xref: /openbmc/linux/net/core/filter.c (revision 01cc2ec6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 
80 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
81 {
82 	if (in_compat_syscall()) {
83 		struct compat_sock_fprog f32;
84 
85 		if (len != sizeof(f32))
86 			return -EINVAL;
87 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
88 			return -EFAULT;
89 		memset(dst, 0, sizeof(*dst));
90 		dst->len = f32.len;
91 		dst->filter = compat_ptr(f32.filter);
92 	} else {
93 		if (len != sizeof(*dst))
94 			return -EINVAL;
95 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
96 			return -EFAULT;
97 	}
98 
99 	return 0;
100 }
101 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
102 
103 /**
104  *	sk_filter_trim_cap - run a packet through a socket filter
105  *	@sk: sock associated with &sk_buff
106  *	@skb: buffer to filter
107  *	@cap: limit on how short the eBPF program may trim the packet
108  *
109  * Run the eBPF program and then cut skb->data to correct size returned by
110  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
111  * than pkt_len we keep whole skb->data. This is the socket level
112  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
113  * be accepted or -EPERM if the packet should be tossed.
114  *
115  */
116 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
117 {
118 	int err;
119 	struct sk_filter *filter;
120 
121 	/*
122 	 * If the skb was allocated from pfmemalloc reserves, only
123 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
124 	 * helping free memory
125 	 */
126 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
127 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
128 		return -ENOMEM;
129 	}
130 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
131 	if (err)
132 		return err;
133 
134 	err = security_sock_rcv_skb(sk, skb);
135 	if (err)
136 		return err;
137 
138 	rcu_read_lock();
139 	filter = rcu_dereference(sk->sk_filter);
140 	if (filter) {
141 		struct sock *save_sk = skb->sk;
142 		unsigned int pkt_len;
143 
144 		skb->sk = sk;
145 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
146 		skb->sk = save_sk;
147 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
148 	}
149 	rcu_read_unlock();
150 
151 	return err;
152 }
153 EXPORT_SYMBOL(sk_filter_trim_cap);
154 
155 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
156 {
157 	return skb_get_poff(skb);
158 }
159 
160 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
161 {
162 	struct nlattr *nla;
163 
164 	if (skb_is_nonlinear(skb))
165 		return 0;
166 
167 	if (skb->len < sizeof(struct nlattr))
168 		return 0;
169 
170 	if (a > skb->len - sizeof(struct nlattr))
171 		return 0;
172 
173 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
174 	if (nla)
175 		return (void *) nla - (void *) skb->data;
176 
177 	return 0;
178 }
179 
180 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
181 {
182 	struct nlattr *nla;
183 
184 	if (skb_is_nonlinear(skb))
185 		return 0;
186 
187 	if (skb->len < sizeof(struct nlattr))
188 		return 0;
189 
190 	if (a > skb->len - sizeof(struct nlattr))
191 		return 0;
192 
193 	nla = (struct nlattr *) &skb->data[a];
194 	if (nla->nla_len > skb->len - a)
195 		return 0;
196 
197 	nla = nla_find_nested(nla, x);
198 	if (nla)
199 		return (void *) nla - (void *) skb->data;
200 
201 	return 0;
202 }
203 
204 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
205 	   data, int, headlen, int, offset)
206 {
207 	u8 tmp, *ptr;
208 	const int len = sizeof(tmp);
209 
210 	if (offset >= 0) {
211 		if (headlen - offset >= len)
212 			return *(u8 *)(data + offset);
213 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
214 			return tmp;
215 	} else {
216 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
217 		if (likely(ptr))
218 			return *(u8 *)ptr;
219 	}
220 
221 	return -EFAULT;
222 }
223 
224 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
225 	   int, offset)
226 {
227 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
228 					 offset);
229 }
230 
231 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
232 	   data, int, headlen, int, offset)
233 {
234 	u16 tmp, *ptr;
235 	const int len = sizeof(tmp);
236 
237 	if (offset >= 0) {
238 		if (headlen - offset >= len)
239 			return get_unaligned_be16(data + offset);
240 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
241 			return be16_to_cpu(tmp);
242 	} else {
243 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
244 		if (likely(ptr))
245 			return get_unaligned_be16(ptr);
246 	}
247 
248 	return -EFAULT;
249 }
250 
251 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
252 	   int, offset)
253 {
254 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
255 					  offset);
256 }
257 
258 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
259 	   data, int, headlen, int, offset)
260 {
261 	u32 tmp, *ptr;
262 	const int len = sizeof(tmp);
263 
264 	if (likely(offset >= 0)) {
265 		if (headlen - offset >= len)
266 			return get_unaligned_be32(data + offset);
267 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
268 			return be32_to_cpu(tmp);
269 	} else {
270 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
271 		if (likely(ptr))
272 			return get_unaligned_be32(ptr);
273 	}
274 
275 	return -EFAULT;
276 }
277 
278 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
279 	   int, offset)
280 {
281 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
282 					  offset);
283 }
284 
285 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
286 			      struct bpf_insn *insn_buf)
287 {
288 	struct bpf_insn *insn = insn_buf;
289 
290 	switch (skb_field) {
291 	case SKF_AD_MARK:
292 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
293 
294 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
295 				      offsetof(struct sk_buff, mark));
296 		break;
297 
298 	case SKF_AD_PKTTYPE:
299 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
300 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
301 #ifdef __BIG_ENDIAN_BITFIELD
302 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
303 #endif
304 		break;
305 
306 	case SKF_AD_QUEUE:
307 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
308 
309 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
310 				      offsetof(struct sk_buff, queue_mapping));
311 		break;
312 
313 	case SKF_AD_VLAN_TAG:
314 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
315 
316 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
317 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
318 				      offsetof(struct sk_buff, vlan_tci));
319 		break;
320 	case SKF_AD_VLAN_TAG_PRESENT:
321 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
322 		if (PKT_VLAN_PRESENT_BIT)
323 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
324 		if (PKT_VLAN_PRESENT_BIT < 7)
325 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
326 		break;
327 	}
328 
329 	return insn - insn_buf;
330 }
331 
332 static bool convert_bpf_extensions(struct sock_filter *fp,
333 				   struct bpf_insn **insnp)
334 {
335 	struct bpf_insn *insn = *insnp;
336 	u32 cnt;
337 
338 	switch (fp->k) {
339 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
340 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
341 
342 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
343 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
344 				      offsetof(struct sk_buff, protocol));
345 		/* A = ntohs(A) [emitting a nop or swap16] */
346 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
347 		break;
348 
349 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
350 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
351 		insn += cnt - 1;
352 		break;
353 
354 	case SKF_AD_OFF + SKF_AD_IFINDEX:
355 	case SKF_AD_OFF + SKF_AD_HATYPE:
356 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
357 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
358 
359 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
360 				      BPF_REG_TMP, BPF_REG_CTX,
361 				      offsetof(struct sk_buff, dev));
362 		/* if (tmp != 0) goto pc + 1 */
363 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
364 		*insn++ = BPF_EXIT_INSN();
365 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
366 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
367 					    offsetof(struct net_device, ifindex));
368 		else
369 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
370 					    offsetof(struct net_device, type));
371 		break;
372 
373 	case SKF_AD_OFF + SKF_AD_MARK:
374 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
375 		insn += cnt - 1;
376 		break;
377 
378 	case SKF_AD_OFF + SKF_AD_RXHASH:
379 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
380 
381 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
382 				    offsetof(struct sk_buff, hash));
383 		break;
384 
385 	case SKF_AD_OFF + SKF_AD_QUEUE:
386 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
387 		insn += cnt - 1;
388 		break;
389 
390 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
391 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
392 					 BPF_REG_A, BPF_REG_CTX, insn);
393 		insn += cnt - 1;
394 		break;
395 
396 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
397 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
398 					 BPF_REG_A, BPF_REG_CTX, insn);
399 		insn += cnt - 1;
400 		break;
401 
402 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
403 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
404 
405 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
406 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
407 				      offsetof(struct sk_buff, vlan_proto));
408 		/* A = ntohs(A) [emitting a nop or swap16] */
409 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
410 		break;
411 
412 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
413 	case SKF_AD_OFF + SKF_AD_NLATTR:
414 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
415 	case SKF_AD_OFF + SKF_AD_CPU:
416 	case SKF_AD_OFF + SKF_AD_RANDOM:
417 		/* arg1 = CTX */
418 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
419 		/* arg2 = A */
420 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
421 		/* arg3 = X */
422 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
423 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
424 		switch (fp->k) {
425 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
426 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
427 			break;
428 		case SKF_AD_OFF + SKF_AD_NLATTR:
429 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
430 			break;
431 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
432 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
433 			break;
434 		case SKF_AD_OFF + SKF_AD_CPU:
435 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
436 			break;
437 		case SKF_AD_OFF + SKF_AD_RANDOM:
438 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
439 			bpf_user_rnd_init_once();
440 			break;
441 		}
442 		break;
443 
444 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
445 		/* A ^= X */
446 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
447 		break;
448 
449 	default:
450 		/* This is just a dummy call to avoid letting the compiler
451 		 * evict __bpf_call_base() as an optimization. Placed here
452 		 * where no-one bothers.
453 		 */
454 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
455 		return false;
456 	}
457 
458 	*insnp = insn;
459 	return true;
460 }
461 
462 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
463 {
464 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
465 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
466 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
467 		      BPF_SIZE(fp->code) == BPF_W;
468 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
469 	const int ip_align = NET_IP_ALIGN;
470 	struct bpf_insn *insn = *insnp;
471 	int offset = fp->k;
472 
473 	if (!indirect &&
474 	    ((unaligned_ok && offset >= 0) ||
475 	     (!unaligned_ok && offset >= 0 &&
476 	      offset + ip_align >= 0 &&
477 	      offset + ip_align % size == 0))) {
478 		bool ldx_off_ok = offset <= S16_MAX;
479 
480 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
481 		if (offset)
482 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
483 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
484 				      size, 2 + endian + (!ldx_off_ok * 2));
485 		if (ldx_off_ok) {
486 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
487 					      BPF_REG_D, offset);
488 		} else {
489 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
490 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
491 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
492 					      BPF_REG_TMP, 0);
493 		}
494 		if (endian)
495 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
496 		*insn++ = BPF_JMP_A(8);
497 	}
498 
499 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
500 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
501 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
502 	if (!indirect) {
503 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
504 	} else {
505 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
506 		if (fp->k)
507 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
508 	}
509 
510 	switch (BPF_SIZE(fp->code)) {
511 	case BPF_B:
512 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
513 		break;
514 	case BPF_H:
515 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
516 		break;
517 	case BPF_W:
518 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
519 		break;
520 	default:
521 		return false;
522 	}
523 
524 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
525 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
526 	*insn   = BPF_EXIT_INSN();
527 
528 	*insnp = insn;
529 	return true;
530 }
531 
532 /**
533  *	bpf_convert_filter - convert filter program
534  *	@prog: the user passed filter program
535  *	@len: the length of the user passed filter program
536  *	@new_prog: allocated 'struct bpf_prog' or NULL
537  *	@new_len: pointer to store length of converted program
538  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
539  *
540  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
541  * style extended BPF (eBPF).
542  * Conversion workflow:
543  *
544  * 1) First pass for calculating the new program length:
545  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
546  *
547  * 2) 2nd pass to remap in two passes: 1st pass finds new
548  *    jump offsets, 2nd pass remapping:
549  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
550  */
551 static int bpf_convert_filter(struct sock_filter *prog, int len,
552 			      struct bpf_prog *new_prog, int *new_len,
553 			      bool *seen_ld_abs)
554 {
555 	int new_flen = 0, pass = 0, target, i, stack_off;
556 	struct bpf_insn *new_insn, *first_insn = NULL;
557 	struct sock_filter *fp;
558 	int *addrs = NULL;
559 	u8 bpf_src;
560 
561 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
562 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
563 
564 	if (len <= 0 || len > BPF_MAXINSNS)
565 		return -EINVAL;
566 
567 	if (new_prog) {
568 		first_insn = new_prog->insnsi;
569 		addrs = kcalloc(len, sizeof(*addrs),
570 				GFP_KERNEL | __GFP_NOWARN);
571 		if (!addrs)
572 			return -ENOMEM;
573 	}
574 
575 do_pass:
576 	new_insn = first_insn;
577 	fp = prog;
578 
579 	/* Classic BPF related prologue emission. */
580 	if (new_prog) {
581 		/* Classic BPF expects A and X to be reset first. These need
582 		 * to be guaranteed to be the first two instructions.
583 		 */
584 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
585 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
586 
587 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
588 		 * In eBPF case it's done by the compiler, here we need to
589 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
590 		 */
591 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
592 		if (*seen_ld_abs) {
593 			/* For packet access in classic BPF, cache skb->data
594 			 * in callee-saved BPF R8 and skb->len - skb->data_len
595 			 * (headlen) in BPF R9. Since classic BPF is read-only
596 			 * on CTX, we only need to cache it once.
597 			 */
598 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
599 						  BPF_REG_D, BPF_REG_CTX,
600 						  offsetof(struct sk_buff, data));
601 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
602 						  offsetof(struct sk_buff, len));
603 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
604 						  offsetof(struct sk_buff, data_len));
605 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
606 		}
607 	} else {
608 		new_insn += 3;
609 	}
610 
611 	for (i = 0; i < len; fp++, i++) {
612 		struct bpf_insn tmp_insns[32] = { };
613 		struct bpf_insn *insn = tmp_insns;
614 
615 		if (addrs)
616 			addrs[i] = new_insn - first_insn;
617 
618 		switch (fp->code) {
619 		/* All arithmetic insns and skb loads map as-is. */
620 		case BPF_ALU | BPF_ADD | BPF_X:
621 		case BPF_ALU | BPF_ADD | BPF_K:
622 		case BPF_ALU | BPF_SUB | BPF_X:
623 		case BPF_ALU | BPF_SUB | BPF_K:
624 		case BPF_ALU | BPF_AND | BPF_X:
625 		case BPF_ALU | BPF_AND | BPF_K:
626 		case BPF_ALU | BPF_OR | BPF_X:
627 		case BPF_ALU | BPF_OR | BPF_K:
628 		case BPF_ALU | BPF_LSH | BPF_X:
629 		case BPF_ALU | BPF_LSH | BPF_K:
630 		case BPF_ALU | BPF_RSH | BPF_X:
631 		case BPF_ALU | BPF_RSH | BPF_K:
632 		case BPF_ALU | BPF_XOR | BPF_X:
633 		case BPF_ALU | BPF_XOR | BPF_K:
634 		case BPF_ALU | BPF_MUL | BPF_X:
635 		case BPF_ALU | BPF_MUL | BPF_K:
636 		case BPF_ALU | BPF_DIV | BPF_X:
637 		case BPF_ALU | BPF_DIV | BPF_K:
638 		case BPF_ALU | BPF_MOD | BPF_X:
639 		case BPF_ALU | BPF_MOD | BPF_K:
640 		case BPF_ALU | BPF_NEG:
641 		case BPF_LD | BPF_ABS | BPF_W:
642 		case BPF_LD | BPF_ABS | BPF_H:
643 		case BPF_LD | BPF_ABS | BPF_B:
644 		case BPF_LD | BPF_IND | BPF_W:
645 		case BPF_LD | BPF_IND | BPF_H:
646 		case BPF_LD | BPF_IND | BPF_B:
647 			/* Check for overloaded BPF extension and
648 			 * directly convert it if found, otherwise
649 			 * just move on with mapping.
650 			 */
651 			if (BPF_CLASS(fp->code) == BPF_LD &&
652 			    BPF_MODE(fp->code) == BPF_ABS &&
653 			    convert_bpf_extensions(fp, &insn))
654 				break;
655 			if (BPF_CLASS(fp->code) == BPF_LD &&
656 			    convert_bpf_ld_abs(fp, &insn)) {
657 				*seen_ld_abs = true;
658 				break;
659 			}
660 
661 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
662 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
663 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
664 				/* Error with exception code on div/mod by 0.
665 				 * For cBPF programs, this was always return 0.
666 				 */
667 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
668 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
669 				*insn++ = BPF_EXIT_INSN();
670 			}
671 
672 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
673 			break;
674 
675 		/* Jump transformation cannot use BPF block macros
676 		 * everywhere as offset calculation and target updates
677 		 * require a bit more work than the rest, i.e. jump
678 		 * opcodes map as-is, but offsets need adjustment.
679 		 */
680 
681 #define BPF_EMIT_JMP							\
682 	do {								\
683 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
684 		s32 off;						\
685 									\
686 		if (target >= len || target < 0)			\
687 			goto err;					\
688 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
689 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
690 		off -= insn - tmp_insns;				\
691 		/* Reject anything not fitting into insn->off. */	\
692 		if (off < off_min || off > off_max)			\
693 			goto err;					\
694 		insn->off = off;					\
695 	} while (0)
696 
697 		case BPF_JMP | BPF_JA:
698 			target = i + fp->k + 1;
699 			insn->code = fp->code;
700 			BPF_EMIT_JMP;
701 			break;
702 
703 		case BPF_JMP | BPF_JEQ | BPF_K:
704 		case BPF_JMP | BPF_JEQ | BPF_X:
705 		case BPF_JMP | BPF_JSET | BPF_K:
706 		case BPF_JMP | BPF_JSET | BPF_X:
707 		case BPF_JMP | BPF_JGT | BPF_K:
708 		case BPF_JMP | BPF_JGT | BPF_X:
709 		case BPF_JMP | BPF_JGE | BPF_K:
710 		case BPF_JMP | BPF_JGE | BPF_X:
711 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
712 				/* BPF immediates are signed, zero extend
713 				 * immediate into tmp register and use it
714 				 * in compare insn.
715 				 */
716 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
717 
718 				insn->dst_reg = BPF_REG_A;
719 				insn->src_reg = BPF_REG_TMP;
720 				bpf_src = BPF_X;
721 			} else {
722 				insn->dst_reg = BPF_REG_A;
723 				insn->imm = fp->k;
724 				bpf_src = BPF_SRC(fp->code);
725 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
726 			}
727 
728 			/* Common case where 'jump_false' is next insn. */
729 			if (fp->jf == 0) {
730 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
731 				target = i + fp->jt + 1;
732 				BPF_EMIT_JMP;
733 				break;
734 			}
735 
736 			/* Convert some jumps when 'jump_true' is next insn. */
737 			if (fp->jt == 0) {
738 				switch (BPF_OP(fp->code)) {
739 				case BPF_JEQ:
740 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
741 					break;
742 				case BPF_JGT:
743 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
744 					break;
745 				case BPF_JGE:
746 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
747 					break;
748 				default:
749 					goto jmp_rest;
750 				}
751 
752 				target = i + fp->jf + 1;
753 				BPF_EMIT_JMP;
754 				break;
755 			}
756 jmp_rest:
757 			/* Other jumps are mapped into two insns: Jxx and JA. */
758 			target = i + fp->jt + 1;
759 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
760 			BPF_EMIT_JMP;
761 			insn++;
762 
763 			insn->code = BPF_JMP | BPF_JA;
764 			target = i + fp->jf + 1;
765 			BPF_EMIT_JMP;
766 			break;
767 
768 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
769 		case BPF_LDX | BPF_MSH | BPF_B: {
770 			struct sock_filter tmp = {
771 				.code	= BPF_LD | BPF_ABS | BPF_B,
772 				.k	= fp->k,
773 			};
774 
775 			*seen_ld_abs = true;
776 
777 			/* X = A */
778 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
779 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
780 			convert_bpf_ld_abs(&tmp, &insn);
781 			insn++;
782 			/* A &= 0xf */
783 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
784 			/* A <<= 2 */
785 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
786 			/* tmp = X */
787 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
788 			/* X = A */
789 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
790 			/* A = tmp */
791 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
792 			break;
793 		}
794 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
795 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
796 		 */
797 		case BPF_RET | BPF_A:
798 		case BPF_RET | BPF_K:
799 			if (BPF_RVAL(fp->code) == BPF_K)
800 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
801 							0, fp->k);
802 			*insn = BPF_EXIT_INSN();
803 			break;
804 
805 		/* Store to stack. */
806 		case BPF_ST:
807 		case BPF_STX:
808 			stack_off = fp->k * 4  + 4;
809 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
810 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
811 					    -stack_off);
812 			/* check_load_and_stores() verifies that classic BPF can
813 			 * load from stack only after write, so tracking
814 			 * stack_depth for ST|STX insns is enough
815 			 */
816 			if (new_prog && new_prog->aux->stack_depth < stack_off)
817 				new_prog->aux->stack_depth = stack_off;
818 			break;
819 
820 		/* Load from stack. */
821 		case BPF_LD | BPF_MEM:
822 		case BPF_LDX | BPF_MEM:
823 			stack_off = fp->k * 4  + 4;
824 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
825 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
826 					    -stack_off);
827 			break;
828 
829 		/* A = K or X = K */
830 		case BPF_LD | BPF_IMM:
831 		case BPF_LDX | BPF_IMM:
832 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
833 					      BPF_REG_A : BPF_REG_X, fp->k);
834 			break;
835 
836 		/* X = A */
837 		case BPF_MISC | BPF_TAX:
838 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
839 			break;
840 
841 		/* A = X */
842 		case BPF_MISC | BPF_TXA:
843 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
844 			break;
845 
846 		/* A = skb->len or X = skb->len */
847 		case BPF_LD | BPF_W | BPF_LEN:
848 		case BPF_LDX | BPF_W | BPF_LEN:
849 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
850 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
851 					    offsetof(struct sk_buff, len));
852 			break;
853 
854 		/* Access seccomp_data fields. */
855 		case BPF_LDX | BPF_ABS | BPF_W:
856 			/* A = *(u32 *) (ctx + K) */
857 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
858 			break;
859 
860 		/* Unknown instruction. */
861 		default:
862 			goto err;
863 		}
864 
865 		insn++;
866 		if (new_prog)
867 			memcpy(new_insn, tmp_insns,
868 			       sizeof(*insn) * (insn - tmp_insns));
869 		new_insn += insn - tmp_insns;
870 	}
871 
872 	if (!new_prog) {
873 		/* Only calculating new length. */
874 		*new_len = new_insn - first_insn;
875 		if (*seen_ld_abs)
876 			*new_len += 4; /* Prologue bits. */
877 		return 0;
878 	}
879 
880 	pass++;
881 	if (new_flen != new_insn - first_insn) {
882 		new_flen = new_insn - first_insn;
883 		if (pass > 2)
884 			goto err;
885 		goto do_pass;
886 	}
887 
888 	kfree(addrs);
889 	BUG_ON(*new_len != new_flen);
890 	return 0;
891 err:
892 	kfree(addrs);
893 	return -EINVAL;
894 }
895 
896 /* Security:
897  *
898  * As we dont want to clear mem[] array for each packet going through
899  * __bpf_prog_run(), we check that filter loaded by user never try to read
900  * a cell if not previously written, and we check all branches to be sure
901  * a malicious user doesn't try to abuse us.
902  */
903 static int check_load_and_stores(const struct sock_filter *filter, int flen)
904 {
905 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
906 	int pc, ret = 0;
907 
908 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
909 
910 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
911 	if (!masks)
912 		return -ENOMEM;
913 
914 	memset(masks, 0xff, flen * sizeof(*masks));
915 
916 	for (pc = 0; pc < flen; pc++) {
917 		memvalid &= masks[pc];
918 
919 		switch (filter[pc].code) {
920 		case BPF_ST:
921 		case BPF_STX:
922 			memvalid |= (1 << filter[pc].k);
923 			break;
924 		case BPF_LD | BPF_MEM:
925 		case BPF_LDX | BPF_MEM:
926 			if (!(memvalid & (1 << filter[pc].k))) {
927 				ret = -EINVAL;
928 				goto error;
929 			}
930 			break;
931 		case BPF_JMP | BPF_JA:
932 			/* A jump must set masks on target */
933 			masks[pc + 1 + filter[pc].k] &= memvalid;
934 			memvalid = ~0;
935 			break;
936 		case BPF_JMP | BPF_JEQ | BPF_K:
937 		case BPF_JMP | BPF_JEQ | BPF_X:
938 		case BPF_JMP | BPF_JGE | BPF_K:
939 		case BPF_JMP | BPF_JGE | BPF_X:
940 		case BPF_JMP | BPF_JGT | BPF_K:
941 		case BPF_JMP | BPF_JGT | BPF_X:
942 		case BPF_JMP | BPF_JSET | BPF_K:
943 		case BPF_JMP | BPF_JSET | BPF_X:
944 			/* A jump must set masks on targets */
945 			masks[pc + 1 + filter[pc].jt] &= memvalid;
946 			masks[pc + 1 + filter[pc].jf] &= memvalid;
947 			memvalid = ~0;
948 			break;
949 		}
950 	}
951 error:
952 	kfree(masks);
953 	return ret;
954 }
955 
956 static bool chk_code_allowed(u16 code_to_probe)
957 {
958 	static const bool codes[] = {
959 		/* 32 bit ALU operations */
960 		[BPF_ALU | BPF_ADD | BPF_K] = true,
961 		[BPF_ALU | BPF_ADD | BPF_X] = true,
962 		[BPF_ALU | BPF_SUB | BPF_K] = true,
963 		[BPF_ALU | BPF_SUB | BPF_X] = true,
964 		[BPF_ALU | BPF_MUL | BPF_K] = true,
965 		[BPF_ALU | BPF_MUL | BPF_X] = true,
966 		[BPF_ALU | BPF_DIV | BPF_K] = true,
967 		[BPF_ALU | BPF_DIV | BPF_X] = true,
968 		[BPF_ALU | BPF_MOD | BPF_K] = true,
969 		[BPF_ALU | BPF_MOD | BPF_X] = true,
970 		[BPF_ALU | BPF_AND | BPF_K] = true,
971 		[BPF_ALU | BPF_AND | BPF_X] = true,
972 		[BPF_ALU | BPF_OR | BPF_K] = true,
973 		[BPF_ALU | BPF_OR | BPF_X] = true,
974 		[BPF_ALU | BPF_XOR | BPF_K] = true,
975 		[BPF_ALU | BPF_XOR | BPF_X] = true,
976 		[BPF_ALU | BPF_LSH | BPF_K] = true,
977 		[BPF_ALU | BPF_LSH | BPF_X] = true,
978 		[BPF_ALU | BPF_RSH | BPF_K] = true,
979 		[BPF_ALU | BPF_RSH | BPF_X] = true,
980 		[BPF_ALU | BPF_NEG] = true,
981 		/* Load instructions */
982 		[BPF_LD | BPF_W | BPF_ABS] = true,
983 		[BPF_LD | BPF_H | BPF_ABS] = true,
984 		[BPF_LD | BPF_B | BPF_ABS] = true,
985 		[BPF_LD | BPF_W | BPF_LEN] = true,
986 		[BPF_LD | BPF_W | BPF_IND] = true,
987 		[BPF_LD | BPF_H | BPF_IND] = true,
988 		[BPF_LD | BPF_B | BPF_IND] = true,
989 		[BPF_LD | BPF_IMM] = true,
990 		[BPF_LD | BPF_MEM] = true,
991 		[BPF_LDX | BPF_W | BPF_LEN] = true,
992 		[BPF_LDX | BPF_B | BPF_MSH] = true,
993 		[BPF_LDX | BPF_IMM] = true,
994 		[BPF_LDX | BPF_MEM] = true,
995 		/* Store instructions */
996 		[BPF_ST] = true,
997 		[BPF_STX] = true,
998 		/* Misc instructions */
999 		[BPF_MISC | BPF_TAX] = true,
1000 		[BPF_MISC | BPF_TXA] = true,
1001 		/* Return instructions */
1002 		[BPF_RET | BPF_K] = true,
1003 		[BPF_RET | BPF_A] = true,
1004 		/* Jump instructions */
1005 		[BPF_JMP | BPF_JA] = true,
1006 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1007 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1008 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1009 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1010 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1011 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1012 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1013 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1014 	};
1015 
1016 	if (code_to_probe >= ARRAY_SIZE(codes))
1017 		return false;
1018 
1019 	return codes[code_to_probe];
1020 }
1021 
1022 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1023 				unsigned int flen)
1024 {
1025 	if (filter == NULL)
1026 		return false;
1027 	if (flen == 0 || flen > BPF_MAXINSNS)
1028 		return false;
1029 
1030 	return true;
1031 }
1032 
1033 /**
1034  *	bpf_check_classic - verify socket filter code
1035  *	@filter: filter to verify
1036  *	@flen: length of filter
1037  *
1038  * Check the user's filter code. If we let some ugly
1039  * filter code slip through kaboom! The filter must contain
1040  * no references or jumps that are out of range, no illegal
1041  * instructions, and must end with a RET instruction.
1042  *
1043  * All jumps are forward as they are not signed.
1044  *
1045  * Returns 0 if the rule set is legal or -EINVAL if not.
1046  */
1047 static int bpf_check_classic(const struct sock_filter *filter,
1048 			     unsigned int flen)
1049 {
1050 	bool anc_found;
1051 	int pc;
1052 
1053 	/* Check the filter code now */
1054 	for (pc = 0; pc < flen; pc++) {
1055 		const struct sock_filter *ftest = &filter[pc];
1056 
1057 		/* May we actually operate on this code? */
1058 		if (!chk_code_allowed(ftest->code))
1059 			return -EINVAL;
1060 
1061 		/* Some instructions need special checks */
1062 		switch (ftest->code) {
1063 		case BPF_ALU | BPF_DIV | BPF_K:
1064 		case BPF_ALU | BPF_MOD | BPF_K:
1065 			/* Check for division by zero */
1066 			if (ftest->k == 0)
1067 				return -EINVAL;
1068 			break;
1069 		case BPF_ALU | BPF_LSH | BPF_K:
1070 		case BPF_ALU | BPF_RSH | BPF_K:
1071 			if (ftest->k >= 32)
1072 				return -EINVAL;
1073 			break;
1074 		case BPF_LD | BPF_MEM:
1075 		case BPF_LDX | BPF_MEM:
1076 		case BPF_ST:
1077 		case BPF_STX:
1078 			/* Check for invalid memory addresses */
1079 			if (ftest->k >= BPF_MEMWORDS)
1080 				return -EINVAL;
1081 			break;
1082 		case BPF_JMP | BPF_JA:
1083 			/* Note, the large ftest->k might cause loops.
1084 			 * Compare this with conditional jumps below,
1085 			 * where offsets are limited. --ANK (981016)
1086 			 */
1087 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1088 				return -EINVAL;
1089 			break;
1090 		case BPF_JMP | BPF_JEQ | BPF_K:
1091 		case BPF_JMP | BPF_JEQ | BPF_X:
1092 		case BPF_JMP | BPF_JGE | BPF_K:
1093 		case BPF_JMP | BPF_JGE | BPF_X:
1094 		case BPF_JMP | BPF_JGT | BPF_K:
1095 		case BPF_JMP | BPF_JGT | BPF_X:
1096 		case BPF_JMP | BPF_JSET | BPF_K:
1097 		case BPF_JMP | BPF_JSET | BPF_X:
1098 			/* Both conditionals must be safe */
1099 			if (pc + ftest->jt + 1 >= flen ||
1100 			    pc + ftest->jf + 1 >= flen)
1101 				return -EINVAL;
1102 			break;
1103 		case BPF_LD | BPF_W | BPF_ABS:
1104 		case BPF_LD | BPF_H | BPF_ABS:
1105 		case BPF_LD | BPF_B | BPF_ABS:
1106 			anc_found = false;
1107 			if (bpf_anc_helper(ftest) & BPF_ANC)
1108 				anc_found = true;
1109 			/* Ancillary operation unknown or unsupported */
1110 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1111 				return -EINVAL;
1112 		}
1113 	}
1114 
1115 	/* Last instruction must be a RET code */
1116 	switch (filter[flen - 1].code) {
1117 	case BPF_RET | BPF_K:
1118 	case BPF_RET | BPF_A:
1119 		return check_load_and_stores(filter, flen);
1120 	}
1121 
1122 	return -EINVAL;
1123 }
1124 
1125 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1126 				      const struct sock_fprog *fprog)
1127 {
1128 	unsigned int fsize = bpf_classic_proglen(fprog);
1129 	struct sock_fprog_kern *fkprog;
1130 
1131 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1132 	if (!fp->orig_prog)
1133 		return -ENOMEM;
1134 
1135 	fkprog = fp->orig_prog;
1136 	fkprog->len = fprog->len;
1137 
1138 	fkprog->filter = kmemdup(fp->insns, fsize,
1139 				 GFP_KERNEL | __GFP_NOWARN);
1140 	if (!fkprog->filter) {
1141 		kfree(fp->orig_prog);
1142 		return -ENOMEM;
1143 	}
1144 
1145 	return 0;
1146 }
1147 
1148 static void bpf_release_orig_filter(struct bpf_prog *fp)
1149 {
1150 	struct sock_fprog_kern *fprog = fp->orig_prog;
1151 
1152 	if (fprog) {
1153 		kfree(fprog->filter);
1154 		kfree(fprog);
1155 	}
1156 }
1157 
1158 static void __bpf_prog_release(struct bpf_prog *prog)
1159 {
1160 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1161 		bpf_prog_put(prog);
1162 	} else {
1163 		bpf_release_orig_filter(prog);
1164 		bpf_prog_free(prog);
1165 	}
1166 }
1167 
1168 static void __sk_filter_release(struct sk_filter *fp)
1169 {
1170 	__bpf_prog_release(fp->prog);
1171 	kfree(fp);
1172 }
1173 
1174 /**
1175  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1176  *	@rcu: rcu_head that contains the sk_filter to free
1177  */
1178 static void sk_filter_release_rcu(struct rcu_head *rcu)
1179 {
1180 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1181 
1182 	__sk_filter_release(fp);
1183 }
1184 
1185 /**
1186  *	sk_filter_release - release a socket filter
1187  *	@fp: filter to remove
1188  *
1189  *	Remove a filter from a socket and release its resources.
1190  */
1191 static void sk_filter_release(struct sk_filter *fp)
1192 {
1193 	if (refcount_dec_and_test(&fp->refcnt))
1194 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1195 }
1196 
1197 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1198 {
1199 	u32 filter_size = bpf_prog_size(fp->prog->len);
1200 
1201 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1202 	sk_filter_release(fp);
1203 }
1204 
1205 /* try to charge the socket memory if there is space available
1206  * return true on success
1207  */
1208 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1209 {
1210 	u32 filter_size = bpf_prog_size(fp->prog->len);
1211 
1212 	/* same check as in sock_kmalloc() */
1213 	if (filter_size <= sysctl_optmem_max &&
1214 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1215 		atomic_add(filter_size, &sk->sk_omem_alloc);
1216 		return true;
1217 	}
1218 	return false;
1219 }
1220 
1221 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1222 {
1223 	if (!refcount_inc_not_zero(&fp->refcnt))
1224 		return false;
1225 
1226 	if (!__sk_filter_charge(sk, fp)) {
1227 		sk_filter_release(fp);
1228 		return false;
1229 	}
1230 	return true;
1231 }
1232 
1233 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1234 {
1235 	struct sock_filter *old_prog;
1236 	struct bpf_prog *old_fp;
1237 	int err, new_len, old_len = fp->len;
1238 	bool seen_ld_abs = false;
1239 
1240 	/* We are free to overwrite insns et al right here as it
1241 	 * won't be used at this point in time anymore internally
1242 	 * after the migration to the internal BPF instruction
1243 	 * representation.
1244 	 */
1245 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1246 		     sizeof(struct bpf_insn));
1247 
1248 	/* Conversion cannot happen on overlapping memory areas,
1249 	 * so we need to keep the user BPF around until the 2nd
1250 	 * pass. At this time, the user BPF is stored in fp->insns.
1251 	 */
1252 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1253 			   GFP_KERNEL | __GFP_NOWARN);
1254 	if (!old_prog) {
1255 		err = -ENOMEM;
1256 		goto out_err;
1257 	}
1258 
1259 	/* 1st pass: calculate the new program length. */
1260 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1261 				 &seen_ld_abs);
1262 	if (err)
1263 		goto out_err_free;
1264 
1265 	/* Expand fp for appending the new filter representation. */
1266 	old_fp = fp;
1267 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1268 	if (!fp) {
1269 		/* The old_fp is still around in case we couldn't
1270 		 * allocate new memory, so uncharge on that one.
1271 		 */
1272 		fp = old_fp;
1273 		err = -ENOMEM;
1274 		goto out_err_free;
1275 	}
1276 
1277 	fp->len = new_len;
1278 
1279 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1280 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1281 				 &seen_ld_abs);
1282 	if (err)
1283 		/* 2nd bpf_convert_filter() can fail only if it fails
1284 		 * to allocate memory, remapping must succeed. Note,
1285 		 * that at this time old_fp has already been released
1286 		 * by krealloc().
1287 		 */
1288 		goto out_err_free;
1289 
1290 	fp = bpf_prog_select_runtime(fp, &err);
1291 	if (err)
1292 		goto out_err_free;
1293 
1294 	kfree(old_prog);
1295 	return fp;
1296 
1297 out_err_free:
1298 	kfree(old_prog);
1299 out_err:
1300 	__bpf_prog_release(fp);
1301 	return ERR_PTR(err);
1302 }
1303 
1304 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1305 					   bpf_aux_classic_check_t trans)
1306 {
1307 	int err;
1308 
1309 	fp->bpf_func = NULL;
1310 	fp->jited = 0;
1311 
1312 	err = bpf_check_classic(fp->insns, fp->len);
1313 	if (err) {
1314 		__bpf_prog_release(fp);
1315 		return ERR_PTR(err);
1316 	}
1317 
1318 	/* There might be additional checks and transformations
1319 	 * needed on classic filters, f.e. in case of seccomp.
1320 	 */
1321 	if (trans) {
1322 		err = trans(fp->insns, fp->len);
1323 		if (err) {
1324 			__bpf_prog_release(fp);
1325 			return ERR_PTR(err);
1326 		}
1327 	}
1328 
1329 	/* Probe if we can JIT compile the filter and if so, do
1330 	 * the compilation of the filter.
1331 	 */
1332 	bpf_jit_compile(fp);
1333 
1334 	/* JIT compiler couldn't process this filter, so do the
1335 	 * internal BPF translation for the optimized interpreter.
1336 	 */
1337 	if (!fp->jited)
1338 		fp = bpf_migrate_filter(fp);
1339 
1340 	return fp;
1341 }
1342 
1343 /**
1344  *	bpf_prog_create - create an unattached filter
1345  *	@pfp: the unattached filter that is created
1346  *	@fprog: the filter program
1347  *
1348  * Create a filter independent of any socket. We first run some
1349  * sanity checks on it to make sure it does not explode on us later.
1350  * If an error occurs or there is insufficient memory for the filter
1351  * a negative errno code is returned. On success the return is zero.
1352  */
1353 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1354 {
1355 	unsigned int fsize = bpf_classic_proglen(fprog);
1356 	struct bpf_prog *fp;
1357 
1358 	/* Make sure new filter is there and in the right amounts. */
1359 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1360 		return -EINVAL;
1361 
1362 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1363 	if (!fp)
1364 		return -ENOMEM;
1365 
1366 	memcpy(fp->insns, fprog->filter, fsize);
1367 
1368 	fp->len = fprog->len;
1369 	/* Since unattached filters are not copied back to user
1370 	 * space through sk_get_filter(), we do not need to hold
1371 	 * a copy here, and can spare us the work.
1372 	 */
1373 	fp->orig_prog = NULL;
1374 
1375 	/* bpf_prepare_filter() already takes care of freeing
1376 	 * memory in case something goes wrong.
1377 	 */
1378 	fp = bpf_prepare_filter(fp, NULL);
1379 	if (IS_ERR(fp))
1380 		return PTR_ERR(fp);
1381 
1382 	*pfp = fp;
1383 	return 0;
1384 }
1385 EXPORT_SYMBOL_GPL(bpf_prog_create);
1386 
1387 /**
1388  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1389  *	@pfp: the unattached filter that is created
1390  *	@fprog: the filter program
1391  *	@trans: post-classic verifier transformation handler
1392  *	@save_orig: save classic BPF program
1393  *
1394  * This function effectively does the same as bpf_prog_create(), only
1395  * that it builds up its insns buffer from user space provided buffer.
1396  * It also allows for passing a bpf_aux_classic_check_t handler.
1397  */
1398 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1399 			      bpf_aux_classic_check_t trans, bool save_orig)
1400 {
1401 	unsigned int fsize = bpf_classic_proglen(fprog);
1402 	struct bpf_prog *fp;
1403 	int err;
1404 
1405 	/* Make sure new filter is there and in the right amounts. */
1406 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1407 		return -EINVAL;
1408 
1409 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1410 	if (!fp)
1411 		return -ENOMEM;
1412 
1413 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1414 		__bpf_prog_free(fp);
1415 		return -EFAULT;
1416 	}
1417 
1418 	fp->len = fprog->len;
1419 	fp->orig_prog = NULL;
1420 
1421 	if (save_orig) {
1422 		err = bpf_prog_store_orig_filter(fp, fprog);
1423 		if (err) {
1424 			__bpf_prog_free(fp);
1425 			return -ENOMEM;
1426 		}
1427 	}
1428 
1429 	/* bpf_prepare_filter() already takes care of freeing
1430 	 * memory in case something goes wrong.
1431 	 */
1432 	fp = bpf_prepare_filter(fp, trans);
1433 	if (IS_ERR(fp))
1434 		return PTR_ERR(fp);
1435 
1436 	*pfp = fp;
1437 	return 0;
1438 }
1439 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1440 
1441 void bpf_prog_destroy(struct bpf_prog *fp)
1442 {
1443 	__bpf_prog_release(fp);
1444 }
1445 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1446 
1447 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1448 {
1449 	struct sk_filter *fp, *old_fp;
1450 
1451 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1452 	if (!fp)
1453 		return -ENOMEM;
1454 
1455 	fp->prog = prog;
1456 
1457 	if (!__sk_filter_charge(sk, fp)) {
1458 		kfree(fp);
1459 		return -ENOMEM;
1460 	}
1461 	refcount_set(&fp->refcnt, 1);
1462 
1463 	old_fp = rcu_dereference_protected(sk->sk_filter,
1464 					   lockdep_sock_is_held(sk));
1465 	rcu_assign_pointer(sk->sk_filter, fp);
1466 
1467 	if (old_fp)
1468 		sk_filter_uncharge(sk, old_fp);
1469 
1470 	return 0;
1471 }
1472 
1473 static
1474 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1475 {
1476 	unsigned int fsize = bpf_classic_proglen(fprog);
1477 	struct bpf_prog *prog;
1478 	int err;
1479 
1480 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1481 		return ERR_PTR(-EPERM);
1482 
1483 	/* Make sure new filter is there and in the right amounts. */
1484 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1485 		return ERR_PTR(-EINVAL);
1486 
1487 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1488 	if (!prog)
1489 		return ERR_PTR(-ENOMEM);
1490 
1491 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1492 		__bpf_prog_free(prog);
1493 		return ERR_PTR(-EFAULT);
1494 	}
1495 
1496 	prog->len = fprog->len;
1497 
1498 	err = bpf_prog_store_orig_filter(prog, fprog);
1499 	if (err) {
1500 		__bpf_prog_free(prog);
1501 		return ERR_PTR(-ENOMEM);
1502 	}
1503 
1504 	/* bpf_prepare_filter() already takes care of freeing
1505 	 * memory in case something goes wrong.
1506 	 */
1507 	return bpf_prepare_filter(prog, NULL);
1508 }
1509 
1510 /**
1511  *	sk_attach_filter - attach a socket filter
1512  *	@fprog: the filter program
1513  *	@sk: the socket to use
1514  *
1515  * Attach the user's filter code. We first run some sanity checks on
1516  * it to make sure it does not explode on us later. If an error
1517  * occurs or there is insufficient memory for the filter a negative
1518  * errno code is returned. On success the return is zero.
1519  */
1520 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1521 {
1522 	struct bpf_prog *prog = __get_filter(fprog, sk);
1523 	int err;
1524 
1525 	if (IS_ERR(prog))
1526 		return PTR_ERR(prog);
1527 
1528 	err = __sk_attach_prog(prog, sk);
1529 	if (err < 0) {
1530 		__bpf_prog_release(prog);
1531 		return err;
1532 	}
1533 
1534 	return 0;
1535 }
1536 EXPORT_SYMBOL_GPL(sk_attach_filter);
1537 
1538 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1539 {
1540 	struct bpf_prog *prog = __get_filter(fprog, sk);
1541 	int err;
1542 
1543 	if (IS_ERR(prog))
1544 		return PTR_ERR(prog);
1545 
1546 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1547 		err = -ENOMEM;
1548 	else
1549 		err = reuseport_attach_prog(sk, prog);
1550 
1551 	if (err)
1552 		__bpf_prog_release(prog);
1553 
1554 	return err;
1555 }
1556 
1557 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1558 {
1559 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1560 		return ERR_PTR(-EPERM);
1561 
1562 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1563 }
1564 
1565 int sk_attach_bpf(u32 ufd, struct sock *sk)
1566 {
1567 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1568 	int err;
1569 
1570 	if (IS_ERR(prog))
1571 		return PTR_ERR(prog);
1572 
1573 	err = __sk_attach_prog(prog, sk);
1574 	if (err < 0) {
1575 		bpf_prog_put(prog);
1576 		return err;
1577 	}
1578 
1579 	return 0;
1580 }
1581 
1582 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1583 {
1584 	struct bpf_prog *prog;
1585 	int err;
1586 
1587 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1588 		return -EPERM;
1589 
1590 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1591 	if (PTR_ERR(prog) == -EINVAL)
1592 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1593 	if (IS_ERR(prog))
1594 		return PTR_ERR(prog);
1595 
1596 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1597 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1598 		 * bpf prog (e.g. sockmap).  It depends on the
1599 		 * limitation imposed by bpf_prog_load().
1600 		 * Hence, sysctl_optmem_max is not checked.
1601 		 */
1602 		if ((sk->sk_type != SOCK_STREAM &&
1603 		     sk->sk_type != SOCK_DGRAM) ||
1604 		    (sk->sk_protocol != IPPROTO_UDP &&
1605 		     sk->sk_protocol != IPPROTO_TCP) ||
1606 		    (sk->sk_family != AF_INET &&
1607 		     sk->sk_family != AF_INET6)) {
1608 			err = -ENOTSUPP;
1609 			goto err_prog_put;
1610 		}
1611 	} else {
1612 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1613 		if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1614 			err = -ENOMEM;
1615 			goto err_prog_put;
1616 		}
1617 	}
1618 
1619 	err = reuseport_attach_prog(sk, prog);
1620 err_prog_put:
1621 	if (err)
1622 		bpf_prog_put(prog);
1623 
1624 	return err;
1625 }
1626 
1627 void sk_reuseport_prog_free(struct bpf_prog *prog)
1628 {
1629 	if (!prog)
1630 		return;
1631 
1632 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1633 		bpf_prog_put(prog);
1634 	else
1635 		bpf_prog_destroy(prog);
1636 }
1637 
1638 struct bpf_scratchpad {
1639 	union {
1640 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1641 		u8     buff[MAX_BPF_STACK];
1642 	};
1643 };
1644 
1645 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1646 
1647 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1648 					  unsigned int write_len)
1649 {
1650 	return skb_ensure_writable(skb, write_len);
1651 }
1652 
1653 static inline int bpf_try_make_writable(struct sk_buff *skb,
1654 					unsigned int write_len)
1655 {
1656 	int err = __bpf_try_make_writable(skb, write_len);
1657 
1658 	bpf_compute_data_pointers(skb);
1659 	return err;
1660 }
1661 
1662 static int bpf_try_make_head_writable(struct sk_buff *skb)
1663 {
1664 	return bpf_try_make_writable(skb, skb_headlen(skb));
1665 }
1666 
1667 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1668 {
1669 	if (skb_at_tc_ingress(skb))
1670 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1671 }
1672 
1673 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1674 {
1675 	if (skb_at_tc_ingress(skb))
1676 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1677 }
1678 
1679 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1680 	   const void *, from, u32, len, u64, flags)
1681 {
1682 	void *ptr;
1683 
1684 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1685 		return -EINVAL;
1686 	if (unlikely(offset > 0xffff))
1687 		return -EFAULT;
1688 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1689 		return -EFAULT;
1690 
1691 	ptr = skb->data + offset;
1692 	if (flags & BPF_F_RECOMPUTE_CSUM)
1693 		__skb_postpull_rcsum(skb, ptr, len, offset);
1694 
1695 	memcpy(ptr, from, len);
1696 
1697 	if (flags & BPF_F_RECOMPUTE_CSUM)
1698 		__skb_postpush_rcsum(skb, ptr, len, offset);
1699 	if (flags & BPF_F_INVALIDATE_HASH)
1700 		skb_clear_hash(skb);
1701 
1702 	return 0;
1703 }
1704 
1705 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1706 	.func		= bpf_skb_store_bytes,
1707 	.gpl_only	= false,
1708 	.ret_type	= RET_INTEGER,
1709 	.arg1_type	= ARG_PTR_TO_CTX,
1710 	.arg2_type	= ARG_ANYTHING,
1711 	.arg3_type	= ARG_PTR_TO_MEM,
1712 	.arg4_type	= ARG_CONST_SIZE,
1713 	.arg5_type	= ARG_ANYTHING,
1714 };
1715 
1716 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1717 	   void *, to, u32, len)
1718 {
1719 	void *ptr;
1720 
1721 	if (unlikely(offset > 0xffff))
1722 		goto err_clear;
1723 
1724 	ptr = skb_header_pointer(skb, offset, len, to);
1725 	if (unlikely(!ptr))
1726 		goto err_clear;
1727 	if (ptr != to)
1728 		memcpy(to, ptr, len);
1729 
1730 	return 0;
1731 err_clear:
1732 	memset(to, 0, len);
1733 	return -EFAULT;
1734 }
1735 
1736 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1737 	.func		= bpf_skb_load_bytes,
1738 	.gpl_only	= false,
1739 	.ret_type	= RET_INTEGER,
1740 	.arg1_type	= ARG_PTR_TO_CTX,
1741 	.arg2_type	= ARG_ANYTHING,
1742 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1743 	.arg4_type	= ARG_CONST_SIZE,
1744 };
1745 
1746 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1747 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1748 	   void *, to, u32, len)
1749 {
1750 	void *ptr;
1751 
1752 	if (unlikely(offset > 0xffff))
1753 		goto err_clear;
1754 
1755 	if (unlikely(!ctx->skb))
1756 		goto err_clear;
1757 
1758 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1759 	if (unlikely(!ptr))
1760 		goto err_clear;
1761 	if (ptr != to)
1762 		memcpy(to, ptr, len);
1763 
1764 	return 0;
1765 err_clear:
1766 	memset(to, 0, len);
1767 	return -EFAULT;
1768 }
1769 
1770 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1771 	.func		= bpf_flow_dissector_load_bytes,
1772 	.gpl_only	= false,
1773 	.ret_type	= RET_INTEGER,
1774 	.arg1_type	= ARG_PTR_TO_CTX,
1775 	.arg2_type	= ARG_ANYTHING,
1776 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1777 	.arg4_type	= ARG_CONST_SIZE,
1778 };
1779 
1780 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1781 	   u32, offset, void *, to, u32, len, u32, start_header)
1782 {
1783 	u8 *end = skb_tail_pointer(skb);
1784 	u8 *start, *ptr;
1785 
1786 	if (unlikely(offset > 0xffff))
1787 		goto err_clear;
1788 
1789 	switch (start_header) {
1790 	case BPF_HDR_START_MAC:
1791 		if (unlikely(!skb_mac_header_was_set(skb)))
1792 			goto err_clear;
1793 		start = skb_mac_header(skb);
1794 		break;
1795 	case BPF_HDR_START_NET:
1796 		start = skb_network_header(skb);
1797 		break;
1798 	default:
1799 		goto err_clear;
1800 	}
1801 
1802 	ptr = start + offset;
1803 
1804 	if (likely(ptr + len <= end)) {
1805 		memcpy(to, ptr, len);
1806 		return 0;
1807 	}
1808 
1809 err_clear:
1810 	memset(to, 0, len);
1811 	return -EFAULT;
1812 }
1813 
1814 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1815 	.func		= bpf_skb_load_bytes_relative,
1816 	.gpl_only	= false,
1817 	.ret_type	= RET_INTEGER,
1818 	.arg1_type	= ARG_PTR_TO_CTX,
1819 	.arg2_type	= ARG_ANYTHING,
1820 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1821 	.arg4_type	= ARG_CONST_SIZE,
1822 	.arg5_type	= ARG_ANYTHING,
1823 };
1824 
1825 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1826 {
1827 	/* Idea is the following: should the needed direct read/write
1828 	 * test fail during runtime, we can pull in more data and redo
1829 	 * again, since implicitly, we invalidate previous checks here.
1830 	 *
1831 	 * Or, since we know how much we need to make read/writeable,
1832 	 * this can be done once at the program beginning for direct
1833 	 * access case. By this we overcome limitations of only current
1834 	 * headroom being accessible.
1835 	 */
1836 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1837 }
1838 
1839 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1840 	.func		= bpf_skb_pull_data,
1841 	.gpl_only	= false,
1842 	.ret_type	= RET_INTEGER,
1843 	.arg1_type	= ARG_PTR_TO_CTX,
1844 	.arg2_type	= ARG_ANYTHING,
1845 };
1846 
1847 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1848 {
1849 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1850 }
1851 
1852 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1853 	.func		= bpf_sk_fullsock,
1854 	.gpl_only	= false,
1855 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1856 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1857 };
1858 
1859 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1860 					   unsigned int write_len)
1861 {
1862 	int err = __bpf_try_make_writable(skb, write_len);
1863 
1864 	bpf_compute_data_end_sk_skb(skb);
1865 	return err;
1866 }
1867 
1868 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1869 {
1870 	/* Idea is the following: should the needed direct read/write
1871 	 * test fail during runtime, we can pull in more data and redo
1872 	 * again, since implicitly, we invalidate previous checks here.
1873 	 *
1874 	 * Or, since we know how much we need to make read/writeable,
1875 	 * this can be done once at the program beginning for direct
1876 	 * access case. By this we overcome limitations of only current
1877 	 * headroom being accessible.
1878 	 */
1879 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1880 }
1881 
1882 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1883 	.func		= sk_skb_pull_data,
1884 	.gpl_only	= false,
1885 	.ret_type	= RET_INTEGER,
1886 	.arg1_type	= ARG_PTR_TO_CTX,
1887 	.arg2_type	= ARG_ANYTHING,
1888 };
1889 
1890 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1891 	   u64, from, u64, to, u64, flags)
1892 {
1893 	__sum16 *ptr;
1894 
1895 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1896 		return -EINVAL;
1897 	if (unlikely(offset > 0xffff || offset & 1))
1898 		return -EFAULT;
1899 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1900 		return -EFAULT;
1901 
1902 	ptr = (__sum16 *)(skb->data + offset);
1903 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1904 	case 0:
1905 		if (unlikely(from != 0))
1906 			return -EINVAL;
1907 
1908 		csum_replace_by_diff(ptr, to);
1909 		break;
1910 	case 2:
1911 		csum_replace2(ptr, from, to);
1912 		break;
1913 	case 4:
1914 		csum_replace4(ptr, from, to);
1915 		break;
1916 	default:
1917 		return -EINVAL;
1918 	}
1919 
1920 	return 0;
1921 }
1922 
1923 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1924 	.func		= bpf_l3_csum_replace,
1925 	.gpl_only	= false,
1926 	.ret_type	= RET_INTEGER,
1927 	.arg1_type	= ARG_PTR_TO_CTX,
1928 	.arg2_type	= ARG_ANYTHING,
1929 	.arg3_type	= ARG_ANYTHING,
1930 	.arg4_type	= ARG_ANYTHING,
1931 	.arg5_type	= ARG_ANYTHING,
1932 };
1933 
1934 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1935 	   u64, from, u64, to, u64, flags)
1936 {
1937 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1938 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1939 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1940 	__sum16 *ptr;
1941 
1942 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1943 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1944 		return -EINVAL;
1945 	if (unlikely(offset > 0xffff || offset & 1))
1946 		return -EFAULT;
1947 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1948 		return -EFAULT;
1949 
1950 	ptr = (__sum16 *)(skb->data + offset);
1951 	if (is_mmzero && !do_mforce && !*ptr)
1952 		return 0;
1953 
1954 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1955 	case 0:
1956 		if (unlikely(from != 0))
1957 			return -EINVAL;
1958 
1959 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1960 		break;
1961 	case 2:
1962 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1963 		break;
1964 	case 4:
1965 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1966 		break;
1967 	default:
1968 		return -EINVAL;
1969 	}
1970 
1971 	if (is_mmzero && !*ptr)
1972 		*ptr = CSUM_MANGLED_0;
1973 	return 0;
1974 }
1975 
1976 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1977 	.func		= bpf_l4_csum_replace,
1978 	.gpl_only	= false,
1979 	.ret_type	= RET_INTEGER,
1980 	.arg1_type	= ARG_PTR_TO_CTX,
1981 	.arg2_type	= ARG_ANYTHING,
1982 	.arg3_type	= ARG_ANYTHING,
1983 	.arg4_type	= ARG_ANYTHING,
1984 	.arg5_type	= ARG_ANYTHING,
1985 };
1986 
1987 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1988 	   __be32 *, to, u32, to_size, __wsum, seed)
1989 {
1990 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1991 	u32 diff_size = from_size + to_size;
1992 	int i, j = 0;
1993 
1994 	/* This is quite flexible, some examples:
1995 	 *
1996 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1997 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
1998 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1999 	 *
2000 	 * Even for diffing, from_size and to_size don't need to be equal.
2001 	 */
2002 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2003 		     diff_size > sizeof(sp->diff)))
2004 		return -EINVAL;
2005 
2006 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2007 		sp->diff[j] = ~from[i];
2008 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2009 		sp->diff[j] = to[i];
2010 
2011 	return csum_partial(sp->diff, diff_size, seed);
2012 }
2013 
2014 static const struct bpf_func_proto bpf_csum_diff_proto = {
2015 	.func		= bpf_csum_diff,
2016 	.gpl_only	= false,
2017 	.pkt_access	= true,
2018 	.ret_type	= RET_INTEGER,
2019 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
2020 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2021 	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
2022 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2023 	.arg5_type	= ARG_ANYTHING,
2024 };
2025 
2026 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2027 {
2028 	/* The interface is to be used in combination with bpf_csum_diff()
2029 	 * for direct packet writes. csum rotation for alignment as well
2030 	 * as emulating csum_sub() can be done from the eBPF program.
2031 	 */
2032 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2033 		return (skb->csum = csum_add(skb->csum, csum));
2034 
2035 	return -ENOTSUPP;
2036 }
2037 
2038 static const struct bpf_func_proto bpf_csum_update_proto = {
2039 	.func		= bpf_csum_update,
2040 	.gpl_only	= false,
2041 	.ret_type	= RET_INTEGER,
2042 	.arg1_type	= ARG_PTR_TO_CTX,
2043 	.arg2_type	= ARG_ANYTHING,
2044 };
2045 
2046 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2047 {
2048 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2049 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2050 	 * is passed as flags, for example.
2051 	 */
2052 	switch (level) {
2053 	case BPF_CSUM_LEVEL_INC:
2054 		__skb_incr_checksum_unnecessary(skb);
2055 		break;
2056 	case BPF_CSUM_LEVEL_DEC:
2057 		__skb_decr_checksum_unnecessary(skb);
2058 		break;
2059 	case BPF_CSUM_LEVEL_RESET:
2060 		__skb_reset_checksum_unnecessary(skb);
2061 		break;
2062 	case BPF_CSUM_LEVEL_QUERY:
2063 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2064 		       skb->csum_level : -EACCES;
2065 	default:
2066 		return -EINVAL;
2067 	}
2068 
2069 	return 0;
2070 }
2071 
2072 static const struct bpf_func_proto bpf_csum_level_proto = {
2073 	.func		= bpf_csum_level,
2074 	.gpl_only	= false,
2075 	.ret_type	= RET_INTEGER,
2076 	.arg1_type	= ARG_PTR_TO_CTX,
2077 	.arg2_type	= ARG_ANYTHING,
2078 };
2079 
2080 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2081 {
2082 	return dev_forward_skb(dev, skb);
2083 }
2084 
2085 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2086 				      struct sk_buff *skb)
2087 {
2088 	int ret = ____dev_forward_skb(dev, skb);
2089 
2090 	if (likely(!ret)) {
2091 		skb->dev = dev;
2092 		ret = netif_rx(skb);
2093 	}
2094 
2095 	return ret;
2096 }
2097 
2098 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2099 {
2100 	int ret;
2101 
2102 	if (dev_xmit_recursion()) {
2103 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2104 		kfree_skb(skb);
2105 		return -ENETDOWN;
2106 	}
2107 
2108 	skb->dev = dev;
2109 	skb->tstamp = 0;
2110 
2111 	dev_xmit_recursion_inc();
2112 	ret = dev_queue_xmit(skb);
2113 	dev_xmit_recursion_dec();
2114 
2115 	return ret;
2116 }
2117 
2118 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2119 				 u32 flags)
2120 {
2121 	unsigned int mlen = skb_network_offset(skb);
2122 
2123 	if (mlen) {
2124 		__skb_pull(skb, mlen);
2125 
2126 		/* At ingress, the mac header has already been pulled once.
2127 		 * At egress, skb_pospull_rcsum has to be done in case that
2128 		 * the skb is originated from ingress (i.e. a forwarded skb)
2129 		 * to ensure that rcsum starts at net header.
2130 		 */
2131 		if (!skb_at_tc_ingress(skb))
2132 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2133 	}
2134 	skb_pop_mac_header(skb);
2135 	skb_reset_mac_len(skb);
2136 	return flags & BPF_F_INGRESS ?
2137 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2138 }
2139 
2140 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2141 				 u32 flags)
2142 {
2143 	/* Verify that a link layer header is carried */
2144 	if (unlikely(skb->mac_header >= skb->network_header)) {
2145 		kfree_skb(skb);
2146 		return -ERANGE;
2147 	}
2148 
2149 	bpf_push_mac_rcsum(skb);
2150 	return flags & BPF_F_INGRESS ?
2151 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2152 }
2153 
2154 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2155 			  u32 flags)
2156 {
2157 	if (dev_is_mac_header_xmit(dev))
2158 		return __bpf_redirect_common(skb, dev, flags);
2159 	else
2160 		return __bpf_redirect_no_mac(skb, dev, flags);
2161 }
2162 
2163 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2164 {
2165 	struct net_device *dev;
2166 	struct sk_buff *clone;
2167 	int ret;
2168 
2169 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2170 		return -EINVAL;
2171 
2172 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2173 	if (unlikely(!dev))
2174 		return -EINVAL;
2175 
2176 	clone = skb_clone(skb, GFP_ATOMIC);
2177 	if (unlikely(!clone))
2178 		return -ENOMEM;
2179 
2180 	/* For direct write, we need to keep the invariant that the skbs
2181 	 * we're dealing with need to be uncloned. Should uncloning fail
2182 	 * here, we need to free the just generated clone to unclone once
2183 	 * again.
2184 	 */
2185 	ret = bpf_try_make_head_writable(skb);
2186 	if (unlikely(ret)) {
2187 		kfree_skb(clone);
2188 		return -ENOMEM;
2189 	}
2190 
2191 	return __bpf_redirect(clone, dev, flags);
2192 }
2193 
2194 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2195 	.func           = bpf_clone_redirect,
2196 	.gpl_only       = false,
2197 	.ret_type       = RET_INTEGER,
2198 	.arg1_type      = ARG_PTR_TO_CTX,
2199 	.arg2_type      = ARG_ANYTHING,
2200 	.arg3_type      = ARG_ANYTHING,
2201 };
2202 
2203 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2204 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2205 
2206 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2207 {
2208 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2209 
2210 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2211 		return TC_ACT_SHOT;
2212 
2213 	ri->flags = flags;
2214 	ri->tgt_index = ifindex;
2215 
2216 	return TC_ACT_REDIRECT;
2217 }
2218 
2219 int skb_do_redirect(struct sk_buff *skb)
2220 {
2221 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2222 	struct net_device *dev;
2223 
2224 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->tgt_index);
2225 	ri->tgt_index = 0;
2226 	if (unlikely(!dev)) {
2227 		kfree_skb(skb);
2228 		return -EINVAL;
2229 	}
2230 
2231 	return __bpf_redirect(skb, dev, ri->flags);
2232 }
2233 
2234 static const struct bpf_func_proto bpf_redirect_proto = {
2235 	.func           = bpf_redirect,
2236 	.gpl_only       = false,
2237 	.ret_type       = RET_INTEGER,
2238 	.arg1_type      = ARG_ANYTHING,
2239 	.arg2_type      = ARG_ANYTHING,
2240 };
2241 
2242 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2243 {
2244 	msg->apply_bytes = bytes;
2245 	return 0;
2246 }
2247 
2248 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2249 	.func           = bpf_msg_apply_bytes,
2250 	.gpl_only       = false,
2251 	.ret_type       = RET_INTEGER,
2252 	.arg1_type	= ARG_PTR_TO_CTX,
2253 	.arg2_type      = ARG_ANYTHING,
2254 };
2255 
2256 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2257 {
2258 	msg->cork_bytes = bytes;
2259 	return 0;
2260 }
2261 
2262 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2263 	.func           = bpf_msg_cork_bytes,
2264 	.gpl_only       = false,
2265 	.ret_type       = RET_INTEGER,
2266 	.arg1_type	= ARG_PTR_TO_CTX,
2267 	.arg2_type      = ARG_ANYTHING,
2268 };
2269 
2270 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2271 	   u32, end, u64, flags)
2272 {
2273 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2274 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2275 	struct scatterlist *sge;
2276 	u8 *raw, *to, *from;
2277 	struct page *page;
2278 
2279 	if (unlikely(flags || end <= start))
2280 		return -EINVAL;
2281 
2282 	/* First find the starting scatterlist element */
2283 	i = msg->sg.start;
2284 	do {
2285 		offset += len;
2286 		len = sk_msg_elem(msg, i)->length;
2287 		if (start < offset + len)
2288 			break;
2289 		sk_msg_iter_var_next(i);
2290 	} while (i != msg->sg.end);
2291 
2292 	if (unlikely(start >= offset + len))
2293 		return -EINVAL;
2294 
2295 	first_sge = i;
2296 	/* The start may point into the sg element so we need to also
2297 	 * account for the headroom.
2298 	 */
2299 	bytes_sg_total = start - offset + bytes;
2300 	if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2301 		goto out;
2302 
2303 	/* At this point we need to linearize multiple scatterlist
2304 	 * elements or a single shared page. Either way we need to
2305 	 * copy into a linear buffer exclusively owned by BPF. Then
2306 	 * place the buffer in the scatterlist and fixup the original
2307 	 * entries by removing the entries now in the linear buffer
2308 	 * and shifting the remaining entries. For now we do not try
2309 	 * to copy partial entries to avoid complexity of running out
2310 	 * of sg_entry slots. The downside is reading a single byte
2311 	 * will copy the entire sg entry.
2312 	 */
2313 	do {
2314 		copy += sk_msg_elem(msg, i)->length;
2315 		sk_msg_iter_var_next(i);
2316 		if (bytes_sg_total <= copy)
2317 			break;
2318 	} while (i != msg->sg.end);
2319 	last_sge = i;
2320 
2321 	if (unlikely(bytes_sg_total > copy))
2322 		return -EINVAL;
2323 
2324 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2325 			   get_order(copy));
2326 	if (unlikely(!page))
2327 		return -ENOMEM;
2328 
2329 	raw = page_address(page);
2330 	i = first_sge;
2331 	do {
2332 		sge = sk_msg_elem(msg, i);
2333 		from = sg_virt(sge);
2334 		len = sge->length;
2335 		to = raw + poffset;
2336 
2337 		memcpy(to, from, len);
2338 		poffset += len;
2339 		sge->length = 0;
2340 		put_page(sg_page(sge));
2341 
2342 		sk_msg_iter_var_next(i);
2343 	} while (i != last_sge);
2344 
2345 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2346 
2347 	/* To repair sg ring we need to shift entries. If we only
2348 	 * had a single entry though we can just replace it and
2349 	 * be done. Otherwise walk the ring and shift the entries.
2350 	 */
2351 	WARN_ON_ONCE(last_sge == first_sge);
2352 	shift = last_sge > first_sge ?
2353 		last_sge - first_sge - 1 :
2354 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2355 	if (!shift)
2356 		goto out;
2357 
2358 	i = first_sge;
2359 	sk_msg_iter_var_next(i);
2360 	do {
2361 		u32 move_from;
2362 
2363 		if (i + shift >= NR_MSG_FRAG_IDS)
2364 			move_from = i + shift - NR_MSG_FRAG_IDS;
2365 		else
2366 			move_from = i + shift;
2367 		if (move_from == msg->sg.end)
2368 			break;
2369 
2370 		msg->sg.data[i] = msg->sg.data[move_from];
2371 		msg->sg.data[move_from].length = 0;
2372 		msg->sg.data[move_from].page_link = 0;
2373 		msg->sg.data[move_from].offset = 0;
2374 		sk_msg_iter_var_next(i);
2375 	} while (1);
2376 
2377 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2378 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2379 		      msg->sg.end - shift;
2380 out:
2381 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2382 	msg->data_end = msg->data + bytes;
2383 	return 0;
2384 }
2385 
2386 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2387 	.func		= bpf_msg_pull_data,
2388 	.gpl_only	= false,
2389 	.ret_type	= RET_INTEGER,
2390 	.arg1_type	= ARG_PTR_TO_CTX,
2391 	.arg2_type	= ARG_ANYTHING,
2392 	.arg3_type	= ARG_ANYTHING,
2393 	.arg4_type	= ARG_ANYTHING,
2394 };
2395 
2396 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2397 	   u32, len, u64, flags)
2398 {
2399 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2400 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2401 	u8 *raw, *to, *from;
2402 	struct page *page;
2403 
2404 	if (unlikely(flags))
2405 		return -EINVAL;
2406 
2407 	/* First find the starting scatterlist element */
2408 	i = msg->sg.start;
2409 	do {
2410 		offset += l;
2411 		l = sk_msg_elem(msg, i)->length;
2412 
2413 		if (start < offset + l)
2414 			break;
2415 		sk_msg_iter_var_next(i);
2416 	} while (i != msg->sg.end);
2417 
2418 	if (start >= offset + l)
2419 		return -EINVAL;
2420 
2421 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2422 
2423 	/* If no space available will fallback to copy, we need at
2424 	 * least one scatterlist elem available to push data into
2425 	 * when start aligns to the beginning of an element or two
2426 	 * when it falls inside an element. We handle the start equals
2427 	 * offset case because its the common case for inserting a
2428 	 * header.
2429 	 */
2430 	if (!space || (space == 1 && start != offset))
2431 		copy = msg->sg.data[i].length;
2432 
2433 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2434 			   get_order(copy + len));
2435 	if (unlikely(!page))
2436 		return -ENOMEM;
2437 
2438 	if (copy) {
2439 		int front, back;
2440 
2441 		raw = page_address(page);
2442 
2443 		psge = sk_msg_elem(msg, i);
2444 		front = start - offset;
2445 		back = psge->length - front;
2446 		from = sg_virt(psge);
2447 
2448 		if (front)
2449 			memcpy(raw, from, front);
2450 
2451 		if (back) {
2452 			from += front;
2453 			to = raw + front + len;
2454 
2455 			memcpy(to, from, back);
2456 		}
2457 
2458 		put_page(sg_page(psge));
2459 	} else if (start - offset) {
2460 		psge = sk_msg_elem(msg, i);
2461 		rsge = sk_msg_elem_cpy(msg, i);
2462 
2463 		psge->length = start - offset;
2464 		rsge.length -= psge->length;
2465 		rsge.offset += start;
2466 
2467 		sk_msg_iter_var_next(i);
2468 		sg_unmark_end(psge);
2469 		sg_unmark_end(&rsge);
2470 		sk_msg_iter_next(msg, end);
2471 	}
2472 
2473 	/* Slot(s) to place newly allocated data */
2474 	new = i;
2475 
2476 	/* Shift one or two slots as needed */
2477 	if (!copy) {
2478 		sge = sk_msg_elem_cpy(msg, i);
2479 
2480 		sk_msg_iter_var_next(i);
2481 		sg_unmark_end(&sge);
2482 		sk_msg_iter_next(msg, end);
2483 
2484 		nsge = sk_msg_elem_cpy(msg, i);
2485 		if (rsge.length) {
2486 			sk_msg_iter_var_next(i);
2487 			nnsge = sk_msg_elem_cpy(msg, i);
2488 		}
2489 
2490 		while (i != msg->sg.end) {
2491 			msg->sg.data[i] = sge;
2492 			sge = nsge;
2493 			sk_msg_iter_var_next(i);
2494 			if (rsge.length) {
2495 				nsge = nnsge;
2496 				nnsge = sk_msg_elem_cpy(msg, i);
2497 			} else {
2498 				nsge = sk_msg_elem_cpy(msg, i);
2499 			}
2500 		}
2501 	}
2502 
2503 	/* Place newly allocated data buffer */
2504 	sk_mem_charge(msg->sk, len);
2505 	msg->sg.size += len;
2506 	__clear_bit(new, &msg->sg.copy);
2507 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2508 	if (rsge.length) {
2509 		get_page(sg_page(&rsge));
2510 		sk_msg_iter_var_next(new);
2511 		msg->sg.data[new] = rsge;
2512 	}
2513 
2514 	sk_msg_compute_data_pointers(msg);
2515 	return 0;
2516 }
2517 
2518 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2519 	.func		= bpf_msg_push_data,
2520 	.gpl_only	= false,
2521 	.ret_type	= RET_INTEGER,
2522 	.arg1_type	= ARG_PTR_TO_CTX,
2523 	.arg2_type	= ARG_ANYTHING,
2524 	.arg3_type	= ARG_ANYTHING,
2525 	.arg4_type	= ARG_ANYTHING,
2526 };
2527 
2528 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2529 {
2530 	int prev;
2531 
2532 	do {
2533 		prev = i;
2534 		sk_msg_iter_var_next(i);
2535 		msg->sg.data[prev] = msg->sg.data[i];
2536 	} while (i != msg->sg.end);
2537 
2538 	sk_msg_iter_prev(msg, end);
2539 }
2540 
2541 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2542 {
2543 	struct scatterlist tmp, sge;
2544 
2545 	sk_msg_iter_next(msg, end);
2546 	sge = sk_msg_elem_cpy(msg, i);
2547 	sk_msg_iter_var_next(i);
2548 	tmp = sk_msg_elem_cpy(msg, i);
2549 
2550 	while (i != msg->sg.end) {
2551 		msg->sg.data[i] = sge;
2552 		sk_msg_iter_var_next(i);
2553 		sge = tmp;
2554 		tmp = sk_msg_elem_cpy(msg, i);
2555 	}
2556 }
2557 
2558 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2559 	   u32, len, u64, flags)
2560 {
2561 	u32 i = 0, l = 0, space, offset = 0;
2562 	u64 last = start + len;
2563 	int pop;
2564 
2565 	if (unlikely(flags))
2566 		return -EINVAL;
2567 
2568 	/* First find the starting scatterlist element */
2569 	i = msg->sg.start;
2570 	do {
2571 		offset += l;
2572 		l = sk_msg_elem(msg, i)->length;
2573 
2574 		if (start < offset + l)
2575 			break;
2576 		sk_msg_iter_var_next(i);
2577 	} while (i != msg->sg.end);
2578 
2579 	/* Bounds checks: start and pop must be inside message */
2580 	if (start >= offset + l || last >= msg->sg.size)
2581 		return -EINVAL;
2582 
2583 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2584 
2585 	pop = len;
2586 	/* --------------| offset
2587 	 * -| start      |-------- len -------|
2588 	 *
2589 	 *  |----- a ----|-------- pop -------|----- b ----|
2590 	 *  |______________________________________________| length
2591 	 *
2592 	 *
2593 	 * a:   region at front of scatter element to save
2594 	 * b:   region at back of scatter element to save when length > A + pop
2595 	 * pop: region to pop from element, same as input 'pop' here will be
2596 	 *      decremented below per iteration.
2597 	 *
2598 	 * Two top-level cases to handle when start != offset, first B is non
2599 	 * zero and second B is zero corresponding to when a pop includes more
2600 	 * than one element.
2601 	 *
2602 	 * Then if B is non-zero AND there is no space allocate space and
2603 	 * compact A, B regions into page. If there is space shift ring to
2604 	 * the rigth free'ing the next element in ring to place B, leaving
2605 	 * A untouched except to reduce length.
2606 	 */
2607 	if (start != offset) {
2608 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2609 		int a = start;
2610 		int b = sge->length - pop - a;
2611 
2612 		sk_msg_iter_var_next(i);
2613 
2614 		if (pop < sge->length - a) {
2615 			if (space) {
2616 				sge->length = a;
2617 				sk_msg_shift_right(msg, i);
2618 				nsge = sk_msg_elem(msg, i);
2619 				get_page(sg_page(sge));
2620 				sg_set_page(nsge,
2621 					    sg_page(sge),
2622 					    b, sge->offset + pop + a);
2623 			} else {
2624 				struct page *page, *orig;
2625 				u8 *to, *from;
2626 
2627 				page = alloc_pages(__GFP_NOWARN |
2628 						   __GFP_COMP   | GFP_ATOMIC,
2629 						   get_order(a + b));
2630 				if (unlikely(!page))
2631 					return -ENOMEM;
2632 
2633 				sge->length = a;
2634 				orig = sg_page(sge);
2635 				from = sg_virt(sge);
2636 				to = page_address(page);
2637 				memcpy(to, from, a);
2638 				memcpy(to + a, from + a + pop, b);
2639 				sg_set_page(sge, page, a + b, 0);
2640 				put_page(orig);
2641 			}
2642 			pop = 0;
2643 		} else if (pop >= sge->length - a) {
2644 			pop -= (sge->length - a);
2645 			sge->length = a;
2646 		}
2647 	}
2648 
2649 	/* From above the current layout _must_ be as follows,
2650 	 *
2651 	 * -| offset
2652 	 * -| start
2653 	 *
2654 	 *  |---- pop ---|---------------- b ------------|
2655 	 *  |____________________________________________| length
2656 	 *
2657 	 * Offset and start of the current msg elem are equal because in the
2658 	 * previous case we handled offset != start and either consumed the
2659 	 * entire element and advanced to the next element OR pop == 0.
2660 	 *
2661 	 * Two cases to handle here are first pop is less than the length
2662 	 * leaving some remainder b above. Simply adjust the element's layout
2663 	 * in this case. Or pop >= length of the element so that b = 0. In this
2664 	 * case advance to next element decrementing pop.
2665 	 */
2666 	while (pop) {
2667 		struct scatterlist *sge = sk_msg_elem(msg, i);
2668 
2669 		if (pop < sge->length) {
2670 			sge->length -= pop;
2671 			sge->offset += pop;
2672 			pop = 0;
2673 		} else {
2674 			pop -= sge->length;
2675 			sk_msg_shift_left(msg, i);
2676 		}
2677 		sk_msg_iter_var_next(i);
2678 	}
2679 
2680 	sk_mem_uncharge(msg->sk, len - pop);
2681 	msg->sg.size -= (len - pop);
2682 	sk_msg_compute_data_pointers(msg);
2683 	return 0;
2684 }
2685 
2686 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2687 	.func		= bpf_msg_pop_data,
2688 	.gpl_only	= false,
2689 	.ret_type	= RET_INTEGER,
2690 	.arg1_type	= ARG_PTR_TO_CTX,
2691 	.arg2_type	= ARG_ANYTHING,
2692 	.arg3_type	= ARG_ANYTHING,
2693 	.arg4_type	= ARG_ANYTHING,
2694 };
2695 
2696 #ifdef CONFIG_CGROUP_NET_CLASSID
2697 BPF_CALL_0(bpf_get_cgroup_classid_curr)
2698 {
2699 	return __task_get_classid(current);
2700 }
2701 
2702 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
2703 	.func		= bpf_get_cgroup_classid_curr,
2704 	.gpl_only	= false,
2705 	.ret_type	= RET_INTEGER,
2706 };
2707 #endif
2708 
2709 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2710 {
2711 	return task_get_classid(skb);
2712 }
2713 
2714 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2715 	.func           = bpf_get_cgroup_classid,
2716 	.gpl_only       = false,
2717 	.ret_type       = RET_INTEGER,
2718 	.arg1_type      = ARG_PTR_TO_CTX,
2719 };
2720 
2721 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2722 {
2723 	return dst_tclassid(skb);
2724 }
2725 
2726 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2727 	.func           = bpf_get_route_realm,
2728 	.gpl_only       = false,
2729 	.ret_type       = RET_INTEGER,
2730 	.arg1_type      = ARG_PTR_TO_CTX,
2731 };
2732 
2733 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2734 {
2735 	/* If skb_clear_hash() was called due to mangling, we can
2736 	 * trigger SW recalculation here. Later access to hash
2737 	 * can then use the inline skb->hash via context directly
2738 	 * instead of calling this helper again.
2739 	 */
2740 	return skb_get_hash(skb);
2741 }
2742 
2743 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2744 	.func		= bpf_get_hash_recalc,
2745 	.gpl_only	= false,
2746 	.ret_type	= RET_INTEGER,
2747 	.arg1_type	= ARG_PTR_TO_CTX,
2748 };
2749 
2750 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2751 {
2752 	/* After all direct packet write, this can be used once for
2753 	 * triggering a lazy recalc on next skb_get_hash() invocation.
2754 	 */
2755 	skb_clear_hash(skb);
2756 	return 0;
2757 }
2758 
2759 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2760 	.func		= bpf_set_hash_invalid,
2761 	.gpl_only	= false,
2762 	.ret_type	= RET_INTEGER,
2763 	.arg1_type	= ARG_PTR_TO_CTX,
2764 };
2765 
2766 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2767 {
2768 	/* Set user specified hash as L4(+), so that it gets returned
2769 	 * on skb_get_hash() call unless BPF prog later on triggers a
2770 	 * skb_clear_hash().
2771 	 */
2772 	__skb_set_sw_hash(skb, hash, true);
2773 	return 0;
2774 }
2775 
2776 static const struct bpf_func_proto bpf_set_hash_proto = {
2777 	.func		= bpf_set_hash,
2778 	.gpl_only	= false,
2779 	.ret_type	= RET_INTEGER,
2780 	.arg1_type	= ARG_PTR_TO_CTX,
2781 	.arg2_type	= ARG_ANYTHING,
2782 };
2783 
2784 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2785 	   u16, vlan_tci)
2786 {
2787 	int ret;
2788 
2789 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2790 		     vlan_proto != htons(ETH_P_8021AD)))
2791 		vlan_proto = htons(ETH_P_8021Q);
2792 
2793 	bpf_push_mac_rcsum(skb);
2794 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2795 	bpf_pull_mac_rcsum(skb);
2796 
2797 	bpf_compute_data_pointers(skb);
2798 	return ret;
2799 }
2800 
2801 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2802 	.func           = bpf_skb_vlan_push,
2803 	.gpl_only       = false,
2804 	.ret_type       = RET_INTEGER,
2805 	.arg1_type      = ARG_PTR_TO_CTX,
2806 	.arg2_type      = ARG_ANYTHING,
2807 	.arg3_type      = ARG_ANYTHING,
2808 };
2809 
2810 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2811 {
2812 	int ret;
2813 
2814 	bpf_push_mac_rcsum(skb);
2815 	ret = skb_vlan_pop(skb);
2816 	bpf_pull_mac_rcsum(skb);
2817 
2818 	bpf_compute_data_pointers(skb);
2819 	return ret;
2820 }
2821 
2822 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2823 	.func           = bpf_skb_vlan_pop,
2824 	.gpl_only       = false,
2825 	.ret_type       = RET_INTEGER,
2826 	.arg1_type      = ARG_PTR_TO_CTX,
2827 };
2828 
2829 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2830 {
2831 	/* Caller already did skb_cow() with len as headroom,
2832 	 * so no need to do it here.
2833 	 */
2834 	skb_push(skb, len);
2835 	memmove(skb->data, skb->data + len, off);
2836 	memset(skb->data + off, 0, len);
2837 
2838 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
2839 	 * needed here as it does not change the skb->csum
2840 	 * result for checksum complete when summing over
2841 	 * zeroed blocks.
2842 	 */
2843 	return 0;
2844 }
2845 
2846 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2847 {
2848 	/* skb_ensure_writable() is not needed here, as we're
2849 	 * already working on an uncloned skb.
2850 	 */
2851 	if (unlikely(!pskb_may_pull(skb, off + len)))
2852 		return -ENOMEM;
2853 
2854 	skb_postpull_rcsum(skb, skb->data + off, len);
2855 	memmove(skb->data + len, skb->data, off);
2856 	__skb_pull(skb, len);
2857 
2858 	return 0;
2859 }
2860 
2861 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2862 {
2863 	bool trans_same = skb->transport_header == skb->network_header;
2864 	int ret;
2865 
2866 	/* There's no need for __skb_push()/__skb_pull() pair to
2867 	 * get to the start of the mac header as we're guaranteed
2868 	 * to always start from here under eBPF.
2869 	 */
2870 	ret = bpf_skb_generic_push(skb, off, len);
2871 	if (likely(!ret)) {
2872 		skb->mac_header -= len;
2873 		skb->network_header -= len;
2874 		if (trans_same)
2875 			skb->transport_header = skb->network_header;
2876 	}
2877 
2878 	return ret;
2879 }
2880 
2881 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2882 {
2883 	bool trans_same = skb->transport_header == skb->network_header;
2884 	int ret;
2885 
2886 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
2887 	ret = bpf_skb_generic_pop(skb, off, len);
2888 	if (likely(!ret)) {
2889 		skb->mac_header += len;
2890 		skb->network_header += len;
2891 		if (trans_same)
2892 			skb->transport_header = skb->network_header;
2893 	}
2894 
2895 	return ret;
2896 }
2897 
2898 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2899 {
2900 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2901 	u32 off = skb_mac_header_len(skb);
2902 	int ret;
2903 
2904 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2905 		return -ENOTSUPP;
2906 
2907 	ret = skb_cow(skb, len_diff);
2908 	if (unlikely(ret < 0))
2909 		return ret;
2910 
2911 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2912 	if (unlikely(ret < 0))
2913 		return ret;
2914 
2915 	if (skb_is_gso(skb)) {
2916 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2917 
2918 		/* SKB_GSO_TCPV4 needs to be changed into
2919 		 * SKB_GSO_TCPV6.
2920 		 */
2921 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
2922 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
2923 			shinfo->gso_type |=  SKB_GSO_TCPV6;
2924 		}
2925 
2926 		/* Due to IPv6 header, MSS needs to be downgraded. */
2927 		skb_decrease_gso_size(shinfo, len_diff);
2928 		/* Header must be checked, and gso_segs recomputed. */
2929 		shinfo->gso_type |= SKB_GSO_DODGY;
2930 		shinfo->gso_segs = 0;
2931 	}
2932 
2933 	skb->protocol = htons(ETH_P_IPV6);
2934 	skb_clear_hash(skb);
2935 
2936 	return 0;
2937 }
2938 
2939 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2940 {
2941 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2942 	u32 off = skb_mac_header_len(skb);
2943 	int ret;
2944 
2945 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2946 		return -ENOTSUPP;
2947 
2948 	ret = skb_unclone(skb, GFP_ATOMIC);
2949 	if (unlikely(ret < 0))
2950 		return ret;
2951 
2952 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2953 	if (unlikely(ret < 0))
2954 		return ret;
2955 
2956 	if (skb_is_gso(skb)) {
2957 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2958 
2959 		/* SKB_GSO_TCPV6 needs to be changed into
2960 		 * SKB_GSO_TCPV4.
2961 		 */
2962 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
2963 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
2964 			shinfo->gso_type |=  SKB_GSO_TCPV4;
2965 		}
2966 
2967 		/* Due to IPv4 header, MSS can be upgraded. */
2968 		skb_increase_gso_size(shinfo, len_diff);
2969 		/* Header must be checked, and gso_segs recomputed. */
2970 		shinfo->gso_type |= SKB_GSO_DODGY;
2971 		shinfo->gso_segs = 0;
2972 	}
2973 
2974 	skb->protocol = htons(ETH_P_IP);
2975 	skb_clear_hash(skb);
2976 
2977 	return 0;
2978 }
2979 
2980 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2981 {
2982 	__be16 from_proto = skb->protocol;
2983 
2984 	if (from_proto == htons(ETH_P_IP) &&
2985 	      to_proto == htons(ETH_P_IPV6))
2986 		return bpf_skb_proto_4_to_6(skb);
2987 
2988 	if (from_proto == htons(ETH_P_IPV6) &&
2989 	      to_proto == htons(ETH_P_IP))
2990 		return bpf_skb_proto_6_to_4(skb);
2991 
2992 	return -ENOTSUPP;
2993 }
2994 
2995 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2996 	   u64, flags)
2997 {
2998 	int ret;
2999 
3000 	if (unlikely(flags))
3001 		return -EINVAL;
3002 
3003 	/* General idea is that this helper does the basic groundwork
3004 	 * needed for changing the protocol, and eBPF program fills the
3005 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3006 	 * and other helpers, rather than passing a raw buffer here.
3007 	 *
3008 	 * The rationale is to keep this minimal and without a need to
3009 	 * deal with raw packet data. F.e. even if we would pass buffers
3010 	 * here, the program still needs to call the bpf_lX_csum_replace()
3011 	 * helpers anyway. Plus, this way we keep also separation of
3012 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3013 	 * care of stores.
3014 	 *
3015 	 * Currently, additional options and extension header space are
3016 	 * not supported, but flags register is reserved so we can adapt
3017 	 * that. For offloads, we mark packet as dodgy, so that headers
3018 	 * need to be verified first.
3019 	 */
3020 	ret = bpf_skb_proto_xlat(skb, proto);
3021 	bpf_compute_data_pointers(skb);
3022 	return ret;
3023 }
3024 
3025 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3026 	.func		= bpf_skb_change_proto,
3027 	.gpl_only	= false,
3028 	.ret_type	= RET_INTEGER,
3029 	.arg1_type	= ARG_PTR_TO_CTX,
3030 	.arg2_type	= ARG_ANYTHING,
3031 	.arg3_type	= ARG_ANYTHING,
3032 };
3033 
3034 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3035 {
3036 	/* We only allow a restricted subset to be changed for now. */
3037 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3038 		     !skb_pkt_type_ok(pkt_type)))
3039 		return -EINVAL;
3040 
3041 	skb->pkt_type = pkt_type;
3042 	return 0;
3043 }
3044 
3045 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3046 	.func		= bpf_skb_change_type,
3047 	.gpl_only	= false,
3048 	.ret_type	= RET_INTEGER,
3049 	.arg1_type	= ARG_PTR_TO_CTX,
3050 	.arg2_type	= ARG_ANYTHING,
3051 };
3052 
3053 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3054 {
3055 	switch (skb->protocol) {
3056 	case htons(ETH_P_IP):
3057 		return sizeof(struct iphdr);
3058 	case htons(ETH_P_IPV6):
3059 		return sizeof(struct ipv6hdr);
3060 	default:
3061 		return ~0U;
3062 	}
3063 }
3064 
3065 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3066 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3067 
3068 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3069 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3070 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3071 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3072 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3073 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3074 
3075 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3076 			    u64 flags)
3077 {
3078 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3079 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3080 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3081 	unsigned int gso_type = SKB_GSO_DODGY;
3082 	int ret;
3083 
3084 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3085 		/* udp gso_size delineates datagrams, only allow if fixed */
3086 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3087 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3088 			return -ENOTSUPP;
3089 	}
3090 
3091 	ret = skb_cow_head(skb, len_diff);
3092 	if (unlikely(ret < 0))
3093 		return ret;
3094 
3095 	if (encap) {
3096 		if (skb->protocol != htons(ETH_P_IP) &&
3097 		    skb->protocol != htons(ETH_P_IPV6))
3098 			return -ENOTSUPP;
3099 
3100 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3101 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3102 			return -EINVAL;
3103 
3104 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3105 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3106 			return -EINVAL;
3107 
3108 		if (skb->encapsulation)
3109 			return -EALREADY;
3110 
3111 		mac_len = skb->network_header - skb->mac_header;
3112 		inner_net = skb->network_header;
3113 		if (inner_mac_len > len_diff)
3114 			return -EINVAL;
3115 		inner_trans = skb->transport_header;
3116 	}
3117 
3118 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3119 	if (unlikely(ret < 0))
3120 		return ret;
3121 
3122 	if (encap) {
3123 		skb->inner_mac_header = inner_net - inner_mac_len;
3124 		skb->inner_network_header = inner_net;
3125 		skb->inner_transport_header = inner_trans;
3126 		skb_set_inner_protocol(skb, skb->protocol);
3127 
3128 		skb->encapsulation = 1;
3129 		skb_set_network_header(skb, mac_len);
3130 
3131 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3132 			gso_type |= SKB_GSO_UDP_TUNNEL;
3133 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3134 			gso_type |= SKB_GSO_GRE;
3135 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3136 			gso_type |= SKB_GSO_IPXIP6;
3137 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3138 			gso_type |= SKB_GSO_IPXIP4;
3139 
3140 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3141 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3142 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3143 					sizeof(struct ipv6hdr) :
3144 					sizeof(struct iphdr);
3145 
3146 			skb_set_transport_header(skb, mac_len + nh_len);
3147 		}
3148 
3149 		/* Match skb->protocol to new outer l3 protocol */
3150 		if (skb->protocol == htons(ETH_P_IP) &&
3151 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3152 			skb->protocol = htons(ETH_P_IPV6);
3153 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3154 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3155 			skb->protocol = htons(ETH_P_IP);
3156 	}
3157 
3158 	if (skb_is_gso(skb)) {
3159 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3160 
3161 		/* Due to header grow, MSS needs to be downgraded. */
3162 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3163 			skb_decrease_gso_size(shinfo, len_diff);
3164 
3165 		/* Header must be checked, and gso_segs recomputed. */
3166 		shinfo->gso_type |= gso_type;
3167 		shinfo->gso_segs = 0;
3168 	}
3169 
3170 	return 0;
3171 }
3172 
3173 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3174 			      u64 flags)
3175 {
3176 	int ret;
3177 
3178 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3179 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3180 		return -EINVAL;
3181 
3182 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3183 		/* udp gso_size delineates datagrams, only allow if fixed */
3184 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3185 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3186 			return -ENOTSUPP;
3187 	}
3188 
3189 	ret = skb_unclone(skb, GFP_ATOMIC);
3190 	if (unlikely(ret < 0))
3191 		return ret;
3192 
3193 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3194 	if (unlikely(ret < 0))
3195 		return ret;
3196 
3197 	if (skb_is_gso(skb)) {
3198 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3199 
3200 		/* Due to header shrink, MSS can be upgraded. */
3201 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3202 			skb_increase_gso_size(shinfo, len_diff);
3203 
3204 		/* Header must be checked, and gso_segs recomputed. */
3205 		shinfo->gso_type |= SKB_GSO_DODGY;
3206 		shinfo->gso_segs = 0;
3207 	}
3208 
3209 	return 0;
3210 }
3211 
3212 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3213 {
3214 	return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3215 			  SKB_MAX_ALLOC;
3216 }
3217 
3218 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3219 	   u32, mode, u64, flags)
3220 {
3221 	u32 len_cur, len_diff_abs = abs(len_diff);
3222 	u32 len_min = bpf_skb_net_base_len(skb);
3223 	u32 len_max = __bpf_skb_max_len(skb);
3224 	__be16 proto = skb->protocol;
3225 	bool shrink = len_diff < 0;
3226 	u32 off;
3227 	int ret;
3228 
3229 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3230 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3231 		return -EINVAL;
3232 	if (unlikely(len_diff_abs > 0xfffU))
3233 		return -EFAULT;
3234 	if (unlikely(proto != htons(ETH_P_IP) &&
3235 		     proto != htons(ETH_P_IPV6)))
3236 		return -ENOTSUPP;
3237 
3238 	off = skb_mac_header_len(skb);
3239 	switch (mode) {
3240 	case BPF_ADJ_ROOM_NET:
3241 		off += bpf_skb_net_base_len(skb);
3242 		break;
3243 	case BPF_ADJ_ROOM_MAC:
3244 		break;
3245 	default:
3246 		return -ENOTSUPP;
3247 	}
3248 
3249 	len_cur = skb->len - skb_network_offset(skb);
3250 	if ((shrink && (len_diff_abs >= len_cur ||
3251 			len_cur - len_diff_abs < len_min)) ||
3252 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3253 			 !skb_is_gso(skb))))
3254 		return -ENOTSUPP;
3255 
3256 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3257 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3258 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3259 		__skb_reset_checksum_unnecessary(skb);
3260 
3261 	bpf_compute_data_pointers(skb);
3262 	return ret;
3263 }
3264 
3265 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3266 	.func		= bpf_skb_adjust_room,
3267 	.gpl_only	= false,
3268 	.ret_type	= RET_INTEGER,
3269 	.arg1_type	= ARG_PTR_TO_CTX,
3270 	.arg2_type	= ARG_ANYTHING,
3271 	.arg3_type	= ARG_ANYTHING,
3272 	.arg4_type	= ARG_ANYTHING,
3273 };
3274 
3275 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3276 {
3277 	u32 min_len = skb_network_offset(skb);
3278 
3279 	if (skb_transport_header_was_set(skb))
3280 		min_len = skb_transport_offset(skb);
3281 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3282 		min_len = skb_checksum_start_offset(skb) +
3283 			  skb->csum_offset + sizeof(__sum16);
3284 	return min_len;
3285 }
3286 
3287 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3288 {
3289 	unsigned int old_len = skb->len;
3290 	int ret;
3291 
3292 	ret = __skb_grow_rcsum(skb, new_len);
3293 	if (!ret)
3294 		memset(skb->data + old_len, 0, new_len - old_len);
3295 	return ret;
3296 }
3297 
3298 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3299 {
3300 	return __skb_trim_rcsum(skb, new_len);
3301 }
3302 
3303 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3304 					u64 flags)
3305 {
3306 	u32 max_len = __bpf_skb_max_len(skb);
3307 	u32 min_len = __bpf_skb_min_len(skb);
3308 	int ret;
3309 
3310 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3311 		return -EINVAL;
3312 	if (skb->encapsulation)
3313 		return -ENOTSUPP;
3314 
3315 	/* The basic idea of this helper is that it's performing the
3316 	 * needed work to either grow or trim an skb, and eBPF program
3317 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3318 	 * bpf_lX_csum_replace() and others rather than passing a raw
3319 	 * buffer here. This one is a slow path helper and intended
3320 	 * for replies with control messages.
3321 	 *
3322 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3323 	 * minimal and without protocol specifics so that we are able
3324 	 * to separate concerns as in bpf_skb_store_bytes() should only
3325 	 * be the one responsible for writing buffers.
3326 	 *
3327 	 * It's really expected to be a slow path operation here for
3328 	 * control message replies, so we're implicitly linearizing,
3329 	 * uncloning and drop offloads from the skb by this.
3330 	 */
3331 	ret = __bpf_try_make_writable(skb, skb->len);
3332 	if (!ret) {
3333 		if (new_len > skb->len)
3334 			ret = bpf_skb_grow_rcsum(skb, new_len);
3335 		else if (new_len < skb->len)
3336 			ret = bpf_skb_trim_rcsum(skb, new_len);
3337 		if (!ret && skb_is_gso(skb))
3338 			skb_gso_reset(skb);
3339 	}
3340 	return ret;
3341 }
3342 
3343 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3344 	   u64, flags)
3345 {
3346 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3347 
3348 	bpf_compute_data_pointers(skb);
3349 	return ret;
3350 }
3351 
3352 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3353 	.func		= bpf_skb_change_tail,
3354 	.gpl_only	= false,
3355 	.ret_type	= RET_INTEGER,
3356 	.arg1_type	= ARG_PTR_TO_CTX,
3357 	.arg2_type	= ARG_ANYTHING,
3358 	.arg3_type	= ARG_ANYTHING,
3359 };
3360 
3361 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3362 	   u64, flags)
3363 {
3364 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3365 
3366 	bpf_compute_data_end_sk_skb(skb);
3367 	return ret;
3368 }
3369 
3370 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3371 	.func		= sk_skb_change_tail,
3372 	.gpl_only	= false,
3373 	.ret_type	= RET_INTEGER,
3374 	.arg1_type	= ARG_PTR_TO_CTX,
3375 	.arg2_type	= ARG_ANYTHING,
3376 	.arg3_type	= ARG_ANYTHING,
3377 };
3378 
3379 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3380 					u64 flags)
3381 {
3382 	u32 max_len = __bpf_skb_max_len(skb);
3383 	u32 new_len = skb->len + head_room;
3384 	int ret;
3385 
3386 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3387 		     new_len < skb->len))
3388 		return -EINVAL;
3389 
3390 	ret = skb_cow(skb, head_room);
3391 	if (likely(!ret)) {
3392 		/* Idea for this helper is that we currently only
3393 		 * allow to expand on mac header. This means that
3394 		 * skb->protocol network header, etc, stay as is.
3395 		 * Compared to bpf_skb_change_tail(), we're more
3396 		 * flexible due to not needing to linearize or
3397 		 * reset GSO. Intention for this helper is to be
3398 		 * used by an L3 skb that needs to push mac header
3399 		 * for redirection into L2 device.
3400 		 */
3401 		__skb_push(skb, head_room);
3402 		memset(skb->data, 0, head_room);
3403 		skb_reset_mac_header(skb);
3404 	}
3405 
3406 	return ret;
3407 }
3408 
3409 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3410 	   u64, flags)
3411 {
3412 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3413 
3414 	bpf_compute_data_pointers(skb);
3415 	return ret;
3416 }
3417 
3418 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3419 	.func		= bpf_skb_change_head,
3420 	.gpl_only	= false,
3421 	.ret_type	= RET_INTEGER,
3422 	.arg1_type	= ARG_PTR_TO_CTX,
3423 	.arg2_type	= ARG_ANYTHING,
3424 	.arg3_type	= ARG_ANYTHING,
3425 };
3426 
3427 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3428 	   u64, flags)
3429 {
3430 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3431 
3432 	bpf_compute_data_end_sk_skb(skb);
3433 	return ret;
3434 }
3435 
3436 static const struct bpf_func_proto sk_skb_change_head_proto = {
3437 	.func		= sk_skb_change_head,
3438 	.gpl_only	= false,
3439 	.ret_type	= RET_INTEGER,
3440 	.arg1_type	= ARG_PTR_TO_CTX,
3441 	.arg2_type	= ARG_ANYTHING,
3442 	.arg3_type	= ARG_ANYTHING,
3443 };
3444 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3445 {
3446 	return xdp_data_meta_unsupported(xdp) ? 0 :
3447 	       xdp->data - xdp->data_meta;
3448 }
3449 
3450 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3451 {
3452 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3453 	unsigned long metalen = xdp_get_metalen(xdp);
3454 	void *data_start = xdp_frame_end + metalen;
3455 	void *data = xdp->data + offset;
3456 
3457 	if (unlikely(data < data_start ||
3458 		     data > xdp->data_end - ETH_HLEN))
3459 		return -EINVAL;
3460 
3461 	if (metalen)
3462 		memmove(xdp->data_meta + offset,
3463 			xdp->data_meta, metalen);
3464 	xdp->data_meta += offset;
3465 	xdp->data = data;
3466 
3467 	return 0;
3468 }
3469 
3470 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3471 	.func		= bpf_xdp_adjust_head,
3472 	.gpl_only	= false,
3473 	.ret_type	= RET_INTEGER,
3474 	.arg1_type	= ARG_PTR_TO_CTX,
3475 	.arg2_type	= ARG_ANYTHING,
3476 };
3477 
3478 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3479 {
3480 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3481 	void *data_end = xdp->data_end + offset;
3482 
3483 	/* Notice that xdp_data_hard_end have reserved some tailroom */
3484 	if (unlikely(data_end > data_hard_end))
3485 		return -EINVAL;
3486 
3487 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
3488 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3489 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3490 		return -EINVAL;
3491 	}
3492 
3493 	if (unlikely(data_end < xdp->data + ETH_HLEN))
3494 		return -EINVAL;
3495 
3496 	/* Clear memory area on grow, can contain uninit kernel memory */
3497 	if (offset > 0)
3498 		memset(xdp->data_end, 0, offset);
3499 
3500 	xdp->data_end = data_end;
3501 
3502 	return 0;
3503 }
3504 
3505 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3506 	.func		= bpf_xdp_adjust_tail,
3507 	.gpl_only	= false,
3508 	.ret_type	= RET_INTEGER,
3509 	.arg1_type	= ARG_PTR_TO_CTX,
3510 	.arg2_type	= ARG_ANYTHING,
3511 };
3512 
3513 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3514 {
3515 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3516 	void *meta = xdp->data_meta + offset;
3517 	unsigned long metalen = xdp->data - meta;
3518 
3519 	if (xdp_data_meta_unsupported(xdp))
3520 		return -ENOTSUPP;
3521 	if (unlikely(meta < xdp_frame_end ||
3522 		     meta > xdp->data))
3523 		return -EINVAL;
3524 	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3525 		     (metalen > 32)))
3526 		return -EACCES;
3527 
3528 	xdp->data_meta = meta;
3529 
3530 	return 0;
3531 }
3532 
3533 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3534 	.func		= bpf_xdp_adjust_meta,
3535 	.gpl_only	= false,
3536 	.ret_type	= RET_INTEGER,
3537 	.arg1_type	= ARG_PTR_TO_CTX,
3538 	.arg2_type	= ARG_ANYTHING,
3539 };
3540 
3541 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3542 			    struct bpf_map *map, struct xdp_buff *xdp)
3543 {
3544 	switch (map->map_type) {
3545 	case BPF_MAP_TYPE_DEVMAP:
3546 	case BPF_MAP_TYPE_DEVMAP_HASH:
3547 		return dev_map_enqueue(fwd, xdp, dev_rx);
3548 	case BPF_MAP_TYPE_CPUMAP:
3549 		return cpu_map_enqueue(fwd, xdp, dev_rx);
3550 	case BPF_MAP_TYPE_XSKMAP:
3551 		return __xsk_map_redirect(fwd, xdp);
3552 	default:
3553 		return -EBADRQC;
3554 	}
3555 	return 0;
3556 }
3557 
3558 void xdp_do_flush(void)
3559 {
3560 	__dev_flush();
3561 	__cpu_map_flush();
3562 	__xsk_map_flush();
3563 }
3564 EXPORT_SYMBOL_GPL(xdp_do_flush);
3565 
3566 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3567 {
3568 	switch (map->map_type) {
3569 	case BPF_MAP_TYPE_DEVMAP:
3570 		return __dev_map_lookup_elem(map, index);
3571 	case BPF_MAP_TYPE_DEVMAP_HASH:
3572 		return __dev_map_hash_lookup_elem(map, index);
3573 	case BPF_MAP_TYPE_CPUMAP:
3574 		return __cpu_map_lookup_elem(map, index);
3575 	case BPF_MAP_TYPE_XSKMAP:
3576 		return __xsk_map_lookup_elem(map, index);
3577 	default:
3578 		return NULL;
3579 	}
3580 }
3581 
3582 void bpf_clear_redirect_map(struct bpf_map *map)
3583 {
3584 	struct bpf_redirect_info *ri;
3585 	int cpu;
3586 
3587 	for_each_possible_cpu(cpu) {
3588 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3589 		/* Avoid polluting remote cacheline due to writes if
3590 		 * not needed. Once we pass this test, we need the
3591 		 * cmpxchg() to make sure it hasn't been changed in
3592 		 * the meantime by remote CPU.
3593 		 */
3594 		if (unlikely(READ_ONCE(ri->map) == map))
3595 			cmpxchg(&ri->map, map, NULL);
3596 	}
3597 }
3598 
3599 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3600 		    struct bpf_prog *xdp_prog)
3601 {
3602 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3603 	struct bpf_map *map = READ_ONCE(ri->map);
3604 	u32 index = ri->tgt_index;
3605 	void *fwd = ri->tgt_value;
3606 	int err;
3607 
3608 	ri->tgt_index = 0;
3609 	ri->tgt_value = NULL;
3610 	WRITE_ONCE(ri->map, NULL);
3611 
3612 	if (unlikely(!map)) {
3613 		fwd = dev_get_by_index_rcu(dev_net(dev), index);
3614 		if (unlikely(!fwd)) {
3615 			err = -EINVAL;
3616 			goto err;
3617 		}
3618 
3619 		err = dev_xdp_enqueue(fwd, xdp, dev);
3620 	} else {
3621 		err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
3622 	}
3623 
3624 	if (unlikely(err))
3625 		goto err;
3626 
3627 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3628 	return 0;
3629 err:
3630 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3631 	return err;
3632 }
3633 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3634 
3635 static int xdp_do_generic_redirect_map(struct net_device *dev,
3636 				       struct sk_buff *skb,
3637 				       struct xdp_buff *xdp,
3638 				       struct bpf_prog *xdp_prog,
3639 				       struct bpf_map *map)
3640 {
3641 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3642 	u32 index = ri->tgt_index;
3643 	void *fwd = ri->tgt_value;
3644 	int err = 0;
3645 
3646 	ri->tgt_index = 0;
3647 	ri->tgt_value = NULL;
3648 	WRITE_ONCE(ri->map, NULL);
3649 
3650 	if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
3651 	    map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
3652 		struct bpf_dtab_netdev *dst = fwd;
3653 
3654 		err = dev_map_generic_redirect(dst, skb, xdp_prog);
3655 		if (unlikely(err))
3656 			goto err;
3657 	} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3658 		struct xdp_sock *xs = fwd;
3659 
3660 		err = xsk_generic_rcv(xs, xdp);
3661 		if (err)
3662 			goto err;
3663 		consume_skb(skb);
3664 	} else {
3665 		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3666 		err = -EBADRQC;
3667 		goto err;
3668 	}
3669 
3670 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3671 	return 0;
3672 err:
3673 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3674 	return err;
3675 }
3676 
3677 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3678 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3679 {
3680 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3681 	struct bpf_map *map = READ_ONCE(ri->map);
3682 	u32 index = ri->tgt_index;
3683 	struct net_device *fwd;
3684 	int err = 0;
3685 
3686 	if (map)
3687 		return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3688 						   map);
3689 	ri->tgt_index = 0;
3690 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
3691 	if (unlikely(!fwd)) {
3692 		err = -EINVAL;
3693 		goto err;
3694 	}
3695 
3696 	err = xdp_ok_fwd_dev(fwd, skb->len);
3697 	if (unlikely(err))
3698 		goto err;
3699 
3700 	skb->dev = fwd;
3701 	_trace_xdp_redirect(dev, xdp_prog, index);
3702 	generic_xdp_tx(skb, xdp_prog);
3703 	return 0;
3704 err:
3705 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3706 	return err;
3707 }
3708 
3709 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3710 {
3711 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3712 
3713 	if (unlikely(flags))
3714 		return XDP_ABORTED;
3715 
3716 	ri->flags = flags;
3717 	ri->tgt_index = ifindex;
3718 	ri->tgt_value = NULL;
3719 	WRITE_ONCE(ri->map, NULL);
3720 
3721 	return XDP_REDIRECT;
3722 }
3723 
3724 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3725 	.func           = bpf_xdp_redirect,
3726 	.gpl_only       = false,
3727 	.ret_type       = RET_INTEGER,
3728 	.arg1_type      = ARG_ANYTHING,
3729 	.arg2_type      = ARG_ANYTHING,
3730 };
3731 
3732 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3733 	   u64, flags)
3734 {
3735 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3736 
3737 	/* Lower bits of the flags are used as return code on lookup failure */
3738 	if (unlikely(flags > XDP_TX))
3739 		return XDP_ABORTED;
3740 
3741 	ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
3742 	if (unlikely(!ri->tgt_value)) {
3743 		/* If the lookup fails we want to clear out the state in the
3744 		 * redirect_info struct completely, so that if an eBPF program
3745 		 * performs multiple lookups, the last one always takes
3746 		 * precedence.
3747 		 */
3748 		WRITE_ONCE(ri->map, NULL);
3749 		return flags;
3750 	}
3751 
3752 	ri->flags = flags;
3753 	ri->tgt_index = ifindex;
3754 	WRITE_ONCE(ri->map, map);
3755 
3756 	return XDP_REDIRECT;
3757 }
3758 
3759 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3760 	.func           = bpf_xdp_redirect_map,
3761 	.gpl_only       = false,
3762 	.ret_type       = RET_INTEGER,
3763 	.arg1_type      = ARG_CONST_MAP_PTR,
3764 	.arg2_type      = ARG_ANYTHING,
3765 	.arg3_type      = ARG_ANYTHING,
3766 };
3767 
3768 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3769 				  unsigned long off, unsigned long len)
3770 {
3771 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3772 
3773 	if (unlikely(!ptr))
3774 		return len;
3775 	if (ptr != dst_buff)
3776 		memcpy(dst_buff, ptr, len);
3777 
3778 	return 0;
3779 }
3780 
3781 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3782 	   u64, flags, void *, meta, u64, meta_size)
3783 {
3784 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3785 
3786 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3787 		return -EINVAL;
3788 	if (unlikely(!skb || skb_size > skb->len))
3789 		return -EFAULT;
3790 
3791 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3792 				bpf_skb_copy);
3793 }
3794 
3795 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3796 	.func		= bpf_skb_event_output,
3797 	.gpl_only	= true,
3798 	.ret_type	= RET_INTEGER,
3799 	.arg1_type	= ARG_PTR_TO_CTX,
3800 	.arg2_type	= ARG_CONST_MAP_PTR,
3801 	.arg3_type	= ARG_ANYTHING,
3802 	.arg4_type	= ARG_PTR_TO_MEM,
3803 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3804 };
3805 
3806 BTF_ID_LIST(bpf_skb_output_btf_ids)
3807 BTF_ID(struct, sk_buff)
3808 
3809 const struct bpf_func_proto bpf_skb_output_proto = {
3810 	.func		= bpf_skb_event_output,
3811 	.gpl_only	= true,
3812 	.ret_type	= RET_INTEGER,
3813 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3814 	.arg2_type	= ARG_CONST_MAP_PTR,
3815 	.arg3_type	= ARG_ANYTHING,
3816 	.arg4_type	= ARG_PTR_TO_MEM,
3817 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3818 	.btf_id		= bpf_skb_output_btf_ids,
3819 };
3820 
3821 static unsigned short bpf_tunnel_key_af(u64 flags)
3822 {
3823 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3824 }
3825 
3826 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3827 	   u32, size, u64, flags)
3828 {
3829 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3830 	u8 compat[sizeof(struct bpf_tunnel_key)];
3831 	void *to_orig = to;
3832 	int err;
3833 
3834 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3835 		err = -EINVAL;
3836 		goto err_clear;
3837 	}
3838 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3839 		err = -EPROTO;
3840 		goto err_clear;
3841 	}
3842 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3843 		err = -EINVAL;
3844 		switch (size) {
3845 		case offsetof(struct bpf_tunnel_key, tunnel_label):
3846 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3847 			goto set_compat;
3848 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3849 			/* Fixup deprecated structure layouts here, so we have
3850 			 * a common path later on.
3851 			 */
3852 			if (ip_tunnel_info_af(info) != AF_INET)
3853 				goto err_clear;
3854 set_compat:
3855 			to = (struct bpf_tunnel_key *)compat;
3856 			break;
3857 		default:
3858 			goto err_clear;
3859 		}
3860 	}
3861 
3862 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
3863 	to->tunnel_tos = info->key.tos;
3864 	to->tunnel_ttl = info->key.ttl;
3865 	to->tunnel_ext = 0;
3866 
3867 	if (flags & BPF_F_TUNINFO_IPV6) {
3868 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3869 		       sizeof(to->remote_ipv6));
3870 		to->tunnel_label = be32_to_cpu(info->key.label);
3871 	} else {
3872 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3873 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3874 		to->tunnel_label = 0;
3875 	}
3876 
3877 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3878 		memcpy(to_orig, to, size);
3879 
3880 	return 0;
3881 err_clear:
3882 	memset(to_orig, 0, size);
3883 	return err;
3884 }
3885 
3886 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3887 	.func		= bpf_skb_get_tunnel_key,
3888 	.gpl_only	= false,
3889 	.ret_type	= RET_INTEGER,
3890 	.arg1_type	= ARG_PTR_TO_CTX,
3891 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
3892 	.arg3_type	= ARG_CONST_SIZE,
3893 	.arg4_type	= ARG_ANYTHING,
3894 };
3895 
3896 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3897 {
3898 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3899 	int err;
3900 
3901 	if (unlikely(!info ||
3902 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3903 		err = -ENOENT;
3904 		goto err_clear;
3905 	}
3906 	if (unlikely(size < info->options_len)) {
3907 		err = -ENOMEM;
3908 		goto err_clear;
3909 	}
3910 
3911 	ip_tunnel_info_opts_get(to, info);
3912 	if (size > info->options_len)
3913 		memset(to + info->options_len, 0, size - info->options_len);
3914 
3915 	return info->options_len;
3916 err_clear:
3917 	memset(to, 0, size);
3918 	return err;
3919 }
3920 
3921 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3922 	.func		= bpf_skb_get_tunnel_opt,
3923 	.gpl_only	= false,
3924 	.ret_type	= RET_INTEGER,
3925 	.arg1_type	= ARG_PTR_TO_CTX,
3926 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
3927 	.arg3_type	= ARG_CONST_SIZE,
3928 };
3929 
3930 static struct metadata_dst __percpu *md_dst;
3931 
3932 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3933 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3934 {
3935 	struct metadata_dst *md = this_cpu_ptr(md_dst);
3936 	u8 compat[sizeof(struct bpf_tunnel_key)];
3937 	struct ip_tunnel_info *info;
3938 
3939 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3940 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3941 		return -EINVAL;
3942 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3943 		switch (size) {
3944 		case offsetof(struct bpf_tunnel_key, tunnel_label):
3945 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3946 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3947 			/* Fixup deprecated structure layouts here, so we have
3948 			 * a common path later on.
3949 			 */
3950 			memcpy(compat, from, size);
3951 			memset(compat + size, 0, sizeof(compat) - size);
3952 			from = (const struct bpf_tunnel_key *) compat;
3953 			break;
3954 		default:
3955 			return -EINVAL;
3956 		}
3957 	}
3958 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3959 		     from->tunnel_ext))
3960 		return -EINVAL;
3961 
3962 	skb_dst_drop(skb);
3963 	dst_hold((struct dst_entry *) md);
3964 	skb_dst_set(skb, (struct dst_entry *) md);
3965 
3966 	info = &md->u.tun_info;
3967 	memset(info, 0, sizeof(*info));
3968 	info->mode = IP_TUNNEL_INFO_TX;
3969 
3970 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3971 	if (flags & BPF_F_DONT_FRAGMENT)
3972 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3973 	if (flags & BPF_F_ZERO_CSUM_TX)
3974 		info->key.tun_flags &= ~TUNNEL_CSUM;
3975 	if (flags & BPF_F_SEQ_NUMBER)
3976 		info->key.tun_flags |= TUNNEL_SEQ;
3977 
3978 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
3979 	info->key.tos = from->tunnel_tos;
3980 	info->key.ttl = from->tunnel_ttl;
3981 
3982 	if (flags & BPF_F_TUNINFO_IPV6) {
3983 		info->mode |= IP_TUNNEL_INFO_IPV6;
3984 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3985 		       sizeof(from->remote_ipv6));
3986 		info->key.label = cpu_to_be32(from->tunnel_label) &
3987 				  IPV6_FLOWLABEL_MASK;
3988 	} else {
3989 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3990 	}
3991 
3992 	return 0;
3993 }
3994 
3995 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3996 	.func		= bpf_skb_set_tunnel_key,
3997 	.gpl_only	= false,
3998 	.ret_type	= RET_INTEGER,
3999 	.arg1_type	= ARG_PTR_TO_CTX,
4000 	.arg2_type	= ARG_PTR_TO_MEM,
4001 	.arg3_type	= ARG_CONST_SIZE,
4002 	.arg4_type	= ARG_ANYTHING,
4003 };
4004 
4005 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4006 	   const u8 *, from, u32, size)
4007 {
4008 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4009 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4010 
4011 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4012 		return -EINVAL;
4013 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4014 		return -ENOMEM;
4015 
4016 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4017 
4018 	return 0;
4019 }
4020 
4021 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4022 	.func		= bpf_skb_set_tunnel_opt,
4023 	.gpl_only	= false,
4024 	.ret_type	= RET_INTEGER,
4025 	.arg1_type	= ARG_PTR_TO_CTX,
4026 	.arg2_type	= ARG_PTR_TO_MEM,
4027 	.arg3_type	= ARG_CONST_SIZE,
4028 };
4029 
4030 static const struct bpf_func_proto *
4031 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4032 {
4033 	if (!md_dst) {
4034 		struct metadata_dst __percpu *tmp;
4035 
4036 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4037 						METADATA_IP_TUNNEL,
4038 						GFP_KERNEL);
4039 		if (!tmp)
4040 			return NULL;
4041 		if (cmpxchg(&md_dst, NULL, tmp))
4042 			metadata_dst_free_percpu(tmp);
4043 	}
4044 
4045 	switch (which) {
4046 	case BPF_FUNC_skb_set_tunnel_key:
4047 		return &bpf_skb_set_tunnel_key_proto;
4048 	case BPF_FUNC_skb_set_tunnel_opt:
4049 		return &bpf_skb_set_tunnel_opt_proto;
4050 	default:
4051 		return NULL;
4052 	}
4053 }
4054 
4055 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4056 	   u32, idx)
4057 {
4058 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4059 	struct cgroup *cgrp;
4060 	struct sock *sk;
4061 
4062 	sk = skb_to_full_sk(skb);
4063 	if (!sk || !sk_fullsock(sk))
4064 		return -ENOENT;
4065 	if (unlikely(idx >= array->map.max_entries))
4066 		return -E2BIG;
4067 
4068 	cgrp = READ_ONCE(array->ptrs[idx]);
4069 	if (unlikely(!cgrp))
4070 		return -EAGAIN;
4071 
4072 	return sk_under_cgroup_hierarchy(sk, cgrp);
4073 }
4074 
4075 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4076 	.func		= bpf_skb_under_cgroup,
4077 	.gpl_only	= false,
4078 	.ret_type	= RET_INTEGER,
4079 	.arg1_type	= ARG_PTR_TO_CTX,
4080 	.arg2_type	= ARG_CONST_MAP_PTR,
4081 	.arg3_type	= ARG_ANYTHING,
4082 };
4083 
4084 #ifdef CONFIG_SOCK_CGROUP_DATA
4085 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4086 {
4087 	struct cgroup *cgrp;
4088 
4089 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4090 	return cgroup_id(cgrp);
4091 }
4092 
4093 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4094 {
4095 	struct sock *sk = skb_to_full_sk(skb);
4096 
4097 	if (!sk || !sk_fullsock(sk))
4098 		return 0;
4099 
4100 	return __bpf_sk_cgroup_id(sk);
4101 }
4102 
4103 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4104 	.func           = bpf_skb_cgroup_id,
4105 	.gpl_only       = false,
4106 	.ret_type       = RET_INTEGER,
4107 	.arg1_type      = ARG_PTR_TO_CTX,
4108 };
4109 
4110 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4111 					      int ancestor_level)
4112 {
4113 	struct cgroup *ancestor;
4114 	struct cgroup *cgrp;
4115 
4116 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4117 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4118 	if (!ancestor)
4119 		return 0;
4120 
4121 	return cgroup_id(ancestor);
4122 }
4123 
4124 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4125 	   ancestor_level)
4126 {
4127 	struct sock *sk = skb_to_full_sk(skb);
4128 
4129 	if (!sk || !sk_fullsock(sk))
4130 		return 0;
4131 
4132 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4133 }
4134 
4135 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4136 	.func           = bpf_skb_ancestor_cgroup_id,
4137 	.gpl_only       = false,
4138 	.ret_type       = RET_INTEGER,
4139 	.arg1_type      = ARG_PTR_TO_CTX,
4140 	.arg2_type      = ARG_ANYTHING,
4141 };
4142 
4143 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4144 {
4145 	return __bpf_sk_cgroup_id(sk);
4146 }
4147 
4148 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4149 	.func           = bpf_sk_cgroup_id,
4150 	.gpl_only       = false,
4151 	.ret_type       = RET_INTEGER,
4152 	.arg1_type      = ARG_PTR_TO_SOCKET,
4153 };
4154 
4155 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4156 {
4157 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4158 }
4159 
4160 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4161 	.func           = bpf_sk_ancestor_cgroup_id,
4162 	.gpl_only       = false,
4163 	.ret_type       = RET_INTEGER,
4164 	.arg1_type      = ARG_PTR_TO_SOCKET,
4165 	.arg2_type      = ARG_ANYTHING,
4166 };
4167 #endif
4168 
4169 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4170 				  unsigned long off, unsigned long len)
4171 {
4172 	memcpy(dst_buff, src_buff + off, len);
4173 	return 0;
4174 }
4175 
4176 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4177 	   u64, flags, void *, meta, u64, meta_size)
4178 {
4179 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4180 
4181 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4182 		return -EINVAL;
4183 	if (unlikely(!xdp ||
4184 		     xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4185 		return -EFAULT;
4186 
4187 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4188 				xdp_size, bpf_xdp_copy);
4189 }
4190 
4191 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4192 	.func		= bpf_xdp_event_output,
4193 	.gpl_only	= true,
4194 	.ret_type	= RET_INTEGER,
4195 	.arg1_type	= ARG_PTR_TO_CTX,
4196 	.arg2_type	= ARG_CONST_MAP_PTR,
4197 	.arg3_type	= ARG_ANYTHING,
4198 	.arg4_type	= ARG_PTR_TO_MEM,
4199 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4200 };
4201 
4202 BTF_ID_LIST(bpf_xdp_output_btf_ids)
4203 BTF_ID(struct, xdp_buff)
4204 
4205 const struct bpf_func_proto bpf_xdp_output_proto = {
4206 	.func		= bpf_xdp_event_output,
4207 	.gpl_only	= true,
4208 	.ret_type	= RET_INTEGER,
4209 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4210 	.arg2_type	= ARG_CONST_MAP_PTR,
4211 	.arg3_type	= ARG_ANYTHING,
4212 	.arg4_type	= ARG_PTR_TO_MEM,
4213 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4214 	.btf_id		= bpf_xdp_output_btf_ids,
4215 };
4216 
4217 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4218 {
4219 	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
4220 }
4221 
4222 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4223 	.func           = bpf_get_socket_cookie,
4224 	.gpl_only       = false,
4225 	.ret_type       = RET_INTEGER,
4226 	.arg1_type      = ARG_PTR_TO_CTX,
4227 };
4228 
4229 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4230 {
4231 	return sock_gen_cookie(ctx->sk);
4232 }
4233 
4234 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4235 	.func		= bpf_get_socket_cookie_sock_addr,
4236 	.gpl_only	= false,
4237 	.ret_type	= RET_INTEGER,
4238 	.arg1_type	= ARG_PTR_TO_CTX,
4239 };
4240 
4241 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4242 {
4243 	return sock_gen_cookie(ctx);
4244 }
4245 
4246 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4247 	.func		= bpf_get_socket_cookie_sock,
4248 	.gpl_only	= false,
4249 	.ret_type	= RET_INTEGER,
4250 	.arg1_type	= ARG_PTR_TO_CTX,
4251 };
4252 
4253 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4254 {
4255 	return sock_gen_cookie(ctx->sk);
4256 }
4257 
4258 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4259 	.func		= bpf_get_socket_cookie_sock_ops,
4260 	.gpl_only	= false,
4261 	.ret_type	= RET_INTEGER,
4262 	.arg1_type	= ARG_PTR_TO_CTX,
4263 };
4264 
4265 static u64 __bpf_get_netns_cookie(struct sock *sk)
4266 {
4267 #ifdef CONFIG_NET_NS
4268 	return net_gen_cookie(sk ? sk->sk_net.net : &init_net);
4269 #else
4270 	return 0;
4271 #endif
4272 }
4273 
4274 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4275 {
4276 	return __bpf_get_netns_cookie(ctx);
4277 }
4278 
4279 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4280 	.func		= bpf_get_netns_cookie_sock,
4281 	.gpl_only	= false,
4282 	.ret_type	= RET_INTEGER,
4283 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4284 };
4285 
4286 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4287 {
4288 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4289 }
4290 
4291 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4292 	.func		= bpf_get_netns_cookie_sock_addr,
4293 	.gpl_only	= false,
4294 	.ret_type	= RET_INTEGER,
4295 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4296 };
4297 
4298 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4299 {
4300 	struct sock *sk = sk_to_full_sk(skb->sk);
4301 	kuid_t kuid;
4302 
4303 	if (!sk || !sk_fullsock(sk))
4304 		return overflowuid;
4305 	kuid = sock_net_uid(sock_net(sk), sk);
4306 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4307 }
4308 
4309 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4310 	.func           = bpf_get_socket_uid,
4311 	.gpl_only       = false,
4312 	.ret_type       = RET_INTEGER,
4313 	.arg1_type      = ARG_PTR_TO_CTX,
4314 };
4315 
4316 #define SOCKOPT_CC_REINIT (1 << 0)
4317 
4318 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4319 			   char *optval, int optlen, u32 flags)
4320 {
4321 	char devname[IFNAMSIZ];
4322 	int val, valbool;
4323 	struct net *net;
4324 	int ifindex;
4325 	int ret = 0;
4326 
4327 	if (!sk_fullsock(sk))
4328 		return -EINVAL;
4329 
4330 	sock_owned_by_me(sk);
4331 
4332 	if (level == SOL_SOCKET) {
4333 		if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4334 			return -EINVAL;
4335 		val = *((int *)optval);
4336 		valbool = val ? 1 : 0;
4337 
4338 		/* Only some socketops are supported */
4339 		switch (optname) {
4340 		case SO_RCVBUF:
4341 			val = min_t(u32, val, sysctl_rmem_max);
4342 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4343 			WRITE_ONCE(sk->sk_rcvbuf,
4344 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4345 			break;
4346 		case SO_SNDBUF:
4347 			val = min_t(u32, val, sysctl_wmem_max);
4348 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4349 			WRITE_ONCE(sk->sk_sndbuf,
4350 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4351 			break;
4352 		case SO_MAX_PACING_RATE: /* 32bit version */
4353 			if (val != ~0U)
4354 				cmpxchg(&sk->sk_pacing_status,
4355 					SK_PACING_NONE,
4356 					SK_PACING_NEEDED);
4357 			sk->sk_max_pacing_rate = (val == ~0U) ? ~0UL : val;
4358 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4359 						 sk->sk_max_pacing_rate);
4360 			break;
4361 		case SO_PRIORITY:
4362 			sk->sk_priority = val;
4363 			break;
4364 		case SO_RCVLOWAT:
4365 			if (val < 0)
4366 				val = INT_MAX;
4367 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4368 			break;
4369 		case SO_MARK:
4370 			if (sk->sk_mark != val) {
4371 				sk->sk_mark = val;
4372 				sk_dst_reset(sk);
4373 			}
4374 			break;
4375 		case SO_BINDTODEVICE:
4376 			optlen = min_t(long, optlen, IFNAMSIZ - 1);
4377 			strncpy(devname, optval, optlen);
4378 			devname[optlen] = 0;
4379 
4380 			ifindex = 0;
4381 			if (devname[0] != '\0') {
4382 				struct net_device *dev;
4383 
4384 				ret = -ENODEV;
4385 
4386 				net = sock_net(sk);
4387 				dev = dev_get_by_name(net, devname);
4388 				if (!dev)
4389 					break;
4390 				ifindex = dev->ifindex;
4391 				dev_put(dev);
4392 			}
4393 			ret = sock_bindtoindex(sk, ifindex, false);
4394 			break;
4395 		case SO_KEEPALIVE:
4396 			if (sk->sk_prot->keepalive)
4397 				sk->sk_prot->keepalive(sk, valbool);
4398 			sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4399 			break;
4400 		default:
4401 			ret = -EINVAL;
4402 		}
4403 #ifdef CONFIG_INET
4404 	} else if (level == SOL_IP) {
4405 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4406 			return -EINVAL;
4407 
4408 		val = *((int *)optval);
4409 		/* Only some options are supported */
4410 		switch (optname) {
4411 		case IP_TOS:
4412 			if (val < -1 || val > 0xff) {
4413 				ret = -EINVAL;
4414 			} else {
4415 				struct inet_sock *inet = inet_sk(sk);
4416 
4417 				if (val == -1)
4418 					val = 0;
4419 				inet->tos = val;
4420 			}
4421 			break;
4422 		default:
4423 			ret = -EINVAL;
4424 		}
4425 #if IS_ENABLED(CONFIG_IPV6)
4426 	} else if (level == SOL_IPV6) {
4427 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4428 			return -EINVAL;
4429 
4430 		val = *((int *)optval);
4431 		/* Only some options are supported */
4432 		switch (optname) {
4433 		case IPV6_TCLASS:
4434 			if (val < -1 || val > 0xff) {
4435 				ret = -EINVAL;
4436 			} else {
4437 				struct ipv6_pinfo *np = inet6_sk(sk);
4438 
4439 				if (val == -1)
4440 					val = 0;
4441 				np->tclass = val;
4442 			}
4443 			break;
4444 		default:
4445 			ret = -EINVAL;
4446 		}
4447 #endif
4448 	} else if (level == SOL_TCP &&
4449 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
4450 		if (optname == TCP_CONGESTION) {
4451 			char name[TCP_CA_NAME_MAX];
4452 			bool reinit = flags & SOCKOPT_CC_REINIT;
4453 
4454 			strncpy(name, optval, min_t(long, optlen,
4455 						    TCP_CA_NAME_MAX-1));
4456 			name[TCP_CA_NAME_MAX-1] = 0;
4457 			ret = tcp_set_congestion_control(sk, name, false,
4458 							 reinit, true);
4459 		} else {
4460 			struct inet_connection_sock *icsk = inet_csk(sk);
4461 			struct tcp_sock *tp = tcp_sk(sk);
4462 
4463 			if (optlen != sizeof(int))
4464 				return -EINVAL;
4465 
4466 			val = *((int *)optval);
4467 			/* Only some options are supported */
4468 			switch (optname) {
4469 			case TCP_BPF_IW:
4470 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
4471 					ret = -EINVAL;
4472 				else
4473 					tp->snd_cwnd = val;
4474 				break;
4475 			case TCP_BPF_SNDCWND_CLAMP:
4476 				if (val <= 0) {
4477 					ret = -EINVAL;
4478 				} else {
4479 					tp->snd_cwnd_clamp = val;
4480 					tp->snd_ssthresh = val;
4481 				}
4482 				break;
4483 			case TCP_SAVE_SYN:
4484 				if (val < 0 || val > 1)
4485 					ret = -EINVAL;
4486 				else
4487 					tp->save_syn = val;
4488 				break;
4489 			case TCP_KEEPIDLE:
4490 				ret = tcp_sock_set_keepidle_locked(sk, val);
4491 				break;
4492 			case TCP_KEEPINTVL:
4493 				if (val < 1 || val > MAX_TCP_KEEPINTVL)
4494 					ret = -EINVAL;
4495 				else
4496 					tp->keepalive_intvl = val * HZ;
4497 				break;
4498 			case TCP_KEEPCNT:
4499 				if (val < 1 || val > MAX_TCP_KEEPCNT)
4500 					ret = -EINVAL;
4501 				else
4502 					tp->keepalive_probes = val;
4503 				break;
4504 			case TCP_SYNCNT:
4505 				if (val < 1 || val > MAX_TCP_SYNCNT)
4506 					ret = -EINVAL;
4507 				else
4508 					icsk->icsk_syn_retries = val;
4509 				break;
4510 			case TCP_USER_TIMEOUT:
4511 				if (val < 0)
4512 					ret = -EINVAL;
4513 				else
4514 					icsk->icsk_user_timeout = val;
4515 				break;
4516 			default:
4517 				ret = -EINVAL;
4518 			}
4519 		}
4520 #endif
4521 	} else {
4522 		ret = -EINVAL;
4523 	}
4524 	return ret;
4525 }
4526 
4527 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4528 			   char *optval, int optlen)
4529 {
4530 	if (!sk_fullsock(sk))
4531 		goto err_clear;
4532 
4533 	sock_owned_by_me(sk);
4534 
4535 #ifdef CONFIG_INET
4536 	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4537 		struct inet_connection_sock *icsk;
4538 		struct tcp_sock *tp;
4539 
4540 		switch (optname) {
4541 		case TCP_CONGESTION:
4542 			icsk = inet_csk(sk);
4543 
4544 			if (!icsk->icsk_ca_ops || optlen <= 1)
4545 				goto err_clear;
4546 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4547 			optval[optlen - 1] = 0;
4548 			break;
4549 		case TCP_SAVED_SYN:
4550 			tp = tcp_sk(sk);
4551 
4552 			if (optlen <= 0 || !tp->saved_syn ||
4553 			    optlen > tp->saved_syn[0])
4554 				goto err_clear;
4555 			memcpy(optval, tp->saved_syn + 1, optlen);
4556 			break;
4557 		default:
4558 			goto err_clear;
4559 		}
4560 	} else if (level == SOL_IP) {
4561 		struct inet_sock *inet = inet_sk(sk);
4562 
4563 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4564 			goto err_clear;
4565 
4566 		/* Only some options are supported */
4567 		switch (optname) {
4568 		case IP_TOS:
4569 			*((int *)optval) = (int)inet->tos;
4570 			break;
4571 		default:
4572 			goto err_clear;
4573 		}
4574 #if IS_ENABLED(CONFIG_IPV6)
4575 	} else if (level == SOL_IPV6) {
4576 		struct ipv6_pinfo *np = inet6_sk(sk);
4577 
4578 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4579 			goto err_clear;
4580 
4581 		/* Only some options are supported */
4582 		switch (optname) {
4583 		case IPV6_TCLASS:
4584 			*((int *)optval) = (int)np->tclass;
4585 			break;
4586 		default:
4587 			goto err_clear;
4588 		}
4589 #endif
4590 	} else {
4591 		goto err_clear;
4592 	}
4593 	return 0;
4594 #endif
4595 err_clear:
4596 	memset(optval, 0, optlen);
4597 	return -EINVAL;
4598 }
4599 
4600 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
4601 	   int, level, int, optname, char *, optval, int, optlen)
4602 {
4603 	u32 flags = 0;
4604 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen,
4605 			       flags);
4606 }
4607 
4608 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
4609 	.func		= bpf_sock_addr_setsockopt,
4610 	.gpl_only	= false,
4611 	.ret_type	= RET_INTEGER,
4612 	.arg1_type	= ARG_PTR_TO_CTX,
4613 	.arg2_type	= ARG_ANYTHING,
4614 	.arg3_type	= ARG_ANYTHING,
4615 	.arg4_type	= ARG_PTR_TO_MEM,
4616 	.arg5_type	= ARG_CONST_SIZE,
4617 };
4618 
4619 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
4620 	   int, level, int, optname, char *, optval, int, optlen)
4621 {
4622 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
4623 }
4624 
4625 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
4626 	.func		= bpf_sock_addr_getsockopt,
4627 	.gpl_only	= false,
4628 	.ret_type	= RET_INTEGER,
4629 	.arg1_type	= ARG_PTR_TO_CTX,
4630 	.arg2_type	= ARG_ANYTHING,
4631 	.arg3_type	= ARG_ANYTHING,
4632 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
4633 	.arg5_type	= ARG_CONST_SIZE,
4634 };
4635 
4636 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4637 	   int, level, int, optname, char *, optval, int, optlen)
4638 {
4639 	u32 flags = 0;
4640 	if (bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN)
4641 		flags |= SOCKOPT_CC_REINIT;
4642 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen,
4643 			       flags);
4644 }
4645 
4646 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
4647 	.func		= bpf_sock_ops_setsockopt,
4648 	.gpl_only	= false,
4649 	.ret_type	= RET_INTEGER,
4650 	.arg1_type	= ARG_PTR_TO_CTX,
4651 	.arg2_type	= ARG_ANYTHING,
4652 	.arg3_type	= ARG_ANYTHING,
4653 	.arg4_type	= ARG_PTR_TO_MEM,
4654 	.arg5_type	= ARG_CONST_SIZE,
4655 };
4656 
4657 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4658 	   int, level, int, optname, char *, optval, int, optlen)
4659 {
4660 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
4661 }
4662 
4663 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
4664 	.func		= bpf_sock_ops_getsockopt,
4665 	.gpl_only	= false,
4666 	.ret_type	= RET_INTEGER,
4667 	.arg1_type	= ARG_PTR_TO_CTX,
4668 	.arg2_type	= ARG_ANYTHING,
4669 	.arg3_type	= ARG_ANYTHING,
4670 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
4671 	.arg5_type	= ARG_CONST_SIZE,
4672 };
4673 
4674 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4675 	   int, argval)
4676 {
4677 	struct sock *sk = bpf_sock->sk;
4678 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4679 
4680 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4681 		return -EINVAL;
4682 
4683 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4684 
4685 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4686 }
4687 
4688 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4689 	.func		= bpf_sock_ops_cb_flags_set,
4690 	.gpl_only	= false,
4691 	.ret_type	= RET_INTEGER,
4692 	.arg1_type	= ARG_PTR_TO_CTX,
4693 	.arg2_type	= ARG_ANYTHING,
4694 };
4695 
4696 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4697 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4698 
4699 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4700 	   int, addr_len)
4701 {
4702 #ifdef CONFIG_INET
4703 	struct sock *sk = ctx->sk;
4704 	u32 flags = BIND_FROM_BPF;
4705 	int err;
4706 
4707 	err = -EINVAL;
4708 	if (addr_len < offsetofend(struct sockaddr, sa_family))
4709 		return err;
4710 	if (addr->sa_family == AF_INET) {
4711 		if (addr_len < sizeof(struct sockaddr_in))
4712 			return err;
4713 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
4714 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
4715 		return __inet_bind(sk, addr, addr_len, flags);
4716 #if IS_ENABLED(CONFIG_IPV6)
4717 	} else if (addr->sa_family == AF_INET6) {
4718 		if (addr_len < SIN6_LEN_RFC2133)
4719 			return err;
4720 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
4721 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
4722 		/* ipv6_bpf_stub cannot be NULL, since it's called from
4723 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4724 		 */
4725 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
4726 #endif /* CONFIG_IPV6 */
4727 	}
4728 #endif /* CONFIG_INET */
4729 
4730 	return -EAFNOSUPPORT;
4731 }
4732 
4733 static const struct bpf_func_proto bpf_bind_proto = {
4734 	.func		= bpf_bind,
4735 	.gpl_only	= false,
4736 	.ret_type	= RET_INTEGER,
4737 	.arg1_type	= ARG_PTR_TO_CTX,
4738 	.arg2_type	= ARG_PTR_TO_MEM,
4739 	.arg3_type	= ARG_CONST_SIZE,
4740 };
4741 
4742 #ifdef CONFIG_XFRM
4743 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4744 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
4745 {
4746 	const struct sec_path *sp = skb_sec_path(skb);
4747 	const struct xfrm_state *x;
4748 
4749 	if (!sp || unlikely(index >= sp->len || flags))
4750 		goto err_clear;
4751 
4752 	x = sp->xvec[index];
4753 
4754 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4755 		goto err_clear;
4756 
4757 	to->reqid = x->props.reqid;
4758 	to->spi = x->id.spi;
4759 	to->family = x->props.family;
4760 	to->ext = 0;
4761 
4762 	if (to->family == AF_INET6) {
4763 		memcpy(to->remote_ipv6, x->props.saddr.a6,
4764 		       sizeof(to->remote_ipv6));
4765 	} else {
4766 		to->remote_ipv4 = x->props.saddr.a4;
4767 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4768 	}
4769 
4770 	return 0;
4771 err_clear:
4772 	memset(to, 0, size);
4773 	return -EINVAL;
4774 }
4775 
4776 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4777 	.func		= bpf_skb_get_xfrm_state,
4778 	.gpl_only	= false,
4779 	.ret_type	= RET_INTEGER,
4780 	.arg1_type	= ARG_PTR_TO_CTX,
4781 	.arg2_type	= ARG_ANYTHING,
4782 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4783 	.arg4_type	= ARG_CONST_SIZE,
4784 	.arg5_type	= ARG_ANYTHING,
4785 };
4786 #endif
4787 
4788 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4789 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4790 				  const struct neighbour *neigh,
4791 				  const struct net_device *dev)
4792 {
4793 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
4794 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4795 	params->h_vlan_TCI = 0;
4796 	params->h_vlan_proto = 0;
4797 	params->ifindex = dev->ifindex;
4798 
4799 	return 0;
4800 }
4801 #endif
4802 
4803 #if IS_ENABLED(CONFIG_INET)
4804 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4805 			       u32 flags, bool check_mtu)
4806 {
4807 	struct fib_nh_common *nhc;
4808 	struct in_device *in_dev;
4809 	struct neighbour *neigh;
4810 	struct net_device *dev;
4811 	struct fib_result res;
4812 	struct flowi4 fl4;
4813 	int err;
4814 	u32 mtu;
4815 
4816 	dev = dev_get_by_index_rcu(net, params->ifindex);
4817 	if (unlikely(!dev))
4818 		return -ENODEV;
4819 
4820 	/* verify forwarding is enabled on this interface */
4821 	in_dev = __in_dev_get_rcu(dev);
4822 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4823 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4824 
4825 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4826 		fl4.flowi4_iif = 1;
4827 		fl4.flowi4_oif = params->ifindex;
4828 	} else {
4829 		fl4.flowi4_iif = params->ifindex;
4830 		fl4.flowi4_oif = 0;
4831 	}
4832 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4833 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4834 	fl4.flowi4_flags = 0;
4835 
4836 	fl4.flowi4_proto = params->l4_protocol;
4837 	fl4.daddr = params->ipv4_dst;
4838 	fl4.saddr = params->ipv4_src;
4839 	fl4.fl4_sport = params->sport;
4840 	fl4.fl4_dport = params->dport;
4841 
4842 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
4843 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4844 		struct fib_table *tb;
4845 
4846 		tb = fib_get_table(net, tbid);
4847 		if (unlikely(!tb))
4848 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4849 
4850 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4851 	} else {
4852 		fl4.flowi4_mark = 0;
4853 		fl4.flowi4_secid = 0;
4854 		fl4.flowi4_tun_key.tun_id = 0;
4855 		fl4.flowi4_uid = sock_net_uid(net, NULL);
4856 
4857 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4858 	}
4859 
4860 	if (err) {
4861 		/* map fib lookup errors to RTN_ type */
4862 		if (err == -EINVAL)
4863 			return BPF_FIB_LKUP_RET_BLACKHOLE;
4864 		if (err == -EHOSTUNREACH)
4865 			return BPF_FIB_LKUP_RET_UNREACHABLE;
4866 		if (err == -EACCES)
4867 			return BPF_FIB_LKUP_RET_PROHIBIT;
4868 
4869 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4870 	}
4871 
4872 	if (res.type != RTN_UNICAST)
4873 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4874 
4875 	if (fib_info_num_path(res.fi) > 1)
4876 		fib_select_path(net, &res, &fl4, NULL);
4877 
4878 	if (check_mtu) {
4879 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4880 		if (params->tot_len > mtu)
4881 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4882 	}
4883 
4884 	nhc = res.nhc;
4885 
4886 	/* do not handle lwt encaps right now */
4887 	if (nhc->nhc_lwtstate)
4888 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4889 
4890 	dev = nhc->nhc_dev;
4891 
4892 	params->rt_metric = res.fi->fib_priority;
4893 
4894 	/* xdp and cls_bpf programs are run in RCU-bh so
4895 	 * rcu_read_lock_bh is not needed here
4896 	 */
4897 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
4898 		if (nhc->nhc_gw_family)
4899 			params->ipv4_dst = nhc->nhc_gw.ipv4;
4900 
4901 		neigh = __ipv4_neigh_lookup_noref(dev,
4902 						 (__force u32)params->ipv4_dst);
4903 	} else {
4904 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
4905 
4906 		params->family = AF_INET6;
4907 		*dst = nhc->nhc_gw.ipv6;
4908 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4909 	}
4910 
4911 	if (!neigh)
4912 		return BPF_FIB_LKUP_RET_NO_NEIGH;
4913 
4914 	return bpf_fib_set_fwd_params(params, neigh, dev);
4915 }
4916 #endif
4917 
4918 #if IS_ENABLED(CONFIG_IPV6)
4919 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4920 			       u32 flags, bool check_mtu)
4921 {
4922 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4923 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4924 	struct fib6_result res = {};
4925 	struct neighbour *neigh;
4926 	struct net_device *dev;
4927 	struct inet6_dev *idev;
4928 	struct flowi6 fl6;
4929 	int strict = 0;
4930 	int oif, err;
4931 	u32 mtu;
4932 
4933 	/* link local addresses are never forwarded */
4934 	if (rt6_need_strict(dst) || rt6_need_strict(src))
4935 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4936 
4937 	dev = dev_get_by_index_rcu(net, params->ifindex);
4938 	if (unlikely(!dev))
4939 		return -ENODEV;
4940 
4941 	idev = __in6_dev_get_safely(dev);
4942 	if (unlikely(!idev || !idev->cnf.forwarding))
4943 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4944 
4945 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4946 		fl6.flowi6_iif = 1;
4947 		oif = fl6.flowi6_oif = params->ifindex;
4948 	} else {
4949 		oif = fl6.flowi6_iif = params->ifindex;
4950 		fl6.flowi6_oif = 0;
4951 		strict = RT6_LOOKUP_F_HAS_SADDR;
4952 	}
4953 	fl6.flowlabel = params->flowinfo;
4954 	fl6.flowi6_scope = 0;
4955 	fl6.flowi6_flags = 0;
4956 	fl6.mp_hash = 0;
4957 
4958 	fl6.flowi6_proto = params->l4_protocol;
4959 	fl6.daddr = *dst;
4960 	fl6.saddr = *src;
4961 	fl6.fl6_sport = params->sport;
4962 	fl6.fl6_dport = params->dport;
4963 
4964 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
4965 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4966 		struct fib6_table *tb;
4967 
4968 		tb = ipv6_stub->fib6_get_table(net, tbid);
4969 		if (unlikely(!tb))
4970 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4971 
4972 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
4973 						   strict);
4974 	} else {
4975 		fl6.flowi6_mark = 0;
4976 		fl6.flowi6_secid = 0;
4977 		fl6.flowi6_tun_key.tun_id = 0;
4978 		fl6.flowi6_uid = sock_net_uid(net, NULL);
4979 
4980 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
4981 	}
4982 
4983 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
4984 		     res.f6i == net->ipv6.fib6_null_entry))
4985 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4986 
4987 	switch (res.fib6_type) {
4988 	/* only unicast is forwarded */
4989 	case RTN_UNICAST:
4990 		break;
4991 	case RTN_BLACKHOLE:
4992 		return BPF_FIB_LKUP_RET_BLACKHOLE;
4993 	case RTN_UNREACHABLE:
4994 		return BPF_FIB_LKUP_RET_UNREACHABLE;
4995 	case RTN_PROHIBIT:
4996 		return BPF_FIB_LKUP_RET_PROHIBIT;
4997 	default:
4998 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4999 	}
5000 
5001 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5002 				    fl6.flowi6_oif != 0, NULL, strict);
5003 
5004 	if (check_mtu) {
5005 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5006 		if (params->tot_len > mtu)
5007 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5008 	}
5009 
5010 	if (res.nh->fib_nh_lws)
5011 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5012 
5013 	if (res.nh->fib_nh_gw_family)
5014 		*dst = res.nh->fib_nh_gw6;
5015 
5016 	dev = res.nh->fib_nh_dev;
5017 	params->rt_metric = res.f6i->fib6_metric;
5018 
5019 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5020 	 * not needed here.
5021 	 */
5022 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5023 	if (!neigh)
5024 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5025 
5026 	return bpf_fib_set_fwd_params(params, neigh, dev);
5027 }
5028 #endif
5029 
5030 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5031 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5032 {
5033 	if (plen < sizeof(*params))
5034 		return -EINVAL;
5035 
5036 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5037 		return -EINVAL;
5038 
5039 	switch (params->family) {
5040 #if IS_ENABLED(CONFIG_INET)
5041 	case AF_INET:
5042 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5043 					   flags, true);
5044 #endif
5045 #if IS_ENABLED(CONFIG_IPV6)
5046 	case AF_INET6:
5047 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5048 					   flags, true);
5049 #endif
5050 	}
5051 	return -EAFNOSUPPORT;
5052 }
5053 
5054 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5055 	.func		= bpf_xdp_fib_lookup,
5056 	.gpl_only	= true,
5057 	.ret_type	= RET_INTEGER,
5058 	.arg1_type      = ARG_PTR_TO_CTX,
5059 	.arg2_type      = ARG_PTR_TO_MEM,
5060 	.arg3_type      = ARG_CONST_SIZE,
5061 	.arg4_type	= ARG_ANYTHING,
5062 };
5063 
5064 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5065 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5066 {
5067 	struct net *net = dev_net(skb->dev);
5068 	int rc = -EAFNOSUPPORT;
5069 
5070 	if (plen < sizeof(*params))
5071 		return -EINVAL;
5072 
5073 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5074 		return -EINVAL;
5075 
5076 	switch (params->family) {
5077 #if IS_ENABLED(CONFIG_INET)
5078 	case AF_INET:
5079 		rc = bpf_ipv4_fib_lookup(net, params, flags, false);
5080 		break;
5081 #endif
5082 #if IS_ENABLED(CONFIG_IPV6)
5083 	case AF_INET6:
5084 		rc = bpf_ipv6_fib_lookup(net, params, flags, false);
5085 		break;
5086 #endif
5087 	}
5088 
5089 	if (!rc) {
5090 		struct net_device *dev;
5091 
5092 		dev = dev_get_by_index_rcu(net, params->ifindex);
5093 		if (!is_skb_forwardable(dev, skb))
5094 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5095 	}
5096 
5097 	return rc;
5098 }
5099 
5100 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5101 	.func		= bpf_skb_fib_lookup,
5102 	.gpl_only	= true,
5103 	.ret_type	= RET_INTEGER,
5104 	.arg1_type      = ARG_PTR_TO_CTX,
5105 	.arg2_type      = ARG_PTR_TO_MEM,
5106 	.arg3_type      = ARG_CONST_SIZE,
5107 	.arg4_type	= ARG_ANYTHING,
5108 };
5109 
5110 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5111 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5112 {
5113 	int err;
5114 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5115 
5116 	if (!seg6_validate_srh(srh, len, false))
5117 		return -EINVAL;
5118 
5119 	switch (type) {
5120 	case BPF_LWT_ENCAP_SEG6_INLINE:
5121 		if (skb->protocol != htons(ETH_P_IPV6))
5122 			return -EBADMSG;
5123 
5124 		err = seg6_do_srh_inline(skb, srh);
5125 		break;
5126 	case BPF_LWT_ENCAP_SEG6:
5127 		skb_reset_inner_headers(skb);
5128 		skb->encapsulation = 1;
5129 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5130 		break;
5131 	default:
5132 		return -EINVAL;
5133 	}
5134 
5135 	bpf_compute_data_pointers(skb);
5136 	if (err)
5137 		return err;
5138 
5139 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5140 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5141 
5142 	return seg6_lookup_nexthop(skb, NULL, 0);
5143 }
5144 #endif /* CONFIG_IPV6_SEG6_BPF */
5145 
5146 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5147 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5148 			     bool ingress)
5149 {
5150 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5151 }
5152 #endif
5153 
5154 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5155 	   u32, len)
5156 {
5157 	switch (type) {
5158 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5159 	case BPF_LWT_ENCAP_SEG6:
5160 	case BPF_LWT_ENCAP_SEG6_INLINE:
5161 		return bpf_push_seg6_encap(skb, type, hdr, len);
5162 #endif
5163 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5164 	case BPF_LWT_ENCAP_IP:
5165 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5166 #endif
5167 	default:
5168 		return -EINVAL;
5169 	}
5170 }
5171 
5172 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5173 	   void *, hdr, u32, len)
5174 {
5175 	switch (type) {
5176 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5177 	case BPF_LWT_ENCAP_IP:
5178 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5179 #endif
5180 	default:
5181 		return -EINVAL;
5182 	}
5183 }
5184 
5185 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5186 	.func		= bpf_lwt_in_push_encap,
5187 	.gpl_only	= false,
5188 	.ret_type	= RET_INTEGER,
5189 	.arg1_type	= ARG_PTR_TO_CTX,
5190 	.arg2_type	= ARG_ANYTHING,
5191 	.arg3_type	= ARG_PTR_TO_MEM,
5192 	.arg4_type	= ARG_CONST_SIZE
5193 };
5194 
5195 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5196 	.func		= bpf_lwt_xmit_push_encap,
5197 	.gpl_only	= false,
5198 	.ret_type	= RET_INTEGER,
5199 	.arg1_type	= ARG_PTR_TO_CTX,
5200 	.arg2_type	= ARG_ANYTHING,
5201 	.arg3_type	= ARG_PTR_TO_MEM,
5202 	.arg4_type	= ARG_CONST_SIZE
5203 };
5204 
5205 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5206 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5207 	   const void *, from, u32, len)
5208 {
5209 	struct seg6_bpf_srh_state *srh_state =
5210 		this_cpu_ptr(&seg6_bpf_srh_states);
5211 	struct ipv6_sr_hdr *srh = srh_state->srh;
5212 	void *srh_tlvs, *srh_end, *ptr;
5213 	int srhoff = 0;
5214 
5215 	if (srh == NULL)
5216 		return -EINVAL;
5217 
5218 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5219 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5220 
5221 	ptr = skb->data + offset;
5222 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
5223 		srh_state->valid = false;
5224 	else if (ptr < (void *)&srh->flags ||
5225 		 ptr + len > (void *)&srh->segments)
5226 		return -EFAULT;
5227 
5228 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
5229 		return -EFAULT;
5230 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5231 		return -EINVAL;
5232 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5233 
5234 	memcpy(skb->data + offset, from, len);
5235 	return 0;
5236 }
5237 
5238 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5239 	.func		= bpf_lwt_seg6_store_bytes,
5240 	.gpl_only	= false,
5241 	.ret_type	= RET_INTEGER,
5242 	.arg1_type	= ARG_PTR_TO_CTX,
5243 	.arg2_type	= ARG_ANYTHING,
5244 	.arg3_type	= ARG_PTR_TO_MEM,
5245 	.arg4_type	= ARG_CONST_SIZE
5246 };
5247 
5248 static void bpf_update_srh_state(struct sk_buff *skb)
5249 {
5250 	struct seg6_bpf_srh_state *srh_state =
5251 		this_cpu_ptr(&seg6_bpf_srh_states);
5252 	int srhoff = 0;
5253 
5254 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5255 		srh_state->srh = NULL;
5256 	} else {
5257 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5258 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5259 		srh_state->valid = true;
5260 	}
5261 }
5262 
5263 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5264 	   u32, action, void *, param, u32, param_len)
5265 {
5266 	struct seg6_bpf_srh_state *srh_state =
5267 		this_cpu_ptr(&seg6_bpf_srh_states);
5268 	int hdroff = 0;
5269 	int err;
5270 
5271 	switch (action) {
5272 	case SEG6_LOCAL_ACTION_END_X:
5273 		if (!seg6_bpf_has_valid_srh(skb))
5274 			return -EBADMSG;
5275 		if (param_len != sizeof(struct in6_addr))
5276 			return -EINVAL;
5277 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5278 	case SEG6_LOCAL_ACTION_END_T:
5279 		if (!seg6_bpf_has_valid_srh(skb))
5280 			return -EBADMSG;
5281 		if (param_len != sizeof(int))
5282 			return -EINVAL;
5283 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5284 	case SEG6_LOCAL_ACTION_END_DT6:
5285 		if (!seg6_bpf_has_valid_srh(skb))
5286 			return -EBADMSG;
5287 		if (param_len != sizeof(int))
5288 			return -EINVAL;
5289 
5290 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5291 			return -EBADMSG;
5292 		if (!pskb_pull(skb, hdroff))
5293 			return -EBADMSG;
5294 
5295 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5296 		skb_reset_network_header(skb);
5297 		skb_reset_transport_header(skb);
5298 		skb->encapsulation = 0;
5299 
5300 		bpf_compute_data_pointers(skb);
5301 		bpf_update_srh_state(skb);
5302 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5303 	case SEG6_LOCAL_ACTION_END_B6:
5304 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5305 			return -EBADMSG;
5306 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5307 					  param, param_len);
5308 		if (!err)
5309 			bpf_update_srh_state(skb);
5310 
5311 		return err;
5312 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5313 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5314 			return -EBADMSG;
5315 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5316 					  param, param_len);
5317 		if (!err)
5318 			bpf_update_srh_state(skb);
5319 
5320 		return err;
5321 	default:
5322 		return -EINVAL;
5323 	}
5324 }
5325 
5326 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5327 	.func		= bpf_lwt_seg6_action,
5328 	.gpl_only	= false,
5329 	.ret_type	= RET_INTEGER,
5330 	.arg1_type	= ARG_PTR_TO_CTX,
5331 	.arg2_type	= ARG_ANYTHING,
5332 	.arg3_type	= ARG_PTR_TO_MEM,
5333 	.arg4_type	= ARG_CONST_SIZE
5334 };
5335 
5336 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5337 	   s32, len)
5338 {
5339 	struct seg6_bpf_srh_state *srh_state =
5340 		this_cpu_ptr(&seg6_bpf_srh_states);
5341 	struct ipv6_sr_hdr *srh = srh_state->srh;
5342 	void *srh_end, *srh_tlvs, *ptr;
5343 	struct ipv6hdr *hdr;
5344 	int srhoff = 0;
5345 	int ret;
5346 
5347 	if (unlikely(srh == NULL))
5348 		return -EINVAL;
5349 
5350 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5351 			((srh->first_segment + 1) << 4));
5352 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5353 			srh_state->hdrlen);
5354 	ptr = skb->data + offset;
5355 
5356 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5357 		return -EFAULT;
5358 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5359 		return -EFAULT;
5360 
5361 	if (len > 0) {
5362 		ret = skb_cow_head(skb, len);
5363 		if (unlikely(ret < 0))
5364 			return ret;
5365 
5366 		ret = bpf_skb_net_hdr_push(skb, offset, len);
5367 	} else {
5368 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5369 	}
5370 
5371 	bpf_compute_data_pointers(skb);
5372 	if (unlikely(ret < 0))
5373 		return ret;
5374 
5375 	hdr = (struct ipv6hdr *)skb->data;
5376 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5377 
5378 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5379 		return -EINVAL;
5380 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5381 	srh_state->hdrlen += len;
5382 	srh_state->valid = false;
5383 	return 0;
5384 }
5385 
5386 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5387 	.func		= bpf_lwt_seg6_adjust_srh,
5388 	.gpl_only	= false,
5389 	.ret_type	= RET_INTEGER,
5390 	.arg1_type	= ARG_PTR_TO_CTX,
5391 	.arg2_type	= ARG_ANYTHING,
5392 	.arg3_type	= ARG_ANYTHING,
5393 };
5394 #endif /* CONFIG_IPV6_SEG6_BPF */
5395 
5396 #ifdef CONFIG_INET
5397 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5398 			      int dif, int sdif, u8 family, u8 proto)
5399 {
5400 	bool refcounted = false;
5401 	struct sock *sk = NULL;
5402 
5403 	if (family == AF_INET) {
5404 		__be32 src4 = tuple->ipv4.saddr;
5405 		__be32 dst4 = tuple->ipv4.daddr;
5406 
5407 		if (proto == IPPROTO_TCP)
5408 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5409 					   src4, tuple->ipv4.sport,
5410 					   dst4, tuple->ipv4.dport,
5411 					   dif, sdif, &refcounted);
5412 		else
5413 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5414 					       dst4, tuple->ipv4.dport,
5415 					       dif, sdif, &udp_table, NULL);
5416 #if IS_ENABLED(CONFIG_IPV6)
5417 	} else {
5418 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5419 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5420 
5421 		if (proto == IPPROTO_TCP)
5422 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5423 					    src6, tuple->ipv6.sport,
5424 					    dst6, ntohs(tuple->ipv6.dport),
5425 					    dif, sdif, &refcounted);
5426 		else if (likely(ipv6_bpf_stub))
5427 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5428 							    src6, tuple->ipv6.sport,
5429 							    dst6, tuple->ipv6.dport,
5430 							    dif, sdif,
5431 							    &udp_table, NULL);
5432 #endif
5433 	}
5434 
5435 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5436 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5437 		sk = NULL;
5438 	}
5439 	return sk;
5440 }
5441 
5442 /* bpf_skc_lookup performs the core lookup for different types of sockets,
5443  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5444  * Returns the socket as an 'unsigned long' to simplify the casting in the
5445  * callers to satisfy BPF_CALL declarations.
5446  */
5447 static struct sock *
5448 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5449 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5450 		 u64 flags)
5451 {
5452 	struct sock *sk = NULL;
5453 	u8 family = AF_UNSPEC;
5454 	struct net *net;
5455 	int sdif;
5456 
5457 	if (len == sizeof(tuple->ipv4))
5458 		family = AF_INET;
5459 	else if (len == sizeof(tuple->ipv6))
5460 		family = AF_INET6;
5461 	else
5462 		return NULL;
5463 
5464 	if (unlikely(family == AF_UNSPEC || flags ||
5465 		     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5466 		goto out;
5467 
5468 	if (family == AF_INET)
5469 		sdif = inet_sdif(skb);
5470 	else
5471 		sdif = inet6_sdif(skb);
5472 
5473 	if ((s32)netns_id < 0) {
5474 		net = caller_net;
5475 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5476 	} else {
5477 		net = get_net_ns_by_id(caller_net, netns_id);
5478 		if (unlikely(!net))
5479 			goto out;
5480 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5481 		put_net(net);
5482 	}
5483 
5484 out:
5485 	return sk;
5486 }
5487 
5488 static struct sock *
5489 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5490 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5491 		u64 flags)
5492 {
5493 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5494 					   ifindex, proto, netns_id, flags);
5495 
5496 	if (sk) {
5497 		sk = sk_to_full_sk(sk);
5498 		if (!sk_fullsock(sk)) {
5499 			sock_gen_put(sk);
5500 			return NULL;
5501 		}
5502 	}
5503 
5504 	return sk;
5505 }
5506 
5507 static struct sock *
5508 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5509 	       u8 proto, u64 netns_id, u64 flags)
5510 {
5511 	struct net *caller_net;
5512 	int ifindex;
5513 
5514 	if (skb->dev) {
5515 		caller_net = dev_net(skb->dev);
5516 		ifindex = skb->dev->ifindex;
5517 	} else {
5518 		caller_net = sock_net(skb->sk);
5519 		ifindex = 0;
5520 	}
5521 
5522 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
5523 				netns_id, flags);
5524 }
5525 
5526 static struct sock *
5527 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5528 	      u8 proto, u64 netns_id, u64 flags)
5529 {
5530 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
5531 					 flags);
5532 
5533 	if (sk) {
5534 		sk = sk_to_full_sk(sk);
5535 		if (!sk_fullsock(sk)) {
5536 			sock_gen_put(sk);
5537 			return NULL;
5538 		}
5539 	}
5540 
5541 	return sk;
5542 }
5543 
5544 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
5545 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5546 {
5547 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
5548 					     netns_id, flags);
5549 }
5550 
5551 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
5552 	.func		= bpf_skc_lookup_tcp,
5553 	.gpl_only	= false,
5554 	.pkt_access	= true,
5555 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
5556 	.arg1_type	= ARG_PTR_TO_CTX,
5557 	.arg2_type	= ARG_PTR_TO_MEM,
5558 	.arg3_type	= ARG_CONST_SIZE,
5559 	.arg4_type	= ARG_ANYTHING,
5560 	.arg5_type	= ARG_ANYTHING,
5561 };
5562 
5563 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
5564 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5565 {
5566 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
5567 					    netns_id, flags);
5568 }
5569 
5570 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
5571 	.func		= bpf_sk_lookup_tcp,
5572 	.gpl_only	= false,
5573 	.pkt_access	= true,
5574 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5575 	.arg1_type	= ARG_PTR_TO_CTX,
5576 	.arg2_type	= ARG_PTR_TO_MEM,
5577 	.arg3_type	= ARG_CONST_SIZE,
5578 	.arg4_type	= ARG_ANYTHING,
5579 	.arg5_type	= ARG_ANYTHING,
5580 };
5581 
5582 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
5583 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5584 {
5585 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
5586 					    netns_id, flags);
5587 }
5588 
5589 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
5590 	.func		= bpf_sk_lookup_udp,
5591 	.gpl_only	= false,
5592 	.pkt_access	= true,
5593 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5594 	.arg1_type	= ARG_PTR_TO_CTX,
5595 	.arg2_type	= ARG_PTR_TO_MEM,
5596 	.arg3_type	= ARG_CONST_SIZE,
5597 	.arg4_type	= ARG_ANYTHING,
5598 	.arg5_type	= ARG_ANYTHING,
5599 };
5600 
5601 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
5602 {
5603 	if (sk_is_refcounted(sk))
5604 		sock_gen_put(sk);
5605 	return 0;
5606 }
5607 
5608 static const struct bpf_func_proto bpf_sk_release_proto = {
5609 	.func		= bpf_sk_release,
5610 	.gpl_only	= false,
5611 	.ret_type	= RET_INTEGER,
5612 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5613 };
5614 
5615 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
5616 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5617 {
5618 	struct net *caller_net = dev_net(ctx->rxq->dev);
5619 	int ifindex = ctx->rxq->dev->ifindex;
5620 
5621 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5622 					      ifindex, IPPROTO_UDP, netns_id,
5623 					      flags);
5624 }
5625 
5626 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
5627 	.func           = bpf_xdp_sk_lookup_udp,
5628 	.gpl_only       = false,
5629 	.pkt_access     = true,
5630 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5631 	.arg1_type      = ARG_PTR_TO_CTX,
5632 	.arg2_type      = ARG_PTR_TO_MEM,
5633 	.arg3_type      = ARG_CONST_SIZE,
5634 	.arg4_type      = ARG_ANYTHING,
5635 	.arg5_type      = ARG_ANYTHING,
5636 };
5637 
5638 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
5639 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5640 {
5641 	struct net *caller_net = dev_net(ctx->rxq->dev);
5642 	int ifindex = ctx->rxq->dev->ifindex;
5643 
5644 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
5645 					       ifindex, IPPROTO_TCP, netns_id,
5646 					       flags);
5647 }
5648 
5649 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
5650 	.func           = bpf_xdp_skc_lookup_tcp,
5651 	.gpl_only       = false,
5652 	.pkt_access     = true,
5653 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5654 	.arg1_type      = ARG_PTR_TO_CTX,
5655 	.arg2_type      = ARG_PTR_TO_MEM,
5656 	.arg3_type      = ARG_CONST_SIZE,
5657 	.arg4_type      = ARG_ANYTHING,
5658 	.arg5_type      = ARG_ANYTHING,
5659 };
5660 
5661 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
5662 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5663 {
5664 	struct net *caller_net = dev_net(ctx->rxq->dev);
5665 	int ifindex = ctx->rxq->dev->ifindex;
5666 
5667 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5668 					      ifindex, IPPROTO_TCP, netns_id,
5669 					      flags);
5670 }
5671 
5672 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
5673 	.func           = bpf_xdp_sk_lookup_tcp,
5674 	.gpl_only       = false,
5675 	.pkt_access     = true,
5676 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5677 	.arg1_type      = ARG_PTR_TO_CTX,
5678 	.arg2_type      = ARG_PTR_TO_MEM,
5679 	.arg3_type      = ARG_CONST_SIZE,
5680 	.arg4_type      = ARG_ANYTHING,
5681 	.arg5_type      = ARG_ANYTHING,
5682 };
5683 
5684 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5685 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5686 {
5687 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
5688 					       sock_net(ctx->sk), 0,
5689 					       IPPROTO_TCP, netns_id, flags);
5690 }
5691 
5692 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
5693 	.func		= bpf_sock_addr_skc_lookup_tcp,
5694 	.gpl_only	= false,
5695 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
5696 	.arg1_type	= ARG_PTR_TO_CTX,
5697 	.arg2_type	= ARG_PTR_TO_MEM,
5698 	.arg3_type	= ARG_CONST_SIZE,
5699 	.arg4_type	= ARG_ANYTHING,
5700 	.arg5_type	= ARG_ANYTHING,
5701 };
5702 
5703 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5704 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5705 {
5706 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5707 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
5708 					      netns_id, flags);
5709 }
5710 
5711 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
5712 	.func		= bpf_sock_addr_sk_lookup_tcp,
5713 	.gpl_only	= false,
5714 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5715 	.arg1_type	= ARG_PTR_TO_CTX,
5716 	.arg2_type	= ARG_PTR_TO_MEM,
5717 	.arg3_type	= ARG_CONST_SIZE,
5718 	.arg4_type	= ARG_ANYTHING,
5719 	.arg5_type	= ARG_ANYTHING,
5720 };
5721 
5722 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
5723 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5724 {
5725 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5726 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
5727 					      netns_id, flags);
5728 }
5729 
5730 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
5731 	.func		= bpf_sock_addr_sk_lookup_udp,
5732 	.gpl_only	= false,
5733 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5734 	.arg1_type	= ARG_PTR_TO_CTX,
5735 	.arg2_type	= ARG_PTR_TO_MEM,
5736 	.arg3_type	= ARG_CONST_SIZE,
5737 	.arg4_type	= ARG_ANYTHING,
5738 	.arg5_type	= ARG_ANYTHING,
5739 };
5740 
5741 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5742 				  struct bpf_insn_access_aux *info)
5743 {
5744 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
5745 					  icsk_retransmits))
5746 		return false;
5747 
5748 	if (off % size != 0)
5749 		return false;
5750 
5751 	switch (off) {
5752 	case offsetof(struct bpf_tcp_sock, bytes_received):
5753 	case offsetof(struct bpf_tcp_sock, bytes_acked):
5754 		return size == sizeof(__u64);
5755 	default:
5756 		return size == sizeof(__u32);
5757 	}
5758 }
5759 
5760 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
5761 				    const struct bpf_insn *si,
5762 				    struct bpf_insn *insn_buf,
5763 				    struct bpf_prog *prog, u32 *target_size)
5764 {
5765 	struct bpf_insn *insn = insn_buf;
5766 
5767 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
5768 	do {								\
5769 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
5770 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
5771 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
5772 				      si->dst_reg, si->src_reg,		\
5773 				      offsetof(struct tcp_sock, FIELD)); \
5774 	} while (0)
5775 
5776 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
5777 	do {								\
5778 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
5779 					  FIELD) >			\
5780 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
5781 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
5782 					struct inet_connection_sock,	\
5783 					FIELD),				\
5784 				      si->dst_reg, si->src_reg,		\
5785 				      offsetof(				\
5786 					struct inet_connection_sock,	\
5787 					FIELD));			\
5788 	} while (0)
5789 
5790 	if (insn > insn_buf)
5791 		return insn - insn_buf;
5792 
5793 	switch (si->off) {
5794 	case offsetof(struct bpf_tcp_sock, rtt_min):
5795 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
5796 			     sizeof(struct minmax));
5797 		BUILD_BUG_ON(sizeof(struct minmax) <
5798 			     sizeof(struct minmax_sample));
5799 
5800 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5801 				      offsetof(struct tcp_sock, rtt_min) +
5802 				      offsetof(struct minmax_sample, v));
5803 		break;
5804 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
5805 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
5806 		break;
5807 	case offsetof(struct bpf_tcp_sock, srtt_us):
5808 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
5809 		break;
5810 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
5811 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
5812 		break;
5813 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
5814 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
5815 		break;
5816 	case offsetof(struct bpf_tcp_sock, snd_nxt):
5817 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
5818 		break;
5819 	case offsetof(struct bpf_tcp_sock, snd_una):
5820 		BPF_TCP_SOCK_GET_COMMON(snd_una);
5821 		break;
5822 	case offsetof(struct bpf_tcp_sock, mss_cache):
5823 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
5824 		break;
5825 	case offsetof(struct bpf_tcp_sock, ecn_flags):
5826 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
5827 		break;
5828 	case offsetof(struct bpf_tcp_sock, rate_delivered):
5829 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
5830 		break;
5831 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
5832 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
5833 		break;
5834 	case offsetof(struct bpf_tcp_sock, packets_out):
5835 		BPF_TCP_SOCK_GET_COMMON(packets_out);
5836 		break;
5837 	case offsetof(struct bpf_tcp_sock, retrans_out):
5838 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
5839 		break;
5840 	case offsetof(struct bpf_tcp_sock, total_retrans):
5841 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
5842 		break;
5843 	case offsetof(struct bpf_tcp_sock, segs_in):
5844 		BPF_TCP_SOCK_GET_COMMON(segs_in);
5845 		break;
5846 	case offsetof(struct bpf_tcp_sock, data_segs_in):
5847 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
5848 		break;
5849 	case offsetof(struct bpf_tcp_sock, segs_out):
5850 		BPF_TCP_SOCK_GET_COMMON(segs_out);
5851 		break;
5852 	case offsetof(struct bpf_tcp_sock, data_segs_out):
5853 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
5854 		break;
5855 	case offsetof(struct bpf_tcp_sock, lost_out):
5856 		BPF_TCP_SOCK_GET_COMMON(lost_out);
5857 		break;
5858 	case offsetof(struct bpf_tcp_sock, sacked_out):
5859 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
5860 		break;
5861 	case offsetof(struct bpf_tcp_sock, bytes_received):
5862 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
5863 		break;
5864 	case offsetof(struct bpf_tcp_sock, bytes_acked):
5865 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
5866 		break;
5867 	case offsetof(struct bpf_tcp_sock, dsack_dups):
5868 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
5869 		break;
5870 	case offsetof(struct bpf_tcp_sock, delivered):
5871 		BPF_TCP_SOCK_GET_COMMON(delivered);
5872 		break;
5873 	case offsetof(struct bpf_tcp_sock, delivered_ce):
5874 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
5875 		break;
5876 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
5877 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
5878 		break;
5879 	}
5880 
5881 	return insn - insn_buf;
5882 }
5883 
5884 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
5885 {
5886 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
5887 		return (unsigned long)sk;
5888 
5889 	return (unsigned long)NULL;
5890 }
5891 
5892 const struct bpf_func_proto bpf_tcp_sock_proto = {
5893 	.func		= bpf_tcp_sock,
5894 	.gpl_only	= false,
5895 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
5896 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5897 };
5898 
5899 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
5900 {
5901 	sk = sk_to_full_sk(sk);
5902 
5903 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
5904 		return (unsigned long)sk;
5905 
5906 	return (unsigned long)NULL;
5907 }
5908 
5909 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
5910 	.func		= bpf_get_listener_sock,
5911 	.gpl_only	= false,
5912 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5913 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5914 };
5915 
5916 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
5917 {
5918 	unsigned int iphdr_len;
5919 
5920 	switch (skb_protocol(skb, true)) {
5921 	case cpu_to_be16(ETH_P_IP):
5922 		iphdr_len = sizeof(struct iphdr);
5923 		break;
5924 	case cpu_to_be16(ETH_P_IPV6):
5925 		iphdr_len = sizeof(struct ipv6hdr);
5926 		break;
5927 	default:
5928 		return 0;
5929 	}
5930 
5931 	if (skb_headlen(skb) < iphdr_len)
5932 		return 0;
5933 
5934 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
5935 		return 0;
5936 
5937 	return INET_ECN_set_ce(skb);
5938 }
5939 
5940 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5941 				  struct bpf_insn_access_aux *info)
5942 {
5943 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
5944 		return false;
5945 
5946 	if (off % size != 0)
5947 		return false;
5948 
5949 	switch (off) {
5950 	default:
5951 		return size == sizeof(__u32);
5952 	}
5953 }
5954 
5955 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
5956 				    const struct bpf_insn *si,
5957 				    struct bpf_insn *insn_buf,
5958 				    struct bpf_prog *prog, u32 *target_size)
5959 {
5960 	struct bpf_insn *insn = insn_buf;
5961 
5962 #define BPF_XDP_SOCK_GET(FIELD)						\
5963 	do {								\
5964 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
5965 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
5966 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
5967 				      si->dst_reg, si->src_reg,		\
5968 				      offsetof(struct xdp_sock, FIELD)); \
5969 	} while (0)
5970 
5971 	switch (si->off) {
5972 	case offsetof(struct bpf_xdp_sock, queue_id):
5973 		BPF_XDP_SOCK_GET(queue_id);
5974 		break;
5975 	}
5976 
5977 	return insn - insn_buf;
5978 }
5979 
5980 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
5981 	.func           = bpf_skb_ecn_set_ce,
5982 	.gpl_only       = false,
5983 	.ret_type       = RET_INTEGER,
5984 	.arg1_type      = ARG_PTR_TO_CTX,
5985 };
5986 
5987 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5988 	   struct tcphdr *, th, u32, th_len)
5989 {
5990 #ifdef CONFIG_SYN_COOKIES
5991 	u32 cookie;
5992 	int ret;
5993 
5994 	if (unlikely(th_len < sizeof(*th)))
5995 		return -EINVAL;
5996 
5997 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
5998 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5999 		return -EINVAL;
6000 
6001 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6002 		return -EINVAL;
6003 
6004 	if (!th->ack || th->rst || th->syn)
6005 		return -ENOENT;
6006 
6007 	if (tcp_synq_no_recent_overflow(sk))
6008 		return -ENOENT;
6009 
6010 	cookie = ntohl(th->ack_seq) - 1;
6011 
6012 	switch (sk->sk_family) {
6013 	case AF_INET:
6014 		if (unlikely(iph_len < sizeof(struct iphdr)))
6015 			return -EINVAL;
6016 
6017 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6018 		break;
6019 
6020 #if IS_BUILTIN(CONFIG_IPV6)
6021 	case AF_INET6:
6022 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6023 			return -EINVAL;
6024 
6025 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6026 		break;
6027 #endif /* CONFIG_IPV6 */
6028 
6029 	default:
6030 		return -EPROTONOSUPPORT;
6031 	}
6032 
6033 	if (ret > 0)
6034 		return 0;
6035 
6036 	return -ENOENT;
6037 #else
6038 	return -ENOTSUPP;
6039 #endif
6040 }
6041 
6042 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6043 	.func		= bpf_tcp_check_syncookie,
6044 	.gpl_only	= true,
6045 	.pkt_access	= true,
6046 	.ret_type	= RET_INTEGER,
6047 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6048 	.arg2_type	= ARG_PTR_TO_MEM,
6049 	.arg3_type	= ARG_CONST_SIZE,
6050 	.arg4_type	= ARG_PTR_TO_MEM,
6051 	.arg5_type	= ARG_CONST_SIZE,
6052 };
6053 
6054 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6055 	   struct tcphdr *, th, u32, th_len)
6056 {
6057 #ifdef CONFIG_SYN_COOKIES
6058 	u32 cookie;
6059 	u16 mss;
6060 
6061 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
6062 		return -EINVAL;
6063 
6064 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6065 		return -EINVAL;
6066 
6067 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6068 		return -ENOENT;
6069 
6070 	if (!th->syn || th->ack || th->fin || th->rst)
6071 		return -EINVAL;
6072 
6073 	if (unlikely(iph_len < sizeof(struct iphdr)))
6074 		return -EINVAL;
6075 
6076 	/* Both struct iphdr and struct ipv6hdr have the version field at the
6077 	 * same offset so we can cast to the shorter header (struct iphdr).
6078 	 */
6079 	switch (((struct iphdr *)iph)->version) {
6080 	case 4:
6081 		if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6082 			return -EINVAL;
6083 
6084 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6085 		break;
6086 
6087 #if IS_BUILTIN(CONFIG_IPV6)
6088 	case 6:
6089 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6090 			return -EINVAL;
6091 
6092 		if (sk->sk_family != AF_INET6)
6093 			return -EINVAL;
6094 
6095 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6096 		break;
6097 #endif /* CONFIG_IPV6 */
6098 
6099 	default:
6100 		return -EPROTONOSUPPORT;
6101 	}
6102 	if (mss == 0)
6103 		return -ENOENT;
6104 
6105 	return cookie | ((u64)mss << 32);
6106 #else
6107 	return -EOPNOTSUPP;
6108 #endif /* CONFIG_SYN_COOKIES */
6109 }
6110 
6111 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6112 	.func		= bpf_tcp_gen_syncookie,
6113 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
6114 	.pkt_access	= true,
6115 	.ret_type	= RET_INTEGER,
6116 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6117 	.arg2_type	= ARG_PTR_TO_MEM,
6118 	.arg3_type	= ARG_CONST_SIZE,
6119 	.arg4_type	= ARG_PTR_TO_MEM,
6120 	.arg5_type	= ARG_CONST_SIZE,
6121 };
6122 
6123 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6124 {
6125 	if (flags != 0)
6126 		return -EINVAL;
6127 	if (!skb_at_tc_ingress(skb))
6128 		return -EOPNOTSUPP;
6129 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6130 		return -ENETUNREACH;
6131 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6132 		return -ESOCKTNOSUPPORT;
6133 	if (sk_is_refcounted(sk) &&
6134 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6135 		return -ENOENT;
6136 
6137 	skb_orphan(skb);
6138 	skb->sk = sk;
6139 	skb->destructor = sock_pfree;
6140 
6141 	return 0;
6142 }
6143 
6144 static const struct bpf_func_proto bpf_sk_assign_proto = {
6145 	.func		= bpf_sk_assign,
6146 	.gpl_only	= false,
6147 	.ret_type	= RET_INTEGER,
6148 	.arg1_type      = ARG_PTR_TO_CTX,
6149 	.arg2_type      = ARG_PTR_TO_SOCK_COMMON,
6150 	.arg3_type	= ARG_ANYTHING,
6151 };
6152 
6153 #endif /* CONFIG_INET */
6154 
6155 bool bpf_helper_changes_pkt_data(void *func)
6156 {
6157 	if (func == bpf_skb_vlan_push ||
6158 	    func == bpf_skb_vlan_pop ||
6159 	    func == bpf_skb_store_bytes ||
6160 	    func == bpf_skb_change_proto ||
6161 	    func == bpf_skb_change_head ||
6162 	    func == sk_skb_change_head ||
6163 	    func == bpf_skb_change_tail ||
6164 	    func == sk_skb_change_tail ||
6165 	    func == bpf_skb_adjust_room ||
6166 	    func == bpf_skb_pull_data ||
6167 	    func == sk_skb_pull_data ||
6168 	    func == bpf_clone_redirect ||
6169 	    func == bpf_l3_csum_replace ||
6170 	    func == bpf_l4_csum_replace ||
6171 	    func == bpf_xdp_adjust_head ||
6172 	    func == bpf_xdp_adjust_meta ||
6173 	    func == bpf_msg_pull_data ||
6174 	    func == bpf_msg_push_data ||
6175 	    func == bpf_msg_pop_data ||
6176 	    func == bpf_xdp_adjust_tail ||
6177 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6178 	    func == bpf_lwt_seg6_store_bytes ||
6179 	    func == bpf_lwt_seg6_adjust_srh ||
6180 	    func == bpf_lwt_seg6_action ||
6181 #endif
6182 	    func == bpf_lwt_in_push_encap ||
6183 	    func == bpf_lwt_xmit_push_encap)
6184 		return true;
6185 
6186 	return false;
6187 }
6188 
6189 const struct bpf_func_proto bpf_event_output_data_proto __weak;
6190 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
6191 
6192 static const struct bpf_func_proto *
6193 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6194 {
6195 	switch (func_id) {
6196 	/* inet and inet6 sockets are created in a process
6197 	 * context so there is always a valid uid/gid
6198 	 */
6199 	case BPF_FUNC_get_current_uid_gid:
6200 		return &bpf_get_current_uid_gid_proto;
6201 	case BPF_FUNC_get_local_storage:
6202 		return &bpf_get_local_storage_proto;
6203 	case BPF_FUNC_get_socket_cookie:
6204 		return &bpf_get_socket_cookie_sock_proto;
6205 	case BPF_FUNC_get_netns_cookie:
6206 		return &bpf_get_netns_cookie_sock_proto;
6207 	case BPF_FUNC_perf_event_output:
6208 		return &bpf_event_output_data_proto;
6209 	case BPF_FUNC_get_current_pid_tgid:
6210 		return &bpf_get_current_pid_tgid_proto;
6211 	case BPF_FUNC_get_current_comm:
6212 		return &bpf_get_current_comm_proto;
6213 #ifdef CONFIG_CGROUPS
6214 	case BPF_FUNC_get_current_cgroup_id:
6215 		return &bpf_get_current_cgroup_id_proto;
6216 	case BPF_FUNC_get_current_ancestor_cgroup_id:
6217 		return &bpf_get_current_ancestor_cgroup_id_proto;
6218 #endif
6219 #ifdef CONFIG_CGROUP_NET_CLASSID
6220 	case BPF_FUNC_get_cgroup_classid:
6221 		return &bpf_get_cgroup_classid_curr_proto;
6222 #endif
6223 	case BPF_FUNC_sk_storage_get:
6224 		return &bpf_sk_storage_get_cg_sock_proto;
6225 	default:
6226 		return bpf_base_func_proto(func_id);
6227 	}
6228 }
6229 
6230 static const struct bpf_func_proto *
6231 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6232 {
6233 	switch (func_id) {
6234 	/* inet and inet6 sockets are created in a process
6235 	 * context so there is always a valid uid/gid
6236 	 */
6237 	case BPF_FUNC_get_current_uid_gid:
6238 		return &bpf_get_current_uid_gid_proto;
6239 	case BPF_FUNC_bind:
6240 		switch (prog->expected_attach_type) {
6241 		case BPF_CGROUP_INET4_CONNECT:
6242 		case BPF_CGROUP_INET6_CONNECT:
6243 			return &bpf_bind_proto;
6244 		default:
6245 			return NULL;
6246 		}
6247 	case BPF_FUNC_get_socket_cookie:
6248 		return &bpf_get_socket_cookie_sock_addr_proto;
6249 	case BPF_FUNC_get_netns_cookie:
6250 		return &bpf_get_netns_cookie_sock_addr_proto;
6251 	case BPF_FUNC_get_local_storage:
6252 		return &bpf_get_local_storage_proto;
6253 	case BPF_FUNC_perf_event_output:
6254 		return &bpf_event_output_data_proto;
6255 	case BPF_FUNC_get_current_pid_tgid:
6256 		return &bpf_get_current_pid_tgid_proto;
6257 	case BPF_FUNC_get_current_comm:
6258 		return &bpf_get_current_comm_proto;
6259 #ifdef CONFIG_CGROUPS
6260 	case BPF_FUNC_get_current_cgroup_id:
6261 		return &bpf_get_current_cgroup_id_proto;
6262 	case BPF_FUNC_get_current_ancestor_cgroup_id:
6263 		return &bpf_get_current_ancestor_cgroup_id_proto;
6264 #endif
6265 #ifdef CONFIG_CGROUP_NET_CLASSID
6266 	case BPF_FUNC_get_cgroup_classid:
6267 		return &bpf_get_cgroup_classid_curr_proto;
6268 #endif
6269 #ifdef CONFIG_INET
6270 	case BPF_FUNC_sk_lookup_tcp:
6271 		return &bpf_sock_addr_sk_lookup_tcp_proto;
6272 	case BPF_FUNC_sk_lookup_udp:
6273 		return &bpf_sock_addr_sk_lookup_udp_proto;
6274 	case BPF_FUNC_sk_release:
6275 		return &bpf_sk_release_proto;
6276 	case BPF_FUNC_skc_lookup_tcp:
6277 		return &bpf_sock_addr_skc_lookup_tcp_proto;
6278 #endif /* CONFIG_INET */
6279 	case BPF_FUNC_sk_storage_get:
6280 		return &bpf_sk_storage_get_proto;
6281 	case BPF_FUNC_sk_storage_delete:
6282 		return &bpf_sk_storage_delete_proto;
6283 	case BPF_FUNC_setsockopt:
6284 		switch (prog->expected_attach_type) {
6285 		case BPF_CGROUP_INET4_CONNECT:
6286 		case BPF_CGROUP_INET6_CONNECT:
6287 			return &bpf_sock_addr_setsockopt_proto;
6288 		default:
6289 			return NULL;
6290 		}
6291 	case BPF_FUNC_getsockopt:
6292 		switch (prog->expected_attach_type) {
6293 		case BPF_CGROUP_INET4_CONNECT:
6294 		case BPF_CGROUP_INET6_CONNECT:
6295 			return &bpf_sock_addr_getsockopt_proto;
6296 		default:
6297 			return NULL;
6298 		}
6299 	default:
6300 		return bpf_base_func_proto(func_id);
6301 	}
6302 }
6303 
6304 static const struct bpf_func_proto *
6305 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6306 {
6307 	switch (func_id) {
6308 	case BPF_FUNC_skb_load_bytes:
6309 		return &bpf_skb_load_bytes_proto;
6310 	case BPF_FUNC_skb_load_bytes_relative:
6311 		return &bpf_skb_load_bytes_relative_proto;
6312 	case BPF_FUNC_get_socket_cookie:
6313 		return &bpf_get_socket_cookie_proto;
6314 	case BPF_FUNC_get_socket_uid:
6315 		return &bpf_get_socket_uid_proto;
6316 	case BPF_FUNC_perf_event_output:
6317 		return &bpf_skb_event_output_proto;
6318 	default:
6319 		return bpf_base_func_proto(func_id);
6320 	}
6321 }
6322 
6323 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
6324 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
6325 
6326 static const struct bpf_func_proto *
6327 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6328 {
6329 	switch (func_id) {
6330 	case BPF_FUNC_get_local_storage:
6331 		return &bpf_get_local_storage_proto;
6332 	case BPF_FUNC_sk_fullsock:
6333 		return &bpf_sk_fullsock_proto;
6334 	case BPF_FUNC_sk_storage_get:
6335 		return &bpf_sk_storage_get_proto;
6336 	case BPF_FUNC_sk_storage_delete:
6337 		return &bpf_sk_storage_delete_proto;
6338 	case BPF_FUNC_perf_event_output:
6339 		return &bpf_skb_event_output_proto;
6340 #ifdef CONFIG_SOCK_CGROUP_DATA
6341 	case BPF_FUNC_skb_cgroup_id:
6342 		return &bpf_skb_cgroup_id_proto;
6343 	case BPF_FUNC_skb_ancestor_cgroup_id:
6344 		return &bpf_skb_ancestor_cgroup_id_proto;
6345 	case BPF_FUNC_sk_cgroup_id:
6346 		return &bpf_sk_cgroup_id_proto;
6347 	case BPF_FUNC_sk_ancestor_cgroup_id:
6348 		return &bpf_sk_ancestor_cgroup_id_proto;
6349 #endif
6350 #ifdef CONFIG_INET
6351 	case BPF_FUNC_sk_lookup_tcp:
6352 		return &bpf_sk_lookup_tcp_proto;
6353 	case BPF_FUNC_sk_lookup_udp:
6354 		return &bpf_sk_lookup_udp_proto;
6355 	case BPF_FUNC_sk_release:
6356 		return &bpf_sk_release_proto;
6357 	case BPF_FUNC_skc_lookup_tcp:
6358 		return &bpf_skc_lookup_tcp_proto;
6359 	case BPF_FUNC_tcp_sock:
6360 		return &bpf_tcp_sock_proto;
6361 	case BPF_FUNC_get_listener_sock:
6362 		return &bpf_get_listener_sock_proto;
6363 	case BPF_FUNC_skb_ecn_set_ce:
6364 		return &bpf_skb_ecn_set_ce_proto;
6365 #endif
6366 	default:
6367 		return sk_filter_func_proto(func_id, prog);
6368 	}
6369 }
6370 
6371 static const struct bpf_func_proto *
6372 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6373 {
6374 	switch (func_id) {
6375 	case BPF_FUNC_skb_store_bytes:
6376 		return &bpf_skb_store_bytes_proto;
6377 	case BPF_FUNC_skb_load_bytes:
6378 		return &bpf_skb_load_bytes_proto;
6379 	case BPF_FUNC_skb_load_bytes_relative:
6380 		return &bpf_skb_load_bytes_relative_proto;
6381 	case BPF_FUNC_skb_pull_data:
6382 		return &bpf_skb_pull_data_proto;
6383 	case BPF_FUNC_csum_diff:
6384 		return &bpf_csum_diff_proto;
6385 	case BPF_FUNC_csum_update:
6386 		return &bpf_csum_update_proto;
6387 	case BPF_FUNC_csum_level:
6388 		return &bpf_csum_level_proto;
6389 	case BPF_FUNC_l3_csum_replace:
6390 		return &bpf_l3_csum_replace_proto;
6391 	case BPF_FUNC_l4_csum_replace:
6392 		return &bpf_l4_csum_replace_proto;
6393 	case BPF_FUNC_clone_redirect:
6394 		return &bpf_clone_redirect_proto;
6395 	case BPF_FUNC_get_cgroup_classid:
6396 		return &bpf_get_cgroup_classid_proto;
6397 	case BPF_FUNC_skb_vlan_push:
6398 		return &bpf_skb_vlan_push_proto;
6399 	case BPF_FUNC_skb_vlan_pop:
6400 		return &bpf_skb_vlan_pop_proto;
6401 	case BPF_FUNC_skb_change_proto:
6402 		return &bpf_skb_change_proto_proto;
6403 	case BPF_FUNC_skb_change_type:
6404 		return &bpf_skb_change_type_proto;
6405 	case BPF_FUNC_skb_adjust_room:
6406 		return &bpf_skb_adjust_room_proto;
6407 	case BPF_FUNC_skb_change_tail:
6408 		return &bpf_skb_change_tail_proto;
6409 	case BPF_FUNC_skb_change_head:
6410 		return &bpf_skb_change_head_proto;
6411 	case BPF_FUNC_skb_get_tunnel_key:
6412 		return &bpf_skb_get_tunnel_key_proto;
6413 	case BPF_FUNC_skb_set_tunnel_key:
6414 		return bpf_get_skb_set_tunnel_proto(func_id);
6415 	case BPF_FUNC_skb_get_tunnel_opt:
6416 		return &bpf_skb_get_tunnel_opt_proto;
6417 	case BPF_FUNC_skb_set_tunnel_opt:
6418 		return bpf_get_skb_set_tunnel_proto(func_id);
6419 	case BPF_FUNC_redirect:
6420 		return &bpf_redirect_proto;
6421 	case BPF_FUNC_get_route_realm:
6422 		return &bpf_get_route_realm_proto;
6423 	case BPF_FUNC_get_hash_recalc:
6424 		return &bpf_get_hash_recalc_proto;
6425 	case BPF_FUNC_set_hash_invalid:
6426 		return &bpf_set_hash_invalid_proto;
6427 	case BPF_FUNC_set_hash:
6428 		return &bpf_set_hash_proto;
6429 	case BPF_FUNC_perf_event_output:
6430 		return &bpf_skb_event_output_proto;
6431 	case BPF_FUNC_get_smp_processor_id:
6432 		return &bpf_get_smp_processor_id_proto;
6433 	case BPF_FUNC_skb_under_cgroup:
6434 		return &bpf_skb_under_cgroup_proto;
6435 	case BPF_FUNC_get_socket_cookie:
6436 		return &bpf_get_socket_cookie_proto;
6437 	case BPF_FUNC_get_socket_uid:
6438 		return &bpf_get_socket_uid_proto;
6439 	case BPF_FUNC_fib_lookup:
6440 		return &bpf_skb_fib_lookup_proto;
6441 	case BPF_FUNC_sk_fullsock:
6442 		return &bpf_sk_fullsock_proto;
6443 	case BPF_FUNC_sk_storage_get:
6444 		return &bpf_sk_storage_get_proto;
6445 	case BPF_FUNC_sk_storage_delete:
6446 		return &bpf_sk_storage_delete_proto;
6447 #ifdef CONFIG_XFRM
6448 	case BPF_FUNC_skb_get_xfrm_state:
6449 		return &bpf_skb_get_xfrm_state_proto;
6450 #endif
6451 #ifdef CONFIG_SOCK_CGROUP_DATA
6452 	case BPF_FUNC_skb_cgroup_id:
6453 		return &bpf_skb_cgroup_id_proto;
6454 	case BPF_FUNC_skb_ancestor_cgroup_id:
6455 		return &bpf_skb_ancestor_cgroup_id_proto;
6456 #endif
6457 #ifdef CONFIG_INET
6458 	case BPF_FUNC_sk_lookup_tcp:
6459 		return &bpf_sk_lookup_tcp_proto;
6460 	case BPF_FUNC_sk_lookup_udp:
6461 		return &bpf_sk_lookup_udp_proto;
6462 	case BPF_FUNC_sk_release:
6463 		return &bpf_sk_release_proto;
6464 	case BPF_FUNC_tcp_sock:
6465 		return &bpf_tcp_sock_proto;
6466 	case BPF_FUNC_get_listener_sock:
6467 		return &bpf_get_listener_sock_proto;
6468 	case BPF_FUNC_skc_lookup_tcp:
6469 		return &bpf_skc_lookup_tcp_proto;
6470 	case BPF_FUNC_tcp_check_syncookie:
6471 		return &bpf_tcp_check_syncookie_proto;
6472 	case BPF_FUNC_skb_ecn_set_ce:
6473 		return &bpf_skb_ecn_set_ce_proto;
6474 	case BPF_FUNC_tcp_gen_syncookie:
6475 		return &bpf_tcp_gen_syncookie_proto;
6476 	case BPF_FUNC_sk_assign:
6477 		return &bpf_sk_assign_proto;
6478 #endif
6479 	default:
6480 		return bpf_base_func_proto(func_id);
6481 	}
6482 }
6483 
6484 static const struct bpf_func_proto *
6485 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6486 {
6487 	switch (func_id) {
6488 	case BPF_FUNC_perf_event_output:
6489 		return &bpf_xdp_event_output_proto;
6490 	case BPF_FUNC_get_smp_processor_id:
6491 		return &bpf_get_smp_processor_id_proto;
6492 	case BPF_FUNC_csum_diff:
6493 		return &bpf_csum_diff_proto;
6494 	case BPF_FUNC_xdp_adjust_head:
6495 		return &bpf_xdp_adjust_head_proto;
6496 	case BPF_FUNC_xdp_adjust_meta:
6497 		return &bpf_xdp_adjust_meta_proto;
6498 	case BPF_FUNC_redirect:
6499 		return &bpf_xdp_redirect_proto;
6500 	case BPF_FUNC_redirect_map:
6501 		return &bpf_xdp_redirect_map_proto;
6502 	case BPF_FUNC_xdp_adjust_tail:
6503 		return &bpf_xdp_adjust_tail_proto;
6504 	case BPF_FUNC_fib_lookup:
6505 		return &bpf_xdp_fib_lookup_proto;
6506 #ifdef CONFIG_INET
6507 	case BPF_FUNC_sk_lookup_udp:
6508 		return &bpf_xdp_sk_lookup_udp_proto;
6509 	case BPF_FUNC_sk_lookup_tcp:
6510 		return &bpf_xdp_sk_lookup_tcp_proto;
6511 	case BPF_FUNC_sk_release:
6512 		return &bpf_sk_release_proto;
6513 	case BPF_FUNC_skc_lookup_tcp:
6514 		return &bpf_xdp_skc_lookup_tcp_proto;
6515 	case BPF_FUNC_tcp_check_syncookie:
6516 		return &bpf_tcp_check_syncookie_proto;
6517 	case BPF_FUNC_tcp_gen_syncookie:
6518 		return &bpf_tcp_gen_syncookie_proto;
6519 #endif
6520 	default:
6521 		return bpf_base_func_proto(func_id);
6522 	}
6523 }
6524 
6525 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
6526 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
6527 
6528 static const struct bpf_func_proto *
6529 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6530 {
6531 	switch (func_id) {
6532 	case BPF_FUNC_setsockopt:
6533 		return &bpf_sock_ops_setsockopt_proto;
6534 	case BPF_FUNC_getsockopt:
6535 		return &bpf_sock_ops_getsockopt_proto;
6536 	case BPF_FUNC_sock_ops_cb_flags_set:
6537 		return &bpf_sock_ops_cb_flags_set_proto;
6538 	case BPF_FUNC_sock_map_update:
6539 		return &bpf_sock_map_update_proto;
6540 	case BPF_FUNC_sock_hash_update:
6541 		return &bpf_sock_hash_update_proto;
6542 	case BPF_FUNC_get_socket_cookie:
6543 		return &bpf_get_socket_cookie_sock_ops_proto;
6544 	case BPF_FUNC_get_local_storage:
6545 		return &bpf_get_local_storage_proto;
6546 	case BPF_FUNC_perf_event_output:
6547 		return &bpf_event_output_data_proto;
6548 	case BPF_FUNC_sk_storage_get:
6549 		return &bpf_sk_storage_get_proto;
6550 	case BPF_FUNC_sk_storage_delete:
6551 		return &bpf_sk_storage_delete_proto;
6552 #ifdef CONFIG_INET
6553 	case BPF_FUNC_tcp_sock:
6554 		return &bpf_tcp_sock_proto;
6555 #endif /* CONFIG_INET */
6556 	default:
6557 		return bpf_base_func_proto(func_id);
6558 	}
6559 }
6560 
6561 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
6562 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
6563 
6564 static const struct bpf_func_proto *
6565 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6566 {
6567 	switch (func_id) {
6568 	case BPF_FUNC_msg_redirect_map:
6569 		return &bpf_msg_redirect_map_proto;
6570 	case BPF_FUNC_msg_redirect_hash:
6571 		return &bpf_msg_redirect_hash_proto;
6572 	case BPF_FUNC_msg_apply_bytes:
6573 		return &bpf_msg_apply_bytes_proto;
6574 	case BPF_FUNC_msg_cork_bytes:
6575 		return &bpf_msg_cork_bytes_proto;
6576 	case BPF_FUNC_msg_pull_data:
6577 		return &bpf_msg_pull_data_proto;
6578 	case BPF_FUNC_msg_push_data:
6579 		return &bpf_msg_push_data_proto;
6580 	case BPF_FUNC_msg_pop_data:
6581 		return &bpf_msg_pop_data_proto;
6582 	case BPF_FUNC_perf_event_output:
6583 		return &bpf_event_output_data_proto;
6584 	case BPF_FUNC_get_current_uid_gid:
6585 		return &bpf_get_current_uid_gid_proto;
6586 	case BPF_FUNC_get_current_pid_tgid:
6587 		return &bpf_get_current_pid_tgid_proto;
6588 	case BPF_FUNC_sk_storage_get:
6589 		return &bpf_sk_storage_get_proto;
6590 	case BPF_FUNC_sk_storage_delete:
6591 		return &bpf_sk_storage_delete_proto;
6592 #ifdef CONFIG_CGROUPS
6593 	case BPF_FUNC_get_current_cgroup_id:
6594 		return &bpf_get_current_cgroup_id_proto;
6595 	case BPF_FUNC_get_current_ancestor_cgroup_id:
6596 		return &bpf_get_current_ancestor_cgroup_id_proto;
6597 #endif
6598 #ifdef CONFIG_CGROUP_NET_CLASSID
6599 	case BPF_FUNC_get_cgroup_classid:
6600 		return &bpf_get_cgroup_classid_curr_proto;
6601 #endif
6602 	default:
6603 		return bpf_base_func_proto(func_id);
6604 	}
6605 }
6606 
6607 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
6608 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
6609 
6610 static const struct bpf_func_proto *
6611 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6612 {
6613 	switch (func_id) {
6614 	case BPF_FUNC_skb_store_bytes:
6615 		return &bpf_skb_store_bytes_proto;
6616 	case BPF_FUNC_skb_load_bytes:
6617 		return &bpf_skb_load_bytes_proto;
6618 	case BPF_FUNC_skb_pull_data:
6619 		return &sk_skb_pull_data_proto;
6620 	case BPF_FUNC_skb_change_tail:
6621 		return &sk_skb_change_tail_proto;
6622 	case BPF_FUNC_skb_change_head:
6623 		return &sk_skb_change_head_proto;
6624 	case BPF_FUNC_get_socket_cookie:
6625 		return &bpf_get_socket_cookie_proto;
6626 	case BPF_FUNC_get_socket_uid:
6627 		return &bpf_get_socket_uid_proto;
6628 	case BPF_FUNC_sk_redirect_map:
6629 		return &bpf_sk_redirect_map_proto;
6630 	case BPF_FUNC_sk_redirect_hash:
6631 		return &bpf_sk_redirect_hash_proto;
6632 	case BPF_FUNC_perf_event_output:
6633 		return &bpf_skb_event_output_proto;
6634 #ifdef CONFIG_INET
6635 	case BPF_FUNC_sk_lookup_tcp:
6636 		return &bpf_sk_lookup_tcp_proto;
6637 	case BPF_FUNC_sk_lookup_udp:
6638 		return &bpf_sk_lookup_udp_proto;
6639 	case BPF_FUNC_sk_release:
6640 		return &bpf_sk_release_proto;
6641 	case BPF_FUNC_skc_lookup_tcp:
6642 		return &bpf_skc_lookup_tcp_proto;
6643 #endif
6644 	default:
6645 		return bpf_base_func_proto(func_id);
6646 	}
6647 }
6648 
6649 static const struct bpf_func_proto *
6650 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6651 {
6652 	switch (func_id) {
6653 	case BPF_FUNC_skb_load_bytes:
6654 		return &bpf_flow_dissector_load_bytes_proto;
6655 	default:
6656 		return bpf_base_func_proto(func_id);
6657 	}
6658 }
6659 
6660 static const struct bpf_func_proto *
6661 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6662 {
6663 	switch (func_id) {
6664 	case BPF_FUNC_skb_load_bytes:
6665 		return &bpf_skb_load_bytes_proto;
6666 	case BPF_FUNC_skb_pull_data:
6667 		return &bpf_skb_pull_data_proto;
6668 	case BPF_FUNC_csum_diff:
6669 		return &bpf_csum_diff_proto;
6670 	case BPF_FUNC_get_cgroup_classid:
6671 		return &bpf_get_cgroup_classid_proto;
6672 	case BPF_FUNC_get_route_realm:
6673 		return &bpf_get_route_realm_proto;
6674 	case BPF_FUNC_get_hash_recalc:
6675 		return &bpf_get_hash_recalc_proto;
6676 	case BPF_FUNC_perf_event_output:
6677 		return &bpf_skb_event_output_proto;
6678 	case BPF_FUNC_get_smp_processor_id:
6679 		return &bpf_get_smp_processor_id_proto;
6680 	case BPF_FUNC_skb_under_cgroup:
6681 		return &bpf_skb_under_cgroup_proto;
6682 	default:
6683 		return bpf_base_func_proto(func_id);
6684 	}
6685 }
6686 
6687 static const struct bpf_func_proto *
6688 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6689 {
6690 	switch (func_id) {
6691 	case BPF_FUNC_lwt_push_encap:
6692 		return &bpf_lwt_in_push_encap_proto;
6693 	default:
6694 		return lwt_out_func_proto(func_id, prog);
6695 	}
6696 }
6697 
6698 static const struct bpf_func_proto *
6699 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6700 {
6701 	switch (func_id) {
6702 	case BPF_FUNC_skb_get_tunnel_key:
6703 		return &bpf_skb_get_tunnel_key_proto;
6704 	case BPF_FUNC_skb_set_tunnel_key:
6705 		return bpf_get_skb_set_tunnel_proto(func_id);
6706 	case BPF_FUNC_skb_get_tunnel_opt:
6707 		return &bpf_skb_get_tunnel_opt_proto;
6708 	case BPF_FUNC_skb_set_tunnel_opt:
6709 		return bpf_get_skb_set_tunnel_proto(func_id);
6710 	case BPF_FUNC_redirect:
6711 		return &bpf_redirect_proto;
6712 	case BPF_FUNC_clone_redirect:
6713 		return &bpf_clone_redirect_proto;
6714 	case BPF_FUNC_skb_change_tail:
6715 		return &bpf_skb_change_tail_proto;
6716 	case BPF_FUNC_skb_change_head:
6717 		return &bpf_skb_change_head_proto;
6718 	case BPF_FUNC_skb_store_bytes:
6719 		return &bpf_skb_store_bytes_proto;
6720 	case BPF_FUNC_csum_update:
6721 		return &bpf_csum_update_proto;
6722 	case BPF_FUNC_csum_level:
6723 		return &bpf_csum_level_proto;
6724 	case BPF_FUNC_l3_csum_replace:
6725 		return &bpf_l3_csum_replace_proto;
6726 	case BPF_FUNC_l4_csum_replace:
6727 		return &bpf_l4_csum_replace_proto;
6728 	case BPF_FUNC_set_hash_invalid:
6729 		return &bpf_set_hash_invalid_proto;
6730 	case BPF_FUNC_lwt_push_encap:
6731 		return &bpf_lwt_xmit_push_encap_proto;
6732 	default:
6733 		return lwt_out_func_proto(func_id, prog);
6734 	}
6735 }
6736 
6737 static const struct bpf_func_proto *
6738 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6739 {
6740 	switch (func_id) {
6741 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6742 	case BPF_FUNC_lwt_seg6_store_bytes:
6743 		return &bpf_lwt_seg6_store_bytes_proto;
6744 	case BPF_FUNC_lwt_seg6_action:
6745 		return &bpf_lwt_seg6_action_proto;
6746 	case BPF_FUNC_lwt_seg6_adjust_srh:
6747 		return &bpf_lwt_seg6_adjust_srh_proto;
6748 #endif
6749 	default:
6750 		return lwt_out_func_proto(func_id, prog);
6751 	}
6752 }
6753 
6754 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
6755 				    const struct bpf_prog *prog,
6756 				    struct bpf_insn_access_aux *info)
6757 {
6758 	const int size_default = sizeof(__u32);
6759 
6760 	if (off < 0 || off >= sizeof(struct __sk_buff))
6761 		return false;
6762 
6763 	/* The verifier guarantees that size > 0. */
6764 	if (off % size != 0)
6765 		return false;
6766 
6767 	switch (off) {
6768 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6769 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
6770 			return false;
6771 		break;
6772 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
6773 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
6774 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
6775 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
6776 	case bpf_ctx_range(struct __sk_buff, data):
6777 	case bpf_ctx_range(struct __sk_buff, data_meta):
6778 	case bpf_ctx_range(struct __sk_buff, data_end):
6779 		if (size != size_default)
6780 			return false;
6781 		break;
6782 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6783 		return false;
6784 	case bpf_ctx_range(struct __sk_buff, tstamp):
6785 		if (size != sizeof(__u64))
6786 			return false;
6787 		break;
6788 	case offsetof(struct __sk_buff, sk):
6789 		if (type == BPF_WRITE || size != sizeof(__u64))
6790 			return false;
6791 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
6792 		break;
6793 	default:
6794 		/* Only narrow read access allowed for now. */
6795 		if (type == BPF_WRITE) {
6796 			if (size != size_default)
6797 				return false;
6798 		} else {
6799 			bpf_ctx_record_field_size(info, size_default);
6800 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6801 				return false;
6802 		}
6803 	}
6804 
6805 	return true;
6806 }
6807 
6808 static bool sk_filter_is_valid_access(int off, int size,
6809 				      enum bpf_access_type type,
6810 				      const struct bpf_prog *prog,
6811 				      struct bpf_insn_access_aux *info)
6812 {
6813 	switch (off) {
6814 	case bpf_ctx_range(struct __sk_buff, tc_classid):
6815 	case bpf_ctx_range(struct __sk_buff, data):
6816 	case bpf_ctx_range(struct __sk_buff, data_meta):
6817 	case bpf_ctx_range(struct __sk_buff, data_end):
6818 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6819 	case bpf_ctx_range(struct __sk_buff, tstamp):
6820 	case bpf_ctx_range(struct __sk_buff, wire_len):
6821 		return false;
6822 	}
6823 
6824 	if (type == BPF_WRITE) {
6825 		switch (off) {
6826 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6827 			break;
6828 		default:
6829 			return false;
6830 		}
6831 	}
6832 
6833 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6834 }
6835 
6836 static bool cg_skb_is_valid_access(int off, int size,
6837 				   enum bpf_access_type type,
6838 				   const struct bpf_prog *prog,
6839 				   struct bpf_insn_access_aux *info)
6840 {
6841 	switch (off) {
6842 	case bpf_ctx_range(struct __sk_buff, tc_classid):
6843 	case bpf_ctx_range(struct __sk_buff, data_meta):
6844 	case bpf_ctx_range(struct __sk_buff, wire_len):
6845 		return false;
6846 	case bpf_ctx_range(struct __sk_buff, data):
6847 	case bpf_ctx_range(struct __sk_buff, data_end):
6848 		if (!bpf_capable())
6849 			return false;
6850 		break;
6851 	}
6852 
6853 	if (type == BPF_WRITE) {
6854 		switch (off) {
6855 		case bpf_ctx_range(struct __sk_buff, mark):
6856 		case bpf_ctx_range(struct __sk_buff, priority):
6857 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6858 			break;
6859 		case bpf_ctx_range(struct __sk_buff, tstamp):
6860 			if (!bpf_capable())
6861 				return false;
6862 			break;
6863 		default:
6864 			return false;
6865 		}
6866 	}
6867 
6868 	switch (off) {
6869 	case bpf_ctx_range(struct __sk_buff, data):
6870 		info->reg_type = PTR_TO_PACKET;
6871 		break;
6872 	case bpf_ctx_range(struct __sk_buff, data_end):
6873 		info->reg_type = PTR_TO_PACKET_END;
6874 		break;
6875 	}
6876 
6877 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6878 }
6879 
6880 static bool lwt_is_valid_access(int off, int size,
6881 				enum bpf_access_type type,
6882 				const struct bpf_prog *prog,
6883 				struct bpf_insn_access_aux *info)
6884 {
6885 	switch (off) {
6886 	case bpf_ctx_range(struct __sk_buff, tc_classid):
6887 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6888 	case bpf_ctx_range(struct __sk_buff, data_meta):
6889 	case bpf_ctx_range(struct __sk_buff, tstamp):
6890 	case bpf_ctx_range(struct __sk_buff, wire_len):
6891 		return false;
6892 	}
6893 
6894 	if (type == BPF_WRITE) {
6895 		switch (off) {
6896 		case bpf_ctx_range(struct __sk_buff, mark):
6897 		case bpf_ctx_range(struct __sk_buff, priority):
6898 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6899 			break;
6900 		default:
6901 			return false;
6902 		}
6903 	}
6904 
6905 	switch (off) {
6906 	case bpf_ctx_range(struct __sk_buff, data):
6907 		info->reg_type = PTR_TO_PACKET;
6908 		break;
6909 	case bpf_ctx_range(struct __sk_buff, data_end):
6910 		info->reg_type = PTR_TO_PACKET_END;
6911 		break;
6912 	}
6913 
6914 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6915 }
6916 
6917 /* Attach type specific accesses */
6918 static bool __sock_filter_check_attach_type(int off,
6919 					    enum bpf_access_type access_type,
6920 					    enum bpf_attach_type attach_type)
6921 {
6922 	switch (off) {
6923 	case offsetof(struct bpf_sock, bound_dev_if):
6924 	case offsetof(struct bpf_sock, mark):
6925 	case offsetof(struct bpf_sock, priority):
6926 		switch (attach_type) {
6927 		case BPF_CGROUP_INET_SOCK_CREATE:
6928 		case BPF_CGROUP_INET_SOCK_RELEASE:
6929 			goto full_access;
6930 		default:
6931 			return false;
6932 		}
6933 	case bpf_ctx_range(struct bpf_sock, src_ip4):
6934 		switch (attach_type) {
6935 		case BPF_CGROUP_INET4_POST_BIND:
6936 			goto read_only;
6937 		default:
6938 			return false;
6939 		}
6940 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6941 		switch (attach_type) {
6942 		case BPF_CGROUP_INET6_POST_BIND:
6943 			goto read_only;
6944 		default:
6945 			return false;
6946 		}
6947 	case bpf_ctx_range(struct bpf_sock, src_port):
6948 		switch (attach_type) {
6949 		case BPF_CGROUP_INET4_POST_BIND:
6950 		case BPF_CGROUP_INET6_POST_BIND:
6951 			goto read_only;
6952 		default:
6953 			return false;
6954 		}
6955 	}
6956 read_only:
6957 	return access_type == BPF_READ;
6958 full_access:
6959 	return true;
6960 }
6961 
6962 bool bpf_sock_common_is_valid_access(int off, int size,
6963 				     enum bpf_access_type type,
6964 				     struct bpf_insn_access_aux *info)
6965 {
6966 	switch (off) {
6967 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
6968 		return false;
6969 	default:
6970 		return bpf_sock_is_valid_access(off, size, type, info);
6971 	}
6972 }
6973 
6974 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6975 			      struct bpf_insn_access_aux *info)
6976 {
6977 	const int size_default = sizeof(__u32);
6978 
6979 	if (off < 0 || off >= sizeof(struct bpf_sock))
6980 		return false;
6981 	if (off % size != 0)
6982 		return false;
6983 
6984 	switch (off) {
6985 	case offsetof(struct bpf_sock, state):
6986 	case offsetof(struct bpf_sock, family):
6987 	case offsetof(struct bpf_sock, type):
6988 	case offsetof(struct bpf_sock, protocol):
6989 	case offsetof(struct bpf_sock, dst_port):
6990 	case offsetof(struct bpf_sock, src_port):
6991 	case offsetof(struct bpf_sock, rx_queue_mapping):
6992 	case bpf_ctx_range(struct bpf_sock, src_ip4):
6993 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6994 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
6995 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
6996 		bpf_ctx_record_field_size(info, size_default);
6997 		return bpf_ctx_narrow_access_ok(off, size, size_default);
6998 	}
6999 
7000 	return size == size_default;
7001 }
7002 
7003 static bool sock_filter_is_valid_access(int off, int size,
7004 					enum bpf_access_type type,
7005 					const struct bpf_prog *prog,
7006 					struct bpf_insn_access_aux *info)
7007 {
7008 	if (!bpf_sock_is_valid_access(off, size, type, info))
7009 		return false;
7010 	return __sock_filter_check_attach_type(off, type,
7011 					       prog->expected_attach_type);
7012 }
7013 
7014 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7015 			     const struct bpf_prog *prog)
7016 {
7017 	/* Neither direct read nor direct write requires any preliminary
7018 	 * action.
7019 	 */
7020 	return 0;
7021 }
7022 
7023 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
7024 				const struct bpf_prog *prog, int drop_verdict)
7025 {
7026 	struct bpf_insn *insn = insn_buf;
7027 
7028 	if (!direct_write)
7029 		return 0;
7030 
7031 	/* if (!skb->cloned)
7032 	 *       goto start;
7033 	 *
7034 	 * (Fast-path, otherwise approximation that we might be
7035 	 *  a clone, do the rest in helper.)
7036 	 */
7037 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
7038 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
7039 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
7040 
7041 	/* ret = bpf_skb_pull_data(skb, 0); */
7042 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
7043 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
7044 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
7045 			       BPF_FUNC_skb_pull_data);
7046 	/* if (!ret)
7047 	 *      goto restore;
7048 	 * return TC_ACT_SHOT;
7049 	 */
7050 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
7051 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
7052 	*insn++ = BPF_EXIT_INSN();
7053 
7054 	/* restore: */
7055 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
7056 	/* start: */
7057 	*insn++ = prog->insnsi[0];
7058 
7059 	return insn - insn_buf;
7060 }
7061 
7062 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
7063 			  struct bpf_insn *insn_buf)
7064 {
7065 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
7066 	struct bpf_insn *insn = insn_buf;
7067 
7068 	/* We're guaranteed here that CTX is in R6. */
7069 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
7070 	if (!indirect) {
7071 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
7072 	} else {
7073 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
7074 		if (orig->imm)
7075 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
7076 	}
7077 
7078 	switch (BPF_SIZE(orig->code)) {
7079 	case BPF_B:
7080 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
7081 		break;
7082 	case BPF_H:
7083 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
7084 		break;
7085 	case BPF_W:
7086 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
7087 		break;
7088 	}
7089 
7090 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
7091 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
7092 	*insn++ = BPF_EXIT_INSN();
7093 
7094 	return insn - insn_buf;
7095 }
7096 
7097 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
7098 			       const struct bpf_prog *prog)
7099 {
7100 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
7101 }
7102 
7103 static bool tc_cls_act_is_valid_access(int off, int size,
7104 				       enum bpf_access_type type,
7105 				       const struct bpf_prog *prog,
7106 				       struct bpf_insn_access_aux *info)
7107 {
7108 	if (type == BPF_WRITE) {
7109 		switch (off) {
7110 		case bpf_ctx_range(struct __sk_buff, mark):
7111 		case bpf_ctx_range(struct __sk_buff, tc_index):
7112 		case bpf_ctx_range(struct __sk_buff, priority):
7113 		case bpf_ctx_range(struct __sk_buff, tc_classid):
7114 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7115 		case bpf_ctx_range(struct __sk_buff, tstamp):
7116 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
7117 			break;
7118 		default:
7119 			return false;
7120 		}
7121 	}
7122 
7123 	switch (off) {
7124 	case bpf_ctx_range(struct __sk_buff, data):
7125 		info->reg_type = PTR_TO_PACKET;
7126 		break;
7127 	case bpf_ctx_range(struct __sk_buff, data_meta):
7128 		info->reg_type = PTR_TO_PACKET_META;
7129 		break;
7130 	case bpf_ctx_range(struct __sk_buff, data_end):
7131 		info->reg_type = PTR_TO_PACKET_END;
7132 		break;
7133 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7134 		return false;
7135 	}
7136 
7137 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7138 }
7139 
7140 static bool __is_valid_xdp_access(int off, int size)
7141 {
7142 	if (off < 0 || off >= sizeof(struct xdp_md))
7143 		return false;
7144 	if (off % size != 0)
7145 		return false;
7146 	if (size != sizeof(__u32))
7147 		return false;
7148 
7149 	return true;
7150 }
7151 
7152 static bool xdp_is_valid_access(int off, int size,
7153 				enum bpf_access_type type,
7154 				const struct bpf_prog *prog,
7155 				struct bpf_insn_access_aux *info)
7156 {
7157 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
7158 		switch (off) {
7159 		case offsetof(struct xdp_md, egress_ifindex):
7160 			return false;
7161 		}
7162 	}
7163 
7164 	if (type == BPF_WRITE) {
7165 		if (bpf_prog_is_dev_bound(prog->aux)) {
7166 			switch (off) {
7167 			case offsetof(struct xdp_md, rx_queue_index):
7168 				return __is_valid_xdp_access(off, size);
7169 			}
7170 		}
7171 		return false;
7172 	}
7173 
7174 	switch (off) {
7175 	case offsetof(struct xdp_md, data):
7176 		info->reg_type = PTR_TO_PACKET;
7177 		break;
7178 	case offsetof(struct xdp_md, data_meta):
7179 		info->reg_type = PTR_TO_PACKET_META;
7180 		break;
7181 	case offsetof(struct xdp_md, data_end):
7182 		info->reg_type = PTR_TO_PACKET_END;
7183 		break;
7184 	}
7185 
7186 	return __is_valid_xdp_access(off, size);
7187 }
7188 
7189 void bpf_warn_invalid_xdp_action(u32 act)
7190 {
7191 	const u32 act_max = XDP_REDIRECT;
7192 
7193 	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
7194 		  act > act_max ? "Illegal" : "Driver unsupported",
7195 		  act);
7196 }
7197 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
7198 
7199 static bool sock_addr_is_valid_access(int off, int size,
7200 				      enum bpf_access_type type,
7201 				      const struct bpf_prog *prog,
7202 				      struct bpf_insn_access_aux *info)
7203 {
7204 	const int size_default = sizeof(__u32);
7205 
7206 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
7207 		return false;
7208 	if (off % size != 0)
7209 		return false;
7210 
7211 	/* Disallow access to IPv6 fields from IPv4 contex and vise
7212 	 * versa.
7213 	 */
7214 	switch (off) {
7215 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7216 		switch (prog->expected_attach_type) {
7217 		case BPF_CGROUP_INET4_BIND:
7218 		case BPF_CGROUP_INET4_CONNECT:
7219 		case BPF_CGROUP_INET4_GETPEERNAME:
7220 		case BPF_CGROUP_INET4_GETSOCKNAME:
7221 		case BPF_CGROUP_UDP4_SENDMSG:
7222 		case BPF_CGROUP_UDP4_RECVMSG:
7223 			break;
7224 		default:
7225 			return false;
7226 		}
7227 		break;
7228 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7229 		switch (prog->expected_attach_type) {
7230 		case BPF_CGROUP_INET6_BIND:
7231 		case BPF_CGROUP_INET6_CONNECT:
7232 		case BPF_CGROUP_INET6_GETPEERNAME:
7233 		case BPF_CGROUP_INET6_GETSOCKNAME:
7234 		case BPF_CGROUP_UDP6_SENDMSG:
7235 		case BPF_CGROUP_UDP6_RECVMSG:
7236 			break;
7237 		default:
7238 			return false;
7239 		}
7240 		break;
7241 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7242 		switch (prog->expected_attach_type) {
7243 		case BPF_CGROUP_UDP4_SENDMSG:
7244 			break;
7245 		default:
7246 			return false;
7247 		}
7248 		break;
7249 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7250 				msg_src_ip6[3]):
7251 		switch (prog->expected_attach_type) {
7252 		case BPF_CGROUP_UDP6_SENDMSG:
7253 			break;
7254 		default:
7255 			return false;
7256 		}
7257 		break;
7258 	}
7259 
7260 	switch (off) {
7261 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7262 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7263 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7264 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7265 				msg_src_ip6[3]):
7266 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
7267 		if (type == BPF_READ) {
7268 			bpf_ctx_record_field_size(info, size_default);
7269 
7270 			if (bpf_ctx_wide_access_ok(off, size,
7271 						   struct bpf_sock_addr,
7272 						   user_ip6))
7273 				return true;
7274 
7275 			if (bpf_ctx_wide_access_ok(off, size,
7276 						   struct bpf_sock_addr,
7277 						   msg_src_ip6))
7278 				return true;
7279 
7280 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7281 				return false;
7282 		} else {
7283 			if (bpf_ctx_wide_access_ok(off, size,
7284 						   struct bpf_sock_addr,
7285 						   user_ip6))
7286 				return true;
7287 
7288 			if (bpf_ctx_wide_access_ok(off, size,
7289 						   struct bpf_sock_addr,
7290 						   msg_src_ip6))
7291 				return true;
7292 
7293 			if (size != size_default)
7294 				return false;
7295 		}
7296 		break;
7297 	case offsetof(struct bpf_sock_addr, sk):
7298 		if (type != BPF_READ)
7299 			return false;
7300 		if (size != sizeof(__u64))
7301 			return false;
7302 		info->reg_type = PTR_TO_SOCKET;
7303 		break;
7304 	default:
7305 		if (type == BPF_READ) {
7306 			if (size != size_default)
7307 				return false;
7308 		} else {
7309 			return false;
7310 		}
7311 	}
7312 
7313 	return true;
7314 }
7315 
7316 static bool sock_ops_is_valid_access(int off, int size,
7317 				     enum bpf_access_type type,
7318 				     const struct bpf_prog *prog,
7319 				     struct bpf_insn_access_aux *info)
7320 {
7321 	const int size_default = sizeof(__u32);
7322 
7323 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
7324 		return false;
7325 
7326 	/* The verifier guarantees that size > 0. */
7327 	if (off % size != 0)
7328 		return false;
7329 
7330 	if (type == BPF_WRITE) {
7331 		switch (off) {
7332 		case offsetof(struct bpf_sock_ops, reply):
7333 		case offsetof(struct bpf_sock_ops, sk_txhash):
7334 			if (size != size_default)
7335 				return false;
7336 			break;
7337 		default:
7338 			return false;
7339 		}
7340 	} else {
7341 		switch (off) {
7342 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
7343 					bytes_acked):
7344 			if (size != sizeof(__u64))
7345 				return false;
7346 			break;
7347 		case offsetof(struct bpf_sock_ops, sk):
7348 			if (size != sizeof(__u64))
7349 				return false;
7350 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
7351 			break;
7352 		default:
7353 			if (size != size_default)
7354 				return false;
7355 			break;
7356 		}
7357 	}
7358 
7359 	return true;
7360 }
7361 
7362 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
7363 			   const struct bpf_prog *prog)
7364 {
7365 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
7366 }
7367 
7368 static bool sk_skb_is_valid_access(int off, int size,
7369 				   enum bpf_access_type type,
7370 				   const struct bpf_prog *prog,
7371 				   struct bpf_insn_access_aux *info)
7372 {
7373 	switch (off) {
7374 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7375 	case bpf_ctx_range(struct __sk_buff, data_meta):
7376 	case bpf_ctx_range(struct __sk_buff, tstamp):
7377 	case bpf_ctx_range(struct __sk_buff, wire_len):
7378 		return false;
7379 	}
7380 
7381 	if (type == BPF_WRITE) {
7382 		switch (off) {
7383 		case bpf_ctx_range(struct __sk_buff, tc_index):
7384 		case bpf_ctx_range(struct __sk_buff, priority):
7385 			break;
7386 		default:
7387 			return false;
7388 		}
7389 	}
7390 
7391 	switch (off) {
7392 	case bpf_ctx_range(struct __sk_buff, mark):
7393 		return false;
7394 	case bpf_ctx_range(struct __sk_buff, data):
7395 		info->reg_type = PTR_TO_PACKET;
7396 		break;
7397 	case bpf_ctx_range(struct __sk_buff, data_end):
7398 		info->reg_type = PTR_TO_PACKET_END;
7399 		break;
7400 	}
7401 
7402 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7403 }
7404 
7405 static bool sk_msg_is_valid_access(int off, int size,
7406 				   enum bpf_access_type type,
7407 				   const struct bpf_prog *prog,
7408 				   struct bpf_insn_access_aux *info)
7409 {
7410 	if (type == BPF_WRITE)
7411 		return false;
7412 
7413 	if (off % size != 0)
7414 		return false;
7415 
7416 	switch (off) {
7417 	case offsetof(struct sk_msg_md, data):
7418 		info->reg_type = PTR_TO_PACKET;
7419 		if (size != sizeof(__u64))
7420 			return false;
7421 		break;
7422 	case offsetof(struct sk_msg_md, data_end):
7423 		info->reg_type = PTR_TO_PACKET_END;
7424 		if (size != sizeof(__u64))
7425 			return false;
7426 		break;
7427 	case offsetof(struct sk_msg_md, sk):
7428 		if (size != sizeof(__u64))
7429 			return false;
7430 		info->reg_type = PTR_TO_SOCKET;
7431 		break;
7432 	case bpf_ctx_range(struct sk_msg_md, family):
7433 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
7434 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
7435 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
7436 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
7437 	case bpf_ctx_range(struct sk_msg_md, remote_port):
7438 	case bpf_ctx_range(struct sk_msg_md, local_port):
7439 	case bpf_ctx_range(struct sk_msg_md, size):
7440 		if (size != sizeof(__u32))
7441 			return false;
7442 		break;
7443 	default:
7444 		return false;
7445 	}
7446 	return true;
7447 }
7448 
7449 static bool flow_dissector_is_valid_access(int off, int size,
7450 					   enum bpf_access_type type,
7451 					   const struct bpf_prog *prog,
7452 					   struct bpf_insn_access_aux *info)
7453 {
7454 	const int size_default = sizeof(__u32);
7455 
7456 	if (off < 0 || off >= sizeof(struct __sk_buff))
7457 		return false;
7458 
7459 	if (type == BPF_WRITE)
7460 		return false;
7461 
7462 	switch (off) {
7463 	case bpf_ctx_range(struct __sk_buff, data):
7464 		if (size != size_default)
7465 			return false;
7466 		info->reg_type = PTR_TO_PACKET;
7467 		return true;
7468 	case bpf_ctx_range(struct __sk_buff, data_end):
7469 		if (size != size_default)
7470 			return false;
7471 		info->reg_type = PTR_TO_PACKET_END;
7472 		return true;
7473 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7474 		if (size != sizeof(__u64))
7475 			return false;
7476 		info->reg_type = PTR_TO_FLOW_KEYS;
7477 		return true;
7478 	default:
7479 		return false;
7480 	}
7481 }
7482 
7483 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
7484 					     const struct bpf_insn *si,
7485 					     struct bpf_insn *insn_buf,
7486 					     struct bpf_prog *prog,
7487 					     u32 *target_size)
7488 
7489 {
7490 	struct bpf_insn *insn = insn_buf;
7491 
7492 	switch (si->off) {
7493 	case offsetof(struct __sk_buff, data):
7494 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
7495 				      si->dst_reg, si->src_reg,
7496 				      offsetof(struct bpf_flow_dissector, data));
7497 		break;
7498 
7499 	case offsetof(struct __sk_buff, data_end):
7500 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
7501 				      si->dst_reg, si->src_reg,
7502 				      offsetof(struct bpf_flow_dissector, data_end));
7503 		break;
7504 
7505 	case offsetof(struct __sk_buff, flow_keys):
7506 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
7507 				      si->dst_reg, si->src_reg,
7508 				      offsetof(struct bpf_flow_dissector, flow_keys));
7509 		break;
7510 	}
7511 
7512 	return insn - insn_buf;
7513 }
7514 
7515 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
7516 						  struct bpf_insn *insn)
7517 {
7518 	/* si->dst_reg = skb_shinfo(SKB); */
7519 #ifdef NET_SKBUFF_DATA_USES_OFFSET
7520 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7521 			      BPF_REG_AX, si->src_reg,
7522 			      offsetof(struct sk_buff, end));
7523 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
7524 			      si->dst_reg, si->src_reg,
7525 			      offsetof(struct sk_buff, head));
7526 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
7527 #else
7528 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7529 			      si->dst_reg, si->src_reg,
7530 			      offsetof(struct sk_buff, end));
7531 #endif
7532 
7533 	return insn;
7534 }
7535 
7536 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
7537 				  const struct bpf_insn *si,
7538 				  struct bpf_insn *insn_buf,
7539 				  struct bpf_prog *prog, u32 *target_size)
7540 {
7541 	struct bpf_insn *insn = insn_buf;
7542 	int off;
7543 
7544 	switch (si->off) {
7545 	case offsetof(struct __sk_buff, len):
7546 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7547 				      bpf_target_off(struct sk_buff, len, 4,
7548 						     target_size));
7549 		break;
7550 
7551 	case offsetof(struct __sk_buff, protocol):
7552 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7553 				      bpf_target_off(struct sk_buff, protocol, 2,
7554 						     target_size));
7555 		break;
7556 
7557 	case offsetof(struct __sk_buff, vlan_proto):
7558 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7559 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
7560 						     target_size));
7561 		break;
7562 
7563 	case offsetof(struct __sk_buff, priority):
7564 		if (type == BPF_WRITE)
7565 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7566 					      bpf_target_off(struct sk_buff, priority, 4,
7567 							     target_size));
7568 		else
7569 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7570 					      bpf_target_off(struct sk_buff, priority, 4,
7571 							     target_size));
7572 		break;
7573 
7574 	case offsetof(struct __sk_buff, ingress_ifindex):
7575 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7576 				      bpf_target_off(struct sk_buff, skb_iif, 4,
7577 						     target_size));
7578 		break;
7579 
7580 	case offsetof(struct __sk_buff, ifindex):
7581 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7582 				      si->dst_reg, si->src_reg,
7583 				      offsetof(struct sk_buff, dev));
7584 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
7585 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7586 				      bpf_target_off(struct net_device, ifindex, 4,
7587 						     target_size));
7588 		break;
7589 
7590 	case offsetof(struct __sk_buff, hash):
7591 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7592 				      bpf_target_off(struct sk_buff, hash, 4,
7593 						     target_size));
7594 		break;
7595 
7596 	case offsetof(struct __sk_buff, mark):
7597 		if (type == BPF_WRITE)
7598 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7599 					      bpf_target_off(struct sk_buff, mark, 4,
7600 							     target_size));
7601 		else
7602 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7603 					      bpf_target_off(struct sk_buff, mark, 4,
7604 							     target_size));
7605 		break;
7606 
7607 	case offsetof(struct __sk_buff, pkt_type):
7608 		*target_size = 1;
7609 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7610 				      PKT_TYPE_OFFSET());
7611 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
7612 #ifdef __BIG_ENDIAN_BITFIELD
7613 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
7614 #endif
7615 		break;
7616 
7617 	case offsetof(struct __sk_buff, queue_mapping):
7618 		if (type == BPF_WRITE) {
7619 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
7620 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7621 					      bpf_target_off(struct sk_buff,
7622 							     queue_mapping,
7623 							     2, target_size));
7624 		} else {
7625 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7626 					      bpf_target_off(struct sk_buff,
7627 							     queue_mapping,
7628 							     2, target_size));
7629 		}
7630 		break;
7631 
7632 	case offsetof(struct __sk_buff, vlan_present):
7633 		*target_size = 1;
7634 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7635 				      PKT_VLAN_PRESENT_OFFSET());
7636 		if (PKT_VLAN_PRESENT_BIT)
7637 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
7638 		if (PKT_VLAN_PRESENT_BIT < 7)
7639 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
7640 		break;
7641 
7642 	case offsetof(struct __sk_buff, vlan_tci):
7643 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7644 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
7645 						     target_size));
7646 		break;
7647 
7648 	case offsetof(struct __sk_buff, cb[0]) ...
7649 	     offsetofend(struct __sk_buff, cb[4]) - 1:
7650 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
7651 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
7652 			      offsetof(struct qdisc_skb_cb, data)) %
7653 			     sizeof(__u64));
7654 
7655 		prog->cb_access = 1;
7656 		off  = si->off;
7657 		off -= offsetof(struct __sk_buff, cb[0]);
7658 		off += offsetof(struct sk_buff, cb);
7659 		off += offsetof(struct qdisc_skb_cb, data);
7660 		if (type == BPF_WRITE)
7661 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
7662 					      si->src_reg, off);
7663 		else
7664 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
7665 					      si->src_reg, off);
7666 		break;
7667 
7668 	case offsetof(struct __sk_buff, tc_classid):
7669 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
7670 
7671 		off  = si->off;
7672 		off -= offsetof(struct __sk_buff, tc_classid);
7673 		off += offsetof(struct sk_buff, cb);
7674 		off += offsetof(struct qdisc_skb_cb, tc_classid);
7675 		*target_size = 2;
7676 		if (type == BPF_WRITE)
7677 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
7678 					      si->src_reg, off);
7679 		else
7680 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
7681 					      si->src_reg, off);
7682 		break;
7683 
7684 	case offsetof(struct __sk_buff, data):
7685 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
7686 				      si->dst_reg, si->src_reg,
7687 				      offsetof(struct sk_buff, data));
7688 		break;
7689 
7690 	case offsetof(struct __sk_buff, data_meta):
7691 		off  = si->off;
7692 		off -= offsetof(struct __sk_buff, data_meta);
7693 		off += offsetof(struct sk_buff, cb);
7694 		off += offsetof(struct bpf_skb_data_end, data_meta);
7695 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7696 				      si->src_reg, off);
7697 		break;
7698 
7699 	case offsetof(struct __sk_buff, data_end):
7700 		off  = si->off;
7701 		off -= offsetof(struct __sk_buff, data_end);
7702 		off += offsetof(struct sk_buff, cb);
7703 		off += offsetof(struct bpf_skb_data_end, data_end);
7704 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7705 				      si->src_reg, off);
7706 		break;
7707 
7708 	case offsetof(struct __sk_buff, tc_index):
7709 #ifdef CONFIG_NET_SCHED
7710 		if (type == BPF_WRITE)
7711 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7712 					      bpf_target_off(struct sk_buff, tc_index, 2,
7713 							     target_size));
7714 		else
7715 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7716 					      bpf_target_off(struct sk_buff, tc_index, 2,
7717 							     target_size));
7718 #else
7719 		*target_size = 2;
7720 		if (type == BPF_WRITE)
7721 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
7722 		else
7723 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7724 #endif
7725 		break;
7726 
7727 	case offsetof(struct __sk_buff, napi_id):
7728 #if defined(CONFIG_NET_RX_BUSY_POLL)
7729 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7730 				      bpf_target_off(struct sk_buff, napi_id, 4,
7731 						     target_size));
7732 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
7733 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7734 #else
7735 		*target_size = 4;
7736 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7737 #endif
7738 		break;
7739 	case offsetof(struct __sk_buff, family):
7740 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
7741 
7742 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7743 				      si->dst_reg, si->src_reg,
7744 				      offsetof(struct sk_buff, sk));
7745 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7746 				      bpf_target_off(struct sock_common,
7747 						     skc_family,
7748 						     2, target_size));
7749 		break;
7750 	case offsetof(struct __sk_buff, remote_ip4):
7751 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
7752 
7753 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7754 				      si->dst_reg, si->src_reg,
7755 				      offsetof(struct sk_buff, sk));
7756 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7757 				      bpf_target_off(struct sock_common,
7758 						     skc_daddr,
7759 						     4, target_size));
7760 		break;
7761 	case offsetof(struct __sk_buff, local_ip4):
7762 		BUILD_BUG_ON(sizeof_field(struct sock_common,
7763 					  skc_rcv_saddr) != 4);
7764 
7765 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7766 				      si->dst_reg, si->src_reg,
7767 				      offsetof(struct sk_buff, sk));
7768 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7769 				      bpf_target_off(struct sock_common,
7770 						     skc_rcv_saddr,
7771 						     4, target_size));
7772 		break;
7773 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
7774 	     offsetof(struct __sk_buff, remote_ip6[3]):
7775 #if IS_ENABLED(CONFIG_IPV6)
7776 		BUILD_BUG_ON(sizeof_field(struct sock_common,
7777 					  skc_v6_daddr.s6_addr32[0]) != 4);
7778 
7779 		off = si->off;
7780 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
7781 
7782 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7783 				      si->dst_reg, si->src_reg,
7784 				      offsetof(struct sk_buff, sk));
7785 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7786 				      offsetof(struct sock_common,
7787 					       skc_v6_daddr.s6_addr32[0]) +
7788 				      off);
7789 #else
7790 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7791 #endif
7792 		break;
7793 	case offsetof(struct __sk_buff, local_ip6[0]) ...
7794 	     offsetof(struct __sk_buff, local_ip6[3]):
7795 #if IS_ENABLED(CONFIG_IPV6)
7796 		BUILD_BUG_ON(sizeof_field(struct sock_common,
7797 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
7798 
7799 		off = si->off;
7800 		off -= offsetof(struct __sk_buff, local_ip6[0]);
7801 
7802 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7803 				      si->dst_reg, si->src_reg,
7804 				      offsetof(struct sk_buff, sk));
7805 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7806 				      offsetof(struct sock_common,
7807 					       skc_v6_rcv_saddr.s6_addr32[0]) +
7808 				      off);
7809 #else
7810 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7811 #endif
7812 		break;
7813 
7814 	case offsetof(struct __sk_buff, remote_port):
7815 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
7816 
7817 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7818 				      si->dst_reg, si->src_reg,
7819 				      offsetof(struct sk_buff, sk));
7820 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7821 				      bpf_target_off(struct sock_common,
7822 						     skc_dport,
7823 						     2, target_size));
7824 #ifndef __BIG_ENDIAN_BITFIELD
7825 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
7826 #endif
7827 		break;
7828 
7829 	case offsetof(struct __sk_buff, local_port):
7830 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
7831 
7832 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7833 				      si->dst_reg, si->src_reg,
7834 				      offsetof(struct sk_buff, sk));
7835 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7836 				      bpf_target_off(struct sock_common,
7837 						     skc_num, 2, target_size));
7838 		break;
7839 
7840 	case offsetof(struct __sk_buff, tstamp):
7841 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
7842 
7843 		if (type == BPF_WRITE)
7844 			*insn++ = BPF_STX_MEM(BPF_DW,
7845 					      si->dst_reg, si->src_reg,
7846 					      bpf_target_off(struct sk_buff,
7847 							     tstamp, 8,
7848 							     target_size));
7849 		else
7850 			*insn++ = BPF_LDX_MEM(BPF_DW,
7851 					      si->dst_reg, si->src_reg,
7852 					      bpf_target_off(struct sk_buff,
7853 							     tstamp, 8,
7854 							     target_size));
7855 		break;
7856 
7857 	case offsetof(struct __sk_buff, gso_segs):
7858 		insn = bpf_convert_shinfo_access(si, insn);
7859 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
7860 				      si->dst_reg, si->dst_reg,
7861 				      bpf_target_off(struct skb_shared_info,
7862 						     gso_segs, 2,
7863 						     target_size));
7864 		break;
7865 	case offsetof(struct __sk_buff, gso_size):
7866 		insn = bpf_convert_shinfo_access(si, insn);
7867 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
7868 				      si->dst_reg, si->dst_reg,
7869 				      bpf_target_off(struct skb_shared_info,
7870 						     gso_size, 2,
7871 						     target_size));
7872 		break;
7873 	case offsetof(struct __sk_buff, wire_len):
7874 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
7875 
7876 		off = si->off;
7877 		off -= offsetof(struct __sk_buff, wire_len);
7878 		off += offsetof(struct sk_buff, cb);
7879 		off += offsetof(struct qdisc_skb_cb, pkt_len);
7880 		*target_size = 4;
7881 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
7882 		break;
7883 
7884 	case offsetof(struct __sk_buff, sk):
7885 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7886 				      si->dst_reg, si->src_reg,
7887 				      offsetof(struct sk_buff, sk));
7888 		break;
7889 	}
7890 
7891 	return insn - insn_buf;
7892 }
7893 
7894 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
7895 				const struct bpf_insn *si,
7896 				struct bpf_insn *insn_buf,
7897 				struct bpf_prog *prog, u32 *target_size)
7898 {
7899 	struct bpf_insn *insn = insn_buf;
7900 	int off;
7901 
7902 	switch (si->off) {
7903 	case offsetof(struct bpf_sock, bound_dev_if):
7904 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
7905 
7906 		if (type == BPF_WRITE)
7907 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7908 					offsetof(struct sock, sk_bound_dev_if));
7909 		else
7910 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7911 				      offsetof(struct sock, sk_bound_dev_if));
7912 		break;
7913 
7914 	case offsetof(struct bpf_sock, mark):
7915 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
7916 
7917 		if (type == BPF_WRITE)
7918 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7919 					offsetof(struct sock, sk_mark));
7920 		else
7921 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7922 				      offsetof(struct sock, sk_mark));
7923 		break;
7924 
7925 	case offsetof(struct bpf_sock, priority):
7926 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
7927 
7928 		if (type == BPF_WRITE)
7929 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7930 					offsetof(struct sock, sk_priority));
7931 		else
7932 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7933 				      offsetof(struct sock, sk_priority));
7934 		break;
7935 
7936 	case offsetof(struct bpf_sock, family):
7937 		*insn++ = BPF_LDX_MEM(
7938 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
7939 			si->dst_reg, si->src_reg,
7940 			bpf_target_off(struct sock_common,
7941 				       skc_family,
7942 				       sizeof_field(struct sock_common,
7943 						    skc_family),
7944 				       target_size));
7945 		break;
7946 
7947 	case offsetof(struct bpf_sock, type):
7948 		*insn++ = BPF_LDX_MEM(
7949 			BPF_FIELD_SIZEOF(struct sock, sk_type),
7950 			si->dst_reg, si->src_reg,
7951 			bpf_target_off(struct sock, sk_type,
7952 				       sizeof_field(struct sock, sk_type),
7953 				       target_size));
7954 		break;
7955 
7956 	case offsetof(struct bpf_sock, protocol):
7957 		*insn++ = BPF_LDX_MEM(
7958 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
7959 			si->dst_reg, si->src_reg,
7960 			bpf_target_off(struct sock, sk_protocol,
7961 				       sizeof_field(struct sock, sk_protocol),
7962 				       target_size));
7963 		break;
7964 
7965 	case offsetof(struct bpf_sock, src_ip4):
7966 		*insn++ = BPF_LDX_MEM(
7967 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7968 			bpf_target_off(struct sock_common, skc_rcv_saddr,
7969 				       sizeof_field(struct sock_common,
7970 						    skc_rcv_saddr),
7971 				       target_size));
7972 		break;
7973 
7974 	case offsetof(struct bpf_sock, dst_ip4):
7975 		*insn++ = BPF_LDX_MEM(
7976 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7977 			bpf_target_off(struct sock_common, skc_daddr,
7978 				       sizeof_field(struct sock_common,
7979 						    skc_daddr),
7980 				       target_size));
7981 		break;
7982 
7983 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7984 #if IS_ENABLED(CONFIG_IPV6)
7985 		off = si->off;
7986 		off -= offsetof(struct bpf_sock, src_ip6[0]);
7987 		*insn++ = BPF_LDX_MEM(
7988 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7989 			bpf_target_off(
7990 				struct sock_common,
7991 				skc_v6_rcv_saddr.s6_addr32[0],
7992 				sizeof_field(struct sock_common,
7993 					     skc_v6_rcv_saddr.s6_addr32[0]),
7994 				target_size) + off);
7995 #else
7996 		(void)off;
7997 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7998 #endif
7999 		break;
8000 
8001 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8002 #if IS_ENABLED(CONFIG_IPV6)
8003 		off = si->off;
8004 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
8005 		*insn++ = BPF_LDX_MEM(
8006 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8007 			bpf_target_off(struct sock_common,
8008 				       skc_v6_daddr.s6_addr32[0],
8009 				       sizeof_field(struct sock_common,
8010 						    skc_v6_daddr.s6_addr32[0]),
8011 				       target_size) + off);
8012 #else
8013 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8014 		*target_size = 4;
8015 #endif
8016 		break;
8017 
8018 	case offsetof(struct bpf_sock, src_port):
8019 		*insn++ = BPF_LDX_MEM(
8020 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
8021 			si->dst_reg, si->src_reg,
8022 			bpf_target_off(struct sock_common, skc_num,
8023 				       sizeof_field(struct sock_common,
8024 						    skc_num),
8025 				       target_size));
8026 		break;
8027 
8028 	case offsetof(struct bpf_sock, dst_port):
8029 		*insn++ = BPF_LDX_MEM(
8030 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
8031 			si->dst_reg, si->src_reg,
8032 			bpf_target_off(struct sock_common, skc_dport,
8033 				       sizeof_field(struct sock_common,
8034 						    skc_dport),
8035 				       target_size));
8036 		break;
8037 
8038 	case offsetof(struct bpf_sock, state):
8039 		*insn++ = BPF_LDX_MEM(
8040 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
8041 			si->dst_reg, si->src_reg,
8042 			bpf_target_off(struct sock_common, skc_state,
8043 				       sizeof_field(struct sock_common,
8044 						    skc_state),
8045 				       target_size));
8046 		break;
8047 	case offsetof(struct bpf_sock, rx_queue_mapping):
8048 #ifdef CONFIG_XPS
8049 		*insn++ = BPF_LDX_MEM(
8050 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
8051 			si->dst_reg, si->src_reg,
8052 			bpf_target_off(struct sock, sk_rx_queue_mapping,
8053 				       sizeof_field(struct sock,
8054 						    sk_rx_queue_mapping),
8055 				       target_size));
8056 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
8057 				      1);
8058 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8059 #else
8060 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8061 		*target_size = 2;
8062 #endif
8063 		break;
8064 	}
8065 
8066 	return insn - insn_buf;
8067 }
8068 
8069 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
8070 					 const struct bpf_insn *si,
8071 					 struct bpf_insn *insn_buf,
8072 					 struct bpf_prog *prog, u32 *target_size)
8073 {
8074 	struct bpf_insn *insn = insn_buf;
8075 
8076 	switch (si->off) {
8077 	case offsetof(struct __sk_buff, ifindex):
8078 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8079 				      si->dst_reg, si->src_reg,
8080 				      offsetof(struct sk_buff, dev));
8081 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8082 				      bpf_target_off(struct net_device, ifindex, 4,
8083 						     target_size));
8084 		break;
8085 	default:
8086 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
8087 					      target_size);
8088 	}
8089 
8090 	return insn - insn_buf;
8091 }
8092 
8093 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
8094 				  const struct bpf_insn *si,
8095 				  struct bpf_insn *insn_buf,
8096 				  struct bpf_prog *prog, u32 *target_size)
8097 {
8098 	struct bpf_insn *insn = insn_buf;
8099 
8100 	switch (si->off) {
8101 	case offsetof(struct xdp_md, data):
8102 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
8103 				      si->dst_reg, si->src_reg,
8104 				      offsetof(struct xdp_buff, data));
8105 		break;
8106 	case offsetof(struct xdp_md, data_meta):
8107 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
8108 				      si->dst_reg, si->src_reg,
8109 				      offsetof(struct xdp_buff, data_meta));
8110 		break;
8111 	case offsetof(struct xdp_md, data_end):
8112 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
8113 				      si->dst_reg, si->src_reg,
8114 				      offsetof(struct xdp_buff, data_end));
8115 		break;
8116 	case offsetof(struct xdp_md, ingress_ifindex):
8117 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8118 				      si->dst_reg, si->src_reg,
8119 				      offsetof(struct xdp_buff, rxq));
8120 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
8121 				      si->dst_reg, si->dst_reg,
8122 				      offsetof(struct xdp_rxq_info, dev));
8123 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8124 				      offsetof(struct net_device, ifindex));
8125 		break;
8126 	case offsetof(struct xdp_md, rx_queue_index):
8127 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8128 				      si->dst_reg, si->src_reg,
8129 				      offsetof(struct xdp_buff, rxq));
8130 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8131 				      offsetof(struct xdp_rxq_info,
8132 					       queue_index));
8133 		break;
8134 	case offsetof(struct xdp_md, egress_ifindex):
8135 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
8136 				      si->dst_reg, si->src_reg,
8137 				      offsetof(struct xdp_buff, txq));
8138 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
8139 				      si->dst_reg, si->dst_reg,
8140 				      offsetof(struct xdp_txq_info, dev));
8141 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8142 				      offsetof(struct net_device, ifindex));
8143 		break;
8144 	}
8145 
8146 	return insn - insn_buf;
8147 }
8148 
8149 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
8150  * context Structure, F is Field in context structure that contains a pointer
8151  * to Nested Structure of type NS that has the field NF.
8152  *
8153  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
8154  * sure that SIZE is not greater than actual size of S.F.NF.
8155  *
8156  * If offset OFF is provided, the load happens from that offset relative to
8157  * offset of NF.
8158  */
8159 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
8160 	do {								       \
8161 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
8162 				      si->src_reg, offsetof(S, F));	       \
8163 		*insn++ = BPF_LDX_MEM(					       \
8164 			SIZE, si->dst_reg, si->dst_reg,			       \
8165 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
8166 				       target_size)			       \
8167 				+ OFF);					       \
8168 	} while (0)
8169 
8170 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
8171 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
8172 					     BPF_FIELD_SIZEOF(NS, NF), 0)
8173 
8174 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
8175  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
8176  *
8177  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
8178  * "register" since two registers available in convert_ctx_access are not
8179  * enough: we can't override neither SRC, since it contains value to store, nor
8180  * DST since it contains pointer to context that may be used by later
8181  * instructions. But we need a temporary place to save pointer to nested
8182  * structure whose field we want to store to.
8183  */
8184 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
8185 	do {								       \
8186 		int tmp_reg = BPF_REG_9;				       \
8187 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
8188 			--tmp_reg;					       \
8189 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
8190 			--tmp_reg;					       \
8191 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
8192 				      offsetof(S, TF));			       \
8193 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
8194 				      si->dst_reg, offsetof(S, F));	       \
8195 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
8196 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
8197 				       target_size)			       \
8198 				+ OFF);					       \
8199 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
8200 				      offsetof(S, TF));			       \
8201 	} while (0)
8202 
8203 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
8204 						      TF)		       \
8205 	do {								       \
8206 		if (type == BPF_WRITE) {				       \
8207 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
8208 							 OFF, TF);	       \
8209 		} else {						       \
8210 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
8211 				S, NS, F, NF, SIZE, OFF);  \
8212 		}							       \
8213 	} while (0)
8214 
8215 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
8216 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
8217 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
8218 
8219 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
8220 					const struct bpf_insn *si,
8221 					struct bpf_insn *insn_buf,
8222 					struct bpf_prog *prog, u32 *target_size)
8223 {
8224 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
8225 	struct bpf_insn *insn = insn_buf;
8226 
8227 	switch (si->off) {
8228 	case offsetof(struct bpf_sock_addr, user_family):
8229 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8230 					    struct sockaddr, uaddr, sa_family);
8231 		break;
8232 
8233 	case offsetof(struct bpf_sock_addr, user_ip4):
8234 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8235 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
8236 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
8237 		break;
8238 
8239 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8240 		off = si->off;
8241 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
8242 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8243 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
8244 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
8245 			tmp_reg);
8246 		break;
8247 
8248 	case offsetof(struct bpf_sock_addr, user_port):
8249 		/* To get port we need to know sa_family first and then treat
8250 		 * sockaddr as either sockaddr_in or sockaddr_in6.
8251 		 * Though we can simplify since port field has same offset and
8252 		 * size in both structures.
8253 		 * Here we check this invariant and use just one of the
8254 		 * structures if it's true.
8255 		 */
8256 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
8257 			     offsetof(struct sockaddr_in6, sin6_port));
8258 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
8259 			     sizeof_field(struct sockaddr_in6, sin6_port));
8260 		/* Account for sin6_port being smaller than user_port. */
8261 		port_size = min(port_size, BPF_LDST_BYTES(si));
8262 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8263 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
8264 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
8265 		break;
8266 
8267 	case offsetof(struct bpf_sock_addr, family):
8268 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8269 					    struct sock, sk, sk_family);
8270 		break;
8271 
8272 	case offsetof(struct bpf_sock_addr, type):
8273 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8274 					    struct sock, sk, sk_type);
8275 		break;
8276 
8277 	case offsetof(struct bpf_sock_addr, protocol):
8278 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8279 					    struct sock, sk, sk_protocol);
8280 		break;
8281 
8282 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
8283 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
8284 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8285 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
8286 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
8287 		break;
8288 
8289 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8290 				msg_src_ip6[3]):
8291 		off = si->off;
8292 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
8293 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
8294 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8295 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
8296 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
8297 		break;
8298 	case offsetof(struct bpf_sock_addr, sk):
8299 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
8300 				      si->dst_reg, si->src_reg,
8301 				      offsetof(struct bpf_sock_addr_kern, sk));
8302 		break;
8303 	}
8304 
8305 	return insn - insn_buf;
8306 }
8307 
8308 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
8309 				       const struct bpf_insn *si,
8310 				       struct bpf_insn *insn_buf,
8311 				       struct bpf_prog *prog,
8312 				       u32 *target_size)
8313 {
8314 	struct bpf_insn *insn = insn_buf;
8315 	int off;
8316 
8317 /* Helper macro for adding read access to tcp_sock or sock fields. */
8318 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
8319 	do {								      \
8320 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
8321 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
8322 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
8323 		if (si->dst_reg == reg || si->src_reg == reg)		      \
8324 			reg--;						      \
8325 		if (si->dst_reg == reg || si->src_reg == reg)		      \
8326 			reg--;						      \
8327 		if (si->dst_reg == si->src_reg) {			      \
8328 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
8329 					  offsetof(struct bpf_sock_ops_kern,  \
8330 					  temp));			      \
8331 			fullsock_reg = reg;				      \
8332 			jmp += 2;					      \
8333 		}							      \
8334 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
8335 						struct bpf_sock_ops_kern,     \
8336 						is_fullsock),		      \
8337 				      fullsock_reg, si->src_reg,	      \
8338 				      offsetof(struct bpf_sock_ops_kern,      \
8339 					       is_fullsock));		      \
8340 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
8341 		if (si->dst_reg == si->src_reg)				      \
8342 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
8343 				      offsetof(struct bpf_sock_ops_kern,      \
8344 				      temp));				      \
8345 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
8346 						struct bpf_sock_ops_kern, sk),\
8347 				      si->dst_reg, si->src_reg,		      \
8348 				      offsetof(struct bpf_sock_ops_kern, sk));\
8349 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
8350 						       OBJ_FIELD),	      \
8351 				      si->dst_reg, si->dst_reg,		      \
8352 				      offsetof(OBJ, OBJ_FIELD));	      \
8353 		if (si->dst_reg == si->src_reg)	{			      \
8354 			*insn++ = BPF_JMP_A(1);				      \
8355 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
8356 				      offsetof(struct bpf_sock_ops_kern,      \
8357 				      temp));				      \
8358 		}							      \
8359 	} while (0)
8360 
8361 #define SOCK_OPS_GET_SK()							      \
8362 	do {								      \
8363 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
8364 		if (si->dst_reg == reg || si->src_reg == reg)		      \
8365 			reg--;						      \
8366 		if (si->dst_reg == reg || si->src_reg == reg)		      \
8367 			reg--;						      \
8368 		if (si->dst_reg == si->src_reg) {			      \
8369 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
8370 					  offsetof(struct bpf_sock_ops_kern,  \
8371 					  temp));			      \
8372 			fullsock_reg = reg;				      \
8373 			jmp += 2;					      \
8374 		}							      \
8375 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
8376 						struct bpf_sock_ops_kern,     \
8377 						is_fullsock),		      \
8378 				      fullsock_reg, si->src_reg,	      \
8379 				      offsetof(struct bpf_sock_ops_kern,      \
8380 					       is_fullsock));		      \
8381 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
8382 		if (si->dst_reg == si->src_reg)				      \
8383 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
8384 				      offsetof(struct bpf_sock_ops_kern,      \
8385 				      temp));				      \
8386 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
8387 						struct bpf_sock_ops_kern, sk),\
8388 				      si->dst_reg, si->src_reg,		      \
8389 				      offsetof(struct bpf_sock_ops_kern, sk));\
8390 		if (si->dst_reg == si->src_reg)	{			      \
8391 			*insn++ = BPF_JMP_A(1);				      \
8392 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
8393 				      offsetof(struct bpf_sock_ops_kern,      \
8394 				      temp));				      \
8395 		}							      \
8396 	} while (0)
8397 
8398 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
8399 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
8400 
8401 /* Helper macro for adding write access to tcp_sock or sock fields.
8402  * The macro is called with two registers, dst_reg which contains a pointer
8403  * to ctx (context) and src_reg which contains the value that should be
8404  * stored. However, we need an additional register since we cannot overwrite
8405  * dst_reg because it may be used later in the program.
8406  * Instead we "borrow" one of the other register. We first save its value
8407  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
8408  * it at the end of the macro.
8409  */
8410 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
8411 	do {								      \
8412 		int reg = BPF_REG_9;					      \
8413 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
8414 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
8415 		if (si->dst_reg == reg || si->src_reg == reg)		      \
8416 			reg--;						      \
8417 		if (si->dst_reg == reg || si->src_reg == reg)		      \
8418 			reg--;						      \
8419 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
8420 				      offsetof(struct bpf_sock_ops_kern,      \
8421 					       temp));			      \
8422 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
8423 						struct bpf_sock_ops_kern,     \
8424 						is_fullsock),		      \
8425 				      reg, si->dst_reg,			      \
8426 				      offsetof(struct bpf_sock_ops_kern,      \
8427 					       is_fullsock));		      \
8428 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
8429 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
8430 						struct bpf_sock_ops_kern, sk),\
8431 				      reg, si->dst_reg,			      \
8432 				      offsetof(struct bpf_sock_ops_kern, sk));\
8433 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
8434 				      reg, si->src_reg,			      \
8435 				      offsetof(OBJ, OBJ_FIELD));	      \
8436 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
8437 				      offsetof(struct bpf_sock_ops_kern,      \
8438 					       temp));			      \
8439 	} while (0)
8440 
8441 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
8442 	do {								      \
8443 		if (TYPE == BPF_WRITE)					      \
8444 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
8445 		else							      \
8446 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
8447 	} while (0)
8448 
8449 	if (insn > insn_buf)
8450 		return insn - insn_buf;
8451 
8452 	switch (si->off) {
8453 	case offsetof(struct bpf_sock_ops, op) ...
8454 	     offsetof(struct bpf_sock_ops, replylong[3]):
8455 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, op) !=
8456 			     sizeof_field(struct bpf_sock_ops_kern, op));
8457 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
8458 			     sizeof_field(struct bpf_sock_ops_kern, reply));
8459 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
8460 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
8461 		off = si->off;
8462 		off -= offsetof(struct bpf_sock_ops, op);
8463 		off += offsetof(struct bpf_sock_ops_kern, op);
8464 		if (type == BPF_WRITE)
8465 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8466 					      off);
8467 		else
8468 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8469 					      off);
8470 		break;
8471 
8472 	case offsetof(struct bpf_sock_ops, family):
8473 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8474 
8475 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8476 					      struct bpf_sock_ops_kern, sk),
8477 				      si->dst_reg, si->src_reg,
8478 				      offsetof(struct bpf_sock_ops_kern, sk));
8479 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8480 				      offsetof(struct sock_common, skc_family));
8481 		break;
8482 
8483 	case offsetof(struct bpf_sock_ops, remote_ip4):
8484 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8485 
8486 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8487 						struct bpf_sock_ops_kern, sk),
8488 				      si->dst_reg, si->src_reg,
8489 				      offsetof(struct bpf_sock_ops_kern, sk));
8490 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8491 				      offsetof(struct sock_common, skc_daddr));
8492 		break;
8493 
8494 	case offsetof(struct bpf_sock_ops, local_ip4):
8495 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8496 					  skc_rcv_saddr) != 4);
8497 
8498 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8499 					      struct bpf_sock_ops_kern, sk),
8500 				      si->dst_reg, si->src_reg,
8501 				      offsetof(struct bpf_sock_ops_kern, sk));
8502 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8503 				      offsetof(struct sock_common,
8504 					       skc_rcv_saddr));
8505 		break;
8506 
8507 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
8508 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
8509 #if IS_ENABLED(CONFIG_IPV6)
8510 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8511 					  skc_v6_daddr.s6_addr32[0]) != 4);
8512 
8513 		off = si->off;
8514 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
8515 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8516 						struct bpf_sock_ops_kern, sk),
8517 				      si->dst_reg, si->src_reg,
8518 				      offsetof(struct bpf_sock_ops_kern, sk));
8519 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8520 				      offsetof(struct sock_common,
8521 					       skc_v6_daddr.s6_addr32[0]) +
8522 				      off);
8523 #else
8524 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8525 #endif
8526 		break;
8527 
8528 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
8529 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
8530 #if IS_ENABLED(CONFIG_IPV6)
8531 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8532 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8533 
8534 		off = si->off;
8535 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
8536 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8537 						struct bpf_sock_ops_kern, sk),
8538 				      si->dst_reg, si->src_reg,
8539 				      offsetof(struct bpf_sock_ops_kern, sk));
8540 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8541 				      offsetof(struct sock_common,
8542 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8543 				      off);
8544 #else
8545 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8546 #endif
8547 		break;
8548 
8549 	case offsetof(struct bpf_sock_ops, remote_port):
8550 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8551 
8552 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8553 						struct bpf_sock_ops_kern, sk),
8554 				      si->dst_reg, si->src_reg,
8555 				      offsetof(struct bpf_sock_ops_kern, sk));
8556 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8557 				      offsetof(struct sock_common, skc_dport));
8558 #ifndef __BIG_ENDIAN_BITFIELD
8559 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8560 #endif
8561 		break;
8562 
8563 	case offsetof(struct bpf_sock_ops, local_port):
8564 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8565 
8566 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8567 						struct bpf_sock_ops_kern, sk),
8568 				      si->dst_reg, si->src_reg,
8569 				      offsetof(struct bpf_sock_ops_kern, sk));
8570 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8571 				      offsetof(struct sock_common, skc_num));
8572 		break;
8573 
8574 	case offsetof(struct bpf_sock_ops, is_fullsock):
8575 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8576 						struct bpf_sock_ops_kern,
8577 						is_fullsock),
8578 				      si->dst_reg, si->src_reg,
8579 				      offsetof(struct bpf_sock_ops_kern,
8580 					       is_fullsock));
8581 		break;
8582 
8583 	case offsetof(struct bpf_sock_ops, state):
8584 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
8585 
8586 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8587 						struct bpf_sock_ops_kern, sk),
8588 				      si->dst_reg, si->src_reg,
8589 				      offsetof(struct bpf_sock_ops_kern, sk));
8590 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
8591 				      offsetof(struct sock_common, skc_state));
8592 		break;
8593 
8594 	case offsetof(struct bpf_sock_ops, rtt_min):
8595 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
8596 			     sizeof(struct minmax));
8597 		BUILD_BUG_ON(sizeof(struct minmax) <
8598 			     sizeof(struct minmax_sample));
8599 
8600 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8601 						struct bpf_sock_ops_kern, sk),
8602 				      si->dst_reg, si->src_reg,
8603 				      offsetof(struct bpf_sock_ops_kern, sk));
8604 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8605 				      offsetof(struct tcp_sock, rtt_min) +
8606 				      sizeof_field(struct minmax_sample, t));
8607 		break;
8608 
8609 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
8610 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
8611 				   struct tcp_sock);
8612 		break;
8613 
8614 	case offsetof(struct bpf_sock_ops, sk_txhash):
8615 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
8616 					  struct sock, type);
8617 		break;
8618 	case offsetof(struct bpf_sock_ops, snd_cwnd):
8619 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
8620 		break;
8621 	case offsetof(struct bpf_sock_ops, srtt_us):
8622 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
8623 		break;
8624 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
8625 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
8626 		break;
8627 	case offsetof(struct bpf_sock_ops, rcv_nxt):
8628 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
8629 		break;
8630 	case offsetof(struct bpf_sock_ops, snd_nxt):
8631 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
8632 		break;
8633 	case offsetof(struct bpf_sock_ops, snd_una):
8634 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
8635 		break;
8636 	case offsetof(struct bpf_sock_ops, mss_cache):
8637 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
8638 		break;
8639 	case offsetof(struct bpf_sock_ops, ecn_flags):
8640 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
8641 		break;
8642 	case offsetof(struct bpf_sock_ops, rate_delivered):
8643 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
8644 		break;
8645 	case offsetof(struct bpf_sock_ops, rate_interval_us):
8646 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
8647 		break;
8648 	case offsetof(struct bpf_sock_ops, packets_out):
8649 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
8650 		break;
8651 	case offsetof(struct bpf_sock_ops, retrans_out):
8652 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
8653 		break;
8654 	case offsetof(struct bpf_sock_ops, total_retrans):
8655 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
8656 		break;
8657 	case offsetof(struct bpf_sock_ops, segs_in):
8658 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
8659 		break;
8660 	case offsetof(struct bpf_sock_ops, data_segs_in):
8661 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
8662 		break;
8663 	case offsetof(struct bpf_sock_ops, segs_out):
8664 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
8665 		break;
8666 	case offsetof(struct bpf_sock_ops, data_segs_out):
8667 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
8668 		break;
8669 	case offsetof(struct bpf_sock_ops, lost_out):
8670 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
8671 		break;
8672 	case offsetof(struct bpf_sock_ops, sacked_out):
8673 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
8674 		break;
8675 	case offsetof(struct bpf_sock_ops, bytes_received):
8676 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
8677 		break;
8678 	case offsetof(struct bpf_sock_ops, bytes_acked):
8679 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
8680 		break;
8681 	case offsetof(struct bpf_sock_ops, sk):
8682 		SOCK_OPS_GET_SK();
8683 		break;
8684 	}
8685 	return insn - insn_buf;
8686 }
8687 
8688 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
8689 				     const struct bpf_insn *si,
8690 				     struct bpf_insn *insn_buf,
8691 				     struct bpf_prog *prog, u32 *target_size)
8692 {
8693 	struct bpf_insn *insn = insn_buf;
8694 	int off;
8695 
8696 	switch (si->off) {
8697 	case offsetof(struct __sk_buff, data_end):
8698 		off  = si->off;
8699 		off -= offsetof(struct __sk_buff, data_end);
8700 		off += offsetof(struct sk_buff, cb);
8701 		off += offsetof(struct tcp_skb_cb, bpf.data_end);
8702 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8703 				      si->src_reg, off);
8704 		break;
8705 	default:
8706 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
8707 					      target_size);
8708 	}
8709 
8710 	return insn - insn_buf;
8711 }
8712 
8713 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
8714 				     const struct bpf_insn *si,
8715 				     struct bpf_insn *insn_buf,
8716 				     struct bpf_prog *prog, u32 *target_size)
8717 {
8718 	struct bpf_insn *insn = insn_buf;
8719 #if IS_ENABLED(CONFIG_IPV6)
8720 	int off;
8721 #endif
8722 
8723 	/* convert ctx uses the fact sg element is first in struct */
8724 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
8725 
8726 	switch (si->off) {
8727 	case offsetof(struct sk_msg_md, data):
8728 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
8729 				      si->dst_reg, si->src_reg,
8730 				      offsetof(struct sk_msg, data));
8731 		break;
8732 	case offsetof(struct sk_msg_md, data_end):
8733 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
8734 				      si->dst_reg, si->src_reg,
8735 				      offsetof(struct sk_msg, data_end));
8736 		break;
8737 	case offsetof(struct sk_msg_md, family):
8738 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8739 
8740 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8741 					      struct sk_msg, sk),
8742 				      si->dst_reg, si->src_reg,
8743 				      offsetof(struct sk_msg, sk));
8744 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8745 				      offsetof(struct sock_common, skc_family));
8746 		break;
8747 
8748 	case offsetof(struct sk_msg_md, remote_ip4):
8749 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8750 
8751 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8752 						struct sk_msg, sk),
8753 				      si->dst_reg, si->src_reg,
8754 				      offsetof(struct sk_msg, sk));
8755 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8756 				      offsetof(struct sock_common, skc_daddr));
8757 		break;
8758 
8759 	case offsetof(struct sk_msg_md, local_ip4):
8760 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8761 					  skc_rcv_saddr) != 4);
8762 
8763 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8764 					      struct sk_msg, sk),
8765 				      si->dst_reg, si->src_reg,
8766 				      offsetof(struct sk_msg, sk));
8767 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8768 				      offsetof(struct sock_common,
8769 					       skc_rcv_saddr));
8770 		break;
8771 
8772 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
8773 	     offsetof(struct sk_msg_md, remote_ip6[3]):
8774 #if IS_ENABLED(CONFIG_IPV6)
8775 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8776 					  skc_v6_daddr.s6_addr32[0]) != 4);
8777 
8778 		off = si->off;
8779 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
8780 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8781 						struct sk_msg, sk),
8782 				      si->dst_reg, si->src_reg,
8783 				      offsetof(struct sk_msg, sk));
8784 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8785 				      offsetof(struct sock_common,
8786 					       skc_v6_daddr.s6_addr32[0]) +
8787 				      off);
8788 #else
8789 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8790 #endif
8791 		break;
8792 
8793 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
8794 	     offsetof(struct sk_msg_md, local_ip6[3]):
8795 #if IS_ENABLED(CONFIG_IPV6)
8796 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8797 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8798 
8799 		off = si->off;
8800 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
8801 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8802 						struct sk_msg, sk),
8803 				      si->dst_reg, si->src_reg,
8804 				      offsetof(struct sk_msg, sk));
8805 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8806 				      offsetof(struct sock_common,
8807 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8808 				      off);
8809 #else
8810 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8811 #endif
8812 		break;
8813 
8814 	case offsetof(struct sk_msg_md, remote_port):
8815 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8816 
8817 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8818 						struct sk_msg, sk),
8819 				      si->dst_reg, si->src_reg,
8820 				      offsetof(struct sk_msg, sk));
8821 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8822 				      offsetof(struct sock_common, skc_dport));
8823 #ifndef __BIG_ENDIAN_BITFIELD
8824 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8825 #endif
8826 		break;
8827 
8828 	case offsetof(struct sk_msg_md, local_port):
8829 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8830 
8831 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8832 						struct sk_msg, sk),
8833 				      si->dst_reg, si->src_reg,
8834 				      offsetof(struct sk_msg, sk));
8835 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8836 				      offsetof(struct sock_common, skc_num));
8837 		break;
8838 
8839 	case offsetof(struct sk_msg_md, size):
8840 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
8841 				      si->dst_reg, si->src_reg,
8842 				      offsetof(struct sk_msg_sg, size));
8843 		break;
8844 
8845 	case offsetof(struct sk_msg_md, sk):
8846 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
8847 				      si->dst_reg, si->src_reg,
8848 				      offsetof(struct sk_msg, sk));
8849 		break;
8850 	}
8851 
8852 	return insn - insn_buf;
8853 }
8854 
8855 const struct bpf_verifier_ops sk_filter_verifier_ops = {
8856 	.get_func_proto		= sk_filter_func_proto,
8857 	.is_valid_access	= sk_filter_is_valid_access,
8858 	.convert_ctx_access	= bpf_convert_ctx_access,
8859 	.gen_ld_abs		= bpf_gen_ld_abs,
8860 };
8861 
8862 const struct bpf_prog_ops sk_filter_prog_ops = {
8863 	.test_run		= bpf_prog_test_run_skb,
8864 };
8865 
8866 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
8867 	.get_func_proto		= tc_cls_act_func_proto,
8868 	.is_valid_access	= tc_cls_act_is_valid_access,
8869 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
8870 	.gen_prologue		= tc_cls_act_prologue,
8871 	.gen_ld_abs		= bpf_gen_ld_abs,
8872 };
8873 
8874 const struct bpf_prog_ops tc_cls_act_prog_ops = {
8875 	.test_run		= bpf_prog_test_run_skb,
8876 };
8877 
8878 const struct bpf_verifier_ops xdp_verifier_ops = {
8879 	.get_func_proto		= xdp_func_proto,
8880 	.is_valid_access	= xdp_is_valid_access,
8881 	.convert_ctx_access	= xdp_convert_ctx_access,
8882 	.gen_prologue		= bpf_noop_prologue,
8883 };
8884 
8885 const struct bpf_prog_ops xdp_prog_ops = {
8886 	.test_run		= bpf_prog_test_run_xdp,
8887 };
8888 
8889 const struct bpf_verifier_ops cg_skb_verifier_ops = {
8890 	.get_func_proto		= cg_skb_func_proto,
8891 	.is_valid_access	= cg_skb_is_valid_access,
8892 	.convert_ctx_access	= bpf_convert_ctx_access,
8893 };
8894 
8895 const struct bpf_prog_ops cg_skb_prog_ops = {
8896 	.test_run		= bpf_prog_test_run_skb,
8897 };
8898 
8899 const struct bpf_verifier_ops lwt_in_verifier_ops = {
8900 	.get_func_proto		= lwt_in_func_proto,
8901 	.is_valid_access	= lwt_is_valid_access,
8902 	.convert_ctx_access	= bpf_convert_ctx_access,
8903 };
8904 
8905 const struct bpf_prog_ops lwt_in_prog_ops = {
8906 	.test_run		= bpf_prog_test_run_skb,
8907 };
8908 
8909 const struct bpf_verifier_ops lwt_out_verifier_ops = {
8910 	.get_func_proto		= lwt_out_func_proto,
8911 	.is_valid_access	= lwt_is_valid_access,
8912 	.convert_ctx_access	= bpf_convert_ctx_access,
8913 };
8914 
8915 const struct bpf_prog_ops lwt_out_prog_ops = {
8916 	.test_run		= bpf_prog_test_run_skb,
8917 };
8918 
8919 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
8920 	.get_func_proto		= lwt_xmit_func_proto,
8921 	.is_valid_access	= lwt_is_valid_access,
8922 	.convert_ctx_access	= bpf_convert_ctx_access,
8923 	.gen_prologue		= tc_cls_act_prologue,
8924 };
8925 
8926 const struct bpf_prog_ops lwt_xmit_prog_ops = {
8927 	.test_run		= bpf_prog_test_run_skb,
8928 };
8929 
8930 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
8931 	.get_func_proto		= lwt_seg6local_func_proto,
8932 	.is_valid_access	= lwt_is_valid_access,
8933 	.convert_ctx_access	= bpf_convert_ctx_access,
8934 };
8935 
8936 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
8937 	.test_run		= bpf_prog_test_run_skb,
8938 };
8939 
8940 const struct bpf_verifier_ops cg_sock_verifier_ops = {
8941 	.get_func_proto		= sock_filter_func_proto,
8942 	.is_valid_access	= sock_filter_is_valid_access,
8943 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
8944 };
8945 
8946 const struct bpf_prog_ops cg_sock_prog_ops = {
8947 };
8948 
8949 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
8950 	.get_func_proto		= sock_addr_func_proto,
8951 	.is_valid_access	= sock_addr_is_valid_access,
8952 	.convert_ctx_access	= sock_addr_convert_ctx_access,
8953 };
8954 
8955 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
8956 };
8957 
8958 const struct bpf_verifier_ops sock_ops_verifier_ops = {
8959 	.get_func_proto		= sock_ops_func_proto,
8960 	.is_valid_access	= sock_ops_is_valid_access,
8961 	.convert_ctx_access	= sock_ops_convert_ctx_access,
8962 };
8963 
8964 const struct bpf_prog_ops sock_ops_prog_ops = {
8965 };
8966 
8967 const struct bpf_verifier_ops sk_skb_verifier_ops = {
8968 	.get_func_proto		= sk_skb_func_proto,
8969 	.is_valid_access	= sk_skb_is_valid_access,
8970 	.convert_ctx_access	= sk_skb_convert_ctx_access,
8971 	.gen_prologue		= sk_skb_prologue,
8972 };
8973 
8974 const struct bpf_prog_ops sk_skb_prog_ops = {
8975 };
8976 
8977 const struct bpf_verifier_ops sk_msg_verifier_ops = {
8978 	.get_func_proto		= sk_msg_func_proto,
8979 	.is_valid_access	= sk_msg_is_valid_access,
8980 	.convert_ctx_access	= sk_msg_convert_ctx_access,
8981 	.gen_prologue		= bpf_noop_prologue,
8982 };
8983 
8984 const struct bpf_prog_ops sk_msg_prog_ops = {
8985 };
8986 
8987 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
8988 	.get_func_proto		= flow_dissector_func_proto,
8989 	.is_valid_access	= flow_dissector_is_valid_access,
8990 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
8991 };
8992 
8993 const struct bpf_prog_ops flow_dissector_prog_ops = {
8994 	.test_run		= bpf_prog_test_run_flow_dissector,
8995 };
8996 
8997 int sk_detach_filter(struct sock *sk)
8998 {
8999 	int ret = -ENOENT;
9000 	struct sk_filter *filter;
9001 
9002 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
9003 		return -EPERM;
9004 
9005 	filter = rcu_dereference_protected(sk->sk_filter,
9006 					   lockdep_sock_is_held(sk));
9007 	if (filter) {
9008 		RCU_INIT_POINTER(sk->sk_filter, NULL);
9009 		sk_filter_uncharge(sk, filter);
9010 		ret = 0;
9011 	}
9012 
9013 	return ret;
9014 }
9015 EXPORT_SYMBOL_GPL(sk_detach_filter);
9016 
9017 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
9018 		  unsigned int len)
9019 {
9020 	struct sock_fprog_kern *fprog;
9021 	struct sk_filter *filter;
9022 	int ret = 0;
9023 
9024 	lock_sock(sk);
9025 	filter = rcu_dereference_protected(sk->sk_filter,
9026 					   lockdep_sock_is_held(sk));
9027 	if (!filter)
9028 		goto out;
9029 
9030 	/* We're copying the filter that has been originally attached,
9031 	 * so no conversion/decode needed anymore. eBPF programs that
9032 	 * have no original program cannot be dumped through this.
9033 	 */
9034 	ret = -EACCES;
9035 	fprog = filter->prog->orig_prog;
9036 	if (!fprog)
9037 		goto out;
9038 
9039 	ret = fprog->len;
9040 	if (!len)
9041 		/* User space only enquires number of filter blocks. */
9042 		goto out;
9043 
9044 	ret = -EINVAL;
9045 	if (len < fprog->len)
9046 		goto out;
9047 
9048 	ret = -EFAULT;
9049 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
9050 		goto out;
9051 
9052 	/* Instead of bytes, the API requests to return the number
9053 	 * of filter blocks.
9054 	 */
9055 	ret = fprog->len;
9056 out:
9057 	release_sock(sk);
9058 	return ret;
9059 }
9060 
9061 #ifdef CONFIG_INET
9062 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
9063 				    struct sock_reuseport *reuse,
9064 				    struct sock *sk, struct sk_buff *skb,
9065 				    u32 hash)
9066 {
9067 	reuse_kern->skb = skb;
9068 	reuse_kern->sk = sk;
9069 	reuse_kern->selected_sk = NULL;
9070 	reuse_kern->data_end = skb->data + skb_headlen(skb);
9071 	reuse_kern->hash = hash;
9072 	reuse_kern->reuseport_id = reuse->reuseport_id;
9073 	reuse_kern->bind_inany = reuse->bind_inany;
9074 }
9075 
9076 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
9077 				  struct bpf_prog *prog, struct sk_buff *skb,
9078 				  u32 hash)
9079 {
9080 	struct sk_reuseport_kern reuse_kern;
9081 	enum sk_action action;
9082 
9083 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
9084 	action = BPF_PROG_RUN(prog, &reuse_kern);
9085 
9086 	if (action == SK_PASS)
9087 		return reuse_kern.selected_sk;
9088 	else
9089 		return ERR_PTR(-ECONNREFUSED);
9090 }
9091 
9092 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
9093 	   struct bpf_map *, map, void *, key, u32, flags)
9094 {
9095 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
9096 	struct sock_reuseport *reuse;
9097 	struct sock *selected_sk;
9098 
9099 	selected_sk = map->ops->map_lookup_elem(map, key);
9100 	if (!selected_sk)
9101 		return -ENOENT;
9102 
9103 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
9104 	if (!reuse) {
9105 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
9106 		if (sk_is_refcounted(selected_sk))
9107 			sock_put(selected_sk);
9108 
9109 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
9110 		 * The only (!reuse) case here is - the sk has already been
9111 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
9112 		 *
9113 		 * Other maps (e.g. sock_map) do not provide this guarantee and
9114 		 * the sk may never be in the reuseport group to begin with.
9115 		 */
9116 		return is_sockarray ? -ENOENT : -EINVAL;
9117 	}
9118 
9119 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
9120 		struct sock *sk = reuse_kern->sk;
9121 
9122 		if (sk->sk_protocol != selected_sk->sk_protocol)
9123 			return -EPROTOTYPE;
9124 		else if (sk->sk_family != selected_sk->sk_family)
9125 			return -EAFNOSUPPORT;
9126 
9127 		/* Catch all. Likely bound to a different sockaddr. */
9128 		return -EBADFD;
9129 	}
9130 
9131 	reuse_kern->selected_sk = selected_sk;
9132 
9133 	return 0;
9134 }
9135 
9136 static const struct bpf_func_proto sk_select_reuseport_proto = {
9137 	.func           = sk_select_reuseport,
9138 	.gpl_only       = false,
9139 	.ret_type       = RET_INTEGER,
9140 	.arg1_type	= ARG_PTR_TO_CTX,
9141 	.arg2_type      = ARG_CONST_MAP_PTR,
9142 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
9143 	.arg4_type	= ARG_ANYTHING,
9144 };
9145 
9146 BPF_CALL_4(sk_reuseport_load_bytes,
9147 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9148 	   void *, to, u32, len)
9149 {
9150 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
9151 }
9152 
9153 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
9154 	.func		= sk_reuseport_load_bytes,
9155 	.gpl_only	= false,
9156 	.ret_type	= RET_INTEGER,
9157 	.arg1_type	= ARG_PTR_TO_CTX,
9158 	.arg2_type	= ARG_ANYTHING,
9159 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
9160 	.arg4_type	= ARG_CONST_SIZE,
9161 };
9162 
9163 BPF_CALL_5(sk_reuseport_load_bytes_relative,
9164 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9165 	   void *, to, u32, len, u32, start_header)
9166 {
9167 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
9168 					       len, start_header);
9169 }
9170 
9171 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
9172 	.func		= sk_reuseport_load_bytes_relative,
9173 	.gpl_only	= false,
9174 	.ret_type	= RET_INTEGER,
9175 	.arg1_type	= ARG_PTR_TO_CTX,
9176 	.arg2_type	= ARG_ANYTHING,
9177 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
9178 	.arg4_type	= ARG_CONST_SIZE,
9179 	.arg5_type	= ARG_ANYTHING,
9180 };
9181 
9182 static const struct bpf_func_proto *
9183 sk_reuseport_func_proto(enum bpf_func_id func_id,
9184 			const struct bpf_prog *prog)
9185 {
9186 	switch (func_id) {
9187 	case BPF_FUNC_sk_select_reuseport:
9188 		return &sk_select_reuseport_proto;
9189 	case BPF_FUNC_skb_load_bytes:
9190 		return &sk_reuseport_load_bytes_proto;
9191 	case BPF_FUNC_skb_load_bytes_relative:
9192 		return &sk_reuseport_load_bytes_relative_proto;
9193 	default:
9194 		return bpf_base_func_proto(func_id);
9195 	}
9196 }
9197 
9198 static bool
9199 sk_reuseport_is_valid_access(int off, int size,
9200 			     enum bpf_access_type type,
9201 			     const struct bpf_prog *prog,
9202 			     struct bpf_insn_access_aux *info)
9203 {
9204 	const u32 size_default = sizeof(__u32);
9205 
9206 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
9207 	    off % size || type != BPF_READ)
9208 		return false;
9209 
9210 	switch (off) {
9211 	case offsetof(struct sk_reuseport_md, data):
9212 		info->reg_type = PTR_TO_PACKET;
9213 		return size == sizeof(__u64);
9214 
9215 	case offsetof(struct sk_reuseport_md, data_end):
9216 		info->reg_type = PTR_TO_PACKET_END;
9217 		return size == sizeof(__u64);
9218 
9219 	case offsetof(struct sk_reuseport_md, hash):
9220 		return size == size_default;
9221 
9222 	/* Fields that allow narrowing */
9223 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
9224 		if (size < sizeof_field(struct sk_buff, protocol))
9225 			return false;
9226 		fallthrough;
9227 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
9228 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
9229 	case bpf_ctx_range(struct sk_reuseport_md, len):
9230 		bpf_ctx_record_field_size(info, size_default);
9231 		return bpf_ctx_narrow_access_ok(off, size, size_default);
9232 
9233 	default:
9234 		return false;
9235 	}
9236 }
9237 
9238 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
9239 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
9240 			      si->dst_reg, si->src_reg,			\
9241 			      bpf_target_off(struct sk_reuseport_kern, F, \
9242 					     sizeof_field(struct sk_reuseport_kern, F), \
9243 					     target_size));		\
9244 	})
9245 
9246 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
9247 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
9248 				    struct sk_buff,			\
9249 				    skb,				\
9250 				    SKB_FIELD)
9251 
9252 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
9253 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
9254 				    struct sock,			\
9255 				    sk,					\
9256 				    SK_FIELD)
9257 
9258 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
9259 					   const struct bpf_insn *si,
9260 					   struct bpf_insn *insn_buf,
9261 					   struct bpf_prog *prog,
9262 					   u32 *target_size)
9263 {
9264 	struct bpf_insn *insn = insn_buf;
9265 
9266 	switch (si->off) {
9267 	case offsetof(struct sk_reuseport_md, data):
9268 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
9269 		break;
9270 
9271 	case offsetof(struct sk_reuseport_md, len):
9272 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
9273 		break;
9274 
9275 	case offsetof(struct sk_reuseport_md, eth_protocol):
9276 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
9277 		break;
9278 
9279 	case offsetof(struct sk_reuseport_md, ip_protocol):
9280 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
9281 		break;
9282 
9283 	case offsetof(struct sk_reuseport_md, data_end):
9284 		SK_REUSEPORT_LOAD_FIELD(data_end);
9285 		break;
9286 
9287 	case offsetof(struct sk_reuseport_md, hash):
9288 		SK_REUSEPORT_LOAD_FIELD(hash);
9289 		break;
9290 
9291 	case offsetof(struct sk_reuseport_md, bind_inany):
9292 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
9293 		break;
9294 	}
9295 
9296 	return insn - insn_buf;
9297 }
9298 
9299 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
9300 	.get_func_proto		= sk_reuseport_func_proto,
9301 	.is_valid_access	= sk_reuseport_is_valid_access,
9302 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
9303 };
9304 
9305 const struct bpf_prog_ops sk_reuseport_prog_ops = {
9306 };
9307 
9308 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
9309 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
9310 
9311 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
9312 	   struct sock *, sk, u64, flags)
9313 {
9314 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
9315 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
9316 		return -EINVAL;
9317 	if (unlikely(sk && sk_is_refcounted(sk)))
9318 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
9319 	if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
9320 		return -ESOCKTNOSUPPORT; /* reject connected sockets */
9321 
9322 	/* Check if socket is suitable for packet L3/L4 protocol */
9323 	if (sk && sk->sk_protocol != ctx->protocol)
9324 		return -EPROTOTYPE;
9325 	if (sk && sk->sk_family != ctx->family &&
9326 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
9327 		return -EAFNOSUPPORT;
9328 
9329 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
9330 		return -EEXIST;
9331 
9332 	/* Select socket as lookup result */
9333 	ctx->selected_sk = sk;
9334 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
9335 	return 0;
9336 }
9337 
9338 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
9339 	.func		= bpf_sk_lookup_assign,
9340 	.gpl_only	= false,
9341 	.ret_type	= RET_INTEGER,
9342 	.arg1_type	= ARG_PTR_TO_CTX,
9343 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
9344 	.arg3_type	= ARG_ANYTHING,
9345 };
9346 
9347 static const struct bpf_func_proto *
9348 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
9349 {
9350 	switch (func_id) {
9351 	case BPF_FUNC_perf_event_output:
9352 		return &bpf_event_output_data_proto;
9353 	case BPF_FUNC_sk_assign:
9354 		return &bpf_sk_lookup_assign_proto;
9355 	case BPF_FUNC_sk_release:
9356 		return &bpf_sk_release_proto;
9357 	default:
9358 		return bpf_base_func_proto(func_id);
9359 	}
9360 }
9361 
9362 static bool sk_lookup_is_valid_access(int off, int size,
9363 				      enum bpf_access_type type,
9364 				      const struct bpf_prog *prog,
9365 				      struct bpf_insn_access_aux *info)
9366 {
9367 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
9368 		return false;
9369 	if (off % size != 0)
9370 		return false;
9371 	if (type != BPF_READ)
9372 		return false;
9373 
9374 	switch (off) {
9375 	case offsetof(struct bpf_sk_lookup, sk):
9376 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
9377 		return size == sizeof(__u64);
9378 
9379 	case bpf_ctx_range(struct bpf_sk_lookup, family):
9380 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
9381 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
9382 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
9383 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
9384 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
9385 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
9386 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
9387 		bpf_ctx_record_field_size(info, sizeof(__u32));
9388 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
9389 
9390 	default:
9391 		return false;
9392 	}
9393 }
9394 
9395 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
9396 					const struct bpf_insn *si,
9397 					struct bpf_insn *insn_buf,
9398 					struct bpf_prog *prog,
9399 					u32 *target_size)
9400 {
9401 	struct bpf_insn *insn = insn_buf;
9402 
9403 	switch (si->off) {
9404 	case offsetof(struct bpf_sk_lookup, sk):
9405 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
9406 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
9407 		break;
9408 
9409 	case offsetof(struct bpf_sk_lookup, family):
9410 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9411 				      bpf_target_off(struct bpf_sk_lookup_kern,
9412 						     family, 2, target_size));
9413 		break;
9414 
9415 	case offsetof(struct bpf_sk_lookup, protocol):
9416 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9417 				      bpf_target_off(struct bpf_sk_lookup_kern,
9418 						     protocol, 2, target_size));
9419 		break;
9420 
9421 	case offsetof(struct bpf_sk_lookup, remote_ip4):
9422 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9423 				      bpf_target_off(struct bpf_sk_lookup_kern,
9424 						     v4.saddr, 4, target_size));
9425 		break;
9426 
9427 	case offsetof(struct bpf_sk_lookup, local_ip4):
9428 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9429 				      bpf_target_off(struct bpf_sk_lookup_kern,
9430 						     v4.daddr, 4, target_size));
9431 		break;
9432 
9433 	case bpf_ctx_range_till(struct bpf_sk_lookup,
9434 				remote_ip6[0], remote_ip6[3]): {
9435 #if IS_ENABLED(CONFIG_IPV6)
9436 		int off = si->off;
9437 
9438 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
9439 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
9440 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
9441 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
9442 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9443 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
9444 #else
9445 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9446 #endif
9447 		break;
9448 	}
9449 	case bpf_ctx_range_till(struct bpf_sk_lookup,
9450 				local_ip6[0], local_ip6[3]): {
9451 #if IS_ENABLED(CONFIG_IPV6)
9452 		int off = si->off;
9453 
9454 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
9455 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
9456 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
9457 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
9458 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9459 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
9460 #else
9461 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9462 #endif
9463 		break;
9464 	}
9465 	case offsetof(struct bpf_sk_lookup, remote_port):
9466 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9467 				      bpf_target_off(struct bpf_sk_lookup_kern,
9468 						     sport, 2, target_size));
9469 		break;
9470 
9471 	case offsetof(struct bpf_sk_lookup, local_port):
9472 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9473 				      bpf_target_off(struct bpf_sk_lookup_kern,
9474 						     dport, 2, target_size));
9475 		break;
9476 	}
9477 
9478 	return insn - insn_buf;
9479 }
9480 
9481 const struct bpf_prog_ops sk_lookup_prog_ops = {
9482 };
9483 
9484 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
9485 	.get_func_proto		= sk_lookup_func_proto,
9486 	.is_valid_access	= sk_lookup_is_valid_access,
9487 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
9488 };
9489 
9490 #endif /* CONFIG_INET */
9491 
9492 DEFINE_BPF_DISPATCHER(xdp)
9493 
9494 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
9495 {
9496 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
9497 }
9498 
9499 #ifdef CONFIG_DEBUG_INFO_BTF
9500 BTF_ID_LIST_GLOBAL(btf_sock_ids)
9501 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
9502 BTF_SOCK_TYPE_xxx
9503 #undef BTF_SOCK_TYPE
9504 #else
9505 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
9506 #endif
9507 
9508 static bool check_arg_btf_id(u32 btf_id, u32 arg)
9509 {
9510 	int i;
9511 
9512 	/* only one argument, no need to check arg */
9513 	for (i = 0; i < MAX_BTF_SOCK_TYPE; i++)
9514 		if (btf_sock_ids[i] == btf_id)
9515 			return true;
9516 	return false;
9517 }
9518 
9519 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
9520 {
9521 	/* tcp6_sock type is not generated in dwarf and hence btf,
9522 	 * trigger an explicit type generation here.
9523 	 */
9524 	BTF_TYPE_EMIT(struct tcp6_sock);
9525 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
9526 	    sk->sk_family == AF_INET6)
9527 		return (unsigned long)sk;
9528 
9529 	return (unsigned long)NULL;
9530 }
9531 
9532 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
9533 	.func			= bpf_skc_to_tcp6_sock,
9534 	.gpl_only		= false,
9535 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
9536 	.arg1_type		= ARG_PTR_TO_BTF_ID,
9537 	.check_btf_id		= check_arg_btf_id,
9538 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
9539 };
9540 
9541 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
9542 {
9543 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
9544 		return (unsigned long)sk;
9545 
9546 	return (unsigned long)NULL;
9547 }
9548 
9549 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
9550 	.func			= bpf_skc_to_tcp_sock,
9551 	.gpl_only		= false,
9552 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
9553 	.arg1_type		= ARG_PTR_TO_BTF_ID,
9554 	.check_btf_id		= check_arg_btf_id,
9555 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
9556 };
9557 
9558 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
9559 {
9560 #ifdef CONFIG_INET
9561 	if (sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
9562 		return (unsigned long)sk;
9563 #endif
9564 
9565 #if IS_BUILTIN(CONFIG_IPV6)
9566 	if (sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
9567 		return (unsigned long)sk;
9568 #endif
9569 
9570 	return (unsigned long)NULL;
9571 }
9572 
9573 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
9574 	.func			= bpf_skc_to_tcp_timewait_sock,
9575 	.gpl_only		= false,
9576 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
9577 	.arg1_type		= ARG_PTR_TO_BTF_ID,
9578 	.check_btf_id		= check_arg_btf_id,
9579 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
9580 };
9581 
9582 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
9583 {
9584 #ifdef CONFIG_INET
9585 	if (sk->sk_prot == &tcp_prot  && sk->sk_state == TCP_NEW_SYN_RECV)
9586 		return (unsigned long)sk;
9587 #endif
9588 
9589 #if IS_BUILTIN(CONFIG_IPV6)
9590 	if (sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
9591 		return (unsigned long)sk;
9592 #endif
9593 
9594 	return (unsigned long)NULL;
9595 }
9596 
9597 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
9598 	.func			= bpf_skc_to_tcp_request_sock,
9599 	.gpl_only		= false,
9600 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
9601 	.arg1_type		= ARG_PTR_TO_BTF_ID,
9602 	.check_btf_id		= check_arg_btf_id,
9603 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
9604 };
9605 
9606 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
9607 {
9608 	/* udp6_sock type is not generated in dwarf and hence btf,
9609 	 * trigger an explicit type generation here.
9610 	 */
9611 	BTF_TYPE_EMIT(struct udp6_sock);
9612 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
9613 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
9614 		return (unsigned long)sk;
9615 
9616 	return (unsigned long)NULL;
9617 }
9618 
9619 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
9620 	.func			= bpf_skc_to_udp6_sock,
9621 	.gpl_only		= false,
9622 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
9623 	.arg1_type		= ARG_PTR_TO_BTF_ID,
9624 	.check_btf_id		= check_arg_btf_id,
9625 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
9626 };
9627