xref: /openbmc/linux/net/core/dev.c (revision fa5d824ce5dd8306c66f45c34fd78536e6ce2488)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "net-sysfs.h"
155 
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;	/* Taps */
160 
161 static int netif_rx_internal(struct sk_buff *skb);
162 static int call_netdevice_notifiers_info(unsigned long val,
163 					 struct netdev_notifier_info *info);
164 static int call_netdevice_notifiers_extack(unsigned long val,
165 					   struct net_device *dev,
166 					   struct netlink_ext_ack *extack);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static DECLARE_RWSEM(devnet_rename_sem);
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock_irqsave(struct softnet_data *sd,
220 				    unsigned long *flags)
221 {
222 	if (IS_ENABLED(CONFIG_RPS))
223 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
224 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
225 		local_irq_save(*flags);
226 }
227 
228 static inline void rps_lock_irq_disable(struct softnet_data *sd)
229 {
230 	if (IS_ENABLED(CONFIG_RPS))
231 		spin_lock_irq(&sd->input_pkt_queue.lock);
232 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
233 		local_irq_disable();
234 }
235 
236 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
237 					  unsigned long *flags)
238 {
239 	if (IS_ENABLED(CONFIG_RPS))
240 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
241 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 		local_irq_restore(*flags);
243 }
244 
245 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
246 {
247 	if (IS_ENABLED(CONFIG_RPS))
248 		spin_unlock_irq(&sd->input_pkt_queue.lock);
249 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250 		local_irq_enable();
251 }
252 
253 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
254 						       const char *name)
255 {
256 	struct netdev_name_node *name_node;
257 
258 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
259 	if (!name_node)
260 		return NULL;
261 	INIT_HLIST_NODE(&name_node->hlist);
262 	name_node->dev = dev;
263 	name_node->name = name;
264 	return name_node;
265 }
266 
267 static struct netdev_name_node *
268 netdev_name_node_head_alloc(struct net_device *dev)
269 {
270 	struct netdev_name_node *name_node;
271 
272 	name_node = netdev_name_node_alloc(dev, dev->name);
273 	if (!name_node)
274 		return NULL;
275 	INIT_LIST_HEAD(&name_node->list);
276 	return name_node;
277 }
278 
279 static void netdev_name_node_free(struct netdev_name_node *name_node)
280 {
281 	kfree(name_node);
282 }
283 
284 static void netdev_name_node_add(struct net *net,
285 				 struct netdev_name_node *name_node)
286 {
287 	hlist_add_head_rcu(&name_node->hlist,
288 			   dev_name_hash(net, name_node->name));
289 }
290 
291 static void netdev_name_node_del(struct netdev_name_node *name_node)
292 {
293 	hlist_del_rcu(&name_node->hlist);
294 }
295 
296 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
297 							const char *name)
298 {
299 	struct hlist_head *head = dev_name_hash(net, name);
300 	struct netdev_name_node *name_node;
301 
302 	hlist_for_each_entry(name_node, head, hlist)
303 		if (!strcmp(name_node->name, name))
304 			return name_node;
305 	return NULL;
306 }
307 
308 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
309 							    const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry_rcu(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
320 bool netdev_name_in_use(struct net *net, const char *name)
321 {
322 	return netdev_name_node_lookup(net, name);
323 }
324 EXPORT_SYMBOL(netdev_name_in_use);
325 
326 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
327 {
328 	struct netdev_name_node *name_node;
329 	struct net *net = dev_net(dev);
330 
331 	name_node = netdev_name_node_lookup(net, name);
332 	if (name_node)
333 		return -EEXIST;
334 	name_node = netdev_name_node_alloc(dev, name);
335 	if (!name_node)
336 		return -ENOMEM;
337 	netdev_name_node_add(net, name_node);
338 	/* The node that holds dev->name acts as a head of per-device list. */
339 	list_add_tail(&name_node->list, &dev->name_node->list);
340 
341 	return 0;
342 }
343 EXPORT_SYMBOL(netdev_name_node_alt_create);
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	netdev_name_node_del(name_node);
349 	kfree(name_node->name);
350 	netdev_name_node_free(name_node);
351 }
352 
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355 	struct netdev_name_node *name_node;
356 	struct net *net = dev_net(dev);
357 
358 	name_node = netdev_name_node_lookup(net, name);
359 	if (!name_node)
360 		return -ENOENT;
361 	/* lookup might have found our primary name or a name belonging
362 	 * to another device.
363 	 */
364 	if (name_node == dev->name_node || name_node->dev != dev)
365 		return -EINVAL;
366 
367 	__netdev_name_node_alt_destroy(name_node);
368 
369 	return 0;
370 }
371 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
372 
373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375 	struct netdev_name_node *name_node, *tmp;
376 
377 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378 		__netdev_name_node_alt_destroy(name_node);
379 }
380 
381 /* Device list insertion */
382 static void list_netdevice(struct net_device *dev)
383 {
384 	struct net *net = dev_net(dev);
385 
386 	ASSERT_RTNL();
387 
388 	write_lock(&dev_base_lock);
389 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
390 	netdev_name_node_add(net, dev->name_node);
391 	hlist_add_head_rcu(&dev->index_hlist,
392 			   dev_index_hash(net, dev->ifindex));
393 	write_unlock(&dev_base_lock);
394 
395 	dev_base_seq_inc(net);
396 }
397 
398 /* Device list removal
399  * caller must respect a RCU grace period before freeing/reusing dev
400  */
401 static void unlist_netdevice(struct net_device *dev)
402 {
403 	ASSERT_RTNL();
404 
405 	/* Unlink dev from the device chain */
406 	write_lock(&dev_base_lock);
407 	list_del_rcu(&dev->dev_list);
408 	netdev_name_node_del(dev->name_node);
409 	hlist_del_rcu(&dev->index_hlist);
410 	write_unlock(&dev_base_lock);
411 
412 	dev_base_seq_inc(dev_net(dev));
413 }
414 
415 /*
416  *	Our notifier list
417  */
418 
419 static RAW_NOTIFIER_HEAD(netdev_chain);
420 
421 /*
422  *	Device drivers call our routines to queue packets here. We empty the
423  *	queue in the local softnet handler.
424  */
425 
426 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
427 EXPORT_PER_CPU_SYMBOL(softnet_data);
428 
429 #ifdef CONFIG_LOCKDEP
430 /*
431  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
432  * according to dev->type
433  */
434 static const unsigned short netdev_lock_type[] = {
435 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
436 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
437 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
438 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
439 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
440 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
441 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
442 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
443 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
444 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
445 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
446 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
447 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
448 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
449 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
450 
451 static const char *const netdev_lock_name[] = {
452 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
453 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
454 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
455 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
456 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
457 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
458 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
459 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
460 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
461 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
462 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
463 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
464 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
465 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
466 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
467 
468 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
469 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 
471 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
472 {
473 	int i;
474 
475 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
476 		if (netdev_lock_type[i] == dev_type)
477 			return i;
478 	/* the last key is used by default */
479 	return ARRAY_SIZE(netdev_lock_type) - 1;
480 }
481 
482 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
483 						 unsigned short dev_type)
484 {
485 	int i;
486 
487 	i = netdev_lock_pos(dev_type);
488 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
489 				   netdev_lock_name[i]);
490 }
491 
492 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
493 {
494 	int i;
495 
496 	i = netdev_lock_pos(dev->type);
497 	lockdep_set_class_and_name(&dev->addr_list_lock,
498 				   &netdev_addr_lock_key[i],
499 				   netdev_lock_name[i]);
500 }
501 #else
502 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
503 						 unsigned short dev_type)
504 {
505 }
506 
507 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
508 {
509 }
510 #endif
511 
512 /*******************************************************************************
513  *
514  *		Protocol management and registration routines
515  *
516  *******************************************************************************/
517 
518 
519 /*
520  *	Add a protocol ID to the list. Now that the input handler is
521  *	smarter we can dispense with all the messy stuff that used to be
522  *	here.
523  *
524  *	BEWARE!!! Protocol handlers, mangling input packets,
525  *	MUST BE last in hash buckets and checking protocol handlers
526  *	MUST start from promiscuous ptype_all chain in net_bh.
527  *	It is true now, do not change it.
528  *	Explanation follows: if protocol handler, mangling packet, will
529  *	be the first on list, it is not able to sense, that packet
530  *	is cloned and should be copied-on-write, so that it will
531  *	change it and subsequent readers will get broken packet.
532  *							--ANK (980803)
533  */
534 
535 static inline struct list_head *ptype_head(const struct packet_type *pt)
536 {
537 	if (pt->type == htons(ETH_P_ALL))
538 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
539 	else
540 		return pt->dev ? &pt->dev->ptype_specific :
541 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
542 }
543 
544 /**
545  *	dev_add_pack - add packet handler
546  *	@pt: packet type declaration
547  *
548  *	Add a protocol handler to the networking stack. The passed &packet_type
549  *	is linked into kernel lists and may not be freed until it has been
550  *	removed from the kernel lists.
551  *
552  *	This call does not sleep therefore it can not
553  *	guarantee all CPU's that are in middle of receiving packets
554  *	will see the new packet type (until the next received packet).
555  */
556 
557 void dev_add_pack(struct packet_type *pt)
558 {
559 	struct list_head *head = ptype_head(pt);
560 
561 	spin_lock(&ptype_lock);
562 	list_add_rcu(&pt->list, head);
563 	spin_unlock(&ptype_lock);
564 }
565 EXPORT_SYMBOL(dev_add_pack);
566 
567 /**
568  *	__dev_remove_pack	 - remove packet handler
569  *	@pt: packet type declaration
570  *
571  *	Remove a protocol handler that was previously added to the kernel
572  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
573  *	from the kernel lists and can be freed or reused once this function
574  *	returns.
575  *
576  *      The packet type might still be in use by receivers
577  *	and must not be freed until after all the CPU's have gone
578  *	through a quiescent state.
579  */
580 void __dev_remove_pack(struct packet_type *pt)
581 {
582 	struct list_head *head = ptype_head(pt);
583 	struct packet_type *pt1;
584 
585 	spin_lock(&ptype_lock);
586 
587 	list_for_each_entry(pt1, head, list) {
588 		if (pt == pt1) {
589 			list_del_rcu(&pt->list);
590 			goto out;
591 		}
592 	}
593 
594 	pr_warn("dev_remove_pack: %p not found\n", pt);
595 out:
596 	spin_unlock(&ptype_lock);
597 }
598 EXPORT_SYMBOL(__dev_remove_pack);
599 
600 /**
601  *	dev_remove_pack	 - remove packet handler
602  *	@pt: packet type declaration
603  *
604  *	Remove a protocol handler that was previously added to the kernel
605  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
606  *	from the kernel lists and can be freed or reused once this function
607  *	returns.
608  *
609  *	This call sleeps to guarantee that no CPU is looking at the packet
610  *	type after return.
611  */
612 void dev_remove_pack(struct packet_type *pt)
613 {
614 	__dev_remove_pack(pt);
615 
616 	synchronize_net();
617 }
618 EXPORT_SYMBOL(dev_remove_pack);
619 
620 
621 /*******************************************************************************
622  *
623  *			    Device Interface Subroutines
624  *
625  *******************************************************************************/
626 
627 /**
628  *	dev_get_iflink	- get 'iflink' value of a interface
629  *	@dev: targeted interface
630  *
631  *	Indicates the ifindex the interface is linked to.
632  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
633  */
634 
635 int dev_get_iflink(const struct net_device *dev)
636 {
637 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
638 		return dev->netdev_ops->ndo_get_iflink(dev);
639 
640 	return dev->ifindex;
641 }
642 EXPORT_SYMBOL(dev_get_iflink);
643 
644 /**
645  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
646  *	@dev: targeted interface
647  *	@skb: The packet.
648  *
649  *	For better visibility of tunnel traffic OVS needs to retrieve
650  *	egress tunnel information for a packet. Following API allows
651  *	user to get this info.
652  */
653 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
654 {
655 	struct ip_tunnel_info *info;
656 
657 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
658 		return -EINVAL;
659 
660 	info = skb_tunnel_info_unclone(skb);
661 	if (!info)
662 		return -ENOMEM;
663 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
664 		return -EINVAL;
665 
666 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
667 }
668 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
669 
670 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
671 {
672 	int k = stack->num_paths++;
673 
674 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
675 		return NULL;
676 
677 	return &stack->path[k];
678 }
679 
680 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
681 			  struct net_device_path_stack *stack)
682 {
683 	const struct net_device *last_dev;
684 	struct net_device_path_ctx ctx = {
685 		.dev	= dev,
686 		.daddr	= daddr,
687 	};
688 	struct net_device_path *path;
689 	int ret = 0;
690 
691 	stack->num_paths = 0;
692 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
693 		last_dev = ctx.dev;
694 		path = dev_fwd_path(stack);
695 		if (!path)
696 			return -1;
697 
698 		memset(path, 0, sizeof(struct net_device_path));
699 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
700 		if (ret < 0)
701 			return -1;
702 
703 		if (WARN_ON_ONCE(last_dev == ctx.dev))
704 			return -1;
705 	}
706 	path = dev_fwd_path(stack);
707 	if (!path)
708 		return -1;
709 	path->type = DEV_PATH_ETHERNET;
710 	path->dev = ctx.dev;
711 
712 	return ret;
713 }
714 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
715 
716 /**
717  *	__dev_get_by_name	- find a device by its name
718  *	@net: the applicable net namespace
719  *	@name: name to find
720  *
721  *	Find an interface by name. Must be called under RTNL semaphore
722  *	or @dev_base_lock. If the name is found a pointer to the device
723  *	is returned. If the name is not found then %NULL is returned. The
724  *	reference counters are not incremented so the caller must be
725  *	careful with locks.
726  */
727 
728 struct net_device *__dev_get_by_name(struct net *net, const char *name)
729 {
730 	struct netdev_name_node *node_name;
731 
732 	node_name = netdev_name_node_lookup(net, name);
733 	return node_name ? node_name->dev : NULL;
734 }
735 EXPORT_SYMBOL(__dev_get_by_name);
736 
737 /**
738  * dev_get_by_name_rcu	- find a device by its name
739  * @net: the applicable net namespace
740  * @name: name to find
741  *
742  * Find an interface by name.
743  * If the name is found a pointer to the device is returned.
744  * If the name is not found then %NULL is returned.
745  * The reference counters are not incremented so the caller must be
746  * careful with locks. The caller must hold RCU lock.
747  */
748 
749 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
750 {
751 	struct netdev_name_node *node_name;
752 
753 	node_name = netdev_name_node_lookup_rcu(net, name);
754 	return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(dev_get_by_name_rcu);
757 
758 /**
759  *	dev_get_by_name		- find a device by its name
760  *	@net: the applicable net namespace
761  *	@name: name to find
762  *
763  *	Find an interface by name. This can be called from any
764  *	context and does its own locking. The returned handle has
765  *	the usage count incremented and the caller must use dev_put() to
766  *	release it when it is no longer needed. %NULL is returned if no
767  *	matching device is found.
768  */
769 
770 struct net_device *dev_get_by_name(struct net *net, const char *name)
771 {
772 	struct net_device *dev;
773 
774 	rcu_read_lock();
775 	dev = dev_get_by_name_rcu(net, name);
776 	dev_hold(dev);
777 	rcu_read_unlock();
778 	return dev;
779 }
780 EXPORT_SYMBOL(dev_get_by_name);
781 
782 /**
783  *	__dev_get_by_index - find a device by its ifindex
784  *	@net: the applicable net namespace
785  *	@ifindex: index of device
786  *
787  *	Search for an interface by index. Returns %NULL if the device
788  *	is not found or a pointer to the device. The device has not
789  *	had its reference counter increased so the caller must be careful
790  *	about locking. The caller must hold either the RTNL semaphore
791  *	or @dev_base_lock.
792  */
793 
794 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
795 {
796 	struct net_device *dev;
797 	struct hlist_head *head = dev_index_hash(net, ifindex);
798 
799 	hlist_for_each_entry(dev, head, index_hlist)
800 		if (dev->ifindex == ifindex)
801 			return dev;
802 
803 	return NULL;
804 }
805 EXPORT_SYMBOL(__dev_get_by_index);
806 
807 /**
808  *	dev_get_by_index_rcu - find a device by its ifindex
809  *	@net: the applicable net namespace
810  *	@ifindex: index of device
811  *
812  *	Search for an interface by index. Returns %NULL if the device
813  *	is not found or a pointer to the device. The device has not
814  *	had its reference counter increased so the caller must be careful
815  *	about locking. The caller must hold RCU lock.
816  */
817 
818 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
819 {
820 	struct net_device *dev;
821 	struct hlist_head *head = dev_index_hash(net, ifindex);
822 
823 	hlist_for_each_entry_rcu(dev, head, index_hlist)
824 		if (dev->ifindex == ifindex)
825 			return dev;
826 
827 	return NULL;
828 }
829 EXPORT_SYMBOL(dev_get_by_index_rcu);
830 
831 
832 /**
833  *	dev_get_by_index - find a device by its ifindex
834  *	@net: the applicable net namespace
835  *	@ifindex: index of device
836  *
837  *	Search for an interface by index. Returns NULL if the device
838  *	is not found or a pointer to the device. The device returned has
839  *	had a reference added and the pointer is safe until the user calls
840  *	dev_put to indicate they have finished with it.
841  */
842 
843 struct net_device *dev_get_by_index(struct net *net, int ifindex)
844 {
845 	struct net_device *dev;
846 
847 	rcu_read_lock();
848 	dev = dev_get_by_index_rcu(net, ifindex);
849 	dev_hold(dev);
850 	rcu_read_unlock();
851 	return dev;
852 }
853 EXPORT_SYMBOL(dev_get_by_index);
854 
855 /**
856  *	dev_get_by_napi_id - find a device by napi_id
857  *	@napi_id: ID of the NAPI struct
858  *
859  *	Search for an interface by NAPI ID. Returns %NULL if the device
860  *	is not found or a pointer to the device. The device has not had
861  *	its reference counter increased so the caller must be careful
862  *	about locking. The caller must hold RCU lock.
863  */
864 
865 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
866 {
867 	struct napi_struct *napi;
868 
869 	WARN_ON_ONCE(!rcu_read_lock_held());
870 
871 	if (napi_id < MIN_NAPI_ID)
872 		return NULL;
873 
874 	napi = napi_by_id(napi_id);
875 
876 	return napi ? napi->dev : NULL;
877 }
878 EXPORT_SYMBOL(dev_get_by_napi_id);
879 
880 /**
881  *	netdev_get_name - get a netdevice name, knowing its ifindex.
882  *	@net: network namespace
883  *	@name: a pointer to the buffer where the name will be stored.
884  *	@ifindex: the ifindex of the interface to get the name from.
885  */
886 int netdev_get_name(struct net *net, char *name, int ifindex)
887 {
888 	struct net_device *dev;
889 	int ret;
890 
891 	down_read(&devnet_rename_sem);
892 	rcu_read_lock();
893 
894 	dev = dev_get_by_index_rcu(net, ifindex);
895 	if (!dev) {
896 		ret = -ENODEV;
897 		goto out;
898 	}
899 
900 	strcpy(name, dev->name);
901 
902 	ret = 0;
903 out:
904 	rcu_read_unlock();
905 	up_read(&devnet_rename_sem);
906 	return ret;
907 }
908 
909 /**
910  *	dev_getbyhwaddr_rcu - find a device by its hardware address
911  *	@net: the applicable net namespace
912  *	@type: media type of device
913  *	@ha: hardware address
914  *
915  *	Search for an interface by MAC address. Returns NULL if the device
916  *	is not found or a pointer to the device.
917  *	The caller must hold RCU or RTNL.
918  *	The returned device has not had its ref count increased
919  *	and the caller must therefore be careful about locking
920  *
921  */
922 
923 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
924 				       const char *ha)
925 {
926 	struct net_device *dev;
927 
928 	for_each_netdev_rcu(net, dev)
929 		if (dev->type == type &&
930 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
931 			return dev;
932 
933 	return NULL;
934 }
935 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
936 
937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
938 {
939 	struct net_device *dev, *ret = NULL;
940 
941 	rcu_read_lock();
942 	for_each_netdev_rcu(net, dev)
943 		if (dev->type == type) {
944 			dev_hold(dev);
945 			ret = dev;
946 			break;
947 		}
948 	rcu_read_unlock();
949 	return ret;
950 }
951 EXPORT_SYMBOL(dev_getfirstbyhwtype);
952 
953 /**
954  *	__dev_get_by_flags - find any device with given flags
955  *	@net: the applicable net namespace
956  *	@if_flags: IFF_* values
957  *	@mask: bitmask of bits in if_flags to check
958  *
959  *	Search for any interface with the given flags. Returns NULL if a device
960  *	is not found or a pointer to the device. Must be called inside
961  *	rtnl_lock(), and result refcount is unchanged.
962  */
963 
964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965 				      unsigned short mask)
966 {
967 	struct net_device *dev, *ret;
968 
969 	ASSERT_RTNL();
970 
971 	ret = NULL;
972 	for_each_netdev(net, dev) {
973 		if (((dev->flags ^ if_flags) & mask) == 0) {
974 			ret = dev;
975 			break;
976 		}
977 	}
978 	return ret;
979 }
980 EXPORT_SYMBOL(__dev_get_by_flags);
981 
982 /**
983  *	dev_valid_name - check if name is okay for network device
984  *	@name: name string
985  *
986  *	Network device names need to be valid file names to
987  *	allow sysfs to work.  We also disallow any kind of
988  *	whitespace.
989  */
990 bool dev_valid_name(const char *name)
991 {
992 	if (*name == '\0')
993 		return false;
994 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
995 		return false;
996 	if (!strcmp(name, ".") || !strcmp(name, ".."))
997 		return false;
998 
999 	while (*name) {
1000 		if (*name == '/' || *name == ':' || isspace(*name))
1001 			return false;
1002 		name++;
1003 	}
1004 	return true;
1005 }
1006 EXPORT_SYMBOL(dev_valid_name);
1007 
1008 /**
1009  *	__dev_alloc_name - allocate a name for a device
1010  *	@net: network namespace to allocate the device name in
1011  *	@name: name format string
1012  *	@buf:  scratch buffer and result name string
1013  *
1014  *	Passed a format string - eg "lt%d" it will try and find a suitable
1015  *	id. It scans list of devices to build up a free map, then chooses
1016  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1017  *	while allocating the name and adding the device in order to avoid
1018  *	duplicates.
1019  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020  *	Returns the number of the unit assigned or a negative errno code.
1021  */
1022 
1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1024 {
1025 	int i = 0;
1026 	const char *p;
1027 	const int max_netdevices = 8*PAGE_SIZE;
1028 	unsigned long *inuse;
1029 	struct net_device *d;
1030 
1031 	if (!dev_valid_name(name))
1032 		return -EINVAL;
1033 
1034 	p = strchr(name, '%');
1035 	if (p) {
1036 		/*
1037 		 * Verify the string as this thing may have come from
1038 		 * the user.  There must be either one "%d" and no other "%"
1039 		 * characters.
1040 		 */
1041 		if (p[1] != 'd' || strchr(p + 2, '%'))
1042 			return -EINVAL;
1043 
1044 		/* Use one page as a bit array of possible slots */
1045 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1046 		if (!inuse)
1047 			return -ENOMEM;
1048 
1049 		for_each_netdev(net, d) {
1050 			struct netdev_name_node *name_node;
1051 			list_for_each_entry(name_node, &d->name_node->list, list) {
1052 				if (!sscanf(name_node->name, name, &i))
1053 					continue;
1054 				if (i < 0 || i >= max_netdevices)
1055 					continue;
1056 
1057 				/*  avoid cases where sscanf is not exact inverse of printf */
1058 				snprintf(buf, IFNAMSIZ, name, i);
1059 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1060 					__set_bit(i, inuse);
1061 			}
1062 			if (!sscanf(d->name, name, &i))
1063 				continue;
1064 			if (i < 0 || i >= max_netdevices)
1065 				continue;
1066 
1067 			/*  avoid cases where sscanf is not exact inverse of printf */
1068 			snprintf(buf, IFNAMSIZ, name, i);
1069 			if (!strncmp(buf, d->name, IFNAMSIZ))
1070 				__set_bit(i, inuse);
1071 		}
1072 
1073 		i = find_first_zero_bit(inuse, max_netdevices);
1074 		free_page((unsigned long) inuse);
1075 	}
1076 
1077 	snprintf(buf, IFNAMSIZ, name, i);
1078 	if (!netdev_name_in_use(net, buf))
1079 		return i;
1080 
1081 	/* It is possible to run out of possible slots
1082 	 * when the name is long and there isn't enough space left
1083 	 * for the digits, or if all bits are used.
1084 	 */
1085 	return -ENFILE;
1086 }
1087 
1088 static int dev_alloc_name_ns(struct net *net,
1089 			     struct net_device *dev,
1090 			     const char *name)
1091 {
1092 	char buf[IFNAMSIZ];
1093 	int ret;
1094 
1095 	BUG_ON(!net);
1096 	ret = __dev_alloc_name(net, name, buf);
1097 	if (ret >= 0)
1098 		strlcpy(dev->name, buf, IFNAMSIZ);
1099 	return ret;
1100 }
1101 
1102 /**
1103  *	dev_alloc_name - allocate a name for a device
1104  *	@dev: device
1105  *	@name: name format string
1106  *
1107  *	Passed a format string - eg "lt%d" it will try and find a suitable
1108  *	id. It scans list of devices to build up a free map, then chooses
1109  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1110  *	while allocating the name and adding the device in order to avoid
1111  *	duplicates.
1112  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1113  *	Returns the number of the unit assigned or a negative errno code.
1114  */
1115 
1116 int dev_alloc_name(struct net_device *dev, const char *name)
1117 {
1118 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1119 }
1120 EXPORT_SYMBOL(dev_alloc_name);
1121 
1122 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1123 			      const char *name)
1124 {
1125 	BUG_ON(!net);
1126 
1127 	if (!dev_valid_name(name))
1128 		return -EINVAL;
1129 
1130 	if (strchr(name, '%'))
1131 		return dev_alloc_name_ns(net, dev, name);
1132 	else if (netdev_name_in_use(net, name))
1133 		return -EEXIST;
1134 	else if (dev->name != name)
1135 		strlcpy(dev->name, name, IFNAMSIZ);
1136 
1137 	return 0;
1138 }
1139 
1140 /**
1141  *	dev_change_name - change name of a device
1142  *	@dev: device
1143  *	@newname: name (or format string) must be at least IFNAMSIZ
1144  *
1145  *	Change name of a device, can pass format strings "eth%d".
1146  *	for wildcarding.
1147  */
1148 int dev_change_name(struct net_device *dev, const char *newname)
1149 {
1150 	unsigned char old_assign_type;
1151 	char oldname[IFNAMSIZ];
1152 	int err = 0;
1153 	int ret;
1154 	struct net *net;
1155 
1156 	ASSERT_RTNL();
1157 	BUG_ON(!dev_net(dev));
1158 
1159 	net = dev_net(dev);
1160 
1161 	/* Some auto-enslaved devices e.g. failover slaves are
1162 	 * special, as userspace might rename the device after
1163 	 * the interface had been brought up and running since
1164 	 * the point kernel initiated auto-enslavement. Allow
1165 	 * live name change even when these slave devices are
1166 	 * up and running.
1167 	 *
1168 	 * Typically, users of these auto-enslaving devices
1169 	 * don't actually care about slave name change, as
1170 	 * they are supposed to operate on master interface
1171 	 * directly.
1172 	 */
1173 	if (dev->flags & IFF_UP &&
1174 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1175 		return -EBUSY;
1176 
1177 	down_write(&devnet_rename_sem);
1178 
1179 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1180 		up_write(&devnet_rename_sem);
1181 		return 0;
1182 	}
1183 
1184 	memcpy(oldname, dev->name, IFNAMSIZ);
1185 
1186 	err = dev_get_valid_name(net, dev, newname);
1187 	if (err < 0) {
1188 		up_write(&devnet_rename_sem);
1189 		return err;
1190 	}
1191 
1192 	if (oldname[0] && !strchr(oldname, '%'))
1193 		netdev_info(dev, "renamed from %s\n", oldname);
1194 
1195 	old_assign_type = dev->name_assign_type;
1196 	dev->name_assign_type = NET_NAME_RENAMED;
1197 
1198 rollback:
1199 	ret = device_rename(&dev->dev, dev->name);
1200 	if (ret) {
1201 		memcpy(dev->name, oldname, IFNAMSIZ);
1202 		dev->name_assign_type = old_assign_type;
1203 		up_write(&devnet_rename_sem);
1204 		return ret;
1205 	}
1206 
1207 	up_write(&devnet_rename_sem);
1208 
1209 	netdev_adjacent_rename_links(dev, oldname);
1210 
1211 	write_lock(&dev_base_lock);
1212 	netdev_name_node_del(dev->name_node);
1213 	write_unlock(&dev_base_lock);
1214 
1215 	synchronize_rcu();
1216 
1217 	write_lock(&dev_base_lock);
1218 	netdev_name_node_add(net, dev->name_node);
1219 	write_unlock(&dev_base_lock);
1220 
1221 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1222 	ret = notifier_to_errno(ret);
1223 
1224 	if (ret) {
1225 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1226 		if (err >= 0) {
1227 			err = ret;
1228 			down_write(&devnet_rename_sem);
1229 			memcpy(dev->name, oldname, IFNAMSIZ);
1230 			memcpy(oldname, newname, IFNAMSIZ);
1231 			dev->name_assign_type = old_assign_type;
1232 			old_assign_type = NET_NAME_RENAMED;
1233 			goto rollback;
1234 		} else {
1235 			netdev_err(dev, "name change rollback failed: %d\n",
1236 				   ret);
1237 		}
1238 	}
1239 
1240 	return err;
1241 }
1242 
1243 /**
1244  *	dev_set_alias - change ifalias of a device
1245  *	@dev: device
1246  *	@alias: name up to IFALIASZ
1247  *	@len: limit of bytes to copy from info
1248  *
1249  *	Set ifalias for a device,
1250  */
1251 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1252 {
1253 	struct dev_ifalias *new_alias = NULL;
1254 
1255 	if (len >= IFALIASZ)
1256 		return -EINVAL;
1257 
1258 	if (len) {
1259 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1260 		if (!new_alias)
1261 			return -ENOMEM;
1262 
1263 		memcpy(new_alias->ifalias, alias, len);
1264 		new_alias->ifalias[len] = 0;
1265 	}
1266 
1267 	mutex_lock(&ifalias_mutex);
1268 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1269 					mutex_is_locked(&ifalias_mutex));
1270 	mutex_unlock(&ifalias_mutex);
1271 
1272 	if (new_alias)
1273 		kfree_rcu(new_alias, rcuhead);
1274 
1275 	return len;
1276 }
1277 EXPORT_SYMBOL(dev_set_alias);
1278 
1279 /**
1280  *	dev_get_alias - get ifalias of a device
1281  *	@dev: device
1282  *	@name: buffer to store name of ifalias
1283  *	@len: size of buffer
1284  *
1285  *	get ifalias for a device.  Caller must make sure dev cannot go
1286  *	away,  e.g. rcu read lock or own a reference count to device.
1287  */
1288 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1289 {
1290 	const struct dev_ifalias *alias;
1291 	int ret = 0;
1292 
1293 	rcu_read_lock();
1294 	alias = rcu_dereference(dev->ifalias);
1295 	if (alias)
1296 		ret = snprintf(name, len, "%s", alias->ifalias);
1297 	rcu_read_unlock();
1298 
1299 	return ret;
1300 }
1301 
1302 /**
1303  *	netdev_features_change - device changes features
1304  *	@dev: device to cause notification
1305  *
1306  *	Called to indicate a device has changed features.
1307  */
1308 void netdev_features_change(struct net_device *dev)
1309 {
1310 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1311 }
1312 EXPORT_SYMBOL(netdev_features_change);
1313 
1314 /**
1315  *	netdev_state_change - device changes state
1316  *	@dev: device to cause notification
1317  *
1318  *	Called to indicate a device has changed state. This function calls
1319  *	the notifier chains for netdev_chain and sends a NEWLINK message
1320  *	to the routing socket.
1321  */
1322 void netdev_state_change(struct net_device *dev)
1323 {
1324 	if (dev->flags & IFF_UP) {
1325 		struct netdev_notifier_change_info change_info = {
1326 			.info.dev = dev,
1327 		};
1328 
1329 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1330 					      &change_info.info);
1331 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1332 	}
1333 }
1334 EXPORT_SYMBOL(netdev_state_change);
1335 
1336 /**
1337  * __netdev_notify_peers - notify network peers about existence of @dev,
1338  * to be called when rtnl lock is already held.
1339  * @dev: network device
1340  *
1341  * Generate traffic such that interested network peers are aware of
1342  * @dev, such as by generating a gratuitous ARP. This may be used when
1343  * a device wants to inform the rest of the network about some sort of
1344  * reconfiguration such as a failover event or virtual machine
1345  * migration.
1346  */
1347 void __netdev_notify_peers(struct net_device *dev)
1348 {
1349 	ASSERT_RTNL();
1350 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1351 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1352 }
1353 EXPORT_SYMBOL(__netdev_notify_peers);
1354 
1355 /**
1356  * netdev_notify_peers - notify network peers about existence of @dev
1357  * @dev: network device
1358  *
1359  * Generate traffic such that interested network peers are aware of
1360  * @dev, such as by generating a gratuitous ARP. This may be used when
1361  * a device wants to inform the rest of the network about some sort of
1362  * reconfiguration such as a failover event or virtual machine
1363  * migration.
1364  */
1365 void netdev_notify_peers(struct net_device *dev)
1366 {
1367 	rtnl_lock();
1368 	__netdev_notify_peers(dev);
1369 	rtnl_unlock();
1370 }
1371 EXPORT_SYMBOL(netdev_notify_peers);
1372 
1373 static int napi_threaded_poll(void *data);
1374 
1375 static int napi_kthread_create(struct napi_struct *n)
1376 {
1377 	int err = 0;
1378 
1379 	/* Create and wake up the kthread once to put it in
1380 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1381 	 * warning and work with loadavg.
1382 	 */
1383 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1384 				n->dev->name, n->napi_id);
1385 	if (IS_ERR(n->thread)) {
1386 		err = PTR_ERR(n->thread);
1387 		pr_err("kthread_run failed with err %d\n", err);
1388 		n->thread = NULL;
1389 	}
1390 
1391 	return err;
1392 }
1393 
1394 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1395 {
1396 	const struct net_device_ops *ops = dev->netdev_ops;
1397 	int ret;
1398 
1399 	ASSERT_RTNL();
1400 	dev_addr_check(dev);
1401 
1402 	if (!netif_device_present(dev)) {
1403 		/* may be detached because parent is runtime-suspended */
1404 		if (dev->dev.parent)
1405 			pm_runtime_resume(dev->dev.parent);
1406 		if (!netif_device_present(dev))
1407 			return -ENODEV;
1408 	}
1409 
1410 	/* Block netpoll from trying to do any rx path servicing.
1411 	 * If we don't do this there is a chance ndo_poll_controller
1412 	 * or ndo_poll may be running while we open the device
1413 	 */
1414 	netpoll_poll_disable(dev);
1415 
1416 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1417 	ret = notifier_to_errno(ret);
1418 	if (ret)
1419 		return ret;
1420 
1421 	set_bit(__LINK_STATE_START, &dev->state);
1422 
1423 	if (ops->ndo_validate_addr)
1424 		ret = ops->ndo_validate_addr(dev);
1425 
1426 	if (!ret && ops->ndo_open)
1427 		ret = ops->ndo_open(dev);
1428 
1429 	netpoll_poll_enable(dev);
1430 
1431 	if (ret)
1432 		clear_bit(__LINK_STATE_START, &dev->state);
1433 	else {
1434 		dev->flags |= IFF_UP;
1435 		dev_set_rx_mode(dev);
1436 		dev_activate(dev);
1437 		add_device_randomness(dev->dev_addr, dev->addr_len);
1438 	}
1439 
1440 	return ret;
1441 }
1442 
1443 /**
1444  *	dev_open	- prepare an interface for use.
1445  *	@dev: device to open
1446  *	@extack: netlink extended ack
1447  *
1448  *	Takes a device from down to up state. The device's private open
1449  *	function is invoked and then the multicast lists are loaded. Finally
1450  *	the device is moved into the up state and a %NETDEV_UP message is
1451  *	sent to the netdev notifier chain.
1452  *
1453  *	Calling this function on an active interface is a nop. On a failure
1454  *	a negative errno code is returned.
1455  */
1456 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1457 {
1458 	int ret;
1459 
1460 	if (dev->flags & IFF_UP)
1461 		return 0;
1462 
1463 	ret = __dev_open(dev, extack);
1464 	if (ret < 0)
1465 		return ret;
1466 
1467 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1468 	call_netdevice_notifiers(NETDEV_UP, dev);
1469 
1470 	return ret;
1471 }
1472 EXPORT_SYMBOL(dev_open);
1473 
1474 static void __dev_close_many(struct list_head *head)
1475 {
1476 	struct net_device *dev;
1477 
1478 	ASSERT_RTNL();
1479 	might_sleep();
1480 
1481 	list_for_each_entry(dev, head, close_list) {
1482 		/* Temporarily disable netpoll until the interface is down */
1483 		netpoll_poll_disable(dev);
1484 
1485 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1486 
1487 		clear_bit(__LINK_STATE_START, &dev->state);
1488 
1489 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1490 		 * can be even on different cpu. So just clear netif_running().
1491 		 *
1492 		 * dev->stop() will invoke napi_disable() on all of it's
1493 		 * napi_struct instances on this device.
1494 		 */
1495 		smp_mb__after_atomic(); /* Commit netif_running(). */
1496 	}
1497 
1498 	dev_deactivate_many(head);
1499 
1500 	list_for_each_entry(dev, head, close_list) {
1501 		const struct net_device_ops *ops = dev->netdev_ops;
1502 
1503 		/*
1504 		 *	Call the device specific close. This cannot fail.
1505 		 *	Only if device is UP
1506 		 *
1507 		 *	We allow it to be called even after a DETACH hot-plug
1508 		 *	event.
1509 		 */
1510 		if (ops->ndo_stop)
1511 			ops->ndo_stop(dev);
1512 
1513 		dev->flags &= ~IFF_UP;
1514 		netpoll_poll_enable(dev);
1515 	}
1516 }
1517 
1518 static void __dev_close(struct net_device *dev)
1519 {
1520 	LIST_HEAD(single);
1521 
1522 	list_add(&dev->close_list, &single);
1523 	__dev_close_many(&single);
1524 	list_del(&single);
1525 }
1526 
1527 void dev_close_many(struct list_head *head, bool unlink)
1528 {
1529 	struct net_device *dev, *tmp;
1530 
1531 	/* Remove the devices that don't need to be closed */
1532 	list_for_each_entry_safe(dev, tmp, head, close_list)
1533 		if (!(dev->flags & IFF_UP))
1534 			list_del_init(&dev->close_list);
1535 
1536 	__dev_close_many(head);
1537 
1538 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1539 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1540 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1541 		if (unlink)
1542 			list_del_init(&dev->close_list);
1543 	}
1544 }
1545 EXPORT_SYMBOL(dev_close_many);
1546 
1547 /**
1548  *	dev_close - shutdown an interface.
1549  *	@dev: device to shutdown
1550  *
1551  *	This function moves an active device into down state. A
1552  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1553  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1554  *	chain.
1555  */
1556 void dev_close(struct net_device *dev)
1557 {
1558 	if (dev->flags & IFF_UP) {
1559 		LIST_HEAD(single);
1560 
1561 		list_add(&dev->close_list, &single);
1562 		dev_close_many(&single, true);
1563 		list_del(&single);
1564 	}
1565 }
1566 EXPORT_SYMBOL(dev_close);
1567 
1568 
1569 /**
1570  *	dev_disable_lro - disable Large Receive Offload on a device
1571  *	@dev: device
1572  *
1573  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1574  *	called under RTNL.  This is needed if received packets may be
1575  *	forwarded to another interface.
1576  */
1577 void dev_disable_lro(struct net_device *dev)
1578 {
1579 	struct net_device *lower_dev;
1580 	struct list_head *iter;
1581 
1582 	dev->wanted_features &= ~NETIF_F_LRO;
1583 	netdev_update_features(dev);
1584 
1585 	if (unlikely(dev->features & NETIF_F_LRO))
1586 		netdev_WARN(dev, "failed to disable LRO!\n");
1587 
1588 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1589 		dev_disable_lro(lower_dev);
1590 }
1591 EXPORT_SYMBOL(dev_disable_lro);
1592 
1593 /**
1594  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1595  *	@dev: device
1596  *
1597  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1598  *	called under RTNL.  This is needed if Generic XDP is installed on
1599  *	the device.
1600  */
1601 static void dev_disable_gro_hw(struct net_device *dev)
1602 {
1603 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1604 	netdev_update_features(dev);
1605 
1606 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1607 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1608 }
1609 
1610 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1611 {
1612 #define N(val) 						\
1613 	case NETDEV_##val:				\
1614 		return "NETDEV_" __stringify(val);
1615 	switch (cmd) {
1616 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1617 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1618 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1619 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1620 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1621 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1622 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1623 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1624 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1625 	N(PRE_CHANGEADDR)
1626 	}
1627 #undef N
1628 	return "UNKNOWN_NETDEV_EVENT";
1629 }
1630 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1631 
1632 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1633 				   struct net_device *dev)
1634 {
1635 	struct netdev_notifier_info info = {
1636 		.dev = dev,
1637 	};
1638 
1639 	return nb->notifier_call(nb, val, &info);
1640 }
1641 
1642 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1643 					     struct net_device *dev)
1644 {
1645 	int err;
1646 
1647 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1648 	err = notifier_to_errno(err);
1649 	if (err)
1650 		return err;
1651 
1652 	if (!(dev->flags & IFF_UP))
1653 		return 0;
1654 
1655 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1656 	return 0;
1657 }
1658 
1659 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1660 						struct net_device *dev)
1661 {
1662 	if (dev->flags & IFF_UP) {
1663 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1664 					dev);
1665 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1666 	}
1667 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1668 }
1669 
1670 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1671 						 struct net *net)
1672 {
1673 	struct net_device *dev;
1674 	int err;
1675 
1676 	for_each_netdev(net, dev) {
1677 		err = call_netdevice_register_notifiers(nb, dev);
1678 		if (err)
1679 			goto rollback;
1680 	}
1681 	return 0;
1682 
1683 rollback:
1684 	for_each_netdev_continue_reverse(net, dev)
1685 		call_netdevice_unregister_notifiers(nb, dev);
1686 	return err;
1687 }
1688 
1689 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1690 						    struct net *net)
1691 {
1692 	struct net_device *dev;
1693 
1694 	for_each_netdev(net, dev)
1695 		call_netdevice_unregister_notifiers(nb, dev);
1696 }
1697 
1698 static int dev_boot_phase = 1;
1699 
1700 /**
1701  * register_netdevice_notifier - register a network notifier block
1702  * @nb: notifier
1703  *
1704  * Register a notifier to be called when network device events occur.
1705  * The notifier passed is linked into the kernel structures and must
1706  * not be reused until it has been unregistered. A negative errno code
1707  * is returned on a failure.
1708  *
1709  * When registered all registration and up events are replayed
1710  * to the new notifier to allow device to have a race free
1711  * view of the network device list.
1712  */
1713 
1714 int register_netdevice_notifier(struct notifier_block *nb)
1715 {
1716 	struct net *net;
1717 	int err;
1718 
1719 	/* Close race with setup_net() and cleanup_net() */
1720 	down_write(&pernet_ops_rwsem);
1721 	rtnl_lock();
1722 	err = raw_notifier_chain_register(&netdev_chain, nb);
1723 	if (err)
1724 		goto unlock;
1725 	if (dev_boot_phase)
1726 		goto unlock;
1727 	for_each_net(net) {
1728 		err = call_netdevice_register_net_notifiers(nb, net);
1729 		if (err)
1730 			goto rollback;
1731 	}
1732 
1733 unlock:
1734 	rtnl_unlock();
1735 	up_write(&pernet_ops_rwsem);
1736 	return err;
1737 
1738 rollback:
1739 	for_each_net_continue_reverse(net)
1740 		call_netdevice_unregister_net_notifiers(nb, net);
1741 
1742 	raw_notifier_chain_unregister(&netdev_chain, nb);
1743 	goto unlock;
1744 }
1745 EXPORT_SYMBOL(register_netdevice_notifier);
1746 
1747 /**
1748  * unregister_netdevice_notifier - unregister a network notifier block
1749  * @nb: notifier
1750  *
1751  * Unregister a notifier previously registered by
1752  * register_netdevice_notifier(). The notifier is unlinked into the
1753  * kernel structures and may then be reused. A negative errno code
1754  * is returned on a failure.
1755  *
1756  * After unregistering unregister and down device events are synthesized
1757  * for all devices on the device list to the removed notifier to remove
1758  * the need for special case cleanup code.
1759  */
1760 
1761 int unregister_netdevice_notifier(struct notifier_block *nb)
1762 {
1763 	struct net *net;
1764 	int err;
1765 
1766 	/* Close race with setup_net() and cleanup_net() */
1767 	down_write(&pernet_ops_rwsem);
1768 	rtnl_lock();
1769 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1770 	if (err)
1771 		goto unlock;
1772 
1773 	for_each_net(net)
1774 		call_netdevice_unregister_net_notifiers(nb, net);
1775 
1776 unlock:
1777 	rtnl_unlock();
1778 	up_write(&pernet_ops_rwsem);
1779 	return err;
1780 }
1781 EXPORT_SYMBOL(unregister_netdevice_notifier);
1782 
1783 static int __register_netdevice_notifier_net(struct net *net,
1784 					     struct notifier_block *nb,
1785 					     bool ignore_call_fail)
1786 {
1787 	int err;
1788 
1789 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1790 	if (err)
1791 		return err;
1792 	if (dev_boot_phase)
1793 		return 0;
1794 
1795 	err = call_netdevice_register_net_notifiers(nb, net);
1796 	if (err && !ignore_call_fail)
1797 		goto chain_unregister;
1798 
1799 	return 0;
1800 
1801 chain_unregister:
1802 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1803 	return err;
1804 }
1805 
1806 static int __unregister_netdevice_notifier_net(struct net *net,
1807 					       struct notifier_block *nb)
1808 {
1809 	int err;
1810 
1811 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1812 	if (err)
1813 		return err;
1814 
1815 	call_netdevice_unregister_net_notifiers(nb, net);
1816 	return 0;
1817 }
1818 
1819 /**
1820  * register_netdevice_notifier_net - register a per-netns network notifier block
1821  * @net: network namespace
1822  * @nb: notifier
1823  *
1824  * Register a notifier to be called when network device events occur.
1825  * The notifier passed is linked into the kernel structures and must
1826  * not be reused until it has been unregistered. A negative errno code
1827  * is returned on a failure.
1828  *
1829  * When registered all registration and up events are replayed
1830  * to the new notifier to allow device to have a race free
1831  * view of the network device list.
1832  */
1833 
1834 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1835 {
1836 	int err;
1837 
1838 	rtnl_lock();
1839 	err = __register_netdevice_notifier_net(net, nb, false);
1840 	rtnl_unlock();
1841 	return err;
1842 }
1843 EXPORT_SYMBOL(register_netdevice_notifier_net);
1844 
1845 /**
1846  * unregister_netdevice_notifier_net - unregister a per-netns
1847  *                                     network notifier block
1848  * @net: network namespace
1849  * @nb: notifier
1850  *
1851  * Unregister a notifier previously registered by
1852  * register_netdevice_notifier(). The notifier is unlinked into the
1853  * kernel structures and may then be reused. A negative errno code
1854  * is returned on a failure.
1855  *
1856  * After unregistering unregister and down device events are synthesized
1857  * for all devices on the device list to the removed notifier to remove
1858  * the need for special case cleanup code.
1859  */
1860 
1861 int unregister_netdevice_notifier_net(struct net *net,
1862 				      struct notifier_block *nb)
1863 {
1864 	int err;
1865 
1866 	rtnl_lock();
1867 	err = __unregister_netdevice_notifier_net(net, nb);
1868 	rtnl_unlock();
1869 	return err;
1870 }
1871 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1872 
1873 int register_netdevice_notifier_dev_net(struct net_device *dev,
1874 					struct notifier_block *nb,
1875 					struct netdev_net_notifier *nn)
1876 {
1877 	int err;
1878 
1879 	rtnl_lock();
1880 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1881 	if (!err) {
1882 		nn->nb = nb;
1883 		list_add(&nn->list, &dev->net_notifier_list);
1884 	}
1885 	rtnl_unlock();
1886 	return err;
1887 }
1888 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1889 
1890 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1891 					  struct notifier_block *nb,
1892 					  struct netdev_net_notifier *nn)
1893 {
1894 	int err;
1895 
1896 	rtnl_lock();
1897 	list_del(&nn->list);
1898 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1899 	rtnl_unlock();
1900 	return err;
1901 }
1902 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1903 
1904 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1905 					     struct net *net)
1906 {
1907 	struct netdev_net_notifier *nn;
1908 
1909 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1910 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1911 		__register_netdevice_notifier_net(net, nn->nb, true);
1912 	}
1913 }
1914 
1915 /**
1916  *	call_netdevice_notifiers_info - call all network notifier blocks
1917  *	@val: value passed unmodified to notifier function
1918  *	@info: notifier information data
1919  *
1920  *	Call all network notifier blocks.  Parameters and return value
1921  *	are as for raw_notifier_call_chain().
1922  */
1923 
1924 static int call_netdevice_notifiers_info(unsigned long val,
1925 					 struct netdev_notifier_info *info)
1926 {
1927 	struct net *net = dev_net(info->dev);
1928 	int ret;
1929 
1930 	ASSERT_RTNL();
1931 
1932 	/* Run per-netns notifier block chain first, then run the global one.
1933 	 * Hopefully, one day, the global one is going to be removed after
1934 	 * all notifier block registrators get converted to be per-netns.
1935 	 */
1936 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1937 	if (ret & NOTIFY_STOP_MASK)
1938 		return ret;
1939 	return raw_notifier_call_chain(&netdev_chain, val, info);
1940 }
1941 
1942 static int call_netdevice_notifiers_extack(unsigned long val,
1943 					   struct net_device *dev,
1944 					   struct netlink_ext_ack *extack)
1945 {
1946 	struct netdev_notifier_info info = {
1947 		.dev = dev,
1948 		.extack = extack,
1949 	};
1950 
1951 	return call_netdevice_notifiers_info(val, &info);
1952 }
1953 
1954 /**
1955  *	call_netdevice_notifiers - call all network notifier blocks
1956  *      @val: value passed unmodified to notifier function
1957  *      @dev: net_device pointer passed unmodified to notifier function
1958  *
1959  *	Call all network notifier blocks.  Parameters and return value
1960  *	are as for raw_notifier_call_chain().
1961  */
1962 
1963 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1964 {
1965 	return call_netdevice_notifiers_extack(val, dev, NULL);
1966 }
1967 EXPORT_SYMBOL(call_netdevice_notifiers);
1968 
1969 /**
1970  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1971  *	@val: value passed unmodified to notifier function
1972  *	@dev: net_device pointer passed unmodified to notifier function
1973  *	@arg: additional u32 argument passed to the notifier function
1974  *
1975  *	Call all network notifier blocks.  Parameters and return value
1976  *	are as for raw_notifier_call_chain().
1977  */
1978 static int call_netdevice_notifiers_mtu(unsigned long val,
1979 					struct net_device *dev, u32 arg)
1980 {
1981 	struct netdev_notifier_info_ext info = {
1982 		.info.dev = dev,
1983 		.ext.mtu = arg,
1984 	};
1985 
1986 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1987 
1988 	return call_netdevice_notifiers_info(val, &info.info);
1989 }
1990 
1991 #ifdef CONFIG_NET_INGRESS
1992 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1993 
1994 void net_inc_ingress_queue(void)
1995 {
1996 	static_branch_inc(&ingress_needed_key);
1997 }
1998 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1999 
2000 void net_dec_ingress_queue(void)
2001 {
2002 	static_branch_dec(&ingress_needed_key);
2003 }
2004 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2005 #endif
2006 
2007 #ifdef CONFIG_NET_EGRESS
2008 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2009 
2010 void net_inc_egress_queue(void)
2011 {
2012 	static_branch_inc(&egress_needed_key);
2013 }
2014 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2015 
2016 void net_dec_egress_queue(void)
2017 {
2018 	static_branch_dec(&egress_needed_key);
2019 }
2020 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2021 #endif
2022 
2023 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2024 #ifdef CONFIG_JUMP_LABEL
2025 static atomic_t netstamp_needed_deferred;
2026 static atomic_t netstamp_wanted;
2027 static void netstamp_clear(struct work_struct *work)
2028 {
2029 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2030 	int wanted;
2031 
2032 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2033 	if (wanted > 0)
2034 		static_branch_enable(&netstamp_needed_key);
2035 	else
2036 		static_branch_disable(&netstamp_needed_key);
2037 }
2038 static DECLARE_WORK(netstamp_work, netstamp_clear);
2039 #endif
2040 
2041 void net_enable_timestamp(void)
2042 {
2043 #ifdef CONFIG_JUMP_LABEL
2044 	int wanted;
2045 
2046 	while (1) {
2047 		wanted = atomic_read(&netstamp_wanted);
2048 		if (wanted <= 0)
2049 			break;
2050 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2051 			return;
2052 	}
2053 	atomic_inc(&netstamp_needed_deferred);
2054 	schedule_work(&netstamp_work);
2055 #else
2056 	static_branch_inc(&netstamp_needed_key);
2057 #endif
2058 }
2059 EXPORT_SYMBOL(net_enable_timestamp);
2060 
2061 void net_disable_timestamp(void)
2062 {
2063 #ifdef CONFIG_JUMP_LABEL
2064 	int wanted;
2065 
2066 	while (1) {
2067 		wanted = atomic_read(&netstamp_wanted);
2068 		if (wanted <= 1)
2069 			break;
2070 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2071 			return;
2072 	}
2073 	atomic_dec(&netstamp_needed_deferred);
2074 	schedule_work(&netstamp_work);
2075 #else
2076 	static_branch_dec(&netstamp_needed_key);
2077 #endif
2078 }
2079 EXPORT_SYMBOL(net_disable_timestamp);
2080 
2081 static inline void net_timestamp_set(struct sk_buff *skb)
2082 {
2083 	skb->tstamp = 0;
2084 	if (static_branch_unlikely(&netstamp_needed_key))
2085 		__net_timestamp(skb);
2086 }
2087 
2088 #define net_timestamp_check(COND, SKB)				\
2089 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2090 		if ((COND) && !(SKB)->tstamp)			\
2091 			__net_timestamp(SKB);			\
2092 	}							\
2093 
2094 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2095 {
2096 	return __is_skb_forwardable(dev, skb, true);
2097 }
2098 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2099 
2100 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2101 			      bool check_mtu)
2102 {
2103 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2104 
2105 	if (likely(!ret)) {
2106 		skb->protocol = eth_type_trans(skb, dev);
2107 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2108 	}
2109 
2110 	return ret;
2111 }
2112 
2113 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2114 {
2115 	return __dev_forward_skb2(dev, skb, true);
2116 }
2117 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2118 
2119 /**
2120  * dev_forward_skb - loopback an skb to another netif
2121  *
2122  * @dev: destination network device
2123  * @skb: buffer to forward
2124  *
2125  * return values:
2126  *	NET_RX_SUCCESS	(no congestion)
2127  *	NET_RX_DROP     (packet was dropped, but freed)
2128  *
2129  * dev_forward_skb can be used for injecting an skb from the
2130  * start_xmit function of one device into the receive queue
2131  * of another device.
2132  *
2133  * The receiving device may be in another namespace, so
2134  * we have to clear all information in the skb that could
2135  * impact namespace isolation.
2136  */
2137 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2138 {
2139 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2140 }
2141 EXPORT_SYMBOL_GPL(dev_forward_skb);
2142 
2143 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2144 {
2145 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2146 }
2147 
2148 static inline int deliver_skb(struct sk_buff *skb,
2149 			      struct packet_type *pt_prev,
2150 			      struct net_device *orig_dev)
2151 {
2152 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2153 		return -ENOMEM;
2154 	refcount_inc(&skb->users);
2155 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2156 }
2157 
2158 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2159 					  struct packet_type **pt,
2160 					  struct net_device *orig_dev,
2161 					  __be16 type,
2162 					  struct list_head *ptype_list)
2163 {
2164 	struct packet_type *ptype, *pt_prev = *pt;
2165 
2166 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2167 		if (ptype->type != type)
2168 			continue;
2169 		if (pt_prev)
2170 			deliver_skb(skb, pt_prev, orig_dev);
2171 		pt_prev = ptype;
2172 	}
2173 	*pt = pt_prev;
2174 }
2175 
2176 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2177 {
2178 	if (!ptype->af_packet_priv || !skb->sk)
2179 		return false;
2180 
2181 	if (ptype->id_match)
2182 		return ptype->id_match(ptype, skb->sk);
2183 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2184 		return true;
2185 
2186 	return false;
2187 }
2188 
2189 /**
2190  * dev_nit_active - return true if any network interface taps are in use
2191  *
2192  * @dev: network device to check for the presence of taps
2193  */
2194 bool dev_nit_active(struct net_device *dev)
2195 {
2196 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2197 }
2198 EXPORT_SYMBOL_GPL(dev_nit_active);
2199 
2200 /*
2201  *	Support routine. Sends outgoing frames to any network
2202  *	taps currently in use.
2203  */
2204 
2205 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2206 {
2207 	struct packet_type *ptype;
2208 	struct sk_buff *skb2 = NULL;
2209 	struct packet_type *pt_prev = NULL;
2210 	struct list_head *ptype_list = &ptype_all;
2211 
2212 	rcu_read_lock();
2213 again:
2214 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2215 		if (ptype->ignore_outgoing)
2216 			continue;
2217 
2218 		/* Never send packets back to the socket
2219 		 * they originated from - MvS (miquels@drinkel.ow.org)
2220 		 */
2221 		if (skb_loop_sk(ptype, skb))
2222 			continue;
2223 
2224 		if (pt_prev) {
2225 			deliver_skb(skb2, pt_prev, skb->dev);
2226 			pt_prev = ptype;
2227 			continue;
2228 		}
2229 
2230 		/* need to clone skb, done only once */
2231 		skb2 = skb_clone(skb, GFP_ATOMIC);
2232 		if (!skb2)
2233 			goto out_unlock;
2234 
2235 		net_timestamp_set(skb2);
2236 
2237 		/* skb->nh should be correctly
2238 		 * set by sender, so that the second statement is
2239 		 * just protection against buggy protocols.
2240 		 */
2241 		skb_reset_mac_header(skb2);
2242 
2243 		if (skb_network_header(skb2) < skb2->data ||
2244 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2245 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2246 					     ntohs(skb2->protocol),
2247 					     dev->name);
2248 			skb_reset_network_header(skb2);
2249 		}
2250 
2251 		skb2->transport_header = skb2->network_header;
2252 		skb2->pkt_type = PACKET_OUTGOING;
2253 		pt_prev = ptype;
2254 	}
2255 
2256 	if (ptype_list == &ptype_all) {
2257 		ptype_list = &dev->ptype_all;
2258 		goto again;
2259 	}
2260 out_unlock:
2261 	if (pt_prev) {
2262 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2263 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2264 		else
2265 			kfree_skb(skb2);
2266 	}
2267 	rcu_read_unlock();
2268 }
2269 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2270 
2271 /**
2272  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2273  * @dev: Network device
2274  * @txq: number of queues available
2275  *
2276  * If real_num_tx_queues is changed the tc mappings may no longer be
2277  * valid. To resolve this verify the tc mapping remains valid and if
2278  * not NULL the mapping. With no priorities mapping to this
2279  * offset/count pair it will no longer be used. In the worst case TC0
2280  * is invalid nothing can be done so disable priority mappings. If is
2281  * expected that drivers will fix this mapping if they can before
2282  * calling netif_set_real_num_tx_queues.
2283  */
2284 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2285 {
2286 	int i;
2287 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2288 
2289 	/* If TC0 is invalidated disable TC mapping */
2290 	if (tc->offset + tc->count > txq) {
2291 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2292 		dev->num_tc = 0;
2293 		return;
2294 	}
2295 
2296 	/* Invalidated prio to tc mappings set to TC0 */
2297 	for (i = 1; i < TC_BITMASK + 1; i++) {
2298 		int q = netdev_get_prio_tc_map(dev, i);
2299 
2300 		tc = &dev->tc_to_txq[q];
2301 		if (tc->offset + tc->count > txq) {
2302 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2303 				    i, q);
2304 			netdev_set_prio_tc_map(dev, i, 0);
2305 		}
2306 	}
2307 }
2308 
2309 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2310 {
2311 	if (dev->num_tc) {
2312 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2313 		int i;
2314 
2315 		/* walk through the TCs and see if it falls into any of them */
2316 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2317 			if ((txq - tc->offset) < tc->count)
2318 				return i;
2319 		}
2320 
2321 		/* didn't find it, just return -1 to indicate no match */
2322 		return -1;
2323 	}
2324 
2325 	return 0;
2326 }
2327 EXPORT_SYMBOL(netdev_txq_to_tc);
2328 
2329 #ifdef CONFIG_XPS
2330 static struct static_key xps_needed __read_mostly;
2331 static struct static_key xps_rxqs_needed __read_mostly;
2332 static DEFINE_MUTEX(xps_map_mutex);
2333 #define xmap_dereference(P)		\
2334 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2335 
2336 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2337 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2338 {
2339 	struct xps_map *map = NULL;
2340 	int pos;
2341 
2342 	if (dev_maps)
2343 		map = xmap_dereference(dev_maps->attr_map[tci]);
2344 	if (!map)
2345 		return false;
2346 
2347 	for (pos = map->len; pos--;) {
2348 		if (map->queues[pos] != index)
2349 			continue;
2350 
2351 		if (map->len > 1) {
2352 			map->queues[pos] = map->queues[--map->len];
2353 			break;
2354 		}
2355 
2356 		if (old_maps)
2357 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2358 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2359 		kfree_rcu(map, rcu);
2360 		return false;
2361 	}
2362 
2363 	return true;
2364 }
2365 
2366 static bool remove_xps_queue_cpu(struct net_device *dev,
2367 				 struct xps_dev_maps *dev_maps,
2368 				 int cpu, u16 offset, u16 count)
2369 {
2370 	int num_tc = dev_maps->num_tc;
2371 	bool active = false;
2372 	int tci;
2373 
2374 	for (tci = cpu * num_tc; num_tc--; tci++) {
2375 		int i, j;
2376 
2377 		for (i = count, j = offset; i--; j++) {
2378 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2379 				break;
2380 		}
2381 
2382 		active |= i < 0;
2383 	}
2384 
2385 	return active;
2386 }
2387 
2388 static void reset_xps_maps(struct net_device *dev,
2389 			   struct xps_dev_maps *dev_maps,
2390 			   enum xps_map_type type)
2391 {
2392 	static_key_slow_dec_cpuslocked(&xps_needed);
2393 	if (type == XPS_RXQS)
2394 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2395 
2396 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2397 
2398 	kfree_rcu(dev_maps, rcu);
2399 }
2400 
2401 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2402 			   u16 offset, u16 count)
2403 {
2404 	struct xps_dev_maps *dev_maps;
2405 	bool active = false;
2406 	int i, j;
2407 
2408 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2409 	if (!dev_maps)
2410 		return;
2411 
2412 	for (j = 0; j < dev_maps->nr_ids; j++)
2413 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2414 	if (!active)
2415 		reset_xps_maps(dev, dev_maps, type);
2416 
2417 	if (type == XPS_CPUS) {
2418 		for (i = offset + (count - 1); count--; i--)
2419 			netdev_queue_numa_node_write(
2420 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2421 	}
2422 }
2423 
2424 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2425 				   u16 count)
2426 {
2427 	if (!static_key_false(&xps_needed))
2428 		return;
2429 
2430 	cpus_read_lock();
2431 	mutex_lock(&xps_map_mutex);
2432 
2433 	if (static_key_false(&xps_rxqs_needed))
2434 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2435 
2436 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2437 
2438 	mutex_unlock(&xps_map_mutex);
2439 	cpus_read_unlock();
2440 }
2441 
2442 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2443 {
2444 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2445 }
2446 
2447 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2448 				      u16 index, bool is_rxqs_map)
2449 {
2450 	struct xps_map *new_map;
2451 	int alloc_len = XPS_MIN_MAP_ALLOC;
2452 	int i, pos;
2453 
2454 	for (pos = 0; map && pos < map->len; pos++) {
2455 		if (map->queues[pos] != index)
2456 			continue;
2457 		return map;
2458 	}
2459 
2460 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2461 	if (map) {
2462 		if (pos < map->alloc_len)
2463 			return map;
2464 
2465 		alloc_len = map->alloc_len * 2;
2466 	}
2467 
2468 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2469 	 *  map
2470 	 */
2471 	if (is_rxqs_map)
2472 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2473 	else
2474 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2475 				       cpu_to_node(attr_index));
2476 	if (!new_map)
2477 		return NULL;
2478 
2479 	for (i = 0; i < pos; i++)
2480 		new_map->queues[i] = map->queues[i];
2481 	new_map->alloc_len = alloc_len;
2482 	new_map->len = pos;
2483 
2484 	return new_map;
2485 }
2486 
2487 /* Copy xps maps at a given index */
2488 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2489 			      struct xps_dev_maps *new_dev_maps, int index,
2490 			      int tc, bool skip_tc)
2491 {
2492 	int i, tci = index * dev_maps->num_tc;
2493 	struct xps_map *map;
2494 
2495 	/* copy maps belonging to foreign traffic classes */
2496 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2497 		if (i == tc && skip_tc)
2498 			continue;
2499 
2500 		/* fill in the new device map from the old device map */
2501 		map = xmap_dereference(dev_maps->attr_map[tci]);
2502 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2503 	}
2504 }
2505 
2506 /* Must be called under cpus_read_lock */
2507 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2508 			  u16 index, enum xps_map_type type)
2509 {
2510 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2511 	const unsigned long *online_mask = NULL;
2512 	bool active = false, copy = false;
2513 	int i, j, tci, numa_node_id = -2;
2514 	int maps_sz, num_tc = 1, tc = 0;
2515 	struct xps_map *map, *new_map;
2516 	unsigned int nr_ids;
2517 
2518 	if (dev->num_tc) {
2519 		/* Do not allow XPS on subordinate device directly */
2520 		num_tc = dev->num_tc;
2521 		if (num_tc < 0)
2522 			return -EINVAL;
2523 
2524 		/* If queue belongs to subordinate dev use its map */
2525 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2526 
2527 		tc = netdev_txq_to_tc(dev, index);
2528 		if (tc < 0)
2529 			return -EINVAL;
2530 	}
2531 
2532 	mutex_lock(&xps_map_mutex);
2533 
2534 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2535 	if (type == XPS_RXQS) {
2536 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2537 		nr_ids = dev->num_rx_queues;
2538 	} else {
2539 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2540 		if (num_possible_cpus() > 1)
2541 			online_mask = cpumask_bits(cpu_online_mask);
2542 		nr_ids = nr_cpu_ids;
2543 	}
2544 
2545 	if (maps_sz < L1_CACHE_BYTES)
2546 		maps_sz = L1_CACHE_BYTES;
2547 
2548 	/* The old dev_maps could be larger or smaller than the one we're
2549 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2550 	 * between. We could try to be smart, but let's be safe instead and only
2551 	 * copy foreign traffic classes if the two map sizes match.
2552 	 */
2553 	if (dev_maps &&
2554 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2555 		copy = true;
2556 
2557 	/* allocate memory for queue storage */
2558 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2559 	     j < nr_ids;) {
2560 		if (!new_dev_maps) {
2561 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2562 			if (!new_dev_maps) {
2563 				mutex_unlock(&xps_map_mutex);
2564 				return -ENOMEM;
2565 			}
2566 
2567 			new_dev_maps->nr_ids = nr_ids;
2568 			new_dev_maps->num_tc = num_tc;
2569 		}
2570 
2571 		tci = j * num_tc + tc;
2572 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2573 
2574 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2575 		if (!map)
2576 			goto error;
2577 
2578 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2579 	}
2580 
2581 	if (!new_dev_maps)
2582 		goto out_no_new_maps;
2583 
2584 	if (!dev_maps) {
2585 		/* Increment static keys at most once per type */
2586 		static_key_slow_inc_cpuslocked(&xps_needed);
2587 		if (type == XPS_RXQS)
2588 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2589 	}
2590 
2591 	for (j = 0; j < nr_ids; j++) {
2592 		bool skip_tc = false;
2593 
2594 		tci = j * num_tc + tc;
2595 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2596 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2597 			/* add tx-queue to CPU/rx-queue maps */
2598 			int pos = 0;
2599 
2600 			skip_tc = true;
2601 
2602 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2603 			while ((pos < map->len) && (map->queues[pos] != index))
2604 				pos++;
2605 
2606 			if (pos == map->len)
2607 				map->queues[map->len++] = index;
2608 #ifdef CONFIG_NUMA
2609 			if (type == XPS_CPUS) {
2610 				if (numa_node_id == -2)
2611 					numa_node_id = cpu_to_node(j);
2612 				else if (numa_node_id != cpu_to_node(j))
2613 					numa_node_id = -1;
2614 			}
2615 #endif
2616 		}
2617 
2618 		if (copy)
2619 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2620 					  skip_tc);
2621 	}
2622 
2623 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2624 
2625 	/* Cleanup old maps */
2626 	if (!dev_maps)
2627 		goto out_no_old_maps;
2628 
2629 	for (j = 0; j < dev_maps->nr_ids; j++) {
2630 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2631 			map = xmap_dereference(dev_maps->attr_map[tci]);
2632 			if (!map)
2633 				continue;
2634 
2635 			if (copy) {
2636 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2637 				if (map == new_map)
2638 					continue;
2639 			}
2640 
2641 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2642 			kfree_rcu(map, rcu);
2643 		}
2644 	}
2645 
2646 	old_dev_maps = dev_maps;
2647 
2648 out_no_old_maps:
2649 	dev_maps = new_dev_maps;
2650 	active = true;
2651 
2652 out_no_new_maps:
2653 	if (type == XPS_CPUS)
2654 		/* update Tx queue numa node */
2655 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2656 					     (numa_node_id >= 0) ?
2657 					     numa_node_id : NUMA_NO_NODE);
2658 
2659 	if (!dev_maps)
2660 		goto out_no_maps;
2661 
2662 	/* removes tx-queue from unused CPUs/rx-queues */
2663 	for (j = 0; j < dev_maps->nr_ids; j++) {
2664 		tci = j * dev_maps->num_tc;
2665 
2666 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2667 			if (i == tc &&
2668 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2669 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2670 				continue;
2671 
2672 			active |= remove_xps_queue(dev_maps,
2673 						   copy ? old_dev_maps : NULL,
2674 						   tci, index);
2675 		}
2676 	}
2677 
2678 	if (old_dev_maps)
2679 		kfree_rcu(old_dev_maps, rcu);
2680 
2681 	/* free map if not active */
2682 	if (!active)
2683 		reset_xps_maps(dev, dev_maps, type);
2684 
2685 out_no_maps:
2686 	mutex_unlock(&xps_map_mutex);
2687 
2688 	return 0;
2689 error:
2690 	/* remove any maps that we added */
2691 	for (j = 0; j < nr_ids; j++) {
2692 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2693 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2694 			map = copy ?
2695 			      xmap_dereference(dev_maps->attr_map[tci]) :
2696 			      NULL;
2697 			if (new_map && new_map != map)
2698 				kfree(new_map);
2699 		}
2700 	}
2701 
2702 	mutex_unlock(&xps_map_mutex);
2703 
2704 	kfree(new_dev_maps);
2705 	return -ENOMEM;
2706 }
2707 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2708 
2709 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2710 			u16 index)
2711 {
2712 	int ret;
2713 
2714 	cpus_read_lock();
2715 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2716 	cpus_read_unlock();
2717 
2718 	return ret;
2719 }
2720 EXPORT_SYMBOL(netif_set_xps_queue);
2721 
2722 #endif
2723 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2724 {
2725 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2726 
2727 	/* Unbind any subordinate channels */
2728 	while (txq-- != &dev->_tx[0]) {
2729 		if (txq->sb_dev)
2730 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2731 	}
2732 }
2733 
2734 void netdev_reset_tc(struct net_device *dev)
2735 {
2736 #ifdef CONFIG_XPS
2737 	netif_reset_xps_queues_gt(dev, 0);
2738 #endif
2739 	netdev_unbind_all_sb_channels(dev);
2740 
2741 	/* Reset TC configuration of device */
2742 	dev->num_tc = 0;
2743 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2744 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2745 }
2746 EXPORT_SYMBOL(netdev_reset_tc);
2747 
2748 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2749 {
2750 	if (tc >= dev->num_tc)
2751 		return -EINVAL;
2752 
2753 #ifdef CONFIG_XPS
2754 	netif_reset_xps_queues(dev, offset, count);
2755 #endif
2756 	dev->tc_to_txq[tc].count = count;
2757 	dev->tc_to_txq[tc].offset = offset;
2758 	return 0;
2759 }
2760 EXPORT_SYMBOL(netdev_set_tc_queue);
2761 
2762 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2763 {
2764 	if (num_tc > TC_MAX_QUEUE)
2765 		return -EINVAL;
2766 
2767 #ifdef CONFIG_XPS
2768 	netif_reset_xps_queues_gt(dev, 0);
2769 #endif
2770 	netdev_unbind_all_sb_channels(dev);
2771 
2772 	dev->num_tc = num_tc;
2773 	return 0;
2774 }
2775 EXPORT_SYMBOL(netdev_set_num_tc);
2776 
2777 void netdev_unbind_sb_channel(struct net_device *dev,
2778 			      struct net_device *sb_dev)
2779 {
2780 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2781 
2782 #ifdef CONFIG_XPS
2783 	netif_reset_xps_queues_gt(sb_dev, 0);
2784 #endif
2785 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2786 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2787 
2788 	while (txq-- != &dev->_tx[0]) {
2789 		if (txq->sb_dev == sb_dev)
2790 			txq->sb_dev = NULL;
2791 	}
2792 }
2793 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2794 
2795 int netdev_bind_sb_channel_queue(struct net_device *dev,
2796 				 struct net_device *sb_dev,
2797 				 u8 tc, u16 count, u16 offset)
2798 {
2799 	/* Make certain the sb_dev and dev are already configured */
2800 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2801 		return -EINVAL;
2802 
2803 	/* We cannot hand out queues we don't have */
2804 	if ((offset + count) > dev->real_num_tx_queues)
2805 		return -EINVAL;
2806 
2807 	/* Record the mapping */
2808 	sb_dev->tc_to_txq[tc].count = count;
2809 	sb_dev->tc_to_txq[tc].offset = offset;
2810 
2811 	/* Provide a way for Tx queue to find the tc_to_txq map or
2812 	 * XPS map for itself.
2813 	 */
2814 	while (count--)
2815 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2816 
2817 	return 0;
2818 }
2819 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2820 
2821 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2822 {
2823 	/* Do not use a multiqueue device to represent a subordinate channel */
2824 	if (netif_is_multiqueue(dev))
2825 		return -ENODEV;
2826 
2827 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2828 	 * Channel 0 is meant to be "native" mode and used only to represent
2829 	 * the main root device. We allow writing 0 to reset the device back
2830 	 * to normal mode after being used as a subordinate channel.
2831 	 */
2832 	if (channel > S16_MAX)
2833 		return -EINVAL;
2834 
2835 	dev->num_tc = -channel;
2836 
2837 	return 0;
2838 }
2839 EXPORT_SYMBOL(netdev_set_sb_channel);
2840 
2841 /*
2842  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2843  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2844  */
2845 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2846 {
2847 	bool disabling;
2848 	int rc;
2849 
2850 	disabling = txq < dev->real_num_tx_queues;
2851 
2852 	if (txq < 1 || txq > dev->num_tx_queues)
2853 		return -EINVAL;
2854 
2855 	if (dev->reg_state == NETREG_REGISTERED ||
2856 	    dev->reg_state == NETREG_UNREGISTERING) {
2857 		ASSERT_RTNL();
2858 
2859 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2860 						  txq);
2861 		if (rc)
2862 			return rc;
2863 
2864 		if (dev->num_tc)
2865 			netif_setup_tc(dev, txq);
2866 
2867 		dev_qdisc_change_real_num_tx(dev, txq);
2868 
2869 		dev->real_num_tx_queues = txq;
2870 
2871 		if (disabling) {
2872 			synchronize_net();
2873 			qdisc_reset_all_tx_gt(dev, txq);
2874 #ifdef CONFIG_XPS
2875 			netif_reset_xps_queues_gt(dev, txq);
2876 #endif
2877 		}
2878 	} else {
2879 		dev->real_num_tx_queues = txq;
2880 	}
2881 
2882 	return 0;
2883 }
2884 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2885 
2886 #ifdef CONFIG_SYSFS
2887 /**
2888  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2889  *	@dev: Network device
2890  *	@rxq: Actual number of RX queues
2891  *
2892  *	This must be called either with the rtnl_lock held or before
2893  *	registration of the net device.  Returns 0 on success, or a
2894  *	negative error code.  If called before registration, it always
2895  *	succeeds.
2896  */
2897 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2898 {
2899 	int rc;
2900 
2901 	if (rxq < 1 || rxq > dev->num_rx_queues)
2902 		return -EINVAL;
2903 
2904 	if (dev->reg_state == NETREG_REGISTERED) {
2905 		ASSERT_RTNL();
2906 
2907 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2908 						  rxq);
2909 		if (rc)
2910 			return rc;
2911 	}
2912 
2913 	dev->real_num_rx_queues = rxq;
2914 	return 0;
2915 }
2916 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2917 #endif
2918 
2919 /**
2920  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2921  *	@dev: Network device
2922  *	@txq: Actual number of TX queues
2923  *	@rxq: Actual number of RX queues
2924  *
2925  *	Set the real number of both TX and RX queues.
2926  *	Does nothing if the number of queues is already correct.
2927  */
2928 int netif_set_real_num_queues(struct net_device *dev,
2929 			      unsigned int txq, unsigned int rxq)
2930 {
2931 	unsigned int old_rxq = dev->real_num_rx_queues;
2932 	int err;
2933 
2934 	if (txq < 1 || txq > dev->num_tx_queues ||
2935 	    rxq < 1 || rxq > dev->num_rx_queues)
2936 		return -EINVAL;
2937 
2938 	/* Start from increases, so the error path only does decreases -
2939 	 * decreases can't fail.
2940 	 */
2941 	if (rxq > dev->real_num_rx_queues) {
2942 		err = netif_set_real_num_rx_queues(dev, rxq);
2943 		if (err)
2944 			return err;
2945 	}
2946 	if (txq > dev->real_num_tx_queues) {
2947 		err = netif_set_real_num_tx_queues(dev, txq);
2948 		if (err)
2949 			goto undo_rx;
2950 	}
2951 	if (rxq < dev->real_num_rx_queues)
2952 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2953 	if (txq < dev->real_num_tx_queues)
2954 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2955 
2956 	return 0;
2957 undo_rx:
2958 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2959 	return err;
2960 }
2961 EXPORT_SYMBOL(netif_set_real_num_queues);
2962 
2963 /**
2964  * netif_get_num_default_rss_queues - default number of RSS queues
2965  *
2966  * This routine should set an upper limit on the number of RSS queues
2967  * used by default by multiqueue devices.
2968  */
2969 int netif_get_num_default_rss_queues(void)
2970 {
2971 	return is_kdump_kernel() ?
2972 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2973 }
2974 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2975 
2976 static void __netif_reschedule(struct Qdisc *q)
2977 {
2978 	struct softnet_data *sd;
2979 	unsigned long flags;
2980 
2981 	local_irq_save(flags);
2982 	sd = this_cpu_ptr(&softnet_data);
2983 	q->next_sched = NULL;
2984 	*sd->output_queue_tailp = q;
2985 	sd->output_queue_tailp = &q->next_sched;
2986 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2987 	local_irq_restore(flags);
2988 }
2989 
2990 void __netif_schedule(struct Qdisc *q)
2991 {
2992 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2993 		__netif_reschedule(q);
2994 }
2995 EXPORT_SYMBOL(__netif_schedule);
2996 
2997 struct dev_kfree_skb_cb {
2998 	enum skb_free_reason reason;
2999 };
3000 
3001 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3002 {
3003 	return (struct dev_kfree_skb_cb *)skb->cb;
3004 }
3005 
3006 void netif_schedule_queue(struct netdev_queue *txq)
3007 {
3008 	rcu_read_lock();
3009 	if (!netif_xmit_stopped(txq)) {
3010 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3011 
3012 		__netif_schedule(q);
3013 	}
3014 	rcu_read_unlock();
3015 }
3016 EXPORT_SYMBOL(netif_schedule_queue);
3017 
3018 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3019 {
3020 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3021 		struct Qdisc *q;
3022 
3023 		rcu_read_lock();
3024 		q = rcu_dereference(dev_queue->qdisc);
3025 		__netif_schedule(q);
3026 		rcu_read_unlock();
3027 	}
3028 }
3029 EXPORT_SYMBOL(netif_tx_wake_queue);
3030 
3031 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3032 {
3033 	unsigned long flags;
3034 
3035 	if (unlikely(!skb))
3036 		return;
3037 
3038 	if (likely(refcount_read(&skb->users) == 1)) {
3039 		smp_rmb();
3040 		refcount_set(&skb->users, 0);
3041 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3042 		return;
3043 	}
3044 	get_kfree_skb_cb(skb)->reason = reason;
3045 	local_irq_save(flags);
3046 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3047 	__this_cpu_write(softnet_data.completion_queue, skb);
3048 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3049 	local_irq_restore(flags);
3050 }
3051 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3052 
3053 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3054 {
3055 	if (in_hardirq() || irqs_disabled())
3056 		__dev_kfree_skb_irq(skb, reason);
3057 	else
3058 		dev_kfree_skb(skb);
3059 }
3060 EXPORT_SYMBOL(__dev_kfree_skb_any);
3061 
3062 
3063 /**
3064  * netif_device_detach - mark device as removed
3065  * @dev: network device
3066  *
3067  * Mark device as removed from system and therefore no longer available.
3068  */
3069 void netif_device_detach(struct net_device *dev)
3070 {
3071 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3072 	    netif_running(dev)) {
3073 		netif_tx_stop_all_queues(dev);
3074 	}
3075 }
3076 EXPORT_SYMBOL(netif_device_detach);
3077 
3078 /**
3079  * netif_device_attach - mark device as attached
3080  * @dev: network device
3081  *
3082  * Mark device as attached from system and restart if needed.
3083  */
3084 void netif_device_attach(struct net_device *dev)
3085 {
3086 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3087 	    netif_running(dev)) {
3088 		netif_tx_wake_all_queues(dev);
3089 		__netdev_watchdog_up(dev);
3090 	}
3091 }
3092 EXPORT_SYMBOL(netif_device_attach);
3093 
3094 /*
3095  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3096  * to be used as a distribution range.
3097  */
3098 static u16 skb_tx_hash(const struct net_device *dev,
3099 		       const struct net_device *sb_dev,
3100 		       struct sk_buff *skb)
3101 {
3102 	u32 hash;
3103 	u16 qoffset = 0;
3104 	u16 qcount = dev->real_num_tx_queues;
3105 
3106 	if (dev->num_tc) {
3107 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3108 
3109 		qoffset = sb_dev->tc_to_txq[tc].offset;
3110 		qcount = sb_dev->tc_to_txq[tc].count;
3111 		if (unlikely(!qcount)) {
3112 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3113 					     sb_dev->name, qoffset, tc);
3114 			qoffset = 0;
3115 			qcount = dev->real_num_tx_queues;
3116 		}
3117 	}
3118 
3119 	if (skb_rx_queue_recorded(skb)) {
3120 		hash = skb_get_rx_queue(skb);
3121 		if (hash >= qoffset)
3122 			hash -= qoffset;
3123 		while (unlikely(hash >= qcount))
3124 			hash -= qcount;
3125 		return hash + qoffset;
3126 	}
3127 
3128 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3129 }
3130 
3131 static void skb_warn_bad_offload(const struct sk_buff *skb)
3132 {
3133 	static const netdev_features_t null_features;
3134 	struct net_device *dev = skb->dev;
3135 	const char *name = "";
3136 
3137 	if (!net_ratelimit())
3138 		return;
3139 
3140 	if (dev) {
3141 		if (dev->dev.parent)
3142 			name = dev_driver_string(dev->dev.parent);
3143 		else
3144 			name = netdev_name(dev);
3145 	}
3146 	skb_dump(KERN_WARNING, skb, false);
3147 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3148 	     name, dev ? &dev->features : &null_features,
3149 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3150 }
3151 
3152 /*
3153  * Invalidate hardware checksum when packet is to be mangled, and
3154  * complete checksum manually on outgoing path.
3155  */
3156 int skb_checksum_help(struct sk_buff *skb)
3157 {
3158 	__wsum csum;
3159 	int ret = 0, offset;
3160 
3161 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3162 		goto out_set_summed;
3163 
3164 	if (unlikely(skb_is_gso(skb))) {
3165 		skb_warn_bad_offload(skb);
3166 		return -EINVAL;
3167 	}
3168 
3169 	/* Before computing a checksum, we should make sure no frag could
3170 	 * be modified by an external entity : checksum could be wrong.
3171 	 */
3172 	if (skb_has_shared_frag(skb)) {
3173 		ret = __skb_linearize(skb);
3174 		if (ret)
3175 			goto out;
3176 	}
3177 
3178 	offset = skb_checksum_start_offset(skb);
3179 	BUG_ON(offset >= skb_headlen(skb));
3180 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3181 
3182 	offset += skb->csum_offset;
3183 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3184 
3185 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3186 	if (ret)
3187 		goto out;
3188 
3189 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3190 out_set_summed:
3191 	skb->ip_summed = CHECKSUM_NONE;
3192 out:
3193 	return ret;
3194 }
3195 EXPORT_SYMBOL(skb_checksum_help);
3196 
3197 int skb_crc32c_csum_help(struct sk_buff *skb)
3198 {
3199 	__le32 crc32c_csum;
3200 	int ret = 0, offset, start;
3201 
3202 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3203 		goto out;
3204 
3205 	if (unlikely(skb_is_gso(skb)))
3206 		goto out;
3207 
3208 	/* Before computing a checksum, we should make sure no frag could
3209 	 * be modified by an external entity : checksum could be wrong.
3210 	 */
3211 	if (unlikely(skb_has_shared_frag(skb))) {
3212 		ret = __skb_linearize(skb);
3213 		if (ret)
3214 			goto out;
3215 	}
3216 	start = skb_checksum_start_offset(skb);
3217 	offset = start + offsetof(struct sctphdr, checksum);
3218 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3219 		ret = -EINVAL;
3220 		goto out;
3221 	}
3222 
3223 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3224 	if (ret)
3225 		goto out;
3226 
3227 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3228 						  skb->len - start, ~(__u32)0,
3229 						  crc32c_csum_stub));
3230 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3231 	skb->ip_summed = CHECKSUM_NONE;
3232 	skb->csum_not_inet = 0;
3233 out:
3234 	return ret;
3235 }
3236 
3237 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3238 {
3239 	__be16 type = skb->protocol;
3240 
3241 	/* Tunnel gso handlers can set protocol to ethernet. */
3242 	if (type == htons(ETH_P_TEB)) {
3243 		struct ethhdr *eth;
3244 
3245 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3246 			return 0;
3247 
3248 		eth = (struct ethhdr *)skb->data;
3249 		type = eth->h_proto;
3250 	}
3251 
3252 	return __vlan_get_protocol(skb, type, depth);
3253 }
3254 
3255 /* openvswitch calls this on rx path, so we need a different check.
3256  */
3257 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3258 {
3259 	if (tx_path)
3260 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3261 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3262 
3263 	return skb->ip_summed == CHECKSUM_NONE;
3264 }
3265 
3266 /**
3267  *	__skb_gso_segment - Perform segmentation on skb.
3268  *	@skb: buffer to segment
3269  *	@features: features for the output path (see dev->features)
3270  *	@tx_path: whether it is called in TX path
3271  *
3272  *	This function segments the given skb and returns a list of segments.
3273  *
3274  *	It may return NULL if the skb requires no segmentation.  This is
3275  *	only possible when GSO is used for verifying header integrity.
3276  *
3277  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3278  */
3279 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3280 				  netdev_features_t features, bool tx_path)
3281 {
3282 	struct sk_buff *segs;
3283 
3284 	if (unlikely(skb_needs_check(skb, tx_path))) {
3285 		int err;
3286 
3287 		/* We're going to init ->check field in TCP or UDP header */
3288 		err = skb_cow_head(skb, 0);
3289 		if (err < 0)
3290 			return ERR_PTR(err);
3291 	}
3292 
3293 	/* Only report GSO partial support if it will enable us to
3294 	 * support segmentation on this frame without needing additional
3295 	 * work.
3296 	 */
3297 	if (features & NETIF_F_GSO_PARTIAL) {
3298 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3299 		struct net_device *dev = skb->dev;
3300 
3301 		partial_features |= dev->features & dev->gso_partial_features;
3302 		if (!skb_gso_ok(skb, features | partial_features))
3303 			features &= ~NETIF_F_GSO_PARTIAL;
3304 	}
3305 
3306 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3307 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3308 
3309 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3310 	SKB_GSO_CB(skb)->encap_level = 0;
3311 
3312 	skb_reset_mac_header(skb);
3313 	skb_reset_mac_len(skb);
3314 
3315 	segs = skb_mac_gso_segment(skb, features);
3316 
3317 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3318 		skb_warn_bad_offload(skb);
3319 
3320 	return segs;
3321 }
3322 EXPORT_SYMBOL(__skb_gso_segment);
3323 
3324 /* Take action when hardware reception checksum errors are detected. */
3325 #ifdef CONFIG_BUG
3326 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3327 {
3328 	netdev_err(dev, "hw csum failure\n");
3329 	skb_dump(KERN_ERR, skb, true);
3330 	dump_stack();
3331 }
3332 
3333 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3334 {
3335 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3336 }
3337 EXPORT_SYMBOL(netdev_rx_csum_fault);
3338 #endif
3339 
3340 /* XXX: check that highmem exists at all on the given machine. */
3341 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3342 {
3343 #ifdef CONFIG_HIGHMEM
3344 	int i;
3345 
3346 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3347 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3348 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3349 
3350 			if (PageHighMem(skb_frag_page(frag)))
3351 				return 1;
3352 		}
3353 	}
3354 #endif
3355 	return 0;
3356 }
3357 
3358 /* If MPLS offload request, verify we are testing hardware MPLS features
3359  * instead of standard features for the netdev.
3360  */
3361 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3362 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3363 					   netdev_features_t features,
3364 					   __be16 type)
3365 {
3366 	if (eth_p_mpls(type))
3367 		features &= skb->dev->mpls_features;
3368 
3369 	return features;
3370 }
3371 #else
3372 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3373 					   netdev_features_t features,
3374 					   __be16 type)
3375 {
3376 	return features;
3377 }
3378 #endif
3379 
3380 static netdev_features_t harmonize_features(struct sk_buff *skb,
3381 	netdev_features_t features)
3382 {
3383 	__be16 type;
3384 
3385 	type = skb_network_protocol(skb, NULL);
3386 	features = net_mpls_features(skb, features, type);
3387 
3388 	if (skb->ip_summed != CHECKSUM_NONE &&
3389 	    !can_checksum_protocol(features, type)) {
3390 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3391 	}
3392 	if (illegal_highdma(skb->dev, skb))
3393 		features &= ~NETIF_F_SG;
3394 
3395 	return features;
3396 }
3397 
3398 netdev_features_t passthru_features_check(struct sk_buff *skb,
3399 					  struct net_device *dev,
3400 					  netdev_features_t features)
3401 {
3402 	return features;
3403 }
3404 EXPORT_SYMBOL(passthru_features_check);
3405 
3406 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3407 					     struct net_device *dev,
3408 					     netdev_features_t features)
3409 {
3410 	return vlan_features_check(skb, features);
3411 }
3412 
3413 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3414 					    struct net_device *dev,
3415 					    netdev_features_t features)
3416 {
3417 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3418 
3419 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3420 		return features & ~NETIF_F_GSO_MASK;
3421 
3422 	if (!skb_shinfo(skb)->gso_type) {
3423 		skb_warn_bad_offload(skb);
3424 		return features & ~NETIF_F_GSO_MASK;
3425 	}
3426 
3427 	/* Support for GSO partial features requires software
3428 	 * intervention before we can actually process the packets
3429 	 * so we need to strip support for any partial features now
3430 	 * and we can pull them back in after we have partially
3431 	 * segmented the frame.
3432 	 */
3433 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3434 		features &= ~dev->gso_partial_features;
3435 
3436 	/* Make sure to clear the IPv4 ID mangling feature if the
3437 	 * IPv4 header has the potential to be fragmented.
3438 	 */
3439 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3440 		struct iphdr *iph = skb->encapsulation ?
3441 				    inner_ip_hdr(skb) : ip_hdr(skb);
3442 
3443 		if (!(iph->frag_off & htons(IP_DF)))
3444 			features &= ~NETIF_F_TSO_MANGLEID;
3445 	}
3446 
3447 	return features;
3448 }
3449 
3450 netdev_features_t netif_skb_features(struct sk_buff *skb)
3451 {
3452 	struct net_device *dev = skb->dev;
3453 	netdev_features_t features = dev->features;
3454 
3455 	if (skb_is_gso(skb))
3456 		features = gso_features_check(skb, dev, features);
3457 
3458 	/* If encapsulation offload request, verify we are testing
3459 	 * hardware encapsulation features instead of standard
3460 	 * features for the netdev
3461 	 */
3462 	if (skb->encapsulation)
3463 		features &= dev->hw_enc_features;
3464 
3465 	if (skb_vlan_tagged(skb))
3466 		features = netdev_intersect_features(features,
3467 						     dev->vlan_features |
3468 						     NETIF_F_HW_VLAN_CTAG_TX |
3469 						     NETIF_F_HW_VLAN_STAG_TX);
3470 
3471 	if (dev->netdev_ops->ndo_features_check)
3472 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3473 								features);
3474 	else
3475 		features &= dflt_features_check(skb, dev, features);
3476 
3477 	return harmonize_features(skb, features);
3478 }
3479 EXPORT_SYMBOL(netif_skb_features);
3480 
3481 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3482 		    struct netdev_queue *txq, bool more)
3483 {
3484 	unsigned int len;
3485 	int rc;
3486 
3487 	if (dev_nit_active(dev))
3488 		dev_queue_xmit_nit(skb, dev);
3489 
3490 	len = skb->len;
3491 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3492 	trace_net_dev_start_xmit(skb, dev);
3493 	rc = netdev_start_xmit(skb, dev, txq, more);
3494 	trace_net_dev_xmit(skb, rc, dev, len);
3495 
3496 	return rc;
3497 }
3498 
3499 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3500 				    struct netdev_queue *txq, int *ret)
3501 {
3502 	struct sk_buff *skb = first;
3503 	int rc = NETDEV_TX_OK;
3504 
3505 	while (skb) {
3506 		struct sk_buff *next = skb->next;
3507 
3508 		skb_mark_not_on_list(skb);
3509 		rc = xmit_one(skb, dev, txq, next != NULL);
3510 		if (unlikely(!dev_xmit_complete(rc))) {
3511 			skb->next = next;
3512 			goto out;
3513 		}
3514 
3515 		skb = next;
3516 		if (netif_tx_queue_stopped(txq) && skb) {
3517 			rc = NETDEV_TX_BUSY;
3518 			break;
3519 		}
3520 	}
3521 
3522 out:
3523 	*ret = rc;
3524 	return skb;
3525 }
3526 
3527 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3528 					  netdev_features_t features)
3529 {
3530 	if (skb_vlan_tag_present(skb) &&
3531 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3532 		skb = __vlan_hwaccel_push_inside(skb);
3533 	return skb;
3534 }
3535 
3536 int skb_csum_hwoffload_help(struct sk_buff *skb,
3537 			    const netdev_features_t features)
3538 {
3539 	if (unlikely(skb_csum_is_sctp(skb)))
3540 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3541 			skb_crc32c_csum_help(skb);
3542 
3543 	if (features & NETIF_F_HW_CSUM)
3544 		return 0;
3545 
3546 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3547 		switch (skb->csum_offset) {
3548 		case offsetof(struct tcphdr, check):
3549 		case offsetof(struct udphdr, check):
3550 			return 0;
3551 		}
3552 	}
3553 
3554 	return skb_checksum_help(skb);
3555 }
3556 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3557 
3558 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3559 {
3560 	netdev_features_t features;
3561 
3562 	features = netif_skb_features(skb);
3563 	skb = validate_xmit_vlan(skb, features);
3564 	if (unlikely(!skb))
3565 		goto out_null;
3566 
3567 	skb = sk_validate_xmit_skb(skb, dev);
3568 	if (unlikely(!skb))
3569 		goto out_null;
3570 
3571 	if (netif_needs_gso(skb, features)) {
3572 		struct sk_buff *segs;
3573 
3574 		segs = skb_gso_segment(skb, features);
3575 		if (IS_ERR(segs)) {
3576 			goto out_kfree_skb;
3577 		} else if (segs) {
3578 			consume_skb(skb);
3579 			skb = segs;
3580 		}
3581 	} else {
3582 		if (skb_needs_linearize(skb, features) &&
3583 		    __skb_linearize(skb))
3584 			goto out_kfree_skb;
3585 
3586 		/* If packet is not checksummed and device does not
3587 		 * support checksumming for this protocol, complete
3588 		 * checksumming here.
3589 		 */
3590 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3591 			if (skb->encapsulation)
3592 				skb_set_inner_transport_header(skb,
3593 							       skb_checksum_start_offset(skb));
3594 			else
3595 				skb_set_transport_header(skb,
3596 							 skb_checksum_start_offset(skb));
3597 			if (skb_csum_hwoffload_help(skb, features))
3598 				goto out_kfree_skb;
3599 		}
3600 	}
3601 
3602 	skb = validate_xmit_xfrm(skb, features, again);
3603 
3604 	return skb;
3605 
3606 out_kfree_skb:
3607 	kfree_skb(skb);
3608 out_null:
3609 	atomic_long_inc(&dev->tx_dropped);
3610 	return NULL;
3611 }
3612 
3613 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3614 {
3615 	struct sk_buff *next, *head = NULL, *tail;
3616 
3617 	for (; skb != NULL; skb = next) {
3618 		next = skb->next;
3619 		skb_mark_not_on_list(skb);
3620 
3621 		/* in case skb wont be segmented, point to itself */
3622 		skb->prev = skb;
3623 
3624 		skb = validate_xmit_skb(skb, dev, again);
3625 		if (!skb)
3626 			continue;
3627 
3628 		if (!head)
3629 			head = skb;
3630 		else
3631 			tail->next = skb;
3632 		/* If skb was segmented, skb->prev points to
3633 		 * the last segment. If not, it still contains skb.
3634 		 */
3635 		tail = skb->prev;
3636 	}
3637 	return head;
3638 }
3639 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3640 
3641 static void qdisc_pkt_len_init(struct sk_buff *skb)
3642 {
3643 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3644 
3645 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3646 
3647 	/* To get more precise estimation of bytes sent on wire,
3648 	 * we add to pkt_len the headers size of all segments
3649 	 */
3650 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3651 		unsigned int hdr_len;
3652 		u16 gso_segs = shinfo->gso_segs;
3653 
3654 		/* mac layer + network layer */
3655 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3656 
3657 		/* + transport layer */
3658 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3659 			const struct tcphdr *th;
3660 			struct tcphdr _tcphdr;
3661 
3662 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3663 						sizeof(_tcphdr), &_tcphdr);
3664 			if (likely(th))
3665 				hdr_len += __tcp_hdrlen(th);
3666 		} else {
3667 			struct udphdr _udphdr;
3668 
3669 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3670 					       sizeof(_udphdr), &_udphdr))
3671 				hdr_len += sizeof(struct udphdr);
3672 		}
3673 
3674 		if (shinfo->gso_type & SKB_GSO_DODGY)
3675 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3676 						shinfo->gso_size);
3677 
3678 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3679 	}
3680 }
3681 
3682 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3683 			     struct sk_buff **to_free,
3684 			     struct netdev_queue *txq)
3685 {
3686 	int rc;
3687 
3688 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3689 	if (rc == NET_XMIT_SUCCESS)
3690 		trace_qdisc_enqueue(q, txq, skb);
3691 	return rc;
3692 }
3693 
3694 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3695 				 struct net_device *dev,
3696 				 struct netdev_queue *txq)
3697 {
3698 	spinlock_t *root_lock = qdisc_lock(q);
3699 	struct sk_buff *to_free = NULL;
3700 	bool contended;
3701 	int rc;
3702 
3703 	qdisc_calculate_pkt_len(skb, q);
3704 
3705 	if (q->flags & TCQ_F_NOLOCK) {
3706 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3707 		    qdisc_run_begin(q)) {
3708 			/* Retest nolock_qdisc_is_empty() within the protection
3709 			 * of q->seqlock to protect from racing with requeuing.
3710 			 */
3711 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3712 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3713 				__qdisc_run(q);
3714 				qdisc_run_end(q);
3715 
3716 				goto no_lock_out;
3717 			}
3718 
3719 			qdisc_bstats_cpu_update(q, skb);
3720 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3721 			    !nolock_qdisc_is_empty(q))
3722 				__qdisc_run(q);
3723 
3724 			qdisc_run_end(q);
3725 			return NET_XMIT_SUCCESS;
3726 		}
3727 
3728 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3729 		qdisc_run(q);
3730 
3731 no_lock_out:
3732 		if (unlikely(to_free))
3733 			kfree_skb_list(to_free);
3734 		return rc;
3735 	}
3736 
3737 	/*
3738 	 * Heuristic to force contended enqueues to serialize on a
3739 	 * separate lock before trying to get qdisc main lock.
3740 	 * This permits qdisc->running owner to get the lock more
3741 	 * often and dequeue packets faster.
3742 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3743 	 * and then other tasks will only enqueue packets. The packets will be
3744 	 * sent after the qdisc owner is scheduled again. To prevent this
3745 	 * scenario the task always serialize on the lock.
3746 	 */
3747 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3748 	if (unlikely(contended))
3749 		spin_lock(&q->busylock);
3750 
3751 	spin_lock(root_lock);
3752 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3753 		__qdisc_drop(skb, &to_free);
3754 		rc = NET_XMIT_DROP;
3755 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3756 		   qdisc_run_begin(q)) {
3757 		/*
3758 		 * This is a work-conserving queue; there are no old skbs
3759 		 * waiting to be sent out; and the qdisc is not running -
3760 		 * xmit the skb directly.
3761 		 */
3762 
3763 		qdisc_bstats_update(q, skb);
3764 
3765 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3766 			if (unlikely(contended)) {
3767 				spin_unlock(&q->busylock);
3768 				contended = false;
3769 			}
3770 			__qdisc_run(q);
3771 		}
3772 
3773 		qdisc_run_end(q);
3774 		rc = NET_XMIT_SUCCESS;
3775 	} else {
3776 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3777 		if (qdisc_run_begin(q)) {
3778 			if (unlikely(contended)) {
3779 				spin_unlock(&q->busylock);
3780 				contended = false;
3781 			}
3782 			__qdisc_run(q);
3783 			qdisc_run_end(q);
3784 		}
3785 	}
3786 	spin_unlock(root_lock);
3787 	if (unlikely(to_free))
3788 		kfree_skb_list(to_free);
3789 	if (unlikely(contended))
3790 		spin_unlock(&q->busylock);
3791 	return rc;
3792 }
3793 
3794 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3795 static void skb_update_prio(struct sk_buff *skb)
3796 {
3797 	const struct netprio_map *map;
3798 	const struct sock *sk;
3799 	unsigned int prioidx;
3800 
3801 	if (skb->priority)
3802 		return;
3803 	map = rcu_dereference_bh(skb->dev->priomap);
3804 	if (!map)
3805 		return;
3806 	sk = skb_to_full_sk(skb);
3807 	if (!sk)
3808 		return;
3809 
3810 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3811 
3812 	if (prioidx < map->priomap_len)
3813 		skb->priority = map->priomap[prioidx];
3814 }
3815 #else
3816 #define skb_update_prio(skb)
3817 #endif
3818 
3819 /**
3820  *	dev_loopback_xmit - loop back @skb
3821  *	@net: network namespace this loopback is happening in
3822  *	@sk:  sk needed to be a netfilter okfn
3823  *	@skb: buffer to transmit
3824  */
3825 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3826 {
3827 	skb_reset_mac_header(skb);
3828 	__skb_pull(skb, skb_network_offset(skb));
3829 	skb->pkt_type = PACKET_LOOPBACK;
3830 	if (skb->ip_summed == CHECKSUM_NONE)
3831 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3832 	WARN_ON(!skb_dst(skb));
3833 	skb_dst_force(skb);
3834 	netif_rx_ni(skb);
3835 	return 0;
3836 }
3837 EXPORT_SYMBOL(dev_loopback_xmit);
3838 
3839 #ifdef CONFIG_NET_EGRESS
3840 static struct sk_buff *
3841 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3842 {
3843 #ifdef CONFIG_NET_CLS_ACT
3844 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3845 	struct tcf_result cl_res;
3846 
3847 	if (!miniq)
3848 		return skb;
3849 
3850 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3851 	tc_skb_cb(skb)->mru = 0;
3852 	tc_skb_cb(skb)->post_ct = false;
3853 	mini_qdisc_bstats_cpu_update(miniq, skb);
3854 
3855 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3856 	case TC_ACT_OK:
3857 	case TC_ACT_RECLASSIFY:
3858 		skb->tc_index = TC_H_MIN(cl_res.classid);
3859 		break;
3860 	case TC_ACT_SHOT:
3861 		mini_qdisc_qstats_cpu_drop(miniq);
3862 		*ret = NET_XMIT_DROP;
3863 		kfree_skb(skb);
3864 		return NULL;
3865 	case TC_ACT_STOLEN:
3866 	case TC_ACT_QUEUED:
3867 	case TC_ACT_TRAP:
3868 		*ret = NET_XMIT_SUCCESS;
3869 		consume_skb(skb);
3870 		return NULL;
3871 	case TC_ACT_REDIRECT:
3872 		/* No need to push/pop skb's mac_header here on egress! */
3873 		skb_do_redirect(skb);
3874 		*ret = NET_XMIT_SUCCESS;
3875 		return NULL;
3876 	default:
3877 		break;
3878 	}
3879 #endif /* CONFIG_NET_CLS_ACT */
3880 
3881 	return skb;
3882 }
3883 #endif /* CONFIG_NET_EGRESS */
3884 
3885 #ifdef CONFIG_XPS
3886 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3887 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3888 {
3889 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
3890 	struct xps_map *map;
3891 	int queue_index = -1;
3892 
3893 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3894 		return queue_index;
3895 
3896 	tci *= dev_maps->num_tc;
3897 	tci += tc;
3898 
3899 	map = rcu_dereference(dev_maps->attr_map[tci]);
3900 	if (map) {
3901 		if (map->len == 1)
3902 			queue_index = map->queues[0];
3903 		else
3904 			queue_index = map->queues[reciprocal_scale(
3905 						skb_get_hash(skb), map->len)];
3906 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3907 			queue_index = -1;
3908 	}
3909 	return queue_index;
3910 }
3911 #endif
3912 
3913 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3914 			 struct sk_buff *skb)
3915 {
3916 #ifdef CONFIG_XPS
3917 	struct xps_dev_maps *dev_maps;
3918 	struct sock *sk = skb->sk;
3919 	int queue_index = -1;
3920 
3921 	if (!static_key_false(&xps_needed))
3922 		return -1;
3923 
3924 	rcu_read_lock();
3925 	if (!static_key_false(&xps_rxqs_needed))
3926 		goto get_cpus_map;
3927 
3928 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
3929 	if (dev_maps) {
3930 		int tci = sk_rx_queue_get(sk);
3931 
3932 		if (tci >= 0)
3933 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3934 							  tci);
3935 	}
3936 
3937 get_cpus_map:
3938 	if (queue_index < 0) {
3939 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
3940 		if (dev_maps) {
3941 			unsigned int tci = skb->sender_cpu - 1;
3942 
3943 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3944 							  tci);
3945 		}
3946 	}
3947 	rcu_read_unlock();
3948 
3949 	return queue_index;
3950 #else
3951 	return -1;
3952 #endif
3953 }
3954 
3955 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3956 		     struct net_device *sb_dev)
3957 {
3958 	return 0;
3959 }
3960 EXPORT_SYMBOL(dev_pick_tx_zero);
3961 
3962 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3963 		       struct net_device *sb_dev)
3964 {
3965 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3966 }
3967 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3968 
3969 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3970 		     struct net_device *sb_dev)
3971 {
3972 	struct sock *sk = skb->sk;
3973 	int queue_index = sk_tx_queue_get(sk);
3974 
3975 	sb_dev = sb_dev ? : dev;
3976 
3977 	if (queue_index < 0 || skb->ooo_okay ||
3978 	    queue_index >= dev->real_num_tx_queues) {
3979 		int new_index = get_xps_queue(dev, sb_dev, skb);
3980 
3981 		if (new_index < 0)
3982 			new_index = skb_tx_hash(dev, sb_dev, skb);
3983 
3984 		if (queue_index != new_index && sk &&
3985 		    sk_fullsock(sk) &&
3986 		    rcu_access_pointer(sk->sk_dst_cache))
3987 			sk_tx_queue_set(sk, new_index);
3988 
3989 		queue_index = new_index;
3990 	}
3991 
3992 	return queue_index;
3993 }
3994 EXPORT_SYMBOL(netdev_pick_tx);
3995 
3996 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3997 					 struct sk_buff *skb,
3998 					 struct net_device *sb_dev)
3999 {
4000 	int queue_index = 0;
4001 
4002 #ifdef CONFIG_XPS
4003 	u32 sender_cpu = skb->sender_cpu - 1;
4004 
4005 	if (sender_cpu >= (u32)NR_CPUS)
4006 		skb->sender_cpu = raw_smp_processor_id() + 1;
4007 #endif
4008 
4009 	if (dev->real_num_tx_queues != 1) {
4010 		const struct net_device_ops *ops = dev->netdev_ops;
4011 
4012 		if (ops->ndo_select_queue)
4013 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4014 		else
4015 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4016 
4017 		queue_index = netdev_cap_txqueue(dev, queue_index);
4018 	}
4019 
4020 	skb_set_queue_mapping(skb, queue_index);
4021 	return netdev_get_tx_queue(dev, queue_index);
4022 }
4023 
4024 /**
4025  *	__dev_queue_xmit - transmit a buffer
4026  *	@skb: buffer to transmit
4027  *	@sb_dev: suboordinate device used for L2 forwarding offload
4028  *
4029  *	Queue a buffer for transmission to a network device. The caller must
4030  *	have set the device and priority and built the buffer before calling
4031  *	this function. The function can be called from an interrupt.
4032  *
4033  *	A negative errno code is returned on a failure. A success does not
4034  *	guarantee the frame will be transmitted as it may be dropped due
4035  *	to congestion or traffic shaping.
4036  *
4037  * -----------------------------------------------------------------------------------
4038  *      I notice this method can also return errors from the queue disciplines,
4039  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4040  *      be positive.
4041  *
4042  *      Regardless of the return value, the skb is consumed, so it is currently
4043  *      difficult to retry a send to this method.  (You can bump the ref count
4044  *      before sending to hold a reference for retry if you are careful.)
4045  *
4046  *      When calling this method, interrupts MUST be enabled.  This is because
4047  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4048  *          --BLG
4049  */
4050 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4051 {
4052 	struct net_device *dev = skb->dev;
4053 	struct netdev_queue *txq;
4054 	struct Qdisc *q;
4055 	int rc = -ENOMEM;
4056 	bool again = false;
4057 
4058 	skb_reset_mac_header(skb);
4059 
4060 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4061 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4062 
4063 	/* Disable soft irqs for various locks below. Also
4064 	 * stops preemption for RCU.
4065 	 */
4066 	rcu_read_lock_bh();
4067 
4068 	skb_update_prio(skb);
4069 
4070 	qdisc_pkt_len_init(skb);
4071 #ifdef CONFIG_NET_CLS_ACT
4072 	skb->tc_at_ingress = 0;
4073 #endif
4074 #ifdef CONFIG_NET_EGRESS
4075 	if (static_branch_unlikely(&egress_needed_key)) {
4076 		if (nf_hook_egress_active()) {
4077 			skb = nf_hook_egress(skb, &rc, dev);
4078 			if (!skb)
4079 				goto out;
4080 		}
4081 		nf_skip_egress(skb, true);
4082 		skb = sch_handle_egress(skb, &rc, dev);
4083 		if (!skb)
4084 			goto out;
4085 		nf_skip_egress(skb, false);
4086 	}
4087 #endif
4088 	/* If device/qdisc don't need skb->dst, release it right now while
4089 	 * its hot in this cpu cache.
4090 	 */
4091 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4092 		skb_dst_drop(skb);
4093 	else
4094 		skb_dst_force(skb);
4095 
4096 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4097 	q = rcu_dereference_bh(txq->qdisc);
4098 
4099 	trace_net_dev_queue(skb);
4100 	if (q->enqueue) {
4101 		rc = __dev_xmit_skb(skb, q, dev, txq);
4102 		goto out;
4103 	}
4104 
4105 	/* The device has no queue. Common case for software devices:
4106 	 * loopback, all the sorts of tunnels...
4107 
4108 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4109 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4110 	 * counters.)
4111 	 * However, it is possible, that they rely on protection
4112 	 * made by us here.
4113 
4114 	 * Check this and shot the lock. It is not prone from deadlocks.
4115 	 *Either shot noqueue qdisc, it is even simpler 8)
4116 	 */
4117 	if (dev->flags & IFF_UP) {
4118 		int cpu = smp_processor_id(); /* ok because BHs are off */
4119 
4120 		/* Other cpus might concurrently change txq->xmit_lock_owner
4121 		 * to -1 or to their cpu id, but not to our id.
4122 		 */
4123 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4124 			if (dev_xmit_recursion())
4125 				goto recursion_alert;
4126 
4127 			skb = validate_xmit_skb(skb, dev, &again);
4128 			if (!skb)
4129 				goto out;
4130 
4131 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4132 			HARD_TX_LOCK(dev, txq, cpu);
4133 
4134 			if (!netif_xmit_stopped(txq)) {
4135 				dev_xmit_recursion_inc();
4136 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4137 				dev_xmit_recursion_dec();
4138 				if (dev_xmit_complete(rc)) {
4139 					HARD_TX_UNLOCK(dev, txq);
4140 					goto out;
4141 				}
4142 			}
4143 			HARD_TX_UNLOCK(dev, txq);
4144 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4145 					     dev->name);
4146 		} else {
4147 			/* Recursion is detected! It is possible,
4148 			 * unfortunately
4149 			 */
4150 recursion_alert:
4151 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4152 					     dev->name);
4153 		}
4154 	}
4155 
4156 	rc = -ENETDOWN;
4157 	rcu_read_unlock_bh();
4158 
4159 	atomic_long_inc(&dev->tx_dropped);
4160 	kfree_skb_list(skb);
4161 	return rc;
4162 out:
4163 	rcu_read_unlock_bh();
4164 	return rc;
4165 }
4166 
4167 int dev_queue_xmit(struct sk_buff *skb)
4168 {
4169 	return __dev_queue_xmit(skb, NULL);
4170 }
4171 EXPORT_SYMBOL(dev_queue_xmit);
4172 
4173 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4174 {
4175 	return __dev_queue_xmit(skb, sb_dev);
4176 }
4177 EXPORT_SYMBOL(dev_queue_xmit_accel);
4178 
4179 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4180 {
4181 	struct net_device *dev = skb->dev;
4182 	struct sk_buff *orig_skb = skb;
4183 	struct netdev_queue *txq;
4184 	int ret = NETDEV_TX_BUSY;
4185 	bool again = false;
4186 
4187 	if (unlikely(!netif_running(dev) ||
4188 		     !netif_carrier_ok(dev)))
4189 		goto drop;
4190 
4191 	skb = validate_xmit_skb_list(skb, dev, &again);
4192 	if (skb != orig_skb)
4193 		goto drop;
4194 
4195 	skb_set_queue_mapping(skb, queue_id);
4196 	txq = skb_get_tx_queue(dev, skb);
4197 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4198 
4199 	local_bh_disable();
4200 
4201 	dev_xmit_recursion_inc();
4202 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4203 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4204 		ret = netdev_start_xmit(skb, dev, txq, false);
4205 	HARD_TX_UNLOCK(dev, txq);
4206 	dev_xmit_recursion_dec();
4207 
4208 	local_bh_enable();
4209 	return ret;
4210 drop:
4211 	atomic_long_inc(&dev->tx_dropped);
4212 	kfree_skb_list(skb);
4213 	return NET_XMIT_DROP;
4214 }
4215 EXPORT_SYMBOL(__dev_direct_xmit);
4216 
4217 /*************************************************************************
4218  *			Receiver routines
4219  *************************************************************************/
4220 
4221 int netdev_max_backlog __read_mostly = 1000;
4222 EXPORT_SYMBOL(netdev_max_backlog);
4223 
4224 int netdev_tstamp_prequeue __read_mostly = 1;
4225 int netdev_budget __read_mostly = 300;
4226 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4227 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4228 int weight_p __read_mostly = 64;           /* old backlog weight */
4229 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4230 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4231 int dev_rx_weight __read_mostly = 64;
4232 int dev_tx_weight __read_mostly = 64;
4233 
4234 /* Called with irq disabled */
4235 static inline void ____napi_schedule(struct softnet_data *sd,
4236 				     struct napi_struct *napi)
4237 {
4238 	struct task_struct *thread;
4239 
4240 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4241 		/* Paired with smp_mb__before_atomic() in
4242 		 * napi_enable()/dev_set_threaded().
4243 		 * Use READ_ONCE() to guarantee a complete
4244 		 * read on napi->thread. Only call
4245 		 * wake_up_process() when it's not NULL.
4246 		 */
4247 		thread = READ_ONCE(napi->thread);
4248 		if (thread) {
4249 			/* Avoid doing set_bit() if the thread is in
4250 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4251 			 * makes sure to proceed with napi polling
4252 			 * if the thread is explicitly woken from here.
4253 			 */
4254 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4255 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4256 			wake_up_process(thread);
4257 			return;
4258 		}
4259 	}
4260 
4261 	list_add_tail(&napi->poll_list, &sd->poll_list);
4262 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4263 }
4264 
4265 #ifdef CONFIG_RPS
4266 
4267 /* One global table that all flow-based protocols share. */
4268 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4269 EXPORT_SYMBOL(rps_sock_flow_table);
4270 u32 rps_cpu_mask __read_mostly;
4271 EXPORT_SYMBOL(rps_cpu_mask);
4272 
4273 struct static_key_false rps_needed __read_mostly;
4274 EXPORT_SYMBOL(rps_needed);
4275 struct static_key_false rfs_needed __read_mostly;
4276 EXPORT_SYMBOL(rfs_needed);
4277 
4278 static struct rps_dev_flow *
4279 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4280 	    struct rps_dev_flow *rflow, u16 next_cpu)
4281 {
4282 	if (next_cpu < nr_cpu_ids) {
4283 #ifdef CONFIG_RFS_ACCEL
4284 		struct netdev_rx_queue *rxqueue;
4285 		struct rps_dev_flow_table *flow_table;
4286 		struct rps_dev_flow *old_rflow;
4287 		u32 flow_id;
4288 		u16 rxq_index;
4289 		int rc;
4290 
4291 		/* Should we steer this flow to a different hardware queue? */
4292 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4293 		    !(dev->features & NETIF_F_NTUPLE))
4294 			goto out;
4295 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4296 		if (rxq_index == skb_get_rx_queue(skb))
4297 			goto out;
4298 
4299 		rxqueue = dev->_rx + rxq_index;
4300 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4301 		if (!flow_table)
4302 			goto out;
4303 		flow_id = skb_get_hash(skb) & flow_table->mask;
4304 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4305 							rxq_index, flow_id);
4306 		if (rc < 0)
4307 			goto out;
4308 		old_rflow = rflow;
4309 		rflow = &flow_table->flows[flow_id];
4310 		rflow->filter = rc;
4311 		if (old_rflow->filter == rflow->filter)
4312 			old_rflow->filter = RPS_NO_FILTER;
4313 	out:
4314 #endif
4315 		rflow->last_qtail =
4316 			per_cpu(softnet_data, next_cpu).input_queue_head;
4317 	}
4318 
4319 	rflow->cpu = next_cpu;
4320 	return rflow;
4321 }
4322 
4323 /*
4324  * get_rps_cpu is called from netif_receive_skb and returns the target
4325  * CPU from the RPS map of the receiving queue for a given skb.
4326  * rcu_read_lock must be held on entry.
4327  */
4328 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4329 		       struct rps_dev_flow **rflowp)
4330 {
4331 	const struct rps_sock_flow_table *sock_flow_table;
4332 	struct netdev_rx_queue *rxqueue = dev->_rx;
4333 	struct rps_dev_flow_table *flow_table;
4334 	struct rps_map *map;
4335 	int cpu = -1;
4336 	u32 tcpu;
4337 	u32 hash;
4338 
4339 	if (skb_rx_queue_recorded(skb)) {
4340 		u16 index = skb_get_rx_queue(skb);
4341 
4342 		if (unlikely(index >= dev->real_num_rx_queues)) {
4343 			WARN_ONCE(dev->real_num_rx_queues > 1,
4344 				  "%s received packet on queue %u, but number "
4345 				  "of RX queues is %u\n",
4346 				  dev->name, index, dev->real_num_rx_queues);
4347 			goto done;
4348 		}
4349 		rxqueue += index;
4350 	}
4351 
4352 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4353 
4354 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4355 	map = rcu_dereference(rxqueue->rps_map);
4356 	if (!flow_table && !map)
4357 		goto done;
4358 
4359 	skb_reset_network_header(skb);
4360 	hash = skb_get_hash(skb);
4361 	if (!hash)
4362 		goto done;
4363 
4364 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4365 	if (flow_table && sock_flow_table) {
4366 		struct rps_dev_flow *rflow;
4367 		u32 next_cpu;
4368 		u32 ident;
4369 
4370 		/* First check into global flow table if there is a match */
4371 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4372 		if ((ident ^ hash) & ~rps_cpu_mask)
4373 			goto try_rps;
4374 
4375 		next_cpu = ident & rps_cpu_mask;
4376 
4377 		/* OK, now we know there is a match,
4378 		 * we can look at the local (per receive queue) flow table
4379 		 */
4380 		rflow = &flow_table->flows[hash & flow_table->mask];
4381 		tcpu = rflow->cpu;
4382 
4383 		/*
4384 		 * If the desired CPU (where last recvmsg was done) is
4385 		 * different from current CPU (one in the rx-queue flow
4386 		 * table entry), switch if one of the following holds:
4387 		 *   - Current CPU is unset (>= nr_cpu_ids).
4388 		 *   - Current CPU is offline.
4389 		 *   - The current CPU's queue tail has advanced beyond the
4390 		 *     last packet that was enqueued using this table entry.
4391 		 *     This guarantees that all previous packets for the flow
4392 		 *     have been dequeued, thus preserving in order delivery.
4393 		 */
4394 		if (unlikely(tcpu != next_cpu) &&
4395 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4396 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4397 		      rflow->last_qtail)) >= 0)) {
4398 			tcpu = next_cpu;
4399 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4400 		}
4401 
4402 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4403 			*rflowp = rflow;
4404 			cpu = tcpu;
4405 			goto done;
4406 		}
4407 	}
4408 
4409 try_rps:
4410 
4411 	if (map) {
4412 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4413 		if (cpu_online(tcpu)) {
4414 			cpu = tcpu;
4415 			goto done;
4416 		}
4417 	}
4418 
4419 done:
4420 	return cpu;
4421 }
4422 
4423 #ifdef CONFIG_RFS_ACCEL
4424 
4425 /**
4426  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4427  * @dev: Device on which the filter was set
4428  * @rxq_index: RX queue index
4429  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4430  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4431  *
4432  * Drivers that implement ndo_rx_flow_steer() should periodically call
4433  * this function for each installed filter and remove the filters for
4434  * which it returns %true.
4435  */
4436 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4437 			 u32 flow_id, u16 filter_id)
4438 {
4439 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4440 	struct rps_dev_flow_table *flow_table;
4441 	struct rps_dev_flow *rflow;
4442 	bool expire = true;
4443 	unsigned int cpu;
4444 
4445 	rcu_read_lock();
4446 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4447 	if (flow_table && flow_id <= flow_table->mask) {
4448 		rflow = &flow_table->flows[flow_id];
4449 		cpu = READ_ONCE(rflow->cpu);
4450 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4451 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4452 			   rflow->last_qtail) <
4453 		     (int)(10 * flow_table->mask)))
4454 			expire = false;
4455 	}
4456 	rcu_read_unlock();
4457 	return expire;
4458 }
4459 EXPORT_SYMBOL(rps_may_expire_flow);
4460 
4461 #endif /* CONFIG_RFS_ACCEL */
4462 
4463 /* Called from hardirq (IPI) context */
4464 static void rps_trigger_softirq(void *data)
4465 {
4466 	struct softnet_data *sd = data;
4467 
4468 	____napi_schedule(sd, &sd->backlog);
4469 	sd->received_rps++;
4470 }
4471 
4472 #endif /* CONFIG_RPS */
4473 
4474 /*
4475  * Check if this softnet_data structure is another cpu one
4476  * If yes, queue it to our IPI list and return 1
4477  * If no, return 0
4478  */
4479 static int napi_schedule_rps(struct softnet_data *sd)
4480 {
4481 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4482 
4483 #ifdef CONFIG_RPS
4484 	if (sd != mysd) {
4485 		sd->rps_ipi_next = mysd->rps_ipi_list;
4486 		mysd->rps_ipi_list = sd;
4487 
4488 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4489 		return 1;
4490 	}
4491 #endif /* CONFIG_RPS */
4492 	__napi_schedule_irqoff(&mysd->backlog);
4493 	return 0;
4494 }
4495 
4496 #ifdef CONFIG_NET_FLOW_LIMIT
4497 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4498 #endif
4499 
4500 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4501 {
4502 #ifdef CONFIG_NET_FLOW_LIMIT
4503 	struct sd_flow_limit *fl;
4504 	struct softnet_data *sd;
4505 	unsigned int old_flow, new_flow;
4506 
4507 	if (qlen < (netdev_max_backlog >> 1))
4508 		return false;
4509 
4510 	sd = this_cpu_ptr(&softnet_data);
4511 
4512 	rcu_read_lock();
4513 	fl = rcu_dereference(sd->flow_limit);
4514 	if (fl) {
4515 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4516 		old_flow = fl->history[fl->history_head];
4517 		fl->history[fl->history_head] = new_flow;
4518 
4519 		fl->history_head++;
4520 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4521 
4522 		if (likely(fl->buckets[old_flow]))
4523 			fl->buckets[old_flow]--;
4524 
4525 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4526 			fl->count++;
4527 			rcu_read_unlock();
4528 			return true;
4529 		}
4530 	}
4531 	rcu_read_unlock();
4532 #endif
4533 	return false;
4534 }
4535 
4536 /*
4537  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4538  * queue (may be a remote CPU queue).
4539  */
4540 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4541 			      unsigned int *qtail)
4542 {
4543 	struct softnet_data *sd;
4544 	unsigned long flags;
4545 	unsigned int qlen;
4546 
4547 	sd = &per_cpu(softnet_data, cpu);
4548 
4549 	rps_lock_irqsave(sd, &flags);
4550 	if (!netif_running(skb->dev))
4551 		goto drop;
4552 	qlen = skb_queue_len(&sd->input_pkt_queue);
4553 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4554 		if (qlen) {
4555 enqueue:
4556 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4557 			input_queue_tail_incr_save(sd, qtail);
4558 			rps_unlock_irq_restore(sd, &flags);
4559 			return NET_RX_SUCCESS;
4560 		}
4561 
4562 		/* Schedule NAPI for backlog device
4563 		 * We can use non atomic operation since we own the queue lock
4564 		 */
4565 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4566 			napi_schedule_rps(sd);
4567 		goto enqueue;
4568 	}
4569 
4570 drop:
4571 	sd->dropped++;
4572 	rps_unlock_irq_restore(sd, &flags);
4573 
4574 	atomic_long_inc(&skb->dev->rx_dropped);
4575 	kfree_skb(skb);
4576 	return NET_RX_DROP;
4577 }
4578 
4579 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4580 {
4581 	struct net_device *dev = skb->dev;
4582 	struct netdev_rx_queue *rxqueue;
4583 
4584 	rxqueue = dev->_rx;
4585 
4586 	if (skb_rx_queue_recorded(skb)) {
4587 		u16 index = skb_get_rx_queue(skb);
4588 
4589 		if (unlikely(index >= dev->real_num_rx_queues)) {
4590 			WARN_ONCE(dev->real_num_rx_queues > 1,
4591 				  "%s received packet on queue %u, but number "
4592 				  "of RX queues is %u\n",
4593 				  dev->name, index, dev->real_num_rx_queues);
4594 
4595 			return rxqueue; /* Return first rxqueue */
4596 		}
4597 		rxqueue += index;
4598 	}
4599 	return rxqueue;
4600 }
4601 
4602 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4603 			     struct bpf_prog *xdp_prog)
4604 {
4605 	void *orig_data, *orig_data_end, *hard_start;
4606 	struct netdev_rx_queue *rxqueue;
4607 	bool orig_bcast, orig_host;
4608 	u32 mac_len, frame_sz;
4609 	__be16 orig_eth_type;
4610 	struct ethhdr *eth;
4611 	u32 metalen, act;
4612 	int off;
4613 
4614 	/* The XDP program wants to see the packet starting at the MAC
4615 	 * header.
4616 	 */
4617 	mac_len = skb->data - skb_mac_header(skb);
4618 	hard_start = skb->data - skb_headroom(skb);
4619 
4620 	/* SKB "head" area always have tailroom for skb_shared_info */
4621 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4622 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4623 
4624 	rxqueue = netif_get_rxqueue(skb);
4625 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4626 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4627 			 skb_headlen(skb) + mac_len, true);
4628 
4629 	orig_data_end = xdp->data_end;
4630 	orig_data = xdp->data;
4631 	eth = (struct ethhdr *)xdp->data;
4632 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4633 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4634 	orig_eth_type = eth->h_proto;
4635 
4636 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4637 
4638 	/* check if bpf_xdp_adjust_head was used */
4639 	off = xdp->data - orig_data;
4640 	if (off) {
4641 		if (off > 0)
4642 			__skb_pull(skb, off);
4643 		else if (off < 0)
4644 			__skb_push(skb, -off);
4645 
4646 		skb->mac_header += off;
4647 		skb_reset_network_header(skb);
4648 	}
4649 
4650 	/* check if bpf_xdp_adjust_tail was used */
4651 	off = xdp->data_end - orig_data_end;
4652 	if (off != 0) {
4653 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4654 		skb->len += off; /* positive on grow, negative on shrink */
4655 	}
4656 
4657 	/* check if XDP changed eth hdr such SKB needs update */
4658 	eth = (struct ethhdr *)xdp->data;
4659 	if ((orig_eth_type != eth->h_proto) ||
4660 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4661 						  skb->dev->dev_addr)) ||
4662 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4663 		__skb_push(skb, ETH_HLEN);
4664 		skb->pkt_type = PACKET_HOST;
4665 		skb->protocol = eth_type_trans(skb, skb->dev);
4666 	}
4667 
4668 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4669 	 * before calling us again on redirect path. We do not call do_redirect
4670 	 * as we leave that up to the caller.
4671 	 *
4672 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4673 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4674 	 */
4675 	switch (act) {
4676 	case XDP_REDIRECT:
4677 	case XDP_TX:
4678 		__skb_push(skb, mac_len);
4679 		break;
4680 	case XDP_PASS:
4681 		metalen = xdp->data - xdp->data_meta;
4682 		if (metalen)
4683 			skb_metadata_set(skb, metalen);
4684 		break;
4685 	}
4686 
4687 	return act;
4688 }
4689 
4690 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4691 				     struct xdp_buff *xdp,
4692 				     struct bpf_prog *xdp_prog)
4693 {
4694 	u32 act = XDP_DROP;
4695 
4696 	/* Reinjected packets coming from act_mirred or similar should
4697 	 * not get XDP generic processing.
4698 	 */
4699 	if (skb_is_redirected(skb))
4700 		return XDP_PASS;
4701 
4702 	/* XDP packets must be linear and must have sufficient headroom
4703 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4704 	 * native XDP provides, thus we need to do it here as well.
4705 	 */
4706 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4707 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4708 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4709 		int troom = skb->tail + skb->data_len - skb->end;
4710 
4711 		/* In case we have to go down the path and also linearize,
4712 		 * then lets do the pskb_expand_head() work just once here.
4713 		 */
4714 		if (pskb_expand_head(skb,
4715 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4716 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4717 			goto do_drop;
4718 		if (skb_linearize(skb))
4719 			goto do_drop;
4720 	}
4721 
4722 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4723 	switch (act) {
4724 	case XDP_REDIRECT:
4725 	case XDP_TX:
4726 	case XDP_PASS:
4727 		break;
4728 	default:
4729 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4730 		fallthrough;
4731 	case XDP_ABORTED:
4732 		trace_xdp_exception(skb->dev, xdp_prog, act);
4733 		fallthrough;
4734 	case XDP_DROP:
4735 	do_drop:
4736 		kfree_skb(skb);
4737 		break;
4738 	}
4739 
4740 	return act;
4741 }
4742 
4743 /* When doing generic XDP we have to bypass the qdisc layer and the
4744  * network taps in order to match in-driver-XDP behavior.
4745  */
4746 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4747 {
4748 	struct net_device *dev = skb->dev;
4749 	struct netdev_queue *txq;
4750 	bool free_skb = true;
4751 	int cpu, rc;
4752 
4753 	txq = netdev_core_pick_tx(dev, skb, NULL);
4754 	cpu = smp_processor_id();
4755 	HARD_TX_LOCK(dev, txq, cpu);
4756 	if (!netif_xmit_stopped(txq)) {
4757 		rc = netdev_start_xmit(skb, dev, txq, 0);
4758 		if (dev_xmit_complete(rc))
4759 			free_skb = false;
4760 	}
4761 	HARD_TX_UNLOCK(dev, txq);
4762 	if (free_skb) {
4763 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4764 		kfree_skb(skb);
4765 	}
4766 }
4767 
4768 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4769 
4770 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4771 {
4772 	if (xdp_prog) {
4773 		struct xdp_buff xdp;
4774 		u32 act;
4775 		int err;
4776 
4777 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4778 		if (act != XDP_PASS) {
4779 			switch (act) {
4780 			case XDP_REDIRECT:
4781 				err = xdp_do_generic_redirect(skb->dev, skb,
4782 							      &xdp, xdp_prog);
4783 				if (err)
4784 					goto out_redir;
4785 				break;
4786 			case XDP_TX:
4787 				generic_xdp_tx(skb, xdp_prog);
4788 				break;
4789 			}
4790 			return XDP_DROP;
4791 		}
4792 	}
4793 	return XDP_PASS;
4794 out_redir:
4795 	kfree_skb(skb);
4796 	return XDP_DROP;
4797 }
4798 EXPORT_SYMBOL_GPL(do_xdp_generic);
4799 
4800 static int netif_rx_internal(struct sk_buff *skb)
4801 {
4802 	int ret;
4803 
4804 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4805 
4806 	trace_netif_rx(skb);
4807 
4808 #ifdef CONFIG_RPS
4809 	if (static_branch_unlikely(&rps_needed)) {
4810 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4811 		int cpu;
4812 
4813 		rcu_read_lock();
4814 
4815 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4816 		if (cpu < 0)
4817 			cpu = smp_processor_id();
4818 
4819 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4820 
4821 		rcu_read_unlock();
4822 	} else
4823 #endif
4824 	{
4825 		unsigned int qtail;
4826 
4827 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4828 	}
4829 	return ret;
4830 }
4831 
4832 /**
4833  *	__netif_rx	-	Slightly optimized version of netif_rx
4834  *	@skb: buffer to post
4835  *
4836  *	This behaves as netif_rx except that it does not disable bottom halves.
4837  *	As a result this function may only be invoked from the interrupt context
4838  *	(either hard or soft interrupt).
4839  */
4840 int __netif_rx(struct sk_buff *skb)
4841 {
4842 	int ret;
4843 
4844 	lockdep_assert_once(hardirq_count() | softirq_count());
4845 
4846 	trace_netif_rx_entry(skb);
4847 	ret = netif_rx_internal(skb);
4848 	trace_netif_rx_exit(ret);
4849 	return ret;
4850 }
4851 EXPORT_SYMBOL(__netif_rx);
4852 
4853 /**
4854  *	netif_rx	-	post buffer to the network code
4855  *	@skb: buffer to post
4856  *
4857  *	This function receives a packet from a device driver and queues it for
4858  *	the upper (protocol) levels to process via the backlog NAPI device. It
4859  *	always succeeds. The buffer may be dropped during processing for
4860  *	congestion control or by the protocol layers.
4861  *	The network buffer is passed via the backlog NAPI device. Modern NIC
4862  *	driver should use NAPI and GRO.
4863  *	This function can used from any context.
4864  *
4865  *	return values:
4866  *	NET_RX_SUCCESS	(no congestion)
4867  *	NET_RX_DROP     (packet was dropped)
4868  *
4869  */
4870 int netif_rx(struct sk_buff *skb)
4871 {
4872 	int ret;
4873 
4874 	local_bh_disable();
4875 	trace_netif_rx_entry(skb);
4876 	ret = netif_rx_internal(skb);
4877 	trace_netif_rx_exit(ret);
4878 	local_bh_enable();
4879 	return ret;
4880 }
4881 EXPORT_SYMBOL(netif_rx);
4882 
4883 static __latent_entropy void net_tx_action(struct softirq_action *h)
4884 {
4885 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4886 
4887 	if (sd->completion_queue) {
4888 		struct sk_buff *clist;
4889 
4890 		local_irq_disable();
4891 		clist = sd->completion_queue;
4892 		sd->completion_queue = NULL;
4893 		local_irq_enable();
4894 
4895 		while (clist) {
4896 			struct sk_buff *skb = clist;
4897 
4898 			clist = clist->next;
4899 
4900 			WARN_ON(refcount_read(&skb->users));
4901 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4902 				trace_consume_skb(skb);
4903 			else
4904 				trace_kfree_skb(skb, net_tx_action,
4905 						SKB_DROP_REASON_NOT_SPECIFIED);
4906 
4907 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4908 				__kfree_skb(skb);
4909 			else
4910 				__kfree_skb_defer(skb);
4911 		}
4912 	}
4913 
4914 	if (sd->output_queue) {
4915 		struct Qdisc *head;
4916 
4917 		local_irq_disable();
4918 		head = sd->output_queue;
4919 		sd->output_queue = NULL;
4920 		sd->output_queue_tailp = &sd->output_queue;
4921 		local_irq_enable();
4922 
4923 		rcu_read_lock();
4924 
4925 		while (head) {
4926 			struct Qdisc *q = head;
4927 			spinlock_t *root_lock = NULL;
4928 
4929 			head = head->next_sched;
4930 
4931 			/* We need to make sure head->next_sched is read
4932 			 * before clearing __QDISC_STATE_SCHED
4933 			 */
4934 			smp_mb__before_atomic();
4935 
4936 			if (!(q->flags & TCQ_F_NOLOCK)) {
4937 				root_lock = qdisc_lock(q);
4938 				spin_lock(root_lock);
4939 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4940 						     &q->state))) {
4941 				/* There is a synchronize_net() between
4942 				 * STATE_DEACTIVATED flag being set and
4943 				 * qdisc_reset()/some_qdisc_is_busy() in
4944 				 * dev_deactivate(), so we can safely bail out
4945 				 * early here to avoid data race between
4946 				 * qdisc_deactivate() and some_qdisc_is_busy()
4947 				 * for lockless qdisc.
4948 				 */
4949 				clear_bit(__QDISC_STATE_SCHED, &q->state);
4950 				continue;
4951 			}
4952 
4953 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4954 			qdisc_run(q);
4955 			if (root_lock)
4956 				spin_unlock(root_lock);
4957 		}
4958 
4959 		rcu_read_unlock();
4960 	}
4961 
4962 	xfrm_dev_backlog(sd);
4963 }
4964 
4965 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4966 /* This hook is defined here for ATM LANE */
4967 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4968 			     unsigned char *addr) __read_mostly;
4969 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4970 #endif
4971 
4972 static inline struct sk_buff *
4973 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4974 		   struct net_device *orig_dev, bool *another)
4975 {
4976 #ifdef CONFIG_NET_CLS_ACT
4977 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4978 	struct tcf_result cl_res;
4979 
4980 	/* If there's at least one ingress present somewhere (so
4981 	 * we get here via enabled static key), remaining devices
4982 	 * that are not configured with an ingress qdisc will bail
4983 	 * out here.
4984 	 */
4985 	if (!miniq)
4986 		return skb;
4987 
4988 	if (*pt_prev) {
4989 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4990 		*pt_prev = NULL;
4991 	}
4992 
4993 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4994 	tc_skb_cb(skb)->mru = 0;
4995 	tc_skb_cb(skb)->post_ct = false;
4996 	skb->tc_at_ingress = 1;
4997 	mini_qdisc_bstats_cpu_update(miniq, skb);
4998 
4999 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5000 	case TC_ACT_OK:
5001 	case TC_ACT_RECLASSIFY:
5002 		skb->tc_index = TC_H_MIN(cl_res.classid);
5003 		break;
5004 	case TC_ACT_SHOT:
5005 		mini_qdisc_qstats_cpu_drop(miniq);
5006 		kfree_skb(skb);
5007 		return NULL;
5008 	case TC_ACT_STOLEN:
5009 	case TC_ACT_QUEUED:
5010 	case TC_ACT_TRAP:
5011 		consume_skb(skb);
5012 		return NULL;
5013 	case TC_ACT_REDIRECT:
5014 		/* skb_mac_header check was done by cls/act_bpf, so
5015 		 * we can safely push the L2 header back before
5016 		 * redirecting to another netdev
5017 		 */
5018 		__skb_push(skb, skb->mac_len);
5019 		if (skb_do_redirect(skb) == -EAGAIN) {
5020 			__skb_pull(skb, skb->mac_len);
5021 			*another = true;
5022 			break;
5023 		}
5024 		return NULL;
5025 	case TC_ACT_CONSUMED:
5026 		return NULL;
5027 	default:
5028 		break;
5029 	}
5030 #endif /* CONFIG_NET_CLS_ACT */
5031 	return skb;
5032 }
5033 
5034 /**
5035  *	netdev_is_rx_handler_busy - check if receive handler is registered
5036  *	@dev: device to check
5037  *
5038  *	Check if a receive handler is already registered for a given device.
5039  *	Return true if there one.
5040  *
5041  *	The caller must hold the rtnl_mutex.
5042  */
5043 bool netdev_is_rx_handler_busy(struct net_device *dev)
5044 {
5045 	ASSERT_RTNL();
5046 	return dev && rtnl_dereference(dev->rx_handler);
5047 }
5048 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5049 
5050 /**
5051  *	netdev_rx_handler_register - register receive handler
5052  *	@dev: device to register a handler for
5053  *	@rx_handler: receive handler to register
5054  *	@rx_handler_data: data pointer that is used by rx handler
5055  *
5056  *	Register a receive handler for a device. This handler will then be
5057  *	called from __netif_receive_skb. A negative errno code is returned
5058  *	on a failure.
5059  *
5060  *	The caller must hold the rtnl_mutex.
5061  *
5062  *	For a general description of rx_handler, see enum rx_handler_result.
5063  */
5064 int netdev_rx_handler_register(struct net_device *dev,
5065 			       rx_handler_func_t *rx_handler,
5066 			       void *rx_handler_data)
5067 {
5068 	if (netdev_is_rx_handler_busy(dev))
5069 		return -EBUSY;
5070 
5071 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5072 		return -EINVAL;
5073 
5074 	/* Note: rx_handler_data must be set before rx_handler */
5075 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5076 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5077 
5078 	return 0;
5079 }
5080 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5081 
5082 /**
5083  *	netdev_rx_handler_unregister - unregister receive handler
5084  *	@dev: device to unregister a handler from
5085  *
5086  *	Unregister a receive handler from a device.
5087  *
5088  *	The caller must hold the rtnl_mutex.
5089  */
5090 void netdev_rx_handler_unregister(struct net_device *dev)
5091 {
5092 
5093 	ASSERT_RTNL();
5094 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5095 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5096 	 * section has a guarantee to see a non NULL rx_handler_data
5097 	 * as well.
5098 	 */
5099 	synchronize_net();
5100 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5101 }
5102 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5103 
5104 /*
5105  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5106  * the special handling of PFMEMALLOC skbs.
5107  */
5108 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5109 {
5110 	switch (skb->protocol) {
5111 	case htons(ETH_P_ARP):
5112 	case htons(ETH_P_IP):
5113 	case htons(ETH_P_IPV6):
5114 	case htons(ETH_P_8021Q):
5115 	case htons(ETH_P_8021AD):
5116 		return true;
5117 	default:
5118 		return false;
5119 	}
5120 }
5121 
5122 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5123 			     int *ret, struct net_device *orig_dev)
5124 {
5125 	if (nf_hook_ingress_active(skb)) {
5126 		int ingress_retval;
5127 
5128 		if (*pt_prev) {
5129 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5130 			*pt_prev = NULL;
5131 		}
5132 
5133 		rcu_read_lock();
5134 		ingress_retval = nf_hook_ingress(skb);
5135 		rcu_read_unlock();
5136 		return ingress_retval;
5137 	}
5138 	return 0;
5139 }
5140 
5141 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5142 				    struct packet_type **ppt_prev)
5143 {
5144 	struct packet_type *ptype, *pt_prev;
5145 	rx_handler_func_t *rx_handler;
5146 	struct sk_buff *skb = *pskb;
5147 	struct net_device *orig_dev;
5148 	bool deliver_exact = false;
5149 	int ret = NET_RX_DROP;
5150 	__be16 type;
5151 
5152 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5153 
5154 	trace_netif_receive_skb(skb);
5155 
5156 	orig_dev = skb->dev;
5157 
5158 	skb_reset_network_header(skb);
5159 	if (!skb_transport_header_was_set(skb))
5160 		skb_reset_transport_header(skb);
5161 	skb_reset_mac_len(skb);
5162 
5163 	pt_prev = NULL;
5164 
5165 another_round:
5166 	skb->skb_iif = skb->dev->ifindex;
5167 
5168 	__this_cpu_inc(softnet_data.processed);
5169 
5170 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5171 		int ret2;
5172 
5173 		migrate_disable();
5174 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5175 		migrate_enable();
5176 
5177 		if (ret2 != XDP_PASS) {
5178 			ret = NET_RX_DROP;
5179 			goto out;
5180 		}
5181 	}
5182 
5183 	if (eth_type_vlan(skb->protocol)) {
5184 		skb = skb_vlan_untag(skb);
5185 		if (unlikely(!skb))
5186 			goto out;
5187 	}
5188 
5189 	if (skb_skip_tc_classify(skb))
5190 		goto skip_classify;
5191 
5192 	if (pfmemalloc)
5193 		goto skip_taps;
5194 
5195 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5196 		if (pt_prev)
5197 			ret = deliver_skb(skb, pt_prev, orig_dev);
5198 		pt_prev = ptype;
5199 	}
5200 
5201 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5202 		if (pt_prev)
5203 			ret = deliver_skb(skb, pt_prev, orig_dev);
5204 		pt_prev = ptype;
5205 	}
5206 
5207 skip_taps:
5208 #ifdef CONFIG_NET_INGRESS
5209 	if (static_branch_unlikely(&ingress_needed_key)) {
5210 		bool another = false;
5211 
5212 		nf_skip_egress(skb, true);
5213 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5214 					 &another);
5215 		if (another)
5216 			goto another_round;
5217 		if (!skb)
5218 			goto out;
5219 
5220 		nf_skip_egress(skb, false);
5221 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5222 			goto out;
5223 	}
5224 #endif
5225 	skb_reset_redirect(skb);
5226 skip_classify:
5227 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5228 		goto drop;
5229 
5230 	if (skb_vlan_tag_present(skb)) {
5231 		if (pt_prev) {
5232 			ret = deliver_skb(skb, pt_prev, orig_dev);
5233 			pt_prev = NULL;
5234 		}
5235 		if (vlan_do_receive(&skb))
5236 			goto another_round;
5237 		else if (unlikely(!skb))
5238 			goto out;
5239 	}
5240 
5241 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5242 	if (rx_handler) {
5243 		if (pt_prev) {
5244 			ret = deliver_skb(skb, pt_prev, orig_dev);
5245 			pt_prev = NULL;
5246 		}
5247 		switch (rx_handler(&skb)) {
5248 		case RX_HANDLER_CONSUMED:
5249 			ret = NET_RX_SUCCESS;
5250 			goto out;
5251 		case RX_HANDLER_ANOTHER:
5252 			goto another_round;
5253 		case RX_HANDLER_EXACT:
5254 			deliver_exact = true;
5255 			break;
5256 		case RX_HANDLER_PASS:
5257 			break;
5258 		default:
5259 			BUG();
5260 		}
5261 	}
5262 
5263 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5264 check_vlan_id:
5265 		if (skb_vlan_tag_get_id(skb)) {
5266 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5267 			 * find vlan device.
5268 			 */
5269 			skb->pkt_type = PACKET_OTHERHOST;
5270 		} else if (eth_type_vlan(skb->protocol)) {
5271 			/* Outer header is 802.1P with vlan 0, inner header is
5272 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5273 			 * not find vlan dev for vlan id 0.
5274 			 */
5275 			__vlan_hwaccel_clear_tag(skb);
5276 			skb = skb_vlan_untag(skb);
5277 			if (unlikely(!skb))
5278 				goto out;
5279 			if (vlan_do_receive(&skb))
5280 				/* After stripping off 802.1P header with vlan 0
5281 				 * vlan dev is found for inner header.
5282 				 */
5283 				goto another_round;
5284 			else if (unlikely(!skb))
5285 				goto out;
5286 			else
5287 				/* We have stripped outer 802.1P vlan 0 header.
5288 				 * But could not find vlan dev.
5289 				 * check again for vlan id to set OTHERHOST.
5290 				 */
5291 				goto check_vlan_id;
5292 		}
5293 		/* Note: we might in the future use prio bits
5294 		 * and set skb->priority like in vlan_do_receive()
5295 		 * For the time being, just ignore Priority Code Point
5296 		 */
5297 		__vlan_hwaccel_clear_tag(skb);
5298 	}
5299 
5300 	type = skb->protocol;
5301 
5302 	/* deliver only exact match when indicated */
5303 	if (likely(!deliver_exact)) {
5304 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5305 				       &ptype_base[ntohs(type) &
5306 						   PTYPE_HASH_MASK]);
5307 	}
5308 
5309 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5310 			       &orig_dev->ptype_specific);
5311 
5312 	if (unlikely(skb->dev != orig_dev)) {
5313 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5314 				       &skb->dev->ptype_specific);
5315 	}
5316 
5317 	if (pt_prev) {
5318 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5319 			goto drop;
5320 		*ppt_prev = pt_prev;
5321 	} else {
5322 drop:
5323 		if (!deliver_exact)
5324 			atomic_long_inc(&skb->dev->rx_dropped);
5325 		else
5326 			atomic_long_inc(&skb->dev->rx_nohandler);
5327 		kfree_skb(skb);
5328 		/* Jamal, now you will not able to escape explaining
5329 		 * me how you were going to use this. :-)
5330 		 */
5331 		ret = NET_RX_DROP;
5332 	}
5333 
5334 out:
5335 	/* The invariant here is that if *ppt_prev is not NULL
5336 	 * then skb should also be non-NULL.
5337 	 *
5338 	 * Apparently *ppt_prev assignment above holds this invariant due to
5339 	 * skb dereferencing near it.
5340 	 */
5341 	*pskb = skb;
5342 	return ret;
5343 }
5344 
5345 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5346 {
5347 	struct net_device *orig_dev = skb->dev;
5348 	struct packet_type *pt_prev = NULL;
5349 	int ret;
5350 
5351 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5352 	if (pt_prev)
5353 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5354 					 skb->dev, pt_prev, orig_dev);
5355 	return ret;
5356 }
5357 
5358 /**
5359  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5360  *	@skb: buffer to process
5361  *
5362  *	More direct receive version of netif_receive_skb().  It should
5363  *	only be used by callers that have a need to skip RPS and Generic XDP.
5364  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5365  *
5366  *	This function may only be called from softirq context and interrupts
5367  *	should be enabled.
5368  *
5369  *	Return values (usually ignored):
5370  *	NET_RX_SUCCESS: no congestion
5371  *	NET_RX_DROP: packet was dropped
5372  */
5373 int netif_receive_skb_core(struct sk_buff *skb)
5374 {
5375 	int ret;
5376 
5377 	rcu_read_lock();
5378 	ret = __netif_receive_skb_one_core(skb, false);
5379 	rcu_read_unlock();
5380 
5381 	return ret;
5382 }
5383 EXPORT_SYMBOL(netif_receive_skb_core);
5384 
5385 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5386 						  struct packet_type *pt_prev,
5387 						  struct net_device *orig_dev)
5388 {
5389 	struct sk_buff *skb, *next;
5390 
5391 	if (!pt_prev)
5392 		return;
5393 	if (list_empty(head))
5394 		return;
5395 	if (pt_prev->list_func != NULL)
5396 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5397 				   ip_list_rcv, head, pt_prev, orig_dev);
5398 	else
5399 		list_for_each_entry_safe(skb, next, head, list) {
5400 			skb_list_del_init(skb);
5401 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5402 		}
5403 }
5404 
5405 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5406 {
5407 	/* Fast-path assumptions:
5408 	 * - There is no RX handler.
5409 	 * - Only one packet_type matches.
5410 	 * If either of these fails, we will end up doing some per-packet
5411 	 * processing in-line, then handling the 'last ptype' for the whole
5412 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5413 	 * because the 'last ptype' must be constant across the sublist, and all
5414 	 * other ptypes are handled per-packet.
5415 	 */
5416 	/* Current (common) ptype of sublist */
5417 	struct packet_type *pt_curr = NULL;
5418 	/* Current (common) orig_dev of sublist */
5419 	struct net_device *od_curr = NULL;
5420 	struct list_head sublist;
5421 	struct sk_buff *skb, *next;
5422 
5423 	INIT_LIST_HEAD(&sublist);
5424 	list_for_each_entry_safe(skb, next, head, list) {
5425 		struct net_device *orig_dev = skb->dev;
5426 		struct packet_type *pt_prev = NULL;
5427 
5428 		skb_list_del_init(skb);
5429 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5430 		if (!pt_prev)
5431 			continue;
5432 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5433 			/* dispatch old sublist */
5434 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5435 			/* start new sublist */
5436 			INIT_LIST_HEAD(&sublist);
5437 			pt_curr = pt_prev;
5438 			od_curr = orig_dev;
5439 		}
5440 		list_add_tail(&skb->list, &sublist);
5441 	}
5442 
5443 	/* dispatch final sublist */
5444 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5445 }
5446 
5447 static int __netif_receive_skb(struct sk_buff *skb)
5448 {
5449 	int ret;
5450 
5451 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5452 		unsigned int noreclaim_flag;
5453 
5454 		/*
5455 		 * PFMEMALLOC skbs are special, they should
5456 		 * - be delivered to SOCK_MEMALLOC sockets only
5457 		 * - stay away from userspace
5458 		 * - have bounded memory usage
5459 		 *
5460 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5461 		 * context down to all allocation sites.
5462 		 */
5463 		noreclaim_flag = memalloc_noreclaim_save();
5464 		ret = __netif_receive_skb_one_core(skb, true);
5465 		memalloc_noreclaim_restore(noreclaim_flag);
5466 	} else
5467 		ret = __netif_receive_skb_one_core(skb, false);
5468 
5469 	return ret;
5470 }
5471 
5472 static void __netif_receive_skb_list(struct list_head *head)
5473 {
5474 	unsigned long noreclaim_flag = 0;
5475 	struct sk_buff *skb, *next;
5476 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5477 
5478 	list_for_each_entry_safe(skb, next, head, list) {
5479 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5480 			struct list_head sublist;
5481 
5482 			/* Handle the previous sublist */
5483 			list_cut_before(&sublist, head, &skb->list);
5484 			if (!list_empty(&sublist))
5485 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5486 			pfmemalloc = !pfmemalloc;
5487 			/* See comments in __netif_receive_skb */
5488 			if (pfmemalloc)
5489 				noreclaim_flag = memalloc_noreclaim_save();
5490 			else
5491 				memalloc_noreclaim_restore(noreclaim_flag);
5492 		}
5493 	}
5494 	/* Handle the remaining sublist */
5495 	if (!list_empty(head))
5496 		__netif_receive_skb_list_core(head, pfmemalloc);
5497 	/* Restore pflags */
5498 	if (pfmemalloc)
5499 		memalloc_noreclaim_restore(noreclaim_flag);
5500 }
5501 
5502 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5503 {
5504 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5505 	struct bpf_prog *new = xdp->prog;
5506 	int ret = 0;
5507 
5508 	switch (xdp->command) {
5509 	case XDP_SETUP_PROG:
5510 		rcu_assign_pointer(dev->xdp_prog, new);
5511 		if (old)
5512 			bpf_prog_put(old);
5513 
5514 		if (old && !new) {
5515 			static_branch_dec(&generic_xdp_needed_key);
5516 		} else if (new && !old) {
5517 			static_branch_inc(&generic_xdp_needed_key);
5518 			dev_disable_lro(dev);
5519 			dev_disable_gro_hw(dev);
5520 		}
5521 		break;
5522 
5523 	default:
5524 		ret = -EINVAL;
5525 		break;
5526 	}
5527 
5528 	return ret;
5529 }
5530 
5531 static int netif_receive_skb_internal(struct sk_buff *skb)
5532 {
5533 	int ret;
5534 
5535 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5536 
5537 	if (skb_defer_rx_timestamp(skb))
5538 		return NET_RX_SUCCESS;
5539 
5540 	rcu_read_lock();
5541 #ifdef CONFIG_RPS
5542 	if (static_branch_unlikely(&rps_needed)) {
5543 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5544 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5545 
5546 		if (cpu >= 0) {
5547 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5548 			rcu_read_unlock();
5549 			return ret;
5550 		}
5551 	}
5552 #endif
5553 	ret = __netif_receive_skb(skb);
5554 	rcu_read_unlock();
5555 	return ret;
5556 }
5557 
5558 void netif_receive_skb_list_internal(struct list_head *head)
5559 {
5560 	struct sk_buff *skb, *next;
5561 	struct list_head sublist;
5562 
5563 	INIT_LIST_HEAD(&sublist);
5564 	list_for_each_entry_safe(skb, next, head, list) {
5565 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5566 		skb_list_del_init(skb);
5567 		if (!skb_defer_rx_timestamp(skb))
5568 			list_add_tail(&skb->list, &sublist);
5569 	}
5570 	list_splice_init(&sublist, head);
5571 
5572 	rcu_read_lock();
5573 #ifdef CONFIG_RPS
5574 	if (static_branch_unlikely(&rps_needed)) {
5575 		list_for_each_entry_safe(skb, next, head, list) {
5576 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5577 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5578 
5579 			if (cpu >= 0) {
5580 				/* Will be handled, remove from list */
5581 				skb_list_del_init(skb);
5582 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5583 			}
5584 		}
5585 	}
5586 #endif
5587 	__netif_receive_skb_list(head);
5588 	rcu_read_unlock();
5589 }
5590 
5591 /**
5592  *	netif_receive_skb - process receive buffer from network
5593  *	@skb: buffer to process
5594  *
5595  *	netif_receive_skb() is the main receive data processing function.
5596  *	It always succeeds. The buffer may be dropped during processing
5597  *	for congestion control or by the protocol layers.
5598  *
5599  *	This function may only be called from softirq context and interrupts
5600  *	should be enabled.
5601  *
5602  *	Return values (usually ignored):
5603  *	NET_RX_SUCCESS: no congestion
5604  *	NET_RX_DROP: packet was dropped
5605  */
5606 int netif_receive_skb(struct sk_buff *skb)
5607 {
5608 	int ret;
5609 
5610 	trace_netif_receive_skb_entry(skb);
5611 
5612 	ret = netif_receive_skb_internal(skb);
5613 	trace_netif_receive_skb_exit(ret);
5614 
5615 	return ret;
5616 }
5617 EXPORT_SYMBOL(netif_receive_skb);
5618 
5619 /**
5620  *	netif_receive_skb_list - process many receive buffers from network
5621  *	@head: list of skbs to process.
5622  *
5623  *	Since return value of netif_receive_skb() is normally ignored, and
5624  *	wouldn't be meaningful for a list, this function returns void.
5625  *
5626  *	This function may only be called from softirq context and interrupts
5627  *	should be enabled.
5628  */
5629 void netif_receive_skb_list(struct list_head *head)
5630 {
5631 	struct sk_buff *skb;
5632 
5633 	if (list_empty(head))
5634 		return;
5635 	if (trace_netif_receive_skb_list_entry_enabled()) {
5636 		list_for_each_entry(skb, head, list)
5637 			trace_netif_receive_skb_list_entry(skb);
5638 	}
5639 	netif_receive_skb_list_internal(head);
5640 	trace_netif_receive_skb_list_exit(0);
5641 }
5642 EXPORT_SYMBOL(netif_receive_skb_list);
5643 
5644 static DEFINE_PER_CPU(struct work_struct, flush_works);
5645 
5646 /* Network device is going away, flush any packets still pending */
5647 static void flush_backlog(struct work_struct *work)
5648 {
5649 	struct sk_buff *skb, *tmp;
5650 	struct softnet_data *sd;
5651 
5652 	local_bh_disable();
5653 	sd = this_cpu_ptr(&softnet_data);
5654 
5655 	rps_lock_irq_disable(sd);
5656 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5657 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5658 			__skb_unlink(skb, &sd->input_pkt_queue);
5659 			dev_kfree_skb_irq(skb);
5660 			input_queue_head_incr(sd);
5661 		}
5662 	}
5663 	rps_unlock_irq_enable(sd);
5664 
5665 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5666 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5667 			__skb_unlink(skb, &sd->process_queue);
5668 			kfree_skb(skb);
5669 			input_queue_head_incr(sd);
5670 		}
5671 	}
5672 	local_bh_enable();
5673 }
5674 
5675 static bool flush_required(int cpu)
5676 {
5677 #if IS_ENABLED(CONFIG_RPS)
5678 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5679 	bool do_flush;
5680 
5681 	rps_lock_irq_disable(sd);
5682 
5683 	/* as insertion into process_queue happens with the rps lock held,
5684 	 * process_queue access may race only with dequeue
5685 	 */
5686 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5687 		   !skb_queue_empty_lockless(&sd->process_queue);
5688 	rps_unlock_irq_enable(sd);
5689 
5690 	return do_flush;
5691 #endif
5692 	/* without RPS we can't safely check input_pkt_queue: during a
5693 	 * concurrent remote skb_queue_splice() we can detect as empty both
5694 	 * input_pkt_queue and process_queue even if the latter could end-up
5695 	 * containing a lot of packets.
5696 	 */
5697 	return true;
5698 }
5699 
5700 static void flush_all_backlogs(void)
5701 {
5702 	static cpumask_t flush_cpus;
5703 	unsigned int cpu;
5704 
5705 	/* since we are under rtnl lock protection we can use static data
5706 	 * for the cpumask and avoid allocating on stack the possibly
5707 	 * large mask
5708 	 */
5709 	ASSERT_RTNL();
5710 
5711 	cpus_read_lock();
5712 
5713 	cpumask_clear(&flush_cpus);
5714 	for_each_online_cpu(cpu) {
5715 		if (flush_required(cpu)) {
5716 			queue_work_on(cpu, system_highpri_wq,
5717 				      per_cpu_ptr(&flush_works, cpu));
5718 			cpumask_set_cpu(cpu, &flush_cpus);
5719 		}
5720 	}
5721 
5722 	/* we can have in flight packet[s] on the cpus we are not flushing,
5723 	 * synchronize_net() in unregister_netdevice_many() will take care of
5724 	 * them
5725 	 */
5726 	for_each_cpu(cpu, &flush_cpus)
5727 		flush_work(per_cpu_ptr(&flush_works, cpu));
5728 
5729 	cpus_read_unlock();
5730 }
5731 
5732 static void net_rps_send_ipi(struct softnet_data *remsd)
5733 {
5734 #ifdef CONFIG_RPS
5735 	while (remsd) {
5736 		struct softnet_data *next = remsd->rps_ipi_next;
5737 
5738 		if (cpu_online(remsd->cpu))
5739 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5740 		remsd = next;
5741 	}
5742 #endif
5743 }
5744 
5745 /*
5746  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5747  * Note: called with local irq disabled, but exits with local irq enabled.
5748  */
5749 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5750 {
5751 #ifdef CONFIG_RPS
5752 	struct softnet_data *remsd = sd->rps_ipi_list;
5753 
5754 	if (remsd) {
5755 		sd->rps_ipi_list = NULL;
5756 
5757 		local_irq_enable();
5758 
5759 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5760 		net_rps_send_ipi(remsd);
5761 	} else
5762 #endif
5763 		local_irq_enable();
5764 }
5765 
5766 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5767 {
5768 #ifdef CONFIG_RPS
5769 	return sd->rps_ipi_list != NULL;
5770 #else
5771 	return false;
5772 #endif
5773 }
5774 
5775 static int process_backlog(struct napi_struct *napi, int quota)
5776 {
5777 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5778 	bool again = true;
5779 	int work = 0;
5780 
5781 	/* Check if we have pending ipi, its better to send them now,
5782 	 * not waiting net_rx_action() end.
5783 	 */
5784 	if (sd_has_rps_ipi_waiting(sd)) {
5785 		local_irq_disable();
5786 		net_rps_action_and_irq_enable(sd);
5787 	}
5788 
5789 	napi->weight = dev_rx_weight;
5790 	while (again) {
5791 		struct sk_buff *skb;
5792 
5793 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5794 			rcu_read_lock();
5795 			__netif_receive_skb(skb);
5796 			rcu_read_unlock();
5797 			input_queue_head_incr(sd);
5798 			if (++work >= quota)
5799 				return work;
5800 
5801 		}
5802 
5803 		rps_lock_irq_disable(sd);
5804 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5805 			/*
5806 			 * Inline a custom version of __napi_complete().
5807 			 * only current cpu owns and manipulates this napi,
5808 			 * and NAPI_STATE_SCHED is the only possible flag set
5809 			 * on backlog.
5810 			 * We can use a plain write instead of clear_bit(),
5811 			 * and we dont need an smp_mb() memory barrier.
5812 			 */
5813 			napi->state = 0;
5814 			again = false;
5815 		} else {
5816 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5817 						   &sd->process_queue);
5818 		}
5819 		rps_unlock_irq_enable(sd);
5820 	}
5821 
5822 	return work;
5823 }
5824 
5825 /**
5826  * __napi_schedule - schedule for receive
5827  * @n: entry to schedule
5828  *
5829  * The entry's receive function will be scheduled to run.
5830  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5831  */
5832 void __napi_schedule(struct napi_struct *n)
5833 {
5834 	unsigned long flags;
5835 
5836 	local_irq_save(flags);
5837 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5838 	local_irq_restore(flags);
5839 }
5840 EXPORT_SYMBOL(__napi_schedule);
5841 
5842 /**
5843  *	napi_schedule_prep - check if napi can be scheduled
5844  *	@n: napi context
5845  *
5846  * Test if NAPI routine is already running, and if not mark
5847  * it as running.  This is used as a condition variable to
5848  * insure only one NAPI poll instance runs.  We also make
5849  * sure there is no pending NAPI disable.
5850  */
5851 bool napi_schedule_prep(struct napi_struct *n)
5852 {
5853 	unsigned long val, new;
5854 
5855 	do {
5856 		val = READ_ONCE(n->state);
5857 		if (unlikely(val & NAPIF_STATE_DISABLE))
5858 			return false;
5859 		new = val | NAPIF_STATE_SCHED;
5860 
5861 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5862 		 * This was suggested by Alexander Duyck, as compiler
5863 		 * emits better code than :
5864 		 * if (val & NAPIF_STATE_SCHED)
5865 		 *     new |= NAPIF_STATE_MISSED;
5866 		 */
5867 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5868 						   NAPIF_STATE_MISSED;
5869 	} while (cmpxchg(&n->state, val, new) != val);
5870 
5871 	return !(val & NAPIF_STATE_SCHED);
5872 }
5873 EXPORT_SYMBOL(napi_schedule_prep);
5874 
5875 /**
5876  * __napi_schedule_irqoff - schedule for receive
5877  * @n: entry to schedule
5878  *
5879  * Variant of __napi_schedule() assuming hard irqs are masked.
5880  *
5881  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5882  * because the interrupt disabled assumption might not be true
5883  * due to force-threaded interrupts and spinlock substitution.
5884  */
5885 void __napi_schedule_irqoff(struct napi_struct *n)
5886 {
5887 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5888 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
5889 	else
5890 		__napi_schedule(n);
5891 }
5892 EXPORT_SYMBOL(__napi_schedule_irqoff);
5893 
5894 bool napi_complete_done(struct napi_struct *n, int work_done)
5895 {
5896 	unsigned long flags, val, new, timeout = 0;
5897 	bool ret = true;
5898 
5899 	/*
5900 	 * 1) Don't let napi dequeue from the cpu poll list
5901 	 *    just in case its running on a different cpu.
5902 	 * 2) If we are busy polling, do nothing here, we have
5903 	 *    the guarantee we will be called later.
5904 	 */
5905 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5906 				 NAPIF_STATE_IN_BUSY_POLL)))
5907 		return false;
5908 
5909 	if (work_done) {
5910 		if (n->gro_bitmask)
5911 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
5912 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
5913 	}
5914 	if (n->defer_hard_irqs_count > 0) {
5915 		n->defer_hard_irqs_count--;
5916 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
5917 		if (timeout)
5918 			ret = false;
5919 	}
5920 	if (n->gro_bitmask) {
5921 		/* When the NAPI instance uses a timeout and keeps postponing
5922 		 * it, we need to bound somehow the time packets are kept in
5923 		 * the GRO layer
5924 		 */
5925 		napi_gro_flush(n, !!timeout);
5926 	}
5927 
5928 	gro_normal_list(n);
5929 
5930 	if (unlikely(!list_empty(&n->poll_list))) {
5931 		/* If n->poll_list is not empty, we need to mask irqs */
5932 		local_irq_save(flags);
5933 		list_del_init(&n->poll_list);
5934 		local_irq_restore(flags);
5935 	}
5936 
5937 	do {
5938 		val = READ_ONCE(n->state);
5939 
5940 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5941 
5942 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
5943 			      NAPIF_STATE_SCHED_THREADED |
5944 			      NAPIF_STATE_PREFER_BUSY_POLL);
5945 
5946 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5947 		 * because we will call napi->poll() one more time.
5948 		 * This C code was suggested by Alexander Duyck to help gcc.
5949 		 */
5950 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5951 						    NAPIF_STATE_SCHED;
5952 	} while (cmpxchg(&n->state, val, new) != val);
5953 
5954 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5955 		__napi_schedule(n);
5956 		return false;
5957 	}
5958 
5959 	if (timeout)
5960 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
5961 			      HRTIMER_MODE_REL_PINNED);
5962 	return ret;
5963 }
5964 EXPORT_SYMBOL(napi_complete_done);
5965 
5966 /* must be called under rcu_read_lock(), as we dont take a reference */
5967 static struct napi_struct *napi_by_id(unsigned int napi_id)
5968 {
5969 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5970 	struct napi_struct *napi;
5971 
5972 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5973 		if (napi->napi_id == napi_id)
5974 			return napi;
5975 
5976 	return NULL;
5977 }
5978 
5979 #if defined(CONFIG_NET_RX_BUSY_POLL)
5980 
5981 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
5982 {
5983 	if (!skip_schedule) {
5984 		gro_normal_list(napi);
5985 		__napi_schedule(napi);
5986 		return;
5987 	}
5988 
5989 	if (napi->gro_bitmask) {
5990 		/* flush too old packets
5991 		 * If HZ < 1000, flush all packets.
5992 		 */
5993 		napi_gro_flush(napi, HZ >= 1000);
5994 	}
5995 
5996 	gro_normal_list(napi);
5997 	clear_bit(NAPI_STATE_SCHED, &napi->state);
5998 }
5999 
6000 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6001 			   u16 budget)
6002 {
6003 	bool skip_schedule = false;
6004 	unsigned long timeout;
6005 	int rc;
6006 
6007 	/* Busy polling means there is a high chance device driver hard irq
6008 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6009 	 * set in napi_schedule_prep().
6010 	 * Since we are about to call napi->poll() once more, we can safely
6011 	 * clear NAPI_STATE_MISSED.
6012 	 *
6013 	 * Note: x86 could use a single "lock and ..." instruction
6014 	 * to perform these two clear_bit()
6015 	 */
6016 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6017 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6018 
6019 	local_bh_disable();
6020 
6021 	if (prefer_busy_poll) {
6022 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6023 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6024 		if (napi->defer_hard_irqs_count && timeout) {
6025 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6026 			skip_schedule = true;
6027 		}
6028 	}
6029 
6030 	/* All we really want here is to re-enable device interrupts.
6031 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6032 	 */
6033 	rc = napi->poll(napi, budget);
6034 	/* We can't gro_normal_list() here, because napi->poll() might have
6035 	 * rearmed the napi (napi_complete_done()) in which case it could
6036 	 * already be running on another CPU.
6037 	 */
6038 	trace_napi_poll(napi, rc, budget);
6039 	netpoll_poll_unlock(have_poll_lock);
6040 	if (rc == budget)
6041 		__busy_poll_stop(napi, skip_schedule);
6042 	local_bh_enable();
6043 }
6044 
6045 void napi_busy_loop(unsigned int napi_id,
6046 		    bool (*loop_end)(void *, unsigned long),
6047 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6048 {
6049 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6050 	int (*napi_poll)(struct napi_struct *napi, int budget);
6051 	void *have_poll_lock = NULL;
6052 	struct napi_struct *napi;
6053 
6054 restart:
6055 	napi_poll = NULL;
6056 
6057 	rcu_read_lock();
6058 
6059 	napi = napi_by_id(napi_id);
6060 	if (!napi)
6061 		goto out;
6062 
6063 	preempt_disable();
6064 	for (;;) {
6065 		int work = 0;
6066 
6067 		local_bh_disable();
6068 		if (!napi_poll) {
6069 			unsigned long val = READ_ONCE(napi->state);
6070 
6071 			/* If multiple threads are competing for this napi,
6072 			 * we avoid dirtying napi->state as much as we can.
6073 			 */
6074 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6075 				   NAPIF_STATE_IN_BUSY_POLL)) {
6076 				if (prefer_busy_poll)
6077 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6078 				goto count;
6079 			}
6080 			if (cmpxchg(&napi->state, val,
6081 				    val | NAPIF_STATE_IN_BUSY_POLL |
6082 					  NAPIF_STATE_SCHED) != val) {
6083 				if (prefer_busy_poll)
6084 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6085 				goto count;
6086 			}
6087 			have_poll_lock = netpoll_poll_lock(napi);
6088 			napi_poll = napi->poll;
6089 		}
6090 		work = napi_poll(napi, budget);
6091 		trace_napi_poll(napi, work, budget);
6092 		gro_normal_list(napi);
6093 count:
6094 		if (work > 0)
6095 			__NET_ADD_STATS(dev_net(napi->dev),
6096 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6097 		local_bh_enable();
6098 
6099 		if (!loop_end || loop_end(loop_end_arg, start_time))
6100 			break;
6101 
6102 		if (unlikely(need_resched())) {
6103 			if (napi_poll)
6104 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6105 			preempt_enable();
6106 			rcu_read_unlock();
6107 			cond_resched();
6108 			if (loop_end(loop_end_arg, start_time))
6109 				return;
6110 			goto restart;
6111 		}
6112 		cpu_relax();
6113 	}
6114 	if (napi_poll)
6115 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6116 	preempt_enable();
6117 out:
6118 	rcu_read_unlock();
6119 }
6120 EXPORT_SYMBOL(napi_busy_loop);
6121 
6122 #endif /* CONFIG_NET_RX_BUSY_POLL */
6123 
6124 static void napi_hash_add(struct napi_struct *napi)
6125 {
6126 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6127 		return;
6128 
6129 	spin_lock(&napi_hash_lock);
6130 
6131 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6132 	do {
6133 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6134 			napi_gen_id = MIN_NAPI_ID;
6135 	} while (napi_by_id(napi_gen_id));
6136 	napi->napi_id = napi_gen_id;
6137 
6138 	hlist_add_head_rcu(&napi->napi_hash_node,
6139 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6140 
6141 	spin_unlock(&napi_hash_lock);
6142 }
6143 
6144 /* Warning : caller is responsible to make sure rcu grace period
6145  * is respected before freeing memory containing @napi
6146  */
6147 static void napi_hash_del(struct napi_struct *napi)
6148 {
6149 	spin_lock(&napi_hash_lock);
6150 
6151 	hlist_del_init_rcu(&napi->napi_hash_node);
6152 
6153 	spin_unlock(&napi_hash_lock);
6154 }
6155 
6156 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6157 {
6158 	struct napi_struct *napi;
6159 
6160 	napi = container_of(timer, struct napi_struct, timer);
6161 
6162 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6163 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6164 	 */
6165 	if (!napi_disable_pending(napi) &&
6166 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6167 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6168 		__napi_schedule_irqoff(napi);
6169 	}
6170 
6171 	return HRTIMER_NORESTART;
6172 }
6173 
6174 static void init_gro_hash(struct napi_struct *napi)
6175 {
6176 	int i;
6177 
6178 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6179 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6180 		napi->gro_hash[i].count = 0;
6181 	}
6182 	napi->gro_bitmask = 0;
6183 }
6184 
6185 int dev_set_threaded(struct net_device *dev, bool threaded)
6186 {
6187 	struct napi_struct *napi;
6188 	int err = 0;
6189 
6190 	if (dev->threaded == threaded)
6191 		return 0;
6192 
6193 	if (threaded) {
6194 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6195 			if (!napi->thread) {
6196 				err = napi_kthread_create(napi);
6197 				if (err) {
6198 					threaded = false;
6199 					break;
6200 				}
6201 			}
6202 		}
6203 	}
6204 
6205 	dev->threaded = threaded;
6206 
6207 	/* Make sure kthread is created before THREADED bit
6208 	 * is set.
6209 	 */
6210 	smp_mb__before_atomic();
6211 
6212 	/* Setting/unsetting threaded mode on a napi might not immediately
6213 	 * take effect, if the current napi instance is actively being
6214 	 * polled. In this case, the switch between threaded mode and
6215 	 * softirq mode will happen in the next round of napi_schedule().
6216 	 * This should not cause hiccups/stalls to the live traffic.
6217 	 */
6218 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6219 		if (threaded)
6220 			set_bit(NAPI_STATE_THREADED, &napi->state);
6221 		else
6222 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6223 	}
6224 
6225 	return err;
6226 }
6227 EXPORT_SYMBOL(dev_set_threaded);
6228 
6229 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6230 		    int (*poll)(struct napi_struct *, int), int weight)
6231 {
6232 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6233 		return;
6234 
6235 	INIT_LIST_HEAD(&napi->poll_list);
6236 	INIT_HLIST_NODE(&napi->napi_hash_node);
6237 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6238 	napi->timer.function = napi_watchdog;
6239 	init_gro_hash(napi);
6240 	napi->skb = NULL;
6241 	INIT_LIST_HEAD(&napi->rx_list);
6242 	napi->rx_count = 0;
6243 	napi->poll = poll;
6244 	if (weight > NAPI_POLL_WEIGHT)
6245 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6246 				weight);
6247 	napi->weight = weight;
6248 	napi->dev = dev;
6249 #ifdef CONFIG_NETPOLL
6250 	napi->poll_owner = -1;
6251 #endif
6252 	set_bit(NAPI_STATE_SCHED, &napi->state);
6253 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6254 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6255 	napi_hash_add(napi);
6256 	/* Create kthread for this napi if dev->threaded is set.
6257 	 * Clear dev->threaded if kthread creation failed so that
6258 	 * threaded mode will not be enabled in napi_enable().
6259 	 */
6260 	if (dev->threaded && napi_kthread_create(napi))
6261 		dev->threaded = 0;
6262 }
6263 EXPORT_SYMBOL(netif_napi_add);
6264 
6265 void napi_disable(struct napi_struct *n)
6266 {
6267 	unsigned long val, new;
6268 
6269 	might_sleep();
6270 	set_bit(NAPI_STATE_DISABLE, &n->state);
6271 
6272 	for ( ; ; ) {
6273 		val = READ_ONCE(n->state);
6274 		if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6275 			usleep_range(20, 200);
6276 			continue;
6277 		}
6278 
6279 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6280 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6281 
6282 		if (cmpxchg(&n->state, val, new) == val)
6283 			break;
6284 	}
6285 
6286 	hrtimer_cancel(&n->timer);
6287 
6288 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6289 }
6290 EXPORT_SYMBOL(napi_disable);
6291 
6292 /**
6293  *	napi_enable - enable NAPI scheduling
6294  *	@n: NAPI context
6295  *
6296  * Resume NAPI from being scheduled on this context.
6297  * Must be paired with napi_disable.
6298  */
6299 void napi_enable(struct napi_struct *n)
6300 {
6301 	unsigned long val, new;
6302 
6303 	do {
6304 		val = READ_ONCE(n->state);
6305 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6306 
6307 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6308 		if (n->dev->threaded && n->thread)
6309 			new |= NAPIF_STATE_THREADED;
6310 	} while (cmpxchg(&n->state, val, new) != val);
6311 }
6312 EXPORT_SYMBOL(napi_enable);
6313 
6314 static void flush_gro_hash(struct napi_struct *napi)
6315 {
6316 	int i;
6317 
6318 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6319 		struct sk_buff *skb, *n;
6320 
6321 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6322 			kfree_skb(skb);
6323 		napi->gro_hash[i].count = 0;
6324 	}
6325 }
6326 
6327 /* Must be called in process context */
6328 void __netif_napi_del(struct napi_struct *napi)
6329 {
6330 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6331 		return;
6332 
6333 	napi_hash_del(napi);
6334 	list_del_rcu(&napi->dev_list);
6335 	napi_free_frags(napi);
6336 
6337 	flush_gro_hash(napi);
6338 	napi->gro_bitmask = 0;
6339 
6340 	if (napi->thread) {
6341 		kthread_stop(napi->thread);
6342 		napi->thread = NULL;
6343 	}
6344 }
6345 EXPORT_SYMBOL(__netif_napi_del);
6346 
6347 static int __napi_poll(struct napi_struct *n, bool *repoll)
6348 {
6349 	int work, weight;
6350 
6351 	weight = n->weight;
6352 
6353 	/* This NAPI_STATE_SCHED test is for avoiding a race
6354 	 * with netpoll's poll_napi().  Only the entity which
6355 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6356 	 * actually make the ->poll() call.  Therefore we avoid
6357 	 * accidentally calling ->poll() when NAPI is not scheduled.
6358 	 */
6359 	work = 0;
6360 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6361 		work = n->poll(n, weight);
6362 		trace_napi_poll(n, work, weight);
6363 	}
6364 
6365 	if (unlikely(work > weight))
6366 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6367 				n->poll, work, weight);
6368 
6369 	if (likely(work < weight))
6370 		return work;
6371 
6372 	/* Drivers must not modify the NAPI state if they
6373 	 * consume the entire weight.  In such cases this code
6374 	 * still "owns" the NAPI instance and therefore can
6375 	 * move the instance around on the list at-will.
6376 	 */
6377 	if (unlikely(napi_disable_pending(n))) {
6378 		napi_complete(n);
6379 		return work;
6380 	}
6381 
6382 	/* The NAPI context has more processing work, but busy-polling
6383 	 * is preferred. Exit early.
6384 	 */
6385 	if (napi_prefer_busy_poll(n)) {
6386 		if (napi_complete_done(n, work)) {
6387 			/* If timeout is not set, we need to make sure
6388 			 * that the NAPI is re-scheduled.
6389 			 */
6390 			napi_schedule(n);
6391 		}
6392 		return work;
6393 	}
6394 
6395 	if (n->gro_bitmask) {
6396 		/* flush too old packets
6397 		 * If HZ < 1000, flush all packets.
6398 		 */
6399 		napi_gro_flush(n, HZ >= 1000);
6400 	}
6401 
6402 	gro_normal_list(n);
6403 
6404 	/* Some drivers may have called napi_schedule
6405 	 * prior to exhausting their budget.
6406 	 */
6407 	if (unlikely(!list_empty(&n->poll_list))) {
6408 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6409 			     n->dev ? n->dev->name : "backlog");
6410 		return work;
6411 	}
6412 
6413 	*repoll = true;
6414 
6415 	return work;
6416 }
6417 
6418 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6419 {
6420 	bool do_repoll = false;
6421 	void *have;
6422 	int work;
6423 
6424 	list_del_init(&n->poll_list);
6425 
6426 	have = netpoll_poll_lock(n);
6427 
6428 	work = __napi_poll(n, &do_repoll);
6429 
6430 	if (do_repoll)
6431 		list_add_tail(&n->poll_list, repoll);
6432 
6433 	netpoll_poll_unlock(have);
6434 
6435 	return work;
6436 }
6437 
6438 static int napi_thread_wait(struct napi_struct *napi)
6439 {
6440 	bool woken = false;
6441 
6442 	set_current_state(TASK_INTERRUPTIBLE);
6443 
6444 	while (!kthread_should_stop()) {
6445 		/* Testing SCHED_THREADED bit here to make sure the current
6446 		 * kthread owns this napi and could poll on this napi.
6447 		 * Testing SCHED bit is not enough because SCHED bit might be
6448 		 * set by some other busy poll thread or by napi_disable().
6449 		 */
6450 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6451 			WARN_ON(!list_empty(&napi->poll_list));
6452 			__set_current_state(TASK_RUNNING);
6453 			return 0;
6454 		}
6455 
6456 		schedule();
6457 		/* woken being true indicates this thread owns this napi. */
6458 		woken = true;
6459 		set_current_state(TASK_INTERRUPTIBLE);
6460 	}
6461 	__set_current_state(TASK_RUNNING);
6462 
6463 	return -1;
6464 }
6465 
6466 static int napi_threaded_poll(void *data)
6467 {
6468 	struct napi_struct *napi = data;
6469 	void *have;
6470 
6471 	while (!napi_thread_wait(napi)) {
6472 		for (;;) {
6473 			bool repoll = false;
6474 
6475 			local_bh_disable();
6476 
6477 			have = netpoll_poll_lock(napi);
6478 			__napi_poll(napi, &repoll);
6479 			netpoll_poll_unlock(have);
6480 
6481 			local_bh_enable();
6482 
6483 			if (!repoll)
6484 				break;
6485 
6486 			cond_resched();
6487 		}
6488 	}
6489 	return 0;
6490 }
6491 
6492 static __latent_entropy void net_rx_action(struct softirq_action *h)
6493 {
6494 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6495 	unsigned long time_limit = jiffies +
6496 		usecs_to_jiffies(netdev_budget_usecs);
6497 	int budget = netdev_budget;
6498 	LIST_HEAD(list);
6499 	LIST_HEAD(repoll);
6500 
6501 	local_irq_disable();
6502 	list_splice_init(&sd->poll_list, &list);
6503 	local_irq_enable();
6504 
6505 	for (;;) {
6506 		struct napi_struct *n;
6507 
6508 		if (list_empty(&list)) {
6509 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6510 				return;
6511 			break;
6512 		}
6513 
6514 		n = list_first_entry(&list, struct napi_struct, poll_list);
6515 		budget -= napi_poll(n, &repoll);
6516 
6517 		/* If softirq window is exhausted then punt.
6518 		 * Allow this to run for 2 jiffies since which will allow
6519 		 * an average latency of 1.5/HZ.
6520 		 */
6521 		if (unlikely(budget <= 0 ||
6522 			     time_after_eq(jiffies, time_limit))) {
6523 			sd->time_squeeze++;
6524 			break;
6525 		}
6526 	}
6527 
6528 	local_irq_disable();
6529 
6530 	list_splice_tail_init(&sd->poll_list, &list);
6531 	list_splice_tail(&repoll, &list);
6532 	list_splice(&list, &sd->poll_list);
6533 	if (!list_empty(&sd->poll_list))
6534 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6535 
6536 	net_rps_action_and_irq_enable(sd);
6537 }
6538 
6539 struct netdev_adjacent {
6540 	struct net_device *dev;
6541 	netdevice_tracker dev_tracker;
6542 
6543 	/* upper master flag, there can only be one master device per list */
6544 	bool master;
6545 
6546 	/* lookup ignore flag */
6547 	bool ignore;
6548 
6549 	/* counter for the number of times this device was added to us */
6550 	u16 ref_nr;
6551 
6552 	/* private field for the users */
6553 	void *private;
6554 
6555 	struct list_head list;
6556 	struct rcu_head rcu;
6557 };
6558 
6559 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6560 						 struct list_head *adj_list)
6561 {
6562 	struct netdev_adjacent *adj;
6563 
6564 	list_for_each_entry(adj, adj_list, list) {
6565 		if (adj->dev == adj_dev)
6566 			return adj;
6567 	}
6568 	return NULL;
6569 }
6570 
6571 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6572 				    struct netdev_nested_priv *priv)
6573 {
6574 	struct net_device *dev = (struct net_device *)priv->data;
6575 
6576 	return upper_dev == dev;
6577 }
6578 
6579 /**
6580  * netdev_has_upper_dev - Check if device is linked to an upper device
6581  * @dev: device
6582  * @upper_dev: upper device to check
6583  *
6584  * Find out if a device is linked to specified upper device and return true
6585  * in case it is. Note that this checks only immediate upper device,
6586  * not through a complete stack of devices. The caller must hold the RTNL lock.
6587  */
6588 bool netdev_has_upper_dev(struct net_device *dev,
6589 			  struct net_device *upper_dev)
6590 {
6591 	struct netdev_nested_priv priv = {
6592 		.data = (void *)upper_dev,
6593 	};
6594 
6595 	ASSERT_RTNL();
6596 
6597 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6598 					     &priv);
6599 }
6600 EXPORT_SYMBOL(netdev_has_upper_dev);
6601 
6602 /**
6603  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6604  * @dev: device
6605  * @upper_dev: upper device to check
6606  *
6607  * Find out if a device is linked to specified upper device and return true
6608  * in case it is. Note that this checks the entire upper device chain.
6609  * The caller must hold rcu lock.
6610  */
6611 
6612 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6613 				  struct net_device *upper_dev)
6614 {
6615 	struct netdev_nested_priv priv = {
6616 		.data = (void *)upper_dev,
6617 	};
6618 
6619 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6620 					       &priv);
6621 }
6622 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6623 
6624 /**
6625  * netdev_has_any_upper_dev - Check if device is linked to some device
6626  * @dev: device
6627  *
6628  * Find out if a device is linked to an upper device and return true in case
6629  * it is. The caller must hold the RTNL lock.
6630  */
6631 bool netdev_has_any_upper_dev(struct net_device *dev)
6632 {
6633 	ASSERT_RTNL();
6634 
6635 	return !list_empty(&dev->adj_list.upper);
6636 }
6637 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6638 
6639 /**
6640  * netdev_master_upper_dev_get - Get master upper device
6641  * @dev: device
6642  *
6643  * Find a master upper device and return pointer to it or NULL in case
6644  * it's not there. The caller must hold the RTNL lock.
6645  */
6646 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6647 {
6648 	struct netdev_adjacent *upper;
6649 
6650 	ASSERT_RTNL();
6651 
6652 	if (list_empty(&dev->adj_list.upper))
6653 		return NULL;
6654 
6655 	upper = list_first_entry(&dev->adj_list.upper,
6656 				 struct netdev_adjacent, list);
6657 	if (likely(upper->master))
6658 		return upper->dev;
6659 	return NULL;
6660 }
6661 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6662 
6663 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6664 {
6665 	struct netdev_adjacent *upper;
6666 
6667 	ASSERT_RTNL();
6668 
6669 	if (list_empty(&dev->adj_list.upper))
6670 		return NULL;
6671 
6672 	upper = list_first_entry(&dev->adj_list.upper,
6673 				 struct netdev_adjacent, list);
6674 	if (likely(upper->master) && !upper->ignore)
6675 		return upper->dev;
6676 	return NULL;
6677 }
6678 
6679 /**
6680  * netdev_has_any_lower_dev - Check if device is linked to some device
6681  * @dev: device
6682  *
6683  * Find out if a device is linked to a lower device and return true in case
6684  * it is. The caller must hold the RTNL lock.
6685  */
6686 static bool netdev_has_any_lower_dev(struct net_device *dev)
6687 {
6688 	ASSERT_RTNL();
6689 
6690 	return !list_empty(&dev->adj_list.lower);
6691 }
6692 
6693 void *netdev_adjacent_get_private(struct list_head *adj_list)
6694 {
6695 	struct netdev_adjacent *adj;
6696 
6697 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6698 
6699 	return adj->private;
6700 }
6701 EXPORT_SYMBOL(netdev_adjacent_get_private);
6702 
6703 /**
6704  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6705  * @dev: device
6706  * @iter: list_head ** of the current position
6707  *
6708  * Gets the next device from the dev's upper list, starting from iter
6709  * position. The caller must hold RCU read lock.
6710  */
6711 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6712 						 struct list_head **iter)
6713 {
6714 	struct netdev_adjacent *upper;
6715 
6716 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6717 
6718 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6719 
6720 	if (&upper->list == &dev->adj_list.upper)
6721 		return NULL;
6722 
6723 	*iter = &upper->list;
6724 
6725 	return upper->dev;
6726 }
6727 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6728 
6729 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6730 						  struct list_head **iter,
6731 						  bool *ignore)
6732 {
6733 	struct netdev_adjacent *upper;
6734 
6735 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6736 
6737 	if (&upper->list == &dev->adj_list.upper)
6738 		return NULL;
6739 
6740 	*iter = &upper->list;
6741 	*ignore = upper->ignore;
6742 
6743 	return upper->dev;
6744 }
6745 
6746 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6747 						    struct list_head **iter)
6748 {
6749 	struct netdev_adjacent *upper;
6750 
6751 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6752 
6753 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6754 
6755 	if (&upper->list == &dev->adj_list.upper)
6756 		return NULL;
6757 
6758 	*iter = &upper->list;
6759 
6760 	return upper->dev;
6761 }
6762 
6763 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6764 				       int (*fn)(struct net_device *dev,
6765 					 struct netdev_nested_priv *priv),
6766 				       struct netdev_nested_priv *priv)
6767 {
6768 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6769 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6770 	int ret, cur = 0;
6771 	bool ignore;
6772 
6773 	now = dev;
6774 	iter = &dev->adj_list.upper;
6775 
6776 	while (1) {
6777 		if (now != dev) {
6778 			ret = fn(now, priv);
6779 			if (ret)
6780 				return ret;
6781 		}
6782 
6783 		next = NULL;
6784 		while (1) {
6785 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6786 			if (!udev)
6787 				break;
6788 			if (ignore)
6789 				continue;
6790 
6791 			next = udev;
6792 			niter = &udev->adj_list.upper;
6793 			dev_stack[cur] = now;
6794 			iter_stack[cur++] = iter;
6795 			break;
6796 		}
6797 
6798 		if (!next) {
6799 			if (!cur)
6800 				return 0;
6801 			next = dev_stack[--cur];
6802 			niter = iter_stack[cur];
6803 		}
6804 
6805 		now = next;
6806 		iter = niter;
6807 	}
6808 
6809 	return 0;
6810 }
6811 
6812 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6813 				  int (*fn)(struct net_device *dev,
6814 					    struct netdev_nested_priv *priv),
6815 				  struct netdev_nested_priv *priv)
6816 {
6817 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6818 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6819 	int ret, cur = 0;
6820 
6821 	now = dev;
6822 	iter = &dev->adj_list.upper;
6823 
6824 	while (1) {
6825 		if (now != dev) {
6826 			ret = fn(now, priv);
6827 			if (ret)
6828 				return ret;
6829 		}
6830 
6831 		next = NULL;
6832 		while (1) {
6833 			udev = netdev_next_upper_dev_rcu(now, &iter);
6834 			if (!udev)
6835 				break;
6836 
6837 			next = udev;
6838 			niter = &udev->adj_list.upper;
6839 			dev_stack[cur] = now;
6840 			iter_stack[cur++] = iter;
6841 			break;
6842 		}
6843 
6844 		if (!next) {
6845 			if (!cur)
6846 				return 0;
6847 			next = dev_stack[--cur];
6848 			niter = iter_stack[cur];
6849 		}
6850 
6851 		now = next;
6852 		iter = niter;
6853 	}
6854 
6855 	return 0;
6856 }
6857 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6858 
6859 static bool __netdev_has_upper_dev(struct net_device *dev,
6860 				   struct net_device *upper_dev)
6861 {
6862 	struct netdev_nested_priv priv = {
6863 		.flags = 0,
6864 		.data = (void *)upper_dev,
6865 	};
6866 
6867 	ASSERT_RTNL();
6868 
6869 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6870 					   &priv);
6871 }
6872 
6873 /**
6874  * netdev_lower_get_next_private - Get the next ->private from the
6875  *				   lower neighbour list
6876  * @dev: device
6877  * @iter: list_head ** of the current position
6878  *
6879  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6880  * list, starting from iter position. The caller must hold either hold the
6881  * RTNL lock or its own locking that guarantees that the neighbour lower
6882  * list will remain unchanged.
6883  */
6884 void *netdev_lower_get_next_private(struct net_device *dev,
6885 				    struct list_head **iter)
6886 {
6887 	struct netdev_adjacent *lower;
6888 
6889 	lower = list_entry(*iter, struct netdev_adjacent, list);
6890 
6891 	if (&lower->list == &dev->adj_list.lower)
6892 		return NULL;
6893 
6894 	*iter = lower->list.next;
6895 
6896 	return lower->private;
6897 }
6898 EXPORT_SYMBOL(netdev_lower_get_next_private);
6899 
6900 /**
6901  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6902  *				       lower neighbour list, RCU
6903  *				       variant
6904  * @dev: device
6905  * @iter: list_head ** of the current position
6906  *
6907  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6908  * list, starting from iter position. The caller must hold RCU read lock.
6909  */
6910 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6911 					struct list_head **iter)
6912 {
6913 	struct netdev_adjacent *lower;
6914 
6915 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
6916 
6917 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6918 
6919 	if (&lower->list == &dev->adj_list.lower)
6920 		return NULL;
6921 
6922 	*iter = &lower->list;
6923 
6924 	return lower->private;
6925 }
6926 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6927 
6928 /**
6929  * netdev_lower_get_next - Get the next device from the lower neighbour
6930  *                         list
6931  * @dev: device
6932  * @iter: list_head ** of the current position
6933  *
6934  * Gets the next netdev_adjacent from the dev's lower neighbour
6935  * list, starting from iter position. The caller must hold RTNL lock or
6936  * its own locking that guarantees that the neighbour lower
6937  * list will remain unchanged.
6938  */
6939 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6940 {
6941 	struct netdev_adjacent *lower;
6942 
6943 	lower = list_entry(*iter, struct netdev_adjacent, list);
6944 
6945 	if (&lower->list == &dev->adj_list.lower)
6946 		return NULL;
6947 
6948 	*iter = lower->list.next;
6949 
6950 	return lower->dev;
6951 }
6952 EXPORT_SYMBOL(netdev_lower_get_next);
6953 
6954 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6955 						struct list_head **iter)
6956 {
6957 	struct netdev_adjacent *lower;
6958 
6959 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6960 
6961 	if (&lower->list == &dev->adj_list.lower)
6962 		return NULL;
6963 
6964 	*iter = &lower->list;
6965 
6966 	return lower->dev;
6967 }
6968 
6969 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
6970 						  struct list_head **iter,
6971 						  bool *ignore)
6972 {
6973 	struct netdev_adjacent *lower;
6974 
6975 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6976 
6977 	if (&lower->list == &dev->adj_list.lower)
6978 		return NULL;
6979 
6980 	*iter = &lower->list;
6981 	*ignore = lower->ignore;
6982 
6983 	return lower->dev;
6984 }
6985 
6986 int netdev_walk_all_lower_dev(struct net_device *dev,
6987 			      int (*fn)(struct net_device *dev,
6988 					struct netdev_nested_priv *priv),
6989 			      struct netdev_nested_priv *priv)
6990 {
6991 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6992 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6993 	int ret, cur = 0;
6994 
6995 	now = dev;
6996 	iter = &dev->adj_list.lower;
6997 
6998 	while (1) {
6999 		if (now != dev) {
7000 			ret = fn(now, priv);
7001 			if (ret)
7002 				return ret;
7003 		}
7004 
7005 		next = NULL;
7006 		while (1) {
7007 			ldev = netdev_next_lower_dev(now, &iter);
7008 			if (!ldev)
7009 				break;
7010 
7011 			next = ldev;
7012 			niter = &ldev->adj_list.lower;
7013 			dev_stack[cur] = now;
7014 			iter_stack[cur++] = iter;
7015 			break;
7016 		}
7017 
7018 		if (!next) {
7019 			if (!cur)
7020 				return 0;
7021 			next = dev_stack[--cur];
7022 			niter = iter_stack[cur];
7023 		}
7024 
7025 		now = next;
7026 		iter = niter;
7027 	}
7028 
7029 	return 0;
7030 }
7031 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7032 
7033 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7034 				       int (*fn)(struct net_device *dev,
7035 					 struct netdev_nested_priv *priv),
7036 				       struct netdev_nested_priv *priv)
7037 {
7038 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7039 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7040 	int ret, cur = 0;
7041 	bool ignore;
7042 
7043 	now = dev;
7044 	iter = &dev->adj_list.lower;
7045 
7046 	while (1) {
7047 		if (now != dev) {
7048 			ret = fn(now, priv);
7049 			if (ret)
7050 				return ret;
7051 		}
7052 
7053 		next = NULL;
7054 		while (1) {
7055 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7056 			if (!ldev)
7057 				break;
7058 			if (ignore)
7059 				continue;
7060 
7061 			next = ldev;
7062 			niter = &ldev->adj_list.lower;
7063 			dev_stack[cur] = now;
7064 			iter_stack[cur++] = iter;
7065 			break;
7066 		}
7067 
7068 		if (!next) {
7069 			if (!cur)
7070 				return 0;
7071 			next = dev_stack[--cur];
7072 			niter = iter_stack[cur];
7073 		}
7074 
7075 		now = next;
7076 		iter = niter;
7077 	}
7078 
7079 	return 0;
7080 }
7081 
7082 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7083 					     struct list_head **iter)
7084 {
7085 	struct netdev_adjacent *lower;
7086 
7087 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7088 	if (&lower->list == &dev->adj_list.lower)
7089 		return NULL;
7090 
7091 	*iter = &lower->list;
7092 
7093 	return lower->dev;
7094 }
7095 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7096 
7097 static u8 __netdev_upper_depth(struct net_device *dev)
7098 {
7099 	struct net_device *udev;
7100 	struct list_head *iter;
7101 	u8 max_depth = 0;
7102 	bool ignore;
7103 
7104 	for (iter = &dev->adj_list.upper,
7105 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7106 	     udev;
7107 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7108 		if (ignore)
7109 			continue;
7110 		if (max_depth < udev->upper_level)
7111 			max_depth = udev->upper_level;
7112 	}
7113 
7114 	return max_depth;
7115 }
7116 
7117 static u8 __netdev_lower_depth(struct net_device *dev)
7118 {
7119 	struct net_device *ldev;
7120 	struct list_head *iter;
7121 	u8 max_depth = 0;
7122 	bool ignore;
7123 
7124 	for (iter = &dev->adj_list.lower,
7125 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7126 	     ldev;
7127 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7128 		if (ignore)
7129 			continue;
7130 		if (max_depth < ldev->lower_level)
7131 			max_depth = ldev->lower_level;
7132 	}
7133 
7134 	return max_depth;
7135 }
7136 
7137 static int __netdev_update_upper_level(struct net_device *dev,
7138 				       struct netdev_nested_priv *__unused)
7139 {
7140 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7141 	return 0;
7142 }
7143 
7144 static int __netdev_update_lower_level(struct net_device *dev,
7145 				       struct netdev_nested_priv *priv)
7146 {
7147 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7148 
7149 #ifdef CONFIG_LOCKDEP
7150 	if (!priv)
7151 		return 0;
7152 
7153 	if (priv->flags & NESTED_SYNC_IMM)
7154 		dev->nested_level = dev->lower_level - 1;
7155 	if (priv->flags & NESTED_SYNC_TODO)
7156 		net_unlink_todo(dev);
7157 #endif
7158 	return 0;
7159 }
7160 
7161 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7162 				  int (*fn)(struct net_device *dev,
7163 					    struct netdev_nested_priv *priv),
7164 				  struct netdev_nested_priv *priv)
7165 {
7166 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7167 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7168 	int ret, cur = 0;
7169 
7170 	now = dev;
7171 	iter = &dev->adj_list.lower;
7172 
7173 	while (1) {
7174 		if (now != dev) {
7175 			ret = fn(now, priv);
7176 			if (ret)
7177 				return ret;
7178 		}
7179 
7180 		next = NULL;
7181 		while (1) {
7182 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7183 			if (!ldev)
7184 				break;
7185 
7186 			next = ldev;
7187 			niter = &ldev->adj_list.lower;
7188 			dev_stack[cur] = now;
7189 			iter_stack[cur++] = iter;
7190 			break;
7191 		}
7192 
7193 		if (!next) {
7194 			if (!cur)
7195 				return 0;
7196 			next = dev_stack[--cur];
7197 			niter = iter_stack[cur];
7198 		}
7199 
7200 		now = next;
7201 		iter = niter;
7202 	}
7203 
7204 	return 0;
7205 }
7206 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7207 
7208 /**
7209  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7210  *				       lower neighbour list, RCU
7211  *				       variant
7212  * @dev: device
7213  *
7214  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7215  * list. The caller must hold RCU read lock.
7216  */
7217 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7218 {
7219 	struct netdev_adjacent *lower;
7220 
7221 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7222 			struct netdev_adjacent, list);
7223 	if (lower)
7224 		return lower->private;
7225 	return NULL;
7226 }
7227 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7228 
7229 /**
7230  * netdev_master_upper_dev_get_rcu - Get master upper device
7231  * @dev: device
7232  *
7233  * Find a master upper device and return pointer to it or NULL in case
7234  * it's not there. The caller must hold the RCU read lock.
7235  */
7236 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7237 {
7238 	struct netdev_adjacent *upper;
7239 
7240 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7241 				       struct netdev_adjacent, list);
7242 	if (upper && likely(upper->master))
7243 		return upper->dev;
7244 	return NULL;
7245 }
7246 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7247 
7248 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7249 			      struct net_device *adj_dev,
7250 			      struct list_head *dev_list)
7251 {
7252 	char linkname[IFNAMSIZ+7];
7253 
7254 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7255 		"upper_%s" : "lower_%s", adj_dev->name);
7256 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7257 				 linkname);
7258 }
7259 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7260 			       char *name,
7261 			       struct list_head *dev_list)
7262 {
7263 	char linkname[IFNAMSIZ+7];
7264 
7265 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7266 		"upper_%s" : "lower_%s", name);
7267 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7268 }
7269 
7270 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7271 						 struct net_device *adj_dev,
7272 						 struct list_head *dev_list)
7273 {
7274 	return (dev_list == &dev->adj_list.upper ||
7275 		dev_list == &dev->adj_list.lower) &&
7276 		net_eq(dev_net(dev), dev_net(adj_dev));
7277 }
7278 
7279 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7280 					struct net_device *adj_dev,
7281 					struct list_head *dev_list,
7282 					void *private, bool master)
7283 {
7284 	struct netdev_adjacent *adj;
7285 	int ret;
7286 
7287 	adj = __netdev_find_adj(adj_dev, dev_list);
7288 
7289 	if (adj) {
7290 		adj->ref_nr += 1;
7291 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7292 			 dev->name, adj_dev->name, adj->ref_nr);
7293 
7294 		return 0;
7295 	}
7296 
7297 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7298 	if (!adj)
7299 		return -ENOMEM;
7300 
7301 	adj->dev = adj_dev;
7302 	adj->master = master;
7303 	adj->ref_nr = 1;
7304 	adj->private = private;
7305 	adj->ignore = false;
7306 	dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7307 
7308 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7309 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7310 
7311 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7312 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7313 		if (ret)
7314 			goto free_adj;
7315 	}
7316 
7317 	/* Ensure that master link is always the first item in list. */
7318 	if (master) {
7319 		ret = sysfs_create_link(&(dev->dev.kobj),
7320 					&(adj_dev->dev.kobj), "master");
7321 		if (ret)
7322 			goto remove_symlinks;
7323 
7324 		list_add_rcu(&adj->list, dev_list);
7325 	} else {
7326 		list_add_tail_rcu(&adj->list, dev_list);
7327 	}
7328 
7329 	return 0;
7330 
7331 remove_symlinks:
7332 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7333 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7334 free_adj:
7335 	dev_put_track(adj_dev, &adj->dev_tracker);
7336 	kfree(adj);
7337 
7338 	return ret;
7339 }
7340 
7341 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7342 					 struct net_device *adj_dev,
7343 					 u16 ref_nr,
7344 					 struct list_head *dev_list)
7345 {
7346 	struct netdev_adjacent *adj;
7347 
7348 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7349 		 dev->name, adj_dev->name, ref_nr);
7350 
7351 	adj = __netdev_find_adj(adj_dev, dev_list);
7352 
7353 	if (!adj) {
7354 		pr_err("Adjacency does not exist for device %s from %s\n",
7355 		       dev->name, adj_dev->name);
7356 		WARN_ON(1);
7357 		return;
7358 	}
7359 
7360 	if (adj->ref_nr > ref_nr) {
7361 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7362 			 dev->name, adj_dev->name, ref_nr,
7363 			 adj->ref_nr - ref_nr);
7364 		adj->ref_nr -= ref_nr;
7365 		return;
7366 	}
7367 
7368 	if (adj->master)
7369 		sysfs_remove_link(&(dev->dev.kobj), "master");
7370 
7371 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7372 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7373 
7374 	list_del_rcu(&adj->list);
7375 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7376 		 adj_dev->name, dev->name, adj_dev->name);
7377 	dev_put_track(adj_dev, &adj->dev_tracker);
7378 	kfree_rcu(adj, rcu);
7379 }
7380 
7381 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7382 					    struct net_device *upper_dev,
7383 					    struct list_head *up_list,
7384 					    struct list_head *down_list,
7385 					    void *private, bool master)
7386 {
7387 	int ret;
7388 
7389 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7390 					   private, master);
7391 	if (ret)
7392 		return ret;
7393 
7394 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7395 					   private, false);
7396 	if (ret) {
7397 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7398 		return ret;
7399 	}
7400 
7401 	return 0;
7402 }
7403 
7404 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7405 					       struct net_device *upper_dev,
7406 					       u16 ref_nr,
7407 					       struct list_head *up_list,
7408 					       struct list_head *down_list)
7409 {
7410 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7411 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7412 }
7413 
7414 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7415 						struct net_device *upper_dev,
7416 						void *private, bool master)
7417 {
7418 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7419 						&dev->adj_list.upper,
7420 						&upper_dev->adj_list.lower,
7421 						private, master);
7422 }
7423 
7424 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7425 						   struct net_device *upper_dev)
7426 {
7427 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7428 					   &dev->adj_list.upper,
7429 					   &upper_dev->adj_list.lower);
7430 }
7431 
7432 static int __netdev_upper_dev_link(struct net_device *dev,
7433 				   struct net_device *upper_dev, bool master,
7434 				   void *upper_priv, void *upper_info,
7435 				   struct netdev_nested_priv *priv,
7436 				   struct netlink_ext_ack *extack)
7437 {
7438 	struct netdev_notifier_changeupper_info changeupper_info = {
7439 		.info = {
7440 			.dev = dev,
7441 			.extack = extack,
7442 		},
7443 		.upper_dev = upper_dev,
7444 		.master = master,
7445 		.linking = true,
7446 		.upper_info = upper_info,
7447 	};
7448 	struct net_device *master_dev;
7449 	int ret = 0;
7450 
7451 	ASSERT_RTNL();
7452 
7453 	if (dev == upper_dev)
7454 		return -EBUSY;
7455 
7456 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7457 	if (__netdev_has_upper_dev(upper_dev, dev))
7458 		return -EBUSY;
7459 
7460 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7461 		return -EMLINK;
7462 
7463 	if (!master) {
7464 		if (__netdev_has_upper_dev(dev, upper_dev))
7465 			return -EEXIST;
7466 	} else {
7467 		master_dev = __netdev_master_upper_dev_get(dev);
7468 		if (master_dev)
7469 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7470 	}
7471 
7472 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7473 					    &changeupper_info.info);
7474 	ret = notifier_to_errno(ret);
7475 	if (ret)
7476 		return ret;
7477 
7478 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7479 						   master);
7480 	if (ret)
7481 		return ret;
7482 
7483 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7484 					    &changeupper_info.info);
7485 	ret = notifier_to_errno(ret);
7486 	if (ret)
7487 		goto rollback;
7488 
7489 	__netdev_update_upper_level(dev, NULL);
7490 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7491 
7492 	__netdev_update_lower_level(upper_dev, priv);
7493 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7494 				    priv);
7495 
7496 	return 0;
7497 
7498 rollback:
7499 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7500 
7501 	return ret;
7502 }
7503 
7504 /**
7505  * netdev_upper_dev_link - Add a link to the upper device
7506  * @dev: device
7507  * @upper_dev: new upper device
7508  * @extack: netlink extended ack
7509  *
7510  * Adds a link to device which is upper to this one. The caller must hold
7511  * the RTNL lock. On a failure a negative errno code is returned.
7512  * On success the reference counts are adjusted and the function
7513  * returns zero.
7514  */
7515 int netdev_upper_dev_link(struct net_device *dev,
7516 			  struct net_device *upper_dev,
7517 			  struct netlink_ext_ack *extack)
7518 {
7519 	struct netdev_nested_priv priv = {
7520 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7521 		.data = NULL,
7522 	};
7523 
7524 	return __netdev_upper_dev_link(dev, upper_dev, false,
7525 				       NULL, NULL, &priv, extack);
7526 }
7527 EXPORT_SYMBOL(netdev_upper_dev_link);
7528 
7529 /**
7530  * netdev_master_upper_dev_link - Add a master link to the upper device
7531  * @dev: device
7532  * @upper_dev: new upper device
7533  * @upper_priv: upper device private
7534  * @upper_info: upper info to be passed down via notifier
7535  * @extack: netlink extended ack
7536  *
7537  * Adds a link to device which is upper to this one. In this case, only
7538  * one master upper device can be linked, although other non-master devices
7539  * might be linked as well. The caller must hold the RTNL lock.
7540  * On a failure a negative errno code is returned. On success the reference
7541  * counts are adjusted and the function returns zero.
7542  */
7543 int netdev_master_upper_dev_link(struct net_device *dev,
7544 				 struct net_device *upper_dev,
7545 				 void *upper_priv, void *upper_info,
7546 				 struct netlink_ext_ack *extack)
7547 {
7548 	struct netdev_nested_priv priv = {
7549 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7550 		.data = NULL,
7551 	};
7552 
7553 	return __netdev_upper_dev_link(dev, upper_dev, true,
7554 				       upper_priv, upper_info, &priv, extack);
7555 }
7556 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7557 
7558 static void __netdev_upper_dev_unlink(struct net_device *dev,
7559 				      struct net_device *upper_dev,
7560 				      struct netdev_nested_priv *priv)
7561 {
7562 	struct netdev_notifier_changeupper_info changeupper_info = {
7563 		.info = {
7564 			.dev = dev,
7565 		},
7566 		.upper_dev = upper_dev,
7567 		.linking = false,
7568 	};
7569 
7570 	ASSERT_RTNL();
7571 
7572 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7573 
7574 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7575 				      &changeupper_info.info);
7576 
7577 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7578 
7579 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7580 				      &changeupper_info.info);
7581 
7582 	__netdev_update_upper_level(dev, NULL);
7583 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7584 
7585 	__netdev_update_lower_level(upper_dev, priv);
7586 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7587 				    priv);
7588 }
7589 
7590 /**
7591  * netdev_upper_dev_unlink - Removes a link to upper device
7592  * @dev: device
7593  * @upper_dev: new upper device
7594  *
7595  * Removes a link to device which is upper to this one. The caller must hold
7596  * the RTNL lock.
7597  */
7598 void netdev_upper_dev_unlink(struct net_device *dev,
7599 			     struct net_device *upper_dev)
7600 {
7601 	struct netdev_nested_priv priv = {
7602 		.flags = NESTED_SYNC_TODO,
7603 		.data = NULL,
7604 	};
7605 
7606 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7607 }
7608 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7609 
7610 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7611 				      struct net_device *lower_dev,
7612 				      bool val)
7613 {
7614 	struct netdev_adjacent *adj;
7615 
7616 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7617 	if (adj)
7618 		adj->ignore = val;
7619 
7620 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7621 	if (adj)
7622 		adj->ignore = val;
7623 }
7624 
7625 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7626 					struct net_device *lower_dev)
7627 {
7628 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7629 }
7630 
7631 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7632 				       struct net_device *lower_dev)
7633 {
7634 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7635 }
7636 
7637 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7638 				   struct net_device *new_dev,
7639 				   struct net_device *dev,
7640 				   struct netlink_ext_ack *extack)
7641 {
7642 	struct netdev_nested_priv priv = {
7643 		.flags = 0,
7644 		.data = NULL,
7645 	};
7646 	int err;
7647 
7648 	if (!new_dev)
7649 		return 0;
7650 
7651 	if (old_dev && new_dev != old_dev)
7652 		netdev_adjacent_dev_disable(dev, old_dev);
7653 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7654 				      extack);
7655 	if (err) {
7656 		if (old_dev && new_dev != old_dev)
7657 			netdev_adjacent_dev_enable(dev, old_dev);
7658 		return err;
7659 	}
7660 
7661 	return 0;
7662 }
7663 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7664 
7665 void netdev_adjacent_change_commit(struct net_device *old_dev,
7666 				   struct net_device *new_dev,
7667 				   struct net_device *dev)
7668 {
7669 	struct netdev_nested_priv priv = {
7670 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7671 		.data = NULL,
7672 	};
7673 
7674 	if (!new_dev || !old_dev)
7675 		return;
7676 
7677 	if (new_dev == old_dev)
7678 		return;
7679 
7680 	netdev_adjacent_dev_enable(dev, old_dev);
7681 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7682 }
7683 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7684 
7685 void netdev_adjacent_change_abort(struct net_device *old_dev,
7686 				  struct net_device *new_dev,
7687 				  struct net_device *dev)
7688 {
7689 	struct netdev_nested_priv priv = {
7690 		.flags = 0,
7691 		.data = NULL,
7692 	};
7693 
7694 	if (!new_dev)
7695 		return;
7696 
7697 	if (old_dev && new_dev != old_dev)
7698 		netdev_adjacent_dev_enable(dev, old_dev);
7699 
7700 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7701 }
7702 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7703 
7704 /**
7705  * netdev_bonding_info_change - Dispatch event about slave change
7706  * @dev: device
7707  * @bonding_info: info to dispatch
7708  *
7709  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7710  * The caller must hold the RTNL lock.
7711  */
7712 void netdev_bonding_info_change(struct net_device *dev,
7713 				struct netdev_bonding_info *bonding_info)
7714 {
7715 	struct netdev_notifier_bonding_info info = {
7716 		.info.dev = dev,
7717 	};
7718 
7719 	memcpy(&info.bonding_info, bonding_info,
7720 	       sizeof(struct netdev_bonding_info));
7721 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7722 				      &info.info);
7723 }
7724 EXPORT_SYMBOL(netdev_bonding_info_change);
7725 
7726 /**
7727  * netdev_get_xmit_slave - Get the xmit slave of master device
7728  * @dev: device
7729  * @skb: The packet
7730  * @all_slaves: assume all the slaves are active
7731  *
7732  * The reference counters are not incremented so the caller must be
7733  * careful with locks. The caller must hold RCU lock.
7734  * %NULL is returned if no slave is found.
7735  */
7736 
7737 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7738 					 struct sk_buff *skb,
7739 					 bool all_slaves)
7740 {
7741 	const struct net_device_ops *ops = dev->netdev_ops;
7742 
7743 	if (!ops->ndo_get_xmit_slave)
7744 		return NULL;
7745 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7746 }
7747 EXPORT_SYMBOL(netdev_get_xmit_slave);
7748 
7749 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
7750 						  struct sock *sk)
7751 {
7752 	const struct net_device_ops *ops = dev->netdev_ops;
7753 
7754 	if (!ops->ndo_sk_get_lower_dev)
7755 		return NULL;
7756 	return ops->ndo_sk_get_lower_dev(dev, sk);
7757 }
7758 
7759 /**
7760  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
7761  * @dev: device
7762  * @sk: the socket
7763  *
7764  * %NULL is returned if no lower device is found.
7765  */
7766 
7767 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
7768 					    struct sock *sk)
7769 {
7770 	struct net_device *lower;
7771 
7772 	lower = netdev_sk_get_lower_dev(dev, sk);
7773 	while (lower) {
7774 		dev = lower;
7775 		lower = netdev_sk_get_lower_dev(dev, sk);
7776 	}
7777 
7778 	return dev;
7779 }
7780 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
7781 
7782 static void netdev_adjacent_add_links(struct net_device *dev)
7783 {
7784 	struct netdev_adjacent *iter;
7785 
7786 	struct net *net = dev_net(dev);
7787 
7788 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7789 		if (!net_eq(net, dev_net(iter->dev)))
7790 			continue;
7791 		netdev_adjacent_sysfs_add(iter->dev, dev,
7792 					  &iter->dev->adj_list.lower);
7793 		netdev_adjacent_sysfs_add(dev, iter->dev,
7794 					  &dev->adj_list.upper);
7795 	}
7796 
7797 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7798 		if (!net_eq(net, dev_net(iter->dev)))
7799 			continue;
7800 		netdev_adjacent_sysfs_add(iter->dev, dev,
7801 					  &iter->dev->adj_list.upper);
7802 		netdev_adjacent_sysfs_add(dev, iter->dev,
7803 					  &dev->adj_list.lower);
7804 	}
7805 }
7806 
7807 static void netdev_adjacent_del_links(struct net_device *dev)
7808 {
7809 	struct netdev_adjacent *iter;
7810 
7811 	struct net *net = dev_net(dev);
7812 
7813 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7814 		if (!net_eq(net, dev_net(iter->dev)))
7815 			continue;
7816 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7817 					  &iter->dev->adj_list.lower);
7818 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7819 					  &dev->adj_list.upper);
7820 	}
7821 
7822 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7823 		if (!net_eq(net, dev_net(iter->dev)))
7824 			continue;
7825 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7826 					  &iter->dev->adj_list.upper);
7827 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7828 					  &dev->adj_list.lower);
7829 	}
7830 }
7831 
7832 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7833 {
7834 	struct netdev_adjacent *iter;
7835 
7836 	struct net *net = dev_net(dev);
7837 
7838 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7839 		if (!net_eq(net, dev_net(iter->dev)))
7840 			continue;
7841 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7842 					  &iter->dev->adj_list.lower);
7843 		netdev_adjacent_sysfs_add(iter->dev, dev,
7844 					  &iter->dev->adj_list.lower);
7845 	}
7846 
7847 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7848 		if (!net_eq(net, dev_net(iter->dev)))
7849 			continue;
7850 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7851 					  &iter->dev->adj_list.upper);
7852 		netdev_adjacent_sysfs_add(iter->dev, dev,
7853 					  &iter->dev->adj_list.upper);
7854 	}
7855 }
7856 
7857 void *netdev_lower_dev_get_private(struct net_device *dev,
7858 				   struct net_device *lower_dev)
7859 {
7860 	struct netdev_adjacent *lower;
7861 
7862 	if (!lower_dev)
7863 		return NULL;
7864 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7865 	if (!lower)
7866 		return NULL;
7867 
7868 	return lower->private;
7869 }
7870 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7871 
7872 
7873 /**
7874  * netdev_lower_state_changed - Dispatch event about lower device state change
7875  * @lower_dev: device
7876  * @lower_state_info: state to dispatch
7877  *
7878  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7879  * The caller must hold the RTNL lock.
7880  */
7881 void netdev_lower_state_changed(struct net_device *lower_dev,
7882 				void *lower_state_info)
7883 {
7884 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7885 		.info.dev = lower_dev,
7886 	};
7887 
7888 	ASSERT_RTNL();
7889 	changelowerstate_info.lower_state_info = lower_state_info;
7890 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7891 				      &changelowerstate_info.info);
7892 }
7893 EXPORT_SYMBOL(netdev_lower_state_changed);
7894 
7895 static void dev_change_rx_flags(struct net_device *dev, int flags)
7896 {
7897 	const struct net_device_ops *ops = dev->netdev_ops;
7898 
7899 	if (ops->ndo_change_rx_flags)
7900 		ops->ndo_change_rx_flags(dev, flags);
7901 }
7902 
7903 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7904 {
7905 	unsigned int old_flags = dev->flags;
7906 	kuid_t uid;
7907 	kgid_t gid;
7908 
7909 	ASSERT_RTNL();
7910 
7911 	dev->flags |= IFF_PROMISC;
7912 	dev->promiscuity += inc;
7913 	if (dev->promiscuity == 0) {
7914 		/*
7915 		 * Avoid overflow.
7916 		 * If inc causes overflow, untouch promisc and return error.
7917 		 */
7918 		if (inc < 0)
7919 			dev->flags &= ~IFF_PROMISC;
7920 		else {
7921 			dev->promiscuity -= inc;
7922 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
7923 			return -EOVERFLOW;
7924 		}
7925 	}
7926 	if (dev->flags != old_flags) {
7927 		pr_info("device %s %s promiscuous mode\n",
7928 			dev->name,
7929 			dev->flags & IFF_PROMISC ? "entered" : "left");
7930 		if (audit_enabled) {
7931 			current_uid_gid(&uid, &gid);
7932 			audit_log(audit_context(), GFP_ATOMIC,
7933 				  AUDIT_ANOM_PROMISCUOUS,
7934 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7935 				  dev->name, (dev->flags & IFF_PROMISC),
7936 				  (old_flags & IFF_PROMISC),
7937 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7938 				  from_kuid(&init_user_ns, uid),
7939 				  from_kgid(&init_user_ns, gid),
7940 				  audit_get_sessionid(current));
7941 		}
7942 
7943 		dev_change_rx_flags(dev, IFF_PROMISC);
7944 	}
7945 	if (notify)
7946 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7947 	return 0;
7948 }
7949 
7950 /**
7951  *	dev_set_promiscuity	- update promiscuity count on a device
7952  *	@dev: device
7953  *	@inc: modifier
7954  *
7955  *	Add or remove promiscuity from a device. While the count in the device
7956  *	remains above zero the interface remains promiscuous. Once it hits zero
7957  *	the device reverts back to normal filtering operation. A negative inc
7958  *	value is used to drop promiscuity on the device.
7959  *	Return 0 if successful or a negative errno code on error.
7960  */
7961 int dev_set_promiscuity(struct net_device *dev, int inc)
7962 {
7963 	unsigned int old_flags = dev->flags;
7964 	int err;
7965 
7966 	err = __dev_set_promiscuity(dev, inc, true);
7967 	if (err < 0)
7968 		return err;
7969 	if (dev->flags != old_flags)
7970 		dev_set_rx_mode(dev);
7971 	return err;
7972 }
7973 EXPORT_SYMBOL(dev_set_promiscuity);
7974 
7975 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7976 {
7977 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7978 
7979 	ASSERT_RTNL();
7980 
7981 	dev->flags |= IFF_ALLMULTI;
7982 	dev->allmulti += inc;
7983 	if (dev->allmulti == 0) {
7984 		/*
7985 		 * Avoid overflow.
7986 		 * If inc causes overflow, untouch allmulti and return error.
7987 		 */
7988 		if (inc < 0)
7989 			dev->flags &= ~IFF_ALLMULTI;
7990 		else {
7991 			dev->allmulti -= inc;
7992 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
7993 			return -EOVERFLOW;
7994 		}
7995 	}
7996 	if (dev->flags ^ old_flags) {
7997 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7998 		dev_set_rx_mode(dev);
7999 		if (notify)
8000 			__dev_notify_flags(dev, old_flags,
8001 					   dev->gflags ^ old_gflags);
8002 	}
8003 	return 0;
8004 }
8005 
8006 /**
8007  *	dev_set_allmulti	- update allmulti count on a device
8008  *	@dev: device
8009  *	@inc: modifier
8010  *
8011  *	Add or remove reception of all multicast frames to a device. While the
8012  *	count in the device remains above zero the interface remains listening
8013  *	to all interfaces. Once it hits zero the device reverts back to normal
8014  *	filtering operation. A negative @inc value is used to drop the counter
8015  *	when releasing a resource needing all multicasts.
8016  *	Return 0 if successful or a negative errno code on error.
8017  */
8018 
8019 int dev_set_allmulti(struct net_device *dev, int inc)
8020 {
8021 	return __dev_set_allmulti(dev, inc, true);
8022 }
8023 EXPORT_SYMBOL(dev_set_allmulti);
8024 
8025 /*
8026  *	Upload unicast and multicast address lists to device and
8027  *	configure RX filtering. When the device doesn't support unicast
8028  *	filtering it is put in promiscuous mode while unicast addresses
8029  *	are present.
8030  */
8031 void __dev_set_rx_mode(struct net_device *dev)
8032 {
8033 	const struct net_device_ops *ops = dev->netdev_ops;
8034 
8035 	/* dev_open will call this function so the list will stay sane. */
8036 	if (!(dev->flags&IFF_UP))
8037 		return;
8038 
8039 	if (!netif_device_present(dev))
8040 		return;
8041 
8042 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8043 		/* Unicast addresses changes may only happen under the rtnl,
8044 		 * therefore calling __dev_set_promiscuity here is safe.
8045 		 */
8046 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8047 			__dev_set_promiscuity(dev, 1, false);
8048 			dev->uc_promisc = true;
8049 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8050 			__dev_set_promiscuity(dev, -1, false);
8051 			dev->uc_promisc = false;
8052 		}
8053 	}
8054 
8055 	if (ops->ndo_set_rx_mode)
8056 		ops->ndo_set_rx_mode(dev);
8057 }
8058 
8059 void dev_set_rx_mode(struct net_device *dev)
8060 {
8061 	netif_addr_lock_bh(dev);
8062 	__dev_set_rx_mode(dev);
8063 	netif_addr_unlock_bh(dev);
8064 }
8065 
8066 /**
8067  *	dev_get_flags - get flags reported to userspace
8068  *	@dev: device
8069  *
8070  *	Get the combination of flag bits exported through APIs to userspace.
8071  */
8072 unsigned int dev_get_flags(const struct net_device *dev)
8073 {
8074 	unsigned int flags;
8075 
8076 	flags = (dev->flags & ~(IFF_PROMISC |
8077 				IFF_ALLMULTI |
8078 				IFF_RUNNING |
8079 				IFF_LOWER_UP |
8080 				IFF_DORMANT)) |
8081 		(dev->gflags & (IFF_PROMISC |
8082 				IFF_ALLMULTI));
8083 
8084 	if (netif_running(dev)) {
8085 		if (netif_oper_up(dev))
8086 			flags |= IFF_RUNNING;
8087 		if (netif_carrier_ok(dev))
8088 			flags |= IFF_LOWER_UP;
8089 		if (netif_dormant(dev))
8090 			flags |= IFF_DORMANT;
8091 	}
8092 
8093 	return flags;
8094 }
8095 EXPORT_SYMBOL(dev_get_flags);
8096 
8097 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8098 		       struct netlink_ext_ack *extack)
8099 {
8100 	unsigned int old_flags = dev->flags;
8101 	int ret;
8102 
8103 	ASSERT_RTNL();
8104 
8105 	/*
8106 	 *	Set the flags on our device.
8107 	 */
8108 
8109 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8110 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8111 			       IFF_AUTOMEDIA)) |
8112 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8113 				    IFF_ALLMULTI));
8114 
8115 	/*
8116 	 *	Load in the correct multicast list now the flags have changed.
8117 	 */
8118 
8119 	if ((old_flags ^ flags) & IFF_MULTICAST)
8120 		dev_change_rx_flags(dev, IFF_MULTICAST);
8121 
8122 	dev_set_rx_mode(dev);
8123 
8124 	/*
8125 	 *	Have we downed the interface. We handle IFF_UP ourselves
8126 	 *	according to user attempts to set it, rather than blindly
8127 	 *	setting it.
8128 	 */
8129 
8130 	ret = 0;
8131 	if ((old_flags ^ flags) & IFF_UP) {
8132 		if (old_flags & IFF_UP)
8133 			__dev_close(dev);
8134 		else
8135 			ret = __dev_open(dev, extack);
8136 	}
8137 
8138 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8139 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8140 		unsigned int old_flags = dev->flags;
8141 
8142 		dev->gflags ^= IFF_PROMISC;
8143 
8144 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8145 			if (dev->flags != old_flags)
8146 				dev_set_rx_mode(dev);
8147 	}
8148 
8149 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8150 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8151 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8152 	 */
8153 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8154 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8155 
8156 		dev->gflags ^= IFF_ALLMULTI;
8157 		__dev_set_allmulti(dev, inc, false);
8158 	}
8159 
8160 	return ret;
8161 }
8162 
8163 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8164 			unsigned int gchanges)
8165 {
8166 	unsigned int changes = dev->flags ^ old_flags;
8167 
8168 	if (gchanges)
8169 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8170 
8171 	if (changes & IFF_UP) {
8172 		if (dev->flags & IFF_UP)
8173 			call_netdevice_notifiers(NETDEV_UP, dev);
8174 		else
8175 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8176 	}
8177 
8178 	if (dev->flags & IFF_UP &&
8179 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8180 		struct netdev_notifier_change_info change_info = {
8181 			.info = {
8182 				.dev = dev,
8183 			},
8184 			.flags_changed = changes,
8185 		};
8186 
8187 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8188 	}
8189 }
8190 
8191 /**
8192  *	dev_change_flags - change device settings
8193  *	@dev: device
8194  *	@flags: device state flags
8195  *	@extack: netlink extended ack
8196  *
8197  *	Change settings on device based state flags. The flags are
8198  *	in the userspace exported format.
8199  */
8200 int dev_change_flags(struct net_device *dev, unsigned int flags,
8201 		     struct netlink_ext_ack *extack)
8202 {
8203 	int ret;
8204 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8205 
8206 	ret = __dev_change_flags(dev, flags, extack);
8207 	if (ret < 0)
8208 		return ret;
8209 
8210 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8211 	__dev_notify_flags(dev, old_flags, changes);
8212 	return ret;
8213 }
8214 EXPORT_SYMBOL(dev_change_flags);
8215 
8216 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8217 {
8218 	const struct net_device_ops *ops = dev->netdev_ops;
8219 
8220 	if (ops->ndo_change_mtu)
8221 		return ops->ndo_change_mtu(dev, new_mtu);
8222 
8223 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8224 	WRITE_ONCE(dev->mtu, new_mtu);
8225 	return 0;
8226 }
8227 EXPORT_SYMBOL(__dev_set_mtu);
8228 
8229 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8230 		     struct netlink_ext_ack *extack)
8231 {
8232 	/* MTU must be positive, and in range */
8233 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8234 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8235 		return -EINVAL;
8236 	}
8237 
8238 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8239 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8240 		return -EINVAL;
8241 	}
8242 	return 0;
8243 }
8244 
8245 /**
8246  *	dev_set_mtu_ext - Change maximum transfer unit
8247  *	@dev: device
8248  *	@new_mtu: new transfer unit
8249  *	@extack: netlink extended ack
8250  *
8251  *	Change the maximum transfer size of the network device.
8252  */
8253 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8254 		    struct netlink_ext_ack *extack)
8255 {
8256 	int err, orig_mtu;
8257 
8258 	if (new_mtu == dev->mtu)
8259 		return 0;
8260 
8261 	err = dev_validate_mtu(dev, new_mtu, extack);
8262 	if (err)
8263 		return err;
8264 
8265 	if (!netif_device_present(dev))
8266 		return -ENODEV;
8267 
8268 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8269 	err = notifier_to_errno(err);
8270 	if (err)
8271 		return err;
8272 
8273 	orig_mtu = dev->mtu;
8274 	err = __dev_set_mtu(dev, new_mtu);
8275 
8276 	if (!err) {
8277 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8278 						   orig_mtu);
8279 		err = notifier_to_errno(err);
8280 		if (err) {
8281 			/* setting mtu back and notifying everyone again,
8282 			 * so that they have a chance to revert changes.
8283 			 */
8284 			__dev_set_mtu(dev, orig_mtu);
8285 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8286 						     new_mtu);
8287 		}
8288 	}
8289 	return err;
8290 }
8291 
8292 int dev_set_mtu(struct net_device *dev, int new_mtu)
8293 {
8294 	struct netlink_ext_ack extack;
8295 	int err;
8296 
8297 	memset(&extack, 0, sizeof(extack));
8298 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8299 	if (err && extack._msg)
8300 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8301 	return err;
8302 }
8303 EXPORT_SYMBOL(dev_set_mtu);
8304 
8305 /**
8306  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8307  *	@dev: device
8308  *	@new_len: new tx queue length
8309  */
8310 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8311 {
8312 	unsigned int orig_len = dev->tx_queue_len;
8313 	int res;
8314 
8315 	if (new_len != (unsigned int)new_len)
8316 		return -ERANGE;
8317 
8318 	if (new_len != orig_len) {
8319 		dev->tx_queue_len = new_len;
8320 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8321 		res = notifier_to_errno(res);
8322 		if (res)
8323 			goto err_rollback;
8324 		res = dev_qdisc_change_tx_queue_len(dev);
8325 		if (res)
8326 			goto err_rollback;
8327 	}
8328 
8329 	return 0;
8330 
8331 err_rollback:
8332 	netdev_err(dev, "refused to change device tx_queue_len\n");
8333 	dev->tx_queue_len = orig_len;
8334 	return res;
8335 }
8336 
8337 /**
8338  *	dev_set_group - Change group this device belongs to
8339  *	@dev: device
8340  *	@new_group: group this device should belong to
8341  */
8342 void dev_set_group(struct net_device *dev, int new_group)
8343 {
8344 	dev->group = new_group;
8345 }
8346 EXPORT_SYMBOL(dev_set_group);
8347 
8348 /**
8349  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8350  *	@dev: device
8351  *	@addr: new address
8352  *	@extack: netlink extended ack
8353  */
8354 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8355 			      struct netlink_ext_ack *extack)
8356 {
8357 	struct netdev_notifier_pre_changeaddr_info info = {
8358 		.info.dev = dev,
8359 		.info.extack = extack,
8360 		.dev_addr = addr,
8361 	};
8362 	int rc;
8363 
8364 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8365 	return notifier_to_errno(rc);
8366 }
8367 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8368 
8369 /**
8370  *	dev_set_mac_address - Change Media Access Control Address
8371  *	@dev: device
8372  *	@sa: new address
8373  *	@extack: netlink extended ack
8374  *
8375  *	Change the hardware (MAC) address of the device
8376  */
8377 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8378 			struct netlink_ext_ack *extack)
8379 {
8380 	const struct net_device_ops *ops = dev->netdev_ops;
8381 	int err;
8382 
8383 	if (!ops->ndo_set_mac_address)
8384 		return -EOPNOTSUPP;
8385 	if (sa->sa_family != dev->type)
8386 		return -EINVAL;
8387 	if (!netif_device_present(dev))
8388 		return -ENODEV;
8389 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8390 	if (err)
8391 		return err;
8392 	err = ops->ndo_set_mac_address(dev, sa);
8393 	if (err)
8394 		return err;
8395 	dev->addr_assign_type = NET_ADDR_SET;
8396 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8397 	add_device_randomness(dev->dev_addr, dev->addr_len);
8398 	return 0;
8399 }
8400 EXPORT_SYMBOL(dev_set_mac_address);
8401 
8402 static DECLARE_RWSEM(dev_addr_sem);
8403 
8404 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8405 			     struct netlink_ext_ack *extack)
8406 {
8407 	int ret;
8408 
8409 	down_write(&dev_addr_sem);
8410 	ret = dev_set_mac_address(dev, sa, extack);
8411 	up_write(&dev_addr_sem);
8412 	return ret;
8413 }
8414 EXPORT_SYMBOL(dev_set_mac_address_user);
8415 
8416 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8417 {
8418 	size_t size = sizeof(sa->sa_data);
8419 	struct net_device *dev;
8420 	int ret = 0;
8421 
8422 	down_read(&dev_addr_sem);
8423 	rcu_read_lock();
8424 
8425 	dev = dev_get_by_name_rcu(net, dev_name);
8426 	if (!dev) {
8427 		ret = -ENODEV;
8428 		goto unlock;
8429 	}
8430 	if (!dev->addr_len)
8431 		memset(sa->sa_data, 0, size);
8432 	else
8433 		memcpy(sa->sa_data, dev->dev_addr,
8434 		       min_t(size_t, size, dev->addr_len));
8435 	sa->sa_family = dev->type;
8436 
8437 unlock:
8438 	rcu_read_unlock();
8439 	up_read(&dev_addr_sem);
8440 	return ret;
8441 }
8442 EXPORT_SYMBOL(dev_get_mac_address);
8443 
8444 /**
8445  *	dev_change_carrier - Change device carrier
8446  *	@dev: device
8447  *	@new_carrier: new value
8448  *
8449  *	Change device carrier
8450  */
8451 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8452 {
8453 	const struct net_device_ops *ops = dev->netdev_ops;
8454 
8455 	if (!ops->ndo_change_carrier)
8456 		return -EOPNOTSUPP;
8457 	if (!netif_device_present(dev))
8458 		return -ENODEV;
8459 	return ops->ndo_change_carrier(dev, new_carrier);
8460 }
8461 EXPORT_SYMBOL(dev_change_carrier);
8462 
8463 /**
8464  *	dev_get_phys_port_id - Get device physical port ID
8465  *	@dev: device
8466  *	@ppid: port ID
8467  *
8468  *	Get device physical port ID
8469  */
8470 int dev_get_phys_port_id(struct net_device *dev,
8471 			 struct netdev_phys_item_id *ppid)
8472 {
8473 	const struct net_device_ops *ops = dev->netdev_ops;
8474 
8475 	if (!ops->ndo_get_phys_port_id)
8476 		return -EOPNOTSUPP;
8477 	return ops->ndo_get_phys_port_id(dev, ppid);
8478 }
8479 EXPORT_SYMBOL(dev_get_phys_port_id);
8480 
8481 /**
8482  *	dev_get_phys_port_name - Get device physical port name
8483  *	@dev: device
8484  *	@name: port name
8485  *	@len: limit of bytes to copy to name
8486  *
8487  *	Get device physical port name
8488  */
8489 int dev_get_phys_port_name(struct net_device *dev,
8490 			   char *name, size_t len)
8491 {
8492 	const struct net_device_ops *ops = dev->netdev_ops;
8493 	int err;
8494 
8495 	if (ops->ndo_get_phys_port_name) {
8496 		err = ops->ndo_get_phys_port_name(dev, name, len);
8497 		if (err != -EOPNOTSUPP)
8498 			return err;
8499 	}
8500 	return devlink_compat_phys_port_name_get(dev, name, len);
8501 }
8502 EXPORT_SYMBOL(dev_get_phys_port_name);
8503 
8504 /**
8505  *	dev_get_port_parent_id - Get the device's port parent identifier
8506  *	@dev: network device
8507  *	@ppid: pointer to a storage for the port's parent identifier
8508  *	@recurse: allow/disallow recursion to lower devices
8509  *
8510  *	Get the devices's port parent identifier
8511  */
8512 int dev_get_port_parent_id(struct net_device *dev,
8513 			   struct netdev_phys_item_id *ppid,
8514 			   bool recurse)
8515 {
8516 	const struct net_device_ops *ops = dev->netdev_ops;
8517 	struct netdev_phys_item_id first = { };
8518 	struct net_device *lower_dev;
8519 	struct list_head *iter;
8520 	int err;
8521 
8522 	if (ops->ndo_get_port_parent_id) {
8523 		err = ops->ndo_get_port_parent_id(dev, ppid);
8524 		if (err != -EOPNOTSUPP)
8525 			return err;
8526 	}
8527 
8528 	err = devlink_compat_switch_id_get(dev, ppid);
8529 	if (!recurse || err != -EOPNOTSUPP)
8530 		return err;
8531 
8532 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8533 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8534 		if (err)
8535 			break;
8536 		if (!first.id_len)
8537 			first = *ppid;
8538 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8539 			return -EOPNOTSUPP;
8540 	}
8541 
8542 	return err;
8543 }
8544 EXPORT_SYMBOL(dev_get_port_parent_id);
8545 
8546 /**
8547  *	netdev_port_same_parent_id - Indicate if two network devices have
8548  *	the same port parent identifier
8549  *	@a: first network device
8550  *	@b: second network device
8551  */
8552 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8553 {
8554 	struct netdev_phys_item_id a_id = { };
8555 	struct netdev_phys_item_id b_id = { };
8556 
8557 	if (dev_get_port_parent_id(a, &a_id, true) ||
8558 	    dev_get_port_parent_id(b, &b_id, true))
8559 		return false;
8560 
8561 	return netdev_phys_item_id_same(&a_id, &b_id);
8562 }
8563 EXPORT_SYMBOL(netdev_port_same_parent_id);
8564 
8565 /**
8566  *	dev_change_proto_down - set carrier according to proto_down.
8567  *
8568  *	@dev: device
8569  *	@proto_down: new value
8570  */
8571 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8572 {
8573 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8574 		return -EOPNOTSUPP;
8575 	if (!netif_device_present(dev))
8576 		return -ENODEV;
8577 	if (proto_down)
8578 		netif_carrier_off(dev);
8579 	else
8580 		netif_carrier_on(dev);
8581 	dev->proto_down = proto_down;
8582 	return 0;
8583 }
8584 EXPORT_SYMBOL(dev_change_proto_down);
8585 
8586 /**
8587  *	dev_change_proto_down_reason - proto down reason
8588  *
8589  *	@dev: device
8590  *	@mask: proto down mask
8591  *	@value: proto down value
8592  */
8593 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8594 				  u32 value)
8595 {
8596 	int b;
8597 
8598 	if (!mask) {
8599 		dev->proto_down_reason = value;
8600 	} else {
8601 		for_each_set_bit(b, &mask, 32) {
8602 			if (value & (1 << b))
8603 				dev->proto_down_reason |= BIT(b);
8604 			else
8605 				dev->proto_down_reason &= ~BIT(b);
8606 		}
8607 	}
8608 }
8609 EXPORT_SYMBOL(dev_change_proto_down_reason);
8610 
8611 struct bpf_xdp_link {
8612 	struct bpf_link link;
8613 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8614 	int flags;
8615 };
8616 
8617 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8618 {
8619 	if (flags & XDP_FLAGS_HW_MODE)
8620 		return XDP_MODE_HW;
8621 	if (flags & XDP_FLAGS_DRV_MODE)
8622 		return XDP_MODE_DRV;
8623 	if (flags & XDP_FLAGS_SKB_MODE)
8624 		return XDP_MODE_SKB;
8625 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8626 }
8627 
8628 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8629 {
8630 	switch (mode) {
8631 	case XDP_MODE_SKB:
8632 		return generic_xdp_install;
8633 	case XDP_MODE_DRV:
8634 	case XDP_MODE_HW:
8635 		return dev->netdev_ops->ndo_bpf;
8636 	default:
8637 		return NULL;
8638 	}
8639 }
8640 
8641 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8642 					 enum bpf_xdp_mode mode)
8643 {
8644 	return dev->xdp_state[mode].link;
8645 }
8646 
8647 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8648 				     enum bpf_xdp_mode mode)
8649 {
8650 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8651 
8652 	if (link)
8653 		return link->link.prog;
8654 	return dev->xdp_state[mode].prog;
8655 }
8656 
8657 u8 dev_xdp_prog_count(struct net_device *dev)
8658 {
8659 	u8 count = 0;
8660 	int i;
8661 
8662 	for (i = 0; i < __MAX_XDP_MODE; i++)
8663 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8664 			count++;
8665 	return count;
8666 }
8667 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
8668 
8669 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8670 {
8671 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8672 
8673 	return prog ? prog->aux->id : 0;
8674 }
8675 
8676 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8677 			     struct bpf_xdp_link *link)
8678 {
8679 	dev->xdp_state[mode].link = link;
8680 	dev->xdp_state[mode].prog = NULL;
8681 }
8682 
8683 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8684 			     struct bpf_prog *prog)
8685 {
8686 	dev->xdp_state[mode].link = NULL;
8687 	dev->xdp_state[mode].prog = prog;
8688 }
8689 
8690 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8691 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8692 			   u32 flags, struct bpf_prog *prog)
8693 {
8694 	struct netdev_bpf xdp;
8695 	int err;
8696 
8697 	memset(&xdp, 0, sizeof(xdp));
8698 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8699 	xdp.extack = extack;
8700 	xdp.flags = flags;
8701 	xdp.prog = prog;
8702 
8703 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
8704 	 * "moved" into driver), so they don't increment it on their own, but
8705 	 * they do decrement refcnt when program is detached or replaced.
8706 	 * Given net_device also owns link/prog, we need to bump refcnt here
8707 	 * to prevent drivers from underflowing it.
8708 	 */
8709 	if (prog)
8710 		bpf_prog_inc(prog);
8711 	err = bpf_op(dev, &xdp);
8712 	if (err) {
8713 		if (prog)
8714 			bpf_prog_put(prog);
8715 		return err;
8716 	}
8717 
8718 	if (mode != XDP_MODE_HW)
8719 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8720 
8721 	return 0;
8722 }
8723 
8724 static void dev_xdp_uninstall(struct net_device *dev)
8725 {
8726 	struct bpf_xdp_link *link;
8727 	struct bpf_prog *prog;
8728 	enum bpf_xdp_mode mode;
8729 	bpf_op_t bpf_op;
8730 
8731 	ASSERT_RTNL();
8732 
8733 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8734 		prog = dev_xdp_prog(dev, mode);
8735 		if (!prog)
8736 			continue;
8737 
8738 		bpf_op = dev_xdp_bpf_op(dev, mode);
8739 		if (!bpf_op)
8740 			continue;
8741 
8742 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8743 
8744 		/* auto-detach link from net device */
8745 		link = dev_xdp_link(dev, mode);
8746 		if (link)
8747 			link->dev = NULL;
8748 		else
8749 			bpf_prog_put(prog);
8750 
8751 		dev_xdp_set_link(dev, mode, NULL);
8752 	}
8753 }
8754 
8755 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
8756 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
8757 			  struct bpf_prog *old_prog, u32 flags)
8758 {
8759 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
8760 	struct bpf_prog *cur_prog;
8761 	struct net_device *upper;
8762 	struct list_head *iter;
8763 	enum bpf_xdp_mode mode;
8764 	bpf_op_t bpf_op;
8765 	int err;
8766 
8767 	ASSERT_RTNL();
8768 
8769 	/* either link or prog attachment, never both */
8770 	if (link && (new_prog || old_prog))
8771 		return -EINVAL;
8772 	/* link supports only XDP mode flags */
8773 	if (link && (flags & ~XDP_FLAGS_MODES)) {
8774 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
8775 		return -EINVAL;
8776 	}
8777 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
8778 	if (num_modes > 1) {
8779 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
8780 		return -EINVAL;
8781 	}
8782 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
8783 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
8784 		NL_SET_ERR_MSG(extack,
8785 			       "More than one program loaded, unset mode is ambiguous");
8786 		return -EINVAL;
8787 	}
8788 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
8789 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
8790 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
8791 		return -EINVAL;
8792 	}
8793 
8794 	mode = dev_xdp_mode(dev, flags);
8795 	/* can't replace attached link */
8796 	if (dev_xdp_link(dev, mode)) {
8797 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
8798 		return -EBUSY;
8799 	}
8800 
8801 	/* don't allow if an upper device already has a program */
8802 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
8803 		if (dev_xdp_prog_count(upper) > 0) {
8804 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
8805 			return -EEXIST;
8806 		}
8807 	}
8808 
8809 	cur_prog = dev_xdp_prog(dev, mode);
8810 	/* can't replace attached prog with link */
8811 	if (link && cur_prog) {
8812 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
8813 		return -EBUSY;
8814 	}
8815 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
8816 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
8817 		return -EEXIST;
8818 	}
8819 
8820 	/* put effective new program into new_prog */
8821 	if (link)
8822 		new_prog = link->link.prog;
8823 
8824 	if (new_prog) {
8825 		bool offload = mode == XDP_MODE_HW;
8826 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
8827 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
8828 
8829 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
8830 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8831 			return -EBUSY;
8832 		}
8833 		if (!offload && dev_xdp_prog(dev, other_mode)) {
8834 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
8835 			return -EEXIST;
8836 		}
8837 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
8838 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
8839 			return -EINVAL;
8840 		}
8841 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
8842 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
8843 			return -EINVAL;
8844 		}
8845 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
8846 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
8847 			return -EINVAL;
8848 		}
8849 	}
8850 
8851 	/* don't call drivers if the effective program didn't change */
8852 	if (new_prog != cur_prog) {
8853 		bpf_op = dev_xdp_bpf_op(dev, mode);
8854 		if (!bpf_op) {
8855 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
8856 			return -EOPNOTSUPP;
8857 		}
8858 
8859 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
8860 		if (err)
8861 			return err;
8862 	}
8863 
8864 	if (link)
8865 		dev_xdp_set_link(dev, mode, link);
8866 	else
8867 		dev_xdp_set_prog(dev, mode, new_prog);
8868 	if (cur_prog)
8869 		bpf_prog_put(cur_prog);
8870 
8871 	return 0;
8872 }
8873 
8874 static int dev_xdp_attach_link(struct net_device *dev,
8875 			       struct netlink_ext_ack *extack,
8876 			       struct bpf_xdp_link *link)
8877 {
8878 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
8879 }
8880 
8881 static int dev_xdp_detach_link(struct net_device *dev,
8882 			       struct netlink_ext_ack *extack,
8883 			       struct bpf_xdp_link *link)
8884 {
8885 	enum bpf_xdp_mode mode;
8886 	bpf_op_t bpf_op;
8887 
8888 	ASSERT_RTNL();
8889 
8890 	mode = dev_xdp_mode(dev, link->flags);
8891 	if (dev_xdp_link(dev, mode) != link)
8892 		return -EINVAL;
8893 
8894 	bpf_op = dev_xdp_bpf_op(dev, mode);
8895 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8896 	dev_xdp_set_link(dev, mode, NULL);
8897 	return 0;
8898 }
8899 
8900 static void bpf_xdp_link_release(struct bpf_link *link)
8901 {
8902 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8903 
8904 	rtnl_lock();
8905 
8906 	/* if racing with net_device's tear down, xdp_link->dev might be
8907 	 * already NULL, in which case link was already auto-detached
8908 	 */
8909 	if (xdp_link->dev) {
8910 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
8911 		xdp_link->dev = NULL;
8912 	}
8913 
8914 	rtnl_unlock();
8915 }
8916 
8917 static int bpf_xdp_link_detach(struct bpf_link *link)
8918 {
8919 	bpf_xdp_link_release(link);
8920 	return 0;
8921 }
8922 
8923 static void bpf_xdp_link_dealloc(struct bpf_link *link)
8924 {
8925 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8926 
8927 	kfree(xdp_link);
8928 }
8929 
8930 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
8931 				     struct seq_file *seq)
8932 {
8933 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8934 	u32 ifindex = 0;
8935 
8936 	rtnl_lock();
8937 	if (xdp_link->dev)
8938 		ifindex = xdp_link->dev->ifindex;
8939 	rtnl_unlock();
8940 
8941 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
8942 }
8943 
8944 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
8945 				       struct bpf_link_info *info)
8946 {
8947 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8948 	u32 ifindex = 0;
8949 
8950 	rtnl_lock();
8951 	if (xdp_link->dev)
8952 		ifindex = xdp_link->dev->ifindex;
8953 	rtnl_unlock();
8954 
8955 	info->xdp.ifindex = ifindex;
8956 	return 0;
8957 }
8958 
8959 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
8960 			       struct bpf_prog *old_prog)
8961 {
8962 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8963 	enum bpf_xdp_mode mode;
8964 	bpf_op_t bpf_op;
8965 	int err = 0;
8966 
8967 	rtnl_lock();
8968 
8969 	/* link might have been auto-released already, so fail */
8970 	if (!xdp_link->dev) {
8971 		err = -ENOLINK;
8972 		goto out_unlock;
8973 	}
8974 
8975 	if (old_prog && link->prog != old_prog) {
8976 		err = -EPERM;
8977 		goto out_unlock;
8978 	}
8979 	old_prog = link->prog;
8980 	if (old_prog->type != new_prog->type ||
8981 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
8982 		err = -EINVAL;
8983 		goto out_unlock;
8984 	}
8985 
8986 	if (old_prog == new_prog) {
8987 		/* no-op, don't disturb drivers */
8988 		bpf_prog_put(new_prog);
8989 		goto out_unlock;
8990 	}
8991 
8992 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
8993 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
8994 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
8995 			      xdp_link->flags, new_prog);
8996 	if (err)
8997 		goto out_unlock;
8998 
8999 	old_prog = xchg(&link->prog, new_prog);
9000 	bpf_prog_put(old_prog);
9001 
9002 out_unlock:
9003 	rtnl_unlock();
9004 	return err;
9005 }
9006 
9007 static const struct bpf_link_ops bpf_xdp_link_lops = {
9008 	.release = bpf_xdp_link_release,
9009 	.dealloc = bpf_xdp_link_dealloc,
9010 	.detach = bpf_xdp_link_detach,
9011 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9012 	.fill_link_info = bpf_xdp_link_fill_link_info,
9013 	.update_prog = bpf_xdp_link_update,
9014 };
9015 
9016 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9017 {
9018 	struct net *net = current->nsproxy->net_ns;
9019 	struct bpf_link_primer link_primer;
9020 	struct bpf_xdp_link *link;
9021 	struct net_device *dev;
9022 	int err, fd;
9023 
9024 	rtnl_lock();
9025 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9026 	if (!dev) {
9027 		rtnl_unlock();
9028 		return -EINVAL;
9029 	}
9030 
9031 	link = kzalloc(sizeof(*link), GFP_USER);
9032 	if (!link) {
9033 		err = -ENOMEM;
9034 		goto unlock;
9035 	}
9036 
9037 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9038 	link->dev = dev;
9039 	link->flags = attr->link_create.flags;
9040 
9041 	err = bpf_link_prime(&link->link, &link_primer);
9042 	if (err) {
9043 		kfree(link);
9044 		goto unlock;
9045 	}
9046 
9047 	err = dev_xdp_attach_link(dev, NULL, link);
9048 	rtnl_unlock();
9049 
9050 	if (err) {
9051 		link->dev = NULL;
9052 		bpf_link_cleanup(&link_primer);
9053 		goto out_put_dev;
9054 	}
9055 
9056 	fd = bpf_link_settle(&link_primer);
9057 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9058 	dev_put(dev);
9059 	return fd;
9060 
9061 unlock:
9062 	rtnl_unlock();
9063 
9064 out_put_dev:
9065 	dev_put(dev);
9066 	return err;
9067 }
9068 
9069 /**
9070  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9071  *	@dev: device
9072  *	@extack: netlink extended ack
9073  *	@fd: new program fd or negative value to clear
9074  *	@expected_fd: old program fd that userspace expects to replace or clear
9075  *	@flags: xdp-related flags
9076  *
9077  *	Set or clear a bpf program for a device
9078  */
9079 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9080 		      int fd, int expected_fd, u32 flags)
9081 {
9082 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9083 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9084 	int err;
9085 
9086 	ASSERT_RTNL();
9087 
9088 	if (fd >= 0) {
9089 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9090 						 mode != XDP_MODE_SKB);
9091 		if (IS_ERR(new_prog))
9092 			return PTR_ERR(new_prog);
9093 	}
9094 
9095 	if (expected_fd >= 0) {
9096 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9097 						 mode != XDP_MODE_SKB);
9098 		if (IS_ERR(old_prog)) {
9099 			err = PTR_ERR(old_prog);
9100 			old_prog = NULL;
9101 			goto err_out;
9102 		}
9103 	}
9104 
9105 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9106 
9107 err_out:
9108 	if (err && new_prog)
9109 		bpf_prog_put(new_prog);
9110 	if (old_prog)
9111 		bpf_prog_put(old_prog);
9112 	return err;
9113 }
9114 
9115 /**
9116  *	dev_new_index	-	allocate an ifindex
9117  *	@net: the applicable net namespace
9118  *
9119  *	Returns a suitable unique value for a new device interface
9120  *	number.  The caller must hold the rtnl semaphore or the
9121  *	dev_base_lock to be sure it remains unique.
9122  */
9123 static int dev_new_index(struct net *net)
9124 {
9125 	int ifindex = net->ifindex;
9126 
9127 	for (;;) {
9128 		if (++ifindex <= 0)
9129 			ifindex = 1;
9130 		if (!__dev_get_by_index(net, ifindex))
9131 			return net->ifindex = ifindex;
9132 	}
9133 }
9134 
9135 /* Delayed registration/unregisteration */
9136 static LIST_HEAD(net_todo_list);
9137 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9138 
9139 static void net_set_todo(struct net_device *dev)
9140 {
9141 	list_add_tail(&dev->todo_list, &net_todo_list);
9142 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9143 }
9144 
9145 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9146 	struct net_device *upper, netdev_features_t features)
9147 {
9148 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9149 	netdev_features_t feature;
9150 	int feature_bit;
9151 
9152 	for_each_netdev_feature(upper_disables, feature_bit) {
9153 		feature = __NETIF_F_BIT(feature_bit);
9154 		if (!(upper->wanted_features & feature)
9155 		    && (features & feature)) {
9156 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9157 				   &feature, upper->name);
9158 			features &= ~feature;
9159 		}
9160 	}
9161 
9162 	return features;
9163 }
9164 
9165 static void netdev_sync_lower_features(struct net_device *upper,
9166 	struct net_device *lower, netdev_features_t features)
9167 {
9168 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9169 	netdev_features_t feature;
9170 	int feature_bit;
9171 
9172 	for_each_netdev_feature(upper_disables, feature_bit) {
9173 		feature = __NETIF_F_BIT(feature_bit);
9174 		if (!(features & feature) && (lower->features & feature)) {
9175 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9176 				   &feature, lower->name);
9177 			lower->wanted_features &= ~feature;
9178 			__netdev_update_features(lower);
9179 
9180 			if (unlikely(lower->features & feature))
9181 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9182 					    &feature, lower->name);
9183 			else
9184 				netdev_features_change(lower);
9185 		}
9186 	}
9187 }
9188 
9189 static netdev_features_t netdev_fix_features(struct net_device *dev,
9190 	netdev_features_t features)
9191 {
9192 	/* Fix illegal checksum combinations */
9193 	if ((features & NETIF_F_HW_CSUM) &&
9194 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9195 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9196 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9197 	}
9198 
9199 	/* TSO requires that SG is present as well. */
9200 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9201 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9202 		features &= ~NETIF_F_ALL_TSO;
9203 	}
9204 
9205 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9206 					!(features & NETIF_F_IP_CSUM)) {
9207 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9208 		features &= ~NETIF_F_TSO;
9209 		features &= ~NETIF_F_TSO_ECN;
9210 	}
9211 
9212 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9213 					 !(features & NETIF_F_IPV6_CSUM)) {
9214 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9215 		features &= ~NETIF_F_TSO6;
9216 	}
9217 
9218 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9219 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9220 		features &= ~NETIF_F_TSO_MANGLEID;
9221 
9222 	/* TSO ECN requires that TSO is present as well. */
9223 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9224 		features &= ~NETIF_F_TSO_ECN;
9225 
9226 	/* Software GSO depends on SG. */
9227 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9228 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9229 		features &= ~NETIF_F_GSO;
9230 	}
9231 
9232 	/* GSO partial features require GSO partial be set */
9233 	if ((features & dev->gso_partial_features) &&
9234 	    !(features & NETIF_F_GSO_PARTIAL)) {
9235 		netdev_dbg(dev,
9236 			   "Dropping partially supported GSO features since no GSO partial.\n");
9237 		features &= ~dev->gso_partial_features;
9238 	}
9239 
9240 	if (!(features & NETIF_F_RXCSUM)) {
9241 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9242 		 * successfully merged by hardware must also have the
9243 		 * checksum verified by hardware.  If the user does not
9244 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9245 		 */
9246 		if (features & NETIF_F_GRO_HW) {
9247 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9248 			features &= ~NETIF_F_GRO_HW;
9249 		}
9250 	}
9251 
9252 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9253 	if (features & NETIF_F_RXFCS) {
9254 		if (features & NETIF_F_LRO) {
9255 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9256 			features &= ~NETIF_F_LRO;
9257 		}
9258 
9259 		if (features & NETIF_F_GRO_HW) {
9260 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9261 			features &= ~NETIF_F_GRO_HW;
9262 		}
9263 	}
9264 
9265 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9266 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9267 		features &= ~NETIF_F_LRO;
9268 	}
9269 
9270 	if (features & NETIF_F_HW_TLS_TX) {
9271 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9272 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9273 		bool hw_csum = features & NETIF_F_HW_CSUM;
9274 
9275 		if (!ip_csum && !hw_csum) {
9276 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9277 			features &= ~NETIF_F_HW_TLS_TX;
9278 		}
9279 	}
9280 
9281 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9282 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9283 		features &= ~NETIF_F_HW_TLS_RX;
9284 	}
9285 
9286 	return features;
9287 }
9288 
9289 int __netdev_update_features(struct net_device *dev)
9290 {
9291 	struct net_device *upper, *lower;
9292 	netdev_features_t features;
9293 	struct list_head *iter;
9294 	int err = -1;
9295 
9296 	ASSERT_RTNL();
9297 
9298 	features = netdev_get_wanted_features(dev);
9299 
9300 	if (dev->netdev_ops->ndo_fix_features)
9301 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9302 
9303 	/* driver might be less strict about feature dependencies */
9304 	features = netdev_fix_features(dev, features);
9305 
9306 	/* some features can't be enabled if they're off on an upper device */
9307 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9308 		features = netdev_sync_upper_features(dev, upper, features);
9309 
9310 	if (dev->features == features)
9311 		goto sync_lower;
9312 
9313 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9314 		&dev->features, &features);
9315 
9316 	if (dev->netdev_ops->ndo_set_features)
9317 		err = dev->netdev_ops->ndo_set_features(dev, features);
9318 	else
9319 		err = 0;
9320 
9321 	if (unlikely(err < 0)) {
9322 		netdev_err(dev,
9323 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9324 			err, &features, &dev->features);
9325 		/* return non-0 since some features might have changed and
9326 		 * it's better to fire a spurious notification than miss it
9327 		 */
9328 		return -1;
9329 	}
9330 
9331 sync_lower:
9332 	/* some features must be disabled on lower devices when disabled
9333 	 * on an upper device (think: bonding master or bridge)
9334 	 */
9335 	netdev_for_each_lower_dev(dev, lower, iter)
9336 		netdev_sync_lower_features(dev, lower, features);
9337 
9338 	if (!err) {
9339 		netdev_features_t diff = features ^ dev->features;
9340 
9341 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9342 			/* udp_tunnel_{get,drop}_rx_info both need
9343 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9344 			 * device, or they won't do anything.
9345 			 * Thus we need to update dev->features
9346 			 * *before* calling udp_tunnel_get_rx_info,
9347 			 * but *after* calling udp_tunnel_drop_rx_info.
9348 			 */
9349 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9350 				dev->features = features;
9351 				udp_tunnel_get_rx_info(dev);
9352 			} else {
9353 				udp_tunnel_drop_rx_info(dev);
9354 			}
9355 		}
9356 
9357 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9358 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9359 				dev->features = features;
9360 				err |= vlan_get_rx_ctag_filter_info(dev);
9361 			} else {
9362 				vlan_drop_rx_ctag_filter_info(dev);
9363 			}
9364 		}
9365 
9366 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9367 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9368 				dev->features = features;
9369 				err |= vlan_get_rx_stag_filter_info(dev);
9370 			} else {
9371 				vlan_drop_rx_stag_filter_info(dev);
9372 			}
9373 		}
9374 
9375 		dev->features = features;
9376 	}
9377 
9378 	return err < 0 ? 0 : 1;
9379 }
9380 
9381 /**
9382  *	netdev_update_features - recalculate device features
9383  *	@dev: the device to check
9384  *
9385  *	Recalculate dev->features set and send notifications if it
9386  *	has changed. Should be called after driver or hardware dependent
9387  *	conditions might have changed that influence the features.
9388  */
9389 void netdev_update_features(struct net_device *dev)
9390 {
9391 	if (__netdev_update_features(dev))
9392 		netdev_features_change(dev);
9393 }
9394 EXPORT_SYMBOL(netdev_update_features);
9395 
9396 /**
9397  *	netdev_change_features - recalculate device features
9398  *	@dev: the device to check
9399  *
9400  *	Recalculate dev->features set and send notifications even
9401  *	if they have not changed. Should be called instead of
9402  *	netdev_update_features() if also dev->vlan_features might
9403  *	have changed to allow the changes to be propagated to stacked
9404  *	VLAN devices.
9405  */
9406 void netdev_change_features(struct net_device *dev)
9407 {
9408 	__netdev_update_features(dev);
9409 	netdev_features_change(dev);
9410 }
9411 EXPORT_SYMBOL(netdev_change_features);
9412 
9413 /**
9414  *	netif_stacked_transfer_operstate -	transfer operstate
9415  *	@rootdev: the root or lower level device to transfer state from
9416  *	@dev: the device to transfer operstate to
9417  *
9418  *	Transfer operational state from root to device. This is normally
9419  *	called when a stacking relationship exists between the root
9420  *	device and the device(a leaf device).
9421  */
9422 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9423 					struct net_device *dev)
9424 {
9425 	if (rootdev->operstate == IF_OPER_DORMANT)
9426 		netif_dormant_on(dev);
9427 	else
9428 		netif_dormant_off(dev);
9429 
9430 	if (rootdev->operstate == IF_OPER_TESTING)
9431 		netif_testing_on(dev);
9432 	else
9433 		netif_testing_off(dev);
9434 
9435 	if (netif_carrier_ok(rootdev))
9436 		netif_carrier_on(dev);
9437 	else
9438 		netif_carrier_off(dev);
9439 }
9440 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9441 
9442 static int netif_alloc_rx_queues(struct net_device *dev)
9443 {
9444 	unsigned int i, count = dev->num_rx_queues;
9445 	struct netdev_rx_queue *rx;
9446 	size_t sz = count * sizeof(*rx);
9447 	int err = 0;
9448 
9449 	BUG_ON(count < 1);
9450 
9451 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9452 	if (!rx)
9453 		return -ENOMEM;
9454 
9455 	dev->_rx = rx;
9456 
9457 	for (i = 0; i < count; i++) {
9458 		rx[i].dev = dev;
9459 
9460 		/* XDP RX-queue setup */
9461 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9462 		if (err < 0)
9463 			goto err_rxq_info;
9464 	}
9465 	return 0;
9466 
9467 err_rxq_info:
9468 	/* Rollback successful reg's and free other resources */
9469 	while (i--)
9470 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9471 	kvfree(dev->_rx);
9472 	dev->_rx = NULL;
9473 	return err;
9474 }
9475 
9476 static void netif_free_rx_queues(struct net_device *dev)
9477 {
9478 	unsigned int i, count = dev->num_rx_queues;
9479 
9480 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9481 	if (!dev->_rx)
9482 		return;
9483 
9484 	for (i = 0; i < count; i++)
9485 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9486 
9487 	kvfree(dev->_rx);
9488 }
9489 
9490 static void netdev_init_one_queue(struct net_device *dev,
9491 				  struct netdev_queue *queue, void *_unused)
9492 {
9493 	/* Initialize queue lock */
9494 	spin_lock_init(&queue->_xmit_lock);
9495 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9496 	queue->xmit_lock_owner = -1;
9497 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9498 	queue->dev = dev;
9499 #ifdef CONFIG_BQL
9500 	dql_init(&queue->dql, HZ);
9501 #endif
9502 }
9503 
9504 static void netif_free_tx_queues(struct net_device *dev)
9505 {
9506 	kvfree(dev->_tx);
9507 }
9508 
9509 static int netif_alloc_netdev_queues(struct net_device *dev)
9510 {
9511 	unsigned int count = dev->num_tx_queues;
9512 	struct netdev_queue *tx;
9513 	size_t sz = count * sizeof(*tx);
9514 
9515 	if (count < 1 || count > 0xffff)
9516 		return -EINVAL;
9517 
9518 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9519 	if (!tx)
9520 		return -ENOMEM;
9521 
9522 	dev->_tx = tx;
9523 
9524 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9525 	spin_lock_init(&dev->tx_global_lock);
9526 
9527 	return 0;
9528 }
9529 
9530 void netif_tx_stop_all_queues(struct net_device *dev)
9531 {
9532 	unsigned int i;
9533 
9534 	for (i = 0; i < dev->num_tx_queues; i++) {
9535 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9536 
9537 		netif_tx_stop_queue(txq);
9538 	}
9539 }
9540 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9541 
9542 /**
9543  *	register_netdevice	- register a network device
9544  *	@dev: device to register
9545  *
9546  *	Take a completed network device structure and add it to the kernel
9547  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9548  *	chain. 0 is returned on success. A negative errno code is returned
9549  *	on a failure to set up the device, or if the name is a duplicate.
9550  *
9551  *	Callers must hold the rtnl semaphore. You may want
9552  *	register_netdev() instead of this.
9553  *
9554  *	BUGS:
9555  *	The locking appears insufficient to guarantee two parallel registers
9556  *	will not get the same name.
9557  */
9558 
9559 int register_netdevice(struct net_device *dev)
9560 {
9561 	int ret;
9562 	struct net *net = dev_net(dev);
9563 
9564 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9565 		     NETDEV_FEATURE_COUNT);
9566 	BUG_ON(dev_boot_phase);
9567 	ASSERT_RTNL();
9568 
9569 	might_sleep();
9570 
9571 	/* When net_device's are persistent, this will be fatal. */
9572 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9573 	BUG_ON(!net);
9574 
9575 	ret = ethtool_check_ops(dev->ethtool_ops);
9576 	if (ret)
9577 		return ret;
9578 
9579 	spin_lock_init(&dev->addr_list_lock);
9580 	netdev_set_addr_lockdep_class(dev);
9581 
9582 	ret = dev_get_valid_name(net, dev, dev->name);
9583 	if (ret < 0)
9584 		goto out;
9585 
9586 	ret = -ENOMEM;
9587 	dev->name_node = netdev_name_node_head_alloc(dev);
9588 	if (!dev->name_node)
9589 		goto out;
9590 
9591 	/* Init, if this function is available */
9592 	if (dev->netdev_ops->ndo_init) {
9593 		ret = dev->netdev_ops->ndo_init(dev);
9594 		if (ret) {
9595 			if (ret > 0)
9596 				ret = -EIO;
9597 			goto err_free_name;
9598 		}
9599 	}
9600 
9601 	if (((dev->hw_features | dev->features) &
9602 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9603 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9604 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9605 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9606 		ret = -EINVAL;
9607 		goto err_uninit;
9608 	}
9609 
9610 	ret = -EBUSY;
9611 	if (!dev->ifindex)
9612 		dev->ifindex = dev_new_index(net);
9613 	else if (__dev_get_by_index(net, dev->ifindex))
9614 		goto err_uninit;
9615 
9616 	/* Transfer changeable features to wanted_features and enable
9617 	 * software offloads (GSO and GRO).
9618 	 */
9619 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9620 	dev->features |= NETIF_F_SOFT_FEATURES;
9621 
9622 	if (dev->udp_tunnel_nic_info) {
9623 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9624 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9625 	}
9626 
9627 	dev->wanted_features = dev->features & dev->hw_features;
9628 
9629 	if (!(dev->flags & IFF_LOOPBACK))
9630 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9631 
9632 	/* If IPv4 TCP segmentation offload is supported we should also
9633 	 * allow the device to enable segmenting the frame with the option
9634 	 * of ignoring a static IP ID value.  This doesn't enable the
9635 	 * feature itself but allows the user to enable it later.
9636 	 */
9637 	if (dev->hw_features & NETIF_F_TSO)
9638 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9639 	if (dev->vlan_features & NETIF_F_TSO)
9640 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9641 	if (dev->mpls_features & NETIF_F_TSO)
9642 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9643 	if (dev->hw_enc_features & NETIF_F_TSO)
9644 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9645 
9646 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9647 	 */
9648 	dev->vlan_features |= NETIF_F_HIGHDMA;
9649 
9650 	/* Make NETIF_F_SG inheritable to tunnel devices.
9651 	 */
9652 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9653 
9654 	/* Make NETIF_F_SG inheritable to MPLS.
9655 	 */
9656 	dev->mpls_features |= NETIF_F_SG;
9657 
9658 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9659 	ret = notifier_to_errno(ret);
9660 	if (ret)
9661 		goto err_uninit;
9662 
9663 	ret = netdev_register_kobject(dev);
9664 	if (ret) {
9665 		dev->reg_state = NETREG_UNREGISTERED;
9666 		goto err_uninit;
9667 	}
9668 	dev->reg_state = NETREG_REGISTERED;
9669 
9670 	__netdev_update_features(dev);
9671 
9672 	/*
9673 	 *	Default initial state at registry is that the
9674 	 *	device is present.
9675 	 */
9676 
9677 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9678 
9679 	linkwatch_init_dev(dev);
9680 
9681 	dev_init_scheduler(dev);
9682 
9683 	dev_hold_track(dev, &dev->dev_registered_tracker, GFP_KERNEL);
9684 	list_netdevice(dev);
9685 
9686 	add_device_randomness(dev->dev_addr, dev->addr_len);
9687 
9688 	/* If the device has permanent device address, driver should
9689 	 * set dev_addr and also addr_assign_type should be set to
9690 	 * NET_ADDR_PERM (default value).
9691 	 */
9692 	if (dev->addr_assign_type == NET_ADDR_PERM)
9693 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9694 
9695 	/* Notify protocols, that a new device appeared. */
9696 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9697 	ret = notifier_to_errno(ret);
9698 	if (ret) {
9699 		/* Expect explicit free_netdev() on failure */
9700 		dev->needs_free_netdev = false;
9701 		unregister_netdevice_queue(dev, NULL);
9702 		goto out;
9703 	}
9704 	/*
9705 	 *	Prevent userspace races by waiting until the network
9706 	 *	device is fully setup before sending notifications.
9707 	 */
9708 	if (!dev->rtnl_link_ops ||
9709 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9710 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9711 
9712 out:
9713 	return ret;
9714 
9715 err_uninit:
9716 	if (dev->netdev_ops->ndo_uninit)
9717 		dev->netdev_ops->ndo_uninit(dev);
9718 	if (dev->priv_destructor)
9719 		dev->priv_destructor(dev);
9720 err_free_name:
9721 	netdev_name_node_free(dev->name_node);
9722 	goto out;
9723 }
9724 EXPORT_SYMBOL(register_netdevice);
9725 
9726 /**
9727  *	init_dummy_netdev	- init a dummy network device for NAPI
9728  *	@dev: device to init
9729  *
9730  *	This takes a network device structure and initialize the minimum
9731  *	amount of fields so it can be used to schedule NAPI polls without
9732  *	registering a full blown interface. This is to be used by drivers
9733  *	that need to tie several hardware interfaces to a single NAPI
9734  *	poll scheduler due to HW limitations.
9735  */
9736 int init_dummy_netdev(struct net_device *dev)
9737 {
9738 	/* Clear everything. Note we don't initialize spinlocks
9739 	 * are they aren't supposed to be taken by any of the
9740 	 * NAPI code and this dummy netdev is supposed to be
9741 	 * only ever used for NAPI polls
9742 	 */
9743 	memset(dev, 0, sizeof(struct net_device));
9744 
9745 	/* make sure we BUG if trying to hit standard
9746 	 * register/unregister code path
9747 	 */
9748 	dev->reg_state = NETREG_DUMMY;
9749 
9750 	/* NAPI wants this */
9751 	INIT_LIST_HEAD(&dev->napi_list);
9752 
9753 	/* a dummy interface is started by default */
9754 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9755 	set_bit(__LINK_STATE_START, &dev->state);
9756 
9757 	/* napi_busy_loop stats accounting wants this */
9758 	dev_net_set(dev, &init_net);
9759 
9760 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9761 	 * because users of this 'device' dont need to change
9762 	 * its refcount.
9763 	 */
9764 
9765 	return 0;
9766 }
9767 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9768 
9769 
9770 /**
9771  *	register_netdev	- register a network device
9772  *	@dev: device to register
9773  *
9774  *	Take a completed network device structure and add it to the kernel
9775  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9776  *	chain. 0 is returned on success. A negative errno code is returned
9777  *	on a failure to set up the device, or if the name is a duplicate.
9778  *
9779  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
9780  *	and expands the device name if you passed a format string to
9781  *	alloc_netdev.
9782  */
9783 int register_netdev(struct net_device *dev)
9784 {
9785 	int err;
9786 
9787 	if (rtnl_lock_killable())
9788 		return -EINTR;
9789 	err = register_netdevice(dev);
9790 	rtnl_unlock();
9791 	return err;
9792 }
9793 EXPORT_SYMBOL(register_netdev);
9794 
9795 int netdev_refcnt_read(const struct net_device *dev)
9796 {
9797 #ifdef CONFIG_PCPU_DEV_REFCNT
9798 	int i, refcnt = 0;
9799 
9800 	for_each_possible_cpu(i)
9801 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9802 	return refcnt;
9803 #else
9804 	return refcount_read(&dev->dev_refcnt);
9805 #endif
9806 }
9807 EXPORT_SYMBOL(netdev_refcnt_read);
9808 
9809 int netdev_unregister_timeout_secs __read_mostly = 10;
9810 
9811 #define WAIT_REFS_MIN_MSECS 1
9812 #define WAIT_REFS_MAX_MSECS 250
9813 /**
9814  * netdev_wait_allrefs - wait until all references are gone.
9815  * @dev: target net_device
9816  *
9817  * This is called when unregistering network devices.
9818  *
9819  * Any protocol or device that holds a reference should register
9820  * for netdevice notification, and cleanup and put back the
9821  * reference if they receive an UNREGISTER event.
9822  * We can get stuck here if buggy protocols don't correctly
9823  * call dev_put.
9824  */
9825 static void netdev_wait_allrefs(struct net_device *dev)
9826 {
9827 	unsigned long rebroadcast_time, warning_time;
9828 	int wait = 0, refcnt;
9829 
9830 	linkwatch_forget_dev(dev);
9831 
9832 	rebroadcast_time = warning_time = jiffies;
9833 	refcnt = netdev_refcnt_read(dev);
9834 
9835 	while (refcnt != 1) {
9836 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9837 			rtnl_lock();
9838 
9839 			/* Rebroadcast unregister notification */
9840 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9841 
9842 			__rtnl_unlock();
9843 			rcu_barrier();
9844 			rtnl_lock();
9845 
9846 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9847 				     &dev->state)) {
9848 				/* We must not have linkwatch events
9849 				 * pending on unregister. If this
9850 				 * happens, we simply run the queue
9851 				 * unscheduled, resulting in a noop
9852 				 * for this device.
9853 				 */
9854 				linkwatch_run_queue();
9855 			}
9856 
9857 			__rtnl_unlock();
9858 
9859 			rebroadcast_time = jiffies;
9860 		}
9861 
9862 		if (!wait) {
9863 			rcu_barrier();
9864 			wait = WAIT_REFS_MIN_MSECS;
9865 		} else {
9866 			msleep(wait);
9867 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
9868 		}
9869 
9870 		refcnt = netdev_refcnt_read(dev);
9871 
9872 		if (refcnt != 1 &&
9873 		    time_after(jiffies, warning_time +
9874 			       netdev_unregister_timeout_secs * HZ)) {
9875 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9876 				 dev->name, refcnt);
9877 			ref_tracker_dir_print(&dev->refcnt_tracker, 10);
9878 			warning_time = jiffies;
9879 		}
9880 	}
9881 }
9882 
9883 /* The sequence is:
9884  *
9885  *	rtnl_lock();
9886  *	...
9887  *	register_netdevice(x1);
9888  *	register_netdevice(x2);
9889  *	...
9890  *	unregister_netdevice(y1);
9891  *	unregister_netdevice(y2);
9892  *      ...
9893  *	rtnl_unlock();
9894  *	free_netdev(y1);
9895  *	free_netdev(y2);
9896  *
9897  * We are invoked by rtnl_unlock().
9898  * This allows us to deal with problems:
9899  * 1) We can delete sysfs objects which invoke hotplug
9900  *    without deadlocking with linkwatch via keventd.
9901  * 2) Since we run with the RTNL semaphore not held, we can sleep
9902  *    safely in order to wait for the netdev refcnt to drop to zero.
9903  *
9904  * We must not return until all unregister events added during
9905  * the interval the lock was held have been completed.
9906  */
9907 void netdev_run_todo(void)
9908 {
9909 	struct list_head list;
9910 #ifdef CONFIG_LOCKDEP
9911 	struct list_head unlink_list;
9912 
9913 	list_replace_init(&net_unlink_list, &unlink_list);
9914 
9915 	while (!list_empty(&unlink_list)) {
9916 		struct net_device *dev = list_first_entry(&unlink_list,
9917 							  struct net_device,
9918 							  unlink_list);
9919 		list_del_init(&dev->unlink_list);
9920 		dev->nested_level = dev->lower_level - 1;
9921 	}
9922 #endif
9923 
9924 	/* Snapshot list, allow later requests */
9925 	list_replace_init(&net_todo_list, &list);
9926 
9927 	__rtnl_unlock();
9928 
9929 
9930 	/* Wait for rcu callbacks to finish before next phase */
9931 	if (!list_empty(&list))
9932 		rcu_barrier();
9933 
9934 	while (!list_empty(&list)) {
9935 		struct net_device *dev
9936 			= list_first_entry(&list, struct net_device, todo_list);
9937 		list_del(&dev->todo_list);
9938 
9939 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9940 			pr_err("network todo '%s' but state %d\n",
9941 			       dev->name, dev->reg_state);
9942 			dump_stack();
9943 			continue;
9944 		}
9945 
9946 		dev->reg_state = NETREG_UNREGISTERED;
9947 
9948 		netdev_wait_allrefs(dev);
9949 
9950 		/* paranoia */
9951 		BUG_ON(netdev_refcnt_read(dev) != 1);
9952 		BUG_ON(!list_empty(&dev->ptype_all));
9953 		BUG_ON(!list_empty(&dev->ptype_specific));
9954 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
9955 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9956 #if IS_ENABLED(CONFIG_DECNET)
9957 		WARN_ON(dev->dn_ptr);
9958 #endif
9959 		if (dev->priv_destructor)
9960 			dev->priv_destructor(dev);
9961 		if (dev->needs_free_netdev)
9962 			free_netdev(dev);
9963 
9964 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
9965 			wake_up(&netdev_unregistering_wq);
9966 
9967 		/* Free network device */
9968 		kobject_put(&dev->dev.kobj);
9969 	}
9970 }
9971 
9972 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9973  * all the same fields in the same order as net_device_stats, with only
9974  * the type differing, but rtnl_link_stats64 may have additional fields
9975  * at the end for newer counters.
9976  */
9977 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9978 			     const struct net_device_stats *netdev_stats)
9979 {
9980 #if BITS_PER_LONG == 64
9981 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9982 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9983 	/* zero out counters that only exist in rtnl_link_stats64 */
9984 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9985 	       sizeof(*stats64) - sizeof(*netdev_stats));
9986 #else
9987 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9988 	const unsigned long *src = (const unsigned long *)netdev_stats;
9989 	u64 *dst = (u64 *)stats64;
9990 
9991 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9992 	for (i = 0; i < n; i++)
9993 		dst[i] = src[i];
9994 	/* zero out counters that only exist in rtnl_link_stats64 */
9995 	memset((char *)stats64 + n * sizeof(u64), 0,
9996 	       sizeof(*stats64) - n * sizeof(u64));
9997 #endif
9998 }
9999 EXPORT_SYMBOL(netdev_stats_to_stats64);
10000 
10001 /**
10002  *	dev_get_stats	- get network device statistics
10003  *	@dev: device to get statistics from
10004  *	@storage: place to store stats
10005  *
10006  *	Get network statistics from device. Return @storage.
10007  *	The device driver may provide its own method by setting
10008  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10009  *	otherwise the internal statistics structure is used.
10010  */
10011 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10012 					struct rtnl_link_stats64 *storage)
10013 {
10014 	const struct net_device_ops *ops = dev->netdev_ops;
10015 
10016 	if (ops->ndo_get_stats64) {
10017 		memset(storage, 0, sizeof(*storage));
10018 		ops->ndo_get_stats64(dev, storage);
10019 	} else if (ops->ndo_get_stats) {
10020 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10021 	} else {
10022 		netdev_stats_to_stats64(storage, &dev->stats);
10023 	}
10024 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10025 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10026 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10027 	return storage;
10028 }
10029 EXPORT_SYMBOL(dev_get_stats);
10030 
10031 /**
10032  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10033  *	@s: place to store stats
10034  *	@netstats: per-cpu network stats to read from
10035  *
10036  *	Read per-cpu network statistics and populate the related fields in @s.
10037  */
10038 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10039 			   const struct pcpu_sw_netstats __percpu *netstats)
10040 {
10041 	int cpu;
10042 
10043 	for_each_possible_cpu(cpu) {
10044 		const struct pcpu_sw_netstats *stats;
10045 		struct pcpu_sw_netstats tmp;
10046 		unsigned int start;
10047 
10048 		stats = per_cpu_ptr(netstats, cpu);
10049 		do {
10050 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10051 			tmp.rx_packets = stats->rx_packets;
10052 			tmp.rx_bytes   = stats->rx_bytes;
10053 			tmp.tx_packets = stats->tx_packets;
10054 			tmp.tx_bytes   = stats->tx_bytes;
10055 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10056 
10057 		s->rx_packets += tmp.rx_packets;
10058 		s->rx_bytes   += tmp.rx_bytes;
10059 		s->tx_packets += tmp.tx_packets;
10060 		s->tx_bytes   += tmp.tx_bytes;
10061 	}
10062 }
10063 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10064 
10065 /**
10066  *	dev_get_tstats64 - ndo_get_stats64 implementation
10067  *	@dev: device to get statistics from
10068  *	@s: place to store stats
10069  *
10070  *	Populate @s from dev->stats and dev->tstats. Can be used as
10071  *	ndo_get_stats64() callback.
10072  */
10073 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10074 {
10075 	netdev_stats_to_stats64(s, &dev->stats);
10076 	dev_fetch_sw_netstats(s, dev->tstats);
10077 }
10078 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10079 
10080 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10081 {
10082 	struct netdev_queue *queue = dev_ingress_queue(dev);
10083 
10084 #ifdef CONFIG_NET_CLS_ACT
10085 	if (queue)
10086 		return queue;
10087 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10088 	if (!queue)
10089 		return NULL;
10090 	netdev_init_one_queue(dev, queue, NULL);
10091 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10092 	queue->qdisc_sleeping = &noop_qdisc;
10093 	rcu_assign_pointer(dev->ingress_queue, queue);
10094 #endif
10095 	return queue;
10096 }
10097 
10098 static const struct ethtool_ops default_ethtool_ops;
10099 
10100 void netdev_set_default_ethtool_ops(struct net_device *dev,
10101 				    const struct ethtool_ops *ops)
10102 {
10103 	if (dev->ethtool_ops == &default_ethtool_ops)
10104 		dev->ethtool_ops = ops;
10105 }
10106 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10107 
10108 void netdev_freemem(struct net_device *dev)
10109 {
10110 	char *addr = (char *)dev - dev->padded;
10111 
10112 	kvfree(addr);
10113 }
10114 
10115 /**
10116  * alloc_netdev_mqs - allocate network device
10117  * @sizeof_priv: size of private data to allocate space for
10118  * @name: device name format string
10119  * @name_assign_type: origin of device name
10120  * @setup: callback to initialize device
10121  * @txqs: the number of TX subqueues to allocate
10122  * @rxqs: the number of RX subqueues to allocate
10123  *
10124  * Allocates a struct net_device with private data area for driver use
10125  * and performs basic initialization.  Also allocates subqueue structs
10126  * for each queue on the device.
10127  */
10128 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10129 		unsigned char name_assign_type,
10130 		void (*setup)(struct net_device *),
10131 		unsigned int txqs, unsigned int rxqs)
10132 {
10133 	struct net_device *dev;
10134 	unsigned int alloc_size;
10135 	struct net_device *p;
10136 
10137 	BUG_ON(strlen(name) >= sizeof(dev->name));
10138 
10139 	if (txqs < 1) {
10140 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10141 		return NULL;
10142 	}
10143 
10144 	if (rxqs < 1) {
10145 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10146 		return NULL;
10147 	}
10148 
10149 	alloc_size = sizeof(struct net_device);
10150 	if (sizeof_priv) {
10151 		/* ensure 32-byte alignment of private area */
10152 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10153 		alloc_size += sizeof_priv;
10154 	}
10155 	/* ensure 32-byte alignment of whole construct */
10156 	alloc_size += NETDEV_ALIGN - 1;
10157 
10158 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10159 	if (!p)
10160 		return NULL;
10161 
10162 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10163 	dev->padded = (char *)dev - (char *)p;
10164 
10165 	ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10166 #ifdef CONFIG_PCPU_DEV_REFCNT
10167 	dev->pcpu_refcnt = alloc_percpu(int);
10168 	if (!dev->pcpu_refcnt)
10169 		goto free_dev;
10170 	__dev_hold(dev);
10171 #else
10172 	refcount_set(&dev->dev_refcnt, 1);
10173 #endif
10174 
10175 	if (dev_addr_init(dev))
10176 		goto free_pcpu;
10177 
10178 	dev_mc_init(dev);
10179 	dev_uc_init(dev);
10180 
10181 	dev_net_set(dev, &init_net);
10182 
10183 	dev->gso_max_size = GSO_MAX_SIZE;
10184 	dev->gso_max_segs = GSO_MAX_SEGS;
10185 	dev->gro_max_size = GRO_MAX_SIZE;
10186 	dev->upper_level = 1;
10187 	dev->lower_level = 1;
10188 #ifdef CONFIG_LOCKDEP
10189 	dev->nested_level = 0;
10190 	INIT_LIST_HEAD(&dev->unlink_list);
10191 #endif
10192 
10193 	INIT_LIST_HEAD(&dev->napi_list);
10194 	INIT_LIST_HEAD(&dev->unreg_list);
10195 	INIT_LIST_HEAD(&dev->close_list);
10196 	INIT_LIST_HEAD(&dev->link_watch_list);
10197 	INIT_LIST_HEAD(&dev->adj_list.upper);
10198 	INIT_LIST_HEAD(&dev->adj_list.lower);
10199 	INIT_LIST_HEAD(&dev->ptype_all);
10200 	INIT_LIST_HEAD(&dev->ptype_specific);
10201 	INIT_LIST_HEAD(&dev->net_notifier_list);
10202 #ifdef CONFIG_NET_SCHED
10203 	hash_init(dev->qdisc_hash);
10204 #endif
10205 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10206 	setup(dev);
10207 
10208 	if (!dev->tx_queue_len) {
10209 		dev->priv_flags |= IFF_NO_QUEUE;
10210 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10211 	}
10212 
10213 	dev->num_tx_queues = txqs;
10214 	dev->real_num_tx_queues = txqs;
10215 	if (netif_alloc_netdev_queues(dev))
10216 		goto free_all;
10217 
10218 	dev->num_rx_queues = rxqs;
10219 	dev->real_num_rx_queues = rxqs;
10220 	if (netif_alloc_rx_queues(dev))
10221 		goto free_all;
10222 
10223 	strcpy(dev->name, name);
10224 	dev->name_assign_type = name_assign_type;
10225 	dev->group = INIT_NETDEV_GROUP;
10226 	if (!dev->ethtool_ops)
10227 		dev->ethtool_ops = &default_ethtool_ops;
10228 
10229 	nf_hook_netdev_init(dev);
10230 
10231 	return dev;
10232 
10233 free_all:
10234 	free_netdev(dev);
10235 	return NULL;
10236 
10237 free_pcpu:
10238 #ifdef CONFIG_PCPU_DEV_REFCNT
10239 	free_percpu(dev->pcpu_refcnt);
10240 free_dev:
10241 #endif
10242 	netdev_freemem(dev);
10243 	return NULL;
10244 }
10245 EXPORT_SYMBOL(alloc_netdev_mqs);
10246 
10247 /**
10248  * free_netdev - free network device
10249  * @dev: device
10250  *
10251  * This function does the last stage of destroying an allocated device
10252  * interface. The reference to the device object is released. If this
10253  * is the last reference then it will be freed.Must be called in process
10254  * context.
10255  */
10256 void free_netdev(struct net_device *dev)
10257 {
10258 	struct napi_struct *p, *n;
10259 
10260 	might_sleep();
10261 
10262 	/* When called immediately after register_netdevice() failed the unwind
10263 	 * handling may still be dismantling the device. Handle that case by
10264 	 * deferring the free.
10265 	 */
10266 	if (dev->reg_state == NETREG_UNREGISTERING) {
10267 		ASSERT_RTNL();
10268 		dev->needs_free_netdev = true;
10269 		return;
10270 	}
10271 
10272 	netif_free_tx_queues(dev);
10273 	netif_free_rx_queues(dev);
10274 
10275 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10276 
10277 	/* Flush device addresses */
10278 	dev_addr_flush(dev);
10279 
10280 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10281 		netif_napi_del(p);
10282 
10283 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10284 #ifdef CONFIG_PCPU_DEV_REFCNT
10285 	free_percpu(dev->pcpu_refcnt);
10286 	dev->pcpu_refcnt = NULL;
10287 #endif
10288 	free_percpu(dev->xdp_bulkq);
10289 	dev->xdp_bulkq = NULL;
10290 
10291 	/*  Compatibility with error handling in drivers */
10292 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10293 		netdev_freemem(dev);
10294 		return;
10295 	}
10296 
10297 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10298 	dev->reg_state = NETREG_RELEASED;
10299 
10300 	/* will free via device release */
10301 	put_device(&dev->dev);
10302 }
10303 EXPORT_SYMBOL(free_netdev);
10304 
10305 /**
10306  *	synchronize_net -  Synchronize with packet receive processing
10307  *
10308  *	Wait for packets currently being received to be done.
10309  *	Does not block later packets from starting.
10310  */
10311 void synchronize_net(void)
10312 {
10313 	might_sleep();
10314 	if (rtnl_is_locked())
10315 		synchronize_rcu_expedited();
10316 	else
10317 		synchronize_rcu();
10318 }
10319 EXPORT_SYMBOL(synchronize_net);
10320 
10321 /**
10322  *	unregister_netdevice_queue - remove device from the kernel
10323  *	@dev: device
10324  *	@head: list
10325  *
10326  *	This function shuts down a device interface and removes it
10327  *	from the kernel tables.
10328  *	If head not NULL, device is queued to be unregistered later.
10329  *
10330  *	Callers must hold the rtnl semaphore.  You may want
10331  *	unregister_netdev() instead of this.
10332  */
10333 
10334 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10335 {
10336 	ASSERT_RTNL();
10337 
10338 	if (head) {
10339 		list_move_tail(&dev->unreg_list, head);
10340 	} else {
10341 		LIST_HEAD(single);
10342 
10343 		list_add(&dev->unreg_list, &single);
10344 		unregister_netdevice_many(&single);
10345 	}
10346 }
10347 EXPORT_SYMBOL(unregister_netdevice_queue);
10348 
10349 /**
10350  *	unregister_netdevice_many - unregister many devices
10351  *	@head: list of devices
10352  *
10353  *  Note: As most callers use a stack allocated list_head,
10354  *  we force a list_del() to make sure stack wont be corrupted later.
10355  */
10356 void unregister_netdevice_many(struct list_head *head)
10357 {
10358 	struct net_device *dev, *tmp;
10359 	LIST_HEAD(close_head);
10360 
10361 	BUG_ON(dev_boot_phase);
10362 	ASSERT_RTNL();
10363 
10364 	if (list_empty(head))
10365 		return;
10366 
10367 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10368 		/* Some devices call without registering
10369 		 * for initialization unwind. Remove those
10370 		 * devices and proceed with the remaining.
10371 		 */
10372 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10373 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10374 				 dev->name, dev);
10375 
10376 			WARN_ON(1);
10377 			list_del(&dev->unreg_list);
10378 			continue;
10379 		}
10380 		dev->dismantle = true;
10381 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10382 	}
10383 
10384 	/* If device is running, close it first. */
10385 	list_for_each_entry(dev, head, unreg_list)
10386 		list_add_tail(&dev->close_list, &close_head);
10387 	dev_close_many(&close_head, true);
10388 
10389 	list_for_each_entry(dev, head, unreg_list) {
10390 		/* And unlink it from device chain. */
10391 		unlist_netdevice(dev);
10392 
10393 		dev->reg_state = NETREG_UNREGISTERING;
10394 	}
10395 	flush_all_backlogs();
10396 
10397 	synchronize_net();
10398 
10399 	list_for_each_entry(dev, head, unreg_list) {
10400 		struct sk_buff *skb = NULL;
10401 
10402 		/* Shutdown queueing discipline. */
10403 		dev_shutdown(dev);
10404 
10405 		dev_xdp_uninstall(dev);
10406 
10407 		/* Notify protocols, that we are about to destroy
10408 		 * this device. They should clean all the things.
10409 		 */
10410 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10411 
10412 		if (!dev->rtnl_link_ops ||
10413 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10414 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10415 						     GFP_KERNEL, NULL, 0);
10416 
10417 		/*
10418 		 *	Flush the unicast and multicast chains
10419 		 */
10420 		dev_uc_flush(dev);
10421 		dev_mc_flush(dev);
10422 
10423 		netdev_name_node_alt_flush(dev);
10424 		netdev_name_node_free(dev->name_node);
10425 
10426 		if (dev->netdev_ops->ndo_uninit)
10427 			dev->netdev_ops->ndo_uninit(dev);
10428 
10429 		if (skb)
10430 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10431 
10432 		/* Notifier chain MUST detach us all upper devices. */
10433 		WARN_ON(netdev_has_any_upper_dev(dev));
10434 		WARN_ON(netdev_has_any_lower_dev(dev));
10435 
10436 		/* Remove entries from kobject tree */
10437 		netdev_unregister_kobject(dev);
10438 #ifdef CONFIG_XPS
10439 		/* Remove XPS queueing entries */
10440 		netif_reset_xps_queues_gt(dev, 0);
10441 #endif
10442 	}
10443 
10444 	synchronize_net();
10445 
10446 	list_for_each_entry(dev, head, unreg_list) {
10447 		dev_put_track(dev, &dev->dev_registered_tracker);
10448 		net_set_todo(dev);
10449 	}
10450 
10451 	list_del(head);
10452 }
10453 EXPORT_SYMBOL(unregister_netdevice_many);
10454 
10455 /**
10456  *	unregister_netdev - remove device from the kernel
10457  *	@dev: device
10458  *
10459  *	This function shuts down a device interface and removes it
10460  *	from the kernel tables.
10461  *
10462  *	This is just a wrapper for unregister_netdevice that takes
10463  *	the rtnl semaphore.  In general you want to use this and not
10464  *	unregister_netdevice.
10465  */
10466 void unregister_netdev(struct net_device *dev)
10467 {
10468 	rtnl_lock();
10469 	unregister_netdevice(dev);
10470 	rtnl_unlock();
10471 }
10472 EXPORT_SYMBOL(unregister_netdev);
10473 
10474 /**
10475  *	__dev_change_net_namespace - move device to different nethost namespace
10476  *	@dev: device
10477  *	@net: network namespace
10478  *	@pat: If not NULL name pattern to try if the current device name
10479  *	      is already taken in the destination network namespace.
10480  *	@new_ifindex: If not zero, specifies device index in the target
10481  *	              namespace.
10482  *
10483  *	This function shuts down a device interface and moves it
10484  *	to a new network namespace. On success 0 is returned, on
10485  *	a failure a netagive errno code is returned.
10486  *
10487  *	Callers must hold the rtnl semaphore.
10488  */
10489 
10490 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10491 			       const char *pat, int new_ifindex)
10492 {
10493 	struct net *net_old = dev_net(dev);
10494 	int err, new_nsid;
10495 
10496 	ASSERT_RTNL();
10497 
10498 	/* Don't allow namespace local devices to be moved. */
10499 	err = -EINVAL;
10500 	if (dev->features & NETIF_F_NETNS_LOCAL)
10501 		goto out;
10502 
10503 	/* Ensure the device has been registrered */
10504 	if (dev->reg_state != NETREG_REGISTERED)
10505 		goto out;
10506 
10507 	/* Get out if there is nothing todo */
10508 	err = 0;
10509 	if (net_eq(net_old, net))
10510 		goto out;
10511 
10512 	/* Pick the destination device name, and ensure
10513 	 * we can use it in the destination network namespace.
10514 	 */
10515 	err = -EEXIST;
10516 	if (netdev_name_in_use(net, dev->name)) {
10517 		/* We get here if we can't use the current device name */
10518 		if (!pat)
10519 			goto out;
10520 		err = dev_get_valid_name(net, dev, pat);
10521 		if (err < 0)
10522 			goto out;
10523 	}
10524 
10525 	/* Check that new_ifindex isn't used yet. */
10526 	err = -EBUSY;
10527 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10528 		goto out;
10529 
10530 	/*
10531 	 * And now a mini version of register_netdevice unregister_netdevice.
10532 	 */
10533 
10534 	/* If device is running close it first. */
10535 	dev_close(dev);
10536 
10537 	/* And unlink it from device chain */
10538 	unlist_netdevice(dev);
10539 
10540 	synchronize_net();
10541 
10542 	/* Shutdown queueing discipline. */
10543 	dev_shutdown(dev);
10544 
10545 	/* Notify protocols, that we are about to destroy
10546 	 * this device. They should clean all the things.
10547 	 *
10548 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10549 	 * This is wanted because this way 8021q and macvlan know
10550 	 * the device is just moving and can keep their slaves up.
10551 	 */
10552 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10553 	rcu_barrier();
10554 
10555 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10556 	/* If there is an ifindex conflict assign a new one */
10557 	if (!new_ifindex) {
10558 		if (__dev_get_by_index(net, dev->ifindex))
10559 			new_ifindex = dev_new_index(net);
10560 		else
10561 			new_ifindex = dev->ifindex;
10562 	}
10563 
10564 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10565 			    new_ifindex);
10566 
10567 	/*
10568 	 *	Flush the unicast and multicast chains
10569 	 */
10570 	dev_uc_flush(dev);
10571 	dev_mc_flush(dev);
10572 
10573 	/* Send a netdev-removed uevent to the old namespace */
10574 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10575 	netdev_adjacent_del_links(dev);
10576 
10577 	/* Move per-net netdevice notifiers that are following the netdevice */
10578 	move_netdevice_notifiers_dev_net(dev, net);
10579 
10580 	/* Actually switch the network namespace */
10581 	dev_net_set(dev, net);
10582 	dev->ifindex = new_ifindex;
10583 
10584 	/* Send a netdev-add uevent to the new namespace */
10585 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10586 	netdev_adjacent_add_links(dev);
10587 
10588 	/* Fixup kobjects */
10589 	err = device_rename(&dev->dev, dev->name);
10590 	WARN_ON(err);
10591 
10592 	/* Adapt owner in case owning user namespace of target network
10593 	 * namespace is different from the original one.
10594 	 */
10595 	err = netdev_change_owner(dev, net_old, net);
10596 	WARN_ON(err);
10597 
10598 	/* Add the device back in the hashes */
10599 	list_netdevice(dev);
10600 
10601 	/* Notify protocols, that a new device appeared. */
10602 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10603 
10604 	/*
10605 	 *	Prevent userspace races by waiting until the network
10606 	 *	device is fully setup before sending notifications.
10607 	 */
10608 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10609 
10610 	synchronize_net();
10611 	err = 0;
10612 out:
10613 	return err;
10614 }
10615 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
10616 
10617 static int dev_cpu_dead(unsigned int oldcpu)
10618 {
10619 	struct sk_buff **list_skb;
10620 	struct sk_buff *skb;
10621 	unsigned int cpu;
10622 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10623 
10624 	local_irq_disable();
10625 	cpu = smp_processor_id();
10626 	sd = &per_cpu(softnet_data, cpu);
10627 	oldsd = &per_cpu(softnet_data, oldcpu);
10628 
10629 	/* Find end of our completion_queue. */
10630 	list_skb = &sd->completion_queue;
10631 	while (*list_skb)
10632 		list_skb = &(*list_skb)->next;
10633 	/* Append completion queue from offline CPU. */
10634 	*list_skb = oldsd->completion_queue;
10635 	oldsd->completion_queue = NULL;
10636 
10637 	/* Append output queue from offline CPU. */
10638 	if (oldsd->output_queue) {
10639 		*sd->output_queue_tailp = oldsd->output_queue;
10640 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10641 		oldsd->output_queue = NULL;
10642 		oldsd->output_queue_tailp = &oldsd->output_queue;
10643 	}
10644 	/* Append NAPI poll list from offline CPU, with one exception :
10645 	 * process_backlog() must be called by cpu owning percpu backlog.
10646 	 * We properly handle process_queue & input_pkt_queue later.
10647 	 */
10648 	while (!list_empty(&oldsd->poll_list)) {
10649 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10650 							    struct napi_struct,
10651 							    poll_list);
10652 
10653 		list_del_init(&napi->poll_list);
10654 		if (napi->poll == process_backlog)
10655 			napi->state = 0;
10656 		else
10657 			____napi_schedule(sd, napi);
10658 	}
10659 
10660 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10661 	local_irq_enable();
10662 
10663 #ifdef CONFIG_RPS
10664 	remsd = oldsd->rps_ipi_list;
10665 	oldsd->rps_ipi_list = NULL;
10666 #endif
10667 	/* send out pending IPI's on offline CPU */
10668 	net_rps_send_ipi(remsd);
10669 
10670 	/* Process offline CPU's input_pkt_queue */
10671 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10672 		netif_rx_ni(skb);
10673 		input_queue_head_incr(oldsd);
10674 	}
10675 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10676 		netif_rx_ni(skb);
10677 		input_queue_head_incr(oldsd);
10678 	}
10679 
10680 	return 0;
10681 }
10682 
10683 /**
10684  *	netdev_increment_features - increment feature set by one
10685  *	@all: current feature set
10686  *	@one: new feature set
10687  *	@mask: mask feature set
10688  *
10689  *	Computes a new feature set after adding a device with feature set
10690  *	@one to the master device with current feature set @all.  Will not
10691  *	enable anything that is off in @mask. Returns the new feature set.
10692  */
10693 netdev_features_t netdev_increment_features(netdev_features_t all,
10694 	netdev_features_t one, netdev_features_t mask)
10695 {
10696 	if (mask & NETIF_F_HW_CSUM)
10697 		mask |= NETIF_F_CSUM_MASK;
10698 	mask |= NETIF_F_VLAN_CHALLENGED;
10699 
10700 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10701 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10702 
10703 	/* If one device supports hw checksumming, set for all. */
10704 	if (all & NETIF_F_HW_CSUM)
10705 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10706 
10707 	return all;
10708 }
10709 EXPORT_SYMBOL(netdev_increment_features);
10710 
10711 static struct hlist_head * __net_init netdev_create_hash(void)
10712 {
10713 	int i;
10714 	struct hlist_head *hash;
10715 
10716 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10717 	if (hash != NULL)
10718 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10719 			INIT_HLIST_HEAD(&hash[i]);
10720 
10721 	return hash;
10722 }
10723 
10724 /* Initialize per network namespace state */
10725 static int __net_init netdev_init(struct net *net)
10726 {
10727 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10728 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10729 
10730 	INIT_LIST_HEAD(&net->dev_base_head);
10731 
10732 	net->dev_name_head = netdev_create_hash();
10733 	if (net->dev_name_head == NULL)
10734 		goto err_name;
10735 
10736 	net->dev_index_head = netdev_create_hash();
10737 	if (net->dev_index_head == NULL)
10738 		goto err_idx;
10739 
10740 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10741 
10742 	return 0;
10743 
10744 err_idx:
10745 	kfree(net->dev_name_head);
10746 err_name:
10747 	return -ENOMEM;
10748 }
10749 
10750 /**
10751  *	netdev_drivername - network driver for the device
10752  *	@dev: network device
10753  *
10754  *	Determine network driver for device.
10755  */
10756 const char *netdev_drivername(const struct net_device *dev)
10757 {
10758 	const struct device_driver *driver;
10759 	const struct device *parent;
10760 	const char *empty = "";
10761 
10762 	parent = dev->dev.parent;
10763 	if (!parent)
10764 		return empty;
10765 
10766 	driver = parent->driver;
10767 	if (driver && driver->name)
10768 		return driver->name;
10769 	return empty;
10770 }
10771 
10772 static void __netdev_printk(const char *level, const struct net_device *dev,
10773 			    struct va_format *vaf)
10774 {
10775 	if (dev && dev->dev.parent) {
10776 		dev_printk_emit(level[1] - '0',
10777 				dev->dev.parent,
10778 				"%s %s %s%s: %pV",
10779 				dev_driver_string(dev->dev.parent),
10780 				dev_name(dev->dev.parent),
10781 				netdev_name(dev), netdev_reg_state(dev),
10782 				vaf);
10783 	} else if (dev) {
10784 		printk("%s%s%s: %pV",
10785 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10786 	} else {
10787 		printk("%s(NULL net_device): %pV", level, vaf);
10788 	}
10789 }
10790 
10791 void netdev_printk(const char *level, const struct net_device *dev,
10792 		   const char *format, ...)
10793 {
10794 	struct va_format vaf;
10795 	va_list args;
10796 
10797 	va_start(args, format);
10798 
10799 	vaf.fmt = format;
10800 	vaf.va = &args;
10801 
10802 	__netdev_printk(level, dev, &vaf);
10803 
10804 	va_end(args);
10805 }
10806 EXPORT_SYMBOL(netdev_printk);
10807 
10808 #define define_netdev_printk_level(func, level)			\
10809 void func(const struct net_device *dev, const char *fmt, ...)	\
10810 {								\
10811 	struct va_format vaf;					\
10812 	va_list args;						\
10813 								\
10814 	va_start(args, fmt);					\
10815 								\
10816 	vaf.fmt = fmt;						\
10817 	vaf.va = &args;						\
10818 								\
10819 	__netdev_printk(level, dev, &vaf);			\
10820 								\
10821 	va_end(args);						\
10822 }								\
10823 EXPORT_SYMBOL(func);
10824 
10825 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10826 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10827 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10828 define_netdev_printk_level(netdev_err, KERN_ERR);
10829 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10830 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10831 define_netdev_printk_level(netdev_info, KERN_INFO);
10832 
10833 static void __net_exit netdev_exit(struct net *net)
10834 {
10835 	kfree(net->dev_name_head);
10836 	kfree(net->dev_index_head);
10837 	if (net != &init_net)
10838 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10839 }
10840 
10841 static struct pernet_operations __net_initdata netdev_net_ops = {
10842 	.init = netdev_init,
10843 	.exit = netdev_exit,
10844 };
10845 
10846 static void __net_exit default_device_exit_net(struct net *net)
10847 {
10848 	struct net_device *dev, *aux;
10849 	/*
10850 	 * Push all migratable network devices back to the
10851 	 * initial network namespace
10852 	 */
10853 	ASSERT_RTNL();
10854 	for_each_netdev_safe(net, dev, aux) {
10855 		int err;
10856 		char fb_name[IFNAMSIZ];
10857 
10858 		/* Ignore unmoveable devices (i.e. loopback) */
10859 		if (dev->features & NETIF_F_NETNS_LOCAL)
10860 			continue;
10861 
10862 		/* Leave virtual devices for the generic cleanup */
10863 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
10864 			continue;
10865 
10866 		/* Push remaining network devices to init_net */
10867 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10868 		if (netdev_name_in_use(&init_net, fb_name))
10869 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10870 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10871 		if (err) {
10872 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10873 				 __func__, dev->name, err);
10874 			BUG();
10875 		}
10876 	}
10877 }
10878 
10879 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10880 {
10881 	/* Return (with the rtnl_lock held) when there are no network
10882 	 * devices unregistering in any network namespace in net_list.
10883 	 */
10884 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
10885 	bool unregistering;
10886 	struct net *net;
10887 
10888 	ASSERT_RTNL();
10889 	add_wait_queue(&netdev_unregistering_wq, &wait);
10890 	for (;;) {
10891 		unregistering = false;
10892 
10893 		list_for_each_entry(net, net_list, exit_list) {
10894 			if (atomic_read(&net->dev_unreg_count) > 0) {
10895 				unregistering = true;
10896 				break;
10897 			}
10898 		}
10899 		if (!unregistering)
10900 			break;
10901 		__rtnl_unlock();
10902 
10903 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10904 		rtnl_lock();
10905 	}
10906 	remove_wait_queue(&netdev_unregistering_wq, &wait);
10907 }
10908 
10909 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10910 {
10911 	/* At exit all network devices most be removed from a network
10912 	 * namespace.  Do this in the reverse order of registration.
10913 	 * Do this across as many network namespaces as possible to
10914 	 * improve batching efficiency.
10915 	 */
10916 	struct net_device *dev;
10917 	struct net *net;
10918 	LIST_HEAD(dev_kill_list);
10919 
10920 	rtnl_lock();
10921 	list_for_each_entry(net, net_list, exit_list) {
10922 		default_device_exit_net(net);
10923 		cond_resched();
10924 	}
10925 	/* To prevent network device cleanup code from dereferencing
10926 	 * loopback devices or network devices that have been freed
10927 	 * wait here for all pending unregistrations to complete,
10928 	 * before unregistring the loopback device and allowing the
10929 	 * network namespace be freed.
10930 	 *
10931 	 * The netdev todo list containing all network devices
10932 	 * unregistrations that happen in default_device_exit_batch
10933 	 * will run in the rtnl_unlock() at the end of
10934 	 * default_device_exit_batch.
10935 	 */
10936 	rtnl_lock_unregistering(net_list);
10937 
10938 	list_for_each_entry(net, net_list, exit_list) {
10939 		for_each_netdev_reverse(net, dev) {
10940 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10941 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10942 			else
10943 				unregister_netdevice_queue(dev, &dev_kill_list);
10944 		}
10945 	}
10946 	unregister_netdevice_many(&dev_kill_list);
10947 	rtnl_unlock();
10948 }
10949 
10950 static struct pernet_operations __net_initdata default_device_ops = {
10951 	.exit_batch = default_device_exit_batch,
10952 };
10953 
10954 /*
10955  *	Initialize the DEV module. At boot time this walks the device list and
10956  *	unhooks any devices that fail to initialise (normally hardware not
10957  *	present) and leaves us with a valid list of present and active devices.
10958  *
10959  */
10960 
10961 /*
10962  *       This is called single threaded during boot, so no need
10963  *       to take the rtnl semaphore.
10964  */
10965 static int __init net_dev_init(void)
10966 {
10967 	int i, rc = -ENOMEM;
10968 
10969 	BUG_ON(!dev_boot_phase);
10970 
10971 	if (dev_proc_init())
10972 		goto out;
10973 
10974 	if (netdev_kobject_init())
10975 		goto out;
10976 
10977 	INIT_LIST_HEAD(&ptype_all);
10978 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
10979 		INIT_LIST_HEAD(&ptype_base[i]);
10980 
10981 	if (register_pernet_subsys(&netdev_net_ops))
10982 		goto out;
10983 
10984 	/*
10985 	 *	Initialise the packet receive queues.
10986 	 */
10987 
10988 	for_each_possible_cpu(i) {
10989 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10990 		struct softnet_data *sd = &per_cpu(softnet_data, i);
10991 
10992 		INIT_WORK(flush, flush_backlog);
10993 
10994 		skb_queue_head_init(&sd->input_pkt_queue);
10995 		skb_queue_head_init(&sd->process_queue);
10996 #ifdef CONFIG_XFRM_OFFLOAD
10997 		skb_queue_head_init(&sd->xfrm_backlog);
10998 #endif
10999 		INIT_LIST_HEAD(&sd->poll_list);
11000 		sd->output_queue_tailp = &sd->output_queue;
11001 #ifdef CONFIG_RPS
11002 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11003 		sd->cpu = i;
11004 #endif
11005 
11006 		init_gro_hash(&sd->backlog);
11007 		sd->backlog.poll = process_backlog;
11008 		sd->backlog.weight = weight_p;
11009 	}
11010 
11011 	dev_boot_phase = 0;
11012 
11013 	/* The loopback device is special if any other network devices
11014 	 * is present in a network namespace the loopback device must
11015 	 * be present. Since we now dynamically allocate and free the
11016 	 * loopback device ensure this invariant is maintained by
11017 	 * keeping the loopback device as the first device on the
11018 	 * list of network devices.  Ensuring the loopback devices
11019 	 * is the first device that appears and the last network device
11020 	 * that disappears.
11021 	 */
11022 	if (register_pernet_device(&loopback_net_ops))
11023 		goto out;
11024 
11025 	if (register_pernet_device(&default_device_ops))
11026 		goto out;
11027 
11028 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11029 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11030 
11031 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11032 				       NULL, dev_cpu_dead);
11033 	WARN_ON(rc < 0);
11034 	rc = 0;
11035 out:
11036 	return rc;
11037 }
11038 
11039 subsys_initcall(net_dev_init);
11040