xref: /openbmc/linux/net/core/dev.c (revision f7d84fa7)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 
146 #include "net-sysfs.h"
147 
148 /* Instead of increasing this, you should create a hash table. */
149 #define MAX_GRO_SKBS 8
150 
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153 
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly;	/* Taps */
158 static struct list_head offload_base __read_mostly;
159 
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162 					 struct net_device *dev,
163 					 struct netdev_notifier_info *info);
164 
165 /*
166  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
167  * semaphore.
168  *
169  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
170  *
171  * Writers must hold the rtnl semaphore while they loop through the
172  * dev_base_head list, and hold dev_base_lock for writing when they do the
173  * actual updates.  This allows pure readers to access the list even
174  * while a writer is preparing to update it.
175  *
176  * To put it another way, dev_base_lock is held for writing only to
177  * protect against pure readers; the rtnl semaphore provides the
178  * protection against other writers.
179  *
180  * See, for example usages, register_netdevice() and
181  * unregister_netdevice(), which must be called with the rtnl
182  * semaphore held.
183  */
184 DEFINE_RWLOCK(dev_base_lock);
185 EXPORT_SYMBOL(dev_base_lock);
186 
187 /* protects napi_hash addition/deletion and napi_gen_id */
188 static DEFINE_SPINLOCK(napi_hash_lock);
189 
190 static unsigned int napi_gen_id = NR_CPUS;
191 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
192 
193 static seqcount_t devnet_rename_seq;
194 
195 static inline void dev_base_seq_inc(struct net *net)
196 {
197 	while (++net->dev_base_seq == 0)
198 		;
199 }
200 
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
204 
205 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 }
207 
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209 {
210 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 }
212 
213 static inline void rps_lock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 	spin_lock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219 
220 static inline void rps_unlock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 	spin_unlock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226 
227 /* Device list insertion */
228 static void list_netdevice(struct net_device *dev)
229 {
230 	struct net *net = dev_net(dev);
231 
232 	ASSERT_RTNL();
233 
234 	write_lock_bh(&dev_base_lock);
235 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237 	hlist_add_head_rcu(&dev->index_hlist,
238 			   dev_index_hash(net, dev->ifindex));
239 	write_unlock_bh(&dev_base_lock);
240 
241 	dev_base_seq_inc(net);
242 }
243 
244 /* Device list removal
245  * caller must respect a RCU grace period before freeing/reusing dev
246  */
247 static void unlist_netdevice(struct net_device *dev)
248 {
249 	ASSERT_RTNL();
250 
251 	/* Unlink dev from the device chain */
252 	write_lock_bh(&dev_base_lock);
253 	list_del_rcu(&dev->dev_list);
254 	hlist_del_rcu(&dev->name_hlist);
255 	hlist_del_rcu(&dev->index_hlist);
256 	write_unlock_bh(&dev_base_lock);
257 
258 	dev_base_seq_inc(dev_net(dev));
259 }
260 
261 /*
262  *	Our notifier list
263  */
264 
265 static RAW_NOTIFIER_HEAD(netdev_chain);
266 
267 /*
268  *	Device drivers call our routines to queue packets here. We empty the
269  *	queue in the local softnet handler.
270  */
271 
272 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
273 EXPORT_PER_CPU_SYMBOL(softnet_data);
274 
275 #ifdef CONFIG_LOCKDEP
276 /*
277  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
278  * according to dev->type
279  */
280 static const unsigned short netdev_lock_type[] = {
281 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
282 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
283 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
284 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
285 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
286 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
287 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
288 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
289 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
290 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
291 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
292 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
293 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
294 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
295 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
296 
297 static const char *const netdev_lock_name[] = {
298 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
299 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
300 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
301 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
302 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
303 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
304 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
305 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
306 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
307 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
308 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
309 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
310 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
311 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
312 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
313 
314 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
315 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
316 
317 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
318 {
319 	int i;
320 
321 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
322 		if (netdev_lock_type[i] == dev_type)
323 			return i;
324 	/* the last key is used by default */
325 	return ARRAY_SIZE(netdev_lock_type) - 1;
326 }
327 
328 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
329 						 unsigned short dev_type)
330 {
331 	int i;
332 
333 	i = netdev_lock_pos(dev_type);
334 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
335 				   netdev_lock_name[i]);
336 }
337 
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 {
340 	int i;
341 
342 	i = netdev_lock_pos(dev->type);
343 	lockdep_set_class_and_name(&dev->addr_list_lock,
344 				   &netdev_addr_lock_key[i],
345 				   netdev_lock_name[i]);
346 }
347 #else
348 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
349 						 unsigned short dev_type)
350 {
351 }
352 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
353 {
354 }
355 #endif
356 
357 /*******************************************************************************
358  *
359  *		Protocol management and registration routines
360  *
361  *******************************************************************************/
362 
363 
364 /*
365  *	Add a protocol ID to the list. Now that the input handler is
366  *	smarter we can dispense with all the messy stuff that used to be
367  *	here.
368  *
369  *	BEWARE!!! Protocol handlers, mangling input packets,
370  *	MUST BE last in hash buckets and checking protocol handlers
371  *	MUST start from promiscuous ptype_all chain in net_bh.
372  *	It is true now, do not change it.
373  *	Explanation follows: if protocol handler, mangling packet, will
374  *	be the first on list, it is not able to sense, that packet
375  *	is cloned and should be copied-on-write, so that it will
376  *	change it and subsequent readers will get broken packet.
377  *							--ANK (980803)
378  */
379 
380 static inline struct list_head *ptype_head(const struct packet_type *pt)
381 {
382 	if (pt->type == htons(ETH_P_ALL))
383 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
384 	else
385 		return pt->dev ? &pt->dev->ptype_specific :
386 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
387 }
388 
389 /**
390  *	dev_add_pack - add packet handler
391  *	@pt: packet type declaration
392  *
393  *	Add a protocol handler to the networking stack. The passed &packet_type
394  *	is linked into kernel lists and may not be freed until it has been
395  *	removed from the kernel lists.
396  *
397  *	This call does not sleep therefore it can not
398  *	guarantee all CPU's that are in middle of receiving packets
399  *	will see the new packet type (until the next received packet).
400  */
401 
402 void dev_add_pack(struct packet_type *pt)
403 {
404 	struct list_head *head = ptype_head(pt);
405 
406 	spin_lock(&ptype_lock);
407 	list_add_rcu(&pt->list, head);
408 	spin_unlock(&ptype_lock);
409 }
410 EXPORT_SYMBOL(dev_add_pack);
411 
412 /**
413  *	__dev_remove_pack	 - remove packet handler
414  *	@pt: packet type declaration
415  *
416  *	Remove a protocol handler that was previously added to the kernel
417  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
418  *	from the kernel lists and can be freed or reused once this function
419  *	returns.
420  *
421  *      The packet type might still be in use by receivers
422  *	and must not be freed until after all the CPU's have gone
423  *	through a quiescent state.
424  */
425 void __dev_remove_pack(struct packet_type *pt)
426 {
427 	struct list_head *head = ptype_head(pt);
428 	struct packet_type *pt1;
429 
430 	spin_lock(&ptype_lock);
431 
432 	list_for_each_entry(pt1, head, list) {
433 		if (pt == pt1) {
434 			list_del_rcu(&pt->list);
435 			goto out;
436 		}
437 	}
438 
439 	pr_warn("dev_remove_pack: %p not found\n", pt);
440 out:
441 	spin_unlock(&ptype_lock);
442 }
443 EXPORT_SYMBOL(__dev_remove_pack);
444 
445 /**
446  *	dev_remove_pack	 - remove packet handler
447  *	@pt: packet type declaration
448  *
449  *	Remove a protocol handler that was previously added to the kernel
450  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
451  *	from the kernel lists and can be freed or reused once this function
452  *	returns.
453  *
454  *	This call sleeps to guarantee that no CPU is looking at the packet
455  *	type after return.
456  */
457 void dev_remove_pack(struct packet_type *pt)
458 {
459 	__dev_remove_pack(pt);
460 
461 	synchronize_net();
462 }
463 EXPORT_SYMBOL(dev_remove_pack);
464 
465 
466 /**
467  *	dev_add_offload - register offload handlers
468  *	@po: protocol offload declaration
469  *
470  *	Add protocol offload handlers to the networking stack. The passed
471  *	&proto_offload is linked into kernel lists and may not be freed until
472  *	it has been removed from the kernel lists.
473  *
474  *	This call does not sleep therefore it can not
475  *	guarantee all CPU's that are in middle of receiving packets
476  *	will see the new offload handlers (until the next received packet).
477  */
478 void dev_add_offload(struct packet_offload *po)
479 {
480 	struct packet_offload *elem;
481 
482 	spin_lock(&offload_lock);
483 	list_for_each_entry(elem, &offload_base, list) {
484 		if (po->priority < elem->priority)
485 			break;
486 	}
487 	list_add_rcu(&po->list, elem->list.prev);
488 	spin_unlock(&offload_lock);
489 }
490 EXPORT_SYMBOL(dev_add_offload);
491 
492 /**
493  *	__dev_remove_offload	 - remove offload handler
494  *	@po: packet offload declaration
495  *
496  *	Remove a protocol offload handler that was previously added to the
497  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
498  *	is removed from the kernel lists and can be freed or reused once this
499  *	function returns.
500  *
501  *      The packet type might still be in use by receivers
502  *	and must not be freed until after all the CPU's have gone
503  *	through a quiescent state.
504  */
505 static void __dev_remove_offload(struct packet_offload *po)
506 {
507 	struct list_head *head = &offload_base;
508 	struct packet_offload *po1;
509 
510 	spin_lock(&offload_lock);
511 
512 	list_for_each_entry(po1, head, list) {
513 		if (po == po1) {
514 			list_del_rcu(&po->list);
515 			goto out;
516 		}
517 	}
518 
519 	pr_warn("dev_remove_offload: %p not found\n", po);
520 out:
521 	spin_unlock(&offload_lock);
522 }
523 
524 /**
525  *	dev_remove_offload	 - remove packet offload handler
526  *	@po: packet offload declaration
527  *
528  *	Remove a packet offload handler that was previously added to the kernel
529  *	offload handlers by dev_add_offload(). The passed &offload_type is
530  *	removed from the kernel lists and can be freed or reused once this
531  *	function returns.
532  *
533  *	This call sleeps to guarantee that no CPU is looking at the packet
534  *	type after return.
535  */
536 void dev_remove_offload(struct packet_offload *po)
537 {
538 	__dev_remove_offload(po);
539 
540 	synchronize_net();
541 }
542 EXPORT_SYMBOL(dev_remove_offload);
543 
544 /******************************************************************************
545  *
546  *		      Device Boot-time Settings Routines
547  *
548  ******************************************************************************/
549 
550 /* Boot time configuration table */
551 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
552 
553 /**
554  *	netdev_boot_setup_add	- add new setup entry
555  *	@name: name of the device
556  *	@map: configured settings for the device
557  *
558  *	Adds new setup entry to the dev_boot_setup list.  The function
559  *	returns 0 on error and 1 on success.  This is a generic routine to
560  *	all netdevices.
561  */
562 static int netdev_boot_setup_add(char *name, struct ifmap *map)
563 {
564 	struct netdev_boot_setup *s;
565 	int i;
566 
567 	s = dev_boot_setup;
568 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
569 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
570 			memset(s[i].name, 0, sizeof(s[i].name));
571 			strlcpy(s[i].name, name, IFNAMSIZ);
572 			memcpy(&s[i].map, map, sizeof(s[i].map));
573 			break;
574 		}
575 	}
576 
577 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
578 }
579 
580 /**
581  * netdev_boot_setup_check	- check boot time settings
582  * @dev: the netdevice
583  *
584  * Check boot time settings for the device.
585  * The found settings are set for the device to be used
586  * later in the device probing.
587  * Returns 0 if no settings found, 1 if they are.
588  */
589 int netdev_boot_setup_check(struct net_device *dev)
590 {
591 	struct netdev_boot_setup *s = dev_boot_setup;
592 	int i;
593 
594 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
595 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
596 		    !strcmp(dev->name, s[i].name)) {
597 			dev->irq = s[i].map.irq;
598 			dev->base_addr = s[i].map.base_addr;
599 			dev->mem_start = s[i].map.mem_start;
600 			dev->mem_end = s[i].map.mem_end;
601 			return 1;
602 		}
603 	}
604 	return 0;
605 }
606 EXPORT_SYMBOL(netdev_boot_setup_check);
607 
608 
609 /**
610  * netdev_boot_base	- get address from boot time settings
611  * @prefix: prefix for network device
612  * @unit: id for network device
613  *
614  * Check boot time settings for the base address of device.
615  * The found settings are set for the device to be used
616  * later in the device probing.
617  * Returns 0 if no settings found.
618  */
619 unsigned long netdev_boot_base(const char *prefix, int unit)
620 {
621 	const struct netdev_boot_setup *s = dev_boot_setup;
622 	char name[IFNAMSIZ];
623 	int i;
624 
625 	sprintf(name, "%s%d", prefix, unit);
626 
627 	/*
628 	 * If device already registered then return base of 1
629 	 * to indicate not to probe for this interface
630 	 */
631 	if (__dev_get_by_name(&init_net, name))
632 		return 1;
633 
634 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
635 		if (!strcmp(name, s[i].name))
636 			return s[i].map.base_addr;
637 	return 0;
638 }
639 
640 /*
641  * Saves at boot time configured settings for any netdevice.
642  */
643 int __init netdev_boot_setup(char *str)
644 {
645 	int ints[5];
646 	struct ifmap map;
647 
648 	str = get_options(str, ARRAY_SIZE(ints), ints);
649 	if (!str || !*str)
650 		return 0;
651 
652 	/* Save settings */
653 	memset(&map, 0, sizeof(map));
654 	if (ints[0] > 0)
655 		map.irq = ints[1];
656 	if (ints[0] > 1)
657 		map.base_addr = ints[2];
658 	if (ints[0] > 2)
659 		map.mem_start = ints[3];
660 	if (ints[0] > 3)
661 		map.mem_end = ints[4];
662 
663 	/* Add new entry to the list */
664 	return netdev_boot_setup_add(str, &map);
665 }
666 
667 __setup("netdev=", netdev_boot_setup);
668 
669 /*******************************************************************************
670  *
671  *			    Device Interface Subroutines
672  *
673  *******************************************************************************/
674 
675 /**
676  *	dev_get_iflink	- get 'iflink' value of a interface
677  *	@dev: targeted interface
678  *
679  *	Indicates the ifindex the interface is linked to.
680  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
681  */
682 
683 int dev_get_iflink(const struct net_device *dev)
684 {
685 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
686 		return dev->netdev_ops->ndo_get_iflink(dev);
687 
688 	return dev->ifindex;
689 }
690 EXPORT_SYMBOL(dev_get_iflink);
691 
692 /**
693  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
694  *	@dev: targeted interface
695  *	@skb: The packet.
696  *
697  *	For better visibility of tunnel traffic OVS needs to retrieve
698  *	egress tunnel information for a packet. Following API allows
699  *	user to get this info.
700  */
701 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
702 {
703 	struct ip_tunnel_info *info;
704 
705 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
706 		return -EINVAL;
707 
708 	info = skb_tunnel_info_unclone(skb);
709 	if (!info)
710 		return -ENOMEM;
711 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
712 		return -EINVAL;
713 
714 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
715 }
716 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
717 
718 /**
719  *	__dev_get_by_name	- find a device by its name
720  *	@net: the applicable net namespace
721  *	@name: name to find
722  *
723  *	Find an interface by name. Must be called under RTNL semaphore
724  *	or @dev_base_lock. If the name is found a pointer to the device
725  *	is returned. If the name is not found then %NULL is returned. The
726  *	reference counters are not incremented so the caller must be
727  *	careful with locks.
728  */
729 
730 struct net_device *__dev_get_by_name(struct net *net, const char *name)
731 {
732 	struct net_device *dev;
733 	struct hlist_head *head = dev_name_hash(net, name);
734 
735 	hlist_for_each_entry(dev, head, name_hlist)
736 		if (!strncmp(dev->name, name, IFNAMSIZ))
737 			return dev;
738 
739 	return NULL;
740 }
741 EXPORT_SYMBOL(__dev_get_by_name);
742 
743 /**
744  * dev_get_by_name_rcu	- find a device by its name
745  * @net: the applicable net namespace
746  * @name: name to find
747  *
748  * Find an interface by name.
749  * If the name is found a pointer to the device is returned.
750  * If the name is not found then %NULL is returned.
751  * The reference counters are not incremented so the caller must be
752  * careful with locks. The caller must hold RCU lock.
753  */
754 
755 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
756 {
757 	struct net_device *dev;
758 	struct hlist_head *head = dev_name_hash(net, name);
759 
760 	hlist_for_each_entry_rcu(dev, head, name_hlist)
761 		if (!strncmp(dev->name, name, IFNAMSIZ))
762 			return dev;
763 
764 	return NULL;
765 }
766 EXPORT_SYMBOL(dev_get_by_name_rcu);
767 
768 /**
769  *	dev_get_by_name		- find a device by its name
770  *	@net: the applicable net namespace
771  *	@name: name to find
772  *
773  *	Find an interface by name. This can be called from any
774  *	context and does its own locking. The returned handle has
775  *	the usage count incremented and the caller must use dev_put() to
776  *	release it when it is no longer needed. %NULL is returned if no
777  *	matching device is found.
778  */
779 
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782 	struct net_device *dev;
783 
784 	rcu_read_lock();
785 	dev = dev_get_by_name_rcu(net, name);
786 	if (dev)
787 		dev_hold(dev);
788 	rcu_read_unlock();
789 	return dev;
790 }
791 EXPORT_SYMBOL(dev_get_by_name);
792 
793 /**
794  *	__dev_get_by_index - find a device by its ifindex
795  *	@net: the applicable net namespace
796  *	@ifindex: index of device
797  *
798  *	Search for an interface by index. Returns %NULL if the device
799  *	is not found or a pointer to the device. The device has not
800  *	had its reference counter increased so the caller must be careful
801  *	about locking. The caller must hold either the RTNL semaphore
802  *	or @dev_base_lock.
803  */
804 
805 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
806 {
807 	struct net_device *dev;
808 	struct hlist_head *head = dev_index_hash(net, ifindex);
809 
810 	hlist_for_each_entry(dev, head, index_hlist)
811 		if (dev->ifindex == ifindex)
812 			return dev;
813 
814 	return NULL;
815 }
816 EXPORT_SYMBOL(__dev_get_by_index);
817 
818 /**
819  *	dev_get_by_index_rcu - find a device by its ifindex
820  *	@net: the applicable net namespace
821  *	@ifindex: index of device
822  *
823  *	Search for an interface by index. Returns %NULL if the device
824  *	is not found or a pointer to the device. The device has not
825  *	had its reference counter increased so the caller must be careful
826  *	about locking. The caller must hold RCU lock.
827  */
828 
829 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
830 {
831 	struct net_device *dev;
832 	struct hlist_head *head = dev_index_hash(net, ifindex);
833 
834 	hlist_for_each_entry_rcu(dev, head, index_hlist)
835 		if (dev->ifindex == ifindex)
836 			return dev;
837 
838 	return NULL;
839 }
840 EXPORT_SYMBOL(dev_get_by_index_rcu);
841 
842 
843 /**
844  *	dev_get_by_index - find a device by its ifindex
845  *	@net: the applicable net namespace
846  *	@ifindex: index of device
847  *
848  *	Search for an interface by index. Returns NULL if the device
849  *	is not found or a pointer to the device. The device returned has
850  *	had a reference added and the pointer is safe until the user calls
851  *	dev_put to indicate they have finished with it.
852  */
853 
854 struct net_device *dev_get_by_index(struct net *net, int ifindex)
855 {
856 	struct net_device *dev;
857 
858 	rcu_read_lock();
859 	dev = dev_get_by_index_rcu(net, ifindex);
860 	if (dev)
861 		dev_hold(dev);
862 	rcu_read_unlock();
863 	return dev;
864 }
865 EXPORT_SYMBOL(dev_get_by_index);
866 
867 /**
868  *	netdev_get_name - get a netdevice name, knowing its ifindex.
869  *	@net: network namespace
870  *	@name: a pointer to the buffer where the name will be stored.
871  *	@ifindex: the ifindex of the interface to get the name from.
872  *
873  *	The use of raw_seqcount_begin() and cond_resched() before
874  *	retrying is required as we want to give the writers a chance
875  *	to complete when CONFIG_PREEMPT is not set.
876  */
877 int netdev_get_name(struct net *net, char *name, int ifindex)
878 {
879 	struct net_device *dev;
880 	unsigned int seq;
881 
882 retry:
883 	seq = raw_seqcount_begin(&devnet_rename_seq);
884 	rcu_read_lock();
885 	dev = dev_get_by_index_rcu(net, ifindex);
886 	if (!dev) {
887 		rcu_read_unlock();
888 		return -ENODEV;
889 	}
890 
891 	strcpy(name, dev->name);
892 	rcu_read_unlock();
893 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
894 		cond_resched();
895 		goto retry;
896 	}
897 
898 	return 0;
899 }
900 
901 /**
902  *	dev_getbyhwaddr_rcu - find a device by its hardware address
903  *	@net: the applicable net namespace
904  *	@type: media type of device
905  *	@ha: hardware address
906  *
907  *	Search for an interface by MAC address. Returns NULL if the device
908  *	is not found or a pointer to the device.
909  *	The caller must hold RCU or RTNL.
910  *	The returned device has not had its ref count increased
911  *	and the caller must therefore be careful about locking
912  *
913  */
914 
915 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
916 				       const char *ha)
917 {
918 	struct net_device *dev;
919 
920 	for_each_netdev_rcu(net, dev)
921 		if (dev->type == type &&
922 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
923 			return dev;
924 
925 	return NULL;
926 }
927 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
928 
929 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
930 {
931 	struct net_device *dev;
932 
933 	ASSERT_RTNL();
934 	for_each_netdev(net, dev)
935 		if (dev->type == type)
936 			return dev;
937 
938 	return NULL;
939 }
940 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
941 
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944 	struct net_device *dev, *ret = NULL;
945 
946 	rcu_read_lock();
947 	for_each_netdev_rcu(net, dev)
948 		if (dev->type == type) {
949 			dev_hold(dev);
950 			ret = dev;
951 			break;
952 		}
953 	rcu_read_unlock();
954 	return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957 
958 /**
959  *	__dev_get_by_flags - find any device with given flags
960  *	@net: the applicable net namespace
961  *	@if_flags: IFF_* values
962  *	@mask: bitmask of bits in if_flags to check
963  *
964  *	Search for any interface with the given flags. Returns NULL if a device
965  *	is not found or a pointer to the device. Must be called inside
966  *	rtnl_lock(), and result refcount is unchanged.
967  */
968 
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970 				      unsigned short mask)
971 {
972 	struct net_device *dev, *ret;
973 
974 	ASSERT_RTNL();
975 
976 	ret = NULL;
977 	for_each_netdev(net, dev) {
978 		if (((dev->flags ^ if_flags) & mask) == 0) {
979 			ret = dev;
980 			break;
981 		}
982 	}
983 	return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986 
987 /**
988  *	dev_valid_name - check if name is okay for network device
989  *	@name: name string
990  *
991  *	Network device names need to be valid file names to
992  *	to allow sysfs to work.  We also disallow any kind of
993  *	whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997 	if (*name == '\0')
998 		return false;
999 	if (strlen(name) >= IFNAMSIZ)
1000 		return false;
1001 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1002 		return false;
1003 
1004 	while (*name) {
1005 		if (*name == '/' || *name == ':' || isspace(*name))
1006 			return false;
1007 		name++;
1008 	}
1009 	return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012 
1013 /**
1014  *	__dev_alloc_name - allocate a name for a device
1015  *	@net: network namespace to allocate the device name in
1016  *	@name: name format string
1017  *	@buf:  scratch buffer and result name string
1018  *
1019  *	Passed a format string - eg "lt%d" it will try and find a suitable
1020  *	id. It scans list of devices to build up a free map, then chooses
1021  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *	while allocating the name and adding the device in order to avoid
1023  *	duplicates.
1024  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *	Returns the number of the unit assigned or a negative errno code.
1026  */
1027 
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030 	int i = 0;
1031 	const char *p;
1032 	const int max_netdevices = 8*PAGE_SIZE;
1033 	unsigned long *inuse;
1034 	struct net_device *d;
1035 
1036 	p = strnchr(name, IFNAMSIZ-1, '%');
1037 	if (p) {
1038 		/*
1039 		 * Verify the string as this thing may have come from
1040 		 * the user.  There must be either one "%d" and no other "%"
1041 		 * characters.
1042 		 */
1043 		if (p[1] != 'd' || strchr(p + 2, '%'))
1044 			return -EINVAL;
1045 
1046 		/* Use one page as a bit array of possible slots */
1047 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1048 		if (!inuse)
1049 			return -ENOMEM;
1050 
1051 		for_each_netdev(net, d) {
1052 			if (!sscanf(d->name, name, &i))
1053 				continue;
1054 			if (i < 0 || i >= max_netdevices)
1055 				continue;
1056 
1057 			/*  avoid cases where sscanf is not exact inverse of printf */
1058 			snprintf(buf, IFNAMSIZ, name, i);
1059 			if (!strncmp(buf, d->name, IFNAMSIZ))
1060 				set_bit(i, inuse);
1061 		}
1062 
1063 		i = find_first_zero_bit(inuse, max_netdevices);
1064 		free_page((unsigned long) inuse);
1065 	}
1066 
1067 	if (buf != name)
1068 		snprintf(buf, IFNAMSIZ, name, i);
1069 	if (!__dev_get_by_name(net, buf))
1070 		return i;
1071 
1072 	/* It is possible to run out of possible slots
1073 	 * when the name is long and there isn't enough space left
1074 	 * for the digits, or if all bits are used.
1075 	 */
1076 	return -ENFILE;
1077 }
1078 
1079 /**
1080  *	dev_alloc_name - allocate a name for a device
1081  *	@dev: device
1082  *	@name: name format string
1083  *
1084  *	Passed a format string - eg "lt%d" it will try and find a suitable
1085  *	id. It scans list of devices to build up a free map, then chooses
1086  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1087  *	while allocating the name and adding the device in order to avoid
1088  *	duplicates.
1089  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1090  *	Returns the number of the unit assigned or a negative errno code.
1091  */
1092 
1093 int dev_alloc_name(struct net_device *dev, const char *name)
1094 {
1095 	char buf[IFNAMSIZ];
1096 	struct net *net;
1097 	int ret;
1098 
1099 	BUG_ON(!dev_net(dev));
1100 	net = dev_net(dev);
1101 	ret = __dev_alloc_name(net, name, buf);
1102 	if (ret >= 0)
1103 		strlcpy(dev->name, buf, IFNAMSIZ);
1104 	return ret;
1105 }
1106 EXPORT_SYMBOL(dev_alloc_name);
1107 
1108 static int dev_alloc_name_ns(struct net *net,
1109 			     struct net_device *dev,
1110 			     const char *name)
1111 {
1112 	char buf[IFNAMSIZ];
1113 	int ret;
1114 
1115 	ret = __dev_alloc_name(net, name, buf);
1116 	if (ret >= 0)
1117 		strlcpy(dev->name, buf, IFNAMSIZ);
1118 	return ret;
1119 }
1120 
1121 static int dev_get_valid_name(struct net *net,
1122 			      struct net_device *dev,
1123 			      const char *name)
1124 {
1125 	BUG_ON(!net);
1126 
1127 	if (!dev_valid_name(name))
1128 		return -EINVAL;
1129 
1130 	if (strchr(name, '%'))
1131 		return dev_alloc_name_ns(net, dev, name);
1132 	else if (__dev_get_by_name(net, name))
1133 		return -EEXIST;
1134 	else if (dev->name != name)
1135 		strlcpy(dev->name, name, IFNAMSIZ);
1136 
1137 	return 0;
1138 }
1139 
1140 /**
1141  *	dev_change_name - change name of a device
1142  *	@dev: device
1143  *	@newname: name (or format string) must be at least IFNAMSIZ
1144  *
1145  *	Change name of a device, can pass format strings "eth%d".
1146  *	for wildcarding.
1147  */
1148 int dev_change_name(struct net_device *dev, const char *newname)
1149 {
1150 	unsigned char old_assign_type;
1151 	char oldname[IFNAMSIZ];
1152 	int err = 0;
1153 	int ret;
1154 	struct net *net;
1155 
1156 	ASSERT_RTNL();
1157 	BUG_ON(!dev_net(dev));
1158 
1159 	net = dev_net(dev);
1160 	if (dev->flags & IFF_UP)
1161 		return -EBUSY;
1162 
1163 	write_seqcount_begin(&devnet_rename_seq);
1164 
1165 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1166 		write_seqcount_end(&devnet_rename_seq);
1167 		return 0;
1168 	}
1169 
1170 	memcpy(oldname, dev->name, IFNAMSIZ);
1171 
1172 	err = dev_get_valid_name(net, dev, newname);
1173 	if (err < 0) {
1174 		write_seqcount_end(&devnet_rename_seq);
1175 		return err;
1176 	}
1177 
1178 	if (oldname[0] && !strchr(oldname, '%'))
1179 		netdev_info(dev, "renamed from %s\n", oldname);
1180 
1181 	old_assign_type = dev->name_assign_type;
1182 	dev->name_assign_type = NET_NAME_RENAMED;
1183 
1184 rollback:
1185 	ret = device_rename(&dev->dev, dev->name);
1186 	if (ret) {
1187 		memcpy(dev->name, oldname, IFNAMSIZ);
1188 		dev->name_assign_type = old_assign_type;
1189 		write_seqcount_end(&devnet_rename_seq);
1190 		return ret;
1191 	}
1192 
1193 	write_seqcount_end(&devnet_rename_seq);
1194 
1195 	netdev_adjacent_rename_links(dev, oldname);
1196 
1197 	write_lock_bh(&dev_base_lock);
1198 	hlist_del_rcu(&dev->name_hlist);
1199 	write_unlock_bh(&dev_base_lock);
1200 
1201 	synchronize_rcu();
1202 
1203 	write_lock_bh(&dev_base_lock);
1204 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1205 	write_unlock_bh(&dev_base_lock);
1206 
1207 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1208 	ret = notifier_to_errno(ret);
1209 
1210 	if (ret) {
1211 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1212 		if (err >= 0) {
1213 			err = ret;
1214 			write_seqcount_begin(&devnet_rename_seq);
1215 			memcpy(dev->name, oldname, IFNAMSIZ);
1216 			memcpy(oldname, newname, IFNAMSIZ);
1217 			dev->name_assign_type = old_assign_type;
1218 			old_assign_type = NET_NAME_RENAMED;
1219 			goto rollback;
1220 		} else {
1221 			pr_err("%s: name change rollback failed: %d\n",
1222 			       dev->name, ret);
1223 		}
1224 	}
1225 
1226 	return err;
1227 }
1228 
1229 /**
1230  *	dev_set_alias - change ifalias of a device
1231  *	@dev: device
1232  *	@alias: name up to IFALIASZ
1233  *	@len: limit of bytes to copy from info
1234  *
1235  *	Set ifalias for a device,
1236  */
1237 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1238 {
1239 	char *new_ifalias;
1240 
1241 	ASSERT_RTNL();
1242 
1243 	if (len >= IFALIASZ)
1244 		return -EINVAL;
1245 
1246 	if (!len) {
1247 		kfree(dev->ifalias);
1248 		dev->ifalias = NULL;
1249 		return 0;
1250 	}
1251 
1252 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1253 	if (!new_ifalias)
1254 		return -ENOMEM;
1255 	dev->ifalias = new_ifalias;
1256 	memcpy(dev->ifalias, alias, len);
1257 	dev->ifalias[len] = 0;
1258 
1259 	return len;
1260 }
1261 
1262 
1263 /**
1264  *	netdev_features_change - device changes features
1265  *	@dev: device to cause notification
1266  *
1267  *	Called to indicate a device has changed features.
1268  */
1269 void netdev_features_change(struct net_device *dev)
1270 {
1271 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1272 }
1273 EXPORT_SYMBOL(netdev_features_change);
1274 
1275 /**
1276  *	netdev_state_change - device changes state
1277  *	@dev: device to cause notification
1278  *
1279  *	Called to indicate a device has changed state. This function calls
1280  *	the notifier chains for netdev_chain and sends a NEWLINK message
1281  *	to the routing socket.
1282  */
1283 void netdev_state_change(struct net_device *dev)
1284 {
1285 	if (dev->flags & IFF_UP) {
1286 		struct netdev_notifier_change_info change_info;
1287 
1288 		change_info.flags_changed = 0;
1289 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1290 					      &change_info.info);
1291 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1292 	}
1293 }
1294 EXPORT_SYMBOL(netdev_state_change);
1295 
1296 /**
1297  * netdev_notify_peers - notify network peers about existence of @dev
1298  * @dev: network device
1299  *
1300  * Generate traffic such that interested network peers are aware of
1301  * @dev, such as by generating a gratuitous ARP. This may be used when
1302  * a device wants to inform the rest of the network about some sort of
1303  * reconfiguration such as a failover event or virtual machine
1304  * migration.
1305  */
1306 void netdev_notify_peers(struct net_device *dev)
1307 {
1308 	rtnl_lock();
1309 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1310 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1311 	rtnl_unlock();
1312 }
1313 EXPORT_SYMBOL(netdev_notify_peers);
1314 
1315 static int __dev_open(struct net_device *dev)
1316 {
1317 	const struct net_device_ops *ops = dev->netdev_ops;
1318 	int ret;
1319 
1320 	ASSERT_RTNL();
1321 
1322 	if (!netif_device_present(dev))
1323 		return -ENODEV;
1324 
1325 	/* Block netpoll from trying to do any rx path servicing.
1326 	 * If we don't do this there is a chance ndo_poll_controller
1327 	 * or ndo_poll may be running while we open the device
1328 	 */
1329 	netpoll_poll_disable(dev);
1330 
1331 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1332 	ret = notifier_to_errno(ret);
1333 	if (ret)
1334 		return ret;
1335 
1336 	set_bit(__LINK_STATE_START, &dev->state);
1337 
1338 	if (ops->ndo_validate_addr)
1339 		ret = ops->ndo_validate_addr(dev);
1340 
1341 	if (!ret && ops->ndo_open)
1342 		ret = ops->ndo_open(dev);
1343 
1344 	netpoll_poll_enable(dev);
1345 
1346 	if (ret)
1347 		clear_bit(__LINK_STATE_START, &dev->state);
1348 	else {
1349 		dev->flags |= IFF_UP;
1350 		dev_set_rx_mode(dev);
1351 		dev_activate(dev);
1352 		add_device_randomness(dev->dev_addr, dev->addr_len);
1353 	}
1354 
1355 	return ret;
1356 }
1357 
1358 /**
1359  *	dev_open	- prepare an interface for use.
1360  *	@dev:	device to open
1361  *
1362  *	Takes a device from down to up state. The device's private open
1363  *	function is invoked and then the multicast lists are loaded. Finally
1364  *	the device is moved into the up state and a %NETDEV_UP message is
1365  *	sent to the netdev notifier chain.
1366  *
1367  *	Calling this function on an active interface is a nop. On a failure
1368  *	a negative errno code is returned.
1369  */
1370 int dev_open(struct net_device *dev)
1371 {
1372 	int ret;
1373 
1374 	if (dev->flags & IFF_UP)
1375 		return 0;
1376 
1377 	ret = __dev_open(dev);
1378 	if (ret < 0)
1379 		return ret;
1380 
1381 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1382 	call_netdevice_notifiers(NETDEV_UP, dev);
1383 
1384 	return ret;
1385 }
1386 EXPORT_SYMBOL(dev_open);
1387 
1388 static int __dev_close_many(struct list_head *head)
1389 {
1390 	struct net_device *dev;
1391 
1392 	ASSERT_RTNL();
1393 	might_sleep();
1394 
1395 	list_for_each_entry(dev, head, close_list) {
1396 		/* Temporarily disable netpoll until the interface is down */
1397 		netpoll_poll_disable(dev);
1398 
1399 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1400 
1401 		clear_bit(__LINK_STATE_START, &dev->state);
1402 
1403 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1404 		 * can be even on different cpu. So just clear netif_running().
1405 		 *
1406 		 * dev->stop() will invoke napi_disable() on all of it's
1407 		 * napi_struct instances on this device.
1408 		 */
1409 		smp_mb__after_atomic(); /* Commit netif_running(). */
1410 	}
1411 
1412 	dev_deactivate_many(head);
1413 
1414 	list_for_each_entry(dev, head, close_list) {
1415 		const struct net_device_ops *ops = dev->netdev_ops;
1416 
1417 		/*
1418 		 *	Call the device specific close. This cannot fail.
1419 		 *	Only if device is UP
1420 		 *
1421 		 *	We allow it to be called even after a DETACH hot-plug
1422 		 *	event.
1423 		 */
1424 		if (ops->ndo_stop)
1425 			ops->ndo_stop(dev);
1426 
1427 		dev->flags &= ~IFF_UP;
1428 		netpoll_poll_enable(dev);
1429 	}
1430 
1431 	return 0;
1432 }
1433 
1434 static int __dev_close(struct net_device *dev)
1435 {
1436 	int retval;
1437 	LIST_HEAD(single);
1438 
1439 	list_add(&dev->close_list, &single);
1440 	retval = __dev_close_many(&single);
1441 	list_del(&single);
1442 
1443 	return retval;
1444 }
1445 
1446 int dev_close_many(struct list_head *head, bool unlink)
1447 {
1448 	struct net_device *dev, *tmp;
1449 
1450 	/* Remove the devices that don't need to be closed */
1451 	list_for_each_entry_safe(dev, tmp, head, close_list)
1452 		if (!(dev->flags & IFF_UP))
1453 			list_del_init(&dev->close_list);
1454 
1455 	__dev_close_many(head);
1456 
1457 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1458 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1459 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1460 		if (unlink)
1461 			list_del_init(&dev->close_list);
1462 	}
1463 
1464 	return 0;
1465 }
1466 EXPORT_SYMBOL(dev_close_many);
1467 
1468 /**
1469  *	dev_close - shutdown an interface.
1470  *	@dev: device to shutdown
1471  *
1472  *	This function moves an active device into down state. A
1473  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1474  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1475  *	chain.
1476  */
1477 int dev_close(struct net_device *dev)
1478 {
1479 	if (dev->flags & IFF_UP) {
1480 		LIST_HEAD(single);
1481 
1482 		list_add(&dev->close_list, &single);
1483 		dev_close_many(&single, true);
1484 		list_del(&single);
1485 	}
1486 	return 0;
1487 }
1488 EXPORT_SYMBOL(dev_close);
1489 
1490 
1491 /**
1492  *	dev_disable_lro - disable Large Receive Offload on a device
1493  *	@dev: device
1494  *
1495  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1496  *	called under RTNL.  This is needed if received packets may be
1497  *	forwarded to another interface.
1498  */
1499 void dev_disable_lro(struct net_device *dev)
1500 {
1501 	struct net_device *lower_dev;
1502 	struct list_head *iter;
1503 
1504 	dev->wanted_features &= ~NETIF_F_LRO;
1505 	netdev_update_features(dev);
1506 
1507 	if (unlikely(dev->features & NETIF_F_LRO))
1508 		netdev_WARN(dev, "failed to disable LRO!\n");
1509 
1510 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1511 		dev_disable_lro(lower_dev);
1512 }
1513 EXPORT_SYMBOL(dev_disable_lro);
1514 
1515 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1516 				   struct net_device *dev)
1517 {
1518 	struct netdev_notifier_info info;
1519 
1520 	netdev_notifier_info_init(&info, dev);
1521 	return nb->notifier_call(nb, val, &info);
1522 }
1523 
1524 static int dev_boot_phase = 1;
1525 
1526 /**
1527  * register_netdevice_notifier - register a network notifier block
1528  * @nb: notifier
1529  *
1530  * Register a notifier to be called when network device events occur.
1531  * The notifier passed is linked into the kernel structures and must
1532  * not be reused until it has been unregistered. A negative errno code
1533  * is returned on a failure.
1534  *
1535  * When registered all registration and up events are replayed
1536  * to the new notifier to allow device to have a race free
1537  * view of the network device list.
1538  */
1539 
1540 int register_netdevice_notifier(struct notifier_block *nb)
1541 {
1542 	struct net_device *dev;
1543 	struct net_device *last;
1544 	struct net *net;
1545 	int err;
1546 
1547 	rtnl_lock();
1548 	err = raw_notifier_chain_register(&netdev_chain, nb);
1549 	if (err)
1550 		goto unlock;
1551 	if (dev_boot_phase)
1552 		goto unlock;
1553 	for_each_net(net) {
1554 		for_each_netdev(net, dev) {
1555 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1556 			err = notifier_to_errno(err);
1557 			if (err)
1558 				goto rollback;
1559 
1560 			if (!(dev->flags & IFF_UP))
1561 				continue;
1562 
1563 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1564 		}
1565 	}
1566 
1567 unlock:
1568 	rtnl_unlock();
1569 	return err;
1570 
1571 rollback:
1572 	last = dev;
1573 	for_each_net(net) {
1574 		for_each_netdev(net, dev) {
1575 			if (dev == last)
1576 				goto outroll;
1577 
1578 			if (dev->flags & IFF_UP) {
1579 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1580 							dev);
1581 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1582 			}
1583 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1584 		}
1585 	}
1586 
1587 outroll:
1588 	raw_notifier_chain_unregister(&netdev_chain, nb);
1589 	goto unlock;
1590 }
1591 EXPORT_SYMBOL(register_netdevice_notifier);
1592 
1593 /**
1594  * unregister_netdevice_notifier - unregister a network notifier block
1595  * @nb: notifier
1596  *
1597  * Unregister a notifier previously registered by
1598  * register_netdevice_notifier(). The notifier is unlinked into the
1599  * kernel structures and may then be reused. A negative errno code
1600  * is returned on a failure.
1601  *
1602  * After unregistering unregister and down device events are synthesized
1603  * for all devices on the device list to the removed notifier to remove
1604  * the need for special case cleanup code.
1605  */
1606 
1607 int unregister_netdevice_notifier(struct notifier_block *nb)
1608 {
1609 	struct net_device *dev;
1610 	struct net *net;
1611 	int err;
1612 
1613 	rtnl_lock();
1614 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1615 	if (err)
1616 		goto unlock;
1617 
1618 	for_each_net(net) {
1619 		for_each_netdev(net, dev) {
1620 			if (dev->flags & IFF_UP) {
1621 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1622 							dev);
1623 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1624 			}
1625 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1626 		}
1627 	}
1628 unlock:
1629 	rtnl_unlock();
1630 	return err;
1631 }
1632 EXPORT_SYMBOL(unregister_netdevice_notifier);
1633 
1634 /**
1635  *	call_netdevice_notifiers_info - call all network notifier blocks
1636  *	@val: value passed unmodified to notifier function
1637  *	@dev: net_device pointer passed unmodified to notifier function
1638  *	@info: notifier information data
1639  *
1640  *	Call all network notifier blocks.  Parameters and return value
1641  *	are as for raw_notifier_call_chain().
1642  */
1643 
1644 static int call_netdevice_notifiers_info(unsigned long val,
1645 					 struct net_device *dev,
1646 					 struct netdev_notifier_info *info)
1647 {
1648 	ASSERT_RTNL();
1649 	netdev_notifier_info_init(info, dev);
1650 	return raw_notifier_call_chain(&netdev_chain, val, info);
1651 }
1652 
1653 /**
1654  *	call_netdevice_notifiers - call all network notifier blocks
1655  *      @val: value passed unmodified to notifier function
1656  *      @dev: net_device pointer passed unmodified to notifier function
1657  *
1658  *	Call all network notifier blocks.  Parameters and return value
1659  *	are as for raw_notifier_call_chain().
1660  */
1661 
1662 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1663 {
1664 	struct netdev_notifier_info info;
1665 
1666 	return call_netdevice_notifiers_info(val, dev, &info);
1667 }
1668 EXPORT_SYMBOL(call_netdevice_notifiers);
1669 
1670 #ifdef CONFIG_NET_INGRESS
1671 static struct static_key ingress_needed __read_mostly;
1672 
1673 void net_inc_ingress_queue(void)
1674 {
1675 	static_key_slow_inc(&ingress_needed);
1676 }
1677 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1678 
1679 void net_dec_ingress_queue(void)
1680 {
1681 	static_key_slow_dec(&ingress_needed);
1682 }
1683 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1684 #endif
1685 
1686 #ifdef CONFIG_NET_EGRESS
1687 static struct static_key egress_needed __read_mostly;
1688 
1689 void net_inc_egress_queue(void)
1690 {
1691 	static_key_slow_inc(&egress_needed);
1692 }
1693 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1694 
1695 void net_dec_egress_queue(void)
1696 {
1697 	static_key_slow_dec(&egress_needed);
1698 }
1699 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1700 #endif
1701 
1702 static struct static_key netstamp_needed __read_mostly;
1703 #ifdef HAVE_JUMP_LABEL
1704 static atomic_t netstamp_needed_deferred;
1705 static atomic_t netstamp_wanted;
1706 static void netstamp_clear(struct work_struct *work)
1707 {
1708 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709 	int wanted;
1710 
1711 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1712 	if (wanted > 0)
1713 		static_key_enable(&netstamp_needed);
1714 	else
1715 		static_key_disable(&netstamp_needed);
1716 }
1717 static DECLARE_WORK(netstamp_work, netstamp_clear);
1718 #endif
1719 
1720 void net_enable_timestamp(void)
1721 {
1722 #ifdef HAVE_JUMP_LABEL
1723 	int wanted;
1724 
1725 	while (1) {
1726 		wanted = atomic_read(&netstamp_wanted);
1727 		if (wanted <= 0)
1728 			break;
1729 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1730 			return;
1731 	}
1732 	atomic_inc(&netstamp_needed_deferred);
1733 	schedule_work(&netstamp_work);
1734 #else
1735 	static_key_slow_inc(&netstamp_needed);
1736 #endif
1737 }
1738 EXPORT_SYMBOL(net_enable_timestamp);
1739 
1740 void net_disable_timestamp(void)
1741 {
1742 #ifdef HAVE_JUMP_LABEL
1743 	int wanted;
1744 
1745 	while (1) {
1746 		wanted = atomic_read(&netstamp_wanted);
1747 		if (wanted <= 1)
1748 			break;
1749 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1750 			return;
1751 	}
1752 	atomic_dec(&netstamp_needed_deferred);
1753 	schedule_work(&netstamp_work);
1754 #else
1755 	static_key_slow_dec(&netstamp_needed);
1756 #endif
1757 }
1758 EXPORT_SYMBOL(net_disable_timestamp);
1759 
1760 static inline void net_timestamp_set(struct sk_buff *skb)
1761 {
1762 	skb->tstamp = 0;
1763 	if (static_key_false(&netstamp_needed))
1764 		__net_timestamp(skb);
1765 }
1766 
1767 #define net_timestamp_check(COND, SKB)			\
1768 	if (static_key_false(&netstamp_needed)) {		\
1769 		if ((COND) && !(SKB)->tstamp)	\
1770 			__net_timestamp(SKB);		\
1771 	}						\
1772 
1773 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1774 {
1775 	unsigned int len;
1776 
1777 	if (!(dev->flags & IFF_UP))
1778 		return false;
1779 
1780 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1781 	if (skb->len <= len)
1782 		return true;
1783 
1784 	/* if TSO is enabled, we don't care about the length as the packet
1785 	 * could be forwarded without being segmented before
1786 	 */
1787 	if (skb_is_gso(skb))
1788 		return true;
1789 
1790 	return false;
1791 }
1792 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1793 
1794 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1795 {
1796 	int ret = ____dev_forward_skb(dev, skb);
1797 
1798 	if (likely(!ret)) {
1799 		skb->protocol = eth_type_trans(skb, dev);
1800 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1801 	}
1802 
1803 	return ret;
1804 }
1805 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1806 
1807 /**
1808  * dev_forward_skb - loopback an skb to another netif
1809  *
1810  * @dev: destination network device
1811  * @skb: buffer to forward
1812  *
1813  * return values:
1814  *	NET_RX_SUCCESS	(no congestion)
1815  *	NET_RX_DROP     (packet was dropped, but freed)
1816  *
1817  * dev_forward_skb can be used for injecting an skb from the
1818  * start_xmit function of one device into the receive queue
1819  * of another device.
1820  *
1821  * The receiving device may be in another namespace, so
1822  * we have to clear all information in the skb that could
1823  * impact namespace isolation.
1824  */
1825 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1826 {
1827 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1828 }
1829 EXPORT_SYMBOL_GPL(dev_forward_skb);
1830 
1831 static inline int deliver_skb(struct sk_buff *skb,
1832 			      struct packet_type *pt_prev,
1833 			      struct net_device *orig_dev)
1834 {
1835 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1836 		return -ENOMEM;
1837 	atomic_inc(&skb->users);
1838 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1839 }
1840 
1841 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1842 					  struct packet_type **pt,
1843 					  struct net_device *orig_dev,
1844 					  __be16 type,
1845 					  struct list_head *ptype_list)
1846 {
1847 	struct packet_type *ptype, *pt_prev = *pt;
1848 
1849 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1850 		if (ptype->type != type)
1851 			continue;
1852 		if (pt_prev)
1853 			deliver_skb(skb, pt_prev, orig_dev);
1854 		pt_prev = ptype;
1855 	}
1856 	*pt = pt_prev;
1857 }
1858 
1859 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1860 {
1861 	if (!ptype->af_packet_priv || !skb->sk)
1862 		return false;
1863 
1864 	if (ptype->id_match)
1865 		return ptype->id_match(ptype, skb->sk);
1866 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1867 		return true;
1868 
1869 	return false;
1870 }
1871 
1872 /*
1873  *	Support routine. Sends outgoing frames to any network
1874  *	taps currently in use.
1875  */
1876 
1877 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1878 {
1879 	struct packet_type *ptype;
1880 	struct sk_buff *skb2 = NULL;
1881 	struct packet_type *pt_prev = NULL;
1882 	struct list_head *ptype_list = &ptype_all;
1883 
1884 	rcu_read_lock();
1885 again:
1886 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1887 		/* Never send packets back to the socket
1888 		 * they originated from - MvS (miquels@drinkel.ow.org)
1889 		 */
1890 		if (skb_loop_sk(ptype, skb))
1891 			continue;
1892 
1893 		if (pt_prev) {
1894 			deliver_skb(skb2, pt_prev, skb->dev);
1895 			pt_prev = ptype;
1896 			continue;
1897 		}
1898 
1899 		/* need to clone skb, done only once */
1900 		skb2 = skb_clone(skb, GFP_ATOMIC);
1901 		if (!skb2)
1902 			goto out_unlock;
1903 
1904 		net_timestamp_set(skb2);
1905 
1906 		/* skb->nh should be correctly
1907 		 * set by sender, so that the second statement is
1908 		 * just protection against buggy protocols.
1909 		 */
1910 		skb_reset_mac_header(skb2);
1911 
1912 		if (skb_network_header(skb2) < skb2->data ||
1913 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1914 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1915 					     ntohs(skb2->protocol),
1916 					     dev->name);
1917 			skb_reset_network_header(skb2);
1918 		}
1919 
1920 		skb2->transport_header = skb2->network_header;
1921 		skb2->pkt_type = PACKET_OUTGOING;
1922 		pt_prev = ptype;
1923 	}
1924 
1925 	if (ptype_list == &ptype_all) {
1926 		ptype_list = &dev->ptype_all;
1927 		goto again;
1928 	}
1929 out_unlock:
1930 	if (pt_prev)
1931 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1932 	rcu_read_unlock();
1933 }
1934 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1935 
1936 /**
1937  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1938  * @dev: Network device
1939  * @txq: number of queues available
1940  *
1941  * If real_num_tx_queues is changed the tc mappings may no longer be
1942  * valid. To resolve this verify the tc mapping remains valid and if
1943  * not NULL the mapping. With no priorities mapping to this
1944  * offset/count pair it will no longer be used. In the worst case TC0
1945  * is invalid nothing can be done so disable priority mappings. If is
1946  * expected that drivers will fix this mapping if they can before
1947  * calling netif_set_real_num_tx_queues.
1948  */
1949 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1950 {
1951 	int i;
1952 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1953 
1954 	/* If TC0 is invalidated disable TC mapping */
1955 	if (tc->offset + tc->count > txq) {
1956 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1957 		dev->num_tc = 0;
1958 		return;
1959 	}
1960 
1961 	/* Invalidated prio to tc mappings set to TC0 */
1962 	for (i = 1; i < TC_BITMASK + 1; i++) {
1963 		int q = netdev_get_prio_tc_map(dev, i);
1964 
1965 		tc = &dev->tc_to_txq[q];
1966 		if (tc->offset + tc->count > txq) {
1967 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1968 				i, q);
1969 			netdev_set_prio_tc_map(dev, i, 0);
1970 		}
1971 	}
1972 }
1973 
1974 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1975 {
1976 	if (dev->num_tc) {
1977 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1978 		int i;
1979 
1980 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1981 			if ((txq - tc->offset) < tc->count)
1982 				return i;
1983 		}
1984 
1985 		return -1;
1986 	}
1987 
1988 	return 0;
1989 }
1990 
1991 #ifdef CONFIG_XPS
1992 static DEFINE_MUTEX(xps_map_mutex);
1993 #define xmap_dereference(P)		\
1994 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1995 
1996 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1997 			     int tci, u16 index)
1998 {
1999 	struct xps_map *map = NULL;
2000 	int pos;
2001 
2002 	if (dev_maps)
2003 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2004 	if (!map)
2005 		return false;
2006 
2007 	for (pos = map->len; pos--;) {
2008 		if (map->queues[pos] != index)
2009 			continue;
2010 
2011 		if (map->len > 1) {
2012 			map->queues[pos] = map->queues[--map->len];
2013 			break;
2014 		}
2015 
2016 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2017 		kfree_rcu(map, rcu);
2018 		return false;
2019 	}
2020 
2021 	return true;
2022 }
2023 
2024 static bool remove_xps_queue_cpu(struct net_device *dev,
2025 				 struct xps_dev_maps *dev_maps,
2026 				 int cpu, u16 offset, u16 count)
2027 {
2028 	int num_tc = dev->num_tc ? : 1;
2029 	bool active = false;
2030 	int tci;
2031 
2032 	for (tci = cpu * num_tc; num_tc--; tci++) {
2033 		int i, j;
2034 
2035 		for (i = count, j = offset; i--; j++) {
2036 			if (!remove_xps_queue(dev_maps, cpu, j))
2037 				break;
2038 		}
2039 
2040 		active |= i < 0;
2041 	}
2042 
2043 	return active;
2044 }
2045 
2046 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2047 				   u16 count)
2048 {
2049 	struct xps_dev_maps *dev_maps;
2050 	int cpu, i;
2051 	bool active = false;
2052 
2053 	mutex_lock(&xps_map_mutex);
2054 	dev_maps = xmap_dereference(dev->xps_maps);
2055 
2056 	if (!dev_maps)
2057 		goto out_no_maps;
2058 
2059 	for_each_possible_cpu(cpu)
2060 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2061 					       offset, count);
2062 
2063 	if (!active) {
2064 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2065 		kfree_rcu(dev_maps, rcu);
2066 	}
2067 
2068 	for (i = offset + (count - 1); count--; i--)
2069 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2070 					     NUMA_NO_NODE);
2071 
2072 out_no_maps:
2073 	mutex_unlock(&xps_map_mutex);
2074 }
2075 
2076 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2077 {
2078 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2079 }
2080 
2081 static struct xps_map *expand_xps_map(struct xps_map *map,
2082 				      int cpu, u16 index)
2083 {
2084 	struct xps_map *new_map;
2085 	int alloc_len = XPS_MIN_MAP_ALLOC;
2086 	int i, pos;
2087 
2088 	for (pos = 0; map && pos < map->len; pos++) {
2089 		if (map->queues[pos] != index)
2090 			continue;
2091 		return map;
2092 	}
2093 
2094 	/* Need to add queue to this CPU's existing map */
2095 	if (map) {
2096 		if (pos < map->alloc_len)
2097 			return map;
2098 
2099 		alloc_len = map->alloc_len * 2;
2100 	}
2101 
2102 	/* Need to allocate new map to store queue on this CPU's map */
2103 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2104 			       cpu_to_node(cpu));
2105 	if (!new_map)
2106 		return NULL;
2107 
2108 	for (i = 0; i < pos; i++)
2109 		new_map->queues[i] = map->queues[i];
2110 	new_map->alloc_len = alloc_len;
2111 	new_map->len = pos;
2112 
2113 	return new_map;
2114 }
2115 
2116 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2117 			u16 index)
2118 {
2119 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2120 	int i, cpu, tci, numa_node_id = -2;
2121 	int maps_sz, num_tc = 1, tc = 0;
2122 	struct xps_map *map, *new_map;
2123 	bool active = false;
2124 
2125 	if (dev->num_tc) {
2126 		num_tc = dev->num_tc;
2127 		tc = netdev_txq_to_tc(dev, index);
2128 		if (tc < 0)
2129 			return -EINVAL;
2130 	}
2131 
2132 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2133 	if (maps_sz < L1_CACHE_BYTES)
2134 		maps_sz = L1_CACHE_BYTES;
2135 
2136 	mutex_lock(&xps_map_mutex);
2137 
2138 	dev_maps = xmap_dereference(dev->xps_maps);
2139 
2140 	/* allocate memory for queue storage */
2141 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2142 		if (!new_dev_maps)
2143 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2144 		if (!new_dev_maps) {
2145 			mutex_unlock(&xps_map_mutex);
2146 			return -ENOMEM;
2147 		}
2148 
2149 		tci = cpu * num_tc + tc;
2150 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2151 				 NULL;
2152 
2153 		map = expand_xps_map(map, cpu, index);
2154 		if (!map)
2155 			goto error;
2156 
2157 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2158 	}
2159 
2160 	if (!new_dev_maps)
2161 		goto out_no_new_maps;
2162 
2163 	for_each_possible_cpu(cpu) {
2164 		/* copy maps belonging to foreign traffic classes */
2165 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2166 			/* fill in the new device map from the old device map */
2167 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2168 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2169 		}
2170 
2171 		/* We need to explicitly update tci as prevous loop
2172 		 * could break out early if dev_maps is NULL.
2173 		 */
2174 		tci = cpu * num_tc + tc;
2175 
2176 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2177 			/* add queue to CPU maps */
2178 			int pos = 0;
2179 
2180 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2181 			while ((pos < map->len) && (map->queues[pos] != index))
2182 				pos++;
2183 
2184 			if (pos == map->len)
2185 				map->queues[map->len++] = index;
2186 #ifdef CONFIG_NUMA
2187 			if (numa_node_id == -2)
2188 				numa_node_id = cpu_to_node(cpu);
2189 			else if (numa_node_id != cpu_to_node(cpu))
2190 				numa_node_id = -1;
2191 #endif
2192 		} else if (dev_maps) {
2193 			/* fill in the new device map from the old device map */
2194 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2195 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2196 		}
2197 
2198 		/* copy maps belonging to foreign traffic classes */
2199 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2200 			/* fill in the new device map from the old device map */
2201 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2202 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2203 		}
2204 	}
2205 
2206 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2207 
2208 	/* Cleanup old maps */
2209 	if (!dev_maps)
2210 		goto out_no_old_maps;
2211 
2212 	for_each_possible_cpu(cpu) {
2213 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2214 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2215 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2216 			if (map && map != new_map)
2217 				kfree_rcu(map, rcu);
2218 		}
2219 	}
2220 
2221 	kfree_rcu(dev_maps, rcu);
2222 
2223 out_no_old_maps:
2224 	dev_maps = new_dev_maps;
2225 	active = true;
2226 
2227 out_no_new_maps:
2228 	/* update Tx queue numa node */
2229 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2230 				     (numa_node_id >= 0) ? numa_node_id :
2231 				     NUMA_NO_NODE);
2232 
2233 	if (!dev_maps)
2234 		goto out_no_maps;
2235 
2236 	/* removes queue from unused CPUs */
2237 	for_each_possible_cpu(cpu) {
2238 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2239 			active |= remove_xps_queue(dev_maps, tci, index);
2240 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2241 			active |= remove_xps_queue(dev_maps, tci, index);
2242 		for (i = num_tc - tc, tci++; --i; tci++)
2243 			active |= remove_xps_queue(dev_maps, tci, index);
2244 	}
2245 
2246 	/* free map if not active */
2247 	if (!active) {
2248 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2249 		kfree_rcu(dev_maps, rcu);
2250 	}
2251 
2252 out_no_maps:
2253 	mutex_unlock(&xps_map_mutex);
2254 
2255 	return 0;
2256 error:
2257 	/* remove any maps that we added */
2258 	for_each_possible_cpu(cpu) {
2259 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2260 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2261 			map = dev_maps ?
2262 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2263 			      NULL;
2264 			if (new_map && new_map != map)
2265 				kfree(new_map);
2266 		}
2267 	}
2268 
2269 	mutex_unlock(&xps_map_mutex);
2270 
2271 	kfree(new_dev_maps);
2272 	return -ENOMEM;
2273 }
2274 EXPORT_SYMBOL(netif_set_xps_queue);
2275 
2276 #endif
2277 void netdev_reset_tc(struct net_device *dev)
2278 {
2279 #ifdef CONFIG_XPS
2280 	netif_reset_xps_queues_gt(dev, 0);
2281 #endif
2282 	dev->num_tc = 0;
2283 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2284 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2285 }
2286 EXPORT_SYMBOL(netdev_reset_tc);
2287 
2288 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2289 {
2290 	if (tc >= dev->num_tc)
2291 		return -EINVAL;
2292 
2293 #ifdef CONFIG_XPS
2294 	netif_reset_xps_queues(dev, offset, count);
2295 #endif
2296 	dev->tc_to_txq[tc].count = count;
2297 	dev->tc_to_txq[tc].offset = offset;
2298 	return 0;
2299 }
2300 EXPORT_SYMBOL(netdev_set_tc_queue);
2301 
2302 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2303 {
2304 	if (num_tc > TC_MAX_QUEUE)
2305 		return -EINVAL;
2306 
2307 #ifdef CONFIG_XPS
2308 	netif_reset_xps_queues_gt(dev, 0);
2309 #endif
2310 	dev->num_tc = num_tc;
2311 	return 0;
2312 }
2313 EXPORT_SYMBOL(netdev_set_num_tc);
2314 
2315 /*
2316  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2317  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2318  */
2319 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2320 {
2321 	int rc;
2322 
2323 	if (txq < 1 || txq > dev->num_tx_queues)
2324 		return -EINVAL;
2325 
2326 	if (dev->reg_state == NETREG_REGISTERED ||
2327 	    dev->reg_state == NETREG_UNREGISTERING) {
2328 		ASSERT_RTNL();
2329 
2330 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2331 						  txq);
2332 		if (rc)
2333 			return rc;
2334 
2335 		if (dev->num_tc)
2336 			netif_setup_tc(dev, txq);
2337 
2338 		if (txq < dev->real_num_tx_queues) {
2339 			qdisc_reset_all_tx_gt(dev, txq);
2340 #ifdef CONFIG_XPS
2341 			netif_reset_xps_queues_gt(dev, txq);
2342 #endif
2343 		}
2344 	}
2345 
2346 	dev->real_num_tx_queues = txq;
2347 	return 0;
2348 }
2349 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2350 
2351 #ifdef CONFIG_SYSFS
2352 /**
2353  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2354  *	@dev: Network device
2355  *	@rxq: Actual number of RX queues
2356  *
2357  *	This must be called either with the rtnl_lock held or before
2358  *	registration of the net device.  Returns 0 on success, or a
2359  *	negative error code.  If called before registration, it always
2360  *	succeeds.
2361  */
2362 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2363 {
2364 	int rc;
2365 
2366 	if (rxq < 1 || rxq > dev->num_rx_queues)
2367 		return -EINVAL;
2368 
2369 	if (dev->reg_state == NETREG_REGISTERED) {
2370 		ASSERT_RTNL();
2371 
2372 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2373 						  rxq);
2374 		if (rc)
2375 			return rc;
2376 	}
2377 
2378 	dev->real_num_rx_queues = rxq;
2379 	return 0;
2380 }
2381 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2382 #endif
2383 
2384 /**
2385  * netif_get_num_default_rss_queues - default number of RSS queues
2386  *
2387  * This routine should set an upper limit on the number of RSS queues
2388  * used by default by multiqueue devices.
2389  */
2390 int netif_get_num_default_rss_queues(void)
2391 {
2392 	return is_kdump_kernel() ?
2393 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2394 }
2395 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2396 
2397 static void __netif_reschedule(struct Qdisc *q)
2398 {
2399 	struct softnet_data *sd;
2400 	unsigned long flags;
2401 
2402 	local_irq_save(flags);
2403 	sd = this_cpu_ptr(&softnet_data);
2404 	q->next_sched = NULL;
2405 	*sd->output_queue_tailp = q;
2406 	sd->output_queue_tailp = &q->next_sched;
2407 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2408 	local_irq_restore(flags);
2409 }
2410 
2411 void __netif_schedule(struct Qdisc *q)
2412 {
2413 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2414 		__netif_reschedule(q);
2415 }
2416 EXPORT_SYMBOL(__netif_schedule);
2417 
2418 struct dev_kfree_skb_cb {
2419 	enum skb_free_reason reason;
2420 };
2421 
2422 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2423 {
2424 	return (struct dev_kfree_skb_cb *)skb->cb;
2425 }
2426 
2427 void netif_schedule_queue(struct netdev_queue *txq)
2428 {
2429 	rcu_read_lock();
2430 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2431 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2432 
2433 		__netif_schedule(q);
2434 	}
2435 	rcu_read_unlock();
2436 }
2437 EXPORT_SYMBOL(netif_schedule_queue);
2438 
2439 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2440 {
2441 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2442 		struct Qdisc *q;
2443 
2444 		rcu_read_lock();
2445 		q = rcu_dereference(dev_queue->qdisc);
2446 		__netif_schedule(q);
2447 		rcu_read_unlock();
2448 	}
2449 }
2450 EXPORT_SYMBOL(netif_tx_wake_queue);
2451 
2452 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2453 {
2454 	unsigned long flags;
2455 
2456 	if (unlikely(!skb))
2457 		return;
2458 
2459 	if (likely(atomic_read(&skb->users) == 1)) {
2460 		smp_rmb();
2461 		atomic_set(&skb->users, 0);
2462 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2463 		return;
2464 	}
2465 	get_kfree_skb_cb(skb)->reason = reason;
2466 	local_irq_save(flags);
2467 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2468 	__this_cpu_write(softnet_data.completion_queue, skb);
2469 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2470 	local_irq_restore(flags);
2471 }
2472 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2473 
2474 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2475 {
2476 	if (in_irq() || irqs_disabled())
2477 		__dev_kfree_skb_irq(skb, reason);
2478 	else
2479 		dev_kfree_skb(skb);
2480 }
2481 EXPORT_SYMBOL(__dev_kfree_skb_any);
2482 
2483 
2484 /**
2485  * netif_device_detach - mark device as removed
2486  * @dev: network device
2487  *
2488  * Mark device as removed from system and therefore no longer available.
2489  */
2490 void netif_device_detach(struct net_device *dev)
2491 {
2492 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2493 	    netif_running(dev)) {
2494 		netif_tx_stop_all_queues(dev);
2495 	}
2496 }
2497 EXPORT_SYMBOL(netif_device_detach);
2498 
2499 /**
2500  * netif_device_attach - mark device as attached
2501  * @dev: network device
2502  *
2503  * Mark device as attached from system and restart if needed.
2504  */
2505 void netif_device_attach(struct net_device *dev)
2506 {
2507 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2508 	    netif_running(dev)) {
2509 		netif_tx_wake_all_queues(dev);
2510 		__netdev_watchdog_up(dev);
2511 	}
2512 }
2513 EXPORT_SYMBOL(netif_device_attach);
2514 
2515 /*
2516  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2517  * to be used as a distribution range.
2518  */
2519 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2520 		  unsigned int num_tx_queues)
2521 {
2522 	u32 hash;
2523 	u16 qoffset = 0;
2524 	u16 qcount = num_tx_queues;
2525 
2526 	if (skb_rx_queue_recorded(skb)) {
2527 		hash = skb_get_rx_queue(skb);
2528 		while (unlikely(hash >= num_tx_queues))
2529 			hash -= num_tx_queues;
2530 		return hash;
2531 	}
2532 
2533 	if (dev->num_tc) {
2534 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2535 
2536 		qoffset = dev->tc_to_txq[tc].offset;
2537 		qcount = dev->tc_to_txq[tc].count;
2538 	}
2539 
2540 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2541 }
2542 EXPORT_SYMBOL(__skb_tx_hash);
2543 
2544 static void skb_warn_bad_offload(const struct sk_buff *skb)
2545 {
2546 	static const netdev_features_t null_features;
2547 	struct net_device *dev = skb->dev;
2548 	const char *name = "";
2549 
2550 	if (!net_ratelimit())
2551 		return;
2552 
2553 	if (dev) {
2554 		if (dev->dev.parent)
2555 			name = dev_driver_string(dev->dev.parent);
2556 		else
2557 			name = netdev_name(dev);
2558 	}
2559 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2560 	     "gso_type=%d ip_summed=%d\n",
2561 	     name, dev ? &dev->features : &null_features,
2562 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2563 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2564 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2565 }
2566 
2567 /*
2568  * Invalidate hardware checksum when packet is to be mangled, and
2569  * complete checksum manually on outgoing path.
2570  */
2571 int skb_checksum_help(struct sk_buff *skb)
2572 {
2573 	__wsum csum;
2574 	int ret = 0, offset;
2575 
2576 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2577 		goto out_set_summed;
2578 
2579 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2580 		skb_warn_bad_offload(skb);
2581 		return -EINVAL;
2582 	}
2583 
2584 	/* Before computing a checksum, we should make sure no frag could
2585 	 * be modified by an external entity : checksum could be wrong.
2586 	 */
2587 	if (skb_has_shared_frag(skb)) {
2588 		ret = __skb_linearize(skb);
2589 		if (ret)
2590 			goto out;
2591 	}
2592 
2593 	offset = skb_checksum_start_offset(skb);
2594 	BUG_ON(offset >= skb_headlen(skb));
2595 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2596 
2597 	offset += skb->csum_offset;
2598 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2599 
2600 	if (skb_cloned(skb) &&
2601 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2602 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2603 		if (ret)
2604 			goto out;
2605 	}
2606 
2607 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2608 out_set_summed:
2609 	skb->ip_summed = CHECKSUM_NONE;
2610 out:
2611 	return ret;
2612 }
2613 EXPORT_SYMBOL(skb_checksum_help);
2614 
2615 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2616 {
2617 	__be16 type = skb->protocol;
2618 
2619 	/* Tunnel gso handlers can set protocol to ethernet. */
2620 	if (type == htons(ETH_P_TEB)) {
2621 		struct ethhdr *eth;
2622 
2623 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2624 			return 0;
2625 
2626 		eth = (struct ethhdr *)skb_mac_header(skb);
2627 		type = eth->h_proto;
2628 	}
2629 
2630 	return __vlan_get_protocol(skb, type, depth);
2631 }
2632 
2633 /**
2634  *	skb_mac_gso_segment - mac layer segmentation handler.
2635  *	@skb: buffer to segment
2636  *	@features: features for the output path (see dev->features)
2637  */
2638 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2639 				    netdev_features_t features)
2640 {
2641 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2642 	struct packet_offload *ptype;
2643 	int vlan_depth = skb->mac_len;
2644 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2645 
2646 	if (unlikely(!type))
2647 		return ERR_PTR(-EINVAL);
2648 
2649 	__skb_pull(skb, vlan_depth);
2650 
2651 	rcu_read_lock();
2652 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2653 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2654 			segs = ptype->callbacks.gso_segment(skb, features);
2655 			break;
2656 		}
2657 	}
2658 	rcu_read_unlock();
2659 
2660 	__skb_push(skb, skb->data - skb_mac_header(skb));
2661 
2662 	return segs;
2663 }
2664 EXPORT_SYMBOL(skb_mac_gso_segment);
2665 
2666 
2667 /* openvswitch calls this on rx path, so we need a different check.
2668  */
2669 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2670 {
2671 	if (tx_path)
2672 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2673 		       skb->ip_summed != CHECKSUM_NONE;
2674 
2675 	return skb->ip_summed == CHECKSUM_NONE;
2676 }
2677 
2678 /**
2679  *	__skb_gso_segment - Perform segmentation on skb.
2680  *	@skb: buffer to segment
2681  *	@features: features for the output path (see dev->features)
2682  *	@tx_path: whether it is called in TX path
2683  *
2684  *	This function segments the given skb and returns a list of segments.
2685  *
2686  *	It may return NULL if the skb requires no segmentation.  This is
2687  *	only possible when GSO is used for verifying header integrity.
2688  *
2689  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2690  */
2691 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2692 				  netdev_features_t features, bool tx_path)
2693 {
2694 	struct sk_buff *segs;
2695 
2696 	if (unlikely(skb_needs_check(skb, tx_path))) {
2697 		int err;
2698 
2699 		/* We're going to init ->check field in TCP or UDP header */
2700 		err = skb_cow_head(skb, 0);
2701 		if (err < 0)
2702 			return ERR_PTR(err);
2703 	}
2704 
2705 	/* Only report GSO partial support if it will enable us to
2706 	 * support segmentation on this frame without needing additional
2707 	 * work.
2708 	 */
2709 	if (features & NETIF_F_GSO_PARTIAL) {
2710 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2711 		struct net_device *dev = skb->dev;
2712 
2713 		partial_features |= dev->features & dev->gso_partial_features;
2714 		if (!skb_gso_ok(skb, features | partial_features))
2715 			features &= ~NETIF_F_GSO_PARTIAL;
2716 	}
2717 
2718 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2719 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2720 
2721 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2722 	SKB_GSO_CB(skb)->encap_level = 0;
2723 
2724 	skb_reset_mac_header(skb);
2725 	skb_reset_mac_len(skb);
2726 
2727 	segs = skb_mac_gso_segment(skb, features);
2728 
2729 	if (unlikely(skb_needs_check(skb, tx_path)))
2730 		skb_warn_bad_offload(skb);
2731 
2732 	return segs;
2733 }
2734 EXPORT_SYMBOL(__skb_gso_segment);
2735 
2736 /* Take action when hardware reception checksum errors are detected. */
2737 #ifdef CONFIG_BUG
2738 void netdev_rx_csum_fault(struct net_device *dev)
2739 {
2740 	if (net_ratelimit()) {
2741 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2742 		dump_stack();
2743 	}
2744 }
2745 EXPORT_SYMBOL(netdev_rx_csum_fault);
2746 #endif
2747 
2748 /* Actually, we should eliminate this check as soon as we know, that:
2749  * 1. IOMMU is present and allows to map all the memory.
2750  * 2. No high memory really exists on this machine.
2751  */
2752 
2753 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2754 {
2755 #ifdef CONFIG_HIGHMEM
2756 	int i;
2757 
2758 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2759 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2760 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2761 
2762 			if (PageHighMem(skb_frag_page(frag)))
2763 				return 1;
2764 		}
2765 	}
2766 
2767 	if (PCI_DMA_BUS_IS_PHYS) {
2768 		struct device *pdev = dev->dev.parent;
2769 
2770 		if (!pdev)
2771 			return 0;
2772 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2773 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2774 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2775 
2776 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2777 				return 1;
2778 		}
2779 	}
2780 #endif
2781 	return 0;
2782 }
2783 
2784 /* If MPLS offload request, verify we are testing hardware MPLS features
2785  * instead of standard features for the netdev.
2786  */
2787 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2788 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2789 					   netdev_features_t features,
2790 					   __be16 type)
2791 {
2792 	if (eth_p_mpls(type))
2793 		features &= skb->dev->mpls_features;
2794 
2795 	return features;
2796 }
2797 #else
2798 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2799 					   netdev_features_t features,
2800 					   __be16 type)
2801 {
2802 	return features;
2803 }
2804 #endif
2805 
2806 static netdev_features_t harmonize_features(struct sk_buff *skb,
2807 	netdev_features_t features)
2808 {
2809 	int tmp;
2810 	__be16 type;
2811 
2812 	type = skb_network_protocol(skb, &tmp);
2813 	features = net_mpls_features(skb, features, type);
2814 
2815 	if (skb->ip_summed != CHECKSUM_NONE &&
2816 	    !can_checksum_protocol(features, type)) {
2817 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2818 	}
2819 	if (illegal_highdma(skb->dev, skb))
2820 		features &= ~NETIF_F_SG;
2821 
2822 	return features;
2823 }
2824 
2825 netdev_features_t passthru_features_check(struct sk_buff *skb,
2826 					  struct net_device *dev,
2827 					  netdev_features_t features)
2828 {
2829 	return features;
2830 }
2831 EXPORT_SYMBOL(passthru_features_check);
2832 
2833 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2834 					     struct net_device *dev,
2835 					     netdev_features_t features)
2836 {
2837 	return vlan_features_check(skb, features);
2838 }
2839 
2840 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2841 					    struct net_device *dev,
2842 					    netdev_features_t features)
2843 {
2844 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2845 
2846 	if (gso_segs > dev->gso_max_segs)
2847 		return features & ~NETIF_F_GSO_MASK;
2848 
2849 	/* Support for GSO partial features requires software
2850 	 * intervention before we can actually process the packets
2851 	 * so we need to strip support for any partial features now
2852 	 * and we can pull them back in after we have partially
2853 	 * segmented the frame.
2854 	 */
2855 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2856 		features &= ~dev->gso_partial_features;
2857 
2858 	/* Make sure to clear the IPv4 ID mangling feature if the
2859 	 * IPv4 header has the potential to be fragmented.
2860 	 */
2861 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2862 		struct iphdr *iph = skb->encapsulation ?
2863 				    inner_ip_hdr(skb) : ip_hdr(skb);
2864 
2865 		if (!(iph->frag_off & htons(IP_DF)))
2866 			features &= ~NETIF_F_TSO_MANGLEID;
2867 	}
2868 
2869 	return features;
2870 }
2871 
2872 netdev_features_t netif_skb_features(struct sk_buff *skb)
2873 {
2874 	struct net_device *dev = skb->dev;
2875 	netdev_features_t features = dev->features;
2876 
2877 	if (skb_is_gso(skb))
2878 		features = gso_features_check(skb, dev, features);
2879 
2880 	/* If encapsulation offload request, verify we are testing
2881 	 * hardware encapsulation features instead of standard
2882 	 * features for the netdev
2883 	 */
2884 	if (skb->encapsulation)
2885 		features &= dev->hw_enc_features;
2886 
2887 	if (skb_vlan_tagged(skb))
2888 		features = netdev_intersect_features(features,
2889 						     dev->vlan_features |
2890 						     NETIF_F_HW_VLAN_CTAG_TX |
2891 						     NETIF_F_HW_VLAN_STAG_TX);
2892 
2893 	if (dev->netdev_ops->ndo_features_check)
2894 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2895 								features);
2896 	else
2897 		features &= dflt_features_check(skb, dev, features);
2898 
2899 	return harmonize_features(skb, features);
2900 }
2901 EXPORT_SYMBOL(netif_skb_features);
2902 
2903 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2904 		    struct netdev_queue *txq, bool more)
2905 {
2906 	unsigned int len;
2907 	int rc;
2908 
2909 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2910 		dev_queue_xmit_nit(skb, dev);
2911 
2912 	len = skb->len;
2913 	trace_net_dev_start_xmit(skb, dev);
2914 	rc = netdev_start_xmit(skb, dev, txq, more);
2915 	trace_net_dev_xmit(skb, rc, dev, len);
2916 
2917 	return rc;
2918 }
2919 
2920 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2921 				    struct netdev_queue *txq, int *ret)
2922 {
2923 	struct sk_buff *skb = first;
2924 	int rc = NETDEV_TX_OK;
2925 
2926 	while (skb) {
2927 		struct sk_buff *next = skb->next;
2928 
2929 		skb->next = NULL;
2930 		rc = xmit_one(skb, dev, txq, next != NULL);
2931 		if (unlikely(!dev_xmit_complete(rc))) {
2932 			skb->next = next;
2933 			goto out;
2934 		}
2935 
2936 		skb = next;
2937 		if (netif_xmit_stopped(txq) && skb) {
2938 			rc = NETDEV_TX_BUSY;
2939 			break;
2940 		}
2941 	}
2942 
2943 out:
2944 	*ret = rc;
2945 	return skb;
2946 }
2947 
2948 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2949 					  netdev_features_t features)
2950 {
2951 	if (skb_vlan_tag_present(skb) &&
2952 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2953 		skb = __vlan_hwaccel_push_inside(skb);
2954 	return skb;
2955 }
2956 
2957 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2958 {
2959 	netdev_features_t features;
2960 
2961 	features = netif_skb_features(skb);
2962 	skb = validate_xmit_vlan(skb, features);
2963 	if (unlikely(!skb))
2964 		goto out_null;
2965 
2966 	if (netif_needs_gso(skb, features)) {
2967 		struct sk_buff *segs;
2968 
2969 		segs = skb_gso_segment(skb, features);
2970 		if (IS_ERR(segs)) {
2971 			goto out_kfree_skb;
2972 		} else if (segs) {
2973 			consume_skb(skb);
2974 			skb = segs;
2975 		}
2976 	} else {
2977 		if (skb_needs_linearize(skb, features) &&
2978 		    __skb_linearize(skb))
2979 			goto out_kfree_skb;
2980 
2981 		if (validate_xmit_xfrm(skb, features))
2982 			goto out_kfree_skb;
2983 
2984 		/* If packet is not checksummed and device does not
2985 		 * support checksumming for this protocol, complete
2986 		 * checksumming here.
2987 		 */
2988 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2989 			if (skb->encapsulation)
2990 				skb_set_inner_transport_header(skb,
2991 							       skb_checksum_start_offset(skb));
2992 			else
2993 				skb_set_transport_header(skb,
2994 							 skb_checksum_start_offset(skb));
2995 			if (!(features & NETIF_F_CSUM_MASK) &&
2996 			    skb_checksum_help(skb))
2997 				goto out_kfree_skb;
2998 		}
2999 	}
3000 
3001 	return skb;
3002 
3003 out_kfree_skb:
3004 	kfree_skb(skb);
3005 out_null:
3006 	atomic_long_inc(&dev->tx_dropped);
3007 	return NULL;
3008 }
3009 
3010 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3011 {
3012 	struct sk_buff *next, *head = NULL, *tail;
3013 
3014 	for (; skb != NULL; skb = next) {
3015 		next = skb->next;
3016 		skb->next = NULL;
3017 
3018 		/* in case skb wont be segmented, point to itself */
3019 		skb->prev = skb;
3020 
3021 		skb = validate_xmit_skb(skb, dev);
3022 		if (!skb)
3023 			continue;
3024 
3025 		if (!head)
3026 			head = skb;
3027 		else
3028 			tail->next = skb;
3029 		/* If skb was segmented, skb->prev points to
3030 		 * the last segment. If not, it still contains skb.
3031 		 */
3032 		tail = skb->prev;
3033 	}
3034 	return head;
3035 }
3036 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3037 
3038 static void qdisc_pkt_len_init(struct sk_buff *skb)
3039 {
3040 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3041 
3042 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3043 
3044 	/* To get more precise estimation of bytes sent on wire,
3045 	 * we add to pkt_len the headers size of all segments
3046 	 */
3047 	if (shinfo->gso_size)  {
3048 		unsigned int hdr_len;
3049 		u16 gso_segs = shinfo->gso_segs;
3050 
3051 		/* mac layer + network layer */
3052 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3053 
3054 		/* + transport layer */
3055 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3056 			hdr_len += tcp_hdrlen(skb);
3057 		else
3058 			hdr_len += sizeof(struct udphdr);
3059 
3060 		if (shinfo->gso_type & SKB_GSO_DODGY)
3061 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3062 						shinfo->gso_size);
3063 
3064 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3065 	}
3066 }
3067 
3068 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3069 				 struct net_device *dev,
3070 				 struct netdev_queue *txq)
3071 {
3072 	spinlock_t *root_lock = qdisc_lock(q);
3073 	struct sk_buff *to_free = NULL;
3074 	bool contended;
3075 	int rc;
3076 
3077 	qdisc_calculate_pkt_len(skb, q);
3078 	/*
3079 	 * Heuristic to force contended enqueues to serialize on a
3080 	 * separate lock before trying to get qdisc main lock.
3081 	 * This permits qdisc->running owner to get the lock more
3082 	 * often and dequeue packets faster.
3083 	 */
3084 	contended = qdisc_is_running(q);
3085 	if (unlikely(contended))
3086 		spin_lock(&q->busylock);
3087 
3088 	spin_lock(root_lock);
3089 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3090 		__qdisc_drop(skb, &to_free);
3091 		rc = NET_XMIT_DROP;
3092 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3093 		   qdisc_run_begin(q)) {
3094 		/*
3095 		 * This is a work-conserving queue; there are no old skbs
3096 		 * waiting to be sent out; and the qdisc is not running -
3097 		 * xmit the skb directly.
3098 		 */
3099 
3100 		qdisc_bstats_update(q, skb);
3101 
3102 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3103 			if (unlikely(contended)) {
3104 				spin_unlock(&q->busylock);
3105 				contended = false;
3106 			}
3107 			__qdisc_run(q);
3108 		} else
3109 			qdisc_run_end(q);
3110 
3111 		rc = NET_XMIT_SUCCESS;
3112 	} else {
3113 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3114 		if (qdisc_run_begin(q)) {
3115 			if (unlikely(contended)) {
3116 				spin_unlock(&q->busylock);
3117 				contended = false;
3118 			}
3119 			__qdisc_run(q);
3120 		}
3121 	}
3122 	spin_unlock(root_lock);
3123 	if (unlikely(to_free))
3124 		kfree_skb_list(to_free);
3125 	if (unlikely(contended))
3126 		spin_unlock(&q->busylock);
3127 	return rc;
3128 }
3129 
3130 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3131 static void skb_update_prio(struct sk_buff *skb)
3132 {
3133 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3134 
3135 	if (!skb->priority && skb->sk && map) {
3136 		unsigned int prioidx =
3137 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3138 
3139 		if (prioidx < map->priomap_len)
3140 			skb->priority = map->priomap[prioidx];
3141 	}
3142 }
3143 #else
3144 #define skb_update_prio(skb)
3145 #endif
3146 
3147 DEFINE_PER_CPU(int, xmit_recursion);
3148 EXPORT_SYMBOL(xmit_recursion);
3149 
3150 /**
3151  *	dev_loopback_xmit - loop back @skb
3152  *	@net: network namespace this loopback is happening in
3153  *	@sk:  sk needed to be a netfilter okfn
3154  *	@skb: buffer to transmit
3155  */
3156 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3157 {
3158 	skb_reset_mac_header(skb);
3159 	__skb_pull(skb, skb_network_offset(skb));
3160 	skb->pkt_type = PACKET_LOOPBACK;
3161 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3162 	WARN_ON(!skb_dst(skb));
3163 	skb_dst_force(skb);
3164 	netif_rx_ni(skb);
3165 	return 0;
3166 }
3167 EXPORT_SYMBOL(dev_loopback_xmit);
3168 
3169 #ifdef CONFIG_NET_EGRESS
3170 static struct sk_buff *
3171 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3172 {
3173 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3174 	struct tcf_result cl_res;
3175 
3176 	if (!cl)
3177 		return skb;
3178 
3179 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3180 	qdisc_bstats_cpu_update(cl->q, skb);
3181 
3182 	switch (tc_classify(skb, cl, &cl_res, false)) {
3183 	case TC_ACT_OK:
3184 	case TC_ACT_RECLASSIFY:
3185 		skb->tc_index = TC_H_MIN(cl_res.classid);
3186 		break;
3187 	case TC_ACT_SHOT:
3188 		qdisc_qstats_cpu_drop(cl->q);
3189 		*ret = NET_XMIT_DROP;
3190 		kfree_skb(skb);
3191 		return NULL;
3192 	case TC_ACT_STOLEN:
3193 	case TC_ACT_QUEUED:
3194 		*ret = NET_XMIT_SUCCESS;
3195 		consume_skb(skb);
3196 		return NULL;
3197 	case TC_ACT_REDIRECT:
3198 		/* No need to push/pop skb's mac_header here on egress! */
3199 		skb_do_redirect(skb);
3200 		*ret = NET_XMIT_SUCCESS;
3201 		return NULL;
3202 	default:
3203 		break;
3204 	}
3205 
3206 	return skb;
3207 }
3208 #endif /* CONFIG_NET_EGRESS */
3209 
3210 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3211 {
3212 #ifdef CONFIG_XPS
3213 	struct xps_dev_maps *dev_maps;
3214 	struct xps_map *map;
3215 	int queue_index = -1;
3216 
3217 	rcu_read_lock();
3218 	dev_maps = rcu_dereference(dev->xps_maps);
3219 	if (dev_maps) {
3220 		unsigned int tci = skb->sender_cpu - 1;
3221 
3222 		if (dev->num_tc) {
3223 			tci *= dev->num_tc;
3224 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3225 		}
3226 
3227 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3228 		if (map) {
3229 			if (map->len == 1)
3230 				queue_index = map->queues[0];
3231 			else
3232 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3233 									   map->len)];
3234 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3235 				queue_index = -1;
3236 		}
3237 	}
3238 	rcu_read_unlock();
3239 
3240 	return queue_index;
3241 #else
3242 	return -1;
3243 #endif
3244 }
3245 
3246 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3247 {
3248 	struct sock *sk = skb->sk;
3249 	int queue_index = sk_tx_queue_get(sk);
3250 
3251 	if (queue_index < 0 || skb->ooo_okay ||
3252 	    queue_index >= dev->real_num_tx_queues) {
3253 		int new_index = get_xps_queue(dev, skb);
3254 
3255 		if (new_index < 0)
3256 			new_index = skb_tx_hash(dev, skb);
3257 
3258 		if (queue_index != new_index && sk &&
3259 		    sk_fullsock(sk) &&
3260 		    rcu_access_pointer(sk->sk_dst_cache))
3261 			sk_tx_queue_set(sk, new_index);
3262 
3263 		queue_index = new_index;
3264 	}
3265 
3266 	return queue_index;
3267 }
3268 
3269 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3270 				    struct sk_buff *skb,
3271 				    void *accel_priv)
3272 {
3273 	int queue_index = 0;
3274 
3275 #ifdef CONFIG_XPS
3276 	u32 sender_cpu = skb->sender_cpu - 1;
3277 
3278 	if (sender_cpu >= (u32)NR_CPUS)
3279 		skb->sender_cpu = raw_smp_processor_id() + 1;
3280 #endif
3281 
3282 	if (dev->real_num_tx_queues != 1) {
3283 		const struct net_device_ops *ops = dev->netdev_ops;
3284 
3285 		if (ops->ndo_select_queue)
3286 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3287 							    __netdev_pick_tx);
3288 		else
3289 			queue_index = __netdev_pick_tx(dev, skb);
3290 
3291 		if (!accel_priv)
3292 			queue_index = netdev_cap_txqueue(dev, queue_index);
3293 	}
3294 
3295 	skb_set_queue_mapping(skb, queue_index);
3296 	return netdev_get_tx_queue(dev, queue_index);
3297 }
3298 
3299 /**
3300  *	__dev_queue_xmit - transmit a buffer
3301  *	@skb: buffer to transmit
3302  *	@accel_priv: private data used for L2 forwarding offload
3303  *
3304  *	Queue a buffer for transmission to a network device. The caller must
3305  *	have set the device and priority and built the buffer before calling
3306  *	this function. The function can be called from an interrupt.
3307  *
3308  *	A negative errno code is returned on a failure. A success does not
3309  *	guarantee the frame will be transmitted as it may be dropped due
3310  *	to congestion or traffic shaping.
3311  *
3312  * -----------------------------------------------------------------------------------
3313  *      I notice this method can also return errors from the queue disciplines,
3314  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3315  *      be positive.
3316  *
3317  *      Regardless of the return value, the skb is consumed, so it is currently
3318  *      difficult to retry a send to this method.  (You can bump the ref count
3319  *      before sending to hold a reference for retry if you are careful.)
3320  *
3321  *      When calling this method, interrupts MUST be enabled.  This is because
3322  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3323  *          --BLG
3324  */
3325 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3326 {
3327 	struct net_device *dev = skb->dev;
3328 	struct netdev_queue *txq;
3329 	struct Qdisc *q;
3330 	int rc = -ENOMEM;
3331 
3332 	skb_reset_mac_header(skb);
3333 
3334 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3335 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3336 
3337 	/* Disable soft irqs for various locks below. Also
3338 	 * stops preemption for RCU.
3339 	 */
3340 	rcu_read_lock_bh();
3341 
3342 	skb_update_prio(skb);
3343 
3344 	qdisc_pkt_len_init(skb);
3345 #ifdef CONFIG_NET_CLS_ACT
3346 	skb->tc_at_ingress = 0;
3347 # ifdef CONFIG_NET_EGRESS
3348 	if (static_key_false(&egress_needed)) {
3349 		skb = sch_handle_egress(skb, &rc, dev);
3350 		if (!skb)
3351 			goto out;
3352 	}
3353 # endif
3354 #endif
3355 	/* If device/qdisc don't need skb->dst, release it right now while
3356 	 * its hot in this cpu cache.
3357 	 */
3358 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3359 		skb_dst_drop(skb);
3360 	else
3361 		skb_dst_force(skb);
3362 
3363 	txq = netdev_pick_tx(dev, skb, accel_priv);
3364 	q = rcu_dereference_bh(txq->qdisc);
3365 
3366 	trace_net_dev_queue(skb);
3367 	if (q->enqueue) {
3368 		rc = __dev_xmit_skb(skb, q, dev, txq);
3369 		goto out;
3370 	}
3371 
3372 	/* The device has no queue. Common case for software devices:
3373 	 * loopback, all the sorts of tunnels...
3374 
3375 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3376 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3377 	 * counters.)
3378 	 * However, it is possible, that they rely on protection
3379 	 * made by us here.
3380 
3381 	 * Check this and shot the lock. It is not prone from deadlocks.
3382 	 *Either shot noqueue qdisc, it is even simpler 8)
3383 	 */
3384 	if (dev->flags & IFF_UP) {
3385 		int cpu = smp_processor_id(); /* ok because BHs are off */
3386 
3387 		if (txq->xmit_lock_owner != cpu) {
3388 			if (unlikely(__this_cpu_read(xmit_recursion) >
3389 				     XMIT_RECURSION_LIMIT))
3390 				goto recursion_alert;
3391 
3392 			skb = validate_xmit_skb(skb, dev);
3393 			if (!skb)
3394 				goto out;
3395 
3396 			HARD_TX_LOCK(dev, txq, cpu);
3397 
3398 			if (!netif_xmit_stopped(txq)) {
3399 				__this_cpu_inc(xmit_recursion);
3400 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3401 				__this_cpu_dec(xmit_recursion);
3402 				if (dev_xmit_complete(rc)) {
3403 					HARD_TX_UNLOCK(dev, txq);
3404 					goto out;
3405 				}
3406 			}
3407 			HARD_TX_UNLOCK(dev, txq);
3408 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3409 					     dev->name);
3410 		} else {
3411 			/* Recursion is detected! It is possible,
3412 			 * unfortunately
3413 			 */
3414 recursion_alert:
3415 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3416 					     dev->name);
3417 		}
3418 	}
3419 
3420 	rc = -ENETDOWN;
3421 	rcu_read_unlock_bh();
3422 
3423 	atomic_long_inc(&dev->tx_dropped);
3424 	kfree_skb_list(skb);
3425 	return rc;
3426 out:
3427 	rcu_read_unlock_bh();
3428 	return rc;
3429 }
3430 
3431 int dev_queue_xmit(struct sk_buff *skb)
3432 {
3433 	return __dev_queue_xmit(skb, NULL);
3434 }
3435 EXPORT_SYMBOL(dev_queue_xmit);
3436 
3437 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3438 {
3439 	return __dev_queue_xmit(skb, accel_priv);
3440 }
3441 EXPORT_SYMBOL(dev_queue_xmit_accel);
3442 
3443 
3444 /*************************************************************************
3445  *			Receiver routines
3446  *************************************************************************/
3447 
3448 int netdev_max_backlog __read_mostly = 1000;
3449 EXPORT_SYMBOL(netdev_max_backlog);
3450 
3451 int netdev_tstamp_prequeue __read_mostly = 1;
3452 int netdev_budget __read_mostly = 300;
3453 unsigned int __read_mostly netdev_budget_usecs = 2000;
3454 int weight_p __read_mostly = 64;           /* old backlog weight */
3455 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3456 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3457 int dev_rx_weight __read_mostly = 64;
3458 int dev_tx_weight __read_mostly = 64;
3459 
3460 /* Called with irq disabled */
3461 static inline void ____napi_schedule(struct softnet_data *sd,
3462 				     struct napi_struct *napi)
3463 {
3464 	list_add_tail(&napi->poll_list, &sd->poll_list);
3465 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3466 }
3467 
3468 #ifdef CONFIG_RPS
3469 
3470 /* One global table that all flow-based protocols share. */
3471 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3472 EXPORT_SYMBOL(rps_sock_flow_table);
3473 u32 rps_cpu_mask __read_mostly;
3474 EXPORT_SYMBOL(rps_cpu_mask);
3475 
3476 struct static_key rps_needed __read_mostly;
3477 EXPORT_SYMBOL(rps_needed);
3478 struct static_key rfs_needed __read_mostly;
3479 EXPORT_SYMBOL(rfs_needed);
3480 
3481 static struct rps_dev_flow *
3482 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3483 	    struct rps_dev_flow *rflow, u16 next_cpu)
3484 {
3485 	if (next_cpu < nr_cpu_ids) {
3486 #ifdef CONFIG_RFS_ACCEL
3487 		struct netdev_rx_queue *rxqueue;
3488 		struct rps_dev_flow_table *flow_table;
3489 		struct rps_dev_flow *old_rflow;
3490 		u32 flow_id;
3491 		u16 rxq_index;
3492 		int rc;
3493 
3494 		/* Should we steer this flow to a different hardware queue? */
3495 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3496 		    !(dev->features & NETIF_F_NTUPLE))
3497 			goto out;
3498 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3499 		if (rxq_index == skb_get_rx_queue(skb))
3500 			goto out;
3501 
3502 		rxqueue = dev->_rx + rxq_index;
3503 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3504 		if (!flow_table)
3505 			goto out;
3506 		flow_id = skb_get_hash(skb) & flow_table->mask;
3507 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3508 							rxq_index, flow_id);
3509 		if (rc < 0)
3510 			goto out;
3511 		old_rflow = rflow;
3512 		rflow = &flow_table->flows[flow_id];
3513 		rflow->filter = rc;
3514 		if (old_rflow->filter == rflow->filter)
3515 			old_rflow->filter = RPS_NO_FILTER;
3516 	out:
3517 #endif
3518 		rflow->last_qtail =
3519 			per_cpu(softnet_data, next_cpu).input_queue_head;
3520 	}
3521 
3522 	rflow->cpu = next_cpu;
3523 	return rflow;
3524 }
3525 
3526 /*
3527  * get_rps_cpu is called from netif_receive_skb and returns the target
3528  * CPU from the RPS map of the receiving queue for a given skb.
3529  * rcu_read_lock must be held on entry.
3530  */
3531 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3532 		       struct rps_dev_flow **rflowp)
3533 {
3534 	const struct rps_sock_flow_table *sock_flow_table;
3535 	struct netdev_rx_queue *rxqueue = dev->_rx;
3536 	struct rps_dev_flow_table *flow_table;
3537 	struct rps_map *map;
3538 	int cpu = -1;
3539 	u32 tcpu;
3540 	u32 hash;
3541 
3542 	if (skb_rx_queue_recorded(skb)) {
3543 		u16 index = skb_get_rx_queue(skb);
3544 
3545 		if (unlikely(index >= dev->real_num_rx_queues)) {
3546 			WARN_ONCE(dev->real_num_rx_queues > 1,
3547 				  "%s received packet on queue %u, but number "
3548 				  "of RX queues is %u\n",
3549 				  dev->name, index, dev->real_num_rx_queues);
3550 			goto done;
3551 		}
3552 		rxqueue += index;
3553 	}
3554 
3555 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3556 
3557 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3558 	map = rcu_dereference(rxqueue->rps_map);
3559 	if (!flow_table && !map)
3560 		goto done;
3561 
3562 	skb_reset_network_header(skb);
3563 	hash = skb_get_hash(skb);
3564 	if (!hash)
3565 		goto done;
3566 
3567 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3568 	if (flow_table && sock_flow_table) {
3569 		struct rps_dev_flow *rflow;
3570 		u32 next_cpu;
3571 		u32 ident;
3572 
3573 		/* First check into global flow table if there is a match */
3574 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3575 		if ((ident ^ hash) & ~rps_cpu_mask)
3576 			goto try_rps;
3577 
3578 		next_cpu = ident & rps_cpu_mask;
3579 
3580 		/* OK, now we know there is a match,
3581 		 * we can look at the local (per receive queue) flow table
3582 		 */
3583 		rflow = &flow_table->flows[hash & flow_table->mask];
3584 		tcpu = rflow->cpu;
3585 
3586 		/*
3587 		 * If the desired CPU (where last recvmsg was done) is
3588 		 * different from current CPU (one in the rx-queue flow
3589 		 * table entry), switch if one of the following holds:
3590 		 *   - Current CPU is unset (>= nr_cpu_ids).
3591 		 *   - Current CPU is offline.
3592 		 *   - The current CPU's queue tail has advanced beyond the
3593 		 *     last packet that was enqueued using this table entry.
3594 		 *     This guarantees that all previous packets for the flow
3595 		 *     have been dequeued, thus preserving in order delivery.
3596 		 */
3597 		if (unlikely(tcpu != next_cpu) &&
3598 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3599 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3600 		      rflow->last_qtail)) >= 0)) {
3601 			tcpu = next_cpu;
3602 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3603 		}
3604 
3605 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3606 			*rflowp = rflow;
3607 			cpu = tcpu;
3608 			goto done;
3609 		}
3610 	}
3611 
3612 try_rps:
3613 
3614 	if (map) {
3615 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3616 		if (cpu_online(tcpu)) {
3617 			cpu = tcpu;
3618 			goto done;
3619 		}
3620 	}
3621 
3622 done:
3623 	return cpu;
3624 }
3625 
3626 #ifdef CONFIG_RFS_ACCEL
3627 
3628 /**
3629  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3630  * @dev: Device on which the filter was set
3631  * @rxq_index: RX queue index
3632  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3633  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3634  *
3635  * Drivers that implement ndo_rx_flow_steer() should periodically call
3636  * this function for each installed filter and remove the filters for
3637  * which it returns %true.
3638  */
3639 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3640 			 u32 flow_id, u16 filter_id)
3641 {
3642 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3643 	struct rps_dev_flow_table *flow_table;
3644 	struct rps_dev_flow *rflow;
3645 	bool expire = true;
3646 	unsigned int cpu;
3647 
3648 	rcu_read_lock();
3649 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3650 	if (flow_table && flow_id <= flow_table->mask) {
3651 		rflow = &flow_table->flows[flow_id];
3652 		cpu = ACCESS_ONCE(rflow->cpu);
3653 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3654 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3655 			   rflow->last_qtail) <
3656 		     (int)(10 * flow_table->mask)))
3657 			expire = false;
3658 	}
3659 	rcu_read_unlock();
3660 	return expire;
3661 }
3662 EXPORT_SYMBOL(rps_may_expire_flow);
3663 
3664 #endif /* CONFIG_RFS_ACCEL */
3665 
3666 /* Called from hardirq (IPI) context */
3667 static void rps_trigger_softirq(void *data)
3668 {
3669 	struct softnet_data *sd = data;
3670 
3671 	____napi_schedule(sd, &sd->backlog);
3672 	sd->received_rps++;
3673 }
3674 
3675 #endif /* CONFIG_RPS */
3676 
3677 /*
3678  * Check if this softnet_data structure is another cpu one
3679  * If yes, queue it to our IPI list and return 1
3680  * If no, return 0
3681  */
3682 static int rps_ipi_queued(struct softnet_data *sd)
3683 {
3684 #ifdef CONFIG_RPS
3685 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3686 
3687 	if (sd != mysd) {
3688 		sd->rps_ipi_next = mysd->rps_ipi_list;
3689 		mysd->rps_ipi_list = sd;
3690 
3691 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3692 		return 1;
3693 	}
3694 #endif /* CONFIG_RPS */
3695 	return 0;
3696 }
3697 
3698 #ifdef CONFIG_NET_FLOW_LIMIT
3699 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3700 #endif
3701 
3702 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3703 {
3704 #ifdef CONFIG_NET_FLOW_LIMIT
3705 	struct sd_flow_limit *fl;
3706 	struct softnet_data *sd;
3707 	unsigned int old_flow, new_flow;
3708 
3709 	if (qlen < (netdev_max_backlog >> 1))
3710 		return false;
3711 
3712 	sd = this_cpu_ptr(&softnet_data);
3713 
3714 	rcu_read_lock();
3715 	fl = rcu_dereference(sd->flow_limit);
3716 	if (fl) {
3717 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3718 		old_flow = fl->history[fl->history_head];
3719 		fl->history[fl->history_head] = new_flow;
3720 
3721 		fl->history_head++;
3722 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3723 
3724 		if (likely(fl->buckets[old_flow]))
3725 			fl->buckets[old_flow]--;
3726 
3727 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3728 			fl->count++;
3729 			rcu_read_unlock();
3730 			return true;
3731 		}
3732 	}
3733 	rcu_read_unlock();
3734 #endif
3735 	return false;
3736 }
3737 
3738 /*
3739  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3740  * queue (may be a remote CPU queue).
3741  */
3742 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3743 			      unsigned int *qtail)
3744 {
3745 	struct softnet_data *sd;
3746 	unsigned long flags;
3747 	unsigned int qlen;
3748 
3749 	sd = &per_cpu(softnet_data, cpu);
3750 
3751 	local_irq_save(flags);
3752 
3753 	rps_lock(sd);
3754 	if (!netif_running(skb->dev))
3755 		goto drop;
3756 	qlen = skb_queue_len(&sd->input_pkt_queue);
3757 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3758 		if (qlen) {
3759 enqueue:
3760 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3761 			input_queue_tail_incr_save(sd, qtail);
3762 			rps_unlock(sd);
3763 			local_irq_restore(flags);
3764 			return NET_RX_SUCCESS;
3765 		}
3766 
3767 		/* Schedule NAPI for backlog device
3768 		 * We can use non atomic operation since we own the queue lock
3769 		 */
3770 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3771 			if (!rps_ipi_queued(sd))
3772 				____napi_schedule(sd, &sd->backlog);
3773 		}
3774 		goto enqueue;
3775 	}
3776 
3777 drop:
3778 	sd->dropped++;
3779 	rps_unlock(sd);
3780 
3781 	local_irq_restore(flags);
3782 
3783 	atomic_long_inc(&skb->dev->rx_dropped);
3784 	kfree_skb(skb);
3785 	return NET_RX_DROP;
3786 }
3787 
3788 static int netif_rx_internal(struct sk_buff *skb)
3789 {
3790 	int ret;
3791 
3792 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3793 
3794 	trace_netif_rx(skb);
3795 #ifdef CONFIG_RPS
3796 	if (static_key_false(&rps_needed)) {
3797 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3798 		int cpu;
3799 
3800 		preempt_disable();
3801 		rcu_read_lock();
3802 
3803 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3804 		if (cpu < 0)
3805 			cpu = smp_processor_id();
3806 
3807 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3808 
3809 		rcu_read_unlock();
3810 		preempt_enable();
3811 	} else
3812 #endif
3813 	{
3814 		unsigned int qtail;
3815 
3816 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3817 		put_cpu();
3818 	}
3819 	return ret;
3820 }
3821 
3822 /**
3823  *	netif_rx	-	post buffer to the network code
3824  *	@skb: buffer to post
3825  *
3826  *	This function receives a packet from a device driver and queues it for
3827  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3828  *	may be dropped during processing for congestion control or by the
3829  *	protocol layers.
3830  *
3831  *	return values:
3832  *	NET_RX_SUCCESS	(no congestion)
3833  *	NET_RX_DROP     (packet was dropped)
3834  *
3835  */
3836 
3837 int netif_rx(struct sk_buff *skb)
3838 {
3839 	trace_netif_rx_entry(skb);
3840 
3841 	return netif_rx_internal(skb);
3842 }
3843 EXPORT_SYMBOL(netif_rx);
3844 
3845 int netif_rx_ni(struct sk_buff *skb)
3846 {
3847 	int err;
3848 
3849 	trace_netif_rx_ni_entry(skb);
3850 
3851 	preempt_disable();
3852 	err = netif_rx_internal(skb);
3853 	if (local_softirq_pending())
3854 		do_softirq();
3855 	preempt_enable();
3856 
3857 	return err;
3858 }
3859 EXPORT_SYMBOL(netif_rx_ni);
3860 
3861 static __latent_entropy void net_tx_action(struct softirq_action *h)
3862 {
3863 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3864 
3865 	if (sd->completion_queue) {
3866 		struct sk_buff *clist;
3867 
3868 		local_irq_disable();
3869 		clist = sd->completion_queue;
3870 		sd->completion_queue = NULL;
3871 		local_irq_enable();
3872 
3873 		while (clist) {
3874 			struct sk_buff *skb = clist;
3875 
3876 			clist = clist->next;
3877 
3878 			WARN_ON(atomic_read(&skb->users));
3879 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3880 				trace_consume_skb(skb);
3881 			else
3882 				trace_kfree_skb(skb, net_tx_action);
3883 
3884 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3885 				__kfree_skb(skb);
3886 			else
3887 				__kfree_skb_defer(skb);
3888 		}
3889 
3890 		__kfree_skb_flush();
3891 	}
3892 
3893 	if (sd->output_queue) {
3894 		struct Qdisc *head;
3895 
3896 		local_irq_disable();
3897 		head = sd->output_queue;
3898 		sd->output_queue = NULL;
3899 		sd->output_queue_tailp = &sd->output_queue;
3900 		local_irq_enable();
3901 
3902 		while (head) {
3903 			struct Qdisc *q = head;
3904 			spinlock_t *root_lock;
3905 
3906 			head = head->next_sched;
3907 
3908 			root_lock = qdisc_lock(q);
3909 			spin_lock(root_lock);
3910 			/* We need to make sure head->next_sched is read
3911 			 * before clearing __QDISC_STATE_SCHED
3912 			 */
3913 			smp_mb__before_atomic();
3914 			clear_bit(__QDISC_STATE_SCHED, &q->state);
3915 			qdisc_run(q);
3916 			spin_unlock(root_lock);
3917 		}
3918 	}
3919 }
3920 
3921 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3922 /* This hook is defined here for ATM LANE */
3923 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3924 			     unsigned char *addr) __read_mostly;
3925 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3926 #endif
3927 
3928 static inline struct sk_buff *
3929 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3930 		   struct net_device *orig_dev)
3931 {
3932 #ifdef CONFIG_NET_CLS_ACT
3933 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3934 	struct tcf_result cl_res;
3935 
3936 	/* If there's at least one ingress present somewhere (so
3937 	 * we get here via enabled static key), remaining devices
3938 	 * that are not configured with an ingress qdisc will bail
3939 	 * out here.
3940 	 */
3941 	if (!cl)
3942 		return skb;
3943 	if (*pt_prev) {
3944 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3945 		*pt_prev = NULL;
3946 	}
3947 
3948 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3949 	skb->tc_at_ingress = 1;
3950 	qdisc_bstats_cpu_update(cl->q, skb);
3951 
3952 	switch (tc_classify(skb, cl, &cl_res, false)) {
3953 	case TC_ACT_OK:
3954 	case TC_ACT_RECLASSIFY:
3955 		skb->tc_index = TC_H_MIN(cl_res.classid);
3956 		break;
3957 	case TC_ACT_SHOT:
3958 		qdisc_qstats_cpu_drop(cl->q);
3959 		kfree_skb(skb);
3960 		return NULL;
3961 	case TC_ACT_STOLEN:
3962 	case TC_ACT_QUEUED:
3963 		consume_skb(skb);
3964 		return NULL;
3965 	case TC_ACT_REDIRECT:
3966 		/* skb_mac_header check was done by cls/act_bpf, so
3967 		 * we can safely push the L2 header back before
3968 		 * redirecting to another netdev
3969 		 */
3970 		__skb_push(skb, skb->mac_len);
3971 		skb_do_redirect(skb);
3972 		return NULL;
3973 	default:
3974 		break;
3975 	}
3976 #endif /* CONFIG_NET_CLS_ACT */
3977 	return skb;
3978 }
3979 
3980 /**
3981  *	netdev_is_rx_handler_busy - check if receive handler is registered
3982  *	@dev: device to check
3983  *
3984  *	Check if a receive handler is already registered for a given device.
3985  *	Return true if there one.
3986  *
3987  *	The caller must hold the rtnl_mutex.
3988  */
3989 bool netdev_is_rx_handler_busy(struct net_device *dev)
3990 {
3991 	ASSERT_RTNL();
3992 	return dev && rtnl_dereference(dev->rx_handler);
3993 }
3994 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3995 
3996 /**
3997  *	netdev_rx_handler_register - register receive handler
3998  *	@dev: device to register a handler for
3999  *	@rx_handler: receive handler to register
4000  *	@rx_handler_data: data pointer that is used by rx handler
4001  *
4002  *	Register a receive handler for a device. This handler will then be
4003  *	called from __netif_receive_skb. A negative errno code is returned
4004  *	on a failure.
4005  *
4006  *	The caller must hold the rtnl_mutex.
4007  *
4008  *	For a general description of rx_handler, see enum rx_handler_result.
4009  */
4010 int netdev_rx_handler_register(struct net_device *dev,
4011 			       rx_handler_func_t *rx_handler,
4012 			       void *rx_handler_data)
4013 {
4014 	if (netdev_is_rx_handler_busy(dev))
4015 		return -EBUSY;
4016 
4017 	/* Note: rx_handler_data must be set before rx_handler */
4018 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4019 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4020 
4021 	return 0;
4022 }
4023 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4024 
4025 /**
4026  *	netdev_rx_handler_unregister - unregister receive handler
4027  *	@dev: device to unregister a handler from
4028  *
4029  *	Unregister a receive handler from a device.
4030  *
4031  *	The caller must hold the rtnl_mutex.
4032  */
4033 void netdev_rx_handler_unregister(struct net_device *dev)
4034 {
4035 
4036 	ASSERT_RTNL();
4037 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4038 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4039 	 * section has a guarantee to see a non NULL rx_handler_data
4040 	 * as well.
4041 	 */
4042 	synchronize_net();
4043 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4044 }
4045 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4046 
4047 /*
4048  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4049  * the special handling of PFMEMALLOC skbs.
4050  */
4051 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4052 {
4053 	switch (skb->protocol) {
4054 	case htons(ETH_P_ARP):
4055 	case htons(ETH_P_IP):
4056 	case htons(ETH_P_IPV6):
4057 	case htons(ETH_P_8021Q):
4058 	case htons(ETH_P_8021AD):
4059 		return true;
4060 	default:
4061 		return false;
4062 	}
4063 }
4064 
4065 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4066 			     int *ret, struct net_device *orig_dev)
4067 {
4068 #ifdef CONFIG_NETFILTER_INGRESS
4069 	if (nf_hook_ingress_active(skb)) {
4070 		int ingress_retval;
4071 
4072 		if (*pt_prev) {
4073 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4074 			*pt_prev = NULL;
4075 		}
4076 
4077 		rcu_read_lock();
4078 		ingress_retval = nf_hook_ingress(skb);
4079 		rcu_read_unlock();
4080 		return ingress_retval;
4081 	}
4082 #endif /* CONFIG_NETFILTER_INGRESS */
4083 	return 0;
4084 }
4085 
4086 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4087 {
4088 	struct packet_type *ptype, *pt_prev;
4089 	rx_handler_func_t *rx_handler;
4090 	struct net_device *orig_dev;
4091 	bool deliver_exact = false;
4092 	int ret = NET_RX_DROP;
4093 	__be16 type;
4094 
4095 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4096 
4097 	trace_netif_receive_skb(skb);
4098 
4099 	orig_dev = skb->dev;
4100 
4101 	skb_reset_network_header(skb);
4102 	if (!skb_transport_header_was_set(skb))
4103 		skb_reset_transport_header(skb);
4104 	skb_reset_mac_len(skb);
4105 
4106 	pt_prev = NULL;
4107 
4108 another_round:
4109 	skb->skb_iif = skb->dev->ifindex;
4110 
4111 	__this_cpu_inc(softnet_data.processed);
4112 
4113 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4114 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4115 		skb = skb_vlan_untag(skb);
4116 		if (unlikely(!skb))
4117 			goto out;
4118 	}
4119 
4120 	if (skb_skip_tc_classify(skb))
4121 		goto skip_classify;
4122 
4123 	if (pfmemalloc)
4124 		goto skip_taps;
4125 
4126 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4127 		if (pt_prev)
4128 			ret = deliver_skb(skb, pt_prev, orig_dev);
4129 		pt_prev = ptype;
4130 	}
4131 
4132 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4133 		if (pt_prev)
4134 			ret = deliver_skb(skb, pt_prev, orig_dev);
4135 		pt_prev = ptype;
4136 	}
4137 
4138 skip_taps:
4139 #ifdef CONFIG_NET_INGRESS
4140 	if (static_key_false(&ingress_needed)) {
4141 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4142 		if (!skb)
4143 			goto out;
4144 
4145 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4146 			goto out;
4147 	}
4148 #endif
4149 	skb_reset_tc(skb);
4150 skip_classify:
4151 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4152 		goto drop;
4153 
4154 	if (skb_vlan_tag_present(skb)) {
4155 		if (pt_prev) {
4156 			ret = deliver_skb(skb, pt_prev, orig_dev);
4157 			pt_prev = NULL;
4158 		}
4159 		if (vlan_do_receive(&skb))
4160 			goto another_round;
4161 		else if (unlikely(!skb))
4162 			goto out;
4163 	}
4164 
4165 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4166 	if (rx_handler) {
4167 		if (pt_prev) {
4168 			ret = deliver_skb(skb, pt_prev, orig_dev);
4169 			pt_prev = NULL;
4170 		}
4171 		switch (rx_handler(&skb)) {
4172 		case RX_HANDLER_CONSUMED:
4173 			ret = NET_RX_SUCCESS;
4174 			goto out;
4175 		case RX_HANDLER_ANOTHER:
4176 			goto another_round;
4177 		case RX_HANDLER_EXACT:
4178 			deliver_exact = true;
4179 		case RX_HANDLER_PASS:
4180 			break;
4181 		default:
4182 			BUG();
4183 		}
4184 	}
4185 
4186 	if (unlikely(skb_vlan_tag_present(skb))) {
4187 		if (skb_vlan_tag_get_id(skb))
4188 			skb->pkt_type = PACKET_OTHERHOST;
4189 		/* Note: we might in the future use prio bits
4190 		 * and set skb->priority like in vlan_do_receive()
4191 		 * For the time being, just ignore Priority Code Point
4192 		 */
4193 		skb->vlan_tci = 0;
4194 	}
4195 
4196 	type = skb->protocol;
4197 
4198 	/* deliver only exact match when indicated */
4199 	if (likely(!deliver_exact)) {
4200 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4201 				       &ptype_base[ntohs(type) &
4202 						   PTYPE_HASH_MASK]);
4203 	}
4204 
4205 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4206 			       &orig_dev->ptype_specific);
4207 
4208 	if (unlikely(skb->dev != orig_dev)) {
4209 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4210 				       &skb->dev->ptype_specific);
4211 	}
4212 
4213 	if (pt_prev) {
4214 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4215 			goto drop;
4216 		else
4217 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4218 	} else {
4219 drop:
4220 		if (!deliver_exact)
4221 			atomic_long_inc(&skb->dev->rx_dropped);
4222 		else
4223 			atomic_long_inc(&skb->dev->rx_nohandler);
4224 		kfree_skb(skb);
4225 		/* Jamal, now you will not able to escape explaining
4226 		 * me how you were going to use this. :-)
4227 		 */
4228 		ret = NET_RX_DROP;
4229 	}
4230 
4231 out:
4232 	return ret;
4233 }
4234 
4235 static int __netif_receive_skb(struct sk_buff *skb)
4236 {
4237 	int ret;
4238 
4239 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4240 		unsigned int noreclaim_flag;
4241 
4242 		/*
4243 		 * PFMEMALLOC skbs are special, they should
4244 		 * - be delivered to SOCK_MEMALLOC sockets only
4245 		 * - stay away from userspace
4246 		 * - have bounded memory usage
4247 		 *
4248 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4249 		 * context down to all allocation sites.
4250 		 */
4251 		noreclaim_flag = memalloc_noreclaim_save();
4252 		ret = __netif_receive_skb_core(skb, true);
4253 		memalloc_noreclaim_restore(noreclaim_flag);
4254 	} else
4255 		ret = __netif_receive_skb_core(skb, false);
4256 
4257 	return ret;
4258 }
4259 
4260 static struct static_key generic_xdp_needed __read_mostly;
4261 
4262 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4263 {
4264 	struct bpf_prog *new = xdp->prog;
4265 	int ret = 0;
4266 
4267 	switch (xdp->command) {
4268 	case XDP_SETUP_PROG: {
4269 		struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4270 
4271 		rcu_assign_pointer(dev->xdp_prog, new);
4272 		if (old)
4273 			bpf_prog_put(old);
4274 
4275 		if (old && !new) {
4276 			static_key_slow_dec(&generic_xdp_needed);
4277 		} else if (new && !old) {
4278 			static_key_slow_inc(&generic_xdp_needed);
4279 			dev_disable_lro(dev);
4280 		}
4281 		break;
4282 	}
4283 
4284 	case XDP_QUERY_PROG:
4285 		xdp->prog_attached = !!rcu_access_pointer(dev->xdp_prog);
4286 		break;
4287 
4288 	default:
4289 		ret = -EINVAL;
4290 		break;
4291 	}
4292 
4293 	return ret;
4294 }
4295 
4296 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4297 				     struct bpf_prog *xdp_prog)
4298 {
4299 	struct xdp_buff xdp;
4300 	u32 act = XDP_DROP;
4301 	void *orig_data;
4302 	int hlen, off;
4303 	u32 mac_len;
4304 
4305 	/* Reinjected packets coming from act_mirred or similar should
4306 	 * not get XDP generic processing.
4307 	 */
4308 	if (skb_cloned(skb))
4309 		return XDP_PASS;
4310 
4311 	if (skb_linearize(skb))
4312 		goto do_drop;
4313 
4314 	/* The XDP program wants to see the packet starting at the MAC
4315 	 * header.
4316 	 */
4317 	mac_len = skb->data - skb_mac_header(skb);
4318 	hlen = skb_headlen(skb) + mac_len;
4319 	xdp.data = skb->data - mac_len;
4320 	xdp.data_end = xdp.data + hlen;
4321 	xdp.data_hard_start = skb->data - skb_headroom(skb);
4322 	orig_data = xdp.data;
4323 
4324 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
4325 
4326 	off = xdp.data - orig_data;
4327 	if (off > 0)
4328 		__skb_pull(skb, off);
4329 	else if (off < 0)
4330 		__skb_push(skb, -off);
4331 
4332 	switch (act) {
4333 	case XDP_TX:
4334 		__skb_push(skb, mac_len);
4335 		/* fall through */
4336 	case XDP_PASS:
4337 		break;
4338 
4339 	default:
4340 		bpf_warn_invalid_xdp_action(act);
4341 		/* fall through */
4342 	case XDP_ABORTED:
4343 		trace_xdp_exception(skb->dev, xdp_prog, act);
4344 		/* fall through */
4345 	case XDP_DROP:
4346 	do_drop:
4347 		kfree_skb(skb);
4348 		break;
4349 	}
4350 
4351 	return act;
4352 }
4353 
4354 /* When doing generic XDP we have to bypass the qdisc layer and the
4355  * network taps in order to match in-driver-XDP behavior.
4356  */
4357 static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4358 {
4359 	struct net_device *dev = skb->dev;
4360 	struct netdev_queue *txq;
4361 	bool free_skb = true;
4362 	int cpu, rc;
4363 
4364 	txq = netdev_pick_tx(dev, skb, NULL);
4365 	cpu = smp_processor_id();
4366 	HARD_TX_LOCK(dev, txq, cpu);
4367 	if (!netif_xmit_stopped(txq)) {
4368 		rc = netdev_start_xmit(skb, dev, txq, 0);
4369 		if (dev_xmit_complete(rc))
4370 			free_skb = false;
4371 	}
4372 	HARD_TX_UNLOCK(dev, txq);
4373 	if (free_skb) {
4374 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4375 		kfree_skb(skb);
4376 	}
4377 }
4378 
4379 static int netif_receive_skb_internal(struct sk_buff *skb)
4380 {
4381 	int ret;
4382 
4383 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4384 
4385 	if (skb_defer_rx_timestamp(skb))
4386 		return NET_RX_SUCCESS;
4387 
4388 	rcu_read_lock();
4389 
4390 	if (static_key_false(&generic_xdp_needed)) {
4391 		struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
4392 
4393 		if (xdp_prog) {
4394 			u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4395 
4396 			if (act != XDP_PASS) {
4397 				rcu_read_unlock();
4398 				if (act == XDP_TX)
4399 					generic_xdp_tx(skb, xdp_prog);
4400 				return NET_RX_DROP;
4401 			}
4402 		}
4403 	}
4404 
4405 #ifdef CONFIG_RPS
4406 	if (static_key_false(&rps_needed)) {
4407 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4408 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4409 
4410 		if (cpu >= 0) {
4411 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4412 			rcu_read_unlock();
4413 			return ret;
4414 		}
4415 	}
4416 #endif
4417 	ret = __netif_receive_skb(skb);
4418 	rcu_read_unlock();
4419 	return ret;
4420 }
4421 
4422 /**
4423  *	netif_receive_skb - process receive buffer from network
4424  *	@skb: buffer to process
4425  *
4426  *	netif_receive_skb() is the main receive data processing function.
4427  *	It always succeeds. The buffer may be dropped during processing
4428  *	for congestion control or by the protocol layers.
4429  *
4430  *	This function may only be called from softirq context and interrupts
4431  *	should be enabled.
4432  *
4433  *	Return values (usually ignored):
4434  *	NET_RX_SUCCESS: no congestion
4435  *	NET_RX_DROP: packet was dropped
4436  */
4437 int netif_receive_skb(struct sk_buff *skb)
4438 {
4439 	trace_netif_receive_skb_entry(skb);
4440 
4441 	return netif_receive_skb_internal(skb);
4442 }
4443 EXPORT_SYMBOL(netif_receive_skb);
4444 
4445 DEFINE_PER_CPU(struct work_struct, flush_works);
4446 
4447 /* Network device is going away, flush any packets still pending */
4448 static void flush_backlog(struct work_struct *work)
4449 {
4450 	struct sk_buff *skb, *tmp;
4451 	struct softnet_data *sd;
4452 
4453 	local_bh_disable();
4454 	sd = this_cpu_ptr(&softnet_data);
4455 
4456 	local_irq_disable();
4457 	rps_lock(sd);
4458 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4459 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4460 			__skb_unlink(skb, &sd->input_pkt_queue);
4461 			kfree_skb(skb);
4462 			input_queue_head_incr(sd);
4463 		}
4464 	}
4465 	rps_unlock(sd);
4466 	local_irq_enable();
4467 
4468 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4469 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4470 			__skb_unlink(skb, &sd->process_queue);
4471 			kfree_skb(skb);
4472 			input_queue_head_incr(sd);
4473 		}
4474 	}
4475 	local_bh_enable();
4476 }
4477 
4478 static void flush_all_backlogs(void)
4479 {
4480 	unsigned int cpu;
4481 
4482 	get_online_cpus();
4483 
4484 	for_each_online_cpu(cpu)
4485 		queue_work_on(cpu, system_highpri_wq,
4486 			      per_cpu_ptr(&flush_works, cpu));
4487 
4488 	for_each_online_cpu(cpu)
4489 		flush_work(per_cpu_ptr(&flush_works, cpu));
4490 
4491 	put_online_cpus();
4492 }
4493 
4494 static int napi_gro_complete(struct sk_buff *skb)
4495 {
4496 	struct packet_offload *ptype;
4497 	__be16 type = skb->protocol;
4498 	struct list_head *head = &offload_base;
4499 	int err = -ENOENT;
4500 
4501 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4502 
4503 	if (NAPI_GRO_CB(skb)->count == 1) {
4504 		skb_shinfo(skb)->gso_size = 0;
4505 		goto out;
4506 	}
4507 
4508 	rcu_read_lock();
4509 	list_for_each_entry_rcu(ptype, head, list) {
4510 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4511 			continue;
4512 
4513 		err = ptype->callbacks.gro_complete(skb, 0);
4514 		break;
4515 	}
4516 	rcu_read_unlock();
4517 
4518 	if (err) {
4519 		WARN_ON(&ptype->list == head);
4520 		kfree_skb(skb);
4521 		return NET_RX_SUCCESS;
4522 	}
4523 
4524 out:
4525 	return netif_receive_skb_internal(skb);
4526 }
4527 
4528 /* napi->gro_list contains packets ordered by age.
4529  * youngest packets at the head of it.
4530  * Complete skbs in reverse order to reduce latencies.
4531  */
4532 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4533 {
4534 	struct sk_buff *skb, *prev = NULL;
4535 
4536 	/* scan list and build reverse chain */
4537 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4538 		skb->prev = prev;
4539 		prev = skb;
4540 	}
4541 
4542 	for (skb = prev; skb; skb = prev) {
4543 		skb->next = NULL;
4544 
4545 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4546 			return;
4547 
4548 		prev = skb->prev;
4549 		napi_gro_complete(skb);
4550 		napi->gro_count--;
4551 	}
4552 
4553 	napi->gro_list = NULL;
4554 }
4555 EXPORT_SYMBOL(napi_gro_flush);
4556 
4557 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4558 {
4559 	struct sk_buff *p;
4560 	unsigned int maclen = skb->dev->hard_header_len;
4561 	u32 hash = skb_get_hash_raw(skb);
4562 
4563 	for (p = napi->gro_list; p; p = p->next) {
4564 		unsigned long diffs;
4565 
4566 		NAPI_GRO_CB(p)->flush = 0;
4567 
4568 		if (hash != skb_get_hash_raw(p)) {
4569 			NAPI_GRO_CB(p)->same_flow = 0;
4570 			continue;
4571 		}
4572 
4573 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4574 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4575 		diffs |= skb_metadata_dst_cmp(p, skb);
4576 		if (maclen == ETH_HLEN)
4577 			diffs |= compare_ether_header(skb_mac_header(p),
4578 						      skb_mac_header(skb));
4579 		else if (!diffs)
4580 			diffs = memcmp(skb_mac_header(p),
4581 				       skb_mac_header(skb),
4582 				       maclen);
4583 		NAPI_GRO_CB(p)->same_flow = !diffs;
4584 	}
4585 }
4586 
4587 static void skb_gro_reset_offset(struct sk_buff *skb)
4588 {
4589 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4590 	const skb_frag_t *frag0 = &pinfo->frags[0];
4591 
4592 	NAPI_GRO_CB(skb)->data_offset = 0;
4593 	NAPI_GRO_CB(skb)->frag0 = NULL;
4594 	NAPI_GRO_CB(skb)->frag0_len = 0;
4595 
4596 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4597 	    pinfo->nr_frags &&
4598 	    !PageHighMem(skb_frag_page(frag0))) {
4599 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4600 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4601 						    skb_frag_size(frag0),
4602 						    skb->end - skb->tail);
4603 	}
4604 }
4605 
4606 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4607 {
4608 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4609 
4610 	BUG_ON(skb->end - skb->tail < grow);
4611 
4612 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4613 
4614 	skb->data_len -= grow;
4615 	skb->tail += grow;
4616 
4617 	pinfo->frags[0].page_offset += grow;
4618 	skb_frag_size_sub(&pinfo->frags[0], grow);
4619 
4620 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4621 		skb_frag_unref(skb, 0);
4622 		memmove(pinfo->frags, pinfo->frags + 1,
4623 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4624 	}
4625 }
4626 
4627 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4628 {
4629 	struct sk_buff **pp = NULL;
4630 	struct packet_offload *ptype;
4631 	__be16 type = skb->protocol;
4632 	struct list_head *head = &offload_base;
4633 	int same_flow;
4634 	enum gro_result ret;
4635 	int grow;
4636 
4637 	if (netif_elide_gro(skb->dev))
4638 		goto normal;
4639 
4640 	if (skb->csum_bad)
4641 		goto normal;
4642 
4643 	gro_list_prepare(napi, skb);
4644 
4645 	rcu_read_lock();
4646 	list_for_each_entry_rcu(ptype, head, list) {
4647 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4648 			continue;
4649 
4650 		skb_set_network_header(skb, skb_gro_offset(skb));
4651 		skb_reset_mac_len(skb);
4652 		NAPI_GRO_CB(skb)->same_flow = 0;
4653 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4654 		NAPI_GRO_CB(skb)->free = 0;
4655 		NAPI_GRO_CB(skb)->encap_mark = 0;
4656 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4657 		NAPI_GRO_CB(skb)->is_fou = 0;
4658 		NAPI_GRO_CB(skb)->is_atomic = 1;
4659 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4660 
4661 		/* Setup for GRO checksum validation */
4662 		switch (skb->ip_summed) {
4663 		case CHECKSUM_COMPLETE:
4664 			NAPI_GRO_CB(skb)->csum = skb->csum;
4665 			NAPI_GRO_CB(skb)->csum_valid = 1;
4666 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4667 			break;
4668 		case CHECKSUM_UNNECESSARY:
4669 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4670 			NAPI_GRO_CB(skb)->csum_valid = 0;
4671 			break;
4672 		default:
4673 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4674 			NAPI_GRO_CB(skb)->csum_valid = 0;
4675 		}
4676 
4677 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4678 		break;
4679 	}
4680 	rcu_read_unlock();
4681 
4682 	if (&ptype->list == head)
4683 		goto normal;
4684 
4685 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4686 		ret = GRO_CONSUMED;
4687 		goto ok;
4688 	}
4689 
4690 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4691 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4692 
4693 	if (pp) {
4694 		struct sk_buff *nskb = *pp;
4695 
4696 		*pp = nskb->next;
4697 		nskb->next = NULL;
4698 		napi_gro_complete(nskb);
4699 		napi->gro_count--;
4700 	}
4701 
4702 	if (same_flow)
4703 		goto ok;
4704 
4705 	if (NAPI_GRO_CB(skb)->flush)
4706 		goto normal;
4707 
4708 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4709 		struct sk_buff *nskb = napi->gro_list;
4710 
4711 		/* locate the end of the list to select the 'oldest' flow */
4712 		while (nskb->next) {
4713 			pp = &nskb->next;
4714 			nskb = *pp;
4715 		}
4716 		*pp = NULL;
4717 		nskb->next = NULL;
4718 		napi_gro_complete(nskb);
4719 	} else {
4720 		napi->gro_count++;
4721 	}
4722 	NAPI_GRO_CB(skb)->count = 1;
4723 	NAPI_GRO_CB(skb)->age = jiffies;
4724 	NAPI_GRO_CB(skb)->last = skb;
4725 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4726 	skb->next = napi->gro_list;
4727 	napi->gro_list = skb;
4728 	ret = GRO_HELD;
4729 
4730 pull:
4731 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4732 	if (grow > 0)
4733 		gro_pull_from_frag0(skb, grow);
4734 ok:
4735 	return ret;
4736 
4737 normal:
4738 	ret = GRO_NORMAL;
4739 	goto pull;
4740 }
4741 
4742 struct packet_offload *gro_find_receive_by_type(__be16 type)
4743 {
4744 	struct list_head *offload_head = &offload_base;
4745 	struct packet_offload *ptype;
4746 
4747 	list_for_each_entry_rcu(ptype, offload_head, list) {
4748 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4749 			continue;
4750 		return ptype;
4751 	}
4752 	return NULL;
4753 }
4754 EXPORT_SYMBOL(gro_find_receive_by_type);
4755 
4756 struct packet_offload *gro_find_complete_by_type(__be16 type)
4757 {
4758 	struct list_head *offload_head = &offload_base;
4759 	struct packet_offload *ptype;
4760 
4761 	list_for_each_entry_rcu(ptype, offload_head, list) {
4762 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4763 			continue;
4764 		return ptype;
4765 	}
4766 	return NULL;
4767 }
4768 EXPORT_SYMBOL(gro_find_complete_by_type);
4769 
4770 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4771 {
4772 	switch (ret) {
4773 	case GRO_NORMAL:
4774 		if (netif_receive_skb_internal(skb))
4775 			ret = GRO_DROP;
4776 		break;
4777 
4778 	case GRO_DROP:
4779 		kfree_skb(skb);
4780 		break;
4781 
4782 	case GRO_MERGED_FREE:
4783 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4784 			skb_dst_drop(skb);
4785 			secpath_reset(skb);
4786 			kmem_cache_free(skbuff_head_cache, skb);
4787 		} else {
4788 			__kfree_skb(skb);
4789 		}
4790 		break;
4791 
4792 	case GRO_HELD:
4793 	case GRO_MERGED:
4794 	case GRO_CONSUMED:
4795 		break;
4796 	}
4797 
4798 	return ret;
4799 }
4800 
4801 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4802 {
4803 	skb_mark_napi_id(skb, napi);
4804 	trace_napi_gro_receive_entry(skb);
4805 
4806 	skb_gro_reset_offset(skb);
4807 
4808 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4809 }
4810 EXPORT_SYMBOL(napi_gro_receive);
4811 
4812 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4813 {
4814 	if (unlikely(skb->pfmemalloc)) {
4815 		consume_skb(skb);
4816 		return;
4817 	}
4818 	__skb_pull(skb, skb_headlen(skb));
4819 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4820 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4821 	skb->vlan_tci = 0;
4822 	skb->dev = napi->dev;
4823 	skb->skb_iif = 0;
4824 	skb->encapsulation = 0;
4825 	skb_shinfo(skb)->gso_type = 0;
4826 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4827 	secpath_reset(skb);
4828 
4829 	napi->skb = skb;
4830 }
4831 
4832 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4833 {
4834 	struct sk_buff *skb = napi->skb;
4835 
4836 	if (!skb) {
4837 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4838 		if (skb) {
4839 			napi->skb = skb;
4840 			skb_mark_napi_id(skb, napi);
4841 		}
4842 	}
4843 	return skb;
4844 }
4845 EXPORT_SYMBOL(napi_get_frags);
4846 
4847 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4848 				      struct sk_buff *skb,
4849 				      gro_result_t ret)
4850 {
4851 	switch (ret) {
4852 	case GRO_NORMAL:
4853 	case GRO_HELD:
4854 		__skb_push(skb, ETH_HLEN);
4855 		skb->protocol = eth_type_trans(skb, skb->dev);
4856 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4857 			ret = GRO_DROP;
4858 		break;
4859 
4860 	case GRO_DROP:
4861 	case GRO_MERGED_FREE:
4862 		napi_reuse_skb(napi, skb);
4863 		break;
4864 
4865 	case GRO_MERGED:
4866 	case GRO_CONSUMED:
4867 		break;
4868 	}
4869 
4870 	return ret;
4871 }
4872 
4873 /* Upper GRO stack assumes network header starts at gro_offset=0
4874  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4875  * We copy ethernet header into skb->data to have a common layout.
4876  */
4877 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4878 {
4879 	struct sk_buff *skb = napi->skb;
4880 	const struct ethhdr *eth;
4881 	unsigned int hlen = sizeof(*eth);
4882 
4883 	napi->skb = NULL;
4884 
4885 	skb_reset_mac_header(skb);
4886 	skb_gro_reset_offset(skb);
4887 
4888 	eth = skb_gro_header_fast(skb, 0);
4889 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4890 		eth = skb_gro_header_slow(skb, hlen, 0);
4891 		if (unlikely(!eth)) {
4892 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4893 					     __func__, napi->dev->name);
4894 			napi_reuse_skb(napi, skb);
4895 			return NULL;
4896 		}
4897 	} else {
4898 		gro_pull_from_frag0(skb, hlen);
4899 		NAPI_GRO_CB(skb)->frag0 += hlen;
4900 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4901 	}
4902 	__skb_pull(skb, hlen);
4903 
4904 	/*
4905 	 * This works because the only protocols we care about don't require
4906 	 * special handling.
4907 	 * We'll fix it up properly in napi_frags_finish()
4908 	 */
4909 	skb->protocol = eth->h_proto;
4910 
4911 	return skb;
4912 }
4913 
4914 gro_result_t napi_gro_frags(struct napi_struct *napi)
4915 {
4916 	struct sk_buff *skb = napi_frags_skb(napi);
4917 
4918 	if (!skb)
4919 		return GRO_DROP;
4920 
4921 	trace_napi_gro_frags_entry(skb);
4922 
4923 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4924 }
4925 EXPORT_SYMBOL(napi_gro_frags);
4926 
4927 /* Compute the checksum from gro_offset and return the folded value
4928  * after adding in any pseudo checksum.
4929  */
4930 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4931 {
4932 	__wsum wsum;
4933 	__sum16 sum;
4934 
4935 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4936 
4937 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4938 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4939 	if (likely(!sum)) {
4940 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4941 		    !skb->csum_complete_sw)
4942 			netdev_rx_csum_fault(skb->dev);
4943 	}
4944 
4945 	NAPI_GRO_CB(skb)->csum = wsum;
4946 	NAPI_GRO_CB(skb)->csum_valid = 1;
4947 
4948 	return sum;
4949 }
4950 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4951 
4952 static void net_rps_send_ipi(struct softnet_data *remsd)
4953 {
4954 #ifdef CONFIG_RPS
4955 	while (remsd) {
4956 		struct softnet_data *next = remsd->rps_ipi_next;
4957 
4958 		if (cpu_online(remsd->cpu))
4959 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
4960 		remsd = next;
4961 	}
4962 #endif
4963 }
4964 
4965 /*
4966  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4967  * Note: called with local irq disabled, but exits with local irq enabled.
4968  */
4969 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4970 {
4971 #ifdef CONFIG_RPS
4972 	struct softnet_data *remsd = sd->rps_ipi_list;
4973 
4974 	if (remsd) {
4975 		sd->rps_ipi_list = NULL;
4976 
4977 		local_irq_enable();
4978 
4979 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4980 		net_rps_send_ipi(remsd);
4981 	} else
4982 #endif
4983 		local_irq_enable();
4984 }
4985 
4986 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4987 {
4988 #ifdef CONFIG_RPS
4989 	return sd->rps_ipi_list != NULL;
4990 #else
4991 	return false;
4992 #endif
4993 }
4994 
4995 static int process_backlog(struct napi_struct *napi, int quota)
4996 {
4997 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4998 	bool again = true;
4999 	int work = 0;
5000 
5001 	/* Check if we have pending ipi, its better to send them now,
5002 	 * not waiting net_rx_action() end.
5003 	 */
5004 	if (sd_has_rps_ipi_waiting(sd)) {
5005 		local_irq_disable();
5006 		net_rps_action_and_irq_enable(sd);
5007 	}
5008 
5009 	napi->weight = dev_rx_weight;
5010 	while (again) {
5011 		struct sk_buff *skb;
5012 
5013 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5014 			rcu_read_lock();
5015 			__netif_receive_skb(skb);
5016 			rcu_read_unlock();
5017 			input_queue_head_incr(sd);
5018 			if (++work >= quota)
5019 				return work;
5020 
5021 		}
5022 
5023 		local_irq_disable();
5024 		rps_lock(sd);
5025 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5026 			/*
5027 			 * Inline a custom version of __napi_complete().
5028 			 * only current cpu owns and manipulates this napi,
5029 			 * and NAPI_STATE_SCHED is the only possible flag set
5030 			 * on backlog.
5031 			 * We can use a plain write instead of clear_bit(),
5032 			 * and we dont need an smp_mb() memory barrier.
5033 			 */
5034 			napi->state = 0;
5035 			again = false;
5036 		} else {
5037 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5038 						   &sd->process_queue);
5039 		}
5040 		rps_unlock(sd);
5041 		local_irq_enable();
5042 	}
5043 
5044 	return work;
5045 }
5046 
5047 /**
5048  * __napi_schedule - schedule for receive
5049  * @n: entry to schedule
5050  *
5051  * The entry's receive function will be scheduled to run.
5052  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5053  */
5054 void __napi_schedule(struct napi_struct *n)
5055 {
5056 	unsigned long flags;
5057 
5058 	local_irq_save(flags);
5059 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5060 	local_irq_restore(flags);
5061 }
5062 EXPORT_SYMBOL(__napi_schedule);
5063 
5064 /**
5065  *	napi_schedule_prep - check if napi can be scheduled
5066  *	@n: napi context
5067  *
5068  * Test if NAPI routine is already running, and if not mark
5069  * it as running.  This is used as a condition variable
5070  * insure only one NAPI poll instance runs.  We also make
5071  * sure there is no pending NAPI disable.
5072  */
5073 bool napi_schedule_prep(struct napi_struct *n)
5074 {
5075 	unsigned long val, new;
5076 
5077 	do {
5078 		val = READ_ONCE(n->state);
5079 		if (unlikely(val & NAPIF_STATE_DISABLE))
5080 			return false;
5081 		new = val | NAPIF_STATE_SCHED;
5082 
5083 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5084 		 * This was suggested by Alexander Duyck, as compiler
5085 		 * emits better code than :
5086 		 * if (val & NAPIF_STATE_SCHED)
5087 		 *     new |= NAPIF_STATE_MISSED;
5088 		 */
5089 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5090 						   NAPIF_STATE_MISSED;
5091 	} while (cmpxchg(&n->state, val, new) != val);
5092 
5093 	return !(val & NAPIF_STATE_SCHED);
5094 }
5095 EXPORT_SYMBOL(napi_schedule_prep);
5096 
5097 /**
5098  * __napi_schedule_irqoff - schedule for receive
5099  * @n: entry to schedule
5100  *
5101  * Variant of __napi_schedule() assuming hard irqs are masked
5102  */
5103 void __napi_schedule_irqoff(struct napi_struct *n)
5104 {
5105 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5106 }
5107 EXPORT_SYMBOL(__napi_schedule_irqoff);
5108 
5109 bool napi_complete_done(struct napi_struct *n, int work_done)
5110 {
5111 	unsigned long flags, val, new;
5112 
5113 	/*
5114 	 * 1) Don't let napi dequeue from the cpu poll list
5115 	 *    just in case its running on a different cpu.
5116 	 * 2) If we are busy polling, do nothing here, we have
5117 	 *    the guarantee we will be called later.
5118 	 */
5119 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5120 				 NAPIF_STATE_IN_BUSY_POLL)))
5121 		return false;
5122 
5123 	if (n->gro_list) {
5124 		unsigned long timeout = 0;
5125 
5126 		if (work_done)
5127 			timeout = n->dev->gro_flush_timeout;
5128 
5129 		if (timeout)
5130 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5131 				      HRTIMER_MODE_REL_PINNED);
5132 		else
5133 			napi_gro_flush(n, false);
5134 	}
5135 	if (unlikely(!list_empty(&n->poll_list))) {
5136 		/* If n->poll_list is not empty, we need to mask irqs */
5137 		local_irq_save(flags);
5138 		list_del_init(&n->poll_list);
5139 		local_irq_restore(flags);
5140 	}
5141 
5142 	do {
5143 		val = READ_ONCE(n->state);
5144 
5145 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5146 
5147 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5148 
5149 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5150 		 * because we will call napi->poll() one more time.
5151 		 * This C code was suggested by Alexander Duyck to help gcc.
5152 		 */
5153 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5154 						    NAPIF_STATE_SCHED;
5155 	} while (cmpxchg(&n->state, val, new) != val);
5156 
5157 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5158 		__napi_schedule(n);
5159 		return false;
5160 	}
5161 
5162 	return true;
5163 }
5164 EXPORT_SYMBOL(napi_complete_done);
5165 
5166 /* must be called under rcu_read_lock(), as we dont take a reference */
5167 static struct napi_struct *napi_by_id(unsigned int napi_id)
5168 {
5169 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5170 	struct napi_struct *napi;
5171 
5172 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5173 		if (napi->napi_id == napi_id)
5174 			return napi;
5175 
5176 	return NULL;
5177 }
5178 
5179 #if defined(CONFIG_NET_RX_BUSY_POLL)
5180 
5181 #define BUSY_POLL_BUDGET 8
5182 
5183 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5184 {
5185 	int rc;
5186 
5187 	/* Busy polling means there is a high chance device driver hard irq
5188 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5189 	 * set in napi_schedule_prep().
5190 	 * Since we are about to call napi->poll() once more, we can safely
5191 	 * clear NAPI_STATE_MISSED.
5192 	 *
5193 	 * Note: x86 could use a single "lock and ..." instruction
5194 	 * to perform these two clear_bit()
5195 	 */
5196 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5197 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5198 
5199 	local_bh_disable();
5200 
5201 	/* All we really want here is to re-enable device interrupts.
5202 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5203 	 */
5204 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5205 	netpoll_poll_unlock(have_poll_lock);
5206 	if (rc == BUSY_POLL_BUDGET)
5207 		__napi_schedule(napi);
5208 	local_bh_enable();
5209 	if (local_softirq_pending())
5210 		do_softirq();
5211 }
5212 
5213 void napi_busy_loop(unsigned int napi_id,
5214 		    bool (*loop_end)(void *, unsigned long),
5215 		    void *loop_end_arg)
5216 {
5217 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5218 	int (*napi_poll)(struct napi_struct *napi, int budget);
5219 	void *have_poll_lock = NULL;
5220 	struct napi_struct *napi;
5221 
5222 restart:
5223 	napi_poll = NULL;
5224 
5225 	rcu_read_lock();
5226 
5227 	napi = napi_by_id(napi_id);
5228 	if (!napi)
5229 		goto out;
5230 
5231 	preempt_disable();
5232 	for (;;) {
5233 		int work = 0;
5234 
5235 		local_bh_disable();
5236 		if (!napi_poll) {
5237 			unsigned long val = READ_ONCE(napi->state);
5238 
5239 			/* If multiple threads are competing for this napi,
5240 			 * we avoid dirtying napi->state as much as we can.
5241 			 */
5242 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5243 				   NAPIF_STATE_IN_BUSY_POLL))
5244 				goto count;
5245 			if (cmpxchg(&napi->state, val,
5246 				    val | NAPIF_STATE_IN_BUSY_POLL |
5247 					  NAPIF_STATE_SCHED) != val)
5248 				goto count;
5249 			have_poll_lock = netpoll_poll_lock(napi);
5250 			napi_poll = napi->poll;
5251 		}
5252 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5253 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5254 count:
5255 		if (work > 0)
5256 			__NET_ADD_STATS(dev_net(napi->dev),
5257 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5258 		local_bh_enable();
5259 
5260 		if (!loop_end || loop_end(loop_end_arg, start_time))
5261 			break;
5262 
5263 		if (unlikely(need_resched())) {
5264 			if (napi_poll)
5265 				busy_poll_stop(napi, have_poll_lock);
5266 			preempt_enable();
5267 			rcu_read_unlock();
5268 			cond_resched();
5269 			if (loop_end(loop_end_arg, start_time))
5270 				return;
5271 			goto restart;
5272 		}
5273 		cpu_relax();
5274 	}
5275 	if (napi_poll)
5276 		busy_poll_stop(napi, have_poll_lock);
5277 	preempt_enable();
5278 out:
5279 	rcu_read_unlock();
5280 }
5281 EXPORT_SYMBOL(napi_busy_loop);
5282 
5283 #endif /* CONFIG_NET_RX_BUSY_POLL */
5284 
5285 static void napi_hash_add(struct napi_struct *napi)
5286 {
5287 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5288 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5289 		return;
5290 
5291 	spin_lock(&napi_hash_lock);
5292 
5293 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5294 	do {
5295 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5296 			napi_gen_id = MIN_NAPI_ID;
5297 	} while (napi_by_id(napi_gen_id));
5298 	napi->napi_id = napi_gen_id;
5299 
5300 	hlist_add_head_rcu(&napi->napi_hash_node,
5301 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5302 
5303 	spin_unlock(&napi_hash_lock);
5304 }
5305 
5306 /* Warning : caller is responsible to make sure rcu grace period
5307  * is respected before freeing memory containing @napi
5308  */
5309 bool napi_hash_del(struct napi_struct *napi)
5310 {
5311 	bool rcu_sync_needed = false;
5312 
5313 	spin_lock(&napi_hash_lock);
5314 
5315 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5316 		rcu_sync_needed = true;
5317 		hlist_del_rcu(&napi->napi_hash_node);
5318 	}
5319 	spin_unlock(&napi_hash_lock);
5320 	return rcu_sync_needed;
5321 }
5322 EXPORT_SYMBOL_GPL(napi_hash_del);
5323 
5324 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5325 {
5326 	struct napi_struct *napi;
5327 
5328 	napi = container_of(timer, struct napi_struct, timer);
5329 
5330 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5331 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5332 	 */
5333 	if (napi->gro_list && !napi_disable_pending(napi) &&
5334 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5335 		__napi_schedule_irqoff(napi);
5336 
5337 	return HRTIMER_NORESTART;
5338 }
5339 
5340 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5341 		    int (*poll)(struct napi_struct *, int), int weight)
5342 {
5343 	INIT_LIST_HEAD(&napi->poll_list);
5344 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5345 	napi->timer.function = napi_watchdog;
5346 	napi->gro_count = 0;
5347 	napi->gro_list = NULL;
5348 	napi->skb = NULL;
5349 	napi->poll = poll;
5350 	if (weight > NAPI_POLL_WEIGHT)
5351 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5352 			    weight, dev->name);
5353 	napi->weight = weight;
5354 	list_add(&napi->dev_list, &dev->napi_list);
5355 	napi->dev = dev;
5356 #ifdef CONFIG_NETPOLL
5357 	napi->poll_owner = -1;
5358 #endif
5359 	set_bit(NAPI_STATE_SCHED, &napi->state);
5360 	napi_hash_add(napi);
5361 }
5362 EXPORT_SYMBOL(netif_napi_add);
5363 
5364 void napi_disable(struct napi_struct *n)
5365 {
5366 	might_sleep();
5367 	set_bit(NAPI_STATE_DISABLE, &n->state);
5368 
5369 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5370 		msleep(1);
5371 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5372 		msleep(1);
5373 
5374 	hrtimer_cancel(&n->timer);
5375 
5376 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5377 }
5378 EXPORT_SYMBOL(napi_disable);
5379 
5380 /* Must be called in process context */
5381 void netif_napi_del(struct napi_struct *napi)
5382 {
5383 	might_sleep();
5384 	if (napi_hash_del(napi))
5385 		synchronize_net();
5386 	list_del_init(&napi->dev_list);
5387 	napi_free_frags(napi);
5388 
5389 	kfree_skb_list(napi->gro_list);
5390 	napi->gro_list = NULL;
5391 	napi->gro_count = 0;
5392 }
5393 EXPORT_SYMBOL(netif_napi_del);
5394 
5395 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5396 {
5397 	void *have;
5398 	int work, weight;
5399 
5400 	list_del_init(&n->poll_list);
5401 
5402 	have = netpoll_poll_lock(n);
5403 
5404 	weight = n->weight;
5405 
5406 	/* This NAPI_STATE_SCHED test is for avoiding a race
5407 	 * with netpoll's poll_napi().  Only the entity which
5408 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5409 	 * actually make the ->poll() call.  Therefore we avoid
5410 	 * accidentally calling ->poll() when NAPI is not scheduled.
5411 	 */
5412 	work = 0;
5413 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5414 		work = n->poll(n, weight);
5415 		trace_napi_poll(n, work, weight);
5416 	}
5417 
5418 	WARN_ON_ONCE(work > weight);
5419 
5420 	if (likely(work < weight))
5421 		goto out_unlock;
5422 
5423 	/* Drivers must not modify the NAPI state if they
5424 	 * consume the entire weight.  In such cases this code
5425 	 * still "owns" the NAPI instance and therefore can
5426 	 * move the instance around on the list at-will.
5427 	 */
5428 	if (unlikely(napi_disable_pending(n))) {
5429 		napi_complete(n);
5430 		goto out_unlock;
5431 	}
5432 
5433 	if (n->gro_list) {
5434 		/* flush too old packets
5435 		 * If HZ < 1000, flush all packets.
5436 		 */
5437 		napi_gro_flush(n, HZ >= 1000);
5438 	}
5439 
5440 	/* Some drivers may have called napi_schedule
5441 	 * prior to exhausting their budget.
5442 	 */
5443 	if (unlikely(!list_empty(&n->poll_list))) {
5444 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5445 			     n->dev ? n->dev->name : "backlog");
5446 		goto out_unlock;
5447 	}
5448 
5449 	list_add_tail(&n->poll_list, repoll);
5450 
5451 out_unlock:
5452 	netpoll_poll_unlock(have);
5453 
5454 	return work;
5455 }
5456 
5457 static __latent_entropy void net_rx_action(struct softirq_action *h)
5458 {
5459 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5460 	unsigned long time_limit = jiffies +
5461 		usecs_to_jiffies(netdev_budget_usecs);
5462 	int budget = netdev_budget;
5463 	LIST_HEAD(list);
5464 	LIST_HEAD(repoll);
5465 
5466 	local_irq_disable();
5467 	list_splice_init(&sd->poll_list, &list);
5468 	local_irq_enable();
5469 
5470 	for (;;) {
5471 		struct napi_struct *n;
5472 
5473 		if (list_empty(&list)) {
5474 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5475 				goto out;
5476 			break;
5477 		}
5478 
5479 		n = list_first_entry(&list, struct napi_struct, poll_list);
5480 		budget -= napi_poll(n, &repoll);
5481 
5482 		/* If softirq window is exhausted then punt.
5483 		 * Allow this to run for 2 jiffies since which will allow
5484 		 * an average latency of 1.5/HZ.
5485 		 */
5486 		if (unlikely(budget <= 0 ||
5487 			     time_after_eq(jiffies, time_limit))) {
5488 			sd->time_squeeze++;
5489 			break;
5490 		}
5491 	}
5492 
5493 	local_irq_disable();
5494 
5495 	list_splice_tail_init(&sd->poll_list, &list);
5496 	list_splice_tail(&repoll, &list);
5497 	list_splice(&list, &sd->poll_list);
5498 	if (!list_empty(&sd->poll_list))
5499 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5500 
5501 	net_rps_action_and_irq_enable(sd);
5502 out:
5503 	__kfree_skb_flush();
5504 }
5505 
5506 struct netdev_adjacent {
5507 	struct net_device *dev;
5508 
5509 	/* upper master flag, there can only be one master device per list */
5510 	bool master;
5511 
5512 	/* counter for the number of times this device was added to us */
5513 	u16 ref_nr;
5514 
5515 	/* private field for the users */
5516 	void *private;
5517 
5518 	struct list_head list;
5519 	struct rcu_head rcu;
5520 };
5521 
5522 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5523 						 struct list_head *adj_list)
5524 {
5525 	struct netdev_adjacent *adj;
5526 
5527 	list_for_each_entry(adj, adj_list, list) {
5528 		if (adj->dev == adj_dev)
5529 			return adj;
5530 	}
5531 	return NULL;
5532 }
5533 
5534 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5535 {
5536 	struct net_device *dev = data;
5537 
5538 	return upper_dev == dev;
5539 }
5540 
5541 /**
5542  * netdev_has_upper_dev - Check if device is linked to an upper device
5543  * @dev: device
5544  * @upper_dev: upper device to check
5545  *
5546  * Find out if a device is linked to specified upper device and return true
5547  * in case it is. Note that this checks only immediate upper device,
5548  * not through a complete stack of devices. The caller must hold the RTNL lock.
5549  */
5550 bool netdev_has_upper_dev(struct net_device *dev,
5551 			  struct net_device *upper_dev)
5552 {
5553 	ASSERT_RTNL();
5554 
5555 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5556 					     upper_dev);
5557 }
5558 EXPORT_SYMBOL(netdev_has_upper_dev);
5559 
5560 /**
5561  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5562  * @dev: device
5563  * @upper_dev: upper device to check
5564  *
5565  * Find out if a device is linked to specified upper device and return true
5566  * in case it is. Note that this checks the entire upper device chain.
5567  * The caller must hold rcu lock.
5568  */
5569 
5570 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5571 				  struct net_device *upper_dev)
5572 {
5573 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5574 					       upper_dev);
5575 }
5576 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5577 
5578 /**
5579  * netdev_has_any_upper_dev - Check if device is linked to some device
5580  * @dev: device
5581  *
5582  * Find out if a device is linked to an upper device and return true in case
5583  * it is. The caller must hold the RTNL lock.
5584  */
5585 static bool netdev_has_any_upper_dev(struct net_device *dev)
5586 {
5587 	ASSERT_RTNL();
5588 
5589 	return !list_empty(&dev->adj_list.upper);
5590 }
5591 
5592 /**
5593  * netdev_master_upper_dev_get - Get master upper device
5594  * @dev: device
5595  *
5596  * Find a master upper device and return pointer to it or NULL in case
5597  * it's not there. The caller must hold the RTNL lock.
5598  */
5599 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5600 {
5601 	struct netdev_adjacent *upper;
5602 
5603 	ASSERT_RTNL();
5604 
5605 	if (list_empty(&dev->adj_list.upper))
5606 		return NULL;
5607 
5608 	upper = list_first_entry(&dev->adj_list.upper,
5609 				 struct netdev_adjacent, list);
5610 	if (likely(upper->master))
5611 		return upper->dev;
5612 	return NULL;
5613 }
5614 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5615 
5616 /**
5617  * netdev_has_any_lower_dev - Check if device is linked to some device
5618  * @dev: device
5619  *
5620  * Find out if a device is linked to a lower device and return true in case
5621  * it is. The caller must hold the RTNL lock.
5622  */
5623 static bool netdev_has_any_lower_dev(struct net_device *dev)
5624 {
5625 	ASSERT_RTNL();
5626 
5627 	return !list_empty(&dev->adj_list.lower);
5628 }
5629 
5630 void *netdev_adjacent_get_private(struct list_head *adj_list)
5631 {
5632 	struct netdev_adjacent *adj;
5633 
5634 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5635 
5636 	return adj->private;
5637 }
5638 EXPORT_SYMBOL(netdev_adjacent_get_private);
5639 
5640 /**
5641  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5642  * @dev: device
5643  * @iter: list_head ** of the current position
5644  *
5645  * Gets the next device from the dev's upper list, starting from iter
5646  * position. The caller must hold RCU read lock.
5647  */
5648 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5649 						 struct list_head **iter)
5650 {
5651 	struct netdev_adjacent *upper;
5652 
5653 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5654 
5655 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5656 
5657 	if (&upper->list == &dev->adj_list.upper)
5658 		return NULL;
5659 
5660 	*iter = &upper->list;
5661 
5662 	return upper->dev;
5663 }
5664 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5665 
5666 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5667 						    struct list_head **iter)
5668 {
5669 	struct netdev_adjacent *upper;
5670 
5671 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5672 
5673 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5674 
5675 	if (&upper->list == &dev->adj_list.upper)
5676 		return NULL;
5677 
5678 	*iter = &upper->list;
5679 
5680 	return upper->dev;
5681 }
5682 
5683 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5684 				  int (*fn)(struct net_device *dev,
5685 					    void *data),
5686 				  void *data)
5687 {
5688 	struct net_device *udev;
5689 	struct list_head *iter;
5690 	int ret;
5691 
5692 	for (iter = &dev->adj_list.upper,
5693 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5694 	     udev;
5695 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5696 		/* first is the upper device itself */
5697 		ret = fn(udev, data);
5698 		if (ret)
5699 			return ret;
5700 
5701 		/* then look at all of its upper devices */
5702 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5703 		if (ret)
5704 			return ret;
5705 	}
5706 
5707 	return 0;
5708 }
5709 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5710 
5711 /**
5712  * netdev_lower_get_next_private - Get the next ->private from the
5713  *				   lower neighbour list
5714  * @dev: device
5715  * @iter: list_head ** of the current position
5716  *
5717  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5718  * list, starting from iter position. The caller must hold either hold the
5719  * RTNL lock or its own locking that guarantees that the neighbour lower
5720  * list will remain unchanged.
5721  */
5722 void *netdev_lower_get_next_private(struct net_device *dev,
5723 				    struct list_head **iter)
5724 {
5725 	struct netdev_adjacent *lower;
5726 
5727 	lower = list_entry(*iter, struct netdev_adjacent, list);
5728 
5729 	if (&lower->list == &dev->adj_list.lower)
5730 		return NULL;
5731 
5732 	*iter = lower->list.next;
5733 
5734 	return lower->private;
5735 }
5736 EXPORT_SYMBOL(netdev_lower_get_next_private);
5737 
5738 /**
5739  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5740  *				       lower neighbour list, RCU
5741  *				       variant
5742  * @dev: device
5743  * @iter: list_head ** of the current position
5744  *
5745  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5746  * list, starting from iter position. The caller must hold RCU read lock.
5747  */
5748 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5749 					struct list_head **iter)
5750 {
5751 	struct netdev_adjacent *lower;
5752 
5753 	WARN_ON_ONCE(!rcu_read_lock_held());
5754 
5755 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5756 
5757 	if (&lower->list == &dev->adj_list.lower)
5758 		return NULL;
5759 
5760 	*iter = &lower->list;
5761 
5762 	return lower->private;
5763 }
5764 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5765 
5766 /**
5767  * netdev_lower_get_next - Get the next device from the lower neighbour
5768  *                         list
5769  * @dev: device
5770  * @iter: list_head ** of the current position
5771  *
5772  * Gets the next netdev_adjacent from the dev's lower neighbour
5773  * list, starting from iter position. The caller must hold RTNL lock or
5774  * its own locking that guarantees that the neighbour lower
5775  * list will remain unchanged.
5776  */
5777 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5778 {
5779 	struct netdev_adjacent *lower;
5780 
5781 	lower = list_entry(*iter, struct netdev_adjacent, list);
5782 
5783 	if (&lower->list == &dev->adj_list.lower)
5784 		return NULL;
5785 
5786 	*iter = lower->list.next;
5787 
5788 	return lower->dev;
5789 }
5790 EXPORT_SYMBOL(netdev_lower_get_next);
5791 
5792 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5793 						struct list_head **iter)
5794 {
5795 	struct netdev_adjacent *lower;
5796 
5797 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5798 
5799 	if (&lower->list == &dev->adj_list.lower)
5800 		return NULL;
5801 
5802 	*iter = &lower->list;
5803 
5804 	return lower->dev;
5805 }
5806 
5807 int netdev_walk_all_lower_dev(struct net_device *dev,
5808 			      int (*fn)(struct net_device *dev,
5809 					void *data),
5810 			      void *data)
5811 {
5812 	struct net_device *ldev;
5813 	struct list_head *iter;
5814 	int ret;
5815 
5816 	for (iter = &dev->adj_list.lower,
5817 	     ldev = netdev_next_lower_dev(dev, &iter);
5818 	     ldev;
5819 	     ldev = netdev_next_lower_dev(dev, &iter)) {
5820 		/* first is the lower device itself */
5821 		ret = fn(ldev, data);
5822 		if (ret)
5823 			return ret;
5824 
5825 		/* then look at all of its lower devices */
5826 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
5827 		if (ret)
5828 			return ret;
5829 	}
5830 
5831 	return 0;
5832 }
5833 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5834 
5835 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5836 						    struct list_head **iter)
5837 {
5838 	struct netdev_adjacent *lower;
5839 
5840 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5841 	if (&lower->list == &dev->adj_list.lower)
5842 		return NULL;
5843 
5844 	*iter = &lower->list;
5845 
5846 	return lower->dev;
5847 }
5848 
5849 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5850 				  int (*fn)(struct net_device *dev,
5851 					    void *data),
5852 				  void *data)
5853 {
5854 	struct net_device *ldev;
5855 	struct list_head *iter;
5856 	int ret;
5857 
5858 	for (iter = &dev->adj_list.lower,
5859 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
5860 	     ldev;
5861 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5862 		/* first is the lower device itself */
5863 		ret = fn(ldev, data);
5864 		if (ret)
5865 			return ret;
5866 
5867 		/* then look at all of its lower devices */
5868 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5869 		if (ret)
5870 			return ret;
5871 	}
5872 
5873 	return 0;
5874 }
5875 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5876 
5877 /**
5878  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5879  *				       lower neighbour list, RCU
5880  *				       variant
5881  * @dev: device
5882  *
5883  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5884  * list. The caller must hold RCU read lock.
5885  */
5886 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5887 {
5888 	struct netdev_adjacent *lower;
5889 
5890 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5891 			struct netdev_adjacent, list);
5892 	if (lower)
5893 		return lower->private;
5894 	return NULL;
5895 }
5896 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5897 
5898 /**
5899  * netdev_master_upper_dev_get_rcu - Get master upper device
5900  * @dev: device
5901  *
5902  * Find a master upper device and return pointer to it or NULL in case
5903  * it's not there. The caller must hold the RCU read lock.
5904  */
5905 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5906 {
5907 	struct netdev_adjacent *upper;
5908 
5909 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5910 				       struct netdev_adjacent, list);
5911 	if (upper && likely(upper->master))
5912 		return upper->dev;
5913 	return NULL;
5914 }
5915 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5916 
5917 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5918 			      struct net_device *adj_dev,
5919 			      struct list_head *dev_list)
5920 {
5921 	char linkname[IFNAMSIZ+7];
5922 
5923 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5924 		"upper_%s" : "lower_%s", adj_dev->name);
5925 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5926 				 linkname);
5927 }
5928 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5929 			       char *name,
5930 			       struct list_head *dev_list)
5931 {
5932 	char linkname[IFNAMSIZ+7];
5933 
5934 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5935 		"upper_%s" : "lower_%s", name);
5936 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5937 }
5938 
5939 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5940 						 struct net_device *adj_dev,
5941 						 struct list_head *dev_list)
5942 {
5943 	return (dev_list == &dev->adj_list.upper ||
5944 		dev_list == &dev->adj_list.lower) &&
5945 		net_eq(dev_net(dev), dev_net(adj_dev));
5946 }
5947 
5948 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5949 					struct net_device *adj_dev,
5950 					struct list_head *dev_list,
5951 					void *private, bool master)
5952 {
5953 	struct netdev_adjacent *adj;
5954 	int ret;
5955 
5956 	adj = __netdev_find_adj(adj_dev, dev_list);
5957 
5958 	if (adj) {
5959 		adj->ref_nr += 1;
5960 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5961 			 dev->name, adj_dev->name, adj->ref_nr);
5962 
5963 		return 0;
5964 	}
5965 
5966 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5967 	if (!adj)
5968 		return -ENOMEM;
5969 
5970 	adj->dev = adj_dev;
5971 	adj->master = master;
5972 	adj->ref_nr = 1;
5973 	adj->private = private;
5974 	dev_hold(adj_dev);
5975 
5976 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5977 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5978 
5979 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5980 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5981 		if (ret)
5982 			goto free_adj;
5983 	}
5984 
5985 	/* Ensure that master link is always the first item in list. */
5986 	if (master) {
5987 		ret = sysfs_create_link(&(dev->dev.kobj),
5988 					&(adj_dev->dev.kobj), "master");
5989 		if (ret)
5990 			goto remove_symlinks;
5991 
5992 		list_add_rcu(&adj->list, dev_list);
5993 	} else {
5994 		list_add_tail_rcu(&adj->list, dev_list);
5995 	}
5996 
5997 	return 0;
5998 
5999 remove_symlinks:
6000 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6001 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6002 free_adj:
6003 	kfree(adj);
6004 	dev_put(adj_dev);
6005 
6006 	return ret;
6007 }
6008 
6009 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6010 					 struct net_device *adj_dev,
6011 					 u16 ref_nr,
6012 					 struct list_head *dev_list)
6013 {
6014 	struct netdev_adjacent *adj;
6015 
6016 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6017 		 dev->name, adj_dev->name, ref_nr);
6018 
6019 	adj = __netdev_find_adj(adj_dev, dev_list);
6020 
6021 	if (!adj) {
6022 		pr_err("Adjacency does not exist for device %s from %s\n",
6023 		       dev->name, adj_dev->name);
6024 		WARN_ON(1);
6025 		return;
6026 	}
6027 
6028 	if (adj->ref_nr > ref_nr) {
6029 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6030 			 dev->name, adj_dev->name, ref_nr,
6031 			 adj->ref_nr - ref_nr);
6032 		adj->ref_nr -= ref_nr;
6033 		return;
6034 	}
6035 
6036 	if (adj->master)
6037 		sysfs_remove_link(&(dev->dev.kobj), "master");
6038 
6039 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6040 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6041 
6042 	list_del_rcu(&adj->list);
6043 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6044 		 adj_dev->name, dev->name, adj_dev->name);
6045 	dev_put(adj_dev);
6046 	kfree_rcu(adj, rcu);
6047 }
6048 
6049 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6050 					    struct net_device *upper_dev,
6051 					    struct list_head *up_list,
6052 					    struct list_head *down_list,
6053 					    void *private, bool master)
6054 {
6055 	int ret;
6056 
6057 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6058 					   private, master);
6059 	if (ret)
6060 		return ret;
6061 
6062 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6063 					   private, false);
6064 	if (ret) {
6065 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6066 		return ret;
6067 	}
6068 
6069 	return 0;
6070 }
6071 
6072 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6073 					       struct net_device *upper_dev,
6074 					       u16 ref_nr,
6075 					       struct list_head *up_list,
6076 					       struct list_head *down_list)
6077 {
6078 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6079 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6080 }
6081 
6082 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6083 						struct net_device *upper_dev,
6084 						void *private, bool master)
6085 {
6086 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6087 						&dev->adj_list.upper,
6088 						&upper_dev->adj_list.lower,
6089 						private, master);
6090 }
6091 
6092 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6093 						   struct net_device *upper_dev)
6094 {
6095 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6096 					   &dev->adj_list.upper,
6097 					   &upper_dev->adj_list.lower);
6098 }
6099 
6100 static int __netdev_upper_dev_link(struct net_device *dev,
6101 				   struct net_device *upper_dev, bool master,
6102 				   void *upper_priv, void *upper_info)
6103 {
6104 	struct netdev_notifier_changeupper_info changeupper_info;
6105 	int ret = 0;
6106 
6107 	ASSERT_RTNL();
6108 
6109 	if (dev == upper_dev)
6110 		return -EBUSY;
6111 
6112 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6113 	if (netdev_has_upper_dev(upper_dev, dev))
6114 		return -EBUSY;
6115 
6116 	if (netdev_has_upper_dev(dev, upper_dev))
6117 		return -EEXIST;
6118 
6119 	if (master && netdev_master_upper_dev_get(dev))
6120 		return -EBUSY;
6121 
6122 	changeupper_info.upper_dev = upper_dev;
6123 	changeupper_info.master = master;
6124 	changeupper_info.linking = true;
6125 	changeupper_info.upper_info = upper_info;
6126 
6127 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6128 					    &changeupper_info.info);
6129 	ret = notifier_to_errno(ret);
6130 	if (ret)
6131 		return ret;
6132 
6133 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6134 						   master);
6135 	if (ret)
6136 		return ret;
6137 
6138 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6139 					    &changeupper_info.info);
6140 	ret = notifier_to_errno(ret);
6141 	if (ret)
6142 		goto rollback;
6143 
6144 	return 0;
6145 
6146 rollback:
6147 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6148 
6149 	return ret;
6150 }
6151 
6152 /**
6153  * netdev_upper_dev_link - Add a link to the upper device
6154  * @dev: device
6155  * @upper_dev: new upper device
6156  *
6157  * Adds a link to device which is upper to this one. The caller must hold
6158  * the RTNL lock. On a failure a negative errno code is returned.
6159  * On success the reference counts are adjusted and the function
6160  * returns zero.
6161  */
6162 int netdev_upper_dev_link(struct net_device *dev,
6163 			  struct net_device *upper_dev)
6164 {
6165 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6166 }
6167 EXPORT_SYMBOL(netdev_upper_dev_link);
6168 
6169 /**
6170  * netdev_master_upper_dev_link - Add a master link to the upper device
6171  * @dev: device
6172  * @upper_dev: new upper device
6173  * @upper_priv: upper device private
6174  * @upper_info: upper info to be passed down via notifier
6175  *
6176  * Adds a link to device which is upper to this one. In this case, only
6177  * one master upper device can be linked, although other non-master devices
6178  * might be linked as well. The caller must hold the RTNL lock.
6179  * On a failure a negative errno code is returned. On success the reference
6180  * counts are adjusted and the function returns zero.
6181  */
6182 int netdev_master_upper_dev_link(struct net_device *dev,
6183 				 struct net_device *upper_dev,
6184 				 void *upper_priv, void *upper_info)
6185 {
6186 	return __netdev_upper_dev_link(dev, upper_dev, true,
6187 				       upper_priv, upper_info);
6188 }
6189 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6190 
6191 /**
6192  * netdev_upper_dev_unlink - Removes a link to upper device
6193  * @dev: device
6194  * @upper_dev: new upper device
6195  *
6196  * Removes a link to device which is upper to this one. The caller must hold
6197  * the RTNL lock.
6198  */
6199 void netdev_upper_dev_unlink(struct net_device *dev,
6200 			     struct net_device *upper_dev)
6201 {
6202 	struct netdev_notifier_changeupper_info changeupper_info;
6203 
6204 	ASSERT_RTNL();
6205 
6206 	changeupper_info.upper_dev = upper_dev;
6207 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6208 	changeupper_info.linking = false;
6209 
6210 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6211 				      &changeupper_info.info);
6212 
6213 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6214 
6215 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6216 				      &changeupper_info.info);
6217 }
6218 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6219 
6220 /**
6221  * netdev_bonding_info_change - Dispatch event about slave change
6222  * @dev: device
6223  * @bonding_info: info to dispatch
6224  *
6225  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6226  * The caller must hold the RTNL lock.
6227  */
6228 void netdev_bonding_info_change(struct net_device *dev,
6229 				struct netdev_bonding_info *bonding_info)
6230 {
6231 	struct netdev_notifier_bonding_info	info;
6232 
6233 	memcpy(&info.bonding_info, bonding_info,
6234 	       sizeof(struct netdev_bonding_info));
6235 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6236 				      &info.info);
6237 }
6238 EXPORT_SYMBOL(netdev_bonding_info_change);
6239 
6240 static void netdev_adjacent_add_links(struct net_device *dev)
6241 {
6242 	struct netdev_adjacent *iter;
6243 
6244 	struct net *net = dev_net(dev);
6245 
6246 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6247 		if (!net_eq(net, dev_net(iter->dev)))
6248 			continue;
6249 		netdev_adjacent_sysfs_add(iter->dev, dev,
6250 					  &iter->dev->adj_list.lower);
6251 		netdev_adjacent_sysfs_add(dev, iter->dev,
6252 					  &dev->adj_list.upper);
6253 	}
6254 
6255 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6256 		if (!net_eq(net, dev_net(iter->dev)))
6257 			continue;
6258 		netdev_adjacent_sysfs_add(iter->dev, dev,
6259 					  &iter->dev->adj_list.upper);
6260 		netdev_adjacent_sysfs_add(dev, iter->dev,
6261 					  &dev->adj_list.lower);
6262 	}
6263 }
6264 
6265 static void netdev_adjacent_del_links(struct net_device *dev)
6266 {
6267 	struct netdev_adjacent *iter;
6268 
6269 	struct net *net = dev_net(dev);
6270 
6271 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6272 		if (!net_eq(net, dev_net(iter->dev)))
6273 			continue;
6274 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6275 					  &iter->dev->adj_list.lower);
6276 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6277 					  &dev->adj_list.upper);
6278 	}
6279 
6280 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6281 		if (!net_eq(net, dev_net(iter->dev)))
6282 			continue;
6283 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6284 					  &iter->dev->adj_list.upper);
6285 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6286 					  &dev->adj_list.lower);
6287 	}
6288 }
6289 
6290 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6291 {
6292 	struct netdev_adjacent *iter;
6293 
6294 	struct net *net = dev_net(dev);
6295 
6296 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6297 		if (!net_eq(net, dev_net(iter->dev)))
6298 			continue;
6299 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6300 					  &iter->dev->adj_list.lower);
6301 		netdev_adjacent_sysfs_add(iter->dev, dev,
6302 					  &iter->dev->adj_list.lower);
6303 	}
6304 
6305 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6306 		if (!net_eq(net, dev_net(iter->dev)))
6307 			continue;
6308 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6309 					  &iter->dev->adj_list.upper);
6310 		netdev_adjacent_sysfs_add(iter->dev, dev,
6311 					  &iter->dev->adj_list.upper);
6312 	}
6313 }
6314 
6315 void *netdev_lower_dev_get_private(struct net_device *dev,
6316 				   struct net_device *lower_dev)
6317 {
6318 	struct netdev_adjacent *lower;
6319 
6320 	if (!lower_dev)
6321 		return NULL;
6322 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6323 	if (!lower)
6324 		return NULL;
6325 
6326 	return lower->private;
6327 }
6328 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6329 
6330 
6331 int dev_get_nest_level(struct net_device *dev)
6332 {
6333 	struct net_device *lower = NULL;
6334 	struct list_head *iter;
6335 	int max_nest = -1;
6336 	int nest;
6337 
6338 	ASSERT_RTNL();
6339 
6340 	netdev_for_each_lower_dev(dev, lower, iter) {
6341 		nest = dev_get_nest_level(lower);
6342 		if (max_nest < nest)
6343 			max_nest = nest;
6344 	}
6345 
6346 	return max_nest + 1;
6347 }
6348 EXPORT_SYMBOL(dev_get_nest_level);
6349 
6350 /**
6351  * netdev_lower_change - Dispatch event about lower device state change
6352  * @lower_dev: device
6353  * @lower_state_info: state to dispatch
6354  *
6355  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6356  * The caller must hold the RTNL lock.
6357  */
6358 void netdev_lower_state_changed(struct net_device *lower_dev,
6359 				void *lower_state_info)
6360 {
6361 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6362 
6363 	ASSERT_RTNL();
6364 	changelowerstate_info.lower_state_info = lower_state_info;
6365 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6366 				      &changelowerstate_info.info);
6367 }
6368 EXPORT_SYMBOL(netdev_lower_state_changed);
6369 
6370 static void dev_change_rx_flags(struct net_device *dev, int flags)
6371 {
6372 	const struct net_device_ops *ops = dev->netdev_ops;
6373 
6374 	if (ops->ndo_change_rx_flags)
6375 		ops->ndo_change_rx_flags(dev, flags);
6376 }
6377 
6378 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6379 {
6380 	unsigned int old_flags = dev->flags;
6381 	kuid_t uid;
6382 	kgid_t gid;
6383 
6384 	ASSERT_RTNL();
6385 
6386 	dev->flags |= IFF_PROMISC;
6387 	dev->promiscuity += inc;
6388 	if (dev->promiscuity == 0) {
6389 		/*
6390 		 * Avoid overflow.
6391 		 * If inc causes overflow, untouch promisc and return error.
6392 		 */
6393 		if (inc < 0)
6394 			dev->flags &= ~IFF_PROMISC;
6395 		else {
6396 			dev->promiscuity -= inc;
6397 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6398 				dev->name);
6399 			return -EOVERFLOW;
6400 		}
6401 	}
6402 	if (dev->flags != old_flags) {
6403 		pr_info("device %s %s promiscuous mode\n",
6404 			dev->name,
6405 			dev->flags & IFF_PROMISC ? "entered" : "left");
6406 		if (audit_enabled) {
6407 			current_uid_gid(&uid, &gid);
6408 			audit_log(current->audit_context, GFP_ATOMIC,
6409 				AUDIT_ANOM_PROMISCUOUS,
6410 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6411 				dev->name, (dev->flags & IFF_PROMISC),
6412 				(old_flags & IFF_PROMISC),
6413 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6414 				from_kuid(&init_user_ns, uid),
6415 				from_kgid(&init_user_ns, gid),
6416 				audit_get_sessionid(current));
6417 		}
6418 
6419 		dev_change_rx_flags(dev, IFF_PROMISC);
6420 	}
6421 	if (notify)
6422 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6423 	return 0;
6424 }
6425 
6426 /**
6427  *	dev_set_promiscuity	- update promiscuity count on a device
6428  *	@dev: device
6429  *	@inc: modifier
6430  *
6431  *	Add or remove promiscuity from a device. While the count in the device
6432  *	remains above zero the interface remains promiscuous. Once it hits zero
6433  *	the device reverts back to normal filtering operation. A negative inc
6434  *	value is used to drop promiscuity on the device.
6435  *	Return 0 if successful or a negative errno code on error.
6436  */
6437 int dev_set_promiscuity(struct net_device *dev, int inc)
6438 {
6439 	unsigned int old_flags = dev->flags;
6440 	int err;
6441 
6442 	err = __dev_set_promiscuity(dev, inc, true);
6443 	if (err < 0)
6444 		return err;
6445 	if (dev->flags != old_flags)
6446 		dev_set_rx_mode(dev);
6447 	return err;
6448 }
6449 EXPORT_SYMBOL(dev_set_promiscuity);
6450 
6451 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6452 {
6453 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6454 
6455 	ASSERT_RTNL();
6456 
6457 	dev->flags |= IFF_ALLMULTI;
6458 	dev->allmulti += inc;
6459 	if (dev->allmulti == 0) {
6460 		/*
6461 		 * Avoid overflow.
6462 		 * If inc causes overflow, untouch allmulti and return error.
6463 		 */
6464 		if (inc < 0)
6465 			dev->flags &= ~IFF_ALLMULTI;
6466 		else {
6467 			dev->allmulti -= inc;
6468 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6469 				dev->name);
6470 			return -EOVERFLOW;
6471 		}
6472 	}
6473 	if (dev->flags ^ old_flags) {
6474 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6475 		dev_set_rx_mode(dev);
6476 		if (notify)
6477 			__dev_notify_flags(dev, old_flags,
6478 					   dev->gflags ^ old_gflags);
6479 	}
6480 	return 0;
6481 }
6482 
6483 /**
6484  *	dev_set_allmulti	- update allmulti count on a device
6485  *	@dev: device
6486  *	@inc: modifier
6487  *
6488  *	Add or remove reception of all multicast frames to a device. While the
6489  *	count in the device remains above zero the interface remains listening
6490  *	to all interfaces. Once it hits zero the device reverts back to normal
6491  *	filtering operation. A negative @inc value is used to drop the counter
6492  *	when releasing a resource needing all multicasts.
6493  *	Return 0 if successful or a negative errno code on error.
6494  */
6495 
6496 int dev_set_allmulti(struct net_device *dev, int inc)
6497 {
6498 	return __dev_set_allmulti(dev, inc, true);
6499 }
6500 EXPORT_SYMBOL(dev_set_allmulti);
6501 
6502 /*
6503  *	Upload unicast and multicast address lists to device and
6504  *	configure RX filtering. When the device doesn't support unicast
6505  *	filtering it is put in promiscuous mode while unicast addresses
6506  *	are present.
6507  */
6508 void __dev_set_rx_mode(struct net_device *dev)
6509 {
6510 	const struct net_device_ops *ops = dev->netdev_ops;
6511 
6512 	/* dev_open will call this function so the list will stay sane. */
6513 	if (!(dev->flags&IFF_UP))
6514 		return;
6515 
6516 	if (!netif_device_present(dev))
6517 		return;
6518 
6519 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6520 		/* Unicast addresses changes may only happen under the rtnl,
6521 		 * therefore calling __dev_set_promiscuity here is safe.
6522 		 */
6523 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6524 			__dev_set_promiscuity(dev, 1, false);
6525 			dev->uc_promisc = true;
6526 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6527 			__dev_set_promiscuity(dev, -1, false);
6528 			dev->uc_promisc = false;
6529 		}
6530 	}
6531 
6532 	if (ops->ndo_set_rx_mode)
6533 		ops->ndo_set_rx_mode(dev);
6534 }
6535 
6536 void dev_set_rx_mode(struct net_device *dev)
6537 {
6538 	netif_addr_lock_bh(dev);
6539 	__dev_set_rx_mode(dev);
6540 	netif_addr_unlock_bh(dev);
6541 }
6542 
6543 /**
6544  *	dev_get_flags - get flags reported to userspace
6545  *	@dev: device
6546  *
6547  *	Get the combination of flag bits exported through APIs to userspace.
6548  */
6549 unsigned int dev_get_flags(const struct net_device *dev)
6550 {
6551 	unsigned int flags;
6552 
6553 	flags = (dev->flags & ~(IFF_PROMISC |
6554 				IFF_ALLMULTI |
6555 				IFF_RUNNING |
6556 				IFF_LOWER_UP |
6557 				IFF_DORMANT)) |
6558 		(dev->gflags & (IFF_PROMISC |
6559 				IFF_ALLMULTI));
6560 
6561 	if (netif_running(dev)) {
6562 		if (netif_oper_up(dev))
6563 			flags |= IFF_RUNNING;
6564 		if (netif_carrier_ok(dev))
6565 			flags |= IFF_LOWER_UP;
6566 		if (netif_dormant(dev))
6567 			flags |= IFF_DORMANT;
6568 	}
6569 
6570 	return flags;
6571 }
6572 EXPORT_SYMBOL(dev_get_flags);
6573 
6574 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6575 {
6576 	unsigned int old_flags = dev->flags;
6577 	int ret;
6578 
6579 	ASSERT_RTNL();
6580 
6581 	/*
6582 	 *	Set the flags on our device.
6583 	 */
6584 
6585 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6586 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6587 			       IFF_AUTOMEDIA)) |
6588 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6589 				    IFF_ALLMULTI));
6590 
6591 	/*
6592 	 *	Load in the correct multicast list now the flags have changed.
6593 	 */
6594 
6595 	if ((old_flags ^ flags) & IFF_MULTICAST)
6596 		dev_change_rx_flags(dev, IFF_MULTICAST);
6597 
6598 	dev_set_rx_mode(dev);
6599 
6600 	/*
6601 	 *	Have we downed the interface. We handle IFF_UP ourselves
6602 	 *	according to user attempts to set it, rather than blindly
6603 	 *	setting it.
6604 	 */
6605 
6606 	ret = 0;
6607 	if ((old_flags ^ flags) & IFF_UP)
6608 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6609 
6610 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6611 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6612 		unsigned int old_flags = dev->flags;
6613 
6614 		dev->gflags ^= IFF_PROMISC;
6615 
6616 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6617 			if (dev->flags != old_flags)
6618 				dev_set_rx_mode(dev);
6619 	}
6620 
6621 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6622 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6623 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6624 	 */
6625 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6626 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6627 
6628 		dev->gflags ^= IFF_ALLMULTI;
6629 		__dev_set_allmulti(dev, inc, false);
6630 	}
6631 
6632 	return ret;
6633 }
6634 
6635 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6636 			unsigned int gchanges)
6637 {
6638 	unsigned int changes = dev->flags ^ old_flags;
6639 
6640 	if (gchanges)
6641 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6642 
6643 	if (changes & IFF_UP) {
6644 		if (dev->flags & IFF_UP)
6645 			call_netdevice_notifiers(NETDEV_UP, dev);
6646 		else
6647 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6648 	}
6649 
6650 	if (dev->flags & IFF_UP &&
6651 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6652 		struct netdev_notifier_change_info change_info;
6653 
6654 		change_info.flags_changed = changes;
6655 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6656 					      &change_info.info);
6657 	}
6658 }
6659 
6660 /**
6661  *	dev_change_flags - change device settings
6662  *	@dev: device
6663  *	@flags: device state flags
6664  *
6665  *	Change settings on device based state flags. The flags are
6666  *	in the userspace exported format.
6667  */
6668 int dev_change_flags(struct net_device *dev, unsigned int flags)
6669 {
6670 	int ret;
6671 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6672 
6673 	ret = __dev_change_flags(dev, flags);
6674 	if (ret < 0)
6675 		return ret;
6676 
6677 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6678 	__dev_notify_flags(dev, old_flags, changes);
6679 	return ret;
6680 }
6681 EXPORT_SYMBOL(dev_change_flags);
6682 
6683 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6684 {
6685 	const struct net_device_ops *ops = dev->netdev_ops;
6686 
6687 	if (ops->ndo_change_mtu)
6688 		return ops->ndo_change_mtu(dev, new_mtu);
6689 
6690 	dev->mtu = new_mtu;
6691 	return 0;
6692 }
6693 
6694 /**
6695  *	dev_set_mtu - Change maximum transfer unit
6696  *	@dev: device
6697  *	@new_mtu: new transfer unit
6698  *
6699  *	Change the maximum transfer size of the network device.
6700  */
6701 int dev_set_mtu(struct net_device *dev, int new_mtu)
6702 {
6703 	int err, orig_mtu;
6704 
6705 	if (new_mtu == dev->mtu)
6706 		return 0;
6707 
6708 	/* MTU must be positive, and in range */
6709 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6710 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6711 				    dev->name, new_mtu, dev->min_mtu);
6712 		return -EINVAL;
6713 	}
6714 
6715 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6716 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6717 				    dev->name, new_mtu, dev->max_mtu);
6718 		return -EINVAL;
6719 	}
6720 
6721 	if (!netif_device_present(dev))
6722 		return -ENODEV;
6723 
6724 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6725 	err = notifier_to_errno(err);
6726 	if (err)
6727 		return err;
6728 
6729 	orig_mtu = dev->mtu;
6730 	err = __dev_set_mtu(dev, new_mtu);
6731 
6732 	if (!err) {
6733 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6734 		err = notifier_to_errno(err);
6735 		if (err) {
6736 			/* setting mtu back and notifying everyone again,
6737 			 * so that they have a chance to revert changes.
6738 			 */
6739 			__dev_set_mtu(dev, orig_mtu);
6740 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6741 		}
6742 	}
6743 	return err;
6744 }
6745 EXPORT_SYMBOL(dev_set_mtu);
6746 
6747 /**
6748  *	dev_set_group - Change group this device belongs to
6749  *	@dev: device
6750  *	@new_group: group this device should belong to
6751  */
6752 void dev_set_group(struct net_device *dev, int new_group)
6753 {
6754 	dev->group = new_group;
6755 }
6756 EXPORT_SYMBOL(dev_set_group);
6757 
6758 /**
6759  *	dev_set_mac_address - Change Media Access Control Address
6760  *	@dev: device
6761  *	@sa: new address
6762  *
6763  *	Change the hardware (MAC) address of the device
6764  */
6765 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6766 {
6767 	const struct net_device_ops *ops = dev->netdev_ops;
6768 	int err;
6769 
6770 	if (!ops->ndo_set_mac_address)
6771 		return -EOPNOTSUPP;
6772 	if (sa->sa_family != dev->type)
6773 		return -EINVAL;
6774 	if (!netif_device_present(dev))
6775 		return -ENODEV;
6776 	err = ops->ndo_set_mac_address(dev, sa);
6777 	if (err)
6778 		return err;
6779 	dev->addr_assign_type = NET_ADDR_SET;
6780 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6781 	add_device_randomness(dev->dev_addr, dev->addr_len);
6782 	return 0;
6783 }
6784 EXPORT_SYMBOL(dev_set_mac_address);
6785 
6786 /**
6787  *	dev_change_carrier - Change device carrier
6788  *	@dev: device
6789  *	@new_carrier: new value
6790  *
6791  *	Change device carrier
6792  */
6793 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6794 {
6795 	const struct net_device_ops *ops = dev->netdev_ops;
6796 
6797 	if (!ops->ndo_change_carrier)
6798 		return -EOPNOTSUPP;
6799 	if (!netif_device_present(dev))
6800 		return -ENODEV;
6801 	return ops->ndo_change_carrier(dev, new_carrier);
6802 }
6803 EXPORT_SYMBOL(dev_change_carrier);
6804 
6805 /**
6806  *	dev_get_phys_port_id - Get device physical port ID
6807  *	@dev: device
6808  *	@ppid: port ID
6809  *
6810  *	Get device physical port ID
6811  */
6812 int dev_get_phys_port_id(struct net_device *dev,
6813 			 struct netdev_phys_item_id *ppid)
6814 {
6815 	const struct net_device_ops *ops = dev->netdev_ops;
6816 
6817 	if (!ops->ndo_get_phys_port_id)
6818 		return -EOPNOTSUPP;
6819 	return ops->ndo_get_phys_port_id(dev, ppid);
6820 }
6821 EXPORT_SYMBOL(dev_get_phys_port_id);
6822 
6823 /**
6824  *	dev_get_phys_port_name - Get device physical port name
6825  *	@dev: device
6826  *	@name: port name
6827  *	@len: limit of bytes to copy to name
6828  *
6829  *	Get device physical port name
6830  */
6831 int dev_get_phys_port_name(struct net_device *dev,
6832 			   char *name, size_t len)
6833 {
6834 	const struct net_device_ops *ops = dev->netdev_ops;
6835 
6836 	if (!ops->ndo_get_phys_port_name)
6837 		return -EOPNOTSUPP;
6838 	return ops->ndo_get_phys_port_name(dev, name, len);
6839 }
6840 EXPORT_SYMBOL(dev_get_phys_port_name);
6841 
6842 /**
6843  *	dev_change_proto_down - update protocol port state information
6844  *	@dev: device
6845  *	@proto_down: new value
6846  *
6847  *	This info can be used by switch drivers to set the phys state of the
6848  *	port.
6849  */
6850 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6851 {
6852 	const struct net_device_ops *ops = dev->netdev_ops;
6853 
6854 	if (!ops->ndo_change_proto_down)
6855 		return -EOPNOTSUPP;
6856 	if (!netif_device_present(dev))
6857 		return -ENODEV;
6858 	return ops->ndo_change_proto_down(dev, proto_down);
6859 }
6860 EXPORT_SYMBOL(dev_change_proto_down);
6861 
6862 bool __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op)
6863 {
6864 	struct netdev_xdp xdp;
6865 
6866 	memset(&xdp, 0, sizeof(xdp));
6867 	xdp.command = XDP_QUERY_PROG;
6868 
6869 	/* Query must always succeed. */
6870 	WARN_ON(xdp_op(dev, &xdp) < 0);
6871 	return xdp.prog_attached;
6872 }
6873 
6874 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
6875 			   struct netlink_ext_ack *extack,
6876 			   struct bpf_prog *prog)
6877 {
6878 	struct netdev_xdp xdp;
6879 
6880 	memset(&xdp, 0, sizeof(xdp));
6881 	xdp.command = XDP_SETUP_PROG;
6882 	xdp.extack = extack;
6883 	xdp.prog = prog;
6884 
6885 	return xdp_op(dev, &xdp);
6886 }
6887 
6888 /**
6889  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
6890  *	@dev: device
6891  *	@extack: netlink extended ack
6892  *	@fd: new program fd or negative value to clear
6893  *	@flags: xdp-related flags
6894  *
6895  *	Set or clear a bpf program for a device
6896  */
6897 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
6898 		      int fd, u32 flags)
6899 {
6900 	const struct net_device_ops *ops = dev->netdev_ops;
6901 	struct bpf_prog *prog = NULL;
6902 	xdp_op_t xdp_op, xdp_chk;
6903 	int err;
6904 
6905 	ASSERT_RTNL();
6906 
6907 	xdp_op = xdp_chk = ops->ndo_xdp;
6908 	if (!xdp_op && (flags & XDP_FLAGS_DRV_MODE))
6909 		return -EOPNOTSUPP;
6910 	if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
6911 		xdp_op = generic_xdp_install;
6912 	if (xdp_op == xdp_chk)
6913 		xdp_chk = generic_xdp_install;
6914 
6915 	if (fd >= 0) {
6916 		if (xdp_chk && __dev_xdp_attached(dev, xdp_chk))
6917 			return -EEXIST;
6918 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
6919 		    __dev_xdp_attached(dev, xdp_op))
6920 			return -EBUSY;
6921 
6922 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6923 		if (IS_ERR(prog))
6924 			return PTR_ERR(prog);
6925 	}
6926 
6927 	err = dev_xdp_install(dev, xdp_op, extack, prog);
6928 	if (err < 0 && prog)
6929 		bpf_prog_put(prog);
6930 
6931 	return err;
6932 }
6933 
6934 /**
6935  *	dev_new_index	-	allocate an ifindex
6936  *	@net: the applicable net namespace
6937  *
6938  *	Returns a suitable unique value for a new device interface
6939  *	number.  The caller must hold the rtnl semaphore or the
6940  *	dev_base_lock to be sure it remains unique.
6941  */
6942 static int dev_new_index(struct net *net)
6943 {
6944 	int ifindex = net->ifindex;
6945 
6946 	for (;;) {
6947 		if (++ifindex <= 0)
6948 			ifindex = 1;
6949 		if (!__dev_get_by_index(net, ifindex))
6950 			return net->ifindex = ifindex;
6951 	}
6952 }
6953 
6954 /* Delayed registration/unregisteration */
6955 static LIST_HEAD(net_todo_list);
6956 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6957 
6958 static void net_set_todo(struct net_device *dev)
6959 {
6960 	list_add_tail(&dev->todo_list, &net_todo_list);
6961 	dev_net(dev)->dev_unreg_count++;
6962 }
6963 
6964 static void rollback_registered_many(struct list_head *head)
6965 {
6966 	struct net_device *dev, *tmp;
6967 	LIST_HEAD(close_head);
6968 
6969 	BUG_ON(dev_boot_phase);
6970 	ASSERT_RTNL();
6971 
6972 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6973 		/* Some devices call without registering
6974 		 * for initialization unwind. Remove those
6975 		 * devices and proceed with the remaining.
6976 		 */
6977 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6978 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6979 				 dev->name, dev);
6980 
6981 			WARN_ON(1);
6982 			list_del(&dev->unreg_list);
6983 			continue;
6984 		}
6985 		dev->dismantle = true;
6986 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6987 	}
6988 
6989 	/* If device is running, close it first. */
6990 	list_for_each_entry(dev, head, unreg_list)
6991 		list_add_tail(&dev->close_list, &close_head);
6992 	dev_close_many(&close_head, true);
6993 
6994 	list_for_each_entry(dev, head, unreg_list) {
6995 		/* And unlink it from device chain. */
6996 		unlist_netdevice(dev);
6997 
6998 		dev->reg_state = NETREG_UNREGISTERING;
6999 	}
7000 	flush_all_backlogs();
7001 
7002 	synchronize_net();
7003 
7004 	list_for_each_entry(dev, head, unreg_list) {
7005 		struct sk_buff *skb = NULL;
7006 
7007 		/* Shutdown queueing discipline. */
7008 		dev_shutdown(dev);
7009 
7010 
7011 		/* Notify protocols, that we are about to destroy
7012 		 * this device. They should clean all the things.
7013 		 */
7014 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7015 
7016 		if (!dev->rtnl_link_ops ||
7017 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7018 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
7019 						     GFP_KERNEL);
7020 
7021 		/*
7022 		 *	Flush the unicast and multicast chains
7023 		 */
7024 		dev_uc_flush(dev);
7025 		dev_mc_flush(dev);
7026 
7027 		if (dev->netdev_ops->ndo_uninit)
7028 			dev->netdev_ops->ndo_uninit(dev);
7029 
7030 		if (skb)
7031 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7032 
7033 		/* Notifier chain MUST detach us all upper devices. */
7034 		WARN_ON(netdev_has_any_upper_dev(dev));
7035 		WARN_ON(netdev_has_any_lower_dev(dev));
7036 
7037 		/* Remove entries from kobject tree */
7038 		netdev_unregister_kobject(dev);
7039 #ifdef CONFIG_XPS
7040 		/* Remove XPS queueing entries */
7041 		netif_reset_xps_queues_gt(dev, 0);
7042 #endif
7043 	}
7044 
7045 	synchronize_net();
7046 
7047 	list_for_each_entry(dev, head, unreg_list)
7048 		dev_put(dev);
7049 }
7050 
7051 static void rollback_registered(struct net_device *dev)
7052 {
7053 	LIST_HEAD(single);
7054 
7055 	list_add(&dev->unreg_list, &single);
7056 	rollback_registered_many(&single);
7057 	list_del(&single);
7058 }
7059 
7060 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7061 	struct net_device *upper, netdev_features_t features)
7062 {
7063 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7064 	netdev_features_t feature;
7065 	int feature_bit;
7066 
7067 	for_each_netdev_feature(&upper_disables, feature_bit) {
7068 		feature = __NETIF_F_BIT(feature_bit);
7069 		if (!(upper->wanted_features & feature)
7070 		    && (features & feature)) {
7071 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7072 				   &feature, upper->name);
7073 			features &= ~feature;
7074 		}
7075 	}
7076 
7077 	return features;
7078 }
7079 
7080 static void netdev_sync_lower_features(struct net_device *upper,
7081 	struct net_device *lower, netdev_features_t features)
7082 {
7083 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7084 	netdev_features_t feature;
7085 	int feature_bit;
7086 
7087 	for_each_netdev_feature(&upper_disables, feature_bit) {
7088 		feature = __NETIF_F_BIT(feature_bit);
7089 		if (!(features & feature) && (lower->features & feature)) {
7090 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7091 				   &feature, lower->name);
7092 			lower->wanted_features &= ~feature;
7093 			netdev_update_features(lower);
7094 
7095 			if (unlikely(lower->features & feature))
7096 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7097 					    &feature, lower->name);
7098 		}
7099 	}
7100 }
7101 
7102 static netdev_features_t netdev_fix_features(struct net_device *dev,
7103 	netdev_features_t features)
7104 {
7105 	/* Fix illegal checksum combinations */
7106 	if ((features & NETIF_F_HW_CSUM) &&
7107 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7108 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7109 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7110 	}
7111 
7112 	/* TSO requires that SG is present as well. */
7113 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7114 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7115 		features &= ~NETIF_F_ALL_TSO;
7116 	}
7117 
7118 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7119 					!(features & NETIF_F_IP_CSUM)) {
7120 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7121 		features &= ~NETIF_F_TSO;
7122 		features &= ~NETIF_F_TSO_ECN;
7123 	}
7124 
7125 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7126 					 !(features & NETIF_F_IPV6_CSUM)) {
7127 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7128 		features &= ~NETIF_F_TSO6;
7129 	}
7130 
7131 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7132 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7133 		features &= ~NETIF_F_TSO_MANGLEID;
7134 
7135 	/* TSO ECN requires that TSO is present as well. */
7136 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7137 		features &= ~NETIF_F_TSO_ECN;
7138 
7139 	/* Software GSO depends on SG. */
7140 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7141 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7142 		features &= ~NETIF_F_GSO;
7143 	}
7144 
7145 	/* UFO needs SG and checksumming */
7146 	if (features & NETIF_F_UFO) {
7147 		/* maybe split UFO into V4 and V6? */
7148 		if (!(features & NETIF_F_HW_CSUM) &&
7149 		    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
7150 		     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
7151 			netdev_dbg(dev,
7152 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
7153 			features &= ~NETIF_F_UFO;
7154 		}
7155 
7156 		if (!(features & NETIF_F_SG)) {
7157 			netdev_dbg(dev,
7158 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
7159 			features &= ~NETIF_F_UFO;
7160 		}
7161 	}
7162 
7163 	/* GSO partial features require GSO partial be set */
7164 	if ((features & dev->gso_partial_features) &&
7165 	    !(features & NETIF_F_GSO_PARTIAL)) {
7166 		netdev_dbg(dev,
7167 			   "Dropping partially supported GSO features since no GSO partial.\n");
7168 		features &= ~dev->gso_partial_features;
7169 	}
7170 
7171 	return features;
7172 }
7173 
7174 int __netdev_update_features(struct net_device *dev)
7175 {
7176 	struct net_device *upper, *lower;
7177 	netdev_features_t features;
7178 	struct list_head *iter;
7179 	int err = -1;
7180 
7181 	ASSERT_RTNL();
7182 
7183 	features = netdev_get_wanted_features(dev);
7184 
7185 	if (dev->netdev_ops->ndo_fix_features)
7186 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7187 
7188 	/* driver might be less strict about feature dependencies */
7189 	features = netdev_fix_features(dev, features);
7190 
7191 	/* some features can't be enabled if they're off an an upper device */
7192 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7193 		features = netdev_sync_upper_features(dev, upper, features);
7194 
7195 	if (dev->features == features)
7196 		goto sync_lower;
7197 
7198 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7199 		&dev->features, &features);
7200 
7201 	if (dev->netdev_ops->ndo_set_features)
7202 		err = dev->netdev_ops->ndo_set_features(dev, features);
7203 	else
7204 		err = 0;
7205 
7206 	if (unlikely(err < 0)) {
7207 		netdev_err(dev,
7208 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7209 			err, &features, &dev->features);
7210 		/* return non-0 since some features might have changed and
7211 		 * it's better to fire a spurious notification than miss it
7212 		 */
7213 		return -1;
7214 	}
7215 
7216 sync_lower:
7217 	/* some features must be disabled on lower devices when disabled
7218 	 * on an upper device (think: bonding master or bridge)
7219 	 */
7220 	netdev_for_each_lower_dev(dev, lower, iter)
7221 		netdev_sync_lower_features(dev, lower, features);
7222 
7223 	if (!err)
7224 		dev->features = features;
7225 
7226 	return err < 0 ? 0 : 1;
7227 }
7228 
7229 /**
7230  *	netdev_update_features - recalculate device features
7231  *	@dev: the device to check
7232  *
7233  *	Recalculate dev->features set and send notifications if it
7234  *	has changed. Should be called after driver or hardware dependent
7235  *	conditions might have changed that influence the features.
7236  */
7237 void netdev_update_features(struct net_device *dev)
7238 {
7239 	if (__netdev_update_features(dev))
7240 		netdev_features_change(dev);
7241 }
7242 EXPORT_SYMBOL(netdev_update_features);
7243 
7244 /**
7245  *	netdev_change_features - recalculate device features
7246  *	@dev: the device to check
7247  *
7248  *	Recalculate dev->features set and send notifications even
7249  *	if they have not changed. Should be called instead of
7250  *	netdev_update_features() if also dev->vlan_features might
7251  *	have changed to allow the changes to be propagated to stacked
7252  *	VLAN devices.
7253  */
7254 void netdev_change_features(struct net_device *dev)
7255 {
7256 	__netdev_update_features(dev);
7257 	netdev_features_change(dev);
7258 }
7259 EXPORT_SYMBOL(netdev_change_features);
7260 
7261 /**
7262  *	netif_stacked_transfer_operstate -	transfer operstate
7263  *	@rootdev: the root or lower level device to transfer state from
7264  *	@dev: the device to transfer operstate to
7265  *
7266  *	Transfer operational state from root to device. This is normally
7267  *	called when a stacking relationship exists between the root
7268  *	device and the device(a leaf device).
7269  */
7270 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7271 					struct net_device *dev)
7272 {
7273 	if (rootdev->operstate == IF_OPER_DORMANT)
7274 		netif_dormant_on(dev);
7275 	else
7276 		netif_dormant_off(dev);
7277 
7278 	if (netif_carrier_ok(rootdev))
7279 		netif_carrier_on(dev);
7280 	else
7281 		netif_carrier_off(dev);
7282 }
7283 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7284 
7285 #ifdef CONFIG_SYSFS
7286 static int netif_alloc_rx_queues(struct net_device *dev)
7287 {
7288 	unsigned int i, count = dev->num_rx_queues;
7289 	struct netdev_rx_queue *rx;
7290 	size_t sz = count * sizeof(*rx);
7291 
7292 	BUG_ON(count < 1);
7293 
7294 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7295 	if (!rx)
7296 		return -ENOMEM;
7297 
7298 	dev->_rx = rx;
7299 
7300 	for (i = 0; i < count; i++)
7301 		rx[i].dev = dev;
7302 	return 0;
7303 }
7304 #endif
7305 
7306 static void netdev_init_one_queue(struct net_device *dev,
7307 				  struct netdev_queue *queue, void *_unused)
7308 {
7309 	/* Initialize queue lock */
7310 	spin_lock_init(&queue->_xmit_lock);
7311 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7312 	queue->xmit_lock_owner = -1;
7313 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7314 	queue->dev = dev;
7315 #ifdef CONFIG_BQL
7316 	dql_init(&queue->dql, HZ);
7317 #endif
7318 }
7319 
7320 static void netif_free_tx_queues(struct net_device *dev)
7321 {
7322 	kvfree(dev->_tx);
7323 }
7324 
7325 static int netif_alloc_netdev_queues(struct net_device *dev)
7326 {
7327 	unsigned int count = dev->num_tx_queues;
7328 	struct netdev_queue *tx;
7329 	size_t sz = count * sizeof(*tx);
7330 
7331 	if (count < 1 || count > 0xffff)
7332 		return -EINVAL;
7333 
7334 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7335 	if (!tx)
7336 		return -ENOMEM;
7337 
7338 	dev->_tx = tx;
7339 
7340 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7341 	spin_lock_init(&dev->tx_global_lock);
7342 
7343 	return 0;
7344 }
7345 
7346 void netif_tx_stop_all_queues(struct net_device *dev)
7347 {
7348 	unsigned int i;
7349 
7350 	for (i = 0; i < dev->num_tx_queues; i++) {
7351 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7352 
7353 		netif_tx_stop_queue(txq);
7354 	}
7355 }
7356 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7357 
7358 /**
7359  *	register_netdevice	- register a network device
7360  *	@dev: device to register
7361  *
7362  *	Take a completed network device structure and add it to the kernel
7363  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7364  *	chain. 0 is returned on success. A negative errno code is returned
7365  *	on a failure to set up the device, or if the name is a duplicate.
7366  *
7367  *	Callers must hold the rtnl semaphore. You may want
7368  *	register_netdev() instead of this.
7369  *
7370  *	BUGS:
7371  *	The locking appears insufficient to guarantee two parallel registers
7372  *	will not get the same name.
7373  */
7374 
7375 int register_netdevice(struct net_device *dev)
7376 {
7377 	int ret;
7378 	struct net *net = dev_net(dev);
7379 
7380 	BUG_ON(dev_boot_phase);
7381 	ASSERT_RTNL();
7382 
7383 	might_sleep();
7384 
7385 	/* When net_device's are persistent, this will be fatal. */
7386 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7387 	BUG_ON(!net);
7388 
7389 	spin_lock_init(&dev->addr_list_lock);
7390 	netdev_set_addr_lockdep_class(dev);
7391 
7392 	ret = dev_get_valid_name(net, dev, dev->name);
7393 	if (ret < 0)
7394 		goto out;
7395 
7396 	/* Init, if this function is available */
7397 	if (dev->netdev_ops->ndo_init) {
7398 		ret = dev->netdev_ops->ndo_init(dev);
7399 		if (ret) {
7400 			if (ret > 0)
7401 				ret = -EIO;
7402 			goto out;
7403 		}
7404 	}
7405 
7406 	if (((dev->hw_features | dev->features) &
7407 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7408 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7409 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7410 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7411 		ret = -EINVAL;
7412 		goto err_uninit;
7413 	}
7414 
7415 	ret = -EBUSY;
7416 	if (!dev->ifindex)
7417 		dev->ifindex = dev_new_index(net);
7418 	else if (__dev_get_by_index(net, dev->ifindex))
7419 		goto err_uninit;
7420 
7421 	/* Transfer changeable features to wanted_features and enable
7422 	 * software offloads (GSO and GRO).
7423 	 */
7424 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7425 	dev->features |= NETIF_F_SOFT_FEATURES;
7426 	dev->wanted_features = dev->features & dev->hw_features;
7427 
7428 	if (!(dev->flags & IFF_LOOPBACK))
7429 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7430 
7431 	/* If IPv4 TCP segmentation offload is supported we should also
7432 	 * allow the device to enable segmenting the frame with the option
7433 	 * of ignoring a static IP ID value.  This doesn't enable the
7434 	 * feature itself but allows the user to enable it later.
7435 	 */
7436 	if (dev->hw_features & NETIF_F_TSO)
7437 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7438 	if (dev->vlan_features & NETIF_F_TSO)
7439 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7440 	if (dev->mpls_features & NETIF_F_TSO)
7441 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7442 	if (dev->hw_enc_features & NETIF_F_TSO)
7443 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7444 
7445 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7446 	 */
7447 	dev->vlan_features |= NETIF_F_HIGHDMA;
7448 
7449 	/* Make NETIF_F_SG inheritable to tunnel devices.
7450 	 */
7451 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7452 
7453 	/* Make NETIF_F_SG inheritable to MPLS.
7454 	 */
7455 	dev->mpls_features |= NETIF_F_SG;
7456 
7457 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7458 	ret = notifier_to_errno(ret);
7459 	if (ret)
7460 		goto err_uninit;
7461 
7462 	ret = netdev_register_kobject(dev);
7463 	if (ret)
7464 		goto err_uninit;
7465 	dev->reg_state = NETREG_REGISTERED;
7466 
7467 	__netdev_update_features(dev);
7468 
7469 	/*
7470 	 *	Default initial state at registry is that the
7471 	 *	device is present.
7472 	 */
7473 
7474 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7475 
7476 	linkwatch_init_dev(dev);
7477 
7478 	dev_init_scheduler(dev);
7479 	dev_hold(dev);
7480 	list_netdevice(dev);
7481 	add_device_randomness(dev->dev_addr, dev->addr_len);
7482 
7483 	/* If the device has permanent device address, driver should
7484 	 * set dev_addr and also addr_assign_type should be set to
7485 	 * NET_ADDR_PERM (default value).
7486 	 */
7487 	if (dev->addr_assign_type == NET_ADDR_PERM)
7488 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7489 
7490 	/* Notify protocols, that a new device appeared. */
7491 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7492 	ret = notifier_to_errno(ret);
7493 	if (ret) {
7494 		rollback_registered(dev);
7495 		dev->reg_state = NETREG_UNREGISTERED;
7496 	}
7497 	/*
7498 	 *	Prevent userspace races by waiting until the network
7499 	 *	device is fully setup before sending notifications.
7500 	 */
7501 	if (!dev->rtnl_link_ops ||
7502 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7503 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7504 
7505 out:
7506 	return ret;
7507 
7508 err_uninit:
7509 	if (dev->netdev_ops->ndo_uninit)
7510 		dev->netdev_ops->ndo_uninit(dev);
7511 	if (dev->priv_destructor)
7512 		dev->priv_destructor(dev);
7513 	goto out;
7514 }
7515 EXPORT_SYMBOL(register_netdevice);
7516 
7517 /**
7518  *	init_dummy_netdev	- init a dummy network device for NAPI
7519  *	@dev: device to init
7520  *
7521  *	This takes a network device structure and initialize the minimum
7522  *	amount of fields so it can be used to schedule NAPI polls without
7523  *	registering a full blown interface. This is to be used by drivers
7524  *	that need to tie several hardware interfaces to a single NAPI
7525  *	poll scheduler due to HW limitations.
7526  */
7527 int init_dummy_netdev(struct net_device *dev)
7528 {
7529 	/* Clear everything. Note we don't initialize spinlocks
7530 	 * are they aren't supposed to be taken by any of the
7531 	 * NAPI code and this dummy netdev is supposed to be
7532 	 * only ever used for NAPI polls
7533 	 */
7534 	memset(dev, 0, sizeof(struct net_device));
7535 
7536 	/* make sure we BUG if trying to hit standard
7537 	 * register/unregister code path
7538 	 */
7539 	dev->reg_state = NETREG_DUMMY;
7540 
7541 	/* NAPI wants this */
7542 	INIT_LIST_HEAD(&dev->napi_list);
7543 
7544 	/* a dummy interface is started by default */
7545 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7546 	set_bit(__LINK_STATE_START, &dev->state);
7547 
7548 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7549 	 * because users of this 'device' dont need to change
7550 	 * its refcount.
7551 	 */
7552 
7553 	return 0;
7554 }
7555 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7556 
7557 
7558 /**
7559  *	register_netdev	- register a network device
7560  *	@dev: device to register
7561  *
7562  *	Take a completed network device structure and add it to the kernel
7563  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7564  *	chain. 0 is returned on success. A negative errno code is returned
7565  *	on a failure to set up the device, or if the name is a duplicate.
7566  *
7567  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7568  *	and expands the device name if you passed a format string to
7569  *	alloc_netdev.
7570  */
7571 int register_netdev(struct net_device *dev)
7572 {
7573 	int err;
7574 
7575 	rtnl_lock();
7576 	err = register_netdevice(dev);
7577 	rtnl_unlock();
7578 	return err;
7579 }
7580 EXPORT_SYMBOL(register_netdev);
7581 
7582 int netdev_refcnt_read(const struct net_device *dev)
7583 {
7584 	int i, refcnt = 0;
7585 
7586 	for_each_possible_cpu(i)
7587 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7588 	return refcnt;
7589 }
7590 EXPORT_SYMBOL(netdev_refcnt_read);
7591 
7592 /**
7593  * netdev_wait_allrefs - wait until all references are gone.
7594  * @dev: target net_device
7595  *
7596  * This is called when unregistering network devices.
7597  *
7598  * Any protocol or device that holds a reference should register
7599  * for netdevice notification, and cleanup and put back the
7600  * reference if they receive an UNREGISTER event.
7601  * We can get stuck here if buggy protocols don't correctly
7602  * call dev_put.
7603  */
7604 static void netdev_wait_allrefs(struct net_device *dev)
7605 {
7606 	unsigned long rebroadcast_time, warning_time;
7607 	int refcnt;
7608 
7609 	linkwatch_forget_dev(dev);
7610 
7611 	rebroadcast_time = warning_time = jiffies;
7612 	refcnt = netdev_refcnt_read(dev);
7613 
7614 	while (refcnt != 0) {
7615 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7616 			rtnl_lock();
7617 
7618 			/* Rebroadcast unregister notification */
7619 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7620 
7621 			__rtnl_unlock();
7622 			rcu_barrier();
7623 			rtnl_lock();
7624 
7625 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7626 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7627 				     &dev->state)) {
7628 				/* We must not have linkwatch events
7629 				 * pending on unregister. If this
7630 				 * happens, we simply run the queue
7631 				 * unscheduled, resulting in a noop
7632 				 * for this device.
7633 				 */
7634 				linkwatch_run_queue();
7635 			}
7636 
7637 			__rtnl_unlock();
7638 
7639 			rebroadcast_time = jiffies;
7640 		}
7641 
7642 		msleep(250);
7643 
7644 		refcnt = netdev_refcnt_read(dev);
7645 
7646 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7647 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7648 				 dev->name, refcnt);
7649 			warning_time = jiffies;
7650 		}
7651 	}
7652 }
7653 
7654 /* The sequence is:
7655  *
7656  *	rtnl_lock();
7657  *	...
7658  *	register_netdevice(x1);
7659  *	register_netdevice(x2);
7660  *	...
7661  *	unregister_netdevice(y1);
7662  *	unregister_netdevice(y2);
7663  *      ...
7664  *	rtnl_unlock();
7665  *	free_netdev(y1);
7666  *	free_netdev(y2);
7667  *
7668  * We are invoked by rtnl_unlock().
7669  * This allows us to deal with problems:
7670  * 1) We can delete sysfs objects which invoke hotplug
7671  *    without deadlocking with linkwatch via keventd.
7672  * 2) Since we run with the RTNL semaphore not held, we can sleep
7673  *    safely in order to wait for the netdev refcnt to drop to zero.
7674  *
7675  * We must not return until all unregister events added during
7676  * the interval the lock was held have been completed.
7677  */
7678 void netdev_run_todo(void)
7679 {
7680 	struct list_head list;
7681 
7682 	/* Snapshot list, allow later requests */
7683 	list_replace_init(&net_todo_list, &list);
7684 
7685 	__rtnl_unlock();
7686 
7687 
7688 	/* Wait for rcu callbacks to finish before next phase */
7689 	if (!list_empty(&list))
7690 		rcu_barrier();
7691 
7692 	while (!list_empty(&list)) {
7693 		struct net_device *dev
7694 			= list_first_entry(&list, struct net_device, todo_list);
7695 		list_del(&dev->todo_list);
7696 
7697 		rtnl_lock();
7698 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7699 		__rtnl_unlock();
7700 
7701 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7702 			pr_err("network todo '%s' but state %d\n",
7703 			       dev->name, dev->reg_state);
7704 			dump_stack();
7705 			continue;
7706 		}
7707 
7708 		dev->reg_state = NETREG_UNREGISTERED;
7709 
7710 		netdev_wait_allrefs(dev);
7711 
7712 		/* paranoia */
7713 		BUG_ON(netdev_refcnt_read(dev));
7714 		BUG_ON(!list_empty(&dev->ptype_all));
7715 		BUG_ON(!list_empty(&dev->ptype_specific));
7716 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7717 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7718 		WARN_ON(dev->dn_ptr);
7719 
7720 		if (dev->priv_destructor)
7721 			dev->priv_destructor(dev);
7722 		if (dev->needs_free_netdev)
7723 			free_netdev(dev);
7724 
7725 		/* Report a network device has been unregistered */
7726 		rtnl_lock();
7727 		dev_net(dev)->dev_unreg_count--;
7728 		__rtnl_unlock();
7729 		wake_up(&netdev_unregistering_wq);
7730 
7731 		/* Free network device */
7732 		kobject_put(&dev->dev.kobj);
7733 	}
7734 }
7735 
7736 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7737  * all the same fields in the same order as net_device_stats, with only
7738  * the type differing, but rtnl_link_stats64 may have additional fields
7739  * at the end for newer counters.
7740  */
7741 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7742 			     const struct net_device_stats *netdev_stats)
7743 {
7744 #if BITS_PER_LONG == 64
7745 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7746 	memcpy(stats64, netdev_stats, sizeof(*stats64));
7747 	/* zero out counters that only exist in rtnl_link_stats64 */
7748 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7749 	       sizeof(*stats64) - sizeof(*netdev_stats));
7750 #else
7751 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7752 	const unsigned long *src = (const unsigned long *)netdev_stats;
7753 	u64 *dst = (u64 *)stats64;
7754 
7755 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7756 	for (i = 0; i < n; i++)
7757 		dst[i] = src[i];
7758 	/* zero out counters that only exist in rtnl_link_stats64 */
7759 	memset((char *)stats64 + n * sizeof(u64), 0,
7760 	       sizeof(*stats64) - n * sizeof(u64));
7761 #endif
7762 }
7763 EXPORT_SYMBOL(netdev_stats_to_stats64);
7764 
7765 /**
7766  *	dev_get_stats	- get network device statistics
7767  *	@dev: device to get statistics from
7768  *	@storage: place to store stats
7769  *
7770  *	Get network statistics from device. Return @storage.
7771  *	The device driver may provide its own method by setting
7772  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7773  *	otherwise the internal statistics structure is used.
7774  */
7775 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7776 					struct rtnl_link_stats64 *storage)
7777 {
7778 	const struct net_device_ops *ops = dev->netdev_ops;
7779 
7780 	if (ops->ndo_get_stats64) {
7781 		memset(storage, 0, sizeof(*storage));
7782 		ops->ndo_get_stats64(dev, storage);
7783 	} else if (ops->ndo_get_stats) {
7784 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7785 	} else {
7786 		netdev_stats_to_stats64(storage, &dev->stats);
7787 	}
7788 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7789 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7790 	storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7791 	return storage;
7792 }
7793 EXPORT_SYMBOL(dev_get_stats);
7794 
7795 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7796 {
7797 	struct netdev_queue *queue = dev_ingress_queue(dev);
7798 
7799 #ifdef CONFIG_NET_CLS_ACT
7800 	if (queue)
7801 		return queue;
7802 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7803 	if (!queue)
7804 		return NULL;
7805 	netdev_init_one_queue(dev, queue, NULL);
7806 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7807 	queue->qdisc_sleeping = &noop_qdisc;
7808 	rcu_assign_pointer(dev->ingress_queue, queue);
7809 #endif
7810 	return queue;
7811 }
7812 
7813 static const struct ethtool_ops default_ethtool_ops;
7814 
7815 void netdev_set_default_ethtool_ops(struct net_device *dev,
7816 				    const struct ethtool_ops *ops)
7817 {
7818 	if (dev->ethtool_ops == &default_ethtool_ops)
7819 		dev->ethtool_ops = ops;
7820 }
7821 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7822 
7823 void netdev_freemem(struct net_device *dev)
7824 {
7825 	char *addr = (char *)dev - dev->padded;
7826 
7827 	kvfree(addr);
7828 }
7829 
7830 /**
7831  * alloc_netdev_mqs - allocate network device
7832  * @sizeof_priv: size of private data to allocate space for
7833  * @name: device name format string
7834  * @name_assign_type: origin of device name
7835  * @setup: callback to initialize device
7836  * @txqs: the number of TX subqueues to allocate
7837  * @rxqs: the number of RX subqueues to allocate
7838  *
7839  * Allocates a struct net_device with private data area for driver use
7840  * and performs basic initialization.  Also allocates subqueue structs
7841  * for each queue on the device.
7842  */
7843 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7844 		unsigned char name_assign_type,
7845 		void (*setup)(struct net_device *),
7846 		unsigned int txqs, unsigned int rxqs)
7847 {
7848 	struct net_device *dev;
7849 	size_t alloc_size;
7850 	struct net_device *p;
7851 
7852 	BUG_ON(strlen(name) >= sizeof(dev->name));
7853 
7854 	if (txqs < 1) {
7855 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7856 		return NULL;
7857 	}
7858 
7859 #ifdef CONFIG_SYSFS
7860 	if (rxqs < 1) {
7861 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7862 		return NULL;
7863 	}
7864 #endif
7865 
7866 	alloc_size = sizeof(struct net_device);
7867 	if (sizeof_priv) {
7868 		/* ensure 32-byte alignment of private area */
7869 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7870 		alloc_size += sizeof_priv;
7871 	}
7872 	/* ensure 32-byte alignment of whole construct */
7873 	alloc_size += NETDEV_ALIGN - 1;
7874 
7875 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_REPEAT);
7876 	if (!p)
7877 		return NULL;
7878 
7879 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7880 	dev->padded = (char *)dev - (char *)p;
7881 
7882 	dev->pcpu_refcnt = alloc_percpu(int);
7883 	if (!dev->pcpu_refcnt)
7884 		goto free_dev;
7885 
7886 	if (dev_addr_init(dev))
7887 		goto free_pcpu;
7888 
7889 	dev_mc_init(dev);
7890 	dev_uc_init(dev);
7891 
7892 	dev_net_set(dev, &init_net);
7893 
7894 	dev->gso_max_size = GSO_MAX_SIZE;
7895 	dev->gso_max_segs = GSO_MAX_SEGS;
7896 
7897 	INIT_LIST_HEAD(&dev->napi_list);
7898 	INIT_LIST_HEAD(&dev->unreg_list);
7899 	INIT_LIST_HEAD(&dev->close_list);
7900 	INIT_LIST_HEAD(&dev->link_watch_list);
7901 	INIT_LIST_HEAD(&dev->adj_list.upper);
7902 	INIT_LIST_HEAD(&dev->adj_list.lower);
7903 	INIT_LIST_HEAD(&dev->ptype_all);
7904 	INIT_LIST_HEAD(&dev->ptype_specific);
7905 #ifdef CONFIG_NET_SCHED
7906 	hash_init(dev->qdisc_hash);
7907 #endif
7908 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7909 	setup(dev);
7910 
7911 	if (!dev->tx_queue_len) {
7912 		dev->priv_flags |= IFF_NO_QUEUE;
7913 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7914 	}
7915 
7916 	dev->num_tx_queues = txqs;
7917 	dev->real_num_tx_queues = txqs;
7918 	if (netif_alloc_netdev_queues(dev))
7919 		goto free_all;
7920 
7921 #ifdef CONFIG_SYSFS
7922 	dev->num_rx_queues = rxqs;
7923 	dev->real_num_rx_queues = rxqs;
7924 	if (netif_alloc_rx_queues(dev))
7925 		goto free_all;
7926 #endif
7927 
7928 	strcpy(dev->name, name);
7929 	dev->name_assign_type = name_assign_type;
7930 	dev->group = INIT_NETDEV_GROUP;
7931 	if (!dev->ethtool_ops)
7932 		dev->ethtool_ops = &default_ethtool_ops;
7933 
7934 	nf_hook_ingress_init(dev);
7935 
7936 	return dev;
7937 
7938 free_all:
7939 	free_netdev(dev);
7940 	return NULL;
7941 
7942 free_pcpu:
7943 	free_percpu(dev->pcpu_refcnt);
7944 free_dev:
7945 	netdev_freemem(dev);
7946 	return NULL;
7947 }
7948 EXPORT_SYMBOL(alloc_netdev_mqs);
7949 
7950 /**
7951  * free_netdev - free network device
7952  * @dev: device
7953  *
7954  * This function does the last stage of destroying an allocated device
7955  * interface. The reference to the device object is released. If this
7956  * is the last reference then it will be freed.Must be called in process
7957  * context.
7958  */
7959 void free_netdev(struct net_device *dev)
7960 {
7961 	struct napi_struct *p, *n;
7962 	struct bpf_prog *prog;
7963 
7964 	might_sleep();
7965 	netif_free_tx_queues(dev);
7966 #ifdef CONFIG_SYSFS
7967 	kvfree(dev->_rx);
7968 #endif
7969 
7970 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7971 
7972 	/* Flush device addresses */
7973 	dev_addr_flush(dev);
7974 
7975 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7976 		netif_napi_del(p);
7977 
7978 	free_percpu(dev->pcpu_refcnt);
7979 	dev->pcpu_refcnt = NULL;
7980 
7981 	prog = rcu_dereference_protected(dev->xdp_prog, 1);
7982 	if (prog) {
7983 		bpf_prog_put(prog);
7984 		static_key_slow_dec(&generic_xdp_needed);
7985 	}
7986 
7987 	/*  Compatibility with error handling in drivers */
7988 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7989 		netdev_freemem(dev);
7990 		return;
7991 	}
7992 
7993 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7994 	dev->reg_state = NETREG_RELEASED;
7995 
7996 	/* will free via device release */
7997 	put_device(&dev->dev);
7998 }
7999 EXPORT_SYMBOL(free_netdev);
8000 
8001 /**
8002  *	synchronize_net -  Synchronize with packet receive processing
8003  *
8004  *	Wait for packets currently being received to be done.
8005  *	Does not block later packets from starting.
8006  */
8007 void synchronize_net(void)
8008 {
8009 	might_sleep();
8010 	if (rtnl_is_locked())
8011 		synchronize_rcu_expedited();
8012 	else
8013 		synchronize_rcu();
8014 }
8015 EXPORT_SYMBOL(synchronize_net);
8016 
8017 /**
8018  *	unregister_netdevice_queue - remove device from the kernel
8019  *	@dev: device
8020  *	@head: list
8021  *
8022  *	This function shuts down a device interface and removes it
8023  *	from the kernel tables.
8024  *	If head not NULL, device is queued to be unregistered later.
8025  *
8026  *	Callers must hold the rtnl semaphore.  You may want
8027  *	unregister_netdev() instead of this.
8028  */
8029 
8030 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8031 {
8032 	ASSERT_RTNL();
8033 
8034 	if (head) {
8035 		list_move_tail(&dev->unreg_list, head);
8036 	} else {
8037 		rollback_registered(dev);
8038 		/* Finish processing unregister after unlock */
8039 		net_set_todo(dev);
8040 	}
8041 }
8042 EXPORT_SYMBOL(unregister_netdevice_queue);
8043 
8044 /**
8045  *	unregister_netdevice_many - unregister many devices
8046  *	@head: list of devices
8047  *
8048  *  Note: As most callers use a stack allocated list_head,
8049  *  we force a list_del() to make sure stack wont be corrupted later.
8050  */
8051 void unregister_netdevice_many(struct list_head *head)
8052 {
8053 	struct net_device *dev;
8054 
8055 	if (!list_empty(head)) {
8056 		rollback_registered_many(head);
8057 		list_for_each_entry(dev, head, unreg_list)
8058 			net_set_todo(dev);
8059 		list_del(head);
8060 	}
8061 }
8062 EXPORT_SYMBOL(unregister_netdevice_many);
8063 
8064 /**
8065  *	unregister_netdev - remove device from the kernel
8066  *	@dev: device
8067  *
8068  *	This function shuts down a device interface and removes it
8069  *	from the kernel tables.
8070  *
8071  *	This is just a wrapper for unregister_netdevice that takes
8072  *	the rtnl semaphore.  In general you want to use this and not
8073  *	unregister_netdevice.
8074  */
8075 void unregister_netdev(struct net_device *dev)
8076 {
8077 	rtnl_lock();
8078 	unregister_netdevice(dev);
8079 	rtnl_unlock();
8080 }
8081 EXPORT_SYMBOL(unregister_netdev);
8082 
8083 /**
8084  *	dev_change_net_namespace - move device to different nethost namespace
8085  *	@dev: device
8086  *	@net: network namespace
8087  *	@pat: If not NULL name pattern to try if the current device name
8088  *	      is already taken in the destination network namespace.
8089  *
8090  *	This function shuts down a device interface and moves it
8091  *	to a new network namespace. On success 0 is returned, on
8092  *	a failure a netagive errno code is returned.
8093  *
8094  *	Callers must hold the rtnl semaphore.
8095  */
8096 
8097 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8098 {
8099 	int err;
8100 
8101 	ASSERT_RTNL();
8102 
8103 	/* Don't allow namespace local devices to be moved. */
8104 	err = -EINVAL;
8105 	if (dev->features & NETIF_F_NETNS_LOCAL)
8106 		goto out;
8107 
8108 	/* Ensure the device has been registrered */
8109 	if (dev->reg_state != NETREG_REGISTERED)
8110 		goto out;
8111 
8112 	/* Get out if there is nothing todo */
8113 	err = 0;
8114 	if (net_eq(dev_net(dev), net))
8115 		goto out;
8116 
8117 	/* Pick the destination device name, and ensure
8118 	 * we can use it in the destination network namespace.
8119 	 */
8120 	err = -EEXIST;
8121 	if (__dev_get_by_name(net, dev->name)) {
8122 		/* We get here if we can't use the current device name */
8123 		if (!pat)
8124 			goto out;
8125 		if (dev_get_valid_name(net, dev, pat) < 0)
8126 			goto out;
8127 	}
8128 
8129 	/*
8130 	 * And now a mini version of register_netdevice unregister_netdevice.
8131 	 */
8132 
8133 	/* If device is running close it first. */
8134 	dev_close(dev);
8135 
8136 	/* And unlink it from device chain */
8137 	err = -ENODEV;
8138 	unlist_netdevice(dev);
8139 
8140 	synchronize_net();
8141 
8142 	/* Shutdown queueing discipline. */
8143 	dev_shutdown(dev);
8144 
8145 	/* Notify protocols, that we are about to destroy
8146 	 * this device. They should clean all the things.
8147 	 *
8148 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8149 	 * This is wanted because this way 8021q and macvlan know
8150 	 * the device is just moving and can keep their slaves up.
8151 	 */
8152 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8153 	rcu_barrier();
8154 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8155 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8156 
8157 	/*
8158 	 *	Flush the unicast and multicast chains
8159 	 */
8160 	dev_uc_flush(dev);
8161 	dev_mc_flush(dev);
8162 
8163 	/* Send a netdev-removed uevent to the old namespace */
8164 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8165 	netdev_adjacent_del_links(dev);
8166 
8167 	/* Actually switch the network namespace */
8168 	dev_net_set(dev, net);
8169 
8170 	/* If there is an ifindex conflict assign a new one */
8171 	if (__dev_get_by_index(net, dev->ifindex))
8172 		dev->ifindex = dev_new_index(net);
8173 
8174 	/* Send a netdev-add uevent to the new namespace */
8175 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8176 	netdev_adjacent_add_links(dev);
8177 
8178 	/* Fixup kobjects */
8179 	err = device_rename(&dev->dev, dev->name);
8180 	WARN_ON(err);
8181 
8182 	/* Add the device back in the hashes */
8183 	list_netdevice(dev);
8184 
8185 	/* Notify protocols, that a new device appeared. */
8186 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8187 
8188 	/*
8189 	 *	Prevent userspace races by waiting until the network
8190 	 *	device is fully setup before sending notifications.
8191 	 */
8192 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8193 
8194 	synchronize_net();
8195 	err = 0;
8196 out:
8197 	return err;
8198 }
8199 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8200 
8201 static int dev_cpu_dead(unsigned int oldcpu)
8202 {
8203 	struct sk_buff **list_skb;
8204 	struct sk_buff *skb;
8205 	unsigned int cpu;
8206 	struct softnet_data *sd, *oldsd, *remsd = NULL;
8207 
8208 	local_irq_disable();
8209 	cpu = smp_processor_id();
8210 	sd = &per_cpu(softnet_data, cpu);
8211 	oldsd = &per_cpu(softnet_data, oldcpu);
8212 
8213 	/* Find end of our completion_queue. */
8214 	list_skb = &sd->completion_queue;
8215 	while (*list_skb)
8216 		list_skb = &(*list_skb)->next;
8217 	/* Append completion queue from offline CPU. */
8218 	*list_skb = oldsd->completion_queue;
8219 	oldsd->completion_queue = NULL;
8220 
8221 	/* Append output queue from offline CPU. */
8222 	if (oldsd->output_queue) {
8223 		*sd->output_queue_tailp = oldsd->output_queue;
8224 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8225 		oldsd->output_queue = NULL;
8226 		oldsd->output_queue_tailp = &oldsd->output_queue;
8227 	}
8228 	/* Append NAPI poll list from offline CPU, with one exception :
8229 	 * process_backlog() must be called by cpu owning percpu backlog.
8230 	 * We properly handle process_queue & input_pkt_queue later.
8231 	 */
8232 	while (!list_empty(&oldsd->poll_list)) {
8233 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8234 							    struct napi_struct,
8235 							    poll_list);
8236 
8237 		list_del_init(&napi->poll_list);
8238 		if (napi->poll == process_backlog)
8239 			napi->state = 0;
8240 		else
8241 			____napi_schedule(sd, napi);
8242 	}
8243 
8244 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8245 	local_irq_enable();
8246 
8247 #ifdef CONFIG_RPS
8248 	remsd = oldsd->rps_ipi_list;
8249 	oldsd->rps_ipi_list = NULL;
8250 #endif
8251 	/* send out pending IPI's on offline CPU */
8252 	net_rps_send_ipi(remsd);
8253 
8254 	/* Process offline CPU's input_pkt_queue */
8255 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8256 		netif_rx_ni(skb);
8257 		input_queue_head_incr(oldsd);
8258 	}
8259 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8260 		netif_rx_ni(skb);
8261 		input_queue_head_incr(oldsd);
8262 	}
8263 
8264 	return 0;
8265 }
8266 
8267 /**
8268  *	netdev_increment_features - increment feature set by one
8269  *	@all: current feature set
8270  *	@one: new feature set
8271  *	@mask: mask feature set
8272  *
8273  *	Computes a new feature set after adding a device with feature set
8274  *	@one to the master device with current feature set @all.  Will not
8275  *	enable anything that is off in @mask. Returns the new feature set.
8276  */
8277 netdev_features_t netdev_increment_features(netdev_features_t all,
8278 	netdev_features_t one, netdev_features_t mask)
8279 {
8280 	if (mask & NETIF_F_HW_CSUM)
8281 		mask |= NETIF_F_CSUM_MASK;
8282 	mask |= NETIF_F_VLAN_CHALLENGED;
8283 
8284 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8285 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8286 
8287 	/* If one device supports hw checksumming, set for all. */
8288 	if (all & NETIF_F_HW_CSUM)
8289 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8290 
8291 	return all;
8292 }
8293 EXPORT_SYMBOL(netdev_increment_features);
8294 
8295 static struct hlist_head * __net_init netdev_create_hash(void)
8296 {
8297 	int i;
8298 	struct hlist_head *hash;
8299 
8300 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8301 	if (hash != NULL)
8302 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8303 			INIT_HLIST_HEAD(&hash[i]);
8304 
8305 	return hash;
8306 }
8307 
8308 /* Initialize per network namespace state */
8309 static int __net_init netdev_init(struct net *net)
8310 {
8311 	if (net != &init_net)
8312 		INIT_LIST_HEAD(&net->dev_base_head);
8313 
8314 	net->dev_name_head = netdev_create_hash();
8315 	if (net->dev_name_head == NULL)
8316 		goto err_name;
8317 
8318 	net->dev_index_head = netdev_create_hash();
8319 	if (net->dev_index_head == NULL)
8320 		goto err_idx;
8321 
8322 	return 0;
8323 
8324 err_idx:
8325 	kfree(net->dev_name_head);
8326 err_name:
8327 	return -ENOMEM;
8328 }
8329 
8330 /**
8331  *	netdev_drivername - network driver for the device
8332  *	@dev: network device
8333  *
8334  *	Determine network driver for device.
8335  */
8336 const char *netdev_drivername(const struct net_device *dev)
8337 {
8338 	const struct device_driver *driver;
8339 	const struct device *parent;
8340 	const char *empty = "";
8341 
8342 	parent = dev->dev.parent;
8343 	if (!parent)
8344 		return empty;
8345 
8346 	driver = parent->driver;
8347 	if (driver && driver->name)
8348 		return driver->name;
8349 	return empty;
8350 }
8351 
8352 static void __netdev_printk(const char *level, const struct net_device *dev,
8353 			    struct va_format *vaf)
8354 {
8355 	if (dev && dev->dev.parent) {
8356 		dev_printk_emit(level[1] - '0',
8357 				dev->dev.parent,
8358 				"%s %s %s%s: %pV",
8359 				dev_driver_string(dev->dev.parent),
8360 				dev_name(dev->dev.parent),
8361 				netdev_name(dev), netdev_reg_state(dev),
8362 				vaf);
8363 	} else if (dev) {
8364 		printk("%s%s%s: %pV",
8365 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8366 	} else {
8367 		printk("%s(NULL net_device): %pV", level, vaf);
8368 	}
8369 }
8370 
8371 void netdev_printk(const char *level, const struct net_device *dev,
8372 		   const char *format, ...)
8373 {
8374 	struct va_format vaf;
8375 	va_list args;
8376 
8377 	va_start(args, format);
8378 
8379 	vaf.fmt = format;
8380 	vaf.va = &args;
8381 
8382 	__netdev_printk(level, dev, &vaf);
8383 
8384 	va_end(args);
8385 }
8386 EXPORT_SYMBOL(netdev_printk);
8387 
8388 #define define_netdev_printk_level(func, level)			\
8389 void func(const struct net_device *dev, const char *fmt, ...)	\
8390 {								\
8391 	struct va_format vaf;					\
8392 	va_list args;						\
8393 								\
8394 	va_start(args, fmt);					\
8395 								\
8396 	vaf.fmt = fmt;						\
8397 	vaf.va = &args;						\
8398 								\
8399 	__netdev_printk(level, dev, &vaf);			\
8400 								\
8401 	va_end(args);						\
8402 }								\
8403 EXPORT_SYMBOL(func);
8404 
8405 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8406 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8407 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8408 define_netdev_printk_level(netdev_err, KERN_ERR);
8409 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8410 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8411 define_netdev_printk_level(netdev_info, KERN_INFO);
8412 
8413 static void __net_exit netdev_exit(struct net *net)
8414 {
8415 	kfree(net->dev_name_head);
8416 	kfree(net->dev_index_head);
8417 }
8418 
8419 static struct pernet_operations __net_initdata netdev_net_ops = {
8420 	.init = netdev_init,
8421 	.exit = netdev_exit,
8422 };
8423 
8424 static void __net_exit default_device_exit(struct net *net)
8425 {
8426 	struct net_device *dev, *aux;
8427 	/*
8428 	 * Push all migratable network devices back to the
8429 	 * initial network namespace
8430 	 */
8431 	rtnl_lock();
8432 	for_each_netdev_safe(net, dev, aux) {
8433 		int err;
8434 		char fb_name[IFNAMSIZ];
8435 
8436 		/* Ignore unmoveable devices (i.e. loopback) */
8437 		if (dev->features & NETIF_F_NETNS_LOCAL)
8438 			continue;
8439 
8440 		/* Leave virtual devices for the generic cleanup */
8441 		if (dev->rtnl_link_ops)
8442 			continue;
8443 
8444 		/* Push remaining network devices to init_net */
8445 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8446 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8447 		if (err) {
8448 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8449 				 __func__, dev->name, err);
8450 			BUG();
8451 		}
8452 	}
8453 	rtnl_unlock();
8454 }
8455 
8456 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8457 {
8458 	/* Return with the rtnl_lock held when there are no network
8459 	 * devices unregistering in any network namespace in net_list.
8460 	 */
8461 	struct net *net;
8462 	bool unregistering;
8463 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8464 
8465 	add_wait_queue(&netdev_unregistering_wq, &wait);
8466 	for (;;) {
8467 		unregistering = false;
8468 		rtnl_lock();
8469 		list_for_each_entry(net, net_list, exit_list) {
8470 			if (net->dev_unreg_count > 0) {
8471 				unregistering = true;
8472 				break;
8473 			}
8474 		}
8475 		if (!unregistering)
8476 			break;
8477 		__rtnl_unlock();
8478 
8479 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8480 	}
8481 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8482 }
8483 
8484 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8485 {
8486 	/* At exit all network devices most be removed from a network
8487 	 * namespace.  Do this in the reverse order of registration.
8488 	 * Do this across as many network namespaces as possible to
8489 	 * improve batching efficiency.
8490 	 */
8491 	struct net_device *dev;
8492 	struct net *net;
8493 	LIST_HEAD(dev_kill_list);
8494 
8495 	/* To prevent network device cleanup code from dereferencing
8496 	 * loopback devices or network devices that have been freed
8497 	 * wait here for all pending unregistrations to complete,
8498 	 * before unregistring the loopback device and allowing the
8499 	 * network namespace be freed.
8500 	 *
8501 	 * The netdev todo list containing all network devices
8502 	 * unregistrations that happen in default_device_exit_batch
8503 	 * will run in the rtnl_unlock() at the end of
8504 	 * default_device_exit_batch.
8505 	 */
8506 	rtnl_lock_unregistering(net_list);
8507 	list_for_each_entry(net, net_list, exit_list) {
8508 		for_each_netdev_reverse(net, dev) {
8509 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8510 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8511 			else
8512 				unregister_netdevice_queue(dev, &dev_kill_list);
8513 		}
8514 	}
8515 	unregister_netdevice_many(&dev_kill_list);
8516 	rtnl_unlock();
8517 }
8518 
8519 static struct pernet_operations __net_initdata default_device_ops = {
8520 	.exit = default_device_exit,
8521 	.exit_batch = default_device_exit_batch,
8522 };
8523 
8524 /*
8525  *	Initialize the DEV module. At boot time this walks the device list and
8526  *	unhooks any devices that fail to initialise (normally hardware not
8527  *	present) and leaves us with a valid list of present and active devices.
8528  *
8529  */
8530 
8531 /*
8532  *       This is called single threaded during boot, so no need
8533  *       to take the rtnl semaphore.
8534  */
8535 static int __init net_dev_init(void)
8536 {
8537 	int i, rc = -ENOMEM;
8538 
8539 	BUG_ON(!dev_boot_phase);
8540 
8541 	if (dev_proc_init())
8542 		goto out;
8543 
8544 	if (netdev_kobject_init())
8545 		goto out;
8546 
8547 	INIT_LIST_HEAD(&ptype_all);
8548 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8549 		INIT_LIST_HEAD(&ptype_base[i]);
8550 
8551 	INIT_LIST_HEAD(&offload_base);
8552 
8553 	if (register_pernet_subsys(&netdev_net_ops))
8554 		goto out;
8555 
8556 	/*
8557 	 *	Initialise the packet receive queues.
8558 	 */
8559 
8560 	for_each_possible_cpu(i) {
8561 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8562 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8563 
8564 		INIT_WORK(flush, flush_backlog);
8565 
8566 		skb_queue_head_init(&sd->input_pkt_queue);
8567 		skb_queue_head_init(&sd->process_queue);
8568 		INIT_LIST_HEAD(&sd->poll_list);
8569 		sd->output_queue_tailp = &sd->output_queue;
8570 #ifdef CONFIG_RPS
8571 		sd->csd.func = rps_trigger_softirq;
8572 		sd->csd.info = sd;
8573 		sd->cpu = i;
8574 #endif
8575 
8576 		sd->backlog.poll = process_backlog;
8577 		sd->backlog.weight = weight_p;
8578 	}
8579 
8580 	dev_boot_phase = 0;
8581 
8582 	/* The loopback device is special if any other network devices
8583 	 * is present in a network namespace the loopback device must
8584 	 * be present. Since we now dynamically allocate and free the
8585 	 * loopback device ensure this invariant is maintained by
8586 	 * keeping the loopback device as the first device on the
8587 	 * list of network devices.  Ensuring the loopback devices
8588 	 * is the first device that appears and the last network device
8589 	 * that disappears.
8590 	 */
8591 	if (register_pernet_device(&loopback_net_ops))
8592 		goto out;
8593 
8594 	if (register_pernet_device(&default_device_ops))
8595 		goto out;
8596 
8597 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8598 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8599 
8600 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8601 				       NULL, dev_cpu_dead);
8602 	WARN_ON(rc < 0);
8603 	dst_subsys_init();
8604 	rc = 0;
8605 out:
8606 	return rc;
8607 }
8608 
8609 subsys_initcall(net_dev_init);
8610