2547 
2548 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2549 {
2550 	msg->apply_bytes = bytes;
2551 	return 0;
2552 }
2553 
2554 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2555 	.func           = bpf_msg_apply_bytes,
2556 	.gpl_only       = false,
2557 	.ret_type       = RET_INTEGER,
2558 	.arg1_type	= ARG_PTR_TO_CTX,
2559 	.arg2_type      = ARG_ANYTHING,
2560 };
2561 
2562 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2563 {
2564 	msg->cork_bytes = bytes;
2565 	return 0;
2566 }
2567 
2568 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2569 	.func           = bpf_msg_cork_bytes,
2570 	.gpl_only       = false,
2571 	.ret_type       = RET_INTEGER,
2572 	.arg1_type	= ARG_PTR_TO_CTX,
2573 	.arg2_type      = ARG_ANYTHING,
2574 };
2575 
2576 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2577 	   u32, end, u64, flags)
2578 {
2579 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2580 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2581 	struct scatterlist *sge;
2582 	u8 *raw, *to, *from;
2583 	struct page *page;
2584 
2585 	if (unlikely(flags || end <= start))
2586 		return -EINVAL;
2587 
2588 	/* First find the starting scatterlist element */
2589 	i = msg->sg.start;
2590 	do {
2591 		offset += len;
2592 		len = sk_msg_elem(msg, i)->length;
2593 		if (start < offset + len)
2594 			break;
2595 		sk_msg_iter_var_next(i);
2596 	} while (i != msg->sg.end);
2597 
2598 	if (unlikely(start >= offset + len))
2599 		return -EINVAL;
2600 
2601 	first_sge = i;
2602 	/* The start may point into the sg element so we need to also
2603 	 * account for the headroom.
2604 	 */
2605 	bytes_sg_total = start - offset + bytes;
2606 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2607 		goto out;
2608 
2609 	/* At this point we need to linearize multiple scatterlist
2610 	 * elements or a single shared page. Either way we need to
2611 	 * copy into a linear buffer exclusively owned by BPF. Then
2612 	 * place the buffer in the scatterlist and fixup the original
2613 	 * entries by removing the entries now in the linear buffer
2614 	 * and shifting the remaining entries. For now we do not try
2615 	 * to copy partial entries to avoid complexity of running out
2616 	 * of sg_entry slots. The downside is reading a single byte
2617 	 * will copy the entire sg entry.
2618 	 */
2619 	do {
2620 		copy += sk_msg_elem(msg, i)->length;
2621 		sk_msg_iter_var_next(i);
2622 		if (bytes_sg_total <= copy)
2623 			break;
2624 	} while (i != msg->sg.end);
2625 	last_sge = i;
2626 
2627 	if (unlikely(bytes_sg_total > copy))
2628 		return -EINVAL;
2629 
2630 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2631 			   get_order(copy));
2632 	if (unlikely(!page))
2633 		return -ENOMEM;
2634 
2635 	raw = page_address(page);
2636 	i = first_sge;
2637 	do {
2638 		sge = sk_msg_elem(msg, i);
2639 		from = sg_virt(sge);
2640 		len = sge->length;
2641 		to = raw + poffset;
2642 
2643 		memcpy(to, from, len);
2644 		poffset += len;
2645 		sge->length = 0;
2646 		put_page(sg_page(sge));
2647 
2648 		sk_msg_iter_var_next(i);
2649 	} while (i != last_sge);
2650 
2651 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2652 
2653 	/* To repair sg ring we need to shift entries. If we only
2654 	 * had a single entry though we can just replace it and
2655 	 * be done. Otherwise walk the ring and shift the entries.
2656 	 */
2657 	WARN_ON_ONCE(last_sge == first_sge);
2658 	shift = last_sge > first_sge ?
2659 		last_sge - first_sge - 1 :
2660 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2661 	if (!shift)
2662 		goto out;
2663 
2664 	i = first_sge;
2665 	sk_msg_iter_var_next(i);
2666 	do {
2667 		u32 move_from;
2668 
2669 		if (i + shift >= NR_MSG_FRAG_IDS)
2670 			move_from = i + shift - NR_MSG_FRAG_IDS;
2671 		else
2672 			move_from = i + shift;
2673 		if (move_from == msg->sg.end)
2674 			break;
2675 
2676 		msg->sg.data[i] = msg->sg.data[move_from];
2677 		msg->sg.data[move_from].length = 0;
2678 		msg->sg.data[move_from].page_link = 0;
2679 		msg->sg.data[move_from].offset = 0;
2680 		sk_msg_iter_var_next(i);
2681 	} while (1);
2682 
2683 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2684 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2685 		      msg->sg.end - shift;
2686 out:
2687 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2688 	msg->data_end = msg->data + bytes;
2689 	return 0;
2690 }
2691 
2692 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2693 	.func		= bpf_msg_pull_data,
2694 	.gpl_only	= false,
2695 	.ret_type	= RET_INTEGER,
2696 	.arg1_type	= ARG_PTR_TO_CTX,
2697 	.arg2_type	= ARG_ANYTHING,
2698 	.arg3_type	= ARG_ANYTHING,
2699 	.arg4_type	= ARG_ANYTHING,
2700 };
2701 
2702 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2703 	   u32, len, u64, flags)
2704 {
2705 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2706 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2707 	u8 *raw, *to, *from;
2708 	struct page *page;
2709 
2710 	if (unlikely(flags))
2711 		return -EINVAL;
2712 
2713 	if (unlikely(len == 0))
2714 		return 0;
2715 
2716 	/* First find the starting scatterlist element */
2717 	i = msg->sg.start;
2718 	do {
2719 		offset += l;
2720 		l = sk_msg_elem(msg, i)->length;
2721 
2722 		if (start < offset + l)
2723 			break;
2724 		sk_msg_iter_var_next(i);
2725 	} while (i != msg->sg.end);
2726 
2727 	if (start >= offset + l)
2728 		return -EINVAL;
2729 
2730 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2731 
2732 	/* If no space available will fallback to copy, we need at
2733 	 * least one scatterlist elem available to push data into
2734 	 * when start aligns to the beginning of an element or two
2735 	 * when it falls inside an element. We handle the start equals
2736 	 * offset case because its the common case for inserting a
2737 	 * header.
2738 	 */
2739 	if (!space || (space == 1 && start != offset))
2740 		copy = msg->sg.data[i].length;
2741 
2742 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2743 			   get_order(copy + len));
2744 	if (unlikely(!page))
2745 		return -ENOMEM;
2746 
2747 	if (copy) {
2748 		int front, back;
2749 
2750 		raw = page_address(page);
2751 
2752 		psge = sk_msg_elem(msg, i);
2753 		front = start - offset;
2754 		back = psge->length - front;
2755 		from = sg_virt(psge);
2756 
2757 		if (front)
2758 			memcpy(raw, from, front);
2759 
2760 		if (back) {
2761 			from += front;
2762 			to = raw + front + len;
2763 
2764 			memcpy(to, from, back);
2765 		}
2766 
2767 		put_page(sg_page(psge));
2768 	} else if (start - offset) {
2769 		psge = sk_msg_elem(msg, i);
2770 		rsge = sk_msg_elem_cpy(msg, i);
2771 
2772 		psge->length = start - offset;
2773 		rsge.length -= psge->length;
2774 		rsge.offset += start;
2775 
2776 		sk_msg_iter_var_next(i);
2777 		sg_unmark_end(psge);
2778 		sg_unmark_end(&rsge);
2779 		sk_msg_iter_next(msg, end);
2780 	}
2781 
2782 	/* Slot(s) to place newly allocated data */
2783 	new = i;
2784 
2785 	/* Shift one or two slots as needed */
2786 	if (!copy) {
2787 		sge = sk_msg_elem_cpy(msg, i);
2788 
2789 		sk_msg_iter_var_next(i);
2790 		sg_unmark_end(&sge);
2791 		sk_msg_iter_next(msg, end);
2792 
2793 		nsge = sk_msg_elem_cpy(msg, i);
2794 		if (rsge.length) {
2795 			sk_msg_iter_var_next(i);
2796 			nnsge = sk_msg_elem_cpy(msg, i);
2797 		}
2798 
2799 		while (i != msg->sg.end) {
2800 			msg->sg.data[i] = sge;
2801 			sge = nsge;
2802 			sk_msg_iter_var_next(i);
2803 			if (rsge.length) {
2804 				nsge = nnsge;
2805 				nnsge = sk_msg_elem_cpy(msg, i);
2806 			} else {
2807 				nsge = sk_msg_elem_cpy(msg, i);
2808 			}
2809 		}
2810 	}
2811 
2812 	/* Place newly allocated data buffer */
2813 	sk_mem_charge(msg->sk, len);
2814 	msg->sg.size += len;
2815 	__clear_bit(new, msg->sg.copy);
2816 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2817 	if (rsge.length) {
2818 		get_page(sg_page(&rsge));
2819 		sk_msg_iter_var_next(new);
2820 		msg->sg.data[new] = rsge;
2821 	}
2822 
2823 	sk_msg_compute_data_pointers(msg);
2824 	return 0;
2825 }
2826 
2827 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2828 	.func		= bpf_msg_push_data,
2829 	.gpl_only	= false,
2830 	.ret_type	= RET_INTEGER,
2831 	.arg1_type	= ARG_PTR_TO_CTX,
2832 	.arg2_type	= ARG_ANYTHING,
2833 	.arg3_type	= ARG_ANYTHING,
2834 	.arg4_type	= ARG_ANYTHING,
2835 };
2836 
2837 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2838 {
2839 	int prev;
2840 
2841 	do {
2842 		prev = i;
2843 		sk_msg_iter_var_next(i);
2844 		msg->sg.data[prev] = msg->sg.data[i];
2845 	} while (i != msg->sg.end);
2846 
2847 	sk_msg_iter_prev(msg, end);
2848 }
2849 
2850 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2851 {
2852 	struct scatterlist tmp, sge;
2853 
2854 	sk_msg_iter_next(msg, end);
2855 	sge = sk_msg_elem_cpy(msg, i);
2856 	sk_msg_iter_var_next(i);
2857 	tmp = sk_msg_elem_cpy(msg, i);
2858 
2859 	while (i != msg->sg.end) {
2860 		msg->sg.data[i] = sge;
2861 		sk_msg_iter_var_next(i);
2862 		sge = tmp;
2863 		tmp = sk_msg_elem_cpy(msg, i);
2864 	}
2865 }
2866 
2867 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2868 	   u32, len, u64, flags)
2869 {
2870 	u32 i = 0, l = 0, space, offset = 0;
2871 	u64 last = start + len;
2872 	int pop;
2873 
2874 	if (unlikely(flags))
2875 		return -EINVAL;
2876 
2877 	/* First find the starting scatterlist element */
2878 	i = msg->sg.start;
2879 	do {
2880 		offset += l;
2881 		l = sk_msg_elem(msg, i)->length;
2882 
2883 		if (start < offset + l)
2884 			break;
2885 		sk_msg_iter_var_next(i);
2886 	} while (i != msg->sg.end);
2887 
2888 	/* Bounds checks: start and pop must be inside message */
2889 	if (start >= offset + l || last >= msg->sg.size)
2890 		return -EINVAL;
2891 
2892 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2893 
2894 	pop = len;
2895 	/* --------------| offset
2896 	 * -| start      |-------- len -------|
2897 	 *
2898 	 *  |----- a ----|-------- pop -------|----- b ----|
2899 	 *  |______________________________________________| length
2900 	 *
2901 	 *
2902 	 * a:   region at front of scatter element to save
2903 	 * b:   region at back of scatter element to save when length > A + pop
2904 	 * pop: region to pop from element, same as input 'pop' here will be
2905 	 *      decremented below per iteration.
2906 	 *
2907 	 * Two top-level cases to handle when start != offset, first B is non
2908 	 * zero and second B is zero corresponding to when a pop includes more
2909 	 * than one element.
2910 	 *
2911 	 * Then if B is non-zero AND there is no space allocate space and
2912 	 * compact A, B regions into page. If there is space shift ring to
2913 	 * the rigth free'ing the next element in ring to place B, leaving
2914 	 * A untouched except to reduce length.
2915 	 */
2916 	if (start != offset) {
2917 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2918 		int a = start;
2919 		int b = sge->length - pop - a;
2920 
2921 		sk_msg_iter_var_next(i);
2922 
2923 		if (pop < sge->length - a) {
2924 			if (space) {
2925 				sge->length = a;
2926 				sk_msg_shift_right(msg, i);
2927 				nsge = sk_msg_elem(msg, i);
2928 				get_page(sg_page(sge));
2929 				sg_set_page(nsge,
2930 					    sg_page(sge),
2931 					    b, sge->offset + pop + a);
2932 			} else {
2933 				struct page *page, *orig;
2934 				u8 *to, *from;
2935 
2936 				page = alloc_pages(__GFP_NOWARN |
2937 						   __GFP_COMP   | GFP_ATOMIC,
2938 						   get_order(a + b));
2939 				if (unlikely(!page))
2940 					return -ENOMEM;
2941 
2942 				sge->length = a;
2943 				orig = sg_page(sge);
2944 				from = sg_virt(sge);
2945 				to = page_address(page);
2946 				memcpy(to, from, a);
2947 				memcpy(to + a, from + a + pop, b);
2948 				sg_set_page(sge, page, a + b, 0);
2949 				put_page(orig);
2950 			}
2951 			pop = 0;
2952 		} else if (pop >= sge->length - a) {
2953 			pop -= (sge->length - a);
2954 			sge->length = a;
2955 		}
2956 	}
2957 
2958 	/* From above the current layout _must_ be as follows,
2959 	 *
2960 	 * -| offset
2961 	 * -| start
2962 	 *
2963 	 *  |---- pop ---|---------------- b ------------|
2964 	 *  |____________________________________________| length
2965 	 *
2966 	 * Offset and start of the current msg elem are equal because in the
2967 	 * previous case we handled offset != start and either consumed the
2968 	 * entire element and advanced to the next element OR pop == 0.
2969 	 *
2970 	 * Two cases to handle here are first pop is less than the length
2971 	 * leaving some remainder b above. Simply adjust the element's layout
2972 	 * in this case. Or pop >= length of the element so that b = 0. In this
2973 	 * case advance to next element decrementing pop.
2974 	 */
2975 	while (pop) {
2976 		struct scatterlist *sge = sk_msg_elem(msg, i);
2977 
2978 		if (pop < sge->length) {
2979 			sge->length -= pop;
2980 			sge->offset += pop;
2981 			pop = 0;
2982 		} else {
2983 			pop -= sge->length;
2984 			sk_msg_shift_left(msg, i);
2985 		}
2986 		sk_msg_iter_var_next(i);
2987 	}
2988 
2989 	sk_mem_uncharge(msg->sk, len - pop);
2990 	msg->sg.size -= (len - pop);
2991 	sk_msg_compute_data_pointers(msg);
2992 	return 0;
2993 }
2994 
2995 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2996 	.func		= bpf_msg_pop_data,
2997 	.gpl_only	= false,
2998 	.ret_type	= RET_INTEGER,
2999 	.arg1_type	= ARG_PTR_TO_CTX,
3000 	.arg2_type	= ARG_ANYTHING,
3001 	.arg3_type	= ARG_ANYTHING,
3002 	.arg4_type	= ARG_ANYTHING,
3003 };
3004 
3005 #ifdef CONFIG_CGROUP_NET_CLASSID
3006 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3007 {
3008 	return __task_get_classid(current);
3009 }
3010 
3011 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3012 	.func		= bpf_get_cgroup_classid_curr,
3013 	.gpl_only	= false,
3014 	.ret_type	= RET_INTEGER,
3015 };
3016 
3017 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3018 {
3019 	struct sock *sk = skb_to_full_sk(skb);
3020 
3021 	if (!sk || !sk_fullsock(sk))
3022 		return 0;
3023 
3024 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3025 }
3026 
3027 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3028 	.func		= bpf_skb_cgroup_classid,
3029 	.gpl_only	= false,
3030 	.ret_type	= RET_INTEGER,
3031 	.arg1_type	= ARG_PTR_TO_CTX,
3032 };
3033 #endif
3034 
3035 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3036 {
3037 	return task_get_classid(skb);
3038 }
3039 
3040 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3041 	.func           = bpf_get_cgroup_classid,
3042 	.gpl_only       = false,
3043 	.ret_type       = RET_INTEGER,
3044 	.arg1_type      = ARG_PTR_TO_CTX,
3045 };
3046 
3047 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3048 {
3049 	return dst_tclassid(skb);
3050 }
3051 
3052 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3053 	.func           = bpf_get_route_realm,
3054 	.gpl_only       = false,
3055 	.ret_type       = RET_INTEGER,
3056 	.arg1_type      = ARG_PTR_TO_CTX,
3057 };
3058 
3059 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3060 {
3061 	/* If skb_clear_hash() was called due to mangling, we can
3062 	 * trigger SW recalculation here. Later access to hash
3063 	 * can then use the inline skb->hash via context directly
3064 	 * instead of calling this helper again.
3065 	 */
3066 	return skb_get_hash(skb);
3067 }
3068 
3069 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3070 	.func		= bpf_get_hash_recalc,
3071 	.gpl_only	= false,
3072 	.ret_type	= RET_INTEGER,
3073 	.arg1_type	= ARG_PTR_TO_CTX,
3074 };
3075 
3076 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3077 {
3078 	/* After all direct packet write, this can be used once for
3079 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3080 	 */
3081 	skb_clear_hash(skb);
3082 	return 0;
3083 }
3084 
3085 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3086 	.func		= bpf_set_hash_invalid,
3087 	.gpl_only	= false,
3088 	.ret_type	= RET_INTEGER,
3089 	.arg1_type	= ARG_PTR_TO_CTX,
3090 };
3091 
3092 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3093 {
3094 	/* Set user specified hash as L4(+), so that it gets returned
3095 	 * on skb_get_hash() call unless BPF prog later on triggers a
3096 	 * skb_clear_hash().
3097 	 */
3098 	__skb_set_sw_hash(skb, hash, true);
3099 	return 0;
3100 }
3101 
3102 static const struct bpf_func_proto bpf_set_hash_proto = {
3103 	.func		= bpf_set_hash,
3104 	.gpl_only	= false,
3105 	.ret_type	= RET_INTEGER,
3106 	.arg1_type	= ARG_PTR_TO_CTX,
3107 	.arg2_type	= ARG_ANYTHING,
3108 };
3109 
3110 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3111 	   u16, vlan_tci)
3112 {
3113 	int ret;
3114 
3115 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3116 		     vlan_proto != htons(ETH_P_8021AD)))
3117 		vlan_proto = htons(ETH_P_8021Q);
3118 
3119 	bpf_push_mac_rcsum(skb);
3120 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3121 	bpf_pull_mac_rcsum(skb);
3122 
3123 	bpf_compute_data_pointers(skb);
3124 	return ret;
3125 }
3126 
3127 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3128 	.func           = bpf_skb_vlan_push,
3129 	.gpl_only       = false,
3130 	.ret_type       = RET_INTEGER,
3131 	.arg1_type      = ARG_PTR_TO_CTX,
3132 	.arg2_type      = ARG_ANYTHING,
3133 	.arg3_type      = ARG_ANYTHING,
3134 };
3135 
3136 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3137 {
3138 	int ret;
3139 
3140 	bpf_push_mac_rcsum(skb);
3141 	ret = skb_vlan_pop(skb);
3142 	bpf_pull_mac_rcsum(skb);
3143 
3144 	bpf_compute_data_pointers(skb);
3145 	return ret;
3146 }
3147 
3148 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3149 	.func           = bpf_skb_vlan_pop,
3150 	.gpl_only       = false,
3151 	.ret_type       = RET_INTEGER,
3152 	.arg1_type      = ARG_PTR_TO_CTX,
3153 };
3154 
3155 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3156 {
3157 	/* Caller already did skb_cow() with len as headroom,
3158 	 * so no need to do it here.
3159 	 */
3160 	skb_push(skb, len);
3161 	memmove(skb->data, skb->data + len, off);
3162 	memset(skb->data + off, 0, len);
3163 
3164 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3165 	 * needed here as it does not change the skb->csum
3166 	 * result for checksum complete when summing over
3167 	 * zeroed blocks.
3168 	 */
3169 	return 0;
3170 }
3171 
3172 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3173 {
3174 	/* skb_ensure_writable() is not needed here, as we're
3175 	 * already working on an uncloned skb.
3176 	 */
3177 	if (unlikely(!pskb_may_pull(skb, off + len)))
3178 		return -ENOMEM;
3179 
3180 	skb_postpull_rcsum(skb, skb->data + off, len);
3181 	memmove(skb->data + len, skb->data, off);
3182 	__skb_pull(skb, len);
3183 
3184 	return 0;
3185 }
3186 
3187 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3188 {
3189 	bool trans_same = skb->transport_header == skb->network_header;
3190 	int ret;
3191 
3192 	/* There's no need for __skb_push()/__skb_pull() pair to
3193 	 * get to the start of the mac header as we're guaranteed
3194 	 * to always start from here under eBPF.
3195 	 */
3196 	ret = bpf_skb_generic_push(skb, off, len);
3197 	if (likely(!ret)) {
3198 		skb->mac_header -= len;
3199 		skb->network_header -= len;
3200 		if (trans_same)
3201 			skb->transport_header = skb->network_header;
3202 	}
3203 
3204 	return ret;
3205 }
3206 
3207 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3208 {
3209 	bool trans_same = skb->transport_header == skb->network_header;
3210 	int ret;
3211 
3212 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3213 	ret = bpf_skb_generic_pop(skb, off, len);
3214 	if (likely(!ret)) {
3215 		skb->mac_header += len;
3216 		skb->network_header += len;
3217 		if (trans_same)
3218 			skb->transport_header = skb->network_header;
3219 	}
3220 
3221 	return ret;
3222 }
3223 
3224 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3225 {
3226 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3227 	u32 off = skb_mac_header_len(skb);
3228 	int ret;
3229 
3230 	ret = skb_cow(skb, len_diff);
3231 	if (unlikely(ret < 0))
3232 		return ret;
3233 
3234 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3235 	if (unlikely(ret < 0))
3236 		return ret;
3237 
3238 	if (skb_is_gso(skb)) {
3239 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3240 
3241 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3242 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3243 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3244 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3245 		}
3246 	}
3247 
3248 	skb->protocol = htons(ETH_P_IPV6);
3249 	skb_clear_hash(skb);
3250 
3251 	return 0;
3252 }
3253 
3254 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3255 {
3256 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3257 	u32 off = skb_mac_header_len(skb);
3258 	int ret;
3259 
3260 	ret = skb_unclone(skb, GFP_ATOMIC);
3261 	if (unlikely(ret < 0))
3262 		return ret;
3263 
3264 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3265 	if (unlikely(ret < 0))
3266 		return ret;
3267 
3268 	if (skb_is_gso(skb)) {
3269 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3270 
3271 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3272 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3273 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3274 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3275 		}
3276 	}
3277 
3278 	skb->protocol = htons(ETH_P_IP);
3279 	skb_clear_hash(skb);
3280 
3281 	return 0;
3282 }
3283 
3284 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3285 {
3286 	__be16 from_proto = skb->protocol;
3287 
3288 	if (from_proto == htons(ETH_P_IP) &&
3289 	      to_proto == htons(ETH_P_IPV6))
3290 		return bpf_skb_proto_4_to_6(skb);
3291 
3292 	if (from_proto == htons(ETH_P_IPV6) &&
3293 	      to_proto == htons(ETH_P_IP))
3294 		return bpf_skb_proto_6_to_4(skb);
3295 
3296 	return -ENOTSUPP;
3297 }
3298 
3299 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3300 	   u64, flags)
3301 {
3302 	int ret;
3303 
3304 	if (unlikely(flags))
3305 		return -EINVAL;
3306 
3307 	/* General idea is that this helper does the basic groundwork
3308 	 * needed for changing the protocol, and eBPF program fills the
3309 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3310 	 * and other helpers, rather than passing a raw buffer here.
3311 	 *
3312 	 * The rationale is to keep this minimal and without a need to
3313 	 * deal with raw packet data. F.e. even if we would pass buffers
3314 	 * here, the program still needs to call the bpf_lX_csum_replace()
3315 	 * helpers anyway. Plus, this way we keep also separation of
3316 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3317 	 * care of stores.
3318 	 *
3319 	 * Currently, additional options and extension header space are
3320 	 * not supported, but flags register is reserved so we can adapt
3321 	 * that. For offloads, we mark packet as dodgy, so that headers
3322 	 * need to be verified first.
3323 	 */
3324 	ret = bpf_skb_proto_xlat(skb, proto);
3325 	bpf_compute_data_pointers(skb);
3326 	return ret;
3327 }
3328 
3329 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3330 	.func		= bpf_skb_change_proto,
3331 	.gpl_only	= false,
3332 	.ret_type	= RET_INTEGER,
3333 	.arg1_type	= ARG_PTR_TO_CTX,
3334 	.arg2_type	= ARG_ANYTHING,
3335 	.arg3_type	= ARG_ANYTHING,
3336 };
3337 
3338 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3339 {
3340 	/* We only allow a restricted subset to be changed for now. */
3341 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3342 		     !skb_pkt_type_ok(pkt_type)))
3343 		return -EINVAL;
3344 
3345 	skb->pkt_type = pkt_type;
3346 	return 0;
3347 }
3348 
3349 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3350 	.func		= bpf_skb_change_type,
3351 	.gpl_only	= false,
3352 	.ret_type	= RET_INTEGER,
3353 	.arg1_type	= ARG_PTR_TO_CTX,
3354 	.arg2_type	= ARG_ANYTHING,
3355 };
3356 
3357 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3358 {
3359 	switch (skb->protocol) {
3360 	case htons(ETH_P_IP):
3361 		return sizeof(struct iphdr);
3362 	case htons(ETH_P_IPV6):
3363 		return sizeof(struct ipv6hdr);
3364 	default:
3365 		return ~0U;
3366 	}
3367 }
3368 
3369 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3370 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3371 
3372 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3373 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3374 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3375 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3376 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3377 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3378 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3379 
3380 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3381 			    u64 flags)
3382 {
3383 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3384 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3385 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3386 	unsigned int gso_type = SKB_GSO_DODGY;
3387 	int ret;
3388 
3389 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3390 		/* udp gso_size delineates datagrams, only allow if fixed */
3391 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3392 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3393 			return -ENOTSUPP;
3394 	}
3395 
3396 	ret = skb_cow_head(skb, len_diff);
3397 	if (unlikely(ret < 0))
3398 		return ret;
3399 
3400 	if (encap) {
3401 		if (skb->protocol != htons(ETH_P_IP) &&
3402 		    skb->protocol != htons(ETH_P_IPV6))
3403 			return -ENOTSUPP;
3404 
3405 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3406 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3407 			return -EINVAL;
3408 
3409 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3410 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3411 			return -EINVAL;
3412 
3413 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3414 		    inner_mac_len < ETH_HLEN)
3415 			return -EINVAL;
3416 
3417 		if (skb->encapsulation)
3418 			return -EALREADY;
3419 
3420 		mac_len = skb->network_header - skb->mac_header;
3421 		inner_net = skb->network_header;
3422 		if (inner_mac_len > len_diff)
3423 			return -EINVAL;
3424 		inner_trans = skb->transport_header;
3425 	}
3426 
3427 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3428 	if (unlikely(ret < 0))
3429 		return ret;
3430 
3431 	if (encap) {
3432 		skb->inner_mac_header = inner_net - inner_mac_len;
3433 		skb->inner_network_header = inner_net;
3434 		skb->inner_transport_header = inner_trans;
3435 
3436 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3437 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3438 		else
3439 			skb_set_inner_protocol(skb, skb->protocol);
3440 
3441 		skb->encapsulation = 1;
3442 		skb_set_network_header(skb, mac_len);
3443 
3444 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3445 			gso_type |= SKB_GSO_UDP_TUNNEL;
3446 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3447 			gso_type |= SKB_GSO_GRE;
3448 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3449 			gso_type |= SKB_GSO_IPXIP6;
3450 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3451 			gso_type |= SKB_GSO_IPXIP4;
3452 
3453 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3454 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3455 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3456 					sizeof(struct ipv6hdr) :
3457 					sizeof(struct iphdr);
3458 
3459 			skb_set_transport_header(skb, mac_len + nh_len);
3460 		}
3461 
3462 		/* Match skb->protocol to new outer l3 protocol */
3463 		if (skb->protocol == htons(ETH_P_IP) &&
3464 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3465 			skb->protocol = htons(ETH_P_IPV6);
3466 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3467 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3468 			skb->protocol = htons(ETH_P_IP);
3469 	}
3470 
3471 	if (skb_is_gso(skb)) {
3472 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3473 
3474 		/* Due to header grow, MSS needs to be downgraded. */
3475 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3476 			skb_decrease_gso_size(shinfo, len_diff);
3477 
3478 		/* Header must be checked, and gso_segs recomputed. */
3479 		shinfo->gso_type |= gso_type;
3480 		shinfo->gso_segs = 0;
3481 	}
3482 
3483 	return 0;
3484 }
3485 
3486 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3487 			      u64 flags)
3488 {
3489 	int ret;
3490 
3491 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3492 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3493 		return -EINVAL;
3494 
3495 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3496 		/* udp gso_size delineates datagrams, only allow if fixed */
3497 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3498 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3499 			return -ENOTSUPP;
3500 	}
3501 
3502 	ret = skb_unclone(skb, GFP_ATOMIC);
3503 	if (unlikely(ret < 0))
3504 		return ret;
3505 
3506 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3507 	if (unlikely(ret < 0))
3508 		return ret;
3509 
3510 	if (skb_is_gso(skb)) {
3511 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3512 
3513 		/* Due to header shrink, MSS can be upgraded. */
3514 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3515 			skb_increase_gso_size(shinfo, len_diff);
3516 
3517 		/* Header must be checked, and gso_segs recomputed. */
3518 		shinfo->gso_type |= SKB_GSO_DODGY;
3519 		shinfo->gso_segs = 0;
3520 	}
3521 
3522 	return 0;
3523 }
3524 
3525 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3526 
3527 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3528 	   u32, mode, u64, flags)
3529 {
3530 	u32 len_diff_abs = abs(len_diff);
3531 	bool shrink = len_diff < 0;
3532 	int ret = 0;
3533 
3534 	if (unlikely(flags || mode))
3535 		return -EINVAL;
3536 	if (unlikely(len_diff_abs > 0xfffU))
3537 		return -EFAULT;
3538 
3539 	if (!shrink) {
3540 		ret = skb_cow(skb, len_diff);
3541 		if (unlikely(ret < 0))
3542 			return ret;
3543 		__skb_push(skb, len_diff_abs);
3544 		memset(skb->data, 0, len_diff_abs);
3545 	} else {
3546 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3547 			return -ENOMEM;
3548 		__skb_pull(skb, len_diff_abs);
3549 	}
3550 	if (tls_sw_has_ctx_rx(skb->sk)) {
3551 		struct strp_msg *rxm = strp_msg(skb);
3552 
3553 		rxm->full_len += len_diff;
3554 	}
3555 	return ret;
3556 }
3557 
3558 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3559 	.func		= sk_skb_adjust_room,
3560 	.gpl_only	= false,
3561 	.ret_type	= RET_INTEGER,
3562 	.arg1_type	= ARG_PTR_TO_CTX,
3563 	.arg2_type	= ARG_ANYTHING,
3564 	.arg3_type	= ARG_ANYTHING,
3565 	.arg4_type	= ARG_ANYTHING,
3566 };
3567 
3568 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3569 	   u32, mode, u64, flags)
3570 {
3571 	u32 len_cur, len_diff_abs = abs(len_diff);
3572 	u32 len_min = bpf_skb_net_base_len(skb);
3573 	u32 len_max = BPF_SKB_MAX_LEN;
3574 	__be16 proto = skb->protocol;
3575 	bool shrink = len_diff < 0;
3576 	u32 off;
3577 	int ret;
3578 
3579 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3580 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3581 		return -EINVAL;
3582 	if (unlikely(len_diff_abs > 0xfffU))
3583 		return -EFAULT;
3584 	if (unlikely(proto != htons(ETH_P_IP) &&
3585 		     proto != htons(ETH_P_IPV6)))
3586 		return -ENOTSUPP;
3587 
3588 	off = skb_mac_header_len(skb);
3589 	switch (mode) {
3590 	case BPF_ADJ_ROOM_NET:
3591 		off += bpf_skb_net_base_len(skb);
3592 		break;
3593 	case BPF_ADJ_ROOM_MAC:
3594 		break;
3595 	default:
3596 		return -ENOTSUPP;
3597 	}
3598 
3599 	len_cur = skb->len - skb_network_offset(skb);
3600 	if ((shrink && (len_diff_abs >= len_cur ||
3601 			len_cur - len_diff_abs < len_min)) ||
3602 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3603 			 !skb_is_gso(skb))))
3604 		return -ENOTSUPP;
3605 
3606 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3607 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3608 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3609 		__skb_reset_checksum_unnecessary(skb);
3610 
3611 	bpf_compute_data_pointers(skb);
3612 	return ret;
3613 }
3614 
3615 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3616 	.func		= bpf_skb_adjust_room,
3617 	.gpl_only	= false,
3618 	.ret_type	= RET_INTEGER,
3619 	.arg1_type	= ARG_PTR_TO_CTX,
3620 	.arg2_type	= ARG_ANYTHING,
3621 	.arg3_type	= ARG_ANYTHING,
3622 	.arg4_type	= ARG_ANYTHING,
3623 };
3624 
3625 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3626 {
3627 	u32 min_len = skb_network_offset(skb);
3628 
3629 	if (skb_transport_header_was_set(skb))
3630 		min_len = skb_transport_offset(skb);
3631 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3632 		min_len = skb_checksum_start_offset(skb) +
3633 			  skb->csum_offset + sizeof(__sum16);
3634 	return min_len;
3635 }
3636 
3637 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3638 {
3639 	unsigned int old_len = skb->len;
3640 	int ret;
3641 
3642 	ret = __skb_grow_rcsum(skb, new_len);
3643 	if (!ret)
3644 		memset(skb->data + old_len, 0, new_len - old_len);
3645 	return ret;
3646 }
3647 
3648 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3649 {
3650 	return __skb_trim_rcsum(skb, new_len);
3651 }
3652 
3653 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3654 					u64 flags)
3655 {
3656 	u32 max_len = BPF_SKB_MAX_LEN;
3657 	u32 min_len = __bpf_skb_min_len(skb);
3658 	int ret;
3659 
3660 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3661 		return -EINVAL;
3662 	if (skb->encapsulation)
3663 		return -ENOTSUPP;
3664 
3665 	/* The basic idea of this helper is that it's performing the
3666 	 * needed work to either grow or trim an skb, and eBPF program
3667 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3668 	 * bpf_lX_csum_replace() and others rather than passing a raw
3669 	 * buffer here. This one is a slow path helper and intended
3670 	 * for replies with control messages.
3671 	 *
3672 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3673 	 * minimal and without protocol specifics so that we are able
3674 	 * to separate concerns as in bpf_skb_store_bytes() should only
3675 	 * be the one responsible for writing buffers.
3676 	 *
3677 	 * It's really expected to be a slow path operation here for
3678 	 * control message replies, so we're implicitly linearizing,
3679 	 * uncloning and drop offloads from the skb by this.
3680 	 */
3681 	ret = __bpf_try_make_writable(skb, skb->len);
3682 	if (!ret) {
3683 		if (new_len > skb->len)
3684 			ret = bpf_skb_grow_rcsum(skb, new_len);
3685 		else if (new_len < skb->len)
3686 			ret = bpf_skb_trim_rcsum(skb, new_len);
3687 		if (!ret && skb_is_gso(skb))
3688 			skb_gso_reset(skb);
3689 	}
3690 	return ret;
3691 }
3692 
3693 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3694 	   u64, flags)
3695 {
3696 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3697 
3698 	bpf_compute_data_pointers(skb);
3699 	return ret;
3700 }
3701 
3702 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3703 	.func		= bpf_skb_change_tail,
3704 	.gpl_only	= false,
3705 	.ret_type	= RET_INTEGER,
3706 	.arg1_type	= ARG_PTR_TO_CTX,
3707 	.arg2_type	= ARG_ANYTHING,
3708 	.arg3_type	= ARG_ANYTHING,
3709 };
3710 
3711 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3712 	   u64, flags)
3713 {
3714 	return __bpf_skb_change_tail(skb, new_len, flags);
3715 }
3716 
3717 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3718 	.func		= sk_skb_change_tail,
3719 	.gpl_only	= false,
3720 	.ret_type	= RET_INTEGER,
3721 	.arg1_type	= ARG_PTR_TO_CTX,
3722 	.arg2_type	= ARG_ANYTHING,
3723 	.arg3_type	= ARG_ANYTHING,
3724 };
3725 
3726 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3727 					u64 flags)
3728 {
3729 	u32 max_len = BPF_SKB_MAX_LEN;
3730 	u32 new_len = skb->len + head_room;
3731 	int ret;
3732 
3733 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3734 		     new_len < skb->len))
3735 		return -EINVAL;
3736 
3737 	ret = skb_cow(skb, head_room);
3738 	if (likely(!ret)) {
3739 		/* Idea for this helper is that we currently only
3740 		 * allow to expand on mac header. This means that
3741 		 * skb->protocol network header, etc, stay as is.
3742 		 * Compared to bpf_skb_change_tail(), we're more
3743 		 * flexible due to not needing to linearize or
3744 		 * reset GSO. Intention for this helper is to be
3745 		 * used by an L3 skb that needs to push mac header
3746 		 * for redirection into L2 device.
3747 		 */
3748 		__skb_push(skb, head_room);
3749 		memset(skb->data, 0, head_room);
3750 		skb_reset_mac_header(skb);
3751 		skb_reset_mac_len(skb);
3752 	}
3753 
3754 	return ret;
3755 }
3756 
3757 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3758 	   u64, flags)
3759 {
3760 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3761 
3762 	bpf_compute_data_pointers(skb);
3763 	return ret;
3764 }
3765 
3766 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3767 	.func		= bpf_skb_change_head,
3768 	.gpl_only	= false,
3769 	.ret_type	= RET_INTEGER,
3770 	.arg1_type	= ARG_PTR_TO_CTX,
3771 	.arg2_type	= ARG_ANYTHING,
3772 	.arg3_type	= ARG_ANYTHING,
3773 };
3774 
3775 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3776 	   u64, flags)
3777 {
3778 	return __bpf_skb_change_head(skb, head_room, flags);
3779 }
3780 
3781 static const struct bpf_func_proto sk_skb_change_head_proto = {
3782 	.func		= sk_skb_change_head,
3783 	.gpl_only	= false,
3784 	.ret_type	= RET_INTEGER,
3785 	.arg1_type	= ARG_PTR_TO_CTX,
3786 	.arg2_type	= ARG_ANYTHING,
3787 	.arg3_type	= ARG_ANYTHING,
3788 };
3789 
3790 BPF_CALL_1(bpf_xdp_get_buff_len, struct  xdp_buff*, xdp)
3791 {
3792 	return xdp_get_buff_len(xdp);
3793 }
3794 
3795 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3796 	.func		= bpf_xdp_get_buff_len,
3797 	.gpl_only	= false,
3798 	.ret_type	= RET_INTEGER,
3799 	.arg1_type	= ARG_PTR_TO_CTX,
3800 };
3801 
3802 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3803 
3804 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3805 	.func		= bpf_xdp_get_buff_len,
3806 	.gpl_only	= false,
3807 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3808 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3809 };
3810 
3811 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3812 {
3813 	return xdp_data_meta_unsupported(xdp) ? 0 :
3814 	       xdp->data - xdp->data_meta;
3815 }
3816 
3817 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3818 {
3819 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3820 	unsigned long metalen = xdp_get_metalen(xdp);
3821 	void *data_start = xdp_frame_end + metalen;
3822 	void *data = xdp->data + offset;
3823 
3824 	if (unlikely(data < data_start ||
3825 		     data > xdp->data_end - ETH_HLEN))
3826 		return -EINVAL;
3827 
3828 	if (metalen)
3829 		memmove(xdp->data_meta + offset,
3830 			xdp->data_meta, metalen);
3831 	xdp->data_meta += offset;
3832 	xdp->data = data;
3833 
3834 	return 0;
3835 }
3836 
3837 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3838 	.func		= bpf_xdp_adjust_head,
3839 	.gpl_only	= false,
3840 	.ret_type	= RET_INTEGER,
3841 	.arg1_type	= ARG_PTR_TO_CTX,
3842 	.arg2_type	= ARG_ANYTHING,
3843 };
3844 
3845 static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3846 			     void *buf, unsigned long len, bool flush)
3847 {
3848 	unsigned long ptr_len, ptr_off = 0;
3849 	skb_frag_t *next_frag, *end_frag;
3850 	struct skb_shared_info *sinfo;
3851 	void *src, *dst;
3852 	u8 *ptr_buf;
3853 
3854 	if (likely(xdp->data_end - xdp->data >= off + len)) {
3855 		src = flush ? buf : xdp->data + off;
3856 		dst = flush ? xdp->data + off : buf;
3857 		memcpy(dst, src, len);
3858 		return;
3859 	}
3860 
3861 	sinfo = xdp_get_shared_info_from_buff(xdp);
3862 	end_frag = &sinfo->frags[sinfo->nr_frags];
3863 	next_frag = &sinfo->frags[0];
3864 
3865 	ptr_len = xdp->data_end - xdp->data;
3866 	ptr_buf = xdp->data;
3867 
3868 	while (true) {
3869 		if (off < ptr_off + ptr_len) {
3870 			unsigned long copy_off = off - ptr_off;
3871 			unsigned long copy_len = min(len, ptr_len - copy_off);
3872 
3873 			src = flush ? buf : ptr_buf + copy_off;
3874 			dst = flush ? ptr_buf + copy_off : buf;
3875 			memcpy(dst, src, copy_len);
3876 
3877 			off += copy_len;
3878 			len -= copy_len;
3879 			buf += copy_len;
3880 		}
3881 
3882 		if (!len || next_frag == end_frag)
3883 			break;
3884 
3885 		ptr_off += ptr_len;
3886 		ptr_buf = skb_frag_address(next_frag);
3887 		ptr_len = skb_frag_size(next_frag);
3888 		next_frag++;
3889 	}
3890 }
3891 
3892 static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3893 {
3894 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3895 	u32 size = xdp->data_end - xdp->data;
3896 	void *addr = xdp->data;
3897 	int i;
3898 
3899 	if (unlikely(offset > 0xffff || len > 0xffff))
3900 		return ERR_PTR(-EFAULT);
3901 
3902 	if (offset + len > xdp_get_buff_len(xdp))
3903 		return ERR_PTR(-EINVAL);
3904 
3905 	if (offset < size) /* linear area */
3906 		goto out;
3907 
3908 	offset -= size;
3909 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3910 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3911 
3912 		if  (offset < frag_size) {
3913 			addr = skb_frag_address(&sinfo->frags[i]);
3914 			size = frag_size;
3915 			break;
3916 		}
3917 		offset -= frag_size;
3918 	}
3919 out:
3920 	return offset + len < size ? addr + offset : NULL;
3921 }
3922 
3923 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3924 	   void *, buf, u32, len)
3925 {
3926 	void *ptr;
3927 
3928 	ptr = bpf_xdp_pointer(xdp, offset, len);
3929 	if (IS_ERR(ptr))
3930 		return PTR_ERR(ptr);
3931 
3932 	if (!ptr)
3933 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3934 	else
3935 		memcpy(buf, ptr, len);
3936 
3937 	return 0;
3938 }
3939 
3940 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3941 	.func		= bpf_xdp_load_bytes,
3942 	.gpl_only	= false,
3943 	.ret_type	= RET_INTEGER,
3944 	.arg1_type	= ARG_PTR_TO_CTX,
3945 	.arg2_type	= ARG_ANYTHING,
3946 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
3947 	.arg4_type	= ARG_CONST_SIZE,
3948 };
3949 
3950 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
3951 	   void *, buf, u32, len)
3952 {
3953 	void *ptr;
3954 
3955 	ptr = bpf_xdp_pointer(xdp, offset, len);
3956 	if (IS_ERR(ptr))
3957 		return PTR_ERR(ptr);
3958 
3959 	if (!ptr)
3960 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
3961 	else
3962 		memcpy(ptr, buf, len);
3963 
3964 	return 0;
3965 }
3966 
3967 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
3968 	.func		= bpf_xdp_store_bytes,
3969 	.gpl_only	= false,
3970 	.ret_type	= RET_INTEGER,
3971 	.arg1_type	= ARG_PTR_TO_CTX,
3972 	.arg2_type	= ARG_ANYTHING,
3973 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
3974 	.arg4_type	= ARG_CONST_SIZE,
3975 };
3976 
3977 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
3978 {
3979 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3980 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
3981 	struct xdp_rxq_info *rxq = xdp->rxq;
3982 	unsigned int tailroom;
3983 
3984 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
3985 		return -EOPNOTSUPP;
3986 
3987 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
3988 	if (unlikely(offset > tailroom))
3989 		return -EINVAL;
3990 
3991 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
3992 	skb_frag_size_add(frag, offset);
3993 	sinfo->xdp_frags_size += offset;
3994 
3995 	return 0;
3996 }
3997 
3998 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
3999 {
4000 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4001 	int i, n_frags_free = 0, len_free = 0;
4002 
4003 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4004 		return -EINVAL;
4005 
4006 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4007 		skb_frag_t *frag = &sinfo->frags[i];
4008 		int shrink = min_t(int, offset, skb_frag_size(frag));
4009 
4010 		len_free += shrink;
4011 		offset -= shrink;
4012 
4013 		if (skb_frag_size(frag) == shrink) {
4014 			struct page *page = skb_frag_page(frag);
4015 
4016 			__xdp_return(page_address(page), &xdp->rxq->mem,
4017 				     false, NULL);
4018 			n_frags_free++;
4019 		} else {
4020 			skb_frag_size_sub(frag, shrink);
4021 			break;
4022 		}
4023 	}
4024 	sinfo->nr_frags -= n_frags_free;
4025 	sinfo->xdp_frags_size -= len_free;
4026 
4027 	if (unlikely(!sinfo->nr_frags)) {
4028 		xdp_buff_clear_frags_flag(xdp);
4029 		xdp->data_end -= offset;
4030 	}
4031 
4032 	return 0;
4033 }
4034 
4035 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4036 {
4037 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4038 	void *data_end = xdp->data_end + offset;
4039 
4040 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4041 		if (offset < 0)
4042 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4043 
4044 		return bpf_xdp_frags_increase_tail(xdp, offset);
4045 	}
4046 
4047 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4048 	if (unlikely(data_end > data_hard_end))
4049 		return -EINVAL;
4050 
4051 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
4052 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
4053 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
4054 		return -EINVAL;
4055 	}
4056 
4057 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4058 		return -EINVAL;
4059 
4060 	/* Clear memory area on grow, can contain uninit kernel memory */
4061 	if (offset > 0)
4062 		memset(xdp->data_end, 0, offset);
4063 
4064 	xdp->data_end = data_end;
4065 
4066 	return 0;
4067 }
4068 
4069 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4070 	.func		= bpf_xdp_adjust_tail,
4071 	.gpl_only	= false,
4072 	.ret_type	= RET_INTEGER,
4073 	.arg1_type	= ARG_PTR_TO_CTX,
4074 	.arg2_type	= ARG_ANYTHING,
4075 };
4076 
4077 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4078 {
4079 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4080 	void *meta = xdp->data_meta + offset;
4081 	unsigned long metalen = xdp->data - meta;
4082 
4083 	if (xdp_data_meta_unsupported(xdp))
4084 		return -ENOTSUPP;
4085 	if (unlikely(meta < xdp_frame_end ||
4086 		     meta > xdp->data))
4087 		return -EINVAL;
4088 	if (unlikely(xdp_metalen_invalid(metalen)))
4089 		return -EACCES;
4090 
4091 	xdp->data_meta = meta;
4092 
4093 	return 0;
4094 }
4095 
4096 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4097 	.func		= bpf_xdp_adjust_meta,
4098 	.gpl_only	= false,
4099 	.ret_type	= RET_INTEGER,
4100 	.arg1_type	= ARG_PTR_TO_CTX,
4101 	.arg2_type	= ARG_ANYTHING,
4102 };
4103 
4104 /* XDP_REDIRECT works by a three-step process, implemented in the functions
4105  * below:
4106  *
4107  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4108  *    of the redirect and store it (along with some other metadata) in a per-CPU
4109  *    struct bpf_redirect_info.
4110  *
4111  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4112  *    call xdp_do_redirect() which will use the information in struct
4113  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4114  *    bulk queue structure.
4115  *
4116  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
4117  *    which will flush all the different bulk queues, thus completing the
4118  *    redirect.
4119  *
4120  * Pointers to the map entries will be kept around for this whole sequence of
4121  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4122  * the core code; instead, the RCU protection relies on everything happening
4123  * inside a single NAPI poll sequence, which means it's between a pair of calls
4124  * to local_bh_disable()/local_bh_enable().
4125  *
4126  * The map entries are marked as __rcu and the map code makes sure to
4127  * dereference those pointers with rcu_dereference_check() in a way that works
4128  * for both sections that to hold an rcu_read_lock() and sections that are
4129  * called from NAPI without a separate rcu_read_lock(). The code below does not
4130  * use RCU annotations, but relies on those in the map code.
4131  */
4132 void xdp_do_flush(void)
4133 {
4134 	__dev_flush();
4135 	__cpu_map_flush();
4136 	__xsk_map_flush();
4137 }
4138 EXPORT_SYMBOL_GPL(xdp_do_flush);
4139 
4140 void bpf_clear_redirect_map(struct bpf_map *map)
4141 {
4142 	struct bpf_redirect_info *ri;
4143 	int cpu;
4144 
4145 	for_each_possible_cpu(cpu) {
4146 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4147 		/* Avoid polluting remote cacheline due to writes if
4148 		 * not needed. Once we pass this test, we need the
4149 		 * cmpxchg() to make sure it hasn't been changed in
4150 		 * the meantime by remote CPU.
4151 		 */
4152 		if (unlikely(READ_ONCE(ri->map) == map))
4153 			cmpxchg(&ri->map, map, NULL);
4154 	}
4155 }
4156 
4157 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4158 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4159 
4160 u32 xdp_master_redirect(struct xdp_buff *xdp)
4161 {
4162 	struct net_device *master, *slave;
4163 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4164 
4165 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4166 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4167 	if (slave && slave != xdp->rxq->dev) {
4168 		/* The target device is different from the receiving device, so
4169 		 * redirect it to the new device.
4170 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4171 		 * drivers to unmap the packet from their rx ring.
4172 		 */
4173 		ri->tgt_index = slave->ifindex;
4174 		ri->map_id = INT_MAX;
4175 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4176 		return XDP_REDIRECT;
4177 	}
4178 	return XDP_TX;
4179 }
4180 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4181 
4182 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4183 					struct net_device *dev,
4184 					struct xdp_buff *xdp,
4185 					struct bpf_prog *xdp_prog)
4186 {
4187 	enum bpf_map_type map_type = ri->map_type;
4188 	void *fwd = ri->tgt_value;
4189 	u32 map_id = ri->map_id;
4190 	int err;
4191 
4192 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4193 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4194 
4195 	err = __xsk_map_redirect(fwd, xdp);
4196 	if (unlikely(err))
4197 		goto err;
4198 
4199 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4200 	return 0;
4201 err:
4202 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4203 	return err;
4204 }
4205 
4206 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4207 						   struct net_device *dev,
4208 						   struct xdp_frame *xdpf,
4209 						   struct bpf_prog *xdp_prog)
4210 {
4211 	enum bpf_map_type map_type = ri->map_type;
4212 	void *fwd = ri->tgt_value;
4213 	u32 map_id = ri->map_id;
4214 	struct bpf_map *map;
4215 	int err;
4216 
4217 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4218 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4219 
4220 	if (unlikely(!xdpf)) {
4221 		err = -EOVERFLOW;
4222 		goto err;
4223 	}
4224 
4225 	switch (map_type) {
4226 	case BPF_MAP_TYPE_DEVMAP:
4227 		fallthrough;
4228 	case BPF_MAP_TYPE_DEVMAP_HASH:
4229 		map = READ_ONCE(ri->map);
4230 		if (unlikely(map)) {
4231 			WRITE_ONCE(ri->map, NULL);
4232 			err = dev_map_enqueue_multi(xdpf, dev, map,
4233 						    ri->flags & BPF_F_EXCLUDE_INGRESS);
4234 		} else {
4235 			err = dev_map_enqueue(fwd, xdpf, dev);
4236 		}
4237 		break;
4238 	case BPF_MAP_TYPE_CPUMAP:
4239 		err = cpu_map_enqueue(fwd, xdpf, dev);
4240 		break;
4241 	case BPF_MAP_TYPE_UNSPEC:
4242 		if (map_id == INT_MAX) {
4243 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4244 			if (unlikely(!fwd)) {
4245 				err = -EINVAL;
4246 				break;
4247 			}
4248 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4249 			break;
4250 		}
4251 		fallthrough;
4252 	default:
4253 		err = -EBADRQC;
4254 	}
4255 
4256 	if (unlikely(err))
4257 		goto err;
4258 
4259 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4260 	return 0;
4261 err:
4262 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4263 	return err;
4264 }
4265 
4266 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4267 		    struct bpf_prog *xdp_prog)
4268 {
4269 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4270 	enum bpf_map_type map_type = ri->map_type;
4271 
4272 	/* XDP_REDIRECT is not fully supported yet for xdp frags since
4273 	 * not all XDP capable drivers can map non-linear xdp_frame in
4274 	 * ndo_xdp_xmit.
4275 	 */
4276 	if (unlikely(xdp_buff_has_frags(xdp) &&
4277 		     map_type != BPF_MAP_TYPE_CPUMAP))
4278 		return -EOPNOTSUPP;
4279 
4280 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4281 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4282 
4283 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4284 				       xdp_prog);
4285 }
4286 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4287 
4288 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4289 			  struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4290 {
4291 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4292 	enum bpf_map_type map_type = ri->map_type;
4293 
4294 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4295 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4296 
4297 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4298 }
4299 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4300 
4301 static int xdp_do_generic_redirect_map(struct net_device *dev,
4302 				       struct sk_buff *skb,
4303 				       struct xdp_buff *xdp,
4304 				       struct bpf_prog *xdp_prog,
4305 				       void *fwd,
4306 				       enum bpf_map_type map_type, u32 map_id)
4307 {
4308 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4309 	struct bpf_map *map;
4310 	int err;
4311 
4312 	switch (map_type) {
4313 	case BPF_MAP_TYPE_DEVMAP:
4314 		fallthrough;
4315 	case BPF_MAP_TYPE_DEVMAP_HASH:
4316 		map = READ_ONCE(ri->map);
4317 		if (unlikely(map)) {
4318 			WRITE_ONCE(ri->map, NULL);
4319 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4320 						     ri->flags & BPF_F_EXCLUDE_INGRESS);
4321 		} else {
4322 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4323 		}
4324 		if (unlikely(err))
4325 			goto err;
4326 		break;
4327 	case BPF_MAP_TYPE_XSKMAP:
4328 		err = xsk_generic_rcv(fwd, xdp);
4329 		if (err)
4330 			goto err;
4331 		consume_skb(skb);
4332 		break;
4333 	case BPF_MAP_TYPE_CPUMAP:
4334 		err = cpu_map_generic_redirect(fwd, skb);
4335 		if (unlikely(err))
4336 			goto err;
4337 		break;
4338 	default:
4339 		err = -EBADRQC;
4340 		goto err;
4341 	}
4342 
4343 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4344 	return 0;
4345 err:
4346 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4347 	return err;
4348 }
4349 
4350 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4351 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4352 {
4353 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4354 	enum bpf_map_type map_type = ri->map_type;
4355 	void *fwd = ri->tgt_value;
4356 	u32 map_id = ri->map_id;
4357 	int err;
4358 
4359 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4360 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4361 
4362 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4363 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4364 		if (unlikely(!fwd)) {
4365 			err = -EINVAL;
4366 			goto err;
4367 		}
4368 
4369 		err = xdp_ok_fwd_dev(fwd, skb->len);
4370 		if (unlikely(err))
4371 			goto err;
4372 
4373 		skb->dev = fwd;
4374 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4375 		generic_xdp_tx(skb, xdp_prog);
4376 		return 0;
4377 	}
4378 
4379 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4380 err:
4381 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4382 	return err;
4383 }
4384 
4385 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4386 {
4387 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4388 
4389 	if (unlikely(flags))
4390 		return XDP_ABORTED;
4391 
4392 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4393 	 * by map_idr) is used for ifindex based XDP redirect.
4394 	 */
4395 	ri->tgt_index = ifindex;
4396 	ri->map_id = INT_MAX;
4397 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4398 
4399 	return XDP_REDIRECT;
4400 }
4401 
4402 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4403 	.func           = bpf_xdp_redirect,
4404 	.gpl_only       = false,
4405 	.ret_type       = RET_INTEGER,
4406 	.arg1_type      = ARG_ANYTHING,
4407 	.arg2_type      = ARG_ANYTHING,
4408 };
4409 
4410 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4411 	   u64, flags)
4412 {
4413 	return map->ops->map_redirect(map, ifindex, flags);
4414 }
4415 
4416 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4417 	.func           = bpf_xdp_redirect_map,
4418 	.gpl_only       = false,
4419 	.ret_type       = RET_INTEGER,
4420 	.arg1_type      = ARG_CONST_MAP_PTR,
4421 	.arg2_type      = ARG_ANYTHING,
4422 	.arg3_type      = ARG_ANYTHING,
4423 };
4424 
4425 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4426 				  unsigned long off, unsigned long len)
4427 {
4428 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4429 
4430 	if (unlikely(!ptr))
4431 		return len;
4432 	if (ptr != dst_buff)
4433 		memcpy(dst_buff, ptr, len);
4434 
4435 	return 0;
4436 }
4437 
4438 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4439 	   u64, flags, void *, meta, u64, meta_size)
4440 {
4441 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4442 
4443 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4444 		return -EINVAL;
4445 	if (unlikely(!skb || skb_size > skb->len))
4446 		return -EFAULT;
4447 
4448 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4449 				bpf_skb_copy);
4450 }
4451 
4452 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4453 	.func		= bpf_skb_event_output,
4454 	.gpl_only	= true,
4455 	.ret_type	= RET_INTEGER,
4456 	.arg1_type	= ARG_PTR_TO_CTX,
4457 	.arg2_type	= ARG_CONST_MAP_PTR,
4458 	.arg3_type	= ARG_ANYTHING,
4459 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4460 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4461 };
4462 
4463 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4464 
4465 const struct bpf_func_proto bpf_skb_output_proto = {
4466 	.func		= bpf_skb_event_output,
4467 	.gpl_only	= true,
4468 	.ret_type	= RET_INTEGER,
4469 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4470 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4471 	.arg2_type	= ARG_CONST_MAP_PTR,
4472 	.arg3_type	= ARG_ANYTHING,
4473 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4474 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4475 };
4476 
4477 static unsigned short bpf_tunnel_key_af(u64 flags)
4478 {
4479 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4480 }
4481 
4482 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4483 	   u32, size, u64, flags)
4484 {
4485 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4486 	u8 compat[sizeof(struct bpf_tunnel_key)];
4487 	void *to_orig = to;
4488 	int err;
4489 
4490 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4491 		err = -EINVAL;
4492 		goto err_clear;
4493 	}
4494 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4495 		err = -EPROTO;
4496 		goto err_clear;
4497 	}
4498 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4499 		err = -EINVAL;
4500 		switch (size) {
4501 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4502 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4503 			goto set_compat;
4504 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4505 			/* Fixup deprecated structure layouts here, so we have
4506 			 * a common path later on.
4507 			 */
4508 			if (ip_tunnel_info_af(info) != AF_INET)
4509 				goto err_clear;
4510 set_compat:
4511 			to = (struct bpf_tunnel_key *)compat;
4512 			break;
4513 		default:
4514 			goto err_clear;
4515 		}
4516 	}
4517 
4518 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4519 	to->tunnel_tos = info->key.tos;
4520 	to->tunnel_ttl = info->key.ttl;
4521 	to->tunnel_ext = 0;
4522 
4523 	if (flags & BPF_F_TUNINFO_IPV6) {
4524 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4525 		       sizeof(to->remote_ipv6));
4526 		to->tunnel_label = be32_to_cpu(info->key.label);
4527 	} else {
4528 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4529 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4530 		to->tunnel_label = 0;
4531 	}
4532 
4533 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4534 		memcpy(to_orig, to, size);
4535 
4536 	return 0;
4537 err_clear:
4538 	memset(to_orig, 0, size);
4539 	return err;
4540 }
4541 
4542 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4543 	.func		= bpf_skb_get_tunnel_key,
4544 	.gpl_only	= false,
4545 	.ret_type	= RET_INTEGER,
4546 	.arg1_type	= ARG_PTR_TO_CTX,
4547 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4548 	.arg3_type	= ARG_CONST_SIZE,
4549 	.arg4_type	= ARG_ANYTHING,
4550 };
4551 
4552 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4553 {
4554 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4555 	int err;
4556 
4557 	if (unlikely(!info ||
4558 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4559 		err = -ENOENT;
4560 		goto err_clear;
4561 	}
4562 	if (unlikely(size < info->options_len)) {
4563 		err = -ENOMEM;
4564 		goto err_clear;
4565 	}
4566 
4567 	ip_tunnel_info_opts_get(to, info);
4568 	if (size > info->options_len)
4569 		memset(to + info->options_len, 0, size - info->options_len);
4570 
4571 	return info->options_len;
4572 err_clear:
4573 	memset(to, 0, size);
4574 	return err;
4575 }
4576 
4577 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4578 	.func		= bpf_skb_get_tunnel_opt,
4579 	.gpl_only	= false,
4580 	.ret_type	= RET_INTEGER,
4581 	.arg1_type	= ARG_PTR_TO_CTX,
4582 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4583 	.arg3_type	= ARG_CONST_SIZE,
4584 };
4585 
4586 static struct metadata_dst __percpu *md_dst;
4587 
4588 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4589 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4590 {
4591 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4592 	u8 compat[sizeof(struct bpf_tunnel_key)];
4593 	struct ip_tunnel_info *info;
4594 
4595 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4596 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4597 		return -EINVAL;
4598 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4599 		switch (size) {
4600 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4601 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4602 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4603 			/* Fixup deprecated structure layouts here, so we have
4604 			 * a common path later on.
4605 			 */
4606 			memcpy(compat, from, size);
4607 			memset(compat + size, 0, sizeof(compat) - size);
4608 			from = (const struct bpf_tunnel_key *) compat;
4609 			break;
4610 		default:
4611 			return -EINVAL;
4612 		}
4613 	}
4614 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4615 		     from->tunnel_ext))
4616 		return -EINVAL;
4617 
4618 	skb_dst_drop(skb);
4619 	dst_hold((struct dst_entry *) md);
4620 	skb_dst_set(skb, (struct dst_entry *) md);
4621 
4622 	info = &md->u.tun_info;
4623 	memset(info, 0, sizeof(*info));
4624 	info->mode = IP_TUNNEL_INFO_TX;
4625 
4626 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4627 	if (flags & BPF_F_DONT_FRAGMENT)
4628 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4629 	if (flags & BPF_F_ZERO_CSUM_TX)
4630 		info->key.tun_flags &= ~TUNNEL_CSUM;
4631 	if (flags & BPF_F_SEQ_NUMBER)
4632 		info->key.tun_flags |= TUNNEL_SEQ;
4633 
4634 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4635 	info->key.tos = from->tunnel_tos;
4636 	info->key.ttl = from->tunnel_ttl;
4637 
4638 	if (flags & BPF_F_TUNINFO_IPV6) {
4639 		info->mode |= IP_TUNNEL_INFO_IPV6;
4640 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4641 		       sizeof(from->remote_ipv6));
4642 		info->key.label = cpu_to_be32(from->tunnel_label) &
4643 				  IPV6_FLOWLABEL_MASK;
4644 	} else {
4645 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4646 	}
4647 
4648 	return 0;
4649 }
4650 
4651 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4652 	.func		= bpf_skb_set_tunnel_key,
4653 	.gpl_only	= false,
4654 	.ret_type	= RET_INTEGER,
4655 	.arg1_type	= ARG_PTR_TO_CTX,
4656 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4657 	.arg3_type	= ARG_CONST_SIZE,
4658 	.arg4_type	= ARG_ANYTHING,
4659 };
4660 
4661 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4662 	   const u8 *, from, u32, size)
4663 {
4664 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4665 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4666 
4667 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4668 		return -EINVAL;
4669 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4670 		return -ENOMEM;
4671 
4672 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4673 
4674 	return 0;
4675 }
4676 
4677 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4678 	.func		= bpf_skb_set_tunnel_opt,
4679 	.gpl_only	= false,
4680 	.ret_type	= RET_INTEGER,
4681 	.arg1_type	= ARG_PTR_TO_CTX,
4682 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4683 	.arg3_type	= ARG_CONST_SIZE,
4684 };
4685 
4686 static const struct bpf_func_proto *
4687 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4688 {
4689 	if (!md_dst) {
4690 		struct metadata_dst __percpu *tmp;
4691 
4692 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4693 						METADATA_IP_TUNNEL,
4694 						GFP_KERNEL);
4695 		if (!tmp)
4696 			return NULL;
4697 		if (cmpxchg(&md_dst, NULL, tmp))
4698 			metadata_dst_free_percpu(tmp);
4699 	}
4700 
4701 	switch (which) {
4702 	case BPF_FUNC_skb_set_tunnel_key:
4703 		return &bpf_skb_set_tunnel_key_proto;
4704 	case BPF_FUNC_skb_set_tunnel_opt:
4705 		return &bpf_skb_set_tunnel_opt_proto;
4706 	default:
4707 		return NULL;
4708 	}
4709 }
4710 
4711 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4712 	   u32, idx)
4713 {
4714 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4715 	struct cgroup *cgrp;
4716 	struct sock *sk;
4717 
4718 	sk = skb_to_full_sk(skb);
4719 	if (!sk || !sk_fullsock(sk))
4720 		return -ENOENT;
4721 	if (unlikely(idx >= array->map.max_entries))
4722 		return -E2BIG;
4723 
4724 	cgrp = READ_ONCE(array->ptrs[idx]);
4725 	if (unlikely(!cgrp))
4726 		return -EAGAIN;
4727 
4728 	return sk_under_cgroup_hierarchy(sk, cgrp);
4729 }
4730 
4731 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4732 	.func		= bpf_skb_under_cgroup,
4733 	.gpl_only	= false,
4734 	.ret_type	= RET_INTEGER,
4735 	.arg1_type	= ARG_PTR_TO_CTX,
4736 	.arg2_type	= ARG_CONST_MAP_PTR,
4737 	.arg3_type	= ARG_ANYTHING,
4738 };
4739 
4740 #ifdef CONFIG_SOCK_CGROUP_DATA
4741 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4742 {
4743 	struct cgroup *cgrp;
4744 
4745 	sk = sk_to_full_sk(sk);
4746 	if (!sk || !sk_fullsock(sk))
4747 		return 0;
4748 
4749 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4750 	return cgroup_id(cgrp);
4751 }
4752 
4753 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4754 {
4755 	return __bpf_sk_cgroup_id(skb->sk);
4756 }
4757 
4758 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4759 	.func           = bpf_skb_cgroup_id,
4760 	.gpl_only       = false,
4761 	.ret_type       = RET_INTEGER,
4762 	.arg1_type      = ARG_PTR_TO_CTX,
4763 };
4764 
4765 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4766 					      int ancestor_level)
4767 {
4768 	struct cgroup *ancestor;
4769 	struct cgroup *cgrp;
4770 
4771 	sk = sk_to_full_sk(sk);
4772 	if (!sk || !sk_fullsock(sk))
4773 		return 0;
4774 
4775 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4776 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4777 	if (!ancestor)
4778 		return 0;
4779 
4780 	return cgroup_id(ancestor);
4781 }
4782 
4783 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4784 	   ancestor_level)
4785 {
4786 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4787 }
4788 
4789 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4790 	.func           = bpf_skb_ancestor_cgroup_id,
4791 	.gpl_only       = false,
4792 	.ret_type       = RET_INTEGER,
4793 	.arg1_type      = ARG_PTR_TO_CTX,
4794 	.arg2_type      = ARG_ANYTHING,
4795 };
4796 
4797 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4798 {
4799 	return __bpf_sk_cgroup_id(sk);
4800 }
4801 
4802 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4803 	.func           = bpf_sk_cgroup_id,
4804 	.gpl_only       = false,
4805 	.ret_type       = RET_INTEGER,
4806 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4807 };
4808 
4809 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4810 {
4811 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4812 }
4813 
4814 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4815 	.func           = bpf_sk_ancestor_cgroup_id,
4816 	.gpl_only       = false,
4817 	.ret_type       = RET_INTEGER,
4818 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4819 	.arg2_type      = ARG_ANYTHING,
4820 };
4821 #endif
4822 
4823 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4824 				  unsigned long off, unsigned long len)
4825 {
4826 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4827 
4828 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
4829 	return 0;
4830 }
4831 
4832 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4833 	   u64, flags, void *, meta, u64, meta_size)
4834 {
4835 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4836 
4837 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4838 		return -EINVAL;
4839 
4840 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4841 		return -EFAULT;
4842 
4843 	return bpf_event_output(map, flags, meta, meta_size, xdp,
4844 				xdp_size, bpf_xdp_copy);
4845 }
4846 
4847 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4848 	.func		= bpf_xdp_event_output,
4849 	.gpl_only	= true,
4850 	.ret_type	= RET_INTEGER,
4851 	.arg1_type	= ARG_PTR_TO_CTX,
4852 	.arg2_type	= ARG_CONST_MAP_PTR,
4853 	.arg3_type	= ARG_ANYTHING,
4854 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4855 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4856 };
4857 
4858 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4859 
4860 const struct bpf_func_proto bpf_xdp_output_proto = {
4861 	.func		= bpf_xdp_event_output,
4862 	.gpl_only	= true,
4863 	.ret_type	= RET_INTEGER,
4864 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4865 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4866 	.arg2_type	= ARG_CONST_MAP_PTR,
4867 	.arg3_type	= ARG_ANYTHING,
4868 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4869 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4870 };
4871 
4872 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4873 {
4874 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4875 }
4876 
4877 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4878 	.func           = bpf_get_socket_cookie,
4879 	.gpl_only       = false,
4880 	.ret_type       = RET_INTEGER,
4881 	.arg1_type      = ARG_PTR_TO_CTX,
4882 };
4883 
4884 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4885 {
4886 	return __sock_gen_cookie(ctx->sk);
4887 }
4888 
4889 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4890 	.func		= bpf_get_socket_cookie_sock_addr,
4891 	.gpl_only	= false,
4892 	.ret_type	= RET_INTEGER,
4893 	.arg1_type	= ARG_PTR_TO_CTX,
4894 };
4895 
4896 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4897 {
4898 	return __sock_gen_cookie(ctx);
4899 }
4900 
4901 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4902 	.func		= bpf_get_socket_cookie_sock,
4903 	.gpl_only	= false,
4904 	.ret_type	= RET_INTEGER,
4905 	.arg1_type	= ARG_PTR_TO_CTX,
4906 };
4907 
4908 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4909 {
4910 	return sk ? sock_gen_cookie(sk) : 0;
4911 }
4912 
4913 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4914 	.func		= bpf_get_socket_ptr_cookie,
4915 	.gpl_only	= false,
4916 	.ret_type	= RET_INTEGER,
4917 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4918 };
4919 
4920 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4921 {
4922 	return __sock_gen_cookie(ctx->sk);
4923 }
4924 
4925 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4926 	.func		= bpf_get_socket_cookie_sock_ops,
4927 	.gpl_only	= false,
4928 	.ret_type	= RET_INTEGER,
4929 	.arg1_type	= ARG_PTR_TO_CTX,
4930 };
4931 
4932 static u64 __bpf_get_netns_cookie(struct sock *sk)
4933 {
4934 	const struct net *net = sk ? sock_net(sk) : &init_net;
4935 
4936 	return net->net_cookie;
4937 }
4938 
4939 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4940 {
4941 	return __bpf_get_netns_cookie(ctx);
4942 }
4943 
4944 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4945 	.func		= bpf_get_netns_cookie_sock,
4946 	.gpl_only	= false,
4947 	.ret_type	= RET_INTEGER,
4948 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4949 };
4950 
4951 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4952 {
4953 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4954 }
4955 
4956 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4957 	.func		= bpf_get_netns_cookie_sock_addr,
4958 	.gpl_only	= false,
4959 	.ret_type	= RET_INTEGER,
4960 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4961 };
4962 
4963 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4964 {
4965 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4966 }
4967 
4968 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4969 	.func		= bpf_get_netns_cookie_sock_ops,
4970 	.gpl_only	= false,
4971 	.ret_type	= RET_INTEGER,
4972 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4973 };
4974 
4975 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
4976 {
4977 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4978 }
4979 
4980 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
4981 	.func		= bpf_get_netns_cookie_sk_msg,
4982 	.gpl_only	= false,
4983 	.ret_type	= RET_INTEGER,
4984 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4985 };
4986 
4987 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4988 {
4989 	struct sock *sk = sk_to_full_sk(skb->sk);
4990 	kuid_t kuid;
4991 
4992 	if (!sk || !sk_fullsock(sk))
4993 		return overflowuid;
4994 	kuid = sock_net_uid(sock_net(sk), sk);
4995 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4996 }
4997 
4998 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4999 	.func           = bpf_get_socket_uid,
5000 	.gpl_only       = false,
5001 	.ret_type       = RET_INTEGER,
5002 	.arg1_type      = ARG_PTR_TO_CTX,
5003 };
5004 
5005 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5006 			   char *optval, int optlen)
5007 {
5008 	char devname[IFNAMSIZ];
5009 	int val, valbool;
5010 	struct net *net;
5011 	int ifindex;
5012 	int ret = 0;
5013 
5014 	if (!sk_fullsock(sk))
5015 		return -EINVAL;
5016 
5017 	sock_owned_by_me(sk);
5018 
5019 	if (level == SOL_SOCKET) {
5020 		if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
5021 			return -EINVAL;
5022 		val = *((int *)optval);
5023 		valbool = val ? 1 : 0;
5024 
5025 		/* Only some socketops are supported */
5026 		switch (optname) {
5027 		case SO_RCVBUF:
5028 			val = min_t(u32, val, sysctl_rmem_max);
5029 			val = min_t(int, val, INT_MAX / 2);
5030 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
5031 			WRITE_ONCE(sk->sk_rcvbuf,
5032 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
5033 			break;
5034 		case SO_SNDBUF:
5035 			val = min_t(u32, val, sysctl_wmem_max);
5036 			val = min_t(int, val, INT_MAX / 2);
5037 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
5038 			WRITE_ONCE(sk->sk_sndbuf,
5039 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
5040 			break;
5041 		case SO_MAX_PACING_RATE: /* 32bit version */
5042 			if (val != ~0U)
5043 				cmpxchg(&sk->sk_pacing_status,
5044 					SK_PACING_NONE,
5045 					SK_PACING_NEEDED);
5046 			sk->sk_max_pacing_rate = (val == ~0U) ?
5047 						 ~0UL : (unsigned int)val;
5048 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
5049 						 sk->sk_max_pacing_rate);
5050 			break;
5051 		case SO_PRIORITY:
5052 			sk->sk_priority = val;
5053 			break;
5054 		case SO_RCVLOWAT:
5055 			if (val < 0)
5056 				val = INT_MAX;
5057 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
5058 			break;
5059 		case SO_MARK:
5060 			if (sk->sk_mark != val) {
5061 				sk->sk_mark = val;
5062 				sk_dst_reset(sk);
5063 			}
5064 			break;
5065 		case SO_BINDTODEVICE:
5066 			optlen = min_t(long, optlen, IFNAMSIZ - 1);
5067 			strncpy(devname, optval, optlen);
5068 			devname[optlen] = 0;
5069 
5070 			ifindex = 0;
5071 			if (devname[0] != '\0') {
5072 				struct net_device *dev;
5073 
5074 				ret = -ENODEV;
5075 
5076 				net = sock_net(sk);
5077 				dev = dev_get_by_name(net, devname);
5078 				if (!dev)
5079 					break;
5080 				ifindex = dev->ifindex;
5081 				dev_put(dev);
5082 			}
5083 			fallthrough;
5084 		case SO_BINDTOIFINDEX:
5085 			if (optname == SO_BINDTOIFINDEX)
5086 				ifindex = val;
5087 			ret = sock_bindtoindex(sk, ifindex, false);
5088 			break;
5089 		case SO_KEEPALIVE:
5090 			if (sk->sk_prot->keepalive)
5091 				sk->sk_prot->keepalive(sk, valbool);
5092 			sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
5093 			break;
5094 		case SO_REUSEPORT:
5095 			sk->sk_reuseport = valbool;
5096 			break;
5097 		case SO_TXREHASH:
5098 			if (val < -1 || val > 1) {
5099 				ret = -EINVAL;
5100 				break;
5101 			}
5102 			sk->sk_txrehash = (u8)val;
5103 			break;
5104 		default:
5105 			ret = -EINVAL;
5106 		}
5107 #ifdef CONFIG_INET
5108 	} else if (level == SOL_IP) {
5109 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5110 			return -EINVAL;
5111 
5112 		val = *((int *)optval);
5113 		/* Only some options are supported */
5114 		switch (optname) {
5115 		case IP_TOS:
5116 			if (val < -1 || val > 0xff) {
5117 				ret = -EINVAL;
5118 			} else {
5119 				struct inet_sock *inet = inet_sk(sk);
5120 
5121 				if (val == -1)
5122 					val = 0;
5123 				inet->tos = val;
5124 			}
5125 			break;
5126 		default:
5127 			ret = -EINVAL;
5128 		}
5129 #if IS_ENABLED(CONFIG_IPV6)
5130 	} else if (level == SOL_IPV6) {
5131 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5132 			return -EINVAL;
5133 
5134 		val = *((int *)optval);
5135 		/* Only some options are supported */
5136 		switch (optname) {
5137 		case IPV6_TCLASS:
5138 			if (val < -1 || val > 0xff) {
5139 				ret = -EINVAL;
5140 			} else {
5141 				struct ipv6_pinfo *np = inet6_sk(sk);
5142 
5143 				if (val == -1)
5144 					val = 0;
5145 				np->tclass = val;
5146 			}
5147 			break;
5148 		default:
5149 			ret = -EINVAL;
5150 		}
5151 #endif
5152 	} else if (level == SOL_TCP &&
5153 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
5154 		if (optname == TCP_CONGESTION) {
5155 			char name[TCP_CA_NAME_MAX];
5156 
5157 			strncpy(name, optval, min_t(long, optlen,
5158 						    TCP_CA_NAME_MAX-1));
5159 			name[TCP_CA_NAME_MAX-1] = 0;
5160 			ret = tcp_set_congestion_control(sk, name, false, true);
5161 		} else {
5162 			struct inet_connection_sock *icsk = inet_csk(sk);
5163 			struct tcp_sock *tp = tcp_sk(sk);
5164 			unsigned long timeout;
5165 
5166 			if (optlen != sizeof(int))
5167 				return -EINVAL;
5168 
5169 			val = *((int *)optval);
5170 			/* Only some options are supported */
5171 			switch (optname) {
5172 			case TCP_BPF_IW:
5173 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
5174 					ret = -EINVAL;
5175 				else
5176 					tp->snd_cwnd = val;
5177 				break;
5178 			case TCP_BPF_SNDCWND_CLAMP:
5179 				if (val <= 0) {
5180 					ret = -EINVAL;
5181 				} else {
5182 					tp->snd_cwnd_clamp = val;
5183 					tp->snd_ssthresh = val;
5184 				}
5185 				break;
5186 			case TCP_BPF_DELACK_MAX:
5187 				timeout = usecs_to_jiffies(val);
5188 				if (timeout > TCP_DELACK_MAX ||
5189 				    timeout < TCP_TIMEOUT_MIN)
5190 					return -EINVAL;
5191 				inet_csk(sk)->icsk_delack_max = timeout;
5192 				break;
5193 			case TCP_BPF_RTO_MIN:
5194 				timeout = usecs_to_jiffies(val);
5195 				if (timeout > TCP_RTO_MIN ||
5196 				    timeout < TCP_TIMEOUT_MIN)
5197 					return -EINVAL;
5198 				inet_csk(sk)->icsk_rto_min = timeout;
5199 				break;
5200 			case TCP_SAVE_SYN:
5201 				if (val < 0 || val > 1)
5202 					ret = -EINVAL;
5203 				else
5204 					tp->save_syn = val;
5205 				break;
5206 			case TCP_KEEPIDLE:
5207 				ret = tcp_sock_set_keepidle_locked(sk, val);
5208 				break;
5209 			case TCP_KEEPINTVL:
5210 				if (val < 1 || val > MAX_TCP_KEEPINTVL)
5211 					ret = -EINVAL;
5212 				else
5213 					tp->keepalive_intvl = val * HZ;
5214 				break;
5215 			case TCP_KEEPCNT:
5216 				if (val < 1 || val > MAX_TCP_KEEPCNT)
5217 					ret = -EINVAL;
5218 				else
5219 					tp->keepalive_probes = val;
5220 				break;
5221 			case TCP_SYNCNT:
5222 				if (val < 1 || val > MAX_TCP_SYNCNT)
5223 					ret = -EINVAL;
5224 				else
5225 					icsk->icsk_syn_retries = val;
5226 				break;
5227 			case TCP_USER_TIMEOUT:
5228 				if (val < 0)
5229 					ret = -EINVAL;
5230 				else
5231 					icsk->icsk_user_timeout = val;
5232 				break;
5233 			case TCP_NOTSENT_LOWAT:
5234 				tp->notsent_lowat = val;
5235 				sk->sk_write_space(sk);
5236 				break;
5237 			case TCP_WINDOW_CLAMP:
5238 				ret = tcp_set_window_clamp(sk, val);
5239 				break;
5240 			default:
5241 				ret = -EINVAL;
5242 			}
5243 		}
5244 #endif
5245 	} else {
5246 		ret = -EINVAL;
5247 	}
5248 	return ret;
5249 }
5250 
5251 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5252 			   char *optval, int optlen)
5253 {
5254 	if (!sk_fullsock(sk))
5255 		goto err_clear;
5256 
5257 	sock_owned_by_me(sk);
5258 
5259 	if (level == SOL_SOCKET) {
5260 		if (optlen != sizeof(int))
5261 			goto err_clear;
5262 
5263 		switch (optname) {
5264 		case SO_RCVBUF:
5265 			*((int *)optval) = sk->sk_rcvbuf;
5266 			break;
5267 		case SO_SNDBUF:
5268 			*((int *)optval) = sk->sk_sndbuf;
5269 			break;
5270 		case SO_MARK:
5271 			*((int *)optval) = sk->sk_mark;
5272 			break;
5273 		case SO_PRIORITY:
5274 			*((int *)optval) = sk->sk_priority;
5275 			break;
5276 		case SO_BINDTOIFINDEX:
5277 			*((int *)optval) = sk->sk_bound_dev_if;
5278 			break;
5279 		case SO_REUSEPORT:
5280 			*((int *)optval) = sk->sk_reuseport;
5281 			break;
5282 		case SO_TXREHASH:
5283 			*((int *)optval) = sk->sk_txrehash;
5284 			break;
5285 		default:
5286 			goto err_clear;
5287 		}
5288 #ifdef CONFIG_INET
5289 	} else if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
5290 		struct inet_connection_sock *icsk;
5291 		struct tcp_sock *tp;
5292 
5293 		switch (optname) {
5294 		case TCP_CONGESTION:
5295 			icsk = inet_csk(sk);
5296 
5297 			if (!icsk->icsk_ca_ops || optlen <= 1)
5298 				goto err_clear;
5299 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
5300 			optval[optlen - 1] = 0;
5301 			break;
5302 		case TCP_SAVED_SYN:
5303 			tp = tcp_sk(sk);
5304 
5305 			if (optlen <= 0 || !tp->saved_syn ||
5306 			    optlen > tcp_saved_syn_len(tp->saved_syn))
5307 				goto err_clear;
5308 			memcpy(optval, tp->saved_syn->data, optlen);
5309 			break;
5310 		default:
5311 			goto err_clear;
5312 		}
5313 	} else if (level == SOL_IP) {
5314 		struct inet_sock *inet = inet_sk(sk);
5315 
5316 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5317 			goto err_clear;
5318 
5319 		/* Only some options are supported */
5320 		switch (optname) {
5321 		case IP_TOS:
5322 			*((int *)optval) = (int)inet->tos;
5323 			break;
5324 		default:
5325 			goto err_clear;
5326 		}
5327 #if IS_ENABLED(CONFIG_IPV6)
5328 	} else if (level == SOL_IPV6) {
5329 		struct ipv6_pinfo *np = inet6_sk(sk);
5330 
5331 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5332 			goto err_clear;
5333 
5334 		/* Only some options are supported */
5335 		switch (optname) {
5336 		case IPV6_TCLASS:
5337 			*((int *)optval) = (int)np->tclass;
5338 			break;
5339 		default:
5340 			goto err_clear;
5341 		}
5342 #endif
5343 #endif
5344 	} else {
5345 		goto err_clear;
5346 	}
5347 	return 0;
5348 err_clear:
5349 	memset(optval, 0, optlen);
5350 	return -EINVAL;
5351 }
5352 
5353 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5354 	   int, optname, char *, optval, int, optlen)
5355 {
5356 	if (level == SOL_TCP && optname == TCP_CONGESTION) {
5357 		if (optlen >= sizeof("cdg") - 1 &&
5358 		    !strncmp("cdg", optval, optlen))
5359 			return -ENOTSUPP;
5360 	}
5361 
5362 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5363 }
5364 
5365 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5366 	.func		= bpf_sk_setsockopt,
5367 	.gpl_only	= false,
5368 	.ret_type	= RET_INTEGER,
5369 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5370 	.arg2_type	= ARG_ANYTHING,
5371 	.arg3_type	= ARG_ANYTHING,
5372 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5373 	.arg5_type	= ARG_CONST_SIZE,
5374 };
5375 
5376 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5377 	   int, optname, char *, optval, int, optlen)
5378 {
5379 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5380 }
5381 
5382 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5383 	.func		= bpf_sk_getsockopt,
5384 	.gpl_only	= false,
5385 	.ret_type	= RET_INTEGER,
5386 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5387 	.arg2_type	= ARG_ANYTHING,
5388 	.arg3_type	= ARG_ANYTHING,
5389 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5390 	.arg5_type	= ARG_CONST_SIZE,
5391 };
5392 
5393 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5394 	   int, level, int, optname, char *, optval, int, optlen)
5395 {
5396 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5397 }
5398 
5399 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5400 	.func		= bpf_sock_addr_setsockopt,
5401 	.gpl_only	= false,
5402 	.ret_type	= RET_INTEGER,
5403 	.arg1_type	= ARG_PTR_TO_CTX,
5404 	.arg2_type	= ARG_ANYTHING,
5405 	.arg3_type	= ARG_ANYTHING,
5406 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5407 	.arg5_type	= ARG_CONST_SIZE,
5408 };
5409 
5410 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5411 	   int, level, int, optname, char *, optval, int, optlen)
5412 {
5413 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5414 }
5415 
5416 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5417 	.func		= bpf_sock_addr_getsockopt,
5418 	.gpl_only	= false,
5419 	.ret_type	= RET_INTEGER,
5420 	.arg1_type	= ARG_PTR_TO_CTX,
5421 	.arg2_type	= ARG_ANYTHING,
5422 	.arg3_type	= ARG_ANYTHING,
5423 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5424 	.arg5_type	= ARG_CONST_SIZE,
5425 };
5426 
5427 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5428 	   int, level, int, optname, char *, optval, int, optlen)
5429 {
5430 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5431 }
5432 
5433 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5434 	.func		= bpf_sock_ops_setsockopt,
5435 	.gpl_only	= false,
5436 	.ret_type	= RET_INTEGER,
5437 	.arg1_type	= ARG_PTR_TO_CTX,
5438 	.arg2_type	= ARG_ANYTHING,
5439 	.arg3_type	= ARG_ANYTHING,
5440 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5441 	.arg5_type	= ARG_CONST_SIZE,
5442 };
5443 
5444 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5445 				int optname, const u8 **start)
5446 {
5447 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5448 	const u8 *hdr_start;
5449 	int ret;
5450 
5451 	if (syn_skb) {
5452 		/* sk is a request_sock here */
5453 
5454 		if (optname == TCP_BPF_SYN) {
5455 			hdr_start = syn_skb->data;
5456 			ret = tcp_hdrlen(syn_skb);
5457 		} else if (optname == TCP_BPF_SYN_IP) {
5458 			hdr_start = skb_network_header(syn_skb);
5459 			ret = skb_network_header_len(syn_skb) +
5460 				tcp_hdrlen(syn_skb);
5461 		} else {
5462 			/* optname == TCP_BPF_SYN_MAC */
5463 			hdr_start = skb_mac_header(syn_skb);
5464 			ret = skb_mac_header_len(syn_skb) +
5465 				skb_network_header_len(syn_skb) +
5466 				tcp_hdrlen(syn_skb);
5467 		}
5468 	} else {
5469 		struct sock *sk = bpf_sock->sk;
5470 		struct saved_syn *saved_syn;
5471 
5472 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5473 			/* synack retransmit. bpf_sock->syn_skb will
5474 			 * not be available.  It has to resort to
5475 			 * saved_syn (if it is saved).
5476 			 */
5477 			saved_syn = inet_reqsk(sk)->saved_syn;
5478 		else
5479 			saved_syn = tcp_sk(sk)->saved_syn;
5480 
5481 		if (!saved_syn)
5482 			return -ENOENT;
5483 
5484 		if (optname == TCP_BPF_SYN) {
5485 			hdr_start = saved_syn->data +
5486 				saved_syn->mac_hdrlen +
5487 				saved_syn->network_hdrlen;
5488 			ret = saved_syn->tcp_hdrlen;
5489 		} else if (optname == TCP_BPF_SYN_IP) {
5490 			hdr_start = saved_syn->data +
5491 				saved_syn->mac_hdrlen;
5492 			ret = saved_syn->network_hdrlen +
5493 				saved_syn->tcp_hdrlen;
5494 		} else {
5495 			/* optname == TCP_BPF_SYN_MAC */
5496 
5497 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5498 			if (!saved_syn->mac_hdrlen)
5499 				return -ENOENT;
5500 
5501 			hdr_start = saved_syn->data;
5502 			ret = saved_syn->mac_hdrlen +
5503 				saved_syn->network_hdrlen +
5504 				saved_syn->tcp_hdrlen;
5505 		}
5506 	}
5507 
5508 	*start = hdr_start;
5509 	return ret;
5510 }
5511 
5512 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5513 	   int, level, int, optname, char *, optval, int, optlen)
5514 {
5515 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5516 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5517 		int ret, copy_len = 0;
5518 		const u8 *start;
5519 
5520 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5521 		if (ret > 0) {
5522 			copy_len = ret;
5523 			if (optlen < copy_len) {
5524 				copy_len = optlen;
5525 				ret = -ENOSPC;
5526 			}
5527 
5528 			memcpy(optval, start, copy_len);
5529 		}
5530 
5531 		/* Zero out unused buffer at the end */
5532 		memset(optval + copy_len, 0, optlen - copy_len);
5533 
5534 		return ret;
5535 	}
5536 
5537 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5538 }
5539 
5540 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5541 	.func		= bpf_sock_ops_getsockopt,
5542 	.gpl_only	= false,
5543 	.ret_type	= RET_INTEGER,
5544 	.arg1_type	= ARG_PTR_TO_CTX,
5545 	.arg2_type	= ARG_ANYTHING,
5546 	.arg3_type	= ARG_ANYTHING,
5547 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5548 	.arg5_type	= ARG_CONST_SIZE,
5549 };
5550 
5551 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5552 	   int, argval)
5553 {
5554 	struct sock *sk = bpf_sock->sk;
5555 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5556 
5557 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5558 		return -EINVAL;
5559 
5560 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5561 
5562 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5563 }
5564 
5565 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5566 	.func		= bpf_sock_ops_cb_flags_set,
5567 	.gpl_only	= false,
5568 	.ret_type	= RET_INTEGER,
5569 	.arg1_type	= ARG_PTR_TO_CTX,
5570 	.arg2_type	= ARG_ANYTHING,
5571 };
5572 
5573 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5574 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5575 
5576 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5577 	   int, addr_len)
5578 {
5579 #ifdef CONFIG_INET
5580 	struct sock *sk = ctx->sk;
5581 	u32 flags = BIND_FROM_BPF;
5582 	int err;
5583 
5584 	err = -EINVAL;
5585 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5586 		return err;
5587 	if (addr->sa_family == AF_INET) {
5588 		if (addr_len < sizeof(struct sockaddr_in))
5589 			return err;
5590 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5591 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5592 		return __inet_bind(sk, addr, addr_len, flags);
5593 #if IS_ENABLED(CONFIG_IPV6)
5594 	} else if (addr->sa_family == AF_INET6) {
5595 		if (addr_len < SIN6_LEN_RFC2133)
5596 			return err;
5597 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5598 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5599 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5600 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5601 		 */
5602 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5603 #endif /* CONFIG_IPV6 */
5604 	}
5605 #endif /* CONFIG_INET */
5606 
5607 	return -EAFNOSUPPORT;
5608 }
5609 
5610 static const struct bpf_func_proto bpf_bind_proto = {
5611 	.func		= bpf_bind,
5612 	.gpl_only	= false,
5613 	.ret_type	= RET_INTEGER,
5614 	.arg1_type	= ARG_PTR_TO_CTX,
5615 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5616 	.arg3_type	= ARG_CONST_SIZE,
5617 };
5618 
5619 #ifdef CONFIG_XFRM
5620 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5621 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5622 {
5623 	const struct sec_path *sp = skb_sec_path(skb);
5624 	const struct xfrm_state *x;
5625 
5626 	if (!sp || unlikely(index >= sp->len || flags))
5627 		goto err_clear;
5628 
5629 	x = sp->xvec[index];
5630 
5631 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5632 		goto err_clear;
5633 
5634 	to->reqid = x->props.reqid;
5635 	to->spi = x->id.spi;
5636 	to->family = x->props.family;
5637 	to->ext = 0;
5638 
5639 	if (to->family == AF_INET6) {
5640 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5641 		       sizeof(to->remote_ipv6));
5642 	} else {
5643 		to->remote_ipv4 = x->props.saddr.a4;
5644 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5645 	}
5646 
5647 	return 0;
5648 err_clear:
5649 	memset(to, 0, size);
5650 	return -EINVAL;
5651 }
5652 
5653 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5654 	.func		= bpf_skb_get_xfrm_state,
5655 	.gpl_only	= false,
5656 	.ret_type	= RET_INTEGER,
5657 	.arg1_type	= ARG_PTR_TO_CTX,
5658 	.arg2_type	= ARG_ANYTHING,
5659 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5660 	.arg4_type	= ARG_CONST_SIZE,
5661 	.arg5_type	= ARG_ANYTHING,
5662 };
5663 #endif
5664 
5665 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5666 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5667 				  const struct neighbour *neigh,
5668 				  const struct net_device *dev, u32 mtu)
5669 {
5670 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5671 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5672 	params->h_vlan_TCI = 0;
5673 	params->h_vlan_proto = 0;
5674 	if (mtu)
5675 		params->mtu_result = mtu; /* union with tot_len */
5676 
5677 	return 0;
5678 }
5679 #endif
5680 
5681 #if IS_ENABLED(CONFIG_INET)
5682 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5683 			       u32 flags, bool check_mtu)
5684 {
5685 	struct fib_nh_common *nhc;
5686 	struct in_device *in_dev;
5687 	struct neighbour *neigh;
5688 	struct net_device *dev;
5689 	struct fib_result res;
5690 	struct flowi4 fl4;
5691 	u32 mtu = 0;
5692 	int err;
5693 
5694 	dev = dev_get_by_index_rcu(net, params->ifindex);
5695 	if (unlikely(!dev))
5696 		return -ENODEV;
5697 
5698 	/* verify forwarding is enabled on this interface */
5699 	in_dev = __in_dev_get_rcu(dev);
5700 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5701 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5702 
5703 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5704 		fl4.flowi4_iif = 1;
5705 		fl4.flowi4_oif = params->ifindex;
5706 	} else {
5707 		fl4.flowi4_iif = params->ifindex;
5708 		fl4.flowi4_oif = 0;
5709 	}
5710 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5711 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5712 	fl4.flowi4_flags = 0;
5713 
5714 	fl4.flowi4_proto = params->l4_protocol;
5715 	fl4.daddr = params->ipv4_dst;
5716 	fl4.saddr = params->ipv4_src;
5717 	fl4.fl4_sport = params->sport;
5718 	fl4.fl4_dport = params->dport;
5719 	fl4.flowi4_multipath_hash = 0;
5720 
5721 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5722 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5723 		struct fib_table *tb;
5724 
5725 		tb = fib_get_table(net, tbid);
5726 		if (unlikely(!tb))
5727 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5728 
5729 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5730 	} else {
5731 		fl4.flowi4_mark = 0;
5732 		fl4.flowi4_secid = 0;
5733 		fl4.flowi4_tun_key.tun_id = 0;
5734 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5735 
5736 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5737 	}
5738 
5739 	if (err) {
5740 		/* map fib lookup errors to RTN_ type */
5741 		if (err == -EINVAL)
5742 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5743 		if (err == -EHOSTUNREACH)
5744 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5745 		if (err == -EACCES)
5746 			return BPF_FIB_LKUP_RET_PROHIBIT;
5747 
5748 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5749 	}
5750 
5751 	if (res.type != RTN_UNICAST)
5752 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5753 
5754 	if (fib_info_num_path(res.fi) > 1)
5755 		fib_select_path(net, &res, &fl4, NULL);
5756 
5757 	if (check_mtu) {
5758 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5759 		if (params->tot_len > mtu) {
5760 			params->mtu_result = mtu; /* union with tot_len */
5761 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5762 		}
5763 	}
5764 
5765 	nhc = res.nhc;
5766 
5767 	/* do not handle lwt encaps right now */
5768 	if (nhc->nhc_lwtstate)
5769 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5770 
5771 	dev = nhc->nhc_dev;
5772 
5773 	params->rt_metric = res.fi->fib_priority;
5774 	params->ifindex = dev->ifindex;
5775 
5776 	/* xdp and cls_bpf programs are run in RCU-bh so
5777 	 * rcu_read_lock_bh is not needed here
5778 	 */
5779 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5780 		if (nhc->nhc_gw_family)
5781 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5782 
5783 		neigh = __ipv4_neigh_lookup_noref(dev,
5784 						 (__force u32)params->ipv4_dst);
5785 	} else {
5786 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5787 
5788 		params->family = AF_INET6;
5789 		*dst = nhc->nhc_gw.ipv6;
5790 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5791 	}
5792 
5793 	if (!neigh)
5794 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5795 
5796 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5797 }
5798 #endif
5799 
5800 #if IS_ENABLED(CONFIG_IPV6)
5801 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5802 			       u32 flags, bool check_mtu)
5803 {
5804 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5805 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5806 	struct fib6_result res = {};
5807 	struct neighbour *neigh;
5808 	struct net_device *dev;
5809 	struct inet6_dev *idev;
5810 	struct flowi6 fl6;
5811 	int strict = 0;
5812 	int oif, err;
5813 	u32 mtu = 0;
5814 
5815 	/* link local addresses are never forwarded */
5816 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5817 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5818 
5819 	dev = dev_get_by_index_rcu(net, params->ifindex);
5820 	if (unlikely(!dev))
5821 		return -ENODEV;
5822 
5823 	idev = __in6_dev_get_safely(dev);
5824 	if (unlikely(!idev || !idev->cnf.forwarding))
5825 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5826 
5827 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5828 		fl6.flowi6_iif = 1;
5829 		oif = fl6.flowi6_oif = params->ifindex;
5830 	} else {
5831 		oif = fl6.flowi6_iif = params->ifindex;
5832 		fl6.flowi6_oif = 0;
5833 		strict = RT6_LOOKUP_F_HAS_SADDR;
5834 	}
5835 	fl6.flowlabel = params->flowinfo;
5836 	fl6.flowi6_scope = 0;
5837 	fl6.flowi6_flags = 0;
5838 	fl6.mp_hash = 0;
5839 
5840 	fl6.flowi6_proto = params->l4_protocol;
5841 	fl6.daddr = *dst;
5842 	fl6.saddr = *src;
5843 	fl6.fl6_sport = params->sport;
5844 	fl6.fl6_dport = params->dport;
5845 
5846 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5847 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5848 		struct fib6_table *tb;
5849 
5850 		tb = ipv6_stub->fib6_get_table(net, tbid);
5851 		if (unlikely(!tb))
5852 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5853 
5854 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5855 						   strict);
5856 	} else {
5857 		fl6.flowi6_mark = 0;
5858 		fl6.flowi6_secid = 0;
5859 		fl6.flowi6_tun_key.tun_id = 0;
5860 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5861 
5862 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5863 	}
5864 
5865 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5866 		     res.f6i == net->ipv6.fib6_null_entry))
5867 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5868 
5869 	switch (res.fib6_type) {
5870 	/* only unicast is forwarded */
5871 	case RTN_UNICAST:
5872 		break;
5873 	case RTN_BLACKHOLE:
5874 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5875 	case RTN_UNREACHABLE:
5876 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5877 	case RTN_PROHIBIT:
5878 		return BPF_FIB_LKUP_RET_PROHIBIT;
5879 	default:
5880 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5881 	}
5882 
5883 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5884 				    fl6.flowi6_oif != 0, NULL, strict);
5885 
5886 	if (check_mtu) {
5887 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5888 		if (params->tot_len > mtu) {
5889 			params->mtu_result = mtu; /* union with tot_len */
5890 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5891 		}
5892 	}
5893 
5894 	if (res.nh->fib_nh_lws)
5895 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5896 
5897 	if (res.nh->fib_nh_gw_family)
5898 		*dst = res.nh->fib_nh_gw6;
5899 
5900 	dev = res.nh->fib_nh_dev;
5901 	params->rt_metric = res.f6i->fib6_metric;
5902 	params->ifindex = dev->ifindex;
5903 
5904 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5905 	 * not needed here.
5906 	 */
5907 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5908 	if (!neigh)
5909 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5910 
5911 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5912 }
5913 #endif
5914 
5915 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5916 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5917 {
5918 	if (plen < sizeof(*params))
5919 		return -EINVAL;
5920 
5921 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5922 		return -EINVAL;
5923 
5924 	switch (params->family) {
5925 #if IS_ENABLED(CONFIG_INET)
5926 	case AF_INET:
5927 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5928 					   flags, true);
5929 #endif
5930 #if IS_ENABLED(CONFIG_IPV6)
5931 	case AF_INET6:
5932 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5933 					   flags, true);
5934 #endif
5935 	}
5936 	return -EAFNOSUPPORT;
5937 }
5938 
5939 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5940 	.func		= bpf_xdp_fib_lookup,
5941 	.gpl_only	= true,
5942 	.ret_type	= RET_INTEGER,
5943 	.arg1_type      = ARG_PTR_TO_CTX,
5944 	.arg2_type      = ARG_PTR_TO_MEM,
5945 	.arg3_type      = ARG_CONST_SIZE,
5946 	.arg4_type	= ARG_ANYTHING,
5947 };
5948 
5949 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5950 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5951 {
5952 	struct net *net = dev_net(skb->dev);
5953 	int rc = -EAFNOSUPPORT;
5954 	bool check_mtu = false;
5955 
5956 	if (plen < sizeof(*params))
5957 		return -EINVAL;
5958 
5959 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5960 		return -EINVAL;
5961 
5962 	if (params->tot_len)
5963 		check_mtu = true;
5964 
5965 	switch (params->family) {
5966 #if IS_ENABLED(CONFIG_INET)
5967 	case AF_INET:
5968 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5969 		break;
5970 #endif
5971 #if IS_ENABLED(CONFIG_IPV6)
5972 	case AF_INET6:
5973 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5974 		break;
5975 #endif
5976 	}
5977 
5978 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5979 		struct net_device *dev;
5980 
5981 		/* When tot_len isn't provided by user, check skb
5982 		 * against MTU of FIB lookup resulting net_device
5983 		 */
5984 		dev = dev_get_by_index_rcu(net, params->ifindex);
5985 		if (!is_skb_forwardable(dev, skb))
5986 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5987 
5988 		params->mtu_result = dev->mtu; /* union with tot_len */
5989 	}
5990 
5991 	return rc;
5992 }
5993 
5994 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5995 	.func		= bpf_skb_fib_lookup,
5996 	.gpl_only	= true,
5997 	.ret_type	= RET_INTEGER,
5998 	.arg1_type      = ARG_PTR_TO_CTX,
5999 	.arg2_type      = ARG_PTR_TO_MEM,
6000 	.arg3_type      = ARG_CONST_SIZE,
6001 	.arg4_type	= ARG_ANYTHING,
6002 };
6003 
6004 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6005 					    u32 ifindex)
6006 {
6007 	struct net *netns = dev_net(dev_curr);
6008 
6009 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6010 	if (ifindex == 0)
6011 		return dev_curr;
6012 
6013 	return dev_get_by_index_rcu(netns, ifindex);
6014 }
6015 
6016 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6017 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6018 {
6019 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6020 	struct net_device *dev = skb->dev;
6021 	int skb_len, dev_len;
6022 	int mtu;
6023 
6024 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6025 		return -EINVAL;
6026 
6027 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6028 		return -EINVAL;
6029 
6030 	dev = __dev_via_ifindex(dev, ifindex);
6031 	if (unlikely(!dev))
6032 		return -ENODEV;
6033 
6034 	mtu = READ_ONCE(dev->mtu);
6035 
6036 	dev_len = mtu + dev->hard_header_len;
6037 
6038 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6039 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6040 
6041 	skb_len += len_diff; /* minus result pass check */
6042 	if (skb_len <= dev_len) {
6043 		ret = BPF_MTU_CHK_RET_SUCCESS;
6044 		goto out;
6045 	}
6046 	/* At this point, skb->len exceed MTU, but as it include length of all
6047 	 * segments, it can still be below MTU.  The SKB can possibly get
6048 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6049 	 * must choose if segs are to be MTU checked.
6050 	 */
6051 	if (skb_is_gso(skb)) {
6052 		ret = BPF_MTU_CHK_RET_SUCCESS;
6053 
6054 		if (flags & BPF_MTU_CHK_SEGS &&
6055 		    !skb_gso_validate_network_len(skb, mtu))
6056 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6057 	}
6058 out:
6059 	/* BPF verifier guarantees valid pointer */
6060 	*mtu_len = mtu;
6061 
6062 	return ret;
6063 }
6064 
6065 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6066 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6067 {
6068 	struct net_device *dev = xdp->rxq->dev;
6069 	int xdp_len = xdp->data_end - xdp->data;
6070 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6071 	int mtu, dev_len;
6072 
6073 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6074 	if (unlikely(flags))
6075 		return -EINVAL;
6076 
6077 	dev = __dev_via_ifindex(dev, ifindex);
6078 	if (unlikely(!dev))
6079 		return -ENODEV;
6080 
6081 	mtu = READ_ONCE(dev->mtu);
6082 
6083 	/* Add L2-header as dev MTU is L3 size */
6084 	dev_len = mtu + dev->hard_header_len;
6085 
6086 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6087 	if (*mtu_len)
6088 		xdp_len = *mtu_len + dev->hard_header_len;
6089 
6090 	xdp_len += len_diff; /* minus result pass check */
6091 	if (xdp_len > dev_len)
6092 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6093 
6094 	/* BPF verifier guarantees valid pointer */
6095 	*mtu_len = mtu;
6096 
6097 	return ret;
6098 }
6099 
6100 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6101 	.func		= bpf_skb_check_mtu,
6102 	.gpl_only	= true,
6103 	.ret_type	= RET_INTEGER,
6104 	.arg1_type      = ARG_PTR_TO_CTX,
6105 	.arg2_type      = ARG_ANYTHING,
6106 	.arg3_type      = ARG_PTR_TO_INT,
6107 	.arg4_type      = ARG_ANYTHING,
6108 	.arg5_type      = ARG_ANYTHING,
6109 };
6110 
6111 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6112 	.func		= bpf_xdp_check_mtu,
6113 	.gpl_only	= true,
6114 	.ret_type	= RET_INTEGER,
6115 	.arg1_type      = ARG_PTR_TO_CTX,
6116 	.arg2_type      = ARG_ANYTHING,
6117 	.arg3_type      = ARG_PTR_TO_INT,
6118 	.arg4_type      = ARG_ANYTHING,
6119 	.arg5_type      = ARG_ANYTHING,
6120 };
6121 
6122 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6123 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6124 {
6125 	int err;
6126 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6127 
6128 	if (!seg6_validate_srh(srh, len, false))
6129 		return -EINVAL;
6130 
6131 	switch (type) {
6132 	case BPF_LWT_ENCAP_SEG6_INLINE:
6133 		if (skb->protocol != htons(ETH_P_IPV6))
6134 			return -EBADMSG;
6135 
6136 		err = seg6_do_srh_inline(skb, srh);
6137 		break;
6138 	case BPF_LWT_ENCAP_SEG6:
6139 		skb_reset_inner_headers(skb);
6140 		skb->encapsulation = 1;
6141 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6142 		break;
6143 	default:
6144 		return -EINVAL;
6145 	}
6146 
6147 	bpf_compute_data_pointers(skb);
6148 	if (err)
6149 		return err;
6150 
6151 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6152 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6153 
6154 	return seg6_lookup_nexthop(skb, NULL, 0);
6155 }
6156 #endif /* CONFIG_IPV6_SEG6_BPF */
6157 
6158 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6159 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6160 			     bool ingress)
6161 {
6162 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6163 }
6164 #endif
6165 
6166 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6167 	   u32, len)
6168 {
6169 	switch (type) {
6170 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6171 	case BPF_LWT_ENCAP_SEG6:
6172 	case BPF_LWT_ENCAP_SEG6_INLINE:
6173 		return bpf_push_seg6_encap(skb, type, hdr, len);
6174 #endif
6175 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6176 	case BPF_LWT_ENCAP_IP:
6177 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6178 #endif
6179 	default:
6180 		return -EINVAL;
6181 	}
6182 }
6183 
6184 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6185 	   void *, hdr, u32, len)
6186 {
6187 	switch (type) {
6188 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6189 	case BPF_LWT_ENCAP_IP:
6190 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6191 #endif
6192 	default:
6193 		return -EINVAL;
6194 	}
6195 }
6196 
6197 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6198 	.func		= bpf_lwt_in_push_encap,
6199 	.gpl_only	= false,
6200 	.ret_type	= RET_INTEGER,
6201 	.arg1_type	= ARG_PTR_TO_CTX,
6202 	.arg2_type	= ARG_ANYTHING,
6203 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6204 	.arg4_type	= ARG_CONST_SIZE
6205 };
6206 
6207 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6208 	.func		= bpf_lwt_xmit_push_encap,
6209 	.gpl_only	= false,
6210 	.ret_type	= RET_INTEGER,
6211 	.arg1_type	= ARG_PTR_TO_CTX,
6212 	.arg2_type	= ARG_ANYTHING,
6213 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6214 	.arg4_type	= ARG_CONST_SIZE
6215 };
6216 
6217 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6218 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6219 	   const void *, from, u32, len)
6220 {
6221 	struct seg6_bpf_srh_state *srh_state =
6222 		this_cpu_ptr(&seg6_bpf_srh_states);
6223 	struct ipv6_sr_hdr *srh = srh_state->srh;
6224 	void *srh_tlvs, *srh_end, *ptr;
6225 	int srhoff = 0;
6226 
6227 	if (srh == NULL)
6228 		return -EINVAL;
6229 
6230 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6231 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6232 
6233 	ptr = skb->data + offset;
6234 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6235 		srh_state->valid = false;
6236 	else if (ptr < (void *)&srh->flags ||
6237 		 ptr + len > (void *)&srh->segments)
6238 		return -EFAULT;
6239 
6240 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6241 		return -EFAULT;
6242 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6243 		return -EINVAL;
6244 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6245 
6246 	memcpy(skb->data + offset, from, len);
6247 	return 0;
6248 }
6249 
6250 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6251 	.func		= bpf_lwt_seg6_store_bytes,
6252 	.gpl_only	= false,
6253 	.ret_type	= RET_INTEGER,
6254 	.arg1_type	= ARG_PTR_TO_CTX,
6255 	.arg2_type	= ARG_ANYTHING,
6256 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6257 	.arg4_type	= ARG_CONST_SIZE
6258 };
6259 
6260 static void bpf_update_srh_state(struct sk_buff *skb)
6261 {
6262 	struct seg6_bpf_srh_state *srh_state =
6263 		this_cpu_ptr(&seg6_bpf_srh_states);
6264 	int srhoff = 0;
6265 
6266 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6267 		srh_state->srh = NULL;
6268 	} else {
6269 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6270 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6271 		srh_state->valid = true;
6272 	}
6273 }
6274 
6275 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6276 	   u32, action, void *, param, u32, param_len)
6277 {
6278 	struct seg6_bpf_srh_state *srh_state =
6279 		this_cpu_ptr(&seg6_bpf_srh_states);
6280 	int hdroff = 0;
6281 	int err;
6282 
6283 	switch (action) {
6284 	case SEG6_LOCAL_ACTION_END_X:
6285 		if (!seg6_bpf_has_valid_srh(skb))
6286 			return -EBADMSG;
6287 		if (param_len != sizeof(struct in6_addr))
6288 			return -EINVAL;
6289 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6290 	case SEG6_LOCAL_ACTION_END_T:
6291 		if (!seg6_bpf_has_valid_srh(skb))
6292 			return -EBADMSG;
6293 		if (param_len != sizeof(int))
6294 			return -EINVAL;
6295 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6296 	case SEG6_LOCAL_ACTION_END_DT6:
6297 		if (!seg6_bpf_has_valid_srh(skb))
6298 			return -EBADMSG;
6299 		if (param_len != sizeof(int))
6300 			return -EINVAL;
6301 
6302 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6303 			return -EBADMSG;
6304 		if (!pskb_pull(skb, hdroff))
6305 			return -EBADMSG;
6306 
6307 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6308 		skb_reset_network_header(skb);
6309 		skb_reset_transport_header(skb);
6310 		skb->encapsulation = 0;
6311 
6312 		bpf_compute_data_pointers(skb);
6313 		bpf_update_srh_state(skb);
6314 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6315 	case SEG6_LOCAL_ACTION_END_B6:
6316 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6317 			return -EBADMSG;
6318 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6319 					  param, param_len);
6320 		if (!err)
6321 			bpf_update_srh_state(skb);
6322 
6323 		return err;
6324 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6325 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6326 			return -EBADMSG;
6327 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6328 					  param, param_len);
6329 		if (!err)
6330 			bpf_update_srh_state(skb);
6331 
6332 		return err;
6333 	default:
6334 		return -EINVAL;
6335 	}
6336 }
6337 
6338 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6339 	.func		= bpf_lwt_seg6_action,
6340 	.gpl_only	= false,
6341 	.ret_type	= RET_INTEGER,
6342 	.arg1_type	= ARG_PTR_TO_CTX,
6343 	.arg2_type	= ARG_ANYTHING,
6344 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6345 	.arg4_type	= ARG_CONST_SIZE
6346 };
6347 
6348 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6349 	   s32, len)
6350 {
6351 	struct seg6_bpf_srh_state *srh_state =
6352 		this_cpu_ptr(&seg6_bpf_srh_states);
6353 	struct ipv6_sr_hdr *srh = srh_state->srh;
6354 	void *srh_end, *srh_tlvs, *ptr;
6355 	struct ipv6hdr *hdr;
6356 	int srhoff = 0;
6357 	int ret;
6358 
6359 	if (unlikely(srh == NULL))
6360 		return -EINVAL;
6361 
6362 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6363 			((srh->first_segment + 1) << 4));
6364 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6365 			srh_state->hdrlen);
6366 	ptr = skb->data + offset;
6367 
6368 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6369 		return -EFAULT;
6370 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6371 		return -EFAULT;
6372 
6373 	if (len > 0) {
6374 		ret = skb_cow_head(skb, len);
6375 		if (unlikely(ret < 0))
6376 			return ret;
6377 
6378 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6379 	} else {
6380 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6381 	}
6382 
6383 	bpf_compute_data_pointers(skb);
6384 	if (unlikely(ret < 0))
6385 		return ret;
6386 
6387 	hdr = (struct ipv6hdr *)skb->data;
6388 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6389 
6390 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6391 		return -EINVAL;
6392 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6393 	srh_state->hdrlen += len;
6394 	srh_state->valid = false;
6395 	return 0;
6396 }
6397 
6398 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6399 	.func		= bpf_lwt_seg6_adjust_srh,
6400 	.gpl_only	= false,
6401 	.ret_type	= RET_INTEGER,
6402 	.arg1_type	= ARG_PTR_TO_CTX,
6403 	.arg2_type	= ARG_ANYTHING,
6404 	.arg3_type	= ARG_ANYTHING,
6405 };
6406 #endif /* CONFIG_IPV6_SEG6_BPF */
6407 
6408 #ifdef CONFIG_INET
6409 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6410 			      int dif, int sdif, u8 family, u8 proto)
6411 {
6412 	bool refcounted = false;
6413 	struct sock *sk = NULL;
6414 
6415 	if (family == AF_INET) {
6416 		__be32 src4 = tuple->ipv4.saddr;
6417 		__be32 dst4 = tuple->ipv4.daddr;
6418 
6419 		if (proto == IPPROTO_TCP)
6420 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
6421 					   src4, tuple->ipv4.sport,
6422 					   dst4, tuple->ipv4.dport,
6423 					   dif, sdif, &refcounted);
6424 		else
6425 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6426 					       dst4, tuple->ipv4.dport,
6427 					       dif, sdif, &udp_table, NULL);
6428 #if IS_ENABLED(CONFIG_IPV6)
6429 	} else {
6430 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6431 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6432 
6433 		if (proto == IPPROTO_TCP)
6434 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
6435 					    src6, tuple->ipv6.sport,
6436 					    dst6, ntohs(tuple->ipv6.dport),
6437 					    dif, sdif, &refcounted);
6438 		else if (likely(ipv6_bpf_stub))
6439 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6440 							    src6, tuple->ipv6.sport,
6441 							    dst6, tuple->ipv6.dport,
6442 							    dif, sdif,
6443 							    &udp_table, NULL);
6444 #endif
6445 	}
6446 
6447 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6448 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6449 		sk = NULL;
6450 	}
6451 	return sk;
6452 }
6453 
6454 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6455  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6456  * Returns the socket as an 'unsigned long' to simplify the casting in the
6457  * callers to satisfy BPF_CALL declarations.
6458  */
6459 static struct sock *
6460 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6461 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6462 		 u64 flags)
6463 {
6464 	struct sock *sk = NULL;
6465 	u8 family = AF_UNSPEC;
6466 	struct net *net;
6467 	int sdif;
6468 
6469 	if (len == sizeof(tuple->ipv4))
6470 		family = AF_INET;
6471 	else if (len == sizeof(tuple->ipv6))
6472 		family = AF_INET6;
6473 	else
6474 		return NULL;
6475 
6476 	if (unlikely(family == AF_UNSPEC || flags ||
6477 		     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6478 		goto out;
6479 
6480 	if (family == AF_INET)
6481 		sdif = inet_sdif(skb);
6482 	else
6483 		sdif = inet6_sdif(skb);
6484 
6485 	if ((s32)netns_id < 0) {
6486 		net = caller_net;
6487 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6488 	} else {
6489 		net = get_net_ns_by_id(caller_net, netns_id);
6490 		if (unlikely(!net))
6491 			goto out;
6492 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6493 		put_net(net);
6494 	}
6495 
6496 out:
6497 	return sk;
6498 }
6499 
6500 static struct sock *
6501 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6502 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6503 		u64 flags)
6504 {
6505 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6506 					   ifindex, proto, netns_id, flags);
6507 
6508 	if (sk) {
6509 		sk = sk_to_full_sk(sk);
6510 		if (!sk_fullsock(sk)) {
6511 			sock_gen_put(sk);
6512 			return NULL;
6513 		}
6514 	}
6515 
6516 	return sk;
6517 }
6518 
6519 static struct sock *
6520 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6521 	       u8 proto, u64 netns_id, u64 flags)
6522 {
6523 	struct net *caller_net;
6524 	int ifindex;
6525 
6526 	if (skb->dev) {
6527 		caller_net = dev_net(skb->dev);
6528 		ifindex = skb->dev->ifindex;
6529 	} else {
6530 		caller_net = sock_net(skb->sk);
6531 		ifindex = 0;
6532 	}
6533 
6534 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6535 				netns_id, flags);
6536 }
6537 
6538 static struct sock *
6539 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6540 	      u8 proto, u64 netns_id, u64 flags)
6541 {
6542 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6543 					 flags);
6544 
6545 	if (sk) {
6546 		sk = sk_to_full_sk(sk);
6547 		if (!sk_fullsock(sk)) {
6548 			sock_gen_put(sk);
6549 			return NULL;
6550 		}
6551 	}
6552 
6553 	return sk;
6554 }
6555 
6556 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6557 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6558 {
6559 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6560 					     netns_id, flags);
6561 }
6562 
6563 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6564 	.func		= bpf_skc_lookup_tcp,
6565 	.gpl_only	= false,
6566 	.pkt_access	= true,
6567 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6568 	.arg1_type	= ARG_PTR_TO_CTX,
6569 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6570 	.arg3_type	= ARG_CONST_SIZE,
6571 	.arg4_type	= ARG_ANYTHING,
6572 	.arg5_type	= ARG_ANYTHING,
6573 };
6574 
6575 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6576 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6577 {
6578 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6579 					    netns_id, flags);
6580 }
6581 
6582 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6583 	.func		= bpf_sk_lookup_tcp,
6584 	.gpl_only	= false,
6585 	.pkt_access	= true,
6586 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6587 	.arg1_type	= ARG_PTR_TO_CTX,
6588 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6589 	.arg3_type	= ARG_CONST_SIZE,
6590 	.arg4_type	= ARG_ANYTHING,
6591 	.arg5_type	= ARG_ANYTHING,
6592 };
6593 
6594 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6595 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6596 {
6597 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6598 					    netns_id, flags);
6599 }
6600 
6601 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6602 	.func		= bpf_sk_lookup_udp,
6603 	.gpl_only	= false,
6604 	.pkt_access	= true,
6605 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6606 	.arg1_type	= ARG_PTR_TO_CTX,
6607 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6608 	.arg3_type	= ARG_CONST_SIZE,
6609 	.arg4_type	= ARG_ANYTHING,
6610 	.arg5_type	= ARG_ANYTHING,
6611 };
6612 
6613 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6614 {
6615 	if (sk && sk_is_refcounted(sk))
6616 		sock_gen_put(sk);
6617 	return 0;
6618 }
6619 
6620 static const struct bpf_func_proto bpf_sk_release_proto = {
6621 	.func		= bpf_sk_release,
6622 	.gpl_only	= false,
6623 	.ret_type	= RET_INTEGER,
6624 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6625 };
6626 
6627 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6628 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6629 {
6630 	struct net *caller_net = dev_net(ctx->rxq->dev);
6631 	int ifindex = ctx->rxq->dev->ifindex;
6632 
6633 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6634 					      ifindex, IPPROTO_UDP, netns_id,
6635 					      flags);
6636 }
6637 
6638 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6639 	.func           = bpf_xdp_sk_lookup_udp,
6640 	.gpl_only       = false,
6641 	.pkt_access     = true,
6642 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6643 	.arg1_type      = ARG_PTR_TO_CTX,
6644 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6645 	.arg3_type      = ARG_CONST_SIZE,
6646 	.arg4_type      = ARG_ANYTHING,
6647 	.arg5_type      = ARG_ANYTHING,
6648 };
6649 
6650 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6651 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6652 {
6653 	struct net *caller_net = dev_net(ctx->rxq->dev);
6654 	int ifindex = ctx->rxq->dev->ifindex;
6655 
6656 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6657 					       ifindex, IPPROTO_TCP, netns_id,
6658 					       flags);
6659 }
6660 
6661 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6662 	.func           = bpf_xdp_skc_lookup_tcp,
6663 	.gpl_only       = false,
6664 	.pkt_access     = true,
6665 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6666 	.arg1_type      = ARG_PTR_TO_CTX,
6667 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6668 	.arg3_type      = ARG_CONST_SIZE,
6669 	.arg4_type      = ARG_ANYTHING,
6670 	.arg5_type      = ARG_ANYTHING,
6671 };
6672 
6673 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6674 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6675 {
6676 	struct net *caller_net = dev_net(ctx->rxq->dev);
6677 	int ifindex = ctx->rxq->dev->ifindex;
6678 
6679 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6680 					      ifindex, IPPROTO_TCP, netns_id,
6681 					      flags);
6682 }
6683 
6684 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6685 	.func           = bpf_xdp_sk_lookup_tcp,
6686 	.gpl_only       = false,
6687 	.pkt_access     = true,
6688 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6689 	.arg1_type      = ARG_PTR_TO_CTX,
6690 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6691 	.arg3_type      = ARG_CONST_SIZE,
6692 	.arg4_type      = ARG_ANYTHING,
6693 	.arg5_type      = ARG_ANYTHING,
6694 };
6695 
6696 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6697 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6698 {
6699 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6700 					       sock_net(ctx->sk), 0,
6701 					       IPPROTO_TCP, netns_id, flags);
6702 }
6703 
6704 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6705 	.func		= bpf_sock_addr_skc_lookup_tcp,
6706 	.gpl_only	= false,
6707 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6708 	.arg1_type	= ARG_PTR_TO_CTX,
6709 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6710 	.arg3_type	= ARG_CONST_SIZE,
6711 	.arg4_type	= ARG_ANYTHING,
6712 	.arg5_type	= ARG_ANYTHING,
6713 };
6714 
6715 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6716 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6717 {
6718 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6719 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6720 					      netns_id, flags);
6721 }
6722 
6723 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6724 	.func		= bpf_sock_addr_sk_lookup_tcp,
6725 	.gpl_only	= false,
6726 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6727 	.arg1_type	= ARG_PTR_TO_CTX,
6728 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6729 	.arg3_type	= ARG_CONST_SIZE,
6730 	.arg4_type	= ARG_ANYTHING,
6731 	.arg5_type	= ARG_ANYTHING,
6732 };
6733 
6734 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6735 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6736 {
6737 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6738 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6739 					      netns_id, flags);
6740 }
6741 
6742 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6743 	.func		= bpf_sock_addr_sk_lookup_udp,
6744 	.gpl_only	= false,
6745 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6746 	.arg1_type	= ARG_PTR_TO_CTX,
6747 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6748 	.arg3_type	= ARG_CONST_SIZE,
6749 	.arg4_type	= ARG_ANYTHING,
6750 	.arg5_type	= ARG_ANYTHING,
6751 };
6752 
6753 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6754 				  struct bpf_insn_access_aux *info)
6755 {
6756 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6757 					  icsk_retransmits))
6758 		return false;
6759 
6760 	if (off % size != 0)
6761 		return false;
6762 
6763 	switch (off) {
6764 	case offsetof(struct bpf_tcp_sock, bytes_received):
6765 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6766 		return size == sizeof(__u64);
6767 	default:
6768 		return size == sizeof(__u32);
6769 	}
6770 }
6771 
6772 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6773 				    const struct bpf_insn *si,
6774 				    struct bpf_insn *insn_buf,
6775 				    struct bpf_prog *prog, u32 *target_size)
6776 {
6777 	struct bpf_insn *insn = insn_buf;
6778 
6779 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6780 	do {								\
6781 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6782 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6783 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6784 				      si->dst_reg, si->src_reg,		\
6785 				      offsetof(struct tcp_sock, FIELD)); \
6786 	} while (0)
6787 
6788 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6789 	do {								\
6790 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6791 					  FIELD) >			\
6792 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6793 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6794 					struct inet_connection_sock,	\
6795 					FIELD),				\
6796 				      si->dst_reg, si->src_reg,		\
6797 				      offsetof(				\
6798 					struct inet_connection_sock,	\
6799 					FIELD));			\
6800 	} while (0)
6801 
6802 	if (insn > insn_buf)
6803 		return insn - insn_buf;
6804 
6805 	switch (si->off) {
6806 	case offsetof(struct bpf_tcp_sock, rtt_min):
6807 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6808 			     sizeof(struct minmax));
6809 		BUILD_BUG_ON(sizeof(struct minmax) <
6810 			     sizeof(struct minmax_sample));
6811 
6812 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6813 				      offsetof(struct tcp_sock, rtt_min) +
6814 				      offsetof(struct minmax_sample, v));
6815 		break;
6816 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6817 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6818 		break;
6819 	case offsetof(struct bpf_tcp_sock, srtt_us):
6820 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6821 		break;
6822 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6823 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6824 		break;
6825 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6826 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6827 		break;
6828 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6829 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6830 		break;
6831 	case offsetof(struct bpf_tcp_sock, snd_una):
6832 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6833 		break;
6834 	case offsetof(struct bpf_tcp_sock, mss_cache):
6835 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6836 		break;
6837 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6838 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6839 		break;
6840 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6841 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6842 		break;
6843 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6844 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6845 		break;
6846 	case offsetof(struct bpf_tcp_sock, packets_out):
6847 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6848 		break;
6849 	case offsetof(struct bpf_tcp_sock, retrans_out):
6850 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6851 		break;
6852 	case offsetof(struct bpf_tcp_sock, total_retrans):
6853 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6854 		break;
6855 	case offsetof(struct bpf_tcp_sock, segs_in):
6856 		BPF_TCP_SOCK_GET_COMMON(segs_in);
6857 		break;
6858 	case offsetof(struct bpf_tcp_sock, data_segs_in):
6859 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6860 		break;
6861 	case offsetof(struct bpf_tcp_sock, segs_out):
6862 		BPF_TCP_SOCK_GET_COMMON(segs_out);
6863 		break;
6864 	case offsetof(struct bpf_tcp_sock, data_segs_out):
6865 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6866 		break;
6867 	case offsetof(struct bpf_tcp_sock, lost_out):
6868 		BPF_TCP_SOCK_GET_COMMON(lost_out);
6869 		break;
6870 	case offsetof(struct bpf_tcp_sock, sacked_out):
6871 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
6872 		break;
6873 	case offsetof(struct bpf_tcp_sock, bytes_received):
6874 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
6875 		break;
6876 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6877 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6878 		break;
6879 	case offsetof(struct bpf_tcp_sock, dsack_dups):
6880 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6881 		break;
6882 	case offsetof(struct bpf_tcp_sock, delivered):
6883 		BPF_TCP_SOCK_GET_COMMON(delivered);
6884 		break;
6885 	case offsetof(struct bpf_tcp_sock, delivered_ce):
6886 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6887 		break;
6888 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6889 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6890 		break;
6891 	}
6892 
6893 	return insn - insn_buf;
6894 }
6895 
6896 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6897 {
6898 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6899 		return (unsigned long)sk;
6900 
6901 	return (unsigned long)NULL;
6902 }
6903 
6904 const struct bpf_func_proto bpf_tcp_sock_proto = {
6905 	.func		= bpf_tcp_sock,
6906 	.gpl_only	= false,
6907 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
6908 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6909 };
6910 
6911 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6912 {
6913 	sk = sk_to_full_sk(sk);
6914 
6915 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6916 		return (unsigned long)sk;
6917 
6918 	return (unsigned long)NULL;
6919 }
6920 
6921 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6922 	.func		= bpf_get_listener_sock,
6923 	.gpl_only	= false,
6924 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6925 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6926 };
6927 
6928 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6929 {
6930 	unsigned int iphdr_len;
6931 
6932 	switch (skb_protocol(skb, true)) {
6933 	case cpu_to_be16(ETH_P_IP):
6934 		iphdr_len = sizeof(struct iphdr);
6935 		break;
6936 	case cpu_to_be16(ETH_P_IPV6):
6937 		iphdr_len = sizeof(struct ipv6hdr);
6938 		break;
6939 	default:
6940 		return 0;
6941 	}
6942 
6943 	if (skb_headlen(skb) < iphdr_len)
6944 		return 0;
6945 
6946 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6947 		return 0;
6948 
6949 	return INET_ECN_set_ce(skb);
6950 }
6951 
6952 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6953 				  struct bpf_insn_access_aux *info)
6954 {
6955 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6956 		return false;
6957 
6958 	if (off % size != 0)
6959 		return false;
6960 
6961 	switch (off) {
6962 	default:
6963 		return size == sizeof(__u32);
6964 	}
6965 }
6966 
6967 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6968 				    const struct bpf_insn *si,
6969 				    struct bpf_insn *insn_buf,
6970 				    struct bpf_prog *prog, u32 *target_size)
6971 {
6972 	struct bpf_insn *insn = insn_buf;
6973 
6974 #define BPF_XDP_SOCK_GET(FIELD)						\
6975 	do {								\
6976 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
6977 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
6978 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6979 				      si->dst_reg, si->src_reg,		\
6980 				      offsetof(struct xdp_sock, FIELD)); \
6981 	} while (0)
6982 
6983 	switch (si->off) {
6984 	case offsetof(struct bpf_xdp_sock, queue_id):
6985 		BPF_XDP_SOCK_GET(queue_id);
6986 		break;
6987 	}
6988 
6989 	return insn - insn_buf;
6990 }
6991 
6992 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6993 	.func           = bpf_skb_ecn_set_ce,
6994 	.gpl_only       = false,
6995 	.ret_type       = RET_INTEGER,
6996 	.arg1_type      = ARG_PTR_TO_CTX,
6997 };
6998 
6999 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7000 	   struct tcphdr *, th, u32, th_len)
7001 {
7002 #ifdef CONFIG_SYN_COOKIES
7003 	u32 cookie;
7004 	int ret;
7005 
7006 	if (unlikely(!sk || th_len < sizeof(*th)))
7007 		return -EINVAL;
7008 
7009 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7010 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7011 		return -EINVAL;
7012 
7013 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
7014 		return -EINVAL;
7015 
7016 	if (!th->ack || th->rst || th->syn)
7017 		return -ENOENT;
7018 
7019 	if (unlikely(iph_len < sizeof(struct iphdr)))
7020 		return -EINVAL;
7021 
7022 	if (tcp_synq_no_recent_overflow(sk))
7023 		return -ENOENT;
7024 
7025 	cookie = ntohl(th->ack_seq) - 1;
7026 
7027 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7028 	 * same offset so we can cast to the shorter header (struct iphdr).
7029 	 */
7030 	switch (((struct iphdr *)iph)->version) {
7031 	case 4:
7032 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7033 			return -EINVAL;
7034 
7035 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7036 		break;
7037 
7038 #if IS_BUILTIN(CONFIG_IPV6)
7039 	case 6:
7040 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7041 			return -EINVAL;
7042 
7043 		if (sk->sk_family != AF_INET6)
7044 			return -EINVAL;
7045 
7046 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7047 		break;
7048 #endif /* CONFIG_IPV6 */
7049 
7050 	default:
7051 		return -EPROTONOSUPPORT;
7052 	}
7053 
7054 	if (ret > 0)
7055 		return 0;
7056 
7057 	return -ENOENT;
7058 #else
7059 	return -ENOTSUPP;
7060 #endif
7061 }
7062 
7063 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7064 	.func		= bpf_tcp_check_syncookie,
7065 	.gpl_only	= true,
7066 	.pkt_access	= true,
7067 	.ret_type	= RET_INTEGER,
7068 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7069 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7070 	.arg3_type	= ARG_CONST_SIZE,
7071 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7072 	.arg5_type	= ARG_CONST_SIZE,
7073 };
7074 
7075 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7076 	   struct tcphdr *, th, u32, th_len)
7077 {
7078 #ifdef CONFIG_SYN_COOKIES
7079 	u32 cookie;
7080 	u16 mss;
7081 
7082 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7083 		return -EINVAL;
7084 
7085 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7086 		return -EINVAL;
7087 
7088 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
7089 		return -ENOENT;
7090 
7091 	if (!th->syn || th->ack || th->fin || th->rst)
7092 		return -EINVAL;
7093 
7094 	if (unlikely(iph_len < sizeof(struct iphdr)))
7095 		return -EINVAL;
7096 
7097 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7098 	 * same offset so we can cast to the shorter header (struct iphdr).
7099 	 */
7100 	switch (((struct iphdr *)iph)->version) {
7101 	case 4:
7102 		if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
7103 			return -EINVAL;
7104 
7105 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7106 		break;
7107 
7108 #if IS_BUILTIN(CONFIG_IPV6)
7109 	case 6:
7110 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7111 			return -EINVAL;
7112 
7113 		if (sk->sk_family != AF_INET6)
7114 			return -EINVAL;
7115 
7116 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7117 		break;
7118 #endif /* CONFIG_IPV6 */
7119 
7120 	default:
7121 		return -EPROTONOSUPPORT;
7122 	}
7123 	if (mss == 0)
7124 		return -ENOENT;
7125 
7126 	return cookie | ((u64)mss << 32);
7127 #else
7128 	return -EOPNOTSUPP;
7129 #endif /* CONFIG_SYN_COOKIES */
7130 }
7131 
7132 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7133 	.func		= bpf_tcp_gen_syncookie,
7134 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7135 	.pkt_access	= true,
7136 	.ret_type	= RET_INTEGER,
7137 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7138 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7139 	.arg3_type	= ARG_CONST_SIZE,
7140 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7141 	.arg5_type	= ARG_CONST_SIZE,
7142 };
7143 
7144 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7145 {
7146 	if (!sk || flags != 0)
7147 		return -EINVAL;
7148 	if (!skb_at_tc_ingress(skb))
7149 		return -EOPNOTSUPP;
7150 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7151 		return -ENETUNREACH;
7152 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7153 		return -ESOCKTNOSUPPORT;
7154 	if (sk_is_refcounted(sk) &&
7155 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7156 		return -ENOENT;
7157 
7158 	skb_orphan(skb);
7159 	skb->sk = sk;
7160 	skb->destructor = sock_pfree;
7161 
7162 	return 0;
7163 }
7164 
7165 static const struct bpf_func_proto bpf_sk_assign_proto = {
7166 	.func		= bpf_sk_assign,
7167 	.gpl_only	= false,
7168 	.ret_type	= RET_INTEGER,
7169 	.arg1_type      = ARG_PTR_TO_CTX,
7170 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7171 	.arg3_type	= ARG_ANYTHING,
7172 };
7173 
7174 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7175 				    u8 search_kind, const u8 *magic,
7176 				    u8 magic_len, bool *eol)
7177 {
7178 	u8 kind, kind_len;
7179 
7180 	*eol = false;
7181 
7182 	while (op < opend) {
7183 		kind = op[0];
7184 
7185 		if (kind == TCPOPT_EOL) {
7186 			*eol = true;
7187 			return ERR_PTR(-ENOMSG);
7188 		} else if (kind == TCPOPT_NOP) {
7189 			op++;
7190 			continue;
7191 		}
7192 
7193 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7194 			/* Something is wrong in the received header.
7195 			 * Follow the TCP stack's tcp_parse_options()
7196 			 * and just bail here.
7197 			 */
7198 			return ERR_PTR(-EFAULT);
7199 
7200 		kind_len = op[1];
7201 		if (search_kind == kind) {
7202 			if (!magic_len)
7203 				return op;
7204 
7205 			if (magic_len > kind_len - 2)
7206 				return ERR_PTR(-ENOMSG);
7207 
7208 			if (!memcmp(&op[2], magic, magic_len))
7209 				return op;
7210 		}
7211 
7212 		op += kind_len;
7213 	}
7214 
7215 	return ERR_PTR(-ENOMSG);
7216 }
7217 
7218 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7219 	   void *, search_res, u32, len, u64, flags)
7220 {
7221 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7222 	const u8 *op, *opend, *magic, *search = search_res;
7223 	u8 search_kind, search_len, copy_len, magic_len;
7224 	int ret;
7225 
7226 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7227 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7228 	 * and this helper disallow loading them also.
7229 	 */
7230 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7231 		return -EINVAL;
7232 
7233 	search_kind = search[0];
7234 	search_len = search[1];
7235 
7236 	if (search_len > len || search_kind == TCPOPT_NOP ||
7237 	    search_kind == TCPOPT_EOL)
7238 		return -EINVAL;
7239 
7240 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7241 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7242 		if (search_len != 4 && search_len != 6)
7243 			return -EINVAL;
7244 		magic = &search[2];
7245 		magic_len = search_len - 2;
7246 	} else {
7247 		if (search_len)
7248 			return -EINVAL;
7249 		magic = NULL;
7250 		magic_len = 0;
7251 	}
7252 
7253 	if (load_syn) {
7254 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7255 		if (ret < 0)
7256 			return ret;
7257 
7258 		opend = op + ret;
7259 		op += sizeof(struct tcphdr);
7260 	} else {
7261 		if (!bpf_sock->skb ||
7262 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7263 			/* This bpf_sock->op cannot call this helper */
7264 			return -EPERM;
7265 
7266 		opend = bpf_sock->skb_data_end;
7267 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7268 	}
7269 
7270 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7271 				&eol);
7272 	if (IS_ERR(op))
7273 		return PTR_ERR(op);
7274 
7275 	copy_len = op[1];
7276 	ret = copy_len;
7277 	if (copy_len > len) {
7278 		ret = -ENOSPC;
7279 		copy_len = len;
7280 	}
7281 
7282 	memcpy(search_res, op, copy_len);
7283 	return ret;
7284 }
7285 
7286 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7287 	.func		= bpf_sock_ops_load_hdr_opt,
7288 	.gpl_only	= false,
7289 	.ret_type	= RET_INTEGER,
7290 	.arg1_type	= ARG_PTR_TO_CTX,
7291 	.arg2_type	= ARG_PTR_TO_MEM,
7292 	.arg3_type	= ARG_CONST_SIZE,
7293 	.arg4_type	= ARG_ANYTHING,
7294 };
7295 
7296 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7297 	   const void *, from, u32, len, u64, flags)
7298 {
7299 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7300 	const u8 *op, *new_op, *magic = NULL;
7301 	struct sk_buff *skb;
7302 	bool eol;
7303 
7304 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7305 		return -EPERM;
7306 
7307 	if (len < 2 || flags)
7308 		return -EINVAL;
7309 
7310 	new_op = from;
7311 	new_kind = new_op[0];
7312 	new_kind_len = new_op[1];
7313 
7314 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7315 	    new_kind == TCPOPT_EOL)
7316 		return -EINVAL;
7317 
7318 	if (new_kind_len > bpf_sock->remaining_opt_len)
7319 		return -ENOSPC;
7320 
7321 	/* 253 is another experimental kind */
7322 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7323 		if (new_kind_len < 4)
7324 			return -EINVAL;
7325 		/* Match for the 2 byte magic also.
7326 		 * RFC 6994: the magic could be 2 or 4 bytes.
7327 		 * Hence, matching by 2 byte only is on the
7328 		 * conservative side but it is the right
7329 		 * thing to do for the 'search-for-duplication'
7330 		 * purpose.
7331 		 */
7332 		magic = &new_op[2];
7333 		magic_len = 2;
7334 	}
7335 
7336 	/* Check for duplication */
7337 	skb = bpf_sock->skb;
7338 	op = skb->data + sizeof(struct tcphdr);
7339 	opend = bpf_sock->skb_data_end;
7340 
7341 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7342 				&eol);
7343 	if (!IS_ERR(op))
7344 		return -EEXIST;
7345 
7346 	if (PTR_ERR(op) != -ENOMSG)
7347 		return PTR_ERR(op);
7348 
7349 	if (eol)
7350 		/* The option has been ended.  Treat it as no more
7351 		 * header option can be written.
7352 		 */
7353 		return -ENOSPC;
7354 
7355 	/* No duplication found.  Store the header option. */
7356 	memcpy(opend, from, new_kind_len);
7357 
7358 	bpf_sock->remaining_opt_len -= new_kind_len;
7359 	bpf_sock->skb_data_end += new_kind_len;
7360 
7361 	return 0;
7362 }
7363 
7364 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7365 	.func		= bpf_sock_ops_store_hdr_opt,
7366 	.gpl_only	= false,
7367 	.ret_type	= RET_INTEGER,
7368 	.arg1_type	= ARG_PTR_TO_CTX,
7369 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7370 	.arg3_type	= ARG_CONST_SIZE,
7371 	.arg4_type	= ARG_ANYTHING,
7372 };
7373 
7374 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7375 	   u32, len, u64, flags)
7376 {
7377 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7378 		return -EPERM;
7379 
7380 	if (flags || len < 2)
7381 		return -EINVAL;
7382 
7383 	if (len > bpf_sock->remaining_opt_len)
7384 		return -ENOSPC;
7385 
7386 	bpf_sock->remaining_opt_len -= len;
7387 
7388 	return 0;
7389 }
7390 
7391 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7392 	.func		= bpf_sock_ops_reserve_hdr_opt,
7393 	.gpl_only	= false,
7394 	.ret_type	= RET_INTEGER,
7395 	.arg1_type	= ARG_PTR_TO_CTX,
7396 	.arg2_type	= ARG_ANYTHING,
7397 	.arg3_type	= ARG_ANYTHING,
7398 };
7399 
7400 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7401 	   u64, tstamp, u32, tstamp_type)
7402 {
7403 	/* skb_clear_delivery_time() is done for inet protocol */
7404 	if (skb->protocol != htons(ETH_P_IP) &&
7405 	    skb->protocol != htons(ETH_P_IPV6))
7406 		return -EOPNOTSUPP;
7407 
7408 	switch (tstamp_type) {
7409 	case BPF_SKB_TSTAMP_DELIVERY_MONO:
7410 		if (!tstamp)
7411 			return -EINVAL;
7412 		skb->tstamp = tstamp;
7413 		skb->mono_delivery_time = 1;
7414 		break;
7415 	case BPF_SKB_TSTAMP_UNSPEC:
7416 		if (tstamp)
7417 			return -EINVAL;
7418 		skb->tstamp = 0;
7419 		skb->mono_delivery_time = 0;
7420 		break;
7421 	default:
7422 		return -EINVAL;
7423 	}
7424 
7425 	return 0;
7426 }
7427 
7428 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7429 	.func           = bpf_skb_set_tstamp,
7430 	.gpl_only       = false,
7431 	.ret_type       = RET_INTEGER,
7432 	.arg1_type      = ARG_PTR_TO_CTX,
7433 	.arg2_type      = ARG_ANYTHING,
7434 	.arg3_type      = ARG_ANYTHING,
7435 };
7436 
7437 #endif /* CONFIG_INET */
7438 
7439 bool bpf_helper_changes_pkt_data(void *func)
7440 {
7441 	if (func == bpf_skb_vlan_push ||
7442 	    func == bpf_skb_vlan_pop ||
7443 	    func == bpf_skb_store_bytes ||
7444 	    func == bpf_skb_change_proto ||
7445 	    func == bpf_skb_change_head ||
7446 	    func == sk_skb_change_head ||
7447 	    func == bpf_skb_change_tail ||
7448 	    func == sk_skb_change_tail ||
7449 	    func == bpf_skb_adjust_room ||
7450 	    func == sk_skb_adjust_room ||
7451 	    func == bpf_skb_pull_data ||
7452 	    func == sk_skb_pull_data ||
7453 	    func == bpf_clone_redirect ||
7454 	    func == bpf_l3_csum_replace ||
7455 	    func == bpf_l4_csum_replace ||
7456 	    func == bpf_xdp_adjust_head ||
7457 	    func == bpf_xdp_adjust_meta ||
7458 	    func == bpf_msg_pull_data ||
7459 	    func == bpf_msg_push_data ||
7460 	    func == bpf_msg_pop_data ||
7461 	    func == bpf_xdp_adjust_tail ||
7462 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7463 	    func == bpf_lwt_seg6_store_bytes ||
7464 	    func == bpf_lwt_seg6_adjust_srh ||
7465 	    func == bpf_lwt_seg6_action ||
7466 #endif
7467 #ifdef CONFIG_INET
7468 	    func == bpf_sock_ops_store_hdr_opt ||
7469 #endif
7470 	    func == bpf_lwt_in_push_encap ||
7471 	    func == bpf_lwt_xmit_push_encap)
7472 		return true;
7473 
7474 	return false;
7475 }
7476 
7477 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7478 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7479 
7480 static const struct bpf_func_proto *
7481 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7482 {
7483 	switch (func_id) {
7484 	/* inet and inet6 sockets are created in a process
7485 	 * context so there is always a valid uid/gid
7486 	 */
7487 	case BPF_FUNC_get_current_uid_gid:
7488 		return &bpf_get_current_uid_gid_proto;
7489 	case BPF_FUNC_get_local_storage:
7490 		return &bpf_get_local_storage_proto;
7491 	case BPF_FUNC_get_socket_cookie:
7492 		return &bpf_get_socket_cookie_sock_proto;
7493 	case BPF_FUNC_get_netns_cookie:
7494 		return &bpf_get_netns_cookie_sock_proto;
7495 	case BPF_FUNC_perf_event_output:
7496 		return &bpf_event_output_data_proto;
7497 	case BPF_FUNC_get_current_pid_tgid:
7498 		return &bpf_get_current_pid_tgid_proto;
7499 	case BPF_FUNC_get_current_comm:
7500 		return &bpf_get_current_comm_proto;
7501 #ifdef CONFIG_CGROUPS
7502 	case BPF_FUNC_get_current_cgroup_id:
7503 		return &bpf_get_current_cgroup_id_proto;
7504 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7505 		return &bpf_get_current_ancestor_cgroup_id_proto;
7506 #endif
7507 #ifdef CONFIG_CGROUP_NET_CLASSID
7508 	case BPF_FUNC_get_cgroup_classid:
7509 		return &bpf_get_cgroup_classid_curr_proto;
7510 #endif
7511 	case BPF_FUNC_sk_storage_get:
7512 		return &bpf_sk_storage_get_cg_sock_proto;
7513 	case BPF_FUNC_ktime_get_coarse_ns:
7514 		return &bpf_ktime_get_coarse_ns_proto;
7515 	default:
7516 		return bpf_base_func_proto(func_id);
7517 	}
7518 }
7519 
7520 static const struct bpf_func_proto *
7521 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7522 {
7523 	switch (func_id) {
7524 	/* inet and inet6 sockets are created in a process
7525 	 * context so there is always a valid uid/gid
7526 	 */
7527 	case BPF_FUNC_get_current_uid_gid:
7528 		return &bpf_get_current_uid_gid_proto;
7529 	case BPF_FUNC_bind:
7530 		switch (prog->expected_attach_type) {
7531 		case BPF_CGROUP_INET4_CONNECT:
7532 		case BPF_CGROUP_INET6_CONNECT:
7533 			return &bpf_bind_proto;
7534 		default:
7535 			return NULL;
7536 		}
7537 	case BPF_FUNC_get_socket_cookie:
7538 		return &bpf_get_socket_cookie_sock_addr_proto;
7539 	case BPF_FUNC_get_netns_cookie:
7540 		return &bpf_get_netns_cookie_sock_addr_proto;
7541 	case BPF_FUNC_get_local_storage:
7542 		return &bpf_get_local_storage_proto;
7543 	case BPF_FUNC_perf_event_output:
7544 		return &bpf_event_output_data_proto;
7545 	case BPF_FUNC_get_current_pid_tgid:
7546 		return &bpf_get_current_pid_tgid_proto;
7547 	case BPF_FUNC_get_current_comm:
7548 		return &bpf_get_current_comm_proto;
7549 #ifdef CONFIG_CGROUPS
7550 	case BPF_FUNC_get_current_cgroup_id:
7551 		return &bpf_get_current_cgroup_id_proto;
7552 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7553 		return &bpf_get_current_ancestor_cgroup_id_proto;
7554 #endif
7555 #ifdef CONFIG_CGROUP_NET_CLASSID
7556 	case BPF_FUNC_get_cgroup_classid:
7557 		return &bpf_get_cgroup_classid_curr_proto;
7558 #endif
7559 #ifdef CONFIG_INET
7560 	case BPF_FUNC_sk_lookup_tcp:
7561 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7562 	case BPF_FUNC_sk_lookup_udp:
7563 		return &bpf_sock_addr_sk_lookup_udp_proto;
7564 	case BPF_FUNC_sk_release:
7565 		return &bpf_sk_release_proto;
7566 	case BPF_FUNC_skc_lookup_tcp:
7567 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7568 #endif /* CONFIG_INET */
7569 	case BPF_FUNC_sk_storage_get:
7570 		return &bpf_sk_storage_get_proto;
7571 	case BPF_FUNC_sk_storage_delete:
7572 		return &bpf_sk_storage_delete_proto;
7573 	case BPF_FUNC_setsockopt:
7574 		switch (prog->expected_attach_type) {
7575 		case BPF_CGROUP_INET4_BIND:
7576 		case BPF_CGROUP_INET6_BIND:
7577 		case BPF_CGROUP_INET4_CONNECT:
7578 		case BPF_CGROUP_INET6_CONNECT:
7579 		case BPF_CGROUP_UDP4_RECVMSG:
7580 		case BPF_CGROUP_UDP6_RECVMSG:
7581 		case BPF_CGROUP_UDP4_SENDMSG:
7582 		case BPF_CGROUP_UDP6_SENDMSG:
7583 		case BPF_CGROUP_INET4_GETPEERNAME:
7584 		case BPF_CGROUP_INET6_GETPEERNAME:
7585 		case BPF_CGROUP_INET4_GETSOCKNAME:
7586 		case BPF_CGROUP_INET6_GETSOCKNAME:
7587 			return &bpf_sock_addr_setsockopt_proto;
7588 		default:
7589 			return NULL;
7590 		}
7591 	case BPF_FUNC_getsockopt:
7592 		switch (prog->expected_attach_type) {
7593 		case BPF_CGROUP_INET4_BIND:
7594 		case BPF_CGROUP_INET6_BIND:
7595 		case BPF_CGROUP_INET4_CONNECT:
7596 		case BPF_CGROUP_INET6_CONNECT:
7597 		case BPF_CGROUP_UDP4_RECVMSG:
7598 		case BPF_CGROUP_UDP6_RECVMSG:
7599 		case BPF_CGROUP_UDP4_SENDMSG:
7600 		case BPF_CGROUP_UDP6_SENDMSG:
7601 		case BPF_CGROUP_INET4_GETPEERNAME:
7602 		case BPF_CGROUP_INET6_GETPEERNAME:
7603 		case BPF_CGROUP_INET4_GETSOCKNAME:
7604 		case BPF_CGROUP_INET6_GETSOCKNAME:
7605 			return &bpf_sock_addr_getsockopt_proto;
7606 		default:
7607 			return NULL;
7608 		}
7609 	default:
7610 		return bpf_sk_base_func_proto(func_id);
7611 	}
7612 }
7613 
7614 static const struct bpf_func_proto *
7615 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7616 {
7617 	switch (func_id) {
7618 	case BPF_FUNC_skb_load_bytes:
7619 		return &bpf_skb_load_bytes_proto;
7620 	case BPF_FUNC_skb_load_bytes_relative:
7621 		return &bpf_skb_load_bytes_relative_proto;
7622 	case BPF_FUNC_get_socket_cookie:
7623 		return &bpf_get_socket_cookie_proto;
7624 	case BPF_FUNC_get_socket_uid:
7625 		return &bpf_get_socket_uid_proto;
7626 	case BPF_FUNC_perf_event_output:
7627 		return &bpf_skb_event_output_proto;
7628 	default:
7629 		return bpf_sk_base_func_proto(func_id);
7630 	}
7631 }
7632 
7633 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7634 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7635 
7636 static const struct bpf_func_proto *
7637 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7638 {
7639 	switch (func_id) {
7640 	case BPF_FUNC_get_local_storage:
7641 		return &bpf_get_local_storage_proto;
7642 	case BPF_FUNC_sk_fullsock:
7643 		return &bpf_sk_fullsock_proto;
7644 	case BPF_FUNC_sk_storage_get:
7645 		return &bpf_sk_storage_get_proto;
7646 	case BPF_FUNC_sk_storage_delete:
7647 		return &bpf_sk_storage_delete_proto;
7648 	case BPF_FUNC_perf_event_output:
7649 		return &bpf_skb_event_output_proto;
7650 #ifdef CONFIG_SOCK_CGROUP_DATA
7651 	case BPF_FUNC_skb_cgroup_id:
7652 		return &bpf_skb_cgroup_id_proto;
7653 	case BPF_FUNC_skb_ancestor_cgroup_id:
7654 		return &bpf_skb_ancestor_cgroup_id_proto;
7655 	case BPF_FUNC_sk_cgroup_id:
7656 		return &bpf_sk_cgroup_id_proto;
7657 	case BPF_FUNC_sk_ancestor_cgroup_id:
7658 		return &bpf_sk_ancestor_cgroup_id_proto;
7659 #endif
7660 #ifdef CONFIG_INET
7661 	case BPF_FUNC_sk_lookup_tcp:
7662 		return &bpf_sk_lookup_tcp_proto;
7663 	case BPF_FUNC_sk_lookup_udp:
7664 		return &bpf_sk_lookup_udp_proto;
7665 	case BPF_FUNC_sk_release:
7666 		return &bpf_sk_release_proto;
7667 	case BPF_FUNC_skc_lookup_tcp:
7668 		return &bpf_skc_lookup_tcp_proto;
7669 	case BPF_FUNC_tcp_sock:
7670 		return &bpf_tcp_sock_proto;
7671 	case BPF_FUNC_get_listener_sock:
7672 		return &bpf_get_listener_sock_proto;
7673 	case BPF_FUNC_skb_ecn_set_ce:
7674 		return &bpf_skb_ecn_set_ce_proto;
7675 #endif
7676 	default:
7677 		return sk_filter_func_proto(func_id, prog);
7678 	}
7679 }
7680 
7681 static const struct bpf_func_proto *
7682 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7683 {
7684 	switch (func_id) {
7685 	case BPF_FUNC_skb_store_bytes:
7686 		return &bpf_skb_store_bytes_proto;
7687 	case BPF_FUNC_skb_load_bytes:
7688 		return &bpf_skb_load_bytes_proto;
7689 	case BPF_FUNC_skb_load_bytes_relative:
7690 		return &bpf_skb_load_bytes_relative_proto;
7691 	case BPF_FUNC_skb_pull_data:
7692 		return &bpf_skb_pull_data_proto;
7693 	case BPF_FUNC_csum_diff:
7694 		return &bpf_csum_diff_proto;
7695 	case BPF_FUNC_csum_update:
7696 		return &bpf_csum_update_proto;
7697 	case BPF_FUNC_csum_level:
7698 		return &bpf_csum_level_proto;
7699 	case BPF_FUNC_l3_csum_replace:
7700 		return &bpf_l3_csum_replace_proto;
7701 	case BPF_FUNC_l4_csum_replace:
7702 		return &bpf_l4_csum_replace_proto;
7703 	case BPF_FUNC_clone_redirect:
7704 		return &bpf_clone_redirect_proto;
7705 	case BPF_FUNC_get_cgroup_classid:
7706 		return &bpf_get_cgroup_classid_proto;
7707 	case BPF_FUNC_skb_vlan_push:
7708 		return &bpf_skb_vlan_push_proto;
7709 	case BPF_FUNC_skb_vlan_pop:
7710 		return &bpf_skb_vlan_pop_proto;
7711 	case BPF_FUNC_skb_change_proto:
7712 		return &bpf_skb_change_proto_proto;
7713 	case BPF_FUNC_skb_change_type:
7714 		return &bpf_skb_change_type_proto;
7715 	case BPF_FUNC_skb_adjust_room:
7716 		return &bpf_skb_adjust_room_proto;
7717 	case BPF_FUNC_skb_change_tail:
7718 		return &bpf_skb_change_tail_proto;
7719 	case BPF_FUNC_skb_change_head:
7720 		return &bpf_skb_change_head_proto;
7721 	case BPF_FUNC_skb_get_tunnel_key:
7722 		return &bpf_skb_get_tunnel_key_proto;
7723 	case BPF_FUNC_skb_set_tunnel_key:
7724 		return bpf_get_skb_set_tunnel_proto(func_id);
7725 	case BPF_FUNC_skb_get_tunnel_opt:
7726 		return &bpf_skb_get_tunnel_opt_proto;
7727 	case BPF_FUNC_skb_set_tunnel_opt:
7728 		return bpf_get_skb_set_tunnel_proto(func_id);
7729 	case BPF_FUNC_redirect:
7730 		return &bpf_redirect_proto;
7731 	case BPF_FUNC_redirect_neigh:
7732 		return &bpf_redirect_neigh_proto;
7733 	case BPF_FUNC_redirect_peer:
7734 		return &bpf_redirect_peer_proto;
7735 	case BPF_FUNC_get_route_realm:
7736 		return &bpf_get_route_realm_proto;
7737 	case BPF_FUNC_get_hash_recalc:
7738 		return &bpf_get_hash_recalc_proto;
7739 	case BPF_FUNC_set_hash_invalid:
7740 		return &bpf_set_hash_invalid_proto;
7741 	case BPF_FUNC_set_hash:
7742 		return &bpf_set_hash_proto;
7743 	case BPF_FUNC_perf_event_output:
7744 		return &bpf_skb_event_output_proto;
7745 	case BPF_FUNC_get_smp_processor_id:
7746 		return &bpf_get_smp_processor_id_proto;
7747 	case BPF_FUNC_skb_under_cgroup:
7748 		return &bpf_skb_under_cgroup_proto;
7749 	case BPF_FUNC_get_socket_cookie:
7750 		return &bpf_get_socket_cookie_proto;
7751 	case BPF_FUNC_get_socket_uid:
7752 		return &bpf_get_socket_uid_proto;
7753 	case BPF_FUNC_fib_lookup:
7754 		return &bpf_skb_fib_lookup_proto;
7755 	case BPF_FUNC_check_mtu:
7756 		return &bpf_skb_check_mtu_proto;
7757 	case BPF_FUNC_sk_fullsock:
7758 		return &bpf_sk_fullsock_proto;
7759 	case BPF_FUNC_sk_storage_get:
7760 		return &bpf_sk_storage_get_proto;
7761 	case BPF_FUNC_sk_storage_delete:
7762 		return &bpf_sk_storage_delete_proto;
7763 #ifdef CONFIG_XFRM
7764 	case BPF_FUNC_skb_get_xfrm_state:
7765 		return &bpf_skb_get_xfrm_state_proto;
7766 #endif
7767 #ifdef CONFIG_CGROUP_NET_CLASSID
7768 	case BPF_FUNC_skb_cgroup_classid:
7769 		return &bpf_skb_cgroup_classid_proto;
7770 #endif
7771 #ifdef CONFIG_SOCK_CGROUP_DATA
7772 	case BPF_FUNC_skb_cgroup_id:
7773 		return &bpf_skb_cgroup_id_proto;
7774 	case BPF_FUNC_skb_ancestor_cgroup_id:
7775 		return &bpf_skb_ancestor_cgroup_id_proto;
7776 #endif
7777 #ifdef CONFIG_INET
7778 	case BPF_FUNC_sk_lookup_tcp:
7779 		return &bpf_sk_lookup_tcp_proto;
7780 	case BPF_FUNC_sk_lookup_udp:
7781 		return &bpf_sk_lookup_udp_proto;
7782 	case BPF_FUNC_sk_release:
7783 		return &bpf_sk_release_proto;
7784 	case BPF_FUNC_tcp_sock:
7785 		return &bpf_tcp_sock_proto;
7786 	case BPF_FUNC_get_listener_sock:
7787 		return &bpf_get_listener_sock_proto;
7788 	case BPF_FUNC_skc_lookup_tcp:
7789 		return &bpf_skc_lookup_tcp_proto;
7790 	case BPF_FUNC_tcp_check_syncookie:
7791 		return &bpf_tcp_check_syncookie_proto;
7792 	case BPF_FUNC_skb_ecn_set_ce:
7793 		return &bpf_skb_ecn_set_ce_proto;
7794 	case BPF_FUNC_tcp_gen_syncookie:
7795 		return &bpf_tcp_gen_syncookie_proto;
7796 	case BPF_FUNC_sk_assign:
7797 		return &bpf_sk_assign_proto;
7798 	case BPF_FUNC_skb_set_tstamp:
7799 		return &bpf_skb_set_tstamp_proto;
7800 #endif
7801 	default:
7802 		return bpf_sk_base_func_proto(func_id);
7803 	}
7804 }
7805 
7806 static const struct bpf_func_proto *
7807 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7808 {
7809 	switch (func_id) {
7810 	case BPF_FUNC_perf_event_output:
7811 		return &bpf_xdp_event_output_proto;
7812 	case BPF_FUNC_get_smp_processor_id:
7813 		return &bpf_get_smp_processor_id_proto;
7814 	case BPF_FUNC_csum_diff:
7815 		return &bpf_csum_diff_proto;
7816 	case BPF_FUNC_xdp_adjust_head:
7817 		return &bpf_xdp_adjust_head_proto;
7818 	case BPF_FUNC_xdp_adjust_meta:
7819 		return &bpf_xdp_adjust_meta_proto;
7820 	case BPF_FUNC_redirect:
7821 		return &bpf_xdp_redirect_proto;
7822 	case BPF_FUNC_redirect_map:
7823 		return &bpf_xdp_redirect_map_proto;
7824 	case BPF_FUNC_xdp_adjust_tail:
7825 		return &bpf_xdp_adjust_tail_proto;
7826 	case BPF_FUNC_xdp_get_buff_len:
7827 		return &bpf_xdp_get_buff_len_proto;
7828 	case BPF_FUNC_xdp_load_bytes:
7829 		return &bpf_xdp_load_bytes_proto;
7830 	case BPF_FUNC_xdp_store_bytes:
7831 		return &bpf_xdp_store_bytes_proto;
7832 	case BPF_FUNC_fib_lookup:
7833 		return &bpf_xdp_fib_lookup_proto;
7834 	case BPF_FUNC_check_mtu:
7835 		return &bpf_xdp_check_mtu_proto;
7836 #ifdef CONFIG_INET
7837 	case BPF_FUNC_sk_lookup_udp:
7838 		return &bpf_xdp_sk_lookup_udp_proto;
7839 	case BPF_FUNC_sk_lookup_tcp:
7840 		return &bpf_xdp_sk_lookup_tcp_proto;
7841 	case BPF_FUNC_sk_release:
7842 		return &bpf_sk_release_proto;
7843 	case BPF_FUNC_skc_lookup_tcp:
7844 		return &bpf_xdp_skc_lookup_tcp_proto;
7845 	case BPF_FUNC_tcp_check_syncookie:
7846 		return &bpf_tcp_check_syncookie_proto;
7847 	case BPF_FUNC_tcp_gen_syncookie:
7848 		return &bpf_tcp_gen_syncookie_proto;
7849 #endif
7850 	default:
7851 		return bpf_sk_base_func_proto(func_id);
7852 	}
7853 }
7854 
7855 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7856 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7857 
7858 static const struct bpf_func_proto *
7859 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7860 {
7861 	switch (func_id) {
7862 	case BPF_FUNC_setsockopt:
7863 		return &bpf_sock_ops_setsockopt_proto;
7864 	case BPF_FUNC_getsockopt:
7865 		return &bpf_sock_ops_getsockopt_proto;
7866 	case BPF_FUNC_sock_ops_cb_flags_set:
7867 		return &bpf_sock_ops_cb_flags_set_proto;
7868 	case BPF_FUNC_sock_map_update:
7869 		return &bpf_sock_map_update_proto;
7870 	case BPF_FUNC_sock_hash_update:
7871 		return &bpf_sock_hash_update_proto;
7872 	case BPF_FUNC_get_socket_cookie:
7873 		return &bpf_get_socket_cookie_sock_ops_proto;
7874 	case BPF_FUNC_get_local_storage:
7875 		return &bpf_get_local_storage_proto;
7876 	case BPF_FUNC_perf_event_output:
7877 		return &bpf_event_output_data_proto;
7878 	case BPF_FUNC_sk_storage_get:
7879 		return &bpf_sk_storage_get_proto;
7880 	case BPF_FUNC_sk_storage_delete:
7881 		return &bpf_sk_storage_delete_proto;
7882 	case BPF_FUNC_get_netns_cookie:
7883 		return &bpf_get_netns_cookie_sock_ops_proto;
7884 #ifdef CONFIG_INET
7885 	case BPF_FUNC_load_hdr_opt:
7886 		return &bpf_sock_ops_load_hdr_opt_proto;
7887 	case BPF_FUNC_store_hdr_opt:
7888 		return &bpf_sock_ops_store_hdr_opt_proto;
7889 	case BPF_FUNC_reserve_hdr_opt:
7890 		return &bpf_sock_ops_reserve_hdr_opt_proto;
7891 	case BPF_FUNC_tcp_sock:
7892 		return &bpf_tcp_sock_proto;
7893 #endif /* CONFIG_INET */
7894 	default:
7895 		return bpf_sk_base_func_proto(func_id);
7896 	}
7897 }
7898 
7899 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7900 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7901 
7902 static const struct bpf_func_proto *
7903 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7904 {
7905 	switch (func_id) {
7906 	case BPF_FUNC_msg_redirect_map:
7907 		return &bpf_msg_redirect_map_proto;
7908 	case BPF_FUNC_msg_redirect_hash:
7909 		return &bpf_msg_redirect_hash_proto;
7910 	case BPF_FUNC_msg_apply_bytes:
7911 		return &bpf_msg_apply_bytes_proto;
7912 	case BPF_FUNC_msg_cork_bytes:
7913 		return &bpf_msg_cork_bytes_proto;
7914 	case BPF_FUNC_msg_pull_data:
7915 		return &bpf_msg_pull_data_proto;
7916 	case BPF_FUNC_msg_push_data:
7917 		return &bpf_msg_push_data_proto;
7918 	case BPF_FUNC_msg_pop_data:
7919 		return &bpf_msg_pop_data_proto;
7920 	case BPF_FUNC_perf_event_output:
7921 		return &bpf_event_output_data_proto;
7922 	case BPF_FUNC_get_current_uid_gid:
7923 		return &bpf_get_current_uid_gid_proto;
7924 	case BPF_FUNC_get_current_pid_tgid:
7925 		return &bpf_get_current_pid_tgid_proto;
7926 	case BPF_FUNC_sk_storage_get:
7927 		return &bpf_sk_storage_get_proto;
7928 	case BPF_FUNC_sk_storage_delete:
7929 		return &bpf_sk_storage_delete_proto;
7930 	case BPF_FUNC_get_netns_cookie:
7931 		return &bpf_get_netns_cookie_sk_msg_proto;
7932 #ifdef CONFIG_CGROUPS
7933 	case BPF_FUNC_get_current_cgroup_id:
7934 		return &bpf_get_current_cgroup_id_proto;
7935 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7936 		return &bpf_get_current_ancestor_cgroup_id_proto;
7937 #endif
7938 #ifdef CONFIG_CGROUP_NET_CLASSID
7939 	case BPF_FUNC_get_cgroup_classid:
7940 		return &bpf_get_cgroup_classid_curr_proto;
7941 #endif
7942 	default:
7943 		return bpf_sk_base_func_proto(func_id);
7944 	}
7945 }
7946 
7947 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7948 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7949 
7950 static const struct bpf_func_proto *
7951 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7952 {
7953 	switch (func_id) {
7954 	case BPF_FUNC_skb_store_bytes:
7955 		return &bpf_skb_store_bytes_proto;
7956 	case BPF_FUNC_skb_load_bytes:
7957 		return &bpf_skb_load_bytes_proto;
7958 	case BPF_FUNC_skb_pull_data:
7959 		return &sk_skb_pull_data_proto;
7960 	case BPF_FUNC_skb_change_tail:
7961 		return &sk_skb_change_tail_proto;
7962 	case BPF_FUNC_skb_change_head:
7963 		return &sk_skb_change_head_proto;
7964 	case BPF_FUNC_skb_adjust_room:
7965 		return &sk_skb_adjust_room_proto;
7966 	case BPF_FUNC_get_socket_cookie:
7967 		return &bpf_get_socket_cookie_proto;
7968 	case BPF_FUNC_get_socket_uid:
7969 		return &bpf_get_socket_uid_proto;
7970 	case BPF_FUNC_sk_redirect_map:
7971 		return &bpf_sk_redirect_map_proto;
7972 	case BPF_FUNC_sk_redirect_hash:
7973 		return &bpf_sk_redirect_hash_proto;
7974 	case BPF_FUNC_perf_event_output:
7975 		return &bpf_skb_event_output_proto;
7976 #ifdef CONFIG_INET
7977 	case BPF_FUNC_sk_lookup_tcp:
7978 		return &bpf_sk_lookup_tcp_proto;
7979 	case BPF_FUNC_sk_lookup_udp:
7980 		return &bpf_sk_lookup_udp_proto;
7981 	case BPF_FUNC_sk_release:
7982 		return &bpf_sk_release_proto;
7983 	case BPF_FUNC_skc_lookup_tcp:
7984 		return &bpf_skc_lookup_tcp_proto;
7985 #endif
7986 	default:
7987 		return bpf_sk_base_func_proto(func_id);
7988 	}
7989 }
7990 
7991 static const struct bpf_func_proto *
7992 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7993 {
7994 	switch (func_id) {
7995 	case BPF_FUNC_skb_load_bytes:
7996 		return &bpf_flow_dissector_load_bytes_proto;
7997 	default:
7998 		return bpf_sk_base_func_proto(func_id);
7999 	}
8000 }
8001 
8002 static const struct bpf_func_proto *
8003 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8004 {
8005 	switch (func_id) {
8006 	case BPF_FUNC_skb_load_bytes:
8007 		return &bpf_skb_load_bytes_proto;
8008 	case BPF_FUNC_skb_pull_data:
8009 		return &bpf_skb_pull_data_proto;
8010 	case BPF_FUNC_csum_diff:
8011 		return &bpf_csum_diff_proto;
8012 	case BPF_FUNC_get_cgroup_classid:
8013 		return &bpf_get_cgroup_classid_proto;
8014 	case BPF_FUNC_get_route_realm:
8015 		return &bpf_get_route_realm_proto;
8016 	case BPF_FUNC_get_hash_recalc:
8017 		return &bpf_get_hash_recalc_proto;
8018 	case BPF_FUNC_perf_event_output:
8019 		return &bpf_skb_event_output_proto;
8020 	case BPF_FUNC_get_smp_processor_id:
8021 		return &bpf_get_smp_processor_id_proto;
8022 	case BPF_FUNC_skb_under_cgroup:
8023 		return &bpf_skb_under_cgroup_proto;
8024 	default:
8025 		return bpf_sk_base_func_proto(func_id);
8026 	}
8027 }
8028 
8029 static const struct bpf_func_proto *
8030 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8031 {
8032 	switch (func_id) {
8033 	case BPF_FUNC_lwt_push_encap:
8034 		return &bpf_lwt_in_push_encap_proto;
8035 	default:
8036 		return lwt_out_func_proto(func_id, prog);
8037 	}
8038 }
8039 
8040 static const struct bpf_func_proto *
8041 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8042 {
8043 	switch (func_id) {
8044 	case BPF_FUNC_skb_get_tunnel_key:
8045 		return &bpf_skb_get_tunnel_key_proto;
8046 	case BPF_FUNC_skb_set_tunnel_key:
8047 		return bpf_get_skb_set_tunnel_proto(func_id);
8048 	case BPF_FUNC_skb_get_tunnel_opt:
8049 		return &bpf_skb_get_tunnel_opt_proto;
8050 	case BPF_FUNC_skb_set_tunnel_opt:
8051 		return bpf_get_skb_set_tunnel_proto(func_id);
8052 	case BPF_FUNC_redirect:
8053 		return &bpf_redirect_proto;
8054 	case BPF_FUNC_clone_redirect:
8055 		return &bpf_clone_redirect_proto;
8056 	case BPF_FUNC_skb_change_tail:
8057 		return &bpf_skb_change_tail_proto;
8058 	case BPF_FUNC_skb_change_head:
8059 		return &bpf_skb_change_head_proto;
8060 	case BPF_FUNC_skb_store_bytes:
8061 		return &bpf_skb_store_bytes_proto;
8062 	case BPF_FUNC_csum_update:
8063 		return &bpf_csum_update_proto;
8064 	case BPF_FUNC_csum_level:
8065 		return &bpf_csum_level_proto;
8066 	case BPF_FUNC_l3_csum_replace:
8067 		return &bpf_l3_csum_replace_proto;
8068 	case BPF_FUNC_l4_csum_replace:
8069 		return &bpf_l4_csum_replace_proto;
8070 	case BPF_FUNC_set_hash_invalid:
8071 		return &bpf_set_hash_invalid_proto;
8072 	case BPF_FUNC_lwt_push_encap:
8073 		return &bpf_lwt_xmit_push_encap_proto;
8074 	default:
8075 		return lwt_out_func_proto(func_id, prog);
8076 	}
8077 }
8078 
8079 static const struct bpf_func_proto *
8080 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8081 {
8082 	switch (func_id) {
8083 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8084 	case BPF_FUNC_lwt_seg6_store_bytes:
8085 		return &bpf_lwt_seg6_store_bytes_proto;
8086 	case BPF_FUNC_lwt_seg6_action:
8087 		return &bpf_lwt_seg6_action_proto;
8088 	case BPF_FUNC_lwt_seg6_adjust_srh:
8089 		return &bpf_lwt_seg6_adjust_srh_proto;
8090 #endif
8091 	default:
8092 		return lwt_out_func_proto(func_id, prog);
8093 	}
8094 }
8095 
8096 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8097 				    const struct bpf_prog *prog,
8098 				    struct bpf_insn_access_aux *info)
8099 {
8100 	const int size_default = sizeof(__u32);
8101 
8102 	if (off < 0 || off >= sizeof(struct __sk_buff))
8103 		return false;
8104 
8105 	/* The verifier guarantees that size > 0. */
8106 	if (off % size != 0)
8107 		return false;
8108 
8109 	switch (off) {
8110 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8111 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8112 			return false;
8113 		break;
8114 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8115 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8116 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8117 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8118 	case bpf_ctx_range(struct __sk_buff, data):
8119 	case bpf_ctx_range(struct __sk_buff, data_meta):
8120 	case bpf_ctx_range(struct __sk_buff, data_end):
8121 		if (size != size_default)
8122 			return false;
8123 		break;
8124 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8125 		return false;
8126 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8127 		if (type == BPF_WRITE || size != sizeof(__u64))
8128 			return false;
8129 		break;
8130 	case bpf_ctx_range(struct __sk_buff, tstamp):
8131 		if (size != sizeof(__u64))
8132 			return false;
8133 		break;
8134 	case offsetof(struct __sk_buff, sk):
8135 		if (type == BPF_WRITE || size != sizeof(__u64))
8136 			return false;
8137 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8138 		break;
8139 	case offsetof(struct __sk_buff, tstamp_type):
8140 		return false;
8141 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8142 		/* Explicitly prohibit access to padding in __sk_buff. */
8143 		return false;
8144 	default:
8145 		/* Only narrow read access allowed for now. */
8146 		if (type == BPF_WRITE) {
8147 			if (size != size_default)
8148 				return false;
8149 		} else {
8150 			bpf_ctx_record_field_size(info, size_default);
8151 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8152 				return false;
8153 		}
8154 	}
8155 
8156 	return true;
8157 }
8158 
8159 static bool sk_filter_is_valid_access(int off, int size,
8160 				      enum bpf_access_type type,
8161 				      const struct bpf_prog *prog,
8162 				      struct bpf_insn_access_aux *info)
8163 {
8164 	switch (off) {
8165 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8166 	case bpf_ctx_range(struct __sk_buff, data):
8167 	case bpf_ctx_range(struct __sk_buff, data_meta):
8168 	case bpf_ctx_range(struct __sk_buff, data_end):
8169 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8170 	case bpf_ctx_range(struct __sk_buff, tstamp):
8171 	case bpf_ctx_range(struct __sk_buff, wire_len):
8172 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8173 		return false;
8174 	}
8175 
8176 	if (type == BPF_WRITE) {
8177 		switch (off) {
8178 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8179 			break;
8180 		default:
8181 			return false;
8182 		}
8183 	}
8184 
8185 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8186 }
8187 
8188 static bool cg_skb_is_valid_access(int off, int size,
8189 				   enum bpf_access_type type,
8190 				   const struct bpf_prog *prog,
8191 				   struct bpf_insn_access_aux *info)
8192 {
8193 	switch (off) {
8194 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8195 	case bpf_ctx_range(struct __sk_buff, data_meta):
8196 	case bpf_ctx_range(struct __sk_buff, wire_len):
8197 		return false;
8198 	case bpf_ctx_range(struct __sk_buff, data):
8199 	case bpf_ctx_range(struct __sk_buff, data_end):
8200 		if (!bpf_capable())
8201 			return false;
8202 		break;
8203 	}
8204 
8205 	if (type == BPF_WRITE) {
8206 		switch (off) {
8207 		case bpf_ctx_range(struct __sk_buff, mark):
8208 		case bpf_ctx_range(struct __sk_buff, priority):
8209 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8210 			break;
8211 		case bpf_ctx_range(struct __sk_buff, tstamp):
8212 			if (!bpf_capable())
8213 				return false;
8214 			break;
8215 		default:
8216 			return false;
8217 		}
8218 	}
8219 
8220 	switch (off) {
8221 	case bpf_ctx_range(struct __sk_buff, data):
8222 		info->reg_type = PTR_TO_PACKET;
8223 		break;
8224 	case bpf_ctx_range(struct __sk_buff, data_end):
8225 		info->reg_type = PTR_TO_PACKET_END;
8226 		break;
8227 	}
8228 
8229 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8230 }
8231 
8232 static bool lwt_is_valid_access(int off, int size,
8233 				enum bpf_access_type type,
8234 				const struct bpf_prog *prog,
8235 				struct bpf_insn_access_aux *info)
8236 {
8237 	switch (off) {
8238 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8239 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8240 	case bpf_ctx_range(struct __sk_buff, data_meta):
8241 	case bpf_ctx_range(struct __sk_buff, tstamp):
8242 	case bpf_ctx_range(struct __sk_buff, wire_len):
8243 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8244 		return false;
8245 	}
8246 
8247 	if (type == BPF_WRITE) {
8248 		switch (off) {
8249 		case bpf_ctx_range(struct __sk_buff, mark):
8250 		case bpf_ctx_range(struct __sk_buff, priority):
8251 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8252 			break;
8253 		default:
8254 			return false;
8255 		}
8256 	}
8257 
8258 	switch (off) {
8259 	case bpf_ctx_range(struct __sk_buff, data):
8260 		info->reg_type = PTR_TO_PACKET;
8261 		break;
8262 	case bpf_ctx_range(struct __sk_buff, data_end):
8263 		info->reg_type = PTR_TO_PACKET_END;
8264 		break;
8265 	}
8266 
8267 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8268 }
8269 
8270 /* Attach type specific accesses */
8271 static bool __sock_filter_check_attach_type(int off,
8272 					    enum bpf_access_type access_type,
8273 					    enum bpf_attach_type attach_type)
8274 {
8275 	switch (off) {
8276 	case offsetof(struct bpf_sock, bound_dev_if):
8277 	case offsetof(struct bpf_sock, mark):
8278 	case offsetof(struct bpf_sock, priority):
8279 		switch (attach_type) {
8280 		case BPF_CGROUP_INET_SOCK_CREATE:
8281 		case BPF_CGROUP_INET_SOCK_RELEASE:
8282 			goto full_access;
8283 		default:
8284 			return false;
8285 		}
8286 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8287 		switch (attach_type) {
8288 		case BPF_CGROUP_INET4_POST_BIND:
8289 			goto read_only;
8290 		default:
8291 			return false;
8292 		}
8293 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8294 		switch (attach_type) {
8295 		case BPF_CGROUP_INET6_POST_BIND:
8296 			goto read_only;
8297 		default:
8298 			return false;
8299 		}
8300 	case bpf_ctx_range(struct bpf_sock, src_port):
8301 		switch (attach_type) {
8302 		case BPF_CGROUP_INET4_POST_BIND:
8303 		case BPF_CGROUP_INET6_POST_BIND:
8304 			goto read_only;
8305 		default:
8306 			return false;
8307 		}
8308 	}
8309 read_only:
8310 	return access_type == BPF_READ;
8311 full_access:
8312 	return true;
8313 }
8314 
8315 bool bpf_sock_common_is_valid_access(int off, int size,
8316 				     enum bpf_access_type type,
8317 				     struct bpf_insn_access_aux *info)
8318 {
8319 	switch (off) {
8320 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8321 		return false;
8322 	default:
8323 		return bpf_sock_is_valid_access(off, size, type, info);
8324 	}
8325 }
8326 
8327 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8328 			      struct bpf_insn_access_aux *info)
8329 {
8330 	const int size_default = sizeof(__u32);
8331 	int field_size;
8332 
8333 	if (off < 0 || off >= sizeof(struct bpf_sock))
8334 		return false;
8335 	if (off % size != 0)
8336 		return false;
8337 
8338 	switch (off) {
8339 	case offsetof(struct bpf_sock, state):
8340 	case offsetof(struct bpf_sock, family):
8341 	case offsetof(struct bpf_sock, type):
8342 	case offsetof(struct bpf_sock, protocol):
8343 	case offsetof(struct bpf_sock, src_port):
8344 	case offsetof(struct bpf_sock, rx_queue_mapping):
8345 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8346 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8347 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8348 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8349 		bpf_ctx_record_field_size(info, size_default);
8350 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8351 	case bpf_ctx_range(struct bpf_sock, dst_port):
8352 		field_size = size == size_default ?
8353 			size_default : sizeof_field(struct bpf_sock, dst_port);
8354 		bpf_ctx_record_field_size(info, field_size);
8355 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8356 	case offsetofend(struct bpf_sock, dst_port) ...
8357 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8358 		return false;
8359 	}
8360 
8361 	return size == size_default;
8362 }
8363 
8364 static bool sock_filter_is_valid_access(int off, int size,
8365 					enum bpf_access_type type,
8366 					const struct bpf_prog *prog,
8367 					struct bpf_insn_access_aux *info)
8368 {
8369 	if (!bpf_sock_is_valid_access(off, size, type, info))
8370 		return false;
8371 	return __sock_filter_check_attach_type(off, type,
8372 					       prog->expected_attach_type);
8373 }
8374 
8375 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8376 			     const struct bpf_prog *prog)
8377 {
8378 	/* Neither direct read nor direct write requires any preliminary
8379 	 * action.
8380 	 */
8381 	return 0;
8382 }
8383 
8384 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8385 				const struct bpf_prog *prog, int drop_verdict)
8386 {
8387 	struct bpf_insn *insn = insn_buf;
8388 
8389 	if (!direct_write)
8390 		return 0;
8391 
8392 	/* if (!skb->cloned)
8393 	 *       goto start;
8394 	 *
8395 	 * (Fast-path, otherwise approximation that we might be
8396 	 *  a clone, do the rest in helper.)
8397 	 */
8398 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8399 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8400 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8401 
8402 	/* ret = bpf_skb_pull_data(skb, 0); */
8403 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8404 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8405 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8406 			       BPF_FUNC_skb_pull_data);
8407 	/* if (!ret)
8408 	 *      goto restore;
8409 	 * return TC_ACT_SHOT;
8410 	 */
8411 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8412 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8413 	*insn++ = BPF_EXIT_INSN();
8414 
8415 	/* restore: */
8416 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8417 	/* start: */
8418 	*insn++ = prog->insnsi[0];
8419 
8420 	return insn - insn_buf;
8421 }
8422 
8423 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8424 			  struct bpf_insn *insn_buf)
8425 {
8426 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8427 	struct bpf_insn *insn = insn_buf;
8428 
8429 	if (!indirect) {
8430 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8431 	} else {
8432 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8433 		if (orig->imm)
8434 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8435 	}
8436 	/* We're guaranteed here that CTX is in R6. */
8437 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8438 
8439 	switch (BPF_SIZE(orig->code)) {
8440 	case BPF_B:
8441 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8442 		break;
8443 	case BPF_H:
8444 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8445 		break;
8446 	case BPF_W:
8447 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8448 		break;
8449 	}
8450 
8451 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8452 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8453 	*insn++ = BPF_EXIT_INSN();
8454 
8455 	return insn - insn_buf;
8456 }
8457 
8458 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8459 			       const struct bpf_prog *prog)
8460 {
8461 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8462 }
8463 
8464 static bool tc_cls_act_is_valid_access(int off, int size,
8465 				       enum bpf_access_type type,
8466 				       const struct bpf_prog *prog,
8467 				       struct bpf_insn_access_aux *info)
8468 {
8469 	if (type == BPF_WRITE) {
8470 		switch (off) {
8471 		case bpf_ctx_range(struct __sk_buff, mark):
8472 		case bpf_ctx_range(struct __sk_buff, tc_index):
8473 		case bpf_ctx_range(struct __sk_buff, priority):
8474 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8475 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8476 		case bpf_ctx_range(struct __sk_buff, tstamp):
8477 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8478 			break;
8479 		default:
8480 			return false;
8481 		}
8482 	}
8483 
8484 	switch (off) {
8485 	case bpf_ctx_range(struct __sk_buff, data):
8486 		info->reg_type = PTR_TO_PACKET;
8487 		break;
8488 	case bpf_ctx_range(struct __sk_buff, data_meta):
8489 		info->reg_type = PTR_TO_PACKET_META;
8490 		break;
8491 	case bpf_ctx_range(struct __sk_buff, data_end):
8492 		info->reg_type = PTR_TO_PACKET_END;
8493 		break;
8494 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8495 		return false;
8496 	case offsetof(struct __sk_buff, tstamp_type):
8497 		/* The convert_ctx_access() on reading and writing
8498 		 * __sk_buff->tstamp depends on whether the bpf prog
8499 		 * has used __sk_buff->tstamp_type or not.
8500 		 * Thus, we need to set prog->tstamp_type_access
8501 		 * earlier during is_valid_access() here.
8502 		 */
8503 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
8504 		return size == sizeof(__u8);
8505 	}
8506 
8507 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8508 }
8509 
8510 static bool __is_valid_xdp_access(int off, int size)
8511 {
8512 	if (off < 0 || off >= sizeof(struct xdp_md))
8513 		return false;
8514 	if (off % size != 0)
8515 		return false;
8516 	if (size != sizeof(__u32))
8517 		return false;
8518 
8519 	return true;
8520 }
8521 
8522 static bool xdp_is_valid_access(int off, int size,
8523 				enum bpf_access_type type,
8524 				const struct bpf_prog *prog,
8525 				struct bpf_insn_access_aux *info)
8526 {
8527 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8528 		switch (off) {
8529 		case offsetof(struct xdp_md, egress_ifindex):
8530 			return false;
8531 		}
8532 	}
8533 
8534 	if (type == BPF_WRITE) {
8535 		if (bpf_prog_is_dev_bound(prog->aux)) {
8536 			switch (off) {
8537 			case offsetof(struct xdp_md, rx_queue_index):
8538 				return __is_valid_xdp_access(off, size);
8539 			}
8540 		}
8541 		return false;
8542 	}
8543 
8544 	switch (off) {
8545 	case offsetof(struct xdp_md, data):
8546 		info->reg_type = PTR_TO_PACKET;
8547 		break;
8548 	case offsetof(struct xdp_md, data_meta):
8549 		info->reg_type = PTR_TO_PACKET_META;
8550 		break;
8551 	case offsetof(struct xdp_md, data_end):
8552 		info->reg_type = PTR_TO_PACKET_END;
8553 		break;
8554 	}
8555 
8556 	return __is_valid_xdp_access(off, size);
8557 }
8558 
8559 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8560 {
8561 	const u32 act_max = XDP_REDIRECT;
8562 
8563 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8564 		     act > act_max ? "Illegal" : "Driver unsupported",
8565 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8566 }
8567 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8568 
8569 static bool sock_addr_is_valid_access(int off, int size,
8570 				      enum bpf_access_type type,
8571 				      const struct bpf_prog *prog,
8572 				      struct bpf_insn_access_aux *info)
8573 {
8574 	const int size_default = sizeof(__u32);
8575 
8576 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8577 		return false;
8578 	if (off % size != 0)
8579 		return false;
8580 
8581 	/* Disallow access to IPv6 fields from IPv4 contex and vise
8582 	 * versa.
8583 	 */
8584 	switch (off) {
8585 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8586 		switch (prog->expected_attach_type) {
8587 		case BPF_CGROUP_INET4_BIND:
8588 		case BPF_CGROUP_INET4_CONNECT:
8589 		case BPF_CGROUP_INET4_GETPEERNAME:
8590 		case BPF_CGROUP_INET4_GETSOCKNAME:
8591 		case BPF_CGROUP_UDP4_SENDMSG:
8592 		case BPF_CGROUP_UDP4_RECVMSG:
8593 			break;
8594 		default:
8595 			return false;
8596 		}
8597 		break;
8598 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8599 		switch (prog->expected_attach_type) {
8600 		case BPF_CGROUP_INET6_BIND:
8601 		case BPF_CGROUP_INET6_CONNECT:
8602 		case BPF_CGROUP_INET6_GETPEERNAME:
8603 		case BPF_CGROUP_INET6_GETSOCKNAME:
8604 		case BPF_CGROUP_UDP6_SENDMSG:
8605 		case BPF_CGROUP_UDP6_RECVMSG:
8606 			break;
8607 		default:
8608 			return false;
8609 		}
8610 		break;
8611 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8612 		switch (prog->expected_attach_type) {
8613 		case BPF_CGROUP_UDP4_SENDMSG:
8614 			break;
8615 		default:
8616 			return false;
8617 		}
8618 		break;
8619 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8620 				msg_src_ip6[3]):
8621 		switch (prog->expected_attach_type) {
8622 		case BPF_CGROUP_UDP6_SENDMSG:
8623 			break;
8624 		default:
8625 			return false;
8626 		}
8627 		break;
8628 	}
8629 
8630 	switch (off) {
8631 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8632 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8633 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8634 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8635 				msg_src_ip6[3]):
8636 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
8637 		if (type == BPF_READ) {
8638 			bpf_ctx_record_field_size(info, size_default);
8639 
8640 			if (bpf_ctx_wide_access_ok(off, size,
8641 						   struct bpf_sock_addr,
8642 						   user_ip6))
8643 				return true;
8644 
8645 			if (bpf_ctx_wide_access_ok(off, size,
8646 						   struct bpf_sock_addr,
8647 						   msg_src_ip6))
8648 				return true;
8649 
8650 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8651 				return false;
8652 		} else {
8653 			if (bpf_ctx_wide_access_ok(off, size,
8654 						   struct bpf_sock_addr,
8655 						   user_ip6))
8656 				return true;
8657 
8658 			if (bpf_ctx_wide_access_ok(off, size,
8659 						   struct bpf_sock_addr,
8660 						   msg_src_ip6))
8661 				return true;
8662 
8663 			if (size != size_default)
8664 				return false;
8665 		}
8666 		break;
8667 	case offsetof(struct bpf_sock_addr, sk):
8668 		if (type != BPF_READ)
8669 			return false;
8670 		if (size != sizeof(__u64))
8671 			return false;
8672 		info->reg_type = PTR_TO_SOCKET;
8673 		break;
8674 	default:
8675 		if (type == BPF_READ) {
8676 			if (size != size_default)
8677 				return false;
8678 		} else {
8679 			return false;
8680 		}
8681 	}
8682 
8683 	return true;
8684 }
8685 
8686 static bool sock_ops_is_valid_access(int off, int size,
8687 				     enum bpf_access_type type,
8688 				     const struct bpf_prog *prog,
8689 				     struct bpf_insn_access_aux *info)
8690 {
8691 	const int size_default = sizeof(__u32);
8692 
8693 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8694 		return false;
8695 
8696 	/* The verifier guarantees that size > 0. */
8697 	if (off % size != 0)
8698 		return false;
8699 
8700 	if (type == BPF_WRITE) {
8701 		switch (off) {
8702 		case offsetof(struct bpf_sock_ops, reply):
8703 		case offsetof(struct bpf_sock_ops, sk_txhash):
8704 			if (size != size_default)
8705 				return false;
8706 			break;
8707 		default:
8708 			return false;
8709 		}
8710 	} else {
8711 		switch (off) {
8712 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8713 					bytes_acked):
8714 			if (size != sizeof(__u64))
8715 				return false;
8716 			break;
8717 		case offsetof(struct bpf_sock_ops, sk):
8718 			if (size != sizeof(__u64))
8719 				return false;
8720 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
8721 			break;
8722 		case offsetof(struct bpf_sock_ops, skb_data):
8723 			if (size != sizeof(__u64))
8724 				return false;
8725 			info->reg_type = PTR_TO_PACKET;
8726 			break;
8727 		case offsetof(struct bpf_sock_ops, skb_data_end):
8728 			if (size != sizeof(__u64))
8729 				return false;
8730 			info->reg_type = PTR_TO_PACKET_END;
8731 			break;
8732 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8733 			bpf_ctx_record_field_size(info, size_default);
8734 			return bpf_ctx_narrow_access_ok(off, size,
8735 							size_default);
8736 		default:
8737 			if (size != size_default)
8738 				return false;
8739 			break;
8740 		}
8741 	}
8742 
8743 	return true;
8744 }
8745 
8746 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8747 			   const struct bpf_prog *prog)
8748 {
8749 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8750 }
8751 
8752 static bool sk_skb_is_valid_access(int off, int size,
8753 				   enum bpf_access_type type,
8754 				   const struct bpf_prog *prog,
8755 				   struct bpf_insn_access_aux *info)
8756 {
8757 	switch (off) {
8758 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8759 	case bpf_ctx_range(struct __sk_buff, data_meta):
8760 	case bpf_ctx_range(struct __sk_buff, tstamp):
8761 	case bpf_ctx_range(struct __sk_buff, wire_len):
8762 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8763 		return false;
8764 	}
8765 
8766 	if (type == BPF_WRITE) {
8767 		switch (off) {
8768 		case bpf_ctx_range(struct __sk_buff, tc_index):
8769 		case bpf_ctx_range(struct __sk_buff, priority):
8770 			break;
8771 		default:
8772 			return false;
8773 		}
8774 	}
8775 
8776 	switch (off) {
8777 	case bpf_ctx_range(struct __sk_buff, mark):
8778 		return false;
8779 	case bpf_ctx_range(struct __sk_buff, data):
8780 		info->reg_type = PTR_TO_PACKET;
8781 		break;
8782 	case bpf_ctx_range(struct __sk_buff, data_end):
8783 		info->reg_type = PTR_TO_PACKET_END;
8784 		break;
8785 	}
8786 
8787 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8788 }
8789 
8790 static bool sk_msg_is_valid_access(int off, int size,
8791 				   enum bpf_access_type type,
8792 				   const struct bpf_prog *prog,
8793 				   struct bpf_insn_access_aux *info)
8794 {
8795 	if (type == BPF_WRITE)
8796 		return false;
8797 
8798 	if (off % size != 0)
8799 		return false;
8800 
8801 	switch (off) {
8802 	case offsetof(struct sk_msg_md, data):
8803 		info->reg_type = PTR_TO_PACKET;
8804 		if (size != sizeof(__u64))
8805 			return false;
8806 		break;
8807 	case offsetof(struct sk_msg_md, data_end):
8808 		info->reg_type = PTR_TO_PACKET_END;
8809 		if (size != sizeof(__u64))
8810 			return false;
8811 		break;
8812 	case offsetof(struct sk_msg_md, sk):
8813 		if (size != sizeof(__u64))
8814 			return false;
8815 		info->reg_type = PTR_TO_SOCKET;
8816 		break;
8817 	case bpf_ctx_range(struct sk_msg_md, family):
8818 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8819 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
8820 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8821 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8822 	case bpf_ctx_range(struct sk_msg_md, remote_port):
8823 	case bpf_ctx_range(struct sk_msg_md, local_port):
8824 	case bpf_ctx_range(struct sk_msg_md, size):
8825 		if (size != sizeof(__u32))
8826 			return false;
8827 		break;
8828 	default:
8829 		return false;
8830 	}
8831 	return true;
8832 }
8833 
8834 static bool flow_dissector_is_valid_access(int off, int size,
8835 					   enum bpf_access_type type,
8836 					   const struct bpf_prog *prog,
8837 					   struct bpf_insn_access_aux *info)
8838 {
8839 	const int size_default = sizeof(__u32);
8840 
8841 	if (off < 0 || off >= sizeof(struct __sk_buff))
8842 		return false;
8843 
8844 	if (type == BPF_WRITE)
8845 		return false;
8846 
8847 	switch (off) {
8848 	case bpf_ctx_range(struct __sk_buff, data):
8849 		if (size != size_default)
8850 			return false;
8851 		info->reg_type = PTR_TO_PACKET;
8852 		return true;
8853 	case bpf_ctx_range(struct __sk_buff, data_end):
8854 		if (size != size_default)
8855 			return false;
8856 		info->reg_type = PTR_TO_PACKET_END;
8857 		return true;
8858 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8859 		if (size != sizeof(__u64))
8860 			return false;
8861 		info->reg_type = PTR_TO_FLOW_KEYS;
8862 		return true;
8863 	default:
8864 		return false;
8865 	}
8866 }
8867 
8868 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8869 					     const struct bpf_insn *si,
8870 					     struct bpf_insn *insn_buf,
8871 					     struct bpf_prog *prog,
8872 					     u32 *target_size)
8873 
8874 {
8875 	struct bpf_insn *insn = insn_buf;
8876 
8877 	switch (si->off) {
8878 	case offsetof(struct __sk_buff, data):
8879 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8880 				      si->dst_reg, si->src_reg,
8881 				      offsetof(struct bpf_flow_dissector, data));
8882 		break;
8883 
8884 	case offsetof(struct __sk_buff, data_end):
8885 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8886 				      si->dst_reg, si->src_reg,
8887 				      offsetof(struct bpf_flow_dissector, data_end));
8888 		break;
8889 
8890 	case offsetof(struct __sk_buff, flow_keys):
8891 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8892 				      si->dst_reg, si->src_reg,
8893 				      offsetof(struct bpf_flow_dissector, flow_keys));
8894 		break;
8895 	}
8896 
8897 	return insn - insn_buf;
8898 }
8899 
8900 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
8901 						     struct bpf_insn *insn)
8902 {
8903 	__u8 value_reg = si->dst_reg;
8904 	__u8 skb_reg = si->src_reg;
8905 	/* AX is needed because src_reg and dst_reg could be the same */
8906 	__u8 tmp_reg = BPF_REG_AX;
8907 
8908 	*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
8909 			      PKT_VLAN_PRESENT_OFFSET);
8910 	*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
8911 				SKB_MONO_DELIVERY_TIME_MASK, 2);
8912 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
8913 	*insn++ = BPF_JMP_A(1);
8914 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
8915 
8916 	return insn;
8917 }
8918 
8919 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8920 						  struct bpf_insn *insn)
8921 {
8922 	/* si->dst_reg = skb_shinfo(SKB); */
8923 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8924 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8925 			      BPF_REG_AX, si->src_reg,
8926 			      offsetof(struct sk_buff, end));
8927 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8928 			      si->dst_reg, si->src_reg,
8929 			      offsetof(struct sk_buff, head));
8930 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8931 #else
8932 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8933 			      si->dst_reg, si->src_reg,
8934 			      offsetof(struct sk_buff, end));
8935 #endif
8936 
8937 	return insn;
8938 }
8939 
8940 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
8941 						const struct bpf_insn *si,
8942 						struct bpf_insn *insn)
8943 {
8944 	__u8 value_reg = si->dst_reg;
8945 	__u8 skb_reg = si->src_reg;
8946 
8947 #ifdef CONFIG_NET_CLS_ACT
8948 	/* If the tstamp_type is read,
8949 	 * the bpf prog is aware the tstamp could have delivery time.
8950 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
8951 	 */
8952 	if (!prog->tstamp_type_access) {
8953 		/* AX is needed because src_reg and dst_reg could be the same */
8954 		__u8 tmp_reg = BPF_REG_AX;
8955 
8956 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
8957 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
8958 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
8959 		*insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
8960 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
8961 		/* skb->tc_at_ingress && skb->mono_delivery_time,
8962 		 * read 0 as the (rcv) timestamp.
8963 		 */
8964 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
8965 		*insn++ = BPF_JMP_A(1);
8966 	}
8967 #endif
8968 
8969 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
8970 			      offsetof(struct sk_buff, tstamp));
8971 	return insn;
8972 }
8973 
8974 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
8975 						 const struct bpf_insn *si,
8976 						 struct bpf_insn *insn)
8977 {
8978 	__u8 value_reg = si->src_reg;
8979 	__u8 skb_reg = si->dst_reg;
8980 
8981 #ifdef CONFIG_NET_CLS_ACT
8982 	/* If the tstamp_type is read,
8983 	 * the bpf prog is aware the tstamp could have delivery time.
8984 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
8985 	 * Otherwise, writing at ingress will have to clear the
8986 	 * mono_delivery_time bit also.
8987 	 */
8988 	if (!prog->tstamp_type_access) {
8989 		__u8 tmp_reg = BPF_REG_AX;
8990 
8991 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
8992 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
8993 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
8994 		/* goto <store> */
8995 		*insn++ = BPF_JMP_A(2);
8996 		/* <clear>: mono_delivery_time */
8997 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
8998 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, PKT_VLAN_PRESENT_OFFSET);
8999 	}
9000 #endif
9001 
9002 	/* <store>: skb->tstamp = tstamp */
9003 	*insn++ = BPF_STX_MEM(BPF_DW, skb_reg, value_reg,
9004 			      offsetof(struct sk_buff, tstamp));
9005 	return insn;
9006 }
9007 
9008 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9009 				  const struct bpf_insn *si,
9010 				  struct bpf_insn *insn_buf,
9011 				  struct bpf_prog *prog, u32 *target_size)
9012 {
9013 	struct bpf_insn *insn = insn_buf;
9014 	int off;
9015 
9016 	switch (si->off) {
9017 	case offsetof(struct __sk_buff, len):
9018 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9019 				      bpf_target_off(struct sk_buff, len, 4,
9020 						     target_size));
9021 		break;
9022 
9023 	case offsetof(struct __sk_buff, protocol):
9024 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9025 				      bpf_target_off(struct sk_buff, protocol, 2,
9026 						     target_size));
9027 		break;
9028 
9029 	case offsetof(struct __sk_buff, vlan_proto):
9030 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9031 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9032 						     target_size));
9033 		break;
9034 
9035 	case offsetof(struct __sk_buff, priority):
9036 		if (type == BPF_WRITE)
9037 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9038 					      bpf_target_off(struct sk_buff, priority, 4,
9039 							     target_size));
9040 		else
9041 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9042 					      bpf_target_off(struct sk_buff, priority, 4,
9043 							     target_size));
9044 		break;
9045 
9046 	case offsetof(struct __sk_buff, ingress_ifindex):
9047 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9048 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9049 						     target_size));
9050 		break;
9051 
9052 	case offsetof(struct __sk_buff, ifindex):
9053 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9054 				      si->dst_reg, si->src_reg,
9055 				      offsetof(struct sk_buff, dev));
9056 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9057 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9058 				      bpf_target_off(struct net_device, ifindex, 4,
9059 						     target_size));
9060 		break;
9061 
9062 	case offsetof(struct __sk_buff, hash):
9063 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9064 				      bpf_target_off(struct sk_buff, hash, 4,
9065 						     target_size));
9066 		break;
9067 
9068 	case offsetof(struct __sk_buff, mark):
9069 		if (type == BPF_WRITE)
9070 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9071 					      bpf_target_off(struct sk_buff, mark, 4,
9072 							     target_size));
9073 		else
9074 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9075 					      bpf_target_off(struct sk_buff, mark, 4,
9076 							     target_size));
9077 		break;
9078 
9079 	case offsetof(struct __sk_buff, pkt_type):
9080 		*target_size = 1;
9081 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9082 				      PKT_TYPE_OFFSET);
9083 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9084 #ifdef __BIG_ENDIAN_BITFIELD
9085 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9086 #endif
9087 		break;
9088 
9089 	case offsetof(struct __sk_buff, queue_mapping):
9090 		if (type == BPF_WRITE) {
9091 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9092 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9093 					      bpf_target_off(struct sk_buff,
9094 							     queue_mapping,
9095 							     2, target_size));
9096 		} else {
9097 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9098 					      bpf_target_off(struct sk_buff,
9099 							     queue_mapping,
9100 							     2, target_size));
9101 		}
9102 		break;
9103 
9104 	case offsetof(struct __sk_buff, vlan_present):
9105 		*target_size = 1;
9106 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9107 				      PKT_VLAN_PRESENT_OFFSET);
9108 		if (PKT_VLAN_PRESENT_BIT)
9109 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
9110 		if (PKT_VLAN_PRESENT_BIT < 7)
9111 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
9112 		break;
9113 
9114 	case offsetof(struct __sk_buff, vlan_tci):
9115 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9116 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9117 						     target_size));
9118 		break;
9119 
9120 	case offsetof(struct __sk_buff, cb[0]) ...
9121 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9122 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9123 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9124 			      offsetof(struct qdisc_skb_cb, data)) %
9125 			     sizeof(__u64));
9126 
9127 		prog->cb_access = 1;
9128 		off  = si->off;
9129 		off -= offsetof(struct __sk_buff, cb[0]);
9130 		off += offsetof(struct sk_buff, cb);
9131 		off += offsetof(struct qdisc_skb_cb, data);
9132 		if (type == BPF_WRITE)
9133 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9134 					      si->src_reg, off);
9135 		else
9136 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9137 					      si->src_reg, off);
9138 		break;
9139 
9140 	case offsetof(struct __sk_buff, tc_classid):
9141 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9142 
9143 		off  = si->off;
9144 		off -= offsetof(struct __sk_buff, tc_classid);
9145 		off += offsetof(struct sk_buff, cb);
9146 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9147 		*target_size = 2;
9148 		if (type == BPF_WRITE)
9149 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
9150 					      si->src_reg, off);
9151 		else
9152 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9153 					      si->src_reg, off);
9154 		break;
9155 
9156 	case offsetof(struct __sk_buff, data):
9157 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9158 				      si->dst_reg, si->src_reg,
9159 				      offsetof(struct sk_buff, data));
9160 		break;
9161 
9162 	case offsetof(struct __sk_buff, data_meta):
9163 		off  = si->off;
9164 		off -= offsetof(struct __sk_buff, data_meta);
9165 		off += offsetof(struct sk_buff, cb);
9166 		off += offsetof(struct bpf_skb_data_end, data_meta);
9167 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9168 				      si->src_reg, off);
9169 		break;
9170 
9171 	case offsetof(struct __sk_buff, data_end):
9172 		off  = si->off;
9173 		off -= offsetof(struct __sk_buff, data_end);
9174 		off += offsetof(struct sk_buff, cb);
9175 		off += offsetof(struct bpf_skb_data_end, data_end);
9176 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9177 				      si->src_reg, off);
9178 		break;
9179 
9180 	case offsetof(struct __sk_buff, tc_index):
9181 #ifdef CONFIG_NET_SCHED
9182 		if (type == BPF_WRITE)
9183 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9184 					      bpf_target_off(struct sk_buff, tc_index, 2,
9185 							     target_size));
9186 		else
9187 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9188 					      bpf_target_off(struct sk_buff, tc_index, 2,
9189 							     target_size));
9190 #else
9191 		*target_size = 2;
9192 		if (type == BPF_WRITE)
9193 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9194 		else
9195 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9196 #endif
9197 		break;
9198 
9199 	case offsetof(struct __sk_buff, napi_id):
9200 #if defined(CONFIG_NET_RX_BUSY_POLL)
9201 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9202 				      bpf_target_off(struct sk_buff, napi_id, 4,
9203 						     target_size));
9204 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9205 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9206 #else
9207 		*target_size = 4;
9208 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9209 #endif
9210 		break;
9211 	case offsetof(struct __sk_buff, family):
9212 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9213 
9214 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9215 				      si->dst_reg, si->src_reg,
9216 				      offsetof(struct sk_buff, sk));
9217 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9218 				      bpf_target_off(struct sock_common,
9219 						     skc_family,
9220 						     2, target_size));
9221 		break;
9222 	case offsetof(struct __sk_buff, remote_ip4):
9223 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9224 
9225 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9226 				      si->dst_reg, si->src_reg,
9227 				      offsetof(struct sk_buff, sk));
9228 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9229 				      bpf_target_off(struct sock_common,
9230 						     skc_daddr,
9231 						     4, target_size));
9232 		break;
9233 	case offsetof(struct __sk_buff, local_ip4):
9234 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9235 					  skc_rcv_saddr) != 4);
9236 
9237 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9238 				      si->dst_reg, si->src_reg,
9239 				      offsetof(struct sk_buff, sk));
9240 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9241 				      bpf_target_off(struct sock_common,
9242 						     skc_rcv_saddr,
9243 						     4, target_size));
9244 		break;
9245 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9246 	     offsetof(struct __sk_buff, remote_ip6[3]):
9247 #if IS_ENABLED(CONFIG_IPV6)
9248 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9249 					  skc_v6_daddr.s6_addr32[0]) != 4);
9250 
9251 		off = si->off;
9252 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9253 
9254 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9255 				      si->dst_reg, si->src_reg,
9256 				      offsetof(struct sk_buff, sk));
9257 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9258 				      offsetof(struct sock_common,
9259 					       skc_v6_daddr.s6_addr32[0]) +
9260 				      off);
9261 #else
9262 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9263 #endif
9264 		break;
9265 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9266 	     offsetof(struct __sk_buff, local_ip6[3]):
9267 #if IS_ENABLED(CONFIG_IPV6)
9268 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9269 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9270 
9271 		off = si->off;
9272 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9273 
9274 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9275 				      si->dst_reg, si->src_reg,
9276 				      offsetof(struct sk_buff, sk));
9277 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9278 				      offsetof(struct sock_common,
9279 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9280 				      off);
9281 #else
9282 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9283 #endif
9284 		break;
9285 
9286 	case offsetof(struct __sk_buff, remote_port):
9287 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9288 
9289 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9290 				      si->dst_reg, si->src_reg,
9291 				      offsetof(struct sk_buff, sk));
9292 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9293 				      bpf_target_off(struct sock_common,
9294 						     skc_dport,
9295 						     2, target_size));
9296 #ifndef __BIG_ENDIAN_BITFIELD
9297 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9298 #endif
9299 		break;
9300 
9301 	case offsetof(struct __sk_buff, local_port):
9302 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9303 
9304 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9305 				      si->dst_reg, si->src_reg,
9306 				      offsetof(struct sk_buff, sk));
9307 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9308 				      bpf_target_off(struct sock_common,
9309 						     skc_num, 2, target_size));
9310 		break;
9311 
9312 	case offsetof(struct __sk_buff, tstamp):
9313 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9314 
9315 		if (type == BPF_WRITE)
9316 			insn = bpf_convert_tstamp_write(prog, si, insn);
9317 		else
9318 			insn = bpf_convert_tstamp_read(prog, si, insn);
9319 		break;
9320 
9321 	case offsetof(struct __sk_buff, tstamp_type):
9322 		insn = bpf_convert_tstamp_type_read(si, insn);
9323 		break;
9324 
9325 	case offsetof(struct __sk_buff, gso_segs):
9326 		insn = bpf_convert_shinfo_access(si, insn);
9327 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9328 				      si->dst_reg, si->dst_reg,
9329 				      bpf_target_off(struct skb_shared_info,
9330 						     gso_segs, 2,
9331 						     target_size));
9332 		break;
9333 	case offsetof(struct __sk_buff, gso_size):
9334 		insn = bpf_convert_shinfo_access(si, insn);
9335 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9336 				      si->dst_reg, si->dst_reg,
9337 				      bpf_target_off(struct skb_shared_info,
9338 						     gso_size, 2,
9339 						     target_size));
9340 		break;
9341 	case offsetof(struct __sk_buff, wire_len):
9342 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9343 
9344 		off = si->off;
9345 		off -= offsetof(struct __sk_buff, wire_len);
9346 		off += offsetof(struct sk_buff, cb);
9347 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9348 		*target_size = 4;
9349 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9350 		break;
9351 
9352 	case offsetof(struct __sk_buff, sk):
9353 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9354 				      si->dst_reg, si->src_reg,
9355 				      offsetof(struct sk_buff, sk));
9356 		break;
9357 	case offsetof(struct __sk_buff, hwtstamp):
9358 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9359 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9360 
9361 		insn = bpf_convert_shinfo_access(si, insn);
9362 		*insn++ = BPF_LDX_MEM(BPF_DW,
9363 				      si->dst_reg, si->dst_reg,
9364 				      bpf_target_off(struct skb_shared_info,
9365 						     hwtstamps, 8,
9366 						     target_size));
9367 		break;
9368 	}
9369 
9370 	return insn - insn_buf;
9371 }
9372 
9373 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9374 				const struct bpf_insn *si,
9375 				struct bpf_insn *insn_buf,
9376 				struct bpf_prog *prog, u32 *target_size)
9377 {
9378 	struct bpf_insn *insn = insn_buf;
9379 	int off;
9380 
9381 	switch (si->off) {
9382 	case offsetof(struct bpf_sock, bound_dev_if):
9383 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9384 
9385 		if (type == BPF_WRITE)
9386 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9387 					offsetof(struct sock, sk_bound_dev_if));
9388 		else
9389 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9390 				      offsetof(struct sock, sk_bound_dev_if));
9391 		break;
9392 
9393 	case offsetof(struct bpf_sock, mark):
9394 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9395 
9396 		if (type == BPF_WRITE)
9397 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9398 					offsetof(struct sock, sk_mark));
9399 		else
9400 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9401 				      offsetof(struct sock, sk_mark));
9402 		break;
9403 
9404 	case offsetof(struct bpf_sock, priority):
9405 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9406 
9407 		if (type == BPF_WRITE)
9408 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9409 					offsetof(struct sock, sk_priority));
9410 		else
9411 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9412 				      offsetof(struct sock, sk_priority));
9413 		break;
9414 
9415 	case offsetof(struct bpf_sock, family):
9416 		*insn++ = BPF_LDX_MEM(
9417 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9418 			si->dst_reg, si->src_reg,
9419 			bpf_target_off(struct sock_common,
9420 				       skc_family,
9421 				       sizeof_field(struct sock_common,
9422 						    skc_family),
9423 				       target_size));
9424 		break;
9425 
9426 	case offsetof(struct bpf_sock, type):
9427 		*insn++ = BPF_LDX_MEM(
9428 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9429 			si->dst_reg, si->src_reg,
9430 			bpf_target_off(struct sock, sk_type,
9431 				       sizeof_field(struct sock, sk_type),
9432 				       target_size));
9433 		break;
9434 
9435 	case offsetof(struct bpf_sock, protocol):
9436 		*insn++ = BPF_LDX_MEM(
9437 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9438 			si->dst_reg, si->src_reg,
9439 			bpf_target_off(struct sock, sk_protocol,
9440 				       sizeof_field(struct sock, sk_protocol),
9441 				       target_size));
9442 		break;
9443 
9444 	case offsetof(struct bpf_sock, src_ip4):
9445 		*insn++ = BPF_LDX_MEM(
9446 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9447 			bpf_target_off(struct sock_common, skc_rcv_saddr,
9448 				       sizeof_field(struct sock_common,
9449 						    skc_rcv_saddr),
9450 				       target_size));
9451 		break;
9452 
9453 	case offsetof(struct bpf_sock, dst_ip4):
9454 		*insn++ = BPF_LDX_MEM(
9455 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9456 			bpf_target_off(struct sock_common, skc_daddr,
9457 				       sizeof_field(struct sock_common,
9458 						    skc_daddr),
9459 				       target_size));
9460 		break;
9461 
9462 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9463 #if IS_ENABLED(CONFIG_IPV6)
9464 		off = si->off;
9465 		off -= offsetof(struct bpf_sock, src_ip6[0]);
9466 		*insn++ = BPF_LDX_MEM(
9467 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9468 			bpf_target_off(
9469 				struct sock_common,
9470 				skc_v6_rcv_saddr.s6_addr32[0],
9471 				sizeof_field(struct sock_common,
9472 					     skc_v6_rcv_saddr.s6_addr32[0]),
9473 				target_size) + off);
9474 #else
9475 		(void)off;
9476 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9477 #endif
9478 		break;
9479 
9480 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9481 #if IS_ENABLED(CONFIG_IPV6)
9482 		off = si->off;
9483 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9484 		*insn++ = BPF_LDX_MEM(
9485 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9486 			bpf_target_off(struct sock_common,
9487 				       skc_v6_daddr.s6_addr32[0],
9488 				       sizeof_field(struct sock_common,
9489 						    skc_v6_daddr.s6_addr32[0]),
9490 				       target_size) + off);
9491 #else
9492 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9493 		*target_size = 4;
9494 #endif
9495 		break;
9496 
9497 	case offsetof(struct bpf_sock, src_port):
9498 		*insn++ = BPF_LDX_MEM(
9499 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9500 			si->dst_reg, si->src_reg,
9501 			bpf_target_off(struct sock_common, skc_num,
9502 				       sizeof_field(struct sock_common,
9503 						    skc_num),
9504 				       target_size));
9505 		break;
9506 
9507 	case offsetof(struct bpf_sock, dst_port):
9508 		*insn++ = BPF_LDX_MEM(
9509 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9510 			si->dst_reg, si->src_reg,
9511 			bpf_target_off(struct sock_common, skc_dport,
9512 				       sizeof_field(struct sock_common,
9513 						    skc_dport),
9514 				       target_size));
9515 		break;
9516 
9517 	case offsetof(struct bpf_sock, state):
9518 		*insn++ = BPF_LDX_MEM(
9519 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9520 			si->dst_reg, si->src_reg,
9521 			bpf_target_off(struct sock_common, skc_state,
9522 				       sizeof_field(struct sock_common,
9523 						    skc_state),
9524 				       target_size));
9525 		break;
9526 	case offsetof(struct bpf_sock, rx_queue_mapping):
9527 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9528 		*insn++ = BPF_LDX_MEM(
9529 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9530 			si->dst_reg, si->src_reg,
9531 			bpf_target_off(struct sock, sk_rx_queue_mapping,
9532 				       sizeof_field(struct sock,
9533 						    sk_rx_queue_mapping),
9534 				       target_size));
9535 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9536 				      1);
9537 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9538 #else
9539 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9540 		*target_size = 2;
9541 #endif
9542 		break;
9543 	}
9544 
9545 	return insn - insn_buf;
9546 }
9547 
9548 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9549 					 const struct bpf_insn *si,
9550 					 struct bpf_insn *insn_buf,
9551 					 struct bpf_prog *prog, u32 *target_size)
9552 {
9553 	struct bpf_insn *insn = insn_buf;
9554 
9555 	switch (si->off) {
9556 	case offsetof(struct __sk_buff, ifindex):
9557 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9558 				      si->dst_reg, si->src_reg,
9559 				      offsetof(struct sk_buff, dev));
9560 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9561 				      bpf_target_off(struct net_device, ifindex, 4,
9562 						     target_size));
9563 		break;
9564 	default:
9565 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9566 					      target_size);
9567 	}
9568 
9569 	return insn - insn_buf;
9570 }
9571 
9572 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9573 				  const struct bpf_insn *si,
9574 				  struct bpf_insn *insn_buf,
9575 				  struct bpf_prog *prog, u32 *target_size)
9576 {
9577 	struct bpf_insn *insn = insn_buf;
9578 
9579 	switch (si->off) {
9580 	case offsetof(struct xdp_md, data):
9581 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9582 				      si->dst_reg, si->src_reg,
9583 				      offsetof(struct xdp_buff, data));
9584 		break;
9585 	case offsetof(struct xdp_md, data_meta):
9586 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9587 				      si->dst_reg, si->src_reg,
9588 				      offsetof(struct xdp_buff, data_meta));
9589 		break;
9590 	case offsetof(struct xdp_md, data_end):
9591 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9592 				      si->dst_reg, si->src_reg,
9593 				      offsetof(struct xdp_buff, data_end));
9594 		break;
9595 	case offsetof(struct xdp_md, ingress_ifindex):
9596 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9597 				      si->dst_reg, si->src_reg,
9598 				      offsetof(struct xdp_buff, rxq));
9599 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9600 				      si->dst_reg, si->dst_reg,
9601 				      offsetof(struct xdp_rxq_info, dev));
9602 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9603 				      offsetof(struct net_device, ifindex));
9604 		break;
9605 	case offsetof(struct xdp_md, rx_queue_index):
9606 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9607 				      si->dst_reg, si->src_reg,
9608 				      offsetof(struct xdp_buff, rxq));
9609 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9610 				      offsetof(struct xdp_rxq_info,
9611 					       queue_index));
9612 		break;
9613 	case offsetof(struct xdp_md, egress_ifindex):
9614 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9615 				      si->dst_reg, si->src_reg,
9616 				      offsetof(struct xdp_buff, txq));
9617 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9618 				      si->dst_reg, si->dst_reg,
9619 				      offsetof(struct xdp_txq_info, dev));
9620 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9621 				      offsetof(struct net_device, ifindex));
9622 		break;
9623 	}
9624 
9625 	return insn - insn_buf;
9626 }
9627 
9628 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9629  * context Structure, F is Field in context structure that contains a pointer
9630  * to Nested Structure of type NS that has the field NF.
9631  *
9632  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9633  * sure that SIZE is not greater than actual size of S.F.NF.
9634  *
9635  * If offset OFF is provided, the load happens from that offset relative to
9636  * offset of NF.
9637  */
9638 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
9639 	do {								       \
9640 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9641 				      si->src_reg, offsetof(S, F));	       \
9642 		*insn++ = BPF_LDX_MEM(					       \
9643 			SIZE, si->dst_reg, si->dst_reg,			       \
9644 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9645 				       target_size)			       \
9646 				+ OFF);					       \
9647 	} while (0)
9648 
9649 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
9650 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
9651 					     BPF_FIELD_SIZEOF(NS, NF), 0)
9652 
9653 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9654  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9655  *
9656  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9657  * "register" since two registers available in convert_ctx_access are not
9658  * enough: we can't override neither SRC, since it contains value to store, nor
9659  * DST since it contains pointer to context that may be used by later
9660  * instructions. But we need a temporary place to save pointer to nested
9661  * structure whose field we want to store to.
9662  */
9663 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
9664 	do {								       \
9665 		int tmp_reg = BPF_REG_9;				       \
9666 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9667 			--tmp_reg;					       \
9668 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9669 			--tmp_reg;					       \
9670 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
9671 				      offsetof(S, TF));			       \
9672 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
9673 				      si->dst_reg, offsetof(S, F));	       \
9674 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
9675 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9676 				       target_size)			       \
9677 				+ OFF);					       \
9678 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
9679 				      offsetof(S, TF));			       \
9680 	} while (0)
9681 
9682 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9683 						      TF)		       \
9684 	do {								       \
9685 		if (type == BPF_WRITE) {				       \
9686 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9687 							 OFF, TF);	       \
9688 		} else {						       \
9689 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
9690 				S, NS, F, NF, SIZE, OFF);  \
9691 		}							       \
9692 	} while (0)
9693 
9694 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
9695 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
9696 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9697 
9698 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9699 					const struct bpf_insn *si,
9700 					struct bpf_insn *insn_buf,
9701 					struct bpf_prog *prog, u32 *target_size)
9702 {
9703 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9704 	struct bpf_insn *insn = insn_buf;
9705 
9706 	switch (si->off) {
9707 	case offsetof(struct bpf_sock_addr, user_family):
9708 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9709 					    struct sockaddr, uaddr, sa_family);
9710 		break;
9711 
9712 	case offsetof(struct bpf_sock_addr, user_ip4):
9713 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9714 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9715 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9716 		break;
9717 
9718 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9719 		off = si->off;
9720 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9721 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9722 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9723 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9724 			tmp_reg);
9725 		break;
9726 
9727 	case offsetof(struct bpf_sock_addr, user_port):
9728 		/* To get port we need to know sa_family first and then treat
9729 		 * sockaddr as either sockaddr_in or sockaddr_in6.
9730 		 * Though we can simplify since port field has same offset and
9731 		 * size in both structures.
9732 		 * Here we check this invariant and use just one of the
9733 		 * structures if it's true.
9734 		 */
9735 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9736 			     offsetof(struct sockaddr_in6, sin6_port));
9737 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9738 			     sizeof_field(struct sockaddr_in6, sin6_port));
9739 		/* Account for sin6_port being smaller than user_port. */
9740 		port_size = min(port_size, BPF_LDST_BYTES(si));
9741 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9742 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9743 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9744 		break;
9745 
9746 	case offsetof(struct bpf_sock_addr, family):
9747 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9748 					    struct sock, sk, sk_family);
9749 		break;
9750 
9751 	case offsetof(struct bpf_sock_addr, type):
9752 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9753 					    struct sock, sk, sk_type);
9754 		break;
9755 
9756 	case offsetof(struct bpf_sock_addr, protocol):
9757 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9758 					    struct sock, sk, sk_protocol);
9759 		break;
9760 
9761 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
9762 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
9763 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9764 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9765 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9766 		break;
9767 
9768 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9769 				msg_src_ip6[3]):
9770 		off = si->off;
9771 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9772 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9773 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9774 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9775 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9776 		break;
9777 	case offsetof(struct bpf_sock_addr, sk):
9778 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9779 				      si->dst_reg, si->src_reg,
9780 				      offsetof(struct bpf_sock_addr_kern, sk));
9781 		break;
9782 	}
9783 
9784 	return insn - insn_buf;
9785 }
9786 
9787 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9788 				       const struct bpf_insn *si,
9789 				       struct bpf_insn *insn_buf,
9790 				       struct bpf_prog *prog,
9791 				       u32 *target_size)
9792 {
9793 	struct bpf_insn *insn = insn_buf;
9794 	int off;
9795 
9796 /* Helper macro for adding read access to tcp_sock or sock fields. */
9797 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9798 	do {								      \
9799 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9800 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9801 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9802 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9803 			reg--;						      \
9804 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9805 			reg--;						      \
9806 		if (si->dst_reg == si->src_reg) {			      \
9807 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9808 					  offsetof(struct bpf_sock_ops_kern,  \
9809 					  temp));			      \
9810 			fullsock_reg = reg;				      \
9811 			jmp += 2;					      \
9812 		}							      \
9813 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9814 						struct bpf_sock_ops_kern,     \
9815 						is_fullsock),		      \
9816 				      fullsock_reg, si->src_reg,	      \
9817 				      offsetof(struct bpf_sock_ops_kern,      \
9818 					       is_fullsock));		      \
9819 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9820 		if (si->dst_reg == si->src_reg)				      \
9821 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9822 				      offsetof(struct bpf_sock_ops_kern,      \
9823 				      temp));				      \
9824 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9825 						struct bpf_sock_ops_kern, sk),\
9826 				      si->dst_reg, si->src_reg,		      \
9827 				      offsetof(struct bpf_sock_ops_kern, sk));\
9828 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
9829 						       OBJ_FIELD),	      \
9830 				      si->dst_reg, si->dst_reg,		      \
9831 				      offsetof(OBJ, OBJ_FIELD));	      \
9832 		if (si->dst_reg == si->src_reg)	{			      \
9833 			*insn++ = BPF_JMP_A(1);				      \
9834 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9835 				      offsetof(struct bpf_sock_ops_kern,      \
9836 				      temp));				      \
9837 		}							      \
9838 	} while (0)
9839 
9840 #define SOCK_OPS_GET_SK()							      \
9841 	do {								      \
9842 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9843 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9844 			reg--;						      \
9845 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9846 			reg--;						      \
9847 		if (si->dst_reg == si->src_reg) {			      \
9848 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9849 					  offsetof(struct bpf_sock_ops_kern,  \
9850 					  temp));			      \
9851 			fullsock_reg = reg;				      \
9852 			jmp += 2;					      \
9853 		}							      \
9854 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9855 						struct bpf_sock_ops_kern,     \
9856 						is_fullsock),		      \
9857 				      fullsock_reg, si->src_reg,	      \
9858 				      offsetof(struct bpf_sock_ops_kern,      \
9859 					       is_fullsock));		      \
9860 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9861 		if (si->dst_reg == si->src_reg)				      \
9862 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9863 				      offsetof(struct bpf_sock_ops_kern,      \
9864 				      temp));				      \
9865 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9866 						struct bpf_sock_ops_kern, sk),\
9867 				      si->dst_reg, si->src_reg,		      \
9868 				      offsetof(struct bpf_sock_ops_kern, sk));\
9869 		if (si->dst_reg == si->src_reg)	{			      \
9870 			*insn++ = BPF_JMP_A(1);				      \
9871 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9872 				      offsetof(struct bpf_sock_ops_kern,      \
9873 				      temp));				      \
9874 		}							      \
9875 	} while (0)
9876 
9877 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9878 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9879 
9880 /* Helper macro for adding write access to tcp_sock or sock fields.
9881  * The macro is called with two registers, dst_reg which contains a pointer
9882  * to ctx (context) and src_reg which contains the value that should be
9883  * stored. However, we need an additional register since we cannot overwrite
9884  * dst_reg because it may be used later in the program.
9885  * Instead we "borrow" one of the other register. We first save its value
9886  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9887  * it at the end of the macro.
9888  */
9889 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9890 	do {								      \
9891 		int reg = BPF_REG_9;					      \
9892 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9893 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9894 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9895 			reg--;						      \
9896 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9897 			reg--;						      \
9898 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
9899 				      offsetof(struct bpf_sock_ops_kern,      \
9900 					       temp));			      \
9901 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9902 						struct bpf_sock_ops_kern,     \
9903 						is_fullsock),		      \
9904 				      reg, si->dst_reg,			      \
9905 				      offsetof(struct bpf_sock_ops_kern,      \
9906 					       is_fullsock));		      \
9907 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
9908 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9909 						struct bpf_sock_ops_kern, sk),\
9910 				      reg, si->dst_reg,			      \
9911 				      offsetof(struct bpf_sock_ops_kern, sk));\
9912 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
9913 				      reg, si->src_reg,			      \
9914 				      offsetof(OBJ, OBJ_FIELD));	      \
9915 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
9916 				      offsetof(struct bpf_sock_ops_kern,      \
9917 					       temp));			      \
9918 	} while (0)
9919 
9920 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
9921 	do {								      \
9922 		if (TYPE == BPF_WRITE)					      \
9923 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9924 		else							      \
9925 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9926 	} while (0)
9927 
9928 	if (insn > insn_buf)
9929 		return insn - insn_buf;
9930 
9931 	switch (si->off) {
9932 	case offsetof(struct bpf_sock_ops, op):
9933 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9934 						       op),
9935 				      si->dst_reg, si->src_reg,
9936 				      offsetof(struct bpf_sock_ops_kern, op));
9937 		break;
9938 
9939 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
9940 	     offsetof(struct bpf_sock_ops, replylong[3]):
9941 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9942 			     sizeof_field(struct bpf_sock_ops_kern, reply));
9943 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9944 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
9945 		off = si->off;
9946 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
9947 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9948 		if (type == BPF_WRITE)
9949 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9950 					      off);
9951 		else
9952 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9953 					      off);
9954 		break;
9955 
9956 	case offsetof(struct bpf_sock_ops, family):
9957 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9958 
9959 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9960 					      struct bpf_sock_ops_kern, sk),
9961 				      si->dst_reg, si->src_reg,
9962 				      offsetof(struct bpf_sock_ops_kern, sk));
9963 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9964 				      offsetof(struct sock_common, skc_family));
9965 		break;
9966 
9967 	case offsetof(struct bpf_sock_ops, remote_ip4):
9968 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9969 
9970 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9971 						struct bpf_sock_ops_kern, sk),
9972 				      si->dst_reg, si->src_reg,
9973 				      offsetof(struct bpf_sock_ops_kern, sk));
9974 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9975 				      offsetof(struct sock_common, skc_daddr));
9976 		break;
9977 
9978 	case offsetof(struct bpf_sock_ops, local_ip4):
9979 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9980 					  skc_rcv_saddr) != 4);
9981 
9982 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9983 					      struct bpf_sock_ops_kern, sk),
9984 				      si->dst_reg, si->src_reg,
9985 				      offsetof(struct bpf_sock_ops_kern, sk));
9986 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9987 				      offsetof(struct sock_common,
9988 					       skc_rcv_saddr));
9989 		break;
9990 
9991 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9992 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
9993 #if IS_ENABLED(CONFIG_IPV6)
9994 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9995 					  skc_v6_daddr.s6_addr32[0]) != 4);
9996 
9997 		off = si->off;
9998 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9999 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10000 						struct bpf_sock_ops_kern, sk),
10001 				      si->dst_reg, si->src_reg,
10002 				      offsetof(struct bpf_sock_ops_kern, sk));
10003 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10004 				      offsetof(struct sock_common,
10005 					       skc_v6_daddr.s6_addr32[0]) +
10006 				      off);
10007 #else
10008 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10009 #endif
10010 		break;
10011 
10012 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10013 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10014 #if IS_ENABLED(CONFIG_IPV6)
10015 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10016 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10017 
10018 		off = si->off;
10019 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10020 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10021 						struct bpf_sock_ops_kern, sk),
10022 				      si->dst_reg, si->src_reg,
10023 				      offsetof(struct bpf_sock_ops_kern, sk));
10024 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10025 				      offsetof(struct sock_common,
10026 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10027 				      off);
10028 #else
10029 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10030 #endif
10031 		break;
10032 
10033 	case offsetof(struct bpf_sock_ops, remote_port):
10034 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10035 
10036 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10037 						struct bpf_sock_ops_kern, sk),
10038 				      si->dst_reg, si->src_reg,
10039 				      offsetof(struct bpf_sock_ops_kern, sk));
10040 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10041 				      offsetof(struct sock_common, skc_dport));
10042 #ifndef __BIG_ENDIAN_BITFIELD
10043 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10044 #endif
10045 		break;
10046 
10047 	case offsetof(struct bpf_sock_ops, local_port):
10048 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10049 
10050 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10051 						struct bpf_sock_ops_kern, sk),
10052 				      si->dst_reg, si->src_reg,
10053 				      offsetof(struct bpf_sock_ops_kern, sk));
10054 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10055 				      offsetof(struct sock_common, skc_num));
10056 		break;
10057 
10058 	case offsetof(struct bpf_sock_ops, is_fullsock):
10059 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10060 						struct bpf_sock_ops_kern,
10061 						is_fullsock),
10062 				      si->dst_reg, si->src_reg,
10063 				      offsetof(struct bpf_sock_ops_kern,
10064 					       is_fullsock));
10065 		break;
10066 
10067 	case offsetof(struct bpf_sock_ops, state):
10068 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10069 
10070 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10071 						struct bpf_sock_ops_kern, sk),
10072 				      si->dst_reg, si->src_reg,
10073 				      offsetof(struct bpf_sock_ops_kern, sk));
10074 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10075 				      offsetof(struct sock_common, skc_state));
10076 		break;
10077 
10078 	case offsetof(struct bpf_sock_ops, rtt_min):
10079 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10080 			     sizeof(struct minmax));
10081 		BUILD_BUG_ON(sizeof(struct minmax) <
10082 			     sizeof(struct minmax_sample));
10083 
10084 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10085 						struct bpf_sock_ops_kern, sk),
10086 				      si->dst_reg, si->src_reg,
10087 				      offsetof(struct bpf_sock_ops_kern, sk));
10088 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10089 				      offsetof(struct tcp_sock, rtt_min) +
10090 				      sizeof_field(struct minmax_sample, t));
10091 		break;
10092 
10093 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10094 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10095 				   struct tcp_sock);
10096 		break;
10097 
10098 	case offsetof(struct bpf_sock_ops, sk_txhash):
10099 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10100 					  struct sock, type);
10101 		break;
10102 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10103 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10104 		break;
10105 	case offsetof(struct bpf_sock_ops, srtt_us):
10106 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10107 		break;
10108 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10109 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10110 		break;
10111 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10112 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10113 		break;
10114 	case offsetof(struct bpf_sock_ops, snd_nxt):
10115 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10116 		break;
10117 	case offsetof(struct bpf_sock_ops, snd_una):
10118 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10119 		break;
10120 	case offsetof(struct bpf_sock_ops, mss_cache):
10121 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10122 		break;
10123 	case offsetof(struct bpf_sock_ops, ecn_flags):
10124 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10125 		break;
10126 	case offsetof(struct bpf_sock_ops, rate_delivered):
10127 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10128 		break;
10129 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10130 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10131 		break;
10132 	case offsetof(struct bpf_sock_ops, packets_out):
10133 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10134 		break;
10135 	case offsetof(struct bpf_sock_ops, retrans_out):
10136 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10137 		break;
10138 	case offsetof(struct bpf_sock_ops, total_retrans):
10139 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10140 		break;
10141 	case offsetof(struct bpf_sock_ops, segs_in):
10142 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10143 		break;
10144 	case offsetof(struct bpf_sock_ops, data_segs_in):
10145 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10146 		break;
10147 	case offsetof(struct bpf_sock_ops, segs_out):
10148 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10149 		break;
10150 	case offsetof(struct bpf_sock_ops, data_segs_out):
10151 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10152 		break;
10153 	case offsetof(struct bpf_sock_ops, lost_out):
10154 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10155 		break;
10156 	case offsetof(struct bpf_sock_ops, sacked_out):
10157 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10158 		break;
10159 	case offsetof(struct bpf_sock_ops, bytes_received):
10160 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10161 		break;
10162 	case offsetof(struct bpf_sock_ops, bytes_acked):
10163 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10164 		break;
10165 	case offsetof(struct bpf_sock_ops, sk):
10166 		SOCK_OPS_GET_SK();
10167 		break;
10168 	case offsetof(struct bpf_sock_ops, skb_data_end):
10169 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10170 						       skb_data_end),
10171 				      si->dst_reg, si->src_reg,
10172 				      offsetof(struct bpf_sock_ops_kern,
10173 					       skb_data_end));
10174 		break;
10175 	case offsetof(struct bpf_sock_ops, skb_data):
10176 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10177 						       skb),
10178 				      si->dst_reg, si->src_reg,
10179 				      offsetof(struct bpf_sock_ops_kern,
10180 					       skb));
10181 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10182 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10183 				      si->dst_reg, si->dst_reg,
10184 				      offsetof(struct sk_buff, data));
10185 		break;
10186 	case offsetof(struct bpf_sock_ops, skb_len):
10187 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10188 						       skb),
10189 				      si->dst_reg, si->src_reg,
10190 				      offsetof(struct bpf_sock_ops_kern,
10191 					       skb));
10192 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10193 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10194 				      si->dst_reg, si->dst_reg,
10195 				      offsetof(struct sk_buff, len));
10196 		break;
10197 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10198 		off = offsetof(struct sk_buff, cb);
10199 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10200 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10201 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10202 						       skb),
10203 				      si->dst_reg, si->src_reg,
10204 				      offsetof(struct bpf_sock_ops_kern,
10205 					       skb));
10206 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10207 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10208 						       tcp_flags),
10209 				      si->dst_reg, si->dst_reg, off);
10210 		break;
10211 	}
10212 	return insn - insn_buf;
10213 }
10214 
10215 /* data_end = skb->data + skb_headlen() */
10216 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10217 						    struct bpf_insn *insn)
10218 {
10219 	int reg;
10220 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10221 			   offsetof(struct sk_skb_cb, temp_reg);
10222 
10223 	if (si->src_reg == si->dst_reg) {
10224 		/* We need an extra register, choose and save a register. */
10225 		reg = BPF_REG_9;
10226 		if (si->src_reg == reg || si->dst_reg == reg)
10227 			reg--;
10228 		if (si->src_reg == reg || si->dst_reg == reg)
10229 			reg--;
10230 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10231 	} else {
10232 		reg = si->dst_reg;
10233 	}
10234 
10235 	/* reg = skb->data */
10236 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10237 			      reg, si->src_reg,
10238 			      offsetof(struct sk_buff, data));
10239 	/* AX = skb->len */
10240 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10241 			      BPF_REG_AX, si->src_reg,
10242 			      offsetof(struct sk_buff, len));
10243 	/* reg = skb->data + skb->len */
10244 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10245 	/* AX = skb->data_len */
10246 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10247 			      BPF_REG_AX, si->src_reg,
10248 			      offsetof(struct sk_buff, data_len));
10249 
10250 	/* reg = skb->data + skb->len - skb->data_len */
10251 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10252 
10253 	if (si->src_reg == si->dst_reg) {
10254 		/* Restore the saved register */
10255 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10256 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10257 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10258 	}
10259 
10260 	return insn;
10261 }
10262 
10263 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10264 				     const struct bpf_insn *si,
10265 				     struct bpf_insn *insn_buf,
10266 				     struct bpf_prog *prog, u32 *target_size)
10267 {
10268 	struct bpf_insn *insn = insn_buf;
10269 	int off;
10270 
10271 	switch (si->off) {
10272 	case offsetof(struct __sk_buff, data_end):
10273 		insn = bpf_convert_data_end_access(si, insn);
10274 		break;
10275 	case offsetof(struct __sk_buff, cb[0]) ...
10276 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10277 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10278 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10279 			      offsetof(struct sk_skb_cb, data)) %
10280 			     sizeof(__u64));
10281 
10282 		prog->cb_access = 1;
10283 		off  = si->off;
10284 		off -= offsetof(struct __sk_buff, cb[0]);
10285 		off += offsetof(struct sk_buff, cb);
10286 		off += offsetof(struct sk_skb_cb, data);
10287 		if (type == BPF_WRITE)
10288 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
10289 					      si->src_reg, off);
10290 		else
10291 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10292 					      si->src_reg, off);
10293 		break;
10294 
10295 
10296 	default:
10297 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10298 					      target_size);
10299 	}
10300 
10301 	return insn - insn_buf;
10302 }
10303 
10304 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10305 				     const struct bpf_insn *si,
10306 				     struct bpf_insn *insn_buf,
10307 				     struct bpf_prog *prog, u32 *target_size)
10308 {
10309 	struct bpf_insn *insn = insn_buf;
10310 #if IS_ENABLED(CONFIG_IPV6)
10311 	int off;
10312 #endif
10313 
10314 	/* convert ctx uses the fact sg element is first in struct */
10315 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10316 
10317 	switch (si->off) {
10318 	case offsetof(struct sk_msg_md, data):
10319 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10320 				      si->dst_reg, si->src_reg,
10321 				      offsetof(struct sk_msg, data));
10322 		break;
10323 	case offsetof(struct sk_msg_md, data_end):
10324 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10325 				      si->dst_reg, si->src_reg,
10326 				      offsetof(struct sk_msg, data_end));
10327 		break;
10328 	case offsetof(struct sk_msg_md, family):
10329 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10330 
10331 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10332 					      struct sk_msg, sk),
10333 				      si->dst_reg, si->src_reg,
10334 				      offsetof(struct sk_msg, sk));
10335 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10336 				      offsetof(struct sock_common, skc_family));
10337 		break;
10338 
10339 	case offsetof(struct sk_msg_md, remote_ip4):
10340 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10341 
10342 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10343 						struct sk_msg, sk),
10344 				      si->dst_reg, si->src_reg,
10345 				      offsetof(struct sk_msg, sk));
10346 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10347 				      offsetof(struct sock_common, skc_daddr));
10348 		break;
10349 
10350 	case offsetof(struct sk_msg_md, local_ip4):
10351 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10352 					  skc_rcv_saddr) != 4);
10353 
10354 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10355 					      struct sk_msg, sk),
10356 				      si->dst_reg, si->src_reg,
10357 				      offsetof(struct sk_msg, sk));
10358 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10359 				      offsetof(struct sock_common,
10360 					       skc_rcv_saddr));
10361 		break;
10362 
10363 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10364 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10365 #if IS_ENABLED(CONFIG_IPV6)
10366 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10367 					  skc_v6_daddr.s6_addr32[0]) != 4);
10368 
10369 		off = si->off;
10370 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10371 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10372 						struct sk_msg, sk),
10373 				      si->dst_reg, si->src_reg,
10374 				      offsetof(struct sk_msg, sk));
10375 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10376 				      offsetof(struct sock_common,
10377 					       skc_v6_daddr.s6_addr32[0]) +
10378 				      off);
10379 #else
10380 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10381 #endif
10382 		break;
10383 
10384 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10385 	     offsetof(struct sk_msg_md, local_ip6[3]):
10386 #if IS_ENABLED(CONFIG_IPV6)
10387 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10388 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10389 
10390 		off = si->off;
10391 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10392 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10393 						struct sk_msg, sk),
10394 				      si->dst_reg, si->src_reg,
10395 				      offsetof(struct sk_msg, sk));
10396 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10397 				      offsetof(struct sock_common,
10398 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10399 				      off);
10400 #else
10401 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10402 #endif
10403 		break;
10404 
10405 	case offsetof(struct sk_msg_md, remote_port):
10406 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10407 
10408 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10409 						struct sk_msg, sk),
10410 				      si->dst_reg, si->src_reg,
10411 				      offsetof(struct sk_msg, sk));
10412 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10413 				      offsetof(struct sock_common, skc_dport));
10414 #ifndef __BIG_ENDIAN_BITFIELD
10415 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10416 #endif
10417 		break;
10418 
10419 	case offsetof(struct sk_msg_md, local_port):
10420 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10421 
10422 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10423 						struct sk_msg, sk),
10424 				      si->dst_reg, si->src_reg,
10425 				      offsetof(struct sk_msg, sk));
10426 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10427 				      offsetof(struct sock_common, skc_num));
10428 		break;
10429 
10430 	case offsetof(struct sk_msg_md, size):
10431 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10432 				      si->dst_reg, si->src_reg,
10433 				      offsetof(struct sk_msg_sg, size));
10434 		break;
10435 
10436 	case offsetof(struct sk_msg_md, sk):
10437 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10438 				      si->dst_reg, si->src_reg,
10439 				      offsetof(struct sk_msg, sk));
10440 		break;
10441 	}
10442 
10443 	return insn - insn_buf;
10444 }
10445 
10446 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10447 	.get_func_proto		= sk_filter_func_proto,
10448 	.is_valid_access	= sk_filter_is_valid_access,
10449 	.convert_ctx_access	= bpf_convert_ctx_access,
10450 	.gen_ld_abs		= bpf_gen_ld_abs,
10451 };
10452 
10453 const struct bpf_prog_ops sk_filter_prog_ops = {
10454 	.test_run		= bpf_prog_test_run_skb,
10455 };
10456 
10457 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10458 	.get_func_proto		= tc_cls_act_func_proto,
10459 	.is_valid_access	= tc_cls_act_is_valid_access,
10460 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10461 	.gen_prologue		= tc_cls_act_prologue,
10462 	.gen_ld_abs		= bpf_gen_ld_abs,
10463 };
10464 
10465 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10466 	.test_run		= bpf_prog_test_run_skb,
10467 };
10468 
10469 const struct bpf_verifier_ops xdp_verifier_ops = {
10470 	.get_func_proto		= xdp_func_proto,
10471 	.is_valid_access	= xdp_is_valid_access,
10472 	.convert_ctx_access	= xdp_convert_ctx_access,
10473 	.gen_prologue		= bpf_noop_prologue,
10474 };
10475 
10476 const struct bpf_prog_ops xdp_prog_ops = {
10477 	.test_run		= bpf_prog_test_run_xdp,
10478 };
10479 
10480 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10481 	.get_func_proto		= cg_skb_func_proto,
10482 	.is_valid_access	= cg_skb_is_valid_access,
10483 	.convert_ctx_access	= bpf_convert_ctx_access,
10484 };
10485 
10486 const struct bpf_prog_ops cg_skb_prog_ops = {
10487 	.test_run		= bpf_prog_test_run_skb,
10488 };
10489 
10490 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10491 	.get_func_proto		= lwt_in_func_proto,
10492 	.is_valid_access	= lwt_is_valid_access,
10493 	.convert_ctx_access	= bpf_convert_ctx_access,
10494 };
10495 
10496 const struct bpf_prog_ops lwt_in_prog_ops = {
10497 	.test_run		= bpf_prog_test_run_skb,
10498 };
10499 
10500 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10501 	.get_func_proto		= lwt_out_func_proto,
10502 	.is_valid_access	= lwt_is_valid_access,
10503 	.convert_ctx_access	= bpf_convert_ctx_access,
10504 };
10505 
10506 const struct bpf_prog_ops lwt_out_prog_ops = {
10507 	.test_run		= bpf_prog_test_run_skb,
10508 };
10509 
10510 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10511 	.get_func_proto		= lwt_xmit_func_proto,
10512 	.is_valid_access	= lwt_is_valid_access,
10513 	.convert_ctx_access	= bpf_convert_ctx_access,
10514 	.gen_prologue		= tc_cls_act_prologue,
10515 };
10516 
10517 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10518 	.test_run		= bpf_prog_test_run_skb,
10519 };
10520 
10521 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10522 	.get_func_proto		= lwt_seg6local_func_proto,
10523 	.is_valid_access	= lwt_is_valid_access,
10524 	.convert_ctx_access	= bpf_convert_ctx_access,
10525 };
10526 
10527 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10528 	.test_run		= bpf_prog_test_run_skb,
10529 };
10530 
10531 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10532 	.get_func_proto		= sock_filter_func_proto,
10533 	.is_valid_access	= sock_filter_is_valid_access,
10534 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
10535 };
10536 
10537 const struct bpf_prog_ops cg_sock_prog_ops = {
10538 };
10539 
10540 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10541 	.get_func_proto		= sock_addr_func_proto,
10542 	.is_valid_access	= sock_addr_is_valid_access,
10543 	.convert_ctx_access	= sock_addr_convert_ctx_access,
10544 };
10545 
10546 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10547 };
10548 
10549 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10550 	.get_func_proto		= sock_ops_func_proto,
10551 	.is_valid_access	= sock_ops_is_valid_access,
10552 	.convert_ctx_access	= sock_ops_convert_ctx_access,
10553 };
10554 
10555 const struct bpf_prog_ops sock_ops_prog_ops = {
10556 };
10557 
10558 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10559 	.get_func_proto		= sk_skb_func_proto,
10560 	.is_valid_access	= sk_skb_is_valid_access,
10561 	.convert_ctx_access	= sk_skb_convert_ctx_access,
10562 	.gen_prologue		= sk_skb_prologue,
10563 };
10564 
10565 const struct bpf_prog_ops sk_skb_prog_ops = {
10566 };
10567 
10568 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10569 	.get_func_proto		= sk_msg_func_proto,
10570 	.is_valid_access	= sk_msg_is_valid_access,
10571 	.convert_ctx_access	= sk_msg_convert_ctx_access,
10572 	.gen_prologue		= bpf_noop_prologue,
10573 };
10574 
10575 const struct bpf_prog_ops sk_msg_prog_ops = {
10576 };
10577 
10578 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10579 	.get_func_proto		= flow_dissector_func_proto,
10580 	.is_valid_access	= flow_dissector_is_valid_access,
10581 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
10582 };
10583 
10584 const struct bpf_prog_ops flow_dissector_prog_ops = {
10585 	.test_run		= bpf_prog_test_run_flow_dissector,
10586 };
10587 
10588 int sk_detach_filter(struct sock *sk)
10589 {
10590 	int ret = -ENOENT;
10591 	struct sk_filter *filter;
10592 
10593 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
10594 		return -EPERM;
10595 
10596 	filter = rcu_dereference_protected(sk->sk_filter,
10597 					   lockdep_sock_is_held(sk));
10598 	if (filter) {
10599 		RCU_INIT_POINTER(sk->sk_filter, NULL);
10600 		sk_filter_uncharge(sk, filter);
10601 		ret = 0;
10602 	}
10603 
10604 	return ret;
10605 }
10606 EXPORT_SYMBOL_GPL(sk_detach_filter);
10607 
10608 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
10609 		  unsigned int len)
10610 {
10611 	struct sock_fprog_kern *fprog;
10612 	struct sk_filter *filter;
10613 	int ret = 0;
10614 
10615 	lock_sock(sk);
10616 	filter = rcu_dereference_protected(sk->sk_filter,
10617 					   lockdep_sock_is_held(sk));
10618 	if (!filter)
10619 		goto out;
10620 
10621 	/* We're copying the filter that has been originally attached,
10622 	 * so no conversion/decode needed anymore. eBPF programs that
10623 	 * have no original program cannot be dumped through this.
10624 	 */
10625 	ret = -EACCES;
10626 	fprog = filter->prog->orig_prog;
10627 	if (!fprog)
10628 		goto out;
10629 
10630 	ret = fprog->len;
10631 	if (!len)
10632 		/* User space only enquires number of filter blocks. */
10633 		goto out;
10634 
10635 	ret = -EINVAL;
10636 	if (len < fprog->len)
10637 		goto out;
10638 
10639 	ret = -EFAULT;
10640 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
10641 		goto out;
10642 
10643 	/* Instead of bytes, the API requests to return the number
10644 	 * of filter blocks.
10645 	 */
10646 	ret = fprog->len;
10647 out:
10648 	release_sock(sk);
10649 	return ret;
10650 }
10651 
10652 #ifdef CONFIG_INET
10653 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10654 				    struct sock_reuseport *reuse,
10655 				    struct sock *sk, struct sk_buff *skb,
10656 				    struct sock *migrating_sk,
10657 				    u32 hash)
10658 {
10659 	reuse_kern->skb = skb;
10660 	reuse_kern->sk = sk;
10661 	reuse_kern->selected_sk = NULL;
10662 	reuse_kern->migrating_sk = migrating_sk;
10663 	reuse_kern->data_end = skb->data + skb_headlen(skb);
10664 	reuse_kern->hash = hash;
10665 	reuse_kern->reuseport_id = reuse->reuseport_id;
10666 	reuse_kern->bind_inany = reuse->bind_inany;
10667 }
10668 
10669 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10670 				  struct bpf_prog *prog, struct sk_buff *skb,
10671 				  struct sock *migrating_sk,
10672 				  u32 hash)
10673 {
10674 	struct sk_reuseport_kern reuse_kern;
10675 	enum sk_action action;
10676 
10677 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10678 	action = bpf_prog_run(prog, &reuse_kern);
10679 
10680 	if (action == SK_PASS)
10681 		return reuse_kern.selected_sk;
10682 	else
10683 		return ERR_PTR(-ECONNREFUSED);
10684 }
10685 
10686 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10687 	   struct bpf_map *, map, void *, key, u32, flags)
10688 {
10689 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10690 	struct sock_reuseport *reuse;
10691 	struct sock *selected_sk;
10692 
10693 	selected_sk = map->ops->map_lookup_elem(map, key);
10694 	if (!selected_sk)
10695 		return -ENOENT;
10696 
10697 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10698 	if (!reuse) {
10699 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10700 		if (sk_is_refcounted(selected_sk))
10701 			sock_put(selected_sk);
10702 
10703 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
10704 		 * The only (!reuse) case here is - the sk has already been
10705 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
10706 		 *
10707 		 * Other maps (e.g. sock_map) do not provide this guarantee and
10708 		 * the sk may never be in the reuseport group to begin with.
10709 		 */
10710 		return is_sockarray ? -ENOENT : -EINVAL;
10711 	}
10712 
10713 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10714 		struct sock *sk = reuse_kern->sk;
10715 
10716 		if (sk->sk_protocol != selected_sk->sk_protocol)
10717 			return -EPROTOTYPE;
10718 		else if (sk->sk_family != selected_sk->sk_family)
10719 			return -EAFNOSUPPORT;
10720 
10721 		/* Catch all. Likely bound to a different sockaddr. */
10722 		return -EBADFD;
10723 	}
10724 
10725 	reuse_kern->selected_sk = selected_sk;
10726 
10727 	return 0;
10728 }
10729 
10730 static const struct bpf_func_proto sk_select_reuseport_proto = {
10731 	.func           = sk_select_reuseport,
10732 	.gpl_only       = false,
10733 	.ret_type       = RET_INTEGER,
10734 	.arg1_type	= ARG_PTR_TO_CTX,
10735 	.arg2_type      = ARG_CONST_MAP_PTR,
10736 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
10737 	.arg4_type	= ARG_ANYTHING,
10738 };
10739 
10740 BPF_CALL_4(sk_reuseport_load_bytes,
10741 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10742 	   void *, to, u32, len)
10743 {
10744 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10745 }
10746 
10747 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10748 	.func		= sk_reuseport_load_bytes,
10749 	.gpl_only	= false,
10750 	.ret_type	= RET_INTEGER,
10751 	.arg1_type	= ARG_PTR_TO_CTX,
10752 	.arg2_type	= ARG_ANYTHING,
10753 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10754 	.arg4_type	= ARG_CONST_SIZE,
10755 };
10756 
10757 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10758 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10759 	   void *, to, u32, len, u32, start_header)
10760 {
10761 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10762 					       len, start_header);
10763 }
10764 
10765 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10766 	.func		= sk_reuseport_load_bytes_relative,
10767 	.gpl_only	= false,
10768 	.ret_type	= RET_INTEGER,
10769 	.arg1_type	= ARG_PTR_TO_CTX,
10770 	.arg2_type	= ARG_ANYTHING,
10771 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10772 	.arg4_type	= ARG_CONST_SIZE,
10773 	.arg5_type	= ARG_ANYTHING,
10774 };
10775 
10776 static const struct bpf_func_proto *
10777 sk_reuseport_func_proto(enum bpf_func_id func_id,
10778 			const struct bpf_prog *prog)
10779 {
10780 	switch (func_id) {
10781 	case BPF_FUNC_sk_select_reuseport:
10782 		return &sk_select_reuseport_proto;
10783 	case BPF_FUNC_skb_load_bytes:
10784 		return &sk_reuseport_load_bytes_proto;
10785 	case BPF_FUNC_skb_load_bytes_relative:
10786 		return &sk_reuseport_load_bytes_relative_proto;
10787 	case BPF_FUNC_get_socket_cookie:
10788 		return &bpf_get_socket_ptr_cookie_proto;
10789 	case BPF_FUNC_ktime_get_coarse_ns:
10790 		return &bpf_ktime_get_coarse_ns_proto;
10791 	default:
10792 		return bpf_base_func_proto(func_id);
10793 	}
10794 }
10795 
10796 static bool
10797 sk_reuseport_is_valid_access(int off, int size,
10798 			     enum bpf_access_type type,
10799 			     const struct bpf_prog *prog,
10800 			     struct bpf_insn_access_aux *info)
10801 {
10802 	const u32 size_default = sizeof(__u32);
10803 
10804 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10805 	    off % size || type != BPF_READ)
10806 		return false;
10807 
10808 	switch (off) {
10809 	case offsetof(struct sk_reuseport_md, data):
10810 		info->reg_type = PTR_TO_PACKET;
10811 		return size == sizeof(__u64);
10812 
10813 	case offsetof(struct sk_reuseport_md, data_end):
10814 		info->reg_type = PTR_TO_PACKET_END;
10815 		return size == sizeof(__u64);
10816 
10817 	case offsetof(struct sk_reuseport_md, hash):
10818 		return size == size_default;
10819 
10820 	case offsetof(struct sk_reuseport_md, sk):
10821 		info->reg_type = PTR_TO_SOCKET;
10822 		return size == sizeof(__u64);
10823 
10824 	case offsetof(struct sk_reuseport_md, migrating_sk):
10825 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
10826 		return size == sizeof(__u64);
10827 
10828 	/* Fields that allow narrowing */
10829 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10830 		if (size < sizeof_field(struct sk_buff, protocol))
10831 			return false;
10832 		fallthrough;
10833 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10834 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10835 	case bpf_ctx_range(struct sk_reuseport_md, len):
10836 		bpf_ctx_record_field_size(info, size_default);
10837 		return bpf_ctx_narrow_access_ok(off, size, size_default);
10838 
10839 	default:
10840 		return false;
10841 	}
10842 }
10843 
10844 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
10845 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10846 			      si->dst_reg, si->src_reg,			\
10847 			      bpf_target_off(struct sk_reuseport_kern, F, \
10848 					     sizeof_field(struct sk_reuseport_kern, F), \
10849 					     target_size));		\
10850 	})
10851 
10852 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
10853 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10854 				    struct sk_buff,			\
10855 				    skb,				\
10856 				    SKB_FIELD)
10857 
10858 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
10859 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10860 				    struct sock,			\
10861 				    sk,					\
10862 				    SK_FIELD)
10863 
10864 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10865 					   const struct bpf_insn *si,
10866 					   struct bpf_insn *insn_buf,
10867 					   struct bpf_prog *prog,
10868 					   u32 *target_size)
10869 {
10870 	struct bpf_insn *insn = insn_buf;
10871 
10872 	switch (si->off) {
10873 	case offsetof(struct sk_reuseport_md, data):
10874 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
10875 		break;
10876 
10877 	case offsetof(struct sk_reuseport_md, len):
10878 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
10879 		break;
10880 
10881 	case offsetof(struct sk_reuseport_md, eth_protocol):
10882 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10883 		break;
10884 
10885 	case offsetof(struct sk_reuseport_md, ip_protocol):
10886 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10887 		break;
10888 
10889 	case offsetof(struct sk_reuseport_md, data_end):
10890 		SK_REUSEPORT_LOAD_FIELD(data_end);
10891 		break;
10892 
10893 	case offsetof(struct sk_reuseport_md, hash):
10894 		SK_REUSEPORT_LOAD_FIELD(hash);
10895 		break;
10896 
10897 	case offsetof(struct sk_reuseport_md, bind_inany):
10898 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
10899 		break;
10900 
10901 	case offsetof(struct sk_reuseport_md, sk):
10902 		SK_REUSEPORT_LOAD_FIELD(sk);
10903 		break;
10904 
10905 	case offsetof(struct sk_reuseport_md, migrating_sk):
10906 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
10907 		break;
10908 	}
10909 
10910 	return insn - insn_buf;
10911 }
10912 
10913 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10914 	.get_func_proto		= sk_reuseport_func_proto,
10915 	.is_valid_access	= sk_reuseport_is_valid_access,
10916 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
10917 };
10918 
10919 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10920 };
10921 
10922 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10923 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10924 
10925 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10926 	   struct sock *, sk, u64, flags)
10927 {
10928 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10929 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10930 		return -EINVAL;
10931 	if (unlikely(sk && sk_is_refcounted(sk)))
10932 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10933 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
10934 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
10935 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
10936 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
10937 
10938 	/* Check if socket is suitable for packet L3/L4 protocol */
10939 	if (sk && sk->sk_protocol != ctx->protocol)
10940 		return -EPROTOTYPE;
10941 	if (sk && sk->sk_family != ctx->family &&
10942 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10943 		return -EAFNOSUPPORT;
10944 
10945 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10946 		return -EEXIST;
10947 
10948 	/* Select socket as lookup result */
10949 	ctx->selected_sk = sk;
10950 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10951 	return 0;
10952 }
10953 
10954 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10955 	.func		= bpf_sk_lookup_assign,
10956 	.gpl_only	= false,
10957 	.ret_type	= RET_INTEGER,
10958 	.arg1_type	= ARG_PTR_TO_CTX,
10959 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
10960 	.arg3_type	= ARG_ANYTHING,
10961 };
10962 
10963 static const struct bpf_func_proto *
10964 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10965 {
10966 	switch (func_id) {
10967 	case BPF_FUNC_perf_event_output:
10968 		return &bpf_event_output_data_proto;
10969 	case BPF_FUNC_sk_assign:
10970 		return &bpf_sk_lookup_assign_proto;
10971 	case BPF_FUNC_sk_release:
10972 		return &bpf_sk_release_proto;
10973 	default:
10974 		return bpf_sk_base_func_proto(func_id);
10975 	}
10976 }
10977 
10978 static bool sk_lookup_is_valid_access(int off, int size,
10979 				      enum bpf_access_type type,
10980 				      const struct bpf_prog *prog,
10981 				      struct bpf_insn_access_aux *info)
10982 {
10983 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10984 		return false;
10985 	if (off % size != 0)
10986 		return false;
10987 	if (type != BPF_READ)
10988 		return false;
10989 
10990 	switch (off) {
10991 	case offsetof(struct bpf_sk_lookup, sk):
10992 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
10993 		return size == sizeof(__u64);
10994 
10995 	case bpf_ctx_range(struct bpf_sk_lookup, family):
10996 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10997 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10998 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10999 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11000 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11001 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11002 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11003 		bpf_ctx_record_field_size(info, sizeof(__u32));
11004 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11005 
11006 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11007 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11008 		if (size == sizeof(__u32))
11009 			return true;
11010 		bpf_ctx_record_field_size(info, sizeof(__be16));
11011 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11012 
11013 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11014 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11015 		/* Allow access to zero padding for backward compatibility */
11016 		bpf_ctx_record_field_size(info, sizeof(__u16));
11017 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11018 
11019 	default:
11020 		return false;
11021 	}
11022 }
11023 
11024 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11025 					const struct bpf_insn *si,
11026 					struct bpf_insn *insn_buf,
11027 					struct bpf_prog *prog,
11028 					u32 *target_size)
11029 {
11030 	struct bpf_insn *insn = insn_buf;
11031 
11032 	switch (si->off) {
11033 	case offsetof(struct bpf_sk_lookup, sk):
11034 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11035 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11036 		break;
11037 
11038 	case offsetof(struct bpf_sk_lookup, family):
11039 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11040 				      bpf_target_off(struct bpf_sk_lookup_kern,
11041 						     family, 2, target_size));
11042 		break;
11043 
11044 	case offsetof(struct bpf_sk_lookup, protocol):
11045 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11046 				      bpf_target_off(struct bpf_sk_lookup_kern,
11047 						     protocol, 2, target_size));
11048 		break;
11049 
11050 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11051 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11052 				      bpf_target_off(struct bpf_sk_lookup_kern,
11053 						     v4.saddr, 4, target_size));
11054 		break;
11055 
11056 	case offsetof(struct bpf_sk_lookup, local_ip4):
11057 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11058 				      bpf_target_off(struct bpf_sk_lookup_kern,
11059 						     v4.daddr, 4, target_size));
11060 		break;
11061 
11062 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11063 				remote_ip6[0], remote_ip6[3]): {
11064 #if IS_ENABLED(CONFIG_IPV6)
11065 		int off = si->off;
11066 
11067 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11068 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11069 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11070 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11071 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11072 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11073 #else
11074 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11075 #endif
11076 		break;
11077 	}
11078 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11079 				local_ip6[0], local_ip6[3]): {
11080 #if IS_ENABLED(CONFIG_IPV6)
11081 		int off = si->off;
11082 
11083 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11084 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11085 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11086 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11087 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11088 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11089 #else
11090 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11091 #endif
11092 		break;
11093 	}
11094 	case offsetof(struct bpf_sk_lookup, remote_port):
11095 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11096 				      bpf_target_off(struct bpf_sk_lookup_kern,
11097 						     sport, 2, target_size));
11098 		break;
11099 
11100 	case offsetofend(struct bpf_sk_lookup, remote_port):
11101 		*target_size = 2;
11102 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11103 		break;
11104 
11105 	case offsetof(struct bpf_sk_lookup, local_port):
11106 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11107 				      bpf_target_off(struct bpf_sk_lookup_kern,
11108 						     dport, 2, target_size));
11109 		break;
11110 
11111 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11112 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11113 				      bpf_target_off(struct bpf_sk_lookup_kern,
11114 						     ingress_ifindex, 4, target_size));
11115 		break;
11116 	}
11117 
11118 	return insn - insn_buf;
11119 }
11120 
11121 const struct bpf_prog_ops sk_lookup_prog_ops = {
11122 	.test_run = bpf_prog_test_run_sk_lookup,
11123 };
11124 
11125 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11126 	.get_func_proto		= sk_lookup_func_proto,
11127 	.is_valid_access	= sk_lookup_is_valid_access,
11128 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11129 };
11130 
11131 #endif /* CONFIG_INET */
11132 
11133 DEFINE_BPF_DISPATCHER(xdp)
11134 
11135 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11136 {
11137 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11138 }
11139 
11140 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11141 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11142 BTF_SOCK_TYPE_xxx
11143 #undef BTF_SOCK_TYPE
11144 
11145 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11146 {
11147 	/* tcp6_sock type is not generated in dwarf and hence btf,
11148 	 * trigger an explicit type generation here.
11149 	 */
11150 	BTF_TYPE_EMIT(struct tcp6_sock);
11151 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11152 	    sk->sk_family == AF_INET6)
11153 		return (unsigned long)sk;
11154 
11155 	return (unsigned long)NULL;
11156 }
11157 
11158 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11159 	.func			= bpf_skc_to_tcp6_sock,
11160 	.gpl_only		= false,
11161 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11162 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11163 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11164 };
11165 
11166 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11167 {
11168 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11169 		return (unsigned long)sk;
11170 
11171 	return (unsigned long)NULL;
11172 }
11173 
11174 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11175 	.func			= bpf_skc_to_tcp_sock,
11176 	.gpl_only		= false,
11177 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11178 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11179 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11180 };
11181 
11182 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11183 {
11184 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11185 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11186 	 */
11187 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11188 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11189 
11190 #ifdef CONFIG_INET
11191 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11192 		return (unsigned long)sk;
11193 #endif
11194 
11195 #if IS_BUILTIN(CONFIG_IPV6)
11196 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11197 		return (unsigned long)sk;
11198 #endif
11199 
11200 	return (unsigned long)NULL;
11201 }
11202 
11203 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11204 	.func			= bpf_skc_to_tcp_timewait_sock,
11205 	.gpl_only		= false,
11206 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11207 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11208 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11209 };
11210 
11211 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11212 {
11213 #ifdef CONFIG_INET
11214 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11215 		return (unsigned long)sk;
11216 #endif
11217 
11218 #if IS_BUILTIN(CONFIG_IPV6)
11219 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11220 		return (unsigned long)sk;
11221 #endif
11222 
11223 	return (unsigned long)NULL;
11224 }
11225 
11226 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11227 	.func			= bpf_skc_to_tcp_request_sock,
11228 	.gpl_only		= false,
11229 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11230 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11231 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11232 };
11233 
11234 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11235 {
11236 	/* udp6_sock type is not generated in dwarf and hence btf,
11237 	 * trigger an explicit type generation here.
11238 	 */
11239 	BTF_TYPE_EMIT(struct udp6_sock);
11240 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11241 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11242 		return (unsigned long)sk;
11243 
11244 	return (unsigned long)NULL;
11245 }
11246 
11247 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11248 	.func			= bpf_skc_to_udp6_sock,
11249 	.gpl_only		= false,
11250 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11251 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11252 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11253 };
11254 
11255 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11256 {
11257 	/* unix_sock type is not generated in dwarf and hence btf,
11258 	 * trigger an explicit type generation here.
11259 	 */
11260 	BTF_TYPE_EMIT(struct unix_sock);
11261 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11262 		return (unsigned long)sk;
11263 
11264 	return (unsigned long)NULL;
11265 }
11266 
11267 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11268 	.func			= bpf_skc_to_unix_sock,
11269 	.gpl_only		= false,
11270 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11271 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11272 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11273 };
11274 
11275 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11276 {
11277 	return (unsigned long)sock_from_file(file);
11278 }
11279 
11280 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11281 BTF_ID(struct, socket)
11282 BTF_ID(struct, file)
11283 
11284 const struct bpf_func_proto bpf_sock_from_file_proto = {
11285 	.func		= bpf_sock_from_file,
11286 	.gpl_only	= false,
11287 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11288 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11289 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11290 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11291 };
11292 
11293 static const struct bpf_func_proto *
11294 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11295 {
11296 	const struct bpf_func_proto *func;
11297 
11298 	switch (func_id) {
11299 	case BPF_FUNC_skc_to_tcp6_sock:
11300 		func = &bpf_skc_to_tcp6_sock_proto;
11301 		break;
11302 	case BPF_FUNC_skc_to_tcp_sock:
11303 		func = &bpf_skc_to_tcp_sock_proto;
11304 		break;
11305 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11306 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11307 		break;
11308 	case BPF_FUNC_skc_to_tcp_request_sock:
11309 		func = &bpf_skc_to_tcp_request_sock_proto;
11310 		break;
11311 	case BPF_FUNC_skc_to_udp6_sock:
11312 		func = &bpf_skc_to_udp6_sock_proto;
11313 		break;
11314 	case BPF_FUNC_skc_to_unix_sock:
11315 		func = &bpf_skc_to_unix_sock_proto;
11316 		break;
11317 	case BPF_FUNC_ktime_get_coarse_ns:
11318 		return &bpf_ktime_get_coarse_ns_proto;
11319 	default:
11320 		return bpf_base_func_proto(func_id);
11321 	}
11322 
11323 	if (!perfmon_capable())
11324 		return NULL;
11325 
11326 	return func;
11327 }
11328