xref: /openbmc/linux/net/core/filter.c (revision 08b7cf13)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/fcntl.h>
25 #include <linux/socket.h>
26 #include <linux/sock_diag.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_arp.h>
32 #include <linux/gfp.h>
33 #include <net/inet_common.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <linux/skmsg.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 #include <net/xdp.h>
81 
82 static const struct bpf_func_proto *
83 bpf_sk_base_func_proto(enum bpf_func_id func_id);
84 
85 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
86 {
87 	if (in_compat_syscall()) {
88 		struct compat_sock_fprog f32;
89 
90 		if (len != sizeof(f32))
91 			return -EINVAL;
92 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
93 			return -EFAULT;
94 		memset(dst, 0, sizeof(*dst));
95 		dst->len = f32.len;
96 		dst->filter = compat_ptr(f32.filter);
97 	} else {
98 		if (len != sizeof(*dst))
99 			return -EINVAL;
100 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
101 			return -EFAULT;
102 	}
103 
104 	return 0;
105 }
106 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
107 
108 /**
109  *	sk_filter_trim_cap - run a packet through a socket filter
110  *	@sk: sock associated with &sk_buff
111  *	@skb: buffer to filter
112  *	@cap: limit on how short the eBPF program may trim the packet
113  *
114  * Run the eBPF program and then cut skb->data to correct size returned by
115  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
116  * than pkt_len we keep whole skb->data. This is the socket level
117  * wrapper to bpf_prog_run. It returns 0 if the packet should
118  * be accepted or -EPERM if the packet should be tossed.
119  *
120  */
121 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
122 {
123 	int err;
124 	struct sk_filter *filter;
125 
126 	/*
127 	 * If the skb was allocated from pfmemalloc reserves, only
128 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
129 	 * helping free memory
130 	 */
131 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
132 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
133 		return -ENOMEM;
134 	}
135 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
136 	if (err)
137 		return err;
138 
139 	err = security_sock_rcv_skb(sk, skb);
140 	if (err)
141 		return err;
142 
143 	rcu_read_lock();
144 	filter = rcu_dereference(sk->sk_filter);
145 	if (filter) {
146 		struct sock *save_sk = skb->sk;
147 		unsigned int pkt_len;
148 
149 		skb->sk = sk;
150 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
151 		skb->sk = save_sk;
152 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
153 	}
154 	rcu_read_unlock();
155 
156 	return err;
157 }
158 EXPORT_SYMBOL(sk_filter_trim_cap);
159 
160 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
161 {
162 	return skb_get_poff(skb);
163 }
164 
165 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
166 {
167 	struct nlattr *nla;
168 
169 	if (skb_is_nonlinear(skb))
170 		return 0;
171 
172 	if (skb->len < sizeof(struct nlattr))
173 		return 0;
174 
175 	if (a > skb->len - sizeof(struct nlattr))
176 		return 0;
177 
178 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
179 	if (nla)
180 		return (void *) nla - (void *) skb->data;
181 
182 	return 0;
183 }
184 
185 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
186 {
187 	struct nlattr *nla;
188 
189 	if (skb_is_nonlinear(skb))
190 		return 0;
191 
192 	if (skb->len < sizeof(struct nlattr))
193 		return 0;
194 
195 	if (a > skb->len - sizeof(struct nlattr))
196 		return 0;
197 
198 	nla = (struct nlattr *) &skb->data[a];
199 	if (nla->nla_len > skb->len - a)
200 		return 0;
201 
202 	nla = nla_find_nested(nla, x);
203 	if (nla)
204 		return (void *) nla - (void *) skb->data;
205 
206 	return 0;
207 }
208 
209 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
210 	   data, int, headlen, int, offset)
211 {
212 	u8 tmp, *ptr;
213 	const int len = sizeof(tmp);
214 
215 	if (offset >= 0) {
216 		if (headlen - offset >= len)
217 			return *(u8 *)(data + offset);
218 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
219 			return tmp;
220 	} else {
221 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
222 		if (likely(ptr))
223 			return *(u8 *)ptr;
224 	}
225 
226 	return -EFAULT;
227 }
228 
229 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
230 	   int, offset)
231 {
232 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
233 					 offset);
234 }
235 
236 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
237 	   data, int, headlen, int, offset)
238 {
239 	u16 tmp, *ptr;
240 	const int len = sizeof(tmp);
241 
242 	if (offset >= 0) {
243 		if (headlen - offset >= len)
244 			return get_unaligned_be16(data + offset);
245 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
246 			return be16_to_cpu(tmp);
247 	} else {
248 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
249 		if (likely(ptr))
250 			return get_unaligned_be16(ptr);
251 	}
252 
253 	return -EFAULT;
254 }
255 
256 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
257 	   int, offset)
258 {
259 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
260 					  offset);
261 }
262 
263 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
264 	   data, int, headlen, int, offset)
265 {
266 	u32 tmp, *ptr;
267 	const int len = sizeof(tmp);
268 
269 	if (likely(offset >= 0)) {
270 		if (headlen - offset >= len)
271 			return get_unaligned_be32(data + offset);
272 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
273 			return be32_to_cpu(tmp);
274 	} else {
275 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
276 		if (likely(ptr))
277 			return get_unaligned_be32(ptr);
278 	}
279 
280 	return -EFAULT;
281 }
282 
283 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
284 	   int, offset)
285 {
286 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
287 					  offset);
288 }
289 
290 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
291 			      struct bpf_insn *insn_buf)
292 {
293 	struct bpf_insn *insn = insn_buf;
294 
295 	switch (skb_field) {
296 	case SKF_AD_MARK:
297 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
298 
299 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
300 				      offsetof(struct sk_buff, mark));
301 		break;
302 
303 	case SKF_AD_PKTTYPE:
304 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
305 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
306 #ifdef __BIG_ENDIAN_BITFIELD
307 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
308 #endif
309 		break;
310 
311 	case SKF_AD_QUEUE:
312 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
313 
314 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
315 				      offsetof(struct sk_buff, queue_mapping));
316 		break;
317 
318 	case SKF_AD_VLAN_TAG:
319 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
320 
321 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
322 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
323 				      offsetof(struct sk_buff, vlan_tci));
324 		break;
325 	case SKF_AD_VLAN_TAG_PRESENT:
326 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET);
327 		if (PKT_VLAN_PRESENT_BIT)
328 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
329 		if (PKT_VLAN_PRESENT_BIT < 7)
330 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
331 		break;
332 	}
333 
334 	return insn - insn_buf;
335 }
336 
337 static bool convert_bpf_extensions(struct sock_filter *fp,
338 				   struct bpf_insn **insnp)
339 {
340 	struct bpf_insn *insn = *insnp;
341 	u32 cnt;
342 
343 	switch (fp->k) {
344 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
345 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
346 
347 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
348 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
349 				      offsetof(struct sk_buff, protocol));
350 		/* A = ntohs(A) [emitting a nop or swap16] */
351 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
352 		break;
353 
354 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
355 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
356 		insn += cnt - 1;
357 		break;
358 
359 	case SKF_AD_OFF + SKF_AD_IFINDEX:
360 	case SKF_AD_OFF + SKF_AD_HATYPE:
361 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
362 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
363 
364 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
365 				      BPF_REG_TMP, BPF_REG_CTX,
366 				      offsetof(struct sk_buff, dev));
367 		/* if (tmp != 0) goto pc + 1 */
368 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
369 		*insn++ = BPF_EXIT_INSN();
370 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
371 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
372 					    offsetof(struct net_device, ifindex));
373 		else
374 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
375 					    offsetof(struct net_device, type));
376 		break;
377 
378 	case SKF_AD_OFF + SKF_AD_MARK:
379 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
380 		insn += cnt - 1;
381 		break;
382 
383 	case SKF_AD_OFF + SKF_AD_RXHASH:
384 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
385 
386 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
387 				    offsetof(struct sk_buff, hash));
388 		break;
389 
390 	case SKF_AD_OFF + SKF_AD_QUEUE:
391 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
392 		insn += cnt - 1;
393 		break;
394 
395 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
396 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
397 					 BPF_REG_A, BPF_REG_CTX, insn);
398 		insn += cnt - 1;
399 		break;
400 
401 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
402 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
403 					 BPF_REG_A, BPF_REG_CTX, insn);
404 		insn += cnt - 1;
405 		break;
406 
407 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
408 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
409 
410 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
411 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
412 				      offsetof(struct sk_buff, vlan_proto));
413 		/* A = ntohs(A) [emitting a nop or swap16] */
414 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
415 		break;
416 
417 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
418 	case SKF_AD_OFF + SKF_AD_NLATTR:
419 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
420 	case SKF_AD_OFF + SKF_AD_CPU:
421 	case SKF_AD_OFF + SKF_AD_RANDOM:
422 		/* arg1 = CTX */
423 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
424 		/* arg2 = A */
425 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
426 		/* arg3 = X */
427 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
428 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
429 		switch (fp->k) {
430 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
431 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
432 			break;
433 		case SKF_AD_OFF + SKF_AD_NLATTR:
434 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
435 			break;
436 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
437 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
438 			break;
439 		case SKF_AD_OFF + SKF_AD_CPU:
440 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
441 			break;
442 		case SKF_AD_OFF + SKF_AD_RANDOM:
443 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
444 			bpf_user_rnd_init_once();
445 			break;
446 		}
447 		break;
448 
449 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
450 		/* A ^= X */
451 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
452 		break;
453 
454 	default:
455 		/* This is just a dummy call to avoid letting the compiler
456 		 * evict __bpf_call_base() as an optimization. Placed here
457 		 * where no-one bothers.
458 		 */
459 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
460 		return false;
461 	}
462 
463 	*insnp = insn;
464 	return true;
465 }
466 
467 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
468 {
469 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
470 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
471 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
472 		      BPF_SIZE(fp->code) == BPF_W;
473 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
474 	const int ip_align = NET_IP_ALIGN;
475 	struct bpf_insn *insn = *insnp;
476 	int offset = fp->k;
477 
478 	if (!indirect &&
479 	    ((unaligned_ok && offset >= 0) ||
480 	     (!unaligned_ok && offset >= 0 &&
481 	      offset + ip_align >= 0 &&
482 	      offset + ip_align % size == 0))) {
483 		bool ldx_off_ok = offset <= S16_MAX;
484 
485 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
486 		if (offset)
487 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
488 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
489 				      size, 2 + endian + (!ldx_off_ok * 2));
490 		if (ldx_off_ok) {
491 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
492 					      BPF_REG_D, offset);
493 		} else {
494 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
495 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
496 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
497 					      BPF_REG_TMP, 0);
498 		}
499 		if (endian)
500 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
501 		*insn++ = BPF_JMP_A(8);
502 	}
503 
504 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
505 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
506 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
507 	if (!indirect) {
508 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
509 	} else {
510 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
511 		if (fp->k)
512 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
513 	}
514 
515 	switch (BPF_SIZE(fp->code)) {
516 	case BPF_B:
517 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
518 		break;
519 	case BPF_H:
520 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
521 		break;
522 	case BPF_W:
523 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
524 		break;
525 	default:
526 		return false;
527 	}
528 
529 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
530 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
531 	*insn   = BPF_EXIT_INSN();
532 
533 	*insnp = insn;
534 	return true;
535 }
536 
537 /**
538  *	bpf_convert_filter - convert filter program
539  *	@prog: the user passed filter program
540  *	@len: the length of the user passed filter program
541  *	@new_prog: allocated 'struct bpf_prog' or NULL
542  *	@new_len: pointer to store length of converted program
543  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
544  *
545  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
546  * style extended BPF (eBPF).
547  * Conversion workflow:
548  *
549  * 1) First pass for calculating the new program length:
550  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
551  *
552  * 2) 2nd pass to remap in two passes: 1st pass finds new
553  *    jump offsets, 2nd pass remapping:
554  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
555  */
556 static int bpf_convert_filter(struct sock_filter *prog, int len,
557 			      struct bpf_prog *new_prog, int *new_len,
558 			      bool *seen_ld_abs)
559 {
560 	int new_flen = 0, pass = 0, target, i, stack_off;
561 	struct bpf_insn *new_insn, *first_insn = NULL;
562 	struct sock_filter *fp;
563 	int *addrs = NULL;
564 	u8 bpf_src;
565 
566 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
567 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
568 
569 	if (len <= 0 || len > BPF_MAXINSNS)
570 		return -EINVAL;
571 
572 	if (new_prog) {
573 		first_insn = new_prog->insnsi;
574 		addrs = kcalloc(len, sizeof(*addrs),
575 				GFP_KERNEL | __GFP_NOWARN);
576 		if (!addrs)
577 			return -ENOMEM;
578 	}
579 
580 do_pass:
581 	new_insn = first_insn;
582 	fp = prog;
583 
584 	/* Classic BPF related prologue emission. */
585 	if (new_prog) {
586 		/* Classic BPF expects A and X to be reset first. These need
587 		 * to be guaranteed to be the first two instructions.
588 		 */
589 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
590 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
591 
592 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
593 		 * In eBPF case it's done by the compiler, here we need to
594 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
595 		 */
596 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
597 		if (*seen_ld_abs) {
598 			/* For packet access in classic BPF, cache skb->data
599 			 * in callee-saved BPF R8 and skb->len - skb->data_len
600 			 * (headlen) in BPF R9. Since classic BPF is read-only
601 			 * on CTX, we only need to cache it once.
602 			 */
603 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
604 						  BPF_REG_D, BPF_REG_CTX,
605 						  offsetof(struct sk_buff, data));
606 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
607 						  offsetof(struct sk_buff, len));
608 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
609 						  offsetof(struct sk_buff, data_len));
610 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
611 		}
612 	} else {
613 		new_insn += 3;
614 	}
615 
616 	for (i = 0; i < len; fp++, i++) {
617 		struct bpf_insn tmp_insns[32] = { };
618 		struct bpf_insn *insn = tmp_insns;
619 
620 		if (addrs)
621 			addrs[i] = new_insn - first_insn;
622 
623 		switch (fp->code) {
624 		/* All arithmetic insns and skb loads map as-is. */
625 		case BPF_ALU | BPF_ADD | BPF_X:
626 		case BPF_ALU | BPF_ADD | BPF_K:
627 		case BPF_ALU | BPF_SUB | BPF_X:
628 		case BPF_ALU | BPF_SUB | BPF_K:
629 		case BPF_ALU | BPF_AND | BPF_X:
630 		case BPF_ALU | BPF_AND | BPF_K:
631 		case BPF_ALU | BPF_OR | BPF_X:
632 		case BPF_ALU | BPF_OR | BPF_K:
633 		case BPF_ALU | BPF_LSH | BPF_X:
634 		case BPF_ALU | BPF_LSH | BPF_K:
635 		case BPF_ALU | BPF_RSH | BPF_X:
636 		case BPF_ALU | BPF_RSH | BPF_K:
637 		case BPF_ALU | BPF_XOR | BPF_X:
638 		case BPF_ALU | BPF_XOR | BPF_K:
639 		case BPF_ALU | BPF_MUL | BPF_X:
640 		case BPF_ALU | BPF_MUL | BPF_K:
641 		case BPF_ALU | BPF_DIV | BPF_X:
642 		case BPF_ALU | BPF_DIV | BPF_K:
643 		case BPF_ALU | BPF_MOD | BPF_X:
644 		case BPF_ALU | BPF_MOD | BPF_K:
645 		case BPF_ALU | BPF_NEG:
646 		case BPF_LD | BPF_ABS | BPF_W:
647 		case BPF_LD | BPF_ABS | BPF_H:
648 		case BPF_LD | BPF_ABS | BPF_B:
649 		case BPF_LD | BPF_IND | BPF_W:
650 		case BPF_LD | BPF_IND | BPF_H:
651 		case BPF_LD | BPF_IND | BPF_B:
652 			/* Check for overloaded BPF extension and
653 			 * directly convert it if found, otherwise
654 			 * just move on with mapping.
655 			 */
656 			if (BPF_CLASS(fp->code) == BPF_LD &&
657 			    BPF_MODE(fp->code) == BPF_ABS &&
658 			    convert_bpf_extensions(fp, &insn))
659 				break;
660 			if (BPF_CLASS(fp->code) == BPF_LD &&
661 			    convert_bpf_ld_abs(fp, &insn)) {
662 				*seen_ld_abs = true;
663 				break;
664 			}
665 
666 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
667 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
668 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
669 				/* Error with exception code on div/mod by 0.
670 				 * For cBPF programs, this was always return 0.
671 				 */
672 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
673 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
674 				*insn++ = BPF_EXIT_INSN();
675 			}
676 
677 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
678 			break;
679 
680 		/* Jump transformation cannot use BPF block macros
681 		 * everywhere as offset calculation and target updates
682 		 * require a bit more work than the rest, i.e. jump
683 		 * opcodes map as-is, but offsets need adjustment.
684 		 */
685 
686 #define BPF_EMIT_JMP							\
687 	do {								\
688 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
689 		s32 off;						\
690 									\
691 		if (target >= len || target < 0)			\
692 			goto err;					\
693 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
694 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
695 		off -= insn - tmp_insns;				\
696 		/* Reject anything not fitting into insn->off. */	\
697 		if (off < off_min || off > off_max)			\
698 			goto err;					\
699 		insn->off = off;					\
700 	} while (0)
701 
702 		case BPF_JMP | BPF_JA:
703 			target = i + fp->k + 1;
704 			insn->code = fp->code;
705 			BPF_EMIT_JMP;
706 			break;
707 
708 		case BPF_JMP | BPF_JEQ | BPF_K:
709 		case BPF_JMP | BPF_JEQ | BPF_X:
710 		case BPF_JMP | BPF_JSET | BPF_K:
711 		case BPF_JMP | BPF_JSET | BPF_X:
712 		case BPF_JMP | BPF_JGT | BPF_K:
713 		case BPF_JMP | BPF_JGT | BPF_X:
714 		case BPF_JMP | BPF_JGE | BPF_K:
715 		case BPF_JMP | BPF_JGE | BPF_X:
716 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
717 				/* BPF immediates are signed, zero extend
718 				 * immediate into tmp register and use it
719 				 * in compare insn.
720 				 */
721 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
722 
723 				insn->dst_reg = BPF_REG_A;
724 				insn->src_reg = BPF_REG_TMP;
725 				bpf_src = BPF_X;
726 			} else {
727 				insn->dst_reg = BPF_REG_A;
728 				insn->imm = fp->k;
729 				bpf_src = BPF_SRC(fp->code);
730 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
731 			}
732 
733 			/* Common case where 'jump_false' is next insn. */
734 			if (fp->jf == 0) {
735 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
736 				target = i + fp->jt + 1;
737 				BPF_EMIT_JMP;
738 				break;
739 			}
740 
741 			/* Convert some jumps when 'jump_true' is next insn. */
742 			if (fp->jt == 0) {
743 				switch (BPF_OP(fp->code)) {
744 				case BPF_JEQ:
745 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
746 					break;
747 				case BPF_JGT:
748 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
749 					break;
750 				case BPF_JGE:
751 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
752 					break;
753 				default:
754 					goto jmp_rest;
755 				}
756 
757 				target = i + fp->jf + 1;
758 				BPF_EMIT_JMP;
759 				break;
760 			}
761 jmp_rest:
762 			/* Other jumps are mapped into two insns: Jxx and JA. */
763 			target = i + fp->jt + 1;
764 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
765 			BPF_EMIT_JMP;
766 			insn++;
767 
768 			insn->code = BPF_JMP | BPF_JA;
769 			target = i + fp->jf + 1;
770 			BPF_EMIT_JMP;
771 			break;
772 
773 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
774 		case BPF_LDX | BPF_MSH | BPF_B: {
775 			struct sock_filter tmp = {
776 				.code	= BPF_LD | BPF_ABS | BPF_B,
777 				.k	= fp->k,
778 			};
779 
780 			*seen_ld_abs = true;
781 
782 			/* X = A */
783 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
784 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
785 			convert_bpf_ld_abs(&tmp, &insn);
786 			insn++;
787 			/* A &= 0xf */
788 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
789 			/* A <<= 2 */
790 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
791 			/* tmp = X */
792 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
793 			/* X = A */
794 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
795 			/* A = tmp */
796 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
797 			break;
798 		}
799 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
800 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
801 		 */
802 		case BPF_RET | BPF_A:
803 		case BPF_RET | BPF_K:
804 			if (BPF_RVAL(fp->code) == BPF_K)
805 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
806 							0, fp->k);
807 			*insn = BPF_EXIT_INSN();
808 			break;
809 
810 		/* Store to stack. */
811 		case BPF_ST:
812 		case BPF_STX:
813 			stack_off = fp->k * 4  + 4;
814 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
815 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
816 					    -stack_off);
817 			/* check_load_and_stores() verifies that classic BPF can
818 			 * load from stack only after write, so tracking
819 			 * stack_depth for ST|STX insns is enough
820 			 */
821 			if (new_prog && new_prog->aux->stack_depth < stack_off)
822 				new_prog->aux->stack_depth = stack_off;
823 			break;
824 
825 		/* Load from stack. */
826 		case BPF_LD | BPF_MEM:
827 		case BPF_LDX | BPF_MEM:
828 			stack_off = fp->k * 4  + 4;
829 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
830 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
831 					    -stack_off);
832 			break;
833 
834 		/* A = K or X = K */
835 		case BPF_LD | BPF_IMM:
836 		case BPF_LDX | BPF_IMM:
837 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
838 					      BPF_REG_A : BPF_REG_X, fp->k);
839 			break;
840 
841 		/* X = A */
842 		case BPF_MISC | BPF_TAX:
843 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
844 			break;
845 
846 		/* A = X */
847 		case BPF_MISC | BPF_TXA:
848 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
849 			break;
850 
851 		/* A = skb->len or X = skb->len */
852 		case BPF_LD | BPF_W | BPF_LEN:
853 		case BPF_LDX | BPF_W | BPF_LEN:
854 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
855 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
856 					    offsetof(struct sk_buff, len));
857 			break;
858 
859 		/* Access seccomp_data fields. */
860 		case BPF_LDX | BPF_ABS | BPF_W:
861 			/* A = *(u32 *) (ctx + K) */
862 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
863 			break;
864 
865 		/* Unknown instruction. */
866 		default:
867 			goto err;
868 		}
869 
870 		insn++;
871 		if (new_prog)
872 			memcpy(new_insn, tmp_insns,
873 			       sizeof(*insn) * (insn - tmp_insns));
874 		new_insn += insn - tmp_insns;
875 	}
876 
877 	if (!new_prog) {
878 		/* Only calculating new length. */
879 		*new_len = new_insn - first_insn;
880 		if (*seen_ld_abs)
881 			*new_len += 4; /* Prologue bits. */
882 		return 0;
883 	}
884 
885 	pass++;
886 	if (new_flen != new_insn - first_insn) {
887 		new_flen = new_insn - first_insn;
888 		if (pass > 2)
889 			goto err;
890 		goto do_pass;
891 	}
892 
893 	kfree(addrs);
894 	BUG_ON(*new_len != new_flen);
895 	return 0;
896 err:
897 	kfree(addrs);
898 	return -EINVAL;
899 }
900 
901 /* Security:
902  *
903  * As we dont want to clear mem[] array for each packet going through
904  * __bpf_prog_run(), we check that filter loaded by user never try to read
905  * a cell if not previously written, and we check all branches to be sure
906  * a malicious user doesn't try to abuse us.
907  */
908 static int check_load_and_stores(const struct sock_filter *filter, int flen)
909 {
910 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
911 	int pc, ret = 0;
912 
913 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
914 
915 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
916 	if (!masks)
917 		return -ENOMEM;
918 
919 	memset(masks, 0xff, flen * sizeof(*masks));
920 
921 	for (pc = 0; pc < flen; pc++) {
922 		memvalid &= masks[pc];
923 
924 		switch (filter[pc].code) {
925 		case BPF_ST:
926 		case BPF_STX:
927 			memvalid |= (1 << filter[pc].k);
928 			break;
929 		case BPF_LD | BPF_MEM:
930 		case BPF_LDX | BPF_MEM:
931 			if (!(memvalid & (1 << filter[pc].k))) {
932 				ret = -EINVAL;
933 				goto error;
934 			}
935 			break;
936 		case BPF_JMP | BPF_JA:
937 			/* A jump must set masks on target */
938 			masks[pc + 1 + filter[pc].k] &= memvalid;
939 			memvalid = ~0;
940 			break;
941 		case BPF_JMP | BPF_JEQ | BPF_K:
942 		case BPF_JMP | BPF_JEQ | BPF_X:
943 		case BPF_JMP | BPF_JGE | BPF_K:
944 		case BPF_JMP | BPF_JGE | BPF_X:
945 		case BPF_JMP | BPF_JGT | BPF_K:
946 		case BPF_JMP | BPF_JGT | BPF_X:
947 		case BPF_JMP | BPF_JSET | BPF_K:
948 		case BPF_JMP | BPF_JSET | BPF_X:
949 			/* A jump must set masks on targets */
950 			masks[pc + 1 + filter[pc].jt] &= memvalid;
951 			masks[pc + 1 + filter[pc].jf] &= memvalid;
952 			memvalid = ~0;
953 			break;
954 		}
955 	}
956 error:
957 	kfree(masks);
958 	return ret;
959 }
960 
961 static bool chk_code_allowed(u16 code_to_probe)
962 {
963 	static const bool codes[] = {
964 		/* 32 bit ALU operations */
965 		[BPF_ALU | BPF_ADD | BPF_K] = true,
966 		[BPF_ALU | BPF_ADD | BPF_X] = true,
967 		[BPF_ALU | BPF_SUB | BPF_K] = true,
968 		[BPF_ALU | BPF_SUB | BPF_X] = true,
969 		[BPF_ALU | BPF_MUL | BPF_K] = true,
970 		[BPF_ALU | BPF_MUL | BPF_X] = true,
971 		[BPF_ALU | BPF_DIV | BPF_K] = true,
972 		[BPF_ALU | BPF_DIV | BPF_X] = true,
973 		[BPF_ALU | BPF_MOD | BPF_K] = true,
974 		[BPF_ALU | BPF_MOD | BPF_X] = true,
975 		[BPF_ALU | BPF_AND | BPF_K] = true,
976 		[BPF_ALU | BPF_AND | BPF_X] = true,
977 		[BPF_ALU | BPF_OR | BPF_K] = true,
978 		[BPF_ALU | BPF_OR | BPF_X] = true,
979 		[BPF_ALU | BPF_XOR | BPF_K] = true,
980 		[BPF_ALU | BPF_XOR | BPF_X] = true,
981 		[BPF_ALU | BPF_LSH | BPF_K] = true,
982 		[BPF_ALU | BPF_LSH | BPF_X] = true,
983 		[BPF_ALU | BPF_RSH | BPF_K] = true,
984 		[BPF_ALU | BPF_RSH | BPF_X] = true,
985 		[BPF_ALU | BPF_NEG] = true,
986 		/* Load instructions */
987 		[BPF_LD | BPF_W | BPF_ABS] = true,
988 		[BPF_LD | BPF_H | BPF_ABS] = true,
989 		[BPF_LD | BPF_B | BPF_ABS] = true,
990 		[BPF_LD | BPF_W | BPF_LEN] = true,
991 		[BPF_LD | BPF_W | BPF_IND] = true,
992 		[BPF_LD | BPF_H | BPF_IND] = true,
993 		[BPF_LD | BPF_B | BPF_IND] = true,
994 		[BPF_LD | BPF_IMM] = true,
995 		[BPF_LD | BPF_MEM] = true,
996 		[BPF_LDX | BPF_W | BPF_LEN] = true,
997 		[BPF_LDX | BPF_B | BPF_MSH] = true,
998 		[BPF_LDX | BPF_IMM] = true,
999 		[BPF_LDX | BPF_MEM] = true,
1000 		/* Store instructions */
1001 		[BPF_ST] = true,
1002 		[BPF_STX] = true,
1003 		/* Misc instructions */
1004 		[BPF_MISC | BPF_TAX] = true,
1005 		[BPF_MISC | BPF_TXA] = true,
1006 		/* Return instructions */
1007 		[BPF_RET | BPF_K] = true,
1008 		[BPF_RET | BPF_A] = true,
1009 		/* Jump instructions */
1010 		[BPF_JMP | BPF_JA] = true,
1011 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1012 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1013 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1014 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1015 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1016 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1017 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1018 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1019 	};
1020 
1021 	if (code_to_probe >= ARRAY_SIZE(codes))
1022 		return false;
1023 
1024 	return codes[code_to_probe];
1025 }
1026 
1027 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1028 				unsigned int flen)
1029 {
1030 	if (filter == NULL)
1031 		return false;
1032 	if (flen == 0 || flen > BPF_MAXINSNS)
1033 		return false;
1034 
1035 	return true;
1036 }
1037 
1038 /**
1039  *	bpf_check_classic - verify socket filter code
1040  *	@filter: filter to verify
1041  *	@flen: length of filter
1042  *
1043  * Check the user's filter code. If we let some ugly
1044  * filter code slip through kaboom! The filter must contain
1045  * no references or jumps that are out of range, no illegal
1046  * instructions, and must end with a RET instruction.
1047  *
1048  * All jumps are forward as they are not signed.
1049  *
1050  * Returns 0 if the rule set is legal or -EINVAL if not.
1051  */
1052 static int bpf_check_classic(const struct sock_filter *filter,
1053 			     unsigned int flen)
1054 {
1055 	bool anc_found;
1056 	int pc;
1057 
1058 	/* Check the filter code now */
1059 	for (pc = 0; pc < flen; pc++) {
1060 		const struct sock_filter *ftest = &filter[pc];
1061 
1062 		/* May we actually operate on this code? */
1063 		if (!chk_code_allowed(ftest->code))
1064 			return -EINVAL;
1065 
1066 		/* Some instructions need special checks */
1067 		switch (ftest->code) {
1068 		case BPF_ALU | BPF_DIV | BPF_K:
1069 		case BPF_ALU | BPF_MOD | BPF_K:
1070 			/* Check for division by zero */
1071 			if (ftest->k == 0)
1072 				return -EINVAL;
1073 			break;
1074 		case BPF_ALU | BPF_LSH | BPF_K:
1075 		case BPF_ALU | BPF_RSH | BPF_K:
1076 			if (ftest->k >= 32)
1077 				return -EINVAL;
1078 			break;
1079 		case BPF_LD | BPF_MEM:
1080 		case BPF_LDX | BPF_MEM:
1081 		case BPF_ST:
1082 		case BPF_STX:
1083 			/* Check for invalid memory addresses */
1084 			if (ftest->k >= BPF_MEMWORDS)
1085 				return -EINVAL;
1086 			break;
1087 		case BPF_JMP | BPF_JA:
1088 			/* Note, the large ftest->k might cause loops.
1089 			 * Compare this with conditional jumps below,
1090 			 * where offsets are limited. --ANK (981016)
1091 			 */
1092 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1093 				return -EINVAL;
1094 			break;
1095 		case BPF_JMP | BPF_JEQ | BPF_K:
1096 		case BPF_JMP | BPF_JEQ | BPF_X:
1097 		case BPF_JMP | BPF_JGE | BPF_K:
1098 		case BPF_JMP | BPF_JGE | BPF_X:
1099 		case BPF_JMP | BPF_JGT | BPF_K:
1100 		case BPF_JMP | BPF_JGT | BPF_X:
1101 		case BPF_JMP | BPF_JSET | BPF_K:
1102 		case BPF_JMP | BPF_JSET | BPF_X:
1103 			/* Both conditionals must be safe */
1104 			if (pc + ftest->jt + 1 >= flen ||
1105 			    pc + ftest->jf + 1 >= flen)
1106 				return -EINVAL;
1107 			break;
1108 		case BPF_LD | BPF_W | BPF_ABS:
1109 		case BPF_LD | BPF_H | BPF_ABS:
1110 		case BPF_LD | BPF_B | BPF_ABS:
1111 			anc_found = false;
1112 			if (bpf_anc_helper(ftest) & BPF_ANC)
1113 				anc_found = true;
1114 			/* Ancillary operation unknown or unsupported */
1115 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1116 				return -EINVAL;
1117 		}
1118 	}
1119 
1120 	/* Last instruction must be a RET code */
1121 	switch (filter[flen - 1].code) {
1122 	case BPF_RET | BPF_K:
1123 	case BPF_RET | BPF_A:
1124 		return check_load_and_stores(filter, flen);
1125 	}
1126 
1127 	return -EINVAL;
1128 }
1129 
1130 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1131 				      const struct sock_fprog *fprog)
1132 {
1133 	unsigned int fsize = bpf_classic_proglen(fprog);
1134 	struct sock_fprog_kern *fkprog;
1135 
1136 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1137 	if (!fp->orig_prog)
1138 		return -ENOMEM;
1139 
1140 	fkprog = fp->orig_prog;
1141 	fkprog->len = fprog->len;
1142 
1143 	fkprog->filter = kmemdup(fp->insns, fsize,
1144 				 GFP_KERNEL | __GFP_NOWARN);
1145 	if (!fkprog->filter) {
1146 		kfree(fp->orig_prog);
1147 		return -ENOMEM;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 static void bpf_release_orig_filter(struct bpf_prog *fp)
1154 {
1155 	struct sock_fprog_kern *fprog = fp->orig_prog;
1156 
1157 	if (fprog) {
1158 		kfree(fprog->filter);
1159 		kfree(fprog);
1160 	}
1161 }
1162 
1163 static void __bpf_prog_release(struct bpf_prog *prog)
1164 {
1165 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1166 		bpf_prog_put(prog);
1167 	} else {
1168 		bpf_release_orig_filter(prog);
1169 		bpf_prog_free(prog);
1170 	}
1171 }
1172 
1173 static void __sk_filter_release(struct sk_filter *fp)
1174 {
1175 	__bpf_prog_release(fp->prog);
1176 	kfree(fp);
1177 }
1178 
1179 /**
1180  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1181  *	@rcu: rcu_head that contains the sk_filter to free
1182  */
1183 static void sk_filter_release_rcu(struct rcu_head *rcu)
1184 {
1185 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1186 
1187 	__sk_filter_release(fp);
1188 }
1189 
1190 /**
1191  *	sk_filter_release - release a socket filter
1192  *	@fp: filter to remove
1193  *
1194  *	Remove a filter from a socket and release its resources.
1195  */
1196 static void sk_filter_release(struct sk_filter *fp)
1197 {
1198 	if (refcount_dec_and_test(&fp->refcnt))
1199 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1200 }
1201 
1202 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1203 {
1204 	u32 filter_size = bpf_prog_size(fp->prog->len);
1205 
1206 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1207 	sk_filter_release(fp);
1208 }
1209 
1210 /* try to charge the socket memory if there is space available
1211  * return true on success
1212  */
1213 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1214 {
1215 	u32 filter_size = bpf_prog_size(fp->prog->len);
1216 
1217 	/* same check as in sock_kmalloc() */
1218 	if (filter_size <= sysctl_optmem_max &&
1219 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1220 		atomic_add(filter_size, &sk->sk_omem_alloc);
1221 		return true;
1222 	}
1223 	return false;
1224 }
1225 
1226 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1227 {
1228 	if (!refcount_inc_not_zero(&fp->refcnt))
1229 		return false;
1230 
1231 	if (!__sk_filter_charge(sk, fp)) {
1232 		sk_filter_release(fp);
1233 		return false;
1234 	}
1235 	return true;
1236 }
1237 
1238 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1239 {
1240 	struct sock_filter *old_prog;
1241 	struct bpf_prog *old_fp;
1242 	int err, new_len, old_len = fp->len;
1243 	bool seen_ld_abs = false;
1244 
1245 	/* We are free to overwrite insns et al right here as it won't be used at
1246 	 * this point in time anymore internally after the migration to the eBPF
1247 	 * instruction representation.
1248 	 */
1249 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1250 		     sizeof(struct bpf_insn));
1251 
1252 	/* Conversion cannot happen on overlapping memory areas,
1253 	 * so we need to keep the user BPF around until the 2nd
1254 	 * pass. At this time, the user BPF is stored in fp->insns.
1255 	 */
1256 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1257 			   GFP_KERNEL | __GFP_NOWARN);
1258 	if (!old_prog) {
1259 		err = -ENOMEM;
1260 		goto out_err;
1261 	}
1262 
1263 	/* 1st pass: calculate the new program length. */
1264 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1265 				 &seen_ld_abs);
1266 	if (err)
1267 		goto out_err_free;
1268 
1269 	/* Expand fp for appending the new filter representation. */
1270 	old_fp = fp;
1271 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1272 	if (!fp) {
1273 		/* The old_fp is still around in case we couldn't
1274 		 * allocate new memory, so uncharge on that one.
1275 		 */
1276 		fp = old_fp;
1277 		err = -ENOMEM;
1278 		goto out_err_free;
1279 	}
1280 
1281 	fp->len = new_len;
1282 
1283 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1284 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1285 				 &seen_ld_abs);
1286 	if (err)
1287 		/* 2nd bpf_convert_filter() can fail only if it fails
1288 		 * to allocate memory, remapping must succeed. Note,
1289 		 * that at this time old_fp has already been released
1290 		 * by krealloc().
1291 		 */
1292 		goto out_err_free;
1293 
1294 	fp = bpf_prog_select_runtime(fp, &err);
1295 	if (err)
1296 		goto out_err_free;
1297 
1298 	kfree(old_prog);
1299 	return fp;
1300 
1301 out_err_free:
1302 	kfree(old_prog);
1303 out_err:
1304 	__bpf_prog_release(fp);
1305 	return ERR_PTR(err);
1306 }
1307 
1308 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1309 					   bpf_aux_classic_check_t trans)
1310 {
1311 	int err;
1312 
1313 	fp->bpf_func = NULL;
1314 	fp->jited = 0;
1315 
1316 	err = bpf_check_classic(fp->insns, fp->len);
1317 	if (err) {
1318 		__bpf_prog_release(fp);
1319 		return ERR_PTR(err);
1320 	}
1321 
1322 	/* There might be additional checks and transformations
1323 	 * needed on classic filters, f.e. in case of seccomp.
1324 	 */
1325 	if (trans) {
1326 		err = trans(fp->insns, fp->len);
1327 		if (err) {
1328 			__bpf_prog_release(fp);
1329 			return ERR_PTR(err);
1330 		}
1331 	}
1332 
1333 	/* Probe if we can JIT compile the filter and if so, do
1334 	 * the compilation of the filter.
1335 	 */
1336 	bpf_jit_compile(fp);
1337 
1338 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1339 	 * for the optimized interpreter.
1340 	 */
1341 	if (!fp->jited)
1342 		fp = bpf_migrate_filter(fp);
1343 
1344 	return fp;
1345 }
1346 
1347 /**
1348  *	bpf_prog_create - create an unattached filter
1349  *	@pfp: the unattached filter that is created
1350  *	@fprog: the filter program
1351  *
1352  * Create a filter independent of any socket. We first run some
1353  * sanity checks on it to make sure it does not explode on us later.
1354  * If an error occurs or there is insufficient memory for the filter
1355  * a negative errno code is returned. On success the return is zero.
1356  */
1357 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1358 {
1359 	unsigned int fsize = bpf_classic_proglen(fprog);
1360 	struct bpf_prog *fp;
1361 
1362 	/* Make sure new filter is there and in the right amounts. */
1363 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1364 		return -EINVAL;
1365 
1366 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1367 	if (!fp)
1368 		return -ENOMEM;
1369 
1370 	memcpy(fp->insns, fprog->filter, fsize);
1371 
1372 	fp->len = fprog->len;
1373 	/* Since unattached filters are not copied back to user
1374 	 * space through sk_get_filter(), we do not need to hold
1375 	 * a copy here, and can spare us the work.
1376 	 */
1377 	fp->orig_prog = NULL;
1378 
1379 	/* bpf_prepare_filter() already takes care of freeing
1380 	 * memory in case something goes wrong.
1381 	 */
1382 	fp = bpf_prepare_filter(fp, NULL);
1383 	if (IS_ERR(fp))
1384 		return PTR_ERR(fp);
1385 
1386 	*pfp = fp;
1387 	return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(bpf_prog_create);
1390 
1391 /**
1392  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1393  *	@pfp: the unattached filter that is created
1394  *	@fprog: the filter program
1395  *	@trans: post-classic verifier transformation handler
1396  *	@save_orig: save classic BPF program
1397  *
1398  * This function effectively does the same as bpf_prog_create(), only
1399  * that it builds up its insns buffer from user space provided buffer.
1400  * It also allows for passing a bpf_aux_classic_check_t handler.
1401  */
1402 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1403 			      bpf_aux_classic_check_t trans, bool save_orig)
1404 {
1405 	unsigned int fsize = bpf_classic_proglen(fprog);
1406 	struct bpf_prog *fp;
1407 	int err;
1408 
1409 	/* Make sure new filter is there and in the right amounts. */
1410 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1411 		return -EINVAL;
1412 
1413 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1414 	if (!fp)
1415 		return -ENOMEM;
1416 
1417 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1418 		__bpf_prog_free(fp);
1419 		return -EFAULT;
1420 	}
1421 
1422 	fp->len = fprog->len;
1423 	fp->orig_prog = NULL;
1424 
1425 	if (save_orig) {
1426 		err = bpf_prog_store_orig_filter(fp, fprog);
1427 		if (err) {
1428 			__bpf_prog_free(fp);
1429 			return -ENOMEM;
1430 		}
1431 	}
1432 
1433 	/* bpf_prepare_filter() already takes care of freeing
1434 	 * memory in case something goes wrong.
1435 	 */
1436 	fp = bpf_prepare_filter(fp, trans);
1437 	if (IS_ERR(fp))
1438 		return PTR_ERR(fp);
1439 
1440 	*pfp = fp;
1441 	return 0;
1442 }
1443 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1444 
1445 void bpf_prog_destroy(struct bpf_prog *fp)
1446 {
1447 	__bpf_prog_release(fp);
1448 }
1449 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1450 
1451 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1452 {
1453 	struct sk_filter *fp, *old_fp;
1454 
1455 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1456 	if (!fp)
1457 		return -ENOMEM;
1458 
1459 	fp->prog = prog;
1460 
1461 	if (!__sk_filter_charge(sk, fp)) {
1462 		kfree(fp);
1463 		return -ENOMEM;
1464 	}
1465 	refcount_set(&fp->refcnt, 1);
1466 
1467 	old_fp = rcu_dereference_protected(sk->sk_filter,
1468 					   lockdep_sock_is_held(sk));
1469 	rcu_assign_pointer(sk->sk_filter, fp);
1470 
1471 	if (old_fp)
1472 		sk_filter_uncharge(sk, old_fp);
1473 
1474 	return 0;
1475 }
1476 
1477 static
1478 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1479 {
1480 	unsigned int fsize = bpf_classic_proglen(fprog);
1481 	struct bpf_prog *prog;
1482 	int err;
1483 
1484 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1485 		return ERR_PTR(-EPERM);
1486 
1487 	/* Make sure new filter is there and in the right amounts. */
1488 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1489 		return ERR_PTR(-EINVAL);
1490 
1491 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1492 	if (!prog)
1493 		return ERR_PTR(-ENOMEM);
1494 
1495 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1496 		__bpf_prog_free(prog);
1497 		return ERR_PTR(-EFAULT);
1498 	}
1499 
1500 	prog->len = fprog->len;
1501 
1502 	err = bpf_prog_store_orig_filter(prog, fprog);
1503 	if (err) {
1504 		__bpf_prog_free(prog);
1505 		return ERR_PTR(-ENOMEM);
1506 	}
1507 
1508 	/* bpf_prepare_filter() already takes care of freeing
1509 	 * memory in case something goes wrong.
1510 	 */
1511 	return bpf_prepare_filter(prog, NULL);
1512 }
1513 
1514 /**
1515  *	sk_attach_filter - attach a socket filter
1516  *	@fprog: the filter program
1517  *	@sk: the socket to use
1518  *
1519  * Attach the user's filter code. We first run some sanity checks on
1520  * it to make sure it does not explode on us later. If an error
1521  * occurs or there is insufficient memory for the filter a negative
1522  * errno code is returned. On success the return is zero.
1523  */
1524 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1525 {
1526 	struct bpf_prog *prog = __get_filter(fprog, sk);
1527 	int err;
1528 
1529 	if (IS_ERR(prog))
1530 		return PTR_ERR(prog);
1531 
1532 	err = __sk_attach_prog(prog, sk);
1533 	if (err < 0) {
1534 		__bpf_prog_release(prog);
1535 		return err;
1536 	}
1537 
1538 	return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(sk_attach_filter);
1541 
1542 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1543 {
1544 	struct bpf_prog *prog = __get_filter(fprog, sk);
1545 	int err;
1546 
1547 	if (IS_ERR(prog))
1548 		return PTR_ERR(prog);
1549 
1550 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1551 		err = -ENOMEM;
1552 	else
1553 		err = reuseport_attach_prog(sk, prog);
1554 
1555 	if (err)
1556 		__bpf_prog_release(prog);
1557 
1558 	return err;
1559 }
1560 
1561 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1562 {
1563 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1564 		return ERR_PTR(-EPERM);
1565 
1566 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1567 }
1568 
1569 int sk_attach_bpf(u32 ufd, struct sock *sk)
1570 {
1571 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1572 	int err;
1573 
1574 	if (IS_ERR(prog))
1575 		return PTR_ERR(prog);
1576 
1577 	err = __sk_attach_prog(prog, sk);
1578 	if (err < 0) {
1579 		bpf_prog_put(prog);
1580 		return err;
1581 	}
1582 
1583 	return 0;
1584 }
1585 
1586 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1587 {
1588 	struct bpf_prog *prog;
1589 	int err;
1590 
1591 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1592 		return -EPERM;
1593 
1594 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1595 	if (PTR_ERR(prog) == -EINVAL)
1596 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1597 	if (IS_ERR(prog))
1598 		return PTR_ERR(prog);
1599 
1600 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1601 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1602 		 * bpf prog (e.g. sockmap).  It depends on the
1603 		 * limitation imposed by bpf_prog_load().
1604 		 * Hence, sysctl_optmem_max is not checked.
1605 		 */
1606 		if ((sk->sk_type != SOCK_STREAM &&
1607 		     sk->sk_type != SOCK_DGRAM) ||
1608 		    (sk->sk_protocol != IPPROTO_UDP &&
1609 		     sk->sk_protocol != IPPROTO_TCP) ||
1610 		    (sk->sk_family != AF_INET &&
1611 		     sk->sk_family != AF_INET6)) {
1612 			err = -ENOTSUPP;
1613 			goto err_prog_put;
1614 		}
1615 	} else {
1616 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1617 		if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1618 			err = -ENOMEM;
1619 			goto err_prog_put;
1620 		}
1621 	}
1622 
1623 	err = reuseport_attach_prog(sk, prog);
1624 err_prog_put:
1625 	if (err)
1626 		bpf_prog_put(prog);
1627 
1628 	return err;
1629 }
1630 
1631 void sk_reuseport_prog_free(struct bpf_prog *prog)
1632 {
1633 	if (!prog)
1634 		return;
1635 
1636 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1637 		bpf_prog_put(prog);
1638 	else
1639 		bpf_prog_destroy(prog);
1640 }
1641 
1642 struct bpf_scratchpad {
1643 	union {
1644 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1645 		u8     buff[MAX_BPF_STACK];
1646 	};
1647 };
1648 
1649 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1650 
1651 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1652 					  unsigned int write_len)
1653 {
1654 	return skb_ensure_writable(skb, write_len);
1655 }
1656 
1657 static inline int bpf_try_make_writable(struct sk_buff *skb,
1658 					unsigned int write_len)
1659 {
1660 	int err = __bpf_try_make_writable(skb, write_len);
1661 
1662 	bpf_compute_data_pointers(skb);
1663 	return err;
1664 }
1665 
1666 static int bpf_try_make_head_writable(struct sk_buff *skb)
1667 {
1668 	return bpf_try_make_writable(skb, skb_headlen(skb));
1669 }
1670 
1671 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1672 {
1673 	if (skb_at_tc_ingress(skb))
1674 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1675 }
1676 
1677 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1678 {
1679 	if (skb_at_tc_ingress(skb))
1680 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1681 }
1682 
1683 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1684 	   const void *, from, u32, len, u64, flags)
1685 {
1686 	void *ptr;
1687 
1688 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1689 		return -EINVAL;
1690 	if (unlikely(offset > 0xffff))
1691 		return -EFAULT;
1692 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1693 		return -EFAULT;
1694 
1695 	ptr = skb->data + offset;
1696 	if (flags & BPF_F_RECOMPUTE_CSUM)
1697 		__skb_postpull_rcsum(skb, ptr, len, offset);
1698 
1699 	memcpy(ptr, from, len);
1700 
1701 	if (flags & BPF_F_RECOMPUTE_CSUM)
1702 		__skb_postpush_rcsum(skb, ptr, len, offset);
1703 	if (flags & BPF_F_INVALIDATE_HASH)
1704 		skb_clear_hash(skb);
1705 
1706 	return 0;
1707 }
1708 
1709 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1710 	.func		= bpf_skb_store_bytes,
1711 	.gpl_only	= false,
1712 	.ret_type	= RET_INTEGER,
1713 	.arg1_type	= ARG_PTR_TO_CTX,
1714 	.arg2_type	= ARG_ANYTHING,
1715 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1716 	.arg4_type	= ARG_CONST_SIZE,
1717 	.arg5_type	= ARG_ANYTHING,
1718 };
1719 
1720 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1721 	   void *, to, u32, len)
1722 {
1723 	void *ptr;
1724 
1725 	if (unlikely(offset > 0xffff))
1726 		goto err_clear;
1727 
1728 	ptr = skb_header_pointer(skb, offset, len, to);
1729 	if (unlikely(!ptr))
1730 		goto err_clear;
1731 	if (ptr != to)
1732 		memcpy(to, ptr, len);
1733 
1734 	return 0;
1735 err_clear:
1736 	memset(to, 0, len);
1737 	return -EFAULT;
1738 }
1739 
1740 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1741 	.func		= bpf_skb_load_bytes,
1742 	.gpl_only	= false,
1743 	.ret_type	= RET_INTEGER,
1744 	.arg1_type	= ARG_PTR_TO_CTX,
1745 	.arg2_type	= ARG_ANYTHING,
1746 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1747 	.arg4_type	= ARG_CONST_SIZE,
1748 };
1749 
1750 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1751 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1752 	   void *, to, u32, len)
1753 {
1754 	void *ptr;
1755 
1756 	if (unlikely(offset > 0xffff))
1757 		goto err_clear;
1758 
1759 	if (unlikely(!ctx->skb))
1760 		goto err_clear;
1761 
1762 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1763 	if (unlikely(!ptr))
1764 		goto err_clear;
1765 	if (ptr != to)
1766 		memcpy(to, ptr, len);
1767 
1768 	return 0;
1769 err_clear:
1770 	memset(to, 0, len);
1771 	return -EFAULT;
1772 }
1773 
1774 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1775 	.func		= bpf_flow_dissector_load_bytes,
1776 	.gpl_only	= false,
1777 	.ret_type	= RET_INTEGER,
1778 	.arg1_type	= ARG_PTR_TO_CTX,
1779 	.arg2_type	= ARG_ANYTHING,
1780 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1781 	.arg4_type	= ARG_CONST_SIZE,
1782 };
1783 
1784 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1785 	   u32, offset, void *, to, u32, len, u32, start_header)
1786 {
1787 	u8 *end = skb_tail_pointer(skb);
1788 	u8 *start, *ptr;
1789 
1790 	if (unlikely(offset > 0xffff))
1791 		goto err_clear;
1792 
1793 	switch (start_header) {
1794 	case BPF_HDR_START_MAC:
1795 		if (unlikely(!skb_mac_header_was_set(skb)))
1796 			goto err_clear;
1797 		start = skb_mac_header(skb);
1798 		break;
1799 	case BPF_HDR_START_NET:
1800 		start = skb_network_header(skb);
1801 		break;
1802 	default:
1803 		goto err_clear;
1804 	}
1805 
1806 	ptr = start + offset;
1807 
1808 	if (likely(ptr + len <= end)) {
1809 		memcpy(to, ptr, len);
1810 		return 0;
1811 	}
1812 
1813 err_clear:
1814 	memset(to, 0, len);
1815 	return -EFAULT;
1816 }
1817 
1818 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1819 	.func		= bpf_skb_load_bytes_relative,
1820 	.gpl_only	= false,
1821 	.ret_type	= RET_INTEGER,
1822 	.arg1_type	= ARG_PTR_TO_CTX,
1823 	.arg2_type	= ARG_ANYTHING,
1824 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1825 	.arg4_type	= ARG_CONST_SIZE,
1826 	.arg5_type	= ARG_ANYTHING,
1827 };
1828 
1829 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1830 {
1831 	/* Idea is the following: should the needed direct read/write
1832 	 * test fail during runtime, we can pull in more data and redo
1833 	 * again, since implicitly, we invalidate previous checks here.
1834 	 *
1835 	 * Or, since we know how much we need to make read/writeable,
1836 	 * this can be done once at the program beginning for direct
1837 	 * access case. By this we overcome limitations of only current
1838 	 * headroom being accessible.
1839 	 */
1840 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1841 }
1842 
1843 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1844 	.func		= bpf_skb_pull_data,
1845 	.gpl_only	= false,
1846 	.ret_type	= RET_INTEGER,
1847 	.arg1_type	= ARG_PTR_TO_CTX,
1848 	.arg2_type	= ARG_ANYTHING,
1849 };
1850 
1851 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1852 {
1853 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1854 }
1855 
1856 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1857 	.func		= bpf_sk_fullsock,
1858 	.gpl_only	= false,
1859 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1860 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1861 };
1862 
1863 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1864 					   unsigned int write_len)
1865 {
1866 	return __bpf_try_make_writable(skb, write_len);
1867 }
1868 
1869 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1870 {
1871 	/* Idea is the following: should the needed direct read/write
1872 	 * test fail during runtime, we can pull in more data and redo
1873 	 * again, since implicitly, we invalidate previous checks here.
1874 	 *
1875 	 * Or, since we know how much we need to make read/writeable,
1876 	 * this can be done once at the program beginning for direct
1877 	 * access case. By this we overcome limitations of only current
1878 	 * headroom being accessible.
1879 	 */
1880 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1881 }
1882 
1883 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1884 	.func		= sk_skb_pull_data,
1885 	.gpl_only	= false,
1886 	.ret_type	= RET_INTEGER,
1887 	.arg1_type	= ARG_PTR_TO_CTX,
1888 	.arg2_type	= ARG_ANYTHING,
1889 };
1890 
1891 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1892 	   u64, from, u64, to, u64, flags)
1893 {
1894 	__sum16 *ptr;
1895 
1896 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1897 		return -EINVAL;
1898 	if (unlikely(offset > 0xffff || offset & 1))
1899 		return -EFAULT;
1900 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1901 		return -EFAULT;
1902 
1903 	ptr = (__sum16 *)(skb->data + offset);
1904 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1905 	case 0:
1906 		if (unlikely(from != 0))
1907 			return -EINVAL;
1908 
1909 		csum_replace_by_diff(ptr, to);
1910 		break;
1911 	case 2:
1912 		csum_replace2(ptr, from, to);
1913 		break;
1914 	case 4:
1915 		csum_replace4(ptr, from, to);
1916 		break;
1917 	default:
1918 		return -EINVAL;
1919 	}
1920 
1921 	return 0;
1922 }
1923 
1924 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1925 	.func		= bpf_l3_csum_replace,
1926 	.gpl_only	= false,
1927 	.ret_type	= RET_INTEGER,
1928 	.arg1_type	= ARG_PTR_TO_CTX,
1929 	.arg2_type	= ARG_ANYTHING,
1930 	.arg3_type	= ARG_ANYTHING,
1931 	.arg4_type	= ARG_ANYTHING,
1932 	.arg5_type	= ARG_ANYTHING,
1933 };
1934 
1935 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1936 	   u64, from, u64, to, u64, flags)
1937 {
1938 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1939 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1940 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1941 	__sum16 *ptr;
1942 
1943 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1944 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1945 		return -EINVAL;
1946 	if (unlikely(offset > 0xffff || offset & 1))
1947 		return -EFAULT;
1948 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1949 		return -EFAULT;
1950 
1951 	ptr = (__sum16 *)(skb->data + offset);
1952 	if (is_mmzero && !do_mforce && !*ptr)
1953 		return 0;
1954 
1955 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1956 	case 0:
1957 		if (unlikely(from != 0))
1958 			return -EINVAL;
1959 
1960 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1961 		break;
1962 	case 2:
1963 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1964 		break;
1965 	case 4:
1966 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1967 		break;
1968 	default:
1969 		return -EINVAL;
1970 	}
1971 
1972 	if (is_mmzero && !*ptr)
1973 		*ptr = CSUM_MANGLED_0;
1974 	return 0;
1975 }
1976 
1977 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1978 	.func		= bpf_l4_csum_replace,
1979 	.gpl_only	= false,
1980 	.ret_type	= RET_INTEGER,
1981 	.arg1_type	= ARG_PTR_TO_CTX,
1982 	.arg2_type	= ARG_ANYTHING,
1983 	.arg3_type	= ARG_ANYTHING,
1984 	.arg4_type	= ARG_ANYTHING,
1985 	.arg5_type	= ARG_ANYTHING,
1986 };
1987 
1988 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1989 	   __be32 *, to, u32, to_size, __wsum, seed)
1990 {
1991 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1992 	u32 diff_size = from_size + to_size;
1993 	int i, j = 0;
1994 
1995 	/* This is quite flexible, some examples:
1996 	 *
1997 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1998 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
1999 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2000 	 *
2001 	 * Even for diffing, from_size and to_size don't need to be equal.
2002 	 */
2003 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2004 		     diff_size > sizeof(sp->diff)))
2005 		return -EINVAL;
2006 
2007 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2008 		sp->diff[j] = ~from[i];
2009 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2010 		sp->diff[j] = to[i];
2011 
2012 	return csum_partial(sp->diff, diff_size, seed);
2013 }
2014 
2015 static const struct bpf_func_proto bpf_csum_diff_proto = {
2016 	.func		= bpf_csum_diff,
2017 	.gpl_only	= false,
2018 	.pkt_access	= true,
2019 	.ret_type	= RET_INTEGER,
2020 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2021 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2022 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2023 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2024 	.arg5_type	= ARG_ANYTHING,
2025 };
2026 
2027 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2028 {
2029 	/* The interface is to be used in combination with bpf_csum_diff()
2030 	 * for direct packet writes. csum rotation for alignment as well
2031 	 * as emulating csum_sub() can be done from the eBPF program.
2032 	 */
2033 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2034 		return (skb->csum = csum_add(skb->csum, csum));
2035 
2036 	return -ENOTSUPP;
2037 }
2038 
2039 static const struct bpf_func_proto bpf_csum_update_proto = {
2040 	.func		= bpf_csum_update,
2041 	.gpl_only	= false,
2042 	.ret_type	= RET_INTEGER,
2043 	.arg1_type	= ARG_PTR_TO_CTX,
2044 	.arg2_type	= ARG_ANYTHING,
2045 };
2046 
2047 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2048 {
2049 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2050 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2051 	 * is passed as flags, for example.
2052 	 */
2053 	switch (level) {
2054 	case BPF_CSUM_LEVEL_INC:
2055 		__skb_incr_checksum_unnecessary(skb);
2056 		break;
2057 	case BPF_CSUM_LEVEL_DEC:
2058 		__skb_decr_checksum_unnecessary(skb);
2059 		break;
2060 	case BPF_CSUM_LEVEL_RESET:
2061 		__skb_reset_checksum_unnecessary(skb);
2062 		break;
2063 	case BPF_CSUM_LEVEL_QUERY:
2064 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2065 		       skb->csum_level : -EACCES;
2066 	default:
2067 		return -EINVAL;
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 static const struct bpf_func_proto bpf_csum_level_proto = {
2074 	.func		= bpf_csum_level,
2075 	.gpl_only	= false,
2076 	.ret_type	= RET_INTEGER,
2077 	.arg1_type	= ARG_PTR_TO_CTX,
2078 	.arg2_type	= ARG_ANYTHING,
2079 };
2080 
2081 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2082 {
2083 	return dev_forward_skb_nomtu(dev, skb);
2084 }
2085 
2086 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2087 				      struct sk_buff *skb)
2088 {
2089 	int ret = ____dev_forward_skb(dev, skb, false);
2090 
2091 	if (likely(!ret)) {
2092 		skb->dev = dev;
2093 		ret = netif_rx(skb);
2094 	}
2095 
2096 	return ret;
2097 }
2098 
2099 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2100 {
2101 	int ret;
2102 
2103 	if (dev_xmit_recursion()) {
2104 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2105 		kfree_skb(skb);
2106 		return -ENETDOWN;
2107 	}
2108 
2109 	skb->dev = dev;
2110 	skb_clear_tstamp(skb);
2111 
2112 	dev_xmit_recursion_inc();
2113 	ret = dev_queue_xmit(skb);
2114 	dev_xmit_recursion_dec();
2115 
2116 	return ret;
2117 }
2118 
2119 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2120 				 u32 flags)
2121 {
2122 	unsigned int mlen = skb_network_offset(skb);
2123 
2124 	if (mlen) {
2125 		__skb_pull(skb, mlen);
2126 
2127 		/* At ingress, the mac header has already been pulled once.
2128 		 * At egress, skb_pospull_rcsum has to be done in case that
2129 		 * the skb is originated from ingress (i.e. a forwarded skb)
2130 		 * to ensure that rcsum starts at net header.
2131 		 */
2132 		if (!skb_at_tc_ingress(skb))
2133 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2134 	}
2135 	skb_pop_mac_header(skb);
2136 	skb_reset_mac_len(skb);
2137 	return flags & BPF_F_INGRESS ?
2138 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2139 }
2140 
2141 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2142 				 u32 flags)
2143 {
2144 	/* Verify that a link layer header is carried */
2145 	if (unlikely(skb->mac_header >= skb->network_header)) {
2146 		kfree_skb(skb);
2147 		return -ERANGE;
2148 	}
2149 
2150 	bpf_push_mac_rcsum(skb);
2151 	return flags & BPF_F_INGRESS ?
2152 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2153 }
2154 
2155 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2156 			  u32 flags)
2157 {
2158 	if (dev_is_mac_header_xmit(dev))
2159 		return __bpf_redirect_common(skb, dev, flags);
2160 	else
2161 		return __bpf_redirect_no_mac(skb, dev, flags);
2162 }
2163 
2164 #if IS_ENABLED(CONFIG_IPV6)
2165 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2166 			    struct net_device *dev, struct bpf_nh_params *nh)
2167 {
2168 	u32 hh_len = LL_RESERVED_SPACE(dev);
2169 	const struct in6_addr *nexthop;
2170 	struct dst_entry *dst = NULL;
2171 	struct neighbour *neigh;
2172 
2173 	if (dev_xmit_recursion()) {
2174 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2175 		goto out_drop;
2176 	}
2177 
2178 	skb->dev = dev;
2179 	skb_clear_tstamp(skb);
2180 
2181 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2182 		skb = skb_expand_head(skb, hh_len);
2183 		if (!skb)
2184 			return -ENOMEM;
2185 	}
2186 
2187 	rcu_read_lock_bh();
2188 	if (!nh) {
2189 		dst = skb_dst(skb);
2190 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2191 				      &ipv6_hdr(skb)->daddr);
2192 	} else {
2193 		nexthop = &nh->ipv6_nh;
2194 	}
2195 	neigh = ip_neigh_gw6(dev, nexthop);
2196 	if (likely(!IS_ERR(neigh))) {
2197 		int ret;
2198 
2199 		sock_confirm_neigh(skb, neigh);
2200 		dev_xmit_recursion_inc();
2201 		ret = neigh_output(neigh, skb, false);
2202 		dev_xmit_recursion_dec();
2203 		rcu_read_unlock_bh();
2204 		return ret;
2205 	}
2206 	rcu_read_unlock_bh();
2207 	if (dst)
2208 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2209 out_drop:
2210 	kfree_skb(skb);
2211 	return -ENETDOWN;
2212 }
2213 
2214 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2215 				   struct bpf_nh_params *nh)
2216 {
2217 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2218 	struct net *net = dev_net(dev);
2219 	int err, ret = NET_XMIT_DROP;
2220 
2221 	if (!nh) {
2222 		struct dst_entry *dst;
2223 		struct flowi6 fl6 = {
2224 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2225 			.flowi6_mark  = skb->mark,
2226 			.flowlabel    = ip6_flowinfo(ip6h),
2227 			.flowi6_oif   = dev->ifindex,
2228 			.flowi6_proto = ip6h->nexthdr,
2229 			.daddr	      = ip6h->daddr,
2230 			.saddr	      = ip6h->saddr,
2231 		};
2232 
2233 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2234 		if (IS_ERR(dst))
2235 			goto out_drop;
2236 
2237 		skb_dst_set(skb, dst);
2238 	} else if (nh->nh_family != AF_INET6) {
2239 		goto out_drop;
2240 	}
2241 
2242 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2243 	if (unlikely(net_xmit_eval(err)))
2244 		dev->stats.tx_errors++;
2245 	else
2246 		ret = NET_XMIT_SUCCESS;
2247 	goto out_xmit;
2248 out_drop:
2249 	dev->stats.tx_errors++;
2250 	kfree_skb(skb);
2251 out_xmit:
2252 	return ret;
2253 }
2254 #else
2255 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2256 				   struct bpf_nh_params *nh)
2257 {
2258 	kfree_skb(skb);
2259 	return NET_XMIT_DROP;
2260 }
2261 #endif /* CONFIG_IPV6 */
2262 
2263 #if IS_ENABLED(CONFIG_INET)
2264 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2265 			    struct net_device *dev, struct bpf_nh_params *nh)
2266 {
2267 	u32 hh_len = LL_RESERVED_SPACE(dev);
2268 	struct neighbour *neigh;
2269 	bool is_v6gw = false;
2270 
2271 	if (dev_xmit_recursion()) {
2272 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2273 		goto out_drop;
2274 	}
2275 
2276 	skb->dev = dev;
2277 	skb_clear_tstamp(skb);
2278 
2279 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2280 		skb = skb_expand_head(skb, hh_len);
2281 		if (!skb)
2282 			return -ENOMEM;
2283 	}
2284 
2285 	rcu_read_lock_bh();
2286 	if (!nh) {
2287 		struct dst_entry *dst = skb_dst(skb);
2288 		struct rtable *rt = container_of(dst, struct rtable, dst);
2289 
2290 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2291 	} else if (nh->nh_family == AF_INET6) {
2292 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2293 		is_v6gw = true;
2294 	} else if (nh->nh_family == AF_INET) {
2295 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2296 	} else {
2297 		rcu_read_unlock_bh();
2298 		goto out_drop;
2299 	}
2300 
2301 	if (likely(!IS_ERR(neigh))) {
2302 		int ret;
2303 
2304 		sock_confirm_neigh(skb, neigh);
2305 		dev_xmit_recursion_inc();
2306 		ret = neigh_output(neigh, skb, is_v6gw);
2307 		dev_xmit_recursion_dec();
2308 		rcu_read_unlock_bh();
2309 		return ret;
2310 	}
2311 	rcu_read_unlock_bh();
2312 out_drop:
2313 	kfree_skb(skb);
2314 	return -ENETDOWN;
2315 }
2316 
2317 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2318 				   struct bpf_nh_params *nh)
2319 {
2320 	const struct iphdr *ip4h = ip_hdr(skb);
2321 	struct net *net = dev_net(dev);
2322 	int err, ret = NET_XMIT_DROP;
2323 
2324 	if (!nh) {
2325 		struct flowi4 fl4 = {
2326 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2327 			.flowi4_mark  = skb->mark,
2328 			.flowi4_tos   = RT_TOS(ip4h->tos),
2329 			.flowi4_oif   = dev->ifindex,
2330 			.flowi4_proto = ip4h->protocol,
2331 			.daddr	      = ip4h->daddr,
2332 			.saddr	      = ip4h->saddr,
2333 		};
2334 		struct rtable *rt;
2335 
2336 		rt = ip_route_output_flow(net, &fl4, NULL);
2337 		if (IS_ERR(rt))
2338 			goto out_drop;
2339 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2340 			ip_rt_put(rt);
2341 			goto out_drop;
2342 		}
2343 
2344 		skb_dst_set(skb, &rt->dst);
2345 	}
2346 
2347 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2348 	if (unlikely(net_xmit_eval(err)))
2349 		dev->stats.tx_errors++;
2350 	else
2351 		ret = NET_XMIT_SUCCESS;
2352 	goto out_xmit;
2353 out_drop:
2354 	dev->stats.tx_errors++;
2355 	kfree_skb(skb);
2356 out_xmit:
2357 	return ret;
2358 }
2359 #else
2360 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2361 				   struct bpf_nh_params *nh)
2362 {
2363 	kfree_skb(skb);
2364 	return NET_XMIT_DROP;
2365 }
2366 #endif /* CONFIG_INET */
2367 
2368 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2369 				struct bpf_nh_params *nh)
2370 {
2371 	struct ethhdr *ethh = eth_hdr(skb);
2372 
2373 	if (unlikely(skb->mac_header >= skb->network_header))
2374 		goto out;
2375 	bpf_push_mac_rcsum(skb);
2376 	if (is_multicast_ether_addr(ethh->h_dest))
2377 		goto out;
2378 
2379 	skb_pull(skb, sizeof(*ethh));
2380 	skb_unset_mac_header(skb);
2381 	skb_reset_network_header(skb);
2382 
2383 	if (skb->protocol == htons(ETH_P_IP))
2384 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2385 	else if (skb->protocol == htons(ETH_P_IPV6))
2386 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2387 out:
2388 	kfree_skb(skb);
2389 	return -ENOTSUPP;
2390 }
2391 
2392 /* Internal, non-exposed redirect flags. */
2393 enum {
2394 	BPF_F_NEIGH	= (1ULL << 1),
2395 	BPF_F_PEER	= (1ULL << 2),
2396 	BPF_F_NEXTHOP	= (1ULL << 3),
2397 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2398 };
2399 
2400 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2401 {
2402 	struct net_device *dev;
2403 	struct sk_buff *clone;
2404 	int ret;
2405 
2406 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2407 		return -EINVAL;
2408 
2409 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2410 	if (unlikely(!dev))
2411 		return -EINVAL;
2412 
2413 	clone = skb_clone(skb, GFP_ATOMIC);
2414 	if (unlikely(!clone))
2415 		return -ENOMEM;
2416 
2417 	/* For direct write, we need to keep the invariant that the skbs
2418 	 * we're dealing with need to be uncloned. Should uncloning fail
2419 	 * here, we need to free the just generated clone to unclone once
2420 	 * again.
2421 	 */
2422 	ret = bpf_try_make_head_writable(skb);
2423 	if (unlikely(ret)) {
2424 		kfree_skb(clone);
2425 		return -ENOMEM;
2426 	}
2427 
2428 	return __bpf_redirect(clone, dev, flags);
2429 }
2430 
2431 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2432 	.func           = bpf_clone_redirect,
2433 	.gpl_only       = false,
2434 	.ret_type       = RET_INTEGER,
2435 	.arg1_type      = ARG_PTR_TO_CTX,
2436 	.arg2_type      = ARG_ANYTHING,
2437 	.arg3_type      = ARG_ANYTHING,
2438 };
2439 
2440 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2441 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2442 
2443 int skb_do_redirect(struct sk_buff *skb)
2444 {
2445 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2446 	struct net *net = dev_net(skb->dev);
2447 	struct net_device *dev;
2448 	u32 flags = ri->flags;
2449 
2450 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2451 	ri->tgt_index = 0;
2452 	ri->flags = 0;
2453 	if (unlikely(!dev))
2454 		goto out_drop;
2455 	if (flags & BPF_F_PEER) {
2456 		const struct net_device_ops *ops = dev->netdev_ops;
2457 
2458 		if (unlikely(!ops->ndo_get_peer_dev ||
2459 			     !skb_at_tc_ingress(skb)))
2460 			goto out_drop;
2461 		dev = ops->ndo_get_peer_dev(dev);
2462 		if (unlikely(!dev ||
2463 			     !(dev->flags & IFF_UP) ||
2464 			     net_eq(net, dev_net(dev))))
2465 			goto out_drop;
2466 		skb->dev = dev;
2467 		return -EAGAIN;
2468 	}
2469 	return flags & BPF_F_NEIGH ?
2470 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2471 				    &ri->nh : NULL) :
2472 	       __bpf_redirect(skb, dev, flags);
2473 out_drop:
2474 	kfree_skb(skb);
2475 	return -EINVAL;
2476 }
2477 
2478 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2479 {
2480 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2481 
2482 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2483 		return TC_ACT_SHOT;
2484 
2485 	ri->flags = flags;
2486 	ri->tgt_index = ifindex;
2487 
2488 	return TC_ACT_REDIRECT;
2489 }
2490 
2491 static const struct bpf_func_proto bpf_redirect_proto = {
2492 	.func           = bpf_redirect,
2493 	.gpl_only       = false,
2494 	.ret_type       = RET_INTEGER,
2495 	.arg1_type      = ARG_ANYTHING,
2496 	.arg2_type      = ARG_ANYTHING,
2497 };
2498 
2499 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2500 {
2501 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2502 
2503 	if (unlikely(flags))
2504 		return TC_ACT_SHOT;
2505 
2506 	ri->flags = BPF_F_PEER;
2507 	ri->tgt_index = ifindex;
2508 
2509 	return TC_ACT_REDIRECT;
2510 }
2511 
2512 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2513 	.func           = bpf_redirect_peer,
2514 	.gpl_only       = false,
2515 	.ret_type       = RET_INTEGER,
2516 	.arg1_type      = ARG_ANYTHING,
2517 	.arg2_type      = ARG_ANYTHING,
2518 };
2519 
2520 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2521 	   int, plen, u64, flags)
2522 {
2523 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2524 
2525 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2526 		return TC_ACT_SHOT;
2527 
2528 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2529 	ri->tgt_index = ifindex;
2530 
2531 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2532 	if (plen)
2533 		memcpy(&ri->nh, params, sizeof(ri->nh));
2534 
2535 	return TC_ACT_REDIRECT;
2536 }
2537 
2538 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2539 	.func		= bpf_redirect_neigh,
2540 	.gpl_only	= false,
2541 	.ret_type	= RET_INTEGER,
2542 	.arg1_type	= ARG_ANYTHING,
2543 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2544 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2545 	.arg4_type	= ARG_ANYTHING,
2546 };
2547 
2548 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2549 {
2550 	msg->apply_bytes = bytes;
2551 	return 0;
2552 }
2553 
2554 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2555 	.func           = bpf_msg_apply_bytes,
2556 	.gpl_only       = false,
2557 	.ret_type       = RET_INTEGER,
2558 	.arg1_type	= ARG_PTR_TO_CTX,
2559 	.arg2_type      = ARG_ANYTHING,
2560 };
2561 
2562 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2563 {
2564 	msg->cork_bytes = bytes;
2565 	return 0;
2566 }
2567 
2568 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2569 	.func           = bpf_msg_cork_bytes,
2570 	.gpl_only       = false,
2571 	.ret_type       = RET_INTEGER,
2572 	.arg1_type	= ARG_PTR_TO_CTX,
2573 	.arg2_type      = ARG_ANYTHING,
2574 };
2575 
2576 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2577 	   u32, end, u64, flags)
2578 {
2579 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2580 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2581 	struct scatterlist *sge;
2582 	u8 *raw, *to, *from;
2583 	struct page *page;
2584 
2585 	if (unlikely(flags || end <= start))
2586 		return -EINVAL;
2587 
2588 	/* First find the starting scatterlist element */
2589 	i = msg->sg.start;
2590 	do {
2591 		offset += len;
2592 		len = sk_msg_elem(msg, i)->length;
2593 		if (start < offset + len)
2594 			break;
2595 		sk_msg_iter_var_next(i);
2596 	} while (i != msg->sg.end);
2597 
2598 	if (unlikely(start >= offset + len))
2599 		return -EINVAL;
2600 
2601 	first_sge = i;
2602 	/* The start may point into the sg element so we need to also
2603 	 * account for the headroom.
2604 	 */
2605 	bytes_sg_total = start - offset + bytes;
2606 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2607 		goto out;
2608 
2609 	/* At this point we need to linearize multiple scatterlist
2610 	 * elements or a single shared page. Either way we need to
2611 	 * copy into a linear buffer exclusively owned by BPF. Then
2612 	 * place the buffer in the scatterlist and fixup the original
2613 	 * entries by removing the entries now in the linear buffer
2614 	 * and shifting the remaining entries. For now we do not try
2615 	 * to copy partial entries to avoid complexity of running out
2616 	 * of sg_entry slots. The downside is reading a single byte
2617 	 * will copy the entire sg entry.
2618 	 */
2619 	do {
2620 		copy += sk_msg_elem(msg, i)->length;
2621 		sk_msg_iter_var_next(i);
2622 		if (bytes_sg_total <= copy)
2623 			break;
2624 	} while (i != msg->sg.end);
2625 	last_sge = i;
2626 
2627 	if (unlikely(bytes_sg_total > copy))
2628 		return -EINVAL;
2629 
2630 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2631 			   get_order(copy));
2632 	if (unlikely(!page))
2633 		return -ENOMEM;
2634 
2635 	raw = page_address(page);
2636 	i = first_sge;
2637 	do {
2638 		sge = sk_msg_elem(msg, i);
2639 		from = sg_virt(sge);
2640 		len = sge->length;
2641 		to = raw + poffset;
2642 
2643 		memcpy(to, from, len);
2644 		poffset += len;
2645 		sge->length = 0;
2646 		put_page(sg_page(sge));
2647 
2648 		sk_msg_iter_var_next(i);
2649 	} while (i != last_sge);
2650 
2651 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2652 
2653 	/* To repair sg ring we need to shift entries. If we only
2654 	 * had a single entry though we can just replace it and
2655 	 * be done. Otherwise walk the ring and shift the entries.
2656 	 */
2657 	WARN_ON_ONCE(last_sge == first_sge);
2658 	shift = last_sge > first_sge ?
2659 		last_sge - first_sge - 1 :
2660 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2661 	if (!shift)
2662 		goto out;
2663 
2664 	i = first_sge;
2665 	sk_msg_iter_var_next(i);
2666 	do {
2667 		u32 move_from;
2668 
2669 		if (i + shift >= NR_MSG_FRAG_IDS)
2670 			move_from = i + shift - NR_MSG_FRAG_IDS;
2671 		else
2672 			move_from = i + shift;
2673 		if (move_from == msg->sg.end)
2674 			break;
2675 
2676 		msg->sg.data[i] = msg->sg.data[move_from];
2677 		msg->sg.data[move_from].length = 0;
2678 		msg->sg.data[move_from].page_link = 0;
2679 		msg->sg.data[move_from].offset = 0;
2680 		sk_msg_iter_var_next(i);
2681 	} while (1);
2682 
2683 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2684 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2685 		      msg->sg.end - shift;
2686 out:
2687 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2688 	msg->data_end = msg->data + bytes;
2689 	return 0;
2690 }
2691 
2692 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2693 	.func		= bpf_msg_pull_data,
2694 	.gpl_only	= false,
2695 	.ret_type	= RET_INTEGER,
2696 	.arg1_type	= ARG_PTR_TO_CTX,
2697 	.arg2_type	= ARG_ANYTHING,
2698 	.arg3_type	= ARG_ANYTHING,
2699 	.arg4_type	= ARG_ANYTHING,
2700 };
2701 
2702 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2703 	   u32, len, u64, flags)
2704 {
2705 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2706 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2707 	u8 *raw, *to, *from;
2708 	struct page *page;
2709 
2710 	if (unlikely(flags))
2711 		return -EINVAL;
2712 
2713 	if (unlikely(len == 0))
2714 		return 0;
2715 
2716 	/* First find the starting scatterlist element */
2717 	i = msg->sg.start;
2718 	do {
2719 		offset += l;
2720 		l = sk_msg_elem(msg, i)->length;
2721 
2722 		if (start < offset + l)
2723 			break;
2724 		sk_msg_iter_var_next(i);
2725 	} while (i != msg->sg.end);
2726 
2727 	if (start >= offset + l)
2728 		return -EINVAL;
2729 
2730 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2731 
2732 	/* If no space available will fallback to copy, we need at
2733 	 * least one scatterlist elem available to push data into
2734 	 * when start aligns to the beginning of an element or two
2735 	 * when it falls inside an element. We handle the start equals
2736 	 * offset case because its the common case for inserting a
2737 	 * header.
2738 	 */
2739 	if (!space || (space == 1 && start != offset))
2740 		copy = msg->sg.data[i].length;
2741 
2742 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2743 			   get_order(copy + len));
2744 	if (unlikely(!page))
2745 		return -ENOMEM;
2746 
2747 	if (copy) {
2748 		int front, back;
2749 
2750 		raw = page_address(page);
2751 
2752 		psge = sk_msg_elem(msg, i);
2753 		front = start - offset;
2754 		back = psge->length - front;
2755 		from = sg_virt(psge);
2756 
2757 		if (front)
2758 			memcpy(raw, from, front);
2759 
2760 		if (back) {
2761 			from += front;
2762 			to = raw + front + len;
2763 
2764 			memcpy(to, from, back);
2765 		}
2766 
2767 		put_page(sg_page(psge));
2768 	} else if (start - offset) {
2769 		psge = sk_msg_elem(msg, i);
2770 		rsge = sk_msg_elem_cpy(msg, i);
2771 
2772 		psge->length = start - offset;
2773 		rsge.length -= psge->length;
2774 		rsge.offset += start;
2775 
2776 		sk_msg_iter_var_next(i);
2777 		sg_unmark_end(psge);
2778 		sg_unmark_end(&rsge);
2779 		sk_msg_iter_next(msg, end);
2780 	}
2781 
2782 	/* Slot(s) to place newly allocated data */
2783 	new = i;
2784 
2785 	/* Shift one or two slots as needed */
2786 	if (!copy) {
2787 		sge = sk_msg_elem_cpy(msg, i);
2788 
2789 		sk_msg_iter_var_next(i);
2790 		sg_unmark_end(&sge);
2791 		sk_msg_iter_next(msg, end);
2792 
2793 		nsge = sk_msg_elem_cpy(msg, i);
2794 		if (rsge.length) {
2795 			sk_msg_iter_var_next(i);
2796 			nnsge = sk_msg_elem_cpy(msg, i);
2797 		}
2798 
2799 		while (i != msg->sg.end) {
2800 			msg->sg.data[i] = sge;
2801 			sge = nsge;
2802 			sk_msg_iter_var_next(i);
2803 			if (rsge.length) {
2804 				nsge = nnsge;
2805 				nnsge = sk_msg_elem_cpy(msg, i);
2806 			} else {
2807 				nsge = sk_msg_elem_cpy(msg, i);
2808 			}
2809 		}
2810 	}
2811 
2812 	/* Place newly allocated data buffer */
2813 	sk_mem_charge(msg->sk, len);
2814 	msg->sg.size += len;
2815 	__clear_bit(new, msg->sg.copy);
2816 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2817 	if (rsge.length) {
2818 		get_page(sg_page(&rsge));
2819 		sk_msg_iter_var_next(new);
2820 		msg->sg.data[new] = rsge;
2821 	}
2822 
2823 	sk_msg_compute_data_pointers(msg);
2824 	return 0;
2825 }
2826 
2827 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2828 	.func		= bpf_msg_push_data,
2829 	.gpl_only	= false,
2830 	.ret_type	= RET_INTEGER,
2831 	.arg1_type	= ARG_PTR_TO_CTX,
2832 	.arg2_type	= ARG_ANYTHING,
2833 	.arg3_type	= ARG_ANYTHING,
2834 	.arg4_type	= ARG_ANYTHING,
2835 };
2836 
2837 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2838 {
2839 	int prev;
2840 
2841 	do {
2842 		prev = i;
2843 		sk_msg_iter_var_next(i);
2844 		msg->sg.data[prev] = msg->sg.data[i];
2845 	} while (i != msg->sg.end);
2846 
2847 	sk_msg_iter_prev(msg, end);
2848 }
2849 
2850 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2851 {
2852 	struct scatterlist tmp, sge;
2853 
2854 	sk_msg_iter_next(msg, end);
2855 	sge = sk_msg_elem_cpy(msg, i);
2856 	sk_msg_iter_var_next(i);
2857 	tmp = sk_msg_elem_cpy(msg, i);
2858 
2859 	while (i != msg->sg.end) {
2860 		msg->sg.data[i] = sge;
2861 		sk_msg_iter_var_next(i);
2862 		sge = tmp;
2863 		tmp = sk_msg_elem_cpy(msg, i);
2864 	}
2865 }
2866 
2867 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2868 	   u32, len, u64, flags)
2869 {
2870 	u32 i = 0, l = 0, space, offset = 0;
2871 	u64 last = start + len;
2872 	int pop;
2873 
2874 	if (unlikely(flags))
2875 		return -EINVAL;
2876 
2877 	/* First find the starting scatterlist element */
2878 	i = msg->sg.start;
2879 	do {
2880 		offset += l;
2881 		l = sk_msg_elem(msg, i)->length;
2882 
2883 		if (start < offset + l)
2884 			break;
2885 		sk_msg_iter_var_next(i);
2886 	} while (i != msg->sg.end);
2887 
2888 	/* Bounds checks: start and pop must be inside message */
2889 	if (start >= offset + l || last >= msg->sg.size)
2890 		return -EINVAL;
2891 
2892 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2893 
2894 	pop = len;
2895 	/* --------------| offset
2896 	 * -| start      |-------- len -------|
2897 	 *
2898 	 *  |----- a ----|-------- pop -------|----- b ----|
2899 	 *  |______________________________________________| length
2900 	 *
2901 	 *
2902 	 * a:   region at front of scatter element to save
2903 	 * b:   region at back of scatter element to save when length > A + pop
2904 	 * pop: region to pop from element, same as input 'pop' here will be
2905 	 *      decremented below per iteration.
2906 	 *
2907 	 * Two top-level cases to handle when start != offset, first B is non
2908 	 * zero and second B is zero corresponding to when a pop includes more
2909 	 * than one element.
2910 	 *
2911 	 * Then if B is non-zero AND there is no space allocate space and
2912 	 * compact A, B regions into page. If there is space shift ring to
2913 	 * the rigth free'ing the next element in ring to place B, leaving
2914 	 * A untouched except to reduce length.
2915 	 */
2916 	if (start != offset) {
2917 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2918 		int a = start;
2919 		int b = sge->length - pop - a;
2920 
2921 		sk_msg_iter_var_next(i);
2922 
2923 		if (pop < sge->length - a) {
2924 			if (space) {
2925 				sge->length = a;
2926 				sk_msg_shift_right(msg, i);
2927 				nsge = sk_msg_elem(msg, i);
2928 				get_page(sg_page(sge));
2929 				sg_set_page(nsge,
2930 					    sg_page(sge),
2931 					    b, sge->offset + pop + a);
2932 			} else {
2933 				struct page *page, *orig;
2934 				u8 *to, *from;
2935 
2936 				page = alloc_pages(__GFP_NOWARN |
2937 						   __GFP_COMP   | GFP_ATOMIC,
2938 						   get_order(a + b));
2939 				if (unlikely(!page))
2940 					return -ENOMEM;
2941 
2942 				sge->length = a;
2943 				orig = sg_page(sge);
2944 				from = sg_virt(sge);
2945 				to = page_address(page);
2946 				memcpy(to, from, a);
2947 				memcpy(to + a, from + a + pop, b);
2948 				sg_set_page(sge, page, a + b, 0);
2949 				put_page(orig);
2950 			}
2951 			pop = 0;
2952 		} else if (pop >= sge->length - a) {
2953 			pop -= (sge->length - a);
2954 			sge->length = a;
2955 		}
2956 	}
2957 
2958 	/* From above the current layout _must_ be as follows,
2959 	 *
2960 	 * -| offset
2961 	 * -| start
2962 	 *
2963 	 *  |---- pop ---|---------------- b ------------|
2964 	 *  |____________________________________________| length
2965 	 *
2966 	 * Offset and start of the current msg elem are equal because in the
2967 	 * previous case we handled offset != start and either consumed the
2968 	 * entire element and advanced to the next element OR pop == 0.
2969 	 *
2970 	 * Two cases to handle here are first pop is less than the length
2971 	 * leaving some remainder b above. Simply adjust the element's layout
2972 	 * in this case. Or pop >= length of the element so that b = 0. In this
2973 	 * case advance to next element decrementing pop.
2974 	 */
2975 	while (pop) {
2976 		struct scatterlist *sge = sk_msg_elem(msg, i);
2977 
2978 		if (pop < sge->length) {
2979 			sge->length -= pop;
2980 			sge->offset += pop;
2981 			pop = 0;
2982 		} else {
2983 			pop -= sge->length;
2984 			sk_msg_shift_left(msg, i);
2985 		}
2986 		sk_msg_iter_var_next(i);
2987 	}
2988 
2989 	sk_mem_uncharge(msg->sk, len - pop);
2990 	msg->sg.size -= (len - pop);
2991 	sk_msg_compute_data_pointers(msg);
2992 	return 0;
2993 }
2994 
2995 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2996 	.func		= bpf_msg_pop_data,
2997 	.gpl_only	= false,
2998 	.ret_type	= RET_INTEGER,
2999 	.arg1_type	= ARG_PTR_TO_CTX,
3000 	.arg2_type	= ARG_ANYTHING,
3001 	.arg3_type	= ARG_ANYTHING,
3002 	.arg4_type	= ARG_ANYTHING,
3003 };
3004 
3005 #ifdef CONFIG_CGROUP_NET_CLASSID
3006 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3007 {
3008 	return __task_get_classid(current);
3009 }
3010 
3011 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3012 	.func		= bpf_get_cgroup_classid_curr,
3013 	.gpl_only	= false,
3014 	.ret_type	= RET_INTEGER,
3015 };
3016 
3017 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3018 {
3019 	struct sock *sk = skb_to_full_sk(skb);
3020 
3021 	if (!sk || !sk_fullsock(sk))
3022 		return 0;
3023 
3024 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3025 }
3026 
3027 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3028 	.func		= bpf_skb_cgroup_classid,
3029 	.gpl_only	= false,
3030 	.ret_type	= RET_INTEGER,
3031 	.arg1_type	= ARG_PTR_TO_CTX,
3032 };
3033 #endif
3034 
3035 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3036 {
3037 	return task_get_classid(skb);
3038 }
3039 
3040 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3041 	.func           = bpf_get_cgroup_classid,
3042 	.gpl_only       = false,
3043 	.ret_type       = RET_INTEGER,
3044 	.arg1_type      = ARG_PTR_TO_CTX,
3045 };
3046 
3047 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3048 {
3049 	return dst_tclassid(skb);
3050 }
3051 
3052 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3053 	.func           = bpf_get_route_realm,
3054 	.gpl_only       = false,
3055 	.ret_type       = RET_INTEGER,
3056 	.arg1_type      = ARG_PTR_TO_CTX,
3057 };
3058 
3059 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3060 {
3061 	/* If skb_clear_hash() was called due to mangling, we can
3062 	 * trigger SW recalculation here. Later access to hash
3063 	 * can then use the inline skb->hash via context directly
3064 	 * instead of calling this helper again.
3065 	 */
3066 	return skb_get_hash(skb);
3067 }
3068 
3069 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3070 	.func		= bpf_get_hash_recalc,
3071 	.gpl_only	= false,
3072 	.ret_type	= RET_INTEGER,
3073 	.arg1_type	= ARG_PTR_TO_CTX,
3074 };
3075 
3076 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3077 {
3078 	/* After all direct packet write, this can be used once for
3079 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3080 	 */
3081 	skb_clear_hash(skb);
3082 	return 0;
3083 }
3084 
3085 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3086 	.func		= bpf_set_hash_invalid,
3087 	.gpl_only	= false,
3088 	.ret_type	= RET_INTEGER,
3089 	.arg1_type	= ARG_PTR_TO_CTX,
3090 };
3091 
3092 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3093 {
3094 	/* Set user specified hash as L4(+), so that it gets returned
3095 	 * on skb_get_hash() call unless BPF prog later on triggers a
3096 	 * skb_clear_hash().
3097 	 */
3098 	__skb_set_sw_hash(skb, hash, true);
3099 	return 0;
3100 }
3101 
3102 static const struct bpf_func_proto bpf_set_hash_proto = {
3103 	.func		= bpf_set_hash,
3104 	.gpl_only	= false,
3105 	.ret_type	= RET_INTEGER,
3106 	.arg1_type	= ARG_PTR_TO_CTX,
3107 	.arg2_type	= ARG_ANYTHING,
3108 };
3109 
3110 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3111 	   u16, vlan_tci)
3112 {
3113 	int ret;
3114 
3115 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3116 		     vlan_proto != htons(ETH_P_8021AD)))
3117 		vlan_proto = htons(ETH_P_8021Q);
3118 
3119 	bpf_push_mac_rcsum(skb);
3120 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3121 	bpf_pull_mac_rcsum(skb);
3122 
3123 	bpf_compute_data_pointers(skb);
3124 	return ret;
3125 }
3126 
3127 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3128 	.func           = bpf_skb_vlan_push,
3129 	.gpl_only       = false,
3130 	.ret_type       = RET_INTEGER,
3131 	.arg1_type      = ARG_PTR_TO_CTX,
3132 	.arg2_type      = ARG_ANYTHING,
3133 	.arg3_type      = ARG_ANYTHING,
3134 };
3135 
3136 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3137 {
3138 	int ret;
3139 
3140 	bpf_push_mac_rcsum(skb);
3141 	ret = skb_vlan_pop(skb);
3142 	bpf_pull_mac_rcsum(skb);
3143 
3144 	bpf_compute_data_pointers(skb);
3145 	return ret;
3146 }
3147 
3148 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3149 	.func           = bpf_skb_vlan_pop,
3150 	.gpl_only       = false,
3151 	.ret_type       = RET_INTEGER,
3152 	.arg1_type      = ARG_PTR_TO_CTX,
3153 };
3154 
3155 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3156 {
3157 	/* Caller already did skb_cow() with len as headroom,
3158 	 * so no need to do it here.
3159 	 */
3160 	skb_push(skb, len);
3161 	memmove(skb->data, skb->data + len, off);
3162 	memset(skb->data + off, 0, len);
3163 
3164 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3165 	 * needed here as it does not change the skb->csum
3166 	 * result for checksum complete when summing over
3167 	 * zeroed blocks.
3168 	 */
3169 	return 0;
3170 }
3171 
3172 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3173 {
3174 	/* skb_ensure_writable() is not needed here, as we're
3175 	 * already working on an uncloned skb.
3176 	 */
3177 	if (unlikely(!pskb_may_pull(skb, off + len)))
3178 		return -ENOMEM;
3179 
3180 	skb_postpull_rcsum(skb, skb->data + off, len);
3181 	memmove(skb->data + len, skb->data, off);
3182 	__skb_pull(skb, len);
3183 
3184 	return 0;
3185 }
3186 
3187 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3188 {
3189 	bool trans_same = skb->transport_header == skb->network_header;
3190 	int ret;
3191 
3192 	/* There's no need for __skb_push()/__skb_pull() pair to
3193 	 * get to the start of the mac header as we're guaranteed
3194 	 * to always start from here under eBPF.
3195 	 */
3196 	ret = bpf_skb_generic_push(skb, off, len);
3197 	if (likely(!ret)) {
3198 		skb->mac_header -= len;
3199 		skb->network_header -= len;
3200 		if (trans_same)
3201 			skb->transport_header = skb->network_header;
3202 	}
3203 
3204 	return ret;
3205 }
3206 
3207 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3208 {
3209 	bool trans_same = skb->transport_header == skb->network_header;
3210 	int ret;
3211 
3212 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3213 	ret = bpf_skb_generic_pop(skb, off, len);
3214 	if (likely(!ret)) {
3215 		skb->mac_header += len;
3216 		skb->network_header += len;
3217 		if (trans_same)
3218 			skb->transport_header = skb->network_header;
3219 	}
3220 
3221 	return ret;
3222 }
3223 
3224 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3225 {
3226 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3227 	u32 off = skb_mac_header_len(skb);
3228 	int ret;
3229 
3230 	ret = skb_cow(skb, len_diff);
3231 	if (unlikely(ret < 0))
3232 		return ret;
3233 
3234 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3235 	if (unlikely(ret < 0))
3236 		return ret;
3237 
3238 	if (skb_is_gso(skb)) {
3239 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3240 
3241 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3242 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3243 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3244 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3245 		}
3246 	}
3247 
3248 	skb->protocol = htons(ETH_P_IPV6);
3249 	skb_clear_hash(skb);
3250 
3251 	return 0;
3252 }
3253 
3254 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3255 {
3256 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3257 	u32 off = skb_mac_header_len(skb);
3258 	int ret;
3259 
3260 	ret = skb_unclone(skb, GFP_ATOMIC);
3261 	if (unlikely(ret < 0))
3262 		return ret;
3263 
3264 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3265 	if (unlikely(ret < 0))
3266 		return ret;
3267 
3268 	if (skb_is_gso(skb)) {
3269 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3270 
3271 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3272 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3273 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3274 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3275 		}
3276 	}
3277 
3278 	skb->protocol = htons(ETH_P_IP);
3279 	skb_clear_hash(skb);
3280 
3281 	return 0;
3282 }
3283 
3284 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3285 {
3286 	__be16 from_proto = skb->protocol;
3287 
3288 	if (from_proto == htons(ETH_P_IP) &&
3289 	      to_proto == htons(ETH_P_IPV6))
3290 		return bpf_skb_proto_4_to_6(skb);
3291 
3292 	if (from_proto == htons(ETH_P_IPV6) &&
3293 	      to_proto == htons(ETH_P_IP))
3294 		return bpf_skb_proto_6_to_4(skb);
3295 
3296 	return -ENOTSUPP;
3297 }
3298 
3299 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3300 	   u64, flags)
3301 {
3302 	int ret;
3303 
3304 	if (unlikely(flags))
3305 		return -EINVAL;
3306 
3307 	/* General idea is that this helper does the basic groundwork
3308 	 * needed for changing the protocol, and eBPF program fills the
3309 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3310 	 * and other helpers, rather than passing a raw buffer here.
3311 	 *
3312 	 * The rationale is to keep this minimal and without a need to
3313 	 * deal with raw packet data. F.e. even if we would pass buffers
3314 	 * here, the program still needs to call the bpf_lX_csum_replace()
3315 	 * helpers anyway. Plus, this way we keep also separation of
3316 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3317 	 * care of stores.
3318 	 *
3319 	 * Currently, additional options and extension header space are
3320 	 * not supported, but flags register is reserved so we can adapt
3321 	 * that. For offloads, we mark packet as dodgy, so that headers
3322 	 * need to be verified first.
3323 	 */
3324 	ret = bpf_skb_proto_xlat(skb, proto);
3325 	bpf_compute_data_pointers(skb);
3326 	return ret;
3327 }
3328 
3329 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3330 	.func		= bpf_skb_change_proto,
3331 	.gpl_only	= false,
3332 	.ret_type	= RET_INTEGER,
3333 	.arg1_type	= ARG_PTR_TO_CTX,
3334 	.arg2_type	= ARG_ANYTHING,
3335 	.arg3_type	= ARG_ANYTHING,
3336 };
3337 
3338 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3339 {
3340 	/* We only allow a restricted subset to be changed for now. */
3341 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3342 		     !skb_pkt_type_ok(pkt_type)))
3343 		return -EINVAL;
3344 
3345 	skb->pkt_type = pkt_type;
3346 	return 0;
3347 }
3348 
3349 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3350 	.func		= bpf_skb_change_type,
3351 	.gpl_only	= false,
3352 	.ret_type	= RET_INTEGER,
3353 	.arg1_type	= ARG_PTR_TO_CTX,
3354 	.arg2_type	= ARG_ANYTHING,
3355 };
3356 
3357 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3358 {
3359 	switch (skb->protocol) {
3360 	case htons(ETH_P_IP):
3361 		return sizeof(struct iphdr);
3362 	case htons(ETH_P_IPV6):
3363 		return sizeof(struct ipv6hdr);
3364 	default:
3365 		return ~0U;
3366 	}
3367 }
3368 
3369 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3370 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3371 
3372 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3373 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3374 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3375 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3376 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3377 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3378 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3379 
3380 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3381 			    u64 flags)
3382 {
3383 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3384 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3385 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3386 	unsigned int gso_type = SKB_GSO_DODGY;
3387 	int ret;
3388 
3389 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3390 		/* udp gso_size delineates datagrams, only allow if fixed */
3391 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3392 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3393 			return -ENOTSUPP;
3394 	}
3395 
3396 	ret = skb_cow_head(skb, len_diff);
3397 	if (unlikely(ret < 0))
3398 		return ret;
3399 
3400 	if (encap) {
3401 		if (skb->protocol != htons(ETH_P_IP) &&
3402 		    skb->protocol != htons(ETH_P_IPV6))
3403 			return -ENOTSUPP;
3404 
3405 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3406 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3407 			return -EINVAL;
3408 
3409 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3410 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3411 			return -EINVAL;
3412 
3413 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3414 		    inner_mac_len < ETH_HLEN)
3415 			return -EINVAL;
3416 
3417 		if (skb->encapsulation)
3418 			return -EALREADY;
3419 
3420 		mac_len = skb->network_header - skb->mac_header;
3421 		inner_net = skb->network_header;
3422 		if (inner_mac_len > len_diff)
3423 			return -EINVAL;
3424 		inner_trans = skb->transport_header;
3425 	}
3426 
3427 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3428 	if (unlikely(ret < 0))
3429 		return ret;
3430 
3431 	if (encap) {
3432 		skb->inner_mac_header = inner_net - inner_mac_len;
3433 		skb->inner_network_header = inner_net;
3434 		skb->inner_transport_header = inner_trans;
3435 
3436 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3437 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3438 		else
3439 			skb_set_inner_protocol(skb, skb->protocol);
3440 
3441 		skb->encapsulation = 1;
3442 		skb_set_network_header(skb, mac_len);
3443 
3444 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3445 			gso_type |= SKB_GSO_UDP_TUNNEL;
3446 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3447 			gso_type |= SKB_GSO_GRE;
3448 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3449 			gso_type |= SKB_GSO_IPXIP6;
3450 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3451 			gso_type |= SKB_GSO_IPXIP4;
3452 
3453 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3454 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3455 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3456 					sizeof(struct ipv6hdr) :
3457 					sizeof(struct iphdr);
3458 
3459 			skb_set_transport_header(skb, mac_len + nh_len);
3460 		}
3461 
3462 		/* Match skb->protocol to new outer l3 protocol */
3463 		if (skb->protocol == htons(ETH_P_IP) &&
3464 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3465 			skb->protocol = htons(ETH_P_IPV6);
3466 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3467 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3468 			skb->protocol = htons(ETH_P_IP);
3469 	}
3470 
3471 	if (skb_is_gso(skb)) {
3472 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3473 
3474 		/* Due to header grow, MSS needs to be downgraded. */
3475 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3476 			skb_decrease_gso_size(shinfo, len_diff);
3477 
3478 		/* Header must be checked, and gso_segs recomputed. */
3479 		shinfo->gso_type |= gso_type;
3480 		shinfo->gso_segs = 0;
3481 	}
3482 
3483 	return 0;
3484 }
3485 
3486 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3487 			      u64 flags)
3488 {
3489 	int ret;
3490 
3491 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3492 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3493 		return -EINVAL;
3494 
3495 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3496 		/* udp gso_size delineates datagrams, only allow if fixed */
3497 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3498 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3499 			return -ENOTSUPP;
3500 	}
3501 
3502 	ret = skb_unclone(skb, GFP_ATOMIC);
3503 	if (unlikely(ret < 0))
3504 		return ret;
3505 
3506 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3507 	if (unlikely(ret < 0))
3508 		return ret;
3509 
3510 	if (skb_is_gso(skb)) {
3511 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3512 
3513 		/* Due to header shrink, MSS can be upgraded. */
3514 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3515 			skb_increase_gso_size(shinfo, len_diff);
3516 
3517 		/* Header must be checked, and gso_segs recomputed. */
3518 		shinfo->gso_type |= SKB_GSO_DODGY;
3519 		shinfo->gso_segs = 0;
3520 	}
3521 
3522 	return 0;
3523 }
3524 
3525 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3526 
3527 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3528 	   u32, mode, u64, flags)
3529 {
3530 	u32 len_diff_abs = abs(len_diff);
3531 	bool shrink = len_diff < 0;
3532 	int ret = 0;
3533 
3534 	if (unlikely(flags || mode))
3535 		return -EINVAL;
3536 	if (unlikely(len_diff_abs > 0xfffU))
3537 		return -EFAULT;
3538 
3539 	if (!shrink) {
3540 		ret = skb_cow(skb, len_diff);
3541 		if (unlikely(ret < 0))
3542 			return ret;
3543 		__skb_push(skb, len_diff_abs);
3544 		memset(skb->data, 0, len_diff_abs);
3545 	} else {
3546 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3547 			return -ENOMEM;
3548 		__skb_pull(skb, len_diff_abs);
3549 	}
3550 	if (tls_sw_has_ctx_rx(skb->sk)) {
3551 		struct strp_msg *rxm = strp_msg(skb);
3552 
3553 		rxm->full_len += len_diff;
3554 	}
3555 	return ret;
3556 }
3557 
3558 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3559 	.func		= sk_skb_adjust_room,
3560 	.gpl_only	= false,
3561 	.ret_type	= RET_INTEGER,
3562 	.arg1_type	= ARG_PTR_TO_CTX,
3563 	.arg2_type	= ARG_ANYTHING,
3564 	.arg3_type	= ARG_ANYTHING,
3565 	.arg4_type	= ARG_ANYTHING,
3566 };
3567 
3568 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3569 	   u32, mode, u64, flags)
3570 {
3571 	u32 len_cur, len_diff_abs = abs(len_diff);
3572 	u32 len_min = bpf_skb_net_base_len(skb);
3573 	u32 len_max = BPF_SKB_MAX_LEN;
3574 	__be16 proto = skb->protocol;
3575 	bool shrink = len_diff < 0;
3576 	u32 off;
3577 	int ret;
3578 
3579 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3580 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3581 		return -EINVAL;
3582 	if (unlikely(len_diff_abs > 0xfffU))
3583 		return -EFAULT;
3584 	if (unlikely(proto != htons(ETH_P_IP) &&
3585 		     proto != htons(ETH_P_IPV6)))
3586 		return -ENOTSUPP;
3587 
3588 	off = skb_mac_header_len(skb);
3589 	switch (mode) {
3590 	case BPF_ADJ_ROOM_NET:
3591 		off += bpf_skb_net_base_len(skb);
3592 		break;
3593 	case BPF_ADJ_ROOM_MAC:
3594 		break;
3595 	default:
3596 		return -ENOTSUPP;
3597 	}
3598 
3599 	len_cur = skb->len - skb_network_offset(skb);
3600 	if ((shrink && (len_diff_abs >= len_cur ||
3601 			len_cur - len_diff_abs < len_min)) ||
3602 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3603 			 !skb_is_gso(skb))))
3604 		return -ENOTSUPP;
3605 
3606 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3607 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3608 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3609 		__skb_reset_checksum_unnecessary(skb);
3610 
3611 	bpf_compute_data_pointers(skb);
3612 	return ret;
3613 }
3614 
3615 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3616 	.func		= bpf_skb_adjust_room,
3617 	.gpl_only	= false,
3618 	.ret_type	= RET_INTEGER,
3619 	.arg1_type	= ARG_PTR_TO_CTX,
3620 	.arg2_type	= ARG_ANYTHING,
3621 	.arg3_type	= ARG_ANYTHING,
3622 	.arg4_type	= ARG_ANYTHING,
3623 };
3624 
3625 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3626 {
3627 	u32 min_len = skb_network_offset(skb);
3628 
3629 	if (skb_transport_header_was_set(skb))
3630 		min_len = skb_transport_offset(skb);
3631 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3632 		min_len = skb_checksum_start_offset(skb) +
3633 			  skb->csum_offset + sizeof(__sum16);
3634 	return min_len;
3635 }
3636 
3637 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3638 {
3639 	unsigned int old_len = skb->len;
3640 	int ret;
3641 
3642 	ret = __skb_grow_rcsum(skb, new_len);
3643 	if (!ret)
3644 		memset(skb->data + old_len, 0, new_len - old_len);
3645 	return ret;
3646 }
3647 
3648 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3649 {
3650 	return __skb_trim_rcsum(skb, new_len);
3651 }
3652 
3653 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3654 					u64 flags)
3655 {
3656 	u32 max_len = BPF_SKB_MAX_LEN;
3657 	u32 min_len = __bpf_skb_min_len(skb);
3658 	int ret;
3659 
3660 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3661 		return -EINVAL;
3662 	if (skb->encapsulation)
3663 		return -ENOTSUPP;
3664 
3665 	/* The basic idea of this helper is that it's performing the
3666 	 * needed work to either grow or trim an skb, and eBPF program
3667 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3668 	 * bpf_lX_csum_replace() and others rather than passing a raw
3669 	 * buffer here. This one is a slow path helper and intended
3670 	 * for replies with control messages.
3671 	 *
3672 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3673 	 * minimal and without protocol specifics so that we are able
3674 	 * to separate concerns as in bpf_skb_store_bytes() should only
3675 	 * be the one responsible for writing buffers.
3676 	 *
3677 	 * It's really expected to be a slow path operation here for
3678 	 * control message replies, so we're implicitly linearizing,
3679 	 * uncloning and drop offloads from the skb by this.
3680 	 */
3681 	ret = __bpf_try_make_writable(skb, skb->len);
3682 	if (!ret) {
3683 		if (new_len > skb->len)
3684 			ret = bpf_skb_grow_rcsum(skb, new_len);
3685 		else if (new_len < skb->len)
3686 			ret = bpf_skb_trim_rcsum(skb, new_len);
3687 		if (!ret && skb_is_gso(skb))
3688 			skb_gso_reset(skb);
3689 	}
3690 	return ret;
3691 }
3692 
3693 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3694 	   u64, flags)
3695 {
3696 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3697 
3698 	bpf_compute_data_pointers(skb);
3699 	return ret;
3700 }
3701 
3702 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3703 	.func		= bpf_skb_change_tail,
3704 	.gpl_only	= false,
3705 	.ret_type	= RET_INTEGER,
3706 	.arg1_type	= ARG_PTR_TO_CTX,
3707 	.arg2_type	= ARG_ANYTHING,
3708 	.arg3_type	= ARG_ANYTHING,
3709 };
3710 
3711 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3712 	   u64, flags)
3713 {
3714 	return __bpf_skb_change_tail(skb, new_len, flags);
3715 }
3716 
3717 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3718 	.func		= sk_skb_change_tail,
3719 	.gpl_only	= false,
3720 	.ret_type	= RET_INTEGER,
3721 	.arg1_type	= ARG_PTR_TO_CTX,
3722 	.arg2_type	= ARG_ANYTHING,
3723 	.arg3_type	= ARG_ANYTHING,
3724 };
3725 
3726 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3727 					u64 flags)
3728 {
3729 	u32 max_len = BPF_SKB_MAX_LEN;
3730 	u32 new_len = skb->len + head_room;
3731 	int ret;
3732 
3733 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3734 		     new_len < skb->len))
3735 		return -EINVAL;
3736 
3737 	ret = skb_cow(skb, head_room);
3738 	if (likely(!ret)) {
3739 		/* Idea for this helper is that we currently only
3740 		 * allow to expand on mac header. This means that
3741 		 * skb->protocol network header, etc, stay as is.
3742 		 * Compared to bpf_skb_change_tail(), we're more
3743 		 * flexible due to not needing to linearize or
3744 		 * reset GSO. Intention for this helper is to be
3745 		 * used by an L3 skb that needs to push mac header
3746 		 * for redirection into L2 device.
3747 		 */
3748 		__skb_push(skb, head_room);
3749 		memset(skb->data, 0, head_room);
3750 		skb_reset_mac_header(skb);
3751 		skb_reset_mac_len(skb);
3752 	}
3753 
3754 	return ret;
3755 }
3756 
3757 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3758 	   u64, flags)
3759 {
3760 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3761 
3762 	bpf_compute_data_pointers(skb);
3763 	return ret;
3764 }
3765 
3766 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3767 	.func		= bpf_skb_change_head,
3768 	.gpl_only	= false,
3769 	.ret_type	= RET_INTEGER,
3770 	.arg1_type	= ARG_PTR_TO_CTX,
3771 	.arg2_type	= ARG_ANYTHING,
3772 	.arg3_type	= ARG_ANYTHING,
3773 };
3774 
3775 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3776 	   u64, flags)
3777 {
3778 	return __bpf_skb_change_head(skb, head_room, flags);
3779 }
3780 
3781 static const struct bpf_func_proto sk_skb_change_head_proto = {
3782 	.func		= sk_skb_change_head,
3783 	.gpl_only	= false,
3784 	.ret_type	= RET_INTEGER,
3785 	.arg1_type	= ARG_PTR_TO_CTX,
3786 	.arg2_type	= ARG_ANYTHING,
3787 	.arg3_type	= ARG_ANYTHING,
3788 };
3789 
3790 BPF_CALL_1(bpf_xdp_get_buff_len, struct  xdp_buff*, xdp)
3791 {
3792 	return xdp_get_buff_len(xdp);
3793 }
3794 
3795 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3796 	.func		= bpf_xdp_get_buff_len,
3797 	.gpl_only	= false,
3798 	.ret_type	= RET_INTEGER,
3799 	.arg1_type	= ARG_PTR_TO_CTX,
3800 };
3801 
3802 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3803 
3804 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3805 	.func		= bpf_xdp_get_buff_len,
3806 	.gpl_only	= false,
3807 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3808 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3809 };
3810 
3811 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3812 {
3813 	return xdp_data_meta_unsupported(xdp) ? 0 :
3814 	       xdp->data - xdp->data_meta;
3815 }
3816 
3817 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3818 {
3819 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3820 	unsigned long metalen = xdp_get_metalen(xdp);
3821 	void *data_start = xdp_frame_end + metalen;
3822 	void *data = xdp->data + offset;
3823 
3824 	if (unlikely(data < data_start ||
3825 		     data > xdp->data_end - ETH_HLEN))
3826 		return -EINVAL;
3827 
3828 	if (metalen)
3829 		memmove(xdp->data_meta + offset,
3830 			xdp->data_meta, metalen);
3831 	xdp->data_meta += offset;
3832 	xdp->data = data;
3833 
3834 	return 0;
3835 }
3836 
3837 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3838 	.func		= bpf_xdp_adjust_head,
3839 	.gpl_only	= false,
3840 	.ret_type	= RET_INTEGER,
3841 	.arg1_type	= ARG_PTR_TO_CTX,
3842 	.arg2_type	= ARG_ANYTHING,
3843 };
3844 
3845 static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3846 			     void *buf, unsigned long len, bool flush)
3847 {
3848 	unsigned long ptr_len, ptr_off = 0;
3849 	skb_frag_t *next_frag, *end_frag;
3850 	struct skb_shared_info *sinfo;
3851 	void *src, *dst;
3852 	u8 *ptr_buf;
3853 
3854 	if (likely(xdp->data_end - xdp->data >= off + len)) {
3855 		src = flush ? buf : xdp->data + off;
3856 		dst = flush ? xdp->data + off : buf;
3857 		memcpy(dst, src, len);
3858 		return;
3859 	}
3860 
3861 	sinfo = xdp_get_shared_info_from_buff(xdp);
3862 	end_frag = &sinfo->frags[sinfo->nr_frags];
3863 	next_frag = &sinfo->frags[0];
3864 
3865 	ptr_len = xdp->data_end - xdp->data;
3866 	ptr_buf = xdp->data;
3867 
3868 	while (true) {
3869 		if (off < ptr_off + ptr_len) {
3870 			unsigned long copy_off = off - ptr_off;
3871 			unsigned long copy_len = min(len, ptr_len - copy_off);
3872 
3873 			src = flush ? buf : ptr_buf + copy_off;
3874 			dst = flush ? ptr_buf + copy_off : buf;
3875 			memcpy(dst, src, copy_len);
3876 
3877 			off += copy_len;
3878 			len -= copy_len;
3879 			buf += copy_len;
3880 		}
3881 
3882 		if (!len || next_frag == end_frag)
3883 			break;
3884 
3885 		ptr_off += ptr_len;
3886 		ptr_buf = skb_frag_address(next_frag);
3887 		ptr_len = skb_frag_size(next_frag);
3888 		next_frag++;
3889 	}
3890 }
3891 
3892 static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3893 {
3894 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3895 	u32 size = xdp->data_end - xdp->data;
3896 	void *addr = xdp->data;
3897 	int i;
3898 
3899 	if (unlikely(offset > 0xffff || len > 0xffff))
3900 		return ERR_PTR(-EFAULT);
3901 
3902 	if (offset + len > xdp_get_buff_len(xdp))
3903 		return ERR_PTR(-EINVAL);
3904 
3905 	if (offset < size) /* linear area */
3906 		goto out;
3907 
3908 	offset -= size;
3909 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3910 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3911 
3912 		if  (offset < frag_size) {
3913 			addr = skb_frag_address(&sinfo->frags[i]);
3914 			size = frag_size;
3915 			break;
3916 		}
3917 		offset -= frag_size;
3918 	}
3919 out:
3920 	return offset + len < size ? addr + offset : NULL;
3921 }
3922 
3923 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3924 	   void *, buf, u32, len)
3925 {
3926 	void *ptr;
3927 
3928 	ptr = bpf_xdp_pointer(xdp, offset, len);
3929 	if (IS_ERR(ptr))
3930 		return PTR_ERR(ptr);
3931 
3932 	if (!ptr)
3933 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3934 	else
3935 		memcpy(buf, ptr, len);
3936 
3937 	return 0;
3938 }
3939 
3940 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3941 	.func		= bpf_xdp_load_bytes,
3942 	.gpl_only	= false,
3943 	.ret_type	= RET_INTEGER,
3944 	.arg1_type	= ARG_PTR_TO_CTX,
3945 	.arg2_type	= ARG_ANYTHING,
3946 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
3947 	.arg4_type	= ARG_CONST_SIZE,
3948 };
3949 
3950 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
3951 	   void *, buf, u32, len)
3952 {
3953 	void *ptr;
3954 
3955 	ptr = bpf_xdp_pointer(xdp, offset, len);
3956 	if (IS_ERR(ptr))
3957 		return PTR_ERR(ptr);
3958 
3959 	if (!ptr)
3960 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
3961 	else
3962 		memcpy(ptr, buf, len);
3963 
3964 	return 0;
3965 }
3966 
3967 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
3968 	.func		= bpf_xdp_store_bytes,
3969 	.gpl_only	= false,
3970 	.ret_type	= RET_INTEGER,
3971 	.arg1_type	= ARG_PTR_TO_CTX,
3972 	.arg2_type	= ARG_ANYTHING,
3973 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
3974 	.arg4_type	= ARG_CONST_SIZE,
3975 };
3976 
3977 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
3978 {
3979 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3980 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
3981 	struct xdp_rxq_info *rxq = xdp->rxq;
3982 	unsigned int tailroom;
3983 
3984 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
3985 		return -EOPNOTSUPP;
3986 
3987 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
3988 	if (unlikely(offset > tailroom))
3989 		return -EINVAL;
3990 
3991 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
3992 	skb_frag_size_add(frag, offset);
3993 	sinfo->xdp_frags_size += offset;
3994 
3995 	return 0;
3996 }
3997 
3998 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
3999 {
4000 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4001 	int i, n_frags_free = 0, len_free = 0;
4002 
4003 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4004 		return -EINVAL;
4005 
4006 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4007 		skb_frag_t *frag = &sinfo->frags[i];
4008 		int shrink = min_t(int, offset, skb_frag_size(frag));
4009 
4010 		len_free += shrink;
4011 		offset -= shrink;
4012 
4013 		if (skb_frag_size(frag) == shrink) {
4014 			struct page *page = skb_frag_page(frag);
4015 
4016 			__xdp_return(page_address(page), &xdp->rxq->mem,
4017 				     false, NULL);
4018 			n_frags_free++;
4019 		} else {
4020 			skb_frag_size_sub(frag, shrink);
4021 			break;
4022 		}
4023 	}
4024 	sinfo->nr_frags -= n_frags_free;
4025 	sinfo->xdp_frags_size -= len_free;
4026 
4027 	if (unlikely(!sinfo->nr_frags)) {
4028 		xdp_buff_clear_frags_flag(xdp);
4029 		xdp->data_end -= offset;
4030 	}
4031 
4032 	return 0;
4033 }
4034 
4035 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4036 {
4037 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4038 	void *data_end = xdp->data_end + offset;
4039 
4040 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4041 		if (offset < 0)
4042 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4043 
4044 		return bpf_xdp_frags_increase_tail(xdp, offset);
4045 	}
4046 
4047 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4048 	if (unlikely(data_end > data_hard_end))
4049 		return -EINVAL;
4050 
4051 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
4052 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
4053 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
4054 		return -EINVAL;
4055 	}
4056 
4057 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4058 		return -EINVAL;
4059 
4060 	/* Clear memory area on grow, can contain uninit kernel memory */
4061 	if (offset > 0)
4062 		memset(xdp->data_end, 0, offset);
4063 
4064 	xdp->data_end = data_end;
4065 
4066 	return 0;
4067 }
4068 
4069 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4070 	.func		= bpf_xdp_adjust_tail,
4071 	.gpl_only	= false,
4072 	.ret_type	= RET_INTEGER,
4073 	.arg1_type	= ARG_PTR_TO_CTX,
4074 	.arg2_type	= ARG_ANYTHING,
4075 };
4076 
4077 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4078 {
4079 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4080 	void *meta = xdp->data_meta + offset;
4081 	unsigned long metalen = xdp->data - meta;
4082 
4083 	if (xdp_data_meta_unsupported(xdp))
4084 		return -ENOTSUPP;
4085 	if (unlikely(meta < xdp_frame_end ||
4086 		     meta > xdp->data))
4087 		return -EINVAL;
4088 	if (unlikely(xdp_metalen_invalid(metalen)))
4089 		return -EACCES;
4090 
4091 	xdp->data_meta = meta;
4092 
4093 	return 0;
4094 }
4095 
4096 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4097 	.func		= bpf_xdp_adjust_meta,
4098 	.gpl_only	= false,
4099 	.ret_type	= RET_INTEGER,
4100 	.arg1_type	= ARG_PTR_TO_CTX,
4101 	.arg2_type	= ARG_ANYTHING,
4102 };
4103 
4104 /* XDP_REDIRECT works by a three-step process, implemented in the functions
4105  * below:
4106  *
4107  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4108  *    of the redirect and store it (along with some other metadata) in a per-CPU
4109  *    struct bpf_redirect_info.
4110  *
4111  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4112  *    call xdp_do_redirect() which will use the information in struct
4113  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4114  *    bulk queue structure.
4115  *
4116  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
4117  *    which will flush all the different bulk queues, thus completing the
4118  *    redirect.
4119  *
4120  * Pointers to the map entries will be kept around for this whole sequence of
4121  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4122  * the core code; instead, the RCU protection relies on everything happening
4123  * inside a single NAPI poll sequence, which means it's between a pair of calls
4124  * to local_bh_disable()/local_bh_enable().
4125  *
4126  * The map entries are marked as __rcu and the map code makes sure to
4127  * dereference those pointers with rcu_dereference_check() in a way that works
4128  * for both sections that to hold an rcu_read_lock() and sections that are
4129  * called from NAPI without a separate rcu_read_lock(). The code below does not
4130  * use RCU annotations, but relies on those in the map code.
4131  */
4132 void xdp_do_flush(void)
4133 {
4134 	__dev_flush();
4135 	__cpu_map_flush();
4136 	__xsk_map_flush();
4137 }
4138 EXPORT_SYMBOL_GPL(xdp_do_flush);
4139 
4140 void bpf_clear_redirect_map(struct bpf_map *map)
4141 {
4142 	struct bpf_redirect_info *ri;
4143 	int cpu;
4144 
4145 	for_each_possible_cpu(cpu) {
4146 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4147 		/* Avoid polluting remote cacheline due to writes if
4148 		 * not needed. Once we pass this test, we need the
4149 		 * cmpxchg() to make sure it hasn't been changed in
4150 		 * the meantime by remote CPU.
4151 		 */
4152 		if (unlikely(READ_ONCE(ri->map) == map))
4153 			cmpxchg(&ri->map, map, NULL);
4154 	}
4155 }
4156 
4157 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4158 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4159 
4160 u32 xdp_master_redirect(struct xdp_buff *xdp)
4161 {
4162 	struct net_device *master, *slave;
4163 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4164 
4165 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4166 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4167 	if (slave && slave != xdp->rxq->dev) {
4168 		/* The target device is different from the receiving device, so
4169 		 * redirect it to the new device.
4170 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4171 		 * drivers to unmap the packet from their rx ring.
4172 		 */
4173 		ri->tgt_index = slave->ifindex;
4174 		ri->map_id = INT_MAX;
4175 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4176 		return XDP_REDIRECT;
4177 	}
4178 	return XDP_TX;
4179 }
4180 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4181 
4182 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4183 					struct net_device *dev,
4184 					struct xdp_buff *xdp,
4185 					struct bpf_prog *xdp_prog)
4186 {
4187 	enum bpf_map_type map_type = ri->map_type;
4188 	void *fwd = ri->tgt_value;
4189 	u32 map_id = ri->map_id;
4190 	int err;
4191 
4192 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4193 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4194 
4195 	err = __xsk_map_redirect(fwd, xdp);
4196 	if (unlikely(err))
4197 		goto err;
4198 
4199 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4200 	return 0;
4201 err:
4202 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4203 	return err;
4204 }
4205 
4206 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4207 						   struct net_device *dev,
4208 						   struct xdp_frame *xdpf,
4209 						   struct bpf_prog *xdp_prog)
4210 {
4211 	enum bpf_map_type map_type = ri->map_type;
4212 	void *fwd = ri->tgt_value;
4213 	u32 map_id = ri->map_id;
4214 	struct bpf_map *map;
4215 	int err;
4216 
4217 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4218 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4219 
4220 	if (unlikely(!xdpf)) {
4221 		err = -EOVERFLOW;
4222 		goto err;
4223 	}
4224 
4225 	switch (map_type) {
4226 	case BPF_MAP_TYPE_DEVMAP:
4227 		fallthrough;
4228 	case BPF_MAP_TYPE_DEVMAP_HASH:
4229 		map = READ_ONCE(ri->map);
4230 		if (unlikely(map)) {
4231 			WRITE_ONCE(ri->map, NULL);
4232 			err = dev_map_enqueue_multi(xdpf, dev, map,
4233 						    ri->flags & BPF_F_EXCLUDE_INGRESS);
4234 		} else {
4235 			err = dev_map_enqueue(fwd, xdpf, dev);
4236 		}
4237 		break;
4238 	case BPF_MAP_TYPE_CPUMAP:
4239 		err = cpu_map_enqueue(fwd, xdpf, dev);
4240 		break;
4241 	case BPF_MAP_TYPE_UNSPEC:
4242 		if (map_id == INT_MAX) {
4243 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4244 			if (unlikely(!fwd)) {
4245 				err = -EINVAL;
4246 				break;
4247 			}
4248 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4249 			break;
4250 		}
4251 		fallthrough;
4252 	default:
4253 		err = -EBADRQC;
4254 	}
4255 
4256 	if (unlikely(err))
4257 		goto err;
4258 
4259 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4260 	return 0;
4261 err:
4262 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4263 	return err;
4264 }
4265 
4266 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4267 		    struct bpf_prog *xdp_prog)
4268 {
4269 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4270 	enum bpf_map_type map_type = ri->map_type;
4271 
4272 	/* XDP_REDIRECT is not fully supported yet for xdp frags since
4273 	 * not all XDP capable drivers can map non-linear xdp_frame in
4274 	 * ndo_xdp_xmit.
4275 	 */
4276 	if (unlikely(xdp_buff_has_frags(xdp) &&
4277 		     map_type != BPF_MAP_TYPE_CPUMAP))
4278 		return -EOPNOTSUPP;
4279 
4280 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4281 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4282 
4283 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4284 				       xdp_prog);
4285 }
4286 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4287 
4288 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4289 			  struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4290 {
4291 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4292 	enum bpf_map_type map_type = ri->map_type;
4293 
4294 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4295 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4296 
4297 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4298 }
4299 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4300 
4301 static int xdp_do_generic_redirect_map(struct net_device *dev,
4302 				       struct sk_buff *skb,
4303 				       struct xdp_buff *xdp,
4304 				       struct bpf_prog *xdp_prog,
4305 				       void *fwd,
4306 				       enum bpf_map_type map_type, u32 map_id)
4307 {
4308 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4309 	struct bpf_map *map;
4310 	int err;
4311 
4312 	switch (map_type) {
4313 	case BPF_MAP_TYPE_DEVMAP:
4314 		fallthrough;
4315 	case BPF_MAP_TYPE_DEVMAP_HASH:
4316 		map = READ_ONCE(ri->map);
4317 		if (unlikely(map)) {
4318 			WRITE_ONCE(ri->map, NULL);
4319 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4320 						     ri->flags & BPF_F_EXCLUDE_INGRESS);
4321 		} else {
4322 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4323 		}
4324 		if (unlikely(err))
4325 			goto err;
4326 		break;
4327 	case BPF_MAP_TYPE_XSKMAP:
4328 		err = xsk_generic_rcv(fwd, xdp);
4329 		if (err)
4330 			goto err;
4331 		consume_skb(skb);
4332 		break;
4333 	case BPF_MAP_TYPE_CPUMAP:
4334 		err = cpu_map_generic_redirect(fwd, skb);
4335 		if (unlikely(err))
4336 			goto err;
4337 		break;
4338 	default:
4339 		err = -EBADRQC;
4340 		goto err;
4341 	}
4342 
4343 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4344 	return 0;
4345 err:
4346 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4347 	return err;
4348 }
4349 
4350 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4351 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4352 {
4353 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4354 	enum bpf_map_type map_type = ri->map_type;
4355 	void *fwd = ri->tgt_value;
4356 	u32 map_id = ri->map_id;
4357 	int err;
4358 
4359 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4360 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4361 
4362 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4363 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4364 		if (unlikely(!fwd)) {
4365 			err = -EINVAL;
4366 			goto err;
4367 		}
4368 
4369 		err = xdp_ok_fwd_dev(fwd, skb->len);
4370 		if (unlikely(err))
4371 			goto err;
4372 
4373 		skb->dev = fwd;
4374 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4375 		generic_xdp_tx(skb, xdp_prog);
4376 		return 0;
4377 	}
4378 
4379 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4380 err:
4381 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4382 	return err;
4383 }
4384 
4385 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4386 {
4387 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4388 
4389 	if (unlikely(flags))
4390 		return XDP_ABORTED;
4391 
4392 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4393 	 * by map_idr) is used for ifindex based XDP redirect.
4394 	 */
4395 	ri->tgt_index = ifindex;
4396 	ri->map_id = INT_MAX;
4397 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4398 
4399 	return XDP_REDIRECT;
4400 }
4401 
4402 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4403 	.func           = bpf_xdp_redirect,
4404 	.gpl_only       = false,
4405 	.ret_type       = RET_INTEGER,
4406 	.arg1_type      = ARG_ANYTHING,
4407 	.arg2_type      = ARG_ANYTHING,
4408 };
4409 
4410 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4411 	   u64, flags)
4412 {
4413 	return map->ops->map_redirect(map, ifindex, flags);
4414 }
4415 
4416 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4417 	.func           = bpf_xdp_redirect_map,
4418 	.gpl_only       = false,
4419 	.ret_type       = RET_INTEGER,
4420 	.arg1_type      = ARG_CONST_MAP_PTR,
4421 	.arg2_type      = ARG_ANYTHING,
4422 	.arg3_type      = ARG_ANYTHING,
4423 };
4424 
4425 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4426 				  unsigned long off, unsigned long len)
4427 {
4428 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4429 
4430 	if (unlikely(!ptr))
4431 		return len;
4432 	if (ptr != dst_buff)
4433 		memcpy(dst_buff, ptr, len);
4434 
4435 	return 0;
4436 }
4437 
4438 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4439 	   u64, flags, void *, meta, u64, meta_size)
4440 {
4441 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4442 
4443 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4444 		return -EINVAL;
4445 	if (unlikely(!skb || skb_size > skb->len))
4446 		return -EFAULT;
4447 
4448 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4449 				bpf_skb_copy);
4450 }
4451 
4452 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4453 	.func		= bpf_skb_event_output,
4454 	.gpl_only	= true,
4455 	.ret_type	= RET_INTEGER,
4456 	.arg1_type	= ARG_PTR_TO_CTX,
4457 	.arg2_type	= ARG_CONST_MAP_PTR,
4458 	.arg3_type	= ARG_ANYTHING,
4459 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4460 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4461 };
4462 
4463 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4464 
4465 const struct bpf_func_proto bpf_skb_output_proto = {
4466 	.func		= bpf_skb_event_output,
4467 	.gpl_only	= true,
4468 	.ret_type	= RET_INTEGER,
4469 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4470 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4471 	.arg2_type	= ARG_CONST_MAP_PTR,
4472 	.arg3_type	= ARG_ANYTHING,
4473 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4474 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4475 };
4476 
4477 static unsigned short bpf_tunnel_key_af(u64 flags)
4478 {
4479 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4480 }
4481 
4482 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4483 	   u32, size, u64, flags)
4484 {
4485 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4486 	u8 compat[sizeof(struct bpf_tunnel_key)];
4487 	void *to_orig = to;
4488 	int err;
4489 
4490 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4491 		err = -EINVAL;
4492 		goto err_clear;
4493 	}
4494 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4495 		err = -EPROTO;
4496 		goto err_clear;
4497 	}
4498 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4499 		err = -EINVAL;
4500 		switch (size) {
4501 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4502 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4503 			goto set_compat;
4504 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4505 			/* Fixup deprecated structure layouts here, so we have
4506 			 * a common path later on.
4507 			 */
4508 			if (ip_tunnel_info_af(info) != AF_INET)
4509 				goto err_clear;
4510 set_compat:
4511 			to = (struct bpf_tunnel_key *)compat;
4512 			break;
4513 		default:
4514 			goto err_clear;
4515 		}
4516 	}
4517 
4518 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4519 	to->tunnel_tos = info->key.tos;
4520 	to->tunnel_ttl = info->key.ttl;
4521 	to->tunnel_ext = 0;
4522 
4523 	if (flags & BPF_F_TUNINFO_IPV6) {
4524 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4525 		       sizeof(to->remote_ipv6));
4526 		to->tunnel_label = be32_to_cpu(info->key.label);
4527 	} else {
4528 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4529 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4530 		to->tunnel_label = 0;
4531 	}
4532 
4533 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4534 		memcpy(to_orig, to, size);
4535 
4536 	return 0;
4537 err_clear:
4538 	memset(to_orig, 0, size);
4539 	return err;
4540 }
4541 
4542 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4543 	.func		= bpf_skb_get_tunnel_key,
4544 	.gpl_only	= false,
4545 	.ret_type	= RET_INTEGER,
4546 	.arg1_type	= ARG_PTR_TO_CTX,
4547 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4548 	.arg3_type	= ARG_CONST_SIZE,
4549 	.arg4_type	= ARG_ANYTHING,
4550 };
4551 
4552 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4553 {
4554 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4555 	int err;
4556 
4557 	if (unlikely(!info ||
4558 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4559 		err = -ENOENT;
4560 		goto err_clear;
4561 	}
4562 	if (unlikely(size < info->options_len)) {
4563 		err = -ENOMEM;
4564 		goto err_clear;
4565 	}
4566 
4567 	ip_tunnel_info_opts_get(to, info);
4568 	if (size > info->options_len)
4569 		memset(to + info->options_len, 0, size - info->options_len);
4570 
4571 	return info->options_len;
4572 err_clear:
4573 	memset(to, 0, size);
4574 	return err;
4575 }
4576 
4577 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4578 	.func		= bpf_skb_get_tunnel_opt,
4579 	.gpl_only	= false,
4580 	.ret_type	= RET_INTEGER,
4581 	.arg1_type	= ARG_PTR_TO_CTX,
4582 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4583 	.arg3_type	= ARG_CONST_SIZE,
4584 };
4585 
4586 static struct metadata_dst __percpu *md_dst;
4587 
4588 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4589 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4590 {
4591 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4592 	u8 compat[sizeof(struct bpf_tunnel_key)];
4593 	struct ip_tunnel_info *info;
4594 
4595 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4596 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4597 		return -EINVAL;
4598 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4599 		switch (size) {
4600 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4601 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4602 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4603 			/* Fixup deprecated structure layouts here, so we have
4604 			 * a common path later on.
4605 			 */
4606 			memcpy(compat, from, size);
4607 			memset(compat + size, 0, sizeof(compat) - size);
4608 			from = (const struct bpf_tunnel_key *) compat;
4609 			break;
4610 		default:
4611 			return -EINVAL;
4612 		}
4613 	}
4614 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4615 		     from->tunnel_ext))
4616 		return -EINVAL;
4617 
4618 	skb_dst_drop(skb);
4619 	dst_hold((struct dst_entry *) md);
4620 	skb_dst_set(skb, (struct dst_entry *) md);
4621 
4622 	info = &md->u.tun_info;
4623 	memset(info, 0, sizeof(*info));
4624 	info->mode = IP_TUNNEL_INFO_TX;
4625 
4626 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4627 	if (flags & BPF_F_DONT_FRAGMENT)
4628 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4629 	if (flags & BPF_F_ZERO_CSUM_TX)
4630 		info->key.tun_flags &= ~TUNNEL_CSUM;
4631 	if (flags & BPF_F_SEQ_NUMBER)
4632 		info->key.tun_flags |= TUNNEL_SEQ;
4633 
4634 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4635 	info->key.tos = from->tunnel_tos;
4636 	info->key.ttl = from->tunnel_ttl;
4637 
4638 	if (flags & BPF_F_TUNINFO_IPV6) {
4639 		info->mode |= IP_TUNNEL_INFO_IPV6;
4640 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4641 		       sizeof(from->remote_ipv6));
4642 		info->key.label = cpu_to_be32(from->tunnel_label) &
4643 				  IPV6_FLOWLABEL_MASK;
4644 	} else {
4645 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4646 	}
4647 
4648 	return 0;
4649 }
4650 
4651 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4652 	.func		= bpf_skb_set_tunnel_key,
4653 	.gpl_only	= false,
4654 	.ret_type	= RET_INTEGER,
4655 	.arg1_type	= ARG_PTR_TO_CTX,
4656 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4657 	.arg3_type	= ARG_CONST_SIZE,
4658 	.arg4_type	= ARG_ANYTHING,
4659 };
4660 
4661 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4662 	   const u8 *, from, u32, size)
4663 {
4664 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4665 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4666 
4667 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4668 		return -EINVAL;
4669 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4670 		return -ENOMEM;
4671 
4672 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4673 
4674 	return 0;
4675 }
4676 
4677 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4678 	.func		= bpf_skb_set_tunnel_opt,
4679 	.gpl_only	= false,
4680 	.ret_type	= RET_INTEGER,
4681 	.arg1_type	= ARG_PTR_TO_CTX,
4682 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4683 	.arg3_type	= ARG_CONST_SIZE,
4684 };
4685 
4686 static const struct bpf_func_proto *
4687 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4688 {
4689 	if (!md_dst) {
4690 		struct metadata_dst __percpu *tmp;
4691 
4692 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4693 						METADATA_IP_TUNNEL,
4694 						GFP_KERNEL);
4695 		if (!tmp)
4696 			return NULL;
4697 		if (cmpxchg(&md_dst, NULL, tmp))
4698 			metadata_dst_free_percpu(tmp);
4699 	}
4700 
4701 	switch (which) {
4702 	case BPF_FUNC_skb_set_tunnel_key:
4703 		return &bpf_skb_set_tunnel_key_proto;
4704 	case BPF_FUNC_skb_set_tunnel_opt:
4705 		return &bpf_skb_set_tunnel_opt_proto;
4706 	default:
4707 		return NULL;
4708 	}
4709 }
4710 
4711 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4712 	   u32, idx)
4713 {
4714 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4715 	struct cgroup *cgrp;
4716 	struct sock *sk;
4717 
4718 	sk = skb_to_full_sk(skb);
4719 	if (!sk || !sk_fullsock(sk))
4720 		return -ENOENT;
4721 	if (unlikely(idx >= array->map.max_entries))
4722 		return -E2BIG;
4723 
4724 	cgrp = READ_ONCE(array->ptrs[idx]);
4725 	if (unlikely(!cgrp))
4726 		return -EAGAIN;
4727 
4728 	return sk_under_cgroup_hierarchy(sk, cgrp);
4729 }
4730 
4731 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4732 	.func		= bpf_skb_under_cgroup,
4733 	.gpl_only	= false,
4734 	.ret_type	= RET_INTEGER,
4735 	.arg1_type	= ARG_PTR_TO_CTX,
4736 	.arg2_type	= ARG_CONST_MAP_PTR,
4737 	.arg3_type	= ARG_ANYTHING,
4738 };
4739 
4740 #ifdef CONFIG_SOCK_CGROUP_DATA
4741 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4742 {
4743 	struct cgroup *cgrp;
4744 
4745 	sk = sk_to_full_sk(sk);
4746 	if (!sk || !sk_fullsock(sk))
4747 		return 0;
4748 
4749 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4750 	return cgroup_id(cgrp);
4751 }
4752 
4753 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4754 {
4755 	return __bpf_sk_cgroup_id(skb->sk);
4756 }
4757 
4758 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4759 	.func           = bpf_skb_cgroup_id,
4760 	.gpl_only       = false,
4761 	.ret_type       = RET_INTEGER,
4762 	.arg1_type      = ARG_PTR_TO_CTX,
4763 };
4764 
4765 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4766 					      int ancestor_level)
4767 {
4768 	struct cgroup *ancestor;
4769 	struct cgroup *cgrp;
4770 
4771 	sk = sk_to_full_sk(sk);
4772 	if (!sk || !sk_fullsock(sk))
4773 		return 0;
4774 
4775 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4776 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4777 	if (!ancestor)
4778 		return 0;
4779 
4780 	return cgroup_id(ancestor);
4781 }
4782 
4783 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4784 	   ancestor_level)
4785 {
4786 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4787 }
4788 
4789 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4790 	.func           = bpf_skb_ancestor_cgroup_id,
4791 	.gpl_only       = false,
4792 	.ret_type       = RET_INTEGER,
4793 	.arg1_type      = ARG_PTR_TO_CTX,
4794 	.arg2_type      = ARG_ANYTHING,
4795 };
4796 
4797 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4798 {
4799 	return __bpf_sk_cgroup_id(sk);
4800 }
4801 
4802 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4803 	.func           = bpf_sk_cgroup_id,
4804 	.gpl_only       = false,
4805 	.ret_type       = RET_INTEGER,
4806 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4807 };
4808 
4809 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4810 {
4811 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4812 }
4813 
4814 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4815 	.func           = bpf_sk_ancestor_cgroup_id,
4816 	.gpl_only       = false,
4817 	.ret_type       = RET_INTEGER,
4818 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4819 	.arg2_type      = ARG_ANYTHING,
4820 };
4821 #endif
4822 
4823 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4824 				  unsigned long off, unsigned long len)
4825 {
4826 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4827 
4828 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
4829 	return 0;
4830 }
4831 
4832 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4833 	   u64, flags, void *, meta, u64, meta_size)
4834 {
4835 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4836 
4837 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4838 		return -EINVAL;
4839 
4840 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4841 		return -EFAULT;
4842 
4843 	return bpf_event_output(map, flags, meta, meta_size, xdp,
4844 				xdp_size, bpf_xdp_copy);
4845 }
4846 
4847 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4848 	.func		= bpf_xdp_event_output,
4849 	.gpl_only	= true,
4850 	.ret_type	= RET_INTEGER,
4851 	.arg1_type	= ARG_PTR_TO_CTX,
4852 	.arg2_type	= ARG_CONST_MAP_PTR,
4853 	.arg3_type	= ARG_ANYTHING,
4854 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4855 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4856 };
4857 
4858 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4859 
4860 const struct bpf_func_proto bpf_xdp_output_proto = {
4861 	.func		= bpf_xdp_event_output,
4862 	.gpl_only	= true,
4863 	.ret_type	= RET_INTEGER,
4864 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4865 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4866 	.arg2_type	= ARG_CONST_MAP_PTR,
4867 	.arg3_type	= ARG_ANYTHING,
4868 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4869 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4870 };
4871 
4872 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4873 {
4874 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4875 }
4876 
4877 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4878 	.func           = bpf_get_socket_cookie,
4879 	.gpl_only       = false,
4880 	.ret_type       = RET_INTEGER,
4881 	.arg1_type      = ARG_PTR_TO_CTX,
4882 };
4883 
4884 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4885 {
4886 	return __sock_gen_cookie(ctx->sk);
4887 }
4888 
4889 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4890 	.func		= bpf_get_socket_cookie_sock_addr,
4891 	.gpl_only	= false,
4892 	.ret_type	= RET_INTEGER,
4893 	.arg1_type	= ARG_PTR_TO_CTX,
4894 };
4895 
4896 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4897 {
4898 	return __sock_gen_cookie(ctx);
4899 }
4900 
4901 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4902 	.func		= bpf_get_socket_cookie_sock,
4903 	.gpl_only	= false,
4904 	.ret_type	= RET_INTEGER,
4905 	.arg1_type	= ARG_PTR_TO_CTX,
4906 };
4907 
4908 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4909 {
4910 	return sk ? sock_gen_cookie(sk) : 0;
4911 }
4912 
4913 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4914 	.func		= bpf_get_socket_ptr_cookie,
4915 	.gpl_only	= false,
4916 	.ret_type	= RET_INTEGER,
4917 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4918 };
4919 
4920 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4921 {
4922 	return __sock_gen_cookie(ctx->sk);
4923 }
4924 
4925 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4926 	.func		= bpf_get_socket_cookie_sock_ops,
4927 	.gpl_only	= false,
4928 	.ret_type	= RET_INTEGER,
4929 	.arg1_type	= ARG_PTR_TO_CTX,
4930 };
4931 
4932 static u64 __bpf_get_netns_cookie(struct sock *sk)
4933 {
4934 	const struct net *net = sk ? sock_net(sk) : &init_net;
4935 
4936 	return net->net_cookie;
4937 }
4938 
4939 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4940 {
4941 	return __bpf_get_netns_cookie(ctx);
4942 }
4943 
4944 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4945 	.func		= bpf_get_netns_cookie_sock,
4946 	.gpl_only	= false,
4947 	.ret_type	= RET_INTEGER,
4948 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4949 };
4950 
4951 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4952 {
4953 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4954 }
4955 
4956 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4957 	.func		= bpf_get_netns_cookie_sock_addr,
4958 	.gpl_only	= false,
4959 	.ret_type	= RET_INTEGER,
4960 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4961 };
4962 
4963 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4964 {
4965 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4966 }
4967 
4968 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4969 	.func		= bpf_get_netns_cookie_sock_ops,
4970 	.gpl_only	= false,
4971 	.ret_type	= RET_INTEGER,
4972 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4973 };
4974 
4975 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
4976 {
4977 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4978 }
4979 
4980 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
4981 	.func		= bpf_get_netns_cookie_sk_msg,
4982 	.gpl_only	= false,
4983 	.ret_type	= RET_INTEGER,
4984 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4985 };
4986 
4987 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4988 {
4989 	struct sock *sk = sk_to_full_sk(skb->sk);
4990 	kuid_t kuid;
4991 
4992 	if (!sk || !sk_fullsock(sk))
4993 		return overflowuid;
4994 	kuid = sock_net_uid(sock_net(sk), sk);
4995 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4996 }
4997 
4998 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4999 	.func           = bpf_get_socket_uid,
5000 	.gpl_only       = false,
5001 	.ret_type       = RET_INTEGER,
5002 	.arg1_type      = ARG_PTR_TO_CTX,
5003 };
5004 
5005 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5006 			   char *optval, int optlen)
5007 {
5008 	char devname[IFNAMSIZ];
5009 	int val, valbool;
5010 	struct net *net;
5011 	int ifindex;
5012 	int ret = 0;
5013 
5014 	if (!sk_fullsock(sk))
5015 		return -EINVAL;
5016 
5017 	sock_owned_by_me(sk);
5018 
5019 	if (level == SOL_SOCKET) {
5020 		if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
5021 			return -EINVAL;
5022 		val = *((int *)optval);
5023 		valbool = val ? 1 : 0;
5024 
5025 		/* Only some socketops are supported */
5026 		switch (optname) {
5027 		case SO_RCVBUF:
5028 			val = min_t(u32, val, sysctl_rmem_max);
5029 			val = min_t(int, val, INT_MAX / 2);
5030 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
5031 			WRITE_ONCE(sk->sk_rcvbuf,
5032 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
5033 			break;
5034 		case SO_SNDBUF:
5035 			val = min_t(u32, val, sysctl_wmem_max);
5036 			val = min_t(int, val, INT_MAX / 2);
5037 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
5038 			WRITE_ONCE(sk->sk_sndbuf,
5039 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
5040 			break;
5041 		case SO_MAX_PACING_RATE: /* 32bit version */
5042 			if (val != ~0U)
5043 				cmpxchg(&sk->sk_pacing_status,
5044 					SK_PACING_NONE,
5045 					SK_PACING_NEEDED);
5046 			sk->sk_max_pacing_rate = (val == ~0U) ?
5047 						 ~0UL : (unsigned int)val;
5048 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
5049 						 sk->sk_max_pacing_rate);
5050 			break;
5051 		case SO_PRIORITY:
5052 			sk->sk_priority = val;
5053 			break;
5054 		case SO_RCVLOWAT:
5055 			if (val < 0)
5056 				val = INT_MAX;
5057 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
5058 			break;
5059 		case SO_MARK:
5060 			if (sk->sk_mark != val) {
5061 				sk->sk_mark = val;
5062 				sk_dst_reset(sk);
5063 			}
5064 			break;
5065 		case SO_BINDTODEVICE:
5066 			optlen = min_t(long, optlen, IFNAMSIZ - 1);
5067 			strncpy(devname, optval, optlen);
5068 			devname[optlen] = 0;
5069 
5070 			ifindex = 0;
5071 			if (devname[0] != '\0') {
5072 				struct net_device *dev;
5073 
5074 				ret = -ENODEV;
5075 
5076 				net = sock_net(sk);
5077 				dev = dev_get_by_name(net, devname);
5078 				if (!dev)
5079 					break;
5080 				ifindex = dev->ifindex;
5081 				dev_put(dev);
5082 			}
5083 			fallthrough;
5084 		case SO_BINDTOIFINDEX:
5085 			if (optname == SO_BINDTOIFINDEX)
5086 				ifindex = val;
5087 			ret = sock_bindtoindex(sk, ifindex, false);
5088 			break;
5089 		case SO_KEEPALIVE:
5090 			if (sk->sk_prot->keepalive)
5091 				sk->sk_prot->keepalive(sk, valbool);
5092 			sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
5093 			break;
5094 		case SO_REUSEPORT:
5095 			sk->sk_reuseport = valbool;
5096 			break;
5097 		case SO_TXREHASH:
5098 			if (val < -1 || val > 1) {
5099 				ret = -EINVAL;
5100 				break;
5101 			}
5102 			sk->sk_txrehash = (u8)val;
5103 			break;
5104 		default:
5105 			ret = -EINVAL;
5106 		}
5107 #ifdef CONFIG_INET
5108 	} else if (level == SOL_IP) {
5109 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5110 			return -EINVAL;
5111 
5112 		val = *((int *)optval);
5113 		/* Only some options are supported */
5114 		switch (optname) {
5115 		case IP_TOS:
5116 			if (val < -1 || val > 0xff) {
5117 				ret = -EINVAL;
5118 			} else {
5119 				struct inet_sock *inet = inet_sk(sk);
5120 
5121 				if (val == -1)
5122 					val = 0;
5123 				inet->tos = val;
5124 			}
5125 			break;
5126 		default:
5127 			ret = -EINVAL;
5128 		}
5129 #if IS_ENABLED(CONFIG_IPV6)
5130 	} else if (level == SOL_IPV6) {
5131 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5132 			return -EINVAL;
5133 
5134 		val = *((int *)optval);
5135 		/* Only some options are supported */
5136 		switch (optname) {
5137 		case IPV6_TCLASS:
5138 			if (val < -1 || val > 0xff) {
5139 				ret = -EINVAL;
5140 			} else {
5141 				struct ipv6_pinfo *np = inet6_sk(sk);
5142 
5143 				if (val == -1)
5144 					val = 0;
5145 				np->tclass = val;
5146 			}
5147 			break;
5148 		default:
5149 			ret = -EINVAL;
5150 		}
5151 #endif
5152 	} else if (level == SOL_TCP &&
5153 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
5154 		if (optname == TCP_CONGESTION) {
5155 			char name[TCP_CA_NAME_MAX];
5156 
5157 			strncpy(name, optval, min_t(long, optlen,
5158 						    TCP_CA_NAME_MAX-1));
5159 			name[TCP_CA_NAME_MAX-1] = 0;
5160 			ret = tcp_set_congestion_control(sk, name, false, true);
5161 		} else {
5162 			struct inet_connection_sock *icsk = inet_csk(sk);
5163 			struct tcp_sock *tp = tcp_sk(sk);
5164 			unsigned long timeout;
5165 
5166 			if (optlen != sizeof(int))
5167 				return -EINVAL;
5168 
5169 			val = *((int *)optval);
5170 			/* Only some options are supported */
5171 			switch (optname) {
5172 			case TCP_BPF_IW:
5173 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
5174 					ret = -EINVAL;
5175 				else
5176 					tp->snd_cwnd = val;
5177 				break;
5178 			case TCP_BPF_SNDCWND_CLAMP:
5179 				if (val <= 0) {
5180 					ret = -EINVAL;
5181 				} else {
5182 					tp->snd_cwnd_clamp = val;
5183 					tp->snd_ssthresh = val;
5184 				}
5185 				break;
5186 			case TCP_BPF_DELACK_MAX:
5187 				timeout = usecs_to_jiffies(val);
5188 				if (timeout > TCP_DELACK_MAX ||
5189 				    timeout < TCP_TIMEOUT_MIN)
5190 					return -EINVAL;
5191 				inet_csk(sk)->icsk_delack_max = timeout;
5192 				break;
5193 			case TCP_BPF_RTO_MIN:
5194 				timeout = usecs_to_jiffies(val);
5195 				if (timeout > TCP_RTO_MIN ||
5196 				    timeout < TCP_TIMEOUT_MIN)
5197 					return -EINVAL;
5198 				inet_csk(sk)->icsk_rto_min = timeout;
5199 				break;
5200 			case TCP_SAVE_SYN:
5201 				if (val < 0 || val > 1)
5202 					ret = -EINVAL;
5203 				else
5204 					tp->save_syn = val;
5205 				break;
5206 			case TCP_KEEPIDLE:
5207 				ret = tcp_sock_set_keepidle_locked(sk, val);
5208 				break;
5209 			case TCP_KEEPINTVL:
5210 				if (val < 1 || val > MAX_TCP_KEEPINTVL)
5211 					ret = -EINVAL;
5212 				else
5213 					tp->keepalive_intvl = val * HZ;
5214 				break;
5215 			case TCP_KEEPCNT:
5216 				if (val < 1 || val > MAX_TCP_KEEPCNT)
5217 					ret = -EINVAL;
5218 				else
5219 					tp->keepalive_probes = val;
5220 				break;
5221 			case TCP_SYNCNT:
5222 				if (val < 1 || val > MAX_TCP_SYNCNT)
5223 					ret = -EINVAL;
5224 				else
5225 					icsk->icsk_syn_retries = val;
5226 				break;
5227 			case TCP_USER_TIMEOUT:
5228 				if (val < 0)
5229 					ret = -EINVAL;
5230 				else
5231 					icsk->icsk_user_timeout = val;
5232 				break;
5233 			case TCP_NOTSENT_LOWAT:
5234 				tp->notsent_lowat = val;
5235 				sk->sk_write_space(sk);
5236 				break;
5237 			case TCP_WINDOW_CLAMP:
5238 				ret = tcp_set_window_clamp(sk, val);
5239 				break;
5240 			default:
5241 				ret = -EINVAL;
5242 			}
5243 		}
5244 #endif
5245 	} else {
5246 		ret = -EINVAL;
5247 	}
5248 	return ret;
5249 }
5250 
5251 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5252 			   char *optval, int optlen)
5253 {
5254 	if (!sk_fullsock(sk))
5255 		goto err_clear;
5256 
5257 	sock_owned_by_me(sk);
5258 
5259 	if (level == SOL_SOCKET) {
5260 		if (optlen != sizeof(int))
5261 			goto err_clear;
5262 
5263 		switch (optname) {
5264 		case SO_RCVBUF:
5265 			*((int *)optval) = sk->sk_rcvbuf;
5266 			break;
5267 		case SO_SNDBUF:
5268 			*((int *)optval) = sk->sk_sndbuf;
5269 			break;
5270 		case SO_MARK:
5271 			*((int *)optval) = sk->sk_mark;
5272 			break;
5273 		case SO_PRIORITY:
5274 			*((int *)optval) = sk->sk_priority;
5275 			break;
5276 		case SO_BINDTOIFINDEX:
5277 			*((int *)optval) = sk->sk_bound_dev_if;
5278 			break;
5279 		case SO_REUSEPORT:
5280 			*((int *)optval) = sk->sk_reuseport;
5281 			break;
5282 		case SO_TXREHASH:
5283 			*((int *)optval) = sk->sk_txrehash;
5284 			break;
5285 		default:
5286 			goto err_clear;
5287 		}
5288 #ifdef CONFIG_INET
5289 	} else if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
5290 		struct inet_connection_sock *icsk;
5291 		struct tcp_sock *tp;
5292 
5293 		switch (optname) {
5294 		case TCP_CONGESTION:
5295 			icsk = inet_csk(sk);
5296 
5297 			if (!icsk->icsk_ca_ops || optlen <= 1)
5298 				goto err_clear;
5299 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
5300 			optval[optlen - 1] = 0;
5301 			break;
5302 		case TCP_SAVED_SYN:
5303 			tp = tcp_sk(sk);
5304 
5305 			if (optlen <= 0 || !tp->saved_syn ||
5306 			    optlen > tcp_saved_syn_len(tp->saved_syn))
5307 				goto err_clear;
5308 			memcpy(optval, tp->saved_syn->data, optlen);
5309 			break;
5310 		default:
5311 			goto err_clear;
5312 		}
5313 	} else if (level == SOL_IP) {
5314 		struct inet_sock *inet = inet_sk(sk);
5315 
5316 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5317 			goto err_clear;
5318 
5319 		/* Only some options are supported */
5320 		switch (optname) {
5321 		case IP_TOS:
5322 			*((int *)optval) = (int)inet->tos;
5323 			break;
5324 		default:
5325 			goto err_clear;
5326 		}
5327 #if IS_ENABLED(CONFIG_IPV6)
5328 	} else if (level == SOL_IPV6) {
5329 		struct ipv6_pinfo *np = inet6_sk(sk);
5330 
5331 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5332 			goto err_clear;
5333 
5334 		/* Only some options are supported */
5335 		switch (optname) {
5336 		case IPV6_TCLASS:
5337 			*((int *)optval) = (int)np->tclass;
5338 			break;
5339 		default:
5340 			goto err_clear;
5341 		}
5342 #endif
5343 #endif
5344 	} else {
5345 		goto err_clear;
5346 	}
5347 	return 0;
5348 err_clear:
5349 	memset(optval, 0, optlen);
5350 	return -EINVAL;
5351 }
5352 
5353 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5354 	   int, optname, char *, optval, int, optlen)
5355 {
5356 	if (level == SOL_TCP && optname == TCP_CONGESTION) {
5357 		if (optlen >= sizeof("cdg") - 1 &&
5358 		    !strncmp("cdg", optval, optlen))
5359 			return -ENOTSUPP;
5360 	}
5361 
5362 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5363 }
5364 
5365 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5366 	.func		= bpf_sk_setsockopt,
5367 	.gpl_only	= false,
5368 	.ret_type	= RET_INTEGER,
5369 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5370 	.arg2_type	= ARG_ANYTHING,
5371 	.arg3_type	= ARG_ANYTHING,
5372 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5373 	.arg5_type	= ARG_CONST_SIZE,
5374 };
5375 
5376 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5377 	   int, optname, char *, optval, int, optlen)
5378 {
5379 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5380 }
5381 
5382 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5383 	.func		= bpf_sk_getsockopt,
5384 	.gpl_only	= false,
5385 	.ret_type	= RET_INTEGER,
5386 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5387 	.arg2_type	= ARG_ANYTHING,
5388 	.arg3_type	= ARG_ANYTHING,
5389 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5390 	.arg5_type	= ARG_CONST_SIZE,
5391 };
5392 
5393 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5394 	   int, level, int, optname, char *, optval, int, optlen)
5395 {
5396 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5397 }
5398 
5399 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5400 	.func		= bpf_sock_addr_setsockopt,
5401 	.gpl_only	= false,
5402 	.ret_type	= RET_INTEGER,
5403 	.arg1_type	= ARG_PTR_TO_CTX,
5404 	.arg2_type	= ARG_ANYTHING,
5405 	.arg3_type	= ARG_ANYTHING,
5406 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5407 	.arg5_type	= ARG_CONST_SIZE,
5408 };
5409 
5410 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5411 	   int, level, int, optname, char *, optval, int, optlen)
5412 {
5413 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5414 }
5415 
5416 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5417 	.func		= bpf_sock_addr_getsockopt,
5418 	.gpl_only	= false,
5419 	.ret_type	= RET_INTEGER,
5420 	.arg1_type	= ARG_PTR_TO_CTX,
5421 	.arg2_type	= ARG_ANYTHING,
5422 	.arg3_type	= ARG_ANYTHING,
5423 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5424 	.arg5_type	= ARG_CONST_SIZE,
5425 };
5426 
5427 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5428 	   int, level, int, optname, char *, optval, int, optlen)
5429 {
5430 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5431 }
5432 
5433 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5434 	.func		= bpf_sock_ops_setsockopt,
5435 	.gpl_only	= false,
5436 	.ret_type	= RET_INTEGER,
5437 	.arg1_type	= ARG_PTR_TO_CTX,
5438 	.arg2_type	= ARG_ANYTHING,
5439 	.arg3_type	= ARG_ANYTHING,
5440 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5441 	.arg5_type	= ARG_CONST_SIZE,
5442 };
5443 
5444 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5445 				int optname, const u8 **start)
5446 {
5447 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5448 	const u8 *hdr_start;
5449 	int ret;
5450 
5451 	if (syn_skb) {
5452 		/* sk is a request_sock here */
5453 
5454 		if (optname == TCP_BPF_SYN) {
5455 			hdr_start = syn_skb->data;
5456 			ret = tcp_hdrlen(syn_skb);
5457 		} else if (optname == TCP_BPF_SYN_IP) {
5458 			hdr_start = skb_network_header(syn_skb);
5459 			ret = skb_network_header_len(syn_skb) +
5460 				tcp_hdrlen(syn_skb);
5461 		} else {
5462 			/* optname == TCP_BPF_SYN_MAC */
5463 			hdr_start = skb_mac_header(syn_skb);
5464 			ret = skb_mac_header_len(syn_skb) +
5465 				skb_network_header_len(syn_skb) +
5466 				tcp_hdrlen(syn_skb);
5467 		}
5468 	} else {
5469 		struct sock *sk = bpf_sock->sk;
5470 		struct saved_syn *saved_syn;
5471 
5472 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5473 			/* synack retransmit. bpf_sock->syn_skb will
5474 			 * not be available.  It has to resort to
5475 			 * saved_syn (if it is saved).
5476 			 */
5477 			saved_syn = inet_reqsk(sk)->saved_syn;
5478 		else
5479 			saved_syn = tcp_sk(sk)->saved_syn;
5480 
5481 		if (!saved_syn)
5482 			return -ENOENT;
5483 
5484 		if (optname == TCP_BPF_SYN) {
5485 			hdr_start = saved_syn->data +
5486 				saved_syn->mac_hdrlen +
5487 				saved_syn->network_hdrlen;
5488 			ret = saved_syn->tcp_hdrlen;
5489 		} else if (optname == TCP_BPF_SYN_IP) {
5490 			hdr_start = saved_syn->data +
5491 				saved_syn->mac_hdrlen;
5492 			ret = saved_syn->network_hdrlen +
5493 				saved_syn->tcp_hdrlen;
5494 		} else {
5495 			/* optname == TCP_BPF_SYN_MAC */
5496 
5497 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5498 			if (!saved_syn->mac_hdrlen)
5499 				return -ENOENT;
5500 
5501 			hdr_start = saved_syn->data;
5502 			ret = saved_syn->mac_hdrlen +
5503 				saved_syn->network_hdrlen +
5504 				saved_syn->tcp_hdrlen;
5505 		}
5506 	}
5507 
5508 	*start = hdr_start;
5509 	return ret;
5510 }
5511 
5512 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5513 	   int, level, int, optname, char *, optval, int, optlen)
5514 {
5515 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5516 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5517 		int ret, copy_len = 0;
5518 		const u8 *start;
5519 
5520 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5521 		if (ret > 0) {
5522 			copy_len = ret;
5523 			if (optlen < copy_len) {
5524 				copy_len = optlen;
5525 				ret = -ENOSPC;
5526 			}
5527 
5528 			memcpy(optval, start, copy_len);
5529 		}
5530 
5531 		/* Zero out unused buffer at the end */
5532 		memset(optval + copy_len, 0, optlen - copy_len);
5533 
5534 		return ret;
5535 	}
5536 
5537 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5538 }
5539 
5540 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5541 	.func		= bpf_sock_ops_getsockopt,
5542 	.gpl_only	= false,
5543 	.ret_type	= RET_INTEGER,
5544 	.arg1_type	= ARG_PTR_TO_CTX,
5545 	.arg2_type	= ARG_ANYTHING,
5546 	.arg3_type	= ARG_ANYTHING,
5547 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5548 	.arg5_type	= ARG_CONST_SIZE,
5549 };
5550 
5551 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5552 	   int, argval)
5553 {
5554 	struct sock *sk = bpf_sock->sk;
5555 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5556 
5557 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5558 		return -EINVAL;
5559 
5560 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5561 
5562 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5563 }
5564 
5565 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5566 	.func		= bpf_sock_ops_cb_flags_set,
5567 	.gpl_only	= false,
5568 	.ret_type	= RET_INTEGER,
5569 	.arg1_type	= ARG_PTR_TO_CTX,
5570 	.arg2_type	= ARG_ANYTHING,
5571 };
5572 
5573 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5574 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5575 
5576 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5577 	   int, addr_len)
5578 {
5579 #ifdef CONFIG_INET
5580 	struct sock *sk = ctx->sk;
5581 	u32 flags = BIND_FROM_BPF;
5582 	int err;
5583 
5584 	err = -EINVAL;
5585 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5586 		return err;
5587 	if (addr->sa_family == AF_INET) {
5588 		if (addr_len < sizeof(struct sockaddr_in))
5589 			return err;
5590 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5591 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5592 		return __inet_bind(sk, addr, addr_len, flags);
5593 #if IS_ENABLED(CONFIG_IPV6)
5594 	} else if (addr->sa_family == AF_INET6) {
5595 		if (addr_len < SIN6_LEN_RFC2133)
5596 			return err;
5597 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5598 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5599 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5600 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5601 		 */
5602 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5603 #endif /* CONFIG_IPV6 */
5604 	}
5605 #endif /* CONFIG_INET */
5606 
5607 	return -EAFNOSUPPORT;
5608 }
5609 
5610 static const struct bpf_func_proto bpf_bind_proto = {
5611 	.func		= bpf_bind,
5612 	.gpl_only	= false,
5613 	.ret_type	= RET_INTEGER,
5614 	.arg1_type	= ARG_PTR_TO_CTX,
5615 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5616 	.arg3_type	= ARG_CONST_SIZE,
5617 };
5618 
5619 #ifdef CONFIG_XFRM
5620 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5621 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5622 {
5623 	const struct sec_path *sp = skb_sec_path(skb);
5624 	const struct xfrm_state *x;
5625 
5626 	if (!sp || unlikely(index >= sp->len || flags))
5627 		goto err_clear;
5628 
5629 	x = sp->xvec[index];
5630 
5631 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5632 		goto err_clear;
5633 
5634 	to->reqid = x->props.reqid;
5635 	to->spi = x->id.spi;
5636 	to->family = x->props.family;
5637 	to->ext = 0;
5638 
5639 	if (to->family == AF_INET6) {
5640 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5641 		       sizeof(to->remote_ipv6));
5642 	} else {
5643 		to->remote_ipv4 = x->props.saddr.a4;
5644 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5645 	}
5646 
5647 	return 0;
5648 err_clear:
5649 	memset(to, 0, size);
5650 	return -EINVAL;
5651 }
5652 
5653 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5654 	.func		= bpf_skb_get_xfrm_state,
5655 	.gpl_only	= false,
5656 	.ret_type	= RET_INTEGER,
5657 	.arg1_type	= ARG_PTR_TO_CTX,
5658 	.arg2_type	= ARG_ANYTHING,
5659 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5660 	.arg4_type	= ARG_CONST_SIZE,
5661 	.arg5_type	= ARG_ANYTHING,
5662 };
5663 #endif
5664 
5665 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5666 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5667 				  const struct neighbour *neigh,
5668 				  const struct net_device *dev, u32 mtu)
5669 {
5670 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5671 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5672 	params->h_vlan_TCI = 0;
5673 	params->h_vlan_proto = 0;
5674 	if (mtu)
5675 		params->mtu_result = mtu; /* union with tot_len */
5676 
5677 	return 0;
5678 }
5679 #endif
5680 
5681 #if IS_ENABLED(CONFIG_INET)
5682 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5683 			       u32 flags, bool check_mtu)
5684 {
5685 	struct fib_nh_common *nhc;
5686 	struct in_device *in_dev;
5687 	struct neighbour *neigh;
5688 	struct net_device *dev;
5689 	struct fib_result res;
5690 	struct flowi4 fl4;
5691 	u32 mtu = 0;
5692 	int err;
5693 
5694 	dev = dev_get_by_index_rcu(net, params->ifindex);
5695 	if (unlikely(!dev))
5696 		return -ENODEV;
5697 
5698 	/* verify forwarding is enabled on this interface */
5699 	in_dev = __in_dev_get_rcu(dev);
5700 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5701 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5702 
5703 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5704 		fl4.flowi4_iif = 1;
5705 		fl4.flowi4_oif = params->ifindex;
5706 	} else {
5707 		fl4.flowi4_iif = params->ifindex;
5708 		fl4.flowi4_oif = 0;
5709 	}
5710 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5711 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5712 	fl4.flowi4_flags = 0;
5713 
5714 	fl4.flowi4_proto = params->l4_protocol;
5715 	fl4.daddr = params->ipv4_dst;
5716 	fl4.saddr = params->ipv4_src;
5717 	fl4.fl4_sport = params->sport;
5718 	fl4.fl4_dport = params->dport;
5719 	fl4.flowi4_multipath_hash = 0;
5720 
5721 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5722 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5723 		struct fib_table *tb;
5724 
5725 		tb = fib_get_table(net, tbid);
5726 		if (unlikely(!tb))
5727 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5728 
5729 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5730 	} else {
5731 		fl4.flowi4_mark = 0;
5732 		fl4.flowi4_secid = 0;
5733 		fl4.flowi4_tun_key.tun_id = 0;
5734 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5735 
5736 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5737 	}
5738 
5739 	if (err) {
5740 		/* map fib lookup errors to RTN_ type */
5741 		if (err == -EINVAL)
5742 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5743 		if (err == -EHOSTUNREACH)
5744 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5745 		if (err == -EACCES)
5746 			return BPF_FIB_LKUP_RET_PROHIBIT;
5747 
5748 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5749 	}
5750 
5751 	if (res.type != RTN_UNICAST)
5752 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5753 
5754 	if (fib_info_num_path(res.fi) > 1)
5755 		fib_select_path(net, &res, &fl4, NULL);
5756 
5757 	if (check_mtu) {
5758 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5759 		if (params->tot_len > mtu) {
5760 			params->mtu_result = mtu; /* union with tot_len */
5761 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5762 		}
5763 	}
5764 
5765 	nhc = res.nhc;
5766 
5767 	/* do not handle lwt encaps right now */
5768 	if (nhc->nhc_lwtstate)
5769 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5770 
5771 	dev = nhc->nhc_dev;
5772 
5773 	params->rt_metric = res.fi->fib_priority;
5774 	params->ifindex = dev->ifindex;
5775 
5776 	/* xdp and cls_bpf programs are run in RCU-bh so
5777 	 * rcu_read_lock_bh is not needed here
5778 	 */
5779 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5780 		if (nhc->nhc_gw_family)
5781 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5782 
5783 		neigh = __ipv4_neigh_lookup_noref(dev,
5784 						 (__force u32)params->ipv4_dst);
5785 	} else {
5786 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5787 
5788 		params->family = AF_INET6;
5789 		*dst = nhc->nhc_gw.ipv6;
5790 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5791 	}
5792 
5793 	if (!neigh)
5794 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5795 
5796 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5797 }
5798 #endif
5799 
5800 #if IS_ENABLED(CONFIG_IPV6)
5801 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5802 			       u32 flags, bool check_mtu)
5803 {
5804 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5805 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5806 	struct fib6_result res = {};
5807 	struct neighbour *neigh;
5808 	struct net_device *dev;
5809 	struct inet6_dev *idev;
5810 	struct flowi6 fl6;
5811 	int strict = 0;
5812 	int oif, err;
5813 	u32 mtu = 0;
5814 
5815 	/* link local addresses are never forwarded */
5816 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5817 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5818 
5819 	dev = dev_get_by_index_rcu(net, params->ifindex);
5820 	if (unlikely(!dev))
5821 		return -ENODEV;
5822 
5823 	idev = __in6_dev_get_safely(dev);
5824 	if (unlikely(!idev || !idev->cnf.forwarding))
5825 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5826 
5827 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5828 		fl6.flowi6_iif = 1;
5829 		oif = fl6.flowi6_oif = params->ifindex;
5830 	} else {
5831 		oif = fl6.flowi6_iif = params->ifindex;
5832 		fl6.flowi6_oif = 0;
5833 		strict = RT6_LOOKUP_F_HAS_SADDR;
5834 	}
5835 	fl6.flowlabel = params->flowinfo;
5836 	fl6.flowi6_scope = 0;
5837 	fl6.flowi6_flags = 0;
5838 	fl6.mp_hash = 0;
5839 
5840 	fl6.flowi6_proto = params->l4_protocol;
5841 	fl6.daddr = *dst;
5842 	fl6.saddr = *src;
5843 	fl6.fl6_sport = params->sport;
5844 	fl6.fl6_dport = params->dport;
5845 
5846 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5847 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5848 		struct fib6_table *tb;
5849 
5850 		tb = ipv6_stub->fib6_get_table(net, tbid);
5851 		if (unlikely(!tb))
5852 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5853 
5854 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5855 						   strict);
5856 	} else {
5857 		fl6.flowi6_mark = 0;
5858 		fl6.flowi6_secid = 0;
5859 		fl6.flowi6_tun_key.tun_id = 0;
5860 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5861 
5862 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5863 	}
5864 
5865 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5866 		     res.f6i == net->ipv6.fib6_null_entry))
5867 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5868 
5869 	switch (res.fib6_type) {
5870 	/* only unicast is forwarded */
5871 	case RTN_UNICAST:
5872 		break;
5873 	case RTN_BLACKHOLE:
5874 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5875 	case RTN_UNREACHABLE:
5876 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5877 	case RTN_PROHIBIT:
5878 		return BPF_FIB_LKUP_RET_PROHIBIT;
5879 	default:
5880 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5881 	}
5882 
5883 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5884 				    fl6.flowi6_oif != 0, NULL, strict);
5885 
5886 	if (check_mtu) {
5887 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5888 		if (params->tot_len > mtu) {
5889 			params->mtu_result = mtu; /* union with tot_len */
5890 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5891 		}
5892 	}
5893 
5894 	if (res.nh->fib_nh_lws)
5895 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5896 
5897 	if (res.nh->fib_nh_gw_family)
5898 		*dst = res.nh->fib_nh_gw6;
5899 
5900 	dev = res.nh->fib_nh_dev;
5901 	params->rt_metric = res.f6i->fib6_metric;
5902 	params->ifindex = dev->ifindex;
5903 
5904 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5905 	 * not needed here.
5906 	 */
5907 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5908 	if (!neigh)
5909 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5910 
5911 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5912 }
5913 #endif
5914 
5915 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5916 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5917 {
5918 	if (plen < sizeof(*params))
5919 		return -EINVAL;
5920 
5921 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5922 		return -EINVAL;
5923 
5924 	switch (params->family) {
5925 #if IS_ENABLED(CONFIG_INET)
5926 	case AF_INET:
5927 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5928 					   flags, true);
5929 #endif
5930 #if IS_ENABLED(CONFIG_IPV6)
5931 	case AF_INET6:
5932 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5933 					   flags, true);
5934 #endif
5935 	}
5936 	return -EAFNOSUPPORT;
5937 }
5938 
5939 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5940 	.func		= bpf_xdp_fib_lookup,
5941 	.gpl_only	= true,
5942 	.ret_type	= RET_INTEGER,
5943 	.arg1_type      = ARG_PTR_TO_CTX,
5944 	.arg2_type      = ARG_PTR_TO_MEM,
5945 	.arg3_type      = ARG_CONST_SIZE,
5946 	.arg4_type	= ARG_ANYTHING,
5947 };
5948 
5949 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5950 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5951 {
5952 	struct net *net = dev_net(skb->dev);
5953 	int rc = -EAFNOSUPPORT;
5954 	bool check_mtu = false;
5955 
5956 	if (plen < sizeof(*params))
5957 		return -EINVAL;
5958 
5959 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5960 		return -EINVAL;
5961 
5962 	if (params->tot_len)
5963 		check_mtu = true;
5964 
5965 	switch (params->family) {
5966 #if IS_ENABLED(CONFIG_INET)
5967 	case AF_INET:
5968 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5969 		break;
5970 #endif
5971 #if IS_ENABLED(CONFIG_IPV6)
5972 	case AF_INET6:
5973 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5974 		break;
5975 #endif
5976 	}
5977 
5978 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5979 		struct net_device *dev;
5980 
5981 		/* When tot_len isn't provided by user, check skb
5982 		 * against MTU of FIB lookup resulting net_device
5983 		 */
5984 		dev = dev_get_by_index_rcu(net, params->ifindex);
5985 		if (!is_skb_forwardable(dev, skb))
5986 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5987 
5988 		params->mtu_result = dev->mtu; /* union with tot_len */
5989 	}
5990 
5991 	return rc;
5992 }
5993 
5994 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5995 	.func		= bpf_skb_fib_lookup,
5996 	.gpl_only	= true,
5997 	.ret_type	= RET_INTEGER,
5998 	.arg1_type      = ARG_PTR_TO_CTX,
5999 	.arg2_type      = ARG_PTR_TO_MEM,
6000 	.arg3_type      = ARG_CONST_SIZE,
6001 	.arg4_type	= ARG_ANYTHING,
6002 };
6003 
6004 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6005 					    u32 ifindex)
6006 {
6007 	struct net *netns = dev_net(dev_curr);
6008 
6009 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6010 	if (ifindex == 0)
6011 		return dev_curr;
6012 
6013 	return dev_get_by_index_rcu(netns, ifindex);
6014 }
6015 
6016 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6017 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6018 {
6019 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6020 	struct net_device *dev = skb->dev;
6021 	int skb_len, dev_len;
6022 	int mtu;
6023 
6024 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6025 		return -EINVAL;
6026 
6027 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6028 		return -EINVAL;
6029 
6030 	dev = __dev_via_ifindex(dev, ifindex);
6031 	if (unlikely(!dev))
6032 		return -ENODEV;
6033 
6034 	mtu = READ_ONCE(dev->mtu);
6035 
6036 	dev_len = mtu + dev->hard_header_len;
6037 
6038 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6039 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6040 
6041 	skb_len += len_diff; /* minus result pass check */
6042 	if (skb_len <= dev_len) {
6043 		ret = BPF_MTU_CHK_RET_SUCCESS;
6044 		goto out;
6045 	}
6046 	/* At this point, skb->len exceed MTU, but as it include length of all
6047 	 * segments, it can still be below MTU.  The SKB can possibly get
6048 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6049 	 * must choose if segs are to be MTU checked.
6050 	 */
6051 	if (skb_is_gso(skb)) {
6052 		ret = BPF_MTU_CHK_RET_SUCCESS;
6053 
6054 		if (flags & BPF_MTU_CHK_SEGS &&
6055 		    !skb_gso_validate_network_len(skb, mtu))
6056 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6057 	}
6058 out:
6059 	/* BPF verifier guarantees valid pointer */
6060 	*mtu_len = mtu;
6061 
6062 	return ret;
6063 }
6064 
6065 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6066 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6067 {
6068 	struct net_device *dev = xdp->rxq->dev;
6069 	int xdp_len = xdp->data_end - xdp->data;
6070 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6071 	int mtu, dev_len;
6072 
6073 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6074 	if (unlikely(flags))
6075 		return -EINVAL;
6076 
6077 	dev = __dev_via_ifindex(dev, ifindex);
6078 	if (unlikely(!dev))
6079 		return -ENODEV;
6080 
6081 	mtu = READ_ONCE(dev->mtu);
6082 
6083 	/* Add L2-header as dev MTU is L3 size */
6084 	dev_len = mtu + dev->hard_header_len;
6085 
6086 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6087 	if (*mtu_len)
6088 		xdp_len = *mtu_len + dev->hard_header_len;
6089 
6090 	xdp_len += len_diff; /* minus result pass check */
6091 	if (xdp_len > dev_len)
6092 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6093 
6094 	/* BPF verifier guarantees valid pointer */
6095 	*mtu_len = mtu;
6096 
6097 	return ret;
6098 }
6099 
6100 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6101 	.func		= bpf_skb_check_mtu,
6102 	.gpl_only	= true,
6103 	.ret_type	= RET_INTEGER,
6104 	.arg1_type      = ARG_PTR_TO_CTX,
6105 	.arg2_type      = ARG_ANYTHING,
6106 	.arg3_type      = ARG_PTR_TO_INT,
6107 	.arg4_type      = ARG_ANYTHING,
6108 	.arg5_type      = ARG_ANYTHING,
6109 };
6110 
6111 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6112 	.func		= bpf_xdp_check_mtu,
6113 	.gpl_only	= true,
6114 	.ret_type	= RET_INTEGER,
6115 	.arg1_type      = ARG_PTR_TO_CTX,
6116 	.arg2_type      = ARG_ANYTHING,
6117 	.arg3_type      = ARG_PTR_TO_INT,
6118 	.arg4_type      = ARG_ANYTHING,
6119 	.arg5_type      = ARG_ANYTHING,
6120 };
6121 
6122 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6123 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6124 {
6125 	int err;
6126 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6127 
6128 	if (!seg6_validate_srh(srh, len, false))
6129 		return -EINVAL;
6130 
6131 	switch (type) {
6132 	case BPF_LWT_ENCAP_SEG6_INLINE:
6133 		if (skb->protocol != htons(ETH_P_IPV6))
6134 			return -EBADMSG;
6135 
6136 		err = seg6_do_srh_inline(skb, srh);
6137 		break;
6138 	case BPF_LWT_ENCAP_SEG6:
6139 		skb_reset_inner_headers(skb);
6140 		skb->encapsulation = 1;
6141 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6142 		break;
6143 	default:
6144 		return -EINVAL;
6145 	}
6146 
6147 	bpf_compute_data_pointers(skb);
6148 	if (err)
6149 		return err;
6150 
6151 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6152 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6153 
6154 	return seg6_lookup_nexthop(skb, NULL, 0);
6155 }
6156 #endif /* CONFIG_IPV6_SEG6_BPF */
6157 
6158 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6159 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6160 			     bool ingress)
6161 {
6162 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6163 }
6164 #endif
6165 
6166 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6167 	   u32, len)
6168 {
6169 	switch (type) {
6170 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6171 	case BPF_LWT_ENCAP_SEG6:
6172 	case BPF_LWT_ENCAP_SEG6_INLINE:
6173 		return bpf_push_seg6_encap(skb, type, hdr, len);
6174 #endif
6175 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6176 	case BPF_LWT_ENCAP_IP:
6177 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6178 #endif
6179 	default:
6180 		return -EINVAL;
6181 	}
6182 }
6183 
6184 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6185 	   void *, hdr, u32, len)
6186 {
6187 	switch (type) {
6188 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6189 	case BPF_LWT_ENCAP_IP:
6190 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6191 #endif
6192 	default:
6193 		return -EINVAL;
6194 	}
6195 }
6196 
6197 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6198 	.func		= bpf_lwt_in_push_encap,
6199 	.gpl_only	= false,
6200 	.ret_type	= RET_INTEGER,
6201 	.arg1_type	= ARG_PTR_TO_CTX,
6202 	.arg2_type	= ARG_ANYTHING,
6203 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6204 	.arg4_type	= ARG_CONST_SIZE
6205 };
6206 
6207 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6208 	.func		= bpf_lwt_xmit_push_encap,
6209 	.gpl_only	= false,
6210 	.ret_type	= RET_INTEGER,
6211 	.arg1_type	= ARG_PTR_TO_CTX,
6212 	.arg2_type	= ARG_ANYTHING,
6213 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6214 	.arg4_type	= ARG_CONST_SIZE
6215 };
6216 
6217 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6218 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6219 	   const void *, from, u32, len)
6220 {
6221 	struct seg6_bpf_srh_state *srh_state =
6222 		this_cpu_ptr(&seg6_bpf_srh_states);
6223 	struct ipv6_sr_hdr *srh = srh_state->srh;
6224 	void *srh_tlvs, *srh_end, *ptr;
6225 	int srhoff = 0;
6226 
6227 	if (srh == NULL)
6228 		return -EINVAL;
6229 
6230 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6231 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6232 
6233 	ptr = skb->data + offset;
6234 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6235 		srh_state->valid = false;
6236 	else if (ptr < (void *)&srh->flags ||
6237 		 ptr + len > (void *)&srh->segments)
6238 		return -EFAULT;
6239 
6240 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6241 		return -EFAULT;
6242 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6243 		return -EINVAL;
6244 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6245 
6246 	memcpy(skb->data + offset, from, len);
6247 	return 0;
6248 }
6249 
6250 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6251 	.func		= bpf_lwt_seg6_store_bytes,
6252 	.gpl_only	= false,
6253 	.ret_type	= RET_INTEGER,
6254 	.arg1_type	= ARG_PTR_TO_CTX,
6255 	.arg2_type	= ARG_ANYTHING,
6256 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6257 	.arg4_type	= ARG_CONST_SIZE
6258 };
6259 
6260 static void bpf_update_srh_state(struct sk_buff *skb)
6261 {
6262 	struct seg6_bpf_srh_state *srh_state =
6263 		this_cpu_ptr(&seg6_bpf_srh_states);
6264 	int srhoff = 0;
6265 
6266 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6267 		srh_state->srh = NULL;
6268 	} else {
6269 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6270 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6271 		srh_state->valid = true;
6272 	}
6273 }
6274 
6275 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6276 	   u32, action, void *, param, u32, param_len)
6277 {
6278 	struct seg6_bpf_srh_state *srh_state =
6279 		this_cpu_ptr(&seg6_bpf_srh_states);
6280 	int hdroff = 0;
6281 	int err;
6282 
6283 	switch (action) {
6284 	case SEG6_LOCAL_ACTION_END_X:
6285 		if (!seg6_bpf_has_valid_srh(skb))
6286 			return -EBADMSG;
6287 		if (param_len != sizeof(struct in6_addr))
6288 			return -EINVAL;
6289 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6290 	case SEG6_LOCAL_ACTION_END_T:
6291 		if (!seg6_bpf_has_valid_srh(skb))
6292 			return -EBADMSG;
6293 		if (param_len != sizeof(int))
6294 			return -EINVAL;
6295 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6296 	case SEG6_LOCAL_ACTION_END_DT6:
6297 		if (!seg6_bpf_has_valid_srh(skb))
6298 			return -EBADMSG;
6299 		if (param_len != sizeof(int))
6300 			return -EINVAL;
6301 
6302 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6303 			return -EBADMSG;
6304 		if (!pskb_pull(skb, hdroff))
6305 			return -EBADMSG;
6306 
6307 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6308 		skb_reset_network_header(skb);
6309 		skb_reset_transport_header(skb);
6310 		skb->encapsulation = 0;
6311 
6312 		bpf_compute_data_pointers(skb);
6313 		bpf_update_srh_state(skb);
6314 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6315 	case SEG6_LOCAL_ACTION_END_B6:
6316 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6317 			return -EBADMSG;
6318 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6319 					  param, param_len);
6320 		if (!err)
6321 			bpf_update_srh_state(skb);
6322 
6323 		return err;
6324 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6325 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6326 			return -EBADMSG;
6327 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6328 					  param, param_len);
6329 		if (!err)
6330 			bpf_update_srh_state(skb);
6331 
6332 		return err;
6333 	default:
6334 		return -EINVAL;
6335 	}
6336 }
6337 
6338 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6339 	.func		= bpf_lwt_seg6_action,
6340 	.gpl_only	= false,
6341 	.ret_type	= RET_INTEGER,
6342 	.arg1_type	= ARG_PTR_TO_CTX,
6343 	.arg2_type	= ARG_ANYTHING,
6344 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6345 	.arg4_type	= ARG_CONST_SIZE
6346 };
6347 
6348 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6349 	   s32, len)
6350 {
6351 	struct seg6_bpf_srh_state *srh_state =
6352 		this_cpu_ptr(&seg6_bpf_srh_states);
6353 	struct ipv6_sr_hdr *srh = srh_state->srh;
6354 	void *srh_end, *srh_tlvs, *ptr;
6355 	struct ipv6hdr *hdr;
6356 	int srhoff = 0;
6357 	int ret;
6358 
6359 	if (unlikely(srh == NULL))
6360 		return -EINVAL;
6361 
6362 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6363 			((srh->first_segment + 1) << 4));
6364 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6365 			srh_state->hdrlen);
6366 	ptr = skb->data + offset;
6367 
6368 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6369 		return -EFAULT;
6370 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6371 		return -EFAULT;
6372 
6373 	if (len > 0) {
6374 		ret = skb_cow_head(skb, len);
6375 		if (unlikely(ret < 0))
6376 			return ret;
6377 
6378 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6379 	} else {
6380 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6381 	}
6382 
6383 	bpf_compute_data_pointers(skb);
6384 	if (unlikely(ret < 0))
6385 		return ret;
6386 
6387 	hdr = (struct ipv6hdr *)skb->data;
6388 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6389 
6390 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6391 		return -EINVAL;
6392 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6393 	srh_state->hdrlen += len;
6394 	srh_state->valid = false;
6395 	return 0;
6396 }
6397 
6398 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6399 	.func		= bpf_lwt_seg6_adjust_srh,
6400 	.gpl_only	= false,
6401 	.ret_type	= RET_INTEGER,
6402 	.arg1_type	= ARG_PTR_TO_CTX,
6403 	.arg2_type	= ARG_ANYTHING,
6404 	.arg3_type	= ARG_ANYTHING,
6405 };
6406 #endif /* CONFIG_IPV6_SEG6_BPF */
6407 
6408 #ifdef CONFIG_INET
6409 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6410 			      int dif, int sdif, u8 family, u8 proto)
6411 {
6412 	bool refcounted = false;
6413 	struct sock *sk = NULL;
6414 
6415 	if (family == AF_INET) {
6416 		__be32 src4 = tuple->ipv4.saddr;
6417 		__be32 dst4 = tuple->ipv4.daddr;
6418 
6419 		if (proto == IPPROTO_TCP)
6420 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
6421 					   src4, tuple->ipv4.sport,
6422 					   dst4, tuple->ipv4.dport,
6423 					   dif, sdif, &refcounted);
6424 		else
6425 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6426 					       dst4, tuple->ipv4.dport,
6427 					       dif, sdif, &udp_table, NULL);
6428 #if IS_ENABLED(CONFIG_IPV6)
6429 	} else {
6430 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6431 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6432 
6433 		if (proto == IPPROTO_TCP)
6434 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
6435 					    src6, tuple->ipv6.sport,
6436 					    dst6, ntohs(tuple->ipv6.dport),
6437 					    dif, sdif, &refcounted);
6438 		else if (likely(ipv6_bpf_stub))
6439 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6440 							    src6, tuple->ipv6.sport,
6441 							    dst6, tuple->ipv6.dport,
6442 							    dif, sdif,
6443 							    &udp_table, NULL);
6444 #endif
6445 	}
6446 
6447 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6448 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6449 		sk = NULL;
6450 	}
6451 	return sk;
6452 }
6453 
6454 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6455  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6456  * Returns the socket as an 'unsigned long' to simplify the casting in the
6457  * callers to satisfy BPF_CALL declarations.
6458  */
6459 static struct sock *
6460 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6461 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6462 		 u64 flags)
6463 {
6464 	struct sock *sk = NULL;
6465 	u8 family = AF_UNSPEC;
6466 	struct net *net;
6467 	int sdif;
6468 
6469 	if (len == sizeof(tuple->ipv4))
6470 		family = AF_INET;
6471 	else if (len == sizeof(tuple->ipv6))
6472 		family = AF_INET6;
6473 	else
6474 		return NULL;
6475 
6476 	if (unlikely(family == AF_UNSPEC || flags ||
6477 		     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6478 		goto out;
6479 
6480 	if (family == AF_INET)
6481 		sdif = inet_sdif(skb);
6482 	else
6483 		sdif = inet6_sdif(skb);
6484 
6485 	if ((s32)netns_id < 0) {
6486 		net = caller_net;
6487 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6488 	} else {
6489 		net = get_net_ns_by_id(caller_net, netns_id);
6490 		if (unlikely(!net))
6491 			goto out;
6492 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6493 		put_net(net);
6494 	}
6495 
6496 out:
6497 	return sk;
6498 }
6499 
6500 static struct sock *
6501 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6502 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6503 		u64 flags)
6504 {
6505 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6506 					   ifindex, proto, netns_id, flags);
6507 
6508 	if (sk) {
6509 		sk = sk_to_full_sk(sk);
6510 		if (!sk_fullsock(sk)) {
6511 			sock_gen_put(sk);
6512 			return NULL;
6513 		}
6514 	}
6515 
6516 	return sk;
6517 }
6518 
6519 static struct sock *
6520 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6521 	       u8 proto, u64 netns_id, u64 flags)
6522 {
6523 	struct net *caller_net;
6524 	int ifindex;
6525 
6526 	if (skb->dev) {
6527 		caller_net = dev_net(skb->dev);
6528 		ifindex = skb->dev->ifindex;
6529 	} else {
6530 		caller_net = sock_net(skb->sk);
6531 		ifindex = 0;
6532 	}
6533 
6534 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6535 				netns_id, flags);
6536 }
6537 
6538 static struct sock *
6539 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6540 	      u8 proto, u64 netns_id, u64 flags)
6541 {
6542 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6543 					 flags);
6544 
6545 	if (sk) {
6546 		sk = sk_to_full_sk(sk);
6547 		if (!sk_fullsock(sk)) {
6548 			sock_gen_put(sk);
6549 			return NULL;
6550 		}
6551 	}
6552 
6553 	return sk;
6554 }
6555 
6556 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6557 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6558 {
6559 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6560 					     netns_id, flags);
6561 }
6562 
6563 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6564 	.func		= bpf_skc_lookup_tcp,
6565 	.gpl_only	= false,
6566 	.pkt_access	= true,
6567 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6568 	.arg1_type	= ARG_PTR_TO_CTX,
6569 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6570 	.arg3_type	= ARG_CONST_SIZE,
6571 	.arg4_type	= ARG_ANYTHING,
6572 	.arg5_type	= ARG_ANYTHING,
6573 };
6574 
6575 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6576 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6577 {
6578 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6579 					    netns_id, flags);
6580 }
6581 
6582 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6583 	.func		= bpf_sk_lookup_tcp,
6584 	.gpl_only	= false,
6585 	.pkt_access	= true,
6586 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6587 	.arg1_type	= ARG_PTR_TO_CTX,
6588 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6589 	.arg3_type	= ARG_CONST_SIZE,
6590 	.arg4_type	= ARG_ANYTHING,
6591 	.arg5_type	= ARG_ANYTHING,
6592 };
6593 
6594 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6595 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6596 {
6597 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6598 					    netns_id, flags);
6599 }
6600 
6601 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6602 	.func		= bpf_sk_lookup_udp,
6603 	.gpl_only	= false,
6604 	.pkt_access	= true,
6605 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6606 	.arg1_type	= ARG_PTR_TO_CTX,
6607 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6608 	.arg3_type	= ARG_CONST_SIZE,
6609 	.arg4_type	= ARG_ANYTHING,
6610 	.arg5_type	= ARG_ANYTHING,
6611 };
6612 
6613 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6614 {
6615 	if (sk && sk_is_refcounted(sk))
6616 		sock_gen_put(sk);
6617 	return 0;
6618 }
6619 
6620 static const struct bpf_func_proto bpf_sk_release_proto = {
6621 	.func		= bpf_sk_release,
6622 	.gpl_only	= false,
6623 	.ret_type	= RET_INTEGER,
6624 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6625 };
6626 
6627 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6628 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6629 {
6630 	struct net *caller_net = dev_net(ctx->rxq->dev);
6631 	int ifindex = ctx->rxq->dev->ifindex;
6632 
6633 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6634 					      ifindex, IPPROTO_UDP, netns_id,
6635 					      flags);
6636 }
6637 
6638 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6639 	.func           = bpf_xdp_sk_lookup_udp,
6640 	.gpl_only       = false,
6641 	.pkt_access     = true,
6642 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6643 	.arg1_type      = ARG_PTR_TO_CTX,
6644 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6645 	.arg3_type      = ARG_CONST_SIZE,
6646 	.arg4_type      = ARG_ANYTHING,
6647 	.arg5_type      = ARG_ANYTHING,
6648 };
6649 
6650 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6651 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6652 {
6653 	struct net *caller_net = dev_net(ctx->rxq->dev);
6654 	int ifindex = ctx->rxq->dev->ifindex;
6655 
6656 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6657 					       ifindex, IPPROTO_TCP, netns_id,
6658 					       flags);
6659 }
6660 
6661 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6662 	.func           = bpf_xdp_skc_lookup_tcp,
6663 	.gpl_only       = false,
6664 	.pkt_access     = true,
6665 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6666 	.arg1_type      = ARG_PTR_TO_CTX,
6667 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6668 	.arg3_type      = ARG_CONST_SIZE,
6669 	.arg4_type      = ARG_ANYTHING,
6670 	.arg5_type      = ARG_ANYTHING,
6671 };
6672 
6673 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6674 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6675 {
6676 	struct net *caller_net = dev_net(ctx->rxq->dev);
6677 	int ifindex = ctx->rxq->dev->ifindex;
6678 
6679 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6680 					      ifindex, IPPROTO_TCP, netns_id,
6681 					      flags);
6682 }
6683 
6684 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6685 	.func           = bpf_xdp_sk_lookup_tcp,
6686 	.gpl_only       = false,
6687 	.pkt_access     = true,
6688 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6689 	.arg1_type      = ARG_PTR_TO_CTX,
6690 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6691 	.arg3_type      = ARG_CONST_SIZE,
6692 	.arg4_type      = ARG_ANYTHING,
6693 	.arg5_type      = ARG_ANYTHING,
6694 };
6695 
6696 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6697 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6698 {
6699 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6700 					       sock_net(ctx->sk), 0,
6701 					       IPPROTO_TCP, netns_id, flags);
6702 }
6703 
6704 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6705 	.func		= bpf_sock_addr_skc_lookup_tcp,
6706 	.gpl_only	= false,
6707 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6708 	.arg1_type	= ARG_PTR_TO_CTX,
6709 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6710 	.arg3_type	= ARG_CONST_SIZE,
6711 	.arg4_type	= ARG_ANYTHING,
6712 	.arg5_type	= ARG_ANYTHING,
6713 };
6714 
6715 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6716 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6717 {
6718 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6719 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6720 					      netns_id, flags);
6721 }
6722 
6723 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6724 	.func		= bpf_sock_addr_sk_lookup_tcp,
6725 	.gpl_only	= false,
6726 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6727 	.arg1_type	= ARG_PTR_TO_CTX,
6728 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6729 	.arg3_type	= ARG_CONST_SIZE,
6730 	.arg4_type	= ARG_ANYTHING,
6731 	.arg5_type	= ARG_ANYTHING,
6732 };
6733 
6734 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6735 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6736 {
6737 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6738 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6739 					      netns_id, flags);
6740 }
6741 
6742 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6743 	.func		= bpf_sock_addr_sk_lookup_udp,
6744 	.gpl_only	= false,
6745 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6746 	.arg1_type	= ARG_PTR_TO_CTX,
6747 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6748 	.arg3_type	= ARG_CONST_SIZE,
6749 	.arg4_type	= ARG_ANYTHING,
6750 	.arg5_type	= ARG_ANYTHING,
6751 };
6752 
6753 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6754 				  struct bpf_insn_access_aux *info)
6755 {
6756 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6757 					  icsk_retransmits))
6758 		return false;
6759 
6760 	if (off % size != 0)
6761 		return false;
6762 
6763 	switch (off) {
6764 	case offsetof(struct bpf_tcp_sock, bytes_received):
6765 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6766 		return size == sizeof(__u64);
6767 	default:
6768 		return size == sizeof(__u32);
6769 	}
6770 }
6771 
6772 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6773 				    const struct bpf_insn *si,
6774 				    struct bpf_insn *insn_buf,
6775 				    struct bpf_prog *prog, u32 *target_size)
6776 {
6777 	struct bpf_insn *insn = insn_buf;
6778 
6779 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6780 	do {								\
6781 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6782 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6783 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6784 				      si->dst_reg, si->src_reg,		\
6785 				      offsetof(struct tcp_sock, FIELD)); \
6786 	} while (0)
6787 
6788 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6789 	do {								\
6790 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6791 					  FIELD) >			\
6792 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6793 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6794 					struct inet_connection_sock,	\
6795 					FIELD),				\
6796 				      si->dst_reg, si->src_reg,		\
6797 				      offsetof(				\
6798 					struct inet_connection_sock,	\
6799 					FIELD));			\
6800 	} while (0)
6801 
6802 	if (insn > insn_buf)
6803 		return insn - insn_buf;
6804 
6805 	switch (si->off) {
6806 	case offsetof(struct bpf_tcp_sock, rtt_min):
6807 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6808 			     sizeof(struct minmax));
6809 		BUILD_BUG_ON(sizeof(struct minmax) <
6810 			     sizeof(struct minmax_sample));
6811 
6812 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6813 				      offsetof(struct tcp_sock, rtt_min) +
6814 				      offsetof(struct minmax_sample, v));
6815 		break;
6816 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6817 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6818 		break;
6819 	case offsetof(struct bpf_tcp_sock, srtt_us):
6820 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6821 		break;
6822 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6823 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6824 		break;
6825 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6826 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6827 		break;
6828 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6829 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6830 		break;
6831 	case offsetof(struct bpf_tcp_sock, snd_una):
6832 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6833 		break;
6834 	case offsetof(struct bpf_tcp_sock, mss_cache):
6835 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6836 		break;
6837 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6838 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6839 		break;
6840 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6841 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6842 		break;
6843 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6844 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6845 		break;
6846 	case offsetof(struct bpf_tcp_sock, packets_out):
6847 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6848 		break;
6849 	case offsetof(struct bpf_tcp_sock, retrans_out):
6850 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6851 		break;
6852 	case offsetof(struct bpf_tcp_sock, total_retrans):
6853 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6854 		break;
6855 	case offsetof(struct bpf_tcp_sock, segs_in):
6856 		BPF_TCP_SOCK_GET_COMMON(segs_in);
6857 		break;
6858 	case offsetof(struct bpf_tcp_sock, data_segs_in):
6859 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6860 		break;
6861 	case offsetof(struct bpf_tcp_sock, segs_out):
6862 		BPF_TCP_SOCK_GET_COMMON(segs_out);
6863 		break;
6864 	case offsetof(struct bpf_tcp_sock, data_segs_out):
6865 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6866 		break;
6867 	case offsetof(struct bpf_tcp_sock, lost_out):
6868 		BPF_TCP_SOCK_GET_COMMON(lost_out);
6869 		break;
6870 	case offsetof(struct bpf_tcp_sock, sacked_out):
6871 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
6872 		break;
6873 	case offsetof(struct bpf_tcp_sock, bytes_received):
6874 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
6875 		break;
6876 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6877 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6878 		break;
6879 	case offsetof(struct bpf_tcp_sock, dsack_dups):
6880 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6881 		break;
6882 	case offsetof(struct bpf_tcp_sock, delivered):
6883 		BPF_TCP_SOCK_GET_COMMON(delivered);
6884 		break;
6885 	case offsetof(struct bpf_tcp_sock, delivered_ce):
6886 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6887 		break;
6888 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6889 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6890 		break;
6891 	}
6892 
6893 	return insn - insn_buf;
6894 }
6895 
6896 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6897 {
6898 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6899 		return (unsigned long)sk;
6900 
6901 	return (unsigned long)NULL;
6902 }
6903 
6904 const struct bpf_func_proto bpf_tcp_sock_proto = {
6905 	.func		= bpf_tcp_sock,
6906 	.gpl_only	= false,
6907 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
6908 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6909 };
6910 
6911 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6912 {
6913 	sk = sk_to_full_sk(sk);
6914 
6915 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6916 		return (unsigned long)sk;
6917 
6918 	return (unsigned long)NULL;
6919 }
6920 
6921 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6922 	.func		= bpf_get_listener_sock,
6923 	.gpl_only	= false,
6924 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6925 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6926 };
6927 
6928 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6929 {
6930 	unsigned int iphdr_len;
6931 
6932 	switch (skb_protocol(skb, true)) {
6933 	case cpu_to_be16(ETH_P_IP):
6934 		iphdr_len = sizeof(struct iphdr);
6935 		break;
6936 	case cpu_to_be16(ETH_P_IPV6):
6937 		iphdr_len = sizeof(struct ipv6hdr);
6938 		break;
6939 	default:
6940 		return 0;
6941 	}
6942 
6943 	if (skb_headlen(skb) < iphdr_len)
6944 		return 0;
6945 
6946 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6947 		return 0;
6948 
6949 	return INET_ECN_set_ce(skb);
6950 }
6951 
6952 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6953 				  struct bpf_insn_access_aux *info)
6954 {
6955 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6956 		return false;
6957 
6958 	if (off % size != 0)
6959 		return false;
6960 
6961 	switch (off) {
6962 	default:
6963 		return size == sizeof(__u32);
6964 	}
6965 }
6966 
6967 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6968 				    const struct bpf_insn *si,
6969 				    struct bpf_insn *insn_buf,
6970 				    struct bpf_prog *prog, u32 *target_size)
6971 {
6972 	struct bpf_insn *insn = insn_buf;
6973 
6974 #define BPF_XDP_SOCK_GET(FIELD)						\
6975 	do {								\
6976 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
6977 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
6978 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6979 				      si->dst_reg, si->src_reg,		\
6980 				      offsetof(struct xdp_sock, FIELD)); \
6981 	} while (0)
6982 
6983 	switch (si->off) {
6984 	case offsetof(struct bpf_xdp_sock, queue_id):
6985 		BPF_XDP_SOCK_GET(queue_id);
6986 		break;
6987 	}
6988 
6989 	return insn - insn_buf;
6990 }
6991 
6992 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6993 	.func           = bpf_skb_ecn_set_ce,
6994 	.gpl_only       = false,
6995 	.ret_type       = RET_INTEGER,
6996 	.arg1_type      = ARG_PTR_TO_CTX,
6997 };
6998 
6999 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7000 	   struct tcphdr *, th, u32, th_len)
7001 {
7002 #ifdef CONFIG_SYN_COOKIES
7003 	u32 cookie;
7004 	int ret;
7005 
7006 	if (unlikely(!sk || th_len < sizeof(*th)))
7007 		return -EINVAL;
7008 
7009 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7010 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7011 		return -EINVAL;
7012 
7013 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
7014 		return -EINVAL;
7015 
7016 	if (!th->ack || th->rst || th->syn)
7017 		return -ENOENT;
7018 
7019 	if (tcp_synq_no_recent_overflow(sk))
7020 		return -ENOENT;
7021 
7022 	cookie = ntohl(th->ack_seq) - 1;
7023 
7024 	switch (sk->sk_family) {
7025 	case AF_INET:
7026 		if (unlikely(iph_len < sizeof(struct iphdr)))
7027 			return -EINVAL;
7028 
7029 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7030 		break;
7031 
7032 #if IS_BUILTIN(CONFIG_IPV6)
7033 	case AF_INET6:
7034 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7035 			return -EINVAL;
7036 
7037 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7038 		break;
7039 #endif /* CONFIG_IPV6 */
7040 
7041 	default:
7042 		return -EPROTONOSUPPORT;
7043 	}
7044 
7045 	if (ret > 0)
7046 		return 0;
7047 
7048 	return -ENOENT;
7049 #else
7050 	return -ENOTSUPP;
7051 #endif
7052 }
7053 
7054 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7055 	.func		= bpf_tcp_check_syncookie,
7056 	.gpl_only	= true,
7057 	.pkt_access	= true,
7058 	.ret_type	= RET_INTEGER,
7059 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7060 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7061 	.arg3_type	= ARG_CONST_SIZE,
7062 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7063 	.arg5_type	= ARG_CONST_SIZE,
7064 };
7065 
7066 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7067 	   struct tcphdr *, th, u32, th_len)
7068 {
7069 #ifdef CONFIG_SYN_COOKIES
7070 	u32 cookie;
7071 	u16 mss;
7072 
7073 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7074 		return -EINVAL;
7075 
7076 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7077 		return -EINVAL;
7078 
7079 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
7080 		return -ENOENT;
7081 
7082 	if (!th->syn || th->ack || th->fin || th->rst)
7083 		return -EINVAL;
7084 
7085 	if (unlikely(iph_len < sizeof(struct iphdr)))
7086 		return -EINVAL;
7087 
7088 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7089 	 * same offset so we can cast to the shorter header (struct iphdr).
7090 	 */
7091 	switch (((struct iphdr *)iph)->version) {
7092 	case 4:
7093 		if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
7094 			return -EINVAL;
7095 
7096 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7097 		break;
7098 
7099 #if IS_BUILTIN(CONFIG_IPV6)
7100 	case 6:
7101 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7102 			return -EINVAL;
7103 
7104 		if (sk->sk_family != AF_INET6)
7105 			return -EINVAL;
7106 
7107 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7108 		break;
7109 #endif /* CONFIG_IPV6 */
7110 
7111 	default:
7112 		return -EPROTONOSUPPORT;
7113 	}
7114 	if (mss == 0)
7115 		return -ENOENT;
7116 
7117 	return cookie | ((u64)mss << 32);
7118 #else
7119 	return -EOPNOTSUPP;
7120 #endif /* CONFIG_SYN_COOKIES */
7121 }
7122 
7123 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7124 	.func		= bpf_tcp_gen_syncookie,
7125 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7126 	.pkt_access	= true,
7127 	.ret_type	= RET_INTEGER,
7128 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7129 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7130 	.arg3_type	= ARG_CONST_SIZE,
7131 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7132 	.arg5_type	= ARG_CONST_SIZE,
7133 };
7134 
7135 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7136 {
7137 	if (!sk || flags != 0)
7138 		return -EINVAL;
7139 	if (!skb_at_tc_ingress(skb))
7140 		return -EOPNOTSUPP;
7141 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7142 		return -ENETUNREACH;
7143 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7144 		return -ESOCKTNOSUPPORT;
7145 	if (sk_is_refcounted(sk) &&
7146 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7147 		return -ENOENT;
7148 
7149 	skb_orphan(skb);
7150 	skb->sk = sk;
7151 	skb->destructor = sock_pfree;
7152 
7153 	return 0;
7154 }
7155 
7156 static const struct bpf_func_proto bpf_sk_assign_proto = {
7157 	.func		= bpf_sk_assign,
7158 	.gpl_only	= false,
7159 	.ret_type	= RET_INTEGER,
7160 	.arg1_type      = ARG_PTR_TO_CTX,
7161 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7162 	.arg3_type	= ARG_ANYTHING,
7163 };
7164 
7165 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7166 				    u8 search_kind, const u8 *magic,
7167 				    u8 magic_len, bool *eol)
7168 {
7169 	u8 kind, kind_len;
7170 
7171 	*eol = false;
7172 
7173 	while (op < opend) {
7174 		kind = op[0];
7175 
7176 		if (kind == TCPOPT_EOL) {
7177 			*eol = true;
7178 			return ERR_PTR(-ENOMSG);
7179 		} else if (kind == TCPOPT_NOP) {
7180 			op++;
7181 			continue;
7182 		}
7183 
7184 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7185 			/* Something is wrong in the received header.
7186 			 * Follow the TCP stack's tcp_parse_options()
7187 			 * and just bail here.
7188 			 */
7189 			return ERR_PTR(-EFAULT);
7190 
7191 		kind_len = op[1];
7192 		if (search_kind == kind) {
7193 			if (!magic_len)
7194 				return op;
7195 
7196 			if (magic_len > kind_len - 2)
7197 				return ERR_PTR(-ENOMSG);
7198 
7199 			if (!memcmp(&op[2], magic, magic_len))
7200 				return op;
7201 		}
7202 
7203 		op += kind_len;
7204 	}
7205 
7206 	return ERR_PTR(-ENOMSG);
7207 }
7208 
7209 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7210 	   void *, search_res, u32, len, u64, flags)
7211 {
7212 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7213 	const u8 *op, *opend, *magic, *search = search_res;
7214 	u8 search_kind, search_len, copy_len, magic_len;
7215 	int ret;
7216 
7217 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7218 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7219 	 * and this helper disallow loading them also.
7220 	 */
7221 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7222 		return -EINVAL;
7223 
7224 	search_kind = search[0];
7225 	search_len = search[1];
7226 
7227 	if (search_len > len || search_kind == TCPOPT_NOP ||
7228 	    search_kind == TCPOPT_EOL)
7229 		return -EINVAL;
7230 
7231 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7232 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7233 		if (search_len != 4 && search_len != 6)
7234 			return -EINVAL;
7235 		magic = &search[2];
7236 		magic_len = search_len - 2;
7237 	} else {
7238 		if (search_len)
7239 			return -EINVAL;
7240 		magic = NULL;
7241 		magic_len = 0;
7242 	}
7243 
7244 	if (load_syn) {
7245 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7246 		if (ret < 0)
7247 			return ret;
7248 
7249 		opend = op + ret;
7250 		op += sizeof(struct tcphdr);
7251 	} else {
7252 		if (!bpf_sock->skb ||
7253 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7254 			/* This bpf_sock->op cannot call this helper */
7255 			return -EPERM;
7256 
7257 		opend = bpf_sock->skb_data_end;
7258 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7259 	}
7260 
7261 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7262 				&eol);
7263 	if (IS_ERR(op))
7264 		return PTR_ERR(op);
7265 
7266 	copy_len = op[1];
7267 	ret = copy_len;
7268 	if (copy_len > len) {
7269 		ret = -ENOSPC;
7270 		copy_len = len;
7271 	}
7272 
7273 	memcpy(search_res, op, copy_len);
7274 	return ret;
7275 }
7276 
7277 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7278 	.func		= bpf_sock_ops_load_hdr_opt,
7279 	.gpl_only	= false,
7280 	.ret_type	= RET_INTEGER,
7281 	.arg1_type	= ARG_PTR_TO_CTX,
7282 	.arg2_type	= ARG_PTR_TO_MEM,
7283 	.arg3_type	= ARG_CONST_SIZE,
7284 	.arg4_type	= ARG_ANYTHING,
7285 };
7286 
7287 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7288 	   const void *, from, u32, len, u64, flags)
7289 {
7290 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7291 	const u8 *op, *new_op, *magic = NULL;
7292 	struct sk_buff *skb;
7293 	bool eol;
7294 
7295 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7296 		return -EPERM;
7297 
7298 	if (len < 2 || flags)
7299 		return -EINVAL;
7300 
7301 	new_op = from;
7302 	new_kind = new_op[0];
7303 	new_kind_len = new_op[1];
7304 
7305 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7306 	    new_kind == TCPOPT_EOL)
7307 		return -EINVAL;
7308 
7309 	if (new_kind_len > bpf_sock->remaining_opt_len)
7310 		return -ENOSPC;
7311 
7312 	/* 253 is another experimental kind */
7313 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7314 		if (new_kind_len < 4)
7315 			return -EINVAL;
7316 		/* Match for the 2 byte magic also.
7317 		 * RFC 6994: the magic could be 2 or 4 bytes.
7318 		 * Hence, matching by 2 byte only is on the
7319 		 * conservative side but it is the right
7320 		 * thing to do for the 'search-for-duplication'
7321 		 * purpose.
7322 		 */
7323 		magic = &new_op[2];
7324 		magic_len = 2;
7325 	}
7326 
7327 	/* Check for duplication */
7328 	skb = bpf_sock->skb;
7329 	op = skb->data + sizeof(struct tcphdr);
7330 	opend = bpf_sock->skb_data_end;
7331 
7332 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7333 				&eol);
7334 	if (!IS_ERR(op))
7335 		return -EEXIST;
7336 
7337 	if (PTR_ERR(op) != -ENOMSG)
7338 		return PTR_ERR(op);
7339 
7340 	if (eol)
7341 		/* The option has been ended.  Treat it as no more
7342 		 * header option can be written.
7343 		 */
7344 		return -ENOSPC;
7345 
7346 	/* No duplication found.  Store the header option. */
7347 	memcpy(opend, from, new_kind_len);
7348 
7349 	bpf_sock->remaining_opt_len -= new_kind_len;
7350 	bpf_sock->skb_data_end += new_kind_len;
7351 
7352 	return 0;
7353 }
7354 
7355 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7356 	.func		= bpf_sock_ops_store_hdr_opt,
7357 	.gpl_only	= false,
7358 	.ret_type	= RET_INTEGER,
7359 	.arg1_type	= ARG_PTR_TO_CTX,
7360 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7361 	.arg3_type	= ARG_CONST_SIZE,
7362 	.arg4_type	= ARG_ANYTHING,
7363 };
7364 
7365 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7366 	   u32, len, u64, flags)
7367 {
7368 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7369 		return -EPERM;
7370 
7371 	if (flags || len < 2)
7372 		return -EINVAL;
7373 
7374 	if (len > bpf_sock->remaining_opt_len)
7375 		return -ENOSPC;
7376 
7377 	bpf_sock->remaining_opt_len -= len;
7378 
7379 	return 0;
7380 }
7381 
7382 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7383 	.func		= bpf_sock_ops_reserve_hdr_opt,
7384 	.gpl_only	= false,
7385 	.ret_type	= RET_INTEGER,
7386 	.arg1_type	= ARG_PTR_TO_CTX,
7387 	.arg2_type	= ARG_ANYTHING,
7388 	.arg3_type	= ARG_ANYTHING,
7389 };
7390 
7391 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7392 	   u64, tstamp, u32, tstamp_type)
7393 {
7394 	/* skb_clear_delivery_time() is done for inet protocol */
7395 	if (skb->protocol != htons(ETH_P_IP) &&
7396 	    skb->protocol != htons(ETH_P_IPV6))
7397 		return -EOPNOTSUPP;
7398 
7399 	switch (tstamp_type) {
7400 	case BPF_SKB_TSTAMP_DELIVERY_MONO:
7401 		if (!tstamp)
7402 			return -EINVAL;
7403 		skb->tstamp = tstamp;
7404 		skb->mono_delivery_time = 1;
7405 		break;
7406 	case BPF_SKB_TSTAMP_UNSPEC:
7407 		if (tstamp)
7408 			return -EINVAL;
7409 		skb->tstamp = 0;
7410 		skb->mono_delivery_time = 0;
7411 		break;
7412 	default:
7413 		return -EINVAL;
7414 	}
7415 
7416 	return 0;
7417 }
7418 
7419 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7420 	.func           = bpf_skb_set_tstamp,
7421 	.gpl_only       = false,
7422 	.ret_type       = RET_INTEGER,
7423 	.arg1_type      = ARG_PTR_TO_CTX,
7424 	.arg2_type      = ARG_ANYTHING,
7425 	.arg3_type      = ARG_ANYTHING,
7426 };
7427 
7428 #endif /* CONFIG_INET */
7429 
7430 bool bpf_helper_changes_pkt_data(void *func)
7431 {
7432 	if (func == bpf_skb_vlan_push ||
7433 	    func == bpf_skb_vlan_pop ||
7434 	    func == bpf_skb_store_bytes ||
7435 	    func == bpf_skb_change_proto ||
7436 	    func == bpf_skb_change_head ||
7437 	    func == sk_skb_change_head ||
7438 	    func == bpf_skb_change_tail ||
7439 	    func == sk_skb_change_tail ||
7440 	    func == bpf_skb_adjust_room ||
7441 	    func == sk_skb_adjust_room ||
7442 	    func == bpf_skb_pull_data ||
7443 	    func == sk_skb_pull_data ||
7444 	    func == bpf_clone_redirect ||
7445 	    func == bpf_l3_csum_replace ||
7446 	    func == bpf_l4_csum_replace ||
7447 	    func == bpf_xdp_adjust_head ||
7448 	    func == bpf_xdp_adjust_meta ||
7449 	    func == bpf_msg_pull_data ||
7450 	    func == bpf_msg_push_data ||
7451 	    func == bpf_msg_pop_data ||
7452 	    func == bpf_xdp_adjust_tail ||
7453 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7454 	    func == bpf_lwt_seg6_store_bytes ||
7455 	    func == bpf_lwt_seg6_adjust_srh ||
7456 	    func == bpf_lwt_seg6_action ||
7457 #endif
7458 #ifdef CONFIG_INET
7459 	    func == bpf_sock_ops_store_hdr_opt ||
7460 #endif
7461 	    func == bpf_lwt_in_push_encap ||
7462 	    func == bpf_lwt_xmit_push_encap)
7463 		return true;
7464 
7465 	return false;
7466 }
7467 
7468 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7469 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7470 
7471 static const struct bpf_func_proto *
7472 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7473 {
7474 	switch (func_id) {
7475 	/* inet and inet6 sockets are created in a process
7476 	 * context so there is always a valid uid/gid
7477 	 */
7478 	case BPF_FUNC_get_current_uid_gid:
7479 		return &bpf_get_current_uid_gid_proto;
7480 	case BPF_FUNC_get_local_storage:
7481 		return &bpf_get_local_storage_proto;
7482 	case BPF_FUNC_get_socket_cookie:
7483 		return &bpf_get_socket_cookie_sock_proto;
7484 	case BPF_FUNC_get_netns_cookie:
7485 		return &bpf_get_netns_cookie_sock_proto;
7486 	case BPF_FUNC_perf_event_output:
7487 		return &bpf_event_output_data_proto;
7488 	case BPF_FUNC_get_current_pid_tgid:
7489 		return &bpf_get_current_pid_tgid_proto;
7490 	case BPF_FUNC_get_current_comm:
7491 		return &bpf_get_current_comm_proto;
7492 #ifdef CONFIG_CGROUPS
7493 	case BPF_FUNC_get_current_cgroup_id:
7494 		return &bpf_get_current_cgroup_id_proto;
7495 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7496 		return &bpf_get_current_ancestor_cgroup_id_proto;
7497 #endif
7498 #ifdef CONFIG_CGROUP_NET_CLASSID
7499 	case BPF_FUNC_get_cgroup_classid:
7500 		return &bpf_get_cgroup_classid_curr_proto;
7501 #endif
7502 	case BPF_FUNC_sk_storage_get:
7503 		return &bpf_sk_storage_get_cg_sock_proto;
7504 	case BPF_FUNC_ktime_get_coarse_ns:
7505 		return &bpf_ktime_get_coarse_ns_proto;
7506 	default:
7507 		return bpf_base_func_proto(func_id);
7508 	}
7509 }
7510 
7511 static const struct bpf_func_proto *
7512 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7513 {
7514 	switch (func_id) {
7515 	/* inet and inet6 sockets are created in a process
7516 	 * context so there is always a valid uid/gid
7517 	 */
7518 	case BPF_FUNC_get_current_uid_gid:
7519 		return &bpf_get_current_uid_gid_proto;
7520 	case BPF_FUNC_bind:
7521 		switch (prog->expected_attach_type) {
7522 		case BPF_CGROUP_INET4_CONNECT:
7523 		case BPF_CGROUP_INET6_CONNECT:
7524 			return &bpf_bind_proto;
7525 		default:
7526 			return NULL;
7527 		}
7528 	case BPF_FUNC_get_socket_cookie:
7529 		return &bpf_get_socket_cookie_sock_addr_proto;
7530 	case BPF_FUNC_get_netns_cookie:
7531 		return &bpf_get_netns_cookie_sock_addr_proto;
7532 	case BPF_FUNC_get_local_storage:
7533 		return &bpf_get_local_storage_proto;
7534 	case BPF_FUNC_perf_event_output:
7535 		return &bpf_event_output_data_proto;
7536 	case BPF_FUNC_get_current_pid_tgid:
7537 		return &bpf_get_current_pid_tgid_proto;
7538 	case BPF_FUNC_get_current_comm:
7539 		return &bpf_get_current_comm_proto;
7540 #ifdef CONFIG_CGROUPS
7541 	case BPF_FUNC_get_current_cgroup_id:
7542 		return &bpf_get_current_cgroup_id_proto;
7543 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7544 		return &bpf_get_current_ancestor_cgroup_id_proto;
7545 #endif
7546 #ifdef CONFIG_CGROUP_NET_CLASSID
7547 	case BPF_FUNC_get_cgroup_classid:
7548 		return &bpf_get_cgroup_classid_curr_proto;
7549 #endif
7550 #ifdef CONFIG_INET
7551 	case BPF_FUNC_sk_lookup_tcp:
7552 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7553 	case BPF_FUNC_sk_lookup_udp:
7554 		return &bpf_sock_addr_sk_lookup_udp_proto;
7555 	case BPF_FUNC_sk_release:
7556 		return &bpf_sk_release_proto;
7557 	case BPF_FUNC_skc_lookup_tcp:
7558 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7559 #endif /* CONFIG_INET */
7560 	case BPF_FUNC_sk_storage_get:
7561 		return &bpf_sk_storage_get_proto;
7562 	case BPF_FUNC_sk_storage_delete:
7563 		return &bpf_sk_storage_delete_proto;
7564 	case BPF_FUNC_setsockopt:
7565 		switch (prog->expected_attach_type) {
7566 		case BPF_CGROUP_INET4_BIND:
7567 		case BPF_CGROUP_INET6_BIND:
7568 		case BPF_CGROUP_INET4_CONNECT:
7569 		case BPF_CGROUP_INET6_CONNECT:
7570 		case BPF_CGROUP_UDP4_RECVMSG:
7571 		case BPF_CGROUP_UDP6_RECVMSG:
7572 		case BPF_CGROUP_UDP4_SENDMSG:
7573 		case BPF_CGROUP_UDP6_SENDMSG:
7574 		case BPF_CGROUP_INET4_GETPEERNAME:
7575 		case BPF_CGROUP_INET6_GETPEERNAME:
7576 		case BPF_CGROUP_INET4_GETSOCKNAME:
7577 		case BPF_CGROUP_INET6_GETSOCKNAME:
7578 			return &bpf_sock_addr_setsockopt_proto;
7579 		default:
7580 			return NULL;
7581 		}
7582 	case BPF_FUNC_getsockopt:
7583 		switch (prog->expected_attach_type) {
7584 		case BPF_CGROUP_INET4_BIND:
7585 		case BPF_CGROUP_INET6_BIND:
7586 		case BPF_CGROUP_INET4_CONNECT:
7587 		case BPF_CGROUP_INET6_CONNECT:
7588 		case BPF_CGROUP_UDP4_RECVMSG:
7589 		case BPF_CGROUP_UDP6_RECVMSG:
7590 		case BPF_CGROUP_UDP4_SENDMSG:
7591 		case BPF_CGROUP_UDP6_SENDMSG:
7592 		case BPF_CGROUP_INET4_GETPEERNAME:
7593 		case BPF_CGROUP_INET6_GETPEERNAME:
7594 		case BPF_CGROUP_INET4_GETSOCKNAME:
7595 		case BPF_CGROUP_INET6_GETSOCKNAME:
7596 			return &bpf_sock_addr_getsockopt_proto;
7597 		default:
7598 			return NULL;
7599 		}
7600 	default:
7601 		return bpf_sk_base_func_proto(func_id);
7602 	}
7603 }
7604 
7605 static const struct bpf_func_proto *
7606 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7607 {
7608 	switch (func_id) {
7609 	case BPF_FUNC_skb_load_bytes:
7610 		return &bpf_skb_load_bytes_proto;
7611 	case BPF_FUNC_skb_load_bytes_relative:
7612 		return &bpf_skb_load_bytes_relative_proto;
7613 	case BPF_FUNC_get_socket_cookie:
7614 		return &bpf_get_socket_cookie_proto;
7615 	case BPF_FUNC_get_socket_uid:
7616 		return &bpf_get_socket_uid_proto;
7617 	case BPF_FUNC_perf_event_output:
7618 		return &bpf_skb_event_output_proto;
7619 	default:
7620 		return bpf_sk_base_func_proto(func_id);
7621 	}
7622 }
7623 
7624 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7625 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7626 
7627 static const struct bpf_func_proto *
7628 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7629 {
7630 	switch (func_id) {
7631 	case BPF_FUNC_get_local_storage:
7632 		return &bpf_get_local_storage_proto;
7633 	case BPF_FUNC_sk_fullsock:
7634 		return &bpf_sk_fullsock_proto;
7635 	case BPF_FUNC_sk_storage_get:
7636 		return &bpf_sk_storage_get_proto;
7637 	case BPF_FUNC_sk_storage_delete:
7638 		return &bpf_sk_storage_delete_proto;
7639 	case BPF_FUNC_perf_event_output:
7640 		return &bpf_skb_event_output_proto;
7641 #ifdef CONFIG_SOCK_CGROUP_DATA
7642 	case BPF_FUNC_skb_cgroup_id:
7643 		return &bpf_skb_cgroup_id_proto;
7644 	case BPF_FUNC_skb_ancestor_cgroup_id:
7645 		return &bpf_skb_ancestor_cgroup_id_proto;
7646 	case BPF_FUNC_sk_cgroup_id:
7647 		return &bpf_sk_cgroup_id_proto;
7648 	case BPF_FUNC_sk_ancestor_cgroup_id:
7649 		return &bpf_sk_ancestor_cgroup_id_proto;
7650 #endif
7651 #ifdef CONFIG_INET
7652 	case BPF_FUNC_sk_lookup_tcp:
7653 		return &bpf_sk_lookup_tcp_proto;
7654 	case BPF_FUNC_sk_lookup_udp:
7655 		return &bpf_sk_lookup_udp_proto;
7656 	case BPF_FUNC_sk_release:
7657 		return &bpf_sk_release_proto;
7658 	case BPF_FUNC_skc_lookup_tcp:
7659 		return &bpf_skc_lookup_tcp_proto;
7660 	case BPF_FUNC_tcp_sock:
7661 		return &bpf_tcp_sock_proto;
7662 	case BPF_FUNC_get_listener_sock:
7663 		return &bpf_get_listener_sock_proto;
7664 	case BPF_FUNC_skb_ecn_set_ce:
7665 		return &bpf_skb_ecn_set_ce_proto;
7666 #endif
7667 	default:
7668 		return sk_filter_func_proto(func_id, prog);
7669 	}
7670 }
7671 
7672 static const struct bpf_func_proto *
7673 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7674 {
7675 	switch (func_id) {
7676 	case BPF_FUNC_skb_store_bytes:
7677 		return &bpf_skb_store_bytes_proto;
7678 	case BPF_FUNC_skb_load_bytes:
7679 		return &bpf_skb_load_bytes_proto;
7680 	case BPF_FUNC_skb_load_bytes_relative:
7681 		return &bpf_skb_load_bytes_relative_proto;
7682 	case BPF_FUNC_skb_pull_data:
7683 		return &bpf_skb_pull_data_proto;
7684 	case BPF_FUNC_csum_diff:
7685 		return &bpf_csum_diff_proto;
7686 	case BPF_FUNC_csum_update:
7687 		return &bpf_csum_update_proto;
7688 	case BPF_FUNC_csum_level:
7689 		return &bpf_csum_level_proto;
7690 	case BPF_FUNC_l3_csum_replace:
7691 		return &bpf_l3_csum_replace_proto;
7692 	case BPF_FUNC_l4_csum_replace:
7693 		return &bpf_l4_csum_replace_proto;
7694 	case BPF_FUNC_clone_redirect:
7695 		return &bpf_clone_redirect_proto;
7696 	case BPF_FUNC_get_cgroup_classid:
7697 		return &bpf_get_cgroup_classid_proto;
7698 	case BPF_FUNC_skb_vlan_push:
7699 		return &bpf_skb_vlan_push_proto;
7700 	case BPF_FUNC_skb_vlan_pop:
7701 		return &bpf_skb_vlan_pop_proto;
7702 	case BPF_FUNC_skb_change_proto:
7703 		return &bpf_skb_change_proto_proto;
7704 	case BPF_FUNC_skb_change_type:
7705 		return &bpf_skb_change_type_proto;
7706 	case BPF_FUNC_skb_adjust_room:
7707 		return &bpf_skb_adjust_room_proto;
7708 	case BPF_FUNC_skb_change_tail:
7709 		return &bpf_skb_change_tail_proto;
7710 	case BPF_FUNC_skb_change_head:
7711 		return &bpf_skb_change_head_proto;
7712 	case BPF_FUNC_skb_get_tunnel_key:
7713 		return &bpf_skb_get_tunnel_key_proto;
7714 	case BPF_FUNC_skb_set_tunnel_key:
7715 		return bpf_get_skb_set_tunnel_proto(func_id);
7716 	case BPF_FUNC_skb_get_tunnel_opt:
7717 		return &bpf_skb_get_tunnel_opt_proto;
7718 	case BPF_FUNC_skb_set_tunnel_opt:
7719 		return bpf_get_skb_set_tunnel_proto(func_id);
7720 	case BPF_FUNC_redirect:
7721 		return &bpf_redirect_proto;
7722 	case BPF_FUNC_redirect_neigh:
7723 		return &bpf_redirect_neigh_proto;
7724 	case BPF_FUNC_redirect_peer:
7725 		return &bpf_redirect_peer_proto;
7726 	case BPF_FUNC_get_route_realm:
7727 		return &bpf_get_route_realm_proto;
7728 	case BPF_FUNC_get_hash_recalc:
7729 		return &bpf_get_hash_recalc_proto;
7730 	case BPF_FUNC_set_hash_invalid:
7731 		return &bpf_set_hash_invalid_proto;
7732 	case BPF_FUNC_set_hash:
7733 		return &bpf_set_hash_proto;
7734 	case BPF_FUNC_perf_event_output:
7735 		return &bpf_skb_event_output_proto;
7736 	case BPF_FUNC_get_smp_processor_id:
7737 		return &bpf_get_smp_processor_id_proto;
7738 	case BPF_FUNC_skb_under_cgroup:
7739 		return &bpf_skb_under_cgroup_proto;
7740 	case BPF_FUNC_get_socket_cookie:
7741 		return &bpf_get_socket_cookie_proto;
7742 	case BPF_FUNC_get_socket_uid:
7743 		return &bpf_get_socket_uid_proto;
7744 	case BPF_FUNC_fib_lookup:
7745 		return &bpf_skb_fib_lookup_proto;
7746 	case BPF_FUNC_check_mtu:
7747 		return &bpf_skb_check_mtu_proto;
7748 	case BPF_FUNC_sk_fullsock:
7749 		return &bpf_sk_fullsock_proto;
7750 	case BPF_FUNC_sk_storage_get:
7751 		return &bpf_sk_storage_get_proto;
7752 	case BPF_FUNC_sk_storage_delete:
7753 		return &bpf_sk_storage_delete_proto;
7754 #ifdef CONFIG_XFRM
7755 	case BPF_FUNC_skb_get_xfrm_state:
7756 		return &bpf_skb_get_xfrm_state_proto;
7757 #endif
7758 #ifdef CONFIG_CGROUP_NET_CLASSID
7759 	case BPF_FUNC_skb_cgroup_classid:
7760 		return &bpf_skb_cgroup_classid_proto;
7761 #endif
7762 #ifdef CONFIG_SOCK_CGROUP_DATA
7763 	case BPF_FUNC_skb_cgroup_id:
7764 		return &bpf_skb_cgroup_id_proto;
7765 	case BPF_FUNC_skb_ancestor_cgroup_id:
7766 		return &bpf_skb_ancestor_cgroup_id_proto;
7767 #endif
7768 #ifdef CONFIG_INET
7769 	case BPF_FUNC_sk_lookup_tcp:
7770 		return &bpf_sk_lookup_tcp_proto;
7771 	case BPF_FUNC_sk_lookup_udp:
7772 		return &bpf_sk_lookup_udp_proto;
7773 	case BPF_FUNC_sk_release:
7774 		return &bpf_sk_release_proto;
7775 	case BPF_FUNC_tcp_sock:
7776 		return &bpf_tcp_sock_proto;
7777 	case BPF_FUNC_get_listener_sock:
7778 		return &bpf_get_listener_sock_proto;
7779 	case BPF_FUNC_skc_lookup_tcp:
7780 		return &bpf_skc_lookup_tcp_proto;
7781 	case BPF_FUNC_tcp_check_syncookie:
7782 		return &bpf_tcp_check_syncookie_proto;
7783 	case BPF_FUNC_skb_ecn_set_ce:
7784 		return &bpf_skb_ecn_set_ce_proto;
7785 	case BPF_FUNC_tcp_gen_syncookie:
7786 		return &bpf_tcp_gen_syncookie_proto;
7787 	case BPF_FUNC_sk_assign:
7788 		return &bpf_sk_assign_proto;
7789 	case BPF_FUNC_skb_set_tstamp:
7790 		return &bpf_skb_set_tstamp_proto;
7791 #endif
7792 	default:
7793 		return bpf_sk_base_func_proto(func_id);
7794 	}
7795 }
7796 
7797 static const struct bpf_func_proto *
7798 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7799 {
7800 	switch (func_id) {
7801 	case BPF_FUNC_perf_event_output:
7802 		return &bpf_xdp_event_output_proto;
7803 	case BPF_FUNC_get_smp_processor_id:
7804 		return &bpf_get_smp_processor_id_proto;
7805 	case BPF_FUNC_csum_diff:
7806 		return &bpf_csum_diff_proto;
7807 	case BPF_FUNC_xdp_adjust_head:
7808 		return &bpf_xdp_adjust_head_proto;
7809 	case BPF_FUNC_xdp_adjust_meta:
7810 		return &bpf_xdp_adjust_meta_proto;
7811 	case BPF_FUNC_redirect:
7812 		return &bpf_xdp_redirect_proto;
7813 	case BPF_FUNC_redirect_map:
7814 		return &bpf_xdp_redirect_map_proto;
7815 	case BPF_FUNC_xdp_adjust_tail:
7816 		return &bpf_xdp_adjust_tail_proto;
7817 	case BPF_FUNC_xdp_get_buff_len:
7818 		return &bpf_xdp_get_buff_len_proto;
7819 	case BPF_FUNC_xdp_load_bytes:
7820 		return &bpf_xdp_load_bytes_proto;
7821 	case BPF_FUNC_xdp_store_bytes:
7822 		return &bpf_xdp_store_bytes_proto;
7823 	case BPF_FUNC_fib_lookup:
7824 		return &bpf_xdp_fib_lookup_proto;
7825 	case BPF_FUNC_check_mtu:
7826 		return &bpf_xdp_check_mtu_proto;
7827 #ifdef CONFIG_INET
7828 	case BPF_FUNC_sk_lookup_udp:
7829 		return &bpf_xdp_sk_lookup_udp_proto;
7830 	case BPF_FUNC_sk_lookup_tcp:
7831 		return &bpf_xdp_sk_lookup_tcp_proto;
7832 	case BPF_FUNC_sk_release:
7833 		return &bpf_sk_release_proto;
7834 	case BPF_FUNC_skc_lookup_tcp:
7835 		return &bpf_xdp_skc_lookup_tcp_proto;
7836 	case BPF_FUNC_tcp_check_syncookie:
7837 		return &bpf_tcp_check_syncookie_proto;
7838 	case BPF_FUNC_tcp_gen_syncookie:
7839 		return &bpf_tcp_gen_syncookie_proto;
7840 #endif
7841 	default:
7842 		return bpf_sk_base_func_proto(func_id);
7843 	}
7844 }
7845 
7846 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7847 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7848 
7849 static const struct bpf_func_proto *
7850 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7851 {
7852 	switch (func_id) {
7853 	case BPF_FUNC_setsockopt:
7854 		return &bpf_sock_ops_setsockopt_proto;
7855 	case BPF_FUNC_getsockopt:
7856 		return &bpf_sock_ops_getsockopt_proto;
7857 	case BPF_FUNC_sock_ops_cb_flags_set:
7858 		return &bpf_sock_ops_cb_flags_set_proto;
7859 	case BPF_FUNC_sock_map_update:
7860 		return &bpf_sock_map_update_proto;
7861 	case BPF_FUNC_sock_hash_update:
7862 		return &bpf_sock_hash_update_proto;
7863 	case BPF_FUNC_get_socket_cookie:
7864 		return &bpf_get_socket_cookie_sock_ops_proto;
7865 	case BPF_FUNC_get_local_storage:
7866 		return &bpf_get_local_storage_proto;
7867 	case BPF_FUNC_perf_event_output:
7868 		return &bpf_event_output_data_proto;
7869 	case BPF_FUNC_sk_storage_get:
7870 		return &bpf_sk_storage_get_proto;
7871 	case BPF_FUNC_sk_storage_delete:
7872 		return &bpf_sk_storage_delete_proto;
7873 	case BPF_FUNC_get_netns_cookie:
7874 		return &bpf_get_netns_cookie_sock_ops_proto;
7875 #ifdef CONFIG_INET
7876 	case BPF_FUNC_load_hdr_opt:
7877 		return &bpf_sock_ops_load_hdr_opt_proto;
7878 	case BPF_FUNC_store_hdr_opt:
7879 		return &bpf_sock_ops_store_hdr_opt_proto;
7880 	case BPF_FUNC_reserve_hdr_opt:
7881 		return &bpf_sock_ops_reserve_hdr_opt_proto;
7882 	case BPF_FUNC_tcp_sock:
7883 		return &bpf_tcp_sock_proto;
7884 #endif /* CONFIG_INET */
7885 	default:
7886 		return bpf_sk_base_func_proto(func_id);
7887 	}
7888 }
7889 
7890 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7891 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7892 
7893 static const struct bpf_func_proto *
7894 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7895 {
7896 	switch (func_id) {
7897 	case BPF_FUNC_msg_redirect_map:
7898 		return &bpf_msg_redirect_map_proto;
7899 	case BPF_FUNC_msg_redirect_hash:
7900 		return &bpf_msg_redirect_hash_proto;
7901 	case BPF_FUNC_msg_apply_bytes:
7902 		return &bpf_msg_apply_bytes_proto;
7903 	case BPF_FUNC_msg_cork_bytes:
7904 		return &bpf_msg_cork_bytes_proto;
7905 	case BPF_FUNC_msg_pull_data:
7906 		return &bpf_msg_pull_data_proto;
7907 	case BPF_FUNC_msg_push_data:
7908 		return &bpf_msg_push_data_proto;
7909 	case BPF_FUNC_msg_pop_data:
7910 		return &bpf_msg_pop_data_proto;
7911 	case BPF_FUNC_perf_event_output:
7912 		return &bpf_event_output_data_proto;
7913 	case BPF_FUNC_get_current_uid_gid:
7914 		return &bpf_get_current_uid_gid_proto;
7915 	case BPF_FUNC_get_current_pid_tgid:
7916 		return &bpf_get_current_pid_tgid_proto;
7917 	case BPF_FUNC_sk_storage_get:
7918 		return &bpf_sk_storage_get_proto;
7919 	case BPF_FUNC_sk_storage_delete:
7920 		return &bpf_sk_storage_delete_proto;
7921 	case BPF_FUNC_get_netns_cookie:
7922 		return &bpf_get_netns_cookie_sk_msg_proto;
7923 #ifdef CONFIG_CGROUPS
7924 	case BPF_FUNC_get_current_cgroup_id:
7925 		return &bpf_get_current_cgroup_id_proto;
7926 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7927 		return &bpf_get_current_ancestor_cgroup_id_proto;
7928 #endif
7929 #ifdef CONFIG_CGROUP_NET_CLASSID
7930 	case BPF_FUNC_get_cgroup_classid:
7931 		return &bpf_get_cgroup_classid_curr_proto;
7932 #endif
7933 	default:
7934 		return bpf_sk_base_func_proto(func_id);
7935 	}
7936 }
7937 
7938 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7939 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7940 
7941 static const struct bpf_func_proto *
7942 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7943 {
7944 	switch (func_id) {
7945 	case BPF_FUNC_skb_store_bytes:
7946 		return &bpf_skb_store_bytes_proto;
7947 	case BPF_FUNC_skb_load_bytes:
7948 		return &bpf_skb_load_bytes_proto;
7949 	case BPF_FUNC_skb_pull_data:
7950 		return &sk_skb_pull_data_proto;
7951 	case BPF_FUNC_skb_change_tail:
7952 		return &sk_skb_change_tail_proto;
7953 	case BPF_FUNC_skb_change_head:
7954 		return &sk_skb_change_head_proto;
7955 	case BPF_FUNC_skb_adjust_room:
7956 		return &sk_skb_adjust_room_proto;
7957 	case BPF_FUNC_get_socket_cookie:
7958 		return &bpf_get_socket_cookie_proto;
7959 	case BPF_FUNC_get_socket_uid:
7960 		return &bpf_get_socket_uid_proto;
7961 	case BPF_FUNC_sk_redirect_map:
7962 		return &bpf_sk_redirect_map_proto;
7963 	case BPF_FUNC_sk_redirect_hash:
7964 		return &bpf_sk_redirect_hash_proto;
7965 	case BPF_FUNC_perf_event_output:
7966 		return &bpf_skb_event_output_proto;
7967 #ifdef CONFIG_INET
7968 	case BPF_FUNC_sk_lookup_tcp:
7969 		return &bpf_sk_lookup_tcp_proto;
7970 	case BPF_FUNC_sk_lookup_udp:
7971 		return &bpf_sk_lookup_udp_proto;
7972 	case BPF_FUNC_sk_release:
7973 		return &bpf_sk_release_proto;
7974 	case BPF_FUNC_skc_lookup_tcp:
7975 		return &bpf_skc_lookup_tcp_proto;
7976 #endif
7977 	default:
7978 		return bpf_sk_base_func_proto(func_id);
7979 	}
7980 }
7981 
7982 static const struct bpf_func_proto *
7983 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7984 {
7985 	switch (func_id) {
7986 	case BPF_FUNC_skb_load_bytes:
7987 		return &bpf_flow_dissector_load_bytes_proto;
7988 	default:
7989 		return bpf_sk_base_func_proto(func_id);
7990 	}
7991 }
7992 
7993 static const struct bpf_func_proto *
7994 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7995 {
7996 	switch (func_id) {
7997 	case BPF_FUNC_skb_load_bytes:
7998 		return &bpf_skb_load_bytes_proto;
7999 	case BPF_FUNC_skb_pull_data:
8000 		return &bpf_skb_pull_data_proto;
8001 	case BPF_FUNC_csum_diff:
8002 		return &bpf_csum_diff_proto;
8003 	case BPF_FUNC_get_cgroup_classid:
8004 		return &bpf_get_cgroup_classid_proto;
8005 	case BPF_FUNC_get_route_realm:
8006 		return &bpf_get_route_realm_proto;
8007 	case BPF_FUNC_get_hash_recalc:
8008 		return &bpf_get_hash_recalc_proto;
8009 	case BPF_FUNC_perf_event_output:
8010 		return &bpf_skb_event_output_proto;
8011 	case BPF_FUNC_get_smp_processor_id:
8012 		return &bpf_get_smp_processor_id_proto;
8013 	case BPF_FUNC_skb_under_cgroup:
8014 		return &bpf_skb_under_cgroup_proto;
8015 	default:
8016 		return bpf_sk_base_func_proto(func_id);
8017 	}
8018 }
8019 
8020 static const struct bpf_func_proto *
8021 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8022 {
8023 	switch (func_id) {
8024 	case BPF_FUNC_lwt_push_encap:
8025 		return &bpf_lwt_in_push_encap_proto;
8026 	default:
8027 		return lwt_out_func_proto(func_id, prog);
8028 	}
8029 }
8030 
8031 static const struct bpf_func_proto *
8032 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8033 {
8034 	switch (func_id) {
8035 	case BPF_FUNC_skb_get_tunnel_key:
8036 		return &bpf_skb_get_tunnel_key_proto;
8037 	case BPF_FUNC_skb_set_tunnel_key:
8038 		return bpf_get_skb_set_tunnel_proto(func_id);
8039 	case BPF_FUNC_skb_get_tunnel_opt:
8040 		return &bpf_skb_get_tunnel_opt_proto;
8041 	case BPF_FUNC_skb_set_tunnel_opt:
8042 		return bpf_get_skb_set_tunnel_proto(func_id);
8043 	case BPF_FUNC_redirect:
8044 		return &bpf_redirect_proto;
8045 	case BPF_FUNC_clone_redirect:
8046 		return &bpf_clone_redirect_proto;
8047 	case BPF_FUNC_skb_change_tail:
8048 		return &bpf_skb_change_tail_proto;
8049 	case BPF_FUNC_skb_change_head:
8050 		return &bpf_skb_change_head_proto;
8051 	case BPF_FUNC_skb_store_bytes:
8052 		return &bpf_skb_store_bytes_proto;
8053 	case BPF_FUNC_csum_update:
8054 		return &bpf_csum_update_proto;
8055 	case BPF_FUNC_csum_level:
8056 		return &bpf_csum_level_proto;
8057 	case BPF_FUNC_l3_csum_replace:
8058 		return &bpf_l3_csum_replace_proto;
8059 	case BPF_FUNC_l4_csum_replace:
8060 		return &bpf_l4_csum_replace_proto;
8061 	case BPF_FUNC_set_hash_invalid:
8062 		return &bpf_set_hash_invalid_proto;
8063 	case BPF_FUNC_lwt_push_encap:
8064 		return &bpf_lwt_xmit_push_encap_proto;
8065 	default:
8066 		return lwt_out_func_proto(func_id, prog);
8067 	}
8068 }
8069 
8070 static const struct bpf_func_proto *
8071 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8072 {
8073 	switch (func_id) {
8074 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8075 	case BPF_FUNC_lwt_seg6_store_bytes:
8076 		return &bpf_lwt_seg6_store_bytes_proto;
8077 	case BPF_FUNC_lwt_seg6_action:
8078 		return &bpf_lwt_seg6_action_proto;
8079 	case BPF_FUNC_lwt_seg6_adjust_srh:
8080 		return &bpf_lwt_seg6_adjust_srh_proto;
8081 #endif
8082 	default:
8083 		return lwt_out_func_proto(func_id, prog);
8084 	}
8085 }
8086 
8087 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8088 				    const struct bpf_prog *prog,
8089 				    struct bpf_insn_access_aux *info)
8090 {
8091 	const int size_default = sizeof(__u32);
8092 
8093 	if (off < 0 || off >= sizeof(struct __sk_buff))
8094 		return false;
8095 
8096 	/* The verifier guarantees that size > 0. */
8097 	if (off % size != 0)
8098 		return false;
8099 
8100 	switch (off) {
8101 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8102 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8103 			return false;
8104 		break;
8105 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8106 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8107 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8108 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8109 	case bpf_ctx_range(struct __sk_buff, data):
8110 	case bpf_ctx_range(struct __sk_buff, data_meta):
8111 	case bpf_ctx_range(struct __sk_buff, data_end):
8112 		if (size != size_default)
8113 			return false;
8114 		break;
8115 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8116 		return false;
8117 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8118 		if (type == BPF_WRITE || size != sizeof(__u64))
8119 			return false;
8120 		break;
8121 	case bpf_ctx_range(struct __sk_buff, tstamp):
8122 		if (size != sizeof(__u64))
8123 			return false;
8124 		break;
8125 	case offsetof(struct __sk_buff, sk):
8126 		if (type == BPF_WRITE || size != sizeof(__u64))
8127 			return false;
8128 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8129 		break;
8130 	case offsetof(struct __sk_buff, tstamp_type):
8131 		return false;
8132 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8133 		/* Explicitly prohibit access to padding in __sk_buff. */
8134 		return false;
8135 	default:
8136 		/* Only narrow read access allowed for now. */
8137 		if (type == BPF_WRITE) {
8138 			if (size != size_default)
8139 				return false;
8140 		} else {
8141 			bpf_ctx_record_field_size(info, size_default);
8142 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8143 				return false;
8144 		}
8145 	}
8146 
8147 	return true;
8148 }
8149 
8150 static bool sk_filter_is_valid_access(int off, int size,
8151 				      enum bpf_access_type type,
8152 				      const struct bpf_prog *prog,
8153 				      struct bpf_insn_access_aux *info)
8154 {
8155 	switch (off) {
8156 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8157 	case bpf_ctx_range(struct __sk_buff, data):
8158 	case bpf_ctx_range(struct __sk_buff, data_meta):
8159 	case bpf_ctx_range(struct __sk_buff, data_end):
8160 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8161 	case bpf_ctx_range(struct __sk_buff, tstamp):
8162 	case bpf_ctx_range(struct __sk_buff, wire_len):
8163 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8164 		return false;
8165 	}
8166 
8167 	if (type == BPF_WRITE) {
8168 		switch (off) {
8169 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8170 			break;
8171 		default:
8172 			return false;
8173 		}
8174 	}
8175 
8176 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8177 }
8178 
8179 static bool cg_skb_is_valid_access(int off, int size,
8180 				   enum bpf_access_type type,
8181 				   const struct bpf_prog *prog,
8182 				   struct bpf_insn_access_aux *info)
8183 {
8184 	switch (off) {
8185 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8186 	case bpf_ctx_range(struct __sk_buff, data_meta):
8187 	case bpf_ctx_range(struct __sk_buff, wire_len):
8188 		return false;
8189 	case bpf_ctx_range(struct __sk_buff, data):
8190 	case bpf_ctx_range(struct __sk_buff, data_end):
8191 		if (!bpf_capable())
8192 			return false;
8193 		break;
8194 	}
8195 
8196 	if (type == BPF_WRITE) {
8197 		switch (off) {
8198 		case bpf_ctx_range(struct __sk_buff, mark):
8199 		case bpf_ctx_range(struct __sk_buff, priority):
8200 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8201 			break;
8202 		case bpf_ctx_range(struct __sk_buff, tstamp):
8203 			if (!bpf_capable())
8204 				return false;
8205 			break;
8206 		default:
8207 			return false;
8208 		}
8209 	}
8210 
8211 	switch (off) {
8212 	case bpf_ctx_range(struct __sk_buff, data):
8213 		info->reg_type = PTR_TO_PACKET;
8214 		break;
8215 	case bpf_ctx_range(struct __sk_buff, data_end):
8216 		info->reg_type = PTR_TO_PACKET_END;
8217 		break;
8218 	}
8219 
8220 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8221 }
8222 
8223 static bool lwt_is_valid_access(int off, int size,
8224 				enum bpf_access_type type,
8225 				const struct bpf_prog *prog,
8226 				struct bpf_insn_access_aux *info)
8227 {
8228 	switch (off) {
8229 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8230 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8231 	case bpf_ctx_range(struct __sk_buff, data_meta):
8232 	case bpf_ctx_range(struct __sk_buff, tstamp):
8233 	case bpf_ctx_range(struct __sk_buff, wire_len):
8234 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8235 		return false;
8236 	}
8237 
8238 	if (type == BPF_WRITE) {
8239 		switch (off) {
8240 		case bpf_ctx_range(struct __sk_buff, mark):
8241 		case bpf_ctx_range(struct __sk_buff, priority):
8242 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8243 			break;
8244 		default:
8245 			return false;
8246 		}
8247 	}
8248 
8249 	switch (off) {
8250 	case bpf_ctx_range(struct __sk_buff, data):
8251 		info->reg_type = PTR_TO_PACKET;
8252 		break;
8253 	case bpf_ctx_range(struct __sk_buff, data_end):
8254 		info->reg_type = PTR_TO_PACKET_END;
8255 		break;
8256 	}
8257 
8258 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8259 }
8260 
8261 /* Attach type specific accesses */
8262 static bool __sock_filter_check_attach_type(int off,
8263 					    enum bpf_access_type access_type,
8264 					    enum bpf_attach_type attach_type)
8265 {
8266 	switch (off) {
8267 	case offsetof(struct bpf_sock, bound_dev_if):
8268 	case offsetof(struct bpf_sock, mark):
8269 	case offsetof(struct bpf_sock, priority):
8270 		switch (attach_type) {
8271 		case BPF_CGROUP_INET_SOCK_CREATE:
8272 		case BPF_CGROUP_INET_SOCK_RELEASE:
8273 			goto full_access;
8274 		default:
8275 			return false;
8276 		}
8277 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8278 		switch (attach_type) {
8279 		case BPF_CGROUP_INET4_POST_BIND:
8280 			goto read_only;
8281 		default:
8282 			return false;
8283 		}
8284 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8285 		switch (attach_type) {
8286 		case BPF_CGROUP_INET6_POST_BIND:
8287 			goto read_only;
8288 		default:
8289 			return false;
8290 		}
8291 	case bpf_ctx_range(struct bpf_sock, src_port):
8292 		switch (attach_type) {
8293 		case BPF_CGROUP_INET4_POST_BIND:
8294 		case BPF_CGROUP_INET6_POST_BIND:
8295 			goto read_only;
8296 		default:
8297 			return false;
8298 		}
8299 	}
8300 read_only:
8301 	return access_type == BPF_READ;
8302 full_access:
8303 	return true;
8304 }
8305 
8306 bool bpf_sock_common_is_valid_access(int off, int size,
8307 				     enum bpf_access_type type,
8308 				     struct bpf_insn_access_aux *info)
8309 {
8310 	switch (off) {
8311 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8312 		return false;
8313 	default:
8314 		return bpf_sock_is_valid_access(off, size, type, info);
8315 	}
8316 }
8317 
8318 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8319 			      struct bpf_insn_access_aux *info)
8320 {
8321 	const int size_default = sizeof(__u32);
8322 	int field_size;
8323 
8324 	if (off < 0 || off >= sizeof(struct bpf_sock))
8325 		return false;
8326 	if (off % size != 0)
8327 		return false;
8328 
8329 	switch (off) {
8330 	case offsetof(struct bpf_sock, state):
8331 	case offsetof(struct bpf_sock, family):
8332 	case offsetof(struct bpf_sock, type):
8333 	case offsetof(struct bpf_sock, protocol):
8334 	case offsetof(struct bpf_sock, src_port):
8335 	case offsetof(struct bpf_sock, rx_queue_mapping):
8336 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8337 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8338 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8339 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8340 		bpf_ctx_record_field_size(info, size_default);
8341 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8342 	case bpf_ctx_range(struct bpf_sock, dst_port):
8343 		field_size = size == size_default ?
8344 			size_default : sizeof_field(struct bpf_sock, dst_port);
8345 		bpf_ctx_record_field_size(info, field_size);
8346 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8347 	case offsetofend(struct bpf_sock, dst_port) ...
8348 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8349 		return false;
8350 	}
8351 
8352 	return size == size_default;
8353 }
8354 
8355 static bool sock_filter_is_valid_access(int off, int size,
8356 					enum bpf_access_type type,
8357 					const struct bpf_prog *prog,
8358 					struct bpf_insn_access_aux *info)
8359 {
8360 	if (!bpf_sock_is_valid_access(off, size, type, info))
8361 		return false;
8362 	return __sock_filter_check_attach_type(off, type,
8363 					       prog->expected_attach_type);
8364 }
8365 
8366 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8367 			     const struct bpf_prog *prog)
8368 {
8369 	/* Neither direct read nor direct write requires any preliminary
8370 	 * action.
8371 	 */
8372 	return 0;
8373 }
8374 
8375 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8376 				const struct bpf_prog *prog, int drop_verdict)
8377 {
8378 	struct bpf_insn *insn = insn_buf;
8379 
8380 	if (!direct_write)
8381 		return 0;
8382 
8383 	/* if (!skb->cloned)
8384 	 *       goto start;
8385 	 *
8386 	 * (Fast-path, otherwise approximation that we might be
8387 	 *  a clone, do the rest in helper.)
8388 	 */
8389 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8390 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8391 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8392 
8393 	/* ret = bpf_skb_pull_data(skb, 0); */
8394 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8395 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8396 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8397 			       BPF_FUNC_skb_pull_data);
8398 	/* if (!ret)
8399 	 *      goto restore;
8400 	 * return TC_ACT_SHOT;
8401 	 */
8402 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8403 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8404 	*insn++ = BPF_EXIT_INSN();
8405 
8406 	/* restore: */
8407 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8408 	/* start: */
8409 	*insn++ = prog->insnsi[0];
8410 
8411 	return insn - insn_buf;
8412 }
8413 
8414 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8415 			  struct bpf_insn *insn_buf)
8416 {
8417 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8418 	struct bpf_insn *insn = insn_buf;
8419 
8420 	if (!indirect) {
8421 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8422 	} else {
8423 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8424 		if (orig->imm)
8425 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8426 	}
8427 	/* We're guaranteed here that CTX is in R6. */
8428 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8429 
8430 	switch (BPF_SIZE(orig->code)) {
8431 	case BPF_B:
8432 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8433 		break;
8434 	case BPF_H:
8435 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8436 		break;
8437 	case BPF_W:
8438 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8439 		break;
8440 	}
8441 
8442 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8443 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8444 	*insn++ = BPF_EXIT_INSN();
8445 
8446 	return insn - insn_buf;
8447 }
8448 
8449 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8450 			       const struct bpf_prog *prog)
8451 {
8452 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8453 }
8454 
8455 static bool tc_cls_act_is_valid_access(int off, int size,
8456 				       enum bpf_access_type type,
8457 				       const struct bpf_prog *prog,
8458 				       struct bpf_insn_access_aux *info)
8459 {
8460 	if (type == BPF_WRITE) {
8461 		switch (off) {
8462 		case bpf_ctx_range(struct __sk_buff, mark):
8463 		case bpf_ctx_range(struct __sk_buff, tc_index):
8464 		case bpf_ctx_range(struct __sk_buff, priority):
8465 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8466 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8467 		case bpf_ctx_range(struct __sk_buff, tstamp):
8468 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8469 			break;
8470 		default:
8471 			return false;
8472 		}
8473 	}
8474 
8475 	switch (off) {
8476 	case bpf_ctx_range(struct __sk_buff, data):
8477 		info->reg_type = PTR_TO_PACKET;
8478 		break;
8479 	case bpf_ctx_range(struct __sk_buff, data_meta):
8480 		info->reg_type = PTR_TO_PACKET_META;
8481 		break;
8482 	case bpf_ctx_range(struct __sk_buff, data_end):
8483 		info->reg_type = PTR_TO_PACKET_END;
8484 		break;
8485 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8486 		return false;
8487 	case offsetof(struct __sk_buff, tstamp_type):
8488 		/* The convert_ctx_access() on reading and writing
8489 		 * __sk_buff->tstamp depends on whether the bpf prog
8490 		 * has used __sk_buff->tstamp_type or not.
8491 		 * Thus, we need to set prog->tstamp_type_access
8492 		 * earlier during is_valid_access() here.
8493 		 */
8494 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
8495 		return size == sizeof(__u8);
8496 	}
8497 
8498 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8499 }
8500 
8501 static bool __is_valid_xdp_access(int off, int size)
8502 {
8503 	if (off < 0 || off >= sizeof(struct xdp_md))
8504 		return false;
8505 	if (off % size != 0)
8506 		return false;
8507 	if (size != sizeof(__u32))
8508 		return false;
8509 
8510 	return true;
8511 }
8512 
8513 static bool xdp_is_valid_access(int off, int size,
8514 				enum bpf_access_type type,
8515 				const struct bpf_prog *prog,
8516 				struct bpf_insn_access_aux *info)
8517 {
8518 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8519 		switch (off) {
8520 		case offsetof(struct xdp_md, egress_ifindex):
8521 			return false;
8522 		}
8523 	}
8524 
8525 	if (type == BPF_WRITE) {
8526 		if (bpf_prog_is_dev_bound(prog->aux)) {
8527 			switch (off) {
8528 			case offsetof(struct xdp_md, rx_queue_index):
8529 				return __is_valid_xdp_access(off, size);
8530 			}
8531 		}
8532 		return false;
8533 	}
8534 
8535 	switch (off) {
8536 	case offsetof(struct xdp_md, data):
8537 		info->reg_type = PTR_TO_PACKET;
8538 		break;
8539 	case offsetof(struct xdp_md, data_meta):
8540 		info->reg_type = PTR_TO_PACKET_META;
8541 		break;
8542 	case offsetof(struct xdp_md, data_end):
8543 		info->reg_type = PTR_TO_PACKET_END;
8544 		break;
8545 	}
8546 
8547 	return __is_valid_xdp_access(off, size);
8548 }
8549 
8550 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8551 {
8552 	const u32 act_max = XDP_REDIRECT;
8553 
8554 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8555 		     act > act_max ? "Illegal" : "Driver unsupported",
8556 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8557 }
8558 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8559 
8560 static bool sock_addr_is_valid_access(int off, int size,
8561 				      enum bpf_access_type type,
8562 				      const struct bpf_prog *prog,
8563 				      struct bpf_insn_access_aux *info)
8564 {
8565 	const int size_default = sizeof(__u32);
8566 
8567 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8568 		return false;
8569 	if (off % size != 0)
8570 		return false;
8571 
8572 	/* Disallow access to IPv6 fields from IPv4 contex and vise
8573 	 * versa.
8574 	 */
8575 	switch (off) {
8576 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8577 		switch (prog->expected_attach_type) {
8578 		case BPF_CGROUP_INET4_BIND:
8579 		case BPF_CGROUP_INET4_CONNECT:
8580 		case BPF_CGROUP_INET4_GETPEERNAME:
8581 		case BPF_CGROUP_INET4_GETSOCKNAME:
8582 		case BPF_CGROUP_UDP4_SENDMSG:
8583 		case BPF_CGROUP_UDP4_RECVMSG:
8584 			break;
8585 		default:
8586 			return false;
8587 		}
8588 		break;
8589 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8590 		switch (prog->expected_attach_type) {
8591 		case BPF_CGROUP_INET6_BIND:
8592 		case BPF_CGROUP_INET6_CONNECT:
8593 		case BPF_CGROUP_INET6_GETPEERNAME:
8594 		case BPF_CGROUP_INET6_GETSOCKNAME:
8595 		case BPF_CGROUP_UDP6_SENDMSG:
8596 		case BPF_CGROUP_UDP6_RECVMSG:
8597 			break;
8598 		default:
8599 			return false;
8600 		}
8601 		break;
8602 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8603 		switch (prog->expected_attach_type) {
8604 		case BPF_CGROUP_UDP4_SENDMSG:
8605 			break;
8606 		default:
8607 			return false;
8608 		}
8609 		break;
8610 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8611 				msg_src_ip6[3]):
8612 		switch (prog->expected_attach_type) {
8613 		case BPF_CGROUP_UDP6_SENDMSG:
8614 			break;
8615 		default:
8616 			return false;
8617 		}
8618 		break;
8619 	}
8620 
8621 	switch (off) {
8622 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8623 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8624 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8625 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8626 				msg_src_ip6[3]):
8627 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
8628 		if (type == BPF_READ) {
8629 			bpf_ctx_record_field_size(info, size_default);
8630 
8631 			if (bpf_ctx_wide_access_ok(off, size,
8632 						   struct bpf_sock_addr,
8633 						   user_ip6))
8634 				return true;
8635 
8636 			if (bpf_ctx_wide_access_ok(off, size,
8637 						   struct bpf_sock_addr,
8638 						   msg_src_ip6))
8639 				return true;
8640 
8641 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8642 				return false;
8643 		} else {
8644 			if (bpf_ctx_wide_access_ok(off, size,
8645 						   struct bpf_sock_addr,
8646 						   user_ip6))
8647 				return true;
8648 
8649 			if (bpf_ctx_wide_access_ok(off, size,
8650 						   struct bpf_sock_addr,
8651 						   msg_src_ip6))
8652 				return true;
8653 
8654 			if (size != size_default)
8655 				return false;
8656 		}
8657 		break;
8658 	case offsetof(struct bpf_sock_addr, sk):
8659 		if (type != BPF_READ)
8660 			return false;
8661 		if (size != sizeof(__u64))
8662 			return false;
8663 		info->reg_type = PTR_TO_SOCKET;
8664 		break;
8665 	default:
8666 		if (type == BPF_READ) {
8667 			if (size != size_default)
8668 				return false;
8669 		} else {
8670 			return false;
8671 		}
8672 	}
8673 
8674 	return true;
8675 }
8676 
8677 static bool sock_ops_is_valid_access(int off, int size,
8678 				     enum bpf_access_type type,
8679 				     const struct bpf_prog *prog,
8680 				     struct bpf_insn_access_aux *info)
8681 {
8682 	const int size_default = sizeof(__u32);
8683 
8684 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8685 		return false;
8686 
8687 	/* The verifier guarantees that size > 0. */
8688 	if (off % size != 0)
8689 		return false;
8690 
8691 	if (type == BPF_WRITE) {
8692 		switch (off) {
8693 		case offsetof(struct bpf_sock_ops, reply):
8694 		case offsetof(struct bpf_sock_ops, sk_txhash):
8695 			if (size != size_default)
8696 				return false;
8697 			break;
8698 		default:
8699 			return false;
8700 		}
8701 	} else {
8702 		switch (off) {
8703 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8704 					bytes_acked):
8705 			if (size != sizeof(__u64))
8706 				return false;
8707 			break;
8708 		case offsetof(struct bpf_sock_ops, sk):
8709 			if (size != sizeof(__u64))
8710 				return false;
8711 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
8712 			break;
8713 		case offsetof(struct bpf_sock_ops, skb_data):
8714 			if (size != sizeof(__u64))
8715 				return false;
8716 			info->reg_type = PTR_TO_PACKET;
8717 			break;
8718 		case offsetof(struct bpf_sock_ops, skb_data_end):
8719 			if (size != sizeof(__u64))
8720 				return false;
8721 			info->reg_type = PTR_TO_PACKET_END;
8722 			break;
8723 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8724 			bpf_ctx_record_field_size(info, size_default);
8725 			return bpf_ctx_narrow_access_ok(off, size,
8726 							size_default);
8727 		default:
8728 			if (size != size_default)
8729 				return false;
8730 			break;
8731 		}
8732 	}
8733 
8734 	return true;
8735 }
8736 
8737 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8738 			   const struct bpf_prog *prog)
8739 {
8740 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8741 }
8742 
8743 static bool sk_skb_is_valid_access(int off, int size,
8744 				   enum bpf_access_type type,
8745 				   const struct bpf_prog *prog,
8746 				   struct bpf_insn_access_aux *info)
8747 {
8748 	switch (off) {
8749 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8750 	case bpf_ctx_range(struct __sk_buff, data_meta):
8751 	case bpf_ctx_range(struct __sk_buff, tstamp):
8752 	case bpf_ctx_range(struct __sk_buff, wire_len):
8753 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8754 		return false;
8755 	}
8756 
8757 	if (type == BPF_WRITE) {
8758 		switch (off) {
8759 		case bpf_ctx_range(struct __sk_buff, tc_index):
8760 		case bpf_ctx_range(struct __sk_buff, priority):
8761 			break;
8762 		default:
8763 			return false;
8764 		}
8765 	}
8766 
8767 	switch (off) {
8768 	case bpf_ctx_range(struct __sk_buff, mark):
8769 		return false;
8770 	case bpf_ctx_range(struct __sk_buff, data):
8771 		info->reg_type = PTR_TO_PACKET;
8772 		break;
8773 	case bpf_ctx_range(struct __sk_buff, data_end):
8774 		info->reg_type = PTR_TO_PACKET_END;
8775 		break;
8776 	}
8777 
8778 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8779 }
8780 
8781 static bool sk_msg_is_valid_access(int off, int size,
8782 				   enum bpf_access_type type,
8783 				   const struct bpf_prog *prog,
8784 				   struct bpf_insn_access_aux *info)
8785 {
8786 	if (type == BPF_WRITE)
8787 		return false;
8788 
8789 	if (off % size != 0)
8790 		return false;
8791 
8792 	switch (off) {
8793 	case offsetof(struct sk_msg_md, data):
8794 		info->reg_type = PTR_TO_PACKET;
8795 		if (size != sizeof(__u64))
8796 			return false;
8797 		break;
8798 	case offsetof(struct sk_msg_md, data_end):
8799 		info->reg_type = PTR_TO_PACKET_END;
8800 		if (size != sizeof(__u64))
8801 			return false;
8802 		break;
8803 	case offsetof(struct sk_msg_md, sk):
8804 		if (size != sizeof(__u64))
8805 			return false;
8806 		info->reg_type = PTR_TO_SOCKET;
8807 		break;
8808 	case bpf_ctx_range(struct sk_msg_md, family):
8809 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8810 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
8811 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8812 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8813 	case bpf_ctx_range(struct sk_msg_md, remote_port):
8814 	case bpf_ctx_range(struct sk_msg_md, local_port):
8815 	case bpf_ctx_range(struct sk_msg_md, size):
8816 		if (size != sizeof(__u32))
8817 			return false;
8818 		break;
8819 	default:
8820 		return false;
8821 	}
8822 	return true;
8823 }
8824 
8825 static bool flow_dissector_is_valid_access(int off, int size,
8826 					   enum bpf_access_type type,
8827 					   const struct bpf_prog *prog,
8828 					   struct bpf_insn_access_aux *info)
8829 {
8830 	const int size_default = sizeof(__u32);
8831 
8832 	if (off < 0 || off >= sizeof(struct __sk_buff))
8833 		return false;
8834 
8835 	if (type == BPF_WRITE)
8836 		return false;
8837 
8838 	switch (off) {
8839 	case bpf_ctx_range(struct __sk_buff, data):
8840 		if (size != size_default)
8841 			return false;
8842 		info->reg_type = PTR_TO_PACKET;
8843 		return true;
8844 	case bpf_ctx_range(struct __sk_buff, data_end):
8845 		if (size != size_default)
8846 			return false;
8847 		info->reg_type = PTR_TO_PACKET_END;
8848 		return true;
8849 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8850 		if (size != sizeof(__u64))
8851 			return false;
8852 		info->reg_type = PTR_TO_FLOW_KEYS;
8853 		return true;
8854 	default:
8855 		return false;
8856 	}
8857 }
8858 
8859 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8860 					     const struct bpf_insn *si,
8861 					     struct bpf_insn *insn_buf,
8862 					     struct bpf_prog *prog,
8863 					     u32 *target_size)
8864 
8865 {
8866 	struct bpf_insn *insn = insn_buf;
8867 
8868 	switch (si->off) {
8869 	case offsetof(struct __sk_buff, data):
8870 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8871 				      si->dst_reg, si->src_reg,
8872 				      offsetof(struct bpf_flow_dissector, data));
8873 		break;
8874 
8875 	case offsetof(struct __sk_buff, data_end):
8876 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8877 				      si->dst_reg, si->src_reg,
8878 				      offsetof(struct bpf_flow_dissector, data_end));
8879 		break;
8880 
8881 	case offsetof(struct __sk_buff, flow_keys):
8882 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8883 				      si->dst_reg, si->src_reg,
8884 				      offsetof(struct bpf_flow_dissector, flow_keys));
8885 		break;
8886 	}
8887 
8888 	return insn - insn_buf;
8889 }
8890 
8891 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
8892 						     struct bpf_insn *insn)
8893 {
8894 	__u8 value_reg = si->dst_reg;
8895 	__u8 skb_reg = si->src_reg;
8896 	/* AX is needed because src_reg and dst_reg could be the same */
8897 	__u8 tmp_reg = BPF_REG_AX;
8898 
8899 	*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
8900 			      PKT_VLAN_PRESENT_OFFSET);
8901 	*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
8902 				SKB_MONO_DELIVERY_TIME_MASK, 2);
8903 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
8904 	*insn++ = BPF_JMP_A(1);
8905 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
8906 
8907 	return insn;
8908 }
8909 
8910 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8911 						  struct bpf_insn *insn)
8912 {
8913 	/* si->dst_reg = skb_shinfo(SKB); */
8914 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8915 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8916 			      BPF_REG_AX, si->src_reg,
8917 			      offsetof(struct sk_buff, end));
8918 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8919 			      si->dst_reg, si->src_reg,
8920 			      offsetof(struct sk_buff, head));
8921 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8922 #else
8923 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8924 			      si->dst_reg, si->src_reg,
8925 			      offsetof(struct sk_buff, end));
8926 #endif
8927 
8928 	return insn;
8929 }
8930 
8931 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
8932 						const struct bpf_insn *si,
8933 						struct bpf_insn *insn)
8934 {
8935 	__u8 value_reg = si->dst_reg;
8936 	__u8 skb_reg = si->src_reg;
8937 
8938 #ifdef CONFIG_NET_CLS_ACT
8939 	/* If the tstamp_type is read,
8940 	 * the bpf prog is aware the tstamp could have delivery time.
8941 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
8942 	 */
8943 	if (!prog->tstamp_type_access) {
8944 		/* AX is needed because src_reg and dst_reg could be the same */
8945 		__u8 tmp_reg = BPF_REG_AX;
8946 
8947 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
8948 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
8949 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
8950 		*insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
8951 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
8952 		/* skb->tc_at_ingress && skb->mono_delivery_time,
8953 		 * read 0 as the (rcv) timestamp.
8954 		 */
8955 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
8956 		*insn++ = BPF_JMP_A(1);
8957 	}
8958 #endif
8959 
8960 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
8961 			      offsetof(struct sk_buff, tstamp));
8962 	return insn;
8963 }
8964 
8965 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
8966 						 const struct bpf_insn *si,
8967 						 struct bpf_insn *insn)
8968 {
8969 	__u8 value_reg = si->src_reg;
8970 	__u8 skb_reg = si->dst_reg;
8971 
8972 #ifdef CONFIG_NET_CLS_ACT
8973 	/* If the tstamp_type is read,
8974 	 * the bpf prog is aware the tstamp could have delivery time.
8975 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
8976 	 * Otherwise, writing at ingress will have to clear the
8977 	 * mono_delivery_time bit also.
8978 	 */
8979 	if (!prog->tstamp_type_access) {
8980 		__u8 tmp_reg = BPF_REG_AX;
8981 
8982 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
8983 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
8984 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
8985 		/* goto <store> */
8986 		*insn++ = BPF_JMP_A(2);
8987 		/* <clear>: mono_delivery_time */
8988 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
8989 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, PKT_VLAN_PRESENT_OFFSET);
8990 	}
8991 #endif
8992 
8993 	/* <store>: skb->tstamp = tstamp */
8994 	*insn++ = BPF_STX_MEM(BPF_DW, skb_reg, value_reg,
8995 			      offsetof(struct sk_buff, tstamp));
8996 	return insn;
8997 }
8998 
8999 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9000 				  const struct bpf_insn *si,
9001 				  struct bpf_insn *insn_buf,
9002 				  struct bpf_prog *prog, u32 *target_size)
9003 {
9004 	struct bpf_insn *insn = insn_buf;
9005 	int off;
9006 
9007 	switch (si->off) {
9008 	case offsetof(struct __sk_buff, len):
9009 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9010 				      bpf_target_off(struct sk_buff, len, 4,
9011 						     target_size));
9012 		break;
9013 
9014 	case offsetof(struct __sk_buff, protocol):
9015 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9016 				      bpf_target_off(struct sk_buff, protocol, 2,
9017 						     target_size));
9018 		break;
9019 
9020 	case offsetof(struct __sk_buff, vlan_proto):
9021 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9022 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9023 						     target_size));
9024 		break;
9025 
9026 	case offsetof(struct __sk_buff, priority):
9027 		if (type == BPF_WRITE)
9028 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9029 					      bpf_target_off(struct sk_buff, priority, 4,
9030 							     target_size));
9031 		else
9032 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9033 					      bpf_target_off(struct sk_buff, priority, 4,
9034 							     target_size));
9035 		break;
9036 
9037 	case offsetof(struct __sk_buff, ingress_ifindex):
9038 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9039 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9040 						     target_size));
9041 		break;
9042 
9043 	case offsetof(struct __sk_buff, ifindex):
9044 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9045 				      si->dst_reg, si->src_reg,
9046 				      offsetof(struct sk_buff, dev));
9047 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9048 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9049 				      bpf_target_off(struct net_device, ifindex, 4,
9050 						     target_size));
9051 		break;
9052 
9053 	case offsetof(struct __sk_buff, hash):
9054 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9055 				      bpf_target_off(struct sk_buff, hash, 4,
9056 						     target_size));
9057 		break;
9058 
9059 	case offsetof(struct __sk_buff, mark):
9060 		if (type == BPF_WRITE)
9061 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9062 					      bpf_target_off(struct sk_buff, mark, 4,
9063 							     target_size));
9064 		else
9065 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9066 					      bpf_target_off(struct sk_buff, mark, 4,
9067 							     target_size));
9068 		break;
9069 
9070 	case offsetof(struct __sk_buff, pkt_type):
9071 		*target_size = 1;
9072 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9073 				      PKT_TYPE_OFFSET);
9074 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9075 #ifdef __BIG_ENDIAN_BITFIELD
9076 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9077 #endif
9078 		break;
9079 
9080 	case offsetof(struct __sk_buff, queue_mapping):
9081 		if (type == BPF_WRITE) {
9082 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9083 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9084 					      bpf_target_off(struct sk_buff,
9085 							     queue_mapping,
9086 							     2, target_size));
9087 		} else {
9088 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9089 					      bpf_target_off(struct sk_buff,
9090 							     queue_mapping,
9091 							     2, target_size));
9092 		}
9093 		break;
9094 
9095 	case offsetof(struct __sk_buff, vlan_present):
9096 		*target_size = 1;
9097 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9098 				      PKT_VLAN_PRESENT_OFFSET);
9099 		if (PKT_VLAN_PRESENT_BIT)
9100 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
9101 		if (PKT_VLAN_PRESENT_BIT < 7)
9102 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
9103 		break;
9104 
9105 	case offsetof(struct __sk_buff, vlan_tci):
9106 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9107 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9108 						     target_size));
9109 		break;
9110 
9111 	case offsetof(struct __sk_buff, cb[0]) ...
9112 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9113 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9114 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9115 			      offsetof(struct qdisc_skb_cb, data)) %
9116 			     sizeof(__u64));
9117 
9118 		prog->cb_access = 1;
9119 		off  = si->off;
9120 		off -= offsetof(struct __sk_buff, cb[0]);
9121 		off += offsetof(struct sk_buff, cb);
9122 		off += offsetof(struct qdisc_skb_cb, data);
9123 		if (type == BPF_WRITE)
9124 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9125 					      si->src_reg, off);
9126 		else
9127 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9128 					      si->src_reg, off);
9129 		break;
9130 
9131 	case offsetof(struct __sk_buff, tc_classid):
9132 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9133 
9134 		off  = si->off;
9135 		off -= offsetof(struct __sk_buff, tc_classid);
9136 		off += offsetof(struct sk_buff, cb);
9137 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9138 		*target_size = 2;
9139 		if (type == BPF_WRITE)
9140 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
9141 					      si->src_reg, off);
9142 		else
9143 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9144 					      si->src_reg, off);
9145 		break;
9146 
9147 	case offsetof(struct __sk_buff, data):
9148 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9149 				      si->dst_reg, si->src_reg,
9150 				      offsetof(struct sk_buff, data));
9151 		break;
9152 
9153 	case offsetof(struct __sk_buff, data_meta):
9154 		off  = si->off;
9155 		off -= offsetof(struct __sk_buff, data_meta);
9156 		off += offsetof(struct sk_buff, cb);
9157 		off += offsetof(struct bpf_skb_data_end, data_meta);
9158 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9159 				      si->src_reg, off);
9160 		break;
9161 
9162 	case offsetof(struct __sk_buff, data_end):
9163 		off  = si->off;
9164 		off -= offsetof(struct __sk_buff, data_end);
9165 		off += offsetof(struct sk_buff, cb);
9166 		off += offsetof(struct bpf_skb_data_end, data_end);
9167 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9168 				      si->src_reg, off);
9169 		break;
9170 
9171 	case offsetof(struct __sk_buff, tc_index):
9172 #ifdef CONFIG_NET_SCHED
9173 		if (type == BPF_WRITE)
9174 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9175 					      bpf_target_off(struct sk_buff, tc_index, 2,
9176 							     target_size));
9177 		else
9178 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9179 					      bpf_target_off(struct sk_buff, tc_index, 2,
9180 							     target_size));
9181 #else
9182 		*target_size = 2;
9183 		if (type == BPF_WRITE)
9184 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9185 		else
9186 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9187 #endif
9188 		break;
9189 
9190 	case offsetof(struct __sk_buff, napi_id):
9191 #if defined(CONFIG_NET_RX_BUSY_POLL)
9192 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9193 				      bpf_target_off(struct sk_buff, napi_id, 4,
9194 						     target_size));
9195 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9196 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9197 #else
9198 		*target_size = 4;
9199 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9200 #endif
9201 		break;
9202 	case offsetof(struct __sk_buff, family):
9203 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9204 
9205 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9206 				      si->dst_reg, si->src_reg,
9207 				      offsetof(struct sk_buff, sk));
9208 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9209 				      bpf_target_off(struct sock_common,
9210 						     skc_family,
9211 						     2, target_size));
9212 		break;
9213 	case offsetof(struct __sk_buff, remote_ip4):
9214 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9215 
9216 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9217 				      si->dst_reg, si->src_reg,
9218 				      offsetof(struct sk_buff, sk));
9219 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9220 				      bpf_target_off(struct sock_common,
9221 						     skc_daddr,
9222 						     4, target_size));
9223 		break;
9224 	case offsetof(struct __sk_buff, local_ip4):
9225 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9226 					  skc_rcv_saddr) != 4);
9227 
9228 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9229 				      si->dst_reg, si->src_reg,
9230 				      offsetof(struct sk_buff, sk));
9231 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9232 				      bpf_target_off(struct sock_common,
9233 						     skc_rcv_saddr,
9234 						     4, target_size));
9235 		break;
9236 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9237 	     offsetof(struct __sk_buff, remote_ip6[3]):
9238 #if IS_ENABLED(CONFIG_IPV6)
9239 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9240 					  skc_v6_daddr.s6_addr32[0]) != 4);
9241 
9242 		off = si->off;
9243 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9244 
9245 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9246 				      si->dst_reg, si->src_reg,
9247 				      offsetof(struct sk_buff, sk));
9248 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9249 				      offsetof(struct sock_common,
9250 					       skc_v6_daddr.s6_addr32[0]) +
9251 				      off);
9252 #else
9253 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9254 #endif
9255 		break;
9256 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9257 	     offsetof(struct __sk_buff, local_ip6[3]):
9258 #if IS_ENABLED(CONFIG_IPV6)
9259 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9260 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9261 
9262 		off = si->off;
9263 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9264 
9265 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9266 				      si->dst_reg, si->src_reg,
9267 				      offsetof(struct sk_buff, sk));
9268 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9269 				      offsetof(struct sock_common,
9270 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9271 				      off);
9272 #else
9273 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9274 #endif
9275 		break;
9276 
9277 	case offsetof(struct __sk_buff, remote_port):
9278 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9279 
9280 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9281 				      si->dst_reg, si->src_reg,
9282 				      offsetof(struct sk_buff, sk));
9283 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9284 				      bpf_target_off(struct sock_common,
9285 						     skc_dport,
9286 						     2, target_size));
9287 #ifndef __BIG_ENDIAN_BITFIELD
9288 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9289 #endif
9290 		break;
9291 
9292 	case offsetof(struct __sk_buff, local_port):
9293 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9294 
9295 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9296 				      si->dst_reg, si->src_reg,
9297 				      offsetof(struct sk_buff, sk));
9298 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9299 				      bpf_target_off(struct sock_common,
9300 						     skc_num, 2, target_size));
9301 		break;
9302 
9303 	case offsetof(struct __sk_buff, tstamp):
9304 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9305 
9306 		if (type == BPF_WRITE)
9307 			insn = bpf_convert_tstamp_write(prog, si, insn);
9308 		else
9309 			insn = bpf_convert_tstamp_read(prog, si, insn);
9310 		break;
9311 
9312 	case offsetof(struct __sk_buff, tstamp_type):
9313 		insn = bpf_convert_tstamp_type_read(si, insn);
9314 		break;
9315 
9316 	case offsetof(struct __sk_buff, gso_segs):
9317 		insn = bpf_convert_shinfo_access(si, insn);
9318 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9319 				      si->dst_reg, si->dst_reg,
9320 				      bpf_target_off(struct skb_shared_info,
9321 						     gso_segs, 2,
9322 						     target_size));
9323 		break;
9324 	case offsetof(struct __sk_buff, gso_size):
9325 		insn = bpf_convert_shinfo_access(si, insn);
9326 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9327 				      si->dst_reg, si->dst_reg,
9328 				      bpf_target_off(struct skb_shared_info,
9329 						     gso_size, 2,
9330 						     target_size));
9331 		break;
9332 	case offsetof(struct __sk_buff, wire_len):
9333 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9334 
9335 		off = si->off;
9336 		off -= offsetof(struct __sk_buff, wire_len);
9337 		off += offsetof(struct sk_buff, cb);
9338 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9339 		*target_size = 4;
9340 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9341 		break;
9342 
9343 	case offsetof(struct __sk_buff, sk):
9344 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9345 				      si->dst_reg, si->src_reg,
9346 				      offsetof(struct sk_buff, sk));
9347 		break;
9348 	case offsetof(struct __sk_buff, hwtstamp):
9349 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9350 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9351 
9352 		insn = bpf_convert_shinfo_access(si, insn);
9353 		*insn++ = BPF_LDX_MEM(BPF_DW,
9354 				      si->dst_reg, si->dst_reg,
9355 				      bpf_target_off(struct skb_shared_info,
9356 						     hwtstamps, 8,
9357 						     target_size));
9358 		break;
9359 	}
9360 
9361 	return insn - insn_buf;
9362 }
9363 
9364 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9365 				const struct bpf_insn *si,
9366 				struct bpf_insn *insn_buf,
9367 				struct bpf_prog *prog, u32 *target_size)
9368 {
9369 	struct bpf_insn *insn = insn_buf;
9370 	int off;
9371 
9372 	switch (si->off) {
9373 	case offsetof(struct bpf_sock, bound_dev_if):
9374 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9375 
9376 		if (type == BPF_WRITE)
9377 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9378 					offsetof(struct sock, sk_bound_dev_if));
9379 		else
9380 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9381 				      offsetof(struct sock, sk_bound_dev_if));
9382 		break;
9383 
9384 	case offsetof(struct bpf_sock, mark):
9385 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9386 
9387 		if (type == BPF_WRITE)
9388 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9389 					offsetof(struct sock, sk_mark));
9390 		else
9391 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9392 				      offsetof(struct sock, sk_mark));
9393 		break;
9394 
9395 	case offsetof(struct bpf_sock, priority):
9396 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9397 
9398 		if (type == BPF_WRITE)
9399 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9400 					offsetof(struct sock, sk_priority));
9401 		else
9402 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9403 				      offsetof(struct sock, sk_priority));
9404 		break;
9405 
9406 	case offsetof(struct bpf_sock, family):
9407 		*insn++ = BPF_LDX_MEM(
9408 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9409 			si->dst_reg, si->src_reg,
9410 			bpf_target_off(struct sock_common,
9411 				       skc_family,
9412 				       sizeof_field(struct sock_common,
9413 						    skc_family),
9414 				       target_size));
9415 		break;
9416 
9417 	case offsetof(struct bpf_sock, type):
9418 		*insn++ = BPF_LDX_MEM(
9419 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9420 			si->dst_reg, si->src_reg,
9421 			bpf_target_off(struct sock, sk_type,
9422 				       sizeof_field(struct sock, sk_type),
9423 				       target_size));
9424 		break;
9425 
9426 	case offsetof(struct bpf_sock, protocol):
9427 		*insn++ = BPF_LDX_MEM(
9428 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9429 			si->dst_reg, si->src_reg,
9430 			bpf_target_off(struct sock, sk_protocol,
9431 				       sizeof_field(struct sock, sk_protocol),
9432 				       target_size));
9433 		break;
9434 
9435 	case offsetof(struct bpf_sock, src_ip4):
9436 		*insn++ = BPF_LDX_MEM(
9437 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9438 			bpf_target_off(struct sock_common, skc_rcv_saddr,
9439 				       sizeof_field(struct sock_common,
9440 						    skc_rcv_saddr),
9441 				       target_size));
9442 		break;
9443 
9444 	case offsetof(struct bpf_sock, dst_ip4):
9445 		*insn++ = BPF_LDX_MEM(
9446 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9447 			bpf_target_off(struct sock_common, skc_daddr,
9448 				       sizeof_field(struct sock_common,
9449 						    skc_daddr),
9450 				       target_size));
9451 		break;
9452 
9453 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9454 #if IS_ENABLED(CONFIG_IPV6)
9455 		off = si->off;
9456 		off -= offsetof(struct bpf_sock, src_ip6[0]);
9457 		*insn++ = BPF_LDX_MEM(
9458 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9459 			bpf_target_off(
9460 				struct sock_common,
9461 				skc_v6_rcv_saddr.s6_addr32[0],
9462 				sizeof_field(struct sock_common,
9463 					     skc_v6_rcv_saddr.s6_addr32[0]),
9464 				target_size) + off);
9465 #else
9466 		(void)off;
9467 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9468 #endif
9469 		break;
9470 
9471 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9472 #if IS_ENABLED(CONFIG_IPV6)
9473 		off = si->off;
9474 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9475 		*insn++ = BPF_LDX_MEM(
9476 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9477 			bpf_target_off(struct sock_common,
9478 				       skc_v6_daddr.s6_addr32[0],
9479 				       sizeof_field(struct sock_common,
9480 						    skc_v6_daddr.s6_addr32[0]),
9481 				       target_size) + off);
9482 #else
9483 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9484 		*target_size = 4;
9485 #endif
9486 		break;
9487 
9488 	case offsetof(struct bpf_sock, src_port):
9489 		*insn++ = BPF_LDX_MEM(
9490 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9491 			si->dst_reg, si->src_reg,
9492 			bpf_target_off(struct sock_common, skc_num,
9493 				       sizeof_field(struct sock_common,
9494 						    skc_num),
9495 				       target_size));
9496 		break;
9497 
9498 	case offsetof(struct bpf_sock, dst_port):
9499 		*insn++ = BPF_LDX_MEM(
9500 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9501 			si->dst_reg, si->src_reg,
9502 			bpf_target_off(struct sock_common, skc_dport,
9503 				       sizeof_field(struct sock_common,
9504 						    skc_dport),
9505 				       target_size));
9506 		break;
9507 
9508 	case offsetof(struct bpf_sock, state):
9509 		*insn++ = BPF_LDX_MEM(
9510 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9511 			si->dst_reg, si->src_reg,
9512 			bpf_target_off(struct sock_common, skc_state,
9513 				       sizeof_field(struct sock_common,
9514 						    skc_state),
9515 				       target_size));
9516 		break;
9517 	case offsetof(struct bpf_sock, rx_queue_mapping):
9518 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9519 		*insn++ = BPF_LDX_MEM(
9520 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9521 			si->dst_reg, si->src_reg,
9522 			bpf_target_off(struct sock, sk_rx_queue_mapping,
9523 				       sizeof_field(struct sock,
9524 						    sk_rx_queue_mapping),
9525 				       target_size));
9526 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9527 				      1);
9528 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9529 #else
9530 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9531 		*target_size = 2;
9532 #endif
9533 		break;
9534 	}
9535 
9536 	return insn - insn_buf;
9537 }
9538 
9539 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9540 					 const struct bpf_insn *si,
9541 					 struct bpf_insn *insn_buf,
9542 					 struct bpf_prog *prog, u32 *target_size)
9543 {
9544 	struct bpf_insn *insn = insn_buf;
9545 
9546 	switch (si->off) {
9547 	case offsetof(struct __sk_buff, ifindex):
9548 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9549 				      si->dst_reg, si->src_reg,
9550 				      offsetof(struct sk_buff, dev));
9551 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9552 				      bpf_target_off(struct net_device, ifindex, 4,
9553 						     target_size));
9554 		break;
9555 	default:
9556 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9557 					      target_size);
9558 	}
9559 
9560 	return insn - insn_buf;
9561 }
9562 
9563 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9564 				  const struct bpf_insn *si,
9565 				  struct bpf_insn *insn_buf,
9566 				  struct bpf_prog *prog, u32 *target_size)
9567 {
9568 	struct bpf_insn *insn = insn_buf;
9569 
9570 	switch (si->off) {
9571 	case offsetof(struct xdp_md, data):
9572 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9573 				      si->dst_reg, si->src_reg,
9574 				      offsetof(struct xdp_buff, data));
9575 		break;
9576 	case offsetof(struct xdp_md, data_meta):
9577 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9578 				      si->dst_reg, si->src_reg,
9579 				      offsetof(struct xdp_buff, data_meta));
9580 		break;
9581 	case offsetof(struct xdp_md, data_end):
9582 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9583 				      si->dst_reg, si->src_reg,
9584 				      offsetof(struct xdp_buff, data_end));
9585 		break;
9586 	case offsetof(struct xdp_md, ingress_ifindex):
9587 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9588 				      si->dst_reg, si->src_reg,
9589 				      offsetof(struct xdp_buff, rxq));
9590 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9591 				      si->dst_reg, si->dst_reg,
9592 				      offsetof(struct xdp_rxq_info, dev));
9593 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9594 				      offsetof(struct net_device, ifindex));
9595 		break;
9596 	case offsetof(struct xdp_md, rx_queue_index):
9597 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9598 				      si->dst_reg, si->src_reg,
9599 				      offsetof(struct xdp_buff, rxq));
9600 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9601 				      offsetof(struct xdp_rxq_info,
9602 					       queue_index));
9603 		break;
9604 	case offsetof(struct xdp_md, egress_ifindex):
9605 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9606 				      si->dst_reg, si->src_reg,
9607 				      offsetof(struct xdp_buff, txq));
9608 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9609 				      si->dst_reg, si->dst_reg,
9610 				      offsetof(struct xdp_txq_info, dev));
9611 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9612 				      offsetof(struct net_device, ifindex));
9613 		break;
9614 	}
9615 
9616 	return insn - insn_buf;
9617 }
9618 
9619 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9620  * context Structure, F is Field in context structure that contains a pointer
9621  * to Nested Structure of type NS that has the field NF.
9622  *
9623  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9624  * sure that SIZE is not greater than actual size of S.F.NF.
9625  *
9626  * If offset OFF is provided, the load happens from that offset relative to
9627  * offset of NF.
9628  */
9629 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
9630 	do {								       \
9631 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9632 				      si->src_reg, offsetof(S, F));	       \
9633 		*insn++ = BPF_LDX_MEM(					       \
9634 			SIZE, si->dst_reg, si->dst_reg,			       \
9635 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9636 				       target_size)			       \
9637 				+ OFF);					       \
9638 	} while (0)
9639 
9640 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
9641 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
9642 					     BPF_FIELD_SIZEOF(NS, NF), 0)
9643 
9644 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9645  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9646  *
9647  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9648  * "register" since two registers available in convert_ctx_access are not
9649  * enough: we can't override neither SRC, since it contains value to store, nor
9650  * DST since it contains pointer to context that may be used by later
9651  * instructions. But we need a temporary place to save pointer to nested
9652  * structure whose field we want to store to.
9653  */
9654 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
9655 	do {								       \
9656 		int tmp_reg = BPF_REG_9;				       \
9657 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9658 			--tmp_reg;					       \
9659 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9660 			--tmp_reg;					       \
9661 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
9662 				      offsetof(S, TF));			       \
9663 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
9664 				      si->dst_reg, offsetof(S, F));	       \
9665 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
9666 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9667 				       target_size)			       \
9668 				+ OFF);					       \
9669 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
9670 				      offsetof(S, TF));			       \
9671 	} while (0)
9672 
9673 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9674 						      TF)		       \
9675 	do {								       \
9676 		if (type == BPF_WRITE) {				       \
9677 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9678 							 OFF, TF);	       \
9679 		} else {						       \
9680 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
9681 				S, NS, F, NF, SIZE, OFF);  \
9682 		}							       \
9683 	} while (0)
9684 
9685 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
9686 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
9687 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9688 
9689 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9690 					const struct bpf_insn *si,
9691 					struct bpf_insn *insn_buf,
9692 					struct bpf_prog *prog, u32 *target_size)
9693 {
9694 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9695 	struct bpf_insn *insn = insn_buf;
9696 
9697 	switch (si->off) {
9698 	case offsetof(struct bpf_sock_addr, user_family):
9699 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9700 					    struct sockaddr, uaddr, sa_family);
9701 		break;
9702 
9703 	case offsetof(struct bpf_sock_addr, user_ip4):
9704 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9705 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9706 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9707 		break;
9708 
9709 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9710 		off = si->off;
9711 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9712 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9713 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9714 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9715 			tmp_reg);
9716 		break;
9717 
9718 	case offsetof(struct bpf_sock_addr, user_port):
9719 		/* To get port we need to know sa_family first and then treat
9720 		 * sockaddr as either sockaddr_in or sockaddr_in6.
9721 		 * Though we can simplify since port field has same offset and
9722 		 * size in both structures.
9723 		 * Here we check this invariant and use just one of the
9724 		 * structures if it's true.
9725 		 */
9726 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9727 			     offsetof(struct sockaddr_in6, sin6_port));
9728 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9729 			     sizeof_field(struct sockaddr_in6, sin6_port));
9730 		/* Account for sin6_port being smaller than user_port. */
9731 		port_size = min(port_size, BPF_LDST_BYTES(si));
9732 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9733 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9734 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9735 		break;
9736 
9737 	case offsetof(struct bpf_sock_addr, family):
9738 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9739 					    struct sock, sk, sk_family);
9740 		break;
9741 
9742 	case offsetof(struct bpf_sock_addr, type):
9743 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9744 					    struct sock, sk, sk_type);
9745 		break;
9746 
9747 	case offsetof(struct bpf_sock_addr, protocol):
9748 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9749 					    struct sock, sk, sk_protocol);
9750 		break;
9751 
9752 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
9753 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
9754 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9755 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9756 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9757 		break;
9758 
9759 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9760 				msg_src_ip6[3]):
9761 		off = si->off;
9762 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9763 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9764 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9765 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9766 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9767 		break;
9768 	case offsetof(struct bpf_sock_addr, sk):
9769 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9770 				      si->dst_reg, si->src_reg,
9771 				      offsetof(struct bpf_sock_addr_kern, sk));
9772 		break;
9773 	}
9774 
9775 	return insn - insn_buf;
9776 }
9777 
9778 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9779 				       const struct bpf_insn *si,
9780 				       struct bpf_insn *insn_buf,
9781 				       struct bpf_prog *prog,
9782 				       u32 *target_size)
9783 {
9784 	struct bpf_insn *insn = insn_buf;
9785 	int off;
9786 
9787 /* Helper macro for adding read access to tcp_sock or sock fields. */
9788 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9789 	do {								      \
9790 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9791 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9792 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9793 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9794 			reg--;						      \
9795 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9796 			reg--;						      \
9797 		if (si->dst_reg == si->src_reg) {			      \
9798 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9799 					  offsetof(struct bpf_sock_ops_kern,  \
9800 					  temp));			      \
9801 			fullsock_reg = reg;				      \
9802 			jmp += 2;					      \
9803 		}							      \
9804 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9805 						struct bpf_sock_ops_kern,     \
9806 						is_fullsock),		      \
9807 				      fullsock_reg, si->src_reg,	      \
9808 				      offsetof(struct bpf_sock_ops_kern,      \
9809 					       is_fullsock));		      \
9810 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9811 		if (si->dst_reg == si->src_reg)				      \
9812 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9813 				      offsetof(struct bpf_sock_ops_kern,      \
9814 				      temp));				      \
9815 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9816 						struct bpf_sock_ops_kern, sk),\
9817 				      si->dst_reg, si->src_reg,		      \
9818 				      offsetof(struct bpf_sock_ops_kern, sk));\
9819 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
9820 						       OBJ_FIELD),	      \
9821 				      si->dst_reg, si->dst_reg,		      \
9822 				      offsetof(OBJ, OBJ_FIELD));	      \
9823 		if (si->dst_reg == si->src_reg)	{			      \
9824 			*insn++ = BPF_JMP_A(1);				      \
9825 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9826 				      offsetof(struct bpf_sock_ops_kern,      \
9827 				      temp));				      \
9828 		}							      \
9829 	} while (0)
9830 
9831 #define SOCK_OPS_GET_SK()							      \
9832 	do {								      \
9833 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9834 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9835 			reg--;						      \
9836 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9837 			reg--;						      \
9838 		if (si->dst_reg == si->src_reg) {			      \
9839 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9840 					  offsetof(struct bpf_sock_ops_kern,  \
9841 					  temp));			      \
9842 			fullsock_reg = reg;				      \
9843 			jmp += 2;					      \
9844 		}							      \
9845 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9846 						struct bpf_sock_ops_kern,     \
9847 						is_fullsock),		      \
9848 				      fullsock_reg, si->src_reg,	      \
9849 				      offsetof(struct bpf_sock_ops_kern,      \
9850 					       is_fullsock));		      \
9851 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9852 		if (si->dst_reg == si->src_reg)				      \
9853 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9854 				      offsetof(struct bpf_sock_ops_kern,      \
9855 				      temp));				      \
9856 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9857 						struct bpf_sock_ops_kern, sk),\
9858 				      si->dst_reg, si->src_reg,		      \
9859 				      offsetof(struct bpf_sock_ops_kern, sk));\
9860 		if (si->dst_reg == si->src_reg)	{			      \
9861 			*insn++ = BPF_JMP_A(1);				      \
9862 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9863 				      offsetof(struct bpf_sock_ops_kern,      \
9864 				      temp));				      \
9865 		}							      \
9866 	} while (0)
9867 
9868 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9869 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9870 
9871 /* Helper macro for adding write access to tcp_sock or sock fields.
9872  * The macro is called with two registers, dst_reg which contains a pointer
9873  * to ctx (context) and src_reg which contains the value that should be
9874  * stored. However, we need an additional register since we cannot overwrite
9875  * dst_reg because it may be used later in the program.
9876  * Instead we "borrow" one of the other register. We first save its value
9877  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9878  * it at the end of the macro.
9879  */
9880 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9881 	do {								      \
9882 		int reg = BPF_REG_9;					      \
9883 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9884 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9885 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9886 			reg--;						      \
9887 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9888 			reg--;						      \
9889 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
9890 				      offsetof(struct bpf_sock_ops_kern,      \
9891 					       temp));			      \
9892 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9893 						struct bpf_sock_ops_kern,     \
9894 						is_fullsock),		      \
9895 				      reg, si->dst_reg,			      \
9896 				      offsetof(struct bpf_sock_ops_kern,      \
9897 					       is_fullsock));		      \
9898 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
9899 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9900 						struct bpf_sock_ops_kern, sk),\
9901 				      reg, si->dst_reg,			      \
9902 				      offsetof(struct bpf_sock_ops_kern, sk));\
9903 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
9904 				      reg, si->src_reg,			      \
9905 				      offsetof(OBJ, OBJ_FIELD));	      \
9906 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
9907 				      offsetof(struct bpf_sock_ops_kern,      \
9908 					       temp));			      \
9909 	} while (0)
9910 
9911 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
9912 	do {								      \
9913 		if (TYPE == BPF_WRITE)					      \
9914 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9915 		else							      \
9916 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9917 	} while (0)
9918 
9919 	if (insn > insn_buf)
9920 		return insn - insn_buf;
9921 
9922 	switch (si->off) {
9923 	case offsetof(struct bpf_sock_ops, op):
9924 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9925 						       op),
9926 				      si->dst_reg, si->src_reg,
9927 				      offsetof(struct bpf_sock_ops_kern, op));
9928 		break;
9929 
9930 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
9931 	     offsetof(struct bpf_sock_ops, replylong[3]):
9932 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9933 			     sizeof_field(struct bpf_sock_ops_kern, reply));
9934 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9935 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
9936 		off = si->off;
9937 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
9938 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9939 		if (type == BPF_WRITE)
9940 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9941 					      off);
9942 		else
9943 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9944 					      off);
9945 		break;
9946 
9947 	case offsetof(struct bpf_sock_ops, family):
9948 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9949 
9950 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9951 					      struct bpf_sock_ops_kern, sk),
9952 				      si->dst_reg, si->src_reg,
9953 				      offsetof(struct bpf_sock_ops_kern, sk));
9954 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9955 				      offsetof(struct sock_common, skc_family));
9956 		break;
9957 
9958 	case offsetof(struct bpf_sock_ops, remote_ip4):
9959 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9960 
9961 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9962 						struct bpf_sock_ops_kern, sk),
9963 				      si->dst_reg, si->src_reg,
9964 				      offsetof(struct bpf_sock_ops_kern, sk));
9965 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9966 				      offsetof(struct sock_common, skc_daddr));
9967 		break;
9968 
9969 	case offsetof(struct bpf_sock_ops, local_ip4):
9970 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9971 					  skc_rcv_saddr) != 4);
9972 
9973 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9974 					      struct bpf_sock_ops_kern, sk),
9975 				      si->dst_reg, si->src_reg,
9976 				      offsetof(struct bpf_sock_ops_kern, sk));
9977 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9978 				      offsetof(struct sock_common,
9979 					       skc_rcv_saddr));
9980 		break;
9981 
9982 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9983 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
9984 #if IS_ENABLED(CONFIG_IPV6)
9985 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9986 					  skc_v6_daddr.s6_addr32[0]) != 4);
9987 
9988 		off = si->off;
9989 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9990 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9991 						struct bpf_sock_ops_kern, sk),
9992 				      si->dst_reg, si->src_reg,
9993 				      offsetof(struct bpf_sock_ops_kern, sk));
9994 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9995 				      offsetof(struct sock_common,
9996 					       skc_v6_daddr.s6_addr32[0]) +
9997 				      off);
9998 #else
9999 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10000 #endif
10001 		break;
10002 
10003 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10004 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10005 #if IS_ENABLED(CONFIG_IPV6)
10006 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10007 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10008 
10009 		off = si->off;
10010 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10011 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10012 						struct bpf_sock_ops_kern, sk),
10013 				      si->dst_reg, si->src_reg,
10014 				      offsetof(struct bpf_sock_ops_kern, sk));
10015 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10016 				      offsetof(struct sock_common,
10017 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10018 				      off);
10019 #else
10020 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10021 #endif
10022 		break;
10023 
10024 	case offsetof(struct bpf_sock_ops, remote_port):
10025 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10026 
10027 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10028 						struct bpf_sock_ops_kern, sk),
10029 				      si->dst_reg, si->src_reg,
10030 				      offsetof(struct bpf_sock_ops_kern, sk));
10031 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10032 				      offsetof(struct sock_common, skc_dport));
10033 #ifndef __BIG_ENDIAN_BITFIELD
10034 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10035 #endif
10036 		break;
10037 
10038 	case offsetof(struct bpf_sock_ops, local_port):
10039 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10040 
10041 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10042 						struct bpf_sock_ops_kern, sk),
10043 				      si->dst_reg, si->src_reg,
10044 				      offsetof(struct bpf_sock_ops_kern, sk));
10045 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10046 				      offsetof(struct sock_common, skc_num));
10047 		break;
10048 
10049 	case offsetof(struct bpf_sock_ops, is_fullsock):
10050 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10051 						struct bpf_sock_ops_kern,
10052 						is_fullsock),
10053 				      si->dst_reg, si->src_reg,
10054 				      offsetof(struct bpf_sock_ops_kern,
10055 					       is_fullsock));
10056 		break;
10057 
10058 	case offsetof(struct bpf_sock_ops, state):
10059 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10060 
10061 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10062 						struct bpf_sock_ops_kern, sk),
10063 				      si->dst_reg, si->src_reg,
10064 				      offsetof(struct bpf_sock_ops_kern, sk));
10065 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10066 				      offsetof(struct sock_common, skc_state));
10067 		break;
10068 
10069 	case offsetof(struct bpf_sock_ops, rtt_min):
10070 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10071 			     sizeof(struct minmax));
10072 		BUILD_BUG_ON(sizeof(struct minmax) <
10073 			     sizeof(struct minmax_sample));
10074 
10075 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10076 						struct bpf_sock_ops_kern, sk),
10077 				      si->dst_reg, si->src_reg,
10078 				      offsetof(struct bpf_sock_ops_kern, sk));
10079 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10080 				      offsetof(struct tcp_sock, rtt_min) +
10081 				      sizeof_field(struct minmax_sample, t));
10082 		break;
10083 
10084 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10085 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10086 				   struct tcp_sock);
10087 		break;
10088 
10089 	case offsetof(struct bpf_sock_ops, sk_txhash):
10090 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10091 					  struct sock, type);
10092 		break;
10093 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10094 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10095 		break;
10096 	case offsetof(struct bpf_sock_ops, srtt_us):
10097 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10098 		break;
10099 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10100 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10101 		break;
10102 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10103 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10104 		break;
10105 	case offsetof(struct bpf_sock_ops, snd_nxt):
10106 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10107 		break;
10108 	case offsetof(struct bpf_sock_ops, snd_una):
10109 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10110 		break;
10111 	case offsetof(struct bpf_sock_ops, mss_cache):
10112 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10113 		break;
10114 	case offsetof(struct bpf_sock_ops, ecn_flags):
10115 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10116 		break;
10117 	case offsetof(struct bpf_sock_ops, rate_delivered):
10118 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10119 		break;
10120 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10121 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10122 		break;
10123 	case offsetof(struct bpf_sock_ops, packets_out):
10124 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10125 		break;
10126 	case offsetof(struct bpf_sock_ops, retrans_out):
10127 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10128 		break;
10129 	case offsetof(struct bpf_sock_ops, total_retrans):
10130 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10131 		break;
10132 	case offsetof(struct bpf_sock_ops, segs_in):
10133 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10134 		break;
10135 	case offsetof(struct bpf_sock_ops, data_segs_in):
10136 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10137 		break;
10138 	case offsetof(struct bpf_sock_ops, segs_out):
10139 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10140 		break;
10141 	case offsetof(struct bpf_sock_ops, data_segs_out):
10142 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10143 		break;
10144 	case offsetof(struct bpf_sock_ops, lost_out):
10145 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10146 		break;
10147 	case offsetof(struct bpf_sock_ops, sacked_out):
10148 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10149 		break;
10150 	case offsetof(struct bpf_sock_ops, bytes_received):
10151 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10152 		break;
10153 	case offsetof(struct bpf_sock_ops, bytes_acked):
10154 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10155 		break;
10156 	case offsetof(struct bpf_sock_ops, sk):
10157 		SOCK_OPS_GET_SK();
10158 		break;
10159 	case offsetof(struct bpf_sock_ops, skb_data_end):
10160 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10161 						       skb_data_end),
10162 				      si->dst_reg, si->src_reg,
10163 				      offsetof(struct bpf_sock_ops_kern,
10164 					       skb_data_end));
10165 		break;
10166 	case offsetof(struct bpf_sock_ops, skb_data):
10167 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10168 						       skb),
10169 				      si->dst_reg, si->src_reg,
10170 				      offsetof(struct bpf_sock_ops_kern,
10171 					       skb));
10172 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10173 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10174 				      si->dst_reg, si->dst_reg,
10175 				      offsetof(struct sk_buff, data));
10176 		break;
10177 	case offsetof(struct bpf_sock_ops, skb_len):
10178 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10179 						       skb),
10180 				      si->dst_reg, si->src_reg,
10181 				      offsetof(struct bpf_sock_ops_kern,
10182 					       skb));
10183 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10184 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10185 				      si->dst_reg, si->dst_reg,
10186 				      offsetof(struct sk_buff, len));
10187 		break;
10188 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10189 		off = offsetof(struct sk_buff, cb);
10190 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10191 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10192 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10193 						       skb),
10194 				      si->dst_reg, si->src_reg,
10195 				      offsetof(struct bpf_sock_ops_kern,
10196 					       skb));
10197 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10198 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10199 						       tcp_flags),
10200 				      si->dst_reg, si->dst_reg, off);
10201 		break;
10202 	}
10203 	return insn - insn_buf;
10204 }
10205 
10206 /* data_end = skb->data + skb_headlen() */
10207 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10208 						    struct bpf_insn *insn)
10209 {
10210 	int reg;
10211 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10212 			   offsetof(struct sk_skb_cb, temp_reg);
10213 
10214 	if (si->src_reg == si->dst_reg) {
10215 		/* We need an extra register, choose and save a register. */
10216 		reg = BPF_REG_9;
10217 		if (si->src_reg == reg || si->dst_reg == reg)
10218 			reg--;
10219 		if (si->src_reg == reg || si->dst_reg == reg)
10220 			reg--;
10221 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10222 	} else {
10223 		reg = si->dst_reg;
10224 	}
10225 
10226 	/* reg = skb->data */
10227 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10228 			      reg, si->src_reg,
10229 			      offsetof(struct sk_buff, data));
10230 	/* AX = skb->len */
10231 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10232 			      BPF_REG_AX, si->src_reg,
10233 			      offsetof(struct sk_buff, len));
10234 	/* reg = skb->data + skb->len */
10235 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10236 	/* AX = skb->data_len */
10237 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10238 			      BPF_REG_AX, si->src_reg,
10239 			      offsetof(struct sk_buff, data_len));
10240 
10241 	/* reg = skb->data + skb->len - skb->data_len */
10242 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10243 
10244 	if (si->src_reg == si->dst_reg) {
10245 		/* Restore the saved register */
10246 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10247 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10248 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10249 	}
10250 
10251 	return insn;
10252 }
10253 
10254 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10255 				     const struct bpf_insn *si,
10256 				     struct bpf_insn *insn_buf,
10257 				     struct bpf_prog *prog, u32 *target_size)
10258 {
10259 	struct bpf_insn *insn = insn_buf;
10260 	int off;
10261 
10262 	switch (si->off) {
10263 	case offsetof(struct __sk_buff, data_end):
10264 		insn = bpf_convert_data_end_access(si, insn);
10265 		break;
10266 	case offsetof(struct __sk_buff, cb[0]) ...
10267 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10268 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10269 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10270 			      offsetof(struct sk_skb_cb, data)) %
10271 			     sizeof(__u64));
10272 
10273 		prog->cb_access = 1;
10274 		off  = si->off;
10275 		off -= offsetof(struct __sk_buff, cb[0]);
10276 		off += offsetof(struct sk_buff, cb);
10277 		off += offsetof(struct sk_skb_cb, data);
10278 		if (type == BPF_WRITE)
10279 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
10280 					      si->src_reg, off);
10281 		else
10282 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10283 					      si->src_reg, off);
10284 		break;
10285 
10286 
10287 	default:
10288 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10289 					      target_size);
10290 	}
10291 
10292 	return insn - insn_buf;
10293 }
10294 
10295 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10296 				     const struct bpf_insn *si,
10297 				     struct bpf_insn *insn_buf,
10298 				     struct bpf_prog *prog, u32 *target_size)
10299 {
10300 	struct bpf_insn *insn = insn_buf;
10301 #if IS_ENABLED(CONFIG_IPV6)
10302 	int off;
10303 #endif
10304 
10305 	/* convert ctx uses the fact sg element is first in struct */
10306 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10307 
10308 	switch (si->off) {
10309 	case offsetof(struct sk_msg_md, data):
10310 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10311 				      si->dst_reg, si->src_reg,
10312 				      offsetof(struct sk_msg, data));
10313 		break;
10314 	case offsetof(struct sk_msg_md, data_end):
10315 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10316 				      si->dst_reg, si->src_reg,
10317 				      offsetof(struct sk_msg, data_end));
10318 		break;
10319 	case offsetof(struct sk_msg_md, family):
10320 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10321 
10322 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10323 					      struct sk_msg, sk),
10324 				      si->dst_reg, si->src_reg,
10325 				      offsetof(struct sk_msg, sk));
10326 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10327 				      offsetof(struct sock_common, skc_family));
10328 		break;
10329 
10330 	case offsetof(struct sk_msg_md, remote_ip4):
10331 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10332 
10333 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10334 						struct sk_msg, sk),
10335 				      si->dst_reg, si->src_reg,
10336 				      offsetof(struct sk_msg, sk));
10337 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10338 				      offsetof(struct sock_common, skc_daddr));
10339 		break;
10340 
10341 	case offsetof(struct sk_msg_md, local_ip4):
10342 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10343 					  skc_rcv_saddr) != 4);
10344 
10345 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10346 					      struct sk_msg, sk),
10347 				      si->dst_reg, si->src_reg,
10348 				      offsetof(struct sk_msg, sk));
10349 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10350 				      offsetof(struct sock_common,
10351 					       skc_rcv_saddr));
10352 		break;
10353 
10354 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10355 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10356 #if IS_ENABLED(CONFIG_IPV6)
10357 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10358 					  skc_v6_daddr.s6_addr32[0]) != 4);
10359 
10360 		off = si->off;
10361 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10362 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10363 						struct sk_msg, sk),
10364 				      si->dst_reg, si->src_reg,
10365 				      offsetof(struct sk_msg, sk));
10366 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10367 				      offsetof(struct sock_common,
10368 					       skc_v6_daddr.s6_addr32[0]) +
10369 				      off);
10370 #else
10371 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10372 #endif
10373 		break;
10374 
10375 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10376 	     offsetof(struct sk_msg_md, local_ip6[3]):
10377 #if IS_ENABLED(CONFIG_IPV6)
10378 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10379 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10380 
10381 		off = si->off;
10382 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10383 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10384 						struct sk_msg, sk),
10385 				      si->dst_reg, si->src_reg,
10386 				      offsetof(struct sk_msg, sk));
10387 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10388 				      offsetof(struct sock_common,
10389 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10390 				      off);
10391 #else
10392 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10393 #endif
10394 		break;
10395 
10396 	case offsetof(struct sk_msg_md, remote_port):
10397 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10398 
10399 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10400 						struct sk_msg, sk),
10401 				      si->dst_reg, si->src_reg,
10402 				      offsetof(struct sk_msg, sk));
10403 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10404 				      offsetof(struct sock_common, skc_dport));
10405 #ifndef __BIG_ENDIAN_BITFIELD
10406 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10407 #endif
10408 		break;
10409 
10410 	case offsetof(struct sk_msg_md, local_port):
10411 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10412 
10413 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10414 						struct sk_msg, sk),
10415 				      si->dst_reg, si->src_reg,
10416 				      offsetof(struct sk_msg, sk));
10417 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10418 				      offsetof(struct sock_common, skc_num));
10419 		break;
10420 
10421 	case offsetof(struct sk_msg_md, size):
10422 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10423 				      si->dst_reg, si->src_reg,
10424 				      offsetof(struct sk_msg_sg, size));
10425 		break;
10426 
10427 	case offsetof(struct sk_msg_md, sk):
10428 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10429 				      si->dst_reg, si->src_reg,
10430 				      offsetof(struct sk_msg, sk));
10431 		break;
10432 	}
10433 
10434 	return insn - insn_buf;
10435 }
10436 
10437 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10438 	.get_func_proto		= sk_filter_func_proto,
10439 	.is_valid_access	= sk_filter_is_valid_access,
10440 	.convert_ctx_access	= bpf_convert_ctx_access,
10441 	.gen_ld_abs		= bpf_gen_ld_abs,
10442 };
10443 
10444 const struct bpf_prog_ops sk_filter_prog_ops = {
10445 	.test_run		= bpf_prog_test_run_skb,
10446 };
10447 
10448 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10449 	.get_func_proto		= tc_cls_act_func_proto,
10450 	.is_valid_access	= tc_cls_act_is_valid_access,
10451 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10452 	.gen_prologue		= tc_cls_act_prologue,
10453 	.gen_ld_abs		= bpf_gen_ld_abs,
10454 };
10455 
10456 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10457 	.test_run		= bpf_prog_test_run_skb,
10458 };
10459 
10460 const struct bpf_verifier_ops xdp_verifier_ops = {
10461 	.get_func_proto		= xdp_func_proto,
10462 	.is_valid_access	= xdp_is_valid_access,
10463 	.convert_ctx_access	= xdp_convert_ctx_access,
10464 	.gen_prologue		= bpf_noop_prologue,
10465 };
10466 
10467 const struct bpf_prog_ops xdp_prog_ops = {
10468 	.test_run		= bpf_prog_test_run_xdp,
10469 };
10470 
10471 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10472 	.get_func_proto		= cg_skb_func_proto,
10473 	.is_valid_access	= cg_skb_is_valid_access,
10474 	.convert_ctx_access	= bpf_convert_ctx_access,
10475 };
10476 
10477 const struct bpf_prog_ops cg_skb_prog_ops = {
10478 	.test_run		= bpf_prog_test_run_skb,
10479 };
10480 
10481 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10482 	.get_func_proto		= lwt_in_func_proto,
10483 	.is_valid_access	= lwt_is_valid_access,
10484 	.convert_ctx_access	= bpf_convert_ctx_access,
10485 };
10486 
10487 const struct bpf_prog_ops lwt_in_prog_ops = {
10488 	.test_run		= bpf_prog_test_run_skb,
10489 };
10490 
10491 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10492 	.get_func_proto		= lwt_out_func_proto,
10493 	.is_valid_access	= lwt_is_valid_access,
10494 	.convert_ctx_access	= bpf_convert_ctx_access,
10495 };
10496 
10497 const struct bpf_prog_ops lwt_out_prog_ops = {
10498 	.test_run		= bpf_prog_test_run_skb,
10499 };
10500 
10501 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10502 	.get_func_proto		= lwt_xmit_func_proto,
10503 	.is_valid_access	= lwt_is_valid_access,
10504 	.convert_ctx_access	= bpf_convert_ctx_access,
10505 	.gen_prologue		= tc_cls_act_prologue,
10506 };
10507 
10508 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10509 	.test_run		= bpf_prog_test_run_skb,
10510 };
10511 
10512 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10513 	.get_func_proto		= lwt_seg6local_func_proto,
10514 	.is_valid_access	= lwt_is_valid_access,
10515 	.convert_ctx_access	= bpf_convert_ctx_access,
10516 };
10517 
10518 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10519 	.test_run		= bpf_prog_test_run_skb,
10520 };
10521 
10522 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10523 	.get_func_proto		= sock_filter_func_proto,
10524 	.is_valid_access	= sock_filter_is_valid_access,
10525 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
10526 };
10527 
10528 const struct bpf_prog_ops cg_sock_prog_ops = {
10529 };
10530 
10531 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10532 	.get_func_proto		= sock_addr_func_proto,
10533 	.is_valid_access	= sock_addr_is_valid_access,
10534 	.convert_ctx_access	= sock_addr_convert_ctx_access,
10535 };
10536 
10537 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10538 };
10539 
10540 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10541 	.get_func_proto		= sock_ops_func_proto,
10542 	.is_valid_access	= sock_ops_is_valid_access,
10543 	.convert_ctx_access	= sock_ops_convert_ctx_access,
10544 };
10545 
10546 const struct bpf_prog_ops sock_ops_prog_ops = {
10547 };
10548 
10549 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10550 	.get_func_proto		= sk_skb_func_proto,
10551 	.is_valid_access	= sk_skb_is_valid_access,
10552 	.convert_ctx_access	= sk_skb_convert_ctx_access,
10553 	.gen_prologue		= sk_skb_prologue,
10554 };
10555 
10556 const struct bpf_prog_ops sk_skb_prog_ops = {
10557 };
10558 
10559 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10560 	.get_func_proto		= sk_msg_func_proto,
10561 	.is_valid_access	= sk_msg_is_valid_access,
10562 	.convert_ctx_access	= sk_msg_convert_ctx_access,
10563 	.gen_prologue		= bpf_noop_prologue,
10564 };
10565 
10566 const struct bpf_prog_ops sk_msg_prog_ops = {
10567 };
10568 
10569 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10570 	.get_func_proto		= flow_dissector_func_proto,
10571 	.is_valid_access	= flow_dissector_is_valid_access,
10572 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
10573 };
10574 
10575 const struct bpf_prog_ops flow_dissector_prog_ops = {
10576 	.test_run		= bpf_prog_test_run_flow_dissector,
10577 };
10578 
10579 int sk_detach_filter(struct sock *sk)
10580 {
10581 	int ret = -ENOENT;
10582 	struct sk_filter *filter;
10583 
10584 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
10585 		return -EPERM;
10586 
10587 	filter = rcu_dereference_protected(sk->sk_filter,
10588 					   lockdep_sock_is_held(sk));
10589 	if (filter) {
10590 		RCU_INIT_POINTER(sk->sk_filter, NULL);
10591 		sk_filter_uncharge(sk, filter);
10592 		ret = 0;
10593 	}
10594 
10595 	return ret;
10596 }
10597 EXPORT_SYMBOL_GPL(sk_detach_filter);
10598 
10599 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
10600 		  unsigned int len)
10601 {
10602 	struct sock_fprog_kern *fprog;
10603 	struct sk_filter *filter;
10604 	int ret = 0;
10605 
10606 	lock_sock(sk);
10607 	filter = rcu_dereference_protected(sk->sk_filter,
10608 					   lockdep_sock_is_held(sk));
10609 	if (!filter)
10610 		goto out;
10611 
10612 	/* We're copying the filter that has been originally attached,
10613 	 * so no conversion/decode needed anymore. eBPF programs that
10614 	 * have no original program cannot be dumped through this.
10615 	 */
10616 	ret = -EACCES;
10617 	fprog = filter->prog->orig_prog;
10618 	if (!fprog)
10619 		goto out;
10620 
10621 	ret = fprog->len;
10622 	if (!len)
10623 		/* User space only enquires number of filter blocks. */
10624 		goto out;
10625 
10626 	ret = -EINVAL;
10627 	if (len < fprog->len)
10628 		goto out;
10629 
10630 	ret = -EFAULT;
10631 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
10632 		goto out;
10633 
10634 	/* Instead of bytes, the API requests to return the number
10635 	 * of filter blocks.
10636 	 */
10637 	ret = fprog->len;
10638 out:
10639 	release_sock(sk);
10640 	return ret;
10641 }
10642 
10643 #ifdef CONFIG_INET
10644 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10645 				    struct sock_reuseport *reuse,
10646 				    struct sock *sk, struct sk_buff *skb,
10647 				    struct sock *migrating_sk,
10648 				    u32 hash)
10649 {
10650 	reuse_kern->skb = skb;
10651 	reuse_kern->sk = sk;
10652 	reuse_kern->selected_sk = NULL;
10653 	reuse_kern->migrating_sk = migrating_sk;
10654 	reuse_kern->data_end = skb->data + skb_headlen(skb);
10655 	reuse_kern->hash = hash;
10656 	reuse_kern->reuseport_id = reuse->reuseport_id;
10657 	reuse_kern->bind_inany = reuse->bind_inany;
10658 }
10659 
10660 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10661 				  struct bpf_prog *prog, struct sk_buff *skb,
10662 				  struct sock *migrating_sk,
10663 				  u32 hash)
10664 {
10665 	struct sk_reuseport_kern reuse_kern;
10666 	enum sk_action action;
10667 
10668 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10669 	action = bpf_prog_run(prog, &reuse_kern);
10670 
10671 	if (action == SK_PASS)
10672 		return reuse_kern.selected_sk;
10673 	else
10674 		return ERR_PTR(-ECONNREFUSED);
10675 }
10676 
10677 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10678 	   struct bpf_map *, map, void *, key, u32, flags)
10679 {
10680 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10681 	struct sock_reuseport *reuse;
10682 	struct sock *selected_sk;
10683 
10684 	selected_sk = map->ops->map_lookup_elem(map, key);
10685 	if (!selected_sk)
10686 		return -ENOENT;
10687 
10688 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10689 	if (!reuse) {
10690 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10691 		if (sk_is_refcounted(selected_sk))
10692 			sock_put(selected_sk);
10693 
10694 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
10695 		 * The only (!reuse) case here is - the sk has already been
10696 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
10697 		 *
10698 		 * Other maps (e.g. sock_map) do not provide this guarantee and
10699 		 * the sk may never be in the reuseport group to begin with.
10700 		 */
10701 		return is_sockarray ? -ENOENT : -EINVAL;
10702 	}
10703 
10704 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10705 		struct sock *sk = reuse_kern->sk;
10706 
10707 		if (sk->sk_protocol != selected_sk->sk_protocol)
10708 			return -EPROTOTYPE;
10709 		else if (sk->sk_family != selected_sk->sk_family)
10710 			return -EAFNOSUPPORT;
10711 
10712 		/* Catch all. Likely bound to a different sockaddr. */
10713 		return -EBADFD;
10714 	}
10715 
10716 	reuse_kern->selected_sk = selected_sk;
10717 
10718 	return 0;
10719 }
10720 
10721 static const struct bpf_func_proto sk_select_reuseport_proto = {
10722 	.func           = sk_select_reuseport,
10723 	.gpl_only       = false,
10724 	.ret_type       = RET_INTEGER,
10725 	.arg1_type	= ARG_PTR_TO_CTX,
10726 	.arg2_type      = ARG_CONST_MAP_PTR,
10727 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
10728 	.arg4_type	= ARG_ANYTHING,
10729 };
10730 
10731 BPF_CALL_4(sk_reuseport_load_bytes,
10732 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10733 	   void *, to, u32, len)
10734 {
10735 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10736 }
10737 
10738 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10739 	.func		= sk_reuseport_load_bytes,
10740 	.gpl_only	= false,
10741 	.ret_type	= RET_INTEGER,
10742 	.arg1_type	= ARG_PTR_TO_CTX,
10743 	.arg2_type	= ARG_ANYTHING,
10744 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10745 	.arg4_type	= ARG_CONST_SIZE,
10746 };
10747 
10748 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10749 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10750 	   void *, to, u32, len, u32, start_header)
10751 {
10752 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10753 					       len, start_header);
10754 }
10755 
10756 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10757 	.func		= sk_reuseport_load_bytes_relative,
10758 	.gpl_only	= false,
10759 	.ret_type	= RET_INTEGER,
10760 	.arg1_type	= ARG_PTR_TO_CTX,
10761 	.arg2_type	= ARG_ANYTHING,
10762 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10763 	.arg4_type	= ARG_CONST_SIZE,
10764 	.arg5_type	= ARG_ANYTHING,
10765 };
10766 
10767 static const struct bpf_func_proto *
10768 sk_reuseport_func_proto(enum bpf_func_id func_id,
10769 			const struct bpf_prog *prog)
10770 {
10771 	switch (func_id) {
10772 	case BPF_FUNC_sk_select_reuseport:
10773 		return &sk_select_reuseport_proto;
10774 	case BPF_FUNC_skb_load_bytes:
10775 		return &sk_reuseport_load_bytes_proto;
10776 	case BPF_FUNC_skb_load_bytes_relative:
10777 		return &sk_reuseport_load_bytes_relative_proto;
10778 	case BPF_FUNC_get_socket_cookie:
10779 		return &bpf_get_socket_ptr_cookie_proto;
10780 	case BPF_FUNC_ktime_get_coarse_ns:
10781 		return &bpf_ktime_get_coarse_ns_proto;
10782 	default:
10783 		return bpf_base_func_proto(func_id);
10784 	}
10785 }
10786 
10787 static bool
10788 sk_reuseport_is_valid_access(int off, int size,
10789 			     enum bpf_access_type type,
10790 			     const struct bpf_prog *prog,
10791 			     struct bpf_insn_access_aux *info)
10792 {
10793 	const u32 size_default = sizeof(__u32);
10794 
10795 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10796 	    off % size || type != BPF_READ)
10797 		return false;
10798 
10799 	switch (off) {
10800 	case offsetof(struct sk_reuseport_md, data):
10801 		info->reg_type = PTR_TO_PACKET;
10802 		return size == sizeof(__u64);
10803 
10804 	case offsetof(struct sk_reuseport_md, data_end):
10805 		info->reg_type = PTR_TO_PACKET_END;
10806 		return size == sizeof(__u64);
10807 
10808 	case offsetof(struct sk_reuseport_md, hash):
10809 		return size == size_default;
10810 
10811 	case offsetof(struct sk_reuseport_md, sk):
10812 		info->reg_type = PTR_TO_SOCKET;
10813 		return size == sizeof(__u64);
10814 
10815 	case offsetof(struct sk_reuseport_md, migrating_sk):
10816 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
10817 		return size == sizeof(__u64);
10818 
10819 	/* Fields that allow narrowing */
10820 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10821 		if (size < sizeof_field(struct sk_buff, protocol))
10822 			return false;
10823 		fallthrough;
10824 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10825 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10826 	case bpf_ctx_range(struct sk_reuseport_md, len):
10827 		bpf_ctx_record_field_size(info, size_default);
10828 		return bpf_ctx_narrow_access_ok(off, size, size_default);
10829 
10830 	default:
10831 		return false;
10832 	}
10833 }
10834 
10835 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
10836 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10837 			      si->dst_reg, si->src_reg,			\
10838 			      bpf_target_off(struct sk_reuseport_kern, F, \
10839 					     sizeof_field(struct sk_reuseport_kern, F), \
10840 					     target_size));		\
10841 	})
10842 
10843 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
10844 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10845 				    struct sk_buff,			\
10846 				    skb,				\
10847 				    SKB_FIELD)
10848 
10849 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
10850 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10851 				    struct sock,			\
10852 				    sk,					\
10853 				    SK_FIELD)
10854 
10855 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10856 					   const struct bpf_insn *si,
10857 					   struct bpf_insn *insn_buf,
10858 					   struct bpf_prog *prog,
10859 					   u32 *target_size)
10860 {
10861 	struct bpf_insn *insn = insn_buf;
10862 
10863 	switch (si->off) {
10864 	case offsetof(struct sk_reuseport_md, data):
10865 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
10866 		break;
10867 
10868 	case offsetof(struct sk_reuseport_md, len):
10869 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
10870 		break;
10871 
10872 	case offsetof(struct sk_reuseport_md, eth_protocol):
10873 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10874 		break;
10875 
10876 	case offsetof(struct sk_reuseport_md, ip_protocol):
10877 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10878 		break;
10879 
10880 	case offsetof(struct sk_reuseport_md, data_end):
10881 		SK_REUSEPORT_LOAD_FIELD(data_end);
10882 		break;
10883 
10884 	case offsetof(struct sk_reuseport_md, hash):
10885 		SK_REUSEPORT_LOAD_FIELD(hash);
10886 		break;
10887 
10888 	case offsetof(struct sk_reuseport_md, bind_inany):
10889 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
10890 		break;
10891 
10892 	case offsetof(struct sk_reuseport_md, sk):
10893 		SK_REUSEPORT_LOAD_FIELD(sk);
10894 		break;
10895 
10896 	case offsetof(struct sk_reuseport_md, migrating_sk):
10897 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
10898 		break;
10899 	}
10900 
10901 	return insn - insn_buf;
10902 }
10903 
10904 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10905 	.get_func_proto		= sk_reuseport_func_proto,
10906 	.is_valid_access	= sk_reuseport_is_valid_access,
10907 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
10908 };
10909 
10910 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10911 };
10912 
10913 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10914 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10915 
10916 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10917 	   struct sock *, sk, u64, flags)
10918 {
10919 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10920 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10921 		return -EINVAL;
10922 	if (unlikely(sk && sk_is_refcounted(sk)))
10923 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10924 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
10925 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
10926 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
10927 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
10928 
10929 	/* Check if socket is suitable for packet L3/L4 protocol */
10930 	if (sk && sk->sk_protocol != ctx->protocol)
10931 		return -EPROTOTYPE;
10932 	if (sk && sk->sk_family != ctx->family &&
10933 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10934 		return -EAFNOSUPPORT;
10935 
10936 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10937 		return -EEXIST;
10938 
10939 	/* Select socket as lookup result */
10940 	ctx->selected_sk = sk;
10941 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10942 	return 0;
10943 }
10944 
10945 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10946 	.func		= bpf_sk_lookup_assign,
10947 	.gpl_only	= false,
10948 	.ret_type	= RET_INTEGER,
10949 	.arg1_type	= ARG_PTR_TO_CTX,
10950 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
10951 	.arg3_type	= ARG_ANYTHING,
10952 };
10953 
10954 static const struct bpf_func_proto *
10955 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10956 {
10957 	switch (func_id) {
10958 	case BPF_FUNC_perf_event_output:
10959 		return &bpf_event_output_data_proto;
10960 	case BPF_FUNC_sk_assign:
10961 		return &bpf_sk_lookup_assign_proto;
10962 	case BPF_FUNC_sk_release:
10963 		return &bpf_sk_release_proto;
10964 	default:
10965 		return bpf_sk_base_func_proto(func_id);
10966 	}
10967 }
10968 
10969 static bool sk_lookup_is_valid_access(int off, int size,
10970 				      enum bpf_access_type type,
10971 				      const struct bpf_prog *prog,
10972 				      struct bpf_insn_access_aux *info)
10973 {
10974 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10975 		return false;
10976 	if (off % size != 0)
10977 		return false;
10978 	if (type != BPF_READ)
10979 		return false;
10980 
10981 	switch (off) {
10982 	case offsetof(struct bpf_sk_lookup, sk):
10983 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
10984 		return size == sizeof(__u64);
10985 
10986 	case bpf_ctx_range(struct bpf_sk_lookup, family):
10987 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10988 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10989 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10990 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10991 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10992 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10993 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
10994 		bpf_ctx_record_field_size(info, sizeof(__u32));
10995 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10996 
10997 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
10998 		/* Allow 4-byte access to 2-byte field for backward compatibility */
10999 		if (size == sizeof(__u32))
11000 			return true;
11001 		bpf_ctx_record_field_size(info, sizeof(__be16));
11002 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11003 
11004 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11005 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11006 		/* Allow access to zero padding for backward compatibility */
11007 		bpf_ctx_record_field_size(info, sizeof(__u16));
11008 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11009 
11010 	default:
11011 		return false;
11012 	}
11013 }
11014 
11015 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11016 					const struct bpf_insn *si,
11017 					struct bpf_insn *insn_buf,
11018 					struct bpf_prog *prog,
11019 					u32 *target_size)
11020 {
11021 	struct bpf_insn *insn = insn_buf;
11022 
11023 	switch (si->off) {
11024 	case offsetof(struct bpf_sk_lookup, sk):
11025 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11026 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11027 		break;
11028 
11029 	case offsetof(struct bpf_sk_lookup, family):
11030 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11031 				      bpf_target_off(struct bpf_sk_lookup_kern,
11032 						     family, 2, target_size));
11033 		break;
11034 
11035 	case offsetof(struct bpf_sk_lookup, protocol):
11036 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11037 				      bpf_target_off(struct bpf_sk_lookup_kern,
11038 						     protocol, 2, target_size));
11039 		break;
11040 
11041 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11042 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11043 				      bpf_target_off(struct bpf_sk_lookup_kern,
11044 						     v4.saddr, 4, target_size));
11045 		break;
11046 
11047 	case offsetof(struct bpf_sk_lookup, local_ip4):
11048 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11049 				      bpf_target_off(struct bpf_sk_lookup_kern,
11050 						     v4.daddr, 4, target_size));
11051 		break;
11052 
11053 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11054 				remote_ip6[0], remote_ip6[3]): {
11055 #if IS_ENABLED(CONFIG_IPV6)
11056 		int off = si->off;
11057 
11058 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11059 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11060 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11061 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11062 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11063 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11064 #else
11065 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11066 #endif
11067 		break;
11068 	}
11069 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11070 				local_ip6[0], local_ip6[3]): {
11071 #if IS_ENABLED(CONFIG_IPV6)
11072 		int off = si->off;
11073 
11074 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11075 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11076 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11077 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11078 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11079 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11080 #else
11081 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11082 #endif
11083 		break;
11084 	}
11085 	case offsetof(struct bpf_sk_lookup, remote_port):
11086 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11087 				      bpf_target_off(struct bpf_sk_lookup_kern,
11088 						     sport, 2, target_size));
11089 		break;
11090 
11091 	case offsetofend(struct bpf_sk_lookup, remote_port):
11092 		*target_size = 2;
11093 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11094 		break;
11095 
11096 	case offsetof(struct bpf_sk_lookup, local_port):
11097 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11098 				      bpf_target_off(struct bpf_sk_lookup_kern,
11099 						     dport, 2, target_size));
11100 		break;
11101 
11102 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11103 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11104 				      bpf_target_off(struct bpf_sk_lookup_kern,
11105 						     ingress_ifindex, 4, target_size));
11106 		break;
11107 	}
11108 
11109 	return insn - insn_buf;
11110 }
11111 
11112 const struct bpf_prog_ops sk_lookup_prog_ops = {
11113 	.test_run = bpf_prog_test_run_sk_lookup,
11114 };
11115 
11116 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11117 	.get_func_proto		= sk_lookup_func_proto,
11118 	.is_valid_access	= sk_lookup_is_valid_access,
11119 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11120 };
11121 
11122 #endif /* CONFIG_INET */
11123 
11124 DEFINE_BPF_DISPATCHER(xdp)
11125 
11126 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11127 {
11128 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11129 }
11130 
11131 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11132 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11133 BTF_SOCK_TYPE_xxx
11134 #undef BTF_SOCK_TYPE
11135 
11136 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11137 {
11138 	/* tcp6_sock type is not generated in dwarf and hence btf,
11139 	 * trigger an explicit type generation here.
11140 	 */
11141 	BTF_TYPE_EMIT(struct tcp6_sock);
11142 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11143 	    sk->sk_family == AF_INET6)
11144 		return (unsigned long)sk;
11145 
11146 	return (unsigned long)NULL;
11147 }
11148 
11149 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11150 	.func			= bpf_skc_to_tcp6_sock,
11151 	.gpl_only		= false,
11152 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11153 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11154 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11155 };
11156 
11157 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11158 {
11159 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11160 		return (unsigned long)sk;
11161 
11162 	return (unsigned long)NULL;
11163 }
11164 
11165 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11166 	.func			= bpf_skc_to_tcp_sock,
11167 	.gpl_only		= false,
11168 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11169 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11170 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11171 };
11172 
11173 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11174 {
11175 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11176 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11177 	 */
11178 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11179 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11180 
11181 #ifdef CONFIG_INET
11182 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11183 		return (unsigned long)sk;
11184 #endif
11185 
11186 #if IS_BUILTIN(CONFIG_IPV6)
11187 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11188 		return (unsigned long)sk;
11189 #endif
11190 
11191 	return (unsigned long)NULL;
11192 }
11193 
11194 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11195 	.func			= bpf_skc_to_tcp_timewait_sock,
11196 	.gpl_only		= false,
11197 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11198 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11199 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11200 };
11201 
11202 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11203 {
11204 #ifdef CONFIG_INET
11205 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11206 		return (unsigned long)sk;
11207 #endif
11208 
11209 #if IS_BUILTIN(CONFIG_IPV6)
11210 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11211 		return (unsigned long)sk;
11212 #endif
11213 
11214 	return (unsigned long)NULL;
11215 }
11216 
11217 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11218 	.func			= bpf_skc_to_tcp_request_sock,
11219 	.gpl_only		= false,
11220 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11221 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11222 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11223 };
11224 
11225 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11226 {
11227 	/* udp6_sock type is not generated in dwarf and hence btf,
11228 	 * trigger an explicit type generation here.
11229 	 */
11230 	BTF_TYPE_EMIT(struct udp6_sock);
11231 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11232 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11233 		return (unsigned long)sk;
11234 
11235 	return (unsigned long)NULL;
11236 }
11237 
11238 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11239 	.func			= bpf_skc_to_udp6_sock,
11240 	.gpl_only		= false,
11241 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11242 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11243 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11244 };
11245 
11246 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11247 {
11248 	/* unix_sock type is not generated in dwarf and hence btf,
11249 	 * trigger an explicit type generation here.
11250 	 */
11251 	BTF_TYPE_EMIT(struct unix_sock);
11252 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11253 		return (unsigned long)sk;
11254 
11255 	return (unsigned long)NULL;
11256 }
11257 
11258 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11259 	.func			= bpf_skc_to_unix_sock,
11260 	.gpl_only		= false,
11261 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11262 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11263 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11264 };
11265 
11266 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11267 {
11268 	return (unsigned long)sock_from_file(file);
11269 }
11270 
11271 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11272 BTF_ID(struct, socket)
11273 BTF_ID(struct, file)
11274 
11275 const struct bpf_func_proto bpf_sock_from_file_proto = {
11276 	.func		= bpf_sock_from_file,
11277 	.gpl_only	= false,
11278 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11279 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11280 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11281 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11282 };
11283 
11284 static const struct bpf_func_proto *
11285 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11286 {
11287 	const struct bpf_func_proto *func;
11288 
11289 	switch (func_id) {
11290 	case BPF_FUNC_skc_to_tcp6_sock:
11291 		func = &bpf_skc_to_tcp6_sock_proto;
11292 		break;
11293 	case BPF_FUNC_skc_to_tcp_sock:
11294 		func = &bpf_skc_to_tcp_sock_proto;
11295 		break;
11296 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11297 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11298 		break;
11299 	case BPF_FUNC_skc_to_tcp_request_sock:
11300 		func = &bpf_skc_to_tcp_request_sock_proto;
11301 		break;
11302 	case BPF_FUNC_skc_to_udp6_sock:
11303 		func = &bpf_skc_to_udp6_sock_proto;
11304 		break;
11305 	case BPF_FUNC_skc_to_unix_sock:
11306 		func = &bpf_skc_to_unix_sock_proto;
11307 		break;
11308 	case BPF_FUNC_ktime_get_coarse_ns:
11309 		return &bpf_ktime_get_coarse_ns_proto;
11310 	default:
11311 		return bpf_base_func_proto(func_id);
11312 	}
11313 
11314 	if (!perfmon_capable())
11315 		return NULL;
11316 
11317 	return func;
11318 }
11319