xref: /openbmc/linux/net/core/dev.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151 
152 #include "net-sysfs.h"
153 
154 #define MAX_GRO_SKBS 8
155 
156 /* This should be increased if a protocol with a bigger head is added. */
157 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158 
159 static DEFINE_SPINLOCK(ptype_lock);
160 static DEFINE_SPINLOCK(offload_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;	/* Taps */
163 static struct list_head offload_base __read_mostly;
164 
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_info(unsigned long val,
167 					 struct netdev_notifier_info *info);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169 					   struct net_device *dev,
170 					   struct netlink_ext_ack *extack);
171 static struct napi_struct *napi_by_id(unsigned int napi_id);
172 
173 /*
174  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175  * semaphore.
176  *
177  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178  *
179  * Writers must hold the rtnl semaphore while they loop through the
180  * dev_base_head list, and hold dev_base_lock for writing when they do the
181  * actual updates.  This allows pure readers to access the list even
182  * while a writer is preparing to update it.
183  *
184  * To put it another way, dev_base_lock is held for writing only to
185  * protect against pure readers; the rtnl semaphore provides the
186  * protection against other writers.
187  *
188  * See, for example usages, register_netdevice() and
189  * unregister_netdevice(), which must be called with the rtnl
190  * semaphore held.
191  */
192 DEFINE_RWLOCK(dev_base_lock);
193 EXPORT_SYMBOL(dev_base_lock);
194 
195 static DEFINE_MUTEX(ifalias_mutex);
196 
197 /* protects napi_hash addition/deletion and napi_gen_id */
198 static DEFINE_SPINLOCK(napi_hash_lock);
199 
200 static unsigned int napi_gen_id = NR_CPUS;
201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202 
203 static DECLARE_RWSEM(devnet_rename_sem);
204 
205 static inline void dev_base_seq_inc(struct net *net)
206 {
207 	while (++net->dev_base_seq == 0)
208 		;
209 }
210 
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212 {
213 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214 
215 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 }
217 
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 }
222 
223 static inline void rps_lock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226 	spin_lock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229 
230 static inline void rps_unlock(struct softnet_data *sd)
231 {
232 #ifdef CONFIG_RPS
233 	spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
235 }
236 
237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238 						       const char *name)
239 {
240 	struct netdev_name_node *name_node;
241 
242 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243 	if (!name_node)
244 		return NULL;
245 	INIT_HLIST_NODE(&name_node->hlist);
246 	name_node->dev = dev;
247 	name_node->name = name;
248 	return name_node;
249 }
250 
251 static struct netdev_name_node *
252 netdev_name_node_head_alloc(struct net_device *dev)
253 {
254 	struct netdev_name_node *name_node;
255 
256 	name_node = netdev_name_node_alloc(dev, dev->name);
257 	if (!name_node)
258 		return NULL;
259 	INIT_LIST_HEAD(&name_node->list);
260 	return name_node;
261 }
262 
263 static void netdev_name_node_free(struct netdev_name_node *name_node)
264 {
265 	kfree(name_node);
266 }
267 
268 static void netdev_name_node_add(struct net *net,
269 				 struct netdev_name_node *name_node)
270 {
271 	hlist_add_head_rcu(&name_node->hlist,
272 			   dev_name_hash(net, name_node->name));
273 }
274 
275 static void netdev_name_node_del(struct netdev_name_node *name_node)
276 {
277 	hlist_del_rcu(&name_node->hlist);
278 }
279 
280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281 							const char *name)
282 {
283 	struct hlist_head *head = dev_name_hash(net, name);
284 	struct netdev_name_node *name_node;
285 
286 	hlist_for_each_entry(name_node, head, hlist)
287 		if (!strcmp(name_node->name, name))
288 			return name_node;
289 	return NULL;
290 }
291 
292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293 							    const char *name)
294 {
295 	struct hlist_head *head = dev_name_hash(net, name);
296 	struct netdev_name_node *name_node;
297 
298 	hlist_for_each_entry_rcu(name_node, head, hlist)
299 		if (!strcmp(name_node->name, name))
300 			return name_node;
301 	return NULL;
302 }
303 
304 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305 {
306 	struct netdev_name_node *name_node;
307 	struct net *net = dev_net(dev);
308 
309 	name_node = netdev_name_node_lookup(net, name);
310 	if (name_node)
311 		return -EEXIST;
312 	name_node = netdev_name_node_alloc(dev, name);
313 	if (!name_node)
314 		return -ENOMEM;
315 	netdev_name_node_add(net, name_node);
316 	/* The node that holds dev->name acts as a head of per-device list. */
317 	list_add_tail(&name_node->list, &dev->name_node->list);
318 
319 	return 0;
320 }
321 EXPORT_SYMBOL(netdev_name_node_alt_create);
322 
323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324 {
325 	list_del(&name_node->list);
326 	netdev_name_node_del(name_node);
327 	kfree(name_node->name);
328 	netdev_name_node_free(name_node);
329 }
330 
331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332 {
333 	struct netdev_name_node *name_node;
334 	struct net *net = dev_net(dev);
335 
336 	name_node = netdev_name_node_lookup(net, name);
337 	if (!name_node)
338 		return -ENOENT;
339 	/* lookup might have found our primary name or a name belonging
340 	 * to another device.
341 	 */
342 	if (name_node == dev->name_node || name_node->dev != dev)
343 		return -EINVAL;
344 
345 	__netdev_name_node_alt_destroy(name_node);
346 
347 	return 0;
348 }
349 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350 
351 static void netdev_name_node_alt_flush(struct net_device *dev)
352 {
353 	struct netdev_name_node *name_node, *tmp;
354 
355 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356 		__netdev_name_node_alt_destroy(name_node);
357 }
358 
359 /* Device list insertion */
360 static void list_netdevice(struct net_device *dev)
361 {
362 	struct net *net = dev_net(dev);
363 
364 	ASSERT_RTNL();
365 
366 	write_lock_bh(&dev_base_lock);
367 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368 	netdev_name_node_add(net, dev->name_node);
369 	hlist_add_head_rcu(&dev->index_hlist,
370 			   dev_index_hash(net, dev->ifindex));
371 	write_unlock_bh(&dev_base_lock);
372 
373 	dev_base_seq_inc(net);
374 }
375 
376 /* Device list removal
377  * caller must respect a RCU grace period before freeing/reusing dev
378  */
379 static void unlist_netdevice(struct net_device *dev)
380 {
381 	ASSERT_RTNL();
382 
383 	/* Unlink dev from the device chain */
384 	write_lock_bh(&dev_base_lock);
385 	list_del_rcu(&dev->dev_list);
386 	netdev_name_node_del(dev->name_node);
387 	hlist_del_rcu(&dev->index_hlist);
388 	write_unlock_bh(&dev_base_lock);
389 
390 	dev_base_seq_inc(dev_net(dev));
391 }
392 
393 /*
394  *	Our notifier list
395  */
396 
397 static RAW_NOTIFIER_HEAD(netdev_chain);
398 
399 /*
400  *	Device drivers call our routines to queue packets here. We empty the
401  *	queue in the local softnet handler.
402  */
403 
404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405 EXPORT_PER_CPU_SYMBOL(softnet_data);
406 
407 #ifdef CONFIG_LOCKDEP
408 /*
409  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410  * according to dev->type
411  */
412 static const unsigned short netdev_lock_type[] = {
413 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428 
429 static const char *const netdev_lock_name[] = {
430 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445 
446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448 
449 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450 {
451 	int i;
452 
453 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454 		if (netdev_lock_type[i] == dev_type)
455 			return i;
456 	/* the last key is used by default */
457 	return ARRAY_SIZE(netdev_lock_type) - 1;
458 }
459 
460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461 						 unsigned short dev_type)
462 {
463 	int i;
464 
465 	i = netdev_lock_pos(dev_type);
466 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467 				   netdev_lock_name[i]);
468 }
469 
470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471 {
472 	int i;
473 
474 	i = netdev_lock_pos(dev->type);
475 	lockdep_set_class_and_name(&dev->addr_list_lock,
476 				   &netdev_addr_lock_key[i],
477 				   netdev_lock_name[i]);
478 }
479 #else
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 						 unsigned short dev_type)
482 {
483 }
484 
485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486 {
487 }
488 #endif
489 
490 /*******************************************************************************
491  *
492  *		Protocol management and registration routines
493  *
494  *******************************************************************************/
495 
496 
497 /*
498  *	Add a protocol ID to the list. Now that the input handler is
499  *	smarter we can dispense with all the messy stuff that used to be
500  *	here.
501  *
502  *	BEWARE!!! Protocol handlers, mangling input packets,
503  *	MUST BE last in hash buckets and checking protocol handlers
504  *	MUST start from promiscuous ptype_all chain in net_bh.
505  *	It is true now, do not change it.
506  *	Explanation follows: if protocol handler, mangling packet, will
507  *	be the first on list, it is not able to sense, that packet
508  *	is cloned and should be copied-on-write, so that it will
509  *	change it and subsequent readers will get broken packet.
510  *							--ANK (980803)
511  */
512 
513 static inline struct list_head *ptype_head(const struct packet_type *pt)
514 {
515 	if (pt->type == htons(ETH_P_ALL))
516 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517 	else
518 		return pt->dev ? &pt->dev->ptype_specific :
519 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520 }
521 
522 /**
523  *	dev_add_pack - add packet handler
524  *	@pt: packet type declaration
525  *
526  *	Add a protocol handler to the networking stack. The passed &packet_type
527  *	is linked into kernel lists and may not be freed until it has been
528  *	removed from the kernel lists.
529  *
530  *	This call does not sleep therefore it can not
531  *	guarantee all CPU's that are in middle of receiving packets
532  *	will see the new packet type (until the next received packet).
533  */
534 
535 void dev_add_pack(struct packet_type *pt)
536 {
537 	struct list_head *head = ptype_head(pt);
538 
539 	spin_lock(&ptype_lock);
540 	list_add_rcu(&pt->list, head);
541 	spin_unlock(&ptype_lock);
542 }
543 EXPORT_SYMBOL(dev_add_pack);
544 
545 /**
546  *	__dev_remove_pack	 - remove packet handler
547  *	@pt: packet type declaration
548  *
549  *	Remove a protocol handler that was previously added to the kernel
550  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
551  *	from the kernel lists and can be freed or reused once this function
552  *	returns.
553  *
554  *      The packet type might still be in use by receivers
555  *	and must not be freed until after all the CPU's have gone
556  *	through a quiescent state.
557  */
558 void __dev_remove_pack(struct packet_type *pt)
559 {
560 	struct list_head *head = ptype_head(pt);
561 	struct packet_type *pt1;
562 
563 	spin_lock(&ptype_lock);
564 
565 	list_for_each_entry(pt1, head, list) {
566 		if (pt == pt1) {
567 			list_del_rcu(&pt->list);
568 			goto out;
569 		}
570 	}
571 
572 	pr_warn("dev_remove_pack: %p not found\n", pt);
573 out:
574 	spin_unlock(&ptype_lock);
575 }
576 EXPORT_SYMBOL(__dev_remove_pack);
577 
578 /**
579  *	dev_remove_pack	 - remove packet handler
580  *	@pt: packet type declaration
581  *
582  *	Remove a protocol handler that was previously added to the kernel
583  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
584  *	from the kernel lists and can be freed or reused once this function
585  *	returns.
586  *
587  *	This call sleeps to guarantee that no CPU is looking at the packet
588  *	type after return.
589  */
590 void dev_remove_pack(struct packet_type *pt)
591 {
592 	__dev_remove_pack(pt);
593 
594 	synchronize_net();
595 }
596 EXPORT_SYMBOL(dev_remove_pack);
597 
598 
599 /**
600  *	dev_add_offload - register offload handlers
601  *	@po: protocol offload declaration
602  *
603  *	Add protocol offload handlers to the networking stack. The passed
604  *	&proto_offload is linked into kernel lists and may not be freed until
605  *	it has been removed from the kernel lists.
606  *
607  *	This call does not sleep therefore it can not
608  *	guarantee all CPU's that are in middle of receiving packets
609  *	will see the new offload handlers (until the next received packet).
610  */
611 void dev_add_offload(struct packet_offload *po)
612 {
613 	struct packet_offload *elem;
614 
615 	spin_lock(&offload_lock);
616 	list_for_each_entry(elem, &offload_base, list) {
617 		if (po->priority < elem->priority)
618 			break;
619 	}
620 	list_add_rcu(&po->list, elem->list.prev);
621 	spin_unlock(&offload_lock);
622 }
623 EXPORT_SYMBOL(dev_add_offload);
624 
625 /**
626  *	__dev_remove_offload	 - remove offload handler
627  *	@po: packet offload declaration
628  *
629  *	Remove a protocol offload handler that was previously added to the
630  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
631  *	is removed from the kernel lists and can be freed or reused once this
632  *	function returns.
633  *
634  *      The packet type might still be in use by receivers
635  *	and must not be freed until after all the CPU's have gone
636  *	through a quiescent state.
637  */
638 static void __dev_remove_offload(struct packet_offload *po)
639 {
640 	struct list_head *head = &offload_base;
641 	struct packet_offload *po1;
642 
643 	spin_lock(&offload_lock);
644 
645 	list_for_each_entry(po1, head, list) {
646 		if (po == po1) {
647 			list_del_rcu(&po->list);
648 			goto out;
649 		}
650 	}
651 
652 	pr_warn("dev_remove_offload: %p not found\n", po);
653 out:
654 	spin_unlock(&offload_lock);
655 }
656 
657 /**
658  *	dev_remove_offload	 - remove packet offload handler
659  *	@po: packet offload declaration
660  *
661  *	Remove a packet offload handler that was previously added to the kernel
662  *	offload handlers by dev_add_offload(). The passed &offload_type is
663  *	removed from the kernel lists and can be freed or reused once this
664  *	function returns.
665  *
666  *	This call sleeps to guarantee that no CPU is looking at the packet
667  *	type after return.
668  */
669 void dev_remove_offload(struct packet_offload *po)
670 {
671 	__dev_remove_offload(po);
672 
673 	synchronize_net();
674 }
675 EXPORT_SYMBOL(dev_remove_offload);
676 
677 /******************************************************************************
678  *
679  *		      Device Boot-time Settings Routines
680  *
681  ******************************************************************************/
682 
683 /* Boot time configuration table */
684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685 
686 /**
687  *	netdev_boot_setup_add	- add new setup entry
688  *	@name: name of the device
689  *	@map: configured settings for the device
690  *
691  *	Adds new setup entry to the dev_boot_setup list.  The function
692  *	returns 0 on error and 1 on success.  This is a generic routine to
693  *	all netdevices.
694  */
695 static int netdev_boot_setup_add(char *name, struct ifmap *map)
696 {
697 	struct netdev_boot_setup *s;
698 	int i;
699 
700 	s = dev_boot_setup;
701 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703 			memset(s[i].name, 0, sizeof(s[i].name));
704 			strlcpy(s[i].name, name, IFNAMSIZ);
705 			memcpy(&s[i].map, map, sizeof(s[i].map));
706 			break;
707 		}
708 	}
709 
710 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711 }
712 
713 /**
714  * netdev_boot_setup_check	- check boot time settings
715  * @dev: the netdevice
716  *
717  * Check boot time settings for the device.
718  * The found settings are set for the device to be used
719  * later in the device probing.
720  * Returns 0 if no settings found, 1 if they are.
721  */
722 int netdev_boot_setup_check(struct net_device *dev)
723 {
724 	struct netdev_boot_setup *s = dev_boot_setup;
725 	int i;
726 
727 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729 		    !strcmp(dev->name, s[i].name)) {
730 			dev->irq = s[i].map.irq;
731 			dev->base_addr = s[i].map.base_addr;
732 			dev->mem_start = s[i].map.mem_start;
733 			dev->mem_end = s[i].map.mem_end;
734 			return 1;
735 		}
736 	}
737 	return 0;
738 }
739 EXPORT_SYMBOL(netdev_boot_setup_check);
740 
741 
742 /**
743  * netdev_boot_base	- get address from boot time settings
744  * @prefix: prefix for network device
745  * @unit: id for network device
746  *
747  * Check boot time settings for the base address of device.
748  * The found settings are set for the device to be used
749  * later in the device probing.
750  * Returns 0 if no settings found.
751  */
752 unsigned long netdev_boot_base(const char *prefix, int unit)
753 {
754 	const struct netdev_boot_setup *s = dev_boot_setup;
755 	char name[IFNAMSIZ];
756 	int i;
757 
758 	sprintf(name, "%s%d", prefix, unit);
759 
760 	/*
761 	 * If device already registered then return base of 1
762 	 * to indicate not to probe for this interface
763 	 */
764 	if (__dev_get_by_name(&init_net, name))
765 		return 1;
766 
767 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768 		if (!strcmp(name, s[i].name))
769 			return s[i].map.base_addr;
770 	return 0;
771 }
772 
773 /*
774  * Saves at boot time configured settings for any netdevice.
775  */
776 int __init netdev_boot_setup(char *str)
777 {
778 	int ints[5];
779 	struct ifmap map;
780 
781 	str = get_options(str, ARRAY_SIZE(ints), ints);
782 	if (!str || !*str)
783 		return 0;
784 
785 	/* Save settings */
786 	memset(&map, 0, sizeof(map));
787 	if (ints[0] > 0)
788 		map.irq = ints[1];
789 	if (ints[0] > 1)
790 		map.base_addr = ints[2];
791 	if (ints[0] > 2)
792 		map.mem_start = ints[3];
793 	if (ints[0] > 3)
794 		map.mem_end = ints[4];
795 
796 	/* Add new entry to the list */
797 	return netdev_boot_setup_add(str, &map);
798 }
799 
800 __setup("netdev=", netdev_boot_setup);
801 
802 /*******************************************************************************
803  *
804  *			    Device Interface Subroutines
805  *
806  *******************************************************************************/
807 
808 /**
809  *	dev_get_iflink	- get 'iflink' value of a interface
810  *	@dev: targeted interface
811  *
812  *	Indicates the ifindex the interface is linked to.
813  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
814  */
815 
816 int dev_get_iflink(const struct net_device *dev)
817 {
818 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819 		return dev->netdev_ops->ndo_get_iflink(dev);
820 
821 	return dev->ifindex;
822 }
823 EXPORT_SYMBOL(dev_get_iflink);
824 
825 /**
826  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
827  *	@dev: targeted interface
828  *	@skb: The packet.
829  *
830  *	For better visibility of tunnel traffic OVS needs to retrieve
831  *	egress tunnel information for a packet. Following API allows
832  *	user to get this info.
833  */
834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835 {
836 	struct ip_tunnel_info *info;
837 
838 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
839 		return -EINVAL;
840 
841 	info = skb_tunnel_info_unclone(skb);
842 	if (!info)
843 		return -ENOMEM;
844 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845 		return -EINVAL;
846 
847 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848 }
849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850 
851 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
852 {
853 	int k = stack->num_paths++;
854 
855 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
856 		return NULL;
857 
858 	return &stack->path[k];
859 }
860 
861 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
862 			  struct net_device_path_stack *stack)
863 {
864 	const struct net_device *last_dev;
865 	struct net_device_path_ctx ctx = {
866 		.dev	= dev,
867 		.daddr	= daddr,
868 	};
869 	struct net_device_path *path;
870 	int ret = 0;
871 
872 	stack->num_paths = 0;
873 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
874 		last_dev = ctx.dev;
875 		path = dev_fwd_path(stack);
876 		if (!path)
877 			return -1;
878 
879 		memset(path, 0, sizeof(struct net_device_path));
880 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
881 		if (ret < 0)
882 			return -1;
883 
884 		if (WARN_ON_ONCE(last_dev == ctx.dev))
885 			return -1;
886 	}
887 	path = dev_fwd_path(stack);
888 	if (!path)
889 		return -1;
890 	path->type = DEV_PATH_ETHERNET;
891 	path->dev = ctx.dev;
892 
893 	return ret;
894 }
895 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
896 
897 /**
898  *	__dev_get_by_name	- find a device by its name
899  *	@net: the applicable net namespace
900  *	@name: name to find
901  *
902  *	Find an interface by name. Must be called under RTNL semaphore
903  *	or @dev_base_lock. If the name is found a pointer to the device
904  *	is returned. If the name is not found then %NULL is returned. The
905  *	reference counters are not incremented so the caller must be
906  *	careful with locks.
907  */
908 
909 struct net_device *__dev_get_by_name(struct net *net, const char *name)
910 {
911 	struct netdev_name_node *node_name;
912 
913 	node_name = netdev_name_node_lookup(net, name);
914 	return node_name ? node_name->dev : NULL;
915 }
916 EXPORT_SYMBOL(__dev_get_by_name);
917 
918 /**
919  * dev_get_by_name_rcu	- find a device by its name
920  * @net: the applicable net namespace
921  * @name: name to find
922  *
923  * Find an interface by name.
924  * If the name is found a pointer to the device is returned.
925  * If the name is not found then %NULL is returned.
926  * The reference counters are not incremented so the caller must be
927  * careful with locks. The caller must hold RCU lock.
928  */
929 
930 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
931 {
932 	struct netdev_name_node *node_name;
933 
934 	node_name = netdev_name_node_lookup_rcu(net, name);
935 	return node_name ? node_name->dev : NULL;
936 }
937 EXPORT_SYMBOL(dev_get_by_name_rcu);
938 
939 /**
940  *	dev_get_by_name		- find a device by its name
941  *	@net: the applicable net namespace
942  *	@name: name to find
943  *
944  *	Find an interface by name. This can be called from any
945  *	context and does its own locking. The returned handle has
946  *	the usage count incremented and the caller must use dev_put() to
947  *	release it when it is no longer needed. %NULL is returned if no
948  *	matching device is found.
949  */
950 
951 struct net_device *dev_get_by_name(struct net *net, const char *name)
952 {
953 	struct net_device *dev;
954 
955 	rcu_read_lock();
956 	dev = dev_get_by_name_rcu(net, name);
957 	if (dev)
958 		dev_hold(dev);
959 	rcu_read_unlock();
960 	return dev;
961 }
962 EXPORT_SYMBOL(dev_get_by_name);
963 
964 /**
965  *	__dev_get_by_index - find a device by its ifindex
966  *	@net: the applicable net namespace
967  *	@ifindex: index of device
968  *
969  *	Search for an interface by index. Returns %NULL if the device
970  *	is not found or a pointer to the device. The device has not
971  *	had its reference counter increased so the caller must be careful
972  *	about locking. The caller must hold either the RTNL semaphore
973  *	or @dev_base_lock.
974  */
975 
976 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
977 {
978 	struct net_device *dev;
979 	struct hlist_head *head = dev_index_hash(net, ifindex);
980 
981 	hlist_for_each_entry(dev, head, index_hlist)
982 		if (dev->ifindex == ifindex)
983 			return dev;
984 
985 	return NULL;
986 }
987 EXPORT_SYMBOL(__dev_get_by_index);
988 
989 /**
990  *	dev_get_by_index_rcu - find a device by its ifindex
991  *	@net: the applicable net namespace
992  *	@ifindex: index of device
993  *
994  *	Search for an interface by index. Returns %NULL if the device
995  *	is not found or a pointer to the device. The device has not
996  *	had its reference counter increased so the caller must be careful
997  *	about locking. The caller must hold RCU lock.
998  */
999 
1000 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1001 {
1002 	struct net_device *dev;
1003 	struct hlist_head *head = dev_index_hash(net, ifindex);
1004 
1005 	hlist_for_each_entry_rcu(dev, head, index_hlist)
1006 		if (dev->ifindex == ifindex)
1007 			return dev;
1008 
1009 	return NULL;
1010 }
1011 EXPORT_SYMBOL(dev_get_by_index_rcu);
1012 
1013 
1014 /**
1015  *	dev_get_by_index - find a device by its ifindex
1016  *	@net: the applicable net namespace
1017  *	@ifindex: index of device
1018  *
1019  *	Search for an interface by index. Returns NULL if the device
1020  *	is not found or a pointer to the device. The device returned has
1021  *	had a reference added and the pointer is safe until the user calls
1022  *	dev_put to indicate they have finished with it.
1023  */
1024 
1025 struct net_device *dev_get_by_index(struct net *net, int ifindex)
1026 {
1027 	struct net_device *dev;
1028 
1029 	rcu_read_lock();
1030 	dev = dev_get_by_index_rcu(net, ifindex);
1031 	if (dev)
1032 		dev_hold(dev);
1033 	rcu_read_unlock();
1034 	return dev;
1035 }
1036 EXPORT_SYMBOL(dev_get_by_index);
1037 
1038 /**
1039  *	dev_get_by_napi_id - find a device by napi_id
1040  *	@napi_id: ID of the NAPI struct
1041  *
1042  *	Search for an interface by NAPI ID. Returns %NULL if the device
1043  *	is not found or a pointer to the device. The device has not had
1044  *	its reference counter increased so the caller must be careful
1045  *	about locking. The caller must hold RCU lock.
1046  */
1047 
1048 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1049 {
1050 	struct napi_struct *napi;
1051 
1052 	WARN_ON_ONCE(!rcu_read_lock_held());
1053 
1054 	if (napi_id < MIN_NAPI_ID)
1055 		return NULL;
1056 
1057 	napi = napi_by_id(napi_id);
1058 
1059 	return napi ? napi->dev : NULL;
1060 }
1061 EXPORT_SYMBOL(dev_get_by_napi_id);
1062 
1063 /**
1064  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1065  *	@net: network namespace
1066  *	@name: a pointer to the buffer where the name will be stored.
1067  *	@ifindex: the ifindex of the interface to get the name from.
1068  */
1069 int netdev_get_name(struct net *net, char *name, int ifindex)
1070 {
1071 	struct net_device *dev;
1072 	int ret;
1073 
1074 	down_read(&devnet_rename_sem);
1075 	rcu_read_lock();
1076 
1077 	dev = dev_get_by_index_rcu(net, ifindex);
1078 	if (!dev) {
1079 		ret = -ENODEV;
1080 		goto out;
1081 	}
1082 
1083 	strcpy(name, dev->name);
1084 
1085 	ret = 0;
1086 out:
1087 	rcu_read_unlock();
1088 	up_read(&devnet_rename_sem);
1089 	return ret;
1090 }
1091 
1092 /**
1093  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1094  *	@net: the applicable net namespace
1095  *	@type: media type of device
1096  *	@ha: hardware address
1097  *
1098  *	Search for an interface by MAC address. Returns NULL if the device
1099  *	is not found or a pointer to the device.
1100  *	The caller must hold RCU or RTNL.
1101  *	The returned device has not had its ref count increased
1102  *	and the caller must therefore be careful about locking
1103  *
1104  */
1105 
1106 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1107 				       const char *ha)
1108 {
1109 	struct net_device *dev;
1110 
1111 	for_each_netdev_rcu(net, dev)
1112 		if (dev->type == type &&
1113 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1114 			return dev;
1115 
1116 	return NULL;
1117 }
1118 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1119 
1120 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1121 {
1122 	struct net_device *dev, *ret = NULL;
1123 
1124 	rcu_read_lock();
1125 	for_each_netdev_rcu(net, dev)
1126 		if (dev->type == type) {
1127 			dev_hold(dev);
1128 			ret = dev;
1129 			break;
1130 		}
1131 	rcu_read_unlock();
1132 	return ret;
1133 }
1134 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1135 
1136 /**
1137  *	__dev_get_by_flags - find any device with given flags
1138  *	@net: the applicable net namespace
1139  *	@if_flags: IFF_* values
1140  *	@mask: bitmask of bits in if_flags to check
1141  *
1142  *	Search for any interface with the given flags. Returns NULL if a device
1143  *	is not found or a pointer to the device. Must be called inside
1144  *	rtnl_lock(), and result refcount is unchanged.
1145  */
1146 
1147 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1148 				      unsigned short mask)
1149 {
1150 	struct net_device *dev, *ret;
1151 
1152 	ASSERT_RTNL();
1153 
1154 	ret = NULL;
1155 	for_each_netdev(net, dev) {
1156 		if (((dev->flags ^ if_flags) & mask) == 0) {
1157 			ret = dev;
1158 			break;
1159 		}
1160 	}
1161 	return ret;
1162 }
1163 EXPORT_SYMBOL(__dev_get_by_flags);
1164 
1165 /**
1166  *	dev_valid_name - check if name is okay for network device
1167  *	@name: name string
1168  *
1169  *	Network device names need to be valid file names to
1170  *	allow sysfs to work.  We also disallow any kind of
1171  *	whitespace.
1172  */
1173 bool dev_valid_name(const char *name)
1174 {
1175 	if (*name == '\0')
1176 		return false;
1177 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1178 		return false;
1179 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1180 		return false;
1181 
1182 	while (*name) {
1183 		if (*name == '/' || *name == ':' || isspace(*name))
1184 			return false;
1185 		name++;
1186 	}
1187 	return true;
1188 }
1189 EXPORT_SYMBOL(dev_valid_name);
1190 
1191 /**
1192  *	__dev_alloc_name - allocate a name for a device
1193  *	@net: network namespace to allocate the device name in
1194  *	@name: name format string
1195  *	@buf:  scratch buffer and result name string
1196  *
1197  *	Passed a format string - eg "lt%d" it will try and find a suitable
1198  *	id. It scans list of devices to build up a free map, then chooses
1199  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1200  *	while allocating the name and adding the device in order to avoid
1201  *	duplicates.
1202  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1203  *	Returns the number of the unit assigned or a negative errno code.
1204  */
1205 
1206 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1207 {
1208 	int i = 0;
1209 	const char *p;
1210 	const int max_netdevices = 8*PAGE_SIZE;
1211 	unsigned long *inuse;
1212 	struct net_device *d;
1213 
1214 	if (!dev_valid_name(name))
1215 		return -EINVAL;
1216 
1217 	p = strchr(name, '%');
1218 	if (p) {
1219 		/*
1220 		 * Verify the string as this thing may have come from
1221 		 * the user.  There must be either one "%d" and no other "%"
1222 		 * characters.
1223 		 */
1224 		if (p[1] != 'd' || strchr(p + 2, '%'))
1225 			return -EINVAL;
1226 
1227 		/* Use one page as a bit array of possible slots */
1228 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1229 		if (!inuse)
1230 			return -ENOMEM;
1231 
1232 		for_each_netdev(net, d) {
1233 			struct netdev_name_node *name_node;
1234 			list_for_each_entry(name_node, &d->name_node->list, list) {
1235 				if (!sscanf(name_node->name, name, &i))
1236 					continue;
1237 				if (i < 0 || i >= max_netdevices)
1238 					continue;
1239 
1240 				/*  avoid cases where sscanf is not exact inverse of printf */
1241 				snprintf(buf, IFNAMSIZ, name, i);
1242 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1243 					set_bit(i, inuse);
1244 			}
1245 			if (!sscanf(d->name, name, &i))
1246 				continue;
1247 			if (i < 0 || i >= max_netdevices)
1248 				continue;
1249 
1250 			/*  avoid cases where sscanf is not exact inverse of printf */
1251 			snprintf(buf, IFNAMSIZ, name, i);
1252 			if (!strncmp(buf, d->name, IFNAMSIZ))
1253 				set_bit(i, inuse);
1254 		}
1255 
1256 		i = find_first_zero_bit(inuse, max_netdevices);
1257 		free_page((unsigned long) inuse);
1258 	}
1259 
1260 	snprintf(buf, IFNAMSIZ, name, i);
1261 	if (!__dev_get_by_name(net, buf))
1262 		return i;
1263 
1264 	/* It is possible to run out of possible slots
1265 	 * when the name is long and there isn't enough space left
1266 	 * for the digits, or if all bits are used.
1267 	 */
1268 	return -ENFILE;
1269 }
1270 
1271 static int dev_alloc_name_ns(struct net *net,
1272 			     struct net_device *dev,
1273 			     const char *name)
1274 {
1275 	char buf[IFNAMSIZ];
1276 	int ret;
1277 
1278 	BUG_ON(!net);
1279 	ret = __dev_alloc_name(net, name, buf);
1280 	if (ret >= 0)
1281 		strlcpy(dev->name, buf, IFNAMSIZ);
1282 	return ret;
1283 }
1284 
1285 /**
1286  *	dev_alloc_name - allocate a name for a device
1287  *	@dev: device
1288  *	@name: name format string
1289  *
1290  *	Passed a format string - eg "lt%d" it will try and find a suitable
1291  *	id. It scans list of devices to build up a free map, then chooses
1292  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1293  *	while allocating the name and adding the device in order to avoid
1294  *	duplicates.
1295  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1296  *	Returns the number of the unit assigned or a negative errno code.
1297  */
1298 
1299 int dev_alloc_name(struct net_device *dev, const char *name)
1300 {
1301 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1302 }
1303 EXPORT_SYMBOL(dev_alloc_name);
1304 
1305 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1306 			      const char *name)
1307 {
1308 	BUG_ON(!net);
1309 
1310 	if (!dev_valid_name(name))
1311 		return -EINVAL;
1312 
1313 	if (strchr(name, '%'))
1314 		return dev_alloc_name_ns(net, dev, name);
1315 	else if (__dev_get_by_name(net, name))
1316 		return -EEXIST;
1317 	else if (dev->name != name)
1318 		strlcpy(dev->name, name, IFNAMSIZ);
1319 
1320 	return 0;
1321 }
1322 
1323 /**
1324  *	dev_change_name - change name of a device
1325  *	@dev: device
1326  *	@newname: name (or format string) must be at least IFNAMSIZ
1327  *
1328  *	Change name of a device, can pass format strings "eth%d".
1329  *	for wildcarding.
1330  */
1331 int dev_change_name(struct net_device *dev, const char *newname)
1332 {
1333 	unsigned char old_assign_type;
1334 	char oldname[IFNAMSIZ];
1335 	int err = 0;
1336 	int ret;
1337 	struct net *net;
1338 
1339 	ASSERT_RTNL();
1340 	BUG_ON(!dev_net(dev));
1341 
1342 	net = dev_net(dev);
1343 
1344 	/* Some auto-enslaved devices e.g. failover slaves are
1345 	 * special, as userspace might rename the device after
1346 	 * the interface had been brought up and running since
1347 	 * the point kernel initiated auto-enslavement. Allow
1348 	 * live name change even when these slave devices are
1349 	 * up and running.
1350 	 *
1351 	 * Typically, users of these auto-enslaving devices
1352 	 * don't actually care about slave name change, as
1353 	 * they are supposed to operate on master interface
1354 	 * directly.
1355 	 */
1356 	if (dev->flags & IFF_UP &&
1357 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1358 		return -EBUSY;
1359 
1360 	down_write(&devnet_rename_sem);
1361 
1362 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1363 		up_write(&devnet_rename_sem);
1364 		return 0;
1365 	}
1366 
1367 	memcpy(oldname, dev->name, IFNAMSIZ);
1368 
1369 	err = dev_get_valid_name(net, dev, newname);
1370 	if (err < 0) {
1371 		up_write(&devnet_rename_sem);
1372 		return err;
1373 	}
1374 
1375 	if (oldname[0] && !strchr(oldname, '%'))
1376 		netdev_info(dev, "renamed from %s\n", oldname);
1377 
1378 	old_assign_type = dev->name_assign_type;
1379 	dev->name_assign_type = NET_NAME_RENAMED;
1380 
1381 rollback:
1382 	ret = device_rename(&dev->dev, dev->name);
1383 	if (ret) {
1384 		memcpy(dev->name, oldname, IFNAMSIZ);
1385 		dev->name_assign_type = old_assign_type;
1386 		up_write(&devnet_rename_sem);
1387 		return ret;
1388 	}
1389 
1390 	up_write(&devnet_rename_sem);
1391 
1392 	netdev_adjacent_rename_links(dev, oldname);
1393 
1394 	write_lock_bh(&dev_base_lock);
1395 	netdev_name_node_del(dev->name_node);
1396 	write_unlock_bh(&dev_base_lock);
1397 
1398 	synchronize_rcu();
1399 
1400 	write_lock_bh(&dev_base_lock);
1401 	netdev_name_node_add(net, dev->name_node);
1402 	write_unlock_bh(&dev_base_lock);
1403 
1404 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1405 	ret = notifier_to_errno(ret);
1406 
1407 	if (ret) {
1408 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1409 		if (err >= 0) {
1410 			err = ret;
1411 			down_write(&devnet_rename_sem);
1412 			memcpy(dev->name, oldname, IFNAMSIZ);
1413 			memcpy(oldname, newname, IFNAMSIZ);
1414 			dev->name_assign_type = old_assign_type;
1415 			old_assign_type = NET_NAME_RENAMED;
1416 			goto rollback;
1417 		} else {
1418 			pr_err("%s: name change rollback failed: %d\n",
1419 			       dev->name, ret);
1420 		}
1421 	}
1422 
1423 	return err;
1424 }
1425 
1426 /**
1427  *	dev_set_alias - change ifalias of a device
1428  *	@dev: device
1429  *	@alias: name up to IFALIASZ
1430  *	@len: limit of bytes to copy from info
1431  *
1432  *	Set ifalias for a device,
1433  */
1434 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1435 {
1436 	struct dev_ifalias *new_alias = NULL;
1437 
1438 	if (len >= IFALIASZ)
1439 		return -EINVAL;
1440 
1441 	if (len) {
1442 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1443 		if (!new_alias)
1444 			return -ENOMEM;
1445 
1446 		memcpy(new_alias->ifalias, alias, len);
1447 		new_alias->ifalias[len] = 0;
1448 	}
1449 
1450 	mutex_lock(&ifalias_mutex);
1451 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1452 					mutex_is_locked(&ifalias_mutex));
1453 	mutex_unlock(&ifalias_mutex);
1454 
1455 	if (new_alias)
1456 		kfree_rcu(new_alias, rcuhead);
1457 
1458 	return len;
1459 }
1460 EXPORT_SYMBOL(dev_set_alias);
1461 
1462 /**
1463  *	dev_get_alias - get ifalias of a device
1464  *	@dev: device
1465  *	@name: buffer to store name of ifalias
1466  *	@len: size of buffer
1467  *
1468  *	get ifalias for a device.  Caller must make sure dev cannot go
1469  *	away,  e.g. rcu read lock or own a reference count to device.
1470  */
1471 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1472 {
1473 	const struct dev_ifalias *alias;
1474 	int ret = 0;
1475 
1476 	rcu_read_lock();
1477 	alias = rcu_dereference(dev->ifalias);
1478 	if (alias)
1479 		ret = snprintf(name, len, "%s", alias->ifalias);
1480 	rcu_read_unlock();
1481 
1482 	return ret;
1483 }
1484 
1485 /**
1486  *	netdev_features_change - device changes features
1487  *	@dev: device to cause notification
1488  *
1489  *	Called to indicate a device has changed features.
1490  */
1491 void netdev_features_change(struct net_device *dev)
1492 {
1493 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1494 }
1495 EXPORT_SYMBOL(netdev_features_change);
1496 
1497 /**
1498  *	netdev_state_change - device changes state
1499  *	@dev: device to cause notification
1500  *
1501  *	Called to indicate a device has changed state. This function calls
1502  *	the notifier chains for netdev_chain and sends a NEWLINK message
1503  *	to the routing socket.
1504  */
1505 void netdev_state_change(struct net_device *dev)
1506 {
1507 	if (dev->flags & IFF_UP) {
1508 		struct netdev_notifier_change_info change_info = {
1509 			.info.dev = dev,
1510 		};
1511 
1512 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1513 					      &change_info.info);
1514 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1515 	}
1516 }
1517 EXPORT_SYMBOL(netdev_state_change);
1518 
1519 /**
1520  * __netdev_notify_peers - notify network peers about existence of @dev,
1521  * to be called when rtnl lock is already held.
1522  * @dev: network device
1523  *
1524  * Generate traffic such that interested network peers are aware of
1525  * @dev, such as by generating a gratuitous ARP. This may be used when
1526  * a device wants to inform the rest of the network about some sort of
1527  * reconfiguration such as a failover event or virtual machine
1528  * migration.
1529  */
1530 void __netdev_notify_peers(struct net_device *dev)
1531 {
1532 	ASSERT_RTNL();
1533 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1534 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1535 }
1536 EXPORT_SYMBOL(__netdev_notify_peers);
1537 
1538 /**
1539  * netdev_notify_peers - notify network peers about existence of @dev
1540  * @dev: network device
1541  *
1542  * Generate traffic such that interested network peers are aware of
1543  * @dev, such as by generating a gratuitous ARP. This may be used when
1544  * a device wants to inform the rest of the network about some sort of
1545  * reconfiguration such as a failover event or virtual machine
1546  * migration.
1547  */
1548 void netdev_notify_peers(struct net_device *dev)
1549 {
1550 	rtnl_lock();
1551 	__netdev_notify_peers(dev);
1552 	rtnl_unlock();
1553 }
1554 EXPORT_SYMBOL(netdev_notify_peers);
1555 
1556 static int napi_threaded_poll(void *data);
1557 
1558 static int napi_kthread_create(struct napi_struct *n)
1559 {
1560 	int err = 0;
1561 
1562 	/* Create and wake up the kthread once to put it in
1563 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1564 	 * warning and work with loadavg.
1565 	 */
1566 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1567 				n->dev->name, n->napi_id);
1568 	if (IS_ERR(n->thread)) {
1569 		err = PTR_ERR(n->thread);
1570 		pr_err("kthread_run failed with err %d\n", err);
1571 		n->thread = NULL;
1572 	}
1573 
1574 	return err;
1575 }
1576 
1577 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1578 {
1579 	const struct net_device_ops *ops = dev->netdev_ops;
1580 	int ret;
1581 
1582 	ASSERT_RTNL();
1583 
1584 	if (!netif_device_present(dev)) {
1585 		/* may be detached because parent is runtime-suspended */
1586 		if (dev->dev.parent)
1587 			pm_runtime_resume(dev->dev.parent);
1588 		if (!netif_device_present(dev))
1589 			return -ENODEV;
1590 	}
1591 
1592 	/* Block netpoll from trying to do any rx path servicing.
1593 	 * If we don't do this there is a chance ndo_poll_controller
1594 	 * or ndo_poll may be running while we open the device
1595 	 */
1596 	netpoll_poll_disable(dev);
1597 
1598 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1599 	ret = notifier_to_errno(ret);
1600 	if (ret)
1601 		return ret;
1602 
1603 	set_bit(__LINK_STATE_START, &dev->state);
1604 
1605 	if (ops->ndo_validate_addr)
1606 		ret = ops->ndo_validate_addr(dev);
1607 
1608 	if (!ret && ops->ndo_open)
1609 		ret = ops->ndo_open(dev);
1610 
1611 	netpoll_poll_enable(dev);
1612 
1613 	if (ret)
1614 		clear_bit(__LINK_STATE_START, &dev->state);
1615 	else {
1616 		dev->flags |= IFF_UP;
1617 		dev_set_rx_mode(dev);
1618 		dev_activate(dev);
1619 		add_device_randomness(dev->dev_addr, dev->addr_len);
1620 	}
1621 
1622 	return ret;
1623 }
1624 
1625 /**
1626  *	dev_open	- prepare an interface for use.
1627  *	@dev: device to open
1628  *	@extack: netlink extended ack
1629  *
1630  *	Takes a device from down to up state. The device's private open
1631  *	function is invoked and then the multicast lists are loaded. Finally
1632  *	the device is moved into the up state and a %NETDEV_UP message is
1633  *	sent to the netdev notifier chain.
1634  *
1635  *	Calling this function on an active interface is a nop. On a failure
1636  *	a negative errno code is returned.
1637  */
1638 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1639 {
1640 	int ret;
1641 
1642 	if (dev->flags & IFF_UP)
1643 		return 0;
1644 
1645 	ret = __dev_open(dev, extack);
1646 	if (ret < 0)
1647 		return ret;
1648 
1649 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1650 	call_netdevice_notifiers(NETDEV_UP, dev);
1651 
1652 	return ret;
1653 }
1654 EXPORT_SYMBOL(dev_open);
1655 
1656 static void __dev_close_many(struct list_head *head)
1657 {
1658 	struct net_device *dev;
1659 
1660 	ASSERT_RTNL();
1661 	might_sleep();
1662 
1663 	list_for_each_entry(dev, head, close_list) {
1664 		/* Temporarily disable netpoll until the interface is down */
1665 		netpoll_poll_disable(dev);
1666 
1667 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1668 
1669 		clear_bit(__LINK_STATE_START, &dev->state);
1670 
1671 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1672 		 * can be even on different cpu. So just clear netif_running().
1673 		 *
1674 		 * dev->stop() will invoke napi_disable() on all of it's
1675 		 * napi_struct instances on this device.
1676 		 */
1677 		smp_mb__after_atomic(); /* Commit netif_running(). */
1678 	}
1679 
1680 	dev_deactivate_many(head);
1681 
1682 	list_for_each_entry(dev, head, close_list) {
1683 		const struct net_device_ops *ops = dev->netdev_ops;
1684 
1685 		/*
1686 		 *	Call the device specific close. This cannot fail.
1687 		 *	Only if device is UP
1688 		 *
1689 		 *	We allow it to be called even after a DETACH hot-plug
1690 		 *	event.
1691 		 */
1692 		if (ops->ndo_stop)
1693 			ops->ndo_stop(dev);
1694 
1695 		dev->flags &= ~IFF_UP;
1696 		netpoll_poll_enable(dev);
1697 	}
1698 }
1699 
1700 static void __dev_close(struct net_device *dev)
1701 {
1702 	LIST_HEAD(single);
1703 
1704 	list_add(&dev->close_list, &single);
1705 	__dev_close_many(&single);
1706 	list_del(&single);
1707 }
1708 
1709 void dev_close_many(struct list_head *head, bool unlink)
1710 {
1711 	struct net_device *dev, *tmp;
1712 
1713 	/* Remove the devices that don't need to be closed */
1714 	list_for_each_entry_safe(dev, tmp, head, close_list)
1715 		if (!(dev->flags & IFF_UP))
1716 			list_del_init(&dev->close_list);
1717 
1718 	__dev_close_many(head);
1719 
1720 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1721 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1722 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1723 		if (unlink)
1724 			list_del_init(&dev->close_list);
1725 	}
1726 }
1727 EXPORT_SYMBOL(dev_close_many);
1728 
1729 /**
1730  *	dev_close - shutdown an interface.
1731  *	@dev: device to shutdown
1732  *
1733  *	This function moves an active device into down state. A
1734  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1735  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1736  *	chain.
1737  */
1738 void dev_close(struct net_device *dev)
1739 {
1740 	if (dev->flags & IFF_UP) {
1741 		LIST_HEAD(single);
1742 
1743 		list_add(&dev->close_list, &single);
1744 		dev_close_many(&single, true);
1745 		list_del(&single);
1746 	}
1747 }
1748 EXPORT_SYMBOL(dev_close);
1749 
1750 
1751 /**
1752  *	dev_disable_lro - disable Large Receive Offload on a device
1753  *	@dev: device
1754  *
1755  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1756  *	called under RTNL.  This is needed if received packets may be
1757  *	forwarded to another interface.
1758  */
1759 void dev_disable_lro(struct net_device *dev)
1760 {
1761 	struct net_device *lower_dev;
1762 	struct list_head *iter;
1763 
1764 	dev->wanted_features &= ~NETIF_F_LRO;
1765 	netdev_update_features(dev);
1766 
1767 	if (unlikely(dev->features & NETIF_F_LRO))
1768 		netdev_WARN(dev, "failed to disable LRO!\n");
1769 
1770 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1771 		dev_disable_lro(lower_dev);
1772 }
1773 EXPORT_SYMBOL(dev_disable_lro);
1774 
1775 /**
1776  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1777  *	@dev: device
1778  *
1779  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1780  *	called under RTNL.  This is needed if Generic XDP is installed on
1781  *	the device.
1782  */
1783 static void dev_disable_gro_hw(struct net_device *dev)
1784 {
1785 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1786 	netdev_update_features(dev);
1787 
1788 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1789 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1790 }
1791 
1792 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1793 {
1794 #define N(val) 						\
1795 	case NETDEV_##val:				\
1796 		return "NETDEV_" __stringify(val);
1797 	switch (cmd) {
1798 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1799 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1800 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1801 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1802 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1803 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1804 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1805 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1806 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1807 	N(PRE_CHANGEADDR)
1808 	}
1809 #undef N
1810 	return "UNKNOWN_NETDEV_EVENT";
1811 }
1812 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1813 
1814 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1815 				   struct net_device *dev)
1816 {
1817 	struct netdev_notifier_info info = {
1818 		.dev = dev,
1819 	};
1820 
1821 	return nb->notifier_call(nb, val, &info);
1822 }
1823 
1824 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1825 					     struct net_device *dev)
1826 {
1827 	int err;
1828 
1829 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1830 	err = notifier_to_errno(err);
1831 	if (err)
1832 		return err;
1833 
1834 	if (!(dev->flags & IFF_UP))
1835 		return 0;
1836 
1837 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1838 	return 0;
1839 }
1840 
1841 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1842 						struct net_device *dev)
1843 {
1844 	if (dev->flags & IFF_UP) {
1845 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1846 					dev);
1847 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1848 	}
1849 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1850 }
1851 
1852 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1853 						 struct net *net)
1854 {
1855 	struct net_device *dev;
1856 	int err;
1857 
1858 	for_each_netdev(net, dev) {
1859 		err = call_netdevice_register_notifiers(nb, dev);
1860 		if (err)
1861 			goto rollback;
1862 	}
1863 	return 0;
1864 
1865 rollback:
1866 	for_each_netdev_continue_reverse(net, dev)
1867 		call_netdevice_unregister_notifiers(nb, dev);
1868 	return err;
1869 }
1870 
1871 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1872 						    struct net *net)
1873 {
1874 	struct net_device *dev;
1875 
1876 	for_each_netdev(net, dev)
1877 		call_netdevice_unregister_notifiers(nb, dev);
1878 }
1879 
1880 static int dev_boot_phase = 1;
1881 
1882 /**
1883  * register_netdevice_notifier - register a network notifier block
1884  * @nb: notifier
1885  *
1886  * Register a notifier to be called when network device events occur.
1887  * The notifier passed is linked into the kernel structures and must
1888  * not be reused until it has been unregistered. A negative errno code
1889  * is returned on a failure.
1890  *
1891  * When registered all registration and up events are replayed
1892  * to the new notifier to allow device to have a race free
1893  * view of the network device list.
1894  */
1895 
1896 int register_netdevice_notifier(struct notifier_block *nb)
1897 {
1898 	struct net *net;
1899 	int err;
1900 
1901 	/* Close race with setup_net() and cleanup_net() */
1902 	down_write(&pernet_ops_rwsem);
1903 	rtnl_lock();
1904 	err = raw_notifier_chain_register(&netdev_chain, nb);
1905 	if (err)
1906 		goto unlock;
1907 	if (dev_boot_phase)
1908 		goto unlock;
1909 	for_each_net(net) {
1910 		err = call_netdevice_register_net_notifiers(nb, net);
1911 		if (err)
1912 			goto rollback;
1913 	}
1914 
1915 unlock:
1916 	rtnl_unlock();
1917 	up_write(&pernet_ops_rwsem);
1918 	return err;
1919 
1920 rollback:
1921 	for_each_net_continue_reverse(net)
1922 		call_netdevice_unregister_net_notifiers(nb, net);
1923 
1924 	raw_notifier_chain_unregister(&netdev_chain, nb);
1925 	goto unlock;
1926 }
1927 EXPORT_SYMBOL(register_netdevice_notifier);
1928 
1929 /**
1930  * unregister_netdevice_notifier - unregister a network notifier block
1931  * @nb: notifier
1932  *
1933  * Unregister a notifier previously registered by
1934  * register_netdevice_notifier(). The notifier is unlinked into the
1935  * kernel structures and may then be reused. A negative errno code
1936  * is returned on a failure.
1937  *
1938  * After unregistering unregister and down device events are synthesized
1939  * for all devices on the device list to the removed notifier to remove
1940  * the need for special case cleanup code.
1941  */
1942 
1943 int unregister_netdevice_notifier(struct notifier_block *nb)
1944 {
1945 	struct net *net;
1946 	int err;
1947 
1948 	/* Close race with setup_net() and cleanup_net() */
1949 	down_write(&pernet_ops_rwsem);
1950 	rtnl_lock();
1951 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1952 	if (err)
1953 		goto unlock;
1954 
1955 	for_each_net(net)
1956 		call_netdevice_unregister_net_notifiers(nb, net);
1957 
1958 unlock:
1959 	rtnl_unlock();
1960 	up_write(&pernet_ops_rwsem);
1961 	return err;
1962 }
1963 EXPORT_SYMBOL(unregister_netdevice_notifier);
1964 
1965 static int __register_netdevice_notifier_net(struct net *net,
1966 					     struct notifier_block *nb,
1967 					     bool ignore_call_fail)
1968 {
1969 	int err;
1970 
1971 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1972 	if (err)
1973 		return err;
1974 	if (dev_boot_phase)
1975 		return 0;
1976 
1977 	err = call_netdevice_register_net_notifiers(nb, net);
1978 	if (err && !ignore_call_fail)
1979 		goto chain_unregister;
1980 
1981 	return 0;
1982 
1983 chain_unregister:
1984 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1985 	return err;
1986 }
1987 
1988 static int __unregister_netdevice_notifier_net(struct net *net,
1989 					       struct notifier_block *nb)
1990 {
1991 	int err;
1992 
1993 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1994 	if (err)
1995 		return err;
1996 
1997 	call_netdevice_unregister_net_notifiers(nb, net);
1998 	return 0;
1999 }
2000 
2001 /**
2002  * register_netdevice_notifier_net - register a per-netns network notifier block
2003  * @net: network namespace
2004  * @nb: notifier
2005  *
2006  * Register a notifier to be called when network device events occur.
2007  * The notifier passed is linked into the kernel structures and must
2008  * not be reused until it has been unregistered. A negative errno code
2009  * is returned on a failure.
2010  *
2011  * When registered all registration and up events are replayed
2012  * to the new notifier to allow device to have a race free
2013  * view of the network device list.
2014  */
2015 
2016 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2017 {
2018 	int err;
2019 
2020 	rtnl_lock();
2021 	err = __register_netdevice_notifier_net(net, nb, false);
2022 	rtnl_unlock();
2023 	return err;
2024 }
2025 EXPORT_SYMBOL(register_netdevice_notifier_net);
2026 
2027 /**
2028  * unregister_netdevice_notifier_net - unregister a per-netns
2029  *                                     network notifier block
2030  * @net: network namespace
2031  * @nb: notifier
2032  *
2033  * Unregister a notifier previously registered by
2034  * register_netdevice_notifier(). The notifier is unlinked into the
2035  * kernel structures and may then be reused. A negative errno code
2036  * is returned on a failure.
2037  *
2038  * After unregistering unregister and down device events are synthesized
2039  * for all devices on the device list to the removed notifier to remove
2040  * the need for special case cleanup code.
2041  */
2042 
2043 int unregister_netdevice_notifier_net(struct net *net,
2044 				      struct notifier_block *nb)
2045 {
2046 	int err;
2047 
2048 	rtnl_lock();
2049 	err = __unregister_netdevice_notifier_net(net, nb);
2050 	rtnl_unlock();
2051 	return err;
2052 }
2053 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2054 
2055 int register_netdevice_notifier_dev_net(struct net_device *dev,
2056 					struct notifier_block *nb,
2057 					struct netdev_net_notifier *nn)
2058 {
2059 	int err;
2060 
2061 	rtnl_lock();
2062 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2063 	if (!err) {
2064 		nn->nb = nb;
2065 		list_add(&nn->list, &dev->net_notifier_list);
2066 	}
2067 	rtnl_unlock();
2068 	return err;
2069 }
2070 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2071 
2072 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2073 					  struct notifier_block *nb,
2074 					  struct netdev_net_notifier *nn)
2075 {
2076 	int err;
2077 
2078 	rtnl_lock();
2079 	list_del(&nn->list);
2080 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2081 	rtnl_unlock();
2082 	return err;
2083 }
2084 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2085 
2086 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2087 					     struct net *net)
2088 {
2089 	struct netdev_net_notifier *nn;
2090 
2091 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2092 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2093 		__register_netdevice_notifier_net(net, nn->nb, true);
2094 	}
2095 }
2096 
2097 /**
2098  *	call_netdevice_notifiers_info - call all network notifier blocks
2099  *	@val: value passed unmodified to notifier function
2100  *	@info: notifier information data
2101  *
2102  *	Call all network notifier blocks.  Parameters and return value
2103  *	are as for raw_notifier_call_chain().
2104  */
2105 
2106 static int call_netdevice_notifiers_info(unsigned long val,
2107 					 struct netdev_notifier_info *info)
2108 {
2109 	struct net *net = dev_net(info->dev);
2110 	int ret;
2111 
2112 	ASSERT_RTNL();
2113 
2114 	/* Run per-netns notifier block chain first, then run the global one.
2115 	 * Hopefully, one day, the global one is going to be removed after
2116 	 * all notifier block registrators get converted to be per-netns.
2117 	 */
2118 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2119 	if (ret & NOTIFY_STOP_MASK)
2120 		return ret;
2121 	return raw_notifier_call_chain(&netdev_chain, val, info);
2122 }
2123 
2124 static int call_netdevice_notifiers_extack(unsigned long val,
2125 					   struct net_device *dev,
2126 					   struct netlink_ext_ack *extack)
2127 {
2128 	struct netdev_notifier_info info = {
2129 		.dev = dev,
2130 		.extack = extack,
2131 	};
2132 
2133 	return call_netdevice_notifiers_info(val, &info);
2134 }
2135 
2136 /**
2137  *	call_netdevice_notifiers - call all network notifier blocks
2138  *      @val: value passed unmodified to notifier function
2139  *      @dev: net_device pointer passed unmodified to notifier function
2140  *
2141  *	Call all network notifier blocks.  Parameters and return value
2142  *	are as for raw_notifier_call_chain().
2143  */
2144 
2145 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2146 {
2147 	return call_netdevice_notifiers_extack(val, dev, NULL);
2148 }
2149 EXPORT_SYMBOL(call_netdevice_notifiers);
2150 
2151 /**
2152  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2153  *	@val: value passed unmodified to notifier function
2154  *	@dev: net_device pointer passed unmodified to notifier function
2155  *	@arg: additional u32 argument passed to the notifier function
2156  *
2157  *	Call all network notifier blocks.  Parameters and return value
2158  *	are as for raw_notifier_call_chain().
2159  */
2160 static int call_netdevice_notifiers_mtu(unsigned long val,
2161 					struct net_device *dev, u32 arg)
2162 {
2163 	struct netdev_notifier_info_ext info = {
2164 		.info.dev = dev,
2165 		.ext.mtu = arg,
2166 	};
2167 
2168 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2169 
2170 	return call_netdevice_notifiers_info(val, &info.info);
2171 }
2172 
2173 #ifdef CONFIG_NET_INGRESS
2174 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2175 
2176 void net_inc_ingress_queue(void)
2177 {
2178 	static_branch_inc(&ingress_needed_key);
2179 }
2180 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2181 
2182 void net_dec_ingress_queue(void)
2183 {
2184 	static_branch_dec(&ingress_needed_key);
2185 }
2186 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2187 #endif
2188 
2189 #ifdef CONFIG_NET_EGRESS
2190 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2191 
2192 void net_inc_egress_queue(void)
2193 {
2194 	static_branch_inc(&egress_needed_key);
2195 }
2196 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2197 
2198 void net_dec_egress_queue(void)
2199 {
2200 	static_branch_dec(&egress_needed_key);
2201 }
2202 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2203 #endif
2204 
2205 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2206 #ifdef CONFIG_JUMP_LABEL
2207 static atomic_t netstamp_needed_deferred;
2208 static atomic_t netstamp_wanted;
2209 static void netstamp_clear(struct work_struct *work)
2210 {
2211 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2212 	int wanted;
2213 
2214 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2215 	if (wanted > 0)
2216 		static_branch_enable(&netstamp_needed_key);
2217 	else
2218 		static_branch_disable(&netstamp_needed_key);
2219 }
2220 static DECLARE_WORK(netstamp_work, netstamp_clear);
2221 #endif
2222 
2223 void net_enable_timestamp(void)
2224 {
2225 #ifdef CONFIG_JUMP_LABEL
2226 	int wanted;
2227 
2228 	while (1) {
2229 		wanted = atomic_read(&netstamp_wanted);
2230 		if (wanted <= 0)
2231 			break;
2232 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2233 			return;
2234 	}
2235 	atomic_inc(&netstamp_needed_deferred);
2236 	schedule_work(&netstamp_work);
2237 #else
2238 	static_branch_inc(&netstamp_needed_key);
2239 #endif
2240 }
2241 EXPORT_SYMBOL(net_enable_timestamp);
2242 
2243 void net_disable_timestamp(void)
2244 {
2245 #ifdef CONFIG_JUMP_LABEL
2246 	int wanted;
2247 
2248 	while (1) {
2249 		wanted = atomic_read(&netstamp_wanted);
2250 		if (wanted <= 1)
2251 			break;
2252 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2253 			return;
2254 	}
2255 	atomic_dec(&netstamp_needed_deferred);
2256 	schedule_work(&netstamp_work);
2257 #else
2258 	static_branch_dec(&netstamp_needed_key);
2259 #endif
2260 }
2261 EXPORT_SYMBOL(net_disable_timestamp);
2262 
2263 static inline void net_timestamp_set(struct sk_buff *skb)
2264 {
2265 	skb->tstamp = 0;
2266 	if (static_branch_unlikely(&netstamp_needed_key))
2267 		__net_timestamp(skb);
2268 }
2269 
2270 #define net_timestamp_check(COND, SKB)				\
2271 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2272 		if ((COND) && !(SKB)->tstamp)			\
2273 			__net_timestamp(SKB);			\
2274 	}							\
2275 
2276 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2277 {
2278 	return __is_skb_forwardable(dev, skb, true);
2279 }
2280 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2281 
2282 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2283 			      bool check_mtu)
2284 {
2285 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2286 
2287 	if (likely(!ret)) {
2288 		skb->protocol = eth_type_trans(skb, dev);
2289 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2290 	}
2291 
2292 	return ret;
2293 }
2294 
2295 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2296 {
2297 	return __dev_forward_skb2(dev, skb, true);
2298 }
2299 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2300 
2301 /**
2302  * dev_forward_skb - loopback an skb to another netif
2303  *
2304  * @dev: destination network device
2305  * @skb: buffer to forward
2306  *
2307  * return values:
2308  *	NET_RX_SUCCESS	(no congestion)
2309  *	NET_RX_DROP     (packet was dropped, but freed)
2310  *
2311  * dev_forward_skb can be used for injecting an skb from the
2312  * start_xmit function of one device into the receive queue
2313  * of another device.
2314  *
2315  * The receiving device may be in another namespace, so
2316  * we have to clear all information in the skb that could
2317  * impact namespace isolation.
2318  */
2319 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2320 {
2321 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2322 }
2323 EXPORT_SYMBOL_GPL(dev_forward_skb);
2324 
2325 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2326 {
2327 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2328 }
2329 
2330 static inline int deliver_skb(struct sk_buff *skb,
2331 			      struct packet_type *pt_prev,
2332 			      struct net_device *orig_dev)
2333 {
2334 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2335 		return -ENOMEM;
2336 	refcount_inc(&skb->users);
2337 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2338 }
2339 
2340 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2341 					  struct packet_type **pt,
2342 					  struct net_device *orig_dev,
2343 					  __be16 type,
2344 					  struct list_head *ptype_list)
2345 {
2346 	struct packet_type *ptype, *pt_prev = *pt;
2347 
2348 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2349 		if (ptype->type != type)
2350 			continue;
2351 		if (pt_prev)
2352 			deliver_skb(skb, pt_prev, orig_dev);
2353 		pt_prev = ptype;
2354 	}
2355 	*pt = pt_prev;
2356 }
2357 
2358 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2359 {
2360 	if (!ptype->af_packet_priv || !skb->sk)
2361 		return false;
2362 
2363 	if (ptype->id_match)
2364 		return ptype->id_match(ptype, skb->sk);
2365 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2366 		return true;
2367 
2368 	return false;
2369 }
2370 
2371 /**
2372  * dev_nit_active - return true if any network interface taps are in use
2373  *
2374  * @dev: network device to check for the presence of taps
2375  */
2376 bool dev_nit_active(struct net_device *dev)
2377 {
2378 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2379 }
2380 EXPORT_SYMBOL_GPL(dev_nit_active);
2381 
2382 /*
2383  *	Support routine. Sends outgoing frames to any network
2384  *	taps currently in use.
2385  */
2386 
2387 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2388 {
2389 	struct packet_type *ptype;
2390 	struct sk_buff *skb2 = NULL;
2391 	struct packet_type *pt_prev = NULL;
2392 	struct list_head *ptype_list = &ptype_all;
2393 
2394 	rcu_read_lock();
2395 again:
2396 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2397 		if (ptype->ignore_outgoing)
2398 			continue;
2399 
2400 		/* Never send packets back to the socket
2401 		 * they originated from - MvS (miquels@drinkel.ow.org)
2402 		 */
2403 		if (skb_loop_sk(ptype, skb))
2404 			continue;
2405 
2406 		if (pt_prev) {
2407 			deliver_skb(skb2, pt_prev, skb->dev);
2408 			pt_prev = ptype;
2409 			continue;
2410 		}
2411 
2412 		/* need to clone skb, done only once */
2413 		skb2 = skb_clone(skb, GFP_ATOMIC);
2414 		if (!skb2)
2415 			goto out_unlock;
2416 
2417 		net_timestamp_set(skb2);
2418 
2419 		/* skb->nh should be correctly
2420 		 * set by sender, so that the second statement is
2421 		 * just protection against buggy protocols.
2422 		 */
2423 		skb_reset_mac_header(skb2);
2424 
2425 		if (skb_network_header(skb2) < skb2->data ||
2426 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2427 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2428 					     ntohs(skb2->protocol),
2429 					     dev->name);
2430 			skb_reset_network_header(skb2);
2431 		}
2432 
2433 		skb2->transport_header = skb2->network_header;
2434 		skb2->pkt_type = PACKET_OUTGOING;
2435 		pt_prev = ptype;
2436 	}
2437 
2438 	if (ptype_list == &ptype_all) {
2439 		ptype_list = &dev->ptype_all;
2440 		goto again;
2441 	}
2442 out_unlock:
2443 	if (pt_prev) {
2444 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2445 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2446 		else
2447 			kfree_skb(skb2);
2448 	}
2449 	rcu_read_unlock();
2450 }
2451 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2452 
2453 /**
2454  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2455  * @dev: Network device
2456  * @txq: number of queues available
2457  *
2458  * If real_num_tx_queues is changed the tc mappings may no longer be
2459  * valid. To resolve this verify the tc mapping remains valid and if
2460  * not NULL the mapping. With no priorities mapping to this
2461  * offset/count pair it will no longer be used. In the worst case TC0
2462  * is invalid nothing can be done so disable priority mappings. If is
2463  * expected that drivers will fix this mapping if they can before
2464  * calling netif_set_real_num_tx_queues.
2465  */
2466 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2467 {
2468 	int i;
2469 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2470 
2471 	/* If TC0 is invalidated disable TC mapping */
2472 	if (tc->offset + tc->count > txq) {
2473 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2474 		dev->num_tc = 0;
2475 		return;
2476 	}
2477 
2478 	/* Invalidated prio to tc mappings set to TC0 */
2479 	for (i = 1; i < TC_BITMASK + 1; i++) {
2480 		int q = netdev_get_prio_tc_map(dev, i);
2481 
2482 		tc = &dev->tc_to_txq[q];
2483 		if (tc->offset + tc->count > txq) {
2484 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2485 				i, q);
2486 			netdev_set_prio_tc_map(dev, i, 0);
2487 		}
2488 	}
2489 }
2490 
2491 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2492 {
2493 	if (dev->num_tc) {
2494 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2495 		int i;
2496 
2497 		/* walk through the TCs and see if it falls into any of them */
2498 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2499 			if ((txq - tc->offset) < tc->count)
2500 				return i;
2501 		}
2502 
2503 		/* didn't find it, just return -1 to indicate no match */
2504 		return -1;
2505 	}
2506 
2507 	return 0;
2508 }
2509 EXPORT_SYMBOL(netdev_txq_to_tc);
2510 
2511 #ifdef CONFIG_XPS
2512 static struct static_key xps_needed __read_mostly;
2513 static struct static_key xps_rxqs_needed __read_mostly;
2514 static DEFINE_MUTEX(xps_map_mutex);
2515 #define xmap_dereference(P)		\
2516 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2517 
2518 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2519 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2520 {
2521 	struct xps_map *map = NULL;
2522 	int pos;
2523 
2524 	if (dev_maps)
2525 		map = xmap_dereference(dev_maps->attr_map[tci]);
2526 	if (!map)
2527 		return false;
2528 
2529 	for (pos = map->len; pos--;) {
2530 		if (map->queues[pos] != index)
2531 			continue;
2532 
2533 		if (map->len > 1) {
2534 			map->queues[pos] = map->queues[--map->len];
2535 			break;
2536 		}
2537 
2538 		if (old_maps)
2539 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2540 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2541 		kfree_rcu(map, rcu);
2542 		return false;
2543 	}
2544 
2545 	return true;
2546 }
2547 
2548 static bool remove_xps_queue_cpu(struct net_device *dev,
2549 				 struct xps_dev_maps *dev_maps,
2550 				 int cpu, u16 offset, u16 count)
2551 {
2552 	int num_tc = dev_maps->num_tc;
2553 	bool active = false;
2554 	int tci;
2555 
2556 	for (tci = cpu * num_tc; num_tc--; tci++) {
2557 		int i, j;
2558 
2559 		for (i = count, j = offset; i--; j++) {
2560 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2561 				break;
2562 		}
2563 
2564 		active |= i < 0;
2565 	}
2566 
2567 	return active;
2568 }
2569 
2570 static void reset_xps_maps(struct net_device *dev,
2571 			   struct xps_dev_maps *dev_maps,
2572 			   enum xps_map_type type)
2573 {
2574 	static_key_slow_dec_cpuslocked(&xps_needed);
2575 	if (type == XPS_RXQS)
2576 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2577 
2578 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2579 
2580 	kfree_rcu(dev_maps, rcu);
2581 }
2582 
2583 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2584 			   u16 offset, u16 count)
2585 {
2586 	struct xps_dev_maps *dev_maps;
2587 	bool active = false;
2588 	int i, j;
2589 
2590 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2591 	if (!dev_maps)
2592 		return;
2593 
2594 	for (j = 0; j < dev_maps->nr_ids; j++)
2595 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2596 	if (!active)
2597 		reset_xps_maps(dev, dev_maps, type);
2598 
2599 	if (type == XPS_CPUS) {
2600 		for (i = offset + (count - 1); count--; i--)
2601 			netdev_queue_numa_node_write(
2602 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2603 	}
2604 }
2605 
2606 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2607 				   u16 count)
2608 {
2609 	if (!static_key_false(&xps_needed))
2610 		return;
2611 
2612 	cpus_read_lock();
2613 	mutex_lock(&xps_map_mutex);
2614 
2615 	if (static_key_false(&xps_rxqs_needed))
2616 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2617 
2618 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2619 
2620 	mutex_unlock(&xps_map_mutex);
2621 	cpus_read_unlock();
2622 }
2623 
2624 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2625 {
2626 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2627 }
2628 
2629 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2630 				      u16 index, bool is_rxqs_map)
2631 {
2632 	struct xps_map *new_map;
2633 	int alloc_len = XPS_MIN_MAP_ALLOC;
2634 	int i, pos;
2635 
2636 	for (pos = 0; map && pos < map->len; pos++) {
2637 		if (map->queues[pos] != index)
2638 			continue;
2639 		return map;
2640 	}
2641 
2642 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2643 	if (map) {
2644 		if (pos < map->alloc_len)
2645 			return map;
2646 
2647 		alloc_len = map->alloc_len * 2;
2648 	}
2649 
2650 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2651 	 *  map
2652 	 */
2653 	if (is_rxqs_map)
2654 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2655 	else
2656 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2657 				       cpu_to_node(attr_index));
2658 	if (!new_map)
2659 		return NULL;
2660 
2661 	for (i = 0; i < pos; i++)
2662 		new_map->queues[i] = map->queues[i];
2663 	new_map->alloc_len = alloc_len;
2664 	new_map->len = pos;
2665 
2666 	return new_map;
2667 }
2668 
2669 /* Copy xps maps at a given index */
2670 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2671 			      struct xps_dev_maps *new_dev_maps, int index,
2672 			      int tc, bool skip_tc)
2673 {
2674 	int i, tci = index * dev_maps->num_tc;
2675 	struct xps_map *map;
2676 
2677 	/* copy maps belonging to foreign traffic classes */
2678 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2679 		if (i == tc && skip_tc)
2680 			continue;
2681 
2682 		/* fill in the new device map from the old device map */
2683 		map = xmap_dereference(dev_maps->attr_map[tci]);
2684 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2685 	}
2686 }
2687 
2688 /* Must be called under cpus_read_lock */
2689 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2690 			  u16 index, enum xps_map_type type)
2691 {
2692 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2693 	const unsigned long *online_mask = NULL;
2694 	bool active = false, copy = false;
2695 	int i, j, tci, numa_node_id = -2;
2696 	int maps_sz, num_tc = 1, tc = 0;
2697 	struct xps_map *map, *new_map;
2698 	unsigned int nr_ids;
2699 
2700 	if (dev->num_tc) {
2701 		/* Do not allow XPS on subordinate device directly */
2702 		num_tc = dev->num_tc;
2703 		if (num_tc < 0)
2704 			return -EINVAL;
2705 
2706 		/* If queue belongs to subordinate dev use its map */
2707 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2708 
2709 		tc = netdev_txq_to_tc(dev, index);
2710 		if (tc < 0)
2711 			return -EINVAL;
2712 	}
2713 
2714 	mutex_lock(&xps_map_mutex);
2715 
2716 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2717 	if (type == XPS_RXQS) {
2718 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2719 		nr_ids = dev->num_rx_queues;
2720 	} else {
2721 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2722 		if (num_possible_cpus() > 1)
2723 			online_mask = cpumask_bits(cpu_online_mask);
2724 		nr_ids = nr_cpu_ids;
2725 	}
2726 
2727 	if (maps_sz < L1_CACHE_BYTES)
2728 		maps_sz = L1_CACHE_BYTES;
2729 
2730 	/* The old dev_maps could be larger or smaller than the one we're
2731 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2732 	 * between. We could try to be smart, but let's be safe instead and only
2733 	 * copy foreign traffic classes if the two map sizes match.
2734 	 */
2735 	if (dev_maps &&
2736 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2737 		copy = true;
2738 
2739 	/* allocate memory for queue storage */
2740 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2741 	     j < nr_ids;) {
2742 		if (!new_dev_maps) {
2743 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2744 			if (!new_dev_maps) {
2745 				mutex_unlock(&xps_map_mutex);
2746 				return -ENOMEM;
2747 			}
2748 
2749 			new_dev_maps->nr_ids = nr_ids;
2750 			new_dev_maps->num_tc = num_tc;
2751 		}
2752 
2753 		tci = j * num_tc + tc;
2754 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2755 
2756 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2757 		if (!map)
2758 			goto error;
2759 
2760 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2761 	}
2762 
2763 	if (!new_dev_maps)
2764 		goto out_no_new_maps;
2765 
2766 	if (!dev_maps) {
2767 		/* Increment static keys at most once per type */
2768 		static_key_slow_inc_cpuslocked(&xps_needed);
2769 		if (type == XPS_RXQS)
2770 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2771 	}
2772 
2773 	for (j = 0; j < nr_ids; j++) {
2774 		bool skip_tc = false;
2775 
2776 		tci = j * num_tc + tc;
2777 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2778 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2779 			/* add tx-queue to CPU/rx-queue maps */
2780 			int pos = 0;
2781 
2782 			skip_tc = true;
2783 
2784 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2785 			while ((pos < map->len) && (map->queues[pos] != index))
2786 				pos++;
2787 
2788 			if (pos == map->len)
2789 				map->queues[map->len++] = index;
2790 #ifdef CONFIG_NUMA
2791 			if (type == XPS_CPUS) {
2792 				if (numa_node_id == -2)
2793 					numa_node_id = cpu_to_node(j);
2794 				else if (numa_node_id != cpu_to_node(j))
2795 					numa_node_id = -1;
2796 			}
2797 #endif
2798 		}
2799 
2800 		if (copy)
2801 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2802 					  skip_tc);
2803 	}
2804 
2805 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2806 
2807 	/* Cleanup old maps */
2808 	if (!dev_maps)
2809 		goto out_no_old_maps;
2810 
2811 	for (j = 0; j < dev_maps->nr_ids; j++) {
2812 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2813 			map = xmap_dereference(dev_maps->attr_map[tci]);
2814 			if (!map)
2815 				continue;
2816 
2817 			if (copy) {
2818 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2819 				if (map == new_map)
2820 					continue;
2821 			}
2822 
2823 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2824 			kfree_rcu(map, rcu);
2825 		}
2826 	}
2827 
2828 	old_dev_maps = dev_maps;
2829 
2830 out_no_old_maps:
2831 	dev_maps = new_dev_maps;
2832 	active = true;
2833 
2834 out_no_new_maps:
2835 	if (type == XPS_CPUS)
2836 		/* update Tx queue numa node */
2837 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2838 					     (numa_node_id >= 0) ?
2839 					     numa_node_id : NUMA_NO_NODE);
2840 
2841 	if (!dev_maps)
2842 		goto out_no_maps;
2843 
2844 	/* removes tx-queue from unused CPUs/rx-queues */
2845 	for (j = 0; j < dev_maps->nr_ids; j++) {
2846 		tci = j * dev_maps->num_tc;
2847 
2848 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2849 			if (i == tc &&
2850 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2851 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2852 				continue;
2853 
2854 			active |= remove_xps_queue(dev_maps,
2855 						   copy ? old_dev_maps : NULL,
2856 						   tci, index);
2857 		}
2858 	}
2859 
2860 	if (old_dev_maps)
2861 		kfree_rcu(old_dev_maps, rcu);
2862 
2863 	/* free map if not active */
2864 	if (!active)
2865 		reset_xps_maps(dev, dev_maps, type);
2866 
2867 out_no_maps:
2868 	mutex_unlock(&xps_map_mutex);
2869 
2870 	return 0;
2871 error:
2872 	/* remove any maps that we added */
2873 	for (j = 0; j < nr_ids; j++) {
2874 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2875 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2876 			map = copy ?
2877 			      xmap_dereference(dev_maps->attr_map[tci]) :
2878 			      NULL;
2879 			if (new_map && new_map != map)
2880 				kfree(new_map);
2881 		}
2882 	}
2883 
2884 	mutex_unlock(&xps_map_mutex);
2885 
2886 	kfree(new_dev_maps);
2887 	return -ENOMEM;
2888 }
2889 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2890 
2891 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2892 			u16 index)
2893 {
2894 	int ret;
2895 
2896 	cpus_read_lock();
2897 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2898 	cpus_read_unlock();
2899 
2900 	return ret;
2901 }
2902 EXPORT_SYMBOL(netif_set_xps_queue);
2903 
2904 #endif
2905 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2906 {
2907 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2908 
2909 	/* Unbind any subordinate channels */
2910 	while (txq-- != &dev->_tx[0]) {
2911 		if (txq->sb_dev)
2912 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2913 	}
2914 }
2915 
2916 void netdev_reset_tc(struct net_device *dev)
2917 {
2918 #ifdef CONFIG_XPS
2919 	netif_reset_xps_queues_gt(dev, 0);
2920 #endif
2921 	netdev_unbind_all_sb_channels(dev);
2922 
2923 	/* Reset TC configuration of device */
2924 	dev->num_tc = 0;
2925 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2926 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2927 }
2928 EXPORT_SYMBOL(netdev_reset_tc);
2929 
2930 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2931 {
2932 	if (tc >= dev->num_tc)
2933 		return -EINVAL;
2934 
2935 #ifdef CONFIG_XPS
2936 	netif_reset_xps_queues(dev, offset, count);
2937 #endif
2938 	dev->tc_to_txq[tc].count = count;
2939 	dev->tc_to_txq[tc].offset = offset;
2940 	return 0;
2941 }
2942 EXPORT_SYMBOL(netdev_set_tc_queue);
2943 
2944 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2945 {
2946 	if (num_tc > TC_MAX_QUEUE)
2947 		return -EINVAL;
2948 
2949 #ifdef CONFIG_XPS
2950 	netif_reset_xps_queues_gt(dev, 0);
2951 #endif
2952 	netdev_unbind_all_sb_channels(dev);
2953 
2954 	dev->num_tc = num_tc;
2955 	return 0;
2956 }
2957 EXPORT_SYMBOL(netdev_set_num_tc);
2958 
2959 void netdev_unbind_sb_channel(struct net_device *dev,
2960 			      struct net_device *sb_dev)
2961 {
2962 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2963 
2964 #ifdef CONFIG_XPS
2965 	netif_reset_xps_queues_gt(sb_dev, 0);
2966 #endif
2967 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2968 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2969 
2970 	while (txq-- != &dev->_tx[0]) {
2971 		if (txq->sb_dev == sb_dev)
2972 			txq->sb_dev = NULL;
2973 	}
2974 }
2975 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2976 
2977 int netdev_bind_sb_channel_queue(struct net_device *dev,
2978 				 struct net_device *sb_dev,
2979 				 u8 tc, u16 count, u16 offset)
2980 {
2981 	/* Make certain the sb_dev and dev are already configured */
2982 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2983 		return -EINVAL;
2984 
2985 	/* We cannot hand out queues we don't have */
2986 	if ((offset + count) > dev->real_num_tx_queues)
2987 		return -EINVAL;
2988 
2989 	/* Record the mapping */
2990 	sb_dev->tc_to_txq[tc].count = count;
2991 	sb_dev->tc_to_txq[tc].offset = offset;
2992 
2993 	/* Provide a way for Tx queue to find the tc_to_txq map or
2994 	 * XPS map for itself.
2995 	 */
2996 	while (count--)
2997 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2998 
2999 	return 0;
3000 }
3001 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3002 
3003 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3004 {
3005 	/* Do not use a multiqueue device to represent a subordinate channel */
3006 	if (netif_is_multiqueue(dev))
3007 		return -ENODEV;
3008 
3009 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3010 	 * Channel 0 is meant to be "native" mode and used only to represent
3011 	 * the main root device. We allow writing 0 to reset the device back
3012 	 * to normal mode after being used as a subordinate channel.
3013 	 */
3014 	if (channel > S16_MAX)
3015 		return -EINVAL;
3016 
3017 	dev->num_tc = -channel;
3018 
3019 	return 0;
3020 }
3021 EXPORT_SYMBOL(netdev_set_sb_channel);
3022 
3023 /*
3024  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3025  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3026  */
3027 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3028 {
3029 	bool disabling;
3030 	int rc;
3031 
3032 	disabling = txq < dev->real_num_tx_queues;
3033 
3034 	if (txq < 1 || txq > dev->num_tx_queues)
3035 		return -EINVAL;
3036 
3037 	if (dev->reg_state == NETREG_REGISTERED ||
3038 	    dev->reg_state == NETREG_UNREGISTERING) {
3039 		ASSERT_RTNL();
3040 
3041 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3042 						  txq);
3043 		if (rc)
3044 			return rc;
3045 
3046 		if (dev->num_tc)
3047 			netif_setup_tc(dev, txq);
3048 
3049 		dev->real_num_tx_queues = txq;
3050 
3051 		if (disabling) {
3052 			synchronize_net();
3053 			qdisc_reset_all_tx_gt(dev, txq);
3054 #ifdef CONFIG_XPS
3055 			netif_reset_xps_queues_gt(dev, txq);
3056 #endif
3057 		}
3058 	} else {
3059 		dev->real_num_tx_queues = txq;
3060 	}
3061 
3062 	return 0;
3063 }
3064 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3065 
3066 #ifdef CONFIG_SYSFS
3067 /**
3068  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3069  *	@dev: Network device
3070  *	@rxq: Actual number of RX queues
3071  *
3072  *	This must be called either with the rtnl_lock held or before
3073  *	registration of the net device.  Returns 0 on success, or a
3074  *	negative error code.  If called before registration, it always
3075  *	succeeds.
3076  */
3077 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3078 {
3079 	int rc;
3080 
3081 	if (rxq < 1 || rxq > dev->num_rx_queues)
3082 		return -EINVAL;
3083 
3084 	if (dev->reg_state == NETREG_REGISTERED) {
3085 		ASSERT_RTNL();
3086 
3087 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3088 						  rxq);
3089 		if (rc)
3090 			return rc;
3091 	}
3092 
3093 	dev->real_num_rx_queues = rxq;
3094 	return 0;
3095 }
3096 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3097 #endif
3098 
3099 /**
3100  * netif_get_num_default_rss_queues - default number of RSS queues
3101  *
3102  * This routine should set an upper limit on the number of RSS queues
3103  * used by default by multiqueue devices.
3104  */
3105 int netif_get_num_default_rss_queues(void)
3106 {
3107 	return is_kdump_kernel() ?
3108 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3109 }
3110 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3111 
3112 static void __netif_reschedule(struct Qdisc *q)
3113 {
3114 	struct softnet_data *sd;
3115 	unsigned long flags;
3116 
3117 	local_irq_save(flags);
3118 	sd = this_cpu_ptr(&softnet_data);
3119 	q->next_sched = NULL;
3120 	*sd->output_queue_tailp = q;
3121 	sd->output_queue_tailp = &q->next_sched;
3122 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3123 	local_irq_restore(flags);
3124 }
3125 
3126 void __netif_schedule(struct Qdisc *q)
3127 {
3128 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3129 		__netif_reschedule(q);
3130 }
3131 EXPORT_SYMBOL(__netif_schedule);
3132 
3133 struct dev_kfree_skb_cb {
3134 	enum skb_free_reason reason;
3135 };
3136 
3137 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3138 {
3139 	return (struct dev_kfree_skb_cb *)skb->cb;
3140 }
3141 
3142 void netif_schedule_queue(struct netdev_queue *txq)
3143 {
3144 	rcu_read_lock();
3145 	if (!netif_xmit_stopped(txq)) {
3146 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3147 
3148 		__netif_schedule(q);
3149 	}
3150 	rcu_read_unlock();
3151 }
3152 EXPORT_SYMBOL(netif_schedule_queue);
3153 
3154 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3155 {
3156 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3157 		struct Qdisc *q;
3158 
3159 		rcu_read_lock();
3160 		q = rcu_dereference(dev_queue->qdisc);
3161 		__netif_schedule(q);
3162 		rcu_read_unlock();
3163 	}
3164 }
3165 EXPORT_SYMBOL(netif_tx_wake_queue);
3166 
3167 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3168 {
3169 	unsigned long flags;
3170 
3171 	if (unlikely(!skb))
3172 		return;
3173 
3174 	if (likely(refcount_read(&skb->users) == 1)) {
3175 		smp_rmb();
3176 		refcount_set(&skb->users, 0);
3177 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3178 		return;
3179 	}
3180 	get_kfree_skb_cb(skb)->reason = reason;
3181 	local_irq_save(flags);
3182 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3183 	__this_cpu_write(softnet_data.completion_queue, skb);
3184 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3185 	local_irq_restore(flags);
3186 }
3187 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3188 
3189 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3190 {
3191 	if (in_irq() || irqs_disabled())
3192 		__dev_kfree_skb_irq(skb, reason);
3193 	else
3194 		dev_kfree_skb(skb);
3195 }
3196 EXPORT_SYMBOL(__dev_kfree_skb_any);
3197 
3198 
3199 /**
3200  * netif_device_detach - mark device as removed
3201  * @dev: network device
3202  *
3203  * Mark device as removed from system and therefore no longer available.
3204  */
3205 void netif_device_detach(struct net_device *dev)
3206 {
3207 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3208 	    netif_running(dev)) {
3209 		netif_tx_stop_all_queues(dev);
3210 	}
3211 }
3212 EXPORT_SYMBOL(netif_device_detach);
3213 
3214 /**
3215  * netif_device_attach - mark device as attached
3216  * @dev: network device
3217  *
3218  * Mark device as attached from system and restart if needed.
3219  */
3220 void netif_device_attach(struct net_device *dev)
3221 {
3222 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3223 	    netif_running(dev)) {
3224 		netif_tx_wake_all_queues(dev);
3225 		__netdev_watchdog_up(dev);
3226 	}
3227 }
3228 EXPORT_SYMBOL(netif_device_attach);
3229 
3230 /*
3231  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3232  * to be used as a distribution range.
3233  */
3234 static u16 skb_tx_hash(const struct net_device *dev,
3235 		       const struct net_device *sb_dev,
3236 		       struct sk_buff *skb)
3237 {
3238 	u32 hash;
3239 	u16 qoffset = 0;
3240 	u16 qcount = dev->real_num_tx_queues;
3241 
3242 	if (dev->num_tc) {
3243 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3244 
3245 		qoffset = sb_dev->tc_to_txq[tc].offset;
3246 		qcount = sb_dev->tc_to_txq[tc].count;
3247 	}
3248 
3249 	if (skb_rx_queue_recorded(skb)) {
3250 		hash = skb_get_rx_queue(skb);
3251 		if (hash >= qoffset)
3252 			hash -= qoffset;
3253 		while (unlikely(hash >= qcount))
3254 			hash -= qcount;
3255 		return hash + qoffset;
3256 	}
3257 
3258 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3259 }
3260 
3261 static void skb_warn_bad_offload(const struct sk_buff *skb)
3262 {
3263 	static const netdev_features_t null_features;
3264 	struct net_device *dev = skb->dev;
3265 	const char *name = "";
3266 
3267 	if (!net_ratelimit())
3268 		return;
3269 
3270 	if (dev) {
3271 		if (dev->dev.parent)
3272 			name = dev_driver_string(dev->dev.parent);
3273 		else
3274 			name = netdev_name(dev);
3275 	}
3276 	skb_dump(KERN_WARNING, skb, false);
3277 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3278 	     name, dev ? &dev->features : &null_features,
3279 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3280 }
3281 
3282 /*
3283  * Invalidate hardware checksum when packet is to be mangled, and
3284  * complete checksum manually on outgoing path.
3285  */
3286 int skb_checksum_help(struct sk_buff *skb)
3287 {
3288 	__wsum csum;
3289 	int ret = 0, offset;
3290 
3291 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3292 		goto out_set_summed;
3293 
3294 	if (unlikely(skb_is_gso(skb))) {
3295 		skb_warn_bad_offload(skb);
3296 		return -EINVAL;
3297 	}
3298 
3299 	/* Before computing a checksum, we should make sure no frag could
3300 	 * be modified by an external entity : checksum could be wrong.
3301 	 */
3302 	if (skb_has_shared_frag(skb)) {
3303 		ret = __skb_linearize(skb);
3304 		if (ret)
3305 			goto out;
3306 	}
3307 
3308 	offset = skb_checksum_start_offset(skb);
3309 	BUG_ON(offset >= skb_headlen(skb));
3310 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3311 
3312 	offset += skb->csum_offset;
3313 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3314 
3315 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3316 	if (ret)
3317 		goto out;
3318 
3319 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3320 out_set_summed:
3321 	skb->ip_summed = CHECKSUM_NONE;
3322 out:
3323 	return ret;
3324 }
3325 EXPORT_SYMBOL(skb_checksum_help);
3326 
3327 int skb_crc32c_csum_help(struct sk_buff *skb)
3328 {
3329 	__le32 crc32c_csum;
3330 	int ret = 0, offset, start;
3331 
3332 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3333 		goto out;
3334 
3335 	if (unlikely(skb_is_gso(skb)))
3336 		goto out;
3337 
3338 	/* Before computing a checksum, we should make sure no frag could
3339 	 * be modified by an external entity : checksum could be wrong.
3340 	 */
3341 	if (unlikely(skb_has_shared_frag(skb))) {
3342 		ret = __skb_linearize(skb);
3343 		if (ret)
3344 			goto out;
3345 	}
3346 	start = skb_checksum_start_offset(skb);
3347 	offset = start + offsetof(struct sctphdr, checksum);
3348 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3349 		ret = -EINVAL;
3350 		goto out;
3351 	}
3352 
3353 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3354 	if (ret)
3355 		goto out;
3356 
3357 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3358 						  skb->len - start, ~(__u32)0,
3359 						  crc32c_csum_stub));
3360 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3361 	skb->ip_summed = CHECKSUM_NONE;
3362 	skb->csum_not_inet = 0;
3363 out:
3364 	return ret;
3365 }
3366 
3367 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3368 {
3369 	__be16 type = skb->protocol;
3370 
3371 	/* Tunnel gso handlers can set protocol to ethernet. */
3372 	if (type == htons(ETH_P_TEB)) {
3373 		struct ethhdr *eth;
3374 
3375 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3376 			return 0;
3377 
3378 		eth = (struct ethhdr *)skb->data;
3379 		type = eth->h_proto;
3380 	}
3381 
3382 	return __vlan_get_protocol(skb, type, depth);
3383 }
3384 
3385 /**
3386  *	skb_mac_gso_segment - mac layer segmentation handler.
3387  *	@skb: buffer to segment
3388  *	@features: features for the output path (see dev->features)
3389  */
3390 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3391 				    netdev_features_t features)
3392 {
3393 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3394 	struct packet_offload *ptype;
3395 	int vlan_depth = skb->mac_len;
3396 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3397 
3398 	if (unlikely(!type))
3399 		return ERR_PTR(-EINVAL);
3400 
3401 	__skb_pull(skb, vlan_depth);
3402 
3403 	rcu_read_lock();
3404 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3405 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3406 			segs = ptype->callbacks.gso_segment(skb, features);
3407 			break;
3408 		}
3409 	}
3410 	rcu_read_unlock();
3411 
3412 	__skb_push(skb, skb->data - skb_mac_header(skb));
3413 
3414 	return segs;
3415 }
3416 EXPORT_SYMBOL(skb_mac_gso_segment);
3417 
3418 
3419 /* openvswitch calls this on rx path, so we need a different check.
3420  */
3421 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3422 {
3423 	if (tx_path)
3424 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3425 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3426 
3427 	return skb->ip_summed == CHECKSUM_NONE;
3428 }
3429 
3430 /**
3431  *	__skb_gso_segment - Perform segmentation on skb.
3432  *	@skb: buffer to segment
3433  *	@features: features for the output path (see dev->features)
3434  *	@tx_path: whether it is called in TX path
3435  *
3436  *	This function segments the given skb and returns a list of segments.
3437  *
3438  *	It may return NULL if the skb requires no segmentation.  This is
3439  *	only possible when GSO is used for verifying header integrity.
3440  *
3441  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3442  */
3443 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3444 				  netdev_features_t features, bool tx_path)
3445 {
3446 	struct sk_buff *segs;
3447 
3448 	if (unlikely(skb_needs_check(skb, tx_path))) {
3449 		int err;
3450 
3451 		/* We're going to init ->check field in TCP or UDP header */
3452 		err = skb_cow_head(skb, 0);
3453 		if (err < 0)
3454 			return ERR_PTR(err);
3455 	}
3456 
3457 	/* Only report GSO partial support if it will enable us to
3458 	 * support segmentation on this frame without needing additional
3459 	 * work.
3460 	 */
3461 	if (features & NETIF_F_GSO_PARTIAL) {
3462 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3463 		struct net_device *dev = skb->dev;
3464 
3465 		partial_features |= dev->features & dev->gso_partial_features;
3466 		if (!skb_gso_ok(skb, features | partial_features))
3467 			features &= ~NETIF_F_GSO_PARTIAL;
3468 	}
3469 
3470 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3471 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3472 
3473 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3474 	SKB_GSO_CB(skb)->encap_level = 0;
3475 
3476 	skb_reset_mac_header(skb);
3477 	skb_reset_mac_len(skb);
3478 
3479 	segs = skb_mac_gso_segment(skb, features);
3480 
3481 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3482 		skb_warn_bad_offload(skb);
3483 
3484 	return segs;
3485 }
3486 EXPORT_SYMBOL(__skb_gso_segment);
3487 
3488 /* Take action when hardware reception checksum errors are detected. */
3489 #ifdef CONFIG_BUG
3490 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3491 {
3492 	if (net_ratelimit()) {
3493 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3494 		skb_dump(KERN_ERR, skb, true);
3495 		dump_stack();
3496 	}
3497 }
3498 EXPORT_SYMBOL(netdev_rx_csum_fault);
3499 #endif
3500 
3501 /* XXX: check that highmem exists at all on the given machine. */
3502 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3503 {
3504 #ifdef CONFIG_HIGHMEM
3505 	int i;
3506 
3507 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3508 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3509 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3510 
3511 			if (PageHighMem(skb_frag_page(frag)))
3512 				return 1;
3513 		}
3514 	}
3515 #endif
3516 	return 0;
3517 }
3518 
3519 /* If MPLS offload request, verify we are testing hardware MPLS features
3520  * instead of standard features for the netdev.
3521  */
3522 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3523 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3524 					   netdev_features_t features,
3525 					   __be16 type)
3526 {
3527 	if (eth_p_mpls(type))
3528 		features &= skb->dev->mpls_features;
3529 
3530 	return features;
3531 }
3532 #else
3533 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3534 					   netdev_features_t features,
3535 					   __be16 type)
3536 {
3537 	return features;
3538 }
3539 #endif
3540 
3541 static netdev_features_t harmonize_features(struct sk_buff *skb,
3542 	netdev_features_t features)
3543 {
3544 	__be16 type;
3545 
3546 	type = skb_network_protocol(skb, NULL);
3547 	features = net_mpls_features(skb, features, type);
3548 
3549 	if (skb->ip_summed != CHECKSUM_NONE &&
3550 	    !can_checksum_protocol(features, type)) {
3551 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3552 	}
3553 	if (illegal_highdma(skb->dev, skb))
3554 		features &= ~NETIF_F_SG;
3555 
3556 	return features;
3557 }
3558 
3559 netdev_features_t passthru_features_check(struct sk_buff *skb,
3560 					  struct net_device *dev,
3561 					  netdev_features_t features)
3562 {
3563 	return features;
3564 }
3565 EXPORT_SYMBOL(passthru_features_check);
3566 
3567 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3568 					     struct net_device *dev,
3569 					     netdev_features_t features)
3570 {
3571 	return vlan_features_check(skb, features);
3572 }
3573 
3574 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3575 					    struct net_device *dev,
3576 					    netdev_features_t features)
3577 {
3578 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3579 
3580 	if (gso_segs > dev->gso_max_segs)
3581 		return features & ~NETIF_F_GSO_MASK;
3582 
3583 	if (!skb_shinfo(skb)->gso_type) {
3584 		skb_warn_bad_offload(skb);
3585 		return features & ~NETIF_F_GSO_MASK;
3586 	}
3587 
3588 	/* Support for GSO partial features requires software
3589 	 * intervention before we can actually process the packets
3590 	 * so we need to strip support for any partial features now
3591 	 * and we can pull them back in after we have partially
3592 	 * segmented the frame.
3593 	 */
3594 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3595 		features &= ~dev->gso_partial_features;
3596 
3597 	/* Make sure to clear the IPv4 ID mangling feature if the
3598 	 * IPv4 header has the potential to be fragmented.
3599 	 */
3600 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3601 		struct iphdr *iph = skb->encapsulation ?
3602 				    inner_ip_hdr(skb) : ip_hdr(skb);
3603 
3604 		if (!(iph->frag_off & htons(IP_DF)))
3605 			features &= ~NETIF_F_TSO_MANGLEID;
3606 	}
3607 
3608 	return features;
3609 }
3610 
3611 netdev_features_t netif_skb_features(struct sk_buff *skb)
3612 {
3613 	struct net_device *dev = skb->dev;
3614 	netdev_features_t features = dev->features;
3615 
3616 	if (skb_is_gso(skb))
3617 		features = gso_features_check(skb, dev, features);
3618 
3619 	/* If encapsulation offload request, verify we are testing
3620 	 * hardware encapsulation features instead of standard
3621 	 * features for the netdev
3622 	 */
3623 	if (skb->encapsulation)
3624 		features &= dev->hw_enc_features;
3625 
3626 	if (skb_vlan_tagged(skb))
3627 		features = netdev_intersect_features(features,
3628 						     dev->vlan_features |
3629 						     NETIF_F_HW_VLAN_CTAG_TX |
3630 						     NETIF_F_HW_VLAN_STAG_TX);
3631 
3632 	if (dev->netdev_ops->ndo_features_check)
3633 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3634 								features);
3635 	else
3636 		features &= dflt_features_check(skb, dev, features);
3637 
3638 	return harmonize_features(skb, features);
3639 }
3640 EXPORT_SYMBOL(netif_skb_features);
3641 
3642 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3643 		    struct netdev_queue *txq, bool more)
3644 {
3645 	unsigned int len;
3646 	int rc;
3647 
3648 	if (dev_nit_active(dev))
3649 		dev_queue_xmit_nit(skb, dev);
3650 
3651 	len = skb->len;
3652 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3653 	trace_net_dev_start_xmit(skb, dev);
3654 	rc = netdev_start_xmit(skb, dev, txq, more);
3655 	trace_net_dev_xmit(skb, rc, dev, len);
3656 
3657 	return rc;
3658 }
3659 
3660 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3661 				    struct netdev_queue *txq, int *ret)
3662 {
3663 	struct sk_buff *skb = first;
3664 	int rc = NETDEV_TX_OK;
3665 
3666 	while (skb) {
3667 		struct sk_buff *next = skb->next;
3668 
3669 		skb_mark_not_on_list(skb);
3670 		rc = xmit_one(skb, dev, txq, next != NULL);
3671 		if (unlikely(!dev_xmit_complete(rc))) {
3672 			skb->next = next;
3673 			goto out;
3674 		}
3675 
3676 		skb = next;
3677 		if (netif_tx_queue_stopped(txq) && skb) {
3678 			rc = NETDEV_TX_BUSY;
3679 			break;
3680 		}
3681 	}
3682 
3683 out:
3684 	*ret = rc;
3685 	return skb;
3686 }
3687 
3688 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3689 					  netdev_features_t features)
3690 {
3691 	if (skb_vlan_tag_present(skb) &&
3692 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3693 		skb = __vlan_hwaccel_push_inside(skb);
3694 	return skb;
3695 }
3696 
3697 int skb_csum_hwoffload_help(struct sk_buff *skb,
3698 			    const netdev_features_t features)
3699 {
3700 	if (unlikely(skb_csum_is_sctp(skb)))
3701 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3702 			skb_crc32c_csum_help(skb);
3703 
3704 	if (features & NETIF_F_HW_CSUM)
3705 		return 0;
3706 
3707 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3708 		switch (skb->csum_offset) {
3709 		case offsetof(struct tcphdr, check):
3710 		case offsetof(struct udphdr, check):
3711 			return 0;
3712 		}
3713 	}
3714 
3715 	return skb_checksum_help(skb);
3716 }
3717 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3718 
3719 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3720 {
3721 	netdev_features_t features;
3722 
3723 	features = netif_skb_features(skb);
3724 	skb = validate_xmit_vlan(skb, features);
3725 	if (unlikely(!skb))
3726 		goto out_null;
3727 
3728 	skb = sk_validate_xmit_skb(skb, dev);
3729 	if (unlikely(!skb))
3730 		goto out_null;
3731 
3732 	if (netif_needs_gso(skb, features)) {
3733 		struct sk_buff *segs;
3734 
3735 		segs = skb_gso_segment(skb, features);
3736 		if (IS_ERR(segs)) {
3737 			goto out_kfree_skb;
3738 		} else if (segs) {
3739 			consume_skb(skb);
3740 			skb = segs;
3741 		}
3742 	} else {
3743 		if (skb_needs_linearize(skb, features) &&
3744 		    __skb_linearize(skb))
3745 			goto out_kfree_skb;
3746 
3747 		/* If packet is not checksummed and device does not
3748 		 * support checksumming for this protocol, complete
3749 		 * checksumming here.
3750 		 */
3751 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3752 			if (skb->encapsulation)
3753 				skb_set_inner_transport_header(skb,
3754 							       skb_checksum_start_offset(skb));
3755 			else
3756 				skb_set_transport_header(skb,
3757 							 skb_checksum_start_offset(skb));
3758 			if (skb_csum_hwoffload_help(skb, features))
3759 				goto out_kfree_skb;
3760 		}
3761 	}
3762 
3763 	skb = validate_xmit_xfrm(skb, features, again);
3764 
3765 	return skb;
3766 
3767 out_kfree_skb:
3768 	kfree_skb(skb);
3769 out_null:
3770 	atomic_long_inc(&dev->tx_dropped);
3771 	return NULL;
3772 }
3773 
3774 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3775 {
3776 	struct sk_buff *next, *head = NULL, *tail;
3777 
3778 	for (; skb != NULL; skb = next) {
3779 		next = skb->next;
3780 		skb_mark_not_on_list(skb);
3781 
3782 		/* in case skb wont be segmented, point to itself */
3783 		skb->prev = skb;
3784 
3785 		skb = validate_xmit_skb(skb, dev, again);
3786 		if (!skb)
3787 			continue;
3788 
3789 		if (!head)
3790 			head = skb;
3791 		else
3792 			tail->next = skb;
3793 		/* If skb was segmented, skb->prev points to
3794 		 * the last segment. If not, it still contains skb.
3795 		 */
3796 		tail = skb->prev;
3797 	}
3798 	return head;
3799 }
3800 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3801 
3802 static void qdisc_pkt_len_init(struct sk_buff *skb)
3803 {
3804 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3805 
3806 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3807 
3808 	/* To get more precise estimation of bytes sent on wire,
3809 	 * we add to pkt_len the headers size of all segments
3810 	 */
3811 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3812 		unsigned int hdr_len;
3813 		u16 gso_segs = shinfo->gso_segs;
3814 
3815 		/* mac layer + network layer */
3816 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3817 
3818 		/* + transport layer */
3819 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3820 			const struct tcphdr *th;
3821 			struct tcphdr _tcphdr;
3822 
3823 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3824 						sizeof(_tcphdr), &_tcphdr);
3825 			if (likely(th))
3826 				hdr_len += __tcp_hdrlen(th);
3827 		} else {
3828 			struct udphdr _udphdr;
3829 
3830 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3831 					       sizeof(_udphdr), &_udphdr))
3832 				hdr_len += sizeof(struct udphdr);
3833 		}
3834 
3835 		if (shinfo->gso_type & SKB_GSO_DODGY)
3836 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3837 						shinfo->gso_size);
3838 
3839 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3840 	}
3841 }
3842 
3843 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3844 				 struct net_device *dev,
3845 				 struct netdev_queue *txq)
3846 {
3847 	spinlock_t *root_lock = qdisc_lock(q);
3848 	struct sk_buff *to_free = NULL;
3849 	bool contended;
3850 	int rc;
3851 
3852 	qdisc_calculate_pkt_len(skb, q);
3853 
3854 	if (q->flags & TCQ_F_NOLOCK) {
3855 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3856 		if (likely(!netif_xmit_frozen_or_stopped(txq)))
3857 			qdisc_run(q);
3858 
3859 		if (unlikely(to_free))
3860 			kfree_skb_list(to_free);
3861 		return rc;
3862 	}
3863 
3864 	/*
3865 	 * Heuristic to force contended enqueues to serialize on a
3866 	 * separate lock before trying to get qdisc main lock.
3867 	 * This permits qdisc->running owner to get the lock more
3868 	 * often and dequeue packets faster.
3869 	 */
3870 	contended = qdisc_is_running(q);
3871 	if (unlikely(contended))
3872 		spin_lock(&q->busylock);
3873 
3874 	spin_lock(root_lock);
3875 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3876 		__qdisc_drop(skb, &to_free);
3877 		rc = NET_XMIT_DROP;
3878 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3879 		   qdisc_run_begin(q)) {
3880 		/*
3881 		 * This is a work-conserving queue; there are no old skbs
3882 		 * waiting to be sent out; and the qdisc is not running -
3883 		 * xmit the skb directly.
3884 		 */
3885 
3886 		qdisc_bstats_update(q, skb);
3887 
3888 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3889 			if (unlikely(contended)) {
3890 				spin_unlock(&q->busylock);
3891 				contended = false;
3892 			}
3893 			__qdisc_run(q);
3894 		}
3895 
3896 		qdisc_run_end(q);
3897 		rc = NET_XMIT_SUCCESS;
3898 	} else {
3899 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3900 		if (qdisc_run_begin(q)) {
3901 			if (unlikely(contended)) {
3902 				spin_unlock(&q->busylock);
3903 				contended = false;
3904 			}
3905 			__qdisc_run(q);
3906 			qdisc_run_end(q);
3907 		}
3908 	}
3909 	spin_unlock(root_lock);
3910 	if (unlikely(to_free))
3911 		kfree_skb_list(to_free);
3912 	if (unlikely(contended))
3913 		spin_unlock(&q->busylock);
3914 	return rc;
3915 }
3916 
3917 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3918 static void skb_update_prio(struct sk_buff *skb)
3919 {
3920 	const struct netprio_map *map;
3921 	const struct sock *sk;
3922 	unsigned int prioidx;
3923 
3924 	if (skb->priority)
3925 		return;
3926 	map = rcu_dereference_bh(skb->dev->priomap);
3927 	if (!map)
3928 		return;
3929 	sk = skb_to_full_sk(skb);
3930 	if (!sk)
3931 		return;
3932 
3933 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3934 
3935 	if (prioidx < map->priomap_len)
3936 		skb->priority = map->priomap[prioidx];
3937 }
3938 #else
3939 #define skb_update_prio(skb)
3940 #endif
3941 
3942 /**
3943  *	dev_loopback_xmit - loop back @skb
3944  *	@net: network namespace this loopback is happening in
3945  *	@sk:  sk needed to be a netfilter okfn
3946  *	@skb: buffer to transmit
3947  */
3948 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3949 {
3950 	skb_reset_mac_header(skb);
3951 	__skb_pull(skb, skb_network_offset(skb));
3952 	skb->pkt_type = PACKET_LOOPBACK;
3953 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3954 	WARN_ON(!skb_dst(skb));
3955 	skb_dst_force(skb);
3956 	netif_rx_ni(skb);
3957 	return 0;
3958 }
3959 EXPORT_SYMBOL(dev_loopback_xmit);
3960 
3961 #ifdef CONFIG_NET_EGRESS
3962 static struct sk_buff *
3963 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3964 {
3965 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3966 	struct tcf_result cl_res;
3967 
3968 	if (!miniq)
3969 		return skb;
3970 
3971 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3972 	qdisc_skb_cb(skb)->mru = 0;
3973 	qdisc_skb_cb(skb)->post_ct = false;
3974 	mini_qdisc_bstats_cpu_update(miniq, skb);
3975 
3976 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3977 	case TC_ACT_OK:
3978 	case TC_ACT_RECLASSIFY:
3979 		skb->tc_index = TC_H_MIN(cl_res.classid);
3980 		break;
3981 	case TC_ACT_SHOT:
3982 		mini_qdisc_qstats_cpu_drop(miniq);
3983 		*ret = NET_XMIT_DROP;
3984 		kfree_skb(skb);
3985 		return NULL;
3986 	case TC_ACT_STOLEN:
3987 	case TC_ACT_QUEUED:
3988 	case TC_ACT_TRAP:
3989 		*ret = NET_XMIT_SUCCESS;
3990 		consume_skb(skb);
3991 		return NULL;
3992 	case TC_ACT_REDIRECT:
3993 		/* No need to push/pop skb's mac_header here on egress! */
3994 		skb_do_redirect(skb);
3995 		*ret = NET_XMIT_SUCCESS;
3996 		return NULL;
3997 	default:
3998 		break;
3999 	}
4000 
4001 	return skb;
4002 }
4003 #endif /* CONFIG_NET_EGRESS */
4004 
4005 #ifdef CONFIG_XPS
4006 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4007 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4008 {
4009 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4010 	struct xps_map *map;
4011 	int queue_index = -1;
4012 
4013 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4014 		return queue_index;
4015 
4016 	tci *= dev_maps->num_tc;
4017 	tci += tc;
4018 
4019 	map = rcu_dereference(dev_maps->attr_map[tci]);
4020 	if (map) {
4021 		if (map->len == 1)
4022 			queue_index = map->queues[0];
4023 		else
4024 			queue_index = map->queues[reciprocal_scale(
4025 						skb_get_hash(skb), map->len)];
4026 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4027 			queue_index = -1;
4028 	}
4029 	return queue_index;
4030 }
4031 #endif
4032 
4033 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4034 			 struct sk_buff *skb)
4035 {
4036 #ifdef CONFIG_XPS
4037 	struct xps_dev_maps *dev_maps;
4038 	struct sock *sk = skb->sk;
4039 	int queue_index = -1;
4040 
4041 	if (!static_key_false(&xps_needed))
4042 		return -1;
4043 
4044 	rcu_read_lock();
4045 	if (!static_key_false(&xps_rxqs_needed))
4046 		goto get_cpus_map;
4047 
4048 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4049 	if (dev_maps) {
4050 		int tci = sk_rx_queue_get(sk);
4051 
4052 		if (tci >= 0)
4053 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4054 							  tci);
4055 	}
4056 
4057 get_cpus_map:
4058 	if (queue_index < 0) {
4059 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4060 		if (dev_maps) {
4061 			unsigned int tci = skb->sender_cpu - 1;
4062 
4063 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4064 							  tci);
4065 		}
4066 	}
4067 	rcu_read_unlock();
4068 
4069 	return queue_index;
4070 #else
4071 	return -1;
4072 #endif
4073 }
4074 
4075 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4076 		     struct net_device *sb_dev)
4077 {
4078 	return 0;
4079 }
4080 EXPORT_SYMBOL(dev_pick_tx_zero);
4081 
4082 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4083 		       struct net_device *sb_dev)
4084 {
4085 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4086 }
4087 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4088 
4089 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4090 		     struct net_device *sb_dev)
4091 {
4092 	struct sock *sk = skb->sk;
4093 	int queue_index = sk_tx_queue_get(sk);
4094 
4095 	sb_dev = sb_dev ? : dev;
4096 
4097 	if (queue_index < 0 || skb->ooo_okay ||
4098 	    queue_index >= dev->real_num_tx_queues) {
4099 		int new_index = get_xps_queue(dev, sb_dev, skb);
4100 
4101 		if (new_index < 0)
4102 			new_index = skb_tx_hash(dev, sb_dev, skb);
4103 
4104 		if (queue_index != new_index && sk &&
4105 		    sk_fullsock(sk) &&
4106 		    rcu_access_pointer(sk->sk_dst_cache))
4107 			sk_tx_queue_set(sk, new_index);
4108 
4109 		queue_index = new_index;
4110 	}
4111 
4112 	return queue_index;
4113 }
4114 EXPORT_SYMBOL(netdev_pick_tx);
4115 
4116 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4117 					 struct sk_buff *skb,
4118 					 struct net_device *sb_dev)
4119 {
4120 	int queue_index = 0;
4121 
4122 #ifdef CONFIG_XPS
4123 	u32 sender_cpu = skb->sender_cpu - 1;
4124 
4125 	if (sender_cpu >= (u32)NR_CPUS)
4126 		skb->sender_cpu = raw_smp_processor_id() + 1;
4127 #endif
4128 
4129 	if (dev->real_num_tx_queues != 1) {
4130 		const struct net_device_ops *ops = dev->netdev_ops;
4131 
4132 		if (ops->ndo_select_queue)
4133 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4134 		else
4135 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4136 
4137 		queue_index = netdev_cap_txqueue(dev, queue_index);
4138 	}
4139 
4140 	skb_set_queue_mapping(skb, queue_index);
4141 	return netdev_get_tx_queue(dev, queue_index);
4142 }
4143 
4144 /**
4145  *	__dev_queue_xmit - transmit a buffer
4146  *	@skb: buffer to transmit
4147  *	@sb_dev: suboordinate device used for L2 forwarding offload
4148  *
4149  *	Queue a buffer for transmission to a network device. The caller must
4150  *	have set the device and priority and built the buffer before calling
4151  *	this function. The function can be called from an interrupt.
4152  *
4153  *	A negative errno code is returned on a failure. A success does not
4154  *	guarantee the frame will be transmitted as it may be dropped due
4155  *	to congestion or traffic shaping.
4156  *
4157  * -----------------------------------------------------------------------------------
4158  *      I notice this method can also return errors from the queue disciplines,
4159  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4160  *      be positive.
4161  *
4162  *      Regardless of the return value, the skb is consumed, so it is currently
4163  *      difficult to retry a send to this method.  (You can bump the ref count
4164  *      before sending to hold a reference for retry if you are careful.)
4165  *
4166  *      When calling this method, interrupts MUST be enabled.  This is because
4167  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4168  *          --BLG
4169  */
4170 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4171 {
4172 	struct net_device *dev = skb->dev;
4173 	struct netdev_queue *txq;
4174 	struct Qdisc *q;
4175 	int rc = -ENOMEM;
4176 	bool again = false;
4177 
4178 	skb_reset_mac_header(skb);
4179 
4180 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4181 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4182 
4183 	/* Disable soft irqs for various locks below. Also
4184 	 * stops preemption for RCU.
4185 	 */
4186 	rcu_read_lock_bh();
4187 
4188 	skb_update_prio(skb);
4189 
4190 	qdisc_pkt_len_init(skb);
4191 #ifdef CONFIG_NET_CLS_ACT
4192 	skb->tc_at_ingress = 0;
4193 # ifdef CONFIG_NET_EGRESS
4194 	if (static_branch_unlikely(&egress_needed_key)) {
4195 		skb = sch_handle_egress(skb, &rc, dev);
4196 		if (!skb)
4197 			goto out;
4198 	}
4199 # endif
4200 #endif
4201 	/* If device/qdisc don't need skb->dst, release it right now while
4202 	 * its hot in this cpu cache.
4203 	 */
4204 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4205 		skb_dst_drop(skb);
4206 	else
4207 		skb_dst_force(skb);
4208 
4209 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4210 	q = rcu_dereference_bh(txq->qdisc);
4211 
4212 	trace_net_dev_queue(skb);
4213 	if (q->enqueue) {
4214 		rc = __dev_xmit_skb(skb, q, dev, txq);
4215 		goto out;
4216 	}
4217 
4218 	/* The device has no queue. Common case for software devices:
4219 	 * loopback, all the sorts of tunnels...
4220 
4221 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4222 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4223 	 * counters.)
4224 	 * However, it is possible, that they rely on protection
4225 	 * made by us here.
4226 
4227 	 * Check this and shot the lock. It is not prone from deadlocks.
4228 	 *Either shot noqueue qdisc, it is even simpler 8)
4229 	 */
4230 	if (dev->flags & IFF_UP) {
4231 		int cpu = smp_processor_id(); /* ok because BHs are off */
4232 
4233 		if (txq->xmit_lock_owner != cpu) {
4234 			if (dev_xmit_recursion())
4235 				goto recursion_alert;
4236 
4237 			skb = validate_xmit_skb(skb, dev, &again);
4238 			if (!skb)
4239 				goto out;
4240 
4241 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4242 			HARD_TX_LOCK(dev, txq, cpu);
4243 
4244 			if (!netif_xmit_stopped(txq)) {
4245 				dev_xmit_recursion_inc();
4246 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4247 				dev_xmit_recursion_dec();
4248 				if (dev_xmit_complete(rc)) {
4249 					HARD_TX_UNLOCK(dev, txq);
4250 					goto out;
4251 				}
4252 			}
4253 			HARD_TX_UNLOCK(dev, txq);
4254 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4255 					     dev->name);
4256 		} else {
4257 			/* Recursion is detected! It is possible,
4258 			 * unfortunately
4259 			 */
4260 recursion_alert:
4261 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4262 					     dev->name);
4263 		}
4264 	}
4265 
4266 	rc = -ENETDOWN;
4267 	rcu_read_unlock_bh();
4268 
4269 	atomic_long_inc(&dev->tx_dropped);
4270 	kfree_skb_list(skb);
4271 	return rc;
4272 out:
4273 	rcu_read_unlock_bh();
4274 	return rc;
4275 }
4276 
4277 int dev_queue_xmit(struct sk_buff *skb)
4278 {
4279 	return __dev_queue_xmit(skb, NULL);
4280 }
4281 EXPORT_SYMBOL(dev_queue_xmit);
4282 
4283 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4284 {
4285 	return __dev_queue_xmit(skb, sb_dev);
4286 }
4287 EXPORT_SYMBOL(dev_queue_xmit_accel);
4288 
4289 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4290 {
4291 	struct net_device *dev = skb->dev;
4292 	struct sk_buff *orig_skb = skb;
4293 	struct netdev_queue *txq;
4294 	int ret = NETDEV_TX_BUSY;
4295 	bool again = false;
4296 
4297 	if (unlikely(!netif_running(dev) ||
4298 		     !netif_carrier_ok(dev)))
4299 		goto drop;
4300 
4301 	skb = validate_xmit_skb_list(skb, dev, &again);
4302 	if (skb != orig_skb)
4303 		goto drop;
4304 
4305 	skb_set_queue_mapping(skb, queue_id);
4306 	txq = skb_get_tx_queue(dev, skb);
4307 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4308 
4309 	local_bh_disable();
4310 
4311 	dev_xmit_recursion_inc();
4312 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4313 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4314 		ret = netdev_start_xmit(skb, dev, txq, false);
4315 	HARD_TX_UNLOCK(dev, txq);
4316 	dev_xmit_recursion_dec();
4317 
4318 	local_bh_enable();
4319 	return ret;
4320 drop:
4321 	atomic_long_inc(&dev->tx_dropped);
4322 	kfree_skb_list(skb);
4323 	return NET_XMIT_DROP;
4324 }
4325 EXPORT_SYMBOL(__dev_direct_xmit);
4326 
4327 /*************************************************************************
4328  *			Receiver routines
4329  *************************************************************************/
4330 
4331 int netdev_max_backlog __read_mostly = 1000;
4332 EXPORT_SYMBOL(netdev_max_backlog);
4333 
4334 int netdev_tstamp_prequeue __read_mostly = 1;
4335 int netdev_budget __read_mostly = 300;
4336 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4337 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4338 int weight_p __read_mostly = 64;           /* old backlog weight */
4339 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4340 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4341 int dev_rx_weight __read_mostly = 64;
4342 int dev_tx_weight __read_mostly = 64;
4343 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4344 int gro_normal_batch __read_mostly = 8;
4345 
4346 /* Called with irq disabled */
4347 static inline void ____napi_schedule(struct softnet_data *sd,
4348 				     struct napi_struct *napi)
4349 {
4350 	struct task_struct *thread;
4351 
4352 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4353 		/* Paired with smp_mb__before_atomic() in
4354 		 * napi_enable()/dev_set_threaded().
4355 		 * Use READ_ONCE() to guarantee a complete
4356 		 * read on napi->thread. Only call
4357 		 * wake_up_process() when it's not NULL.
4358 		 */
4359 		thread = READ_ONCE(napi->thread);
4360 		if (thread) {
4361 			/* Avoid doing set_bit() if the thread is in
4362 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4363 			 * makes sure to proceed with napi polling
4364 			 * if the thread is explicitly woken from here.
4365 			 */
4366 			if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE)
4367 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4368 			wake_up_process(thread);
4369 			return;
4370 		}
4371 	}
4372 
4373 	list_add_tail(&napi->poll_list, &sd->poll_list);
4374 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4375 }
4376 
4377 #ifdef CONFIG_RPS
4378 
4379 /* One global table that all flow-based protocols share. */
4380 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4381 EXPORT_SYMBOL(rps_sock_flow_table);
4382 u32 rps_cpu_mask __read_mostly;
4383 EXPORT_SYMBOL(rps_cpu_mask);
4384 
4385 struct static_key_false rps_needed __read_mostly;
4386 EXPORT_SYMBOL(rps_needed);
4387 struct static_key_false rfs_needed __read_mostly;
4388 EXPORT_SYMBOL(rfs_needed);
4389 
4390 static struct rps_dev_flow *
4391 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4392 	    struct rps_dev_flow *rflow, u16 next_cpu)
4393 {
4394 	if (next_cpu < nr_cpu_ids) {
4395 #ifdef CONFIG_RFS_ACCEL
4396 		struct netdev_rx_queue *rxqueue;
4397 		struct rps_dev_flow_table *flow_table;
4398 		struct rps_dev_flow *old_rflow;
4399 		u32 flow_id;
4400 		u16 rxq_index;
4401 		int rc;
4402 
4403 		/* Should we steer this flow to a different hardware queue? */
4404 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4405 		    !(dev->features & NETIF_F_NTUPLE))
4406 			goto out;
4407 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4408 		if (rxq_index == skb_get_rx_queue(skb))
4409 			goto out;
4410 
4411 		rxqueue = dev->_rx + rxq_index;
4412 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4413 		if (!flow_table)
4414 			goto out;
4415 		flow_id = skb_get_hash(skb) & flow_table->mask;
4416 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4417 							rxq_index, flow_id);
4418 		if (rc < 0)
4419 			goto out;
4420 		old_rflow = rflow;
4421 		rflow = &flow_table->flows[flow_id];
4422 		rflow->filter = rc;
4423 		if (old_rflow->filter == rflow->filter)
4424 			old_rflow->filter = RPS_NO_FILTER;
4425 	out:
4426 #endif
4427 		rflow->last_qtail =
4428 			per_cpu(softnet_data, next_cpu).input_queue_head;
4429 	}
4430 
4431 	rflow->cpu = next_cpu;
4432 	return rflow;
4433 }
4434 
4435 /*
4436  * get_rps_cpu is called from netif_receive_skb and returns the target
4437  * CPU from the RPS map of the receiving queue for a given skb.
4438  * rcu_read_lock must be held on entry.
4439  */
4440 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4441 		       struct rps_dev_flow **rflowp)
4442 {
4443 	const struct rps_sock_flow_table *sock_flow_table;
4444 	struct netdev_rx_queue *rxqueue = dev->_rx;
4445 	struct rps_dev_flow_table *flow_table;
4446 	struct rps_map *map;
4447 	int cpu = -1;
4448 	u32 tcpu;
4449 	u32 hash;
4450 
4451 	if (skb_rx_queue_recorded(skb)) {
4452 		u16 index = skb_get_rx_queue(skb);
4453 
4454 		if (unlikely(index >= dev->real_num_rx_queues)) {
4455 			WARN_ONCE(dev->real_num_rx_queues > 1,
4456 				  "%s received packet on queue %u, but number "
4457 				  "of RX queues is %u\n",
4458 				  dev->name, index, dev->real_num_rx_queues);
4459 			goto done;
4460 		}
4461 		rxqueue += index;
4462 	}
4463 
4464 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4465 
4466 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4467 	map = rcu_dereference(rxqueue->rps_map);
4468 	if (!flow_table && !map)
4469 		goto done;
4470 
4471 	skb_reset_network_header(skb);
4472 	hash = skb_get_hash(skb);
4473 	if (!hash)
4474 		goto done;
4475 
4476 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4477 	if (flow_table && sock_flow_table) {
4478 		struct rps_dev_flow *rflow;
4479 		u32 next_cpu;
4480 		u32 ident;
4481 
4482 		/* First check into global flow table if there is a match */
4483 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4484 		if ((ident ^ hash) & ~rps_cpu_mask)
4485 			goto try_rps;
4486 
4487 		next_cpu = ident & rps_cpu_mask;
4488 
4489 		/* OK, now we know there is a match,
4490 		 * we can look at the local (per receive queue) flow table
4491 		 */
4492 		rflow = &flow_table->flows[hash & flow_table->mask];
4493 		tcpu = rflow->cpu;
4494 
4495 		/*
4496 		 * If the desired CPU (where last recvmsg was done) is
4497 		 * different from current CPU (one in the rx-queue flow
4498 		 * table entry), switch if one of the following holds:
4499 		 *   - Current CPU is unset (>= nr_cpu_ids).
4500 		 *   - Current CPU is offline.
4501 		 *   - The current CPU's queue tail has advanced beyond the
4502 		 *     last packet that was enqueued using this table entry.
4503 		 *     This guarantees that all previous packets for the flow
4504 		 *     have been dequeued, thus preserving in order delivery.
4505 		 */
4506 		if (unlikely(tcpu != next_cpu) &&
4507 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4508 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4509 		      rflow->last_qtail)) >= 0)) {
4510 			tcpu = next_cpu;
4511 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4512 		}
4513 
4514 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4515 			*rflowp = rflow;
4516 			cpu = tcpu;
4517 			goto done;
4518 		}
4519 	}
4520 
4521 try_rps:
4522 
4523 	if (map) {
4524 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4525 		if (cpu_online(tcpu)) {
4526 			cpu = tcpu;
4527 			goto done;
4528 		}
4529 	}
4530 
4531 done:
4532 	return cpu;
4533 }
4534 
4535 #ifdef CONFIG_RFS_ACCEL
4536 
4537 /**
4538  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4539  * @dev: Device on which the filter was set
4540  * @rxq_index: RX queue index
4541  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4542  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4543  *
4544  * Drivers that implement ndo_rx_flow_steer() should periodically call
4545  * this function for each installed filter and remove the filters for
4546  * which it returns %true.
4547  */
4548 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4549 			 u32 flow_id, u16 filter_id)
4550 {
4551 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4552 	struct rps_dev_flow_table *flow_table;
4553 	struct rps_dev_flow *rflow;
4554 	bool expire = true;
4555 	unsigned int cpu;
4556 
4557 	rcu_read_lock();
4558 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4559 	if (flow_table && flow_id <= flow_table->mask) {
4560 		rflow = &flow_table->flows[flow_id];
4561 		cpu = READ_ONCE(rflow->cpu);
4562 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4563 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4564 			   rflow->last_qtail) <
4565 		     (int)(10 * flow_table->mask)))
4566 			expire = false;
4567 	}
4568 	rcu_read_unlock();
4569 	return expire;
4570 }
4571 EXPORT_SYMBOL(rps_may_expire_flow);
4572 
4573 #endif /* CONFIG_RFS_ACCEL */
4574 
4575 /* Called from hardirq (IPI) context */
4576 static void rps_trigger_softirq(void *data)
4577 {
4578 	struct softnet_data *sd = data;
4579 
4580 	____napi_schedule(sd, &sd->backlog);
4581 	sd->received_rps++;
4582 }
4583 
4584 #endif /* CONFIG_RPS */
4585 
4586 /*
4587  * Check if this softnet_data structure is another cpu one
4588  * If yes, queue it to our IPI list and return 1
4589  * If no, return 0
4590  */
4591 static int rps_ipi_queued(struct softnet_data *sd)
4592 {
4593 #ifdef CONFIG_RPS
4594 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4595 
4596 	if (sd != mysd) {
4597 		sd->rps_ipi_next = mysd->rps_ipi_list;
4598 		mysd->rps_ipi_list = sd;
4599 
4600 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4601 		return 1;
4602 	}
4603 #endif /* CONFIG_RPS */
4604 	return 0;
4605 }
4606 
4607 #ifdef CONFIG_NET_FLOW_LIMIT
4608 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4609 #endif
4610 
4611 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4612 {
4613 #ifdef CONFIG_NET_FLOW_LIMIT
4614 	struct sd_flow_limit *fl;
4615 	struct softnet_data *sd;
4616 	unsigned int old_flow, new_flow;
4617 
4618 	if (qlen < (netdev_max_backlog >> 1))
4619 		return false;
4620 
4621 	sd = this_cpu_ptr(&softnet_data);
4622 
4623 	rcu_read_lock();
4624 	fl = rcu_dereference(sd->flow_limit);
4625 	if (fl) {
4626 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4627 		old_flow = fl->history[fl->history_head];
4628 		fl->history[fl->history_head] = new_flow;
4629 
4630 		fl->history_head++;
4631 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4632 
4633 		if (likely(fl->buckets[old_flow]))
4634 			fl->buckets[old_flow]--;
4635 
4636 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4637 			fl->count++;
4638 			rcu_read_unlock();
4639 			return true;
4640 		}
4641 	}
4642 	rcu_read_unlock();
4643 #endif
4644 	return false;
4645 }
4646 
4647 /*
4648  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4649  * queue (may be a remote CPU queue).
4650  */
4651 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4652 			      unsigned int *qtail)
4653 {
4654 	struct softnet_data *sd;
4655 	unsigned long flags;
4656 	unsigned int qlen;
4657 
4658 	sd = &per_cpu(softnet_data, cpu);
4659 
4660 	local_irq_save(flags);
4661 
4662 	rps_lock(sd);
4663 	if (!netif_running(skb->dev))
4664 		goto drop;
4665 	qlen = skb_queue_len(&sd->input_pkt_queue);
4666 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4667 		if (qlen) {
4668 enqueue:
4669 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4670 			input_queue_tail_incr_save(sd, qtail);
4671 			rps_unlock(sd);
4672 			local_irq_restore(flags);
4673 			return NET_RX_SUCCESS;
4674 		}
4675 
4676 		/* Schedule NAPI for backlog device
4677 		 * We can use non atomic operation since we own the queue lock
4678 		 */
4679 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4680 			if (!rps_ipi_queued(sd))
4681 				____napi_schedule(sd, &sd->backlog);
4682 		}
4683 		goto enqueue;
4684 	}
4685 
4686 drop:
4687 	sd->dropped++;
4688 	rps_unlock(sd);
4689 
4690 	local_irq_restore(flags);
4691 
4692 	atomic_long_inc(&skb->dev->rx_dropped);
4693 	kfree_skb(skb);
4694 	return NET_RX_DROP;
4695 }
4696 
4697 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4698 {
4699 	struct net_device *dev = skb->dev;
4700 	struct netdev_rx_queue *rxqueue;
4701 
4702 	rxqueue = dev->_rx;
4703 
4704 	if (skb_rx_queue_recorded(skb)) {
4705 		u16 index = skb_get_rx_queue(skb);
4706 
4707 		if (unlikely(index >= dev->real_num_rx_queues)) {
4708 			WARN_ONCE(dev->real_num_rx_queues > 1,
4709 				  "%s received packet on queue %u, but number "
4710 				  "of RX queues is %u\n",
4711 				  dev->name, index, dev->real_num_rx_queues);
4712 
4713 			return rxqueue; /* Return first rxqueue */
4714 		}
4715 		rxqueue += index;
4716 	}
4717 	return rxqueue;
4718 }
4719 
4720 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4721 				     struct xdp_buff *xdp,
4722 				     struct bpf_prog *xdp_prog)
4723 {
4724 	void *orig_data, *orig_data_end, *hard_start;
4725 	struct netdev_rx_queue *rxqueue;
4726 	u32 metalen, act = XDP_DROP;
4727 	bool orig_bcast, orig_host;
4728 	u32 mac_len, frame_sz;
4729 	__be16 orig_eth_type;
4730 	struct ethhdr *eth;
4731 	int off;
4732 
4733 	/* Reinjected packets coming from act_mirred or similar should
4734 	 * not get XDP generic processing.
4735 	 */
4736 	if (skb_is_redirected(skb))
4737 		return XDP_PASS;
4738 
4739 	/* XDP packets must be linear and must have sufficient headroom
4740 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4741 	 * native XDP provides, thus we need to do it here as well.
4742 	 */
4743 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4744 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4745 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4746 		int troom = skb->tail + skb->data_len - skb->end;
4747 
4748 		/* In case we have to go down the path and also linearize,
4749 		 * then lets do the pskb_expand_head() work just once here.
4750 		 */
4751 		if (pskb_expand_head(skb,
4752 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4753 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4754 			goto do_drop;
4755 		if (skb_linearize(skb))
4756 			goto do_drop;
4757 	}
4758 
4759 	/* The XDP program wants to see the packet starting at the MAC
4760 	 * header.
4761 	 */
4762 	mac_len = skb->data - skb_mac_header(skb);
4763 	hard_start = skb->data - skb_headroom(skb);
4764 
4765 	/* SKB "head" area always have tailroom for skb_shared_info */
4766 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4767 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4768 
4769 	rxqueue = netif_get_rxqueue(skb);
4770 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4771 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4772 			 skb_headlen(skb) + mac_len, true);
4773 
4774 	orig_data_end = xdp->data_end;
4775 	orig_data = xdp->data;
4776 	eth = (struct ethhdr *)xdp->data;
4777 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4778 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4779 	orig_eth_type = eth->h_proto;
4780 
4781 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4782 
4783 	/* check if bpf_xdp_adjust_head was used */
4784 	off = xdp->data - orig_data;
4785 	if (off) {
4786 		if (off > 0)
4787 			__skb_pull(skb, off);
4788 		else if (off < 0)
4789 			__skb_push(skb, -off);
4790 
4791 		skb->mac_header += off;
4792 		skb_reset_network_header(skb);
4793 	}
4794 
4795 	/* check if bpf_xdp_adjust_tail was used */
4796 	off = xdp->data_end - orig_data_end;
4797 	if (off != 0) {
4798 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4799 		skb->len += off; /* positive on grow, negative on shrink */
4800 	}
4801 
4802 	/* check if XDP changed eth hdr such SKB needs update */
4803 	eth = (struct ethhdr *)xdp->data;
4804 	if ((orig_eth_type != eth->h_proto) ||
4805 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4806 						  skb->dev->dev_addr)) ||
4807 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4808 		__skb_push(skb, ETH_HLEN);
4809 		skb->pkt_type = PACKET_HOST;
4810 		skb->protocol = eth_type_trans(skb, skb->dev);
4811 	}
4812 
4813 	switch (act) {
4814 	case XDP_REDIRECT:
4815 	case XDP_TX:
4816 		__skb_push(skb, mac_len);
4817 		break;
4818 	case XDP_PASS:
4819 		metalen = xdp->data - xdp->data_meta;
4820 		if (metalen)
4821 			skb_metadata_set(skb, metalen);
4822 		break;
4823 	default:
4824 		bpf_warn_invalid_xdp_action(act);
4825 		fallthrough;
4826 	case XDP_ABORTED:
4827 		trace_xdp_exception(skb->dev, xdp_prog, act);
4828 		fallthrough;
4829 	case XDP_DROP:
4830 	do_drop:
4831 		kfree_skb(skb);
4832 		break;
4833 	}
4834 
4835 	return act;
4836 }
4837 
4838 /* When doing generic XDP we have to bypass the qdisc layer and the
4839  * network taps in order to match in-driver-XDP behavior.
4840  */
4841 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4842 {
4843 	struct net_device *dev = skb->dev;
4844 	struct netdev_queue *txq;
4845 	bool free_skb = true;
4846 	int cpu, rc;
4847 
4848 	txq = netdev_core_pick_tx(dev, skb, NULL);
4849 	cpu = smp_processor_id();
4850 	HARD_TX_LOCK(dev, txq, cpu);
4851 	if (!netif_xmit_stopped(txq)) {
4852 		rc = netdev_start_xmit(skb, dev, txq, 0);
4853 		if (dev_xmit_complete(rc))
4854 			free_skb = false;
4855 	}
4856 	HARD_TX_UNLOCK(dev, txq);
4857 	if (free_skb) {
4858 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4859 		kfree_skb(skb);
4860 	}
4861 }
4862 
4863 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4864 
4865 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4866 {
4867 	if (xdp_prog) {
4868 		struct xdp_buff xdp;
4869 		u32 act;
4870 		int err;
4871 
4872 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4873 		if (act != XDP_PASS) {
4874 			switch (act) {
4875 			case XDP_REDIRECT:
4876 				err = xdp_do_generic_redirect(skb->dev, skb,
4877 							      &xdp, xdp_prog);
4878 				if (err)
4879 					goto out_redir;
4880 				break;
4881 			case XDP_TX:
4882 				generic_xdp_tx(skb, xdp_prog);
4883 				break;
4884 			}
4885 			return XDP_DROP;
4886 		}
4887 	}
4888 	return XDP_PASS;
4889 out_redir:
4890 	kfree_skb(skb);
4891 	return XDP_DROP;
4892 }
4893 EXPORT_SYMBOL_GPL(do_xdp_generic);
4894 
4895 static int netif_rx_internal(struct sk_buff *skb)
4896 {
4897 	int ret;
4898 
4899 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4900 
4901 	trace_netif_rx(skb);
4902 
4903 #ifdef CONFIG_RPS
4904 	if (static_branch_unlikely(&rps_needed)) {
4905 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4906 		int cpu;
4907 
4908 		preempt_disable();
4909 		rcu_read_lock();
4910 
4911 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4912 		if (cpu < 0)
4913 			cpu = smp_processor_id();
4914 
4915 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4916 
4917 		rcu_read_unlock();
4918 		preempt_enable();
4919 	} else
4920 #endif
4921 	{
4922 		unsigned int qtail;
4923 
4924 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4925 		put_cpu();
4926 	}
4927 	return ret;
4928 }
4929 
4930 /**
4931  *	netif_rx	-	post buffer to the network code
4932  *	@skb: buffer to post
4933  *
4934  *	This function receives a packet from a device driver and queues it for
4935  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4936  *	may be dropped during processing for congestion control or by the
4937  *	protocol layers.
4938  *
4939  *	return values:
4940  *	NET_RX_SUCCESS	(no congestion)
4941  *	NET_RX_DROP     (packet was dropped)
4942  *
4943  */
4944 
4945 int netif_rx(struct sk_buff *skb)
4946 {
4947 	int ret;
4948 
4949 	trace_netif_rx_entry(skb);
4950 
4951 	ret = netif_rx_internal(skb);
4952 	trace_netif_rx_exit(ret);
4953 
4954 	return ret;
4955 }
4956 EXPORT_SYMBOL(netif_rx);
4957 
4958 int netif_rx_ni(struct sk_buff *skb)
4959 {
4960 	int err;
4961 
4962 	trace_netif_rx_ni_entry(skb);
4963 
4964 	preempt_disable();
4965 	err = netif_rx_internal(skb);
4966 	if (local_softirq_pending())
4967 		do_softirq();
4968 	preempt_enable();
4969 	trace_netif_rx_ni_exit(err);
4970 
4971 	return err;
4972 }
4973 EXPORT_SYMBOL(netif_rx_ni);
4974 
4975 int netif_rx_any_context(struct sk_buff *skb)
4976 {
4977 	/*
4978 	 * If invoked from contexts which do not invoke bottom half
4979 	 * processing either at return from interrupt or when softrqs are
4980 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4981 	 * directly.
4982 	 */
4983 	if (in_interrupt())
4984 		return netif_rx(skb);
4985 	else
4986 		return netif_rx_ni(skb);
4987 }
4988 EXPORT_SYMBOL(netif_rx_any_context);
4989 
4990 static __latent_entropy void net_tx_action(struct softirq_action *h)
4991 {
4992 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4993 
4994 	if (sd->completion_queue) {
4995 		struct sk_buff *clist;
4996 
4997 		local_irq_disable();
4998 		clist = sd->completion_queue;
4999 		sd->completion_queue = NULL;
5000 		local_irq_enable();
5001 
5002 		while (clist) {
5003 			struct sk_buff *skb = clist;
5004 
5005 			clist = clist->next;
5006 
5007 			WARN_ON(refcount_read(&skb->users));
5008 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5009 				trace_consume_skb(skb);
5010 			else
5011 				trace_kfree_skb(skb, net_tx_action);
5012 
5013 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5014 				__kfree_skb(skb);
5015 			else
5016 				__kfree_skb_defer(skb);
5017 		}
5018 	}
5019 
5020 	if (sd->output_queue) {
5021 		struct Qdisc *head;
5022 
5023 		local_irq_disable();
5024 		head = sd->output_queue;
5025 		sd->output_queue = NULL;
5026 		sd->output_queue_tailp = &sd->output_queue;
5027 		local_irq_enable();
5028 
5029 		rcu_read_lock();
5030 
5031 		while (head) {
5032 			struct Qdisc *q = head;
5033 			spinlock_t *root_lock = NULL;
5034 
5035 			head = head->next_sched;
5036 
5037 			/* We need to make sure head->next_sched is read
5038 			 * before clearing __QDISC_STATE_SCHED
5039 			 */
5040 			smp_mb__before_atomic();
5041 
5042 			if (!(q->flags & TCQ_F_NOLOCK)) {
5043 				root_lock = qdisc_lock(q);
5044 				spin_lock(root_lock);
5045 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5046 						     &q->state))) {
5047 				/* There is a synchronize_net() between
5048 				 * STATE_DEACTIVATED flag being set and
5049 				 * qdisc_reset()/some_qdisc_is_busy() in
5050 				 * dev_deactivate(), so we can safely bail out
5051 				 * early here to avoid data race between
5052 				 * qdisc_deactivate() and some_qdisc_is_busy()
5053 				 * for lockless qdisc.
5054 				 */
5055 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5056 				continue;
5057 			}
5058 
5059 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5060 			qdisc_run(q);
5061 			if (root_lock)
5062 				spin_unlock(root_lock);
5063 		}
5064 
5065 		rcu_read_unlock();
5066 	}
5067 
5068 	xfrm_dev_backlog(sd);
5069 }
5070 
5071 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5072 /* This hook is defined here for ATM LANE */
5073 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5074 			     unsigned char *addr) __read_mostly;
5075 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5076 #endif
5077 
5078 static inline struct sk_buff *
5079 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5080 		   struct net_device *orig_dev, bool *another)
5081 {
5082 #ifdef CONFIG_NET_CLS_ACT
5083 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5084 	struct tcf_result cl_res;
5085 
5086 	/* If there's at least one ingress present somewhere (so
5087 	 * we get here via enabled static key), remaining devices
5088 	 * that are not configured with an ingress qdisc will bail
5089 	 * out here.
5090 	 */
5091 	if (!miniq)
5092 		return skb;
5093 
5094 	if (*pt_prev) {
5095 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5096 		*pt_prev = NULL;
5097 	}
5098 
5099 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5100 	qdisc_skb_cb(skb)->mru = 0;
5101 	qdisc_skb_cb(skb)->post_ct = false;
5102 	skb->tc_at_ingress = 1;
5103 	mini_qdisc_bstats_cpu_update(miniq, skb);
5104 
5105 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5106 				     &cl_res, false)) {
5107 	case TC_ACT_OK:
5108 	case TC_ACT_RECLASSIFY:
5109 		skb->tc_index = TC_H_MIN(cl_res.classid);
5110 		break;
5111 	case TC_ACT_SHOT:
5112 		mini_qdisc_qstats_cpu_drop(miniq);
5113 		kfree_skb(skb);
5114 		return NULL;
5115 	case TC_ACT_STOLEN:
5116 	case TC_ACT_QUEUED:
5117 	case TC_ACT_TRAP:
5118 		consume_skb(skb);
5119 		return NULL;
5120 	case TC_ACT_REDIRECT:
5121 		/* skb_mac_header check was done by cls/act_bpf, so
5122 		 * we can safely push the L2 header back before
5123 		 * redirecting to another netdev
5124 		 */
5125 		__skb_push(skb, skb->mac_len);
5126 		if (skb_do_redirect(skb) == -EAGAIN) {
5127 			__skb_pull(skb, skb->mac_len);
5128 			*another = true;
5129 			break;
5130 		}
5131 		return NULL;
5132 	case TC_ACT_CONSUMED:
5133 		return NULL;
5134 	default:
5135 		break;
5136 	}
5137 #endif /* CONFIG_NET_CLS_ACT */
5138 	return skb;
5139 }
5140 
5141 /**
5142  *	netdev_is_rx_handler_busy - check if receive handler is registered
5143  *	@dev: device to check
5144  *
5145  *	Check if a receive handler is already registered for a given device.
5146  *	Return true if there one.
5147  *
5148  *	The caller must hold the rtnl_mutex.
5149  */
5150 bool netdev_is_rx_handler_busy(struct net_device *dev)
5151 {
5152 	ASSERT_RTNL();
5153 	return dev && rtnl_dereference(dev->rx_handler);
5154 }
5155 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5156 
5157 /**
5158  *	netdev_rx_handler_register - register receive handler
5159  *	@dev: device to register a handler for
5160  *	@rx_handler: receive handler to register
5161  *	@rx_handler_data: data pointer that is used by rx handler
5162  *
5163  *	Register a receive handler for a device. This handler will then be
5164  *	called from __netif_receive_skb. A negative errno code is returned
5165  *	on a failure.
5166  *
5167  *	The caller must hold the rtnl_mutex.
5168  *
5169  *	For a general description of rx_handler, see enum rx_handler_result.
5170  */
5171 int netdev_rx_handler_register(struct net_device *dev,
5172 			       rx_handler_func_t *rx_handler,
5173 			       void *rx_handler_data)
5174 {
5175 	if (netdev_is_rx_handler_busy(dev))
5176 		return -EBUSY;
5177 
5178 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5179 		return -EINVAL;
5180 
5181 	/* Note: rx_handler_data must be set before rx_handler */
5182 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5183 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5184 
5185 	return 0;
5186 }
5187 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5188 
5189 /**
5190  *	netdev_rx_handler_unregister - unregister receive handler
5191  *	@dev: device to unregister a handler from
5192  *
5193  *	Unregister a receive handler from a device.
5194  *
5195  *	The caller must hold the rtnl_mutex.
5196  */
5197 void netdev_rx_handler_unregister(struct net_device *dev)
5198 {
5199 
5200 	ASSERT_RTNL();
5201 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5202 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5203 	 * section has a guarantee to see a non NULL rx_handler_data
5204 	 * as well.
5205 	 */
5206 	synchronize_net();
5207 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5208 }
5209 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5210 
5211 /*
5212  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5213  * the special handling of PFMEMALLOC skbs.
5214  */
5215 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5216 {
5217 	switch (skb->protocol) {
5218 	case htons(ETH_P_ARP):
5219 	case htons(ETH_P_IP):
5220 	case htons(ETH_P_IPV6):
5221 	case htons(ETH_P_8021Q):
5222 	case htons(ETH_P_8021AD):
5223 		return true;
5224 	default:
5225 		return false;
5226 	}
5227 }
5228 
5229 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5230 			     int *ret, struct net_device *orig_dev)
5231 {
5232 	if (nf_hook_ingress_active(skb)) {
5233 		int ingress_retval;
5234 
5235 		if (*pt_prev) {
5236 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5237 			*pt_prev = NULL;
5238 		}
5239 
5240 		rcu_read_lock();
5241 		ingress_retval = nf_hook_ingress(skb);
5242 		rcu_read_unlock();
5243 		return ingress_retval;
5244 	}
5245 	return 0;
5246 }
5247 
5248 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5249 				    struct packet_type **ppt_prev)
5250 {
5251 	struct packet_type *ptype, *pt_prev;
5252 	rx_handler_func_t *rx_handler;
5253 	struct sk_buff *skb = *pskb;
5254 	struct net_device *orig_dev;
5255 	bool deliver_exact = false;
5256 	int ret = NET_RX_DROP;
5257 	__be16 type;
5258 
5259 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5260 
5261 	trace_netif_receive_skb(skb);
5262 
5263 	orig_dev = skb->dev;
5264 
5265 	skb_reset_network_header(skb);
5266 	if (!skb_transport_header_was_set(skb))
5267 		skb_reset_transport_header(skb);
5268 	skb_reset_mac_len(skb);
5269 
5270 	pt_prev = NULL;
5271 
5272 another_round:
5273 	skb->skb_iif = skb->dev->ifindex;
5274 
5275 	__this_cpu_inc(softnet_data.processed);
5276 
5277 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5278 		int ret2;
5279 
5280 		preempt_disable();
5281 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5282 		preempt_enable();
5283 
5284 		if (ret2 != XDP_PASS) {
5285 			ret = NET_RX_DROP;
5286 			goto out;
5287 		}
5288 		skb_reset_mac_len(skb);
5289 	}
5290 
5291 	if (eth_type_vlan(skb->protocol)) {
5292 		skb = skb_vlan_untag(skb);
5293 		if (unlikely(!skb))
5294 			goto out;
5295 	}
5296 
5297 	if (skb_skip_tc_classify(skb))
5298 		goto skip_classify;
5299 
5300 	if (pfmemalloc)
5301 		goto skip_taps;
5302 
5303 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5304 		if (pt_prev)
5305 			ret = deliver_skb(skb, pt_prev, orig_dev);
5306 		pt_prev = ptype;
5307 	}
5308 
5309 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5310 		if (pt_prev)
5311 			ret = deliver_skb(skb, pt_prev, orig_dev);
5312 		pt_prev = ptype;
5313 	}
5314 
5315 skip_taps:
5316 #ifdef CONFIG_NET_INGRESS
5317 	if (static_branch_unlikely(&ingress_needed_key)) {
5318 		bool another = false;
5319 
5320 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5321 					 &another);
5322 		if (another)
5323 			goto another_round;
5324 		if (!skb)
5325 			goto out;
5326 
5327 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5328 			goto out;
5329 	}
5330 #endif
5331 	skb_reset_redirect(skb);
5332 skip_classify:
5333 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5334 		goto drop;
5335 
5336 	if (skb_vlan_tag_present(skb)) {
5337 		if (pt_prev) {
5338 			ret = deliver_skb(skb, pt_prev, orig_dev);
5339 			pt_prev = NULL;
5340 		}
5341 		if (vlan_do_receive(&skb))
5342 			goto another_round;
5343 		else if (unlikely(!skb))
5344 			goto out;
5345 	}
5346 
5347 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5348 	if (rx_handler) {
5349 		if (pt_prev) {
5350 			ret = deliver_skb(skb, pt_prev, orig_dev);
5351 			pt_prev = NULL;
5352 		}
5353 		switch (rx_handler(&skb)) {
5354 		case RX_HANDLER_CONSUMED:
5355 			ret = NET_RX_SUCCESS;
5356 			goto out;
5357 		case RX_HANDLER_ANOTHER:
5358 			goto another_round;
5359 		case RX_HANDLER_EXACT:
5360 			deliver_exact = true;
5361 			break;
5362 		case RX_HANDLER_PASS:
5363 			break;
5364 		default:
5365 			BUG();
5366 		}
5367 	}
5368 
5369 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5370 check_vlan_id:
5371 		if (skb_vlan_tag_get_id(skb)) {
5372 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5373 			 * find vlan device.
5374 			 */
5375 			skb->pkt_type = PACKET_OTHERHOST;
5376 		} else if (eth_type_vlan(skb->protocol)) {
5377 			/* Outer header is 802.1P with vlan 0, inner header is
5378 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5379 			 * not find vlan dev for vlan id 0.
5380 			 */
5381 			__vlan_hwaccel_clear_tag(skb);
5382 			skb = skb_vlan_untag(skb);
5383 			if (unlikely(!skb))
5384 				goto out;
5385 			if (vlan_do_receive(&skb))
5386 				/* After stripping off 802.1P header with vlan 0
5387 				 * vlan dev is found for inner header.
5388 				 */
5389 				goto another_round;
5390 			else if (unlikely(!skb))
5391 				goto out;
5392 			else
5393 				/* We have stripped outer 802.1P vlan 0 header.
5394 				 * But could not find vlan dev.
5395 				 * check again for vlan id to set OTHERHOST.
5396 				 */
5397 				goto check_vlan_id;
5398 		}
5399 		/* Note: we might in the future use prio bits
5400 		 * and set skb->priority like in vlan_do_receive()
5401 		 * For the time being, just ignore Priority Code Point
5402 		 */
5403 		__vlan_hwaccel_clear_tag(skb);
5404 	}
5405 
5406 	type = skb->protocol;
5407 
5408 	/* deliver only exact match when indicated */
5409 	if (likely(!deliver_exact)) {
5410 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5411 				       &ptype_base[ntohs(type) &
5412 						   PTYPE_HASH_MASK]);
5413 	}
5414 
5415 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5416 			       &orig_dev->ptype_specific);
5417 
5418 	if (unlikely(skb->dev != orig_dev)) {
5419 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5420 				       &skb->dev->ptype_specific);
5421 	}
5422 
5423 	if (pt_prev) {
5424 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5425 			goto drop;
5426 		*ppt_prev = pt_prev;
5427 	} else {
5428 drop:
5429 		if (!deliver_exact)
5430 			atomic_long_inc(&skb->dev->rx_dropped);
5431 		else
5432 			atomic_long_inc(&skb->dev->rx_nohandler);
5433 		kfree_skb(skb);
5434 		/* Jamal, now you will not able to escape explaining
5435 		 * me how you were going to use this. :-)
5436 		 */
5437 		ret = NET_RX_DROP;
5438 	}
5439 
5440 out:
5441 	/* The invariant here is that if *ppt_prev is not NULL
5442 	 * then skb should also be non-NULL.
5443 	 *
5444 	 * Apparently *ppt_prev assignment above holds this invariant due to
5445 	 * skb dereferencing near it.
5446 	 */
5447 	*pskb = skb;
5448 	return ret;
5449 }
5450 
5451 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5452 {
5453 	struct net_device *orig_dev = skb->dev;
5454 	struct packet_type *pt_prev = NULL;
5455 	int ret;
5456 
5457 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5458 	if (pt_prev)
5459 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5460 					 skb->dev, pt_prev, orig_dev);
5461 	return ret;
5462 }
5463 
5464 /**
5465  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5466  *	@skb: buffer to process
5467  *
5468  *	More direct receive version of netif_receive_skb().  It should
5469  *	only be used by callers that have a need to skip RPS and Generic XDP.
5470  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5471  *
5472  *	This function may only be called from softirq context and interrupts
5473  *	should be enabled.
5474  *
5475  *	Return values (usually ignored):
5476  *	NET_RX_SUCCESS: no congestion
5477  *	NET_RX_DROP: packet was dropped
5478  */
5479 int netif_receive_skb_core(struct sk_buff *skb)
5480 {
5481 	int ret;
5482 
5483 	rcu_read_lock();
5484 	ret = __netif_receive_skb_one_core(skb, false);
5485 	rcu_read_unlock();
5486 
5487 	return ret;
5488 }
5489 EXPORT_SYMBOL(netif_receive_skb_core);
5490 
5491 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5492 						  struct packet_type *pt_prev,
5493 						  struct net_device *orig_dev)
5494 {
5495 	struct sk_buff *skb, *next;
5496 
5497 	if (!pt_prev)
5498 		return;
5499 	if (list_empty(head))
5500 		return;
5501 	if (pt_prev->list_func != NULL)
5502 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5503 				   ip_list_rcv, head, pt_prev, orig_dev);
5504 	else
5505 		list_for_each_entry_safe(skb, next, head, list) {
5506 			skb_list_del_init(skb);
5507 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5508 		}
5509 }
5510 
5511 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5512 {
5513 	/* Fast-path assumptions:
5514 	 * - There is no RX handler.
5515 	 * - Only one packet_type matches.
5516 	 * If either of these fails, we will end up doing some per-packet
5517 	 * processing in-line, then handling the 'last ptype' for the whole
5518 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5519 	 * because the 'last ptype' must be constant across the sublist, and all
5520 	 * other ptypes are handled per-packet.
5521 	 */
5522 	/* Current (common) ptype of sublist */
5523 	struct packet_type *pt_curr = NULL;
5524 	/* Current (common) orig_dev of sublist */
5525 	struct net_device *od_curr = NULL;
5526 	struct list_head sublist;
5527 	struct sk_buff *skb, *next;
5528 
5529 	INIT_LIST_HEAD(&sublist);
5530 	list_for_each_entry_safe(skb, next, head, list) {
5531 		struct net_device *orig_dev = skb->dev;
5532 		struct packet_type *pt_prev = NULL;
5533 
5534 		skb_list_del_init(skb);
5535 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5536 		if (!pt_prev)
5537 			continue;
5538 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5539 			/* dispatch old sublist */
5540 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5541 			/* start new sublist */
5542 			INIT_LIST_HEAD(&sublist);
5543 			pt_curr = pt_prev;
5544 			od_curr = orig_dev;
5545 		}
5546 		list_add_tail(&skb->list, &sublist);
5547 	}
5548 
5549 	/* dispatch final sublist */
5550 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5551 }
5552 
5553 static int __netif_receive_skb(struct sk_buff *skb)
5554 {
5555 	int ret;
5556 
5557 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5558 		unsigned int noreclaim_flag;
5559 
5560 		/*
5561 		 * PFMEMALLOC skbs are special, they should
5562 		 * - be delivered to SOCK_MEMALLOC sockets only
5563 		 * - stay away from userspace
5564 		 * - have bounded memory usage
5565 		 *
5566 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5567 		 * context down to all allocation sites.
5568 		 */
5569 		noreclaim_flag = memalloc_noreclaim_save();
5570 		ret = __netif_receive_skb_one_core(skb, true);
5571 		memalloc_noreclaim_restore(noreclaim_flag);
5572 	} else
5573 		ret = __netif_receive_skb_one_core(skb, false);
5574 
5575 	return ret;
5576 }
5577 
5578 static void __netif_receive_skb_list(struct list_head *head)
5579 {
5580 	unsigned long noreclaim_flag = 0;
5581 	struct sk_buff *skb, *next;
5582 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5583 
5584 	list_for_each_entry_safe(skb, next, head, list) {
5585 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5586 			struct list_head sublist;
5587 
5588 			/* Handle the previous sublist */
5589 			list_cut_before(&sublist, head, &skb->list);
5590 			if (!list_empty(&sublist))
5591 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5592 			pfmemalloc = !pfmemalloc;
5593 			/* See comments in __netif_receive_skb */
5594 			if (pfmemalloc)
5595 				noreclaim_flag = memalloc_noreclaim_save();
5596 			else
5597 				memalloc_noreclaim_restore(noreclaim_flag);
5598 		}
5599 	}
5600 	/* Handle the remaining sublist */
5601 	if (!list_empty(head))
5602 		__netif_receive_skb_list_core(head, pfmemalloc);
5603 	/* Restore pflags */
5604 	if (pfmemalloc)
5605 		memalloc_noreclaim_restore(noreclaim_flag);
5606 }
5607 
5608 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5609 {
5610 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5611 	struct bpf_prog *new = xdp->prog;
5612 	int ret = 0;
5613 
5614 	if (new) {
5615 		u32 i;
5616 
5617 		mutex_lock(&new->aux->used_maps_mutex);
5618 
5619 		/* generic XDP does not work with DEVMAPs that can
5620 		 * have a bpf_prog installed on an entry
5621 		 */
5622 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5623 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5624 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5625 				mutex_unlock(&new->aux->used_maps_mutex);
5626 				return -EINVAL;
5627 			}
5628 		}
5629 
5630 		mutex_unlock(&new->aux->used_maps_mutex);
5631 	}
5632 
5633 	switch (xdp->command) {
5634 	case XDP_SETUP_PROG:
5635 		rcu_assign_pointer(dev->xdp_prog, new);
5636 		if (old)
5637 			bpf_prog_put(old);
5638 
5639 		if (old && !new) {
5640 			static_branch_dec(&generic_xdp_needed_key);
5641 		} else if (new && !old) {
5642 			static_branch_inc(&generic_xdp_needed_key);
5643 			dev_disable_lro(dev);
5644 			dev_disable_gro_hw(dev);
5645 		}
5646 		break;
5647 
5648 	default:
5649 		ret = -EINVAL;
5650 		break;
5651 	}
5652 
5653 	return ret;
5654 }
5655 
5656 static int netif_receive_skb_internal(struct sk_buff *skb)
5657 {
5658 	int ret;
5659 
5660 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5661 
5662 	if (skb_defer_rx_timestamp(skb))
5663 		return NET_RX_SUCCESS;
5664 
5665 	rcu_read_lock();
5666 #ifdef CONFIG_RPS
5667 	if (static_branch_unlikely(&rps_needed)) {
5668 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5669 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5670 
5671 		if (cpu >= 0) {
5672 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5673 			rcu_read_unlock();
5674 			return ret;
5675 		}
5676 	}
5677 #endif
5678 	ret = __netif_receive_skb(skb);
5679 	rcu_read_unlock();
5680 	return ret;
5681 }
5682 
5683 static void netif_receive_skb_list_internal(struct list_head *head)
5684 {
5685 	struct sk_buff *skb, *next;
5686 	struct list_head sublist;
5687 
5688 	INIT_LIST_HEAD(&sublist);
5689 	list_for_each_entry_safe(skb, next, head, list) {
5690 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5691 		skb_list_del_init(skb);
5692 		if (!skb_defer_rx_timestamp(skb))
5693 			list_add_tail(&skb->list, &sublist);
5694 	}
5695 	list_splice_init(&sublist, head);
5696 
5697 	rcu_read_lock();
5698 #ifdef CONFIG_RPS
5699 	if (static_branch_unlikely(&rps_needed)) {
5700 		list_for_each_entry_safe(skb, next, head, list) {
5701 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5702 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5703 
5704 			if (cpu >= 0) {
5705 				/* Will be handled, remove from list */
5706 				skb_list_del_init(skb);
5707 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5708 			}
5709 		}
5710 	}
5711 #endif
5712 	__netif_receive_skb_list(head);
5713 	rcu_read_unlock();
5714 }
5715 
5716 /**
5717  *	netif_receive_skb - process receive buffer from network
5718  *	@skb: buffer to process
5719  *
5720  *	netif_receive_skb() is the main receive data processing function.
5721  *	It always succeeds. The buffer may be dropped during processing
5722  *	for congestion control or by the protocol layers.
5723  *
5724  *	This function may only be called from softirq context and interrupts
5725  *	should be enabled.
5726  *
5727  *	Return values (usually ignored):
5728  *	NET_RX_SUCCESS: no congestion
5729  *	NET_RX_DROP: packet was dropped
5730  */
5731 int netif_receive_skb(struct sk_buff *skb)
5732 {
5733 	int ret;
5734 
5735 	trace_netif_receive_skb_entry(skb);
5736 
5737 	ret = netif_receive_skb_internal(skb);
5738 	trace_netif_receive_skb_exit(ret);
5739 
5740 	return ret;
5741 }
5742 EXPORT_SYMBOL(netif_receive_skb);
5743 
5744 /**
5745  *	netif_receive_skb_list - process many receive buffers from network
5746  *	@head: list of skbs to process.
5747  *
5748  *	Since return value of netif_receive_skb() is normally ignored, and
5749  *	wouldn't be meaningful for a list, this function returns void.
5750  *
5751  *	This function may only be called from softirq context and interrupts
5752  *	should be enabled.
5753  */
5754 void netif_receive_skb_list(struct list_head *head)
5755 {
5756 	struct sk_buff *skb;
5757 
5758 	if (list_empty(head))
5759 		return;
5760 	if (trace_netif_receive_skb_list_entry_enabled()) {
5761 		list_for_each_entry(skb, head, list)
5762 			trace_netif_receive_skb_list_entry(skb);
5763 	}
5764 	netif_receive_skb_list_internal(head);
5765 	trace_netif_receive_skb_list_exit(0);
5766 }
5767 EXPORT_SYMBOL(netif_receive_skb_list);
5768 
5769 static DEFINE_PER_CPU(struct work_struct, flush_works);
5770 
5771 /* Network device is going away, flush any packets still pending */
5772 static void flush_backlog(struct work_struct *work)
5773 {
5774 	struct sk_buff *skb, *tmp;
5775 	struct softnet_data *sd;
5776 
5777 	local_bh_disable();
5778 	sd = this_cpu_ptr(&softnet_data);
5779 
5780 	local_irq_disable();
5781 	rps_lock(sd);
5782 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5783 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5784 			__skb_unlink(skb, &sd->input_pkt_queue);
5785 			dev_kfree_skb_irq(skb);
5786 			input_queue_head_incr(sd);
5787 		}
5788 	}
5789 	rps_unlock(sd);
5790 	local_irq_enable();
5791 
5792 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5793 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5794 			__skb_unlink(skb, &sd->process_queue);
5795 			kfree_skb(skb);
5796 			input_queue_head_incr(sd);
5797 		}
5798 	}
5799 	local_bh_enable();
5800 }
5801 
5802 static bool flush_required(int cpu)
5803 {
5804 #if IS_ENABLED(CONFIG_RPS)
5805 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5806 	bool do_flush;
5807 
5808 	local_irq_disable();
5809 	rps_lock(sd);
5810 
5811 	/* as insertion into process_queue happens with the rps lock held,
5812 	 * process_queue access may race only with dequeue
5813 	 */
5814 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5815 		   !skb_queue_empty_lockless(&sd->process_queue);
5816 	rps_unlock(sd);
5817 	local_irq_enable();
5818 
5819 	return do_flush;
5820 #endif
5821 	/* without RPS we can't safely check input_pkt_queue: during a
5822 	 * concurrent remote skb_queue_splice() we can detect as empty both
5823 	 * input_pkt_queue and process_queue even if the latter could end-up
5824 	 * containing a lot of packets.
5825 	 */
5826 	return true;
5827 }
5828 
5829 static void flush_all_backlogs(void)
5830 {
5831 	static cpumask_t flush_cpus;
5832 	unsigned int cpu;
5833 
5834 	/* since we are under rtnl lock protection we can use static data
5835 	 * for the cpumask and avoid allocating on stack the possibly
5836 	 * large mask
5837 	 */
5838 	ASSERT_RTNL();
5839 
5840 	get_online_cpus();
5841 
5842 	cpumask_clear(&flush_cpus);
5843 	for_each_online_cpu(cpu) {
5844 		if (flush_required(cpu)) {
5845 			queue_work_on(cpu, system_highpri_wq,
5846 				      per_cpu_ptr(&flush_works, cpu));
5847 			cpumask_set_cpu(cpu, &flush_cpus);
5848 		}
5849 	}
5850 
5851 	/* we can have in flight packet[s] on the cpus we are not flushing,
5852 	 * synchronize_net() in unregister_netdevice_many() will take care of
5853 	 * them
5854 	 */
5855 	for_each_cpu(cpu, &flush_cpus)
5856 		flush_work(per_cpu_ptr(&flush_works, cpu));
5857 
5858 	put_online_cpus();
5859 }
5860 
5861 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5862 static void gro_normal_list(struct napi_struct *napi)
5863 {
5864 	if (!napi->rx_count)
5865 		return;
5866 	netif_receive_skb_list_internal(&napi->rx_list);
5867 	INIT_LIST_HEAD(&napi->rx_list);
5868 	napi->rx_count = 0;
5869 }
5870 
5871 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5872  * pass the whole batch up to the stack.
5873  */
5874 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5875 {
5876 	list_add_tail(&skb->list, &napi->rx_list);
5877 	napi->rx_count += segs;
5878 	if (napi->rx_count >= gro_normal_batch)
5879 		gro_normal_list(napi);
5880 }
5881 
5882 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5883 {
5884 	struct packet_offload *ptype;
5885 	__be16 type = skb->protocol;
5886 	struct list_head *head = &offload_base;
5887 	int err = -ENOENT;
5888 
5889 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5890 
5891 	if (NAPI_GRO_CB(skb)->count == 1) {
5892 		skb_shinfo(skb)->gso_size = 0;
5893 		goto out;
5894 	}
5895 
5896 	rcu_read_lock();
5897 	list_for_each_entry_rcu(ptype, head, list) {
5898 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5899 			continue;
5900 
5901 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5902 					 ipv6_gro_complete, inet_gro_complete,
5903 					 skb, 0);
5904 		break;
5905 	}
5906 	rcu_read_unlock();
5907 
5908 	if (err) {
5909 		WARN_ON(&ptype->list == head);
5910 		kfree_skb(skb);
5911 		return NET_RX_SUCCESS;
5912 	}
5913 
5914 out:
5915 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5916 	return NET_RX_SUCCESS;
5917 }
5918 
5919 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5920 				   bool flush_old)
5921 {
5922 	struct list_head *head = &napi->gro_hash[index].list;
5923 	struct sk_buff *skb, *p;
5924 
5925 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5926 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5927 			return;
5928 		skb_list_del_init(skb);
5929 		napi_gro_complete(napi, skb);
5930 		napi->gro_hash[index].count--;
5931 	}
5932 
5933 	if (!napi->gro_hash[index].count)
5934 		__clear_bit(index, &napi->gro_bitmask);
5935 }
5936 
5937 /* napi->gro_hash[].list contains packets ordered by age.
5938  * youngest packets at the head of it.
5939  * Complete skbs in reverse order to reduce latencies.
5940  */
5941 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5942 {
5943 	unsigned long bitmask = napi->gro_bitmask;
5944 	unsigned int i, base = ~0U;
5945 
5946 	while ((i = ffs(bitmask)) != 0) {
5947 		bitmask >>= i;
5948 		base += i;
5949 		__napi_gro_flush_chain(napi, base, flush_old);
5950 	}
5951 }
5952 EXPORT_SYMBOL(napi_gro_flush);
5953 
5954 static void gro_list_prepare(const struct list_head *head,
5955 			     const struct sk_buff *skb)
5956 {
5957 	unsigned int maclen = skb->dev->hard_header_len;
5958 	u32 hash = skb_get_hash_raw(skb);
5959 	struct sk_buff *p;
5960 
5961 	list_for_each_entry(p, head, list) {
5962 		unsigned long diffs;
5963 
5964 		NAPI_GRO_CB(p)->flush = 0;
5965 
5966 		if (hash != skb_get_hash_raw(p)) {
5967 			NAPI_GRO_CB(p)->same_flow = 0;
5968 			continue;
5969 		}
5970 
5971 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5972 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5973 		if (skb_vlan_tag_present(p))
5974 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5975 		diffs |= skb_metadata_dst_cmp(p, skb);
5976 		diffs |= skb_metadata_differs(p, skb);
5977 		if (maclen == ETH_HLEN)
5978 			diffs |= compare_ether_header(skb_mac_header(p),
5979 						      skb_mac_header(skb));
5980 		else if (!diffs)
5981 			diffs = memcmp(skb_mac_header(p),
5982 				       skb_mac_header(skb),
5983 				       maclen);
5984 		NAPI_GRO_CB(p)->same_flow = !diffs;
5985 	}
5986 }
5987 
5988 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5989 {
5990 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5991 	const skb_frag_t *frag0 = &pinfo->frags[0];
5992 
5993 	NAPI_GRO_CB(skb)->data_offset = 0;
5994 	NAPI_GRO_CB(skb)->frag0 = NULL;
5995 	NAPI_GRO_CB(skb)->frag0_len = 0;
5996 
5997 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5998 	    !PageHighMem(skb_frag_page(frag0)) &&
5999 	    (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6000 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6001 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6002 						    skb_frag_size(frag0),
6003 						    skb->end - skb->tail);
6004 	}
6005 }
6006 
6007 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6008 {
6009 	struct skb_shared_info *pinfo = skb_shinfo(skb);
6010 
6011 	BUG_ON(skb->end - skb->tail < grow);
6012 
6013 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6014 
6015 	skb->data_len -= grow;
6016 	skb->tail += grow;
6017 
6018 	skb_frag_off_add(&pinfo->frags[0], grow);
6019 	skb_frag_size_sub(&pinfo->frags[0], grow);
6020 
6021 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6022 		skb_frag_unref(skb, 0);
6023 		memmove(pinfo->frags, pinfo->frags + 1,
6024 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
6025 	}
6026 }
6027 
6028 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6029 {
6030 	struct sk_buff *oldest;
6031 
6032 	oldest = list_last_entry(head, struct sk_buff, list);
6033 
6034 	/* We are called with head length >= MAX_GRO_SKBS, so this is
6035 	 * impossible.
6036 	 */
6037 	if (WARN_ON_ONCE(!oldest))
6038 		return;
6039 
6040 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
6041 	 * SKB to the chain.
6042 	 */
6043 	skb_list_del_init(oldest);
6044 	napi_gro_complete(napi, oldest);
6045 }
6046 
6047 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6048 {
6049 	u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6050 	struct gro_list *gro_list = &napi->gro_hash[bucket];
6051 	struct list_head *head = &offload_base;
6052 	struct packet_offload *ptype;
6053 	__be16 type = skb->protocol;
6054 	struct sk_buff *pp = NULL;
6055 	enum gro_result ret;
6056 	int same_flow;
6057 	int grow;
6058 
6059 	if (netif_elide_gro(skb->dev))
6060 		goto normal;
6061 
6062 	gro_list_prepare(&gro_list->list, skb);
6063 
6064 	rcu_read_lock();
6065 	list_for_each_entry_rcu(ptype, head, list) {
6066 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6067 			continue;
6068 
6069 		skb_set_network_header(skb, skb_gro_offset(skb));
6070 		skb_reset_mac_len(skb);
6071 		NAPI_GRO_CB(skb)->same_flow = 0;
6072 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6073 		NAPI_GRO_CB(skb)->free = 0;
6074 		NAPI_GRO_CB(skb)->encap_mark = 0;
6075 		NAPI_GRO_CB(skb)->recursion_counter = 0;
6076 		NAPI_GRO_CB(skb)->is_fou = 0;
6077 		NAPI_GRO_CB(skb)->is_atomic = 1;
6078 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6079 
6080 		/* Setup for GRO checksum validation */
6081 		switch (skb->ip_summed) {
6082 		case CHECKSUM_COMPLETE:
6083 			NAPI_GRO_CB(skb)->csum = skb->csum;
6084 			NAPI_GRO_CB(skb)->csum_valid = 1;
6085 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6086 			break;
6087 		case CHECKSUM_UNNECESSARY:
6088 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6089 			NAPI_GRO_CB(skb)->csum_valid = 0;
6090 			break;
6091 		default:
6092 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6093 			NAPI_GRO_CB(skb)->csum_valid = 0;
6094 		}
6095 
6096 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6097 					ipv6_gro_receive, inet_gro_receive,
6098 					&gro_list->list, skb);
6099 		break;
6100 	}
6101 	rcu_read_unlock();
6102 
6103 	if (&ptype->list == head)
6104 		goto normal;
6105 
6106 	if (PTR_ERR(pp) == -EINPROGRESS) {
6107 		ret = GRO_CONSUMED;
6108 		goto ok;
6109 	}
6110 
6111 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6112 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6113 
6114 	if (pp) {
6115 		skb_list_del_init(pp);
6116 		napi_gro_complete(napi, pp);
6117 		gro_list->count--;
6118 	}
6119 
6120 	if (same_flow)
6121 		goto ok;
6122 
6123 	if (NAPI_GRO_CB(skb)->flush)
6124 		goto normal;
6125 
6126 	if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6127 		gro_flush_oldest(napi, &gro_list->list);
6128 	else
6129 		gro_list->count++;
6130 
6131 	NAPI_GRO_CB(skb)->count = 1;
6132 	NAPI_GRO_CB(skb)->age = jiffies;
6133 	NAPI_GRO_CB(skb)->last = skb;
6134 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6135 	list_add(&skb->list, &gro_list->list);
6136 	ret = GRO_HELD;
6137 
6138 pull:
6139 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6140 	if (grow > 0)
6141 		gro_pull_from_frag0(skb, grow);
6142 ok:
6143 	if (gro_list->count) {
6144 		if (!test_bit(bucket, &napi->gro_bitmask))
6145 			__set_bit(bucket, &napi->gro_bitmask);
6146 	} else if (test_bit(bucket, &napi->gro_bitmask)) {
6147 		__clear_bit(bucket, &napi->gro_bitmask);
6148 	}
6149 
6150 	return ret;
6151 
6152 normal:
6153 	ret = GRO_NORMAL;
6154 	goto pull;
6155 }
6156 
6157 struct packet_offload *gro_find_receive_by_type(__be16 type)
6158 {
6159 	struct list_head *offload_head = &offload_base;
6160 	struct packet_offload *ptype;
6161 
6162 	list_for_each_entry_rcu(ptype, offload_head, list) {
6163 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6164 			continue;
6165 		return ptype;
6166 	}
6167 	return NULL;
6168 }
6169 EXPORT_SYMBOL(gro_find_receive_by_type);
6170 
6171 struct packet_offload *gro_find_complete_by_type(__be16 type)
6172 {
6173 	struct list_head *offload_head = &offload_base;
6174 	struct packet_offload *ptype;
6175 
6176 	list_for_each_entry_rcu(ptype, offload_head, list) {
6177 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6178 			continue;
6179 		return ptype;
6180 	}
6181 	return NULL;
6182 }
6183 EXPORT_SYMBOL(gro_find_complete_by_type);
6184 
6185 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6186 				    struct sk_buff *skb,
6187 				    gro_result_t ret)
6188 {
6189 	switch (ret) {
6190 	case GRO_NORMAL:
6191 		gro_normal_one(napi, skb, 1);
6192 		break;
6193 
6194 	case GRO_MERGED_FREE:
6195 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6196 			napi_skb_free_stolen_head(skb);
6197 		else
6198 			__kfree_skb_defer(skb);
6199 		break;
6200 
6201 	case GRO_HELD:
6202 	case GRO_MERGED:
6203 	case GRO_CONSUMED:
6204 		break;
6205 	}
6206 
6207 	return ret;
6208 }
6209 
6210 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6211 {
6212 	gro_result_t ret;
6213 
6214 	skb_mark_napi_id(skb, napi);
6215 	trace_napi_gro_receive_entry(skb);
6216 
6217 	skb_gro_reset_offset(skb, 0);
6218 
6219 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6220 	trace_napi_gro_receive_exit(ret);
6221 
6222 	return ret;
6223 }
6224 EXPORT_SYMBOL(napi_gro_receive);
6225 
6226 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6227 {
6228 	if (unlikely(skb->pfmemalloc)) {
6229 		consume_skb(skb);
6230 		return;
6231 	}
6232 	__skb_pull(skb, skb_headlen(skb));
6233 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6234 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6235 	__vlan_hwaccel_clear_tag(skb);
6236 	skb->dev = napi->dev;
6237 	skb->skb_iif = 0;
6238 
6239 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6240 	skb->pkt_type = PACKET_HOST;
6241 
6242 	skb->encapsulation = 0;
6243 	skb_shinfo(skb)->gso_type = 0;
6244 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6245 	skb_ext_reset(skb);
6246 
6247 	napi->skb = skb;
6248 }
6249 
6250 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6251 {
6252 	struct sk_buff *skb = napi->skb;
6253 
6254 	if (!skb) {
6255 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6256 		if (skb) {
6257 			napi->skb = skb;
6258 			skb_mark_napi_id(skb, napi);
6259 		}
6260 	}
6261 	return skb;
6262 }
6263 EXPORT_SYMBOL(napi_get_frags);
6264 
6265 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6266 				      struct sk_buff *skb,
6267 				      gro_result_t ret)
6268 {
6269 	switch (ret) {
6270 	case GRO_NORMAL:
6271 	case GRO_HELD:
6272 		__skb_push(skb, ETH_HLEN);
6273 		skb->protocol = eth_type_trans(skb, skb->dev);
6274 		if (ret == GRO_NORMAL)
6275 			gro_normal_one(napi, skb, 1);
6276 		break;
6277 
6278 	case GRO_MERGED_FREE:
6279 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6280 			napi_skb_free_stolen_head(skb);
6281 		else
6282 			napi_reuse_skb(napi, skb);
6283 		break;
6284 
6285 	case GRO_MERGED:
6286 	case GRO_CONSUMED:
6287 		break;
6288 	}
6289 
6290 	return ret;
6291 }
6292 
6293 /* Upper GRO stack assumes network header starts at gro_offset=0
6294  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6295  * We copy ethernet header into skb->data to have a common layout.
6296  */
6297 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6298 {
6299 	struct sk_buff *skb = napi->skb;
6300 	const struct ethhdr *eth;
6301 	unsigned int hlen = sizeof(*eth);
6302 
6303 	napi->skb = NULL;
6304 
6305 	skb_reset_mac_header(skb);
6306 	skb_gro_reset_offset(skb, hlen);
6307 
6308 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6309 		eth = skb_gro_header_slow(skb, hlen, 0);
6310 		if (unlikely(!eth)) {
6311 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6312 					     __func__, napi->dev->name);
6313 			napi_reuse_skb(napi, skb);
6314 			return NULL;
6315 		}
6316 	} else {
6317 		eth = (const struct ethhdr *)skb->data;
6318 		gro_pull_from_frag0(skb, hlen);
6319 		NAPI_GRO_CB(skb)->frag0 += hlen;
6320 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6321 	}
6322 	__skb_pull(skb, hlen);
6323 
6324 	/*
6325 	 * This works because the only protocols we care about don't require
6326 	 * special handling.
6327 	 * We'll fix it up properly in napi_frags_finish()
6328 	 */
6329 	skb->protocol = eth->h_proto;
6330 
6331 	return skb;
6332 }
6333 
6334 gro_result_t napi_gro_frags(struct napi_struct *napi)
6335 {
6336 	gro_result_t ret;
6337 	struct sk_buff *skb = napi_frags_skb(napi);
6338 
6339 	trace_napi_gro_frags_entry(skb);
6340 
6341 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6342 	trace_napi_gro_frags_exit(ret);
6343 
6344 	return ret;
6345 }
6346 EXPORT_SYMBOL(napi_gro_frags);
6347 
6348 /* Compute the checksum from gro_offset and return the folded value
6349  * after adding in any pseudo checksum.
6350  */
6351 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6352 {
6353 	__wsum wsum;
6354 	__sum16 sum;
6355 
6356 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6357 
6358 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6359 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6360 	/* See comments in __skb_checksum_complete(). */
6361 	if (likely(!sum)) {
6362 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6363 		    !skb->csum_complete_sw)
6364 			netdev_rx_csum_fault(skb->dev, skb);
6365 	}
6366 
6367 	NAPI_GRO_CB(skb)->csum = wsum;
6368 	NAPI_GRO_CB(skb)->csum_valid = 1;
6369 
6370 	return sum;
6371 }
6372 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6373 
6374 static void net_rps_send_ipi(struct softnet_data *remsd)
6375 {
6376 #ifdef CONFIG_RPS
6377 	while (remsd) {
6378 		struct softnet_data *next = remsd->rps_ipi_next;
6379 
6380 		if (cpu_online(remsd->cpu))
6381 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6382 		remsd = next;
6383 	}
6384 #endif
6385 }
6386 
6387 /*
6388  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6389  * Note: called with local irq disabled, but exits with local irq enabled.
6390  */
6391 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6392 {
6393 #ifdef CONFIG_RPS
6394 	struct softnet_data *remsd = sd->rps_ipi_list;
6395 
6396 	if (remsd) {
6397 		sd->rps_ipi_list = NULL;
6398 
6399 		local_irq_enable();
6400 
6401 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6402 		net_rps_send_ipi(remsd);
6403 	} else
6404 #endif
6405 		local_irq_enable();
6406 }
6407 
6408 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6409 {
6410 #ifdef CONFIG_RPS
6411 	return sd->rps_ipi_list != NULL;
6412 #else
6413 	return false;
6414 #endif
6415 }
6416 
6417 static int process_backlog(struct napi_struct *napi, int quota)
6418 {
6419 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6420 	bool again = true;
6421 	int work = 0;
6422 
6423 	/* Check if we have pending ipi, its better to send them now,
6424 	 * not waiting net_rx_action() end.
6425 	 */
6426 	if (sd_has_rps_ipi_waiting(sd)) {
6427 		local_irq_disable();
6428 		net_rps_action_and_irq_enable(sd);
6429 	}
6430 
6431 	napi->weight = dev_rx_weight;
6432 	while (again) {
6433 		struct sk_buff *skb;
6434 
6435 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6436 			rcu_read_lock();
6437 			__netif_receive_skb(skb);
6438 			rcu_read_unlock();
6439 			input_queue_head_incr(sd);
6440 			if (++work >= quota)
6441 				return work;
6442 
6443 		}
6444 
6445 		local_irq_disable();
6446 		rps_lock(sd);
6447 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6448 			/*
6449 			 * Inline a custom version of __napi_complete().
6450 			 * only current cpu owns and manipulates this napi,
6451 			 * and NAPI_STATE_SCHED is the only possible flag set
6452 			 * on backlog.
6453 			 * We can use a plain write instead of clear_bit(),
6454 			 * and we dont need an smp_mb() memory barrier.
6455 			 */
6456 			napi->state = 0;
6457 			again = false;
6458 		} else {
6459 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6460 						   &sd->process_queue);
6461 		}
6462 		rps_unlock(sd);
6463 		local_irq_enable();
6464 	}
6465 
6466 	return work;
6467 }
6468 
6469 /**
6470  * __napi_schedule - schedule for receive
6471  * @n: entry to schedule
6472  *
6473  * The entry's receive function will be scheduled to run.
6474  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6475  */
6476 void __napi_schedule(struct napi_struct *n)
6477 {
6478 	unsigned long flags;
6479 
6480 	local_irq_save(flags);
6481 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6482 	local_irq_restore(flags);
6483 }
6484 EXPORT_SYMBOL(__napi_schedule);
6485 
6486 /**
6487  *	napi_schedule_prep - check if napi can be scheduled
6488  *	@n: napi context
6489  *
6490  * Test if NAPI routine is already running, and if not mark
6491  * it as running.  This is used as a condition variable to
6492  * insure only one NAPI poll instance runs.  We also make
6493  * sure there is no pending NAPI disable.
6494  */
6495 bool napi_schedule_prep(struct napi_struct *n)
6496 {
6497 	unsigned long val, new;
6498 
6499 	do {
6500 		val = READ_ONCE(n->state);
6501 		if (unlikely(val & NAPIF_STATE_DISABLE))
6502 			return false;
6503 		new = val | NAPIF_STATE_SCHED;
6504 
6505 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6506 		 * This was suggested by Alexander Duyck, as compiler
6507 		 * emits better code than :
6508 		 * if (val & NAPIF_STATE_SCHED)
6509 		 *     new |= NAPIF_STATE_MISSED;
6510 		 */
6511 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6512 						   NAPIF_STATE_MISSED;
6513 	} while (cmpxchg(&n->state, val, new) != val);
6514 
6515 	return !(val & NAPIF_STATE_SCHED);
6516 }
6517 EXPORT_SYMBOL(napi_schedule_prep);
6518 
6519 /**
6520  * __napi_schedule_irqoff - schedule for receive
6521  * @n: entry to schedule
6522  *
6523  * Variant of __napi_schedule() assuming hard irqs are masked.
6524  *
6525  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6526  * because the interrupt disabled assumption might not be true
6527  * due to force-threaded interrupts and spinlock substitution.
6528  */
6529 void __napi_schedule_irqoff(struct napi_struct *n)
6530 {
6531 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6532 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6533 	else
6534 		__napi_schedule(n);
6535 }
6536 EXPORT_SYMBOL(__napi_schedule_irqoff);
6537 
6538 bool napi_complete_done(struct napi_struct *n, int work_done)
6539 {
6540 	unsigned long flags, val, new, timeout = 0;
6541 	bool ret = true;
6542 
6543 	/*
6544 	 * 1) Don't let napi dequeue from the cpu poll list
6545 	 *    just in case its running on a different cpu.
6546 	 * 2) If we are busy polling, do nothing here, we have
6547 	 *    the guarantee we will be called later.
6548 	 */
6549 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6550 				 NAPIF_STATE_IN_BUSY_POLL)))
6551 		return false;
6552 
6553 	if (work_done) {
6554 		if (n->gro_bitmask)
6555 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6556 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6557 	}
6558 	if (n->defer_hard_irqs_count > 0) {
6559 		n->defer_hard_irqs_count--;
6560 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6561 		if (timeout)
6562 			ret = false;
6563 	}
6564 	if (n->gro_bitmask) {
6565 		/* When the NAPI instance uses a timeout and keeps postponing
6566 		 * it, we need to bound somehow the time packets are kept in
6567 		 * the GRO layer
6568 		 */
6569 		napi_gro_flush(n, !!timeout);
6570 	}
6571 
6572 	gro_normal_list(n);
6573 
6574 	if (unlikely(!list_empty(&n->poll_list))) {
6575 		/* If n->poll_list is not empty, we need to mask irqs */
6576 		local_irq_save(flags);
6577 		list_del_init(&n->poll_list);
6578 		local_irq_restore(flags);
6579 	}
6580 
6581 	do {
6582 		val = READ_ONCE(n->state);
6583 
6584 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6585 
6586 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6587 			      NAPIF_STATE_SCHED_THREADED |
6588 			      NAPIF_STATE_PREFER_BUSY_POLL);
6589 
6590 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6591 		 * because we will call napi->poll() one more time.
6592 		 * This C code was suggested by Alexander Duyck to help gcc.
6593 		 */
6594 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6595 						    NAPIF_STATE_SCHED;
6596 	} while (cmpxchg(&n->state, val, new) != val);
6597 
6598 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6599 		__napi_schedule(n);
6600 		return false;
6601 	}
6602 
6603 	if (timeout)
6604 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6605 			      HRTIMER_MODE_REL_PINNED);
6606 	return ret;
6607 }
6608 EXPORT_SYMBOL(napi_complete_done);
6609 
6610 /* must be called under rcu_read_lock(), as we dont take a reference */
6611 static struct napi_struct *napi_by_id(unsigned int napi_id)
6612 {
6613 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6614 	struct napi_struct *napi;
6615 
6616 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6617 		if (napi->napi_id == napi_id)
6618 			return napi;
6619 
6620 	return NULL;
6621 }
6622 
6623 #if defined(CONFIG_NET_RX_BUSY_POLL)
6624 
6625 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6626 {
6627 	if (!skip_schedule) {
6628 		gro_normal_list(napi);
6629 		__napi_schedule(napi);
6630 		return;
6631 	}
6632 
6633 	if (napi->gro_bitmask) {
6634 		/* flush too old packets
6635 		 * If HZ < 1000, flush all packets.
6636 		 */
6637 		napi_gro_flush(napi, HZ >= 1000);
6638 	}
6639 
6640 	gro_normal_list(napi);
6641 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6642 }
6643 
6644 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6645 			   u16 budget)
6646 {
6647 	bool skip_schedule = false;
6648 	unsigned long timeout;
6649 	int rc;
6650 
6651 	/* Busy polling means there is a high chance device driver hard irq
6652 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6653 	 * set in napi_schedule_prep().
6654 	 * Since we are about to call napi->poll() once more, we can safely
6655 	 * clear NAPI_STATE_MISSED.
6656 	 *
6657 	 * Note: x86 could use a single "lock and ..." instruction
6658 	 * to perform these two clear_bit()
6659 	 */
6660 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6661 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6662 
6663 	local_bh_disable();
6664 
6665 	if (prefer_busy_poll) {
6666 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6667 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6668 		if (napi->defer_hard_irqs_count && timeout) {
6669 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6670 			skip_schedule = true;
6671 		}
6672 	}
6673 
6674 	/* All we really want here is to re-enable device interrupts.
6675 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6676 	 */
6677 	rc = napi->poll(napi, budget);
6678 	/* We can't gro_normal_list() here, because napi->poll() might have
6679 	 * rearmed the napi (napi_complete_done()) in which case it could
6680 	 * already be running on another CPU.
6681 	 */
6682 	trace_napi_poll(napi, rc, budget);
6683 	netpoll_poll_unlock(have_poll_lock);
6684 	if (rc == budget)
6685 		__busy_poll_stop(napi, skip_schedule);
6686 	local_bh_enable();
6687 }
6688 
6689 void napi_busy_loop(unsigned int napi_id,
6690 		    bool (*loop_end)(void *, unsigned long),
6691 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6692 {
6693 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6694 	int (*napi_poll)(struct napi_struct *napi, int budget);
6695 	void *have_poll_lock = NULL;
6696 	struct napi_struct *napi;
6697 
6698 restart:
6699 	napi_poll = NULL;
6700 
6701 	rcu_read_lock();
6702 
6703 	napi = napi_by_id(napi_id);
6704 	if (!napi)
6705 		goto out;
6706 
6707 	preempt_disable();
6708 	for (;;) {
6709 		int work = 0;
6710 
6711 		local_bh_disable();
6712 		if (!napi_poll) {
6713 			unsigned long val = READ_ONCE(napi->state);
6714 
6715 			/* If multiple threads are competing for this napi,
6716 			 * we avoid dirtying napi->state as much as we can.
6717 			 */
6718 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6719 				   NAPIF_STATE_IN_BUSY_POLL)) {
6720 				if (prefer_busy_poll)
6721 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6722 				goto count;
6723 			}
6724 			if (cmpxchg(&napi->state, val,
6725 				    val | NAPIF_STATE_IN_BUSY_POLL |
6726 					  NAPIF_STATE_SCHED) != val) {
6727 				if (prefer_busy_poll)
6728 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6729 				goto count;
6730 			}
6731 			have_poll_lock = netpoll_poll_lock(napi);
6732 			napi_poll = napi->poll;
6733 		}
6734 		work = napi_poll(napi, budget);
6735 		trace_napi_poll(napi, work, budget);
6736 		gro_normal_list(napi);
6737 count:
6738 		if (work > 0)
6739 			__NET_ADD_STATS(dev_net(napi->dev),
6740 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6741 		local_bh_enable();
6742 
6743 		if (!loop_end || loop_end(loop_end_arg, start_time))
6744 			break;
6745 
6746 		if (unlikely(need_resched())) {
6747 			if (napi_poll)
6748 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6749 			preempt_enable();
6750 			rcu_read_unlock();
6751 			cond_resched();
6752 			if (loop_end(loop_end_arg, start_time))
6753 				return;
6754 			goto restart;
6755 		}
6756 		cpu_relax();
6757 	}
6758 	if (napi_poll)
6759 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6760 	preempt_enable();
6761 out:
6762 	rcu_read_unlock();
6763 }
6764 EXPORT_SYMBOL(napi_busy_loop);
6765 
6766 #endif /* CONFIG_NET_RX_BUSY_POLL */
6767 
6768 static void napi_hash_add(struct napi_struct *napi)
6769 {
6770 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6771 		return;
6772 
6773 	spin_lock(&napi_hash_lock);
6774 
6775 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6776 	do {
6777 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6778 			napi_gen_id = MIN_NAPI_ID;
6779 	} while (napi_by_id(napi_gen_id));
6780 	napi->napi_id = napi_gen_id;
6781 
6782 	hlist_add_head_rcu(&napi->napi_hash_node,
6783 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6784 
6785 	spin_unlock(&napi_hash_lock);
6786 }
6787 
6788 /* Warning : caller is responsible to make sure rcu grace period
6789  * is respected before freeing memory containing @napi
6790  */
6791 static void napi_hash_del(struct napi_struct *napi)
6792 {
6793 	spin_lock(&napi_hash_lock);
6794 
6795 	hlist_del_init_rcu(&napi->napi_hash_node);
6796 
6797 	spin_unlock(&napi_hash_lock);
6798 }
6799 
6800 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6801 {
6802 	struct napi_struct *napi;
6803 
6804 	napi = container_of(timer, struct napi_struct, timer);
6805 
6806 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6807 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6808 	 */
6809 	if (!napi_disable_pending(napi) &&
6810 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6811 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6812 		__napi_schedule_irqoff(napi);
6813 	}
6814 
6815 	return HRTIMER_NORESTART;
6816 }
6817 
6818 static void init_gro_hash(struct napi_struct *napi)
6819 {
6820 	int i;
6821 
6822 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6823 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6824 		napi->gro_hash[i].count = 0;
6825 	}
6826 	napi->gro_bitmask = 0;
6827 }
6828 
6829 int dev_set_threaded(struct net_device *dev, bool threaded)
6830 {
6831 	struct napi_struct *napi;
6832 	int err = 0;
6833 
6834 	if (dev->threaded == threaded)
6835 		return 0;
6836 
6837 	if (threaded) {
6838 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6839 			if (!napi->thread) {
6840 				err = napi_kthread_create(napi);
6841 				if (err) {
6842 					threaded = false;
6843 					break;
6844 				}
6845 			}
6846 		}
6847 	}
6848 
6849 	dev->threaded = threaded;
6850 
6851 	/* Make sure kthread is created before THREADED bit
6852 	 * is set.
6853 	 */
6854 	smp_mb__before_atomic();
6855 
6856 	/* Setting/unsetting threaded mode on a napi might not immediately
6857 	 * take effect, if the current napi instance is actively being
6858 	 * polled. In this case, the switch between threaded mode and
6859 	 * softirq mode will happen in the next round of napi_schedule().
6860 	 * This should not cause hiccups/stalls to the live traffic.
6861 	 */
6862 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6863 		if (threaded)
6864 			set_bit(NAPI_STATE_THREADED, &napi->state);
6865 		else
6866 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6867 	}
6868 
6869 	return err;
6870 }
6871 EXPORT_SYMBOL(dev_set_threaded);
6872 
6873 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6874 		    int (*poll)(struct napi_struct *, int), int weight)
6875 {
6876 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6877 		return;
6878 
6879 	INIT_LIST_HEAD(&napi->poll_list);
6880 	INIT_HLIST_NODE(&napi->napi_hash_node);
6881 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6882 	napi->timer.function = napi_watchdog;
6883 	init_gro_hash(napi);
6884 	napi->skb = NULL;
6885 	INIT_LIST_HEAD(&napi->rx_list);
6886 	napi->rx_count = 0;
6887 	napi->poll = poll;
6888 	if (weight > NAPI_POLL_WEIGHT)
6889 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6890 				weight);
6891 	napi->weight = weight;
6892 	napi->dev = dev;
6893 #ifdef CONFIG_NETPOLL
6894 	napi->poll_owner = -1;
6895 #endif
6896 	set_bit(NAPI_STATE_SCHED, &napi->state);
6897 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6898 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6899 	napi_hash_add(napi);
6900 	/* Create kthread for this napi if dev->threaded is set.
6901 	 * Clear dev->threaded if kthread creation failed so that
6902 	 * threaded mode will not be enabled in napi_enable().
6903 	 */
6904 	if (dev->threaded && napi_kthread_create(napi))
6905 		dev->threaded = 0;
6906 }
6907 EXPORT_SYMBOL(netif_napi_add);
6908 
6909 void napi_disable(struct napi_struct *n)
6910 {
6911 	might_sleep();
6912 	set_bit(NAPI_STATE_DISABLE, &n->state);
6913 
6914 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6915 		msleep(1);
6916 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6917 		msleep(1);
6918 
6919 	hrtimer_cancel(&n->timer);
6920 
6921 	clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6922 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6923 	clear_bit(NAPI_STATE_THREADED, &n->state);
6924 }
6925 EXPORT_SYMBOL(napi_disable);
6926 
6927 /**
6928  *	napi_enable - enable NAPI scheduling
6929  *	@n: NAPI context
6930  *
6931  * Resume NAPI from being scheduled on this context.
6932  * Must be paired with napi_disable.
6933  */
6934 void napi_enable(struct napi_struct *n)
6935 {
6936 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6937 	smp_mb__before_atomic();
6938 	clear_bit(NAPI_STATE_SCHED, &n->state);
6939 	clear_bit(NAPI_STATE_NPSVC, &n->state);
6940 	if (n->dev->threaded && n->thread)
6941 		set_bit(NAPI_STATE_THREADED, &n->state);
6942 }
6943 EXPORT_SYMBOL(napi_enable);
6944 
6945 static void flush_gro_hash(struct napi_struct *napi)
6946 {
6947 	int i;
6948 
6949 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6950 		struct sk_buff *skb, *n;
6951 
6952 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6953 			kfree_skb(skb);
6954 		napi->gro_hash[i].count = 0;
6955 	}
6956 }
6957 
6958 /* Must be called in process context */
6959 void __netif_napi_del(struct napi_struct *napi)
6960 {
6961 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6962 		return;
6963 
6964 	napi_hash_del(napi);
6965 	list_del_rcu(&napi->dev_list);
6966 	napi_free_frags(napi);
6967 
6968 	flush_gro_hash(napi);
6969 	napi->gro_bitmask = 0;
6970 
6971 	if (napi->thread) {
6972 		kthread_stop(napi->thread);
6973 		napi->thread = NULL;
6974 	}
6975 }
6976 EXPORT_SYMBOL(__netif_napi_del);
6977 
6978 static int __napi_poll(struct napi_struct *n, bool *repoll)
6979 {
6980 	int work, weight;
6981 
6982 	weight = n->weight;
6983 
6984 	/* This NAPI_STATE_SCHED test is for avoiding a race
6985 	 * with netpoll's poll_napi().  Only the entity which
6986 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6987 	 * actually make the ->poll() call.  Therefore we avoid
6988 	 * accidentally calling ->poll() when NAPI is not scheduled.
6989 	 */
6990 	work = 0;
6991 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6992 		work = n->poll(n, weight);
6993 		trace_napi_poll(n, work, weight);
6994 	}
6995 
6996 	if (unlikely(work > weight))
6997 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6998 			    n->poll, work, weight);
6999 
7000 	if (likely(work < weight))
7001 		return work;
7002 
7003 	/* Drivers must not modify the NAPI state if they
7004 	 * consume the entire weight.  In such cases this code
7005 	 * still "owns" the NAPI instance and therefore can
7006 	 * move the instance around on the list at-will.
7007 	 */
7008 	if (unlikely(napi_disable_pending(n))) {
7009 		napi_complete(n);
7010 		return work;
7011 	}
7012 
7013 	/* The NAPI context has more processing work, but busy-polling
7014 	 * is preferred. Exit early.
7015 	 */
7016 	if (napi_prefer_busy_poll(n)) {
7017 		if (napi_complete_done(n, work)) {
7018 			/* If timeout is not set, we need to make sure
7019 			 * that the NAPI is re-scheduled.
7020 			 */
7021 			napi_schedule(n);
7022 		}
7023 		return work;
7024 	}
7025 
7026 	if (n->gro_bitmask) {
7027 		/* flush too old packets
7028 		 * If HZ < 1000, flush all packets.
7029 		 */
7030 		napi_gro_flush(n, HZ >= 1000);
7031 	}
7032 
7033 	gro_normal_list(n);
7034 
7035 	/* Some drivers may have called napi_schedule
7036 	 * prior to exhausting their budget.
7037 	 */
7038 	if (unlikely(!list_empty(&n->poll_list))) {
7039 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7040 			     n->dev ? n->dev->name : "backlog");
7041 		return work;
7042 	}
7043 
7044 	*repoll = true;
7045 
7046 	return work;
7047 }
7048 
7049 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7050 {
7051 	bool do_repoll = false;
7052 	void *have;
7053 	int work;
7054 
7055 	list_del_init(&n->poll_list);
7056 
7057 	have = netpoll_poll_lock(n);
7058 
7059 	work = __napi_poll(n, &do_repoll);
7060 
7061 	if (do_repoll)
7062 		list_add_tail(&n->poll_list, repoll);
7063 
7064 	netpoll_poll_unlock(have);
7065 
7066 	return work;
7067 }
7068 
7069 static int napi_thread_wait(struct napi_struct *napi)
7070 {
7071 	bool woken = false;
7072 
7073 	set_current_state(TASK_INTERRUPTIBLE);
7074 
7075 	while (!kthread_should_stop()) {
7076 		/* Testing SCHED_THREADED bit here to make sure the current
7077 		 * kthread owns this napi and could poll on this napi.
7078 		 * Testing SCHED bit is not enough because SCHED bit might be
7079 		 * set by some other busy poll thread or by napi_disable().
7080 		 */
7081 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7082 			WARN_ON(!list_empty(&napi->poll_list));
7083 			__set_current_state(TASK_RUNNING);
7084 			return 0;
7085 		}
7086 
7087 		schedule();
7088 		/* woken being true indicates this thread owns this napi. */
7089 		woken = true;
7090 		set_current_state(TASK_INTERRUPTIBLE);
7091 	}
7092 	__set_current_state(TASK_RUNNING);
7093 
7094 	return -1;
7095 }
7096 
7097 static int napi_threaded_poll(void *data)
7098 {
7099 	struct napi_struct *napi = data;
7100 	void *have;
7101 
7102 	while (!napi_thread_wait(napi)) {
7103 		for (;;) {
7104 			bool repoll = false;
7105 
7106 			local_bh_disable();
7107 
7108 			have = netpoll_poll_lock(napi);
7109 			__napi_poll(napi, &repoll);
7110 			netpoll_poll_unlock(have);
7111 
7112 			local_bh_enable();
7113 
7114 			if (!repoll)
7115 				break;
7116 
7117 			cond_resched();
7118 		}
7119 	}
7120 	return 0;
7121 }
7122 
7123 static __latent_entropy void net_rx_action(struct softirq_action *h)
7124 {
7125 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7126 	unsigned long time_limit = jiffies +
7127 		usecs_to_jiffies(netdev_budget_usecs);
7128 	int budget = netdev_budget;
7129 	LIST_HEAD(list);
7130 	LIST_HEAD(repoll);
7131 
7132 	local_irq_disable();
7133 	list_splice_init(&sd->poll_list, &list);
7134 	local_irq_enable();
7135 
7136 	for (;;) {
7137 		struct napi_struct *n;
7138 
7139 		if (list_empty(&list)) {
7140 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7141 				return;
7142 			break;
7143 		}
7144 
7145 		n = list_first_entry(&list, struct napi_struct, poll_list);
7146 		budget -= napi_poll(n, &repoll);
7147 
7148 		/* If softirq window is exhausted then punt.
7149 		 * Allow this to run for 2 jiffies since which will allow
7150 		 * an average latency of 1.5/HZ.
7151 		 */
7152 		if (unlikely(budget <= 0 ||
7153 			     time_after_eq(jiffies, time_limit))) {
7154 			sd->time_squeeze++;
7155 			break;
7156 		}
7157 	}
7158 
7159 	local_irq_disable();
7160 
7161 	list_splice_tail_init(&sd->poll_list, &list);
7162 	list_splice_tail(&repoll, &list);
7163 	list_splice(&list, &sd->poll_list);
7164 	if (!list_empty(&sd->poll_list))
7165 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7166 
7167 	net_rps_action_and_irq_enable(sd);
7168 }
7169 
7170 struct netdev_adjacent {
7171 	struct net_device *dev;
7172 
7173 	/* upper master flag, there can only be one master device per list */
7174 	bool master;
7175 
7176 	/* lookup ignore flag */
7177 	bool ignore;
7178 
7179 	/* counter for the number of times this device was added to us */
7180 	u16 ref_nr;
7181 
7182 	/* private field for the users */
7183 	void *private;
7184 
7185 	struct list_head list;
7186 	struct rcu_head rcu;
7187 };
7188 
7189 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7190 						 struct list_head *adj_list)
7191 {
7192 	struct netdev_adjacent *adj;
7193 
7194 	list_for_each_entry(adj, adj_list, list) {
7195 		if (adj->dev == adj_dev)
7196 			return adj;
7197 	}
7198 	return NULL;
7199 }
7200 
7201 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7202 				    struct netdev_nested_priv *priv)
7203 {
7204 	struct net_device *dev = (struct net_device *)priv->data;
7205 
7206 	return upper_dev == dev;
7207 }
7208 
7209 /**
7210  * netdev_has_upper_dev - Check if device is linked to an upper device
7211  * @dev: device
7212  * @upper_dev: upper device to check
7213  *
7214  * Find out if a device is linked to specified upper device and return true
7215  * in case it is. Note that this checks only immediate upper device,
7216  * not through a complete stack of devices. The caller must hold the RTNL lock.
7217  */
7218 bool netdev_has_upper_dev(struct net_device *dev,
7219 			  struct net_device *upper_dev)
7220 {
7221 	struct netdev_nested_priv priv = {
7222 		.data = (void *)upper_dev,
7223 	};
7224 
7225 	ASSERT_RTNL();
7226 
7227 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7228 					     &priv);
7229 }
7230 EXPORT_SYMBOL(netdev_has_upper_dev);
7231 
7232 /**
7233  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7234  * @dev: device
7235  * @upper_dev: upper device to check
7236  *
7237  * Find out if a device is linked to specified upper device and return true
7238  * in case it is. Note that this checks the entire upper device chain.
7239  * The caller must hold rcu lock.
7240  */
7241 
7242 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7243 				  struct net_device *upper_dev)
7244 {
7245 	struct netdev_nested_priv priv = {
7246 		.data = (void *)upper_dev,
7247 	};
7248 
7249 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7250 					       &priv);
7251 }
7252 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7253 
7254 /**
7255  * netdev_has_any_upper_dev - Check if device is linked to some device
7256  * @dev: device
7257  *
7258  * Find out if a device is linked to an upper device and return true in case
7259  * it is. The caller must hold the RTNL lock.
7260  */
7261 bool netdev_has_any_upper_dev(struct net_device *dev)
7262 {
7263 	ASSERT_RTNL();
7264 
7265 	return !list_empty(&dev->adj_list.upper);
7266 }
7267 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7268 
7269 /**
7270  * netdev_master_upper_dev_get - Get master upper device
7271  * @dev: device
7272  *
7273  * Find a master upper device and return pointer to it or NULL in case
7274  * it's not there. The caller must hold the RTNL lock.
7275  */
7276 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7277 {
7278 	struct netdev_adjacent *upper;
7279 
7280 	ASSERT_RTNL();
7281 
7282 	if (list_empty(&dev->adj_list.upper))
7283 		return NULL;
7284 
7285 	upper = list_first_entry(&dev->adj_list.upper,
7286 				 struct netdev_adjacent, list);
7287 	if (likely(upper->master))
7288 		return upper->dev;
7289 	return NULL;
7290 }
7291 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7292 
7293 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7294 {
7295 	struct netdev_adjacent *upper;
7296 
7297 	ASSERT_RTNL();
7298 
7299 	if (list_empty(&dev->adj_list.upper))
7300 		return NULL;
7301 
7302 	upper = list_first_entry(&dev->adj_list.upper,
7303 				 struct netdev_adjacent, list);
7304 	if (likely(upper->master) && !upper->ignore)
7305 		return upper->dev;
7306 	return NULL;
7307 }
7308 
7309 /**
7310  * netdev_has_any_lower_dev - Check if device is linked to some device
7311  * @dev: device
7312  *
7313  * Find out if a device is linked to a lower device and return true in case
7314  * it is. The caller must hold the RTNL lock.
7315  */
7316 static bool netdev_has_any_lower_dev(struct net_device *dev)
7317 {
7318 	ASSERT_RTNL();
7319 
7320 	return !list_empty(&dev->adj_list.lower);
7321 }
7322 
7323 void *netdev_adjacent_get_private(struct list_head *adj_list)
7324 {
7325 	struct netdev_adjacent *adj;
7326 
7327 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7328 
7329 	return adj->private;
7330 }
7331 EXPORT_SYMBOL(netdev_adjacent_get_private);
7332 
7333 /**
7334  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7335  * @dev: device
7336  * @iter: list_head ** of the current position
7337  *
7338  * Gets the next device from the dev's upper list, starting from iter
7339  * position. The caller must hold RCU read lock.
7340  */
7341 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7342 						 struct list_head **iter)
7343 {
7344 	struct netdev_adjacent *upper;
7345 
7346 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7347 
7348 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7349 
7350 	if (&upper->list == &dev->adj_list.upper)
7351 		return NULL;
7352 
7353 	*iter = &upper->list;
7354 
7355 	return upper->dev;
7356 }
7357 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7358 
7359 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7360 						  struct list_head **iter,
7361 						  bool *ignore)
7362 {
7363 	struct netdev_adjacent *upper;
7364 
7365 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7366 
7367 	if (&upper->list == &dev->adj_list.upper)
7368 		return NULL;
7369 
7370 	*iter = &upper->list;
7371 	*ignore = upper->ignore;
7372 
7373 	return upper->dev;
7374 }
7375 
7376 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7377 						    struct list_head **iter)
7378 {
7379 	struct netdev_adjacent *upper;
7380 
7381 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7382 
7383 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7384 
7385 	if (&upper->list == &dev->adj_list.upper)
7386 		return NULL;
7387 
7388 	*iter = &upper->list;
7389 
7390 	return upper->dev;
7391 }
7392 
7393 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7394 				       int (*fn)(struct net_device *dev,
7395 					 struct netdev_nested_priv *priv),
7396 				       struct netdev_nested_priv *priv)
7397 {
7398 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7399 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7400 	int ret, cur = 0;
7401 	bool ignore;
7402 
7403 	now = dev;
7404 	iter = &dev->adj_list.upper;
7405 
7406 	while (1) {
7407 		if (now != dev) {
7408 			ret = fn(now, priv);
7409 			if (ret)
7410 				return ret;
7411 		}
7412 
7413 		next = NULL;
7414 		while (1) {
7415 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7416 			if (!udev)
7417 				break;
7418 			if (ignore)
7419 				continue;
7420 
7421 			next = udev;
7422 			niter = &udev->adj_list.upper;
7423 			dev_stack[cur] = now;
7424 			iter_stack[cur++] = iter;
7425 			break;
7426 		}
7427 
7428 		if (!next) {
7429 			if (!cur)
7430 				return 0;
7431 			next = dev_stack[--cur];
7432 			niter = iter_stack[cur];
7433 		}
7434 
7435 		now = next;
7436 		iter = niter;
7437 	}
7438 
7439 	return 0;
7440 }
7441 
7442 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7443 				  int (*fn)(struct net_device *dev,
7444 					    struct netdev_nested_priv *priv),
7445 				  struct netdev_nested_priv *priv)
7446 {
7447 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7448 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7449 	int ret, cur = 0;
7450 
7451 	now = dev;
7452 	iter = &dev->adj_list.upper;
7453 
7454 	while (1) {
7455 		if (now != dev) {
7456 			ret = fn(now, priv);
7457 			if (ret)
7458 				return ret;
7459 		}
7460 
7461 		next = NULL;
7462 		while (1) {
7463 			udev = netdev_next_upper_dev_rcu(now, &iter);
7464 			if (!udev)
7465 				break;
7466 
7467 			next = udev;
7468 			niter = &udev->adj_list.upper;
7469 			dev_stack[cur] = now;
7470 			iter_stack[cur++] = iter;
7471 			break;
7472 		}
7473 
7474 		if (!next) {
7475 			if (!cur)
7476 				return 0;
7477 			next = dev_stack[--cur];
7478 			niter = iter_stack[cur];
7479 		}
7480 
7481 		now = next;
7482 		iter = niter;
7483 	}
7484 
7485 	return 0;
7486 }
7487 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7488 
7489 static bool __netdev_has_upper_dev(struct net_device *dev,
7490 				   struct net_device *upper_dev)
7491 {
7492 	struct netdev_nested_priv priv = {
7493 		.flags = 0,
7494 		.data = (void *)upper_dev,
7495 	};
7496 
7497 	ASSERT_RTNL();
7498 
7499 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7500 					   &priv);
7501 }
7502 
7503 /**
7504  * netdev_lower_get_next_private - Get the next ->private from the
7505  *				   lower neighbour list
7506  * @dev: device
7507  * @iter: list_head ** of the current position
7508  *
7509  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7510  * list, starting from iter position. The caller must hold either hold the
7511  * RTNL lock or its own locking that guarantees that the neighbour lower
7512  * list will remain unchanged.
7513  */
7514 void *netdev_lower_get_next_private(struct net_device *dev,
7515 				    struct list_head **iter)
7516 {
7517 	struct netdev_adjacent *lower;
7518 
7519 	lower = list_entry(*iter, struct netdev_adjacent, list);
7520 
7521 	if (&lower->list == &dev->adj_list.lower)
7522 		return NULL;
7523 
7524 	*iter = lower->list.next;
7525 
7526 	return lower->private;
7527 }
7528 EXPORT_SYMBOL(netdev_lower_get_next_private);
7529 
7530 /**
7531  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7532  *				       lower neighbour list, RCU
7533  *				       variant
7534  * @dev: device
7535  * @iter: list_head ** of the current position
7536  *
7537  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7538  * list, starting from iter position. The caller must hold RCU read lock.
7539  */
7540 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7541 					struct list_head **iter)
7542 {
7543 	struct netdev_adjacent *lower;
7544 
7545 	WARN_ON_ONCE(!rcu_read_lock_held());
7546 
7547 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7548 
7549 	if (&lower->list == &dev->adj_list.lower)
7550 		return NULL;
7551 
7552 	*iter = &lower->list;
7553 
7554 	return lower->private;
7555 }
7556 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7557 
7558 /**
7559  * netdev_lower_get_next - Get the next device from the lower neighbour
7560  *                         list
7561  * @dev: device
7562  * @iter: list_head ** of the current position
7563  *
7564  * Gets the next netdev_adjacent from the dev's lower neighbour
7565  * list, starting from iter position. The caller must hold RTNL lock or
7566  * its own locking that guarantees that the neighbour lower
7567  * list will remain unchanged.
7568  */
7569 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7570 {
7571 	struct netdev_adjacent *lower;
7572 
7573 	lower = list_entry(*iter, struct netdev_adjacent, list);
7574 
7575 	if (&lower->list == &dev->adj_list.lower)
7576 		return NULL;
7577 
7578 	*iter = lower->list.next;
7579 
7580 	return lower->dev;
7581 }
7582 EXPORT_SYMBOL(netdev_lower_get_next);
7583 
7584 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7585 						struct list_head **iter)
7586 {
7587 	struct netdev_adjacent *lower;
7588 
7589 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7590 
7591 	if (&lower->list == &dev->adj_list.lower)
7592 		return NULL;
7593 
7594 	*iter = &lower->list;
7595 
7596 	return lower->dev;
7597 }
7598 
7599 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7600 						  struct list_head **iter,
7601 						  bool *ignore)
7602 {
7603 	struct netdev_adjacent *lower;
7604 
7605 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7606 
7607 	if (&lower->list == &dev->adj_list.lower)
7608 		return NULL;
7609 
7610 	*iter = &lower->list;
7611 	*ignore = lower->ignore;
7612 
7613 	return lower->dev;
7614 }
7615 
7616 int netdev_walk_all_lower_dev(struct net_device *dev,
7617 			      int (*fn)(struct net_device *dev,
7618 					struct netdev_nested_priv *priv),
7619 			      struct netdev_nested_priv *priv)
7620 {
7621 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7622 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7623 	int ret, cur = 0;
7624 
7625 	now = dev;
7626 	iter = &dev->adj_list.lower;
7627 
7628 	while (1) {
7629 		if (now != dev) {
7630 			ret = fn(now, priv);
7631 			if (ret)
7632 				return ret;
7633 		}
7634 
7635 		next = NULL;
7636 		while (1) {
7637 			ldev = netdev_next_lower_dev(now, &iter);
7638 			if (!ldev)
7639 				break;
7640 
7641 			next = ldev;
7642 			niter = &ldev->adj_list.lower;
7643 			dev_stack[cur] = now;
7644 			iter_stack[cur++] = iter;
7645 			break;
7646 		}
7647 
7648 		if (!next) {
7649 			if (!cur)
7650 				return 0;
7651 			next = dev_stack[--cur];
7652 			niter = iter_stack[cur];
7653 		}
7654 
7655 		now = next;
7656 		iter = niter;
7657 	}
7658 
7659 	return 0;
7660 }
7661 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7662 
7663 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7664 				       int (*fn)(struct net_device *dev,
7665 					 struct netdev_nested_priv *priv),
7666 				       struct netdev_nested_priv *priv)
7667 {
7668 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7669 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7670 	int ret, cur = 0;
7671 	bool ignore;
7672 
7673 	now = dev;
7674 	iter = &dev->adj_list.lower;
7675 
7676 	while (1) {
7677 		if (now != dev) {
7678 			ret = fn(now, priv);
7679 			if (ret)
7680 				return ret;
7681 		}
7682 
7683 		next = NULL;
7684 		while (1) {
7685 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7686 			if (!ldev)
7687 				break;
7688 			if (ignore)
7689 				continue;
7690 
7691 			next = ldev;
7692 			niter = &ldev->adj_list.lower;
7693 			dev_stack[cur] = now;
7694 			iter_stack[cur++] = iter;
7695 			break;
7696 		}
7697 
7698 		if (!next) {
7699 			if (!cur)
7700 				return 0;
7701 			next = dev_stack[--cur];
7702 			niter = iter_stack[cur];
7703 		}
7704 
7705 		now = next;
7706 		iter = niter;
7707 	}
7708 
7709 	return 0;
7710 }
7711 
7712 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7713 					     struct list_head **iter)
7714 {
7715 	struct netdev_adjacent *lower;
7716 
7717 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7718 	if (&lower->list == &dev->adj_list.lower)
7719 		return NULL;
7720 
7721 	*iter = &lower->list;
7722 
7723 	return lower->dev;
7724 }
7725 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7726 
7727 static u8 __netdev_upper_depth(struct net_device *dev)
7728 {
7729 	struct net_device *udev;
7730 	struct list_head *iter;
7731 	u8 max_depth = 0;
7732 	bool ignore;
7733 
7734 	for (iter = &dev->adj_list.upper,
7735 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7736 	     udev;
7737 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7738 		if (ignore)
7739 			continue;
7740 		if (max_depth < udev->upper_level)
7741 			max_depth = udev->upper_level;
7742 	}
7743 
7744 	return max_depth;
7745 }
7746 
7747 static u8 __netdev_lower_depth(struct net_device *dev)
7748 {
7749 	struct net_device *ldev;
7750 	struct list_head *iter;
7751 	u8 max_depth = 0;
7752 	bool ignore;
7753 
7754 	for (iter = &dev->adj_list.lower,
7755 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7756 	     ldev;
7757 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7758 		if (ignore)
7759 			continue;
7760 		if (max_depth < ldev->lower_level)
7761 			max_depth = ldev->lower_level;
7762 	}
7763 
7764 	return max_depth;
7765 }
7766 
7767 static int __netdev_update_upper_level(struct net_device *dev,
7768 				       struct netdev_nested_priv *__unused)
7769 {
7770 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7771 	return 0;
7772 }
7773 
7774 static int __netdev_update_lower_level(struct net_device *dev,
7775 				       struct netdev_nested_priv *priv)
7776 {
7777 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7778 
7779 #ifdef CONFIG_LOCKDEP
7780 	if (!priv)
7781 		return 0;
7782 
7783 	if (priv->flags & NESTED_SYNC_IMM)
7784 		dev->nested_level = dev->lower_level - 1;
7785 	if (priv->flags & NESTED_SYNC_TODO)
7786 		net_unlink_todo(dev);
7787 #endif
7788 	return 0;
7789 }
7790 
7791 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7792 				  int (*fn)(struct net_device *dev,
7793 					    struct netdev_nested_priv *priv),
7794 				  struct netdev_nested_priv *priv)
7795 {
7796 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7797 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7798 	int ret, cur = 0;
7799 
7800 	now = dev;
7801 	iter = &dev->adj_list.lower;
7802 
7803 	while (1) {
7804 		if (now != dev) {
7805 			ret = fn(now, priv);
7806 			if (ret)
7807 				return ret;
7808 		}
7809 
7810 		next = NULL;
7811 		while (1) {
7812 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7813 			if (!ldev)
7814 				break;
7815 
7816 			next = ldev;
7817 			niter = &ldev->adj_list.lower;
7818 			dev_stack[cur] = now;
7819 			iter_stack[cur++] = iter;
7820 			break;
7821 		}
7822 
7823 		if (!next) {
7824 			if (!cur)
7825 				return 0;
7826 			next = dev_stack[--cur];
7827 			niter = iter_stack[cur];
7828 		}
7829 
7830 		now = next;
7831 		iter = niter;
7832 	}
7833 
7834 	return 0;
7835 }
7836 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7837 
7838 /**
7839  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7840  *				       lower neighbour list, RCU
7841  *				       variant
7842  * @dev: device
7843  *
7844  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7845  * list. The caller must hold RCU read lock.
7846  */
7847 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7848 {
7849 	struct netdev_adjacent *lower;
7850 
7851 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7852 			struct netdev_adjacent, list);
7853 	if (lower)
7854 		return lower->private;
7855 	return NULL;
7856 }
7857 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7858 
7859 /**
7860  * netdev_master_upper_dev_get_rcu - Get master upper device
7861  * @dev: device
7862  *
7863  * Find a master upper device and return pointer to it or NULL in case
7864  * it's not there. The caller must hold the RCU read lock.
7865  */
7866 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7867 {
7868 	struct netdev_adjacent *upper;
7869 
7870 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7871 				       struct netdev_adjacent, list);
7872 	if (upper && likely(upper->master))
7873 		return upper->dev;
7874 	return NULL;
7875 }
7876 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7877 
7878 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7879 			      struct net_device *adj_dev,
7880 			      struct list_head *dev_list)
7881 {
7882 	char linkname[IFNAMSIZ+7];
7883 
7884 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7885 		"upper_%s" : "lower_%s", adj_dev->name);
7886 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7887 				 linkname);
7888 }
7889 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7890 			       char *name,
7891 			       struct list_head *dev_list)
7892 {
7893 	char linkname[IFNAMSIZ+7];
7894 
7895 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7896 		"upper_%s" : "lower_%s", name);
7897 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7898 }
7899 
7900 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7901 						 struct net_device *adj_dev,
7902 						 struct list_head *dev_list)
7903 {
7904 	return (dev_list == &dev->adj_list.upper ||
7905 		dev_list == &dev->adj_list.lower) &&
7906 		net_eq(dev_net(dev), dev_net(adj_dev));
7907 }
7908 
7909 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7910 					struct net_device *adj_dev,
7911 					struct list_head *dev_list,
7912 					void *private, bool master)
7913 {
7914 	struct netdev_adjacent *adj;
7915 	int ret;
7916 
7917 	adj = __netdev_find_adj(adj_dev, dev_list);
7918 
7919 	if (adj) {
7920 		adj->ref_nr += 1;
7921 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7922 			 dev->name, adj_dev->name, adj->ref_nr);
7923 
7924 		return 0;
7925 	}
7926 
7927 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7928 	if (!adj)
7929 		return -ENOMEM;
7930 
7931 	adj->dev = adj_dev;
7932 	adj->master = master;
7933 	adj->ref_nr = 1;
7934 	adj->private = private;
7935 	adj->ignore = false;
7936 	dev_hold(adj_dev);
7937 
7938 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7939 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7940 
7941 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7942 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7943 		if (ret)
7944 			goto free_adj;
7945 	}
7946 
7947 	/* Ensure that master link is always the first item in list. */
7948 	if (master) {
7949 		ret = sysfs_create_link(&(dev->dev.kobj),
7950 					&(adj_dev->dev.kobj), "master");
7951 		if (ret)
7952 			goto remove_symlinks;
7953 
7954 		list_add_rcu(&adj->list, dev_list);
7955 	} else {
7956 		list_add_tail_rcu(&adj->list, dev_list);
7957 	}
7958 
7959 	return 0;
7960 
7961 remove_symlinks:
7962 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7963 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7964 free_adj:
7965 	kfree(adj);
7966 	dev_put(adj_dev);
7967 
7968 	return ret;
7969 }
7970 
7971 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7972 					 struct net_device *adj_dev,
7973 					 u16 ref_nr,
7974 					 struct list_head *dev_list)
7975 {
7976 	struct netdev_adjacent *adj;
7977 
7978 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7979 		 dev->name, adj_dev->name, ref_nr);
7980 
7981 	adj = __netdev_find_adj(adj_dev, dev_list);
7982 
7983 	if (!adj) {
7984 		pr_err("Adjacency does not exist for device %s from %s\n",
7985 		       dev->name, adj_dev->name);
7986 		WARN_ON(1);
7987 		return;
7988 	}
7989 
7990 	if (adj->ref_nr > ref_nr) {
7991 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7992 			 dev->name, adj_dev->name, ref_nr,
7993 			 adj->ref_nr - ref_nr);
7994 		adj->ref_nr -= ref_nr;
7995 		return;
7996 	}
7997 
7998 	if (adj->master)
7999 		sysfs_remove_link(&(dev->dev.kobj), "master");
8000 
8001 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8002 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8003 
8004 	list_del_rcu(&adj->list);
8005 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8006 		 adj_dev->name, dev->name, adj_dev->name);
8007 	dev_put(adj_dev);
8008 	kfree_rcu(adj, rcu);
8009 }
8010 
8011 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8012 					    struct net_device *upper_dev,
8013 					    struct list_head *up_list,
8014 					    struct list_head *down_list,
8015 					    void *private, bool master)
8016 {
8017 	int ret;
8018 
8019 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8020 					   private, master);
8021 	if (ret)
8022 		return ret;
8023 
8024 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8025 					   private, false);
8026 	if (ret) {
8027 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8028 		return ret;
8029 	}
8030 
8031 	return 0;
8032 }
8033 
8034 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8035 					       struct net_device *upper_dev,
8036 					       u16 ref_nr,
8037 					       struct list_head *up_list,
8038 					       struct list_head *down_list)
8039 {
8040 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8041 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8042 }
8043 
8044 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8045 						struct net_device *upper_dev,
8046 						void *private, bool master)
8047 {
8048 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8049 						&dev->adj_list.upper,
8050 						&upper_dev->adj_list.lower,
8051 						private, master);
8052 }
8053 
8054 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8055 						   struct net_device *upper_dev)
8056 {
8057 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8058 					   &dev->adj_list.upper,
8059 					   &upper_dev->adj_list.lower);
8060 }
8061 
8062 static int __netdev_upper_dev_link(struct net_device *dev,
8063 				   struct net_device *upper_dev, bool master,
8064 				   void *upper_priv, void *upper_info,
8065 				   struct netdev_nested_priv *priv,
8066 				   struct netlink_ext_ack *extack)
8067 {
8068 	struct netdev_notifier_changeupper_info changeupper_info = {
8069 		.info = {
8070 			.dev = dev,
8071 			.extack = extack,
8072 		},
8073 		.upper_dev = upper_dev,
8074 		.master = master,
8075 		.linking = true,
8076 		.upper_info = upper_info,
8077 	};
8078 	struct net_device *master_dev;
8079 	int ret = 0;
8080 
8081 	ASSERT_RTNL();
8082 
8083 	if (dev == upper_dev)
8084 		return -EBUSY;
8085 
8086 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8087 	if (__netdev_has_upper_dev(upper_dev, dev))
8088 		return -EBUSY;
8089 
8090 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8091 		return -EMLINK;
8092 
8093 	if (!master) {
8094 		if (__netdev_has_upper_dev(dev, upper_dev))
8095 			return -EEXIST;
8096 	} else {
8097 		master_dev = __netdev_master_upper_dev_get(dev);
8098 		if (master_dev)
8099 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8100 	}
8101 
8102 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8103 					    &changeupper_info.info);
8104 	ret = notifier_to_errno(ret);
8105 	if (ret)
8106 		return ret;
8107 
8108 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8109 						   master);
8110 	if (ret)
8111 		return ret;
8112 
8113 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8114 					    &changeupper_info.info);
8115 	ret = notifier_to_errno(ret);
8116 	if (ret)
8117 		goto rollback;
8118 
8119 	__netdev_update_upper_level(dev, NULL);
8120 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8121 
8122 	__netdev_update_lower_level(upper_dev, priv);
8123 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8124 				    priv);
8125 
8126 	return 0;
8127 
8128 rollback:
8129 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8130 
8131 	return ret;
8132 }
8133 
8134 /**
8135  * netdev_upper_dev_link - Add a link to the upper device
8136  * @dev: device
8137  * @upper_dev: new upper device
8138  * @extack: netlink extended ack
8139  *
8140  * Adds a link to device which is upper to this one. The caller must hold
8141  * the RTNL lock. On a failure a negative errno code is returned.
8142  * On success the reference counts are adjusted and the function
8143  * returns zero.
8144  */
8145 int netdev_upper_dev_link(struct net_device *dev,
8146 			  struct net_device *upper_dev,
8147 			  struct netlink_ext_ack *extack)
8148 {
8149 	struct netdev_nested_priv priv = {
8150 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8151 		.data = NULL,
8152 	};
8153 
8154 	return __netdev_upper_dev_link(dev, upper_dev, false,
8155 				       NULL, NULL, &priv, extack);
8156 }
8157 EXPORT_SYMBOL(netdev_upper_dev_link);
8158 
8159 /**
8160  * netdev_master_upper_dev_link - Add a master link to the upper device
8161  * @dev: device
8162  * @upper_dev: new upper device
8163  * @upper_priv: upper device private
8164  * @upper_info: upper info to be passed down via notifier
8165  * @extack: netlink extended ack
8166  *
8167  * Adds a link to device which is upper to this one. In this case, only
8168  * one master upper device can be linked, although other non-master devices
8169  * might be linked as well. The caller must hold the RTNL lock.
8170  * On a failure a negative errno code is returned. On success the reference
8171  * counts are adjusted and the function returns zero.
8172  */
8173 int netdev_master_upper_dev_link(struct net_device *dev,
8174 				 struct net_device *upper_dev,
8175 				 void *upper_priv, void *upper_info,
8176 				 struct netlink_ext_ack *extack)
8177 {
8178 	struct netdev_nested_priv priv = {
8179 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8180 		.data = NULL,
8181 	};
8182 
8183 	return __netdev_upper_dev_link(dev, upper_dev, true,
8184 				       upper_priv, upper_info, &priv, extack);
8185 }
8186 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8187 
8188 static void __netdev_upper_dev_unlink(struct net_device *dev,
8189 				      struct net_device *upper_dev,
8190 				      struct netdev_nested_priv *priv)
8191 {
8192 	struct netdev_notifier_changeupper_info changeupper_info = {
8193 		.info = {
8194 			.dev = dev,
8195 		},
8196 		.upper_dev = upper_dev,
8197 		.linking = false,
8198 	};
8199 
8200 	ASSERT_RTNL();
8201 
8202 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8203 
8204 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8205 				      &changeupper_info.info);
8206 
8207 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8208 
8209 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8210 				      &changeupper_info.info);
8211 
8212 	__netdev_update_upper_level(dev, NULL);
8213 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8214 
8215 	__netdev_update_lower_level(upper_dev, priv);
8216 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8217 				    priv);
8218 }
8219 
8220 /**
8221  * netdev_upper_dev_unlink - Removes a link to upper device
8222  * @dev: device
8223  * @upper_dev: new upper device
8224  *
8225  * Removes a link to device which is upper to this one. The caller must hold
8226  * the RTNL lock.
8227  */
8228 void netdev_upper_dev_unlink(struct net_device *dev,
8229 			     struct net_device *upper_dev)
8230 {
8231 	struct netdev_nested_priv priv = {
8232 		.flags = NESTED_SYNC_TODO,
8233 		.data = NULL,
8234 	};
8235 
8236 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8237 }
8238 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8239 
8240 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8241 				      struct net_device *lower_dev,
8242 				      bool val)
8243 {
8244 	struct netdev_adjacent *adj;
8245 
8246 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8247 	if (adj)
8248 		adj->ignore = val;
8249 
8250 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8251 	if (adj)
8252 		adj->ignore = val;
8253 }
8254 
8255 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8256 					struct net_device *lower_dev)
8257 {
8258 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8259 }
8260 
8261 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8262 				       struct net_device *lower_dev)
8263 {
8264 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8265 }
8266 
8267 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8268 				   struct net_device *new_dev,
8269 				   struct net_device *dev,
8270 				   struct netlink_ext_ack *extack)
8271 {
8272 	struct netdev_nested_priv priv = {
8273 		.flags = 0,
8274 		.data = NULL,
8275 	};
8276 	int err;
8277 
8278 	if (!new_dev)
8279 		return 0;
8280 
8281 	if (old_dev && new_dev != old_dev)
8282 		netdev_adjacent_dev_disable(dev, old_dev);
8283 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8284 				      extack);
8285 	if (err) {
8286 		if (old_dev && new_dev != old_dev)
8287 			netdev_adjacent_dev_enable(dev, old_dev);
8288 		return err;
8289 	}
8290 
8291 	return 0;
8292 }
8293 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8294 
8295 void netdev_adjacent_change_commit(struct net_device *old_dev,
8296 				   struct net_device *new_dev,
8297 				   struct net_device *dev)
8298 {
8299 	struct netdev_nested_priv priv = {
8300 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8301 		.data = NULL,
8302 	};
8303 
8304 	if (!new_dev || !old_dev)
8305 		return;
8306 
8307 	if (new_dev == old_dev)
8308 		return;
8309 
8310 	netdev_adjacent_dev_enable(dev, old_dev);
8311 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8312 }
8313 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8314 
8315 void netdev_adjacent_change_abort(struct net_device *old_dev,
8316 				  struct net_device *new_dev,
8317 				  struct net_device *dev)
8318 {
8319 	struct netdev_nested_priv priv = {
8320 		.flags = 0,
8321 		.data = NULL,
8322 	};
8323 
8324 	if (!new_dev)
8325 		return;
8326 
8327 	if (old_dev && new_dev != old_dev)
8328 		netdev_adjacent_dev_enable(dev, old_dev);
8329 
8330 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8331 }
8332 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8333 
8334 /**
8335  * netdev_bonding_info_change - Dispatch event about slave change
8336  * @dev: device
8337  * @bonding_info: info to dispatch
8338  *
8339  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8340  * The caller must hold the RTNL lock.
8341  */
8342 void netdev_bonding_info_change(struct net_device *dev,
8343 				struct netdev_bonding_info *bonding_info)
8344 {
8345 	struct netdev_notifier_bonding_info info = {
8346 		.info.dev = dev,
8347 	};
8348 
8349 	memcpy(&info.bonding_info, bonding_info,
8350 	       sizeof(struct netdev_bonding_info));
8351 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8352 				      &info.info);
8353 }
8354 EXPORT_SYMBOL(netdev_bonding_info_change);
8355 
8356 /**
8357  * netdev_get_xmit_slave - Get the xmit slave of master device
8358  * @dev: device
8359  * @skb: The packet
8360  * @all_slaves: assume all the slaves are active
8361  *
8362  * The reference counters are not incremented so the caller must be
8363  * careful with locks. The caller must hold RCU lock.
8364  * %NULL is returned if no slave is found.
8365  */
8366 
8367 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8368 					 struct sk_buff *skb,
8369 					 bool all_slaves)
8370 {
8371 	const struct net_device_ops *ops = dev->netdev_ops;
8372 
8373 	if (!ops->ndo_get_xmit_slave)
8374 		return NULL;
8375 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8376 }
8377 EXPORT_SYMBOL(netdev_get_xmit_slave);
8378 
8379 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8380 						  struct sock *sk)
8381 {
8382 	const struct net_device_ops *ops = dev->netdev_ops;
8383 
8384 	if (!ops->ndo_sk_get_lower_dev)
8385 		return NULL;
8386 	return ops->ndo_sk_get_lower_dev(dev, sk);
8387 }
8388 
8389 /**
8390  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8391  * @dev: device
8392  * @sk: the socket
8393  *
8394  * %NULL is returned if no lower device is found.
8395  */
8396 
8397 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8398 					    struct sock *sk)
8399 {
8400 	struct net_device *lower;
8401 
8402 	lower = netdev_sk_get_lower_dev(dev, sk);
8403 	while (lower) {
8404 		dev = lower;
8405 		lower = netdev_sk_get_lower_dev(dev, sk);
8406 	}
8407 
8408 	return dev;
8409 }
8410 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8411 
8412 static void netdev_adjacent_add_links(struct net_device *dev)
8413 {
8414 	struct netdev_adjacent *iter;
8415 
8416 	struct net *net = dev_net(dev);
8417 
8418 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8419 		if (!net_eq(net, dev_net(iter->dev)))
8420 			continue;
8421 		netdev_adjacent_sysfs_add(iter->dev, dev,
8422 					  &iter->dev->adj_list.lower);
8423 		netdev_adjacent_sysfs_add(dev, iter->dev,
8424 					  &dev->adj_list.upper);
8425 	}
8426 
8427 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8428 		if (!net_eq(net, dev_net(iter->dev)))
8429 			continue;
8430 		netdev_adjacent_sysfs_add(iter->dev, dev,
8431 					  &iter->dev->adj_list.upper);
8432 		netdev_adjacent_sysfs_add(dev, iter->dev,
8433 					  &dev->adj_list.lower);
8434 	}
8435 }
8436 
8437 static void netdev_adjacent_del_links(struct net_device *dev)
8438 {
8439 	struct netdev_adjacent *iter;
8440 
8441 	struct net *net = dev_net(dev);
8442 
8443 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8444 		if (!net_eq(net, dev_net(iter->dev)))
8445 			continue;
8446 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8447 					  &iter->dev->adj_list.lower);
8448 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8449 					  &dev->adj_list.upper);
8450 	}
8451 
8452 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8453 		if (!net_eq(net, dev_net(iter->dev)))
8454 			continue;
8455 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8456 					  &iter->dev->adj_list.upper);
8457 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8458 					  &dev->adj_list.lower);
8459 	}
8460 }
8461 
8462 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8463 {
8464 	struct netdev_adjacent *iter;
8465 
8466 	struct net *net = dev_net(dev);
8467 
8468 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8469 		if (!net_eq(net, dev_net(iter->dev)))
8470 			continue;
8471 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8472 					  &iter->dev->adj_list.lower);
8473 		netdev_adjacent_sysfs_add(iter->dev, dev,
8474 					  &iter->dev->adj_list.lower);
8475 	}
8476 
8477 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8478 		if (!net_eq(net, dev_net(iter->dev)))
8479 			continue;
8480 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8481 					  &iter->dev->adj_list.upper);
8482 		netdev_adjacent_sysfs_add(iter->dev, dev,
8483 					  &iter->dev->adj_list.upper);
8484 	}
8485 }
8486 
8487 void *netdev_lower_dev_get_private(struct net_device *dev,
8488 				   struct net_device *lower_dev)
8489 {
8490 	struct netdev_adjacent *lower;
8491 
8492 	if (!lower_dev)
8493 		return NULL;
8494 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8495 	if (!lower)
8496 		return NULL;
8497 
8498 	return lower->private;
8499 }
8500 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8501 
8502 
8503 /**
8504  * netdev_lower_state_changed - Dispatch event about lower device state change
8505  * @lower_dev: device
8506  * @lower_state_info: state to dispatch
8507  *
8508  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8509  * The caller must hold the RTNL lock.
8510  */
8511 void netdev_lower_state_changed(struct net_device *lower_dev,
8512 				void *lower_state_info)
8513 {
8514 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8515 		.info.dev = lower_dev,
8516 	};
8517 
8518 	ASSERT_RTNL();
8519 	changelowerstate_info.lower_state_info = lower_state_info;
8520 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8521 				      &changelowerstate_info.info);
8522 }
8523 EXPORT_SYMBOL(netdev_lower_state_changed);
8524 
8525 static void dev_change_rx_flags(struct net_device *dev, int flags)
8526 {
8527 	const struct net_device_ops *ops = dev->netdev_ops;
8528 
8529 	if (ops->ndo_change_rx_flags)
8530 		ops->ndo_change_rx_flags(dev, flags);
8531 }
8532 
8533 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8534 {
8535 	unsigned int old_flags = dev->flags;
8536 	kuid_t uid;
8537 	kgid_t gid;
8538 
8539 	ASSERT_RTNL();
8540 
8541 	dev->flags |= IFF_PROMISC;
8542 	dev->promiscuity += inc;
8543 	if (dev->promiscuity == 0) {
8544 		/*
8545 		 * Avoid overflow.
8546 		 * If inc causes overflow, untouch promisc and return error.
8547 		 */
8548 		if (inc < 0)
8549 			dev->flags &= ~IFF_PROMISC;
8550 		else {
8551 			dev->promiscuity -= inc;
8552 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8553 				dev->name);
8554 			return -EOVERFLOW;
8555 		}
8556 	}
8557 	if (dev->flags != old_flags) {
8558 		pr_info("device %s %s promiscuous mode\n",
8559 			dev->name,
8560 			dev->flags & IFF_PROMISC ? "entered" : "left");
8561 		if (audit_enabled) {
8562 			current_uid_gid(&uid, &gid);
8563 			audit_log(audit_context(), GFP_ATOMIC,
8564 				  AUDIT_ANOM_PROMISCUOUS,
8565 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8566 				  dev->name, (dev->flags & IFF_PROMISC),
8567 				  (old_flags & IFF_PROMISC),
8568 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8569 				  from_kuid(&init_user_ns, uid),
8570 				  from_kgid(&init_user_ns, gid),
8571 				  audit_get_sessionid(current));
8572 		}
8573 
8574 		dev_change_rx_flags(dev, IFF_PROMISC);
8575 	}
8576 	if (notify)
8577 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8578 	return 0;
8579 }
8580 
8581 /**
8582  *	dev_set_promiscuity	- update promiscuity count on a device
8583  *	@dev: device
8584  *	@inc: modifier
8585  *
8586  *	Add or remove promiscuity from a device. While the count in the device
8587  *	remains above zero the interface remains promiscuous. Once it hits zero
8588  *	the device reverts back to normal filtering operation. A negative inc
8589  *	value is used to drop promiscuity on the device.
8590  *	Return 0 if successful or a negative errno code on error.
8591  */
8592 int dev_set_promiscuity(struct net_device *dev, int inc)
8593 {
8594 	unsigned int old_flags = dev->flags;
8595 	int err;
8596 
8597 	err = __dev_set_promiscuity(dev, inc, true);
8598 	if (err < 0)
8599 		return err;
8600 	if (dev->flags != old_flags)
8601 		dev_set_rx_mode(dev);
8602 	return err;
8603 }
8604 EXPORT_SYMBOL(dev_set_promiscuity);
8605 
8606 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8607 {
8608 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8609 
8610 	ASSERT_RTNL();
8611 
8612 	dev->flags |= IFF_ALLMULTI;
8613 	dev->allmulti += inc;
8614 	if (dev->allmulti == 0) {
8615 		/*
8616 		 * Avoid overflow.
8617 		 * If inc causes overflow, untouch allmulti and return error.
8618 		 */
8619 		if (inc < 0)
8620 			dev->flags &= ~IFF_ALLMULTI;
8621 		else {
8622 			dev->allmulti -= inc;
8623 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8624 				dev->name);
8625 			return -EOVERFLOW;
8626 		}
8627 	}
8628 	if (dev->flags ^ old_flags) {
8629 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8630 		dev_set_rx_mode(dev);
8631 		if (notify)
8632 			__dev_notify_flags(dev, old_flags,
8633 					   dev->gflags ^ old_gflags);
8634 	}
8635 	return 0;
8636 }
8637 
8638 /**
8639  *	dev_set_allmulti	- update allmulti count on a device
8640  *	@dev: device
8641  *	@inc: modifier
8642  *
8643  *	Add or remove reception of all multicast frames to a device. While the
8644  *	count in the device remains above zero the interface remains listening
8645  *	to all interfaces. Once it hits zero the device reverts back to normal
8646  *	filtering operation. A negative @inc value is used to drop the counter
8647  *	when releasing a resource needing all multicasts.
8648  *	Return 0 if successful or a negative errno code on error.
8649  */
8650 
8651 int dev_set_allmulti(struct net_device *dev, int inc)
8652 {
8653 	return __dev_set_allmulti(dev, inc, true);
8654 }
8655 EXPORT_SYMBOL(dev_set_allmulti);
8656 
8657 /*
8658  *	Upload unicast and multicast address lists to device and
8659  *	configure RX filtering. When the device doesn't support unicast
8660  *	filtering it is put in promiscuous mode while unicast addresses
8661  *	are present.
8662  */
8663 void __dev_set_rx_mode(struct net_device *dev)
8664 {
8665 	const struct net_device_ops *ops = dev->netdev_ops;
8666 
8667 	/* dev_open will call this function so the list will stay sane. */
8668 	if (!(dev->flags&IFF_UP))
8669 		return;
8670 
8671 	if (!netif_device_present(dev))
8672 		return;
8673 
8674 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8675 		/* Unicast addresses changes may only happen under the rtnl,
8676 		 * therefore calling __dev_set_promiscuity here is safe.
8677 		 */
8678 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8679 			__dev_set_promiscuity(dev, 1, false);
8680 			dev->uc_promisc = true;
8681 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8682 			__dev_set_promiscuity(dev, -1, false);
8683 			dev->uc_promisc = false;
8684 		}
8685 	}
8686 
8687 	if (ops->ndo_set_rx_mode)
8688 		ops->ndo_set_rx_mode(dev);
8689 }
8690 
8691 void dev_set_rx_mode(struct net_device *dev)
8692 {
8693 	netif_addr_lock_bh(dev);
8694 	__dev_set_rx_mode(dev);
8695 	netif_addr_unlock_bh(dev);
8696 }
8697 
8698 /**
8699  *	dev_get_flags - get flags reported to userspace
8700  *	@dev: device
8701  *
8702  *	Get the combination of flag bits exported through APIs to userspace.
8703  */
8704 unsigned int dev_get_flags(const struct net_device *dev)
8705 {
8706 	unsigned int flags;
8707 
8708 	flags = (dev->flags & ~(IFF_PROMISC |
8709 				IFF_ALLMULTI |
8710 				IFF_RUNNING |
8711 				IFF_LOWER_UP |
8712 				IFF_DORMANT)) |
8713 		(dev->gflags & (IFF_PROMISC |
8714 				IFF_ALLMULTI));
8715 
8716 	if (netif_running(dev)) {
8717 		if (netif_oper_up(dev))
8718 			flags |= IFF_RUNNING;
8719 		if (netif_carrier_ok(dev))
8720 			flags |= IFF_LOWER_UP;
8721 		if (netif_dormant(dev))
8722 			flags |= IFF_DORMANT;
8723 	}
8724 
8725 	return flags;
8726 }
8727 EXPORT_SYMBOL(dev_get_flags);
8728 
8729 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8730 		       struct netlink_ext_ack *extack)
8731 {
8732 	unsigned int old_flags = dev->flags;
8733 	int ret;
8734 
8735 	ASSERT_RTNL();
8736 
8737 	/*
8738 	 *	Set the flags on our device.
8739 	 */
8740 
8741 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8742 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8743 			       IFF_AUTOMEDIA)) |
8744 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8745 				    IFF_ALLMULTI));
8746 
8747 	/*
8748 	 *	Load in the correct multicast list now the flags have changed.
8749 	 */
8750 
8751 	if ((old_flags ^ flags) & IFF_MULTICAST)
8752 		dev_change_rx_flags(dev, IFF_MULTICAST);
8753 
8754 	dev_set_rx_mode(dev);
8755 
8756 	/*
8757 	 *	Have we downed the interface. We handle IFF_UP ourselves
8758 	 *	according to user attempts to set it, rather than blindly
8759 	 *	setting it.
8760 	 */
8761 
8762 	ret = 0;
8763 	if ((old_flags ^ flags) & IFF_UP) {
8764 		if (old_flags & IFF_UP)
8765 			__dev_close(dev);
8766 		else
8767 			ret = __dev_open(dev, extack);
8768 	}
8769 
8770 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8771 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8772 		unsigned int old_flags = dev->flags;
8773 
8774 		dev->gflags ^= IFF_PROMISC;
8775 
8776 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8777 			if (dev->flags != old_flags)
8778 				dev_set_rx_mode(dev);
8779 	}
8780 
8781 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8782 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8783 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8784 	 */
8785 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8786 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8787 
8788 		dev->gflags ^= IFF_ALLMULTI;
8789 		__dev_set_allmulti(dev, inc, false);
8790 	}
8791 
8792 	return ret;
8793 }
8794 
8795 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8796 			unsigned int gchanges)
8797 {
8798 	unsigned int changes = dev->flags ^ old_flags;
8799 
8800 	if (gchanges)
8801 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8802 
8803 	if (changes & IFF_UP) {
8804 		if (dev->flags & IFF_UP)
8805 			call_netdevice_notifiers(NETDEV_UP, dev);
8806 		else
8807 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8808 	}
8809 
8810 	if (dev->flags & IFF_UP &&
8811 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8812 		struct netdev_notifier_change_info change_info = {
8813 			.info = {
8814 				.dev = dev,
8815 			},
8816 			.flags_changed = changes,
8817 		};
8818 
8819 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8820 	}
8821 }
8822 
8823 /**
8824  *	dev_change_flags - change device settings
8825  *	@dev: device
8826  *	@flags: device state flags
8827  *	@extack: netlink extended ack
8828  *
8829  *	Change settings on device based state flags. The flags are
8830  *	in the userspace exported format.
8831  */
8832 int dev_change_flags(struct net_device *dev, unsigned int flags,
8833 		     struct netlink_ext_ack *extack)
8834 {
8835 	int ret;
8836 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8837 
8838 	ret = __dev_change_flags(dev, flags, extack);
8839 	if (ret < 0)
8840 		return ret;
8841 
8842 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8843 	__dev_notify_flags(dev, old_flags, changes);
8844 	return ret;
8845 }
8846 EXPORT_SYMBOL(dev_change_flags);
8847 
8848 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8849 {
8850 	const struct net_device_ops *ops = dev->netdev_ops;
8851 
8852 	if (ops->ndo_change_mtu)
8853 		return ops->ndo_change_mtu(dev, new_mtu);
8854 
8855 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8856 	WRITE_ONCE(dev->mtu, new_mtu);
8857 	return 0;
8858 }
8859 EXPORT_SYMBOL(__dev_set_mtu);
8860 
8861 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8862 		     struct netlink_ext_ack *extack)
8863 {
8864 	/* MTU must be positive, and in range */
8865 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8866 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8867 		return -EINVAL;
8868 	}
8869 
8870 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8871 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8872 		return -EINVAL;
8873 	}
8874 	return 0;
8875 }
8876 
8877 /**
8878  *	dev_set_mtu_ext - Change maximum transfer unit
8879  *	@dev: device
8880  *	@new_mtu: new transfer unit
8881  *	@extack: netlink extended ack
8882  *
8883  *	Change the maximum transfer size of the network device.
8884  */
8885 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8886 		    struct netlink_ext_ack *extack)
8887 {
8888 	int err, orig_mtu;
8889 
8890 	if (new_mtu == dev->mtu)
8891 		return 0;
8892 
8893 	err = dev_validate_mtu(dev, new_mtu, extack);
8894 	if (err)
8895 		return err;
8896 
8897 	if (!netif_device_present(dev))
8898 		return -ENODEV;
8899 
8900 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8901 	err = notifier_to_errno(err);
8902 	if (err)
8903 		return err;
8904 
8905 	orig_mtu = dev->mtu;
8906 	err = __dev_set_mtu(dev, new_mtu);
8907 
8908 	if (!err) {
8909 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8910 						   orig_mtu);
8911 		err = notifier_to_errno(err);
8912 		if (err) {
8913 			/* setting mtu back and notifying everyone again,
8914 			 * so that they have a chance to revert changes.
8915 			 */
8916 			__dev_set_mtu(dev, orig_mtu);
8917 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8918 						     new_mtu);
8919 		}
8920 	}
8921 	return err;
8922 }
8923 
8924 int dev_set_mtu(struct net_device *dev, int new_mtu)
8925 {
8926 	struct netlink_ext_ack extack;
8927 	int err;
8928 
8929 	memset(&extack, 0, sizeof(extack));
8930 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8931 	if (err && extack._msg)
8932 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8933 	return err;
8934 }
8935 EXPORT_SYMBOL(dev_set_mtu);
8936 
8937 /**
8938  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8939  *	@dev: device
8940  *	@new_len: new tx queue length
8941  */
8942 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8943 {
8944 	unsigned int orig_len = dev->tx_queue_len;
8945 	int res;
8946 
8947 	if (new_len != (unsigned int)new_len)
8948 		return -ERANGE;
8949 
8950 	if (new_len != orig_len) {
8951 		dev->tx_queue_len = new_len;
8952 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8953 		res = notifier_to_errno(res);
8954 		if (res)
8955 			goto err_rollback;
8956 		res = dev_qdisc_change_tx_queue_len(dev);
8957 		if (res)
8958 			goto err_rollback;
8959 	}
8960 
8961 	return 0;
8962 
8963 err_rollback:
8964 	netdev_err(dev, "refused to change device tx_queue_len\n");
8965 	dev->tx_queue_len = orig_len;
8966 	return res;
8967 }
8968 
8969 /**
8970  *	dev_set_group - Change group this device belongs to
8971  *	@dev: device
8972  *	@new_group: group this device should belong to
8973  */
8974 void dev_set_group(struct net_device *dev, int new_group)
8975 {
8976 	dev->group = new_group;
8977 }
8978 EXPORT_SYMBOL(dev_set_group);
8979 
8980 /**
8981  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8982  *	@dev: device
8983  *	@addr: new address
8984  *	@extack: netlink extended ack
8985  */
8986 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8987 			      struct netlink_ext_ack *extack)
8988 {
8989 	struct netdev_notifier_pre_changeaddr_info info = {
8990 		.info.dev = dev,
8991 		.info.extack = extack,
8992 		.dev_addr = addr,
8993 	};
8994 	int rc;
8995 
8996 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8997 	return notifier_to_errno(rc);
8998 }
8999 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9000 
9001 /**
9002  *	dev_set_mac_address - Change Media Access Control Address
9003  *	@dev: device
9004  *	@sa: new address
9005  *	@extack: netlink extended ack
9006  *
9007  *	Change the hardware (MAC) address of the device
9008  */
9009 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9010 			struct netlink_ext_ack *extack)
9011 {
9012 	const struct net_device_ops *ops = dev->netdev_ops;
9013 	int err;
9014 
9015 	if (!ops->ndo_set_mac_address)
9016 		return -EOPNOTSUPP;
9017 	if (sa->sa_family != dev->type)
9018 		return -EINVAL;
9019 	if (!netif_device_present(dev))
9020 		return -ENODEV;
9021 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9022 	if (err)
9023 		return err;
9024 	err = ops->ndo_set_mac_address(dev, sa);
9025 	if (err)
9026 		return err;
9027 	dev->addr_assign_type = NET_ADDR_SET;
9028 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9029 	add_device_randomness(dev->dev_addr, dev->addr_len);
9030 	return 0;
9031 }
9032 EXPORT_SYMBOL(dev_set_mac_address);
9033 
9034 static DECLARE_RWSEM(dev_addr_sem);
9035 
9036 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9037 			     struct netlink_ext_ack *extack)
9038 {
9039 	int ret;
9040 
9041 	down_write(&dev_addr_sem);
9042 	ret = dev_set_mac_address(dev, sa, extack);
9043 	up_write(&dev_addr_sem);
9044 	return ret;
9045 }
9046 EXPORT_SYMBOL(dev_set_mac_address_user);
9047 
9048 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9049 {
9050 	size_t size = sizeof(sa->sa_data);
9051 	struct net_device *dev;
9052 	int ret = 0;
9053 
9054 	down_read(&dev_addr_sem);
9055 	rcu_read_lock();
9056 
9057 	dev = dev_get_by_name_rcu(net, dev_name);
9058 	if (!dev) {
9059 		ret = -ENODEV;
9060 		goto unlock;
9061 	}
9062 	if (!dev->addr_len)
9063 		memset(sa->sa_data, 0, size);
9064 	else
9065 		memcpy(sa->sa_data, dev->dev_addr,
9066 		       min_t(size_t, size, dev->addr_len));
9067 	sa->sa_family = dev->type;
9068 
9069 unlock:
9070 	rcu_read_unlock();
9071 	up_read(&dev_addr_sem);
9072 	return ret;
9073 }
9074 EXPORT_SYMBOL(dev_get_mac_address);
9075 
9076 /**
9077  *	dev_change_carrier - Change device carrier
9078  *	@dev: device
9079  *	@new_carrier: new value
9080  *
9081  *	Change device carrier
9082  */
9083 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9084 {
9085 	const struct net_device_ops *ops = dev->netdev_ops;
9086 
9087 	if (!ops->ndo_change_carrier)
9088 		return -EOPNOTSUPP;
9089 	if (!netif_device_present(dev))
9090 		return -ENODEV;
9091 	return ops->ndo_change_carrier(dev, new_carrier);
9092 }
9093 EXPORT_SYMBOL(dev_change_carrier);
9094 
9095 /**
9096  *	dev_get_phys_port_id - Get device physical port ID
9097  *	@dev: device
9098  *	@ppid: port ID
9099  *
9100  *	Get device physical port ID
9101  */
9102 int dev_get_phys_port_id(struct net_device *dev,
9103 			 struct netdev_phys_item_id *ppid)
9104 {
9105 	const struct net_device_ops *ops = dev->netdev_ops;
9106 
9107 	if (!ops->ndo_get_phys_port_id)
9108 		return -EOPNOTSUPP;
9109 	return ops->ndo_get_phys_port_id(dev, ppid);
9110 }
9111 EXPORT_SYMBOL(dev_get_phys_port_id);
9112 
9113 /**
9114  *	dev_get_phys_port_name - Get device physical port name
9115  *	@dev: device
9116  *	@name: port name
9117  *	@len: limit of bytes to copy to name
9118  *
9119  *	Get device physical port name
9120  */
9121 int dev_get_phys_port_name(struct net_device *dev,
9122 			   char *name, size_t len)
9123 {
9124 	const struct net_device_ops *ops = dev->netdev_ops;
9125 	int err;
9126 
9127 	if (ops->ndo_get_phys_port_name) {
9128 		err = ops->ndo_get_phys_port_name(dev, name, len);
9129 		if (err != -EOPNOTSUPP)
9130 			return err;
9131 	}
9132 	return devlink_compat_phys_port_name_get(dev, name, len);
9133 }
9134 EXPORT_SYMBOL(dev_get_phys_port_name);
9135 
9136 /**
9137  *	dev_get_port_parent_id - Get the device's port parent identifier
9138  *	@dev: network device
9139  *	@ppid: pointer to a storage for the port's parent identifier
9140  *	@recurse: allow/disallow recursion to lower devices
9141  *
9142  *	Get the devices's port parent identifier
9143  */
9144 int dev_get_port_parent_id(struct net_device *dev,
9145 			   struct netdev_phys_item_id *ppid,
9146 			   bool recurse)
9147 {
9148 	const struct net_device_ops *ops = dev->netdev_ops;
9149 	struct netdev_phys_item_id first = { };
9150 	struct net_device *lower_dev;
9151 	struct list_head *iter;
9152 	int err;
9153 
9154 	if (ops->ndo_get_port_parent_id) {
9155 		err = ops->ndo_get_port_parent_id(dev, ppid);
9156 		if (err != -EOPNOTSUPP)
9157 			return err;
9158 	}
9159 
9160 	err = devlink_compat_switch_id_get(dev, ppid);
9161 	if (!err || err != -EOPNOTSUPP)
9162 		return err;
9163 
9164 	if (!recurse)
9165 		return -EOPNOTSUPP;
9166 
9167 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9168 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9169 		if (err)
9170 			break;
9171 		if (!first.id_len)
9172 			first = *ppid;
9173 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9174 			return -EOPNOTSUPP;
9175 	}
9176 
9177 	return err;
9178 }
9179 EXPORT_SYMBOL(dev_get_port_parent_id);
9180 
9181 /**
9182  *	netdev_port_same_parent_id - Indicate if two network devices have
9183  *	the same port parent identifier
9184  *	@a: first network device
9185  *	@b: second network device
9186  */
9187 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9188 {
9189 	struct netdev_phys_item_id a_id = { };
9190 	struct netdev_phys_item_id b_id = { };
9191 
9192 	if (dev_get_port_parent_id(a, &a_id, true) ||
9193 	    dev_get_port_parent_id(b, &b_id, true))
9194 		return false;
9195 
9196 	return netdev_phys_item_id_same(&a_id, &b_id);
9197 }
9198 EXPORT_SYMBOL(netdev_port_same_parent_id);
9199 
9200 /**
9201  *	dev_change_proto_down - update protocol port state information
9202  *	@dev: device
9203  *	@proto_down: new value
9204  *
9205  *	This info can be used by switch drivers to set the phys state of the
9206  *	port.
9207  */
9208 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9209 {
9210 	const struct net_device_ops *ops = dev->netdev_ops;
9211 
9212 	if (!ops->ndo_change_proto_down)
9213 		return -EOPNOTSUPP;
9214 	if (!netif_device_present(dev))
9215 		return -ENODEV;
9216 	return ops->ndo_change_proto_down(dev, proto_down);
9217 }
9218 EXPORT_SYMBOL(dev_change_proto_down);
9219 
9220 /**
9221  *	dev_change_proto_down_generic - generic implementation for
9222  * 	ndo_change_proto_down that sets carrier according to
9223  * 	proto_down.
9224  *
9225  *	@dev: device
9226  *	@proto_down: new value
9227  */
9228 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9229 {
9230 	if (proto_down)
9231 		netif_carrier_off(dev);
9232 	else
9233 		netif_carrier_on(dev);
9234 	dev->proto_down = proto_down;
9235 	return 0;
9236 }
9237 EXPORT_SYMBOL(dev_change_proto_down_generic);
9238 
9239 /**
9240  *	dev_change_proto_down_reason - proto down reason
9241  *
9242  *	@dev: device
9243  *	@mask: proto down mask
9244  *	@value: proto down value
9245  */
9246 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9247 				  u32 value)
9248 {
9249 	int b;
9250 
9251 	if (!mask) {
9252 		dev->proto_down_reason = value;
9253 	} else {
9254 		for_each_set_bit(b, &mask, 32) {
9255 			if (value & (1 << b))
9256 				dev->proto_down_reason |= BIT(b);
9257 			else
9258 				dev->proto_down_reason &= ~BIT(b);
9259 		}
9260 	}
9261 }
9262 EXPORT_SYMBOL(dev_change_proto_down_reason);
9263 
9264 struct bpf_xdp_link {
9265 	struct bpf_link link;
9266 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9267 	int flags;
9268 };
9269 
9270 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9271 {
9272 	if (flags & XDP_FLAGS_HW_MODE)
9273 		return XDP_MODE_HW;
9274 	if (flags & XDP_FLAGS_DRV_MODE)
9275 		return XDP_MODE_DRV;
9276 	if (flags & XDP_FLAGS_SKB_MODE)
9277 		return XDP_MODE_SKB;
9278 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9279 }
9280 
9281 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9282 {
9283 	switch (mode) {
9284 	case XDP_MODE_SKB:
9285 		return generic_xdp_install;
9286 	case XDP_MODE_DRV:
9287 	case XDP_MODE_HW:
9288 		return dev->netdev_ops->ndo_bpf;
9289 	default:
9290 		return NULL;
9291 	}
9292 }
9293 
9294 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9295 					 enum bpf_xdp_mode mode)
9296 {
9297 	return dev->xdp_state[mode].link;
9298 }
9299 
9300 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9301 				     enum bpf_xdp_mode mode)
9302 {
9303 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9304 
9305 	if (link)
9306 		return link->link.prog;
9307 	return dev->xdp_state[mode].prog;
9308 }
9309 
9310 static u8 dev_xdp_prog_count(struct net_device *dev)
9311 {
9312 	u8 count = 0;
9313 	int i;
9314 
9315 	for (i = 0; i < __MAX_XDP_MODE; i++)
9316 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9317 			count++;
9318 	return count;
9319 }
9320 
9321 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9322 {
9323 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9324 
9325 	return prog ? prog->aux->id : 0;
9326 }
9327 
9328 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9329 			     struct bpf_xdp_link *link)
9330 {
9331 	dev->xdp_state[mode].link = link;
9332 	dev->xdp_state[mode].prog = NULL;
9333 }
9334 
9335 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9336 			     struct bpf_prog *prog)
9337 {
9338 	dev->xdp_state[mode].link = NULL;
9339 	dev->xdp_state[mode].prog = prog;
9340 }
9341 
9342 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9343 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9344 			   u32 flags, struct bpf_prog *prog)
9345 {
9346 	struct netdev_bpf xdp;
9347 	int err;
9348 
9349 	memset(&xdp, 0, sizeof(xdp));
9350 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9351 	xdp.extack = extack;
9352 	xdp.flags = flags;
9353 	xdp.prog = prog;
9354 
9355 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9356 	 * "moved" into driver), so they don't increment it on their own, but
9357 	 * they do decrement refcnt when program is detached or replaced.
9358 	 * Given net_device also owns link/prog, we need to bump refcnt here
9359 	 * to prevent drivers from underflowing it.
9360 	 */
9361 	if (prog)
9362 		bpf_prog_inc(prog);
9363 	err = bpf_op(dev, &xdp);
9364 	if (err) {
9365 		if (prog)
9366 			bpf_prog_put(prog);
9367 		return err;
9368 	}
9369 
9370 	if (mode != XDP_MODE_HW)
9371 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9372 
9373 	return 0;
9374 }
9375 
9376 static void dev_xdp_uninstall(struct net_device *dev)
9377 {
9378 	struct bpf_xdp_link *link;
9379 	struct bpf_prog *prog;
9380 	enum bpf_xdp_mode mode;
9381 	bpf_op_t bpf_op;
9382 
9383 	ASSERT_RTNL();
9384 
9385 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9386 		prog = dev_xdp_prog(dev, mode);
9387 		if (!prog)
9388 			continue;
9389 
9390 		bpf_op = dev_xdp_bpf_op(dev, mode);
9391 		if (!bpf_op)
9392 			continue;
9393 
9394 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9395 
9396 		/* auto-detach link from net device */
9397 		link = dev_xdp_link(dev, mode);
9398 		if (link)
9399 			link->dev = NULL;
9400 		else
9401 			bpf_prog_put(prog);
9402 
9403 		dev_xdp_set_link(dev, mode, NULL);
9404 	}
9405 }
9406 
9407 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9408 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9409 			  struct bpf_prog *old_prog, u32 flags)
9410 {
9411 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9412 	struct bpf_prog *cur_prog;
9413 	enum bpf_xdp_mode mode;
9414 	bpf_op_t bpf_op;
9415 	int err;
9416 
9417 	ASSERT_RTNL();
9418 
9419 	/* either link or prog attachment, never both */
9420 	if (link && (new_prog || old_prog))
9421 		return -EINVAL;
9422 	/* link supports only XDP mode flags */
9423 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9424 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9425 		return -EINVAL;
9426 	}
9427 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9428 	if (num_modes > 1) {
9429 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9430 		return -EINVAL;
9431 	}
9432 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9433 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9434 		NL_SET_ERR_MSG(extack,
9435 			       "More than one program loaded, unset mode is ambiguous");
9436 		return -EINVAL;
9437 	}
9438 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9439 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9440 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9441 		return -EINVAL;
9442 	}
9443 
9444 	mode = dev_xdp_mode(dev, flags);
9445 	/* can't replace attached link */
9446 	if (dev_xdp_link(dev, mode)) {
9447 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9448 		return -EBUSY;
9449 	}
9450 
9451 	cur_prog = dev_xdp_prog(dev, mode);
9452 	/* can't replace attached prog with link */
9453 	if (link && cur_prog) {
9454 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9455 		return -EBUSY;
9456 	}
9457 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9458 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9459 		return -EEXIST;
9460 	}
9461 
9462 	/* put effective new program into new_prog */
9463 	if (link)
9464 		new_prog = link->link.prog;
9465 
9466 	if (new_prog) {
9467 		bool offload = mode == XDP_MODE_HW;
9468 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9469 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9470 
9471 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9472 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9473 			return -EBUSY;
9474 		}
9475 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9476 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9477 			return -EEXIST;
9478 		}
9479 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9480 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9481 			return -EINVAL;
9482 		}
9483 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9484 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9485 			return -EINVAL;
9486 		}
9487 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9488 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9489 			return -EINVAL;
9490 		}
9491 	}
9492 
9493 	/* don't call drivers if the effective program didn't change */
9494 	if (new_prog != cur_prog) {
9495 		bpf_op = dev_xdp_bpf_op(dev, mode);
9496 		if (!bpf_op) {
9497 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9498 			return -EOPNOTSUPP;
9499 		}
9500 
9501 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9502 		if (err)
9503 			return err;
9504 	}
9505 
9506 	if (link)
9507 		dev_xdp_set_link(dev, mode, link);
9508 	else
9509 		dev_xdp_set_prog(dev, mode, new_prog);
9510 	if (cur_prog)
9511 		bpf_prog_put(cur_prog);
9512 
9513 	return 0;
9514 }
9515 
9516 static int dev_xdp_attach_link(struct net_device *dev,
9517 			       struct netlink_ext_ack *extack,
9518 			       struct bpf_xdp_link *link)
9519 {
9520 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9521 }
9522 
9523 static int dev_xdp_detach_link(struct net_device *dev,
9524 			       struct netlink_ext_ack *extack,
9525 			       struct bpf_xdp_link *link)
9526 {
9527 	enum bpf_xdp_mode mode;
9528 	bpf_op_t bpf_op;
9529 
9530 	ASSERT_RTNL();
9531 
9532 	mode = dev_xdp_mode(dev, link->flags);
9533 	if (dev_xdp_link(dev, mode) != link)
9534 		return -EINVAL;
9535 
9536 	bpf_op = dev_xdp_bpf_op(dev, mode);
9537 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9538 	dev_xdp_set_link(dev, mode, NULL);
9539 	return 0;
9540 }
9541 
9542 static void bpf_xdp_link_release(struct bpf_link *link)
9543 {
9544 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9545 
9546 	rtnl_lock();
9547 
9548 	/* if racing with net_device's tear down, xdp_link->dev might be
9549 	 * already NULL, in which case link was already auto-detached
9550 	 */
9551 	if (xdp_link->dev) {
9552 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9553 		xdp_link->dev = NULL;
9554 	}
9555 
9556 	rtnl_unlock();
9557 }
9558 
9559 static int bpf_xdp_link_detach(struct bpf_link *link)
9560 {
9561 	bpf_xdp_link_release(link);
9562 	return 0;
9563 }
9564 
9565 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9566 {
9567 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9568 
9569 	kfree(xdp_link);
9570 }
9571 
9572 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9573 				     struct seq_file *seq)
9574 {
9575 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9576 	u32 ifindex = 0;
9577 
9578 	rtnl_lock();
9579 	if (xdp_link->dev)
9580 		ifindex = xdp_link->dev->ifindex;
9581 	rtnl_unlock();
9582 
9583 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9584 }
9585 
9586 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9587 				       struct bpf_link_info *info)
9588 {
9589 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9590 	u32 ifindex = 0;
9591 
9592 	rtnl_lock();
9593 	if (xdp_link->dev)
9594 		ifindex = xdp_link->dev->ifindex;
9595 	rtnl_unlock();
9596 
9597 	info->xdp.ifindex = ifindex;
9598 	return 0;
9599 }
9600 
9601 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9602 			       struct bpf_prog *old_prog)
9603 {
9604 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9605 	enum bpf_xdp_mode mode;
9606 	bpf_op_t bpf_op;
9607 	int err = 0;
9608 
9609 	rtnl_lock();
9610 
9611 	/* link might have been auto-released already, so fail */
9612 	if (!xdp_link->dev) {
9613 		err = -ENOLINK;
9614 		goto out_unlock;
9615 	}
9616 
9617 	if (old_prog && link->prog != old_prog) {
9618 		err = -EPERM;
9619 		goto out_unlock;
9620 	}
9621 	old_prog = link->prog;
9622 	if (old_prog == new_prog) {
9623 		/* no-op, don't disturb drivers */
9624 		bpf_prog_put(new_prog);
9625 		goto out_unlock;
9626 	}
9627 
9628 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9629 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9630 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9631 			      xdp_link->flags, new_prog);
9632 	if (err)
9633 		goto out_unlock;
9634 
9635 	old_prog = xchg(&link->prog, new_prog);
9636 	bpf_prog_put(old_prog);
9637 
9638 out_unlock:
9639 	rtnl_unlock();
9640 	return err;
9641 }
9642 
9643 static const struct bpf_link_ops bpf_xdp_link_lops = {
9644 	.release = bpf_xdp_link_release,
9645 	.dealloc = bpf_xdp_link_dealloc,
9646 	.detach = bpf_xdp_link_detach,
9647 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9648 	.fill_link_info = bpf_xdp_link_fill_link_info,
9649 	.update_prog = bpf_xdp_link_update,
9650 };
9651 
9652 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9653 {
9654 	struct net *net = current->nsproxy->net_ns;
9655 	struct bpf_link_primer link_primer;
9656 	struct bpf_xdp_link *link;
9657 	struct net_device *dev;
9658 	int err, fd;
9659 
9660 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9661 	if (!dev)
9662 		return -EINVAL;
9663 
9664 	link = kzalloc(sizeof(*link), GFP_USER);
9665 	if (!link) {
9666 		err = -ENOMEM;
9667 		goto out_put_dev;
9668 	}
9669 
9670 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9671 	link->dev = dev;
9672 	link->flags = attr->link_create.flags;
9673 
9674 	err = bpf_link_prime(&link->link, &link_primer);
9675 	if (err) {
9676 		kfree(link);
9677 		goto out_put_dev;
9678 	}
9679 
9680 	rtnl_lock();
9681 	err = dev_xdp_attach_link(dev, NULL, link);
9682 	rtnl_unlock();
9683 
9684 	if (err) {
9685 		bpf_link_cleanup(&link_primer);
9686 		goto out_put_dev;
9687 	}
9688 
9689 	fd = bpf_link_settle(&link_primer);
9690 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9691 	dev_put(dev);
9692 	return fd;
9693 
9694 out_put_dev:
9695 	dev_put(dev);
9696 	return err;
9697 }
9698 
9699 /**
9700  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9701  *	@dev: device
9702  *	@extack: netlink extended ack
9703  *	@fd: new program fd or negative value to clear
9704  *	@expected_fd: old program fd that userspace expects to replace or clear
9705  *	@flags: xdp-related flags
9706  *
9707  *	Set or clear a bpf program for a device
9708  */
9709 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9710 		      int fd, int expected_fd, u32 flags)
9711 {
9712 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9713 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9714 	int err;
9715 
9716 	ASSERT_RTNL();
9717 
9718 	if (fd >= 0) {
9719 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9720 						 mode != XDP_MODE_SKB);
9721 		if (IS_ERR(new_prog))
9722 			return PTR_ERR(new_prog);
9723 	}
9724 
9725 	if (expected_fd >= 0) {
9726 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9727 						 mode != XDP_MODE_SKB);
9728 		if (IS_ERR(old_prog)) {
9729 			err = PTR_ERR(old_prog);
9730 			old_prog = NULL;
9731 			goto err_out;
9732 		}
9733 	}
9734 
9735 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9736 
9737 err_out:
9738 	if (err && new_prog)
9739 		bpf_prog_put(new_prog);
9740 	if (old_prog)
9741 		bpf_prog_put(old_prog);
9742 	return err;
9743 }
9744 
9745 /**
9746  *	dev_new_index	-	allocate an ifindex
9747  *	@net: the applicable net namespace
9748  *
9749  *	Returns a suitable unique value for a new device interface
9750  *	number.  The caller must hold the rtnl semaphore or the
9751  *	dev_base_lock to be sure it remains unique.
9752  */
9753 static int dev_new_index(struct net *net)
9754 {
9755 	int ifindex = net->ifindex;
9756 
9757 	for (;;) {
9758 		if (++ifindex <= 0)
9759 			ifindex = 1;
9760 		if (!__dev_get_by_index(net, ifindex))
9761 			return net->ifindex = ifindex;
9762 	}
9763 }
9764 
9765 /* Delayed registration/unregisteration */
9766 static LIST_HEAD(net_todo_list);
9767 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9768 
9769 static void net_set_todo(struct net_device *dev)
9770 {
9771 	list_add_tail(&dev->todo_list, &net_todo_list);
9772 	dev_net(dev)->dev_unreg_count++;
9773 }
9774 
9775 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9776 	struct net_device *upper, netdev_features_t features)
9777 {
9778 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9779 	netdev_features_t feature;
9780 	int feature_bit;
9781 
9782 	for_each_netdev_feature(upper_disables, feature_bit) {
9783 		feature = __NETIF_F_BIT(feature_bit);
9784 		if (!(upper->wanted_features & feature)
9785 		    && (features & feature)) {
9786 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9787 				   &feature, upper->name);
9788 			features &= ~feature;
9789 		}
9790 	}
9791 
9792 	return features;
9793 }
9794 
9795 static void netdev_sync_lower_features(struct net_device *upper,
9796 	struct net_device *lower, netdev_features_t features)
9797 {
9798 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9799 	netdev_features_t feature;
9800 	int feature_bit;
9801 
9802 	for_each_netdev_feature(upper_disables, feature_bit) {
9803 		feature = __NETIF_F_BIT(feature_bit);
9804 		if (!(features & feature) && (lower->features & feature)) {
9805 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9806 				   &feature, lower->name);
9807 			lower->wanted_features &= ~feature;
9808 			__netdev_update_features(lower);
9809 
9810 			if (unlikely(lower->features & feature))
9811 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9812 					    &feature, lower->name);
9813 			else
9814 				netdev_features_change(lower);
9815 		}
9816 	}
9817 }
9818 
9819 static netdev_features_t netdev_fix_features(struct net_device *dev,
9820 	netdev_features_t features)
9821 {
9822 	/* Fix illegal checksum combinations */
9823 	if ((features & NETIF_F_HW_CSUM) &&
9824 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9825 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9826 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9827 	}
9828 
9829 	/* TSO requires that SG is present as well. */
9830 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9831 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9832 		features &= ~NETIF_F_ALL_TSO;
9833 	}
9834 
9835 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9836 					!(features & NETIF_F_IP_CSUM)) {
9837 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9838 		features &= ~NETIF_F_TSO;
9839 		features &= ~NETIF_F_TSO_ECN;
9840 	}
9841 
9842 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9843 					 !(features & NETIF_F_IPV6_CSUM)) {
9844 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9845 		features &= ~NETIF_F_TSO6;
9846 	}
9847 
9848 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9849 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9850 		features &= ~NETIF_F_TSO_MANGLEID;
9851 
9852 	/* TSO ECN requires that TSO is present as well. */
9853 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9854 		features &= ~NETIF_F_TSO_ECN;
9855 
9856 	/* Software GSO depends on SG. */
9857 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9858 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9859 		features &= ~NETIF_F_GSO;
9860 	}
9861 
9862 	/* GSO partial features require GSO partial be set */
9863 	if ((features & dev->gso_partial_features) &&
9864 	    !(features & NETIF_F_GSO_PARTIAL)) {
9865 		netdev_dbg(dev,
9866 			   "Dropping partially supported GSO features since no GSO partial.\n");
9867 		features &= ~dev->gso_partial_features;
9868 	}
9869 
9870 	if (!(features & NETIF_F_RXCSUM)) {
9871 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9872 		 * successfully merged by hardware must also have the
9873 		 * checksum verified by hardware.  If the user does not
9874 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9875 		 */
9876 		if (features & NETIF_F_GRO_HW) {
9877 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9878 			features &= ~NETIF_F_GRO_HW;
9879 		}
9880 	}
9881 
9882 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9883 	if (features & NETIF_F_RXFCS) {
9884 		if (features & NETIF_F_LRO) {
9885 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9886 			features &= ~NETIF_F_LRO;
9887 		}
9888 
9889 		if (features & NETIF_F_GRO_HW) {
9890 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9891 			features &= ~NETIF_F_GRO_HW;
9892 		}
9893 	}
9894 
9895 	if (features & NETIF_F_HW_TLS_TX) {
9896 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9897 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9898 		bool hw_csum = features & NETIF_F_HW_CSUM;
9899 
9900 		if (!ip_csum && !hw_csum) {
9901 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9902 			features &= ~NETIF_F_HW_TLS_TX;
9903 		}
9904 	}
9905 
9906 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9907 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9908 		features &= ~NETIF_F_HW_TLS_RX;
9909 	}
9910 
9911 	return features;
9912 }
9913 
9914 int __netdev_update_features(struct net_device *dev)
9915 {
9916 	struct net_device *upper, *lower;
9917 	netdev_features_t features;
9918 	struct list_head *iter;
9919 	int err = -1;
9920 
9921 	ASSERT_RTNL();
9922 
9923 	features = netdev_get_wanted_features(dev);
9924 
9925 	if (dev->netdev_ops->ndo_fix_features)
9926 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9927 
9928 	/* driver might be less strict about feature dependencies */
9929 	features = netdev_fix_features(dev, features);
9930 
9931 	/* some features can't be enabled if they're off on an upper device */
9932 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9933 		features = netdev_sync_upper_features(dev, upper, features);
9934 
9935 	if (dev->features == features)
9936 		goto sync_lower;
9937 
9938 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9939 		&dev->features, &features);
9940 
9941 	if (dev->netdev_ops->ndo_set_features)
9942 		err = dev->netdev_ops->ndo_set_features(dev, features);
9943 	else
9944 		err = 0;
9945 
9946 	if (unlikely(err < 0)) {
9947 		netdev_err(dev,
9948 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9949 			err, &features, &dev->features);
9950 		/* return non-0 since some features might have changed and
9951 		 * it's better to fire a spurious notification than miss it
9952 		 */
9953 		return -1;
9954 	}
9955 
9956 sync_lower:
9957 	/* some features must be disabled on lower devices when disabled
9958 	 * on an upper device (think: bonding master or bridge)
9959 	 */
9960 	netdev_for_each_lower_dev(dev, lower, iter)
9961 		netdev_sync_lower_features(dev, lower, features);
9962 
9963 	if (!err) {
9964 		netdev_features_t diff = features ^ dev->features;
9965 
9966 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9967 			/* udp_tunnel_{get,drop}_rx_info both need
9968 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9969 			 * device, or they won't do anything.
9970 			 * Thus we need to update dev->features
9971 			 * *before* calling udp_tunnel_get_rx_info,
9972 			 * but *after* calling udp_tunnel_drop_rx_info.
9973 			 */
9974 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9975 				dev->features = features;
9976 				udp_tunnel_get_rx_info(dev);
9977 			} else {
9978 				udp_tunnel_drop_rx_info(dev);
9979 			}
9980 		}
9981 
9982 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9983 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9984 				dev->features = features;
9985 				err |= vlan_get_rx_ctag_filter_info(dev);
9986 			} else {
9987 				vlan_drop_rx_ctag_filter_info(dev);
9988 			}
9989 		}
9990 
9991 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9992 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9993 				dev->features = features;
9994 				err |= vlan_get_rx_stag_filter_info(dev);
9995 			} else {
9996 				vlan_drop_rx_stag_filter_info(dev);
9997 			}
9998 		}
9999 
10000 		dev->features = features;
10001 	}
10002 
10003 	return err < 0 ? 0 : 1;
10004 }
10005 
10006 /**
10007  *	netdev_update_features - recalculate device features
10008  *	@dev: the device to check
10009  *
10010  *	Recalculate dev->features set and send notifications if it
10011  *	has changed. Should be called after driver or hardware dependent
10012  *	conditions might have changed that influence the features.
10013  */
10014 void netdev_update_features(struct net_device *dev)
10015 {
10016 	if (__netdev_update_features(dev))
10017 		netdev_features_change(dev);
10018 }
10019 EXPORT_SYMBOL(netdev_update_features);
10020 
10021 /**
10022  *	netdev_change_features - recalculate device features
10023  *	@dev: the device to check
10024  *
10025  *	Recalculate dev->features set and send notifications even
10026  *	if they have not changed. Should be called instead of
10027  *	netdev_update_features() if also dev->vlan_features might
10028  *	have changed to allow the changes to be propagated to stacked
10029  *	VLAN devices.
10030  */
10031 void netdev_change_features(struct net_device *dev)
10032 {
10033 	__netdev_update_features(dev);
10034 	netdev_features_change(dev);
10035 }
10036 EXPORT_SYMBOL(netdev_change_features);
10037 
10038 /**
10039  *	netif_stacked_transfer_operstate -	transfer operstate
10040  *	@rootdev: the root or lower level device to transfer state from
10041  *	@dev: the device to transfer operstate to
10042  *
10043  *	Transfer operational state from root to device. This is normally
10044  *	called when a stacking relationship exists between the root
10045  *	device and the device(a leaf device).
10046  */
10047 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10048 					struct net_device *dev)
10049 {
10050 	if (rootdev->operstate == IF_OPER_DORMANT)
10051 		netif_dormant_on(dev);
10052 	else
10053 		netif_dormant_off(dev);
10054 
10055 	if (rootdev->operstate == IF_OPER_TESTING)
10056 		netif_testing_on(dev);
10057 	else
10058 		netif_testing_off(dev);
10059 
10060 	if (netif_carrier_ok(rootdev))
10061 		netif_carrier_on(dev);
10062 	else
10063 		netif_carrier_off(dev);
10064 }
10065 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10066 
10067 static int netif_alloc_rx_queues(struct net_device *dev)
10068 {
10069 	unsigned int i, count = dev->num_rx_queues;
10070 	struct netdev_rx_queue *rx;
10071 	size_t sz = count * sizeof(*rx);
10072 	int err = 0;
10073 
10074 	BUG_ON(count < 1);
10075 
10076 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10077 	if (!rx)
10078 		return -ENOMEM;
10079 
10080 	dev->_rx = rx;
10081 
10082 	for (i = 0; i < count; i++) {
10083 		rx[i].dev = dev;
10084 
10085 		/* XDP RX-queue setup */
10086 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10087 		if (err < 0)
10088 			goto err_rxq_info;
10089 	}
10090 	return 0;
10091 
10092 err_rxq_info:
10093 	/* Rollback successful reg's and free other resources */
10094 	while (i--)
10095 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10096 	kvfree(dev->_rx);
10097 	dev->_rx = NULL;
10098 	return err;
10099 }
10100 
10101 static void netif_free_rx_queues(struct net_device *dev)
10102 {
10103 	unsigned int i, count = dev->num_rx_queues;
10104 
10105 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10106 	if (!dev->_rx)
10107 		return;
10108 
10109 	for (i = 0; i < count; i++)
10110 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10111 
10112 	kvfree(dev->_rx);
10113 }
10114 
10115 static void netdev_init_one_queue(struct net_device *dev,
10116 				  struct netdev_queue *queue, void *_unused)
10117 {
10118 	/* Initialize queue lock */
10119 	spin_lock_init(&queue->_xmit_lock);
10120 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10121 	queue->xmit_lock_owner = -1;
10122 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10123 	queue->dev = dev;
10124 #ifdef CONFIG_BQL
10125 	dql_init(&queue->dql, HZ);
10126 #endif
10127 }
10128 
10129 static void netif_free_tx_queues(struct net_device *dev)
10130 {
10131 	kvfree(dev->_tx);
10132 }
10133 
10134 static int netif_alloc_netdev_queues(struct net_device *dev)
10135 {
10136 	unsigned int count = dev->num_tx_queues;
10137 	struct netdev_queue *tx;
10138 	size_t sz = count * sizeof(*tx);
10139 
10140 	if (count < 1 || count > 0xffff)
10141 		return -EINVAL;
10142 
10143 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10144 	if (!tx)
10145 		return -ENOMEM;
10146 
10147 	dev->_tx = tx;
10148 
10149 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10150 	spin_lock_init(&dev->tx_global_lock);
10151 
10152 	return 0;
10153 }
10154 
10155 void netif_tx_stop_all_queues(struct net_device *dev)
10156 {
10157 	unsigned int i;
10158 
10159 	for (i = 0; i < dev->num_tx_queues; i++) {
10160 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10161 
10162 		netif_tx_stop_queue(txq);
10163 	}
10164 }
10165 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10166 
10167 /**
10168  *	register_netdevice	- register a network device
10169  *	@dev: device to register
10170  *
10171  *	Take a completed network device structure and add it to the kernel
10172  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10173  *	chain. 0 is returned on success. A negative errno code is returned
10174  *	on a failure to set up the device, or if the name is a duplicate.
10175  *
10176  *	Callers must hold the rtnl semaphore. You may want
10177  *	register_netdev() instead of this.
10178  *
10179  *	BUGS:
10180  *	The locking appears insufficient to guarantee two parallel registers
10181  *	will not get the same name.
10182  */
10183 
10184 int register_netdevice(struct net_device *dev)
10185 {
10186 	int ret;
10187 	struct net *net = dev_net(dev);
10188 
10189 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10190 		     NETDEV_FEATURE_COUNT);
10191 	BUG_ON(dev_boot_phase);
10192 	ASSERT_RTNL();
10193 
10194 	might_sleep();
10195 
10196 	/* When net_device's are persistent, this will be fatal. */
10197 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10198 	BUG_ON(!net);
10199 
10200 	ret = ethtool_check_ops(dev->ethtool_ops);
10201 	if (ret)
10202 		return ret;
10203 
10204 	spin_lock_init(&dev->addr_list_lock);
10205 	netdev_set_addr_lockdep_class(dev);
10206 
10207 	ret = dev_get_valid_name(net, dev, dev->name);
10208 	if (ret < 0)
10209 		goto out;
10210 
10211 	ret = -ENOMEM;
10212 	dev->name_node = netdev_name_node_head_alloc(dev);
10213 	if (!dev->name_node)
10214 		goto out;
10215 
10216 	/* Init, if this function is available */
10217 	if (dev->netdev_ops->ndo_init) {
10218 		ret = dev->netdev_ops->ndo_init(dev);
10219 		if (ret) {
10220 			if (ret > 0)
10221 				ret = -EIO;
10222 			goto err_free_name;
10223 		}
10224 	}
10225 
10226 	if (((dev->hw_features | dev->features) &
10227 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10228 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10229 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10230 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10231 		ret = -EINVAL;
10232 		goto err_uninit;
10233 	}
10234 
10235 	ret = -EBUSY;
10236 	if (!dev->ifindex)
10237 		dev->ifindex = dev_new_index(net);
10238 	else if (__dev_get_by_index(net, dev->ifindex))
10239 		goto err_uninit;
10240 
10241 	/* Transfer changeable features to wanted_features and enable
10242 	 * software offloads (GSO and GRO).
10243 	 */
10244 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10245 	dev->features |= NETIF_F_SOFT_FEATURES;
10246 
10247 	if (dev->udp_tunnel_nic_info) {
10248 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10249 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10250 	}
10251 
10252 	dev->wanted_features = dev->features & dev->hw_features;
10253 
10254 	if (!(dev->flags & IFF_LOOPBACK))
10255 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10256 
10257 	/* If IPv4 TCP segmentation offload is supported we should also
10258 	 * allow the device to enable segmenting the frame with the option
10259 	 * of ignoring a static IP ID value.  This doesn't enable the
10260 	 * feature itself but allows the user to enable it later.
10261 	 */
10262 	if (dev->hw_features & NETIF_F_TSO)
10263 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10264 	if (dev->vlan_features & NETIF_F_TSO)
10265 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10266 	if (dev->mpls_features & NETIF_F_TSO)
10267 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10268 	if (dev->hw_enc_features & NETIF_F_TSO)
10269 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10270 
10271 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10272 	 */
10273 	dev->vlan_features |= NETIF_F_HIGHDMA;
10274 
10275 	/* Make NETIF_F_SG inheritable to tunnel devices.
10276 	 */
10277 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10278 
10279 	/* Make NETIF_F_SG inheritable to MPLS.
10280 	 */
10281 	dev->mpls_features |= NETIF_F_SG;
10282 
10283 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10284 	ret = notifier_to_errno(ret);
10285 	if (ret)
10286 		goto err_uninit;
10287 
10288 	ret = netdev_register_kobject(dev);
10289 	if (ret) {
10290 		dev->reg_state = NETREG_UNREGISTERED;
10291 		goto err_uninit;
10292 	}
10293 	dev->reg_state = NETREG_REGISTERED;
10294 
10295 	__netdev_update_features(dev);
10296 
10297 	/*
10298 	 *	Default initial state at registry is that the
10299 	 *	device is present.
10300 	 */
10301 
10302 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10303 
10304 	linkwatch_init_dev(dev);
10305 
10306 	dev_init_scheduler(dev);
10307 	dev_hold(dev);
10308 	list_netdevice(dev);
10309 	add_device_randomness(dev->dev_addr, dev->addr_len);
10310 
10311 	/* If the device has permanent device address, driver should
10312 	 * set dev_addr and also addr_assign_type should be set to
10313 	 * NET_ADDR_PERM (default value).
10314 	 */
10315 	if (dev->addr_assign_type == NET_ADDR_PERM)
10316 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10317 
10318 	/* Notify protocols, that a new device appeared. */
10319 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10320 	ret = notifier_to_errno(ret);
10321 	if (ret) {
10322 		/* Expect explicit free_netdev() on failure */
10323 		dev->needs_free_netdev = false;
10324 		unregister_netdevice_queue(dev, NULL);
10325 		goto out;
10326 	}
10327 	/*
10328 	 *	Prevent userspace races by waiting until the network
10329 	 *	device is fully setup before sending notifications.
10330 	 */
10331 	if (!dev->rtnl_link_ops ||
10332 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10333 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10334 
10335 out:
10336 	return ret;
10337 
10338 err_uninit:
10339 	if (dev->netdev_ops->ndo_uninit)
10340 		dev->netdev_ops->ndo_uninit(dev);
10341 	if (dev->priv_destructor)
10342 		dev->priv_destructor(dev);
10343 err_free_name:
10344 	netdev_name_node_free(dev->name_node);
10345 	goto out;
10346 }
10347 EXPORT_SYMBOL(register_netdevice);
10348 
10349 /**
10350  *	init_dummy_netdev	- init a dummy network device for NAPI
10351  *	@dev: device to init
10352  *
10353  *	This takes a network device structure and initialize the minimum
10354  *	amount of fields so it can be used to schedule NAPI polls without
10355  *	registering a full blown interface. This is to be used by drivers
10356  *	that need to tie several hardware interfaces to a single NAPI
10357  *	poll scheduler due to HW limitations.
10358  */
10359 int init_dummy_netdev(struct net_device *dev)
10360 {
10361 	/* Clear everything. Note we don't initialize spinlocks
10362 	 * are they aren't supposed to be taken by any of the
10363 	 * NAPI code and this dummy netdev is supposed to be
10364 	 * only ever used for NAPI polls
10365 	 */
10366 	memset(dev, 0, sizeof(struct net_device));
10367 
10368 	/* make sure we BUG if trying to hit standard
10369 	 * register/unregister code path
10370 	 */
10371 	dev->reg_state = NETREG_DUMMY;
10372 
10373 	/* NAPI wants this */
10374 	INIT_LIST_HEAD(&dev->napi_list);
10375 
10376 	/* a dummy interface is started by default */
10377 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10378 	set_bit(__LINK_STATE_START, &dev->state);
10379 
10380 	/* napi_busy_loop stats accounting wants this */
10381 	dev_net_set(dev, &init_net);
10382 
10383 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10384 	 * because users of this 'device' dont need to change
10385 	 * its refcount.
10386 	 */
10387 
10388 	return 0;
10389 }
10390 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10391 
10392 
10393 /**
10394  *	register_netdev	- register a network device
10395  *	@dev: device to register
10396  *
10397  *	Take a completed network device structure and add it to the kernel
10398  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10399  *	chain. 0 is returned on success. A negative errno code is returned
10400  *	on a failure to set up the device, or if the name is a duplicate.
10401  *
10402  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10403  *	and expands the device name if you passed a format string to
10404  *	alloc_netdev.
10405  */
10406 int register_netdev(struct net_device *dev)
10407 {
10408 	int err;
10409 
10410 	if (rtnl_lock_killable())
10411 		return -EINTR;
10412 	err = register_netdevice(dev);
10413 	rtnl_unlock();
10414 	return err;
10415 }
10416 EXPORT_SYMBOL(register_netdev);
10417 
10418 int netdev_refcnt_read(const struct net_device *dev)
10419 {
10420 #ifdef CONFIG_PCPU_DEV_REFCNT
10421 	int i, refcnt = 0;
10422 
10423 	for_each_possible_cpu(i)
10424 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10425 	return refcnt;
10426 #else
10427 	return refcount_read(&dev->dev_refcnt);
10428 #endif
10429 }
10430 EXPORT_SYMBOL(netdev_refcnt_read);
10431 
10432 int netdev_unregister_timeout_secs __read_mostly = 10;
10433 
10434 #define WAIT_REFS_MIN_MSECS 1
10435 #define WAIT_REFS_MAX_MSECS 250
10436 /**
10437  * netdev_wait_allrefs - wait until all references are gone.
10438  * @dev: target net_device
10439  *
10440  * This is called when unregistering network devices.
10441  *
10442  * Any protocol or device that holds a reference should register
10443  * for netdevice notification, and cleanup and put back the
10444  * reference if they receive an UNREGISTER event.
10445  * We can get stuck here if buggy protocols don't correctly
10446  * call dev_put.
10447  */
10448 static void netdev_wait_allrefs(struct net_device *dev)
10449 {
10450 	unsigned long rebroadcast_time, warning_time;
10451 	int wait = 0, refcnt;
10452 
10453 	linkwatch_forget_dev(dev);
10454 
10455 	rebroadcast_time = warning_time = jiffies;
10456 	refcnt = netdev_refcnt_read(dev);
10457 
10458 	while (refcnt != 1) {
10459 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10460 			rtnl_lock();
10461 
10462 			/* Rebroadcast unregister notification */
10463 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10464 
10465 			__rtnl_unlock();
10466 			rcu_barrier();
10467 			rtnl_lock();
10468 
10469 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10470 				     &dev->state)) {
10471 				/* We must not have linkwatch events
10472 				 * pending on unregister. If this
10473 				 * happens, we simply run the queue
10474 				 * unscheduled, resulting in a noop
10475 				 * for this device.
10476 				 */
10477 				linkwatch_run_queue();
10478 			}
10479 
10480 			__rtnl_unlock();
10481 
10482 			rebroadcast_time = jiffies;
10483 		}
10484 
10485 		if (!wait) {
10486 			rcu_barrier();
10487 			wait = WAIT_REFS_MIN_MSECS;
10488 		} else {
10489 			msleep(wait);
10490 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10491 		}
10492 
10493 		refcnt = netdev_refcnt_read(dev);
10494 
10495 		if (refcnt != 1 &&
10496 		    time_after(jiffies, warning_time +
10497 			       netdev_unregister_timeout_secs * HZ)) {
10498 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10499 				 dev->name, refcnt);
10500 			warning_time = jiffies;
10501 		}
10502 	}
10503 }
10504 
10505 /* The sequence is:
10506  *
10507  *	rtnl_lock();
10508  *	...
10509  *	register_netdevice(x1);
10510  *	register_netdevice(x2);
10511  *	...
10512  *	unregister_netdevice(y1);
10513  *	unregister_netdevice(y2);
10514  *      ...
10515  *	rtnl_unlock();
10516  *	free_netdev(y1);
10517  *	free_netdev(y2);
10518  *
10519  * We are invoked by rtnl_unlock().
10520  * This allows us to deal with problems:
10521  * 1) We can delete sysfs objects which invoke hotplug
10522  *    without deadlocking with linkwatch via keventd.
10523  * 2) Since we run with the RTNL semaphore not held, we can sleep
10524  *    safely in order to wait for the netdev refcnt to drop to zero.
10525  *
10526  * We must not return until all unregister events added during
10527  * the interval the lock was held have been completed.
10528  */
10529 void netdev_run_todo(void)
10530 {
10531 	struct list_head list;
10532 #ifdef CONFIG_LOCKDEP
10533 	struct list_head unlink_list;
10534 
10535 	list_replace_init(&net_unlink_list, &unlink_list);
10536 
10537 	while (!list_empty(&unlink_list)) {
10538 		struct net_device *dev = list_first_entry(&unlink_list,
10539 							  struct net_device,
10540 							  unlink_list);
10541 		list_del_init(&dev->unlink_list);
10542 		dev->nested_level = dev->lower_level - 1;
10543 	}
10544 #endif
10545 
10546 	/* Snapshot list, allow later requests */
10547 	list_replace_init(&net_todo_list, &list);
10548 
10549 	__rtnl_unlock();
10550 
10551 
10552 	/* Wait for rcu callbacks to finish before next phase */
10553 	if (!list_empty(&list))
10554 		rcu_barrier();
10555 
10556 	while (!list_empty(&list)) {
10557 		struct net_device *dev
10558 			= list_first_entry(&list, struct net_device, todo_list);
10559 		list_del(&dev->todo_list);
10560 
10561 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10562 			pr_err("network todo '%s' but state %d\n",
10563 			       dev->name, dev->reg_state);
10564 			dump_stack();
10565 			continue;
10566 		}
10567 
10568 		dev->reg_state = NETREG_UNREGISTERED;
10569 
10570 		netdev_wait_allrefs(dev);
10571 
10572 		/* paranoia */
10573 		BUG_ON(netdev_refcnt_read(dev) != 1);
10574 		BUG_ON(!list_empty(&dev->ptype_all));
10575 		BUG_ON(!list_empty(&dev->ptype_specific));
10576 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10577 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10578 #if IS_ENABLED(CONFIG_DECNET)
10579 		WARN_ON(dev->dn_ptr);
10580 #endif
10581 		if (dev->priv_destructor)
10582 			dev->priv_destructor(dev);
10583 		if (dev->needs_free_netdev)
10584 			free_netdev(dev);
10585 
10586 		/* Report a network device has been unregistered */
10587 		rtnl_lock();
10588 		dev_net(dev)->dev_unreg_count--;
10589 		__rtnl_unlock();
10590 		wake_up(&netdev_unregistering_wq);
10591 
10592 		/* Free network device */
10593 		kobject_put(&dev->dev.kobj);
10594 	}
10595 }
10596 
10597 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10598  * all the same fields in the same order as net_device_stats, with only
10599  * the type differing, but rtnl_link_stats64 may have additional fields
10600  * at the end for newer counters.
10601  */
10602 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10603 			     const struct net_device_stats *netdev_stats)
10604 {
10605 #if BITS_PER_LONG == 64
10606 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10607 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10608 	/* zero out counters that only exist in rtnl_link_stats64 */
10609 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10610 	       sizeof(*stats64) - sizeof(*netdev_stats));
10611 #else
10612 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10613 	const unsigned long *src = (const unsigned long *)netdev_stats;
10614 	u64 *dst = (u64 *)stats64;
10615 
10616 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10617 	for (i = 0; i < n; i++)
10618 		dst[i] = src[i];
10619 	/* zero out counters that only exist in rtnl_link_stats64 */
10620 	memset((char *)stats64 + n * sizeof(u64), 0,
10621 	       sizeof(*stats64) - n * sizeof(u64));
10622 #endif
10623 }
10624 EXPORT_SYMBOL(netdev_stats_to_stats64);
10625 
10626 /**
10627  *	dev_get_stats	- get network device statistics
10628  *	@dev: device to get statistics from
10629  *	@storage: place to store stats
10630  *
10631  *	Get network statistics from device. Return @storage.
10632  *	The device driver may provide its own method by setting
10633  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10634  *	otherwise the internal statistics structure is used.
10635  */
10636 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10637 					struct rtnl_link_stats64 *storage)
10638 {
10639 	const struct net_device_ops *ops = dev->netdev_ops;
10640 
10641 	if (ops->ndo_get_stats64) {
10642 		memset(storage, 0, sizeof(*storage));
10643 		ops->ndo_get_stats64(dev, storage);
10644 	} else if (ops->ndo_get_stats) {
10645 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10646 	} else {
10647 		netdev_stats_to_stats64(storage, &dev->stats);
10648 	}
10649 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10650 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10651 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10652 	return storage;
10653 }
10654 EXPORT_SYMBOL(dev_get_stats);
10655 
10656 /**
10657  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10658  *	@s: place to store stats
10659  *	@netstats: per-cpu network stats to read from
10660  *
10661  *	Read per-cpu network statistics and populate the related fields in @s.
10662  */
10663 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10664 			   const struct pcpu_sw_netstats __percpu *netstats)
10665 {
10666 	int cpu;
10667 
10668 	for_each_possible_cpu(cpu) {
10669 		const struct pcpu_sw_netstats *stats;
10670 		struct pcpu_sw_netstats tmp;
10671 		unsigned int start;
10672 
10673 		stats = per_cpu_ptr(netstats, cpu);
10674 		do {
10675 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10676 			tmp.rx_packets = stats->rx_packets;
10677 			tmp.rx_bytes   = stats->rx_bytes;
10678 			tmp.tx_packets = stats->tx_packets;
10679 			tmp.tx_bytes   = stats->tx_bytes;
10680 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10681 
10682 		s->rx_packets += tmp.rx_packets;
10683 		s->rx_bytes   += tmp.rx_bytes;
10684 		s->tx_packets += tmp.tx_packets;
10685 		s->tx_bytes   += tmp.tx_bytes;
10686 	}
10687 }
10688 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10689 
10690 /**
10691  *	dev_get_tstats64 - ndo_get_stats64 implementation
10692  *	@dev: device to get statistics from
10693  *	@s: place to store stats
10694  *
10695  *	Populate @s from dev->stats and dev->tstats. Can be used as
10696  *	ndo_get_stats64() callback.
10697  */
10698 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10699 {
10700 	netdev_stats_to_stats64(s, &dev->stats);
10701 	dev_fetch_sw_netstats(s, dev->tstats);
10702 }
10703 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10704 
10705 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10706 {
10707 	struct netdev_queue *queue = dev_ingress_queue(dev);
10708 
10709 #ifdef CONFIG_NET_CLS_ACT
10710 	if (queue)
10711 		return queue;
10712 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10713 	if (!queue)
10714 		return NULL;
10715 	netdev_init_one_queue(dev, queue, NULL);
10716 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10717 	queue->qdisc_sleeping = &noop_qdisc;
10718 	rcu_assign_pointer(dev->ingress_queue, queue);
10719 #endif
10720 	return queue;
10721 }
10722 
10723 static const struct ethtool_ops default_ethtool_ops;
10724 
10725 void netdev_set_default_ethtool_ops(struct net_device *dev,
10726 				    const struct ethtool_ops *ops)
10727 {
10728 	if (dev->ethtool_ops == &default_ethtool_ops)
10729 		dev->ethtool_ops = ops;
10730 }
10731 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10732 
10733 void netdev_freemem(struct net_device *dev)
10734 {
10735 	char *addr = (char *)dev - dev->padded;
10736 
10737 	kvfree(addr);
10738 }
10739 
10740 /**
10741  * alloc_netdev_mqs - allocate network device
10742  * @sizeof_priv: size of private data to allocate space for
10743  * @name: device name format string
10744  * @name_assign_type: origin of device name
10745  * @setup: callback to initialize device
10746  * @txqs: the number of TX subqueues to allocate
10747  * @rxqs: the number of RX subqueues to allocate
10748  *
10749  * Allocates a struct net_device with private data area for driver use
10750  * and performs basic initialization.  Also allocates subqueue structs
10751  * for each queue on the device.
10752  */
10753 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10754 		unsigned char name_assign_type,
10755 		void (*setup)(struct net_device *),
10756 		unsigned int txqs, unsigned int rxqs)
10757 {
10758 	struct net_device *dev;
10759 	unsigned int alloc_size;
10760 	struct net_device *p;
10761 
10762 	BUG_ON(strlen(name) >= sizeof(dev->name));
10763 
10764 	if (txqs < 1) {
10765 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10766 		return NULL;
10767 	}
10768 
10769 	if (rxqs < 1) {
10770 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10771 		return NULL;
10772 	}
10773 
10774 	alloc_size = sizeof(struct net_device);
10775 	if (sizeof_priv) {
10776 		/* ensure 32-byte alignment of private area */
10777 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10778 		alloc_size += sizeof_priv;
10779 	}
10780 	/* ensure 32-byte alignment of whole construct */
10781 	alloc_size += NETDEV_ALIGN - 1;
10782 
10783 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10784 	if (!p)
10785 		return NULL;
10786 
10787 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10788 	dev->padded = (char *)dev - (char *)p;
10789 
10790 #ifdef CONFIG_PCPU_DEV_REFCNT
10791 	dev->pcpu_refcnt = alloc_percpu(int);
10792 	if (!dev->pcpu_refcnt)
10793 		goto free_dev;
10794 	dev_hold(dev);
10795 #else
10796 	refcount_set(&dev->dev_refcnt, 1);
10797 #endif
10798 
10799 	if (dev_addr_init(dev))
10800 		goto free_pcpu;
10801 
10802 	dev_mc_init(dev);
10803 	dev_uc_init(dev);
10804 
10805 	dev_net_set(dev, &init_net);
10806 
10807 	dev->gso_max_size = GSO_MAX_SIZE;
10808 	dev->gso_max_segs = GSO_MAX_SEGS;
10809 	dev->upper_level = 1;
10810 	dev->lower_level = 1;
10811 #ifdef CONFIG_LOCKDEP
10812 	dev->nested_level = 0;
10813 	INIT_LIST_HEAD(&dev->unlink_list);
10814 #endif
10815 
10816 	INIT_LIST_HEAD(&dev->napi_list);
10817 	INIT_LIST_HEAD(&dev->unreg_list);
10818 	INIT_LIST_HEAD(&dev->close_list);
10819 	INIT_LIST_HEAD(&dev->link_watch_list);
10820 	INIT_LIST_HEAD(&dev->adj_list.upper);
10821 	INIT_LIST_HEAD(&dev->adj_list.lower);
10822 	INIT_LIST_HEAD(&dev->ptype_all);
10823 	INIT_LIST_HEAD(&dev->ptype_specific);
10824 	INIT_LIST_HEAD(&dev->net_notifier_list);
10825 #ifdef CONFIG_NET_SCHED
10826 	hash_init(dev->qdisc_hash);
10827 #endif
10828 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10829 	setup(dev);
10830 
10831 	if (!dev->tx_queue_len) {
10832 		dev->priv_flags |= IFF_NO_QUEUE;
10833 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10834 	}
10835 
10836 	dev->num_tx_queues = txqs;
10837 	dev->real_num_tx_queues = txqs;
10838 	if (netif_alloc_netdev_queues(dev))
10839 		goto free_all;
10840 
10841 	dev->num_rx_queues = rxqs;
10842 	dev->real_num_rx_queues = rxqs;
10843 	if (netif_alloc_rx_queues(dev))
10844 		goto free_all;
10845 
10846 	strcpy(dev->name, name);
10847 	dev->name_assign_type = name_assign_type;
10848 	dev->group = INIT_NETDEV_GROUP;
10849 	if (!dev->ethtool_ops)
10850 		dev->ethtool_ops = &default_ethtool_ops;
10851 
10852 	nf_hook_ingress_init(dev);
10853 
10854 	return dev;
10855 
10856 free_all:
10857 	free_netdev(dev);
10858 	return NULL;
10859 
10860 free_pcpu:
10861 #ifdef CONFIG_PCPU_DEV_REFCNT
10862 	free_percpu(dev->pcpu_refcnt);
10863 free_dev:
10864 #endif
10865 	netdev_freemem(dev);
10866 	return NULL;
10867 }
10868 EXPORT_SYMBOL(alloc_netdev_mqs);
10869 
10870 /**
10871  * free_netdev - free network device
10872  * @dev: device
10873  *
10874  * This function does the last stage of destroying an allocated device
10875  * interface. The reference to the device object is released. If this
10876  * is the last reference then it will be freed.Must be called in process
10877  * context.
10878  */
10879 void free_netdev(struct net_device *dev)
10880 {
10881 	struct napi_struct *p, *n;
10882 
10883 	might_sleep();
10884 
10885 	/* When called immediately after register_netdevice() failed the unwind
10886 	 * handling may still be dismantling the device. Handle that case by
10887 	 * deferring the free.
10888 	 */
10889 	if (dev->reg_state == NETREG_UNREGISTERING) {
10890 		ASSERT_RTNL();
10891 		dev->needs_free_netdev = true;
10892 		return;
10893 	}
10894 
10895 	netif_free_tx_queues(dev);
10896 	netif_free_rx_queues(dev);
10897 
10898 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10899 
10900 	/* Flush device addresses */
10901 	dev_addr_flush(dev);
10902 
10903 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10904 		netif_napi_del(p);
10905 
10906 #ifdef CONFIG_PCPU_DEV_REFCNT
10907 	free_percpu(dev->pcpu_refcnt);
10908 	dev->pcpu_refcnt = NULL;
10909 #endif
10910 	free_percpu(dev->xdp_bulkq);
10911 	dev->xdp_bulkq = NULL;
10912 
10913 	/*  Compatibility with error handling in drivers */
10914 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10915 		netdev_freemem(dev);
10916 		return;
10917 	}
10918 
10919 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10920 	dev->reg_state = NETREG_RELEASED;
10921 
10922 	/* will free via device release */
10923 	put_device(&dev->dev);
10924 }
10925 EXPORT_SYMBOL(free_netdev);
10926 
10927 /**
10928  *	synchronize_net -  Synchronize with packet receive processing
10929  *
10930  *	Wait for packets currently being received to be done.
10931  *	Does not block later packets from starting.
10932  */
10933 void synchronize_net(void)
10934 {
10935 	might_sleep();
10936 	if (rtnl_is_locked())
10937 		synchronize_rcu_expedited();
10938 	else
10939 		synchronize_rcu();
10940 }
10941 EXPORT_SYMBOL(synchronize_net);
10942 
10943 /**
10944  *	unregister_netdevice_queue - remove device from the kernel
10945  *	@dev: device
10946  *	@head: list
10947  *
10948  *	This function shuts down a device interface and removes it
10949  *	from the kernel tables.
10950  *	If head not NULL, device is queued to be unregistered later.
10951  *
10952  *	Callers must hold the rtnl semaphore.  You may want
10953  *	unregister_netdev() instead of this.
10954  */
10955 
10956 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10957 {
10958 	ASSERT_RTNL();
10959 
10960 	if (head) {
10961 		list_move_tail(&dev->unreg_list, head);
10962 	} else {
10963 		LIST_HEAD(single);
10964 
10965 		list_add(&dev->unreg_list, &single);
10966 		unregister_netdevice_many(&single);
10967 	}
10968 }
10969 EXPORT_SYMBOL(unregister_netdevice_queue);
10970 
10971 /**
10972  *	unregister_netdevice_many - unregister many devices
10973  *	@head: list of devices
10974  *
10975  *  Note: As most callers use a stack allocated list_head,
10976  *  we force a list_del() to make sure stack wont be corrupted later.
10977  */
10978 void unregister_netdevice_many(struct list_head *head)
10979 {
10980 	struct net_device *dev, *tmp;
10981 	LIST_HEAD(close_head);
10982 
10983 	BUG_ON(dev_boot_phase);
10984 	ASSERT_RTNL();
10985 
10986 	if (list_empty(head))
10987 		return;
10988 
10989 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10990 		/* Some devices call without registering
10991 		 * for initialization unwind. Remove those
10992 		 * devices and proceed with the remaining.
10993 		 */
10994 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10995 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10996 				 dev->name, dev);
10997 
10998 			WARN_ON(1);
10999 			list_del(&dev->unreg_list);
11000 			continue;
11001 		}
11002 		dev->dismantle = true;
11003 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11004 	}
11005 
11006 	/* If device is running, close it first. */
11007 	list_for_each_entry(dev, head, unreg_list)
11008 		list_add_tail(&dev->close_list, &close_head);
11009 	dev_close_many(&close_head, true);
11010 
11011 	list_for_each_entry(dev, head, unreg_list) {
11012 		/* And unlink it from device chain. */
11013 		unlist_netdevice(dev);
11014 
11015 		dev->reg_state = NETREG_UNREGISTERING;
11016 	}
11017 	flush_all_backlogs();
11018 
11019 	synchronize_net();
11020 
11021 	list_for_each_entry(dev, head, unreg_list) {
11022 		struct sk_buff *skb = NULL;
11023 
11024 		/* Shutdown queueing discipline. */
11025 		dev_shutdown(dev);
11026 
11027 		dev_xdp_uninstall(dev);
11028 
11029 		/* Notify protocols, that we are about to destroy
11030 		 * this device. They should clean all the things.
11031 		 */
11032 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11033 
11034 		if (!dev->rtnl_link_ops ||
11035 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11036 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11037 						     GFP_KERNEL, NULL, 0);
11038 
11039 		/*
11040 		 *	Flush the unicast and multicast chains
11041 		 */
11042 		dev_uc_flush(dev);
11043 		dev_mc_flush(dev);
11044 
11045 		netdev_name_node_alt_flush(dev);
11046 		netdev_name_node_free(dev->name_node);
11047 
11048 		if (dev->netdev_ops->ndo_uninit)
11049 			dev->netdev_ops->ndo_uninit(dev);
11050 
11051 		if (skb)
11052 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11053 
11054 		/* Notifier chain MUST detach us all upper devices. */
11055 		WARN_ON(netdev_has_any_upper_dev(dev));
11056 		WARN_ON(netdev_has_any_lower_dev(dev));
11057 
11058 		/* Remove entries from kobject tree */
11059 		netdev_unregister_kobject(dev);
11060 #ifdef CONFIG_XPS
11061 		/* Remove XPS queueing entries */
11062 		netif_reset_xps_queues_gt(dev, 0);
11063 #endif
11064 	}
11065 
11066 	synchronize_net();
11067 
11068 	list_for_each_entry(dev, head, unreg_list) {
11069 		dev_put(dev);
11070 		net_set_todo(dev);
11071 	}
11072 
11073 	list_del(head);
11074 }
11075 EXPORT_SYMBOL(unregister_netdevice_many);
11076 
11077 /**
11078  *	unregister_netdev - remove device from the kernel
11079  *	@dev: device
11080  *
11081  *	This function shuts down a device interface and removes it
11082  *	from the kernel tables.
11083  *
11084  *	This is just a wrapper for unregister_netdevice that takes
11085  *	the rtnl semaphore.  In general you want to use this and not
11086  *	unregister_netdevice.
11087  */
11088 void unregister_netdev(struct net_device *dev)
11089 {
11090 	rtnl_lock();
11091 	unregister_netdevice(dev);
11092 	rtnl_unlock();
11093 }
11094 EXPORT_SYMBOL(unregister_netdev);
11095 
11096 /**
11097  *	__dev_change_net_namespace - move device to different nethost namespace
11098  *	@dev: device
11099  *	@net: network namespace
11100  *	@pat: If not NULL name pattern to try if the current device name
11101  *	      is already taken in the destination network namespace.
11102  *	@new_ifindex: If not zero, specifies device index in the target
11103  *	              namespace.
11104  *
11105  *	This function shuts down a device interface and moves it
11106  *	to a new network namespace. On success 0 is returned, on
11107  *	a failure a netagive errno code is returned.
11108  *
11109  *	Callers must hold the rtnl semaphore.
11110  */
11111 
11112 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11113 			       const char *pat, int new_ifindex)
11114 {
11115 	struct net *net_old = dev_net(dev);
11116 	int err, new_nsid;
11117 
11118 	ASSERT_RTNL();
11119 
11120 	/* Don't allow namespace local devices to be moved. */
11121 	err = -EINVAL;
11122 	if (dev->features & NETIF_F_NETNS_LOCAL)
11123 		goto out;
11124 
11125 	/* Ensure the device has been registrered */
11126 	if (dev->reg_state != NETREG_REGISTERED)
11127 		goto out;
11128 
11129 	/* Get out if there is nothing todo */
11130 	err = 0;
11131 	if (net_eq(net_old, net))
11132 		goto out;
11133 
11134 	/* Pick the destination device name, and ensure
11135 	 * we can use it in the destination network namespace.
11136 	 */
11137 	err = -EEXIST;
11138 	if (__dev_get_by_name(net, dev->name)) {
11139 		/* We get here if we can't use the current device name */
11140 		if (!pat)
11141 			goto out;
11142 		err = dev_get_valid_name(net, dev, pat);
11143 		if (err < 0)
11144 			goto out;
11145 	}
11146 
11147 	/* Check that new_ifindex isn't used yet. */
11148 	err = -EBUSY;
11149 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11150 		goto out;
11151 
11152 	/*
11153 	 * And now a mini version of register_netdevice unregister_netdevice.
11154 	 */
11155 
11156 	/* If device is running close it first. */
11157 	dev_close(dev);
11158 
11159 	/* And unlink it from device chain */
11160 	unlist_netdevice(dev);
11161 
11162 	synchronize_net();
11163 
11164 	/* Shutdown queueing discipline. */
11165 	dev_shutdown(dev);
11166 
11167 	/* Notify protocols, that we are about to destroy
11168 	 * this device. They should clean all the things.
11169 	 *
11170 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11171 	 * This is wanted because this way 8021q and macvlan know
11172 	 * the device is just moving and can keep their slaves up.
11173 	 */
11174 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11175 	rcu_barrier();
11176 
11177 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11178 	/* If there is an ifindex conflict assign a new one */
11179 	if (!new_ifindex) {
11180 		if (__dev_get_by_index(net, dev->ifindex))
11181 			new_ifindex = dev_new_index(net);
11182 		else
11183 			new_ifindex = dev->ifindex;
11184 	}
11185 
11186 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11187 			    new_ifindex);
11188 
11189 	/*
11190 	 *	Flush the unicast and multicast chains
11191 	 */
11192 	dev_uc_flush(dev);
11193 	dev_mc_flush(dev);
11194 
11195 	/* Send a netdev-removed uevent to the old namespace */
11196 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11197 	netdev_adjacent_del_links(dev);
11198 
11199 	/* Move per-net netdevice notifiers that are following the netdevice */
11200 	move_netdevice_notifiers_dev_net(dev, net);
11201 
11202 	/* Actually switch the network namespace */
11203 	dev_net_set(dev, net);
11204 	dev->ifindex = new_ifindex;
11205 
11206 	/* Send a netdev-add uevent to the new namespace */
11207 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11208 	netdev_adjacent_add_links(dev);
11209 
11210 	/* Fixup kobjects */
11211 	err = device_rename(&dev->dev, dev->name);
11212 	WARN_ON(err);
11213 
11214 	/* Adapt owner in case owning user namespace of target network
11215 	 * namespace is different from the original one.
11216 	 */
11217 	err = netdev_change_owner(dev, net_old, net);
11218 	WARN_ON(err);
11219 
11220 	/* Add the device back in the hashes */
11221 	list_netdevice(dev);
11222 
11223 	/* Notify protocols, that a new device appeared. */
11224 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11225 
11226 	/*
11227 	 *	Prevent userspace races by waiting until the network
11228 	 *	device is fully setup before sending notifications.
11229 	 */
11230 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11231 
11232 	synchronize_net();
11233 	err = 0;
11234 out:
11235 	return err;
11236 }
11237 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11238 
11239 static int dev_cpu_dead(unsigned int oldcpu)
11240 {
11241 	struct sk_buff **list_skb;
11242 	struct sk_buff *skb;
11243 	unsigned int cpu;
11244 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11245 
11246 	local_irq_disable();
11247 	cpu = smp_processor_id();
11248 	sd = &per_cpu(softnet_data, cpu);
11249 	oldsd = &per_cpu(softnet_data, oldcpu);
11250 
11251 	/* Find end of our completion_queue. */
11252 	list_skb = &sd->completion_queue;
11253 	while (*list_skb)
11254 		list_skb = &(*list_skb)->next;
11255 	/* Append completion queue from offline CPU. */
11256 	*list_skb = oldsd->completion_queue;
11257 	oldsd->completion_queue = NULL;
11258 
11259 	/* Append output queue from offline CPU. */
11260 	if (oldsd->output_queue) {
11261 		*sd->output_queue_tailp = oldsd->output_queue;
11262 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11263 		oldsd->output_queue = NULL;
11264 		oldsd->output_queue_tailp = &oldsd->output_queue;
11265 	}
11266 	/* Append NAPI poll list from offline CPU, with one exception :
11267 	 * process_backlog() must be called by cpu owning percpu backlog.
11268 	 * We properly handle process_queue & input_pkt_queue later.
11269 	 */
11270 	while (!list_empty(&oldsd->poll_list)) {
11271 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11272 							    struct napi_struct,
11273 							    poll_list);
11274 
11275 		list_del_init(&napi->poll_list);
11276 		if (napi->poll == process_backlog)
11277 			napi->state = 0;
11278 		else
11279 			____napi_schedule(sd, napi);
11280 	}
11281 
11282 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11283 	local_irq_enable();
11284 
11285 #ifdef CONFIG_RPS
11286 	remsd = oldsd->rps_ipi_list;
11287 	oldsd->rps_ipi_list = NULL;
11288 #endif
11289 	/* send out pending IPI's on offline CPU */
11290 	net_rps_send_ipi(remsd);
11291 
11292 	/* Process offline CPU's input_pkt_queue */
11293 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11294 		netif_rx_ni(skb);
11295 		input_queue_head_incr(oldsd);
11296 	}
11297 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11298 		netif_rx_ni(skb);
11299 		input_queue_head_incr(oldsd);
11300 	}
11301 
11302 	return 0;
11303 }
11304 
11305 /**
11306  *	netdev_increment_features - increment feature set by one
11307  *	@all: current feature set
11308  *	@one: new feature set
11309  *	@mask: mask feature set
11310  *
11311  *	Computes a new feature set after adding a device with feature set
11312  *	@one to the master device with current feature set @all.  Will not
11313  *	enable anything that is off in @mask. Returns the new feature set.
11314  */
11315 netdev_features_t netdev_increment_features(netdev_features_t all,
11316 	netdev_features_t one, netdev_features_t mask)
11317 {
11318 	if (mask & NETIF_F_HW_CSUM)
11319 		mask |= NETIF_F_CSUM_MASK;
11320 	mask |= NETIF_F_VLAN_CHALLENGED;
11321 
11322 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11323 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11324 
11325 	/* If one device supports hw checksumming, set for all. */
11326 	if (all & NETIF_F_HW_CSUM)
11327 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11328 
11329 	return all;
11330 }
11331 EXPORT_SYMBOL(netdev_increment_features);
11332 
11333 static struct hlist_head * __net_init netdev_create_hash(void)
11334 {
11335 	int i;
11336 	struct hlist_head *hash;
11337 
11338 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11339 	if (hash != NULL)
11340 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11341 			INIT_HLIST_HEAD(&hash[i]);
11342 
11343 	return hash;
11344 }
11345 
11346 /* Initialize per network namespace state */
11347 static int __net_init netdev_init(struct net *net)
11348 {
11349 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11350 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11351 
11352 	if (net != &init_net)
11353 		INIT_LIST_HEAD(&net->dev_base_head);
11354 
11355 	net->dev_name_head = netdev_create_hash();
11356 	if (net->dev_name_head == NULL)
11357 		goto err_name;
11358 
11359 	net->dev_index_head = netdev_create_hash();
11360 	if (net->dev_index_head == NULL)
11361 		goto err_idx;
11362 
11363 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11364 
11365 	return 0;
11366 
11367 err_idx:
11368 	kfree(net->dev_name_head);
11369 err_name:
11370 	return -ENOMEM;
11371 }
11372 
11373 /**
11374  *	netdev_drivername - network driver for the device
11375  *	@dev: network device
11376  *
11377  *	Determine network driver for device.
11378  */
11379 const char *netdev_drivername(const struct net_device *dev)
11380 {
11381 	const struct device_driver *driver;
11382 	const struct device *parent;
11383 	const char *empty = "";
11384 
11385 	parent = dev->dev.parent;
11386 	if (!parent)
11387 		return empty;
11388 
11389 	driver = parent->driver;
11390 	if (driver && driver->name)
11391 		return driver->name;
11392 	return empty;
11393 }
11394 
11395 static void __netdev_printk(const char *level, const struct net_device *dev,
11396 			    struct va_format *vaf)
11397 {
11398 	if (dev && dev->dev.parent) {
11399 		dev_printk_emit(level[1] - '0',
11400 				dev->dev.parent,
11401 				"%s %s %s%s: %pV",
11402 				dev_driver_string(dev->dev.parent),
11403 				dev_name(dev->dev.parent),
11404 				netdev_name(dev), netdev_reg_state(dev),
11405 				vaf);
11406 	} else if (dev) {
11407 		printk("%s%s%s: %pV",
11408 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11409 	} else {
11410 		printk("%s(NULL net_device): %pV", level, vaf);
11411 	}
11412 }
11413 
11414 void netdev_printk(const char *level, const struct net_device *dev,
11415 		   const char *format, ...)
11416 {
11417 	struct va_format vaf;
11418 	va_list args;
11419 
11420 	va_start(args, format);
11421 
11422 	vaf.fmt = format;
11423 	vaf.va = &args;
11424 
11425 	__netdev_printk(level, dev, &vaf);
11426 
11427 	va_end(args);
11428 }
11429 EXPORT_SYMBOL(netdev_printk);
11430 
11431 #define define_netdev_printk_level(func, level)			\
11432 void func(const struct net_device *dev, const char *fmt, ...)	\
11433 {								\
11434 	struct va_format vaf;					\
11435 	va_list args;						\
11436 								\
11437 	va_start(args, fmt);					\
11438 								\
11439 	vaf.fmt = fmt;						\
11440 	vaf.va = &args;						\
11441 								\
11442 	__netdev_printk(level, dev, &vaf);			\
11443 								\
11444 	va_end(args);						\
11445 }								\
11446 EXPORT_SYMBOL(func);
11447 
11448 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11449 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11450 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11451 define_netdev_printk_level(netdev_err, KERN_ERR);
11452 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11453 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11454 define_netdev_printk_level(netdev_info, KERN_INFO);
11455 
11456 static void __net_exit netdev_exit(struct net *net)
11457 {
11458 	kfree(net->dev_name_head);
11459 	kfree(net->dev_index_head);
11460 	if (net != &init_net)
11461 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11462 }
11463 
11464 static struct pernet_operations __net_initdata netdev_net_ops = {
11465 	.init = netdev_init,
11466 	.exit = netdev_exit,
11467 };
11468 
11469 static void __net_exit default_device_exit(struct net *net)
11470 {
11471 	struct net_device *dev, *aux;
11472 	/*
11473 	 * Push all migratable network devices back to the
11474 	 * initial network namespace
11475 	 */
11476 	rtnl_lock();
11477 	for_each_netdev_safe(net, dev, aux) {
11478 		int err;
11479 		char fb_name[IFNAMSIZ];
11480 
11481 		/* Ignore unmoveable devices (i.e. loopback) */
11482 		if (dev->features & NETIF_F_NETNS_LOCAL)
11483 			continue;
11484 
11485 		/* Leave virtual devices for the generic cleanup */
11486 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11487 			continue;
11488 
11489 		/* Push remaining network devices to init_net */
11490 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11491 		if (__dev_get_by_name(&init_net, fb_name))
11492 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11493 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11494 		if (err) {
11495 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11496 				 __func__, dev->name, err);
11497 			BUG();
11498 		}
11499 	}
11500 	rtnl_unlock();
11501 }
11502 
11503 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11504 {
11505 	/* Return with the rtnl_lock held when there are no network
11506 	 * devices unregistering in any network namespace in net_list.
11507 	 */
11508 	struct net *net;
11509 	bool unregistering;
11510 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11511 
11512 	add_wait_queue(&netdev_unregistering_wq, &wait);
11513 	for (;;) {
11514 		unregistering = false;
11515 		rtnl_lock();
11516 		list_for_each_entry(net, net_list, exit_list) {
11517 			if (net->dev_unreg_count > 0) {
11518 				unregistering = true;
11519 				break;
11520 			}
11521 		}
11522 		if (!unregistering)
11523 			break;
11524 		__rtnl_unlock();
11525 
11526 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11527 	}
11528 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11529 }
11530 
11531 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11532 {
11533 	/* At exit all network devices most be removed from a network
11534 	 * namespace.  Do this in the reverse order of registration.
11535 	 * Do this across as many network namespaces as possible to
11536 	 * improve batching efficiency.
11537 	 */
11538 	struct net_device *dev;
11539 	struct net *net;
11540 	LIST_HEAD(dev_kill_list);
11541 
11542 	/* To prevent network device cleanup code from dereferencing
11543 	 * loopback devices or network devices that have been freed
11544 	 * wait here for all pending unregistrations to complete,
11545 	 * before unregistring the loopback device and allowing the
11546 	 * network namespace be freed.
11547 	 *
11548 	 * The netdev todo list containing all network devices
11549 	 * unregistrations that happen in default_device_exit_batch
11550 	 * will run in the rtnl_unlock() at the end of
11551 	 * default_device_exit_batch.
11552 	 */
11553 	rtnl_lock_unregistering(net_list);
11554 	list_for_each_entry(net, net_list, exit_list) {
11555 		for_each_netdev_reverse(net, dev) {
11556 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11557 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11558 			else
11559 				unregister_netdevice_queue(dev, &dev_kill_list);
11560 		}
11561 	}
11562 	unregister_netdevice_many(&dev_kill_list);
11563 	rtnl_unlock();
11564 }
11565 
11566 static struct pernet_operations __net_initdata default_device_ops = {
11567 	.exit = default_device_exit,
11568 	.exit_batch = default_device_exit_batch,
11569 };
11570 
11571 /*
11572  *	Initialize the DEV module. At boot time this walks the device list and
11573  *	unhooks any devices that fail to initialise (normally hardware not
11574  *	present) and leaves us with a valid list of present and active devices.
11575  *
11576  */
11577 
11578 /*
11579  *       This is called single threaded during boot, so no need
11580  *       to take the rtnl semaphore.
11581  */
11582 static int __init net_dev_init(void)
11583 {
11584 	int i, rc = -ENOMEM;
11585 
11586 	BUG_ON(!dev_boot_phase);
11587 
11588 	if (dev_proc_init())
11589 		goto out;
11590 
11591 	if (netdev_kobject_init())
11592 		goto out;
11593 
11594 	INIT_LIST_HEAD(&ptype_all);
11595 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11596 		INIT_LIST_HEAD(&ptype_base[i]);
11597 
11598 	INIT_LIST_HEAD(&offload_base);
11599 
11600 	if (register_pernet_subsys(&netdev_net_ops))
11601 		goto out;
11602 
11603 	/*
11604 	 *	Initialise the packet receive queues.
11605 	 */
11606 
11607 	for_each_possible_cpu(i) {
11608 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11609 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11610 
11611 		INIT_WORK(flush, flush_backlog);
11612 
11613 		skb_queue_head_init(&sd->input_pkt_queue);
11614 		skb_queue_head_init(&sd->process_queue);
11615 #ifdef CONFIG_XFRM_OFFLOAD
11616 		skb_queue_head_init(&sd->xfrm_backlog);
11617 #endif
11618 		INIT_LIST_HEAD(&sd->poll_list);
11619 		sd->output_queue_tailp = &sd->output_queue;
11620 #ifdef CONFIG_RPS
11621 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11622 		sd->cpu = i;
11623 #endif
11624 
11625 		init_gro_hash(&sd->backlog);
11626 		sd->backlog.poll = process_backlog;
11627 		sd->backlog.weight = weight_p;
11628 	}
11629 
11630 	dev_boot_phase = 0;
11631 
11632 	/* The loopback device is special if any other network devices
11633 	 * is present in a network namespace the loopback device must
11634 	 * be present. Since we now dynamically allocate and free the
11635 	 * loopback device ensure this invariant is maintained by
11636 	 * keeping the loopback device as the first device on the
11637 	 * list of network devices.  Ensuring the loopback devices
11638 	 * is the first device that appears and the last network device
11639 	 * that disappears.
11640 	 */
11641 	if (register_pernet_device(&loopback_net_ops))
11642 		goto out;
11643 
11644 	if (register_pernet_device(&default_device_ops))
11645 		goto out;
11646 
11647 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11648 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11649 
11650 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11651 				       NULL, dev_cpu_dead);
11652 	WARN_ON(rc < 0);
11653 	rc = 0;
11654 out:
11655 	return rc;
11656 }
11657 
11658 subsys_initcall(net_dev_init);
11659