xref: /openbmc/linux/net/core/dev.c (revision f5ad1c74)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dsa.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/pkt_cls.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/crash_dump.h>
142 #include <linux/sctp.h>
143 #include <net/udp_tunnel.h>
144 #include <linux/net_namespace.h>
145 #include <linux/indirect_call_wrapper.h>
146 #include <net/devlink.h>
147 #include <linux/pm_runtime.h>
148 #include <linux/prandom.h>
149 
150 #include "net-sysfs.h"
151 
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167 					   struct net_device *dev,
168 					   struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170 
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192 
193 static DEFINE_MUTEX(ifalias_mutex);
194 
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197 
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200 
201 static DECLARE_RWSEM(devnet_rename_sem);
202 
203 static inline void dev_base_seq_inc(struct net *net)
204 {
205 	while (++net->dev_base_seq == 0)
206 		;
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236 						       const char *name)
237 {
238 	struct netdev_name_node *name_node;
239 
240 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241 	if (!name_node)
242 		return NULL;
243 	INIT_HLIST_NODE(&name_node->hlist);
244 	name_node->dev = dev;
245 	name_node->name = name;
246 	return name_node;
247 }
248 
249 static struct netdev_name_node *
250 netdev_name_node_head_alloc(struct net_device *dev)
251 {
252 	struct netdev_name_node *name_node;
253 
254 	name_node = netdev_name_node_alloc(dev, dev->name);
255 	if (!name_node)
256 		return NULL;
257 	INIT_LIST_HEAD(&name_node->list);
258 	return name_node;
259 }
260 
261 static void netdev_name_node_free(struct netdev_name_node *name_node)
262 {
263 	kfree(name_node);
264 }
265 
266 static void netdev_name_node_add(struct net *net,
267 				 struct netdev_name_node *name_node)
268 {
269 	hlist_add_head_rcu(&name_node->hlist,
270 			   dev_name_hash(net, name_node->name));
271 }
272 
273 static void netdev_name_node_del(struct netdev_name_node *name_node)
274 {
275 	hlist_del_rcu(&name_node->hlist);
276 }
277 
278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279 							const char *name)
280 {
281 	struct hlist_head *head = dev_name_hash(net, name);
282 	struct netdev_name_node *name_node;
283 
284 	hlist_for_each_entry(name_node, head, hlist)
285 		if (!strcmp(name_node->name, name))
286 			return name_node;
287 	return NULL;
288 }
289 
290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291 							    const char *name)
292 {
293 	struct hlist_head *head = dev_name_hash(net, name);
294 	struct netdev_name_node *name_node;
295 
296 	hlist_for_each_entry_rcu(name_node, head, hlist)
297 		if (!strcmp(name_node->name, name))
298 			return name_node;
299 	return NULL;
300 }
301 
302 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303 {
304 	struct netdev_name_node *name_node;
305 	struct net *net = dev_net(dev);
306 
307 	name_node = netdev_name_node_lookup(net, name);
308 	if (name_node)
309 		return -EEXIST;
310 	name_node = netdev_name_node_alloc(dev, name);
311 	if (!name_node)
312 		return -ENOMEM;
313 	netdev_name_node_add(net, name_node);
314 	/* The node that holds dev->name acts as a head of per-device list. */
315 	list_add_tail(&name_node->list, &dev->name_node->list);
316 
317 	return 0;
318 }
319 EXPORT_SYMBOL(netdev_name_node_alt_create);
320 
321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322 {
323 	list_del(&name_node->list);
324 	netdev_name_node_del(name_node);
325 	kfree(name_node->name);
326 	netdev_name_node_free(name_node);
327 }
328 
329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330 {
331 	struct netdev_name_node *name_node;
332 	struct net *net = dev_net(dev);
333 
334 	name_node = netdev_name_node_lookup(net, name);
335 	if (!name_node)
336 		return -ENOENT;
337 	/* lookup might have found our primary name or a name belonging
338 	 * to another device.
339 	 */
340 	if (name_node == dev->name_node || name_node->dev != dev)
341 		return -EINVAL;
342 
343 	__netdev_name_node_alt_destroy(name_node);
344 
345 	return 0;
346 }
347 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348 
349 static void netdev_name_node_alt_flush(struct net_device *dev)
350 {
351 	struct netdev_name_node *name_node, *tmp;
352 
353 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354 		__netdev_name_node_alt_destroy(name_node);
355 }
356 
357 /* Device list insertion */
358 static void list_netdevice(struct net_device *dev)
359 {
360 	struct net *net = dev_net(dev);
361 
362 	ASSERT_RTNL();
363 
364 	write_lock_bh(&dev_base_lock);
365 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
366 	netdev_name_node_add(net, dev->name_node);
367 	hlist_add_head_rcu(&dev->index_hlist,
368 			   dev_index_hash(net, dev->ifindex));
369 	write_unlock_bh(&dev_base_lock);
370 
371 	dev_base_seq_inc(net);
372 }
373 
374 /* Device list removal
375  * caller must respect a RCU grace period before freeing/reusing dev
376  */
377 static void unlist_netdevice(struct net_device *dev)
378 {
379 	ASSERT_RTNL();
380 
381 	/* Unlink dev from the device chain */
382 	write_lock_bh(&dev_base_lock);
383 	list_del_rcu(&dev->dev_list);
384 	netdev_name_node_del(dev->name_node);
385 	hlist_del_rcu(&dev->index_hlist);
386 	write_unlock_bh(&dev_base_lock);
387 
388 	dev_base_seq_inc(dev_net(dev));
389 }
390 
391 /*
392  *	Our notifier list
393  */
394 
395 static RAW_NOTIFIER_HEAD(netdev_chain);
396 
397 /*
398  *	Device drivers call our routines to queue packets here. We empty the
399  *	queue in the local softnet handler.
400  */
401 
402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
403 EXPORT_PER_CPU_SYMBOL(softnet_data);
404 
405 #ifdef CONFIG_LOCKDEP
406 /*
407  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408  * according to dev->type
409  */
410 static const unsigned short netdev_lock_type[] = {
411 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426 
427 static const char *const netdev_lock_name[] = {
428 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443 
444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
446 
447 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448 {
449 	int i;
450 
451 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452 		if (netdev_lock_type[i] == dev_type)
453 			return i;
454 	/* the last key is used by default */
455 	return ARRAY_SIZE(netdev_lock_type) - 1;
456 }
457 
458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459 						 unsigned short dev_type)
460 {
461 	int i;
462 
463 	i = netdev_lock_pos(dev_type);
464 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465 				   netdev_lock_name[i]);
466 }
467 
468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469 {
470 	int i;
471 
472 	i = netdev_lock_pos(dev->type);
473 	lockdep_set_class_and_name(&dev->addr_list_lock,
474 				   &netdev_addr_lock_key[i],
475 				   netdev_lock_name[i]);
476 }
477 #else
478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479 						 unsigned short dev_type)
480 {
481 }
482 
483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484 {
485 }
486 #endif
487 
488 /*******************************************************************************
489  *
490  *		Protocol management and registration routines
491  *
492  *******************************************************************************/
493 
494 
495 /*
496  *	Add a protocol ID to the list. Now that the input handler is
497  *	smarter we can dispense with all the messy stuff that used to be
498  *	here.
499  *
500  *	BEWARE!!! Protocol handlers, mangling input packets,
501  *	MUST BE last in hash buckets and checking protocol handlers
502  *	MUST start from promiscuous ptype_all chain in net_bh.
503  *	It is true now, do not change it.
504  *	Explanation follows: if protocol handler, mangling packet, will
505  *	be the first on list, it is not able to sense, that packet
506  *	is cloned and should be copied-on-write, so that it will
507  *	change it and subsequent readers will get broken packet.
508  *							--ANK (980803)
509  */
510 
511 static inline struct list_head *ptype_head(const struct packet_type *pt)
512 {
513 	if (pt->type == htons(ETH_P_ALL))
514 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
515 	else
516 		return pt->dev ? &pt->dev->ptype_specific :
517 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
518 }
519 
520 /**
521  *	dev_add_pack - add packet handler
522  *	@pt: packet type declaration
523  *
524  *	Add a protocol handler to the networking stack. The passed &packet_type
525  *	is linked into kernel lists and may not be freed until it has been
526  *	removed from the kernel lists.
527  *
528  *	This call does not sleep therefore it can not
529  *	guarantee all CPU's that are in middle of receiving packets
530  *	will see the new packet type (until the next received packet).
531  */
532 
533 void dev_add_pack(struct packet_type *pt)
534 {
535 	struct list_head *head = ptype_head(pt);
536 
537 	spin_lock(&ptype_lock);
538 	list_add_rcu(&pt->list, head);
539 	spin_unlock(&ptype_lock);
540 }
541 EXPORT_SYMBOL(dev_add_pack);
542 
543 /**
544  *	__dev_remove_pack	 - remove packet handler
545  *	@pt: packet type declaration
546  *
547  *	Remove a protocol handler that was previously added to the kernel
548  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
549  *	from the kernel lists and can be freed or reused once this function
550  *	returns.
551  *
552  *      The packet type might still be in use by receivers
553  *	and must not be freed until after all the CPU's have gone
554  *	through a quiescent state.
555  */
556 void __dev_remove_pack(struct packet_type *pt)
557 {
558 	struct list_head *head = ptype_head(pt);
559 	struct packet_type *pt1;
560 
561 	spin_lock(&ptype_lock);
562 
563 	list_for_each_entry(pt1, head, list) {
564 		if (pt == pt1) {
565 			list_del_rcu(&pt->list);
566 			goto out;
567 		}
568 	}
569 
570 	pr_warn("dev_remove_pack: %p not found\n", pt);
571 out:
572 	spin_unlock(&ptype_lock);
573 }
574 EXPORT_SYMBOL(__dev_remove_pack);
575 
576 /**
577  *	dev_remove_pack	 - remove packet handler
578  *	@pt: packet type declaration
579  *
580  *	Remove a protocol handler that was previously added to the kernel
581  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
582  *	from the kernel lists and can be freed or reused once this function
583  *	returns.
584  *
585  *	This call sleeps to guarantee that no CPU is looking at the packet
586  *	type after return.
587  */
588 void dev_remove_pack(struct packet_type *pt)
589 {
590 	__dev_remove_pack(pt);
591 
592 	synchronize_net();
593 }
594 EXPORT_SYMBOL(dev_remove_pack);
595 
596 
597 /**
598  *	dev_add_offload - register offload handlers
599  *	@po: protocol offload declaration
600  *
601  *	Add protocol offload handlers to the networking stack. The passed
602  *	&proto_offload is linked into kernel lists and may not be freed until
603  *	it has been removed from the kernel lists.
604  *
605  *	This call does not sleep therefore it can not
606  *	guarantee all CPU's that are in middle of receiving packets
607  *	will see the new offload handlers (until the next received packet).
608  */
609 void dev_add_offload(struct packet_offload *po)
610 {
611 	struct packet_offload *elem;
612 
613 	spin_lock(&offload_lock);
614 	list_for_each_entry(elem, &offload_base, list) {
615 		if (po->priority < elem->priority)
616 			break;
617 	}
618 	list_add_rcu(&po->list, elem->list.prev);
619 	spin_unlock(&offload_lock);
620 }
621 EXPORT_SYMBOL(dev_add_offload);
622 
623 /**
624  *	__dev_remove_offload	 - remove offload handler
625  *	@po: packet offload declaration
626  *
627  *	Remove a protocol offload handler that was previously added to the
628  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
629  *	is removed from the kernel lists and can be freed or reused once this
630  *	function returns.
631  *
632  *      The packet type might still be in use by receivers
633  *	and must not be freed until after all the CPU's have gone
634  *	through a quiescent state.
635  */
636 static void __dev_remove_offload(struct packet_offload *po)
637 {
638 	struct list_head *head = &offload_base;
639 	struct packet_offload *po1;
640 
641 	spin_lock(&offload_lock);
642 
643 	list_for_each_entry(po1, head, list) {
644 		if (po == po1) {
645 			list_del_rcu(&po->list);
646 			goto out;
647 		}
648 	}
649 
650 	pr_warn("dev_remove_offload: %p not found\n", po);
651 out:
652 	spin_unlock(&offload_lock);
653 }
654 
655 /**
656  *	dev_remove_offload	 - remove packet offload handler
657  *	@po: packet offload declaration
658  *
659  *	Remove a packet offload handler that was previously added to the kernel
660  *	offload handlers by dev_add_offload(). The passed &offload_type is
661  *	removed from the kernel lists and can be freed or reused once this
662  *	function returns.
663  *
664  *	This call sleeps to guarantee that no CPU is looking at the packet
665  *	type after return.
666  */
667 void dev_remove_offload(struct packet_offload *po)
668 {
669 	__dev_remove_offload(po);
670 
671 	synchronize_net();
672 }
673 EXPORT_SYMBOL(dev_remove_offload);
674 
675 /******************************************************************************
676  *
677  *		      Device Boot-time Settings Routines
678  *
679  ******************************************************************************/
680 
681 /* Boot time configuration table */
682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683 
684 /**
685  *	netdev_boot_setup_add	- add new setup entry
686  *	@name: name of the device
687  *	@map: configured settings for the device
688  *
689  *	Adds new setup entry to the dev_boot_setup list.  The function
690  *	returns 0 on error and 1 on success.  This is a generic routine to
691  *	all netdevices.
692  */
693 static int netdev_boot_setup_add(char *name, struct ifmap *map)
694 {
695 	struct netdev_boot_setup *s;
696 	int i;
697 
698 	s = dev_boot_setup;
699 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701 			memset(s[i].name, 0, sizeof(s[i].name));
702 			strlcpy(s[i].name, name, IFNAMSIZ);
703 			memcpy(&s[i].map, map, sizeof(s[i].map));
704 			break;
705 		}
706 	}
707 
708 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709 }
710 
711 /**
712  * netdev_boot_setup_check	- check boot time settings
713  * @dev: the netdevice
714  *
715  * Check boot time settings for the device.
716  * The found settings are set for the device to be used
717  * later in the device probing.
718  * Returns 0 if no settings found, 1 if they are.
719  */
720 int netdev_boot_setup_check(struct net_device *dev)
721 {
722 	struct netdev_boot_setup *s = dev_boot_setup;
723 	int i;
724 
725 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
727 		    !strcmp(dev->name, s[i].name)) {
728 			dev->irq = s[i].map.irq;
729 			dev->base_addr = s[i].map.base_addr;
730 			dev->mem_start = s[i].map.mem_start;
731 			dev->mem_end = s[i].map.mem_end;
732 			return 1;
733 		}
734 	}
735 	return 0;
736 }
737 EXPORT_SYMBOL(netdev_boot_setup_check);
738 
739 
740 /**
741  * netdev_boot_base	- get address from boot time settings
742  * @prefix: prefix for network device
743  * @unit: id for network device
744  *
745  * Check boot time settings for the base address of device.
746  * The found settings are set for the device to be used
747  * later in the device probing.
748  * Returns 0 if no settings found.
749  */
750 unsigned long netdev_boot_base(const char *prefix, int unit)
751 {
752 	const struct netdev_boot_setup *s = dev_boot_setup;
753 	char name[IFNAMSIZ];
754 	int i;
755 
756 	sprintf(name, "%s%d", prefix, unit);
757 
758 	/*
759 	 * If device already registered then return base of 1
760 	 * to indicate not to probe for this interface
761 	 */
762 	if (__dev_get_by_name(&init_net, name))
763 		return 1;
764 
765 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766 		if (!strcmp(name, s[i].name))
767 			return s[i].map.base_addr;
768 	return 0;
769 }
770 
771 /*
772  * Saves at boot time configured settings for any netdevice.
773  */
774 int __init netdev_boot_setup(char *str)
775 {
776 	int ints[5];
777 	struct ifmap map;
778 
779 	str = get_options(str, ARRAY_SIZE(ints), ints);
780 	if (!str || !*str)
781 		return 0;
782 
783 	/* Save settings */
784 	memset(&map, 0, sizeof(map));
785 	if (ints[0] > 0)
786 		map.irq = ints[1];
787 	if (ints[0] > 1)
788 		map.base_addr = ints[2];
789 	if (ints[0] > 2)
790 		map.mem_start = ints[3];
791 	if (ints[0] > 3)
792 		map.mem_end = ints[4];
793 
794 	/* Add new entry to the list */
795 	return netdev_boot_setup_add(str, &map);
796 }
797 
798 __setup("netdev=", netdev_boot_setup);
799 
800 /*******************************************************************************
801  *
802  *			    Device Interface Subroutines
803  *
804  *******************************************************************************/
805 
806 /**
807  *	dev_get_iflink	- get 'iflink' value of a interface
808  *	@dev: targeted interface
809  *
810  *	Indicates the ifindex the interface is linked to.
811  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
812  */
813 
814 int dev_get_iflink(const struct net_device *dev)
815 {
816 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817 		return dev->netdev_ops->ndo_get_iflink(dev);
818 
819 	return dev->ifindex;
820 }
821 EXPORT_SYMBOL(dev_get_iflink);
822 
823 /**
824  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
825  *	@dev: targeted interface
826  *	@skb: The packet.
827  *
828  *	For better visibility of tunnel traffic OVS needs to retrieve
829  *	egress tunnel information for a packet. Following API allows
830  *	user to get this info.
831  */
832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833 {
834 	struct ip_tunnel_info *info;
835 
836 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
837 		return -EINVAL;
838 
839 	info = skb_tunnel_info_unclone(skb);
840 	if (!info)
841 		return -ENOMEM;
842 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843 		return -EINVAL;
844 
845 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846 }
847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848 
849 /**
850  *	__dev_get_by_name	- find a device by its name
851  *	@net: the applicable net namespace
852  *	@name: name to find
853  *
854  *	Find an interface by name. Must be called under RTNL semaphore
855  *	or @dev_base_lock. If the name is found a pointer to the device
856  *	is returned. If the name is not found then %NULL is returned. The
857  *	reference counters are not incremented so the caller must be
858  *	careful with locks.
859  */
860 
861 struct net_device *__dev_get_by_name(struct net *net, const char *name)
862 {
863 	struct netdev_name_node *node_name;
864 
865 	node_name = netdev_name_node_lookup(net, name);
866 	return node_name ? node_name->dev : NULL;
867 }
868 EXPORT_SYMBOL(__dev_get_by_name);
869 
870 /**
871  * dev_get_by_name_rcu	- find a device by its name
872  * @net: the applicable net namespace
873  * @name: name to find
874  *
875  * Find an interface by name.
876  * If the name is found a pointer to the device is returned.
877  * If the name is not found then %NULL is returned.
878  * The reference counters are not incremented so the caller must be
879  * careful with locks. The caller must hold RCU lock.
880  */
881 
882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883 {
884 	struct netdev_name_node *node_name;
885 
886 	node_name = netdev_name_node_lookup_rcu(net, name);
887 	return node_name ? node_name->dev : NULL;
888 }
889 EXPORT_SYMBOL(dev_get_by_name_rcu);
890 
891 /**
892  *	dev_get_by_name		- find a device by its name
893  *	@net: the applicable net namespace
894  *	@name: name to find
895  *
896  *	Find an interface by name. This can be called from any
897  *	context and does its own locking. The returned handle has
898  *	the usage count incremented and the caller must use dev_put() to
899  *	release it when it is no longer needed. %NULL is returned if no
900  *	matching device is found.
901  */
902 
903 struct net_device *dev_get_by_name(struct net *net, const char *name)
904 {
905 	struct net_device *dev;
906 
907 	rcu_read_lock();
908 	dev = dev_get_by_name_rcu(net, name);
909 	if (dev)
910 		dev_hold(dev);
911 	rcu_read_unlock();
912 	return dev;
913 }
914 EXPORT_SYMBOL(dev_get_by_name);
915 
916 /**
917  *	__dev_get_by_index - find a device by its ifindex
918  *	@net: the applicable net namespace
919  *	@ifindex: index of device
920  *
921  *	Search for an interface by index. Returns %NULL if the device
922  *	is not found or a pointer to the device. The device has not
923  *	had its reference counter increased so the caller must be careful
924  *	about locking. The caller must hold either the RTNL semaphore
925  *	or @dev_base_lock.
926  */
927 
928 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
929 {
930 	struct net_device *dev;
931 	struct hlist_head *head = dev_index_hash(net, ifindex);
932 
933 	hlist_for_each_entry(dev, head, index_hlist)
934 		if (dev->ifindex == ifindex)
935 			return dev;
936 
937 	return NULL;
938 }
939 EXPORT_SYMBOL(__dev_get_by_index);
940 
941 /**
942  *	dev_get_by_index_rcu - find a device by its ifindex
943  *	@net: the applicable net namespace
944  *	@ifindex: index of device
945  *
946  *	Search for an interface by index. Returns %NULL if the device
947  *	is not found or a pointer to the device. The device has not
948  *	had its reference counter increased so the caller must be careful
949  *	about locking. The caller must hold RCU lock.
950  */
951 
952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953 {
954 	struct net_device *dev;
955 	struct hlist_head *head = dev_index_hash(net, ifindex);
956 
957 	hlist_for_each_entry_rcu(dev, head, index_hlist)
958 		if (dev->ifindex == ifindex)
959 			return dev;
960 
961 	return NULL;
962 }
963 EXPORT_SYMBOL(dev_get_by_index_rcu);
964 
965 
966 /**
967  *	dev_get_by_index - find a device by its ifindex
968  *	@net: the applicable net namespace
969  *	@ifindex: index of device
970  *
971  *	Search for an interface by index. Returns NULL if the device
972  *	is not found or a pointer to the device. The device returned has
973  *	had a reference added and the pointer is safe until the user calls
974  *	dev_put to indicate they have finished with it.
975  */
976 
977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 
981 	rcu_read_lock();
982 	dev = dev_get_by_index_rcu(net, ifindex);
983 	if (dev)
984 		dev_hold(dev);
985 	rcu_read_unlock();
986 	return dev;
987 }
988 EXPORT_SYMBOL(dev_get_by_index);
989 
990 /**
991  *	dev_get_by_napi_id - find a device by napi_id
992  *	@napi_id: ID of the NAPI struct
993  *
994  *	Search for an interface by NAPI ID. Returns %NULL if the device
995  *	is not found or a pointer to the device. The device has not had
996  *	its reference counter increased so the caller must be careful
997  *	about locking. The caller must hold RCU lock.
998  */
999 
1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001 {
1002 	struct napi_struct *napi;
1003 
1004 	WARN_ON_ONCE(!rcu_read_lock_held());
1005 
1006 	if (napi_id < MIN_NAPI_ID)
1007 		return NULL;
1008 
1009 	napi = napi_by_id(napi_id);
1010 
1011 	return napi ? napi->dev : NULL;
1012 }
1013 EXPORT_SYMBOL(dev_get_by_napi_id);
1014 
1015 /**
1016  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1017  *	@net: network namespace
1018  *	@name: a pointer to the buffer where the name will be stored.
1019  *	@ifindex: the ifindex of the interface to get the name from.
1020  */
1021 int netdev_get_name(struct net *net, char *name, int ifindex)
1022 {
1023 	struct net_device *dev;
1024 	int ret;
1025 
1026 	down_read(&devnet_rename_sem);
1027 	rcu_read_lock();
1028 
1029 	dev = dev_get_by_index_rcu(net, ifindex);
1030 	if (!dev) {
1031 		ret = -ENODEV;
1032 		goto out;
1033 	}
1034 
1035 	strcpy(name, dev->name);
1036 
1037 	ret = 0;
1038 out:
1039 	rcu_read_unlock();
1040 	up_read(&devnet_rename_sem);
1041 	return ret;
1042 }
1043 
1044 /**
1045  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1046  *	@net: the applicable net namespace
1047  *	@type: media type of device
1048  *	@ha: hardware address
1049  *
1050  *	Search for an interface by MAC address. Returns NULL if the device
1051  *	is not found or a pointer to the device.
1052  *	The caller must hold RCU or RTNL.
1053  *	The returned device has not had its ref count increased
1054  *	and the caller must therefore be careful about locking
1055  *
1056  */
1057 
1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059 				       const char *ha)
1060 {
1061 	struct net_device *dev;
1062 
1063 	for_each_netdev_rcu(net, dev)
1064 		if (dev->type == type &&
1065 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1066 			return dev;
1067 
1068 	return NULL;
1069 }
1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1071 
1072 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1073 {
1074 	struct net_device *dev, *ret = NULL;
1075 
1076 	rcu_read_lock();
1077 	for_each_netdev_rcu(net, dev)
1078 		if (dev->type == type) {
1079 			dev_hold(dev);
1080 			ret = dev;
1081 			break;
1082 		}
1083 	rcu_read_unlock();
1084 	return ret;
1085 }
1086 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1087 
1088 /**
1089  *	__dev_get_by_flags - find any device with given flags
1090  *	@net: the applicable net namespace
1091  *	@if_flags: IFF_* values
1092  *	@mask: bitmask of bits in if_flags to check
1093  *
1094  *	Search for any interface with the given flags. Returns NULL if a device
1095  *	is not found or a pointer to the device. Must be called inside
1096  *	rtnl_lock(), and result refcount is unchanged.
1097  */
1098 
1099 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1100 				      unsigned short mask)
1101 {
1102 	struct net_device *dev, *ret;
1103 
1104 	ASSERT_RTNL();
1105 
1106 	ret = NULL;
1107 	for_each_netdev(net, dev) {
1108 		if (((dev->flags ^ if_flags) & mask) == 0) {
1109 			ret = dev;
1110 			break;
1111 		}
1112 	}
1113 	return ret;
1114 }
1115 EXPORT_SYMBOL(__dev_get_by_flags);
1116 
1117 /**
1118  *	dev_valid_name - check if name is okay for network device
1119  *	@name: name string
1120  *
1121  *	Network device names need to be valid file names to
1122  *	allow sysfs to work.  We also disallow any kind of
1123  *	whitespace.
1124  */
1125 bool dev_valid_name(const char *name)
1126 {
1127 	if (*name == '\0')
1128 		return false;
1129 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1130 		return false;
1131 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1132 		return false;
1133 
1134 	while (*name) {
1135 		if (*name == '/' || *name == ':' || isspace(*name))
1136 			return false;
1137 		name++;
1138 	}
1139 	return true;
1140 }
1141 EXPORT_SYMBOL(dev_valid_name);
1142 
1143 /**
1144  *	__dev_alloc_name - allocate a name for a device
1145  *	@net: network namespace to allocate the device name in
1146  *	@name: name format string
1147  *	@buf:  scratch buffer and result name string
1148  *
1149  *	Passed a format string - eg "lt%d" it will try and find a suitable
1150  *	id. It scans list of devices to build up a free map, then chooses
1151  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1152  *	while allocating the name and adding the device in order to avoid
1153  *	duplicates.
1154  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1155  *	Returns the number of the unit assigned or a negative errno code.
1156  */
1157 
1158 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1159 {
1160 	int i = 0;
1161 	const char *p;
1162 	const int max_netdevices = 8*PAGE_SIZE;
1163 	unsigned long *inuse;
1164 	struct net_device *d;
1165 
1166 	if (!dev_valid_name(name))
1167 		return -EINVAL;
1168 
1169 	p = strchr(name, '%');
1170 	if (p) {
1171 		/*
1172 		 * Verify the string as this thing may have come from
1173 		 * the user.  There must be either one "%d" and no other "%"
1174 		 * characters.
1175 		 */
1176 		if (p[1] != 'd' || strchr(p + 2, '%'))
1177 			return -EINVAL;
1178 
1179 		/* Use one page as a bit array of possible slots */
1180 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1181 		if (!inuse)
1182 			return -ENOMEM;
1183 
1184 		for_each_netdev(net, d) {
1185 			if (!sscanf(d->name, name, &i))
1186 				continue;
1187 			if (i < 0 || i >= max_netdevices)
1188 				continue;
1189 
1190 			/*  avoid cases where sscanf is not exact inverse of printf */
1191 			snprintf(buf, IFNAMSIZ, name, i);
1192 			if (!strncmp(buf, d->name, IFNAMSIZ))
1193 				set_bit(i, inuse);
1194 		}
1195 
1196 		i = find_first_zero_bit(inuse, max_netdevices);
1197 		free_page((unsigned long) inuse);
1198 	}
1199 
1200 	snprintf(buf, IFNAMSIZ, name, i);
1201 	if (!__dev_get_by_name(net, buf))
1202 		return i;
1203 
1204 	/* It is possible to run out of possible slots
1205 	 * when the name is long and there isn't enough space left
1206 	 * for the digits, or if all bits are used.
1207 	 */
1208 	return -ENFILE;
1209 }
1210 
1211 static int dev_alloc_name_ns(struct net *net,
1212 			     struct net_device *dev,
1213 			     const char *name)
1214 {
1215 	char buf[IFNAMSIZ];
1216 	int ret;
1217 
1218 	BUG_ON(!net);
1219 	ret = __dev_alloc_name(net, name, buf);
1220 	if (ret >= 0)
1221 		strlcpy(dev->name, buf, IFNAMSIZ);
1222 	return ret;
1223 }
1224 
1225 /**
1226  *	dev_alloc_name - allocate a name for a device
1227  *	@dev: device
1228  *	@name: name format string
1229  *
1230  *	Passed a format string - eg "lt%d" it will try and find a suitable
1231  *	id. It scans list of devices to build up a free map, then chooses
1232  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1233  *	while allocating the name and adding the device in order to avoid
1234  *	duplicates.
1235  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1236  *	Returns the number of the unit assigned or a negative errno code.
1237  */
1238 
1239 int dev_alloc_name(struct net_device *dev, const char *name)
1240 {
1241 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1242 }
1243 EXPORT_SYMBOL(dev_alloc_name);
1244 
1245 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1246 			      const char *name)
1247 {
1248 	BUG_ON(!net);
1249 
1250 	if (!dev_valid_name(name))
1251 		return -EINVAL;
1252 
1253 	if (strchr(name, '%'))
1254 		return dev_alloc_name_ns(net, dev, name);
1255 	else if (__dev_get_by_name(net, name))
1256 		return -EEXIST;
1257 	else if (dev->name != name)
1258 		strlcpy(dev->name, name, IFNAMSIZ);
1259 
1260 	return 0;
1261 }
1262 
1263 /**
1264  *	dev_change_name - change name of a device
1265  *	@dev: device
1266  *	@newname: name (or format string) must be at least IFNAMSIZ
1267  *
1268  *	Change name of a device, can pass format strings "eth%d".
1269  *	for wildcarding.
1270  */
1271 int dev_change_name(struct net_device *dev, const char *newname)
1272 {
1273 	unsigned char old_assign_type;
1274 	char oldname[IFNAMSIZ];
1275 	int err = 0;
1276 	int ret;
1277 	struct net *net;
1278 
1279 	ASSERT_RTNL();
1280 	BUG_ON(!dev_net(dev));
1281 
1282 	net = dev_net(dev);
1283 
1284 	/* Some auto-enslaved devices e.g. failover slaves are
1285 	 * special, as userspace might rename the device after
1286 	 * the interface had been brought up and running since
1287 	 * the point kernel initiated auto-enslavement. Allow
1288 	 * live name change even when these slave devices are
1289 	 * up and running.
1290 	 *
1291 	 * Typically, users of these auto-enslaving devices
1292 	 * don't actually care about slave name change, as
1293 	 * they are supposed to operate on master interface
1294 	 * directly.
1295 	 */
1296 	if (dev->flags & IFF_UP &&
1297 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1298 		return -EBUSY;
1299 
1300 	down_write(&devnet_rename_sem);
1301 
1302 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1303 		up_write(&devnet_rename_sem);
1304 		return 0;
1305 	}
1306 
1307 	memcpy(oldname, dev->name, IFNAMSIZ);
1308 
1309 	err = dev_get_valid_name(net, dev, newname);
1310 	if (err < 0) {
1311 		up_write(&devnet_rename_sem);
1312 		return err;
1313 	}
1314 
1315 	if (oldname[0] && !strchr(oldname, '%'))
1316 		netdev_info(dev, "renamed from %s\n", oldname);
1317 
1318 	old_assign_type = dev->name_assign_type;
1319 	dev->name_assign_type = NET_NAME_RENAMED;
1320 
1321 rollback:
1322 	ret = device_rename(&dev->dev, dev->name);
1323 	if (ret) {
1324 		memcpy(dev->name, oldname, IFNAMSIZ);
1325 		dev->name_assign_type = old_assign_type;
1326 		up_write(&devnet_rename_sem);
1327 		return ret;
1328 	}
1329 
1330 	up_write(&devnet_rename_sem);
1331 
1332 	netdev_adjacent_rename_links(dev, oldname);
1333 
1334 	write_lock_bh(&dev_base_lock);
1335 	netdev_name_node_del(dev->name_node);
1336 	write_unlock_bh(&dev_base_lock);
1337 
1338 	synchronize_rcu();
1339 
1340 	write_lock_bh(&dev_base_lock);
1341 	netdev_name_node_add(net, dev->name_node);
1342 	write_unlock_bh(&dev_base_lock);
1343 
1344 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1345 	ret = notifier_to_errno(ret);
1346 
1347 	if (ret) {
1348 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1349 		if (err >= 0) {
1350 			err = ret;
1351 			down_write(&devnet_rename_sem);
1352 			memcpy(dev->name, oldname, IFNAMSIZ);
1353 			memcpy(oldname, newname, IFNAMSIZ);
1354 			dev->name_assign_type = old_assign_type;
1355 			old_assign_type = NET_NAME_RENAMED;
1356 			goto rollback;
1357 		} else {
1358 			pr_err("%s: name change rollback failed: %d\n",
1359 			       dev->name, ret);
1360 		}
1361 	}
1362 
1363 	return err;
1364 }
1365 
1366 /**
1367  *	dev_set_alias - change ifalias of a device
1368  *	@dev: device
1369  *	@alias: name up to IFALIASZ
1370  *	@len: limit of bytes to copy from info
1371  *
1372  *	Set ifalias for a device,
1373  */
1374 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1375 {
1376 	struct dev_ifalias *new_alias = NULL;
1377 
1378 	if (len >= IFALIASZ)
1379 		return -EINVAL;
1380 
1381 	if (len) {
1382 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1383 		if (!new_alias)
1384 			return -ENOMEM;
1385 
1386 		memcpy(new_alias->ifalias, alias, len);
1387 		new_alias->ifalias[len] = 0;
1388 	}
1389 
1390 	mutex_lock(&ifalias_mutex);
1391 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1392 					mutex_is_locked(&ifalias_mutex));
1393 	mutex_unlock(&ifalias_mutex);
1394 
1395 	if (new_alias)
1396 		kfree_rcu(new_alias, rcuhead);
1397 
1398 	return len;
1399 }
1400 EXPORT_SYMBOL(dev_set_alias);
1401 
1402 /**
1403  *	dev_get_alias - get ifalias of a device
1404  *	@dev: device
1405  *	@name: buffer to store name of ifalias
1406  *	@len: size of buffer
1407  *
1408  *	get ifalias for a device.  Caller must make sure dev cannot go
1409  *	away,  e.g. rcu read lock or own a reference count to device.
1410  */
1411 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1412 {
1413 	const struct dev_ifalias *alias;
1414 	int ret = 0;
1415 
1416 	rcu_read_lock();
1417 	alias = rcu_dereference(dev->ifalias);
1418 	if (alias)
1419 		ret = snprintf(name, len, "%s", alias->ifalias);
1420 	rcu_read_unlock();
1421 
1422 	return ret;
1423 }
1424 
1425 /**
1426  *	netdev_features_change - device changes features
1427  *	@dev: device to cause notification
1428  *
1429  *	Called to indicate a device has changed features.
1430  */
1431 void netdev_features_change(struct net_device *dev)
1432 {
1433 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1434 }
1435 EXPORT_SYMBOL(netdev_features_change);
1436 
1437 /**
1438  *	netdev_state_change - device changes state
1439  *	@dev: device to cause notification
1440  *
1441  *	Called to indicate a device has changed state. This function calls
1442  *	the notifier chains for netdev_chain and sends a NEWLINK message
1443  *	to the routing socket.
1444  */
1445 void netdev_state_change(struct net_device *dev)
1446 {
1447 	if (dev->flags & IFF_UP) {
1448 		struct netdev_notifier_change_info change_info = {
1449 			.info.dev = dev,
1450 		};
1451 
1452 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1453 					      &change_info.info);
1454 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1455 	}
1456 }
1457 EXPORT_SYMBOL(netdev_state_change);
1458 
1459 /**
1460  * netdev_notify_peers - notify network peers about existence of @dev
1461  * @dev: network device
1462  *
1463  * Generate traffic such that interested network peers are aware of
1464  * @dev, such as by generating a gratuitous ARP. This may be used when
1465  * a device wants to inform the rest of the network about some sort of
1466  * reconfiguration such as a failover event or virtual machine
1467  * migration.
1468  */
1469 void netdev_notify_peers(struct net_device *dev)
1470 {
1471 	rtnl_lock();
1472 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1473 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1474 	rtnl_unlock();
1475 }
1476 EXPORT_SYMBOL(netdev_notify_peers);
1477 
1478 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1479 {
1480 	const struct net_device_ops *ops = dev->netdev_ops;
1481 	int ret;
1482 
1483 	ASSERT_RTNL();
1484 
1485 	if (!netif_device_present(dev)) {
1486 		/* may be detached because parent is runtime-suspended */
1487 		if (dev->dev.parent)
1488 			pm_runtime_resume(dev->dev.parent);
1489 		if (!netif_device_present(dev))
1490 			return -ENODEV;
1491 	}
1492 
1493 	/* Block netpoll from trying to do any rx path servicing.
1494 	 * If we don't do this there is a chance ndo_poll_controller
1495 	 * or ndo_poll may be running while we open the device
1496 	 */
1497 	netpoll_poll_disable(dev);
1498 
1499 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1500 	ret = notifier_to_errno(ret);
1501 	if (ret)
1502 		return ret;
1503 
1504 	set_bit(__LINK_STATE_START, &dev->state);
1505 
1506 	if (ops->ndo_validate_addr)
1507 		ret = ops->ndo_validate_addr(dev);
1508 
1509 	if (!ret && ops->ndo_open)
1510 		ret = ops->ndo_open(dev);
1511 
1512 	netpoll_poll_enable(dev);
1513 
1514 	if (ret)
1515 		clear_bit(__LINK_STATE_START, &dev->state);
1516 	else {
1517 		dev->flags |= IFF_UP;
1518 		dev_set_rx_mode(dev);
1519 		dev_activate(dev);
1520 		add_device_randomness(dev->dev_addr, dev->addr_len);
1521 	}
1522 
1523 	return ret;
1524 }
1525 
1526 /**
1527  *	dev_open	- prepare an interface for use.
1528  *	@dev: device to open
1529  *	@extack: netlink extended ack
1530  *
1531  *	Takes a device from down to up state. The device's private open
1532  *	function is invoked and then the multicast lists are loaded. Finally
1533  *	the device is moved into the up state and a %NETDEV_UP message is
1534  *	sent to the netdev notifier chain.
1535  *
1536  *	Calling this function on an active interface is a nop. On a failure
1537  *	a negative errno code is returned.
1538  */
1539 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1540 {
1541 	int ret;
1542 
1543 	if (dev->flags & IFF_UP)
1544 		return 0;
1545 
1546 	ret = __dev_open(dev, extack);
1547 	if (ret < 0)
1548 		return ret;
1549 
1550 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1551 	call_netdevice_notifiers(NETDEV_UP, dev);
1552 
1553 	return ret;
1554 }
1555 EXPORT_SYMBOL(dev_open);
1556 
1557 static void __dev_close_many(struct list_head *head)
1558 {
1559 	struct net_device *dev;
1560 
1561 	ASSERT_RTNL();
1562 	might_sleep();
1563 
1564 	list_for_each_entry(dev, head, close_list) {
1565 		/* Temporarily disable netpoll until the interface is down */
1566 		netpoll_poll_disable(dev);
1567 
1568 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1569 
1570 		clear_bit(__LINK_STATE_START, &dev->state);
1571 
1572 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1573 		 * can be even on different cpu. So just clear netif_running().
1574 		 *
1575 		 * dev->stop() will invoke napi_disable() on all of it's
1576 		 * napi_struct instances on this device.
1577 		 */
1578 		smp_mb__after_atomic(); /* Commit netif_running(). */
1579 	}
1580 
1581 	dev_deactivate_many(head);
1582 
1583 	list_for_each_entry(dev, head, close_list) {
1584 		const struct net_device_ops *ops = dev->netdev_ops;
1585 
1586 		/*
1587 		 *	Call the device specific close. This cannot fail.
1588 		 *	Only if device is UP
1589 		 *
1590 		 *	We allow it to be called even after a DETACH hot-plug
1591 		 *	event.
1592 		 */
1593 		if (ops->ndo_stop)
1594 			ops->ndo_stop(dev);
1595 
1596 		dev->flags &= ~IFF_UP;
1597 		netpoll_poll_enable(dev);
1598 	}
1599 }
1600 
1601 static void __dev_close(struct net_device *dev)
1602 {
1603 	LIST_HEAD(single);
1604 
1605 	list_add(&dev->close_list, &single);
1606 	__dev_close_many(&single);
1607 	list_del(&single);
1608 }
1609 
1610 void dev_close_many(struct list_head *head, bool unlink)
1611 {
1612 	struct net_device *dev, *tmp;
1613 
1614 	/* Remove the devices that don't need to be closed */
1615 	list_for_each_entry_safe(dev, tmp, head, close_list)
1616 		if (!(dev->flags & IFF_UP))
1617 			list_del_init(&dev->close_list);
1618 
1619 	__dev_close_many(head);
1620 
1621 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1622 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1623 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1624 		if (unlink)
1625 			list_del_init(&dev->close_list);
1626 	}
1627 }
1628 EXPORT_SYMBOL(dev_close_many);
1629 
1630 /**
1631  *	dev_close - shutdown an interface.
1632  *	@dev: device to shutdown
1633  *
1634  *	This function moves an active device into down state. A
1635  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1636  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1637  *	chain.
1638  */
1639 void dev_close(struct net_device *dev)
1640 {
1641 	if (dev->flags & IFF_UP) {
1642 		LIST_HEAD(single);
1643 
1644 		list_add(&dev->close_list, &single);
1645 		dev_close_many(&single, true);
1646 		list_del(&single);
1647 	}
1648 }
1649 EXPORT_SYMBOL(dev_close);
1650 
1651 
1652 /**
1653  *	dev_disable_lro - disable Large Receive Offload on a device
1654  *	@dev: device
1655  *
1656  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1657  *	called under RTNL.  This is needed if received packets may be
1658  *	forwarded to another interface.
1659  */
1660 void dev_disable_lro(struct net_device *dev)
1661 {
1662 	struct net_device *lower_dev;
1663 	struct list_head *iter;
1664 
1665 	dev->wanted_features &= ~NETIF_F_LRO;
1666 	netdev_update_features(dev);
1667 
1668 	if (unlikely(dev->features & NETIF_F_LRO))
1669 		netdev_WARN(dev, "failed to disable LRO!\n");
1670 
1671 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1672 		dev_disable_lro(lower_dev);
1673 }
1674 EXPORT_SYMBOL(dev_disable_lro);
1675 
1676 /**
1677  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1678  *	@dev: device
1679  *
1680  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1681  *	called under RTNL.  This is needed if Generic XDP is installed on
1682  *	the device.
1683  */
1684 static void dev_disable_gro_hw(struct net_device *dev)
1685 {
1686 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1687 	netdev_update_features(dev);
1688 
1689 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1690 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1691 }
1692 
1693 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1694 {
1695 #define N(val) 						\
1696 	case NETDEV_##val:				\
1697 		return "NETDEV_" __stringify(val);
1698 	switch (cmd) {
1699 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1700 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1701 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1702 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1703 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1704 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1705 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1706 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1707 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1708 	N(PRE_CHANGEADDR)
1709 	}
1710 #undef N
1711 	return "UNKNOWN_NETDEV_EVENT";
1712 }
1713 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1714 
1715 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1716 				   struct net_device *dev)
1717 {
1718 	struct netdev_notifier_info info = {
1719 		.dev = dev,
1720 	};
1721 
1722 	return nb->notifier_call(nb, val, &info);
1723 }
1724 
1725 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1726 					     struct net_device *dev)
1727 {
1728 	int err;
1729 
1730 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1731 	err = notifier_to_errno(err);
1732 	if (err)
1733 		return err;
1734 
1735 	if (!(dev->flags & IFF_UP))
1736 		return 0;
1737 
1738 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1739 	return 0;
1740 }
1741 
1742 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1743 						struct net_device *dev)
1744 {
1745 	if (dev->flags & IFF_UP) {
1746 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1747 					dev);
1748 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1749 	}
1750 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1751 }
1752 
1753 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1754 						 struct net *net)
1755 {
1756 	struct net_device *dev;
1757 	int err;
1758 
1759 	for_each_netdev(net, dev) {
1760 		err = call_netdevice_register_notifiers(nb, dev);
1761 		if (err)
1762 			goto rollback;
1763 	}
1764 	return 0;
1765 
1766 rollback:
1767 	for_each_netdev_continue_reverse(net, dev)
1768 		call_netdevice_unregister_notifiers(nb, dev);
1769 	return err;
1770 }
1771 
1772 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1773 						    struct net *net)
1774 {
1775 	struct net_device *dev;
1776 
1777 	for_each_netdev(net, dev)
1778 		call_netdevice_unregister_notifiers(nb, dev);
1779 }
1780 
1781 static int dev_boot_phase = 1;
1782 
1783 /**
1784  * register_netdevice_notifier - register a network notifier block
1785  * @nb: notifier
1786  *
1787  * Register a notifier to be called when network device events occur.
1788  * The notifier passed is linked into the kernel structures and must
1789  * not be reused until it has been unregistered. A negative errno code
1790  * is returned on a failure.
1791  *
1792  * When registered all registration and up events are replayed
1793  * to the new notifier to allow device to have a race free
1794  * view of the network device list.
1795  */
1796 
1797 int register_netdevice_notifier(struct notifier_block *nb)
1798 {
1799 	struct net *net;
1800 	int err;
1801 
1802 	/* Close race with setup_net() and cleanup_net() */
1803 	down_write(&pernet_ops_rwsem);
1804 	rtnl_lock();
1805 	err = raw_notifier_chain_register(&netdev_chain, nb);
1806 	if (err)
1807 		goto unlock;
1808 	if (dev_boot_phase)
1809 		goto unlock;
1810 	for_each_net(net) {
1811 		err = call_netdevice_register_net_notifiers(nb, net);
1812 		if (err)
1813 			goto rollback;
1814 	}
1815 
1816 unlock:
1817 	rtnl_unlock();
1818 	up_write(&pernet_ops_rwsem);
1819 	return err;
1820 
1821 rollback:
1822 	for_each_net_continue_reverse(net)
1823 		call_netdevice_unregister_net_notifiers(nb, net);
1824 
1825 	raw_notifier_chain_unregister(&netdev_chain, nb);
1826 	goto unlock;
1827 }
1828 EXPORT_SYMBOL(register_netdevice_notifier);
1829 
1830 /**
1831  * unregister_netdevice_notifier - unregister a network notifier block
1832  * @nb: notifier
1833  *
1834  * Unregister a notifier previously registered by
1835  * register_netdevice_notifier(). The notifier is unlinked into the
1836  * kernel structures and may then be reused. A negative errno code
1837  * is returned on a failure.
1838  *
1839  * After unregistering unregister and down device events are synthesized
1840  * for all devices on the device list to the removed notifier to remove
1841  * the need for special case cleanup code.
1842  */
1843 
1844 int unregister_netdevice_notifier(struct notifier_block *nb)
1845 {
1846 	struct net *net;
1847 	int err;
1848 
1849 	/* Close race with setup_net() and cleanup_net() */
1850 	down_write(&pernet_ops_rwsem);
1851 	rtnl_lock();
1852 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1853 	if (err)
1854 		goto unlock;
1855 
1856 	for_each_net(net)
1857 		call_netdevice_unregister_net_notifiers(nb, net);
1858 
1859 unlock:
1860 	rtnl_unlock();
1861 	up_write(&pernet_ops_rwsem);
1862 	return err;
1863 }
1864 EXPORT_SYMBOL(unregister_netdevice_notifier);
1865 
1866 static int __register_netdevice_notifier_net(struct net *net,
1867 					     struct notifier_block *nb,
1868 					     bool ignore_call_fail)
1869 {
1870 	int err;
1871 
1872 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1873 	if (err)
1874 		return err;
1875 	if (dev_boot_phase)
1876 		return 0;
1877 
1878 	err = call_netdevice_register_net_notifiers(nb, net);
1879 	if (err && !ignore_call_fail)
1880 		goto chain_unregister;
1881 
1882 	return 0;
1883 
1884 chain_unregister:
1885 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1886 	return err;
1887 }
1888 
1889 static int __unregister_netdevice_notifier_net(struct net *net,
1890 					       struct notifier_block *nb)
1891 {
1892 	int err;
1893 
1894 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1895 	if (err)
1896 		return err;
1897 
1898 	call_netdevice_unregister_net_notifiers(nb, net);
1899 	return 0;
1900 }
1901 
1902 /**
1903  * register_netdevice_notifier_net - register a per-netns network notifier block
1904  * @net: network namespace
1905  * @nb: notifier
1906  *
1907  * Register a notifier to be called when network device events occur.
1908  * The notifier passed is linked into the kernel structures and must
1909  * not be reused until it has been unregistered. A negative errno code
1910  * is returned on a failure.
1911  *
1912  * When registered all registration and up events are replayed
1913  * to the new notifier to allow device to have a race free
1914  * view of the network device list.
1915  */
1916 
1917 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1918 {
1919 	int err;
1920 
1921 	rtnl_lock();
1922 	err = __register_netdevice_notifier_net(net, nb, false);
1923 	rtnl_unlock();
1924 	return err;
1925 }
1926 EXPORT_SYMBOL(register_netdevice_notifier_net);
1927 
1928 /**
1929  * unregister_netdevice_notifier_net - unregister a per-netns
1930  *                                     network notifier block
1931  * @net: network namespace
1932  * @nb: notifier
1933  *
1934  * Unregister a notifier previously registered by
1935  * register_netdevice_notifier(). The notifier is unlinked into the
1936  * kernel structures and may then be reused. A negative errno code
1937  * is returned on a failure.
1938  *
1939  * After unregistering unregister and down device events are synthesized
1940  * for all devices on the device list to the removed notifier to remove
1941  * the need for special case cleanup code.
1942  */
1943 
1944 int unregister_netdevice_notifier_net(struct net *net,
1945 				      struct notifier_block *nb)
1946 {
1947 	int err;
1948 
1949 	rtnl_lock();
1950 	err = __unregister_netdevice_notifier_net(net, nb);
1951 	rtnl_unlock();
1952 	return err;
1953 }
1954 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1955 
1956 int register_netdevice_notifier_dev_net(struct net_device *dev,
1957 					struct notifier_block *nb,
1958 					struct netdev_net_notifier *nn)
1959 {
1960 	int err;
1961 
1962 	rtnl_lock();
1963 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1964 	if (!err) {
1965 		nn->nb = nb;
1966 		list_add(&nn->list, &dev->net_notifier_list);
1967 	}
1968 	rtnl_unlock();
1969 	return err;
1970 }
1971 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1972 
1973 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1974 					  struct notifier_block *nb,
1975 					  struct netdev_net_notifier *nn)
1976 {
1977 	int err;
1978 
1979 	rtnl_lock();
1980 	list_del(&nn->list);
1981 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1982 	rtnl_unlock();
1983 	return err;
1984 }
1985 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1986 
1987 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1988 					     struct net *net)
1989 {
1990 	struct netdev_net_notifier *nn;
1991 
1992 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1993 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1994 		__register_netdevice_notifier_net(net, nn->nb, true);
1995 	}
1996 }
1997 
1998 /**
1999  *	call_netdevice_notifiers_info - call all network notifier blocks
2000  *	@val: value passed unmodified to notifier function
2001  *	@info: notifier information data
2002  *
2003  *	Call all network notifier blocks.  Parameters and return value
2004  *	are as for raw_notifier_call_chain().
2005  */
2006 
2007 static int call_netdevice_notifiers_info(unsigned long val,
2008 					 struct netdev_notifier_info *info)
2009 {
2010 	struct net *net = dev_net(info->dev);
2011 	int ret;
2012 
2013 	ASSERT_RTNL();
2014 
2015 	/* Run per-netns notifier block chain first, then run the global one.
2016 	 * Hopefully, one day, the global one is going to be removed after
2017 	 * all notifier block registrators get converted to be per-netns.
2018 	 */
2019 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2020 	if (ret & NOTIFY_STOP_MASK)
2021 		return ret;
2022 	return raw_notifier_call_chain(&netdev_chain, val, info);
2023 }
2024 
2025 static int call_netdevice_notifiers_extack(unsigned long val,
2026 					   struct net_device *dev,
2027 					   struct netlink_ext_ack *extack)
2028 {
2029 	struct netdev_notifier_info info = {
2030 		.dev = dev,
2031 		.extack = extack,
2032 	};
2033 
2034 	return call_netdevice_notifiers_info(val, &info);
2035 }
2036 
2037 /**
2038  *	call_netdevice_notifiers - call all network notifier blocks
2039  *      @val: value passed unmodified to notifier function
2040  *      @dev: net_device pointer passed unmodified to notifier function
2041  *
2042  *	Call all network notifier blocks.  Parameters and return value
2043  *	are as for raw_notifier_call_chain().
2044  */
2045 
2046 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2047 {
2048 	return call_netdevice_notifiers_extack(val, dev, NULL);
2049 }
2050 EXPORT_SYMBOL(call_netdevice_notifiers);
2051 
2052 /**
2053  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2054  *	@val: value passed unmodified to notifier function
2055  *	@dev: net_device pointer passed unmodified to notifier function
2056  *	@arg: additional u32 argument passed to the notifier function
2057  *
2058  *	Call all network notifier blocks.  Parameters and return value
2059  *	are as for raw_notifier_call_chain().
2060  */
2061 static int call_netdevice_notifiers_mtu(unsigned long val,
2062 					struct net_device *dev, u32 arg)
2063 {
2064 	struct netdev_notifier_info_ext info = {
2065 		.info.dev = dev,
2066 		.ext.mtu = arg,
2067 	};
2068 
2069 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2070 
2071 	return call_netdevice_notifiers_info(val, &info.info);
2072 }
2073 
2074 #ifdef CONFIG_NET_INGRESS
2075 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2076 
2077 void net_inc_ingress_queue(void)
2078 {
2079 	static_branch_inc(&ingress_needed_key);
2080 }
2081 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2082 
2083 void net_dec_ingress_queue(void)
2084 {
2085 	static_branch_dec(&ingress_needed_key);
2086 }
2087 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2088 #endif
2089 
2090 #ifdef CONFIG_NET_EGRESS
2091 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2092 
2093 void net_inc_egress_queue(void)
2094 {
2095 	static_branch_inc(&egress_needed_key);
2096 }
2097 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2098 
2099 void net_dec_egress_queue(void)
2100 {
2101 	static_branch_dec(&egress_needed_key);
2102 }
2103 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2104 #endif
2105 
2106 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2107 #ifdef CONFIG_JUMP_LABEL
2108 static atomic_t netstamp_needed_deferred;
2109 static atomic_t netstamp_wanted;
2110 static void netstamp_clear(struct work_struct *work)
2111 {
2112 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2113 	int wanted;
2114 
2115 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2116 	if (wanted > 0)
2117 		static_branch_enable(&netstamp_needed_key);
2118 	else
2119 		static_branch_disable(&netstamp_needed_key);
2120 }
2121 static DECLARE_WORK(netstamp_work, netstamp_clear);
2122 #endif
2123 
2124 void net_enable_timestamp(void)
2125 {
2126 #ifdef CONFIG_JUMP_LABEL
2127 	int wanted;
2128 
2129 	while (1) {
2130 		wanted = atomic_read(&netstamp_wanted);
2131 		if (wanted <= 0)
2132 			break;
2133 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2134 			return;
2135 	}
2136 	atomic_inc(&netstamp_needed_deferred);
2137 	schedule_work(&netstamp_work);
2138 #else
2139 	static_branch_inc(&netstamp_needed_key);
2140 #endif
2141 }
2142 EXPORT_SYMBOL(net_enable_timestamp);
2143 
2144 void net_disable_timestamp(void)
2145 {
2146 #ifdef CONFIG_JUMP_LABEL
2147 	int wanted;
2148 
2149 	while (1) {
2150 		wanted = atomic_read(&netstamp_wanted);
2151 		if (wanted <= 1)
2152 			break;
2153 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2154 			return;
2155 	}
2156 	atomic_dec(&netstamp_needed_deferred);
2157 	schedule_work(&netstamp_work);
2158 #else
2159 	static_branch_dec(&netstamp_needed_key);
2160 #endif
2161 }
2162 EXPORT_SYMBOL(net_disable_timestamp);
2163 
2164 static inline void net_timestamp_set(struct sk_buff *skb)
2165 {
2166 	skb->tstamp = 0;
2167 	if (static_branch_unlikely(&netstamp_needed_key))
2168 		__net_timestamp(skb);
2169 }
2170 
2171 #define net_timestamp_check(COND, SKB)				\
2172 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2173 		if ((COND) && !(SKB)->tstamp)			\
2174 			__net_timestamp(SKB);			\
2175 	}							\
2176 
2177 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2178 {
2179 	unsigned int len;
2180 
2181 	if (!(dev->flags & IFF_UP))
2182 		return false;
2183 
2184 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2185 	if (skb->len <= len)
2186 		return true;
2187 
2188 	/* if TSO is enabled, we don't care about the length as the packet
2189 	 * could be forwarded without being segmented before
2190 	 */
2191 	if (skb_is_gso(skb))
2192 		return true;
2193 
2194 	return false;
2195 }
2196 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2197 
2198 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2199 {
2200 	int ret = ____dev_forward_skb(dev, skb);
2201 
2202 	if (likely(!ret)) {
2203 		skb->protocol = eth_type_trans(skb, dev);
2204 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2205 	}
2206 
2207 	return ret;
2208 }
2209 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2210 
2211 /**
2212  * dev_forward_skb - loopback an skb to another netif
2213  *
2214  * @dev: destination network device
2215  * @skb: buffer to forward
2216  *
2217  * return values:
2218  *	NET_RX_SUCCESS	(no congestion)
2219  *	NET_RX_DROP     (packet was dropped, but freed)
2220  *
2221  * dev_forward_skb can be used for injecting an skb from the
2222  * start_xmit function of one device into the receive queue
2223  * of another device.
2224  *
2225  * The receiving device may be in another namespace, so
2226  * we have to clear all information in the skb that could
2227  * impact namespace isolation.
2228  */
2229 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2230 {
2231 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2232 }
2233 EXPORT_SYMBOL_GPL(dev_forward_skb);
2234 
2235 static inline int deliver_skb(struct sk_buff *skb,
2236 			      struct packet_type *pt_prev,
2237 			      struct net_device *orig_dev)
2238 {
2239 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2240 		return -ENOMEM;
2241 	refcount_inc(&skb->users);
2242 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2243 }
2244 
2245 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2246 					  struct packet_type **pt,
2247 					  struct net_device *orig_dev,
2248 					  __be16 type,
2249 					  struct list_head *ptype_list)
2250 {
2251 	struct packet_type *ptype, *pt_prev = *pt;
2252 
2253 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2254 		if (ptype->type != type)
2255 			continue;
2256 		if (pt_prev)
2257 			deliver_skb(skb, pt_prev, orig_dev);
2258 		pt_prev = ptype;
2259 	}
2260 	*pt = pt_prev;
2261 }
2262 
2263 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2264 {
2265 	if (!ptype->af_packet_priv || !skb->sk)
2266 		return false;
2267 
2268 	if (ptype->id_match)
2269 		return ptype->id_match(ptype, skb->sk);
2270 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2271 		return true;
2272 
2273 	return false;
2274 }
2275 
2276 /**
2277  * dev_nit_active - return true if any network interface taps are in use
2278  *
2279  * @dev: network device to check for the presence of taps
2280  */
2281 bool dev_nit_active(struct net_device *dev)
2282 {
2283 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2284 }
2285 EXPORT_SYMBOL_GPL(dev_nit_active);
2286 
2287 /*
2288  *	Support routine. Sends outgoing frames to any network
2289  *	taps currently in use.
2290  */
2291 
2292 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2293 {
2294 	struct packet_type *ptype;
2295 	struct sk_buff *skb2 = NULL;
2296 	struct packet_type *pt_prev = NULL;
2297 	struct list_head *ptype_list = &ptype_all;
2298 
2299 	rcu_read_lock();
2300 again:
2301 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2302 		if (ptype->ignore_outgoing)
2303 			continue;
2304 
2305 		/* Never send packets back to the socket
2306 		 * they originated from - MvS (miquels@drinkel.ow.org)
2307 		 */
2308 		if (skb_loop_sk(ptype, skb))
2309 			continue;
2310 
2311 		if (pt_prev) {
2312 			deliver_skb(skb2, pt_prev, skb->dev);
2313 			pt_prev = ptype;
2314 			continue;
2315 		}
2316 
2317 		/* need to clone skb, done only once */
2318 		skb2 = skb_clone(skb, GFP_ATOMIC);
2319 		if (!skb2)
2320 			goto out_unlock;
2321 
2322 		net_timestamp_set(skb2);
2323 
2324 		/* skb->nh should be correctly
2325 		 * set by sender, so that the second statement is
2326 		 * just protection against buggy protocols.
2327 		 */
2328 		skb_reset_mac_header(skb2);
2329 
2330 		if (skb_network_header(skb2) < skb2->data ||
2331 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2332 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2333 					     ntohs(skb2->protocol),
2334 					     dev->name);
2335 			skb_reset_network_header(skb2);
2336 		}
2337 
2338 		skb2->transport_header = skb2->network_header;
2339 		skb2->pkt_type = PACKET_OUTGOING;
2340 		pt_prev = ptype;
2341 	}
2342 
2343 	if (ptype_list == &ptype_all) {
2344 		ptype_list = &dev->ptype_all;
2345 		goto again;
2346 	}
2347 out_unlock:
2348 	if (pt_prev) {
2349 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2350 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2351 		else
2352 			kfree_skb(skb2);
2353 	}
2354 	rcu_read_unlock();
2355 }
2356 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2357 
2358 /**
2359  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2360  * @dev: Network device
2361  * @txq: number of queues available
2362  *
2363  * If real_num_tx_queues is changed the tc mappings may no longer be
2364  * valid. To resolve this verify the tc mapping remains valid and if
2365  * not NULL the mapping. With no priorities mapping to this
2366  * offset/count pair it will no longer be used. In the worst case TC0
2367  * is invalid nothing can be done so disable priority mappings. If is
2368  * expected that drivers will fix this mapping if they can before
2369  * calling netif_set_real_num_tx_queues.
2370  */
2371 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2372 {
2373 	int i;
2374 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2375 
2376 	/* If TC0 is invalidated disable TC mapping */
2377 	if (tc->offset + tc->count > txq) {
2378 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2379 		dev->num_tc = 0;
2380 		return;
2381 	}
2382 
2383 	/* Invalidated prio to tc mappings set to TC0 */
2384 	for (i = 1; i < TC_BITMASK + 1; i++) {
2385 		int q = netdev_get_prio_tc_map(dev, i);
2386 
2387 		tc = &dev->tc_to_txq[q];
2388 		if (tc->offset + tc->count > txq) {
2389 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2390 				i, q);
2391 			netdev_set_prio_tc_map(dev, i, 0);
2392 		}
2393 	}
2394 }
2395 
2396 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2397 {
2398 	if (dev->num_tc) {
2399 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2400 		int i;
2401 
2402 		/* walk through the TCs and see if it falls into any of them */
2403 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2404 			if ((txq - tc->offset) < tc->count)
2405 				return i;
2406 		}
2407 
2408 		/* didn't find it, just return -1 to indicate no match */
2409 		return -1;
2410 	}
2411 
2412 	return 0;
2413 }
2414 EXPORT_SYMBOL(netdev_txq_to_tc);
2415 
2416 #ifdef CONFIG_XPS
2417 struct static_key xps_needed __read_mostly;
2418 EXPORT_SYMBOL(xps_needed);
2419 struct static_key xps_rxqs_needed __read_mostly;
2420 EXPORT_SYMBOL(xps_rxqs_needed);
2421 static DEFINE_MUTEX(xps_map_mutex);
2422 #define xmap_dereference(P)		\
2423 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2424 
2425 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2426 			     int tci, u16 index)
2427 {
2428 	struct xps_map *map = NULL;
2429 	int pos;
2430 
2431 	if (dev_maps)
2432 		map = xmap_dereference(dev_maps->attr_map[tci]);
2433 	if (!map)
2434 		return false;
2435 
2436 	for (pos = map->len; pos--;) {
2437 		if (map->queues[pos] != index)
2438 			continue;
2439 
2440 		if (map->len > 1) {
2441 			map->queues[pos] = map->queues[--map->len];
2442 			break;
2443 		}
2444 
2445 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2446 		kfree_rcu(map, rcu);
2447 		return false;
2448 	}
2449 
2450 	return true;
2451 }
2452 
2453 static bool remove_xps_queue_cpu(struct net_device *dev,
2454 				 struct xps_dev_maps *dev_maps,
2455 				 int cpu, u16 offset, u16 count)
2456 {
2457 	int num_tc = dev->num_tc ? : 1;
2458 	bool active = false;
2459 	int tci;
2460 
2461 	for (tci = cpu * num_tc; num_tc--; tci++) {
2462 		int i, j;
2463 
2464 		for (i = count, j = offset; i--; j++) {
2465 			if (!remove_xps_queue(dev_maps, tci, j))
2466 				break;
2467 		}
2468 
2469 		active |= i < 0;
2470 	}
2471 
2472 	return active;
2473 }
2474 
2475 static void reset_xps_maps(struct net_device *dev,
2476 			   struct xps_dev_maps *dev_maps,
2477 			   bool is_rxqs_map)
2478 {
2479 	if (is_rxqs_map) {
2480 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2481 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2482 	} else {
2483 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2484 	}
2485 	static_key_slow_dec_cpuslocked(&xps_needed);
2486 	kfree_rcu(dev_maps, rcu);
2487 }
2488 
2489 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2490 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2491 			   u16 offset, u16 count, bool is_rxqs_map)
2492 {
2493 	bool active = false;
2494 	int i, j;
2495 
2496 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2497 	     j < nr_ids;)
2498 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2499 					       count);
2500 	if (!active)
2501 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2502 
2503 	if (!is_rxqs_map) {
2504 		for (i = offset + (count - 1); count--; i--) {
2505 			netdev_queue_numa_node_write(
2506 				netdev_get_tx_queue(dev, i),
2507 				NUMA_NO_NODE);
2508 		}
2509 	}
2510 }
2511 
2512 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2513 				   u16 count)
2514 {
2515 	const unsigned long *possible_mask = NULL;
2516 	struct xps_dev_maps *dev_maps;
2517 	unsigned int nr_ids;
2518 
2519 	if (!static_key_false(&xps_needed))
2520 		return;
2521 
2522 	cpus_read_lock();
2523 	mutex_lock(&xps_map_mutex);
2524 
2525 	if (static_key_false(&xps_rxqs_needed)) {
2526 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2527 		if (dev_maps) {
2528 			nr_ids = dev->num_rx_queues;
2529 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2530 				       offset, count, true);
2531 		}
2532 	}
2533 
2534 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2535 	if (!dev_maps)
2536 		goto out_no_maps;
2537 
2538 	if (num_possible_cpus() > 1)
2539 		possible_mask = cpumask_bits(cpu_possible_mask);
2540 	nr_ids = nr_cpu_ids;
2541 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2542 		       false);
2543 
2544 out_no_maps:
2545 	mutex_unlock(&xps_map_mutex);
2546 	cpus_read_unlock();
2547 }
2548 
2549 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2550 {
2551 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2552 }
2553 
2554 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2555 				      u16 index, bool is_rxqs_map)
2556 {
2557 	struct xps_map *new_map;
2558 	int alloc_len = XPS_MIN_MAP_ALLOC;
2559 	int i, pos;
2560 
2561 	for (pos = 0; map && pos < map->len; pos++) {
2562 		if (map->queues[pos] != index)
2563 			continue;
2564 		return map;
2565 	}
2566 
2567 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2568 	if (map) {
2569 		if (pos < map->alloc_len)
2570 			return map;
2571 
2572 		alloc_len = map->alloc_len * 2;
2573 	}
2574 
2575 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2576 	 *  map
2577 	 */
2578 	if (is_rxqs_map)
2579 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2580 	else
2581 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2582 				       cpu_to_node(attr_index));
2583 	if (!new_map)
2584 		return NULL;
2585 
2586 	for (i = 0; i < pos; i++)
2587 		new_map->queues[i] = map->queues[i];
2588 	new_map->alloc_len = alloc_len;
2589 	new_map->len = pos;
2590 
2591 	return new_map;
2592 }
2593 
2594 /* Must be called under cpus_read_lock */
2595 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2596 			  u16 index, bool is_rxqs_map)
2597 {
2598 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2599 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2600 	int i, j, tci, numa_node_id = -2;
2601 	int maps_sz, num_tc = 1, tc = 0;
2602 	struct xps_map *map, *new_map;
2603 	bool active = false;
2604 	unsigned int nr_ids;
2605 
2606 	if (dev->num_tc) {
2607 		/* Do not allow XPS on subordinate device directly */
2608 		num_tc = dev->num_tc;
2609 		if (num_tc < 0)
2610 			return -EINVAL;
2611 
2612 		/* If queue belongs to subordinate dev use its map */
2613 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2614 
2615 		tc = netdev_txq_to_tc(dev, index);
2616 		if (tc < 0)
2617 			return -EINVAL;
2618 	}
2619 
2620 	mutex_lock(&xps_map_mutex);
2621 	if (is_rxqs_map) {
2622 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2623 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2624 		nr_ids = dev->num_rx_queues;
2625 	} else {
2626 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2627 		if (num_possible_cpus() > 1) {
2628 			online_mask = cpumask_bits(cpu_online_mask);
2629 			possible_mask = cpumask_bits(cpu_possible_mask);
2630 		}
2631 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2632 		nr_ids = nr_cpu_ids;
2633 	}
2634 
2635 	if (maps_sz < L1_CACHE_BYTES)
2636 		maps_sz = L1_CACHE_BYTES;
2637 
2638 	/* allocate memory for queue storage */
2639 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2640 	     j < nr_ids;) {
2641 		if (!new_dev_maps)
2642 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2643 		if (!new_dev_maps) {
2644 			mutex_unlock(&xps_map_mutex);
2645 			return -ENOMEM;
2646 		}
2647 
2648 		tci = j * num_tc + tc;
2649 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2650 				 NULL;
2651 
2652 		map = expand_xps_map(map, j, index, is_rxqs_map);
2653 		if (!map)
2654 			goto error;
2655 
2656 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2657 	}
2658 
2659 	if (!new_dev_maps)
2660 		goto out_no_new_maps;
2661 
2662 	if (!dev_maps) {
2663 		/* Increment static keys at most once per type */
2664 		static_key_slow_inc_cpuslocked(&xps_needed);
2665 		if (is_rxqs_map)
2666 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2667 	}
2668 
2669 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2670 	     j < nr_ids;) {
2671 		/* copy maps belonging to foreign traffic classes */
2672 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2673 			/* fill in the new device map from the old device map */
2674 			map = xmap_dereference(dev_maps->attr_map[tci]);
2675 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2676 		}
2677 
2678 		/* We need to explicitly update tci as prevous loop
2679 		 * could break out early if dev_maps is NULL.
2680 		 */
2681 		tci = j * num_tc + tc;
2682 
2683 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2684 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2685 			/* add tx-queue to CPU/rx-queue maps */
2686 			int pos = 0;
2687 
2688 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2689 			while ((pos < map->len) && (map->queues[pos] != index))
2690 				pos++;
2691 
2692 			if (pos == map->len)
2693 				map->queues[map->len++] = index;
2694 #ifdef CONFIG_NUMA
2695 			if (!is_rxqs_map) {
2696 				if (numa_node_id == -2)
2697 					numa_node_id = cpu_to_node(j);
2698 				else if (numa_node_id != cpu_to_node(j))
2699 					numa_node_id = -1;
2700 			}
2701 #endif
2702 		} else if (dev_maps) {
2703 			/* fill in the new device map from the old device map */
2704 			map = xmap_dereference(dev_maps->attr_map[tci]);
2705 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2706 		}
2707 
2708 		/* copy maps belonging to foreign traffic classes */
2709 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2710 			/* fill in the new device map from the old device map */
2711 			map = xmap_dereference(dev_maps->attr_map[tci]);
2712 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2713 		}
2714 	}
2715 
2716 	if (is_rxqs_map)
2717 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2718 	else
2719 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2720 
2721 	/* Cleanup old maps */
2722 	if (!dev_maps)
2723 		goto out_no_old_maps;
2724 
2725 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2726 	     j < nr_ids;) {
2727 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2728 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2729 			map = xmap_dereference(dev_maps->attr_map[tci]);
2730 			if (map && map != new_map)
2731 				kfree_rcu(map, rcu);
2732 		}
2733 	}
2734 
2735 	kfree_rcu(dev_maps, rcu);
2736 
2737 out_no_old_maps:
2738 	dev_maps = new_dev_maps;
2739 	active = true;
2740 
2741 out_no_new_maps:
2742 	if (!is_rxqs_map) {
2743 		/* update Tx queue numa node */
2744 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2745 					     (numa_node_id >= 0) ?
2746 					     numa_node_id : NUMA_NO_NODE);
2747 	}
2748 
2749 	if (!dev_maps)
2750 		goto out_no_maps;
2751 
2752 	/* removes tx-queue from unused CPUs/rx-queues */
2753 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2754 	     j < nr_ids;) {
2755 		for (i = tc, tci = j * num_tc; i--; tci++)
2756 			active |= remove_xps_queue(dev_maps, tci, index);
2757 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2758 		    !netif_attr_test_online(j, online_mask, nr_ids))
2759 			active |= remove_xps_queue(dev_maps, tci, index);
2760 		for (i = num_tc - tc, tci++; --i; tci++)
2761 			active |= remove_xps_queue(dev_maps, tci, index);
2762 	}
2763 
2764 	/* free map if not active */
2765 	if (!active)
2766 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2767 
2768 out_no_maps:
2769 	mutex_unlock(&xps_map_mutex);
2770 
2771 	return 0;
2772 error:
2773 	/* remove any maps that we added */
2774 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2775 	     j < nr_ids;) {
2776 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2777 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2778 			map = dev_maps ?
2779 			      xmap_dereference(dev_maps->attr_map[tci]) :
2780 			      NULL;
2781 			if (new_map && new_map != map)
2782 				kfree(new_map);
2783 		}
2784 	}
2785 
2786 	mutex_unlock(&xps_map_mutex);
2787 
2788 	kfree(new_dev_maps);
2789 	return -ENOMEM;
2790 }
2791 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2792 
2793 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2794 			u16 index)
2795 {
2796 	int ret;
2797 
2798 	cpus_read_lock();
2799 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2800 	cpus_read_unlock();
2801 
2802 	return ret;
2803 }
2804 EXPORT_SYMBOL(netif_set_xps_queue);
2805 
2806 #endif
2807 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2808 {
2809 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2810 
2811 	/* Unbind any subordinate channels */
2812 	while (txq-- != &dev->_tx[0]) {
2813 		if (txq->sb_dev)
2814 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2815 	}
2816 }
2817 
2818 void netdev_reset_tc(struct net_device *dev)
2819 {
2820 #ifdef CONFIG_XPS
2821 	netif_reset_xps_queues_gt(dev, 0);
2822 #endif
2823 	netdev_unbind_all_sb_channels(dev);
2824 
2825 	/* Reset TC configuration of device */
2826 	dev->num_tc = 0;
2827 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2828 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2829 }
2830 EXPORT_SYMBOL(netdev_reset_tc);
2831 
2832 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2833 {
2834 	if (tc >= dev->num_tc)
2835 		return -EINVAL;
2836 
2837 #ifdef CONFIG_XPS
2838 	netif_reset_xps_queues(dev, offset, count);
2839 #endif
2840 	dev->tc_to_txq[tc].count = count;
2841 	dev->tc_to_txq[tc].offset = offset;
2842 	return 0;
2843 }
2844 EXPORT_SYMBOL(netdev_set_tc_queue);
2845 
2846 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2847 {
2848 	if (num_tc > TC_MAX_QUEUE)
2849 		return -EINVAL;
2850 
2851 #ifdef CONFIG_XPS
2852 	netif_reset_xps_queues_gt(dev, 0);
2853 #endif
2854 	netdev_unbind_all_sb_channels(dev);
2855 
2856 	dev->num_tc = num_tc;
2857 	return 0;
2858 }
2859 EXPORT_SYMBOL(netdev_set_num_tc);
2860 
2861 void netdev_unbind_sb_channel(struct net_device *dev,
2862 			      struct net_device *sb_dev)
2863 {
2864 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2865 
2866 #ifdef CONFIG_XPS
2867 	netif_reset_xps_queues_gt(sb_dev, 0);
2868 #endif
2869 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2870 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2871 
2872 	while (txq-- != &dev->_tx[0]) {
2873 		if (txq->sb_dev == sb_dev)
2874 			txq->sb_dev = NULL;
2875 	}
2876 }
2877 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2878 
2879 int netdev_bind_sb_channel_queue(struct net_device *dev,
2880 				 struct net_device *sb_dev,
2881 				 u8 tc, u16 count, u16 offset)
2882 {
2883 	/* Make certain the sb_dev and dev are already configured */
2884 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2885 		return -EINVAL;
2886 
2887 	/* We cannot hand out queues we don't have */
2888 	if ((offset + count) > dev->real_num_tx_queues)
2889 		return -EINVAL;
2890 
2891 	/* Record the mapping */
2892 	sb_dev->tc_to_txq[tc].count = count;
2893 	sb_dev->tc_to_txq[tc].offset = offset;
2894 
2895 	/* Provide a way for Tx queue to find the tc_to_txq map or
2896 	 * XPS map for itself.
2897 	 */
2898 	while (count--)
2899 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2900 
2901 	return 0;
2902 }
2903 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2904 
2905 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2906 {
2907 	/* Do not use a multiqueue device to represent a subordinate channel */
2908 	if (netif_is_multiqueue(dev))
2909 		return -ENODEV;
2910 
2911 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2912 	 * Channel 0 is meant to be "native" mode and used only to represent
2913 	 * the main root device. We allow writing 0 to reset the device back
2914 	 * to normal mode after being used as a subordinate channel.
2915 	 */
2916 	if (channel > S16_MAX)
2917 		return -EINVAL;
2918 
2919 	dev->num_tc = -channel;
2920 
2921 	return 0;
2922 }
2923 EXPORT_SYMBOL(netdev_set_sb_channel);
2924 
2925 /*
2926  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2927  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2928  */
2929 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2930 {
2931 	bool disabling;
2932 	int rc;
2933 
2934 	disabling = txq < dev->real_num_tx_queues;
2935 
2936 	if (txq < 1 || txq > dev->num_tx_queues)
2937 		return -EINVAL;
2938 
2939 	if (dev->reg_state == NETREG_REGISTERED ||
2940 	    dev->reg_state == NETREG_UNREGISTERING) {
2941 		ASSERT_RTNL();
2942 
2943 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2944 						  txq);
2945 		if (rc)
2946 			return rc;
2947 
2948 		if (dev->num_tc)
2949 			netif_setup_tc(dev, txq);
2950 
2951 		dev->real_num_tx_queues = txq;
2952 
2953 		if (disabling) {
2954 			synchronize_net();
2955 			qdisc_reset_all_tx_gt(dev, txq);
2956 #ifdef CONFIG_XPS
2957 			netif_reset_xps_queues_gt(dev, txq);
2958 #endif
2959 		}
2960 	} else {
2961 		dev->real_num_tx_queues = txq;
2962 	}
2963 
2964 	return 0;
2965 }
2966 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2967 
2968 #ifdef CONFIG_SYSFS
2969 /**
2970  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2971  *	@dev: Network device
2972  *	@rxq: Actual number of RX queues
2973  *
2974  *	This must be called either with the rtnl_lock held or before
2975  *	registration of the net device.  Returns 0 on success, or a
2976  *	negative error code.  If called before registration, it always
2977  *	succeeds.
2978  */
2979 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2980 {
2981 	int rc;
2982 
2983 	if (rxq < 1 || rxq > dev->num_rx_queues)
2984 		return -EINVAL;
2985 
2986 	if (dev->reg_state == NETREG_REGISTERED) {
2987 		ASSERT_RTNL();
2988 
2989 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2990 						  rxq);
2991 		if (rc)
2992 			return rc;
2993 	}
2994 
2995 	dev->real_num_rx_queues = rxq;
2996 	return 0;
2997 }
2998 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2999 #endif
3000 
3001 /**
3002  * netif_get_num_default_rss_queues - default number of RSS queues
3003  *
3004  * This routine should set an upper limit on the number of RSS queues
3005  * used by default by multiqueue devices.
3006  */
3007 int netif_get_num_default_rss_queues(void)
3008 {
3009 	return is_kdump_kernel() ?
3010 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3011 }
3012 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3013 
3014 static void __netif_reschedule(struct Qdisc *q)
3015 {
3016 	struct softnet_data *sd;
3017 	unsigned long flags;
3018 
3019 	local_irq_save(flags);
3020 	sd = this_cpu_ptr(&softnet_data);
3021 	q->next_sched = NULL;
3022 	*sd->output_queue_tailp = q;
3023 	sd->output_queue_tailp = &q->next_sched;
3024 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3025 	local_irq_restore(flags);
3026 }
3027 
3028 void __netif_schedule(struct Qdisc *q)
3029 {
3030 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3031 		__netif_reschedule(q);
3032 }
3033 EXPORT_SYMBOL(__netif_schedule);
3034 
3035 struct dev_kfree_skb_cb {
3036 	enum skb_free_reason reason;
3037 };
3038 
3039 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3040 {
3041 	return (struct dev_kfree_skb_cb *)skb->cb;
3042 }
3043 
3044 void netif_schedule_queue(struct netdev_queue *txq)
3045 {
3046 	rcu_read_lock();
3047 	if (!netif_xmit_stopped(txq)) {
3048 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3049 
3050 		__netif_schedule(q);
3051 	}
3052 	rcu_read_unlock();
3053 }
3054 EXPORT_SYMBOL(netif_schedule_queue);
3055 
3056 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3057 {
3058 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3059 		struct Qdisc *q;
3060 
3061 		rcu_read_lock();
3062 		q = rcu_dereference(dev_queue->qdisc);
3063 		__netif_schedule(q);
3064 		rcu_read_unlock();
3065 	}
3066 }
3067 EXPORT_SYMBOL(netif_tx_wake_queue);
3068 
3069 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3070 {
3071 	unsigned long flags;
3072 
3073 	if (unlikely(!skb))
3074 		return;
3075 
3076 	if (likely(refcount_read(&skb->users) == 1)) {
3077 		smp_rmb();
3078 		refcount_set(&skb->users, 0);
3079 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3080 		return;
3081 	}
3082 	get_kfree_skb_cb(skb)->reason = reason;
3083 	local_irq_save(flags);
3084 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3085 	__this_cpu_write(softnet_data.completion_queue, skb);
3086 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3087 	local_irq_restore(flags);
3088 }
3089 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3090 
3091 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3092 {
3093 	if (in_irq() || irqs_disabled())
3094 		__dev_kfree_skb_irq(skb, reason);
3095 	else
3096 		dev_kfree_skb(skb);
3097 }
3098 EXPORT_SYMBOL(__dev_kfree_skb_any);
3099 
3100 
3101 /**
3102  * netif_device_detach - mark device as removed
3103  * @dev: network device
3104  *
3105  * Mark device as removed from system and therefore no longer available.
3106  */
3107 void netif_device_detach(struct net_device *dev)
3108 {
3109 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3110 	    netif_running(dev)) {
3111 		netif_tx_stop_all_queues(dev);
3112 	}
3113 }
3114 EXPORT_SYMBOL(netif_device_detach);
3115 
3116 /**
3117  * netif_device_attach - mark device as attached
3118  * @dev: network device
3119  *
3120  * Mark device as attached from system and restart if needed.
3121  */
3122 void netif_device_attach(struct net_device *dev)
3123 {
3124 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3125 	    netif_running(dev)) {
3126 		netif_tx_wake_all_queues(dev);
3127 		__netdev_watchdog_up(dev);
3128 	}
3129 }
3130 EXPORT_SYMBOL(netif_device_attach);
3131 
3132 /*
3133  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3134  * to be used as a distribution range.
3135  */
3136 static u16 skb_tx_hash(const struct net_device *dev,
3137 		       const struct net_device *sb_dev,
3138 		       struct sk_buff *skb)
3139 {
3140 	u32 hash;
3141 	u16 qoffset = 0;
3142 	u16 qcount = dev->real_num_tx_queues;
3143 
3144 	if (dev->num_tc) {
3145 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3146 
3147 		qoffset = sb_dev->tc_to_txq[tc].offset;
3148 		qcount = sb_dev->tc_to_txq[tc].count;
3149 	}
3150 
3151 	if (skb_rx_queue_recorded(skb)) {
3152 		hash = skb_get_rx_queue(skb);
3153 		if (hash >= qoffset)
3154 			hash -= qoffset;
3155 		while (unlikely(hash >= qcount))
3156 			hash -= qcount;
3157 		return hash + qoffset;
3158 	}
3159 
3160 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3161 }
3162 
3163 static void skb_warn_bad_offload(const struct sk_buff *skb)
3164 {
3165 	static const netdev_features_t null_features;
3166 	struct net_device *dev = skb->dev;
3167 	const char *name = "";
3168 
3169 	if (!net_ratelimit())
3170 		return;
3171 
3172 	if (dev) {
3173 		if (dev->dev.parent)
3174 			name = dev_driver_string(dev->dev.parent);
3175 		else
3176 			name = netdev_name(dev);
3177 	}
3178 	skb_dump(KERN_WARNING, skb, false);
3179 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3180 	     name, dev ? &dev->features : &null_features,
3181 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3182 }
3183 
3184 /*
3185  * Invalidate hardware checksum when packet is to be mangled, and
3186  * complete checksum manually on outgoing path.
3187  */
3188 int skb_checksum_help(struct sk_buff *skb)
3189 {
3190 	__wsum csum;
3191 	int ret = 0, offset;
3192 
3193 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3194 		goto out_set_summed;
3195 
3196 	if (unlikely(skb_is_gso(skb))) {
3197 		skb_warn_bad_offload(skb);
3198 		return -EINVAL;
3199 	}
3200 
3201 	/* Before computing a checksum, we should make sure no frag could
3202 	 * be modified by an external entity : checksum could be wrong.
3203 	 */
3204 	if (skb_has_shared_frag(skb)) {
3205 		ret = __skb_linearize(skb);
3206 		if (ret)
3207 			goto out;
3208 	}
3209 
3210 	offset = skb_checksum_start_offset(skb);
3211 	BUG_ON(offset >= skb_headlen(skb));
3212 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3213 
3214 	offset += skb->csum_offset;
3215 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3216 
3217 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3218 	if (ret)
3219 		goto out;
3220 
3221 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3222 out_set_summed:
3223 	skb->ip_summed = CHECKSUM_NONE;
3224 out:
3225 	return ret;
3226 }
3227 EXPORT_SYMBOL(skb_checksum_help);
3228 
3229 int skb_crc32c_csum_help(struct sk_buff *skb)
3230 {
3231 	__le32 crc32c_csum;
3232 	int ret = 0, offset, start;
3233 
3234 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3235 		goto out;
3236 
3237 	if (unlikely(skb_is_gso(skb)))
3238 		goto out;
3239 
3240 	/* Before computing a checksum, we should make sure no frag could
3241 	 * be modified by an external entity : checksum could be wrong.
3242 	 */
3243 	if (unlikely(skb_has_shared_frag(skb))) {
3244 		ret = __skb_linearize(skb);
3245 		if (ret)
3246 			goto out;
3247 	}
3248 	start = skb_checksum_start_offset(skb);
3249 	offset = start + offsetof(struct sctphdr, checksum);
3250 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3251 		ret = -EINVAL;
3252 		goto out;
3253 	}
3254 
3255 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3256 	if (ret)
3257 		goto out;
3258 
3259 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3260 						  skb->len - start, ~(__u32)0,
3261 						  crc32c_csum_stub));
3262 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3263 	skb->ip_summed = CHECKSUM_NONE;
3264 	skb->csum_not_inet = 0;
3265 out:
3266 	return ret;
3267 }
3268 
3269 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3270 {
3271 	__be16 type = skb->protocol;
3272 
3273 	/* Tunnel gso handlers can set protocol to ethernet. */
3274 	if (type == htons(ETH_P_TEB)) {
3275 		struct ethhdr *eth;
3276 
3277 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3278 			return 0;
3279 
3280 		eth = (struct ethhdr *)skb->data;
3281 		type = eth->h_proto;
3282 	}
3283 
3284 	return __vlan_get_protocol(skb, type, depth);
3285 }
3286 
3287 /**
3288  *	skb_mac_gso_segment - mac layer segmentation handler.
3289  *	@skb: buffer to segment
3290  *	@features: features for the output path (see dev->features)
3291  */
3292 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3293 				    netdev_features_t features)
3294 {
3295 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3296 	struct packet_offload *ptype;
3297 	int vlan_depth = skb->mac_len;
3298 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3299 
3300 	if (unlikely(!type))
3301 		return ERR_PTR(-EINVAL);
3302 
3303 	__skb_pull(skb, vlan_depth);
3304 
3305 	rcu_read_lock();
3306 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3307 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3308 			segs = ptype->callbacks.gso_segment(skb, features);
3309 			break;
3310 		}
3311 	}
3312 	rcu_read_unlock();
3313 
3314 	__skb_push(skb, skb->data - skb_mac_header(skb));
3315 
3316 	return segs;
3317 }
3318 EXPORT_SYMBOL(skb_mac_gso_segment);
3319 
3320 
3321 /* openvswitch calls this on rx path, so we need a different check.
3322  */
3323 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3324 {
3325 	if (tx_path)
3326 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3327 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3328 
3329 	return skb->ip_summed == CHECKSUM_NONE;
3330 }
3331 
3332 /**
3333  *	__skb_gso_segment - Perform segmentation on skb.
3334  *	@skb: buffer to segment
3335  *	@features: features for the output path (see dev->features)
3336  *	@tx_path: whether it is called in TX path
3337  *
3338  *	This function segments the given skb and returns a list of segments.
3339  *
3340  *	It may return NULL if the skb requires no segmentation.  This is
3341  *	only possible when GSO is used for verifying header integrity.
3342  *
3343  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3344  */
3345 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3346 				  netdev_features_t features, bool tx_path)
3347 {
3348 	struct sk_buff *segs;
3349 
3350 	if (unlikely(skb_needs_check(skb, tx_path))) {
3351 		int err;
3352 
3353 		/* We're going to init ->check field in TCP or UDP header */
3354 		err = skb_cow_head(skb, 0);
3355 		if (err < 0)
3356 			return ERR_PTR(err);
3357 	}
3358 
3359 	/* Only report GSO partial support if it will enable us to
3360 	 * support segmentation on this frame without needing additional
3361 	 * work.
3362 	 */
3363 	if (features & NETIF_F_GSO_PARTIAL) {
3364 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3365 		struct net_device *dev = skb->dev;
3366 
3367 		partial_features |= dev->features & dev->gso_partial_features;
3368 		if (!skb_gso_ok(skb, features | partial_features))
3369 			features &= ~NETIF_F_GSO_PARTIAL;
3370 	}
3371 
3372 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3373 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3374 
3375 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3376 	SKB_GSO_CB(skb)->encap_level = 0;
3377 
3378 	skb_reset_mac_header(skb);
3379 	skb_reset_mac_len(skb);
3380 
3381 	segs = skb_mac_gso_segment(skb, features);
3382 
3383 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3384 		skb_warn_bad_offload(skb);
3385 
3386 	return segs;
3387 }
3388 EXPORT_SYMBOL(__skb_gso_segment);
3389 
3390 /* Take action when hardware reception checksum errors are detected. */
3391 #ifdef CONFIG_BUG
3392 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3393 {
3394 	if (net_ratelimit()) {
3395 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3396 		skb_dump(KERN_ERR, skb, true);
3397 		dump_stack();
3398 	}
3399 }
3400 EXPORT_SYMBOL(netdev_rx_csum_fault);
3401 #endif
3402 
3403 /* XXX: check that highmem exists at all on the given machine. */
3404 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3405 {
3406 #ifdef CONFIG_HIGHMEM
3407 	int i;
3408 
3409 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3410 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3411 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3412 
3413 			if (PageHighMem(skb_frag_page(frag)))
3414 				return 1;
3415 		}
3416 	}
3417 #endif
3418 	return 0;
3419 }
3420 
3421 /* If MPLS offload request, verify we are testing hardware MPLS features
3422  * instead of standard features for the netdev.
3423  */
3424 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3425 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3426 					   netdev_features_t features,
3427 					   __be16 type)
3428 {
3429 	if (eth_p_mpls(type))
3430 		features &= skb->dev->mpls_features;
3431 
3432 	return features;
3433 }
3434 #else
3435 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3436 					   netdev_features_t features,
3437 					   __be16 type)
3438 {
3439 	return features;
3440 }
3441 #endif
3442 
3443 static netdev_features_t harmonize_features(struct sk_buff *skb,
3444 	netdev_features_t features)
3445 {
3446 	__be16 type;
3447 
3448 	type = skb_network_protocol(skb, NULL);
3449 	features = net_mpls_features(skb, features, type);
3450 
3451 	if (skb->ip_summed != CHECKSUM_NONE &&
3452 	    !can_checksum_protocol(features, type)) {
3453 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3454 	}
3455 	if (illegal_highdma(skb->dev, skb))
3456 		features &= ~NETIF_F_SG;
3457 
3458 	return features;
3459 }
3460 
3461 netdev_features_t passthru_features_check(struct sk_buff *skb,
3462 					  struct net_device *dev,
3463 					  netdev_features_t features)
3464 {
3465 	return features;
3466 }
3467 EXPORT_SYMBOL(passthru_features_check);
3468 
3469 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3470 					     struct net_device *dev,
3471 					     netdev_features_t features)
3472 {
3473 	return vlan_features_check(skb, features);
3474 }
3475 
3476 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3477 					    struct net_device *dev,
3478 					    netdev_features_t features)
3479 {
3480 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3481 
3482 	if (gso_segs > dev->gso_max_segs)
3483 		return features & ~NETIF_F_GSO_MASK;
3484 
3485 	if (!skb_shinfo(skb)->gso_type) {
3486 		skb_warn_bad_offload(skb);
3487 		return features & ~NETIF_F_GSO_MASK;
3488 	}
3489 
3490 	/* Support for GSO partial features requires software
3491 	 * intervention before we can actually process the packets
3492 	 * so we need to strip support for any partial features now
3493 	 * and we can pull them back in after we have partially
3494 	 * segmented the frame.
3495 	 */
3496 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3497 		features &= ~dev->gso_partial_features;
3498 
3499 	/* Make sure to clear the IPv4 ID mangling feature if the
3500 	 * IPv4 header has the potential to be fragmented.
3501 	 */
3502 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3503 		struct iphdr *iph = skb->encapsulation ?
3504 				    inner_ip_hdr(skb) : ip_hdr(skb);
3505 
3506 		if (!(iph->frag_off & htons(IP_DF)))
3507 			features &= ~NETIF_F_TSO_MANGLEID;
3508 	}
3509 
3510 	return features;
3511 }
3512 
3513 netdev_features_t netif_skb_features(struct sk_buff *skb)
3514 {
3515 	struct net_device *dev = skb->dev;
3516 	netdev_features_t features = dev->features;
3517 
3518 	if (skb_is_gso(skb))
3519 		features = gso_features_check(skb, dev, features);
3520 
3521 	/* If encapsulation offload request, verify we are testing
3522 	 * hardware encapsulation features instead of standard
3523 	 * features for the netdev
3524 	 */
3525 	if (skb->encapsulation)
3526 		features &= dev->hw_enc_features;
3527 
3528 	if (skb_vlan_tagged(skb))
3529 		features = netdev_intersect_features(features,
3530 						     dev->vlan_features |
3531 						     NETIF_F_HW_VLAN_CTAG_TX |
3532 						     NETIF_F_HW_VLAN_STAG_TX);
3533 
3534 	if (dev->netdev_ops->ndo_features_check)
3535 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3536 								features);
3537 	else
3538 		features &= dflt_features_check(skb, dev, features);
3539 
3540 	return harmonize_features(skb, features);
3541 }
3542 EXPORT_SYMBOL(netif_skb_features);
3543 
3544 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3545 		    struct netdev_queue *txq, bool more)
3546 {
3547 	unsigned int len;
3548 	int rc;
3549 
3550 	if (dev_nit_active(dev))
3551 		dev_queue_xmit_nit(skb, dev);
3552 
3553 	len = skb->len;
3554 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3555 	trace_net_dev_start_xmit(skb, dev);
3556 	rc = netdev_start_xmit(skb, dev, txq, more);
3557 	trace_net_dev_xmit(skb, rc, dev, len);
3558 
3559 	return rc;
3560 }
3561 
3562 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3563 				    struct netdev_queue *txq, int *ret)
3564 {
3565 	struct sk_buff *skb = first;
3566 	int rc = NETDEV_TX_OK;
3567 
3568 	while (skb) {
3569 		struct sk_buff *next = skb->next;
3570 
3571 		skb_mark_not_on_list(skb);
3572 		rc = xmit_one(skb, dev, txq, next != NULL);
3573 		if (unlikely(!dev_xmit_complete(rc))) {
3574 			skb->next = next;
3575 			goto out;
3576 		}
3577 
3578 		skb = next;
3579 		if (netif_tx_queue_stopped(txq) && skb) {
3580 			rc = NETDEV_TX_BUSY;
3581 			break;
3582 		}
3583 	}
3584 
3585 out:
3586 	*ret = rc;
3587 	return skb;
3588 }
3589 
3590 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3591 					  netdev_features_t features)
3592 {
3593 	if (skb_vlan_tag_present(skb) &&
3594 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3595 		skb = __vlan_hwaccel_push_inside(skb);
3596 	return skb;
3597 }
3598 
3599 int skb_csum_hwoffload_help(struct sk_buff *skb,
3600 			    const netdev_features_t features)
3601 {
3602 	if (unlikely(skb->csum_not_inet))
3603 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3604 			skb_crc32c_csum_help(skb);
3605 
3606 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3607 }
3608 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3609 
3610 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3611 {
3612 	netdev_features_t features;
3613 
3614 	features = netif_skb_features(skb);
3615 	skb = validate_xmit_vlan(skb, features);
3616 	if (unlikely(!skb))
3617 		goto out_null;
3618 
3619 	skb = sk_validate_xmit_skb(skb, dev);
3620 	if (unlikely(!skb))
3621 		goto out_null;
3622 
3623 	if (netif_needs_gso(skb, features)) {
3624 		struct sk_buff *segs;
3625 
3626 		segs = skb_gso_segment(skb, features);
3627 		if (IS_ERR(segs)) {
3628 			goto out_kfree_skb;
3629 		} else if (segs) {
3630 			consume_skb(skb);
3631 			skb = segs;
3632 		}
3633 	} else {
3634 		if (skb_needs_linearize(skb, features) &&
3635 		    __skb_linearize(skb))
3636 			goto out_kfree_skb;
3637 
3638 		/* If packet is not checksummed and device does not
3639 		 * support checksumming for this protocol, complete
3640 		 * checksumming here.
3641 		 */
3642 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3643 			if (skb->encapsulation)
3644 				skb_set_inner_transport_header(skb,
3645 							       skb_checksum_start_offset(skb));
3646 			else
3647 				skb_set_transport_header(skb,
3648 							 skb_checksum_start_offset(skb));
3649 			if (skb_csum_hwoffload_help(skb, features))
3650 				goto out_kfree_skb;
3651 		}
3652 	}
3653 
3654 	skb = validate_xmit_xfrm(skb, features, again);
3655 
3656 	return skb;
3657 
3658 out_kfree_skb:
3659 	kfree_skb(skb);
3660 out_null:
3661 	atomic_long_inc(&dev->tx_dropped);
3662 	return NULL;
3663 }
3664 
3665 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3666 {
3667 	struct sk_buff *next, *head = NULL, *tail;
3668 
3669 	for (; skb != NULL; skb = next) {
3670 		next = skb->next;
3671 		skb_mark_not_on_list(skb);
3672 
3673 		/* in case skb wont be segmented, point to itself */
3674 		skb->prev = skb;
3675 
3676 		skb = validate_xmit_skb(skb, dev, again);
3677 		if (!skb)
3678 			continue;
3679 
3680 		if (!head)
3681 			head = skb;
3682 		else
3683 			tail->next = skb;
3684 		/* If skb was segmented, skb->prev points to
3685 		 * the last segment. If not, it still contains skb.
3686 		 */
3687 		tail = skb->prev;
3688 	}
3689 	return head;
3690 }
3691 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3692 
3693 static void qdisc_pkt_len_init(struct sk_buff *skb)
3694 {
3695 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3696 
3697 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3698 
3699 	/* To get more precise estimation of bytes sent on wire,
3700 	 * we add to pkt_len the headers size of all segments
3701 	 */
3702 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3703 		unsigned int hdr_len;
3704 		u16 gso_segs = shinfo->gso_segs;
3705 
3706 		/* mac layer + network layer */
3707 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3708 
3709 		/* + transport layer */
3710 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3711 			const struct tcphdr *th;
3712 			struct tcphdr _tcphdr;
3713 
3714 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3715 						sizeof(_tcphdr), &_tcphdr);
3716 			if (likely(th))
3717 				hdr_len += __tcp_hdrlen(th);
3718 		} else {
3719 			struct udphdr _udphdr;
3720 
3721 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3722 					       sizeof(_udphdr), &_udphdr))
3723 				hdr_len += sizeof(struct udphdr);
3724 		}
3725 
3726 		if (shinfo->gso_type & SKB_GSO_DODGY)
3727 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3728 						shinfo->gso_size);
3729 
3730 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3731 	}
3732 }
3733 
3734 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3735 				 struct net_device *dev,
3736 				 struct netdev_queue *txq)
3737 {
3738 	spinlock_t *root_lock = qdisc_lock(q);
3739 	struct sk_buff *to_free = NULL;
3740 	bool contended;
3741 	int rc;
3742 
3743 	qdisc_calculate_pkt_len(skb, q);
3744 
3745 	if (q->flags & TCQ_F_NOLOCK) {
3746 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3747 		qdisc_run(q);
3748 
3749 		if (unlikely(to_free))
3750 			kfree_skb_list(to_free);
3751 		return rc;
3752 	}
3753 
3754 	/*
3755 	 * Heuristic to force contended enqueues to serialize on a
3756 	 * separate lock before trying to get qdisc main lock.
3757 	 * This permits qdisc->running owner to get the lock more
3758 	 * often and dequeue packets faster.
3759 	 */
3760 	contended = qdisc_is_running(q);
3761 	if (unlikely(contended))
3762 		spin_lock(&q->busylock);
3763 
3764 	spin_lock(root_lock);
3765 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3766 		__qdisc_drop(skb, &to_free);
3767 		rc = NET_XMIT_DROP;
3768 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3769 		   qdisc_run_begin(q)) {
3770 		/*
3771 		 * This is a work-conserving queue; there are no old skbs
3772 		 * waiting to be sent out; and the qdisc is not running -
3773 		 * xmit the skb directly.
3774 		 */
3775 
3776 		qdisc_bstats_update(q, skb);
3777 
3778 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3779 			if (unlikely(contended)) {
3780 				spin_unlock(&q->busylock);
3781 				contended = false;
3782 			}
3783 			__qdisc_run(q);
3784 		}
3785 
3786 		qdisc_run_end(q);
3787 		rc = NET_XMIT_SUCCESS;
3788 	} else {
3789 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3790 		if (qdisc_run_begin(q)) {
3791 			if (unlikely(contended)) {
3792 				spin_unlock(&q->busylock);
3793 				contended = false;
3794 			}
3795 			__qdisc_run(q);
3796 			qdisc_run_end(q);
3797 		}
3798 	}
3799 	spin_unlock(root_lock);
3800 	if (unlikely(to_free))
3801 		kfree_skb_list(to_free);
3802 	if (unlikely(contended))
3803 		spin_unlock(&q->busylock);
3804 	return rc;
3805 }
3806 
3807 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3808 static void skb_update_prio(struct sk_buff *skb)
3809 {
3810 	const struct netprio_map *map;
3811 	const struct sock *sk;
3812 	unsigned int prioidx;
3813 
3814 	if (skb->priority)
3815 		return;
3816 	map = rcu_dereference_bh(skb->dev->priomap);
3817 	if (!map)
3818 		return;
3819 	sk = skb_to_full_sk(skb);
3820 	if (!sk)
3821 		return;
3822 
3823 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3824 
3825 	if (prioidx < map->priomap_len)
3826 		skb->priority = map->priomap[prioidx];
3827 }
3828 #else
3829 #define skb_update_prio(skb)
3830 #endif
3831 
3832 /**
3833  *	dev_loopback_xmit - loop back @skb
3834  *	@net: network namespace this loopback is happening in
3835  *	@sk:  sk needed to be a netfilter okfn
3836  *	@skb: buffer to transmit
3837  */
3838 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3839 {
3840 	skb_reset_mac_header(skb);
3841 	__skb_pull(skb, skb_network_offset(skb));
3842 	skb->pkt_type = PACKET_LOOPBACK;
3843 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3844 	WARN_ON(!skb_dst(skb));
3845 	skb_dst_force(skb);
3846 	netif_rx_ni(skb);
3847 	return 0;
3848 }
3849 EXPORT_SYMBOL(dev_loopback_xmit);
3850 
3851 #ifdef CONFIG_NET_EGRESS
3852 static struct sk_buff *
3853 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3854 {
3855 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3856 	struct tcf_result cl_res;
3857 
3858 	if (!miniq)
3859 		return skb;
3860 
3861 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3862 	qdisc_skb_cb(skb)->mru = 0;
3863 	mini_qdisc_bstats_cpu_update(miniq, skb);
3864 
3865 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3866 	case TC_ACT_OK:
3867 	case TC_ACT_RECLASSIFY:
3868 		skb->tc_index = TC_H_MIN(cl_res.classid);
3869 		break;
3870 	case TC_ACT_SHOT:
3871 		mini_qdisc_qstats_cpu_drop(miniq);
3872 		*ret = NET_XMIT_DROP;
3873 		kfree_skb(skb);
3874 		return NULL;
3875 	case TC_ACT_STOLEN:
3876 	case TC_ACT_QUEUED:
3877 	case TC_ACT_TRAP:
3878 		*ret = NET_XMIT_SUCCESS;
3879 		consume_skb(skb);
3880 		return NULL;
3881 	case TC_ACT_REDIRECT:
3882 		/* No need to push/pop skb's mac_header here on egress! */
3883 		skb_do_redirect(skb);
3884 		*ret = NET_XMIT_SUCCESS;
3885 		return NULL;
3886 	default:
3887 		break;
3888 	}
3889 
3890 	return skb;
3891 }
3892 #endif /* CONFIG_NET_EGRESS */
3893 
3894 #ifdef CONFIG_XPS
3895 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3896 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3897 {
3898 	struct xps_map *map;
3899 	int queue_index = -1;
3900 
3901 	if (dev->num_tc) {
3902 		tci *= dev->num_tc;
3903 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3904 	}
3905 
3906 	map = rcu_dereference(dev_maps->attr_map[tci]);
3907 	if (map) {
3908 		if (map->len == 1)
3909 			queue_index = map->queues[0];
3910 		else
3911 			queue_index = map->queues[reciprocal_scale(
3912 						skb_get_hash(skb), map->len)];
3913 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3914 			queue_index = -1;
3915 	}
3916 	return queue_index;
3917 }
3918 #endif
3919 
3920 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3921 			 struct sk_buff *skb)
3922 {
3923 #ifdef CONFIG_XPS
3924 	struct xps_dev_maps *dev_maps;
3925 	struct sock *sk = skb->sk;
3926 	int queue_index = -1;
3927 
3928 	if (!static_key_false(&xps_needed))
3929 		return -1;
3930 
3931 	rcu_read_lock();
3932 	if (!static_key_false(&xps_rxqs_needed))
3933 		goto get_cpus_map;
3934 
3935 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3936 	if (dev_maps) {
3937 		int tci = sk_rx_queue_get(sk);
3938 
3939 		if (tci >= 0 && tci < dev->num_rx_queues)
3940 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3941 							  tci);
3942 	}
3943 
3944 get_cpus_map:
3945 	if (queue_index < 0) {
3946 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3947 		if (dev_maps) {
3948 			unsigned int tci = skb->sender_cpu - 1;
3949 
3950 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3951 							  tci);
3952 		}
3953 	}
3954 	rcu_read_unlock();
3955 
3956 	return queue_index;
3957 #else
3958 	return -1;
3959 #endif
3960 }
3961 
3962 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3963 		     struct net_device *sb_dev)
3964 {
3965 	return 0;
3966 }
3967 EXPORT_SYMBOL(dev_pick_tx_zero);
3968 
3969 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3970 		       struct net_device *sb_dev)
3971 {
3972 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3973 }
3974 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3975 
3976 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3977 		     struct net_device *sb_dev)
3978 {
3979 	struct sock *sk = skb->sk;
3980 	int queue_index = sk_tx_queue_get(sk);
3981 
3982 	sb_dev = sb_dev ? : dev;
3983 
3984 	if (queue_index < 0 || skb->ooo_okay ||
3985 	    queue_index >= dev->real_num_tx_queues) {
3986 		int new_index = get_xps_queue(dev, sb_dev, skb);
3987 
3988 		if (new_index < 0)
3989 			new_index = skb_tx_hash(dev, sb_dev, skb);
3990 
3991 		if (queue_index != new_index && sk &&
3992 		    sk_fullsock(sk) &&
3993 		    rcu_access_pointer(sk->sk_dst_cache))
3994 			sk_tx_queue_set(sk, new_index);
3995 
3996 		queue_index = new_index;
3997 	}
3998 
3999 	return queue_index;
4000 }
4001 EXPORT_SYMBOL(netdev_pick_tx);
4002 
4003 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4004 					 struct sk_buff *skb,
4005 					 struct net_device *sb_dev)
4006 {
4007 	int queue_index = 0;
4008 
4009 #ifdef CONFIG_XPS
4010 	u32 sender_cpu = skb->sender_cpu - 1;
4011 
4012 	if (sender_cpu >= (u32)NR_CPUS)
4013 		skb->sender_cpu = raw_smp_processor_id() + 1;
4014 #endif
4015 
4016 	if (dev->real_num_tx_queues != 1) {
4017 		const struct net_device_ops *ops = dev->netdev_ops;
4018 
4019 		if (ops->ndo_select_queue)
4020 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4021 		else
4022 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4023 
4024 		queue_index = netdev_cap_txqueue(dev, queue_index);
4025 	}
4026 
4027 	skb_set_queue_mapping(skb, queue_index);
4028 	return netdev_get_tx_queue(dev, queue_index);
4029 }
4030 
4031 /**
4032  *	__dev_queue_xmit - transmit a buffer
4033  *	@skb: buffer to transmit
4034  *	@sb_dev: suboordinate device used for L2 forwarding offload
4035  *
4036  *	Queue a buffer for transmission to a network device. The caller must
4037  *	have set the device and priority and built the buffer before calling
4038  *	this function. The function can be called from an interrupt.
4039  *
4040  *	A negative errno code is returned on a failure. A success does not
4041  *	guarantee the frame will be transmitted as it may be dropped due
4042  *	to congestion or traffic shaping.
4043  *
4044  * -----------------------------------------------------------------------------------
4045  *      I notice this method can also return errors from the queue disciplines,
4046  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4047  *      be positive.
4048  *
4049  *      Regardless of the return value, the skb is consumed, so it is currently
4050  *      difficult to retry a send to this method.  (You can bump the ref count
4051  *      before sending to hold a reference for retry if you are careful.)
4052  *
4053  *      When calling this method, interrupts MUST be enabled.  This is because
4054  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4055  *          --BLG
4056  */
4057 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4058 {
4059 	struct net_device *dev = skb->dev;
4060 	struct netdev_queue *txq;
4061 	struct Qdisc *q;
4062 	int rc = -ENOMEM;
4063 	bool again = false;
4064 
4065 	skb_reset_mac_header(skb);
4066 
4067 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4068 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4069 
4070 	/* Disable soft irqs for various locks below. Also
4071 	 * stops preemption for RCU.
4072 	 */
4073 	rcu_read_lock_bh();
4074 
4075 	skb_update_prio(skb);
4076 
4077 	qdisc_pkt_len_init(skb);
4078 #ifdef CONFIG_NET_CLS_ACT
4079 	skb->tc_at_ingress = 0;
4080 # ifdef CONFIG_NET_EGRESS
4081 	if (static_branch_unlikely(&egress_needed_key)) {
4082 		skb = sch_handle_egress(skb, &rc, dev);
4083 		if (!skb)
4084 			goto out;
4085 	}
4086 # endif
4087 #endif
4088 	/* If device/qdisc don't need skb->dst, release it right now while
4089 	 * its hot in this cpu cache.
4090 	 */
4091 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4092 		skb_dst_drop(skb);
4093 	else
4094 		skb_dst_force(skb);
4095 
4096 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4097 	q = rcu_dereference_bh(txq->qdisc);
4098 
4099 	trace_net_dev_queue(skb);
4100 	if (q->enqueue) {
4101 		rc = __dev_xmit_skb(skb, q, dev, txq);
4102 		goto out;
4103 	}
4104 
4105 	/* The device has no queue. Common case for software devices:
4106 	 * loopback, all the sorts of tunnels...
4107 
4108 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4109 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4110 	 * counters.)
4111 	 * However, it is possible, that they rely on protection
4112 	 * made by us here.
4113 
4114 	 * Check this and shot the lock. It is not prone from deadlocks.
4115 	 *Either shot noqueue qdisc, it is even simpler 8)
4116 	 */
4117 	if (dev->flags & IFF_UP) {
4118 		int cpu = smp_processor_id(); /* ok because BHs are off */
4119 
4120 		if (txq->xmit_lock_owner != cpu) {
4121 			if (dev_xmit_recursion())
4122 				goto recursion_alert;
4123 
4124 			skb = validate_xmit_skb(skb, dev, &again);
4125 			if (!skb)
4126 				goto out;
4127 
4128 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4129 			HARD_TX_LOCK(dev, txq, cpu);
4130 
4131 			if (!netif_xmit_stopped(txq)) {
4132 				dev_xmit_recursion_inc();
4133 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4134 				dev_xmit_recursion_dec();
4135 				if (dev_xmit_complete(rc)) {
4136 					HARD_TX_UNLOCK(dev, txq);
4137 					goto out;
4138 				}
4139 			}
4140 			HARD_TX_UNLOCK(dev, txq);
4141 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4142 					     dev->name);
4143 		} else {
4144 			/* Recursion is detected! It is possible,
4145 			 * unfortunately
4146 			 */
4147 recursion_alert:
4148 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4149 					     dev->name);
4150 		}
4151 	}
4152 
4153 	rc = -ENETDOWN;
4154 	rcu_read_unlock_bh();
4155 
4156 	atomic_long_inc(&dev->tx_dropped);
4157 	kfree_skb_list(skb);
4158 	return rc;
4159 out:
4160 	rcu_read_unlock_bh();
4161 	return rc;
4162 }
4163 
4164 int dev_queue_xmit(struct sk_buff *skb)
4165 {
4166 	return __dev_queue_xmit(skb, NULL);
4167 }
4168 EXPORT_SYMBOL(dev_queue_xmit);
4169 
4170 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4171 {
4172 	return __dev_queue_xmit(skb, sb_dev);
4173 }
4174 EXPORT_SYMBOL(dev_queue_xmit_accel);
4175 
4176 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4177 {
4178 	struct net_device *dev = skb->dev;
4179 	struct sk_buff *orig_skb = skb;
4180 	struct netdev_queue *txq;
4181 	int ret = NETDEV_TX_BUSY;
4182 	bool again = false;
4183 
4184 	if (unlikely(!netif_running(dev) ||
4185 		     !netif_carrier_ok(dev)))
4186 		goto drop;
4187 
4188 	skb = validate_xmit_skb_list(skb, dev, &again);
4189 	if (skb != orig_skb)
4190 		goto drop;
4191 
4192 	skb_set_queue_mapping(skb, queue_id);
4193 	txq = skb_get_tx_queue(dev, skb);
4194 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4195 
4196 	local_bh_disable();
4197 
4198 	dev_xmit_recursion_inc();
4199 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4200 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4201 		ret = netdev_start_xmit(skb, dev, txq, false);
4202 	HARD_TX_UNLOCK(dev, txq);
4203 	dev_xmit_recursion_dec();
4204 
4205 	local_bh_enable();
4206 	return ret;
4207 drop:
4208 	atomic_long_inc(&dev->tx_dropped);
4209 	kfree_skb_list(skb);
4210 	return NET_XMIT_DROP;
4211 }
4212 EXPORT_SYMBOL(__dev_direct_xmit);
4213 
4214 /*************************************************************************
4215  *			Receiver routines
4216  *************************************************************************/
4217 
4218 int netdev_max_backlog __read_mostly = 1000;
4219 EXPORT_SYMBOL(netdev_max_backlog);
4220 
4221 int netdev_tstamp_prequeue __read_mostly = 1;
4222 int netdev_budget __read_mostly = 300;
4223 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4224 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4225 int weight_p __read_mostly = 64;           /* old backlog weight */
4226 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4227 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4228 int dev_rx_weight __read_mostly = 64;
4229 int dev_tx_weight __read_mostly = 64;
4230 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4231 int gro_normal_batch __read_mostly = 8;
4232 
4233 /* Called with irq disabled */
4234 static inline void ____napi_schedule(struct softnet_data *sd,
4235 				     struct napi_struct *napi)
4236 {
4237 	list_add_tail(&napi->poll_list, &sd->poll_list);
4238 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4239 }
4240 
4241 #ifdef CONFIG_RPS
4242 
4243 /* One global table that all flow-based protocols share. */
4244 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4245 EXPORT_SYMBOL(rps_sock_flow_table);
4246 u32 rps_cpu_mask __read_mostly;
4247 EXPORT_SYMBOL(rps_cpu_mask);
4248 
4249 struct static_key_false rps_needed __read_mostly;
4250 EXPORT_SYMBOL(rps_needed);
4251 struct static_key_false rfs_needed __read_mostly;
4252 EXPORT_SYMBOL(rfs_needed);
4253 
4254 static struct rps_dev_flow *
4255 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4256 	    struct rps_dev_flow *rflow, u16 next_cpu)
4257 {
4258 	if (next_cpu < nr_cpu_ids) {
4259 #ifdef CONFIG_RFS_ACCEL
4260 		struct netdev_rx_queue *rxqueue;
4261 		struct rps_dev_flow_table *flow_table;
4262 		struct rps_dev_flow *old_rflow;
4263 		u32 flow_id;
4264 		u16 rxq_index;
4265 		int rc;
4266 
4267 		/* Should we steer this flow to a different hardware queue? */
4268 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4269 		    !(dev->features & NETIF_F_NTUPLE))
4270 			goto out;
4271 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4272 		if (rxq_index == skb_get_rx_queue(skb))
4273 			goto out;
4274 
4275 		rxqueue = dev->_rx + rxq_index;
4276 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4277 		if (!flow_table)
4278 			goto out;
4279 		flow_id = skb_get_hash(skb) & flow_table->mask;
4280 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4281 							rxq_index, flow_id);
4282 		if (rc < 0)
4283 			goto out;
4284 		old_rflow = rflow;
4285 		rflow = &flow_table->flows[flow_id];
4286 		rflow->filter = rc;
4287 		if (old_rflow->filter == rflow->filter)
4288 			old_rflow->filter = RPS_NO_FILTER;
4289 	out:
4290 #endif
4291 		rflow->last_qtail =
4292 			per_cpu(softnet_data, next_cpu).input_queue_head;
4293 	}
4294 
4295 	rflow->cpu = next_cpu;
4296 	return rflow;
4297 }
4298 
4299 /*
4300  * get_rps_cpu is called from netif_receive_skb and returns the target
4301  * CPU from the RPS map of the receiving queue for a given skb.
4302  * rcu_read_lock must be held on entry.
4303  */
4304 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4305 		       struct rps_dev_flow **rflowp)
4306 {
4307 	const struct rps_sock_flow_table *sock_flow_table;
4308 	struct netdev_rx_queue *rxqueue = dev->_rx;
4309 	struct rps_dev_flow_table *flow_table;
4310 	struct rps_map *map;
4311 	int cpu = -1;
4312 	u32 tcpu;
4313 	u32 hash;
4314 
4315 	if (skb_rx_queue_recorded(skb)) {
4316 		u16 index = skb_get_rx_queue(skb);
4317 
4318 		if (unlikely(index >= dev->real_num_rx_queues)) {
4319 			WARN_ONCE(dev->real_num_rx_queues > 1,
4320 				  "%s received packet on queue %u, but number "
4321 				  "of RX queues is %u\n",
4322 				  dev->name, index, dev->real_num_rx_queues);
4323 			goto done;
4324 		}
4325 		rxqueue += index;
4326 	}
4327 
4328 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4329 
4330 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4331 	map = rcu_dereference(rxqueue->rps_map);
4332 	if (!flow_table && !map)
4333 		goto done;
4334 
4335 	skb_reset_network_header(skb);
4336 	hash = skb_get_hash(skb);
4337 	if (!hash)
4338 		goto done;
4339 
4340 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4341 	if (flow_table && sock_flow_table) {
4342 		struct rps_dev_flow *rflow;
4343 		u32 next_cpu;
4344 		u32 ident;
4345 
4346 		/* First check into global flow table if there is a match */
4347 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4348 		if ((ident ^ hash) & ~rps_cpu_mask)
4349 			goto try_rps;
4350 
4351 		next_cpu = ident & rps_cpu_mask;
4352 
4353 		/* OK, now we know there is a match,
4354 		 * we can look at the local (per receive queue) flow table
4355 		 */
4356 		rflow = &flow_table->flows[hash & flow_table->mask];
4357 		tcpu = rflow->cpu;
4358 
4359 		/*
4360 		 * If the desired CPU (where last recvmsg was done) is
4361 		 * different from current CPU (one in the rx-queue flow
4362 		 * table entry), switch if one of the following holds:
4363 		 *   - Current CPU is unset (>= nr_cpu_ids).
4364 		 *   - Current CPU is offline.
4365 		 *   - The current CPU's queue tail has advanced beyond the
4366 		 *     last packet that was enqueued using this table entry.
4367 		 *     This guarantees that all previous packets for the flow
4368 		 *     have been dequeued, thus preserving in order delivery.
4369 		 */
4370 		if (unlikely(tcpu != next_cpu) &&
4371 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4372 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4373 		      rflow->last_qtail)) >= 0)) {
4374 			tcpu = next_cpu;
4375 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4376 		}
4377 
4378 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4379 			*rflowp = rflow;
4380 			cpu = tcpu;
4381 			goto done;
4382 		}
4383 	}
4384 
4385 try_rps:
4386 
4387 	if (map) {
4388 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4389 		if (cpu_online(tcpu)) {
4390 			cpu = tcpu;
4391 			goto done;
4392 		}
4393 	}
4394 
4395 done:
4396 	return cpu;
4397 }
4398 
4399 #ifdef CONFIG_RFS_ACCEL
4400 
4401 /**
4402  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4403  * @dev: Device on which the filter was set
4404  * @rxq_index: RX queue index
4405  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4406  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4407  *
4408  * Drivers that implement ndo_rx_flow_steer() should periodically call
4409  * this function for each installed filter and remove the filters for
4410  * which it returns %true.
4411  */
4412 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4413 			 u32 flow_id, u16 filter_id)
4414 {
4415 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4416 	struct rps_dev_flow_table *flow_table;
4417 	struct rps_dev_flow *rflow;
4418 	bool expire = true;
4419 	unsigned int cpu;
4420 
4421 	rcu_read_lock();
4422 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4423 	if (flow_table && flow_id <= flow_table->mask) {
4424 		rflow = &flow_table->flows[flow_id];
4425 		cpu = READ_ONCE(rflow->cpu);
4426 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4427 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4428 			   rflow->last_qtail) <
4429 		     (int)(10 * flow_table->mask)))
4430 			expire = false;
4431 	}
4432 	rcu_read_unlock();
4433 	return expire;
4434 }
4435 EXPORT_SYMBOL(rps_may_expire_flow);
4436 
4437 #endif /* CONFIG_RFS_ACCEL */
4438 
4439 /* Called from hardirq (IPI) context */
4440 static void rps_trigger_softirq(void *data)
4441 {
4442 	struct softnet_data *sd = data;
4443 
4444 	____napi_schedule(sd, &sd->backlog);
4445 	sd->received_rps++;
4446 }
4447 
4448 #endif /* CONFIG_RPS */
4449 
4450 /*
4451  * Check if this softnet_data structure is another cpu one
4452  * If yes, queue it to our IPI list and return 1
4453  * If no, return 0
4454  */
4455 static int rps_ipi_queued(struct softnet_data *sd)
4456 {
4457 #ifdef CONFIG_RPS
4458 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4459 
4460 	if (sd != mysd) {
4461 		sd->rps_ipi_next = mysd->rps_ipi_list;
4462 		mysd->rps_ipi_list = sd;
4463 
4464 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4465 		return 1;
4466 	}
4467 #endif /* CONFIG_RPS */
4468 	return 0;
4469 }
4470 
4471 #ifdef CONFIG_NET_FLOW_LIMIT
4472 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4473 #endif
4474 
4475 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4476 {
4477 #ifdef CONFIG_NET_FLOW_LIMIT
4478 	struct sd_flow_limit *fl;
4479 	struct softnet_data *sd;
4480 	unsigned int old_flow, new_flow;
4481 
4482 	if (qlen < (netdev_max_backlog >> 1))
4483 		return false;
4484 
4485 	sd = this_cpu_ptr(&softnet_data);
4486 
4487 	rcu_read_lock();
4488 	fl = rcu_dereference(sd->flow_limit);
4489 	if (fl) {
4490 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4491 		old_flow = fl->history[fl->history_head];
4492 		fl->history[fl->history_head] = new_flow;
4493 
4494 		fl->history_head++;
4495 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4496 
4497 		if (likely(fl->buckets[old_flow]))
4498 			fl->buckets[old_flow]--;
4499 
4500 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4501 			fl->count++;
4502 			rcu_read_unlock();
4503 			return true;
4504 		}
4505 	}
4506 	rcu_read_unlock();
4507 #endif
4508 	return false;
4509 }
4510 
4511 /*
4512  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4513  * queue (may be a remote CPU queue).
4514  */
4515 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4516 			      unsigned int *qtail)
4517 {
4518 	struct softnet_data *sd;
4519 	unsigned long flags;
4520 	unsigned int qlen;
4521 
4522 	sd = &per_cpu(softnet_data, cpu);
4523 
4524 	local_irq_save(flags);
4525 
4526 	rps_lock(sd);
4527 	if (!netif_running(skb->dev))
4528 		goto drop;
4529 	qlen = skb_queue_len(&sd->input_pkt_queue);
4530 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4531 		if (qlen) {
4532 enqueue:
4533 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4534 			input_queue_tail_incr_save(sd, qtail);
4535 			rps_unlock(sd);
4536 			local_irq_restore(flags);
4537 			return NET_RX_SUCCESS;
4538 		}
4539 
4540 		/* Schedule NAPI for backlog device
4541 		 * We can use non atomic operation since we own the queue lock
4542 		 */
4543 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4544 			if (!rps_ipi_queued(sd))
4545 				____napi_schedule(sd, &sd->backlog);
4546 		}
4547 		goto enqueue;
4548 	}
4549 
4550 drop:
4551 	sd->dropped++;
4552 	rps_unlock(sd);
4553 
4554 	local_irq_restore(flags);
4555 
4556 	atomic_long_inc(&skb->dev->rx_dropped);
4557 	kfree_skb(skb);
4558 	return NET_RX_DROP;
4559 }
4560 
4561 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4562 {
4563 	struct net_device *dev = skb->dev;
4564 	struct netdev_rx_queue *rxqueue;
4565 
4566 	rxqueue = dev->_rx;
4567 
4568 	if (skb_rx_queue_recorded(skb)) {
4569 		u16 index = skb_get_rx_queue(skb);
4570 
4571 		if (unlikely(index >= dev->real_num_rx_queues)) {
4572 			WARN_ONCE(dev->real_num_rx_queues > 1,
4573 				  "%s received packet on queue %u, but number "
4574 				  "of RX queues is %u\n",
4575 				  dev->name, index, dev->real_num_rx_queues);
4576 
4577 			return rxqueue; /* Return first rxqueue */
4578 		}
4579 		rxqueue += index;
4580 	}
4581 	return rxqueue;
4582 }
4583 
4584 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4585 				     struct xdp_buff *xdp,
4586 				     struct bpf_prog *xdp_prog)
4587 {
4588 	struct netdev_rx_queue *rxqueue;
4589 	void *orig_data, *orig_data_end;
4590 	u32 metalen, act = XDP_DROP;
4591 	__be16 orig_eth_type;
4592 	struct ethhdr *eth;
4593 	bool orig_bcast;
4594 	int hlen, off;
4595 	u32 mac_len;
4596 
4597 	/* Reinjected packets coming from act_mirred or similar should
4598 	 * not get XDP generic processing.
4599 	 */
4600 	if (skb_is_redirected(skb))
4601 		return XDP_PASS;
4602 
4603 	/* XDP packets must be linear and must have sufficient headroom
4604 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4605 	 * native XDP provides, thus we need to do it here as well.
4606 	 */
4607 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4608 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4609 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4610 		int troom = skb->tail + skb->data_len - skb->end;
4611 
4612 		/* In case we have to go down the path and also linearize,
4613 		 * then lets do the pskb_expand_head() work just once here.
4614 		 */
4615 		if (pskb_expand_head(skb,
4616 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4617 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4618 			goto do_drop;
4619 		if (skb_linearize(skb))
4620 			goto do_drop;
4621 	}
4622 
4623 	/* The XDP program wants to see the packet starting at the MAC
4624 	 * header.
4625 	 */
4626 	mac_len = skb->data - skb_mac_header(skb);
4627 	hlen = skb_headlen(skb) + mac_len;
4628 	xdp->data = skb->data - mac_len;
4629 	xdp->data_meta = xdp->data;
4630 	xdp->data_end = xdp->data + hlen;
4631 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4632 
4633 	/* SKB "head" area always have tailroom for skb_shared_info */
4634 	xdp->frame_sz  = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4635 	xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4636 
4637 	orig_data_end = xdp->data_end;
4638 	orig_data = xdp->data;
4639 	eth = (struct ethhdr *)xdp->data;
4640 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4641 	orig_eth_type = eth->h_proto;
4642 
4643 	rxqueue = netif_get_rxqueue(skb);
4644 	xdp->rxq = &rxqueue->xdp_rxq;
4645 
4646 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4647 
4648 	/* check if bpf_xdp_adjust_head was used */
4649 	off = xdp->data - orig_data;
4650 	if (off) {
4651 		if (off > 0)
4652 			__skb_pull(skb, off);
4653 		else if (off < 0)
4654 			__skb_push(skb, -off);
4655 
4656 		skb->mac_header += off;
4657 		skb_reset_network_header(skb);
4658 	}
4659 
4660 	/* check if bpf_xdp_adjust_tail was used */
4661 	off = xdp->data_end - orig_data_end;
4662 	if (off != 0) {
4663 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4664 		skb->len += off; /* positive on grow, negative on shrink */
4665 	}
4666 
4667 	/* check if XDP changed eth hdr such SKB needs update */
4668 	eth = (struct ethhdr *)xdp->data;
4669 	if ((orig_eth_type != eth->h_proto) ||
4670 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4671 		__skb_push(skb, ETH_HLEN);
4672 		skb->protocol = eth_type_trans(skb, skb->dev);
4673 	}
4674 
4675 	switch (act) {
4676 	case XDP_REDIRECT:
4677 	case XDP_TX:
4678 		__skb_push(skb, mac_len);
4679 		break;
4680 	case XDP_PASS:
4681 		metalen = xdp->data - xdp->data_meta;
4682 		if (metalen)
4683 			skb_metadata_set(skb, metalen);
4684 		break;
4685 	default:
4686 		bpf_warn_invalid_xdp_action(act);
4687 		fallthrough;
4688 	case XDP_ABORTED:
4689 		trace_xdp_exception(skb->dev, xdp_prog, act);
4690 		fallthrough;
4691 	case XDP_DROP:
4692 	do_drop:
4693 		kfree_skb(skb);
4694 		break;
4695 	}
4696 
4697 	return act;
4698 }
4699 
4700 /* When doing generic XDP we have to bypass the qdisc layer and the
4701  * network taps in order to match in-driver-XDP behavior.
4702  */
4703 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4704 {
4705 	struct net_device *dev = skb->dev;
4706 	struct netdev_queue *txq;
4707 	bool free_skb = true;
4708 	int cpu, rc;
4709 
4710 	txq = netdev_core_pick_tx(dev, skb, NULL);
4711 	cpu = smp_processor_id();
4712 	HARD_TX_LOCK(dev, txq, cpu);
4713 	if (!netif_xmit_stopped(txq)) {
4714 		rc = netdev_start_xmit(skb, dev, txq, 0);
4715 		if (dev_xmit_complete(rc))
4716 			free_skb = false;
4717 	}
4718 	HARD_TX_UNLOCK(dev, txq);
4719 	if (free_skb) {
4720 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4721 		kfree_skb(skb);
4722 	}
4723 }
4724 
4725 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4726 
4727 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4728 {
4729 	if (xdp_prog) {
4730 		struct xdp_buff xdp;
4731 		u32 act;
4732 		int err;
4733 
4734 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4735 		if (act != XDP_PASS) {
4736 			switch (act) {
4737 			case XDP_REDIRECT:
4738 				err = xdp_do_generic_redirect(skb->dev, skb,
4739 							      &xdp, xdp_prog);
4740 				if (err)
4741 					goto out_redir;
4742 				break;
4743 			case XDP_TX:
4744 				generic_xdp_tx(skb, xdp_prog);
4745 				break;
4746 			}
4747 			return XDP_DROP;
4748 		}
4749 	}
4750 	return XDP_PASS;
4751 out_redir:
4752 	kfree_skb(skb);
4753 	return XDP_DROP;
4754 }
4755 EXPORT_SYMBOL_GPL(do_xdp_generic);
4756 
4757 static int netif_rx_internal(struct sk_buff *skb)
4758 {
4759 	int ret;
4760 
4761 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4762 
4763 	trace_netif_rx(skb);
4764 
4765 #ifdef CONFIG_RPS
4766 	if (static_branch_unlikely(&rps_needed)) {
4767 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4768 		int cpu;
4769 
4770 		preempt_disable();
4771 		rcu_read_lock();
4772 
4773 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4774 		if (cpu < 0)
4775 			cpu = smp_processor_id();
4776 
4777 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4778 
4779 		rcu_read_unlock();
4780 		preempt_enable();
4781 	} else
4782 #endif
4783 	{
4784 		unsigned int qtail;
4785 
4786 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4787 		put_cpu();
4788 	}
4789 	return ret;
4790 }
4791 
4792 /**
4793  *	netif_rx	-	post buffer to the network code
4794  *	@skb: buffer to post
4795  *
4796  *	This function receives a packet from a device driver and queues it for
4797  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4798  *	may be dropped during processing for congestion control or by the
4799  *	protocol layers.
4800  *
4801  *	return values:
4802  *	NET_RX_SUCCESS	(no congestion)
4803  *	NET_RX_DROP     (packet was dropped)
4804  *
4805  */
4806 
4807 int netif_rx(struct sk_buff *skb)
4808 {
4809 	int ret;
4810 
4811 	trace_netif_rx_entry(skb);
4812 
4813 	ret = netif_rx_internal(skb);
4814 	trace_netif_rx_exit(ret);
4815 
4816 	return ret;
4817 }
4818 EXPORT_SYMBOL(netif_rx);
4819 
4820 int netif_rx_ni(struct sk_buff *skb)
4821 {
4822 	int err;
4823 
4824 	trace_netif_rx_ni_entry(skb);
4825 
4826 	preempt_disable();
4827 	err = netif_rx_internal(skb);
4828 	if (local_softirq_pending())
4829 		do_softirq();
4830 	preempt_enable();
4831 	trace_netif_rx_ni_exit(err);
4832 
4833 	return err;
4834 }
4835 EXPORT_SYMBOL(netif_rx_ni);
4836 
4837 int netif_rx_any_context(struct sk_buff *skb)
4838 {
4839 	/*
4840 	 * If invoked from contexts which do not invoke bottom half
4841 	 * processing either at return from interrupt or when softrqs are
4842 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4843 	 * directly.
4844 	 */
4845 	if (in_interrupt())
4846 		return netif_rx(skb);
4847 	else
4848 		return netif_rx_ni(skb);
4849 }
4850 EXPORT_SYMBOL(netif_rx_any_context);
4851 
4852 static __latent_entropy void net_tx_action(struct softirq_action *h)
4853 {
4854 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4855 
4856 	if (sd->completion_queue) {
4857 		struct sk_buff *clist;
4858 
4859 		local_irq_disable();
4860 		clist = sd->completion_queue;
4861 		sd->completion_queue = NULL;
4862 		local_irq_enable();
4863 
4864 		while (clist) {
4865 			struct sk_buff *skb = clist;
4866 
4867 			clist = clist->next;
4868 
4869 			WARN_ON(refcount_read(&skb->users));
4870 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4871 				trace_consume_skb(skb);
4872 			else
4873 				trace_kfree_skb(skb, net_tx_action);
4874 
4875 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4876 				__kfree_skb(skb);
4877 			else
4878 				__kfree_skb_defer(skb);
4879 		}
4880 
4881 		__kfree_skb_flush();
4882 	}
4883 
4884 	if (sd->output_queue) {
4885 		struct Qdisc *head;
4886 
4887 		local_irq_disable();
4888 		head = sd->output_queue;
4889 		sd->output_queue = NULL;
4890 		sd->output_queue_tailp = &sd->output_queue;
4891 		local_irq_enable();
4892 
4893 		while (head) {
4894 			struct Qdisc *q = head;
4895 			spinlock_t *root_lock = NULL;
4896 
4897 			head = head->next_sched;
4898 
4899 			if (!(q->flags & TCQ_F_NOLOCK)) {
4900 				root_lock = qdisc_lock(q);
4901 				spin_lock(root_lock);
4902 			}
4903 			/* We need to make sure head->next_sched is read
4904 			 * before clearing __QDISC_STATE_SCHED
4905 			 */
4906 			smp_mb__before_atomic();
4907 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4908 			qdisc_run(q);
4909 			if (root_lock)
4910 				spin_unlock(root_lock);
4911 		}
4912 	}
4913 
4914 	xfrm_dev_backlog(sd);
4915 }
4916 
4917 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4918 /* This hook is defined here for ATM LANE */
4919 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4920 			     unsigned char *addr) __read_mostly;
4921 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4922 #endif
4923 
4924 static inline struct sk_buff *
4925 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4926 		   struct net_device *orig_dev, bool *another)
4927 {
4928 #ifdef CONFIG_NET_CLS_ACT
4929 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4930 	struct tcf_result cl_res;
4931 
4932 	/* If there's at least one ingress present somewhere (so
4933 	 * we get here via enabled static key), remaining devices
4934 	 * that are not configured with an ingress qdisc will bail
4935 	 * out here.
4936 	 */
4937 	if (!miniq)
4938 		return skb;
4939 
4940 	if (*pt_prev) {
4941 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4942 		*pt_prev = NULL;
4943 	}
4944 
4945 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4946 	qdisc_skb_cb(skb)->mru = 0;
4947 	skb->tc_at_ingress = 1;
4948 	mini_qdisc_bstats_cpu_update(miniq, skb);
4949 
4950 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4951 				     &cl_res, false)) {
4952 	case TC_ACT_OK:
4953 	case TC_ACT_RECLASSIFY:
4954 		skb->tc_index = TC_H_MIN(cl_res.classid);
4955 		break;
4956 	case TC_ACT_SHOT:
4957 		mini_qdisc_qstats_cpu_drop(miniq);
4958 		kfree_skb(skb);
4959 		return NULL;
4960 	case TC_ACT_STOLEN:
4961 	case TC_ACT_QUEUED:
4962 	case TC_ACT_TRAP:
4963 		consume_skb(skb);
4964 		return NULL;
4965 	case TC_ACT_REDIRECT:
4966 		/* skb_mac_header check was done by cls/act_bpf, so
4967 		 * we can safely push the L2 header back before
4968 		 * redirecting to another netdev
4969 		 */
4970 		__skb_push(skb, skb->mac_len);
4971 		if (skb_do_redirect(skb) == -EAGAIN) {
4972 			__skb_pull(skb, skb->mac_len);
4973 			*another = true;
4974 			break;
4975 		}
4976 		return NULL;
4977 	case TC_ACT_CONSUMED:
4978 		return NULL;
4979 	default:
4980 		break;
4981 	}
4982 #endif /* CONFIG_NET_CLS_ACT */
4983 	return skb;
4984 }
4985 
4986 /**
4987  *	netdev_is_rx_handler_busy - check if receive handler is registered
4988  *	@dev: device to check
4989  *
4990  *	Check if a receive handler is already registered for a given device.
4991  *	Return true if there one.
4992  *
4993  *	The caller must hold the rtnl_mutex.
4994  */
4995 bool netdev_is_rx_handler_busy(struct net_device *dev)
4996 {
4997 	ASSERT_RTNL();
4998 	return dev && rtnl_dereference(dev->rx_handler);
4999 }
5000 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5001 
5002 /**
5003  *	netdev_rx_handler_register - register receive handler
5004  *	@dev: device to register a handler for
5005  *	@rx_handler: receive handler to register
5006  *	@rx_handler_data: data pointer that is used by rx handler
5007  *
5008  *	Register a receive handler for a device. This handler will then be
5009  *	called from __netif_receive_skb. A negative errno code is returned
5010  *	on a failure.
5011  *
5012  *	The caller must hold the rtnl_mutex.
5013  *
5014  *	For a general description of rx_handler, see enum rx_handler_result.
5015  */
5016 int netdev_rx_handler_register(struct net_device *dev,
5017 			       rx_handler_func_t *rx_handler,
5018 			       void *rx_handler_data)
5019 {
5020 	if (netdev_is_rx_handler_busy(dev))
5021 		return -EBUSY;
5022 
5023 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5024 		return -EINVAL;
5025 
5026 	/* Note: rx_handler_data must be set before rx_handler */
5027 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5028 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5029 
5030 	return 0;
5031 }
5032 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5033 
5034 /**
5035  *	netdev_rx_handler_unregister - unregister receive handler
5036  *	@dev: device to unregister a handler from
5037  *
5038  *	Unregister a receive handler from a device.
5039  *
5040  *	The caller must hold the rtnl_mutex.
5041  */
5042 void netdev_rx_handler_unregister(struct net_device *dev)
5043 {
5044 
5045 	ASSERT_RTNL();
5046 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5047 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5048 	 * section has a guarantee to see a non NULL rx_handler_data
5049 	 * as well.
5050 	 */
5051 	synchronize_net();
5052 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5053 }
5054 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5055 
5056 /*
5057  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5058  * the special handling of PFMEMALLOC skbs.
5059  */
5060 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5061 {
5062 	switch (skb->protocol) {
5063 	case htons(ETH_P_ARP):
5064 	case htons(ETH_P_IP):
5065 	case htons(ETH_P_IPV6):
5066 	case htons(ETH_P_8021Q):
5067 	case htons(ETH_P_8021AD):
5068 		return true;
5069 	default:
5070 		return false;
5071 	}
5072 }
5073 
5074 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5075 			     int *ret, struct net_device *orig_dev)
5076 {
5077 	if (nf_hook_ingress_active(skb)) {
5078 		int ingress_retval;
5079 
5080 		if (*pt_prev) {
5081 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5082 			*pt_prev = NULL;
5083 		}
5084 
5085 		rcu_read_lock();
5086 		ingress_retval = nf_hook_ingress(skb);
5087 		rcu_read_unlock();
5088 		return ingress_retval;
5089 	}
5090 	return 0;
5091 }
5092 
5093 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5094 				    struct packet_type **ppt_prev)
5095 {
5096 	struct packet_type *ptype, *pt_prev;
5097 	rx_handler_func_t *rx_handler;
5098 	struct sk_buff *skb = *pskb;
5099 	struct net_device *orig_dev;
5100 	bool deliver_exact = false;
5101 	int ret = NET_RX_DROP;
5102 	__be16 type;
5103 
5104 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5105 
5106 	trace_netif_receive_skb(skb);
5107 
5108 	orig_dev = skb->dev;
5109 
5110 	skb_reset_network_header(skb);
5111 	if (!skb_transport_header_was_set(skb))
5112 		skb_reset_transport_header(skb);
5113 	skb_reset_mac_len(skb);
5114 
5115 	pt_prev = NULL;
5116 
5117 another_round:
5118 	skb->skb_iif = skb->dev->ifindex;
5119 
5120 	__this_cpu_inc(softnet_data.processed);
5121 
5122 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5123 		int ret2;
5124 
5125 		preempt_disable();
5126 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5127 		preempt_enable();
5128 
5129 		if (ret2 != XDP_PASS) {
5130 			ret = NET_RX_DROP;
5131 			goto out;
5132 		}
5133 		skb_reset_mac_len(skb);
5134 	}
5135 
5136 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5137 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5138 		skb = skb_vlan_untag(skb);
5139 		if (unlikely(!skb))
5140 			goto out;
5141 	}
5142 
5143 	if (skb_skip_tc_classify(skb))
5144 		goto skip_classify;
5145 
5146 	if (pfmemalloc)
5147 		goto skip_taps;
5148 
5149 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5150 		if (pt_prev)
5151 			ret = deliver_skb(skb, pt_prev, orig_dev);
5152 		pt_prev = ptype;
5153 	}
5154 
5155 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5156 		if (pt_prev)
5157 			ret = deliver_skb(skb, pt_prev, orig_dev);
5158 		pt_prev = ptype;
5159 	}
5160 
5161 skip_taps:
5162 #ifdef CONFIG_NET_INGRESS
5163 	if (static_branch_unlikely(&ingress_needed_key)) {
5164 		bool another = false;
5165 
5166 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5167 					 &another);
5168 		if (another)
5169 			goto another_round;
5170 		if (!skb)
5171 			goto out;
5172 
5173 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5174 			goto out;
5175 	}
5176 #endif
5177 	skb_reset_redirect(skb);
5178 skip_classify:
5179 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5180 		goto drop;
5181 
5182 	if (skb_vlan_tag_present(skb)) {
5183 		if (pt_prev) {
5184 			ret = deliver_skb(skb, pt_prev, orig_dev);
5185 			pt_prev = NULL;
5186 		}
5187 		if (vlan_do_receive(&skb))
5188 			goto another_round;
5189 		else if (unlikely(!skb))
5190 			goto out;
5191 	}
5192 
5193 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5194 	if (rx_handler) {
5195 		if (pt_prev) {
5196 			ret = deliver_skb(skb, pt_prev, orig_dev);
5197 			pt_prev = NULL;
5198 		}
5199 		switch (rx_handler(&skb)) {
5200 		case RX_HANDLER_CONSUMED:
5201 			ret = NET_RX_SUCCESS;
5202 			goto out;
5203 		case RX_HANDLER_ANOTHER:
5204 			goto another_round;
5205 		case RX_HANDLER_EXACT:
5206 			deliver_exact = true;
5207 		case RX_HANDLER_PASS:
5208 			break;
5209 		default:
5210 			BUG();
5211 		}
5212 	}
5213 
5214 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5215 check_vlan_id:
5216 		if (skb_vlan_tag_get_id(skb)) {
5217 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5218 			 * find vlan device.
5219 			 */
5220 			skb->pkt_type = PACKET_OTHERHOST;
5221 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5222 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5223 			/* Outer header is 802.1P with vlan 0, inner header is
5224 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5225 			 * not find vlan dev for vlan id 0.
5226 			 */
5227 			__vlan_hwaccel_clear_tag(skb);
5228 			skb = skb_vlan_untag(skb);
5229 			if (unlikely(!skb))
5230 				goto out;
5231 			if (vlan_do_receive(&skb))
5232 				/* After stripping off 802.1P header with vlan 0
5233 				 * vlan dev is found for inner header.
5234 				 */
5235 				goto another_round;
5236 			else if (unlikely(!skb))
5237 				goto out;
5238 			else
5239 				/* We have stripped outer 802.1P vlan 0 header.
5240 				 * But could not find vlan dev.
5241 				 * check again for vlan id to set OTHERHOST.
5242 				 */
5243 				goto check_vlan_id;
5244 		}
5245 		/* Note: we might in the future use prio bits
5246 		 * and set skb->priority like in vlan_do_receive()
5247 		 * For the time being, just ignore Priority Code Point
5248 		 */
5249 		__vlan_hwaccel_clear_tag(skb);
5250 	}
5251 
5252 	type = skb->protocol;
5253 
5254 	/* deliver only exact match when indicated */
5255 	if (likely(!deliver_exact)) {
5256 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5257 				       &ptype_base[ntohs(type) &
5258 						   PTYPE_HASH_MASK]);
5259 	}
5260 
5261 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5262 			       &orig_dev->ptype_specific);
5263 
5264 	if (unlikely(skb->dev != orig_dev)) {
5265 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5266 				       &skb->dev->ptype_specific);
5267 	}
5268 
5269 	if (pt_prev) {
5270 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5271 			goto drop;
5272 		*ppt_prev = pt_prev;
5273 	} else {
5274 drop:
5275 		if (!deliver_exact)
5276 			atomic_long_inc(&skb->dev->rx_dropped);
5277 		else
5278 			atomic_long_inc(&skb->dev->rx_nohandler);
5279 		kfree_skb(skb);
5280 		/* Jamal, now you will not able to escape explaining
5281 		 * me how you were going to use this. :-)
5282 		 */
5283 		ret = NET_RX_DROP;
5284 	}
5285 
5286 out:
5287 	/* The invariant here is that if *ppt_prev is not NULL
5288 	 * then skb should also be non-NULL.
5289 	 *
5290 	 * Apparently *ppt_prev assignment above holds this invariant due to
5291 	 * skb dereferencing near it.
5292 	 */
5293 	*pskb = skb;
5294 	return ret;
5295 }
5296 
5297 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5298 {
5299 	struct net_device *orig_dev = skb->dev;
5300 	struct packet_type *pt_prev = NULL;
5301 	int ret;
5302 
5303 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5304 	if (pt_prev)
5305 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5306 					 skb->dev, pt_prev, orig_dev);
5307 	return ret;
5308 }
5309 
5310 /**
5311  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5312  *	@skb: buffer to process
5313  *
5314  *	More direct receive version of netif_receive_skb().  It should
5315  *	only be used by callers that have a need to skip RPS and Generic XDP.
5316  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5317  *
5318  *	This function may only be called from softirq context and interrupts
5319  *	should be enabled.
5320  *
5321  *	Return values (usually ignored):
5322  *	NET_RX_SUCCESS: no congestion
5323  *	NET_RX_DROP: packet was dropped
5324  */
5325 int netif_receive_skb_core(struct sk_buff *skb)
5326 {
5327 	int ret;
5328 
5329 	rcu_read_lock();
5330 	ret = __netif_receive_skb_one_core(skb, false);
5331 	rcu_read_unlock();
5332 
5333 	return ret;
5334 }
5335 EXPORT_SYMBOL(netif_receive_skb_core);
5336 
5337 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5338 						  struct packet_type *pt_prev,
5339 						  struct net_device *orig_dev)
5340 {
5341 	struct sk_buff *skb, *next;
5342 
5343 	if (!pt_prev)
5344 		return;
5345 	if (list_empty(head))
5346 		return;
5347 	if (pt_prev->list_func != NULL)
5348 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5349 				   ip_list_rcv, head, pt_prev, orig_dev);
5350 	else
5351 		list_for_each_entry_safe(skb, next, head, list) {
5352 			skb_list_del_init(skb);
5353 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5354 		}
5355 }
5356 
5357 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5358 {
5359 	/* Fast-path assumptions:
5360 	 * - There is no RX handler.
5361 	 * - Only one packet_type matches.
5362 	 * If either of these fails, we will end up doing some per-packet
5363 	 * processing in-line, then handling the 'last ptype' for the whole
5364 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5365 	 * because the 'last ptype' must be constant across the sublist, and all
5366 	 * other ptypes are handled per-packet.
5367 	 */
5368 	/* Current (common) ptype of sublist */
5369 	struct packet_type *pt_curr = NULL;
5370 	/* Current (common) orig_dev of sublist */
5371 	struct net_device *od_curr = NULL;
5372 	struct list_head sublist;
5373 	struct sk_buff *skb, *next;
5374 
5375 	INIT_LIST_HEAD(&sublist);
5376 	list_for_each_entry_safe(skb, next, head, list) {
5377 		struct net_device *orig_dev = skb->dev;
5378 		struct packet_type *pt_prev = NULL;
5379 
5380 		skb_list_del_init(skb);
5381 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5382 		if (!pt_prev)
5383 			continue;
5384 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5385 			/* dispatch old sublist */
5386 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5387 			/* start new sublist */
5388 			INIT_LIST_HEAD(&sublist);
5389 			pt_curr = pt_prev;
5390 			od_curr = orig_dev;
5391 		}
5392 		list_add_tail(&skb->list, &sublist);
5393 	}
5394 
5395 	/* dispatch final sublist */
5396 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5397 }
5398 
5399 static int __netif_receive_skb(struct sk_buff *skb)
5400 {
5401 	int ret;
5402 
5403 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5404 		unsigned int noreclaim_flag;
5405 
5406 		/*
5407 		 * PFMEMALLOC skbs are special, they should
5408 		 * - be delivered to SOCK_MEMALLOC sockets only
5409 		 * - stay away from userspace
5410 		 * - have bounded memory usage
5411 		 *
5412 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5413 		 * context down to all allocation sites.
5414 		 */
5415 		noreclaim_flag = memalloc_noreclaim_save();
5416 		ret = __netif_receive_skb_one_core(skb, true);
5417 		memalloc_noreclaim_restore(noreclaim_flag);
5418 	} else
5419 		ret = __netif_receive_skb_one_core(skb, false);
5420 
5421 	return ret;
5422 }
5423 
5424 static void __netif_receive_skb_list(struct list_head *head)
5425 {
5426 	unsigned long noreclaim_flag = 0;
5427 	struct sk_buff *skb, *next;
5428 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5429 
5430 	list_for_each_entry_safe(skb, next, head, list) {
5431 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5432 			struct list_head sublist;
5433 
5434 			/* Handle the previous sublist */
5435 			list_cut_before(&sublist, head, &skb->list);
5436 			if (!list_empty(&sublist))
5437 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5438 			pfmemalloc = !pfmemalloc;
5439 			/* See comments in __netif_receive_skb */
5440 			if (pfmemalloc)
5441 				noreclaim_flag = memalloc_noreclaim_save();
5442 			else
5443 				memalloc_noreclaim_restore(noreclaim_flag);
5444 		}
5445 	}
5446 	/* Handle the remaining sublist */
5447 	if (!list_empty(head))
5448 		__netif_receive_skb_list_core(head, pfmemalloc);
5449 	/* Restore pflags */
5450 	if (pfmemalloc)
5451 		memalloc_noreclaim_restore(noreclaim_flag);
5452 }
5453 
5454 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5455 {
5456 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5457 	struct bpf_prog *new = xdp->prog;
5458 	int ret = 0;
5459 
5460 	if (new) {
5461 		u32 i;
5462 
5463 		mutex_lock(&new->aux->used_maps_mutex);
5464 
5465 		/* generic XDP does not work with DEVMAPs that can
5466 		 * have a bpf_prog installed on an entry
5467 		 */
5468 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5469 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5470 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5471 				mutex_unlock(&new->aux->used_maps_mutex);
5472 				return -EINVAL;
5473 			}
5474 		}
5475 
5476 		mutex_unlock(&new->aux->used_maps_mutex);
5477 	}
5478 
5479 	switch (xdp->command) {
5480 	case XDP_SETUP_PROG:
5481 		rcu_assign_pointer(dev->xdp_prog, new);
5482 		if (old)
5483 			bpf_prog_put(old);
5484 
5485 		if (old && !new) {
5486 			static_branch_dec(&generic_xdp_needed_key);
5487 		} else if (new && !old) {
5488 			static_branch_inc(&generic_xdp_needed_key);
5489 			dev_disable_lro(dev);
5490 			dev_disable_gro_hw(dev);
5491 		}
5492 		break;
5493 
5494 	default:
5495 		ret = -EINVAL;
5496 		break;
5497 	}
5498 
5499 	return ret;
5500 }
5501 
5502 static int netif_receive_skb_internal(struct sk_buff *skb)
5503 {
5504 	int ret;
5505 
5506 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5507 
5508 	if (skb_defer_rx_timestamp(skb))
5509 		return NET_RX_SUCCESS;
5510 
5511 	rcu_read_lock();
5512 #ifdef CONFIG_RPS
5513 	if (static_branch_unlikely(&rps_needed)) {
5514 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5515 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5516 
5517 		if (cpu >= 0) {
5518 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5519 			rcu_read_unlock();
5520 			return ret;
5521 		}
5522 	}
5523 #endif
5524 	ret = __netif_receive_skb(skb);
5525 	rcu_read_unlock();
5526 	return ret;
5527 }
5528 
5529 static void netif_receive_skb_list_internal(struct list_head *head)
5530 {
5531 	struct sk_buff *skb, *next;
5532 	struct list_head sublist;
5533 
5534 	INIT_LIST_HEAD(&sublist);
5535 	list_for_each_entry_safe(skb, next, head, list) {
5536 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5537 		skb_list_del_init(skb);
5538 		if (!skb_defer_rx_timestamp(skb))
5539 			list_add_tail(&skb->list, &sublist);
5540 	}
5541 	list_splice_init(&sublist, head);
5542 
5543 	rcu_read_lock();
5544 #ifdef CONFIG_RPS
5545 	if (static_branch_unlikely(&rps_needed)) {
5546 		list_for_each_entry_safe(skb, next, head, list) {
5547 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5548 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5549 
5550 			if (cpu >= 0) {
5551 				/* Will be handled, remove from list */
5552 				skb_list_del_init(skb);
5553 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5554 			}
5555 		}
5556 	}
5557 #endif
5558 	__netif_receive_skb_list(head);
5559 	rcu_read_unlock();
5560 }
5561 
5562 /**
5563  *	netif_receive_skb - process receive buffer from network
5564  *	@skb: buffer to process
5565  *
5566  *	netif_receive_skb() is the main receive data processing function.
5567  *	It always succeeds. The buffer may be dropped during processing
5568  *	for congestion control or by the protocol layers.
5569  *
5570  *	This function may only be called from softirq context and interrupts
5571  *	should be enabled.
5572  *
5573  *	Return values (usually ignored):
5574  *	NET_RX_SUCCESS: no congestion
5575  *	NET_RX_DROP: packet was dropped
5576  */
5577 int netif_receive_skb(struct sk_buff *skb)
5578 {
5579 	int ret;
5580 
5581 	trace_netif_receive_skb_entry(skb);
5582 
5583 	ret = netif_receive_skb_internal(skb);
5584 	trace_netif_receive_skb_exit(ret);
5585 
5586 	return ret;
5587 }
5588 EXPORT_SYMBOL(netif_receive_skb);
5589 
5590 /**
5591  *	netif_receive_skb_list - process many receive buffers from network
5592  *	@head: list of skbs to process.
5593  *
5594  *	Since return value of netif_receive_skb() is normally ignored, and
5595  *	wouldn't be meaningful for a list, this function returns void.
5596  *
5597  *	This function may only be called from softirq context and interrupts
5598  *	should be enabled.
5599  */
5600 void netif_receive_skb_list(struct list_head *head)
5601 {
5602 	struct sk_buff *skb;
5603 
5604 	if (list_empty(head))
5605 		return;
5606 	if (trace_netif_receive_skb_list_entry_enabled()) {
5607 		list_for_each_entry(skb, head, list)
5608 			trace_netif_receive_skb_list_entry(skb);
5609 	}
5610 	netif_receive_skb_list_internal(head);
5611 	trace_netif_receive_skb_list_exit(0);
5612 }
5613 EXPORT_SYMBOL(netif_receive_skb_list);
5614 
5615 static DEFINE_PER_CPU(struct work_struct, flush_works);
5616 
5617 /* Network device is going away, flush any packets still pending */
5618 static void flush_backlog(struct work_struct *work)
5619 {
5620 	struct sk_buff *skb, *tmp;
5621 	struct softnet_data *sd;
5622 
5623 	local_bh_disable();
5624 	sd = this_cpu_ptr(&softnet_data);
5625 
5626 	local_irq_disable();
5627 	rps_lock(sd);
5628 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5629 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5630 			__skb_unlink(skb, &sd->input_pkt_queue);
5631 			dev_kfree_skb_irq(skb);
5632 			input_queue_head_incr(sd);
5633 		}
5634 	}
5635 	rps_unlock(sd);
5636 	local_irq_enable();
5637 
5638 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5639 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5640 			__skb_unlink(skb, &sd->process_queue);
5641 			kfree_skb(skb);
5642 			input_queue_head_incr(sd);
5643 		}
5644 	}
5645 	local_bh_enable();
5646 }
5647 
5648 static bool flush_required(int cpu)
5649 {
5650 #if IS_ENABLED(CONFIG_RPS)
5651 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5652 	bool do_flush;
5653 
5654 	local_irq_disable();
5655 	rps_lock(sd);
5656 
5657 	/* as insertion into process_queue happens with the rps lock held,
5658 	 * process_queue access may race only with dequeue
5659 	 */
5660 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5661 		   !skb_queue_empty_lockless(&sd->process_queue);
5662 	rps_unlock(sd);
5663 	local_irq_enable();
5664 
5665 	return do_flush;
5666 #endif
5667 	/* without RPS we can't safely check input_pkt_queue: during a
5668 	 * concurrent remote skb_queue_splice() we can detect as empty both
5669 	 * input_pkt_queue and process_queue even if the latter could end-up
5670 	 * containing a lot of packets.
5671 	 */
5672 	return true;
5673 }
5674 
5675 static void flush_all_backlogs(void)
5676 {
5677 	static cpumask_t flush_cpus;
5678 	unsigned int cpu;
5679 
5680 	/* since we are under rtnl lock protection we can use static data
5681 	 * for the cpumask and avoid allocating on stack the possibly
5682 	 * large mask
5683 	 */
5684 	ASSERT_RTNL();
5685 
5686 	get_online_cpus();
5687 
5688 	cpumask_clear(&flush_cpus);
5689 	for_each_online_cpu(cpu) {
5690 		if (flush_required(cpu)) {
5691 			queue_work_on(cpu, system_highpri_wq,
5692 				      per_cpu_ptr(&flush_works, cpu));
5693 			cpumask_set_cpu(cpu, &flush_cpus);
5694 		}
5695 	}
5696 
5697 	/* we can have in flight packet[s] on the cpus we are not flushing,
5698 	 * synchronize_net() in rollback_registered_many() will take care of
5699 	 * them
5700 	 */
5701 	for_each_cpu(cpu, &flush_cpus)
5702 		flush_work(per_cpu_ptr(&flush_works, cpu));
5703 
5704 	put_online_cpus();
5705 }
5706 
5707 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5708 static void gro_normal_list(struct napi_struct *napi)
5709 {
5710 	if (!napi->rx_count)
5711 		return;
5712 	netif_receive_skb_list_internal(&napi->rx_list);
5713 	INIT_LIST_HEAD(&napi->rx_list);
5714 	napi->rx_count = 0;
5715 }
5716 
5717 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5718  * pass the whole batch up to the stack.
5719  */
5720 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5721 {
5722 	list_add_tail(&skb->list, &napi->rx_list);
5723 	if (++napi->rx_count >= gro_normal_batch)
5724 		gro_normal_list(napi);
5725 }
5726 
5727 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5728 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5729 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5730 {
5731 	struct packet_offload *ptype;
5732 	__be16 type = skb->protocol;
5733 	struct list_head *head = &offload_base;
5734 	int err = -ENOENT;
5735 
5736 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5737 
5738 	if (NAPI_GRO_CB(skb)->count == 1) {
5739 		skb_shinfo(skb)->gso_size = 0;
5740 		goto out;
5741 	}
5742 
5743 	rcu_read_lock();
5744 	list_for_each_entry_rcu(ptype, head, list) {
5745 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5746 			continue;
5747 
5748 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5749 					 ipv6_gro_complete, inet_gro_complete,
5750 					 skb, 0);
5751 		break;
5752 	}
5753 	rcu_read_unlock();
5754 
5755 	if (err) {
5756 		WARN_ON(&ptype->list == head);
5757 		kfree_skb(skb);
5758 		return NET_RX_SUCCESS;
5759 	}
5760 
5761 out:
5762 	gro_normal_one(napi, skb);
5763 	return NET_RX_SUCCESS;
5764 }
5765 
5766 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5767 				   bool flush_old)
5768 {
5769 	struct list_head *head = &napi->gro_hash[index].list;
5770 	struct sk_buff *skb, *p;
5771 
5772 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5773 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5774 			return;
5775 		skb_list_del_init(skb);
5776 		napi_gro_complete(napi, skb);
5777 		napi->gro_hash[index].count--;
5778 	}
5779 
5780 	if (!napi->gro_hash[index].count)
5781 		__clear_bit(index, &napi->gro_bitmask);
5782 }
5783 
5784 /* napi->gro_hash[].list contains packets ordered by age.
5785  * youngest packets at the head of it.
5786  * Complete skbs in reverse order to reduce latencies.
5787  */
5788 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5789 {
5790 	unsigned long bitmask = napi->gro_bitmask;
5791 	unsigned int i, base = ~0U;
5792 
5793 	while ((i = ffs(bitmask)) != 0) {
5794 		bitmask >>= i;
5795 		base += i;
5796 		__napi_gro_flush_chain(napi, base, flush_old);
5797 	}
5798 }
5799 EXPORT_SYMBOL(napi_gro_flush);
5800 
5801 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5802 					  struct sk_buff *skb)
5803 {
5804 	unsigned int maclen = skb->dev->hard_header_len;
5805 	u32 hash = skb_get_hash_raw(skb);
5806 	struct list_head *head;
5807 	struct sk_buff *p;
5808 
5809 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5810 	list_for_each_entry(p, head, list) {
5811 		unsigned long diffs;
5812 
5813 		NAPI_GRO_CB(p)->flush = 0;
5814 
5815 		if (hash != skb_get_hash_raw(p)) {
5816 			NAPI_GRO_CB(p)->same_flow = 0;
5817 			continue;
5818 		}
5819 
5820 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5821 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5822 		if (skb_vlan_tag_present(p))
5823 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5824 		diffs |= skb_metadata_dst_cmp(p, skb);
5825 		diffs |= skb_metadata_differs(p, skb);
5826 		if (maclen == ETH_HLEN)
5827 			diffs |= compare_ether_header(skb_mac_header(p),
5828 						      skb_mac_header(skb));
5829 		else if (!diffs)
5830 			diffs = memcmp(skb_mac_header(p),
5831 				       skb_mac_header(skb),
5832 				       maclen);
5833 		NAPI_GRO_CB(p)->same_flow = !diffs;
5834 	}
5835 
5836 	return head;
5837 }
5838 
5839 static void skb_gro_reset_offset(struct sk_buff *skb)
5840 {
5841 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5842 	const skb_frag_t *frag0 = &pinfo->frags[0];
5843 
5844 	NAPI_GRO_CB(skb)->data_offset = 0;
5845 	NAPI_GRO_CB(skb)->frag0 = NULL;
5846 	NAPI_GRO_CB(skb)->frag0_len = 0;
5847 
5848 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5849 	    !PageHighMem(skb_frag_page(frag0))) {
5850 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5851 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5852 						    skb_frag_size(frag0),
5853 						    skb->end - skb->tail);
5854 	}
5855 }
5856 
5857 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5858 {
5859 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5860 
5861 	BUG_ON(skb->end - skb->tail < grow);
5862 
5863 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5864 
5865 	skb->data_len -= grow;
5866 	skb->tail += grow;
5867 
5868 	skb_frag_off_add(&pinfo->frags[0], grow);
5869 	skb_frag_size_sub(&pinfo->frags[0], grow);
5870 
5871 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5872 		skb_frag_unref(skb, 0);
5873 		memmove(pinfo->frags, pinfo->frags + 1,
5874 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5875 	}
5876 }
5877 
5878 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5879 {
5880 	struct sk_buff *oldest;
5881 
5882 	oldest = list_last_entry(head, struct sk_buff, list);
5883 
5884 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5885 	 * impossible.
5886 	 */
5887 	if (WARN_ON_ONCE(!oldest))
5888 		return;
5889 
5890 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5891 	 * SKB to the chain.
5892 	 */
5893 	skb_list_del_init(oldest);
5894 	napi_gro_complete(napi, oldest);
5895 }
5896 
5897 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5898 							   struct sk_buff *));
5899 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5900 							   struct sk_buff *));
5901 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5902 {
5903 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5904 	struct list_head *head = &offload_base;
5905 	struct packet_offload *ptype;
5906 	__be16 type = skb->protocol;
5907 	struct list_head *gro_head;
5908 	struct sk_buff *pp = NULL;
5909 	enum gro_result ret;
5910 	int same_flow;
5911 	int grow;
5912 
5913 	if (netif_elide_gro(skb->dev))
5914 		goto normal;
5915 
5916 	gro_head = gro_list_prepare(napi, skb);
5917 
5918 	rcu_read_lock();
5919 	list_for_each_entry_rcu(ptype, head, list) {
5920 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5921 			continue;
5922 
5923 		skb_set_network_header(skb, skb_gro_offset(skb));
5924 		skb_reset_mac_len(skb);
5925 		NAPI_GRO_CB(skb)->same_flow = 0;
5926 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5927 		NAPI_GRO_CB(skb)->free = 0;
5928 		NAPI_GRO_CB(skb)->encap_mark = 0;
5929 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5930 		NAPI_GRO_CB(skb)->is_fou = 0;
5931 		NAPI_GRO_CB(skb)->is_atomic = 1;
5932 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5933 
5934 		/* Setup for GRO checksum validation */
5935 		switch (skb->ip_summed) {
5936 		case CHECKSUM_COMPLETE:
5937 			NAPI_GRO_CB(skb)->csum = skb->csum;
5938 			NAPI_GRO_CB(skb)->csum_valid = 1;
5939 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5940 			break;
5941 		case CHECKSUM_UNNECESSARY:
5942 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5943 			NAPI_GRO_CB(skb)->csum_valid = 0;
5944 			break;
5945 		default:
5946 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5947 			NAPI_GRO_CB(skb)->csum_valid = 0;
5948 		}
5949 
5950 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5951 					ipv6_gro_receive, inet_gro_receive,
5952 					gro_head, skb);
5953 		break;
5954 	}
5955 	rcu_read_unlock();
5956 
5957 	if (&ptype->list == head)
5958 		goto normal;
5959 
5960 	if (PTR_ERR(pp) == -EINPROGRESS) {
5961 		ret = GRO_CONSUMED;
5962 		goto ok;
5963 	}
5964 
5965 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5966 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5967 
5968 	if (pp) {
5969 		skb_list_del_init(pp);
5970 		napi_gro_complete(napi, pp);
5971 		napi->gro_hash[hash].count--;
5972 	}
5973 
5974 	if (same_flow)
5975 		goto ok;
5976 
5977 	if (NAPI_GRO_CB(skb)->flush)
5978 		goto normal;
5979 
5980 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5981 		gro_flush_oldest(napi, gro_head);
5982 	} else {
5983 		napi->gro_hash[hash].count++;
5984 	}
5985 	NAPI_GRO_CB(skb)->count = 1;
5986 	NAPI_GRO_CB(skb)->age = jiffies;
5987 	NAPI_GRO_CB(skb)->last = skb;
5988 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5989 	list_add(&skb->list, gro_head);
5990 	ret = GRO_HELD;
5991 
5992 pull:
5993 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5994 	if (grow > 0)
5995 		gro_pull_from_frag0(skb, grow);
5996 ok:
5997 	if (napi->gro_hash[hash].count) {
5998 		if (!test_bit(hash, &napi->gro_bitmask))
5999 			__set_bit(hash, &napi->gro_bitmask);
6000 	} else if (test_bit(hash, &napi->gro_bitmask)) {
6001 		__clear_bit(hash, &napi->gro_bitmask);
6002 	}
6003 
6004 	return ret;
6005 
6006 normal:
6007 	ret = GRO_NORMAL;
6008 	goto pull;
6009 }
6010 
6011 struct packet_offload *gro_find_receive_by_type(__be16 type)
6012 {
6013 	struct list_head *offload_head = &offload_base;
6014 	struct packet_offload *ptype;
6015 
6016 	list_for_each_entry_rcu(ptype, offload_head, list) {
6017 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6018 			continue;
6019 		return ptype;
6020 	}
6021 	return NULL;
6022 }
6023 EXPORT_SYMBOL(gro_find_receive_by_type);
6024 
6025 struct packet_offload *gro_find_complete_by_type(__be16 type)
6026 {
6027 	struct list_head *offload_head = &offload_base;
6028 	struct packet_offload *ptype;
6029 
6030 	list_for_each_entry_rcu(ptype, offload_head, list) {
6031 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6032 			continue;
6033 		return ptype;
6034 	}
6035 	return NULL;
6036 }
6037 EXPORT_SYMBOL(gro_find_complete_by_type);
6038 
6039 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6040 {
6041 	skb_dst_drop(skb);
6042 	skb_ext_put(skb);
6043 	kmem_cache_free(skbuff_head_cache, skb);
6044 }
6045 
6046 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6047 				    struct sk_buff *skb,
6048 				    gro_result_t ret)
6049 {
6050 	switch (ret) {
6051 	case GRO_NORMAL:
6052 		gro_normal_one(napi, skb);
6053 		break;
6054 
6055 	case GRO_DROP:
6056 		kfree_skb(skb);
6057 		break;
6058 
6059 	case GRO_MERGED_FREE:
6060 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6061 			napi_skb_free_stolen_head(skb);
6062 		else
6063 			__kfree_skb(skb);
6064 		break;
6065 
6066 	case GRO_HELD:
6067 	case GRO_MERGED:
6068 	case GRO_CONSUMED:
6069 		break;
6070 	}
6071 
6072 	return ret;
6073 }
6074 
6075 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6076 {
6077 	gro_result_t ret;
6078 
6079 	skb_mark_napi_id(skb, napi);
6080 	trace_napi_gro_receive_entry(skb);
6081 
6082 	skb_gro_reset_offset(skb);
6083 
6084 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6085 	trace_napi_gro_receive_exit(ret);
6086 
6087 	return ret;
6088 }
6089 EXPORT_SYMBOL(napi_gro_receive);
6090 
6091 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6092 {
6093 	if (unlikely(skb->pfmemalloc)) {
6094 		consume_skb(skb);
6095 		return;
6096 	}
6097 	__skb_pull(skb, skb_headlen(skb));
6098 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6099 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6100 	__vlan_hwaccel_clear_tag(skb);
6101 	skb->dev = napi->dev;
6102 	skb->skb_iif = 0;
6103 
6104 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6105 	skb->pkt_type = PACKET_HOST;
6106 
6107 	skb->encapsulation = 0;
6108 	skb_shinfo(skb)->gso_type = 0;
6109 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6110 	skb_ext_reset(skb);
6111 
6112 	napi->skb = skb;
6113 }
6114 
6115 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6116 {
6117 	struct sk_buff *skb = napi->skb;
6118 
6119 	if (!skb) {
6120 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6121 		if (skb) {
6122 			napi->skb = skb;
6123 			skb_mark_napi_id(skb, napi);
6124 		}
6125 	}
6126 	return skb;
6127 }
6128 EXPORT_SYMBOL(napi_get_frags);
6129 
6130 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6131 				      struct sk_buff *skb,
6132 				      gro_result_t ret)
6133 {
6134 	switch (ret) {
6135 	case GRO_NORMAL:
6136 	case GRO_HELD:
6137 		__skb_push(skb, ETH_HLEN);
6138 		skb->protocol = eth_type_trans(skb, skb->dev);
6139 		if (ret == GRO_NORMAL)
6140 			gro_normal_one(napi, skb);
6141 		break;
6142 
6143 	case GRO_DROP:
6144 		napi_reuse_skb(napi, skb);
6145 		break;
6146 
6147 	case GRO_MERGED_FREE:
6148 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6149 			napi_skb_free_stolen_head(skb);
6150 		else
6151 			napi_reuse_skb(napi, skb);
6152 		break;
6153 
6154 	case GRO_MERGED:
6155 	case GRO_CONSUMED:
6156 		break;
6157 	}
6158 
6159 	return ret;
6160 }
6161 
6162 /* Upper GRO stack assumes network header starts at gro_offset=0
6163  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6164  * We copy ethernet header into skb->data to have a common layout.
6165  */
6166 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6167 {
6168 	struct sk_buff *skb = napi->skb;
6169 	const struct ethhdr *eth;
6170 	unsigned int hlen = sizeof(*eth);
6171 
6172 	napi->skb = NULL;
6173 
6174 	skb_reset_mac_header(skb);
6175 	skb_gro_reset_offset(skb);
6176 
6177 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6178 		eth = skb_gro_header_slow(skb, hlen, 0);
6179 		if (unlikely(!eth)) {
6180 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6181 					     __func__, napi->dev->name);
6182 			napi_reuse_skb(napi, skb);
6183 			return NULL;
6184 		}
6185 	} else {
6186 		eth = (const struct ethhdr *)skb->data;
6187 		gro_pull_from_frag0(skb, hlen);
6188 		NAPI_GRO_CB(skb)->frag0 += hlen;
6189 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6190 	}
6191 	__skb_pull(skb, hlen);
6192 
6193 	/*
6194 	 * This works because the only protocols we care about don't require
6195 	 * special handling.
6196 	 * We'll fix it up properly in napi_frags_finish()
6197 	 */
6198 	skb->protocol = eth->h_proto;
6199 
6200 	return skb;
6201 }
6202 
6203 gro_result_t napi_gro_frags(struct napi_struct *napi)
6204 {
6205 	gro_result_t ret;
6206 	struct sk_buff *skb = napi_frags_skb(napi);
6207 
6208 	if (!skb)
6209 		return GRO_DROP;
6210 
6211 	trace_napi_gro_frags_entry(skb);
6212 
6213 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6214 	trace_napi_gro_frags_exit(ret);
6215 
6216 	return ret;
6217 }
6218 EXPORT_SYMBOL(napi_gro_frags);
6219 
6220 /* Compute the checksum from gro_offset and return the folded value
6221  * after adding in any pseudo checksum.
6222  */
6223 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6224 {
6225 	__wsum wsum;
6226 	__sum16 sum;
6227 
6228 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6229 
6230 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6231 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6232 	/* See comments in __skb_checksum_complete(). */
6233 	if (likely(!sum)) {
6234 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6235 		    !skb->csum_complete_sw)
6236 			netdev_rx_csum_fault(skb->dev, skb);
6237 	}
6238 
6239 	NAPI_GRO_CB(skb)->csum = wsum;
6240 	NAPI_GRO_CB(skb)->csum_valid = 1;
6241 
6242 	return sum;
6243 }
6244 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6245 
6246 static void net_rps_send_ipi(struct softnet_data *remsd)
6247 {
6248 #ifdef CONFIG_RPS
6249 	while (remsd) {
6250 		struct softnet_data *next = remsd->rps_ipi_next;
6251 
6252 		if (cpu_online(remsd->cpu))
6253 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6254 		remsd = next;
6255 	}
6256 #endif
6257 }
6258 
6259 /*
6260  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6261  * Note: called with local irq disabled, but exits with local irq enabled.
6262  */
6263 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6264 {
6265 #ifdef CONFIG_RPS
6266 	struct softnet_data *remsd = sd->rps_ipi_list;
6267 
6268 	if (remsd) {
6269 		sd->rps_ipi_list = NULL;
6270 
6271 		local_irq_enable();
6272 
6273 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6274 		net_rps_send_ipi(remsd);
6275 	} else
6276 #endif
6277 		local_irq_enable();
6278 }
6279 
6280 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6281 {
6282 #ifdef CONFIG_RPS
6283 	return sd->rps_ipi_list != NULL;
6284 #else
6285 	return false;
6286 #endif
6287 }
6288 
6289 static int process_backlog(struct napi_struct *napi, int quota)
6290 {
6291 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6292 	bool again = true;
6293 	int work = 0;
6294 
6295 	/* Check if we have pending ipi, its better to send them now,
6296 	 * not waiting net_rx_action() end.
6297 	 */
6298 	if (sd_has_rps_ipi_waiting(sd)) {
6299 		local_irq_disable();
6300 		net_rps_action_and_irq_enable(sd);
6301 	}
6302 
6303 	napi->weight = dev_rx_weight;
6304 	while (again) {
6305 		struct sk_buff *skb;
6306 
6307 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6308 			rcu_read_lock();
6309 			__netif_receive_skb(skb);
6310 			rcu_read_unlock();
6311 			input_queue_head_incr(sd);
6312 			if (++work >= quota)
6313 				return work;
6314 
6315 		}
6316 
6317 		local_irq_disable();
6318 		rps_lock(sd);
6319 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6320 			/*
6321 			 * Inline a custom version of __napi_complete().
6322 			 * only current cpu owns and manipulates this napi,
6323 			 * and NAPI_STATE_SCHED is the only possible flag set
6324 			 * on backlog.
6325 			 * We can use a plain write instead of clear_bit(),
6326 			 * and we dont need an smp_mb() memory barrier.
6327 			 */
6328 			napi->state = 0;
6329 			again = false;
6330 		} else {
6331 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6332 						   &sd->process_queue);
6333 		}
6334 		rps_unlock(sd);
6335 		local_irq_enable();
6336 	}
6337 
6338 	return work;
6339 }
6340 
6341 /**
6342  * __napi_schedule - schedule for receive
6343  * @n: entry to schedule
6344  *
6345  * The entry's receive function will be scheduled to run.
6346  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6347  */
6348 void __napi_schedule(struct napi_struct *n)
6349 {
6350 	unsigned long flags;
6351 
6352 	local_irq_save(flags);
6353 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6354 	local_irq_restore(flags);
6355 }
6356 EXPORT_SYMBOL(__napi_schedule);
6357 
6358 /**
6359  *	napi_schedule_prep - check if napi can be scheduled
6360  *	@n: napi context
6361  *
6362  * Test if NAPI routine is already running, and if not mark
6363  * it as running.  This is used as a condition variable to
6364  * insure only one NAPI poll instance runs.  We also make
6365  * sure there is no pending NAPI disable.
6366  */
6367 bool napi_schedule_prep(struct napi_struct *n)
6368 {
6369 	unsigned long val, new;
6370 
6371 	do {
6372 		val = READ_ONCE(n->state);
6373 		if (unlikely(val & NAPIF_STATE_DISABLE))
6374 			return false;
6375 		new = val | NAPIF_STATE_SCHED;
6376 
6377 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6378 		 * This was suggested by Alexander Duyck, as compiler
6379 		 * emits better code than :
6380 		 * if (val & NAPIF_STATE_SCHED)
6381 		 *     new |= NAPIF_STATE_MISSED;
6382 		 */
6383 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6384 						   NAPIF_STATE_MISSED;
6385 	} while (cmpxchg(&n->state, val, new) != val);
6386 
6387 	return !(val & NAPIF_STATE_SCHED);
6388 }
6389 EXPORT_SYMBOL(napi_schedule_prep);
6390 
6391 /**
6392  * __napi_schedule_irqoff - schedule for receive
6393  * @n: entry to schedule
6394  *
6395  * Variant of __napi_schedule() assuming hard irqs are masked
6396  */
6397 void __napi_schedule_irqoff(struct napi_struct *n)
6398 {
6399 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6400 }
6401 EXPORT_SYMBOL(__napi_schedule_irqoff);
6402 
6403 bool napi_complete_done(struct napi_struct *n, int work_done)
6404 {
6405 	unsigned long flags, val, new, timeout = 0;
6406 	bool ret = true;
6407 
6408 	/*
6409 	 * 1) Don't let napi dequeue from the cpu poll list
6410 	 *    just in case its running on a different cpu.
6411 	 * 2) If we are busy polling, do nothing here, we have
6412 	 *    the guarantee we will be called later.
6413 	 */
6414 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6415 				 NAPIF_STATE_IN_BUSY_POLL)))
6416 		return false;
6417 
6418 	if (work_done) {
6419 		if (n->gro_bitmask)
6420 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6421 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6422 	}
6423 	if (n->defer_hard_irqs_count > 0) {
6424 		n->defer_hard_irqs_count--;
6425 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6426 		if (timeout)
6427 			ret = false;
6428 	}
6429 	if (n->gro_bitmask) {
6430 		/* When the NAPI instance uses a timeout and keeps postponing
6431 		 * it, we need to bound somehow the time packets are kept in
6432 		 * the GRO layer
6433 		 */
6434 		napi_gro_flush(n, !!timeout);
6435 	}
6436 
6437 	gro_normal_list(n);
6438 
6439 	if (unlikely(!list_empty(&n->poll_list))) {
6440 		/* If n->poll_list is not empty, we need to mask irqs */
6441 		local_irq_save(flags);
6442 		list_del_init(&n->poll_list);
6443 		local_irq_restore(flags);
6444 	}
6445 
6446 	do {
6447 		val = READ_ONCE(n->state);
6448 
6449 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6450 
6451 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6452 			      NAPIF_STATE_PREFER_BUSY_POLL);
6453 
6454 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6455 		 * because we will call napi->poll() one more time.
6456 		 * This C code was suggested by Alexander Duyck to help gcc.
6457 		 */
6458 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6459 						    NAPIF_STATE_SCHED;
6460 	} while (cmpxchg(&n->state, val, new) != val);
6461 
6462 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6463 		__napi_schedule(n);
6464 		return false;
6465 	}
6466 
6467 	if (timeout)
6468 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6469 			      HRTIMER_MODE_REL_PINNED);
6470 	return ret;
6471 }
6472 EXPORT_SYMBOL(napi_complete_done);
6473 
6474 /* must be called under rcu_read_lock(), as we dont take a reference */
6475 static struct napi_struct *napi_by_id(unsigned int napi_id)
6476 {
6477 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6478 	struct napi_struct *napi;
6479 
6480 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6481 		if (napi->napi_id == napi_id)
6482 			return napi;
6483 
6484 	return NULL;
6485 }
6486 
6487 #if defined(CONFIG_NET_RX_BUSY_POLL)
6488 
6489 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6490 {
6491 	if (!skip_schedule) {
6492 		gro_normal_list(napi);
6493 		__napi_schedule(napi);
6494 		return;
6495 	}
6496 
6497 	if (napi->gro_bitmask) {
6498 		/* flush too old packets
6499 		 * If HZ < 1000, flush all packets.
6500 		 */
6501 		napi_gro_flush(napi, HZ >= 1000);
6502 	}
6503 
6504 	gro_normal_list(napi);
6505 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6506 }
6507 
6508 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6509 			   u16 budget)
6510 {
6511 	bool skip_schedule = false;
6512 	unsigned long timeout;
6513 	int rc;
6514 
6515 	/* Busy polling means there is a high chance device driver hard irq
6516 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6517 	 * set in napi_schedule_prep().
6518 	 * Since we are about to call napi->poll() once more, we can safely
6519 	 * clear NAPI_STATE_MISSED.
6520 	 *
6521 	 * Note: x86 could use a single "lock and ..." instruction
6522 	 * to perform these two clear_bit()
6523 	 */
6524 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6525 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6526 
6527 	local_bh_disable();
6528 
6529 	if (prefer_busy_poll) {
6530 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6531 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6532 		if (napi->defer_hard_irqs_count && timeout) {
6533 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6534 			skip_schedule = true;
6535 		}
6536 	}
6537 
6538 	/* All we really want here is to re-enable device interrupts.
6539 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6540 	 */
6541 	rc = napi->poll(napi, budget);
6542 	/* We can't gro_normal_list() here, because napi->poll() might have
6543 	 * rearmed the napi (napi_complete_done()) in which case it could
6544 	 * already be running on another CPU.
6545 	 */
6546 	trace_napi_poll(napi, rc, budget);
6547 	netpoll_poll_unlock(have_poll_lock);
6548 	if (rc == budget)
6549 		__busy_poll_stop(napi, skip_schedule);
6550 	local_bh_enable();
6551 }
6552 
6553 void napi_busy_loop(unsigned int napi_id,
6554 		    bool (*loop_end)(void *, unsigned long),
6555 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6556 {
6557 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6558 	int (*napi_poll)(struct napi_struct *napi, int budget);
6559 	void *have_poll_lock = NULL;
6560 	struct napi_struct *napi;
6561 
6562 restart:
6563 	napi_poll = NULL;
6564 
6565 	rcu_read_lock();
6566 
6567 	napi = napi_by_id(napi_id);
6568 	if (!napi)
6569 		goto out;
6570 
6571 	preempt_disable();
6572 	for (;;) {
6573 		int work = 0;
6574 
6575 		local_bh_disable();
6576 		if (!napi_poll) {
6577 			unsigned long val = READ_ONCE(napi->state);
6578 
6579 			/* If multiple threads are competing for this napi,
6580 			 * we avoid dirtying napi->state as much as we can.
6581 			 */
6582 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6583 				   NAPIF_STATE_IN_BUSY_POLL)) {
6584 				if (prefer_busy_poll)
6585 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6586 				goto count;
6587 			}
6588 			if (cmpxchg(&napi->state, val,
6589 				    val | NAPIF_STATE_IN_BUSY_POLL |
6590 					  NAPIF_STATE_SCHED) != val) {
6591 				if (prefer_busy_poll)
6592 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6593 				goto count;
6594 			}
6595 			have_poll_lock = netpoll_poll_lock(napi);
6596 			napi_poll = napi->poll;
6597 		}
6598 		work = napi_poll(napi, budget);
6599 		trace_napi_poll(napi, work, budget);
6600 		gro_normal_list(napi);
6601 count:
6602 		if (work > 0)
6603 			__NET_ADD_STATS(dev_net(napi->dev),
6604 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6605 		local_bh_enable();
6606 
6607 		if (!loop_end || loop_end(loop_end_arg, start_time))
6608 			break;
6609 
6610 		if (unlikely(need_resched())) {
6611 			if (napi_poll)
6612 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6613 			preempt_enable();
6614 			rcu_read_unlock();
6615 			cond_resched();
6616 			if (loop_end(loop_end_arg, start_time))
6617 				return;
6618 			goto restart;
6619 		}
6620 		cpu_relax();
6621 	}
6622 	if (napi_poll)
6623 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6624 	preempt_enable();
6625 out:
6626 	rcu_read_unlock();
6627 }
6628 EXPORT_SYMBOL(napi_busy_loop);
6629 
6630 #endif /* CONFIG_NET_RX_BUSY_POLL */
6631 
6632 static void napi_hash_add(struct napi_struct *napi)
6633 {
6634 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6635 		return;
6636 
6637 	spin_lock(&napi_hash_lock);
6638 
6639 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6640 	do {
6641 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6642 			napi_gen_id = MIN_NAPI_ID;
6643 	} while (napi_by_id(napi_gen_id));
6644 	napi->napi_id = napi_gen_id;
6645 
6646 	hlist_add_head_rcu(&napi->napi_hash_node,
6647 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6648 
6649 	spin_unlock(&napi_hash_lock);
6650 }
6651 
6652 /* Warning : caller is responsible to make sure rcu grace period
6653  * is respected before freeing memory containing @napi
6654  */
6655 static void napi_hash_del(struct napi_struct *napi)
6656 {
6657 	spin_lock(&napi_hash_lock);
6658 
6659 	hlist_del_init_rcu(&napi->napi_hash_node);
6660 
6661 	spin_unlock(&napi_hash_lock);
6662 }
6663 
6664 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6665 {
6666 	struct napi_struct *napi;
6667 
6668 	napi = container_of(timer, struct napi_struct, timer);
6669 
6670 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6671 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6672 	 */
6673 	if (!napi_disable_pending(napi) &&
6674 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6675 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6676 		__napi_schedule_irqoff(napi);
6677 	}
6678 
6679 	return HRTIMER_NORESTART;
6680 }
6681 
6682 static void init_gro_hash(struct napi_struct *napi)
6683 {
6684 	int i;
6685 
6686 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6687 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6688 		napi->gro_hash[i].count = 0;
6689 	}
6690 	napi->gro_bitmask = 0;
6691 }
6692 
6693 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6694 		    int (*poll)(struct napi_struct *, int), int weight)
6695 {
6696 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6697 		return;
6698 
6699 	INIT_LIST_HEAD(&napi->poll_list);
6700 	INIT_HLIST_NODE(&napi->napi_hash_node);
6701 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6702 	napi->timer.function = napi_watchdog;
6703 	init_gro_hash(napi);
6704 	napi->skb = NULL;
6705 	INIT_LIST_HEAD(&napi->rx_list);
6706 	napi->rx_count = 0;
6707 	napi->poll = poll;
6708 	if (weight > NAPI_POLL_WEIGHT)
6709 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6710 				weight);
6711 	napi->weight = weight;
6712 	napi->dev = dev;
6713 #ifdef CONFIG_NETPOLL
6714 	napi->poll_owner = -1;
6715 #endif
6716 	set_bit(NAPI_STATE_SCHED, &napi->state);
6717 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6718 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6719 	napi_hash_add(napi);
6720 }
6721 EXPORT_SYMBOL(netif_napi_add);
6722 
6723 void napi_disable(struct napi_struct *n)
6724 {
6725 	might_sleep();
6726 	set_bit(NAPI_STATE_DISABLE, &n->state);
6727 
6728 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6729 		msleep(1);
6730 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6731 		msleep(1);
6732 
6733 	hrtimer_cancel(&n->timer);
6734 
6735 	clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6736 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6737 }
6738 EXPORT_SYMBOL(napi_disable);
6739 
6740 static void flush_gro_hash(struct napi_struct *napi)
6741 {
6742 	int i;
6743 
6744 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6745 		struct sk_buff *skb, *n;
6746 
6747 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6748 			kfree_skb(skb);
6749 		napi->gro_hash[i].count = 0;
6750 	}
6751 }
6752 
6753 /* Must be called in process context */
6754 void __netif_napi_del(struct napi_struct *napi)
6755 {
6756 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6757 		return;
6758 
6759 	napi_hash_del(napi);
6760 	list_del_rcu(&napi->dev_list);
6761 	napi_free_frags(napi);
6762 
6763 	flush_gro_hash(napi);
6764 	napi->gro_bitmask = 0;
6765 }
6766 EXPORT_SYMBOL(__netif_napi_del);
6767 
6768 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6769 {
6770 	void *have;
6771 	int work, weight;
6772 
6773 	list_del_init(&n->poll_list);
6774 
6775 	have = netpoll_poll_lock(n);
6776 
6777 	weight = n->weight;
6778 
6779 	/* This NAPI_STATE_SCHED test is for avoiding a race
6780 	 * with netpoll's poll_napi().  Only the entity which
6781 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6782 	 * actually make the ->poll() call.  Therefore we avoid
6783 	 * accidentally calling ->poll() when NAPI is not scheduled.
6784 	 */
6785 	work = 0;
6786 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6787 		work = n->poll(n, weight);
6788 		trace_napi_poll(n, work, weight);
6789 	}
6790 
6791 	if (unlikely(work > weight))
6792 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6793 			    n->poll, work, weight);
6794 
6795 	if (likely(work < weight))
6796 		goto out_unlock;
6797 
6798 	/* Drivers must not modify the NAPI state if they
6799 	 * consume the entire weight.  In such cases this code
6800 	 * still "owns" the NAPI instance and therefore can
6801 	 * move the instance around on the list at-will.
6802 	 */
6803 	if (unlikely(napi_disable_pending(n))) {
6804 		napi_complete(n);
6805 		goto out_unlock;
6806 	}
6807 
6808 	/* The NAPI context has more processing work, but busy-polling
6809 	 * is preferred. Exit early.
6810 	 */
6811 	if (napi_prefer_busy_poll(n)) {
6812 		if (napi_complete_done(n, work)) {
6813 			/* If timeout is not set, we need to make sure
6814 			 * that the NAPI is re-scheduled.
6815 			 */
6816 			napi_schedule(n);
6817 		}
6818 		goto out_unlock;
6819 	}
6820 
6821 	if (n->gro_bitmask) {
6822 		/* flush too old packets
6823 		 * If HZ < 1000, flush all packets.
6824 		 */
6825 		napi_gro_flush(n, HZ >= 1000);
6826 	}
6827 
6828 	gro_normal_list(n);
6829 
6830 	/* Some drivers may have called napi_schedule
6831 	 * prior to exhausting their budget.
6832 	 */
6833 	if (unlikely(!list_empty(&n->poll_list))) {
6834 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6835 			     n->dev ? n->dev->name : "backlog");
6836 		goto out_unlock;
6837 	}
6838 
6839 	list_add_tail(&n->poll_list, repoll);
6840 
6841 out_unlock:
6842 	netpoll_poll_unlock(have);
6843 
6844 	return work;
6845 }
6846 
6847 static __latent_entropy void net_rx_action(struct softirq_action *h)
6848 {
6849 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6850 	unsigned long time_limit = jiffies +
6851 		usecs_to_jiffies(netdev_budget_usecs);
6852 	int budget = netdev_budget;
6853 	LIST_HEAD(list);
6854 	LIST_HEAD(repoll);
6855 
6856 	local_irq_disable();
6857 	list_splice_init(&sd->poll_list, &list);
6858 	local_irq_enable();
6859 
6860 	for (;;) {
6861 		struct napi_struct *n;
6862 
6863 		if (list_empty(&list)) {
6864 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6865 				goto out;
6866 			break;
6867 		}
6868 
6869 		n = list_first_entry(&list, struct napi_struct, poll_list);
6870 		budget -= napi_poll(n, &repoll);
6871 
6872 		/* If softirq window is exhausted then punt.
6873 		 * Allow this to run for 2 jiffies since which will allow
6874 		 * an average latency of 1.5/HZ.
6875 		 */
6876 		if (unlikely(budget <= 0 ||
6877 			     time_after_eq(jiffies, time_limit))) {
6878 			sd->time_squeeze++;
6879 			break;
6880 		}
6881 	}
6882 
6883 	local_irq_disable();
6884 
6885 	list_splice_tail_init(&sd->poll_list, &list);
6886 	list_splice_tail(&repoll, &list);
6887 	list_splice(&list, &sd->poll_list);
6888 	if (!list_empty(&sd->poll_list))
6889 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6890 
6891 	net_rps_action_and_irq_enable(sd);
6892 out:
6893 	__kfree_skb_flush();
6894 }
6895 
6896 struct netdev_adjacent {
6897 	struct net_device *dev;
6898 
6899 	/* upper master flag, there can only be one master device per list */
6900 	bool master;
6901 
6902 	/* lookup ignore flag */
6903 	bool ignore;
6904 
6905 	/* counter for the number of times this device was added to us */
6906 	u16 ref_nr;
6907 
6908 	/* private field for the users */
6909 	void *private;
6910 
6911 	struct list_head list;
6912 	struct rcu_head rcu;
6913 };
6914 
6915 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6916 						 struct list_head *adj_list)
6917 {
6918 	struct netdev_adjacent *adj;
6919 
6920 	list_for_each_entry(adj, adj_list, list) {
6921 		if (adj->dev == adj_dev)
6922 			return adj;
6923 	}
6924 	return NULL;
6925 }
6926 
6927 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6928 				    struct netdev_nested_priv *priv)
6929 {
6930 	struct net_device *dev = (struct net_device *)priv->data;
6931 
6932 	return upper_dev == dev;
6933 }
6934 
6935 /**
6936  * netdev_has_upper_dev - Check if device is linked to an upper device
6937  * @dev: device
6938  * @upper_dev: upper device to check
6939  *
6940  * Find out if a device is linked to specified upper device and return true
6941  * in case it is. Note that this checks only immediate upper device,
6942  * not through a complete stack of devices. The caller must hold the RTNL lock.
6943  */
6944 bool netdev_has_upper_dev(struct net_device *dev,
6945 			  struct net_device *upper_dev)
6946 {
6947 	struct netdev_nested_priv priv = {
6948 		.data = (void *)upper_dev,
6949 	};
6950 
6951 	ASSERT_RTNL();
6952 
6953 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6954 					     &priv);
6955 }
6956 EXPORT_SYMBOL(netdev_has_upper_dev);
6957 
6958 /**
6959  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6960  * @dev: device
6961  * @upper_dev: upper device to check
6962  *
6963  * Find out if a device is linked to specified upper device and return true
6964  * in case it is. Note that this checks the entire upper device chain.
6965  * The caller must hold rcu lock.
6966  */
6967 
6968 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6969 				  struct net_device *upper_dev)
6970 {
6971 	struct netdev_nested_priv priv = {
6972 		.data = (void *)upper_dev,
6973 	};
6974 
6975 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6976 					       &priv);
6977 }
6978 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6979 
6980 /**
6981  * netdev_has_any_upper_dev - Check if device is linked to some device
6982  * @dev: device
6983  *
6984  * Find out if a device is linked to an upper device and return true in case
6985  * it is. The caller must hold the RTNL lock.
6986  */
6987 bool netdev_has_any_upper_dev(struct net_device *dev)
6988 {
6989 	ASSERT_RTNL();
6990 
6991 	return !list_empty(&dev->adj_list.upper);
6992 }
6993 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6994 
6995 /**
6996  * netdev_master_upper_dev_get - Get master upper device
6997  * @dev: device
6998  *
6999  * Find a master upper device and return pointer to it or NULL in case
7000  * it's not there. The caller must hold the RTNL lock.
7001  */
7002 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7003 {
7004 	struct netdev_adjacent *upper;
7005 
7006 	ASSERT_RTNL();
7007 
7008 	if (list_empty(&dev->adj_list.upper))
7009 		return NULL;
7010 
7011 	upper = list_first_entry(&dev->adj_list.upper,
7012 				 struct netdev_adjacent, list);
7013 	if (likely(upper->master))
7014 		return upper->dev;
7015 	return NULL;
7016 }
7017 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7018 
7019 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7020 {
7021 	struct netdev_adjacent *upper;
7022 
7023 	ASSERT_RTNL();
7024 
7025 	if (list_empty(&dev->adj_list.upper))
7026 		return NULL;
7027 
7028 	upper = list_first_entry(&dev->adj_list.upper,
7029 				 struct netdev_adjacent, list);
7030 	if (likely(upper->master) && !upper->ignore)
7031 		return upper->dev;
7032 	return NULL;
7033 }
7034 
7035 /**
7036  * netdev_has_any_lower_dev - Check if device is linked to some device
7037  * @dev: device
7038  *
7039  * Find out if a device is linked to a lower device and return true in case
7040  * it is. The caller must hold the RTNL lock.
7041  */
7042 static bool netdev_has_any_lower_dev(struct net_device *dev)
7043 {
7044 	ASSERT_RTNL();
7045 
7046 	return !list_empty(&dev->adj_list.lower);
7047 }
7048 
7049 void *netdev_adjacent_get_private(struct list_head *adj_list)
7050 {
7051 	struct netdev_adjacent *adj;
7052 
7053 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7054 
7055 	return adj->private;
7056 }
7057 EXPORT_SYMBOL(netdev_adjacent_get_private);
7058 
7059 /**
7060  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7061  * @dev: device
7062  * @iter: list_head ** of the current position
7063  *
7064  * Gets the next device from the dev's upper list, starting from iter
7065  * position. The caller must hold RCU read lock.
7066  */
7067 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7068 						 struct list_head **iter)
7069 {
7070 	struct netdev_adjacent *upper;
7071 
7072 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7073 
7074 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7075 
7076 	if (&upper->list == &dev->adj_list.upper)
7077 		return NULL;
7078 
7079 	*iter = &upper->list;
7080 
7081 	return upper->dev;
7082 }
7083 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7084 
7085 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7086 						  struct list_head **iter,
7087 						  bool *ignore)
7088 {
7089 	struct netdev_adjacent *upper;
7090 
7091 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7092 
7093 	if (&upper->list == &dev->adj_list.upper)
7094 		return NULL;
7095 
7096 	*iter = &upper->list;
7097 	*ignore = upper->ignore;
7098 
7099 	return upper->dev;
7100 }
7101 
7102 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7103 						    struct list_head **iter)
7104 {
7105 	struct netdev_adjacent *upper;
7106 
7107 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7108 
7109 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7110 
7111 	if (&upper->list == &dev->adj_list.upper)
7112 		return NULL;
7113 
7114 	*iter = &upper->list;
7115 
7116 	return upper->dev;
7117 }
7118 
7119 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7120 				       int (*fn)(struct net_device *dev,
7121 					 struct netdev_nested_priv *priv),
7122 				       struct netdev_nested_priv *priv)
7123 {
7124 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7125 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7126 	int ret, cur = 0;
7127 	bool ignore;
7128 
7129 	now = dev;
7130 	iter = &dev->adj_list.upper;
7131 
7132 	while (1) {
7133 		if (now != dev) {
7134 			ret = fn(now, priv);
7135 			if (ret)
7136 				return ret;
7137 		}
7138 
7139 		next = NULL;
7140 		while (1) {
7141 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7142 			if (!udev)
7143 				break;
7144 			if (ignore)
7145 				continue;
7146 
7147 			next = udev;
7148 			niter = &udev->adj_list.upper;
7149 			dev_stack[cur] = now;
7150 			iter_stack[cur++] = iter;
7151 			break;
7152 		}
7153 
7154 		if (!next) {
7155 			if (!cur)
7156 				return 0;
7157 			next = dev_stack[--cur];
7158 			niter = iter_stack[cur];
7159 		}
7160 
7161 		now = next;
7162 		iter = niter;
7163 	}
7164 
7165 	return 0;
7166 }
7167 
7168 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7169 				  int (*fn)(struct net_device *dev,
7170 					    struct netdev_nested_priv *priv),
7171 				  struct netdev_nested_priv *priv)
7172 {
7173 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7174 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7175 	int ret, cur = 0;
7176 
7177 	now = dev;
7178 	iter = &dev->adj_list.upper;
7179 
7180 	while (1) {
7181 		if (now != dev) {
7182 			ret = fn(now, priv);
7183 			if (ret)
7184 				return ret;
7185 		}
7186 
7187 		next = NULL;
7188 		while (1) {
7189 			udev = netdev_next_upper_dev_rcu(now, &iter);
7190 			if (!udev)
7191 				break;
7192 
7193 			next = udev;
7194 			niter = &udev->adj_list.upper;
7195 			dev_stack[cur] = now;
7196 			iter_stack[cur++] = iter;
7197 			break;
7198 		}
7199 
7200 		if (!next) {
7201 			if (!cur)
7202 				return 0;
7203 			next = dev_stack[--cur];
7204 			niter = iter_stack[cur];
7205 		}
7206 
7207 		now = next;
7208 		iter = niter;
7209 	}
7210 
7211 	return 0;
7212 }
7213 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7214 
7215 static bool __netdev_has_upper_dev(struct net_device *dev,
7216 				   struct net_device *upper_dev)
7217 {
7218 	struct netdev_nested_priv priv = {
7219 		.flags = 0,
7220 		.data = (void *)upper_dev,
7221 	};
7222 
7223 	ASSERT_RTNL();
7224 
7225 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7226 					   &priv);
7227 }
7228 
7229 /**
7230  * netdev_lower_get_next_private - Get the next ->private from the
7231  *				   lower neighbour list
7232  * @dev: device
7233  * @iter: list_head ** of the current position
7234  *
7235  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7236  * list, starting from iter position. The caller must hold either hold the
7237  * RTNL lock or its own locking that guarantees that the neighbour lower
7238  * list will remain unchanged.
7239  */
7240 void *netdev_lower_get_next_private(struct net_device *dev,
7241 				    struct list_head **iter)
7242 {
7243 	struct netdev_adjacent *lower;
7244 
7245 	lower = list_entry(*iter, struct netdev_adjacent, list);
7246 
7247 	if (&lower->list == &dev->adj_list.lower)
7248 		return NULL;
7249 
7250 	*iter = lower->list.next;
7251 
7252 	return lower->private;
7253 }
7254 EXPORT_SYMBOL(netdev_lower_get_next_private);
7255 
7256 /**
7257  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7258  *				       lower neighbour list, RCU
7259  *				       variant
7260  * @dev: device
7261  * @iter: list_head ** of the current position
7262  *
7263  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7264  * list, starting from iter position. The caller must hold RCU read lock.
7265  */
7266 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7267 					struct list_head **iter)
7268 {
7269 	struct netdev_adjacent *lower;
7270 
7271 	WARN_ON_ONCE(!rcu_read_lock_held());
7272 
7273 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7274 
7275 	if (&lower->list == &dev->adj_list.lower)
7276 		return NULL;
7277 
7278 	*iter = &lower->list;
7279 
7280 	return lower->private;
7281 }
7282 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7283 
7284 /**
7285  * netdev_lower_get_next - Get the next device from the lower neighbour
7286  *                         list
7287  * @dev: device
7288  * @iter: list_head ** of the current position
7289  *
7290  * Gets the next netdev_adjacent from the dev's lower neighbour
7291  * list, starting from iter position. The caller must hold RTNL lock or
7292  * its own locking that guarantees that the neighbour lower
7293  * list will remain unchanged.
7294  */
7295 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7296 {
7297 	struct netdev_adjacent *lower;
7298 
7299 	lower = list_entry(*iter, struct netdev_adjacent, list);
7300 
7301 	if (&lower->list == &dev->adj_list.lower)
7302 		return NULL;
7303 
7304 	*iter = lower->list.next;
7305 
7306 	return lower->dev;
7307 }
7308 EXPORT_SYMBOL(netdev_lower_get_next);
7309 
7310 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7311 						struct list_head **iter)
7312 {
7313 	struct netdev_adjacent *lower;
7314 
7315 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7316 
7317 	if (&lower->list == &dev->adj_list.lower)
7318 		return NULL;
7319 
7320 	*iter = &lower->list;
7321 
7322 	return lower->dev;
7323 }
7324 
7325 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7326 						  struct list_head **iter,
7327 						  bool *ignore)
7328 {
7329 	struct netdev_adjacent *lower;
7330 
7331 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7332 
7333 	if (&lower->list == &dev->adj_list.lower)
7334 		return NULL;
7335 
7336 	*iter = &lower->list;
7337 	*ignore = lower->ignore;
7338 
7339 	return lower->dev;
7340 }
7341 
7342 int netdev_walk_all_lower_dev(struct net_device *dev,
7343 			      int (*fn)(struct net_device *dev,
7344 					struct netdev_nested_priv *priv),
7345 			      struct netdev_nested_priv *priv)
7346 {
7347 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7348 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7349 	int ret, cur = 0;
7350 
7351 	now = dev;
7352 	iter = &dev->adj_list.lower;
7353 
7354 	while (1) {
7355 		if (now != dev) {
7356 			ret = fn(now, priv);
7357 			if (ret)
7358 				return ret;
7359 		}
7360 
7361 		next = NULL;
7362 		while (1) {
7363 			ldev = netdev_next_lower_dev(now, &iter);
7364 			if (!ldev)
7365 				break;
7366 
7367 			next = ldev;
7368 			niter = &ldev->adj_list.lower;
7369 			dev_stack[cur] = now;
7370 			iter_stack[cur++] = iter;
7371 			break;
7372 		}
7373 
7374 		if (!next) {
7375 			if (!cur)
7376 				return 0;
7377 			next = dev_stack[--cur];
7378 			niter = iter_stack[cur];
7379 		}
7380 
7381 		now = next;
7382 		iter = niter;
7383 	}
7384 
7385 	return 0;
7386 }
7387 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7388 
7389 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7390 				       int (*fn)(struct net_device *dev,
7391 					 struct netdev_nested_priv *priv),
7392 				       struct netdev_nested_priv *priv)
7393 {
7394 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7395 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7396 	int ret, cur = 0;
7397 	bool ignore;
7398 
7399 	now = dev;
7400 	iter = &dev->adj_list.lower;
7401 
7402 	while (1) {
7403 		if (now != dev) {
7404 			ret = fn(now, priv);
7405 			if (ret)
7406 				return ret;
7407 		}
7408 
7409 		next = NULL;
7410 		while (1) {
7411 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7412 			if (!ldev)
7413 				break;
7414 			if (ignore)
7415 				continue;
7416 
7417 			next = ldev;
7418 			niter = &ldev->adj_list.lower;
7419 			dev_stack[cur] = now;
7420 			iter_stack[cur++] = iter;
7421 			break;
7422 		}
7423 
7424 		if (!next) {
7425 			if (!cur)
7426 				return 0;
7427 			next = dev_stack[--cur];
7428 			niter = iter_stack[cur];
7429 		}
7430 
7431 		now = next;
7432 		iter = niter;
7433 	}
7434 
7435 	return 0;
7436 }
7437 
7438 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7439 					     struct list_head **iter)
7440 {
7441 	struct netdev_adjacent *lower;
7442 
7443 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7444 	if (&lower->list == &dev->adj_list.lower)
7445 		return NULL;
7446 
7447 	*iter = &lower->list;
7448 
7449 	return lower->dev;
7450 }
7451 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7452 
7453 static u8 __netdev_upper_depth(struct net_device *dev)
7454 {
7455 	struct net_device *udev;
7456 	struct list_head *iter;
7457 	u8 max_depth = 0;
7458 	bool ignore;
7459 
7460 	for (iter = &dev->adj_list.upper,
7461 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7462 	     udev;
7463 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7464 		if (ignore)
7465 			continue;
7466 		if (max_depth < udev->upper_level)
7467 			max_depth = udev->upper_level;
7468 	}
7469 
7470 	return max_depth;
7471 }
7472 
7473 static u8 __netdev_lower_depth(struct net_device *dev)
7474 {
7475 	struct net_device *ldev;
7476 	struct list_head *iter;
7477 	u8 max_depth = 0;
7478 	bool ignore;
7479 
7480 	for (iter = &dev->adj_list.lower,
7481 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7482 	     ldev;
7483 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7484 		if (ignore)
7485 			continue;
7486 		if (max_depth < ldev->lower_level)
7487 			max_depth = ldev->lower_level;
7488 	}
7489 
7490 	return max_depth;
7491 }
7492 
7493 static int __netdev_update_upper_level(struct net_device *dev,
7494 				       struct netdev_nested_priv *__unused)
7495 {
7496 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7497 	return 0;
7498 }
7499 
7500 static int __netdev_update_lower_level(struct net_device *dev,
7501 				       struct netdev_nested_priv *priv)
7502 {
7503 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7504 
7505 #ifdef CONFIG_LOCKDEP
7506 	if (!priv)
7507 		return 0;
7508 
7509 	if (priv->flags & NESTED_SYNC_IMM)
7510 		dev->nested_level = dev->lower_level - 1;
7511 	if (priv->flags & NESTED_SYNC_TODO)
7512 		net_unlink_todo(dev);
7513 #endif
7514 	return 0;
7515 }
7516 
7517 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7518 				  int (*fn)(struct net_device *dev,
7519 					    struct netdev_nested_priv *priv),
7520 				  struct netdev_nested_priv *priv)
7521 {
7522 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7523 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7524 	int ret, cur = 0;
7525 
7526 	now = dev;
7527 	iter = &dev->adj_list.lower;
7528 
7529 	while (1) {
7530 		if (now != dev) {
7531 			ret = fn(now, priv);
7532 			if (ret)
7533 				return ret;
7534 		}
7535 
7536 		next = NULL;
7537 		while (1) {
7538 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7539 			if (!ldev)
7540 				break;
7541 
7542 			next = ldev;
7543 			niter = &ldev->adj_list.lower;
7544 			dev_stack[cur] = now;
7545 			iter_stack[cur++] = iter;
7546 			break;
7547 		}
7548 
7549 		if (!next) {
7550 			if (!cur)
7551 				return 0;
7552 			next = dev_stack[--cur];
7553 			niter = iter_stack[cur];
7554 		}
7555 
7556 		now = next;
7557 		iter = niter;
7558 	}
7559 
7560 	return 0;
7561 }
7562 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7563 
7564 /**
7565  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7566  *				       lower neighbour list, RCU
7567  *				       variant
7568  * @dev: device
7569  *
7570  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7571  * list. The caller must hold RCU read lock.
7572  */
7573 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7574 {
7575 	struct netdev_adjacent *lower;
7576 
7577 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7578 			struct netdev_adjacent, list);
7579 	if (lower)
7580 		return lower->private;
7581 	return NULL;
7582 }
7583 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7584 
7585 /**
7586  * netdev_master_upper_dev_get_rcu - Get master upper device
7587  * @dev: device
7588  *
7589  * Find a master upper device and return pointer to it or NULL in case
7590  * it's not there. The caller must hold the RCU read lock.
7591  */
7592 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7593 {
7594 	struct netdev_adjacent *upper;
7595 
7596 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7597 				       struct netdev_adjacent, list);
7598 	if (upper && likely(upper->master))
7599 		return upper->dev;
7600 	return NULL;
7601 }
7602 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7603 
7604 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7605 			      struct net_device *adj_dev,
7606 			      struct list_head *dev_list)
7607 {
7608 	char linkname[IFNAMSIZ+7];
7609 
7610 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7611 		"upper_%s" : "lower_%s", adj_dev->name);
7612 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7613 				 linkname);
7614 }
7615 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7616 			       char *name,
7617 			       struct list_head *dev_list)
7618 {
7619 	char linkname[IFNAMSIZ+7];
7620 
7621 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7622 		"upper_%s" : "lower_%s", name);
7623 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7624 }
7625 
7626 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7627 						 struct net_device *adj_dev,
7628 						 struct list_head *dev_list)
7629 {
7630 	return (dev_list == &dev->adj_list.upper ||
7631 		dev_list == &dev->adj_list.lower) &&
7632 		net_eq(dev_net(dev), dev_net(adj_dev));
7633 }
7634 
7635 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7636 					struct net_device *adj_dev,
7637 					struct list_head *dev_list,
7638 					void *private, bool master)
7639 {
7640 	struct netdev_adjacent *adj;
7641 	int ret;
7642 
7643 	adj = __netdev_find_adj(adj_dev, dev_list);
7644 
7645 	if (adj) {
7646 		adj->ref_nr += 1;
7647 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7648 			 dev->name, adj_dev->name, adj->ref_nr);
7649 
7650 		return 0;
7651 	}
7652 
7653 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7654 	if (!adj)
7655 		return -ENOMEM;
7656 
7657 	adj->dev = adj_dev;
7658 	adj->master = master;
7659 	adj->ref_nr = 1;
7660 	adj->private = private;
7661 	adj->ignore = false;
7662 	dev_hold(adj_dev);
7663 
7664 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7665 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7666 
7667 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7668 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7669 		if (ret)
7670 			goto free_adj;
7671 	}
7672 
7673 	/* Ensure that master link is always the first item in list. */
7674 	if (master) {
7675 		ret = sysfs_create_link(&(dev->dev.kobj),
7676 					&(adj_dev->dev.kobj), "master");
7677 		if (ret)
7678 			goto remove_symlinks;
7679 
7680 		list_add_rcu(&adj->list, dev_list);
7681 	} else {
7682 		list_add_tail_rcu(&adj->list, dev_list);
7683 	}
7684 
7685 	return 0;
7686 
7687 remove_symlinks:
7688 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7689 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7690 free_adj:
7691 	kfree(adj);
7692 	dev_put(adj_dev);
7693 
7694 	return ret;
7695 }
7696 
7697 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7698 					 struct net_device *adj_dev,
7699 					 u16 ref_nr,
7700 					 struct list_head *dev_list)
7701 {
7702 	struct netdev_adjacent *adj;
7703 
7704 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7705 		 dev->name, adj_dev->name, ref_nr);
7706 
7707 	adj = __netdev_find_adj(adj_dev, dev_list);
7708 
7709 	if (!adj) {
7710 		pr_err("Adjacency does not exist for device %s from %s\n",
7711 		       dev->name, adj_dev->name);
7712 		WARN_ON(1);
7713 		return;
7714 	}
7715 
7716 	if (adj->ref_nr > ref_nr) {
7717 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7718 			 dev->name, adj_dev->name, ref_nr,
7719 			 adj->ref_nr - ref_nr);
7720 		adj->ref_nr -= ref_nr;
7721 		return;
7722 	}
7723 
7724 	if (adj->master)
7725 		sysfs_remove_link(&(dev->dev.kobj), "master");
7726 
7727 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7728 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7729 
7730 	list_del_rcu(&adj->list);
7731 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7732 		 adj_dev->name, dev->name, adj_dev->name);
7733 	dev_put(adj_dev);
7734 	kfree_rcu(adj, rcu);
7735 }
7736 
7737 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7738 					    struct net_device *upper_dev,
7739 					    struct list_head *up_list,
7740 					    struct list_head *down_list,
7741 					    void *private, bool master)
7742 {
7743 	int ret;
7744 
7745 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7746 					   private, master);
7747 	if (ret)
7748 		return ret;
7749 
7750 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7751 					   private, false);
7752 	if (ret) {
7753 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7754 		return ret;
7755 	}
7756 
7757 	return 0;
7758 }
7759 
7760 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7761 					       struct net_device *upper_dev,
7762 					       u16 ref_nr,
7763 					       struct list_head *up_list,
7764 					       struct list_head *down_list)
7765 {
7766 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7767 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7768 }
7769 
7770 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7771 						struct net_device *upper_dev,
7772 						void *private, bool master)
7773 {
7774 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7775 						&dev->adj_list.upper,
7776 						&upper_dev->adj_list.lower,
7777 						private, master);
7778 }
7779 
7780 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7781 						   struct net_device *upper_dev)
7782 {
7783 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7784 					   &dev->adj_list.upper,
7785 					   &upper_dev->adj_list.lower);
7786 }
7787 
7788 static int __netdev_upper_dev_link(struct net_device *dev,
7789 				   struct net_device *upper_dev, bool master,
7790 				   void *upper_priv, void *upper_info,
7791 				   struct netdev_nested_priv *priv,
7792 				   struct netlink_ext_ack *extack)
7793 {
7794 	struct netdev_notifier_changeupper_info changeupper_info = {
7795 		.info = {
7796 			.dev = dev,
7797 			.extack = extack,
7798 		},
7799 		.upper_dev = upper_dev,
7800 		.master = master,
7801 		.linking = true,
7802 		.upper_info = upper_info,
7803 	};
7804 	struct net_device *master_dev;
7805 	int ret = 0;
7806 
7807 	ASSERT_RTNL();
7808 
7809 	if (dev == upper_dev)
7810 		return -EBUSY;
7811 
7812 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7813 	if (__netdev_has_upper_dev(upper_dev, dev))
7814 		return -EBUSY;
7815 
7816 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7817 		return -EMLINK;
7818 
7819 	if (!master) {
7820 		if (__netdev_has_upper_dev(dev, upper_dev))
7821 			return -EEXIST;
7822 	} else {
7823 		master_dev = __netdev_master_upper_dev_get(dev);
7824 		if (master_dev)
7825 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7826 	}
7827 
7828 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7829 					    &changeupper_info.info);
7830 	ret = notifier_to_errno(ret);
7831 	if (ret)
7832 		return ret;
7833 
7834 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7835 						   master);
7836 	if (ret)
7837 		return ret;
7838 
7839 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7840 					    &changeupper_info.info);
7841 	ret = notifier_to_errno(ret);
7842 	if (ret)
7843 		goto rollback;
7844 
7845 	__netdev_update_upper_level(dev, NULL);
7846 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7847 
7848 	__netdev_update_lower_level(upper_dev, priv);
7849 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7850 				    priv);
7851 
7852 	return 0;
7853 
7854 rollback:
7855 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7856 
7857 	return ret;
7858 }
7859 
7860 /**
7861  * netdev_upper_dev_link - Add a link to the upper device
7862  * @dev: device
7863  * @upper_dev: new upper device
7864  * @extack: netlink extended ack
7865  *
7866  * Adds a link to device which is upper to this one. The caller must hold
7867  * the RTNL lock. On a failure a negative errno code is returned.
7868  * On success the reference counts are adjusted and the function
7869  * returns zero.
7870  */
7871 int netdev_upper_dev_link(struct net_device *dev,
7872 			  struct net_device *upper_dev,
7873 			  struct netlink_ext_ack *extack)
7874 {
7875 	struct netdev_nested_priv priv = {
7876 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7877 		.data = NULL,
7878 	};
7879 
7880 	return __netdev_upper_dev_link(dev, upper_dev, false,
7881 				       NULL, NULL, &priv, extack);
7882 }
7883 EXPORT_SYMBOL(netdev_upper_dev_link);
7884 
7885 /**
7886  * netdev_master_upper_dev_link - Add a master link to the upper device
7887  * @dev: device
7888  * @upper_dev: new upper device
7889  * @upper_priv: upper device private
7890  * @upper_info: upper info to be passed down via notifier
7891  * @extack: netlink extended ack
7892  *
7893  * Adds a link to device which is upper to this one. In this case, only
7894  * one master upper device can be linked, although other non-master devices
7895  * might be linked as well. The caller must hold the RTNL lock.
7896  * On a failure a negative errno code is returned. On success the reference
7897  * counts are adjusted and the function returns zero.
7898  */
7899 int netdev_master_upper_dev_link(struct net_device *dev,
7900 				 struct net_device *upper_dev,
7901 				 void *upper_priv, void *upper_info,
7902 				 struct netlink_ext_ack *extack)
7903 {
7904 	struct netdev_nested_priv priv = {
7905 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7906 		.data = NULL,
7907 	};
7908 
7909 	return __netdev_upper_dev_link(dev, upper_dev, true,
7910 				       upper_priv, upper_info, &priv, extack);
7911 }
7912 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7913 
7914 static void __netdev_upper_dev_unlink(struct net_device *dev,
7915 				      struct net_device *upper_dev,
7916 				      struct netdev_nested_priv *priv)
7917 {
7918 	struct netdev_notifier_changeupper_info changeupper_info = {
7919 		.info = {
7920 			.dev = dev,
7921 		},
7922 		.upper_dev = upper_dev,
7923 		.linking = false,
7924 	};
7925 
7926 	ASSERT_RTNL();
7927 
7928 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7929 
7930 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7931 				      &changeupper_info.info);
7932 
7933 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7934 
7935 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7936 				      &changeupper_info.info);
7937 
7938 	__netdev_update_upper_level(dev, NULL);
7939 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7940 
7941 	__netdev_update_lower_level(upper_dev, priv);
7942 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7943 				    priv);
7944 }
7945 
7946 /**
7947  * netdev_upper_dev_unlink - Removes a link to upper device
7948  * @dev: device
7949  * @upper_dev: new upper device
7950  *
7951  * Removes a link to device which is upper to this one. The caller must hold
7952  * the RTNL lock.
7953  */
7954 void netdev_upper_dev_unlink(struct net_device *dev,
7955 			     struct net_device *upper_dev)
7956 {
7957 	struct netdev_nested_priv priv = {
7958 		.flags = NESTED_SYNC_TODO,
7959 		.data = NULL,
7960 	};
7961 
7962 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7963 }
7964 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7965 
7966 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7967 				      struct net_device *lower_dev,
7968 				      bool val)
7969 {
7970 	struct netdev_adjacent *adj;
7971 
7972 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7973 	if (adj)
7974 		adj->ignore = val;
7975 
7976 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7977 	if (adj)
7978 		adj->ignore = val;
7979 }
7980 
7981 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7982 					struct net_device *lower_dev)
7983 {
7984 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7985 }
7986 
7987 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7988 				       struct net_device *lower_dev)
7989 {
7990 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7991 }
7992 
7993 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7994 				   struct net_device *new_dev,
7995 				   struct net_device *dev,
7996 				   struct netlink_ext_ack *extack)
7997 {
7998 	struct netdev_nested_priv priv = {
7999 		.flags = 0,
8000 		.data = NULL,
8001 	};
8002 	int err;
8003 
8004 	if (!new_dev)
8005 		return 0;
8006 
8007 	if (old_dev && new_dev != old_dev)
8008 		netdev_adjacent_dev_disable(dev, old_dev);
8009 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8010 				      extack);
8011 	if (err) {
8012 		if (old_dev && new_dev != old_dev)
8013 			netdev_adjacent_dev_enable(dev, old_dev);
8014 		return err;
8015 	}
8016 
8017 	return 0;
8018 }
8019 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8020 
8021 void netdev_adjacent_change_commit(struct net_device *old_dev,
8022 				   struct net_device *new_dev,
8023 				   struct net_device *dev)
8024 {
8025 	struct netdev_nested_priv priv = {
8026 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8027 		.data = NULL,
8028 	};
8029 
8030 	if (!new_dev || !old_dev)
8031 		return;
8032 
8033 	if (new_dev == old_dev)
8034 		return;
8035 
8036 	netdev_adjacent_dev_enable(dev, old_dev);
8037 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8038 }
8039 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8040 
8041 void netdev_adjacent_change_abort(struct net_device *old_dev,
8042 				  struct net_device *new_dev,
8043 				  struct net_device *dev)
8044 {
8045 	struct netdev_nested_priv priv = {
8046 		.flags = 0,
8047 		.data = NULL,
8048 	};
8049 
8050 	if (!new_dev)
8051 		return;
8052 
8053 	if (old_dev && new_dev != old_dev)
8054 		netdev_adjacent_dev_enable(dev, old_dev);
8055 
8056 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8057 }
8058 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8059 
8060 /**
8061  * netdev_bonding_info_change - Dispatch event about slave change
8062  * @dev: device
8063  * @bonding_info: info to dispatch
8064  *
8065  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8066  * The caller must hold the RTNL lock.
8067  */
8068 void netdev_bonding_info_change(struct net_device *dev,
8069 				struct netdev_bonding_info *bonding_info)
8070 {
8071 	struct netdev_notifier_bonding_info info = {
8072 		.info.dev = dev,
8073 	};
8074 
8075 	memcpy(&info.bonding_info, bonding_info,
8076 	       sizeof(struct netdev_bonding_info));
8077 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8078 				      &info.info);
8079 }
8080 EXPORT_SYMBOL(netdev_bonding_info_change);
8081 
8082 /**
8083  * netdev_get_xmit_slave - Get the xmit slave of master device
8084  * @dev: device
8085  * @skb: The packet
8086  * @all_slaves: assume all the slaves are active
8087  *
8088  * The reference counters are not incremented so the caller must be
8089  * careful with locks. The caller must hold RCU lock.
8090  * %NULL is returned if no slave is found.
8091  */
8092 
8093 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8094 					 struct sk_buff *skb,
8095 					 bool all_slaves)
8096 {
8097 	const struct net_device_ops *ops = dev->netdev_ops;
8098 
8099 	if (!ops->ndo_get_xmit_slave)
8100 		return NULL;
8101 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8102 }
8103 EXPORT_SYMBOL(netdev_get_xmit_slave);
8104 
8105 static void netdev_adjacent_add_links(struct net_device *dev)
8106 {
8107 	struct netdev_adjacent *iter;
8108 
8109 	struct net *net = dev_net(dev);
8110 
8111 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8112 		if (!net_eq(net, dev_net(iter->dev)))
8113 			continue;
8114 		netdev_adjacent_sysfs_add(iter->dev, dev,
8115 					  &iter->dev->adj_list.lower);
8116 		netdev_adjacent_sysfs_add(dev, iter->dev,
8117 					  &dev->adj_list.upper);
8118 	}
8119 
8120 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8121 		if (!net_eq(net, dev_net(iter->dev)))
8122 			continue;
8123 		netdev_adjacent_sysfs_add(iter->dev, dev,
8124 					  &iter->dev->adj_list.upper);
8125 		netdev_adjacent_sysfs_add(dev, iter->dev,
8126 					  &dev->adj_list.lower);
8127 	}
8128 }
8129 
8130 static void netdev_adjacent_del_links(struct net_device *dev)
8131 {
8132 	struct netdev_adjacent *iter;
8133 
8134 	struct net *net = dev_net(dev);
8135 
8136 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8137 		if (!net_eq(net, dev_net(iter->dev)))
8138 			continue;
8139 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8140 					  &iter->dev->adj_list.lower);
8141 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8142 					  &dev->adj_list.upper);
8143 	}
8144 
8145 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8146 		if (!net_eq(net, dev_net(iter->dev)))
8147 			continue;
8148 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8149 					  &iter->dev->adj_list.upper);
8150 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8151 					  &dev->adj_list.lower);
8152 	}
8153 }
8154 
8155 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8156 {
8157 	struct netdev_adjacent *iter;
8158 
8159 	struct net *net = dev_net(dev);
8160 
8161 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8162 		if (!net_eq(net, dev_net(iter->dev)))
8163 			continue;
8164 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8165 					  &iter->dev->adj_list.lower);
8166 		netdev_adjacent_sysfs_add(iter->dev, dev,
8167 					  &iter->dev->adj_list.lower);
8168 	}
8169 
8170 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8171 		if (!net_eq(net, dev_net(iter->dev)))
8172 			continue;
8173 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8174 					  &iter->dev->adj_list.upper);
8175 		netdev_adjacent_sysfs_add(iter->dev, dev,
8176 					  &iter->dev->adj_list.upper);
8177 	}
8178 }
8179 
8180 void *netdev_lower_dev_get_private(struct net_device *dev,
8181 				   struct net_device *lower_dev)
8182 {
8183 	struct netdev_adjacent *lower;
8184 
8185 	if (!lower_dev)
8186 		return NULL;
8187 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8188 	if (!lower)
8189 		return NULL;
8190 
8191 	return lower->private;
8192 }
8193 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8194 
8195 
8196 /**
8197  * netdev_lower_state_changed - Dispatch event about lower device state change
8198  * @lower_dev: device
8199  * @lower_state_info: state to dispatch
8200  *
8201  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8202  * The caller must hold the RTNL lock.
8203  */
8204 void netdev_lower_state_changed(struct net_device *lower_dev,
8205 				void *lower_state_info)
8206 {
8207 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8208 		.info.dev = lower_dev,
8209 	};
8210 
8211 	ASSERT_RTNL();
8212 	changelowerstate_info.lower_state_info = lower_state_info;
8213 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8214 				      &changelowerstate_info.info);
8215 }
8216 EXPORT_SYMBOL(netdev_lower_state_changed);
8217 
8218 static void dev_change_rx_flags(struct net_device *dev, int flags)
8219 {
8220 	const struct net_device_ops *ops = dev->netdev_ops;
8221 
8222 	if (ops->ndo_change_rx_flags)
8223 		ops->ndo_change_rx_flags(dev, flags);
8224 }
8225 
8226 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8227 {
8228 	unsigned int old_flags = dev->flags;
8229 	kuid_t uid;
8230 	kgid_t gid;
8231 
8232 	ASSERT_RTNL();
8233 
8234 	dev->flags |= IFF_PROMISC;
8235 	dev->promiscuity += inc;
8236 	if (dev->promiscuity == 0) {
8237 		/*
8238 		 * Avoid overflow.
8239 		 * If inc causes overflow, untouch promisc and return error.
8240 		 */
8241 		if (inc < 0)
8242 			dev->flags &= ~IFF_PROMISC;
8243 		else {
8244 			dev->promiscuity -= inc;
8245 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8246 				dev->name);
8247 			return -EOVERFLOW;
8248 		}
8249 	}
8250 	if (dev->flags != old_flags) {
8251 		pr_info("device %s %s promiscuous mode\n",
8252 			dev->name,
8253 			dev->flags & IFF_PROMISC ? "entered" : "left");
8254 		if (audit_enabled) {
8255 			current_uid_gid(&uid, &gid);
8256 			audit_log(audit_context(), GFP_ATOMIC,
8257 				  AUDIT_ANOM_PROMISCUOUS,
8258 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8259 				  dev->name, (dev->flags & IFF_PROMISC),
8260 				  (old_flags & IFF_PROMISC),
8261 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8262 				  from_kuid(&init_user_ns, uid),
8263 				  from_kgid(&init_user_ns, gid),
8264 				  audit_get_sessionid(current));
8265 		}
8266 
8267 		dev_change_rx_flags(dev, IFF_PROMISC);
8268 	}
8269 	if (notify)
8270 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8271 	return 0;
8272 }
8273 
8274 /**
8275  *	dev_set_promiscuity	- update promiscuity count on a device
8276  *	@dev: device
8277  *	@inc: modifier
8278  *
8279  *	Add or remove promiscuity from a device. While the count in the device
8280  *	remains above zero the interface remains promiscuous. Once it hits zero
8281  *	the device reverts back to normal filtering operation. A negative inc
8282  *	value is used to drop promiscuity on the device.
8283  *	Return 0 if successful or a negative errno code on error.
8284  */
8285 int dev_set_promiscuity(struct net_device *dev, int inc)
8286 {
8287 	unsigned int old_flags = dev->flags;
8288 	int err;
8289 
8290 	err = __dev_set_promiscuity(dev, inc, true);
8291 	if (err < 0)
8292 		return err;
8293 	if (dev->flags != old_flags)
8294 		dev_set_rx_mode(dev);
8295 	return err;
8296 }
8297 EXPORT_SYMBOL(dev_set_promiscuity);
8298 
8299 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8300 {
8301 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8302 
8303 	ASSERT_RTNL();
8304 
8305 	dev->flags |= IFF_ALLMULTI;
8306 	dev->allmulti += inc;
8307 	if (dev->allmulti == 0) {
8308 		/*
8309 		 * Avoid overflow.
8310 		 * If inc causes overflow, untouch allmulti and return error.
8311 		 */
8312 		if (inc < 0)
8313 			dev->flags &= ~IFF_ALLMULTI;
8314 		else {
8315 			dev->allmulti -= inc;
8316 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8317 				dev->name);
8318 			return -EOVERFLOW;
8319 		}
8320 	}
8321 	if (dev->flags ^ old_flags) {
8322 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8323 		dev_set_rx_mode(dev);
8324 		if (notify)
8325 			__dev_notify_flags(dev, old_flags,
8326 					   dev->gflags ^ old_gflags);
8327 	}
8328 	return 0;
8329 }
8330 
8331 /**
8332  *	dev_set_allmulti	- update allmulti count on a device
8333  *	@dev: device
8334  *	@inc: modifier
8335  *
8336  *	Add or remove reception of all multicast frames to a device. While the
8337  *	count in the device remains above zero the interface remains listening
8338  *	to all interfaces. Once it hits zero the device reverts back to normal
8339  *	filtering operation. A negative @inc value is used to drop the counter
8340  *	when releasing a resource needing all multicasts.
8341  *	Return 0 if successful or a negative errno code on error.
8342  */
8343 
8344 int dev_set_allmulti(struct net_device *dev, int inc)
8345 {
8346 	return __dev_set_allmulti(dev, inc, true);
8347 }
8348 EXPORT_SYMBOL(dev_set_allmulti);
8349 
8350 /*
8351  *	Upload unicast and multicast address lists to device and
8352  *	configure RX filtering. When the device doesn't support unicast
8353  *	filtering it is put in promiscuous mode while unicast addresses
8354  *	are present.
8355  */
8356 void __dev_set_rx_mode(struct net_device *dev)
8357 {
8358 	const struct net_device_ops *ops = dev->netdev_ops;
8359 
8360 	/* dev_open will call this function so the list will stay sane. */
8361 	if (!(dev->flags&IFF_UP))
8362 		return;
8363 
8364 	if (!netif_device_present(dev))
8365 		return;
8366 
8367 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8368 		/* Unicast addresses changes may only happen under the rtnl,
8369 		 * therefore calling __dev_set_promiscuity here is safe.
8370 		 */
8371 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8372 			__dev_set_promiscuity(dev, 1, false);
8373 			dev->uc_promisc = true;
8374 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8375 			__dev_set_promiscuity(dev, -1, false);
8376 			dev->uc_promisc = false;
8377 		}
8378 	}
8379 
8380 	if (ops->ndo_set_rx_mode)
8381 		ops->ndo_set_rx_mode(dev);
8382 }
8383 
8384 void dev_set_rx_mode(struct net_device *dev)
8385 {
8386 	netif_addr_lock_bh(dev);
8387 	__dev_set_rx_mode(dev);
8388 	netif_addr_unlock_bh(dev);
8389 }
8390 
8391 /**
8392  *	dev_get_flags - get flags reported to userspace
8393  *	@dev: device
8394  *
8395  *	Get the combination of flag bits exported through APIs to userspace.
8396  */
8397 unsigned int dev_get_flags(const struct net_device *dev)
8398 {
8399 	unsigned int flags;
8400 
8401 	flags = (dev->flags & ~(IFF_PROMISC |
8402 				IFF_ALLMULTI |
8403 				IFF_RUNNING |
8404 				IFF_LOWER_UP |
8405 				IFF_DORMANT)) |
8406 		(dev->gflags & (IFF_PROMISC |
8407 				IFF_ALLMULTI));
8408 
8409 	if (netif_running(dev)) {
8410 		if (netif_oper_up(dev))
8411 			flags |= IFF_RUNNING;
8412 		if (netif_carrier_ok(dev))
8413 			flags |= IFF_LOWER_UP;
8414 		if (netif_dormant(dev))
8415 			flags |= IFF_DORMANT;
8416 	}
8417 
8418 	return flags;
8419 }
8420 EXPORT_SYMBOL(dev_get_flags);
8421 
8422 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8423 		       struct netlink_ext_ack *extack)
8424 {
8425 	unsigned int old_flags = dev->flags;
8426 	int ret;
8427 
8428 	ASSERT_RTNL();
8429 
8430 	/*
8431 	 *	Set the flags on our device.
8432 	 */
8433 
8434 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8435 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8436 			       IFF_AUTOMEDIA)) |
8437 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8438 				    IFF_ALLMULTI));
8439 
8440 	/*
8441 	 *	Load in the correct multicast list now the flags have changed.
8442 	 */
8443 
8444 	if ((old_flags ^ flags) & IFF_MULTICAST)
8445 		dev_change_rx_flags(dev, IFF_MULTICAST);
8446 
8447 	dev_set_rx_mode(dev);
8448 
8449 	/*
8450 	 *	Have we downed the interface. We handle IFF_UP ourselves
8451 	 *	according to user attempts to set it, rather than blindly
8452 	 *	setting it.
8453 	 */
8454 
8455 	ret = 0;
8456 	if ((old_flags ^ flags) & IFF_UP) {
8457 		if (old_flags & IFF_UP)
8458 			__dev_close(dev);
8459 		else
8460 			ret = __dev_open(dev, extack);
8461 	}
8462 
8463 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8464 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8465 		unsigned int old_flags = dev->flags;
8466 
8467 		dev->gflags ^= IFF_PROMISC;
8468 
8469 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8470 			if (dev->flags != old_flags)
8471 				dev_set_rx_mode(dev);
8472 	}
8473 
8474 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8475 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8476 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8477 	 */
8478 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8479 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8480 
8481 		dev->gflags ^= IFF_ALLMULTI;
8482 		__dev_set_allmulti(dev, inc, false);
8483 	}
8484 
8485 	return ret;
8486 }
8487 
8488 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8489 			unsigned int gchanges)
8490 {
8491 	unsigned int changes = dev->flags ^ old_flags;
8492 
8493 	if (gchanges)
8494 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8495 
8496 	if (changes & IFF_UP) {
8497 		if (dev->flags & IFF_UP)
8498 			call_netdevice_notifiers(NETDEV_UP, dev);
8499 		else
8500 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8501 	}
8502 
8503 	if (dev->flags & IFF_UP &&
8504 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8505 		struct netdev_notifier_change_info change_info = {
8506 			.info = {
8507 				.dev = dev,
8508 			},
8509 			.flags_changed = changes,
8510 		};
8511 
8512 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8513 	}
8514 }
8515 
8516 /**
8517  *	dev_change_flags - change device settings
8518  *	@dev: device
8519  *	@flags: device state flags
8520  *	@extack: netlink extended ack
8521  *
8522  *	Change settings on device based state flags. The flags are
8523  *	in the userspace exported format.
8524  */
8525 int dev_change_flags(struct net_device *dev, unsigned int flags,
8526 		     struct netlink_ext_ack *extack)
8527 {
8528 	int ret;
8529 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8530 
8531 	ret = __dev_change_flags(dev, flags, extack);
8532 	if (ret < 0)
8533 		return ret;
8534 
8535 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8536 	__dev_notify_flags(dev, old_flags, changes);
8537 	return ret;
8538 }
8539 EXPORT_SYMBOL(dev_change_flags);
8540 
8541 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8542 {
8543 	const struct net_device_ops *ops = dev->netdev_ops;
8544 
8545 	if (ops->ndo_change_mtu)
8546 		return ops->ndo_change_mtu(dev, new_mtu);
8547 
8548 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8549 	WRITE_ONCE(dev->mtu, new_mtu);
8550 	return 0;
8551 }
8552 EXPORT_SYMBOL(__dev_set_mtu);
8553 
8554 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8555 		     struct netlink_ext_ack *extack)
8556 {
8557 	/* MTU must be positive, and in range */
8558 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8559 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8560 		return -EINVAL;
8561 	}
8562 
8563 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8564 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8565 		return -EINVAL;
8566 	}
8567 	return 0;
8568 }
8569 
8570 /**
8571  *	dev_set_mtu_ext - Change maximum transfer unit
8572  *	@dev: device
8573  *	@new_mtu: new transfer unit
8574  *	@extack: netlink extended ack
8575  *
8576  *	Change the maximum transfer size of the network device.
8577  */
8578 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8579 		    struct netlink_ext_ack *extack)
8580 {
8581 	int err, orig_mtu;
8582 
8583 	if (new_mtu == dev->mtu)
8584 		return 0;
8585 
8586 	err = dev_validate_mtu(dev, new_mtu, extack);
8587 	if (err)
8588 		return err;
8589 
8590 	if (!netif_device_present(dev))
8591 		return -ENODEV;
8592 
8593 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8594 	err = notifier_to_errno(err);
8595 	if (err)
8596 		return err;
8597 
8598 	orig_mtu = dev->mtu;
8599 	err = __dev_set_mtu(dev, new_mtu);
8600 
8601 	if (!err) {
8602 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8603 						   orig_mtu);
8604 		err = notifier_to_errno(err);
8605 		if (err) {
8606 			/* setting mtu back and notifying everyone again,
8607 			 * so that they have a chance to revert changes.
8608 			 */
8609 			__dev_set_mtu(dev, orig_mtu);
8610 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8611 						     new_mtu);
8612 		}
8613 	}
8614 	return err;
8615 }
8616 
8617 int dev_set_mtu(struct net_device *dev, int new_mtu)
8618 {
8619 	struct netlink_ext_ack extack;
8620 	int err;
8621 
8622 	memset(&extack, 0, sizeof(extack));
8623 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8624 	if (err && extack._msg)
8625 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8626 	return err;
8627 }
8628 EXPORT_SYMBOL(dev_set_mtu);
8629 
8630 /**
8631  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8632  *	@dev: device
8633  *	@new_len: new tx queue length
8634  */
8635 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8636 {
8637 	unsigned int orig_len = dev->tx_queue_len;
8638 	int res;
8639 
8640 	if (new_len != (unsigned int)new_len)
8641 		return -ERANGE;
8642 
8643 	if (new_len != orig_len) {
8644 		dev->tx_queue_len = new_len;
8645 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8646 		res = notifier_to_errno(res);
8647 		if (res)
8648 			goto err_rollback;
8649 		res = dev_qdisc_change_tx_queue_len(dev);
8650 		if (res)
8651 			goto err_rollback;
8652 	}
8653 
8654 	return 0;
8655 
8656 err_rollback:
8657 	netdev_err(dev, "refused to change device tx_queue_len\n");
8658 	dev->tx_queue_len = orig_len;
8659 	return res;
8660 }
8661 
8662 /**
8663  *	dev_set_group - Change group this device belongs to
8664  *	@dev: device
8665  *	@new_group: group this device should belong to
8666  */
8667 void dev_set_group(struct net_device *dev, int new_group)
8668 {
8669 	dev->group = new_group;
8670 }
8671 EXPORT_SYMBOL(dev_set_group);
8672 
8673 /**
8674  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8675  *	@dev: device
8676  *	@addr: new address
8677  *	@extack: netlink extended ack
8678  */
8679 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8680 			      struct netlink_ext_ack *extack)
8681 {
8682 	struct netdev_notifier_pre_changeaddr_info info = {
8683 		.info.dev = dev,
8684 		.info.extack = extack,
8685 		.dev_addr = addr,
8686 	};
8687 	int rc;
8688 
8689 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8690 	return notifier_to_errno(rc);
8691 }
8692 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8693 
8694 /**
8695  *	dev_set_mac_address - Change Media Access Control Address
8696  *	@dev: device
8697  *	@sa: new address
8698  *	@extack: netlink extended ack
8699  *
8700  *	Change the hardware (MAC) address of the device
8701  */
8702 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8703 			struct netlink_ext_ack *extack)
8704 {
8705 	const struct net_device_ops *ops = dev->netdev_ops;
8706 	int err;
8707 
8708 	if (!ops->ndo_set_mac_address)
8709 		return -EOPNOTSUPP;
8710 	if (sa->sa_family != dev->type)
8711 		return -EINVAL;
8712 	if (!netif_device_present(dev))
8713 		return -ENODEV;
8714 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8715 	if (err)
8716 		return err;
8717 	err = ops->ndo_set_mac_address(dev, sa);
8718 	if (err)
8719 		return err;
8720 	dev->addr_assign_type = NET_ADDR_SET;
8721 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8722 	add_device_randomness(dev->dev_addr, dev->addr_len);
8723 	return 0;
8724 }
8725 EXPORT_SYMBOL(dev_set_mac_address);
8726 
8727 /**
8728  *	dev_change_carrier - Change device carrier
8729  *	@dev: device
8730  *	@new_carrier: new value
8731  *
8732  *	Change device carrier
8733  */
8734 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8735 {
8736 	const struct net_device_ops *ops = dev->netdev_ops;
8737 
8738 	if (!ops->ndo_change_carrier)
8739 		return -EOPNOTSUPP;
8740 	if (!netif_device_present(dev))
8741 		return -ENODEV;
8742 	return ops->ndo_change_carrier(dev, new_carrier);
8743 }
8744 EXPORT_SYMBOL(dev_change_carrier);
8745 
8746 /**
8747  *	dev_get_phys_port_id - Get device physical port ID
8748  *	@dev: device
8749  *	@ppid: port ID
8750  *
8751  *	Get device physical port ID
8752  */
8753 int dev_get_phys_port_id(struct net_device *dev,
8754 			 struct netdev_phys_item_id *ppid)
8755 {
8756 	const struct net_device_ops *ops = dev->netdev_ops;
8757 
8758 	if (!ops->ndo_get_phys_port_id)
8759 		return -EOPNOTSUPP;
8760 	return ops->ndo_get_phys_port_id(dev, ppid);
8761 }
8762 EXPORT_SYMBOL(dev_get_phys_port_id);
8763 
8764 /**
8765  *	dev_get_phys_port_name - Get device physical port name
8766  *	@dev: device
8767  *	@name: port name
8768  *	@len: limit of bytes to copy to name
8769  *
8770  *	Get device physical port name
8771  */
8772 int dev_get_phys_port_name(struct net_device *dev,
8773 			   char *name, size_t len)
8774 {
8775 	const struct net_device_ops *ops = dev->netdev_ops;
8776 	int err;
8777 
8778 	if (ops->ndo_get_phys_port_name) {
8779 		err = ops->ndo_get_phys_port_name(dev, name, len);
8780 		if (err != -EOPNOTSUPP)
8781 			return err;
8782 	}
8783 	return devlink_compat_phys_port_name_get(dev, name, len);
8784 }
8785 EXPORT_SYMBOL(dev_get_phys_port_name);
8786 
8787 /**
8788  *	dev_get_port_parent_id - Get the device's port parent identifier
8789  *	@dev: network device
8790  *	@ppid: pointer to a storage for the port's parent identifier
8791  *	@recurse: allow/disallow recursion to lower devices
8792  *
8793  *	Get the devices's port parent identifier
8794  */
8795 int dev_get_port_parent_id(struct net_device *dev,
8796 			   struct netdev_phys_item_id *ppid,
8797 			   bool recurse)
8798 {
8799 	const struct net_device_ops *ops = dev->netdev_ops;
8800 	struct netdev_phys_item_id first = { };
8801 	struct net_device *lower_dev;
8802 	struct list_head *iter;
8803 	int err;
8804 
8805 	if (ops->ndo_get_port_parent_id) {
8806 		err = ops->ndo_get_port_parent_id(dev, ppid);
8807 		if (err != -EOPNOTSUPP)
8808 			return err;
8809 	}
8810 
8811 	err = devlink_compat_switch_id_get(dev, ppid);
8812 	if (!err || err != -EOPNOTSUPP)
8813 		return err;
8814 
8815 	if (!recurse)
8816 		return -EOPNOTSUPP;
8817 
8818 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8819 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8820 		if (err)
8821 			break;
8822 		if (!first.id_len)
8823 			first = *ppid;
8824 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8825 			return -EOPNOTSUPP;
8826 	}
8827 
8828 	return err;
8829 }
8830 EXPORT_SYMBOL(dev_get_port_parent_id);
8831 
8832 /**
8833  *	netdev_port_same_parent_id - Indicate if two network devices have
8834  *	the same port parent identifier
8835  *	@a: first network device
8836  *	@b: second network device
8837  */
8838 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8839 {
8840 	struct netdev_phys_item_id a_id = { };
8841 	struct netdev_phys_item_id b_id = { };
8842 
8843 	if (dev_get_port_parent_id(a, &a_id, true) ||
8844 	    dev_get_port_parent_id(b, &b_id, true))
8845 		return false;
8846 
8847 	return netdev_phys_item_id_same(&a_id, &b_id);
8848 }
8849 EXPORT_SYMBOL(netdev_port_same_parent_id);
8850 
8851 /**
8852  *	dev_change_proto_down - update protocol port state information
8853  *	@dev: device
8854  *	@proto_down: new value
8855  *
8856  *	This info can be used by switch drivers to set the phys state of the
8857  *	port.
8858  */
8859 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8860 {
8861 	const struct net_device_ops *ops = dev->netdev_ops;
8862 
8863 	if (!ops->ndo_change_proto_down)
8864 		return -EOPNOTSUPP;
8865 	if (!netif_device_present(dev))
8866 		return -ENODEV;
8867 	return ops->ndo_change_proto_down(dev, proto_down);
8868 }
8869 EXPORT_SYMBOL(dev_change_proto_down);
8870 
8871 /**
8872  *	dev_change_proto_down_generic - generic implementation for
8873  * 	ndo_change_proto_down that sets carrier according to
8874  * 	proto_down.
8875  *
8876  *	@dev: device
8877  *	@proto_down: new value
8878  */
8879 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8880 {
8881 	if (proto_down)
8882 		netif_carrier_off(dev);
8883 	else
8884 		netif_carrier_on(dev);
8885 	dev->proto_down = proto_down;
8886 	return 0;
8887 }
8888 EXPORT_SYMBOL(dev_change_proto_down_generic);
8889 
8890 /**
8891  *	dev_change_proto_down_reason - proto down reason
8892  *
8893  *	@dev: device
8894  *	@mask: proto down mask
8895  *	@value: proto down value
8896  */
8897 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8898 				  u32 value)
8899 {
8900 	int b;
8901 
8902 	if (!mask) {
8903 		dev->proto_down_reason = value;
8904 	} else {
8905 		for_each_set_bit(b, &mask, 32) {
8906 			if (value & (1 << b))
8907 				dev->proto_down_reason |= BIT(b);
8908 			else
8909 				dev->proto_down_reason &= ~BIT(b);
8910 		}
8911 	}
8912 }
8913 EXPORT_SYMBOL(dev_change_proto_down_reason);
8914 
8915 struct bpf_xdp_link {
8916 	struct bpf_link link;
8917 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8918 	int flags;
8919 };
8920 
8921 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8922 {
8923 	if (flags & XDP_FLAGS_HW_MODE)
8924 		return XDP_MODE_HW;
8925 	if (flags & XDP_FLAGS_DRV_MODE)
8926 		return XDP_MODE_DRV;
8927 	if (flags & XDP_FLAGS_SKB_MODE)
8928 		return XDP_MODE_SKB;
8929 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8930 }
8931 
8932 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8933 {
8934 	switch (mode) {
8935 	case XDP_MODE_SKB:
8936 		return generic_xdp_install;
8937 	case XDP_MODE_DRV:
8938 	case XDP_MODE_HW:
8939 		return dev->netdev_ops->ndo_bpf;
8940 	default:
8941 		return NULL;
8942 	}
8943 }
8944 
8945 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8946 					 enum bpf_xdp_mode mode)
8947 {
8948 	return dev->xdp_state[mode].link;
8949 }
8950 
8951 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8952 				     enum bpf_xdp_mode mode)
8953 {
8954 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8955 
8956 	if (link)
8957 		return link->link.prog;
8958 	return dev->xdp_state[mode].prog;
8959 }
8960 
8961 static u8 dev_xdp_prog_count(struct net_device *dev)
8962 {
8963 	u8 count = 0;
8964 	int i;
8965 
8966 	for (i = 0; i < __MAX_XDP_MODE; i++)
8967 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8968 			count++;
8969 	return count;
8970 }
8971 
8972 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8973 {
8974 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8975 
8976 	return prog ? prog->aux->id : 0;
8977 }
8978 
8979 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8980 			     struct bpf_xdp_link *link)
8981 {
8982 	dev->xdp_state[mode].link = link;
8983 	dev->xdp_state[mode].prog = NULL;
8984 }
8985 
8986 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8987 			     struct bpf_prog *prog)
8988 {
8989 	dev->xdp_state[mode].link = NULL;
8990 	dev->xdp_state[mode].prog = prog;
8991 }
8992 
8993 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8994 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8995 			   u32 flags, struct bpf_prog *prog)
8996 {
8997 	struct netdev_bpf xdp;
8998 	int err;
8999 
9000 	memset(&xdp, 0, sizeof(xdp));
9001 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9002 	xdp.extack = extack;
9003 	xdp.flags = flags;
9004 	xdp.prog = prog;
9005 
9006 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9007 	 * "moved" into driver), so they don't increment it on their own, but
9008 	 * they do decrement refcnt when program is detached or replaced.
9009 	 * Given net_device also owns link/prog, we need to bump refcnt here
9010 	 * to prevent drivers from underflowing it.
9011 	 */
9012 	if (prog)
9013 		bpf_prog_inc(prog);
9014 	err = bpf_op(dev, &xdp);
9015 	if (err) {
9016 		if (prog)
9017 			bpf_prog_put(prog);
9018 		return err;
9019 	}
9020 
9021 	if (mode != XDP_MODE_HW)
9022 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9023 
9024 	return 0;
9025 }
9026 
9027 static void dev_xdp_uninstall(struct net_device *dev)
9028 {
9029 	struct bpf_xdp_link *link;
9030 	struct bpf_prog *prog;
9031 	enum bpf_xdp_mode mode;
9032 	bpf_op_t bpf_op;
9033 
9034 	ASSERT_RTNL();
9035 
9036 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9037 		prog = dev_xdp_prog(dev, mode);
9038 		if (!prog)
9039 			continue;
9040 
9041 		bpf_op = dev_xdp_bpf_op(dev, mode);
9042 		if (!bpf_op)
9043 			continue;
9044 
9045 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9046 
9047 		/* auto-detach link from net device */
9048 		link = dev_xdp_link(dev, mode);
9049 		if (link)
9050 			link->dev = NULL;
9051 		else
9052 			bpf_prog_put(prog);
9053 
9054 		dev_xdp_set_link(dev, mode, NULL);
9055 	}
9056 }
9057 
9058 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9059 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9060 			  struct bpf_prog *old_prog, u32 flags)
9061 {
9062 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9063 	struct bpf_prog *cur_prog;
9064 	enum bpf_xdp_mode mode;
9065 	bpf_op_t bpf_op;
9066 	int err;
9067 
9068 	ASSERT_RTNL();
9069 
9070 	/* either link or prog attachment, never both */
9071 	if (link && (new_prog || old_prog))
9072 		return -EINVAL;
9073 	/* link supports only XDP mode flags */
9074 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9075 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9076 		return -EINVAL;
9077 	}
9078 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9079 	if (num_modes > 1) {
9080 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9081 		return -EINVAL;
9082 	}
9083 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9084 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9085 		NL_SET_ERR_MSG(extack,
9086 			       "More than one program loaded, unset mode is ambiguous");
9087 		return -EINVAL;
9088 	}
9089 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9090 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9091 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9092 		return -EINVAL;
9093 	}
9094 
9095 	mode = dev_xdp_mode(dev, flags);
9096 	/* can't replace attached link */
9097 	if (dev_xdp_link(dev, mode)) {
9098 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9099 		return -EBUSY;
9100 	}
9101 
9102 	cur_prog = dev_xdp_prog(dev, mode);
9103 	/* can't replace attached prog with link */
9104 	if (link && cur_prog) {
9105 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9106 		return -EBUSY;
9107 	}
9108 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9109 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9110 		return -EEXIST;
9111 	}
9112 
9113 	/* put effective new program into new_prog */
9114 	if (link)
9115 		new_prog = link->link.prog;
9116 
9117 	if (new_prog) {
9118 		bool offload = mode == XDP_MODE_HW;
9119 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9120 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9121 
9122 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9123 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9124 			return -EBUSY;
9125 		}
9126 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9127 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9128 			return -EEXIST;
9129 		}
9130 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9131 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9132 			return -EINVAL;
9133 		}
9134 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9135 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9136 			return -EINVAL;
9137 		}
9138 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9139 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9140 			return -EINVAL;
9141 		}
9142 	}
9143 
9144 	/* don't call drivers if the effective program didn't change */
9145 	if (new_prog != cur_prog) {
9146 		bpf_op = dev_xdp_bpf_op(dev, mode);
9147 		if (!bpf_op) {
9148 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9149 			return -EOPNOTSUPP;
9150 		}
9151 
9152 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9153 		if (err)
9154 			return err;
9155 	}
9156 
9157 	if (link)
9158 		dev_xdp_set_link(dev, mode, link);
9159 	else
9160 		dev_xdp_set_prog(dev, mode, new_prog);
9161 	if (cur_prog)
9162 		bpf_prog_put(cur_prog);
9163 
9164 	return 0;
9165 }
9166 
9167 static int dev_xdp_attach_link(struct net_device *dev,
9168 			       struct netlink_ext_ack *extack,
9169 			       struct bpf_xdp_link *link)
9170 {
9171 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9172 }
9173 
9174 static int dev_xdp_detach_link(struct net_device *dev,
9175 			       struct netlink_ext_ack *extack,
9176 			       struct bpf_xdp_link *link)
9177 {
9178 	enum bpf_xdp_mode mode;
9179 	bpf_op_t bpf_op;
9180 
9181 	ASSERT_RTNL();
9182 
9183 	mode = dev_xdp_mode(dev, link->flags);
9184 	if (dev_xdp_link(dev, mode) != link)
9185 		return -EINVAL;
9186 
9187 	bpf_op = dev_xdp_bpf_op(dev, mode);
9188 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9189 	dev_xdp_set_link(dev, mode, NULL);
9190 	return 0;
9191 }
9192 
9193 static void bpf_xdp_link_release(struct bpf_link *link)
9194 {
9195 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9196 
9197 	rtnl_lock();
9198 
9199 	/* if racing with net_device's tear down, xdp_link->dev might be
9200 	 * already NULL, in which case link was already auto-detached
9201 	 */
9202 	if (xdp_link->dev) {
9203 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9204 		xdp_link->dev = NULL;
9205 	}
9206 
9207 	rtnl_unlock();
9208 }
9209 
9210 static int bpf_xdp_link_detach(struct bpf_link *link)
9211 {
9212 	bpf_xdp_link_release(link);
9213 	return 0;
9214 }
9215 
9216 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9217 {
9218 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9219 
9220 	kfree(xdp_link);
9221 }
9222 
9223 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9224 				     struct seq_file *seq)
9225 {
9226 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9227 	u32 ifindex = 0;
9228 
9229 	rtnl_lock();
9230 	if (xdp_link->dev)
9231 		ifindex = xdp_link->dev->ifindex;
9232 	rtnl_unlock();
9233 
9234 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9235 }
9236 
9237 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9238 				       struct bpf_link_info *info)
9239 {
9240 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9241 	u32 ifindex = 0;
9242 
9243 	rtnl_lock();
9244 	if (xdp_link->dev)
9245 		ifindex = xdp_link->dev->ifindex;
9246 	rtnl_unlock();
9247 
9248 	info->xdp.ifindex = ifindex;
9249 	return 0;
9250 }
9251 
9252 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9253 			       struct bpf_prog *old_prog)
9254 {
9255 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9256 	enum bpf_xdp_mode mode;
9257 	bpf_op_t bpf_op;
9258 	int err = 0;
9259 
9260 	rtnl_lock();
9261 
9262 	/* link might have been auto-released already, so fail */
9263 	if (!xdp_link->dev) {
9264 		err = -ENOLINK;
9265 		goto out_unlock;
9266 	}
9267 
9268 	if (old_prog && link->prog != old_prog) {
9269 		err = -EPERM;
9270 		goto out_unlock;
9271 	}
9272 	old_prog = link->prog;
9273 	if (old_prog == new_prog) {
9274 		/* no-op, don't disturb drivers */
9275 		bpf_prog_put(new_prog);
9276 		goto out_unlock;
9277 	}
9278 
9279 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9280 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9281 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9282 			      xdp_link->flags, new_prog);
9283 	if (err)
9284 		goto out_unlock;
9285 
9286 	old_prog = xchg(&link->prog, new_prog);
9287 	bpf_prog_put(old_prog);
9288 
9289 out_unlock:
9290 	rtnl_unlock();
9291 	return err;
9292 }
9293 
9294 static const struct bpf_link_ops bpf_xdp_link_lops = {
9295 	.release = bpf_xdp_link_release,
9296 	.dealloc = bpf_xdp_link_dealloc,
9297 	.detach = bpf_xdp_link_detach,
9298 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9299 	.fill_link_info = bpf_xdp_link_fill_link_info,
9300 	.update_prog = bpf_xdp_link_update,
9301 };
9302 
9303 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9304 {
9305 	struct net *net = current->nsproxy->net_ns;
9306 	struct bpf_link_primer link_primer;
9307 	struct bpf_xdp_link *link;
9308 	struct net_device *dev;
9309 	int err, fd;
9310 
9311 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9312 	if (!dev)
9313 		return -EINVAL;
9314 
9315 	link = kzalloc(sizeof(*link), GFP_USER);
9316 	if (!link) {
9317 		err = -ENOMEM;
9318 		goto out_put_dev;
9319 	}
9320 
9321 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9322 	link->dev = dev;
9323 	link->flags = attr->link_create.flags;
9324 
9325 	err = bpf_link_prime(&link->link, &link_primer);
9326 	if (err) {
9327 		kfree(link);
9328 		goto out_put_dev;
9329 	}
9330 
9331 	rtnl_lock();
9332 	err = dev_xdp_attach_link(dev, NULL, link);
9333 	rtnl_unlock();
9334 
9335 	if (err) {
9336 		bpf_link_cleanup(&link_primer);
9337 		goto out_put_dev;
9338 	}
9339 
9340 	fd = bpf_link_settle(&link_primer);
9341 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9342 	dev_put(dev);
9343 	return fd;
9344 
9345 out_put_dev:
9346 	dev_put(dev);
9347 	return err;
9348 }
9349 
9350 /**
9351  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9352  *	@dev: device
9353  *	@extack: netlink extended ack
9354  *	@fd: new program fd or negative value to clear
9355  *	@expected_fd: old program fd that userspace expects to replace or clear
9356  *	@flags: xdp-related flags
9357  *
9358  *	Set or clear a bpf program for a device
9359  */
9360 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9361 		      int fd, int expected_fd, u32 flags)
9362 {
9363 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9364 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9365 	int err;
9366 
9367 	ASSERT_RTNL();
9368 
9369 	if (fd >= 0) {
9370 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9371 						 mode != XDP_MODE_SKB);
9372 		if (IS_ERR(new_prog))
9373 			return PTR_ERR(new_prog);
9374 	}
9375 
9376 	if (expected_fd >= 0) {
9377 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9378 						 mode != XDP_MODE_SKB);
9379 		if (IS_ERR(old_prog)) {
9380 			err = PTR_ERR(old_prog);
9381 			old_prog = NULL;
9382 			goto err_out;
9383 		}
9384 	}
9385 
9386 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9387 
9388 err_out:
9389 	if (err && new_prog)
9390 		bpf_prog_put(new_prog);
9391 	if (old_prog)
9392 		bpf_prog_put(old_prog);
9393 	return err;
9394 }
9395 
9396 /**
9397  *	dev_new_index	-	allocate an ifindex
9398  *	@net: the applicable net namespace
9399  *
9400  *	Returns a suitable unique value for a new device interface
9401  *	number.  The caller must hold the rtnl semaphore or the
9402  *	dev_base_lock to be sure it remains unique.
9403  */
9404 static int dev_new_index(struct net *net)
9405 {
9406 	int ifindex = net->ifindex;
9407 
9408 	for (;;) {
9409 		if (++ifindex <= 0)
9410 			ifindex = 1;
9411 		if (!__dev_get_by_index(net, ifindex))
9412 			return net->ifindex = ifindex;
9413 	}
9414 }
9415 
9416 /* Delayed registration/unregisteration */
9417 static LIST_HEAD(net_todo_list);
9418 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9419 
9420 static void net_set_todo(struct net_device *dev)
9421 {
9422 	list_add_tail(&dev->todo_list, &net_todo_list);
9423 	dev_net(dev)->dev_unreg_count++;
9424 }
9425 
9426 static void rollback_registered_many(struct list_head *head)
9427 {
9428 	struct net_device *dev, *tmp;
9429 	LIST_HEAD(close_head);
9430 
9431 	BUG_ON(dev_boot_phase);
9432 	ASSERT_RTNL();
9433 
9434 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9435 		/* Some devices call without registering
9436 		 * for initialization unwind. Remove those
9437 		 * devices and proceed with the remaining.
9438 		 */
9439 		if (dev->reg_state == NETREG_UNINITIALIZED) {
9440 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9441 				 dev->name, dev);
9442 
9443 			WARN_ON(1);
9444 			list_del(&dev->unreg_list);
9445 			continue;
9446 		}
9447 		dev->dismantle = true;
9448 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
9449 	}
9450 
9451 	/* If device is running, close it first. */
9452 	list_for_each_entry(dev, head, unreg_list)
9453 		list_add_tail(&dev->close_list, &close_head);
9454 	dev_close_many(&close_head, true);
9455 
9456 	list_for_each_entry(dev, head, unreg_list) {
9457 		/* And unlink it from device chain. */
9458 		unlist_netdevice(dev);
9459 
9460 		dev->reg_state = NETREG_UNREGISTERING;
9461 	}
9462 	flush_all_backlogs();
9463 
9464 	synchronize_net();
9465 
9466 	list_for_each_entry(dev, head, unreg_list) {
9467 		struct sk_buff *skb = NULL;
9468 
9469 		/* Shutdown queueing discipline. */
9470 		dev_shutdown(dev);
9471 
9472 		dev_xdp_uninstall(dev);
9473 
9474 		/* Notify protocols, that we are about to destroy
9475 		 * this device. They should clean all the things.
9476 		 */
9477 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9478 
9479 		if (!dev->rtnl_link_ops ||
9480 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9481 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9482 						     GFP_KERNEL, NULL, 0);
9483 
9484 		/*
9485 		 *	Flush the unicast and multicast chains
9486 		 */
9487 		dev_uc_flush(dev);
9488 		dev_mc_flush(dev);
9489 
9490 		netdev_name_node_alt_flush(dev);
9491 		netdev_name_node_free(dev->name_node);
9492 
9493 		if (dev->netdev_ops->ndo_uninit)
9494 			dev->netdev_ops->ndo_uninit(dev);
9495 
9496 		if (skb)
9497 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9498 
9499 		/* Notifier chain MUST detach us all upper devices. */
9500 		WARN_ON(netdev_has_any_upper_dev(dev));
9501 		WARN_ON(netdev_has_any_lower_dev(dev));
9502 
9503 		/* Remove entries from kobject tree */
9504 		netdev_unregister_kobject(dev);
9505 #ifdef CONFIG_XPS
9506 		/* Remove XPS queueing entries */
9507 		netif_reset_xps_queues_gt(dev, 0);
9508 #endif
9509 	}
9510 
9511 	synchronize_net();
9512 
9513 	list_for_each_entry(dev, head, unreg_list)
9514 		dev_put(dev);
9515 }
9516 
9517 static void rollback_registered(struct net_device *dev)
9518 {
9519 	LIST_HEAD(single);
9520 
9521 	list_add(&dev->unreg_list, &single);
9522 	rollback_registered_many(&single);
9523 	list_del(&single);
9524 }
9525 
9526 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9527 	struct net_device *upper, netdev_features_t features)
9528 {
9529 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9530 	netdev_features_t feature;
9531 	int feature_bit;
9532 
9533 	for_each_netdev_feature(upper_disables, feature_bit) {
9534 		feature = __NETIF_F_BIT(feature_bit);
9535 		if (!(upper->wanted_features & feature)
9536 		    && (features & feature)) {
9537 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9538 				   &feature, upper->name);
9539 			features &= ~feature;
9540 		}
9541 	}
9542 
9543 	return features;
9544 }
9545 
9546 static void netdev_sync_lower_features(struct net_device *upper,
9547 	struct net_device *lower, netdev_features_t features)
9548 {
9549 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9550 	netdev_features_t feature;
9551 	int feature_bit;
9552 
9553 	for_each_netdev_feature(upper_disables, feature_bit) {
9554 		feature = __NETIF_F_BIT(feature_bit);
9555 		if (!(features & feature) && (lower->features & feature)) {
9556 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9557 				   &feature, lower->name);
9558 			lower->wanted_features &= ~feature;
9559 			__netdev_update_features(lower);
9560 
9561 			if (unlikely(lower->features & feature))
9562 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9563 					    &feature, lower->name);
9564 			else
9565 				netdev_features_change(lower);
9566 		}
9567 	}
9568 }
9569 
9570 static netdev_features_t netdev_fix_features(struct net_device *dev,
9571 	netdev_features_t features)
9572 {
9573 	/* Fix illegal checksum combinations */
9574 	if ((features & NETIF_F_HW_CSUM) &&
9575 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9576 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9577 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9578 	}
9579 
9580 	/* TSO requires that SG is present as well. */
9581 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9582 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9583 		features &= ~NETIF_F_ALL_TSO;
9584 	}
9585 
9586 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9587 					!(features & NETIF_F_IP_CSUM)) {
9588 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9589 		features &= ~NETIF_F_TSO;
9590 		features &= ~NETIF_F_TSO_ECN;
9591 	}
9592 
9593 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9594 					 !(features & NETIF_F_IPV6_CSUM)) {
9595 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9596 		features &= ~NETIF_F_TSO6;
9597 	}
9598 
9599 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9600 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9601 		features &= ~NETIF_F_TSO_MANGLEID;
9602 
9603 	/* TSO ECN requires that TSO is present as well. */
9604 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9605 		features &= ~NETIF_F_TSO_ECN;
9606 
9607 	/* Software GSO depends on SG. */
9608 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9609 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9610 		features &= ~NETIF_F_GSO;
9611 	}
9612 
9613 	/* GSO partial features require GSO partial be set */
9614 	if ((features & dev->gso_partial_features) &&
9615 	    !(features & NETIF_F_GSO_PARTIAL)) {
9616 		netdev_dbg(dev,
9617 			   "Dropping partially supported GSO features since no GSO partial.\n");
9618 		features &= ~dev->gso_partial_features;
9619 	}
9620 
9621 	if (!(features & NETIF_F_RXCSUM)) {
9622 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9623 		 * successfully merged by hardware must also have the
9624 		 * checksum verified by hardware.  If the user does not
9625 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9626 		 */
9627 		if (features & NETIF_F_GRO_HW) {
9628 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9629 			features &= ~NETIF_F_GRO_HW;
9630 		}
9631 	}
9632 
9633 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9634 	if (features & NETIF_F_RXFCS) {
9635 		if (features & NETIF_F_LRO) {
9636 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9637 			features &= ~NETIF_F_LRO;
9638 		}
9639 
9640 		if (features & NETIF_F_GRO_HW) {
9641 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9642 			features &= ~NETIF_F_GRO_HW;
9643 		}
9644 	}
9645 
9646 	if ((features & NETIF_F_HW_TLS_TX) && !(features & NETIF_F_HW_CSUM)) {
9647 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9648 		features &= ~NETIF_F_HW_TLS_TX;
9649 	}
9650 
9651 	return features;
9652 }
9653 
9654 int __netdev_update_features(struct net_device *dev)
9655 {
9656 	struct net_device *upper, *lower;
9657 	netdev_features_t features;
9658 	struct list_head *iter;
9659 	int err = -1;
9660 
9661 	ASSERT_RTNL();
9662 
9663 	features = netdev_get_wanted_features(dev);
9664 
9665 	if (dev->netdev_ops->ndo_fix_features)
9666 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9667 
9668 	/* driver might be less strict about feature dependencies */
9669 	features = netdev_fix_features(dev, features);
9670 
9671 	/* some features can't be enabled if they're off on an upper device */
9672 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9673 		features = netdev_sync_upper_features(dev, upper, features);
9674 
9675 	if (dev->features == features)
9676 		goto sync_lower;
9677 
9678 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9679 		&dev->features, &features);
9680 
9681 	if (dev->netdev_ops->ndo_set_features)
9682 		err = dev->netdev_ops->ndo_set_features(dev, features);
9683 	else
9684 		err = 0;
9685 
9686 	if (unlikely(err < 0)) {
9687 		netdev_err(dev,
9688 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9689 			err, &features, &dev->features);
9690 		/* return non-0 since some features might have changed and
9691 		 * it's better to fire a spurious notification than miss it
9692 		 */
9693 		return -1;
9694 	}
9695 
9696 sync_lower:
9697 	/* some features must be disabled on lower devices when disabled
9698 	 * on an upper device (think: bonding master or bridge)
9699 	 */
9700 	netdev_for_each_lower_dev(dev, lower, iter)
9701 		netdev_sync_lower_features(dev, lower, features);
9702 
9703 	if (!err) {
9704 		netdev_features_t diff = features ^ dev->features;
9705 
9706 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9707 			/* udp_tunnel_{get,drop}_rx_info both need
9708 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9709 			 * device, or they won't do anything.
9710 			 * Thus we need to update dev->features
9711 			 * *before* calling udp_tunnel_get_rx_info,
9712 			 * but *after* calling udp_tunnel_drop_rx_info.
9713 			 */
9714 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9715 				dev->features = features;
9716 				udp_tunnel_get_rx_info(dev);
9717 			} else {
9718 				udp_tunnel_drop_rx_info(dev);
9719 			}
9720 		}
9721 
9722 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9723 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9724 				dev->features = features;
9725 				err |= vlan_get_rx_ctag_filter_info(dev);
9726 			} else {
9727 				vlan_drop_rx_ctag_filter_info(dev);
9728 			}
9729 		}
9730 
9731 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9732 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9733 				dev->features = features;
9734 				err |= vlan_get_rx_stag_filter_info(dev);
9735 			} else {
9736 				vlan_drop_rx_stag_filter_info(dev);
9737 			}
9738 		}
9739 
9740 		dev->features = features;
9741 	}
9742 
9743 	return err < 0 ? 0 : 1;
9744 }
9745 
9746 /**
9747  *	netdev_update_features - recalculate device features
9748  *	@dev: the device to check
9749  *
9750  *	Recalculate dev->features set and send notifications if it
9751  *	has changed. Should be called after driver or hardware dependent
9752  *	conditions might have changed that influence the features.
9753  */
9754 void netdev_update_features(struct net_device *dev)
9755 {
9756 	if (__netdev_update_features(dev))
9757 		netdev_features_change(dev);
9758 }
9759 EXPORT_SYMBOL(netdev_update_features);
9760 
9761 /**
9762  *	netdev_change_features - recalculate device features
9763  *	@dev: the device to check
9764  *
9765  *	Recalculate dev->features set and send notifications even
9766  *	if they have not changed. Should be called instead of
9767  *	netdev_update_features() if also dev->vlan_features might
9768  *	have changed to allow the changes to be propagated to stacked
9769  *	VLAN devices.
9770  */
9771 void netdev_change_features(struct net_device *dev)
9772 {
9773 	__netdev_update_features(dev);
9774 	netdev_features_change(dev);
9775 }
9776 EXPORT_SYMBOL(netdev_change_features);
9777 
9778 /**
9779  *	netif_stacked_transfer_operstate -	transfer operstate
9780  *	@rootdev: the root or lower level device to transfer state from
9781  *	@dev: the device to transfer operstate to
9782  *
9783  *	Transfer operational state from root to device. This is normally
9784  *	called when a stacking relationship exists between the root
9785  *	device and the device(a leaf device).
9786  */
9787 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9788 					struct net_device *dev)
9789 {
9790 	if (rootdev->operstate == IF_OPER_DORMANT)
9791 		netif_dormant_on(dev);
9792 	else
9793 		netif_dormant_off(dev);
9794 
9795 	if (rootdev->operstate == IF_OPER_TESTING)
9796 		netif_testing_on(dev);
9797 	else
9798 		netif_testing_off(dev);
9799 
9800 	if (netif_carrier_ok(rootdev))
9801 		netif_carrier_on(dev);
9802 	else
9803 		netif_carrier_off(dev);
9804 }
9805 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9806 
9807 static int netif_alloc_rx_queues(struct net_device *dev)
9808 {
9809 	unsigned int i, count = dev->num_rx_queues;
9810 	struct netdev_rx_queue *rx;
9811 	size_t sz = count * sizeof(*rx);
9812 	int err = 0;
9813 
9814 	BUG_ON(count < 1);
9815 
9816 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9817 	if (!rx)
9818 		return -ENOMEM;
9819 
9820 	dev->_rx = rx;
9821 
9822 	for (i = 0; i < count; i++) {
9823 		rx[i].dev = dev;
9824 
9825 		/* XDP RX-queue setup */
9826 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9827 		if (err < 0)
9828 			goto err_rxq_info;
9829 	}
9830 	return 0;
9831 
9832 err_rxq_info:
9833 	/* Rollback successful reg's and free other resources */
9834 	while (i--)
9835 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9836 	kvfree(dev->_rx);
9837 	dev->_rx = NULL;
9838 	return err;
9839 }
9840 
9841 static void netif_free_rx_queues(struct net_device *dev)
9842 {
9843 	unsigned int i, count = dev->num_rx_queues;
9844 
9845 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9846 	if (!dev->_rx)
9847 		return;
9848 
9849 	for (i = 0; i < count; i++)
9850 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9851 
9852 	kvfree(dev->_rx);
9853 }
9854 
9855 static void netdev_init_one_queue(struct net_device *dev,
9856 				  struct netdev_queue *queue, void *_unused)
9857 {
9858 	/* Initialize queue lock */
9859 	spin_lock_init(&queue->_xmit_lock);
9860 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9861 	queue->xmit_lock_owner = -1;
9862 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9863 	queue->dev = dev;
9864 #ifdef CONFIG_BQL
9865 	dql_init(&queue->dql, HZ);
9866 #endif
9867 }
9868 
9869 static void netif_free_tx_queues(struct net_device *dev)
9870 {
9871 	kvfree(dev->_tx);
9872 }
9873 
9874 static int netif_alloc_netdev_queues(struct net_device *dev)
9875 {
9876 	unsigned int count = dev->num_tx_queues;
9877 	struct netdev_queue *tx;
9878 	size_t sz = count * sizeof(*tx);
9879 
9880 	if (count < 1 || count > 0xffff)
9881 		return -EINVAL;
9882 
9883 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9884 	if (!tx)
9885 		return -ENOMEM;
9886 
9887 	dev->_tx = tx;
9888 
9889 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9890 	spin_lock_init(&dev->tx_global_lock);
9891 
9892 	return 0;
9893 }
9894 
9895 void netif_tx_stop_all_queues(struct net_device *dev)
9896 {
9897 	unsigned int i;
9898 
9899 	for (i = 0; i < dev->num_tx_queues; i++) {
9900 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9901 
9902 		netif_tx_stop_queue(txq);
9903 	}
9904 }
9905 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9906 
9907 /**
9908  *	register_netdevice	- register a network device
9909  *	@dev: device to register
9910  *
9911  *	Take a completed network device structure and add it to the kernel
9912  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9913  *	chain. 0 is returned on success. A negative errno code is returned
9914  *	on a failure to set up the device, or if the name is a duplicate.
9915  *
9916  *	Callers must hold the rtnl semaphore. You may want
9917  *	register_netdev() instead of this.
9918  *
9919  *	BUGS:
9920  *	The locking appears insufficient to guarantee two parallel registers
9921  *	will not get the same name.
9922  */
9923 
9924 int register_netdevice(struct net_device *dev)
9925 {
9926 	int ret;
9927 	struct net *net = dev_net(dev);
9928 
9929 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9930 		     NETDEV_FEATURE_COUNT);
9931 	BUG_ON(dev_boot_phase);
9932 	ASSERT_RTNL();
9933 
9934 	might_sleep();
9935 
9936 	/* When net_device's are persistent, this will be fatal. */
9937 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9938 	BUG_ON(!net);
9939 
9940 	ret = ethtool_check_ops(dev->ethtool_ops);
9941 	if (ret)
9942 		return ret;
9943 
9944 	spin_lock_init(&dev->addr_list_lock);
9945 	netdev_set_addr_lockdep_class(dev);
9946 
9947 	ret = dev_get_valid_name(net, dev, dev->name);
9948 	if (ret < 0)
9949 		goto out;
9950 
9951 	ret = -ENOMEM;
9952 	dev->name_node = netdev_name_node_head_alloc(dev);
9953 	if (!dev->name_node)
9954 		goto out;
9955 
9956 	/* Init, if this function is available */
9957 	if (dev->netdev_ops->ndo_init) {
9958 		ret = dev->netdev_ops->ndo_init(dev);
9959 		if (ret) {
9960 			if (ret > 0)
9961 				ret = -EIO;
9962 			goto err_free_name;
9963 		}
9964 	}
9965 
9966 	if (((dev->hw_features | dev->features) &
9967 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9968 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9969 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9970 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9971 		ret = -EINVAL;
9972 		goto err_uninit;
9973 	}
9974 
9975 	ret = -EBUSY;
9976 	if (!dev->ifindex)
9977 		dev->ifindex = dev_new_index(net);
9978 	else if (__dev_get_by_index(net, dev->ifindex))
9979 		goto err_uninit;
9980 
9981 	/* Transfer changeable features to wanted_features and enable
9982 	 * software offloads (GSO and GRO).
9983 	 */
9984 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9985 	dev->features |= NETIF_F_SOFT_FEATURES;
9986 
9987 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
9988 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9989 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9990 	}
9991 
9992 	dev->wanted_features = dev->features & dev->hw_features;
9993 
9994 	if (!(dev->flags & IFF_LOOPBACK))
9995 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9996 
9997 	/* If IPv4 TCP segmentation offload is supported we should also
9998 	 * allow the device to enable segmenting the frame with the option
9999 	 * of ignoring a static IP ID value.  This doesn't enable the
10000 	 * feature itself but allows the user to enable it later.
10001 	 */
10002 	if (dev->hw_features & NETIF_F_TSO)
10003 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10004 	if (dev->vlan_features & NETIF_F_TSO)
10005 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10006 	if (dev->mpls_features & NETIF_F_TSO)
10007 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10008 	if (dev->hw_enc_features & NETIF_F_TSO)
10009 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10010 
10011 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10012 	 */
10013 	dev->vlan_features |= NETIF_F_HIGHDMA;
10014 
10015 	/* Make NETIF_F_SG inheritable to tunnel devices.
10016 	 */
10017 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10018 
10019 	/* Make NETIF_F_SG inheritable to MPLS.
10020 	 */
10021 	dev->mpls_features |= NETIF_F_SG;
10022 
10023 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10024 	ret = notifier_to_errno(ret);
10025 	if (ret)
10026 		goto err_uninit;
10027 
10028 	ret = netdev_register_kobject(dev);
10029 	if (ret) {
10030 		dev->reg_state = NETREG_UNREGISTERED;
10031 		goto err_uninit;
10032 	}
10033 	dev->reg_state = NETREG_REGISTERED;
10034 
10035 	__netdev_update_features(dev);
10036 
10037 	/*
10038 	 *	Default initial state at registry is that the
10039 	 *	device is present.
10040 	 */
10041 
10042 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10043 
10044 	linkwatch_init_dev(dev);
10045 
10046 	dev_init_scheduler(dev);
10047 	dev_hold(dev);
10048 	list_netdevice(dev);
10049 	add_device_randomness(dev->dev_addr, dev->addr_len);
10050 
10051 	/* If the device has permanent device address, driver should
10052 	 * set dev_addr and also addr_assign_type should be set to
10053 	 * NET_ADDR_PERM (default value).
10054 	 */
10055 	if (dev->addr_assign_type == NET_ADDR_PERM)
10056 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10057 
10058 	/* Notify protocols, that a new device appeared. */
10059 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10060 	ret = notifier_to_errno(ret);
10061 	if (ret) {
10062 		rollback_registered(dev);
10063 		rcu_barrier();
10064 
10065 		dev->reg_state = NETREG_UNREGISTERED;
10066 		/* We should put the kobject that hold in
10067 		 * netdev_unregister_kobject(), otherwise
10068 		 * the net device cannot be freed when
10069 		 * driver calls free_netdev(), because the
10070 		 * kobject is being hold.
10071 		 */
10072 		kobject_put(&dev->dev.kobj);
10073 	}
10074 	/*
10075 	 *	Prevent userspace races by waiting until the network
10076 	 *	device is fully setup before sending notifications.
10077 	 */
10078 	if (!dev->rtnl_link_ops ||
10079 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10080 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10081 
10082 out:
10083 	return ret;
10084 
10085 err_uninit:
10086 	if (dev->netdev_ops->ndo_uninit)
10087 		dev->netdev_ops->ndo_uninit(dev);
10088 	if (dev->priv_destructor)
10089 		dev->priv_destructor(dev);
10090 err_free_name:
10091 	netdev_name_node_free(dev->name_node);
10092 	goto out;
10093 }
10094 EXPORT_SYMBOL(register_netdevice);
10095 
10096 /**
10097  *	init_dummy_netdev	- init a dummy network device for NAPI
10098  *	@dev: device to init
10099  *
10100  *	This takes a network device structure and initialize the minimum
10101  *	amount of fields so it can be used to schedule NAPI polls without
10102  *	registering a full blown interface. This is to be used by drivers
10103  *	that need to tie several hardware interfaces to a single NAPI
10104  *	poll scheduler due to HW limitations.
10105  */
10106 int init_dummy_netdev(struct net_device *dev)
10107 {
10108 	/* Clear everything. Note we don't initialize spinlocks
10109 	 * are they aren't supposed to be taken by any of the
10110 	 * NAPI code and this dummy netdev is supposed to be
10111 	 * only ever used for NAPI polls
10112 	 */
10113 	memset(dev, 0, sizeof(struct net_device));
10114 
10115 	/* make sure we BUG if trying to hit standard
10116 	 * register/unregister code path
10117 	 */
10118 	dev->reg_state = NETREG_DUMMY;
10119 
10120 	/* NAPI wants this */
10121 	INIT_LIST_HEAD(&dev->napi_list);
10122 
10123 	/* a dummy interface is started by default */
10124 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10125 	set_bit(__LINK_STATE_START, &dev->state);
10126 
10127 	/* napi_busy_loop stats accounting wants this */
10128 	dev_net_set(dev, &init_net);
10129 
10130 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10131 	 * because users of this 'device' dont need to change
10132 	 * its refcount.
10133 	 */
10134 
10135 	return 0;
10136 }
10137 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10138 
10139 
10140 /**
10141  *	register_netdev	- register a network device
10142  *	@dev: device to register
10143  *
10144  *	Take a completed network device structure and add it to the kernel
10145  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10146  *	chain. 0 is returned on success. A negative errno code is returned
10147  *	on a failure to set up the device, or if the name is a duplicate.
10148  *
10149  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10150  *	and expands the device name if you passed a format string to
10151  *	alloc_netdev.
10152  */
10153 int register_netdev(struct net_device *dev)
10154 {
10155 	int err;
10156 
10157 	if (rtnl_lock_killable())
10158 		return -EINTR;
10159 	err = register_netdevice(dev);
10160 	rtnl_unlock();
10161 	return err;
10162 }
10163 EXPORT_SYMBOL(register_netdev);
10164 
10165 int netdev_refcnt_read(const struct net_device *dev)
10166 {
10167 	int i, refcnt = 0;
10168 
10169 	for_each_possible_cpu(i)
10170 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10171 	return refcnt;
10172 }
10173 EXPORT_SYMBOL(netdev_refcnt_read);
10174 
10175 #define WAIT_REFS_MIN_MSECS 1
10176 #define WAIT_REFS_MAX_MSECS 250
10177 /**
10178  * netdev_wait_allrefs - wait until all references are gone.
10179  * @dev: target net_device
10180  *
10181  * This is called when unregistering network devices.
10182  *
10183  * Any protocol or device that holds a reference should register
10184  * for netdevice notification, and cleanup and put back the
10185  * reference if they receive an UNREGISTER event.
10186  * We can get stuck here if buggy protocols don't correctly
10187  * call dev_put.
10188  */
10189 static void netdev_wait_allrefs(struct net_device *dev)
10190 {
10191 	unsigned long rebroadcast_time, warning_time;
10192 	int wait = 0, refcnt;
10193 
10194 	linkwatch_forget_dev(dev);
10195 
10196 	rebroadcast_time = warning_time = jiffies;
10197 	refcnt = netdev_refcnt_read(dev);
10198 
10199 	while (refcnt != 0) {
10200 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10201 			rtnl_lock();
10202 
10203 			/* Rebroadcast unregister notification */
10204 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10205 
10206 			__rtnl_unlock();
10207 			rcu_barrier();
10208 			rtnl_lock();
10209 
10210 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10211 				     &dev->state)) {
10212 				/* We must not have linkwatch events
10213 				 * pending on unregister. If this
10214 				 * happens, we simply run the queue
10215 				 * unscheduled, resulting in a noop
10216 				 * for this device.
10217 				 */
10218 				linkwatch_run_queue();
10219 			}
10220 
10221 			__rtnl_unlock();
10222 
10223 			rebroadcast_time = jiffies;
10224 		}
10225 
10226 		if (!wait) {
10227 			rcu_barrier();
10228 			wait = WAIT_REFS_MIN_MSECS;
10229 		} else {
10230 			msleep(wait);
10231 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10232 		}
10233 
10234 		refcnt = netdev_refcnt_read(dev);
10235 
10236 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10237 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10238 				 dev->name, refcnt);
10239 			warning_time = jiffies;
10240 		}
10241 	}
10242 }
10243 
10244 /* The sequence is:
10245  *
10246  *	rtnl_lock();
10247  *	...
10248  *	register_netdevice(x1);
10249  *	register_netdevice(x2);
10250  *	...
10251  *	unregister_netdevice(y1);
10252  *	unregister_netdevice(y2);
10253  *      ...
10254  *	rtnl_unlock();
10255  *	free_netdev(y1);
10256  *	free_netdev(y2);
10257  *
10258  * We are invoked by rtnl_unlock().
10259  * This allows us to deal with problems:
10260  * 1) We can delete sysfs objects which invoke hotplug
10261  *    without deadlocking with linkwatch via keventd.
10262  * 2) Since we run with the RTNL semaphore not held, we can sleep
10263  *    safely in order to wait for the netdev refcnt to drop to zero.
10264  *
10265  * We must not return until all unregister events added during
10266  * the interval the lock was held have been completed.
10267  */
10268 void netdev_run_todo(void)
10269 {
10270 	struct list_head list;
10271 #ifdef CONFIG_LOCKDEP
10272 	struct list_head unlink_list;
10273 
10274 	list_replace_init(&net_unlink_list, &unlink_list);
10275 
10276 	while (!list_empty(&unlink_list)) {
10277 		struct net_device *dev = list_first_entry(&unlink_list,
10278 							  struct net_device,
10279 							  unlink_list);
10280 		list_del_init(&dev->unlink_list);
10281 		dev->nested_level = dev->lower_level - 1;
10282 	}
10283 #endif
10284 
10285 	/* Snapshot list, allow later requests */
10286 	list_replace_init(&net_todo_list, &list);
10287 
10288 	__rtnl_unlock();
10289 
10290 
10291 	/* Wait for rcu callbacks to finish before next phase */
10292 	if (!list_empty(&list))
10293 		rcu_barrier();
10294 
10295 	while (!list_empty(&list)) {
10296 		struct net_device *dev
10297 			= list_first_entry(&list, struct net_device, todo_list);
10298 		list_del(&dev->todo_list);
10299 
10300 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10301 			pr_err("network todo '%s' but state %d\n",
10302 			       dev->name, dev->reg_state);
10303 			dump_stack();
10304 			continue;
10305 		}
10306 
10307 		dev->reg_state = NETREG_UNREGISTERED;
10308 
10309 		netdev_wait_allrefs(dev);
10310 
10311 		/* paranoia */
10312 		BUG_ON(netdev_refcnt_read(dev));
10313 		BUG_ON(!list_empty(&dev->ptype_all));
10314 		BUG_ON(!list_empty(&dev->ptype_specific));
10315 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10316 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10317 #if IS_ENABLED(CONFIG_DECNET)
10318 		WARN_ON(dev->dn_ptr);
10319 #endif
10320 		if (dev->priv_destructor)
10321 			dev->priv_destructor(dev);
10322 		if (dev->needs_free_netdev)
10323 			free_netdev(dev);
10324 
10325 		/* Report a network device has been unregistered */
10326 		rtnl_lock();
10327 		dev_net(dev)->dev_unreg_count--;
10328 		__rtnl_unlock();
10329 		wake_up(&netdev_unregistering_wq);
10330 
10331 		/* Free network device */
10332 		kobject_put(&dev->dev.kobj);
10333 	}
10334 }
10335 
10336 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10337  * all the same fields in the same order as net_device_stats, with only
10338  * the type differing, but rtnl_link_stats64 may have additional fields
10339  * at the end for newer counters.
10340  */
10341 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10342 			     const struct net_device_stats *netdev_stats)
10343 {
10344 #if BITS_PER_LONG == 64
10345 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10346 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10347 	/* zero out counters that only exist in rtnl_link_stats64 */
10348 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10349 	       sizeof(*stats64) - sizeof(*netdev_stats));
10350 #else
10351 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10352 	const unsigned long *src = (const unsigned long *)netdev_stats;
10353 	u64 *dst = (u64 *)stats64;
10354 
10355 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10356 	for (i = 0; i < n; i++)
10357 		dst[i] = src[i];
10358 	/* zero out counters that only exist in rtnl_link_stats64 */
10359 	memset((char *)stats64 + n * sizeof(u64), 0,
10360 	       sizeof(*stats64) - n * sizeof(u64));
10361 #endif
10362 }
10363 EXPORT_SYMBOL(netdev_stats_to_stats64);
10364 
10365 /**
10366  *	dev_get_stats	- get network device statistics
10367  *	@dev: device to get statistics from
10368  *	@storage: place to store stats
10369  *
10370  *	Get network statistics from device. Return @storage.
10371  *	The device driver may provide its own method by setting
10372  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10373  *	otherwise the internal statistics structure is used.
10374  */
10375 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10376 					struct rtnl_link_stats64 *storage)
10377 {
10378 	const struct net_device_ops *ops = dev->netdev_ops;
10379 
10380 	if (ops->ndo_get_stats64) {
10381 		memset(storage, 0, sizeof(*storage));
10382 		ops->ndo_get_stats64(dev, storage);
10383 	} else if (ops->ndo_get_stats) {
10384 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10385 	} else {
10386 		netdev_stats_to_stats64(storage, &dev->stats);
10387 	}
10388 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10389 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10390 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10391 	return storage;
10392 }
10393 EXPORT_SYMBOL(dev_get_stats);
10394 
10395 /**
10396  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10397  *	@s: place to store stats
10398  *	@netstats: per-cpu network stats to read from
10399  *
10400  *	Read per-cpu network statistics and populate the related fields in @s.
10401  */
10402 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10403 			   const struct pcpu_sw_netstats __percpu *netstats)
10404 {
10405 	int cpu;
10406 
10407 	for_each_possible_cpu(cpu) {
10408 		const struct pcpu_sw_netstats *stats;
10409 		struct pcpu_sw_netstats tmp;
10410 		unsigned int start;
10411 
10412 		stats = per_cpu_ptr(netstats, cpu);
10413 		do {
10414 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10415 			tmp.rx_packets = stats->rx_packets;
10416 			tmp.rx_bytes   = stats->rx_bytes;
10417 			tmp.tx_packets = stats->tx_packets;
10418 			tmp.tx_bytes   = stats->tx_bytes;
10419 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10420 
10421 		s->rx_packets += tmp.rx_packets;
10422 		s->rx_bytes   += tmp.rx_bytes;
10423 		s->tx_packets += tmp.tx_packets;
10424 		s->tx_bytes   += tmp.tx_bytes;
10425 	}
10426 }
10427 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10428 
10429 /**
10430  *	dev_get_tstats64 - ndo_get_stats64 implementation
10431  *	@dev: device to get statistics from
10432  *	@s: place to store stats
10433  *
10434  *	Populate @s from dev->stats and dev->tstats. Can be used as
10435  *	ndo_get_stats64() callback.
10436  */
10437 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10438 {
10439 	netdev_stats_to_stats64(s, &dev->stats);
10440 	dev_fetch_sw_netstats(s, dev->tstats);
10441 }
10442 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10443 
10444 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10445 {
10446 	struct netdev_queue *queue = dev_ingress_queue(dev);
10447 
10448 #ifdef CONFIG_NET_CLS_ACT
10449 	if (queue)
10450 		return queue;
10451 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10452 	if (!queue)
10453 		return NULL;
10454 	netdev_init_one_queue(dev, queue, NULL);
10455 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10456 	queue->qdisc_sleeping = &noop_qdisc;
10457 	rcu_assign_pointer(dev->ingress_queue, queue);
10458 #endif
10459 	return queue;
10460 }
10461 
10462 static const struct ethtool_ops default_ethtool_ops;
10463 
10464 void netdev_set_default_ethtool_ops(struct net_device *dev,
10465 				    const struct ethtool_ops *ops)
10466 {
10467 	if (dev->ethtool_ops == &default_ethtool_ops)
10468 		dev->ethtool_ops = ops;
10469 }
10470 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10471 
10472 void netdev_freemem(struct net_device *dev)
10473 {
10474 	char *addr = (char *)dev - dev->padded;
10475 
10476 	kvfree(addr);
10477 }
10478 
10479 /**
10480  * alloc_netdev_mqs - allocate network device
10481  * @sizeof_priv: size of private data to allocate space for
10482  * @name: device name format string
10483  * @name_assign_type: origin of device name
10484  * @setup: callback to initialize device
10485  * @txqs: the number of TX subqueues to allocate
10486  * @rxqs: the number of RX subqueues to allocate
10487  *
10488  * Allocates a struct net_device with private data area for driver use
10489  * and performs basic initialization.  Also allocates subqueue structs
10490  * for each queue on the device.
10491  */
10492 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10493 		unsigned char name_assign_type,
10494 		void (*setup)(struct net_device *),
10495 		unsigned int txqs, unsigned int rxqs)
10496 {
10497 	struct net_device *dev;
10498 	unsigned int alloc_size;
10499 	struct net_device *p;
10500 
10501 	BUG_ON(strlen(name) >= sizeof(dev->name));
10502 
10503 	if (txqs < 1) {
10504 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10505 		return NULL;
10506 	}
10507 
10508 	if (rxqs < 1) {
10509 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10510 		return NULL;
10511 	}
10512 
10513 	alloc_size = sizeof(struct net_device);
10514 	if (sizeof_priv) {
10515 		/* ensure 32-byte alignment of private area */
10516 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10517 		alloc_size += sizeof_priv;
10518 	}
10519 	/* ensure 32-byte alignment of whole construct */
10520 	alloc_size += NETDEV_ALIGN - 1;
10521 
10522 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10523 	if (!p)
10524 		return NULL;
10525 
10526 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10527 	dev->padded = (char *)dev - (char *)p;
10528 
10529 	dev->pcpu_refcnt = alloc_percpu(int);
10530 	if (!dev->pcpu_refcnt)
10531 		goto free_dev;
10532 
10533 	if (dev_addr_init(dev))
10534 		goto free_pcpu;
10535 
10536 	dev_mc_init(dev);
10537 	dev_uc_init(dev);
10538 
10539 	dev_net_set(dev, &init_net);
10540 
10541 	dev->gso_max_size = GSO_MAX_SIZE;
10542 	dev->gso_max_segs = GSO_MAX_SEGS;
10543 	dev->upper_level = 1;
10544 	dev->lower_level = 1;
10545 #ifdef CONFIG_LOCKDEP
10546 	dev->nested_level = 0;
10547 	INIT_LIST_HEAD(&dev->unlink_list);
10548 #endif
10549 
10550 	INIT_LIST_HEAD(&dev->napi_list);
10551 	INIT_LIST_HEAD(&dev->unreg_list);
10552 	INIT_LIST_HEAD(&dev->close_list);
10553 	INIT_LIST_HEAD(&dev->link_watch_list);
10554 	INIT_LIST_HEAD(&dev->adj_list.upper);
10555 	INIT_LIST_HEAD(&dev->adj_list.lower);
10556 	INIT_LIST_HEAD(&dev->ptype_all);
10557 	INIT_LIST_HEAD(&dev->ptype_specific);
10558 	INIT_LIST_HEAD(&dev->net_notifier_list);
10559 #ifdef CONFIG_NET_SCHED
10560 	hash_init(dev->qdisc_hash);
10561 #endif
10562 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10563 	setup(dev);
10564 
10565 	if (!dev->tx_queue_len) {
10566 		dev->priv_flags |= IFF_NO_QUEUE;
10567 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10568 	}
10569 
10570 	dev->num_tx_queues = txqs;
10571 	dev->real_num_tx_queues = txqs;
10572 	if (netif_alloc_netdev_queues(dev))
10573 		goto free_all;
10574 
10575 	dev->num_rx_queues = rxqs;
10576 	dev->real_num_rx_queues = rxqs;
10577 	if (netif_alloc_rx_queues(dev))
10578 		goto free_all;
10579 
10580 	strcpy(dev->name, name);
10581 	dev->name_assign_type = name_assign_type;
10582 	dev->group = INIT_NETDEV_GROUP;
10583 	if (!dev->ethtool_ops)
10584 		dev->ethtool_ops = &default_ethtool_ops;
10585 
10586 	nf_hook_ingress_init(dev);
10587 
10588 	return dev;
10589 
10590 free_all:
10591 	free_netdev(dev);
10592 	return NULL;
10593 
10594 free_pcpu:
10595 	free_percpu(dev->pcpu_refcnt);
10596 free_dev:
10597 	netdev_freemem(dev);
10598 	return NULL;
10599 }
10600 EXPORT_SYMBOL(alloc_netdev_mqs);
10601 
10602 /**
10603  * free_netdev - free network device
10604  * @dev: device
10605  *
10606  * This function does the last stage of destroying an allocated device
10607  * interface. The reference to the device object is released. If this
10608  * is the last reference then it will be freed.Must be called in process
10609  * context.
10610  */
10611 void free_netdev(struct net_device *dev)
10612 {
10613 	struct napi_struct *p, *n;
10614 
10615 	might_sleep();
10616 	netif_free_tx_queues(dev);
10617 	netif_free_rx_queues(dev);
10618 
10619 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10620 
10621 	/* Flush device addresses */
10622 	dev_addr_flush(dev);
10623 
10624 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10625 		netif_napi_del(p);
10626 
10627 	free_percpu(dev->pcpu_refcnt);
10628 	dev->pcpu_refcnt = NULL;
10629 	free_percpu(dev->xdp_bulkq);
10630 	dev->xdp_bulkq = NULL;
10631 
10632 	/*  Compatibility with error handling in drivers */
10633 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10634 		netdev_freemem(dev);
10635 		return;
10636 	}
10637 
10638 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10639 	dev->reg_state = NETREG_RELEASED;
10640 
10641 	/* will free via device release */
10642 	put_device(&dev->dev);
10643 }
10644 EXPORT_SYMBOL(free_netdev);
10645 
10646 /**
10647  *	synchronize_net -  Synchronize with packet receive processing
10648  *
10649  *	Wait for packets currently being received to be done.
10650  *	Does not block later packets from starting.
10651  */
10652 void synchronize_net(void)
10653 {
10654 	might_sleep();
10655 	if (rtnl_is_locked())
10656 		synchronize_rcu_expedited();
10657 	else
10658 		synchronize_rcu();
10659 }
10660 EXPORT_SYMBOL(synchronize_net);
10661 
10662 /**
10663  *	unregister_netdevice_queue - remove device from the kernel
10664  *	@dev: device
10665  *	@head: list
10666  *
10667  *	This function shuts down a device interface and removes it
10668  *	from the kernel tables.
10669  *	If head not NULL, device is queued to be unregistered later.
10670  *
10671  *	Callers must hold the rtnl semaphore.  You may want
10672  *	unregister_netdev() instead of this.
10673  */
10674 
10675 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10676 {
10677 	ASSERT_RTNL();
10678 
10679 	if (head) {
10680 		list_move_tail(&dev->unreg_list, head);
10681 	} else {
10682 		rollback_registered(dev);
10683 		/* Finish processing unregister after unlock */
10684 		net_set_todo(dev);
10685 	}
10686 }
10687 EXPORT_SYMBOL(unregister_netdevice_queue);
10688 
10689 /**
10690  *	unregister_netdevice_many - unregister many devices
10691  *	@head: list of devices
10692  *
10693  *  Note: As most callers use a stack allocated list_head,
10694  *  we force a list_del() to make sure stack wont be corrupted later.
10695  */
10696 void unregister_netdevice_many(struct list_head *head)
10697 {
10698 	struct net_device *dev;
10699 
10700 	if (!list_empty(head)) {
10701 		rollback_registered_many(head);
10702 		list_for_each_entry(dev, head, unreg_list)
10703 			net_set_todo(dev);
10704 		list_del(head);
10705 	}
10706 }
10707 EXPORT_SYMBOL(unregister_netdevice_many);
10708 
10709 /**
10710  *	unregister_netdev - remove device from the kernel
10711  *	@dev: device
10712  *
10713  *	This function shuts down a device interface and removes it
10714  *	from the kernel tables.
10715  *
10716  *	This is just a wrapper for unregister_netdevice that takes
10717  *	the rtnl semaphore.  In general you want to use this and not
10718  *	unregister_netdevice.
10719  */
10720 void unregister_netdev(struct net_device *dev)
10721 {
10722 	rtnl_lock();
10723 	unregister_netdevice(dev);
10724 	rtnl_unlock();
10725 }
10726 EXPORT_SYMBOL(unregister_netdev);
10727 
10728 /**
10729  *	dev_change_net_namespace - move device to different nethost namespace
10730  *	@dev: device
10731  *	@net: network namespace
10732  *	@pat: If not NULL name pattern to try if the current device name
10733  *	      is already taken in the destination network namespace.
10734  *
10735  *	This function shuts down a device interface and moves it
10736  *	to a new network namespace. On success 0 is returned, on
10737  *	a failure a netagive errno code is returned.
10738  *
10739  *	Callers must hold the rtnl semaphore.
10740  */
10741 
10742 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10743 {
10744 	struct net *net_old = dev_net(dev);
10745 	int err, new_nsid, new_ifindex;
10746 
10747 	ASSERT_RTNL();
10748 
10749 	/* Don't allow namespace local devices to be moved. */
10750 	err = -EINVAL;
10751 	if (dev->features & NETIF_F_NETNS_LOCAL)
10752 		goto out;
10753 
10754 	/* Ensure the device has been registrered */
10755 	if (dev->reg_state != NETREG_REGISTERED)
10756 		goto out;
10757 
10758 	/* Get out if there is nothing todo */
10759 	err = 0;
10760 	if (net_eq(net_old, net))
10761 		goto out;
10762 
10763 	/* Pick the destination device name, and ensure
10764 	 * we can use it in the destination network namespace.
10765 	 */
10766 	err = -EEXIST;
10767 	if (__dev_get_by_name(net, dev->name)) {
10768 		/* We get here if we can't use the current device name */
10769 		if (!pat)
10770 			goto out;
10771 		err = dev_get_valid_name(net, dev, pat);
10772 		if (err < 0)
10773 			goto out;
10774 	}
10775 
10776 	/*
10777 	 * And now a mini version of register_netdevice unregister_netdevice.
10778 	 */
10779 
10780 	/* If device is running close it first. */
10781 	dev_close(dev);
10782 
10783 	/* And unlink it from device chain */
10784 	unlist_netdevice(dev);
10785 
10786 	synchronize_net();
10787 
10788 	/* Shutdown queueing discipline. */
10789 	dev_shutdown(dev);
10790 
10791 	/* Notify protocols, that we are about to destroy
10792 	 * this device. They should clean all the things.
10793 	 *
10794 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10795 	 * This is wanted because this way 8021q and macvlan know
10796 	 * the device is just moving and can keep their slaves up.
10797 	 */
10798 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10799 	rcu_barrier();
10800 
10801 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10802 	/* If there is an ifindex conflict assign a new one */
10803 	if (__dev_get_by_index(net, dev->ifindex))
10804 		new_ifindex = dev_new_index(net);
10805 	else
10806 		new_ifindex = dev->ifindex;
10807 
10808 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10809 			    new_ifindex);
10810 
10811 	/*
10812 	 *	Flush the unicast and multicast chains
10813 	 */
10814 	dev_uc_flush(dev);
10815 	dev_mc_flush(dev);
10816 
10817 	/* Send a netdev-removed uevent to the old namespace */
10818 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10819 	netdev_adjacent_del_links(dev);
10820 
10821 	/* Move per-net netdevice notifiers that are following the netdevice */
10822 	move_netdevice_notifiers_dev_net(dev, net);
10823 
10824 	/* Actually switch the network namespace */
10825 	dev_net_set(dev, net);
10826 	dev->ifindex = new_ifindex;
10827 
10828 	/* Send a netdev-add uevent to the new namespace */
10829 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10830 	netdev_adjacent_add_links(dev);
10831 
10832 	/* Fixup kobjects */
10833 	err = device_rename(&dev->dev, dev->name);
10834 	WARN_ON(err);
10835 
10836 	/* Adapt owner in case owning user namespace of target network
10837 	 * namespace is different from the original one.
10838 	 */
10839 	err = netdev_change_owner(dev, net_old, net);
10840 	WARN_ON(err);
10841 
10842 	/* Add the device back in the hashes */
10843 	list_netdevice(dev);
10844 
10845 	/* Notify protocols, that a new device appeared. */
10846 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10847 
10848 	/*
10849 	 *	Prevent userspace races by waiting until the network
10850 	 *	device is fully setup before sending notifications.
10851 	 */
10852 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10853 
10854 	synchronize_net();
10855 	err = 0;
10856 out:
10857 	return err;
10858 }
10859 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10860 
10861 static int dev_cpu_dead(unsigned int oldcpu)
10862 {
10863 	struct sk_buff **list_skb;
10864 	struct sk_buff *skb;
10865 	unsigned int cpu;
10866 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10867 
10868 	local_irq_disable();
10869 	cpu = smp_processor_id();
10870 	sd = &per_cpu(softnet_data, cpu);
10871 	oldsd = &per_cpu(softnet_data, oldcpu);
10872 
10873 	/* Find end of our completion_queue. */
10874 	list_skb = &sd->completion_queue;
10875 	while (*list_skb)
10876 		list_skb = &(*list_skb)->next;
10877 	/* Append completion queue from offline CPU. */
10878 	*list_skb = oldsd->completion_queue;
10879 	oldsd->completion_queue = NULL;
10880 
10881 	/* Append output queue from offline CPU. */
10882 	if (oldsd->output_queue) {
10883 		*sd->output_queue_tailp = oldsd->output_queue;
10884 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10885 		oldsd->output_queue = NULL;
10886 		oldsd->output_queue_tailp = &oldsd->output_queue;
10887 	}
10888 	/* Append NAPI poll list from offline CPU, with one exception :
10889 	 * process_backlog() must be called by cpu owning percpu backlog.
10890 	 * We properly handle process_queue & input_pkt_queue later.
10891 	 */
10892 	while (!list_empty(&oldsd->poll_list)) {
10893 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10894 							    struct napi_struct,
10895 							    poll_list);
10896 
10897 		list_del_init(&napi->poll_list);
10898 		if (napi->poll == process_backlog)
10899 			napi->state = 0;
10900 		else
10901 			____napi_schedule(sd, napi);
10902 	}
10903 
10904 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10905 	local_irq_enable();
10906 
10907 #ifdef CONFIG_RPS
10908 	remsd = oldsd->rps_ipi_list;
10909 	oldsd->rps_ipi_list = NULL;
10910 #endif
10911 	/* send out pending IPI's on offline CPU */
10912 	net_rps_send_ipi(remsd);
10913 
10914 	/* Process offline CPU's input_pkt_queue */
10915 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10916 		netif_rx_ni(skb);
10917 		input_queue_head_incr(oldsd);
10918 	}
10919 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10920 		netif_rx_ni(skb);
10921 		input_queue_head_incr(oldsd);
10922 	}
10923 
10924 	return 0;
10925 }
10926 
10927 /**
10928  *	netdev_increment_features - increment feature set by one
10929  *	@all: current feature set
10930  *	@one: new feature set
10931  *	@mask: mask feature set
10932  *
10933  *	Computes a new feature set after adding a device with feature set
10934  *	@one to the master device with current feature set @all.  Will not
10935  *	enable anything that is off in @mask. Returns the new feature set.
10936  */
10937 netdev_features_t netdev_increment_features(netdev_features_t all,
10938 	netdev_features_t one, netdev_features_t mask)
10939 {
10940 	if (mask & NETIF_F_HW_CSUM)
10941 		mask |= NETIF_F_CSUM_MASK;
10942 	mask |= NETIF_F_VLAN_CHALLENGED;
10943 
10944 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10945 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10946 
10947 	/* If one device supports hw checksumming, set for all. */
10948 	if (all & NETIF_F_HW_CSUM)
10949 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10950 
10951 	return all;
10952 }
10953 EXPORT_SYMBOL(netdev_increment_features);
10954 
10955 static struct hlist_head * __net_init netdev_create_hash(void)
10956 {
10957 	int i;
10958 	struct hlist_head *hash;
10959 
10960 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10961 	if (hash != NULL)
10962 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10963 			INIT_HLIST_HEAD(&hash[i]);
10964 
10965 	return hash;
10966 }
10967 
10968 /* Initialize per network namespace state */
10969 static int __net_init netdev_init(struct net *net)
10970 {
10971 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10972 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10973 
10974 	if (net != &init_net)
10975 		INIT_LIST_HEAD(&net->dev_base_head);
10976 
10977 	net->dev_name_head = netdev_create_hash();
10978 	if (net->dev_name_head == NULL)
10979 		goto err_name;
10980 
10981 	net->dev_index_head = netdev_create_hash();
10982 	if (net->dev_index_head == NULL)
10983 		goto err_idx;
10984 
10985 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10986 
10987 	return 0;
10988 
10989 err_idx:
10990 	kfree(net->dev_name_head);
10991 err_name:
10992 	return -ENOMEM;
10993 }
10994 
10995 /**
10996  *	netdev_drivername - network driver for the device
10997  *	@dev: network device
10998  *
10999  *	Determine network driver for device.
11000  */
11001 const char *netdev_drivername(const struct net_device *dev)
11002 {
11003 	const struct device_driver *driver;
11004 	const struct device *parent;
11005 	const char *empty = "";
11006 
11007 	parent = dev->dev.parent;
11008 	if (!parent)
11009 		return empty;
11010 
11011 	driver = parent->driver;
11012 	if (driver && driver->name)
11013 		return driver->name;
11014 	return empty;
11015 }
11016 
11017 static void __netdev_printk(const char *level, const struct net_device *dev,
11018 			    struct va_format *vaf)
11019 {
11020 	if (dev && dev->dev.parent) {
11021 		dev_printk_emit(level[1] - '0',
11022 				dev->dev.parent,
11023 				"%s %s %s%s: %pV",
11024 				dev_driver_string(dev->dev.parent),
11025 				dev_name(dev->dev.parent),
11026 				netdev_name(dev), netdev_reg_state(dev),
11027 				vaf);
11028 	} else if (dev) {
11029 		printk("%s%s%s: %pV",
11030 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11031 	} else {
11032 		printk("%s(NULL net_device): %pV", level, vaf);
11033 	}
11034 }
11035 
11036 void netdev_printk(const char *level, const struct net_device *dev,
11037 		   const char *format, ...)
11038 {
11039 	struct va_format vaf;
11040 	va_list args;
11041 
11042 	va_start(args, format);
11043 
11044 	vaf.fmt = format;
11045 	vaf.va = &args;
11046 
11047 	__netdev_printk(level, dev, &vaf);
11048 
11049 	va_end(args);
11050 }
11051 EXPORT_SYMBOL(netdev_printk);
11052 
11053 #define define_netdev_printk_level(func, level)			\
11054 void func(const struct net_device *dev, const char *fmt, ...)	\
11055 {								\
11056 	struct va_format vaf;					\
11057 	va_list args;						\
11058 								\
11059 	va_start(args, fmt);					\
11060 								\
11061 	vaf.fmt = fmt;						\
11062 	vaf.va = &args;						\
11063 								\
11064 	__netdev_printk(level, dev, &vaf);			\
11065 								\
11066 	va_end(args);						\
11067 }								\
11068 EXPORT_SYMBOL(func);
11069 
11070 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11071 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11072 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11073 define_netdev_printk_level(netdev_err, KERN_ERR);
11074 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11075 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11076 define_netdev_printk_level(netdev_info, KERN_INFO);
11077 
11078 static void __net_exit netdev_exit(struct net *net)
11079 {
11080 	kfree(net->dev_name_head);
11081 	kfree(net->dev_index_head);
11082 	if (net != &init_net)
11083 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11084 }
11085 
11086 static struct pernet_operations __net_initdata netdev_net_ops = {
11087 	.init = netdev_init,
11088 	.exit = netdev_exit,
11089 };
11090 
11091 static void __net_exit default_device_exit(struct net *net)
11092 {
11093 	struct net_device *dev, *aux;
11094 	/*
11095 	 * Push all migratable network devices back to the
11096 	 * initial network namespace
11097 	 */
11098 	rtnl_lock();
11099 	for_each_netdev_safe(net, dev, aux) {
11100 		int err;
11101 		char fb_name[IFNAMSIZ];
11102 
11103 		/* Ignore unmoveable devices (i.e. loopback) */
11104 		if (dev->features & NETIF_F_NETNS_LOCAL)
11105 			continue;
11106 
11107 		/* Leave virtual devices for the generic cleanup */
11108 		if (dev->rtnl_link_ops)
11109 			continue;
11110 
11111 		/* Push remaining network devices to init_net */
11112 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11113 		if (__dev_get_by_name(&init_net, fb_name))
11114 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11115 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11116 		if (err) {
11117 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11118 				 __func__, dev->name, err);
11119 			BUG();
11120 		}
11121 	}
11122 	rtnl_unlock();
11123 }
11124 
11125 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11126 {
11127 	/* Return with the rtnl_lock held when there are no network
11128 	 * devices unregistering in any network namespace in net_list.
11129 	 */
11130 	struct net *net;
11131 	bool unregistering;
11132 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11133 
11134 	add_wait_queue(&netdev_unregistering_wq, &wait);
11135 	for (;;) {
11136 		unregistering = false;
11137 		rtnl_lock();
11138 		list_for_each_entry(net, net_list, exit_list) {
11139 			if (net->dev_unreg_count > 0) {
11140 				unregistering = true;
11141 				break;
11142 			}
11143 		}
11144 		if (!unregistering)
11145 			break;
11146 		__rtnl_unlock();
11147 
11148 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11149 	}
11150 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11151 }
11152 
11153 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11154 {
11155 	/* At exit all network devices most be removed from a network
11156 	 * namespace.  Do this in the reverse order of registration.
11157 	 * Do this across as many network namespaces as possible to
11158 	 * improve batching efficiency.
11159 	 */
11160 	struct net_device *dev;
11161 	struct net *net;
11162 	LIST_HEAD(dev_kill_list);
11163 
11164 	/* To prevent network device cleanup code from dereferencing
11165 	 * loopback devices or network devices that have been freed
11166 	 * wait here for all pending unregistrations to complete,
11167 	 * before unregistring the loopback device and allowing the
11168 	 * network namespace be freed.
11169 	 *
11170 	 * The netdev todo list containing all network devices
11171 	 * unregistrations that happen in default_device_exit_batch
11172 	 * will run in the rtnl_unlock() at the end of
11173 	 * default_device_exit_batch.
11174 	 */
11175 	rtnl_lock_unregistering(net_list);
11176 	list_for_each_entry(net, net_list, exit_list) {
11177 		for_each_netdev_reverse(net, dev) {
11178 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11179 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11180 			else
11181 				unregister_netdevice_queue(dev, &dev_kill_list);
11182 		}
11183 	}
11184 	unregister_netdevice_many(&dev_kill_list);
11185 	rtnl_unlock();
11186 }
11187 
11188 static struct pernet_operations __net_initdata default_device_ops = {
11189 	.exit = default_device_exit,
11190 	.exit_batch = default_device_exit_batch,
11191 };
11192 
11193 /*
11194  *	Initialize the DEV module. At boot time this walks the device list and
11195  *	unhooks any devices that fail to initialise (normally hardware not
11196  *	present) and leaves us with a valid list of present and active devices.
11197  *
11198  */
11199 
11200 /*
11201  *       This is called single threaded during boot, so no need
11202  *       to take the rtnl semaphore.
11203  */
11204 static int __init net_dev_init(void)
11205 {
11206 	int i, rc = -ENOMEM;
11207 
11208 	BUG_ON(!dev_boot_phase);
11209 
11210 	if (dev_proc_init())
11211 		goto out;
11212 
11213 	if (netdev_kobject_init())
11214 		goto out;
11215 
11216 	INIT_LIST_HEAD(&ptype_all);
11217 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11218 		INIT_LIST_HEAD(&ptype_base[i]);
11219 
11220 	INIT_LIST_HEAD(&offload_base);
11221 
11222 	if (register_pernet_subsys(&netdev_net_ops))
11223 		goto out;
11224 
11225 	/*
11226 	 *	Initialise the packet receive queues.
11227 	 */
11228 
11229 	for_each_possible_cpu(i) {
11230 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11231 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11232 
11233 		INIT_WORK(flush, flush_backlog);
11234 
11235 		skb_queue_head_init(&sd->input_pkt_queue);
11236 		skb_queue_head_init(&sd->process_queue);
11237 #ifdef CONFIG_XFRM_OFFLOAD
11238 		skb_queue_head_init(&sd->xfrm_backlog);
11239 #endif
11240 		INIT_LIST_HEAD(&sd->poll_list);
11241 		sd->output_queue_tailp = &sd->output_queue;
11242 #ifdef CONFIG_RPS
11243 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11244 		sd->cpu = i;
11245 #endif
11246 
11247 		init_gro_hash(&sd->backlog);
11248 		sd->backlog.poll = process_backlog;
11249 		sd->backlog.weight = weight_p;
11250 	}
11251 
11252 	dev_boot_phase = 0;
11253 
11254 	/* The loopback device is special if any other network devices
11255 	 * is present in a network namespace the loopback device must
11256 	 * be present. Since we now dynamically allocate and free the
11257 	 * loopback device ensure this invariant is maintained by
11258 	 * keeping the loopback device as the first device on the
11259 	 * list of network devices.  Ensuring the loopback devices
11260 	 * is the first device that appears and the last network device
11261 	 * that disappears.
11262 	 */
11263 	if (register_pernet_device(&loopback_net_ops))
11264 		goto out;
11265 
11266 	if (register_pernet_device(&default_device_ops))
11267 		goto out;
11268 
11269 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11270 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11271 
11272 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11273 				       NULL, dev_cpu_dead);
11274 	WARN_ON(rc < 0);
11275 	rc = 0;
11276 out:
11277 	return rc;
11278 }
11279 
11280 subsys_initcall(net_dev_init);
11281