1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <linux/pci.h> 135 #include <linux/inetdevice.h> 136 #include <linux/cpu_rmap.h> 137 #include <linux/static_key.h> 138 #include <linux/hashtable.h> 139 #include <linux/vmalloc.h> 140 #include <linux/if_macvlan.h> 141 #include <linux/errqueue.h> 142 #include <linux/hrtimer.h> 143 #include <linux/netfilter_ingress.h> 144 #include <linux/crash_dump.h> 145 146 #include "net-sysfs.h" 147 148 /* Instead of increasing this, you should create a hash table. */ 149 #define MAX_GRO_SKBS 8 150 151 /* This should be increased if a protocol with a bigger head is added. */ 152 #define GRO_MAX_HEAD (MAX_HEADER + 128) 153 154 static DEFINE_SPINLOCK(ptype_lock); 155 static DEFINE_SPINLOCK(offload_lock); 156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 157 struct list_head ptype_all __read_mostly; /* Taps */ 158 static struct list_head offload_base __read_mostly; 159 160 static int netif_rx_internal(struct sk_buff *skb); 161 static int call_netdevice_notifiers_info(unsigned long val, 162 struct net_device *dev, 163 struct netdev_notifier_info *info); 164 165 /* 166 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 167 * semaphore. 168 * 169 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 170 * 171 * Writers must hold the rtnl semaphore while they loop through the 172 * dev_base_head list, and hold dev_base_lock for writing when they do the 173 * actual updates. This allows pure readers to access the list even 174 * while a writer is preparing to update it. 175 * 176 * To put it another way, dev_base_lock is held for writing only to 177 * protect against pure readers; the rtnl semaphore provides the 178 * protection against other writers. 179 * 180 * See, for example usages, register_netdevice() and 181 * unregister_netdevice(), which must be called with the rtnl 182 * semaphore held. 183 */ 184 DEFINE_RWLOCK(dev_base_lock); 185 EXPORT_SYMBOL(dev_base_lock); 186 187 /* protects napi_hash addition/deletion and napi_gen_id */ 188 static DEFINE_SPINLOCK(napi_hash_lock); 189 190 static unsigned int napi_gen_id = NR_CPUS; 191 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 192 193 static seqcount_t devnet_rename_seq; 194 195 static inline void dev_base_seq_inc(struct net *net) 196 { 197 while (++net->dev_base_seq == 0) 198 ; 199 } 200 201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 202 { 203 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 204 205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 206 } 207 208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 209 { 210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 211 } 212 213 static inline void rps_lock(struct softnet_data *sd) 214 { 215 #ifdef CONFIG_RPS 216 spin_lock(&sd->input_pkt_queue.lock); 217 #endif 218 } 219 220 static inline void rps_unlock(struct softnet_data *sd) 221 { 222 #ifdef CONFIG_RPS 223 spin_unlock(&sd->input_pkt_queue.lock); 224 #endif 225 } 226 227 /* Device list insertion */ 228 static void list_netdevice(struct net_device *dev) 229 { 230 struct net *net = dev_net(dev); 231 232 ASSERT_RTNL(); 233 234 write_lock_bh(&dev_base_lock); 235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 237 hlist_add_head_rcu(&dev->index_hlist, 238 dev_index_hash(net, dev->ifindex)); 239 write_unlock_bh(&dev_base_lock); 240 241 dev_base_seq_inc(net); 242 } 243 244 /* Device list removal 245 * caller must respect a RCU grace period before freeing/reusing dev 246 */ 247 static void unlist_netdevice(struct net_device *dev) 248 { 249 ASSERT_RTNL(); 250 251 /* Unlink dev from the device chain */ 252 write_lock_bh(&dev_base_lock); 253 list_del_rcu(&dev->dev_list); 254 hlist_del_rcu(&dev->name_hlist); 255 hlist_del_rcu(&dev->index_hlist); 256 write_unlock_bh(&dev_base_lock); 257 258 dev_base_seq_inc(dev_net(dev)); 259 } 260 261 /* 262 * Our notifier list 263 */ 264 265 static RAW_NOTIFIER_HEAD(netdev_chain); 266 267 /* 268 * Device drivers call our routines to queue packets here. We empty the 269 * queue in the local softnet handler. 270 */ 271 272 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 273 EXPORT_PER_CPU_SYMBOL(softnet_data); 274 275 #ifdef CONFIG_LOCKDEP 276 /* 277 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 278 * according to dev->type 279 */ 280 static const unsigned short netdev_lock_type[] = { 281 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 282 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 283 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 284 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 285 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 286 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 287 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 288 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 289 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 290 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 291 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 292 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 293 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 294 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 295 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 296 297 static const char *const netdev_lock_name[] = { 298 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 299 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 300 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 301 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 302 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 303 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 304 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 305 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 306 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 307 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 308 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 309 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 310 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 311 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 312 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 313 314 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 315 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 316 317 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 318 { 319 int i; 320 321 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 322 if (netdev_lock_type[i] == dev_type) 323 return i; 324 /* the last key is used by default */ 325 return ARRAY_SIZE(netdev_lock_type) - 1; 326 } 327 328 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 329 unsigned short dev_type) 330 { 331 int i; 332 333 i = netdev_lock_pos(dev_type); 334 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 335 netdev_lock_name[i]); 336 } 337 338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 339 { 340 int i; 341 342 i = netdev_lock_pos(dev->type); 343 lockdep_set_class_and_name(&dev->addr_list_lock, 344 &netdev_addr_lock_key[i], 345 netdev_lock_name[i]); 346 } 347 #else 348 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 349 unsigned short dev_type) 350 { 351 } 352 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 353 { 354 } 355 #endif 356 357 /******************************************************************************* 358 * 359 * Protocol management and registration routines 360 * 361 *******************************************************************************/ 362 363 364 /* 365 * Add a protocol ID to the list. Now that the input handler is 366 * smarter we can dispense with all the messy stuff that used to be 367 * here. 368 * 369 * BEWARE!!! Protocol handlers, mangling input packets, 370 * MUST BE last in hash buckets and checking protocol handlers 371 * MUST start from promiscuous ptype_all chain in net_bh. 372 * It is true now, do not change it. 373 * Explanation follows: if protocol handler, mangling packet, will 374 * be the first on list, it is not able to sense, that packet 375 * is cloned and should be copied-on-write, so that it will 376 * change it and subsequent readers will get broken packet. 377 * --ANK (980803) 378 */ 379 380 static inline struct list_head *ptype_head(const struct packet_type *pt) 381 { 382 if (pt->type == htons(ETH_P_ALL)) 383 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 384 else 385 return pt->dev ? &pt->dev->ptype_specific : 386 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 387 } 388 389 /** 390 * dev_add_pack - add packet handler 391 * @pt: packet type declaration 392 * 393 * Add a protocol handler to the networking stack. The passed &packet_type 394 * is linked into kernel lists and may not be freed until it has been 395 * removed from the kernel lists. 396 * 397 * This call does not sleep therefore it can not 398 * guarantee all CPU's that are in middle of receiving packets 399 * will see the new packet type (until the next received packet). 400 */ 401 402 void dev_add_pack(struct packet_type *pt) 403 { 404 struct list_head *head = ptype_head(pt); 405 406 spin_lock(&ptype_lock); 407 list_add_rcu(&pt->list, head); 408 spin_unlock(&ptype_lock); 409 } 410 EXPORT_SYMBOL(dev_add_pack); 411 412 /** 413 * __dev_remove_pack - remove packet handler 414 * @pt: packet type declaration 415 * 416 * Remove a protocol handler that was previously added to the kernel 417 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 418 * from the kernel lists and can be freed or reused once this function 419 * returns. 420 * 421 * The packet type might still be in use by receivers 422 * and must not be freed until after all the CPU's have gone 423 * through a quiescent state. 424 */ 425 void __dev_remove_pack(struct packet_type *pt) 426 { 427 struct list_head *head = ptype_head(pt); 428 struct packet_type *pt1; 429 430 spin_lock(&ptype_lock); 431 432 list_for_each_entry(pt1, head, list) { 433 if (pt == pt1) { 434 list_del_rcu(&pt->list); 435 goto out; 436 } 437 } 438 439 pr_warn("dev_remove_pack: %p not found\n", pt); 440 out: 441 spin_unlock(&ptype_lock); 442 } 443 EXPORT_SYMBOL(__dev_remove_pack); 444 445 /** 446 * dev_remove_pack - remove packet handler 447 * @pt: packet type declaration 448 * 449 * Remove a protocol handler that was previously added to the kernel 450 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 451 * from the kernel lists and can be freed or reused once this function 452 * returns. 453 * 454 * This call sleeps to guarantee that no CPU is looking at the packet 455 * type after return. 456 */ 457 void dev_remove_pack(struct packet_type *pt) 458 { 459 __dev_remove_pack(pt); 460 461 synchronize_net(); 462 } 463 EXPORT_SYMBOL(dev_remove_pack); 464 465 466 /** 467 * dev_add_offload - register offload handlers 468 * @po: protocol offload declaration 469 * 470 * Add protocol offload handlers to the networking stack. The passed 471 * &proto_offload is linked into kernel lists and may not be freed until 472 * it has been removed from the kernel lists. 473 * 474 * This call does not sleep therefore it can not 475 * guarantee all CPU's that are in middle of receiving packets 476 * will see the new offload handlers (until the next received packet). 477 */ 478 void dev_add_offload(struct packet_offload *po) 479 { 480 struct packet_offload *elem; 481 482 spin_lock(&offload_lock); 483 list_for_each_entry(elem, &offload_base, list) { 484 if (po->priority < elem->priority) 485 break; 486 } 487 list_add_rcu(&po->list, elem->list.prev); 488 spin_unlock(&offload_lock); 489 } 490 EXPORT_SYMBOL(dev_add_offload); 491 492 /** 493 * __dev_remove_offload - remove offload handler 494 * @po: packet offload declaration 495 * 496 * Remove a protocol offload handler that was previously added to the 497 * kernel offload handlers by dev_add_offload(). The passed &offload_type 498 * is removed from the kernel lists and can be freed or reused once this 499 * function returns. 500 * 501 * The packet type might still be in use by receivers 502 * and must not be freed until after all the CPU's have gone 503 * through a quiescent state. 504 */ 505 static void __dev_remove_offload(struct packet_offload *po) 506 { 507 struct list_head *head = &offload_base; 508 struct packet_offload *po1; 509 510 spin_lock(&offload_lock); 511 512 list_for_each_entry(po1, head, list) { 513 if (po == po1) { 514 list_del_rcu(&po->list); 515 goto out; 516 } 517 } 518 519 pr_warn("dev_remove_offload: %p not found\n", po); 520 out: 521 spin_unlock(&offload_lock); 522 } 523 524 /** 525 * dev_remove_offload - remove packet offload handler 526 * @po: packet offload declaration 527 * 528 * Remove a packet offload handler that was previously added to the kernel 529 * offload handlers by dev_add_offload(). The passed &offload_type is 530 * removed from the kernel lists and can be freed or reused once this 531 * function returns. 532 * 533 * This call sleeps to guarantee that no CPU is looking at the packet 534 * type after return. 535 */ 536 void dev_remove_offload(struct packet_offload *po) 537 { 538 __dev_remove_offload(po); 539 540 synchronize_net(); 541 } 542 EXPORT_SYMBOL(dev_remove_offload); 543 544 /****************************************************************************** 545 * 546 * Device Boot-time Settings Routines 547 * 548 ******************************************************************************/ 549 550 /* Boot time configuration table */ 551 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 552 553 /** 554 * netdev_boot_setup_add - add new setup entry 555 * @name: name of the device 556 * @map: configured settings for the device 557 * 558 * Adds new setup entry to the dev_boot_setup list. The function 559 * returns 0 on error and 1 on success. This is a generic routine to 560 * all netdevices. 561 */ 562 static int netdev_boot_setup_add(char *name, struct ifmap *map) 563 { 564 struct netdev_boot_setup *s; 565 int i; 566 567 s = dev_boot_setup; 568 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 569 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 570 memset(s[i].name, 0, sizeof(s[i].name)); 571 strlcpy(s[i].name, name, IFNAMSIZ); 572 memcpy(&s[i].map, map, sizeof(s[i].map)); 573 break; 574 } 575 } 576 577 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 578 } 579 580 /** 581 * netdev_boot_setup_check - check boot time settings 582 * @dev: the netdevice 583 * 584 * Check boot time settings for the device. 585 * The found settings are set for the device to be used 586 * later in the device probing. 587 * Returns 0 if no settings found, 1 if they are. 588 */ 589 int netdev_boot_setup_check(struct net_device *dev) 590 { 591 struct netdev_boot_setup *s = dev_boot_setup; 592 int i; 593 594 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 595 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 596 !strcmp(dev->name, s[i].name)) { 597 dev->irq = s[i].map.irq; 598 dev->base_addr = s[i].map.base_addr; 599 dev->mem_start = s[i].map.mem_start; 600 dev->mem_end = s[i].map.mem_end; 601 return 1; 602 } 603 } 604 return 0; 605 } 606 EXPORT_SYMBOL(netdev_boot_setup_check); 607 608 609 /** 610 * netdev_boot_base - get address from boot time settings 611 * @prefix: prefix for network device 612 * @unit: id for network device 613 * 614 * Check boot time settings for the base address of device. 615 * The found settings are set for the device to be used 616 * later in the device probing. 617 * Returns 0 if no settings found. 618 */ 619 unsigned long netdev_boot_base(const char *prefix, int unit) 620 { 621 const struct netdev_boot_setup *s = dev_boot_setup; 622 char name[IFNAMSIZ]; 623 int i; 624 625 sprintf(name, "%s%d", prefix, unit); 626 627 /* 628 * If device already registered then return base of 1 629 * to indicate not to probe for this interface 630 */ 631 if (__dev_get_by_name(&init_net, name)) 632 return 1; 633 634 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 635 if (!strcmp(name, s[i].name)) 636 return s[i].map.base_addr; 637 return 0; 638 } 639 640 /* 641 * Saves at boot time configured settings for any netdevice. 642 */ 643 int __init netdev_boot_setup(char *str) 644 { 645 int ints[5]; 646 struct ifmap map; 647 648 str = get_options(str, ARRAY_SIZE(ints), ints); 649 if (!str || !*str) 650 return 0; 651 652 /* Save settings */ 653 memset(&map, 0, sizeof(map)); 654 if (ints[0] > 0) 655 map.irq = ints[1]; 656 if (ints[0] > 1) 657 map.base_addr = ints[2]; 658 if (ints[0] > 2) 659 map.mem_start = ints[3]; 660 if (ints[0] > 3) 661 map.mem_end = ints[4]; 662 663 /* Add new entry to the list */ 664 return netdev_boot_setup_add(str, &map); 665 } 666 667 __setup("netdev=", netdev_boot_setup); 668 669 /******************************************************************************* 670 * 671 * Device Interface Subroutines 672 * 673 *******************************************************************************/ 674 675 /** 676 * dev_get_iflink - get 'iflink' value of a interface 677 * @dev: targeted interface 678 * 679 * Indicates the ifindex the interface is linked to. 680 * Physical interfaces have the same 'ifindex' and 'iflink' values. 681 */ 682 683 int dev_get_iflink(const struct net_device *dev) 684 { 685 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 686 return dev->netdev_ops->ndo_get_iflink(dev); 687 688 return dev->ifindex; 689 } 690 EXPORT_SYMBOL(dev_get_iflink); 691 692 /** 693 * dev_fill_metadata_dst - Retrieve tunnel egress information. 694 * @dev: targeted interface 695 * @skb: The packet. 696 * 697 * For better visibility of tunnel traffic OVS needs to retrieve 698 * egress tunnel information for a packet. Following API allows 699 * user to get this info. 700 */ 701 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 702 { 703 struct ip_tunnel_info *info; 704 705 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 706 return -EINVAL; 707 708 info = skb_tunnel_info_unclone(skb); 709 if (!info) 710 return -ENOMEM; 711 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 712 return -EINVAL; 713 714 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 715 } 716 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 717 718 /** 719 * __dev_get_by_name - find a device by its name 720 * @net: the applicable net namespace 721 * @name: name to find 722 * 723 * Find an interface by name. Must be called under RTNL semaphore 724 * or @dev_base_lock. If the name is found a pointer to the device 725 * is returned. If the name is not found then %NULL is returned. The 726 * reference counters are not incremented so the caller must be 727 * careful with locks. 728 */ 729 730 struct net_device *__dev_get_by_name(struct net *net, const char *name) 731 { 732 struct net_device *dev; 733 struct hlist_head *head = dev_name_hash(net, name); 734 735 hlist_for_each_entry(dev, head, name_hlist) 736 if (!strncmp(dev->name, name, IFNAMSIZ)) 737 return dev; 738 739 return NULL; 740 } 741 EXPORT_SYMBOL(__dev_get_by_name); 742 743 /** 744 * dev_get_by_name_rcu - find a device by its name 745 * @net: the applicable net namespace 746 * @name: name to find 747 * 748 * Find an interface by name. 749 * If the name is found a pointer to the device is returned. 750 * If the name is not found then %NULL is returned. 751 * The reference counters are not incremented so the caller must be 752 * careful with locks. The caller must hold RCU lock. 753 */ 754 755 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 756 { 757 struct net_device *dev; 758 struct hlist_head *head = dev_name_hash(net, name); 759 760 hlist_for_each_entry_rcu(dev, head, name_hlist) 761 if (!strncmp(dev->name, name, IFNAMSIZ)) 762 return dev; 763 764 return NULL; 765 } 766 EXPORT_SYMBOL(dev_get_by_name_rcu); 767 768 /** 769 * dev_get_by_name - find a device by its name 770 * @net: the applicable net namespace 771 * @name: name to find 772 * 773 * Find an interface by name. This can be called from any 774 * context and does its own locking. The returned handle has 775 * the usage count incremented and the caller must use dev_put() to 776 * release it when it is no longer needed. %NULL is returned if no 777 * matching device is found. 778 */ 779 780 struct net_device *dev_get_by_name(struct net *net, const char *name) 781 { 782 struct net_device *dev; 783 784 rcu_read_lock(); 785 dev = dev_get_by_name_rcu(net, name); 786 if (dev) 787 dev_hold(dev); 788 rcu_read_unlock(); 789 return dev; 790 } 791 EXPORT_SYMBOL(dev_get_by_name); 792 793 /** 794 * __dev_get_by_index - find a device by its ifindex 795 * @net: the applicable net namespace 796 * @ifindex: index of device 797 * 798 * Search for an interface by index. Returns %NULL if the device 799 * is not found or a pointer to the device. The device has not 800 * had its reference counter increased so the caller must be careful 801 * about locking. The caller must hold either the RTNL semaphore 802 * or @dev_base_lock. 803 */ 804 805 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 806 { 807 struct net_device *dev; 808 struct hlist_head *head = dev_index_hash(net, ifindex); 809 810 hlist_for_each_entry(dev, head, index_hlist) 811 if (dev->ifindex == ifindex) 812 return dev; 813 814 return NULL; 815 } 816 EXPORT_SYMBOL(__dev_get_by_index); 817 818 /** 819 * dev_get_by_index_rcu - find a device by its ifindex 820 * @net: the applicable net namespace 821 * @ifindex: index of device 822 * 823 * Search for an interface by index. Returns %NULL if the device 824 * is not found or a pointer to the device. The device has not 825 * had its reference counter increased so the caller must be careful 826 * about locking. The caller must hold RCU lock. 827 */ 828 829 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 830 { 831 struct net_device *dev; 832 struct hlist_head *head = dev_index_hash(net, ifindex); 833 834 hlist_for_each_entry_rcu(dev, head, index_hlist) 835 if (dev->ifindex == ifindex) 836 return dev; 837 838 return NULL; 839 } 840 EXPORT_SYMBOL(dev_get_by_index_rcu); 841 842 843 /** 844 * dev_get_by_index - find a device by its ifindex 845 * @net: the applicable net namespace 846 * @ifindex: index of device 847 * 848 * Search for an interface by index. Returns NULL if the device 849 * is not found or a pointer to the device. The device returned has 850 * had a reference added and the pointer is safe until the user calls 851 * dev_put to indicate they have finished with it. 852 */ 853 854 struct net_device *dev_get_by_index(struct net *net, int ifindex) 855 { 856 struct net_device *dev; 857 858 rcu_read_lock(); 859 dev = dev_get_by_index_rcu(net, ifindex); 860 if (dev) 861 dev_hold(dev); 862 rcu_read_unlock(); 863 return dev; 864 } 865 EXPORT_SYMBOL(dev_get_by_index); 866 867 /** 868 * netdev_get_name - get a netdevice name, knowing its ifindex. 869 * @net: network namespace 870 * @name: a pointer to the buffer where the name will be stored. 871 * @ifindex: the ifindex of the interface to get the name from. 872 * 873 * The use of raw_seqcount_begin() and cond_resched() before 874 * retrying is required as we want to give the writers a chance 875 * to complete when CONFIG_PREEMPT is not set. 876 */ 877 int netdev_get_name(struct net *net, char *name, int ifindex) 878 { 879 struct net_device *dev; 880 unsigned int seq; 881 882 retry: 883 seq = raw_seqcount_begin(&devnet_rename_seq); 884 rcu_read_lock(); 885 dev = dev_get_by_index_rcu(net, ifindex); 886 if (!dev) { 887 rcu_read_unlock(); 888 return -ENODEV; 889 } 890 891 strcpy(name, dev->name); 892 rcu_read_unlock(); 893 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 894 cond_resched(); 895 goto retry; 896 } 897 898 return 0; 899 } 900 901 /** 902 * dev_getbyhwaddr_rcu - find a device by its hardware address 903 * @net: the applicable net namespace 904 * @type: media type of device 905 * @ha: hardware address 906 * 907 * Search for an interface by MAC address. Returns NULL if the device 908 * is not found or a pointer to the device. 909 * The caller must hold RCU or RTNL. 910 * The returned device has not had its ref count increased 911 * and the caller must therefore be careful about locking 912 * 913 */ 914 915 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 916 const char *ha) 917 { 918 struct net_device *dev; 919 920 for_each_netdev_rcu(net, dev) 921 if (dev->type == type && 922 !memcmp(dev->dev_addr, ha, dev->addr_len)) 923 return dev; 924 925 return NULL; 926 } 927 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 928 929 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 930 { 931 struct net_device *dev; 932 933 ASSERT_RTNL(); 934 for_each_netdev(net, dev) 935 if (dev->type == type) 936 return dev; 937 938 return NULL; 939 } 940 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 941 942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 943 { 944 struct net_device *dev, *ret = NULL; 945 946 rcu_read_lock(); 947 for_each_netdev_rcu(net, dev) 948 if (dev->type == type) { 949 dev_hold(dev); 950 ret = dev; 951 break; 952 } 953 rcu_read_unlock(); 954 return ret; 955 } 956 EXPORT_SYMBOL(dev_getfirstbyhwtype); 957 958 /** 959 * __dev_get_by_flags - find any device with given flags 960 * @net: the applicable net namespace 961 * @if_flags: IFF_* values 962 * @mask: bitmask of bits in if_flags to check 963 * 964 * Search for any interface with the given flags. Returns NULL if a device 965 * is not found or a pointer to the device. Must be called inside 966 * rtnl_lock(), and result refcount is unchanged. 967 */ 968 969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 970 unsigned short mask) 971 { 972 struct net_device *dev, *ret; 973 974 ASSERT_RTNL(); 975 976 ret = NULL; 977 for_each_netdev(net, dev) { 978 if (((dev->flags ^ if_flags) & mask) == 0) { 979 ret = dev; 980 break; 981 } 982 } 983 return ret; 984 } 985 EXPORT_SYMBOL(__dev_get_by_flags); 986 987 /** 988 * dev_valid_name - check if name is okay for network device 989 * @name: name string 990 * 991 * Network device names need to be valid file names to 992 * to allow sysfs to work. We also disallow any kind of 993 * whitespace. 994 */ 995 bool dev_valid_name(const char *name) 996 { 997 if (*name == '\0') 998 return false; 999 if (strlen(name) >= IFNAMSIZ) 1000 return false; 1001 if (!strcmp(name, ".") || !strcmp(name, "..")) 1002 return false; 1003 1004 while (*name) { 1005 if (*name == '/' || *name == ':' || isspace(*name)) 1006 return false; 1007 name++; 1008 } 1009 return true; 1010 } 1011 EXPORT_SYMBOL(dev_valid_name); 1012 1013 /** 1014 * __dev_alloc_name - allocate a name for a device 1015 * @net: network namespace to allocate the device name in 1016 * @name: name format string 1017 * @buf: scratch buffer and result name string 1018 * 1019 * Passed a format string - eg "lt%d" it will try and find a suitable 1020 * id. It scans list of devices to build up a free map, then chooses 1021 * the first empty slot. The caller must hold the dev_base or rtnl lock 1022 * while allocating the name and adding the device in order to avoid 1023 * duplicates. 1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1025 * Returns the number of the unit assigned or a negative errno code. 1026 */ 1027 1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1029 { 1030 int i = 0; 1031 const char *p; 1032 const int max_netdevices = 8*PAGE_SIZE; 1033 unsigned long *inuse; 1034 struct net_device *d; 1035 1036 p = strnchr(name, IFNAMSIZ-1, '%'); 1037 if (p) { 1038 /* 1039 * Verify the string as this thing may have come from 1040 * the user. There must be either one "%d" and no other "%" 1041 * characters. 1042 */ 1043 if (p[1] != 'd' || strchr(p + 2, '%')) 1044 return -EINVAL; 1045 1046 /* Use one page as a bit array of possible slots */ 1047 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1048 if (!inuse) 1049 return -ENOMEM; 1050 1051 for_each_netdev(net, d) { 1052 if (!sscanf(d->name, name, &i)) 1053 continue; 1054 if (i < 0 || i >= max_netdevices) 1055 continue; 1056 1057 /* avoid cases where sscanf is not exact inverse of printf */ 1058 snprintf(buf, IFNAMSIZ, name, i); 1059 if (!strncmp(buf, d->name, IFNAMSIZ)) 1060 set_bit(i, inuse); 1061 } 1062 1063 i = find_first_zero_bit(inuse, max_netdevices); 1064 free_page((unsigned long) inuse); 1065 } 1066 1067 if (buf != name) 1068 snprintf(buf, IFNAMSIZ, name, i); 1069 if (!__dev_get_by_name(net, buf)) 1070 return i; 1071 1072 /* It is possible to run out of possible slots 1073 * when the name is long and there isn't enough space left 1074 * for the digits, or if all bits are used. 1075 */ 1076 return -ENFILE; 1077 } 1078 1079 /** 1080 * dev_alloc_name - allocate a name for a device 1081 * @dev: device 1082 * @name: name format string 1083 * 1084 * Passed a format string - eg "lt%d" it will try and find a suitable 1085 * id. It scans list of devices to build up a free map, then chooses 1086 * the first empty slot. The caller must hold the dev_base or rtnl lock 1087 * while allocating the name and adding the device in order to avoid 1088 * duplicates. 1089 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1090 * Returns the number of the unit assigned or a negative errno code. 1091 */ 1092 1093 int dev_alloc_name(struct net_device *dev, const char *name) 1094 { 1095 char buf[IFNAMSIZ]; 1096 struct net *net; 1097 int ret; 1098 1099 BUG_ON(!dev_net(dev)); 1100 net = dev_net(dev); 1101 ret = __dev_alloc_name(net, name, buf); 1102 if (ret >= 0) 1103 strlcpy(dev->name, buf, IFNAMSIZ); 1104 return ret; 1105 } 1106 EXPORT_SYMBOL(dev_alloc_name); 1107 1108 static int dev_alloc_name_ns(struct net *net, 1109 struct net_device *dev, 1110 const char *name) 1111 { 1112 char buf[IFNAMSIZ]; 1113 int ret; 1114 1115 ret = __dev_alloc_name(net, name, buf); 1116 if (ret >= 0) 1117 strlcpy(dev->name, buf, IFNAMSIZ); 1118 return ret; 1119 } 1120 1121 static int dev_get_valid_name(struct net *net, 1122 struct net_device *dev, 1123 const char *name) 1124 { 1125 BUG_ON(!net); 1126 1127 if (!dev_valid_name(name)) 1128 return -EINVAL; 1129 1130 if (strchr(name, '%')) 1131 return dev_alloc_name_ns(net, dev, name); 1132 else if (__dev_get_by_name(net, name)) 1133 return -EEXIST; 1134 else if (dev->name != name) 1135 strlcpy(dev->name, name, IFNAMSIZ); 1136 1137 return 0; 1138 } 1139 1140 /** 1141 * dev_change_name - change name of a device 1142 * @dev: device 1143 * @newname: name (or format string) must be at least IFNAMSIZ 1144 * 1145 * Change name of a device, can pass format strings "eth%d". 1146 * for wildcarding. 1147 */ 1148 int dev_change_name(struct net_device *dev, const char *newname) 1149 { 1150 unsigned char old_assign_type; 1151 char oldname[IFNAMSIZ]; 1152 int err = 0; 1153 int ret; 1154 struct net *net; 1155 1156 ASSERT_RTNL(); 1157 BUG_ON(!dev_net(dev)); 1158 1159 net = dev_net(dev); 1160 if (dev->flags & IFF_UP) 1161 return -EBUSY; 1162 1163 write_seqcount_begin(&devnet_rename_seq); 1164 1165 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1166 write_seqcount_end(&devnet_rename_seq); 1167 return 0; 1168 } 1169 1170 memcpy(oldname, dev->name, IFNAMSIZ); 1171 1172 err = dev_get_valid_name(net, dev, newname); 1173 if (err < 0) { 1174 write_seqcount_end(&devnet_rename_seq); 1175 return err; 1176 } 1177 1178 if (oldname[0] && !strchr(oldname, '%')) 1179 netdev_info(dev, "renamed from %s\n", oldname); 1180 1181 old_assign_type = dev->name_assign_type; 1182 dev->name_assign_type = NET_NAME_RENAMED; 1183 1184 rollback: 1185 ret = device_rename(&dev->dev, dev->name); 1186 if (ret) { 1187 memcpy(dev->name, oldname, IFNAMSIZ); 1188 dev->name_assign_type = old_assign_type; 1189 write_seqcount_end(&devnet_rename_seq); 1190 return ret; 1191 } 1192 1193 write_seqcount_end(&devnet_rename_seq); 1194 1195 netdev_adjacent_rename_links(dev, oldname); 1196 1197 write_lock_bh(&dev_base_lock); 1198 hlist_del_rcu(&dev->name_hlist); 1199 write_unlock_bh(&dev_base_lock); 1200 1201 synchronize_rcu(); 1202 1203 write_lock_bh(&dev_base_lock); 1204 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1205 write_unlock_bh(&dev_base_lock); 1206 1207 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1208 ret = notifier_to_errno(ret); 1209 1210 if (ret) { 1211 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1212 if (err >= 0) { 1213 err = ret; 1214 write_seqcount_begin(&devnet_rename_seq); 1215 memcpy(dev->name, oldname, IFNAMSIZ); 1216 memcpy(oldname, newname, IFNAMSIZ); 1217 dev->name_assign_type = old_assign_type; 1218 old_assign_type = NET_NAME_RENAMED; 1219 goto rollback; 1220 } else { 1221 pr_err("%s: name change rollback failed: %d\n", 1222 dev->name, ret); 1223 } 1224 } 1225 1226 return err; 1227 } 1228 1229 /** 1230 * dev_set_alias - change ifalias of a device 1231 * @dev: device 1232 * @alias: name up to IFALIASZ 1233 * @len: limit of bytes to copy from info 1234 * 1235 * Set ifalias for a device, 1236 */ 1237 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1238 { 1239 char *new_ifalias; 1240 1241 ASSERT_RTNL(); 1242 1243 if (len >= IFALIASZ) 1244 return -EINVAL; 1245 1246 if (!len) { 1247 kfree(dev->ifalias); 1248 dev->ifalias = NULL; 1249 return 0; 1250 } 1251 1252 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1253 if (!new_ifalias) 1254 return -ENOMEM; 1255 dev->ifalias = new_ifalias; 1256 memcpy(dev->ifalias, alias, len); 1257 dev->ifalias[len] = 0; 1258 1259 return len; 1260 } 1261 1262 1263 /** 1264 * netdev_features_change - device changes features 1265 * @dev: device to cause notification 1266 * 1267 * Called to indicate a device has changed features. 1268 */ 1269 void netdev_features_change(struct net_device *dev) 1270 { 1271 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1272 } 1273 EXPORT_SYMBOL(netdev_features_change); 1274 1275 /** 1276 * netdev_state_change - device changes state 1277 * @dev: device to cause notification 1278 * 1279 * Called to indicate a device has changed state. This function calls 1280 * the notifier chains for netdev_chain and sends a NEWLINK message 1281 * to the routing socket. 1282 */ 1283 void netdev_state_change(struct net_device *dev) 1284 { 1285 if (dev->flags & IFF_UP) { 1286 struct netdev_notifier_change_info change_info; 1287 1288 change_info.flags_changed = 0; 1289 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1290 &change_info.info); 1291 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1292 } 1293 } 1294 EXPORT_SYMBOL(netdev_state_change); 1295 1296 /** 1297 * netdev_notify_peers - notify network peers about existence of @dev 1298 * @dev: network device 1299 * 1300 * Generate traffic such that interested network peers are aware of 1301 * @dev, such as by generating a gratuitous ARP. This may be used when 1302 * a device wants to inform the rest of the network about some sort of 1303 * reconfiguration such as a failover event or virtual machine 1304 * migration. 1305 */ 1306 void netdev_notify_peers(struct net_device *dev) 1307 { 1308 rtnl_lock(); 1309 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1310 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1311 rtnl_unlock(); 1312 } 1313 EXPORT_SYMBOL(netdev_notify_peers); 1314 1315 static int __dev_open(struct net_device *dev) 1316 { 1317 const struct net_device_ops *ops = dev->netdev_ops; 1318 int ret; 1319 1320 ASSERT_RTNL(); 1321 1322 if (!netif_device_present(dev)) 1323 return -ENODEV; 1324 1325 /* Block netpoll from trying to do any rx path servicing. 1326 * If we don't do this there is a chance ndo_poll_controller 1327 * or ndo_poll may be running while we open the device 1328 */ 1329 netpoll_poll_disable(dev); 1330 1331 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1332 ret = notifier_to_errno(ret); 1333 if (ret) 1334 return ret; 1335 1336 set_bit(__LINK_STATE_START, &dev->state); 1337 1338 if (ops->ndo_validate_addr) 1339 ret = ops->ndo_validate_addr(dev); 1340 1341 if (!ret && ops->ndo_open) 1342 ret = ops->ndo_open(dev); 1343 1344 netpoll_poll_enable(dev); 1345 1346 if (ret) 1347 clear_bit(__LINK_STATE_START, &dev->state); 1348 else { 1349 dev->flags |= IFF_UP; 1350 dev_set_rx_mode(dev); 1351 dev_activate(dev); 1352 add_device_randomness(dev->dev_addr, dev->addr_len); 1353 } 1354 1355 return ret; 1356 } 1357 1358 /** 1359 * dev_open - prepare an interface for use. 1360 * @dev: device to open 1361 * 1362 * Takes a device from down to up state. The device's private open 1363 * function is invoked and then the multicast lists are loaded. Finally 1364 * the device is moved into the up state and a %NETDEV_UP message is 1365 * sent to the netdev notifier chain. 1366 * 1367 * Calling this function on an active interface is a nop. On a failure 1368 * a negative errno code is returned. 1369 */ 1370 int dev_open(struct net_device *dev) 1371 { 1372 int ret; 1373 1374 if (dev->flags & IFF_UP) 1375 return 0; 1376 1377 ret = __dev_open(dev); 1378 if (ret < 0) 1379 return ret; 1380 1381 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1382 call_netdevice_notifiers(NETDEV_UP, dev); 1383 1384 return ret; 1385 } 1386 EXPORT_SYMBOL(dev_open); 1387 1388 static int __dev_close_many(struct list_head *head) 1389 { 1390 struct net_device *dev; 1391 1392 ASSERT_RTNL(); 1393 might_sleep(); 1394 1395 list_for_each_entry(dev, head, close_list) { 1396 /* Temporarily disable netpoll until the interface is down */ 1397 netpoll_poll_disable(dev); 1398 1399 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1400 1401 clear_bit(__LINK_STATE_START, &dev->state); 1402 1403 /* Synchronize to scheduled poll. We cannot touch poll list, it 1404 * can be even on different cpu. So just clear netif_running(). 1405 * 1406 * dev->stop() will invoke napi_disable() on all of it's 1407 * napi_struct instances on this device. 1408 */ 1409 smp_mb__after_atomic(); /* Commit netif_running(). */ 1410 } 1411 1412 dev_deactivate_many(head); 1413 1414 list_for_each_entry(dev, head, close_list) { 1415 const struct net_device_ops *ops = dev->netdev_ops; 1416 1417 /* 1418 * Call the device specific close. This cannot fail. 1419 * Only if device is UP 1420 * 1421 * We allow it to be called even after a DETACH hot-plug 1422 * event. 1423 */ 1424 if (ops->ndo_stop) 1425 ops->ndo_stop(dev); 1426 1427 dev->flags &= ~IFF_UP; 1428 netpoll_poll_enable(dev); 1429 } 1430 1431 return 0; 1432 } 1433 1434 static int __dev_close(struct net_device *dev) 1435 { 1436 int retval; 1437 LIST_HEAD(single); 1438 1439 list_add(&dev->close_list, &single); 1440 retval = __dev_close_many(&single); 1441 list_del(&single); 1442 1443 return retval; 1444 } 1445 1446 int dev_close_many(struct list_head *head, bool unlink) 1447 { 1448 struct net_device *dev, *tmp; 1449 1450 /* Remove the devices that don't need to be closed */ 1451 list_for_each_entry_safe(dev, tmp, head, close_list) 1452 if (!(dev->flags & IFF_UP)) 1453 list_del_init(&dev->close_list); 1454 1455 __dev_close_many(head); 1456 1457 list_for_each_entry_safe(dev, tmp, head, close_list) { 1458 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1459 call_netdevice_notifiers(NETDEV_DOWN, dev); 1460 if (unlink) 1461 list_del_init(&dev->close_list); 1462 } 1463 1464 return 0; 1465 } 1466 EXPORT_SYMBOL(dev_close_many); 1467 1468 /** 1469 * dev_close - shutdown an interface. 1470 * @dev: device to shutdown 1471 * 1472 * This function moves an active device into down state. A 1473 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1474 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1475 * chain. 1476 */ 1477 int dev_close(struct net_device *dev) 1478 { 1479 if (dev->flags & IFF_UP) { 1480 LIST_HEAD(single); 1481 1482 list_add(&dev->close_list, &single); 1483 dev_close_many(&single, true); 1484 list_del(&single); 1485 } 1486 return 0; 1487 } 1488 EXPORT_SYMBOL(dev_close); 1489 1490 1491 /** 1492 * dev_disable_lro - disable Large Receive Offload on a device 1493 * @dev: device 1494 * 1495 * Disable Large Receive Offload (LRO) on a net device. Must be 1496 * called under RTNL. This is needed if received packets may be 1497 * forwarded to another interface. 1498 */ 1499 void dev_disable_lro(struct net_device *dev) 1500 { 1501 struct net_device *lower_dev; 1502 struct list_head *iter; 1503 1504 dev->wanted_features &= ~NETIF_F_LRO; 1505 netdev_update_features(dev); 1506 1507 if (unlikely(dev->features & NETIF_F_LRO)) 1508 netdev_WARN(dev, "failed to disable LRO!\n"); 1509 1510 netdev_for_each_lower_dev(dev, lower_dev, iter) 1511 dev_disable_lro(lower_dev); 1512 } 1513 EXPORT_SYMBOL(dev_disable_lro); 1514 1515 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1516 struct net_device *dev) 1517 { 1518 struct netdev_notifier_info info; 1519 1520 netdev_notifier_info_init(&info, dev); 1521 return nb->notifier_call(nb, val, &info); 1522 } 1523 1524 static int dev_boot_phase = 1; 1525 1526 /** 1527 * register_netdevice_notifier - register a network notifier block 1528 * @nb: notifier 1529 * 1530 * Register a notifier to be called when network device events occur. 1531 * The notifier passed is linked into the kernel structures and must 1532 * not be reused until it has been unregistered. A negative errno code 1533 * is returned on a failure. 1534 * 1535 * When registered all registration and up events are replayed 1536 * to the new notifier to allow device to have a race free 1537 * view of the network device list. 1538 */ 1539 1540 int register_netdevice_notifier(struct notifier_block *nb) 1541 { 1542 struct net_device *dev; 1543 struct net_device *last; 1544 struct net *net; 1545 int err; 1546 1547 rtnl_lock(); 1548 err = raw_notifier_chain_register(&netdev_chain, nb); 1549 if (err) 1550 goto unlock; 1551 if (dev_boot_phase) 1552 goto unlock; 1553 for_each_net(net) { 1554 for_each_netdev(net, dev) { 1555 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1556 err = notifier_to_errno(err); 1557 if (err) 1558 goto rollback; 1559 1560 if (!(dev->flags & IFF_UP)) 1561 continue; 1562 1563 call_netdevice_notifier(nb, NETDEV_UP, dev); 1564 } 1565 } 1566 1567 unlock: 1568 rtnl_unlock(); 1569 return err; 1570 1571 rollback: 1572 last = dev; 1573 for_each_net(net) { 1574 for_each_netdev(net, dev) { 1575 if (dev == last) 1576 goto outroll; 1577 1578 if (dev->flags & IFF_UP) { 1579 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1580 dev); 1581 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1582 } 1583 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1584 } 1585 } 1586 1587 outroll: 1588 raw_notifier_chain_unregister(&netdev_chain, nb); 1589 goto unlock; 1590 } 1591 EXPORT_SYMBOL(register_netdevice_notifier); 1592 1593 /** 1594 * unregister_netdevice_notifier - unregister a network notifier block 1595 * @nb: notifier 1596 * 1597 * Unregister a notifier previously registered by 1598 * register_netdevice_notifier(). The notifier is unlinked into the 1599 * kernel structures and may then be reused. A negative errno code 1600 * is returned on a failure. 1601 * 1602 * After unregistering unregister and down device events are synthesized 1603 * for all devices on the device list to the removed notifier to remove 1604 * the need for special case cleanup code. 1605 */ 1606 1607 int unregister_netdevice_notifier(struct notifier_block *nb) 1608 { 1609 struct net_device *dev; 1610 struct net *net; 1611 int err; 1612 1613 rtnl_lock(); 1614 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1615 if (err) 1616 goto unlock; 1617 1618 for_each_net(net) { 1619 for_each_netdev(net, dev) { 1620 if (dev->flags & IFF_UP) { 1621 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1622 dev); 1623 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1624 } 1625 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1626 } 1627 } 1628 unlock: 1629 rtnl_unlock(); 1630 return err; 1631 } 1632 EXPORT_SYMBOL(unregister_netdevice_notifier); 1633 1634 /** 1635 * call_netdevice_notifiers_info - call all network notifier blocks 1636 * @val: value passed unmodified to notifier function 1637 * @dev: net_device pointer passed unmodified to notifier function 1638 * @info: notifier information data 1639 * 1640 * Call all network notifier blocks. Parameters and return value 1641 * are as for raw_notifier_call_chain(). 1642 */ 1643 1644 static int call_netdevice_notifiers_info(unsigned long val, 1645 struct net_device *dev, 1646 struct netdev_notifier_info *info) 1647 { 1648 ASSERT_RTNL(); 1649 netdev_notifier_info_init(info, dev); 1650 return raw_notifier_call_chain(&netdev_chain, val, info); 1651 } 1652 1653 /** 1654 * call_netdevice_notifiers - call all network notifier blocks 1655 * @val: value passed unmodified to notifier function 1656 * @dev: net_device pointer passed unmodified to notifier function 1657 * 1658 * Call all network notifier blocks. Parameters and return value 1659 * are as for raw_notifier_call_chain(). 1660 */ 1661 1662 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1663 { 1664 struct netdev_notifier_info info; 1665 1666 return call_netdevice_notifiers_info(val, dev, &info); 1667 } 1668 EXPORT_SYMBOL(call_netdevice_notifiers); 1669 1670 #ifdef CONFIG_NET_INGRESS 1671 static struct static_key ingress_needed __read_mostly; 1672 1673 void net_inc_ingress_queue(void) 1674 { 1675 static_key_slow_inc(&ingress_needed); 1676 } 1677 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1678 1679 void net_dec_ingress_queue(void) 1680 { 1681 static_key_slow_dec(&ingress_needed); 1682 } 1683 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1684 #endif 1685 1686 #ifdef CONFIG_NET_EGRESS 1687 static struct static_key egress_needed __read_mostly; 1688 1689 void net_inc_egress_queue(void) 1690 { 1691 static_key_slow_inc(&egress_needed); 1692 } 1693 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1694 1695 void net_dec_egress_queue(void) 1696 { 1697 static_key_slow_dec(&egress_needed); 1698 } 1699 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1700 #endif 1701 1702 static struct static_key netstamp_needed __read_mostly; 1703 #ifdef HAVE_JUMP_LABEL 1704 static atomic_t netstamp_needed_deferred; 1705 static atomic_t netstamp_wanted; 1706 static void netstamp_clear(struct work_struct *work) 1707 { 1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1709 int wanted; 1710 1711 wanted = atomic_add_return(deferred, &netstamp_wanted); 1712 if (wanted > 0) 1713 static_key_enable(&netstamp_needed); 1714 else 1715 static_key_disable(&netstamp_needed); 1716 } 1717 static DECLARE_WORK(netstamp_work, netstamp_clear); 1718 #endif 1719 1720 void net_enable_timestamp(void) 1721 { 1722 #ifdef HAVE_JUMP_LABEL 1723 int wanted; 1724 1725 while (1) { 1726 wanted = atomic_read(&netstamp_wanted); 1727 if (wanted <= 0) 1728 break; 1729 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1730 return; 1731 } 1732 atomic_inc(&netstamp_needed_deferred); 1733 schedule_work(&netstamp_work); 1734 #else 1735 static_key_slow_inc(&netstamp_needed); 1736 #endif 1737 } 1738 EXPORT_SYMBOL(net_enable_timestamp); 1739 1740 void net_disable_timestamp(void) 1741 { 1742 #ifdef HAVE_JUMP_LABEL 1743 int wanted; 1744 1745 while (1) { 1746 wanted = atomic_read(&netstamp_wanted); 1747 if (wanted <= 1) 1748 break; 1749 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1750 return; 1751 } 1752 atomic_dec(&netstamp_needed_deferred); 1753 schedule_work(&netstamp_work); 1754 #else 1755 static_key_slow_dec(&netstamp_needed); 1756 #endif 1757 } 1758 EXPORT_SYMBOL(net_disable_timestamp); 1759 1760 static inline void net_timestamp_set(struct sk_buff *skb) 1761 { 1762 skb->tstamp = 0; 1763 if (static_key_false(&netstamp_needed)) 1764 __net_timestamp(skb); 1765 } 1766 1767 #define net_timestamp_check(COND, SKB) \ 1768 if (static_key_false(&netstamp_needed)) { \ 1769 if ((COND) && !(SKB)->tstamp) \ 1770 __net_timestamp(SKB); \ 1771 } \ 1772 1773 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1774 { 1775 unsigned int len; 1776 1777 if (!(dev->flags & IFF_UP)) 1778 return false; 1779 1780 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1781 if (skb->len <= len) 1782 return true; 1783 1784 /* if TSO is enabled, we don't care about the length as the packet 1785 * could be forwarded without being segmented before 1786 */ 1787 if (skb_is_gso(skb)) 1788 return true; 1789 1790 return false; 1791 } 1792 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1793 1794 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1795 { 1796 int ret = ____dev_forward_skb(dev, skb); 1797 1798 if (likely(!ret)) { 1799 skb->protocol = eth_type_trans(skb, dev); 1800 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1801 } 1802 1803 return ret; 1804 } 1805 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1806 1807 /** 1808 * dev_forward_skb - loopback an skb to another netif 1809 * 1810 * @dev: destination network device 1811 * @skb: buffer to forward 1812 * 1813 * return values: 1814 * NET_RX_SUCCESS (no congestion) 1815 * NET_RX_DROP (packet was dropped, but freed) 1816 * 1817 * dev_forward_skb can be used for injecting an skb from the 1818 * start_xmit function of one device into the receive queue 1819 * of another device. 1820 * 1821 * The receiving device may be in another namespace, so 1822 * we have to clear all information in the skb that could 1823 * impact namespace isolation. 1824 */ 1825 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1826 { 1827 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1828 } 1829 EXPORT_SYMBOL_GPL(dev_forward_skb); 1830 1831 static inline int deliver_skb(struct sk_buff *skb, 1832 struct packet_type *pt_prev, 1833 struct net_device *orig_dev) 1834 { 1835 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1836 return -ENOMEM; 1837 atomic_inc(&skb->users); 1838 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1839 } 1840 1841 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1842 struct packet_type **pt, 1843 struct net_device *orig_dev, 1844 __be16 type, 1845 struct list_head *ptype_list) 1846 { 1847 struct packet_type *ptype, *pt_prev = *pt; 1848 1849 list_for_each_entry_rcu(ptype, ptype_list, list) { 1850 if (ptype->type != type) 1851 continue; 1852 if (pt_prev) 1853 deliver_skb(skb, pt_prev, orig_dev); 1854 pt_prev = ptype; 1855 } 1856 *pt = pt_prev; 1857 } 1858 1859 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1860 { 1861 if (!ptype->af_packet_priv || !skb->sk) 1862 return false; 1863 1864 if (ptype->id_match) 1865 return ptype->id_match(ptype, skb->sk); 1866 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1867 return true; 1868 1869 return false; 1870 } 1871 1872 /* 1873 * Support routine. Sends outgoing frames to any network 1874 * taps currently in use. 1875 */ 1876 1877 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1878 { 1879 struct packet_type *ptype; 1880 struct sk_buff *skb2 = NULL; 1881 struct packet_type *pt_prev = NULL; 1882 struct list_head *ptype_list = &ptype_all; 1883 1884 rcu_read_lock(); 1885 again: 1886 list_for_each_entry_rcu(ptype, ptype_list, list) { 1887 /* Never send packets back to the socket 1888 * they originated from - MvS (miquels@drinkel.ow.org) 1889 */ 1890 if (skb_loop_sk(ptype, skb)) 1891 continue; 1892 1893 if (pt_prev) { 1894 deliver_skb(skb2, pt_prev, skb->dev); 1895 pt_prev = ptype; 1896 continue; 1897 } 1898 1899 /* need to clone skb, done only once */ 1900 skb2 = skb_clone(skb, GFP_ATOMIC); 1901 if (!skb2) 1902 goto out_unlock; 1903 1904 net_timestamp_set(skb2); 1905 1906 /* skb->nh should be correctly 1907 * set by sender, so that the second statement is 1908 * just protection against buggy protocols. 1909 */ 1910 skb_reset_mac_header(skb2); 1911 1912 if (skb_network_header(skb2) < skb2->data || 1913 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1914 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1915 ntohs(skb2->protocol), 1916 dev->name); 1917 skb_reset_network_header(skb2); 1918 } 1919 1920 skb2->transport_header = skb2->network_header; 1921 skb2->pkt_type = PACKET_OUTGOING; 1922 pt_prev = ptype; 1923 } 1924 1925 if (ptype_list == &ptype_all) { 1926 ptype_list = &dev->ptype_all; 1927 goto again; 1928 } 1929 out_unlock: 1930 if (pt_prev) 1931 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1932 rcu_read_unlock(); 1933 } 1934 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1935 1936 /** 1937 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1938 * @dev: Network device 1939 * @txq: number of queues available 1940 * 1941 * If real_num_tx_queues is changed the tc mappings may no longer be 1942 * valid. To resolve this verify the tc mapping remains valid and if 1943 * not NULL the mapping. With no priorities mapping to this 1944 * offset/count pair it will no longer be used. In the worst case TC0 1945 * is invalid nothing can be done so disable priority mappings. If is 1946 * expected that drivers will fix this mapping if they can before 1947 * calling netif_set_real_num_tx_queues. 1948 */ 1949 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1950 { 1951 int i; 1952 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1953 1954 /* If TC0 is invalidated disable TC mapping */ 1955 if (tc->offset + tc->count > txq) { 1956 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1957 dev->num_tc = 0; 1958 return; 1959 } 1960 1961 /* Invalidated prio to tc mappings set to TC0 */ 1962 for (i = 1; i < TC_BITMASK + 1; i++) { 1963 int q = netdev_get_prio_tc_map(dev, i); 1964 1965 tc = &dev->tc_to_txq[q]; 1966 if (tc->offset + tc->count > txq) { 1967 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1968 i, q); 1969 netdev_set_prio_tc_map(dev, i, 0); 1970 } 1971 } 1972 } 1973 1974 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 1975 { 1976 if (dev->num_tc) { 1977 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1978 int i; 1979 1980 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 1981 if ((txq - tc->offset) < tc->count) 1982 return i; 1983 } 1984 1985 return -1; 1986 } 1987 1988 return 0; 1989 } 1990 1991 #ifdef CONFIG_XPS 1992 static DEFINE_MUTEX(xps_map_mutex); 1993 #define xmap_dereference(P) \ 1994 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1995 1996 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 1997 int tci, u16 index) 1998 { 1999 struct xps_map *map = NULL; 2000 int pos; 2001 2002 if (dev_maps) 2003 map = xmap_dereference(dev_maps->cpu_map[tci]); 2004 if (!map) 2005 return false; 2006 2007 for (pos = map->len; pos--;) { 2008 if (map->queues[pos] != index) 2009 continue; 2010 2011 if (map->len > 1) { 2012 map->queues[pos] = map->queues[--map->len]; 2013 break; 2014 } 2015 2016 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2017 kfree_rcu(map, rcu); 2018 return false; 2019 } 2020 2021 return true; 2022 } 2023 2024 static bool remove_xps_queue_cpu(struct net_device *dev, 2025 struct xps_dev_maps *dev_maps, 2026 int cpu, u16 offset, u16 count) 2027 { 2028 int num_tc = dev->num_tc ? : 1; 2029 bool active = false; 2030 int tci; 2031 2032 for (tci = cpu * num_tc; num_tc--; tci++) { 2033 int i, j; 2034 2035 for (i = count, j = offset; i--; j++) { 2036 if (!remove_xps_queue(dev_maps, cpu, j)) 2037 break; 2038 } 2039 2040 active |= i < 0; 2041 } 2042 2043 return active; 2044 } 2045 2046 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2047 u16 count) 2048 { 2049 struct xps_dev_maps *dev_maps; 2050 int cpu, i; 2051 bool active = false; 2052 2053 mutex_lock(&xps_map_mutex); 2054 dev_maps = xmap_dereference(dev->xps_maps); 2055 2056 if (!dev_maps) 2057 goto out_no_maps; 2058 2059 for_each_possible_cpu(cpu) 2060 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2061 offset, count); 2062 2063 if (!active) { 2064 RCU_INIT_POINTER(dev->xps_maps, NULL); 2065 kfree_rcu(dev_maps, rcu); 2066 } 2067 2068 for (i = offset + (count - 1); count--; i--) 2069 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2070 NUMA_NO_NODE); 2071 2072 out_no_maps: 2073 mutex_unlock(&xps_map_mutex); 2074 } 2075 2076 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2077 { 2078 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2079 } 2080 2081 static struct xps_map *expand_xps_map(struct xps_map *map, 2082 int cpu, u16 index) 2083 { 2084 struct xps_map *new_map; 2085 int alloc_len = XPS_MIN_MAP_ALLOC; 2086 int i, pos; 2087 2088 for (pos = 0; map && pos < map->len; pos++) { 2089 if (map->queues[pos] != index) 2090 continue; 2091 return map; 2092 } 2093 2094 /* Need to add queue to this CPU's existing map */ 2095 if (map) { 2096 if (pos < map->alloc_len) 2097 return map; 2098 2099 alloc_len = map->alloc_len * 2; 2100 } 2101 2102 /* Need to allocate new map to store queue on this CPU's map */ 2103 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2104 cpu_to_node(cpu)); 2105 if (!new_map) 2106 return NULL; 2107 2108 for (i = 0; i < pos; i++) 2109 new_map->queues[i] = map->queues[i]; 2110 new_map->alloc_len = alloc_len; 2111 new_map->len = pos; 2112 2113 return new_map; 2114 } 2115 2116 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2117 u16 index) 2118 { 2119 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2120 int i, cpu, tci, numa_node_id = -2; 2121 int maps_sz, num_tc = 1, tc = 0; 2122 struct xps_map *map, *new_map; 2123 bool active = false; 2124 2125 if (dev->num_tc) { 2126 num_tc = dev->num_tc; 2127 tc = netdev_txq_to_tc(dev, index); 2128 if (tc < 0) 2129 return -EINVAL; 2130 } 2131 2132 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2133 if (maps_sz < L1_CACHE_BYTES) 2134 maps_sz = L1_CACHE_BYTES; 2135 2136 mutex_lock(&xps_map_mutex); 2137 2138 dev_maps = xmap_dereference(dev->xps_maps); 2139 2140 /* allocate memory for queue storage */ 2141 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2142 if (!new_dev_maps) 2143 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2144 if (!new_dev_maps) { 2145 mutex_unlock(&xps_map_mutex); 2146 return -ENOMEM; 2147 } 2148 2149 tci = cpu * num_tc + tc; 2150 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2151 NULL; 2152 2153 map = expand_xps_map(map, cpu, index); 2154 if (!map) 2155 goto error; 2156 2157 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2158 } 2159 2160 if (!new_dev_maps) 2161 goto out_no_new_maps; 2162 2163 for_each_possible_cpu(cpu) { 2164 /* copy maps belonging to foreign traffic classes */ 2165 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2166 /* fill in the new device map from the old device map */ 2167 map = xmap_dereference(dev_maps->cpu_map[tci]); 2168 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2169 } 2170 2171 /* We need to explicitly update tci as prevous loop 2172 * could break out early if dev_maps is NULL. 2173 */ 2174 tci = cpu * num_tc + tc; 2175 2176 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2177 /* add queue to CPU maps */ 2178 int pos = 0; 2179 2180 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2181 while ((pos < map->len) && (map->queues[pos] != index)) 2182 pos++; 2183 2184 if (pos == map->len) 2185 map->queues[map->len++] = index; 2186 #ifdef CONFIG_NUMA 2187 if (numa_node_id == -2) 2188 numa_node_id = cpu_to_node(cpu); 2189 else if (numa_node_id != cpu_to_node(cpu)) 2190 numa_node_id = -1; 2191 #endif 2192 } else if (dev_maps) { 2193 /* fill in the new device map from the old device map */ 2194 map = xmap_dereference(dev_maps->cpu_map[tci]); 2195 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2196 } 2197 2198 /* copy maps belonging to foreign traffic classes */ 2199 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2200 /* fill in the new device map from the old device map */ 2201 map = xmap_dereference(dev_maps->cpu_map[tci]); 2202 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2203 } 2204 } 2205 2206 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2207 2208 /* Cleanup old maps */ 2209 if (!dev_maps) 2210 goto out_no_old_maps; 2211 2212 for_each_possible_cpu(cpu) { 2213 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2214 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2215 map = xmap_dereference(dev_maps->cpu_map[tci]); 2216 if (map && map != new_map) 2217 kfree_rcu(map, rcu); 2218 } 2219 } 2220 2221 kfree_rcu(dev_maps, rcu); 2222 2223 out_no_old_maps: 2224 dev_maps = new_dev_maps; 2225 active = true; 2226 2227 out_no_new_maps: 2228 /* update Tx queue numa node */ 2229 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2230 (numa_node_id >= 0) ? numa_node_id : 2231 NUMA_NO_NODE); 2232 2233 if (!dev_maps) 2234 goto out_no_maps; 2235 2236 /* removes queue from unused CPUs */ 2237 for_each_possible_cpu(cpu) { 2238 for (i = tc, tci = cpu * num_tc; i--; tci++) 2239 active |= remove_xps_queue(dev_maps, tci, index); 2240 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2241 active |= remove_xps_queue(dev_maps, tci, index); 2242 for (i = num_tc - tc, tci++; --i; tci++) 2243 active |= remove_xps_queue(dev_maps, tci, index); 2244 } 2245 2246 /* free map if not active */ 2247 if (!active) { 2248 RCU_INIT_POINTER(dev->xps_maps, NULL); 2249 kfree_rcu(dev_maps, rcu); 2250 } 2251 2252 out_no_maps: 2253 mutex_unlock(&xps_map_mutex); 2254 2255 return 0; 2256 error: 2257 /* remove any maps that we added */ 2258 for_each_possible_cpu(cpu) { 2259 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2260 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2261 map = dev_maps ? 2262 xmap_dereference(dev_maps->cpu_map[tci]) : 2263 NULL; 2264 if (new_map && new_map != map) 2265 kfree(new_map); 2266 } 2267 } 2268 2269 mutex_unlock(&xps_map_mutex); 2270 2271 kfree(new_dev_maps); 2272 return -ENOMEM; 2273 } 2274 EXPORT_SYMBOL(netif_set_xps_queue); 2275 2276 #endif 2277 void netdev_reset_tc(struct net_device *dev) 2278 { 2279 #ifdef CONFIG_XPS 2280 netif_reset_xps_queues_gt(dev, 0); 2281 #endif 2282 dev->num_tc = 0; 2283 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2284 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2285 } 2286 EXPORT_SYMBOL(netdev_reset_tc); 2287 2288 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2289 { 2290 if (tc >= dev->num_tc) 2291 return -EINVAL; 2292 2293 #ifdef CONFIG_XPS 2294 netif_reset_xps_queues(dev, offset, count); 2295 #endif 2296 dev->tc_to_txq[tc].count = count; 2297 dev->tc_to_txq[tc].offset = offset; 2298 return 0; 2299 } 2300 EXPORT_SYMBOL(netdev_set_tc_queue); 2301 2302 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2303 { 2304 if (num_tc > TC_MAX_QUEUE) 2305 return -EINVAL; 2306 2307 #ifdef CONFIG_XPS 2308 netif_reset_xps_queues_gt(dev, 0); 2309 #endif 2310 dev->num_tc = num_tc; 2311 return 0; 2312 } 2313 EXPORT_SYMBOL(netdev_set_num_tc); 2314 2315 /* 2316 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2317 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2318 */ 2319 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2320 { 2321 int rc; 2322 2323 if (txq < 1 || txq > dev->num_tx_queues) 2324 return -EINVAL; 2325 2326 if (dev->reg_state == NETREG_REGISTERED || 2327 dev->reg_state == NETREG_UNREGISTERING) { 2328 ASSERT_RTNL(); 2329 2330 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2331 txq); 2332 if (rc) 2333 return rc; 2334 2335 if (dev->num_tc) 2336 netif_setup_tc(dev, txq); 2337 2338 if (txq < dev->real_num_tx_queues) { 2339 qdisc_reset_all_tx_gt(dev, txq); 2340 #ifdef CONFIG_XPS 2341 netif_reset_xps_queues_gt(dev, txq); 2342 #endif 2343 } 2344 } 2345 2346 dev->real_num_tx_queues = txq; 2347 return 0; 2348 } 2349 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2350 2351 #ifdef CONFIG_SYSFS 2352 /** 2353 * netif_set_real_num_rx_queues - set actual number of RX queues used 2354 * @dev: Network device 2355 * @rxq: Actual number of RX queues 2356 * 2357 * This must be called either with the rtnl_lock held or before 2358 * registration of the net device. Returns 0 on success, or a 2359 * negative error code. If called before registration, it always 2360 * succeeds. 2361 */ 2362 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2363 { 2364 int rc; 2365 2366 if (rxq < 1 || rxq > dev->num_rx_queues) 2367 return -EINVAL; 2368 2369 if (dev->reg_state == NETREG_REGISTERED) { 2370 ASSERT_RTNL(); 2371 2372 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2373 rxq); 2374 if (rc) 2375 return rc; 2376 } 2377 2378 dev->real_num_rx_queues = rxq; 2379 return 0; 2380 } 2381 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2382 #endif 2383 2384 /** 2385 * netif_get_num_default_rss_queues - default number of RSS queues 2386 * 2387 * This routine should set an upper limit on the number of RSS queues 2388 * used by default by multiqueue devices. 2389 */ 2390 int netif_get_num_default_rss_queues(void) 2391 { 2392 return is_kdump_kernel() ? 2393 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2394 } 2395 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2396 2397 static void __netif_reschedule(struct Qdisc *q) 2398 { 2399 struct softnet_data *sd; 2400 unsigned long flags; 2401 2402 local_irq_save(flags); 2403 sd = this_cpu_ptr(&softnet_data); 2404 q->next_sched = NULL; 2405 *sd->output_queue_tailp = q; 2406 sd->output_queue_tailp = &q->next_sched; 2407 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2408 local_irq_restore(flags); 2409 } 2410 2411 void __netif_schedule(struct Qdisc *q) 2412 { 2413 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2414 __netif_reschedule(q); 2415 } 2416 EXPORT_SYMBOL(__netif_schedule); 2417 2418 struct dev_kfree_skb_cb { 2419 enum skb_free_reason reason; 2420 }; 2421 2422 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2423 { 2424 return (struct dev_kfree_skb_cb *)skb->cb; 2425 } 2426 2427 void netif_schedule_queue(struct netdev_queue *txq) 2428 { 2429 rcu_read_lock(); 2430 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2431 struct Qdisc *q = rcu_dereference(txq->qdisc); 2432 2433 __netif_schedule(q); 2434 } 2435 rcu_read_unlock(); 2436 } 2437 EXPORT_SYMBOL(netif_schedule_queue); 2438 2439 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2440 { 2441 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2442 struct Qdisc *q; 2443 2444 rcu_read_lock(); 2445 q = rcu_dereference(dev_queue->qdisc); 2446 __netif_schedule(q); 2447 rcu_read_unlock(); 2448 } 2449 } 2450 EXPORT_SYMBOL(netif_tx_wake_queue); 2451 2452 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2453 { 2454 unsigned long flags; 2455 2456 if (unlikely(!skb)) 2457 return; 2458 2459 if (likely(atomic_read(&skb->users) == 1)) { 2460 smp_rmb(); 2461 atomic_set(&skb->users, 0); 2462 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2463 return; 2464 } 2465 get_kfree_skb_cb(skb)->reason = reason; 2466 local_irq_save(flags); 2467 skb->next = __this_cpu_read(softnet_data.completion_queue); 2468 __this_cpu_write(softnet_data.completion_queue, skb); 2469 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2470 local_irq_restore(flags); 2471 } 2472 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2473 2474 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2475 { 2476 if (in_irq() || irqs_disabled()) 2477 __dev_kfree_skb_irq(skb, reason); 2478 else 2479 dev_kfree_skb(skb); 2480 } 2481 EXPORT_SYMBOL(__dev_kfree_skb_any); 2482 2483 2484 /** 2485 * netif_device_detach - mark device as removed 2486 * @dev: network device 2487 * 2488 * Mark device as removed from system and therefore no longer available. 2489 */ 2490 void netif_device_detach(struct net_device *dev) 2491 { 2492 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2493 netif_running(dev)) { 2494 netif_tx_stop_all_queues(dev); 2495 } 2496 } 2497 EXPORT_SYMBOL(netif_device_detach); 2498 2499 /** 2500 * netif_device_attach - mark device as attached 2501 * @dev: network device 2502 * 2503 * Mark device as attached from system and restart if needed. 2504 */ 2505 void netif_device_attach(struct net_device *dev) 2506 { 2507 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2508 netif_running(dev)) { 2509 netif_tx_wake_all_queues(dev); 2510 __netdev_watchdog_up(dev); 2511 } 2512 } 2513 EXPORT_SYMBOL(netif_device_attach); 2514 2515 /* 2516 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2517 * to be used as a distribution range. 2518 */ 2519 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2520 unsigned int num_tx_queues) 2521 { 2522 u32 hash; 2523 u16 qoffset = 0; 2524 u16 qcount = num_tx_queues; 2525 2526 if (skb_rx_queue_recorded(skb)) { 2527 hash = skb_get_rx_queue(skb); 2528 while (unlikely(hash >= num_tx_queues)) 2529 hash -= num_tx_queues; 2530 return hash; 2531 } 2532 2533 if (dev->num_tc) { 2534 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2535 2536 qoffset = dev->tc_to_txq[tc].offset; 2537 qcount = dev->tc_to_txq[tc].count; 2538 } 2539 2540 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2541 } 2542 EXPORT_SYMBOL(__skb_tx_hash); 2543 2544 static void skb_warn_bad_offload(const struct sk_buff *skb) 2545 { 2546 static const netdev_features_t null_features; 2547 struct net_device *dev = skb->dev; 2548 const char *name = ""; 2549 2550 if (!net_ratelimit()) 2551 return; 2552 2553 if (dev) { 2554 if (dev->dev.parent) 2555 name = dev_driver_string(dev->dev.parent); 2556 else 2557 name = netdev_name(dev); 2558 } 2559 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2560 "gso_type=%d ip_summed=%d\n", 2561 name, dev ? &dev->features : &null_features, 2562 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2563 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2564 skb_shinfo(skb)->gso_type, skb->ip_summed); 2565 } 2566 2567 /* 2568 * Invalidate hardware checksum when packet is to be mangled, and 2569 * complete checksum manually on outgoing path. 2570 */ 2571 int skb_checksum_help(struct sk_buff *skb) 2572 { 2573 __wsum csum; 2574 int ret = 0, offset; 2575 2576 if (skb->ip_summed == CHECKSUM_COMPLETE) 2577 goto out_set_summed; 2578 2579 if (unlikely(skb_shinfo(skb)->gso_size)) { 2580 skb_warn_bad_offload(skb); 2581 return -EINVAL; 2582 } 2583 2584 /* Before computing a checksum, we should make sure no frag could 2585 * be modified by an external entity : checksum could be wrong. 2586 */ 2587 if (skb_has_shared_frag(skb)) { 2588 ret = __skb_linearize(skb); 2589 if (ret) 2590 goto out; 2591 } 2592 2593 offset = skb_checksum_start_offset(skb); 2594 BUG_ON(offset >= skb_headlen(skb)); 2595 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2596 2597 offset += skb->csum_offset; 2598 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2599 2600 if (skb_cloned(skb) && 2601 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2602 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2603 if (ret) 2604 goto out; 2605 } 2606 2607 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2608 out_set_summed: 2609 skb->ip_summed = CHECKSUM_NONE; 2610 out: 2611 return ret; 2612 } 2613 EXPORT_SYMBOL(skb_checksum_help); 2614 2615 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2616 { 2617 __be16 type = skb->protocol; 2618 2619 /* Tunnel gso handlers can set protocol to ethernet. */ 2620 if (type == htons(ETH_P_TEB)) { 2621 struct ethhdr *eth; 2622 2623 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2624 return 0; 2625 2626 eth = (struct ethhdr *)skb_mac_header(skb); 2627 type = eth->h_proto; 2628 } 2629 2630 return __vlan_get_protocol(skb, type, depth); 2631 } 2632 2633 /** 2634 * skb_mac_gso_segment - mac layer segmentation handler. 2635 * @skb: buffer to segment 2636 * @features: features for the output path (see dev->features) 2637 */ 2638 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2639 netdev_features_t features) 2640 { 2641 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2642 struct packet_offload *ptype; 2643 int vlan_depth = skb->mac_len; 2644 __be16 type = skb_network_protocol(skb, &vlan_depth); 2645 2646 if (unlikely(!type)) 2647 return ERR_PTR(-EINVAL); 2648 2649 __skb_pull(skb, vlan_depth); 2650 2651 rcu_read_lock(); 2652 list_for_each_entry_rcu(ptype, &offload_base, list) { 2653 if (ptype->type == type && ptype->callbacks.gso_segment) { 2654 segs = ptype->callbacks.gso_segment(skb, features); 2655 break; 2656 } 2657 } 2658 rcu_read_unlock(); 2659 2660 __skb_push(skb, skb->data - skb_mac_header(skb)); 2661 2662 return segs; 2663 } 2664 EXPORT_SYMBOL(skb_mac_gso_segment); 2665 2666 2667 /* openvswitch calls this on rx path, so we need a different check. 2668 */ 2669 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2670 { 2671 if (tx_path) 2672 return skb->ip_summed != CHECKSUM_PARTIAL && 2673 skb->ip_summed != CHECKSUM_NONE; 2674 2675 return skb->ip_summed == CHECKSUM_NONE; 2676 } 2677 2678 /** 2679 * __skb_gso_segment - Perform segmentation on skb. 2680 * @skb: buffer to segment 2681 * @features: features for the output path (see dev->features) 2682 * @tx_path: whether it is called in TX path 2683 * 2684 * This function segments the given skb and returns a list of segments. 2685 * 2686 * It may return NULL if the skb requires no segmentation. This is 2687 * only possible when GSO is used for verifying header integrity. 2688 * 2689 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2690 */ 2691 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2692 netdev_features_t features, bool tx_path) 2693 { 2694 struct sk_buff *segs; 2695 2696 if (unlikely(skb_needs_check(skb, tx_path))) { 2697 int err; 2698 2699 /* We're going to init ->check field in TCP or UDP header */ 2700 err = skb_cow_head(skb, 0); 2701 if (err < 0) 2702 return ERR_PTR(err); 2703 } 2704 2705 /* Only report GSO partial support if it will enable us to 2706 * support segmentation on this frame without needing additional 2707 * work. 2708 */ 2709 if (features & NETIF_F_GSO_PARTIAL) { 2710 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2711 struct net_device *dev = skb->dev; 2712 2713 partial_features |= dev->features & dev->gso_partial_features; 2714 if (!skb_gso_ok(skb, features | partial_features)) 2715 features &= ~NETIF_F_GSO_PARTIAL; 2716 } 2717 2718 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2719 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2720 2721 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2722 SKB_GSO_CB(skb)->encap_level = 0; 2723 2724 skb_reset_mac_header(skb); 2725 skb_reset_mac_len(skb); 2726 2727 segs = skb_mac_gso_segment(skb, features); 2728 2729 if (unlikely(skb_needs_check(skb, tx_path))) 2730 skb_warn_bad_offload(skb); 2731 2732 return segs; 2733 } 2734 EXPORT_SYMBOL(__skb_gso_segment); 2735 2736 /* Take action when hardware reception checksum errors are detected. */ 2737 #ifdef CONFIG_BUG 2738 void netdev_rx_csum_fault(struct net_device *dev) 2739 { 2740 if (net_ratelimit()) { 2741 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2742 dump_stack(); 2743 } 2744 } 2745 EXPORT_SYMBOL(netdev_rx_csum_fault); 2746 #endif 2747 2748 /* Actually, we should eliminate this check as soon as we know, that: 2749 * 1. IOMMU is present and allows to map all the memory. 2750 * 2. No high memory really exists on this machine. 2751 */ 2752 2753 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2754 { 2755 #ifdef CONFIG_HIGHMEM 2756 int i; 2757 2758 if (!(dev->features & NETIF_F_HIGHDMA)) { 2759 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2760 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2761 2762 if (PageHighMem(skb_frag_page(frag))) 2763 return 1; 2764 } 2765 } 2766 2767 if (PCI_DMA_BUS_IS_PHYS) { 2768 struct device *pdev = dev->dev.parent; 2769 2770 if (!pdev) 2771 return 0; 2772 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2773 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2774 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2775 2776 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2777 return 1; 2778 } 2779 } 2780 #endif 2781 return 0; 2782 } 2783 2784 /* If MPLS offload request, verify we are testing hardware MPLS features 2785 * instead of standard features for the netdev. 2786 */ 2787 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2788 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2789 netdev_features_t features, 2790 __be16 type) 2791 { 2792 if (eth_p_mpls(type)) 2793 features &= skb->dev->mpls_features; 2794 2795 return features; 2796 } 2797 #else 2798 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2799 netdev_features_t features, 2800 __be16 type) 2801 { 2802 return features; 2803 } 2804 #endif 2805 2806 static netdev_features_t harmonize_features(struct sk_buff *skb, 2807 netdev_features_t features) 2808 { 2809 int tmp; 2810 __be16 type; 2811 2812 type = skb_network_protocol(skb, &tmp); 2813 features = net_mpls_features(skb, features, type); 2814 2815 if (skb->ip_summed != CHECKSUM_NONE && 2816 !can_checksum_protocol(features, type)) { 2817 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2818 } 2819 if (illegal_highdma(skb->dev, skb)) 2820 features &= ~NETIF_F_SG; 2821 2822 return features; 2823 } 2824 2825 netdev_features_t passthru_features_check(struct sk_buff *skb, 2826 struct net_device *dev, 2827 netdev_features_t features) 2828 { 2829 return features; 2830 } 2831 EXPORT_SYMBOL(passthru_features_check); 2832 2833 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2834 struct net_device *dev, 2835 netdev_features_t features) 2836 { 2837 return vlan_features_check(skb, features); 2838 } 2839 2840 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2841 struct net_device *dev, 2842 netdev_features_t features) 2843 { 2844 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2845 2846 if (gso_segs > dev->gso_max_segs) 2847 return features & ~NETIF_F_GSO_MASK; 2848 2849 /* Support for GSO partial features requires software 2850 * intervention before we can actually process the packets 2851 * so we need to strip support for any partial features now 2852 * and we can pull them back in after we have partially 2853 * segmented the frame. 2854 */ 2855 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2856 features &= ~dev->gso_partial_features; 2857 2858 /* Make sure to clear the IPv4 ID mangling feature if the 2859 * IPv4 header has the potential to be fragmented. 2860 */ 2861 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2862 struct iphdr *iph = skb->encapsulation ? 2863 inner_ip_hdr(skb) : ip_hdr(skb); 2864 2865 if (!(iph->frag_off & htons(IP_DF))) 2866 features &= ~NETIF_F_TSO_MANGLEID; 2867 } 2868 2869 return features; 2870 } 2871 2872 netdev_features_t netif_skb_features(struct sk_buff *skb) 2873 { 2874 struct net_device *dev = skb->dev; 2875 netdev_features_t features = dev->features; 2876 2877 if (skb_is_gso(skb)) 2878 features = gso_features_check(skb, dev, features); 2879 2880 /* If encapsulation offload request, verify we are testing 2881 * hardware encapsulation features instead of standard 2882 * features for the netdev 2883 */ 2884 if (skb->encapsulation) 2885 features &= dev->hw_enc_features; 2886 2887 if (skb_vlan_tagged(skb)) 2888 features = netdev_intersect_features(features, 2889 dev->vlan_features | 2890 NETIF_F_HW_VLAN_CTAG_TX | 2891 NETIF_F_HW_VLAN_STAG_TX); 2892 2893 if (dev->netdev_ops->ndo_features_check) 2894 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2895 features); 2896 else 2897 features &= dflt_features_check(skb, dev, features); 2898 2899 return harmonize_features(skb, features); 2900 } 2901 EXPORT_SYMBOL(netif_skb_features); 2902 2903 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2904 struct netdev_queue *txq, bool more) 2905 { 2906 unsigned int len; 2907 int rc; 2908 2909 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2910 dev_queue_xmit_nit(skb, dev); 2911 2912 len = skb->len; 2913 trace_net_dev_start_xmit(skb, dev); 2914 rc = netdev_start_xmit(skb, dev, txq, more); 2915 trace_net_dev_xmit(skb, rc, dev, len); 2916 2917 return rc; 2918 } 2919 2920 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2921 struct netdev_queue *txq, int *ret) 2922 { 2923 struct sk_buff *skb = first; 2924 int rc = NETDEV_TX_OK; 2925 2926 while (skb) { 2927 struct sk_buff *next = skb->next; 2928 2929 skb->next = NULL; 2930 rc = xmit_one(skb, dev, txq, next != NULL); 2931 if (unlikely(!dev_xmit_complete(rc))) { 2932 skb->next = next; 2933 goto out; 2934 } 2935 2936 skb = next; 2937 if (netif_xmit_stopped(txq) && skb) { 2938 rc = NETDEV_TX_BUSY; 2939 break; 2940 } 2941 } 2942 2943 out: 2944 *ret = rc; 2945 return skb; 2946 } 2947 2948 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2949 netdev_features_t features) 2950 { 2951 if (skb_vlan_tag_present(skb) && 2952 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2953 skb = __vlan_hwaccel_push_inside(skb); 2954 return skb; 2955 } 2956 2957 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2958 { 2959 netdev_features_t features; 2960 2961 features = netif_skb_features(skb); 2962 skb = validate_xmit_vlan(skb, features); 2963 if (unlikely(!skb)) 2964 goto out_null; 2965 2966 if (netif_needs_gso(skb, features)) { 2967 struct sk_buff *segs; 2968 2969 segs = skb_gso_segment(skb, features); 2970 if (IS_ERR(segs)) { 2971 goto out_kfree_skb; 2972 } else if (segs) { 2973 consume_skb(skb); 2974 skb = segs; 2975 } 2976 } else { 2977 if (skb_needs_linearize(skb, features) && 2978 __skb_linearize(skb)) 2979 goto out_kfree_skb; 2980 2981 if (validate_xmit_xfrm(skb, features)) 2982 goto out_kfree_skb; 2983 2984 /* If packet is not checksummed and device does not 2985 * support checksumming for this protocol, complete 2986 * checksumming here. 2987 */ 2988 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2989 if (skb->encapsulation) 2990 skb_set_inner_transport_header(skb, 2991 skb_checksum_start_offset(skb)); 2992 else 2993 skb_set_transport_header(skb, 2994 skb_checksum_start_offset(skb)); 2995 if (!(features & NETIF_F_CSUM_MASK) && 2996 skb_checksum_help(skb)) 2997 goto out_kfree_skb; 2998 } 2999 } 3000 3001 return skb; 3002 3003 out_kfree_skb: 3004 kfree_skb(skb); 3005 out_null: 3006 atomic_long_inc(&dev->tx_dropped); 3007 return NULL; 3008 } 3009 3010 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 3011 { 3012 struct sk_buff *next, *head = NULL, *tail; 3013 3014 for (; skb != NULL; skb = next) { 3015 next = skb->next; 3016 skb->next = NULL; 3017 3018 /* in case skb wont be segmented, point to itself */ 3019 skb->prev = skb; 3020 3021 skb = validate_xmit_skb(skb, dev); 3022 if (!skb) 3023 continue; 3024 3025 if (!head) 3026 head = skb; 3027 else 3028 tail->next = skb; 3029 /* If skb was segmented, skb->prev points to 3030 * the last segment. If not, it still contains skb. 3031 */ 3032 tail = skb->prev; 3033 } 3034 return head; 3035 } 3036 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3037 3038 static void qdisc_pkt_len_init(struct sk_buff *skb) 3039 { 3040 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3041 3042 qdisc_skb_cb(skb)->pkt_len = skb->len; 3043 3044 /* To get more precise estimation of bytes sent on wire, 3045 * we add to pkt_len the headers size of all segments 3046 */ 3047 if (shinfo->gso_size) { 3048 unsigned int hdr_len; 3049 u16 gso_segs = shinfo->gso_segs; 3050 3051 /* mac layer + network layer */ 3052 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3053 3054 /* + transport layer */ 3055 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3056 hdr_len += tcp_hdrlen(skb); 3057 else 3058 hdr_len += sizeof(struct udphdr); 3059 3060 if (shinfo->gso_type & SKB_GSO_DODGY) 3061 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3062 shinfo->gso_size); 3063 3064 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3065 } 3066 } 3067 3068 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3069 struct net_device *dev, 3070 struct netdev_queue *txq) 3071 { 3072 spinlock_t *root_lock = qdisc_lock(q); 3073 struct sk_buff *to_free = NULL; 3074 bool contended; 3075 int rc; 3076 3077 qdisc_calculate_pkt_len(skb, q); 3078 /* 3079 * Heuristic to force contended enqueues to serialize on a 3080 * separate lock before trying to get qdisc main lock. 3081 * This permits qdisc->running owner to get the lock more 3082 * often and dequeue packets faster. 3083 */ 3084 contended = qdisc_is_running(q); 3085 if (unlikely(contended)) 3086 spin_lock(&q->busylock); 3087 3088 spin_lock(root_lock); 3089 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3090 __qdisc_drop(skb, &to_free); 3091 rc = NET_XMIT_DROP; 3092 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3093 qdisc_run_begin(q)) { 3094 /* 3095 * This is a work-conserving queue; there are no old skbs 3096 * waiting to be sent out; and the qdisc is not running - 3097 * xmit the skb directly. 3098 */ 3099 3100 qdisc_bstats_update(q, skb); 3101 3102 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3103 if (unlikely(contended)) { 3104 spin_unlock(&q->busylock); 3105 contended = false; 3106 } 3107 __qdisc_run(q); 3108 } else 3109 qdisc_run_end(q); 3110 3111 rc = NET_XMIT_SUCCESS; 3112 } else { 3113 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3114 if (qdisc_run_begin(q)) { 3115 if (unlikely(contended)) { 3116 spin_unlock(&q->busylock); 3117 contended = false; 3118 } 3119 __qdisc_run(q); 3120 } 3121 } 3122 spin_unlock(root_lock); 3123 if (unlikely(to_free)) 3124 kfree_skb_list(to_free); 3125 if (unlikely(contended)) 3126 spin_unlock(&q->busylock); 3127 return rc; 3128 } 3129 3130 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3131 static void skb_update_prio(struct sk_buff *skb) 3132 { 3133 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3134 3135 if (!skb->priority && skb->sk && map) { 3136 unsigned int prioidx = 3137 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3138 3139 if (prioidx < map->priomap_len) 3140 skb->priority = map->priomap[prioidx]; 3141 } 3142 } 3143 #else 3144 #define skb_update_prio(skb) 3145 #endif 3146 3147 DEFINE_PER_CPU(int, xmit_recursion); 3148 EXPORT_SYMBOL(xmit_recursion); 3149 3150 /** 3151 * dev_loopback_xmit - loop back @skb 3152 * @net: network namespace this loopback is happening in 3153 * @sk: sk needed to be a netfilter okfn 3154 * @skb: buffer to transmit 3155 */ 3156 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3157 { 3158 skb_reset_mac_header(skb); 3159 __skb_pull(skb, skb_network_offset(skb)); 3160 skb->pkt_type = PACKET_LOOPBACK; 3161 skb->ip_summed = CHECKSUM_UNNECESSARY; 3162 WARN_ON(!skb_dst(skb)); 3163 skb_dst_force(skb); 3164 netif_rx_ni(skb); 3165 return 0; 3166 } 3167 EXPORT_SYMBOL(dev_loopback_xmit); 3168 3169 #ifdef CONFIG_NET_EGRESS 3170 static struct sk_buff * 3171 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3172 { 3173 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3174 struct tcf_result cl_res; 3175 3176 if (!cl) 3177 return skb; 3178 3179 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3180 qdisc_bstats_cpu_update(cl->q, skb); 3181 3182 switch (tc_classify(skb, cl, &cl_res, false)) { 3183 case TC_ACT_OK: 3184 case TC_ACT_RECLASSIFY: 3185 skb->tc_index = TC_H_MIN(cl_res.classid); 3186 break; 3187 case TC_ACT_SHOT: 3188 qdisc_qstats_cpu_drop(cl->q); 3189 *ret = NET_XMIT_DROP; 3190 kfree_skb(skb); 3191 return NULL; 3192 case TC_ACT_STOLEN: 3193 case TC_ACT_QUEUED: 3194 *ret = NET_XMIT_SUCCESS; 3195 consume_skb(skb); 3196 return NULL; 3197 case TC_ACT_REDIRECT: 3198 /* No need to push/pop skb's mac_header here on egress! */ 3199 skb_do_redirect(skb); 3200 *ret = NET_XMIT_SUCCESS; 3201 return NULL; 3202 default: 3203 break; 3204 } 3205 3206 return skb; 3207 } 3208 #endif /* CONFIG_NET_EGRESS */ 3209 3210 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3211 { 3212 #ifdef CONFIG_XPS 3213 struct xps_dev_maps *dev_maps; 3214 struct xps_map *map; 3215 int queue_index = -1; 3216 3217 rcu_read_lock(); 3218 dev_maps = rcu_dereference(dev->xps_maps); 3219 if (dev_maps) { 3220 unsigned int tci = skb->sender_cpu - 1; 3221 3222 if (dev->num_tc) { 3223 tci *= dev->num_tc; 3224 tci += netdev_get_prio_tc_map(dev, skb->priority); 3225 } 3226 3227 map = rcu_dereference(dev_maps->cpu_map[tci]); 3228 if (map) { 3229 if (map->len == 1) 3230 queue_index = map->queues[0]; 3231 else 3232 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3233 map->len)]; 3234 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3235 queue_index = -1; 3236 } 3237 } 3238 rcu_read_unlock(); 3239 3240 return queue_index; 3241 #else 3242 return -1; 3243 #endif 3244 } 3245 3246 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3247 { 3248 struct sock *sk = skb->sk; 3249 int queue_index = sk_tx_queue_get(sk); 3250 3251 if (queue_index < 0 || skb->ooo_okay || 3252 queue_index >= dev->real_num_tx_queues) { 3253 int new_index = get_xps_queue(dev, skb); 3254 3255 if (new_index < 0) 3256 new_index = skb_tx_hash(dev, skb); 3257 3258 if (queue_index != new_index && sk && 3259 sk_fullsock(sk) && 3260 rcu_access_pointer(sk->sk_dst_cache)) 3261 sk_tx_queue_set(sk, new_index); 3262 3263 queue_index = new_index; 3264 } 3265 3266 return queue_index; 3267 } 3268 3269 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3270 struct sk_buff *skb, 3271 void *accel_priv) 3272 { 3273 int queue_index = 0; 3274 3275 #ifdef CONFIG_XPS 3276 u32 sender_cpu = skb->sender_cpu - 1; 3277 3278 if (sender_cpu >= (u32)NR_CPUS) 3279 skb->sender_cpu = raw_smp_processor_id() + 1; 3280 #endif 3281 3282 if (dev->real_num_tx_queues != 1) { 3283 const struct net_device_ops *ops = dev->netdev_ops; 3284 3285 if (ops->ndo_select_queue) 3286 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3287 __netdev_pick_tx); 3288 else 3289 queue_index = __netdev_pick_tx(dev, skb); 3290 3291 if (!accel_priv) 3292 queue_index = netdev_cap_txqueue(dev, queue_index); 3293 } 3294 3295 skb_set_queue_mapping(skb, queue_index); 3296 return netdev_get_tx_queue(dev, queue_index); 3297 } 3298 3299 /** 3300 * __dev_queue_xmit - transmit a buffer 3301 * @skb: buffer to transmit 3302 * @accel_priv: private data used for L2 forwarding offload 3303 * 3304 * Queue a buffer for transmission to a network device. The caller must 3305 * have set the device and priority and built the buffer before calling 3306 * this function. The function can be called from an interrupt. 3307 * 3308 * A negative errno code is returned on a failure. A success does not 3309 * guarantee the frame will be transmitted as it may be dropped due 3310 * to congestion or traffic shaping. 3311 * 3312 * ----------------------------------------------------------------------------------- 3313 * I notice this method can also return errors from the queue disciplines, 3314 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3315 * be positive. 3316 * 3317 * Regardless of the return value, the skb is consumed, so it is currently 3318 * difficult to retry a send to this method. (You can bump the ref count 3319 * before sending to hold a reference for retry if you are careful.) 3320 * 3321 * When calling this method, interrupts MUST be enabled. This is because 3322 * the BH enable code must have IRQs enabled so that it will not deadlock. 3323 * --BLG 3324 */ 3325 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3326 { 3327 struct net_device *dev = skb->dev; 3328 struct netdev_queue *txq; 3329 struct Qdisc *q; 3330 int rc = -ENOMEM; 3331 3332 skb_reset_mac_header(skb); 3333 3334 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3335 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3336 3337 /* Disable soft irqs for various locks below. Also 3338 * stops preemption for RCU. 3339 */ 3340 rcu_read_lock_bh(); 3341 3342 skb_update_prio(skb); 3343 3344 qdisc_pkt_len_init(skb); 3345 #ifdef CONFIG_NET_CLS_ACT 3346 skb->tc_at_ingress = 0; 3347 # ifdef CONFIG_NET_EGRESS 3348 if (static_key_false(&egress_needed)) { 3349 skb = sch_handle_egress(skb, &rc, dev); 3350 if (!skb) 3351 goto out; 3352 } 3353 # endif 3354 #endif 3355 /* If device/qdisc don't need skb->dst, release it right now while 3356 * its hot in this cpu cache. 3357 */ 3358 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3359 skb_dst_drop(skb); 3360 else 3361 skb_dst_force(skb); 3362 3363 txq = netdev_pick_tx(dev, skb, accel_priv); 3364 q = rcu_dereference_bh(txq->qdisc); 3365 3366 trace_net_dev_queue(skb); 3367 if (q->enqueue) { 3368 rc = __dev_xmit_skb(skb, q, dev, txq); 3369 goto out; 3370 } 3371 3372 /* The device has no queue. Common case for software devices: 3373 * loopback, all the sorts of tunnels... 3374 3375 * Really, it is unlikely that netif_tx_lock protection is necessary 3376 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3377 * counters.) 3378 * However, it is possible, that they rely on protection 3379 * made by us here. 3380 3381 * Check this and shot the lock. It is not prone from deadlocks. 3382 *Either shot noqueue qdisc, it is even simpler 8) 3383 */ 3384 if (dev->flags & IFF_UP) { 3385 int cpu = smp_processor_id(); /* ok because BHs are off */ 3386 3387 if (txq->xmit_lock_owner != cpu) { 3388 if (unlikely(__this_cpu_read(xmit_recursion) > 3389 XMIT_RECURSION_LIMIT)) 3390 goto recursion_alert; 3391 3392 skb = validate_xmit_skb(skb, dev); 3393 if (!skb) 3394 goto out; 3395 3396 HARD_TX_LOCK(dev, txq, cpu); 3397 3398 if (!netif_xmit_stopped(txq)) { 3399 __this_cpu_inc(xmit_recursion); 3400 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3401 __this_cpu_dec(xmit_recursion); 3402 if (dev_xmit_complete(rc)) { 3403 HARD_TX_UNLOCK(dev, txq); 3404 goto out; 3405 } 3406 } 3407 HARD_TX_UNLOCK(dev, txq); 3408 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3409 dev->name); 3410 } else { 3411 /* Recursion is detected! It is possible, 3412 * unfortunately 3413 */ 3414 recursion_alert: 3415 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3416 dev->name); 3417 } 3418 } 3419 3420 rc = -ENETDOWN; 3421 rcu_read_unlock_bh(); 3422 3423 atomic_long_inc(&dev->tx_dropped); 3424 kfree_skb_list(skb); 3425 return rc; 3426 out: 3427 rcu_read_unlock_bh(); 3428 return rc; 3429 } 3430 3431 int dev_queue_xmit(struct sk_buff *skb) 3432 { 3433 return __dev_queue_xmit(skb, NULL); 3434 } 3435 EXPORT_SYMBOL(dev_queue_xmit); 3436 3437 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3438 { 3439 return __dev_queue_xmit(skb, accel_priv); 3440 } 3441 EXPORT_SYMBOL(dev_queue_xmit_accel); 3442 3443 3444 /************************************************************************* 3445 * Receiver routines 3446 *************************************************************************/ 3447 3448 int netdev_max_backlog __read_mostly = 1000; 3449 EXPORT_SYMBOL(netdev_max_backlog); 3450 3451 int netdev_tstamp_prequeue __read_mostly = 1; 3452 int netdev_budget __read_mostly = 300; 3453 unsigned int __read_mostly netdev_budget_usecs = 2000; 3454 int weight_p __read_mostly = 64; /* old backlog weight */ 3455 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3456 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3457 int dev_rx_weight __read_mostly = 64; 3458 int dev_tx_weight __read_mostly = 64; 3459 3460 /* Called with irq disabled */ 3461 static inline void ____napi_schedule(struct softnet_data *sd, 3462 struct napi_struct *napi) 3463 { 3464 list_add_tail(&napi->poll_list, &sd->poll_list); 3465 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3466 } 3467 3468 #ifdef CONFIG_RPS 3469 3470 /* One global table that all flow-based protocols share. */ 3471 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3472 EXPORT_SYMBOL(rps_sock_flow_table); 3473 u32 rps_cpu_mask __read_mostly; 3474 EXPORT_SYMBOL(rps_cpu_mask); 3475 3476 struct static_key rps_needed __read_mostly; 3477 EXPORT_SYMBOL(rps_needed); 3478 struct static_key rfs_needed __read_mostly; 3479 EXPORT_SYMBOL(rfs_needed); 3480 3481 static struct rps_dev_flow * 3482 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3483 struct rps_dev_flow *rflow, u16 next_cpu) 3484 { 3485 if (next_cpu < nr_cpu_ids) { 3486 #ifdef CONFIG_RFS_ACCEL 3487 struct netdev_rx_queue *rxqueue; 3488 struct rps_dev_flow_table *flow_table; 3489 struct rps_dev_flow *old_rflow; 3490 u32 flow_id; 3491 u16 rxq_index; 3492 int rc; 3493 3494 /* Should we steer this flow to a different hardware queue? */ 3495 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3496 !(dev->features & NETIF_F_NTUPLE)) 3497 goto out; 3498 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3499 if (rxq_index == skb_get_rx_queue(skb)) 3500 goto out; 3501 3502 rxqueue = dev->_rx + rxq_index; 3503 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3504 if (!flow_table) 3505 goto out; 3506 flow_id = skb_get_hash(skb) & flow_table->mask; 3507 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3508 rxq_index, flow_id); 3509 if (rc < 0) 3510 goto out; 3511 old_rflow = rflow; 3512 rflow = &flow_table->flows[flow_id]; 3513 rflow->filter = rc; 3514 if (old_rflow->filter == rflow->filter) 3515 old_rflow->filter = RPS_NO_FILTER; 3516 out: 3517 #endif 3518 rflow->last_qtail = 3519 per_cpu(softnet_data, next_cpu).input_queue_head; 3520 } 3521 3522 rflow->cpu = next_cpu; 3523 return rflow; 3524 } 3525 3526 /* 3527 * get_rps_cpu is called from netif_receive_skb and returns the target 3528 * CPU from the RPS map of the receiving queue for a given skb. 3529 * rcu_read_lock must be held on entry. 3530 */ 3531 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3532 struct rps_dev_flow **rflowp) 3533 { 3534 const struct rps_sock_flow_table *sock_flow_table; 3535 struct netdev_rx_queue *rxqueue = dev->_rx; 3536 struct rps_dev_flow_table *flow_table; 3537 struct rps_map *map; 3538 int cpu = -1; 3539 u32 tcpu; 3540 u32 hash; 3541 3542 if (skb_rx_queue_recorded(skb)) { 3543 u16 index = skb_get_rx_queue(skb); 3544 3545 if (unlikely(index >= dev->real_num_rx_queues)) { 3546 WARN_ONCE(dev->real_num_rx_queues > 1, 3547 "%s received packet on queue %u, but number " 3548 "of RX queues is %u\n", 3549 dev->name, index, dev->real_num_rx_queues); 3550 goto done; 3551 } 3552 rxqueue += index; 3553 } 3554 3555 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3556 3557 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3558 map = rcu_dereference(rxqueue->rps_map); 3559 if (!flow_table && !map) 3560 goto done; 3561 3562 skb_reset_network_header(skb); 3563 hash = skb_get_hash(skb); 3564 if (!hash) 3565 goto done; 3566 3567 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3568 if (flow_table && sock_flow_table) { 3569 struct rps_dev_flow *rflow; 3570 u32 next_cpu; 3571 u32 ident; 3572 3573 /* First check into global flow table if there is a match */ 3574 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3575 if ((ident ^ hash) & ~rps_cpu_mask) 3576 goto try_rps; 3577 3578 next_cpu = ident & rps_cpu_mask; 3579 3580 /* OK, now we know there is a match, 3581 * we can look at the local (per receive queue) flow table 3582 */ 3583 rflow = &flow_table->flows[hash & flow_table->mask]; 3584 tcpu = rflow->cpu; 3585 3586 /* 3587 * If the desired CPU (where last recvmsg was done) is 3588 * different from current CPU (one in the rx-queue flow 3589 * table entry), switch if one of the following holds: 3590 * - Current CPU is unset (>= nr_cpu_ids). 3591 * - Current CPU is offline. 3592 * - The current CPU's queue tail has advanced beyond the 3593 * last packet that was enqueued using this table entry. 3594 * This guarantees that all previous packets for the flow 3595 * have been dequeued, thus preserving in order delivery. 3596 */ 3597 if (unlikely(tcpu != next_cpu) && 3598 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3599 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3600 rflow->last_qtail)) >= 0)) { 3601 tcpu = next_cpu; 3602 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3603 } 3604 3605 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3606 *rflowp = rflow; 3607 cpu = tcpu; 3608 goto done; 3609 } 3610 } 3611 3612 try_rps: 3613 3614 if (map) { 3615 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3616 if (cpu_online(tcpu)) { 3617 cpu = tcpu; 3618 goto done; 3619 } 3620 } 3621 3622 done: 3623 return cpu; 3624 } 3625 3626 #ifdef CONFIG_RFS_ACCEL 3627 3628 /** 3629 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3630 * @dev: Device on which the filter was set 3631 * @rxq_index: RX queue index 3632 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3633 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3634 * 3635 * Drivers that implement ndo_rx_flow_steer() should periodically call 3636 * this function for each installed filter and remove the filters for 3637 * which it returns %true. 3638 */ 3639 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3640 u32 flow_id, u16 filter_id) 3641 { 3642 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3643 struct rps_dev_flow_table *flow_table; 3644 struct rps_dev_flow *rflow; 3645 bool expire = true; 3646 unsigned int cpu; 3647 3648 rcu_read_lock(); 3649 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3650 if (flow_table && flow_id <= flow_table->mask) { 3651 rflow = &flow_table->flows[flow_id]; 3652 cpu = ACCESS_ONCE(rflow->cpu); 3653 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3654 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3655 rflow->last_qtail) < 3656 (int)(10 * flow_table->mask))) 3657 expire = false; 3658 } 3659 rcu_read_unlock(); 3660 return expire; 3661 } 3662 EXPORT_SYMBOL(rps_may_expire_flow); 3663 3664 #endif /* CONFIG_RFS_ACCEL */ 3665 3666 /* Called from hardirq (IPI) context */ 3667 static void rps_trigger_softirq(void *data) 3668 { 3669 struct softnet_data *sd = data; 3670 3671 ____napi_schedule(sd, &sd->backlog); 3672 sd->received_rps++; 3673 } 3674 3675 #endif /* CONFIG_RPS */ 3676 3677 /* 3678 * Check if this softnet_data structure is another cpu one 3679 * If yes, queue it to our IPI list and return 1 3680 * If no, return 0 3681 */ 3682 static int rps_ipi_queued(struct softnet_data *sd) 3683 { 3684 #ifdef CONFIG_RPS 3685 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3686 3687 if (sd != mysd) { 3688 sd->rps_ipi_next = mysd->rps_ipi_list; 3689 mysd->rps_ipi_list = sd; 3690 3691 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3692 return 1; 3693 } 3694 #endif /* CONFIG_RPS */ 3695 return 0; 3696 } 3697 3698 #ifdef CONFIG_NET_FLOW_LIMIT 3699 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3700 #endif 3701 3702 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3703 { 3704 #ifdef CONFIG_NET_FLOW_LIMIT 3705 struct sd_flow_limit *fl; 3706 struct softnet_data *sd; 3707 unsigned int old_flow, new_flow; 3708 3709 if (qlen < (netdev_max_backlog >> 1)) 3710 return false; 3711 3712 sd = this_cpu_ptr(&softnet_data); 3713 3714 rcu_read_lock(); 3715 fl = rcu_dereference(sd->flow_limit); 3716 if (fl) { 3717 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3718 old_flow = fl->history[fl->history_head]; 3719 fl->history[fl->history_head] = new_flow; 3720 3721 fl->history_head++; 3722 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3723 3724 if (likely(fl->buckets[old_flow])) 3725 fl->buckets[old_flow]--; 3726 3727 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3728 fl->count++; 3729 rcu_read_unlock(); 3730 return true; 3731 } 3732 } 3733 rcu_read_unlock(); 3734 #endif 3735 return false; 3736 } 3737 3738 /* 3739 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3740 * queue (may be a remote CPU queue). 3741 */ 3742 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3743 unsigned int *qtail) 3744 { 3745 struct softnet_data *sd; 3746 unsigned long flags; 3747 unsigned int qlen; 3748 3749 sd = &per_cpu(softnet_data, cpu); 3750 3751 local_irq_save(flags); 3752 3753 rps_lock(sd); 3754 if (!netif_running(skb->dev)) 3755 goto drop; 3756 qlen = skb_queue_len(&sd->input_pkt_queue); 3757 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3758 if (qlen) { 3759 enqueue: 3760 __skb_queue_tail(&sd->input_pkt_queue, skb); 3761 input_queue_tail_incr_save(sd, qtail); 3762 rps_unlock(sd); 3763 local_irq_restore(flags); 3764 return NET_RX_SUCCESS; 3765 } 3766 3767 /* Schedule NAPI for backlog device 3768 * We can use non atomic operation since we own the queue lock 3769 */ 3770 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3771 if (!rps_ipi_queued(sd)) 3772 ____napi_schedule(sd, &sd->backlog); 3773 } 3774 goto enqueue; 3775 } 3776 3777 drop: 3778 sd->dropped++; 3779 rps_unlock(sd); 3780 3781 local_irq_restore(flags); 3782 3783 atomic_long_inc(&skb->dev->rx_dropped); 3784 kfree_skb(skb); 3785 return NET_RX_DROP; 3786 } 3787 3788 static int netif_rx_internal(struct sk_buff *skb) 3789 { 3790 int ret; 3791 3792 net_timestamp_check(netdev_tstamp_prequeue, skb); 3793 3794 trace_netif_rx(skb); 3795 #ifdef CONFIG_RPS 3796 if (static_key_false(&rps_needed)) { 3797 struct rps_dev_flow voidflow, *rflow = &voidflow; 3798 int cpu; 3799 3800 preempt_disable(); 3801 rcu_read_lock(); 3802 3803 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3804 if (cpu < 0) 3805 cpu = smp_processor_id(); 3806 3807 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3808 3809 rcu_read_unlock(); 3810 preempt_enable(); 3811 } else 3812 #endif 3813 { 3814 unsigned int qtail; 3815 3816 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3817 put_cpu(); 3818 } 3819 return ret; 3820 } 3821 3822 /** 3823 * netif_rx - post buffer to the network code 3824 * @skb: buffer to post 3825 * 3826 * This function receives a packet from a device driver and queues it for 3827 * the upper (protocol) levels to process. It always succeeds. The buffer 3828 * may be dropped during processing for congestion control or by the 3829 * protocol layers. 3830 * 3831 * return values: 3832 * NET_RX_SUCCESS (no congestion) 3833 * NET_RX_DROP (packet was dropped) 3834 * 3835 */ 3836 3837 int netif_rx(struct sk_buff *skb) 3838 { 3839 trace_netif_rx_entry(skb); 3840 3841 return netif_rx_internal(skb); 3842 } 3843 EXPORT_SYMBOL(netif_rx); 3844 3845 int netif_rx_ni(struct sk_buff *skb) 3846 { 3847 int err; 3848 3849 trace_netif_rx_ni_entry(skb); 3850 3851 preempt_disable(); 3852 err = netif_rx_internal(skb); 3853 if (local_softirq_pending()) 3854 do_softirq(); 3855 preempt_enable(); 3856 3857 return err; 3858 } 3859 EXPORT_SYMBOL(netif_rx_ni); 3860 3861 static __latent_entropy void net_tx_action(struct softirq_action *h) 3862 { 3863 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3864 3865 if (sd->completion_queue) { 3866 struct sk_buff *clist; 3867 3868 local_irq_disable(); 3869 clist = sd->completion_queue; 3870 sd->completion_queue = NULL; 3871 local_irq_enable(); 3872 3873 while (clist) { 3874 struct sk_buff *skb = clist; 3875 3876 clist = clist->next; 3877 3878 WARN_ON(atomic_read(&skb->users)); 3879 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3880 trace_consume_skb(skb); 3881 else 3882 trace_kfree_skb(skb, net_tx_action); 3883 3884 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 3885 __kfree_skb(skb); 3886 else 3887 __kfree_skb_defer(skb); 3888 } 3889 3890 __kfree_skb_flush(); 3891 } 3892 3893 if (sd->output_queue) { 3894 struct Qdisc *head; 3895 3896 local_irq_disable(); 3897 head = sd->output_queue; 3898 sd->output_queue = NULL; 3899 sd->output_queue_tailp = &sd->output_queue; 3900 local_irq_enable(); 3901 3902 while (head) { 3903 struct Qdisc *q = head; 3904 spinlock_t *root_lock; 3905 3906 head = head->next_sched; 3907 3908 root_lock = qdisc_lock(q); 3909 spin_lock(root_lock); 3910 /* We need to make sure head->next_sched is read 3911 * before clearing __QDISC_STATE_SCHED 3912 */ 3913 smp_mb__before_atomic(); 3914 clear_bit(__QDISC_STATE_SCHED, &q->state); 3915 qdisc_run(q); 3916 spin_unlock(root_lock); 3917 } 3918 } 3919 } 3920 3921 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 3922 /* This hook is defined here for ATM LANE */ 3923 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3924 unsigned char *addr) __read_mostly; 3925 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3926 #endif 3927 3928 static inline struct sk_buff * 3929 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 3930 struct net_device *orig_dev) 3931 { 3932 #ifdef CONFIG_NET_CLS_ACT 3933 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 3934 struct tcf_result cl_res; 3935 3936 /* If there's at least one ingress present somewhere (so 3937 * we get here via enabled static key), remaining devices 3938 * that are not configured with an ingress qdisc will bail 3939 * out here. 3940 */ 3941 if (!cl) 3942 return skb; 3943 if (*pt_prev) { 3944 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3945 *pt_prev = NULL; 3946 } 3947 3948 qdisc_skb_cb(skb)->pkt_len = skb->len; 3949 skb->tc_at_ingress = 1; 3950 qdisc_bstats_cpu_update(cl->q, skb); 3951 3952 switch (tc_classify(skb, cl, &cl_res, false)) { 3953 case TC_ACT_OK: 3954 case TC_ACT_RECLASSIFY: 3955 skb->tc_index = TC_H_MIN(cl_res.classid); 3956 break; 3957 case TC_ACT_SHOT: 3958 qdisc_qstats_cpu_drop(cl->q); 3959 kfree_skb(skb); 3960 return NULL; 3961 case TC_ACT_STOLEN: 3962 case TC_ACT_QUEUED: 3963 consume_skb(skb); 3964 return NULL; 3965 case TC_ACT_REDIRECT: 3966 /* skb_mac_header check was done by cls/act_bpf, so 3967 * we can safely push the L2 header back before 3968 * redirecting to another netdev 3969 */ 3970 __skb_push(skb, skb->mac_len); 3971 skb_do_redirect(skb); 3972 return NULL; 3973 default: 3974 break; 3975 } 3976 #endif /* CONFIG_NET_CLS_ACT */ 3977 return skb; 3978 } 3979 3980 /** 3981 * netdev_is_rx_handler_busy - check if receive handler is registered 3982 * @dev: device to check 3983 * 3984 * Check if a receive handler is already registered for a given device. 3985 * Return true if there one. 3986 * 3987 * The caller must hold the rtnl_mutex. 3988 */ 3989 bool netdev_is_rx_handler_busy(struct net_device *dev) 3990 { 3991 ASSERT_RTNL(); 3992 return dev && rtnl_dereference(dev->rx_handler); 3993 } 3994 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 3995 3996 /** 3997 * netdev_rx_handler_register - register receive handler 3998 * @dev: device to register a handler for 3999 * @rx_handler: receive handler to register 4000 * @rx_handler_data: data pointer that is used by rx handler 4001 * 4002 * Register a receive handler for a device. This handler will then be 4003 * called from __netif_receive_skb. A negative errno code is returned 4004 * on a failure. 4005 * 4006 * The caller must hold the rtnl_mutex. 4007 * 4008 * For a general description of rx_handler, see enum rx_handler_result. 4009 */ 4010 int netdev_rx_handler_register(struct net_device *dev, 4011 rx_handler_func_t *rx_handler, 4012 void *rx_handler_data) 4013 { 4014 if (netdev_is_rx_handler_busy(dev)) 4015 return -EBUSY; 4016 4017 /* Note: rx_handler_data must be set before rx_handler */ 4018 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4019 rcu_assign_pointer(dev->rx_handler, rx_handler); 4020 4021 return 0; 4022 } 4023 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4024 4025 /** 4026 * netdev_rx_handler_unregister - unregister receive handler 4027 * @dev: device to unregister a handler from 4028 * 4029 * Unregister a receive handler from a device. 4030 * 4031 * The caller must hold the rtnl_mutex. 4032 */ 4033 void netdev_rx_handler_unregister(struct net_device *dev) 4034 { 4035 4036 ASSERT_RTNL(); 4037 RCU_INIT_POINTER(dev->rx_handler, NULL); 4038 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4039 * section has a guarantee to see a non NULL rx_handler_data 4040 * as well. 4041 */ 4042 synchronize_net(); 4043 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4044 } 4045 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4046 4047 /* 4048 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4049 * the special handling of PFMEMALLOC skbs. 4050 */ 4051 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4052 { 4053 switch (skb->protocol) { 4054 case htons(ETH_P_ARP): 4055 case htons(ETH_P_IP): 4056 case htons(ETH_P_IPV6): 4057 case htons(ETH_P_8021Q): 4058 case htons(ETH_P_8021AD): 4059 return true; 4060 default: 4061 return false; 4062 } 4063 } 4064 4065 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4066 int *ret, struct net_device *orig_dev) 4067 { 4068 #ifdef CONFIG_NETFILTER_INGRESS 4069 if (nf_hook_ingress_active(skb)) { 4070 int ingress_retval; 4071 4072 if (*pt_prev) { 4073 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4074 *pt_prev = NULL; 4075 } 4076 4077 rcu_read_lock(); 4078 ingress_retval = nf_hook_ingress(skb); 4079 rcu_read_unlock(); 4080 return ingress_retval; 4081 } 4082 #endif /* CONFIG_NETFILTER_INGRESS */ 4083 return 0; 4084 } 4085 4086 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4087 { 4088 struct packet_type *ptype, *pt_prev; 4089 rx_handler_func_t *rx_handler; 4090 struct net_device *orig_dev; 4091 bool deliver_exact = false; 4092 int ret = NET_RX_DROP; 4093 __be16 type; 4094 4095 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4096 4097 trace_netif_receive_skb(skb); 4098 4099 orig_dev = skb->dev; 4100 4101 skb_reset_network_header(skb); 4102 if (!skb_transport_header_was_set(skb)) 4103 skb_reset_transport_header(skb); 4104 skb_reset_mac_len(skb); 4105 4106 pt_prev = NULL; 4107 4108 another_round: 4109 skb->skb_iif = skb->dev->ifindex; 4110 4111 __this_cpu_inc(softnet_data.processed); 4112 4113 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4114 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4115 skb = skb_vlan_untag(skb); 4116 if (unlikely(!skb)) 4117 goto out; 4118 } 4119 4120 if (skb_skip_tc_classify(skb)) 4121 goto skip_classify; 4122 4123 if (pfmemalloc) 4124 goto skip_taps; 4125 4126 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4127 if (pt_prev) 4128 ret = deliver_skb(skb, pt_prev, orig_dev); 4129 pt_prev = ptype; 4130 } 4131 4132 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4133 if (pt_prev) 4134 ret = deliver_skb(skb, pt_prev, orig_dev); 4135 pt_prev = ptype; 4136 } 4137 4138 skip_taps: 4139 #ifdef CONFIG_NET_INGRESS 4140 if (static_key_false(&ingress_needed)) { 4141 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4142 if (!skb) 4143 goto out; 4144 4145 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4146 goto out; 4147 } 4148 #endif 4149 skb_reset_tc(skb); 4150 skip_classify: 4151 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4152 goto drop; 4153 4154 if (skb_vlan_tag_present(skb)) { 4155 if (pt_prev) { 4156 ret = deliver_skb(skb, pt_prev, orig_dev); 4157 pt_prev = NULL; 4158 } 4159 if (vlan_do_receive(&skb)) 4160 goto another_round; 4161 else if (unlikely(!skb)) 4162 goto out; 4163 } 4164 4165 rx_handler = rcu_dereference(skb->dev->rx_handler); 4166 if (rx_handler) { 4167 if (pt_prev) { 4168 ret = deliver_skb(skb, pt_prev, orig_dev); 4169 pt_prev = NULL; 4170 } 4171 switch (rx_handler(&skb)) { 4172 case RX_HANDLER_CONSUMED: 4173 ret = NET_RX_SUCCESS; 4174 goto out; 4175 case RX_HANDLER_ANOTHER: 4176 goto another_round; 4177 case RX_HANDLER_EXACT: 4178 deliver_exact = true; 4179 case RX_HANDLER_PASS: 4180 break; 4181 default: 4182 BUG(); 4183 } 4184 } 4185 4186 if (unlikely(skb_vlan_tag_present(skb))) { 4187 if (skb_vlan_tag_get_id(skb)) 4188 skb->pkt_type = PACKET_OTHERHOST; 4189 /* Note: we might in the future use prio bits 4190 * and set skb->priority like in vlan_do_receive() 4191 * For the time being, just ignore Priority Code Point 4192 */ 4193 skb->vlan_tci = 0; 4194 } 4195 4196 type = skb->protocol; 4197 4198 /* deliver only exact match when indicated */ 4199 if (likely(!deliver_exact)) { 4200 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4201 &ptype_base[ntohs(type) & 4202 PTYPE_HASH_MASK]); 4203 } 4204 4205 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4206 &orig_dev->ptype_specific); 4207 4208 if (unlikely(skb->dev != orig_dev)) { 4209 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4210 &skb->dev->ptype_specific); 4211 } 4212 4213 if (pt_prev) { 4214 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 4215 goto drop; 4216 else 4217 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4218 } else { 4219 drop: 4220 if (!deliver_exact) 4221 atomic_long_inc(&skb->dev->rx_dropped); 4222 else 4223 atomic_long_inc(&skb->dev->rx_nohandler); 4224 kfree_skb(skb); 4225 /* Jamal, now you will not able to escape explaining 4226 * me how you were going to use this. :-) 4227 */ 4228 ret = NET_RX_DROP; 4229 } 4230 4231 out: 4232 return ret; 4233 } 4234 4235 static int __netif_receive_skb(struct sk_buff *skb) 4236 { 4237 int ret; 4238 4239 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4240 unsigned int noreclaim_flag; 4241 4242 /* 4243 * PFMEMALLOC skbs are special, they should 4244 * - be delivered to SOCK_MEMALLOC sockets only 4245 * - stay away from userspace 4246 * - have bounded memory usage 4247 * 4248 * Use PF_MEMALLOC as this saves us from propagating the allocation 4249 * context down to all allocation sites. 4250 */ 4251 noreclaim_flag = memalloc_noreclaim_save(); 4252 ret = __netif_receive_skb_core(skb, true); 4253 memalloc_noreclaim_restore(noreclaim_flag); 4254 } else 4255 ret = __netif_receive_skb_core(skb, false); 4256 4257 return ret; 4258 } 4259 4260 static struct static_key generic_xdp_needed __read_mostly; 4261 4262 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp) 4263 { 4264 struct bpf_prog *new = xdp->prog; 4265 int ret = 0; 4266 4267 switch (xdp->command) { 4268 case XDP_SETUP_PROG: { 4269 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4270 4271 rcu_assign_pointer(dev->xdp_prog, new); 4272 if (old) 4273 bpf_prog_put(old); 4274 4275 if (old && !new) { 4276 static_key_slow_dec(&generic_xdp_needed); 4277 } else if (new && !old) { 4278 static_key_slow_inc(&generic_xdp_needed); 4279 dev_disable_lro(dev); 4280 } 4281 break; 4282 } 4283 4284 case XDP_QUERY_PROG: 4285 xdp->prog_attached = !!rcu_access_pointer(dev->xdp_prog); 4286 break; 4287 4288 default: 4289 ret = -EINVAL; 4290 break; 4291 } 4292 4293 return ret; 4294 } 4295 4296 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4297 struct bpf_prog *xdp_prog) 4298 { 4299 struct xdp_buff xdp; 4300 u32 act = XDP_DROP; 4301 void *orig_data; 4302 int hlen, off; 4303 u32 mac_len; 4304 4305 /* Reinjected packets coming from act_mirred or similar should 4306 * not get XDP generic processing. 4307 */ 4308 if (skb_cloned(skb)) 4309 return XDP_PASS; 4310 4311 if (skb_linearize(skb)) 4312 goto do_drop; 4313 4314 /* The XDP program wants to see the packet starting at the MAC 4315 * header. 4316 */ 4317 mac_len = skb->data - skb_mac_header(skb); 4318 hlen = skb_headlen(skb) + mac_len; 4319 xdp.data = skb->data - mac_len; 4320 xdp.data_end = xdp.data + hlen; 4321 xdp.data_hard_start = skb->data - skb_headroom(skb); 4322 orig_data = xdp.data; 4323 4324 act = bpf_prog_run_xdp(xdp_prog, &xdp); 4325 4326 off = xdp.data - orig_data; 4327 if (off > 0) 4328 __skb_pull(skb, off); 4329 else if (off < 0) 4330 __skb_push(skb, -off); 4331 4332 switch (act) { 4333 case XDP_TX: 4334 __skb_push(skb, mac_len); 4335 /* fall through */ 4336 case XDP_PASS: 4337 break; 4338 4339 default: 4340 bpf_warn_invalid_xdp_action(act); 4341 /* fall through */ 4342 case XDP_ABORTED: 4343 trace_xdp_exception(skb->dev, xdp_prog, act); 4344 /* fall through */ 4345 case XDP_DROP: 4346 do_drop: 4347 kfree_skb(skb); 4348 break; 4349 } 4350 4351 return act; 4352 } 4353 4354 /* When doing generic XDP we have to bypass the qdisc layer and the 4355 * network taps in order to match in-driver-XDP behavior. 4356 */ 4357 static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4358 { 4359 struct net_device *dev = skb->dev; 4360 struct netdev_queue *txq; 4361 bool free_skb = true; 4362 int cpu, rc; 4363 4364 txq = netdev_pick_tx(dev, skb, NULL); 4365 cpu = smp_processor_id(); 4366 HARD_TX_LOCK(dev, txq, cpu); 4367 if (!netif_xmit_stopped(txq)) { 4368 rc = netdev_start_xmit(skb, dev, txq, 0); 4369 if (dev_xmit_complete(rc)) 4370 free_skb = false; 4371 } 4372 HARD_TX_UNLOCK(dev, txq); 4373 if (free_skb) { 4374 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4375 kfree_skb(skb); 4376 } 4377 } 4378 4379 static int netif_receive_skb_internal(struct sk_buff *skb) 4380 { 4381 int ret; 4382 4383 net_timestamp_check(netdev_tstamp_prequeue, skb); 4384 4385 if (skb_defer_rx_timestamp(skb)) 4386 return NET_RX_SUCCESS; 4387 4388 rcu_read_lock(); 4389 4390 if (static_key_false(&generic_xdp_needed)) { 4391 struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog); 4392 4393 if (xdp_prog) { 4394 u32 act = netif_receive_generic_xdp(skb, xdp_prog); 4395 4396 if (act != XDP_PASS) { 4397 rcu_read_unlock(); 4398 if (act == XDP_TX) 4399 generic_xdp_tx(skb, xdp_prog); 4400 return NET_RX_DROP; 4401 } 4402 } 4403 } 4404 4405 #ifdef CONFIG_RPS 4406 if (static_key_false(&rps_needed)) { 4407 struct rps_dev_flow voidflow, *rflow = &voidflow; 4408 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4409 4410 if (cpu >= 0) { 4411 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4412 rcu_read_unlock(); 4413 return ret; 4414 } 4415 } 4416 #endif 4417 ret = __netif_receive_skb(skb); 4418 rcu_read_unlock(); 4419 return ret; 4420 } 4421 4422 /** 4423 * netif_receive_skb - process receive buffer from network 4424 * @skb: buffer to process 4425 * 4426 * netif_receive_skb() is the main receive data processing function. 4427 * It always succeeds. The buffer may be dropped during processing 4428 * for congestion control or by the protocol layers. 4429 * 4430 * This function may only be called from softirq context and interrupts 4431 * should be enabled. 4432 * 4433 * Return values (usually ignored): 4434 * NET_RX_SUCCESS: no congestion 4435 * NET_RX_DROP: packet was dropped 4436 */ 4437 int netif_receive_skb(struct sk_buff *skb) 4438 { 4439 trace_netif_receive_skb_entry(skb); 4440 4441 return netif_receive_skb_internal(skb); 4442 } 4443 EXPORT_SYMBOL(netif_receive_skb); 4444 4445 DEFINE_PER_CPU(struct work_struct, flush_works); 4446 4447 /* Network device is going away, flush any packets still pending */ 4448 static void flush_backlog(struct work_struct *work) 4449 { 4450 struct sk_buff *skb, *tmp; 4451 struct softnet_data *sd; 4452 4453 local_bh_disable(); 4454 sd = this_cpu_ptr(&softnet_data); 4455 4456 local_irq_disable(); 4457 rps_lock(sd); 4458 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4459 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4460 __skb_unlink(skb, &sd->input_pkt_queue); 4461 kfree_skb(skb); 4462 input_queue_head_incr(sd); 4463 } 4464 } 4465 rps_unlock(sd); 4466 local_irq_enable(); 4467 4468 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4469 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4470 __skb_unlink(skb, &sd->process_queue); 4471 kfree_skb(skb); 4472 input_queue_head_incr(sd); 4473 } 4474 } 4475 local_bh_enable(); 4476 } 4477 4478 static void flush_all_backlogs(void) 4479 { 4480 unsigned int cpu; 4481 4482 get_online_cpus(); 4483 4484 for_each_online_cpu(cpu) 4485 queue_work_on(cpu, system_highpri_wq, 4486 per_cpu_ptr(&flush_works, cpu)); 4487 4488 for_each_online_cpu(cpu) 4489 flush_work(per_cpu_ptr(&flush_works, cpu)); 4490 4491 put_online_cpus(); 4492 } 4493 4494 static int napi_gro_complete(struct sk_buff *skb) 4495 { 4496 struct packet_offload *ptype; 4497 __be16 type = skb->protocol; 4498 struct list_head *head = &offload_base; 4499 int err = -ENOENT; 4500 4501 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4502 4503 if (NAPI_GRO_CB(skb)->count == 1) { 4504 skb_shinfo(skb)->gso_size = 0; 4505 goto out; 4506 } 4507 4508 rcu_read_lock(); 4509 list_for_each_entry_rcu(ptype, head, list) { 4510 if (ptype->type != type || !ptype->callbacks.gro_complete) 4511 continue; 4512 4513 err = ptype->callbacks.gro_complete(skb, 0); 4514 break; 4515 } 4516 rcu_read_unlock(); 4517 4518 if (err) { 4519 WARN_ON(&ptype->list == head); 4520 kfree_skb(skb); 4521 return NET_RX_SUCCESS; 4522 } 4523 4524 out: 4525 return netif_receive_skb_internal(skb); 4526 } 4527 4528 /* napi->gro_list contains packets ordered by age. 4529 * youngest packets at the head of it. 4530 * Complete skbs in reverse order to reduce latencies. 4531 */ 4532 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4533 { 4534 struct sk_buff *skb, *prev = NULL; 4535 4536 /* scan list and build reverse chain */ 4537 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4538 skb->prev = prev; 4539 prev = skb; 4540 } 4541 4542 for (skb = prev; skb; skb = prev) { 4543 skb->next = NULL; 4544 4545 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4546 return; 4547 4548 prev = skb->prev; 4549 napi_gro_complete(skb); 4550 napi->gro_count--; 4551 } 4552 4553 napi->gro_list = NULL; 4554 } 4555 EXPORT_SYMBOL(napi_gro_flush); 4556 4557 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4558 { 4559 struct sk_buff *p; 4560 unsigned int maclen = skb->dev->hard_header_len; 4561 u32 hash = skb_get_hash_raw(skb); 4562 4563 for (p = napi->gro_list; p; p = p->next) { 4564 unsigned long diffs; 4565 4566 NAPI_GRO_CB(p)->flush = 0; 4567 4568 if (hash != skb_get_hash_raw(p)) { 4569 NAPI_GRO_CB(p)->same_flow = 0; 4570 continue; 4571 } 4572 4573 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4574 diffs |= p->vlan_tci ^ skb->vlan_tci; 4575 diffs |= skb_metadata_dst_cmp(p, skb); 4576 if (maclen == ETH_HLEN) 4577 diffs |= compare_ether_header(skb_mac_header(p), 4578 skb_mac_header(skb)); 4579 else if (!diffs) 4580 diffs = memcmp(skb_mac_header(p), 4581 skb_mac_header(skb), 4582 maclen); 4583 NAPI_GRO_CB(p)->same_flow = !diffs; 4584 } 4585 } 4586 4587 static void skb_gro_reset_offset(struct sk_buff *skb) 4588 { 4589 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4590 const skb_frag_t *frag0 = &pinfo->frags[0]; 4591 4592 NAPI_GRO_CB(skb)->data_offset = 0; 4593 NAPI_GRO_CB(skb)->frag0 = NULL; 4594 NAPI_GRO_CB(skb)->frag0_len = 0; 4595 4596 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4597 pinfo->nr_frags && 4598 !PageHighMem(skb_frag_page(frag0))) { 4599 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4600 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4601 skb_frag_size(frag0), 4602 skb->end - skb->tail); 4603 } 4604 } 4605 4606 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4607 { 4608 struct skb_shared_info *pinfo = skb_shinfo(skb); 4609 4610 BUG_ON(skb->end - skb->tail < grow); 4611 4612 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4613 4614 skb->data_len -= grow; 4615 skb->tail += grow; 4616 4617 pinfo->frags[0].page_offset += grow; 4618 skb_frag_size_sub(&pinfo->frags[0], grow); 4619 4620 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4621 skb_frag_unref(skb, 0); 4622 memmove(pinfo->frags, pinfo->frags + 1, 4623 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4624 } 4625 } 4626 4627 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4628 { 4629 struct sk_buff **pp = NULL; 4630 struct packet_offload *ptype; 4631 __be16 type = skb->protocol; 4632 struct list_head *head = &offload_base; 4633 int same_flow; 4634 enum gro_result ret; 4635 int grow; 4636 4637 if (netif_elide_gro(skb->dev)) 4638 goto normal; 4639 4640 if (skb->csum_bad) 4641 goto normal; 4642 4643 gro_list_prepare(napi, skb); 4644 4645 rcu_read_lock(); 4646 list_for_each_entry_rcu(ptype, head, list) { 4647 if (ptype->type != type || !ptype->callbacks.gro_receive) 4648 continue; 4649 4650 skb_set_network_header(skb, skb_gro_offset(skb)); 4651 skb_reset_mac_len(skb); 4652 NAPI_GRO_CB(skb)->same_flow = 0; 4653 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4654 NAPI_GRO_CB(skb)->free = 0; 4655 NAPI_GRO_CB(skb)->encap_mark = 0; 4656 NAPI_GRO_CB(skb)->recursion_counter = 0; 4657 NAPI_GRO_CB(skb)->is_fou = 0; 4658 NAPI_GRO_CB(skb)->is_atomic = 1; 4659 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4660 4661 /* Setup for GRO checksum validation */ 4662 switch (skb->ip_summed) { 4663 case CHECKSUM_COMPLETE: 4664 NAPI_GRO_CB(skb)->csum = skb->csum; 4665 NAPI_GRO_CB(skb)->csum_valid = 1; 4666 NAPI_GRO_CB(skb)->csum_cnt = 0; 4667 break; 4668 case CHECKSUM_UNNECESSARY: 4669 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4670 NAPI_GRO_CB(skb)->csum_valid = 0; 4671 break; 4672 default: 4673 NAPI_GRO_CB(skb)->csum_cnt = 0; 4674 NAPI_GRO_CB(skb)->csum_valid = 0; 4675 } 4676 4677 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4678 break; 4679 } 4680 rcu_read_unlock(); 4681 4682 if (&ptype->list == head) 4683 goto normal; 4684 4685 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4686 ret = GRO_CONSUMED; 4687 goto ok; 4688 } 4689 4690 same_flow = NAPI_GRO_CB(skb)->same_flow; 4691 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4692 4693 if (pp) { 4694 struct sk_buff *nskb = *pp; 4695 4696 *pp = nskb->next; 4697 nskb->next = NULL; 4698 napi_gro_complete(nskb); 4699 napi->gro_count--; 4700 } 4701 4702 if (same_flow) 4703 goto ok; 4704 4705 if (NAPI_GRO_CB(skb)->flush) 4706 goto normal; 4707 4708 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4709 struct sk_buff *nskb = napi->gro_list; 4710 4711 /* locate the end of the list to select the 'oldest' flow */ 4712 while (nskb->next) { 4713 pp = &nskb->next; 4714 nskb = *pp; 4715 } 4716 *pp = NULL; 4717 nskb->next = NULL; 4718 napi_gro_complete(nskb); 4719 } else { 4720 napi->gro_count++; 4721 } 4722 NAPI_GRO_CB(skb)->count = 1; 4723 NAPI_GRO_CB(skb)->age = jiffies; 4724 NAPI_GRO_CB(skb)->last = skb; 4725 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4726 skb->next = napi->gro_list; 4727 napi->gro_list = skb; 4728 ret = GRO_HELD; 4729 4730 pull: 4731 grow = skb_gro_offset(skb) - skb_headlen(skb); 4732 if (grow > 0) 4733 gro_pull_from_frag0(skb, grow); 4734 ok: 4735 return ret; 4736 4737 normal: 4738 ret = GRO_NORMAL; 4739 goto pull; 4740 } 4741 4742 struct packet_offload *gro_find_receive_by_type(__be16 type) 4743 { 4744 struct list_head *offload_head = &offload_base; 4745 struct packet_offload *ptype; 4746 4747 list_for_each_entry_rcu(ptype, offload_head, list) { 4748 if (ptype->type != type || !ptype->callbacks.gro_receive) 4749 continue; 4750 return ptype; 4751 } 4752 return NULL; 4753 } 4754 EXPORT_SYMBOL(gro_find_receive_by_type); 4755 4756 struct packet_offload *gro_find_complete_by_type(__be16 type) 4757 { 4758 struct list_head *offload_head = &offload_base; 4759 struct packet_offload *ptype; 4760 4761 list_for_each_entry_rcu(ptype, offload_head, list) { 4762 if (ptype->type != type || !ptype->callbacks.gro_complete) 4763 continue; 4764 return ptype; 4765 } 4766 return NULL; 4767 } 4768 EXPORT_SYMBOL(gro_find_complete_by_type); 4769 4770 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4771 { 4772 switch (ret) { 4773 case GRO_NORMAL: 4774 if (netif_receive_skb_internal(skb)) 4775 ret = GRO_DROP; 4776 break; 4777 4778 case GRO_DROP: 4779 kfree_skb(skb); 4780 break; 4781 4782 case GRO_MERGED_FREE: 4783 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) { 4784 skb_dst_drop(skb); 4785 secpath_reset(skb); 4786 kmem_cache_free(skbuff_head_cache, skb); 4787 } else { 4788 __kfree_skb(skb); 4789 } 4790 break; 4791 4792 case GRO_HELD: 4793 case GRO_MERGED: 4794 case GRO_CONSUMED: 4795 break; 4796 } 4797 4798 return ret; 4799 } 4800 4801 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4802 { 4803 skb_mark_napi_id(skb, napi); 4804 trace_napi_gro_receive_entry(skb); 4805 4806 skb_gro_reset_offset(skb); 4807 4808 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4809 } 4810 EXPORT_SYMBOL(napi_gro_receive); 4811 4812 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4813 { 4814 if (unlikely(skb->pfmemalloc)) { 4815 consume_skb(skb); 4816 return; 4817 } 4818 __skb_pull(skb, skb_headlen(skb)); 4819 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4820 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4821 skb->vlan_tci = 0; 4822 skb->dev = napi->dev; 4823 skb->skb_iif = 0; 4824 skb->encapsulation = 0; 4825 skb_shinfo(skb)->gso_type = 0; 4826 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4827 secpath_reset(skb); 4828 4829 napi->skb = skb; 4830 } 4831 4832 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4833 { 4834 struct sk_buff *skb = napi->skb; 4835 4836 if (!skb) { 4837 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4838 if (skb) { 4839 napi->skb = skb; 4840 skb_mark_napi_id(skb, napi); 4841 } 4842 } 4843 return skb; 4844 } 4845 EXPORT_SYMBOL(napi_get_frags); 4846 4847 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4848 struct sk_buff *skb, 4849 gro_result_t ret) 4850 { 4851 switch (ret) { 4852 case GRO_NORMAL: 4853 case GRO_HELD: 4854 __skb_push(skb, ETH_HLEN); 4855 skb->protocol = eth_type_trans(skb, skb->dev); 4856 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4857 ret = GRO_DROP; 4858 break; 4859 4860 case GRO_DROP: 4861 case GRO_MERGED_FREE: 4862 napi_reuse_skb(napi, skb); 4863 break; 4864 4865 case GRO_MERGED: 4866 case GRO_CONSUMED: 4867 break; 4868 } 4869 4870 return ret; 4871 } 4872 4873 /* Upper GRO stack assumes network header starts at gro_offset=0 4874 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4875 * We copy ethernet header into skb->data to have a common layout. 4876 */ 4877 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4878 { 4879 struct sk_buff *skb = napi->skb; 4880 const struct ethhdr *eth; 4881 unsigned int hlen = sizeof(*eth); 4882 4883 napi->skb = NULL; 4884 4885 skb_reset_mac_header(skb); 4886 skb_gro_reset_offset(skb); 4887 4888 eth = skb_gro_header_fast(skb, 0); 4889 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4890 eth = skb_gro_header_slow(skb, hlen, 0); 4891 if (unlikely(!eth)) { 4892 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 4893 __func__, napi->dev->name); 4894 napi_reuse_skb(napi, skb); 4895 return NULL; 4896 } 4897 } else { 4898 gro_pull_from_frag0(skb, hlen); 4899 NAPI_GRO_CB(skb)->frag0 += hlen; 4900 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4901 } 4902 __skb_pull(skb, hlen); 4903 4904 /* 4905 * This works because the only protocols we care about don't require 4906 * special handling. 4907 * We'll fix it up properly in napi_frags_finish() 4908 */ 4909 skb->protocol = eth->h_proto; 4910 4911 return skb; 4912 } 4913 4914 gro_result_t napi_gro_frags(struct napi_struct *napi) 4915 { 4916 struct sk_buff *skb = napi_frags_skb(napi); 4917 4918 if (!skb) 4919 return GRO_DROP; 4920 4921 trace_napi_gro_frags_entry(skb); 4922 4923 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4924 } 4925 EXPORT_SYMBOL(napi_gro_frags); 4926 4927 /* Compute the checksum from gro_offset and return the folded value 4928 * after adding in any pseudo checksum. 4929 */ 4930 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4931 { 4932 __wsum wsum; 4933 __sum16 sum; 4934 4935 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4936 4937 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4938 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4939 if (likely(!sum)) { 4940 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4941 !skb->csum_complete_sw) 4942 netdev_rx_csum_fault(skb->dev); 4943 } 4944 4945 NAPI_GRO_CB(skb)->csum = wsum; 4946 NAPI_GRO_CB(skb)->csum_valid = 1; 4947 4948 return sum; 4949 } 4950 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4951 4952 static void net_rps_send_ipi(struct softnet_data *remsd) 4953 { 4954 #ifdef CONFIG_RPS 4955 while (remsd) { 4956 struct softnet_data *next = remsd->rps_ipi_next; 4957 4958 if (cpu_online(remsd->cpu)) 4959 smp_call_function_single_async(remsd->cpu, &remsd->csd); 4960 remsd = next; 4961 } 4962 #endif 4963 } 4964 4965 /* 4966 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4967 * Note: called with local irq disabled, but exits with local irq enabled. 4968 */ 4969 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4970 { 4971 #ifdef CONFIG_RPS 4972 struct softnet_data *remsd = sd->rps_ipi_list; 4973 4974 if (remsd) { 4975 sd->rps_ipi_list = NULL; 4976 4977 local_irq_enable(); 4978 4979 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4980 net_rps_send_ipi(remsd); 4981 } else 4982 #endif 4983 local_irq_enable(); 4984 } 4985 4986 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4987 { 4988 #ifdef CONFIG_RPS 4989 return sd->rps_ipi_list != NULL; 4990 #else 4991 return false; 4992 #endif 4993 } 4994 4995 static int process_backlog(struct napi_struct *napi, int quota) 4996 { 4997 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4998 bool again = true; 4999 int work = 0; 5000 5001 /* Check if we have pending ipi, its better to send them now, 5002 * not waiting net_rx_action() end. 5003 */ 5004 if (sd_has_rps_ipi_waiting(sd)) { 5005 local_irq_disable(); 5006 net_rps_action_and_irq_enable(sd); 5007 } 5008 5009 napi->weight = dev_rx_weight; 5010 while (again) { 5011 struct sk_buff *skb; 5012 5013 while ((skb = __skb_dequeue(&sd->process_queue))) { 5014 rcu_read_lock(); 5015 __netif_receive_skb(skb); 5016 rcu_read_unlock(); 5017 input_queue_head_incr(sd); 5018 if (++work >= quota) 5019 return work; 5020 5021 } 5022 5023 local_irq_disable(); 5024 rps_lock(sd); 5025 if (skb_queue_empty(&sd->input_pkt_queue)) { 5026 /* 5027 * Inline a custom version of __napi_complete(). 5028 * only current cpu owns and manipulates this napi, 5029 * and NAPI_STATE_SCHED is the only possible flag set 5030 * on backlog. 5031 * We can use a plain write instead of clear_bit(), 5032 * and we dont need an smp_mb() memory barrier. 5033 */ 5034 napi->state = 0; 5035 again = false; 5036 } else { 5037 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5038 &sd->process_queue); 5039 } 5040 rps_unlock(sd); 5041 local_irq_enable(); 5042 } 5043 5044 return work; 5045 } 5046 5047 /** 5048 * __napi_schedule - schedule for receive 5049 * @n: entry to schedule 5050 * 5051 * The entry's receive function will be scheduled to run. 5052 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5053 */ 5054 void __napi_schedule(struct napi_struct *n) 5055 { 5056 unsigned long flags; 5057 5058 local_irq_save(flags); 5059 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5060 local_irq_restore(flags); 5061 } 5062 EXPORT_SYMBOL(__napi_schedule); 5063 5064 /** 5065 * napi_schedule_prep - check if napi can be scheduled 5066 * @n: napi context 5067 * 5068 * Test if NAPI routine is already running, and if not mark 5069 * it as running. This is used as a condition variable 5070 * insure only one NAPI poll instance runs. We also make 5071 * sure there is no pending NAPI disable. 5072 */ 5073 bool napi_schedule_prep(struct napi_struct *n) 5074 { 5075 unsigned long val, new; 5076 5077 do { 5078 val = READ_ONCE(n->state); 5079 if (unlikely(val & NAPIF_STATE_DISABLE)) 5080 return false; 5081 new = val | NAPIF_STATE_SCHED; 5082 5083 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5084 * This was suggested by Alexander Duyck, as compiler 5085 * emits better code than : 5086 * if (val & NAPIF_STATE_SCHED) 5087 * new |= NAPIF_STATE_MISSED; 5088 */ 5089 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5090 NAPIF_STATE_MISSED; 5091 } while (cmpxchg(&n->state, val, new) != val); 5092 5093 return !(val & NAPIF_STATE_SCHED); 5094 } 5095 EXPORT_SYMBOL(napi_schedule_prep); 5096 5097 /** 5098 * __napi_schedule_irqoff - schedule for receive 5099 * @n: entry to schedule 5100 * 5101 * Variant of __napi_schedule() assuming hard irqs are masked 5102 */ 5103 void __napi_schedule_irqoff(struct napi_struct *n) 5104 { 5105 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5106 } 5107 EXPORT_SYMBOL(__napi_schedule_irqoff); 5108 5109 bool napi_complete_done(struct napi_struct *n, int work_done) 5110 { 5111 unsigned long flags, val, new; 5112 5113 /* 5114 * 1) Don't let napi dequeue from the cpu poll list 5115 * just in case its running on a different cpu. 5116 * 2) If we are busy polling, do nothing here, we have 5117 * the guarantee we will be called later. 5118 */ 5119 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5120 NAPIF_STATE_IN_BUSY_POLL))) 5121 return false; 5122 5123 if (n->gro_list) { 5124 unsigned long timeout = 0; 5125 5126 if (work_done) 5127 timeout = n->dev->gro_flush_timeout; 5128 5129 if (timeout) 5130 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5131 HRTIMER_MODE_REL_PINNED); 5132 else 5133 napi_gro_flush(n, false); 5134 } 5135 if (unlikely(!list_empty(&n->poll_list))) { 5136 /* If n->poll_list is not empty, we need to mask irqs */ 5137 local_irq_save(flags); 5138 list_del_init(&n->poll_list); 5139 local_irq_restore(flags); 5140 } 5141 5142 do { 5143 val = READ_ONCE(n->state); 5144 5145 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5146 5147 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5148 5149 /* If STATE_MISSED was set, leave STATE_SCHED set, 5150 * because we will call napi->poll() one more time. 5151 * This C code was suggested by Alexander Duyck to help gcc. 5152 */ 5153 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5154 NAPIF_STATE_SCHED; 5155 } while (cmpxchg(&n->state, val, new) != val); 5156 5157 if (unlikely(val & NAPIF_STATE_MISSED)) { 5158 __napi_schedule(n); 5159 return false; 5160 } 5161 5162 return true; 5163 } 5164 EXPORT_SYMBOL(napi_complete_done); 5165 5166 /* must be called under rcu_read_lock(), as we dont take a reference */ 5167 static struct napi_struct *napi_by_id(unsigned int napi_id) 5168 { 5169 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5170 struct napi_struct *napi; 5171 5172 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5173 if (napi->napi_id == napi_id) 5174 return napi; 5175 5176 return NULL; 5177 } 5178 5179 #if defined(CONFIG_NET_RX_BUSY_POLL) 5180 5181 #define BUSY_POLL_BUDGET 8 5182 5183 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5184 { 5185 int rc; 5186 5187 /* Busy polling means there is a high chance device driver hard irq 5188 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5189 * set in napi_schedule_prep(). 5190 * Since we are about to call napi->poll() once more, we can safely 5191 * clear NAPI_STATE_MISSED. 5192 * 5193 * Note: x86 could use a single "lock and ..." instruction 5194 * to perform these two clear_bit() 5195 */ 5196 clear_bit(NAPI_STATE_MISSED, &napi->state); 5197 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5198 5199 local_bh_disable(); 5200 5201 /* All we really want here is to re-enable device interrupts. 5202 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5203 */ 5204 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5205 netpoll_poll_unlock(have_poll_lock); 5206 if (rc == BUSY_POLL_BUDGET) 5207 __napi_schedule(napi); 5208 local_bh_enable(); 5209 if (local_softirq_pending()) 5210 do_softirq(); 5211 } 5212 5213 void napi_busy_loop(unsigned int napi_id, 5214 bool (*loop_end)(void *, unsigned long), 5215 void *loop_end_arg) 5216 { 5217 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5218 int (*napi_poll)(struct napi_struct *napi, int budget); 5219 void *have_poll_lock = NULL; 5220 struct napi_struct *napi; 5221 5222 restart: 5223 napi_poll = NULL; 5224 5225 rcu_read_lock(); 5226 5227 napi = napi_by_id(napi_id); 5228 if (!napi) 5229 goto out; 5230 5231 preempt_disable(); 5232 for (;;) { 5233 int work = 0; 5234 5235 local_bh_disable(); 5236 if (!napi_poll) { 5237 unsigned long val = READ_ONCE(napi->state); 5238 5239 /* If multiple threads are competing for this napi, 5240 * we avoid dirtying napi->state as much as we can. 5241 */ 5242 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5243 NAPIF_STATE_IN_BUSY_POLL)) 5244 goto count; 5245 if (cmpxchg(&napi->state, val, 5246 val | NAPIF_STATE_IN_BUSY_POLL | 5247 NAPIF_STATE_SCHED) != val) 5248 goto count; 5249 have_poll_lock = netpoll_poll_lock(napi); 5250 napi_poll = napi->poll; 5251 } 5252 work = napi_poll(napi, BUSY_POLL_BUDGET); 5253 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5254 count: 5255 if (work > 0) 5256 __NET_ADD_STATS(dev_net(napi->dev), 5257 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5258 local_bh_enable(); 5259 5260 if (!loop_end || loop_end(loop_end_arg, start_time)) 5261 break; 5262 5263 if (unlikely(need_resched())) { 5264 if (napi_poll) 5265 busy_poll_stop(napi, have_poll_lock); 5266 preempt_enable(); 5267 rcu_read_unlock(); 5268 cond_resched(); 5269 if (loop_end(loop_end_arg, start_time)) 5270 return; 5271 goto restart; 5272 } 5273 cpu_relax(); 5274 } 5275 if (napi_poll) 5276 busy_poll_stop(napi, have_poll_lock); 5277 preempt_enable(); 5278 out: 5279 rcu_read_unlock(); 5280 } 5281 EXPORT_SYMBOL(napi_busy_loop); 5282 5283 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5284 5285 static void napi_hash_add(struct napi_struct *napi) 5286 { 5287 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5288 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5289 return; 5290 5291 spin_lock(&napi_hash_lock); 5292 5293 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5294 do { 5295 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5296 napi_gen_id = MIN_NAPI_ID; 5297 } while (napi_by_id(napi_gen_id)); 5298 napi->napi_id = napi_gen_id; 5299 5300 hlist_add_head_rcu(&napi->napi_hash_node, 5301 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5302 5303 spin_unlock(&napi_hash_lock); 5304 } 5305 5306 /* Warning : caller is responsible to make sure rcu grace period 5307 * is respected before freeing memory containing @napi 5308 */ 5309 bool napi_hash_del(struct napi_struct *napi) 5310 { 5311 bool rcu_sync_needed = false; 5312 5313 spin_lock(&napi_hash_lock); 5314 5315 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5316 rcu_sync_needed = true; 5317 hlist_del_rcu(&napi->napi_hash_node); 5318 } 5319 spin_unlock(&napi_hash_lock); 5320 return rcu_sync_needed; 5321 } 5322 EXPORT_SYMBOL_GPL(napi_hash_del); 5323 5324 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5325 { 5326 struct napi_struct *napi; 5327 5328 napi = container_of(timer, struct napi_struct, timer); 5329 5330 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5331 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5332 */ 5333 if (napi->gro_list && !napi_disable_pending(napi) && 5334 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5335 __napi_schedule_irqoff(napi); 5336 5337 return HRTIMER_NORESTART; 5338 } 5339 5340 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5341 int (*poll)(struct napi_struct *, int), int weight) 5342 { 5343 INIT_LIST_HEAD(&napi->poll_list); 5344 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5345 napi->timer.function = napi_watchdog; 5346 napi->gro_count = 0; 5347 napi->gro_list = NULL; 5348 napi->skb = NULL; 5349 napi->poll = poll; 5350 if (weight > NAPI_POLL_WEIGHT) 5351 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5352 weight, dev->name); 5353 napi->weight = weight; 5354 list_add(&napi->dev_list, &dev->napi_list); 5355 napi->dev = dev; 5356 #ifdef CONFIG_NETPOLL 5357 napi->poll_owner = -1; 5358 #endif 5359 set_bit(NAPI_STATE_SCHED, &napi->state); 5360 napi_hash_add(napi); 5361 } 5362 EXPORT_SYMBOL(netif_napi_add); 5363 5364 void napi_disable(struct napi_struct *n) 5365 { 5366 might_sleep(); 5367 set_bit(NAPI_STATE_DISABLE, &n->state); 5368 5369 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5370 msleep(1); 5371 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5372 msleep(1); 5373 5374 hrtimer_cancel(&n->timer); 5375 5376 clear_bit(NAPI_STATE_DISABLE, &n->state); 5377 } 5378 EXPORT_SYMBOL(napi_disable); 5379 5380 /* Must be called in process context */ 5381 void netif_napi_del(struct napi_struct *napi) 5382 { 5383 might_sleep(); 5384 if (napi_hash_del(napi)) 5385 synchronize_net(); 5386 list_del_init(&napi->dev_list); 5387 napi_free_frags(napi); 5388 5389 kfree_skb_list(napi->gro_list); 5390 napi->gro_list = NULL; 5391 napi->gro_count = 0; 5392 } 5393 EXPORT_SYMBOL(netif_napi_del); 5394 5395 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5396 { 5397 void *have; 5398 int work, weight; 5399 5400 list_del_init(&n->poll_list); 5401 5402 have = netpoll_poll_lock(n); 5403 5404 weight = n->weight; 5405 5406 /* This NAPI_STATE_SCHED test is for avoiding a race 5407 * with netpoll's poll_napi(). Only the entity which 5408 * obtains the lock and sees NAPI_STATE_SCHED set will 5409 * actually make the ->poll() call. Therefore we avoid 5410 * accidentally calling ->poll() when NAPI is not scheduled. 5411 */ 5412 work = 0; 5413 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5414 work = n->poll(n, weight); 5415 trace_napi_poll(n, work, weight); 5416 } 5417 5418 WARN_ON_ONCE(work > weight); 5419 5420 if (likely(work < weight)) 5421 goto out_unlock; 5422 5423 /* Drivers must not modify the NAPI state if they 5424 * consume the entire weight. In such cases this code 5425 * still "owns" the NAPI instance and therefore can 5426 * move the instance around on the list at-will. 5427 */ 5428 if (unlikely(napi_disable_pending(n))) { 5429 napi_complete(n); 5430 goto out_unlock; 5431 } 5432 5433 if (n->gro_list) { 5434 /* flush too old packets 5435 * If HZ < 1000, flush all packets. 5436 */ 5437 napi_gro_flush(n, HZ >= 1000); 5438 } 5439 5440 /* Some drivers may have called napi_schedule 5441 * prior to exhausting their budget. 5442 */ 5443 if (unlikely(!list_empty(&n->poll_list))) { 5444 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5445 n->dev ? n->dev->name : "backlog"); 5446 goto out_unlock; 5447 } 5448 5449 list_add_tail(&n->poll_list, repoll); 5450 5451 out_unlock: 5452 netpoll_poll_unlock(have); 5453 5454 return work; 5455 } 5456 5457 static __latent_entropy void net_rx_action(struct softirq_action *h) 5458 { 5459 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5460 unsigned long time_limit = jiffies + 5461 usecs_to_jiffies(netdev_budget_usecs); 5462 int budget = netdev_budget; 5463 LIST_HEAD(list); 5464 LIST_HEAD(repoll); 5465 5466 local_irq_disable(); 5467 list_splice_init(&sd->poll_list, &list); 5468 local_irq_enable(); 5469 5470 for (;;) { 5471 struct napi_struct *n; 5472 5473 if (list_empty(&list)) { 5474 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5475 goto out; 5476 break; 5477 } 5478 5479 n = list_first_entry(&list, struct napi_struct, poll_list); 5480 budget -= napi_poll(n, &repoll); 5481 5482 /* If softirq window is exhausted then punt. 5483 * Allow this to run for 2 jiffies since which will allow 5484 * an average latency of 1.5/HZ. 5485 */ 5486 if (unlikely(budget <= 0 || 5487 time_after_eq(jiffies, time_limit))) { 5488 sd->time_squeeze++; 5489 break; 5490 } 5491 } 5492 5493 local_irq_disable(); 5494 5495 list_splice_tail_init(&sd->poll_list, &list); 5496 list_splice_tail(&repoll, &list); 5497 list_splice(&list, &sd->poll_list); 5498 if (!list_empty(&sd->poll_list)) 5499 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5500 5501 net_rps_action_and_irq_enable(sd); 5502 out: 5503 __kfree_skb_flush(); 5504 } 5505 5506 struct netdev_adjacent { 5507 struct net_device *dev; 5508 5509 /* upper master flag, there can only be one master device per list */ 5510 bool master; 5511 5512 /* counter for the number of times this device was added to us */ 5513 u16 ref_nr; 5514 5515 /* private field for the users */ 5516 void *private; 5517 5518 struct list_head list; 5519 struct rcu_head rcu; 5520 }; 5521 5522 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5523 struct list_head *adj_list) 5524 { 5525 struct netdev_adjacent *adj; 5526 5527 list_for_each_entry(adj, adj_list, list) { 5528 if (adj->dev == adj_dev) 5529 return adj; 5530 } 5531 return NULL; 5532 } 5533 5534 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5535 { 5536 struct net_device *dev = data; 5537 5538 return upper_dev == dev; 5539 } 5540 5541 /** 5542 * netdev_has_upper_dev - Check if device is linked to an upper device 5543 * @dev: device 5544 * @upper_dev: upper device to check 5545 * 5546 * Find out if a device is linked to specified upper device and return true 5547 * in case it is. Note that this checks only immediate upper device, 5548 * not through a complete stack of devices. The caller must hold the RTNL lock. 5549 */ 5550 bool netdev_has_upper_dev(struct net_device *dev, 5551 struct net_device *upper_dev) 5552 { 5553 ASSERT_RTNL(); 5554 5555 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5556 upper_dev); 5557 } 5558 EXPORT_SYMBOL(netdev_has_upper_dev); 5559 5560 /** 5561 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5562 * @dev: device 5563 * @upper_dev: upper device to check 5564 * 5565 * Find out if a device is linked to specified upper device and return true 5566 * in case it is. Note that this checks the entire upper device chain. 5567 * The caller must hold rcu lock. 5568 */ 5569 5570 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5571 struct net_device *upper_dev) 5572 { 5573 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5574 upper_dev); 5575 } 5576 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5577 5578 /** 5579 * netdev_has_any_upper_dev - Check if device is linked to some device 5580 * @dev: device 5581 * 5582 * Find out if a device is linked to an upper device and return true in case 5583 * it is. The caller must hold the RTNL lock. 5584 */ 5585 static bool netdev_has_any_upper_dev(struct net_device *dev) 5586 { 5587 ASSERT_RTNL(); 5588 5589 return !list_empty(&dev->adj_list.upper); 5590 } 5591 5592 /** 5593 * netdev_master_upper_dev_get - Get master upper device 5594 * @dev: device 5595 * 5596 * Find a master upper device and return pointer to it or NULL in case 5597 * it's not there. The caller must hold the RTNL lock. 5598 */ 5599 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5600 { 5601 struct netdev_adjacent *upper; 5602 5603 ASSERT_RTNL(); 5604 5605 if (list_empty(&dev->adj_list.upper)) 5606 return NULL; 5607 5608 upper = list_first_entry(&dev->adj_list.upper, 5609 struct netdev_adjacent, list); 5610 if (likely(upper->master)) 5611 return upper->dev; 5612 return NULL; 5613 } 5614 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5615 5616 /** 5617 * netdev_has_any_lower_dev - Check if device is linked to some device 5618 * @dev: device 5619 * 5620 * Find out if a device is linked to a lower device and return true in case 5621 * it is. The caller must hold the RTNL lock. 5622 */ 5623 static bool netdev_has_any_lower_dev(struct net_device *dev) 5624 { 5625 ASSERT_RTNL(); 5626 5627 return !list_empty(&dev->adj_list.lower); 5628 } 5629 5630 void *netdev_adjacent_get_private(struct list_head *adj_list) 5631 { 5632 struct netdev_adjacent *adj; 5633 5634 adj = list_entry(adj_list, struct netdev_adjacent, list); 5635 5636 return adj->private; 5637 } 5638 EXPORT_SYMBOL(netdev_adjacent_get_private); 5639 5640 /** 5641 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5642 * @dev: device 5643 * @iter: list_head ** of the current position 5644 * 5645 * Gets the next device from the dev's upper list, starting from iter 5646 * position. The caller must hold RCU read lock. 5647 */ 5648 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5649 struct list_head **iter) 5650 { 5651 struct netdev_adjacent *upper; 5652 5653 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5654 5655 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5656 5657 if (&upper->list == &dev->adj_list.upper) 5658 return NULL; 5659 5660 *iter = &upper->list; 5661 5662 return upper->dev; 5663 } 5664 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5665 5666 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5667 struct list_head **iter) 5668 { 5669 struct netdev_adjacent *upper; 5670 5671 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5672 5673 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5674 5675 if (&upper->list == &dev->adj_list.upper) 5676 return NULL; 5677 5678 *iter = &upper->list; 5679 5680 return upper->dev; 5681 } 5682 5683 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5684 int (*fn)(struct net_device *dev, 5685 void *data), 5686 void *data) 5687 { 5688 struct net_device *udev; 5689 struct list_head *iter; 5690 int ret; 5691 5692 for (iter = &dev->adj_list.upper, 5693 udev = netdev_next_upper_dev_rcu(dev, &iter); 5694 udev; 5695 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5696 /* first is the upper device itself */ 5697 ret = fn(udev, data); 5698 if (ret) 5699 return ret; 5700 5701 /* then look at all of its upper devices */ 5702 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5703 if (ret) 5704 return ret; 5705 } 5706 5707 return 0; 5708 } 5709 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5710 5711 /** 5712 * netdev_lower_get_next_private - Get the next ->private from the 5713 * lower neighbour list 5714 * @dev: device 5715 * @iter: list_head ** of the current position 5716 * 5717 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5718 * list, starting from iter position. The caller must hold either hold the 5719 * RTNL lock or its own locking that guarantees that the neighbour lower 5720 * list will remain unchanged. 5721 */ 5722 void *netdev_lower_get_next_private(struct net_device *dev, 5723 struct list_head **iter) 5724 { 5725 struct netdev_adjacent *lower; 5726 5727 lower = list_entry(*iter, struct netdev_adjacent, list); 5728 5729 if (&lower->list == &dev->adj_list.lower) 5730 return NULL; 5731 5732 *iter = lower->list.next; 5733 5734 return lower->private; 5735 } 5736 EXPORT_SYMBOL(netdev_lower_get_next_private); 5737 5738 /** 5739 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5740 * lower neighbour list, RCU 5741 * variant 5742 * @dev: device 5743 * @iter: list_head ** of the current position 5744 * 5745 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5746 * list, starting from iter position. The caller must hold RCU read lock. 5747 */ 5748 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5749 struct list_head **iter) 5750 { 5751 struct netdev_adjacent *lower; 5752 5753 WARN_ON_ONCE(!rcu_read_lock_held()); 5754 5755 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5756 5757 if (&lower->list == &dev->adj_list.lower) 5758 return NULL; 5759 5760 *iter = &lower->list; 5761 5762 return lower->private; 5763 } 5764 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5765 5766 /** 5767 * netdev_lower_get_next - Get the next device from the lower neighbour 5768 * list 5769 * @dev: device 5770 * @iter: list_head ** of the current position 5771 * 5772 * Gets the next netdev_adjacent from the dev's lower neighbour 5773 * list, starting from iter position. The caller must hold RTNL lock or 5774 * its own locking that guarantees that the neighbour lower 5775 * list will remain unchanged. 5776 */ 5777 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5778 { 5779 struct netdev_adjacent *lower; 5780 5781 lower = list_entry(*iter, struct netdev_adjacent, list); 5782 5783 if (&lower->list == &dev->adj_list.lower) 5784 return NULL; 5785 5786 *iter = lower->list.next; 5787 5788 return lower->dev; 5789 } 5790 EXPORT_SYMBOL(netdev_lower_get_next); 5791 5792 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 5793 struct list_head **iter) 5794 { 5795 struct netdev_adjacent *lower; 5796 5797 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5798 5799 if (&lower->list == &dev->adj_list.lower) 5800 return NULL; 5801 5802 *iter = &lower->list; 5803 5804 return lower->dev; 5805 } 5806 5807 int netdev_walk_all_lower_dev(struct net_device *dev, 5808 int (*fn)(struct net_device *dev, 5809 void *data), 5810 void *data) 5811 { 5812 struct net_device *ldev; 5813 struct list_head *iter; 5814 int ret; 5815 5816 for (iter = &dev->adj_list.lower, 5817 ldev = netdev_next_lower_dev(dev, &iter); 5818 ldev; 5819 ldev = netdev_next_lower_dev(dev, &iter)) { 5820 /* first is the lower device itself */ 5821 ret = fn(ldev, data); 5822 if (ret) 5823 return ret; 5824 5825 /* then look at all of its lower devices */ 5826 ret = netdev_walk_all_lower_dev(ldev, fn, data); 5827 if (ret) 5828 return ret; 5829 } 5830 5831 return 0; 5832 } 5833 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 5834 5835 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 5836 struct list_head **iter) 5837 { 5838 struct netdev_adjacent *lower; 5839 5840 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5841 if (&lower->list == &dev->adj_list.lower) 5842 return NULL; 5843 5844 *iter = &lower->list; 5845 5846 return lower->dev; 5847 } 5848 5849 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 5850 int (*fn)(struct net_device *dev, 5851 void *data), 5852 void *data) 5853 { 5854 struct net_device *ldev; 5855 struct list_head *iter; 5856 int ret; 5857 5858 for (iter = &dev->adj_list.lower, 5859 ldev = netdev_next_lower_dev_rcu(dev, &iter); 5860 ldev; 5861 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 5862 /* first is the lower device itself */ 5863 ret = fn(ldev, data); 5864 if (ret) 5865 return ret; 5866 5867 /* then look at all of its lower devices */ 5868 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 5869 if (ret) 5870 return ret; 5871 } 5872 5873 return 0; 5874 } 5875 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 5876 5877 /** 5878 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5879 * lower neighbour list, RCU 5880 * variant 5881 * @dev: device 5882 * 5883 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5884 * list. The caller must hold RCU read lock. 5885 */ 5886 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5887 { 5888 struct netdev_adjacent *lower; 5889 5890 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5891 struct netdev_adjacent, list); 5892 if (lower) 5893 return lower->private; 5894 return NULL; 5895 } 5896 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5897 5898 /** 5899 * netdev_master_upper_dev_get_rcu - Get master upper device 5900 * @dev: device 5901 * 5902 * Find a master upper device and return pointer to it or NULL in case 5903 * it's not there. The caller must hold the RCU read lock. 5904 */ 5905 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5906 { 5907 struct netdev_adjacent *upper; 5908 5909 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5910 struct netdev_adjacent, list); 5911 if (upper && likely(upper->master)) 5912 return upper->dev; 5913 return NULL; 5914 } 5915 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5916 5917 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5918 struct net_device *adj_dev, 5919 struct list_head *dev_list) 5920 { 5921 char linkname[IFNAMSIZ+7]; 5922 5923 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5924 "upper_%s" : "lower_%s", adj_dev->name); 5925 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5926 linkname); 5927 } 5928 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5929 char *name, 5930 struct list_head *dev_list) 5931 { 5932 char linkname[IFNAMSIZ+7]; 5933 5934 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5935 "upper_%s" : "lower_%s", name); 5936 sysfs_remove_link(&(dev->dev.kobj), linkname); 5937 } 5938 5939 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5940 struct net_device *adj_dev, 5941 struct list_head *dev_list) 5942 { 5943 return (dev_list == &dev->adj_list.upper || 5944 dev_list == &dev->adj_list.lower) && 5945 net_eq(dev_net(dev), dev_net(adj_dev)); 5946 } 5947 5948 static int __netdev_adjacent_dev_insert(struct net_device *dev, 5949 struct net_device *adj_dev, 5950 struct list_head *dev_list, 5951 void *private, bool master) 5952 { 5953 struct netdev_adjacent *adj; 5954 int ret; 5955 5956 adj = __netdev_find_adj(adj_dev, dev_list); 5957 5958 if (adj) { 5959 adj->ref_nr += 1; 5960 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 5961 dev->name, adj_dev->name, adj->ref_nr); 5962 5963 return 0; 5964 } 5965 5966 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5967 if (!adj) 5968 return -ENOMEM; 5969 5970 adj->dev = adj_dev; 5971 adj->master = master; 5972 adj->ref_nr = 1; 5973 adj->private = private; 5974 dev_hold(adj_dev); 5975 5976 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 5977 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 5978 5979 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5980 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5981 if (ret) 5982 goto free_adj; 5983 } 5984 5985 /* Ensure that master link is always the first item in list. */ 5986 if (master) { 5987 ret = sysfs_create_link(&(dev->dev.kobj), 5988 &(adj_dev->dev.kobj), "master"); 5989 if (ret) 5990 goto remove_symlinks; 5991 5992 list_add_rcu(&adj->list, dev_list); 5993 } else { 5994 list_add_tail_rcu(&adj->list, dev_list); 5995 } 5996 5997 return 0; 5998 5999 remove_symlinks: 6000 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6001 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6002 free_adj: 6003 kfree(adj); 6004 dev_put(adj_dev); 6005 6006 return ret; 6007 } 6008 6009 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6010 struct net_device *adj_dev, 6011 u16 ref_nr, 6012 struct list_head *dev_list) 6013 { 6014 struct netdev_adjacent *adj; 6015 6016 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6017 dev->name, adj_dev->name, ref_nr); 6018 6019 adj = __netdev_find_adj(adj_dev, dev_list); 6020 6021 if (!adj) { 6022 pr_err("Adjacency does not exist for device %s from %s\n", 6023 dev->name, adj_dev->name); 6024 WARN_ON(1); 6025 return; 6026 } 6027 6028 if (adj->ref_nr > ref_nr) { 6029 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6030 dev->name, adj_dev->name, ref_nr, 6031 adj->ref_nr - ref_nr); 6032 adj->ref_nr -= ref_nr; 6033 return; 6034 } 6035 6036 if (adj->master) 6037 sysfs_remove_link(&(dev->dev.kobj), "master"); 6038 6039 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6040 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6041 6042 list_del_rcu(&adj->list); 6043 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6044 adj_dev->name, dev->name, adj_dev->name); 6045 dev_put(adj_dev); 6046 kfree_rcu(adj, rcu); 6047 } 6048 6049 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6050 struct net_device *upper_dev, 6051 struct list_head *up_list, 6052 struct list_head *down_list, 6053 void *private, bool master) 6054 { 6055 int ret; 6056 6057 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6058 private, master); 6059 if (ret) 6060 return ret; 6061 6062 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6063 private, false); 6064 if (ret) { 6065 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6066 return ret; 6067 } 6068 6069 return 0; 6070 } 6071 6072 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6073 struct net_device *upper_dev, 6074 u16 ref_nr, 6075 struct list_head *up_list, 6076 struct list_head *down_list) 6077 { 6078 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6079 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6080 } 6081 6082 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6083 struct net_device *upper_dev, 6084 void *private, bool master) 6085 { 6086 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6087 &dev->adj_list.upper, 6088 &upper_dev->adj_list.lower, 6089 private, master); 6090 } 6091 6092 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6093 struct net_device *upper_dev) 6094 { 6095 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6096 &dev->adj_list.upper, 6097 &upper_dev->adj_list.lower); 6098 } 6099 6100 static int __netdev_upper_dev_link(struct net_device *dev, 6101 struct net_device *upper_dev, bool master, 6102 void *upper_priv, void *upper_info) 6103 { 6104 struct netdev_notifier_changeupper_info changeupper_info; 6105 int ret = 0; 6106 6107 ASSERT_RTNL(); 6108 6109 if (dev == upper_dev) 6110 return -EBUSY; 6111 6112 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6113 if (netdev_has_upper_dev(upper_dev, dev)) 6114 return -EBUSY; 6115 6116 if (netdev_has_upper_dev(dev, upper_dev)) 6117 return -EEXIST; 6118 6119 if (master && netdev_master_upper_dev_get(dev)) 6120 return -EBUSY; 6121 6122 changeupper_info.upper_dev = upper_dev; 6123 changeupper_info.master = master; 6124 changeupper_info.linking = true; 6125 changeupper_info.upper_info = upper_info; 6126 6127 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6128 &changeupper_info.info); 6129 ret = notifier_to_errno(ret); 6130 if (ret) 6131 return ret; 6132 6133 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6134 master); 6135 if (ret) 6136 return ret; 6137 6138 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6139 &changeupper_info.info); 6140 ret = notifier_to_errno(ret); 6141 if (ret) 6142 goto rollback; 6143 6144 return 0; 6145 6146 rollback: 6147 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6148 6149 return ret; 6150 } 6151 6152 /** 6153 * netdev_upper_dev_link - Add a link to the upper device 6154 * @dev: device 6155 * @upper_dev: new upper device 6156 * 6157 * Adds a link to device which is upper to this one. The caller must hold 6158 * the RTNL lock. On a failure a negative errno code is returned. 6159 * On success the reference counts are adjusted and the function 6160 * returns zero. 6161 */ 6162 int netdev_upper_dev_link(struct net_device *dev, 6163 struct net_device *upper_dev) 6164 { 6165 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 6166 } 6167 EXPORT_SYMBOL(netdev_upper_dev_link); 6168 6169 /** 6170 * netdev_master_upper_dev_link - Add a master link to the upper device 6171 * @dev: device 6172 * @upper_dev: new upper device 6173 * @upper_priv: upper device private 6174 * @upper_info: upper info to be passed down via notifier 6175 * 6176 * Adds a link to device which is upper to this one. In this case, only 6177 * one master upper device can be linked, although other non-master devices 6178 * might be linked as well. The caller must hold the RTNL lock. 6179 * On a failure a negative errno code is returned. On success the reference 6180 * counts are adjusted and the function returns zero. 6181 */ 6182 int netdev_master_upper_dev_link(struct net_device *dev, 6183 struct net_device *upper_dev, 6184 void *upper_priv, void *upper_info) 6185 { 6186 return __netdev_upper_dev_link(dev, upper_dev, true, 6187 upper_priv, upper_info); 6188 } 6189 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6190 6191 /** 6192 * netdev_upper_dev_unlink - Removes a link to upper device 6193 * @dev: device 6194 * @upper_dev: new upper device 6195 * 6196 * Removes a link to device which is upper to this one. The caller must hold 6197 * the RTNL lock. 6198 */ 6199 void netdev_upper_dev_unlink(struct net_device *dev, 6200 struct net_device *upper_dev) 6201 { 6202 struct netdev_notifier_changeupper_info changeupper_info; 6203 6204 ASSERT_RTNL(); 6205 6206 changeupper_info.upper_dev = upper_dev; 6207 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6208 changeupper_info.linking = false; 6209 6210 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6211 &changeupper_info.info); 6212 6213 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6214 6215 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6216 &changeupper_info.info); 6217 } 6218 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6219 6220 /** 6221 * netdev_bonding_info_change - Dispatch event about slave change 6222 * @dev: device 6223 * @bonding_info: info to dispatch 6224 * 6225 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6226 * The caller must hold the RTNL lock. 6227 */ 6228 void netdev_bonding_info_change(struct net_device *dev, 6229 struct netdev_bonding_info *bonding_info) 6230 { 6231 struct netdev_notifier_bonding_info info; 6232 6233 memcpy(&info.bonding_info, bonding_info, 6234 sizeof(struct netdev_bonding_info)); 6235 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 6236 &info.info); 6237 } 6238 EXPORT_SYMBOL(netdev_bonding_info_change); 6239 6240 static void netdev_adjacent_add_links(struct net_device *dev) 6241 { 6242 struct netdev_adjacent *iter; 6243 6244 struct net *net = dev_net(dev); 6245 6246 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6247 if (!net_eq(net, dev_net(iter->dev))) 6248 continue; 6249 netdev_adjacent_sysfs_add(iter->dev, dev, 6250 &iter->dev->adj_list.lower); 6251 netdev_adjacent_sysfs_add(dev, iter->dev, 6252 &dev->adj_list.upper); 6253 } 6254 6255 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6256 if (!net_eq(net, dev_net(iter->dev))) 6257 continue; 6258 netdev_adjacent_sysfs_add(iter->dev, dev, 6259 &iter->dev->adj_list.upper); 6260 netdev_adjacent_sysfs_add(dev, iter->dev, 6261 &dev->adj_list.lower); 6262 } 6263 } 6264 6265 static void netdev_adjacent_del_links(struct net_device *dev) 6266 { 6267 struct netdev_adjacent *iter; 6268 6269 struct net *net = dev_net(dev); 6270 6271 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6272 if (!net_eq(net, dev_net(iter->dev))) 6273 continue; 6274 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6275 &iter->dev->adj_list.lower); 6276 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6277 &dev->adj_list.upper); 6278 } 6279 6280 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6281 if (!net_eq(net, dev_net(iter->dev))) 6282 continue; 6283 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6284 &iter->dev->adj_list.upper); 6285 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6286 &dev->adj_list.lower); 6287 } 6288 } 6289 6290 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6291 { 6292 struct netdev_adjacent *iter; 6293 6294 struct net *net = dev_net(dev); 6295 6296 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6297 if (!net_eq(net, dev_net(iter->dev))) 6298 continue; 6299 netdev_adjacent_sysfs_del(iter->dev, oldname, 6300 &iter->dev->adj_list.lower); 6301 netdev_adjacent_sysfs_add(iter->dev, dev, 6302 &iter->dev->adj_list.lower); 6303 } 6304 6305 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6306 if (!net_eq(net, dev_net(iter->dev))) 6307 continue; 6308 netdev_adjacent_sysfs_del(iter->dev, oldname, 6309 &iter->dev->adj_list.upper); 6310 netdev_adjacent_sysfs_add(iter->dev, dev, 6311 &iter->dev->adj_list.upper); 6312 } 6313 } 6314 6315 void *netdev_lower_dev_get_private(struct net_device *dev, 6316 struct net_device *lower_dev) 6317 { 6318 struct netdev_adjacent *lower; 6319 6320 if (!lower_dev) 6321 return NULL; 6322 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6323 if (!lower) 6324 return NULL; 6325 6326 return lower->private; 6327 } 6328 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6329 6330 6331 int dev_get_nest_level(struct net_device *dev) 6332 { 6333 struct net_device *lower = NULL; 6334 struct list_head *iter; 6335 int max_nest = -1; 6336 int nest; 6337 6338 ASSERT_RTNL(); 6339 6340 netdev_for_each_lower_dev(dev, lower, iter) { 6341 nest = dev_get_nest_level(lower); 6342 if (max_nest < nest) 6343 max_nest = nest; 6344 } 6345 6346 return max_nest + 1; 6347 } 6348 EXPORT_SYMBOL(dev_get_nest_level); 6349 6350 /** 6351 * netdev_lower_change - Dispatch event about lower device state change 6352 * @lower_dev: device 6353 * @lower_state_info: state to dispatch 6354 * 6355 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6356 * The caller must hold the RTNL lock. 6357 */ 6358 void netdev_lower_state_changed(struct net_device *lower_dev, 6359 void *lower_state_info) 6360 { 6361 struct netdev_notifier_changelowerstate_info changelowerstate_info; 6362 6363 ASSERT_RTNL(); 6364 changelowerstate_info.lower_state_info = lower_state_info; 6365 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 6366 &changelowerstate_info.info); 6367 } 6368 EXPORT_SYMBOL(netdev_lower_state_changed); 6369 6370 static void dev_change_rx_flags(struct net_device *dev, int flags) 6371 { 6372 const struct net_device_ops *ops = dev->netdev_ops; 6373 6374 if (ops->ndo_change_rx_flags) 6375 ops->ndo_change_rx_flags(dev, flags); 6376 } 6377 6378 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6379 { 6380 unsigned int old_flags = dev->flags; 6381 kuid_t uid; 6382 kgid_t gid; 6383 6384 ASSERT_RTNL(); 6385 6386 dev->flags |= IFF_PROMISC; 6387 dev->promiscuity += inc; 6388 if (dev->promiscuity == 0) { 6389 /* 6390 * Avoid overflow. 6391 * If inc causes overflow, untouch promisc and return error. 6392 */ 6393 if (inc < 0) 6394 dev->flags &= ~IFF_PROMISC; 6395 else { 6396 dev->promiscuity -= inc; 6397 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6398 dev->name); 6399 return -EOVERFLOW; 6400 } 6401 } 6402 if (dev->flags != old_flags) { 6403 pr_info("device %s %s promiscuous mode\n", 6404 dev->name, 6405 dev->flags & IFF_PROMISC ? "entered" : "left"); 6406 if (audit_enabled) { 6407 current_uid_gid(&uid, &gid); 6408 audit_log(current->audit_context, GFP_ATOMIC, 6409 AUDIT_ANOM_PROMISCUOUS, 6410 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6411 dev->name, (dev->flags & IFF_PROMISC), 6412 (old_flags & IFF_PROMISC), 6413 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6414 from_kuid(&init_user_ns, uid), 6415 from_kgid(&init_user_ns, gid), 6416 audit_get_sessionid(current)); 6417 } 6418 6419 dev_change_rx_flags(dev, IFF_PROMISC); 6420 } 6421 if (notify) 6422 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6423 return 0; 6424 } 6425 6426 /** 6427 * dev_set_promiscuity - update promiscuity count on a device 6428 * @dev: device 6429 * @inc: modifier 6430 * 6431 * Add or remove promiscuity from a device. While the count in the device 6432 * remains above zero the interface remains promiscuous. Once it hits zero 6433 * the device reverts back to normal filtering operation. A negative inc 6434 * value is used to drop promiscuity on the device. 6435 * Return 0 if successful or a negative errno code on error. 6436 */ 6437 int dev_set_promiscuity(struct net_device *dev, int inc) 6438 { 6439 unsigned int old_flags = dev->flags; 6440 int err; 6441 6442 err = __dev_set_promiscuity(dev, inc, true); 6443 if (err < 0) 6444 return err; 6445 if (dev->flags != old_flags) 6446 dev_set_rx_mode(dev); 6447 return err; 6448 } 6449 EXPORT_SYMBOL(dev_set_promiscuity); 6450 6451 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6452 { 6453 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6454 6455 ASSERT_RTNL(); 6456 6457 dev->flags |= IFF_ALLMULTI; 6458 dev->allmulti += inc; 6459 if (dev->allmulti == 0) { 6460 /* 6461 * Avoid overflow. 6462 * If inc causes overflow, untouch allmulti and return error. 6463 */ 6464 if (inc < 0) 6465 dev->flags &= ~IFF_ALLMULTI; 6466 else { 6467 dev->allmulti -= inc; 6468 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6469 dev->name); 6470 return -EOVERFLOW; 6471 } 6472 } 6473 if (dev->flags ^ old_flags) { 6474 dev_change_rx_flags(dev, IFF_ALLMULTI); 6475 dev_set_rx_mode(dev); 6476 if (notify) 6477 __dev_notify_flags(dev, old_flags, 6478 dev->gflags ^ old_gflags); 6479 } 6480 return 0; 6481 } 6482 6483 /** 6484 * dev_set_allmulti - update allmulti count on a device 6485 * @dev: device 6486 * @inc: modifier 6487 * 6488 * Add or remove reception of all multicast frames to a device. While the 6489 * count in the device remains above zero the interface remains listening 6490 * to all interfaces. Once it hits zero the device reverts back to normal 6491 * filtering operation. A negative @inc value is used to drop the counter 6492 * when releasing a resource needing all multicasts. 6493 * Return 0 if successful or a negative errno code on error. 6494 */ 6495 6496 int dev_set_allmulti(struct net_device *dev, int inc) 6497 { 6498 return __dev_set_allmulti(dev, inc, true); 6499 } 6500 EXPORT_SYMBOL(dev_set_allmulti); 6501 6502 /* 6503 * Upload unicast and multicast address lists to device and 6504 * configure RX filtering. When the device doesn't support unicast 6505 * filtering it is put in promiscuous mode while unicast addresses 6506 * are present. 6507 */ 6508 void __dev_set_rx_mode(struct net_device *dev) 6509 { 6510 const struct net_device_ops *ops = dev->netdev_ops; 6511 6512 /* dev_open will call this function so the list will stay sane. */ 6513 if (!(dev->flags&IFF_UP)) 6514 return; 6515 6516 if (!netif_device_present(dev)) 6517 return; 6518 6519 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6520 /* Unicast addresses changes may only happen under the rtnl, 6521 * therefore calling __dev_set_promiscuity here is safe. 6522 */ 6523 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6524 __dev_set_promiscuity(dev, 1, false); 6525 dev->uc_promisc = true; 6526 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6527 __dev_set_promiscuity(dev, -1, false); 6528 dev->uc_promisc = false; 6529 } 6530 } 6531 6532 if (ops->ndo_set_rx_mode) 6533 ops->ndo_set_rx_mode(dev); 6534 } 6535 6536 void dev_set_rx_mode(struct net_device *dev) 6537 { 6538 netif_addr_lock_bh(dev); 6539 __dev_set_rx_mode(dev); 6540 netif_addr_unlock_bh(dev); 6541 } 6542 6543 /** 6544 * dev_get_flags - get flags reported to userspace 6545 * @dev: device 6546 * 6547 * Get the combination of flag bits exported through APIs to userspace. 6548 */ 6549 unsigned int dev_get_flags(const struct net_device *dev) 6550 { 6551 unsigned int flags; 6552 6553 flags = (dev->flags & ~(IFF_PROMISC | 6554 IFF_ALLMULTI | 6555 IFF_RUNNING | 6556 IFF_LOWER_UP | 6557 IFF_DORMANT)) | 6558 (dev->gflags & (IFF_PROMISC | 6559 IFF_ALLMULTI)); 6560 6561 if (netif_running(dev)) { 6562 if (netif_oper_up(dev)) 6563 flags |= IFF_RUNNING; 6564 if (netif_carrier_ok(dev)) 6565 flags |= IFF_LOWER_UP; 6566 if (netif_dormant(dev)) 6567 flags |= IFF_DORMANT; 6568 } 6569 6570 return flags; 6571 } 6572 EXPORT_SYMBOL(dev_get_flags); 6573 6574 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6575 { 6576 unsigned int old_flags = dev->flags; 6577 int ret; 6578 6579 ASSERT_RTNL(); 6580 6581 /* 6582 * Set the flags on our device. 6583 */ 6584 6585 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6586 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6587 IFF_AUTOMEDIA)) | 6588 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6589 IFF_ALLMULTI)); 6590 6591 /* 6592 * Load in the correct multicast list now the flags have changed. 6593 */ 6594 6595 if ((old_flags ^ flags) & IFF_MULTICAST) 6596 dev_change_rx_flags(dev, IFF_MULTICAST); 6597 6598 dev_set_rx_mode(dev); 6599 6600 /* 6601 * Have we downed the interface. We handle IFF_UP ourselves 6602 * according to user attempts to set it, rather than blindly 6603 * setting it. 6604 */ 6605 6606 ret = 0; 6607 if ((old_flags ^ flags) & IFF_UP) 6608 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 6609 6610 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6611 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6612 unsigned int old_flags = dev->flags; 6613 6614 dev->gflags ^= IFF_PROMISC; 6615 6616 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6617 if (dev->flags != old_flags) 6618 dev_set_rx_mode(dev); 6619 } 6620 6621 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6622 * is important. Some (broken) drivers set IFF_PROMISC, when 6623 * IFF_ALLMULTI is requested not asking us and not reporting. 6624 */ 6625 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6626 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6627 6628 dev->gflags ^= IFF_ALLMULTI; 6629 __dev_set_allmulti(dev, inc, false); 6630 } 6631 6632 return ret; 6633 } 6634 6635 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6636 unsigned int gchanges) 6637 { 6638 unsigned int changes = dev->flags ^ old_flags; 6639 6640 if (gchanges) 6641 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6642 6643 if (changes & IFF_UP) { 6644 if (dev->flags & IFF_UP) 6645 call_netdevice_notifiers(NETDEV_UP, dev); 6646 else 6647 call_netdevice_notifiers(NETDEV_DOWN, dev); 6648 } 6649 6650 if (dev->flags & IFF_UP && 6651 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6652 struct netdev_notifier_change_info change_info; 6653 6654 change_info.flags_changed = changes; 6655 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6656 &change_info.info); 6657 } 6658 } 6659 6660 /** 6661 * dev_change_flags - change device settings 6662 * @dev: device 6663 * @flags: device state flags 6664 * 6665 * Change settings on device based state flags. The flags are 6666 * in the userspace exported format. 6667 */ 6668 int dev_change_flags(struct net_device *dev, unsigned int flags) 6669 { 6670 int ret; 6671 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6672 6673 ret = __dev_change_flags(dev, flags); 6674 if (ret < 0) 6675 return ret; 6676 6677 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6678 __dev_notify_flags(dev, old_flags, changes); 6679 return ret; 6680 } 6681 EXPORT_SYMBOL(dev_change_flags); 6682 6683 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 6684 { 6685 const struct net_device_ops *ops = dev->netdev_ops; 6686 6687 if (ops->ndo_change_mtu) 6688 return ops->ndo_change_mtu(dev, new_mtu); 6689 6690 dev->mtu = new_mtu; 6691 return 0; 6692 } 6693 6694 /** 6695 * dev_set_mtu - Change maximum transfer unit 6696 * @dev: device 6697 * @new_mtu: new transfer unit 6698 * 6699 * Change the maximum transfer size of the network device. 6700 */ 6701 int dev_set_mtu(struct net_device *dev, int new_mtu) 6702 { 6703 int err, orig_mtu; 6704 6705 if (new_mtu == dev->mtu) 6706 return 0; 6707 6708 /* MTU must be positive, and in range */ 6709 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6710 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6711 dev->name, new_mtu, dev->min_mtu); 6712 return -EINVAL; 6713 } 6714 6715 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6716 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6717 dev->name, new_mtu, dev->max_mtu); 6718 return -EINVAL; 6719 } 6720 6721 if (!netif_device_present(dev)) 6722 return -ENODEV; 6723 6724 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6725 err = notifier_to_errno(err); 6726 if (err) 6727 return err; 6728 6729 orig_mtu = dev->mtu; 6730 err = __dev_set_mtu(dev, new_mtu); 6731 6732 if (!err) { 6733 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6734 err = notifier_to_errno(err); 6735 if (err) { 6736 /* setting mtu back and notifying everyone again, 6737 * so that they have a chance to revert changes. 6738 */ 6739 __dev_set_mtu(dev, orig_mtu); 6740 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6741 } 6742 } 6743 return err; 6744 } 6745 EXPORT_SYMBOL(dev_set_mtu); 6746 6747 /** 6748 * dev_set_group - Change group this device belongs to 6749 * @dev: device 6750 * @new_group: group this device should belong to 6751 */ 6752 void dev_set_group(struct net_device *dev, int new_group) 6753 { 6754 dev->group = new_group; 6755 } 6756 EXPORT_SYMBOL(dev_set_group); 6757 6758 /** 6759 * dev_set_mac_address - Change Media Access Control Address 6760 * @dev: device 6761 * @sa: new address 6762 * 6763 * Change the hardware (MAC) address of the device 6764 */ 6765 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6766 { 6767 const struct net_device_ops *ops = dev->netdev_ops; 6768 int err; 6769 6770 if (!ops->ndo_set_mac_address) 6771 return -EOPNOTSUPP; 6772 if (sa->sa_family != dev->type) 6773 return -EINVAL; 6774 if (!netif_device_present(dev)) 6775 return -ENODEV; 6776 err = ops->ndo_set_mac_address(dev, sa); 6777 if (err) 6778 return err; 6779 dev->addr_assign_type = NET_ADDR_SET; 6780 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6781 add_device_randomness(dev->dev_addr, dev->addr_len); 6782 return 0; 6783 } 6784 EXPORT_SYMBOL(dev_set_mac_address); 6785 6786 /** 6787 * dev_change_carrier - Change device carrier 6788 * @dev: device 6789 * @new_carrier: new value 6790 * 6791 * Change device carrier 6792 */ 6793 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6794 { 6795 const struct net_device_ops *ops = dev->netdev_ops; 6796 6797 if (!ops->ndo_change_carrier) 6798 return -EOPNOTSUPP; 6799 if (!netif_device_present(dev)) 6800 return -ENODEV; 6801 return ops->ndo_change_carrier(dev, new_carrier); 6802 } 6803 EXPORT_SYMBOL(dev_change_carrier); 6804 6805 /** 6806 * dev_get_phys_port_id - Get device physical port ID 6807 * @dev: device 6808 * @ppid: port ID 6809 * 6810 * Get device physical port ID 6811 */ 6812 int dev_get_phys_port_id(struct net_device *dev, 6813 struct netdev_phys_item_id *ppid) 6814 { 6815 const struct net_device_ops *ops = dev->netdev_ops; 6816 6817 if (!ops->ndo_get_phys_port_id) 6818 return -EOPNOTSUPP; 6819 return ops->ndo_get_phys_port_id(dev, ppid); 6820 } 6821 EXPORT_SYMBOL(dev_get_phys_port_id); 6822 6823 /** 6824 * dev_get_phys_port_name - Get device physical port name 6825 * @dev: device 6826 * @name: port name 6827 * @len: limit of bytes to copy to name 6828 * 6829 * Get device physical port name 6830 */ 6831 int dev_get_phys_port_name(struct net_device *dev, 6832 char *name, size_t len) 6833 { 6834 const struct net_device_ops *ops = dev->netdev_ops; 6835 6836 if (!ops->ndo_get_phys_port_name) 6837 return -EOPNOTSUPP; 6838 return ops->ndo_get_phys_port_name(dev, name, len); 6839 } 6840 EXPORT_SYMBOL(dev_get_phys_port_name); 6841 6842 /** 6843 * dev_change_proto_down - update protocol port state information 6844 * @dev: device 6845 * @proto_down: new value 6846 * 6847 * This info can be used by switch drivers to set the phys state of the 6848 * port. 6849 */ 6850 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6851 { 6852 const struct net_device_ops *ops = dev->netdev_ops; 6853 6854 if (!ops->ndo_change_proto_down) 6855 return -EOPNOTSUPP; 6856 if (!netif_device_present(dev)) 6857 return -ENODEV; 6858 return ops->ndo_change_proto_down(dev, proto_down); 6859 } 6860 EXPORT_SYMBOL(dev_change_proto_down); 6861 6862 bool __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op) 6863 { 6864 struct netdev_xdp xdp; 6865 6866 memset(&xdp, 0, sizeof(xdp)); 6867 xdp.command = XDP_QUERY_PROG; 6868 6869 /* Query must always succeed. */ 6870 WARN_ON(xdp_op(dev, &xdp) < 0); 6871 return xdp.prog_attached; 6872 } 6873 6874 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op, 6875 struct netlink_ext_ack *extack, 6876 struct bpf_prog *prog) 6877 { 6878 struct netdev_xdp xdp; 6879 6880 memset(&xdp, 0, sizeof(xdp)); 6881 xdp.command = XDP_SETUP_PROG; 6882 xdp.extack = extack; 6883 xdp.prog = prog; 6884 6885 return xdp_op(dev, &xdp); 6886 } 6887 6888 /** 6889 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 6890 * @dev: device 6891 * @extack: netlink extended ack 6892 * @fd: new program fd or negative value to clear 6893 * @flags: xdp-related flags 6894 * 6895 * Set or clear a bpf program for a device 6896 */ 6897 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 6898 int fd, u32 flags) 6899 { 6900 const struct net_device_ops *ops = dev->netdev_ops; 6901 struct bpf_prog *prog = NULL; 6902 xdp_op_t xdp_op, xdp_chk; 6903 int err; 6904 6905 ASSERT_RTNL(); 6906 6907 xdp_op = xdp_chk = ops->ndo_xdp; 6908 if (!xdp_op && (flags & XDP_FLAGS_DRV_MODE)) 6909 return -EOPNOTSUPP; 6910 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE)) 6911 xdp_op = generic_xdp_install; 6912 if (xdp_op == xdp_chk) 6913 xdp_chk = generic_xdp_install; 6914 6915 if (fd >= 0) { 6916 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk)) 6917 return -EEXIST; 6918 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 6919 __dev_xdp_attached(dev, xdp_op)) 6920 return -EBUSY; 6921 6922 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 6923 if (IS_ERR(prog)) 6924 return PTR_ERR(prog); 6925 } 6926 6927 err = dev_xdp_install(dev, xdp_op, extack, prog); 6928 if (err < 0 && prog) 6929 bpf_prog_put(prog); 6930 6931 return err; 6932 } 6933 6934 /** 6935 * dev_new_index - allocate an ifindex 6936 * @net: the applicable net namespace 6937 * 6938 * Returns a suitable unique value for a new device interface 6939 * number. The caller must hold the rtnl semaphore or the 6940 * dev_base_lock to be sure it remains unique. 6941 */ 6942 static int dev_new_index(struct net *net) 6943 { 6944 int ifindex = net->ifindex; 6945 6946 for (;;) { 6947 if (++ifindex <= 0) 6948 ifindex = 1; 6949 if (!__dev_get_by_index(net, ifindex)) 6950 return net->ifindex = ifindex; 6951 } 6952 } 6953 6954 /* Delayed registration/unregisteration */ 6955 static LIST_HEAD(net_todo_list); 6956 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 6957 6958 static void net_set_todo(struct net_device *dev) 6959 { 6960 list_add_tail(&dev->todo_list, &net_todo_list); 6961 dev_net(dev)->dev_unreg_count++; 6962 } 6963 6964 static void rollback_registered_many(struct list_head *head) 6965 { 6966 struct net_device *dev, *tmp; 6967 LIST_HEAD(close_head); 6968 6969 BUG_ON(dev_boot_phase); 6970 ASSERT_RTNL(); 6971 6972 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6973 /* Some devices call without registering 6974 * for initialization unwind. Remove those 6975 * devices and proceed with the remaining. 6976 */ 6977 if (dev->reg_state == NETREG_UNINITIALIZED) { 6978 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6979 dev->name, dev); 6980 6981 WARN_ON(1); 6982 list_del(&dev->unreg_list); 6983 continue; 6984 } 6985 dev->dismantle = true; 6986 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6987 } 6988 6989 /* If device is running, close it first. */ 6990 list_for_each_entry(dev, head, unreg_list) 6991 list_add_tail(&dev->close_list, &close_head); 6992 dev_close_many(&close_head, true); 6993 6994 list_for_each_entry(dev, head, unreg_list) { 6995 /* And unlink it from device chain. */ 6996 unlist_netdevice(dev); 6997 6998 dev->reg_state = NETREG_UNREGISTERING; 6999 } 7000 flush_all_backlogs(); 7001 7002 synchronize_net(); 7003 7004 list_for_each_entry(dev, head, unreg_list) { 7005 struct sk_buff *skb = NULL; 7006 7007 /* Shutdown queueing discipline. */ 7008 dev_shutdown(dev); 7009 7010 7011 /* Notify protocols, that we are about to destroy 7012 * this device. They should clean all the things. 7013 */ 7014 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7015 7016 if (!dev->rtnl_link_ops || 7017 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7018 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 7019 GFP_KERNEL); 7020 7021 /* 7022 * Flush the unicast and multicast chains 7023 */ 7024 dev_uc_flush(dev); 7025 dev_mc_flush(dev); 7026 7027 if (dev->netdev_ops->ndo_uninit) 7028 dev->netdev_ops->ndo_uninit(dev); 7029 7030 if (skb) 7031 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7032 7033 /* Notifier chain MUST detach us all upper devices. */ 7034 WARN_ON(netdev_has_any_upper_dev(dev)); 7035 WARN_ON(netdev_has_any_lower_dev(dev)); 7036 7037 /* Remove entries from kobject tree */ 7038 netdev_unregister_kobject(dev); 7039 #ifdef CONFIG_XPS 7040 /* Remove XPS queueing entries */ 7041 netif_reset_xps_queues_gt(dev, 0); 7042 #endif 7043 } 7044 7045 synchronize_net(); 7046 7047 list_for_each_entry(dev, head, unreg_list) 7048 dev_put(dev); 7049 } 7050 7051 static void rollback_registered(struct net_device *dev) 7052 { 7053 LIST_HEAD(single); 7054 7055 list_add(&dev->unreg_list, &single); 7056 rollback_registered_many(&single); 7057 list_del(&single); 7058 } 7059 7060 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7061 struct net_device *upper, netdev_features_t features) 7062 { 7063 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7064 netdev_features_t feature; 7065 int feature_bit; 7066 7067 for_each_netdev_feature(&upper_disables, feature_bit) { 7068 feature = __NETIF_F_BIT(feature_bit); 7069 if (!(upper->wanted_features & feature) 7070 && (features & feature)) { 7071 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7072 &feature, upper->name); 7073 features &= ~feature; 7074 } 7075 } 7076 7077 return features; 7078 } 7079 7080 static void netdev_sync_lower_features(struct net_device *upper, 7081 struct net_device *lower, netdev_features_t features) 7082 { 7083 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7084 netdev_features_t feature; 7085 int feature_bit; 7086 7087 for_each_netdev_feature(&upper_disables, feature_bit) { 7088 feature = __NETIF_F_BIT(feature_bit); 7089 if (!(features & feature) && (lower->features & feature)) { 7090 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7091 &feature, lower->name); 7092 lower->wanted_features &= ~feature; 7093 netdev_update_features(lower); 7094 7095 if (unlikely(lower->features & feature)) 7096 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7097 &feature, lower->name); 7098 } 7099 } 7100 } 7101 7102 static netdev_features_t netdev_fix_features(struct net_device *dev, 7103 netdev_features_t features) 7104 { 7105 /* Fix illegal checksum combinations */ 7106 if ((features & NETIF_F_HW_CSUM) && 7107 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7108 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7109 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7110 } 7111 7112 /* TSO requires that SG is present as well. */ 7113 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7114 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7115 features &= ~NETIF_F_ALL_TSO; 7116 } 7117 7118 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7119 !(features & NETIF_F_IP_CSUM)) { 7120 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7121 features &= ~NETIF_F_TSO; 7122 features &= ~NETIF_F_TSO_ECN; 7123 } 7124 7125 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7126 !(features & NETIF_F_IPV6_CSUM)) { 7127 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7128 features &= ~NETIF_F_TSO6; 7129 } 7130 7131 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7132 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7133 features &= ~NETIF_F_TSO_MANGLEID; 7134 7135 /* TSO ECN requires that TSO is present as well. */ 7136 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7137 features &= ~NETIF_F_TSO_ECN; 7138 7139 /* Software GSO depends on SG. */ 7140 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7141 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7142 features &= ~NETIF_F_GSO; 7143 } 7144 7145 /* UFO needs SG and checksumming */ 7146 if (features & NETIF_F_UFO) { 7147 /* maybe split UFO into V4 and V6? */ 7148 if (!(features & NETIF_F_HW_CSUM) && 7149 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) != 7150 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) { 7151 netdev_dbg(dev, 7152 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 7153 features &= ~NETIF_F_UFO; 7154 } 7155 7156 if (!(features & NETIF_F_SG)) { 7157 netdev_dbg(dev, 7158 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 7159 features &= ~NETIF_F_UFO; 7160 } 7161 } 7162 7163 /* GSO partial features require GSO partial be set */ 7164 if ((features & dev->gso_partial_features) && 7165 !(features & NETIF_F_GSO_PARTIAL)) { 7166 netdev_dbg(dev, 7167 "Dropping partially supported GSO features since no GSO partial.\n"); 7168 features &= ~dev->gso_partial_features; 7169 } 7170 7171 return features; 7172 } 7173 7174 int __netdev_update_features(struct net_device *dev) 7175 { 7176 struct net_device *upper, *lower; 7177 netdev_features_t features; 7178 struct list_head *iter; 7179 int err = -1; 7180 7181 ASSERT_RTNL(); 7182 7183 features = netdev_get_wanted_features(dev); 7184 7185 if (dev->netdev_ops->ndo_fix_features) 7186 features = dev->netdev_ops->ndo_fix_features(dev, features); 7187 7188 /* driver might be less strict about feature dependencies */ 7189 features = netdev_fix_features(dev, features); 7190 7191 /* some features can't be enabled if they're off an an upper device */ 7192 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7193 features = netdev_sync_upper_features(dev, upper, features); 7194 7195 if (dev->features == features) 7196 goto sync_lower; 7197 7198 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7199 &dev->features, &features); 7200 7201 if (dev->netdev_ops->ndo_set_features) 7202 err = dev->netdev_ops->ndo_set_features(dev, features); 7203 else 7204 err = 0; 7205 7206 if (unlikely(err < 0)) { 7207 netdev_err(dev, 7208 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7209 err, &features, &dev->features); 7210 /* return non-0 since some features might have changed and 7211 * it's better to fire a spurious notification than miss it 7212 */ 7213 return -1; 7214 } 7215 7216 sync_lower: 7217 /* some features must be disabled on lower devices when disabled 7218 * on an upper device (think: bonding master or bridge) 7219 */ 7220 netdev_for_each_lower_dev(dev, lower, iter) 7221 netdev_sync_lower_features(dev, lower, features); 7222 7223 if (!err) 7224 dev->features = features; 7225 7226 return err < 0 ? 0 : 1; 7227 } 7228 7229 /** 7230 * netdev_update_features - recalculate device features 7231 * @dev: the device to check 7232 * 7233 * Recalculate dev->features set and send notifications if it 7234 * has changed. Should be called after driver or hardware dependent 7235 * conditions might have changed that influence the features. 7236 */ 7237 void netdev_update_features(struct net_device *dev) 7238 { 7239 if (__netdev_update_features(dev)) 7240 netdev_features_change(dev); 7241 } 7242 EXPORT_SYMBOL(netdev_update_features); 7243 7244 /** 7245 * netdev_change_features - recalculate device features 7246 * @dev: the device to check 7247 * 7248 * Recalculate dev->features set and send notifications even 7249 * if they have not changed. Should be called instead of 7250 * netdev_update_features() if also dev->vlan_features might 7251 * have changed to allow the changes to be propagated to stacked 7252 * VLAN devices. 7253 */ 7254 void netdev_change_features(struct net_device *dev) 7255 { 7256 __netdev_update_features(dev); 7257 netdev_features_change(dev); 7258 } 7259 EXPORT_SYMBOL(netdev_change_features); 7260 7261 /** 7262 * netif_stacked_transfer_operstate - transfer operstate 7263 * @rootdev: the root or lower level device to transfer state from 7264 * @dev: the device to transfer operstate to 7265 * 7266 * Transfer operational state from root to device. This is normally 7267 * called when a stacking relationship exists between the root 7268 * device and the device(a leaf device). 7269 */ 7270 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7271 struct net_device *dev) 7272 { 7273 if (rootdev->operstate == IF_OPER_DORMANT) 7274 netif_dormant_on(dev); 7275 else 7276 netif_dormant_off(dev); 7277 7278 if (netif_carrier_ok(rootdev)) 7279 netif_carrier_on(dev); 7280 else 7281 netif_carrier_off(dev); 7282 } 7283 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7284 7285 #ifdef CONFIG_SYSFS 7286 static int netif_alloc_rx_queues(struct net_device *dev) 7287 { 7288 unsigned int i, count = dev->num_rx_queues; 7289 struct netdev_rx_queue *rx; 7290 size_t sz = count * sizeof(*rx); 7291 7292 BUG_ON(count < 1); 7293 7294 rx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT); 7295 if (!rx) 7296 return -ENOMEM; 7297 7298 dev->_rx = rx; 7299 7300 for (i = 0; i < count; i++) 7301 rx[i].dev = dev; 7302 return 0; 7303 } 7304 #endif 7305 7306 static void netdev_init_one_queue(struct net_device *dev, 7307 struct netdev_queue *queue, void *_unused) 7308 { 7309 /* Initialize queue lock */ 7310 spin_lock_init(&queue->_xmit_lock); 7311 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7312 queue->xmit_lock_owner = -1; 7313 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7314 queue->dev = dev; 7315 #ifdef CONFIG_BQL 7316 dql_init(&queue->dql, HZ); 7317 #endif 7318 } 7319 7320 static void netif_free_tx_queues(struct net_device *dev) 7321 { 7322 kvfree(dev->_tx); 7323 } 7324 7325 static int netif_alloc_netdev_queues(struct net_device *dev) 7326 { 7327 unsigned int count = dev->num_tx_queues; 7328 struct netdev_queue *tx; 7329 size_t sz = count * sizeof(*tx); 7330 7331 if (count < 1 || count > 0xffff) 7332 return -EINVAL; 7333 7334 tx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT); 7335 if (!tx) 7336 return -ENOMEM; 7337 7338 dev->_tx = tx; 7339 7340 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7341 spin_lock_init(&dev->tx_global_lock); 7342 7343 return 0; 7344 } 7345 7346 void netif_tx_stop_all_queues(struct net_device *dev) 7347 { 7348 unsigned int i; 7349 7350 for (i = 0; i < dev->num_tx_queues; i++) { 7351 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7352 7353 netif_tx_stop_queue(txq); 7354 } 7355 } 7356 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7357 7358 /** 7359 * register_netdevice - register a network device 7360 * @dev: device to register 7361 * 7362 * Take a completed network device structure and add it to the kernel 7363 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7364 * chain. 0 is returned on success. A negative errno code is returned 7365 * on a failure to set up the device, or if the name is a duplicate. 7366 * 7367 * Callers must hold the rtnl semaphore. You may want 7368 * register_netdev() instead of this. 7369 * 7370 * BUGS: 7371 * The locking appears insufficient to guarantee two parallel registers 7372 * will not get the same name. 7373 */ 7374 7375 int register_netdevice(struct net_device *dev) 7376 { 7377 int ret; 7378 struct net *net = dev_net(dev); 7379 7380 BUG_ON(dev_boot_phase); 7381 ASSERT_RTNL(); 7382 7383 might_sleep(); 7384 7385 /* When net_device's are persistent, this will be fatal. */ 7386 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7387 BUG_ON(!net); 7388 7389 spin_lock_init(&dev->addr_list_lock); 7390 netdev_set_addr_lockdep_class(dev); 7391 7392 ret = dev_get_valid_name(net, dev, dev->name); 7393 if (ret < 0) 7394 goto out; 7395 7396 /* Init, if this function is available */ 7397 if (dev->netdev_ops->ndo_init) { 7398 ret = dev->netdev_ops->ndo_init(dev); 7399 if (ret) { 7400 if (ret > 0) 7401 ret = -EIO; 7402 goto out; 7403 } 7404 } 7405 7406 if (((dev->hw_features | dev->features) & 7407 NETIF_F_HW_VLAN_CTAG_FILTER) && 7408 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7409 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7410 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7411 ret = -EINVAL; 7412 goto err_uninit; 7413 } 7414 7415 ret = -EBUSY; 7416 if (!dev->ifindex) 7417 dev->ifindex = dev_new_index(net); 7418 else if (__dev_get_by_index(net, dev->ifindex)) 7419 goto err_uninit; 7420 7421 /* Transfer changeable features to wanted_features and enable 7422 * software offloads (GSO and GRO). 7423 */ 7424 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7425 dev->features |= NETIF_F_SOFT_FEATURES; 7426 dev->wanted_features = dev->features & dev->hw_features; 7427 7428 if (!(dev->flags & IFF_LOOPBACK)) 7429 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7430 7431 /* If IPv4 TCP segmentation offload is supported we should also 7432 * allow the device to enable segmenting the frame with the option 7433 * of ignoring a static IP ID value. This doesn't enable the 7434 * feature itself but allows the user to enable it later. 7435 */ 7436 if (dev->hw_features & NETIF_F_TSO) 7437 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7438 if (dev->vlan_features & NETIF_F_TSO) 7439 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7440 if (dev->mpls_features & NETIF_F_TSO) 7441 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7442 if (dev->hw_enc_features & NETIF_F_TSO) 7443 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7444 7445 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7446 */ 7447 dev->vlan_features |= NETIF_F_HIGHDMA; 7448 7449 /* Make NETIF_F_SG inheritable to tunnel devices. 7450 */ 7451 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7452 7453 /* Make NETIF_F_SG inheritable to MPLS. 7454 */ 7455 dev->mpls_features |= NETIF_F_SG; 7456 7457 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7458 ret = notifier_to_errno(ret); 7459 if (ret) 7460 goto err_uninit; 7461 7462 ret = netdev_register_kobject(dev); 7463 if (ret) 7464 goto err_uninit; 7465 dev->reg_state = NETREG_REGISTERED; 7466 7467 __netdev_update_features(dev); 7468 7469 /* 7470 * Default initial state at registry is that the 7471 * device is present. 7472 */ 7473 7474 set_bit(__LINK_STATE_PRESENT, &dev->state); 7475 7476 linkwatch_init_dev(dev); 7477 7478 dev_init_scheduler(dev); 7479 dev_hold(dev); 7480 list_netdevice(dev); 7481 add_device_randomness(dev->dev_addr, dev->addr_len); 7482 7483 /* If the device has permanent device address, driver should 7484 * set dev_addr and also addr_assign_type should be set to 7485 * NET_ADDR_PERM (default value). 7486 */ 7487 if (dev->addr_assign_type == NET_ADDR_PERM) 7488 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7489 7490 /* Notify protocols, that a new device appeared. */ 7491 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7492 ret = notifier_to_errno(ret); 7493 if (ret) { 7494 rollback_registered(dev); 7495 dev->reg_state = NETREG_UNREGISTERED; 7496 } 7497 /* 7498 * Prevent userspace races by waiting until the network 7499 * device is fully setup before sending notifications. 7500 */ 7501 if (!dev->rtnl_link_ops || 7502 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7503 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7504 7505 out: 7506 return ret; 7507 7508 err_uninit: 7509 if (dev->netdev_ops->ndo_uninit) 7510 dev->netdev_ops->ndo_uninit(dev); 7511 if (dev->priv_destructor) 7512 dev->priv_destructor(dev); 7513 goto out; 7514 } 7515 EXPORT_SYMBOL(register_netdevice); 7516 7517 /** 7518 * init_dummy_netdev - init a dummy network device for NAPI 7519 * @dev: device to init 7520 * 7521 * This takes a network device structure and initialize the minimum 7522 * amount of fields so it can be used to schedule NAPI polls without 7523 * registering a full blown interface. This is to be used by drivers 7524 * that need to tie several hardware interfaces to a single NAPI 7525 * poll scheduler due to HW limitations. 7526 */ 7527 int init_dummy_netdev(struct net_device *dev) 7528 { 7529 /* Clear everything. Note we don't initialize spinlocks 7530 * are they aren't supposed to be taken by any of the 7531 * NAPI code and this dummy netdev is supposed to be 7532 * only ever used for NAPI polls 7533 */ 7534 memset(dev, 0, sizeof(struct net_device)); 7535 7536 /* make sure we BUG if trying to hit standard 7537 * register/unregister code path 7538 */ 7539 dev->reg_state = NETREG_DUMMY; 7540 7541 /* NAPI wants this */ 7542 INIT_LIST_HEAD(&dev->napi_list); 7543 7544 /* a dummy interface is started by default */ 7545 set_bit(__LINK_STATE_PRESENT, &dev->state); 7546 set_bit(__LINK_STATE_START, &dev->state); 7547 7548 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7549 * because users of this 'device' dont need to change 7550 * its refcount. 7551 */ 7552 7553 return 0; 7554 } 7555 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7556 7557 7558 /** 7559 * register_netdev - register a network device 7560 * @dev: device to register 7561 * 7562 * Take a completed network device structure and add it to the kernel 7563 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7564 * chain. 0 is returned on success. A negative errno code is returned 7565 * on a failure to set up the device, or if the name is a duplicate. 7566 * 7567 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7568 * and expands the device name if you passed a format string to 7569 * alloc_netdev. 7570 */ 7571 int register_netdev(struct net_device *dev) 7572 { 7573 int err; 7574 7575 rtnl_lock(); 7576 err = register_netdevice(dev); 7577 rtnl_unlock(); 7578 return err; 7579 } 7580 EXPORT_SYMBOL(register_netdev); 7581 7582 int netdev_refcnt_read(const struct net_device *dev) 7583 { 7584 int i, refcnt = 0; 7585 7586 for_each_possible_cpu(i) 7587 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7588 return refcnt; 7589 } 7590 EXPORT_SYMBOL(netdev_refcnt_read); 7591 7592 /** 7593 * netdev_wait_allrefs - wait until all references are gone. 7594 * @dev: target net_device 7595 * 7596 * This is called when unregistering network devices. 7597 * 7598 * Any protocol or device that holds a reference should register 7599 * for netdevice notification, and cleanup and put back the 7600 * reference if they receive an UNREGISTER event. 7601 * We can get stuck here if buggy protocols don't correctly 7602 * call dev_put. 7603 */ 7604 static void netdev_wait_allrefs(struct net_device *dev) 7605 { 7606 unsigned long rebroadcast_time, warning_time; 7607 int refcnt; 7608 7609 linkwatch_forget_dev(dev); 7610 7611 rebroadcast_time = warning_time = jiffies; 7612 refcnt = netdev_refcnt_read(dev); 7613 7614 while (refcnt != 0) { 7615 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7616 rtnl_lock(); 7617 7618 /* Rebroadcast unregister notification */ 7619 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7620 7621 __rtnl_unlock(); 7622 rcu_barrier(); 7623 rtnl_lock(); 7624 7625 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7626 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7627 &dev->state)) { 7628 /* We must not have linkwatch events 7629 * pending on unregister. If this 7630 * happens, we simply run the queue 7631 * unscheduled, resulting in a noop 7632 * for this device. 7633 */ 7634 linkwatch_run_queue(); 7635 } 7636 7637 __rtnl_unlock(); 7638 7639 rebroadcast_time = jiffies; 7640 } 7641 7642 msleep(250); 7643 7644 refcnt = netdev_refcnt_read(dev); 7645 7646 if (time_after(jiffies, warning_time + 10 * HZ)) { 7647 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7648 dev->name, refcnt); 7649 warning_time = jiffies; 7650 } 7651 } 7652 } 7653 7654 /* The sequence is: 7655 * 7656 * rtnl_lock(); 7657 * ... 7658 * register_netdevice(x1); 7659 * register_netdevice(x2); 7660 * ... 7661 * unregister_netdevice(y1); 7662 * unregister_netdevice(y2); 7663 * ... 7664 * rtnl_unlock(); 7665 * free_netdev(y1); 7666 * free_netdev(y2); 7667 * 7668 * We are invoked by rtnl_unlock(). 7669 * This allows us to deal with problems: 7670 * 1) We can delete sysfs objects which invoke hotplug 7671 * without deadlocking with linkwatch via keventd. 7672 * 2) Since we run with the RTNL semaphore not held, we can sleep 7673 * safely in order to wait for the netdev refcnt to drop to zero. 7674 * 7675 * We must not return until all unregister events added during 7676 * the interval the lock was held have been completed. 7677 */ 7678 void netdev_run_todo(void) 7679 { 7680 struct list_head list; 7681 7682 /* Snapshot list, allow later requests */ 7683 list_replace_init(&net_todo_list, &list); 7684 7685 __rtnl_unlock(); 7686 7687 7688 /* Wait for rcu callbacks to finish before next phase */ 7689 if (!list_empty(&list)) 7690 rcu_barrier(); 7691 7692 while (!list_empty(&list)) { 7693 struct net_device *dev 7694 = list_first_entry(&list, struct net_device, todo_list); 7695 list_del(&dev->todo_list); 7696 7697 rtnl_lock(); 7698 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7699 __rtnl_unlock(); 7700 7701 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7702 pr_err("network todo '%s' but state %d\n", 7703 dev->name, dev->reg_state); 7704 dump_stack(); 7705 continue; 7706 } 7707 7708 dev->reg_state = NETREG_UNREGISTERED; 7709 7710 netdev_wait_allrefs(dev); 7711 7712 /* paranoia */ 7713 BUG_ON(netdev_refcnt_read(dev)); 7714 BUG_ON(!list_empty(&dev->ptype_all)); 7715 BUG_ON(!list_empty(&dev->ptype_specific)); 7716 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7717 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7718 WARN_ON(dev->dn_ptr); 7719 7720 if (dev->priv_destructor) 7721 dev->priv_destructor(dev); 7722 if (dev->needs_free_netdev) 7723 free_netdev(dev); 7724 7725 /* Report a network device has been unregistered */ 7726 rtnl_lock(); 7727 dev_net(dev)->dev_unreg_count--; 7728 __rtnl_unlock(); 7729 wake_up(&netdev_unregistering_wq); 7730 7731 /* Free network device */ 7732 kobject_put(&dev->dev.kobj); 7733 } 7734 } 7735 7736 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7737 * all the same fields in the same order as net_device_stats, with only 7738 * the type differing, but rtnl_link_stats64 may have additional fields 7739 * at the end for newer counters. 7740 */ 7741 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7742 const struct net_device_stats *netdev_stats) 7743 { 7744 #if BITS_PER_LONG == 64 7745 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7746 memcpy(stats64, netdev_stats, sizeof(*stats64)); 7747 /* zero out counters that only exist in rtnl_link_stats64 */ 7748 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7749 sizeof(*stats64) - sizeof(*netdev_stats)); 7750 #else 7751 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7752 const unsigned long *src = (const unsigned long *)netdev_stats; 7753 u64 *dst = (u64 *)stats64; 7754 7755 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7756 for (i = 0; i < n; i++) 7757 dst[i] = src[i]; 7758 /* zero out counters that only exist in rtnl_link_stats64 */ 7759 memset((char *)stats64 + n * sizeof(u64), 0, 7760 sizeof(*stats64) - n * sizeof(u64)); 7761 #endif 7762 } 7763 EXPORT_SYMBOL(netdev_stats_to_stats64); 7764 7765 /** 7766 * dev_get_stats - get network device statistics 7767 * @dev: device to get statistics from 7768 * @storage: place to store stats 7769 * 7770 * Get network statistics from device. Return @storage. 7771 * The device driver may provide its own method by setting 7772 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7773 * otherwise the internal statistics structure is used. 7774 */ 7775 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7776 struct rtnl_link_stats64 *storage) 7777 { 7778 const struct net_device_ops *ops = dev->netdev_ops; 7779 7780 if (ops->ndo_get_stats64) { 7781 memset(storage, 0, sizeof(*storage)); 7782 ops->ndo_get_stats64(dev, storage); 7783 } else if (ops->ndo_get_stats) { 7784 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 7785 } else { 7786 netdev_stats_to_stats64(storage, &dev->stats); 7787 } 7788 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 7789 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 7790 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler); 7791 return storage; 7792 } 7793 EXPORT_SYMBOL(dev_get_stats); 7794 7795 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7796 { 7797 struct netdev_queue *queue = dev_ingress_queue(dev); 7798 7799 #ifdef CONFIG_NET_CLS_ACT 7800 if (queue) 7801 return queue; 7802 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7803 if (!queue) 7804 return NULL; 7805 netdev_init_one_queue(dev, queue, NULL); 7806 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7807 queue->qdisc_sleeping = &noop_qdisc; 7808 rcu_assign_pointer(dev->ingress_queue, queue); 7809 #endif 7810 return queue; 7811 } 7812 7813 static const struct ethtool_ops default_ethtool_ops; 7814 7815 void netdev_set_default_ethtool_ops(struct net_device *dev, 7816 const struct ethtool_ops *ops) 7817 { 7818 if (dev->ethtool_ops == &default_ethtool_ops) 7819 dev->ethtool_ops = ops; 7820 } 7821 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7822 7823 void netdev_freemem(struct net_device *dev) 7824 { 7825 char *addr = (char *)dev - dev->padded; 7826 7827 kvfree(addr); 7828 } 7829 7830 /** 7831 * alloc_netdev_mqs - allocate network device 7832 * @sizeof_priv: size of private data to allocate space for 7833 * @name: device name format string 7834 * @name_assign_type: origin of device name 7835 * @setup: callback to initialize device 7836 * @txqs: the number of TX subqueues to allocate 7837 * @rxqs: the number of RX subqueues to allocate 7838 * 7839 * Allocates a struct net_device with private data area for driver use 7840 * and performs basic initialization. Also allocates subqueue structs 7841 * for each queue on the device. 7842 */ 7843 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7844 unsigned char name_assign_type, 7845 void (*setup)(struct net_device *), 7846 unsigned int txqs, unsigned int rxqs) 7847 { 7848 struct net_device *dev; 7849 size_t alloc_size; 7850 struct net_device *p; 7851 7852 BUG_ON(strlen(name) >= sizeof(dev->name)); 7853 7854 if (txqs < 1) { 7855 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 7856 return NULL; 7857 } 7858 7859 #ifdef CONFIG_SYSFS 7860 if (rxqs < 1) { 7861 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 7862 return NULL; 7863 } 7864 #endif 7865 7866 alloc_size = sizeof(struct net_device); 7867 if (sizeof_priv) { 7868 /* ensure 32-byte alignment of private area */ 7869 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 7870 alloc_size += sizeof_priv; 7871 } 7872 /* ensure 32-byte alignment of whole construct */ 7873 alloc_size += NETDEV_ALIGN - 1; 7874 7875 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_REPEAT); 7876 if (!p) 7877 return NULL; 7878 7879 dev = PTR_ALIGN(p, NETDEV_ALIGN); 7880 dev->padded = (char *)dev - (char *)p; 7881 7882 dev->pcpu_refcnt = alloc_percpu(int); 7883 if (!dev->pcpu_refcnt) 7884 goto free_dev; 7885 7886 if (dev_addr_init(dev)) 7887 goto free_pcpu; 7888 7889 dev_mc_init(dev); 7890 dev_uc_init(dev); 7891 7892 dev_net_set(dev, &init_net); 7893 7894 dev->gso_max_size = GSO_MAX_SIZE; 7895 dev->gso_max_segs = GSO_MAX_SEGS; 7896 7897 INIT_LIST_HEAD(&dev->napi_list); 7898 INIT_LIST_HEAD(&dev->unreg_list); 7899 INIT_LIST_HEAD(&dev->close_list); 7900 INIT_LIST_HEAD(&dev->link_watch_list); 7901 INIT_LIST_HEAD(&dev->adj_list.upper); 7902 INIT_LIST_HEAD(&dev->adj_list.lower); 7903 INIT_LIST_HEAD(&dev->ptype_all); 7904 INIT_LIST_HEAD(&dev->ptype_specific); 7905 #ifdef CONFIG_NET_SCHED 7906 hash_init(dev->qdisc_hash); 7907 #endif 7908 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7909 setup(dev); 7910 7911 if (!dev->tx_queue_len) { 7912 dev->priv_flags |= IFF_NO_QUEUE; 7913 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 7914 } 7915 7916 dev->num_tx_queues = txqs; 7917 dev->real_num_tx_queues = txqs; 7918 if (netif_alloc_netdev_queues(dev)) 7919 goto free_all; 7920 7921 #ifdef CONFIG_SYSFS 7922 dev->num_rx_queues = rxqs; 7923 dev->real_num_rx_queues = rxqs; 7924 if (netif_alloc_rx_queues(dev)) 7925 goto free_all; 7926 #endif 7927 7928 strcpy(dev->name, name); 7929 dev->name_assign_type = name_assign_type; 7930 dev->group = INIT_NETDEV_GROUP; 7931 if (!dev->ethtool_ops) 7932 dev->ethtool_ops = &default_ethtool_ops; 7933 7934 nf_hook_ingress_init(dev); 7935 7936 return dev; 7937 7938 free_all: 7939 free_netdev(dev); 7940 return NULL; 7941 7942 free_pcpu: 7943 free_percpu(dev->pcpu_refcnt); 7944 free_dev: 7945 netdev_freemem(dev); 7946 return NULL; 7947 } 7948 EXPORT_SYMBOL(alloc_netdev_mqs); 7949 7950 /** 7951 * free_netdev - free network device 7952 * @dev: device 7953 * 7954 * This function does the last stage of destroying an allocated device 7955 * interface. The reference to the device object is released. If this 7956 * is the last reference then it will be freed.Must be called in process 7957 * context. 7958 */ 7959 void free_netdev(struct net_device *dev) 7960 { 7961 struct napi_struct *p, *n; 7962 struct bpf_prog *prog; 7963 7964 might_sleep(); 7965 netif_free_tx_queues(dev); 7966 #ifdef CONFIG_SYSFS 7967 kvfree(dev->_rx); 7968 #endif 7969 7970 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 7971 7972 /* Flush device addresses */ 7973 dev_addr_flush(dev); 7974 7975 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 7976 netif_napi_del(p); 7977 7978 free_percpu(dev->pcpu_refcnt); 7979 dev->pcpu_refcnt = NULL; 7980 7981 prog = rcu_dereference_protected(dev->xdp_prog, 1); 7982 if (prog) { 7983 bpf_prog_put(prog); 7984 static_key_slow_dec(&generic_xdp_needed); 7985 } 7986 7987 /* Compatibility with error handling in drivers */ 7988 if (dev->reg_state == NETREG_UNINITIALIZED) { 7989 netdev_freemem(dev); 7990 return; 7991 } 7992 7993 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 7994 dev->reg_state = NETREG_RELEASED; 7995 7996 /* will free via device release */ 7997 put_device(&dev->dev); 7998 } 7999 EXPORT_SYMBOL(free_netdev); 8000 8001 /** 8002 * synchronize_net - Synchronize with packet receive processing 8003 * 8004 * Wait for packets currently being received to be done. 8005 * Does not block later packets from starting. 8006 */ 8007 void synchronize_net(void) 8008 { 8009 might_sleep(); 8010 if (rtnl_is_locked()) 8011 synchronize_rcu_expedited(); 8012 else 8013 synchronize_rcu(); 8014 } 8015 EXPORT_SYMBOL(synchronize_net); 8016 8017 /** 8018 * unregister_netdevice_queue - remove device from the kernel 8019 * @dev: device 8020 * @head: list 8021 * 8022 * This function shuts down a device interface and removes it 8023 * from the kernel tables. 8024 * If head not NULL, device is queued to be unregistered later. 8025 * 8026 * Callers must hold the rtnl semaphore. You may want 8027 * unregister_netdev() instead of this. 8028 */ 8029 8030 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8031 { 8032 ASSERT_RTNL(); 8033 8034 if (head) { 8035 list_move_tail(&dev->unreg_list, head); 8036 } else { 8037 rollback_registered(dev); 8038 /* Finish processing unregister after unlock */ 8039 net_set_todo(dev); 8040 } 8041 } 8042 EXPORT_SYMBOL(unregister_netdevice_queue); 8043 8044 /** 8045 * unregister_netdevice_many - unregister many devices 8046 * @head: list of devices 8047 * 8048 * Note: As most callers use a stack allocated list_head, 8049 * we force a list_del() to make sure stack wont be corrupted later. 8050 */ 8051 void unregister_netdevice_many(struct list_head *head) 8052 { 8053 struct net_device *dev; 8054 8055 if (!list_empty(head)) { 8056 rollback_registered_many(head); 8057 list_for_each_entry(dev, head, unreg_list) 8058 net_set_todo(dev); 8059 list_del(head); 8060 } 8061 } 8062 EXPORT_SYMBOL(unregister_netdevice_many); 8063 8064 /** 8065 * unregister_netdev - remove device from the kernel 8066 * @dev: device 8067 * 8068 * This function shuts down a device interface and removes it 8069 * from the kernel tables. 8070 * 8071 * This is just a wrapper for unregister_netdevice that takes 8072 * the rtnl semaphore. In general you want to use this and not 8073 * unregister_netdevice. 8074 */ 8075 void unregister_netdev(struct net_device *dev) 8076 { 8077 rtnl_lock(); 8078 unregister_netdevice(dev); 8079 rtnl_unlock(); 8080 } 8081 EXPORT_SYMBOL(unregister_netdev); 8082 8083 /** 8084 * dev_change_net_namespace - move device to different nethost namespace 8085 * @dev: device 8086 * @net: network namespace 8087 * @pat: If not NULL name pattern to try if the current device name 8088 * is already taken in the destination network namespace. 8089 * 8090 * This function shuts down a device interface and moves it 8091 * to a new network namespace. On success 0 is returned, on 8092 * a failure a netagive errno code is returned. 8093 * 8094 * Callers must hold the rtnl semaphore. 8095 */ 8096 8097 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8098 { 8099 int err; 8100 8101 ASSERT_RTNL(); 8102 8103 /* Don't allow namespace local devices to be moved. */ 8104 err = -EINVAL; 8105 if (dev->features & NETIF_F_NETNS_LOCAL) 8106 goto out; 8107 8108 /* Ensure the device has been registrered */ 8109 if (dev->reg_state != NETREG_REGISTERED) 8110 goto out; 8111 8112 /* Get out if there is nothing todo */ 8113 err = 0; 8114 if (net_eq(dev_net(dev), net)) 8115 goto out; 8116 8117 /* Pick the destination device name, and ensure 8118 * we can use it in the destination network namespace. 8119 */ 8120 err = -EEXIST; 8121 if (__dev_get_by_name(net, dev->name)) { 8122 /* We get here if we can't use the current device name */ 8123 if (!pat) 8124 goto out; 8125 if (dev_get_valid_name(net, dev, pat) < 0) 8126 goto out; 8127 } 8128 8129 /* 8130 * And now a mini version of register_netdevice unregister_netdevice. 8131 */ 8132 8133 /* If device is running close it first. */ 8134 dev_close(dev); 8135 8136 /* And unlink it from device chain */ 8137 err = -ENODEV; 8138 unlist_netdevice(dev); 8139 8140 synchronize_net(); 8141 8142 /* Shutdown queueing discipline. */ 8143 dev_shutdown(dev); 8144 8145 /* Notify protocols, that we are about to destroy 8146 * this device. They should clean all the things. 8147 * 8148 * Note that dev->reg_state stays at NETREG_REGISTERED. 8149 * This is wanted because this way 8021q and macvlan know 8150 * the device is just moving and can keep their slaves up. 8151 */ 8152 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8153 rcu_barrier(); 8154 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8155 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 8156 8157 /* 8158 * Flush the unicast and multicast chains 8159 */ 8160 dev_uc_flush(dev); 8161 dev_mc_flush(dev); 8162 8163 /* Send a netdev-removed uevent to the old namespace */ 8164 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8165 netdev_adjacent_del_links(dev); 8166 8167 /* Actually switch the network namespace */ 8168 dev_net_set(dev, net); 8169 8170 /* If there is an ifindex conflict assign a new one */ 8171 if (__dev_get_by_index(net, dev->ifindex)) 8172 dev->ifindex = dev_new_index(net); 8173 8174 /* Send a netdev-add uevent to the new namespace */ 8175 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8176 netdev_adjacent_add_links(dev); 8177 8178 /* Fixup kobjects */ 8179 err = device_rename(&dev->dev, dev->name); 8180 WARN_ON(err); 8181 8182 /* Add the device back in the hashes */ 8183 list_netdevice(dev); 8184 8185 /* Notify protocols, that a new device appeared. */ 8186 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8187 8188 /* 8189 * Prevent userspace races by waiting until the network 8190 * device is fully setup before sending notifications. 8191 */ 8192 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8193 8194 synchronize_net(); 8195 err = 0; 8196 out: 8197 return err; 8198 } 8199 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8200 8201 static int dev_cpu_dead(unsigned int oldcpu) 8202 { 8203 struct sk_buff **list_skb; 8204 struct sk_buff *skb; 8205 unsigned int cpu; 8206 struct softnet_data *sd, *oldsd, *remsd = NULL; 8207 8208 local_irq_disable(); 8209 cpu = smp_processor_id(); 8210 sd = &per_cpu(softnet_data, cpu); 8211 oldsd = &per_cpu(softnet_data, oldcpu); 8212 8213 /* Find end of our completion_queue. */ 8214 list_skb = &sd->completion_queue; 8215 while (*list_skb) 8216 list_skb = &(*list_skb)->next; 8217 /* Append completion queue from offline CPU. */ 8218 *list_skb = oldsd->completion_queue; 8219 oldsd->completion_queue = NULL; 8220 8221 /* Append output queue from offline CPU. */ 8222 if (oldsd->output_queue) { 8223 *sd->output_queue_tailp = oldsd->output_queue; 8224 sd->output_queue_tailp = oldsd->output_queue_tailp; 8225 oldsd->output_queue = NULL; 8226 oldsd->output_queue_tailp = &oldsd->output_queue; 8227 } 8228 /* Append NAPI poll list from offline CPU, with one exception : 8229 * process_backlog() must be called by cpu owning percpu backlog. 8230 * We properly handle process_queue & input_pkt_queue later. 8231 */ 8232 while (!list_empty(&oldsd->poll_list)) { 8233 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8234 struct napi_struct, 8235 poll_list); 8236 8237 list_del_init(&napi->poll_list); 8238 if (napi->poll == process_backlog) 8239 napi->state = 0; 8240 else 8241 ____napi_schedule(sd, napi); 8242 } 8243 8244 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8245 local_irq_enable(); 8246 8247 #ifdef CONFIG_RPS 8248 remsd = oldsd->rps_ipi_list; 8249 oldsd->rps_ipi_list = NULL; 8250 #endif 8251 /* send out pending IPI's on offline CPU */ 8252 net_rps_send_ipi(remsd); 8253 8254 /* Process offline CPU's input_pkt_queue */ 8255 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8256 netif_rx_ni(skb); 8257 input_queue_head_incr(oldsd); 8258 } 8259 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8260 netif_rx_ni(skb); 8261 input_queue_head_incr(oldsd); 8262 } 8263 8264 return 0; 8265 } 8266 8267 /** 8268 * netdev_increment_features - increment feature set by one 8269 * @all: current feature set 8270 * @one: new feature set 8271 * @mask: mask feature set 8272 * 8273 * Computes a new feature set after adding a device with feature set 8274 * @one to the master device with current feature set @all. Will not 8275 * enable anything that is off in @mask. Returns the new feature set. 8276 */ 8277 netdev_features_t netdev_increment_features(netdev_features_t all, 8278 netdev_features_t one, netdev_features_t mask) 8279 { 8280 if (mask & NETIF_F_HW_CSUM) 8281 mask |= NETIF_F_CSUM_MASK; 8282 mask |= NETIF_F_VLAN_CHALLENGED; 8283 8284 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8285 all &= one | ~NETIF_F_ALL_FOR_ALL; 8286 8287 /* If one device supports hw checksumming, set for all. */ 8288 if (all & NETIF_F_HW_CSUM) 8289 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8290 8291 return all; 8292 } 8293 EXPORT_SYMBOL(netdev_increment_features); 8294 8295 static struct hlist_head * __net_init netdev_create_hash(void) 8296 { 8297 int i; 8298 struct hlist_head *hash; 8299 8300 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8301 if (hash != NULL) 8302 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8303 INIT_HLIST_HEAD(&hash[i]); 8304 8305 return hash; 8306 } 8307 8308 /* Initialize per network namespace state */ 8309 static int __net_init netdev_init(struct net *net) 8310 { 8311 if (net != &init_net) 8312 INIT_LIST_HEAD(&net->dev_base_head); 8313 8314 net->dev_name_head = netdev_create_hash(); 8315 if (net->dev_name_head == NULL) 8316 goto err_name; 8317 8318 net->dev_index_head = netdev_create_hash(); 8319 if (net->dev_index_head == NULL) 8320 goto err_idx; 8321 8322 return 0; 8323 8324 err_idx: 8325 kfree(net->dev_name_head); 8326 err_name: 8327 return -ENOMEM; 8328 } 8329 8330 /** 8331 * netdev_drivername - network driver for the device 8332 * @dev: network device 8333 * 8334 * Determine network driver for device. 8335 */ 8336 const char *netdev_drivername(const struct net_device *dev) 8337 { 8338 const struct device_driver *driver; 8339 const struct device *parent; 8340 const char *empty = ""; 8341 8342 parent = dev->dev.parent; 8343 if (!parent) 8344 return empty; 8345 8346 driver = parent->driver; 8347 if (driver && driver->name) 8348 return driver->name; 8349 return empty; 8350 } 8351 8352 static void __netdev_printk(const char *level, const struct net_device *dev, 8353 struct va_format *vaf) 8354 { 8355 if (dev && dev->dev.parent) { 8356 dev_printk_emit(level[1] - '0', 8357 dev->dev.parent, 8358 "%s %s %s%s: %pV", 8359 dev_driver_string(dev->dev.parent), 8360 dev_name(dev->dev.parent), 8361 netdev_name(dev), netdev_reg_state(dev), 8362 vaf); 8363 } else if (dev) { 8364 printk("%s%s%s: %pV", 8365 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8366 } else { 8367 printk("%s(NULL net_device): %pV", level, vaf); 8368 } 8369 } 8370 8371 void netdev_printk(const char *level, const struct net_device *dev, 8372 const char *format, ...) 8373 { 8374 struct va_format vaf; 8375 va_list args; 8376 8377 va_start(args, format); 8378 8379 vaf.fmt = format; 8380 vaf.va = &args; 8381 8382 __netdev_printk(level, dev, &vaf); 8383 8384 va_end(args); 8385 } 8386 EXPORT_SYMBOL(netdev_printk); 8387 8388 #define define_netdev_printk_level(func, level) \ 8389 void func(const struct net_device *dev, const char *fmt, ...) \ 8390 { \ 8391 struct va_format vaf; \ 8392 va_list args; \ 8393 \ 8394 va_start(args, fmt); \ 8395 \ 8396 vaf.fmt = fmt; \ 8397 vaf.va = &args; \ 8398 \ 8399 __netdev_printk(level, dev, &vaf); \ 8400 \ 8401 va_end(args); \ 8402 } \ 8403 EXPORT_SYMBOL(func); 8404 8405 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8406 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8407 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8408 define_netdev_printk_level(netdev_err, KERN_ERR); 8409 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8410 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8411 define_netdev_printk_level(netdev_info, KERN_INFO); 8412 8413 static void __net_exit netdev_exit(struct net *net) 8414 { 8415 kfree(net->dev_name_head); 8416 kfree(net->dev_index_head); 8417 } 8418 8419 static struct pernet_operations __net_initdata netdev_net_ops = { 8420 .init = netdev_init, 8421 .exit = netdev_exit, 8422 }; 8423 8424 static void __net_exit default_device_exit(struct net *net) 8425 { 8426 struct net_device *dev, *aux; 8427 /* 8428 * Push all migratable network devices back to the 8429 * initial network namespace 8430 */ 8431 rtnl_lock(); 8432 for_each_netdev_safe(net, dev, aux) { 8433 int err; 8434 char fb_name[IFNAMSIZ]; 8435 8436 /* Ignore unmoveable devices (i.e. loopback) */ 8437 if (dev->features & NETIF_F_NETNS_LOCAL) 8438 continue; 8439 8440 /* Leave virtual devices for the generic cleanup */ 8441 if (dev->rtnl_link_ops) 8442 continue; 8443 8444 /* Push remaining network devices to init_net */ 8445 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8446 err = dev_change_net_namespace(dev, &init_net, fb_name); 8447 if (err) { 8448 pr_emerg("%s: failed to move %s to init_net: %d\n", 8449 __func__, dev->name, err); 8450 BUG(); 8451 } 8452 } 8453 rtnl_unlock(); 8454 } 8455 8456 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8457 { 8458 /* Return with the rtnl_lock held when there are no network 8459 * devices unregistering in any network namespace in net_list. 8460 */ 8461 struct net *net; 8462 bool unregistering; 8463 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8464 8465 add_wait_queue(&netdev_unregistering_wq, &wait); 8466 for (;;) { 8467 unregistering = false; 8468 rtnl_lock(); 8469 list_for_each_entry(net, net_list, exit_list) { 8470 if (net->dev_unreg_count > 0) { 8471 unregistering = true; 8472 break; 8473 } 8474 } 8475 if (!unregistering) 8476 break; 8477 __rtnl_unlock(); 8478 8479 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8480 } 8481 remove_wait_queue(&netdev_unregistering_wq, &wait); 8482 } 8483 8484 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8485 { 8486 /* At exit all network devices most be removed from a network 8487 * namespace. Do this in the reverse order of registration. 8488 * Do this across as many network namespaces as possible to 8489 * improve batching efficiency. 8490 */ 8491 struct net_device *dev; 8492 struct net *net; 8493 LIST_HEAD(dev_kill_list); 8494 8495 /* To prevent network device cleanup code from dereferencing 8496 * loopback devices or network devices that have been freed 8497 * wait here for all pending unregistrations to complete, 8498 * before unregistring the loopback device and allowing the 8499 * network namespace be freed. 8500 * 8501 * The netdev todo list containing all network devices 8502 * unregistrations that happen in default_device_exit_batch 8503 * will run in the rtnl_unlock() at the end of 8504 * default_device_exit_batch. 8505 */ 8506 rtnl_lock_unregistering(net_list); 8507 list_for_each_entry(net, net_list, exit_list) { 8508 for_each_netdev_reverse(net, dev) { 8509 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8510 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8511 else 8512 unregister_netdevice_queue(dev, &dev_kill_list); 8513 } 8514 } 8515 unregister_netdevice_many(&dev_kill_list); 8516 rtnl_unlock(); 8517 } 8518 8519 static struct pernet_operations __net_initdata default_device_ops = { 8520 .exit = default_device_exit, 8521 .exit_batch = default_device_exit_batch, 8522 }; 8523 8524 /* 8525 * Initialize the DEV module. At boot time this walks the device list and 8526 * unhooks any devices that fail to initialise (normally hardware not 8527 * present) and leaves us with a valid list of present and active devices. 8528 * 8529 */ 8530 8531 /* 8532 * This is called single threaded during boot, so no need 8533 * to take the rtnl semaphore. 8534 */ 8535 static int __init net_dev_init(void) 8536 { 8537 int i, rc = -ENOMEM; 8538 8539 BUG_ON(!dev_boot_phase); 8540 8541 if (dev_proc_init()) 8542 goto out; 8543 8544 if (netdev_kobject_init()) 8545 goto out; 8546 8547 INIT_LIST_HEAD(&ptype_all); 8548 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8549 INIT_LIST_HEAD(&ptype_base[i]); 8550 8551 INIT_LIST_HEAD(&offload_base); 8552 8553 if (register_pernet_subsys(&netdev_net_ops)) 8554 goto out; 8555 8556 /* 8557 * Initialise the packet receive queues. 8558 */ 8559 8560 for_each_possible_cpu(i) { 8561 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8562 struct softnet_data *sd = &per_cpu(softnet_data, i); 8563 8564 INIT_WORK(flush, flush_backlog); 8565 8566 skb_queue_head_init(&sd->input_pkt_queue); 8567 skb_queue_head_init(&sd->process_queue); 8568 INIT_LIST_HEAD(&sd->poll_list); 8569 sd->output_queue_tailp = &sd->output_queue; 8570 #ifdef CONFIG_RPS 8571 sd->csd.func = rps_trigger_softirq; 8572 sd->csd.info = sd; 8573 sd->cpu = i; 8574 #endif 8575 8576 sd->backlog.poll = process_backlog; 8577 sd->backlog.weight = weight_p; 8578 } 8579 8580 dev_boot_phase = 0; 8581 8582 /* The loopback device is special if any other network devices 8583 * is present in a network namespace the loopback device must 8584 * be present. Since we now dynamically allocate and free the 8585 * loopback device ensure this invariant is maintained by 8586 * keeping the loopback device as the first device on the 8587 * list of network devices. Ensuring the loopback devices 8588 * is the first device that appears and the last network device 8589 * that disappears. 8590 */ 8591 if (register_pernet_device(&loopback_net_ops)) 8592 goto out; 8593 8594 if (register_pernet_device(&default_device_ops)) 8595 goto out; 8596 8597 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8598 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8599 8600 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 8601 NULL, dev_cpu_dead); 8602 WARN_ON(rc < 0); 8603 dst_subsys_init(); 8604 rc = 0; 8605 out: 8606 return rc; 8607 } 8608 8609 subsys_initcall(net_dev_init); 8610