xref: /openbmc/linux/net/core/dev.c (revision fe0a5788)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 #include <linux/prandom.h>
149 
150 #include "net-sysfs.h"
151 
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 					   struct net_device *dev,
168 					   struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170 
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192 
193 static DEFINE_MUTEX(ifalias_mutex);
194 
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197 
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200 
201 static DECLARE_RWSEM(devnet_rename_sem);
202 
203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 	while (++net->dev_base_seq == 0)
206 		;
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236 						       const char *name)
237 {
238 	struct netdev_name_node *name_node;
239 
240 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241 	if (!name_node)
242 		return NULL;
243 	INIT_HLIST_NODE(&name_node->hlist);
244 	name_node->dev = dev;
245 	name_node->name = name;
246 	return name_node;
247 }
248 
249 static struct netdev_name_node *
250 netdev_name_node_head_alloc(struct net_device *dev)
251 {
252 	struct netdev_name_node *name_node;
253 
254 	name_node = netdev_name_node_alloc(dev, dev->name);
255 	if (!name_node)
256 		return NULL;
257 	INIT_LIST_HEAD(&name_node->list);
258 	return name_node;
259 }
260 
261 static void netdev_name_node_free(struct netdev_name_node *name_node)
262 {
263 	kfree(name_node);
264 }
265 
266 static void netdev_name_node_add(struct net *net,
267 				 struct netdev_name_node *name_node)
268 {
269 	hlist_add_head_rcu(&name_node->hlist,
270 			   dev_name_hash(net, name_node->name));
271 }
272 
273 static void netdev_name_node_del(struct netdev_name_node *name_node)
274 {
275 	hlist_del_rcu(&name_node->hlist);
276 }
277 
278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279 							const char *name)
280 {
281 	struct hlist_head *head = dev_name_hash(net, name);
282 	struct netdev_name_node *name_node;
283 
284 	hlist_for_each_entry(name_node, head, hlist)
285 		if (!strcmp(name_node->name, name))
286 			return name_node;
287 	return NULL;
288 }
289 
290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291 							    const char *name)
292 {
293 	struct hlist_head *head = dev_name_hash(net, name);
294 	struct netdev_name_node *name_node;
295 
296 	hlist_for_each_entry_rcu(name_node, head, hlist)
297 		if (!strcmp(name_node->name, name))
298 			return name_node;
299 	return NULL;
300 }
301 
302 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303 {
304 	struct netdev_name_node *name_node;
305 	struct net *net = dev_net(dev);
306 
307 	name_node = netdev_name_node_lookup(net, name);
308 	if (name_node)
309 		return -EEXIST;
310 	name_node = netdev_name_node_alloc(dev, name);
311 	if (!name_node)
312 		return -ENOMEM;
313 	netdev_name_node_add(net, name_node);
314 	/* The node that holds dev->name acts as a head of per-device list. */
315 	list_add_tail(&name_node->list, &dev->name_node->list);
316 
317 	return 0;
318 }
319 EXPORT_SYMBOL(netdev_name_node_alt_create);
320 
321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322 {
323 	list_del(&name_node->list);
324 	netdev_name_node_del(name_node);
325 	kfree(name_node->name);
326 	netdev_name_node_free(name_node);
327 }
328 
329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330 {
331 	struct netdev_name_node *name_node;
332 	struct net *net = dev_net(dev);
333 
334 	name_node = netdev_name_node_lookup(net, name);
335 	if (!name_node)
336 		return -ENOENT;
337 	/* lookup might have found our primary name or a name belonging
338 	 * to another device.
339 	 */
340 	if (name_node == dev->name_node || name_node->dev != dev)
341 		return -EINVAL;
342 
343 	__netdev_name_node_alt_destroy(name_node);
344 
345 	return 0;
346 }
347 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348 
349 static void netdev_name_node_alt_flush(struct net_device *dev)
350 {
351 	struct netdev_name_node *name_node, *tmp;
352 
353 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354 		__netdev_name_node_alt_destroy(name_node);
355 }
356 
357 /* Device list insertion */
358 static void list_netdevice(struct net_device *dev)
359 {
360 	struct net *net = dev_net(dev);
361 
362 	ASSERT_RTNL();
363 
364 	write_lock_bh(&dev_base_lock);
365 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
366 	netdev_name_node_add(net, dev->name_node);
367 	hlist_add_head_rcu(&dev->index_hlist,
368 			   dev_index_hash(net, dev->ifindex));
369 	write_unlock_bh(&dev_base_lock);
370 
371 	dev_base_seq_inc(net);
372 }
373 
374 /* Device list removal
375  * caller must respect a RCU grace period before freeing/reusing dev
376  */
377 static void unlist_netdevice(struct net_device *dev)
378 {
379 	ASSERT_RTNL();
380 
381 	/* Unlink dev from the device chain */
382 	write_lock_bh(&dev_base_lock);
383 	list_del_rcu(&dev->dev_list);
384 	netdev_name_node_del(dev->name_node);
385 	hlist_del_rcu(&dev->index_hlist);
386 	write_unlock_bh(&dev_base_lock);
387 
388 	dev_base_seq_inc(dev_net(dev));
389 }
390 
391 /*
392  *	Our notifier list
393  */
394 
395 static RAW_NOTIFIER_HEAD(netdev_chain);
396 
397 /*
398  *	Device drivers call our routines to queue packets here. We empty the
399  *	queue in the local softnet handler.
400  */
401 
402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
403 EXPORT_PER_CPU_SYMBOL(softnet_data);
404 
405 #ifdef CONFIG_LOCKDEP
406 /*
407  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408  * according to dev->type
409  */
410 static const unsigned short netdev_lock_type[] = {
411 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426 
427 static const char *const netdev_lock_name[] = {
428 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443 
444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
446 
447 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448 {
449 	int i;
450 
451 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452 		if (netdev_lock_type[i] == dev_type)
453 			return i;
454 	/* the last key is used by default */
455 	return ARRAY_SIZE(netdev_lock_type) - 1;
456 }
457 
458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459 						 unsigned short dev_type)
460 {
461 	int i;
462 
463 	i = netdev_lock_pos(dev_type);
464 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465 				   netdev_lock_name[i]);
466 }
467 
468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469 {
470 	int i;
471 
472 	i = netdev_lock_pos(dev->type);
473 	lockdep_set_class_and_name(&dev->addr_list_lock,
474 				   &netdev_addr_lock_key[i],
475 				   netdev_lock_name[i]);
476 }
477 #else
478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479 						 unsigned short dev_type)
480 {
481 }
482 
483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484 {
485 }
486 #endif
487 
488 /*******************************************************************************
489  *
490  *		Protocol management and registration routines
491  *
492  *******************************************************************************/
493 
494 
495 /*
496  *	Add a protocol ID to the list. Now that the input handler is
497  *	smarter we can dispense with all the messy stuff that used to be
498  *	here.
499  *
500  *	BEWARE!!! Protocol handlers, mangling input packets,
501  *	MUST BE last in hash buckets and checking protocol handlers
502  *	MUST start from promiscuous ptype_all chain in net_bh.
503  *	It is true now, do not change it.
504  *	Explanation follows: if protocol handler, mangling packet, will
505  *	be the first on list, it is not able to sense, that packet
506  *	is cloned and should be copied-on-write, so that it will
507  *	change it and subsequent readers will get broken packet.
508  *							--ANK (980803)
509  */
510 
511 static inline struct list_head *ptype_head(const struct packet_type *pt)
512 {
513 	if (pt->type == htons(ETH_P_ALL))
514 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
515 	else
516 		return pt->dev ? &pt->dev->ptype_specific :
517 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
518 }
519 
520 /**
521  *	dev_add_pack - add packet handler
522  *	@pt: packet type declaration
523  *
524  *	Add a protocol handler to the networking stack. The passed &packet_type
525  *	is linked into kernel lists and may not be freed until it has been
526  *	removed from the kernel lists.
527  *
528  *	This call does not sleep therefore it can not
529  *	guarantee all CPU's that are in middle of receiving packets
530  *	will see the new packet type (until the next received packet).
531  */
532 
533 void dev_add_pack(struct packet_type *pt)
534 {
535 	struct list_head *head = ptype_head(pt);
536 
537 	spin_lock(&ptype_lock);
538 	list_add_rcu(&pt->list, head);
539 	spin_unlock(&ptype_lock);
540 }
541 EXPORT_SYMBOL(dev_add_pack);
542 
543 /**
544  *	__dev_remove_pack	 - remove packet handler
545  *	@pt: packet type declaration
546  *
547  *	Remove a protocol handler that was previously added to the kernel
548  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
549  *	from the kernel lists and can be freed or reused once this function
550  *	returns.
551  *
552  *      The packet type might still be in use by receivers
553  *	and must not be freed until after all the CPU's have gone
554  *	through a quiescent state.
555  */
556 void __dev_remove_pack(struct packet_type *pt)
557 {
558 	struct list_head *head = ptype_head(pt);
559 	struct packet_type *pt1;
560 
561 	spin_lock(&ptype_lock);
562 
563 	list_for_each_entry(pt1, head, list) {
564 		if (pt == pt1) {
565 			list_del_rcu(&pt->list);
566 			goto out;
567 		}
568 	}
569 
570 	pr_warn("dev_remove_pack: %p not found\n", pt);
571 out:
572 	spin_unlock(&ptype_lock);
573 }
574 EXPORT_SYMBOL(__dev_remove_pack);
575 
576 /**
577  *	dev_remove_pack	 - remove packet handler
578  *	@pt: packet type declaration
579  *
580  *	Remove a protocol handler that was previously added to the kernel
581  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
582  *	from the kernel lists and can be freed or reused once this function
583  *	returns.
584  *
585  *	This call sleeps to guarantee that no CPU is looking at the packet
586  *	type after return.
587  */
588 void dev_remove_pack(struct packet_type *pt)
589 {
590 	__dev_remove_pack(pt);
591 
592 	synchronize_net();
593 }
594 EXPORT_SYMBOL(dev_remove_pack);
595 
596 
597 /**
598  *	dev_add_offload - register offload handlers
599  *	@po: protocol offload declaration
600  *
601  *	Add protocol offload handlers to the networking stack. The passed
602  *	&proto_offload is linked into kernel lists and may not be freed until
603  *	it has been removed from the kernel lists.
604  *
605  *	This call does not sleep therefore it can not
606  *	guarantee all CPU's that are in middle of receiving packets
607  *	will see the new offload handlers (until the next received packet).
608  */
609 void dev_add_offload(struct packet_offload *po)
610 {
611 	struct packet_offload *elem;
612 
613 	spin_lock(&offload_lock);
614 	list_for_each_entry(elem, &offload_base, list) {
615 		if (po->priority < elem->priority)
616 			break;
617 	}
618 	list_add_rcu(&po->list, elem->list.prev);
619 	spin_unlock(&offload_lock);
620 }
621 EXPORT_SYMBOL(dev_add_offload);
622 
623 /**
624  *	__dev_remove_offload	 - remove offload handler
625  *	@po: packet offload declaration
626  *
627  *	Remove a protocol offload handler that was previously added to the
628  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
629  *	is removed from the kernel lists and can be freed or reused once this
630  *	function returns.
631  *
632  *      The packet type might still be in use by receivers
633  *	and must not be freed until after all the CPU's have gone
634  *	through a quiescent state.
635  */
636 static void __dev_remove_offload(struct packet_offload *po)
637 {
638 	struct list_head *head = &offload_base;
639 	struct packet_offload *po1;
640 
641 	spin_lock(&offload_lock);
642 
643 	list_for_each_entry(po1, head, list) {
644 		if (po == po1) {
645 			list_del_rcu(&po->list);
646 			goto out;
647 		}
648 	}
649 
650 	pr_warn("dev_remove_offload: %p not found\n", po);
651 out:
652 	spin_unlock(&offload_lock);
653 }
654 
655 /**
656  *	dev_remove_offload	 - remove packet offload handler
657  *	@po: packet offload declaration
658  *
659  *	Remove a packet offload handler that was previously added to the kernel
660  *	offload handlers by dev_add_offload(). The passed &offload_type is
661  *	removed from the kernel lists and can be freed or reused once this
662  *	function returns.
663  *
664  *	This call sleeps to guarantee that no CPU is looking at the packet
665  *	type after return.
666  */
667 void dev_remove_offload(struct packet_offload *po)
668 {
669 	__dev_remove_offload(po);
670 
671 	synchronize_net();
672 }
673 EXPORT_SYMBOL(dev_remove_offload);
674 
675 /******************************************************************************
676  *
677  *		      Device Boot-time Settings Routines
678  *
679  ******************************************************************************/
680 
681 /* Boot time configuration table */
682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683 
684 /**
685  *	netdev_boot_setup_add	- add new setup entry
686  *	@name: name of the device
687  *	@map: configured settings for the device
688  *
689  *	Adds new setup entry to the dev_boot_setup list.  The function
690  *	returns 0 on error and 1 on success.  This is a generic routine to
691  *	all netdevices.
692  */
693 static int netdev_boot_setup_add(char *name, struct ifmap *map)
694 {
695 	struct netdev_boot_setup *s;
696 	int i;
697 
698 	s = dev_boot_setup;
699 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701 			memset(s[i].name, 0, sizeof(s[i].name));
702 			strlcpy(s[i].name, name, IFNAMSIZ);
703 			memcpy(&s[i].map, map, sizeof(s[i].map));
704 			break;
705 		}
706 	}
707 
708 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709 }
710 
711 /**
712  * netdev_boot_setup_check	- check boot time settings
713  * @dev: the netdevice
714  *
715  * Check boot time settings for the device.
716  * The found settings are set for the device to be used
717  * later in the device probing.
718  * Returns 0 if no settings found, 1 if they are.
719  */
720 int netdev_boot_setup_check(struct net_device *dev)
721 {
722 	struct netdev_boot_setup *s = dev_boot_setup;
723 	int i;
724 
725 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
727 		    !strcmp(dev->name, s[i].name)) {
728 			dev->irq = s[i].map.irq;
729 			dev->base_addr = s[i].map.base_addr;
730 			dev->mem_start = s[i].map.mem_start;
731 			dev->mem_end = s[i].map.mem_end;
732 			return 1;
733 		}
734 	}
735 	return 0;
736 }
737 EXPORT_SYMBOL(netdev_boot_setup_check);
738 
739 
740 /**
741  * netdev_boot_base	- get address from boot time settings
742  * @prefix: prefix for network device
743  * @unit: id for network device
744  *
745  * Check boot time settings for the base address of device.
746  * The found settings are set for the device to be used
747  * later in the device probing.
748  * Returns 0 if no settings found.
749  */
750 unsigned long netdev_boot_base(const char *prefix, int unit)
751 {
752 	const struct netdev_boot_setup *s = dev_boot_setup;
753 	char name[IFNAMSIZ];
754 	int i;
755 
756 	sprintf(name, "%s%d", prefix, unit);
757 
758 	/*
759 	 * If device already registered then return base of 1
760 	 * to indicate not to probe for this interface
761 	 */
762 	if (__dev_get_by_name(&init_net, name))
763 		return 1;
764 
765 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766 		if (!strcmp(name, s[i].name))
767 			return s[i].map.base_addr;
768 	return 0;
769 }
770 
771 /*
772  * Saves at boot time configured settings for any netdevice.
773  */
774 int __init netdev_boot_setup(char *str)
775 {
776 	int ints[5];
777 	struct ifmap map;
778 
779 	str = get_options(str, ARRAY_SIZE(ints), ints);
780 	if (!str || !*str)
781 		return 0;
782 
783 	/* Save settings */
784 	memset(&map, 0, sizeof(map));
785 	if (ints[0] > 0)
786 		map.irq = ints[1];
787 	if (ints[0] > 1)
788 		map.base_addr = ints[2];
789 	if (ints[0] > 2)
790 		map.mem_start = ints[3];
791 	if (ints[0] > 3)
792 		map.mem_end = ints[4];
793 
794 	/* Add new entry to the list */
795 	return netdev_boot_setup_add(str, &map);
796 }
797 
798 __setup("netdev=", netdev_boot_setup);
799 
800 /*******************************************************************************
801  *
802  *			    Device Interface Subroutines
803  *
804  *******************************************************************************/
805 
806 /**
807  *	dev_get_iflink	- get 'iflink' value of a interface
808  *	@dev: targeted interface
809  *
810  *	Indicates the ifindex the interface is linked to.
811  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
812  */
813 
814 int dev_get_iflink(const struct net_device *dev)
815 {
816 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817 		return dev->netdev_ops->ndo_get_iflink(dev);
818 
819 	return dev->ifindex;
820 }
821 EXPORT_SYMBOL(dev_get_iflink);
822 
823 /**
824  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
825  *	@dev: targeted interface
826  *	@skb: The packet.
827  *
828  *	For better visibility of tunnel traffic OVS needs to retrieve
829  *	egress tunnel information for a packet. Following API allows
830  *	user to get this info.
831  */
832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833 {
834 	struct ip_tunnel_info *info;
835 
836 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
837 		return -EINVAL;
838 
839 	info = skb_tunnel_info_unclone(skb);
840 	if (!info)
841 		return -ENOMEM;
842 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843 		return -EINVAL;
844 
845 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846 }
847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848 
849 /**
850  *	__dev_get_by_name	- find a device by its name
851  *	@net: the applicable net namespace
852  *	@name: name to find
853  *
854  *	Find an interface by name. Must be called under RTNL semaphore
855  *	or @dev_base_lock. If the name is found a pointer to the device
856  *	is returned. If the name is not found then %NULL is returned. The
857  *	reference counters are not incremented so the caller must be
858  *	careful with locks.
859  */
860 
861 struct net_device *__dev_get_by_name(struct net *net, const char *name)
862 {
863 	struct netdev_name_node *node_name;
864 
865 	node_name = netdev_name_node_lookup(net, name);
866 	return node_name ? node_name->dev : NULL;
867 }
868 EXPORT_SYMBOL(__dev_get_by_name);
869 
870 /**
871  * dev_get_by_name_rcu	- find a device by its name
872  * @net: the applicable net namespace
873  * @name: name to find
874  *
875  * Find an interface by name.
876  * If the name is found a pointer to the device is returned.
877  * If the name is not found then %NULL is returned.
878  * The reference counters are not incremented so the caller must be
879  * careful with locks. The caller must hold RCU lock.
880  */
881 
882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883 {
884 	struct netdev_name_node *node_name;
885 
886 	node_name = netdev_name_node_lookup_rcu(net, name);
887 	return node_name ? node_name->dev : NULL;
888 }
889 EXPORT_SYMBOL(dev_get_by_name_rcu);
890 
891 /**
892  *	dev_get_by_name		- find a device by its name
893  *	@net: the applicable net namespace
894  *	@name: name to find
895  *
896  *	Find an interface by name. This can be called from any
897  *	context and does its own locking. The returned handle has
898  *	the usage count incremented and the caller must use dev_put() to
899  *	release it when it is no longer needed. %NULL is returned if no
900  *	matching device is found.
901  */
902 
903 struct net_device *dev_get_by_name(struct net *net, const char *name)
904 {
905 	struct net_device *dev;
906 
907 	rcu_read_lock();
908 	dev = dev_get_by_name_rcu(net, name);
909 	if (dev)
910 		dev_hold(dev);
911 	rcu_read_unlock();
912 	return dev;
913 }
914 EXPORT_SYMBOL(dev_get_by_name);
915 
916 /**
917  *	__dev_get_by_index - find a device by its ifindex
918  *	@net: the applicable net namespace
919  *	@ifindex: index of device
920  *
921  *	Search for an interface by index. Returns %NULL if the device
922  *	is not found or a pointer to the device. The device has not
923  *	had its reference counter increased so the caller must be careful
924  *	about locking. The caller must hold either the RTNL semaphore
925  *	or @dev_base_lock.
926  */
927 
928 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
929 {
930 	struct net_device *dev;
931 	struct hlist_head *head = dev_index_hash(net, ifindex);
932 
933 	hlist_for_each_entry(dev, head, index_hlist)
934 		if (dev->ifindex == ifindex)
935 			return dev;
936 
937 	return NULL;
938 }
939 EXPORT_SYMBOL(__dev_get_by_index);
940 
941 /**
942  *	dev_get_by_index_rcu - find a device by its ifindex
943  *	@net: the applicable net namespace
944  *	@ifindex: index of device
945  *
946  *	Search for an interface by index. Returns %NULL if the device
947  *	is not found or a pointer to the device. The device has not
948  *	had its reference counter increased so the caller must be careful
949  *	about locking. The caller must hold RCU lock.
950  */
951 
952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953 {
954 	struct net_device *dev;
955 	struct hlist_head *head = dev_index_hash(net, ifindex);
956 
957 	hlist_for_each_entry_rcu(dev, head, index_hlist)
958 		if (dev->ifindex == ifindex)
959 			return dev;
960 
961 	return NULL;
962 }
963 EXPORT_SYMBOL(dev_get_by_index_rcu);
964 
965 
966 /**
967  *	dev_get_by_index - find a device by its ifindex
968  *	@net: the applicable net namespace
969  *	@ifindex: index of device
970  *
971  *	Search for an interface by index. Returns NULL if the device
972  *	is not found or a pointer to the device. The device returned has
973  *	had a reference added and the pointer is safe until the user calls
974  *	dev_put to indicate they have finished with it.
975  */
976 
977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 
981 	rcu_read_lock();
982 	dev = dev_get_by_index_rcu(net, ifindex);
983 	if (dev)
984 		dev_hold(dev);
985 	rcu_read_unlock();
986 	return dev;
987 }
988 EXPORT_SYMBOL(dev_get_by_index);
989 
990 /**
991  *	dev_get_by_napi_id - find a device by napi_id
992  *	@napi_id: ID of the NAPI struct
993  *
994  *	Search for an interface by NAPI ID. Returns %NULL if the device
995  *	is not found or a pointer to the device. The device has not had
996  *	its reference counter increased so the caller must be careful
997  *	about locking. The caller must hold RCU lock.
998  */
999 
1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001 {
1002 	struct napi_struct *napi;
1003 
1004 	WARN_ON_ONCE(!rcu_read_lock_held());
1005 
1006 	if (napi_id < MIN_NAPI_ID)
1007 		return NULL;
1008 
1009 	napi = napi_by_id(napi_id);
1010 
1011 	return napi ? napi->dev : NULL;
1012 }
1013 EXPORT_SYMBOL(dev_get_by_napi_id);
1014 
1015 /**
1016  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1017  *	@net: network namespace
1018  *	@name: a pointer to the buffer where the name will be stored.
1019  *	@ifindex: the ifindex of the interface to get the name from.
1020  */
1021 int netdev_get_name(struct net *net, char *name, int ifindex)
1022 {
1023 	struct net_device *dev;
1024 	int ret;
1025 
1026 	down_read(&devnet_rename_sem);
1027 	rcu_read_lock();
1028 
1029 	dev = dev_get_by_index_rcu(net, ifindex);
1030 	if (!dev) {
1031 		ret = -ENODEV;
1032 		goto out;
1033 	}
1034 
1035 	strcpy(name, dev->name);
1036 
1037 	ret = 0;
1038 out:
1039 	rcu_read_unlock();
1040 	up_read(&devnet_rename_sem);
1041 	return ret;
1042 }
1043 
1044 /**
1045  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1046  *	@net: the applicable net namespace
1047  *	@type: media type of device
1048  *	@ha: hardware address
1049  *
1050  *	Search for an interface by MAC address. Returns NULL if the device
1051  *	is not found or a pointer to the device.
1052  *	The caller must hold RCU or RTNL.
1053  *	The returned device has not had its ref count increased
1054  *	and the caller must therefore be careful about locking
1055  *
1056  */
1057 
1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059 				       const char *ha)
1060 {
1061 	struct net_device *dev;
1062 
1063 	for_each_netdev_rcu(net, dev)
1064 		if (dev->type == type &&
1065 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1066 			return dev;
1067 
1068 	return NULL;
1069 }
1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1071 
1072 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1073 {
1074 	struct net_device *dev;
1075 
1076 	ASSERT_RTNL();
1077 	for_each_netdev(net, dev)
1078 		if (dev->type == type)
1079 			return dev;
1080 
1081 	return NULL;
1082 }
1083 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1084 
1085 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1086 {
1087 	struct net_device *dev, *ret = NULL;
1088 
1089 	rcu_read_lock();
1090 	for_each_netdev_rcu(net, dev)
1091 		if (dev->type == type) {
1092 			dev_hold(dev);
1093 			ret = dev;
1094 			break;
1095 		}
1096 	rcu_read_unlock();
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1100 
1101 /**
1102  *	__dev_get_by_flags - find any device with given flags
1103  *	@net: the applicable net namespace
1104  *	@if_flags: IFF_* values
1105  *	@mask: bitmask of bits in if_flags to check
1106  *
1107  *	Search for any interface with the given flags. Returns NULL if a device
1108  *	is not found or a pointer to the device. Must be called inside
1109  *	rtnl_lock(), and result refcount is unchanged.
1110  */
1111 
1112 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1113 				      unsigned short mask)
1114 {
1115 	struct net_device *dev, *ret;
1116 
1117 	ASSERT_RTNL();
1118 
1119 	ret = NULL;
1120 	for_each_netdev(net, dev) {
1121 		if (((dev->flags ^ if_flags) & mask) == 0) {
1122 			ret = dev;
1123 			break;
1124 		}
1125 	}
1126 	return ret;
1127 }
1128 EXPORT_SYMBOL(__dev_get_by_flags);
1129 
1130 /**
1131  *	dev_valid_name - check if name is okay for network device
1132  *	@name: name string
1133  *
1134  *	Network device names need to be valid file names to
1135  *	allow sysfs to work.  We also disallow any kind of
1136  *	whitespace.
1137  */
1138 bool dev_valid_name(const char *name)
1139 {
1140 	if (*name == '\0')
1141 		return false;
1142 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1143 		return false;
1144 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1145 		return false;
1146 
1147 	while (*name) {
1148 		if (*name == '/' || *name == ':' || isspace(*name))
1149 			return false;
1150 		name++;
1151 	}
1152 	return true;
1153 }
1154 EXPORT_SYMBOL(dev_valid_name);
1155 
1156 /**
1157  *	__dev_alloc_name - allocate a name for a device
1158  *	@net: network namespace to allocate the device name in
1159  *	@name: name format string
1160  *	@buf:  scratch buffer and result name string
1161  *
1162  *	Passed a format string - eg "lt%d" it will try and find a suitable
1163  *	id. It scans list of devices to build up a free map, then chooses
1164  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1165  *	while allocating the name and adding the device in order to avoid
1166  *	duplicates.
1167  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1168  *	Returns the number of the unit assigned or a negative errno code.
1169  */
1170 
1171 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1172 {
1173 	int i = 0;
1174 	const char *p;
1175 	const int max_netdevices = 8*PAGE_SIZE;
1176 	unsigned long *inuse;
1177 	struct net_device *d;
1178 
1179 	if (!dev_valid_name(name))
1180 		return -EINVAL;
1181 
1182 	p = strchr(name, '%');
1183 	if (p) {
1184 		/*
1185 		 * Verify the string as this thing may have come from
1186 		 * the user.  There must be either one "%d" and no other "%"
1187 		 * characters.
1188 		 */
1189 		if (p[1] != 'd' || strchr(p + 2, '%'))
1190 			return -EINVAL;
1191 
1192 		/* Use one page as a bit array of possible slots */
1193 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1194 		if (!inuse)
1195 			return -ENOMEM;
1196 
1197 		for_each_netdev(net, d) {
1198 			if (!sscanf(d->name, name, &i))
1199 				continue;
1200 			if (i < 0 || i >= max_netdevices)
1201 				continue;
1202 
1203 			/*  avoid cases where sscanf is not exact inverse of printf */
1204 			snprintf(buf, IFNAMSIZ, name, i);
1205 			if (!strncmp(buf, d->name, IFNAMSIZ))
1206 				set_bit(i, inuse);
1207 		}
1208 
1209 		i = find_first_zero_bit(inuse, max_netdevices);
1210 		free_page((unsigned long) inuse);
1211 	}
1212 
1213 	snprintf(buf, IFNAMSIZ, name, i);
1214 	if (!__dev_get_by_name(net, buf))
1215 		return i;
1216 
1217 	/* It is possible to run out of possible slots
1218 	 * when the name is long and there isn't enough space left
1219 	 * for the digits, or if all bits are used.
1220 	 */
1221 	return -ENFILE;
1222 }
1223 
1224 static int dev_alloc_name_ns(struct net *net,
1225 			     struct net_device *dev,
1226 			     const char *name)
1227 {
1228 	char buf[IFNAMSIZ];
1229 	int ret;
1230 
1231 	BUG_ON(!net);
1232 	ret = __dev_alloc_name(net, name, buf);
1233 	if (ret >= 0)
1234 		strlcpy(dev->name, buf, IFNAMSIZ);
1235 	return ret;
1236 }
1237 
1238 /**
1239  *	dev_alloc_name - allocate a name for a device
1240  *	@dev: device
1241  *	@name: name format string
1242  *
1243  *	Passed a format string - eg "lt%d" it will try and find a suitable
1244  *	id. It scans list of devices to build up a free map, then chooses
1245  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1246  *	while allocating the name and adding the device in order to avoid
1247  *	duplicates.
1248  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1249  *	Returns the number of the unit assigned or a negative errno code.
1250  */
1251 
1252 int dev_alloc_name(struct net_device *dev, const char *name)
1253 {
1254 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1255 }
1256 EXPORT_SYMBOL(dev_alloc_name);
1257 
1258 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1259 			      const char *name)
1260 {
1261 	BUG_ON(!net);
1262 
1263 	if (!dev_valid_name(name))
1264 		return -EINVAL;
1265 
1266 	if (strchr(name, '%'))
1267 		return dev_alloc_name_ns(net, dev, name);
1268 	else if (__dev_get_by_name(net, name))
1269 		return -EEXIST;
1270 	else if (dev->name != name)
1271 		strlcpy(dev->name, name, IFNAMSIZ);
1272 
1273 	return 0;
1274 }
1275 
1276 /**
1277  *	dev_change_name - change name of a device
1278  *	@dev: device
1279  *	@newname: name (or format string) must be at least IFNAMSIZ
1280  *
1281  *	Change name of a device, can pass format strings "eth%d".
1282  *	for wildcarding.
1283  */
1284 int dev_change_name(struct net_device *dev, const char *newname)
1285 {
1286 	unsigned char old_assign_type;
1287 	char oldname[IFNAMSIZ];
1288 	int err = 0;
1289 	int ret;
1290 	struct net *net;
1291 
1292 	ASSERT_RTNL();
1293 	BUG_ON(!dev_net(dev));
1294 
1295 	net = dev_net(dev);
1296 
1297 	/* Some auto-enslaved devices e.g. failover slaves are
1298 	 * special, as userspace might rename the device after
1299 	 * the interface had been brought up and running since
1300 	 * the point kernel initiated auto-enslavement. Allow
1301 	 * live name change even when these slave devices are
1302 	 * up and running.
1303 	 *
1304 	 * Typically, users of these auto-enslaving devices
1305 	 * don't actually care about slave name change, as
1306 	 * they are supposed to operate on master interface
1307 	 * directly.
1308 	 */
1309 	if (dev->flags & IFF_UP &&
1310 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1311 		return -EBUSY;
1312 
1313 	down_write(&devnet_rename_sem);
1314 
1315 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1316 		up_write(&devnet_rename_sem);
1317 		return 0;
1318 	}
1319 
1320 	memcpy(oldname, dev->name, IFNAMSIZ);
1321 
1322 	err = dev_get_valid_name(net, dev, newname);
1323 	if (err < 0) {
1324 		up_write(&devnet_rename_sem);
1325 		return err;
1326 	}
1327 
1328 	if (oldname[0] && !strchr(oldname, '%'))
1329 		netdev_info(dev, "renamed from %s\n", oldname);
1330 
1331 	old_assign_type = dev->name_assign_type;
1332 	dev->name_assign_type = NET_NAME_RENAMED;
1333 
1334 rollback:
1335 	ret = device_rename(&dev->dev, dev->name);
1336 	if (ret) {
1337 		memcpy(dev->name, oldname, IFNAMSIZ);
1338 		dev->name_assign_type = old_assign_type;
1339 		up_write(&devnet_rename_sem);
1340 		return ret;
1341 	}
1342 
1343 	up_write(&devnet_rename_sem);
1344 
1345 	netdev_adjacent_rename_links(dev, oldname);
1346 
1347 	write_lock_bh(&dev_base_lock);
1348 	netdev_name_node_del(dev->name_node);
1349 	write_unlock_bh(&dev_base_lock);
1350 
1351 	synchronize_rcu();
1352 
1353 	write_lock_bh(&dev_base_lock);
1354 	netdev_name_node_add(net, dev->name_node);
1355 	write_unlock_bh(&dev_base_lock);
1356 
1357 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1358 	ret = notifier_to_errno(ret);
1359 
1360 	if (ret) {
1361 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1362 		if (err >= 0) {
1363 			err = ret;
1364 			down_write(&devnet_rename_sem);
1365 			memcpy(dev->name, oldname, IFNAMSIZ);
1366 			memcpy(oldname, newname, IFNAMSIZ);
1367 			dev->name_assign_type = old_assign_type;
1368 			old_assign_type = NET_NAME_RENAMED;
1369 			goto rollback;
1370 		} else {
1371 			pr_err("%s: name change rollback failed: %d\n",
1372 			       dev->name, ret);
1373 		}
1374 	}
1375 
1376 	return err;
1377 }
1378 
1379 /**
1380  *	dev_set_alias - change ifalias of a device
1381  *	@dev: device
1382  *	@alias: name up to IFALIASZ
1383  *	@len: limit of bytes to copy from info
1384  *
1385  *	Set ifalias for a device,
1386  */
1387 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1388 {
1389 	struct dev_ifalias *new_alias = NULL;
1390 
1391 	if (len >= IFALIASZ)
1392 		return -EINVAL;
1393 
1394 	if (len) {
1395 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1396 		if (!new_alias)
1397 			return -ENOMEM;
1398 
1399 		memcpy(new_alias->ifalias, alias, len);
1400 		new_alias->ifalias[len] = 0;
1401 	}
1402 
1403 	mutex_lock(&ifalias_mutex);
1404 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1405 					mutex_is_locked(&ifalias_mutex));
1406 	mutex_unlock(&ifalias_mutex);
1407 
1408 	if (new_alias)
1409 		kfree_rcu(new_alias, rcuhead);
1410 
1411 	return len;
1412 }
1413 EXPORT_SYMBOL(dev_set_alias);
1414 
1415 /**
1416  *	dev_get_alias - get ifalias of a device
1417  *	@dev: device
1418  *	@name: buffer to store name of ifalias
1419  *	@len: size of buffer
1420  *
1421  *	get ifalias for a device.  Caller must make sure dev cannot go
1422  *	away,  e.g. rcu read lock or own a reference count to device.
1423  */
1424 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1425 {
1426 	const struct dev_ifalias *alias;
1427 	int ret = 0;
1428 
1429 	rcu_read_lock();
1430 	alias = rcu_dereference(dev->ifalias);
1431 	if (alias)
1432 		ret = snprintf(name, len, "%s", alias->ifalias);
1433 	rcu_read_unlock();
1434 
1435 	return ret;
1436 }
1437 
1438 /**
1439  *	netdev_features_change - device changes features
1440  *	@dev: device to cause notification
1441  *
1442  *	Called to indicate a device has changed features.
1443  */
1444 void netdev_features_change(struct net_device *dev)
1445 {
1446 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1447 }
1448 EXPORT_SYMBOL(netdev_features_change);
1449 
1450 /**
1451  *	netdev_state_change - device changes state
1452  *	@dev: device to cause notification
1453  *
1454  *	Called to indicate a device has changed state. This function calls
1455  *	the notifier chains for netdev_chain and sends a NEWLINK message
1456  *	to the routing socket.
1457  */
1458 void netdev_state_change(struct net_device *dev)
1459 {
1460 	if (dev->flags & IFF_UP) {
1461 		struct netdev_notifier_change_info change_info = {
1462 			.info.dev = dev,
1463 		};
1464 
1465 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1466 					      &change_info.info);
1467 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1468 	}
1469 }
1470 EXPORT_SYMBOL(netdev_state_change);
1471 
1472 /**
1473  * netdev_notify_peers - notify network peers about existence of @dev
1474  * @dev: network device
1475  *
1476  * Generate traffic such that interested network peers are aware of
1477  * @dev, such as by generating a gratuitous ARP. This may be used when
1478  * a device wants to inform the rest of the network about some sort of
1479  * reconfiguration such as a failover event or virtual machine
1480  * migration.
1481  */
1482 void netdev_notify_peers(struct net_device *dev)
1483 {
1484 	rtnl_lock();
1485 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1486 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1487 	rtnl_unlock();
1488 }
1489 EXPORT_SYMBOL(netdev_notify_peers);
1490 
1491 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1492 {
1493 	const struct net_device_ops *ops = dev->netdev_ops;
1494 	int ret;
1495 
1496 	ASSERT_RTNL();
1497 
1498 	if (!netif_device_present(dev)) {
1499 		/* may be detached because parent is runtime-suspended */
1500 		if (dev->dev.parent)
1501 			pm_runtime_resume(dev->dev.parent);
1502 		if (!netif_device_present(dev))
1503 			return -ENODEV;
1504 	}
1505 
1506 	/* Block netpoll from trying to do any rx path servicing.
1507 	 * If we don't do this there is a chance ndo_poll_controller
1508 	 * or ndo_poll may be running while we open the device
1509 	 */
1510 	netpoll_poll_disable(dev);
1511 
1512 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1513 	ret = notifier_to_errno(ret);
1514 	if (ret)
1515 		return ret;
1516 
1517 	set_bit(__LINK_STATE_START, &dev->state);
1518 
1519 	if (ops->ndo_validate_addr)
1520 		ret = ops->ndo_validate_addr(dev);
1521 
1522 	if (!ret && ops->ndo_open)
1523 		ret = ops->ndo_open(dev);
1524 
1525 	netpoll_poll_enable(dev);
1526 
1527 	if (ret)
1528 		clear_bit(__LINK_STATE_START, &dev->state);
1529 	else {
1530 		dev->flags |= IFF_UP;
1531 		dev_set_rx_mode(dev);
1532 		dev_activate(dev);
1533 		add_device_randomness(dev->dev_addr, dev->addr_len);
1534 	}
1535 
1536 	return ret;
1537 }
1538 
1539 /**
1540  *	dev_open	- prepare an interface for use.
1541  *	@dev: device to open
1542  *	@extack: netlink extended ack
1543  *
1544  *	Takes a device from down to up state. The device's private open
1545  *	function is invoked and then the multicast lists are loaded. Finally
1546  *	the device is moved into the up state and a %NETDEV_UP message is
1547  *	sent to the netdev notifier chain.
1548  *
1549  *	Calling this function on an active interface is a nop. On a failure
1550  *	a negative errno code is returned.
1551  */
1552 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1553 {
1554 	int ret;
1555 
1556 	if (dev->flags & IFF_UP)
1557 		return 0;
1558 
1559 	ret = __dev_open(dev, extack);
1560 	if (ret < 0)
1561 		return ret;
1562 
1563 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1564 	call_netdevice_notifiers(NETDEV_UP, dev);
1565 
1566 	return ret;
1567 }
1568 EXPORT_SYMBOL(dev_open);
1569 
1570 static void __dev_close_many(struct list_head *head)
1571 {
1572 	struct net_device *dev;
1573 
1574 	ASSERT_RTNL();
1575 	might_sleep();
1576 
1577 	list_for_each_entry(dev, head, close_list) {
1578 		/* Temporarily disable netpoll until the interface is down */
1579 		netpoll_poll_disable(dev);
1580 
1581 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1582 
1583 		clear_bit(__LINK_STATE_START, &dev->state);
1584 
1585 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1586 		 * can be even on different cpu. So just clear netif_running().
1587 		 *
1588 		 * dev->stop() will invoke napi_disable() on all of it's
1589 		 * napi_struct instances on this device.
1590 		 */
1591 		smp_mb__after_atomic(); /* Commit netif_running(). */
1592 	}
1593 
1594 	dev_deactivate_many(head);
1595 
1596 	list_for_each_entry(dev, head, close_list) {
1597 		const struct net_device_ops *ops = dev->netdev_ops;
1598 
1599 		/*
1600 		 *	Call the device specific close. This cannot fail.
1601 		 *	Only if device is UP
1602 		 *
1603 		 *	We allow it to be called even after a DETACH hot-plug
1604 		 *	event.
1605 		 */
1606 		if (ops->ndo_stop)
1607 			ops->ndo_stop(dev);
1608 
1609 		dev->flags &= ~IFF_UP;
1610 		netpoll_poll_enable(dev);
1611 	}
1612 }
1613 
1614 static void __dev_close(struct net_device *dev)
1615 {
1616 	LIST_HEAD(single);
1617 
1618 	list_add(&dev->close_list, &single);
1619 	__dev_close_many(&single);
1620 	list_del(&single);
1621 }
1622 
1623 void dev_close_many(struct list_head *head, bool unlink)
1624 {
1625 	struct net_device *dev, *tmp;
1626 
1627 	/* Remove the devices that don't need to be closed */
1628 	list_for_each_entry_safe(dev, tmp, head, close_list)
1629 		if (!(dev->flags & IFF_UP))
1630 			list_del_init(&dev->close_list);
1631 
1632 	__dev_close_many(head);
1633 
1634 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1635 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1636 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1637 		if (unlink)
1638 			list_del_init(&dev->close_list);
1639 	}
1640 }
1641 EXPORT_SYMBOL(dev_close_many);
1642 
1643 /**
1644  *	dev_close - shutdown an interface.
1645  *	@dev: device to shutdown
1646  *
1647  *	This function moves an active device into down state. A
1648  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1649  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1650  *	chain.
1651  */
1652 void dev_close(struct net_device *dev)
1653 {
1654 	if (dev->flags & IFF_UP) {
1655 		LIST_HEAD(single);
1656 
1657 		list_add(&dev->close_list, &single);
1658 		dev_close_many(&single, true);
1659 		list_del(&single);
1660 	}
1661 }
1662 EXPORT_SYMBOL(dev_close);
1663 
1664 
1665 /**
1666  *	dev_disable_lro - disable Large Receive Offload on a device
1667  *	@dev: device
1668  *
1669  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1670  *	called under RTNL.  This is needed if received packets may be
1671  *	forwarded to another interface.
1672  */
1673 void dev_disable_lro(struct net_device *dev)
1674 {
1675 	struct net_device *lower_dev;
1676 	struct list_head *iter;
1677 
1678 	dev->wanted_features &= ~NETIF_F_LRO;
1679 	netdev_update_features(dev);
1680 
1681 	if (unlikely(dev->features & NETIF_F_LRO))
1682 		netdev_WARN(dev, "failed to disable LRO!\n");
1683 
1684 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1685 		dev_disable_lro(lower_dev);
1686 }
1687 EXPORT_SYMBOL(dev_disable_lro);
1688 
1689 /**
1690  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1691  *	@dev: device
1692  *
1693  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1694  *	called under RTNL.  This is needed if Generic XDP is installed on
1695  *	the device.
1696  */
1697 static void dev_disable_gro_hw(struct net_device *dev)
1698 {
1699 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1700 	netdev_update_features(dev);
1701 
1702 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1703 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1704 }
1705 
1706 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1707 {
1708 #define N(val) 						\
1709 	case NETDEV_##val:				\
1710 		return "NETDEV_" __stringify(val);
1711 	switch (cmd) {
1712 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1713 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1714 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1715 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1716 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1717 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1718 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1719 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1720 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1721 	N(PRE_CHANGEADDR)
1722 	}
1723 #undef N
1724 	return "UNKNOWN_NETDEV_EVENT";
1725 }
1726 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1727 
1728 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1729 				   struct net_device *dev)
1730 {
1731 	struct netdev_notifier_info info = {
1732 		.dev = dev,
1733 	};
1734 
1735 	return nb->notifier_call(nb, val, &info);
1736 }
1737 
1738 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1739 					     struct net_device *dev)
1740 {
1741 	int err;
1742 
1743 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1744 	err = notifier_to_errno(err);
1745 	if (err)
1746 		return err;
1747 
1748 	if (!(dev->flags & IFF_UP))
1749 		return 0;
1750 
1751 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1752 	return 0;
1753 }
1754 
1755 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1756 						struct net_device *dev)
1757 {
1758 	if (dev->flags & IFF_UP) {
1759 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1760 					dev);
1761 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1762 	}
1763 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1764 }
1765 
1766 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1767 						 struct net *net)
1768 {
1769 	struct net_device *dev;
1770 	int err;
1771 
1772 	for_each_netdev(net, dev) {
1773 		err = call_netdevice_register_notifiers(nb, dev);
1774 		if (err)
1775 			goto rollback;
1776 	}
1777 	return 0;
1778 
1779 rollback:
1780 	for_each_netdev_continue_reverse(net, dev)
1781 		call_netdevice_unregister_notifiers(nb, dev);
1782 	return err;
1783 }
1784 
1785 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1786 						    struct net *net)
1787 {
1788 	struct net_device *dev;
1789 
1790 	for_each_netdev(net, dev)
1791 		call_netdevice_unregister_notifiers(nb, dev);
1792 }
1793 
1794 static int dev_boot_phase = 1;
1795 
1796 /**
1797  * register_netdevice_notifier - register a network notifier block
1798  * @nb: notifier
1799  *
1800  * Register a notifier to be called when network device events occur.
1801  * The notifier passed is linked into the kernel structures and must
1802  * not be reused until it has been unregistered. A negative errno code
1803  * is returned on a failure.
1804  *
1805  * When registered all registration and up events are replayed
1806  * to the new notifier to allow device to have a race free
1807  * view of the network device list.
1808  */
1809 
1810 int register_netdevice_notifier(struct notifier_block *nb)
1811 {
1812 	struct net *net;
1813 	int err;
1814 
1815 	/* Close race with setup_net() and cleanup_net() */
1816 	down_write(&pernet_ops_rwsem);
1817 	rtnl_lock();
1818 	err = raw_notifier_chain_register(&netdev_chain, nb);
1819 	if (err)
1820 		goto unlock;
1821 	if (dev_boot_phase)
1822 		goto unlock;
1823 	for_each_net(net) {
1824 		err = call_netdevice_register_net_notifiers(nb, net);
1825 		if (err)
1826 			goto rollback;
1827 	}
1828 
1829 unlock:
1830 	rtnl_unlock();
1831 	up_write(&pernet_ops_rwsem);
1832 	return err;
1833 
1834 rollback:
1835 	for_each_net_continue_reverse(net)
1836 		call_netdevice_unregister_net_notifiers(nb, net);
1837 
1838 	raw_notifier_chain_unregister(&netdev_chain, nb);
1839 	goto unlock;
1840 }
1841 EXPORT_SYMBOL(register_netdevice_notifier);
1842 
1843 /**
1844  * unregister_netdevice_notifier - unregister a network notifier block
1845  * @nb: notifier
1846  *
1847  * Unregister a notifier previously registered by
1848  * register_netdevice_notifier(). The notifier is unlinked into the
1849  * kernel structures and may then be reused. A negative errno code
1850  * is returned on a failure.
1851  *
1852  * After unregistering unregister and down device events are synthesized
1853  * for all devices on the device list to the removed notifier to remove
1854  * the need for special case cleanup code.
1855  */
1856 
1857 int unregister_netdevice_notifier(struct notifier_block *nb)
1858 {
1859 	struct net *net;
1860 	int err;
1861 
1862 	/* Close race with setup_net() and cleanup_net() */
1863 	down_write(&pernet_ops_rwsem);
1864 	rtnl_lock();
1865 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1866 	if (err)
1867 		goto unlock;
1868 
1869 	for_each_net(net)
1870 		call_netdevice_unregister_net_notifiers(nb, net);
1871 
1872 unlock:
1873 	rtnl_unlock();
1874 	up_write(&pernet_ops_rwsem);
1875 	return err;
1876 }
1877 EXPORT_SYMBOL(unregister_netdevice_notifier);
1878 
1879 static int __register_netdevice_notifier_net(struct net *net,
1880 					     struct notifier_block *nb,
1881 					     bool ignore_call_fail)
1882 {
1883 	int err;
1884 
1885 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1886 	if (err)
1887 		return err;
1888 	if (dev_boot_phase)
1889 		return 0;
1890 
1891 	err = call_netdevice_register_net_notifiers(nb, net);
1892 	if (err && !ignore_call_fail)
1893 		goto chain_unregister;
1894 
1895 	return 0;
1896 
1897 chain_unregister:
1898 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1899 	return err;
1900 }
1901 
1902 static int __unregister_netdevice_notifier_net(struct net *net,
1903 					       struct notifier_block *nb)
1904 {
1905 	int err;
1906 
1907 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1908 	if (err)
1909 		return err;
1910 
1911 	call_netdevice_unregister_net_notifiers(nb, net);
1912 	return 0;
1913 }
1914 
1915 /**
1916  * register_netdevice_notifier_net - register a per-netns network notifier block
1917  * @net: network namespace
1918  * @nb: notifier
1919  *
1920  * Register a notifier to be called when network device events occur.
1921  * The notifier passed is linked into the kernel structures and must
1922  * not be reused until it has been unregistered. A negative errno code
1923  * is returned on a failure.
1924  *
1925  * When registered all registration and up events are replayed
1926  * to the new notifier to allow device to have a race free
1927  * view of the network device list.
1928  */
1929 
1930 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1931 {
1932 	int err;
1933 
1934 	rtnl_lock();
1935 	err = __register_netdevice_notifier_net(net, nb, false);
1936 	rtnl_unlock();
1937 	return err;
1938 }
1939 EXPORT_SYMBOL(register_netdevice_notifier_net);
1940 
1941 /**
1942  * unregister_netdevice_notifier_net - unregister a per-netns
1943  *                                     network notifier block
1944  * @net: network namespace
1945  * @nb: notifier
1946  *
1947  * Unregister a notifier previously registered by
1948  * register_netdevice_notifier(). The notifier is unlinked into the
1949  * kernel structures and may then be reused. A negative errno code
1950  * is returned on a failure.
1951  *
1952  * After unregistering unregister and down device events are synthesized
1953  * for all devices on the device list to the removed notifier to remove
1954  * the need for special case cleanup code.
1955  */
1956 
1957 int unregister_netdevice_notifier_net(struct net *net,
1958 				      struct notifier_block *nb)
1959 {
1960 	int err;
1961 
1962 	rtnl_lock();
1963 	err = __unregister_netdevice_notifier_net(net, nb);
1964 	rtnl_unlock();
1965 	return err;
1966 }
1967 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1968 
1969 int register_netdevice_notifier_dev_net(struct net_device *dev,
1970 					struct notifier_block *nb,
1971 					struct netdev_net_notifier *nn)
1972 {
1973 	int err;
1974 
1975 	rtnl_lock();
1976 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1977 	if (!err) {
1978 		nn->nb = nb;
1979 		list_add(&nn->list, &dev->net_notifier_list);
1980 	}
1981 	rtnl_unlock();
1982 	return err;
1983 }
1984 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1985 
1986 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1987 					  struct notifier_block *nb,
1988 					  struct netdev_net_notifier *nn)
1989 {
1990 	int err;
1991 
1992 	rtnl_lock();
1993 	list_del(&nn->list);
1994 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1995 	rtnl_unlock();
1996 	return err;
1997 }
1998 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1999 
2000 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2001 					     struct net *net)
2002 {
2003 	struct netdev_net_notifier *nn;
2004 
2005 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2006 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2007 		__register_netdevice_notifier_net(net, nn->nb, true);
2008 	}
2009 }
2010 
2011 /**
2012  *	call_netdevice_notifiers_info - call all network notifier blocks
2013  *	@val: value passed unmodified to notifier function
2014  *	@info: notifier information data
2015  *
2016  *	Call all network notifier blocks.  Parameters and return value
2017  *	are as for raw_notifier_call_chain().
2018  */
2019 
2020 static int call_netdevice_notifiers_info(unsigned long val,
2021 					 struct netdev_notifier_info *info)
2022 {
2023 	struct net *net = dev_net(info->dev);
2024 	int ret;
2025 
2026 	ASSERT_RTNL();
2027 
2028 	/* Run per-netns notifier block chain first, then run the global one.
2029 	 * Hopefully, one day, the global one is going to be removed after
2030 	 * all notifier block registrators get converted to be per-netns.
2031 	 */
2032 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2033 	if (ret & NOTIFY_STOP_MASK)
2034 		return ret;
2035 	return raw_notifier_call_chain(&netdev_chain, val, info);
2036 }
2037 
2038 static int call_netdevice_notifiers_extack(unsigned long val,
2039 					   struct net_device *dev,
2040 					   struct netlink_ext_ack *extack)
2041 {
2042 	struct netdev_notifier_info info = {
2043 		.dev = dev,
2044 		.extack = extack,
2045 	};
2046 
2047 	return call_netdevice_notifiers_info(val, &info);
2048 }
2049 
2050 /**
2051  *	call_netdevice_notifiers - call all network notifier blocks
2052  *      @val: value passed unmodified to notifier function
2053  *      @dev: net_device pointer passed unmodified to notifier function
2054  *
2055  *	Call all network notifier blocks.  Parameters and return value
2056  *	are as for raw_notifier_call_chain().
2057  */
2058 
2059 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2060 {
2061 	return call_netdevice_notifiers_extack(val, dev, NULL);
2062 }
2063 EXPORT_SYMBOL(call_netdevice_notifiers);
2064 
2065 /**
2066  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2067  *	@val: value passed unmodified to notifier function
2068  *	@dev: net_device pointer passed unmodified to notifier function
2069  *	@arg: additional u32 argument passed to the notifier function
2070  *
2071  *	Call all network notifier blocks.  Parameters and return value
2072  *	are as for raw_notifier_call_chain().
2073  */
2074 static int call_netdevice_notifiers_mtu(unsigned long val,
2075 					struct net_device *dev, u32 arg)
2076 {
2077 	struct netdev_notifier_info_ext info = {
2078 		.info.dev = dev,
2079 		.ext.mtu = arg,
2080 	};
2081 
2082 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2083 
2084 	return call_netdevice_notifiers_info(val, &info.info);
2085 }
2086 
2087 #ifdef CONFIG_NET_INGRESS
2088 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2089 
2090 void net_inc_ingress_queue(void)
2091 {
2092 	static_branch_inc(&ingress_needed_key);
2093 }
2094 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2095 
2096 void net_dec_ingress_queue(void)
2097 {
2098 	static_branch_dec(&ingress_needed_key);
2099 }
2100 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2101 #endif
2102 
2103 #ifdef CONFIG_NET_EGRESS
2104 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2105 
2106 void net_inc_egress_queue(void)
2107 {
2108 	static_branch_inc(&egress_needed_key);
2109 }
2110 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2111 
2112 void net_dec_egress_queue(void)
2113 {
2114 	static_branch_dec(&egress_needed_key);
2115 }
2116 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2117 #endif
2118 
2119 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2120 #ifdef CONFIG_JUMP_LABEL
2121 static atomic_t netstamp_needed_deferred;
2122 static atomic_t netstamp_wanted;
2123 static void netstamp_clear(struct work_struct *work)
2124 {
2125 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2126 	int wanted;
2127 
2128 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2129 	if (wanted > 0)
2130 		static_branch_enable(&netstamp_needed_key);
2131 	else
2132 		static_branch_disable(&netstamp_needed_key);
2133 }
2134 static DECLARE_WORK(netstamp_work, netstamp_clear);
2135 #endif
2136 
2137 void net_enable_timestamp(void)
2138 {
2139 #ifdef CONFIG_JUMP_LABEL
2140 	int wanted;
2141 
2142 	while (1) {
2143 		wanted = atomic_read(&netstamp_wanted);
2144 		if (wanted <= 0)
2145 			break;
2146 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2147 			return;
2148 	}
2149 	atomic_inc(&netstamp_needed_deferred);
2150 	schedule_work(&netstamp_work);
2151 #else
2152 	static_branch_inc(&netstamp_needed_key);
2153 #endif
2154 }
2155 EXPORT_SYMBOL(net_enable_timestamp);
2156 
2157 void net_disable_timestamp(void)
2158 {
2159 #ifdef CONFIG_JUMP_LABEL
2160 	int wanted;
2161 
2162 	while (1) {
2163 		wanted = atomic_read(&netstamp_wanted);
2164 		if (wanted <= 1)
2165 			break;
2166 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2167 			return;
2168 	}
2169 	atomic_dec(&netstamp_needed_deferred);
2170 	schedule_work(&netstamp_work);
2171 #else
2172 	static_branch_dec(&netstamp_needed_key);
2173 #endif
2174 }
2175 EXPORT_SYMBOL(net_disable_timestamp);
2176 
2177 static inline void net_timestamp_set(struct sk_buff *skb)
2178 {
2179 	skb->tstamp = 0;
2180 	if (static_branch_unlikely(&netstamp_needed_key))
2181 		__net_timestamp(skb);
2182 }
2183 
2184 #define net_timestamp_check(COND, SKB)				\
2185 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2186 		if ((COND) && !(SKB)->tstamp)			\
2187 			__net_timestamp(SKB);			\
2188 	}							\
2189 
2190 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2191 {
2192 	unsigned int len;
2193 
2194 	if (!(dev->flags & IFF_UP))
2195 		return false;
2196 
2197 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2198 	if (skb->len <= len)
2199 		return true;
2200 
2201 	/* if TSO is enabled, we don't care about the length as the packet
2202 	 * could be forwarded without being segmented before
2203 	 */
2204 	if (skb_is_gso(skb))
2205 		return true;
2206 
2207 	return false;
2208 }
2209 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2210 
2211 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2212 {
2213 	int ret = ____dev_forward_skb(dev, skb);
2214 
2215 	if (likely(!ret)) {
2216 		skb->protocol = eth_type_trans(skb, dev);
2217 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2218 	}
2219 
2220 	return ret;
2221 }
2222 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2223 
2224 /**
2225  * dev_forward_skb - loopback an skb to another netif
2226  *
2227  * @dev: destination network device
2228  * @skb: buffer to forward
2229  *
2230  * return values:
2231  *	NET_RX_SUCCESS	(no congestion)
2232  *	NET_RX_DROP     (packet was dropped, but freed)
2233  *
2234  * dev_forward_skb can be used for injecting an skb from the
2235  * start_xmit function of one device into the receive queue
2236  * of another device.
2237  *
2238  * The receiving device may be in another namespace, so
2239  * we have to clear all information in the skb that could
2240  * impact namespace isolation.
2241  */
2242 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2243 {
2244 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2245 }
2246 EXPORT_SYMBOL_GPL(dev_forward_skb);
2247 
2248 static inline int deliver_skb(struct sk_buff *skb,
2249 			      struct packet_type *pt_prev,
2250 			      struct net_device *orig_dev)
2251 {
2252 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2253 		return -ENOMEM;
2254 	refcount_inc(&skb->users);
2255 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2256 }
2257 
2258 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2259 					  struct packet_type **pt,
2260 					  struct net_device *orig_dev,
2261 					  __be16 type,
2262 					  struct list_head *ptype_list)
2263 {
2264 	struct packet_type *ptype, *pt_prev = *pt;
2265 
2266 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2267 		if (ptype->type != type)
2268 			continue;
2269 		if (pt_prev)
2270 			deliver_skb(skb, pt_prev, orig_dev);
2271 		pt_prev = ptype;
2272 	}
2273 	*pt = pt_prev;
2274 }
2275 
2276 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2277 {
2278 	if (!ptype->af_packet_priv || !skb->sk)
2279 		return false;
2280 
2281 	if (ptype->id_match)
2282 		return ptype->id_match(ptype, skb->sk);
2283 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2284 		return true;
2285 
2286 	return false;
2287 }
2288 
2289 /**
2290  * dev_nit_active - return true if any network interface taps are in use
2291  *
2292  * @dev: network device to check for the presence of taps
2293  */
2294 bool dev_nit_active(struct net_device *dev)
2295 {
2296 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2297 }
2298 EXPORT_SYMBOL_GPL(dev_nit_active);
2299 
2300 /*
2301  *	Support routine. Sends outgoing frames to any network
2302  *	taps currently in use.
2303  */
2304 
2305 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2306 {
2307 	struct packet_type *ptype;
2308 	struct sk_buff *skb2 = NULL;
2309 	struct packet_type *pt_prev = NULL;
2310 	struct list_head *ptype_list = &ptype_all;
2311 
2312 	rcu_read_lock();
2313 again:
2314 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2315 		if (ptype->ignore_outgoing)
2316 			continue;
2317 
2318 		/* Never send packets back to the socket
2319 		 * they originated from - MvS (miquels@drinkel.ow.org)
2320 		 */
2321 		if (skb_loop_sk(ptype, skb))
2322 			continue;
2323 
2324 		if (pt_prev) {
2325 			deliver_skb(skb2, pt_prev, skb->dev);
2326 			pt_prev = ptype;
2327 			continue;
2328 		}
2329 
2330 		/* need to clone skb, done only once */
2331 		skb2 = skb_clone(skb, GFP_ATOMIC);
2332 		if (!skb2)
2333 			goto out_unlock;
2334 
2335 		net_timestamp_set(skb2);
2336 
2337 		/* skb->nh should be correctly
2338 		 * set by sender, so that the second statement is
2339 		 * just protection against buggy protocols.
2340 		 */
2341 		skb_reset_mac_header(skb2);
2342 
2343 		if (skb_network_header(skb2) < skb2->data ||
2344 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2345 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2346 					     ntohs(skb2->protocol),
2347 					     dev->name);
2348 			skb_reset_network_header(skb2);
2349 		}
2350 
2351 		skb2->transport_header = skb2->network_header;
2352 		skb2->pkt_type = PACKET_OUTGOING;
2353 		pt_prev = ptype;
2354 	}
2355 
2356 	if (ptype_list == &ptype_all) {
2357 		ptype_list = &dev->ptype_all;
2358 		goto again;
2359 	}
2360 out_unlock:
2361 	if (pt_prev) {
2362 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2363 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2364 		else
2365 			kfree_skb(skb2);
2366 	}
2367 	rcu_read_unlock();
2368 }
2369 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2370 
2371 /**
2372  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2373  * @dev: Network device
2374  * @txq: number of queues available
2375  *
2376  * If real_num_tx_queues is changed the tc mappings may no longer be
2377  * valid. To resolve this verify the tc mapping remains valid and if
2378  * not NULL the mapping. With no priorities mapping to this
2379  * offset/count pair it will no longer be used. In the worst case TC0
2380  * is invalid nothing can be done so disable priority mappings. If is
2381  * expected that drivers will fix this mapping if they can before
2382  * calling netif_set_real_num_tx_queues.
2383  */
2384 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2385 {
2386 	int i;
2387 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2388 
2389 	/* If TC0 is invalidated disable TC mapping */
2390 	if (tc->offset + tc->count > txq) {
2391 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2392 		dev->num_tc = 0;
2393 		return;
2394 	}
2395 
2396 	/* Invalidated prio to tc mappings set to TC0 */
2397 	for (i = 1; i < TC_BITMASK + 1; i++) {
2398 		int q = netdev_get_prio_tc_map(dev, i);
2399 
2400 		tc = &dev->tc_to_txq[q];
2401 		if (tc->offset + tc->count > txq) {
2402 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2403 				i, q);
2404 			netdev_set_prio_tc_map(dev, i, 0);
2405 		}
2406 	}
2407 }
2408 
2409 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2410 {
2411 	if (dev->num_tc) {
2412 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2413 		int i;
2414 
2415 		/* walk through the TCs and see if it falls into any of them */
2416 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2417 			if ((txq - tc->offset) < tc->count)
2418 				return i;
2419 		}
2420 
2421 		/* didn't find it, just return -1 to indicate no match */
2422 		return -1;
2423 	}
2424 
2425 	return 0;
2426 }
2427 EXPORT_SYMBOL(netdev_txq_to_tc);
2428 
2429 #ifdef CONFIG_XPS
2430 struct static_key xps_needed __read_mostly;
2431 EXPORT_SYMBOL(xps_needed);
2432 struct static_key xps_rxqs_needed __read_mostly;
2433 EXPORT_SYMBOL(xps_rxqs_needed);
2434 static DEFINE_MUTEX(xps_map_mutex);
2435 #define xmap_dereference(P)		\
2436 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2437 
2438 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2439 			     int tci, u16 index)
2440 {
2441 	struct xps_map *map = NULL;
2442 	int pos;
2443 
2444 	if (dev_maps)
2445 		map = xmap_dereference(dev_maps->attr_map[tci]);
2446 	if (!map)
2447 		return false;
2448 
2449 	for (pos = map->len; pos--;) {
2450 		if (map->queues[pos] != index)
2451 			continue;
2452 
2453 		if (map->len > 1) {
2454 			map->queues[pos] = map->queues[--map->len];
2455 			break;
2456 		}
2457 
2458 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2459 		kfree_rcu(map, rcu);
2460 		return false;
2461 	}
2462 
2463 	return true;
2464 }
2465 
2466 static bool remove_xps_queue_cpu(struct net_device *dev,
2467 				 struct xps_dev_maps *dev_maps,
2468 				 int cpu, u16 offset, u16 count)
2469 {
2470 	int num_tc = dev->num_tc ? : 1;
2471 	bool active = false;
2472 	int tci;
2473 
2474 	for (tci = cpu * num_tc; num_tc--; tci++) {
2475 		int i, j;
2476 
2477 		for (i = count, j = offset; i--; j++) {
2478 			if (!remove_xps_queue(dev_maps, tci, j))
2479 				break;
2480 		}
2481 
2482 		active |= i < 0;
2483 	}
2484 
2485 	return active;
2486 }
2487 
2488 static void reset_xps_maps(struct net_device *dev,
2489 			   struct xps_dev_maps *dev_maps,
2490 			   bool is_rxqs_map)
2491 {
2492 	if (is_rxqs_map) {
2493 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2494 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2495 	} else {
2496 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2497 	}
2498 	static_key_slow_dec_cpuslocked(&xps_needed);
2499 	kfree_rcu(dev_maps, rcu);
2500 }
2501 
2502 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2503 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2504 			   u16 offset, u16 count, bool is_rxqs_map)
2505 {
2506 	bool active = false;
2507 	int i, j;
2508 
2509 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2510 	     j < nr_ids;)
2511 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2512 					       count);
2513 	if (!active)
2514 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2515 
2516 	if (!is_rxqs_map) {
2517 		for (i = offset + (count - 1); count--; i--) {
2518 			netdev_queue_numa_node_write(
2519 				netdev_get_tx_queue(dev, i),
2520 				NUMA_NO_NODE);
2521 		}
2522 	}
2523 }
2524 
2525 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2526 				   u16 count)
2527 {
2528 	const unsigned long *possible_mask = NULL;
2529 	struct xps_dev_maps *dev_maps;
2530 	unsigned int nr_ids;
2531 
2532 	if (!static_key_false(&xps_needed))
2533 		return;
2534 
2535 	cpus_read_lock();
2536 	mutex_lock(&xps_map_mutex);
2537 
2538 	if (static_key_false(&xps_rxqs_needed)) {
2539 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2540 		if (dev_maps) {
2541 			nr_ids = dev->num_rx_queues;
2542 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2543 				       offset, count, true);
2544 		}
2545 	}
2546 
2547 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2548 	if (!dev_maps)
2549 		goto out_no_maps;
2550 
2551 	if (num_possible_cpus() > 1)
2552 		possible_mask = cpumask_bits(cpu_possible_mask);
2553 	nr_ids = nr_cpu_ids;
2554 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2555 		       false);
2556 
2557 out_no_maps:
2558 	mutex_unlock(&xps_map_mutex);
2559 	cpus_read_unlock();
2560 }
2561 
2562 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2563 {
2564 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2565 }
2566 
2567 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2568 				      u16 index, bool is_rxqs_map)
2569 {
2570 	struct xps_map *new_map;
2571 	int alloc_len = XPS_MIN_MAP_ALLOC;
2572 	int i, pos;
2573 
2574 	for (pos = 0; map && pos < map->len; pos++) {
2575 		if (map->queues[pos] != index)
2576 			continue;
2577 		return map;
2578 	}
2579 
2580 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2581 	if (map) {
2582 		if (pos < map->alloc_len)
2583 			return map;
2584 
2585 		alloc_len = map->alloc_len * 2;
2586 	}
2587 
2588 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2589 	 *  map
2590 	 */
2591 	if (is_rxqs_map)
2592 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2593 	else
2594 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2595 				       cpu_to_node(attr_index));
2596 	if (!new_map)
2597 		return NULL;
2598 
2599 	for (i = 0; i < pos; i++)
2600 		new_map->queues[i] = map->queues[i];
2601 	new_map->alloc_len = alloc_len;
2602 	new_map->len = pos;
2603 
2604 	return new_map;
2605 }
2606 
2607 /* Must be called under cpus_read_lock */
2608 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2609 			  u16 index, bool is_rxqs_map)
2610 {
2611 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2612 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2613 	int i, j, tci, numa_node_id = -2;
2614 	int maps_sz, num_tc = 1, tc = 0;
2615 	struct xps_map *map, *new_map;
2616 	bool active = false;
2617 	unsigned int nr_ids;
2618 
2619 	if (dev->num_tc) {
2620 		/* Do not allow XPS on subordinate device directly */
2621 		num_tc = dev->num_tc;
2622 		if (num_tc < 0)
2623 			return -EINVAL;
2624 
2625 		/* If queue belongs to subordinate dev use its map */
2626 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2627 
2628 		tc = netdev_txq_to_tc(dev, index);
2629 		if (tc < 0)
2630 			return -EINVAL;
2631 	}
2632 
2633 	mutex_lock(&xps_map_mutex);
2634 	if (is_rxqs_map) {
2635 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2636 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2637 		nr_ids = dev->num_rx_queues;
2638 	} else {
2639 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2640 		if (num_possible_cpus() > 1) {
2641 			online_mask = cpumask_bits(cpu_online_mask);
2642 			possible_mask = cpumask_bits(cpu_possible_mask);
2643 		}
2644 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2645 		nr_ids = nr_cpu_ids;
2646 	}
2647 
2648 	if (maps_sz < L1_CACHE_BYTES)
2649 		maps_sz = L1_CACHE_BYTES;
2650 
2651 	/* allocate memory for queue storage */
2652 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2653 	     j < nr_ids;) {
2654 		if (!new_dev_maps)
2655 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2656 		if (!new_dev_maps) {
2657 			mutex_unlock(&xps_map_mutex);
2658 			return -ENOMEM;
2659 		}
2660 
2661 		tci = j * num_tc + tc;
2662 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2663 				 NULL;
2664 
2665 		map = expand_xps_map(map, j, index, is_rxqs_map);
2666 		if (!map)
2667 			goto error;
2668 
2669 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2670 	}
2671 
2672 	if (!new_dev_maps)
2673 		goto out_no_new_maps;
2674 
2675 	if (!dev_maps) {
2676 		/* Increment static keys at most once per type */
2677 		static_key_slow_inc_cpuslocked(&xps_needed);
2678 		if (is_rxqs_map)
2679 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2680 	}
2681 
2682 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2683 	     j < nr_ids;) {
2684 		/* copy maps belonging to foreign traffic classes */
2685 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2686 			/* fill in the new device map from the old device map */
2687 			map = xmap_dereference(dev_maps->attr_map[tci]);
2688 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2689 		}
2690 
2691 		/* We need to explicitly update tci as prevous loop
2692 		 * could break out early if dev_maps is NULL.
2693 		 */
2694 		tci = j * num_tc + tc;
2695 
2696 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2697 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2698 			/* add tx-queue to CPU/rx-queue maps */
2699 			int pos = 0;
2700 
2701 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2702 			while ((pos < map->len) && (map->queues[pos] != index))
2703 				pos++;
2704 
2705 			if (pos == map->len)
2706 				map->queues[map->len++] = index;
2707 #ifdef CONFIG_NUMA
2708 			if (!is_rxqs_map) {
2709 				if (numa_node_id == -2)
2710 					numa_node_id = cpu_to_node(j);
2711 				else if (numa_node_id != cpu_to_node(j))
2712 					numa_node_id = -1;
2713 			}
2714 #endif
2715 		} else if (dev_maps) {
2716 			/* fill in the new device map from the old device map */
2717 			map = xmap_dereference(dev_maps->attr_map[tci]);
2718 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2719 		}
2720 
2721 		/* copy maps belonging to foreign traffic classes */
2722 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2723 			/* fill in the new device map from the old device map */
2724 			map = xmap_dereference(dev_maps->attr_map[tci]);
2725 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2726 		}
2727 	}
2728 
2729 	if (is_rxqs_map)
2730 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2731 	else
2732 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2733 
2734 	/* Cleanup old maps */
2735 	if (!dev_maps)
2736 		goto out_no_old_maps;
2737 
2738 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2739 	     j < nr_ids;) {
2740 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2741 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2742 			map = xmap_dereference(dev_maps->attr_map[tci]);
2743 			if (map && map != new_map)
2744 				kfree_rcu(map, rcu);
2745 		}
2746 	}
2747 
2748 	kfree_rcu(dev_maps, rcu);
2749 
2750 out_no_old_maps:
2751 	dev_maps = new_dev_maps;
2752 	active = true;
2753 
2754 out_no_new_maps:
2755 	if (!is_rxqs_map) {
2756 		/* update Tx queue numa node */
2757 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2758 					     (numa_node_id >= 0) ?
2759 					     numa_node_id : NUMA_NO_NODE);
2760 	}
2761 
2762 	if (!dev_maps)
2763 		goto out_no_maps;
2764 
2765 	/* removes tx-queue from unused CPUs/rx-queues */
2766 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2767 	     j < nr_ids;) {
2768 		for (i = tc, tci = j * num_tc; i--; tci++)
2769 			active |= remove_xps_queue(dev_maps, tci, index);
2770 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2771 		    !netif_attr_test_online(j, online_mask, nr_ids))
2772 			active |= remove_xps_queue(dev_maps, tci, index);
2773 		for (i = num_tc - tc, tci++; --i; tci++)
2774 			active |= remove_xps_queue(dev_maps, tci, index);
2775 	}
2776 
2777 	/* free map if not active */
2778 	if (!active)
2779 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2780 
2781 out_no_maps:
2782 	mutex_unlock(&xps_map_mutex);
2783 
2784 	return 0;
2785 error:
2786 	/* remove any maps that we added */
2787 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2788 	     j < nr_ids;) {
2789 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2790 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2791 			map = dev_maps ?
2792 			      xmap_dereference(dev_maps->attr_map[tci]) :
2793 			      NULL;
2794 			if (new_map && new_map != map)
2795 				kfree(new_map);
2796 		}
2797 	}
2798 
2799 	mutex_unlock(&xps_map_mutex);
2800 
2801 	kfree(new_dev_maps);
2802 	return -ENOMEM;
2803 }
2804 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2805 
2806 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2807 			u16 index)
2808 {
2809 	int ret;
2810 
2811 	cpus_read_lock();
2812 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2813 	cpus_read_unlock();
2814 
2815 	return ret;
2816 }
2817 EXPORT_SYMBOL(netif_set_xps_queue);
2818 
2819 #endif
2820 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2821 {
2822 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2823 
2824 	/* Unbind any subordinate channels */
2825 	while (txq-- != &dev->_tx[0]) {
2826 		if (txq->sb_dev)
2827 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2828 	}
2829 }
2830 
2831 void netdev_reset_tc(struct net_device *dev)
2832 {
2833 #ifdef CONFIG_XPS
2834 	netif_reset_xps_queues_gt(dev, 0);
2835 #endif
2836 	netdev_unbind_all_sb_channels(dev);
2837 
2838 	/* Reset TC configuration of device */
2839 	dev->num_tc = 0;
2840 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2841 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2842 }
2843 EXPORT_SYMBOL(netdev_reset_tc);
2844 
2845 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2846 {
2847 	if (tc >= dev->num_tc)
2848 		return -EINVAL;
2849 
2850 #ifdef CONFIG_XPS
2851 	netif_reset_xps_queues(dev, offset, count);
2852 #endif
2853 	dev->tc_to_txq[tc].count = count;
2854 	dev->tc_to_txq[tc].offset = offset;
2855 	return 0;
2856 }
2857 EXPORT_SYMBOL(netdev_set_tc_queue);
2858 
2859 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2860 {
2861 	if (num_tc > TC_MAX_QUEUE)
2862 		return -EINVAL;
2863 
2864 #ifdef CONFIG_XPS
2865 	netif_reset_xps_queues_gt(dev, 0);
2866 #endif
2867 	netdev_unbind_all_sb_channels(dev);
2868 
2869 	dev->num_tc = num_tc;
2870 	return 0;
2871 }
2872 EXPORT_SYMBOL(netdev_set_num_tc);
2873 
2874 void netdev_unbind_sb_channel(struct net_device *dev,
2875 			      struct net_device *sb_dev)
2876 {
2877 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2878 
2879 #ifdef CONFIG_XPS
2880 	netif_reset_xps_queues_gt(sb_dev, 0);
2881 #endif
2882 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2883 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2884 
2885 	while (txq-- != &dev->_tx[0]) {
2886 		if (txq->sb_dev == sb_dev)
2887 			txq->sb_dev = NULL;
2888 	}
2889 }
2890 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2891 
2892 int netdev_bind_sb_channel_queue(struct net_device *dev,
2893 				 struct net_device *sb_dev,
2894 				 u8 tc, u16 count, u16 offset)
2895 {
2896 	/* Make certain the sb_dev and dev are already configured */
2897 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2898 		return -EINVAL;
2899 
2900 	/* We cannot hand out queues we don't have */
2901 	if ((offset + count) > dev->real_num_tx_queues)
2902 		return -EINVAL;
2903 
2904 	/* Record the mapping */
2905 	sb_dev->tc_to_txq[tc].count = count;
2906 	sb_dev->tc_to_txq[tc].offset = offset;
2907 
2908 	/* Provide a way for Tx queue to find the tc_to_txq map or
2909 	 * XPS map for itself.
2910 	 */
2911 	while (count--)
2912 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2913 
2914 	return 0;
2915 }
2916 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2917 
2918 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2919 {
2920 	/* Do not use a multiqueue device to represent a subordinate channel */
2921 	if (netif_is_multiqueue(dev))
2922 		return -ENODEV;
2923 
2924 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2925 	 * Channel 0 is meant to be "native" mode and used only to represent
2926 	 * the main root device. We allow writing 0 to reset the device back
2927 	 * to normal mode after being used as a subordinate channel.
2928 	 */
2929 	if (channel > S16_MAX)
2930 		return -EINVAL;
2931 
2932 	dev->num_tc = -channel;
2933 
2934 	return 0;
2935 }
2936 EXPORT_SYMBOL(netdev_set_sb_channel);
2937 
2938 /*
2939  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2940  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2941  */
2942 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2943 {
2944 	bool disabling;
2945 	int rc;
2946 
2947 	disabling = txq < dev->real_num_tx_queues;
2948 
2949 	if (txq < 1 || txq > dev->num_tx_queues)
2950 		return -EINVAL;
2951 
2952 	if (dev->reg_state == NETREG_REGISTERED ||
2953 	    dev->reg_state == NETREG_UNREGISTERING) {
2954 		ASSERT_RTNL();
2955 
2956 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2957 						  txq);
2958 		if (rc)
2959 			return rc;
2960 
2961 		if (dev->num_tc)
2962 			netif_setup_tc(dev, txq);
2963 
2964 		dev->real_num_tx_queues = txq;
2965 
2966 		if (disabling) {
2967 			synchronize_net();
2968 			qdisc_reset_all_tx_gt(dev, txq);
2969 #ifdef CONFIG_XPS
2970 			netif_reset_xps_queues_gt(dev, txq);
2971 #endif
2972 		}
2973 	} else {
2974 		dev->real_num_tx_queues = txq;
2975 	}
2976 
2977 	return 0;
2978 }
2979 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2980 
2981 #ifdef CONFIG_SYSFS
2982 /**
2983  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2984  *	@dev: Network device
2985  *	@rxq: Actual number of RX queues
2986  *
2987  *	This must be called either with the rtnl_lock held or before
2988  *	registration of the net device.  Returns 0 on success, or a
2989  *	negative error code.  If called before registration, it always
2990  *	succeeds.
2991  */
2992 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2993 {
2994 	int rc;
2995 
2996 	if (rxq < 1 || rxq > dev->num_rx_queues)
2997 		return -EINVAL;
2998 
2999 	if (dev->reg_state == NETREG_REGISTERED) {
3000 		ASSERT_RTNL();
3001 
3002 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3003 						  rxq);
3004 		if (rc)
3005 			return rc;
3006 	}
3007 
3008 	dev->real_num_rx_queues = rxq;
3009 	return 0;
3010 }
3011 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3012 #endif
3013 
3014 /**
3015  * netif_get_num_default_rss_queues - default number of RSS queues
3016  *
3017  * This routine should set an upper limit on the number of RSS queues
3018  * used by default by multiqueue devices.
3019  */
3020 int netif_get_num_default_rss_queues(void)
3021 {
3022 	return is_kdump_kernel() ?
3023 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3024 }
3025 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3026 
3027 static void __netif_reschedule(struct Qdisc *q)
3028 {
3029 	struct softnet_data *sd;
3030 	unsigned long flags;
3031 
3032 	local_irq_save(flags);
3033 	sd = this_cpu_ptr(&softnet_data);
3034 	q->next_sched = NULL;
3035 	*sd->output_queue_tailp = q;
3036 	sd->output_queue_tailp = &q->next_sched;
3037 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3038 	local_irq_restore(flags);
3039 }
3040 
3041 void __netif_schedule(struct Qdisc *q)
3042 {
3043 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3044 		__netif_reschedule(q);
3045 }
3046 EXPORT_SYMBOL(__netif_schedule);
3047 
3048 struct dev_kfree_skb_cb {
3049 	enum skb_free_reason reason;
3050 };
3051 
3052 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3053 {
3054 	return (struct dev_kfree_skb_cb *)skb->cb;
3055 }
3056 
3057 void netif_schedule_queue(struct netdev_queue *txq)
3058 {
3059 	rcu_read_lock();
3060 	if (!netif_xmit_stopped(txq)) {
3061 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3062 
3063 		__netif_schedule(q);
3064 	}
3065 	rcu_read_unlock();
3066 }
3067 EXPORT_SYMBOL(netif_schedule_queue);
3068 
3069 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3070 {
3071 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3072 		struct Qdisc *q;
3073 
3074 		rcu_read_lock();
3075 		q = rcu_dereference(dev_queue->qdisc);
3076 		__netif_schedule(q);
3077 		rcu_read_unlock();
3078 	}
3079 }
3080 EXPORT_SYMBOL(netif_tx_wake_queue);
3081 
3082 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3083 {
3084 	unsigned long flags;
3085 
3086 	if (unlikely(!skb))
3087 		return;
3088 
3089 	if (likely(refcount_read(&skb->users) == 1)) {
3090 		smp_rmb();
3091 		refcount_set(&skb->users, 0);
3092 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3093 		return;
3094 	}
3095 	get_kfree_skb_cb(skb)->reason = reason;
3096 	local_irq_save(flags);
3097 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3098 	__this_cpu_write(softnet_data.completion_queue, skb);
3099 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3100 	local_irq_restore(flags);
3101 }
3102 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3103 
3104 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3105 {
3106 	if (in_irq() || irqs_disabled())
3107 		__dev_kfree_skb_irq(skb, reason);
3108 	else
3109 		dev_kfree_skb(skb);
3110 }
3111 EXPORT_SYMBOL(__dev_kfree_skb_any);
3112 
3113 
3114 /**
3115  * netif_device_detach - mark device as removed
3116  * @dev: network device
3117  *
3118  * Mark device as removed from system and therefore no longer available.
3119  */
3120 void netif_device_detach(struct net_device *dev)
3121 {
3122 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3123 	    netif_running(dev)) {
3124 		netif_tx_stop_all_queues(dev);
3125 	}
3126 }
3127 EXPORT_SYMBOL(netif_device_detach);
3128 
3129 /**
3130  * netif_device_attach - mark device as attached
3131  * @dev: network device
3132  *
3133  * Mark device as attached from system and restart if needed.
3134  */
3135 void netif_device_attach(struct net_device *dev)
3136 {
3137 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3138 	    netif_running(dev)) {
3139 		netif_tx_wake_all_queues(dev);
3140 		__netdev_watchdog_up(dev);
3141 	}
3142 }
3143 EXPORT_SYMBOL(netif_device_attach);
3144 
3145 /*
3146  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3147  * to be used as a distribution range.
3148  */
3149 static u16 skb_tx_hash(const struct net_device *dev,
3150 		       const struct net_device *sb_dev,
3151 		       struct sk_buff *skb)
3152 {
3153 	u32 hash;
3154 	u16 qoffset = 0;
3155 	u16 qcount = dev->real_num_tx_queues;
3156 
3157 	if (dev->num_tc) {
3158 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3159 
3160 		qoffset = sb_dev->tc_to_txq[tc].offset;
3161 		qcount = sb_dev->tc_to_txq[tc].count;
3162 	}
3163 
3164 	if (skb_rx_queue_recorded(skb)) {
3165 		hash = skb_get_rx_queue(skb);
3166 		if (hash >= qoffset)
3167 			hash -= qoffset;
3168 		while (unlikely(hash >= qcount))
3169 			hash -= qcount;
3170 		return hash + qoffset;
3171 	}
3172 
3173 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3174 }
3175 
3176 static void skb_warn_bad_offload(const struct sk_buff *skb)
3177 {
3178 	static const netdev_features_t null_features;
3179 	struct net_device *dev = skb->dev;
3180 	const char *name = "";
3181 
3182 	if (!net_ratelimit())
3183 		return;
3184 
3185 	if (dev) {
3186 		if (dev->dev.parent)
3187 			name = dev_driver_string(dev->dev.parent);
3188 		else
3189 			name = netdev_name(dev);
3190 	}
3191 	skb_dump(KERN_WARNING, skb, false);
3192 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3193 	     name, dev ? &dev->features : &null_features,
3194 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3195 }
3196 
3197 /*
3198  * Invalidate hardware checksum when packet is to be mangled, and
3199  * complete checksum manually on outgoing path.
3200  */
3201 int skb_checksum_help(struct sk_buff *skb)
3202 {
3203 	__wsum csum;
3204 	int ret = 0, offset;
3205 
3206 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3207 		goto out_set_summed;
3208 
3209 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3210 		skb_warn_bad_offload(skb);
3211 		return -EINVAL;
3212 	}
3213 
3214 	/* Before computing a checksum, we should make sure no frag could
3215 	 * be modified by an external entity : checksum could be wrong.
3216 	 */
3217 	if (skb_has_shared_frag(skb)) {
3218 		ret = __skb_linearize(skb);
3219 		if (ret)
3220 			goto out;
3221 	}
3222 
3223 	offset = skb_checksum_start_offset(skb);
3224 	BUG_ON(offset >= skb_headlen(skb));
3225 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3226 
3227 	offset += skb->csum_offset;
3228 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3229 
3230 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3231 	if (ret)
3232 		goto out;
3233 
3234 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3235 out_set_summed:
3236 	skb->ip_summed = CHECKSUM_NONE;
3237 out:
3238 	return ret;
3239 }
3240 EXPORT_SYMBOL(skb_checksum_help);
3241 
3242 int skb_crc32c_csum_help(struct sk_buff *skb)
3243 {
3244 	__le32 crc32c_csum;
3245 	int ret = 0, offset, start;
3246 
3247 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3248 		goto out;
3249 
3250 	if (unlikely(skb_is_gso(skb)))
3251 		goto out;
3252 
3253 	/* Before computing a checksum, we should make sure no frag could
3254 	 * be modified by an external entity : checksum could be wrong.
3255 	 */
3256 	if (unlikely(skb_has_shared_frag(skb))) {
3257 		ret = __skb_linearize(skb);
3258 		if (ret)
3259 			goto out;
3260 	}
3261 	start = skb_checksum_start_offset(skb);
3262 	offset = start + offsetof(struct sctphdr, checksum);
3263 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3264 		ret = -EINVAL;
3265 		goto out;
3266 	}
3267 
3268 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3269 	if (ret)
3270 		goto out;
3271 
3272 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3273 						  skb->len - start, ~(__u32)0,
3274 						  crc32c_csum_stub));
3275 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3276 	skb->ip_summed = CHECKSUM_NONE;
3277 	skb->csum_not_inet = 0;
3278 out:
3279 	return ret;
3280 }
3281 
3282 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3283 {
3284 	__be16 type = skb->protocol;
3285 
3286 	/* Tunnel gso handlers can set protocol to ethernet. */
3287 	if (type == htons(ETH_P_TEB)) {
3288 		struct ethhdr *eth;
3289 
3290 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3291 			return 0;
3292 
3293 		eth = (struct ethhdr *)skb->data;
3294 		type = eth->h_proto;
3295 	}
3296 
3297 	return __vlan_get_protocol(skb, type, depth);
3298 }
3299 
3300 /**
3301  *	skb_mac_gso_segment - mac layer segmentation handler.
3302  *	@skb: buffer to segment
3303  *	@features: features for the output path (see dev->features)
3304  */
3305 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3306 				    netdev_features_t features)
3307 {
3308 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3309 	struct packet_offload *ptype;
3310 	int vlan_depth = skb->mac_len;
3311 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3312 
3313 	if (unlikely(!type))
3314 		return ERR_PTR(-EINVAL);
3315 
3316 	__skb_pull(skb, vlan_depth);
3317 
3318 	rcu_read_lock();
3319 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3320 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3321 			segs = ptype->callbacks.gso_segment(skb, features);
3322 			break;
3323 		}
3324 	}
3325 	rcu_read_unlock();
3326 
3327 	__skb_push(skb, skb->data - skb_mac_header(skb));
3328 
3329 	return segs;
3330 }
3331 EXPORT_SYMBOL(skb_mac_gso_segment);
3332 
3333 
3334 /* openvswitch calls this on rx path, so we need a different check.
3335  */
3336 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3337 {
3338 	if (tx_path)
3339 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3340 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3341 
3342 	return skb->ip_summed == CHECKSUM_NONE;
3343 }
3344 
3345 /**
3346  *	__skb_gso_segment - Perform segmentation on skb.
3347  *	@skb: buffer to segment
3348  *	@features: features for the output path (see dev->features)
3349  *	@tx_path: whether it is called in TX path
3350  *
3351  *	This function segments the given skb and returns a list of segments.
3352  *
3353  *	It may return NULL if the skb requires no segmentation.  This is
3354  *	only possible when GSO is used for verifying header integrity.
3355  *
3356  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3357  */
3358 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3359 				  netdev_features_t features, bool tx_path)
3360 {
3361 	struct sk_buff *segs;
3362 
3363 	if (unlikely(skb_needs_check(skb, tx_path))) {
3364 		int err;
3365 
3366 		/* We're going to init ->check field in TCP or UDP header */
3367 		err = skb_cow_head(skb, 0);
3368 		if (err < 0)
3369 			return ERR_PTR(err);
3370 	}
3371 
3372 	/* Only report GSO partial support if it will enable us to
3373 	 * support segmentation on this frame without needing additional
3374 	 * work.
3375 	 */
3376 	if (features & NETIF_F_GSO_PARTIAL) {
3377 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3378 		struct net_device *dev = skb->dev;
3379 
3380 		partial_features |= dev->features & dev->gso_partial_features;
3381 		if (!skb_gso_ok(skb, features | partial_features))
3382 			features &= ~NETIF_F_GSO_PARTIAL;
3383 	}
3384 
3385 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3386 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3387 
3388 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3389 	SKB_GSO_CB(skb)->encap_level = 0;
3390 
3391 	skb_reset_mac_header(skb);
3392 	skb_reset_mac_len(skb);
3393 
3394 	segs = skb_mac_gso_segment(skb, features);
3395 
3396 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3397 		skb_warn_bad_offload(skb);
3398 
3399 	return segs;
3400 }
3401 EXPORT_SYMBOL(__skb_gso_segment);
3402 
3403 /* Take action when hardware reception checksum errors are detected. */
3404 #ifdef CONFIG_BUG
3405 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3406 {
3407 	if (net_ratelimit()) {
3408 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3409 		skb_dump(KERN_ERR, skb, true);
3410 		dump_stack();
3411 	}
3412 }
3413 EXPORT_SYMBOL(netdev_rx_csum_fault);
3414 #endif
3415 
3416 /* XXX: check that highmem exists at all on the given machine. */
3417 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3418 {
3419 #ifdef CONFIG_HIGHMEM
3420 	int i;
3421 
3422 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3423 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3424 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3425 
3426 			if (PageHighMem(skb_frag_page(frag)))
3427 				return 1;
3428 		}
3429 	}
3430 #endif
3431 	return 0;
3432 }
3433 
3434 /* If MPLS offload request, verify we are testing hardware MPLS features
3435  * instead of standard features for the netdev.
3436  */
3437 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3438 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3439 					   netdev_features_t features,
3440 					   __be16 type)
3441 {
3442 	if (eth_p_mpls(type))
3443 		features &= skb->dev->mpls_features;
3444 
3445 	return features;
3446 }
3447 #else
3448 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3449 					   netdev_features_t features,
3450 					   __be16 type)
3451 {
3452 	return features;
3453 }
3454 #endif
3455 
3456 static netdev_features_t harmonize_features(struct sk_buff *skb,
3457 	netdev_features_t features)
3458 {
3459 	__be16 type;
3460 
3461 	type = skb_network_protocol(skb, NULL);
3462 	features = net_mpls_features(skb, features, type);
3463 
3464 	if (skb->ip_summed != CHECKSUM_NONE &&
3465 	    !can_checksum_protocol(features, type)) {
3466 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3467 	}
3468 	if (illegal_highdma(skb->dev, skb))
3469 		features &= ~NETIF_F_SG;
3470 
3471 	return features;
3472 }
3473 
3474 netdev_features_t passthru_features_check(struct sk_buff *skb,
3475 					  struct net_device *dev,
3476 					  netdev_features_t features)
3477 {
3478 	return features;
3479 }
3480 EXPORT_SYMBOL(passthru_features_check);
3481 
3482 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3483 					     struct net_device *dev,
3484 					     netdev_features_t features)
3485 {
3486 	return vlan_features_check(skb, features);
3487 }
3488 
3489 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3490 					    struct net_device *dev,
3491 					    netdev_features_t features)
3492 {
3493 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3494 
3495 	if (gso_segs > dev->gso_max_segs)
3496 		return features & ~NETIF_F_GSO_MASK;
3497 
3498 	/* Support for GSO partial features requires software
3499 	 * intervention before we can actually process the packets
3500 	 * so we need to strip support for any partial features now
3501 	 * and we can pull them back in after we have partially
3502 	 * segmented the frame.
3503 	 */
3504 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3505 		features &= ~dev->gso_partial_features;
3506 
3507 	/* Make sure to clear the IPv4 ID mangling feature if the
3508 	 * IPv4 header has the potential to be fragmented.
3509 	 */
3510 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3511 		struct iphdr *iph = skb->encapsulation ?
3512 				    inner_ip_hdr(skb) : ip_hdr(skb);
3513 
3514 		if (!(iph->frag_off & htons(IP_DF)))
3515 			features &= ~NETIF_F_TSO_MANGLEID;
3516 	}
3517 
3518 	return features;
3519 }
3520 
3521 netdev_features_t netif_skb_features(struct sk_buff *skb)
3522 {
3523 	struct net_device *dev = skb->dev;
3524 	netdev_features_t features = dev->features;
3525 
3526 	if (skb_is_gso(skb))
3527 		features = gso_features_check(skb, dev, features);
3528 
3529 	/* If encapsulation offload request, verify we are testing
3530 	 * hardware encapsulation features instead of standard
3531 	 * features for the netdev
3532 	 */
3533 	if (skb->encapsulation)
3534 		features &= dev->hw_enc_features;
3535 
3536 	if (skb_vlan_tagged(skb))
3537 		features = netdev_intersect_features(features,
3538 						     dev->vlan_features |
3539 						     NETIF_F_HW_VLAN_CTAG_TX |
3540 						     NETIF_F_HW_VLAN_STAG_TX);
3541 
3542 	if (dev->netdev_ops->ndo_features_check)
3543 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3544 								features);
3545 	else
3546 		features &= dflt_features_check(skb, dev, features);
3547 
3548 	return harmonize_features(skb, features);
3549 }
3550 EXPORT_SYMBOL(netif_skb_features);
3551 
3552 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3553 		    struct netdev_queue *txq, bool more)
3554 {
3555 	unsigned int len;
3556 	int rc;
3557 
3558 	if (dev_nit_active(dev))
3559 		dev_queue_xmit_nit(skb, dev);
3560 
3561 	len = skb->len;
3562 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3563 	trace_net_dev_start_xmit(skb, dev);
3564 	rc = netdev_start_xmit(skb, dev, txq, more);
3565 	trace_net_dev_xmit(skb, rc, dev, len);
3566 
3567 	return rc;
3568 }
3569 
3570 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3571 				    struct netdev_queue *txq, int *ret)
3572 {
3573 	struct sk_buff *skb = first;
3574 	int rc = NETDEV_TX_OK;
3575 
3576 	while (skb) {
3577 		struct sk_buff *next = skb->next;
3578 
3579 		skb_mark_not_on_list(skb);
3580 		rc = xmit_one(skb, dev, txq, next != NULL);
3581 		if (unlikely(!dev_xmit_complete(rc))) {
3582 			skb->next = next;
3583 			goto out;
3584 		}
3585 
3586 		skb = next;
3587 		if (netif_tx_queue_stopped(txq) && skb) {
3588 			rc = NETDEV_TX_BUSY;
3589 			break;
3590 		}
3591 	}
3592 
3593 out:
3594 	*ret = rc;
3595 	return skb;
3596 }
3597 
3598 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3599 					  netdev_features_t features)
3600 {
3601 	if (skb_vlan_tag_present(skb) &&
3602 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3603 		skb = __vlan_hwaccel_push_inside(skb);
3604 	return skb;
3605 }
3606 
3607 int skb_csum_hwoffload_help(struct sk_buff *skb,
3608 			    const netdev_features_t features)
3609 {
3610 	if (unlikely(skb->csum_not_inet))
3611 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3612 			skb_crc32c_csum_help(skb);
3613 
3614 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3615 }
3616 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3617 
3618 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3619 {
3620 	netdev_features_t features;
3621 
3622 	features = netif_skb_features(skb);
3623 	skb = validate_xmit_vlan(skb, features);
3624 	if (unlikely(!skb))
3625 		goto out_null;
3626 
3627 	skb = sk_validate_xmit_skb(skb, dev);
3628 	if (unlikely(!skb))
3629 		goto out_null;
3630 
3631 	if (netif_needs_gso(skb, features)) {
3632 		struct sk_buff *segs;
3633 
3634 		segs = skb_gso_segment(skb, features);
3635 		if (IS_ERR(segs)) {
3636 			goto out_kfree_skb;
3637 		} else if (segs) {
3638 			consume_skb(skb);
3639 			skb = segs;
3640 		}
3641 	} else {
3642 		if (skb_needs_linearize(skb, features) &&
3643 		    __skb_linearize(skb))
3644 			goto out_kfree_skb;
3645 
3646 		/* If packet is not checksummed and device does not
3647 		 * support checksumming for this protocol, complete
3648 		 * checksumming here.
3649 		 */
3650 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3651 			if (skb->encapsulation)
3652 				skb_set_inner_transport_header(skb,
3653 							       skb_checksum_start_offset(skb));
3654 			else
3655 				skb_set_transport_header(skb,
3656 							 skb_checksum_start_offset(skb));
3657 			if (skb_csum_hwoffload_help(skb, features))
3658 				goto out_kfree_skb;
3659 		}
3660 	}
3661 
3662 	skb = validate_xmit_xfrm(skb, features, again);
3663 
3664 	return skb;
3665 
3666 out_kfree_skb:
3667 	kfree_skb(skb);
3668 out_null:
3669 	atomic_long_inc(&dev->tx_dropped);
3670 	return NULL;
3671 }
3672 
3673 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3674 {
3675 	struct sk_buff *next, *head = NULL, *tail;
3676 
3677 	for (; skb != NULL; skb = next) {
3678 		next = skb->next;
3679 		skb_mark_not_on_list(skb);
3680 
3681 		/* in case skb wont be segmented, point to itself */
3682 		skb->prev = skb;
3683 
3684 		skb = validate_xmit_skb(skb, dev, again);
3685 		if (!skb)
3686 			continue;
3687 
3688 		if (!head)
3689 			head = skb;
3690 		else
3691 			tail->next = skb;
3692 		/* If skb was segmented, skb->prev points to
3693 		 * the last segment. If not, it still contains skb.
3694 		 */
3695 		tail = skb->prev;
3696 	}
3697 	return head;
3698 }
3699 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3700 
3701 static void qdisc_pkt_len_init(struct sk_buff *skb)
3702 {
3703 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3704 
3705 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3706 
3707 	/* To get more precise estimation of bytes sent on wire,
3708 	 * we add to pkt_len the headers size of all segments
3709 	 */
3710 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3711 		unsigned int hdr_len;
3712 		u16 gso_segs = shinfo->gso_segs;
3713 
3714 		/* mac layer + network layer */
3715 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3716 
3717 		/* + transport layer */
3718 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3719 			const struct tcphdr *th;
3720 			struct tcphdr _tcphdr;
3721 
3722 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3723 						sizeof(_tcphdr), &_tcphdr);
3724 			if (likely(th))
3725 				hdr_len += __tcp_hdrlen(th);
3726 		} else {
3727 			struct udphdr _udphdr;
3728 
3729 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3730 					       sizeof(_udphdr), &_udphdr))
3731 				hdr_len += sizeof(struct udphdr);
3732 		}
3733 
3734 		if (shinfo->gso_type & SKB_GSO_DODGY)
3735 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3736 						shinfo->gso_size);
3737 
3738 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3739 	}
3740 }
3741 
3742 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3743 				 struct net_device *dev,
3744 				 struct netdev_queue *txq)
3745 {
3746 	spinlock_t *root_lock = qdisc_lock(q);
3747 	struct sk_buff *to_free = NULL;
3748 	bool contended;
3749 	int rc;
3750 
3751 	qdisc_calculate_pkt_len(skb, q);
3752 
3753 	if (q->flags & TCQ_F_NOLOCK) {
3754 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3755 		qdisc_run(q);
3756 
3757 		if (unlikely(to_free))
3758 			kfree_skb_list(to_free);
3759 		return rc;
3760 	}
3761 
3762 	/*
3763 	 * Heuristic to force contended enqueues to serialize on a
3764 	 * separate lock before trying to get qdisc main lock.
3765 	 * This permits qdisc->running owner to get the lock more
3766 	 * often and dequeue packets faster.
3767 	 */
3768 	contended = qdisc_is_running(q);
3769 	if (unlikely(contended))
3770 		spin_lock(&q->busylock);
3771 
3772 	spin_lock(root_lock);
3773 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3774 		__qdisc_drop(skb, &to_free);
3775 		rc = NET_XMIT_DROP;
3776 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3777 		   qdisc_run_begin(q)) {
3778 		/*
3779 		 * This is a work-conserving queue; there are no old skbs
3780 		 * waiting to be sent out; and the qdisc is not running -
3781 		 * xmit the skb directly.
3782 		 */
3783 
3784 		qdisc_bstats_update(q, skb);
3785 
3786 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3787 			if (unlikely(contended)) {
3788 				spin_unlock(&q->busylock);
3789 				contended = false;
3790 			}
3791 			__qdisc_run(q);
3792 		}
3793 
3794 		qdisc_run_end(q);
3795 		rc = NET_XMIT_SUCCESS;
3796 	} else {
3797 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3798 		if (qdisc_run_begin(q)) {
3799 			if (unlikely(contended)) {
3800 				spin_unlock(&q->busylock);
3801 				contended = false;
3802 			}
3803 			__qdisc_run(q);
3804 			qdisc_run_end(q);
3805 		}
3806 	}
3807 	spin_unlock(root_lock);
3808 	if (unlikely(to_free))
3809 		kfree_skb_list(to_free);
3810 	if (unlikely(contended))
3811 		spin_unlock(&q->busylock);
3812 	return rc;
3813 }
3814 
3815 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3816 static void skb_update_prio(struct sk_buff *skb)
3817 {
3818 	const struct netprio_map *map;
3819 	const struct sock *sk;
3820 	unsigned int prioidx;
3821 
3822 	if (skb->priority)
3823 		return;
3824 	map = rcu_dereference_bh(skb->dev->priomap);
3825 	if (!map)
3826 		return;
3827 	sk = skb_to_full_sk(skb);
3828 	if (!sk)
3829 		return;
3830 
3831 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3832 
3833 	if (prioidx < map->priomap_len)
3834 		skb->priority = map->priomap[prioidx];
3835 }
3836 #else
3837 #define skb_update_prio(skb)
3838 #endif
3839 
3840 /**
3841  *	dev_loopback_xmit - loop back @skb
3842  *	@net: network namespace this loopback is happening in
3843  *	@sk:  sk needed to be a netfilter okfn
3844  *	@skb: buffer to transmit
3845  */
3846 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3847 {
3848 	skb_reset_mac_header(skb);
3849 	__skb_pull(skb, skb_network_offset(skb));
3850 	skb->pkt_type = PACKET_LOOPBACK;
3851 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3852 	WARN_ON(!skb_dst(skb));
3853 	skb_dst_force(skb);
3854 	netif_rx_ni(skb);
3855 	return 0;
3856 }
3857 EXPORT_SYMBOL(dev_loopback_xmit);
3858 
3859 #ifdef CONFIG_NET_EGRESS
3860 static struct sk_buff *
3861 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3862 {
3863 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3864 	struct tcf_result cl_res;
3865 
3866 	if (!miniq)
3867 		return skb;
3868 
3869 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3870 	mini_qdisc_bstats_cpu_update(miniq, skb);
3871 
3872 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3873 	case TC_ACT_OK:
3874 	case TC_ACT_RECLASSIFY:
3875 		skb->tc_index = TC_H_MIN(cl_res.classid);
3876 		break;
3877 	case TC_ACT_SHOT:
3878 		mini_qdisc_qstats_cpu_drop(miniq);
3879 		*ret = NET_XMIT_DROP;
3880 		kfree_skb(skb);
3881 		return NULL;
3882 	case TC_ACT_STOLEN:
3883 	case TC_ACT_QUEUED:
3884 	case TC_ACT_TRAP:
3885 		*ret = NET_XMIT_SUCCESS;
3886 		consume_skb(skb);
3887 		return NULL;
3888 	case TC_ACT_REDIRECT:
3889 		/* No need to push/pop skb's mac_header here on egress! */
3890 		skb_do_redirect(skb);
3891 		*ret = NET_XMIT_SUCCESS;
3892 		return NULL;
3893 	default:
3894 		break;
3895 	}
3896 
3897 	return skb;
3898 }
3899 #endif /* CONFIG_NET_EGRESS */
3900 
3901 #ifdef CONFIG_XPS
3902 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3903 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3904 {
3905 	struct xps_map *map;
3906 	int queue_index = -1;
3907 
3908 	if (dev->num_tc) {
3909 		tci *= dev->num_tc;
3910 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3911 	}
3912 
3913 	map = rcu_dereference(dev_maps->attr_map[tci]);
3914 	if (map) {
3915 		if (map->len == 1)
3916 			queue_index = map->queues[0];
3917 		else
3918 			queue_index = map->queues[reciprocal_scale(
3919 						skb_get_hash(skb), map->len)];
3920 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3921 			queue_index = -1;
3922 	}
3923 	return queue_index;
3924 }
3925 #endif
3926 
3927 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3928 			 struct sk_buff *skb)
3929 {
3930 #ifdef CONFIG_XPS
3931 	struct xps_dev_maps *dev_maps;
3932 	struct sock *sk = skb->sk;
3933 	int queue_index = -1;
3934 
3935 	if (!static_key_false(&xps_needed))
3936 		return -1;
3937 
3938 	rcu_read_lock();
3939 	if (!static_key_false(&xps_rxqs_needed))
3940 		goto get_cpus_map;
3941 
3942 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3943 	if (dev_maps) {
3944 		int tci = sk_rx_queue_get(sk);
3945 
3946 		if (tci >= 0 && tci < dev->num_rx_queues)
3947 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3948 							  tci);
3949 	}
3950 
3951 get_cpus_map:
3952 	if (queue_index < 0) {
3953 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3954 		if (dev_maps) {
3955 			unsigned int tci = skb->sender_cpu - 1;
3956 
3957 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3958 							  tci);
3959 		}
3960 	}
3961 	rcu_read_unlock();
3962 
3963 	return queue_index;
3964 #else
3965 	return -1;
3966 #endif
3967 }
3968 
3969 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3970 		     struct net_device *sb_dev)
3971 {
3972 	return 0;
3973 }
3974 EXPORT_SYMBOL(dev_pick_tx_zero);
3975 
3976 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3977 		       struct net_device *sb_dev)
3978 {
3979 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3980 }
3981 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3982 
3983 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3984 		     struct net_device *sb_dev)
3985 {
3986 	struct sock *sk = skb->sk;
3987 	int queue_index = sk_tx_queue_get(sk);
3988 
3989 	sb_dev = sb_dev ? : dev;
3990 
3991 	if (queue_index < 0 || skb->ooo_okay ||
3992 	    queue_index >= dev->real_num_tx_queues) {
3993 		int new_index = get_xps_queue(dev, sb_dev, skb);
3994 
3995 		if (new_index < 0)
3996 			new_index = skb_tx_hash(dev, sb_dev, skb);
3997 
3998 		if (queue_index != new_index && sk &&
3999 		    sk_fullsock(sk) &&
4000 		    rcu_access_pointer(sk->sk_dst_cache))
4001 			sk_tx_queue_set(sk, new_index);
4002 
4003 		queue_index = new_index;
4004 	}
4005 
4006 	return queue_index;
4007 }
4008 EXPORT_SYMBOL(netdev_pick_tx);
4009 
4010 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4011 					 struct sk_buff *skb,
4012 					 struct net_device *sb_dev)
4013 {
4014 	int queue_index = 0;
4015 
4016 #ifdef CONFIG_XPS
4017 	u32 sender_cpu = skb->sender_cpu - 1;
4018 
4019 	if (sender_cpu >= (u32)NR_CPUS)
4020 		skb->sender_cpu = raw_smp_processor_id() + 1;
4021 #endif
4022 
4023 	if (dev->real_num_tx_queues != 1) {
4024 		const struct net_device_ops *ops = dev->netdev_ops;
4025 
4026 		if (ops->ndo_select_queue)
4027 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4028 		else
4029 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4030 
4031 		queue_index = netdev_cap_txqueue(dev, queue_index);
4032 	}
4033 
4034 	skb_set_queue_mapping(skb, queue_index);
4035 	return netdev_get_tx_queue(dev, queue_index);
4036 }
4037 
4038 /**
4039  *	__dev_queue_xmit - transmit a buffer
4040  *	@skb: buffer to transmit
4041  *	@sb_dev: suboordinate device used for L2 forwarding offload
4042  *
4043  *	Queue a buffer for transmission to a network device. The caller must
4044  *	have set the device and priority and built the buffer before calling
4045  *	this function. The function can be called from an interrupt.
4046  *
4047  *	A negative errno code is returned on a failure. A success does not
4048  *	guarantee the frame will be transmitted as it may be dropped due
4049  *	to congestion or traffic shaping.
4050  *
4051  * -----------------------------------------------------------------------------------
4052  *      I notice this method can also return errors from the queue disciplines,
4053  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4054  *      be positive.
4055  *
4056  *      Regardless of the return value, the skb is consumed, so it is currently
4057  *      difficult to retry a send to this method.  (You can bump the ref count
4058  *      before sending to hold a reference for retry if you are careful.)
4059  *
4060  *      When calling this method, interrupts MUST be enabled.  This is because
4061  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4062  *          --BLG
4063  */
4064 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4065 {
4066 	struct net_device *dev = skb->dev;
4067 	struct netdev_queue *txq;
4068 	struct Qdisc *q;
4069 	int rc = -ENOMEM;
4070 	bool again = false;
4071 
4072 	skb_reset_mac_header(skb);
4073 
4074 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4075 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4076 
4077 	/* Disable soft irqs for various locks below. Also
4078 	 * stops preemption for RCU.
4079 	 */
4080 	rcu_read_lock_bh();
4081 
4082 	skb_update_prio(skb);
4083 
4084 	qdisc_pkt_len_init(skb);
4085 #ifdef CONFIG_NET_CLS_ACT
4086 	skb->tc_at_ingress = 0;
4087 # ifdef CONFIG_NET_EGRESS
4088 	if (static_branch_unlikely(&egress_needed_key)) {
4089 		skb = sch_handle_egress(skb, &rc, dev);
4090 		if (!skb)
4091 			goto out;
4092 	}
4093 # endif
4094 #endif
4095 	/* If device/qdisc don't need skb->dst, release it right now while
4096 	 * its hot in this cpu cache.
4097 	 */
4098 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4099 		skb_dst_drop(skb);
4100 	else
4101 		skb_dst_force(skb);
4102 
4103 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4104 	q = rcu_dereference_bh(txq->qdisc);
4105 
4106 	trace_net_dev_queue(skb);
4107 	if (q->enqueue) {
4108 		rc = __dev_xmit_skb(skb, q, dev, txq);
4109 		goto out;
4110 	}
4111 
4112 	/* The device has no queue. Common case for software devices:
4113 	 * loopback, all the sorts of tunnels...
4114 
4115 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4116 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4117 	 * counters.)
4118 	 * However, it is possible, that they rely on protection
4119 	 * made by us here.
4120 
4121 	 * Check this and shot the lock. It is not prone from deadlocks.
4122 	 *Either shot noqueue qdisc, it is even simpler 8)
4123 	 */
4124 	if (dev->flags & IFF_UP) {
4125 		int cpu = smp_processor_id(); /* ok because BHs are off */
4126 
4127 		if (txq->xmit_lock_owner != cpu) {
4128 			if (dev_xmit_recursion())
4129 				goto recursion_alert;
4130 
4131 			skb = validate_xmit_skb(skb, dev, &again);
4132 			if (!skb)
4133 				goto out;
4134 
4135 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4136 			HARD_TX_LOCK(dev, txq, cpu);
4137 
4138 			if (!netif_xmit_stopped(txq)) {
4139 				dev_xmit_recursion_inc();
4140 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4141 				dev_xmit_recursion_dec();
4142 				if (dev_xmit_complete(rc)) {
4143 					HARD_TX_UNLOCK(dev, txq);
4144 					goto out;
4145 				}
4146 			}
4147 			HARD_TX_UNLOCK(dev, txq);
4148 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4149 					     dev->name);
4150 		} else {
4151 			/* Recursion is detected! It is possible,
4152 			 * unfortunately
4153 			 */
4154 recursion_alert:
4155 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4156 					     dev->name);
4157 		}
4158 	}
4159 
4160 	rc = -ENETDOWN;
4161 	rcu_read_unlock_bh();
4162 
4163 	atomic_long_inc(&dev->tx_dropped);
4164 	kfree_skb_list(skb);
4165 	return rc;
4166 out:
4167 	rcu_read_unlock_bh();
4168 	return rc;
4169 }
4170 
4171 int dev_queue_xmit(struct sk_buff *skb)
4172 {
4173 	return __dev_queue_xmit(skb, NULL);
4174 }
4175 EXPORT_SYMBOL(dev_queue_xmit);
4176 
4177 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4178 {
4179 	return __dev_queue_xmit(skb, sb_dev);
4180 }
4181 EXPORT_SYMBOL(dev_queue_xmit_accel);
4182 
4183 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4184 {
4185 	struct net_device *dev = skb->dev;
4186 	struct sk_buff *orig_skb = skb;
4187 	struct netdev_queue *txq;
4188 	int ret = NETDEV_TX_BUSY;
4189 	bool again = false;
4190 
4191 	if (unlikely(!netif_running(dev) ||
4192 		     !netif_carrier_ok(dev)))
4193 		goto drop;
4194 
4195 	skb = validate_xmit_skb_list(skb, dev, &again);
4196 	if (skb != orig_skb)
4197 		goto drop;
4198 
4199 	skb_set_queue_mapping(skb, queue_id);
4200 	txq = skb_get_tx_queue(dev, skb);
4201 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4202 
4203 	local_bh_disable();
4204 
4205 	dev_xmit_recursion_inc();
4206 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4207 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4208 		ret = netdev_start_xmit(skb, dev, txq, false);
4209 	HARD_TX_UNLOCK(dev, txq);
4210 	dev_xmit_recursion_dec();
4211 
4212 	local_bh_enable();
4213 
4214 	if (!dev_xmit_complete(ret))
4215 		kfree_skb(skb);
4216 
4217 	return ret;
4218 drop:
4219 	atomic_long_inc(&dev->tx_dropped);
4220 	kfree_skb_list(skb);
4221 	return NET_XMIT_DROP;
4222 }
4223 EXPORT_SYMBOL(dev_direct_xmit);
4224 
4225 /*************************************************************************
4226  *			Receiver routines
4227  *************************************************************************/
4228 
4229 int netdev_max_backlog __read_mostly = 1000;
4230 EXPORT_SYMBOL(netdev_max_backlog);
4231 
4232 int netdev_tstamp_prequeue __read_mostly = 1;
4233 int netdev_budget __read_mostly = 300;
4234 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4235 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4236 int weight_p __read_mostly = 64;           /* old backlog weight */
4237 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4238 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4239 int dev_rx_weight __read_mostly = 64;
4240 int dev_tx_weight __read_mostly = 64;
4241 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4242 int gro_normal_batch __read_mostly = 8;
4243 
4244 /* Called with irq disabled */
4245 static inline void ____napi_schedule(struct softnet_data *sd,
4246 				     struct napi_struct *napi)
4247 {
4248 	list_add_tail(&napi->poll_list, &sd->poll_list);
4249 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4250 }
4251 
4252 #ifdef CONFIG_RPS
4253 
4254 /* One global table that all flow-based protocols share. */
4255 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4256 EXPORT_SYMBOL(rps_sock_flow_table);
4257 u32 rps_cpu_mask __read_mostly;
4258 EXPORT_SYMBOL(rps_cpu_mask);
4259 
4260 struct static_key_false rps_needed __read_mostly;
4261 EXPORT_SYMBOL(rps_needed);
4262 struct static_key_false rfs_needed __read_mostly;
4263 EXPORT_SYMBOL(rfs_needed);
4264 
4265 static struct rps_dev_flow *
4266 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4267 	    struct rps_dev_flow *rflow, u16 next_cpu)
4268 {
4269 	if (next_cpu < nr_cpu_ids) {
4270 #ifdef CONFIG_RFS_ACCEL
4271 		struct netdev_rx_queue *rxqueue;
4272 		struct rps_dev_flow_table *flow_table;
4273 		struct rps_dev_flow *old_rflow;
4274 		u32 flow_id;
4275 		u16 rxq_index;
4276 		int rc;
4277 
4278 		/* Should we steer this flow to a different hardware queue? */
4279 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4280 		    !(dev->features & NETIF_F_NTUPLE))
4281 			goto out;
4282 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4283 		if (rxq_index == skb_get_rx_queue(skb))
4284 			goto out;
4285 
4286 		rxqueue = dev->_rx + rxq_index;
4287 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4288 		if (!flow_table)
4289 			goto out;
4290 		flow_id = skb_get_hash(skb) & flow_table->mask;
4291 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4292 							rxq_index, flow_id);
4293 		if (rc < 0)
4294 			goto out;
4295 		old_rflow = rflow;
4296 		rflow = &flow_table->flows[flow_id];
4297 		rflow->filter = rc;
4298 		if (old_rflow->filter == rflow->filter)
4299 			old_rflow->filter = RPS_NO_FILTER;
4300 	out:
4301 #endif
4302 		rflow->last_qtail =
4303 			per_cpu(softnet_data, next_cpu).input_queue_head;
4304 	}
4305 
4306 	rflow->cpu = next_cpu;
4307 	return rflow;
4308 }
4309 
4310 /*
4311  * get_rps_cpu is called from netif_receive_skb and returns the target
4312  * CPU from the RPS map of the receiving queue for a given skb.
4313  * rcu_read_lock must be held on entry.
4314  */
4315 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4316 		       struct rps_dev_flow **rflowp)
4317 {
4318 	const struct rps_sock_flow_table *sock_flow_table;
4319 	struct netdev_rx_queue *rxqueue = dev->_rx;
4320 	struct rps_dev_flow_table *flow_table;
4321 	struct rps_map *map;
4322 	int cpu = -1;
4323 	u32 tcpu;
4324 	u32 hash;
4325 
4326 	if (skb_rx_queue_recorded(skb)) {
4327 		u16 index = skb_get_rx_queue(skb);
4328 
4329 		if (unlikely(index >= dev->real_num_rx_queues)) {
4330 			WARN_ONCE(dev->real_num_rx_queues > 1,
4331 				  "%s received packet on queue %u, but number "
4332 				  "of RX queues is %u\n",
4333 				  dev->name, index, dev->real_num_rx_queues);
4334 			goto done;
4335 		}
4336 		rxqueue += index;
4337 	}
4338 
4339 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4340 
4341 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4342 	map = rcu_dereference(rxqueue->rps_map);
4343 	if (!flow_table && !map)
4344 		goto done;
4345 
4346 	skb_reset_network_header(skb);
4347 	hash = skb_get_hash(skb);
4348 	if (!hash)
4349 		goto done;
4350 
4351 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4352 	if (flow_table && sock_flow_table) {
4353 		struct rps_dev_flow *rflow;
4354 		u32 next_cpu;
4355 		u32 ident;
4356 
4357 		/* First check into global flow table if there is a match */
4358 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4359 		if ((ident ^ hash) & ~rps_cpu_mask)
4360 			goto try_rps;
4361 
4362 		next_cpu = ident & rps_cpu_mask;
4363 
4364 		/* OK, now we know there is a match,
4365 		 * we can look at the local (per receive queue) flow table
4366 		 */
4367 		rflow = &flow_table->flows[hash & flow_table->mask];
4368 		tcpu = rflow->cpu;
4369 
4370 		/*
4371 		 * If the desired CPU (where last recvmsg was done) is
4372 		 * different from current CPU (one in the rx-queue flow
4373 		 * table entry), switch if one of the following holds:
4374 		 *   - Current CPU is unset (>= nr_cpu_ids).
4375 		 *   - Current CPU is offline.
4376 		 *   - The current CPU's queue tail has advanced beyond the
4377 		 *     last packet that was enqueued using this table entry.
4378 		 *     This guarantees that all previous packets for the flow
4379 		 *     have been dequeued, thus preserving in order delivery.
4380 		 */
4381 		if (unlikely(tcpu != next_cpu) &&
4382 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4383 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4384 		      rflow->last_qtail)) >= 0)) {
4385 			tcpu = next_cpu;
4386 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4387 		}
4388 
4389 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4390 			*rflowp = rflow;
4391 			cpu = tcpu;
4392 			goto done;
4393 		}
4394 	}
4395 
4396 try_rps:
4397 
4398 	if (map) {
4399 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4400 		if (cpu_online(tcpu)) {
4401 			cpu = tcpu;
4402 			goto done;
4403 		}
4404 	}
4405 
4406 done:
4407 	return cpu;
4408 }
4409 
4410 #ifdef CONFIG_RFS_ACCEL
4411 
4412 /**
4413  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4414  * @dev: Device on which the filter was set
4415  * @rxq_index: RX queue index
4416  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4417  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4418  *
4419  * Drivers that implement ndo_rx_flow_steer() should periodically call
4420  * this function for each installed filter and remove the filters for
4421  * which it returns %true.
4422  */
4423 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4424 			 u32 flow_id, u16 filter_id)
4425 {
4426 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4427 	struct rps_dev_flow_table *flow_table;
4428 	struct rps_dev_flow *rflow;
4429 	bool expire = true;
4430 	unsigned int cpu;
4431 
4432 	rcu_read_lock();
4433 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4434 	if (flow_table && flow_id <= flow_table->mask) {
4435 		rflow = &flow_table->flows[flow_id];
4436 		cpu = READ_ONCE(rflow->cpu);
4437 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4438 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4439 			   rflow->last_qtail) <
4440 		     (int)(10 * flow_table->mask)))
4441 			expire = false;
4442 	}
4443 	rcu_read_unlock();
4444 	return expire;
4445 }
4446 EXPORT_SYMBOL(rps_may_expire_flow);
4447 
4448 #endif /* CONFIG_RFS_ACCEL */
4449 
4450 /* Called from hardirq (IPI) context */
4451 static void rps_trigger_softirq(void *data)
4452 {
4453 	struct softnet_data *sd = data;
4454 
4455 	____napi_schedule(sd, &sd->backlog);
4456 	sd->received_rps++;
4457 }
4458 
4459 #endif /* CONFIG_RPS */
4460 
4461 /*
4462  * Check if this softnet_data structure is another cpu one
4463  * If yes, queue it to our IPI list and return 1
4464  * If no, return 0
4465  */
4466 static int rps_ipi_queued(struct softnet_data *sd)
4467 {
4468 #ifdef CONFIG_RPS
4469 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4470 
4471 	if (sd != mysd) {
4472 		sd->rps_ipi_next = mysd->rps_ipi_list;
4473 		mysd->rps_ipi_list = sd;
4474 
4475 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4476 		return 1;
4477 	}
4478 #endif /* CONFIG_RPS */
4479 	return 0;
4480 }
4481 
4482 #ifdef CONFIG_NET_FLOW_LIMIT
4483 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4484 #endif
4485 
4486 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4487 {
4488 #ifdef CONFIG_NET_FLOW_LIMIT
4489 	struct sd_flow_limit *fl;
4490 	struct softnet_data *sd;
4491 	unsigned int old_flow, new_flow;
4492 
4493 	if (qlen < (netdev_max_backlog >> 1))
4494 		return false;
4495 
4496 	sd = this_cpu_ptr(&softnet_data);
4497 
4498 	rcu_read_lock();
4499 	fl = rcu_dereference(sd->flow_limit);
4500 	if (fl) {
4501 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4502 		old_flow = fl->history[fl->history_head];
4503 		fl->history[fl->history_head] = new_flow;
4504 
4505 		fl->history_head++;
4506 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4507 
4508 		if (likely(fl->buckets[old_flow]))
4509 			fl->buckets[old_flow]--;
4510 
4511 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4512 			fl->count++;
4513 			rcu_read_unlock();
4514 			return true;
4515 		}
4516 	}
4517 	rcu_read_unlock();
4518 #endif
4519 	return false;
4520 }
4521 
4522 /*
4523  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4524  * queue (may be a remote CPU queue).
4525  */
4526 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4527 			      unsigned int *qtail)
4528 {
4529 	struct softnet_data *sd;
4530 	unsigned long flags;
4531 	unsigned int qlen;
4532 
4533 	sd = &per_cpu(softnet_data, cpu);
4534 
4535 	local_irq_save(flags);
4536 
4537 	rps_lock(sd);
4538 	if (!netif_running(skb->dev))
4539 		goto drop;
4540 	qlen = skb_queue_len(&sd->input_pkt_queue);
4541 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4542 		if (qlen) {
4543 enqueue:
4544 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4545 			input_queue_tail_incr_save(sd, qtail);
4546 			rps_unlock(sd);
4547 			local_irq_restore(flags);
4548 			return NET_RX_SUCCESS;
4549 		}
4550 
4551 		/* Schedule NAPI for backlog device
4552 		 * We can use non atomic operation since we own the queue lock
4553 		 */
4554 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4555 			if (!rps_ipi_queued(sd))
4556 				____napi_schedule(sd, &sd->backlog);
4557 		}
4558 		goto enqueue;
4559 	}
4560 
4561 drop:
4562 	sd->dropped++;
4563 	rps_unlock(sd);
4564 
4565 	local_irq_restore(flags);
4566 
4567 	atomic_long_inc(&skb->dev->rx_dropped);
4568 	kfree_skb(skb);
4569 	return NET_RX_DROP;
4570 }
4571 
4572 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4573 {
4574 	struct net_device *dev = skb->dev;
4575 	struct netdev_rx_queue *rxqueue;
4576 
4577 	rxqueue = dev->_rx;
4578 
4579 	if (skb_rx_queue_recorded(skb)) {
4580 		u16 index = skb_get_rx_queue(skb);
4581 
4582 		if (unlikely(index >= dev->real_num_rx_queues)) {
4583 			WARN_ONCE(dev->real_num_rx_queues > 1,
4584 				  "%s received packet on queue %u, but number "
4585 				  "of RX queues is %u\n",
4586 				  dev->name, index, dev->real_num_rx_queues);
4587 
4588 			return rxqueue; /* Return first rxqueue */
4589 		}
4590 		rxqueue += index;
4591 	}
4592 	return rxqueue;
4593 }
4594 
4595 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4596 				     struct xdp_buff *xdp,
4597 				     struct bpf_prog *xdp_prog)
4598 {
4599 	struct netdev_rx_queue *rxqueue;
4600 	void *orig_data, *orig_data_end;
4601 	u32 metalen, act = XDP_DROP;
4602 	__be16 orig_eth_type;
4603 	struct ethhdr *eth;
4604 	bool orig_bcast;
4605 	int hlen, off;
4606 	u32 mac_len;
4607 
4608 	/* Reinjected packets coming from act_mirred or similar should
4609 	 * not get XDP generic processing.
4610 	 */
4611 	if (skb_is_redirected(skb))
4612 		return XDP_PASS;
4613 
4614 	/* XDP packets must be linear and must have sufficient headroom
4615 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4616 	 * native XDP provides, thus we need to do it here as well.
4617 	 */
4618 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4619 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4620 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4621 		int troom = skb->tail + skb->data_len - skb->end;
4622 
4623 		/* In case we have to go down the path and also linearize,
4624 		 * then lets do the pskb_expand_head() work just once here.
4625 		 */
4626 		if (pskb_expand_head(skb,
4627 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4628 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4629 			goto do_drop;
4630 		if (skb_linearize(skb))
4631 			goto do_drop;
4632 	}
4633 
4634 	/* The XDP program wants to see the packet starting at the MAC
4635 	 * header.
4636 	 */
4637 	mac_len = skb->data - skb_mac_header(skb);
4638 	hlen = skb_headlen(skb) + mac_len;
4639 	xdp->data = skb->data - mac_len;
4640 	xdp->data_meta = xdp->data;
4641 	xdp->data_end = xdp->data + hlen;
4642 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4643 
4644 	/* SKB "head" area always have tailroom for skb_shared_info */
4645 	xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4646 	xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4647 
4648 	orig_data_end = xdp->data_end;
4649 	orig_data = xdp->data;
4650 	eth = (struct ethhdr *)xdp->data;
4651 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4652 	orig_eth_type = eth->h_proto;
4653 
4654 	rxqueue = netif_get_rxqueue(skb);
4655 	xdp->rxq = &rxqueue->xdp_rxq;
4656 
4657 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4658 
4659 	/* check if bpf_xdp_adjust_head was used */
4660 	off = xdp->data - orig_data;
4661 	if (off) {
4662 		if (off > 0)
4663 			__skb_pull(skb, off);
4664 		else if (off < 0)
4665 			__skb_push(skb, -off);
4666 
4667 		skb->mac_header += off;
4668 		skb_reset_network_header(skb);
4669 	}
4670 
4671 	/* check if bpf_xdp_adjust_tail was used */
4672 	off = xdp->data_end - orig_data_end;
4673 	if (off != 0) {
4674 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4675 		skb->len += off; /* positive on grow, negative on shrink */
4676 	}
4677 
4678 	/* check if XDP changed eth hdr such SKB needs update */
4679 	eth = (struct ethhdr *)xdp->data;
4680 	if ((orig_eth_type != eth->h_proto) ||
4681 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4682 		__skb_push(skb, ETH_HLEN);
4683 		skb->protocol = eth_type_trans(skb, skb->dev);
4684 	}
4685 
4686 	switch (act) {
4687 	case XDP_REDIRECT:
4688 	case XDP_TX:
4689 		__skb_push(skb, mac_len);
4690 		break;
4691 	case XDP_PASS:
4692 		metalen = xdp->data - xdp->data_meta;
4693 		if (metalen)
4694 			skb_metadata_set(skb, metalen);
4695 		break;
4696 	default:
4697 		bpf_warn_invalid_xdp_action(act);
4698 		fallthrough;
4699 	case XDP_ABORTED:
4700 		trace_xdp_exception(skb->dev, xdp_prog, act);
4701 		fallthrough;
4702 	case XDP_DROP:
4703 	do_drop:
4704 		kfree_skb(skb);
4705 		break;
4706 	}
4707 
4708 	return act;
4709 }
4710 
4711 /* When doing generic XDP we have to bypass the qdisc layer and the
4712  * network taps in order to match in-driver-XDP behavior.
4713  */
4714 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4715 {
4716 	struct net_device *dev = skb->dev;
4717 	struct netdev_queue *txq;
4718 	bool free_skb = true;
4719 	int cpu, rc;
4720 
4721 	txq = netdev_core_pick_tx(dev, skb, NULL);
4722 	cpu = smp_processor_id();
4723 	HARD_TX_LOCK(dev, txq, cpu);
4724 	if (!netif_xmit_stopped(txq)) {
4725 		rc = netdev_start_xmit(skb, dev, txq, 0);
4726 		if (dev_xmit_complete(rc))
4727 			free_skb = false;
4728 	}
4729 	HARD_TX_UNLOCK(dev, txq);
4730 	if (free_skb) {
4731 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4732 		kfree_skb(skb);
4733 	}
4734 }
4735 
4736 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4737 
4738 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4739 {
4740 	if (xdp_prog) {
4741 		struct xdp_buff xdp;
4742 		u32 act;
4743 		int err;
4744 
4745 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4746 		if (act != XDP_PASS) {
4747 			switch (act) {
4748 			case XDP_REDIRECT:
4749 				err = xdp_do_generic_redirect(skb->dev, skb,
4750 							      &xdp, xdp_prog);
4751 				if (err)
4752 					goto out_redir;
4753 				break;
4754 			case XDP_TX:
4755 				generic_xdp_tx(skb, xdp_prog);
4756 				break;
4757 			}
4758 			return XDP_DROP;
4759 		}
4760 	}
4761 	return XDP_PASS;
4762 out_redir:
4763 	kfree_skb(skb);
4764 	return XDP_DROP;
4765 }
4766 EXPORT_SYMBOL_GPL(do_xdp_generic);
4767 
4768 static int netif_rx_internal(struct sk_buff *skb)
4769 {
4770 	int ret;
4771 
4772 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4773 
4774 	trace_netif_rx(skb);
4775 
4776 #ifdef CONFIG_RPS
4777 	if (static_branch_unlikely(&rps_needed)) {
4778 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4779 		int cpu;
4780 
4781 		preempt_disable();
4782 		rcu_read_lock();
4783 
4784 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4785 		if (cpu < 0)
4786 			cpu = smp_processor_id();
4787 
4788 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4789 
4790 		rcu_read_unlock();
4791 		preempt_enable();
4792 	} else
4793 #endif
4794 	{
4795 		unsigned int qtail;
4796 
4797 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4798 		put_cpu();
4799 	}
4800 	return ret;
4801 }
4802 
4803 /**
4804  *	netif_rx	-	post buffer to the network code
4805  *	@skb: buffer to post
4806  *
4807  *	This function receives a packet from a device driver and queues it for
4808  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4809  *	may be dropped during processing for congestion control or by the
4810  *	protocol layers.
4811  *
4812  *	return values:
4813  *	NET_RX_SUCCESS	(no congestion)
4814  *	NET_RX_DROP     (packet was dropped)
4815  *
4816  */
4817 
4818 int netif_rx(struct sk_buff *skb)
4819 {
4820 	int ret;
4821 
4822 	trace_netif_rx_entry(skb);
4823 
4824 	ret = netif_rx_internal(skb);
4825 	trace_netif_rx_exit(ret);
4826 
4827 	return ret;
4828 }
4829 EXPORT_SYMBOL(netif_rx);
4830 
4831 int netif_rx_ni(struct sk_buff *skb)
4832 {
4833 	int err;
4834 
4835 	trace_netif_rx_ni_entry(skb);
4836 
4837 	preempt_disable();
4838 	err = netif_rx_internal(skb);
4839 	if (local_softirq_pending())
4840 		do_softirq();
4841 	preempt_enable();
4842 	trace_netif_rx_ni_exit(err);
4843 
4844 	return err;
4845 }
4846 EXPORT_SYMBOL(netif_rx_ni);
4847 
4848 int netif_rx_any_context(struct sk_buff *skb)
4849 {
4850 	/*
4851 	 * If invoked from contexts which do not invoke bottom half
4852 	 * processing either at return from interrupt or when softrqs are
4853 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4854 	 * directly.
4855 	 */
4856 	if (in_interrupt())
4857 		return netif_rx(skb);
4858 	else
4859 		return netif_rx_ni(skb);
4860 }
4861 EXPORT_SYMBOL(netif_rx_any_context);
4862 
4863 static __latent_entropy void net_tx_action(struct softirq_action *h)
4864 {
4865 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4866 
4867 	if (sd->completion_queue) {
4868 		struct sk_buff *clist;
4869 
4870 		local_irq_disable();
4871 		clist = sd->completion_queue;
4872 		sd->completion_queue = NULL;
4873 		local_irq_enable();
4874 
4875 		while (clist) {
4876 			struct sk_buff *skb = clist;
4877 
4878 			clist = clist->next;
4879 
4880 			WARN_ON(refcount_read(&skb->users));
4881 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4882 				trace_consume_skb(skb);
4883 			else
4884 				trace_kfree_skb(skb, net_tx_action);
4885 
4886 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4887 				__kfree_skb(skb);
4888 			else
4889 				__kfree_skb_defer(skb);
4890 		}
4891 
4892 		__kfree_skb_flush();
4893 	}
4894 
4895 	if (sd->output_queue) {
4896 		struct Qdisc *head;
4897 
4898 		local_irq_disable();
4899 		head = sd->output_queue;
4900 		sd->output_queue = NULL;
4901 		sd->output_queue_tailp = &sd->output_queue;
4902 		local_irq_enable();
4903 
4904 		while (head) {
4905 			struct Qdisc *q = head;
4906 			spinlock_t *root_lock = NULL;
4907 
4908 			head = head->next_sched;
4909 
4910 			if (!(q->flags & TCQ_F_NOLOCK)) {
4911 				root_lock = qdisc_lock(q);
4912 				spin_lock(root_lock);
4913 			}
4914 			/* We need to make sure head->next_sched is read
4915 			 * before clearing __QDISC_STATE_SCHED
4916 			 */
4917 			smp_mb__before_atomic();
4918 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4919 			qdisc_run(q);
4920 			if (root_lock)
4921 				spin_unlock(root_lock);
4922 		}
4923 	}
4924 
4925 	xfrm_dev_backlog(sd);
4926 }
4927 
4928 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4929 /* This hook is defined here for ATM LANE */
4930 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4931 			     unsigned char *addr) __read_mostly;
4932 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4933 #endif
4934 
4935 static inline struct sk_buff *
4936 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4937 		   struct net_device *orig_dev, bool *another)
4938 {
4939 #ifdef CONFIG_NET_CLS_ACT
4940 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4941 	struct tcf_result cl_res;
4942 
4943 	/* If there's at least one ingress present somewhere (so
4944 	 * we get here via enabled static key), remaining devices
4945 	 * that are not configured with an ingress qdisc will bail
4946 	 * out here.
4947 	 */
4948 	if (!miniq)
4949 		return skb;
4950 
4951 	if (*pt_prev) {
4952 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4953 		*pt_prev = NULL;
4954 	}
4955 
4956 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4957 	skb->tc_at_ingress = 1;
4958 	mini_qdisc_bstats_cpu_update(miniq, skb);
4959 
4960 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4961 				     &cl_res, false)) {
4962 	case TC_ACT_OK:
4963 	case TC_ACT_RECLASSIFY:
4964 		skb->tc_index = TC_H_MIN(cl_res.classid);
4965 		break;
4966 	case TC_ACT_SHOT:
4967 		mini_qdisc_qstats_cpu_drop(miniq);
4968 		kfree_skb(skb);
4969 		return NULL;
4970 	case TC_ACT_STOLEN:
4971 	case TC_ACT_QUEUED:
4972 	case TC_ACT_TRAP:
4973 		consume_skb(skb);
4974 		return NULL;
4975 	case TC_ACT_REDIRECT:
4976 		/* skb_mac_header check was done by cls/act_bpf, so
4977 		 * we can safely push the L2 header back before
4978 		 * redirecting to another netdev
4979 		 */
4980 		__skb_push(skb, skb->mac_len);
4981 		if (skb_do_redirect(skb) == -EAGAIN) {
4982 			__skb_pull(skb, skb->mac_len);
4983 			*another = true;
4984 			break;
4985 		}
4986 		return NULL;
4987 	case TC_ACT_CONSUMED:
4988 		return NULL;
4989 	default:
4990 		break;
4991 	}
4992 #endif /* CONFIG_NET_CLS_ACT */
4993 	return skb;
4994 }
4995 
4996 /**
4997  *	netdev_is_rx_handler_busy - check if receive handler is registered
4998  *	@dev: device to check
4999  *
5000  *	Check if a receive handler is already registered for a given device.
5001  *	Return true if there one.
5002  *
5003  *	The caller must hold the rtnl_mutex.
5004  */
5005 bool netdev_is_rx_handler_busy(struct net_device *dev)
5006 {
5007 	ASSERT_RTNL();
5008 	return dev && rtnl_dereference(dev->rx_handler);
5009 }
5010 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5011 
5012 /**
5013  *	netdev_rx_handler_register - register receive handler
5014  *	@dev: device to register a handler for
5015  *	@rx_handler: receive handler to register
5016  *	@rx_handler_data: data pointer that is used by rx handler
5017  *
5018  *	Register a receive handler for a device. This handler will then be
5019  *	called from __netif_receive_skb. A negative errno code is returned
5020  *	on a failure.
5021  *
5022  *	The caller must hold the rtnl_mutex.
5023  *
5024  *	For a general description of rx_handler, see enum rx_handler_result.
5025  */
5026 int netdev_rx_handler_register(struct net_device *dev,
5027 			       rx_handler_func_t *rx_handler,
5028 			       void *rx_handler_data)
5029 {
5030 	if (netdev_is_rx_handler_busy(dev))
5031 		return -EBUSY;
5032 
5033 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5034 		return -EINVAL;
5035 
5036 	/* Note: rx_handler_data must be set before rx_handler */
5037 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5038 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5039 
5040 	return 0;
5041 }
5042 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5043 
5044 /**
5045  *	netdev_rx_handler_unregister - unregister receive handler
5046  *	@dev: device to unregister a handler from
5047  *
5048  *	Unregister a receive handler from a device.
5049  *
5050  *	The caller must hold the rtnl_mutex.
5051  */
5052 void netdev_rx_handler_unregister(struct net_device *dev)
5053 {
5054 
5055 	ASSERT_RTNL();
5056 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5057 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5058 	 * section has a guarantee to see a non NULL rx_handler_data
5059 	 * as well.
5060 	 */
5061 	synchronize_net();
5062 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5063 }
5064 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5065 
5066 /*
5067  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5068  * the special handling of PFMEMALLOC skbs.
5069  */
5070 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5071 {
5072 	switch (skb->protocol) {
5073 	case htons(ETH_P_ARP):
5074 	case htons(ETH_P_IP):
5075 	case htons(ETH_P_IPV6):
5076 	case htons(ETH_P_8021Q):
5077 	case htons(ETH_P_8021AD):
5078 		return true;
5079 	default:
5080 		return false;
5081 	}
5082 }
5083 
5084 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5085 			     int *ret, struct net_device *orig_dev)
5086 {
5087 	if (nf_hook_ingress_active(skb)) {
5088 		int ingress_retval;
5089 
5090 		if (*pt_prev) {
5091 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5092 			*pt_prev = NULL;
5093 		}
5094 
5095 		rcu_read_lock();
5096 		ingress_retval = nf_hook_ingress(skb);
5097 		rcu_read_unlock();
5098 		return ingress_retval;
5099 	}
5100 	return 0;
5101 }
5102 
5103 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5104 				    struct packet_type **ppt_prev)
5105 {
5106 	struct packet_type *ptype, *pt_prev;
5107 	rx_handler_func_t *rx_handler;
5108 	struct sk_buff *skb = *pskb;
5109 	struct net_device *orig_dev;
5110 	bool deliver_exact = false;
5111 	int ret = NET_RX_DROP;
5112 	__be16 type;
5113 
5114 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5115 
5116 	trace_netif_receive_skb(skb);
5117 
5118 	orig_dev = skb->dev;
5119 
5120 	skb_reset_network_header(skb);
5121 	if (!skb_transport_header_was_set(skb))
5122 		skb_reset_transport_header(skb);
5123 	skb_reset_mac_len(skb);
5124 
5125 	pt_prev = NULL;
5126 
5127 another_round:
5128 	skb->skb_iif = skb->dev->ifindex;
5129 
5130 	__this_cpu_inc(softnet_data.processed);
5131 
5132 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5133 		int ret2;
5134 
5135 		preempt_disable();
5136 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5137 		preempt_enable();
5138 
5139 		if (ret2 != XDP_PASS) {
5140 			ret = NET_RX_DROP;
5141 			goto out;
5142 		}
5143 		skb_reset_mac_len(skb);
5144 	}
5145 
5146 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5147 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5148 		skb = skb_vlan_untag(skb);
5149 		if (unlikely(!skb))
5150 			goto out;
5151 	}
5152 
5153 	if (skb_skip_tc_classify(skb))
5154 		goto skip_classify;
5155 
5156 	if (pfmemalloc)
5157 		goto skip_taps;
5158 
5159 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5160 		if (pt_prev)
5161 			ret = deliver_skb(skb, pt_prev, orig_dev);
5162 		pt_prev = ptype;
5163 	}
5164 
5165 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5166 		if (pt_prev)
5167 			ret = deliver_skb(skb, pt_prev, orig_dev);
5168 		pt_prev = ptype;
5169 	}
5170 
5171 skip_taps:
5172 #ifdef CONFIG_NET_INGRESS
5173 	if (static_branch_unlikely(&ingress_needed_key)) {
5174 		bool another = false;
5175 
5176 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5177 					 &another);
5178 		if (another)
5179 			goto another_round;
5180 		if (!skb)
5181 			goto out;
5182 
5183 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5184 			goto out;
5185 	}
5186 #endif
5187 	skb_reset_redirect(skb);
5188 skip_classify:
5189 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5190 		goto drop;
5191 
5192 	if (skb_vlan_tag_present(skb)) {
5193 		if (pt_prev) {
5194 			ret = deliver_skb(skb, pt_prev, orig_dev);
5195 			pt_prev = NULL;
5196 		}
5197 		if (vlan_do_receive(&skb))
5198 			goto another_round;
5199 		else if (unlikely(!skb))
5200 			goto out;
5201 	}
5202 
5203 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5204 	if (rx_handler) {
5205 		if (pt_prev) {
5206 			ret = deliver_skb(skb, pt_prev, orig_dev);
5207 			pt_prev = NULL;
5208 		}
5209 		switch (rx_handler(&skb)) {
5210 		case RX_HANDLER_CONSUMED:
5211 			ret = NET_RX_SUCCESS;
5212 			goto out;
5213 		case RX_HANDLER_ANOTHER:
5214 			goto another_round;
5215 		case RX_HANDLER_EXACT:
5216 			deliver_exact = true;
5217 		case RX_HANDLER_PASS:
5218 			break;
5219 		default:
5220 			BUG();
5221 		}
5222 	}
5223 
5224 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5225 check_vlan_id:
5226 		if (skb_vlan_tag_get_id(skb)) {
5227 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5228 			 * find vlan device.
5229 			 */
5230 			skb->pkt_type = PACKET_OTHERHOST;
5231 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5232 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5233 			/* Outer header is 802.1P with vlan 0, inner header is
5234 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5235 			 * not find vlan dev for vlan id 0.
5236 			 */
5237 			__vlan_hwaccel_clear_tag(skb);
5238 			skb = skb_vlan_untag(skb);
5239 			if (unlikely(!skb))
5240 				goto out;
5241 			if (vlan_do_receive(&skb))
5242 				/* After stripping off 802.1P header with vlan 0
5243 				 * vlan dev is found for inner header.
5244 				 */
5245 				goto another_round;
5246 			else if (unlikely(!skb))
5247 				goto out;
5248 			else
5249 				/* We have stripped outer 802.1P vlan 0 header.
5250 				 * But could not find vlan dev.
5251 				 * check again for vlan id to set OTHERHOST.
5252 				 */
5253 				goto check_vlan_id;
5254 		}
5255 		/* Note: we might in the future use prio bits
5256 		 * and set skb->priority like in vlan_do_receive()
5257 		 * For the time being, just ignore Priority Code Point
5258 		 */
5259 		__vlan_hwaccel_clear_tag(skb);
5260 	}
5261 
5262 	type = skb->protocol;
5263 
5264 	/* deliver only exact match when indicated */
5265 	if (likely(!deliver_exact)) {
5266 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5267 				       &ptype_base[ntohs(type) &
5268 						   PTYPE_HASH_MASK]);
5269 	}
5270 
5271 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5272 			       &orig_dev->ptype_specific);
5273 
5274 	if (unlikely(skb->dev != orig_dev)) {
5275 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5276 				       &skb->dev->ptype_specific);
5277 	}
5278 
5279 	if (pt_prev) {
5280 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5281 			goto drop;
5282 		*ppt_prev = pt_prev;
5283 	} else {
5284 drop:
5285 		if (!deliver_exact)
5286 			atomic_long_inc(&skb->dev->rx_dropped);
5287 		else
5288 			atomic_long_inc(&skb->dev->rx_nohandler);
5289 		kfree_skb(skb);
5290 		/* Jamal, now you will not able to escape explaining
5291 		 * me how you were going to use this. :-)
5292 		 */
5293 		ret = NET_RX_DROP;
5294 	}
5295 
5296 out:
5297 	/* The invariant here is that if *ppt_prev is not NULL
5298 	 * then skb should also be non-NULL.
5299 	 *
5300 	 * Apparently *ppt_prev assignment above holds this invariant due to
5301 	 * skb dereferencing near it.
5302 	 */
5303 	*pskb = skb;
5304 	return ret;
5305 }
5306 
5307 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5308 {
5309 	struct net_device *orig_dev = skb->dev;
5310 	struct packet_type *pt_prev = NULL;
5311 	int ret;
5312 
5313 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5314 	if (pt_prev)
5315 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5316 					 skb->dev, pt_prev, orig_dev);
5317 	return ret;
5318 }
5319 
5320 /**
5321  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5322  *	@skb: buffer to process
5323  *
5324  *	More direct receive version of netif_receive_skb().  It should
5325  *	only be used by callers that have a need to skip RPS and Generic XDP.
5326  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5327  *
5328  *	This function may only be called from softirq context and interrupts
5329  *	should be enabled.
5330  *
5331  *	Return values (usually ignored):
5332  *	NET_RX_SUCCESS: no congestion
5333  *	NET_RX_DROP: packet was dropped
5334  */
5335 int netif_receive_skb_core(struct sk_buff *skb)
5336 {
5337 	int ret;
5338 
5339 	rcu_read_lock();
5340 	ret = __netif_receive_skb_one_core(skb, false);
5341 	rcu_read_unlock();
5342 
5343 	return ret;
5344 }
5345 EXPORT_SYMBOL(netif_receive_skb_core);
5346 
5347 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5348 						  struct packet_type *pt_prev,
5349 						  struct net_device *orig_dev)
5350 {
5351 	struct sk_buff *skb, *next;
5352 
5353 	if (!pt_prev)
5354 		return;
5355 	if (list_empty(head))
5356 		return;
5357 	if (pt_prev->list_func != NULL)
5358 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5359 				   ip_list_rcv, head, pt_prev, orig_dev);
5360 	else
5361 		list_for_each_entry_safe(skb, next, head, list) {
5362 			skb_list_del_init(skb);
5363 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5364 		}
5365 }
5366 
5367 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5368 {
5369 	/* Fast-path assumptions:
5370 	 * - There is no RX handler.
5371 	 * - Only one packet_type matches.
5372 	 * If either of these fails, we will end up doing some per-packet
5373 	 * processing in-line, then handling the 'last ptype' for the whole
5374 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5375 	 * because the 'last ptype' must be constant across the sublist, and all
5376 	 * other ptypes are handled per-packet.
5377 	 */
5378 	/* Current (common) ptype of sublist */
5379 	struct packet_type *pt_curr = NULL;
5380 	/* Current (common) orig_dev of sublist */
5381 	struct net_device *od_curr = NULL;
5382 	struct list_head sublist;
5383 	struct sk_buff *skb, *next;
5384 
5385 	INIT_LIST_HEAD(&sublist);
5386 	list_for_each_entry_safe(skb, next, head, list) {
5387 		struct net_device *orig_dev = skb->dev;
5388 		struct packet_type *pt_prev = NULL;
5389 
5390 		skb_list_del_init(skb);
5391 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5392 		if (!pt_prev)
5393 			continue;
5394 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5395 			/* dispatch old sublist */
5396 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5397 			/* start new sublist */
5398 			INIT_LIST_HEAD(&sublist);
5399 			pt_curr = pt_prev;
5400 			od_curr = orig_dev;
5401 		}
5402 		list_add_tail(&skb->list, &sublist);
5403 	}
5404 
5405 	/* dispatch final sublist */
5406 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5407 }
5408 
5409 static int __netif_receive_skb(struct sk_buff *skb)
5410 {
5411 	int ret;
5412 
5413 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5414 		unsigned int noreclaim_flag;
5415 
5416 		/*
5417 		 * PFMEMALLOC skbs are special, they should
5418 		 * - be delivered to SOCK_MEMALLOC sockets only
5419 		 * - stay away from userspace
5420 		 * - have bounded memory usage
5421 		 *
5422 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5423 		 * context down to all allocation sites.
5424 		 */
5425 		noreclaim_flag = memalloc_noreclaim_save();
5426 		ret = __netif_receive_skb_one_core(skb, true);
5427 		memalloc_noreclaim_restore(noreclaim_flag);
5428 	} else
5429 		ret = __netif_receive_skb_one_core(skb, false);
5430 
5431 	return ret;
5432 }
5433 
5434 static void __netif_receive_skb_list(struct list_head *head)
5435 {
5436 	unsigned long noreclaim_flag = 0;
5437 	struct sk_buff *skb, *next;
5438 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5439 
5440 	list_for_each_entry_safe(skb, next, head, list) {
5441 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5442 			struct list_head sublist;
5443 
5444 			/* Handle the previous sublist */
5445 			list_cut_before(&sublist, head, &skb->list);
5446 			if (!list_empty(&sublist))
5447 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5448 			pfmemalloc = !pfmemalloc;
5449 			/* See comments in __netif_receive_skb */
5450 			if (pfmemalloc)
5451 				noreclaim_flag = memalloc_noreclaim_save();
5452 			else
5453 				memalloc_noreclaim_restore(noreclaim_flag);
5454 		}
5455 	}
5456 	/* Handle the remaining sublist */
5457 	if (!list_empty(head))
5458 		__netif_receive_skb_list_core(head, pfmemalloc);
5459 	/* Restore pflags */
5460 	if (pfmemalloc)
5461 		memalloc_noreclaim_restore(noreclaim_flag);
5462 }
5463 
5464 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5465 {
5466 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5467 	struct bpf_prog *new = xdp->prog;
5468 	int ret = 0;
5469 
5470 	if (new) {
5471 		u32 i;
5472 
5473 		mutex_lock(&new->aux->used_maps_mutex);
5474 
5475 		/* generic XDP does not work with DEVMAPs that can
5476 		 * have a bpf_prog installed on an entry
5477 		 */
5478 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5479 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5480 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5481 				mutex_unlock(&new->aux->used_maps_mutex);
5482 				return -EINVAL;
5483 			}
5484 		}
5485 
5486 		mutex_unlock(&new->aux->used_maps_mutex);
5487 	}
5488 
5489 	switch (xdp->command) {
5490 	case XDP_SETUP_PROG:
5491 		rcu_assign_pointer(dev->xdp_prog, new);
5492 		if (old)
5493 			bpf_prog_put(old);
5494 
5495 		if (old && !new) {
5496 			static_branch_dec(&generic_xdp_needed_key);
5497 		} else if (new && !old) {
5498 			static_branch_inc(&generic_xdp_needed_key);
5499 			dev_disable_lro(dev);
5500 			dev_disable_gro_hw(dev);
5501 		}
5502 		break;
5503 
5504 	default:
5505 		ret = -EINVAL;
5506 		break;
5507 	}
5508 
5509 	return ret;
5510 }
5511 
5512 static int netif_receive_skb_internal(struct sk_buff *skb)
5513 {
5514 	int ret;
5515 
5516 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5517 
5518 	if (skb_defer_rx_timestamp(skb))
5519 		return NET_RX_SUCCESS;
5520 
5521 	rcu_read_lock();
5522 #ifdef CONFIG_RPS
5523 	if (static_branch_unlikely(&rps_needed)) {
5524 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5525 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5526 
5527 		if (cpu >= 0) {
5528 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5529 			rcu_read_unlock();
5530 			return ret;
5531 		}
5532 	}
5533 #endif
5534 	ret = __netif_receive_skb(skb);
5535 	rcu_read_unlock();
5536 	return ret;
5537 }
5538 
5539 static void netif_receive_skb_list_internal(struct list_head *head)
5540 {
5541 	struct sk_buff *skb, *next;
5542 	struct list_head sublist;
5543 
5544 	INIT_LIST_HEAD(&sublist);
5545 	list_for_each_entry_safe(skb, next, head, list) {
5546 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5547 		skb_list_del_init(skb);
5548 		if (!skb_defer_rx_timestamp(skb))
5549 			list_add_tail(&skb->list, &sublist);
5550 	}
5551 	list_splice_init(&sublist, head);
5552 
5553 	rcu_read_lock();
5554 #ifdef CONFIG_RPS
5555 	if (static_branch_unlikely(&rps_needed)) {
5556 		list_for_each_entry_safe(skb, next, head, list) {
5557 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5558 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5559 
5560 			if (cpu >= 0) {
5561 				/* Will be handled, remove from list */
5562 				skb_list_del_init(skb);
5563 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5564 			}
5565 		}
5566 	}
5567 #endif
5568 	__netif_receive_skb_list(head);
5569 	rcu_read_unlock();
5570 }
5571 
5572 /**
5573  *	netif_receive_skb - process receive buffer from network
5574  *	@skb: buffer to process
5575  *
5576  *	netif_receive_skb() is the main receive data processing function.
5577  *	It always succeeds. The buffer may be dropped during processing
5578  *	for congestion control or by the protocol layers.
5579  *
5580  *	This function may only be called from softirq context and interrupts
5581  *	should be enabled.
5582  *
5583  *	Return values (usually ignored):
5584  *	NET_RX_SUCCESS: no congestion
5585  *	NET_RX_DROP: packet was dropped
5586  */
5587 int netif_receive_skb(struct sk_buff *skb)
5588 {
5589 	int ret;
5590 
5591 	trace_netif_receive_skb_entry(skb);
5592 
5593 	ret = netif_receive_skb_internal(skb);
5594 	trace_netif_receive_skb_exit(ret);
5595 
5596 	return ret;
5597 }
5598 EXPORT_SYMBOL(netif_receive_skb);
5599 
5600 /**
5601  *	netif_receive_skb_list - process many receive buffers from network
5602  *	@head: list of skbs to process.
5603  *
5604  *	Since return value of netif_receive_skb() is normally ignored, and
5605  *	wouldn't be meaningful for a list, this function returns void.
5606  *
5607  *	This function may only be called from softirq context and interrupts
5608  *	should be enabled.
5609  */
5610 void netif_receive_skb_list(struct list_head *head)
5611 {
5612 	struct sk_buff *skb;
5613 
5614 	if (list_empty(head))
5615 		return;
5616 	if (trace_netif_receive_skb_list_entry_enabled()) {
5617 		list_for_each_entry(skb, head, list)
5618 			trace_netif_receive_skb_list_entry(skb);
5619 	}
5620 	netif_receive_skb_list_internal(head);
5621 	trace_netif_receive_skb_list_exit(0);
5622 }
5623 EXPORT_SYMBOL(netif_receive_skb_list);
5624 
5625 static DEFINE_PER_CPU(struct work_struct, flush_works);
5626 
5627 /* Network device is going away, flush any packets still pending */
5628 static void flush_backlog(struct work_struct *work)
5629 {
5630 	struct sk_buff *skb, *tmp;
5631 	struct softnet_data *sd;
5632 
5633 	local_bh_disable();
5634 	sd = this_cpu_ptr(&softnet_data);
5635 
5636 	local_irq_disable();
5637 	rps_lock(sd);
5638 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5639 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5640 			__skb_unlink(skb, &sd->input_pkt_queue);
5641 			dev_kfree_skb_irq(skb);
5642 			input_queue_head_incr(sd);
5643 		}
5644 	}
5645 	rps_unlock(sd);
5646 	local_irq_enable();
5647 
5648 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5649 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5650 			__skb_unlink(skb, &sd->process_queue);
5651 			kfree_skb(skb);
5652 			input_queue_head_incr(sd);
5653 		}
5654 	}
5655 	local_bh_enable();
5656 }
5657 
5658 static bool flush_required(int cpu)
5659 {
5660 #if IS_ENABLED(CONFIG_RPS)
5661 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5662 	bool do_flush;
5663 
5664 	local_irq_disable();
5665 	rps_lock(sd);
5666 
5667 	/* as insertion into process_queue happens with the rps lock held,
5668 	 * process_queue access may race only with dequeue
5669 	 */
5670 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5671 		   !skb_queue_empty_lockless(&sd->process_queue);
5672 	rps_unlock(sd);
5673 	local_irq_enable();
5674 
5675 	return do_flush;
5676 #endif
5677 	/* without RPS we can't safely check input_pkt_queue: during a
5678 	 * concurrent remote skb_queue_splice() we can detect as empty both
5679 	 * input_pkt_queue and process_queue even if the latter could end-up
5680 	 * containing a lot of packets.
5681 	 */
5682 	return true;
5683 }
5684 
5685 static void flush_all_backlogs(void)
5686 {
5687 	static cpumask_t flush_cpus;
5688 	unsigned int cpu;
5689 
5690 	/* since we are under rtnl lock protection we can use static data
5691 	 * for the cpumask and avoid allocating on stack the possibly
5692 	 * large mask
5693 	 */
5694 	ASSERT_RTNL();
5695 
5696 	get_online_cpus();
5697 
5698 	cpumask_clear(&flush_cpus);
5699 	for_each_online_cpu(cpu) {
5700 		if (flush_required(cpu)) {
5701 			queue_work_on(cpu, system_highpri_wq,
5702 				      per_cpu_ptr(&flush_works, cpu));
5703 			cpumask_set_cpu(cpu, &flush_cpus);
5704 		}
5705 	}
5706 
5707 	/* we can have in flight packet[s] on the cpus we are not flushing,
5708 	 * synchronize_net() in rollback_registered_many() will take care of
5709 	 * them
5710 	 */
5711 	for_each_cpu(cpu, &flush_cpus)
5712 		flush_work(per_cpu_ptr(&flush_works, cpu));
5713 
5714 	put_online_cpus();
5715 }
5716 
5717 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5718 static void gro_normal_list(struct napi_struct *napi)
5719 {
5720 	if (!napi->rx_count)
5721 		return;
5722 	netif_receive_skb_list_internal(&napi->rx_list);
5723 	INIT_LIST_HEAD(&napi->rx_list);
5724 	napi->rx_count = 0;
5725 }
5726 
5727 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5728  * pass the whole batch up to the stack.
5729  */
5730 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5731 {
5732 	list_add_tail(&skb->list, &napi->rx_list);
5733 	if (++napi->rx_count >= gro_normal_batch)
5734 		gro_normal_list(napi);
5735 }
5736 
5737 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5738 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5739 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5740 {
5741 	struct packet_offload *ptype;
5742 	__be16 type = skb->protocol;
5743 	struct list_head *head = &offload_base;
5744 	int err = -ENOENT;
5745 
5746 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5747 
5748 	if (NAPI_GRO_CB(skb)->count == 1) {
5749 		skb_shinfo(skb)->gso_size = 0;
5750 		goto out;
5751 	}
5752 
5753 	rcu_read_lock();
5754 	list_for_each_entry_rcu(ptype, head, list) {
5755 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5756 			continue;
5757 
5758 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5759 					 ipv6_gro_complete, inet_gro_complete,
5760 					 skb, 0);
5761 		break;
5762 	}
5763 	rcu_read_unlock();
5764 
5765 	if (err) {
5766 		WARN_ON(&ptype->list == head);
5767 		kfree_skb(skb);
5768 		return NET_RX_SUCCESS;
5769 	}
5770 
5771 out:
5772 	gro_normal_one(napi, skb);
5773 	return NET_RX_SUCCESS;
5774 }
5775 
5776 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5777 				   bool flush_old)
5778 {
5779 	struct list_head *head = &napi->gro_hash[index].list;
5780 	struct sk_buff *skb, *p;
5781 
5782 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5783 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5784 			return;
5785 		skb_list_del_init(skb);
5786 		napi_gro_complete(napi, skb);
5787 		napi->gro_hash[index].count--;
5788 	}
5789 
5790 	if (!napi->gro_hash[index].count)
5791 		__clear_bit(index, &napi->gro_bitmask);
5792 }
5793 
5794 /* napi->gro_hash[].list contains packets ordered by age.
5795  * youngest packets at the head of it.
5796  * Complete skbs in reverse order to reduce latencies.
5797  */
5798 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5799 {
5800 	unsigned long bitmask = napi->gro_bitmask;
5801 	unsigned int i, base = ~0U;
5802 
5803 	while ((i = ffs(bitmask)) != 0) {
5804 		bitmask >>= i;
5805 		base += i;
5806 		__napi_gro_flush_chain(napi, base, flush_old);
5807 	}
5808 }
5809 EXPORT_SYMBOL(napi_gro_flush);
5810 
5811 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5812 					  struct sk_buff *skb)
5813 {
5814 	unsigned int maclen = skb->dev->hard_header_len;
5815 	u32 hash = skb_get_hash_raw(skb);
5816 	struct list_head *head;
5817 	struct sk_buff *p;
5818 
5819 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5820 	list_for_each_entry(p, head, list) {
5821 		unsigned long diffs;
5822 
5823 		NAPI_GRO_CB(p)->flush = 0;
5824 
5825 		if (hash != skb_get_hash_raw(p)) {
5826 			NAPI_GRO_CB(p)->same_flow = 0;
5827 			continue;
5828 		}
5829 
5830 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5831 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5832 		if (skb_vlan_tag_present(p))
5833 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5834 		diffs |= skb_metadata_dst_cmp(p, skb);
5835 		diffs |= skb_metadata_differs(p, skb);
5836 		if (maclen == ETH_HLEN)
5837 			diffs |= compare_ether_header(skb_mac_header(p),
5838 						      skb_mac_header(skb));
5839 		else if (!diffs)
5840 			diffs = memcmp(skb_mac_header(p),
5841 				       skb_mac_header(skb),
5842 				       maclen);
5843 		NAPI_GRO_CB(p)->same_flow = !diffs;
5844 	}
5845 
5846 	return head;
5847 }
5848 
5849 static void skb_gro_reset_offset(struct sk_buff *skb)
5850 {
5851 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5852 	const skb_frag_t *frag0 = &pinfo->frags[0];
5853 
5854 	NAPI_GRO_CB(skb)->data_offset = 0;
5855 	NAPI_GRO_CB(skb)->frag0 = NULL;
5856 	NAPI_GRO_CB(skb)->frag0_len = 0;
5857 
5858 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5859 	    !PageHighMem(skb_frag_page(frag0))) {
5860 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5861 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5862 						    skb_frag_size(frag0),
5863 						    skb->end - skb->tail);
5864 	}
5865 }
5866 
5867 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5868 {
5869 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5870 
5871 	BUG_ON(skb->end - skb->tail < grow);
5872 
5873 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5874 
5875 	skb->data_len -= grow;
5876 	skb->tail += grow;
5877 
5878 	skb_frag_off_add(&pinfo->frags[0], grow);
5879 	skb_frag_size_sub(&pinfo->frags[0], grow);
5880 
5881 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5882 		skb_frag_unref(skb, 0);
5883 		memmove(pinfo->frags, pinfo->frags + 1,
5884 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5885 	}
5886 }
5887 
5888 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5889 {
5890 	struct sk_buff *oldest;
5891 
5892 	oldest = list_last_entry(head, struct sk_buff, list);
5893 
5894 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5895 	 * impossible.
5896 	 */
5897 	if (WARN_ON_ONCE(!oldest))
5898 		return;
5899 
5900 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5901 	 * SKB to the chain.
5902 	 */
5903 	skb_list_del_init(oldest);
5904 	napi_gro_complete(napi, oldest);
5905 }
5906 
5907 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5908 							   struct sk_buff *));
5909 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5910 							   struct sk_buff *));
5911 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5912 {
5913 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5914 	struct list_head *head = &offload_base;
5915 	struct packet_offload *ptype;
5916 	__be16 type = skb->protocol;
5917 	struct list_head *gro_head;
5918 	struct sk_buff *pp = NULL;
5919 	enum gro_result ret;
5920 	int same_flow;
5921 	int grow;
5922 
5923 	if (netif_elide_gro(skb->dev))
5924 		goto normal;
5925 
5926 	gro_head = gro_list_prepare(napi, skb);
5927 
5928 	rcu_read_lock();
5929 	list_for_each_entry_rcu(ptype, head, list) {
5930 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5931 			continue;
5932 
5933 		skb_set_network_header(skb, skb_gro_offset(skb));
5934 		skb_reset_mac_len(skb);
5935 		NAPI_GRO_CB(skb)->same_flow = 0;
5936 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5937 		NAPI_GRO_CB(skb)->free = 0;
5938 		NAPI_GRO_CB(skb)->encap_mark = 0;
5939 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5940 		NAPI_GRO_CB(skb)->is_fou = 0;
5941 		NAPI_GRO_CB(skb)->is_atomic = 1;
5942 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5943 
5944 		/* Setup for GRO checksum validation */
5945 		switch (skb->ip_summed) {
5946 		case CHECKSUM_COMPLETE:
5947 			NAPI_GRO_CB(skb)->csum = skb->csum;
5948 			NAPI_GRO_CB(skb)->csum_valid = 1;
5949 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5950 			break;
5951 		case CHECKSUM_UNNECESSARY:
5952 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5953 			NAPI_GRO_CB(skb)->csum_valid = 0;
5954 			break;
5955 		default:
5956 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5957 			NAPI_GRO_CB(skb)->csum_valid = 0;
5958 		}
5959 
5960 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5961 					ipv6_gro_receive, inet_gro_receive,
5962 					gro_head, skb);
5963 		break;
5964 	}
5965 	rcu_read_unlock();
5966 
5967 	if (&ptype->list == head)
5968 		goto normal;
5969 
5970 	if (PTR_ERR(pp) == -EINPROGRESS) {
5971 		ret = GRO_CONSUMED;
5972 		goto ok;
5973 	}
5974 
5975 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5976 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5977 
5978 	if (pp) {
5979 		skb_list_del_init(pp);
5980 		napi_gro_complete(napi, pp);
5981 		napi->gro_hash[hash].count--;
5982 	}
5983 
5984 	if (same_flow)
5985 		goto ok;
5986 
5987 	if (NAPI_GRO_CB(skb)->flush)
5988 		goto normal;
5989 
5990 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5991 		gro_flush_oldest(napi, gro_head);
5992 	} else {
5993 		napi->gro_hash[hash].count++;
5994 	}
5995 	NAPI_GRO_CB(skb)->count = 1;
5996 	NAPI_GRO_CB(skb)->age = jiffies;
5997 	NAPI_GRO_CB(skb)->last = skb;
5998 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5999 	list_add(&skb->list, gro_head);
6000 	ret = GRO_HELD;
6001 
6002 pull:
6003 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6004 	if (grow > 0)
6005 		gro_pull_from_frag0(skb, grow);
6006 ok:
6007 	if (napi->gro_hash[hash].count) {
6008 		if (!test_bit(hash, &napi->gro_bitmask))
6009 			__set_bit(hash, &napi->gro_bitmask);
6010 	} else if (test_bit(hash, &napi->gro_bitmask)) {
6011 		__clear_bit(hash, &napi->gro_bitmask);
6012 	}
6013 
6014 	return ret;
6015 
6016 normal:
6017 	ret = GRO_NORMAL;
6018 	goto pull;
6019 }
6020 
6021 struct packet_offload *gro_find_receive_by_type(__be16 type)
6022 {
6023 	struct list_head *offload_head = &offload_base;
6024 	struct packet_offload *ptype;
6025 
6026 	list_for_each_entry_rcu(ptype, offload_head, list) {
6027 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6028 			continue;
6029 		return ptype;
6030 	}
6031 	return NULL;
6032 }
6033 EXPORT_SYMBOL(gro_find_receive_by_type);
6034 
6035 struct packet_offload *gro_find_complete_by_type(__be16 type)
6036 {
6037 	struct list_head *offload_head = &offload_base;
6038 	struct packet_offload *ptype;
6039 
6040 	list_for_each_entry_rcu(ptype, offload_head, list) {
6041 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6042 			continue;
6043 		return ptype;
6044 	}
6045 	return NULL;
6046 }
6047 EXPORT_SYMBOL(gro_find_complete_by_type);
6048 
6049 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6050 {
6051 	skb_dst_drop(skb);
6052 	skb_ext_put(skb);
6053 	kmem_cache_free(skbuff_head_cache, skb);
6054 }
6055 
6056 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6057 				    struct sk_buff *skb,
6058 				    gro_result_t ret)
6059 {
6060 	switch (ret) {
6061 	case GRO_NORMAL:
6062 		gro_normal_one(napi, skb);
6063 		break;
6064 
6065 	case GRO_DROP:
6066 		kfree_skb(skb);
6067 		break;
6068 
6069 	case GRO_MERGED_FREE:
6070 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6071 			napi_skb_free_stolen_head(skb);
6072 		else
6073 			__kfree_skb(skb);
6074 		break;
6075 
6076 	case GRO_HELD:
6077 	case GRO_MERGED:
6078 	case GRO_CONSUMED:
6079 		break;
6080 	}
6081 
6082 	return ret;
6083 }
6084 
6085 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6086 {
6087 	gro_result_t ret;
6088 
6089 	skb_mark_napi_id(skb, napi);
6090 	trace_napi_gro_receive_entry(skb);
6091 
6092 	skb_gro_reset_offset(skb);
6093 
6094 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6095 	trace_napi_gro_receive_exit(ret);
6096 
6097 	return ret;
6098 }
6099 EXPORT_SYMBOL(napi_gro_receive);
6100 
6101 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6102 {
6103 	if (unlikely(skb->pfmemalloc)) {
6104 		consume_skb(skb);
6105 		return;
6106 	}
6107 	__skb_pull(skb, skb_headlen(skb));
6108 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6109 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6110 	__vlan_hwaccel_clear_tag(skb);
6111 	skb->dev = napi->dev;
6112 	skb->skb_iif = 0;
6113 
6114 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6115 	skb->pkt_type = PACKET_HOST;
6116 
6117 	skb->encapsulation = 0;
6118 	skb_shinfo(skb)->gso_type = 0;
6119 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6120 	skb_ext_reset(skb);
6121 
6122 	napi->skb = skb;
6123 }
6124 
6125 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6126 {
6127 	struct sk_buff *skb = napi->skb;
6128 
6129 	if (!skb) {
6130 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6131 		if (skb) {
6132 			napi->skb = skb;
6133 			skb_mark_napi_id(skb, napi);
6134 		}
6135 	}
6136 	return skb;
6137 }
6138 EXPORT_SYMBOL(napi_get_frags);
6139 
6140 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6141 				      struct sk_buff *skb,
6142 				      gro_result_t ret)
6143 {
6144 	switch (ret) {
6145 	case GRO_NORMAL:
6146 	case GRO_HELD:
6147 		__skb_push(skb, ETH_HLEN);
6148 		skb->protocol = eth_type_trans(skb, skb->dev);
6149 		if (ret == GRO_NORMAL)
6150 			gro_normal_one(napi, skb);
6151 		break;
6152 
6153 	case GRO_DROP:
6154 		napi_reuse_skb(napi, skb);
6155 		break;
6156 
6157 	case GRO_MERGED_FREE:
6158 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6159 			napi_skb_free_stolen_head(skb);
6160 		else
6161 			napi_reuse_skb(napi, skb);
6162 		break;
6163 
6164 	case GRO_MERGED:
6165 	case GRO_CONSUMED:
6166 		break;
6167 	}
6168 
6169 	return ret;
6170 }
6171 
6172 /* Upper GRO stack assumes network header starts at gro_offset=0
6173  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6174  * We copy ethernet header into skb->data to have a common layout.
6175  */
6176 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6177 {
6178 	struct sk_buff *skb = napi->skb;
6179 	const struct ethhdr *eth;
6180 	unsigned int hlen = sizeof(*eth);
6181 
6182 	napi->skb = NULL;
6183 
6184 	skb_reset_mac_header(skb);
6185 	skb_gro_reset_offset(skb);
6186 
6187 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6188 		eth = skb_gro_header_slow(skb, hlen, 0);
6189 		if (unlikely(!eth)) {
6190 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6191 					     __func__, napi->dev->name);
6192 			napi_reuse_skb(napi, skb);
6193 			return NULL;
6194 		}
6195 	} else {
6196 		eth = (const struct ethhdr *)skb->data;
6197 		gro_pull_from_frag0(skb, hlen);
6198 		NAPI_GRO_CB(skb)->frag0 += hlen;
6199 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6200 	}
6201 	__skb_pull(skb, hlen);
6202 
6203 	/*
6204 	 * This works because the only protocols we care about don't require
6205 	 * special handling.
6206 	 * We'll fix it up properly in napi_frags_finish()
6207 	 */
6208 	skb->protocol = eth->h_proto;
6209 
6210 	return skb;
6211 }
6212 
6213 gro_result_t napi_gro_frags(struct napi_struct *napi)
6214 {
6215 	gro_result_t ret;
6216 	struct sk_buff *skb = napi_frags_skb(napi);
6217 
6218 	if (!skb)
6219 		return GRO_DROP;
6220 
6221 	trace_napi_gro_frags_entry(skb);
6222 
6223 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6224 	trace_napi_gro_frags_exit(ret);
6225 
6226 	return ret;
6227 }
6228 EXPORT_SYMBOL(napi_gro_frags);
6229 
6230 /* Compute the checksum from gro_offset and return the folded value
6231  * after adding in any pseudo checksum.
6232  */
6233 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6234 {
6235 	__wsum wsum;
6236 	__sum16 sum;
6237 
6238 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6239 
6240 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6241 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6242 	/* See comments in __skb_checksum_complete(). */
6243 	if (likely(!sum)) {
6244 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6245 		    !skb->csum_complete_sw)
6246 			netdev_rx_csum_fault(skb->dev, skb);
6247 	}
6248 
6249 	NAPI_GRO_CB(skb)->csum = wsum;
6250 	NAPI_GRO_CB(skb)->csum_valid = 1;
6251 
6252 	return sum;
6253 }
6254 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6255 
6256 static void net_rps_send_ipi(struct softnet_data *remsd)
6257 {
6258 #ifdef CONFIG_RPS
6259 	while (remsd) {
6260 		struct softnet_data *next = remsd->rps_ipi_next;
6261 
6262 		if (cpu_online(remsd->cpu))
6263 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6264 		remsd = next;
6265 	}
6266 #endif
6267 }
6268 
6269 /*
6270  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6271  * Note: called with local irq disabled, but exits with local irq enabled.
6272  */
6273 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6274 {
6275 #ifdef CONFIG_RPS
6276 	struct softnet_data *remsd = sd->rps_ipi_list;
6277 
6278 	if (remsd) {
6279 		sd->rps_ipi_list = NULL;
6280 
6281 		local_irq_enable();
6282 
6283 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6284 		net_rps_send_ipi(remsd);
6285 	} else
6286 #endif
6287 		local_irq_enable();
6288 }
6289 
6290 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6291 {
6292 #ifdef CONFIG_RPS
6293 	return sd->rps_ipi_list != NULL;
6294 #else
6295 	return false;
6296 #endif
6297 }
6298 
6299 static int process_backlog(struct napi_struct *napi, int quota)
6300 {
6301 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6302 	bool again = true;
6303 	int work = 0;
6304 
6305 	/* Check if we have pending ipi, its better to send them now,
6306 	 * not waiting net_rx_action() end.
6307 	 */
6308 	if (sd_has_rps_ipi_waiting(sd)) {
6309 		local_irq_disable();
6310 		net_rps_action_and_irq_enable(sd);
6311 	}
6312 
6313 	napi->weight = dev_rx_weight;
6314 	while (again) {
6315 		struct sk_buff *skb;
6316 
6317 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6318 			rcu_read_lock();
6319 			__netif_receive_skb(skb);
6320 			rcu_read_unlock();
6321 			input_queue_head_incr(sd);
6322 			if (++work >= quota)
6323 				return work;
6324 
6325 		}
6326 
6327 		local_irq_disable();
6328 		rps_lock(sd);
6329 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6330 			/*
6331 			 * Inline a custom version of __napi_complete().
6332 			 * only current cpu owns and manipulates this napi,
6333 			 * and NAPI_STATE_SCHED is the only possible flag set
6334 			 * on backlog.
6335 			 * We can use a plain write instead of clear_bit(),
6336 			 * and we dont need an smp_mb() memory barrier.
6337 			 */
6338 			napi->state = 0;
6339 			again = false;
6340 		} else {
6341 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6342 						   &sd->process_queue);
6343 		}
6344 		rps_unlock(sd);
6345 		local_irq_enable();
6346 	}
6347 
6348 	return work;
6349 }
6350 
6351 /**
6352  * __napi_schedule - schedule for receive
6353  * @n: entry to schedule
6354  *
6355  * The entry's receive function will be scheduled to run.
6356  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6357  */
6358 void __napi_schedule(struct napi_struct *n)
6359 {
6360 	unsigned long flags;
6361 
6362 	local_irq_save(flags);
6363 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6364 	local_irq_restore(flags);
6365 }
6366 EXPORT_SYMBOL(__napi_schedule);
6367 
6368 /**
6369  *	napi_schedule_prep - check if napi can be scheduled
6370  *	@n: napi context
6371  *
6372  * Test if NAPI routine is already running, and if not mark
6373  * it as running.  This is used as a condition variable to
6374  * insure only one NAPI poll instance runs.  We also make
6375  * sure there is no pending NAPI disable.
6376  */
6377 bool napi_schedule_prep(struct napi_struct *n)
6378 {
6379 	unsigned long val, new;
6380 
6381 	do {
6382 		val = READ_ONCE(n->state);
6383 		if (unlikely(val & NAPIF_STATE_DISABLE))
6384 			return false;
6385 		new = val | NAPIF_STATE_SCHED;
6386 
6387 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6388 		 * This was suggested by Alexander Duyck, as compiler
6389 		 * emits better code than :
6390 		 * if (val & NAPIF_STATE_SCHED)
6391 		 *     new |= NAPIF_STATE_MISSED;
6392 		 */
6393 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6394 						   NAPIF_STATE_MISSED;
6395 	} while (cmpxchg(&n->state, val, new) != val);
6396 
6397 	return !(val & NAPIF_STATE_SCHED);
6398 }
6399 EXPORT_SYMBOL(napi_schedule_prep);
6400 
6401 /**
6402  * __napi_schedule_irqoff - schedule for receive
6403  * @n: entry to schedule
6404  *
6405  * Variant of __napi_schedule() assuming hard irqs are masked
6406  */
6407 void __napi_schedule_irqoff(struct napi_struct *n)
6408 {
6409 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6410 }
6411 EXPORT_SYMBOL(__napi_schedule_irqoff);
6412 
6413 bool napi_complete_done(struct napi_struct *n, int work_done)
6414 {
6415 	unsigned long flags, val, new, timeout = 0;
6416 	bool ret = true;
6417 
6418 	/*
6419 	 * 1) Don't let napi dequeue from the cpu poll list
6420 	 *    just in case its running on a different cpu.
6421 	 * 2) If we are busy polling, do nothing here, we have
6422 	 *    the guarantee we will be called later.
6423 	 */
6424 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6425 				 NAPIF_STATE_IN_BUSY_POLL)))
6426 		return false;
6427 
6428 	if (work_done) {
6429 		if (n->gro_bitmask)
6430 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6431 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6432 	}
6433 	if (n->defer_hard_irqs_count > 0) {
6434 		n->defer_hard_irqs_count--;
6435 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6436 		if (timeout)
6437 			ret = false;
6438 	}
6439 	if (n->gro_bitmask) {
6440 		/* When the NAPI instance uses a timeout and keeps postponing
6441 		 * it, we need to bound somehow the time packets are kept in
6442 		 * the GRO layer
6443 		 */
6444 		napi_gro_flush(n, !!timeout);
6445 	}
6446 
6447 	gro_normal_list(n);
6448 
6449 	if (unlikely(!list_empty(&n->poll_list))) {
6450 		/* If n->poll_list is not empty, we need to mask irqs */
6451 		local_irq_save(flags);
6452 		list_del_init(&n->poll_list);
6453 		local_irq_restore(flags);
6454 	}
6455 
6456 	do {
6457 		val = READ_ONCE(n->state);
6458 
6459 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6460 
6461 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6462 
6463 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6464 		 * because we will call napi->poll() one more time.
6465 		 * This C code was suggested by Alexander Duyck to help gcc.
6466 		 */
6467 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6468 						    NAPIF_STATE_SCHED;
6469 	} while (cmpxchg(&n->state, val, new) != val);
6470 
6471 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6472 		__napi_schedule(n);
6473 		return false;
6474 	}
6475 
6476 	if (timeout)
6477 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6478 			      HRTIMER_MODE_REL_PINNED);
6479 	return ret;
6480 }
6481 EXPORT_SYMBOL(napi_complete_done);
6482 
6483 /* must be called under rcu_read_lock(), as we dont take a reference */
6484 static struct napi_struct *napi_by_id(unsigned int napi_id)
6485 {
6486 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6487 	struct napi_struct *napi;
6488 
6489 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6490 		if (napi->napi_id == napi_id)
6491 			return napi;
6492 
6493 	return NULL;
6494 }
6495 
6496 #if defined(CONFIG_NET_RX_BUSY_POLL)
6497 
6498 #define BUSY_POLL_BUDGET 8
6499 
6500 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6501 {
6502 	int rc;
6503 
6504 	/* Busy polling means there is a high chance device driver hard irq
6505 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6506 	 * set in napi_schedule_prep().
6507 	 * Since we are about to call napi->poll() once more, we can safely
6508 	 * clear NAPI_STATE_MISSED.
6509 	 *
6510 	 * Note: x86 could use a single "lock and ..." instruction
6511 	 * to perform these two clear_bit()
6512 	 */
6513 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6514 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6515 
6516 	local_bh_disable();
6517 
6518 	/* All we really want here is to re-enable device interrupts.
6519 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6520 	 */
6521 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6522 	/* We can't gro_normal_list() here, because napi->poll() might have
6523 	 * rearmed the napi (napi_complete_done()) in which case it could
6524 	 * already be running on another CPU.
6525 	 */
6526 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6527 	netpoll_poll_unlock(have_poll_lock);
6528 	if (rc == BUSY_POLL_BUDGET) {
6529 		/* As the whole budget was spent, we still own the napi so can
6530 		 * safely handle the rx_list.
6531 		 */
6532 		gro_normal_list(napi);
6533 		__napi_schedule(napi);
6534 	}
6535 	local_bh_enable();
6536 }
6537 
6538 void napi_busy_loop(unsigned int napi_id,
6539 		    bool (*loop_end)(void *, unsigned long),
6540 		    void *loop_end_arg)
6541 {
6542 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6543 	int (*napi_poll)(struct napi_struct *napi, int budget);
6544 	void *have_poll_lock = NULL;
6545 	struct napi_struct *napi;
6546 
6547 restart:
6548 	napi_poll = NULL;
6549 
6550 	rcu_read_lock();
6551 
6552 	napi = napi_by_id(napi_id);
6553 	if (!napi)
6554 		goto out;
6555 
6556 	preempt_disable();
6557 	for (;;) {
6558 		int work = 0;
6559 
6560 		local_bh_disable();
6561 		if (!napi_poll) {
6562 			unsigned long val = READ_ONCE(napi->state);
6563 
6564 			/* If multiple threads are competing for this napi,
6565 			 * we avoid dirtying napi->state as much as we can.
6566 			 */
6567 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6568 				   NAPIF_STATE_IN_BUSY_POLL))
6569 				goto count;
6570 			if (cmpxchg(&napi->state, val,
6571 				    val | NAPIF_STATE_IN_BUSY_POLL |
6572 					  NAPIF_STATE_SCHED) != val)
6573 				goto count;
6574 			have_poll_lock = netpoll_poll_lock(napi);
6575 			napi_poll = napi->poll;
6576 		}
6577 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6578 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6579 		gro_normal_list(napi);
6580 count:
6581 		if (work > 0)
6582 			__NET_ADD_STATS(dev_net(napi->dev),
6583 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6584 		local_bh_enable();
6585 
6586 		if (!loop_end || loop_end(loop_end_arg, start_time))
6587 			break;
6588 
6589 		if (unlikely(need_resched())) {
6590 			if (napi_poll)
6591 				busy_poll_stop(napi, have_poll_lock);
6592 			preempt_enable();
6593 			rcu_read_unlock();
6594 			cond_resched();
6595 			if (loop_end(loop_end_arg, start_time))
6596 				return;
6597 			goto restart;
6598 		}
6599 		cpu_relax();
6600 	}
6601 	if (napi_poll)
6602 		busy_poll_stop(napi, have_poll_lock);
6603 	preempt_enable();
6604 out:
6605 	rcu_read_unlock();
6606 }
6607 EXPORT_SYMBOL(napi_busy_loop);
6608 
6609 #endif /* CONFIG_NET_RX_BUSY_POLL */
6610 
6611 static void napi_hash_add(struct napi_struct *napi)
6612 {
6613 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6614 		return;
6615 
6616 	spin_lock(&napi_hash_lock);
6617 
6618 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6619 	do {
6620 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6621 			napi_gen_id = MIN_NAPI_ID;
6622 	} while (napi_by_id(napi_gen_id));
6623 	napi->napi_id = napi_gen_id;
6624 
6625 	hlist_add_head_rcu(&napi->napi_hash_node,
6626 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6627 
6628 	spin_unlock(&napi_hash_lock);
6629 }
6630 
6631 /* Warning : caller is responsible to make sure rcu grace period
6632  * is respected before freeing memory containing @napi
6633  */
6634 static void napi_hash_del(struct napi_struct *napi)
6635 {
6636 	spin_lock(&napi_hash_lock);
6637 
6638 	hlist_del_init_rcu(&napi->napi_hash_node);
6639 
6640 	spin_unlock(&napi_hash_lock);
6641 }
6642 
6643 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6644 {
6645 	struct napi_struct *napi;
6646 
6647 	napi = container_of(timer, struct napi_struct, timer);
6648 
6649 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6650 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6651 	 */
6652 	if (!napi_disable_pending(napi) &&
6653 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6654 		__napi_schedule_irqoff(napi);
6655 
6656 	return HRTIMER_NORESTART;
6657 }
6658 
6659 static void init_gro_hash(struct napi_struct *napi)
6660 {
6661 	int i;
6662 
6663 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6664 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6665 		napi->gro_hash[i].count = 0;
6666 	}
6667 	napi->gro_bitmask = 0;
6668 }
6669 
6670 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6671 		    int (*poll)(struct napi_struct *, int), int weight)
6672 {
6673 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6674 		return;
6675 
6676 	INIT_LIST_HEAD(&napi->poll_list);
6677 	INIT_HLIST_NODE(&napi->napi_hash_node);
6678 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6679 	napi->timer.function = napi_watchdog;
6680 	init_gro_hash(napi);
6681 	napi->skb = NULL;
6682 	INIT_LIST_HEAD(&napi->rx_list);
6683 	napi->rx_count = 0;
6684 	napi->poll = poll;
6685 	if (weight > NAPI_POLL_WEIGHT)
6686 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6687 				weight);
6688 	napi->weight = weight;
6689 	napi->dev = dev;
6690 #ifdef CONFIG_NETPOLL
6691 	napi->poll_owner = -1;
6692 #endif
6693 	set_bit(NAPI_STATE_SCHED, &napi->state);
6694 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6695 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6696 	napi_hash_add(napi);
6697 }
6698 EXPORT_SYMBOL(netif_napi_add);
6699 
6700 void napi_disable(struct napi_struct *n)
6701 {
6702 	might_sleep();
6703 	set_bit(NAPI_STATE_DISABLE, &n->state);
6704 
6705 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6706 		msleep(1);
6707 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6708 		msleep(1);
6709 
6710 	hrtimer_cancel(&n->timer);
6711 
6712 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6713 }
6714 EXPORT_SYMBOL(napi_disable);
6715 
6716 static void flush_gro_hash(struct napi_struct *napi)
6717 {
6718 	int i;
6719 
6720 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6721 		struct sk_buff *skb, *n;
6722 
6723 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6724 			kfree_skb(skb);
6725 		napi->gro_hash[i].count = 0;
6726 	}
6727 }
6728 
6729 /* Must be called in process context */
6730 void __netif_napi_del(struct napi_struct *napi)
6731 {
6732 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6733 		return;
6734 
6735 	napi_hash_del(napi);
6736 	list_del_rcu(&napi->dev_list);
6737 	napi_free_frags(napi);
6738 
6739 	flush_gro_hash(napi);
6740 	napi->gro_bitmask = 0;
6741 }
6742 EXPORT_SYMBOL(__netif_napi_del);
6743 
6744 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6745 {
6746 	void *have;
6747 	int work, weight;
6748 
6749 	list_del_init(&n->poll_list);
6750 
6751 	have = netpoll_poll_lock(n);
6752 
6753 	weight = n->weight;
6754 
6755 	/* This NAPI_STATE_SCHED test is for avoiding a race
6756 	 * with netpoll's poll_napi().  Only the entity which
6757 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6758 	 * actually make the ->poll() call.  Therefore we avoid
6759 	 * accidentally calling ->poll() when NAPI is not scheduled.
6760 	 */
6761 	work = 0;
6762 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6763 		work = n->poll(n, weight);
6764 		trace_napi_poll(n, work, weight);
6765 	}
6766 
6767 	if (unlikely(work > weight))
6768 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6769 			    n->poll, work, weight);
6770 
6771 	if (likely(work < weight))
6772 		goto out_unlock;
6773 
6774 	/* Drivers must not modify the NAPI state if they
6775 	 * consume the entire weight.  In such cases this code
6776 	 * still "owns" the NAPI instance and therefore can
6777 	 * move the instance around on the list at-will.
6778 	 */
6779 	if (unlikely(napi_disable_pending(n))) {
6780 		napi_complete(n);
6781 		goto out_unlock;
6782 	}
6783 
6784 	if (n->gro_bitmask) {
6785 		/* flush too old packets
6786 		 * If HZ < 1000, flush all packets.
6787 		 */
6788 		napi_gro_flush(n, HZ >= 1000);
6789 	}
6790 
6791 	gro_normal_list(n);
6792 
6793 	/* Some drivers may have called napi_schedule
6794 	 * prior to exhausting their budget.
6795 	 */
6796 	if (unlikely(!list_empty(&n->poll_list))) {
6797 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6798 			     n->dev ? n->dev->name : "backlog");
6799 		goto out_unlock;
6800 	}
6801 
6802 	list_add_tail(&n->poll_list, repoll);
6803 
6804 out_unlock:
6805 	netpoll_poll_unlock(have);
6806 
6807 	return work;
6808 }
6809 
6810 static __latent_entropy void net_rx_action(struct softirq_action *h)
6811 {
6812 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6813 	unsigned long time_limit = jiffies +
6814 		usecs_to_jiffies(netdev_budget_usecs);
6815 	int budget = netdev_budget;
6816 	LIST_HEAD(list);
6817 	LIST_HEAD(repoll);
6818 
6819 	local_irq_disable();
6820 	list_splice_init(&sd->poll_list, &list);
6821 	local_irq_enable();
6822 
6823 	for (;;) {
6824 		struct napi_struct *n;
6825 
6826 		if (list_empty(&list)) {
6827 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6828 				goto out;
6829 			break;
6830 		}
6831 
6832 		n = list_first_entry(&list, struct napi_struct, poll_list);
6833 		budget -= napi_poll(n, &repoll);
6834 
6835 		/* If softirq window is exhausted then punt.
6836 		 * Allow this to run for 2 jiffies since which will allow
6837 		 * an average latency of 1.5/HZ.
6838 		 */
6839 		if (unlikely(budget <= 0 ||
6840 			     time_after_eq(jiffies, time_limit))) {
6841 			sd->time_squeeze++;
6842 			break;
6843 		}
6844 	}
6845 
6846 	local_irq_disable();
6847 
6848 	list_splice_tail_init(&sd->poll_list, &list);
6849 	list_splice_tail(&repoll, &list);
6850 	list_splice(&list, &sd->poll_list);
6851 	if (!list_empty(&sd->poll_list))
6852 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6853 
6854 	net_rps_action_and_irq_enable(sd);
6855 out:
6856 	__kfree_skb_flush();
6857 }
6858 
6859 struct netdev_adjacent {
6860 	struct net_device *dev;
6861 
6862 	/* upper master flag, there can only be one master device per list */
6863 	bool master;
6864 
6865 	/* lookup ignore flag */
6866 	bool ignore;
6867 
6868 	/* counter for the number of times this device was added to us */
6869 	u16 ref_nr;
6870 
6871 	/* private field for the users */
6872 	void *private;
6873 
6874 	struct list_head list;
6875 	struct rcu_head rcu;
6876 };
6877 
6878 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6879 						 struct list_head *adj_list)
6880 {
6881 	struct netdev_adjacent *adj;
6882 
6883 	list_for_each_entry(adj, adj_list, list) {
6884 		if (adj->dev == adj_dev)
6885 			return adj;
6886 	}
6887 	return NULL;
6888 }
6889 
6890 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6891 				    struct netdev_nested_priv *priv)
6892 {
6893 	struct net_device *dev = (struct net_device *)priv->data;
6894 
6895 	return upper_dev == dev;
6896 }
6897 
6898 /**
6899  * netdev_has_upper_dev - Check if device is linked to an upper device
6900  * @dev: device
6901  * @upper_dev: upper device to check
6902  *
6903  * Find out if a device is linked to specified upper device and return true
6904  * in case it is. Note that this checks only immediate upper device,
6905  * not through a complete stack of devices. The caller must hold the RTNL lock.
6906  */
6907 bool netdev_has_upper_dev(struct net_device *dev,
6908 			  struct net_device *upper_dev)
6909 {
6910 	struct netdev_nested_priv priv = {
6911 		.data = (void *)upper_dev,
6912 	};
6913 
6914 	ASSERT_RTNL();
6915 
6916 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6917 					     &priv);
6918 }
6919 EXPORT_SYMBOL(netdev_has_upper_dev);
6920 
6921 /**
6922  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6923  * @dev: device
6924  * @upper_dev: upper device to check
6925  *
6926  * Find out if a device is linked to specified upper device and return true
6927  * in case it is. Note that this checks the entire upper device chain.
6928  * The caller must hold rcu lock.
6929  */
6930 
6931 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6932 				  struct net_device *upper_dev)
6933 {
6934 	struct netdev_nested_priv priv = {
6935 		.data = (void *)upper_dev,
6936 	};
6937 
6938 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6939 					       &priv);
6940 }
6941 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6942 
6943 /**
6944  * netdev_has_any_upper_dev - Check if device is linked to some device
6945  * @dev: device
6946  *
6947  * Find out if a device is linked to an upper device and return true in case
6948  * it is. The caller must hold the RTNL lock.
6949  */
6950 bool netdev_has_any_upper_dev(struct net_device *dev)
6951 {
6952 	ASSERT_RTNL();
6953 
6954 	return !list_empty(&dev->adj_list.upper);
6955 }
6956 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6957 
6958 /**
6959  * netdev_master_upper_dev_get - Get master upper device
6960  * @dev: device
6961  *
6962  * Find a master upper device and return pointer to it or NULL in case
6963  * it's not there. The caller must hold the RTNL lock.
6964  */
6965 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6966 {
6967 	struct netdev_adjacent *upper;
6968 
6969 	ASSERT_RTNL();
6970 
6971 	if (list_empty(&dev->adj_list.upper))
6972 		return NULL;
6973 
6974 	upper = list_first_entry(&dev->adj_list.upper,
6975 				 struct netdev_adjacent, list);
6976 	if (likely(upper->master))
6977 		return upper->dev;
6978 	return NULL;
6979 }
6980 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6981 
6982 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6983 {
6984 	struct netdev_adjacent *upper;
6985 
6986 	ASSERT_RTNL();
6987 
6988 	if (list_empty(&dev->adj_list.upper))
6989 		return NULL;
6990 
6991 	upper = list_first_entry(&dev->adj_list.upper,
6992 				 struct netdev_adjacent, list);
6993 	if (likely(upper->master) && !upper->ignore)
6994 		return upper->dev;
6995 	return NULL;
6996 }
6997 
6998 /**
6999  * netdev_has_any_lower_dev - Check if device is linked to some device
7000  * @dev: device
7001  *
7002  * Find out if a device is linked to a lower device and return true in case
7003  * it is. The caller must hold the RTNL lock.
7004  */
7005 static bool netdev_has_any_lower_dev(struct net_device *dev)
7006 {
7007 	ASSERT_RTNL();
7008 
7009 	return !list_empty(&dev->adj_list.lower);
7010 }
7011 
7012 void *netdev_adjacent_get_private(struct list_head *adj_list)
7013 {
7014 	struct netdev_adjacent *adj;
7015 
7016 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7017 
7018 	return adj->private;
7019 }
7020 EXPORT_SYMBOL(netdev_adjacent_get_private);
7021 
7022 /**
7023  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7024  * @dev: device
7025  * @iter: list_head ** of the current position
7026  *
7027  * Gets the next device from the dev's upper list, starting from iter
7028  * position. The caller must hold RCU read lock.
7029  */
7030 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7031 						 struct list_head **iter)
7032 {
7033 	struct netdev_adjacent *upper;
7034 
7035 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7036 
7037 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7038 
7039 	if (&upper->list == &dev->adj_list.upper)
7040 		return NULL;
7041 
7042 	*iter = &upper->list;
7043 
7044 	return upper->dev;
7045 }
7046 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7047 
7048 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7049 						  struct list_head **iter,
7050 						  bool *ignore)
7051 {
7052 	struct netdev_adjacent *upper;
7053 
7054 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7055 
7056 	if (&upper->list == &dev->adj_list.upper)
7057 		return NULL;
7058 
7059 	*iter = &upper->list;
7060 	*ignore = upper->ignore;
7061 
7062 	return upper->dev;
7063 }
7064 
7065 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7066 						    struct list_head **iter)
7067 {
7068 	struct netdev_adjacent *upper;
7069 
7070 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7071 
7072 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7073 
7074 	if (&upper->list == &dev->adj_list.upper)
7075 		return NULL;
7076 
7077 	*iter = &upper->list;
7078 
7079 	return upper->dev;
7080 }
7081 
7082 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7083 				       int (*fn)(struct net_device *dev,
7084 					 struct netdev_nested_priv *priv),
7085 				       struct netdev_nested_priv *priv)
7086 {
7087 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7088 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7089 	int ret, cur = 0;
7090 	bool ignore;
7091 
7092 	now = dev;
7093 	iter = &dev->adj_list.upper;
7094 
7095 	while (1) {
7096 		if (now != dev) {
7097 			ret = fn(now, priv);
7098 			if (ret)
7099 				return ret;
7100 		}
7101 
7102 		next = NULL;
7103 		while (1) {
7104 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7105 			if (!udev)
7106 				break;
7107 			if (ignore)
7108 				continue;
7109 
7110 			next = udev;
7111 			niter = &udev->adj_list.upper;
7112 			dev_stack[cur] = now;
7113 			iter_stack[cur++] = iter;
7114 			break;
7115 		}
7116 
7117 		if (!next) {
7118 			if (!cur)
7119 				return 0;
7120 			next = dev_stack[--cur];
7121 			niter = iter_stack[cur];
7122 		}
7123 
7124 		now = next;
7125 		iter = niter;
7126 	}
7127 
7128 	return 0;
7129 }
7130 
7131 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7132 				  int (*fn)(struct net_device *dev,
7133 					    struct netdev_nested_priv *priv),
7134 				  struct netdev_nested_priv *priv)
7135 {
7136 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7137 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7138 	int ret, cur = 0;
7139 
7140 	now = dev;
7141 	iter = &dev->adj_list.upper;
7142 
7143 	while (1) {
7144 		if (now != dev) {
7145 			ret = fn(now, priv);
7146 			if (ret)
7147 				return ret;
7148 		}
7149 
7150 		next = NULL;
7151 		while (1) {
7152 			udev = netdev_next_upper_dev_rcu(now, &iter);
7153 			if (!udev)
7154 				break;
7155 
7156 			next = udev;
7157 			niter = &udev->adj_list.upper;
7158 			dev_stack[cur] = now;
7159 			iter_stack[cur++] = iter;
7160 			break;
7161 		}
7162 
7163 		if (!next) {
7164 			if (!cur)
7165 				return 0;
7166 			next = dev_stack[--cur];
7167 			niter = iter_stack[cur];
7168 		}
7169 
7170 		now = next;
7171 		iter = niter;
7172 	}
7173 
7174 	return 0;
7175 }
7176 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7177 
7178 static bool __netdev_has_upper_dev(struct net_device *dev,
7179 				   struct net_device *upper_dev)
7180 {
7181 	struct netdev_nested_priv priv = {
7182 		.flags = 0,
7183 		.data = (void *)upper_dev,
7184 	};
7185 
7186 	ASSERT_RTNL();
7187 
7188 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7189 					   &priv);
7190 }
7191 
7192 /**
7193  * netdev_lower_get_next_private - Get the next ->private from the
7194  *				   lower neighbour list
7195  * @dev: device
7196  * @iter: list_head ** of the current position
7197  *
7198  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7199  * list, starting from iter position. The caller must hold either hold the
7200  * RTNL lock or its own locking that guarantees that the neighbour lower
7201  * list will remain unchanged.
7202  */
7203 void *netdev_lower_get_next_private(struct net_device *dev,
7204 				    struct list_head **iter)
7205 {
7206 	struct netdev_adjacent *lower;
7207 
7208 	lower = list_entry(*iter, struct netdev_adjacent, list);
7209 
7210 	if (&lower->list == &dev->adj_list.lower)
7211 		return NULL;
7212 
7213 	*iter = lower->list.next;
7214 
7215 	return lower->private;
7216 }
7217 EXPORT_SYMBOL(netdev_lower_get_next_private);
7218 
7219 /**
7220  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7221  *				       lower neighbour list, RCU
7222  *				       variant
7223  * @dev: device
7224  * @iter: list_head ** of the current position
7225  *
7226  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7227  * list, starting from iter position. The caller must hold RCU read lock.
7228  */
7229 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7230 					struct list_head **iter)
7231 {
7232 	struct netdev_adjacent *lower;
7233 
7234 	WARN_ON_ONCE(!rcu_read_lock_held());
7235 
7236 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7237 
7238 	if (&lower->list == &dev->adj_list.lower)
7239 		return NULL;
7240 
7241 	*iter = &lower->list;
7242 
7243 	return lower->private;
7244 }
7245 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7246 
7247 /**
7248  * netdev_lower_get_next - Get the next device from the lower neighbour
7249  *                         list
7250  * @dev: device
7251  * @iter: list_head ** of the current position
7252  *
7253  * Gets the next netdev_adjacent from the dev's lower neighbour
7254  * list, starting from iter position. The caller must hold RTNL lock or
7255  * its own locking that guarantees that the neighbour lower
7256  * list will remain unchanged.
7257  */
7258 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7259 {
7260 	struct netdev_adjacent *lower;
7261 
7262 	lower = list_entry(*iter, struct netdev_adjacent, list);
7263 
7264 	if (&lower->list == &dev->adj_list.lower)
7265 		return NULL;
7266 
7267 	*iter = lower->list.next;
7268 
7269 	return lower->dev;
7270 }
7271 EXPORT_SYMBOL(netdev_lower_get_next);
7272 
7273 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7274 						struct list_head **iter)
7275 {
7276 	struct netdev_adjacent *lower;
7277 
7278 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7279 
7280 	if (&lower->list == &dev->adj_list.lower)
7281 		return NULL;
7282 
7283 	*iter = &lower->list;
7284 
7285 	return lower->dev;
7286 }
7287 
7288 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7289 						  struct list_head **iter,
7290 						  bool *ignore)
7291 {
7292 	struct netdev_adjacent *lower;
7293 
7294 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7295 
7296 	if (&lower->list == &dev->adj_list.lower)
7297 		return NULL;
7298 
7299 	*iter = &lower->list;
7300 	*ignore = lower->ignore;
7301 
7302 	return lower->dev;
7303 }
7304 
7305 int netdev_walk_all_lower_dev(struct net_device *dev,
7306 			      int (*fn)(struct net_device *dev,
7307 					struct netdev_nested_priv *priv),
7308 			      struct netdev_nested_priv *priv)
7309 {
7310 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7311 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7312 	int ret, cur = 0;
7313 
7314 	now = dev;
7315 	iter = &dev->adj_list.lower;
7316 
7317 	while (1) {
7318 		if (now != dev) {
7319 			ret = fn(now, priv);
7320 			if (ret)
7321 				return ret;
7322 		}
7323 
7324 		next = NULL;
7325 		while (1) {
7326 			ldev = netdev_next_lower_dev(now, &iter);
7327 			if (!ldev)
7328 				break;
7329 
7330 			next = ldev;
7331 			niter = &ldev->adj_list.lower;
7332 			dev_stack[cur] = now;
7333 			iter_stack[cur++] = iter;
7334 			break;
7335 		}
7336 
7337 		if (!next) {
7338 			if (!cur)
7339 				return 0;
7340 			next = dev_stack[--cur];
7341 			niter = iter_stack[cur];
7342 		}
7343 
7344 		now = next;
7345 		iter = niter;
7346 	}
7347 
7348 	return 0;
7349 }
7350 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7351 
7352 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7353 				       int (*fn)(struct net_device *dev,
7354 					 struct netdev_nested_priv *priv),
7355 				       struct netdev_nested_priv *priv)
7356 {
7357 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7358 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7359 	int ret, cur = 0;
7360 	bool ignore;
7361 
7362 	now = dev;
7363 	iter = &dev->adj_list.lower;
7364 
7365 	while (1) {
7366 		if (now != dev) {
7367 			ret = fn(now, priv);
7368 			if (ret)
7369 				return ret;
7370 		}
7371 
7372 		next = NULL;
7373 		while (1) {
7374 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7375 			if (!ldev)
7376 				break;
7377 			if (ignore)
7378 				continue;
7379 
7380 			next = ldev;
7381 			niter = &ldev->adj_list.lower;
7382 			dev_stack[cur] = now;
7383 			iter_stack[cur++] = iter;
7384 			break;
7385 		}
7386 
7387 		if (!next) {
7388 			if (!cur)
7389 				return 0;
7390 			next = dev_stack[--cur];
7391 			niter = iter_stack[cur];
7392 		}
7393 
7394 		now = next;
7395 		iter = niter;
7396 	}
7397 
7398 	return 0;
7399 }
7400 
7401 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7402 					     struct list_head **iter)
7403 {
7404 	struct netdev_adjacent *lower;
7405 
7406 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7407 	if (&lower->list == &dev->adj_list.lower)
7408 		return NULL;
7409 
7410 	*iter = &lower->list;
7411 
7412 	return lower->dev;
7413 }
7414 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7415 
7416 static u8 __netdev_upper_depth(struct net_device *dev)
7417 {
7418 	struct net_device *udev;
7419 	struct list_head *iter;
7420 	u8 max_depth = 0;
7421 	bool ignore;
7422 
7423 	for (iter = &dev->adj_list.upper,
7424 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7425 	     udev;
7426 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7427 		if (ignore)
7428 			continue;
7429 		if (max_depth < udev->upper_level)
7430 			max_depth = udev->upper_level;
7431 	}
7432 
7433 	return max_depth;
7434 }
7435 
7436 static u8 __netdev_lower_depth(struct net_device *dev)
7437 {
7438 	struct net_device *ldev;
7439 	struct list_head *iter;
7440 	u8 max_depth = 0;
7441 	bool ignore;
7442 
7443 	for (iter = &dev->adj_list.lower,
7444 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7445 	     ldev;
7446 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7447 		if (ignore)
7448 			continue;
7449 		if (max_depth < ldev->lower_level)
7450 			max_depth = ldev->lower_level;
7451 	}
7452 
7453 	return max_depth;
7454 }
7455 
7456 static int __netdev_update_upper_level(struct net_device *dev,
7457 				       struct netdev_nested_priv *__unused)
7458 {
7459 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7460 	return 0;
7461 }
7462 
7463 static int __netdev_update_lower_level(struct net_device *dev,
7464 				       struct netdev_nested_priv *priv)
7465 {
7466 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7467 
7468 #ifdef CONFIG_LOCKDEP
7469 	if (!priv)
7470 		return 0;
7471 
7472 	if (priv->flags & NESTED_SYNC_IMM)
7473 		dev->nested_level = dev->lower_level - 1;
7474 	if (priv->flags & NESTED_SYNC_TODO)
7475 		net_unlink_todo(dev);
7476 #endif
7477 	return 0;
7478 }
7479 
7480 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7481 				  int (*fn)(struct net_device *dev,
7482 					    struct netdev_nested_priv *priv),
7483 				  struct netdev_nested_priv *priv)
7484 {
7485 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7486 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7487 	int ret, cur = 0;
7488 
7489 	now = dev;
7490 	iter = &dev->adj_list.lower;
7491 
7492 	while (1) {
7493 		if (now != dev) {
7494 			ret = fn(now, priv);
7495 			if (ret)
7496 				return ret;
7497 		}
7498 
7499 		next = NULL;
7500 		while (1) {
7501 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7502 			if (!ldev)
7503 				break;
7504 
7505 			next = ldev;
7506 			niter = &ldev->adj_list.lower;
7507 			dev_stack[cur] = now;
7508 			iter_stack[cur++] = iter;
7509 			break;
7510 		}
7511 
7512 		if (!next) {
7513 			if (!cur)
7514 				return 0;
7515 			next = dev_stack[--cur];
7516 			niter = iter_stack[cur];
7517 		}
7518 
7519 		now = next;
7520 		iter = niter;
7521 	}
7522 
7523 	return 0;
7524 }
7525 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7526 
7527 /**
7528  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7529  *				       lower neighbour list, RCU
7530  *				       variant
7531  * @dev: device
7532  *
7533  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7534  * list. The caller must hold RCU read lock.
7535  */
7536 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7537 {
7538 	struct netdev_adjacent *lower;
7539 
7540 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7541 			struct netdev_adjacent, list);
7542 	if (lower)
7543 		return lower->private;
7544 	return NULL;
7545 }
7546 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7547 
7548 /**
7549  * netdev_master_upper_dev_get_rcu - Get master upper device
7550  * @dev: device
7551  *
7552  * Find a master upper device and return pointer to it or NULL in case
7553  * it's not there. The caller must hold the RCU read lock.
7554  */
7555 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7556 {
7557 	struct netdev_adjacent *upper;
7558 
7559 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7560 				       struct netdev_adjacent, list);
7561 	if (upper && likely(upper->master))
7562 		return upper->dev;
7563 	return NULL;
7564 }
7565 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7566 
7567 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7568 			      struct net_device *adj_dev,
7569 			      struct list_head *dev_list)
7570 {
7571 	char linkname[IFNAMSIZ+7];
7572 
7573 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7574 		"upper_%s" : "lower_%s", adj_dev->name);
7575 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7576 				 linkname);
7577 }
7578 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7579 			       char *name,
7580 			       struct list_head *dev_list)
7581 {
7582 	char linkname[IFNAMSIZ+7];
7583 
7584 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7585 		"upper_%s" : "lower_%s", name);
7586 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7587 }
7588 
7589 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7590 						 struct net_device *adj_dev,
7591 						 struct list_head *dev_list)
7592 {
7593 	return (dev_list == &dev->adj_list.upper ||
7594 		dev_list == &dev->adj_list.lower) &&
7595 		net_eq(dev_net(dev), dev_net(adj_dev));
7596 }
7597 
7598 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7599 					struct net_device *adj_dev,
7600 					struct list_head *dev_list,
7601 					void *private, bool master)
7602 {
7603 	struct netdev_adjacent *adj;
7604 	int ret;
7605 
7606 	adj = __netdev_find_adj(adj_dev, dev_list);
7607 
7608 	if (adj) {
7609 		adj->ref_nr += 1;
7610 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7611 			 dev->name, adj_dev->name, adj->ref_nr);
7612 
7613 		return 0;
7614 	}
7615 
7616 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7617 	if (!adj)
7618 		return -ENOMEM;
7619 
7620 	adj->dev = adj_dev;
7621 	adj->master = master;
7622 	adj->ref_nr = 1;
7623 	adj->private = private;
7624 	adj->ignore = false;
7625 	dev_hold(adj_dev);
7626 
7627 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7628 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7629 
7630 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7631 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7632 		if (ret)
7633 			goto free_adj;
7634 	}
7635 
7636 	/* Ensure that master link is always the first item in list. */
7637 	if (master) {
7638 		ret = sysfs_create_link(&(dev->dev.kobj),
7639 					&(adj_dev->dev.kobj), "master");
7640 		if (ret)
7641 			goto remove_symlinks;
7642 
7643 		list_add_rcu(&adj->list, dev_list);
7644 	} else {
7645 		list_add_tail_rcu(&adj->list, dev_list);
7646 	}
7647 
7648 	return 0;
7649 
7650 remove_symlinks:
7651 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7652 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7653 free_adj:
7654 	kfree(adj);
7655 	dev_put(adj_dev);
7656 
7657 	return ret;
7658 }
7659 
7660 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7661 					 struct net_device *adj_dev,
7662 					 u16 ref_nr,
7663 					 struct list_head *dev_list)
7664 {
7665 	struct netdev_adjacent *adj;
7666 
7667 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7668 		 dev->name, adj_dev->name, ref_nr);
7669 
7670 	adj = __netdev_find_adj(adj_dev, dev_list);
7671 
7672 	if (!adj) {
7673 		pr_err("Adjacency does not exist for device %s from %s\n",
7674 		       dev->name, adj_dev->name);
7675 		WARN_ON(1);
7676 		return;
7677 	}
7678 
7679 	if (adj->ref_nr > ref_nr) {
7680 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7681 			 dev->name, adj_dev->name, ref_nr,
7682 			 adj->ref_nr - ref_nr);
7683 		adj->ref_nr -= ref_nr;
7684 		return;
7685 	}
7686 
7687 	if (adj->master)
7688 		sysfs_remove_link(&(dev->dev.kobj), "master");
7689 
7690 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7691 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7692 
7693 	list_del_rcu(&adj->list);
7694 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7695 		 adj_dev->name, dev->name, adj_dev->name);
7696 	dev_put(adj_dev);
7697 	kfree_rcu(adj, rcu);
7698 }
7699 
7700 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7701 					    struct net_device *upper_dev,
7702 					    struct list_head *up_list,
7703 					    struct list_head *down_list,
7704 					    void *private, bool master)
7705 {
7706 	int ret;
7707 
7708 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7709 					   private, master);
7710 	if (ret)
7711 		return ret;
7712 
7713 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7714 					   private, false);
7715 	if (ret) {
7716 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7717 		return ret;
7718 	}
7719 
7720 	return 0;
7721 }
7722 
7723 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7724 					       struct net_device *upper_dev,
7725 					       u16 ref_nr,
7726 					       struct list_head *up_list,
7727 					       struct list_head *down_list)
7728 {
7729 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7730 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7731 }
7732 
7733 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7734 						struct net_device *upper_dev,
7735 						void *private, bool master)
7736 {
7737 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7738 						&dev->adj_list.upper,
7739 						&upper_dev->adj_list.lower,
7740 						private, master);
7741 }
7742 
7743 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7744 						   struct net_device *upper_dev)
7745 {
7746 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7747 					   &dev->adj_list.upper,
7748 					   &upper_dev->adj_list.lower);
7749 }
7750 
7751 static int __netdev_upper_dev_link(struct net_device *dev,
7752 				   struct net_device *upper_dev, bool master,
7753 				   void *upper_priv, void *upper_info,
7754 				   struct netdev_nested_priv *priv,
7755 				   struct netlink_ext_ack *extack)
7756 {
7757 	struct netdev_notifier_changeupper_info changeupper_info = {
7758 		.info = {
7759 			.dev = dev,
7760 			.extack = extack,
7761 		},
7762 		.upper_dev = upper_dev,
7763 		.master = master,
7764 		.linking = true,
7765 		.upper_info = upper_info,
7766 	};
7767 	struct net_device *master_dev;
7768 	int ret = 0;
7769 
7770 	ASSERT_RTNL();
7771 
7772 	if (dev == upper_dev)
7773 		return -EBUSY;
7774 
7775 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7776 	if (__netdev_has_upper_dev(upper_dev, dev))
7777 		return -EBUSY;
7778 
7779 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7780 		return -EMLINK;
7781 
7782 	if (!master) {
7783 		if (__netdev_has_upper_dev(dev, upper_dev))
7784 			return -EEXIST;
7785 	} else {
7786 		master_dev = __netdev_master_upper_dev_get(dev);
7787 		if (master_dev)
7788 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7789 	}
7790 
7791 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7792 					    &changeupper_info.info);
7793 	ret = notifier_to_errno(ret);
7794 	if (ret)
7795 		return ret;
7796 
7797 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7798 						   master);
7799 	if (ret)
7800 		return ret;
7801 
7802 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7803 					    &changeupper_info.info);
7804 	ret = notifier_to_errno(ret);
7805 	if (ret)
7806 		goto rollback;
7807 
7808 	__netdev_update_upper_level(dev, NULL);
7809 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7810 
7811 	__netdev_update_lower_level(upper_dev, priv);
7812 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7813 				    priv);
7814 
7815 	return 0;
7816 
7817 rollback:
7818 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7819 
7820 	return ret;
7821 }
7822 
7823 /**
7824  * netdev_upper_dev_link - Add a link to the upper device
7825  * @dev: device
7826  * @upper_dev: new upper device
7827  * @extack: netlink extended ack
7828  *
7829  * Adds a link to device which is upper to this one. The caller must hold
7830  * the RTNL lock. On a failure a negative errno code is returned.
7831  * On success the reference counts are adjusted and the function
7832  * returns zero.
7833  */
7834 int netdev_upper_dev_link(struct net_device *dev,
7835 			  struct net_device *upper_dev,
7836 			  struct netlink_ext_ack *extack)
7837 {
7838 	struct netdev_nested_priv priv = {
7839 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7840 		.data = NULL,
7841 	};
7842 
7843 	return __netdev_upper_dev_link(dev, upper_dev, false,
7844 				       NULL, NULL, &priv, extack);
7845 }
7846 EXPORT_SYMBOL(netdev_upper_dev_link);
7847 
7848 /**
7849  * netdev_master_upper_dev_link - Add a master link to the upper device
7850  * @dev: device
7851  * @upper_dev: new upper device
7852  * @upper_priv: upper device private
7853  * @upper_info: upper info to be passed down via notifier
7854  * @extack: netlink extended ack
7855  *
7856  * Adds a link to device which is upper to this one. In this case, only
7857  * one master upper device can be linked, although other non-master devices
7858  * might be linked as well. The caller must hold the RTNL lock.
7859  * On a failure a negative errno code is returned. On success the reference
7860  * counts are adjusted and the function returns zero.
7861  */
7862 int netdev_master_upper_dev_link(struct net_device *dev,
7863 				 struct net_device *upper_dev,
7864 				 void *upper_priv, void *upper_info,
7865 				 struct netlink_ext_ack *extack)
7866 {
7867 	struct netdev_nested_priv priv = {
7868 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7869 		.data = NULL,
7870 	};
7871 
7872 	return __netdev_upper_dev_link(dev, upper_dev, true,
7873 				       upper_priv, upper_info, &priv, extack);
7874 }
7875 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7876 
7877 static void __netdev_upper_dev_unlink(struct net_device *dev,
7878 				      struct net_device *upper_dev,
7879 				      struct netdev_nested_priv *priv)
7880 {
7881 	struct netdev_notifier_changeupper_info changeupper_info = {
7882 		.info = {
7883 			.dev = dev,
7884 		},
7885 		.upper_dev = upper_dev,
7886 		.linking = false,
7887 	};
7888 
7889 	ASSERT_RTNL();
7890 
7891 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7892 
7893 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7894 				      &changeupper_info.info);
7895 
7896 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7897 
7898 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7899 				      &changeupper_info.info);
7900 
7901 	__netdev_update_upper_level(dev, NULL);
7902 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7903 
7904 	__netdev_update_lower_level(upper_dev, priv);
7905 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7906 				    priv);
7907 }
7908 
7909 /**
7910  * netdev_upper_dev_unlink - Removes a link to upper device
7911  * @dev: device
7912  * @upper_dev: new upper device
7913  *
7914  * Removes a link to device which is upper to this one. The caller must hold
7915  * the RTNL lock.
7916  */
7917 void netdev_upper_dev_unlink(struct net_device *dev,
7918 			     struct net_device *upper_dev)
7919 {
7920 	struct netdev_nested_priv priv = {
7921 		.flags = NESTED_SYNC_TODO,
7922 		.data = NULL,
7923 	};
7924 
7925 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7926 }
7927 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7928 
7929 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7930 				      struct net_device *lower_dev,
7931 				      bool val)
7932 {
7933 	struct netdev_adjacent *adj;
7934 
7935 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7936 	if (adj)
7937 		adj->ignore = val;
7938 
7939 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7940 	if (adj)
7941 		adj->ignore = val;
7942 }
7943 
7944 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7945 					struct net_device *lower_dev)
7946 {
7947 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7948 }
7949 
7950 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7951 				       struct net_device *lower_dev)
7952 {
7953 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7954 }
7955 
7956 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7957 				   struct net_device *new_dev,
7958 				   struct net_device *dev,
7959 				   struct netlink_ext_ack *extack)
7960 {
7961 	struct netdev_nested_priv priv = {
7962 		.flags = 0,
7963 		.data = NULL,
7964 	};
7965 	int err;
7966 
7967 	if (!new_dev)
7968 		return 0;
7969 
7970 	if (old_dev && new_dev != old_dev)
7971 		netdev_adjacent_dev_disable(dev, old_dev);
7972 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7973 				      extack);
7974 	if (err) {
7975 		if (old_dev && new_dev != old_dev)
7976 			netdev_adjacent_dev_enable(dev, old_dev);
7977 		return err;
7978 	}
7979 
7980 	return 0;
7981 }
7982 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7983 
7984 void netdev_adjacent_change_commit(struct net_device *old_dev,
7985 				   struct net_device *new_dev,
7986 				   struct net_device *dev)
7987 {
7988 	struct netdev_nested_priv priv = {
7989 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7990 		.data = NULL,
7991 	};
7992 
7993 	if (!new_dev || !old_dev)
7994 		return;
7995 
7996 	if (new_dev == old_dev)
7997 		return;
7998 
7999 	netdev_adjacent_dev_enable(dev, old_dev);
8000 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8001 }
8002 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8003 
8004 void netdev_adjacent_change_abort(struct net_device *old_dev,
8005 				  struct net_device *new_dev,
8006 				  struct net_device *dev)
8007 {
8008 	struct netdev_nested_priv priv = {
8009 		.flags = 0,
8010 		.data = NULL,
8011 	};
8012 
8013 	if (!new_dev)
8014 		return;
8015 
8016 	if (old_dev && new_dev != old_dev)
8017 		netdev_adjacent_dev_enable(dev, old_dev);
8018 
8019 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8020 }
8021 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8022 
8023 /**
8024  * netdev_bonding_info_change - Dispatch event about slave change
8025  * @dev: device
8026  * @bonding_info: info to dispatch
8027  *
8028  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8029  * The caller must hold the RTNL lock.
8030  */
8031 void netdev_bonding_info_change(struct net_device *dev,
8032 				struct netdev_bonding_info *bonding_info)
8033 {
8034 	struct netdev_notifier_bonding_info info = {
8035 		.info.dev = dev,
8036 	};
8037 
8038 	memcpy(&info.bonding_info, bonding_info,
8039 	       sizeof(struct netdev_bonding_info));
8040 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8041 				      &info.info);
8042 }
8043 EXPORT_SYMBOL(netdev_bonding_info_change);
8044 
8045 /**
8046  * netdev_get_xmit_slave - Get the xmit slave of master device
8047  * @dev: device
8048  * @skb: The packet
8049  * @all_slaves: assume all the slaves are active
8050  *
8051  * The reference counters are not incremented so the caller must be
8052  * careful with locks. The caller must hold RCU lock.
8053  * %NULL is returned if no slave is found.
8054  */
8055 
8056 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8057 					 struct sk_buff *skb,
8058 					 bool all_slaves)
8059 {
8060 	const struct net_device_ops *ops = dev->netdev_ops;
8061 
8062 	if (!ops->ndo_get_xmit_slave)
8063 		return NULL;
8064 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8065 }
8066 EXPORT_SYMBOL(netdev_get_xmit_slave);
8067 
8068 static void netdev_adjacent_add_links(struct net_device *dev)
8069 {
8070 	struct netdev_adjacent *iter;
8071 
8072 	struct net *net = dev_net(dev);
8073 
8074 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8075 		if (!net_eq(net, dev_net(iter->dev)))
8076 			continue;
8077 		netdev_adjacent_sysfs_add(iter->dev, dev,
8078 					  &iter->dev->adj_list.lower);
8079 		netdev_adjacent_sysfs_add(dev, iter->dev,
8080 					  &dev->adj_list.upper);
8081 	}
8082 
8083 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8084 		if (!net_eq(net, dev_net(iter->dev)))
8085 			continue;
8086 		netdev_adjacent_sysfs_add(iter->dev, dev,
8087 					  &iter->dev->adj_list.upper);
8088 		netdev_adjacent_sysfs_add(dev, iter->dev,
8089 					  &dev->adj_list.lower);
8090 	}
8091 }
8092 
8093 static void netdev_adjacent_del_links(struct net_device *dev)
8094 {
8095 	struct netdev_adjacent *iter;
8096 
8097 	struct net *net = dev_net(dev);
8098 
8099 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8100 		if (!net_eq(net, dev_net(iter->dev)))
8101 			continue;
8102 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8103 					  &iter->dev->adj_list.lower);
8104 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8105 					  &dev->adj_list.upper);
8106 	}
8107 
8108 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8109 		if (!net_eq(net, dev_net(iter->dev)))
8110 			continue;
8111 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8112 					  &iter->dev->adj_list.upper);
8113 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8114 					  &dev->adj_list.lower);
8115 	}
8116 }
8117 
8118 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8119 {
8120 	struct netdev_adjacent *iter;
8121 
8122 	struct net *net = dev_net(dev);
8123 
8124 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8125 		if (!net_eq(net, dev_net(iter->dev)))
8126 			continue;
8127 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8128 					  &iter->dev->adj_list.lower);
8129 		netdev_adjacent_sysfs_add(iter->dev, dev,
8130 					  &iter->dev->adj_list.lower);
8131 	}
8132 
8133 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8134 		if (!net_eq(net, dev_net(iter->dev)))
8135 			continue;
8136 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8137 					  &iter->dev->adj_list.upper);
8138 		netdev_adjacent_sysfs_add(iter->dev, dev,
8139 					  &iter->dev->adj_list.upper);
8140 	}
8141 }
8142 
8143 void *netdev_lower_dev_get_private(struct net_device *dev,
8144 				   struct net_device *lower_dev)
8145 {
8146 	struct netdev_adjacent *lower;
8147 
8148 	if (!lower_dev)
8149 		return NULL;
8150 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8151 	if (!lower)
8152 		return NULL;
8153 
8154 	return lower->private;
8155 }
8156 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8157 
8158 
8159 /**
8160  * netdev_lower_change - Dispatch event about lower device state change
8161  * @lower_dev: device
8162  * @lower_state_info: state to dispatch
8163  *
8164  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8165  * The caller must hold the RTNL lock.
8166  */
8167 void netdev_lower_state_changed(struct net_device *lower_dev,
8168 				void *lower_state_info)
8169 {
8170 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8171 		.info.dev = lower_dev,
8172 	};
8173 
8174 	ASSERT_RTNL();
8175 	changelowerstate_info.lower_state_info = lower_state_info;
8176 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8177 				      &changelowerstate_info.info);
8178 }
8179 EXPORT_SYMBOL(netdev_lower_state_changed);
8180 
8181 static void dev_change_rx_flags(struct net_device *dev, int flags)
8182 {
8183 	const struct net_device_ops *ops = dev->netdev_ops;
8184 
8185 	if (ops->ndo_change_rx_flags)
8186 		ops->ndo_change_rx_flags(dev, flags);
8187 }
8188 
8189 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8190 {
8191 	unsigned int old_flags = dev->flags;
8192 	kuid_t uid;
8193 	kgid_t gid;
8194 
8195 	ASSERT_RTNL();
8196 
8197 	dev->flags |= IFF_PROMISC;
8198 	dev->promiscuity += inc;
8199 	if (dev->promiscuity == 0) {
8200 		/*
8201 		 * Avoid overflow.
8202 		 * If inc causes overflow, untouch promisc and return error.
8203 		 */
8204 		if (inc < 0)
8205 			dev->flags &= ~IFF_PROMISC;
8206 		else {
8207 			dev->promiscuity -= inc;
8208 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8209 				dev->name);
8210 			return -EOVERFLOW;
8211 		}
8212 	}
8213 	if (dev->flags != old_flags) {
8214 		pr_info("device %s %s promiscuous mode\n",
8215 			dev->name,
8216 			dev->flags & IFF_PROMISC ? "entered" : "left");
8217 		if (audit_enabled) {
8218 			current_uid_gid(&uid, &gid);
8219 			audit_log(audit_context(), GFP_ATOMIC,
8220 				  AUDIT_ANOM_PROMISCUOUS,
8221 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8222 				  dev->name, (dev->flags & IFF_PROMISC),
8223 				  (old_flags & IFF_PROMISC),
8224 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8225 				  from_kuid(&init_user_ns, uid),
8226 				  from_kgid(&init_user_ns, gid),
8227 				  audit_get_sessionid(current));
8228 		}
8229 
8230 		dev_change_rx_flags(dev, IFF_PROMISC);
8231 	}
8232 	if (notify)
8233 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8234 	return 0;
8235 }
8236 
8237 /**
8238  *	dev_set_promiscuity	- update promiscuity count on a device
8239  *	@dev: device
8240  *	@inc: modifier
8241  *
8242  *	Add or remove promiscuity from a device. While the count in the device
8243  *	remains above zero the interface remains promiscuous. Once it hits zero
8244  *	the device reverts back to normal filtering operation. A negative inc
8245  *	value is used to drop promiscuity on the device.
8246  *	Return 0 if successful or a negative errno code on error.
8247  */
8248 int dev_set_promiscuity(struct net_device *dev, int inc)
8249 {
8250 	unsigned int old_flags = dev->flags;
8251 	int err;
8252 
8253 	err = __dev_set_promiscuity(dev, inc, true);
8254 	if (err < 0)
8255 		return err;
8256 	if (dev->flags != old_flags)
8257 		dev_set_rx_mode(dev);
8258 	return err;
8259 }
8260 EXPORT_SYMBOL(dev_set_promiscuity);
8261 
8262 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8263 {
8264 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8265 
8266 	ASSERT_RTNL();
8267 
8268 	dev->flags |= IFF_ALLMULTI;
8269 	dev->allmulti += inc;
8270 	if (dev->allmulti == 0) {
8271 		/*
8272 		 * Avoid overflow.
8273 		 * If inc causes overflow, untouch allmulti and return error.
8274 		 */
8275 		if (inc < 0)
8276 			dev->flags &= ~IFF_ALLMULTI;
8277 		else {
8278 			dev->allmulti -= inc;
8279 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8280 				dev->name);
8281 			return -EOVERFLOW;
8282 		}
8283 	}
8284 	if (dev->flags ^ old_flags) {
8285 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8286 		dev_set_rx_mode(dev);
8287 		if (notify)
8288 			__dev_notify_flags(dev, old_flags,
8289 					   dev->gflags ^ old_gflags);
8290 	}
8291 	return 0;
8292 }
8293 
8294 /**
8295  *	dev_set_allmulti	- update allmulti count on a device
8296  *	@dev: device
8297  *	@inc: modifier
8298  *
8299  *	Add or remove reception of all multicast frames to a device. While the
8300  *	count in the device remains above zero the interface remains listening
8301  *	to all interfaces. Once it hits zero the device reverts back to normal
8302  *	filtering operation. A negative @inc value is used to drop the counter
8303  *	when releasing a resource needing all multicasts.
8304  *	Return 0 if successful or a negative errno code on error.
8305  */
8306 
8307 int dev_set_allmulti(struct net_device *dev, int inc)
8308 {
8309 	return __dev_set_allmulti(dev, inc, true);
8310 }
8311 EXPORT_SYMBOL(dev_set_allmulti);
8312 
8313 /*
8314  *	Upload unicast and multicast address lists to device and
8315  *	configure RX filtering. When the device doesn't support unicast
8316  *	filtering it is put in promiscuous mode while unicast addresses
8317  *	are present.
8318  */
8319 void __dev_set_rx_mode(struct net_device *dev)
8320 {
8321 	const struct net_device_ops *ops = dev->netdev_ops;
8322 
8323 	/* dev_open will call this function so the list will stay sane. */
8324 	if (!(dev->flags&IFF_UP))
8325 		return;
8326 
8327 	if (!netif_device_present(dev))
8328 		return;
8329 
8330 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8331 		/* Unicast addresses changes may only happen under the rtnl,
8332 		 * therefore calling __dev_set_promiscuity here is safe.
8333 		 */
8334 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8335 			__dev_set_promiscuity(dev, 1, false);
8336 			dev->uc_promisc = true;
8337 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8338 			__dev_set_promiscuity(dev, -1, false);
8339 			dev->uc_promisc = false;
8340 		}
8341 	}
8342 
8343 	if (ops->ndo_set_rx_mode)
8344 		ops->ndo_set_rx_mode(dev);
8345 }
8346 
8347 void dev_set_rx_mode(struct net_device *dev)
8348 {
8349 	netif_addr_lock_bh(dev);
8350 	__dev_set_rx_mode(dev);
8351 	netif_addr_unlock_bh(dev);
8352 }
8353 
8354 /**
8355  *	dev_get_flags - get flags reported to userspace
8356  *	@dev: device
8357  *
8358  *	Get the combination of flag bits exported through APIs to userspace.
8359  */
8360 unsigned int dev_get_flags(const struct net_device *dev)
8361 {
8362 	unsigned int flags;
8363 
8364 	flags = (dev->flags & ~(IFF_PROMISC |
8365 				IFF_ALLMULTI |
8366 				IFF_RUNNING |
8367 				IFF_LOWER_UP |
8368 				IFF_DORMANT)) |
8369 		(dev->gflags & (IFF_PROMISC |
8370 				IFF_ALLMULTI));
8371 
8372 	if (netif_running(dev)) {
8373 		if (netif_oper_up(dev))
8374 			flags |= IFF_RUNNING;
8375 		if (netif_carrier_ok(dev))
8376 			flags |= IFF_LOWER_UP;
8377 		if (netif_dormant(dev))
8378 			flags |= IFF_DORMANT;
8379 	}
8380 
8381 	return flags;
8382 }
8383 EXPORT_SYMBOL(dev_get_flags);
8384 
8385 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8386 		       struct netlink_ext_ack *extack)
8387 {
8388 	unsigned int old_flags = dev->flags;
8389 	int ret;
8390 
8391 	ASSERT_RTNL();
8392 
8393 	/*
8394 	 *	Set the flags on our device.
8395 	 */
8396 
8397 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8398 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8399 			       IFF_AUTOMEDIA)) |
8400 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8401 				    IFF_ALLMULTI));
8402 
8403 	/*
8404 	 *	Load in the correct multicast list now the flags have changed.
8405 	 */
8406 
8407 	if ((old_flags ^ flags) & IFF_MULTICAST)
8408 		dev_change_rx_flags(dev, IFF_MULTICAST);
8409 
8410 	dev_set_rx_mode(dev);
8411 
8412 	/*
8413 	 *	Have we downed the interface. We handle IFF_UP ourselves
8414 	 *	according to user attempts to set it, rather than blindly
8415 	 *	setting it.
8416 	 */
8417 
8418 	ret = 0;
8419 	if ((old_flags ^ flags) & IFF_UP) {
8420 		if (old_flags & IFF_UP)
8421 			__dev_close(dev);
8422 		else
8423 			ret = __dev_open(dev, extack);
8424 	}
8425 
8426 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8427 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8428 		unsigned int old_flags = dev->flags;
8429 
8430 		dev->gflags ^= IFF_PROMISC;
8431 
8432 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8433 			if (dev->flags != old_flags)
8434 				dev_set_rx_mode(dev);
8435 	}
8436 
8437 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8438 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8439 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8440 	 */
8441 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8442 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8443 
8444 		dev->gflags ^= IFF_ALLMULTI;
8445 		__dev_set_allmulti(dev, inc, false);
8446 	}
8447 
8448 	return ret;
8449 }
8450 
8451 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8452 			unsigned int gchanges)
8453 {
8454 	unsigned int changes = dev->flags ^ old_flags;
8455 
8456 	if (gchanges)
8457 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8458 
8459 	if (changes & IFF_UP) {
8460 		if (dev->flags & IFF_UP)
8461 			call_netdevice_notifiers(NETDEV_UP, dev);
8462 		else
8463 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8464 	}
8465 
8466 	if (dev->flags & IFF_UP &&
8467 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8468 		struct netdev_notifier_change_info change_info = {
8469 			.info = {
8470 				.dev = dev,
8471 			},
8472 			.flags_changed = changes,
8473 		};
8474 
8475 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8476 	}
8477 }
8478 
8479 /**
8480  *	dev_change_flags - change device settings
8481  *	@dev: device
8482  *	@flags: device state flags
8483  *	@extack: netlink extended ack
8484  *
8485  *	Change settings on device based state flags. The flags are
8486  *	in the userspace exported format.
8487  */
8488 int dev_change_flags(struct net_device *dev, unsigned int flags,
8489 		     struct netlink_ext_ack *extack)
8490 {
8491 	int ret;
8492 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8493 
8494 	ret = __dev_change_flags(dev, flags, extack);
8495 	if (ret < 0)
8496 		return ret;
8497 
8498 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8499 	__dev_notify_flags(dev, old_flags, changes);
8500 	return ret;
8501 }
8502 EXPORT_SYMBOL(dev_change_flags);
8503 
8504 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8505 {
8506 	const struct net_device_ops *ops = dev->netdev_ops;
8507 
8508 	if (ops->ndo_change_mtu)
8509 		return ops->ndo_change_mtu(dev, new_mtu);
8510 
8511 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8512 	WRITE_ONCE(dev->mtu, new_mtu);
8513 	return 0;
8514 }
8515 EXPORT_SYMBOL(__dev_set_mtu);
8516 
8517 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8518 		     struct netlink_ext_ack *extack)
8519 {
8520 	/* MTU must be positive, and in range */
8521 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8522 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8523 		return -EINVAL;
8524 	}
8525 
8526 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8527 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8528 		return -EINVAL;
8529 	}
8530 	return 0;
8531 }
8532 
8533 /**
8534  *	dev_set_mtu_ext - Change maximum transfer unit
8535  *	@dev: device
8536  *	@new_mtu: new transfer unit
8537  *	@extack: netlink extended ack
8538  *
8539  *	Change the maximum transfer size of the network device.
8540  */
8541 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8542 		    struct netlink_ext_ack *extack)
8543 {
8544 	int err, orig_mtu;
8545 
8546 	if (new_mtu == dev->mtu)
8547 		return 0;
8548 
8549 	err = dev_validate_mtu(dev, new_mtu, extack);
8550 	if (err)
8551 		return err;
8552 
8553 	if (!netif_device_present(dev))
8554 		return -ENODEV;
8555 
8556 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8557 	err = notifier_to_errno(err);
8558 	if (err)
8559 		return err;
8560 
8561 	orig_mtu = dev->mtu;
8562 	err = __dev_set_mtu(dev, new_mtu);
8563 
8564 	if (!err) {
8565 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8566 						   orig_mtu);
8567 		err = notifier_to_errno(err);
8568 		if (err) {
8569 			/* setting mtu back and notifying everyone again,
8570 			 * so that they have a chance to revert changes.
8571 			 */
8572 			__dev_set_mtu(dev, orig_mtu);
8573 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8574 						     new_mtu);
8575 		}
8576 	}
8577 	return err;
8578 }
8579 
8580 int dev_set_mtu(struct net_device *dev, int new_mtu)
8581 {
8582 	struct netlink_ext_ack extack;
8583 	int err;
8584 
8585 	memset(&extack, 0, sizeof(extack));
8586 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8587 	if (err && extack._msg)
8588 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8589 	return err;
8590 }
8591 EXPORT_SYMBOL(dev_set_mtu);
8592 
8593 /**
8594  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8595  *	@dev: device
8596  *	@new_len: new tx queue length
8597  */
8598 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8599 {
8600 	unsigned int orig_len = dev->tx_queue_len;
8601 	int res;
8602 
8603 	if (new_len != (unsigned int)new_len)
8604 		return -ERANGE;
8605 
8606 	if (new_len != orig_len) {
8607 		dev->tx_queue_len = new_len;
8608 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8609 		res = notifier_to_errno(res);
8610 		if (res)
8611 			goto err_rollback;
8612 		res = dev_qdisc_change_tx_queue_len(dev);
8613 		if (res)
8614 			goto err_rollback;
8615 	}
8616 
8617 	return 0;
8618 
8619 err_rollback:
8620 	netdev_err(dev, "refused to change device tx_queue_len\n");
8621 	dev->tx_queue_len = orig_len;
8622 	return res;
8623 }
8624 
8625 /**
8626  *	dev_set_group - Change group this device belongs to
8627  *	@dev: device
8628  *	@new_group: group this device should belong to
8629  */
8630 void dev_set_group(struct net_device *dev, int new_group)
8631 {
8632 	dev->group = new_group;
8633 }
8634 EXPORT_SYMBOL(dev_set_group);
8635 
8636 /**
8637  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8638  *	@dev: device
8639  *	@addr: new address
8640  *	@extack: netlink extended ack
8641  */
8642 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8643 			      struct netlink_ext_ack *extack)
8644 {
8645 	struct netdev_notifier_pre_changeaddr_info info = {
8646 		.info.dev = dev,
8647 		.info.extack = extack,
8648 		.dev_addr = addr,
8649 	};
8650 	int rc;
8651 
8652 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8653 	return notifier_to_errno(rc);
8654 }
8655 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8656 
8657 /**
8658  *	dev_set_mac_address - Change Media Access Control Address
8659  *	@dev: device
8660  *	@sa: new address
8661  *	@extack: netlink extended ack
8662  *
8663  *	Change the hardware (MAC) address of the device
8664  */
8665 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8666 			struct netlink_ext_ack *extack)
8667 {
8668 	const struct net_device_ops *ops = dev->netdev_ops;
8669 	int err;
8670 
8671 	if (!ops->ndo_set_mac_address)
8672 		return -EOPNOTSUPP;
8673 	if (sa->sa_family != dev->type)
8674 		return -EINVAL;
8675 	if (!netif_device_present(dev))
8676 		return -ENODEV;
8677 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8678 	if (err)
8679 		return err;
8680 	err = ops->ndo_set_mac_address(dev, sa);
8681 	if (err)
8682 		return err;
8683 	dev->addr_assign_type = NET_ADDR_SET;
8684 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8685 	add_device_randomness(dev->dev_addr, dev->addr_len);
8686 	return 0;
8687 }
8688 EXPORT_SYMBOL(dev_set_mac_address);
8689 
8690 /**
8691  *	dev_change_carrier - Change device carrier
8692  *	@dev: device
8693  *	@new_carrier: new value
8694  *
8695  *	Change device carrier
8696  */
8697 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8698 {
8699 	const struct net_device_ops *ops = dev->netdev_ops;
8700 
8701 	if (!ops->ndo_change_carrier)
8702 		return -EOPNOTSUPP;
8703 	if (!netif_device_present(dev))
8704 		return -ENODEV;
8705 	return ops->ndo_change_carrier(dev, new_carrier);
8706 }
8707 EXPORT_SYMBOL(dev_change_carrier);
8708 
8709 /**
8710  *	dev_get_phys_port_id - Get device physical port ID
8711  *	@dev: device
8712  *	@ppid: port ID
8713  *
8714  *	Get device physical port ID
8715  */
8716 int dev_get_phys_port_id(struct net_device *dev,
8717 			 struct netdev_phys_item_id *ppid)
8718 {
8719 	const struct net_device_ops *ops = dev->netdev_ops;
8720 
8721 	if (!ops->ndo_get_phys_port_id)
8722 		return -EOPNOTSUPP;
8723 	return ops->ndo_get_phys_port_id(dev, ppid);
8724 }
8725 EXPORT_SYMBOL(dev_get_phys_port_id);
8726 
8727 /**
8728  *	dev_get_phys_port_name - Get device physical port name
8729  *	@dev: device
8730  *	@name: port name
8731  *	@len: limit of bytes to copy to name
8732  *
8733  *	Get device physical port name
8734  */
8735 int dev_get_phys_port_name(struct net_device *dev,
8736 			   char *name, size_t len)
8737 {
8738 	const struct net_device_ops *ops = dev->netdev_ops;
8739 	int err;
8740 
8741 	if (ops->ndo_get_phys_port_name) {
8742 		err = ops->ndo_get_phys_port_name(dev, name, len);
8743 		if (err != -EOPNOTSUPP)
8744 			return err;
8745 	}
8746 	return devlink_compat_phys_port_name_get(dev, name, len);
8747 }
8748 EXPORT_SYMBOL(dev_get_phys_port_name);
8749 
8750 /**
8751  *	dev_get_port_parent_id - Get the device's port parent identifier
8752  *	@dev: network device
8753  *	@ppid: pointer to a storage for the port's parent identifier
8754  *	@recurse: allow/disallow recursion to lower devices
8755  *
8756  *	Get the devices's port parent identifier
8757  */
8758 int dev_get_port_parent_id(struct net_device *dev,
8759 			   struct netdev_phys_item_id *ppid,
8760 			   bool recurse)
8761 {
8762 	const struct net_device_ops *ops = dev->netdev_ops;
8763 	struct netdev_phys_item_id first = { };
8764 	struct net_device *lower_dev;
8765 	struct list_head *iter;
8766 	int err;
8767 
8768 	if (ops->ndo_get_port_parent_id) {
8769 		err = ops->ndo_get_port_parent_id(dev, ppid);
8770 		if (err != -EOPNOTSUPP)
8771 			return err;
8772 	}
8773 
8774 	err = devlink_compat_switch_id_get(dev, ppid);
8775 	if (!err || err != -EOPNOTSUPP)
8776 		return err;
8777 
8778 	if (!recurse)
8779 		return -EOPNOTSUPP;
8780 
8781 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8782 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8783 		if (err)
8784 			break;
8785 		if (!first.id_len)
8786 			first = *ppid;
8787 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8788 			return -EOPNOTSUPP;
8789 	}
8790 
8791 	return err;
8792 }
8793 EXPORT_SYMBOL(dev_get_port_parent_id);
8794 
8795 /**
8796  *	netdev_port_same_parent_id - Indicate if two network devices have
8797  *	the same port parent identifier
8798  *	@a: first network device
8799  *	@b: second network device
8800  */
8801 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8802 {
8803 	struct netdev_phys_item_id a_id = { };
8804 	struct netdev_phys_item_id b_id = { };
8805 
8806 	if (dev_get_port_parent_id(a, &a_id, true) ||
8807 	    dev_get_port_parent_id(b, &b_id, true))
8808 		return false;
8809 
8810 	return netdev_phys_item_id_same(&a_id, &b_id);
8811 }
8812 EXPORT_SYMBOL(netdev_port_same_parent_id);
8813 
8814 /**
8815  *	dev_change_proto_down - update protocol port state information
8816  *	@dev: device
8817  *	@proto_down: new value
8818  *
8819  *	This info can be used by switch drivers to set the phys state of the
8820  *	port.
8821  */
8822 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8823 {
8824 	const struct net_device_ops *ops = dev->netdev_ops;
8825 
8826 	if (!ops->ndo_change_proto_down)
8827 		return -EOPNOTSUPP;
8828 	if (!netif_device_present(dev))
8829 		return -ENODEV;
8830 	return ops->ndo_change_proto_down(dev, proto_down);
8831 }
8832 EXPORT_SYMBOL(dev_change_proto_down);
8833 
8834 /**
8835  *	dev_change_proto_down_generic - generic implementation for
8836  * 	ndo_change_proto_down that sets carrier according to
8837  * 	proto_down.
8838  *
8839  *	@dev: device
8840  *	@proto_down: new value
8841  */
8842 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8843 {
8844 	if (proto_down)
8845 		netif_carrier_off(dev);
8846 	else
8847 		netif_carrier_on(dev);
8848 	dev->proto_down = proto_down;
8849 	return 0;
8850 }
8851 EXPORT_SYMBOL(dev_change_proto_down_generic);
8852 
8853 /**
8854  *	dev_change_proto_down_reason - proto down reason
8855  *
8856  *	@dev: device
8857  *	@mask: proto down mask
8858  *	@value: proto down value
8859  */
8860 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8861 				  u32 value)
8862 {
8863 	int b;
8864 
8865 	if (!mask) {
8866 		dev->proto_down_reason = value;
8867 	} else {
8868 		for_each_set_bit(b, &mask, 32) {
8869 			if (value & (1 << b))
8870 				dev->proto_down_reason |= BIT(b);
8871 			else
8872 				dev->proto_down_reason &= ~BIT(b);
8873 		}
8874 	}
8875 }
8876 EXPORT_SYMBOL(dev_change_proto_down_reason);
8877 
8878 struct bpf_xdp_link {
8879 	struct bpf_link link;
8880 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8881 	int flags;
8882 };
8883 
8884 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8885 {
8886 	if (flags & XDP_FLAGS_HW_MODE)
8887 		return XDP_MODE_HW;
8888 	if (flags & XDP_FLAGS_DRV_MODE)
8889 		return XDP_MODE_DRV;
8890 	if (flags & XDP_FLAGS_SKB_MODE)
8891 		return XDP_MODE_SKB;
8892 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8893 }
8894 
8895 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8896 {
8897 	switch (mode) {
8898 	case XDP_MODE_SKB:
8899 		return generic_xdp_install;
8900 	case XDP_MODE_DRV:
8901 	case XDP_MODE_HW:
8902 		return dev->netdev_ops->ndo_bpf;
8903 	default:
8904 		return NULL;
8905 	};
8906 }
8907 
8908 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8909 					 enum bpf_xdp_mode mode)
8910 {
8911 	return dev->xdp_state[mode].link;
8912 }
8913 
8914 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8915 				     enum bpf_xdp_mode mode)
8916 {
8917 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8918 
8919 	if (link)
8920 		return link->link.prog;
8921 	return dev->xdp_state[mode].prog;
8922 }
8923 
8924 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8925 {
8926 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8927 
8928 	return prog ? prog->aux->id : 0;
8929 }
8930 
8931 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8932 			     struct bpf_xdp_link *link)
8933 {
8934 	dev->xdp_state[mode].link = link;
8935 	dev->xdp_state[mode].prog = NULL;
8936 }
8937 
8938 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8939 			     struct bpf_prog *prog)
8940 {
8941 	dev->xdp_state[mode].link = NULL;
8942 	dev->xdp_state[mode].prog = prog;
8943 }
8944 
8945 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8946 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8947 			   u32 flags, struct bpf_prog *prog)
8948 {
8949 	struct netdev_bpf xdp;
8950 	int err;
8951 
8952 	memset(&xdp, 0, sizeof(xdp));
8953 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8954 	xdp.extack = extack;
8955 	xdp.flags = flags;
8956 	xdp.prog = prog;
8957 
8958 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
8959 	 * "moved" into driver), so they don't increment it on their own, but
8960 	 * they do decrement refcnt when program is detached or replaced.
8961 	 * Given net_device also owns link/prog, we need to bump refcnt here
8962 	 * to prevent drivers from underflowing it.
8963 	 */
8964 	if (prog)
8965 		bpf_prog_inc(prog);
8966 	err = bpf_op(dev, &xdp);
8967 	if (err) {
8968 		if (prog)
8969 			bpf_prog_put(prog);
8970 		return err;
8971 	}
8972 
8973 	if (mode != XDP_MODE_HW)
8974 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8975 
8976 	return 0;
8977 }
8978 
8979 static void dev_xdp_uninstall(struct net_device *dev)
8980 {
8981 	struct bpf_xdp_link *link;
8982 	struct bpf_prog *prog;
8983 	enum bpf_xdp_mode mode;
8984 	bpf_op_t bpf_op;
8985 
8986 	ASSERT_RTNL();
8987 
8988 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8989 		prog = dev_xdp_prog(dev, mode);
8990 		if (!prog)
8991 			continue;
8992 
8993 		bpf_op = dev_xdp_bpf_op(dev, mode);
8994 		if (!bpf_op)
8995 			continue;
8996 
8997 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8998 
8999 		/* auto-detach link from net device */
9000 		link = dev_xdp_link(dev, mode);
9001 		if (link)
9002 			link->dev = NULL;
9003 		else
9004 			bpf_prog_put(prog);
9005 
9006 		dev_xdp_set_link(dev, mode, NULL);
9007 	}
9008 }
9009 
9010 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9011 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9012 			  struct bpf_prog *old_prog, u32 flags)
9013 {
9014 	struct bpf_prog *cur_prog;
9015 	enum bpf_xdp_mode mode;
9016 	bpf_op_t bpf_op;
9017 	int err;
9018 
9019 	ASSERT_RTNL();
9020 
9021 	/* either link or prog attachment, never both */
9022 	if (link && (new_prog || old_prog))
9023 		return -EINVAL;
9024 	/* link supports only XDP mode flags */
9025 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9026 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9027 		return -EINVAL;
9028 	}
9029 	/* just one XDP mode bit should be set, zero defaults to SKB mode */
9030 	if (hweight32(flags & XDP_FLAGS_MODES) > 1) {
9031 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9032 		return -EINVAL;
9033 	}
9034 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9035 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9036 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9037 		return -EINVAL;
9038 	}
9039 
9040 	mode = dev_xdp_mode(dev, flags);
9041 	/* can't replace attached link */
9042 	if (dev_xdp_link(dev, mode)) {
9043 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9044 		return -EBUSY;
9045 	}
9046 
9047 	cur_prog = dev_xdp_prog(dev, mode);
9048 	/* can't replace attached prog with link */
9049 	if (link && cur_prog) {
9050 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9051 		return -EBUSY;
9052 	}
9053 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9054 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9055 		return -EEXIST;
9056 	}
9057 
9058 	/* put effective new program into new_prog */
9059 	if (link)
9060 		new_prog = link->link.prog;
9061 
9062 	if (new_prog) {
9063 		bool offload = mode == XDP_MODE_HW;
9064 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9065 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9066 
9067 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9068 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9069 			return -EBUSY;
9070 		}
9071 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9072 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9073 			return -EEXIST;
9074 		}
9075 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9076 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9077 			return -EINVAL;
9078 		}
9079 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9080 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9081 			return -EINVAL;
9082 		}
9083 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9084 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9085 			return -EINVAL;
9086 		}
9087 	}
9088 
9089 	/* don't call drivers if the effective program didn't change */
9090 	if (new_prog != cur_prog) {
9091 		bpf_op = dev_xdp_bpf_op(dev, mode);
9092 		if (!bpf_op) {
9093 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9094 			return -EOPNOTSUPP;
9095 		}
9096 
9097 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9098 		if (err)
9099 			return err;
9100 	}
9101 
9102 	if (link)
9103 		dev_xdp_set_link(dev, mode, link);
9104 	else
9105 		dev_xdp_set_prog(dev, mode, new_prog);
9106 	if (cur_prog)
9107 		bpf_prog_put(cur_prog);
9108 
9109 	return 0;
9110 }
9111 
9112 static int dev_xdp_attach_link(struct net_device *dev,
9113 			       struct netlink_ext_ack *extack,
9114 			       struct bpf_xdp_link *link)
9115 {
9116 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9117 }
9118 
9119 static int dev_xdp_detach_link(struct net_device *dev,
9120 			       struct netlink_ext_ack *extack,
9121 			       struct bpf_xdp_link *link)
9122 {
9123 	enum bpf_xdp_mode mode;
9124 	bpf_op_t bpf_op;
9125 
9126 	ASSERT_RTNL();
9127 
9128 	mode = dev_xdp_mode(dev, link->flags);
9129 	if (dev_xdp_link(dev, mode) != link)
9130 		return -EINVAL;
9131 
9132 	bpf_op = dev_xdp_bpf_op(dev, mode);
9133 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9134 	dev_xdp_set_link(dev, mode, NULL);
9135 	return 0;
9136 }
9137 
9138 static void bpf_xdp_link_release(struct bpf_link *link)
9139 {
9140 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9141 
9142 	rtnl_lock();
9143 
9144 	/* if racing with net_device's tear down, xdp_link->dev might be
9145 	 * already NULL, in which case link was already auto-detached
9146 	 */
9147 	if (xdp_link->dev) {
9148 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9149 		xdp_link->dev = NULL;
9150 	}
9151 
9152 	rtnl_unlock();
9153 }
9154 
9155 static int bpf_xdp_link_detach(struct bpf_link *link)
9156 {
9157 	bpf_xdp_link_release(link);
9158 	return 0;
9159 }
9160 
9161 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9162 {
9163 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9164 
9165 	kfree(xdp_link);
9166 }
9167 
9168 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9169 				     struct seq_file *seq)
9170 {
9171 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9172 	u32 ifindex = 0;
9173 
9174 	rtnl_lock();
9175 	if (xdp_link->dev)
9176 		ifindex = xdp_link->dev->ifindex;
9177 	rtnl_unlock();
9178 
9179 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9180 }
9181 
9182 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9183 				       struct bpf_link_info *info)
9184 {
9185 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9186 	u32 ifindex = 0;
9187 
9188 	rtnl_lock();
9189 	if (xdp_link->dev)
9190 		ifindex = xdp_link->dev->ifindex;
9191 	rtnl_unlock();
9192 
9193 	info->xdp.ifindex = ifindex;
9194 	return 0;
9195 }
9196 
9197 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9198 			       struct bpf_prog *old_prog)
9199 {
9200 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9201 	enum bpf_xdp_mode mode;
9202 	bpf_op_t bpf_op;
9203 	int err = 0;
9204 
9205 	rtnl_lock();
9206 
9207 	/* link might have been auto-released already, so fail */
9208 	if (!xdp_link->dev) {
9209 		err = -ENOLINK;
9210 		goto out_unlock;
9211 	}
9212 
9213 	if (old_prog && link->prog != old_prog) {
9214 		err = -EPERM;
9215 		goto out_unlock;
9216 	}
9217 	old_prog = link->prog;
9218 	if (old_prog == new_prog) {
9219 		/* no-op, don't disturb drivers */
9220 		bpf_prog_put(new_prog);
9221 		goto out_unlock;
9222 	}
9223 
9224 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9225 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9226 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9227 			      xdp_link->flags, new_prog);
9228 	if (err)
9229 		goto out_unlock;
9230 
9231 	old_prog = xchg(&link->prog, new_prog);
9232 	bpf_prog_put(old_prog);
9233 
9234 out_unlock:
9235 	rtnl_unlock();
9236 	return err;
9237 }
9238 
9239 static const struct bpf_link_ops bpf_xdp_link_lops = {
9240 	.release = bpf_xdp_link_release,
9241 	.dealloc = bpf_xdp_link_dealloc,
9242 	.detach = bpf_xdp_link_detach,
9243 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9244 	.fill_link_info = bpf_xdp_link_fill_link_info,
9245 	.update_prog = bpf_xdp_link_update,
9246 };
9247 
9248 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9249 {
9250 	struct net *net = current->nsproxy->net_ns;
9251 	struct bpf_link_primer link_primer;
9252 	struct bpf_xdp_link *link;
9253 	struct net_device *dev;
9254 	int err, fd;
9255 
9256 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9257 	if (!dev)
9258 		return -EINVAL;
9259 
9260 	link = kzalloc(sizeof(*link), GFP_USER);
9261 	if (!link) {
9262 		err = -ENOMEM;
9263 		goto out_put_dev;
9264 	}
9265 
9266 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9267 	link->dev = dev;
9268 	link->flags = attr->link_create.flags;
9269 
9270 	err = bpf_link_prime(&link->link, &link_primer);
9271 	if (err) {
9272 		kfree(link);
9273 		goto out_put_dev;
9274 	}
9275 
9276 	rtnl_lock();
9277 	err = dev_xdp_attach_link(dev, NULL, link);
9278 	rtnl_unlock();
9279 
9280 	if (err) {
9281 		bpf_link_cleanup(&link_primer);
9282 		goto out_put_dev;
9283 	}
9284 
9285 	fd = bpf_link_settle(&link_primer);
9286 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9287 	dev_put(dev);
9288 	return fd;
9289 
9290 out_put_dev:
9291 	dev_put(dev);
9292 	return err;
9293 }
9294 
9295 /**
9296  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9297  *	@dev: device
9298  *	@extack: netlink extended ack
9299  *	@fd: new program fd or negative value to clear
9300  *	@expected_fd: old program fd that userspace expects to replace or clear
9301  *	@flags: xdp-related flags
9302  *
9303  *	Set or clear a bpf program for a device
9304  */
9305 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9306 		      int fd, int expected_fd, u32 flags)
9307 {
9308 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9309 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9310 	int err;
9311 
9312 	ASSERT_RTNL();
9313 
9314 	if (fd >= 0) {
9315 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9316 						 mode != XDP_MODE_SKB);
9317 		if (IS_ERR(new_prog))
9318 			return PTR_ERR(new_prog);
9319 	}
9320 
9321 	if (expected_fd >= 0) {
9322 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9323 						 mode != XDP_MODE_SKB);
9324 		if (IS_ERR(old_prog)) {
9325 			err = PTR_ERR(old_prog);
9326 			old_prog = NULL;
9327 			goto err_out;
9328 		}
9329 	}
9330 
9331 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9332 
9333 err_out:
9334 	if (err && new_prog)
9335 		bpf_prog_put(new_prog);
9336 	if (old_prog)
9337 		bpf_prog_put(old_prog);
9338 	return err;
9339 }
9340 
9341 /**
9342  *	dev_new_index	-	allocate an ifindex
9343  *	@net: the applicable net namespace
9344  *
9345  *	Returns a suitable unique value for a new device interface
9346  *	number.  The caller must hold the rtnl semaphore or the
9347  *	dev_base_lock to be sure it remains unique.
9348  */
9349 static int dev_new_index(struct net *net)
9350 {
9351 	int ifindex = net->ifindex;
9352 
9353 	for (;;) {
9354 		if (++ifindex <= 0)
9355 			ifindex = 1;
9356 		if (!__dev_get_by_index(net, ifindex))
9357 			return net->ifindex = ifindex;
9358 	}
9359 }
9360 
9361 /* Delayed registration/unregisteration */
9362 static LIST_HEAD(net_todo_list);
9363 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9364 
9365 static void net_set_todo(struct net_device *dev)
9366 {
9367 	list_add_tail(&dev->todo_list, &net_todo_list);
9368 	dev_net(dev)->dev_unreg_count++;
9369 }
9370 
9371 static void rollback_registered_many(struct list_head *head)
9372 {
9373 	struct net_device *dev, *tmp;
9374 	LIST_HEAD(close_head);
9375 
9376 	BUG_ON(dev_boot_phase);
9377 	ASSERT_RTNL();
9378 
9379 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9380 		/* Some devices call without registering
9381 		 * for initialization unwind. Remove those
9382 		 * devices and proceed with the remaining.
9383 		 */
9384 		if (dev->reg_state == NETREG_UNINITIALIZED) {
9385 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9386 				 dev->name, dev);
9387 
9388 			WARN_ON(1);
9389 			list_del(&dev->unreg_list);
9390 			continue;
9391 		}
9392 		dev->dismantle = true;
9393 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
9394 	}
9395 
9396 	/* If device is running, close it first. */
9397 	list_for_each_entry(dev, head, unreg_list)
9398 		list_add_tail(&dev->close_list, &close_head);
9399 	dev_close_many(&close_head, true);
9400 
9401 	list_for_each_entry(dev, head, unreg_list) {
9402 		/* And unlink it from device chain. */
9403 		unlist_netdevice(dev);
9404 
9405 		dev->reg_state = NETREG_UNREGISTERING;
9406 	}
9407 	flush_all_backlogs();
9408 
9409 	synchronize_net();
9410 
9411 	list_for_each_entry(dev, head, unreg_list) {
9412 		struct sk_buff *skb = NULL;
9413 
9414 		/* Shutdown queueing discipline. */
9415 		dev_shutdown(dev);
9416 
9417 		dev_xdp_uninstall(dev);
9418 
9419 		/* Notify protocols, that we are about to destroy
9420 		 * this device. They should clean all the things.
9421 		 */
9422 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9423 
9424 		if (!dev->rtnl_link_ops ||
9425 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9426 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9427 						     GFP_KERNEL, NULL, 0);
9428 
9429 		/*
9430 		 *	Flush the unicast and multicast chains
9431 		 */
9432 		dev_uc_flush(dev);
9433 		dev_mc_flush(dev);
9434 
9435 		netdev_name_node_alt_flush(dev);
9436 		netdev_name_node_free(dev->name_node);
9437 
9438 		if (dev->netdev_ops->ndo_uninit)
9439 			dev->netdev_ops->ndo_uninit(dev);
9440 
9441 		if (skb)
9442 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9443 
9444 		/* Notifier chain MUST detach us all upper devices. */
9445 		WARN_ON(netdev_has_any_upper_dev(dev));
9446 		WARN_ON(netdev_has_any_lower_dev(dev));
9447 
9448 		/* Remove entries from kobject tree */
9449 		netdev_unregister_kobject(dev);
9450 #ifdef CONFIG_XPS
9451 		/* Remove XPS queueing entries */
9452 		netif_reset_xps_queues_gt(dev, 0);
9453 #endif
9454 	}
9455 
9456 	synchronize_net();
9457 
9458 	list_for_each_entry(dev, head, unreg_list)
9459 		dev_put(dev);
9460 }
9461 
9462 static void rollback_registered(struct net_device *dev)
9463 {
9464 	LIST_HEAD(single);
9465 
9466 	list_add(&dev->unreg_list, &single);
9467 	rollback_registered_many(&single);
9468 	list_del(&single);
9469 }
9470 
9471 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9472 	struct net_device *upper, netdev_features_t features)
9473 {
9474 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9475 	netdev_features_t feature;
9476 	int feature_bit;
9477 
9478 	for_each_netdev_feature(upper_disables, feature_bit) {
9479 		feature = __NETIF_F_BIT(feature_bit);
9480 		if (!(upper->wanted_features & feature)
9481 		    && (features & feature)) {
9482 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9483 				   &feature, upper->name);
9484 			features &= ~feature;
9485 		}
9486 	}
9487 
9488 	return features;
9489 }
9490 
9491 static void netdev_sync_lower_features(struct net_device *upper,
9492 	struct net_device *lower, netdev_features_t features)
9493 {
9494 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9495 	netdev_features_t feature;
9496 	int feature_bit;
9497 
9498 	for_each_netdev_feature(upper_disables, feature_bit) {
9499 		feature = __NETIF_F_BIT(feature_bit);
9500 		if (!(features & feature) && (lower->features & feature)) {
9501 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9502 				   &feature, lower->name);
9503 			lower->wanted_features &= ~feature;
9504 			__netdev_update_features(lower);
9505 
9506 			if (unlikely(lower->features & feature))
9507 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9508 					    &feature, lower->name);
9509 			else
9510 				netdev_features_change(lower);
9511 		}
9512 	}
9513 }
9514 
9515 static netdev_features_t netdev_fix_features(struct net_device *dev,
9516 	netdev_features_t features)
9517 {
9518 	/* Fix illegal checksum combinations */
9519 	if ((features & NETIF_F_HW_CSUM) &&
9520 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9521 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9522 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9523 	}
9524 
9525 	/* TSO requires that SG is present as well. */
9526 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9527 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9528 		features &= ~NETIF_F_ALL_TSO;
9529 	}
9530 
9531 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9532 					!(features & NETIF_F_IP_CSUM)) {
9533 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9534 		features &= ~NETIF_F_TSO;
9535 		features &= ~NETIF_F_TSO_ECN;
9536 	}
9537 
9538 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9539 					 !(features & NETIF_F_IPV6_CSUM)) {
9540 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9541 		features &= ~NETIF_F_TSO6;
9542 	}
9543 
9544 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9545 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9546 		features &= ~NETIF_F_TSO_MANGLEID;
9547 
9548 	/* TSO ECN requires that TSO is present as well. */
9549 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9550 		features &= ~NETIF_F_TSO_ECN;
9551 
9552 	/* Software GSO depends on SG. */
9553 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9554 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9555 		features &= ~NETIF_F_GSO;
9556 	}
9557 
9558 	/* GSO partial features require GSO partial be set */
9559 	if ((features & dev->gso_partial_features) &&
9560 	    !(features & NETIF_F_GSO_PARTIAL)) {
9561 		netdev_dbg(dev,
9562 			   "Dropping partially supported GSO features since no GSO partial.\n");
9563 		features &= ~dev->gso_partial_features;
9564 	}
9565 
9566 	if (!(features & NETIF_F_RXCSUM)) {
9567 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9568 		 * successfully merged by hardware must also have the
9569 		 * checksum verified by hardware.  If the user does not
9570 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9571 		 */
9572 		if (features & NETIF_F_GRO_HW) {
9573 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9574 			features &= ~NETIF_F_GRO_HW;
9575 		}
9576 	}
9577 
9578 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9579 	if (features & NETIF_F_RXFCS) {
9580 		if (features & NETIF_F_LRO) {
9581 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9582 			features &= ~NETIF_F_LRO;
9583 		}
9584 
9585 		if (features & NETIF_F_GRO_HW) {
9586 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9587 			features &= ~NETIF_F_GRO_HW;
9588 		}
9589 	}
9590 
9591 	return features;
9592 }
9593 
9594 int __netdev_update_features(struct net_device *dev)
9595 {
9596 	struct net_device *upper, *lower;
9597 	netdev_features_t features;
9598 	struct list_head *iter;
9599 	int err = -1;
9600 
9601 	ASSERT_RTNL();
9602 
9603 	features = netdev_get_wanted_features(dev);
9604 
9605 	if (dev->netdev_ops->ndo_fix_features)
9606 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9607 
9608 	/* driver might be less strict about feature dependencies */
9609 	features = netdev_fix_features(dev, features);
9610 
9611 	/* some features can't be enabled if they're off on an upper device */
9612 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9613 		features = netdev_sync_upper_features(dev, upper, features);
9614 
9615 	if (dev->features == features)
9616 		goto sync_lower;
9617 
9618 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9619 		&dev->features, &features);
9620 
9621 	if (dev->netdev_ops->ndo_set_features)
9622 		err = dev->netdev_ops->ndo_set_features(dev, features);
9623 	else
9624 		err = 0;
9625 
9626 	if (unlikely(err < 0)) {
9627 		netdev_err(dev,
9628 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9629 			err, &features, &dev->features);
9630 		/* return non-0 since some features might have changed and
9631 		 * it's better to fire a spurious notification than miss it
9632 		 */
9633 		return -1;
9634 	}
9635 
9636 sync_lower:
9637 	/* some features must be disabled on lower devices when disabled
9638 	 * on an upper device (think: bonding master or bridge)
9639 	 */
9640 	netdev_for_each_lower_dev(dev, lower, iter)
9641 		netdev_sync_lower_features(dev, lower, features);
9642 
9643 	if (!err) {
9644 		netdev_features_t diff = features ^ dev->features;
9645 
9646 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9647 			/* udp_tunnel_{get,drop}_rx_info both need
9648 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9649 			 * device, or they won't do anything.
9650 			 * Thus we need to update dev->features
9651 			 * *before* calling udp_tunnel_get_rx_info,
9652 			 * but *after* calling udp_tunnel_drop_rx_info.
9653 			 */
9654 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9655 				dev->features = features;
9656 				udp_tunnel_get_rx_info(dev);
9657 			} else {
9658 				udp_tunnel_drop_rx_info(dev);
9659 			}
9660 		}
9661 
9662 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9663 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9664 				dev->features = features;
9665 				err |= vlan_get_rx_ctag_filter_info(dev);
9666 			} else {
9667 				vlan_drop_rx_ctag_filter_info(dev);
9668 			}
9669 		}
9670 
9671 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9672 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9673 				dev->features = features;
9674 				err |= vlan_get_rx_stag_filter_info(dev);
9675 			} else {
9676 				vlan_drop_rx_stag_filter_info(dev);
9677 			}
9678 		}
9679 
9680 		dev->features = features;
9681 	}
9682 
9683 	return err < 0 ? 0 : 1;
9684 }
9685 
9686 /**
9687  *	netdev_update_features - recalculate device features
9688  *	@dev: the device to check
9689  *
9690  *	Recalculate dev->features set and send notifications if it
9691  *	has changed. Should be called after driver or hardware dependent
9692  *	conditions might have changed that influence the features.
9693  */
9694 void netdev_update_features(struct net_device *dev)
9695 {
9696 	if (__netdev_update_features(dev))
9697 		netdev_features_change(dev);
9698 }
9699 EXPORT_SYMBOL(netdev_update_features);
9700 
9701 /**
9702  *	netdev_change_features - recalculate device features
9703  *	@dev: the device to check
9704  *
9705  *	Recalculate dev->features set and send notifications even
9706  *	if they have not changed. Should be called instead of
9707  *	netdev_update_features() if also dev->vlan_features might
9708  *	have changed to allow the changes to be propagated to stacked
9709  *	VLAN devices.
9710  */
9711 void netdev_change_features(struct net_device *dev)
9712 {
9713 	__netdev_update_features(dev);
9714 	netdev_features_change(dev);
9715 }
9716 EXPORT_SYMBOL(netdev_change_features);
9717 
9718 /**
9719  *	netif_stacked_transfer_operstate -	transfer operstate
9720  *	@rootdev: the root or lower level device to transfer state from
9721  *	@dev: the device to transfer operstate to
9722  *
9723  *	Transfer operational state from root to device. This is normally
9724  *	called when a stacking relationship exists between the root
9725  *	device and the device(a leaf device).
9726  */
9727 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9728 					struct net_device *dev)
9729 {
9730 	if (rootdev->operstate == IF_OPER_DORMANT)
9731 		netif_dormant_on(dev);
9732 	else
9733 		netif_dormant_off(dev);
9734 
9735 	if (rootdev->operstate == IF_OPER_TESTING)
9736 		netif_testing_on(dev);
9737 	else
9738 		netif_testing_off(dev);
9739 
9740 	if (netif_carrier_ok(rootdev))
9741 		netif_carrier_on(dev);
9742 	else
9743 		netif_carrier_off(dev);
9744 }
9745 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9746 
9747 static int netif_alloc_rx_queues(struct net_device *dev)
9748 {
9749 	unsigned int i, count = dev->num_rx_queues;
9750 	struct netdev_rx_queue *rx;
9751 	size_t sz = count * sizeof(*rx);
9752 	int err = 0;
9753 
9754 	BUG_ON(count < 1);
9755 
9756 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9757 	if (!rx)
9758 		return -ENOMEM;
9759 
9760 	dev->_rx = rx;
9761 
9762 	for (i = 0; i < count; i++) {
9763 		rx[i].dev = dev;
9764 
9765 		/* XDP RX-queue setup */
9766 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9767 		if (err < 0)
9768 			goto err_rxq_info;
9769 	}
9770 	return 0;
9771 
9772 err_rxq_info:
9773 	/* Rollback successful reg's and free other resources */
9774 	while (i--)
9775 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9776 	kvfree(dev->_rx);
9777 	dev->_rx = NULL;
9778 	return err;
9779 }
9780 
9781 static void netif_free_rx_queues(struct net_device *dev)
9782 {
9783 	unsigned int i, count = dev->num_rx_queues;
9784 
9785 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9786 	if (!dev->_rx)
9787 		return;
9788 
9789 	for (i = 0; i < count; i++)
9790 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9791 
9792 	kvfree(dev->_rx);
9793 }
9794 
9795 static void netdev_init_one_queue(struct net_device *dev,
9796 				  struct netdev_queue *queue, void *_unused)
9797 {
9798 	/* Initialize queue lock */
9799 	spin_lock_init(&queue->_xmit_lock);
9800 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9801 	queue->xmit_lock_owner = -1;
9802 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9803 	queue->dev = dev;
9804 #ifdef CONFIG_BQL
9805 	dql_init(&queue->dql, HZ);
9806 #endif
9807 }
9808 
9809 static void netif_free_tx_queues(struct net_device *dev)
9810 {
9811 	kvfree(dev->_tx);
9812 }
9813 
9814 static int netif_alloc_netdev_queues(struct net_device *dev)
9815 {
9816 	unsigned int count = dev->num_tx_queues;
9817 	struct netdev_queue *tx;
9818 	size_t sz = count * sizeof(*tx);
9819 
9820 	if (count < 1 || count > 0xffff)
9821 		return -EINVAL;
9822 
9823 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9824 	if (!tx)
9825 		return -ENOMEM;
9826 
9827 	dev->_tx = tx;
9828 
9829 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9830 	spin_lock_init(&dev->tx_global_lock);
9831 
9832 	return 0;
9833 }
9834 
9835 void netif_tx_stop_all_queues(struct net_device *dev)
9836 {
9837 	unsigned int i;
9838 
9839 	for (i = 0; i < dev->num_tx_queues; i++) {
9840 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9841 
9842 		netif_tx_stop_queue(txq);
9843 	}
9844 }
9845 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9846 
9847 /**
9848  *	register_netdevice	- register a network device
9849  *	@dev: device to register
9850  *
9851  *	Take a completed network device structure and add it to the kernel
9852  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9853  *	chain. 0 is returned on success. A negative errno code is returned
9854  *	on a failure to set up the device, or if the name is a duplicate.
9855  *
9856  *	Callers must hold the rtnl semaphore. You may want
9857  *	register_netdev() instead of this.
9858  *
9859  *	BUGS:
9860  *	The locking appears insufficient to guarantee two parallel registers
9861  *	will not get the same name.
9862  */
9863 
9864 int register_netdevice(struct net_device *dev)
9865 {
9866 	int ret;
9867 	struct net *net = dev_net(dev);
9868 
9869 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9870 		     NETDEV_FEATURE_COUNT);
9871 	BUG_ON(dev_boot_phase);
9872 	ASSERT_RTNL();
9873 
9874 	might_sleep();
9875 
9876 	/* When net_device's are persistent, this will be fatal. */
9877 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9878 	BUG_ON(!net);
9879 
9880 	ret = ethtool_check_ops(dev->ethtool_ops);
9881 	if (ret)
9882 		return ret;
9883 
9884 	spin_lock_init(&dev->addr_list_lock);
9885 	netdev_set_addr_lockdep_class(dev);
9886 
9887 	ret = dev_get_valid_name(net, dev, dev->name);
9888 	if (ret < 0)
9889 		goto out;
9890 
9891 	ret = -ENOMEM;
9892 	dev->name_node = netdev_name_node_head_alloc(dev);
9893 	if (!dev->name_node)
9894 		goto out;
9895 
9896 	/* Init, if this function is available */
9897 	if (dev->netdev_ops->ndo_init) {
9898 		ret = dev->netdev_ops->ndo_init(dev);
9899 		if (ret) {
9900 			if (ret > 0)
9901 				ret = -EIO;
9902 			goto err_free_name;
9903 		}
9904 	}
9905 
9906 	if (((dev->hw_features | dev->features) &
9907 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9908 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9909 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9910 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9911 		ret = -EINVAL;
9912 		goto err_uninit;
9913 	}
9914 
9915 	ret = -EBUSY;
9916 	if (!dev->ifindex)
9917 		dev->ifindex = dev_new_index(net);
9918 	else if (__dev_get_by_index(net, dev->ifindex))
9919 		goto err_uninit;
9920 
9921 	/* Transfer changeable features to wanted_features and enable
9922 	 * software offloads (GSO and GRO).
9923 	 */
9924 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9925 	dev->features |= NETIF_F_SOFT_FEATURES;
9926 
9927 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9928 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9929 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9930 	}
9931 
9932 	dev->wanted_features = dev->features & dev->hw_features;
9933 
9934 	if (!(dev->flags & IFF_LOOPBACK))
9935 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9936 
9937 	/* If IPv4 TCP segmentation offload is supported we should also
9938 	 * allow the device to enable segmenting the frame with the option
9939 	 * of ignoring a static IP ID value.  This doesn't enable the
9940 	 * feature itself but allows the user to enable it later.
9941 	 */
9942 	if (dev->hw_features & NETIF_F_TSO)
9943 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9944 	if (dev->vlan_features & NETIF_F_TSO)
9945 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9946 	if (dev->mpls_features & NETIF_F_TSO)
9947 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9948 	if (dev->hw_enc_features & NETIF_F_TSO)
9949 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9950 
9951 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9952 	 */
9953 	dev->vlan_features |= NETIF_F_HIGHDMA;
9954 
9955 	/* Make NETIF_F_SG inheritable to tunnel devices.
9956 	 */
9957 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9958 
9959 	/* Make NETIF_F_SG inheritable to MPLS.
9960 	 */
9961 	dev->mpls_features |= NETIF_F_SG;
9962 
9963 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9964 	ret = notifier_to_errno(ret);
9965 	if (ret)
9966 		goto err_uninit;
9967 
9968 	ret = netdev_register_kobject(dev);
9969 	if (ret) {
9970 		dev->reg_state = NETREG_UNREGISTERED;
9971 		goto err_uninit;
9972 	}
9973 	dev->reg_state = NETREG_REGISTERED;
9974 
9975 	__netdev_update_features(dev);
9976 
9977 	/*
9978 	 *	Default initial state at registry is that the
9979 	 *	device is present.
9980 	 */
9981 
9982 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9983 
9984 	linkwatch_init_dev(dev);
9985 
9986 	dev_init_scheduler(dev);
9987 	dev_hold(dev);
9988 	list_netdevice(dev);
9989 	add_device_randomness(dev->dev_addr, dev->addr_len);
9990 
9991 	/* If the device has permanent device address, driver should
9992 	 * set dev_addr and also addr_assign_type should be set to
9993 	 * NET_ADDR_PERM (default value).
9994 	 */
9995 	if (dev->addr_assign_type == NET_ADDR_PERM)
9996 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9997 
9998 	/* Notify protocols, that a new device appeared. */
9999 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10000 	ret = notifier_to_errno(ret);
10001 	if (ret) {
10002 		rollback_registered(dev);
10003 		rcu_barrier();
10004 
10005 		dev->reg_state = NETREG_UNREGISTERED;
10006 		/* We should put the kobject that hold in
10007 		 * netdev_unregister_kobject(), otherwise
10008 		 * the net device cannot be freed when
10009 		 * driver calls free_netdev(), because the
10010 		 * kobject is being hold.
10011 		 */
10012 		kobject_put(&dev->dev.kobj);
10013 	}
10014 	/*
10015 	 *	Prevent userspace races by waiting until the network
10016 	 *	device is fully setup before sending notifications.
10017 	 */
10018 	if (!dev->rtnl_link_ops ||
10019 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10020 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10021 
10022 out:
10023 	return ret;
10024 
10025 err_uninit:
10026 	if (dev->netdev_ops->ndo_uninit)
10027 		dev->netdev_ops->ndo_uninit(dev);
10028 	if (dev->priv_destructor)
10029 		dev->priv_destructor(dev);
10030 err_free_name:
10031 	netdev_name_node_free(dev->name_node);
10032 	goto out;
10033 }
10034 EXPORT_SYMBOL(register_netdevice);
10035 
10036 /**
10037  *	init_dummy_netdev	- init a dummy network device for NAPI
10038  *	@dev: device to init
10039  *
10040  *	This takes a network device structure and initialize the minimum
10041  *	amount of fields so it can be used to schedule NAPI polls without
10042  *	registering a full blown interface. This is to be used by drivers
10043  *	that need to tie several hardware interfaces to a single NAPI
10044  *	poll scheduler due to HW limitations.
10045  */
10046 int init_dummy_netdev(struct net_device *dev)
10047 {
10048 	/* Clear everything. Note we don't initialize spinlocks
10049 	 * are they aren't supposed to be taken by any of the
10050 	 * NAPI code and this dummy netdev is supposed to be
10051 	 * only ever used for NAPI polls
10052 	 */
10053 	memset(dev, 0, sizeof(struct net_device));
10054 
10055 	/* make sure we BUG if trying to hit standard
10056 	 * register/unregister code path
10057 	 */
10058 	dev->reg_state = NETREG_DUMMY;
10059 
10060 	/* NAPI wants this */
10061 	INIT_LIST_HEAD(&dev->napi_list);
10062 
10063 	/* a dummy interface is started by default */
10064 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10065 	set_bit(__LINK_STATE_START, &dev->state);
10066 
10067 	/* napi_busy_loop stats accounting wants this */
10068 	dev_net_set(dev, &init_net);
10069 
10070 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10071 	 * because users of this 'device' dont need to change
10072 	 * its refcount.
10073 	 */
10074 
10075 	return 0;
10076 }
10077 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10078 
10079 
10080 /**
10081  *	register_netdev	- register a network device
10082  *	@dev: device to register
10083  *
10084  *	Take a completed network device structure and add it to the kernel
10085  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10086  *	chain. 0 is returned on success. A negative errno code is returned
10087  *	on a failure to set up the device, or if the name is a duplicate.
10088  *
10089  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10090  *	and expands the device name if you passed a format string to
10091  *	alloc_netdev.
10092  */
10093 int register_netdev(struct net_device *dev)
10094 {
10095 	int err;
10096 
10097 	if (rtnl_lock_killable())
10098 		return -EINTR;
10099 	err = register_netdevice(dev);
10100 	rtnl_unlock();
10101 	return err;
10102 }
10103 EXPORT_SYMBOL(register_netdev);
10104 
10105 int netdev_refcnt_read(const struct net_device *dev)
10106 {
10107 	int i, refcnt = 0;
10108 
10109 	for_each_possible_cpu(i)
10110 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10111 	return refcnt;
10112 }
10113 EXPORT_SYMBOL(netdev_refcnt_read);
10114 
10115 #define WAIT_REFS_MIN_MSECS 1
10116 #define WAIT_REFS_MAX_MSECS 250
10117 /**
10118  * netdev_wait_allrefs - wait until all references are gone.
10119  * @dev: target net_device
10120  *
10121  * This is called when unregistering network devices.
10122  *
10123  * Any protocol or device that holds a reference should register
10124  * for netdevice notification, and cleanup and put back the
10125  * reference if they receive an UNREGISTER event.
10126  * We can get stuck here if buggy protocols don't correctly
10127  * call dev_put.
10128  */
10129 static void netdev_wait_allrefs(struct net_device *dev)
10130 {
10131 	unsigned long rebroadcast_time, warning_time;
10132 	int wait = 0, refcnt;
10133 
10134 	linkwatch_forget_dev(dev);
10135 
10136 	rebroadcast_time = warning_time = jiffies;
10137 	refcnt = netdev_refcnt_read(dev);
10138 
10139 	while (refcnt != 0) {
10140 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10141 			rtnl_lock();
10142 
10143 			/* Rebroadcast unregister notification */
10144 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10145 
10146 			__rtnl_unlock();
10147 			rcu_barrier();
10148 			rtnl_lock();
10149 
10150 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10151 				     &dev->state)) {
10152 				/* We must not have linkwatch events
10153 				 * pending on unregister. If this
10154 				 * happens, we simply run the queue
10155 				 * unscheduled, resulting in a noop
10156 				 * for this device.
10157 				 */
10158 				linkwatch_run_queue();
10159 			}
10160 
10161 			__rtnl_unlock();
10162 
10163 			rebroadcast_time = jiffies;
10164 		}
10165 
10166 		if (!wait) {
10167 			rcu_barrier();
10168 			wait = WAIT_REFS_MIN_MSECS;
10169 		} else {
10170 			msleep(wait);
10171 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10172 		}
10173 
10174 		refcnt = netdev_refcnt_read(dev);
10175 
10176 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10177 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10178 				 dev->name, refcnt);
10179 			warning_time = jiffies;
10180 		}
10181 	}
10182 }
10183 
10184 /* The sequence is:
10185  *
10186  *	rtnl_lock();
10187  *	...
10188  *	register_netdevice(x1);
10189  *	register_netdevice(x2);
10190  *	...
10191  *	unregister_netdevice(y1);
10192  *	unregister_netdevice(y2);
10193  *      ...
10194  *	rtnl_unlock();
10195  *	free_netdev(y1);
10196  *	free_netdev(y2);
10197  *
10198  * We are invoked by rtnl_unlock().
10199  * This allows us to deal with problems:
10200  * 1) We can delete sysfs objects which invoke hotplug
10201  *    without deadlocking with linkwatch via keventd.
10202  * 2) Since we run with the RTNL semaphore not held, we can sleep
10203  *    safely in order to wait for the netdev refcnt to drop to zero.
10204  *
10205  * We must not return until all unregister events added during
10206  * the interval the lock was held have been completed.
10207  */
10208 void netdev_run_todo(void)
10209 {
10210 	struct list_head list;
10211 #ifdef CONFIG_LOCKDEP
10212 	struct list_head unlink_list;
10213 
10214 	list_replace_init(&net_unlink_list, &unlink_list);
10215 
10216 	while (!list_empty(&unlink_list)) {
10217 		struct net_device *dev = list_first_entry(&unlink_list,
10218 							  struct net_device,
10219 							  unlink_list);
10220 		list_del_init(&dev->unlink_list);
10221 		dev->nested_level = dev->lower_level - 1;
10222 	}
10223 #endif
10224 
10225 	/* Snapshot list, allow later requests */
10226 	list_replace_init(&net_todo_list, &list);
10227 
10228 	__rtnl_unlock();
10229 
10230 
10231 	/* Wait for rcu callbacks to finish before next phase */
10232 	if (!list_empty(&list))
10233 		rcu_barrier();
10234 
10235 	while (!list_empty(&list)) {
10236 		struct net_device *dev
10237 			= list_first_entry(&list, struct net_device, todo_list);
10238 		list_del(&dev->todo_list);
10239 
10240 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10241 			pr_err("network todo '%s' but state %d\n",
10242 			       dev->name, dev->reg_state);
10243 			dump_stack();
10244 			continue;
10245 		}
10246 
10247 		dev->reg_state = NETREG_UNREGISTERED;
10248 
10249 		netdev_wait_allrefs(dev);
10250 
10251 		/* paranoia */
10252 		BUG_ON(netdev_refcnt_read(dev));
10253 		BUG_ON(!list_empty(&dev->ptype_all));
10254 		BUG_ON(!list_empty(&dev->ptype_specific));
10255 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10256 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10257 #if IS_ENABLED(CONFIG_DECNET)
10258 		WARN_ON(dev->dn_ptr);
10259 #endif
10260 		if (dev->priv_destructor)
10261 			dev->priv_destructor(dev);
10262 		if (dev->needs_free_netdev)
10263 			free_netdev(dev);
10264 
10265 		/* Report a network device has been unregistered */
10266 		rtnl_lock();
10267 		dev_net(dev)->dev_unreg_count--;
10268 		__rtnl_unlock();
10269 		wake_up(&netdev_unregistering_wq);
10270 
10271 		/* Free network device */
10272 		kobject_put(&dev->dev.kobj);
10273 	}
10274 }
10275 
10276 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10277  * all the same fields in the same order as net_device_stats, with only
10278  * the type differing, but rtnl_link_stats64 may have additional fields
10279  * at the end for newer counters.
10280  */
10281 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10282 			     const struct net_device_stats *netdev_stats)
10283 {
10284 #if BITS_PER_LONG == 64
10285 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10286 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10287 	/* zero out counters that only exist in rtnl_link_stats64 */
10288 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10289 	       sizeof(*stats64) - sizeof(*netdev_stats));
10290 #else
10291 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10292 	const unsigned long *src = (const unsigned long *)netdev_stats;
10293 	u64 *dst = (u64 *)stats64;
10294 
10295 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10296 	for (i = 0; i < n; i++)
10297 		dst[i] = src[i];
10298 	/* zero out counters that only exist in rtnl_link_stats64 */
10299 	memset((char *)stats64 + n * sizeof(u64), 0,
10300 	       sizeof(*stats64) - n * sizeof(u64));
10301 #endif
10302 }
10303 EXPORT_SYMBOL(netdev_stats_to_stats64);
10304 
10305 /**
10306  *	dev_get_stats	- get network device statistics
10307  *	@dev: device to get statistics from
10308  *	@storage: place to store stats
10309  *
10310  *	Get network statistics from device. Return @storage.
10311  *	The device driver may provide its own method by setting
10312  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10313  *	otherwise the internal statistics structure is used.
10314  */
10315 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10316 					struct rtnl_link_stats64 *storage)
10317 {
10318 	const struct net_device_ops *ops = dev->netdev_ops;
10319 
10320 	if (ops->ndo_get_stats64) {
10321 		memset(storage, 0, sizeof(*storage));
10322 		ops->ndo_get_stats64(dev, storage);
10323 	} else if (ops->ndo_get_stats) {
10324 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10325 	} else {
10326 		netdev_stats_to_stats64(storage, &dev->stats);
10327 	}
10328 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10329 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10330 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10331 	return storage;
10332 }
10333 EXPORT_SYMBOL(dev_get_stats);
10334 
10335 /**
10336  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10337  *	@s: place to store stats
10338  *	@netstats: per-cpu network stats to read from
10339  *
10340  *	Read per-cpu network statistics and populate the related fields in @s.
10341  */
10342 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10343 			   const struct pcpu_sw_netstats __percpu *netstats)
10344 {
10345 	int cpu;
10346 
10347 	for_each_possible_cpu(cpu) {
10348 		const struct pcpu_sw_netstats *stats;
10349 		struct pcpu_sw_netstats tmp;
10350 		unsigned int start;
10351 
10352 		stats = per_cpu_ptr(netstats, cpu);
10353 		do {
10354 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10355 			tmp.rx_packets = stats->rx_packets;
10356 			tmp.rx_bytes   = stats->rx_bytes;
10357 			tmp.tx_packets = stats->tx_packets;
10358 			tmp.tx_bytes   = stats->tx_bytes;
10359 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10360 
10361 		s->rx_packets += tmp.rx_packets;
10362 		s->rx_bytes   += tmp.rx_bytes;
10363 		s->tx_packets += tmp.tx_packets;
10364 		s->tx_bytes   += tmp.tx_bytes;
10365 	}
10366 }
10367 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10368 
10369 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10370 {
10371 	struct netdev_queue *queue = dev_ingress_queue(dev);
10372 
10373 #ifdef CONFIG_NET_CLS_ACT
10374 	if (queue)
10375 		return queue;
10376 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10377 	if (!queue)
10378 		return NULL;
10379 	netdev_init_one_queue(dev, queue, NULL);
10380 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10381 	queue->qdisc_sleeping = &noop_qdisc;
10382 	rcu_assign_pointer(dev->ingress_queue, queue);
10383 #endif
10384 	return queue;
10385 }
10386 
10387 static const struct ethtool_ops default_ethtool_ops;
10388 
10389 void netdev_set_default_ethtool_ops(struct net_device *dev,
10390 				    const struct ethtool_ops *ops)
10391 {
10392 	if (dev->ethtool_ops == &default_ethtool_ops)
10393 		dev->ethtool_ops = ops;
10394 }
10395 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10396 
10397 void netdev_freemem(struct net_device *dev)
10398 {
10399 	char *addr = (char *)dev - dev->padded;
10400 
10401 	kvfree(addr);
10402 }
10403 
10404 /**
10405  * alloc_netdev_mqs - allocate network device
10406  * @sizeof_priv: size of private data to allocate space for
10407  * @name: device name format string
10408  * @name_assign_type: origin of device name
10409  * @setup: callback to initialize device
10410  * @txqs: the number of TX subqueues to allocate
10411  * @rxqs: the number of RX subqueues to allocate
10412  *
10413  * Allocates a struct net_device with private data area for driver use
10414  * and performs basic initialization.  Also allocates subqueue structs
10415  * for each queue on the device.
10416  */
10417 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10418 		unsigned char name_assign_type,
10419 		void (*setup)(struct net_device *),
10420 		unsigned int txqs, unsigned int rxqs)
10421 {
10422 	struct net_device *dev;
10423 	unsigned int alloc_size;
10424 	struct net_device *p;
10425 
10426 	BUG_ON(strlen(name) >= sizeof(dev->name));
10427 
10428 	if (txqs < 1) {
10429 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10430 		return NULL;
10431 	}
10432 
10433 	if (rxqs < 1) {
10434 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10435 		return NULL;
10436 	}
10437 
10438 	alloc_size = sizeof(struct net_device);
10439 	if (sizeof_priv) {
10440 		/* ensure 32-byte alignment of private area */
10441 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10442 		alloc_size += sizeof_priv;
10443 	}
10444 	/* ensure 32-byte alignment of whole construct */
10445 	alloc_size += NETDEV_ALIGN - 1;
10446 
10447 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10448 	if (!p)
10449 		return NULL;
10450 
10451 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10452 	dev->padded = (char *)dev - (char *)p;
10453 
10454 	dev->pcpu_refcnt = alloc_percpu(int);
10455 	if (!dev->pcpu_refcnt)
10456 		goto free_dev;
10457 
10458 	if (dev_addr_init(dev))
10459 		goto free_pcpu;
10460 
10461 	dev_mc_init(dev);
10462 	dev_uc_init(dev);
10463 
10464 	dev_net_set(dev, &init_net);
10465 
10466 	dev->gso_max_size = GSO_MAX_SIZE;
10467 	dev->gso_max_segs = GSO_MAX_SEGS;
10468 	dev->upper_level = 1;
10469 	dev->lower_level = 1;
10470 #ifdef CONFIG_LOCKDEP
10471 	dev->nested_level = 0;
10472 	INIT_LIST_HEAD(&dev->unlink_list);
10473 #endif
10474 
10475 	INIT_LIST_HEAD(&dev->napi_list);
10476 	INIT_LIST_HEAD(&dev->unreg_list);
10477 	INIT_LIST_HEAD(&dev->close_list);
10478 	INIT_LIST_HEAD(&dev->link_watch_list);
10479 	INIT_LIST_HEAD(&dev->adj_list.upper);
10480 	INIT_LIST_HEAD(&dev->adj_list.lower);
10481 	INIT_LIST_HEAD(&dev->ptype_all);
10482 	INIT_LIST_HEAD(&dev->ptype_specific);
10483 	INIT_LIST_HEAD(&dev->net_notifier_list);
10484 #ifdef CONFIG_NET_SCHED
10485 	hash_init(dev->qdisc_hash);
10486 #endif
10487 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10488 	setup(dev);
10489 
10490 	if (!dev->tx_queue_len) {
10491 		dev->priv_flags |= IFF_NO_QUEUE;
10492 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10493 	}
10494 
10495 	dev->num_tx_queues = txqs;
10496 	dev->real_num_tx_queues = txqs;
10497 	if (netif_alloc_netdev_queues(dev))
10498 		goto free_all;
10499 
10500 	dev->num_rx_queues = rxqs;
10501 	dev->real_num_rx_queues = rxqs;
10502 	if (netif_alloc_rx_queues(dev))
10503 		goto free_all;
10504 
10505 	strcpy(dev->name, name);
10506 	dev->name_assign_type = name_assign_type;
10507 	dev->group = INIT_NETDEV_GROUP;
10508 	if (!dev->ethtool_ops)
10509 		dev->ethtool_ops = &default_ethtool_ops;
10510 
10511 	nf_hook_ingress_init(dev);
10512 
10513 	return dev;
10514 
10515 free_all:
10516 	free_netdev(dev);
10517 	return NULL;
10518 
10519 free_pcpu:
10520 	free_percpu(dev->pcpu_refcnt);
10521 free_dev:
10522 	netdev_freemem(dev);
10523 	return NULL;
10524 }
10525 EXPORT_SYMBOL(alloc_netdev_mqs);
10526 
10527 /**
10528  * free_netdev - free network device
10529  * @dev: device
10530  *
10531  * This function does the last stage of destroying an allocated device
10532  * interface. The reference to the device object is released. If this
10533  * is the last reference then it will be freed.Must be called in process
10534  * context.
10535  */
10536 void free_netdev(struct net_device *dev)
10537 {
10538 	struct napi_struct *p, *n;
10539 
10540 	might_sleep();
10541 	netif_free_tx_queues(dev);
10542 	netif_free_rx_queues(dev);
10543 
10544 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10545 
10546 	/* Flush device addresses */
10547 	dev_addr_flush(dev);
10548 
10549 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10550 		netif_napi_del(p);
10551 
10552 	free_percpu(dev->pcpu_refcnt);
10553 	dev->pcpu_refcnt = NULL;
10554 	free_percpu(dev->xdp_bulkq);
10555 	dev->xdp_bulkq = NULL;
10556 
10557 	/*  Compatibility with error handling in drivers */
10558 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10559 		netdev_freemem(dev);
10560 		return;
10561 	}
10562 
10563 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10564 	dev->reg_state = NETREG_RELEASED;
10565 
10566 	/* will free via device release */
10567 	put_device(&dev->dev);
10568 }
10569 EXPORT_SYMBOL(free_netdev);
10570 
10571 /**
10572  *	synchronize_net -  Synchronize with packet receive processing
10573  *
10574  *	Wait for packets currently being received to be done.
10575  *	Does not block later packets from starting.
10576  */
10577 void synchronize_net(void)
10578 {
10579 	might_sleep();
10580 	if (rtnl_is_locked())
10581 		synchronize_rcu_expedited();
10582 	else
10583 		synchronize_rcu();
10584 }
10585 EXPORT_SYMBOL(synchronize_net);
10586 
10587 /**
10588  *	unregister_netdevice_queue - remove device from the kernel
10589  *	@dev: device
10590  *	@head: list
10591  *
10592  *	This function shuts down a device interface and removes it
10593  *	from the kernel tables.
10594  *	If head not NULL, device is queued to be unregistered later.
10595  *
10596  *	Callers must hold the rtnl semaphore.  You may want
10597  *	unregister_netdev() instead of this.
10598  */
10599 
10600 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10601 {
10602 	ASSERT_RTNL();
10603 
10604 	if (head) {
10605 		list_move_tail(&dev->unreg_list, head);
10606 	} else {
10607 		rollback_registered(dev);
10608 		/* Finish processing unregister after unlock */
10609 		net_set_todo(dev);
10610 	}
10611 }
10612 EXPORT_SYMBOL(unregister_netdevice_queue);
10613 
10614 /**
10615  *	unregister_netdevice_many - unregister many devices
10616  *	@head: list of devices
10617  *
10618  *  Note: As most callers use a stack allocated list_head,
10619  *  we force a list_del() to make sure stack wont be corrupted later.
10620  */
10621 void unregister_netdevice_many(struct list_head *head)
10622 {
10623 	struct net_device *dev;
10624 
10625 	if (!list_empty(head)) {
10626 		rollback_registered_many(head);
10627 		list_for_each_entry(dev, head, unreg_list)
10628 			net_set_todo(dev);
10629 		list_del(head);
10630 	}
10631 }
10632 EXPORT_SYMBOL(unregister_netdevice_many);
10633 
10634 /**
10635  *	unregister_netdev - remove device from the kernel
10636  *	@dev: device
10637  *
10638  *	This function shuts down a device interface and removes it
10639  *	from the kernel tables.
10640  *
10641  *	This is just a wrapper for unregister_netdevice that takes
10642  *	the rtnl semaphore.  In general you want to use this and not
10643  *	unregister_netdevice.
10644  */
10645 void unregister_netdev(struct net_device *dev)
10646 {
10647 	rtnl_lock();
10648 	unregister_netdevice(dev);
10649 	rtnl_unlock();
10650 }
10651 EXPORT_SYMBOL(unregister_netdev);
10652 
10653 /**
10654  *	dev_change_net_namespace - move device to different nethost namespace
10655  *	@dev: device
10656  *	@net: network namespace
10657  *	@pat: If not NULL name pattern to try if the current device name
10658  *	      is already taken in the destination network namespace.
10659  *
10660  *	This function shuts down a device interface and moves it
10661  *	to a new network namespace. On success 0 is returned, on
10662  *	a failure a netagive errno code is returned.
10663  *
10664  *	Callers must hold the rtnl semaphore.
10665  */
10666 
10667 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10668 {
10669 	struct net *net_old = dev_net(dev);
10670 	int err, new_nsid, new_ifindex;
10671 
10672 	ASSERT_RTNL();
10673 
10674 	/* Don't allow namespace local devices to be moved. */
10675 	err = -EINVAL;
10676 	if (dev->features & NETIF_F_NETNS_LOCAL)
10677 		goto out;
10678 
10679 	/* Ensure the device has been registrered */
10680 	if (dev->reg_state != NETREG_REGISTERED)
10681 		goto out;
10682 
10683 	/* Get out if there is nothing todo */
10684 	err = 0;
10685 	if (net_eq(net_old, net))
10686 		goto out;
10687 
10688 	/* Pick the destination device name, and ensure
10689 	 * we can use it in the destination network namespace.
10690 	 */
10691 	err = -EEXIST;
10692 	if (__dev_get_by_name(net, dev->name)) {
10693 		/* We get here if we can't use the current device name */
10694 		if (!pat)
10695 			goto out;
10696 		err = dev_get_valid_name(net, dev, pat);
10697 		if (err < 0)
10698 			goto out;
10699 	}
10700 
10701 	/*
10702 	 * And now a mini version of register_netdevice unregister_netdevice.
10703 	 */
10704 
10705 	/* If device is running close it first. */
10706 	dev_close(dev);
10707 
10708 	/* And unlink it from device chain */
10709 	unlist_netdevice(dev);
10710 
10711 	synchronize_net();
10712 
10713 	/* Shutdown queueing discipline. */
10714 	dev_shutdown(dev);
10715 
10716 	/* Notify protocols, that we are about to destroy
10717 	 * this device. They should clean all the things.
10718 	 *
10719 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10720 	 * This is wanted because this way 8021q and macvlan know
10721 	 * the device is just moving and can keep their slaves up.
10722 	 */
10723 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10724 	rcu_barrier();
10725 
10726 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10727 	/* If there is an ifindex conflict assign a new one */
10728 	if (__dev_get_by_index(net, dev->ifindex))
10729 		new_ifindex = dev_new_index(net);
10730 	else
10731 		new_ifindex = dev->ifindex;
10732 
10733 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10734 			    new_ifindex);
10735 
10736 	/*
10737 	 *	Flush the unicast and multicast chains
10738 	 */
10739 	dev_uc_flush(dev);
10740 	dev_mc_flush(dev);
10741 
10742 	/* Send a netdev-removed uevent to the old namespace */
10743 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10744 	netdev_adjacent_del_links(dev);
10745 
10746 	/* Move per-net netdevice notifiers that are following the netdevice */
10747 	move_netdevice_notifiers_dev_net(dev, net);
10748 
10749 	/* Actually switch the network namespace */
10750 	dev_net_set(dev, net);
10751 	dev->ifindex = new_ifindex;
10752 
10753 	/* Send a netdev-add uevent to the new namespace */
10754 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10755 	netdev_adjacent_add_links(dev);
10756 
10757 	/* Fixup kobjects */
10758 	err = device_rename(&dev->dev, dev->name);
10759 	WARN_ON(err);
10760 
10761 	/* Adapt owner in case owning user namespace of target network
10762 	 * namespace is different from the original one.
10763 	 */
10764 	err = netdev_change_owner(dev, net_old, net);
10765 	WARN_ON(err);
10766 
10767 	/* Add the device back in the hashes */
10768 	list_netdevice(dev);
10769 
10770 	/* Notify protocols, that a new device appeared. */
10771 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10772 
10773 	/*
10774 	 *	Prevent userspace races by waiting until the network
10775 	 *	device is fully setup before sending notifications.
10776 	 */
10777 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10778 
10779 	synchronize_net();
10780 	err = 0;
10781 out:
10782 	return err;
10783 }
10784 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10785 
10786 static int dev_cpu_dead(unsigned int oldcpu)
10787 {
10788 	struct sk_buff **list_skb;
10789 	struct sk_buff *skb;
10790 	unsigned int cpu;
10791 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10792 
10793 	local_irq_disable();
10794 	cpu = smp_processor_id();
10795 	sd = &per_cpu(softnet_data, cpu);
10796 	oldsd = &per_cpu(softnet_data, oldcpu);
10797 
10798 	/* Find end of our completion_queue. */
10799 	list_skb = &sd->completion_queue;
10800 	while (*list_skb)
10801 		list_skb = &(*list_skb)->next;
10802 	/* Append completion queue from offline CPU. */
10803 	*list_skb = oldsd->completion_queue;
10804 	oldsd->completion_queue = NULL;
10805 
10806 	/* Append output queue from offline CPU. */
10807 	if (oldsd->output_queue) {
10808 		*sd->output_queue_tailp = oldsd->output_queue;
10809 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10810 		oldsd->output_queue = NULL;
10811 		oldsd->output_queue_tailp = &oldsd->output_queue;
10812 	}
10813 	/* Append NAPI poll list from offline CPU, with one exception :
10814 	 * process_backlog() must be called by cpu owning percpu backlog.
10815 	 * We properly handle process_queue & input_pkt_queue later.
10816 	 */
10817 	while (!list_empty(&oldsd->poll_list)) {
10818 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10819 							    struct napi_struct,
10820 							    poll_list);
10821 
10822 		list_del_init(&napi->poll_list);
10823 		if (napi->poll == process_backlog)
10824 			napi->state = 0;
10825 		else
10826 			____napi_schedule(sd, napi);
10827 	}
10828 
10829 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10830 	local_irq_enable();
10831 
10832 #ifdef CONFIG_RPS
10833 	remsd = oldsd->rps_ipi_list;
10834 	oldsd->rps_ipi_list = NULL;
10835 #endif
10836 	/* send out pending IPI's on offline CPU */
10837 	net_rps_send_ipi(remsd);
10838 
10839 	/* Process offline CPU's input_pkt_queue */
10840 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10841 		netif_rx_ni(skb);
10842 		input_queue_head_incr(oldsd);
10843 	}
10844 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10845 		netif_rx_ni(skb);
10846 		input_queue_head_incr(oldsd);
10847 	}
10848 
10849 	return 0;
10850 }
10851 
10852 /**
10853  *	netdev_increment_features - increment feature set by one
10854  *	@all: current feature set
10855  *	@one: new feature set
10856  *	@mask: mask feature set
10857  *
10858  *	Computes a new feature set after adding a device with feature set
10859  *	@one to the master device with current feature set @all.  Will not
10860  *	enable anything that is off in @mask. Returns the new feature set.
10861  */
10862 netdev_features_t netdev_increment_features(netdev_features_t all,
10863 	netdev_features_t one, netdev_features_t mask)
10864 {
10865 	if (mask & NETIF_F_HW_CSUM)
10866 		mask |= NETIF_F_CSUM_MASK;
10867 	mask |= NETIF_F_VLAN_CHALLENGED;
10868 
10869 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10870 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10871 
10872 	/* If one device supports hw checksumming, set for all. */
10873 	if (all & NETIF_F_HW_CSUM)
10874 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10875 
10876 	return all;
10877 }
10878 EXPORT_SYMBOL(netdev_increment_features);
10879 
10880 static struct hlist_head * __net_init netdev_create_hash(void)
10881 {
10882 	int i;
10883 	struct hlist_head *hash;
10884 
10885 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10886 	if (hash != NULL)
10887 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10888 			INIT_HLIST_HEAD(&hash[i]);
10889 
10890 	return hash;
10891 }
10892 
10893 /* Initialize per network namespace state */
10894 static int __net_init netdev_init(struct net *net)
10895 {
10896 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10897 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10898 
10899 	if (net != &init_net)
10900 		INIT_LIST_HEAD(&net->dev_base_head);
10901 
10902 	net->dev_name_head = netdev_create_hash();
10903 	if (net->dev_name_head == NULL)
10904 		goto err_name;
10905 
10906 	net->dev_index_head = netdev_create_hash();
10907 	if (net->dev_index_head == NULL)
10908 		goto err_idx;
10909 
10910 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10911 
10912 	return 0;
10913 
10914 err_idx:
10915 	kfree(net->dev_name_head);
10916 err_name:
10917 	return -ENOMEM;
10918 }
10919 
10920 /**
10921  *	netdev_drivername - network driver for the device
10922  *	@dev: network device
10923  *
10924  *	Determine network driver for device.
10925  */
10926 const char *netdev_drivername(const struct net_device *dev)
10927 {
10928 	const struct device_driver *driver;
10929 	const struct device *parent;
10930 	const char *empty = "";
10931 
10932 	parent = dev->dev.parent;
10933 	if (!parent)
10934 		return empty;
10935 
10936 	driver = parent->driver;
10937 	if (driver && driver->name)
10938 		return driver->name;
10939 	return empty;
10940 }
10941 
10942 static void __netdev_printk(const char *level, const struct net_device *dev,
10943 			    struct va_format *vaf)
10944 {
10945 	if (dev && dev->dev.parent) {
10946 		dev_printk_emit(level[1] - '0',
10947 				dev->dev.parent,
10948 				"%s %s %s%s: %pV",
10949 				dev_driver_string(dev->dev.parent),
10950 				dev_name(dev->dev.parent),
10951 				netdev_name(dev), netdev_reg_state(dev),
10952 				vaf);
10953 	} else if (dev) {
10954 		printk("%s%s%s: %pV",
10955 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10956 	} else {
10957 		printk("%s(NULL net_device): %pV", level, vaf);
10958 	}
10959 }
10960 
10961 void netdev_printk(const char *level, const struct net_device *dev,
10962 		   const char *format, ...)
10963 {
10964 	struct va_format vaf;
10965 	va_list args;
10966 
10967 	va_start(args, format);
10968 
10969 	vaf.fmt = format;
10970 	vaf.va = &args;
10971 
10972 	__netdev_printk(level, dev, &vaf);
10973 
10974 	va_end(args);
10975 }
10976 EXPORT_SYMBOL(netdev_printk);
10977 
10978 #define define_netdev_printk_level(func, level)			\
10979 void func(const struct net_device *dev, const char *fmt, ...)	\
10980 {								\
10981 	struct va_format vaf;					\
10982 	va_list args;						\
10983 								\
10984 	va_start(args, fmt);					\
10985 								\
10986 	vaf.fmt = fmt;						\
10987 	vaf.va = &args;						\
10988 								\
10989 	__netdev_printk(level, dev, &vaf);			\
10990 								\
10991 	va_end(args);						\
10992 }								\
10993 EXPORT_SYMBOL(func);
10994 
10995 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10996 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10997 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10998 define_netdev_printk_level(netdev_err, KERN_ERR);
10999 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11000 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11001 define_netdev_printk_level(netdev_info, KERN_INFO);
11002 
11003 static void __net_exit netdev_exit(struct net *net)
11004 {
11005 	kfree(net->dev_name_head);
11006 	kfree(net->dev_index_head);
11007 	if (net != &init_net)
11008 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11009 }
11010 
11011 static struct pernet_operations __net_initdata netdev_net_ops = {
11012 	.init = netdev_init,
11013 	.exit = netdev_exit,
11014 };
11015 
11016 static void __net_exit default_device_exit(struct net *net)
11017 {
11018 	struct net_device *dev, *aux;
11019 	/*
11020 	 * Push all migratable network devices back to the
11021 	 * initial network namespace
11022 	 */
11023 	rtnl_lock();
11024 	for_each_netdev_safe(net, dev, aux) {
11025 		int err;
11026 		char fb_name[IFNAMSIZ];
11027 
11028 		/* Ignore unmoveable devices (i.e. loopback) */
11029 		if (dev->features & NETIF_F_NETNS_LOCAL)
11030 			continue;
11031 
11032 		/* Leave virtual devices for the generic cleanup */
11033 		if (dev->rtnl_link_ops)
11034 			continue;
11035 
11036 		/* Push remaining network devices to init_net */
11037 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11038 		if (__dev_get_by_name(&init_net, fb_name))
11039 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11040 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11041 		if (err) {
11042 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11043 				 __func__, dev->name, err);
11044 			BUG();
11045 		}
11046 	}
11047 	rtnl_unlock();
11048 }
11049 
11050 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11051 {
11052 	/* Return with the rtnl_lock held when there are no network
11053 	 * devices unregistering in any network namespace in net_list.
11054 	 */
11055 	struct net *net;
11056 	bool unregistering;
11057 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11058 
11059 	add_wait_queue(&netdev_unregistering_wq, &wait);
11060 	for (;;) {
11061 		unregistering = false;
11062 		rtnl_lock();
11063 		list_for_each_entry(net, net_list, exit_list) {
11064 			if (net->dev_unreg_count > 0) {
11065 				unregistering = true;
11066 				break;
11067 			}
11068 		}
11069 		if (!unregistering)
11070 			break;
11071 		__rtnl_unlock();
11072 
11073 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11074 	}
11075 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11076 }
11077 
11078 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11079 {
11080 	/* At exit all network devices most be removed from a network
11081 	 * namespace.  Do this in the reverse order of registration.
11082 	 * Do this across as many network namespaces as possible to
11083 	 * improve batching efficiency.
11084 	 */
11085 	struct net_device *dev;
11086 	struct net *net;
11087 	LIST_HEAD(dev_kill_list);
11088 
11089 	/* To prevent network device cleanup code from dereferencing
11090 	 * loopback devices or network devices that have been freed
11091 	 * wait here for all pending unregistrations to complete,
11092 	 * before unregistring the loopback device and allowing the
11093 	 * network namespace be freed.
11094 	 *
11095 	 * The netdev todo list containing all network devices
11096 	 * unregistrations that happen in default_device_exit_batch
11097 	 * will run in the rtnl_unlock() at the end of
11098 	 * default_device_exit_batch.
11099 	 */
11100 	rtnl_lock_unregistering(net_list);
11101 	list_for_each_entry(net, net_list, exit_list) {
11102 		for_each_netdev_reverse(net, dev) {
11103 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11104 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11105 			else
11106 				unregister_netdevice_queue(dev, &dev_kill_list);
11107 		}
11108 	}
11109 	unregister_netdevice_many(&dev_kill_list);
11110 	rtnl_unlock();
11111 }
11112 
11113 static struct pernet_operations __net_initdata default_device_ops = {
11114 	.exit = default_device_exit,
11115 	.exit_batch = default_device_exit_batch,
11116 };
11117 
11118 /*
11119  *	Initialize the DEV module. At boot time this walks the device list and
11120  *	unhooks any devices that fail to initialise (normally hardware not
11121  *	present) and leaves us with a valid list of present and active devices.
11122  *
11123  */
11124 
11125 /*
11126  *       This is called single threaded during boot, so no need
11127  *       to take the rtnl semaphore.
11128  */
11129 static int __init net_dev_init(void)
11130 {
11131 	int i, rc = -ENOMEM;
11132 
11133 	BUG_ON(!dev_boot_phase);
11134 
11135 	if (dev_proc_init())
11136 		goto out;
11137 
11138 	if (netdev_kobject_init())
11139 		goto out;
11140 
11141 	INIT_LIST_HEAD(&ptype_all);
11142 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11143 		INIT_LIST_HEAD(&ptype_base[i]);
11144 
11145 	INIT_LIST_HEAD(&offload_base);
11146 
11147 	if (register_pernet_subsys(&netdev_net_ops))
11148 		goto out;
11149 
11150 	/*
11151 	 *	Initialise the packet receive queues.
11152 	 */
11153 
11154 	for_each_possible_cpu(i) {
11155 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11156 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11157 
11158 		INIT_WORK(flush, flush_backlog);
11159 
11160 		skb_queue_head_init(&sd->input_pkt_queue);
11161 		skb_queue_head_init(&sd->process_queue);
11162 #ifdef CONFIG_XFRM_OFFLOAD
11163 		skb_queue_head_init(&sd->xfrm_backlog);
11164 #endif
11165 		INIT_LIST_HEAD(&sd->poll_list);
11166 		sd->output_queue_tailp = &sd->output_queue;
11167 #ifdef CONFIG_RPS
11168 		sd->csd.func = rps_trigger_softirq;
11169 		sd->csd.info = sd;
11170 		sd->cpu = i;
11171 #endif
11172 
11173 		init_gro_hash(&sd->backlog);
11174 		sd->backlog.poll = process_backlog;
11175 		sd->backlog.weight = weight_p;
11176 	}
11177 
11178 	dev_boot_phase = 0;
11179 
11180 	/* The loopback device is special if any other network devices
11181 	 * is present in a network namespace the loopback device must
11182 	 * be present. Since we now dynamically allocate and free the
11183 	 * loopback device ensure this invariant is maintained by
11184 	 * keeping the loopback device as the first device on the
11185 	 * list of network devices.  Ensuring the loopback devices
11186 	 * is the first device that appears and the last network device
11187 	 * that disappears.
11188 	 */
11189 	if (register_pernet_device(&loopback_net_ops))
11190 		goto out;
11191 
11192 	if (register_pernet_device(&default_device_ops))
11193 		goto out;
11194 
11195 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11196 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11197 
11198 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11199 				       NULL, dev_cpu_dead);
11200 	WARN_ON(rc < 0);
11201 	rc = 0;
11202 out:
11203 	return rc;
11204 }
11205 
11206 subsys_initcall(net_dev_init);
11207