1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/bpf.h> 95 #include <linux/bpf_trace.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <net/busy_poll.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dsa.h> 102 #include <net/dst.h> 103 #include <net/dst_metadata.h> 104 #include <net/pkt_sched.h> 105 #include <net/pkt_cls.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/iw_handler.h> 115 #include <asm/current.h> 116 #include <linux/audit.h> 117 #include <linux/dmaengine.h> 118 #include <linux/err.h> 119 #include <linux/ctype.h> 120 #include <linux/if_arp.h> 121 #include <linux/if_vlan.h> 122 #include <linux/ip.h> 123 #include <net/ip.h> 124 #include <net/mpls.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/inetdevice.h> 133 #include <linux/cpu_rmap.h> 134 #include <linux/static_key.h> 135 #include <linux/hashtable.h> 136 #include <linux/vmalloc.h> 137 #include <linux/if_macvlan.h> 138 #include <linux/errqueue.h> 139 #include <linux/hrtimer.h> 140 #include <linux/netfilter_ingress.h> 141 #include <linux/crash_dump.h> 142 #include <linux/sctp.h> 143 #include <net/udp_tunnel.h> 144 #include <linux/net_namespace.h> 145 #include <linux/indirect_call_wrapper.h> 146 #include <net/devlink.h> 147 #include <linux/pm_runtime.h> 148 #include <linux/prandom.h> 149 150 #include "net-sysfs.h" 151 152 #define MAX_GRO_SKBS 8 153 154 /* This should be increased if a protocol with a bigger head is added. */ 155 #define GRO_MAX_HEAD (MAX_HEADER + 128) 156 157 static DEFINE_SPINLOCK(ptype_lock); 158 static DEFINE_SPINLOCK(offload_lock); 159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 160 struct list_head ptype_all __read_mostly; /* Taps */ 161 static struct list_head offload_base __read_mostly; 162 163 static int netif_rx_internal(struct sk_buff *skb); 164 static int call_netdevice_notifiers_info(unsigned long val, 165 struct netdev_notifier_info *info); 166 static int call_netdevice_notifiers_extack(unsigned long val, 167 struct net_device *dev, 168 struct netlink_ext_ack *extack); 169 static struct napi_struct *napi_by_id(unsigned int napi_id); 170 171 /* 172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 173 * semaphore. 174 * 175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 176 * 177 * Writers must hold the rtnl semaphore while they loop through the 178 * dev_base_head list, and hold dev_base_lock for writing when they do the 179 * actual updates. This allows pure readers to access the list even 180 * while a writer is preparing to update it. 181 * 182 * To put it another way, dev_base_lock is held for writing only to 183 * protect against pure readers; the rtnl semaphore provides the 184 * protection against other writers. 185 * 186 * See, for example usages, register_netdevice() and 187 * unregister_netdevice(), which must be called with the rtnl 188 * semaphore held. 189 */ 190 DEFINE_RWLOCK(dev_base_lock); 191 EXPORT_SYMBOL(dev_base_lock); 192 193 static DEFINE_MUTEX(ifalias_mutex); 194 195 /* protects napi_hash addition/deletion and napi_gen_id */ 196 static DEFINE_SPINLOCK(napi_hash_lock); 197 198 static unsigned int napi_gen_id = NR_CPUS; 199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 200 201 static DECLARE_RWSEM(devnet_rename_sem); 202 203 static inline void dev_base_seq_inc(struct net *net) 204 { 205 while (++net->dev_base_seq == 0) 206 ; 207 } 208 209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 210 { 211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 212 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 214 } 215 216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 217 { 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 219 } 220 221 static inline void rps_lock(struct softnet_data *sd) 222 { 223 #ifdef CONFIG_RPS 224 spin_lock(&sd->input_pkt_queue.lock); 225 #endif 226 } 227 228 static inline void rps_unlock(struct softnet_data *sd) 229 { 230 #ifdef CONFIG_RPS 231 spin_unlock(&sd->input_pkt_queue.lock); 232 #endif 233 } 234 235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 236 const char *name) 237 { 238 struct netdev_name_node *name_node; 239 240 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 241 if (!name_node) 242 return NULL; 243 INIT_HLIST_NODE(&name_node->hlist); 244 name_node->dev = dev; 245 name_node->name = name; 246 return name_node; 247 } 248 249 static struct netdev_name_node * 250 netdev_name_node_head_alloc(struct net_device *dev) 251 { 252 struct netdev_name_node *name_node; 253 254 name_node = netdev_name_node_alloc(dev, dev->name); 255 if (!name_node) 256 return NULL; 257 INIT_LIST_HEAD(&name_node->list); 258 return name_node; 259 } 260 261 static void netdev_name_node_free(struct netdev_name_node *name_node) 262 { 263 kfree(name_node); 264 } 265 266 static void netdev_name_node_add(struct net *net, 267 struct netdev_name_node *name_node) 268 { 269 hlist_add_head_rcu(&name_node->hlist, 270 dev_name_hash(net, name_node->name)); 271 } 272 273 static void netdev_name_node_del(struct netdev_name_node *name_node) 274 { 275 hlist_del_rcu(&name_node->hlist); 276 } 277 278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 279 const char *name) 280 { 281 struct hlist_head *head = dev_name_hash(net, name); 282 struct netdev_name_node *name_node; 283 284 hlist_for_each_entry(name_node, head, hlist) 285 if (!strcmp(name_node->name, name)) 286 return name_node; 287 return NULL; 288 } 289 290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 291 const char *name) 292 { 293 struct hlist_head *head = dev_name_hash(net, name); 294 struct netdev_name_node *name_node; 295 296 hlist_for_each_entry_rcu(name_node, head, hlist) 297 if (!strcmp(name_node->name, name)) 298 return name_node; 299 return NULL; 300 } 301 302 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 303 { 304 struct netdev_name_node *name_node; 305 struct net *net = dev_net(dev); 306 307 name_node = netdev_name_node_lookup(net, name); 308 if (name_node) 309 return -EEXIST; 310 name_node = netdev_name_node_alloc(dev, name); 311 if (!name_node) 312 return -ENOMEM; 313 netdev_name_node_add(net, name_node); 314 /* The node that holds dev->name acts as a head of per-device list. */ 315 list_add_tail(&name_node->list, &dev->name_node->list); 316 317 return 0; 318 } 319 EXPORT_SYMBOL(netdev_name_node_alt_create); 320 321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 322 { 323 list_del(&name_node->list); 324 netdev_name_node_del(name_node); 325 kfree(name_node->name); 326 netdev_name_node_free(name_node); 327 } 328 329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 330 { 331 struct netdev_name_node *name_node; 332 struct net *net = dev_net(dev); 333 334 name_node = netdev_name_node_lookup(net, name); 335 if (!name_node) 336 return -ENOENT; 337 /* lookup might have found our primary name or a name belonging 338 * to another device. 339 */ 340 if (name_node == dev->name_node || name_node->dev != dev) 341 return -EINVAL; 342 343 __netdev_name_node_alt_destroy(name_node); 344 345 return 0; 346 } 347 EXPORT_SYMBOL(netdev_name_node_alt_destroy); 348 349 static void netdev_name_node_alt_flush(struct net_device *dev) 350 { 351 struct netdev_name_node *name_node, *tmp; 352 353 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 354 __netdev_name_node_alt_destroy(name_node); 355 } 356 357 /* Device list insertion */ 358 static void list_netdevice(struct net_device *dev) 359 { 360 struct net *net = dev_net(dev); 361 362 ASSERT_RTNL(); 363 364 write_lock_bh(&dev_base_lock); 365 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 366 netdev_name_node_add(net, dev->name_node); 367 hlist_add_head_rcu(&dev->index_hlist, 368 dev_index_hash(net, dev->ifindex)); 369 write_unlock_bh(&dev_base_lock); 370 371 dev_base_seq_inc(net); 372 } 373 374 /* Device list removal 375 * caller must respect a RCU grace period before freeing/reusing dev 376 */ 377 static void unlist_netdevice(struct net_device *dev) 378 { 379 ASSERT_RTNL(); 380 381 /* Unlink dev from the device chain */ 382 write_lock_bh(&dev_base_lock); 383 list_del_rcu(&dev->dev_list); 384 netdev_name_node_del(dev->name_node); 385 hlist_del_rcu(&dev->index_hlist); 386 write_unlock_bh(&dev_base_lock); 387 388 dev_base_seq_inc(dev_net(dev)); 389 } 390 391 /* 392 * Our notifier list 393 */ 394 395 static RAW_NOTIFIER_HEAD(netdev_chain); 396 397 /* 398 * Device drivers call our routines to queue packets here. We empty the 399 * queue in the local softnet handler. 400 */ 401 402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 403 EXPORT_PER_CPU_SYMBOL(softnet_data); 404 405 #ifdef CONFIG_LOCKDEP 406 /* 407 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 408 * according to dev->type 409 */ 410 static const unsigned short netdev_lock_type[] = { 411 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 412 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 413 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 414 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 415 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 416 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 417 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 418 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 419 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 420 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 421 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 422 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 423 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 424 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 425 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 426 427 static const char *const netdev_lock_name[] = { 428 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 429 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 430 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 431 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 432 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 433 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 434 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 435 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 436 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 437 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 438 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 439 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 440 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 441 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 442 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 443 444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 446 447 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 448 { 449 int i; 450 451 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 452 if (netdev_lock_type[i] == dev_type) 453 return i; 454 /* the last key is used by default */ 455 return ARRAY_SIZE(netdev_lock_type) - 1; 456 } 457 458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 459 unsigned short dev_type) 460 { 461 int i; 462 463 i = netdev_lock_pos(dev_type); 464 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 465 netdev_lock_name[i]); 466 } 467 468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 469 { 470 int i; 471 472 i = netdev_lock_pos(dev->type); 473 lockdep_set_class_and_name(&dev->addr_list_lock, 474 &netdev_addr_lock_key[i], 475 netdev_lock_name[i]); 476 } 477 #else 478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 479 unsigned short dev_type) 480 { 481 } 482 483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 484 { 485 } 486 #endif 487 488 /******************************************************************************* 489 * 490 * Protocol management and registration routines 491 * 492 *******************************************************************************/ 493 494 495 /* 496 * Add a protocol ID to the list. Now that the input handler is 497 * smarter we can dispense with all the messy stuff that used to be 498 * here. 499 * 500 * BEWARE!!! Protocol handlers, mangling input packets, 501 * MUST BE last in hash buckets and checking protocol handlers 502 * MUST start from promiscuous ptype_all chain in net_bh. 503 * It is true now, do not change it. 504 * Explanation follows: if protocol handler, mangling packet, will 505 * be the first on list, it is not able to sense, that packet 506 * is cloned and should be copied-on-write, so that it will 507 * change it and subsequent readers will get broken packet. 508 * --ANK (980803) 509 */ 510 511 static inline struct list_head *ptype_head(const struct packet_type *pt) 512 { 513 if (pt->type == htons(ETH_P_ALL)) 514 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 515 else 516 return pt->dev ? &pt->dev->ptype_specific : 517 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 518 } 519 520 /** 521 * dev_add_pack - add packet handler 522 * @pt: packet type declaration 523 * 524 * Add a protocol handler to the networking stack. The passed &packet_type 525 * is linked into kernel lists and may not be freed until it has been 526 * removed from the kernel lists. 527 * 528 * This call does not sleep therefore it can not 529 * guarantee all CPU's that are in middle of receiving packets 530 * will see the new packet type (until the next received packet). 531 */ 532 533 void dev_add_pack(struct packet_type *pt) 534 { 535 struct list_head *head = ptype_head(pt); 536 537 spin_lock(&ptype_lock); 538 list_add_rcu(&pt->list, head); 539 spin_unlock(&ptype_lock); 540 } 541 EXPORT_SYMBOL(dev_add_pack); 542 543 /** 544 * __dev_remove_pack - remove packet handler 545 * @pt: packet type declaration 546 * 547 * Remove a protocol handler that was previously added to the kernel 548 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 549 * from the kernel lists and can be freed or reused once this function 550 * returns. 551 * 552 * The packet type might still be in use by receivers 553 * and must not be freed until after all the CPU's have gone 554 * through a quiescent state. 555 */ 556 void __dev_remove_pack(struct packet_type *pt) 557 { 558 struct list_head *head = ptype_head(pt); 559 struct packet_type *pt1; 560 561 spin_lock(&ptype_lock); 562 563 list_for_each_entry(pt1, head, list) { 564 if (pt == pt1) { 565 list_del_rcu(&pt->list); 566 goto out; 567 } 568 } 569 570 pr_warn("dev_remove_pack: %p not found\n", pt); 571 out: 572 spin_unlock(&ptype_lock); 573 } 574 EXPORT_SYMBOL(__dev_remove_pack); 575 576 /** 577 * dev_remove_pack - remove packet handler 578 * @pt: packet type declaration 579 * 580 * Remove a protocol handler that was previously added to the kernel 581 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 582 * from the kernel lists and can be freed or reused once this function 583 * returns. 584 * 585 * This call sleeps to guarantee that no CPU is looking at the packet 586 * type after return. 587 */ 588 void dev_remove_pack(struct packet_type *pt) 589 { 590 __dev_remove_pack(pt); 591 592 synchronize_net(); 593 } 594 EXPORT_SYMBOL(dev_remove_pack); 595 596 597 /** 598 * dev_add_offload - register offload handlers 599 * @po: protocol offload declaration 600 * 601 * Add protocol offload handlers to the networking stack. The passed 602 * &proto_offload is linked into kernel lists and may not be freed until 603 * it has been removed from the kernel lists. 604 * 605 * This call does not sleep therefore it can not 606 * guarantee all CPU's that are in middle of receiving packets 607 * will see the new offload handlers (until the next received packet). 608 */ 609 void dev_add_offload(struct packet_offload *po) 610 { 611 struct packet_offload *elem; 612 613 spin_lock(&offload_lock); 614 list_for_each_entry(elem, &offload_base, list) { 615 if (po->priority < elem->priority) 616 break; 617 } 618 list_add_rcu(&po->list, elem->list.prev); 619 spin_unlock(&offload_lock); 620 } 621 EXPORT_SYMBOL(dev_add_offload); 622 623 /** 624 * __dev_remove_offload - remove offload handler 625 * @po: packet offload declaration 626 * 627 * Remove a protocol offload handler that was previously added to the 628 * kernel offload handlers by dev_add_offload(). The passed &offload_type 629 * is removed from the kernel lists and can be freed or reused once this 630 * function returns. 631 * 632 * The packet type might still be in use by receivers 633 * and must not be freed until after all the CPU's have gone 634 * through a quiescent state. 635 */ 636 static void __dev_remove_offload(struct packet_offload *po) 637 { 638 struct list_head *head = &offload_base; 639 struct packet_offload *po1; 640 641 spin_lock(&offload_lock); 642 643 list_for_each_entry(po1, head, list) { 644 if (po == po1) { 645 list_del_rcu(&po->list); 646 goto out; 647 } 648 } 649 650 pr_warn("dev_remove_offload: %p not found\n", po); 651 out: 652 spin_unlock(&offload_lock); 653 } 654 655 /** 656 * dev_remove_offload - remove packet offload handler 657 * @po: packet offload declaration 658 * 659 * Remove a packet offload handler that was previously added to the kernel 660 * offload handlers by dev_add_offload(). The passed &offload_type is 661 * removed from the kernel lists and can be freed or reused once this 662 * function returns. 663 * 664 * This call sleeps to guarantee that no CPU is looking at the packet 665 * type after return. 666 */ 667 void dev_remove_offload(struct packet_offload *po) 668 { 669 __dev_remove_offload(po); 670 671 synchronize_net(); 672 } 673 EXPORT_SYMBOL(dev_remove_offload); 674 675 /****************************************************************************** 676 * 677 * Device Boot-time Settings Routines 678 * 679 ******************************************************************************/ 680 681 /* Boot time configuration table */ 682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 683 684 /** 685 * netdev_boot_setup_add - add new setup entry 686 * @name: name of the device 687 * @map: configured settings for the device 688 * 689 * Adds new setup entry to the dev_boot_setup list. The function 690 * returns 0 on error and 1 on success. This is a generic routine to 691 * all netdevices. 692 */ 693 static int netdev_boot_setup_add(char *name, struct ifmap *map) 694 { 695 struct netdev_boot_setup *s; 696 int i; 697 698 s = dev_boot_setup; 699 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 700 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 701 memset(s[i].name, 0, sizeof(s[i].name)); 702 strlcpy(s[i].name, name, IFNAMSIZ); 703 memcpy(&s[i].map, map, sizeof(s[i].map)); 704 break; 705 } 706 } 707 708 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 709 } 710 711 /** 712 * netdev_boot_setup_check - check boot time settings 713 * @dev: the netdevice 714 * 715 * Check boot time settings for the device. 716 * The found settings are set for the device to be used 717 * later in the device probing. 718 * Returns 0 if no settings found, 1 if they are. 719 */ 720 int netdev_boot_setup_check(struct net_device *dev) 721 { 722 struct netdev_boot_setup *s = dev_boot_setup; 723 int i; 724 725 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 726 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 727 !strcmp(dev->name, s[i].name)) { 728 dev->irq = s[i].map.irq; 729 dev->base_addr = s[i].map.base_addr; 730 dev->mem_start = s[i].map.mem_start; 731 dev->mem_end = s[i].map.mem_end; 732 return 1; 733 } 734 } 735 return 0; 736 } 737 EXPORT_SYMBOL(netdev_boot_setup_check); 738 739 740 /** 741 * netdev_boot_base - get address from boot time settings 742 * @prefix: prefix for network device 743 * @unit: id for network device 744 * 745 * Check boot time settings for the base address of device. 746 * The found settings are set for the device to be used 747 * later in the device probing. 748 * Returns 0 if no settings found. 749 */ 750 unsigned long netdev_boot_base(const char *prefix, int unit) 751 { 752 const struct netdev_boot_setup *s = dev_boot_setup; 753 char name[IFNAMSIZ]; 754 int i; 755 756 sprintf(name, "%s%d", prefix, unit); 757 758 /* 759 * If device already registered then return base of 1 760 * to indicate not to probe for this interface 761 */ 762 if (__dev_get_by_name(&init_net, name)) 763 return 1; 764 765 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 766 if (!strcmp(name, s[i].name)) 767 return s[i].map.base_addr; 768 return 0; 769 } 770 771 /* 772 * Saves at boot time configured settings for any netdevice. 773 */ 774 int __init netdev_boot_setup(char *str) 775 { 776 int ints[5]; 777 struct ifmap map; 778 779 str = get_options(str, ARRAY_SIZE(ints), ints); 780 if (!str || !*str) 781 return 0; 782 783 /* Save settings */ 784 memset(&map, 0, sizeof(map)); 785 if (ints[0] > 0) 786 map.irq = ints[1]; 787 if (ints[0] > 1) 788 map.base_addr = ints[2]; 789 if (ints[0] > 2) 790 map.mem_start = ints[3]; 791 if (ints[0] > 3) 792 map.mem_end = ints[4]; 793 794 /* Add new entry to the list */ 795 return netdev_boot_setup_add(str, &map); 796 } 797 798 __setup("netdev=", netdev_boot_setup); 799 800 /******************************************************************************* 801 * 802 * Device Interface Subroutines 803 * 804 *******************************************************************************/ 805 806 /** 807 * dev_get_iflink - get 'iflink' value of a interface 808 * @dev: targeted interface 809 * 810 * Indicates the ifindex the interface is linked to. 811 * Physical interfaces have the same 'ifindex' and 'iflink' values. 812 */ 813 814 int dev_get_iflink(const struct net_device *dev) 815 { 816 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 817 return dev->netdev_ops->ndo_get_iflink(dev); 818 819 return dev->ifindex; 820 } 821 EXPORT_SYMBOL(dev_get_iflink); 822 823 /** 824 * dev_fill_metadata_dst - Retrieve tunnel egress information. 825 * @dev: targeted interface 826 * @skb: The packet. 827 * 828 * For better visibility of tunnel traffic OVS needs to retrieve 829 * egress tunnel information for a packet. Following API allows 830 * user to get this info. 831 */ 832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 833 { 834 struct ip_tunnel_info *info; 835 836 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 837 return -EINVAL; 838 839 info = skb_tunnel_info_unclone(skb); 840 if (!info) 841 return -ENOMEM; 842 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 843 return -EINVAL; 844 845 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 846 } 847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 848 849 /** 850 * __dev_get_by_name - find a device by its name 851 * @net: the applicable net namespace 852 * @name: name to find 853 * 854 * Find an interface by name. Must be called under RTNL semaphore 855 * or @dev_base_lock. If the name is found a pointer to the device 856 * is returned. If the name is not found then %NULL is returned. The 857 * reference counters are not incremented so the caller must be 858 * careful with locks. 859 */ 860 861 struct net_device *__dev_get_by_name(struct net *net, const char *name) 862 { 863 struct netdev_name_node *node_name; 864 865 node_name = netdev_name_node_lookup(net, name); 866 return node_name ? node_name->dev : NULL; 867 } 868 EXPORT_SYMBOL(__dev_get_by_name); 869 870 /** 871 * dev_get_by_name_rcu - find a device by its name 872 * @net: the applicable net namespace 873 * @name: name to find 874 * 875 * Find an interface by name. 876 * If the name is found a pointer to the device is returned. 877 * If the name is not found then %NULL is returned. 878 * The reference counters are not incremented so the caller must be 879 * careful with locks. The caller must hold RCU lock. 880 */ 881 882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 883 { 884 struct netdev_name_node *node_name; 885 886 node_name = netdev_name_node_lookup_rcu(net, name); 887 return node_name ? node_name->dev : NULL; 888 } 889 EXPORT_SYMBOL(dev_get_by_name_rcu); 890 891 /** 892 * dev_get_by_name - find a device by its name 893 * @net: the applicable net namespace 894 * @name: name to find 895 * 896 * Find an interface by name. This can be called from any 897 * context and does its own locking. The returned handle has 898 * the usage count incremented and the caller must use dev_put() to 899 * release it when it is no longer needed. %NULL is returned if no 900 * matching device is found. 901 */ 902 903 struct net_device *dev_get_by_name(struct net *net, const char *name) 904 { 905 struct net_device *dev; 906 907 rcu_read_lock(); 908 dev = dev_get_by_name_rcu(net, name); 909 if (dev) 910 dev_hold(dev); 911 rcu_read_unlock(); 912 return dev; 913 } 914 EXPORT_SYMBOL(dev_get_by_name); 915 916 /** 917 * __dev_get_by_index - find a device by its ifindex 918 * @net: the applicable net namespace 919 * @ifindex: index of device 920 * 921 * Search for an interface by index. Returns %NULL if the device 922 * is not found or a pointer to the device. The device has not 923 * had its reference counter increased so the caller must be careful 924 * about locking. The caller must hold either the RTNL semaphore 925 * or @dev_base_lock. 926 */ 927 928 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 929 { 930 struct net_device *dev; 931 struct hlist_head *head = dev_index_hash(net, ifindex); 932 933 hlist_for_each_entry(dev, head, index_hlist) 934 if (dev->ifindex == ifindex) 935 return dev; 936 937 return NULL; 938 } 939 EXPORT_SYMBOL(__dev_get_by_index); 940 941 /** 942 * dev_get_by_index_rcu - find a device by its ifindex 943 * @net: the applicable net namespace 944 * @ifindex: index of device 945 * 946 * Search for an interface by index. Returns %NULL if the device 947 * is not found or a pointer to the device. The device has not 948 * had its reference counter increased so the caller must be careful 949 * about locking. The caller must hold RCU lock. 950 */ 951 952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 953 { 954 struct net_device *dev; 955 struct hlist_head *head = dev_index_hash(net, ifindex); 956 957 hlist_for_each_entry_rcu(dev, head, index_hlist) 958 if (dev->ifindex == ifindex) 959 return dev; 960 961 return NULL; 962 } 963 EXPORT_SYMBOL(dev_get_by_index_rcu); 964 965 966 /** 967 * dev_get_by_index - find a device by its ifindex 968 * @net: the applicable net namespace 969 * @ifindex: index of device 970 * 971 * Search for an interface by index. Returns NULL if the device 972 * is not found or a pointer to the device. The device returned has 973 * had a reference added and the pointer is safe until the user calls 974 * dev_put to indicate they have finished with it. 975 */ 976 977 struct net_device *dev_get_by_index(struct net *net, int ifindex) 978 { 979 struct net_device *dev; 980 981 rcu_read_lock(); 982 dev = dev_get_by_index_rcu(net, ifindex); 983 if (dev) 984 dev_hold(dev); 985 rcu_read_unlock(); 986 return dev; 987 } 988 EXPORT_SYMBOL(dev_get_by_index); 989 990 /** 991 * dev_get_by_napi_id - find a device by napi_id 992 * @napi_id: ID of the NAPI struct 993 * 994 * Search for an interface by NAPI ID. Returns %NULL if the device 995 * is not found or a pointer to the device. The device has not had 996 * its reference counter increased so the caller must be careful 997 * about locking. The caller must hold RCU lock. 998 */ 999 1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1001 { 1002 struct napi_struct *napi; 1003 1004 WARN_ON_ONCE(!rcu_read_lock_held()); 1005 1006 if (napi_id < MIN_NAPI_ID) 1007 return NULL; 1008 1009 napi = napi_by_id(napi_id); 1010 1011 return napi ? napi->dev : NULL; 1012 } 1013 EXPORT_SYMBOL(dev_get_by_napi_id); 1014 1015 /** 1016 * netdev_get_name - get a netdevice name, knowing its ifindex. 1017 * @net: network namespace 1018 * @name: a pointer to the buffer where the name will be stored. 1019 * @ifindex: the ifindex of the interface to get the name from. 1020 */ 1021 int netdev_get_name(struct net *net, char *name, int ifindex) 1022 { 1023 struct net_device *dev; 1024 int ret; 1025 1026 down_read(&devnet_rename_sem); 1027 rcu_read_lock(); 1028 1029 dev = dev_get_by_index_rcu(net, ifindex); 1030 if (!dev) { 1031 ret = -ENODEV; 1032 goto out; 1033 } 1034 1035 strcpy(name, dev->name); 1036 1037 ret = 0; 1038 out: 1039 rcu_read_unlock(); 1040 up_read(&devnet_rename_sem); 1041 return ret; 1042 } 1043 1044 /** 1045 * dev_getbyhwaddr_rcu - find a device by its hardware address 1046 * @net: the applicable net namespace 1047 * @type: media type of device 1048 * @ha: hardware address 1049 * 1050 * Search for an interface by MAC address. Returns NULL if the device 1051 * is not found or a pointer to the device. 1052 * The caller must hold RCU or RTNL. 1053 * The returned device has not had its ref count increased 1054 * and the caller must therefore be careful about locking 1055 * 1056 */ 1057 1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1059 const char *ha) 1060 { 1061 struct net_device *dev; 1062 1063 for_each_netdev_rcu(net, dev) 1064 if (dev->type == type && 1065 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1066 return dev; 1067 1068 return NULL; 1069 } 1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1071 1072 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 1073 { 1074 struct net_device *dev; 1075 1076 ASSERT_RTNL(); 1077 for_each_netdev(net, dev) 1078 if (dev->type == type) 1079 return dev; 1080 1081 return NULL; 1082 } 1083 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 1084 1085 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1086 { 1087 struct net_device *dev, *ret = NULL; 1088 1089 rcu_read_lock(); 1090 for_each_netdev_rcu(net, dev) 1091 if (dev->type == type) { 1092 dev_hold(dev); 1093 ret = dev; 1094 break; 1095 } 1096 rcu_read_unlock(); 1097 return ret; 1098 } 1099 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1100 1101 /** 1102 * __dev_get_by_flags - find any device with given flags 1103 * @net: the applicable net namespace 1104 * @if_flags: IFF_* values 1105 * @mask: bitmask of bits in if_flags to check 1106 * 1107 * Search for any interface with the given flags. Returns NULL if a device 1108 * is not found or a pointer to the device. Must be called inside 1109 * rtnl_lock(), and result refcount is unchanged. 1110 */ 1111 1112 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1113 unsigned short mask) 1114 { 1115 struct net_device *dev, *ret; 1116 1117 ASSERT_RTNL(); 1118 1119 ret = NULL; 1120 for_each_netdev(net, dev) { 1121 if (((dev->flags ^ if_flags) & mask) == 0) { 1122 ret = dev; 1123 break; 1124 } 1125 } 1126 return ret; 1127 } 1128 EXPORT_SYMBOL(__dev_get_by_flags); 1129 1130 /** 1131 * dev_valid_name - check if name is okay for network device 1132 * @name: name string 1133 * 1134 * Network device names need to be valid file names to 1135 * allow sysfs to work. We also disallow any kind of 1136 * whitespace. 1137 */ 1138 bool dev_valid_name(const char *name) 1139 { 1140 if (*name == '\0') 1141 return false; 1142 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1143 return false; 1144 if (!strcmp(name, ".") || !strcmp(name, "..")) 1145 return false; 1146 1147 while (*name) { 1148 if (*name == '/' || *name == ':' || isspace(*name)) 1149 return false; 1150 name++; 1151 } 1152 return true; 1153 } 1154 EXPORT_SYMBOL(dev_valid_name); 1155 1156 /** 1157 * __dev_alloc_name - allocate a name for a device 1158 * @net: network namespace to allocate the device name in 1159 * @name: name format string 1160 * @buf: scratch buffer and result name string 1161 * 1162 * Passed a format string - eg "lt%d" it will try and find a suitable 1163 * id. It scans list of devices to build up a free map, then chooses 1164 * the first empty slot. The caller must hold the dev_base or rtnl lock 1165 * while allocating the name and adding the device in order to avoid 1166 * duplicates. 1167 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1168 * Returns the number of the unit assigned or a negative errno code. 1169 */ 1170 1171 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1172 { 1173 int i = 0; 1174 const char *p; 1175 const int max_netdevices = 8*PAGE_SIZE; 1176 unsigned long *inuse; 1177 struct net_device *d; 1178 1179 if (!dev_valid_name(name)) 1180 return -EINVAL; 1181 1182 p = strchr(name, '%'); 1183 if (p) { 1184 /* 1185 * Verify the string as this thing may have come from 1186 * the user. There must be either one "%d" and no other "%" 1187 * characters. 1188 */ 1189 if (p[1] != 'd' || strchr(p + 2, '%')) 1190 return -EINVAL; 1191 1192 /* Use one page as a bit array of possible slots */ 1193 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1194 if (!inuse) 1195 return -ENOMEM; 1196 1197 for_each_netdev(net, d) { 1198 if (!sscanf(d->name, name, &i)) 1199 continue; 1200 if (i < 0 || i >= max_netdevices) 1201 continue; 1202 1203 /* avoid cases where sscanf is not exact inverse of printf */ 1204 snprintf(buf, IFNAMSIZ, name, i); 1205 if (!strncmp(buf, d->name, IFNAMSIZ)) 1206 set_bit(i, inuse); 1207 } 1208 1209 i = find_first_zero_bit(inuse, max_netdevices); 1210 free_page((unsigned long) inuse); 1211 } 1212 1213 snprintf(buf, IFNAMSIZ, name, i); 1214 if (!__dev_get_by_name(net, buf)) 1215 return i; 1216 1217 /* It is possible to run out of possible slots 1218 * when the name is long and there isn't enough space left 1219 * for the digits, or if all bits are used. 1220 */ 1221 return -ENFILE; 1222 } 1223 1224 static int dev_alloc_name_ns(struct net *net, 1225 struct net_device *dev, 1226 const char *name) 1227 { 1228 char buf[IFNAMSIZ]; 1229 int ret; 1230 1231 BUG_ON(!net); 1232 ret = __dev_alloc_name(net, name, buf); 1233 if (ret >= 0) 1234 strlcpy(dev->name, buf, IFNAMSIZ); 1235 return ret; 1236 } 1237 1238 /** 1239 * dev_alloc_name - allocate a name for a device 1240 * @dev: device 1241 * @name: name format string 1242 * 1243 * Passed a format string - eg "lt%d" it will try and find a suitable 1244 * id. It scans list of devices to build up a free map, then chooses 1245 * the first empty slot. The caller must hold the dev_base or rtnl lock 1246 * while allocating the name and adding the device in order to avoid 1247 * duplicates. 1248 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1249 * Returns the number of the unit assigned or a negative errno code. 1250 */ 1251 1252 int dev_alloc_name(struct net_device *dev, const char *name) 1253 { 1254 return dev_alloc_name_ns(dev_net(dev), dev, name); 1255 } 1256 EXPORT_SYMBOL(dev_alloc_name); 1257 1258 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1259 const char *name) 1260 { 1261 BUG_ON(!net); 1262 1263 if (!dev_valid_name(name)) 1264 return -EINVAL; 1265 1266 if (strchr(name, '%')) 1267 return dev_alloc_name_ns(net, dev, name); 1268 else if (__dev_get_by_name(net, name)) 1269 return -EEXIST; 1270 else if (dev->name != name) 1271 strlcpy(dev->name, name, IFNAMSIZ); 1272 1273 return 0; 1274 } 1275 1276 /** 1277 * dev_change_name - change name of a device 1278 * @dev: device 1279 * @newname: name (or format string) must be at least IFNAMSIZ 1280 * 1281 * Change name of a device, can pass format strings "eth%d". 1282 * for wildcarding. 1283 */ 1284 int dev_change_name(struct net_device *dev, const char *newname) 1285 { 1286 unsigned char old_assign_type; 1287 char oldname[IFNAMSIZ]; 1288 int err = 0; 1289 int ret; 1290 struct net *net; 1291 1292 ASSERT_RTNL(); 1293 BUG_ON(!dev_net(dev)); 1294 1295 net = dev_net(dev); 1296 1297 /* Some auto-enslaved devices e.g. failover slaves are 1298 * special, as userspace might rename the device after 1299 * the interface had been brought up and running since 1300 * the point kernel initiated auto-enslavement. Allow 1301 * live name change even when these slave devices are 1302 * up and running. 1303 * 1304 * Typically, users of these auto-enslaving devices 1305 * don't actually care about slave name change, as 1306 * they are supposed to operate on master interface 1307 * directly. 1308 */ 1309 if (dev->flags & IFF_UP && 1310 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1311 return -EBUSY; 1312 1313 down_write(&devnet_rename_sem); 1314 1315 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1316 up_write(&devnet_rename_sem); 1317 return 0; 1318 } 1319 1320 memcpy(oldname, dev->name, IFNAMSIZ); 1321 1322 err = dev_get_valid_name(net, dev, newname); 1323 if (err < 0) { 1324 up_write(&devnet_rename_sem); 1325 return err; 1326 } 1327 1328 if (oldname[0] && !strchr(oldname, '%')) 1329 netdev_info(dev, "renamed from %s\n", oldname); 1330 1331 old_assign_type = dev->name_assign_type; 1332 dev->name_assign_type = NET_NAME_RENAMED; 1333 1334 rollback: 1335 ret = device_rename(&dev->dev, dev->name); 1336 if (ret) { 1337 memcpy(dev->name, oldname, IFNAMSIZ); 1338 dev->name_assign_type = old_assign_type; 1339 up_write(&devnet_rename_sem); 1340 return ret; 1341 } 1342 1343 up_write(&devnet_rename_sem); 1344 1345 netdev_adjacent_rename_links(dev, oldname); 1346 1347 write_lock_bh(&dev_base_lock); 1348 netdev_name_node_del(dev->name_node); 1349 write_unlock_bh(&dev_base_lock); 1350 1351 synchronize_rcu(); 1352 1353 write_lock_bh(&dev_base_lock); 1354 netdev_name_node_add(net, dev->name_node); 1355 write_unlock_bh(&dev_base_lock); 1356 1357 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1358 ret = notifier_to_errno(ret); 1359 1360 if (ret) { 1361 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1362 if (err >= 0) { 1363 err = ret; 1364 down_write(&devnet_rename_sem); 1365 memcpy(dev->name, oldname, IFNAMSIZ); 1366 memcpy(oldname, newname, IFNAMSIZ); 1367 dev->name_assign_type = old_assign_type; 1368 old_assign_type = NET_NAME_RENAMED; 1369 goto rollback; 1370 } else { 1371 pr_err("%s: name change rollback failed: %d\n", 1372 dev->name, ret); 1373 } 1374 } 1375 1376 return err; 1377 } 1378 1379 /** 1380 * dev_set_alias - change ifalias of a device 1381 * @dev: device 1382 * @alias: name up to IFALIASZ 1383 * @len: limit of bytes to copy from info 1384 * 1385 * Set ifalias for a device, 1386 */ 1387 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1388 { 1389 struct dev_ifalias *new_alias = NULL; 1390 1391 if (len >= IFALIASZ) 1392 return -EINVAL; 1393 1394 if (len) { 1395 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1396 if (!new_alias) 1397 return -ENOMEM; 1398 1399 memcpy(new_alias->ifalias, alias, len); 1400 new_alias->ifalias[len] = 0; 1401 } 1402 1403 mutex_lock(&ifalias_mutex); 1404 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1405 mutex_is_locked(&ifalias_mutex)); 1406 mutex_unlock(&ifalias_mutex); 1407 1408 if (new_alias) 1409 kfree_rcu(new_alias, rcuhead); 1410 1411 return len; 1412 } 1413 EXPORT_SYMBOL(dev_set_alias); 1414 1415 /** 1416 * dev_get_alias - get ifalias of a device 1417 * @dev: device 1418 * @name: buffer to store name of ifalias 1419 * @len: size of buffer 1420 * 1421 * get ifalias for a device. Caller must make sure dev cannot go 1422 * away, e.g. rcu read lock or own a reference count to device. 1423 */ 1424 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1425 { 1426 const struct dev_ifalias *alias; 1427 int ret = 0; 1428 1429 rcu_read_lock(); 1430 alias = rcu_dereference(dev->ifalias); 1431 if (alias) 1432 ret = snprintf(name, len, "%s", alias->ifalias); 1433 rcu_read_unlock(); 1434 1435 return ret; 1436 } 1437 1438 /** 1439 * netdev_features_change - device changes features 1440 * @dev: device to cause notification 1441 * 1442 * Called to indicate a device has changed features. 1443 */ 1444 void netdev_features_change(struct net_device *dev) 1445 { 1446 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1447 } 1448 EXPORT_SYMBOL(netdev_features_change); 1449 1450 /** 1451 * netdev_state_change - device changes state 1452 * @dev: device to cause notification 1453 * 1454 * Called to indicate a device has changed state. This function calls 1455 * the notifier chains for netdev_chain and sends a NEWLINK message 1456 * to the routing socket. 1457 */ 1458 void netdev_state_change(struct net_device *dev) 1459 { 1460 if (dev->flags & IFF_UP) { 1461 struct netdev_notifier_change_info change_info = { 1462 .info.dev = dev, 1463 }; 1464 1465 call_netdevice_notifiers_info(NETDEV_CHANGE, 1466 &change_info.info); 1467 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1468 } 1469 } 1470 EXPORT_SYMBOL(netdev_state_change); 1471 1472 /** 1473 * netdev_notify_peers - notify network peers about existence of @dev 1474 * @dev: network device 1475 * 1476 * Generate traffic such that interested network peers are aware of 1477 * @dev, such as by generating a gratuitous ARP. This may be used when 1478 * a device wants to inform the rest of the network about some sort of 1479 * reconfiguration such as a failover event or virtual machine 1480 * migration. 1481 */ 1482 void netdev_notify_peers(struct net_device *dev) 1483 { 1484 rtnl_lock(); 1485 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1486 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1487 rtnl_unlock(); 1488 } 1489 EXPORT_SYMBOL(netdev_notify_peers); 1490 1491 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1492 { 1493 const struct net_device_ops *ops = dev->netdev_ops; 1494 int ret; 1495 1496 ASSERT_RTNL(); 1497 1498 if (!netif_device_present(dev)) { 1499 /* may be detached because parent is runtime-suspended */ 1500 if (dev->dev.parent) 1501 pm_runtime_resume(dev->dev.parent); 1502 if (!netif_device_present(dev)) 1503 return -ENODEV; 1504 } 1505 1506 /* Block netpoll from trying to do any rx path servicing. 1507 * If we don't do this there is a chance ndo_poll_controller 1508 * or ndo_poll may be running while we open the device 1509 */ 1510 netpoll_poll_disable(dev); 1511 1512 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1513 ret = notifier_to_errno(ret); 1514 if (ret) 1515 return ret; 1516 1517 set_bit(__LINK_STATE_START, &dev->state); 1518 1519 if (ops->ndo_validate_addr) 1520 ret = ops->ndo_validate_addr(dev); 1521 1522 if (!ret && ops->ndo_open) 1523 ret = ops->ndo_open(dev); 1524 1525 netpoll_poll_enable(dev); 1526 1527 if (ret) 1528 clear_bit(__LINK_STATE_START, &dev->state); 1529 else { 1530 dev->flags |= IFF_UP; 1531 dev_set_rx_mode(dev); 1532 dev_activate(dev); 1533 add_device_randomness(dev->dev_addr, dev->addr_len); 1534 } 1535 1536 return ret; 1537 } 1538 1539 /** 1540 * dev_open - prepare an interface for use. 1541 * @dev: device to open 1542 * @extack: netlink extended ack 1543 * 1544 * Takes a device from down to up state. The device's private open 1545 * function is invoked and then the multicast lists are loaded. Finally 1546 * the device is moved into the up state and a %NETDEV_UP message is 1547 * sent to the netdev notifier chain. 1548 * 1549 * Calling this function on an active interface is a nop. On a failure 1550 * a negative errno code is returned. 1551 */ 1552 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1553 { 1554 int ret; 1555 1556 if (dev->flags & IFF_UP) 1557 return 0; 1558 1559 ret = __dev_open(dev, extack); 1560 if (ret < 0) 1561 return ret; 1562 1563 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1564 call_netdevice_notifiers(NETDEV_UP, dev); 1565 1566 return ret; 1567 } 1568 EXPORT_SYMBOL(dev_open); 1569 1570 static void __dev_close_many(struct list_head *head) 1571 { 1572 struct net_device *dev; 1573 1574 ASSERT_RTNL(); 1575 might_sleep(); 1576 1577 list_for_each_entry(dev, head, close_list) { 1578 /* Temporarily disable netpoll until the interface is down */ 1579 netpoll_poll_disable(dev); 1580 1581 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1582 1583 clear_bit(__LINK_STATE_START, &dev->state); 1584 1585 /* Synchronize to scheduled poll. We cannot touch poll list, it 1586 * can be even on different cpu. So just clear netif_running(). 1587 * 1588 * dev->stop() will invoke napi_disable() on all of it's 1589 * napi_struct instances on this device. 1590 */ 1591 smp_mb__after_atomic(); /* Commit netif_running(). */ 1592 } 1593 1594 dev_deactivate_many(head); 1595 1596 list_for_each_entry(dev, head, close_list) { 1597 const struct net_device_ops *ops = dev->netdev_ops; 1598 1599 /* 1600 * Call the device specific close. This cannot fail. 1601 * Only if device is UP 1602 * 1603 * We allow it to be called even after a DETACH hot-plug 1604 * event. 1605 */ 1606 if (ops->ndo_stop) 1607 ops->ndo_stop(dev); 1608 1609 dev->flags &= ~IFF_UP; 1610 netpoll_poll_enable(dev); 1611 } 1612 } 1613 1614 static void __dev_close(struct net_device *dev) 1615 { 1616 LIST_HEAD(single); 1617 1618 list_add(&dev->close_list, &single); 1619 __dev_close_many(&single); 1620 list_del(&single); 1621 } 1622 1623 void dev_close_many(struct list_head *head, bool unlink) 1624 { 1625 struct net_device *dev, *tmp; 1626 1627 /* Remove the devices that don't need to be closed */ 1628 list_for_each_entry_safe(dev, tmp, head, close_list) 1629 if (!(dev->flags & IFF_UP)) 1630 list_del_init(&dev->close_list); 1631 1632 __dev_close_many(head); 1633 1634 list_for_each_entry_safe(dev, tmp, head, close_list) { 1635 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1636 call_netdevice_notifiers(NETDEV_DOWN, dev); 1637 if (unlink) 1638 list_del_init(&dev->close_list); 1639 } 1640 } 1641 EXPORT_SYMBOL(dev_close_many); 1642 1643 /** 1644 * dev_close - shutdown an interface. 1645 * @dev: device to shutdown 1646 * 1647 * This function moves an active device into down state. A 1648 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1649 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1650 * chain. 1651 */ 1652 void dev_close(struct net_device *dev) 1653 { 1654 if (dev->flags & IFF_UP) { 1655 LIST_HEAD(single); 1656 1657 list_add(&dev->close_list, &single); 1658 dev_close_many(&single, true); 1659 list_del(&single); 1660 } 1661 } 1662 EXPORT_SYMBOL(dev_close); 1663 1664 1665 /** 1666 * dev_disable_lro - disable Large Receive Offload on a device 1667 * @dev: device 1668 * 1669 * Disable Large Receive Offload (LRO) on a net device. Must be 1670 * called under RTNL. This is needed if received packets may be 1671 * forwarded to another interface. 1672 */ 1673 void dev_disable_lro(struct net_device *dev) 1674 { 1675 struct net_device *lower_dev; 1676 struct list_head *iter; 1677 1678 dev->wanted_features &= ~NETIF_F_LRO; 1679 netdev_update_features(dev); 1680 1681 if (unlikely(dev->features & NETIF_F_LRO)) 1682 netdev_WARN(dev, "failed to disable LRO!\n"); 1683 1684 netdev_for_each_lower_dev(dev, lower_dev, iter) 1685 dev_disable_lro(lower_dev); 1686 } 1687 EXPORT_SYMBOL(dev_disable_lro); 1688 1689 /** 1690 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1691 * @dev: device 1692 * 1693 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1694 * called under RTNL. This is needed if Generic XDP is installed on 1695 * the device. 1696 */ 1697 static void dev_disable_gro_hw(struct net_device *dev) 1698 { 1699 dev->wanted_features &= ~NETIF_F_GRO_HW; 1700 netdev_update_features(dev); 1701 1702 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1703 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1704 } 1705 1706 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1707 { 1708 #define N(val) \ 1709 case NETDEV_##val: \ 1710 return "NETDEV_" __stringify(val); 1711 switch (cmd) { 1712 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1713 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1714 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1715 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1716 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1717 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1718 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1719 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1720 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1721 N(PRE_CHANGEADDR) 1722 } 1723 #undef N 1724 return "UNKNOWN_NETDEV_EVENT"; 1725 } 1726 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1727 1728 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1729 struct net_device *dev) 1730 { 1731 struct netdev_notifier_info info = { 1732 .dev = dev, 1733 }; 1734 1735 return nb->notifier_call(nb, val, &info); 1736 } 1737 1738 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1739 struct net_device *dev) 1740 { 1741 int err; 1742 1743 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1744 err = notifier_to_errno(err); 1745 if (err) 1746 return err; 1747 1748 if (!(dev->flags & IFF_UP)) 1749 return 0; 1750 1751 call_netdevice_notifier(nb, NETDEV_UP, dev); 1752 return 0; 1753 } 1754 1755 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1756 struct net_device *dev) 1757 { 1758 if (dev->flags & IFF_UP) { 1759 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1760 dev); 1761 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1762 } 1763 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1764 } 1765 1766 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1767 struct net *net) 1768 { 1769 struct net_device *dev; 1770 int err; 1771 1772 for_each_netdev(net, dev) { 1773 err = call_netdevice_register_notifiers(nb, dev); 1774 if (err) 1775 goto rollback; 1776 } 1777 return 0; 1778 1779 rollback: 1780 for_each_netdev_continue_reverse(net, dev) 1781 call_netdevice_unregister_notifiers(nb, dev); 1782 return err; 1783 } 1784 1785 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1786 struct net *net) 1787 { 1788 struct net_device *dev; 1789 1790 for_each_netdev(net, dev) 1791 call_netdevice_unregister_notifiers(nb, dev); 1792 } 1793 1794 static int dev_boot_phase = 1; 1795 1796 /** 1797 * register_netdevice_notifier - register a network notifier block 1798 * @nb: notifier 1799 * 1800 * Register a notifier to be called when network device events occur. 1801 * The notifier passed is linked into the kernel structures and must 1802 * not be reused until it has been unregistered. A negative errno code 1803 * is returned on a failure. 1804 * 1805 * When registered all registration and up events are replayed 1806 * to the new notifier to allow device to have a race free 1807 * view of the network device list. 1808 */ 1809 1810 int register_netdevice_notifier(struct notifier_block *nb) 1811 { 1812 struct net *net; 1813 int err; 1814 1815 /* Close race with setup_net() and cleanup_net() */ 1816 down_write(&pernet_ops_rwsem); 1817 rtnl_lock(); 1818 err = raw_notifier_chain_register(&netdev_chain, nb); 1819 if (err) 1820 goto unlock; 1821 if (dev_boot_phase) 1822 goto unlock; 1823 for_each_net(net) { 1824 err = call_netdevice_register_net_notifiers(nb, net); 1825 if (err) 1826 goto rollback; 1827 } 1828 1829 unlock: 1830 rtnl_unlock(); 1831 up_write(&pernet_ops_rwsem); 1832 return err; 1833 1834 rollback: 1835 for_each_net_continue_reverse(net) 1836 call_netdevice_unregister_net_notifiers(nb, net); 1837 1838 raw_notifier_chain_unregister(&netdev_chain, nb); 1839 goto unlock; 1840 } 1841 EXPORT_SYMBOL(register_netdevice_notifier); 1842 1843 /** 1844 * unregister_netdevice_notifier - unregister a network notifier block 1845 * @nb: notifier 1846 * 1847 * Unregister a notifier previously registered by 1848 * register_netdevice_notifier(). The notifier is unlinked into the 1849 * kernel structures and may then be reused. A negative errno code 1850 * is returned on a failure. 1851 * 1852 * After unregistering unregister and down device events are synthesized 1853 * for all devices on the device list to the removed notifier to remove 1854 * the need for special case cleanup code. 1855 */ 1856 1857 int unregister_netdevice_notifier(struct notifier_block *nb) 1858 { 1859 struct net *net; 1860 int err; 1861 1862 /* Close race with setup_net() and cleanup_net() */ 1863 down_write(&pernet_ops_rwsem); 1864 rtnl_lock(); 1865 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1866 if (err) 1867 goto unlock; 1868 1869 for_each_net(net) 1870 call_netdevice_unregister_net_notifiers(nb, net); 1871 1872 unlock: 1873 rtnl_unlock(); 1874 up_write(&pernet_ops_rwsem); 1875 return err; 1876 } 1877 EXPORT_SYMBOL(unregister_netdevice_notifier); 1878 1879 static int __register_netdevice_notifier_net(struct net *net, 1880 struct notifier_block *nb, 1881 bool ignore_call_fail) 1882 { 1883 int err; 1884 1885 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1886 if (err) 1887 return err; 1888 if (dev_boot_phase) 1889 return 0; 1890 1891 err = call_netdevice_register_net_notifiers(nb, net); 1892 if (err && !ignore_call_fail) 1893 goto chain_unregister; 1894 1895 return 0; 1896 1897 chain_unregister: 1898 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1899 return err; 1900 } 1901 1902 static int __unregister_netdevice_notifier_net(struct net *net, 1903 struct notifier_block *nb) 1904 { 1905 int err; 1906 1907 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1908 if (err) 1909 return err; 1910 1911 call_netdevice_unregister_net_notifiers(nb, net); 1912 return 0; 1913 } 1914 1915 /** 1916 * register_netdevice_notifier_net - register a per-netns network notifier block 1917 * @net: network namespace 1918 * @nb: notifier 1919 * 1920 * Register a notifier to be called when network device events occur. 1921 * The notifier passed is linked into the kernel structures and must 1922 * not be reused until it has been unregistered. A negative errno code 1923 * is returned on a failure. 1924 * 1925 * When registered all registration and up events are replayed 1926 * to the new notifier to allow device to have a race free 1927 * view of the network device list. 1928 */ 1929 1930 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1931 { 1932 int err; 1933 1934 rtnl_lock(); 1935 err = __register_netdevice_notifier_net(net, nb, false); 1936 rtnl_unlock(); 1937 return err; 1938 } 1939 EXPORT_SYMBOL(register_netdevice_notifier_net); 1940 1941 /** 1942 * unregister_netdevice_notifier_net - unregister a per-netns 1943 * network notifier block 1944 * @net: network namespace 1945 * @nb: notifier 1946 * 1947 * Unregister a notifier previously registered by 1948 * register_netdevice_notifier(). The notifier is unlinked into the 1949 * kernel structures and may then be reused. A negative errno code 1950 * is returned on a failure. 1951 * 1952 * After unregistering unregister and down device events are synthesized 1953 * for all devices on the device list to the removed notifier to remove 1954 * the need for special case cleanup code. 1955 */ 1956 1957 int unregister_netdevice_notifier_net(struct net *net, 1958 struct notifier_block *nb) 1959 { 1960 int err; 1961 1962 rtnl_lock(); 1963 err = __unregister_netdevice_notifier_net(net, nb); 1964 rtnl_unlock(); 1965 return err; 1966 } 1967 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1968 1969 int register_netdevice_notifier_dev_net(struct net_device *dev, 1970 struct notifier_block *nb, 1971 struct netdev_net_notifier *nn) 1972 { 1973 int err; 1974 1975 rtnl_lock(); 1976 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1977 if (!err) { 1978 nn->nb = nb; 1979 list_add(&nn->list, &dev->net_notifier_list); 1980 } 1981 rtnl_unlock(); 1982 return err; 1983 } 1984 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1985 1986 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1987 struct notifier_block *nb, 1988 struct netdev_net_notifier *nn) 1989 { 1990 int err; 1991 1992 rtnl_lock(); 1993 list_del(&nn->list); 1994 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1995 rtnl_unlock(); 1996 return err; 1997 } 1998 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1999 2000 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2001 struct net *net) 2002 { 2003 struct netdev_net_notifier *nn; 2004 2005 list_for_each_entry(nn, &dev->net_notifier_list, list) { 2006 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 2007 __register_netdevice_notifier_net(net, nn->nb, true); 2008 } 2009 } 2010 2011 /** 2012 * call_netdevice_notifiers_info - call all network notifier blocks 2013 * @val: value passed unmodified to notifier function 2014 * @info: notifier information data 2015 * 2016 * Call all network notifier blocks. Parameters and return value 2017 * are as for raw_notifier_call_chain(). 2018 */ 2019 2020 static int call_netdevice_notifiers_info(unsigned long val, 2021 struct netdev_notifier_info *info) 2022 { 2023 struct net *net = dev_net(info->dev); 2024 int ret; 2025 2026 ASSERT_RTNL(); 2027 2028 /* Run per-netns notifier block chain first, then run the global one. 2029 * Hopefully, one day, the global one is going to be removed after 2030 * all notifier block registrators get converted to be per-netns. 2031 */ 2032 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2033 if (ret & NOTIFY_STOP_MASK) 2034 return ret; 2035 return raw_notifier_call_chain(&netdev_chain, val, info); 2036 } 2037 2038 static int call_netdevice_notifiers_extack(unsigned long val, 2039 struct net_device *dev, 2040 struct netlink_ext_ack *extack) 2041 { 2042 struct netdev_notifier_info info = { 2043 .dev = dev, 2044 .extack = extack, 2045 }; 2046 2047 return call_netdevice_notifiers_info(val, &info); 2048 } 2049 2050 /** 2051 * call_netdevice_notifiers - call all network notifier blocks 2052 * @val: value passed unmodified to notifier function 2053 * @dev: net_device pointer passed unmodified to notifier function 2054 * 2055 * Call all network notifier blocks. Parameters and return value 2056 * are as for raw_notifier_call_chain(). 2057 */ 2058 2059 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2060 { 2061 return call_netdevice_notifiers_extack(val, dev, NULL); 2062 } 2063 EXPORT_SYMBOL(call_netdevice_notifiers); 2064 2065 /** 2066 * call_netdevice_notifiers_mtu - call all network notifier blocks 2067 * @val: value passed unmodified to notifier function 2068 * @dev: net_device pointer passed unmodified to notifier function 2069 * @arg: additional u32 argument passed to the notifier function 2070 * 2071 * Call all network notifier blocks. Parameters and return value 2072 * are as for raw_notifier_call_chain(). 2073 */ 2074 static int call_netdevice_notifiers_mtu(unsigned long val, 2075 struct net_device *dev, u32 arg) 2076 { 2077 struct netdev_notifier_info_ext info = { 2078 .info.dev = dev, 2079 .ext.mtu = arg, 2080 }; 2081 2082 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2083 2084 return call_netdevice_notifiers_info(val, &info.info); 2085 } 2086 2087 #ifdef CONFIG_NET_INGRESS 2088 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2089 2090 void net_inc_ingress_queue(void) 2091 { 2092 static_branch_inc(&ingress_needed_key); 2093 } 2094 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2095 2096 void net_dec_ingress_queue(void) 2097 { 2098 static_branch_dec(&ingress_needed_key); 2099 } 2100 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2101 #endif 2102 2103 #ifdef CONFIG_NET_EGRESS 2104 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2105 2106 void net_inc_egress_queue(void) 2107 { 2108 static_branch_inc(&egress_needed_key); 2109 } 2110 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2111 2112 void net_dec_egress_queue(void) 2113 { 2114 static_branch_dec(&egress_needed_key); 2115 } 2116 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2117 #endif 2118 2119 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2120 #ifdef CONFIG_JUMP_LABEL 2121 static atomic_t netstamp_needed_deferred; 2122 static atomic_t netstamp_wanted; 2123 static void netstamp_clear(struct work_struct *work) 2124 { 2125 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2126 int wanted; 2127 2128 wanted = atomic_add_return(deferred, &netstamp_wanted); 2129 if (wanted > 0) 2130 static_branch_enable(&netstamp_needed_key); 2131 else 2132 static_branch_disable(&netstamp_needed_key); 2133 } 2134 static DECLARE_WORK(netstamp_work, netstamp_clear); 2135 #endif 2136 2137 void net_enable_timestamp(void) 2138 { 2139 #ifdef CONFIG_JUMP_LABEL 2140 int wanted; 2141 2142 while (1) { 2143 wanted = atomic_read(&netstamp_wanted); 2144 if (wanted <= 0) 2145 break; 2146 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2147 return; 2148 } 2149 atomic_inc(&netstamp_needed_deferred); 2150 schedule_work(&netstamp_work); 2151 #else 2152 static_branch_inc(&netstamp_needed_key); 2153 #endif 2154 } 2155 EXPORT_SYMBOL(net_enable_timestamp); 2156 2157 void net_disable_timestamp(void) 2158 { 2159 #ifdef CONFIG_JUMP_LABEL 2160 int wanted; 2161 2162 while (1) { 2163 wanted = atomic_read(&netstamp_wanted); 2164 if (wanted <= 1) 2165 break; 2166 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2167 return; 2168 } 2169 atomic_dec(&netstamp_needed_deferred); 2170 schedule_work(&netstamp_work); 2171 #else 2172 static_branch_dec(&netstamp_needed_key); 2173 #endif 2174 } 2175 EXPORT_SYMBOL(net_disable_timestamp); 2176 2177 static inline void net_timestamp_set(struct sk_buff *skb) 2178 { 2179 skb->tstamp = 0; 2180 if (static_branch_unlikely(&netstamp_needed_key)) 2181 __net_timestamp(skb); 2182 } 2183 2184 #define net_timestamp_check(COND, SKB) \ 2185 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2186 if ((COND) && !(SKB)->tstamp) \ 2187 __net_timestamp(SKB); \ 2188 } \ 2189 2190 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2191 { 2192 unsigned int len; 2193 2194 if (!(dev->flags & IFF_UP)) 2195 return false; 2196 2197 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 2198 if (skb->len <= len) 2199 return true; 2200 2201 /* if TSO is enabled, we don't care about the length as the packet 2202 * could be forwarded without being segmented before 2203 */ 2204 if (skb_is_gso(skb)) 2205 return true; 2206 2207 return false; 2208 } 2209 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2210 2211 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2212 { 2213 int ret = ____dev_forward_skb(dev, skb); 2214 2215 if (likely(!ret)) { 2216 skb->protocol = eth_type_trans(skb, dev); 2217 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2218 } 2219 2220 return ret; 2221 } 2222 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2223 2224 /** 2225 * dev_forward_skb - loopback an skb to another netif 2226 * 2227 * @dev: destination network device 2228 * @skb: buffer to forward 2229 * 2230 * return values: 2231 * NET_RX_SUCCESS (no congestion) 2232 * NET_RX_DROP (packet was dropped, but freed) 2233 * 2234 * dev_forward_skb can be used for injecting an skb from the 2235 * start_xmit function of one device into the receive queue 2236 * of another device. 2237 * 2238 * The receiving device may be in another namespace, so 2239 * we have to clear all information in the skb that could 2240 * impact namespace isolation. 2241 */ 2242 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2243 { 2244 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2245 } 2246 EXPORT_SYMBOL_GPL(dev_forward_skb); 2247 2248 static inline int deliver_skb(struct sk_buff *skb, 2249 struct packet_type *pt_prev, 2250 struct net_device *orig_dev) 2251 { 2252 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2253 return -ENOMEM; 2254 refcount_inc(&skb->users); 2255 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2256 } 2257 2258 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2259 struct packet_type **pt, 2260 struct net_device *orig_dev, 2261 __be16 type, 2262 struct list_head *ptype_list) 2263 { 2264 struct packet_type *ptype, *pt_prev = *pt; 2265 2266 list_for_each_entry_rcu(ptype, ptype_list, list) { 2267 if (ptype->type != type) 2268 continue; 2269 if (pt_prev) 2270 deliver_skb(skb, pt_prev, orig_dev); 2271 pt_prev = ptype; 2272 } 2273 *pt = pt_prev; 2274 } 2275 2276 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2277 { 2278 if (!ptype->af_packet_priv || !skb->sk) 2279 return false; 2280 2281 if (ptype->id_match) 2282 return ptype->id_match(ptype, skb->sk); 2283 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2284 return true; 2285 2286 return false; 2287 } 2288 2289 /** 2290 * dev_nit_active - return true if any network interface taps are in use 2291 * 2292 * @dev: network device to check for the presence of taps 2293 */ 2294 bool dev_nit_active(struct net_device *dev) 2295 { 2296 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2297 } 2298 EXPORT_SYMBOL_GPL(dev_nit_active); 2299 2300 /* 2301 * Support routine. Sends outgoing frames to any network 2302 * taps currently in use. 2303 */ 2304 2305 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2306 { 2307 struct packet_type *ptype; 2308 struct sk_buff *skb2 = NULL; 2309 struct packet_type *pt_prev = NULL; 2310 struct list_head *ptype_list = &ptype_all; 2311 2312 rcu_read_lock(); 2313 again: 2314 list_for_each_entry_rcu(ptype, ptype_list, list) { 2315 if (ptype->ignore_outgoing) 2316 continue; 2317 2318 /* Never send packets back to the socket 2319 * they originated from - MvS (miquels@drinkel.ow.org) 2320 */ 2321 if (skb_loop_sk(ptype, skb)) 2322 continue; 2323 2324 if (pt_prev) { 2325 deliver_skb(skb2, pt_prev, skb->dev); 2326 pt_prev = ptype; 2327 continue; 2328 } 2329 2330 /* need to clone skb, done only once */ 2331 skb2 = skb_clone(skb, GFP_ATOMIC); 2332 if (!skb2) 2333 goto out_unlock; 2334 2335 net_timestamp_set(skb2); 2336 2337 /* skb->nh should be correctly 2338 * set by sender, so that the second statement is 2339 * just protection against buggy protocols. 2340 */ 2341 skb_reset_mac_header(skb2); 2342 2343 if (skb_network_header(skb2) < skb2->data || 2344 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2345 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2346 ntohs(skb2->protocol), 2347 dev->name); 2348 skb_reset_network_header(skb2); 2349 } 2350 2351 skb2->transport_header = skb2->network_header; 2352 skb2->pkt_type = PACKET_OUTGOING; 2353 pt_prev = ptype; 2354 } 2355 2356 if (ptype_list == &ptype_all) { 2357 ptype_list = &dev->ptype_all; 2358 goto again; 2359 } 2360 out_unlock: 2361 if (pt_prev) { 2362 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2363 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2364 else 2365 kfree_skb(skb2); 2366 } 2367 rcu_read_unlock(); 2368 } 2369 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2370 2371 /** 2372 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2373 * @dev: Network device 2374 * @txq: number of queues available 2375 * 2376 * If real_num_tx_queues is changed the tc mappings may no longer be 2377 * valid. To resolve this verify the tc mapping remains valid and if 2378 * not NULL the mapping. With no priorities mapping to this 2379 * offset/count pair it will no longer be used. In the worst case TC0 2380 * is invalid nothing can be done so disable priority mappings. If is 2381 * expected that drivers will fix this mapping if they can before 2382 * calling netif_set_real_num_tx_queues. 2383 */ 2384 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2385 { 2386 int i; 2387 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2388 2389 /* If TC0 is invalidated disable TC mapping */ 2390 if (tc->offset + tc->count > txq) { 2391 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2392 dev->num_tc = 0; 2393 return; 2394 } 2395 2396 /* Invalidated prio to tc mappings set to TC0 */ 2397 for (i = 1; i < TC_BITMASK + 1; i++) { 2398 int q = netdev_get_prio_tc_map(dev, i); 2399 2400 tc = &dev->tc_to_txq[q]; 2401 if (tc->offset + tc->count > txq) { 2402 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2403 i, q); 2404 netdev_set_prio_tc_map(dev, i, 0); 2405 } 2406 } 2407 } 2408 2409 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2410 { 2411 if (dev->num_tc) { 2412 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2413 int i; 2414 2415 /* walk through the TCs and see if it falls into any of them */ 2416 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2417 if ((txq - tc->offset) < tc->count) 2418 return i; 2419 } 2420 2421 /* didn't find it, just return -1 to indicate no match */ 2422 return -1; 2423 } 2424 2425 return 0; 2426 } 2427 EXPORT_SYMBOL(netdev_txq_to_tc); 2428 2429 #ifdef CONFIG_XPS 2430 struct static_key xps_needed __read_mostly; 2431 EXPORT_SYMBOL(xps_needed); 2432 struct static_key xps_rxqs_needed __read_mostly; 2433 EXPORT_SYMBOL(xps_rxqs_needed); 2434 static DEFINE_MUTEX(xps_map_mutex); 2435 #define xmap_dereference(P) \ 2436 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2437 2438 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2439 int tci, u16 index) 2440 { 2441 struct xps_map *map = NULL; 2442 int pos; 2443 2444 if (dev_maps) 2445 map = xmap_dereference(dev_maps->attr_map[tci]); 2446 if (!map) 2447 return false; 2448 2449 for (pos = map->len; pos--;) { 2450 if (map->queues[pos] != index) 2451 continue; 2452 2453 if (map->len > 1) { 2454 map->queues[pos] = map->queues[--map->len]; 2455 break; 2456 } 2457 2458 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2459 kfree_rcu(map, rcu); 2460 return false; 2461 } 2462 2463 return true; 2464 } 2465 2466 static bool remove_xps_queue_cpu(struct net_device *dev, 2467 struct xps_dev_maps *dev_maps, 2468 int cpu, u16 offset, u16 count) 2469 { 2470 int num_tc = dev->num_tc ? : 1; 2471 bool active = false; 2472 int tci; 2473 2474 for (tci = cpu * num_tc; num_tc--; tci++) { 2475 int i, j; 2476 2477 for (i = count, j = offset; i--; j++) { 2478 if (!remove_xps_queue(dev_maps, tci, j)) 2479 break; 2480 } 2481 2482 active |= i < 0; 2483 } 2484 2485 return active; 2486 } 2487 2488 static void reset_xps_maps(struct net_device *dev, 2489 struct xps_dev_maps *dev_maps, 2490 bool is_rxqs_map) 2491 { 2492 if (is_rxqs_map) { 2493 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2494 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2495 } else { 2496 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2497 } 2498 static_key_slow_dec_cpuslocked(&xps_needed); 2499 kfree_rcu(dev_maps, rcu); 2500 } 2501 2502 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2503 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2504 u16 offset, u16 count, bool is_rxqs_map) 2505 { 2506 bool active = false; 2507 int i, j; 2508 2509 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2510 j < nr_ids;) 2511 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2512 count); 2513 if (!active) 2514 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2515 2516 if (!is_rxqs_map) { 2517 for (i = offset + (count - 1); count--; i--) { 2518 netdev_queue_numa_node_write( 2519 netdev_get_tx_queue(dev, i), 2520 NUMA_NO_NODE); 2521 } 2522 } 2523 } 2524 2525 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2526 u16 count) 2527 { 2528 const unsigned long *possible_mask = NULL; 2529 struct xps_dev_maps *dev_maps; 2530 unsigned int nr_ids; 2531 2532 if (!static_key_false(&xps_needed)) 2533 return; 2534 2535 cpus_read_lock(); 2536 mutex_lock(&xps_map_mutex); 2537 2538 if (static_key_false(&xps_rxqs_needed)) { 2539 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2540 if (dev_maps) { 2541 nr_ids = dev->num_rx_queues; 2542 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2543 offset, count, true); 2544 } 2545 } 2546 2547 dev_maps = xmap_dereference(dev->xps_cpus_map); 2548 if (!dev_maps) 2549 goto out_no_maps; 2550 2551 if (num_possible_cpus() > 1) 2552 possible_mask = cpumask_bits(cpu_possible_mask); 2553 nr_ids = nr_cpu_ids; 2554 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2555 false); 2556 2557 out_no_maps: 2558 mutex_unlock(&xps_map_mutex); 2559 cpus_read_unlock(); 2560 } 2561 2562 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2563 { 2564 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2565 } 2566 2567 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2568 u16 index, bool is_rxqs_map) 2569 { 2570 struct xps_map *new_map; 2571 int alloc_len = XPS_MIN_MAP_ALLOC; 2572 int i, pos; 2573 2574 for (pos = 0; map && pos < map->len; pos++) { 2575 if (map->queues[pos] != index) 2576 continue; 2577 return map; 2578 } 2579 2580 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2581 if (map) { 2582 if (pos < map->alloc_len) 2583 return map; 2584 2585 alloc_len = map->alloc_len * 2; 2586 } 2587 2588 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2589 * map 2590 */ 2591 if (is_rxqs_map) 2592 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2593 else 2594 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2595 cpu_to_node(attr_index)); 2596 if (!new_map) 2597 return NULL; 2598 2599 for (i = 0; i < pos; i++) 2600 new_map->queues[i] = map->queues[i]; 2601 new_map->alloc_len = alloc_len; 2602 new_map->len = pos; 2603 2604 return new_map; 2605 } 2606 2607 /* Must be called under cpus_read_lock */ 2608 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2609 u16 index, bool is_rxqs_map) 2610 { 2611 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2612 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2613 int i, j, tci, numa_node_id = -2; 2614 int maps_sz, num_tc = 1, tc = 0; 2615 struct xps_map *map, *new_map; 2616 bool active = false; 2617 unsigned int nr_ids; 2618 2619 if (dev->num_tc) { 2620 /* Do not allow XPS on subordinate device directly */ 2621 num_tc = dev->num_tc; 2622 if (num_tc < 0) 2623 return -EINVAL; 2624 2625 /* If queue belongs to subordinate dev use its map */ 2626 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2627 2628 tc = netdev_txq_to_tc(dev, index); 2629 if (tc < 0) 2630 return -EINVAL; 2631 } 2632 2633 mutex_lock(&xps_map_mutex); 2634 if (is_rxqs_map) { 2635 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2636 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2637 nr_ids = dev->num_rx_queues; 2638 } else { 2639 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2640 if (num_possible_cpus() > 1) { 2641 online_mask = cpumask_bits(cpu_online_mask); 2642 possible_mask = cpumask_bits(cpu_possible_mask); 2643 } 2644 dev_maps = xmap_dereference(dev->xps_cpus_map); 2645 nr_ids = nr_cpu_ids; 2646 } 2647 2648 if (maps_sz < L1_CACHE_BYTES) 2649 maps_sz = L1_CACHE_BYTES; 2650 2651 /* allocate memory for queue storage */ 2652 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2653 j < nr_ids;) { 2654 if (!new_dev_maps) 2655 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2656 if (!new_dev_maps) { 2657 mutex_unlock(&xps_map_mutex); 2658 return -ENOMEM; 2659 } 2660 2661 tci = j * num_tc + tc; 2662 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2663 NULL; 2664 2665 map = expand_xps_map(map, j, index, is_rxqs_map); 2666 if (!map) 2667 goto error; 2668 2669 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2670 } 2671 2672 if (!new_dev_maps) 2673 goto out_no_new_maps; 2674 2675 if (!dev_maps) { 2676 /* Increment static keys at most once per type */ 2677 static_key_slow_inc_cpuslocked(&xps_needed); 2678 if (is_rxqs_map) 2679 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2680 } 2681 2682 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2683 j < nr_ids;) { 2684 /* copy maps belonging to foreign traffic classes */ 2685 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2686 /* fill in the new device map from the old device map */ 2687 map = xmap_dereference(dev_maps->attr_map[tci]); 2688 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2689 } 2690 2691 /* We need to explicitly update tci as prevous loop 2692 * could break out early if dev_maps is NULL. 2693 */ 2694 tci = j * num_tc + tc; 2695 2696 if (netif_attr_test_mask(j, mask, nr_ids) && 2697 netif_attr_test_online(j, online_mask, nr_ids)) { 2698 /* add tx-queue to CPU/rx-queue maps */ 2699 int pos = 0; 2700 2701 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2702 while ((pos < map->len) && (map->queues[pos] != index)) 2703 pos++; 2704 2705 if (pos == map->len) 2706 map->queues[map->len++] = index; 2707 #ifdef CONFIG_NUMA 2708 if (!is_rxqs_map) { 2709 if (numa_node_id == -2) 2710 numa_node_id = cpu_to_node(j); 2711 else if (numa_node_id != cpu_to_node(j)) 2712 numa_node_id = -1; 2713 } 2714 #endif 2715 } else if (dev_maps) { 2716 /* fill in the new device map from the old device map */ 2717 map = xmap_dereference(dev_maps->attr_map[tci]); 2718 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2719 } 2720 2721 /* copy maps belonging to foreign traffic classes */ 2722 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2723 /* fill in the new device map from the old device map */ 2724 map = xmap_dereference(dev_maps->attr_map[tci]); 2725 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2726 } 2727 } 2728 2729 if (is_rxqs_map) 2730 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2731 else 2732 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2733 2734 /* Cleanup old maps */ 2735 if (!dev_maps) 2736 goto out_no_old_maps; 2737 2738 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2739 j < nr_ids;) { 2740 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2741 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2742 map = xmap_dereference(dev_maps->attr_map[tci]); 2743 if (map && map != new_map) 2744 kfree_rcu(map, rcu); 2745 } 2746 } 2747 2748 kfree_rcu(dev_maps, rcu); 2749 2750 out_no_old_maps: 2751 dev_maps = new_dev_maps; 2752 active = true; 2753 2754 out_no_new_maps: 2755 if (!is_rxqs_map) { 2756 /* update Tx queue numa node */ 2757 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2758 (numa_node_id >= 0) ? 2759 numa_node_id : NUMA_NO_NODE); 2760 } 2761 2762 if (!dev_maps) 2763 goto out_no_maps; 2764 2765 /* removes tx-queue from unused CPUs/rx-queues */ 2766 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2767 j < nr_ids;) { 2768 for (i = tc, tci = j * num_tc; i--; tci++) 2769 active |= remove_xps_queue(dev_maps, tci, index); 2770 if (!netif_attr_test_mask(j, mask, nr_ids) || 2771 !netif_attr_test_online(j, online_mask, nr_ids)) 2772 active |= remove_xps_queue(dev_maps, tci, index); 2773 for (i = num_tc - tc, tci++; --i; tci++) 2774 active |= remove_xps_queue(dev_maps, tci, index); 2775 } 2776 2777 /* free map if not active */ 2778 if (!active) 2779 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2780 2781 out_no_maps: 2782 mutex_unlock(&xps_map_mutex); 2783 2784 return 0; 2785 error: 2786 /* remove any maps that we added */ 2787 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2788 j < nr_ids;) { 2789 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2790 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2791 map = dev_maps ? 2792 xmap_dereference(dev_maps->attr_map[tci]) : 2793 NULL; 2794 if (new_map && new_map != map) 2795 kfree(new_map); 2796 } 2797 } 2798 2799 mutex_unlock(&xps_map_mutex); 2800 2801 kfree(new_dev_maps); 2802 return -ENOMEM; 2803 } 2804 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2805 2806 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2807 u16 index) 2808 { 2809 int ret; 2810 2811 cpus_read_lock(); 2812 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2813 cpus_read_unlock(); 2814 2815 return ret; 2816 } 2817 EXPORT_SYMBOL(netif_set_xps_queue); 2818 2819 #endif 2820 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2821 { 2822 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2823 2824 /* Unbind any subordinate channels */ 2825 while (txq-- != &dev->_tx[0]) { 2826 if (txq->sb_dev) 2827 netdev_unbind_sb_channel(dev, txq->sb_dev); 2828 } 2829 } 2830 2831 void netdev_reset_tc(struct net_device *dev) 2832 { 2833 #ifdef CONFIG_XPS 2834 netif_reset_xps_queues_gt(dev, 0); 2835 #endif 2836 netdev_unbind_all_sb_channels(dev); 2837 2838 /* Reset TC configuration of device */ 2839 dev->num_tc = 0; 2840 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2841 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2842 } 2843 EXPORT_SYMBOL(netdev_reset_tc); 2844 2845 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2846 { 2847 if (tc >= dev->num_tc) 2848 return -EINVAL; 2849 2850 #ifdef CONFIG_XPS 2851 netif_reset_xps_queues(dev, offset, count); 2852 #endif 2853 dev->tc_to_txq[tc].count = count; 2854 dev->tc_to_txq[tc].offset = offset; 2855 return 0; 2856 } 2857 EXPORT_SYMBOL(netdev_set_tc_queue); 2858 2859 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2860 { 2861 if (num_tc > TC_MAX_QUEUE) 2862 return -EINVAL; 2863 2864 #ifdef CONFIG_XPS 2865 netif_reset_xps_queues_gt(dev, 0); 2866 #endif 2867 netdev_unbind_all_sb_channels(dev); 2868 2869 dev->num_tc = num_tc; 2870 return 0; 2871 } 2872 EXPORT_SYMBOL(netdev_set_num_tc); 2873 2874 void netdev_unbind_sb_channel(struct net_device *dev, 2875 struct net_device *sb_dev) 2876 { 2877 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2878 2879 #ifdef CONFIG_XPS 2880 netif_reset_xps_queues_gt(sb_dev, 0); 2881 #endif 2882 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2883 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2884 2885 while (txq-- != &dev->_tx[0]) { 2886 if (txq->sb_dev == sb_dev) 2887 txq->sb_dev = NULL; 2888 } 2889 } 2890 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2891 2892 int netdev_bind_sb_channel_queue(struct net_device *dev, 2893 struct net_device *sb_dev, 2894 u8 tc, u16 count, u16 offset) 2895 { 2896 /* Make certain the sb_dev and dev are already configured */ 2897 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2898 return -EINVAL; 2899 2900 /* We cannot hand out queues we don't have */ 2901 if ((offset + count) > dev->real_num_tx_queues) 2902 return -EINVAL; 2903 2904 /* Record the mapping */ 2905 sb_dev->tc_to_txq[tc].count = count; 2906 sb_dev->tc_to_txq[tc].offset = offset; 2907 2908 /* Provide a way for Tx queue to find the tc_to_txq map or 2909 * XPS map for itself. 2910 */ 2911 while (count--) 2912 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2913 2914 return 0; 2915 } 2916 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2917 2918 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2919 { 2920 /* Do not use a multiqueue device to represent a subordinate channel */ 2921 if (netif_is_multiqueue(dev)) 2922 return -ENODEV; 2923 2924 /* We allow channels 1 - 32767 to be used for subordinate channels. 2925 * Channel 0 is meant to be "native" mode and used only to represent 2926 * the main root device. We allow writing 0 to reset the device back 2927 * to normal mode after being used as a subordinate channel. 2928 */ 2929 if (channel > S16_MAX) 2930 return -EINVAL; 2931 2932 dev->num_tc = -channel; 2933 2934 return 0; 2935 } 2936 EXPORT_SYMBOL(netdev_set_sb_channel); 2937 2938 /* 2939 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2940 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2941 */ 2942 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2943 { 2944 bool disabling; 2945 int rc; 2946 2947 disabling = txq < dev->real_num_tx_queues; 2948 2949 if (txq < 1 || txq > dev->num_tx_queues) 2950 return -EINVAL; 2951 2952 if (dev->reg_state == NETREG_REGISTERED || 2953 dev->reg_state == NETREG_UNREGISTERING) { 2954 ASSERT_RTNL(); 2955 2956 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2957 txq); 2958 if (rc) 2959 return rc; 2960 2961 if (dev->num_tc) 2962 netif_setup_tc(dev, txq); 2963 2964 dev->real_num_tx_queues = txq; 2965 2966 if (disabling) { 2967 synchronize_net(); 2968 qdisc_reset_all_tx_gt(dev, txq); 2969 #ifdef CONFIG_XPS 2970 netif_reset_xps_queues_gt(dev, txq); 2971 #endif 2972 } 2973 } else { 2974 dev->real_num_tx_queues = txq; 2975 } 2976 2977 return 0; 2978 } 2979 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2980 2981 #ifdef CONFIG_SYSFS 2982 /** 2983 * netif_set_real_num_rx_queues - set actual number of RX queues used 2984 * @dev: Network device 2985 * @rxq: Actual number of RX queues 2986 * 2987 * This must be called either with the rtnl_lock held or before 2988 * registration of the net device. Returns 0 on success, or a 2989 * negative error code. If called before registration, it always 2990 * succeeds. 2991 */ 2992 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2993 { 2994 int rc; 2995 2996 if (rxq < 1 || rxq > dev->num_rx_queues) 2997 return -EINVAL; 2998 2999 if (dev->reg_state == NETREG_REGISTERED) { 3000 ASSERT_RTNL(); 3001 3002 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3003 rxq); 3004 if (rc) 3005 return rc; 3006 } 3007 3008 dev->real_num_rx_queues = rxq; 3009 return 0; 3010 } 3011 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3012 #endif 3013 3014 /** 3015 * netif_get_num_default_rss_queues - default number of RSS queues 3016 * 3017 * This routine should set an upper limit on the number of RSS queues 3018 * used by default by multiqueue devices. 3019 */ 3020 int netif_get_num_default_rss_queues(void) 3021 { 3022 return is_kdump_kernel() ? 3023 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 3024 } 3025 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3026 3027 static void __netif_reschedule(struct Qdisc *q) 3028 { 3029 struct softnet_data *sd; 3030 unsigned long flags; 3031 3032 local_irq_save(flags); 3033 sd = this_cpu_ptr(&softnet_data); 3034 q->next_sched = NULL; 3035 *sd->output_queue_tailp = q; 3036 sd->output_queue_tailp = &q->next_sched; 3037 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3038 local_irq_restore(flags); 3039 } 3040 3041 void __netif_schedule(struct Qdisc *q) 3042 { 3043 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3044 __netif_reschedule(q); 3045 } 3046 EXPORT_SYMBOL(__netif_schedule); 3047 3048 struct dev_kfree_skb_cb { 3049 enum skb_free_reason reason; 3050 }; 3051 3052 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3053 { 3054 return (struct dev_kfree_skb_cb *)skb->cb; 3055 } 3056 3057 void netif_schedule_queue(struct netdev_queue *txq) 3058 { 3059 rcu_read_lock(); 3060 if (!netif_xmit_stopped(txq)) { 3061 struct Qdisc *q = rcu_dereference(txq->qdisc); 3062 3063 __netif_schedule(q); 3064 } 3065 rcu_read_unlock(); 3066 } 3067 EXPORT_SYMBOL(netif_schedule_queue); 3068 3069 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3070 { 3071 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3072 struct Qdisc *q; 3073 3074 rcu_read_lock(); 3075 q = rcu_dereference(dev_queue->qdisc); 3076 __netif_schedule(q); 3077 rcu_read_unlock(); 3078 } 3079 } 3080 EXPORT_SYMBOL(netif_tx_wake_queue); 3081 3082 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 3083 { 3084 unsigned long flags; 3085 3086 if (unlikely(!skb)) 3087 return; 3088 3089 if (likely(refcount_read(&skb->users) == 1)) { 3090 smp_rmb(); 3091 refcount_set(&skb->users, 0); 3092 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3093 return; 3094 } 3095 get_kfree_skb_cb(skb)->reason = reason; 3096 local_irq_save(flags); 3097 skb->next = __this_cpu_read(softnet_data.completion_queue); 3098 __this_cpu_write(softnet_data.completion_queue, skb); 3099 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3100 local_irq_restore(flags); 3101 } 3102 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3103 3104 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3105 { 3106 if (in_irq() || irqs_disabled()) 3107 __dev_kfree_skb_irq(skb, reason); 3108 else 3109 dev_kfree_skb(skb); 3110 } 3111 EXPORT_SYMBOL(__dev_kfree_skb_any); 3112 3113 3114 /** 3115 * netif_device_detach - mark device as removed 3116 * @dev: network device 3117 * 3118 * Mark device as removed from system and therefore no longer available. 3119 */ 3120 void netif_device_detach(struct net_device *dev) 3121 { 3122 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3123 netif_running(dev)) { 3124 netif_tx_stop_all_queues(dev); 3125 } 3126 } 3127 EXPORT_SYMBOL(netif_device_detach); 3128 3129 /** 3130 * netif_device_attach - mark device as attached 3131 * @dev: network device 3132 * 3133 * Mark device as attached from system and restart if needed. 3134 */ 3135 void netif_device_attach(struct net_device *dev) 3136 { 3137 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3138 netif_running(dev)) { 3139 netif_tx_wake_all_queues(dev); 3140 __netdev_watchdog_up(dev); 3141 } 3142 } 3143 EXPORT_SYMBOL(netif_device_attach); 3144 3145 /* 3146 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3147 * to be used as a distribution range. 3148 */ 3149 static u16 skb_tx_hash(const struct net_device *dev, 3150 const struct net_device *sb_dev, 3151 struct sk_buff *skb) 3152 { 3153 u32 hash; 3154 u16 qoffset = 0; 3155 u16 qcount = dev->real_num_tx_queues; 3156 3157 if (dev->num_tc) { 3158 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3159 3160 qoffset = sb_dev->tc_to_txq[tc].offset; 3161 qcount = sb_dev->tc_to_txq[tc].count; 3162 } 3163 3164 if (skb_rx_queue_recorded(skb)) { 3165 hash = skb_get_rx_queue(skb); 3166 if (hash >= qoffset) 3167 hash -= qoffset; 3168 while (unlikely(hash >= qcount)) 3169 hash -= qcount; 3170 return hash + qoffset; 3171 } 3172 3173 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3174 } 3175 3176 static void skb_warn_bad_offload(const struct sk_buff *skb) 3177 { 3178 static const netdev_features_t null_features; 3179 struct net_device *dev = skb->dev; 3180 const char *name = ""; 3181 3182 if (!net_ratelimit()) 3183 return; 3184 3185 if (dev) { 3186 if (dev->dev.parent) 3187 name = dev_driver_string(dev->dev.parent); 3188 else 3189 name = netdev_name(dev); 3190 } 3191 skb_dump(KERN_WARNING, skb, false); 3192 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3193 name, dev ? &dev->features : &null_features, 3194 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3195 } 3196 3197 /* 3198 * Invalidate hardware checksum when packet is to be mangled, and 3199 * complete checksum manually on outgoing path. 3200 */ 3201 int skb_checksum_help(struct sk_buff *skb) 3202 { 3203 __wsum csum; 3204 int ret = 0, offset; 3205 3206 if (skb->ip_summed == CHECKSUM_COMPLETE) 3207 goto out_set_summed; 3208 3209 if (unlikely(skb_shinfo(skb)->gso_size)) { 3210 skb_warn_bad_offload(skb); 3211 return -EINVAL; 3212 } 3213 3214 /* Before computing a checksum, we should make sure no frag could 3215 * be modified by an external entity : checksum could be wrong. 3216 */ 3217 if (skb_has_shared_frag(skb)) { 3218 ret = __skb_linearize(skb); 3219 if (ret) 3220 goto out; 3221 } 3222 3223 offset = skb_checksum_start_offset(skb); 3224 BUG_ON(offset >= skb_headlen(skb)); 3225 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3226 3227 offset += skb->csum_offset; 3228 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3229 3230 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3231 if (ret) 3232 goto out; 3233 3234 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3235 out_set_summed: 3236 skb->ip_summed = CHECKSUM_NONE; 3237 out: 3238 return ret; 3239 } 3240 EXPORT_SYMBOL(skb_checksum_help); 3241 3242 int skb_crc32c_csum_help(struct sk_buff *skb) 3243 { 3244 __le32 crc32c_csum; 3245 int ret = 0, offset, start; 3246 3247 if (skb->ip_summed != CHECKSUM_PARTIAL) 3248 goto out; 3249 3250 if (unlikely(skb_is_gso(skb))) 3251 goto out; 3252 3253 /* Before computing a checksum, we should make sure no frag could 3254 * be modified by an external entity : checksum could be wrong. 3255 */ 3256 if (unlikely(skb_has_shared_frag(skb))) { 3257 ret = __skb_linearize(skb); 3258 if (ret) 3259 goto out; 3260 } 3261 start = skb_checksum_start_offset(skb); 3262 offset = start + offsetof(struct sctphdr, checksum); 3263 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3264 ret = -EINVAL; 3265 goto out; 3266 } 3267 3268 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3269 if (ret) 3270 goto out; 3271 3272 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3273 skb->len - start, ~(__u32)0, 3274 crc32c_csum_stub)); 3275 *(__le32 *)(skb->data + offset) = crc32c_csum; 3276 skb->ip_summed = CHECKSUM_NONE; 3277 skb->csum_not_inet = 0; 3278 out: 3279 return ret; 3280 } 3281 3282 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3283 { 3284 __be16 type = skb->protocol; 3285 3286 /* Tunnel gso handlers can set protocol to ethernet. */ 3287 if (type == htons(ETH_P_TEB)) { 3288 struct ethhdr *eth; 3289 3290 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3291 return 0; 3292 3293 eth = (struct ethhdr *)skb->data; 3294 type = eth->h_proto; 3295 } 3296 3297 return __vlan_get_protocol(skb, type, depth); 3298 } 3299 3300 /** 3301 * skb_mac_gso_segment - mac layer segmentation handler. 3302 * @skb: buffer to segment 3303 * @features: features for the output path (see dev->features) 3304 */ 3305 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3306 netdev_features_t features) 3307 { 3308 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3309 struct packet_offload *ptype; 3310 int vlan_depth = skb->mac_len; 3311 __be16 type = skb_network_protocol(skb, &vlan_depth); 3312 3313 if (unlikely(!type)) 3314 return ERR_PTR(-EINVAL); 3315 3316 __skb_pull(skb, vlan_depth); 3317 3318 rcu_read_lock(); 3319 list_for_each_entry_rcu(ptype, &offload_base, list) { 3320 if (ptype->type == type && ptype->callbacks.gso_segment) { 3321 segs = ptype->callbacks.gso_segment(skb, features); 3322 break; 3323 } 3324 } 3325 rcu_read_unlock(); 3326 3327 __skb_push(skb, skb->data - skb_mac_header(skb)); 3328 3329 return segs; 3330 } 3331 EXPORT_SYMBOL(skb_mac_gso_segment); 3332 3333 3334 /* openvswitch calls this on rx path, so we need a different check. 3335 */ 3336 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3337 { 3338 if (tx_path) 3339 return skb->ip_summed != CHECKSUM_PARTIAL && 3340 skb->ip_summed != CHECKSUM_UNNECESSARY; 3341 3342 return skb->ip_summed == CHECKSUM_NONE; 3343 } 3344 3345 /** 3346 * __skb_gso_segment - Perform segmentation on skb. 3347 * @skb: buffer to segment 3348 * @features: features for the output path (see dev->features) 3349 * @tx_path: whether it is called in TX path 3350 * 3351 * This function segments the given skb and returns a list of segments. 3352 * 3353 * It may return NULL if the skb requires no segmentation. This is 3354 * only possible when GSO is used for verifying header integrity. 3355 * 3356 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3357 */ 3358 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3359 netdev_features_t features, bool tx_path) 3360 { 3361 struct sk_buff *segs; 3362 3363 if (unlikely(skb_needs_check(skb, tx_path))) { 3364 int err; 3365 3366 /* We're going to init ->check field in TCP or UDP header */ 3367 err = skb_cow_head(skb, 0); 3368 if (err < 0) 3369 return ERR_PTR(err); 3370 } 3371 3372 /* Only report GSO partial support if it will enable us to 3373 * support segmentation on this frame without needing additional 3374 * work. 3375 */ 3376 if (features & NETIF_F_GSO_PARTIAL) { 3377 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3378 struct net_device *dev = skb->dev; 3379 3380 partial_features |= dev->features & dev->gso_partial_features; 3381 if (!skb_gso_ok(skb, features | partial_features)) 3382 features &= ~NETIF_F_GSO_PARTIAL; 3383 } 3384 3385 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3386 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3387 3388 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3389 SKB_GSO_CB(skb)->encap_level = 0; 3390 3391 skb_reset_mac_header(skb); 3392 skb_reset_mac_len(skb); 3393 3394 segs = skb_mac_gso_segment(skb, features); 3395 3396 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3397 skb_warn_bad_offload(skb); 3398 3399 return segs; 3400 } 3401 EXPORT_SYMBOL(__skb_gso_segment); 3402 3403 /* Take action when hardware reception checksum errors are detected. */ 3404 #ifdef CONFIG_BUG 3405 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3406 { 3407 if (net_ratelimit()) { 3408 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3409 skb_dump(KERN_ERR, skb, true); 3410 dump_stack(); 3411 } 3412 } 3413 EXPORT_SYMBOL(netdev_rx_csum_fault); 3414 #endif 3415 3416 /* XXX: check that highmem exists at all on the given machine. */ 3417 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3418 { 3419 #ifdef CONFIG_HIGHMEM 3420 int i; 3421 3422 if (!(dev->features & NETIF_F_HIGHDMA)) { 3423 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3424 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3425 3426 if (PageHighMem(skb_frag_page(frag))) 3427 return 1; 3428 } 3429 } 3430 #endif 3431 return 0; 3432 } 3433 3434 /* If MPLS offload request, verify we are testing hardware MPLS features 3435 * instead of standard features for the netdev. 3436 */ 3437 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3438 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3439 netdev_features_t features, 3440 __be16 type) 3441 { 3442 if (eth_p_mpls(type)) 3443 features &= skb->dev->mpls_features; 3444 3445 return features; 3446 } 3447 #else 3448 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3449 netdev_features_t features, 3450 __be16 type) 3451 { 3452 return features; 3453 } 3454 #endif 3455 3456 static netdev_features_t harmonize_features(struct sk_buff *skb, 3457 netdev_features_t features) 3458 { 3459 __be16 type; 3460 3461 type = skb_network_protocol(skb, NULL); 3462 features = net_mpls_features(skb, features, type); 3463 3464 if (skb->ip_summed != CHECKSUM_NONE && 3465 !can_checksum_protocol(features, type)) { 3466 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3467 } 3468 if (illegal_highdma(skb->dev, skb)) 3469 features &= ~NETIF_F_SG; 3470 3471 return features; 3472 } 3473 3474 netdev_features_t passthru_features_check(struct sk_buff *skb, 3475 struct net_device *dev, 3476 netdev_features_t features) 3477 { 3478 return features; 3479 } 3480 EXPORT_SYMBOL(passthru_features_check); 3481 3482 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3483 struct net_device *dev, 3484 netdev_features_t features) 3485 { 3486 return vlan_features_check(skb, features); 3487 } 3488 3489 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3490 struct net_device *dev, 3491 netdev_features_t features) 3492 { 3493 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3494 3495 if (gso_segs > dev->gso_max_segs) 3496 return features & ~NETIF_F_GSO_MASK; 3497 3498 /* Support for GSO partial features requires software 3499 * intervention before we can actually process the packets 3500 * so we need to strip support for any partial features now 3501 * and we can pull them back in after we have partially 3502 * segmented the frame. 3503 */ 3504 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3505 features &= ~dev->gso_partial_features; 3506 3507 /* Make sure to clear the IPv4 ID mangling feature if the 3508 * IPv4 header has the potential to be fragmented. 3509 */ 3510 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3511 struct iphdr *iph = skb->encapsulation ? 3512 inner_ip_hdr(skb) : ip_hdr(skb); 3513 3514 if (!(iph->frag_off & htons(IP_DF))) 3515 features &= ~NETIF_F_TSO_MANGLEID; 3516 } 3517 3518 return features; 3519 } 3520 3521 netdev_features_t netif_skb_features(struct sk_buff *skb) 3522 { 3523 struct net_device *dev = skb->dev; 3524 netdev_features_t features = dev->features; 3525 3526 if (skb_is_gso(skb)) 3527 features = gso_features_check(skb, dev, features); 3528 3529 /* If encapsulation offload request, verify we are testing 3530 * hardware encapsulation features instead of standard 3531 * features for the netdev 3532 */ 3533 if (skb->encapsulation) 3534 features &= dev->hw_enc_features; 3535 3536 if (skb_vlan_tagged(skb)) 3537 features = netdev_intersect_features(features, 3538 dev->vlan_features | 3539 NETIF_F_HW_VLAN_CTAG_TX | 3540 NETIF_F_HW_VLAN_STAG_TX); 3541 3542 if (dev->netdev_ops->ndo_features_check) 3543 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3544 features); 3545 else 3546 features &= dflt_features_check(skb, dev, features); 3547 3548 return harmonize_features(skb, features); 3549 } 3550 EXPORT_SYMBOL(netif_skb_features); 3551 3552 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3553 struct netdev_queue *txq, bool more) 3554 { 3555 unsigned int len; 3556 int rc; 3557 3558 if (dev_nit_active(dev)) 3559 dev_queue_xmit_nit(skb, dev); 3560 3561 len = skb->len; 3562 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies); 3563 trace_net_dev_start_xmit(skb, dev); 3564 rc = netdev_start_xmit(skb, dev, txq, more); 3565 trace_net_dev_xmit(skb, rc, dev, len); 3566 3567 return rc; 3568 } 3569 3570 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3571 struct netdev_queue *txq, int *ret) 3572 { 3573 struct sk_buff *skb = first; 3574 int rc = NETDEV_TX_OK; 3575 3576 while (skb) { 3577 struct sk_buff *next = skb->next; 3578 3579 skb_mark_not_on_list(skb); 3580 rc = xmit_one(skb, dev, txq, next != NULL); 3581 if (unlikely(!dev_xmit_complete(rc))) { 3582 skb->next = next; 3583 goto out; 3584 } 3585 3586 skb = next; 3587 if (netif_tx_queue_stopped(txq) && skb) { 3588 rc = NETDEV_TX_BUSY; 3589 break; 3590 } 3591 } 3592 3593 out: 3594 *ret = rc; 3595 return skb; 3596 } 3597 3598 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3599 netdev_features_t features) 3600 { 3601 if (skb_vlan_tag_present(skb) && 3602 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3603 skb = __vlan_hwaccel_push_inside(skb); 3604 return skb; 3605 } 3606 3607 int skb_csum_hwoffload_help(struct sk_buff *skb, 3608 const netdev_features_t features) 3609 { 3610 if (unlikely(skb->csum_not_inet)) 3611 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3612 skb_crc32c_csum_help(skb); 3613 3614 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3615 } 3616 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3617 3618 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3619 { 3620 netdev_features_t features; 3621 3622 features = netif_skb_features(skb); 3623 skb = validate_xmit_vlan(skb, features); 3624 if (unlikely(!skb)) 3625 goto out_null; 3626 3627 skb = sk_validate_xmit_skb(skb, dev); 3628 if (unlikely(!skb)) 3629 goto out_null; 3630 3631 if (netif_needs_gso(skb, features)) { 3632 struct sk_buff *segs; 3633 3634 segs = skb_gso_segment(skb, features); 3635 if (IS_ERR(segs)) { 3636 goto out_kfree_skb; 3637 } else if (segs) { 3638 consume_skb(skb); 3639 skb = segs; 3640 } 3641 } else { 3642 if (skb_needs_linearize(skb, features) && 3643 __skb_linearize(skb)) 3644 goto out_kfree_skb; 3645 3646 /* If packet is not checksummed and device does not 3647 * support checksumming for this protocol, complete 3648 * checksumming here. 3649 */ 3650 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3651 if (skb->encapsulation) 3652 skb_set_inner_transport_header(skb, 3653 skb_checksum_start_offset(skb)); 3654 else 3655 skb_set_transport_header(skb, 3656 skb_checksum_start_offset(skb)); 3657 if (skb_csum_hwoffload_help(skb, features)) 3658 goto out_kfree_skb; 3659 } 3660 } 3661 3662 skb = validate_xmit_xfrm(skb, features, again); 3663 3664 return skb; 3665 3666 out_kfree_skb: 3667 kfree_skb(skb); 3668 out_null: 3669 atomic_long_inc(&dev->tx_dropped); 3670 return NULL; 3671 } 3672 3673 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3674 { 3675 struct sk_buff *next, *head = NULL, *tail; 3676 3677 for (; skb != NULL; skb = next) { 3678 next = skb->next; 3679 skb_mark_not_on_list(skb); 3680 3681 /* in case skb wont be segmented, point to itself */ 3682 skb->prev = skb; 3683 3684 skb = validate_xmit_skb(skb, dev, again); 3685 if (!skb) 3686 continue; 3687 3688 if (!head) 3689 head = skb; 3690 else 3691 tail->next = skb; 3692 /* If skb was segmented, skb->prev points to 3693 * the last segment. If not, it still contains skb. 3694 */ 3695 tail = skb->prev; 3696 } 3697 return head; 3698 } 3699 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3700 3701 static void qdisc_pkt_len_init(struct sk_buff *skb) 3702 { 3703 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3704 3705 qdisc_skb_cb(skb)->pkt_len = skb->len; 3706 3707 /* To get more precise estimation of bytes sent on wire, 3708 * we add to pkt_len the headers size of all segments 3709 */ 3710 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3711 unsigned int hdr_len; 3712 u16 gso_segs = shinfo->gso_segs; 3713 3714 /* mac layer + network layer */ 3715 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3716 3717 /* + transport layer */ 3718 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3719 const struct tcphdr *th; 3720 struct tcphdr _tcphdr; 3721 3722 th = skb_header_pointer(skb, skb_transport_offset(skb), 3723 sizeof(_tcphdr), &_tcphdr); 3724 if (likely(th)) 3725 hdr_len += __tcp_hdrlen(th); 3726 } else { 3727 struct udphdr _udphdr; 3728 3729 if (skb_header_pointer(skb, skb_transport_offset(skb), 3730 sizeof(_udphdr), &_udphdr)) 3731 hdr_len += sizeof(struct udphdr); 3732 } 3733 3734 if (shinfo->gso_type & SKB_GSO_DODGY) 3735 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3736 shinfo->gso_size); 3737 3738 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3739 } 3740 } 3741 3742 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3743 struct net_device *dev, 3744 struct netdev_queue *txq) 3745 { 3746 spinlock_t *root_lock = qdisc_lock(q); 3747 struct sk_buff *to_free = NULL; 3748 bool contended; 3749 int rc; 3750 3751 qdisc_calculate_pkt_len(skb, q); 3752 3753 if (q->flags & TCQ_F_NOLOCK) { 3754 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3755 qdisc_run(q); 3756 3757 if (unlikely(to_free)) 3758 kfree_skb_list(to_free); 3759 return rc; 3760 } 3761 3762 /* 3763 * Heuristic to force contended enqueues to serialize on a 3764 * separate lock before trying to get qdisc main lock. 3765 * This permits qdisc->running owner to get the lock more 3766 * often and dequeue packets faster. 3767 */ 3768 contended = qdisc_is_running(q); 3769 if (unlikely(contended)) 3770 spin_lock(&q->busylock); 3771 3772 spin_lock(root_lock); 3773 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3774 __qdisc_drop(skb, &to_free); 3775 rc = NET_XMIT_DROP; 3776 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3777 qdisc_run_begin(q)) { 3778 /* 3779 * This is a work-conserving queue; there are no old skbs 3780 * waiting to be sent out; and the qdisc is not running - 3781 * xmit the skb directly. 3782 */ 3783 3784 qdisc_bstats_update(q, skb); 3785 3786 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3787 if (unlikely(contended)) { 3788 spin_unlock(&q->busylock); 3789 contended = false; 3790 } 3791 __qdisc_run(q); 3792 } 3793 3794 qdisc_run_end(q); 3795 rc = NET_XMIT_SUCCESS; 3796 } else { 3797 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3798 if (qdisc_run_begin(q)) { 3799 if (unlikely(contended)) { 3800 spin_unlock(&q->busylock); 3801 contended = false; 3802 } 3803 __qdisc_run(q); 3804 qdisc_run_end(q); 3805 } 3806 } 3807 spin_unlock(root_lock); 3808 if (unlikely(to_free)) 3809 kfree_skb_list(to_free); 3810 if (unlikely(contended)) 3811 spin_unlock(&q->busylock); 3812 return rc; 3813 } 3814 3815 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3816 static void skb_update_prio(struct sk_buff *skb) 3817 { 3818 const struct netprio_map *map; 3819 const struct sock *sk; 3820 unsigned int prioidx; 3821 3822 if (skb->priority) 3823 return; 3824 map = rcu_dereference_bh(skb->dev->priomap); 3825 if (!map) 3826 return; 3827 sk = skb_to_full_sk(skb); 3828 if (!sk) 3829 return; 3830 3831 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3832 3833 if (prioidx < map->priomap_len) 3834 skb->priority = map->priomap[prioidx]; 3835 } 3836 #else 3837 #define skb_update_prio(skb) 3838 #endif 3839 3840 /** 3841 * dev_loopback_xmit - loop back @skb 3842 * @net: network namespace this loopback is happening in 3843 * @sk: sk needed to be a netfilter okfn 3844 * @skb: buffer to transmit 3845 */ 3846 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3847 { 3848 skb_reset_mac_header(skb); 3849 __skb_pull(skb, skb_network_offset(skb)); 3850 skb->pkt_type = PACKET_LOOPBACK; 3851 skb->ip_summed = CHECKSUM_UNNECESSARY; 3852 WARN_ON(!skb_dst(skb)); 3853 skb_dst_force(skb); 3854 netif_rx_ni(skb); 3855 return 0; 3856 } 3857 EXPORT_SYMBOL(dev_loopback_xmit); 3858 3859 #ifdef CONFIG_NET_EGRESS 3860 static struct sk_buff * 3861 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3862 { 3863 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3864 struct tcf_result cl_res; 3865 3866 if (!miniq) 3867 return skb; 3868 3869 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3870 mini_qdisc_bstats_cpu_update(miniq, skb); 3871 3872 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3873 case TC_ACT_OK: 3874 case TC_ACT_RECLASSIFY: 3875 skb->tc_index = TC_H_MIN(cl_res.classid); 3876 break; 3877 case TC_ACT_SHOT: 3878 mini_qdisc_qstats_cpu_drop(miniq); 3879 *ret = NET_XMIT_DROP; 3880 kfree_skb(skb); 3881 return NULL; 3882 case TC_ACT_STOLEN: 3883 case TC_ACT_QUEUED: 3884 case TC_ACT_TRAP: 3885 *ret = NET_XMIT_SUCCESS; 3886 consume_skb(skb); 3887 return NULL; 3888 case TC_ACT_REDIRECT: 3889 /* No need to push/pop skb's mac_header here on egress! */ 3890 skb_do_redirect(skb); 3891 *ret = NET_XMIT_SUCCESS; 3892 return NULL; 3893 default: 3894 break; 3895 } 3896 3897 return skb; 3898 } 3899 #endif /* CONFIG_NET_EGRESS */ 3900 3901 #ifdef CONFIG_XPS 3902 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3903 struct xps_dev_maps *dev_maps, unsigned int tci) 3904 { 3905 struct xps_map *map; 3906 int queue_index = -1; 3907 3908 if (dev->num_tc) { 3909 tci *= dev->num_tc; 3910 tci += netdev_get_prio_tc_map(dev, skb->priority); 3911 } 3912 3913 map = rcu_dereference(dev_maps->attr_map[tci]); 3914 if (map) { 3915 if (map->len == 1) 3916 queue_index = map->queues[0]; 3917 else 3918 queue_index = map->queues[reciprocal_scale( 3919 skb_get_hash(skb), map->len)]; 3920 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3921 queue_index = -1; 3922 } 3923 return queue_index; 3924 } 3925 #endif 3926 3927 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3928 struct sk_buff *skb) 3929 { 3930 #ifdef CONFIG_XPS 3931 struct xps_dev_maps *dev_maps; 3932 struct sock *sk = skb->sk; 3933 int queue_index = -1; 3934 3935 if (!static_key_false(&xps_needed)) 3936 return -1; 3937 3938 rcu_read_lock(); 3939 if (!static_key_false(&xps_rxqs_needed)) 3940 goto get_cpus_map; 3941 3942 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3943 if (dev_maps) { 3944 int tci = sk_rx_queue_get(sk); 3945 3946 if (tci >= 0 && tci < dev->num_rx_queues) 3947 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3948 tci); 3949 } 3950 3951 get_cpus_map: 3952 if (queue_index < 0) { 3953 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3954 if (dev_maps) { 3955 unsigned int tci = skb->sender_cpu - 1; 3956 3957 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3958 tci); 3959 } 3960 } 3961 rcu_read_unlock(); 3962 3963 return queue_index; 3964 #else 3965 return -1; 3966 #endif 3967 } 3968 3969 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3970 struct net_device *sb_dev) 3971 { 3972 return 0; 3973 } 3974 EXPORT_SYMBOL(dev_pick_tx_zero); 3975 3976 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3977 struct net_device *sb_dev) 3978 { 3979 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3980 } 3981 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3982 3983 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3984 struct net_device *sb_dev) 3985 { 3986 struct sock *sk = skb->sk; 3987 int queue_index = sk_tx_queue_get(sk); 3988 3989 sb_dev = sb_dev ? : dev; 3990 3991 if (queue_index < 0 || skb->ooo_okay || 3992 queue_index >= dev->real_num_tx_queues) { 3993 int new_index = get_xps_queue(dev, sb_dev, skb); 3994 3995 if (new_index < 0) 3996 new_index = skb_tx_hash(dev, sb_dev, skb); 3997 3998 if (queue_index != new_index && sk && 3999 sk_fullsock(sk) && 4000 rcu_access_pointer(sk->sk_dst_cache)) 4001 sk_tx_queue_set(sk, new_index); 4002 4003 queue_index = new_index; 4004 } 4005 4006 return queue_index; 4007 } 4008 EXPORT_SYMBOL(netdev_pick_tx); 4009 4010 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4011 struct sk_buff *skb, 4012 struct net_device *sb_dev) 4013 { 4014 int queue_index = 0; 4015 4016 #ifdef CONFIG_XPS 4017 u32 sender_cpu = skb->sender_cpu - 1; 4018 4019 if (sender_cpu >= (u32)NR_CPUS) 4020 skb->sender_cpu = raw_smp_processor_id() + 1; 4021 #endif 4022 4023 if (dev->real_num_tx_queues != 1) { 4024 const struct net_device_ops *ops = dev->netdev_ops; 4025 4026 if (ops->ndo_select_queue) 4027 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4028 else 4029 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4030 4031 queue_index = netdev_cap_txqueue(dev, queue_index); 4032 } 4033 4034 skb_set_queue_mapping(skb, queue_index); 4035 return netdev_get_tx_queue(dev, queue_index); 4036 } 4037 4038 /** 4039 * __dev_queue_xmit - transmit a buffer 4040 * @skb: buffer to transmit 4041 * @sb_dev: suboordinate device used for L2 forwarding offload 4042 * 4043 * Queue a buffer for transmission to a network device. The caller must 4044 * have set the device and priority and built the buffer before calling 4045 * this function. The function can be called from an interrupt. 4046 * 4047 * A negative errno code is returned on a failure. A success does not 4048 * guarantee the frame will be transmitted as it may be dropped due 4049 * to congestion or traffic shaping. 4050 * 4051 * ----------------------------------------------------------------------------------- 4052 * I notice this method can also return errors from the queue disciplines, 4053 * including NET_XMIT_DROP, which is a positive value. So, errors can also 4054 * be positive. 4055 * 4056 * Regardless of the return value, the skb is consumed, so it is currently 4057 * difficult to retry a send to this method. (You can bump the ref count 4058 * before sending to hold a reference for retry if you are careful.) 4059 * 4060 * When calling this method, interrupts MUST be enabled. This is because 4061 * the BH enable code must have IRQs enabled so that it will not deadlock. 4062 * --BLG 4063 */ 4064 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4065 { 4066 struct net_device *dev = skb->dev; 4067 struct netdev_queue *txq; 4068 struct Qdisc *q; 4069 int rc = -ENOMEM; 4070 bool again = false; 4071 4072 skb_reset_mac_header(skb); 4073 4074 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4075 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 4076 4077 /* Disable soft irqs for various locks below. Also 4078 * stops preemption for RCU. 4079 */ 4080 rcu_read_lock_bh(); 4081 4082 skb_update_prio(skb); 4083 4084 qdisc_pkt_len_init(skb); 4085 #ifdef CONFIG_NET_CLS_ACT 4086 skb->tc_at_ingress = 0; 4087 # ifdef CONFIG_NET_EGRESS 4088 if (static_branch_unlikely(&egress_needed_key)) { 4089 skb = sch_handle_egress(skb, &rc, dev); 4090 if (!skb) 4091 goto out; 4092 } 4093 # endif 4094 #endif 4095 /* If device/qdisc don't need skb->dst, release it right now while 4096 * its hot in this cpu cache. 4097 */ 4098 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4099 skb_dst_drop(skb); 4100 else 4101 skb_dst_force(skb); 4102 4103 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4104 q = rcu_dereference_bh(txq->qdisc); 4105 4106 trace_net_dev_queue(skb); 4107 if (q->enqueue) { 4108 rc = __dev_xmit_skb(skb, q, dev, txq); 4109 goto out; 4110 } 4111 4112 /* The device has no queue. Common case for software devices: 4113 * loopback, all the sorts of tunnels... 4114 4115 * Really, it is unlikely that netif_tx_lock protection is necessary 4116 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4117 * counters.) 4118 * However, it is possible, that they rely on protection 4119 * made by us here. 4120 4121 * Check this and shot the lock. It is not prone from deadlocks. 4122 *Either shot noqueue qdisc, it is even simpler 8) 4123 */ 4124 if (dev->flags & IFF_UP) { 4125 int cpu = smp_processor_id(); /* ok because BHs are off */ 4126 4127 if (txq->xmit_lock_owner != cpu) { 4128 if (dev_xmit_recursion()) 4129 goto recursion_alert; 4130 4131 skb = validate_xmit_skb(skb, dev, &again); 4132 if (!skb) 4133 goto out; 4134 4135 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4136 HARD_TX_LOCK(dev, txq, cpu); 4137 4138 if (!netif_xmit_stopped(txq)) { 4139 dev_xmit_recursion_inc(); 4140 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4141 dev_xmit_recursion_dec(); 4142 if (dev_xmit_complete(rc)) { 4143 HARD_TX_UNLOCK(dev, txq); 4144 goto out; 4145 } 4146 } 4147 HARD_TX_UNLOCK(dev, txq); 4148 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4149 dev->name); 4150 } else { 4151 /* Recursion is detected! It is possible, 4152 * unfortunately 4153 */ 4154 recursion_alert: 4155 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4156 dev->name); 4157 } 4158 } 4159 4160 rc = -ENETDOWN; 4161 rcu_read_unlock_bh(); 4162 4163 atomic_long_inc(&dev->tx_dropped); 4164 kfree_skb_list(skb); 4165 return rc; 4166 out: 4167 rcu_read_unlock_bh(); 4168 return rc; 4169 } 4170 4171 int dev_queue_xmit(struct sk_buff *skb) 4172 { 4173 return __dev_queue_xmit(skb, NULL); 4174 } 4175 EXPORT_SYMBOL(dev_queue_xmit); 4176 4177 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4178 { 4179 return __dev_queue_xmit(skb, sb_dev); 4180 } 4181 EXPORT_SYMBOL(dev_queue_xmit_accel); 4182 4183 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4184 { 4185 struct net_device *dev = skb->dev; 4186 struct sk_buff *orig_skb = skb; 4187 struct netdev_queue *txq; 4188 int ret = NETDEV_TX_BUSY; 4189 bool again = false; 4190 4191 if (unlikely(!netif_running(dev) || 4192 !netif_carrier_ok(dev))) 4193 goto drop; 4194 4195 skb = validate_xmit_skb_list(skb, dev, &again); 4196 if (skb != orig_skb) 4197 goto drop; 4198 4199 skb_set_queue_mapping(skb, queue_id); 4200 txq = skb_get_tx_queue(dev, skb); 4201 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4202 4203 local_bh_disable(); 4204 4205 dev_xmit_recursion_inc(); 4206 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4207 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4208 ret = netdev_start_xmit(skb, dev, txq, false); 4209 HARD_TX_UNLOCK(dev, txq); 4210 dev_xmit_recursion_dec(); 4211 4212 local_bh_enable(); 4213 4214 if (!dev_xmit_complete(ret)) 4215 kfree_skb(skb); 4216 4217 return ret; 4218 drop: 4219 atomic_long_inc(&dev->tx_dropped); 4220 kfree_skb_list(skb); 4221 return NET_XMIT_DROP; 4222 } 4223 EXPORT_SYMBOL(dev_direct_xmit); 4224 4225 /************************************************************************* 4226 * Receiver routines 4227 *************************************************************************/ 4228 4229 int netdev_max_backlog __read_mostly = 1000; 4230 EXPORT_SYMBOL(netdev_max_backlog); 4231 4232 int netdev_tstamp_prequeue __read_mostly = 1; 4233 int netdev_budget __read_mostly = 300; 4234 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4235 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4236 int weight_p __read_mostly = 64; /* old backlog weight */ 4237 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4238 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4239 int dev_rx_weight __read_mostly = 64; 4240 int dev_tx_weight __read_mostly = 64; 4241 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 4242 int gro_normal_batch __read_mostly = 8; 4243 4244 /* Called with irq disabled */ 4245 static inline void ____napi_schedule(struct softnet_data *sd, 4246 struct napi_struct *napi) 4247 { 4248 list_add_tail(&napi->poll_list, &sd->poll_list); 4249 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4250 } 4251 4252 #ifdef CONFIG_RPS 4253 4254 /* One global table that all flow-based protocols share. */ 4255 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4256 EXPORT_SYMBOL(rps_sock_flow_table); 4257 u32 rps_cpu_mask __read_mostly; 4258 EXPORT_SYMBOL(rps_cpu_mask); 4259 4260 struct static_key_false rps_needed __read_mostly; 4261 EXPORT_SYMBOL(rps_needed); 4262 struct static_key_false rfs_needed __read_mostly; 4263 EXPORT_SYMBOL(rfs_needed); 4264 4265 static struct rps_dev_flow * 4266 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4267 struct rps_dev_flow *rflow, u16 next_cpu) 4268 { 4269 if (next_cpu < nr_cpu_ids) { 4270 #ifdef CONFIG_RFS_ACCEL 4271 struct netdev_rx_queue *rxqueue; 4272 struct rps_dev_flow_table *flow_table; 4273 struct rps_dev_flow *old_rflow; 4274 u32 flow_id; 4275 u16 rxq_index; 4276 int rc; 4277 4278 /* Should we steer this flow to a different hardware queue? */ 4279 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4280 !(dev->features & NETIF_F_NTUPLE)) 4281 goto out; 4282 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4283 if (rxq_index == skb_get_rx_queue(skb)) 4284 goto out; 4285 4286 rxqueue = dev->_rx + rxq_index; 4287 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4288 if (!flow_table) 4289 goto out; 4290 flow_id = skb_get_hash(skb) & flow_table->mask; 4291 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4292 rxq_index, flow_id); 4293 if (rc < 0) 4294 goto out; 4295 old_rflow = rflow; 4296 rflow = &flow_table->flows[flow_id]; 4297 rflow->filter = rc; 4298 if (old_rflow->filter == rflow->filter) 4299 old_rflow->filter = RPS_NO_FILTER; 4300 out: 4301 #endif 4302 rflow->last_qtail = 4303 per_cpu(softnet_data, next_cpu).input_queue_head; 4304 } 4305 4306 rflow->cpu = next_cpu; 4307 return rflow; 4308 } 4309 4310 /* 4311 * get_rps_cpu is called from netif_receive_skb and returns the target 4312 * CPU from the RPS map of the receiving queue for a given skb. 4313 * rcu_read_lock must be held on entry. 4314 */ 4315 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4316 struct rps_dev_flow **rflowp) 4317 { 4318 const struct rps_sock_flow_table *sock_flow_table; 4319 struct netdev_rx_queue *rxqueue = dev->_rx; 4320 struct rps_dev_flow_table *flow_table; 4321 struct rps_map *map; 4322 int cpu = -1; 4323 u32 tcpu; 4324 u32 hash; 4325 4326 if (skb_rx_queue_recorded(skb)) { 4327 u16 index = skb_get_rx_queue(skb); 4328 4329 if (unlikely(index >= dev->real_num_rx_queues)) { 4330 WARN_ONCE(dev->real_num_rx_queues > 1, 4331 "%s received packet on queue %u, but number " 4332 "of RX queues is %u\n", 4333 dev->name, index, dev->real_num_rx_queues); 4334 goto done; 4335 } 4336 rxqueue += index; 4337 } 4338 4339 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4340 4341 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4342 map = rcu_dereference(rxqueue->rps_map); 4343 if (!flow_table && !map) 4344 goto done; 4345 4346 skb_reset_network_header(skb); 4347 hash = skb_get_hash(skb); 4348 if (!hash) 4349 goto done; 4350 4351 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4352 if (flow_table && sock_flow_table) { 4353 struct rps_dev_flow *rflow; 4354 u32 next_cpu; 4355 u32 ident; 4356 4357 /* First check into global flow table if there is a match */ 4358 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4359 if ((ident ^ hash) & ~rps_cpu_mask) 4360 goto try_rps; 4361 4362 next_cpu = ident & rps_cpu_mask; 4363 4364 /* OK, now we know there is a match, 4365 * we can look at the local (per receive queue) flow table 4366 */ 4367 rflow = &flow_table->flows[hash & flow_table->mask]; 4368 tcpu = rflow->cpu; 4369 4370 /* 4371 * If the desired CPU (where last recvmsg was done) is 4372 * different from current CPU (one in the rx-queue flow 4373 * table entry), switch if one of the following holds: 4374 * - Current CPU is unset (>= nr_cpu_ids). 4375 * - Current CPU is offline. 4376 * - The current CPU's queue tail has advanced beyond the 4377 * last packet that was enqueued using this table entry. 4378 * This guarantees that all previous packets for the flow 4379 * have been dequeued, thus preserving in order delivery. 4380 */ 4381 if (unlikely(tcpu != next_cpu) && 4382 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4383 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4384 rflow->last_qtail)) >= 0)) { 4385 tcpu = next_cpu; 4386 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4387 } 4388 4389 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4390 *rflowp = rflow; 4391 cpu = tcpu; 4392 goto done; 4393 } 4394 } 4395 4396 try_rps: 4397 4398 if (map) { 4399 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4400 if (cpu_online(tcpu)) { 4401 cpu = tcpu; 4402 goto done; 4403 } 4404 } 4405 4406 done: 4407 return cpu; 4408 } 4409 4410 #ifdef CONFIG_RFS_ACCEL 4411 4412 /** 4413 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4414 * @dev: Device on which the filter was set 4415 * @rxq_index: RX queue index 4416 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4417 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4418 * 4419 * Drivers that implement ndo_rx_flow_steer() should periodically call 4420 * this function for each installed filter and remove the filters for 4421 * which it returns %true. 4422 */ 4423 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4424 u32 flow_id, u16 filter_id) 4425 { 4426 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4427 struct rps_dev_flow_table *flow_table; 4428 struct rps_dev_flow *rflow; 4429 bool expire = true; 4430 unsigned int cpu; 4431 4432 rcu_read_lock(); 4433 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4434 if (flow_table && flow_id <= flow_table->mask) { 4435 rflow = &flow_table->flows[flow_id]; 4436 cpu = READ_ONCE(rflow->cpu); 4437 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4438 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4439 rflow->last_qtail) < 4440 (int)(10 * flow_table->mask))) 4441 expire = false; 4442 } 4443 rcu_read_unlock(); 4444 return expire; 4445 } 4446 EXPORT_SYMBOL(rps_may_expire_flow); 4447 4448 #endif /* CONFIG_RFS_ACCEL */ 4449 4450 /* Called from hardirq (IPI) context */ 4451 static void rps_trigger_softirq(void *data) 4452 { 4453 struct softnet_data *sd = data; 4454 4455 ____napi_schedule(sd, &sd->backlog); 4456 sd->received_rps++; 4457 } 4458 4459 #endif /* CONFIG_RPS */ 4460 4461 /* 4462 * Check if this softnet_data structure is another cpu one 4463 * If yes, queue it to our IPI list and return 1 4464 * If no, return 0 4465 */ 4466 static int rps_ipi_queued(struct softnet_data *sd) 4467 { 4468 #ifdef CONFIG_RPS 4469 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4470 4471 if (sd != mysd) { 4472 sd->rps_ipi_next = mysd->rps_ipi_list; 4473 mysd->rps_ipi_list = sd; 4474 4475 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4476 return 1; 4477 } 4478 #endif /* CONFIG_RPS */ 4479 return 0; 4480 } 4481 4482 #ifdef CONFIG_NET_FLOW_LIMIT 4483 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4484 #endif 4485 4486 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4487 { 4488 #ifdef CONFIG_NET_FLOW_LIMIT 4489 struct sd_flow_limit *fl; 4490 struct softnet_data *sd; 4491 unsigned int old_flow, new_flow; 4492 4493 if (qlen < (netdev_max_backlog >> 1)) 4494 return false; 4495 4496 sd = this_cpu_ptr(&softnet_data); 4497 4498 rcu_read_lock(); 4499 fl = rcu_dereference(sd->flow_limit); 4500 if (fl) { 4501 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4502 old_flow = fl->history[fl->history_head]; 4503 fl->history[fl->history_head] = new_flow; 4504 4505 fl->history_head++; 4506 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4507 4508 if (likely(fl->buckets[old_flow])) 4509 fl->buckets[old_flow]--; 4510 4511 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4512 fl->count++; 4513 rcu_read_unlock(); 4514 return true; 4515 } 4516 } 4517 rcu_read_unlock(); 4518 #endif 4519 return false; 4520 } 4521 4522 /* 4523 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4524 * queue (may be a remote CPU queue). 4525 */ 4526 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4527 unsigned int *qtail) 4528 { 4529 struct softnet_data *sd; 4530 unsigned long flags; 4531 unsigned int qlen; 4532 4533 sd = &per_cpu(softnet_data, cpu); 4534 4535 local_irq_save(flags); 4536 4537 rps_lock(sd); 4538 if (!netif_running(skb->dev)) 4539 goto drop; 4540 qlen = skb_queue_len(&sd->input_pkt_queue); 4541 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4542 if (qlen) { 4543 enqueue: 4544 __skb_queue_tail(&sd->input_pkt_queue, skb); 4545 input_queue_tail_incr_save(sd, qtail); 4546 rps_unlock(sd); 4547 local_irq_restore(flags); 4548 return NET_RX_SUCCESS; 4549 } 4550 4551 /* Schedule NAPI for backlog device 4552 * We can use non atomic operation since we own the queue lock 4553 */ 4554 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4555 if (!rps_ipi_queued(sd)) 4556 ____napi_schedule(sd, &sd->backlog); 4557 } 4558 goto enqueue; 4559 } 4560 4561 drop: 4562 sd->dropped++; 4563 rps_unlock(sd); 4564 4565 local_irq_restore(flags); 4566 4567 atomic_long_inc(&skb->dev->rx_dropped); 4568 kfree_skb(skb); 4569 return NET_RX_DROP; 4570 } 4571 4572 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4573 { 4574 struct net_device *dev = skb->dev; 4575 struct netdev_rx_queue *rxqueue; 4576 4577 rxqueue = dev->_rx; 4578 4579 if (skb_rx_queue_recorded(skb)) { 4580 u16 index = skb_get_rx_queue(skb); 4581 4582 if (unlikely(index >= dev->real_num_rx_queues)) { 4583 WARN_ONCE(dev->real_num_rx_queues > 1, 4584 "%s received packet on queue %u, but number " 4585 "of RX queues is %u\n", 4586 dev->name, index, dev->real_num_rx_queues); 4587 4588 return rxqueue; /* Return first rxqueue */ 4589 } 4590 rxqueue += index; 4591 } 4592 return rxqueue; 4593 } 4594 4595 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4596 struct xdp_buff *xdp, 4597 struct bpf_prog *xdp_prog) 4598 { 4599 struct netdev_rx_queue *rxqueue; 4600 void *orig_data, *orig_data_end; 4601 u32 metalen, act = XDP_DROP; 4602 __be16 orig_eth_type; 4603 struct ethhdr *eth; 4604 bool orig_bcast; 4605 int hlen, off; 4606 u32 mac_len; 4607 4608 /* Reinjected packets coming from act_mirred or similar should 4609 * not get XDP generic processing. 4610 */ 4611 if (skb_is_redirected(skb)) 4612 return XDP_PASS; 4613 4614 /* XDP packets must be linear and must have sufficient headroom 4615 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4616 * native XDP provides, thus we need to do it here as well. 4617 */ 4618 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4619 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4620 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4621 int troom = skb->tail + skb->data_len - skb->end; 4622 4623 /* In case we have to go down the path and also linearize, 4624 * then lets do the pskb_expand_head() work just once here. 4625 */ 4626 if (pskb_expand_head(skb, 4627 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4628 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4629 goto do_drop; 4630 if (skb_linearize(skb)) 4631 goto do_drop; 4632 } 4633 4634 /* The XDP program wants to see the packet starting at the MAC 4635 * header. 4636 */ 4637 mac_len = skb->data - skb_mac_header(skb); 4638 hlen = skb_headlen(skb) + mac_len; 4639 xdp->data = skb->data - mac_len; 4640 xdp->data_meta = xdp->data; 4641 xdp->data_end = xdp->data + hlen; 4642 xdp->data_hard_start = skb->data - skb_headroom(skb); 4643 4644 /* SKB "head" area always have tailroom for skb_shared_info */ 4645 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start; 4646 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4647 4648 orig_data_end = xdp->data_end; 4649 orig_data = xdp->data; 4650 eth = (struct ethhdr *)xdp->data; 4651 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4652 orig_eth_type = eth->h_proto; 4653 4654 rxqueue = netif_get_rxqueue(skb); 4655 xdp->rxq = &rxqueue->xdp_rxq; 4656 4657 act = bpf_prog_run_xdp(xdp_prog, xdp); 4658 4659 /* check if bpf_xdp_adjust_head was used */ 4660 off = xdp->data - orig_data; 4661 if (off) { 4662 if (off > 0) 4663 __skb_pull(skb, off); 4664 else if (off < 0) 4665 __skb_push(skb, -off); 4666 4667 skb->mac_header += off; 4668 skb_reset_network_header(skb); 4669 } 4670 4671 /* check if bpf_xdp_adjust_tail was used */ 4672 off = xdp->data_end - orig_data_end; 4673 if (off != 0) { 4674 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4675 skb->len += off; /* positive on grow, negative on shrink */ 4676 } 4677 4678 /* check if XDP changed eth hdr such SKB needs update */ 4679 eth = (struct ethhdr *)xdp->data; 4680 if ((orig_eth_type != eth->h_proto) || 4681 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4682 __skb_push(skb, ETH_HLEN); 4683 skb->protocol = eth_type_trans(skb, skb->dev); 4684 } 4685 4686 switch (act) { 4687 case XDP_REDIRECT: 4688 case XDP_TX: 4689 __skb_push(skb, mac_len); 4690 break; 4691 case XDP_PASS: 4692 metalen = xdp->data - xdp->data_meta; 4693 if (metalen) 4694 skb_metadata_set(skb, metalen); 4695 break; 4696 default: 4697 bpf_warn_invalid_xdp_action(act); 4698 fallthrough; 4699 case XDP_ABORTED: 4700 trace_xdp_exception(skb->dev, xdp_prog, act); 4701 fallthrough; 4702 case XDP_DROP: 4703 do_drop: 4704 kfree_skb(skb); 4705 break; 4706 } 4707 4708 return act; 4709 } 4710 4711 /* When doing generic XDP we have to bypass the qdisc layer and the 4712 * network taps in order to match in-driver-XDP behavior. 4713 */ 4714 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4715 { 4716 struct net_device *dev = skb->dev; 4717 struct netdev_queue *txq; 4718 bool free_skb = true; 4719 int cpu, rc; 4720 4721 txq = netdev_core_pick_tx(dev, skb, NULL); 4722 cpu = smp_processor_id(); 4723 HARD_TX_LOCK(dev, txq, cpu); 4724 if (!netif_xmit_stopped(txq)) { 4725 rc = netdev_start_xmit(skb, dev, txq, 0); 4726 if (dev_xmit_complete(rc)) 4727 free_skb = false; 4728 } 4729 HARD_TX_UNLOCK(dev, txq); 4730 if (free_skb) { 4731 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4732 kfree_skb(skb); 4733 } 4734 } 4735 4736 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4737 4738 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4739 { 4740 if (xdp_prog) { 4741 struct xdp_buff xdp; 4742 u32 act; 4743 int err; 4744 4745 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4746 if (act != XDP_PASS) { 4747 switch (act) { 4748 case XDP_REDIRECT: 4749 err = xdp_do_generic_redirect(skb->dev, skb, 4750 &xdp, xdp_prog); 4751 if (err) 4752 goto out_redir; 4753 break; 4754 case XDP_TX: 4755 generic_xdp_tx(skb, xdp_prog); 4756 break; 4757 } 4758 return XDP_DROP; 4759 } 4760 } 4761 return XDP_PASS; 4762 out_redir: 4763 kfree_skb(skb); 4764 return XDP_DROP; 4765 } 4766 EXPORT_SYMBOL_GPL(do_xdp_generic); 4767 4768 static int netif_rx_internal(struct sk_buff *skb) 4769 { 4770 int ret; 4771 4772 net_timestamp_check(netdev_tstamp_prequeue, skb); 4773 4774 trace_netif_rx(skb); 4775 4776 #ifdef CONFIG_RPS 4777 if (static_branch_unlikely(&rps_needed)) { 4778 struct rps_dev_flow voidflow, *rflow = &voidflow; 4779 int cpu; 4780 4781 preempt_disable(); 4782 rcu_read_lock(); 4783 4784 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4785 if (cpu < 0) 4786 cpu = smp_processor_id(); 4787 4788 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4789 4790 rcu_read_unlock(); 4791 preempt_enable(); 4792 } else 4793 #endif 4794 { 4795 unsigned int qtail; 4796 4797 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4798 put_cpu(); 4799 } 4800 return ret; 4801 } 4802 4803 /** 4804 * netif_rx - post buffer to the network code 4805 * @skb: buffer to post 4806 * 4807 * This function receives a packet from a device driver and queues it for 4808 * the upper (protocol) levels to process. It always succeeds. The buffer 4809 * may be dropped during processing for congestion control or by the 4810 * protocol layers. 4811 * 4812 * return values: 4813 * NET_RX_SUCCESS (no congestion) 4814 * NET_RX_DROP (packet was dropped) 4815 * 4816 */ 4817 4818 int netif_rx(struct sk_buff *skb) 4819 { 4820 int ret; 4821 4822 trace_netif_rx_entry(skb); 4823 4824 ret = netif_rx_internal(skb); 4825 trace_netif_rx_exit(ret); 4826 4827 return ret; 4828 } 4829 EXPORT_SYMBOL(netif_rx); 4830 4831 int netif_rx_ni(struct sk_buff *skb) 4832 { 4833 int err; 4834 4835 trace_netif_rx_ni_entry(skb); 4836 4837 preempt_disable(); 4838 err = netif_rx_internal(skb); 4839 if (local_softirq_pending()) 4840 do_softirq(); 4841 preempt_enable(); 4842 trace_netif_rx_ni_exit(err); 4843 4844 return err; 4845 } 4846 EXPORT_SYMBOL(netif_rx_ni); 4847 4848 int netif_rx_any_context(struct sk_buff *skb) 4849 { 4850 /* 4851 * If invoked from contexts which do not invoke bottom half 4852 * processing either at return from interrupt or when softrqs are 4853 * reenabled, use netif_rx_ni() which invokes bottomhalf processing 4854 * directly. 4855 */ 4856 if (in_interrupt()) 4857 return netif_rx(skb); 4858 else 4859 return netif_rx_ni(skb); 4860 } 4861 EXPORT_SYMBOL(netif_rx_any_context); 4862 4863 static __latent_entropy void net_tx_action(struct softirq_action *h) 4864 { 4865 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4866 4867 if (sd->completion_queue) { 4868 struct sk_buff *clist; 4869 4870 local_irq_disable(); 4871 clist = sd->completion_queue; 4872 sd->completion_queue = NULL; 4873 local_irq_enable(); 4874 4875 while (clist) { 4876 struct sk_buff *skb = clist; 4877 4878 clist = clist->next; 4879 4880 WARN_ON(refcount_read(&skb->users)); 4881 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4882 trace_consume_skb(skb); 4883 else 4884 trace_kfree_skb(skb, net_tx_action); 4885 4886 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4887 __kfree_skb(skb); 4888 else 4889 __kfree_skb_defer(skb); 4890 } 4891 4892 __kfree_skb_flush(); 4893 } 4894 4895 if (sd->output_queue) { 4896 struct Qdisc *head; 4897 4898 local_irq_disable(); 4899 head = sd->output_queue; 4900 sd->output_queue = NULL; 4901 sd->output_queue_tailp = &sd->output_queue; 4902 local_irq_enable(); 4903 4904 while (head) { 4905 struct Qdisc *q = head; 4906 spinlock_t *root_lock = NULL; 4907 4908 head = head->next_sched; 4909 4910 if (!(q->flags & TCQ_F_NOLOCK)) { 4911 root_lock = qdisc_lock(q); 4912 spin_lock(root_lock); 4913 } 4914 /* We need to make sure head->next_sched is read 4915 * before clearing __QDISC_STATE_SCHED 4916 */ 4917 smp_mb__before_atomic(); 4918 clear_bit(__QDISC_STATE_SCHED, &q->state); 4919 qdisc_run(q); 4920 if (root_lock) 4921 spin_unlock(root_lock); 4922 } 4923 } 4924 4925 xfrm_dev_backlog(sd); 4926 } 4927 4928 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4929 /* This hook is defined here for ATM LANE */ 4930 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4931 unsigned char *addr) __read_mostly; 4932 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4933 #endif 4934 4935 static inline struct sk_buff * 4936 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4937 struct net_device *orig_dev, bool *another) 4938 { 4939 #ifdef CONFIG_NET_CLS_ACT 4940 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4941 struct tcf_result cl_res; 4942 4943 /* If there's at least one ingress present somewhere (so 4944 * we get here via enabled static key), remaining devices 4945 * that are not configured with an ingress qdisc will bail 4946 * out here. 4947 */ 4948 if (!miniq) 4949 return skb; 4950 4951 if (*pt_prev) { 4952 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4953 *pt_prev = NULL; 4954 } 4955 4956 qdisc_skb_cb(skb)->pkt_len = skb->len; 4957 skb->tc_at_ingress = 1; 4958 mini_qdisc_bstats_cpu_update(miniq, skb); 4959 4960 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list, 4961 &cl_res, false)) { 4962 case TC_ACT_OK: 4963 case TC_ACT_RECLASSIFY: 4964 skb->tc_index = TC_H_MIN(cl_res.classid); 4965 break; 4966 case TC_ACT_SHOT: 4967 mini_qdisc_qstats_cpu_drop(miniq); 4968 kfree_skb(skb); 4969 return NULL; 4970 case TC_ACT_STOLEN: 4971 case TC_ACT_QUEUED: 4972 case TC_ACT_TRAP: 4973 consume_skb(skb); 4974 return NULL; 4975 case TC_ACT_REDIRECT: 4976 /* skb_mac_header check was done by cls/act_bpf, so 4977 * we can safely push the L2 header back before 4978 * redirecting to another netdev 4979 */ 4980 __skb_push(skb, skb->mac_len); 4981 if (skb_do_redirect(skb) == -EAGAIN) { 4982 __skb_pull(skb, skb->mac_len); 4983 *another = true; 4984 break; 4985 } 4986 return NULL; 4987 case TC_ACT_CONSUMED: 4988 return NULL; 4989 default: 4990 break; 4991 } 4992 #endif /* CONFIG_NET_CLS_ACT */ 4993 return skb; 4994 } 4995 4996 /** 4997 * netdev_is_rx_handler_busy - check if receive handler is registered 4998 * @dev: device to check 4999 * 5000 * Check if a receive handler is already registered for a given device. 5001 * Return true if there one. 5002 * 5003 * The caller must hold the rtnl_mutex. 5004 */ 5005 bool netdev_is_rx_handler_busy(struct net_device *dev) 5006 { 5007 ASSERT_RTNL(); 5008 return dev && rtnl_dereference(dev->rx_handler); 5009 } 5010 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5011 5012 /** 5013 * netdev_rx_handler_register - register receive handler 5014 * @dev: device to register a handler for 5015 * @rx_handler: receive handler to register 5016 * @rx_handler_data: data pointer that is used by rx handler 5017 * 5018 * Register a receive handler for a device. This handler will then be 5019 * called from __netif_receive_skb. A negative errno code is returned 5020 * on a failure. 5021 * 5022 * The caller must hold the rtnl_mutex. 5023 * 5024 * For a general description of rx_handler, see enum rx_handler_result. 5025 */ 5026 int netdev_rx_handler_register(struct net_device *dev, 5027 rx_handler_func_t *rx_handler, 5028 void *rx_handler_data) 5029 { 5030 if (netdev_is_rx_handler_busy(dev)) 5031 return -EBUSY; 5032 5033 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5034 return -EINVAL; 5035 5036 /* Note: rx_handler_data must be set before rx_handler */ 5037 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5038 rcu_assign_pointer(dev->rx_handler, rx_handler); 5039 5040 return 0; 5041 } 5042 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5043 5044 /** 5045 * netdev_rx_handler_unregister - unregister receive handler 5046 * @dev: device to unregister a handler from 5047 * 5048 * Unregister a receive handler from a device. 5049 * 5050 * The caller must hold the rtnl_mutex. 5051 */ 5052 void netdev_rx_handler_unregister(struct net_device *dev) 5053 { 5054 5055 ASSERT_RTNL(); 5056 RCU_INIT_POINTER(dev->rx_handler, NULL); 5057 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5058 * section has a guarantee to see a non NULL rx_handler_data 5059 * as well. 5060 */ 5061 synchronize_net(); 5062 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5063 } 5064 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5065 5066 /* 5067 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5068 * the special handling of PFMEMALLOC skbs. 5069 */ 5070 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5071 { 5072 switch (skb->protocol) { 5073 case htons(ETH_P_ARP): 5074 case htons(ETH_P_IP): 5075 case htons(ETH_P_IPV6): 5076 case htons(ETH_P_8021Q): 5077 case htons(ETH_P_8021AD): 5078 return true; 5079 default: 5080 return false; 5081 } 5082 } 5083 5084 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5085 int *ret, struct net_device *orig_dev) 5086 { 5087 if (nf_hook_ingress_active(skb)) { 5088 int ingress_retval; 5089 5090 if (*pt_prev) { 5091 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5092 *pt_prev = NULL; 5093 } 5094 5095 rcu_read_lock(); 5096 ingress_retval = nf_hook_ingress(skb); 5097 rcu_read_unlock(); 5098 return ingress_retval; 5099 } 5100 return 0; 5101 } 5102 5103 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5104 struct packet_type **ppt_prev) 5105 { 5106 struct packet_type *ptype, *pt_prev; 5107 rx_handler_func_t *rx_handler; 5108 struct sk_buff *skb = *pskb; 5109 struct net_device *orig_dev; 5110 bool deliver_exact = false; 5111 int ret = NET_RX_DROP; 5112 __be16 type; 5113 5114 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5115 5116 trace_netif_receive_skb(skb); 5117 5118 orig_dev = skb->dev; 5119 5120 skb_reset_network_header(skb); 5121 if (!skb_transport_header_was_set(skb)) 5122 skb_reset_transport_header(skb); 5123 skb_reset_mac_len(skb); 5124 5125 pt_prev = NULL; 5126 5127 another_round: 5128 skb->skb_iif = skb->dev->ifindex; 5129 5130 __this_cpu_inc(softnet_data.processed); 5131 5132 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5133 int ret2; 5134 5135 preempt_disable(); 5136 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5137 preempt_enable(); 5138 5139 if (ret2 != XDP_PASS) { 5140 ret = NET_RX_DROP; 5141 goto out; 5142 } 5143 skb_reset_mac_len(skb); 5144 } 5145 5146 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5147 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5148 skb = skb_vlan_untag(skb); 5149 if (unlikely(!skb)) 5150 goto out; 5151 } 5152 5153 if (skb_skip_tc_classify(skb)) 5154 goto skip_classify; 5155 5156 if (pfmemalloc) 5157 goto skip_taps; 5158 5159 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5160 if (pt_prev) 5161 ret = deliver_skb(skb, pt_prev, orig_dev); 5162 pt_prev = ptype; 5163 } 5164 5165 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5166 if (pt_prev) 5167 ret = deliver_skb(skb, pt_prev, orig_dev); 5168 pt_prev = ptype; 5169 } 5170 5171 skip_taps: 5172 #ifdef CONFIG_NET_INGRESS 5173 if (static_branch_unlikely(&ingress_needed_key)) { 5174 bool another = false; 5175 5176 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5177 &another); 5178 if (another) 5179 goto another_round; 5180 if (!skb) 5181 goto out; 5182 5183 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5184 goto out; 5185 } 5186 #endif 5187 skb_reset_redirect(skb); 5188 skip_classify: 5189 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5190 goto drop; 5191 5192 if (skb_vlan_tag_present(skb)) { 5193 if (pt_prev) { 5194 ret = deliver_skb(skb, pt_prev, orig_dev); 5195 pt_prev = NULL; 5196 } 5197 if (vlan_do_receive(&skb)) 5198 goto another_round; 5199 else if (unlikely(!skb)) 5200 goto out; 5201 } 5202 5203 rx_handler = rcu_dereference(skb->dev->rx_handler); 5204 if (rx_handler) { 5205 if (pt_prev) { 5206 ret = deliver_skb(skb, pt_prev, orig_dev); 5207 pt_prev = NULL; 5208 } 5209 switch (rx_handler(&skb)) { 5210 case RX_HANDLER_CONSUMED: 5211 ret = NET_RX_SUCCESS; 5212 goto out; 5213 case RX_HANDLER_ANOTHER: 5214 goto another_round; 5215 case RX_HANDLER_EXACT: 5216 deliver_exact = true; 5217 case RX_HANDLER_PASS: 5218 break; 5219 default: 5220 BUG(); 5221 } 5222 } 5223 5224 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5225 check_vlan_id: 5226 if (skb_vlan_tag_get_id(skb)) { 5227 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5228 * find vlan device. 5229 */ 5230 skb->pkt_type = PACKET_OTHERHOST; 5231 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5232 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5233 /* Outer header is 802.1P with vlan 0, inner header is 5234 * 802.1Q or 802.1AD and vlan_do_receive() above could 5235 * not find vlan dev for vlan id 0. 5236 */ 5237 __vlan_hwaccel_clear_tag(skb); 5238 skb = skb_vlan_untag(skb); 5239 if (unlikely(!skb)) 5240 goto out; 5241 if (vlan_do_receive(&skb)) 5242 /* After stripping off 802.1P header with vlan 0 5243 * vlan dev is found for inner header. 5244 */ 5245 goto another_round; 5246 else if (unlikely(!skb)) 5247 goto out; 5248 else 5249 /* We have stripped outer 802.1P vlan 0 header. 5250 * But could not find vlan dev. 5251 * check again for vlan id to set OTHERHOST. 5252 */ 5253 goto check_vlan_id; 5254 } 5255 /* Note: we might in the future use prio bits 5256 * and set skb->priority like in vlan_do_receive() 5257 * For the time being, just ignore Priority Code Point 5258 */ 5259 __vlan_hwaccel_clear_tag(skb); 5260 } 5261 5262 type = skb->protocol; 5263 5264 /* deliver only exact match when indicated */ 5265 if (likely(!deliver_exact)) { 5266 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5267 &ptype_base[ntohs(type) & 5268 PTYPE_HASH_MASK]); 5269 } 5270 5271 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5272 &orig_dev->ptype_specific); 5273 5274 if (unlikely(skb->dev != orig_dev)) { 5275 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5276 &skb->dev->ptype_specific); 5277 } 5278 5279 if (pt_prev) { 5280 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5281 goto drop; 5282 *ppt_prev = pt_prev; 5283 } else { 5284 drop: 5285 if (!deliver_exact) 5286 atomic_long_inc(&skb->dev->rx_dropped); 5287 else 5288 atomic_long_inc(&skb->dev->rx_nohandler); 5289 kfree_skb(skb); 5290 /* Jamal, now you will not able to escape explaining 5291 * me how you were going to use this. :-) 5292 */ 5293 ret = NET_RX_DROP; 5294 } 5295 5296 out: 5297 /* The invariant here is that if *ppt_prev is not NULL 5298 * then skb should also be non-NULL. 5299 * 5300 * Apparently *ppt_prev assignment above holds this invariant due to 5301 * skb dereferencing near it. 5302 */ 5303 *pskb = skb; 5304 return ret; 5305 } 5306 5307 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5308 { 5309 struct net_device *orig_dev = skb->dev; 5310 struct packet_type *pt_prev = NULL; 5311 int ret; 5312 5313 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5314 if (pt_prev) 5315 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5316 skb->dev, pt_prev, orig_dev); 5317 return ret; 5318 } 5319 5320 /** 5321 * netif_receive_skb_core - special purpose version of netif_receive_skb 5322 * @skb: buffer to process 5323 * 5324 * More direct receive version of netif_receive_skb(). It should 5325 * only be used by callers that have a need to skip RPS and Generic XDP. 5326 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5327 * 5328 * This function may only be called from softirq context and interrupts 5329 * should be enabled. 5330 * 5331 * Return values (usually ignored): 5332 * NET_RX_SUCCESS: no congestion 5333 * NET_RX_DROP: packet was dropped 5334 */ 5335 int netif_receive_skb_core(struct sk_buff *skb) 5336 { 5337 int ret; 5338 5339 rcu_read_lock(); 5340 ret = __netif_receive_skb_one_core(skb, false); 5341 rcu_read_unlock(); 5342 5343 return ret; 5344 } 5345 EXPORT_SYMBOL(netif_receive_skb_core); 5346 5347 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5348 struct packet_type *pt_prev, 5349 struct net_device *orig_dev) 5350 { 5351 struct sk_buff *skb, *next; 5352 5353 if (!pt_prev) 5354 return; 5355 if (list_empty(head)) 5356 return; 5357 if (pt_prev->list_func != NULL) 5358 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5359 ip_list_rcv, head, pt_prev, orig_dev); 5360 else 5361 list_for_each_entry_safe(skb, next, head, list) { 5362 skb_list_del_init(skb); 5363 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5364 } 5365 } 5366 5367 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5368 { 5369 /* Fast-path assumptions: 5370 * - There is no RX handler. 5371 * - Only one packet_type matches. 5372 * If either of these fails, we will end up doing some per-packet 5373 * processing in-line, then handling the 'last ptype' for the whole 5374 * sublist. This can't cause out-of-order delivery to any single ptype, 5375 * because the 'last ptype' must be constant across the sublist, and all 5376 * other ptypes are handled per-packet. 5377 */ 5378 /* Current (common) ptype of sublist */ 5379 struct packet_type *pt_curr = NULL; 5380 /* Current (common) orig_dev of sublist */ 5381 struct net_device *od_curr = NULL; 5382 struct list_head sublist; 5383 struct sk_buff *skb, *next; 5384 5385 INIT_LIST_HEAD(&sublist); 5386 list_for_each_entry_safe(skb, next, head, list) { 5387 struct net_device *orig_dev = skb->dev; 5388 struct packet_type *pt_prev = NULL; 5389 5390 skb_list_del_init(skb); 5391 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5392 if (!pt_prev) 5393 continue; 5394 if (pt_curr != pt_prev || od_curr != orig_dev) { 5395 /* dispatch old sublist */ 5396 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5397 /* start new sublist */ 5398 INIT_LIST_HEAD(&sublist); 5399 pt_curr = pt_prev; 5400 od_curr = orig_dev; 5401 } 5402 list_add_tail(&skb->list, &sublist); 5403 } 5404 5405 /* dispatch final sublist */ 5406 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5407 } 5408 5409 static int __netif_receive_skb(struct sk_buff *skb) 5410 { 5411 int ret; 5412 5413 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5414 unsigned int noreclaim_flag; 5415 5416 /* 5417 * PFMEMALLOC skbs are special, they should 5418 * - be delivered to SOCK_MEMALLOC sockets only 5419 * - stay away from userspace 5420 * - have bounded memory usage 5421 * 5422 * Use PF_MEMALLOC as this saves us from propagating the allocation 5423 * context down to all allocation sites. 5424 */ 5425 noreclaim_flag = memalloc_noreclaim_save(); 5426 ret = __netif_receive_skb_one_core(skb, true); 5427 memalloc_noreclaim_restore(noreclaim_flag); 5428 } else 5429 ret = __netif_receive_skb_one_core(skb, false); 5430 5431 return ret; 5432 } 5433 5434 static void __netif_receive_skb_list(struct list_head *head) 5435 { 5436 unsigned long noreclaim_flag = 0; 5437 struct sk_buff *skb, *next; 5438 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5439 5440 list_for_each_entry_safe(skb, next, head, list) { 5441 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5442 struct list_head sublist; 5443 5444 /* Handle the previous sublist */ 5445 list_cut_before(&sublist, head, &skb->list); 5446 if (!list_empty(&sublist)) 5447 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5448 pfmemalloc = !pfmemalloc; 5449 /* See comments in __netif_receive_skb */ 5450 if (pfmemalloc) 5451 noreclaim_flag = memalloc_noreclaim_save(); 5452 else 5453 memalloc_noreclaim_restore(noreclaim_flag); 5454 } 5455 } 5456 /* Handle the remaining sublist */ 5457 if (!list_empty(head)) 5458 __netif_receive_skb_list_core(head, pfmemalloc); 5459 /* Restore pflags */ 5460 if (pfmemalloc) 5461 memalloc_noreclaim_restore(noreclaim_flag); 5462 } 5463 5464 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5465 { 5466 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5467 struct bpf_prog *new = xdp->prog; 5468 int ret = 0; 5469 5470 if (new) { 5471 u32 i; 5472 5473 mutex_lock(&new->aux->used_maps_mutex); 5474 5475 /* generic XDP does not work with DEVMAPs that can 5476 * have a bpf_prog installed on an entry 5477 */ 5478 for (i = 0; i < new->aux->used_map_cnt; i++) { 5479 if (dev_map_can_have_prog(new->aux->used_maps[i]) || 5480 cpu_map_prog_allowed(new->aux->used_maps[i])) { 5481 mutex_unlock(&new->aux->used_maps_mutex); 5482 return -EINVAL; 5483 } 5484 } 5485 5486 mutex_unlock(&new->aux->used_maps_mutex); 5487 } 5488 5489 switch (xdp->command) { 5490 case XDP_SETUP_PROG: 5491 rcu_assign_pointer(dev->xdp_prog, new); 5492 if (old) 5493 bpf_prog_put(old); 5494 5495 if (old && !new) { 5496 static_branch_dec(&generic_xdp_needed_key); 5497 } else if (new && !old) { 5498 static_branch_inc(&generic_xdp_needed_key); 5499 dev_disable_lro(dev); 5500 dev_disable_gro_hw(dev); 5501 } 5502 break; 5503 5504 default: 5505 ret = -EINVAL; 5506 break; 5507 } 5508 5509 return ret; 5510 } 5511 5512 static int netif_receive_skb_internal(struct sk_buff *skb) 5513 { 5514 int ret; 5515 5516 net_timestamp_check(netdev_tstamp_prequeue, skb); 5517 5518 if (skb_defer_rx_timestamp(skb)) 5519 return NET_RX_SUCCESS; 5520 5521 rcu_read_lock(); 5522 #ifdef CONFIG_RPS 5523 if (static_branch_unlikely(&rps_needed)) { 5524 struct rps_dev_flow voidflow, *rflow = &voidflow; 5525 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5526 5527 if (cpu >= 0) { 5528 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5529 rcu_read_unlock(); 5530 return ret; 5531 } 5532 } 5533 #endif 5534 ret = __netif_receive_skb(skb); 5535 rcu_read_unlock(); 5536 return ret; 5537 } 5538 5539 static void netif_receive_skb_list_internal(struct list_head *head) 5540 { 5541 struct sk_buff *skb, *next; 5542 struct list_head sublist; 5543 5544 INIT_LIST_HEAD(&sublist); 5545 list_for_each_entry_safe(skb, next, head, list) { 5546 net_timestamp_check(netdev_tstamp_prequeue, skb); 5547 skb_list_del_init(skb); 5548 if (!skb_defer_rx_timestamp(skb)) 5549 list_add_tail(&skb->list, &sublist); 5550 } 5551 list_splice_init(&sublist, head); 5552 5553 rcu_read_lock(); 5554 #ifdef CONFIG_RPS 5555 if (static_branch_unlikely(&rps_needed)) { 5556 list_for_each_entry_safe(skb, next, head, list) { 5557 struct rps_dev_flow voidflow, *rflow = &voidflow; 5558 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5559 5560 if (cpu >= 0) { 5561 /* Will be handled, remove from list */ 5562 skb_list_del_init(skb); 5563 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5564 } 5565 } 5566 } 5567 #endif 5568 __netif_receive_skb_list(head); 5569 rcu_read_unlock(); 5570 } 5571 5572 /** 5573 * netif_receive_skb - process receive buffer from network 5574 * @skb: buffer to process 5575 * 5576 * netif_receive_skb() is the main receive data processing function. 5577 * It always succeeds. The buffer may be dropped during processing 5578 * for congestion control or by the protocol layers. 5579 * 5580 * This function may only be called from softirq context and interrupts 5581 * should be enabled. 5582 * 5583 * Return values (usually ignored): 5584 * NET_RX_SUCCESS: no congestion 5585 * NET_RX_DROP: packet was dropped 5586 */ 5587 int netif_receive_skb(struct sk_buff *skb) 5588 { 5589 int ret; 5590 5591 trace_netif_receive_skb_entry(skb); 5592 5593 ret = netif_receive_skb_internal(skb); 5594 trace_netif_receive_skb_exit(ret); 5595 5596 return ret; 5597 } 5598 EXPORT_SYMBOL(netif_receive_skb); 5599 5600 /** 5601 * netif_receive_skb_list - process many receive buffers from network 5602 * @head: list of skbs to process. 5603 * 5604 * Since return value of netif_receive_skb() is normally ignored, and 5605 * wouldn't be meaningful for a list, this function returns void. 5606 * 5607 * This function may only be called from softirq context and interrupts 5608 * should be enabled. 5609 */ 5610 void netif_receive_skb_list(struct list_head *head) 5611 { 5612 struct sk_buff *skb; 5613 5614 if (list_empty(head)) 5615 return; 5616 if (trace_netif_receive_skb_list_entry_enabled()) { 5617 list_for_each_entry(skb, head, list) 5618 trace_netif_receive_skb_list_entry(skb); 5619 } 5620 netif_receive_skb_list_internal(head); 5621 trace_netif_receive_skb_list_exit(0); 5622 } 5623 EXPORT_SYMBOL(netif_receive_skb_list); 5624 5625 static DEFINE_PER_CPU(struct work_struct, flush_works); 5626 5627 /* Network device is going away, flush any packets still pending */ 5628 static void flush_backlog(struct work_struct *work) 5629 { 5630 struct sk_buff *skb, *tmp; 5631 struct softnet_data *sd; 5632 5633 local_bh_disable(); 5634 sd = this_cpu_ptr(&softnet_data); 5635 5636 local_irq_disable(); 5637 rps_lock(sd); 5638 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5639 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5640 __skb_unlink(skb, &sd->input_pkt_queue); 5641 dev_kfree_skb_irq(skb); 5642 input_queue_head_incr(sd); 5643 } 5644 } 5645 rps_unlock(sd); 5646 local_irq_enable(); 5647 5648 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5649 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5650 __skb_unlink(skb, &sd->process_queue); 5651 kfree_skb(skb); 5652 input_queue_head_incr(sd); 5653 } 5654 } 5655 local_bh_enable(); 5656 } 5657 5658 static bool flush_required(int cpu) 5659 { 5660 #if IS_ENABLED(CONFIG_RPS) 5661 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5662 bool do_flush; 5663 5664 local_irq_disable(); 5665 rps_lock(sd); 5666 5667 /* as insertion into process_queue happens with the rps lock held, 5668 * process_queue access may race only with dequeue 5669 */ 5670 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5671 !skb_queue_empty_lockless(&sd->process_queue); 5672 rps_unlock(sd); 5673 local_irq_enable(); 5674 5675 return do_flush; 5676 #endif 5677 /* without RPS we can't safely check input_pkt_queue: during a 5678 * concurrent remote skb_queue_splice() we can detect as empty both 5679 * input_pkt_queue and process_queue even if the latter could end-up 5680 * containing a lot of packets. 5681 */ 5682 return true; 5683 } 5684 5685 static void flush_all_backlogs(void) 5686 { 5687 static cpumask_t flush_cpus; 5688 unsigned int cpu; 5689 5690 /* since we are under rtnl lock protection we can use static data 5691 * for the cpumask and avoid allocating on stack the possibly 5692 * large mask 5693 */ 5694 ASSERT_RTNL(); 5695 5696 get_online_cpus(); 5697 5698 cpumask_clear(&flush_cpus); 5699 for_each_online_cpu(cpu) { 5700 if (flush_required(cpu)) { 5701 queue_work_on(cpu, system_highpri_wq, 5702 per_cpu_ptr(&flush_works, cpu)); 5703 cpumask_set_cpu(cpu, &flush_cpus); 5704 } 5705 } 5706 5707 /* we can have in flight packet[s] on the cpus we are not flushing, 5708 * synchronize_net() in rollback_registered_many() will take care of 5709 * them 5710 */ 5711 for_each_cpu(cpu, &flush_cpus) 5712 flush_work(per_cpu_ptr(&flush_works, cpu)); 5713 5714 put_online_cpus(); 5715 } 5716 5717 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5718 static void gro_normal_list(struct napi_struct *napi) 5719 { 5720 if (!napi->rx_count) 5721 return; 5722 netif_receive_skb_list_internal(&napi->rx_list); 5723 INIT_LIST_HEAD(&napi->rx_list); 5724 napi->rx_count = 0; 5725 } 5726 5727 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5728 * pass the whole batch up to the stack. 5729 */ 5730 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb) 5731 { 5732 list_add_tail(&skb->list, &napi->rx_list); 5733 if (++napi->rx_count >= gro_normal_batch) 5734 gro_normal_list(napi); 5735 } 5736 5737 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5738 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5739 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb) 5740 { 5741 struct packet_offload *ptype; 5742 __be16 type = skb->protocol; 5743 struct list_head *head = &offload_base; 5744 int err = -ENOENT; 5745 5746 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5747 5748 if (NAPI_GRO_CB(skb)->count == 1) { 5749 skb_shinfo(skb)->gso_size = 0; 5750 goto out; 5751 } 5752 5753 rcu_read_lock(); 5754 list_for_each_entry_rcu(ptype, head, list) { 5755 if (ptype->type != type || !ptype->callbacks.gro_complete) 5756 continue; 5757 5758 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5759 ipv6_gro_complete, inet_gro_complete, 5760 skb, 0); 5761 break; 5762 } 5763 rcu_read_unlock(); 5764 5765 if (err) { 5766 WARN_ON(&ptype->list == head); 5767 kfree_skb(skb); 5768 return NET_RX_SUCCESS; 5769 } 5770 5771 out: 5772 gro_normal_one(napi, skb); 5773 return NET_RX_SUCCESS; 5774 } 5775 5776 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5777 bool flush_old) 5778 { 5779 struct list_head *head = &napi->gro_hash[index].list; 5780 struct sk_buff *skb, *p; 5781 5782 list_for_each_entry_safe_reverse(skb, p, head, list) { 5783 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5784 return; 5785 skb_list_del_init(skb); 5786 napi_gro_complete(napi, skb); 5787 napi->gro_hash[index].count--; 5788 } 5789 5790 if (!napi->gro_hash[index].count) 5791 __clear_bit(index, &napi->gro_bitmask); 5792 } 5793 5794 /* napi->gro_hash[].list contains packets ordered by age. 5795 * youngest packets at the head of it. 5796 * Complete skbs in reverse order to reduce latencies. 5797 */ 5798 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5799 { 5800 unsigned long bitmask = napi->gro_bitmask; 5801 unsigned int i, base = ~0U; 5802 5803 while ((i = ffs(bitmask)) != 0) { 5804 bitmask >>= i; 5805 base += i; 5806 __napi_gro_flush_chain(napi, base, flush_old); 5807 } 5808 } 5809 EXPORT_SYMBOL(napi_gro_flush); 5810 5811 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5812 struct sk_buff *skb) 5813 { 5814 unsigned int maclen = skb->dev->hard_header_len; 5815 u32 hash = skb_get_hash_raw(skb); 5816 struct list_head *head; 5817 struct sk_buff *p; 5818 5819 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5820 list_for_each_entry(p, head, list) { 5821 unsigned long diffs; 5822 5823 NAPI_GRO_CB(p)->flush = 0; 5824 5825 if (hash != skb_get_hash_raw(p)) { 5826 NAPI_GRO_CB(p)->same_flow = 0; 5827 continue; 5828 } 5829 5830 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5831 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5832 if (skb_vlan_tag_present(p)) 5833 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb); 5834 diffs |= skb_metadata_dst_cmp(p, skb); 5835 diffs |= skb_metadata_differs(p, skb); 5836 if (maclen == ETH_HLEN) 5837 diffs |= compare_ether_header(skb_mac_header(p), 5838 skb_mac_header(skb)); 5839 else if (!diffs) 5840 diffs = memcmp(skb_mac_header(p), 5841 skb_mac_header(skb), 5842 maclen); 5843 NAPI_GRO_CB(p)->same_flow = !diffs; 5844 } 5845 5846 return head; 5847 } 5848 5849 static void skb_gro_reset_offset(struct sk_buff *skb) 5850 { 5851 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5852 const skb_frag_t *frag0 = &pinfo->frags[0]; 5853 5854 NAPI_GRO_CB(skb)->data_offset = 0; 5855 NAPI_GRO_CB(skb)->frag0 = NULL; 5856 NAPI_GRO_CB(skb)->frag0_len = 0; 5857 5858 if (!skb_headlen(skb) && pinfo->nr_frags && 5859 !PageHighMem(skb_frag_page(frag0))) { 5860 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5861 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5862 skb_frag_size(frag0), 5863 skb->end - skb->tail); 5864 } 5865 } 5866 5867 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5868 { 5869 struct skb_shared_info *pinfo = skb_shinfo(skb); 5870 5871 BUG_ON(skb->end - skb->tail < grow); 5872 5873 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5874 5875 skb->data_len -= grow; 5876 skb->tail += grow; 5877 5878 skb_frag_off_add(&pinfo->frags[0], grow); 5879 skb_frag_size_sub(&pinfo->frags[0], grow); 5880 5881 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5882 skb_frag_unref(skb, 0); 5883 memmove(pinfo->frags, pinfo->frags + 1, 5884 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5885 } 5886 } 5887 5888 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head) 5889 { 5890 struct sk_buff *oldest; 5891 5892 oldest = list_last_entry(head, struct sk_buff, list); 5893 5894 /* We are called with head length >= MAX_GRO_SKBS, so this is 5895 * impossible. 5896 */ 5897 if (WARN_ON_ONCE(!oldest)) 5898 return; 5899 5900 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5901 * SKB to the chain. 5902 */ 5903 skb_list_del_init(oldest); 5904 napi_gro_complete(napi, oldest); 5905 } 5906 5907 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5908 struct sk_buff *)); 5909 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5910 struct sk_buff *)); 5911 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5912 { 5913 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5914 struct list_head *head = &offload_base; 5915 struct packet_offload *ptype; 5916 __be16 type = skb->protocol; 5917 struct list_head *gro_head; 5918 struct sk_buff *pp = NULL; 5919 enum gro_result ret; 5920 int same_flow; 5921 int grow; 5922 5923 if (netif_elide_gro(skb->dev)) 5924 goto normal; 5925 5926 gro_head = gro_list_prepare(napi, skb); 5927 5928 rcu_read_lock(); 5929 list_for_each_entry_rcu(ptype, head, list) { 5930 if (ptype->type != type || !ptype->callbacks.gro_receive) 5931 continue; 5932 5933 skb_set_network_header(skb, skb_gro_offset(skb)); 5934 skb_reset_mac_len(skb); 5935 NAPI_GRO_CB(skb)->same_flow = 0; 5936 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5937 NAPI_GRO_CB(skb)->free = 0; 5938 NAPI_GRO_CB(skb)->encap_mark = 0; 5939 NAPI_GRO_CB(skb)->recursion_counter = 0; 5940 NAPI_GRO_CB(skb)->is_fou = 0; 5941 NAPI_GRO_CB(skb)->is_atomic = 1; 5942 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5943 5944 /* Setup for GRO checksum validation */ 5945 switch (skb->ip_summed) { 5946 case CHECKSUM_COMPLETE: 5947 NAPI_GRO_CB(skb)->csum = skb->csum; 5948 NAPI_GRO_CB(skb)->csum_valid = 1; 5949 NAPI_GRO_CB(skb)->csum_cnt = 0; 5950 break; 5951 case CHECKSUM_UNNECESSARY: 5952 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5953 NAPI_GRO_CB(skb)->csum_valid = 0; 5954 break; 5955 default: 5956 NAPI_GRO_CB(skb)->csum_cnt = 0; 5957 NAPI_GRO_CB(skb)->csum_valid = 0; 5958 } 5959 5960 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5961 ipv6_gro_receive, inet_gro_receive, 5962 gro_head, skb); 5963 break; 5964 } 5965 rcu_read_unlock(); 5966 5967 if (&ptype->list == head) 5968 goto normal; 5969 5970 if (PTR_ERR(pp) == -EINPROGRESS) { 5971 ret = GRO_CONSUMED; 5972 goto ok; 5973 } 5974 5975 same_flow = NAPI_GRO_CB(skb)->same_flow; 5976 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5977 5978 if (pp) { 5979 skb_list_del_init(pp); 5980 napi_gro_complete(napi, pp); 5981 napi->gro_hash[hash].count--; 5982 } 5983 5984 if (same_flow) 5985 goto ok; 5986 5987 if (NAPI_GRO_CB(skb)->flush) 5988 goto normal; 5989 5990 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5991 gro_flush_oldest(napi, gro_head); 5992 } else { 5993 napi->gro_hash[hash].count++; 5994 } 5995 NAPI_GRO_CB(skb)->count = 1; 5996 NAPI_GRO_CB(skb)->age = jiffies; 5997 NAPI_GRO_CB(skb)->last = skb; 5998 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5999 list_add(&skb->list, gro_head); 6000 ret = GRO_HELD; 6001 6002 pull: 6003 grow = skb_gro_offset(skb) - skb_headlen(skb); 6004 if (grow > 0) 6005 gro_pull_from_frag0(skb, grow); 6006 ok: 6007 if (napi->gro_hash[hash].count) { 6008 if (!test_bit(hash, &napi->gro_bitmask)) 6009 __set_bit(hash, &napi->gro_bitmask); 6010 } else if (test_bit(hash, &napi->gro_bitmask)) { 6011 __clear_bit(hash, &napi->gro_bitmask); 6012 } 6013 6014 return ret; 6015 6016 normal: 6017 ret = GRO_NORMAL; 6018 goto pull; 6019 } 6020 6021 struct packet_offload *gro_find_receive_by_type(__be16 type) 6022 { 6023 struct list_head *offload_head = &offload_base; 6024 struct packet_offload *ptype; 6025 6026 list_for_each_entry_rcu(ptype, offload_head, list) { 6027 if (ptype->type != type || !ptype->callbacks.gro_receive) 6028 continue; 6029 return ptype; 6030 } 6031 return NULL; 6032 } 6033 EXPORT_SYMBOL(gro_find_receive_by_type); 6034 6035 struct packet_offload *gro_find_complete_by_type(__be16 type) 6036 { 6037 struct list_head *offload_head = &offload_base; 6038 struct packet_offload *ptype; 6039 6040 list_for_each_entry_rcu(ptype, offload_head, list) { 6041 if (ptype->type != type || !ptype->callbacks.gro_complete) 6042 continue; 6043 return ptype; 6044 } 6045 return NULL; 6046 } 6047 EXPORT_SYMBOL(gro_find_complete_by_type); 6048 6049 static void napi_skb_free_stolen_head(struct sk_buff *skb) 6050 { 6051 skb_dst_drop(skb); 6052 skb_ext_put(skb); 6053 kmem_cache_free(skbuff_head_cache, skb); 6054 } 6055 6056 static gro_result_t napi_skb_finish(struct napi_struct *napi, 6057 struct sk_buff *skb, 6058 gro_result_t ret) 6059 { 6060 switch (ret) { 6061 case GRO_NORMAL: 6062 gro_normal_one(napi, skb); 6063 break; 6064 6065 case GRO_DROP: 6066 kfree_skb(skb); 6067 break; 6068 6069 case GRO_MERGED_FREE: 6070 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6071 napi_skb_free_stolen_head(skb); 6072 else 6073 __kfree_skb(skb); 6074 break; 6075 6076 case GRO_HELD: 6077 case GRO_MERGED: 6078 case GRO_CONSUMED: 6079 break; 6080 } 6081 6082 return ret; 6083 } 6084 6085 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 6086 { 6087 gro_result_t ret; 6088 6089 skb_mark_napi_id(skb, napi); 6090 trace_napi_gro_receive_entry(skb); 6091 6092 skb_gro_reset_offset(skb); 6093 6094 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb)); 6095 trace_napi_gro_receive_exit(ret); 6096 6097 return ret; 6098 } 6099 EXPORT_SYMBOL(napi_gro_receive); 6100 6101 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 6102 { 6103 if (unlikely(skb->pfmemalloc)) { 6104 consume_skb(skb); 6105 return; 6106 } 6107 __skb_pull(skb, skb_headlen(skb)); 6108 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 6109 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 6110 __vlan_hwaccel_clear_tag(skb); 6111 skb->dev = napi->dev; 6112 skb->skb_iif = 0; 6113 6114 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 6115 skb->pkt_type = PACKET_HOST; 6116 6117 skb->encapsulation = 0; 6118 skb_shinfo(skb)->gso_type = 0; 6119 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6120 skb_ext_reset(skb); 6121 6122 napi->skb = skb; 6123 } 6124 6125 struct sk_buff *napi_get_frags(struct napi_struct *napi) 6126 { 6127 struct sk_buff *skb = napi->skb; 6128 6129 if (!skb) { 6130 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 6131 if (skb) { 6132 napi->skb = skb; 6133 skb_mark_napi_id(skb, napi); 6134 } 6135 } 6136 return skb; 6137 } 6138 EXPORT_SYMBOL(napi_get_frags); 6139 6140 static gro_result_t napi_frags_finish(struct napi_struct *napi, 6141 struct sk_buff *skb, 6142 gro_result_t ret) 6143 { 6144 switch (ret) { 6145 case GRO_NORMAL: 6146 case GRO_HELD: 6147 __skb_push(skb, ETH_HLEN); 6148 skb->protocol = eth_type_trans(skb, skb->dev); 6149 if (ret == GRO_NORMAL) 6150 gro_normal_one(napi, skb); 6151 break; 6152 6153 case GRO_DROP: 6154 napi_reuse_skb(napi, skb); 6155 break; 6156 6157 case GRO_MERGED_FREE: 6158 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6159 napi_skb_free_stolen_head(skb); 6160 else 6161 napi_reuse_skb(napi, skb); 6162 break; 6163 6164 case GRO_MERGED: 6165 case GRO_CONSUMED: 6166 break; 6167 } 6168 6169 return ret; 6170 } 6171 6172 /* Upper GRO stack assumes network header starts at gro_offset=0 6173 * Drivers could call both napi_gro_frags() and napi_gro_receive() 6174 * We copy ethernet header into skb->data to have a common layout. 6175 */ 6176 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 6177 { 6178 struct sk_buff *skb = napi->skb; 6179 const struct ethhdr *eth; 6180 unsigned int hlen = sizeof(*eth); 6181 6182 napi->skb = NULL; 6183 6184 skb_reset_mac_header(skb); 6185 skb_gro_reset_offset(skb); 6186 6187 if (unlikely(skb_gro_header_hard(skb, hlen))) { 6188 eth = skb_gro_header_slow(skb, hlen, 0); 6189 if (unlikely(!eth)) { 6190 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 6191 __func__, napi->dev->name); 6192 napi_reuse_skb(napi, skb); 6193 return NULL; 6194 } 6195 } else { 6196 eth = (const struct ethhdr *)skb->data; 6197 gro_pull_from_frag0(skb, hlen); 6198 NAPI_GRO_CB(skb)->frag0 += hlen; 6199 NAPI_GRO_CB(skb)->frag0_len -= hlen; 6200 } 6201 __skb_pull(skb, hlen); 6202 6203 /* 6204 * This works because the only protocols we care about don't require 6205 * special handling. 6206 * We'll fix it up properly in napi_frags_finish() 6207 */ 6208 skb->protocol = eth->h_proto; 6209 6210 return skb; 6211 } 6212 6213 gro_result_t napi_gro_frags(struct napi_struct *napi) 6214 { 6215 gro_result_t ret; 6216 struct sk_buff *skb = napi_frags_skb(napi); 6217 6218 if (!skb) 6219 return GRO_DROP; 6220 6221 trace_napi_gro_frags_entry(skb); 6222 6223 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 6224 trace_napi_gro_frags_exit(ret); 6225 6226 return ret; 6227 } 6228 EXPORT_SYMBOL(napi_gro_frags); 6229 6230 /* Compute the checksum from gro_offset and return the folded value 6231 * after adding in any pseudo checksum. 6232 */ 6233 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 6234 { 6235 __wsum wsum; 6236 __sum16 sum; 6237 6238 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 6239 6240 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 6241 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 6242 /* See comments in __skb_checksum_complete(). */ 6243 if (likely(!sum)) { 6244 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 6245 !skb->csum_complete_sw) 6246 netdev_rx_csum_fault(skb->dev, skb); 6247 } 6248 6249 NAPI_GRO_CB(skb)->csum = wsum; 6250 NAPI_GRO_CB(skb)->csum_valid = 1; 6251 6252 return sum; 6253 } 6254 EXPORT_SYMBOL(__skb_gro_checksum_complete); 6255 6256 static void net_rps_send_ipi(struct softnet_data *remsd) 6257 { 6258 #ifdef CONFIG_RPS 6259 while (remsd) { 6260 struct softnet_data *next = remsd->rps_ipi_next; 6261 6262 if (cpu_online(remsd->cpu)) 6263 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6264 remsd = next; 6265 } 6266 #endif 6267 } 6268 6269 /* 6270 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6271 * Note: called with local irq disabled, but exits with local irq enabled. 6272 */ 6273 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6274 { 6275 #ifdef CONFIG_RPS 6276 struct softnet_data *remsd = sd->rps_ipi_list; 6277 6278 if (remsd) { 6279 sd->rps_ipi_list = NULL; 6280 6281 local_irq_enable(); 6282 6283 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6284 net_rps_send_ipi(remsd); 6285 } else 6286 #endif 6287 local_irq_enable(); 6288 } 6289 6290 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6291 { 6292 #ifdef CONFIG_RPS 6293 return sd->rps_ipi_list != NULL; 6294 #else 6295 return false; 6296 #endif 6297 } 6298 6299 static int process_backlog(struct napi_struct *napi, int quota) 6300 { 6301 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6302 bool again = true; 6303 int work = 0; 6304 6305 /* Check if we have pending ipi, its better to send them now, 6306 * not waiting net_rx_action() end. 6307 */ 6308 if (sd_has_rps_ipi_waiting(sd)) { 6309 local_irq_disable(); 6310 net_rps_action_and_irq_enable(sd); 6311 } 6312 6313 napi->weight = dev_rx_weight; 6314 while (again) { 6315 struct sk_buff *skb; 6316 6317 while ((skb = __skb_dequeue(&sd->process_queue))) { 6318 rcu_read_lock(); 6319 __netif_receive_skb(skb); 6320 rcu_read_unlock(); 6321 input_queue_head_incr(sd); 6322 if (++work >= quota) 6323 return work; 6324 6325 } 6326 6327 local_irq_disable(); 6328 rps_lock(sd); 6329 if (skb_queue_empty(&sd->input_pkt_queue)) { 6330 /* 6331 * Inline a custom version of __napi_complete(). 6332 * only current cpu owns and manipulates this napi, 6333 * and NAPI_STATE_SCHED is the only possible flag set 6334 * on backlog. 6335 * We can use a plain write instead of clear_bit(), 6336 * and we dont need an smp_mb() memory barrier. 6337 */ 6338 napi->state = 0; 6339 again = false; 6340 } else { 6341 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6342 &sd->process_queue); 6343 } 6344 rps_unlock(sd); 6345 local_irq_enable(); 6346 } 6347 6348 return work; 6349 } 6350 6351 /** 6352 * __napi_schedule - schedule for receive 6353 * @n: entry to schedule 6354 * 6355 * The entry's receive function will be scheduled to run. 6356 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6357 */ 6358 void __napi_schedule(struct napi_struct *n) 6359 { 6360 unsigned long flags; 6361 6362 local_irq_save(flags); 6363 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6364 local_irq_restore(flags); 6365 } 6366 EXPORT_SYMBOL(__napi_schedule); 6367 6368 /** 6369 * napi_schedule_prep - check if napi can be scheduled 6370 * @n: napi context 6371 * 6372 * Test if NAPI routine is already running, and if not mark 6373 * it as running. This is used as a condition variable to 6374 * insure only one NAPI poll instance runs. We also make 6375 * sure there is no pending NAPI disable. 6376 */ 6377 bool napi_schedule_prep(struct napi_struct *n) 6378 { 6379 unsigned long val, new; 6380 6381 do { 6382 val = READ_ONCE(n->state); 6383 if (unlikely(val & NAPIF_STATE_DISABLE)) 6384 return false; 6385 new = val | NAPIF_STATE_SCHED; 6386 6387 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6388 * This was suggested by Alexander Duyck, as compiler 6389 * emits better code than : 6390 * if (val & NAPIF_STATE_SCHED) 6391 * new |= NAPIF_STATE_MISSED; 6392 */ 6393 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6394 NAPIF_STATE_MISSED; 6395 } while (cmpxchg(&n->state, val, new) != val); 6396 6397 return !(val & NAPIF_STATE_SCHED); 6398 } 6399 EXPORT_SYMBOL(napi_schedule_prep); 6400 6401 /** 6402 * __napi_schedule_irqoff - schedule for receive 6403 * @n: entry to schedule 6404 * 6405 * Variant of __napi_schedule() assuming hard irqs are masked 6406 */ 6407 void __napi_schedule_irqoff(struct napi_struct *n) 6408 { 6409 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6410 } 6411 EXPORT_SYMBOL(__napi_schedule_irqoff); 6412 6413 bool napi_complete_done(struct napi_struct *n, int work_done) 6414 { 6415 unsigned long flags, val, new, timeout = 0; 6416 bool ret = true; 6417 6418 /* 6419 * 1) Don't let napi dequeue from the cpu poll list 6420 * just in case its running on a different cpu. 6421 * 2) If we are busy polling, do nothing here, we have 6422 * the guarantee we will be called later. 6423 */ 6424 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6425 NAPIF_STATE_IN_BUSY_POLL))) 6426 return false; 6427 6428 if (work_done) { 6429 if (n->gro_bitmask) 6430 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6431 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6432 } 6433 if (n->defer_hard_irqs_count > 0) { 6434 n->defer_hard_irqs_count--; 6435 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6436 if (timeout) 6437 ret = false; 6438 } 6439 if (n->gro_bitmask) { 6440 /* When the NAPI instance uses a timeout and keeps postponing 6441 * it, we need to bound somehow the time packets are kept in 6442 * the GRO layer 6443 */ 6444 napi_gro_flush(n, !!timeout); 6445 } 6446 6447 gro_normal_list(n); 6448 6449 if (unlikely(!list_empty(&n->poll_list))) { 6450 /* If n->poll_list is not empty, we need to mask irqs */ 6451 local_irq_save(flags); 6452 list_del_init(&n->poll_list); 6453 local_irq_restore(flags); 6454 } 6455 6456 do { 6457 val = READ_ONCE(n->state); 6458 6459 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6460 6461 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6462 6463 /* If STATE_MISSED was set, leave STATE_SCHED set, 6464 * because we will call napi->poll() one more time. 6465 * This C code was suggested by Alexander Duyck to help gcc. 6466 */ 6467 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6468 NAPIF_STATE_SCHED; 6469 } while (cmpxchg(&n->state, val, new) != val); 6470 6471 if (unlikely(val & NAPIF_STATE_MISSED)) { 6472 __napi_schedule(n); 6473 return false; 6474 } 6475 6476 if (timeout) 6477 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6478 HRTIMER_MODE_REL_PINNED); 6479 return ret; 6480 } 6481 EXPORT_SYMBOL(napi_complete_done); 6482 6483 /* must be called under rcu_read_lock(), as we dont take a reference */ 6484 static struct napi_struct *napi_by_id(unsigned int napi_id) 6485 { 6486 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6487 struct napi_struct *napi; 6488 6489 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6490 if (napi->napi_id == napi_id) 6491 return napi; 6492 6493 return NULL; 6494 } 6495 6496 #if defined(CONFIG_NET_RX_BUSY_POLL) 6497 6498 #define BUSY_POLL_BUDGET 8 6499 6500 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6501 { 6502 int rc; 6503 6504 /* Busy polling means there is a high chance device driver hard irq 6505 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6506 * set in napi_schedule_prep(). 6507 * Since we are about to call napi->poll() once more, we can safely 6508 * clear NAPI_STATE_MISSED. 6509 * 6510 * Note: x86 could use a single "lock and ..." instruction 6511 * to perform these two clear_bit() 6512 */ 6513 clear_bit(NAPI_STATE_MISSED, &napi->state); 6514 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6515 6516 local_bh_disable(); 6517 6518 /* All we really want here is to re-enable device interrupts. 6519 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6520 */ 6521 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6522 /* We can't gro_normal_list() here, because napi->poll() might have 6523 * rearmed the napi (napi_complete_done()) in which case it could 6524 * already be running on another CPU. 6525 */ 6526 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6527 netpoll_poll_unlock(have_poll_lock); 6528 if (rc == BUSY_POLL_BUDGET) { 6529 /* As the whole budget was spent, we still own the napi so can 6530 * safely handle the rx_list. 6531 */ 6532 gro_normal_list(napi); 6533 __napi_schedule(napi); 6534 } 6535 local_bh_enable(); 6536 } 6537 6538 void napi_busy_loop(unsigned int napi_id, 6539 bool (*loop_end)(void *, unsigned long), 6540 void *loop_end_arg) 6541 { 6542 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6543 int (*napi_poll)(struct napi_struct *napi, int budget); 6544 void *have_poll_lock = NULL; 6545 struct napi_struct *napi; 6546 6547 restart: 6548 napi_poll = NULL; 6549 6550 rcu_read_lock(); 6551 6552 napi = napi_by_id(napi_id); 6553 if (!napi) 6554 goto out; 6555 6556 preempt_disable(); 6557 for (;;) { 6558 int work = 0; 6559 6560 local_bh_disable(); 6561 if (!napi_poll) { 6562 unsigned long val = READ_ONCE(napi->state); 6563 6564 /* If multiple threads are competing for this napi, 6565 * we avoid dirtying napi->state as much as we can. 6566 */ 6567 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6568 NAPIF_STATE_IN_BUSY_POLL)) 6569 goto count; 6570 if (cmpxchg(&napi->state, val, 6571 val | NAPIF_STATE_IN_BUSY_POLL | 6572 NAPIF_STATE_SCHED) != val) 6573 goto count; 6574 have_poll_lock = netpoll_poll_lock(napi); 6575 napi_poll = napi->poll; 6576 } 6577 work = napi_poll(napi, BUSY_POLL_BUDGET); 6578 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6579 gro_normal_list(napi); 6580 count: 6581 if (work > 0) 6582 __NET_ADD_STATS(dev_net(napi->dev), 6583 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6584 local_bh_enable(); 6585 6586 if (!loop_end || loop_end(loop_end_arg, start_time)) 6587 break; 6588 6589 if (unlikely(need_resched())) { 6590 if (napi_poll) 6591 busy_poll_stop(napi, have_poll_lock); 6592 preempt_enable(); 6593 rcu_read_unlock(); 6594 cond_resched(); 6595 if (loop_end(loop_end_arg, start_time)) 6596 return; 6597 goto restart; 6598 } 6599 cpu_relax(); 6600 } 6601 if (napi_poll) 6602 busy_poll_stop(napi, have_poll_lock); 6603 preempt_enable(); 6604 out: 6605 rcu_read_unlock(); 6606 } 6607 EXPORT_SYMBOL(napi_busy_loop); 6608 6609 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6610 6611 static void napi_hash_add(struct napi_struct *napi) 6612 { 6613 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6614 return; 6615 6616 spin_lock(&napi_hash_lock); 6617 6618 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6619 do { 6620 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6621 napi_gen_id = MIN_NAPI_ID; 6622 } while (napi_by_id(napi_gen_id)); 6623 napi->napi_id = napi_gen_id; 6624 6625 hlist_add_head_rcu(&napi->napi_hash_node, 6626 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6627 6628 spin_unlock(&napi_hash_lock); 6629 } 6630 6631 /* Warning : caller is responsible to make sure rcu grace period 6632 * is respected before freeing memory containing @napi 6633 */ 6634 static void napi_hash_del(struct napi_struct *napi) 6635 { 6636 spin_lock(&napi_hash_lock); 6637 6638 hlist_del_init_rcu(&napi->napi_hash_node); 6639 6640 spin_unlock(&napi_hash_lock); 6641 } 6642 6643 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6644 { 6645 struct napi_struct *napi; 6646 6647 napi = container_of(timer, struct napi_struct, timer); 6648 6649 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6650 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6651 */ 6652 if (!napi_disable_pending(napi) && 6653 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6654 __napi_schedule_irqoff(napi); 6655 6656 return HRTIMER_NORESTART; 6657 } 6658 6659 static void init_gro_hash(struct napi_struct *napi) 6660 { 6661 int i; 6662 6663 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6664 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6665 napi->gro_hash[i].count = 0; 6666 } 6667 napi->gro_bitmask = 0; 6668 } 6669 6670 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6671 int (*poll)(struct napi_struct *, int), int weight) 6672 { 6673 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6674 return; 6675 6676 INIT_LIST_HEAD(&napi->poll_list); 6677 INIT_HLIST_NODE(&napi->napi_hash_node); 6678 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6679 napi->timer.function = napi_watchdog; 6680 init_gro_hash(napi); 6681 napi->skb = NULL; 6682 INIT_LIST_HEAD(&napi->rx_list); 6683 napi->rx_count = 0; 6684 napi->poll = poll; 6685 if (weight > NAPI_POLL_WEIGHT) 6686 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6687 weight); 6688 napi->weight = weight; 6689 napi->dev = dev; 6690 #ifdef CONFIG_NETPOLL 6691 napi->poll_owner = -1; 6692 #endif 6693 set_bit(NAPI_STATE_SCHED, &napi->state); 6694 set_bit(NAPI_STATE_NPSVC, &napi->state); 6695 list_add_rcu(&napi->dev_list, &dev->napi_list); 6696 napi_hash_add(napi); 6697 } 6698 EXPORT_SYMBOL(netif_napi_add); 6699 6700 void napi_disable(struct napi_struct *n) 6701 { 6702 might_sleep(); 6703 set_bit(NAPI_STATE_DISABLE, &n->state); 6704 6705 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6706 msleep(1); 6707 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6708 msleep(1); 6709 6710 hrtimer_cancel(&n->timer); 6711 6712 clear_bit(NAPI_STATE_DISABLE, &n->state); 6713 } 6714 EXPORT_SYMBOL(napi_disable); 6715 6716 static void flush_gro_hash(struct napi_struct *napi) 6717 { 6718 int i; 6719 6720 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6721 struct sk_buff *skb, *n; 6722 6723 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6724 kfree_skb(skb); 6725 napi->gro_hash[i].count = 0; 6726 } 6727 } 6728 6729 /* Must be called in process context */ 6730 void __netif_napi_del(struct napi_struct *napi) 6731 { 6732 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6733 return; 6734 6735 napi_hash_del(napi); 6736 list_del_rcu(&napi->dev_list); 6737 napi_free_frags(napi); 6738 6739 flush_gro_hash(napi); 6740 napi->gro_bitmask = 0; 6741 } 6742 EXPORT_SYMBOL(__netif_napi_del); 6743 6744 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6745 { 6746 void *have; 6747 int work, weight; 6748 6749 list_del_init(&n->poll_list); 6750 6751 have = netpoll_poll_lock(n); 6752 6753 weight = n->weight; 6754 6755 /* This NAPI_STATE_SCHED test is for avoiding a race 6756 * with netpoll's poll_napi(). Only the entity which 6757 * obtains the lock and sees NAPI_STATE_SCHED set will 6758 * actually make the ->poll() call. Therefore we avoid 6759 * accidentally calling ->poll() when NAPI is not scheduled. 6760 */ 6761 work = 0; 6762 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6763 work = n->poll(n, weight); 6764 trace_napi_poll(n, work, weight); 6765 } 6766 6767 if (unlikely(work > weight)) 6768 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6769 n->poll, work, weight); 6770 6771 if (likely(work < weight)) 6772 goto out_unlock; 6773 6774 /* Drivers must not modify the NAPI state if they 6775 * consume the entire weight. In such cases this code 6776 * still "owns" the NAPI instance and therefore can 6777 * move the instance around on the list at-will. 6778 */ 6779 if (unlikely(napi_disable_pending(n))) { 6780 napi_complete(n); 6781 goto out_unlock; 6782 } 6783 6784 if (n->gro_bitmask) { 6785 /* flush too old packets 6786 * If HZ < 1000, flush all packets. 6787 */ 6788 napi_gro_flush(n, HZ >= 1000); 6789 } 6790 6791 gro_normal_list(n); 6792 6793 /* Some drivers may have called napi_schedule 6794 * prior to exhausting their budget. 6795 */ 6796 if (unlikely(!list_empty(&n->poll_list))) { 6797 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6798 n->dev ? n->dev->name : "backlog"); 6799 goto out_unlock; 6800 } 6801 6802 list_add_tail(&n->poll_list, repoll); 6803 6804 out_unlock: 6805 netpoll_poll_unlock(have); 6806 6807 return work; 6808 } 6809 6810 static __latent_entropy void net_rx_action(struct softirq_action *h) 6811 { 6812 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6813 unsigned long time_limit = jiffies + 6814 usecs_to_jiffies(netdev_budget_usecs); 6815 int budget = netdev_budget; 6816 LIST_HEAD(list); 6817 LIST_HEAD(repoll); 6818 6819 local_irq_disable(); 6820 list_splice_init(&sd->poll_list, &list); 6821 local_irq_enable(); 6822 6823 for (;;) { 6824 struct napi_struct *n; 6825 6826 if (list_empty(&list)) { 6827 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6828 goto out; 6829 break; 6830 } 6831 6832 n = list_first_entry(&list, struct napi_struct, poll_list); 6833 budget -= napi_poll(n, &repoll); 6834 6835 /* If softirq window is exhausted then punt. 6836 * Allow this to run for 2 jiffies since which will allow 6837 * an average latency of 1.5/HZ. 6838 */ 6839 if (unlikely(budget <= 0 || 6840 time_after_eq(jiffies, time_limit))) { 6841 sd->time_squeeze++; 6842 break; 6843 } 6844 } 6845 6846 local_irq_disable(); 6847 6848 list_splice_tail_init(&sd->poll_list, &list); 6849 list_splice_tail(&repoll, &list); 6850 list_splice(&list, &sd->poll_list); 6851 if (!list_empty(&sd->poll_list)) 6852 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6853 6854 net_rps_action_and_irq_enable(sd); 6855 out: 6856 __kfree_skb_flush(); 6857 } 6858 6859 struct netdev_adjacent { 6860 struct net_device *dev; 6861 6862 /* upper master flag, there can only be one master device per list */ 6863 bool master; 6864 6865 /* lookup ignore flag */ 6866 bool ignore; 6867 6868 /* counter for the number of times this device was added to us */ 6869 u16 ref_nr; 6870 6871 /* private field for the users */ 6872 void *private; 6873 6874 struct list_head list; 6875 struct rcu_head rcu; 6876 }; 6877 6878 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6879 struct list_head *adj_list) 6880 { 6881 struct netdev_adjacent *adj; 6882 6883 list_for_each_entry(adj, adj_list, list) { 6884 if (adj->dev == adj_dev) 6885 return adj; 6886 } 6887 return NULL; 6888 } 6889 6890 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 6891 struct netdev_nested_priv *priv) 6892 { 6893 struct net_device *dev = (struct net_device *)priv->data; 6894 6895 return upper_dev == dev; 6896 } 6897 6898 /** 6899 * netdev_has_upper_dev - Check if device is linked to an upper device 6900 * @dev: device 6901 * @upper_dev: upper device to check 6902 * 6903 * Find out if a device is linked to specified upper device and return true 6904 * in case it is. Note that this checks only immediate upper device, 6905 * not through a complete stack of devices. The caller must hold the RTNL lock. 6906 */ 6907 bool netdev_has_upper_dev(struct net_device *dev, 6908 struct net_device *upper_dev) 6909 { 6910 struct netdev_nested_priv priv = { 6911 .data = (void *)upper_dev, 6912 }; 6913 6914 ASSERT_RTNL(); 6915 6916 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6917 &priv); 6918 } 6919 EXPORT_SYMBOL(netdev_has_upper_dev); 6920 6921 /** 6922 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6923 * @dev: device 6924 * @upper_dev: upper device to check 6925 * 6926 * Find out if a device is linked to specified upper device and return true 6927 * in case it is. Note that this checks the entire upper device chain. 6928 * The caller must hold rcu lock. 6929 */ 6930 6931 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6932 struct net_device *upper_dev) 6933 { 6934 struct netdev_nested_priv priv = { 6935 .data = (void *)upper_dev, 6936 }; 6937 6938 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6939 &priv); 6940 } 6941 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6942 6943 /** 6944 * netdev_has_any_upper_dev - Check if device is linked to some device 6945 * @dev: device 6946 * 6947 * Find out if a device is linked to an upper device and return true in case 6948 * it is. The caller must hold the RTNL lock. 6949 */ 6950 bool netdev_has_any_upper_dev(struct net_device *dev) 6951 { 6952 ASSERT_RTNL(); 6953 6954 return !list_empty(&dev->adj_list.upper); 6955 } 6956 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6957 6958 /** 6959 * netdev_master_upper_dev_get - Get master upper device 6960 * @dev: device 6961 * 6962 * Find a master upper device and return pointer to it or NULL in case 6963 * it's not there. The caller must hold the RTNL lock. 6964 */ 6965 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6966 { 6967 struct netdev_adjacent *upper; 6968 6969 ASSERT_RTNL(); 6970 6971 if (list_empty(&dev->adj_list.upper)) 6972 return NULL; 6973 6974 upper = list_first_entry(&dev->adj_list.upper, 6975 struct netdev_adjacent, list); 6976 if (likely(upper->master)) 6977 return upper->dev; 6978 return NULL; 6979 } 6980 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6981 6982 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6983 { 6984 struct netdev_adjacent *upper; 6985 6986 ASSERT_RTNL(); 6987 6988 if (list_empty(&dev->adj_list.upper)) 6989 return NULL; 6990 6991 upper = list_first_entry(&dev->adj_list.upper, 6992 struct netdev_adjacent, list); 6993 if (likely(upper->master) && !upper->ignore) 6994 return upper->dev; 6995 return NULL; 6996 } 6997 6998 /** 6999 * netdev_has_any_lower_dev - Check if device is linked to some device 7000 * @dev: device 7001 * 7002 * Find out if a device is linked to a lower device and return true in case 7003 * it is. The caller must hold the RTNL lock. 7004 */ 7005 static bool netdev_has_any_lower_dev(struct net_device *dev) 7006 { 7007 ASSERT_RTNL(); 7008 7009 return !list_empty(&dev->adj_list.lower); 7010 } 7011 7012 void *netdev_adjacent_get_private(struct list_head *adj_list) 7013 { 7014 struct netdev_adjacent *adj; 7015 7016 adj = list_entry(adj_list, struct netdev_adjacent, list); 7017 7018 return adj->private; 7019 } 7020 EXPORT_SYMBOL(netdev_adjacent_get_private); 7021 7022 /** 7023 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7024 * @dev: device 7025 * @iter: list_head ** of the current position 7026 * 7027 * Gets the next device from the dev's upper list, starting from iter 7028 * position. The caller must hold RCU read lock. 7029 */ 7030 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7031 struct list_head **iter) 7032 { 7033 struct netdev_adjacent *upper; 7034 7035 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7036 7037 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7038 7039 if (&upper->list == &dev->adj_list.upper) 7040 return NULL; 7041 7042 *iter = &upper->list; 7043 7044 return upper->dev; 7045 } 7046 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7047 7048 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7049 struct list_head **iter, 7050 bool *ignore) 7051 { 7052 struct netdev_adjacent *upper; 7053 7054 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7055 7056 if (&upper->list == &dev->adj_list.upper) 7057 return NULL; 7058 7059 *iter = &upper->list; 7060 *ignore = upper->ignore; 7061 7062 return upper->dev; 7063 } 7064 7065 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7066 struct list_head **iter) 7067 { 7068 struct netdev_adjacent *upper; 7069 7070 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7071 7072 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7073 7074 if (&upper->list == &dev->adj_list.upper) 7075 return NULL; 7076 7077 *iter = &upper->list; 7078 7079 return upper->dev; 7080 } 7081 7082 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7083 int (*fn)(struct net_device *dev, 7084 struct netdev_nested_priv *priv), 7085 struct netdev_nested_priv *priv) 7086 { 7087 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7088 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7089 int ret, cur = 0; 7090 bool ignore; 7091 7092 now = dev; 7093 iter = &dev->adj_list.upper; 7094 7095 while (1) { 7096 if (now != dev) { 7097 ret = fn(now, priv); 7098 if (ret) 7099 return ret; 7100 } 7101 7102 next = NULL; 7103 while (1) { 7104 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7105 if (!udev) 7106 break; 7107 if (ignore) 7108 continue; 7109 7110 next = udev; 7111 niter = &udev->adj_list.upper; 7112 dev_stack[cur] = now; 7113 iter_stack[cur++] = iter; 7114 break; 7115 } 7116 7117 if (!next) { 7118 if (!cur) 7119 return 0; 7120 next = dev_stack[--cur]; 7121 niter = iter_stack[cur]; 7122 } 7123 7124 now = next; 7125 iter = niter; 7126 } 7127 7128 return 0; 7129 } 7130 7131 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7132 int (*fn)(struct net_device *dev, 7133 struct netdev_nested_priv *priv), 7134 struct netdev_nested_priv *priv) 7135 { 7136 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7137 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7138 int ret, cur = 0; 7139 7140 now = dev; 7141 iter = &dev->adj_list.upper; 7142 7143 while (1) { 7144 if (now != dev) { 7145 ret = fn(now, priv); 7146 if (ret) 7147 return ret; 7148 } 7149 7150 next = NULL; 7151 while (1) { 7152 udev = netdev_next_upper_dev_rcu(now, &iter); 7153 if (!udev) 7154 break; 7155 7156 next = udev; 7157 niter = &udev->adj_list.upper; 7158 dev_stack[cur] = now; 7159 iter_stack[cur++] = iter; 7160 break; 7161 } 7162 7163 if (!next) { 7164 if (!cur) 7165 return 0; 7166 next = dev_stack[--cur]; 7167 niter = iter_stack[cur]; 7168 } 7169 7170 now = next; 7171 iter = niter; 7172 } 7173 7174 return 0; 7175 } 7176 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7177 7178 static bool __netdev_has_upper_dev(struct net_device *dev, 7179 struct net_device *upper_dev) 7180 { 7181 struct netdev_nested_priv priv = { 7182 .flags = 0, 7183 .data = (void *)upper_dev, 7184 }; 7185 7186 ASSERT_RTNL(); 7187 7188 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7189 &priv); 7190 } 7191 7192 /** 7193 * netdev_lower_get_next_private - Get the next ->private from the 7194 * lower neighbour list 7195 * @dev: device 7196 * @iter: list_head ** of the current position 7197 * 7198 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7199 * list, starting from iter position. The caller must hold either hold the 7200 * RTNL lock or its own locking that guarantees that the neighbour lower 7201 * list will remain unchanged. 7202 */ 7203 void *netdev_lower_get_next_private(struct net_device *dev, 7204 struct list_head **iter) 7205 { 7206 struct netdev_adjacent *lower; 7207 7208 lower = list_entry(*iter, struct netdev_adjacent, list); 7209 7210 if (&lower->list == &dev->adj_list.lower) 7211 return NULL; 7212 7213 *iter = lower->list.next; 7214 7215 return lower->private; 7216 } 7217 EXPORT_SYMBOL(netdev_lower_get_next_private); 7218 7219 /** 7220 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7221 * lower neighbour list, RCU 7222 * variant 7223 * @dev: device 7224 * @iter: list_head ** of the current position 7225 * 7226 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7227 * list, starting from iter position. The caller must hold RCU read lock. 7228 */ 7229 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7230 struct list_head **iter) 7231 { 7232 struct netdev_adjacent *lower; 7233 7234 WARN_ON_ONCE(!rcu_read_lock_held()); 7235 7236 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7237 7238 if (&lower->list == &dev->adj_list.lower) 7239 return NULL; 7240 7241 *iter = &lower->list; 7242 7243 return lower->private; 7244 } 7245 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7246 7247 /** 7248 * netdev_lower_get_next - Get the next device from the lower neighbour 7249 * list 7250 * @dev: device 7251 * @iter: list_head ** of the current position 7252 * 7253 * Gets the next netdev_adjacent from the dev's lower neighbour 7254 * list, starting from iter position. The caller must hold RTNL lock or 7255 * its own locking that guarantees that the neighbour lower 7256 * list will remain unchanged. 7257 */ 7258 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7259 { 7260 struct netdev_adjacent *lower; 7261 7262 lower = list_entry(*iter, struct netdev_adjacent, list); 7263 7264 if (&lower->list == &dev->adj_list.lower) 7265 return NULL; 7266 7267 *iter = lower->list.next; 7268 7269 return lower->dev; 7270 } 7271 EXPORT_SYMBOL(netdev_lower_get_next); 7272 7273 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7274 struct list_head **iter) 7275 { 7276 struct netdev_adjacent *lower; 7277 7278 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7279 7280 if (&lower->list == &dev->adj_list.lower) 7281 return NULL; 7282 7283 *iter = &lower->list; 7284 7285 return lower->dev; 7286 } 7287 7288 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7289 struct list_head **iter, 7290 bool *ignore) 7291 { 7292 struct netdev_adjacent *lower; 7293 7294 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7295 7296 if (&lower->list == &dev->adj_list.lower) 7297 return NULL; 7298 7299 *iter = &lower->list; 7300 *ignore = lower->ignore; 7301 7302 return lower->dev; 7303 } 7304 7305 int netdev_walk_all_lower_dev(struct net_device *dev, 7306 int (*fn)(struct net_device *dev, 7307 struct netdev_nested_priv *priv), 7308 struct netdev_nested_priv *priv) 7309 { 7310 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7311 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7312 int ret, cur = 0; 7313 7314 now = dev; 7315 iter = &dev->adj_list.lower; 7316 7317 while (1) { 7318 if (now != dev) { 7319 ret = fn(now, priv); 7320 if (ret) 7321 return ret; 7322 } 7323 7324 next = NULL; 7325 while (1) { 7326 ldev = netdev_next_lower_dev(now, &iter); 7327 if (!ldev) 7328 break; 7329 7330 next = ldev; 7331 niter = &ldev->adj_list.lower; 7332 dev_stack[cur] = now; 7333 iter_stack[cur++] = iter; 7334 break; 7335 } 7336 7337 if (!next) { 7338 if (!cur) 7339 return 0; 7340 next = dev_stack[--cur]; 7341 niter = iter_stack[cur]; 7342 } 7343 7344 now = next; 7345 iter = niter; 7346 } 7347 7348 return 0; 7349 } 7350 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7351 7352 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7353 int (*fn)(struct net_device *dev, 7354 struct netdev_nested_priv *priv), 7355 struct netdev_nested_priv *priv) 7356 { 7357 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7358 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7359 int ret, cur = 0; 7360 bool ignore; 7361 7362 now = dev; 7363 iter = &dev->adj_list.lower; 7364 7365 while (1) { 7366 if (now != dev) { 7367 ret = fn(now, priv); 7368 if (ret) 7369 return ret; 7370 } 7371 7372 next = NULL; 7373 while (1) { 7374 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7375 if (!ldev) 7376 break; 7377 if (ignore) 7378 continue; 7379 7380 next = ldev; 7381 niter = &ldev->adj_list.lower; 7382 dev_stack[cur] = now; 7383 iter_stack[cur++] = iter; 7384 break; 7385 } 7386 7387 if (!next) { 7388 if (!cur) 7389 return 0; 7390 next = dev_stack[--cur]; 7391 niter = iter_stack[cur]; 7392 } 7393 7394 now = next; 7395 iter = niter; 7396 } 7397 7398 return 0; 7399 } 7400 7401 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7402 struct list_head **iter) 7403 { 7404 struct netdev_adjacent *lower; 7405 7406 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7407 if (&lower->list == &dev->adj_list.lower) 7408 return NULL; 7409 7410 *iter = &lower->list; 7411 7412 return lower->dev; 7413 } 7414 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7415 7416 static u8 __netdev_upper_depth(struct net_device *dev) 7417 { 7418 struct net_device *udev; 7419 struct list_head *iter; 7420 u8 max_depth = 0; 7421 bool ignore; 7422 7423 for (iter = &dev->adj_list.upper, 7424 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7425 udev; 7426 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7427 if (ignore) 7428 continue; 7429 if (max_depth < udev->upper_level) 7430 max_depth = udev->upper_level; 7431 } 7432 7433 return max_depth; 7434 } 7435 7436 static u8 __netdev_lower_depth(struct net_device *dev) 7437 { 7438 struct net_device *ldev; 7439 struct list_head *iter; 7440 u8 max_depth = 0; 7441 bool ignore; 7442 7443 for (iter = &dev->adj_list.lower, 7444 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7445 ldev; 7446 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7447 if (ignore) 7448 continue; 7449 if (max_depth < ldev->lower_level) 7450 max_depth = ldev->lower_level; 7451 } 7452 7453 return max_depth; 7454 } 7455 7456 static int __netdev_update_upper_level(struct net_device *dev, 7457 struct netdev_nested_priv *__unused) 7458 { 7459 dev->upper_level = __netdev_upper_depth(dev) + 1; 7460 return 0; 7461 } 7462 7463 static int __netdev_update_lower_level(struct net_device *dev, 7464 struct netdev_nested_priv *priv) 7465 { 7466 dev->lower_level = __netdev_lower_depth(dev) + 1; 7467 7468 #ifdef CONFIG_LOCKDEP 7469 if (!priv) 7470 return 0; 7471 7472 if (priv->flags & NESTED_SYNC_IMM) 7473 dev->nested_level = dev->lower_level - 1; 7474 if (priv->flags & NESTED_SYNC_TODO) 7475 net_unlink_todo(dev); 7476 #endif 7477 return 0; 7478 } 7479 7480 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7481 int (*fn)(struct net_device *dev, 7482 struct netdev_nested_priv *priv), 7483 struct netdev_nested_priv *priv) 7484 { 7485 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7486 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7487 int ret, cur = 0; 7488 7489 now = dev; 7490 iter = &dev->adj_list.lower; 7491 7492 while (1) { 7493 if (now != dev) { 7494 ret = fn(now, priv); 7495 if (ret) 7496 return ret; 7497 } 7498 7499 next = NULL; 7500 while (1) { 7501 ldev = netdev_next_lower_dev_rcu(now, &iter); 7502 if (!ldev) 7503 break; 7504 7505 next = ldev; 7506 niter = &ldev->adj_list.lower; 7507 dev_stack[cur] = now; 7508 iter_stack[cur++] = iter; 7509 break; 7510 } 7511 7512 if (!next) { 7513 if (!cur) 7514 return 0; 7515 next = dev_stack[--cur]; 7516 niter = iter_stack[cur]; 7517 } 7518 7519 now = next; 7520 iter = niter; 7521 } 7522 7523 return 0; 7524 } 7525 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7526 7527 /** 7528 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7529 * lower neighbour list, RCU 7530 * variant 7531 * @dev: device 7532 * 7533 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7534 * list. The caller must hold RCU read lock. 7535 */ 7536 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7537 { 7538 struct netdev_adjacent *lower; 7539 7540 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7541 struct netdev_adjacent, list); 7542 if (lower) 7543 return lower->private; 7544 return NULL; 7545 } 7546 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7547 7548 /** 7549 * netdev_master_upper_dev_get_rcu - Get master upper device 7550 * @dev: device 7551 * 7552 * Find a master upper device and return pointer to it or NULL in case 7553 * it's not there. The caller must hold the RCU read lock. 7554 */ 7555 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7556 { 7557 struct netdev_adjacent *upper; 7558 7559 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7560 struct netdev_adjacent, list); 7561 if (upper && likely(upper->master)) 7562 return upper->dev; 7563 return NULL; 7564 } 7565 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7566 7567 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7568 struct net_device *adj_dev, 7569 struct list_head *dev_list) 7570 { 7571 char linkname[IFNAMSIZ+7]; 7572 7573 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7574 "upper_%s" : "lower_%s", adj_dev->name); 7575 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7576 linkname); 7577 } 7578 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7579 char *name, 7580 struct list_head *dev_list) 7581 { 7582 char linkname[IFNAMSIZ+7]; 7583 7584 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7585 "upper_%s" : "lower_%s", name); 7586 sysfs_remove_link(&(dev->dev.kobj), linkname); 7587 } 7588 7589 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7590 struct net_device *adj_dev, 7591 struct list_head *dev_list) 7592 { 7593 return (dev_list == &dev->adj_list.upper || 7594 dev_list == &dev->adj_list.lower) && 7595 net_eq(dev_net(dev), dev_net(adj_dev)); 7596 } 7597 7598 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7599 struct net_device *adj_dev, 7600 struct list_head *dev_list, 7601 void *private, bool master) 7602 { 7603 struct netdev_adjacent *adj; 7604 int ret; 7605 7606 adj = __netdev_find_adj(adj_dev, dev_list); 7607 7608 if (adj) { 7609 adj->ref_nr += 1; 7610 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7611 dev->name, adj_dev->name, adj->ref_nr); 7612 7613 return 0; 7614 } 7615 7616 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7617 if (!adj) 7618 return -ENOMEM; 7619 7620 adj->dev = adj_dev; 7621 adj->master = master; 7622 adj->ref_nr = 1; 7623 adj->private = private; 7624 adj->ignore = false; 7625 dev_hold(adj_dev); 7626 7627 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7628 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7629 7630 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7631 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7632 if (ret) 7633 goto free_adj; 7634 } 7635 7636 /* Ensure that master link is always the first item in list. */ 7637 if (master) { 7638 ret = sysfs_create_link(&(dev->dev.kobj), 7639 &(adj_dev->dev.kobj), "master"); 7640 if (ret) 7641 goto remove_symlinks; 7642 7643 list_add_rcu(&adj->list, dev_list); 7644 } else { 7645 list_add_tail_rcu(&adj->list, dev_list); 7646 } 7647 7648 return 0; 7649 7650 remove_symlinks: 7651 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7652 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7653 free_adj: 7654 kfree(adj); 7655 dev_put(adj_dev); 7656 7657 return ret; 7658 } 7659 7660 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7661 struct net_device *adj_dev, 7662 u16 ref_nr, 7663 struct list_head *dev_list) 7664 { 7665 struct netdev_adjacent *adj; 7666 7667 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7668 dev->name, adj_dev->name, ref_nr); 7669 7670 adj = __netdev_find_adj(adj_dev, dev_list); 7671 7672 if (!adj) { 7673 pr_err("Adjacency does not exist for device %s from %s\n", 7674 dev->name, adj_dev->name); 7675 WARN_ON(1); 7676 return; 7677 } 7678 7679 if (adj->ref_nr > ref_nr) { 7680 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7681 dev->name, adj_dev->name, ref_nr, 7682 adj->ref_nr - ref_nr); 7683 adj->ref_nr -= ref_nr; 7684 return; 7685 } 7686 7687 if (adj->master) 7688 sysfs_remove_link(&(dev->dev.kobj), "master"); 7689 7690 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7691 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7692 7693 list_del_rcu(&adj->list); 7694 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7695 adj_dev->name, dev->name, adj_dev->name); 7696 dev_put(adj_dev); 7697 kfree_rcu(adj, rcu); 7698 } 7699 7700 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7701 struct net_device *upper_dev, 7702 struct list_head *up_list, 7703 struct list_head *down_list, 7704 void *private, bool master) 7705 { 7706 int ret; 7707 7708 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7709 private, master); 7710 if (ret) 7711 return ret; 7712 7713 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7714 private, false); 7715 if (ret) { 7716 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7717 return ret; 7718 } 7719 7720 return 0; 7721 } 7722 7723 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7724 struct net_device *upper_dev, 7725 u16 ref_nr, 7726 struct list_head *up_list, 7727 struct list_head *down_list) 7728 { 7729 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7730 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7731 } 7732 7733 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7734 struct net_device *upper_dev, 7735 void *private, bool master) 7736 { 7737 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7738 &dev->adj_list.upper, 7739 &upper_dev->adj_list.lower, 7740 private, master); 7741 } 7742 7743 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7744 struct net_device *upper_dev) 7745 { 7746 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7747 &dev->adj_list.upper, 7748 &upper_dev->adj_list.lower); 7749 } 7750 7751 static int __netdev_upper_dev_link(struct net_device *dev, 7752 struct net_device *upper_dev, bool master, 7753 void *upper_priv, void *upper_info, 7754 struct netdev_nested_priv *priv, 7755 struct netlink_ext_ack *extack) 7756 { 7757 struct netdev_notifier_changeupper_info changeupper_info = { 7758 .info = { 7759 .dev = dev, 7760 .extack = extack, 7761 }, 7762 .upper_dev = upper_dev, 7763 .master = master, 7764 .linking = true, 7765 .upper_info = upper_info, 7766 }; 7767 struct net_device *master_dev; 7768 int ret = 0; 7769 7770 ASSERT_RTNL(); 7771 7772 if (dev == upper_dev) 7773 return -EBUSY; 7774 7775 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7776 if (__netdev_has_upper_dev(upper_dev, dev)) 7777 return -EBUSY; 7778 7779 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7780 return -EMLINK; 7781 7782 if (!master) { 7783 if (__netdev_has_upper_dev(dev, upper_dev)) 7784 return -EEXIST; 7785 } else { 7786 master_dev = __netdev_master_upper_dev_get(dev); 7787 if (master_dev) 7788 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7789 } 7790 7791 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7792 &changeupper_info.info); 7793 ret = notifier_to_errno(ret); 7794 if (ret) 7795 return ret; 7796 7797 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7798 master); 7799 if (ret) 7800 return ret; 7801 7802 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7803 &changeupper_info.info); 7804 ret = notifier_to_errno(ret); 7805 if (ret) 7806 goto rollback; 7807 7808 __netdev_update_upper_level(dev, NULL); 7809 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7810 7811 __netdev_update_lower_level(upper_dev, priv); 7812 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7813 priv); 7814 7815 return 0; 7816 7817 rollback: 7818 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7819 7820 return ret; 7821 } 7822 7823 /** 7824 * netdev_upper_dev_link - Add a link to the upper device 7825 * @dev: device 7826 * @upper_dev: new upper device 7827 * @extack: netlink extended ack 7828 * 7829 * Adds a link to device which is upper to this one. The caller must hold 7830 * the RTNL lock. On a failure a negative errno code is returned. 7831 * On success the reference counts are adjusted and the function 7832 * returns zero. 7833 */ 7834 int netdev_upper_dev_link(struct net_device *dev, 7835 struct net_device *upper_dev, 7836 struct netlink_ext_ack *extack) 7837 { 7838 struct netdev_nested_priv priv = { 7839 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7840 .data = NULL, 7841 }; 7842 7843 return __netdev_upper_dev_link(dev, upper_dev, false, 7844 NULL, NULL, &priv, extack); 7845 } 7846 EXPORT_SYMBOL(netdev_upper_dev_link); 7847 7848 /** 7849 * netdev_master_upper_dev_link - Add a master link to the upper device 7850 * @dev: device 7851 * @upper_dev: new upper device 7852 * @upper_priv: upper device private 7853 * @upper_info: upper info to be passed down via notifier 7854 * @extack: netlink extended ack 7855 * 7856 * Adds a link to device which is upper to this one. In this case, only 7857 * one master upper device can be linked, although other non-master devices 7858 * might be linked as well. The caller must hold the RTNL lock. 7859 * On a failure a negative errno code is returned. On success the reference 7860 * counts are adjusted and the function returns zero. 7861 */ 7862 int netdev_master_upper_dev_link(struct net_device *dev, 7863 struct net_device *upper_dev, 7864 void *upper_priv, void *upper_info, 7865 struct netlink_ext_ack *extack) 7866 { 7867 struct netdev_nested_priv priv = { 7868 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7869 .data = NULL, 7870 }; 7871 7872 return __netdev_upper_dev_link(dev, upper_dev, true, 7873 upper_priv, upper_info, &priv, extack); 7874 } 7875 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7876 7877 static void __netdev_upper_dev_unlink(struct net_device *dev, 7878 struct net_device *upper_dev, 7879 struct netdev_nested_priv *priv) 7880 { 7881 struct netdev_notifier_changeupper_info changeupper_info = { 7882 .info = { 7883 .dev = dev, 7884 }, 7885 .upper_dev = upper_dev, 7886 .linking = false, 7887 }; 7888 7889 ASSERT_RTNL(); 7890 7891 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7892 7893 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7894 &changeupper_info.info); 7895 7896 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7897 7898 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7899 &changeupper_info.info); 7900 7901 __netdev_update_upper_level(dev, NULL); 7902 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7903 7904 __netdev_update_lower_level(upper_dev, priv); 7905 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7906 priv); 7907 } 7908 7909 /** 7910 * netdev_upper_dev_unlink - Removes a link to upper device 7911 * @dev: device 7912 * @upper_dev: new upper device 7913 * 7914 * Removes a link to device which is upper to this one. The caller must hold 7915 * the RTNL lock. 7916 */ 7917 void netdev_upper_dev_unlink(struct net_device *dev, 7918 struct net_device *upper_dev) 7919 { 7920 struct netdev_nested_priv priv = { 7921 .flags = NESTED_SYNC_TODO, 7922 .data = NULL, 7923 }; 7924 7925 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 7926 } 7927 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7928 7929 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7930 struct net_device *lower_dev, 7931 bool val) 7932 { 7933 struct netdev_adjacent *adj; 7934 7935 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7936 if (adj) 7937 adj->ignore = val; 7938 7939 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7940 if (adj) 7941 adj->ignore = val; 7942 } 7943 7944 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7945 struct net_device *lower_dev) 7946 { 7947 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7948 } 7949 7950 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7951 struct net_device *lower_dev) 7952 { 7953 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7954 } 7955 7956 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7957 struct net_device *new_dev, 7958 struct net_device *dev, 7959 struct netlink_ext_ack *extack) 7960 { 7961 struct netdev_nested_priv priv = { 7962 .flags = 0, 7963 .data = NULL, 7964 }; 7965 int err; 7966 7967 if (!new_dev) 7968 return 0; 7969 7970 if (old_dev && new_dev != old_dev) 7971 netdev_adjacent_dev_disable(dev, old_dev); 7972 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 7973 extack); 7974 if (err) { 7975 if (old_dev && new_dev != old_dev) 7976 netdev_adjacent_dev_enable(dev, old_dev); 7977 return err; 7978 } 7979 7980 return 0; 7981 } 7982 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7983 7984 void netdev_adjacent_change_commit(struct net_device *old_dev, 7985 struct net_device *new_dev, 7986 struct net_device *dev) 7987 { 7988 struct netdev_nested_priv priv = { 7989 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7990 .data = NULL, 7991 }; 7992 7993 if (!new_dev || !old_dev) 7994 return; 7995 7996 if (new_dev == old_dev) 7997 return; 7998 7999 netdev_adjacent_dev_enable(dev, old_dev); 8000 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8001 } 8002 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8003 8004 void netdev_adjacent_change_abort(struct net_device *old_dev, 8005 struct net_device *new_dev, 8006 struct net_device *dev) 8007 { 8008 struct netdev_nested_priv priv = { 8009 .flags = 0, 8010 .data = NULL, 8011 }; 8012 8013 if (!new_dev) 8014 return; 8015 8016 if (old_dev && new_dev != old_dev) 8017 netdev_adjacent_dev_enable(dev, old_dev); 8018 8019 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8020 } 8021 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8022 8023 /** 8024 * netdev_bonding_info_change - Dispatch event about slave change 8025 * @dev: device 8026 * @bonding_info: info to dispatch 8027 * 8028 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8029 * The caller must hold the RTNL lock. 8030 */ 8031 void netdev_bonding_info_change(struct net_device *dev, 8032 struct netdev_bonding_info *bonding_info) 8033 { 8034 struct netdev_notifier_bonding_info info = { 8035 .info.dev = dev, 8036 }; 8037 8038 memcpy(&info.bonding_info, bonding_info, 8039 sizeof(struct netdev_bonding_info)); 8040 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8041 &info.info); 8042 } 8043 EXPORT_SYMBOL(netdev_bonding_info_change); 8044 8045 /** 8046 * netdev_get_xmit_slave - Get the xmit slave of master device 8047 * @dev: device 8048 * @skb: The packet 8049 * @all_slaves: assume all the slaves are active 8050 * 8051 * The reference counters are not incremented so the caller must be 8052 * careful with locks. The caller must hold RCU lock. 8053 * %NULL is returned if no slave is found. 8054 */ 8055 8056 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8057 struct sk_buff *skb, 8058 bool all_slaves) 8059 { 8060 const struct net_device_ops *ops = dev->netdev_ops; 8061 8062 if (!ops->ndo_get_xmit_slave) 8063 return NULL; 8064 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8065 } 8066 EXPORT_SYMBOL(netdev_get_xmit_slave); 8067 8068 static void netdev_adjacent_add_links(struct net_device *dev) 8069 { 8070 struct netdev_adjacent *iter; 8071 8072 struct net *net = dev_net(dev); 8073 8074 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8075 if (!net_eq(net, dev_net(iter->dev))) 8076 continue; 8077 netdev_adjacent_sysfs_add(iter->dev, dev, 8078 &iter->dev->adj_list.lower); 8079 netdev_adjacent_sysfs_add(dev, iter->dev, 8080 &dev->adj_list.upper); 8081 } 8082 8083 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8084 if (!net_eq(net, dev_net(iter->dev))) 8085 continue; 8086 netdev_adjacent_sysfs_add(iter->dev, dev, 8087 &iter->dev->adj_list.upper); 8088 netdev_adjacent_sysfs_add(dev, iter->dev, 8089 &dev->adj_list.lower); 8090 } 8091 } 8092 8093 static void netdev_adjacent_del_links(struct net_device *dev) 8094 { 8095 struct netdev_adjacent *iter; 8096 8097 struct net *net = dev_net(dev); 8098 8099 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8100 if (!net_eq(net, dev_net(iter->dev))) 8101 continue; 8102 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8103 &iter->dev->adj_list.lower); 8104 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8105 &dev->adj_list.upper); 8106 } 8107 8108 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8109 if (!net_eq(net, dev_net(iter->dev))) 8110 continue; 8111 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8112 &iter->dev->adj_list.upper); 8113 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8114 &dev->adj_list.lower); 8115 } 8116 } 8117 8118 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8119 { 8120 struct netdev_adjacent *iter; 8121 8122 struct net *net = dev_net(dev); 8123 8124 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8125 if (!net_eq(net, dev_net(iter->dev))) 8126 continue; 8127 netdev_adjacent_sysfs_del(iter->dev, oldname, 8128 &iter->dev->adj_list.lower); 8129 netdev_adjacent_sysfs_add(iter->dev, dev, 8130 &iter->dev->adj_list.lower); 8131 } 8132 8133 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8134 if (!net_eq(net, dev_net(iter->dev))) 8135 continue; 8136 netdev_adjacent_sysfs_del(iter->dev, oldname, 8137 &iter->dev->adj_list.upper); 8138 netdev_adjacent_sysfs_add(iter->dev, dev, 8139 &iter->dev->adj_list.upper); 8140 } 8141 } 8142 8143 void *netdev_lower_dev_get_private(struct net_device *dev, 8144 struct net_device *lower_dev) 8145 { 8146 struct netdev_adjacent *lower; 8147 8148 if (!lower_dev) 8149 return NULL; 8150 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8151 if (!lower) 8152 return NULL; 8153 8154 return lower->private; 8155 } 8156 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8157 8158 8159 /** 8160 * netdev_lower_change - Dispatch event about lower device state change 8161 * @lower_dev: device 8162 * @lower_state_info: state to dispatch 8163 * 8164 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8165 * The caller must hold the RTNL lock. 8166 */ 8167 void netdev_lower_state_changed(struct net_device *lower_dev, 8168 void *lower_state_info) 8169 { 8170 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8171 .info.dev = lower_dev, 8172 }; 8173 8174 ASSERT_RTNL(); 8175 changelowerstate_info.lower_state_info = lower_state_info; 8176 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8177 &changelowerstate_info.info); 8178 } 8179 EXPORT_SYMBOL(netdev_lower_state_changed); 8180 8181 static void dev_change_rx_flags(struct net_device *dev, int flags) 8182 { 8183 const struct net_device_ops *ops = dev->netdev_ops; 8184 8185 if (ops->ndo_change_rx_flags) 8186 ops->ndo_change_rx_flags(dev, flags); 8187 } 8188 8189 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8190 { 8191 unsigned int old_flags = dev->flags; 8192 kuid_t uid; 8193 kgid_t gid; 8194 8195 ASSERT_RTNL(); 8196 8197 dev->flags |= IFF_PROMISC; 8198 dev->promiscuity += inc; 8199 if (dev->promiscuity == 0) { 8200 /* 8201 * Avoid overflow. 8202 * If inc causes overflow, untouch promisc and return error. 8203 */ 8204 if (inc < 0) 8205 dev->flags &= ~IFF_PROMISC; 8206 else { 8207 dev->promiscuity -= inc; 8208 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 8209 dev->name); 8210 return -EOVERFLOW; 8211 } 8212 } 8213 if (dev->flags != old_flags) { 8214 pr_info("device %s %s promiscuous mode\n", 8215 dev->name, 8216 dev->flags & IFF_PROMISC ? "entered" : "left"); 8217 if (audit_enabled) { 8218 current_uid_gid(&uid, &gid); 8219 audit_log(audit_context(), GFP_ATOMIC, 8220 AUDIT_ANOM_PROMISCUOUS, 8221 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8222 dev->name, (dev->flags & IFF_PROMISC), 8223 (old_flags & IFF_PROMISC), 8224 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8225 from_kuid(&init_user_ns, uid), 8226 from_kgid(&init_user_ns, gid), 8227 audit_get_sessionid(current)); 8228 } 8229 8230 dev_change_rx_flags(dev, IFF_PROMISC); 8231 } 8232 if (notify) 8233 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 8234 return 0; 8235 } 8236 8237 /** 8238 * dev_set_promiscuity - update promiscuity count on a device 8239 * @dev: device 8240 * @inc: modifier 8241 * 8242 * Add or remove promiscuity from a device. While the count in the device 8243 * remains above zero the interface remains promiscuous. Once it hits zero 8244 * the device reverts back to normal filtering operation. A negative inc 8245 * value is used to drop promiscuity on the device. 8246 * Return 0 if successful or a negative errno code on error. 8247 */ 8248 int dev_set_promiscuity(struct net_device *dev, int inc) 8249 { 8250 unsigned int old_flags = dev->flags; 8251 int err; 8252 8253 err = __dev_set_promiscuity(dev, inc, true); 8254 if (err < 0) 8255 return err; 8256 if (dev->flags != old_flags) 8257 dev_set_rx_mode(dev); 8258 return err; 8259 } 8260 EXPORT_SYMBOL(dev_set_promiscuity); 8261 8262 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8263 { 8264 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8265 8266 ASSERT_RTNL(); 8267 8268 dev->flags |= IFF_ALLMULTI; 8269 dev->allmulti += inc; 8270 if (dev->allmulti == 0) { 8271 /* 8272 * Avoid overflow. 8273 * If inc causes overflow, untouch allmulti and return error. 8274 */ 8275 if (inc < 0) 8276 dev->flags &= ~IFF_ALLMULTI; 8277 else { 8278 dev->allmulti -= inc; 8279 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 8280 dev->name); 8281 return -EOVERFLOW; 8282 } 8283 } 8284 if (dev->flags ^ old_flags) { 8285 dev_change_rx_flags(dev, IFF_ALLMULTI); 8286 dev_set_rx_mode(dev); 8287 if (notify) 8288 __dev_notify_flags(dev, old_flags, 8289 dev->gflags ^ old_gflags); 8290 } 8291 return 0; 8292 } 8293 8294 /** 8295 * dev_set_allmulti - update allmulti count on a device 8296 * @dev: device 8297 * @inc: modifier 8298 * 8299 * Add or remove reception of all multicast frames to a device. While the 8300 * count in the device remains above zero the interface remains listening 8301 * to all interfaces. Once it hits zero the device reverts back to normal 8302 * filtering operation. A negative @inc value is used to drop the counter 8303 * when releasing a resource needing all multicasts. 8304 * Return 0 if successful or a negative errno code on error. 8305 */ 8306 8307 int dev_set_allmulti(struct net_device *dev, int inc) 8308 { 8309 return __dev_set_allmulti(dev, inc, true); 8310 } 8311 EXPORT_SYMBOL(dev_set_allmulti); 8312 8313 /* 8314 * Upload unicast and multicast address lists to device and 8315 * configure RX filtering. When the device doesn't support unicast 8316 * filtering it is put in promiscuous mode while unicast addresses 8317 * are present. 8318 */ 8319 void __dev_set_rx_mode(struct net_device *dev) 8320 { 8321 const struct net_device_ops *ops = dev->netdev_ops; 8322 8323 /* dev_open will call this function so the list will stay sane. */ 8324 if (!(dev->flags&IFF_UP)) 8325 return; 8326 8327 if (!netif_device_present(dev)) 8328 return; 8329 8330 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8331 /* Unicast addresses changes may only happen under the rtnl, 8332 * therefore calling __dev_set_promiscuity here is safe. 8333 */ 8334 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8335 __dev_set_promiscuity(dev, 1, false); 8336 dev->uc_promisc = true; 8337 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8338 __dev_set_promiscuity(dev, -1, false); 8339 dev->uc_promisc = false; 8340 } 8341 } 8342 8343 if (ops->ndo_set_rx_mode) 8344 ops->ndo_set_rx_mode(dev); 8345 } 8346 8347 void dev_set_rx_mode(struct net_device *dev) 8348 { 8349 netif_addr_lock_bh(dev); 8350 __dev_set_rx_mode(dev); 8351 netif_addr_unlock_bh(dev); 8352 } 8353 8354 /** 8355 * dev_get_flags - get flags reported to userspace 8356 * @dev: device 8357 * 8358 * Get the combination of flag bits exported through APIs to userspace. 8359 */ 8360 unsigned int dev_get_flags(const struct net_device *dev) 8361 { 8362 unsigned int flags; 8363 8364 flags = (dev->flags & ~(IFF_PROMISC | 8365 IFF_ALLMULTI | 8366 IFF_RUNNING | 8367 IFF_LOWER_UP | 8368 IFF_DORMANT)) | 8369 (dev->gflags & (IFF_PROMISC | 8370 IFF_ALLMULTI)); 8371 8372 if (netif_running(dev)) { 8373 if (netif_oper_up(dev)) 8374 flags |= IFF_RUNNING; 8375 if (netif_carrier_ok(dev)) 8376 flags |= IFF_LOWER_UP; 8377 if (netif_dormant(dev)) 8378 flags |= IFF_DORMANT; 8379 } 8380 8381 return flags; 8382 } 8383 EXPORT_SYMBOL(dev_get_flags); 8384 8385 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8386 struct netlink_ext_ack *extack) 8387 { 8388 unsigned int old_flags = dev->flags; 8389 int ret; 8390 8391 ASSERT_RTNL(); 8392 8393 /* 8394 * Set the flags on our device. 8395 */ 8396 8397 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8398 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8399 IFF_AUTOMEDIA)) | 8400 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8401 IFF_ALLMULTI)); 8402 8403 /* 8404 * Load in the correct multicast list now the flags have changed. 8405 */ 8406 8407 if ((old_flags ^ flags) & IFF_MULTICAST) 8408 dev_change_rx_flags(dev, IFF_MULTICAST); 8409 8410 dev_set_rx_mode(dev); 8411 8412 /* 8413 * Have we downed the interface. We handle IFF_UP ourselves 8414 * according to user attempts to set it, rather than blindly 8415 * setting it. 8416 */ 8417 8418 ret = 0; 8419 if ((old_flags ^ flags) & IFF_UP) { 8420 if (old_flags & IFF_UP) 8421 __dev_close(dev); 8422 else 8423 ret = __dev_open(dev, extack); 8424 } 8425 8426 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8427 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8428 unsigned int old_flags = dev->flags; 8429 8430 dev->gflags ^= IFF_PROMISC; 8431 8432 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8433 if (dev->flags != old_flags) 8434 dev_set_rx_mode(dev); 8435 } 8436 8437 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8438 * is important. Some (broken) drivers set IFF_PROMISC, when 8439 * IFF_ALLMULTI is requested not asking us and not reporting. 8440 */ 8441 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8442 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8443 8444 dev->gflags ^= IFF_ALLMULTI; 8445 __dev_set_allmulti(dev, inc, false); 8446 } 8447 8448 return ret; 8449 } 8450 8451 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8452 unsigned int gchanges) 8453 { 8454 unsigned int changes = dev->flags ^ old_flags; 8455 8456 if (gchanges) 8457 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8458 8459 if (changes & IFF_UP) { 8460 if (dev->flags & IFF_UP) 8461 call_netdevice_notifiers(NETDEV_UP, dev); 8462 else 8463 call_netdevice_notifiers(NETDEV_DOWN, dev); 8464 } 8465 8466 if (dev->flags & IFF_UP && 8467 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8468 struct netdev_notifier_change_info change_info = { 8469 .info = { 8470 .dev = dev, 8471 }, 8472 .flags_changed = changes, 8473 }; 8474 8475 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8476 } 8477 } 8478 8479 /** 8480 * dev_change_flags - change device settings 8481 * @dev: device 8482 * @flags: device state flags 8483 * @extack: netlink extended ack 8484 * 8485 * Change settings on device based state flags. The flags are 8486 * in the userspace exported format. 8487 */ 8488 int dev_change_flags(struct net_device *dev, unsigned int flags, 8489 struct netlink_ext_ack *extack) 8490 { 8491 int ret; 8492 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8493 8494 ret = __dev_change_flags(dev, flags, extack); 8495 if (ret < 0) 8496 return ret; 8497 8498 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8499 __dev_notify_flags(dev, old_flags, changes); 8500 return ret; 8501 } 8502 EXPORT_SYMBOL(dev_change_flags); 8503 8504 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8505 { 8506 const struct net_device_ops *ops = dev->netdev_ops; 8507 8508 if (ops->ndo_change_mtu) 8509 return ops->ndo_change_mtu(dev, new_mtu); 8510 8511 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8512 WRITE_ONCE(dev->mtu, new_mtu); 8513 return 0; 8514 } 8515 EXPORT_SYMBOL(__dev_set_mtu); 8516 8517 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8518 struct netlink_ext_ack *extack) 8519 { 8520 /* MTU must be positive, and in range */ 8521 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8522 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8523 return -EINVAL; 8524 } 8525 8526 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8527 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8528 return -EINVAL; 8529 } 8530 return 0; 8531 } 8532 8533 /** 8534 * dev_set_mtu_ext - Change maximum transfer unit 8535 * @dev: device 8536 * @new_mtu: new transfer unit 8537 * @extack: netlink extended ack 8538 * 8539 * Change the maximum transfer size of the network device. 8540 */ 8541 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8542 struct netlink_ext_ack *extack) 8543 { 8544 int err, orig_mtu; 8545 8546 if (new_mtu == dev->mtu) 8547 return 0; 8548 8549 err = dev_validate_mtu(dev, new_mtu, extack); 8550 if (err) 8551 return err; 8552 8553 if (!netif_device_present(dev)) 8554 return -ENODEV; 8555 8556 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8557 err = notifier_to_errno(err); 8558 if (err) 8559 return err; 8560 8561 orig_mtu = dev->mtu; 8562 err = __dev_set_mtu(dev, new_mtu); 8563 8564 if (!err) { 8565 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8566 orig_mtu); 8567 err = notifier_to_errno(err); 8568 if (err) { 8569 /* setting mtu back and notifying everyone again, 8570 * so that they have a chance to revert changes. 8571 */ 8572 __dev_set_mtu(dev, orig_mtu); 8573 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8574 new_mtu); 8575 } 8576 } 8577 return err; 8578 } 8579 8580 int dev_set_mtu(struct net_device *dev, int new_mtu) 8581 { 8582 struct netlink_ext_ack extack; 8583 int err; 8584 8585 memset(&extack, 0, sizeof(extack)); 8586 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8587 if (err && extack._msg) 8588 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8589 return err; 8590 } 8591 EXPORT_SYMBOL(dev_set_mtu); 8592 8593 /** 8594 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8595 * @dev: device 8596 * @new_len: new tx queue length 8597 */ 8598 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8599 { 8600 unsigned int orig_len = dev->tx_queue_len; 8601 int res; 8602 8603 if (new_len != (unsigned int)new_len) 8604 return -ERANGE; 8605 8606 if (new_len != orig_len) { 8607 dev->tx_queue_len = new_len; 8608 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8609 res = notifier_to_errno(res); 8610 if (res) 8611 goto err_rollback; 8612 res = dev_qdisc_change_tx_queue_len(dev); 8613 if (res) 8614 goto err_rollback; 8615 } 8616 8617 return 0; 8618 8619 err_rollback: 8620 netdev_err(dev, "refused to change device tx_queue_len\n"); 8621 dev->tx_queue_len = orig_len; 8622 return res; 8623 } 8624 8625 /** 8626 * dev_set_group - Change group this device belongs to 8627 * @dev: device 8628 * @new_group: group this device should belong to 8629 */ 8630 void dev_set_group(struct net_device *dev, int new_group) 8631 { 8632 dev->group = new_group; 8633 } 8634 EXPORT_SYMBOL(dev_set_group); 8635 8636 /** 8637 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8638 * @dev: device 8639 * @addr: new address 8640 * @extack: netlink extended ack 8641 */ 8642 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8643 struct netlink_ext_ack *extack) 8644 { 8645 struct netdev_notifier_pre_changeaddr_info info = { 8646 .info.dev = dev, 8647 .info.extack = extack, 8648 .dev_addr = addr, 8649 }; 8650 int rc; 8651 8652 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8653 return notifier_to_errno(rc); 8654 } 8655 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8656 8657 /** 8658 * dev_set_mac_address - Change Media Access Control Address 8659 * @dev: device 8660 * @sa: new address 8661 * @extack: netlink extended ack 8662 * 8663 * Change the hardware (MAC) address of the device 8664 */ 8665 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8666 struct netlink_ext_ack *extack) 8667 { 8668 const struct net_device_ops *ops = dev->netdev_ops; 8669 int err; 8670 8671 if (!ops->ndo_set_mac_address) 8672 return -EOPNOTSUPP; 8673 if (sa->sa_family != dev->type) 8674 return -EINVAL; 8675 if (!netif_device_present(dev)) 8676 return -ENODEV; 8677 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8678 if (err) 8679 return err; 8680 err = ops->ndo_set_mac_address(dev, sa); 8681 if (err) 8682 return err; 8683 dev->addr_assign_type = NET_ADDR_SET; 8684 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8685 add_device_randomness(dev->dev_addr, dev->addr_len); 8686 return 0; 8687 } 8688 EXPORT_SYMBOL(dev_set_mac_address); 8689 8690 /** 8691 * dev_change_carrier - Change device carrier 8692 * @dev: device 8693 * @new_carrier: new value 8694 * 8695 * Change device carrier 8696 */ 8697 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8698 { 8699 const struct net_device_ops *ops = dev->netdev_ops; 8700 8701 if (!ops->ndo_change_carrier) 8702 return -EOPNOTSUPP; 8703 if (!netif_device_present(dev)) 8704 return -ENODEV; 8705 return ops->ndo_change_carrier(dev, new_carrier); 8706 } 8707 EXPORT_SYMBOL(dev_change_carrier); 8708 8709 /** 8710 * dev_get_phys_port_id - Get device physical port ID 8711 * @dev: device 8712 * @ppid: port ID 8713 * 8714 * Get device physical port ID 8715 */ 8716 int dev_get_phys_port_id(struct net_device *dev, 8717 struct netdev_phys_item_id *ppid) 8718 { 8719 const struct net_device_ops *ops = dev->netdev_ops; 8720 8721 if (!ops->ndo_get_phys_port_id) 8722 return -EOPNOTSUPP; 8723 return ops->ndo_get_phys_port_id(dev, ppid); 8724 } 8725 EXPORT_SYMBOL(dev_get_phys_port_id); 8726 8727 /** 8728 * dev_get_phys_port_name - Get device physical port name 8729 * @dev: device 8730 * @name: port name 8731 * @len: limit of bytes to copy to name 8732 * 8733 * Get device physical port name 8734 */ 8735 int dev_get_phys_port_name(struct net_device *dev, 8736 char *name, size_t len) 8737 { 8738 const struct net_device_ops *ops = dev->netdev_ops; 8739 int err; 8740 8741 if (ops->ndo_get_phys_port_name) { 8742 err = ops->ndo_get_phys_port_name(dev, name, len); 8743 if (err != -EOPNOTSUPP) 8744 return err; 8745 } 8746 return devlink_compat_phys_port_name_get(dev, name, len); 8747 } 8748 EXPORT_SYMBOL(dev_get_phys_port_name); 8749 8750 /** 8751 * dev_get_port_parent_id - Get the device's port parent identifier 8752 * @dev: network device 8753 * @ppid: pointer to a storage for the port's parent identifier 8754 * @recurse: allow/disallow recursion to lower devices 8755 * 8756 * Get the devices's port parent identifier 8757 */ 8758 int dev_get_port_parent_id(struct net_device *dev, 8759 struct netdev_phys_item_id *ppid, 8760 bool recurse) 8761 { 8762 const struct net_device_ops *ops = dev->netdev_ops; 8763 struct netdev_phys_item_id first = { }; 8764 struct net_device *lower_dev; 8765 struct list_head *iter; 8766 int err; 8767 8768 if (ops->ndo_get_port_parent_id) { 8769 err = ops->ndo_get_port_parent_id(dev, ppid); 8770 if (err != -EOPNOTSUPP) 8771 return err; 8772 } 8773 8774 err = devlink_compat_switch_id_get(dev, ppid); 8775 if (!err || err != -EOPNOTSUPP) 8776 return err; 8777 8778 if (!recurse) 8779 return -EOPNOTSUPP; 8780 8781 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8782 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 8783 if (err) 8784 break; 8785 if (!first.id_len) 8786 first = *ppid; 8787 else if (memcmp(&first, ppid, sizeof(*ppid))) 8788 return -EOPNOTSUPP; 8789 } 8790 8791 return err; 8792 } 8793 EXPORT_SYMBOL(dev_get_port_parent_id); 8794 8795 /** 8796 * netdev_port_same_parent_id - Indicate if two network devices have 8797 * the same port parent identifier 8798 * @a: first network device 8799 * @b: second network device 8800 */ 8801 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8802 { 8803 struct netdev_phys_item_id a_id = { }; 8804 struct netdev_phys_item_id b_id = { }; 8805 8806 if (dev_get_port_parent_id(a, &a_id, true) || 8807 dev_get_port_parent_id(b, &b_id, true)) 8808 return false; 8809 8810 return netdev_phys_item_id_same(&a_id, &b_id); 8811 } 8812 EXPORT_SYMBOL(netdev_port_same_parent_id); 8813 8814 /** 8815 * dev_change_proto_down - update protocol port state information 8816 * @dev: device 8817 * @proto_down: new value 8818 * 8819 * This info can be used by switch drivers to set the phys state of the 8820 * port. 8821 */ 8822 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8823 { 8824 const struct net_device_ops *ops = dev->netdev_ops; 8825 8826 if (!ops->ndo_change_proto_down) 8827 return -EOPNOTSUPP; 8828 if (!netif_device_present(dev)) 8829 return -ENODEV; 8830 return ops->ndo_change_proto_down(dev, proto_down); 8831 } 8832 EXPORT_SYMBOL(dev_change_proto_down); 8833 8834 /** 8835 * dev_change_proto_down_generic - generic implementation for 8836 * ndo_change_proto_down that sets carrier according to 8837 * proto_down. 8838 * 8839 * @dev: device 8840 * @proto_down: new value 8841 */ 8842 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 8843 { 8844 if (proto_down) 8845 netif_carrier_off(dev); 8846 else 8847 netif_carrier_on(dev); 8848 dev->proto_down = proto_down; 8849 return 0; 8850 } 8851 EXPORT_SYMBOL(dev_change_proto_down_generic); 8852 8853 /** 8854 * dev_change_proto_down_reason - proto down reason 8855 * 8856 * @dev: device 8857 * @mask: proto down mask 8858 * @value: proto down value 8859 */ 8860 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 8861 u32 value) 8862 { 8863 int b; 8864 8865 if (!mask) { 8866 dev->proto_down_reason = value; 8867 } else { 8868 for_each_set_bit(b, &mask, 32) { 8869 if (value & (1 << b)) 8870 dev->proto_down_reason |= BIT(b); 8871 else 8872 dev->proto_down_reason &= ~BIT(b); 8873 } 8874 } 8875 } 8876 EXPORT_SYMBOL(dev_change_proto_down_reason); 8877 8878 struct bpf_xdp_link { 8879 struct bpf_link link; 8880 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 8881 int flags; 8882 }; 8883 8884 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 8885 { 8886 if (flags & XDP_FLAGS_HW_MODE) 8887 return XDP_MODE_HW; 8888 if (flags & XDP_FLAGS_DRV_MODE) 8889 return XDP_MODE_DRV; 8890 if (flags & XDP_FLAGS_SKB_MODE) 8891 return XDP_MODE_SKB; 8892 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 8893 } 8894 8895 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 8896 { 8897 switch (mode) { 8898 case XDP_MODE_SKB: 8899 return generic_xdp_install; 8900 case XDP_MODE_DRV: 8901 case XDP_MODE_HW: 8902 return dev->netdev_ops->ndo_bpf; 8903 default: 8904 return NULL; 8905 }; 8906 } 8907 8908 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 8909 enum bpf_xdp_mode mode) 8910 { 8911 return dev->xdp_state[mode].link; 8912 } 8913 8914 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 8915 enum bpf_xdp_mode mode) 8916 { 8917 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 8918 8919 if (link) 8920 return link->link.prog; 8921 return dev->xdp_state[mode].prog; 8922 } 8923 8924 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 8925 { 8926 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 8927 8928 return prog ? prog->aux->id : 0; 8929 } 8930 8931 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 8932 struct bpf_xdp_link *link) 8933 { 8934 dev->xdp_state[mode].link = link; 8935 dev->xdp_state[mode].prog = NULL; 8936 } 8937 8938 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 8939 struct bpf_prog *prog) 8940 { 8941 dev->xdp_state[mode].link = NULL; 8942 dev->xdp_state[mode].prog = prog; 8943 } 8944 8945 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 8946 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 8947 u32 flags, struct bpf_prog *prog) 8948 { 8949 struct netdev_bpf xdp; 8950 int err; 8951 8952 memset(&xdp, 0, sizeof(xdp)); 8953 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 8954 xdp.extack = extack; 8955 xdp.flags = flags; 8956 xdp.prog = prog; 8957 8958 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 8959 * "moved" into driver), so they don't increment it on their own, but 8960 * they do decrement refcnt when program is detached or replaced. 8961 * Given net_device also owns link/prog, we need to bump refcnt here 8962 * to prevent drivers from underflowing it. 8963 */ 8964 if (prog) 8965 bpf_prog_inc(prog); 8966 err = bpf_op(dev, &xdp); 8967 if (err) { 8968 if (prog) 8969 bpf_prog_put(prog); 8970 return err; 8971 } 8972 8973 if (mode != XDP_MODE_HW) 8974 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 8975 8976 return 0; 8977 } 8978 8979 static void dev_xdp_uninstall(struct net_device *dev) 8980 { 8981 struct bpf_xdp_link *link; 8982 struct bpf_prog *prog; 8983 enum bpf_xdp_mode mode; 8984 bpf_op_t bpf_op; 8985 8986 ASSERT_RTNL(); 8987 8988 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 8989 prog = dev_xdp_prog(dev, mode); 8990 if (!prog) 8991 continue; 8992 8993 bpf_op = dev_xdp_bpf_op(dev, mode); 8994 if (!bpf_op) 8995 continue; 8996 8997 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 8998 8999 /* auto-detach link from net device */ 9000 link = dev_xdp_link(dev, mode); 9001 if (link) 9002 link->dev = NULL; 9003 else 9004 bpf_prog_put(prog); 9005 9006 dev_xdp_set_link(dev, mode, NULL); 9007 } 9008 } 9009 9010 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9011 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9012 struct bpf_prog *old_prog, u32 flags) 9013 { 9014 struct bpf_prog *cur_prog; 9015 enum bpf_xdp_mode mode; 9016 bpf_op_t bpf_op; 9017 int err; 9018 9019 ASSERT_RTNL(); 9020 9021 /* either link or prog attachment, never both */ 9022 if (link && (new_prog || old_prog)) 9023 return -EINVAL; 9024 /* link supports only XDP mode flags */ 9025 if (link && (flags & ~XDP_FLAGS_MODES)) { 9026 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9027 return -EINVAL; 9028 } 9029 /* just one XDP mode bit should be set, zero defaults to SKB mode */ 9030 if (hweight32(flags & XDP_FLAGS_MODES) > 1) { 9031 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9032 return -EINVAL; 9033 } 9034 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9035 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9036 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9037 return -EINVAL; 9038 } 9039 9040 mode = dev_xdp_mode(dev, flags); 9041 /* can't replace attached link */ 9042 if (dev_xdp_link(dev, mode)) { 9043 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9044 return -EBUSY; 9045 } 9046 9047 cur_prog = dev_xdp_prog(dev, mode); 9048 /* can't replace attached prog with link */ 9049 if (link && cur_prog) { 9050 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9051 return -EBUSY; 9052 } 9053 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9054 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9055 return -EEXIST; 9056 } 9057 9058 /* put effective new program into new_prog */ 9059 if (link) 9060 new_prog = link->link.prog; 9061 9062 if (new_prog) { 9063 bool offload = mode == XDP_MODE_HW; 9064 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9065 ? XDP_MODE_DRV : XDP_MODE_SKB; 9066 9067 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9068 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9069 return -EBUSY; 9070 } 9071 if (!offload && dev_xdp_prog(dev, other_mode)) { 9072 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9073 return -EEXIST; 9074 } 9075 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) { 9076 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported"); 9077 return -EINVAL; 9078 } 9079 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9080 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9081 return -EINVAL; 9082 } 9083 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9084 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9085 return -EINVAL; 9086 } 9087 } 9088 9089 /* don't call drivers if the effective program didn't change */ 9090 if (new_prog != cur_prog) { 9091 bpf_op = dev_xdp_bpf_op(dev, mode); 9092 if (!bpf_op) { 9093 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9094 return -EOPNOTSUPP; 9095 } 9096 9097 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9098 if (err) 9099 return err; 9100 } 9101 9102 if (link) 9103 dev_xdp_set_link(dev, mode, link); 9104 else 9105 dev_xdp_set_prog(dev, mode, new_prog); 9106 if (cur_prog) 9107 bpf_prog_put(cur_prog); 9108 9109 return 0; 9110 } 9111 9112 static int dev_xdp_attach_link(struct net_device *dev, 9113 struct netlink_ext_ack *extack, 9114 struct bpf_xdp_link *link) 9115 { 9116 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9117 } 9118 9119 static int dev_xdp_detach_link(struct net_device *dev, 9120 struct netlink_ext_ack *extack, 9121 struct bpf_xdp_link *link) 9122 { 9123 enum bpf_xdp_mode mode; 9124 bpf_op_t bpf_op; 9125 9126 ASSERT_RTNL(); 9127 9128 mode = dev_xdp_mode(dev, link->flags); 9129 if (dev_xdp_link(dev, mode) != link) 9130 return -EINVAL; 9131 9132 bpf_op = dev_xdp_bpf_op(dev, mode); 9133 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9134 dev_xdp_set_link(dev, mode, NULL); 9135 return 0; 9136 } 9137 9138 static void bpf_xdp_link_release(struct bpf_link *link) 9139 { 9140 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9141 9142 rtnl_lock(); 9143 9144 /* if racing with net_device's tear down, xdp_link->dev might be 9145 * already NULL, in which case link was already auto-detached 9146 */ 9147 if (xdp_link->dev) { 9148 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9149 xdp_link->dev = NULL; 9150 } 9151 9152 rtnl_unlock(); 9153 } 9154 9155 static int bpf_xdp_link_detach(struct bpf_link *link) 9156 { 9157 bpf_xdp_link_release(link); 9158 return 0; 9159 } 9160 9161 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9162 { 9163 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9164 9165 kfree(xdp_link); 9166 } 9167 9168 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9169 struct seq_file *seq) 9170 { 9171 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9172 u32 ifindex = 0; 9173 9174 rtnl_lock(); 9175 if (xdp_link->dev) 9176 ifindex = xdp_link->dev->ifindex; 9177 rtnl_unlock(); 9178 9179 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9180 } 9181 9182 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9183 struct bpf_link_info *info) 9184 { 9185 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9186 u32 ifindex = 0; 9187 9188 rtnl_lock(); 9189 if (xdp_link->dev) 9190 ifindex = xdp_link->dev->ifindex; 9191 rtnl_unlock(); 9192 9193 info->xdp.ifindex = ifindex; 9194 return 0; 9195 } 9196 9197 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9198 struct bpf_prog *old_prog) 9199 { 9200 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9201 enum bpf_xdp_mode mode; 9202 bpf_op_t bpf_op; 9203 int err = 0; 9204 9205 rtnl_lock(); 9206 9207 /* link might have been auto-released already, so fail */ 9208 if (!xdp_link->dev) { 9209 err = -ENOLINK; 9210 goto out_unlock; 9211 } 9212 9213 if (old_prog && link->prog != old_prog) { 9214 err = -EPERM; 9215 goto out_unlock; 9216 } 9217 old_prog = link->prog; 9218 if (old_prog == new_prog) { 9219 /* no-op, don't disturb drivers */ 9220 bpf_prog_put(new_prog); 9221 goto out_unlock; 9222 } 9223 9224 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9225 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9226 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9227 xdp_link->flags, new_prog); 9228 if (err) 9229 goto out_unlock; 9230 9231 old_prog = xchg(&link->prog, new_prog); 9232 bpf_prog_put(old_prog); 9233 9234 out_unlock: 9235 rtnl_unlock(); 9236 return err; 9237 } 9238 9239 static const struct bpf_link_ops bpf_xdp_link_lops = { 9240 .release = bpf_xdp_link_release, 9241 .dealloc = bpf_xdp_link_dealloc, 9242 .detach = bpf_xdp_link_detach, 9243 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9244 .fill_link_info = bpf_xdp_link_fill_link_info, 9245 .update_prog = bpf_xdp_link_update, 9246 }; 9247 9248 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9249 { 9250 struct net *net = current->nsproxy->net_ns; 9251 struct bpf_link_primer link_primer; 9252 struct bpf_xdp_link *link; 9253 struct net_device *dev; 9254 int err, fd; 9255 9256 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9257 if (!dev) 9258 return -EINVAL; 9259 9260 link = kzalloc(sizeof(*link), GFP_USER); 9261 if (!link) { 9262 err = -ENOMEM; 9263 goto out_put_dev; 9264 } 9265 9266 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9267 link->dev = dev; 9268 link->flags = attr->link_create.flags; 9269 9270 err = bpf_link_prime(&link->link, &link_primer); 9271 if (err) { 9272 kfree(link); 9273 goto out_put_dev; 9274 } 9275 9276 rtnl_lock(); 9277 err = dev_xdp_attach_link(dev, NULL, link); 9278 rtnl_unlock(); 9279 9280 if (err) { 9281 bpf_link_cleanup(&link_primer); 9282 goto out_put_dev; 9283 } 9284 9285 fd = bpf_link_settle(&link_primer); 9286 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9287 dev_put(dev); 9288 return fd; 9289 9290 out_put_dev: 9291 dev_put(dev); 9292 return err; 9293 } 9294 9295 /** 9296 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9297 * @dev: device 9298 * @extack: netlink extended ack 9299 * @fd: new program fd or negative value to clear 9300 * @expected_fd: old program fd that userspace expects to replace or clear 9301 * @flags: xdp-related flags 9302 * 9303 * Set or clear a bpf program for a device 9304 */ 9305 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9306 int fd, int expected_fd, u32 flags) 9307 { 9308 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9309 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9310 int err; 9311 9312 ASSERT_RTNL(); 9313 9314 if (fd >= 0) { 9315 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9316 mode != XDP_MODE_SKB); 9317 if (IS_ERR(new_prog)) 9318 return PTR_ERR(new_prog); 9319 } 9320 9321 if (expected_fd >= 0) { 9322 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9323 mode != XDP_MODE_SKB); 9324 if (IS_ERR(old_prog)) { 9325 err = PTR_ERR(old_prog); 9326 old_prog = NULL; 9327 goto err_out; 9328 } 9329 } 9330 9331 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9332 9333 err_out: 9334 if (err && new_prog) 9335 bpf_prog_put(new_prog); 9336 if (old_prog) 9337 bpf_prog_put(old_prog); 9338 return err; 9339 } 9340 9341 /** 9342 * dev_new_index - allocate an ifindex 9343 * @net: the applicable net namespace 9344 * 9345 * Returns a suitable unique value for a new device interface 9346 * number. The caller must hold the rtnl semaphore or the 9347 * dev_base_lock to be sure it remains unique. 9348 */ 9349 static int dev_new_index(struct net *net) 9350 { 9351 int ifindex = net->ifindex; 9352 9353 for (;;) { 9354 if (++ifindex <= 0) 9355 ifindex = 1; 9356 if (!__dev_get_by_index(net, ifindex)) 9357 return net->ifindex = ifindex; 9358 } 9359 } 9360 9361 /* Delayed registration/unregisteration */ 9362 static LIST_HEAD(net_todo_list); 9363 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9364 9365 static void net_set_todo(struct net_device *dev) 9366 { 9367 list_add_tail(&dev->todo_list, &net_todo_list); 9368 dev_net(dev)->dev_unreg_count++; 9369 } 9370 9371 static void rollback_registered_many(struct list_head *head) 9372 { 9373 struct net_device *dev, *tmp; 9374 LIST_HEAD(close_head); 9375 9376 BUG_ON(dev_boot_phase); 9377 ASSERT_RTNL(); 9378 9379 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 9380 /* Some devices call without registering 9381 * for initialization unwind. Remove those 9382 * devices and proceed with the remaining. 9383 */ 9384 if (dev->reg_state == NETREG_UNINITIALIZED) { 9385 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 9386 dev->name, dev); 9387 9388 WARN_ON(1); 9389 list_del(&dev->unreg_list); 9390 continue; 9391 } 9392 dev->dismantle = true; 9393 BUG_ON(dev->reg_state != NETREG_REGISTERED); 9394 } 9395 9396 /* If device is running, close it first. */ 9397 list_for_each_entry(dev, head, unreg_list) 9398 list_add_tail(&dev->close_list, &close_head); 9399 dev_close_many(&close_head, true); 9400 9401 list_for_each_entry(dev, head, unreg_list) { 9402 /* And unlink it from device chain. */ 9403 unlist_netdevice(dev); 9404 9405 dev->reg_state = NETREG_UNREGISTERING; 9406 } 9407 flush_all_backlogs(); 9408 9409 synchronize_net(); 9410 9411 list_for_each_entry(dev, head, unreg_list) { 9412 struct sk_buff *skb = NULL; 9413 9414 /* Shutdown queueing discipline. */ 9415 dev_shutdown(dev); 9416 9417 dev_xdp_uninstall(dev); 9418 9419 /* Notify protocols, that we are about to destroy 9420 * this device. They should clean all the things. 9421 */ 9422 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9423 9424 if (!dev->rtnl_link_ops || 9425 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 9426 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 9427 GFP_KERNEL, NULL, 0); 9428 9429 /* 9430 * Flush the unicast and multicast chains 9431 */ 9432 dev_uc_flush(dev); 9433 dev_mc_flush(dev); 9434 9435 netdev_name_node_alt_flush(dev); 9436 netdev_name_node_free(dev->name_node); 9437 9438 if (dev->netdev_ops->ndo_uninit) 9439 dev->netdev_ops->ndo_uninit(dev); 9440 9441 if (skb) 9442 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 9443 9444 /* Notifier chain MUST detach us all upper devices. */ 9445 WARN_ON(netdev_has_any_upper_dev(dev)); 9446 WARN_ON(netdev_has_any_lower_dev(dev)); 9447 9448 /* Remove entries from kobject tree */ 9449 netdev_unregister_kobject(dev); 9450 #ifdef CONFIG_XPS 9451 /* Remove XPS queueing entries */ 9452 netif_reset_xps_queues_gt(dev, 0); 9453 #endif 9454 } 9455 9456 synchronize_net(); 9457 9458 list_for_each_entry(dev, head, unreg_list) 9459 dev_put(dev); 9460 } 9461 9462 static void rollback_registered(struct net_device *dev) 9463 { 9464 LIST_HEAD(single); 9465 9466 list_add(&dev->unreg_list, &single); 9467 rollback_registered_many(&single); 9468 list_del(&single); 9469 } 9470 9471 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9472 struct net_device *upper, netdev_features_t features) 9473 { 9474 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9475 netdev_features_t feature; 9476 int feature_bit; 9477 9478 for_each_netdev_feature(upper_disables, feature_bit) { 9479 feature = __NETIF_F_BIT(feature_bit); 9480 if (!(upper->wanted_features & feature) 9481 && (features & feature)) { 9482 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9483 &feature, upper->name); 9484 features &= ~feature; 9485 } 9486 } 9487 9488 return features; 9489 } 9490 9491 static void netdev_sync_lower_features(struct net_device *upper, 9492 struct net_device *lower, netdev_features_t features) 9493 { 9494 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9495 netdev_features_t feature; 9496 int feature_bit; 9497 9498 for_each_netdev_feature(upper_disables, feature_bit) { 9499 feature = __NETIF_F_BIT(feature_bit); 9500 if (!(features & feature) && (lower->features & feature)) { 9501 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9502 &feature, lower->name); 9503 lower->wanted_features &= ~feature; 9504 __netdev_update_features(lower); 9505 9506 if (unlikely(lower->features & feature)) 9507 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9508 &feature, lower->name); 9509 else 9510 netdev_features_change(lower); 9511 } 9512 } 9513 } 9514 9515 static netdev_features_t netdev_fix_features(struct net_device *dev, 9516 netdev_features_t features) 9517 { 9518 /* Fix illegal checksum combinations */ 9519 if ((features & NETIF_F_HW_CSUM) && 9520 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9521 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9522 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9523 } 9524 9525 /* TSO requires that SG is present as well. */ 9526 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9527 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9528 features &= ~NETIF_F_ALL_TSO; 9529 } 9530 9531 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9532 !(features & NETIF_F_IP_CSUM)) { 9533 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9534 features &= ~NETIF_F_TSO; 9535 features &= ~NETIF_F_TSO_ECN; 9536 } 9537 9538 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9539 !(features & NETIF_F_IPV6_CSUM)) { 9540 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9541 features &= ~NETIF_F_TSO6; 9542 } 9543 9544 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9545 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9546 features &= ~NETIF_F_TSO_MANGLEID; 9547 9548 /* TSO ECN requires that TSO is present as well. */ 9549 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9550 features &= ~NETIF_F_TSO_ECN; 9551 9552 /* Software GSO depends on SG. */ 9553 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9554 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9555 features &= ~NETIF_F_GSO; 9556 } 9557 9558 /* GSO partial features require GSO partial be set */ 9559 if ((features & dev->gso_partial_features) && 9560 !(features & NETIF_F_GSO_PARTIAL)) { 9561 netdev_dbg(dev, 9562 "Dropping partially supported GSO features since no GSO partial.\n"); 9563 features &= ~dev->gso_partial_features; 9564 } 9565 9566 if (!(features & NETIF_F_RXCSUM)) { 9567 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9568 * successfully merged by hardware must also have the 9569 * checksum verified by hardware. If the user does not 9570 * want to enable RXCSUM, logically, we should disable GRO_HW. 9571 */ 9572 if (features & NETIF_F_GRO_HW) { 9573 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9574 features &= ~NETIF_F_GRO_HW; 9575 } 9576 } 9577 9578 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9579 if (features & NETIF_F_RXFCS) { 9580 if (features & NETIF_F_LRO) { 9581 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9582 features &= ~NETIF_F_LRO; 9583 } 9584 9585 if (features & NETIF_F_GRO_HW) { 9586 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9587 features &= ~NETIF_F_GRO_HW; 9588 } 9589 } 9590 9591 return features; 9592 } 9593 9594 int __netdev_update_features(struct net_device *dev) 9595 { 9596 struct net_device *upper, *lower; 9597 netdev_features_t features; 9598 struct list_head *iter; 9599 int err = -1; 9600 9601 ASSERT_RTNL(); 9602 9603 features = netdev_get_wanted_features(dev); 9604 9605 if (dev->netdev_ops->ndo_fix_features) 9606 features = dev->netdev_ops->ndo_fix_features(dev, features); 9607 9608 /* driver might be less strict about feature dependencies */ 9609 features = netdev_fix_features(dev, features); 9610 9611 /* some features can't be enabled if they're off on an upper device */ 9612 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9613 features = netdev_sync_upper_features(dev, upper, features); 9614 9615 if (dev->features == features) 9616 goto sync_lower; 9617 9618 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9619 &dev->features, &features); 9620 9621 if (dev->netdev_ops->ndo_set_features) 9622 err = dev->netdev_ops->ndo_set_features(dev, features); 9623 else 9624 err = 0; 9625 9626 if (unlikely(err < 0)) { 9627 netdev_err(dev, 9628 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9629 err, &features, &dev->features); 9630 /* return non-0 since some features might have changed and 9631 * it's better to fire a spurious notification than miss it 9632 */ 9633 return -1; 9634 } 9635 9636 sync_lower: 9637 /* some features must be disabled on lower devices when disabled 9638 * on an upper device (think: bonding master or bridge) 9639 */ 9640 netdev_for_each_lower_dev(dev, lower, iter) 9641 netdev_sync_lower_features(dev, lower, features); 9642 9643 if (!err) { 9644 netdev_features_t diff = features ^ dev->features; 9645 9646 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9647 /* udp_tunnel_{get,drop}_rx_info both need 9648 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9649 * device, or they won't do anything. 9650 * Thus we need to update dev->features 9651 * *before* calling udp_tunnel_get_rx_info, 9652 * but *after* calling udp_tunnel_drop_rx_info. 9653 */ 9654 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9655 dev->features = features; 9656 udp_tunnel_get_rx_info(dev); 9657 } else { 9658 udp_tunnel_drop_rx_info(dev); 9659 } 9660 } 9661 9662 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9663 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9664 dev->features = features; 9665 err |= vlan_get_rx_ctag_filter_info(dev); 9666 } else { 9667 vlan_drop_rx_ctag_filter_info(dev); 9668 } 9669 } 9670 9671 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9672 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9673 dev->features = features; 9674 err |= vlan_get_rx_stag_filter_info(dev); 9675 } else { 9676 vlan_drop_rx_stag_filter_info(dev); 9677 } 9678 } 9679 9680 dev->features = features; 9681 } 9682 9683 return err < 0 ? 0 : 1; 9684 } 9685 9686 /** 9687 * netdev_update_features - recalculate device features 9688 * @dev: the device to check 9689 * 9690 * Recalculate dev->features set and send notifications if it 9691 * has changed. Should be called after driver or hardware dependent 9692 * conditions might have changed that influence the features. 9693 */ 9694 void netdev_update_features(struct net_device *dev) 9695 { 9696 if (__netdev_update_features(dev)) 9697 netdev_features_change(dev); 9698 } 9699 EXPORT_SYMBOL(netdev_update_features); 9700 9701 /** 9702 * netdev_change_features - recalculate device features 9703 * @dev: the device to check 9704 * 9705 * Recalculate dev->features set and send notifications even 9706 * if they have not changed. Should be called instead of 9707 * netdev_update_features() if also dev->vlan_features might 9708 * have changed to allow the changes to be propagated to stacked 9709 * VLAN devices. 9710 */ 9711 void netdev_change_features(struct net_device *dev) 9712 { 9713 __netdev_update_features(dev); 9714 netdev_features_change(dev); 9715 } 9716 EXPORT_SYMBOL(netdev_change_features); 9717 9718 /** 9719 * netif_stacked_transfer_operstate - transfer operstate 9720 * @rootdev: the root or lower level device to transfer state from 9721 * @dev: the device to transfer operstate to 9722 * 9723 * Transfer operational state from root to device. This is normally 9724 * called when a stacking relationship exists between the root 9725 * device and the device(a leaf device). 9726 */ 9727 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9728 struct net_device *dev) 9729 { 9730 if (rootdev->operstate == IF_OPER_DORMANT) 9731 netif_dormant_on(dev); 9732 else 9733 netif_dormant_off(dev); 9734 9735 if (rootdev->operstate == IF_OPER_TESTING) 9736 netif_testing_on(dev); 9737 else 9738 netif_testing_off(dev); 9739 9740 if (netif_carrier_ok(rootdev)) 9741 netif_carrier_on(dev); 9742 else 9743 netif_carrier_off(dev); 9744 } 9745 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9746 9747 static int netif_alloc_rx_queues(struct net_device *dev) 9748 { 9749 unsigned int i, count = dev->num_rx_queues; 9750 struct netdev_rx_queue *rx; 9751 size_t sz = count * sizeof(*rx); 9752 int err = 0; 9753 9754 BUG_ON(count < 1); 9755 9756 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9757 if (!rx) 9758 return -ENOMEM; 9759 9760 dev->_rx = rx; 9761 9762 for (i = 0; i < count; i++) { 9763 rx[i].dev = dev; 9764 9765 /* XDP RX-queue setup */ 9766 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 9767 if (err < 0) 9768 goto err_rxq_info; 9769 } 9770 return 0; 9771 9772 err_rxq_info: 9773 /* Rollback successful reg's and free other resources */ 9774 while (i--) 9775 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9776 kvfree(dev->_rx); 9777 dev->_rx = NULL; 9778 return err; 9779 } 9780 9781 static void netif_free_rx_queues(struct net_device *dev) 9782 { 9783 unsigned int i, count = dev->num_rx_queues; 9784 9785 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9786 if (!dev->_rx) 9787 return; 9788 9789 for (i = 0; i < count; i++) 9790 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9791 9792 kvfree(dev->_rx); 9793 } 9794 9795 static void netdev_init_one_queue(struct net_device *dev, 9796 struct netdev_queue *queue, void *_unused) 9797 { 9798 /* Initialize queue lock */ 9799 spin_lock_init(&queue->_xmit_lock); 9800 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 9801 queue->xmit_lock_owner = -1; 9802 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9803 queue->dev = dev; 9804 #ifdef CONFIG_BQL 9805 dql_init(&queue->dql, HZ); 9806 #endif 9807 } 9808 9809 static void netif_free_tx_queues(struct net_device *dev) 9810 { 9811 kvfree(dev->_tx); 9812 } 9813 9814 static int netif_alloc_netdev_queues(struct net_device *dev) 9815 { 9816 unsigned int count = dev->num_tx_queues; 9817 struct netdev_queue *tx; 9818 size_t sz = count * sizeof(*tx); 9819 9820 if (count < 1 || count > 0xffff) 9821 return -EINVAL; 9822 9823 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9824 if (!tx) 9825 return -ENOMEM; 9826 9827 dev->_tx = tx; 9828 9829 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9830 spin_lock_init(&dev->tx_global_lock); 9831 9832 return 0; 9833 } 9834 9835 void netif_tx_stop_all_queues(struct net_device *dev) 9836 { 9837 unsigned int i; 9838 9839 for (i = 0; i < dev->num_tx_queues; i++) { 9840 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9841 9842 netif_tx_stop_queue(txq); 9843 } 9844 } 9845 EXPORT_SYMBOL(netif_tx_stop_all_queues); 9846 9847 /** 9848 * register_netdevice - register a network device 9849 * @dev: device to register 9850 * 9851 * Take a completed network device structure and add it to the kernel 9852 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9853 * chain. 0 is returned on success. A negative errno code is returned 9854 * on a failure to set up the device, or if the name is a duplicate. 9855 * 9856 * Callers must hold the rtnl semaphore. You may want 9857 * register_netdev() instead of this. 9858 * 9859 * BUGS: 9860 * The locking appears insufficient to guarantee two parallel registers 9861 * will not get the same name. 9862 */ 9863 9864 int register_netdevice(struct net_device *dev) 9865 { 9866 int ret; 9867 struct net *net = dev_net(dev); 9868 9869 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 9870 NETDEV_FEATURE_COUNT); 9871 BUG_ON(dev_boot_phase); 9872 ASSERT_RTNL(); 9873 9874 might_sleep(); 9875 9876 /* When net_device's are persistent, this will be fatal. */ 9877 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 9878 BUG_ON(!net); 9879 9880 ret = ethtool_check_ops(dev->ethtool_ops); 9881 if (ret) 9882 return ret; 9883 9884 spin_lock_init(&dev->addr_list_lock); 9885 netdev_set_addr_lockdep_class(dev); 9886 9887 ret = dev_get_valid_name(net, dev, dev->name); 9888 if (ret < 0) 9889 goto out; 9890 9891 ret = -ENOMEM; 9892 dev->name_node = netdev_name_node_head_alloc(dev); 9893 if (!dev->name_node) 9894 goto out; 9895 9896 /* Init, if this function is available */ 9897 if (dev->netdev_ops->ndo_init) { 9898 ret = dev->netdev_ops->ndo_init(dev); 9899 if (ret) { 9900 if (ret > 0) 9901 ret = -EIO; 9902 goto err_free_name; 9903 } 9904 } 9905 9906 if (((dev->hw_features | dev->features) & 9907 NETIF_F_HW_VLAN_CTAG_FILTER) && 9908 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 9909 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 9910 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 9911 ret = -EINVAL; 9912 goto err_uninit; 9913 } 9914 9915 ret = -EBUSY; 9916 if (!dev->ifindex) 9917 dev->ifindex = dev_new_index(net); 9918 else if (__dev_get_by_index(net, dev->ifindex)) 9919 goto err_uninit; 9920 9921 /* Transfer changeable features to wanted_features and enable 9922 * software offloads (GSO and GRO). 9923 */ 9924 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 9925 dev->features |= NETIF_F_SOFT_FEATURES; 9926 9927 if (dev->netdev_ops->ndo_udp_tunnel_add) { 9928 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9929 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9930 } 9931 9932 dev->wanted_features = dev->features & dev->hw_features; 9933 9934 if (!(dev->flags & IFF_LOOPBACK)) 9935 dev->hw_features |= NETIF_F_NOCACHE_COPY; 9936 9937 /* If IPv4 TCP segmentation offload is supported we should also 9938 * allow the device to enable segmenting the frame with the option 9939 * of ignoring a static IP ID value. This doesn't enable the 9940 * feature itself but allows the user to enable it later. 9941 */ 9942 if (dev->hw_features & NETIF_F_TSO) 9943 dev->hw_features |= NETIF_F_TSO_MANGLEID; 9944 if (dev->vlan_features & NETIF_F_TSO) 9945 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 9946 if (dev->mpls_features & NETIF_F_TSO) 9947 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 9948 if (dev->hw_enc_features & NETIF_F_TSO) 9949 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 9950 9951 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 9952 */ 9953 dev->vlan_features |= NETIF_F_HIGHDMA; 9954 9955 /* Make NETIF_F_SG inheritable to tunnel devices. 9956 */ 9957 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 9958 9959 /* Make NETIF_F_SG inheritable to MPLS. 9960 */ 9961 dev->mpls_features |= NETIF_F_SG; 9962 9963 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 9964 ret = notifier_to_errno(ret); 9965 if (ret) 9966 goto err_uninit; 9967 9968 ret = netdev_register_kobject(dev); 9969 if (ret) { 9970 dev->reg_state = NETREG_UNREGISTERED; 9971 goto err_uninit; 9972 } 9973 dev->reg_state = NETREG_REGISTERED; 9974 9975 __netdev_update_features(dev); 9976 9977 /* 9978 * Default initial state at registry is that the 9979 * device is present. 9980 */ 9981 9982 set_bit(__LINK_STATE_PRESENT, &dev->state); 9983 9984 linkwatch_init_dev(dev); 9985 9986 dev_init_scheduler(dev); 9987 dev_hold(dev); 9988 list_netdevice(dev); 9989 add_device_randomness(dev->dev_addr, dev->addr_len); 9990 9991 /* If the device has permanent device address, driver should 9992 * set dev_addr and also addr_assign_type should be set to 9993 * NET_ADDR_PERM (default value). 9994 */ 9995 if (dev->addr_assign_type == NET_ADDR_PERM) 9996 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 9997 9998 /* Notify protocols, that a new device appeared. */ 9999 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10000 ret = notifier_to_errno(ret); 10001 if (ret) { 10002 rollback_registered(dev); 10003 rcu_barrier(); 10004 10005 dev->reg_state = NETREG_UNREGISTERED; 10006 /* We should put the kobject that hold in 10007 * netdev_unregister_kobject(), otherwise 10008 * the net device cannot be freed when 10009 * driver calls free_netdev(), because the 10010 * kobject is being hold. 10011 */ 10012 kobject_put(&dev->dev.kobj); 10013 } 10014 /* 10015 * Prevent userspace races by waiting until the network 10016 * device is fully setup before sending notifications. 10017 */ 10018 if (!dev->rtnl_link_ops || 10019 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10020 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10021 10022 out: 10023 return ret; 10024 10025 err_uninit: 10026 if (dev->netdev_ops->ndo_uninit) 10027 dev->netdev_ops->ndo_uninit(dev); 10028 if (dev->priv_destructor) 10029 dev->priv_destructor(dev); 10030 err_free_name: 10031 netdev_name_node_free(dev->name_node); 10032 goto out; 10033 } 10034 EXPORT_SYMBOL(register_netdevice); 10035 10036 /** 10037 * init_dummy_netdev - init a dummy network device for NAPI 10038 * @dev: device to init 10039 * 10040 * This takes a network device structure and initialize the minimum 10041 * amount of fields so it can be used to schedule NAPI polls without 10042 * registering a full blown interface. This is to be used by drivers 10043 * that need to tie several hardware interfaces to a single NAPI 10044 * poll scheduler due to HW limitations. 10045 */ 10046 int init_dummy_netdev(struct net_device *dev) 10047 { 10048 /* Clear everything. Note we don't initialize spinlocks 10049 * are they aren't supposed to be taken by any of the 10050 * NAPI code and this dummy netdev is supposed to be 10051 * only ever used for NAPI polls 10052 */ 10053 memset(dev, 0, sizeof(struct net_device)); 10054 10055 /* make sure we BUG if trying to hit standard 10056 * register/unregister code path 10057 */ 10058 dev->reg_state = NETREG_DUMMY; 10059 10060 /* NAPI wants this */ 10061 INIT_LIST_HEAD(&dev->napi_list); 10062 10063 /* a dummy interface is started by default */ 10064 set_bit(__LINK_STATE_PRESENT, &dev->state); 10065 set_bit(__LINK_STATE_START, &dev->state); 10066 10067 /* napi_busy_loop stats accounting wants this */ 10068 dev_net_set(dev, &init_net); 10069 10070 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10071 * because users of this 'device' dont need to change 10072 * its refcount. 10073 */ 10074 10075 return 0; 10076 } 10077 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10078 10079 10080 /** 10081 * register_netdev - register a network device 10082 * @dev: device to register 10083 * 10084 * Take a completed network device structure and add it to the kernel 10085 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10086 * chain. 0 is returned on success. A negative errno code is returned 10087 * on a failure to set up the device, or if the name is a duplicate. 10088 * 10089 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10090 * and expands the device name if you passed a format string to 10091 * alloc_netdev. 10092 */ 10093 int register_netdev(struct net_device *dev) 10094 { 10095 int err; 10096 10097 if (rtnl_lock_killable()) 10098 return -EINTR; 10099 err = register_netdevice(dev); 10100 rtnl_unlock(); 10101 return err; 10102 } 10103 EXPORT_SYMBOL(register_netdev); 10104 10105 int netdev_refcnt_read(const struct net_device *dev) 10106 { 10107 int i, refcnt = 0; 10108 10109 for_each_possible_cpu(i) 10110 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10111 return refcnt; 10112 } 10113 EXPORT_SYMBOL(netdev_refcnt_read); 10114 10115 #define WAIT_REFS_MIN_MSECS 1 10116 #define WAIT_REFS_MAX_MSECS 250 10117 /** 10118 * netdev_wait_allrefs - wait until all references are gone. 10119 * @dev: target net_device 10120 * 10121 * This is called when unregistering network devices. 10122 * 10123 * Any protocol or device that holds a reference should register 10124 * for netdevice notification, and cleanup and put back the 10125 * reference if they receive an UNREGISTER event. 10126 * We can get stuck here if buggy protocols don't correctly 10127 * call dev_put. 10128 */ 10129 static void netdev_wait_allrefs(struct net_device *dev) 10130 { 10131 unsigned long rebroadcast_time, warning_time; 10132 int wait = 0, refcnt; 10133 10134 linkwatch_forget_dev(dev); 10135 10136 rebroadcast_time = warning_time = jiffies; 10137 refcnt = netdev_refcnt_read(dev); 10138 10139 while (refcnt != 0) { 10140 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10141 rtnl_lock(); 10142 10143 /* Rebroadcast unregister notification */ 10144 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10145 10146 __rtnl_unlock(); 10147 rcu_barrier(); 10148 rtnl_lock(); 10149 10150 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10151 &dev->state)) { 10152 /* We must not have linkwatch events 10153 * pending on unregister. If this 10154 * happens, we simply run the queue 10155 * unscheduled, resulting in a noop 10156 * for this device. 10157 */ 10158 linkwatch_run_queue(); 10159 } 10160 10161 __rtnl_unlock(); 10162 10163 rebroadcast_time = jiffies; 10164 } 10165 10166 if (!wait) { 10167 rcu_barrier(); 10168 wait = WAIT_REFS_MIN_MSECS; 10169 } else { 10170 msleep(wait); 10171 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10172 } 10173 10174 refcnt = netdev_refcnt_read(dev); 10175 10176 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 10177 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10178 dev->name, refcnt); 10179 warning_time = jiffies; 10180 } 10181 } 10182 } 10183 10184 /* The sequence is: 10185 * 10186 * rtnl_lock(); 10187 * ... 10188 * register_netdevice(x1); 10189 * register_netdevice(x2); 10190 * ... 10191 * unregister_netdevice(y1); 10192 * unregister_netdevice(y2); 10193 * ... 10194 * rtnl_unlock(); 10195 * free_netdev(y1); 10196 * free_netdev(y2); 10197 * 10198 * We are invoked by rtnl_unlock(). 10199 * This allows us to deal with problems: 10200 * 1) We can delete sysfs objects which invoke hotplug 10201 * without deadlocking with linkwatch via keventd. 10202 * 2) Since we run with the RTNL semaphore not held, we can sleep 10203 * safely in order to wait for the netdev refcnt to drop to zero. 10204 * 10205 * We must not return until all unregister events added during 10206 * the interval the lock was held have been completed. 10207 */ 10208 void netdev_run_todo(void) 10209 { 10210 struct list_head list; 10211 #ifdef CONFIG_LOCKDEP 10212 struct list_head unlink_list; 10213 10214 list_replace_init(&net_unlink_list, &unlink_list); 10215 10216 while (!list_empty(&unlink_list)) { 10217 struct net_device *dev = list_first_entry(&unlink_list, 10218 struct net_device, 10219 unlink_list); 10220 list_del_init(&dev->unlink_list); 10221 dev->nested_level = dev->lower_level - 1; 10222 } 10223 #endif 10224 10225 /* Snapshot list, allow later requests */ 10226 list_replace_init(&net_todo_list, &list); 10227 10228 __rtnl_unlock(); 10229 10230 10231 /* Wait for rcu callbacks to finish before next phase */ 10232 if (!list_empty(&list)) 10233 rcu_barrier(); 10234 10235 while (!list_empty(&list)) { 10236 struct net_device *dev 10237 = list_first_entry(&list, struct net_device, todo_list); 10238 list_del(&dev->todo_list); 10239 10240 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10241 pr_err("network todo '%s' but state %d\n", 10242 dev->name, dev->reg_state); 10243 dump_stack(); 10244 continue; 10245 } 10246 10247 dev->reg_state = NETREG_UNREGISTERED; 10248 10249 netdev_wait_allrefs(dev); 10250 10251 /* paranoia */ 10252 BUG_ON(netdev_refcnt_read(dev)); 10253 BUG_ON(!list_empty(&dev->ptype_all)); 10254 BUG_ON(!list_empty(&dev->ptype_specific)); 10255 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10256 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10257 #if IS_ENABLED(CONFIG_DECNET) 10258 WARN_ON(dev->dn_ptr); 10259 #endif 10260 if (dev->priv_destructor) 10261 dev->priv_destructor(dev); 10262 if (dev->needs_free_netdev) 10263 free_netdev(dev); 10264 10265 /* Report a network device has been unregistered */ 10266 rtnl_lock(); 10267 dev_net(dev)->dev_unreg_count--; 10268 __rtnl_unlock(); 10269 wake_up(&netdev_unregistering_wq); 10270 10271 /* Free network device */ 10272 kobject_put(&dev->dev.kobj); 10273 } 10274 } 10275 10276 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10277 * all the same fields in the same order as net_device_stats, with only 10278 * the type differing, but rtnl_link_stats64 may have additional fields 10279 * at the end for newer counters. 10280 */ 10281 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10282 const struct net_device_stats *netdev_stats) 10283 { 10284 #if BITS_PER_LONG == 64 10285 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 10286 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 10287 /* zero out counters that only exist in rtnl_link_stats64 */ 10288 memset((char *)stats64 + sizeof(*netdev_stats), 0, 10289 sizeof(*stats64) - sizeof(*netdev_stats)); 10290 #else 10291 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 10292 const unsigned long *src = (const unsigned long *)netdev_stats; 10293 u64 *dst = (u64 *)stats64; 10294 10295 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10296 for (i = 0; i < n; i++) 10297 dst[i] = src[i]; 10298 /* zero out counters that only exist in rtnl_link_stats64 */ 10299 memset((char *)stats64 + n * sizeof(u64), 0, 10300 sizeof(*stats64) - n * sizeof(u64)); 10301 #endif 10302 } 10303 EXPORT_SYMBOL(netdev_stats_to_stats64); 10304 10305 /** 10306 * dev_get_stats - get network device statistics 10307 * @dev: device to get statistics from 10308 * @storage: place to store stats 10309 * 10310 * Get network statistics from device. Return @storage. 10311 * The device driver may provide its own method by setting 10312 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10313 * otherwise the internal statistics structure is used. 10314 */ 10315 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10316 struct rtnl_link_stats64 *storage) 10317 { 10318 const struct net_device_ops *ops = dev->netdev_ops; 10319 10320 if (ops->ndo_get_stats64) { 10321 memset(storage, 0, sizeof(*storage)); 10322 ops->ndo_get_stats64(dev, storage); 10323 } else if (ops->ndo_get_stats) { 10324 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10325 } else { 10326 netdev_stats_to_stats64(storage, &dev->stats); 10327 } 10328 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 10329 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 10330 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 10331 return storage; 10332 } 10333 EXPORT_SYMBOL(dev_get_stats); 10334 10335 /** 10336 * dev_fetch_sw_netstats - get per-cpu network device statistics 10337 * @s: place to store stats 10338 * @netstats: per-cpu network stats to read from 10339 * 10340 * Read per-cpu network statistics and populate the related fields in @s. 10341 */ 10342 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10343 const struct pcpu_sw_netstats __percpu *netstats) 10344 { 10345 int cpu; 10346 10347 for_each_possible_cpu(cpu) { 10348 const struct pcpu_sw_netstats *stats; 10349 struct pcpu_sw_netstats tmp; 10350 unsigned int start; 10351 10352 stats = per_cpu_ptr(netstats, cpu); 10353 do { 10354 start = u64_stats_fetch_begin_irq(&stats->syncp); 10355 tmp.rx_packets = stats->rx_packets; 10356 tmp.rx_bytes = stats->rx_bytes; 10357 tmp.tx_packets = stats->tx_packets; 10358 tmp.tx_bytes = stats->tx_bytes; 10359 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 10360 10361 s->rx_packets += tmp.rx_packets; 10362 s->rx_bytes += tmp.rx_bytes; 10363 s->tx_packets += tmp.tx_packets; 10364 s->tx_bytes += tmp.tx_bytes; 10365 } 10366 } 10367 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10368 10369 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10370 { 10371 struct netdev_queue *queue = dev_ingress_queue(dev); 10372 10373 #ifdef CONFIG_NET_CLS_ACT 10374 if (queue) 10375 return queue; 10376 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10377 if (!queue) 10378 return NULL; 10379 netdev_init_one_queue(dev, queue, NULL); 10380 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10381 queue->qdisc_sleeping = &noop_qdisc; 10382 rcu_assign_pointer(dev->ingress_queue, queue); 10383 #endif 10384 return queue; 10385 } 10386 10387 static const struct ethtool_ops default_ethtool_ops; 10388 10389 void netdev_set_default_ethtool_ops(struct net_device *dev, 10390 const struct ethtool_ops *ops) 10391 { 10392 if (dev->ethtool_ops == &default_ethtool_ops) 10393 dev->ethtool_ops = ops; 10394 } 10395 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10396 10397 void netdev_freemem(struct net_device *dev) 10398 { 10399 char *addr = (char *)dev - dev->padded; 10400 10401 kvfree(addr); 10402 } 10403 10404 /** 10405 * alloc_netdev_mqs - allocate network device 10406 * @sizeof_priv: size of private data to allocate space for 10407 * @name: device name format string 10408 * @name_assign_type: origin of device name 10409 * @setup: callback to initialize device 10410 * @txqs: the number of TX subqueues to allocate 10411 * @rxqs: the number of RX subqueues to allocate 10412 * 10413 * Allocates a struct net_device with private data area for driver use 10414 * and performs basic initialization. Also allocates subqueue structs 10415 * for each queue on the device. 10416 */ 10417 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10418 unsigned char name_assign_type, 10419 void (*setup)(struct net_device *), 10420 unsigned int txqs, unsigned int rxqs) 10421 { 10422 struct net_device *dev; 10423 unsigned int alloc_size; 10424 struct net_device *p; 10425 10426 BUG_ON(strlen(name) >= sizeof(dev->name)); 10427 10428 if (txqs < 1) { 10429 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10430 return NULL; 10431 } 10432 10433 if (rxqs < 1) { 10434 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10435 return NULL; 10436 } 10437 10438 alloc_size = sizeof(struct net_device); 10439 if (sizeof_priv) { 10440 /* ensure 32-byte alignment of private area */ 10441 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10442 alloc_size += sizeof_priv; 10443 } 10444 /* ensure 32-byte alignment of whole construct */ 10445 alloc_size += NETDEV_ALIGN - 1; 10446 10447 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 10448 if (!p) 10449 return NULL; 10450 10451 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10452 dev->padded = (char *)dev - (char *)p; 10453 10454 dev->pcpu_refcnt = alloc_percpu(int); 10455 if (!dev->pcpu_refcnt) 10456 goto free_dev; 10457 10458 if (dev_addr_init(dev)) 10459 goto free_pcpu; 10460 10461 dev_mc_init(dev); 10462 dev_uc_init(dev); 10463 10464 dev_net_set(dev, &init_net); 10465 10466 dev->gso_max_size = GSO_MAX_SIZE; 10467 dev->gso_max_segs = GSO_MAX_SEGS; 10468 dev->upper_level = 1; 10469 dev->lower_level = 1; 10470 #ifdef CONFIG_LOCKDEP 10471 dev->nested_level = 0; 10472 INIT_LIST_HEAD(&dev->unlink_list); 10473 #endif 10474 10475 INIT_LIST_HEAD(&dev->napi_list); 10476 INIT_LIST_HEAD(&dev->unreg_list); 10477 INIT_LIST_HEAD(&dev->close_list); 10478 INIT_LIST_HEAD(&dev->link_watch_list); 10479 INIT_LIST_HEAD(&dev->adj_list.upper); 10480 INIT_LIST_HEAD(&dev->adj_list.lower); 10481 INIT_LIST_HEAD(&dev->ptype_all); 10482 INIT_LIST_HEAD(&dev->ptype_specific); 10483 INIT_LIST_HEAD(&dev->net_notifier_list); 10484 #ifdef CONFIG_NET_SCHED 10485 hash_init(dev->qdisc_hash); 10486 #endif 10487 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10488 setup(dev); 10489 10490 if (!dev->tx_queue_len) { 10491 dev->priv_flags |= IFF_NO_QUEUE; 10492 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10493 } 10494 10495 dev->num_tx_queues = txqs; 10496 dev->real_num_tx_queues = txqs; 10497 if (netif_alloc_netdev_queues(dev)) 10498 goto free_all; 10499 10500 dev->num_rx_queues = rxqs; 10501 dev->real_num_rx_queues = rxqs; 10502 if (netif_alloc_rx_queues(dev)) 10503 goto free_all; 10504 10505 strcpy(dev->name, name); 10506 dev->name_assign_type = name_assign_type; 10507 dev->group = INIT_NETDEV_GROUP; 10508 if (!dev->ethtool_ops) 10509 dev->ethtool_ops = &default_ethtool_ops; 10510 10511 nf_hook_ingress_init(dev); 10512 10513 return dev; 10514 10515 free_all: 10516 free_netdev(dev); 10517 return NULL; 10518 10519 free_pcpu: 10520 free_percpu(dev->pcpu_refcnt); 10521 free_dev: 10522 netdev_freemem(dev); 10523 return NULL; 10524 } 10525 EXPORT_SYMBOL(alloc_netdev_mqs); 10526 10527 /** 10528 * free_netdev - free network device 10529 * @dev: device 10530 * 10531 * This function does the last stage of destroying an allocated device 10532 * interface. The reference to the device object is released. If this 10533 * is the last reference then it will be freed.Must be called in process 10534 * context. 10535 */ 10536 void free_netdev(struct net_device *dev) 10537 { 10538 struct napi_struct *p, *n; 10539 10540 might_sleep(); 10541 netif_free_tx_queues(dev); 10542 netif_free_rx_queues(dev); 10543 10544 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10545 10546 /* Flush device addresses */ 10547 dev_addr_flush(dev); 10548 10549 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10550 netif_napi_del(p); 10551 10552 free_percpu(dev->pcpu_refcnt); 10553 dev->pcpu_refcnt = NULL; 10554 free_percpu(dev->xdp_bulkq); 10555 dev->xdp_bulkq = NULL; 10556 10557 /* Compatibility with error handling in drivers */ 10558 if (dev->reg_state == NETREG_UNINITIALIZED) { 10559 netdev_freemem(dev); 10560 return; 10561 } 10562 10563 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10564 dev->reg_state = NETREG_RELEASED; 10565 10566 /* will free via device release */ 10567 put_device(&dev->dev); 10568 } 10569 EXPORT_SYMBOL(free_netdev); 10570 10571 /** 10572 * synchronize_net - Synchronize with packet receive processing 10573 * 10574 * Wait for packets currently being received to be done. 10575 * Does not block later packets from starting. 10576 */ 10577 void synchronize_net(void) 10578 { 10579 might_sleep(); 10580 if (rtnl_is_locked()) 10581 synchronize_rcu_expedited(); 10582 else 10583 synchronize_rcu(); 10584 } 10585 EXPORT_SYMBOL(synchronize_net); 10586 10587 /** 10588 * unregister_netdevice_queue - remove device from the kernel 10589 * @dev: device 10590 * @head: list 10591 * 10592 * This function shuts down a device interface and removes it 10593 * from the kernel tables. 10594 * If head not NULL, device is queued to be unregistered later. 10595 * 10596 * Callers must hold the rtnl semaphore. You may want 10597 * unregister_netdev() instead of this. 10598 */ 10599 10600 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10601 { 10602 ASSERT_RTNL(); 10603 10604 if (head) { 10605 list_move_tail(&dev->unreg_list, head); 10606 } else { 10607 rollback_registered(dev); 10608 /* Finish processing unregister after unlock */ 10609 net_set_todo(dev); 10610 } 10611 } 10612 EXPORT_SYMBOL(unregister_netdevice_queue); 10613 10614 /** 10615 * unregister_netdevice_many - unregister many devices 10616 * @head: list of devices 10617 * 10618 * Note: As most callers use a stack allocated list_head, 10619 * we force a list_del() to make sure stack wont be corrupted later. 10620 */ 10621 void unregister_netdevice_many(struct list_head *head) 10622 { 10623 struct net_device *dev; 10624 10625 if (!list_empty(head)) { 10626 rollback_registered_many(head); 10627 list_for_each_entry(dev, head, unreg_list) 10628 net_set_todo(dev); 10629 list_del(head); 10630 } 10631 } 10632 EXPORT_SYMBOL(unregister_netdevice_many); 10633 10634 /** 10635 * unregister_netdev - remove device from the kernel 10636 * @dev: device 10637 * 10638 * This function shuts down a device interface and removes it 10639 * from the kernel tables. 10640 * 10641 * This is just a wrapper for unregister_netdevice that takes 10642 * the rtnl semaphore. In general you want to use this and not 10643 * unregister_netdevice. 10644 */ 10645 void unregister_netdev(struct net_device *dev) 10646 { 10647 rtnl_lock(); 10648 unregister_netdevice(dev); 10649 rtnl_unlock(); 10650 } 10651 EXPORT_SYMBOL(unregister_netdev); 10652 10653 /** 10654 * dev_change_net_namespace - move device to different nethost namespace 10655 * @dev: device 10656 * @net: network namespace 10657 * @pat: If not NULL name pattern to try if the current device name 10658 * is already taken in the destination network namespace. 10659 * 10660 * This function shuts down a device interface and moves it 10661 * to a new network namespace. On success 0 is returned, on 10662 * a failure a netagive errno code is returned. 10663 * 10664 * Callers must hold the rtnl semaphore. 10665 */ 10666 10667 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 10668 { 10669 struct net *net_old = dev_net(dev); 10670 int err, new_nsid, new_ifindex; 10671 10672 ASSERT_RTNL(); 10673 10674 /* Don't allow namespace local devices to be moved. */ 10675 err = -EINVAL; 10676 if (dev->features & NETIF_F_NETNS_LOCAL) 10677 goto out; 10678 10679 /* Ensure the device has been registrered */ 10680 if (dev->reg_state != NETREG_REGISTERED) 10681 goto out; 10682 10683 /* Get out if there is nothing todo */ 10684 err = 0; 10685 if (net_eq(net_old, net)) 10686 goto out; 10687 10688 /* Pick the destination device name, and ensure 10689 * we can use it in the destination network namespace. 10690 */ 10691 err = -EEXIST; 10692 if (__dev_get_by_name(net, dev->name)) { 10693 /* We get here if we can't use the current device name */ 10694 if (!pat) 10695 goto out; 10696 err = dev_get_valid_name(net, dev, pat); 10697 if (err < 0) 10698 goto out; 10699 } 10700 10701 /* 10702 * And now a mini version of register_netdevice unregister_netdevice. 10703 */ 10704 10705 /* If device is running close it first. */ 10706 dev_close(dev); 10707 10708 /* And unlink it from device chain */ 10709 unlist_netdevice(dev); 10710 10711 synchronize_net(); 10712 10713 /* Shutdown queueing discipline. */ 10714 dev_shutdown(dev); 10715 10716 /* Notify protocols, that we are about to destroy 10717 * this device. They should clean all the things. 10718 * 10719 * Note that dev->reg_state stays at NETREG_REGISTERED. 10720 * This is wanted because this way 8021q and macvlan know 10721 * the device is just moving and can keep their slaves up. 10722 */ 10723 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10724 rcu_barrier(); 10725 10726 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 10727 /* If there is an ifindex conflict assign a new one */ 10728 if (__dev_get_by_index(net, dev->ifindex)) 10729 new_ifindex = dev_new_index(net); 10730 else 10731 new_ifindex = dev->ifindex; 10732 10733 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 10734 new_ifindex); 10735 10736 /* 10737 * Flush the unicast and multicast chains 10738 */ 10739 dev_uc_flush(dev); 10740 dev_mc_flush(dev); 10741 10742 /* Send a netdev-removed uevent to the old namespace */ 10743 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 10744 netdev_adjacent_del_links(dev); 10745 10746 /* Move per-net netdevice notifiers that are following the netdevice */ 10747 move_netdevice_notifiers_dev_net(dev, net); 10748 10749 /* Actually switch the network namespace */ 10750 dev_net_set(dev, net); 10751 dev->ifindex = new_ifindex; 10752 10753 /* Send a netdev-add uevent to the new namespace */ 10754 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 10755 netdev_adjacent_add_links(dev); 10756 10757 /* Fixup kobjects */ 10758 err = device_rename(&dev->dev, dev->name); 10759 WARN_ON(err); 10760 10761 /* Adapt owner in case owning user namespace of target network 10762 * namespace is different from the original one. 10763 */ 10764 err = netdev_change_owner(dev, net_old, net); 10765 WARN_ON(err); 10766 10767 /* Add the device back in the hashes */ 10768 list_netdevice(dev); 10769 10770 /* Notify protocols, that a new device appeared. */ 10771 call_netdevice_notifiers(NETDEV_REGISTER, dev); 10772 10773 /* 10774 * Prevent userspace races by waiting until the network 10775 * device is fully setup before sending notifications. 10776 */ 10777 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10778 10779 synchronize_net(); 10780 err = 0; 10781 out: 10782 return err; 10783 } 10784 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 10785 10786 static int dev_cpu_dead(unsigned int oldcpu) 10787 { 10788 struct sk_buff **list_skb; 10789 struct sk_buff *skb; 10790 unsigned int cpu; 10791 struct softnet_data *sd, *oldsd, *remsd = NULL; 10792 10793 local_irq_disable(); 10794 cpu = smp_processor_id(); 10795 sd = &per_cpu(softnet_data, cpu); 10796 oldsd = &per_cpu(softnet_data, oldcpu); 10797 10798 /* Find end of our completion_queue. */ 10799 list_skb = &sd->completion_queue; 10800 while (*list_skb) 10801 list_skb = &(*list_skb)->next; 10802 /* Append completion queue from offline CPU. */ 10803 *list_skb = oldsd->completion_queue; 10804 oldsd->completion_queue = NULL; 10805 10806 /* Append output queue from offline CPU. */ 10807 if (oldsd->output_queue) { 10808 *sd->output_queue_tailp = oldsd->output_queue; 10809 sd->output_queue_tailp = oldsd->output_queue_tailp; 10810 oldsd->output_queue = NULL; 10811 oldsd->output_queue_tailp = &oldsd->output_queue; 10812 } 10813 /* Append NAPI poll list from offline CPU, with one exception : 10814 * process_backlog() must be called by cpu owning percpu backlog. 10815 * We properly handle process_queue & input_pkt_queue later. 10816 */ 10817 while (!list_empty(&oldsd->poll_list)) { 10818 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 10819 struct napi_struct, 10820 poll_list); 10821 10822 list_del_init(&napi->poll_list); 10823 if (napi->poll == process_backlog) 10824 napi->state = 0; 10825 else 10826 ____napi_schedule(sd, napi); 10827 } 10828 10829 raise_softirq_irqoff(NET_TX_SOFTIRQ); 10830 local_irq_enable(); 10831 10832 #ifdef CONFIG_RPS 10833 remsd = oldsd->rps_ipi_list; 10834 oldsd->rps_ipi_list = NULL; 10835 #endif 10836 /* send out pending IPI's on offline CPU */ 10837 net_rps_send_ipi(remsd); 10838 10839 /* Process offline CPU's input_pkt_queue */ 10840 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 10841 netif_rx_ni(skb); 10842 input_queue_head_incr(oldsd); 10843 } 10844 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 10845 netif_rx_ni(skb); 10846 input_queue_head_incr(oldsd); 10847 } 10848 10849 return 0; 10850 } 10851 10852 /** 10853 * netdev_increment_features - increment feature set by one 10854 * @all: current feature set 10855 * @one: new feature set 10856 * @mask: mask feature set 10857 * 10858 * Computes a new feature set after adding a device with feature set 10859 * @one to the master device with current feature set @all. Will not 10860 * enable anything that is off in @mask. Returns the new feature set. 10861 */ 10862 netdev_features_t netdev_increment_features(netdev_features_t all, 10863 netdev_features_t one, netdev_features_t mask) 10864 { 10865 if (mask & NETIF_F_HW_CSUM) 10866 mask |= NETIF_F_CSUM_MASK; 10867 mask |= NETIF_F_VLAN_CHALLENGED; 10868 10869 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 10870 all &= one | ~NETIF_F_ALL_FOR_ALL; 10871 10872 /* If one device supports hw checksumming, set for all. */ 10873 if (all & NETIF_F_HW_CSUM) 10874 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 10875 10876 return all; 10877 } 10878 EXPORT_SYMBOL(netdev_increment_features); 10879 10880 static struct hlist_head * __net_init netdev_create_hash(void) 10881 { 10882 int i; 10883 struct hlist_head *hash; 10884 10885 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 10886 if (hash != NULL) 10887 for (i = 0; i < NETDEV_HASHENTRIES; i++) 10888 INIT_HLIST_HEAD(&hash[i]); 10889 10890 return hash; 10891 } 10892 10893 /* Initialize per network namespace state */ 10894 static int __net_init netdev_init(struct net *net) 10895 { 10896 BUILD_BUG_ON(GRO_HASH_BUCKETS > 10897 8 * sizeof_field(struct napi_struct, gro_bitmask)); 10898 10899 if (net != &init_net) 10900 INIT_LIST_HEAD(&net->dev_base_head); 10901 10902 net->dev_name_head = netdev_create_hash(); 10903 if (net->dev_name_head == NULL) 10904 goto err_name; 10905 10906 net->dev_index_head = netdev_create_hash(); 10907 if (net->dev_index_head == NULL) 10908 goto err_idx; 10909 10910 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 10911 10912 return 0; 10913 10914 err_idx: 10915 kfree(net->dev_name_head); 10916 err_name: 10917 return -ENOMEM; 10918 } 10919 10920 /** 10921 * netdev_drivername - network driver for the device 10922 * @dev: network device 10923 * 10924 * Determine network driver for device. 10925 */ 10926 const char *netdev_drivername(const struct net_device *dev) 10927 { 10928 const struct device_driver *driver; 10929 const struct device *parent; 10930 const char *empty = ""; 10931 10932 parent = dev->dev.parent; 10933 if (!parent) 10934 return empty; 10935 10936 driver = parent->driver; 10937 if (driver && driver->name) 10938 return driver->name; 10939 return empty; 10940 } 10941 10942 static void __netdev_printk(const char *level, const struct net_device *dev, 10943 struct va_format *vaf) 10944 { 10945 if (dev && dev->dev.parent) { 10946 dev_printk_emit(level[1] - '0', 10947 dev->dev.parent, 10948 "%s %s %s%s: %pV", 10949 dev_driver_string(dev->dev.parent), 10950 dev_name(dev->dev.parent), 10951 netdev_name(dev), netdev_reg_state(dev), 10952 vaf); 10953 } else if (dev) { 10954 printk("%s%s%s: %pV", 10955 level, netdev_name(dev), netdev_reg_state(dev), vaf); 10956 } else { 10957 printk("%s(NULL net_device): %pV", level, vaf); 10958 } 10959 } 10960 10961 void netdev_printk(const char *level, const struct net_device *dev, 10962 const char *format, ...) 10963 { 10964 struct va_format vaf; 10965 va_list args; 10966 10967 va_start(args, format); 10968 10969 vaf.fmt = format; 10970 vaf.va = &args; 10971 10972 __netdev_printk(level, dev, &vaf); 10973 10974 va_end(args); 10975 } 10976 EXPORT_SYMBOL(netdev_printk); 10977 10978 #define define_netdev_printk_level(func, level) \ 10979 void func(const struct net_device *dev, const char *fmt, ...) \ 10980 { \ 10981 struct va_format vaf; \ 10982 va_list args; \ 10983 \ 10984 va_start(args, fmt); \ 10985 \ 10986 vaf.fmt = fmt; \ 10987 vaf.va = &args; \ 10988 \ 10989 __netdev_printk(level, dev, &vaf); \ 10990 \ 10991 va_end(args); \ 10992 } \ 10993 EXPORT_SYMBOL(func); 10994 10995 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 10996 define_netdev_printk_level(netdev_alert, KERN_ALERT); 10997 define_netdev_printk_level(netdev_crit, KERN_CRIT); 10998 define_netdev_printk_level(netdev_err, KERN_ERR); 10999 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11000 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11001 define_netdev_printk_level(netdev_info, KERN_INFO); 11002 11003 static void __net_exit netdev_exit(struct net *net) 11004 { 11005 kfree(net->dev_name_head); 11006 kfree(net->dev_index_head); 11007 if (net != &init_net) 11008 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11009 } 11010 11011 static struct pernet_operations __net_initdata netdev_net_ops = { 11012 .init = netdev_init, 11013 .exit = netdev_exit, 11014 }; 11015 11016 static void __net_exit default_device_exit(struct net *net) 11017 { 11018 struct net_device *dev, *aux; 11019 /* 11020 * Push all migratable network devices back to the 11021 * initial network namespace 11022 */ 11023 rtnl_lock(); 11024 for_each_netdev_safe(net, dev, aux) { 11025 int err; 11026 char fb_name[IFNAMSIZ]; 11027 11028 /* Ignore unmoveable devices (i.e. loopback) */ 11029 if (dev->features & NETIF_F_NETNS_LOCAL) 11030 continue; 11031 11032 /* Leave virtual devices for the generic cleanup */ 11033 if (dev->rtnl_link_ops) 11034 continue; 11035 11036 /* Push remaining network devices to init_net */ 11037 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11038 if (__dev_get_by_name(&init_net, fb_name)) 11039 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11040 err = dev_change_net_namespace(dev, &init_net, fb_name); 11041 if (err) { 11042 pr_emerg("%s: failed to move %s to init_net: %d\n", 11043 __func__, dev->name, err); 11044 BUG(); 11045 } 11046 } 11047 rtnl_unlock(); 11048 } 11049 11050 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 11051 { 11052 /* Return with the rtnl_lock held when there are no network 11053 * devices unregistering in any network namespace in net_list. 11054 */ 11055 struct net *net; 11056 bool unregistering; 11057 DEFINE_WAIT_FUNC(wait, woken_wake_function); 11058 11059 add_wait_queue(&netdev_unregistering_wq, &wait); 11060 for (;;) { 11061 unregistering = false; 11062 rtnl_lock(); 11063 list_for_each_entry(net, net_list, exit_list) { 11064 if (net->dev_unreg_count > 0) { 11065 unregistering = true; 11066 break; 11067 } 11068 } 11069 if (!unregistering) 11070 break; 11071 __rtnl_unlock(); 11072 11073 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 11074 } 11075 remove_wait_queue(&netdev_unregistering_wq, &wait); 11076 } 11077 11078 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11079 { 11080 /* At exit all network devices most be removed from a network 11081 * namespace. Do this in the reverse order of registration. 11082 * Do this across as many network namespaces as possible to 11083 * improve batching efficiency. 11084 */ 11085 struct net_device *dev; 11086 struct net *net; 11087 LIST_HEAD(dev_kill_list); 11088 11089 /* To prevent network device cleanup code from dereferencing 11090 * loopback devices or network devices that have been freed 11091 * wait here for all pending unregistrations to complete, 11092 * before unregistring the loopback device and allowing the 11093 * network namespace be freed. 11094 * 11095 * The netdev todo list containing all network devices 11096 * unregistrations that happen in default_device_exit_batch 11097 * will run in the rtnl_unlock() at the end of 11098 * default_device_exit_batch. 11099 */ 11100 rtnl_lock_unregistering(net_list); 11101 list_for_each_entry(net, net_list, exit_list) { 11102 for_each_netdev_reverse(net, dev) { 11103 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11104 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11105 else 11106 unregister_netdevice_queue(dev, &dev_kill_list); 11107 } 11108 } 11109 unregister_netdevice_many(&dev_kill_list); 11110 rtnl_unlock(); 11111 } 11112 11113 static struct pernet_operations __net_initdata default_device_ops = { 11114 .exit = default_device_exit, 11115 .exit_batch = default_device_exit_batch, 11116 }; 11117 11118 /* 11119 * Initialize the DEV module. At boot time this walks the device list and 11120 * unhooks any devices that fail to initialise (normally hardware not 11121 * present) and leaves us with a valid list of present and active devices. 11122 * 11123 */ 11124 11125 /* 11126 * This is called single threaded during boot, so no need 11127 * to take the rtnl semaphore. 11128 */ 11129 static int __init net_dev_init(void) 11130 { 11131 int i, rc = -ENOMEM; 11132 11133 BUG_ON(!dev_boot_phase); 11134 11135 if (dev_proc_init()) 11136 goto out; 11137 11138 if (netdev_kobject_init()) 11139 goto out; 11140 11141 INIT_LIST_HEAD(&ptype_all); 11142 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11143 INIT_LIST_HEAD(&ptype_base[i]); 11144 11145 INIT_LIST_HEAD(&offload_base); 11146 11147 if (register_pernet_subsys(&netdev_net_ops)) 11148 goto out; 11149 11150 /* 11151 * Initialise the packet receive queues. 11152 */ 11153 11154 for_each_possible_cpu(i) { 11155 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11156 struct softnet_data *sd = &per_cpu(softnet_data, i); 11157 11158 INIT_WORK(flush, flush_backlog); 11159 11160 skb_queue_head_init(&sd->input_pkt_queue); 11161 skb_queue_head_init(&sd->process_queue); 11162 #ifdef CONFIG_XFRM_OFFLOAD 11163 skb_queue_head_init(&sd->xfrm_backlog); 11164 #endif 11165 INIT_LIST_HEAD(&sd->poll_list); 11166 sd->output_queue_tailp = &sd->output_queue; 11167 #ifdef CONFIG_RPS 11168 sd->csd.func = rps_trigger_softirq; 11169 sd->csd.info = sd; 11170 sd->cpu = i; 11171 #endif 11172 11173 init_gro_hash(&sd->backlog); 11174 sd->backlog.poll = process_backlog; 11175 sd->backlog.weight = weight_p; 11176 } 11177 11178 dev_boot_phase = 0; 11179 11180 /* The loopback device is special if any other network devices 11181 * is present in a network namespace the loopback device must 11182 * be present. Since we now dynamically allocate and free the 11183 * loopback device ensure this invariant is maintained by 11184 * keeping the loopback device as the first device on the 11185 * list of network devices. Ensuring the loopback devices 11186 * is the first device that appears and the last network device 11187 * that disappears. 11188 */ 11189 if (register_pernet_device(&loopback_net_ops)) 11190 goto out; 11191 11192 if (register_pernet_device(&default_device_ops)) 11193 goto out; 11194 11195 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11196 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11197 11198 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11199 NULL, dev_cpu_dead); 11200 WARN_ON(rc < 0); 11201 rc = 0; 11202 out: 11203 return rc; 11204 } 11205 11206 subsys_initcall(net_dev_init); 11207