xref: /openbmc/linux/net/core/dev.c (revision fb574682)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/pkt_cls.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140 #include <linux/crash_dump.h>
141 #include <linux/sctp.h>
142 #include <net/udp_tunnel.h>
143 #include <linux/net_namespace.h>
144 #include <linux/indirect_call_wrapper.h>
145 #include <net/devlink.h>
146 
147 #include "net-sysfs.h"
148 
149 #define MAX_GRO_SKBS 8
150 
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153 
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly;	/* Taps */
158 static struct list_head offload_base __read_mostly;
159 
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162 					 struct netdev_notifier_info *info);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164 					   struct net_device *dev,
165 					   struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167 
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189 
190 static DEFINE_MUTEX(ifalias_mutex);
191 
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194 
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197 
198 static DECLARE_RWSEM(devnet_rename_sem);
199 
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202 	while (++net->dev_base_seq == 0)
203 		;
204 }
205 
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209 
210 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212 
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217 
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 	spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224 
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228 	spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231 
232 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
233 						       const char *name)
234 {
235 	struct netdev_name_node *name_node;
236 
237 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
238 	if (!name_node)
239 		return NULL;
240 	INIT_HLIST_NODE(&name_node->hlist);
241 	name_node->dev = dev;
242 	name_node->name = name;
243 	return name_node;
244 }
245 
246 static struct netdev_name_node *
247 netdev_name_node_head_alloc(struct net_device *dev)
248 {
249 	struct netdev_name_node *name_node;
250 
251 	name_node = netdev_name_node_alloc(dev, dev->name);
252 	if (!name_node)
253 		return NULL;
254 	INIT_LIST_HEAD(&name_node->list);
255 	return name_node;
256 }
257 
258 static void netdev_name_node_free(struct netdev_name_node *name_node)
259 {
260 	kfree(name_node);
261 }
262 
263 static void netdev_name_node_add(struct net *net,
264 				 struct netdev_name_node *name_node)
265 {
266 	hlist_add_head_rcu(&name_node->hlist,
267 			   dev_name_hash(net, name_node->name));
268 }
269 
270 static void netdev_name_node_del(struct netdev_name_node *name_node)
271 {
272 	hlist_del_rcu(&name_node->hlist);
273 }
274 
275 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
276 							const char *name)
277 {
278 	struct hlist_head *head = dev_name_hash(net, name);
279 	struct netdev_name_node *name_node;
280 
281 	hlist_for_each_entry(name_node, head, hlist)
282 		if (!strcmp(name_node->name, name))
283 			return name_node;
284 	return NULL;
285 }
286 
287 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
288 							    const char *name)
289 {
290 	struct hlist_head *head = dev_name_hash(net, name);
291 	struct netdev_name_node *name_node;
292 
293 	hlist_for_each_entry_rcu(name_node, head, hlist)
294 		if (!strcmp(name_node->name, name))
295 			return name_node;
296 	return NULL;
297 }
298 
299 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
300 {
301 	struct netdev_name_node *name_node;
302 	struct net *net = dev_net(dev);
303 
304 	name_node = netdev_name_node_lookup(net, name);
305 	if (name_node)
306 		return -EEXIST;
307 	name_node = netdev_name_node_alloc(dev, name);
308 	if (!name_node)
309 		return -ENOMEM;
310 	netdev_name_node_add(net, name_node);
311 	/* The node that holds dev->name acts as a head of per-device list. */
312 	list_add_tail(&name_node->list, &dev->name_node->list);
313 
314 	return 0;
315 }
316 EXPORT_SYMBOL(netdev_name_node_alt_create);
317 
318 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
319 {
320 	list_del(&name_node->list);
321 	netdev_name_node_del(name_node);
322 	kfree(name_node->name);
323 	netdev_name_node_free(name_node);
324 }
325 
326 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
327 {
328 	struct netdev_name_node *name_node;
329 	struct net *net = dev_net(dev);
330 
331 	name_node = netdev_name_node_lookup(net, name);
332 	if (!name_node)
333 		return -ENOENT;
334 	/* lookup might have found our primary name or a name belonging
335 	 * to another device.
336 	 */
337 	if (name_node == dev->name_node || name_node->dev != dev)
338 		return -EINVAL;
339 
340 	__netdev_name_node_alt_destroy(name_node);
341 
342 	return 0;
343 }
344 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
345 
346 static void netdev_name_node_alt_flush(struct net_device *dev)
347 {
348 	struct netdev_name_node *name_node, *tmp;
349 
350 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
351 		__netdev_name_node_alt_destroy(name_node);
352 }
353 
354 /* Device list insertion */
355 static void list_netdevice(struct net_device *dev)
356 {
357 	struct net *net = dev_net(dev);
358 
359 	ASSERT_RTNL();
360 
361 	write_lock_bh(&dev_base_lock);
362 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
363 	netdev_name_node_add(net, dev->name_node);
364 	hlist_add_head_rcu(&dev->index_hlist,
365 			   dev_index_hash(net, dev->ifindex));
366 	write_unlock_bh(&dev_base_lock);
367 
368 	dev_base_seq_inc(net);
369 }
370 
371 /* Device list removal
372  * caller must respect a RCU grace period before freeing/reusing dev
373  */
374 static void unlist_netdevice(struct net_device *dev)
375 {
376 	ASSERT_RTNL();
377 
378 	/* Unlink dev from the device chain */
379 	write_lock_bh(&dev_base_lock);
380 	list_del_rcu(&dev->dev_list);
381 	netdev_name_node_del(dev->name_node);
382 	hlist_del_rcu(&dev->index_hlist);
383 	write_unlock_bh(&dev_base_lock);
384 
385 	dev_base_seq_inc(dev_net(dev));
386 }
387 
388 /*
389  *	Our notifier list
390  */
391 
392 static RAW_NOTIFIER_HEAD(netdev_chain);
393 
394 /*
395  *	Device drivers call our routines to queue packets here. We empty the
396  *	queue in the local softnet handler.
397  */
398 
399 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
400 EXPORT_PER_CPU_SYMBOL(softnet_data);
401 
402 #ifdef CONFIG_LOCKDEP
403 /*
404  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
405  * according to dev->type
406  */
407 static const unsigned short netdev_lock_type[] = {
408 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
409 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
410 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
411 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
412 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
413 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
414 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
415 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
416 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
417 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
418 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
419 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
420 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
421 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
422 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
423 
424 static const char *const netdev_lock_name[] = {
425 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
426 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
427 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
428 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
429 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
430 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
431 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
432 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
433 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
434 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
435 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
436 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
437 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
438 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
439 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
440 
441 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
442 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
443 
444 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
445 {
446 	int i;
447 
448 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
449 		if (netdev_lock_type[i] == dev_type)
450 			return i;
451 	/* the last key is used by default */
452 	return ARRAY_SIZE(netdev_lock_type) - 1;
453 }
454 
455 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
456 						 unsigned short dev_type)
457 {
458 	int i;
459 
460 	i = netdev_lock_pos(dev_type);
461 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
462 				   netdev_lock_name[i]);
463 }
464 
465 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
466 {
467 	int i;
468 
469 	i = netdev_lock_pos(dev->type);
470 	lockdep_set_class_and_name(&dev->addr_list_lock,
471 				   &netdev_addr_lock_key[i],
472 				   netdev_lock_name[i]);
473 }
474 #else
475 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
476 						 unsigned short dev_type)
477 {
478 }
479 
480 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
481 {
482 }
483 #endif
484 
485 /*******************************************************************************
486  *
487  *		Protocol management and registration routines
488  *
489  *******************************************************************************/
490 
491 
492 /*
493  *	Add a protocol ID to the list. Now that the input handler is
494  *	smarter we can dispense with all the messy stuff that used to be
495  *	here.
496  *
497  *	BEWARE!!! Protocol handlers, mangling input packets,
498  *	MUST BE last in hash buckets and checking protocol handlers
499  *	MUST start from promiscuous ptype_all chain in net_bh.
500  *	It is true now, do not change it.
501  *	Explanation follows: if protocol handler, mangling packet, will
502  *	be the first on list, it is not able to sense, that packet
503  *	is cloned and should be copied-on-write, so that it will
504  *	change it and subsequent readers will get broken packet.
505  *							--ANK (980803)
506  */
507 
508 static inline struct list_head *ptype_head(const struct packet_type *pt)
509 {
510 	if (pt->type == htons(ETH_P_ALL))
511 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
512 	else
513 		return pt->dev ? &pt->dev->ptype_specific :
514 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
515 }
516 
517 /**
518  *	dev_add_pack - add packet handler
519  *	@pt: packet type declaration
520  *
521  *	Add a protocol handler to the networking stack. The passed &packet_type
522  *	is linked into kernel lists and may not be freed until it has been
523  *	removed from the kernel lists.
524  *
525  *	This call does not sleep therefore it can not
526  *	guarantee all CPU's that are in middle of receiving packets
527  *	will see the new packet type (until the next received packet).
528  */
529 
530 void dev_add_pack(struct packet_type *pt)
531 {
532 	struct list_head *head = ptype_head(pt);
533 
534 	spin_lock(&ptype_lock);
535 	list_add_rcu(&pt->list, head);
536 	spin_unlock(&ptype_lock);
537 }
538 EXPORT_SYMBOL(dev_add_pack);
539 
540 /**
541  *	__dev_remove_pack	 - remove packet handler
542  *	@pt: packet type declaration
543  *
544  *	Remove a protocol handler that was previously added to the kernel
545  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
546  *	from the kernel lists and can be freed or reused once this function
547  *	returns.
548  *
549  *      The packet type might still be in use by receivers
550  *	and must not be freed until after all the CPU's have gone
551  *	through a quiescent state.
552  */
553 void __dev_remove_pack(struct packet_type *pt)
554 {
555 	struct list_head *head = ptype_head(pt);
556 	struct packet_type *pt1;
557 
558 	spin_lock(&ptype_lock);
559 
560 	list_for_each_entry(pt1, head, list) {
561 		if (pt == pt1) {
562 			list_del_rcu(&pt->list);
563 			goto out;
564 		}
565 	}
566 
567 	pr_warn("dev_remove_pack: %p not found\n", pt);
568 out:
569 	spin_unlock(&ptype_lock);
570 }
571 EXPORT_SYMBOL(__dev_remove_pack);
572 
573 /**
574  *	dev_remove_pack	 - remove packet handler
575  *	@pt: packet type declaration
576  *
577  *	Remove a protocol handler that was previously added to the kernel
578  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
579  *	from the kernel lists and can be freed or reused once this function
580  *	returns.
581  *
582  *	This call sleeps to guarantee that no CPU is looking at the packet
583  *	type after return.
584  */
585 void dev_remove_pack(struct packet_type *pt)
586 {
587 	__dev_remove_pack(pt);
588 
589 	synchronize_net();
590 }
591 EXPORT_SYMBOL(dev_remove_pack);
592 
593 
594 /**
595  *	dev_add_offload - register offload handlers
596  *	@po: protocol offload declaration
597  *
598  *	Add protocol offload handlers to the networking stack. The passed
599  *	&proto_offload is linked into kernel lists and may not be freed until
600  *	it has been removed from the kernel lists.
601  *
602  *	This call does not sleep therefore it can not
603  *	guarantee all CPU's that are in middle of receiving packets
604  *	will see the new offload handlers (until the next received packet).
605  */
606 void dev_add_offload(struct packet_offload *po)
607 {
608 	struct packet_offload *elem;
609 
610 	spin_lock(&offload_lock);
611 	list_for_each_entry(elem, &offload_base, list) {
612 		if (po->priority < elem->priority)
613 			break;
614 	}
615 	list_add_rcu(&po->list, elem->list.prev);
616 	spin_unlock(&offload_lock);
617 }
618 EXPORT_SYMBOL(dev_add_offload);
619 
620 /**
621  *	__dev_remove_offload	 - remove offload handler
622  *	@po: packet offload declaration
623  *
624  *	Remove a protocol offload handler that was previously added to the
625  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
626  *	is removed from the kernel lists and can be freed or reused once this
627  *	function returns.
628  *
629  *      The packet type might still be in use by receivers
630  *	and must not be freed until after all the CPU's have gone
631  *	through a quiescent state.
632  */
633 static void __dev_remove_offload(struct packet_offload *po)
634 {
635 	struct list_head *head = &offload_base;
636 	struct packet_offload *po1;
637 
638 	spin_lock(&offload_lock);
639 
640 	list_for_each_entry(po1, head, list) {
641 		if (po == po1) {
642 			list_del_rcu(&po->list);
643 			goto out;
644 		}
645 	}
646 
647 	pr_warn("dev_remove_offload: %p not found\n", po);
648 out:
649 	spin_unlock(&offload_lock);
650 }
651 
652 /**
653  *	dev_remove_offload	 - remove packet offload handler
654  *	@po: packet offload declaration
655  *
656  *	Remove a packet offload handler that was previously added to the kernel
657  *	offload handlers by dev_add_offload(). The passed &offload_type is
658  *	removed from the kernel lists and can be freed or reused once this
659  *	function returns.
660  *
661  *	This call sleeps to guarantee that no CPU is looking at the packet
662  *	type after return.
663  */
664 void dev_remove_offload(struct packet_offload *po)
665 {
666 	__dev_remove_offload(po);
667 
668 	synchronize_net();
669 }
670 EXPORT_SYMBOL(dev_remove_offload);
671 
672 /******************************************************************************
673  *
674  *		      Device Boot-time Settings Routines
675  *
676  ******************************************************************************/
677 
678 /* Boot time configuration table */
679 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
680 
681 /**
682  *	netdev_boot_setup_add	- add new setup entry
683  *	@name: name of the device
684  *	@map: configured settings for the device
685  *
686  *	Adds new setup entry to the dev_boot_setup list.  The function
687  *	returns 0 on error and 1 on success.  This is a generic routine to
688  *	all netdevices.
689  */
690 static int netdev_boot_setup_add(char *name, struct ifmap *map)
691 {
692 	struct netdev_boot_setup *s;
693 	int i;
694 
695 	s = dev_boot_setup;
696 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
697 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
698 			memset(s[i].name, 0, sizeof(s[i].name));
699 			strlcpy(s[i].name, name, IFNAMSIZ);
700 			memcpy(&s[i].map, map, sizeof(s[i].map));
701 			break;
702 		}
703 	}
704 
705 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
706 }
707 
708 /**
709  * netdev_boot_setup_check	- check boot time settings
710  * @dev: the netdevice
711  *
712  * Check boot time settings for the device.
713  * The found settings are set for the device to be used
714  * later in the device probing.
715  * Returns 0 if no settings found, 1 if they are.
716  */
717 int netdev_boot_setup_check(struct net_device *dev)
718 {
719 	struct netdev_boot_setup *s = dev_boot_setup;
720 	int i;
721 
722 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
723 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
724 		    !strcmp(dev->name, s[i].name)) {
725 			dev->irq = s[i].map.irq;
726 			dev->base_addr = s[i].map.base_addr;
727 			dev->mem_start = s[i].map.mem_start;
728 			dev->mem_end = s[i].map.mem_end;
729 			return 1;
730 		}
731 	}
732 	return 0;
733 }
734 EXPORT_SYMBOL(netdev_boot_setup_check);
735 
736 
737 /**
738  * netdev_boot_base	- get address from boot time settings
739  * @prefix: prefix for network device
740  * @unit: id for network device
741  *
742  * Check boot time settings for the base address of device.
743  * The found settings are set for the device to be used
744  * later in the device probing.
745  * Returns 0 if no settings found.
746  */
747 unsigned long netdev_boot_base(const char *prefix, int unit)
748 {
749 	const struct netdev_boot_setup *s = dev_boot_setup;
750 	char name[IFNAMSIZ];
751 	int i;
752 
753 	sprintf(name, "%s%d", prefix, unit);
754 
755 	/*
756 	 * If device already registered then return base of 1
757 	 * to indicate not to probe for this interface
758 	 */
759 	if (__dev_get_by_name(&init_net, name))
760 		return 1;
761 
762 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
763 		if (!strcmp(name, s[i].name))
764 			return s[i].map.base_addr;
765 	return 0;
766 }
767 
768 /*
769  * Saves at boot time configured settings for any netdevice.
770  */
771 int __init netdev_boot_setup(char *str)
772 {
773 	int ints[5];
774 	struct ifmap map;
775 
776 	str = get_options(str, ARRAY_SIZE(ints), ints);
777 	if (!str || !*str)
778 		return 0;
779 
780 	/* Save settings */
781 	memset(&map, 0, sizeof(map));
782 	if (ints[0] > 0)
783 		map.irq = ints[1];
784 	if (ints[0] > 1)
785 		map.base_addr = ints[2];
786 	if (ints[0] > 2)
787 		map.mem_start = ints[3];
788 	if (ints[0] > 3)
789 		map.mem_end = ints[4];
790 
791 	/* Add new entry to the list */
792 	return netdev_boot_setup_add(str, &map);
793 }
794 
795 __setup("netdev=", netdev_boot_setup);
796 
797 /*******************************************************************************
798  *
799  *			    Device Interface Subroutines
800  *
801  *******************************************************************************/
802 
803 /**
804  *	dev_get_iflink	- get 'iflink' value of a interface
805  *	@dev: targeted interface
806  *
807  *	Indicates the ifindex the interface is linked to.
808  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
809  */
810 
811 int dev_get_iflink(const struct net_device *dev)
812 {
813 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
814 		return dev->netdev_ops->ndo_get_iflink(dev);
815 
816 	return dev->ifindex;
817 }
818 EXPORT_SYMBOL(dev_get_iflink);
819 
820 /**
821  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
822  *	@dev: targeted interface
823  *	@skb: The packet.
824  *
825  *	For better visibility of tunnel traffic OVS needs to retrieve
826  *	egress tunnel information for a packet. Following API allows
827  *	user to get this info.
828  */
829 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
830 {
831 	struct ip_tunnel_info *info;
832 
833 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
834 		return -EINVAL;
835 
836 	info = skb_tunnel_info_unclone(skb);
837 	if (!info)
838 		return -ENOMEM;
839 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
840 		return -EINVAL;
841 
842 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
843 }
844 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
845 
846 /**
847  *	__dev_get_by_name	- find a device by its name
848  *	@net: the applicable net namespace
849  *	@name: name to find
850  *
851  *	Find an interface by name. Must be called under RTNL semaphore
852  *	or @dev_base_lock. If the name is found a pointer to the device
853  *	is returned. If the name is not found then %NULL is returned. The
854  *	reference counters are not incremented so the caller must be
855  *	careful with locks.
856  */
857 
858 struct net_device *__dev_get_by_name(struct net *net, const char *name)
859 {
860 	struct netdev_name_node *node_name;
861 
862 	node_name = netdev_name_node_lookup(net, name);
863 	return node_name ? node_name->dev : NULL;
864 }
865 EXPORT_SYMBOL(__dev_get_by_name);
866 
867 /**
868  * dev_get_by_name_rcu	- find a device by its name
869  * @net: the applicable net namespace
870  * @name: name to find
871  *
872  * Find an interface by name.
873  * If the name is found a pointer to the device is returned.
874  * If the name is not found then %NULL is returned.
875  * The reference counters are not incremented so the caller must be
876  * careful with locks. The caller must hold RCU lock.
877  */
878 
879 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
880 {
881 	struct netdev_name_node *node_name;
882 
883 	node_name = netdev_name_node_lookup_rcu(net, name);
884 	return node_name ? node_name->dev : NULL;
885 }
886 EXPORT_SYMBOL(dev_get_by_name_rcu);
887 
888 /**
889  *	dev_get_by_name		- find a device by its name
890  *	@net: the applicable net namespace
891  *	@name: name to find
892  *
893  *	Find an interface by name. This can be called from any
894  *	context and does its own locking. The returned handle has
895  *	the usage count incremented and the caller must use dev_put() to
896  *	release it when it is no longer needed. %NULL is returned if no
897  *	matching device is found.
898  */
899 
900 struct net_device *dev_get_by_name(struct net *net, const char *name)
901 {
902 	struct net_device *dev;
903 
904 	rcu_read_lock();
905 	dev = dev_get_by_name_rcu(net, name);
906 	if (dev)
907 		dev_hold(dev);
908 	rcu_read_unlock();
909 	return dev;
910 }
911 EXPORT_SYMBOL(dev_get_by_name);
912 
913 /**
914  *	__dev_get_by_index - find a device by its ifindex
915  *	@net: the applicable net namespace
916  *	@ifindex: index of device
917  *
918  *	Search for an interface by index. Returns %NULL if the device
919  *	is not found or a pointer to the device. The device has not
920  *	had its reference counter increased so the caller must be careful
921  *	about locking. The caller must hold either the RTNL semaphore
922  *	or @dev_base_lock.
923  */
924 
925 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
926 {
927 	struct net_device *dev;
928 	struct hlist_head *head = dev_index_hash(net, ifindex);
929 
930 	hlist_for_each_entry(dev, head, index_hlist)
931 		if (dev->ifindex == ifindex)
932 			return dev;
933 
934 	return NULL;
935 }
936 EXPORT_SYMBOL(__dev_get_by_index);
937 
938 /**
939  *	dev_get_by_index_rcu - find a device by its ifindex
940  *	@net: the applicable net namespace
941  *	@ifindex: index of device
942  *
943  *	Search for an interface by index. Returns %NULL if the device
944  *	is not found or a pointer to the device. The device has not
945  *	had its reference counter increased so the caller must be careful
946  *	about locking. The caller must hold RCU lock.
947  */
948 
949 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
950 {
951 	struct net_device *dev;
952 	struct hlist_head *head = dev_index_hash(net, ifindex);
953 
954 	hlist_for_each_entry_rcu(dev, head, index_hlist)
955 		if (dev->ifindex == ifindex)
956 			return dev;
957 
958 	return NULL;
959 }
960 EXPORT_SYMBOL(dev_get_by_index_rcu);
961 
962 
963 /**
964  *	dev_get_by_index - find a device by its ifindex
965  *	@net: the applicable net namespace
966  *	@ifindex: index of device
967  *
968  *	Search for an interface by index. Returns NULL if the device
969  *	is not found or a pointer to the device. The device returned has
970  *	had a reference added and the pointer is safe until the user calls
971  *	dev_put to indicate they have finished with it.
972  */
973 
974 struct net_device *dev_get_by_index(struct net *net, int ifindex)
975 {
976 	struct net_device *dev;
977 
978 	rcu_read_lock();
979 	dev = dev_get_by_index_rcu(net, ifindex);
980 	if (dev)
981 		dev_hold(dev);
982 	rcu_read_unlock();
983 	return dev;
984 }
985 EXPORT_SYMBOL(dev_get_by_index);
986 
987 /**
988  *	dev_get_by_napi_id - find a device by napi_id
989  *	@napi_id: ID of the NAPI struct
990  *
991  *	Search for an interface by NAPI ID. Returns %NULL if the device
992  *	is not found or a pointer to the device. The device has not had
993  *	its reference counter increased so the caller must be careful
994  *	about locking. The caller must hold RCU lock.
995  */
996 
997 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
998 {
999 	struct napi_struct *napi;
1000 
1001 	WARN_ON_ONCE(!rcu_read_lock_held());
1002 
1003 	if (napi_id < MIN_NAPI_ID)
1004 		return NULL;
1005 
1006 	napi = napi_by_id(napi_id);
1007 
1008 	return napi ? napi->dev : NULL;
1009 }
1010 EXPORT_SYMBOL(dev_get_by_napi_id);
1011 
1012 /**
1013  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1014  *	@net: network namespace
1015  *	@name: a pointer to the buffer where the name will be stored.
1016  *	@ifindex: the ifindex of the interface to get the name from.
1017  */
1018 int netdev_get_name(struct net *net, char *name, int ifindex)
1019 {
1020 	struct net_device *dev;
1021 	int ret;
1022 
1023 	down_read(&devnet_rename_sem);
1024 	rcu_read_lock();
1025 
1026 	dev = dev_get_by_index_rcu(net, ifindex);
1027 	if (!dev) {
1028 		ret = -ENODEV;
1029 		goto out;
1030 	}
1031 
1032 	strcpy(name, dev->name);
1033 
1034 	ret = 0;
1035 out:
1036 	rcu_read_unlock();
1037 	up_read(&devnet_rename_sem);
1038 	return ret;
1039 }
1040 
1041 /**
1042  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1043  *	@net: the applicable net namespace
1044  *	@type: media type of device
1045  *	@ha: hardware address
1046  *
1047  *	Search for an interface by MAC address. Returns NULL if the device
1048  *	is not found or a pointer to the device.
1049  *	The caller must hold RCU or RTNL.
1050  *	The returned device has not had its ref count increased
1051  *	and the caller must therefore be careful about locking
1052  *
1053  */
1054 
1055 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1056 				       const char *ha)
1057 {
1058 	struct net_device *dev;
1059 
1060 	for_each_netdev_rcu(net, dev)
1061 		if (dev->type == type &&
1062 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1063 			return dev;
1064 
1065 	return NULL;
1066 }
1067 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1068 
1069 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1070 {
1071 	struct net_device *dev;
1072 
1073 	ASSERT_RTNL();
1074 	for_each_netdev(net, dev)
1075 		if (dev->type == type)
1076 			return dev;
1077 
1078 	return NULL;
1079 }
1080 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1081 
1082 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1083 {
1084 	struct net_device *dev, *ret = NULL;
1085 
1086 	rcu_read_lock();
1087 	for_each_netdev_rcu(net, dev)
1088 		if (dev->type == type) {
1089 			dev_hold(dev);
1090 			ret = dev;
1091 			break;
1092 		}
1093 	rcu_read_unlock();
1094 	return ret;
1095 }
1096 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1097 
1098 /**
1099  *	__dev_get_by_flags - find any device with given flags
1100  *	@net: the applicable net namespace
1101  *	@if_flags: IFF_* values
1102  *	@mask: bitmask of bits in if_flags to check
1103  *
1104  *	Search for any interface with the given flags. Returns NULL if a device
1105  *	is not found or a pointer to the device. Must be called inside
1106  *	rtnl_lock(), and result refcount is unchanged.
1107  */
1108 
1109 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1110 				      unsigned short mask)
1111 {
1112 	struct net_device *dev, *ret;
1113 
1114 	ASSERT_RTNL();
1115 
1116 	ret = NULL;
1117 	for_each_netdev(net, dev) {
1118 		if (((dev->flags ^ if_flags) & mask) == 0) {
1119 			ret = dev;
1120 			break;
1121 		}
1122 	}
1123 	return ret;
1124 }
1125 EXPORT_SYMBOL(__dev_get_by_flags);
1126 
1127 /**
1128  *	dev_valid_name - check if name is okay for network device
1129  *	@name: name string
1130  *
1131  *	Network device names need to be valid file names to
1132  *	to allow sysfs to work.  We also disallow any kind of
1133  *	whitespace.
1134  */
1135 bool dev_valid_name(const char *name)
1136 {
1137 	if (*name == '\0')
1138 		return false;
1139 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1140 		return false;
1141 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1142 		return false;
1143 
1144 	while (*name) {
1145 		if (*name == '/' || *name == ':' || isspace(*name))
1146 			return false;
1147 		name++;
1148 	}
1149 	return true;
1150 }
1151 EXPORT_SYMBOL(dev_valid_name);
1152 
1153 /**
1154  *	__dev_alloc_name - allocate a name for a device
1155  *	@net: network namespace to allocate the device name in
1156  *	@name: name format string
1157  *	@buf:  scratch buffer and result name string
1158  *
1159  *	Passed a format string - eg "lt%d" it will try and find a suitable
1160  *	id. It scans list of devices to build up a free map, then chooses
1161  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1162  *	while allocating the name and adding the device in order to avoid
1163  *	duplicates.
1164  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1165  *	Returns the number of the unit assigned or a negative errno code.
1166  */
1167 
1168 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1169 {
1170 	int i = 0;
1171 	const char *p;
1172 	const int max_netdevices = 8*PAGE_SIZE;
1173 	unsigned long *inuse;
1174 	struct net_device *d;
1175 
1176 	if (!dev_valid_name(name))
1177 		return -EINVAL;
1178 
1179 	p = strchr(name, '%');
1180 	if (p) {
1181 		/*
1182 		 * Verify the string as this thing may have come from
1183 		 * the user.  There must be either one "%d" and no other "%"
1184 		 * characters.
1185 		 */
1186 		if (p[1] != 'd' || strchr(p + 2, '%'))
1187 			return -EINVAL;
1188 
1189 		/* Use one page as a bit array of possible slots */
1190 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1191 		if (!inuse)
1192 			return -ENOMEM;
1193 
1194 		for_each_netdev(net, d) {
1195 			if (!sscanf(d->name, name, &i))
1196 				continue;
1197 			if (i < 0 || i >= max_netdevices)
1198 				continue;
1199 
1200 			/*  avoid cases where sscanf is not exact inverse of printf */
1201 			snprintf(buf, IFNAMSIZ, name, i);
1202 			if (!strncmp(buf, d->name, IFNAMSIZ))
1203 				set_bit(i, inuse);
1204 		}
1205 
1206 		i = find_first_zero_bit(inuse, max_netdevices);
1207 		free_page((unsigned long) inuse);
1208 	}
1209 
1210 	snprintf(buf, IFNAMSIZ, name, i);
1211 	if (!__dev_get_by_name(net, buf))
1212 		return i;
1213 
1214 	/* It is possible to run out of possible slots
1215 	 * when the name is long and there isn't enough space left
1216 	 * for the digits, or if all bits are used.
1217 	 */
1218 	return -ENFILE;
1219 }
1220 
1221 static int dev_alloc_name_ns(struct net *net,
1222 			     struct net_device *dev,
1223 			     const char *name)
1224 {
1225 	char buf[IFNAMSIZ];
1226 	int ret;
1227 
1228 	BUG_ON(!net);
1229 	ret = __dev_alloc_name(net, name, buf);
1230 	if (ret >= 0)
1231 		strlcpy(dev->name, buf, IFNAMSIZ);
1232 	return ret;
1233 }
1234 
1235 /**
1236  *	dev_alloc_name - allocate a name for a device
1237  *	@dev: device
1238  *	@name: name format string
1239  *
1240  *	Passed a format string - eg "lt%d" it will try and find a suitable
1241  *	id. It scans list of devices to build up a free map, then chooses
1242  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1243  *	while allocating the name and adding the device in order to avoid
1244  *	duplicates.
1245  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1246  *	Returns the number of the unit assigned or a negative errno code.
1247  */
1248 
1249 int dev_alloc_name(struct net_device *dev, const char *name)
1250 {
1251 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1252 }
1253 EXPORT_SYMBOL(dev_alloc_name);
1254 
1255 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1256 			      const char *name)
1257 {
1258 	BUG_ON(!net);
1259 
1260 	if (!dev_valid_name(name))
1261 		return -EINVAL;
1262 
1263 	if (strchr(name, '%'))
1264 		return dev_alloc_name_ns(net, dev, name);
1265 	else if (__dev_get_by_name(net, name))
1266 		return -EEXIST;
1267 	else if (dev->name != name)
1268 		strlcpy(dev->name, name, IFNAMSIZ);
1269 
1270 	return 0;
1271 }
1272 
1273 /**
1274  *	dev_change_name - change name of a device
1275  *	@dev: device
1276  *	@newname: name (or format string) must be at least IFNAMSIZ
1277  *
1278  *	Change name of a device, can pass format strings "eth%d".
1279  *	for wildcarding.
1280  */
1281 int dev_change_name(struct net_device *dev, const char *newname)
1282 {
1283 	unsigned char old_assign_type;
1284 	char oldname[IFNAMSIZ];
1285 	int err = 0;
1286 	int ret;
1287 	struct net *net;
1288 
1289 	ASSERT_RTNL();
1290 	BUG_ON(!dev_net(dev));
1291 
1292 	net = dev_net(dev);
1293 
1294 	/* Some auto-enslaved devices e.g. failover slaves are
1295 	 * special, as userspace might rename the device after
1296 	 * the interface had been brought up and running since
1297 	 * the point kernel initiated auto-enslavement. Allow
1298 	 * live name change even when these slave devices are
1299 	 * up and running.
1300 	 *
1301 	 * Typically, users of these auto-enslaving devices
1302 	 * don't actually care about slave name change, as
1303 	 * they are supposed to operate on master interface
1304 	 * directly.
1305 	 */
1306 	if (dev->flags & IFF_UP &&
1307 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1308 		return -EBUSY;
1309 
1310 	down_write(&devnet_rename_sem);
1311 
1312 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1313 		up_write(&devnet_rename_sem);
1314 		return 0;
1315 	}
1316 
1317 	memcpy(oldname, dev->name, IFNAMSIZ);
1318 
1319 	err = dev_get_valid_name(net, dev, newname);
1320 	if (err < 0) {
1321 		up_write(&devnet_rename_sem);
1322 		return err;
1323 	}
1324 
1325 	if (oldname[0] && !strchr(oldname, '%'))
1326 		netdev_info(dev, "renamed from %s\n", oldname);
1327 
1328 	old_assign_type = dev->name_assign_type;
1329 	dev->name_assign_type = NET_NAME_RENAMED;
1330 
1331 rollback:
1332 	ret = device_rename(&dev->dev, dev->name);
1333 	if (ret) {
1334 		memcpy(dev->name, oldname, IFNAMSIZ);
1335 		dev->name_assign_type = old_assign_type;
1336 		up_write(&devnet_rename_sem);
1337 		return ret;
1338 	}
1339 
1340 	up_write(&devnet_rename_sem);
1341 
1342 	netdev_adjacent_rename_links(dev, oldname);
1343 
1344 	write_lock_bh(&dev_base_lock);
1345 	netdev_name_node_del(dev->name_node);
1346 	write_unlock_bh(&dev_base_lock);
1347 
1348 	synchronize_rcu();
1349 
1350 	write_lock_bh(&dev_base_lock);
1351 	netdev_name_node_add(net, dev->name_node);
1352 	write_unlock_bh(&dev_base_lock);
1353 
1354 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1355 	ret = notifier_to_errno(ret);
1356 
1357 	if (ret) {
1358 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1359 		if (err >= 0) {
1360 			err = ret;
1361 			down_write(&devnet_rename_sem);
1362 			memcpy(dev->name, oldname, IFNAMSIZ);
1363 			memcpy(oldname, newname, IFNAMSIZ);
1364 			dev->name_assign_type = old_assign_type;
1365 			old_assign_type = NET_NAME_RENAMED;
1366 			goto rollback;
1367 		} else {
1368 			pr_err("%s: name change rollback failed: %d\n",
1369 			       dev->name, ret);
1370 		}
1371 	}
1372 
1373 	return err;
1374 }
1375 
1376 /**
1377  *	dev_set_alias - change ifalias of a device
1378  *	@dev: device
1379  *	@alias: name up to IFALIASZ
1380  *	@len: limit of bytes to copy from info
1381  *
1382  *	Set ifalias for a device,
1383  */
1384 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1385 {
1386 	struct dev_ifalias *new_alias = NULL;
1387 
1388 	if (len >= IFALIASZ)
1389 		return -EINVAL;
1390 
1391 	if (len) {
1392 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1393 		if (!new_alias)
1394 			return -ENOMEM;
1395 
1396 		memcpy(new_alias->ifalias, alias, len);
1397 		new_alias->ifalias[len] = 0;
1398 	}
1399 
1400 	mutex_lock(&ifalias_mutex);
1401 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1402 					mutex_is_locked(&ifalias_mutex));
1403 	mutex_unlock(&ifalias_mutex);
1404 
1405 	if (new_alias)
1406 		kfree_rcu(new_alias, rcuhead);
1407 
1408 	return len;
1409 }
1410 EXPORT_SYMBOL(dev_set_alias);
1411 
1412 /**
1413  *	dev_get_alias - get ifalias of a device
1414  *	@dev: device
1415  *	@name: buffer to store name of ifalias
1416  *	@len: size of buffer
1417  *
1418  *	get ifalias for a device.  Caller must make sure dev cannot go
1419  *	away,  e.g. rcu read lock or own a reference count to device.
1420  */
1421 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1422 {
1423 	const struct dev_ifalias *alias;
1424 	int ret = 0;
1425 
1426 	rcu_read_lock();
1427 	alias = rcu_dereference(dev->ifalias);
1428 	if (alias)
1429 		ret = snprintf(name, len, "%s", alias->ifalias);
1430 	rcu_read_unlock();
1431 
1432 	return ret;
1433 }
1434 
1435 /**
1436  *	netdev_features_change - device changes features
1437  *	@dev: device to cause notification
1438  *
1439  *	Called to indicate a device has changed features.
1440  */
1441 void netdev_features_change(struct net_device *dev)
1442 {
1443 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1444 }
1445 EXPORT_SYMBOL(netdev_features_change);
1446 
1447 /**
1448  *	netdev_state_change - device changes state
1449  *	@dev: device to cause notification
1450  *
1451  *	Called to indicate a device has changed state. This function calls
1452  *	the notifier chains for netdev_chain and sends a NEWLINK message
1453  *	to the routing socket.
1454  */
1455 void netdev_state_change(struct net_device *dev)
1456 {
1457 	if (dev->flags & IFF_UP) {
1458 		struct netdev_notifier_change_info change_info = {
1459 			.info.dev = dev,
1460 		};
1461 
1462 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1463 					      &change_info.info);
1464 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1465 	}
1466 }
1467 EXPORT_SYMBOL(netdev_state_change);
1468 
1469 /**
1470  * netdev_notify_peers - notify network peers about existence of @dev
1471  * @dev: network device
1472  *
1473  * Generate traffic such that interested network peers are aware of
1474  * @dev, such as by generating a gratuitous ARP. This may be used when
1475  * a device wants to inform the rest of the network about some sort of
1476  * reconfiguration such as a failover event or virtual machine
1477  * migration.
1478  */
1479 void netdev_notify_peers(struct net_device *dev)
1480 {
1481 	rtnl_lock();
1482 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1483 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1484 	rtnl_unlock();
1485 }
1486 EXPORT_SYMBOL(netdev_notify_peers);
1487 
1488 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1489 {
1490 	const struct net_device_ops *ops = dev->netdev_ops;
1491 	int ret;
1492 
1493 	ASSERT_RTNL();
1494 
1495 	if (!netif_device_present(dev))
1496 		return -ENODEV;
1497 
1498 	/* Block netpoll from trying to do any rx path servicing.
1499 	 * If we don't do this there is a chance ndo_poll_controller
1500 	 * or ndo_poll may be running while we open the device
1501 	 */
1502 	netpoll_poll_disable(dev);
1503 
1504 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1505 	ret = notifier_to_errno(ret);
1506 	if (ret)
1507 		return ret;
1508 
1509 	set_bit(__LINK_STATE_START, &dev->state);
1510 
1511 	if (ops->ndo_validate_addr)
1512 		ret = ops->ndo_validate_addr(dev);
1513 
1514 	if (!ret && ops->ndo_open)
1515 		ret = ops->ndo_open(dev);
1516 
1517 	netpoll_poll_enable(dev);
1518 
1519 	if (ret)
1520 		clear_bit(__LINK_STATE_START, &dev->state);
1521 	else {
1522 		dev->flags |= IFF_UP;
1523 		dev_set_rx_mode(dev);
1524 		dev_activate(dev);
1525 		add_device_randomness(dev->dev_addr, dev->addr_len);
1526 	}
1527 
1528 	return ret;
1529 }
1530 
1531 /**
1532  *	dev_open	- prepare an interface for use.
1533  *	@dev: device to open
1534  *	@extack: netlink extended ack
1535  *
1536  *	Takes a device from down to up state. The device's private open
1537  *	function is invoked and then the multicast lists are loaded. Finally
1538  *	the device is moved into the up state and a %NETDEV_UP message is
1539  *	sent to the netdev notifier chain.
1540  *
1541  *	Calling this function on an active interface is a nop. On a failure
1542  *	a negative errno code is returned.
1543  */
1544 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1545 {
1546 	int ret;
1547 
1548 	if (dev->flags & IFF_UP)
1549 		return 0;
1550 
1551 	ret = __dev_open(dev, extack);
1552 	if (ret < 0)
1553 		return ret;
1554 
1555 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1556 	call_netdevice_notifiers(NETDEV_UP, dev);
1557 
1558 	return ret;
1559 }
1560 EXPORT_SYMBOL(dev_open);
1561 
1562 static void __dev_close_many(struct list_head *head)
1563 {
1564 	struct net_device *dev;
1565 
1566 	ASSERT_RTNL();
1567 	might_sleep();
1568 
1569 	list_for_each_entry(dev, head, close_list) {
1570 		/* Temporarily disable netpoll until the interface is down */
1571 		netpoll_poll_disable(dev);
1572 
1573 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1574 
1575 		clear_bit(__LINK_STATE_START, &dev->state);
1576 
1577 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1578 		 * can be even on different cpu. So just clear netif_running().
1579 		 *
1580 		 * dev->stop() will invoke napi_disable() on all of it's
1581 		 * napi_struct instances on this device.
1582 		 */
1583 		smp_mb__after_atomic(); /* Commit netif_running(). */
1584 	}
1585 
1586 	dev_deactivate_many(head);
1587 
1588 	list_for_each_entry(dev, head, close_list) {
1589 		const struct net_device_ops *ops = dev->netdev_ops;
1590 
1591 		/*
1592 		 *	Call the device specific close. This cannot fail.
1593 		 *	Only if device is UP
1594 		 *
1595 		 *	We allow it to be called even after a DETACH hot-plug
1596 		 *	event.
1597 		 */
1598 		if (ops->ndo_stop)
1599 			ops->ndo_stop(dev);
1600 
1601 		dev->flags &= ~IFF_UP;
1602 		netpoll_poll_enable(dev);
1603 	}
1604 }
1605 
1606 static void __dev_close(struct net_device *dev)
1607 {
1608 	LIST_HEAD(single);
1609 
1610 	list_add(&dev->close_list, &single);
1611 	__dev_close_many(&single);
1612 	list_del(&single);
1613 }
1614 
1615 void dev_close_many(struct list_head *head, bool unlink)
1616 {
1617 	struct net_device *dev, *tmp;
1618 
1619 	/* Remove the devices that don't need to be closed */
1620 	list_for_each_entry_safe(dev, tmp, head, close_list)
1621 		if (!(dev->flags & IFF_UP))
1622 			list_del_init(&dev->close_list);
1623 
1624 	__dev_close_many(head);
1625 
1626 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1627 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1628 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1629 		if (unlink)
1630 			list_del_init(&dev->close_list);
1631 	}
1632 }
1633 EXPORT_SYMBOL(dev_close_many);
1634 
1635 /**
1636  *	dev_close - shutdown an interface.
1637  *	@dev: device to shutdown
1638  *
1639  *	This function moves an active device into down state. A
1640  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1641  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1642  *	chain.
1643  */
1644 void dev_close(struct net_device *dev)
1645 {
1646 	if (dev->flags & IFF_UP) {
1647 		LIST_HEAD(single);
1648 
1649 		list_add(&dev->close_list, &single);
1650 		dev_close_many(&single, true);
1651 		list_del(&single);
1652 	}
1653 }
1654 EXPORT_SYMBOL(dev_close);
1655 
1656 
1657 /**
1658  *	dev_disable_lro - disable Large Receive Offload on a device
1659  *	@dev: device
1660  *
1661  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1662  *	called under RTNL.  This is needed if received packets may be
1663  *	forwarded to another interface.
1664  */
1665 void dev_disable_lro(struct net_device *dev)
1666 {
1667 	struct net_device *lower_dev;
1668 	struct list_head *iter;
1669 
1670 	dev->wanted_features &= ~NETIF_F_LRO;
1671 	netdev_update_features(dev);
1672 
1673 	if (unlikely(dev->features & NETIF_F_LRO))
1674 		netdev_WARN(dev, "failed to disable LRO!\n");
1675 
1676 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1677 		dev_disable_lro(lower_dev);
1678 }
1679 EXPORT_SYMBOL(dev_disable_lro);
1680 
1681 /**
1682  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1683  *	@dev: device
1684  *
1685  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1686  *	called under RTNL.  This is needed if Generic XDP is installed on
1687  *	the device.
1688  */
1689 static void dev_disable_gro_hw(struct net_device *dev)
1690 {
1691 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1692 	netdev_update_features(dev);
1693 
1694 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1695 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1696 }
1697 
1698 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1699 {
1700 #define N(val) 						\
1701 	case NETDEV_##val:				\
1702 		return "NETDEV_" __stringify(val);
1703 	switch (cmd) {
1704 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1705 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1706 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1707 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1708 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1709 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1710 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1711 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1712 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1713 	N(PRE_CHANGEADDR)
1714 	}
1715 #undef N
1716 	return "UNKNOWN_NETDEV_EVENT";
1717 }
1718 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1719 
1720 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1721 				   struct net_device *dev)
1722 {
1723 	struct netdev_notifier_info info = {
1724 		.dev = dev,
1725 	};
1726 
1727 	return nb->notifier_call(nb, val, &info);
1728 }
1729 
1730 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1731 					     struct net_device *dev)
1732 {
1733 	int err;
1734 
1735 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1736 	err = notifier_to_errno(err);
1737 	if (err)
1738 		return err;
1739 
1740 	if (!(dev->flags & IFF_UP))
1741 		return 0;
1742 
1743 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1744 	return 0;
1745 }
1746 
1747 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1748 						struct net_device *dev)
1749 {
1750 	if (dev->flags & IFF_UP) {
1751 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1752 					dev);
1753 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1754 	}
1755 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1756 }
1757 
1758 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1759 						 struct net *net)
1760 {
1761 	struct net_device *dev;
1762 	int err;
1763 
1764 	for_each_netdev(net, dev) {
1765 		err = call_netdevice_register_notifiers(nb, dev);
1766 		if (err)
1767 			goto rollback;
1768 	}
1769 	return 0;
1770 
1771 rollback:
1772 	for_each_netdev_continue_reverse(net, dev)
1773 		call_netdevice_unregister_notifiers(nb, dev);
1774 	return err;
1775 }
1776 
1777 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1778 						    struct net *net)
1779 {
1780 	struct net_device *dev;
1781 
1782 	for_each_netdev(net, dev)
1783 		call_netdevice_unregister_notifiers(nb, dev);
1784 }
1785 
1786 static int dev_boot_phase = 1;
1787 
1788 /**
1789  * register_netdevice_notifier - register a network notifier block
1790  * @nb: notifier
1791  *
1792  * Register a notifier to be called when network device events occur.
1793  * The notifier passed is linked into the kernel structures and must
1794  * not be reused until it has been unregistered. A negative errno code
1795  * is returned on a failure.
1796  *
1797  * When registered all registration and up events are replayed
1798  * to the new notifier to allow device to have a race free
1799  * view of the network device list.
1800  */
1801 
1802 int register_netdevice_notifier(struct notifier_block *nb)
1803 {
1804 	struct net *net;
1805 	int err;
1806 
1807 	/* Close race with setup_net() and cleanup_net() */
1808 	down_write(&pernet_ops_rwsem);
1809 	rtnl_lock();
1810 	err = raw_notifier_chain_register(&netdev_chain, nb);
1811 	if (err)
1812 		goto unlock;
1813 	if (dev_boot_phase)
1814 		goto unlock;
1815 	for_each_net(net) {
1816 		err = call_netdevice_register_net_notifiers(nb, net);
1817 		if (err)
1818 			goto rollback;
1819 	}
1820 
1821 unlock:
1822 	rtnl_unlock();
1823 	up_write(&pernet_ops_rwsem);
1824 	return err;
1825 
1826 rollback:
1827 	for_each_net_continue_reverse(net)
1828 		call_netdevice_unregister_net_notifiers(nb, net);
1829 
1830 	raw_notifier_chain_unregister(&netdev_chain, nb);
1831 	goto unlock;
1832 }
1833 EXPORT_SYMBOL(register_netdevice_notifier);
1834 
1835 /**
1836  * unregister_netdevice_notifier - unregister a network notifier block
1837  * @nb: notifier
1838  *
1839  * Unregister a notifier previously registered by
1840  * register_netdevice_notifier(). The notifier is unlinked into the
1841  * kernel structures and may then be reused. A negative errno code
1842  * is returned on a failure.
1843  *
1844  * After unregistering unregister and down device events are synthesized
1845  * for all devices on the device list to the removed notifier to remove
1846  * the need for special case cleanup code.
1847  */
1848 
1849 int unregister_netdevice_notifier(struct notifier_block *nb)
1850 {
1851 	struct net *net;
1852 	int err;
1853 
1854 	/* Close race with setup_net() and cleanup_net() */
1855 	down_write(&pernet_ops_rwsem);
1856 	rtnl_lock();
1857 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1858 	if (err)
1859 		goto unlock;
1860 
1861 	for_each_net(net)
1862 		call_netdevice_unregister_net_notifiers(nb, net);
1863 
1864 unlock:
1865 	rtnl_unlock();
1866 	up_write(&pernet_ops_rwsem);
1867 	return err;
1868 }
1869 EXPORT_SYMBOL(unregister_netdevice_notifier);
1870 
1871 static int __register_netdevice_notifier_net(struct net *net,
1872 					     struct notifier_block *nb,
1873 					     bool ignore_call_fail)
1874 {
1875 	int err;
1876 
1877 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1878 	if (err)
1879 		return err;
1880 	if (dev_boot_phase)
1881 		return 0;
1882 
1883 	err = call_netdevice_register_net_notifiers(nb, net);
1884 	if (err && !ignore_call_fail)
1885 		goto chain_unregister;
1886 
1887 	return 0;
1888 
1889 chain_unregister:
1890 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1891 	return err;
1892 }
1893 
1894 static int __unregister_netdevice_notifier_net(struct net *net,
1895 					       struct notifier_block *nb)
1896 {
1897 	int err;
1898 
1899 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1900 	if (err)
1901 		return err;
1902 
1903 	call_netdevice_unregister_net_notifiers(nb, net);
1904 	return 0;
1905 }
1906 
1907 /**
1908  * register_netdevice_notifier_net - register a per-netns network notifier block
1909  * @net: network namespace
1910  * @nb: notifier
1911  *
1912  * Register a notifier to be called when network device events occur.
1913  * The notifier passed is linked into the kernel structures and must
1914  * not be reused until it has been unregistered. A negative errno code
1915  * is returned on a failure.
1916  *
1917  * When registered all registration and up events are replayed
1918  * to the new notifier to allow device to have a race free
1919  * view of the network device list.
1920  */
1921 
1922 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1923 {
1924 	int err;
1925 
1926 	rtnl_lock();
1927 	err = __register_netdevice_notifier_net(net, nb, false);
1928 	rtnl_unlock();
1929 	return err;
1930 }
1931 EXPORT_SYMBOL(register_netdevice_notifier_net);
1932 
1933 /**
1934  * unregister_netdevice_notifier_net - unregister a per-netns
1935  *                                     network notifier block
1936  * @net: network namespace
1937  * @nb: notifier
1938  *
1939  * Unregister a notifier previously registered by
1940  * register_netdevice_notifier(). The notifier is unlinked into the
1941  * kernel structures and may then be reused. A negative errno code
1942  * is returned on a failure.
1943  *
1944  * After unregistering unregister and down device events are synthesized
1945  * for all devices on the device list to the removed notifier to remove
1946  * the need for special case cleanup code.
1947  */
1948 
1949 int unregister_netdevice_notifier_net(struct net *net,
1950 				      struct notifier_block *nb)
1951 {
1952 	int err;
1953 
1954 	rtnl_lock();
1955 	err = __unregister_netdevice_notifier_net(net, nb);
1956 	rtnl_unlock();
1957 	return err;
1958 }
1959 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1960 
1961 int register_netdevice_notifier_dev_net(struct net_device *dev,
1962 					struct notifier_block *nb,
1963 					struct netdev_net_notifier *nn)
1964 {
1965 	int err;
1966 
1967 	rtnl_lock();
1968 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1969 	if (!err) {
1970 		nn->nb = nb;
1971 		list_add(&nn->list, &dev->net_notifier_list);
1972 	}
1973 	rtnl_unlock();
1974 	return err;
1975 }
1976 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1977 
1978 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1979 					  struct notifier_block *nb,
1980 					  struct netdev_net_notifier *nn)
1981 {
1982 	int err;
1983 
1984 	rtnl_lock();
1985 	list_del(&nn->list);
1986 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1987 	rtnl_unlock();
1988 	return err;
1989 }
1990 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1991 
1992 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1993 					     struct net *net)
1994 {
1995 	struct netdev_net_notifier *nn;
1996 
1997 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1998 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1999 		__register_netdevice_notifier_net(net, nn->nb, true);
2000 	}
2001 }
2002 
2003 /**
2004  *	call_netdevice_notifiers_info - call all network notifier blocks
2005  *	@val: value passed unmodified to notifier function
2006  *	@info: notifier information data
2007  *
2008  *	Call all network notifier blocks.  Parameters and return value
2009  *	are as for raw_notifier_call_chain().
2010  */
2011 
2012 static int call_netdevice_notifiers_info(unsigned long val,
2013 					 struct netdev_notifier_info *info)
2014 {
2015 	struct net *net = dev_net(info->dev);
2016 	int ret;
2017 
2018 	ASSERT_RTNL();
2019 
2020 	/* Run per-netns notifier block chain first, then run the global one.
2021 	 * Hopefully, one day, the global one is going to be removed after
2022 	 * all notifier block registrators get converted to be per-netns.
2023 	 */
2024 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2025 	if (ret & NOTIFY_STOP_MASK)
2026 		return ret;
2027 	return raw_notifier_call_chain(&netdev_chain, val, info);
2028 }
2029 
2030 static int call_netdevice_notifiers_extack(unsigned long val,
2031 					   struct net_device *dev,
2032 					   struct netlink_ext_ack *extack)
2033 {
2034 	struct netdev_notifier_info info = {
2035 		.dev = dev,
2036 		.extack = extack,
2037 	};
2038 
2039 	return call_netdevice_notifiers_info(val, &info);
2040 }
2041 
2042 /**
2043  *	call_netdevice_notifiers - call all network notifier blocks
2044  *      @val: value passed unmodified to notifier function
2045  *      @dev: net_device pointer passed unmodified to notifier function
2046  *
2047  *	Call all network notifier blocks.  Parameters and return value
2048  *	are as for raw_notifier_call_chain().
2049  */
2050 
2051 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2052 {
2053 	return call_netdevice_notifiers_extack(val, dev, NULL);
2054 }
2055 EXPORT_SYMBOL(call_netdevice_notifiers);
2056 
2057 /**
2058  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2059  *	@val: value passed unmodified to notifier function
2060  *	@dev: net_device pointer passed unmodified to notifier function
2061  *	@arg: additional u32 argument passed to the notifier function
2062  *
2063  *	Call all network notifier blocks.  Parameters and return value
2064  *	are as for raw_notifier_call_chain().
2065  */
2066 static int call_netdevice_notifiers_mtu(unsigned long val,
2067 					struct net_device *dev, u32 arg)
2068 {
2069 	struct netdev_notifier_info_ext info = {
2070 		.info.dev = dev,
2071 		.ext.mtu = arg,
2072 	};
2073 
2074 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2075 
2076 	return call_netdevice_notifiers_info(val, &info.info);
2077 }
2078 
2079 #ifdef CONFIG_NET_INGRESS
2080 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2081 
2082 void net_inc_ingress_queue(void)
2083 {
2084 	static_branch_inc(&ingress_needed_key);
2085 }
2086 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2087 
2088 void net_dec_ingress_queue(void)
2089 {
2090 	static_branch_dec(&ingress_needed_key);
2091 }
2092 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2093 #endif
2094 
2095 #ifdef CONFIG_NET_EGRESS
2096 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2097 
2098 void net_inc_egress_queue(void)
2099 {
2100 	static_branch_inc(&egress_needed_key);
2101 }
2102 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2103 
2104 void net_dec_egress_queue(void)
2105 {
2106 	static_branch_dec(&egress_needed_key);
2107 }
2108 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2109 #endif
2110 
2111 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2112 #ifdef CONFIG_JUMP_LABEL
2113 static atomic_t netstamp_needed_deferred;
2114 static atomic_t netstamp_wanted;
2115 static void netstamp_clear(struct work_struct *work)
2116 {
2117 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2118 	int wanted;
2119 
2120 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2121 	if (wanted > 0)
2122 		static_branch_enable(&netstamp_needed_key);
2123 	else
2124 		static_branch_disable(&netstamp_needed_key);
2125 }
2126 static DECLARE_WORK(netstamp_work, netstamp_clear);
2127 #endif
2128 
2129 void net_enable_timestamp(void)
2130 {
2131 #ifdef CONFIG_JUMP_LABEL
2132 	int wanted;
2133 
2134 	while (1) {
2135 		wanted = atomic_read(&netstamp_wanted);
2136 		if (wanted <= 0)
2137 			break;
2138 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2139 			return;
2140 	}
2141 	atomic_inc(&netstamp_needed_deferred);
2142 	schedule_work(&netstamp_work);
2143 #else
2144 	static_branch_inc(&netstamp_needed_key);
2145 #endif
2146 }
2147 EXPORT_SYMBOL(net_enable_timestamp);
2148 
2149 void net_disable_timestamp(void)
2150 {
2151 #ifdef CONFIG_JUMP_LABEL
2152 	int wanted;
2153 
2154 	while (1) {
2155 		wanted = atomic_read(&netstamp_wanted);
2156 		if (wanted <= 1)
2157 			break;
2158 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2159 			return;
2160 	}
2161 	atomic_dec(&netstamp_needed_deferred);
2162 	schedule_work(&netstamp_work);
2163 #else
2164 	static_branch_dec(&netstamp_needed_key);
2165 #endif
2166 }
2167 EXPORT_SYMBOL(net_disable_timestamp);
2168 
2169 static inline void net_timestamp_set(struct sk_buff *skb)
2170 {
2171 	skb->tstamp = 0;
2172 	if (static_branch_unlikely(&netstamp_needed_key))
2173 		__net_timestamp(skb);
2174 }
2175 
2176 #define net_timestamp_check(COND, SKB)				\
2177 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2178 		if ((COND) && !(SKB)->tstamp)			\
2179 			__net_timestamp(SKB);			\
2180 	}							\
2181 
2182 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2183 {
2184 	unsigned int len;
2185 
2186 	if (!(dev->flags & IFF_UP))
2187 		return false;
2188 
2189 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2190 	if (skb->len <= len)
2191 		return true;
2192 
2193 	/* if TSO is enabled, we don't care about the length as the packet
2194 	 * could be forwarded without being segmented before
2195 	 */
2196 	if (skb_is_gso(skb))
2197 		return true;
2198 
2199 	return false;
2200 }
2201 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2202 
2203 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2204 {
2205 	int ret = ____dev_forward_skb(dev, skb);
2206 
2207 	if (likely(!ret)) {
2208 		skb->protocol = eth_type_trans(skb, dev);
2209 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2210 	}
2211 
2212 	return ret;
2213 }
2214 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2215 
2216 /**
2217  * dev_forward_skb - loopback an skb to another netif
2218  *
2219  * @dev: destination network device
2220  * @skb: buffer to forward
2221  *
2222  * return values:
2223  *	NET_RX_SUCCESS	(no congestion)
2224  *	NET_RX_DROP     (packet was dropped, but freed)
2225  *
2226  * dev_forward_skb can be used for injecting an skb from the
2227  * start_xmit function of one device into the receive queue
2228  * of another device.
2229  *
2230  * The receiving device may be in another namespace, so
2231  * we have to clear all information in the skb that could
2232  * impact namespace isolation.
2233  */
2234 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2235 {
2236 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2237 }
2238 EXPORT_SYMBOL_GPL(dev_forward_skb);
2239 
2240 static inline int deliver_skb(struct sk_buff *skb,
2241 			      struct packet_type *pt_prev,
2242 			      struct net_device *orig_dev)
2243 {
2244 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2245 		return -ENOMEM;
2246 	refcount_inc(&skb->users);
2247 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2248 }
2249 
2250 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2251 					  struct packet_type **pt,
2252 					  struct net_device *orig_dev,
2253 					  __be16 type,
2254 					  struct list_head *ptype_list)
2255 {
2256 	struct packet_type *ptype, *pt_prev = *pt;
2257 
2258 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2259 		if (ptype->type != type)
2260 			continue;
2261 		if (pt_prev)
2262 			deliver_skb(skb, pt_prev, orig_dev);
2263 		pt_prev = ptype;
2264 	}
2265 	*pt = pt_prev;
2266 }
2267 
2268 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2269 {
2270 	if (!ptype->af_packet_priv || !skb->sk)
2271 		return false;
2272 
2273 	if (ptype->id_match)
2274 		return ptype->id_match(ptype, skb->sk);
2275 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2276 		return true;
2277 
2278 	return false;
2279 }
2280 
2281 /**
2282  * dev_nit_active - return true if any network interface taps are in use
2283  *
2284  * @dev: network device to check for the presence of taps
2285  */
2286 bool dev_nit_active(struct net_device *dev)
2287 {
2288 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2289 }
2290 EXPORT_SYMBOL_GPL(dev_nit_active);
2291 
2292 /*
2293  *	Support routine. Sends outgoing frames to any network
2294  *	taps currently in use.
2295  */
2296 
2297 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2298 {
2299 	struct packet_type *ptype;
2300 	struct sk_buff *skb2 = NULL;
2301 	struct packet_type *pt_prev = NULL;
2302 	struct list_head *ptype_list = &ptype_all;
2303 
2304 	rcu_read_lock();
2305 again:
2306 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2307 		if (ptype->ignore_outgoing)
2308 			continue;
2309 
2310 		/* Never send packets back to the socket
2311 		 * they originated from - MvS (miquels@drinkel.ow.org)
2312 		 */
2313 		if (skb_loop_sk(ptype, skb))
2314 			continue;
2315 
2316 		if (pt_prev) {
2317 			deliver_skb(skb2, pt_prev, skb->dev);
2318 			pt_prev = ptype;
2319 			continue;
2320 		}
2321 
2322 		/* need to clone skb, done only once */
2323 		skb2 = skb_clone(skb, GFP_ATOMIC);
2324 		if (!skb2)
2325 			goto out_unlock;
2326 
2327 		net_timestamp_set(skb2);
2328 
2329 		/* skb->nh should be correctly
2330 		 * set by sender, so that the second statement is
2331 		 * just protection against buggy protocols.
2332 		 */
2333 		skb_reset_mac_header(skb2);
2334 
2335 		if (skb_network_header(skb2) < skb2->data ||
2336 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2337 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2338 					     ntohs(skb2->protocol),
2339 					     dev->name);
2340 			skb_reset_network_header(skb2);
2341 		}
2342 
2343 		skb2->transport_header = skb2->network_header;
2344 		skb2->pkt_type = PACKET_OUTGOING;
2345 		pt_prev = ptype;
2346 	}
2347 
2348 	if (ptype_list == &ptype_all) {
2349 		ptype_list = &dev->ptype_all;
2350 		goto again;
2351 	}
2352 out_unlock:
2353 	if (pt_prev) {
2354 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2355 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2356 		else
2357 			kfree_skb(skb2);
2358 	}
2359 	rcu_read_unlock();
2360 }
2361 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2362 
2363 /**
2364  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2365  * @dev: Network device
2366  * @txq: number of queues available
2367  *
2368  * If real_num_tx_queues is changed the tc mappings may no longer be
2369  * valid. To resolve this verify the tc mapping remains valid and if
2370  * not NULL the mapping. With no priorities mapping to this
2371  * offset/count pair it will no longer be used. In the worst case TC0
2372  * is invalid nothing can be done so disable priority mappings. If is
2373  * expected that drivers will fix this mapping if they can before
2374  * calling netif_set_real_num_tx_queues.
2375  */
2376 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2377 {
2378 	int i;
2379 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2380 
2381 	/* If TC0 is invalidated disable TC mapping */
2382 	if (tc->offset + tc->count > txq) {
2383 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2384 		dev->num_tc = 0;
2385 		return;
2386 	}
2387 
2388 	/* Invalidated prio to tc mappings set to TC0 */
2389 	for (i = 1; i < TC_BITMASK + 1; i++) {
2390 		int q = netdev_get_prio_tc_map(dev, i);
2391 
2392 		tc = &dev->tc_to_txq[q];
2393 		if (tc->offset + tc->count > txq) {
2394 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2395 				i, q);
2396 			netdev_set_prio_tc_map(dev, i, 0);
2397 		}
2398 	}
2399 }
2400 
2401 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2402 {
2403 	if (dev->num_tc) {
2404 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2405 		int i;
2406 
2407 		/* walk through the TCs and see if it falls into any of them */
2408 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2409 			if ((txq - tc->offset) < tc->count)
2410 				return i;
2411 		}
2412 
2413 		/* didn't find it, just return -1 to indicate no match */
2414 		return -1;
2415 	}
2416 
2417 	return 0;
2418 }
2419 EXPORT_SYMBOL(netdev_txq_to_tc);
2420 
2421 #ifdef CONFIG_XPS
2422 struct static_key xps_needed __read_mostly;
2423 EXPORT_SYMBOL(xps_needed);
2424 struct static_key xps_rxqs_needed __read_mostly;
2425 EXPORT_SYMBOL(xps_rxqs_needed);
2426 static DEFINE_MUTEX(xps_map_mutex);
2427 #define xmap_dereference(P)		\
2428 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2429 
2430 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2431 			     int tci, u16 index)
2432 {
2433 	struct xps_map *map = NULL;
2434 	int pos;
2435 
2436 	if (dev_maps)
2437 		map = xmap_dereference(dev_maps->attr_map[tci]);
2438 	if (!map)
2439 		return false;
2440 
2441 	for (pos = map->len; pos--;) {
2442 		if (map->queues[pos] != index)
2443 			continue;
2444 
2445 		if (map->len > 1) {
2446 			map->queues[pos] = map->queues[--map->len];
2447 			break;
2448 		}
2449 
2450 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2451 		kfree_rcu(map, rcu);
2452 		return false;
2453 	}
2454 
2455 	return true;
2456 }
2457 
2458 static bool remove_xps_queue_cpu(struct net_device *dev,
2459 				 struct xps_dev_maps *dev_maps,
2460 				 int cpu, u16 offset, u16 count)
2461 {
2462 	int num_tc = dev->num_tc ? : 1;
2463 	bool active = false;
2464 	int tci;
2465 
2466 	for (tci = cpu * num_tc; num_tc--; tci++) {
2467 		int i, j;
2468 
2469 		for (i = count, j = offset; i--; j++) {
2470 			if (!remove_xps_queue(dev_maps, tci, j))
2471 				break;
2472 		}
2473 
2474 		active |= i < 0;
2475 	}
2476 
2477 	return active;
2478 }
2479 
2480 static void reset_xps_maps(struct net_device *dev,
2481 			   struct xps_dev_maps *dev_maps,
2482 			   bool is_rxqs_map)
2483 {
2484 	if (is_rxqs_map) {
2485 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2486 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2487 	} else {
2488 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2489 	}
2490 	static_key_slow_dec_cpuslocked(&xps_needed);
2491 	kfree_rcu(dev_maps, rcu);
2492 }
2493 
2494 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2495 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2496 			   u16 offset, u16 count, bool is_rxqs_map)
2497 {
2498 	bool active = false;
2499 	int i, j;
2500 
2501 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2502 	     j < nr_ids;)
2503 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2504 					       count);
2505 	if (!active)
2506 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2507 
2508 	if (!is_rxqs_map) {
2509 		for (i = offset + (count - 1); count--; i--) {
2510 			netdev_queue_numa_node_write(
2511 				netdev_get_tx_queue(dev, i),
2512 				NUMA_NO_NODE);
2513 		}
2514 	}
2515 }
2516 
2517 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2518 				   u16 count)
2519 {
2520 	const unsigned long *possible_mask = NULL;
2521 	struct xps_dev_maps *dev_maps;
2522 	unsigned int nr_ids;
2523 
2524 	if (!static_key_false(&xps_needed))
2525 		return;
2526 
2527 	cpus_read_lock();
2528 	mutex_lock(&xps_map_mutex);
2529 
2530 	if (static_key_false(&xps_rxqs_needed)) {
2531 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2532 		if (dev_maps) {
2533 			nr_ids = dev->num_rx_queues;
2534 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2535 				       offset, count, true);
2536 		}
2537 	}
2538 
2539 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2540 	if (!dev_maps)
2541 		goto out_no_maps;
2542 
2543 	if (num_possible_cpus() > 1)
2544 		possible_mask = cpumask_bits(cpu_possible_mask);
2545 	nr_ids = nr_cpu_ids;
2546 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2547 		       false);
2548 
2549 out_no_maps:
2550 	mutex_unlock(&xps_map_mutex);
2551 	cpus_read_unlock();
2552 }
2553 
2554 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2555 {
2556 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2557 }
2558 
2559 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2560 				      u16 index, bool is_rxqs_map)
2561 {
2562 	struct xps_map *new_map;
2563 	int alloc_len = XPS_MIN_MAP_ALLOC;
2564 	int i, pos;
2565 
2566 	for (pos = 0; map && pos < map->len; pos++) {
2567 		if (map->queues[pos] != index)
2568 			continue;
2569 		return map;
2570 	}
2571 
2572 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2573 	if (map) {
2574 		if (pos < map->alloc_len)
2575 			return map;
2576 
2577 		alloc_len = map->alloc_len * 2;
2578 	}
2579 
2580 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2581 	 *  map
2582 	 */
2583 	if (is_rxqs_map)
2584 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2585 	else
2586 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2587 				       cpu_to_node(attr_index));
2588 	if (!new_map)
2589 		return NULL;
2590 
2591 	for (i = 0; i < pos; i++)
2592 		new_map->queues[i] = map->queues[i];
2593 	new_map->alloc_len = alloc_len;
2594 	new_map->len = pos;
2595 
2596 	return new_map;
2597 }
2598 
2599 /* Must be called under cpus_read_lock */
2600 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2601 			  u16 index, bool is_rxqs_map)
2602 {
2603 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2604 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2605 	int i, j, tci, numa_node_id = -2;
2606 	int maps_sz, num_tc = 1, tc = 0;
2607 	struct xps_map *map, *new_map;
2608 	bool active = false;
2609 	unsigned int nr_ids;
2610 
2611 	if (dev->num_tc) {
2612 		/* Do not allow XPS on subordinate device directly */
2613 		num_tc = dev->num_tc;
2614 		if (num_tc < 0)
2615 			return -EINVAL;
2616 
2617 		/* If queue belongs to subordinate dev use its map */
2618 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2619 
2620 		tc = netdev_txq_to_tc(dev, index);
2621 		if (tc < 0)
2622 			return -EINVAL;
2623 	}
2624 
2625 	mutex_lock(&xps_map_mutex);
2626 	if (is_rxqs_map) {
2627 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2628 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2629 		nr_ids = dev->num_rx_queues;
2630 	} else {
2631 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2632 		if (num_possible_cpus() > 1) {
2633 			online_mask = cpumask_bits(cpu_online_mask);
2634 			possible_mask = cpumask_bits(cpu_possible_mask);
2635 		}
2636 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2637 		nr_ids = nr_cpu_ids;
2638 	}
2639 
2640 	if (maps_sz < L1_CACHE_BYTES)
2641 		maps_sz = L1_CACHE_BYTES;
2642 
2643 	/* allocate memory for queue storage */
2644 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2645 	     j < nr_ids;) {
2646 		if (!new_dev_maps)
2647 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2648 		if (!new_dev_maps) {
2649 			mutex_unlock(&xps_map_mutex);
2650 			return -ENOMEM;
2651 		}
2652 
2653 		tci = j * num_tc + tc;
2654 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2655 				 NULL;
2656 
2657 		map = expand_xps_map(map, j, index, is_rxqs_map);
2658 		if (!map)
2659 			goto error;
2660 
2661 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2662 	}
2663 
2664 	if (!new_dev_maps)
2665 		goto out_no_new_maps;
2666 
2667 	if (!dev_maps) {
2668 		/* Increment static keys at most once per type */
2669 		static_key_slow_inc_cpuslocked(&xps_needed);
2670 		if (is_rxqs_map)
2671 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2672 	}
2673 
2674 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2675 	     j < nr_ids;) {
2676 		/* copy maps belonging to foreign traffic classes */
2677 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2678 			/* fill in the new device map from the old device map */
2679 			map = xmap_dereference(dev_maps->attr_map[tci]);
2680 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2681 		}
2682 
2683 		/* We need to explicitly update tci as prevous loop
2684 		 * could break out early if dev_maps is NULL.
2685 		 */
2686 		tci = j * num_tc + tc;
2687 
2688 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2689 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2690 			/* add tx-queue to CPU/rx-queue maps */
2691 			int pos = 0;
2692 
2693 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2694 			while ((pos < map->len) && (map->queues[pos] != index))
2695 				pos++;
2696 
2697 			if (pos == map->len)
2698 				map->queues[map->len++] = index;
2699 #ifdef CONFIG_NUMA
2700 			if (!is_rxqs_map) {
2701 				if (numa_node_id == -2)
2702 					numa_node_id = cpu_to_node(j);
2703 				else if (numa_node_id != cpu_to_node(j))
2704 					numa_node_id = -1;
2705 			}
2706 #endif
2707 		} else if (dev_maps) {
2708 			/* fill in the new device map from the old device map */
2709 			map = xmap_dereference(dev_maps->attr_map[tci]);
2710 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2711 		}
2712 
2713 		/* copy maps belonging to foreign traffic classes */
2714 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2715 			/* fill in the new device map from the old device map */
2716 			map = xmap_dereference(dev_maps->attr_map[tci]);
2717 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2718 		}
2719 	}
2720 
2721 	if (is_rxqs_map)
2722 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2723 	else
2724 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2725 
2726 	/* Cleanup old maps */
2727 	if (!dev_maps)
2728 		goto out_no_old_maps;
2729 
2730 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2731 	     j < nr_ids;) {
2732 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2733 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2734 			map = xmap_dereference(dev_maps->attr_map[tci]);
2735 			if (map && map != new_map)
2736 				kfree_rcu(map, rcu);
2737 		}
2738 	}
2739 
2740 	kfree_rcu(dev_maps, rcu);
2741 
2742 out_no_old_maps:
2743 	dev_maps = new_dev_maps;
2744 	active = true;
2745 
2746 out_no_new_maps:
2747 	if (!is_rxqs_map) {
2748 		/* update Tx queue numa node */
2749 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2750 					     (numa_node_id >= 0) ?
2751 					     numa_node_id : NUMA_NO_NODE);
2752 	}
2753 
2754 	if (!dev_maps)
2755 		goto out_no_maps;
2756 
2757 	/* removes tx-queue from unused CPUs/rx-queues */
2758 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2759 	     j < nr_ids;) {
2760 		for (i = tc, tci = j * num_tc; i--; tci++)
2761 			active |= remove_xps_queue(dev_maps, tci, index);
2762 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2763 		    !netif_attr_test_online(j, online_mask, nr_ids))
2764 			active |= remove_xps_queue(dev_maps, tci, index);
2765 		for (i = num_tc - tc, tci++; --i; tci++)
2766 			active |= remove_xps_queue(dev_maps, tci, index);
2767 	}
2768 
2769 	/* free map if not active */
2770 	if (!active)
2771 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2772 
2773 out_no_maps:
2774 	mutex_unlock(&xps_map_mutex);
2775 
2776 	return 0;
2777 error:
2778 	/* remove any maps that we added */
2779 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2780 	     j < nr_ids;) {
2781 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2782 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2783 			map = dev_maps ?
2784 			      xmap_dereference(dev_maps->attr_map[tci]) :
2785 			      NULL;
2786 			if (new_map && new_map != map)
2787 				kfree(new_map);
2788 		}
2789 	}
2790 
2791 	mutex_unlock(&xps_map_mutex);
2792 
2793 	kfree(new_dev_maps);
2794 	return -ENOMEM;
2795 }
2796 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2797 
2798 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2799 			u16 index)
2800 {
2801 	int ret;
2802 
2803 	cpus_read_lock();
2804 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2805 	cpus_read_unlock();
2806 
2807 	return ret;
2808 }
2809 EXPORT_SYMBOL(netif_set_xps_queue);
2810 
2811 #endif
2812 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2813 {
2814 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815 
2816 	/* Unbind any subordinate channels */
2817 	while (txq-- != &dev->_tx[0]) {
2818 		if (txq->sb_dev)
2819 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2820 	}
2821 }
2822 
2823 void netdev_reset_tc(struct net_device *dev)
2824 {
2825 #ifdef CONFIG_XPS
2826 	netif_reset_xps_queues_gt(dev, 0);
2827 #endif
2828 	netdev_unbind_all_sb_channels(dev);
2829 
2830 	/* Reset TC configuration of device */
2831 	dev->num_tc = 0;
2832 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2833 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2834 }
2835 EXPORT_SYMBOL(netdev_reset_tc);
2836 
2837 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2838 {
2839 	if (tc >= dev->num_tc)
2840 		return -EINVAL;
2841 
2842 #ifdef CONFIG_XPS
2843 	netif_reset_xps_queues(dev, offset, count);
2844 #endif
2845 	dev->tc_to_txq[tc].count = count;
2846 	dev->tc_to_txq[tc].offset = offset;
2847 	return 0;
2848 }
2849 EXPORT_SYMBOL(netdev_set_tc_queue);
2850 
2851 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2852 {
2853 	if (num_tc > TC_MAX_QUEUE)
2854 		return -EINVAL;
2855 
2856 #ifdef CONFIG_XPS
2857 	netif_reset_xps_queues_gt(dev, 0);
2858 #endif
2859 	netdev_unbind_all_sb_channels(dev);
2860 
2861 	dev->num_tc = num_tc;
2862 	return 0;
2863 }
2864 EXPORT_SYMBOL(netdev_set_num_tc);
2865 
2866 void netdev_unbind_sb_channel(struct net_device *dev,
2867 			      struct net_device *sb_dev)
2868 {
2869 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2870 
2871 #ifdef CONFIG_XPS
2872 	netif_reset_xps_queues_gt(sb_dev, 0);
2873 #endif
2874 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2875 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2876 
2877 	while (txq-- != &dev->_tx[0]) {
2878 		if (txq->sb_dev == sb_dev)
2879 			txq->sb_dev = NULL;
2880 	}
2881 }
2882 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2883 
2884 int netdev_bind_sb_channel_queue(struct net_device *dev,
2885 				 struct net_device *sb_dev,
2886 				 u8 tc, u16 count, u16 offset)
2887 {
2888 	/* Make certain the sb_dev and dev are already configured */
2889 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2890 		return -EINVAL;
2891 
2892 	/* We cannot hand out queues we don't have */
2893 	if ((offset + count) > dev->real_num_tx_queues)
2894 		return -EINVAL;
2895 
2896 	/* Record the mapping */
2897 	sb_dev->tc_to_txq[tc].count = count;
2898 	sb_dev->tc_to_txq[tc].offset = offset;
2899 
2900 	/* Provide a way for Tx queue to find the tc_to_txq map or
2901 	 * XPS map for itself.
2902 	 */
2903 	while (count--)
2904 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2905 
2906 	return 0;
2907 }
2908 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2909 
2910 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2911 {
2912 	/* Do not use a multiqueue device to represent a subordinate channel */
2913 	if (netif_is_multiqueue(dev))
2914 		return -ENODEV;
2915 
2916 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2917 	 * Channel 0 is meant to be "native" mode and used only to represent
2918 	 * the main root device. We allow writing 0 to reset the device back
2919 	 * to normal mode after being used as a subordinate channel.
2920 	 */
2921 	if (channel > S16_MAX)
2922 		return -EINVAL;
2923 
2924 	dev->num_tc = -channel;
2925 
2926 	return 0;
2927 }
2928 EXPORT_SYMBOL(netdev_set_sb_channel);
2929 
2930 /*
2931  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2932  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2933  */
2934 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2935 {
2936 	bool disabling;
2937 	int rc;
2938 
2939 	disabling = txq < dev->real_num_tx_queues;
2940 
2941 	if (txq < 1 || txq > dev->num_tx_queues)
2942 		return -EINVAL;
2943 
2944 	if (dev->reg_state == NETREG_REGISTERED ||
2945 	    dev->reg_state == NETREG_UNREGISTERING) {
2946 		ASSERT_RTNL();
2947 
2948 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2949 						  txq);
2950 		if (rc)
2951 			return rc;
2952 
2953 		if (dev->num_tc)
2954 			netif_setup_tc(dev, txq);
2955 
2956 		dev->real_num_tx_queues = txq;
2957 
2958 		if (disabling) {
2959 			synchronize_net();
2960 			qdisc_reset_all_tx_gt(dev, txq);
2961 #ifdef CONFIG_XPS
2962 			netif_reset_xps_queues_gt(dev, txq);
2963 #endif
2964 		}
2965 	} else {
2966 		dev->real_num_tx_queues = txq;
2967 	}
2968 
2969 	return 0;
2970 }
2971 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2972 
2973 #ifdef CONFIG_SYSFS
2974 /**
2975  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2976  *	@dev: Network device
2977  *	@rxq: Actual number of RX queues
2978  *
2979  *	This must be called either with the rtnl_lock held or before
2980  *	registration of the net device.  Returns 0 on success, or a
2981  *	negative error code.  If called before registration, it always
2982  *	succeeds.
2983  */
2984 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2985 {
2986 	int rc;
2987 
2988 	if (rxq < 1 || rxq > dev->num_rx_queues)
2989 		return -EINVAL;
2990 
2991 	if (dev->reg_state == NETREG_REGISTERED) {
2992 		ASSERT_RTNL();
2993 
2994 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2995 						  rxq);
2996 		if (rc)
2997 			return rc;
2998 	}
2999 
3000 	dev->real_num_rx_queues = rxq;
3001 	return 0;
3002 }
3003 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3004 #endif
3005 
3006 /**
3007  * netif_get_num_default_rss_queues - default number of RSS queues
3008  *
3009  * This routine should set an upper limit on the number of RSS queues
3010  * used by default by multiqueue devices.
3011  */
3012 int netif_get_num_default_rss_queues(void)
3013 {
3014 	return is_kdump_kernel() ?
3015 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3016 }
3017 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3018 
3019 static void __netif_reschedule(struct Qdisc *q)
3020 {
3021 	struct softnet_data *sd;
3022 	unsigned long flags;
3023 
3024 	local_irq_save(flags);
3025 	sd = this_cpu_ptr(&softnet_data);
3026 	q->next_sched = NULL;
3027 	*sd->output_queue_tailp = q;
3028 	sd->output_queue_tailp = &q->next_sched;
3029 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3030 	local_irq_restore(flags);
3031 }
3032 
3033 void __netif_schedule(struct Qdisc *q)
3034 {
3035 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3036 		__netif_reschedule(q);
3037 }
3038 EXPORT_SYMBOL(__netif_schedule);
3039 
3040 struct dev_kfree_skb_cb {
3041 	enum skb_free_reason reason;
3042 };
3043 
3044 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3045 {
3046 	return (struct dev_kfree_skb_cb *)skb->cb;
3047 }
3048 
3049 void netif_schedule_queue(struct netdev_queue *txq)
3050 {
3051 	rcu_read_lock();
3052 	if (!netif_xmit_stopped(txq)) {
3053 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3054 
3055 		__netif_schedule(q);
3056 	}
3057 	rcu_read_unlock();
3058 }
3059 EXPORT_SYMBOL(netif_schedule_queue);
3060 
3061 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3062 {
3063 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3064 		struct Qdisc *q;
3065 
3066 		rcu_read_lock();
3067 		q = rcu_dereference(dev_queue->qdisc);
3068 		__netif_schedule(q);
3069 		rcu_read_unlock();
3070 	}
3071 }
3072 EXPORT_SYMBOL(netif_tx_wake_queue);
3073 
3074 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3075 {
3076 	unsigned long flags;
3077 
3078 	if (unlikely(!skb))
3079 		return;
3080 
3081 	if (likely(refcount_read(&skb->users) == 1)) {
3082 		smp_rmb();
3083 		refcount_set(&skb->users, 0);
3084 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3085 		return;
3086 	}
3087 	get_kfree_skb_cb(skb)->reason = reason;
3088 	local_irq_save(flags);
3089 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3090 	__this_cpu_write(softnet_data.completion_queue, skb);
3091 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3092 	local_irq_restore(flags);
3093 }
3094 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3095 
3096 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3097 {
3098 	if (in_irq() || irqs_disabled())
3099 		__dev_kfree_skb_irq(skb, reason);
3100 	else
3101 		dev_kfree_skb(skb);
3102 }
3103 EXPORT_SYMBOL(__dev_kfree_skb_any);
3104 
3105 
3106 /**
3107  * netif_device_detach - mark device as removed
3108  * @dev: network device
3109  *
3110  * Mark device as removed from system and therefore no longer available.
3111  */
3112 void netif_device_detach(struct net_device *dev)
3113 {
3114 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3115 	    netif_running(dev)) {
3116 		netif_tx_stop_all_queues(dev);
3117 	}
3118 }
3119 EXPORT_SYMBOL(netif_device_detach);
3120 
3121 /**
3122  * netif_device_attach - mark device as attached
3123  * @dev: network device
3124  *
3125  * Mark device as attached from system and restart if needed.
3126  */
3127 void netif_device_attach(struct net_device *dev)
3128 {
3129 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3130 	    netif_running(dev)) {
3131 		netif_tx_wake_all_queues(dev);
3132 		__netdev_watchdog_up(dev);
3133 	}
3134 }
3135 EXPORT_SYMBOL(netif_device_attach);
3136 
3137 /*
3138  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3139  * to be used as a distribution range.
3140  */
3141 static u16 skb_tx_hash(const struct net_device *dev,
3142 		       const struct net_device *sb_dev,
3143 		       struct sk_buff *skb)
3144 {
3145 	u32 hash;
3146 	u16 qoffset = 0;
3147 	u16 qcount = dev->real_num_tx_queues;
3148 
3149 	if (dev->num_tc) {
3150 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3151 
3152 		qoffset = sb_dev->tc_to_txq[tc].offset;
3153 		qcount = sb_dev->tc_to_txq[tc].count;
3154 	}
3155 
3156 	if (skb_rx_queue_recorded(skb)) {
3157 		hash = skb_get_rx_queue(skb);
3158 		if (hash >= qoffset)
3159 			hash -= qoffset;
3160 		while (unlikely(hash >= qcount))
3161 			hash -= qcount;
3162 		return hash + qoffset;
3163 	}
3164 
3165 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3166 }
3167 
3168 static void skb_warn_bad_offload(const struct sk_buff *skb)
3169 {
3170 	static const netdev_features_t null_features;
3171 	struct net_device *dev = skb->dev;
3172 	const char *name = "";
3173 
3174 	if (!net_ratelimit())
3175 		return;
3176 
3177 	if (dev) {
3178 		if (dev->dev.parent)
3179 			name = dev_driver_string(dev->dev.parent);
3180 		else
3181 			name = netdev_name(dev);
3182 	}
3183 	skb_dump(KERN_WARNING, skb, false);
3184 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3185 	     name, dev ? &dev->features : &null_features,
3186 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3187 }
3188 
3189 /*
3190  * Invalidate hardware checksum when packet is to be mangled, and
3191  * complete checksum manually on outgoing path.
3192  */
3193 int skb_checksum_help(struct sk_buff *skb)
3194 {
3195 	__wsum csum;
3196 	int ret = 0, offset;
3197 
3198 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3199 		goto out_set_summed;
3200 
3201 	if (unlikely(skb_shinfo(skb)->gso_size)) {
3202 		skb_warn_bad_offload(skb);
3203 		return -EINVAL;
3204 	}
3205 
3206 	/* Before computing a checksum, we should make sure no frag could
3207 	 * be modified by an external entity : checksum could be wrong.
3208 	 */
3209 	if (skb_has_shared_frag(skb)) {
3210 		ret = __skb_linearize(skb);
3211 		if (ret)
3212 			goto out;
3213 	}
3214 
3215 	offset = skb_checksum_start_offset(skb);
3216 	BUG_ON(offset >= skb_headlen(skb));
3217 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3218 
3219 	offset += skb->csum_offset;
3220 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3221 
3222 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3223 	if (ret)
3224 		goto out;
3225 
3226 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3227 out_set_summed:
3228 	skb->ip_summed = CHECKSUM_NONE;
3229 out:
3230 	return ret;
3231 }
3232 EXPORT_SYMBOL(skb_checksum_help);
3233 
3234 int skb_crc32c_csum_help(struct sk_buff *skb)
3235 {
3236 	__le32 crc32c_csum;
3237 	int ret = 0, offset, start;
3238 
3239 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3240 		goto out;
3241 
3242 	if (unlikely(skb_is_gso(skb)))
3243 		goto out;
3244 
3245 	/* Before computing a checksum, we should make sure no frag could
3246 	 * be modified by an external entity : checksum could be wrong.
3247 	 */
3248 	if (unlikely(skb_has_shared_frag(skb))) {
3249 		ret = __skb_linearize(skb);
3250 		if (ret)
3251 			goto out;
3252 	}
3253 	start = skb_checksum_start_offset(skb);
3254 	offset = start + offsetof(struct sctphdr, checksum);
3255 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3256 		ret = -EINVAL;
3257 		goto out;
3258 	}
3259 
3260 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3261 	if (ret)
3262 		goto out;
3263 
3264 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3265 						  skb->len - start, ~(__u32)0,
3266 						  crc32c_csum_stub));
3267 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3268 	skb->ip_summed = CHECKSUM_NONE;
3269 	skb->csum_not_inet = 0;
3270 out:
3271 	return ret;
3272 }
3273 
3274 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3275 {
3276 	__be16 type = skb->protocol;
3277 
3278 	/* Tunnel gso handlers can set protocol to ethernet. */
3279 	if (type == htons(ETH_P_TEB)) {
3280 		struct ethhdr *eth;
3281 
3282 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3283 			return 0;
3284 
3285 		eth = (struct ethhdr *)skb->data;
3286 		type = eth->h_proto;
3287 	}
3288 
3289 	return __vlan_get_protocol(skb, type, depth);
3290 }
3291 
3292 /**
3293  *	skb_mac_gso_segment - mac layer segmentation handler.
3294  *	@skb: buffer to segment
3295  *	@features: features for the output path (see dev->features)
3296  */
3297 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3298 				    netdev_features_t features)
3299 {
3300 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3301 	struct packet_offload *ptype;
3302 	int vlan_depth = skb->mac_len;
3303 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3304 
3305 	if (unlikely(!type))
3306 		return ERR_PTR(-EINVAL);
3307 
3308 	__skb_pull(skb, vlan_depth);
3309 
3310 	rcu_read_lock();
3311 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3312 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3313 			segs = ptype->callbacks.gso_segment(skb, features);
3314 			break;
3315 		}
3316 	}
3317 	rcu_read_unlock();
3318 
3319 	__skb_push(skb, skb->data - skb_mac_header(skb));
3320 
3321 	return segs;
3322 }
3323 EXPORT_SYMBOL(skb_mac_gso_segment);
3324 
3325 
3326 /* openvswitch calls this on rx path, so we need a different check.
3327  */
3328 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3329 {
3330 	if (tx_path)
3331 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3332 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3333 
3334 	return skb->ip_summed == CHECKSUM_NONE;
3335 }
3336 
3337 /**
3338  *	__skb_gso_segment - Perform segmentation on skb.
3339  *	@skb: buffer to segment
3340  *	@features: features for the output path (see dev->features)
3341  *	@tx_path: whether it is called in TX path
3342  *
3343  *	This function segments the given skb and returns a list of segments.
3344  *
3345  *	It may return NULL if the skb requires no segmentation.  This is
3346  *	only possible when GSO is used for verifying header integrity.
3347  *
3348  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3349  */
3350 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3351 				  netdev_features_t features, bool tx_path)
3352 {
3353 	struct sk_buff *segs;
3354 
3355 	if (unlikely(skb_needs_check(skb, tx_path))) {
3356 		int err;
3357 
3358 		/* We're going to init ->check field in TCP or UDP header */
3359 		err = skb_cow_head(skb, 0);
3360 		if (err < 0)
3361 			return ERR_PTR(err);
3362 	}
3363 
3364 	/* Only report GSO partial support if it will enable us to
3365 	 * support segmentation on this frame without needing additional
3366 	 * work.
3367 	 */
3368 	if (features & NETIF_F_GSO_PARTIAL) {
3369 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3370 		struct net_device *dev = skb->dev;
3371 
3372 		partial_features |= dev->features & dev->gso_partial_features;
3373 		if (!skb_gso_ok(skb, features | partial_features))
3374 			features &= ~NETIF_F_GSO_PARTIAL;
3375 	}
3376 
3377 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3378 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3379 
3380 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3381 	SKB_GSO_CB(skb)->encap_level = 0;
3382 
3383 	skb_reset_mac_header(skb);
3384 	skb_reset_mac_len(skb);
3385 
3386 	segs = skb_mac_gso_segment(skb, features);
3387 
3388 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3389 		skb_warn_bad_offload(skb);
3390 
3391 	return segs;
3392 }
3393 EXPORT_SYMBOL(__skb_gso_segment);
3394 
3395 /* Take action when hardware reception checksum errors are detected. */
3396 #ifdef CONFIG_BUG
3397 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3398 {
3399 	if (net_ratelimit()) {
3400 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3401 		skb_dump(KERN_ERR, skb, true);
3402 		dump_stack();
3403 	}
3404 }
3405 EXPORT_SYMBOL(netdev_rx_csum_fault);
3406 #endif
3407 
3408 /* XXX: check that highmem exists at all on the given machine. */
3409 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3410 {
3411 #ifdef CONFIG_HIGHMEM
3412 	int i;
3413 
3414 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3415 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3416 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3417 
3418 			if (PageHighMem(skb_frag_page(frag)))
3419 				return 1;
3420 		}
3421 	}
3422 #endif
3423 	return 0;
3424 }
3425 
3426 /* If MPLS offload request, verify we are testing hardware MPLS features
3427  * instead of standard features for the netdev.
3428  */
3429 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3430 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3431 					   netdev_features_t features,
3432 					   __be16 type)
3433 {
3434 	if (eth_p_mpls(type))
3435 		features &= skb->dev->mpls_features;
3436 
3437 	return features;
3438 }
3439 #else
3440 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3441 					   netdev_features_t features,
3442 					   __be16 type)
3443 {
3444 	return features;
3445 }
3446 #endif
3447 
3448 static netdev_features_t harmonize_features(struct sk_buff *skb,
3449 	netdev_features_t features)
3450 {
3451 	int tmp;
3452 	__be16 type;
3453 
3454 	type = skb_network_protocol(skb, &tmp);
3455 	features = net_mpls_features(skb, features, type);
3456 
3457 	if (skb->ip_summed != CHECKSUM_NONE &&
3458 	    !can_checksum_protocol(features, type)) {
3459 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3460 	}
3461 	if (illegal_highdma(skb->dev, skb))
3462 		features &= ~NETIF_F_SG;
3463 
3464 	return features;
3465 }
3466 
3467 netdev_features_t passthru_features_check(struct sk_buff *skb,
3468 					  struct net_device *dev,
3469 					  netdev_features_t features)
3470 {
3471 	return features;
3472 }
3473 EXPORT_SYMBOL(passthru_features_check);
3474 
3475 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3476 					     struct net_device *dev,
3477 					     netdev_features_t features)
3478 {
3479 	return vlan_features_check(skb, features);
3480 }
3481 
3482 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3483 					    struct net_device *dev,
3484 					    netdev_features_t features)
3485 {
3486 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3487 
3488 	if (gso_segs > dev->gso_max_segs)
3489 		return features & ~NETIF_F_GSO_MASK;
3490 
3491 	/* Support for GSO partial features requires software
3492 	 * intervention before we can actually process the packets
3493 	 * so we need to strip support for any partial features now
3494 	 * and we can pull them back in after we have partially
3495 	 * segmented the frame.
3496 	 */
3497 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3498 		features &= ~dev->gso_partial_features;
3499 
3500 	/* Make sure to clear the IPv4 ID mangling feature if the
3501 	 * IPv4 header has the potential to be fragmented.
3502 	 */
3503 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3504 		struct iphdr *iph = skb->encapsulation ?
3505 				    inner_ip_hdr(skb) : ip_hdr(skb);
3506 
3507 		if (!(iph->frag_off & htons(IP_DF)))
3508 			features &= ~NETIF_F_TSO_MANGLEID;
3509 	}
3510 
3511 	return features;
3512 }
3513 
3514 netdev_features_t netif_skb_features(struct sk_buff *skb)
3515 {
3516 	struct net_device *dev = skb->dev;
3517 	netdev_features_t features = dev->features;
3518 
3519 	if (skb_is_gso(skb))
3520 		features = gso_features_check(skb, dev, features);
3521 
3522 	/* If encapsulation offload request, verify we are testing
3523 	 * hardware encapsulation features instead of standard
3524 	 * features for the netdev
3525 	 */
3526 	if (skb->encapsulation)
3527 		features &= dev->hw_enc_features;
3528 
3529 	if (skb_vlan_tagged(skb))
3530 		features = netdev_intersect_features(features,
3531 						     dev->vlan_features |
3532 						     NETIF_F_HW_VLAN_CTAG_TX |
3533 						     NETIF_F_HW_VLAN_STAG_TX);
3534 
3535 	if (dev->netdev_ops->ndo_features_check)
3536 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3537 								features);
3538 	else
3539 		features &= dflt_features_check(skb, dev, features);
3540 
3541 	return harmonize_features(skb, features);
3542 }
3543 EXPORT_SYMBOL(netif_skb_features);
3544 
3545 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3546 		    struct netdev_queue *txq, bool more)
3547 {
3548 	unsigned int len;
3549 	int rc;
3550 
3551 	if (dev_nit_active(dev))
3552 		dev_queue_xmit_nit(skb, dev);
3553 
3554 	len = skb->len;
3555 	trace_net_dev_start_xmit(skb, dev);
3556 	rc = netdev_start_xmit(skb, dev, txq, more);
3557 	trace_net_dev_xmit(skb, rc, dev, len);
3558 
3559 	return rc;
3560 }
3561 
3562 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3563 				    struct netdev_queue *txq, int *ret)
3564 {
3565 	struct sk_buff *skb = first;
3566 	int rc = NETDEV_TX_OK;
3567 
3568 	while (skb) {
3569 		struct sk_buff *next = skb->next;
3570 
3571 		skb_mark_not_on_list(skb);
3572 		rc = xmit_one(skb, dev, txq, next != NULL);
3573 		if (unlikely(!dev_xmit_complete(rc))) {
3574 			skb->next = next;
3575 			goto out;
3576 		}
3577 
3578 		skb = next;
3579 		if (netif_tx_queue_stopped(txq) && skb) {
3580 			rc = NETDEV_TX_BUSY;
3581 			break;
3582 		}
3583 	}
3584 
3585 out:
3586 	*ret = rc;
3587 	return skb;
3588 }
3589 
3590 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3591 					  netdev_features_t features)
3592 {
3593 	if (skb_vlan_tag_present(skb) &&
3594 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3595 		skb = __vlan_hwaccel_push_inside(skb);
3596 	return skb;
3597 }
3598 
3599 int skb_csum_hwoffload_help(struct sk_buff *skb,
3600 			    const netdev_features_t features)
3601 {
3602 	if (unlikely(skb->csum_not_inet))
3603 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3604 			skb_crc32c_csum_help(skb);
3605 
3606 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3607 }
3608 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3609 
3610 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3611 {
3612 	netdev_features_t features;
3613 
3614 	features = netif_skb_features(skb);
3615 	skb = validate_xmit_vlan(skb, features);
3616 	if (unlikely(!skb))
3617 		goto out_null;
3618 
3619 	skb = sk_validate_xmit_skb(skb, dev);
3620 	if (unlikely(!skb))
3621 		goto out_null;
3622 
3623 	if (netif_needs_gso(skb, features)) {
3624 		struct sk_buff *segs;
3625 
3626 		segs = skb_gso_segment(skb, features);
3627 		if (IS_ERR(segs)) {
3628 			goto out_kfree_skb;
3629 		} else if (segs) {
3630 			consume_skb(skb);
3631 			skb = segs;
3632 		}
3633 	} else {
3634 		if (skb_needs_linearize(skb, features) &&
3635 		    __skb_linearize(skb))
3636 			goto out_kfree_skb;
3637 
3638 		/* If packet is not checksummed and device does not
3639 		 * support checksumming for this protocol, complete
3640 		 * checksumming here.
3641 		 */
3642 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3643 			if (skb->encapsulation)
3644 				skb_set_inner_transport_header(skb,
3645 							       skb_checksum_start_offset(skb));
3646 			else
3647 				skb_set_transport_header(skb,
3648 							 skb_checksum_start_offset(skb));
3649 			if (skb_csum_hwoffload_help(skb, features))
3650 				goto out_kfree_skb;
3651 		}
3652 	}
3653 
3654 	skb = validate_xmit_xfrm(skb, features, again);
3655 
3656 	return skb;
3657 
3658 out_kfree_skb:
3659 	kfree_skb(skb);
3660 out_null:
3661 	atomic_long_inc(&dev->tx_dropped);
3662 	return NULL;
3663 }
3664 
3665 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3666 {
3667 	struct sk_buff *next, *head = NULL, *tail;
3668 
3669 	for (; skb != NULL; skb = next) {
3670 		next = skb->next;
3671 		skb_mark_not_on_list(skb);
3672 
3673 		/* in case skb wont be segmented, point to itself */
3674 		skb->prev = skb;
3675 
3676 		skb = validate_xmit_skb(skb, dev, again);
3677 		if (!skb)
3678 			continue;
3679 
3680 		if (!head)
3681 			head = skb;
3682 		else
3683 			tail->next = skb;
3684 		/* If skb was segmented, skb->prev points to
3685 		 * the last segment. If not, it still contains skb.
3686 		 */
3687 		tail = skb->prev;
3688 	}
3689 	return head;
3690 }
3691 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3692 
3693 static void qdisc_pkt_len_init(struct sk_buff *skb)
3694 {
3695 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3696 
3697 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3698 
3699 	/* To get more precise estimation of bytes sent on wire,
3700 	 * we add to pkt_len the headers size of all segments
3701 	 */
3702 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3703 		unsigned int hdr_len;
3704 		u16 gso_segs = shinfo->gso_segs;
3705 
3706 		/* mac layer + network layer */
3707 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3708 
3709 		/* + transport layer */
3710 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3711 			const struct tcphdr *th;
3712 			struct tcphdr _tcphdr;
3713 
3714 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3715 						sizeof(_tcphdr), &_tcphdr);
3716 			if (likely(th))
3717 				hdr_len += __tcp_hdrlen(th);
3718 		} else {
3719 			struct udphdr _udphdr;
3720 
3721 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3722 					       sizeof(_udphdr), &_udphdr))
3723 				hdr_len += sizeof(struct udphdr);
3724 		}
3725 
3726 		if (shinfo->gso_type & SKB_GSO_DODGY)
3727 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3728 						shinfo->gso_size);
3729 
3730 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3731 	}
3732 }
3733 
3734 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3735 				 struct net_device *dev,
3736 				 struct netdev_queue *txq)
3737 {
3738 	spinlock_t *root_lock = qdisc_lock(q);
3739 	struct sk_buff *to_free = NULL;
3740 	bool contended;
3741 	int rc;
3742 
3743 	qdisc_calculate_pkt_len(skb, q);
3744 
3745 	if (q->flags & TCQ_F_NOLOCK) {
3746 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3747 		qdisc_run(q);
3748 
3749 		if (unlikely(to_free))
3750 			kfree_skb_list(to_free);
3751 		return rc;
3752 	}
3753 
3754 	/*
3755 	 * Heuristic to force contended enqueues to serialize on a
3756 	 * separate lock before trying to get qdisc main lock.
3757 	 * This permits qdisc->running owner to get the lock more
3758 	 * often and dequeue packets faster.
3759 	 */
3760 	contended = qdisc_is_running(q);
3761 	if (unlikely(contended))
3762 		spin_lock(&q->busylock);
3763 
3764 	spin_lock(root_lock);
3765 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3766 		__qdisc_drop(skb, &to_free);
3767 		rc = NET_XMIT_DROP;
3768 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3769 		   qdisc_run_begin(q)) {
3770 		/*
3771 		 * This is a work-conserving queue; there are no old skbs
3772 		 * waiting to be sent out; and the qdisc is not running -
3773 		 * xmit the skb directly.
3774 		 */
3775 
3776 		qdisc_bstats_update(q, skb);
3777 
3778 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3779 			if (unlikely(contended)) {
3780 				spin_unlock(&q->busylock);
3781 				contended = false;
3782 			}
3783 			__qdisc_run(q);
3784 		}
3785 
3786 		qdisc_run_end(q);
3787 		rc = NET_XMIT_SUCCESS;
3788 	} else {
3789 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3790 		if (qdisc_run_begin(q)) {
3791 			if (unlikely(contended)) {
3792 				spin_unlock(&q->busylock);
3793 				contended = false;
3794 			}
3795 			__qdisc_run(q);
3796 			qdisc_run_end(q);
3797 		}
3798 	}
3799 	spin_unlock(root_lock);
3800 	if (unlikely(to_free))
3801 		kfree_skb_list(to_free);
3802 	if (unlikely(contended))
3803 		spin_unlock(&q->busylock);
3804 	return rc;
3805 }
3806 
3807 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3808 static void skb_update_prio(struct sk_buff *skb)
3809 {
3810 	const struct netprio_map *map;
3811 	const struct sock *sk;
3812 	unsigned int prioidx;
3813 
3814 	if (skb->priority)
3815 		return;
3816 	map = rcu_dereference_bh(skb->dev->priomap);
3817 	if (!map)
3818 		return;
3819 	sk = skb_to_full_sk(skb);
3820 	if (!sk)
3821 		return;
3822 
3823 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3824 
3825 	if (prioidx < map->priomap_len)
3826 		skb->priority = map->priomap[prioidx];
3827 }
3828 #else
3829 #define skb_update_prio(skb)
3830 #endif
3831 
3832 /**
3833  *	dev_loopback_xmit - loop back @skb
3834  *	@net: network namespace this loopback is happening in
3835  *	@sk:  sk needed to be a netfilter okfn
3836  *	@skb: buffer to transmit
3837  */
3838 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3839 {
3840 	skb_reset_mac_header(skb);
3841 	__skb_pull(skb, skb_network_offset(skb));
3842 	skb->pkt_type = PACKET_LOOPBACK;
3843 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3844 	WARN_ON(!skb_dst(skb));
3845 	skb_dst_force(skb);
3846 	netif_rx_ni(skb);
3847 	return 0;
3848 }
3849 EXPORT_SYMBOL(dev_loopback_xmit);
3850 
3851 #ifdef CONFIG_NET_EGRESS
3852 static struct sk_buff *
3853 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3854 {
3855 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3856 	struct tcf_result cl_res;
3857 
3858 	if (!miniq)
3859 		return skb;
3860 
3861 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3862 	mini_qdisc_bstats_cpu_update(miniq, skb);
3863 
3864 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3865 	case TC_ACT_OK:
3866 	case TC_ACT_RECLASSIFY:
3867 		skb->tc_index = TC_H_MIN(cl_res.classid);
3868 		break;
3869 	case TC_ACT_SHOT:
3870 		mini_qdisc_qstats_cpu_drop(miniq);
3871 		*ret = NET_XMIT_DROP;
3872 		kfree_skb(skb);
3873 		return NULL;
3874 	case TC_ACT_STOLEN:
3875 	case TC_ACT_QUEUED:
3876 	case TC_ACT_TRAP:
3877 		*ret = NET_XMIT_SUCCESS;
3878 		consume_skb(skb);
3879 		return NULL;
3880 	case TC_ACT_REDIRECT:
3881 		/* No need to push/pop skb's mac_header here on egress! */
3882 		skb_do_redirect(skb);
3883 		*ret = NET_XMIT_SUCCESS;
3884 		return NULL;
3885 	default:
3886 		break;
3887 	}
3888 
3889 	return skb;
3890 }
3891 #endif /* CONFIG_NET_EGRESS */
3892 
3893 #ifdef CONFIG_XPS
3894 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3895 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3896 {
3897 	struct xps_map *map;
3898 	int queue_index = -1;
3899 
3900 	if (dev->num_tc) {
3901 		tci *= dev->num_tc;
3902 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3903 	}
3904 
3905 	map = rcu_dereference(dev_maps->attr_map[tci]);
3906 	if (map) {
3907 		if (map->len == 1)
3908 			queue_index = map->queues[0];
3909 		else
3910 			queue_index = map->queues[reciprocal_scale(
3911 						skb_get_hash(skb), map->len)];
3912 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3913 			queue_index = -1;
3914 	}
3915 	return queue_index;
3916 }
3917 #endif
3918 
3919 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3920 			 struct sk_buff *skb)
3921 {
3922 #ifdef CONFIG_XPS
3923 	struct xps_dev_maps *dev_maps;
3924 	struct sock *sk = skb->sk;
3925 	int queue_index = -1;
3926 
3927 	if (!static_key_false(&xps_needed))
3928 		return -1;
3929 
3930 	rcu_read_lock();
3931 	if (!static_key_false(&xps_rxqs_needed))
3932 		goto get_cpus_map;
3933 
3934 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3935 	if (dev_maps) {
3936 		int tci = sk_rx_queue_get(sk);
3937 
3938 		if (tci >= 0 && tci < dev->num_rx_queues)
3939 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3940 							  tci);
3941 	}
3942 
3943 get_cpus_map:
3944 	if (queue_index < 0) {
3945 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3946 		if (dev_maps) {
3947 			unsigned int tci = skb->sender_cpu - 1;
3948 
3949 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3950 							  tci);
3951 		}
3952 	}
3953 	rcu_read_unlock();
3954 
3955 	return queue_index;
3956 #else
3957 	return -1;
3958 #endif
3959 }
3960 
3961 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3962 		     struct net_device *sb_dev)
3963 {
3964 	return 0;
3965 }
3966 EXPORT_SYMBOL(dev_pick_tx_zero);
3967 
3968 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3969 		       struct net_device *sb_dev)
3970 {
3971 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3972 }
3973 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3974 
3975 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3976 		     struct net_device *sb_dev)
3977 {
3978 	struct sock *sk = skb->sk;
3979 	int queue_index = sk_tx_queue_get(sk);
3980 
3981 	sb_dev = sb_dev ? : dev;
3982 
3983 	if (queue_index < 0 || skb->ooo_okay ||
3984 	    queue_index >= dev->real_num_tx_queues) {
3985 		int new_index = get_xps_queue(dev, sb_dev, skb);
3986 
3987 		if (new_index < 0)
3988 			new_index = skb_tx_hash(dev, sb_dev, skb);
3989 
3990 		if (queue_index != new_index && sk &&
3991 		    sk_fullsock(sk) &&
3992 		    rcu_access_pointer(sk->sk_dst_cache))
3993 			sk_tx_queue_set(sk, new_index);
3994 
3995 		queue_index = new_index;
3996 	}
3997 
3998 	return queue_index;
3999 }
4000 EXPORT_SYMBOL(netdev_pick_tx);
4001 
4002 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4003 					 struct sk_buff *skb,
4004 					 struct net_device *sb_dev)
4005 {
4006 	int queue_index = 0;
4007 
4008 #ifdef CONFIG_XPS
4009 	u32 sender_cpu = skb->sender_cpu - 1;
4010 
4011 	if (sender_cpu >= (u32)NR_CPUS)
4012 		skb->sender_cpu = raw_smp_processor_id() + 1;
4013 #endif
4014 
4015 	if (dev->real_num_tx_queues != 1) {
4016 		const struct net_device_ops *ops = dev->netdev_ops;
4017 
4018 		if (ops->ndo_select_queue)
4019 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4020 		else
4021 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4022 
4023 		queue_index = netdev_cap_txqueue(dev, queue_index);
4024 	}
4025 
4026 	skb_set_queue_mapping(skb, queue_index);
4027 	return netdev_get_tx_queue(dev, queue_index);
4028 }
4029 
4030 /**
4031  *	__dev_queue_xmit - transmit a buffer
4032  *	@skb: buffer to transmit
4033  *	@sb_dev: suboordinate device used for L2 forwarding offload
4034  *
4035  *	Queue a buffer for transmission to a network device. The caller must
4036  *	have set the device and priority and built the buffer before calling
4037  *	this function. The function can be called from an interrupt.
4038  *
4039  *	A negative errno code is returned on a failure. A success does not
4040  *	guarantee the frame will be transmitted as it may be dropped due
4041  *	to congestion or traffic shaping.
4042  *
4043  * -----------------------------------------------------------------------------------
4044  *      I notice this method can also return errors from the queue disciplines,
4045  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4046  *      be positive.
4047  *
4048  *      Regardless of the return value, the skb is consumed, so it is currently
4049  *      difficult to retry a send to this method.  (You can bump the ref count
4050  *      before sending to hold a reference for retry if you are careful.)
4051  *
4052  *      When calling this method, interrupts MUST be enabled.  This is because
4053  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4054  *          --BLG
4055  */
4056 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4057 {
4058 	struct net_device *dev = skb->dev;
4059 	struct netdev_queue *txq;
4060 	struct Qdisc *q;
4061 	int rc = -ENOMEM;
4062 	bool again = false;
4063 
4064 	skb_reset_mac_header(skb);
4065 
4066 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4067 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4068 
4069 	/* Disable soft irqs for various locks below. Also
4070 	 * stops preemption for RCU.
4071 	 */
4072 	rcu_read_lock_bh();
4073 
4074 	skb_update_prio(skb);
4075 
4076 	qdisc_pkt_len_init(skb);
4077 #ifdef CONFIG_NET_CLS_ACT
4078 	skb->tc_at_ingress = 0;
4079 # ifdef CONFIG_NET_EGRESS
4080 	if (static_branch_unlikely(&egress_needed_key)) {
4081 		skb = sch_handle_egress(skb, &rc, dev);
4082 		if (!skb)
4083 			goto out;
4084 	}
4085 # endif
4086 #endif
4087 	/* If device/qdisc don't need skb->dst, release it right now while
4088 	 * its hot in this cpu cache.
4089 	 */
4090 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4091 		skb_dst_drop(skb);
4092 	else
4093 		skb_dst_force(skb);
4094 
4095 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4096 	q = rcu_dereference_bh(txq->qdisc);
4097 
4098 	trace_net_dev_queue(skb);
4099 	if (q->enqueue) {
4100 		rc = __dev_xmit_skb(skb, q, dev, txq);
4101 		goto out;
4102 	}
4103 
4104 	/* The device has no queue. Common case for software devices:
4105 	 * loopback, all the sorts of tunnels...
4106 
4107 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4108 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4109 	 * counters.)
4110 	 * However, it is possible, that they rely on protection
4111 	 * made by us here.
4112 
4113 	 * Check this and shot the lock. It is not prone from deadlocks.
4114 	 *Either shot noqueue qdisc, it is even simpler 8)
4115 	 */
4116 	if (dev->flags & IFF_UP) {
4117 		int cpu = smp_processor_id(); /* ok because BHs are off */
4118 
4119 		if (txq->xmit_lock_owner != cpu) {
4120 			if (dev_xmit_recursion())
4121 				goto recursion_alert;
4122 
4123 			skb = validate_xmit_skb(skb, dev, &again);
4124 			if (!skb)
4125 				goto out;
4126 
4127 			HARD_TX_LOCK(dev, txq, cpu);
4128 
4129 			if (!netif_xmit_stopped(txq)) {
4130 				dev_xmit_recursion_inc();
4131 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4132 				dev_xmit_recursion_dec();
4133 				if (dev_xmit_complete(rc)) {
4134 					HARD_TX_UNLOCK(dev, txq);
4135 					goto out;
4136 				}
4137 			}
4138 			HARD_TX_UNLOCK(dev, txq);
4139 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4140 					     dev->name);
4141 		} else {
4142 			/* Recursion is detected! It is possible,
4143 			 * unfortunately
4144 			 */
4145 recursion_alert:
4146 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4147 					     dev->name);
4148 		}
4149 	}
4150 
4151 	rc = -ENETDOWN;
4152 	rcu_read_unlock_bh();
4153 
4154 	atomic_long_inc(&dev->tx_dropped);
4155 	kfree_skb_list(skb);
4156 	return rc;
4157 out:
4158 	rcu_read_unlock_bh();
4159 	return rc;
4160 }
4161 
4162 int dev_queue_xmit(struct sk_buff *skb)
4163 {
4164 	return __dev_queue_xmit(skb, NULL);
4165 }
4166 EXPORT_SYMBOL(dev_queue_xmit);
4167 
4168 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4169 {
4170 	return __dev_queue_xmit(skb, sb_dev);
4171 }
4172 EXPORT_SYMBOL(dev_queue_xmit_accel);
4173 
4174 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4175 {
4176 	struct net_device *dev = skb->dev;
4177 	struct sk_buff *orig_skb = skb;
4178 	struct netdev_queue *txq;
4179 	int ret = NETDEV_TX_BUSY;
4180 	bool again = false;
4181 
4182 	if (unlikely(!netif_running(dev) ||
4183 		     !netif_carrier_ok(dev)))
4184 		goto drop;
4185 
4186 	skb = validate_xmit_skb_list(skb, dev, &again);
4187 	if (skb != orig_skb)
4188 		goto drop;
4189 
4190 	skb_set_queue_mapping(skb, queue_id);
4191 	txq = skb_get_tx_queue(dev, skb);
4192 
4193 	local_bh_disable();
4194 
4195 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4196 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4197 		ret = netdev_start_xmit(skb, dev, txq, false);
4198 	HARD_TX_UNLOCK(dev, txq);
4199 
4200 	local_bh_enable();
4201 
4202 	if (!dev_xmit_complete(ret))
4203 		kfree_skb(skb);
4204 
4205 	return ret;
4206 drop:
4207 	atomic_long_inc(&dev->tx_dropped);
4208 	kfree_skb_list(skb);
4209 	return NET_XMIT_DROP;
4210 }
4211 EXPORT_SYMBOL(dev_direct_xmit);
4212 
4213 /*************************************************************************
4214  *			Receiver routines
4215  *************************************************************************/
4216 
4217 int netdev_max_backlog __read_mostly = 1000;
4218 EXPORT_SYMBOL(netdev_max_backlog);
4219 
4220 int netdev_tstamp_prequeue __read_mostly = 1;
4221 int netdev_budget __read_mostly = 300;
4222 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4223 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4224 int weight_p __read_mostly = 64;           /* old backlog weight */
4225 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4226 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4227 int dev_rx_weight __read_mostly = 64;
4228 int dev_tx_weight __read_mostly = 64;
4229 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4230 int gro_normal_batch __read_mostly = 8;
4231 
4232 /* Called with irq disabled */
4233 static inline void ____napi_schedule(struct softnet_data *sd,
4234 				     struct napi_struct *napi)
4235 {
4236 	list_add_tail(&napi->poll_list, &sd->poll_list);
4237 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4238 }
4239 
4240 #ifdef CONFIG_RPS
4241 
4242 /* One global table that all flow-based protocols share. */
4243 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4244 EXPORT_SYMBOL(rps_sock_flow_table);
4245 u32 rps_cpu_mask __read_mostly;
4246 EXPORT_SYMBOL(rps_cpu_mask);
4247 
4248 struct static_key_false rps_needed __read_mostly;
4249 EXPORT_SYMBOL(rps_needed);
4250 struct static_key_false rfs_needed __read_mostly;
4251 EXPORT_SYMBOL(rfs_needed);
4252 
4253 static struct rps_dev_flow *
4254 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4255 	    struct rps_dev_flow *rflow, u16 next_cpu)
4256 {
4257 	if (next_cpu < nr_cpu_ids) {
4258 #ifdef CONFIG_RFS_ACCEL
4259 		struct netdev_rx_queue *rxqueue;
4260 		struct rps_dev_flow_table *flow_table;
4261 		struct rps_dev_flow *old_rflow;
4262 		u32 flow_id;
4263 		u16 rxq_index;
4264 		int rc;
4265 
4266 		/* Should we steer this flow to a different hardware queue? */
4267 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4268 		    !(dev->features & NETIF_F_NTUPLE))
4269 			goto out;
4270 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4271 		if (rxq_index == skb_get_rx_queue(skb))
4272 			goto out;
4273 
4274 		rxqueue = dev->_rx + rxq_index;
4275 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4276 		if (!flow_table)
4277 			goto out;
4278 		flow_id = skb_get_hash(skb) & flow_table->mask;
4279 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4280 							rxq_index, flow_id);
4281 		if (rc < 0)
4282 			goto out;
4283 		old_rflow = rflow;
4284 		rflow = &flow_table->flows[flow_id];
4285 		rflow->filter = rc;
4286 		if (old_rflow->filter == rflow->filter)
4287 			old_rflow->filter = RPS_NO_FILTER;
4288 	out:
4289 #endif
4290 		rflow->last_qtail =
4291 			per_cpu(softnet_data, next_cpu).input_queue_head;
4292 	}
4293 
4294 	rflow->cpu = next_cpu;
4295 	return rflow;
4296 }
4297 
4298 /*
4299  * get_rps_cpu is called from netif_receive_skb and returns the target
4300  * CPU from the RPS map of the receiving queue for a given skb.
4301  * rcu_read_lock must be held on entry.
4302  */
4303 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4304 		       struct rps_dev_flow **rflowp)
4305 {
4306 	const struct rps_sock_flow_table *sock_flow_table;
4307 	struct netdev_rx_queue *rxqueue = dev->_rx;
4308 	struct rps_dev_flow_table *flow_table;
4309 	struct rps_map *map;
4310 	int cpu = -1;
4311 	u32 tcpu;
4312 	u32 hash;
4313 
4314 	if (skb_rx_queue_recorded(skb)) {
4315 		u16 index = skb_get_rx_queue(skb);
4316 
4317 		if (unlikely(index >= dev->real_num_rx_queues)) {
4318 			WARN_ONCE(dev->real_num_rx_queues > 1,
4319 				  "%s received packet on queue %u, but number "
4320 				  "of RX queues is %u\n",
4321 				  dev->name, index, dev->real_num_rx_queues);
4322 			goto done;
4323 		}
4324 		rxqueue += index;
4325 	}
4326 
4327 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4328 
4329 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4330 	map = rcu_dereference(rxqueue->rps_map);
4331 	if (!flow_table && !map)
4332 		goto done;
4333 
4334 	skb_reset_network_header(skb);
4335 	hash = skb_get_hash(skb);
4336 	if (!hash)
4337 		goto done;
4338 
4339 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4340 	if (flow_table && sock_flow_table) {
4341 		struct rps_dev_flow *rflow;
4342 		u32 next_cpu;
4343 		u32 ident;
4344 
4345 		/* First check into global flow table if there is a match */
4346 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4347 		if ((ident ^ hash) & ~rps_cpu_mask)
4348 			goto try_rps;
4349 
4350 		next_cpu = ident & rps_cpu_mask;
4351 
4352 		/* OK, now we know there is a match,
4353 		 * we can look at the local (per receive queue) flow table
4354 		 */
4355 		rflow = &flow_table->flows[hash & flow_table->mask];
4356 		tcpu = rflow->cpu;
4357 
4358 		/*
4359 		 * If the desired CPU (where last recvmsg was done) is
4360 		 * different from current CPU (one in the rx-queue flow
4361 		 * table entry), switch if one of the following holds:
4362 		 *   - Current CPU is unset (>= nr_cpu_ids).
4363 		 *   - Current CPU is offline.
4364 		 *   - The current CPU's queue tail has advanced beyond the
4365 		 *     last packet that was enqueued using this table entry.
4366 		 *     This guarantees that all previous packets for the flow
4367 		 *     have been dequeued, thus preserving in order delivery.
4368 		 */
4369 		if (unlikely(tcpu != next_cpu) &&
4370 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4371 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4372 		      rflow->last_qtail)) >= 0)) {
4373 			tcpu = next_cpu;
4374 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4375 		}
4376 
4377 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4378 			*rflowp = rflow;
4379 			cpu = tcpu;
4380 			goto done;
4381 		}
4382 	}
4383 
4384 try_rps:
4385 
4386 	if (map) {
4387 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4388 		if (cpu_online(tcpu)) {
4389 			cpu = tcpu;
4390 			goto done;
4391 		}
4392 	}
4393 
4394 done:
4395 	return cpu;
4396 }
4397 
4398 #ifdef CONFIG_RFS_ACCEL
4399 
4400 /**
4401  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4402  * @dev: Device on which the filter was set
4403  * @rxq_index: RX queue index
4404  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4405  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4406  *
4407  * Drivers that implement ndo_rx_flow_steer() should periodically call
4408  * this function for each installed filter and remove the filters for
4409  * which it returns %true.
4410  */
4411 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4412 			 u32 flow_id, u16 filter_id)
4413 {
4414 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4415 	struct rps_dev_flow_table *flow_table;
4416 	struct rps_dev_flow *rflow;
4417 	bool expire = true;
4418 	unsigned int cpu;
4419 
4420 	rcu_read_lock();
4421 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4422 	if (flow_table && flow_id <= flow_table->mask) {
4423 		rflow = &flow_table->flows[flow_id];
4424 		cpu = READ_ONCE(rflow->cpu);
4425 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4426 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4427 			   rflow->last_qtail) <
4428 		     (int)(10 * flow_table->mask)))
4429 			expire = false;
4430 	}
4431 	rcu_read_unlock();
4432 	return expire;
4433 }
4434 EXPORT_SYMBOL(rps_may_expire_flow);
4435 
4436 #endif /* CONFIG_RFS_ACCEL */
4437 
4438 /* Called from hardirq (IPI) context */
4439 static void rps_trigger_softirq(void *data)
4440 {
4441 	struct softnet_data *sd = data;
4442 
4443 	____napi_schedule(sd, &sd->backlog);
4444 	sd->received_rps++;
4445 }
4446 
4447 #endif /* CONFIG_RPS */
4448 
4449 /*
4450  * Check if this softnet_data structure is another cpu one
4451  * If yes, queue it to our IPI list and return 1
4452  * If no, return 0
4453  */
4454 static int rps_ipi_queued(struct softnet_data *sd)
4455 {
4456 #ifdef CONFIG_RPS
4457 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4458 
4459 	if (sd != mysd) {
4460 		sd->rps_ipi_next = mysd->rps_ipi_list;
4461 		mysd->rps_ipi_list = sd;
4462 
4463 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4464 		return 1;
4465 	}
4466 #endif /* CONFIG_RPS */
4467 	return 0;
4468 }
4469 
4470 #ifdef CONFIG_NET_FLOW_LIMIT
4471 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4472 #endif
4473 
4474 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4475 {
4476 #ifdef CONFIG_NET_FLOW_LIMIT
4477 	struct sd_flow_limit *fl;
4478 	struct softnet_data *sd;
4479 	unsigned int old_flow, new_flow;
4480 
4481 	if (qlen < (netdev_max_backlog >> 1))
4482 		return false;
4483 
4484 	sd = this_cpu_ptr(&softnet_data);
4485 
4486 	rcu_read_lock();
4487 	fl = rcu_dereference(sd->flow_limit);
4488 	if (fl) {
4489 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4490 		old_flow = fl->history[fl->history_head];
4491 		fl->history[fl->history_head] = new_flow;
4492 
4493 		fl->history_head++;
4494 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4495 
4496 		if (likely(fl->buckets[old_flow]))
4497 			fl->buckets[old_flow]--;
4498 
4499 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4500 			fl->count++;
4501 			rcu_read_unlock();
4502 			return true;
4503 		}
4504 	}
4505 	rcu_read_unlock();
4506 #endif
4507 	return false;
4508 }
4509 
4510 /*
4511  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4512  * queue (may be a remote CPU queue).
4513  */
4514 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4515 			      unsigned int *qtail)
4516 {
4517 	struct softnet_data *sd;
4518 	unsigned long flags;
4519 	unsigned int qlen;
4520 
4521 	sd = &per_cpu(softnet_data, cpu);
4522 
4523 	local_irq_save(flags);
4524 
4525 	rps_lock(sd);
4526 	if (!netif_running(skb->dev))
4527 		goto drop;
4528 	qlen = skb_queue_len(&sd->input_pkt_queue);
4529 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4530 		if (qlen) {
4531 enqueue:
4532 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4533 			input_queue_tail_incr_save(sd, qtail);
4534 			rps_unlock(sd);
4535 			local_irq_restore(flags);
4536 			return NET_RX_SUCCESS;
4537 		}
4538 
4539 		/* Schedule NAPI for backlog device
4540 		 * We can use non atomic operation since we own the queue lock
4541 		 */
4542 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4543 			if (!rps_ipi_queued(sd))
4544 				____napi_schedule(sd, &sd->backlog);
4545 		}
4546 		goto enqueue;
4547 	}
4548 
4549 drop:
4550 	sd->dropped++;
4551 	rps_unlock(sd);
4552 
4553 	local_irq_restore(flags);
4554 
4555 	atomic_long_inc(&skb->dev->rx_dropped);
4556 	kfree_skb(skb);
4557 	return NET_RX_DROP;
4558 }
4559 
4560 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4561 {
4562 	struct net_device *dev = skb->dev;
4563 	struct netdev_rx_queue *rxqueue;
4564 
4565 	rxqueue = dev->_rx;
4566 
4567 	if (skb_rx_queue_recorded(skb)) {
4568 		u16 index = skb_get_rx_queue(skb);
4569 
4570 		if (unlikely(index >= dev->real_num_rx_queues)) {
4571 			WARN_ONCE(dev->real_num_rx_queues > 1,
4572 				  "%s received packet on queue %u, but number "
4573 				  "of RX queues is %u\n",
4574 				  dev->name, index, dev->real_num_rx_queues);
4575 
4576 			return rxqueue; /* Return first rxqueue */
4577 		}
4578 		rxqueue += index;
4579 	}
4580 	return rxqueue;
4581 }
4582 
4583 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4584 				     struct xdp_buff *xdp,
4585 				     struct bpf_prog *xdp_prog)
4586 {
4587 	struct netdev_rx_queue *rxqueue;
4588 	void *orig_data, *orig_data_end;
4589 	u32 metalen, act = XDP_DROP;
4590 	__be16 orig_eth_type;
4591 	struct ethhdr *eth;
4592 	bool orig_bcast;
4593 	int hlen, off;
4594 	u32 mac_len;
4595 
4596 	/* Reinjected packets coming from act_mirred or similar should
4597 	 * not get XDP generic processing.
4598 	 */
4599 	if (skb_is_redirected(skb))
4600 		return XDP_PASS;
4601 
4602 	/* XDP packets must be linear and must have sufficient headroom
4603 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4604 	 * native XDP provides, thus we need to do it here as well.
4605 	 */
4606 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4607 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4608 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4609 		int troom = skb->tail + skb->data_len - skb->end;
4610 
4611 		/* In case we have to go down the path and also linearize,
4612 		 * then lets do the pskb_expand_head() work just once here.
4613 		 */
4614 		if (pskb_expand_head(skb,
4615 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4616 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4617 			goto do_drop;
4618 		if (skb_linearize(skb))
4619 			goto do_drop;
4620 	}
4621 
4622 	/* The XDP program wants to see the packet starting at the MAC
4623 	 * header.
4624 	 */
4625 	mac_len = skb->data - skb_mac_header(skb);
4626 	hlen = skb_headlen(skb) + mac_len;
4627 	xdp->data = skb->data - mac_len;
4628 	xdp->data_meta = xdp->data;
4629 	xdp->data_end = xdp->data + hlen;
4630 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4631 
4632 	/* SKB "head" area always have tailroom for skb_shared_info */
4633 	xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4634 	xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4635 
4636 	orig_data_end = xdp->data_end;
4637 	orig_data = xdp->data;
4638 	eth = (struct ethhdr *)xdp->data;
4639 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4640 	orig_eth_type = eth->h_proto;
4641 
4642 	rxqueue = netif_get_rxqueue(skb);
4643 	xdp->rxq = &rxqueue->xdp_rxq;
4644 
4645 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4646 
4647 	/* check if bpf_xdp_adjust_head was used */
4648 	off = xdp->data - orig_data;
4649 	if (off) {
4650 		if (off > 0)
4651 			__skb_pull(skb, off);
4652 		else if (off < 0)
4653 			__skb_push(skb, -off);
4654 
4655 		skb->mac_header += off;
4656 		skb_reset_network_header(skb);
4657 	}
4658 
4659 	/* check if bpf_xdp_adjust_tail was used */
4660 	off = xdp->data_end - orig_data_end;
4661 	if (off != 0) {
4662 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4663 		skb->len += off; /* positive on grow, negative on shrink */
4664 	}
4665 
4666 	/* check if XDP changed eth hdr such SKB needs update */
4667 	eth = (struct ethhdr *)xdp->data;
4668 	if ((orig_eth_type != eth->h_proto) ||
4669 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4670 		__skb_push(skb, ETH_HLEN);
4671 		skb->protocol = eth_type_trans(skb, skb->dev);
4672 	}
4673 
4674 	switch (act) {
4675 	case XDP_REDIRECT:
4676 	case XDP_TX:
4677 		__skb_push(skb, mac_len);
4678 		break;
4679 	case XDP_PASS:
4680 		metalen = xdp->data - xdp->data_meta;
4681 		if (metalen)
4682 			skb_metadata_set(skb, metalen);
4683 		break;
4684 	default:
4685 		bpf_warn_invalid_xdp_action(act);
4686 		/* fall through */
4687 	case XDP_ABORTED:
4688 		trace_xdp_exception(skb->dev, xdp_prog, act);
4689 		/* fall through */
4690 	case XDP_DROP:
4691 	do_drop:
4692 		kfree_skb(skb);
4693 		break;
4694 	}
4695 
4696 	return act;
4697 }
4698 
4699 /* When doing generic XDP we have to bypass the qdisc layer and the
4700  * network taps in order to match in-driver-XDP behavior.
4701  */
4702 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4703 {
4704 	struct net_device *dev = skb->dev;
4705 	struct netdev_queue *txq;
4706 	bool free_skb = true;
4707 	int cpu, rc;
4708 
4709 	txq = netdev_core_pick_tx(dev, skb, NULL);
4710 	cpu = smp_processor_id();
4711 	HARD_TX_LOCK(dev, txq, cpu);
4712 	if (!netif_xmit_stopped(txq)) {
4713 		rc = netdev_start_xmit(skb, dev, txq, 0);
4714 		if (dev_xmit_complete(rc))
4715 			free_skb = false;
4716 	}
4717 	HARD_TX_UNLOCK(dev, txq);
4718 	if (free_skb) {
4719 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4720 		kfree_skb(skb);
4721 	}
4722 }
4723 
4724 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4725 
4726 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4727 {
4728 	if (xdp_prog) {
4729 		struct xdp_buff xdp;
4730 		u32 act;
4731 		int err;
4732 
4733 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4734 		if (act != XDP_PASS) {
4735 			switch (act) {
4736 			case XDP_REDIRECT:
4737 				err = xdp_do_generic_redirect(skb->dev, skb,
4738 							      &xdp, xdp_prog);
4739 				if (err)
4740 					goto out_redir;
4741 				break;
4742 			case XDP_TX:
4743 				generic_xdp_tx(skb, xdp_prog);
4744 				break;
4745 			}
4746 			return XDP_DROP;
4747 		}
4748 	}
4749 	return XDP_PASS;
4750 out_redir:
4751 	kfree_skb(skb);
4752 	return XDP_DROP;
4753 }
4754 EXPORT_SYMBOL_GPL(do_xdp_generic);
4755 
4756 static int netif_rx_internal(struct sk_buff *skb)
4757 {
4758 	int ret;
4759 
4760 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4761 
4762 	trace_netif_rx(skb);
4763 
4764 #ifdef CONFIG_RPS
4765 	if (static_branch_unlikely(&rps_needed)) {
4766 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4767 		int cpu;
4768 
4769 		preempt_disable();
4770 		rcu_read_lock();
4771 
4772 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4773 		if (cpu < 0)
4774 			cpu = smp_processor_id();
4775 
4776 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4777 
4778 		rcu_read_unlock();
4779 		preempt_enable();
4780 	} else
4781 #endif
4782 	{
4783 		unsigned int qtail;
4784 
4785 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4786 		put_cpu();
4787 	}
4788 	return ret;
4789 }
4790 
4791 /**
4792  *	netif_rx	-	post buffer to the network code
4793  *	@skb: buffer to post
4794  *
4795  *	This function receives a packet from a device driver and queues it for
4796  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4797  *	may be dropped during processing for congestion control or by the
4798  *	protocol layers.
4799  *
4800  *	return values:
4801  *	NET_RX_SUCCESS	(no congestion)
4802  *	NET_RX_DROP     (packet was dropped)
4803  *
4804  */
4805 
4806 int netif_rx(struct sk_buff *skb)
4807 {
4808 	int ret;
4809 
4810 	trace_netif_rx_entry(skb);
4811 
4812 	ret = netif_rx_internal(skb);
4813 	trace_netif_rx_exit(ret);
4814 
4815 	return ret;
4816 }
4817 EXPORT_SYMBOL(netif_rx);
4818 
4819 int netif_rx_ni(struct sk_buff *skb)
4820 {
4821 	int err;
4822 
4823 	trace_netif_rx_ni_entry(skb);
4824 
4825 	preempt_disable();
4826 	err = netif_rx_internal(skb);
4827 	if (local_softirq_pending())
4828 		do_softirq();
4829 	preempt_enable();
4830 	trace_netif_rx_ni_exit(err);
4831 
4832 	return err;
4833 }
4834 EXPORT_SYMBOL(netif_rx_ni);
4835 
4836 static __latent_entropy void net_tx_action(struct softirq_action *h)
4837 {
4838 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4839 
4840 	if (sd->completion_queue) {
4841 		struct sk_buff *clist;
4842 
4843 		local_irq_disable();
4844 		clist = sd->completion_queue;
4845 		sd->completion_queue = NULL;
4846 		local_irq_enable();
4847 
4848 		while (clist) {
4849 			struct sk_buff *skb = clist;
4850 
4851 			clist = clist->next;
4852 
4853 			WARN_ON(refcount_read(&skb->users));
4854 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4855 				trace_consume_skb(skb);
4856 			else
4857 				trace_kfree_skb(skb, net_tx_action);
4858 
4859 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4860 				__kfree_skb(skb);
4861 			else
4862 				__kfree_skb_defer(skb);
4863 		}
4864 
4865 		__kfree_skb_flush();
4866 	}
4867 
4868 	if (sd->output_queue) {
4869 		struct Qdisc *head;
4870 
4871 		local_irq_disable();
4872 		head = sd->output_queue;
4873 		sd->output_queue = NULL;
4874 		sd->output_queue_tailp = &sd->output_queue;
4875 		local_irq_enable();
4876 
4877 		while (head) {
4878 			struct Qdisc *q = head;
4879 			spinlock_t *root_lock = NULL;
4880 
4881 			head = head->next_sched;
4882 
4883 			if (!(q->flags & TCQ_F_NOLOCK)) {
4884 				root_lock = qdisc_lock(q);
4885 				spin_lock(root_lock);
4886 			}
4887 			/* We need to make sure head->next_sched is read
4888 			 * before clearing __QDISC_STATE_SCHED
4889 			 */
4890 			smp_mb__before_atomic();
4891 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4892 			qdisc_run(q);
4893 			if (root_lock)
4894 				spin_unlock(root_lock);
4895 		}
4896 	}
4897 
4898 	xfrm_dev_backlog(sd);
4899 }
4900 
4901 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4902 /* This hook is defined here for ATM LANE */
4903 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4904 			     unsigned char *addr) __read_mostly;
4905 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4906 #endif
4907 
4908 static inline struct sk_buff *
4909 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4910 		   struct net_device *orig_dev)
4911 {
4912 #ifdef CONFIG_NET_CLS_ACT
4913 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4914 	struct tcf_result cl_res;
4915 
4916 	/* If there's at least one ingress present somewhere (so
4917 	 * we get here via enabled static key), remaining devices
4918 	 * that are not configured with an ingress qdisc will bail
4919 	 * out here.
4920 	 */
4921 	if (!miniq)
4922 		return skb;
4923 
4924 	if (*pt_prev) {
4925 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4926 		*pt_prev = NULL;
4927 	}
4928 
4929 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4930 	skb->tc_at_ingress = 1;
4931 	mini_qdisc_bstats_cpu_update(miniq, skb);
4932 
4933 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4934 				     &cl_res, false)) {
4935 	case TC_ACT_OK:
4936 	case TC_ACT_RECLASSIFY:
4937 		skb->tc_index = TC_H_MIN(cl_res.classid);
4938 		break;
4939 	case TC_ACT_SHOT:
4940 		mini_qdisc_qstats_cpu_drop(miniq);
4941 		kfree_skb(skb);
4942 		return NULL;
4943 	case TC_ACT_STOLEN:
4944 	case TC_ACT_QUEUED:
4945 	case TC_ACT_TRAP:
4946 		consume_skb(skb);
4947 		return NULL;
4948 	case TC_ACT_REDIRECT:
4949 		/* skb_mac_header check was done by cls/act_bpf, so
4950 		 * we can safely push the L2 header back before
4951 		 * redirecting to another netdev
4952 		 */
4953 		__skb_push(skb, skb->mac_len);
4954 		skb_do_redirect(skb);
4955 		return NULL;
4956 	case TC_ACT_CONSUMED:
4957 		return NULL;
4958 	default:
4959 		break;
4960 	}
4961 #endif /* CONFIG_NET_CLS_ACT */
4962 	return skb;
4963 }
4964 
4965 /**
4966  *	netdev_is_rx_handler_busy - check if receive handler is registered
4967  *	@dev: device to check
4968  *
4969  *	Check if a receive handler is already registered for a given device.
4970  *	Return true if there one.
4971  *
4972  *	The caller must hold the rtnl_mutex.
4973  */
4974 bool netdev_is_rx_handler_busy(struct net_device *dev)
4975 {
4976 	ASSERT_RTNL();
4977 	return dev && rtnl_dereference(dev->rx_handler);
4978 }
4979 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4980 
4981 /**
4982  *	netdev_rx_handler_register - register receive handler
4983  *	@dev: device to register a handler for
4984  *	@rx_handler: receive handler to register
4985  *	@rx_handler_data: data pointer that is used by rx handler
4986  *
4987  *	Register a receive handler for a device. This handler will then be
4988  *	called from __netif_receive_skb. A negative errno code is returned
4989  *	on a failure.
4990  *
4991  *	The caller must hold the rtnl_mutex.
4992  *
4993  *	For a general description of rx_handler, see enum rx_handler_result.
4994  */
4995 int netdev_rx_handler_register(struct net_device *dev,
4996 			       rx_handler_func_t *rx_handler,
4997 			       void *rx_handler_data)
4998 {
4999 	if (netdev_is_rx_handler_busy(dev))
5000 		return -EBUSY;
5001 
5002 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5003 		return -EINVAL;
5004 
5005 	/* Note: rx_handler_data must be set before rx_handler */
5006 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5007 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5008 
5009 	return 0;
5010 }
5011 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5012 
5013 /**
5014  *	netdev_rx_handler_unregister - unregister receive handler
5015  *	@dev: device to unregister a handler from
5016  *
5017  *	Unregister a receive handler from a device.
5018  *
5019  *	The caller must hold the rtnl_mutex.
5020  */
5021 void netdev_rx_handler_unregister(struct net_device *dev)
5022 {
5023 
5024 	ASSERT_RTNL();
5025 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5026 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5027 	 * section has a guarantee to see a non NULL rx_handler_data
5028 	 * as well.
5029 	 */
5030 	synchronize_net();
5031 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5032 }
5033 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5034 
5035 /*
5036  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5037  * the special handling of PFMEMALLOC skbs.
5038  */
5039 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5040 {
5041 	switch (skb->protocol) {
5042 	case htons(ETH_P_ARP):
5043 	case htons(ETH_P_IP):
5044 	case htons(ETH_P_IPV6):
5045 	case htons(ETH_P_8021Q):
5046 	case htons(ETH_P_8021AD):
5047 		return true;
5048 	default:
5049 		return false;
5050 	}
5051 }
5052 
5053 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5054 			     int *ret, struct net_device *orig_dev)
5055 {
5056 	if (nf_hook_ingress_active(skb)) {
5057 		int ingress_retval;
5058 
5059 		if (*pt_prev) {
5060 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5061 			*pt_prev = NULL;
5062 		}
5063 
5064 		rcu_read_lock();
5065 		ingress_retval = nf_hook_ingress(skb);
5066 		rcu_read_unlock();
5067 		return ingress_retval;
5068 	}
5069 	return 0;
5070 }
5071 
5072 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5073 				    struct packet_type **ppt_prev)
5074 {
5075 	struct packet_type *ptype, *pt_prev;
5076 	rx_handler_func_t *rx_handler;
5077 	struct sk_buff *skb = *pskb;
5078 	struct net_device *orig_dev;
5079 	bool deliver_exact = false;
5080 	int ret = NET_RX_DROP;
5081 	__be16 type;
5082 
5083 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5084 
5085 	trace_netif_receive_skb(skb);
5086 
5087 	orig_dev = skb->dev;
5088 
5089 	skb_reset_network_header(skb);
5090 	if (!skb_transport_header_was_set(skb))
5091 		skb_reset_transport_header(skb);
5092 	skb_reset_mac_len(skb);
5093 
5094 	pt_prev = NULL;
5095 
5096 another_round:
5097 	skb->skb_iif = skb->dev->ifindex;
5098 
5099 	__this_cpu_inc(softnet_data.processed);
5100 
5101 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5102 		int ret2;
5103 
5104 		preempt_disable();
5105 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5106 		preempt_enable();
5107 
5108 		if (ret2 != XDP_PASS) {
5109 			ret = NET_RX_DROP;
5110 			goto out;
5111 		}
5112 		skb_reset_mac_len(skb);
5113 	}
5114 
5115 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5116 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5117 		skb = skb_vlan_untag(skb);
5118 		if (unlikely(!skb))
5119 			goto out;
5120 	}
5121 
5122 	if (skb_skip_tc_classify(skb))
5123 		goto skip_classify;
5124 
5125 	if (pfmemalloc)
5126 		goto skip_taps;
5127 
5128 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5129 		if (pt_prev)
5130 			ret = deliver_skb(skb, pt_prev, orig_dev);
5131 		pt_prev = ptype;
5132 	}
5133 
5134 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5135 		if (pt_prev)
5136 			ret = deliver_skb(skb, pt_prev, orig_dev);
5137 		pt_prev = ptype;
5138 	}
5139 
5140 skip_taps:
5141 #ifdef CONFIG_NET_INGRESS
5142 	if (static_branch_unlikely(&ingress_needed_key)) {
5143 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5144 		if (!skb)
5145 			goto out;
5146 
5147 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5148 			goto out;
5149 	}
5150 #endif
5151 	skb_reset_redirect(skb);
5152 skip_classify:
5153 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5154 		goto drop;
5155 
5156 	if (skb_vlan_tag_present(skb)) {
5157 		if (pt_prev) {
5158 			ret = deliver_skb(skb, pt_prev, orig_dev);
5159 			pt_prev = NULL;
5160 		}
5161 		if (vlan_do_receive(&skb))
5162 			goto another_round;
5163 		else if (unlikely(!skb))
5164 			goto out;
5165 	}
5166 
5167 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5168 	if (rx_handler) {
5169 		if (pt_prev) {
5170 			ret = deliver_skb(skb, pt_prev, orig_dev);
5171 			pt_prev = NULL;
5172 		}
5173 		switch (rx_handler(&skb)) {
5174 		case RX_HANDLER_CONSUMED:
5175 			ret = NET_RX_SUCCESS;
5176 			goto out;
5177 		case RX_HANDLER_ANOTHER:
5178 			goto another_round;
5179 		case RX_HANDLER_EXACT:
5180 			deliver_exact = true;
5181 		case RX_HANDLER_PASS:
5182 			break;
5183 		default:
5184 			BUG();
5185 		}
5186 	}
5187 
5188 	if (unlikely(skb_vlan_tag_present(skb))) {
5189 check_vlan_id:
5190 		if (skb_vlan_tag_get_id(skb)) {
5191 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5192 			 * find vlan device.
5193 			 */
5194 			skb->pkt_type = PACKET_OTHERHOST;
5195 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5196 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5197 			/* Outer header is 802.1P with vlan 0, inner header is
5198 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5199 			 * not find vlan dev for vlan id 0.
5200 			 */
5201 			__vlan_hwaccel_clear_tag(skb);
5202 			skb = skb_vlan_untag(skb);
5203 			if (unlikely(!skb))
5204 				goto out;
5205 			if (vlan_do_receive(&skb))
5206 				/* After stripping off 802.1P header with vlan 0
5207 				 * vlan dev is found for inner header.
5208 				 */
5209 				goto another_round;
5210 			else if (unlikely(!skb))
5211 				goto out;
5212 			else
5213 				/* We have stripped outer 802.1P vlan 0 header.
5214 				 * But could not find vlan dev.
5215 				 * check again for vlan id to set OTHERHOST.
5216 				 */
5217 				goto check_vlan_id;
5218 		}
5219 		/* Note: we might in the future use prio bits
5220 		 * and set skb->priority like in vlan_do_receive()
5221 		 * For the time being, just ignore Priority Code Point
5222 		 */
5223 		__vlan_hwaccel_clear_tag(skb);
5224 	}
5225 
5226 	type = skb->protocol;
5227 
5228 	/* deliver only exact match when indicated */
5229 	if (likely(!deliver_exact)) {
5230 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5231 				       &ptype_base[ntohs(type) &
5232 						   PTYPE_HASH_MASK]);
5233 	}
5234 
5235 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5236 			       &orig_dev->ptype_specific);
5237 
5238 	if (unlikely(skb->dev != orig_dev)) {
5239 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5240 				       &skb->dev->ptype_specific);
5241 	}
5242 
5243 	if (pt_prev) {
5244 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5245 			goto drop;
5246 		*ppt_prev = pt_prev;
5247 	} else {
5248 drop:
5249 		if (!deliver_exact)
5250 			atomic_long_inc(&skb->dev->rx_dropped);
5251 		else
5252 			atomic_long_inc(&skb->dev->rx_nohandler);
5253 		kfree_skb(skb);
5254 		/* Jamal, now you will not able to escape explaining
5255 		 * me how you were going to use this. :-)
5256 		 */
5257 		ret = NET_RX_DROP;
5258 	}
5259 
5260 out:
5261 	/* The invariant here is that if *ppt_prev is not NULL
5262 	 * then skb should also be non-NULL.
5263 	 *
5264 	 * Apparently *ppt_prev assignment above holds this invariant due to
5265 	 * skb dereferencing near it.
5266 	 */
5267 	*pskb = skb;
5268 	return ret;
5269 }
5270 
5271 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5272 {
5273 	struct net_device *orig_dev = skb->dev;
5274 	struct packet_type *pt_prev = NULL;
5275 	int ret;
5276 
5277 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5278 	if (pt_prev)
5279 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5280 					 skb->dev, pt_prev, orig_dev);
5281 	return ret;
5282 }
5283 
5284 /**
5285  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5286  *	@skb: buffer to process
5287  *
5288  *	More direct receive version of netif_receive_skb().  It should
5289  *	only be used by callers that have a need to skip RPS and Generic XDP.
5290  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5291  *
5292  *	This function may only be called from softirq context and interrupts
5293  *	should be enabled.
5294  *
5295  *	Return values (usually ignored):
5296  *	NET_RX_SUCCESS: no congestion
5297  *	NET_RX_DROP: packet was dropped
5298  */
5299 int netif_receive_skb_core(struct sk_buff *skb)
5300 {
5301 	int ret;
5302 
5303 	rcu_read_lock();
5304 	ret = __netif_receive_skb_one_core(skb, false);
5305 	rcu_read_unlock();
5306 
5307 	return ret;
5308 }
5309 EXPORT_SYMBOL(netif_receive_skb_core);
5310 
5311 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5312 						  struct packet_type *pt_prev,
5313 						  struct net_device *orig_dev)
5314 {
5315 	struct sk_buff *skb, *next;
5316 
5317 	if (!pt_prev)
5318 		return;
5319 	if (list_empty(head))
5320 		return;
5321 	if (pt_prev->list_func != NULL)
5322 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5323 				   ip_list_rcv, head, pt_prev, orig_dev);
5324 	else
5325 		list_for_each_entry_safe(skb, next, head, list) {
5326 			skb_list_del_init(skb);
5327 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5328 		}
5329 }
5330 
5331 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5332 {
5333 	/* Fast-path assumptions:
5334 	 * - There is no RX handler.
5335 	 * - Only one packet_type matches.
5336 	 * If either of these fails, we will end up doing some per-packet
5337 	 * processing in-line, then handling the 'last ptype' for the whole
5338 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5339 	 * because the 'last ptype' must be constant across the sublist, and all
5340 	 * other ptypes are handled per-packet.
5341 	 */
5342 	/* Current (common) ptype of sublist */
5343 	struct packet_type *pt_curr = NULL;
5344 	/* Current (common) orig_dev of sublist */
5345 	struct net_device *od_curr = NULL;
5346 	struct list_head sublist;
5347 	struct sk_buff *skb, *next;
5348 
5349 	INIT_LIST_HEAD(&sublist);
5350 	list_for_each_entry_safe(skb, next, head, list) {
5351 		struct net_device *orig_dev = skb->dev;
5352 		struct packet_type *pt_prev = NULL;
5353 
5354 		skb_list_del_init(skb);
5355 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5356 		if (!pt_prev)
5357 			continue;
5358 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5359 			/* dispatch old sublist */
5360 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5361 			/* start new sublist */
5362 			INIT_LIST_HEAD(&sublist);
5363 			pt_curr = pt_prev;
5364 			od_curr = orig_dev;
5365 		}
5366 		list_add_tail(&skb->list, &sublist);
5367 	}
5368 
5369 	/* dispatch final sublist */
5370 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5371 }
5372 
5373 static int __netif_receive_skb(struct sk_buff *skb)
5374 {
5375 	int ret;
5376 
5377 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5378 		unsigned int noreclaim_flag;
5379 
5380 		/*
5381 		 * PFMEMALLOC skbs are special, they should
5382 		 * - be delivered to SOCK_MEMALLOC sockets only
5383 		 * - stay away from userspace
5384 		 * - have bounded memory usage
5385 		 *
5386 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5387 		 * context down to all allocation sites.
5388 		 */
5389 		noreclaim_flag = memalloc_noreclaim_save();
5390 		ret = __netif_receive_skb_one_core(skb, true);
5391 		memalloc_noreclaim_restore(noreclaim_flag);
5392 	} else
5393 		ret = __netif_receive_skb_one_core(skb, false);
5394 
5395 	return ret;
5396 }
5397 
5398 static void __netif_receive_skb_list(struct list_head *head)
5399 {
5400 	unsigned long noreclaim_flag = 0;
5401 	struct sk_buff *skb, *next;
5402 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5403 
5404 	list_for_each_entry_safe(skb, next, head, list) {
5405 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5406 			struct list_head sublist;
5407 
5408 			/* Handle the previous sublist */
5409 			list_cut_before(&sublist, head, &skb->list);
5410 			if (!list_empty(&sublist))
5411 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5412 			pfmemalloc = !pfmemalloc;
5413 			/* See comments in __netif_receive_skb */
5414 			if (pfmemalloc)
5415 				noreclaim_flag = memalloc_noreclaim_save();
5416 			else
5417 				memalloc_noreclaim_restore(noreclaim_flag);
5418 		}
5419 	}
5420 	/* Handle the remaining sublist */
5421 	if (!list_empty(head))
5422 		__netif_receive_skb_list_core(head, pfmemalloc);
5423 	/* Restore pflags */
5424 	if (pfmemalloc)
5425 		memalloc_noreclaim_restore(noreclaim_flag);
5426 }
5427 
5428 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5429 {
5430 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5431 	struct bpf_prog *new = xdp->prog;
5432 	int ret = 0;
5433 
5434 	if (new) {
5435 		u32 i;
5436 
5437 		/* generic XDP does not work with DEVMAPs that can
5438 		 * have a bpf_prog installed on an entry
5439 		 */
5440 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5441 			if (dev_map_can_have_prog(new->aux->used_maps[i]))
5442 				return -EINVAL;
5443 		}
5444 	}
5445 
5446 	switch (xdp->command) {
5447 	case XDP_SETUP_PROG:
5448 		rcu_assign_pointer(dev->xdp_prog, new);
5449 		if (old)
5450 			bpf_prog_put(old);
5451 
5452 		if (old && !new) {
5453 			static_branch_dec(&generic_xdp_needed_key);
5454 		} else if (new && !old) {
5455 			static_branch_inc(&generic_xdp_needed_key);
5456 			dev_disable_lro(dev);
5457 			dev_disable_gro_hw(dev);
5458 		}
5459 		break;
5460 
5461 	case XDP_QUERY_PROG:
5462 		xdp->prog_id = old ? old->aux->id : 0;
5463 		break;
5464 
5465 	default:
5466 		ret = -EINVAL;
5467 		break;
5468 	}
5469 
5470 	return ret;
5471 }
5472 
5473 static int netif_receive_skb_internal(struct sk_buff *skb)
5474 {
5475 	int ret;
5476 
5477 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5478 
5479 	if (skb_defer_rx_timestamp(skb))
5480 		return NET_RX_SUCCESS;
5481 
5482 	rcu_read_lock();
5483 #ifdef CONFIG_RPS
5484 	if (static_branch_unlikely(&rps_needed)) {
5485 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5486 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5487 
5488 		if (cpu >= 0) {
5489 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5490 			rcu_read_unlock();
5491 			return ret;
5492 		}
5493 	}
5494 #endif
5495 	ret = __netif_receive_skb(skb);
5496 	rcu_read_unlock();
5497 	return ret;
5498 }
5499 
5500 static void netif_receive_skb_list_internal(struct list_head *head)
5501 {
5502 	struct sk_buff *skb, *next;
5503 	struct list_head sublist;
5504 
5505 	INIT_LIST_HEAD(&sublist);
5506 	list_for_each_entry_safe(skb, next, head, list) {
5507 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5508 		skb_list_del_init(skb);
5509 		if (!skb_defer_rx_timestamp(skb))
5510 			list_add_tail(&skb->list, &sublist);
5511 	}
5512 	list_splice_init(&sublist, head);
5513 
5514 	rcu_read_lock();
5515 #ifdef CONFIG_RPS
5516 	if (static_branch_unlikely(&rps_needed)) {
5517 		list_for_each_entry_safe(skb, next, head, list) {
5518 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5519 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5520 
5521 			if (cpu >= 0) {
5522 				/* Will be handled, remove from list */
5523 				skb_list_del_init(skb);
5524 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5525 			}
5526 		}
5527 	}
5528 #endif
5529 	__netif_receive_skb_list(head);
5530 	rcu_read_unlock();
5531 }
5532 
5533 /**
5534  *	netif_receive_skb - process receive buffer from network
5535  *	@skb: buffer to process
5536  *
5537  *	netif_receive_skb() is the main receive data processing function.
5538  *	It always succeeds. The buffer may be dropped during processing
5539  *	for congestion control or by the protocol layers.
5540  *
5541  *	This function may only be called from softirq context and interrupts
5542  *	should be enabled.
5543  *
5544  *	Return values (usually ignored):
5545  *	NET_RX_SUCCESS: no congestion
5546  *	NET_RX_DROP: packet was dropped
5547  */
5548 int netif_receive_skb(struct sk_buff *skb)
5549 {
5550 	int ret;
5551 
5552 	trace_netif_receive_skb_entry(skb);
5553 
5554 	ret = netif_receive_skb_internal(skb);
5555 	trace_netif_receive_skb_exit(ret);
5556 
5557 	return ret;
5558 }
5559 EXPORT_SYMBOL(netif_receive_skb);
5560 
5561 /**
5562  *	netif_receive_skb_list - process many receive buffers from network
5563  *	@head: list of skbs to process.
5564  *
5565  *	Since return value of netif_receive_skb() is normally ignored, and
5566  *	wouldn't be meaningful for a list, this function returns void.
5567  *
5568  *	This function may only be called from softirq context and interrupts
5569  *	should be enabled.
5570  */
5571 void netif_receive_skb_list(struct list_head *head)
5572 {
5573 	struct sk_buff *skb;
5574 
5575 	if (list_empty(head))
5576 		return;
5577 	if (trace_netif_receive_skb_list_entry_enabled()) {
5578 		list_for_each_entry(skb, head, list)
5579 			trace_netif_receive_skb_list_entry(skb);
5580 	}
5581 	netif_receive_skb_list_internal(head);
5582 	trace_netif_receive_skb_list_exit(0);
5583 }
5584 EXPORT_SYMBOL(netif_receive_skb_list);
5585 
5586 DEFINE_PER_CPU(struct work_struct, flush_works);
5587 
5588 /* Network device is going away, flush any packets still pending */
5589 static void flush_backlog(struct work_struct *work)
5590 {
5591 	struct sk_buff *skb, *tmp;
5592 	struct softnet_data *sd;
5593 
5594 	local_bh_disable();
5595 	sd = this_cpu_ptr(&softnet_data);
5596 
5597 	local_irq_disable();
5598 	rps_lock(sd);
5599 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5600 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5601 			__skb_unlink(skb, &sd->input_pkt_queue);
5602 			kfree_skb(skb);
5603 			input_queue_head_incr(sd);
5604 		}
5605 	}
5606 	rps_unlock(sd);
5607 	local_irq_enable();
5608 
5609 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5610 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5611 			__skb_unlink(skb, &sd->process_queue);
5612 			kfree_skb(skb);
5613 			input_queue_head_incr(sd);
5614 		}
5615 	}
5616 	local_bh_enable();
5617 }
5618 
5619 static void flush_all_backlogs(void)
5620 {
5621 	unsigned int cpu;
5622 
5623 	get_online_cpus();
5624 
5625 	for_each_online_cpu(cpu)
5626 		queue_work_on(cpu, system_highpri_wq,
5627 			      per_cpu_ptr(&flush_works, cpu));
5628 
5629 	for_each_online_cpu(cpu)
5630 		flush_work(per_cpu_ptr(&flush_works, cpu));
5631 
5632 	put_online_cpus();
5633 }
5634 
5635 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5636 static void gro_normal_list(struct napi_struct *napi)
5637 {
5638 	if (!napi->rx_count)
5639 		return;
5640 	netif_receive_skb_list_internal(&napi->rx_list);
5641 	INIT_LIST_HEAD(&napi->rx_list);
5642 	napi->rx_count = 0;
5643 }
5644 
5645 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5646  * pass the whole batch up to the stack.
5647  */
5648 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5649 {
5650 	list_add_tail(&skb->list, &napi->rx_list);
5651 	if (++napi->rx_count >= gro_normal_batch)
5652 		gro_normal_list(napi);
5653 }
5654 
5655 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5656 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5657 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5658 {
5659 	struct packet_offload *ptype;
5660 	__be16 type = skb->protocol;
5661 	struct list_head *head = &offload_base;
5662 	int err = -ENOENT;
5663 
5664 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5665 
5666 	if (NAPI_GRO_CB(skb)->count == 1) {
5667 		skb_shinfo(skb)->gso_size = 0;
5668 		goto out;
5669 	}
5670 
5671 	rcu_read_lock();
5672 	list_for_each_entry_rcu(ptype, head, list) {
5673 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5674 			continue;
5675 
5676 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5677 					 ipv6_gro_complete, inet_gro_complete,
5678 					 skb, 0);
5679 		break;
5680 	}
5681 	rcu_read_unlock();
5682 
5683 	if (err) {
5684 		WARN_ON(&ptype->list == head);
5685 		kfree_skb(skb);
5686 		return NET_RX_SUCCESS;
5687 	}
5688 
5689 out:
5690 	gro_normal_one(napi, skb);
5691 	return NET_RX_SUCCESS;
5692 }
5693 
5694 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5695 				   bool flush_old)
5696 {
5697 	struct list_head *head = &napi->gro_hash[index].list;
5698 	struct sk_buff *skb, *p;
5699 
5700 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5701 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5702 			return;
5703 		skb_list_del_init(skb);
5704 		napi_gro_complete(napi, skb);
5705 		napi->gro_hash[index].count--;
5706 	}
5707 
5708 	if (!napi->gro_hash[index].count)
5709 		__clear_bit(index, &napi->gro_bitmask);
5710 }
5711 
5712 /* napi->gro_hash[].list contains packets ordered by age.
5713  * youngest packets at the head of it.
5714  * Complete skbs in reverse order to reduce latencies.
5715  */
5716 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5717 {
5718 	unsigned long bitmask = napi->gro_bitmask;
5719 	unsigned int i, base = ~0U;
5720 
5721 	while ((i = ffs(bitmask)) != 0) {
5722 		bitmask >>= i;
5723 		base += i;
5724 		__napi_gro_flush_chain(napi, base, flush_old);
5725 	}
5726 }
5727 EXPORT_SYMBOL(napi_gro_flush);
5728 
5729 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5730 					  struct sk_buff *skb)
5731 {
5732 	unsigned int maclen = skb->dev->hard_header_len;
5733 	u32 hash = skb_get_hash_raw(skb);
5734 	struct list_head *head;
5735 	struct sk_buff *p;
5736 
5737 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5738 	list_for_each_entry(p, head, list) {
5739 		unsigned long diffs;
5740 
5741 		NAPI_GRO_CB(p)->flush = 0;
5742 
5743 		if (hash != skb_get_hash_raw(p)) {
5744 			NAPI_GRO_CB(p)->same_flow = 0;
5745 			continue;
5746 		}
5747 
5748 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5749 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5750 		if (skb_vlan_tag_present(p))
5751 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5752 		diffs |= skb_metadata_dst_cmp(p, skb);
5753 		diffs |= skb_metadata_differs(p, skb);
5754 		if (maclen == ETH_HLEN)
5755 			diffs |= compare_ether_header(skb_mac_header(p),
5756 						      skb_mac_header(skb));
5757 		else if (!diffs)
5758 			diffs = memcmp(skb_mac_header(p),
5759 				       skb_mac_header(skb),
5760 				       maclen);
5761 		NAPI_GRO_CB(p)->same_flow = !diffs;
5762 	}
5763 
5764 	return head;
5765 }
5766 
5767 static void skb_gro_reset_offset(struct sk_buff *skb)
5768 {
5769 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5770 	const skb_frag_t *frag0 = &pinfo->frags[0];
5771 
5772 	NAPI_GRO_CB(skb)->data_offset = 0;
5773 	NAPI_GRO_CB(skb)->frag0 = NULL;
5774 	NAPI_GRO_CB(skb)->frag0_len = 0;
5775 
5776 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5777 	    !PageHighMem(skb_frag_page(frag0))) {
5778 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5779 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5780 						    skb_frag_size(frag0),
5781 						    skb->end - skb->tail);
5782 	}
5783 }
5784 
5785 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5786 {
5787 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5788 
5789 	BUG_ON(skb->end - skb->tail < grow);
5790 
5791 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5792 
5793 	skb->data_len -= grow;
5794 	skb->tail += grow;
5795 
5796 	skb_frag_off_add(&pinfo->frags[0], grow);
5797 	skb_frag_size_sub(&pinfo->frags[0], grow);
5798 
5799 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5800 		skb_frag_unref(skb, 0);
5801 		memmove(pinfo->frags, pinfo->frags + 1,
5802 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5803 	}
5804 }
5805 
5806 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5807 {
5808 	struct sk_buff *oldest;
5809 
5810 	oldest = list_last_entry(head, struct sk_buff, list);
5811 
5812 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5813 	 * impossible.
5814 	 */
5815 	if (WARN_ON_ONCE(!oldest))
5816 		return;
5817 
5818 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5819 	 * SKB to the chain.
5820 	 */
5821 	skb_list_del_init(oldest);
5822 	napi_gro_complete(napi, oldest);
5823 }
5824 
5825 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5826 							   struct sk_buff *));
5827 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5828 							   struct sk_buff *));
5829 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5830 {
5831 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5832 	struct list_head *head = &offload_base;
5833 	struct packet_offload *ptype;
5834 	__be16 type = skb->protocol;
5835 	struct list_head *gro_head;
5836 	struct sk_buff *pp = NULL;
5837 	enum gro_result ret;
5838 	int same_flow;
5839 	int grow;
5840 
5841 	if (netif_elide_gro(skb->dev))
5842 		goto normal;
5843 
5844 	gro_head = gro_list_prepare(napi, skb);
5845 
5846 	rcu_read_lock();
5847 	list_for_each_entry_rcu(ptype, head, list) {
5848 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5849 			continue;
5850 
5851 		skb_set_network_header(skb, skb_gro_offset(skb));
5852 		skb_reset_mac_len(skb);
5853 		NAPI_GRO_CB(skb)->same_flow = 0;
5854 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5855 		NAPI_GRO_CB(skb)->free = 0;
5856 		NAPI_GRO_CB(skb)->encap_mark = 0;
5857 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5858 		NAPI_GRO_CB(skb)->is_fou = 0;
5859 		NAPI_GRO_CB(skb)->is_atomic = 1;
5860 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5861 
5862 		/* Setup for GRO checksum validation */
5863 		switch (skb->ip_summed) {
5864 		case CHECKSUM_COMPLETE:
5865 			NAPI_GRO_CB(skb)->csum = skb->csum;
5866 			NAPI_GRO_CB(skb)->csum_valid = 1;
5867 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5868 			break;
5869 		case CHECKSUM_UNNECESSARY:
5870 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5871 			NAPI_GRO_CB(skb)->csum_valid = 0;
5872 			break;
5873 		default:
5874 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5875 			NAPI_GRO_CB(skb)->csum_valid = 0;
5876 		}
5877 
5878 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5879 					ipv6_gro_receive, inet_gro_receive,
5880 					gro_head, skb);
5881 		break;
5882 	}
5883 	rcu_read_unlock();
5884 
5885 	if (&ptype->list == head)
5886 		goto normal;
5887 
5888 	if (PTR_ERR(pp) == -EINPROGRESS) {
5889 		ret = GRO_CONSUMED;
5890 		goto ok;
5891 	}
5892 
5893 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5894 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5895 
5896 	if (pp) {
5897 		skb_list_del_init(pp);
5898 		napi_gro_complete(napi, pp);
5899 		napi->gro_hash[hash].count--;
5900 	}
5901 
5902 	if (same_flow)
5903 		goto ok;
5904 
5905 	if (NAPI_GRO_CB(skb)->flush)
5906 		goto normal;
5907 
5908 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5909 		gro_flush_oldest(napi, gro_head);
5910 	} else {
5911 		napi->gro_hash[hash].count++;
5912 	}
5913 	NAPI_GRO_CB(skb)->count = 1;
5914 	NAPI_GRO_CB(skb)->age = jiffies;
5915 	NAPI_GRO_CB(skb)->last = skb;
5916 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5917 	list_add(&skb->list, gro_head);
5918 	ret = GRO_HELD;
5919 
5920 pull:
5921 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5922 	if (grow > 0)
5923 		gro_pull_from_frag0(skb, grow);
5924 ok:
5925 	if (napi->gro_hash[hash].count) {
5926 		if (!test_bit(hash, &napi->gro_bitmask))
5927 			__set_bit(hash, &napi->gro_bitmask);
5928 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5929 		__clear_bit(hash, &napi->gro_bitmask);
5930 	}
5931 
5932 	return ret;
5933 
5934 normal:
5935 	ret = GRO_NORMAL;
5936 	goto pull;
5937 }
5938 
5939 struct packet_offload *gro_find_receive_by_type(__be16 type)
5940 {
5941 	struct list_head *offload_head = &offload_base;
5942 	struct packet_offload *ptype;
5943 
5944 	list_for_each_entry_rcu(ptype, offload_head, list) {
5945 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5946 			continue;
5947 		return ptype;
5948 	}
5949 	return NULL;
5950 }
5951 EXPORT_SYMBOL(gro_find_receive_by_type);
5952 
5953 struct packet_offload *gro_find_complete_by_type(__be16 type)
5954 {
5955 	struct list_head *offload_head = &offload_base;
5956 	struct packet_offload *ptype;
5957 
5958 	list_for_each_entry_rcu(ptype, offload_head, list) {
5959 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5960 			continue;
5961 		return ptype;
5962 	}
5963 	return NULL;
5964 }
5965 EXPORT_SYMBOL(gro_find_complete_by_type);
5966 
5967 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5968 {
5969 	skb_dst_drop(skb);
5970 	skb_ext_put(skb);
5971 	kmem_cache_free(skbuff_head_cache, skb);
5972 }
5973 
5974 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5975 				    struct sk_buff *skb,
5976 				    gro_result_t ret)
5977 {
5978 	switch (ret) {
5979 	case GRO_NORMAL:
5980 		gro_normal_one(napi, skb);
5981 		break;
5982 
5983 	case GRO_DROP:
5984 		kfree_skb(skb);
5985 		break;
5986 
5987 	case GRO_MERGED_FREE:
5988 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5989 			napi_skb_free_stolen_head(skb);
5990 		else
5991 			__kfree_skb(skb);
5992 		break;
5993 
5994 	case GRO_HELD:
5995 	case GRO_MERGED:
5996 	case GRO_CONSUMED:
5997 		break;
5998 	}
5999 
6000 	return ret;
6001 }
6002 
6003 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6004 {
6005 	gro_result_t ret;
6006 
6007 	skb_mark_napi_id(skb, napi);
6008 	trace_napi_gro_receive_entry(skb);
6009 
6010 	skb_gro_reset_offset(skb);
6011 
6012 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6013 	trace_napi_gro_receive_exit(ret);
6014 
6015 	return ret;
6016 }
6017 EXPORT_SYMBOL(napi_gro_receive);
6018 
6019 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6020 {
6021 	if (unlikely(skb->pfmemalloc)) {
6022 		consume_skb(skb);
6023 		return;
6024 	}
6025 	__skb_pull(skb, skb_headlen(skb));
6026 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6027 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6028 	__vlan_hwaccel_clear_tag(skb);
6029 	skb->dev = napi->dev;
6030 	skb->skb_iif = 0;
6031 
6032 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6033 	skb->pkt_type = PACKET_HOST;
6034 
6035 	skb->encapsulation = 0;
6036 	skb_shinfo(skb)->gso_type = 0;
6037 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6038 	skb_ext_reset(skb);
6039 
6040 	napi->skb = skb;
6041 }
6042 
6043 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6044 {
6045 	struct sk_buff *skb = napi->skb;
6046 
6047 	if (!skb) {
6048 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6049 		if (skb) {
6050 			napi->skb = skb;
6051 			skb_mark_napi_id(skb, napi);
6052 		}
6053 	}
6054 	return skb;
6055 }
6056 EXPORT_SYMBOL(napi_get_frags);
6057 
6058 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6059 				      struct sk_buff *skb,
6060 				      gro_result_t ret)
6061 {
6062 	switch (ret) {
6063 	case GRO_NORMAL:
6064 	case GRO_HELD:
6065 		__skb_push(skb, ETH_HLEN);
6066 		skb->protocol = eth_type_trans(skb, skb->dev);
6067 		if (ret == GRO_NORMAL)
6068 			gro_normal_one(napi, skb);
6069 		break;
6070 
6071 	case GRO_DROP:
6072 		napi_reuse_skb(napi, skb);
6073 		break;
6074 
6075 	case GRO_MERGED_FREE:
6076 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6077 			napi_skb_free_stolen_head(skb);
6078 		else
6079 			napi_reuse_skb(napi, skb);
6080 		break;
6081 
6082 	case GRO_MERGED:
6083 	case GRO_CONSUMED:
6084 		break;
6085 	}
6086 
6087 	return ret;
6088 }
6089 
6090 /* Upper GRO stack assumes network header starts at gro_offset=0
6091  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6092  * We copy ethernet header into skb->data to have a common layout.
6093  */
6094 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6095 {
6096 	struct sk_buff *skb = napi->skb;
6097 	const struct ethhdr *eth;
6098 	unsigned int hlen = sizeof(*eth);
6099 
6100 	napi->skb = NULL;
6101 
6102 	skb_reset_mac_header(skb);
6103 	skb_gro_reset_offset(skb);
6104 
6105 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6106 		eth = skb_gro_header_slow(skb, hlen, 0);
6107 		if (unlikely(!eth)) {
6108 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6109 					     __func__, napi->dev->name);
6110 			napi_reuse_skb(napi, skb);
6111 			return NULL;
6112 		}
6113 	} else {
6114 		eth = (const struct ethhdr *)skb->data;
6115 		gro_pull_from_frag0(skb, hlen);
6116 		NAPI_GRO_CB(skb)->frag0 += hlen;
6117 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6118 	}
6119 	__skb_pull(skb, hlen);
6120 
6121 	/*
6122 	 * This works because the only protocols we care about don't require
6123 	 * special handling.
6124 	 * We'll fix it up properly in napi_frags_finish()
6125 	 */
6126 	skb->protocol = eth->h_proto;
6127 
6128 	return skb;
6129 }
6130 
6131 gro_result_t napi_gro_frags(struct napi_struct *napi)
6132 {
6133 	gro_result_t ret;
6134 	struct sk_buff *skb = napi_frags_skb(napi);
6135 
6136 	if (!skb)
6137 		return GRO_DROP;
6138 
6139 	trace_napi_gro_frags_entry(skb);
6140 
6141 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6142 	trace_napi_gro_frags_exit(ret);
6143 
6144 	return ret;
6145 }
6146 EXPORT_SYMBOL(napi_gro_frags);
6147 
6148 /* Compute the checksum from gro_offset and return the folded value
6149  * after adding in any pseudo checksum.
6150  */
6151 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6152 {
6153 	__wsum wsum;
6154 	__sum16 sum;
6155 
6156 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6157 
6158 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6159 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6160 	/* See comments in __skb_checksum_complete(). */
6161 	if (likely(!sum)) {
6162 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6163 		    !skb->csum_complete_sw)
6164 			netdev_rx_csum_fault(skb->dev, skb);
6165 	}
6166 
6167 	NAPI_GRO_CB(skb)->csum = wsum;
6168 	NAPI_GRO_CB(skb)->csum_valid = 1;
6169 
6170 	return sum;
6171 }
6172 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6173 
6174 static void net_rps_send_ipi(struct softnet_data *remsd)
6175 {
6176 #ifdef CONFIG_RPS
6177 	while (remsd) {
6178 		struct softnet_data *next = remsd->rps_ipi_next;
6179 
6180 		if (cpu_online(remsd->cpu))
6181 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6182 		remsd = next;
6183 	}
6184 #endif
6185 }
6186 
6187 /*
6188  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6189  * Note: called with local irq disabled, but exits with local irq enabled.
6190  */
6191 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6192 {
6193 #ifdef CONFIG_RPS
6194 	struct softnet_data *remsd = sd->rps_ipi_list;
6195 
6196 	if (remsd) {
6197 		sd->rps_ipi_list = NULL;
6198 
6199 		local_irq_enable();
6200 
6201 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6202 		net_rps_send_ipi(remsd);
6203 	} else
6204 #endif
6205 		local_irq_enable();
6206 }
6207 
6208 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6209 {
6210 #ifdef CONFIG_RPS
6211 	return sd->rps_ipi_list != NULL;
6212 #else
6213 	return false;
6214 #endif
6215 }
6216 
6217 static int process_backlog(struct napi_struct *napi, int quota)
6218 {
6219 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6220 	bool again = true;
6221 	int work = 0;
6222 
6223 	/* Check if we have pending ipi, its better to send them now,
6224 	 * not waiting net_rx_action() end.
6225 	 */
6226 	if (sd_has_rps_ipi_waiting(sd)) {
6227 		local_irq_disable();
6228 		net_rps_action_and_irq_enable(sd);
6229 	}
6230 
6231 	napi->weight = dev_rx_weight;
6232 	while (again) {
6233 		struct sk_buff *skb;
6234 
6235 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6236 			rcu_read_lock();
6237 			__netif_receive_skb(skb);
6238 			rcu_read_unlock();
6239 			input_queue_head_incr(sd);
6240 			if (++work >= quota)
6241 				return work;
6242 
6243 		}
6244 
6245 		local_irq_disable();
6246 		rps_lock(sd);
6247 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6248 			/*
6249 			 * Inline a custom version of __napi_complete().
6250 			 * only current cpu owns and manipulates this napi,
6251 			 * and NAPI_STATE_SCHED is the only possible flag set
6252 			 * on backlog.
6253 			 * We can use a plain write instead of clear_bit(),
6254 			 * and we dont need an smp_mb() memory barrier.
6255 			 */
6256 			napi->state = 0;
6257 			again = false;
6258 		} else {
6259 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6260 						   &sd->process_queue);
6261 		}
6262 		rps_unlock(sd);
6263 		local_irq_enable();
6264 	}
6265 
6266 	return work;
6267 }
6268 
6269 /**
6270  * __napi_schedule - schedule for receive
6271  * @n: entry to schedule
6272  *
6273  * The entry's receive function will be scheduled to run.
6274  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6275  */
6276 void __napi_schedule(struct napi_struct *n)
6277 {
6278 	unsigned long flags;
6279 
6280 	local_irq_save(flags);
6281 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6282 	local_irq_restore(flags);
6283 }
6284 EXPORT_SYMBOL(__napi_schedule);
6285 
6286 /**
6287  *	napi_schedule_prep - check if napi can be scheduled
6288  *	@n: napi context
6289  *
6290  * Test if NAPI routine is already running, and if not mark
6291  * it as running.  This is used as a condition variable
6292  * insure only one NAPI poll instance runs.  We also make
6293  * sure there is no pending NAPI disable.
6294  */
6295 bool napi_schedule_prep(struct napi_struct *n)
6296 {
6297 	unsigned long val, new;
6298 
6299 	do {
6300 		val = READ_ONCE(n->state);
6301 		if (unlikely(val & NAPIF_STATE_DISABLE))
6302 			return false;
6303 		new = val | NAPIF_STATE_SCHED;
6304 
6305 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6306 		 * This was suggested by Alexander Duyck, as compiler
6307 		 * emits better code than :
6308 		 * if (val & NAPIF_STATE_SCHED)
6309 		 *     new |= NAPIF_STATE_MISSED;
6310 		 */
6311 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6312 						   NAPIF_STATE_MISSED;
6313 	} while (cmpxchg(&n->state, val, new) != val);
6314 
6315 	return !(val & NAPIF_STATE_SCHED);
6316 }
6317 EXPORT_SYMBOL(napi_schedule_prep);
6318 
6319 /**
6320  * __napi_schedule_irqoff - schedule for receive
6321  * @n: entry to schedule
6322  *
6323  * Variant of __napi_schedule() assuming hard irqs are masked
6324  */
6325 void __napi_schedule_irqoff(struct napi_struct *n)
6326 {
6327 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6328 }
6329 EXPORT_SYMBOL(__napi_schedule_irqoff);
6330 
6331 bool napi_complete_done(struct napi_struct *n, int work_done)
6332 {
6333 	unsigned long flags, val, new, timeout = 0;
6334 	bool ret = true;
6335 
6336 	/*
6337 	 * 1) Don't let napi dequeue from the cpu poll list
6338 	 *    just in case its running on a different cpu.
6339 	 * 2) If we are busy polling, do nothing here, we have
6340 	 *    the guarantee we will be called later.
6341 	 */
6342 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6343 				 NAPIF_STATE_IN_BUSY_POLL)))
6344 		return false;
6345 
6346 	if (work_done) {
6347 		if (n->gro_bitmask)
6348 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6349 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6350 	}
6351 	if (n->defer_hard_irqs_count > 0) {
6352 		n->defer_hard_irqs_count--;
6353 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6354 		if (timeout)
6355 			ret = false;
6356 	}
6357 	if (n->gro_bitmask) {
6358 		/* When the NAPI instance uses a timeout and keeps postponing
6359 		 * it, we need to bound somehow the time packets are kept in
6360 		 * the GRO layer
6361 		 */
6362 		napi_gro_flush(n, !!timeout);
6363 	}
6364 
6365 	gro_normal_list(n);
6366 
6367 	if (unlikely(!list_empty(&n->poll_list))) {
6368 		/* If n->poll_list is not empty, we need to mask irqs */
6369 		local_irq_save(flags);
6370 		list_del_init(&n->poll_list);
6371 		local_irq_restore(flags);
6372 	}
6373 
6374 	do {
6375 		val = READ_ONCE(n->state);
6376 
6377 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6378 
6379 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6380 
6381 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6382 		 * because we will call napi->poll() one more time.
6383 		 * This C code was suggested by Alexander Duyck to help gcc.
6384 		 */
6385 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6386 						    NAPIF_STATE_SCHED;
6387 	} while (cmpxchg(&n->state, val, new) != val);
6388 
6389 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6390 		__napi_schedule(n);
6391 		return false;
6392 	}
6393 
6394 	if (timeout)
6395 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6396 			      HRTIMER_MODE_REL_PINNED);
6397 	return ret;
6398 }
6399 EXPORT_SYMBOL(napi_complete_done);
6400 
6401 /* must be called under rcu_read_lock(), as we dont take a reference */
6402 static struct napi_struct *napi_by_id(unsigned int napi_id)
6403 {
6404 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6405 	struct napi_struct *napi;
6406 
6407 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6408 		if (napi->napi_id == napi_id)
6409 			return napi;
6410 
6411 	return NULL;
6412 }
6413 
6414 #if defined(CONFIG_NET_RX_BUSY_POLL)
6415 
6416 #define BUSY_POLL_BUDGET 8
6417 
6418 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6419 {
6420 	int rc;
6421 
6422 	/* Busy polling means there is a high chance device driver hard irq
6423 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6424 	 * set in napi_schedule_prep().
6425 	 * Since we are about to call napi->poll() once more, we can safely
6426 	 * clear NAPI_STATE_MISSED.
6427 	 *
6428 	 * Note: x86 could use a single "lock and ..." instruction
6429 	 * to perform these two clear_bit()
6430 	 */
6431 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6432 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6433 
6434 	local_bh_disable();
6435 
6436 	/* All we really want here is to re-enable device interrupts.
6437 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6438 	 */
6439 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6440 	/* We can't gro_normal_list() here, because napi->poll() might have
6441 	 * rearmed the napi (napi_complete_done()) in which case it could
6442 	 * already be running on another CPU.
6443 	 */
6444 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6445 	netpoll_poll_unlock(have_poll_lock);
6446 	if (rc == BUSY_POLL_BUDGET) {
6447 		/* As the whole budget was spent, we still own the napi so can
6448 		 * safely handle the rx_list.
6449 		 */
6450 		gro_normal_list(napi);
6451 		__napi_schedule(napi);
6452 	}
6453 	local_bh_enable();
6454 }
6455 
6456 void napi_busy_loop(unsigned int napi_id,
6457 		    bool (*loop_end)(void *, unsigned long),
6458 		    void *loop_end_arg)
6459 {
6460 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6461 	int (*napi_poll)(struct napi_struct *napi, int budget);
6462 	void *have_poll_lock = NULL;
6463 	struct napi_struct *napi;
6464 
6465 restart:
6466 	napi_poll = NULL;
6467 
6468 	rcu_read_lock();
6469 
6470 	napi = napi_by_id(napi_id);
6471 	if (!napi)
6472 		goto out;
6473 
6474 	preempt_disable();
6475 	for (;;) {
6476 		int work = 0;
6477 
6478 		local_bh_disable();
6479 		if (!napi_poll) {
6480 			unsigned long val = READ_ONCE(napi->state);
6481 
6482 			/* If multiple threads are competing for this napi,
6483 			 * we avoid dirtying napi->state as much as we can.
6484 			 */
6485 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6486 				   NAPIF_STATE_IN_BUSY_POLL))
6487 				goto count;
6488 			if (cmpxchg(&napi->state, val,
6489 				    val | NAPIF_STATE_IN_BUSY_POLL |
6490 					  NAPIF_STATE_SCHED) != val)
6491 				goto count;
6492 			have_poll_lock = netpoll_poll_lock(napi);
6493 			napi_poll = napi->poll;
6494 		}
6495 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6496 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6497 		gro_normal_list(napi);
6498 count:
6499 		if (work > 0)
6500 			__NET_ADD_STATS(dev_net(napi->dev),
6501 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6502 		local_bh_enable();
6503 
6504 		if (!loop_end || loop_end(loop_end_arg, start_time))
6505 			break;
6506 
6507 		if (unlikely(need_resched())) {
6508 			if (napi_poll)
6509 				busy_poll_stop(napi, have_poll_lock);
6510 			preempt_enable();
6511 			rcu_read_unlock();
6512 			cond_resched();
6513 			if (loop_end(loop_end_arg, start_time))
6514 				return;
6515 			goto restart;
6516 		}
6517 		cpu_relax();
6518 	}
6519 	if (napi_poll)
6520 		busy_poll_stop(napi, have_poll_lock);
6521 	preempt_enable();
6522 out:
6523 	rcu_read_unlock();
6524 }
6525 EXPORT_SYMBOL(napi_busy_loop);
6526 
6527 #endif /* CONFIG_NET_RX_BUSY_POLL */
6528 
6529 static void napi_hash_add(struct napi_struct *napi)
6530 {
6531 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6532 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6533 		return;
6534 
6535 	spin_lock(&napi_hash_lock);
6536 
6537 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6538 	do {
6539 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6540 			napi_gen_id = MIN_NAPI_ID;
6541 	} while (napi_by_id(napi_gen_id));
6542 	napi->napi_id = napi_gen_id;
6543 
6544 	hlist_add_head_rcu(&napi->napi_hash_node,
6545 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6546 
6547 	spin_unlock(&napi_hash_lock);
6548 }
6549 
6550 /* Warning : caller is responsible to make sure rcu grace period
6551  * is respected before freeing memory containing @napi
6552  */
6553 bool napi_hash_del(struct napi_struct *napi)
6554 {
6555 	bool rcu_sync_needed = false;
6556 
6557 	spin_lock(&napi_hash_lock);
6558 
6559 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6560 		rcu_sync_needed = true;
6561 		hlist_del_rcu(&napi->napi_hash_node);
6562 	}
6563 	spin_unlock(&napi_hash_lock);
6564 	return rcu_sync_needed;
6565 }
6566 EXPORT_SYMBOL_GPL(napi_hash_del);
6567 
6568 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6569 {
6570 	struct napi_struct *napi;
6571 
6572 	napi = container_of(timer, struct napi_struct, timer);
6573 
6574 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6575 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6576 	 */
6577 	if (!napi_disable_pending(napi) &&
6578 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6579 		__napi_schedule_irqoff(napi);
6580 
6581 	return HRTIMER_NORESTART;
6582 }
6583 
6584 static void init_gro_hash(struct napi_struct *napi)
6585 {
6586 	int i;
6587 
6588 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6589 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6590 		napi->gro_hash[i].count = 0;
6591 	}
6592 	napi->gro_bitmask = 0;
6593 }
6594 
6595 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6596 		    int (*poll)(struct napi_struct *, int), int weight)
6597 {
6598 	INIT_LIST_HEAD(&napi->poll_list);
6599 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6600 	napi->timer.function = napi_watchdog;
6601 	init_gro_hash(napi);
6602 	napi->skb = NULL;
6603 	INIT_LIST_HEAD(&napi->rx_list);
6604 	napi->rx_count = 0;
6605 	napi->poll = poll;
6606 	if (weight > NAPI_POLL_WEIGHT)
6607 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6608 				weight);
6609 	napi->weight = weight;
6610 	list_add(&napi->dev_list, &dev->napi_list);
6611 	napi->dev = dev;
6612 #ifdef CONFIG_NETPOLL
6613 	napi->poll_owner = -1;
6614 #endif
6615 	set_bit(NAPI_STATE_SCHED, &napi->state);
6616 	napi_hash_add(napi);
6617 }
6618 EXPORT_SYMBOL(netif_napi_add);
6619 
6620 void napi_disable(struct napi_struct *n)
6621 {
6622 	might_sleep();
6623 	set_bit(NAPI_STATE_DISABLE, &n->state);
6624 
6625 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6626 		msleep(1);
6627 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6628 		msleep(1);
6629 
6630 	hrtimer_cancel(&n->timer);
6631 
6632 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6633 }
6634 EXPORT_SYMBOL(napi_disable);
6635 
6636 static void flush_gro_hash(struct napi_struct *napi)
6637 {
6638 	int i;
6639 
6640 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6641 		struct sk_buff *skb, *n;
6642 
6643 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6644 			kfree_skb(skb);
6645 		napi->gro_hash[i].count = 0;
6646 	}
6647 }
6648 
6649 /* Must be called in process context */
6650 void netif_napi_del(struct napi_struct *napi)
6651 {
6652 	might_sleep();
6653 	if (napi_hash_del(napi))
6654 		synchronize_net();
6655 	list_del_init(&napi->dev_list);
6656 	napi_free_frags(napi);
6657 
6658 	flush_gro_hash(napi);
6659 	napi->gro_bitmask = 0;
6660 }
6661 EXPORT_SYMBOL(netif_napi_del);
6662 
6663 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6664 {
6665 	void *have;
6666 	int work, weight;
6667 
6668 	list_del_init(&n->poll_list);
6669 
6670 	have = netpoll_poll_lock(n);
6671 
6672 	weight = n->weight;
6673 
6674 	/* This NAPI_STATE_SCHED test is for avoiding a race
6675 	 * with netpoll's poll_napi().  Only the entity which
6676 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6677 	 * actually make the ->poll() call.  Therefore we avoid
6678 	 * accidentally calling ->poll() when NAPI is not scheduled.
6679 	 */
6680 	work = 0;
6681 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6682 		work = n->poll(n, weight);
6683 		trace_napi_poll(n, work, weight);
6684 	}
6685 
6686 	WARN_ON_ONCE(work > weight);
6687 
6688 	if (likely(work < weight))
6689 		goto out_unlock;
6690 
6691 	/* Drivers must not modify the NAPI state if they
6692 	 * consume the entire weight.  In such cases this code
6693 	 * still "owns" the NAPI instance and therefore can
6694 	 * move the instance around on the list at-will.
6695 	 */
6696 	if (unlikely(napi_disable_pending(n))) {
6697 		napi_complete(n);
6698 		goto out_unlock;
6699 	}
6700 
6701 	if (n->gro_bitmask) {
6702 		/* flush too old packets
6703 		 * If HZ < 1000, flush all packets.
6704 		 */
6705 		napi_gro_flush(n, HZ >= 1000);
6706 	}
6707 
6708 	gro_normal_list(n);
6709 
6710 	/* Some drivers may have called napi_schedule
6711 	 * prior to exhausting their budget.
6712 	 */
6713 	if (unlikely(!list_empty(&n->poll_list))) {
6714 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6715 			     n->dev ? n->dev->name : "backlog");
6716 		goto out_unlock;
6717 	}
6718 
6719 	list_add_tail(&n->poll_list, repoll);
6720 
6721 out_unlock:
6722 	netpoll_poll_unlock(have);
6723 
6724 	return work;
6725 }
6726 
6727 static __latent_entropy void net_rx_action(struct softirq_action *h)
6728 {
6729 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6730 	unsigned long time_limit = jiffies +
6731 		usecs_to_jiffies(netdev_budget_usecs);
6732 	int budget = netdev_budget;
6733 	LIST_HEAD(list);
6734 	LIST_HEAD(repoll);
6735 
6736 	local_irq_disable();
6737 	list_splice_init(&sd->poll_list, &list);
6738 	local_irq_enable();
6739 
6740 	for (;;) {
6741 		struct napi_struct *n;
6742 
6743 		if (list_empty(&list)) {
6744 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6745 				goto out;
6746 			break;
6747 		}
6748 
6749 		n = list_first_entry(&list, struct napi_struct, poll_list);
6750 		budget -= napi_poll(n, &repoll);
6751 
6752 		/* If softirq window is exhausted then punt.
6753 		 * Allow this to run for 2 jiffies since which will allow
6754 		 * an average latency of 1.5/HZ.
6755 		 */
6756 		if (unlikely(budget <= 0 ||
6757 			     time_after_eq(jiffies, time_limit))) {
6758 			sd->time_squeeze++;
6759 			break;
6760 		}
6761 	}
6762 
6763 	local_irq_disable();
6764 
6765 	list_splice_tail_init(&sd->poll_list, &list);
6766 	list_splice_tail(&repoll, &list);
6767 	list_splice(&list, &sd->poll_list);
6768 	if (!list_empty(&sd->poll_list))
6769 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6770 
6771 	net_rps_action_and_irq_enable(sd);
6772 out:
6773 	__kfree_skb_flush();
6774 }
6775 
6776 struct netdev_adjacent {
6777 	struct net_device *dev;
6778 
6779 	/* upper master flag, there can only be one master device per list */
6780 	bool master;
6781 
6782 	/* lookup ignore flag */
6783 	bool ignore;
6784 
6785 	/* counter for the number of times this device was added to us */
6786 	u16 ref_nr;
6787 
6788 	/* private field for the users */
6789 	void *private;
6790 
6791 	struct list_head list;
6792 	struct rcu_head rcu;
6793 };
6794 
6795 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6796 						 struct list_head *adj_list)
6797 {
6798 	struct netdev_adjacent *adj;
6799 
6800 	list_for_each_entry(adj, adj_list, list) {
6801 		if (adj->dev == adj_dev)
6802 			return adj;
6803 	}
6804 	return NULL;
6805 }
6806 
6807 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6808 {
6809 	struct net_device *dev = data;
6810 
6811 	return upper_dev == dev;
6812 }
6813 
6814 /**
6815  * netdev_has_upper_dev - Check if device is linked to an upper device
6816  * @dev: device
6817  * @upper_dev: upper device to check
6818  *
6819  * Find out if a device is linked to specified upper device and return true
6820  * in case it is. Note that this checks only immediate upper device,
6821  * not through a complete stack of devices. The caller must hold the RTNL lock.
6822  */
6823 bool netdev_has_upper_dev(struct net_device *dev,
6824 			  struct net_device *upper_dev)
6825 {
6826 	ASSERT_RTNL();
6827 
6828 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6829 					     upper_dev);
6830 }
6831 EXPORT_SYMBOL(netdev_has_upper_dev);
6832 
6833 /**
6834  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6835  * @dev: device
6836  * @upper_dev: upper device to check
6837  *
6838  * Find out if a device is linked to specified upper device and return true
6839  * in case it is. Note that this checks the entire upper device chain.
6840  * The caller must hold rcu lock.
6841  */
6842 
6843 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6844 				  struct net_device *upper_dev)
6845 {
6846 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6847 					       upper_dev);
6848 }
6849 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6850 
6851 /**
6852  * netdev_has_any_upper_dev - Check if device is linked to some device
6853  * @dev: device
6854  *
6855  * Find out if a device is linked to an upper device and return true in case
6856  * it is. The caller must hold the RTNL lock.
6857  */
6858 bool netdev_has_any_upper_dev(struct net_device *dev)
6859 {
6860 	ASSERT_RTNL();
6861 
6862 	return !list_empty(&dev->adj_list.upper);
6863 }
6864 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6865 
6866 /**
6867  * netdev_master_upper_dev_get - Get master upper device
6868  * @dev: device
6869  *
6870  * Find a master upper device and return pointer to it or NULL in case
6871  * it's not there. The caller must hold the RTNL lock.
6872  */
6873 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6874 {
6875 	struct netdev_adjacent *upper;
6876 
6877 	ASSERT_RTNL();
6878 
6879 	if (list_empty(&dev->adj_list.upper))
6880 		return NULL;
6881 
6882 	upper = list_first_entry(&dev->adj_list.upper,
6883 				 struct netdev_adjacent, list);
6884 	if (likely(upper->master))
6885 		return upper->dev;
6886 	return NULL;
6887 }
6888 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6889 
6890 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6891 {
6892 	struct netdev_adjacent *upper;
6893 
6894 	ASSERT_RTNL();
6895 
6896 	if (list_empty(&dev->adj_list.upper))
6897 		return NULL;
6898 
6899 	upper = list_first_entry(&dev->adj_list.upper,
6900 				 struct netdev_adjacent, list);
6901 	if (likely(upper->master) && !upper->ignore)
6902 		return upper->dev;
6903 	return NULL;
6904 }
6905 
6906 /**
6907  * netdev_has_any_lower_dev - Check if device is linked to some device
6908  * @dev: device
6909  *
6910  * Find out if a device is linked to a lower device and return true in case
6911  * it is. The caller must hold the RTNL lock.
6912  */
6913 static bool netdev_has_any_lower_dev(struct net_device *dev)
6914 {
6915 	ASSERT_RTNL();
6916 
6917 	return !list_empty(&dev->adj_list.lower);
6918 }
6919 
6920 void *netdev_adjacent_get_private(struct list_head *adj_list)
6921 {
6922 	struct netdev_adjacent *adj;
6923 
6924 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6925 
6926 	return adj->private;
6927 }
6928 EXPORT_SYMBOL(netdev_adjacent_get_private);
6929 
6930 /**
6931  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6932  * @dev: device
6933  * @iter: list_head ** of the current position
6934  *
6935  * Gets the next device from the dev's upper list, starting from iter
6936  * position. The caller must hold RCU read lock.
6937  */
6938 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6939 						 struct list_head **iter)
6940 {
6941 	struct netdev_adjacent *upper;
6942 
6943 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6944 
6945 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6946 
6947 	if (&upper->list == &dev->adj_list.upper)
6948 		return NULL;
6949 
6950 	*iter = &upper->list;
6951 
6952 	return upper->dev;
6953 }
6954 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6955 
6956 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6957 						  struct list_head **iter,
6958 						  bool *ignore)
6959 {
6960 	struct netdev_adjacent *upper;
6961 
6962 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6963 
6964 	if (&upper->list == &dev->adj_list.upper)
6965 		return NULL;
6966 
6967 	*iter = &upper->list;
6968 	*ignore = upper->ignore;
6969 
6970 	return upper->dev;
6971 }
6972 
6973 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6974 						    struct list_head **iter)
6975 {
6976 	struct netdev_adjacent *upper;
6977 
6978 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6979 
6980 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6981 
6982 	if (&upper->list == &dev->adj_list.upper)
6983 		return NULL;
6984 
6985 	*iter = &upper->list;
6986 
6987 	return upper->dev;
6988 }
6989 
6990 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6991 				       int (*fn)(struct net_device *dev,
6992 						 void *data),
6993 				       void *data)
6994 {
6995 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6996 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6997 	int ret, cur = 0;
6998 	bool ignore;
6999 
7000 	now = dev;
7001 	iter = &dev->adj_list.upper;
7002 
7003 	while (1) {
7004 		if (now != dev) {
7005 			ret = fn(now, data);
7006 			if (ret)
7007 				return ret;
7008 		}
7009 
7010 		next = NULL;
7011 		while (1) {
7012 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7013 			if (!udev)
7014 				break;
7015 			if (ignore)
7016 				continue;
7017 
7018 			next = udev;
7019 			niter = &udev->adj_list.upper;
7020 			dev_stack[cur] = now;
7021 			iter_stack[cur++] = iter;
7022 			break;
7023 		}
7024 
7025 		if (!next) {
7026 			if (!cur)
7027 				return 0;
7028 			next = dev_stack[--cur];
7029 			niter = iter_stack[cur];
7030 		}
7031 
7032 		now = next;
7033 		iter = niter;
7034 	}
7035 
7036 	return 0;
7037 }
7038 
7039 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7040 				  int (*fn)(struct net_device *dev,
7041 					    void *data),
7042 				  void *data)
7043 {
7044 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7045 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7046 	int ret, cur = 0;
7047 
7048 	now = dev;
7049 	iter = &dev->adj_list.upper;
7050 
7051 	while (1) {
7052 		if (now != dev) {
7053 			ret = fn(now, data);
7054 			if (ret)
7055 				return ret;
7056 		}
7057 
7058 		next = NULL;
7059 		while (1) {
7060 			udev = netdev_next_upper_dev_rcu(now, &iter);
7061 			if (!udev)
7062 				break;
7063 
7064 			next = udev;
7065 			niter = &udev->adj_list.upper;
7066 			dev_stack[cur] = now;
7067 			iter_stack[cur++] = iter;
7068 			break;
7069 		}
7070 
7071 		if (!next) {
7072 			if (!cur)
7073 				return 0;
7074 			next = dev_stack[--cur];
7075 			niter = iter_stack[cur];
7076 		}
7077 
7078 		now = next;
7079 		iter = niter;
7080 	}
7081 
7082 	return 0;
7083 }
7084 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7085 
7086 static bool __netdev_has_upper_dev(struct net_device *dev,
7087 				   struct net_device *upper_dev)
7088 {
7089 	ASSERT_RTNL();
7090 
7091 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7092 					   upper_dev);
7093 }
7094 
7095 /**
7096  * netdev_lower_get_next_private - Get the next ->private from the
7097  *				   lower neighbour list
7098  * @dev: device
7099  * @iter: list_head ** of the current position
7100  *
7101  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7102  * list, starting from iter position. The caller must hold either hold the
7103  * RTNL lock or its own locking that guarantees that the neighbour lower
7104  * list will remain unchanged.
7105  */
7106 void *netdev_lower_get_next_private(struct net_device *dev,
7107 				    struct list_head **iter)
7108 {
7109 	struct netdev_adjacent *lower;
7110 
7111 	lower = list_entry(*iter, struct netdev_adjacent, list);
7112 
7113 	if (&lower->list == &dev->adj_list.lower)
7114 		return NULL;
7115 
7116 	*iter = lower->list.next;
7117 
7118 	return lower->private;
7119 }
7120 EXPORT_SYMBOL(netdev_lower_get_next_private);
7121 
7122 /**
7123  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7124  *				       lower neighbour list, RCU
7125  *				       variant
7126  * @dev: device
7127  * @iter: list_head ** of the current position
7128  *
7129  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7130  * list, starting from iter position. The caller must hold RCU read lock.
7131  */
7132 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7133 					struct list_head **iter)
7134 {
7135 	struct netdev_adjacent *lower;
7136 
7137 	WARN_ON_ONCE(!rcu_read_lock_held());
7138 
7139 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7140 
7141 	if (&lower->list == &dev->adj_list.lower)
7142 		return NULL;
7143 
7144 	*iter = &lower->list;
7145 
7146 	return lower->private;
7147 }
7148 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7149 
7150 /**
7151  * netdev_lower_get_next - Get the next device from the lower neighbour
7152  *                         list
7153  * @dev: device
7154  * @iter: list_head ** of the current position
7155  *
7156  * Gets the next netdev_adjacent from the dev's lower neighbour
7157  * list, starting from iter position. The caller must hold RTNL lock or
7158  * its own locking that guarantees that the neighbour lower
7159  * list will remain unchanged.
7160  */
7161 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7162 {
7163 	struct netdev_adjacent *lower;
7164 
7165 	lower = list_entry(*iter, struct netdev_adjacent, list);
7166 
7167 	if (&lower->list == &dev->adj_list.lower)
7168 		return NULL;
7169 
7170 	*iter = lower->list.next;
7171 
7172 	return lower->dev;
7173 }
7174 EXPORT_SYMBOL(netdev_lower_get_next);
7175 
7176 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7177 						struct list_head **iter)
7178 {
7179 	struct netdev_adjacent *lower;
7180 
7181 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7182 
7183 	if (&lower->list == &dev->adj_list.lower)
7184 		return NULL;
7185 
7186 	*iter = &lower->list;
7187 
7188 	return lower->dev;
7189 }
7190 
7191 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7192 						  struct list_head **iter,
7193 						  bool *ignore)
7194 {
7195 	struct netdev_adjacent *lower;
7196 
7197 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7198 
7199 	if (&lower->list == &dev->adj_list.lower)
7200 		return NULL;
7201 
7202 	*iter = &lower->list;
7203 	*ignore = lower->ignore;
7204 
7205 	return lower->dev;
7206 }
7207 
7208 int netdev_walk_all_lower_dev(struct net_device *dev,
7209 			      int (*fn)(struct net_device *dev,
7210 					void *data),
7211 			      void *data)
7212 {
7213 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7214 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7215 	int ret, cur = 0;
7216 
7217 	now = dev;
7218 	iter = &dev->adj_list.lower;
7219 
7220 	while (1) {
7221 		if (now != dev) {
7222 			ret = fn(now, data);
7223 			if (ret)
7224 				return ret;
7225 		}
7226 
7227 		next = NULL;
7228 		while (1) {
7229 			ldev = netdev_next_lower_dev(now, &iter);
7230 			if (!ldev)
7231 				break;
7232 
7233 			next = ldev;
7234 			niter = &ldev->adj_list.lower;
7235 			dev_stack[cur] = now;
7236 			iter_stack[cur++] = iter;
7237 			break;
7238 		}
7239 
7240 		if (!next) {
7241 			if (!cur)
7242 				return 0;
7243 			next = dev_stack[--cur];
7244 			niter = iter_stack[cur];
7245 		}
7246 
7247 		now = next;
7248 		iter = niter;
7249 	}
7250 
7251 	return 0;
7252 }
7253 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7254 
7255 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7256 				       int (*fn)(struct net_device *dev,
7257 						 void *data),
7258 				       void *data)
7259 {
7260 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7261 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7262 	int ret, cur = 0;
7263 	bool ignore;
7264 
7265 	now = dev;
7266 	iter = &dev->adj_list.lower;
7267 
7268 	while (1) {
7269 		if (now != dev) {
7270 			ret = fn(now, data);
7271 			if (ret)
7272 				return ret;
7273 		}
7274 
7275 		next = NULL;
7276 		while (1) {
7277 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7278 			if (!ldev)
7279 				break;
7280 			if (ignore)
7281 				continue;
7282 
7283 			next = ldev;
7284 			niter = &ldev->adj_list.lower;
7285 			dev_stack[cur] = now;
7286 			iter_stack[cur++] = iter;
7287 			break;
7288 		}
7289 
7290 		if (!next) {
7291 			if (!cur)
7292 				return 0;
7293 			next = dev_stack[--cur];
7294 			niter = iter_stack[cur];
7295 		}
7296 
7297 		now = next;
7298 		iter = niter;
7299 	}
7300 
7301 	return 0;
7302 }
7303 
7304 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7305 					     struct list_head **iter)
7306 {
7307 	struct netdev_adjacent *lower;
7308 
7309 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7310 	if (&lower->list == &dev->adj_list.lower)
7311 		return NULL;
7312 
7313 	*iter = &lower->list;
7314 
7315 	return lower->dev;
7316 }
7317 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7318 
7319 static u8 __netdev_upper_depth(struct net_device *dev)
7320 {
7321 	struct net_device *udev;
7322 	struct list_head *iter;
7323 	u8 max_depth = 0;
7324 	bool ignore;
7325 
7326 	for (iter = &dev->adj_list.upper,
7327 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7328 	     udev;
7329 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7330 		if (ignore)
7331 			continue;
7332 		if (max_depth < udev->upper_level)
7333 			max_depth = udev->upper_level;
7334 	}
7335 
7336 	return max_depth;
7337 }
7338 
7339 static u8 __netdev_lower_depth(struct net_device *dev)
7340 {
7341 	struct net_device *ldev;
7342 	struct list_head *iter;
7343 	u8 max_depth = 0;
7344 	bool ignore;
7345 
7346 	for (iter = &dev->adj_list.lower,
7347 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7348 	     ldev;
7349 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7350 		if (ignore)
7351 			continue;
7352 		if (max_depth < ldev->lower_level)
7353 			max_depth = ldev->lower_level;
7354 	}
7355 
7356 	return max_depth;
7357 }
7358 
7359 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7360 {
7361 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7362 	return 0;
7363 }
7364 
7365 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7366 {
7367 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7368 	return 0;
7369 }
7370 
7371 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7372 				  int (*fn)(struct net_device *dev,
7373 					    void *data),
7374 				  void *data)
7375 {
7376 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7377 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7378 	int ret, cur = 0;
7379 
7380 	now = dev;
7381 	iter = &dev->adj_list.lower;
7382 
7383 	while (1) {
7384 		if (now != dev) {
7385 			ret = fn(now, data);
7386 			if (ret)
7387 				return ret;
7388 		}
7389 
7390 		next = NULL;
7391 		while (1) {
7392 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7393 			if (!ldev)
7394 				break;
7395 
7396 			next = ldev;
7397 			niter = &ldev->adj_list.lower;
7398 			dev_stack[cur] = now;
7399 			iter_stack[cur++] = iter;
7400 			break;
7401 		}
7402 
7403 		if (!next) {
7404 			if (!cur)
7405 				return 0;
7406 			next = dev_stack[--cur];
7407 			niter = iter_stack[cur];
7408 		}
7409 
7410 		now = next;
7411 		iter = niter;
7412 	}
7413 
7414 	return 0;
7415 }
7416 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7417 
7418 /**
7419  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7420  *				       lower neighbour list, RCU
7421  *				       variant
7422  * @dev: device
7423  *
7424  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7425  * list. The caller must hold RCU read lock.
7426  */
7427 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7428 {
7429 	struct netdev_adjacent *lower;
7430 
7431 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7432 			struct netdev_adjacent, list);
7433 	if (lower)
7434 		return lower->private;
7435 	return NULL;
7436 }
7437 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7438 
7439 /**
7440  * netdev_master_upper_dev_get_rcu - Get master upper device
7441  * @dev: device
7442  *
7443  * Find a master upper device and return pointer to it or NULL in case
7444  * it's not there. The caller must hold the RCU read lock.
7445  */
7446 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7447 {
7448 	struct netdev_adjacent *upper;
7449 
7450 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7451 				       struct netdev_adjacent, list);
7452 	if (upper && likely(upper->master))
7453 		return upper->dev;
7454 	return NULL;
7455 }
7456 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7457 
7458 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7459 			      struct net_device *adj_dev,
7460 			      struct list_head *dev_list)
7461 {
7462 	char linkname[IFNAMSIZ+7];
7463 
7464 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7465 		"upper_%s" : "lower_%s", adj_dev->name);
7466 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7467 				 linkname);
7468 }
7469 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7470 			       char *name,
7471 			       struct list_head *dev_list)
7472 {
7473 	char linkname[IFNAMSIZ+7];
7474 
7475 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7476 		"upper_%s" : "lower_%s", name);
7477 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7478 }
7479 
7480 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7481 						 struct net_device *adj_dev,
7482 						 struct list_head *dev_list)
7483 {
7484 	return (dev_list == &dev->adj_list.upper ||
7485 		dev_list == &dev->adj_list.lower) &&
7486 		net_eq(dev_net(dev), dev_net(adj_dev));
7487 }
7488 
7489 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7490 					struct net_device *adj_dev,
7491 					struct list_head *dev_list,
7492 					void *private, bool master)
7493 {
7494 	struct netdev_adjacent *adj;
7495 	int ret;
7496 
7497 	adj = __netdev_find_adj(adj_dev, dev_list);
7498 
7499 	if (adj) {
7500 		adj->ref_nr += 1;
7501 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7502 			 dev->name, adj_dev->name, adj->ref_nr);
7503 
7504 		return 0;
7505 	}
7506 
7507 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7508 	if (!adj)
7509 		return -ENOMEM;
7510 
7511 	adj->dev = adj_dev;
7512 	adj->master = master;
7513 	adj->ref_nr = 1;
7514 	adj->private = private;
7515 	adj->ignore = false;
7516 	dev_hold(adj_dev);
7517 
7518 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7519 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7520 
7521 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7522 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7523 		if (ret)
7524 			goto free_adj;
7525 	}
7526 
7527 	/* Ensure that master link is always the first item in list. */
7528 	if (master) {
7529 		ret = sysfs_create_link(&(dev->dev.kobj),
7530 					&(adj_dev->dev.kobj), "master");
7531 		if (ret)
7532 			goto remove_symlinks;
7533 
7534 		list_add_rcu(&adj->list, dev_list);
7535 	} else {
7536 		list_add_tail_rcu(&adj->list, dev_list);
7537 	}
7538 
7539 	return 0;
7540 
7541 remove_symlinks:
7542 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7543 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7544 free_adj:
7545 	kfree(adj);
7546 	dev_put(adj_dev);
7547 
7548 	return ret;
7549 }
7550 
7551 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7552 					 struct net_device *adj_dev,
7553 					 u16 ref_nr,
7554 					 struct list_head *dev_list)
7555 {
7556 	struct netdev_adjacent *adj;
7557 
7558 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7559 		 dev->name, adj_dev->name, ref_nr);
7560 
7561 	adj = __netdev_find_adj(adj_dev, dev_list);
7562 
7563 	if (!adj) {
7564 		pr_err("Adjacency does not exist for device %s from %s\n",
7565 		       dev->name, adj_dev->name);
7566 		WARN_ON(1);
7567 		return;
7568 	}
7569 
7570 	if (adj->ref_nr > ref_nr) {
7571 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7572 			 dev->name, adj_dev->name, ref_nr,
7573 			 adj->ref_nr - ref_nr);
7574 		adj->ref_nr -= ref_nr;
7575 		return;
7576 	}
7577 
7578 	if (adj->master)
7579 		sysfs_remove_link(&(dev->dev.kobj), "master");
7580 
7581 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7582 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7583 
7584 	list_del_rcu(&adj->list);
7585 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7586 		 adj_dev->name, dev->name, adj_dev->name);
7587 	dev_put(adj_dev);
7588 	kfree_rcu(adj, rcu);
7589 }
7590 
7591 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7592 					    struct net_device *upper_dev,
7593 					    struct list_head *up_list,
7594 					    struct list_head *down_list,
7595 					    void *private, bool master)
7596 {
7597 	int ret;
7598 
7599 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7600 					   private, master);
7601 	if (ret)
7602 		return ret;
7603 
7604 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7605 					   private, false);
7606 	if (ret) {
7607 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7608 		return ret;
7609 	}
7610 
7611 	return 0;
7612 }
7613 
7614 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7615 					       struct net_device *upper_dev,
7616 					       u16 ref_nr,
7617 					       struct list_head *up_list,
7618 					       struct list_head *down_list)
7619 {
7620 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7621 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7622 }
7623 
7624 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7625 						struct net_device *upper_dev,
7626 						void *private, bool master)
7627 {
7628 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7629 						&dev->adj_list.upper,
7630 						&upper_dev->adj_list.lower,
7631 						private, master);
7632 }
7633 
7634 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7635 						   struct net_device *upper_dev)
7636 {
7637 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7638 					   &dev->adj_list.upper,
7639 					   &upper_dev->adj_list.lower);
7640 }
7641 
7642 static int __netdev_upper_dev_link(struct net_device *dev,
7643 				   struct net_device *upper_dev, bool master,
7644 				   void *upper_priv, void *upper_info,
7645 				   struct netlink_ext_ack *extack)
7646 {
7647 	struct netdev_notifier_changeupper_info changeupper_info = {
7648 		.info = {
7649 			.dev = dev,
7650 			.extack = extack,
7651 		},
7652 		.upper_dev = upper_dev,
7653 		.master = master,
7654 		.linking = true,
7655 		.upper_info = upper_info,
7656 	};
7657 	struct net_device *master_dev;
7658 	int ret = 0;
7659 
7660 	ASSERT_RTNL();
7661 
7662 	if (dev == upper_dev)
7663 		return -EBUSY;
7664 
7665 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7666 	if (__netdev_has_upper_dev(upper_dev, dev))
7667 		return -EBUSY;
7668 
7669 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7670 		return -EMLINK;
7671 
7672 	if (!master) {
7673 		if (__netdev_has_upper_dev(dev, upper_dev))
7674 			return -EEXIST;
7675 	} else {
7676 		master_dev = __netdev_master_upper_dev_get(dev);
7677 		if (master_dev)
7678 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7679 	}
7680 
7681 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7682 					    &changeupper_info.info);
7683 	ret = notifier_to_errno(ret);
7684 	if (ret)
7685 		return ret;
7686 
7687 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7688 						   master);
7689 	if (ret)
7690 		return ret;
7691 
7692 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7693 					    &changeupper_info.info);
7694 	ret = notifier_to_errno(ret);
7695 	if (ret)
7696 		goto rollback;
7697 
7698 	__netdev_update_upper_level(dev, NULL);
7699 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7700 
7701 	__netdev_update_lower_level(upper_dev, NULL);
7702 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7703 				    NULL);
7704 
7705 	return 0;
7706 
7707 rollback:
7708 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7709 
7710 	return ret;
7711 }
7712 
7713 /**
7714  * netdev_upper_dev_link - Add a link to the upper device
7715  * @dev: device
7716  * @upper_dev: new upper device
7717  * @extack: netlink extended ack
7718  *
7719  * Adds a link to device which is upper to this one. The caller must hold
7720  * the RTNL lock. On a failure a negative errno code is returned.
7721  * On success the reference counts are adjusted and the function
7722  * returns zero.
7723  */
7724 int netdev_upper_dev_link(struct net_device *dev,
7725 			  struct net_device *upper_dev,
7726 			  struct netlink_ext_ack *extack)
7727 {
7728 	return __netdev_upper_dev_link(dev, upper_dev, false,
7729 				       NULL, NULL, extack);
7730 }
7731 EXPORT_SYMBOL(netdev_upper_dev_link);
7732 
7733 /**
7734  * netdev_master_upper_dev_link - Add a master link to the upper device
7735  * @dev: device
7736  * @upper_dev: new upper device
7737  * @upper_priv: upper device private
7738  * @upper_info: upper info to be passed down via notifier
7739  * @extack: netlink extended ack
7740  *
7741  * Adds a link to device which is upper to this one. In this case, only
7742  * one master upper device can be linked, although other non-master devices
7743  * might be linked as well. The caller must hold the RTNL lock.
7744  * On a failure a negative errno code is returned. On success the reference
7745  * counts are adjusted and the function returns zero.
7746  */
7747 int netdev_master_upper_dev_link(struct net_device *dev,
7748 				 struct net_device *upper_dev,
7749 				 void *upper_priv, void *upper_info,
7750 				 struct netlink_ext_ack *extack)
7751 {
7752 	return __netdev_upper_dev_link(dev, upper_dev, true,
7753 				       upper_priv, upper_info, extack);
7754 }
7755 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7756 
7757 /**
7758  * netdev_upper_dev_unlink - Removes a link to upper device
7759  * @dev: device
7760  * @upper_dev: new upper device
7761  *
7762  * Removes a link to device which is upper to this one. The caller must hold
7763  * the RTNL lock.
7764  */
7765 void netdev_upper_dev_unlink(struct net_device *dev,
7766 			     struct net_device *upper_dev)
7767 {
7768 	struct netdev_notifier_changeupper_info changeupper_info = {
7769 		.info = {
7770 			.dev = dev,
7771 		},
7772 		.upper_dev = upper_dev,
7773 		.linking = false,
7774 	};
7775 
7776 	ASSERT_RTNL();
7777 
7778 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7779 
7780 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7781 				      &changeupper_info.info);
7782 
7783 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7784 
7785 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7786 				      &changeupper_info.info);
7787 
7788 	__netdev_update_upper_level(dev, NULL);
7789 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7790 
7791 	__netdev_update_lower_level(upper_dev, NULL);
7792 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7793 				    NULL);
7794 }
7795 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7796 
7797 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7798 				      struct net_device *lower_dev,
7799 				      bool val)
7800 {
7801 	struct netdev_adjacent *adj;
7802 
7803 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7804 	if (adj)
7805 		adj->ignore = val;
7806 
7807 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7808 	if (adj)
7809 		adj->ignore = val;
7810 }
7811 
7812 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7813 					struct net_device *lower_dev)
7814 {
7815 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7816 }
7817 
7818 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7819 				       struct net_device *lower_dev)
7820 {
7821 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7822 }
7823 
7824 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7825 				   struct net_device *new_dev,
7826 				   struct net_device *dev,
7827 				   struct netlink_ext_ack *extack)
7828 {
7829 	int err;
7830 
7831 	if (!new_dev)
7832 		return 0;
7833 
7834 	if (old_dev && new_dev != old_dev)
7835 		netdev_adjacent_dev_disable(dev, old_dev);
7836 
7837 	err = netdev_upper_dev_link(new_dev, dev, extack);
7838 	if (err) {
7839 		if (old_dev && new_dev != old_dev)
7840 			netdev_adjacent_dev_enable(dev, old_dev);
7841 		return err;
7842 	}
7843 
7844 	return 0;
7845 }
7846 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7847 
7848 void netdev_adjacent_change_commit(struct net_device *old_dev,
7849 				   struct net_device *new_dev,
7850 				   struct net_device *dev)
7851 {
7852 	if (!new_dev || !old_dev)
7853 		return;
7854 
7855 	if (new_dev == old_dev)
7856 		return;
7857 
7858 	netdev_adjacent_dev_enable(dev, old_dev);
7859 	netdev_upper_dev_unlink(old_dev, dev);
7860 }
7861 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7862 
7863 void netdev_adjacent_change_abort(struct net_device *old_dev,
7864 				  struct net_device *new_dev,
7865 				  struct net_device *dev)
7866 {
7867 	if (!new_dev)
7868 		return;
7869 
7870 	if (old_dev && new_dev != old_dev)
7871 		netdev_adjacent_dev_enable(dev, old_dev);
7872 
7873 	netdev_upper_dev_unlink(new_dev, dev);
7874 }
7875 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7876 
7877 /**
7878  * netdev_bonding_info_change - Dispatch event about slave change
7879  * @dev: device
7880  * @bonding_info: info to dispatch
7881  *
7882  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7883  * The caller must hold the RTNL lock.
7884  */
7885 void netdev_bonding_info_change(struct net_device *dev,
7886 				struct netdev_bonding_info *bonding_info)
7887 {
7888 	struct netdev_notifier_bonding_info info = {
7889 		.info.dev = dev,
7890 	};
7891 
7892 	memcpy(&info.bonding_info, bonding_info,
7893 	       sizeof(struct netdev_bonding_info));
7894 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7895 				      &info.info);
7896 }
7897 EXPORT_SYMBOL(netdev_bonding_info_change);
7898 
7899 /**
7900  * netdev_get_xmit_slave - Get the xmit slave of master device
7901  * @skb: The packet
7902  * @all_slaves: assume all the slaves are active
7903  *
7904  * The reference counters are not incremented so the caller must be
7905  * careful with locks. The caller must hold RCU lock.
7906  * %NULL is returned if no slave is found.
7907  */
7908 
7909 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7910 					 struct sk_buff *skb,
7911 					 bool all_slaves)
7912 {
7913 	const struct net_device_ops *ops = dev->netdev_ops;
7914 
7915 	if (!ops->ndo_get_xmit_slave)
7916 		return NULL;
7917 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7918 }
7919 EXPORT_SYMBOL(netdev_get_xmit_slave);
7920 
7921 static void netdev_adjacent_add_links(struct net_device *dev)
7922 {
7923 	struct netdev_adjacent *iter;
7924 
7925 	struct net *net = dev_net(dev);
7926 
7927 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7928 		if (!net_eq(net, dev_net(iter->dev)))
7929 			continue;
7930 		netdev_adjacent_sysfs_add(iter->dev, dev,
7931 					  &iter->dev->adj_list.lower);
7932 		netdev_adjacent_sysfs_add(dev, iter->dev,
7933 					  &dev->adj_list.upper);
7934 	}
7935 
7936 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7937 		if (!net_eq(net, dev_net(iter->dev)))
7938 			continue;
7939 		netdev_adjacent_sysfs_add(iter->dev, dev,
7940 					  &iter->dev->adj_list.upper);
7941 		netdev_adjacent_sysfs_add(dev, iter->dev,
7942 					  &dev->adj_list.lower);
7943 	}
7944 }
7945 
7946 static void netdev_adjacent_del_links(struct net_device *dev)
7947 {
7948 	struct netdev_adjacent *iter;
7949 
7950 	struct net *net = dev_net(dev);
7951 
7952 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7953 		if (!net_eq(net, dev_net(iter->dev)))
7954 			continue;
7955 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7956 					  &iter->dev->adj_list.lower);
7957 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7958 					  &dev->adj_list.upper);
7959 	}
7960 
7961 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7962 		if (!net_eq(net, dev_net(iter->dev)))
7963 			continue;
7964 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7965 					  &iter->dev->adj_list.upper);
7966 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7967 					  &dev->adj_list.lower);
7968 	}
7969 }
7970 
7971 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7972 {
7973 	struct netdev_adjacent *iter;
7974 
7975 	struct net *net = dev_net(dev);
7976 
7977 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7978 		if (!net_eq(net, dev_net(iter->dev)))
7979 			continue;
7980 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7981 					  &iter->dev->adj_list.lower);
7982 		netdev_adjacent_sysfs_add(iter->dev, dev,
7983 					  &iter->dev->adj_list.lower);
7984 	}
7985 
7986 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7987 		if (!net_eq(net, dev_net(iter->dev)))
7988 			continue;
7989 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7990 					  &iter->dev->adj_list.upper);
7991 		netdev_adjacent_sysfs_add(iter->dev, dev,
7992 					  &iter->dev->adj_list.upper);
7993 	}
7994 }
7995 
7996 void *netdev_lower_dev_get_private(struct net_device *dev,
7997 				   struct net_device *lower_dev)
7998 {
7999 	struct netdev_adjacent *lower;
8000 
8001 	if (!lower_dev)
8002 		return NULL;
8003 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8004 	if (!lower)
8005 		return NULL;
8006 
8007 	return lower->private;
8008 }
8009 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8010 
8011 
8012 /**
8013  * netdev_lower_change - Dispatch event about lower device state change
8014  * @lower_dev: device
8015  * @lower_state_info: state to dispatch
8016  *
8017  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8018  * The caller must hold the RTNL lock.
8019  */
8020 void netdev_lower_state_changed(struct net_device *lower_dev,
8021 				void *lower_state_info)
8022 {
8023 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8024 		.info.dev = lower_dev,
8025 	};
8026 
8027 	ASSERT_RTNL();
8028 	changelowerstate_info.lower_state_info = lower_state_info;
8029 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8030 				      &changelowerstate_info.info);
8031 }
8032 EXPORT_SYMBOL(netdev_lower_state_changed);
8033 
8034 static void dev_change_rx_flags(struct net_device *dev, int flags)
8035 {
8036 	const struct net_device_ops *ops = dev->netdev_ops;
8037 
8038 	if (ops->ndo_change_rx_flags)
8039 		ops->ndo_change_rx_flags(dev, flags);
8040 }
8041 
8042 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8043 {
8044 	unsigned int old_flags = dev->flags;
8045 	kuid_t uid;
8046 	kgid_t gid;
8047 
8048 	ASSERT_RTNL();
8049 
8050 	dev->flags |= IFF_PROMISC;
8051 	dev->promiscuity += inc;
8052 	if (dev->promiscuity == 0) {
8053 		/*
8054 		 * Avoid overflow.
8055 		 * If inc causes overflow, untouch promisc and return error.
8056 		 */
8057 		if (inc < 0)
8058 			dev->flags &= ~IFF_PROMISC;
8059 		else {
8060 			dev->promiscuity -= inc;
8061 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8062 				dev->name);
8063 			return -EOVERFLOW;
8064 		}
8065 	}
8066 	if (dev->flags != old_flags) {
8067 		pr_info("device %s %s promiscuous mode\n",
8068 			dev->name,
8069 			dev->flags & IFF_PROMISC ? "entered" : "left");
8070 		if (audit_enabled) {
8071 			current_uid_gid(&uid, &gid);
8072 			audit_log(audit_context(), GFP_ATOMIC,
8073 				  AUDIT_ANOM_PROMISCUOUS,
8074 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8075 				  dev->name, (dev->flags & IFF_PROMISC),
8076 				  (old_flags & IFF_PROMISC),
8077 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8078 				  from_kuid(&init_user_ns, uid),
8079 				  from_kgid(&init_user_ns, gid),
8080 				  audit_get_sessionid(current));
8081 		}
8082 
8083 		dev_change_rx_flags(dev, IFF_PROMISC);
8084 	}
8085 	if (notify)
8086 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8087 	return 0;
8088 }
8089 
8090 /**
8091  *	dev_set_promiscuity	- update promiscuity count on a device
8092  *	@dev: device
8093  *	@inc: modifier
8094  *
8095  *	Add or remove promiscuity from a device. While the count in the device
8096  *	remains above zero the interface remains promiscuous. Once it hits zero
8097  *	the device reverts back to normal filtering operation. A negative inc
8098  *	value is used to drop promiscuity on the device.
8099  *	Return 0 if successful or a negative errno code on error.
8100  */
8101 int dev_set_promiscuity(struct net_device *dev, int inc)
8102 {
8103 	unsigned int old_flags = dev->flags;
8104 	int err;
8105 
8106 	err = __dev_set_promiscuity(dev, inc, true);
8107 	if (err < 0)
8108 		return err;
8109 	if (dev->flags != old_flags)
8110 		dev_set_rx_mode(dev);
8111 	return err;
8112 }
8113 EXPORT_SYMBOL(dev_set_promiscuity);
8114 
8115 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8116 {
8117 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8118 
8119 	ASSERT_RTNL();
8120 
8121 	dev->flags |= IFF_ALLMULTI;
8122 	dev->allmulti += inc;
8123 	if (dev->allmulti == 0) {
8124 		/*
8125 		 * Avoid overflow.
8126 		 * If inc causes overflow, untouch allmulti and return error.
8127 		 */
8128 		if (inc < 0)
8129 			dev->flags &= ~IFF_ALLMULTI;
8130 		else {
8131 			dev->allmulti -= inc;
8132 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8133 				dev->name);
8134 			return -EOVERFLOW;
8135 		}
8136 	}
8137 	if (dev->flags ^ old_flags) {
8138 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8139 		dev_set_rx_mode(dev);
8140 		if (notify)
8141 			__dev_notify_flags(dev, old_flags,
8142 					   dev->gflags ^ old_gflags);
8143 	}
8144 	return 0;
8145 }
8146 
8147 /**
8148  *	dev_set_allmulti	- update allmulti count on a device
8149  *	@dev: device
8150  *	@inc: modifier
8151  *
8152  *	Add or remove reception of all multicast frames to a device. While the
8153  *	count in the device remains above zero the interface remains listening
8154  *	to all interfaces. Once it hits zero the device reverts back to normal
8155  *	filtering operation. A negative @inc value is used to drop the counter
8156  *	when releasing a resource needing all multicasts.
8157  *	Return 0 if successful or a negative errno code on error.
8158  */
8159 
8160 int dev_set_allmulti(struct net_device *dev, int inc)
8161 {
8162 	return __dev_set_allmulti(dev, inc, true);
8163 }
8164 EXPORT_SYMBOL(dev_set_allmulti);
8165 
8166 /*
8167  *	Upload unicast and multicast address lists to device and
8168  *	configure RX filtering. When the device doesn't support unicast
8169  *	filtering it is put in promiscuous mode while unicast addresses
8170  *	are present.
8171  */
8172 void __dev_set_rx_mode(struct net_device *dev)
8173 {
8174 	const struct net_device_ops *ops = dev->netdev_ops;
8175 
8176 	/* dev_open will call this function so the list will stay sane. */
8177 	if (!(dev->flags&IFF_UP))
8178 		return;
8179 
8180 	if (!netif_device_present(dev))
8181 		return;
8182 
8183 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8184 		/* Unicast addresses changes may only happen under the rtnl,
8185 		 * therefore calling __dev_set_promiscuity here is safe.
8186 		 */
8187 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8188 			__dev_set_promiscuity(dev, 1, false);
8189 			dev->uc_promisc = true;
8190 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8191 			__dev_set_promiscuity(dev, -1, false);
8192 			dev->uc_promisc = false;
8193 		}
8194 	}
8195 
8196 	if (ops->ndo_set_rx_mode)
8197 		ops->ndo_set_rx_mode(dev);
8198 }
8199 
8200 void dev_set_rx_mode(struct net_device *dev)
8201 {
8202 	netif_addr_lock_bh(dev);
8203 	__dev_set_rx_mode(dev);
8204 	netif_addr_unlock_bh(dev);
8205 }
8206 
8207 /**
8208  *	dev_get_flags - get flags reported to userspace
8209  *	@dev: device
8210  *
8211  *	Get the combination of flag bits exported through APIs to userspace.
8212  */
8213 unsigned int dev_get_flags(const struct net_device *dev)
8214 {
8215 	unsigned int flags;
8216 
8217 	flags = (dev->flags & ~(IFF_PROMISC |
8218 				IFF_ALLMULTI |
8219 				IFF_RUNNING |
8220 				IFF_LOWER_UP |
8221 				IFF_DORMANT)) |
8222 		(dev->gflags & (IFF_PROMISC |
8223 				IFF_ALLMULTI));
8224 
8225 	if (netif_running(dev)) {
8226 		if (netif_oper_up(dev))
8227 			flags |= IFF_RUNNING;
8228 		if (netif_carrier_ok(dev))
8229 			flags |= IFF_LOWER_UP;
8230 		if (netif_dormant(dev))
8231 			flags |= IFF_DORMANT;
8232 	}
8233 
8234 	return flags;
8235 }
8236 EXPORT_SYMBOL(dev_get_flags);
8237 
8238 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8239 		       struct netlink_ext_ack *extack)
8240 {
8241 	unsigned int old_flags = dev->flags;
8242 	int ret;
8243 
8244 	ASSERT_RTNL();
8245 
8246 	/*
8247 	 *	Set the flags on our device.
8248 	 */
8249 
8250 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8251 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8252 			       IFF_AUTOMEDIA)) |
8253 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8254 				    IFF_ALLMULTI));
8255 
8256 	/*
8257 	 *	Load in the correct multicast list now the flags have changed.
8258 	 */
8259 
8260 	if ((old_flags ^ flags) & IFF_MULTICAST)
8261 		dev_change_rx_flags(dev, IFF_MULTICAST);
8262 
8263 	dev_set_rx_mode(dev);
8264 
8265 	/*
8266 	 *	Have we downed the interface. We handle IFF_UP ourselves
8267 	 *	according to user attempts to set it, rather than blindly
8268 	 *	setting it.
8269 	 */
8270 
8271 	ret = 0;
8272 	if ((old_flags ^ flags) & IFF_UP) {
8273 		if (old_flags & IFF_UP)
8274 			__dev_close(dev);
8275 		else
8276 			ret = __dev_open(dev, extack);
8277 	}
8278 
8279 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8280 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8281 		unsigned int old_flags = dev->flags;
8282 
8283 		dev->gflags ^= IFF_PROMISC;
8284 
8285 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8286 			if (dev->flags != old_flags)
8287 				dev_set_rx_mode(dev);
8288 	}
8289 
8290 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8291 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8292 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8293 	 */
8294 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8295 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8296 
8297 		dev->gflags ^= IFF_ALLMULTI;
8298 		__dev_set_allmulti(dev, inc, false);
8299 	}
8300 
8301 	return ret;
8302 }
8303 
8304 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8305 			unsigned int gchanges)
8306 {
8307 	unsigned int changes = dev->flags ^ old_flags;
8308 
8309 	if (gchanges)
8310 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8311 
8312 	if (changes & IFF_UP) {
8313 		if (dev->flags & IFF_UP)
8314 			call_netdevice_notifiers(NETDEV_UP, dev);
8315 		else
8316 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8317 	}
8318 
8319 	if (dev->flags & IFF_UP &&
8320 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8321 		struct netdev_notifier_change_info change_info = {
8322 			.info = {
8323 				.dev = dev,
8324 			},
8325 			.flags_changed = changes,
8326 		};
8327 
8328 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8329 	}
8330 }
8331 
8332 /**
8333  *	dev_change_flags - change device settings
8334  *	@dev: device
8335  *	@flags: device state flags
8336  *	@extack: netlink extended ack
8337  *
8338  *	Change settings on device based state flags. The flags are
8339  *	in the userspace exported format.
8340  */
8341 int dev_change_flags(struct net_device *dev, unsigned int flags,
8342 		     struct netlink_ext_ack *extack)
8343 {
8344 	int ret;
8345 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8346 
8347 	ret = __dev_change_flags(dev, flags, extack);
8348 	if (ret < 0)
8349 		return ret;
8350 
8351 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8352 	__dev_notify_flags(dev, old_flags, changes);
8353 	return ret;
8354 }
8355 EXPORT_SYMBOL(dev_change_flags);
8356 
8357 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8358 {
8359 	const struct net_device_ops *ops = dev->netdev_ops;
8360 
8361 	if (ops->ndo_change_mtu)
8362 		return ops->ndo_change_mtu(dev, new_mtu);
8363 
8364 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8365 	WRITE_ONCE(dev->mtu, new_mtu);
8366 	return 0;
8367 }
8368 EXPORT_SYMBOL(__dev_set_mtu);
8369 
8370 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8371 		     struct netlink_ext_ack *extack)
8372 {
8373 	/* MTU must be positive, and in range */
8374 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8375 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8376 		return -EINVAL;
8377 	}
8378 
8379 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8380 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8381 		return -EINVAL;
8382 	}
8383 	return 0;
8384 }
8385 
8386 /**
8387  *	dev_set_mtu_ext - Change maximum transfer unit
8388  *	@dev: device
8389  *	@new_mtu: new transfer unit
8390  *	@extack: netlink extended ack
8391  *
8392  *	Change the maximum transfer size of the network device.
8393  */
8394 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8395 		    struct netlink_ext_ack *extack)
8396 {
8397 	int err, orig_mtu;
8398 
8399 	if (new_mtu == dev->mtu)
8400 		return 0;
8401 
8402 	err = dev_validate_mtu(dev, new_mtu, extack);
8403 	if (err)
8404 		return err;
8405 
8406 	if (!netif_device_present(dev))
8407 		return -ENODEV;
8408 
8409 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8410 	err = notifier_to_errno(err);
8411 	if (err)
8412 		return err;
8413 
8414 	orig_mtu = dev->mtu;
8415 	err = __dev_set_mtu(dev, new_mtu);
8416 
8417 	if (!err) {
8418 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8419 						   orig_mtu);
8420 		err = notifier_to_errno(err);
8421 		if (err) {
8422 			/* setting mtu back and notifying everyone again,
8423 			 * so that they have a chance to revert changes.
8424 			 */
8425 			__dev_set_mtu(dev, orig_mtu);
8426 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8427 						     new_mtu);
8428 		}
8429 	}
8430 	return err;
8431 }
8432 
8433 int dev_set_mtu(struct net_device *dev, int new_mtu)
8434 {
8435 	struct netlink_ext_ack extack;
8436 	int err;
8437 
8438 	memset(&extack, 0, sizeof(extack));
8439 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8440 	if (err && extack._msg)
8441 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8442 	return err;
8443 }
8444 EXPORT_SYMBOL(dev_set_mtu);
8445 
8446 /**
8447  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8448  *	@dev: device
8449  *	@new_len: new tx queue length
8450  */
8451 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8452 {
8453 	unsigned int orig_len = dev->tx_queue_len;
8454 	int res;
8455 
8456 	if (new_len != (unsigned int)new_len)
8457 		return -ERANGE;
8458 
8459 	if (new_len != orig_len) {
8460 		dev->tx_queue_len = new_len;
8461 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8462 		res = notifier_to_errno(res);
8463 		if (res)
8464 			goto err_rollback;
8465 		res = dev_qdisc_change_tx_queue_len(dev);
8466 		if (res)
8467 			goto err_rollback;
8468 	}
8469 
8470 	return 0;
8471 
8472 err_rollback:
8473 	netdev_err(dev, "refused to change device tx_queue_len\n");
8474 	dev->tx_queue_len = orig_len;
8475 	return res;
8476 }
8477 
8478 /**
8479  *	dev_set_group - Change group this device belongs to
8480  *	@dev: device
8481  *	@new_group: group this device should belong to
8482  */
8483 void dev_set_group(struct net_device *dev, int new_group)
8484 {
8485 	dev->group = new_group;
8486 }
8487 EXPORT_SYMBOL(dev_set_group);
8488 
8489 /**
8490  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8491  *	@dev: device
8492  *	@addr: new address
8493  *	@extack: netlink extended ack
8494  */
8495 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8496 			      struct netlink_ext_ack *extack)
8497 {
8498 	struct netdev_notifier_pre_changeaddr_info info = {
8499 		.info.dev = dev,
8500 		.info.extack = extack,
8501 		.dev_addr = addr,
8502 	};
8503 	int rc;
8504 
8505 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8506 	return notifier_to_errno(rc);
8507 }
8508 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8509 
8510 /**
8511  *	dev_set_mac_address - Change Media Access Control Address
8512  *	@dev: device
8513  *	@sa: new address
8514  *	@extack: netlink extended ack
8515  *
8516  *	Change the hardware (MAC) address of the device
8517  */
8518 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8519 			struct netlink_ext_ack *extack)
8520 {
8521 	const struct net_device_ops *ops = dev->netdev_ops;
8522 	int err;
8523 
8524 	if (!ops->ndo_set_mac_address)
8525 		return -EOPNOTSUPP;
8526 	if (sa->sa_family != dev->type)
8527 		return -EINVAL;
8528 	if (!netif_device_present(dev))
8529 		return -ENODEV;
8530 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8531 	if (err)
8532 		return err;
8533 	err = ops->ndo_set_mac_address(dev, sa);
8534 	if (err)
8535 		return err;
8536 	dev->addr_assign_type = NET_ADDR_SET;
8537 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8538 	add_device_randomness(dev->dev_addr, dev->addr_len);
8539 	return 0;
8540 }
8541 EXPORT_SYMBOL(dev_set_mac_address);
8542 
8543 /**
8544  *	dev_change_carrier - Change device carrier
8545  *	@dev: device
8546  *	@new_carrier: new value
8547  *
8548  *	Change device carrier
8549  */
8550 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8551 {
8552 	const struct net_device_ops *ops = dev->netdev_ops;
8553 
8554 	if (!ops->ndo_change_carrier)
8555 		return -EOPNOTSUPP;
8556 	if (!netif_device_present(dev))
8557 		return -ENODEV;
8558 	return ops->ndo_change_carrier(dev, new_carrier);
8559 }
8560 EXPORT_SYMBOL(dev_change_carrier);
8561 
8562 /**
8563  *	dev_get_phys_port_id - Get device physical port ID
8564  *	@dev: device
8565  *	@ppid: port ID
8566  *
8567  *	Get device physical port ID
8568  */
8569 int dev_get_phys_port_id(struct net_device *dev,
8570 			 struct netdev_phys_item_id *ppid)
8571 {
8572 	const struct net_device_ops *ops = dev->netdev_ops;
8573 
8574 	if (!ops->ndo_get_phys_port_id)
8575 		return -EOPNOTSUPP;
8576 	return ops->ndo_get_phys_port_id(dev, ppid);
8577 }
8578 EXPORT_SYMBOL(dev_get_phys_port_id);
8579 
8580 /**
8581  *	dev_get_phys_port_name - Get device physical port name
8582  *	@dev: device
8583  *	@name: port name
8584  *	@len: limit of bytes to copy to name
8585  *
8586  *	Get device physical port name
8587  */
8588 int dev_get_phys_port_name(struct net_device *dev,
8589 			   char *name, size_t len)
8590 {
8591 	const struct net_device_ops *ops = dev->netdev_ops;
8592 	int err;
8593 
8594 	if (ops->ndo_get_phys_port_name) {
8595 		err = ops->ndo_get_phys_port_name(dev, name, len);
8596 		if (err != -EOPNOTSUPP)
8597 			return err;
8598 	}
8599 	return devlink_compat_phys_port_name_get(dev, name, len);
8600 }
8601 EXPORT_SYMBOL(dev_get_phys_port_name);
8602 
8603 /**
8604  *	dev_get_port_parent_id - Get the device's port parent identifier
8605  *	@dev: network device
8606  *	@ppid: pointer to a storage for the port's parent identifier
8607  *	@recurse: allow/disallow recursion to lower devices
8608  *
8609  *	Get the devices's port parent identifier
8610  */
8611 int dev_get_port_parent_id(struct net_device *dev,
8612 			   struct netdev_phys_item_id *ppid,
8613 			   bool recurse)
8614 {
8615 	const struct net_device_ops *ops = dev->netdev_ops;
8616 	struct netdev_phys_item_id first = { };
8617 	struct net_device *lower_dev;
8618 	struct list_head *iter;
8619 	int err;
8620 
8621 	if (ops->ndo_get_port_parent_id) {
8622 		err = ops->ndo_get_port_parent_id(dev, ppid);
8623 		if (err != -EOPNOTSUPP)
8624 			return err;
8625 	}
8626 
8627 	err = devlink_compat_switch_id_get(dev, ppid);
8628 	if (!err || err != -EOPNOTSUPP)
8629 		return err;
8630 
8631 	if (!recurse)
8632 		return -EOPNOTSUPP;
8633 
8634 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8635 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8636 		if (err)
8637 			break;
8638 		if (!first.id_len)
8639 			first = *ppid;
8640 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8641 			return -ENODATA;
8642 	}
8643 
8644 	return err;
8645 }
8646 EXPORT_SYMBOL(dev_get_port_parent_id);
8647 
8648 /**
8649  *	netdev_port_same_parent_id - Indicate if two network devices have
8650  *	the same port parent identifier
8651  *	@a: first network device
8652  *	@b: second network device
8653  */
8654 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8655 {
8656 	struct netdev_phys_item_id a_id = { };
8657 	struct netdev_phys_item_id b_id = { };
8658 
8659 	if (dev_get_port_parent_id(a, &a_id, true) ||
8660 	    dev_get_port_parent_id(b, &b_id, true))
8661 		return false;
8662 
8663 	return netdev_phys_item_id_same(&a_id, &b_id);
8664 }
8665 EXPORT_SYMBOL(netdev_port_same_parent_id);
8666 
8667 /**
8668  *	dev_change_proto_down - update protocol port state information
8669  *	@dev: device
8670  *	@proto_down: new value
8671  *
8672  *	This info can be used by switch drivers to set the phys state of the
8673  *	port.
8674  */
8675 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8676 {
8677 	const struct net_device_ops *ops = dev->netdev_ops;
8678 
8679 	if (!ops->ndo_change_proto_down)
8680 		return -EOPNOTSUPP;
8681 	if (!netif_device_present(dev))
8682 		return -ENODEV;
8683 	return ops->ndo_change_proto_down(dev, proto_down);
8684 }
8685 EXPORT_SYMBOL(dev_change_proto_down);
8686 
8687 /**
8688  *	dev_change_proto_down_generic - generic implementation for
8689  * 	ndo_change_proto_down that sets carrier according to
8690  * 	proto_down.
8691  *
8692  *	@dev: device
8693  *	@proto_down: new value
8694  */
8695 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8696 {
8697 	if (proto_down)
8698 		netif_carrier_off(dev);
8699 	else
8700 		netif_carrier_on(dev);
8701 	dev->proto_down = proto_down;
8702 	return 0;
8703 }
8704 EXPORT_SYMBOL(dev_change_proto_down_generic);
8705 
8706 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8707 		    enum bpf_netdev_command cmd)
8708 {
8709 	struct netdev_bpf xdp;
8710 
8711 	if (!bpf_op)
8712 		return 0;
8713 
8714 	memset(&xdp, 0, sizeof(xdp));
8715 	xdp.command = cmd;
8716 
8717 	/* Query must always succeed. */
8718 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8719 
8720 	return xdp.prog_id;
8721 }
8722 
8723 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8724 			   struct netlink_ext_ack *extack, u32 flags,
8725 			   struct bpf_prog *prog)
8726 {
8727 	bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8728 	struct bpf_prog *prev_prog = NULL;
8729 	struct netdev_bpf xdp;
8730 	int err;
8731 
8732 	if (non_hw) {
8733 		prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8734 							   XDP_QUERY_PROG));
8735 		if (IS_ERR(prev_prog))
8736 			prev_prog = NULL;
8737 	}
8738 
8739 	memset(&xdp, 0, sizeof(xdp));
8740 	if (flags & XDP_FLAGS_HW_MODE)
8741 		xdp.command = XDP_SETUP_PROG_HW;
8742 	else
8743 		xdp.command = XDP_SETUP_PROG;
8744 	xdp.extack = extack;
8745 	xdp.flags = flags;
8746 	xdp.prog = prog;
8747 
8748 	err = bpf_op(dev, &xdp);
8749 	if (!err && non_hw)
8750 		bpf_prog_change_xdp(prev_prog, prog);
8751 
8752 	if (prev_prog)
8753 		bpf_prog_put(prev_prog);
8754 
8755 	return err;
8756 }
8757 
8758 static void dev_xdp_uninstall(struct net_device *dev)
8759 {
8760 	struct netdev_bpf xdp;
8761 	bpf_op_t ndo_bpf;
8762 
8763 	/* Remove generic XDP */
8764 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8765 
8766 	/* Remove from the driver */
8767 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8768 	if (!ndo_bpf)
8769 		return;
8770 
8771 	memset(&xdp, 0, sizeof(xdp));
8772 	xdp.command = XDP_QUERY_PROG;
8773 	WARN_ON(ndo_bpf(dev, &xdp));
8774 	if (xdp.prog_id)
8775 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8776 					NULL));
8777 
8778 	/* Remove HW offload */
8779 	memset(&xdp, 0, sizeof(xdp));
8780 	xdp.command = XDP_QUERY_PROG_HW;
8781 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8782 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8783 					NULL));
8784 }
8785 
8786 /**
8787  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8788  *	@dev: device
8789  *	@extack: netlink extended ack
8790  *	@fd: new program fd or negative value to clear
8791  *	@expected_fd: old program fd that userspace expects to replace or clear
8792  *	@flags: xdp-related flags
8793  *
8794  *	Set or clear a bpf program for a device
8795  */
8796 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8797 		      int fd, int expected_fd, u32 flags)
8798 {
8799 	const struct net_device_ops *ops = dev->netdev_ops;
8800 	enum bpf_netdev_command query;
8801 	u32 prog_id, expected_id = 0;
8802 	bpf_op_t bpf_op, bpf_chk;
8803 	struct bpf_prog *prog;
8804 	bool offload;
8805 	int err;
8806 
8807 	ASSERT_RTNL();
8808 
8809 	offload = flags & XDP_FLAGS_HW_MODE;
8810 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8811 
8812 	bpf_op = bpf_chk = ops->ndo_bpf;
8813 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8814 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8815 		return -EOPNOTSUPP;
8816 	}
8817 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8818 		bpf_op = generic_xdp_install;
8819 	if (bpf_op == bpf_chk)
8820 		bpf_chk = generic_xdp_install;
8821 
8822 	prog_id = __dev_xdp_query(dev, bpf_op, query);
8823 	if (flags & XDP_FLAGS_REPLACE) {
8824 		if (expected_fd >= 0) {
8825 			prog = bpf_prog_get_type_dev(expected_fd,
8826 						     BPF_PROG_TYPE_XDP,
8827 						     bpf_op == ops->ndo_bpf);
8828 			if (IS_ERR(prog))
8829 				return PTR_ERR(prog);
8830 			expected_id = prog->aux->id;
8831 			bpf_prog_put(prog);
8832 		}
8833 
8834 		if (prog_id != expected_id) {
8835 			NL_SET_ERR_MSG(extack, "Active program does not match expected");
8836 			return -EEXIST;
8837 		}
8838 	}
8839 	if (fd >= 0) {
8840 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8841 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8842 			return -EEXIST;
8843 		}
8844 
8845 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8846 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8847 			return -EBUSY;
8848 		}
8849 
8850 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8851 					     bpf_op == ops->ndo_bpf);
8852 		if (IS_ERR(prog))
8853 			return PTR_ERR(prog);
8854 
8855 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8856 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8857 			bpf_prog_put(prog);
8858 			return -EINVAL;
8859 		}
8860 
8861 		if (prog->expected_attach_type == BPF_XDP_DEVMAP) {
8862 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
8863 			bpf_prog_put(prog);
8864 			return -EINVAL;
8865 		}
8866 
8867 		/* prog->aux->id may be 0 for orphaned device-bound progs */
8868 		if (prog->aux->id && prog->aux->id == prog_id) {
8869 			bpf_prog_put(prog);
8870 			return 0;
8871 		}
8872 	} else {
8873 		if (!prog_id)
8874 			return 0;
8875 		prog = NULL;
8876 	}
8877 
8878 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8879 	if (err < 0 && prog)
8880 		bpf_prog_put(prog);
8881 
8882 	return err;
8883 }
8884 
8885 /**
8886  *	dev_new_index	-	allocate an ifindex
8887  *	@net: the applicable net namespace
8888  *
8889  *	Returns a suitable unique value for a new device interface
8890  *	number.  The caller must hold the rtnl semaphore or the
8891  *	dev_base_lock to be sure it remains unique.
8892  */
8893 static int dev_new_index(struct net *net)
8894 {
8895 	int ifindex = net->ifindex;
8896 
8897 	for (;;) {
8898 		if (++ifindex <= 0)
8899 			ifindex = 1;
8900 		if (!__dev_get_by_index(net, ifindex))
8901 			return net->ifindex = ifindex;
8902 	}
8903 }
8904 
8905 /* Delayed registration/unregisteration */
8906 static LIST_HEAD(net_todo_list);
8907 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8908 
8909 static void net_set_todo(struct net_device *dev)
8910 {
8911 	list_add_tail(&dev->todo_list, &net_todo_list);
8912 	dev_net(dev)->dev_unreg_count++;
8913 }
8914 
8915 static void rollback_registered_many(struct list_head *head)
8916 {
8917 	struct net_device *dev, *tmp;
8918 	LIST_HEAD(close_head);
8919 
8920 	BUG_ON(dev_boot_phase);
8921 	ASSERT_RTNL();
8922 
8923 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8924 		/* Some devices call without registering
8925 		 * for initialization unwind. Remove those
8926 		 * devices and proceed with the remaining.
8927 		 */
8928 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8929 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8930 				 dev->name, dev);
8931 
8932 			WARN_ON(1);
8933 			list_del(&dev->unreg_list);
8934 			continue;
8935 		}
8936 		dev->dismantle = true;
8937 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8938 	}
8939 
8940 	/* If device is running, close it first. */
8941 	list_for_each_entry(dev, head, unreg_list)
8942 		list_add_tail(&dev->close_list, &close_head);
8943 	dev_close_many(&close_head, true);
8944 
8945 	list_for_each_entry(dev, head, unreg_list) {
8946 		/* And unlink it from device chain. */
8947 		unlist_netdevice(dev);
8948 
8949 		dev->reg_state = NETREG_UNREGISTERING;
8950 	}
8951 	flush_all_backlogs();
8952 
8953 	synchronize_net();
8954 
8955 	list_for_each_entry(dev, head, unreg_list) {
8956 		struct sk_buff *skb = NULL;
8957 
8958 		/* Shutdown queueing discipline. */
8959 		dev_shutdown(dev);
8960 
8961 		dev_xdp_uninstall(dev);
8962 
8963 		/* Notify protocols, that we are about to destroy
8964 		 * this device. They should clean all the things.
8965 		 */
8966 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8967 
8968 		if (!dev->rtnl_link_ops ||
8969 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8970 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8971 						     GFP_KERNEL, NULL, 0);
8972 
8973 		/*
8974 		 *	Flush the unicast and multicast chains
8975 		 */
8976 		dev_uc_flush(dev);
8977 		dev_mc_flush(dev);
8978 
8979 		netdev_name_node_alt_flush(dev);
8980 		netdev_name_node_free(dev->name_node);
8981 
8982 		if (dev->netdev_ops->ndo_uninit)
8983 			dev->netdev_ops->ndo_uninit(dev);
8984 
8985 		if (skb)
8986 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8987 
8988 		/* Notifier chain MUST detach us all upper devices. */
8989 		WARN_ON(netdev_has_any_upper_dev(dev));
8990 		WARN_ON(netdev_has_any_lower_dev(dev));
8991 
8992 		/* Remove entries from kobject tree */
8993 		netdev_unregister_kobject(dev);
8994 #ifdef CONFIG_XPS
8995 		/* Remove XPS queueing entries */
8996 		netif_reset_xps_queues_gt(dev, 0);
8997 #endif
8998 	}
8999 
9000 	synchronize_net();
9001 
9002 	list_for_each_entry(dev, head, unreg_list)
9003 		dev_put(dev);
9004 }
9005 
9006 static void rollback_registered(struct net_device *dev)
9007 {
9008 	LIST_HEAD(single);
9009 
9010 	list_add(&dev->unreg_list, &single);
9011 	rollback_registered_many(&single);
9012 	list_del(&single);
9013 }
9014 
9015 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9016 	struct net_device *upper, netdev_features_t features)
9017 {
9018 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9019 	netdev_features_t feature;
9020 	int feature_bit;
9021 
9022 	for_each_netdev_feature(upper_disables, feature_bit) {
9023 		feature = __NETIF_F_BIT(feature_bit);
9024 		if (!(upper->wanted_features & feature)
9025 		    && (features & feature)) {
9026 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9027 				   &feature, upper->name);
9028 			features &= ~feature;
9029 		}
9030 	}
9031 
9032 	return features;
9033 }
9034 
9035 static void netdev_sync_lower_features(struct net_device *upper,
9036 	struct net_device *lower, netdev_features_t features)
9037 {
9038 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9039 	netdev_features_t feature;
9040 	int feature_bit;
9041 
9042 	for_each_netdev_feature(upper_disables, feature_bit) {
9043 		feature = __NETIF_F_BIT(feature_bit);
9044 		if (!(features & feature) && (lower->features & feature)) {
9045 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9046 				   &feature, lower->name);
9047 			lower->wanted_features &= ~feature;
9048 			__netdev_update_features(lower);
9049 
9050 			if (unlikely(lower->features & feature))
9051 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9052 					    &feature, lower->name);
9053 			else
9054 				netdev_features_change(lower);
9055 		}
9056 	}
9057 }
9058 
9059 static netdev_features_t netdev_fix_features(struct net_device *dev,
9060 	netdev_features_t features)
9061 {
9062 	/* Fix illegal checksum combinations */
9063 	if ((features & NETIF_F_HW_CSUM) &&
9064 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9065 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9066 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9067 	}
9068 
9069 	/* TSO requires that SG is present as well. */
9070 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9071 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9072 		features &= ~NETIF_F_ALL_TSO;
9073 	}
9074 
9075 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9076 					!(features & NETIF_F_IP_CSUM)) {
9077 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9078 		features &= ~NETIF_F_TSO;
9079 		features &= ~NETIF_F_TSO_ECN;
9080 	}
9081 
9082 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9083 					 !(features & NETIF_F_IPV6_CSUM)) {
9084 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9085 		features &= ~NETIF_F_TSO6;
9086 	}
9087 
9088 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9089 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9090 		features &= ~NETIF_F_TSO_MANGLEID;
9091 
9092 	/* TSO ECN requires that TSO is present as well. */
9093 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9094 		features &= ~NETIF_F_TSO_ECN;
9095 
9096 	/* Software GSO depends on SG. */
9097 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9098 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9099 		features &= ~NETIF_F_GSO;
9100 	}
9101 
9102 	/* GSO partial features require GSO partial be set */
9103 	if ((features & dev->gso_partial_features) &&
9104 	    !(features & NETIF_F_GSO_PARTIAL)) {
9105 		netdev_dbg(dev,
9106 			   "Dropping partially supported GSO features since no GSO partial.\n");
9107 		features &= ~dev->gso_partial_features;
9108 	}
9109 
9110 	if (!(features & NETIF_F_RXCSUM)) {
9111 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9112 		 * successfully merged by hardware must also have the
9113 		 * checksum verified by hardware.  If the user does not
9114 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9115 		 */
9116 		if (features & NETIF_F_GRO_HW) {
9117 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9118 			features &= ~NETIF_F_GRO_HW;
9119 		}
9120 	}
9121 
9122 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9123 	if (features & NETIF_F_RXFCS) {
9124 		if (features & NETIF_F_LRO) {
9125 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9126 			features &= ~NETIF_F_LRO;
9127 		}
9128 
9129 		if (features & NETIF_F_GRO_HW) {
9130 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9131 			features &= ~NETIF_F_GRO_HW;
9132 		}
9133 	}
9134 
9135 	return features;
9136 }
9137 
9138 int __netdev_update_features(struct net_device *dev)
9139 {
9140 	struct net_device *upper, *lower;
9141 	netdev_features_t features;
9142 	struct list_head *iter;
9143 	int err = -1;
9144 
9145 	ASSERT_RTNL();
9146 
9147 	features = netdev_get_wanted_features(dev);
9148 
9149 	if (dev->netdev_ops->ndo_fix_features)
9150 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9151 
9152 	/* driver might be less strict about feature dependencies */
9153 	features = netdev_fix_features(dev, features);
9154 
9155 	/* some features can't be enabled if they're off an an upper device */
9156 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9157 		features = netdev_sync_upper_features(dev, upper, features);
9158 
9159 	if (dev->features == features)
9160 		goto sync_lower;
9161 
9162 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9163 		&dev->features, &features);
9164 
9165 	if (dev->netdev_ops->ndo_set_features)
9166 		err = dev->netdev_ops->ndo_set_features(dev, features);
9167 	else
9168 		err = 0;
9169 
9170 	if (unlikely(err < 0)) {
9171 		netdev_err(dev,
9172 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9173 			err, &features, &dev->features);
9174 		/* return non-0 since some features might have changed and
9175 		 * it's better to fire a spurious notification than miss it
9176 		 */
9177 		return -1;
9178 	}
9179 
9180 sync_lower:
9181 	/* some features must be disabled on lower devices when disabled
9182 	 * on an upper device (think: bonding master or bridge)
9183 	 */
9184 	netdev_for_each_lower_dev(dev, lower, iter)
9185 		netdev_sync_lower_features(dev, lower, features);
9186 
9187 	if (!err) {
9188 		netdev_features_t diff = features ^ dev->features;
9189 
9190 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9191 			/* udp_tunnel_{get,drop}_rx_info both need
9192 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9193 			 * device, or they won't do anything.
9194 			 * Thus we need to update dev->features
9195 			 * *before* calling udp_tunnel_get_rx_info,
9196 			 * but *after* calling udp_tunnel_drop_rx_info.
9197 			 */
9198 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9199 				dev->features = features;
9200 				udp_tunnel_get_rx_info(dev);
9201 			} else {
9202 				udp_tunnel_drop_rx_info(dev);
9203 			}
9204 		}
9205 
9206 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9207 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9208 				dev->features = features;
9209 				err |= vlan_get_rx_ctag_filter_info(dev);
9210 			} else {
9211 				vlan_drop_rx_ctag_filter_info(dev);
9212 			}
9213 		}
9214 
9215 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9216 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9217 				dev->features = features;
9218 				err |= vlan_get_rx_stag_filter_info(dev);
9219 			} else {
9220 				vlan_drop_rx_stag_filter_info(dev);
9221 			}
9222 		}
9223 
9224 		dev->features = features;
9225 	}
9226 
9227 	return err < 0 ? 0 : 1;
9228 }
9229 
9230 /**
9231  *	netdev_update_features - recalculate device features
9232  *	@dev: the device to check
9233  *
9234  *	Recalculate dev->features set and send notifications if it
9235  *	has changed. Should be called after driver or hardware dependent
9236  *	conditions might have changed that influence the features.
9237  */
9238 void netdev_update_features(struct net_device *dev)
9239 {
9240 	if (__netdev_update_features(dev))
9241 		netdev_features_change(dev);
9242 }
9243 EXPORT_SYMBOL(netdev_update_features);
9244 
9245 /**
9246  *	netdev_change_features - recalculate device features
9247  *	@dev: the device to check
9248  *
9249  *	Recalculate dev->features set and send notifications even
9250  *	if they have not changed. Should be called instead of
9251  *	netdev_update_features() if also dev->vlan_features might
9252  *	have changed to allow the changes to be propagated to stacked
9253  *	VLAN devices.
9254  */
9255 void netdev_change_features(struct net_device *dev)
9256 {
9257 	__netdev_update_features(dev);
9258 	netdev_features_change(dev);
9259 }
9260 EXPORT_SYMBOL(netdev_change_features);
9261 
9262 /**
9263  *	netif_stacked_transfer_operstate -	transfer operstate
9264  *	@rootdev: the root or lower level device to transfer state from
9265  *	@dev: the device to transfer operstate to
9266  *
9267  *	Transfer operational state from root to device. This is normally
9268  *	called when a stacking relationship exists between the root
9269  *	device and the device(a leaf device).
9270  */
9271 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9272 					struct net_device *dev)
9273 {
9274 	if (rootdev->operstate == IF_OPER_DORMANT)
9275 		netif_dormant_on(dev);
9276 	else
9277 		netif_dormant_off(dev);
9278 
9279 	if (rootdev->operstate == IF_OPER_TESTING)
9280 		netif_testing_on(dev);
9281 	else
9282 		netif_testing_off(dev);
9283 
9284 	if (netif_carrier_ok(rootdev))
9285 		netif_carrier_on(dev);
9286 	else
9287 		netif_carrier_off(dev);
9288 }
9289 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9290 
9291 static int netif_alloc_rx_queues(struct net_device *dev)
9292 {
9293 	unsigned int i, count = dev->num_rx_queues;
9294 	struct netdev_rx_queue *rx;
9295 	size_t sz = count * sizeof(*rx);
9296 	int err = 0;
9297 
9298 	BUG_ON(count < 1);
9299 
9300 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9301 	if (!rx)
9302 		return -ENOMEM;
9303 
9304 	dev->_rx = rx;
9305 
9306 	for (i = 0; i < count; i++) {
9307 		rx[i].dev = dev;
9308 
9309 		/* XDP RX-queue setup */
9310 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9311 		if (err < 0)
9312 			goto err_rxq_info;
9313 	}
9314 	return 0;
9315 
9316 err_rxq_info:
9317 	/* Rollback successful reg's and free other resources */
9318 	while (i--)
9319 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9320 	kvfree(dev->_rx);
9321 	dev->_rx = NULL;
9322 	return err;
9323 }
9324 
9325 static void netif_free_rx_queues(struct net_device *dev)
9326 {
9327 	unsigned int i, count = dev->num_rx_queues;
9328 
9329 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9330 	if (!dev->_rx)
9331 		return;
9332 
9333 	for (i = 0; i < count; i++)
9334 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9335 
9336 	kvfree(dev->_rx);
9337 }
9338 
9339 static void netdev_init_one_queue(struct net_device *dev,
9340 				  struct netdev_queue *queue, void *_unused)
9341 {
9342 	/* Initialize queue lock */
9343 	spin_lock_init(&queue->_xmit_lock);
9344 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9345 	queue->xmit_lock_owner = -1;
9346 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9347 	queue->dev = dev;
9348 #ifdef CONFIG_BQL
9349 	dql_init(&queue->dql, HZ);
9350 #endif
9351 }
9352 
9353 static void netif_free_tx_queues(struct net_device *dev)
9354 {
9355 	kvfree(dev->_tx);
9356 }
9357 
9358 static int netif_alloc_netdev_queues(struct net_device *dev)
9359 {
9360 	unsigned int count = dev->num_tx_queues;
9361 	struct netdev_queue *tx;
9362 	size_t sz = count * sizeof(*tx);
9363 
9364 	if (count < 1 || count > 0xffff)
9365 		return -EINVAL;
9366 
9367 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9368 	if (!tx)
9369 		return -ENOMEM;
9370 
9371 	dev->_tx = tx;
9372 
9373 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9374 	spin_lock_init(&dev->tx_global_lock);
9375 
9376 	return 0;
9377 }
9378 
9379 void netif_tx_stop_all_queues(struct net_device *dev)
9380 {
9381 	unsigned int i;
9382 
9383 	for (i = 0; i < dev->num_tx_queues; i++) {
9384 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9385 
9386 		netif_tx_stop_queue(txq);
9387 	}
9388 }
9389 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9390 
9391 /**
9392  *	register_netdevice	- register a network device
9393  *	@dev: device to register
9394  *
9395  *	Take a completed network device structure and add it to the kernel
9396  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9397  *	chain. 0 is returned on success. A negative errno code is returned
9398  *	on a failure to set up the device, or if the name is a duplicate.
9399  *
9400  *	Callers must hold the rtnl semaphore. You may want
9401  *	register_netdev() instead of this.
9402  *
9403  *	BUGS:
9404  *	The locking appears insufficient to guarantee two parallel registers
9405  *	will not get the same name.
9406  */
9407 
9408 int register_netdevice(struct net_device *dev)
9409 {
9410 	int ret;
9411 	struct net *net = dev_net(dev);
9412 
9413 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9414 		     NETDEV_FEATURE_COUNT);
9415 	BUG_ON(dev_boot_phase);
9416 	ASSERT_RTNL();
9417 
9418 	might_sleep();
9419 
9420 	/* When net_device's are persistent, this will be fatal. */
9421 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9422 	BUG_ON(!net);
9423 
9424 	ret = ethtool_check_ops(dev->ethtool_ops);
9425 	if (ret)
9426 		return ret;
9427 
9428 	spin_lock_init(&dev->addr_list_lock);
9429 	netdev_set_addr_lockdep_class(dev);
9430 
9431 	ret = dev_get_valid_name(net, dev, dev->name);
9432 	if (ret < 0)
9433 		goto out;
9434 
9435 	ret = -ENOMEM;
9436 	dev->name_node = netdev_name_node_head_alloc(dev);
9437 	if (!dev->name_node)
9438 		goto out;
9439 
9440 	/* Init, if this function is available */
9441 	if (dev->netdev_ops->ndo_init) {
9442 		ret = dev->netdev_ops->ndo_init(dev);
9443 		if (ret) {
9444 			if (ret > 0)
9445 				ret = -EIO;
9446 			goto err_free_name;
9447 		}
9448 	}
9449 
9450 	if (((dev->hw_features | dev->features) &
9451 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9452 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9453 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9454 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9455 		ret = -EINVAL;
9456 		goto err_uninit;
9457 	}
9458 
9459 	ret = -EBUSY;
9460 	if (!dev->ifindex)
9461 		dev->ifindex = dev_new_index(net);
9462 	else if (__dev_get_by_index(net, dev->ifindex))
9463 		goto err_uninit;
9464 
9465 	/* Transfer changeable features to wanted_features and enable
9466 	 * software offloads (GSO and GRO).
9467 	 */
9468 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9469 	dev->features |= NETIF_F_SOFT_FEATURES;
9470 
9471 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9472 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9473 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9474 	}
9475 
9476 	dev->wanted_features = dev->features & dev->hw_features;
9477 
9478 	if (!(dev->flags & IFF_LOOPBACK))
9479 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9480 
9481 	/* If IPv4 TCP segmentation offload is supported we should also
9482 	 * allow the device to enable segmenting the frame with the option
9483 	 * of ignoring a static IP ID value.  This doesn't enable the
9484 	 * feature itself but allows the user to enable it later.
9485 	 */
9486 	if (dev->hw_features & NETIF_F_TSO)
9487 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9488 	if (dev->vlan_features & NETIF_F_TSO)
9489 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9490 	if (dev->mpls_features & NETIF_F_TSO)
9491 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9492 	if (dev->hw_enc_features & NETIF_F_TSO)
9493 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9494 
9495 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9496 	 */
9497 	dev->vlan_features |= NETIF_F_HIGHDMA;
9498 
9499 	/* Make NETIF_F_SG inheritable to tunnel devices.
9500 	 */
9501 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9502 
9503 	/* Make NETIF_F_SG inheritable to MPLS.
9504 	 */
9505 	dev->mpls_features |= NETIF_F_SG;
9506 
9507 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9508 	ret = notifier_to_errno(ret);
9509 	if (ret)
9510 		goto err_uninit;
9511 
9512 	ret = netdev_register_kobject(dev);
9513 	if (ret) {
9514 		dev->reg_state = NETREG_UNREGISTERED;
9515 		goto err_uninit;
9516 	}
9517 	dev->reg_state = NETREG_REGISTERED;
9518 
9519 	__netdev_update_features(dev);
9520 
9521 	/*
9522 	 *	Default initial state at registry is that the
9523 	 *	device is present.
9524 	 */
9525 
9526 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9527 
9528 	linkwatch_init_dev(dev);
9529 
9530 	dev_init_scheduler(dev);
9531 	dev_hold(dev);
9532 	list_netdevice(dev);
9533 	add_device_randomness(dev->dev_addr, dev->addr_len);
9534 
9535 	/* If the device has permanent device address, driver should
9536 	 * set dev_addr and also addr_assign_type should be set to
9537 	 * NET_ADDR_PERM (default value).
9538 	 */
9539 	if (dev->addr_assign_type == NET_ADDR_PERM)
9540 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9541 
9542 	/* Notify protocols, that a new device appeared. */
9543 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9544 	ret = notifier_to_errno(ret);
9545 	if (ret) {
9546 		rollback_registered(dev);
9547 		rcu_barrier();
9548 
9549 		dev->reg_state = NETREG_UNREGISTERED;
9550 	}
9551 	/*
9552 	 *	Prevent userspace races by waiting until the network
9553 	 *	device is fully setup before sending notifications.
9554 	 */
9555 	if (!dev->rtnl_link_ops ||
9556 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9557 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9558 
9559 out:
9560 	return ret;
9561 
9562 err_uninit:
9563 	if (dev->netdev_ops->ndo_uninit)
9564 		dev->netdev_ops->ndo_uninit(dev);
9565 	if (dev->priv_destructor)
9566 		dev->priv_destructor(dev);
9567 err_free_name:
9568 	netdev_name_node_free(dev->name_node);
9569 	goto out;
9570 }
9571 EXPORT_SYMBOL(register_netdevice);
9572 
9573 /**
9574  *	init_dummy_netdev	- init a dummy network device for NAPI
9575  *	@dev: device to init
9576  *
9577  *	This takes a network device structure and initialize the minimum
9578  *	amount of fields so it can be used to schedule NAPI polls without
9579  *	registering a full blown interface. This is to be used by drivers
9580  *	that need to tie several hardware interfaces to a single NAPI
9581  *	poll scheduler due to HW limitations.
9582  */
9583 int init_dummy_netdev(struct net_device *dev)
9584 {
9585 	/* Clear everything. Note we don't initialize spinlocks
9586 	 * are they aren't supposed to be taken by any of the
9587 	 * NAPI code and this dummy netdev is supposed to be
9588 	 * only ever used for NAPI polls
9589 	 */
9590 	memset(dev, 0, sizeof(struct net_device));
9591 
9592 	/* make sure we BUG if trying to hit standard
9593 	 * register/unregister code path
9594 	 */
9595 	dev->reg_state = NETREG_DUMMY;
9596 
9597 	/* NAPI wants this */
9598 	INIT_LIST_HEAD(&dev->napi_list);
9599 
9600 	/* a dummy interface is started by default */
9601 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9602 	set_bit(__LINK_STATE_START, &dev->state);
9603 
9604 	/* napi_busy_loop stats accounting wants this */
9605 	dev_net_set(dev, &init_net);
9606 
9607 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9608 	 * because users of this 'device' dont need to change
9609 	 * its refcount.
9610 	 */
9611 
9612 	return 0;
9613 }
9614 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9615 
9616 
9617 /**
9618  *	register_netdev	- register a network device
9619  *	@dev: device to register
9620  *
9621  *	Take a completed network device structure and add it to the kernel
9622  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9623  *	chain. 0 is returned on success. A negative errno code is returned
9624  *	on a failure to set up the device, or if the name is a duplicate.
9625  *
9626  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
9627  *	and expands the device name if you passed a format string to
9628  *	alloc_netdev.
9629  */
9630 int register_netdev(struct net_device *dev)
9631 {
9632 	int err;
9633 
9634 	if (rtnl_lock_killable())
9635 		return -EINTR;
9636 	err = register_netdevice(dev);
9637 	rtnl_unlock();
9638 	return err;
9639 }
9640 EXPORT_SYMBOL(register_netdev);
9641 
9642 int netdev_refcnt_read(const struct net_device *dev)
9643 {
9644 	int i, refcnt = 0;
9645 
9646 	for_each_possible_cpu(i)
9647 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9648 	return refcnt;
9649 }
9650 EXPORT_SYMBOL(netdev_refcnt_read);
9651 
9652 /**
9653  * netdev_wait_allrefs - wait until all references are gone.
9654  * @dev: target net_device
9655  *
9656  * This is called when unregistering network devices.
9657  *
9658  * Any protocol or device that holds a reference should register
9659  * for netdevice notification, and cleanup and put back the
9660  * reference if they receive an UNREGISTER event.
9661  * We can get stuck here if buggy protocols don't correctly
9662  * call dev_put.
9663  */
9664 static void netdev_wait_allrefs(struct net_device *dev)
9665 {
9666 	unsigned long rebroadcast_time, warning_time;
9667 	int refcnt;
9668 
9669 	linkwatch_forget_dev(dev);
9670 
9671 	rebroadcast_time = warning_time = jiffies;
9672 	refcnt = netdev_refcnt_read(dev);
9673 
9674 	while (refcnt != 0) {
9675 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9676 			rtnl_lock();
9677 
9678 			/* Rebroadcast unregister notification */
9679 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9680 
9681 			__rtnl_unlock();
9682 			rcu_barrier();
9683 			rtnl_lock();
9684 
9685 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9686 				     &dev->state)) {
9687 				/* We must not have linkwatch events
9688 				 * pending on unregister. If this
9689 				 * happens, we simply run the queue
9690 				 * unscheduled, resulting in a noop
9691 				 * for this device.
9692 				 */
9693 				linkwatch_run_queue();
9694 			}
9695 
9696 			__rtnl_unlock();
9697 
9698 			rebroadcast_time = jiffies;
9699 		}
9700 
9701 		msleep(250);
9702 
9703 		refcnt = netdev_refcnt_read(dev);
9704 
9705 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9706 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9707 				 dev->name, refcnt);
9708 			warning_time = jiffies;
9709 		}
9710 	}
9711 }
9712 
9713 /* The sequence is:
9714  *
9715  *	rtnl_lock();
9716  *	...
9717  *	register_netdevice(x1);
9718  *	register_netdevice(x2);
9719  *	...
9720  *	unregister_netdevice(y1);
9721  *	unregister_netdevice(y2);
9722  *      ...
9723  *	rtnl_unlock();
9724  *	free_netdev(y1);
9725  *	free_netdev(y2);
9726  *
9727  * We are invoked by rtnl_unlock().
9728  * This allows us to deal with problems:
9729  * 1) We can delete sysfs objects which invoke hotplug
9730  *    without deadlocking with linkwatch via keventd.
9731  * 2) Since we run with the RTNL semaphore not held, we can sleep
9732  *    safely in order to wait for the netdev refcnt to drop to zero.
9733  *
9734  * We must not return until all unregister events added during
9735  * the interval the lock was held have been completed.
9736  */
9737 void netdev_run_todo(void)
9738 {
9739 	struct list_head list;
9740 
9741 	/* Snapshot list, allow later requests */
9742 	list_replace_init(&net_todo_list, &list);
9743 
9744 	__rtnl_unlock();
9745 
9746 
9747 	/* Wait for rcu callbacks to finish before next phase */
9748 	if (!list_empty(&list))
9749 		rcu_barrier();
9750 
9751 	while (!list_empty(&list)) {
9752 		struct net_device *dev
9753 			= list_first_entry(&list, struct net_device, todo_list);
9754 		list_del(&dev->todo_list);
9755 
9756 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9757 			pr_err("network todo '%s' but state %d\n",
9758 			       dev->name, dev->reg_state);
9759 			dump_stack();
9760 			continue;
9761 		}
9762 
9763 		dev->reg_state = NETREG_UNREGISTERED;
9764 
9765 		netdev_wait_allrefs(dev);
9766 
9767 		/* paranoia */
9768 		BUG_ON(netdev_refcnt_read(dev));
9769 		BUG_ON(!list_empty(&dev->ptype_all));
9770 		BUG_ON(!list_empty(&dev->ptype_specific));
9771 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
9772 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9773 #if IS_ENABLED(CONFIG_DECNET)
9774 		WARN_ON(dev->dn_ptr);
9775 #endif
9776 		if (dev->priv_destructor)
9777 			dev->priv_destructor(dev);
9778 		if (dev->needs_free_netdev)
9779 			free_netdev(dev);
9780 
9781 		/* Report a network device has been unregistered */
9782 		rtnl_lock();
9783 		dev_net(dev)->dev_unreg_count--;
9784 		__rtnl_unlock();
9785 		wake_up(&netdev_unregistering_wq);
9786 
9787 		/* Free network device */
9788 		kobject_put(&dev->dev.kobj);
9789 	}
9790 }
9791 
9792 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9793  * all the same fields in the same order as net_device_stats, with only
9794  * the type differing, but rtnl_link_stats64 may have additional fields
9795  * at the end for newer counters.
9796  */
9797 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9798 			     const struct net_device_stats *netdev_stats)
9799 {
9800 #if BITS_PER_LONG == 64
9801 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9802 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9803 	/* zero out counters that only exist in rtnl_link_stats64 */
9804 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9805 	       sizeof(*stats64) - sizeof(*netdev_stats));
9806 #else
9807 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9808 	const unsigned long *src = (const unsigned long *)netdev_stats;
9809 	u64 *dst = (u64 *)stats64;
9810 
9811 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9812 	for (i = 0; i < n; i++)
9813 		dst[i] = src[i];
9814 	/* zero out counters that only exist in rtnl_link_stats64 */
9815 	memset((char *)stats64 + n * sizeof(u64), 0,
9816 	       sizeof(*stats64) - n * sizeof(u64));
9817 #endif
9818 }
9819 EXPORT_SYMBOL(netdev_stats_to_stats64);
9820 
9821 /**
9822  *	dev_get_stats	- get network device statistics
9823  *	@dev: device to get statistics from
9824  *	@storage: place to store stats
9825  *
9826  *	Get network statistics from device. Return @storage.
9827  *	The device driver may provide its own method by setting
9828  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9829  *	otherwise the internal statistics structure is used.
9830  */
9831 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9832 					struct rtnl_link_stats64 *storage)
9833 {
9834 	const struct net_device_ops *ops = dev->netdev_ops;
9835 
9836 	if (ops->ndo_get_stats64) {
9837 		memset(storage, 0, sizeof(*storage));
9838 		ops->ndo_get_stats64(dev, storage);
9839 	} else if (ops->ndo_get_stats) {
9840 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9841 	} else {
9842 		netdev_stats_to_stats64(storage, &dev->stats);
9843 	}
9844 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9845 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9846 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9847 	return storage;
9848 }
9849 EXPORT_SYMBOL(dev_get_stats);
9850 
9851 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9852 {
9853 	struct netdev_queue *queue = dev_ingress_queue(dev);
9854 
9855 #ifdef CONFIG_NET_CLS_ACT
9856 	if (queue)
9857 		return queue;
9858 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9859 	if (!queue)
9860 		return NULL;
9861 	netdev_init_one_queue(dev, queue, NULL);
9862 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9863 	queue->qdisc_sleeping = &noop_qdisc;
9864 	rcu_assign_pointer(dev->ingress_queue, queue);
9865 #endif
9866 	return queue;
9867 }
9868 
9869 static const struct ethtool_ops default_ethtool_ops;
9870 
9871 void netdev_set_default_ethtool_ops(struct net_device *dev,
9872 				    const struct ethtool_ops *ops)
9873 {
9874 	if (dev->ethtool_ops == &default_ethtool_ops)
9875 		dev->ethtool_ops = ops;
9876 }
9877 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9878 
9879 void netdev_freemem(struct net_device *dev)
9880 {
9881 	char *addr = (char *)dev - dev->padded;
9882 
9883 	kvfree(addr);
9884 }
9885 
9886 /**
9887  * alloc_netdev_mqs - allocate network device
9888  * @sizeof_priv: size of private data to allocate space for
9889  * @name: device name format string
9890  * @name_assign_type: origin of device name
9891  * @setup: callback to initialize device
9892  * @txqs: the number of TX subqueues to allocate
9893  * @rxqs: the number of RX subqueues to allocate
9894  *
9895  * Allocates a struct net_device with private data area for driver use
9896  * and performs basic initialization.  Also allocates subqueue structs
9897  * for each queue on the device.
9898  */
9899 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9900 		unsigned char name_assign_type,
9901 		void (*setup)(struct net_device *),
9902 		unsigned int txqs, unsigned int rxqs)
9903 {
9904 	struct net_device *dev;
9905 	unsigned int alloc_size;
9906 	struct net_device *p;
9907 
9908 	BUG_ON(strlen(name) >= sizeof(dev->name));
9909 
9910 	if (txqs < 1) {
9911 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9912 		return NULL;
9913 	}
9914 
9915 	if (rxqs < 1) {
9916 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9917 		return NULL;
9918 	}
9919 
9920 	alloc_size = sizeof(struct net_device);
9921 	if (sizeof_priv) {
9922 		/* ensure 32-byte alignment of private area */
9923 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9924 		alloc_size += sizeof_priv;
9925 	}
9926 	/* ensure 32-byte alignment of whole construct */
9927 	alloc_size += NETDEV_ALIGN - 1;
9928 
9929 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9930 	if (!p)
9931 		return NULL;
9932 
9933 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9934 	dev->padded = (char *)dev - (char *)p;
9935 
9936 	dev->pcpu_refcnt = alloc_percpu(int);
9937 	if (!dev->pcpu_refcnt)
9938 		goto free_dev;
9939 
9940 	if (dev_addr_init(dev))
9941 		goto free_pcpu;
9942 
9943 	dev_mc_init(dev);
9944 	dev_uc_init(dev);
9945 
9946 	dev_net_set(dev, &init_net);
9947 
9948 	dev->gso_max_size = GSO_MAX_SIZE;
9949 	dev->gso_max_segs = GSO_MAX_SEGS;
9950 	dev->upper_level = 1;
9951 	dev->lower_level = 1;
9952 
9953 	INIT_LIST_HEAD(&dev->napi_list);
9954 	INIT_LIST_HEAD(&dev->unreg_list);
9955 	INIT_LIST_HEAD(&dev->close_list);
9956 	INIT_LIST_HEAD(&dev->link_watch_list);
9957 	INIT_LIST_HEAD(&dev->adj_list.upper);
9958 	INIT_LIST_HEAD(&dev->adj_list.lower);
9959 	INIT_LIST_HEAD(&dev->ptype_all);
9960 	INIT_LIST_HEAD(&dev->ptype_specific);
9961 	INIT_LIST_HEAD(&dev->net_notifier_list);
9962 #ifdef CONFIG_NET_SCHED
9963 	hash_init(dev->qdisc_hash);
9964 #endif
9965 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9966 	setup(dev);
9967 
9968 	if (!dev->tx_queue_len) {
9969 		dev->priv_flags |= IFF_NO_QUEUE;
9970 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9971 	}
9972 
9973 	dev->num_tx_queues = txqs;
9974 	dev->real_num_tx_queues = txqs;
9975 	if (netif_alloc_netdev_queues(dev))
9976 		goto free_all;
9977 
9978 	dev->num_rx_queues = rxqs;
9979 	dev->real_num_rx_queues = rxqs;
9980 	if (netif_alloc_rx_queues(dev))
9981 		goto free_all;
9982 
9983 	strcpy(dev->name, name);
9984 	dev->name_assign_type = name_assign_type;
9985 	dev->group = INIT_NETDEV_GROUP;
9986 	if (!dev->ethtool_ops)
9987 		dev->ethtool_ops = &default_ethtool_ops;
9988 
9989 	nf_hook_ingress_init(dev);
9990 
9991 	return dev;
9992 
9993 free_all:
9994 	free_netdev(dev);
9995 	return NULL;
9996 
9997 free_pcpu:
9998 	free_percpu(dev->pcpu_refcnt);
9999 free_dev:
10000 	netdev_freemem(dev);
10001 	return NULL;
10002 }
10003 EXPORT_SYMBOL(alloc_netdev_mqs);
10004 
10005 /**
10006  * free_netdev - free network device
10007  * @dev: device
10008  *
10009  * This function does the last stage of destroying an allocated device
10010  * interface. The reference to the device object is released. If this
10011  * is the last reference then it will be freed.Must be called in process
10012  * context.
10013  */
10014 void free_netdev(struct net_device *dev)
10015 {
10016 	struct napi_struct *p, *n;
10017 
10018 	might_sleep();
10019 	netif_free_tx_queues(dev);
10020 	netif_free_rx_queues(dev);
10021 
10022 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10023 
10024 	/* Flush device addresses */
10025 	dev_addr_flush(dev);
10026 
10027 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10028 		netif_napi_del(p);
10029 
10030 	free_percpu(dev->pcpu_refcnt);
10031 	dev->pcpu_refcnt = NULL;
10032 	free_percpu(dev->xdp_bulkq);
10033 	dev->xdp_bulkq = NULL;
10034 
10035 	/*  Compatibility with error handling in drivers */
10036 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10037 		netdev_freemem(dev);
10038 		return;
10039 	}
10040 
10041 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10042 	dev->reg_state = NETREG_RELEASED;
10043 
10044 	/* will free via device release */
10045 	put_device(&dev->dev);
10046 }
10047 EXPORT_SYMBOL(free_netdev);
10048 
10049 /**
10050  *	synchronize_net -  Synchronize with packet receive processing
10051  *
10052  *	Wait for packets currently being received to be done.
10053  *	Does not block later packets from starting.
10054  */
10055 void synchronize_net(void)
10056 {
10057 	might_sleep();
10058 	if (rtnl_is_locked())
10059 		synchronize_rcu_expedited();
10060 	else
10061 		synchronize_rcu();
10062 }
10063 EXPORT_SYMBOL(synchronize_net);
10064 
10065 /**
10066  *	unregister_netdevice_queue - remove device from the kernel
10067  *	@dev: device
10068  *	@head: list
10069  *
10070  *	This function shuts down a device interface and removes it
10071  *	from the kernel tables.
10072  *	If head not NULL, device is queued to be unregistered later.
10073  *
10074  *	Callers must hold the rtnl semaphore.  You may want
10075  *	unregister_netdev() instead of this.
10076  */
10077 
10078 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10079 {
10080 	ASSERT_RTNL();
10081 
10082 	if (head) {
10083 		list_move_tail(&dev->unreg_list, head);
10084 	} else {
10085 		rollback_registered(dev);
10086 		/* Finish processing unregister after unlock */
10087 		net_set_todo(dev);
10088 	}
10089 }
10090 EXPORT_SYMBOL(unregister_netdevice_queue);
10091 
10092 /**
10093  *	unregister_netdevice_many - unregister many devices
10094  *	@head: list of devices
10095  *
10096  *  Note: As most callers use a stack allocated list_head,
10097  *  we force a list_del() to make sure stack wont be corrupted later.
10098  */
10099 void unregister_netdevice_many(struct list_head *head)
10100 {
10101 	struct net_device *dev;
10102 
10103 	if (!list_empty(head)) {
10104 		rollback_registered_many(head);
10105 		list_for_each_entry(dev, head, unreg_list)
10106 			net_set_todo(dev);
10107 		list_del(head);
10108 	}
10109 }
10110 EXPORT_SYMBOL(unregister_netdevice_many);
10111 
10112 /**
10113  *	unregister_netdev - remove device from the kernel
10114  *	@dev: device
10115  *
10116  *	This function shuts down a device interface and removes it
10117  *	from the kernel tables.
10118  *
10119  *	This is just a wrapper for unregister_netdevice that takes
10120  *	the rtnl semaphore.  In general you want to use this and not
10121  *	unregister_netdevice.
10122  */
10123 void unregister_netdev(struct net_device *dev)
10124 {
10125 	rtnl_lock();
10126 	unregister_netdevice(dev);
10127 	rtnl_unlock();
10128 }
10129 EXPORT_SYMBOL(unregister_netdev);
10130 
10131 /**
10132  *	dev_change_net_namespace - move device to different nethost namespace
10133  *	@dev: device
10134  *	@net: network namespace
10135  *	@pat: If not NULL name pattern to try if the current device name
10136  *	      is already taken in the destination network namespace.
10137  *
10138  *	This function shuts down a device interface and moves it
10139  *	to a new network namespace. On success 0 is returned, on
10140  *	a failure a netagive errno code is returned.
10141  *
10142  *	Callers must hold the rtnl semaphore.
10143  */
10144 
10145 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10146 {
10147 	struct net *net_old = dev_net(dev);
10148 	int err, new_nsid, new_ifindex;
10149 
10150 	ASSERT_RTNL();
10151 
10152 	/* Don't allow namespace local devices to be moved. */
10153 	err = -EINVAL;
10154 	if (dev->features & NETIF_F_NETNS_LOCAL)
10155 		goto out;
10156 
10157 	/* Ensure the device has been registrered */
10158 	if (dev->reg_state != NETREG_REGISTERED)
10159 		goto out;
10160 
10161 	/* Get out if there is nothing todo */
10162 	err = 0;
10163 	if (net_eq(net_old, net))
10164 		goto out;
10165 
10166 	/* Pick the destination device name, and ensure
10167 	 * we can use it in the destination network namespace.
10168 	 */
10169 	err = -EEXIST;
10170 	if (__dev_get_by_name(net, dev->name)) {
10171 		/* We get here if we can't use the current device name */
10172 		if (!pat)
10173 			goto out;
10174 		err = dev_get_valid_name(net, dev, pat);
10175 		if (err < 0)
10176 			goto out;
10177 	}
10178 
10179 	/*
10180 	 * And now a mini version of register_netdevice unregister_netdevice.
10181 	 */
10182 
10183 	/* If device is running close it first. */
10184 	dev_close(dev);
10185 
10186 	/* And unlink it from device chain */
10187 	unlist_netdevice(dev);
10188 
10189 	synchronize_net();
10190 
10191 	/* Shutdown queueing discipline. */
10192 	dev_shutdown(dev);
10193 
10194 	/* Notify protocols, that we are about to destroy
10195 	 * this device. They should clean all the things.
10196 	 *
10197 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10198 	 * This is wanted because this way 8021q and macvlan know
10199 	 * the device is just moving and can keep their slaves up.
10200 	 */
10201 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10202 	rcu_barrier();
10203 
10204 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10205 	/* If there is an ifindex conflict assign a new one */
10206 	if (__dev_get_by_index(net, dev->ifindex))
10207 		new_ifindex = dev_new_index(net);
10208 	else
10209 		new_ifindex = dev->ifindex;
10210 
10211 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10212 			    new_ifindex);
10213 
10214 	/*
10215 	 *	Flush the unicast and multicast chains
10216 	 */
10217 	dev_uc_flush(dev);
10218 	dev_mc_flush(dev);
10219 
10220 	/* Send a netdev-removed uevent to the old namespace */
10221 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10222 	netdev_adjacent_del_links(dev);
10223 
10224 	/* Move per-net netdevice notifiers that are following the netdevice */
10225 	move_netdevice_notifiers_dev_net(dev, net);
10226 
10227 	/* Actually switch the network namespace */
10228 	dev_net_set(dev, net);
10229 	dev->ifindex = new_ifindex;
10230 
10231 	/* Send a netdev-add uevent to the new namespace */
10232 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10233 	netdev_adjacent_add_links(dev);
10234 
10235 	/* Fixup kobjects */
10236 	err = device_rename(&dev->dev, dev->name);
10237 	WARN_ON(err);
10238 
10239 	/* Adapt owner in case owning user namespace of target network
10240 	 * namespace is different from the original one.
10241 	 */
10242 	err = netdev_change_owner(dev, net_old, net);
10243 	WARN_ON(err);
10244 
10245 	/* Add the device back in the hashes */
10246 	list_netdevice(dev);
10247 
10248 	/* Notify protocols, that a new device appeared. */
10249 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10250 
10251 	/*
10252 	 *	Prevent userspace races by waiting until the network
10253 	 *	device is fully setup before sending notifications.
10254 	 */
10255 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10256 
10257 	synchronize_net();
10258 	err = 0;
10259 out:
10260 	return err;
10261 }
10262 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10263 
10264 static int dev_cpu_dead(unsigned int oldcpu)
10265 {
10266 	struct sk_buff **list_skb;
10267 	struct sk_buff *skb;
10268 	unsigned int cpu;
10269 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10270 
10271 	local_irq_disable();
10272 	cpu = smp_processor_id();
10273 	sd = &per_cpu(softnet_data, cpu);
10274 	oldsd = &per_cpu(softnet_data, oldcpu);
10275 
10276 	/* Find end of our completion_queue. */
10277 	list_skb = &sd->completion_queue;
10278 	while (*list_skb)
10279 		list_skb = &(*list_skb)->next;
10280 	/* Append completion queue from offline CPU. */
10281 	*list_skb = oldsd->completion_queue;
10282 	oldsd->completion_queue = NULL;
10283 
10284 	/* Append output queue from offline CPU. */
10285 	if (oldsd->output_queue) {
10286 		*sd->output_queue_tailp = oldsd->output_queue;
10287 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10288 		oldsd->output_queue = NULL;
10289 		oldsd->output_queue_tailp = &oldsd->output_queue;
10290 	}
10291 	/* Append NAPI poll list from offline CPU, with one exception :
10292 	 * process_backlog() must be called by cpu owning percpu backlog.
10293 	 * We properly handle process_queue & input_pkt_queue later.
10294 	 */
10295 	while (!list_empty(&oldsd->poll_list)) {
10296 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10297 							    struct napi_struct,
10298 							    poll_list);
10299 
10300 		list_del_init(&napi->poll_list);
10301 		if (napi->poll == process_backlog)
10302 			napi->state = 0;
10303 		else
10304 			____napi_schedule(sd, napi);
10305 	}
10306 
10307 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10308 	local_irq_enable();
10309 
10310 #ifdef CONFIG_RPS
10311 	remsd = oldsd->rps_ipi_list;
10312 	oldsd->rps_ipi_list = NULL;
10313 #endif
10314 	/* send out pending IPI's on offline CPU */
10315 	net_rps_send_ipi(remsd);
10316 
10317 	/* Process offline CPU's input_pkt_queue */
10318 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10319 		netif_rx_ni(skb);
10320 		input_queue_head_incr(oldsd);
10321 	}
10322 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10323 		netif_rx_ni(skb);
10324 		input_queue_head_incr(oldsd);
10325 	}
10326 
10327 	return 0;
10328 }
10329 
10330 /**
10331  *	netdev_increment_features - increment feature set by one
10332  *	@all: current feature set
10333  *	@one: new feature set
10334  *	@mask: mask feature set
10335  *
10336  *	Computes a new feature set after adding a device with feature set
10337  *	@one to the master device with current feature set @all.  Will not
10338  *	enable anything that is off in @mask. Returns the new feature set.
10339  */
10340 netdev_features_t netdev_increment_features(netdev_features_t all,
10341 	netdev_features_t one, netdev_features_t mask)
10342 {
10343 	if (mask & NETIF_F_HW_CSUM)
10344 		mask |= NETIF_F_CSUM_MASK;
10345 	mask |= NETIF_F_VLAN_CHALLENGED;
10346 
10347 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10348 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10349 
10350 	/* If one device supports hw checksumming, set for all. */
10351 	if (all & NETIF_F_HW_CSUM)
10352 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10353 
10354 	return all;
10355 }
10356 EXPORT_SYMBOL(netdev_increment_features);
10357 
10358 static struct hlist_head * __net_init netdev_create_hash(void)
10359 {
10360 	int i;
10361 	struct hlist_head *hash;
10362 
10363 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10364 	if (hash != NULL)
10365 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10366 			INIT_HLIST_HEAD(&hash[i]);
10367 
10368 	return hash;
10369 }
10370 
10371 /* Initialize per network namespace state */
10372 static int __net_init netdev_init(struct net *net)
10373 {
10374 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10375 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10376 
10377 	if (net != &init_net)
10378 		INIT_LIST_HEAD(&net->dev_base_head);
10379 
10380 	net->dev_name_head = netdev_create_hash();
10381 	if (net->dev_name_head == NULL)
10382 		goto err_name;
10383 
10384 	net->dev_index_head = netdev_create_hash();
10385 	if (net->dev_index_head == NULL)
10386 		goto err_idx;
10387 
10388 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10389 
10390 	return 0;
10391 
10392 err_idx:
10393 	kfree(net->dev_name_head);
10394 err_name:
10395 	return -ENOMEM;
10396 }
10397 
10398 /**
10399  *	netdev_drivername - network driver for the device
10400  *	@dev: network device
10401  *
10402  *	Determine network driver for device.
10403  */
10404 const char *netdev_drivername(const struct net_device *dev)
10405 {
10406 	const struct device_driver *driver;
10407 	const struct device *parent;
10408 	const char *empty = "";
10409 
10410 	parent = dev->dev.parent;
10411 	if (!parent)
10412 		return empty;
10413 
10414 	driver = parent->driver;
10415 	if (driver && driver->name)
10416 		return driver->name;
10417 	return empty;
10418 }
10419 
10420 static void __netdev_printk(const char *level, const struct net_device *dev,
10421 			    struct va_format *vaf)
10422 {
10423 	if (dev && dev->dev.parent) {
10424 		dev_printk_emit(level[1] - '0',
10425 				dev->dev.parent,
10426 				"%s %s %s%s: %pV",
10427 				dev_driver_string(dev->dev.parent),
10428 				dev_name(dev->dev.parent),
10429 				netdev_name(dev), netdev_reg_state(dev),
10430 				vaf);
10431 	} else if (dev) {
10432 		printk("%s%s%s: %pV",
10433 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10434 	} else {
10435 		printk("%s(NULL net_device): %pV", level, vaf);
10436 	}
10437 }
10438 
10439 void netdev_printk(const char *level, const struct net_device *dev,
10440 		   const char *format, ...)
10441 {
10442 	struct va_format vaf;
10443 	va_list args;
10444 
10445 	va_start(args, format);
10446 
10447 	vaf.fmt = format;
10448 	vaf.va = &args;
10449 
10450 	__netdev_printk(level, dev, &vaf);
10451 
10452 	va_end(args);
10453 }
10454 EXPORT_SYMBOL(netdev_printk);
10455 
10456 #define define_netdev_printk_level(func, level)			\
10457 void func(const struct net_device *dev, const char *fmt, ...)	\
10458 {								\
10459 	struct va_format vaf;					\
10460 	va_list args;						\
10461 								\
10462 	va_start(args, fmt);					\
10463 								\
10464 	vaf.fmt = fmt;						\
10465 	vaf.va = &args;						\
10466 								\
10467 	__netdev_printk(level, dev, &vaf);			\
10468 								\
10469 	va_end(args);						\
10470 }								\
10471 EXPORT_SYMBOL(func);
10472 
10473 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10474 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10475 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10476 define_netdev_printk_level(netdev_err, KERN_ERR);
10477 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10478 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10479 define_netdev_printk_level(netdev_info, KERN_INFO);
10480 
10481 static void __net_exit netdev_exit(struct net *net)
10482 {
10483 	kfree(net->dev_name_head);
10484 	kfree(net->dev_index_head);
10485 	if (net != &init_net)
10486 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10487 }
10488 
10489 static struct pernet_operations __net_initdata netdev_net_ops = {
10490 	.init = netdev_init,
10491 	.exit = netdev_exit,
10492 };
10493 
10494 static void __net_exit default_device_exit(struct net *net)
10495 {
10496 	struct net_device *dev, *aux;
10497 	/*
10498 	 * Push all migratable network devices back to the
10499 	 * initial network namespace
10500 	 */
10501 	rtnl_lock();
10502 	for_each_netdev_safe(net, dev, aux) {
10503 		int err;
10504 		char fb_name[IFNAMSIZ];
10505 
10506 		/* Ignore unmoveable devices (i.e. loopback) */
10507 		if (dev->features & NETIF_F_NETNS_LOCAL)
10508 			continue;
10509 
10510 		/* Leave virtual devices for the generic cleanup */
10511 		if (dev->rtnl_link_ops)
10512 			continue;
10513 
10514 		/* Push remaining network devices to init_net */
10515 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10516 		if (__dev_get_by_name(&init_net, fb_name))
10517 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10518 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10519 		if (err) {
10520 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10521 				 __func__, dev->name, err);
10522 			BUG();
10523 		}
10524 	}
10525 	rtnl_unlock();
10526 }
10527 
10528 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10529 {
10530 	/* Return with the rtnl_lock held when there are no network
10531 	 * devices unregistering in any network namespace in net_list.
10532 	 */
10533 	struct net *net;
10534 	bool unregistering;
10535 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
10536 
10537 	add_wait_queue(&netdev_unregistering_wq, &wait);
10538 	for (;;) {
10539 		unregistering = false;
10540 		rtnl_lock();
10541 		list_for_each_entry(net, net_list, exit_list) {
10542 			if (net->dev_unreg_count > 0) {
10543 				unregistering = true;
10544 				break;
10545 			}
10546 		}
10547 		if (!unregistering)
10548 			break;
10549 		__rtnl_unlock();
10550 
10551 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10552 	}
10553 	remove_wait_queue(&netdev_unregistering_wq, &wait);
10554 }
10555 
10556 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10557 {
10558 	/* At exit all network devices most be removed from a network
10559 	 * namespace.  Do this in the reverse order of registration.
10560 	 * Do this across as many network namespaces as possible to
10561 	 * improve batching efficiency.
10562 	 */
10563 	struct net_device *dev;
10564 	struct net *net;
10565 	LIST_HEAD(dev_kill_list);
10566 
10567 	/* To prevent network device cleanup code from dereferencing
10568 	 * loopback devices or network devices that have been freed
10569 	 * wait here for all pending unregistrations to complete,
10570 	 * before unregistring the loopback device and allowing the
10571 	 * network namespace be freed.
10572 	 *
10573 	 * The netdev todo list containing all network devices
10574 	 * unregistrations that happen in default_device_exit_batch
10575 	 * will run in the rtnl_unlock() at the end of
10576 	 * default_device_exit_batch.
10577 	 */
10578 	rtnl_lock_unregistering(net_list);
10579 	list_for_each_entry(net, net_list, exit_list) {
10580 		for_each_netdev_reverse(net, dev) {
10581 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10582 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10583 			else
10584 				unregister_netdevice_queue(dev, &dev_kill_list);
10585 		}
10586 	}
10587 	unregister_netdevice_many(&dev_kill_list);
10588 	rtnl_unlock();
10589 }
10590 
10591 static struct pernet_operations __net_initdata default_device_ops = {
10592 	.exit = default_device_exit,
10593 	.exit_batch = default_device_exit_batch,
10594 };
10595 
10596 /*
10597  *	Initialize the DEV module. At boot time this walks the device list and
10598  *	unhooks any devices that fail to initialise (normally hardware not
10599  *	present) and leaves us with a valid list of present and active devices.
10600  *
10601  */
10602 
10603 /*
10604  *       This is called single threaded during boot, so no need
10605  *       to take the rtnl semaphore.
10606  */
10607 static int __init net_dev_init(void)
10608 {
10609 	int i, rc = -ENOMEM;
10610 
10611 	BUG_ON(!dev_boot_phase);
10612 
10613 	if (dev_proc_init())
10614 		goto out;
10615 
10616 	if (netdev_kobject_init())
10617 		goto out;
10618 
10619 	INIT_LIST_HEAD(&ptype_all);
10620 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
10621 		INIT_LIST_HEAD(&ptype_base[i]);
10622 
10623 	INIT_LIST_HEAD(&offload_base);
10624 
10625 	if (register_pernet_subsys(&netdev_net_ops))
10626 		goto out;
10627 
10628 	/*
10629 	 *	Initialise the packet receive queues.
10630 	 */
10631 
10632 	for_each_possible_cpu(i) {
10633 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10634 		struct softnet_data *sd = &per_cpu(softnet_data, i);
10635 
10636 		INIT_WORK(flush, flush_backlog);
10637 
10638 		skb_queue_head_init(&sd->input_pkt_queue);
10639 		skb_queue_head_init(&sd->process_queue);
10640 #ifdef CONFIG_XFRM_OFFLOAD
10641 		skb_queue_head_init(&sd->xfrm_backlog);
10642 #endif
10643 		INIT_LIST_HEAD(&sd->poll_list);
10644 		sd->output_queue_tailp = &sd->output_queue;
10645 #ifdef CONFIG_RPS
10646 		sd->csd.func = rps_trigger_softirq;
10647 		sd->csd.info = sd;
10648 		sd->cpu = i;
10649 #endif
10650 
10651 		init_gro_hash(&sd->backlog);
10652 		sd->backlog.poll = process_backlog;
10653 		sd->backlog.weight = weight_p;
10654 	}
10655 
10656 	dev_boot_phase = 0;
10657 
10658 	/* The loopback device is special if any other network devices
10659 	 * is present in a network namespace the loopback device must
10660 	 * be present. Since we now dynamically allocate and free the
10661 	 * loopback device ensure this invariant is maintained by
10662 	 * keeping the loopback device as the first device on the
10663 	 * list of network devices.  Ensuring the loopback devices
10664 	 * is the first device that appears and the last network device
10665 	 * that disappears.
10666 	 */
10667 	if (register_pernet_device(&loopback_net_ops))
10668 		goto out;
10669 
10670 	if (register_pernet_device(&default_device_ops))
10671 		goto out;
10672 
10673 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10674 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10675 
10676 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10677 				       NULL, dev_cpu_dead);
10678 	WARN_ON(rc < 0);
10679 	rc = 0;
10680 out:
10681 	return rc;
10682 }
10683 
10684 subsys_initcall(net_dev_init);
10685