xref: /openbmc/linux/net/core/dev.c (revision f3a8b664)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/sctp.h>
143 #include <linux/crash_dump.h>
144 
145 #include "net-sysfs.h"
146 
147 /* Instead of increasing this, you should create a hash table. */
148 #define MAX_GRO_SKBS 8
149 
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;	/* Taps */
157 static struct list_head offload_base __read_mostly;
158 
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 					 struct net_device *dev,
162 					 struct netdev_notifier_info *info);
163 
164 /*
165  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
166  * semaphore.
167  *
168  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169  *
170  * Writers must hold the rtnl semaphore while they loop through the
171  * dev_base_head list, and hold dev_base_lock for writing when they do the
172  * actual updates.  This allows pure readers to access the list even
173  * while a writer is preparing to update it.
174  *
175  * To put it another way, dev_base_lock is held for writing only to
176  * protect against pure readers; the rtnl semaphore provides the
177  * protection against other writers.
178  *
179  * See, for example usages, register_netdevice() and
180  * unregister_netdevice(), which must be called with the rtnl
181  * semaphore held.
182  */
183 DEFINE_RWLOCK(dev_base_lock);
184 EXPORT_SYMBOL(dev_base_lock);
185 
186 /* protects napi_hash addition/deletion and napi_gen_id */
187 static DEFINE_SPINLOCK(napi_hash_lock);
188 
189 static unsigned int napi_gen_id = NR_CPUS;
190 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191 
192 static seqcount_t devnet_rename_seq;
193 
194 static inline void dev_base_seq_inc(struct net *net)
195 {
196 	while (++net->dev_base_seq == 0);
197 }
198 
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202 
203 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205 
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210 
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 	spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217 
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 	spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224 
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228 	struct net *net = dev_net(dev);
229 
230 	ASSERT_RTNL();
231 
232 	write_lock_bh(&dev_base_lock);
233 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 	hlist_add_head_rcu(&dev->index_hlist,
236 			   dev_index_hash(net, dev->ifindex));
237 	write_unlock_bh(&dev_base_lock);
238 
239 	dev_base_seq_inc(net);
240 }
241 
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 	ASSERT_RTNL();
248 
249 	/* Unlink dev from the device chain */
250 	write_lock_bh(&dev_base_lock);
251 	list_del_rcu(&dev->dev_list);
252 	hlist_del_rcu(&dev->name_hlist);
253 	hlist_del_rcu(&dev->index_hlist);
254 	write_unlock_bh(&dev_base_lock);
255 
256 	dev_base_seq_inc(dev_net(dev));
257 }
258 
259 /*
260  *	Our notifier list
261  */
262 
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264 
265 /*
266  *	Device drivers call our routines to queue packets here. We empty the
267  *	queue in the local softnet handler.
268  */
269 
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272 
273 #ifdef CONFIG_LOCKDEP
274 /*
275  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276  * according to dev->type
277  */
278 static const unsigned short netdev_lock_type[] =
279 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294 
295 static const char *const netdev_lock_name[] =
296 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311 
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 	int i;
318 
319 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 		if (netdev_lock_type[i] == dev_type)
321 			return i;
322 	/* the last key is used by default */
323 	return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325 
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 						 unsigned short dev_type)
328 {
329 	int i;
330 
331 	i = netdev_lock_pos(dev_type);
332 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 				   netdev_lock_name[i]);
334 }
335 
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 	int i;
339 
340 	i = netdev_lock_pos(dev->type);
341 	lockdep_set_class_and_name(&dev->addr_list_lock,
342 				   &netdev_addr_lock_key[i],
343 				   netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 						 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354 
355 /*******************************************************************************
356 
357 		Protocol management and registration routines
358 
359 *******************************************************************************/
360 
361 /*
362  *	Add a protocol ID to the list. Now that the input handler is
363  *	smarter we can dispense with all the messy stuff that used to be
364  *	here.
365  *
366  *	BEWARE!!! Protocol handlers, mangling input packets,
367  *	MUST BE last in hash buckets and checking protocol handlers
368  *	MUST start from promiscuous ptype_all chain in net_bh.
369  *	It is true now, do not change it.
370  *	Explanation follows: if protocol handler, mangling packet, will
371  *	be the first on list, it is not able to sense, that packet
372  *	is cloned and should be copied-on-write, so that it will
373  *	change it and subsequent readers will get broken packet.
374  *							--ANK (980803)
375  */
376 
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 	if (pt->type == htons(ETH_P_ALL))
380 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
381 	else
382 		return pt->dev ? &pt->dev->ptype_specific :
383 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385 
386 /**
387  *	dev_add_pack - add packet handler
388  *	@pt: packet type declaration
389  *
390  *	Add a protocol handler to the networking stack. The passed &packet_type
391  *	is linked into kernel lists and may not be freed until it has been
392  *	removed from the kernel lists.
393  *
394  *	This call does not sleep therefore it can not
395  *	guarantee all CPU's that are in middle of receiving packets
396  *	will see the new packet type (until the next received packet).
397  */
398 
399 void dev_add_pack(struct packet_type *pt)
400 {
401 	struct list_head *head = ptype_head(pt);
402 
403 	spin_lock(&ptype_lock);
404 	list_add_rcu(&pt->list, head);
405 	spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408 
409 /**
410  *	__dev_remove_pack	 - remove packet handler
411  *	@pt: packet type declaration
412  *
413  *	Remove a protocol handler that was previously added to the kernel
414  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
415  *	from the kernel lists and can be freed or reused once this function
416  *	returns.
417  *
418  *      The packet type might still be in use by receivers
419  *	and must not be freed until after all the CPU's have gone
420  *	through a quiescent state.
421  */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 	struct list_head *head = ptype_head(pt);
425 	struct packet_type *pt1;
426 
427 	spin_lock(&ptype_lock);
428 
429 	list_for_each_entry(pt1, head, list) {
430 		if (pt == pt1) {
431 			list_del_rcu(&pt->list);
432 			goto out;
433 		}
434 	}
435 
436 	pr_warn("dev_remove_pack: %p not found\n", pt);
437 out:
438 	spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441 
442 /**
443  *	dev_remove_pack	 - remove packet handler
444  *	@pt: packet type declaration
445  *
446  *	Remove a protocol handler that was previously added to the kernel
447  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
448  *	from the kernel lists and can be freed or reused once this function
449  *	returns.
450  *
451  *	This call sleeps to guarantee that no CPU is looking at the packet
452  *	type after return.
453  */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 	__dev_remove_pack(pt);
457 
458 	synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461 
462 
463 /**
464  *	dev_add_offload - register offload handlers
465  *	@po: protocol offload declaration
466  *
467  *	Add protocol offload handlers to the networking stack. The passed
468  *	&proto_offload is linked into kernel lists and may not be freed until
469  *	it has been removed from the kernel lists.
470  *
471  *	This call does not sleep therefore it can not
472  *	guarantee all CPU's that are in middle of receiving packets
473  *	will see the new offload handlers (until the next received packet).
474  */
475 void dev_add_offload(struct packet_offload *po)
476 {
477 	struct packet_offload *elem;
478 
479 	spin_lock(&offload_lock);
480 	list_for_each_entry(elem, &offload_base, list) {
481 		if (po->priority < elem->priority)
482 			break;
483 	}
484 	list_add_rcu(&po->list, elem->list.prev);
485 	spin_unlock(&offload_lock);
486 }
487 EXPORT_SYMBOL(dev_add_offload);
488 
489 /**
490  *	__dev_remove_offload	 - remove offload handler
491  *	@po: packet offload declaration
492  *
493  *	Remove a protocol offload handler that was previously added to the
494  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
495  *	is removed from the kernel lists and can be freed or reused once this
496  *	function returns.
497  *
498  *      The packet type might still be in use by receivers
499  *	and must not be freed until after all the CPU's have gone
500  *	through a quiescent state.
501  */
502 static void __dev_remove_offload(struct packet_offload *po)
503 {
504 	struct list_head *head = &offload_base;
505 	struct packet_offload *po1;
506 
507 	spin_lock(&offload_lock);
508 
509 	list_for_each_entry(po1, head, list) {
510 		if (po == po1) {
511 			list_del_rcu(&po->list);
512 			goto out;
513 		}
514 	}
515 
516 	pr_warn("dev_remove_offload: %p not found\n", po);
517 out:
518 	spin_unlock(&offload_lock);
519 }
520 
521 /**
522  *	dev_remove_offload	 - remove packet offload handler
523  *	@po: packet offload declaration
524  *
525  *	Remove a packet offload handler that was previously added to the kernel
526  *	offload handlers by dev_add_offload(). The passed &offload_type is
527  *	removed from the kernel lists and can be freed or reused once this
528  *	function returns.
529  *
530  *	This call sleeps to guarantee that no CPU is looking at the packet
531  *	type after return.
532  */
533 void dev_remove_offload(struct packet_offload *po)
534 {
535 	__dev_remove_offload(po);
536 
537 	synchronize_net();
538 }
539 EXPORT_SYMBOL(dev_remove_offload);
540 
541 /******************************************************************************
542 
543 		      Device Boot-time Settings Routines
544 
545 *******************************************************************************/
546 
547 /* Boot time configuration table */
548 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549 
550 /**
551  *	netdev_boot_setup_add	- add new setup entry
552  *	@name: name of the device
553  *	@map: configured settings for the device
554  *
555  *	Adds new setup entry to the dev_boot_setup list.  The function
556  *	returns 0 on error and 1 on success.  This is a generic routine to
557  *	all netdevices.
558  */
559 static int netdev_boot_setup_add(char *name, struct ifmap *map)
560 {
561 	struct netdev_boot_setup *s;
562 	int i;
563 
564 	s = dev_boot_setup;
565 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567 			memset(s[i].name, 0, sizeof(s[i].name));
568 			strlcpy(s[i].name, name, IFNAMSIZ);
569 			memcpy(&s[i].map, map, sizeof(s[i].map));
570 			break;
571 		}
572 	}
573 
574 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575 }
576 
577 /**
578  *	netdev_boot_setup_check	- check boot time settings
579  *	@dev: the netdevice
580  *
581  * 	Check boot time settings for the device.
582  *	The found settings are set for the device to be used
583  *	later in the device probing.
584  *	Returns 0 if no settings found, 1 if they are.
585  */
586 int netdev_boot_setup_check(struct net_device *dev)
587 {
588 	struct netdev_boot_setup *s = dev_boot_setup;
589 	int i;
590 
591 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
593 		    !strcmp(dev->name, s[i].name)) {
594 			dev->irq 	= s[i].map.irq;
595 			dev->base_addr 	= s[i].map.base_addr;
596 			dev->mem_start 	= s[i].map.mem_start;
597 			dev->mem_end 	= s[i].map.mem_end;
598 			return 1;
599 		}
600 	}
601 	return 0;
602 }
603 EXPORT_SYMBOL(netdev_boot_setup_check);
604 
605 
606 /**
607  *	netdev_boot_base	- get address from boot time settings
608  *	@prefix: prefix for network device
609  *	@unit: id for network device
610  *
611  * 	Check boot time settings for the base address of device.
612  *	The found settings are set for the device to be used
613  *	later in the device probing.
614  *	Returns 0 if no settings found.
615  */
616 unsigned long netdev_boot_base(const char *prefix, int unit)
617 {
618 	const struct netdev_boot_setup *s = dev_boot_setup;
619 	char name[IFNAMSIZ];
620 	int i;
621 
622 	sprintf(name, "%s%d", prefix, unit);
623 
624 	/*
625 	 * If device already registered then return base of 1
626 	 * to indicate not to probe for this interface
627 	 */
628 	if (__dev_get_by_name(&init_net, name))
629 		return 1;
630 
631 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632 		if (!strcmp(name, s[i].name))
633 			return s[i].map.base_addr;
634 	return 0;
635 }
636 
637 /*
638  * Saves at boot time configured settings for any netdevice.
639  */
640 int __init netdev_boot_setup(char *str)
641 {
642 	int ints[5];
643 	struct ifmap map;
644 
645 	str = get_options(str, ARRAY_SIZE(ints), ints);
646 	if (!str || !*str)
647 		return 0;
648 
649 	/* Save settings */
650 	memset(&map, 0, sizeof(map));
651 	if (ints[0] > 0)
652 		map.irq = ints[1];
653 	if (ints[0] > 1)
654 		map.base_addr = ints[2];
655 	if (ints[0] > 2)
656 		map.mem_start = ints[3];
657 	if (ints[0] > 3)
658 		map.mem_end = ints[4];
659 
660 	/* Add new entry to the list */
661 	return netdev_boot_setup_add(str, &map);
662 }
663 
664 __setup("netdev=", netdev_boot_setup);
665 
666 /*******************************************************************************
667 
668 			    Device Interface Subroutines
669 
670 *******************************************************************************/
671 
672 /**
673  *	dev_get_iflink	- get 'iflink' value of a interface
674  *	@dev: targeted interface
675  *
676  *	Indicates the ifindex the interface is linked to.
677  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
678  */
679 
680 int dev_get_iflink(const struct net_device *dev)
681 {
682 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683 		return dev->netdev_ops->ndo_get_iflink(dev);
684 
685 	return dev->ifindex;
686 }
687 EXPORT_SYMBOL(dev_get_iflink);
688 
689 /**
690  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
691  *	@dev: targeted interface
692  *	@skb: The packet.
693  *
694  *	For better visibility of tunnel traffic OVS needs to retrieve
695  *	egress tunnel information for a packet. Following API allows
696  *	user to get this info.
697  */
698 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699 {
700 	struct ip_tunnel_info *info;
701 
702 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
703 		return -EINVAL;
704 
705 	info = skb_tunnel_info_unclone(skb);
706 	if (!info)
707 		return -ENOMEM;
708 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709 		return -EINVAL;
710 
711 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712 }
713 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714 
715 /**
716  *	__dev_get_by_name	- find a device by its name
717  *	@net: the applicable net namespace
718  *	@name: name to find
719  *
720  *	Find an interface by name. Must be called under RTNL semaphore
721  *	or @dev_base_lock. If the name is found a pointer to the device
722  *	is returned. If the name is not found then %NULL is returned. The
723  *	reference counters are not incremented so the caller must be
724  *	careful with locks.
725  */
726 
727 struct net_device *__dev_get_by_name(struct net *net, const char *name)
728 {
729 	struct net_device *dev;
730 	struct hlist_head *head = dev_name_hash(net, name);
731 
732 	hlist_for_each_entry(dev, head, name_hlist)
733 		if (!strncmp(dev->name, name, IFNAMSIZ))
734 			return dev;
735 
736 	return NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739 
740 /**
741  *	dev_get_by_name_rcu	- find a device by its name
742  *	@net: the applicable net namespace
743  *	@name: name to find
744  *
745  *	Find an interface by name.
746  *	If the name is found a pointer to the device is returned.
747  * 	If the name is not found then %NULL is returned.
748  *	The reference counters are not incremented so the caller must be
749  *	careful with locks. The caller must hold RCU lock.
750  */
751 
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754 	struct net_device *dev;
755 	struct hlist_head *head = dev_name_hash(net, name);
756 
757 	hlist_for_each_entry_rcu(dev, head, name_hlist)
758 		if (!strncmp(dev->name, name, IFNAMSIZ))
759 			return dev;
760 
761 	return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_name_rcu);
764 
765 /**
766  *	dev_get_by_name		- find a device by its name
767  *	@net: the applicable net namespace
768  *	@name: name to find
769  *
770  *	Find an interface by name. This can be called from any
771  *	context and does its own locking. The returned handle has
772  *	the usage count incremented and the caller must use dev_put() to
773  *	release it when it is no longer needed. %NULL is returned if no
774  *	matching device is found.
775  */
776 
777 struct net_device *dev_get_by_name(struct net *net, const char *name)
778 {
779 	struct net_device *dev;
780 
781 	rcu_read_lock();
782 	dev = dev_get_by_name_rcu(net, name);
783 	if (dev)
784 		dev_hold(dev);
785 	rcu_read_unlock();
786 	return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_name);
789 
790 /**
791  *	__dev_get_by_index - find a device by its ifindex
792  *	@net: the applicable net namespace
793  *	@ifindex: index of device
794  *
795  *	Search for an interface by index. Returns %NULL if the device
796  *	is not found or a pointer to the device. The device has not
797  *	had its reference counter increased so the caller must be careful
798  *	about locking. The caller must hold either the RTNL semaphore
799  *	or @dev_base_lock.
800  */
801 
802 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
803 {
804 	struct net_device *dev;
805 	struct hlist_head *head = dev_index_hash(net, ifindex);
806 
807 	hlist_for_each_entry(dev, head, index_hlist)
808 		if (dev->ifindex == ifindex)
809 			return dev;
810 
811 	return NULL;
812 }
813 EXPORT_SYMBOL(__dev_get_by_index);
814 
815 /**
816  *	dev_get_by_index_rcu - find a device by its ifindex
817  *	@net: the applicable net namespace
818  *	@ifindex: index of device
819  *
820  *	Search for an interface by index. Returns %NULL if the device
821  *	is not found or a pointer to the device. The device has not
822  *	had its reference counter increased so the caller must be careful
823  *	about locking. The caller must hold RCU lock.
824  */
825 
826 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827 {
828 	struct net_device *dev;
829 	struct hlist_head *head = dev_index_hash(net, ifindex);
830 
831 	hlist_for_each_entry_rcu(dev, head, index_hlist)
832 		if (dev->ifindex == ifindex)
833 			return dev;
834 
835 	return NULL;
836 }
837 EXPORT_SYMBOL(dev_get_by_index_rcu);
838 
839 
840 /**
841  *	dev_get_by_index - find a device by its ifindex
842  *	@net: the applicable net namespace
843  *	@ifindex: index of device
844  *
845  *	Search for an interface by index. Returns NULL if the device
846  *	is not found or a pointer to the device. The device returned has
847  *	had a reference added and the pointer is safe until the user calls
848  *	dev_put to indicate they have finished with it.
849  */
850 
851 struct net_device *dev_get_by_index(struct net *net, int ifindex)
852 {
853 	struct net_device *dev;
854 
855 	rcu_read_lock();
856 	dev = dev_get_by_index_rcu(net, ifindex);
857 	if (dev)
858 		dev_hold(dev);
859 	rcu_read_unlock();
860 	return dev;
861 }
862 EXPORT_SYMBOL(dev_get_by_index);
863 
864 /**
865  *	netdev_get_name - get a netdevice name, knowing its ifindex.
866  *	@net: network namespace
867  *	@name: a pointer to the buffer where the name will be stored.
868  *	@ifindex: the ifindex of the interface to get the name from.
869  *
870  *	The use of raw_seqcount_begin() and cond_resched() before
871  *	retrying is required as we want to give the writers a chance
872  *	to complete when CONFIG_PREEMPT is not set.
873  */
874 int netdev_get_name(struct net *net, char *name, int ifindex)
875 {
876 	struct net_device *dev;
877 	unsigned int seq;
878 
879 retry:
880 	seq = raw_seqcount_begin(&devnet_rename_seq);
881 	rcu_read_lock();
882 	dev = dev_get_by_index_rcu(net, ifindex);
883 	if (!dev) {
884 		rcu_read_unlock();
885 		return -ENODEV;
886 	}
887 
888 	strcpy(name, dev->name);
889 	rcu_read_unlock();
890 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891 		cond_resched();
892 		goto retry;
893 	}
894 
895 	return 0;
896 }
897 
898 /**
899  *	dev_getbyhwaddr_rcu - find a device by its hardware address
900  *	@net: the applicable net namespace
901  *	@type: media type of device
902  *	@ha: hardware address
903  *
904  *	Search for an interface by MAC address. Returns NULL if the device
905  *	is not found or a pointer to the device.
906  *	The caller must hold RCU or RTNL.
907  *	The returned device has not had its ref count increased
908  *	and the caller must therefore be careful about locking
909  *
910  */
911 
912 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913 				       const char *ha)
914 {
915 	struct net_device *dev;
916 
917 	for_each_netdev_rcu(net, dev)
918 		if (dev->type == type &&
919 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
920 			return dev;
921 
922 	return NULL;
923 }
924 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
925 
926 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
927 {
928 	struct net_device *dev;
929 
930 	ASSERT_RTNL();
931 	for_each_netdev(net, dev)
932 		if (dev->type == type)
933 			return dev;
934 
935 	return NULL;
936 }
937 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938 
939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 {
941 	struct net_device *dev, *ret = NULL;
942 
943 	rcu_read_lock();
944 	for_each_netdev_rcu(net, dev)
945 		if (dev->type == type) {
946 			dev_hold(dev);
947 			ret = dev;
948 			break;
949 		}
950 	rcu_read_unlock();
951 	return ret;
952 }
953 EXPORT_SYMBOL(dev_getfirstbyhwtype);
954 
955 /**
956  *	__dev_get_by_flags - find any device with given flags
957  *	@net: the applicable net namespace
958  *	@if_flags: IFF_* values
959  *	@mask: bitmask of bits in if_flags to check
960  *
961  *	Search for any interface with the given flags. Returns NULL if a device
962  *	is not found or a pointer to the device. Must be called inside
963  *	rtnl_lock(), and result refcount is unchanged.
964  */
965 
966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967 				      unsigned short mask)
968 {
969 	struct net_device *dev, *ret;
970 
971 	ASSERT_RTNL();
972 
973 	ret = NULL;
974 	for_each_netdev(net, dev) {
975 		if (((dev->flags ^ if_flags) & mask) == 0) {
976 			ret = dev;
977 			break;
978 		}
979 	}
980 	return ret;
981 }
982 EXPORT_SYMBOL(__dev_get_by_flags);
983 
984 /**
985  *	dev_valid_name - check if name is okay for network device
986  *	@name: name string
987  *
988  *	Network device names need to be valid file names to
989  *	to allow sysfs to work.  We also disallow any kind of
990  *	whitespace.
991  */
992 bool dev_valid_name(const char *name)
993 {
994 	if (*name == '\0')
995 		return false;
996 	if (strlen(name) >= IFNAMSIZ)
997 		return false;
998 	if (!strcmp(name, ".") || !strcmp(name, ".."))
999 		return false;
1000 
1001 	while (*name) {
1002 		if (*name == '/' || *name == ':' || isspace(*name))
1003 			return false;
1004 		name++;
1005 	}
1006 	return true;
1007 }
1008 EXPORT_SYMBOL(dev_valid_name);
1009 
1010 /**
1011  *	__dev_alloc_name - allocate a name for a device
1012  *	@net: network namespace to allocate the device name in
1013  *	@name: name format string
1014  *	@buf:  scratch buffer and result name string
1015  *
1016  *	Passed a format string - eg "lt%d" it will try and find a suitable
1017  *	id. It scans list of devices to build up a free map, then chooses
1018  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1019  *	while allocating the name and adding the device in order to avoid
1020  *	duplicates.
1021  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022  *	Returns the number of the unit assigned or a negative errno code.
1023  */
1024 
1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1026 {
1027 	int i = 0;
1028 	const char *p;
1029 	const int max_netdevices = 8*PAGE_SIZE;
1030 	unsigned long *inuse;
1031 	struct net_device *d;
1032 
1033 	p = strnchr(name, IFNAMSIZ-1, '%');
1034 	if (p) {
1035 		/*
1036 		 * Verify the string as this thing may have come from
1037 		 * the user.  There must be either one "%d" and no other "%"
1038 		 * characters.
1039 		 */
1040 		if (p[1] != 'd' || strchr(p + 2, '%'))
1041 			return -EINVAL;
1042 
1043 		/* Use one page as a bit array of possible slots */
1044 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1045 		if (!inuse)
1046 			return -ENOMEM;
1047 
1048 		for_each_netdev(net, d) {
1049 			if (!sscanf(d->name, name, &i))
1050 				continue;
1051 			if (i < 0 || i >= max_netdevices)
1052 				continue;
1053 
1054 			/*  avoid cases where sscanf is not exact inverse of printf */
1055 			snprintf(buf, IFNAMSIZ, name, i);
1056 			if (!strncmp(buf, d->name, IFNAMSIZ))
1057 				set_bit(i, inuse);
1058 		}
1059 
1060 		i = find_first_zero_bit(inuse, max_netdevices);
1061 		free_page((unsigned long) inuse);
1062 	}
1063 
1064 	if (buf != name)
1065 		snprintf(buf, IFNAMSIZ, name, i);
1066 	if (!__dev_get_by_name(net, buf))
1067 		return i;
1068 
1069 	/* It is possible to run out of possible slots
1070 	 * when the name is long and there isn't enough space left
1071 	 * for the digits, or if all bits are used.
1072 	 */
1073 	return -ENFILE;
1074 }
1075 
1076 /**
1077  *	dev_alloc_name - allocate a name for a device
1078  *	@dev: device
1079  *	@name: name format string
1080  *
1081  *	Passed a format string - eg "lt%d" it will try and find a suitable
1082  *	id. It scans list of devices to build up a free map, then chooses
1083  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1084  *	while allocating the name and adding the device in order to avoid
1085  *	duplicates.
1086  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087  *	Returns the number of the unit assigned or a negative errno code.
1088  */
1089 
1090 int dev_alloc_name(struct net_device *dev, const char *name)
1091 {
1092 	char buf[IFNAMSIZ];
1093 	struct net *net;
1094 	int ret;
1095 
1096 	BUG_ON(!dev_net(dev));
1097 	net = dev_net(dev);
1098 	ret = __dev_alloc_name(net, name, buf);
1099 	if (ret >= 0)
1100 		strlcpy(dev->name, buf, IFNAMSIZ);
1101 	return ret;
1102 }
1103 EXPORT_SYMBOL(dev_alloc_name);
1104 
1105 static int dev_alloc_name_ns(struct net *net,
1106 			     struct net_device *dev,
1107 			     const char *name)
1108 {
1109 	char buf[IFNAMSIZ];
1110 	int ret;
1111 
1112 	ret = __dev_alloc_name(net, name, buf);
1113 	if (ret >= 0)
1114 		strlcpy(dev->name, buf, IFNAMSIZ);
1115 	return ret;
1116 }
1117 
1118 static int dev_get_valid_name(struct net *net,
1119 			      struct net_device *dev,
1120 			      const char *name)
1121 {
1122 	BUG_ON(!net);
1123 
1124 	if (!dev_valid_name(name))
1125 		return -EINVAL;
1126 
1127 	if (strchr(name, '%'))
1128 		return dev_alloc_name_ns(net, dev, name);
1129 	else if (__dev_get_by_name(net, name))
1130 		return -EEXIST;
1131 	else if (dev->name != name)
1132 		strlcpy(dev->name, name, IFNAMSIZ);
1133 
1134 	return 0;
1135 }
1136 
1137 /**
1138  *	dev_change_name - change name of a device
1139  *	@dev: device
1140  *	@newname: name (or format string) must be at least IFNAMSIZ
1141  *
1142  *	Change name of a device, can pass format strings "eth%d".
1143  *	for wildcarding.
1144  */
1145 int dev_change_name(struct net_device *dev, const char *newname)
1146 {
1147 	unsigned char old_assign_type;
1148 	char oldname[IFNAMSIZ];
1149 	int err = 0;
1150 	int ret;
1151 	struct net *net;
1152 
1153 	ASSERT_RTNL();
1154 	BUG_ON(!dev_net(dev));
1155 
1156 	net = dev_net(dev);
1157 	if (dev->flags & IFF_UP)
1158 		return -EBUSY;
1159 
1160 	write_seqcount_begin(&devnet_rename_seq);
1161 
1162 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1163 		write_seqcount_end(&devnet_rename_seq);
1164 		return 0;
1165 	}
1166 
1167 	memcpy(oldname, dev->name, IFNAMSIZ);
1168 
1169 	err = dev_get_valid_name(net, dev, newname);
1170 	if (err < 0) {
1171 		write_seqcount_end(&devnet_rename_seq);
1172 		return err;
1173 	}
1174 
1175 	if (oldname[0] && !strchr(oldname, '%'))
1176 		netdev_info(dev, "renamed from %s\n", oldname);
1177 
1178 	old_assign_type = dev->name_assign_type;
1179 	dev->name_assign_type = NET_NAME_RENAMED;
1180 
1181 rollback:
1182 	ret = device_rename(&dev->dev, dev->name);
1183 	if (ret) {
1184 		memcpy(dev->name, oldname, IFNAMSIZ);
1185 		dev->name_assign_type = old_assign_type;
1186 		write_seqcount_end(&devnet_rename_seq);
1187 		return ret;
1188 	}
1189 
1190 	write_seqcount_end(&devnet_rename_seq);
1191 
1192 	netdev_adjacent_rename_links(dev, oldname);
1193 
1194 	write_lock_bh(&dev_base_lock);
1195 	hlist_del_rcu(&dev->name_hlist);
1196 	write_unlock_bh(&dev_base_lock);
1197 
1198 	synchronize_rcu();
1199 
1200 	write_lock_bh(&dev_base_lock);
1201 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1202 	write_unlock_bh(&dev_base_lock);
1203 
1204 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1205 	ret = notifier_to_errno(ret);
1206 
1207 	if (ret) {
1208 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1209 		if (err >= 0) {
1210 			err = ret;
1211 			write_seqcount_begin(&devnet_rename_seq);
1212 			memcpy(dev->name, oldname, IFNAMSIZ);
1213 			memcpy(oldname, newname, IFNAMSIZ);
1214 			dev->name_assign_type = old_assign_type;
1215 			old_assign_type = NET_NAME_RENAMED;
1216 			goto rollback;
1217 		} else {
1218 			pr_err("%s: name change rollback failed: %d\n",
1219 			       dev->name, ret);
1220 		}
1221 	}
1222 
1223 	return err;
1224 }
1225 
1226 /**
1227  *	dev_set_alias - change ifalias of a device
1228  *	@dev: device
1229  *	@alias: name up to IFALIASZ
1230  *	@len: limit of bytes to copy from info
1231  *
1232  *	Set ifalias for a device,
1233  */
1234 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235 {
1236 	char *new_ifalias;
1237 
1238 	ASSERT_RTNL();
1239 
1240 	if (len >= IFALIASZ)
1241 		return -EINVAL;
1242 
1243 	if (!len) {
1244 		kfree(dev->ifalias);
1245 		dev->ifalias = NULL;
1246 		return 0;
1247 	}
1248 
1249 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250 	if (!new_ifalias)
1251 		return -ENOMEM;
1252 	dev->ifalias = new_ifalias;
1253 
1254 	strlcpy(dev->ifalias, alias, len+1);
1255 	return len;
1256 }
1257 
1258 
1259 /**
1260  *	netdev_features_change - device changes features
1261  *	@dev: device to cause notification
1262  *
1263  *	Called to indicate a device has changed features.
1264  */
1265 void netdev_features_change(struct net_device *dev)
1266 {
1267 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1268 }
1269 EXPORT_SYMBOL(netdev_features_change);
1270 
1271 /**
1272  *	netdev_state_change - device changes state
1273  *	@dev: device to cause notification
1274  *
1275  *	Called to indicate a device has changed state. This function calls
1276  *	the notifier chains for netdev_chain and sends a NEWLINK message
1277  *	to the routing socket.
1278  */
1279 void netdev_state_change(struct net_device *dev)
1280 {
1281 	if (dev->flags & IFF_UP) {
1282 		struct netdev_notifier_change_info change_info;
1283 
1284 		change_info.flags_changed = 0;
1285 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286 					      &change_info.info);
1287 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1288 	}
1289 }
1290 EXPORT_SYMBOL(netdev_state_change);
1291 
1292 /**
1293  * 	netdev_notify_peers - notify network peers about existence of @dev
1294  * 	@dev: network device
1295  *
1296  * Generate traffic such that interested network peers are aware of
1297  * @dev, such as by generating a gratuitous ARP. This may be used when
1298  * a device wants to inform the rest of the network about some sort of
1299  * reconfiguration such as a failover event or virtual machine
1300  * migration.
1301  */
1302 void netdev_notify_peers(struct net_device *dev)
1303 {
1304 	rtnl_lock();
1305 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306 	rtnl_unlock();
1307 }
1308 EXPORT_SYMBOL(netdev_notify_peers);
1309 
1310 static int __dev_open(struct net_device *dev)
1311 {
1312 	const struct net_device_ops *ops = dev->netdev_ops;
1313 	int ret;
1314 
1315 	ASSERT_RTNL();
1316 
1317 	if (!netif_device_present(dev))
1318 		return -ENODEV;
1319 
1320 	/* Block netpoll from trying to do any rx path servicing.
1321 	 * If we don't do this there is a chance ndo_poll_controller
1322 	 * or ndo_poll may be running while we open the device
1323 	 */
1324 	netpoll_poll_disable(dev);
1325 
1326 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327 	ret = notifier_to_errno(ret);
1328 	if (ret)
1329 		return ret;
1330 
1331 	set_bit(__LINK_STATE_START, &dev->state);
1332 
1333 	if (ops->ndo_validate_addr)
1334 		ret = ops->ndo_validate_addr(dev);
1335 
1336 	if (!ret && ops->ndo_open)
1337 		ret = ops->ndo_open(dev);
1338 
1339 	netpoll_poll_enable(dev);
1340 
1341 	if (ret)
1342 		clear_bit(__LINK_STATE_START, &dev->state);
1343 	else {
1344 		dev->flags |= IFF_UP;
1345 		dev_set_rx_mode(dev);
1346 		dev_activate(dev);
1347 		add_device_randomness(dev->dev_addr, dev->addr_len);
1348 	}
1349 
1350 	return ret;
1351 }
1352 
1353 /**
1354  *	dev_open	- prepare an interface for use.
1355  *	@dev:	device to open
1356  *
1357  *	Takes a device from down to up state. The device's private open
1358  *	function is invoked and then the multicast lists are loaded. Finally
1359  *	the device is moved into the up state and a %NETDEV_UP message is
1360  *	sent to the netdev notifier chain.
1361  *
1362  *	Calling this function on an active interface is a nop. On a failure
1363  *	a negative errno code is returned.
1364  */
1365 int dev_open(struct net_device *dev)
1366 {
1367 	int ret;
1368 
1369 	if (dev->flags & IFF_UP)
1370 		return 0;
1371 
1372 	ret = __dev_open(dev);
1373 	if (ret < 0)
1374 		return ret;
1375 
1376 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1377 	call_netdevice_notifiers(NETDEV_UP, dev);
1378 
1379 	return ret;
1380 }
1381 EXPORT_SYMBOL(dev_open);
1382 
1383 static int __dev_close_many(struct list_head *head)
1384 {
1385 	struct net_device *dev;
1386 
1387 	ASSERT_RTNL();
1388 	might_sleep();
1389 
1390 	list_for_each_entry(dev, head, close_list) {
1391 		/* Temporarily disable netpoll until the interface is down */
1392 		netpoll_poll_disable(dev);
1393 
1394 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1395 
1396 		clear_bit(__LINK_STATE_START, &dev->state);
1397 
1398 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1399 		 * can be even on different cpu. So just clear netif_running().
1400 		 *
1401 		 * dev->stop() will invoke napi_disable() on all of it's
1402 		 * napi_struct instances on this device.
1403 		 */
1404 		smp_mb__after_atomic(); /* Commit netif_running(). */
1405 	}
1406 
1407 	dev_deactivate_many(head);
1408 
1409 	list_for_each_entry(dev, head, close_list) {
1410 		const struct net_device_ops *ops = dev->netdev_ops;
1411 
1412 		/*
1413 		 *	Call the device specific close. This cannot fail.
1414 		 *	Only if device is UP
1415 		 *
1416 		 *	We allow it to be called even after a DETACH hot-plug
1417 		 *	event.
1418 		 */
1419 		if (ops->ndo_stop)
1420 			ops->ndo_stop(dev);
1421 
1422 		dev->flags &= ~IFF_UP;
1423 		netpoll_poll_enable(dev);
1424 	}
1425 
1426 	return 0;
1427 }
1428 
1429 static int __dev_close(struct net_device *dev)
1430 {
1431 	int retval;
1432 	LIST_HEAD(single);
1433 
1434 	list_add(&dev->close_list, &single);
1435 	retval = __dev_close_many(&single);
1436 	list_del(&single);
1437 
1438 	return retval;
1439 }
1440 
1441 int dev_close_many(struct list_head *head, bool unlink)
1442 {
1443 	struct net_device *dev, *tmp;
1444 
1445 	/* Remove the devices that don't need to be closed */
1446 	list_for_each_entry_safe(dev, tmp, head, close_list)
1447 		if (!(dev->flags & IFF_UP))
1448 			list_del_init(&dev->close_list);
1449 
1450 	__dev_close_many(head);
1451 
1452 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1453 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1454 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1455 		if (unlink)
1456 			list_del_init(&dev->close_list);
1457 	}
1458 
1459 	return 0;
1460 }
1461 EXPORT_SYMBOL(dev_close_many);
1462 
1463 /**
1464  *	dev_close - shutdown an interface.
1465  *	@dev: device to shutdown
1466  *
1467  *	This function moves an active device into down state. A
1468  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470  *	chain.
1471  */
1472 int dev_close(struct net_device *dev)
1473 {
1474 	if (dev->flags & IFF_UP) {
1475 		LIST_HEAD(single);
1476 
1477 		list_add(&dev->close_list, &single);
1478 		dev_close_many(&single, true);
1479 		list_del(&single);
1480 	}
1481 	return 0;
1482 }
1483 EXPORT_SYMBOL(dev_close);
1484 
1485 
1486 /**
1487  *	dev_disable_lro - disable Large Receive Offload on a device
1488  *	@dev: device
1489  *
1490  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1491  *	called under RTNL.  This is needed if received packets may be
1492  *	forwarded to another interface.
1493  */
1494 void dev_disable_lro(struct net_device *dev)
1495 {
1496 	struct net_device *lower_dev;
1497 	struct list_head *iter;
1498 
1499 	dev->wanted_features &= ~NETIF_F_LRO;
1500 	netdev_update_features(dev);
1501 
1502 	if (unlikely(dev->features & NETIF_F_LRO))
1503 		netdev_WARN(dev, "failed to disable LRO!\n");
1504 
1505 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1506 		dev_disable_lro(lower_dev);
1507 }
1508 EXPORT_SYMBOL(dev_disable_lro);
1509 
1510 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511 				   struct net_device *dev)
1512 {
1513 	struct netdev_notifier_info info;
1514 
1515 	netdev_notifier_info_init(&info, dev);
1516 	return nb->notifier_call(nb, val, &info);
1517 }
1518 
1519 static int dev_boot_phase = 1;
1520 
1521 /**
1522  *	register_netdevice_notifier - register a network notifier block
1523  *	@nb: notifier
1524  *
1525  *	Register a notifier to be called when network device events occur.
1526  *	The notifier passed is linked into the kernel structures and must
1527  *	not be reused until it has been unregistered. A negative errno code
1528  *	is returned on a failure.
1529  *
1530  * 	When registered all registration and up events are replayed
1531  *	to the new notifier to allow device to have a race free
1532  *	view of the network device list.
1533  */
1534 
1535 int register_netdevice_notifier(struct notifier_block *nb)
1536 {
1537 	struct net_device *dev;
1538 	struct net_device *last;
1539 	struct net *net;
1540 	int err;
1541 
1542 	rtnl_lock();
1543 	err = raw_notifier_chain_register(&netdev_chain, nb);
1544 	if (err)
1545 		goto unlock;
1546 	if (dev_boot_phase)
1547 		goto unlock;
1548 	for_each_net(net) {
1549 		for_each_netdev(net, dev) {
1550 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1551 			err = notifier_to_errno(err);
1552 			if (err)
1553 				goto rollback;
1554 
1555 			if (!(dev->flags & IFF_UP))
1556 				continue;
1557 
1558 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1559 		}
1560 	}
1561 
1562 unlock:
1563 	rtnl_unlock();
1564 	return err;
1565 
1566 rollback:
1567 	last = dev;
1568 	for_each_net(net) {
1569 		for_each_netdev(net, dev) {
1570 			if (dev == last)
1571 				goto outroll;
1572 
1573 			if (dev->flags & IFF_UP) {
1574 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575 							dev);
1576 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1577 			}
1578 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1579 		}
1580 	}
1581 
1582 outroll:
1583 	raw_notifier_chain_unregister(&netdev_chain, nb);
1584 	goto unlock;
1585 }
1586 EXPORT_SYMBOL(register_netdevice_notifier);
1587 
1588 /**
1589  *	unregister_netdevice_notifier - unregister a network notifier block
1590  *	@nb: notifier
1591  *
1592  *	Unregister a notifier previously registered by
1593  *	register_netdevice_notifier(). The notifier is unlinked into the
1594  *	kernel structures and may then be reused. A negative errno code
1595  *	is returned on a failure.
1596  *
1597  * 	After unregistering unregister and down device events are synthesized
1598  *	for all devices on the device list to the removed notifier to remove
1599  *	the need for special case cleanup code.
1600  */
1601 
1602 int unregister_netdevice_notifier(struct notifier_block *nb)
1603 {
1604 	struct net_device *dev;
1605 	struct net *net;
1606 	int err;
1607 
1608 	rtnl_lock();
1609 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1610 	if (err)
1611 		goto unlock;
1612 
1613 	for_each_net(net) {
1614 		for_each_netdev(net, dev) {
1615 			if (dev->flags & IFF_UP) {
1616 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617 							dev);
1618 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1619 			}
1620 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1621 		}
1622 	}
1623 unlock:
1624 	rtnl_unlock();
1625 	return err;
1626 }
1627 EXPORT_SYMBOL(unregister_netdevice_notifier);
1628 
1629 /**
1630  *	call_netdevice_notifiers_info - call all network notifier blocks
1631  *	@val: value passed unmodified to notifier function
1632  *	@dev: net_device pointer passed unmodified to notifier function
1633  *	@info: notifier information data
1634  *
1635  *	Call all network notifier blocks.  Parameters and return value
1636  *	are as for raw_notifier_call_chain().
1637  */
1638 
1639 static int call_netdevice_notifiers_info(unsigned long val,
1640 					 struct net_device *dev,
1641 					 struct netdev_notifier_info *info)
1642 {
1643 	ASSERT_RTNL();
1644 	netdev_notifier_info_init(info, dev);
1645 	return raw_notifier_call_chain(&netdev_chain, val, info);
1646 }
1647 
1648 /**
1649  *	call_netdevice_notifiers - call all network notifier blocks
1650  *      @val: value passed unmodified to notifier function
1651  *      @dev: net_device pointer passed unmodified to notifier function
1652  *
1653  *	Call all network notifier blocks.  Parameters and return value
1654  *	are as for raw_notifier_call_chain().
1655  */
1656 
1657 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1658 {
1659 	struct netdev_notifier_info info;
1660 
1661 	return call_netdevice_notifiers_info(val, dev, &info);
1662 }
1663 EXPORT_SYMBOL(call_netdevice_notifiers);
1664 
1665 #ifdef CONFIG_NET_INGRESS
1666 static struct static_key ingress_needed __read_mostly;
1667 
1668 void net_inc_ingress_queue(void)
1669 {
1670 	static_key_slow_inc(&ingress_needed);
1671 }
1672 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673 
1674 void net_dec_ingress_queue(void)
1675 {
1676 	static_key_slow_dec(&ingress_needed);
1677 }
1678 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679 #endif
1680 
1681 #ifdef CONFIG_NET_EGRESS
1682 static struct static_key egress_needed __read_mostly;
1683 
1684 void net_inc_egress_queue(void)
1685 {
1686 	static_key_slow_inc(&egress_needed);
1687 }
1688 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689 
1690 void net_dec_egress_queue(void)
1691 {
1692 	static_key_slow_dec(&egress_needed);
1693 }
1694 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695 #endif
1696 
1697 static struct static_key netstamp_needed __read_mostly;
1698 #ifdef HAVE_JUMP_LABEL
1699 /* We are not allowed to call static_key_slow_dec() from irq context
1700  * If net_disable_timestamp() is called from irq context, defer the
1701  * static_key_slow_dec() calls.
1702  */
1703 static atomic_t netstamp_needed_deferred;
1704 #endif
1705 
1706 void net_enable_timestamp(void)
1707 {
1708 #ifdef HAVE_JUMP_LABEL
1709 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710 
1711 	if (deferred) {
1712 		while (--deferred)
1713 			static_key_slow_dec(&netstamp_needed);
1714 		return;
1715 	}
1716 #endif
1717 	static_key_slow_inc(&netstamp_needed);
1718 }
1719 EXPORT_SYMBOL(net_enable_timestamp);
1720 
1721 void net_disable_timestamp(void)
1722 {
1723 #ifdef HAVE_JUMP_LABEL
1724 	if (in_interrupt()) {
1725 		atomic_inc(&netstamp_needed_deferred);
1726 		return;
1727 	}
1728 #endif
1729 	static_key_slow_dec(&netstamp_needed);
1730 }
1731 EXPORT_SYMBOL(net_disable_timestamp);
1732 
1733 static inline void net_timestamp_set(struct sk_buff *skb)
1734 {
1735 	skb->tstamp.tv64 = 0;
1736 	if (static_key_false(&netstamp_needed))
1737 		__net_timestamp(skb);
1738 }
1739 
1740 #define net_timestamp_check(COND, SKB)			\
1741 	if (static_key_false(&netstamp_needed)) {		\
1742 		if ((COND) && !(SKB)->tstamp.tv64)	\
1743 			__net_timestamp(SKB);		\
1744 	}						\
1745 
1746 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1747 {
1748 	unsigned int len;
1749 
1750 	if (!(dev->flags & IFF_UP))
1751 		return false;
1752 
1753 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754 	if (skb->len <= len)
1755 		return true;
1756 
1757 	/* if TSO is enabled, we don't care about the length as the packet
1758 	 * could be forwarded without being segmented before
1759 	 */
1760 	if (skb_is_gso(skb))
1761 		return true;
1762 
1763 	return false;
1764 }
1765 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1766 
1767 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 {
1769 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770 	    unlikely(!is_skb_forwardable(dev, skb))) {
1771 		atomic_long_inc(&dev->rx_dropped);
1772 		kfree_skb(skb);
1773 		return NET_RX_DROP;
1774 	}
1775 
1776 	skb_scrub_packet(skb, true);
1777 	skb->priority = 0;
1778 	skb->protocol = eth_type_trans(skb, dev);
1779 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1780 
1781 	return 0;
1782 }
1783 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784 
1785 /**
1786  * dev_forward_skb - loopback an skb to another netif
1787  *
1788  * @dev: destination network device
1789  * @skb: buffer to forward
1790  *
1791  * return values:
1792  *	NET_RX_SUCCESS	(no congestion)
1793  *	NET_RX_DROP     (packet was dropped, but freed)
1794  *
1795  * dev_forward_skb can be used for injecting an skb from the
1796  * start_xmit function of one device into the receive queue
1797  * of another device.
1798  *
1799  * The receiving device may be in another namespace, so
1800  * we have to clear all information in the skb that could
1801  * impact namespace isolation.
1802  */
1803 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804 {
1805 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1806 }
1807 EXPORT_SYMBOL_GPL(dev_forward_skb);
1808 
1809 static inline int deliver_skb(struct sk_buff *skb,
1810 			      struct packet_type *pt_prev,
1811 			      struct net_device *orig_dev)
1812 {
1813 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814 		return -ENOMEM;
1815 	atomic_inc(&skb->users);
1816 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817 }
1818 
1819 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820 					  struct packet_type **pt,
1821 					  struct net_device *orig_dev,
1822 					  __be16 type,
1823 					  struct list_head *ptype_list)
1824 {
1825 	struct packet_type *ptype, *pt_prev = *pt;
1826 
1827 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1828 		if (ptype->type != type)
1829 			continue;
1830 		if (pt_prev)
1831 			deliver_skb(skb, pt_prev, orig_dev);
1832 		pt_prev = ptype;
1833 	}
1834 	*pt = pt_prev;
1835 }
1836 
1837 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838 {
1839 	if (!ptype->af_packet_priv || !skb->sk)
1840 		return false;
1841 
1842 	if (ptype->id_match)
1843 		return ptype->id_match(ptype, skb->sk);
1844 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845 		return true;
1846 
1847 	return false;
1848 }
1849 
1850 /*
1851  *	Support routine. Sends outgoing frames to any network
1852  *	taps currently in use.
1853  */
1854 
1855 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1856 {
1857 	struct packet_type *ptype;
1858 	struct sk_buff *skb2 = NULL;
1859 	struct packet_type *pt_prev = NULL;
1860 	struct list_head *ptype_list = &ptype_all;
1861 
1862 	rcu_read_lock();
1863 again:
1864 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1865 		/* Never send packets back to the socket
1866 		 * they originated from - MvS (miquels@drinkel.ow.org)
1867 		 */
1868 		if (skb_loop_sk(ptype, skb))
1869 			continue;
1870 
1871 		if (pt_prev) {
1872 			deliver_skb(skb2, pt_prev, skb->dev);
1873 			pt_prev = ptype;
1874 			continue;
1875 		}
1876 
1877 		/* need to clone skb, done only once */
1878 		skb2 = skb_clone(skb, GFP_ATOMIC);
1879 		if (!skb2)
1880 			goto out_unlock;
1881 
1882 		net_timestamp_set(skb2);
1883 
1884 		/* skb->nh should be correctly
1885 		 * set by sender, so that the second statement is
1886 		 * just protection against buggy protocols.
1887 		 */
1888 		skb_reset_mac_header(skb2);
1889 
1890 		if (skb_network_header(skb2) < skb2->data ||
1891 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893 					     ntohs(skb2->protocol),
1894 					     dev->name);
1895 			skb_reset_network_header(skb2);
1896 		}
1897 
1898 		skb2->transport_header = skb2->network_header;
1899 		skb2->pkt_type = PACKET_OUTGOING;
1900 		pt_prev = ptype;
1901 	}
1902 
1903 	if (ptype_list == &ptype_all) {
1904 		ptype_list = &dev->ptype_all;
1905 		goto again;
1906 	}
1907 out_unlock:
1908 	if (pt_prev)
1909 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1910 	rcu_read_unlock();
1911 }
1912 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1913 
1914 /**
1915  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1916  * @dev: Network device
1917  * @txq: number of queues available
1918  *
1919  * If real_num_tx_queues is changed the tc mappings may no longer be
1920  * valid. To resolve this verify the tc mapping remains valid and if
1921  * not NULL the mapping. With no priorities mapping to this
1922  * offset/count pair it will no longer be used. In the worst case TC0
1923  * is invalid nothing can be done so disable priority mappings. If is
1924  * expected that drivers will fix this mapping if they can before
1925  * calling netif_set_real_num_tx_queues.
1926  */
1927 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1928 {
1929 	int i;
1930 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931 
1932 	/* If TC0 is invalidated disable TC mapping */
1933 	if (tc->offset + tc->count > txq) {
1934 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1935 		dev->num_tc = 0;
1936 		return;
1937 	}
1938 
1939 	/* Invalidated prio to tc mappings set to TC0 */
1940 	for (i = 1; i < TC_BITMASK + 1; i++) {
1941 		int q = netdev_get_prio_tc_map(dev, i);
1942 
1943 		tc = &dev->tc_to_txq[q];
1944 		if (tc->offset + tc->count > txq) {
1945 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946 				i, q);
1947 			netdev_set_prio_tc_map(dev, i, 0);
1948 		}
1949 	}
1950 }
1951 
1952 #ifdef CONFIG_XPS
1953 static DEFINE_MUTEX(xps_map_mutex);
1954 #define xmap_dereference(P)		\
1955 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956 
1957 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958 					int cpu, u16 index)
1959 {
1960 	struct xps_map *map = NULL;
1961 	int pos;
1962 
1963 	if (dev_maps)
1964 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1965 
1966 	for (pos = 0; map && pos < map->len; pos++) {
1967 		if (map->queues[pos] == index) {
1968 			if (map->len > 1) {
1969 				map->queues[pos] = map->queues[--map->len];
1970 			} else {
1971 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1972 				kfree_rcu(map, rcu);
1973 				map = NULL;
1974 			}
1975 			break;
1976 		}
1977 	}
1978 
1979 	return map;
1980 }
1981 
1982 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1983 {
1984 	struct xps_dev_maps *dev_maps;
1985 	int cpu, i;
1986 	bool active = false;
1987 
1988 	mutex_lock(&xps_map_mutex);
1989 	dev_maps = xmap_dereference(dev->xps_maps);
1990 
1991 	if (!dev_maps)
1992 		goto out_no_maps;
1993 
1994 	for_each_possible_cpu(cpu) {
1995 		for (i = index; i < dev->num_tx_queues; i++) {
1996 			if (!remove_xps_queue(dev_maps, cpu, i))
1997 				break;
1998 		}
1999 		if (i == dev->num_tx_queues)
2000 			active = true;
2001 	}
2002 
2003 	if (!active) {
2004 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2005 		kfree_rcu(dev_maps, rcu);
2006 	}
2007 
2008 	for (i = index; i < dev->num_tx_queues; i++)
2009 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010 					     NUMA_NO_NODE);
2011 
2012 out_no_maps:
2013 	mutex_unlock(&xps_map_mutex);
2014 }
2015 
2016 static struct xps_map *expand_xps_map(struct xps_map *map,
2017 				      int cpu, u16 index)
2018 {
2019 	struct xps_map *new_map;
2020 	int alloc_len = XPS_MIN_MAP_ALLOC;
2021 	int i, pos;
2022 
2023 	for (pos = 0; map && pos < map->len; pos++) {
2024 		if (map->queues[pos] != index)
2025 			continue;
2026 		return map;
2027 	}
2028 
2029 	/* Need to add queue to this CPU's existing map */
2030 	if (map) {
2031 		if (pos < map->alloc_len)
2032 			return map;
2033 
2034 		alloc_len = map->alloc_len * 2;
2035 	}
2036 
2037 	/* Need to allocate new map to store queue on this CPU's map */
2038 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039 			       cpu_to_node(cpu));
2040 	if (!new_map)
2041 		return NULL;
2042 
2043 	for (i = 0; i < pos; i++)
2044 		new_map->queues[i] = map->queues[i];
2045 	new_map->alloc_len = alloc_len;
2046 	new_map->len = pos;
2047 
2048 	return new_map;
2049 }
2050 
2051 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052 			u16 index)
2053 {
2054 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2055 	struct xps_map *map, *new_map;
2056 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2057 	int cpu, numa_node_id = -2;
2058 	bool active = false;
2059 
2060 	mutex_lock(&xps_map_mutex);
2061 
2062 	dev_maps = xmap_dereference(dev->xps_maps);
2063 
2064 	/* allocate memory for queue storage */
2065 	for_each_online_cpu(cpu) {
2066 		if (!cpumask_test_cpu(cpu, mask))
2067 			continue;
2068 
2069 		if (!new_dev_maps)
2070 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2071 		if (!new_dev_maps) {
2072 			mutex_unlock(&xps_map_mutex);
2073 			return -ENOMEM;
2074 		}
2075 
2076 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077 				 NULL;
2078 
2079 		map = expand_xps_map(map, cpu, index);
2080 		if (!map)
2081 			goto error;
2082 
2083 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084 	}
2085 
2086 	if (!new_dev_maps)
2087 		goto out_no_new_maps;
2088 
2089 	for_each_possible_cpu(cpu) {
2090 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091 			/* add queue to CPU maps */
2092 			int pos = 0;
2093 
2094 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095 			while ((pos < map->len) && (map->queues[pos] != index))
2096 				pos++;
2097 
2098 			if (pos == map->len)
2099 				map->queues[map->len++] = index;
2100 #ifdef CONFIG_NUMA
2101 			if (numa_node_id == -2)
2102 				numa_node_id = cpu_to_node(cpu);
2103 			else if (numa_node_id != cpu_to_node(cpu))
2104 				numa_node_id = -1;
2105 #endif
2106 		} else if (dev_maps) {
2107 			/* fill in the new device map from the old device map */
2108 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2110 		}
2111 
2112 	}
2113 
2114 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115 
2116 	/* Cleanup old maps */
2117 	if (dev_maps) {
2118 		for_each_possible_cpu(cpu) {
2119 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121 			if (map && map != new_map)
2122 				kfree_rcu(map, rcu);
2123 		}
2124 
2125 		kfree_rcu(dev_maps, rcu);
2126 	}
2127 
2128 	dev_maps = new_dev_maps;
2129 	active = true;
2130 
2131 out_no_new_maps:
2132 	/* update Tx queue numa node */
2133 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134 				     (numa_node_id >= 0) ? numa_node_id :
2135 				     NUMA_NO_NODE);
2136 
2137 	if (!dev_maps)
2138 		goto out_no_maps;
2139 
2140 	/* removes queue from unused CPUs */
2141 	for_each_possible_cpu(cpu) {
2142 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143 			continue;
2144 
2145 		if (remove_xps_queue(dev_maps, cpu, index))
2146 			active = true;
2147 	}
2148 
2149 	/* free map if not active */
2150 	if (!active) {
2151 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2152 		kfree_rcu(dev_maps, rcu);
2153 	}
2154 
2155 out_no_maps:
2156 	mutex_unlock(&xps_map_mutex);
2157 
2158 	return 0;
2159 error:
2160 	/* remove any maps that we added */
2161 	for_each_possible_cpu(cpu) {
2162 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164 				 NULL;
2165 		if (new_map && new_map != map)
2166 			kfree(new_map);
2167 	}
2168 
2169 	mutex_unlock(&xps_map_mutex);
2170 
2171 	kfree(new_dev_maps);
2172 	return -ENOMEM;
2173 }
2174 EXPORT_SYMBOL(netif_set_xps_queue);
2175 
2176 #endif
2177 /*
2178  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180  */
2181 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2182 {
2183 	int rc;
2184 
2185 	if (txq < 1 || txq > dev->num_tx_queues)
2186 		return -EINVAL;
2187 
2188 	if (dev->reg_state == NETREG_REGISTERED ||
2189 	    dev->reg_state == NETREG_UNREGISTERING) {
2190 		ASSERT_RTNL();
2191 
2192 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193 						  txq);
2194 		if (rc)
2195 			return rc;
2196 
2197 		if (dev->num_tc)
2198 			netif_setup_tc(dev, txq);
2199 
2200 		if (txq < dev->real_num_tx_queues) {
2201 			qdisc_reset_all_tx_gt(dev, txq);
2202 #ifdef CONFIG_XPS
2203 			netif_reset_xps_queues_gt(dev, txq);
2204 #endif
2205 		}
2206 	}
2207 
2208 	dev->real_num_tx_queues = txq;
2209 	return 0;
2210 }
2211 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2212 
2213 #ifdef CONFIG_SYSFS
2214 /**
2215  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2216  *	@dev: Network device
2217  *	@rxq: Actual number of RX queues
2218  *
2219  *	This must be called either with the rtnl_lock held or before
2220  *	registration of the net device.  Returns 0 on success, or a
2221  *	negative error code.  If called before registration, it always
2222  *	succeeds.
2223  */
2224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225 {
2226 	int rc;
2227 
2228 	if (rxq < 1 || rxq > dev->num_rx_queues)
2229 		return -EINVAL;
2230 
2231 	if (dev->reg_state == NETREG_REGISTERED) {
2232 		ASSERT_RTNL();
2233 
2234 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235 						  rxq);
2236 		if (rc)
2237 			return rc;
2238 	}
2239 
2240 	dev->real_num_rx_queues = rxq;
2241 	return 0;
2242 }
2243 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244 #endif
2245 
2246 /**
2247  * netif_get_num_default_rss_queues - default number of RSS queues
2248  *
2249  * This routine should set an upper limit on the number of RSS queues
2250  * used by default by multiqueue devices.
2251  */
2252 int netif_get_num_default_rss_queues(void)
2253 {
2254 	return is_kdump_kernel() ?
2255 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2256 }
2257 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258 
2259 static void __netif_reschedule(struct Qdisc *q)
2260 {
2261 	struct softnet_data *sd;
2262 	unsigned long flags;
2263 
2264 	local_irq_save(flags);
2265 	sd = this_cpu_ptr(&softnet_data);
2266 	q->next_sched = NULL;
2267 	*sd->output_queue_tailp = q;
2268 	sd->output_queue_tailp = &q->next_sched;
2269 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270 	local_irq_restore(flags);
2271 }
2272 
2273 void __netif_schedule(struct Qdisc *q)
2274 {
2275 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276 		__netif_reschedule(q);
2277 }
2278 EXPORT_SYMBOL(__netif_schedule);
2279 
2280 struct dev_kfree_skb_cb {
2281 	enum skb_free_reason reason;
2282 };
2283 
2284 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2285 {
2286 	return (struct dev_kfree_skb_cb *)skb->cb;
2287 }
2288 
2289 void netif_schedule_queue(struct netdev_queue *txq)
2290 {
2291 	rcu_read_lock();
2292 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2294 
2295 		__netif_schedule(q);
2296 	}
2297 	rcu_read_unlock();
2298 }
2299 EXPORT_SYMBOL(netif_schedule_queue);
2300 
2301 /**
2302  *	netif_wake_subqueue - allow sending packets on subqueue
2303  *	@dev: network device
2304  *	@queue_index: sub queue index
2305  *
2306  * Resume individual transmit queue of a device with multiple transmit queues.
2307  */
2308 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309 {
2310 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311 
2312 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313 		struct Qdisc *q;
2314 
2315 		rcu_read_lock();
2316 		q = rcu_dereference(txq->qdisc);
2317 		__netif_schedule(q);
2318 		rcu_read_unlock();
2319 	}
2320 }
2321 EXPORT_SYMBOL(netif_wake_subqueue);
2322 
2323 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324 {
2325 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326 		struct Qdisc *q;
2327 
2328 		rcu_read_lock();
2329 		q = rcu_dereference(dev_queue->qdisc);
2330 		__netif_schedule(q);
2331 		rcu_read_unlock();
2332 	}
2333 }
2334 EXPORT_SYMBOL(netif_tx_wake_queue);
2335 
2336 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2337 {
2338 	unsigned long flags;
2339 
2340 	if (likely(atomic_read(&skb->users) == 1)) {
2341 		smp_rmb();
2342 		atomic_set(&skb->users, 0);
2343 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2344 		return;
2345 	}
2346 	get_kfree_skb_cb(skb)->reason = reason;
2347 	local_irq_save(flags);
2348 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2349 	__this_cpu_write(softnet_data.completion_queue, skb);
2350 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351 	local_irq_restore(flags);
2352 }
2353 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2354 
2355 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2356 {
2357 	if (in_irq() || irqs_disabled())
2358 		__dev_kfree_skb_irq(skb, reason);
2359 	else
2360 		dev_kfree_skb(skb);
2361 }
2362 EXPORT_SYMBOL(__dev_kfree_skb_any);
2363 
2364 
2365 /**
2366  * netif_device_detach - mark device as removed
2367  * @dev: network device
2368  *
2369  * Mark device as removed from system and therefore no longer available.
2370  */
2371 void netif_device_detach(struct net_device *dev)
2372 {
2373 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374 	    netif_running(dev)) {
2375 		netif_tx_stop_all_queues(dev);
2376 	}
2377 }
2378 EXPORT_SYMBOL(netif_device_detach);
2379 
2380 /**
2381  * netif_device_attach - mark device as attached
2382  * @dev: network device
2383  *
2384  * Mark device as attached from system and restart if needed.
2385  */
2386 void netif_device_attach(struct net_device *dev)
2387 {
2388 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389 	    netif_running(dev)) {
2390 		netif_tx_wake_all_queues(dev);
2391 		__netdev_watchdog_up(dev);
2392 	}
2393 }
2394 EXPORT_SYMBOL(netif_device_attach);
2395 
2396 /*
2397  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398  * to be used as a distribution range.
2399  */
2400 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401 		  unsigned int num_tx_queues)
2402 {
2403 	u32 hash;
2404 	u16 qoffset = 0;
2405 	u16 qcount = num_tx_queues;
2406 
2407 	if (skb_rx_queue_recorded(skb)) {
2408 		hash = skb_get_rx_queue(skb);
2409 		while (unlikely(hash >= num_tx_queues))
2410 			hash -= num_tx_queues;
2411 		return hash;
2412 	}
2413 
2414 	if (dev->num_tc) {
2415 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416 		qoffset = dev->tc_to_txq[tc].offset;
2417 		qcount = dev->tc_to_txq[tc].count;
2418 	}
2419 
2420 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421 }
2422 EXPORT_SYMBOL(__skb_tx_hash);
2423 
2424 static void skb_warn_bad_offload(const struct sk_buff *skb)
2425 {
2426 	static const netdev_features_t null_features;
2427 	struct net_device *dev = skb->dev;
2428 	const char *name = "";
2429 
2430 	if (!net_ratelimit())
2431 		return;
2432 
2433 	if (dev) {
2434 		if (dev->dev.parent)
2435 			name = dev_driver_string(dev->dev.parent);
2436 		else
2437 			name = netdev_name(dev);
2438 	}
2439 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440 	     "gso_type=%d ip_summed=%d\n",
2441 	     name, dev ? &dev->features : &null_features,
2442 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2443 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2445 }
2446 
2447 /*
2448  * Invalidate hardware checksum when packet is to be mangled, and
2449  * complete checksum manually on outgoing path.
2450  */
2451 int skb_checksum_help(struct sk_buff *skb)
2452 {
2453 	__wsum csum;
2454 	int ret = 0, offset;
2455 
2456 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2457 		goto out_set_summed;
2458 
2459 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2460 		skb_warn_bad_offload(skb);
2461 		return -EINVAL;
2462 	}
2463 
2464 	/* Before computing a checksum, we should make sure no frag could
2465 	 * be modified by an external entity : checksum could be wrong.
2466 	 */
2467 	if (skb_has_shared_frag(skb)) {
2468 		ret = __skb_linearize(skb);
2469 		if (ret)
2470 			goto out;
2471 	}
2472 
2473 	offset = skb_checksum_start_offset(skb);
2474 	BUG_ON(offset >= skb_headlen(skb));
2475 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476 
2477 	offset += skb->csum_offset;
2478 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479 
2480 	if (skb_cloned(skb) &&
2481 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2482 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483 		if (ret)
2484 			goto out;
2485 	}
2486 
2487 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2488 out_set_summed:
2489 	skb->ip_summed = CHECKSUM_NONE;
2490 out:
2491 	return ret;
2492 }
2493 EXPORT_SYMBOL(skb_checksum_help);
2494 
2495 /* skb_csum_offload_check - Driver helper function to determine if a device
2496  * with limited checksum offload capabilities is able to offload the checksum
2497  * for a given packet.
2498  *
2499  * Arguments:
2500  *   skb - sk_buff for the packet in question
2501  *   spec - contains the description of what device can offload
2502  *   csum_encapped - returns true if the checksum being offloaded is
2503  *	      encpasulated. That is it is checksum for the transport header
2504  *	      in the inner headers.
2505  *   checksum_help - when set indicates that helper function should
2506  *	      call skb_checksum_help if offload checks fail
2507  *
2508  * Returns:
2509  *   true: Packet has passed the checksum checks and should be offloadable to
2510  *	   the device (a driver may still need to check for additional
2511  *	   restrictions of its device)
2512  *   false: Checksum is not offloadable. If checksum_help was set then
2513  *	   skb_checksum_help was called to resolve checksum for non-GSO
2514  *	   packets and when IP protocol is not SCTP
2515  */
2516 bool __skb_csum_offload_chk(struct sk_buff *skb,
2517 			    const struct skb_csum_offl_spec *spec,
2518 			    bool *csum_encapped,
2519 			    bool csum_help)
2520 {
2521 	struct iphdr *iph;
2522 	struct ipv6hdr *ipv6;
2523 	void *nhdr;
2524 	int protocol;
2525 	u8 ip_proto;
2526 
2527 	if (skb->protocol == htons(ETH_P_8021Q) ||
2528 	    skb->protocol == htons(ETH_P_8021AD)) {
2529 		if (!spec->vlan_okay)
2530 			goto need_help;
2531 	}
2532 
2533 	/* We check whether the checksum refers to a transport layer checksum in
2534 	 * the outermost header or an encapsulated transport layer checksum that
2535 	 * corresponds to the inner headers of the skb. If the checksum is for
2536 	 * something else in the packet we need help.
2537 	 */
2538 	if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539 		/* Non-encapsulated checksum */
2540 		protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541 		nhdr = skb_network_header(skb);
2542 		*csum_encapped = false;
2543 		if (spec->no_not_encapped)
2544 			goto need_help;
2545 	} else if (skb->encapsulation && spec->encap_okay &&
2546 		   skb_checksum_start_offset(skb) ==
2547 		   skb_inner_transport_offset(skb)) {
2548 		/* Encapsulated checksum */
2549 		*csum_encapped = true;
2550 		switch (skb->inner_protocol_type) {
2551 		case ENCAP_TYPE_ETHER:
2552 			protocol = eproto_to_ipproto(skb->inner_protocol);
2553 			break;
2554 		case ENCAP_TYPE_IPPROTO:
2555 			protocol = skb->inner_protocol;
2556 			break;
2557 		}
2558 		nhdr = skb_inner_network_header(skb);
2559 	} else {
2560 		goto need_help;
2561 	}
2562 
2563 	switch (protocol) {
2564 	case IPPROTO_IP:
2565 		if (!spec->ipv4_okay)
2566 			goto need_help;
2567 		iph = nhdr;
2568 		ip_proto = iph->protocol;
2569 		if (iph->ihl != 5 && !spec->ip_options_okay)
2570 			goto need_help;
2571 		break;
2572 	case IPPROTO_IPV6:
2573 		if (!spec->ipv6_okay)
2574 			goto need_help;
2575 		if (spec->no_encapped_ipv6 && *csum_encapped)
2576 			goto need_help;
2577 		ipv6 = nhdr;
2578 		nhdr += sizeof(*ipv6);
2579 		ip_proto = ipv6->nexthdr;
2580 		break;
2581 	default:
2582 		goto need_help;
2583 	}
2584 
2585 ip_proto_again:
2586 	switch (ip_proto) {
2587 	case IPPROTO_TCP:
2588 		if (!spec->tcp_okay ||
2589 		    skb->csum_offset != offsetof(struct tcphdr, check))
2590 			goto need_help;
2591 		break;
2592 	case IPPROTO_UDP:
2593 		if (!spec->udp_okay ||
2594 		    skb->csum_offset != offsetof(struct udphdr, check))
2595 			goto need_help;
2596 		break;
2597 	case IPPROTO_SCTP:
2598 		if (!spec->sctp_okay ||
2599 		    skb->csum_offset != offsetof(struct sctphdr, checksum))
2600 			goto cant_help;
2601 		break;
2602 	case NEXTHDR_HOP:
2603 	case NEXTHDR_ROUTING:
2604 	case NEXTHDR_DEST: {
2605 		u8 *opthdr = nhdr;
2606 
2607 		if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608 			goto need_help;
2609 
2610 		ip_proto = opthdr[0];
2611 		nhdr += (opthdr[1] + 1) << 3;
2612 
2613 		goto ip_proto_again;
2614 	}
2615 	default:
2616 		goto need_help;
2617 	}
2618 
2619 	/* Passed the tests for offloading checksum */
2620 	return true;
2621 
2622 need_help:
2623 	if (csum_help && !skb_shinfo(skb)->gso_size)
2624 		skb_checksum_help(skb);
2625 cant_help:
2626 	return false;
2627 }
2628 EXPORT_SYMBOL(__skb_csum_offload_chk);
2629 
2630 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2631 {
2632 	__be16 type = skb->protocol;
2633 
2634 	/* Tunnel gso handlers can set protocol to ethernet. */
2635 	if (type == htons(ETH_P_TEB)) {
2636 		struct ethhdr *eth;
2637 
2638 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639 			return 0;
2640 
2641 		eth = (struct ethhdr *)skb_mac_header(skb);
2642 		type = eth->h_proto;
2643 	}
2644 
2645 	return __vlan_get_protocol(skb, type, depth);
2646 }
2647 
2648 /**
2649  *	skb_mac_gso_segment - mac layer segmentation handler.
2650  *	@skb: buffer to segment
2651  *	@features: features for the output path (see dev->features)
2652  */
2653 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654 				    netdev_features_t features)
2655 {
2656 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657 	struct packet_offload *ptype;
2658 	int vlan_depth = skb->mac_len;
2659 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2660 
2661 	if (unlikely(!type))
2662 		return ERR_PTR(-EINVAL);
2663 
2664 	__skb_pull(skb, vlan_depth);
2665 
2666 	rcu_read_lock();
2667 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2668 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2669 			segs = ptype->callbacks.gso_segment(skb, features);
2670 			break;
2671 		}
2672 	}
2673 	rcu_read_unlock();
2674 
2675 	__skb_push(skb, skb->data - skb_mac_header(skb));
2676 
2677 	return segs;
2678 }
2679 EXPORT_SYMBOL(skb_mac_gso_segment);
2680 
2681 
2682 /* openvswitch calls this on rx path, so we need a different check.
2683  */
2684 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685 {
2686 	if (tx_path)
2687 		return skb->ip_summed != CHECKSUM_PARTIAL;
2688 	else
2689 		return skb->ip_summed == CHECKSUM_NONE;
2690 }
2691 
2692 /**
2693  *	__skb_gso_segment - Perform segmentation on skb.
2694  *	@skb: buffer to segment
2695  *	@features: features for the output path (see dev->features)
2696  *	@tx_path: whether it is called in TX path
2697  *
2698  *	This function segments the given skb and returns a list of segments.
2699  *
2700  *	It may return NULL if the skb requires no segmentation.  This is
2701  *	only possible when GSO is used for verifying header integrity.
2702  *
2703  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2704  */
2705 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706 				  netdev_features_t features, bool tx_path)
2707 {
2708 	if (unlikely(skb_needs_check(skb, tx_path))) {
2709 		int err;
2710 
2711 		skb_warn_bad_offload(skb);
2712 
2713 		err = skb_cow_head(skb, 0);
2714 		if (err < 0)
2715 			return ERR_PTR(err);
2716 	}
2717 
2718 	/* Only report GSO partial support if it will enable us to
2719 	 * support segmentation on this frame without needing additional
2720 	 * work.
2721 	 */
2722 	if (features & NETIF_F_GSO_PARTIAL) {
2723 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724 		struct net_device *dev = skb->dev;
2725 
2726 		partial_features |= dev->features & dev->gso_partial_features;
2727 		if (!skb_gso_ok(skb, features | partial_features))
2728 			features &= ~NETIF_F_GSO_PARTIAL;
2729 	}
2730 
2731 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733 
2734 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2735 	SKB_GSO_CB(skb)->encap_level = 0;
2736 
2737 	skb_reset_mac_header(skb);
2738 	skb_reset_mac_len(skb);
2739 
2740 	return skb_mac_gso_segment(skb, features);
2741 }
2742 EXPORT_SYMBOL(__skb_gso_segment);
2743 
2744 /* Take action when hardware reception checksum errors are detected. */
2745 #ifdef CONFIG_BUG
2746 void netdev_rx_csum_fault(struct net_device *dev)
2747 {
2748 	if (net_ratelimit()) {
2749 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2750 		dump_stack();
2751 	}
2752 }
2753 EXPORT_SYMBOL(netdev_rx_csum_fault);
2754 #endif
2755 
2756 /* Actually, we should eliminate this check as soon as we know, that:
2757  * 1. IOMMU is present and allows to map all the memory.
2758  * 2. No high memory really exists on this machine.
2759  */
2760 
2761 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2762 {
2763 #ifdef CONFIG_HIGHMEM
2764 	int i;
2765 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2766 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 			if (PageHighMem(skb_frag_page(frag)))
2769 				return 1;
2770 		}
2771 	}
2772 
2773 	if (PCI_DMA_BUS_IS_PHYS) {
2774 		struct device *pdev = dev->dev.parent;
2775 
2776 		if (!pdev)
2777 			return 0;
2778 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2779 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2781 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782 				return 1;
2783 		}
2784 	}
2785 #endif
2786 	return 0;
2787 }
2788 
2789 /* If MPLS offload request, verify we are testing hardware MPLS features
2790  * instead of standard features for the netdev.
2791  */
2792 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2793 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794 					   netdev_features_t features,
2795 					   __be16 type)
2796 {
2797 	if (eth_p_mpls(type))
2798 		features &= skb->dev->mpls_features;
2799 
2800 	return features;
2801 }
2802 #else
2803 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804 					   netdev_features_t features,
2805 					   __be16 type)
2806 {
2807 	return features;
2808 }
2809 #endif
2810 
2811 static netdev_features_t harmonize_features(struct sk_buff *skb,
2812 	netdev_features_t features)
2813 {
2814 	int tmp;
2815 	__be16 type;
2816 
2817 	type = skb_network_protocol(skb, &tmp);
2818 	features = net_mpls_features(skb, features, type);
2819 
2820 	if (skb->ip_summed != CHECKSUM_NONE &&
2821 	    !can_checksum_protocol(features, type)) {
2822 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2823 	} else if (illegal_highdma(skb->dev, skb)) {
2824 		features &= ~NETIF_F_SG;
2825 	}
2826 
2827 	return features;
2828 }
2829 
2830 netdev_features_t passthru_features_check(struct sk_buff *skb,
2831 					  struct net_device *dev,
2832 					  netdev_features_t features)
2833 {
2834 	return features;
2835 }
2836 EXPORT_SYMBOL(passthru_features_check);
2837 
2838 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839 					     struct net_device *dev,
2840 					     netdev_features_t features)
2841 {
2842 	return vlan_features_check(skb, features);
2843 }
2844 
2845 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846 					    struct net_device *dev,
2847 					    netdev_features_t features)
2848 {
2849 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850 
2851 	if (gso_segs > dev->gso_max_segs)
2852 		return features & ~NETIF_F_GSO_MASK;
2853 
2854 	/* Support for GSO partial features requires software
2855 	 * intervention before we can actually process the packets
2856 	 * so we need to strip support for any partial features now
2857 	 * and we can pull them back in after we have partially
2858 	 * segmented the frame.
2859 	 */
2860 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861 		features &= ~dev->gso_partial_features;
2862 
2863 	/* Make sure to clear the IPv4 ID mangling feature if the
2864 	 * IPv4 header has the potential to be fragmented.
2865 	 */
2866 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867 		struct iphdr *iph = skb->encapsulation ?
2868 				    inner_ip_hdr(skb) : ip_hdr(skb);
2869 
2870 		if (!(iph->frag_off & htons(IP_DF)))
2871 			features &= ~NETIF_F_TSO_MANGLEID;
2872 	}
2873 
2874 	return features;
2875 }
2876 
2877 netdev_features_t netif_skb_features(struct sk_buff *skb)
2878 {
2879 	struct net_device *dev = skb->dev;
2880 	netdev_features_t features = dev->features;
2881 
2882 	if (skb_is_gso(skb))
2883 		features = gso_features_check(skb, dev, features);
2884 
2885 	/* If encapsulation offload request, verify we are testing
2886 	 * hardware encapsulation features instead of standard
2887 	 * features for the netdev
2888 	 */
2889 	if (skb->encapsulation)
2890 		features &= dev->hw_enc_features;
2891 
2892 	if (skb_vlan_tagged(skb))
2893 		features = netdev_intersect_features(features,
2894 						     dev->vlan_features |
2895 						     NETIF_F_HW_VLAN_CTAG_TX |
2896 						     NETIF_F_HW_VLAN_STAG_TX);
2897 
2898 	if (dev->netdev_ops->ndo_features_check)
2899 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900 								features);
2901 	else
2902 		features &= dflt_features_check(skb, dev, features);
2903 
2904 	return harmonize_features(skb, features);
2905 }
2906 EXPORT_SYMBOL(netif_skb_features);
2907 
2908 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2909 		    struct netdev_queue *txq, bool more)
2910 {
2911 	unsigned int len;
2912 	int rc;
2913 
2914 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2915 		dev_queue_xmit_nit(skb, dev);
2916 
2917 	len = skb->len;
2918 	trace_net_dev_start_xmit(skb, dev);
2919 	rc = netdev_start_xmit(skb, dev, txq, more);
2920 	trace_net_dev_xmit(skb, rc, dev, len);
2921 
2922 	return rc;
2923 }
2924 
2925 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926 				    struct netdev_queue *txq, int *ret)
2927 {
2928 	struct sk_buff *skb = first;
2929 	int rc = NETDEV_TX_OK;
2930 
2931 	while (skb) {
2932 		struct sk_buff *next = skb->next;
2933 
2934 		skb->next = NULL;
2935 		rc = xmit_one(skb, dev, txq, next != NULL);
2936 		if (unlikely(!dev_xmit_complete(rc))) {
2937 			skb->next = next;
2938 			goto out;
2939 		}
2940 
2941 		skb = next;
2942 		if (netif_xmit_stopped(txq) && skb) {
2943 			rc = NETDEV_TX_BUSY;
2944 			break;
2945 		}
2946 	}
2947 
2948 out:
2949 	*ret = rc;
2950 	return skb;
2951 }
2952 
2953 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954 					  netdev_features_t features)
2955 {
2956 	if (skb_vlan_tag_present(skb) &&
2957 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2958 		skb = __vlan_hwaccel_push_inside(skb);
2959 	return skb;
2960 }
2961 
2962 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2963 {
2964 	netdev_features_t features;
2965 
2966 	features = netif_skb_features(skb);
2967 	skb = validate_xmit_vlan(skb, features);
2968 	if (unlikely(!skb))
2969 		goto out_null;
2970 
2971 	if (netif_needs_gso(skb, features)) {
2972 		struct sk_buff *segs;
2973 
2974 		segs = skb_gso_segment(skb, features);
2975 		if (IS_ERR(segs)) {
2976 			goto out_kfree_skb;
2977 		} else if (segs) {
2978 			consume_skb(skb);
2979 			skb = segs;
2980 		}
2981 	} else {
2982 		if (skb_needs_linearize(skb, features) &&
2983 		    __skb_linearize(skb))
2984 			goto out_kfree_skb;
2985 
2986 		/* If packet is not checksummed and device does not
2987 		 * support checksumming for this protocol, complete
2988 		 * checksumming here.
2989 		 */
2990 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991 			if (skb->encapsulation)
2992 				skb_set_inner_transport_header(skb,
2993 							       skb_checksum_start_offset(skb));
2994 			else
2995 				skb_set_transport_header(skb,
2996 							 skb_checksum_start_offset(skb));
2997 			if (!(features & NETIF_F_CSUM_MASK) &&
2998 			    skb_checksum_help(skb))
2999 				goto out_kfree_skb;
3000 		}
3001 	}
3002 
3003 	return skb;
3004 
3005 out_kfree_skb:
3006 	kfree_skb(skb);
3007 out_null:
3008 	atomic_long_inc(&dev->tx_dropped);
3009 	return NULL;
3010 }
3011 
3012 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013 {
3014 	struct sk_buff *next, *head = NULL, *tail;
3015 
3016 	for (; skb != NULL; skb = next) {
3017 		next = skb->next;
3018 		skb->next = NULL;
3019 
3020 		/* in case skb wont be segmented, point to itself */
3021 		skb->prev = skb;
3022 
3023 		skb = validate_xmit_skb(skb, dev);
3024 		if (!skb)
3025 			continue;
3026 
3027 		if (!head)
3028 			head = skb;
3029 		else
3030 			tail->next = skb;
3031 		/* If skb was segmented, skb->prev points to
3032 		 * the last segment. If not, it still contains skb.
3033 		 */
3034 		tail = skb->prev;
3035 	}
3036 	return head;
3037 }
3038 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3039 
3040 static void qdisc_pkt_len_init(struct sk_buff *skb)
3041 {
3042 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3043 
3044 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3045 
3046 	/* To get more precise estimation of bytes sent on wire,
3047 	 * we add to pkt_len the headers size of all segments
3048 	 */
3049 	if (shinfo->gso_size)  {
3050 		unsigned int hdr_len;
3051 		u16 gso_segs = shinfo->gso_segs;
3052 
3053 		/* mac layer + network layer */
3054 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3055 
3056 		/* + transport layer */
3057 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3058 			hdr_len += tcp_hdrlen(skb);
3059 		else
3060 			hdr_len += sizeof(struct udphdr);
3061 
3062 		if (shinfo->gso_type & SKB_GSO_DODGY)
3063 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3064 						shinfo->gso_size);
3065 
3066 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3067 	}
3068 }
3069 
3070 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3071 				 struct net_device *dev,
3072 				 struct netdev_queue *txq)
3073 {
3074 	spinlock_t *root_lock = qdisc_lock(q);
3075 	struct sk_buff *to_free = NULL;
3076 	bool contended;
3077 	int rc;
3078 
3079 	qdisc_calculate_pkt_len(skb, q);
3080 	/*
3081 	 * Heuristic to force contended enqueues to serialize on a
3082 	 * separate lock before trying to get qdisc main lock.
3083 	 * This permits qdisc->running owner to get the lock more
3084 	 * often and dequeue packets faster.
3085 	 */
3086 	contended = qdisc_is_running(q);
3087 	if (unlikely(contended))
3088 		spin_lock(&q->busylock);
3089 
3090 	spin_lock(root_lock);
3091 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3092 		__qdisc_drop(skb, &to_free);
3093 		rc = NET_XMIT_DROP;
3094 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3095 		   qdisc_run_begin(q)) {
3096 		/*
3097 		 * This is a work-conserving queue; there are no old skbs
3098 		 * waiting to be sent out; and the qdisc is not running -
3099 		 * xmit the skb directly.
3100 		 */
3101 
3102 		qdisc_bstats_update(q, skb);
3103 
3104 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3105 			if (unlikely(contended)) {
3106 				spin_unlock(&q->busylock);
3107 				contended = false;
3108 			}
3109 			__qdisc_run(q);
3110 		} else
3111 			qdisc_run_end(q);
3112 
3113 		rc = NET_XMIT_SUCCESS;
3114 	} else {
3115 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3116 		if (qdisc_run_begin(q)) {
3117 			if (unlikely(contended)) {
3118 				spin_unlock(&q->busylock);
3119 				contended = false;
3120 			}
3121 			__qdisc_run(q);
3122 		}
3123 	}
3124 	spin_unlock(root_lock);
3125 	if (unlikely(to_free))
3126 		kfree_skb_list(to_free);
3127 	if (unlikely(contended))
3128 		spin_unlock(&q->busylock);
3129 	return rc;
3130 }
3131 
3132 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3133 static void skb_update_prio(struct sk_buff *skb)
3134 {
3135 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3136 
3137 	if (!skb->priority && skb->sk && map) {
3138 		unsigned int prioidx =
3139 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3140 
3141 		if (prioidx < map->priomap_len)
3142 			skb->priority = map->priomap[prioidx];
3143 	}
3144 }
3145 #else
3146 #define skb_update_prio(skb)
3147 #endif
3148 
3149 DEFINE_PER_CPU(int, xmit_recursion);
3150 EXPORT_SYMBOL(xmit_recursion);
3151 
3152 /**
3153  *	dev_loopback_xmit - loop back @skb
3154  *	@net: network namespace this loopback is happening in
3155  *	@sk:  sk needed to be a netfilter okfn
3156  *	@skb: buffer to transmit
3157  */
3158 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3159 {
3160 	skb_reset_mac_header(skb);
3161 	__skb_pull(skb, skb_network_offset(skb));
3162 	skb->pkt_type = PACKET_LOOPBACK;
3163 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3164 	WARN_ON(!skb_dst(skb));
3165 	skb_dst_force(skb);
3166 	netif_rx_ni(skb);
3167 	return 0;
3168 }
3169 EXPORT_SYMBOL(dev_loopback_xmit);
3170 
3171 #ifdef CONFIG_NET_EGRESS
3172 static struct sk_buff *
3173 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3174 {
3175 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3176 	struct tcf_result cl_res;
3177 
3178 	if (!cl)
3179 		return skb;
3180 
3181 	/* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3182 	 * earlier by the caller.
3183 	 */
3184 	qdisc_bstats_cpu_update(cl->q, skb);
3185 
3186 	switch (tc_classify(skb, cl, &cl_res, false)) {
3187 	case TC_ACT_OK:
3188 	case TC_ACT_RECLASSIFY:
3189 		skb->tc_index = TC_H_MIN(cl_res.classid);
3190 		break;
3191 	case TC_ACT_SHOT:
3192 		qdisc_qstats_cpu_drop(cl->q);
3193 		*ret = NET_XMIT_DROP;
3194 		kfree_skb(skb);
3195 		return NULL;
3196 	case TC_ACT_STOLEN:
3197 	case TC_ACT_QUEUED:
3198 		*ret = NET_XMIT_SUCCESS;
3199 		consume_skb(skb);
3200 		return NULL;
3201 	case TC_ACT_REDIRECT:
3202 		/* No need to push/pop skb's mac_header here on egress! */
3203 		skb_do_redirect(skb);
3204 		*ret = NET_XMIT_SUCCESS;
3205 		return NULL;
3206 	default:
3207 		break;
3208 	}
3209 
3210 	return skb;
3211 }
3212 #endif /* CONFIG_NET_EGRESS */
3213 
3214 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3215 {
3216 #ifdef CONFIG_XPS
3217 	struct xps_dev_maps *dev_maps;
3218 	struct xps_map *map;
3219 	int queue_index = -1;
3220 
3221 	rcu_read_lock();
3222 	dev_maps = rcu_dereference(dev->xps_maps);
3223 	if (dev_maps) {
3224 		map = rcu_dereference(
3225 		    dev_maps->cpu_map[skb->sender_cpu - 1]);
3226 		if (map) {
3227 			if (map->len == 1)
3228 				queue_index = map->queues[0];
3229 			else
3230 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3231 									   map->len)];
3232 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3233 				queue_index = -1;
3234 		}
3235 	}
3236 	rcu_read_unlock();
3237 
3238 	return queue_index;
3239 #else
3240 	return -1;
3241 #endif
3242 }
3243 
3244 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3245 {
3246 	struct sock *sk = skb->sk;
3247 	int queue_index = sk_tx_queue_get(sk);
3248 
3249 	if (queue_index < 0 || skb->ooo_okay ||
3250 	    queue_index >= dev->real_num_tx_queues) {
3251 		int new_index = get_xps_queue(dev, skb);
3252 		if (new_index < 0)
3253 			new_index = skb_tx_hash(dev, skb);
3254 
3255 		if (queue_index != new_index && sk &&
3256 		    sk_fullsock(sk) &&
3257 		    rcu_access_pointer(sk->sk_dst_cache))
3258 			sk_tx_queue_set(sk, new_index);
3259 
3260 		queue_index = new_index;
3261 	}
3262 
3263 	return queue_index;
3264 }
3265 
3266 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3267 				    struct sk_buff *skb,
3268 				    void *accel_priv)
3269 {
3270 	int queue_index = 0;
3271 
3272 #ifdef CONFIG_XPS
3273 	u32 sender_cpu = skb->sender_cpu - 1;
3274 
3275 	if (sender_cpu >= (u32)NR_CPUS)
3276 		skb->sender_cpu = raw_smp_processor_id() + 1;
3277 #endif
3278 
3279 	if (dev->real_num_tx_queues != 1) {
3280 		const struct net_device_ops *ops = dev->netdev_ops;
3281 		if (ops->ndo_select_queue)
3282 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3283 							    __netdev_pick_tx);
3284 		else
3285 			queue_index = __netdev_pick_tx(dev, skb);
3286 
3287 		if (!accel_priv)
3288 			queue_index = netdev_cap_txqueue(dev, queue_index);
3289 	}
3290 
3291 	skb_set_queue_mapping(skb, queue_index);
3292 	return netdev_get_tx_queue(dev, queue_index);
3293 }
3294 
3295 /**
3296  *	__dev_queue_xmit - transmit a buffer
3297  *	@skb: buffer to transmit
3298  *	@accel_priv: private data used for L2 forwarding offload
3299  *
3300  *	Queue a buffer for transmission to a network device. The caller must
3301  *	have set the device and priority and built the buffer before calling
3302  *	this function. The function can be called from an interrupt.
3303  *
3304  *	A negative errno code is returned on a failure. A success does not
3305  *	guarantee the frame will be transmitted as it may be dropped due
3306  *	to congestion or traffic shaping.
3307  *
3308  * -----------------------------------------------------------------------------------
3309  *      I notice this method can also return errors from the queue disciplines,
3310  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3311  *      be positive.
3312  *
3313  *      Regardless of the return value, the skb is consumed, so it is currently
3314  *      difficult to retry a send to this method.  (You can bump the ref count
3315  *      before sending to hold a reference for retry if you are careful.)
3316  *
3317  *      When calling this method, interrupts MUST be enabled.  This is because
3318  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3319  *          --BLG
3320  */
3321 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3322 {
3323 	struct net_device *dev = skb->dev;
3324 	struct netdev_queue *txq;
3325 	struct Qdisc *q;
3326 	int rc = -ENOMEM;
3327 
3328 	skb_reset_mac_header(skb);
3329 
3330 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3331 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3332 
3333 	/* Disable soft irqs for various locks below. Also
3334 	 * stops preemption for RCU.
3335 	 */
3336 	rcu_read_lock_bh();
3337 
3338 	skb_update_prio(skb);
3339 
3340 	qdisc_pkt_len_init(skb);
3341 #ifdef CONFIG_NET_CLS_ACT
3342 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3343 # ifdef CONFIG_NET_EGRESS
3344 	if (static_key_false(&egress_needed)) {
3345 		skb = sch_handle_egress(skb, &rc, dev);
3346 		if (!skb)
3347 			goto out;
3348 	}
3349 # endif
3350 #endif
3351 	/* If device/qdisc don't need skb->dst, release it right now while
3352 	 * its hot in this cpu cache.
3353 	 */
3354 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3355 		skb_dst_drop(skb);
3356 	else
3357 		skb_dst_force(skb);
3358 
3359 	txq = netdev_pick_tx(dev, skb, accel_priv);
3360 	q = rcu_dereference_bh(txq->qdisc);
3361 
3362 	trace_net_dev_queue(skb);
3363 	if (q->enqueue) {
3364 		rc = __dev_xmit_skb(skb, q, dev, txq);
3365 		goto out;
3366 	}
3367 
3368 	/* The device has no queue. Common case for software devices:
3369 	   loopback, all the sorts of tunnels...
3370 
3371 	   Really, it is unlikely that netif_tx_lock protection is necessary
3372 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3373 	   counters.)
3374 	   However, it is possible, that they rely on protection
3375 	   made by us here.
3376 
3377 	   Check this and shot the lock. It is not prone from deadlocks.
3378 	   Either shot noqueue qdisc, it is even simpler 8)
3379 	 */
3380 	if (dev->flags & IFF_UP) {
3381 		int cpu = smp_processor_id(); /* ok because BHs are off */
3382 
3383 		if (txq->xmit_lock_owner != cpu) {
3384 			if (unlikely(__this_cpu_read(xmit_recursion) >
3385 				     XMIT_RECURSION_LIMIT))
3386 				goto recursion_alert;
3387 
3388 			skb = validate_xmit_skb(skb, dev);
3389 			if (!skb)
3390 				goto out;
3391 
3392 			HARD_TX_LOCK(dev, txq, cpu);
3393 
3394 			if (!netif_xmit_stopped(txq)) {
3395 				__this_cpu_inc(xmit_recursion);
3396 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3397 				__this_cpu_dec(xmit_recursion);
3398 				if (dev_xmit_complete(rc)) {
3399 					HARD_TX_UNLOCK(dev, txq);
3400 					goto out;
3401 				}
3402 			}
3403 			HARD_TX_UNLOCK(dev, txq);
3404 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3405 					     dev->name);
3406 		} else {
3407 			/* Recursion is detected! It is possible,
3408 			 * unfortunately
3409 			 */
3410 recursion_alert:
3411 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3412 					     dev->name);
3413 		}
3414 	}
3415 
3416 	rc = -ENETDOWN;
3417 	rcu_read_unlock_bh();
3418 
3419 	atomic_long_inc(&dev->tx_dropped);
3420 	kfree_skb_list(skb);
3421 	return rc;
3422 out:
3423 	rcu_read_unlock_bh();
3424 	return rc;
3425 }
3426 
3427 int dev_queue_xmit(struct sk_buff *skb)
3428 {
3429 	return __dev_queue_xmit(skb, NULL);
3430 }
3431 EXPORT_SYMBOL(dev_queue_xmit);
3432 
3433 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3434 {
3435 	return __dev_queue_xmit(skb, accel_priv);
3436 }
3437 EXPORT_SYMBOL(dev_queue_xmit_accel);
3438 
3439 
3440 /*=======================================================================
3441 			Receiver routines
3442   =======================================================================*/
3443 
3444 int netdev_max_backlog __read_mostly = 1000;
3445 EXPORT_SYMBOL(netdev_max_backlog);
3446 
3447 int netdev_tstamp_prequeue __read_mostly = 1;
3448 int netdev_budget __read_mostly = 300;
3449 int weight_p __read_mostly = 64;            /* old backlog weight */
3450 
3451 /* Called with irq disabled */
3452 static inline void ____napi_schedule(struct softnet_data *sd,
3453 				     struct napi_struct *napi)
3454 {
3455 	list_add_tail(&napi->poll_list, &sd->poll_list);
3456 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3457 }
3458 
3459 #ifdef CONFIG_RPS
3460 
3461 /* One global table that all flow-based protocols share. */
3462 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3463 EXPORT_SYMBOL(rps_sock_flow_table);
3464 u32 rps_cpu_mask __read_mostly;
3465 EXPORT_SYMBOL(rps_cpu_mask);
3466 
3467 struct static_key rps_needed __read_mostly;
3468 EXPORT_SYMBOL(rps_needed);
3469 
3470 static struct rps_dev_flow *
3471 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3472 	    struct rps_dev_flow *rflow, u16 next_cpu)
3473 {
3474 	if (next_cpu < nr_cpu_ids) {
3475 #ifdef CONFIG_RFS_ACCEL
3476 		struct netdev_rx_queue *rxqueue;
3477 		struct rps_dev_flow_table *flow_table;
3478 		struct rps_dev_flow *old_rflow;
3479 		u32 flow_id;
3480 		u16 rxq_index;
3481 		int rc;
3482 
3483 		/* Should we steer this flow to a different hardware queue? */
3484 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3485 		    !(dev->features & NETIF_F_NTUPLE))
3486 			goto out;
3487 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3488 		if (rxq_index == skb_get_rx_queue(skb))
3489 			goto out;
3490 
3491 		rxqueue = dev->_rx + rxq_index;
3492 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3493 		if (!flow_table)
3494 			goto out;
3495 		flow_id = skb_get_hash(skb) & flow_table->mask;
3496 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3497 							rxq_index, flow_id);
3498 		if (rc < 0)
3499 			goto out;
3500 		old_rflow = rflow;
3501 		rflow = &flow_table->flows[flow_id];
3502 		rflow->filter = rc;
3503 		if (old_rflow->filter == rflow->filter)
3504 			old_rflow->filter = RPS_NO_FILTER;
3505 	out:
3506 #endif
3507 		rflow->last_qtail =
3508 			per_cpu(softnet_data, next_cpu).input_queue_head;
3509 	}
3510 
3511 	rflow->cpu = next_cpu;
3512 	return rflow;
3513 }
3514 
3515 /*
3516  * get_rps_cpu is called from netif_receive_skb and returns the target
3517  * CPU from the RPS map of the receiving queue for a given skb.
3518  * rcu_read_lock must be held on entry.
3519  */
3520 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3521 		       struct rps_dev_flow **rflowp)
3522 {
3523 	const struct rps_sock_flow_table *sock_flow_table;
3524 	struct netdev_rx_queue *rxqueue = dev->_rx;
3525 	struct rps_dev_flow_table *flow_table;
3526 	struct rps_map *map;
3527 	int cpu = -1;
3528 	u32 tcpu;
3529 	u32 hash;
3530 
3531 	if (skb_rx_queue_recorded(skb)) {
3532 		u16 index = skb_get_rx_queue(skb);
3533 
3534 		if (unlikely(index >= dev->real_num_rx_queues)) {
3535 			WARN_ONCE(dev->real_num_rx_queues > 1,
3536 				  "%s received packet on queue %u, but number "
3537 				  "of RX queues is %u\n",
3538 				  dev->name, index, dev->real_num_rx_queues);
3539 			goto done;
3540 		}
3541 		rxqueue += index;
3542 	}
3543 
3544 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3545 
3546 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3547 	map = rcu_dereference(rxqueue->rps_map);
3548 	if (!flow_table && !map)
3549 		goto done;
3550 
3551 	skb_reset_network_header(skb);
3552 	hash = skb_get_hash(skb);
3553 	if (!hash)
3554 		goto done;
3555 
3556 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3557 	if (flow_table && sock_flow_table) {
3558 		struct rps_dev_flow *rflow;
3559 		u32 next_cpu;
3560 		u32 ident;
3561 
3562 		/* First check into global flow table if there is a match */
3563 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3564 		if ((ident ^ hash) & ~rps_cpu_mask)
3565 			goto try_rps;
3566 
3567 		next_cpu = ident & rps_cpu_mask;
3568 
3569 		/* OK, now we know there is a match,
3570 		 * we can look at the local (per receive queue) flow table
3571 		 */
3572 		rflow = &flow_table->flows[hash & flow_table->mask];
3573 		tcpu = rflow->cpu;
3574 
3575 		/*
3576 		 * If the desired CPU (where last recvmsg was done) is
3577 		 * different from current CPU (one in the rx-queue flow
3578 		 * table entry), switch if one of the following holds:
3579 		 *   - Current CPU is unset (>= nr_cpu_ids).
3580 		 *   - Current CPU is offline.
3581 		 *   - The current CPU's queue tail has advanced beyond the
3582 		 *     last packet that was enqueued using this table entry.
3583 		 *     This guarantees that all previous packets for the flow
3584 		 *     have been dequeued, thus preserving in order delivery.
3585 		 */
3586 		if (unlikely(tcpu != next_cpu) &&
3587 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3588 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3589 		      rflow->last_qtail)) >= 0)) {
3590 			tcpu = next_cpu;
3591 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3592 		}
3593 
3594 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3595 			*rflowp = rflow;
3596 			cpu = tcpu;
3597 			goto done;
3598 		}
3599 	}
3600 
3601 try_rps:
3602 
3603 	if (map) {
3604 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3605 		if (cpu_online(tcpu)) {
3606 			cpu = tcpu;
3607 			goto done;
3608 		}
3609 	}
3610 
3611 done:
3612 	return cpu;
3613 }
3614 
3615 #ifdef CONFIG_RFS_ACCEL
3616 
3617 /**
3618  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3619  * @dev: Device on which the filter was set
3620  * @rxq_index: RX queue index
3621  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3622  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3623  *
3624  * Drivers that implement ndo_rx_flow_steer() should periodically call
3625  * this function for each installed filter and remove the filters for
3626  * which it returns %true.
3627  */
3628 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3629 			 u32 flow_id, u16 filter_id)
3630 {
3631 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3632 	struct rps_dev_flow_table *flow_table;
3633 	struct rps_dev_flow *rflow;
3634 	bool expire = true;
3635 	unsigned int cpu;
3636 
3637 	rcu_read_lock();
3638 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3639 	if (flow_table && flow_id <= flow_table->mask) {
3640 		rflow = &flow_table->flows[flow_id];
3641 		cpu = ACCESS_ONCE(rflow->cpu);
3642 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3643 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3644 			   rflow->last_qtail) <
3645 		     (int)(10 * flow_table->mask)))
3646 			expire = false;
3647 	}
3648 	rcu_read_unlock();
3649 	return expire;
3650 }
3651 EXPORT_SYMBOL(rps_may_expire_flow);
3652 
3653 #endif /* CONFIG_RFS_ACCEL */
3654 
3655 /* Called from hardirq (IPI) context */
3656 static void rps_trigger_softirq(void *data)
3657 {
3658 	struct softnet_data *sd = data;
3659 
3660 	____napi_schedule(sd, &sd->backlog);
3661 	sd->received_rps++;
3662 }
3663 
3664 #endif /* CONFIG_RPS */
3665 
3666 /*
3667  * Check if this softnet_data structure is another cpu one
3668  * If yes, queue it to our IPI list and return 1
3669  * If no, return 0
3670  */
3671 static int rps_ipi_queued(struct softnet_data *sd)
3672 {
3673 #ifdef CONFIG_RPS
3674 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3675 
3676 	if (sd != mysd) {
3677 		sd->rps_ipi_next = mysd->rps_ipi_list;
3678 		mysd->rps_ipi_list = sd;
3679 
3680 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3681 		return 1;
3682 	}
3683 #endif /* CONFIG_RPS */
3684 	return 0;
3685 }
3686 
3687 #ifdef CONFIG_NET_FLOW_LIMIT
3688 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3689 #endif
3690 
3691 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3692 {
3693 #ifdef CONFIG_NET_FLOW_LIMIT
3694 	struct sd_flow_limit *fl;
3695 	struct softnet_data *sd;
3696 	unsigned int old_flow, new_flow;
3697 
3698 	if (qlen < (netdev_max_backlog >> 1))
3699 		return false;
3700 
3701 	sd = this_cpu_ptr(&softnet_data);
3702 
3703 	rcu_read_lock();
3704 	fl = rcu_dereference(sd->flow_limit);
3705 	if (fl) {
3706 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3707 		old_flow = fl->history[fl->history_head];
3708 		fl->history[fl->history_head] = new_flow;
3709 
3710 		fl->history_head++;
3711 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3712 
3713 		if (likely(fl->buckets[old_flow]))
3714 			fl->buckets[old_flow]--;
3715 
3716 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3717 			fl->count++;
3718 			rcu_read_unlock();
3719 			return true;
3720 		}
3721 	}
3722 	rcu_read_unlock();
3723 #endif
3724 	return false;
3725 }
3726 
3727 /*
3728  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3729  * queue (may be a remote CPU queue).
3730  */
3731 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3732 			      unsigned int *qtail)
3733 {
3734 	struct softnet_data *sd;
3735 	unsigned long flags;
3736 	unsigned int qlen;
3737 
3738 	sd = &per_cpu(softnet_data, cpu);
3739 
3740 	local_irq_save(flags);
3741 
3742 	rps_lock(sd);
3743 	if (!netif_running(skb->dev))
3744 		goto drop;
3745 	qlen = skb_queue_len(&sd->input_pkt_queue);
3746 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3747 		if (qlen) {
3748 enqueue:
3749 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3750 			input_queue_tail_incr_save(sd, qtail);
3751 			rps_unlock(sd);
3752 			local_irq_restore(flags);
3753 			return NET_RX_SUCCESS;
3754 		}
3755 
3756 		/* Schedule NAPI for backlog device
3757 		 * We can use non atomic operation since we own the queue lock
3758 		 */
3759 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3760 			if (!rps_ipi_queued(sd))
3761 				____napi_schedule(sd, &sd->backlog);
3762 		}
3763 		goto enqueue;
3764 	}
3765 
3766 drop:
3767 	sd->dropped++;
3768 	rps_unlock(sd);
3769 
3770 	local_irq_restore(flags);
3771 
3772 	atomic_long_inc(&skb->dev->rx_dropped);
3773 	kfree_skb(skb);
3774 	return NET_RX_DROP;
3775 }
3776 
3777 static int netif_rx_internal(struct sk_buff *skb)
3778 {
3779 	int ret;
3780 
3781 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3782 
3783 	trace_netif_rx(skb);
3784 #ifdef CONFIG_RPS
3785 	if (static_key_false(&rps_needed)) {
3786 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3787 		int cpu;
3788 
3789 		preempt_disable();
3790 		rcu_read_lock();
3791 
3792 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3793 		if (cpu < 0)
3794 			cpu = smp_processor_id();
3795 
3796 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3797 
3798 		rcu_read_unlock();
3799 		preempt_enable();
3800 	} else
3801 #endif
3802 	{
3803 		unsigned int qtail;
3804 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3805 		put_cpu();
3806 	}
3807 	return ret;
3808 }
3809 
3810 /**
3811  *	netif_rx	-	post buffer to the network code
3812  *	@skb: buffer to post
3813  *
3814  *	This function receives a packet from a device driver and queues it for
3815  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3816  *	may be dropped during processing for congestion control or by the
3817  *	protocol layers.
3818  *
3819  *	return values:
3820  *	NET_RX_SUCCESS	(no congestion)
3821  *	NET_RX_DROP     (packet was dropped)
3822  *
3823  */
3824 
3825 int netif_rx(struct sk_buff *skb)
3826 {
3827 	trace_netif_rx_entry(skb);
3828 
3829 	return netif_rx_internal(skb);
3830 }
3831 EXPORT_SYMBOL(netif_rx);
3832 
3833 int netif_rx_ni(struct sk_buff *skb)
3834 {
3835 	int err;
3836 
3837 	trace_netif_rx_ni_entry(skb);
3838 
3839 	preempt_disable();
3840 	err = netif_rx_internal(skb);
3841 	if (local_softirq_pending())
3842 		do_softirq();
3843 	preempt_enable();
3844 
3845 	return err;
3846 }
3847 EXPORT_SYMBOL(netif_rx_ni);
3848 
3849 static __latent_entropy void net_tx_action(struct softirq_action *h)
3850 {
3851 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3852 
3853 	if (sd->completion_queue) {
3854 		struct sk_buff *clist;
3855 
3856 		local_irq_disable();
3857 		clist = sd->completion_queue;
3858 		sd->completion_queue = NULL;
3859 		local_irq_enable();
3860 
3861 		while (clist) {
3862 			struct sk_buff *skb = clist;
3863 			clist = clist->next;
3864 
3865 			WARN_ON(atomic_read(&skb->users));
3866 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3867 				trace_consume_skb(skb);
3868 			else
3869 				trace_kfree_skb(skb, net_tx_action);
3870 
3871 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3872 				__kfree_skb(skb);
3873 			else
3874 				__kfree_skb_defer(skb);
3875 		}
3876 
3877 		__kfree_skb_flush();
3878 	}
3879 
3880 	if (sd->output_queue) {
3881 		struct Qdisc *head;
3882 
3883 		local_irq_disable();
3884 		head = sd->output_queue;
3885 		sd->output_queue = NULL;
3886 		sd->output_queue_tailp = &sd->output_queue;
3887 		local_irq_enable();
3888 
3889 		while (head) {
3890 			struct Qdisc *q = head;
3891 			spinlock_t *root_lock;
3892 
3893 			head = head->next_sched;
3894 
3895 			root_lock = qdisc_lock(q);
3896 			spin_lock(root_lock);
3897 			/* We need to make sure head->next_sched is read
3898 			 * before clearing __QDISC_STATE_SCHED
3899 			 */
3900 			smp_mb__before_atomic();
3901 			clear_bit(__QDISC_STATE_SCHED, &q->state);
3902 			qdisc_run(q);
3903 			spin_unlock(root_lock);
3904 		}
3905 	}
3906 }
3907 
3908 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3909 /* This hook is defined here for ATM LANE */
3910 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3911 			     unsigned char *addr) __read_mostly;
3912 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3913 #endif
3914 
3915 static inline struct sk_buff *
3916 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3917 		   struct net_device *orig_dev)
3918 {
3919 #ifdef CONFIG_NET_CLS_ACT
3920 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3921 	struct tcf_result cl_res;
3922 
3923 	/* If there's at least one ingress present somewhere (so
3924 	 * we get here via enabled static key), remaining devices
3925 	 * that are not configured with an ingress qdisc will bail
3926 	 * out here.
3927 	 */
3928 	if (!cl)
3929 		return skb;
3930 	if (*pt_prev) {
3931 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3932 		*pt_prev = NULL;
3933 	}
3934 
3935 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3936 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3937 	qdisc_bstats_cpu_update(cl->q, skb);
3938 
3939 	switch (tc_classify(skb, cl, &cl_res, false)) {
3940 	case TC_ACT_OK:
3941 	case TC_ACT_RECLASSIFY:
3942 		skb->tc_index = TC_H_MIN(cl_res.classid);
3943 		break;
3944 	case TC_ACT_SHOT:
3945 		qdisc_qstats_cpu_drop(cl->q);
3946 		kfree_skb(skb);
3947 		return NULL;
3948 	case TC_ACT_STOLEN:
3949 	case TC_ACT_QUEUED:
3950 		consume_skb(skb);
3951 		return NULL;
3952 	case TC_ACT_REDIRECT:
3953 		/* skb_mac_header check was done by cls/act_bpf, so
3954 		 * we can safely push the L2 header back before
3955 		 * redirecting to another netdev
3956 		 */
3957 		__skb_push(skb, skb->mac_len);
3958 		skb_do_redirect(skb);
3959 		return NULL;
3960 	default:
3961 		break;
3962 	}
3963 #endif /* CONFIG_NET_CLS_ACT */
3964 	return skb;
3965 }
3966 
3967 /**
3968  *	netdev_is_rx_handler_busy - check if receive handler is registered
3969  *	@dev: device to check
3970  *
3971  *	Check if a receive handler is already registered for a given device.
3972  *	Return true if there one.
3973  *
3974  *	The caller must hold the rtnl_mutex.
3975  */
3976 bool netdev_is_rx_handler_busy(struct net_device *dev)
3977 {
3978 	ASSERT_RTNL();
3979 	return dev && rtnl_dereference(dev->rx_handler);
3980 }
3981 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3982 
3983 /**
3984  *	netdev_rx_handler_register - register receive handler
3985  *	@dev: device to register a handler for
3986  *	@rx_handler: receive handler to register
3987  *	@rx_handler_data: data pointer that is used by rx handler
3988  *
3989  *	Register a receive handler for a device. This handler will then be
3990  *	called from __netif_receive_skb. A negative errno code is returned
3991  *	on a failure.
3992  *
3993  *	The caller must hold the rtnl_mutex.
3994  *
3995  *	For a general description of rx_handler, see enum rx_handler_result.
3996  */
3997 int netdev_rx_handler_register(struct net_device *dev,
3998 			       rx_handler_func_t *rx_handler,
3999 			       void *rx_handler_data)
4000 {
4001 	ASSERT_RTNL();
4002 
4003 	if (dev->rx_handler)
4004 		return -EBUSY;
4005 
4006 	/* Note: rx_handler_data must be set before rx_handler */
4007 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4008 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4009 
4010 	return 0;
4011 }
4012 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4013 
4014 /**
4015  *	netdev_rx_handler_unregister - unregister receive handler
4016  *	@dev: device to unregister a handler from
4017  *
4018  *	Unregister a receive handler from a device.
4019  *
4020  *	The caller must hold the rtnl_mutex.
4021  */
4022 void netdev_rx_handler_unregister(struct net_device *dev)
4023 {
4024 
4025 	ASSERT_RTNL();
4026 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4027 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4028 	 * section has a guarantee to see a non NULL rx_handler_data
4029 	 * as well.
4030 	 */
4031 	synchronize_net();
4032 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4033 }
4034 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4035 
4036 /*
4037  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4038  * the special handling of PFMEMALLOC skbs.
4039  */
4040 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4041 {
4042 	switch (skb->protocol) {
4043 	case htons(ETH_P_ARP):
4044 	case htons(ETH_P_IP):
4045 	case htons(ETH_P_IPV6):
4046 	case htons(ETH_P_8021Q):
4047 	case htons(ETH_P_8021AD):
4048 		return true;
4049 	default:
4050 		return false;
4051 	}
4052 }
4053 
4054 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4055 			     int *ret, struct net_device *orig_dev)
4056 {
4057 #ifdef CONFIG_NETFILTER_INGRESS
4058 	if (nf_hook_ingress_active(skb)) {
4059 		int ingress_retval;
4060 
4061 		if (*pt_prev) {
4062 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4063 			*pt_prev = NULL;
4064 		}
4065 
4066 		rcu_read_lock();
4067 		ingress_retval = nf_hook_ingress(skb);
4068 		rcu_read_unlock();
4069 		return ingress_retval;
4070 	}
4071 #endif /* CONFIG_NETFILTER_INGRESS */
4072 	return 0;
4073 }
4074 
4075 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4076 {
4077 	struct packet_type *ptype, *pt_prev;
4078 	rx_handler_func_t *rx_handler;
4079 	struct net_device *orig_dev;
4080 	bool deliver_exact = false;
4081 	int ret = NET_RX_DROP;
4082 	__be16 type;
4083 
4084 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4085 
4086 	trace_netif_receive_skb(skb);
4087 
4088 	orig_dev = skb->dev;
4089 
4090 	skb_reset_network_header(skb);
4091 	if (!skb_transport_header_was_set(skb))
4092 		skb_reset_transport_header(skb);
4093 	skb_reset_mac_len(skb);
4094 
4095 	pt_prev = NULL;
4096 
4097 another_round:
4098 	skb->skb_iif = skb->dev->ifindex;
4099 
4100 	__this_cpu_inc(softnet_data.processed);
4101 
4102 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4103 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4104 		skb = skb_vlan_untag(skb);
4105 		if (unlikely(!skb))
4106 			goto out;
4107 	}
4108 
4109 #ifdef CONFIG_NET_CLS_ACT
4110 	if (skb->tc_verd & TC_NCLS) {
4111 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4112 		goto ncls;
4113 	}
4114 #endif
4115 
4116 	if (pfmemalloc)
4117 		goto skip_taps;
4118 
4119 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4120 		if (pt_prev)
4121 			ret = deliver_skb(skb, pt_prev, orig_dev);
4122 		pt_prev = ptype;
4123 	}
4124 
4125 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4126 		if (pt_prev)
4127 			ret = deliver_skb(skb, pt_prev, orig_dev);
4128 		pt_prev = ptype;
4129 	}
4130 
4131 skip_taps:
4132 #ifdef CONFIG_NET_INGRESS
4133 	if (static_key_false(&ingress_needed)) {
4134 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4135 		if (!skb)
4136 			goto out;
4137 
4138 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4139 			goto out;
4140 	}
4141 #endif
4142 #ifdef CONFIG_NET_CLS_ACT
4143 	skb->tc_verd = 0;
4144 ncls:
4145 #endif
4146 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4147 		goto drop;
4148 
4149 	if (skb_vlan_tag_present(skb)) {
4150 		if (pt_prev) {
4151 			ret = deliver_skb(skb, pt_prev, orig_dev);
4152 			pt_prev = NULL;
4153 		}
4154 		if (vlan_do_receive(&skb))
4155 			goto another_round;
4156 		else if (unlikely(!skb))
4157 			goto out;
4158 	}
4159 
4160 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4161 	if (rx_handler) {
4162 		if (pt_prev) {
4163 			ret = deliver_skb(skb, pt_prev, orig_dev);
4164 			pt_prev = NULL;
4165 		}
4166 		switch (rx_handler(&skb)) {
4167 		case RX_HANDLER_CONSUMED:
4168 			ret = NET_RX_SUCCESS;
4169 			goto out;
4170 		case RX_HANDLER_ANOTHER:
4171 			goto another_round;
4172 		case RX_HANDLER_EXACT:
4173 			deliver_exact = true;
4174 		case RX_HANDLER_PASS:
4175 			break;
4176 		default:
4177 			BUG();
4178 		}
4179 	}
4180 
4181 	if (unlikely(skb_vlan_tag_present(skb))) {
4182 		if (skb_vlan_tag_get_id(skb))
4183 			skb->pkt_type = PACKET_OTHERHOST;
4184 		/* Note: we might in the future use prio bits
4185 		 * and set skb->priority like in vlan_do_receive()
4186 		 * For the time being, just ignore Priority Code Point
4187 		 */
4188 		skb->vlan_tci = 0;
4189 	}
4190 
4191 	type = skb->protocol;
4192 
4193 	/* deliver only exact match when indicated */
4194 	if (likely(!deliver_exact)) {
4195 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4196 				       &ptype_base[ntohs(type) &
4197 						   PTYPE_HASH_MASK]);
4198 	}
4199 
4200 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4201 			       &orig_dev->ptype_specific);
4202 
4203 	if (unlikely(skb->dev != orig_dev)) {
4204 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4205 				       &skb->dev->ptype_specific);
4206 	}
4207 
4208 	if (pt_prev) {
4209 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4210 			goto drop;
4211 		else
4212 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4213 	} else {
4214 drop:
4215 		if (!deliver_exact)
4216 			atomic_long_inc(&skb->dev->rx_dropped);
4217 		else
4218 			atomic_long_inc(&skb->dev->rx_nohandler);
4219 		kfree_skb(skb);
4220 		/* Jamal, now you will not able to escape explaining
4221 		 * me how you were going to use this. :-)
4222 		 */
4223 		ret = NET_RX_DROP;
4224 	}
4225 
4226 out:
4227 	return ret;
4228 }
4229 
4230 static int __netif_receive_skb(struct sk_buff *skb)
4231 {
4232 	int ret;
4233 
4234 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4235 		unsigned long pflags = current->flags;
4236 
4237 		/*
4238 		 * PFMEMALLOC skbs are special, they should
4239 		 * - be delivered to SOCK_MEMALLOC sockets only
4240 		 * - stay away from userspace
4241 		 * - have bounded memory usage
4242 		 *
4243 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4244 		 * context down to all allocation sites.
4245 		 */
4246 		current->flags |= PF_MEMALLOC;
4247 		ret = __netif_receive_skb_core(skb, true);
4248 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
4249 	} else
4250 		ret = __netif_receive_skb_core(skb, false);
4251 
4252 	return ret;
4253 }
4254 
4255 static int netif_receive_skb_internal(struct sk_buff *skb)
4256 {
4257 	int ret;
4258 
4259 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4260 
4261 	if (skb_defer_rx_timestamp(skb))
4262 		return NET_RX_SUCCESS;
4263 
4264 	rcu_read_lock();
4265 
4266 #ifdef CONFIG_RPS
4267 	if (static_key_false(&rps_needed)) {
4268 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4269 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4270 
4271 		if (cpu >= 0) {
4272 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4273 			rcu_read_unlock();
4274 			return ret;
4275 		}
4276 	}
4277 #endif
4278 	ret = __netif_receive_skb(skb);
4279 	rcu_read_unlock();
4280 	return ret;
4281 }
4282 
4283 /**
4284  *	netif_receive_skb - process receive buffer from network
4285  *	@skb: buffer to process
4286  *
4287  *	netif_receive_skb() is the main receive data processing function.
4288  *	It always succeeds. The buffer may be dropped during processing
4289  *	for congestion control or by the protocol layers.
4290  *
4291  *	This function may only be called from softirq context and interrupts
4292  *	should be enabled.
4293  *
4294  *	Return values (usually ignored):
4295  *	NET_RX_SUCCESS: no congestion
4296  *	NET_RX_DROP: packet was dropped
4297  */
4298 int netif_receive_skb(struct sk_buff *skb)
4299 {
4300 	trace_netif_receive_skb_entry(skb);
4301 
4302 	return netif_receive_skb_internal(skb);
4303 }
4304 EXPORT_SYMBOL(netif_receive_skb);
4305 
4306 DEFINE_PER_CPU(struct work_struct, flush_works);
4307 
4308 /* Network device is going away, flush any packets still pending */
4309 static void flush_backlog(struct work_struct *work)
4310 {
4311 	struct sk_buff *skb, *tmp;
4312 	struct softnet_data *sd;
4313 
4314 	local_bh_disable();
4315 	sd = this_cpu_ptr(&softnet_data);
4316 
4317 	local_irq_disable();
4318 	rps_lock(sd);
4319 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4320 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4321 			__skb_unlink(skb, &sd->input_pkt_queue);
4322 			kfree_skb(skb);
4323 			input_queue_head_incr(sd);
4324 		}
4325 	}
4326 	rps_unlock(sd);
4327 	local_irq_enable();
4328 
4329 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4330 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4331 			__skb_unlink(skb, &sd->process_queue);
4332 			kfree_skb(skb);
4333 			input_queue_head_incr(sd);
4334 		}
4335 	}
4336 	local_bh_enable();
4337 }
4338 
4339 static void flush_all_backlogs(void)
4340 {
4341 	unsigned int cpu;
4342 
4343 	get_online_cpus();
4344 
4345 	for_each_online_cpu(cpu)
4346 		queue_work_on(cpu, system_highpri_wq,
4347 			      per_cpu_ptr(&flush_works, cpu));
4348 
4349 	for_each_online_cpu(cpu)
4350 		flush_work(per_cpu_ptr(&flush_works, cpu));
4351 
4352 	put_online_cpus();
4353 }
4354 
4355 static int napi_gro_complete(struct sk_buff *skb)
4356 {
4357 	struct packet_offload *ptype;
4358 	__be16 type = skb->protocol;
4359 	struct list_head *head = &offload_base;
4360 	int err = -ENOENT;
4361 
4362 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4363 
4364 	if (NAPI_GRO_CB(skb)->count == 1) {
4365 		skb_shinfo(skb)->gso_size = 0;
4366 		goto out;
4367 	}
4368 
4369 	rcu_read_lock();
4370 	list_for_each_entry_rcu(ptype, head, list) {
4371 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4372 			continue;
4373 
4374 		err = ptype->callbacks.gro_complete(skb, 0);
4375 		break;
4376 	}
4377 	rcu_read_unlock();
4378 
4379 	if (err) {
4380 		WARN_ON(&ptype->list == head);
4381 		kfree_skb(skb);
4382 		return NET_RX_SUCCESS;
4383 	}
4384 
4385 out:
4386 	return netif_receive_skb_internal(skb);
4387 }
4388 
4389 /* napi->gro_list contains packets ordered by age.
4390  * youngest packets at the head of it.
4391  * Complete skbs in reverse order to reduce latencies.
4392  */
4393 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4394 {
4395 	struct sk_buff *skb, *prev = NULL;
4396 
4397 	/* scan list and build reverse chain */
4398 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4399 		skb->prev = prev;
4400 		prev = skb;
4401 	}
4402 
4403 	for (skb = prev; skb; skb = prev) {
4404 		skb->next = NULL;
4405 
4406 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4407 			return;
4408 
4409 		prev = skb->prev;
4410 		napi_gro_complete(skb);
4411 		napi->gro_count--;
4412 	}
4413 
4414 	napi->gro_list = NULL;
4415 }
4416 EXPORT_SYMBOL(napi_gro_flush);
4417 
4418 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4419 {
4420 	struct sk_buff *p;
4421 	unsigned int maclen = skb->dev->hard_header_len;
4422 	u32 hash = skb_get_hash_raw(skb);
4423 
4424 	for (p = napi->gro_list; p; p = p->next) {
4425 		unsigned long diffs;
4426 
4427 		NAPI_GRO_CB(p)->flush = 0;
4428 
4429 		if (hash != skb_get_hash_raw(p)) {
4430 			NAPI_GRO_CB(p)->same_flow = 0;
4431 			continue;
4432 		}
4433 
4434 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4435 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4436 		diffs |= skb_metadata_dst_cmp(p, skb);
4437 		if (maclen == ETH_HLEN)
4438 			diffs |= compare_ether_header(skb_mac_header(p),
4439 						      skb_mac_header(skb));
4440 		else if (!diffs)
4441 			diffs = memcmp(skb_mac_header(p),
4442 				       skb_mac_header(skb),
4443 				       maclen);
4444 		NAPI_GRO_CB(p)->same_flow = !diffs;
4445 	}
4446 }
4447 
4448 static void skb_gro_reset_offset(struct sk_buff *skb)
4449 {
4450 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4451 	const skb_frag_t *frag0 = &pinfo->frags[0];
4452 
4453 	NAPI_GRO_CB(skb)->data_offset = 0;
4454 	NAPI_GRO_CB(skb)->frag0 = NULL;
4455 	NAPI_GRO_CB(skb)->frag0_len = 0;
4456 
4457 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4458 	    pinfo->nr_frags &&
4459 	    !PageHighMem(skb_frag_page(frag0))) {
4460 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4461 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4462 	}
4463 }
4464 
4465 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4466 {
4467 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4468 
4469 	BUG_ON(skb->end - skb->tail < grow);
4470 
4471 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4472 
4473 	skb->data_len -= grow;
4474 	skb->tail += grow;
4475 
4476 	pinfo->frags[0].page_offset += grow;
4477 	skb_frag_size_sub(&pinfo->frags[0], grow);
4478 
4479 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4480 		skb_frag_unref(skb, 0);
4481 		memmove(pinfo->frags, pinfo->frags + 1,
4482 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4483 	}
4484 }
4485 
4486 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4487 {
4488 	struct sk_buff **pp = NULL;
4489 	struct packet_offload *ptype;
4490 	__be16 type = skb->protocol;
4491 	struct list_head *head = &offload_base;
4492 	int same_flow;
4493 	enum gro_result ret;
4494 	int grow;
4495 
4496 	if (!(skb->dev->features & NETIF_F_GRO))
4497 		goto normal;
4498 
4499 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4500 		goto normal;
4501 
4502 	gro_list_prepare(napi, skb);
4503 
4504 	rcu_read_lock();
4505 	list_for_each_entry_rcu(ptype, head, list) {
4506 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4507 			continue;
4508 
4509 		skb_set_network_header(skb, skb_gro_offset(skb));
4510 		skb_reset_mac_len(skb);
4511 		NAPI_GRO_CB(skb)->same_flow = 0;
4512 		NAPI_GRO_CB(skb)->flush = 0;
4513 		NAPI_GRO_CB(skb)->free = 0;
4514 		NAPI_GRO_CB(skb)->encap_mark = 0;
4515 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4516 		NAPI_GRO_CB(skb)->is_fou = 0;
4517 		NAPI_GRO_CB(skb)->is_atomic = 1;
4518 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4519 
4520 		/* Setup for GRO checksum validation */
4521 		switch (skb->ip_summed) {
4522 		case CHECKSUM_COMPLETE:
4523 			NAPI_GRO_CB(skb)->csum = skb->csum;
4524 			NAPI_GRO_CB(skb)->csum_valid = 1;
4525 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4526 			break;
4527 		case CHECKSUM_UNNECESSARY:
4528 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4529 			NAPI_GRO_CB(skb)->csum_valid = 0;
4530 			break;
4531 		default:
4532 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4533 			NAPI_GRO_CB(skb)->csum_valid = 0;
4534 		}
4535 
4536 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4537 		break;
4538 	}
4539 	rcu_read_unlock();
4540 
4541 	if (&ptype->list == head)
4542 		goto normal;
4543 
4544 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4545 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4546 
4547 	if (pp) {
4548 		struct sk_buff *nskb = *pp;
4549 
4550 		*pp = nskb->next;
4551 		nskb->next = NULL;
4552 		napi_gro_complete(nskb);
4553 		napi->gro_count--;
4554 	}
4555 
4556 	if (same_flow)
4557 		goto ok;
4558 
4559 	if (NAPI_GRO_CB(skb)->flush)
4560 		goto normal;
4561 
4562 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4563 		struct sk_buff *nskb = napi->gro_list;
4564 
4565 		/* locate the end of the list to select the 'oldest' flow */
4566 		while (nskb->next) {
4567 			pp = &nskb->next;
4568 			nskb = *pp;
4569 		}
4570 		*pp = NULL;
4571 		nskb->next = NULL;
4572 		napi_gro_complete(nskb);
4573 	} else {
4574 		napi->gro_count++;
4575 	}
4576 	NAPI_GRO_CB(skb)->count = 1;
4577 	NAPI_GRO_CB(skb)->age = jiffies;
4578 	NAPI_GRO_CB(skb)->last = skb;
4579 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4580 	skb->next = napi->gro_list;
4581 	napi->gro_list = skb;
4582 	ret = GRO_HELD;
4583 
4584 pull:
4585 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4586 	if (grow > 0)
4587 		gro_pull_from_frag0(skb, grow);
4588 ok:
4589 	return ret;
4590 
4591 normal:
4592 	ret = GRO_NORMAL;
4593 	goto pull;
4594 }
4595 
4596 struct packet_offload *gro_find_receive_by_type(__be16 type)
4597 {
4598 	struct list_head *offload_head = &offload_base;
4599 	struct packet_offload *ptype;
4600 
4601 	list_for_each_entry_rcu(ptype, offload_head, list) {
4602 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4603 			continue;
4604 		return ptype;
4605 	}
4606 	return NULL;
4607 }
4608 EXPORT_SYMBOL(gro_find_receive_by_type);
4609 
4610 struct packet_offload *gro_find_complete_by_type(__be16 type)
4611 {
4612 	struct list_head *offload_head = &offload_base;
4613 	struct packet_offload *ptype;
4614 
4615 	list_for_each_entry_rcu(ptype, offload_head, list) {
4616 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4617 			continue;
4618 		return ptype;
4619 	}
4620 	return NULL;
4621 }
4622 EXPORT_SYMBOL(gro_find_complete_by_type);
4623 
4624 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4625 {
4626 	switch (ret) {
4627 	case GRO_NORMAL:
4628 		if (netif_receive_skb_internal(skb))
4629 			ret = GRO_DROP;
4630 		break;
4631 
4632 	case GRO_DROP:
4633 		kfree_skb(skb);
4634 		break;
4635 
4636 	case GRO_MERGED_FREE:
4637 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4638 			skb_dst_drop(skb);
4639 			kmem_cache_free(skbuff_head_cache, skb);
4640 		} else {
4641 			__kfree_skb(skb);
4642 		}
4643 		break;
4644 
4645 	case GRO_HELD:
4646 	case GRO_MERGED:
4647 		break;
4648 	}
4649 
4650 	return ret;
4651 }
4652 
4653 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4654 {
4655 	skb_mark_napi_id(skb, napi);
4656 	trace_napi_gro_receive_entry(skb);
4657 
4658 	skb_gro_reset_offset(skb);
4659 
4660 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4661 }
4662 EXPORT_SYMBOL(napi_gro_receive);
4663 
4664 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4665 {
4666 	if (unlikely(skb->pfmemalloc)) {
4667 		consume_skb(skb);
4668 		return;
4669 	}
4670 	__skb_pull(skb, skb_headlen(skb));
4671 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4672 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4673 	skb->vlan_tci = 0;
4674 	skb->dev = napi->dev;
4675 	skb->skb_iif = 0;
4676 	skb->encapsulation = 0;
4677 	skb_shinfo(skb)->gso_type = 0;
4678 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4679 
4680 	napi->skb = skb;
4681 }
4682 
4683 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4684 {
4685 	struct sk_buff *skb = napi->skb;
4686 
4687 	if (!skb) {
4688 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4689 		if (skb) {
4690 			napi->skb = skb;
4691 			skb_mark_napi_id(skb, napi);
4692 		}
4693 	}
4694 	return skb;
4695 }
4696 EXPORT_SYMBOL(napi_get_frags);
4697 
4698 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4699 				      struct sk_buff *skb,
4700 				      gro_result_t ret)
4701 {
4702 	switch (ret) {
4703 	case GRO_NORMAL:
4704 	case GRO_HELD:
4705 		__skb_push(skb, ETH_HLEN);
4706 		skb->protocol = eth_type_trans(skb, skb->dev);
4707 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4708 			ret = GRO_DROP;
4709 		break;
4710 
4711 	case GRO_DROP:
4712 	case GRO_MERGED_FREE:
4713 		napi_reuse_skb(napi, skb);
4714 		break;
4715 
4716 	case GRO_MERGED:
4717 		break;
4718 	}
4719 
4720 	return ret;
4721 }
4722 
4723 /* Upper GRO stack assumes network header starts at gro_offset=0
4724  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4725  * We copy ethernet header into skb->data to have a common layout.
4726  */
4727 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4728 {
4729 	struct sk_buff *skb = napi->skb;
4730 	const struct ethhdr *eth;
4731 	unsigned int hlen = sizeof(*eth);
4732 
4733 	napi->skb = NULL;
4734 
4735 	skb_reset_mac_header(skb);
4736 	skb_gro_reset_offset(skb);
4737 
4738 	eth = skb_gro_header_fast(skb, 0);
4739 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4740 		eth = skb_gro_header_slow(skb, hlen, 0);
4741 		if (unlikely(!eth)) {
4742 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4743 					     __func__, napi->dev->name);
4744 			napi_reuse_skb(napi, skb);
4745 			return NULL;
4746 		}
4747 	} else {
4748 		gro_pull_from_frag0(skb, hlen);
4749 		NAPI_GRO_CB(skb)->frag0 += hlen;
4750 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4751 	}
4752 	__skb_pull(skb, hlen);
4753 
4754 	/*
4755 	 * This works because the only protocols we care about don't require
4756 	 * special handling.
4757 	 * We'll fix it up properly in napi_frags_finish()
4758 	 */
4759 	skb->protocol = eth->h_proto;
4760 
4761 	return skb;
4762 }
4763 
4764 gro_result_t napi_gro_frags(struct napi_struct *napi)
4765 {
4766 	struct sk_buff *skb = napi_frags_skb(napi);
4767 
4768 	if (!skb)
4769 		return GRO_DROP;
4770 
4771 	trace_napi_gro_frags_entry(skb);
4772 
4773 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4774 }
4775 EXPORT_SYMBOL(napi_gro_frags);
4776 
4777 /* Compute the checksum from gro_offset and return the folded value
4778  * after adding in any pseudo checksum.
4779  */
4780 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4781 {
4782 	__wsum wsum;
4783 	__sum16 sum;
4784 
4785 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4786 
4787 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4788 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4789 	if (likely(!sum)) {
4790 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4791 		    !skb->csum_complete_sw)
4792 			netdev_rx_csum_fault(skb->dev);
4793 	}
4794 
4795 	NAPI_GRO_CB(skb)->csum = wsum;
4796 	NAPI_GRO_CB(skb)->csum_valid = 1;
4797 
4798 	return sum;
4799 }
4800 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4801 
4802 /*
4803  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4804  * Note: called with local irq disabled, but exits with local irq enabled.
4805  */
4806 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4807 {
4808 #ifdef CONFIG_RPS
4809 	struct softnet_data *remsd = sd->rps_ipi_list;
4810 
4811 	if (remsd) {
4812 		sd->rps_ipi_list = NULL;
4813 
4814 		local_irq_enable();
4815 
4816 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4817 		while (remsd) {
4818 			struct softnet_data *next = remsd->rps_ipi_next;
4819 
4820 			if (cpu_online(remsd->cpu))
4821 				smp_call_function_single_async(remsd->cpu,
4822 							   &remsd->csd);
4823 			remsd = next;
4824 		}
4825 	} else
4826 #endif
4827 		local_irq_enable();
4828 }
4829 
4830 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4831 {
4832 #ifdef CONFIG_RPS
4833 	return sd->rps_ipi_list != NULL;
4834 #else
4835 	return false;
4836 #endif
4837 }
4838 
4839 static int process_backlog(struct napi_struct *napi, int quota)
4840 {
4841 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4842 	bool again = true;
4843 	int work = 0;
4844 
4845 	/* Check if we have pending ipi, its better to send them now,
4846 	 * not waiting net_rx_action() end.
4847 	 */
4848 	if (sd_has_rps_ipi_waiting(sd)) {
4849 		local_irq_disable();
4850 		net_rps_action_and_irq_enable(sd);
4851 	}
4852 
4853 	napi->weight = weight_p;
4854 	while (again) {
4855 		struct sk_buff *skb;
4856 
4857 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4858 			rcu_read_lock();
4859 			__netif_receive_skb(skb);
4860 			rcu_read_unlock();
4861 			input_queue_head_incr(sd);
4862 			if (++work >= quota)
4863 				return work;
4864 
4865 		}
4866 
4867 		local_irq_disable();
4868 		rps_lock(sd);
4869 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4870 			/*
4871 			 * Inline a custom version of __napi_complete().
4872 			 * only current cpu owns and manipulates this napi,
4873 			 * and NAPI_STATE_SCHED is the only possible flag set
4874 			 * on backlog.
4875 			 * We can use a plain write instead of clear_bit(),
4876 			 * and we dont need an smp_mb() memory barrier.
4877 			 */
4878 			napi->state = 0;
4879 			again = false;
4880 		} else {
4881 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4882 						   &sd->process_queue);
4883 		}
4884 		rps_unlock(sd);
4885 		local_irq_enable();
4886 	}
4887 
4888 	return work;
4889 }
4890 
4891 /**
4892  * __napi_schedule - schedule for receive
4893  * @n: entry to schedule
4894  *
4895  * The entry's receive function will be scheduled to run.
4896  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4897  */
4898 void __napi_schedule(struct napi_struct *n)
4899 {
4900 	unsigned long flags;
4901 
4902 	local_irq_save(flags);
4903 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4904 	local_irq_restore(flags);
4905 }
4906 EXPORT_SYMBOL(__napi_schedule);
4907 
4908 /**
4909  * __napi_schedule_irqoff - schedule for receive
4910  * @n: entry to schedule
4911  *
4912  * Variant of __napi_schedule() assuming hard irqs are masked
4913  */
4914 void __napi_schedule_irqoff(struct napi_struct *n)
4915 {
4916 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4917 }
4918 EXPORT_SYMBOL(__napi_schedule_irqoff);
4919 
4920 void __napi_complete(struct napi_struct *n)
4921 {
4922 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4923 
4924 	list_del_init(&n->poll_list);
4925 	smp_mb__before_atomic();
4926 	clear_bit(NAPI_STATE_SCHED, &n->state);
4927 }
4928 EXPORT_SYMBOL(__napi_complete);
4929 
4930 void napi_complete_done(struct napi_struct *n, int work_done)
4931 {
4932 	unsigned long flags;
4933 
4934 	/*
4935 	 * don't let napi dequeue from the cpu poll list
4936 	 * just in case its running on a different cpu
4937 	 */
4938 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4939 		return;
4940 
4941 	if (n->gro_list) {
4942 		unsigned long timeout = 0;
4943 
4944 		if (work_done)
4945 			timeout = n->dev->gro_flush_timeout;
4946 
4947 		if (timeout)
4948 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4949 				      HRTIMER_MODE_REL_PINNED);
4950 		else
4951 			napi_gro_flush(n, false);
4952 	}
4953 	if (likely(list_empty(&n->poll_list))) {
4954 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4955 	} else {
4956 		/* If n->poll_list is not empty, we need to mask irqs */
4957 		local_irq_save(flags);
4958 		__napi_complete(n);
4959 		local_irq_restore(flags);
4960 	}
4961 }
4962 EXPORT_SYMBOL(napi_complete_done);
4963 
4964 /* must be called under rcu_read_lock(), as we dont take a reference */
4965 static struct napi_struct *napi_by_id(unsigned int napi_id)
4966 {
4967 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4968 	struct napi_struct *napi;
4969 
4970 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4971 		if (napi->napi_id == napi_id)
4972 			return napi;
4973 
4974 	return NULL;
4975 }
4976 
4977 #if defined(CONFIG_NET_RX_BUSY_POLL)
4978 #define BUSY_POLL_BUDGET 8
4979 bool sk_busy_loop(struct sock *sk, int nonblock)
4980 {
4981 	unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4982 	int (*busy_poll)(struct napi_struct *dev);
4983 	struct napi_struct *napi;
4984 	int rc = false;
4985 
4986 	rcu_read_lock();
4987 
4988 	napi = napi_by_id(sk->sk_napi_id);
4989 	if (!napi)
4990 		goto out;
4991 
4992 	/* Note: ndo_busy_poll method is optional in linux-4.5 */
4993 	busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4994 
4995 	do {
4996 		rc = 0;
4997 		local_bh_disable();
4998 		if (busy_poll) {
4999 			rc = busy_poll(napi);
5000 		} else if (napi_schedule_prep(napi)) {
5001 			void *have = netpoll_poll_lock(napi);
5002 
5003 			if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
5004 				rc = napi->poll(napi, BUSY_POLL_BUDGET);
5005 				trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5006 				if (rc == BUSY_POLL_BUDGET) {
5007 					napi_complete_done(napi, rc);
5008 					napi_schedule(napi);
5009 				}
5010 			}
5011 			netpoll_poll_unlock(have);
5012 		}
5013 		if (rc > 0)
5014 			__NET_ADD_STATS(sock_net(sk),
5015 					LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5016 		local_bh_enable();
5017 
5018 		if (rc == LL_FLUSH_FAILED)
5019 			break; /* permanent failure */
5020 
5021 		cpu_relax();
5022 	} while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5023 		 !need_resched() && !busy_loop_timeout(end_time));
5024 
5025 	rc = !skb_queue_empty(&sk->sk_receive_queue);
5026 out:
5027 	rcu_read_unlock();
5028 	return rc;
5029 }
5030 EXPORT_SYMBOL(sk_busy_loop);
5031 
5032 #endif /* CONFIG_NET_RX_BUSY_POLL */
5033 
5034 void napi_hash_add(struct napi_struct *napi)
5035 {
5036 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5037 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5038 		return;
5039 
5040 	spin_lock(&napi_hash_lock);
5041 
5042 	/* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5043 	do {
5044 		if (unlikely(++napi_gen_id < NR_CPUS + 1))
5045 			napi_gen_id = NR_CPUS + 1;
5046 	} while (napi_by_id(napi_gen_id));
5047 	napi->napi_id = napi_gen_id;
5048 
5049 	hlist_add_head_rcu(&napi->napi_hash_node,
5050 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5051 
5052 	spin_unlock(&napi_hash_lock);
5053 }
5054 EXPORT_SYMBOL_GPL(napi_hash_add);
5055 
5056 /* Warning : caller is responsible to make sure rcu grace period
5057  * is respected before freeing memory containing @napi
5058  */
5059 bool napi_hash_del(struct napi_struct *napi)
5060 {
5061 	bool rcu_sync_needed = false;
5062 
5063 	spin_lock(&napi_hash_lock);
5064 
5065 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5066 		rcu_sync_needed = true;
5067 		hlist_del_rcu(&napi->napi_hash_node);
5068 	}
5069 	spin_unlock(&napi_hash_lock);
5070 	return rcu_sync_needed;
5071 }
5072 EXPORT_SYMBOL_GPL(napi_hash_del);
5073 
5074 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5075 {
5076 	struct napi_struct *napi;
5077 
5078 	napi = container_of(timer, struct napi_struct, timer);
5079 	if (napi->gro_list)
5080 		napi_schedule(napi);
5081 
5082 	return HRTIMER_NORESTART;
5083 }
5084 
5085 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5086 		    int (*poll)(struct napi_struct *, int), int weight)
5087 {
5088 	INIT_LIST_HEAD(&napi->poll_list);
5089 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5090 	napi->timer.function = napi_watchdog;
5091 	napi->gro_count = 0;
5092 	napi->gro_list = NULL;
5093 	napi->skb = NULL;
5094 	napi->poll = poll;
5095 	if (weight > NAPI_POLL_WEIGHT)
5096 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5097 			    weight, dev->name);
5098 	napi->weight = weight;
5099 	list_add(&napi->dev_list, &dev->napi_list);
5100 	napi->dev = dev;
5101 #ifdef CONFIG_NETPOLL
5102 	spin_lock_init(&napi->poll_lock);
5103 	napi->poll_owner = -1;
5104 #endif
5105 	set_bit(NAPI_STATE_SCHED, &napi->state);
5106 	napi_hash_add(napi);
5107 }
5108 EXPORT_SYMBOL(netif_napi_add);
5109 
5110 void napi_disable(struct napi_struct *n)
5111 {
5112 	might_sleep();
5113 	set_bit(NAPI_STATE_DISABLE, &n->state);
5114 
5115 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5116 		msleep(1);
5117 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5118 		msleep(1);
5119 
5120 	hrtimer_cancel(&n->timer);
5121 
5122 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5123 }
5124 EXPORT_SYMBOL(napi_disable);
5125 
5126 /* Must be called in process context */
5127 void netif_napi_del(struct napi_struct *napi)
5128 {
5129 	might_sleep();
5130 	if (napi_hash_del(napi))
5131 		synchronize_net();
5132 	list_del_init(&napi->dev_list);
5133 	napi_free_frags(napi);
5134 
5135 	kfree_skb_list(napi->gro_list);
5136 	napi->gro_list = NULL;
5137 	napi->gro_count = 0;
5138 }
5139 EXPORT_SYMBOL(netif_napi_del);
5140 
5141 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5142 {
5143 	void *have;
5144 	int work, weight;
5145 
5146 	list_del_init(&n->poll_list);
5147 
5148 	have = netpoll_poll_lock(n);
5149 
5150 	weight = n->weight;
5151 
5152 	/* This NAPI_STATE_SCHED test is for avoiding a race
5153 	 * with netpoll's poll_napi().  Only the entity which
5154 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5155 	 * actually make the ->poll() call.  Therefore we avoid
5156 	 * accidentally calling ->poll() when NAPI is not scheduled.
5157 	 */
5158 	work = 0;
5159 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5160 		work = n->poll(n, weight);
5161 		trace_napi_poll(n, work, weight);
5162 	}
5163 
5164 	WARN_ON_ONCE(work > weight);
5165 
5166 	if (likely(work < weight))
5167 		goto out_unlock;
5168 
5169 	/* Drivers must not modify the NAPI state if they
5170 	 * consume the entire weight.  In such cases this code
5171 	 * still "owns" the NAPI instance and therefore can
5172 	 * move the instance around on the list at-will.
5173 	 */
5174 	if (unlikely(napi_disable_pending(n))) {
5175 		napi_complete(n);
5176 		goto out_unlock;
5177 	}
5178 
5179 	if (n->gro_list) {
5180 		/* flush too old packets
5181 		 * If HZ < 1000, flush all packets.
5182 		 */
5183 		napi_gro_flush(n, HZ >= 1000);
5184 	}
5185 
5186 	/* Some drivers may have called napi_schedule
5187 	 * prior to exhausting their budget.
5188 	 */
5189 	if (unlikely(!list_empty(&n->poll_list))) {
5190 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5191 			     n->dev ? n->dev->name : "backlog");
5192 		goto out_unlock;
5193 	}
5194 
5195 	list_add_tail(&n->poll_list, repoll);
5196 
5197 out_unlock:
5198 	netpoll_poll_unlock(have);
5199 
5200 	return work;
5201 }
5202 
5203 static __latent_entropy void net_rx_action(struct softirq_action *h)
5204 {
5205 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5206 	unsigned long time_limit = jiffies + 2;
5207 	int budget = netdev_budget;
5208 	LIST_HEAD(list);
5209 	LIST_HEAD(repoll);
5210 
5211 	local_irq_disable();
5212 	list_splice_init(&sd->poll_list, &list);
5213 	local_irq_enable();
5214 
5215 	for (;;) {
5216 		struct napi_struct *n;
5217 
5218 		if (list_empty(&list)) {
5219 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5220 				return;
5221 			break;
5222 		}
5223 
5224 		n = list_first_entry(&list, struct napi_struct, poll_list);
5225 		budget -= napi_poll(n, &repoll);
5226 
5227 		/* If softirq window is exhausted then punt.
5228 		 * Allow this to run for 2 jiffies since which will allow
5229 		 * an average latency of 1.5/HZ.
5230 		 */
5231 		if (unlikely(budget <= 0 ||
5232 			     time_after_eq(jiffies, time_limit))) {
5233 			sd->time_squeeze++;
5234 			break;
5235 		}
5236 	}
5237 
5238 	__kfree_skb_flush();
5239 	local_irq_disable();
5240 
5241 	list_splice_tail_init(&sd->poll_list, &list);
5242 	list_splice_tail(&repoll, &list);
5243 	list_splice(&list, &sd->poll_list);
5244 	if (!list_empty(&sd->poll_list))
5245 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5246 
5247 	net_rps_action_and_irq_enable(sd);
5248 }
5249 
5250 struct netdev_adjacent {
5251 	struct net_device *dev;
5252 
5253 	/* upper master flag, there can only be one master device per list */
5254 	bool master;
5255 
5256 	/* counter for the number of times this device was added to us */
5257 	u16 ref_nr;
5258 
5259 	/* private field for the users */
5260 	void *private;
5261 
5262 	struct list_head list;
5263 	struct rcu_head rcu;
5264 };
5265 
5266 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5267 						 struct list_head *adj_list)
5268 {
5269 	struct netdev_adjacent *adj;
5270 
5271 	list_for_each_entry(adj, adj_list, list) {
5272 		if (adj->dev == adj_dev)
5273 			return adj;
5274 	}
5275 	return NULL;
5276 }
5277 
5278 /**
5279  * netdev_has_upper_dev - Check if device is linked to an upper device
5280  * @dev: device
5281  * @upper_dev: upper device to check
5282  *
5283  * Find out if a device is linked to specified upper device and return true
5284  * in case it is. Note that this checks only immediate upper device,
5285  * not through a complete stack of devices. The caller must hold the RTNL lock.
5286  */
5287 bool netdev_has_upper_dev(struct net_device *dev,
5288 			  struct net_device *upper_dev)
5289 {
5290 	ASSERT_RTNL();
5291 
5292 	return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5293 }
5294 EXPORT_SYMBOL(netdev_has_upper_dev);
5295 
5296 /**
5297  * netdev_has_any_upper_dev - Check if device is linked to some device
5298  * @dev: device
5299  *
5300  * Find out if a device is linked to an upper device and return true in case
5301  * it is. The caller must hold the RTNL lock.
5302  */
5303 static bool netdev_has_any_upper_dev(struct net_device *dev)
5304 {
5305 	ASSERT_RTNL();
5306 
5307 	return !list_empty(&dev->all_adj_list.upper);
5308 }
5309 
5310 /**
5311  * netdev_master_upper_dev_get - Get master upper device
5312  * @dev: device
5313  *
5314  * Find a master upper device and return pointer to it or NULL in case
5315  * it's not there. The caller must hold the RTNL lock.
5316  */
5317 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5318 {
5319 	struct netdev_adjacent *upper;
5320 
5321 	ASSERT_RTNL();
5322 
5323 	if (list_empty(&dev->adj_list.upper))
5324 		return NULL;
5325 
5326 	upper = list_first_entry(&dev->adj_list.upper,
5327 				 struct netdev_adjacent, list);
5328 	if (likely(upper->master))
5329 		return upper->dev;
5330 	return NULL;
5331 }
5332 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5333 
5334 void *netdev_adjacent_get_private(struct list_head *adj_list)
5335 {
5336 	struct netdev_adjacent *adj;
5337 
5338 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5339 
5340 	return adj->private;
5341 }
5342 EXPORT_SYMBOL(netdev_adjacent_get_private);
5343 
5344 /**
5345  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5346  * @dev: device
5347  * @iter: list_head ** of the current position
5348  *
5349  * Gets the next device from the dev's upper list, starting from iter
5350  * position. The caller must hold RCU read lock.
5351  */
5352 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5353 						 struct list_head **iter)
5354 {
5355 	struct netdev_adjacent *upper;
5356 
5357 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5358 
5359 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5360 
5361 	if (&upper->list == &dev->adj_list.upper)
5362 		return NULL;
5363 
5364 	*iter = &upper->list;
5365 
5366 	return upper->dev;
5367 }
5368 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5369 
5370 /**
5371  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5372  * @dev: device
5373  * @iter: list_head ** of the current position
5374  *
5375  * Gets the next device from the dev's upper list, starting from iter
5376  * position. The caller must hold RCU read lock.
5377  */
5378 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5379 						     struct list_head **iter)
5380 {
5381 	struct netdev_adjacent *upper;
5382 
5383 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5384 
5385 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5386 
5387 	if (&upper->list == &dev->all_adj_list.upper)
5388 		return NULL;
5389 
5390 	*iter = &upper->list;
5391 
5392 	return upper->dev;
5393 }
5394 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5395 
5396 /**
5397  * netdev_lower_get_next_private - Get the next ->private from the
5398  *				   lower neighbour list
5399  * @dev: device
5400  * @iter: list_head ** of the current position
5401  *
5402  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5403  * list, starting from iter position. The caller must hold either hold the
5404  * RTNL lock or its own locking that guarantees that the neighbour lower
5405  * list will remain unchanged.
5406  */
5407 void *netdev_lower_get_next_private(struct net_device *dev,
5408 				    struct list_head **iter)
5409 {
5410 	struct netdev_adjacent *lower;
5411 
5412 	lower = list_entry(*iter, struct netdev_adjacent, list);
5413 
5414 	if (&lower->list == &dev->adj_list.lower)
5415 		return NULL;
5416 
5417 	*iter = lower->list.next;
5418 
5419 	return lower->private;
5420 }
5421 EXPORT_SYMBOL(netdev_lower_get_next_private);
5422 
5423 /**
5424  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5425  *				       lower neighbour list, RCU
5426  *				       variant
5427  * @dev: device
5428  * @iter: list_head ** of the current position
5429  *
5430  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5431  * list, starting from iter position. The caller must hold RCU read lock.
5432  */
5433 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5434 					struct list_head **iter)
5435 {
5436 	struct netdev_adjacent *lower;
5437 
5438 	WARN_ON_ONCE(!rcu_read_lock_held());
5439 
5440 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5441 
5442 	if (&lower->list == &dev->adj_list.lower)
5443 		return NULL;
5444 
5445 	*iter = &lower->list;
5446 
5447 	return lower->private;
5448 }
5449 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5450 
5451 /**
5452  * netdev_lower_get_next - Get the next device from the lower neighbour
5453  *                         list
5454  * @dev: device
5455  * @iter: list_head ** of the current position
5456  *
5457  * Gets the next netdev_adjacent from the dev's lower neighbour
5458  * list, starting from iter position. The caller must hold RTNL lock or
5459  * its own locking that guarantees that the neighbour lower
5460  * list will remain unchanged.
5461  */
5462 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5463 {
5464 	struct netdev_adjacent *lower;
5465 
5466 	lower = list_entry(*iter, struct netdev_adjacent, list);
5467 
5468 	if (&lower->list == &dev->adj_list.lower)
5469 		return NULL;
5470 
5471 	*iter = lower->list.next;
5472 
5473 	return lower->dev;
5474 }
5475 EXPORT_SYMBOL(netdev_lower_get_next);
5476 
5477 /**
5478  * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5479  * @dev: device
5480  * @iter: list_head ** of the current position
5481  *
5482  * Gets the next netdev_adjacent from the dev's all lower neighbour
5483  * list, starting from iter position. The caller must hold RTNL lock or
5484  * its own locking that guarantees that the neighbour all lower
5485  * list will remain unchanged.
5486  */
5487 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5488 {
5489 	struct netdev_adjacent *lower;
5490 
5491 	lower = list_entry(*iter, struct netdev_adjacent, list);
5492 
5493 	if (&lower->list == &dev->all_adj_list.lower)
5494 		return NULL;
5495 
5496 	*iter = lower->list.next;
5497 
5498 	return lower->dev;
5499 }
5500 EXPORT_SYMBOL(netdev_all_lower_get_next);
5501 
5502 /**
5503  * netdev_all_lower_get_next_rcu - Get the next device from all
5504  *				   lower neighbour list, RCU variant
5505  * @dev: device
5506  * @iter: list_head ** of the current position
5507  *
5508  * Gets the next netdev_adjacent from the dev's all lower neighbour
5509  * list, starting from iter position. The caller must hold RCU read lock.
5510  */
5511 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5512 						 struct list_head **iter)
5513 {
5514 	struct netdev_adjacent *lower;
5515 
5516 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5517 
5518 	if (&lower->list == &dev->all_adj_list.lower)
5519 		return NULL;
5520 
5521 	*iter = &lower->list;
5522 
5523 	return lower->dev;
5524 }
5525 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5526 
5527 /**
5528  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5529  *				       lower neighbour list, RCU
5530  *				       variant
5531  * @dev: device
5532  *
5533  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5534  * list. The caller must hold RCU read lock.
5535  */
5536 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5537 {
5538 	struct netdev_adjacent *lower;
5539 
5540 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5541 			struct netdev_adjacent, list);
5542 	if (lower)
5543 		return lower->private;
5544 	return NULL;
5545 }
5546 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5547 
5548 /**
5549  * netdev_master_upper_dev_get_rcu - Get master upper device
5550  * @dev: device
5551  *
5552  * Find a master upper device and return pointer to it or NULL in case
5553  * it's not there. The caller must hold the RCU read lock.
5554  */
5555 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5556 {
5557 	struct netdev_adjacent *upper;
5558 
5559 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5560 				       struct netdev_adjacent, list);
5561 	if (upper && likely(upper->master))
5562 		return upper->dev;
5563 	return NULL;
5564 }
5565 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5566 
5567 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5568 			      struct net_device *adj_dev,
5569 			      struct list_head *dev_list)
5570 {
5571 	char linkname[IFNAMSIZ+7];
5572 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5573 		"upper_%s" : "lower_%s", adj_dev->name);
5574 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5575 				 linkname);
5576 }
5577 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5578 			       char *name,
5579 			       struct list_head *dev_list)
5580 {
5581 	char linkname[IFNAMSIZ+7];
5582 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5583 		"upper_%s" : "lower_%s", name);
5584 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5585 }
5586 
5587 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5588 						 struct net_device *adj_dev,
5589 						 struct list_head *dev_list)
5590 {
5591 	return (dev_list == &dev->adj_list.upper ||
5592 		dev_list == &dev->adj_list.lower) &&
5593 		net_eq(dev_net(dev), dev_net(adj_dev));
5594 }
5595 
5596 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5597 					struct net_device *adj_dev,
5598 					u16 ref_nr,
5599 					struct list_head *dev_list,
5600 					void *private, bool master)
5601 {
5602 	struct netdev_adjacent *adj;
5603 	int ret;
5604 
5605 	adj = __netdev_find_adj(adj_dev, dev_list);
5606 
5607 	if (adj) {
5608 		adj->ref_nr += ref_nr;
5609 		return 0;
5610 	}
5611 
5612 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5613 	if (!adj)
5614 		return -ENOMEM;
5615 
5616 	adj->dev = adj_dev;
5617 	adj->master = master;
5618 	adj->ref_nr = ref_nr;
5619 	adj->private = private;
5620 	dev_hold(adj_dev);
5621 
5622 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5623 		 adj_dev->name, dev->name, adj_dev->name);
5624 
5625 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5626 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5627 		if (ret)
5628 			goto free_adj;
5629 	}
5630 
5631 	/* Ensure that master link is always the first item in list. */
5632 	if (master) {
5633 		ret = sysfs_create_link(&(dev->dev.kobj),
5634 					&(adj_dev->dev.kobj), "master");
5635 		if (ret)
5636 			goto remove_symlinks;
5637 
5638 		list_add_rcu(&adj->list, dev_list);
5639 	} else {
5640 		list_add_tail_rcu(&adj->list, dev_list);
5641 	}
5642 
5643 	return 0;
5644 
5645 remove_symlinks:
5646 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5647 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5648 free_adj:
5649 	kfree(adj);
5650 	dev_put(adj_dev);
5651 
5652 	return ret;
5653 }
5654 
5655 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5656 					 struct net_device *adj_dev,
5657 					 u16 ref_nr,
5658 					 struct list_head *dev_list)
5659 {
5660 	struct netdev_adjacent *adj;
5661 
5662 	adj = __netdev_find_adj(adj_dev, dev_list);
5663 
5664 	if (!adj) {
5665 		pr_err("tried to remove device %s from %s\n",
5666 		       dev->name, adj_dev->name);
5667 		BUG();
5668 	}
5669 
5670 	if (adj->ref_nr > ref_nr) {
5671 		pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name,
5672 			 ref_nr, adj->ref_nr-ref_nr);
5673 		adj->ref_nr -= ref_nr;
5674 		return;
5675 	}
5676 
5677 	if (adj->master)
5678 		sysfs_remove_link(&(dev->dev.kobj), "master");
5679 
5680 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5681 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5682 
5683 	list_del_rcu(&adj->list);
5684 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5685 		 adj_dev->name, dev->name, adj_dev->name);
5686 	dev_put(adj_dev);
5687 	kfree_rcu(adj, rcu);
5688 }
5689 
5690 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5691 					    struct net_device *upper_dev,
5692 					    u16 ref_nr,
5693 					    struct list_head *up_list,
5694 					    struct list_head *down_list,
5695 					    void *private, bool master)
5696 {
5697 	int ret;
5698 
5699 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, ref_nr, up_list,
5700 					   private, master);
5701 	if (ret)
5702 		return ret;
5703 
5704 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, ref_nr, down_list,
5705 					   private, false);
5706 	if (ret) {
5707 		__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5708 		return ret;
5709 	}
5710 
5711 	return 0;
5712 }
5713 
5714 static int __netdev_adjacent_dev_link(struct net_device *dev,
5715 				      struct net_device *upper_dev,
5716 				      u16 ref_nr)
5717 {
5718 	return __netdev_adjacent_dev_link_lists(dev, upper_dev, ref_nr,
5719 						&dev->all_adj_list.upper,
5720 						&upper_dev->all_adj_list.lower,
5721 						NULL, false);
5722 }
5723 
5724 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5725 					       struct net_device *upper_dev,
5726 					       u16 ref_nr,
5727 					       struct list_head *up_list,
5728 					       struct list_head *down_list)
5729 {
5730 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5731 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5732 }
5733 
5734 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5735 					 struct net_device *upper_dev,
5736 					 u16 ref_nr)
5737 {
5738 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr,
5739 					   &dev->all_adj_list.upper,
5740 					   &upper_dev->all_adj_list.lower);
5741 }
5742 
5743 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5744 						struct net_device *upper_dev,
5745 						void *private, bool master)
5746 {
5747 	int ret = __netdev_adjacent_dev_link(dev, upper_dev, 1);
5748 
5749 	if (ret)
5750 		return ret;
5751 
5752 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 1,
5753 					       &dev->adj_list.upper,
5754 					       &upper_dev->adj_list.lower,
5755 					       private, master);
5756 	if (ret) {
5757 		__netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5758 		return ret;
5759 	}
5760 
5761 	return 0;
5762 }
5763 
5764 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5765 						   struct net_device *upper_dev)
5766 {
5767 	__netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5768 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5769 					   &dev->adj_list.upper,
5770 					   &upper_dev->adj_list.lower);
5771 }
5772 
5773 static int __netdev_upper_dev_link(struct net_device *dev,
5774 				   struct net_device *upper_dev, bool master,
5775 				   void *upper_priv, void *upper_info)
5776 {
5777 	struct netdev_notifier_changeupper_info changeupper_info;
5778 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5779 	int ret = 0;
5780 
5781 	ASSERT_RTNL();
5782 
5783 	if (dev == upper_dev)
5784 		return -EBUSY;
5785 
5786 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5787 	if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5788 		return -EBUSY;
5789 
5790 	if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5791 		return -EEXIST;
5792 
5793 	if (master && netdev_master_upper_dev_get(dev))
5794 		return -EBUSY;
5795 
5796 	changeupper_info.upper_dev = upper_dev;
5797 	changeupper_info.master = master;
5798 	changeupper_info.linking = true;
5799 	changeupper_info.upper_info = upper_info;
5800 
5801 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5802 					    &changeupper_info.info);
5803 	ret = notifier_to_errno(ret);
5804 	if (ret)
5805 		return ret;
5806 
5807 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5808 						   master);
5809 	if (ret)
5810 		return ret;
5811 
5812 	/* Now that we linked these devs, make all the upper_dev's
5813 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5814 	 * versa, and don't forget the devices itself. All of these
5815 	 * links are non-neighbours.
5816 	 */
5817 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5818 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5819 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5820 				 i->dev->name, j->dev->name);
5821 			ret = __netdev_adjacent_dev_link(i->dev, j->dev, i->ref_nr);
5822 			if (ret)
5823 				goto rollback_mesh;
5824 		}
5825 	}
5826 
5827 	/* add dev to every upper_dev's upper device */
5828 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5829 		pr_debug("linking %s's upper device %s with %s\n",
5830 			 upper_dev->name, i->dev->name, dev->name);
5831 		ret = __netdev_adjacent_dev_link(dev, i->dev, i->ref_nr);
5832 		if (ret)
5833 			goto rollback_upper_mesh;
5834 	}
5835 
5836 	/* add upper_dev to every dev's lower device */
5837 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5838 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5839 			 i->dev->name, upper_dev->name);
5840 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev, i->ref_nr);
5841 		if (ret)
5842 			goto rollback_lower_mesh;
5843 	}
5844 
5845 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5846 					    &changeupper_info.info);
5847 	ret = notifier_to_errno(ret);
5848 	if (ret)
5849 		goto rollback_lower_mesh;
5850 
5851 	return 0;
5852 
5853 rollback_lower_mesh:
5854 	to_i = i;
5855 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5856 		if (i == to_i)
5857 			break;
5858 		__netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5859 	}
5860 
5861 	i = NULL;
5862 
5863 rollback_upper_mesh:
5864 	to_i = i;
5865 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5866 		if (i == to_i)
5867 			break;
5868 		__netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5869 	}
5870 
5871 	i = j = NULL;
5872 
5873 rollback_mesh:
5874 	to_i = i;
5875 	to_j = j;
5876 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5877 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5878 			if (i == to_i && j == to_j)
5879 				break;
5880 			__netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5881 		}
5882 		if (i == to_i)
5883 			break;
5884 	}
5885 
5886 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5887 
5888 	return ret;
5889 }
5890 
5891 /**
5892  * netdev_upper_dev_link - Add a link to the upper device
5893  * @dev: device
5894  * @upper_dev: new upper device
5895  *
5896  * Adds a link to device which is upper to this one. The caller must hold
5897  * the RTNL lock. On a failure a negative errno code is returned.
5898  * On success the reference counts are adjusted and the function
5899  * returns zero.
5900  */
5901 int netdev_upper_dev_link(struct net_device *dev,
5902 			  struct net_device *upper_dev)
5903 {
5904 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5905 }
5906 EXPORT_SYMBOL(netdev_upper_dev_link);
5907 
5908 /**
5909  * netdev_master_upper_dev_link - Add a master link to the upper device
5910  * @dev: device
5911  * @upper_dev: new upper device
5912  * @upper_priv: upper device private
5913  * @upper_info: upper info to be passed down via notifier
5914  *
5915  * Adds a link to device which is upper to this one. In this case, only
5916  * one master upper device can be linked, although other non-master devices
5917  * might be linked as well. The caller must hold the RTNL lock.
5918  * On a failure a negative errno code is returned. On success the reference
5919  * counts are adjusted and the function returns zero.
5920  */
5921 int netdev_master_upper_dev_link(struct net_device *dev,
5922 				 struct net_device *upper_dev,
5923 				 void *upper_priv, void *upper_info)
5924 {
5925 	return __netdev_upper_dev_link(dev, upper_dev, true,
5926 				       upper_priv, upper_info);
5927 }
5928 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5929 
5930 /**
5931  * netdev_upper_dev_unlink - Removes a link to upper device
5932  * @dev: device
5933  * @upper_dev: new upper device
5934  *
5935  * Removes a link to device which is upper to this one. The caller must hold
5936  * the RTNL lock.
5937  */
5938 void netdev_upper_dev_unlink(struct net_device *dev,
5939 			     struct net_device *upper_dev)
5940 {
5941 	struct netdev_notifier_changeupper_info changeupper_info;
5942 	struct netdev_adjacent *i, *j;
5943 	ASSERT_RTNL();
5944 
5945 	changeupper_info.upper_dev = upper_dev;
5946 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5947 	changeupper_info.linking = false;
5948 
5949 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5950 				      &changeupper_info.info);
5951 
5952 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5953 
5954 	/* Here is the tricky part. We must remove all dev's lower
5955 	 * devices from all upper_dev's upper devices and vice
5956 	 * versa, to maintain the graph relationship.
5957 	 */
5958 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5959 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5960 			__netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5961 
5962 	/* remove also the devices itself from lower/upper device
5963 	 * list
5964 	 */
5965 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5966 		__netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5967 
5968 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5969 		__netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5970 
5971 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5972 				      &changeupper_info.info);
5973 }
5974 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5975 
5976 /**
5977  * netdev_bonding_info_change - Dispatch event about slave change
5978  * @dev: device
5979  * @bonding_info: info to dispatch
5980  *
5981  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5982  * The caller must hold the RTNL lock.
5983  */
5984 void netdev_bonding_info_change(struct net_device *dev,
5985 				struct netdev_bonding_info *bonding_info)
5986 {
5987 	struct netdev_notifier_bonding_info	info;
5988 
5989 	memcpy(&info.bonding_info, bonding_info,
5990 	       sizeof(struct netdev_bonding_info));
5991 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5992 				      &info.info);
5993 }
5994 EXPORT_SYMBOL(netdev_bonding_info_change);
5995 
5996 static void netdev_adjacent_add_links(struct net_device *dev)
5997 {
5998 	struct netdev_adjacent *iter;
5999 
6000 	struct net *net = dev_net(dev);
6001 
6002 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6003 		if (!net_eq(net, dev_net(iter->dev)))
6004 			continue;
6005 		netdev_adjacent_sysfs_add(iter->dev, dev,
6006 					  &iter->dev->adj_list.lower);
6007 		netdev_adjacent_sysfs_add(dev, iter->dev,
6008 					  &dev->adj_list.upper);
6009 	}
6010 
6011 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6012 		if (!net_eq(net, dev_net(iter->dev)))
6013 			continue;
6014 		netdev_adjacent_sysfs_add(iter->dev, dev,
6015 					  &iter->dev->adj_list.upper);
6016 		netdev_adjacent_sysfs_add(dev, iter->dev,
6017 					  &dev->adj_list.lower);
6018 	}
6019 }
6020 
6021 static void netdev_adjacent_del_links(struct net_device *dev)
6022 {
6023 	struct netdev_adjacent *iter;
6024 
6025 	struct net *net = dev_net(dev);
6026 
6027 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6028 		if (!net_eq(net, dev_net(iter->dev)))
6029 			continue;
6030 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6031 					  &iter->dev->adj_list.lower);
6032 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6033 					  &dev->adj_list.upper);
6034 	}
6035 
6036 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6037 		if (!net_eq(net, dev_net(iter->dev)))
6038 			continue;
6039 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6040 					  &iter->dev->adj_list.upper);
6041 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6042 					  &dev->adj_list.lower);
6043 	}
6044 }
6045 
6046 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6047 {
6048 	struct netdev_adjacent *iter;
6049 
6050 	struct net *net = dev_net(dev);
6051 
6052 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6053 		if (!net_eq(net, dev_net(iter->dev)))
6054 			continue;
6055 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6056 					  &iter->dev->adj_list.lower);
6057 		netdev_adjacent_sysfs_add(iter->dev, dev,
6058 					  &iter->dev->adj_list.lower);
6059 	}
6060 
6061 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6062 		if (!net_eq(net, dev_net(iter->dev)))
6063 			continue;
6064 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6065 					  &iter->dev->adj_list.upper);
6066 		netdev_adjacent_sysfs_add(iter->dev, dev,
6067 					  &iter->dev->adj_list.upper);
6068 	}
6069 }
6070 
6071 void *netdev_lower_dev_get_private(struct net_device *dev,
6072 				   struct net_device *lower_dev)
6073 {
6074 	struct netdev_adjacent *lower;
6075 
6076 	if (!lower_dev)
6077 		return NULL;
6078 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6079 	if (!lower)
6080 		return NULL;
6081 
6082 	return lower->private;
6083 }
6084 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6085 
6086 
6087 int dev_get_nest_level(struct net_device *dev)
6088 {
6089 	struct net_device *lower = NULL;
6090 	struct list_head *iter;
6091 	int max_nest = -1;
6092 	int nest;
6093 
6094 	ASSERT_RTNL();
6095 
6096 	netdev_for_each_lower_dev(dev, lower, iter) {
6097 		nest = dev_get_nest_level(lower);
6098 		if (max_nest < nest)
6099 			max_nest = nest;
6100 	}
6101 
6102 	return max_nest + 1;
6103 }
6104 EXPORT_SYMBOL(dev_get_nest_level);
6105 
6106 /**
6107  * netdev_lower_change - Dispatch event about lower device state change
6108  * @lower_dev: device
6109  * @lower_state_info: state to dispatch
6110  *
6111  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6112  * The caller must hold the RTNL lock.
6113  */
6114 void netdev_lower_state_changed(struct net_device *lower_dev,
6115 				void *lower_state_info)
6116 {
6117 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6118 
6119 	ASSERT_RTNL();
6120 	changelowerstate_info.lower_state_info = lower_state_info;
6121 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6122 				      &changelowerstate_info.info);
6123 }
6124 EXPORT_SYMBOL(netdev_lower_state_changed);
6125 
6126 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6127 					   struct neighbour *n)
6128 {
6129 	struct net_device *lower_dev, *stop_dev;
6130 	struct list_head *iter;
6131 	int err;
6132 
6133 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6134 		if (!lower_dev->netdev_ops->ndo_neigh_construct)
6135 			continue;
6136 		err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6137 		if (err) {
6138 			stop_dev = lower_dev;
6139 			goto rollback;
6140 		}
6141 	}
6142 	return 0;
6143 
6144 rollback:
6145 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6146 		if (lower_dev == stop_dev)
6147 			break;
6148 		if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6149 			continue;
6150 		lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6151 	}
6152 	return err;
6153 }
6154 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6155 
6156 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6157 					  struct neighbour *n)
6158 {
6159 	struct net_device *lower_dev;
6160 	struct list_head *iter;
6161 
6162 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6163 		if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6164 			continue;
6165 		lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6166 	}
6167 }
6168 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6169 
6170 static void dev_change_rx_flags(struct net_device *dev, int flags)
6171 {
6172 	const struct net_device_ops *ops = dev->netdev_ops;
6173 
6174 	if (ops->ndo_change_rx_flags)
6175 		ops->ndo_change_rx_flags(dev, flags);
6176 }
6177 
6178 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6179 {
6180 	unsigned int old_flags = dev->flags;
6181 	kuid_t uid;
6182 	kgid_t gid;
6183 
6184 	ASSERT_RTNL();
6185 
6186 	dev->flags |= IFF_PROMISC;
6187 	dev->promiscuity += inc;
6188 	if (dev->promiscuity == 0) {
6189 		/*
6190 		 * Avoid overflow.
6191 		 * If inc causes overflow, untouch promisc and return error.
6192 		 */
6193 		if (inc < 0)
6194 			dev->flags &= ~IFF_PROMISC;
6195 		else {
6196 			dev->promiscuity -= inc;
6197 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6198 				dev->name);
6199 			return -EOVERFLOW;
6200 		}
6201 	}
6202 	if (dev->flags != old_flags) {
6203 		pr_info("device %s %s promiscuous mode\n",
6204 			dev->name,
6205 			dev->flags & IFF_PROMISC ? "entered" : "left");
6206 		if (audit_enabled) {
6207 			current_uid_gid(&uid, &gid);
6208 			audit_log(current->audit_context, GFP_ATOMIC,
6209 				AUDIT_ANOM_PROMISCUOUS,
6210 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6211 				dev->name, (dev->flags & IFF_PROMISC),
6212 				(old_flags & IFF_PROMISC),
6213 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6214 				from_kuid(&init_user_ns, uid),
6215 				from_kgid(&init_user_ns, gid),
6216 				audit_get_sessionid(current));
6217 		}
6218 
6219 		dev_change_rx_flags(dev, IFF_PROMISC);
6220 	}
6221 	if (notify)
6222 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6223 	return 0;
6224 }
6225 
6226 /**
6227  *	dev_set_promiscuity	- update promiscuity count on a device
6228  *	@dev: device
6229  *	@inc: modifier
6230  *
6231  *	Add or remove promiscuity from a device. While the count in the device
6232  *	remains above zero the interface remains promiscuous. Once it hits zero
6233  *	the device reverts back to normal filtering operation. A negative inc
6234  *	value is used to drop promiscuity on the device.
6235  *	Return 0 if successful or a negative errno code on error.
6236  */
6237 int dev_set_promiscuity(struct net_device *dev, int inc)
6238 {
6239 	unsigned int old_flags = dev->flags;
6240 	int err;
6241 
6242 	err = __dev_set_promiscuity(dev, inc, true);
6243 	if (err < 0)
6244 		return err;
6245 	if (dev->flags != old_flags)
6246 		dev_set_rx_mode(dev);
6247 	return err;
6248 }
6249 EXPORT_SYMBOL(dev_set_promiscuity);
6250 
6251 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6252 {
6253 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6254 
6255 	ASSERT_RTNL();
6256 
6257 	dev->flags |= IFF_ALLMULTI;
6258 	dev->allmulti += inc;
6259 	if (dev->allmulti == 0) {
6260 		/*
6261 		 * Avoid overflow.
6262 		 * If inc causes overflow, untouch allmulti and return error.
6263 		 */
6264 		if (inc < 0)
6265 			dev->flags &= ~IFF_ALLMULTI;
6266 		else {
6267 			dev->allmulti -= inc;
6268 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6269 				dev->name);
6270 			return -EOVERFLOW;
6271 		}
6272 	}
6273 	if (dev->flags ^ old_flags) {
6274 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6275 		dev_set_rx_mode(dev);
6276 		if (notify)
6277 			__dev_notify_flags(dev, old_flags,
6278 					   dev->gflags ^ old_gflags);
6279 	}
6280 	return 0;
6281 }
6282 
6283 /**
6284  *	dev_set_allmulti	- update allmulti count on a device
6285  *	@dev: device
6286  *	@inc: modifier
6287  *
6288  *	Add or remove reception of all multicast frames to a device. While the
6289  *	count in the device remains above zero the interface remains listening
6290  *	to all interfaces. Once it hits zero the device reverts back to normal
6291  *	filtering operation. A negative @inc value is used to drop the counter
6292  *	when releasing a resource needing all multicasts.
6293  *	Return 0 if successful or a negative errno code on error.
6294  */
6295 
6296 int dev_set_allmulti(struct net_device *dev, int inc)
6297 {
6298 	return __dev_set_allmulti(dev, inc, true);
6299 }
6300 EXPORT_SYMBOL(dev_set_allmulti);
6301 
6302 /*
6303  *	Upload unicast and multicast address lists to device and
6304  *	configure RX filtering. When the device doesn't support unicast
6305  *	filtering it is put in promiscuous mode while unicast addresses
6306  *	are present.
6307  */
6308 void __dev_set_rx_mode(struct net_device *dev)
6309 {
6310 	const struct net_device_ops *ops = dev->netdev_ops;
6311 
6312 	/* dev_open will call this function so the list will stay sane. */
6313 	if (!(dev->flags&IFF_UP))
6314 		return;
6315 
6316 	if (!netif_device_present(dev))
6317 		return;
6318 
6319 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6320 		/* Unicast addresses changes may only happen under the rtnl,
6321 		 * therefore calling __dev_set_promiscuity here is safe.
6322 		 */
6323 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6324 			__dev_set_promiscuity(dev, 1, false);
6325 			dev->uc_promisc = true;
6326 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6327 			__dev_set_promiscuity(dev, -1, false);
6328 			dev->uc_promisc = false;
6329 		}
6330 	}
6331 
6332 	if (ops->ndo_set_rx_mode)
6333 		ops->ndo_set_rx_mode(dev);
6334 }
6335 
6336 void dev_set_rx_mode(struct net_device *dev)
6337 {
6338 	netif_addr_lock_bh(dev);
6339 	__dev_set_rx_mode(dev);
6340 	netif_addr_unlock_bh(dev);
6341 }
6342 
6343 /**
6344  *	dev_get_flags - get flags reported to userspace
6345  *	@dev: device
6346  *
6347  *	Get the combination of flag bits exported through APIs to userspace.
6348  */
6349 unsigned int dev_get_flags(const struct net_device *dev)
6350 {
6351 	unsigned int flags;
6352 
6353 	flags = (dev->flags & ~(IFF_PROMISC |
6354 				IFF_ALLMULTI |
6355 				IFF_RUNNING |
6356 				IFF_LOWER_UP |
6357 				IFF_DORMANT)) |
6358 		(dev->gflags & (IFF_PROMISC |
6359 				IFF_ALLMULTI));
6360 
6361 	if (netif_running(dev)) {
6362 		if (netif_oper_up(dev))
6363 			flags |= IFF_RUNNING;
6364 		if (netif_carrier_ok(dev))
6365 			flags |= IFF_LOWER_UP;
6366 		if (netif_dormant(dev))
6367 			flags |= IFF_DORMANT;
6368 	}
6369 
6370 	return flags;
6371 }
6372 EXPORT_SYMBOL(dev_get_flags);
6373 
6374 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6375 {
6376 	unsigned int old_flags = dev->flags;
6377 	int ret;
6378 
6379 	ASSERT_RTNL();
6380 
6381 	/*
6382 	 *	Set the flags on our device.
6383 	 */
6384 
6385 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6386 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6387 			       IFF_AUTOMEDIA)) |
6388 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6389 				    IFF_ALLMULTI));
6390 
6391 	/*
6392 	 *	Load in the correct multicast list now the flags have changed.
6393 	 */
6394 
6395 	if ((old_flags ^ flags) & IFF_MULTICAST)
6396 		dev_change_rx_flags(dev, IFF_MULTICAST);
6397 
6398 	dev_set_rx_mode(dev);
6399 
6400 	/*
6401 	 *	Have we downed the interface. We handle IFF_UP ourselves
6402 	 *	according to user attempts to set it, rather than blindly
6403 	 *	setting it.
6404 	 */
6405 
6406 	ret = 0;
6407 	if ((old_flags ^ flags) & IFF_UP)
6408 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6409 
6410 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6411 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6412 		unsigned int old_flags = dev->flags;
6413 
6414 		dev->gflags ^= IFF_PROMISC;
6415 
6416 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6417 			if (dev->flags != old_flags)
6418 				dev_set_rx_mode(dev);
6419 	}
6420 
6421 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6422 	   is important. Some (broken) drivers set IFF_PROMISC, when
6423 	   IFF_ALLMULTI is requested not asking us and not reporting.
6424 	 */
6425 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6426 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6427 
6428 		dev->gflags ^= IFF_ALLMULTI;
6429 		__dev_set_allmulti(dev, inc, false);
6430 	}
6431 
6432 	return ret;
6433 }
6434 
6435 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6436 			unsigned int gchanges)
6437 {
6438 	unsigned int changes = dev->flags ^ old_flags;
6439 
6440 	if (gchanges)
6441 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6442 
6443 	if (changes & IFF_UP) {
6444 		if (dev->flags & IFF_UP)
6445 			call_netdevice_notifiers(NETDEV_UP, dev);
6446 		else
6447 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6448 	}
6449 
6450 	if (dev->flags & IFF_UP &&
6451 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6452 		struct netdev_notifier_change_info change_info;
6453 
6454 		change_info.flags_changed = changes;
6455 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6456 					      &change_info.info);
6457 	}
6458 }
6459 
6460 /**
6461  *	dev_change_flags - change device settings
6462  *	@dev: device
6463  *	@flags: device state flags
6464  *
6465  *	Change settings on device based state flags. The flags are
6466  *	in the userspace exported format.
6467  */
6468 int dev_change_flags(struct net_device *dev, unsigned int flags)
6469 {
6470 	int ret;
6471 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6472 
6473 	ret = __dev_change_flags(dev, flags);
6474 	if (ret < 0)
6475 		return ret;
6476 
6477 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6478 	__dev_notify_flags(dev, old_flags, changes);
6479 	return ret;
6480 }
6481 EXPORT_SYMBOL(dev_change_flags);
6482 
6483 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6484 {
6485 	const struct net_device_ops *ops = dev->netdev_ops;
6486 
6487 	if (ops->ndo_change_mtu)
6488 		return ops->ndo_change_mtu(dev, new_mtu);
6489 
6490 	dev->mtu = new_mtu;
6491 	return 0;
6492 }
6493 
6494 /**
6495  *	dev_set_mtu - Change maximum transfer unit
6496  *	@dev: device
6497  *	@new_mtu: new transfer unit
6498  *
6499  *	Change the maximum transfer size of the network device.
6500  */
6501 int dev_set_mtu(struct net_device *dev, int new_mtu)
6502 {
6503 	int err, orig_mtu;
6504 
6505 	if (new_mtu == dev->mtu)
6506 		return 0;
6507 
6508 	/*	MTU must be positive.	 */
6509 	if (new_mtu < 0)
6510 		return -EINVAL;
6511 
6512 	if (!netif_device_present(dev))
6513 		return -ENODEV;
6514 
6515 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6516 	err = notifier_to_errno(err);
6517 	if (err)
6518 		return err;
6519 
6520 	orig_mtu = dev->mtu;
6521 	err = __dev_set_mtu(dev, new_mtu);
6522 
6523 	if (!err) {
6524 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6525 		err = notifier_to_errno(err);
6526 		if (err) {
6527 			/* setting mtu back and notifying everyone again,
6528 			 * so that they have a chance to revert changes.
6529 			 */
6530 			__dev_set_mtu(dev, orig_mtu);
6531 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6532 		}
6533 	}
6534 	return err;
6535 }
6536 EXPORT_SYMBOL(dev_set_mtu);
6537 
6538 /**
6539  *	dev_set_group - Change group this device belongs to
6540  *	@dev: device
6541  *	@new_group: group this device should belong to
6542  */
6543 void dev_set_group(struct net_device *dev, int new_group)
6544 {
6545 	dev->group = new_group;
6546 }
6547 EXPORT_SYMBOL(dev_set_group);
6548 
6549 /**
6550  *	dev_set_mac_address - Change Media Access Control Address
6551  *	@dev: device
6552  *	@sa: new address
6553  *
6554  *	Change the hardware (MAC) address of the device
6555  */
6556 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6557 {
6558 	const struct net_device_ops *ops = dev->netdev_ops;
6559 	int err;
6560 
6561 	if (!ops->ndo_set_mac_address)
6562 		return -EOPNOTSUPP;
6563 	if (sa->sa_family != dev->type)
6564 		return -EINVAL;
6565 	if (!netif_device_present(dev))
6566 		return -ENODEV;
6567 	err = ops->ndo_set_mac_address(dev, sa);
6568 	if (err)
6569 		return err;
6570 	dev->addr_assign_type = NET_ADDR_SET;
6571 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6572 	add_device_randomness(dev->dev_addr, dev->addr_len);
6573 	return 0;
6574 }
6575 EXPORT_SYMBOL(dev_set_mac_address);
6576 
6577 /**
6578  *	dev_change_carrier - Change device carrier
6579  *	@dev: device
6580  *	@new_carrier: new value
6581  *
6582  *	Change device carrier
6583  */
6584 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6585 {
6586 	const struct net_device_ops *ops = dev->netdev_ops;
6587 
6588 	if (!ops->ndo_change_carrier)
6589 		return -EOPNOTSUPP;
6590 	if (!netif_device_present(dev))
6591 		return -ENODEV;
6592 	return ops->ndo_change_carrier(dev, new_carrier);
6593 }
6594 EXPORT_SYMBOL(dev_change_carrier);
6595 
6596 /**
6597  *	dev_get_phys_port_id - Get device physical port ID
6598  *	@dev: device
6599  *	@ppid: port ID
6600  *
6601  *	Get device physical port ID
6602  */
6603 int dev_get_phys_port_id(struct net_device *dev,
6604 			 struct netdev_phys_item_id *ppid)
6605 {
6606 	const struct net_device_ops *ops = dev->netdev_ops;
6607 
6608 	if (!ops->ndo_get_phys_port_id)
6609 		return -EOPNOTSUPP;
6610 	return ops->ndo_get_phys_port_id(dev, ppid);
6611 }
6612 EXPORT_SYMBOL(dev_get_phys_port_id);
6613 
6614 /**
6615  *	dev_get_phys_port_name - Get device physical port name
6616  *	@dev: device
6617  *	@name: port name
6618  *	@len: limit of bytes to copy to name
6619  *
6620  *	Get device physical port name
6621  */
6622 int dev_get_phys_port_name(struct net_device *dev,
6623 			   char *name, size_t len)
6624 {
6625 	const struct net_device_ops *ops = dev->netdev_ops;
6626 
6627 	if (!ops->ndo_get_phys_port_name)
6628 		return -EOPNOTSUPP;
6629 	return ops->ndo_get_phys_port_name(dev, name, len);
6630 }
6631 EXPORT_SYMBOL(dev_get_phys_port_name);
6632 
6633 /**
6634  *	dev_change_proto_down - update protocol port state information
6635  *	@dev: device
6636  *	@proto_down: new value
6637  *
6638  *	This info can be used by switch drivers to set the phys state of the
6639  *	port.
6640  */
6641 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6642 {
6643 	const struct net_device_ops *ops = dev->netdev_ops;
6644 
6645 	if (!ops->ndo_change_proto_down)
6646 		return -EOPNOTSUPP;
6647 	if (!netif_device_present(dev))
6648 		return -ENODEV;
6649 	return ops->ndo_change_proto_down(dev, proto_down);
6650 }
6651 EXPORT_SYMBOL(dev_change_proto_down);
6652 
6653 /**
6654  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
6655  *	@dev: device
6656  *	@fd: new program fd or negative value to clear
6657  *
6658  *	Set or clear a bpf program for a device
6659  */
6660 int dev_change_xdp_fd(struct net_device *dev, int fd)
6661 {
6662 	const struct net_device_ops *ops = dev->netdev_ops;
6663 	struct bpf_prog *prog = NULL;
6664 	struct netdev_xdp xdp = {};
6665 	int err;
6666 
6667 	if (!ops->ndo_xdp)
6668 		return -EOPNOTSUPP;
6669 	if (fd >= 0) {
6670 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6671 		if (IS_ERR(prog))
6672 			return PTR_ERR(prog);
6673 	}
6674 
6675 	xdp.command = XDP_SETUP_PROG;
6676 	xdp.prog = prog;
6677 	err = ops->ndo_xdp(dev, &xdp);
6678 	if (err < 0 && prog)
6679 		bpf_prog_put(prog);
6680 
6681 	return err;
6682 }
6683 EXPORT_SYMBOL(dev_change_xdp_fd);
6684 
6685 /**
6686  *	dev_new_index	-	allocate an ifindex
6687  *	@net: the applicable net namespace
6688  *
6689  *	Returns a suitable unique value for a new device interface
6690  *	number.  The caller must hold the rtnl semaphore or the
6691  *	dev_base_lock to be sure it remains unique.
6692  */
6693 static int dev_new_index(struct net *net)
6694 {
6695 	int ifindex = net->ifindex;
6696 	for (;;) {
6697 		if (++ifindex <= 0)
6698 			ifindex = 1;
6699 		if (!__dev_get_by_index(net, ifindex))
6700 			return net->ifindex = ifindex;
6701 	}
6702 }
6703 
6704 /* Delayed registration/unregisteration */
6705 static LIST_HEAD(net_todo_list);
6706 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6707 
6708 static void net_set_todo(struct net_device *dev)
6709 {
6710 	list_add_tail(&dev->todo_list, &net_todo_list);
6711 	dev_net(dev)->dev_unreg_count++;
6712 }
6713 
6714 static void rollback_registered_many(struct list_head *head)
6715 {
6716 	struct net_device *dev, *tmp;
6717 	LIST_HEAD(close_head);
6718 
6719 	BUG_ON(dev_boot_phase);
6720 	ASSERT_RTNL();
6721 
6722 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6723 		/* Some devices call without registering
6724 		 * for initialization unwind. Remove those
6725 		 * devices and proceed with the remaining.
6726 		 */
6727 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6728 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6729 				 dev->name, dev);
6730 
6731 			WARN_ON(1);
6732 			list_del(&dev->unreg_list);
6733 			continue;
6734 		}
6735 		dev->dismantle = true;
6736 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6737 	}
6738 
6739 	/* If device is running, close it first. */
6740 	list_for_each_entry(dev, head, unreg_list)
6741 		list_add_tail(&dev->close_list, &close_head);
6742 	dev_close_many(&close_head, true);
6743 
6744 	list_for_each_entry(dev, head, unreg_list) {
6745 		/* And unlink it from device chain. */
6746 		unlist_netdevice(dev);
6747 
6748 		dev->reg_state = NETREG_UNREGISTERING;
6749 	}
6750 	flush_all_backlogs();
6751 
6752 	synchronize_net();
6753 
6754 	list_for_each_entry(dev, head, unreg_list) {
6755 		struct sk_buff *skb = NULL;
6756 
6757 		/* Shutdown queueing discipline. */
6758 		dev_shutdown(dev);
6759 
6760 
6761 		/* Notify protocols, that we are about to destroy
6762 		   this device. They should clean all the things.
6763 		*/
6764 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6765 
6766 		if (!dev->rtnl_link_ops ||
6767 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6768 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6769 						     GFP_KERNEL);
6770 
6771 		/*
6772 		 *	Flush the unicast and multicast chains
6773 		 */
6774 		dev_uc_flush(dev);
6775 		dev_mc_flush(dev);
6776 
6777 		if (dev->netdev_ops->ndo_uninit)
6778 			dev->netdev_ops->ndo_uninit(dev);
6779 
6780 		if (skb)
6781 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6782 
6783 		/* Notifier chain MUST detach us all upper devices. */
6784 		WARN_ON(netdev_has_any_upper_dev(dev));
6785 
6786 		/* Remove entries from kobject tree */
6787 		netdev_unregister_kobject(dev);
6788 #ifdef CONFIG_XPS
6789 		/* Remove XPS queueing entries */
6790 		netif_reset_xps_queues_gt(dev, 0);
6791 #endif
6792 	}
6793 
6794 	synchronize_net();
6795 
6796 	list_for_each_entry(dev, head, unreg_list)
6797 		dev_put(dev);
6798 }
6799 
6800 static void rollback_registered(struct net_device *dev)
6801 {
6802 	LIST_HEAD(single);
6803 
6804 	list_add(&dev->unreg_list, &single);
6805 	rollback_registered_many(&single);
6806 	list_del(&single);
6807 }
6808 
6809 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6810 	struct net_device *upper, netdev_features_t features)
6811 {
6812 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6813 	netdev_features_t feature;
6814 	int feature_bit;
6815 
6816 	for_each_netdev_feature(&upper_disables, feature_bit) {
6817 		feature = __NETIF_F_BIT(feature_bit);
6818 		if (!(upper->wanted_features & feature)
6819 		    && (features & feature)) {
6820 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6821 				   &feature, upper->name);
6822 			features &= ~feature;
6823 		}
6824 	}
6825 
6826 	return features;
6827 }
6828 
6829 static void netdev_sync_lower_features(struct net_device *upper,
6830 	struct net_device *lower, netdev_features_t features)
6831 {
6832 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6833 	netdev_features_t feature;
6834 	int feature_bit;
6835 
6836 	for_each_netdev_feature(&upper_disables, feature_bit) {
6837 		feature = __NETIF_F_BIT(feature_bit);
6838 		if (!(features & feature) && (lower->features & feature)) {
6839 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6840 				   &feature, lower->name);
6841 			lower->wanted_features &= ~feature;
6842 			netdev_update_features(lower);
6843 
6844 			if (unlikely(lower->features & feature))
6845 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6846 					    &feature, lower->name);
6847 		}
6848 	}
6849 }
6850 
6851 static netdev_features_t netdev_fix_features(struct net_device *dev,
6852 	netdev_features_t features)
6853 {
6854 	/* Fix illegal checksum combinations */
6855 	if ((features & NETIF_F_HW_CSUM) &&
6856 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6857 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6858 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6859 	}
6860 
6861 	/* TSO requires that SG is present as well. */
6862 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6863 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6864 		features &= ~NETIF_F_ALL_TSO;
6865 	}
6866 
6867 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6868 					!(features & NETIF_F_IP_CSUM)) {
6869 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6870 		features &= ~NETIF_F_TSO;
6871 		features &= ~NETIF_F_TSO_ECN;
6872 	}
6873 
6874 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6875 					 !(features & NETIF_F_IPV6_CSUM)) {
6876 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6877 		features &= ~NETIF_F_TSO6;
6878 	}
6879 
6880 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6881 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6882 		features &= ~NETIF_F_TSO_MANGLEID;
6883 
6884 	/* TSO ECN requires that TSO is present as well. */
6885 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6886 		features &= ~NETIF_F_TSO_ECN;
6887 
6888 	/* Software GSO depends on SG. */
6889 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6890 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6891 		features &= ~NETIF_F_GSO;
6892 	}
6893 
6894 	/* UFO needs SG and checksumming */
6895 	if (features & NETIF_F_UFO) {
6896 		/* maybe split UFO into V4 and V6? */
6897 		if (!(features & NETIF_F_HW_CSUM) &&
6898 		    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6899 		     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6900 			netdev_dbg(dev,
6901 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6902 			features &= ~NETIF_F_UFO;
6903 		}
6904 
6905 		if (!(features & NETIF_F_SG)) {
6906 			netdev_dbg(dev,
6907 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6908 			features &= ~NETIF_F_UFO;
6909 		}
6910 	}
6911 
6912 	/* GSO partial features require GSO partial be set */
6913 	if ((features & dev->gso_partial_features) &&
6914 	    !(features & NETIF_F_GSO_PARTIAL)) {
6915 		netdev_dbg(dev,
6916 			   "Dropping partially supported GSO features since no GSO partial.\n");
6917 		features &= ~dev->gso_partial_features;
6918 	}
6919 
6920 #ifdef CONFIG_NET_RX_BUSY_POLL
6921 	if (dev->netdev_ops->ndo_busy_poll)
6922 		features |= NETIF_F_BUSY_POLL;
6923 	else
6924 #endif
6925 		features &= ~NETIF_F_BUSY_POLL;
6926 
6927 	return features;
6928 }
6929 
6930 int __netdev_update_features(struct net_device *dev)
6931 {
6932 	struct net_device *upper, *lower;
6933 	netdev_features_t features;
6934 	struct list_head *iter;
6935 	int err = -1;
6936 
6937 	ASSERT_RTNL();
6938 
6939 	features = netdev_get_wanted_features(dev);
6940 
6941 	if (dev->netdev_ops->ndo_fix_features)
6942 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6943 
6944 	/* driver might be less strict about feature dependencies */
6945 	features = netdev_fix_features(dev, features);
6946 
6947 	/* some features can't be enabled if they're off an an upper device */
6948 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
6949 		features = netdev_sync_upper_features(dev, upper, features);
6950 
6951 	if (dev->features == features)
6952 		goto sync_lower;
6953 
6954 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6955 		&dev->features, &features);
6956 
6957 	if (dev->netdev_ops->ndo_set_features)
6958 		err = dev->netdev_ops->ndo_set_features(dev, features);
6959 	else
6960 		err = 0;
6961 
6962 	if (unlikely(err < 0)) {
6963 		netdev_err(dev,
6964 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6965 			err, &features, &dev->features);
6966 		/* return non-0 since some features might have changed and
6967 		 * it's better to fire a spurious notification than miss it
6968 		 */
6969 		return -1;
6970 	}
6971 
6972 sync_lower:
6973 	/* some features must be disabled on lower devices when disabled
6974 	 * on an upper device (think: bonding master or bridge)
6975 	 */
6976 	netdev_for_each_lower_dev(dev, lower, iter)
6977 		netdev_sync_lower_features(dev, lower, features);
6978 
6979 	if (!err)
6980 		dev->features = features;
6981 
6982 	return err < 0 ? 0 : 1;
6983 }
6984 
6985 /**
6986  *	netdev_update_features - recalculate device features
6987  *	@dev: the device to check
6988  *
6989  *	Recalculate dev->features set and send notifications if it
6990  *	has changed. Should be called after driver or hardware dependent
6991  *	conditions might have changed that influence the features.
6992  */
6993 void netdev_update_features(struct net_device *dev)
6994 {
6995 	if (__netdev_update_features(dev))
6996 		netdev_features_change(dev);
6997 }
6998 EXPORT_SYMBOL(netdev_update_features);
6999 
7000 /**
7001  *	netdev_change_features - recalculate device features
7002  *	@dev: the device to check
7003  *
7004  *	Recalculate dev->features set and send notifications even
7005  *	if they have not changed. Should be called instead of
7006  *	netdev_update_features() if also dev->vlan_features might
7007  *	have changed to allow the changes to be propagated to stacked
7008  *	VLAN devices.
7009  */
7010 void netdev_change_features(struct net_device *dev)
7011 {
7012 	__netdev_update_features(dev);
7013 	netdev_features_change(dev);
7014 }
7015 EXPORT_SYMBOL(netdev_change_features);
7016 
7017 /**
7018  *	netif_stacked_transfer_operstate -	transfer operstate
7019  *	@rootdev: the root or lower level device to transfer state from
7020  *	@dev: the device to transfer operstate to
7021  *
7022  *	Transfer operational state from root to device. This is normally
7023  *	called when a stacking relationship exists between the root
7024  *	device and the device(a leaf device).
7025  */
7026 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7027 					struct net_device *dev)
7028 {
7029 	if (rootdev->operstate == IF_OPER_DORMANT)
7030 		netif_dormant_on(dev);
7031 	else
7032 		netif_dormant_off(dev);
7033 
7034 	if (netif_carrier_ok(rootdev)) {
7035 		if (!netif_carrier_ok(dev))
7036 			netif_carrier_on(dev);
7037 	} else {
7038 		if (netif_carrier_ok(dev))
7039 			netif_carrier_off(dev);
7040 	}
7041 }
7042 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7043 
7044 #ifdef CONFIG_SYSFS
7045 static int netif_alloc_rx_queues(struct net_device *dev)
7046 {
7047 	unsigned int i, count = dev->num_rx_queues;
7048 	struct netdev_rx_queue *rx;
7049 	size_t sz = count * sizeof(*rx);
7050 
7051 	BUG_ON(count < 1);
7052 
7053 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7054 	if (!rx) {
7055 		rx = vzalloc(sz);
7056 		if (!rx)
7057 			return -ENOMEM;
7058 	}
7059 	dev->_rx = rx;
7060 
7061 	for (i = 0; i < count; i++)
7062 		rx[i].dev = dev;
7063 	return 0;
7064 }
7065 #endif
7066 
7067 static void netdev_init_one_queue(struct net_device *dev,
7068 				  struct netdev_queue *queue, void *_unused)
7069 {
7070 	/* Initialize queue lock */
7071 	spin_lock_init(&queue->_xmit_lock);
7072 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7073 	queue->xmit_lock_owner = -1;
7074 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7075 	queue->dev = dev;
7076 #ifdef CONFIG_BQL
7077 	dql_init(&queue->dql, HZ);
7078 #endif
7079 }
7080 
7081 static void netif_free_tx_queues(struct net_device *dev)
7082 {
7083 	kvfree(dev->_tx);
7084 }
7085 
7086 static int netif_alloc_netdev_queues(struct net_device *dev)
7087 {
7088 	unsigned int count = dev->num_tx_queues;
7089 	struct netdev_queue *tx;
7090 	size_t sz = count * sizeof(*tx);
7091 
7092 	if (count < 1 || count > 0xffff)
7093 		return -EINVAL;
7094 
7095 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7096 	if (!tx) {
7097 		tx = vzalloc(sz);
7098 		if (!tx)
7099 			return -ENOMEM;
7100 	}
7101 	dev->_tx = tx;
7102 
7103 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7104 	spin_lock_init(&dev->tx_global_lock);
7105 
7106 	return 0;
7107 }
7108 
7109 void netif_tx_stop_all_queues(struct net_device *dev)
7110 {
7111 	unsigned int i;
7112 
7113 	for (i = 0; i < dev->num_tx_queues; i++) {
7114 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7115 		netif_tx_stop_queue(txq);
7116 	}
7117 }
7118 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7119 
7120 /**
7121  *	register_netdevice	- register a network device
7122  *	@dev: device to register
7123  *
7124  *	Take a completed network device structure and add it to the kernel
7125  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7126  *	chain. 0 is returned on success. A negative errno code is returned
7127  *	on a failure to set up the device, or if the name is a duplicate.
7128  *
7129  *	Callers must hold the rtnl semaphore. You may want
7130  *	register_netdev() instead of this.
7131  *
7132  *	BUGS:
7133  *	The locking appears insufficient to guarantee two parallel registers
7134  *	will not get the same name.
7135  */
7136 
7137 int register_netdevice(struct net_device *dev)
7138 {
7139 	int ret;
7140 	struct net *net = dev_net(dev);
7141 
7142 	BUG_ON(dev_boot_phase);
7143 	ASSERT_RTNL();
7144 
7145 	might_sleep();
7146 
7147 	/* When net_device's are persistent, this will be fatal. */
7148 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7149 	BUG_ON(!net);
7150 
7151 	spin_lock_init(&dev->addr_list_lock);
7152 	netdev_set_addr_lockdep_class(dev);
7153 
7154 	ret = dev_get_valid_name(net, dev, dev->name);
7155 	if (ret < 0)
7156 		goto out;
7157 
7158 	/* Init, if this function is available */
7159 	if (dev->netdev_ops->ndo_init) {
7160 		ret = dev->netdev_ops->ndo_init(dev);
7161 		if (ret) {
7162 			if (ret > 0)
7163 				ret = -EIO;
7164 			goto out;
7165 		}
7166 	}
7167 
7168 	if (((dev->hw_features | dev->features) &
7169 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7170 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7171 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7172 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7173 		ret = -EINVAL;
7174 		goto err_uninit;
7175 	}
7176 
7177 	ret = -EBUSY;
7178 	if (!dev->ifindex)
7179 		dev->ifindex = dev_new_index(net);
7180 	else if (__dev_get_by_index(net, dev->ifindex))
7181 		goto err_uninit;
7182 
7183 	/* Transfer changeable features to wanted_features and enable
7184 	 * software offloads (GSO and GRO).
7185 	 */
7186 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7187 	dev->features |= NETIF_F_SOFT_FEATURES;
7188 	dev->wanted_features = dev->features & dev->hw_features;
7189 
7190 	if (!(dev->flags & IFF_LOOPBACK))
7191 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7192 
7193 	/* If IPv4 TCP segmentation offload is supported we should also
7194 	 * allow the device to enable segmenting the frame with the option
7195 	 * of ignoring a static IP ID value.  This doesn't enable the
7196 	 * feature itself but allows the user to enable it later.
7197 	 */
7198 	if (dev->hw_features & NETIF_F_TSO)
7199 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7200 	if (dev->vlan_features & NETIF_F_TSO)
7201 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7202 	if (dev->mpls_features & NETIF_F_TSO)
7203 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7204 	if (dev->hw_enc_features & NETIF_F_TSO)
7205 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7206 
7207 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7208 	 */
7209 	dev->vlan_features |= NETIF_F_HIGHDMA;
7210 
7211 	/* Make NETIF_F_SG inheritable to tunnel devices.
7212 	 */
7213 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7214 
7215 	/* Make NETIF_F_SG inheritable to MPLS.
7216 	 */
7217 	dev->mpls_features |= NETIF_F_SG;
7218 
7219 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7220 	ret = notifier_to_errno(ret);
7221 	if (ret)
7222 		goto err_uninit;
7223 
7224 	ret = netdev_register_kobject(dev);
7225 	if (ret)
7226 		goto err_uninit;
7227 	dev->reg_state = NETREG_REGISTERED;
7228 
7229 	__netdev_update_features(dev);
7230 
7231 	/*
7232 	 *	Default initial state at registry is that the
7233 	 *	device is present.
7234 	 */
7235 
7236 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7237 
7238 	linkwatch_init_dev(dev);
7239 
7240 	dev_init_scheduler(dev);
7241 	dev_hold(dev);
7242 	list_netdevice(dev);
7243 	add_device_randomness(dev->dev_addr, dev->addr_len);
7244 
7245 	/* If the device has permanent device address, driver should
7246 	 * set dev_addr and also addr_assign_type should be set to
7247 	 * NET_ADDR_PERM (default value).
7248 	 */
7249 	if (dev->addr_assign_type == NET_ADDR_PERM)
7250 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7251 
7252 	/* Notify protocols, that a new device appeared. */
7253 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7254 	ret = notifier_to_errno(ret);
7255 	if (ret) {
7256 		rollback_registered(dev);
7257 		dev->reg_state = NETREG_UNREGISTERED;
7258 	}
7259 	/*
7260 	 *	Prevent userspace races by waiting until the network
7261 	 *	device is fully setup before sending notifications.
7262 	 */
7263 	if (!dev->rtnl_link_ops ||
7264 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7265 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7266 
7267 out:
7268 	return ret;
7269 
7270 err_uninit:
7271 	if (dev->netdev_ops->ndo_uninit)
7272 		dev->netdev_ops->ndo_uninit(dev);
7273 	goto out;
7274 }
7275 EXPORT_SYMBOL(register_netdevice);
7276 
7277 /**
7278  *	init_dummy_netdev	- init a dummy network device for NAPI
7279  *	@dev: device to init
7280  *
7281  *	This takes a network device structure and initialize the minimum
7282  *	amount of fields so it can be used to schedule NAPI polls without
7283  *	registering a full blown interface. This is to be used by drivers
7284  *	that need to tie several hardware interfaces to a single NAPI
7285  *	poll scheduler due to HW limitations.
7286  */
7287 int init_dummy_netdev(struct net_device *dev)
7288 {
7289 	/* Clear everything. Note we don't initialize spinlocks
7290 	 * are they aren't supposed to be taken by any of the
7291 	 * NAPI code and this dummy netdev is supposed to be
7292 	 * only ever used for NAPI polls
7293 	 */
7294 	memset(dev, 0, sizeof(struct net_device));
7295 
7296 	/* make sure we BUG if trying to hit standard
7297 	 * register/unregister code path
7298 	 */
7299 	dev->reg_state = NETREG_DUMMY;
7300 
7301 	/* NAPI wants this */
7302 	INIT_LIST_HEAD(&dev->napi_list);
7303 
7304 	/* a dummy interface is started by default */
7305 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7306 	set_bit(__LINK_STATE_START, &dev->state);
7307 
7308 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7309 	 * because users of this 'device' dont need to change
7310 	 * its refcount.
7311 	 */
7312 
7313 	return 0;
7314 }
7315 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7316 
7317 
7318 /**
7319  *	register_netdev	- register a network device
7320  *	@dev: device to register
7321  *
7322  *	Take a completed network device structure and add it to the kernel
7323  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7324  *	chain. 0 is returned on success. A negative errno code is returned
7325  *	on a failure to set up the device, or if the name is a duplicate.
7326  *
7327  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7328  *	and expands the device name if you passed a format string to
7329  *	alloc_netdev.
7330  */
7331 int register_netdev(struct net_device *dev)
7332 {
7333 	int err;
7334 
7335 	rtnl_lock();
7336 	err = register_netdevice(dev);
7337 	rtnl_unlock();
7338 	return err;
7339 }
7340 EXPORT_SYMBOL(register_netdev);
7341 
7342 int netdev_refcnt_read(const struct net_device *dev)
7343 {
7344 	int i, refcnt = 0;
7345 
7346 	for_each_possible_cpu(i)
7347 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7348 	return refcnt;
7349 }
7350 EXPORT_SYMBOL(netdev_refcnt_read);
7351 
7352 /**
7353  * netdev_wait_allrefs - wait until all references are gone.
7354  * @dev: target net_device
7355  *
7356  * This is called when unregistering network devices.
7357  *
7358  * Any protocol or device that holds a reference should register
7359  * for netdevice notification, and cleanup and put back the
7360  * reference if they receive an UNREGISTER event.
7361  * We can get stuck here if buggy protocols don't correctly
7362  * call dev_put.
7363  */
7364 static void netdev_wait_allrefs(struct net_device *dev)
7365 {
7366 	unsigned long rebroadcast_time, warning_time;
7367 	int refcnt;
7368 
7369 	linkwatch_forget_dev(dev);
7370 
7371 	rebroadcast_time = warning_time = jiffies;
7372 	refcnt = netdev_refcnt_read(dev);
7373 
7374 	while (refcnt != 0) {
7375 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7376 			rtnl_lock();
7377 
7378 			/* Rebroadcast unregister notification */
7379 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7380 
7381 			__rtnl_unlock();
7382 			rcu_barrier();
7383 			rtnl_lock();
7384 
7385 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7386 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7387 				     &dev->state)) {
7388 				/* We must not have linkwatch events
7389 				 * pending on unregister. If this
7390 				 * happens, we simply run the queue
7391 				 * unscheduled, resulting in a noop
7392 				 * for this device.
7393 				 */
7394 				linkwatch_run_queue();
7395 			}
7396 
7397 			__rtnl_unlock();
7398 
7399 			rebroadcast_time = jiffies;
7400 		}
7401 
7402 		msleep(250);
7403 
7404 		refcnt = netdev_refcnt_read(dev);
7405 
7406 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7407 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7408 				 dev->name, refcnt);
7409 			warning_time = jiffies;
7410 		}
7411 	}
7412 }
7413 
7414 /* The sequence is:
7415  *
7416  *	rtnl_lock();
7417  *	...
7418  *	register_netdevice(x1);
7419  *	register_netdevice(x2);
7420  *	...
7421  *	unregister_netdevice(y1);
7422  *	unregister_netdevice(y2);
7423  *      ...
7424  *	rtnl_unlock();
7425  *	free_netdev(y1);
7426  *	free_netdev(y2);
7427  *
7428  * We are invoked by rtnl_unlock().
7429  * This allows us to deal with problems:
7430  * 1) We can delete sysfs objects which invoke hotplug
7431  *    without deadlocking with linkwatch via keventd.
7432  * 2) Since we run with the RTNL semaphore not held, we can sleep
7433  *    safely in order to wait for the netdev refcnt to drop to zero.
7434  *
7435  * We must not return until all unregister events added during
7436  * the interval the lock was held have been completed.
7437  */
7438 void netdev_run_todo(void)
7439 {
7440 	struct list_head list;
7441 
7442 	/* Snapshot list, allow later requests */
7443 	list_replace_init(&net_todo_list, &list);
7444 
7445 	__rtnl_unlock();
7446 
7447 
7448 	/* Wait for rcu callbacks to finish before next phase */
7449 	if (!list_empty(&list))
7450 		rcu_barrier();
7451 
7452 	while (!list_empty(&list)) {
7453 		struct net_device *dev
7454 			= list_first_entry(&list, struct net_device, todo_list);
7455 		list_del(&dev->todo_list);
7456 
7457 		rtnl_lock();
7458 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7459 		__rtnl_unlock();
7460 
7461 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7462 			pr_err("network todo '%s' but state %d\n",
7463 			       dev->name, dev->reg_state);
7464 			dump_stack();
7465 			continue;
7466 		}
7467 
7468 		dev->reg_state = NETREG_UNREGISTERED;
7469 
7470 		netdev_wait_allrefs(dev);
7471 
7472 		/* paranoia */
7473 		BUG_ON(netdev_refcnt_read(dev));
7474 		BUG_ON(!list_empty(&dev->ptype_all));
7475 		BUG_ON(!list_empty(&dev->ptype_specific));
7476 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7477 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7478 		WARN_ON(dev->dn_ptr);
7479 
7480 		if (dev->destructor)
7481 			dev->destructor(dev);
7482 
7483 		/* Report a network device has been unregistered */
7484 		rtnl_lock();
7485 		dev_net(dev)->dev_unreg_count--;
7486 		__rtnl_unlock();
7487 		wake_up(&netdev_unregistering_wq);
7488 
7489 		/* Free network device */
7490 		kobject_put(&dev->dev.kobj);
7491 	}
7492 }
7493 
7494 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7495  * all the same fields in the same order as net_device_stats, with only
7496  * the type differing, but rtnl_link_stats64 may have additional fields
7497  * at the end for newer counters.
7498  */
7499 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7500 			     const struct net_device_stats *netdev_stats)
7501 {
7502 #if BITS_PER_LONG == 64
7503 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7504 	memcpy(stats64, netdev_stats, sizeof(*stats64));
7505 	/* zero out counters that only exist in rtnl_link_stats64 */
7506 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7507 	       sizeof(*stats64) - sizeof(*netdev_stats));
7508 #else
7509 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7510 	const unsigned long *src = (const unsigned long *)netdev_stats;
7511 	u64 *dst = (u64 *)stats64;
7512 
7513 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7514 	for (i = 0; i < n; i++)
7515 		dst[i] = src[i];
7516 	/* zero out counters that only exist in rtnl_link_stats64 */
7517 	memset((char *)stats64 + n * sizeof(u64), 0,
7518 	       sizeof(*stats64) - n * sizeof(u64));
7519 #endif
7520 }
7521 EXPORT_SYMBOL(netdev_stats_to_stats64);
7522 
7523 /**
7524  *	dev_get_stats	- get network device statistics
7525  *	@dev: device to get statistics from
7526  *	@storage: place to store stats
7527  *
7528  *	Get network statistics from device. Return @storage.
7529  *	The device driver may provide its own method by setting
7530  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7531  *	otherwise the internal statistics structure is used.
7532  */
7533 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7534 					struct rtnl_link_stats64 *storage)
7535 {
7536 	const struct net_device_ops *ops = dev->netdev_ops;
7537 
7538 	if (ops->ndo_get_stats64) {
7539 		memset(storage, 0, sizeof(*storage));
7540 		ops->ndo_get_stats64(dev, storage);
7541 	} else if (ops->ndo_get_stats) {
7542 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7543 	} else {
7544 		netdev_stats_to_stats64(storage, &dev->stats);
7545 	}
7546 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7547 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7548 	storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7549 	return storage;
7550 }
7551 EXPORT_SYMBOL(dev_get_stats);
7552 
7553 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7554 {
7555 	struct netdev_queue *queue = dev_ingress_queue(dev);
7556 
7557 #ifdef CONFIG_NET_CLS_ACT
7558 	if (queue)
7559 		return queue;
7560 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7561 	if (!queue)
7562 		return NULL;
7563 	netdev_init_one_queue(dev, queue, NULL);
7564 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7565 	queue->qdisc_sleeping = &noop_qdisc;
7566 	rcu_assign_pointer(dev->ingress_queue, queue);
7567 #endif
7568 	return queue;
7569 }
7570 
7571 static const struct ethtool_ops default_ethtool_ops;
7572 
7573 void netdev_set_default_ethtool_ops(struct net_device *dev,
7574 				    const struct ethtool_ops *ops)
7575 {
7576 	if (dev->ethtool_ops == &default_ethtool_ops)
7577 		dev->ethtool_ops = ops;
7578 }
7579 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7580 
7581 void netdev_freemem(struct net_device *dev)
7582 {
7583 	char *addr = (char *)dev - dev->padded;
7584 
7585 	kvfree(addr);
7586 }
7587 
7588 /**
7589  *	alloc_netdev_mqs - allocate network device
7590  *	@sizeof_priv:		size of private data to allocate space for
7591  *	@name:			device name format string
7592  *	@name_assign_type: 	origin of device name
7593  *	@setup:			callback to initialize device
7594  *	@txqs:			the number of TX subqueues to allocate
7595  *	@rxqs:			the number of RX subqueues to allocate
7596  *
7597  *	Allocates a struct net_device with private data area for driver use
7598  *	and performs basic initialization.  Also allocates subqueue structs
7599  *	for each queue on the device.
7600  */
7601 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7602 		unsigned char name_assign_type,
7603 		void (*setup)(struct net_device *),
7604 		unsigned int txqs, unsigned int rxqs)
7605 {
7606 	struct net_device *dev;
7607 	size_t alloc_size;
7608 	struct net_device *p;
7609 
7610 	BUG_ON(strlen(name) >= sizeof(dev->name));
7611 
7612 	if (txqs < 1) {
7613 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7614 		return NULL;
7615 	}
7616 
7617 #ifdef CONFIG_SYSFS
7618 	if (rxqs < 1) {
7619 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7620 		return NULL;
7621 	}
7622 #endif
7623 
7624 	alloc_size = sizeof(struct net_device);
7625 	if (sizeof_priv) {
7626 		/* ensure 32-byte alignment of private area */
7627 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7628 		alloc_size += sizeof_priv;
7629 	}
7630 	/* ensure 32-byte alignment of whole construct */
7631 	alloc_size += NETDEV_ALIGN - 1;
7632 
7633 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7634 	if (!p)
7635 		p = vzalloc(alloc_size);
7636 	if (!p)
7637 		return NULL;
7638 
7639 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7640 	dev->padded = (char *)dev - (char *)p;
7641 
7642 	dev->pcpu_refcnt = alloc_percpu(int);
7643 	if (!dev->pcpu_refcnt)
7644 		goto free_dev;
7645 
7646 	if (dev_addr_init(dev))
7647 		goto free_pcpu;
7648 
7649 	dev_mc_init(dev);
7650 	dev_uc_init(dev);
7651 
7652 	dev_net_set(dev, &init_net);
7653 
7654 	dev->gso_max_size = GSO_MAX_SIZE;
7655 	dev->gso_max_segs = GSO_MAX_SEGS;
7656 
7657 	INIT_LIST_HEAD(&dev->napi_list);
7658 	INIT_LIST_HEAD(&dev->unreg_list);
7659 	INIT_LIST_HEAD(&dev->close_list);
7660 	INIT_LIST_HEAD(&dev->link_watch_list);
7661 	INIT_LIST_HEAD(&dev->adj_list.upper);
7662 	INIT_LIST_HEAD(&dev->adj_list.lower);
7663 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
7664 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
7665 	INIT_LIST_HEAD(&dev->ptype_all);
7666 	INIT_LIST_HEAD(&dev->ptype_specific);
7667 #ifdef CONFIG_NET_SCHED
7668 	hash_init(dev->qdisc_hash);
7669 #endif
7670 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7671 	setup(dev);
7672 
7673 	if (!dev->tx_queue_len) {
7674 		dev->priv_flags |= IFF_NO_QUEUE;
7675 		dev->tx_queue_len = 1;
7676 	}
7677 
7678 	dev->num_tx_queues = txqs;
7679 	dev->real_num_tx_queues = txqs;
7680 	if (netif_alloc_netdev_queues(dev))
7681 		goto free_all;
7682 
7683 #ifdef CONFIG_SYSFS
7684 	dev->num_rx_queues = rxqs;
7685 	dev->real_num_rx_queues = rxqs;
7686 	if (netif_alloc_rx_queues(dev))
7687 		goto free_all;
7688 #endif
7689 
7690 	strcpy(dev->name, name);
7691 	dev->name_assign_type = name_assign_type;
7692 	dev->group = INIT_NETDEV_GROUP;
7693 	if (!dev->ethtool_ops)
7694 		dev->ethtool_ops = &default_ethtool_ops;
7695 
7696 	nf_hook_ingress_init(dev);
7697 
7698 	return dev;
7699 
7700 free_all:
7701 	free_netdev(dev);
7702 	return NULL;
7703 
7704 free_pcpu:
7705 	free_percpu(dev->pcpu_refcnt);
7706 free_dev:
7707 	netdev_freemem(dev);
7708 	return NULL;
7709 }
7710 EXPORT_SYMBOL(alloc_netdev_mqs);
7711 
7712 /**
7713  *	free_netdev - free network device
7714  *	@dev: device
7715  *
7716  *	This function does the last stage of destroying an allocated device
7717  * 	interface. The reference to the device object is released.
7718  *	If this is the last reference then it will be freed.
7719  *	Must be called in process context.
7720  */
7721 void free_netdev(struct net_device *dev)
7722 {
7723 	struct napi_struct *p, *n;
7724 
7725 	might_sleep();
7726 	netif_free_tx_queues(dev);
7727 #ifdef CONFIG_SYSFS
7728 	kvfree(dev->_rx);
7729 #endif
7730 
7731 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7732 
7733 	/* Flush device addresses */
7734 	dev_addr_flush(dev);
7735 
7736 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7737 		netif_napi_del(p);
7738 
7739 	free_percpu(dev->pcpu_refcnt);
7740 	dev->pcpu_refcnt = NULL;
7741 
7742 	/*  Compatibility with error handling in drivers */
7743 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7744 		netdev_freemem(dev);
7745 		return;
7746 	}
7747 
7748 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7749 	dev->reg_state = NETREG_RELEASED;
7750 
7751 	/* will free via device release */
7752 	put_device(&dev->dev);
7753 }
7754 EXPORT_SYMBOL(free_netdev);
7755 
7756 /**
7757  *	synchronize_net -  Synchronize with packet receive processing
7758  *
7759  *	Wait for packets currently being received to be done.
7760  *	Does not block later packets from starting.
7761  */
7762 void synchronize_net(void)
7763 {
7764 	might_sleep();
7765 	if (rtnl_is_locked())
7766 		synchronize_rcu_expedited();
7767 	else
7768 		synchronize_rcu();
7769 }
7770 EXPORT_SYMBOL(synchronize_net);
7771 
7772 /**
7773  *	unregister_netdevice_queue - remove device from the kernel
7774  *	@dev: device
7775  *	@head: list
7776  *
7777  *	This function shuts down a device interface and removes it
7778  *	from the kernel tables.
7779  *	If head not NULL, device is queued to be unregistered later.
7780  *
7781  *	Callers must hold the rtnl semaphore.  You may want
7782  *	unregister_netdev() instead of this.
7783  */
7784 
7785 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7786 {
7787 	ASSERT_RTNL();
7788 
7789 	if (head) {
7790 		list_move_tail(&dev->unreg_list, head);
7791 	} else {
7792 		rollback_registered(dev);
7793 		/* Finish processing unregister after unlock */
7794 		net_set_todo(dev);
7795 	}
7796 }
7797 EXPORT_SYMBOL(unregister_netdevice_queue);
7798 
7799 /**
7800  *	unregister_netdevice_many - unregister many devices
7801  *	@head: list of devices
7802  *
7803  *  Note: As most callers use a stack allocated list_head,
7804  *  we force a list_del() to make sure stack wont be corrupted later.
7805  */
7806 void unregister_netdevice_many(struct list_head *head)
7807 {
7808 	struct net_device *dev;
7809 
7810 	if (!list_empty(head)) {
7811 		rollback_registered_many(head);
7812 		list_for_each_entry(dev, head, unreg_list)
7813 			net_set_todo(dev);
7814 		list_del(head);
7815 	}
7816 }
7817 EXPORT_SYMBOL(unregister_netdevice_many);
7818 
7819 /**
7820  *	unregister_netdev - remove device from the kernel
7821  *	@dev: device
7822  *
7823  *	This function shuts down a device interface and removes it
7824  *	from the kernel tables.
7825  *
7826  *	This is just a wrapper for unregister_netdevice that takes
7827  *	the rtnl semaphore.  In general you want to use this and not
7828  *	unregister_netdevice.
7829  */
7830 void unregister_netdev(struct net_device *dev)
7831 {
7832 	rtnl_lock();
7833 	unregister_netdevice(dev);
7834 	rtnl_unlock();
7835 }
7836 EXPORT_SYMBOL(unregister_netdev);
7837 
7838 /**
7839  *	dev_change_net_namespace - move device to different nethost namespace
7840  *	@dev: device
7841  *	@net: network namespace
7842  *	@pat: If not NULL name pattern to try if the current device name
7843  *	      is already taken in the destination network namespace.
7844  *
7845  *	This function shuts down a device interface and moves it
7846  *	to a new network namespace. On success 0 is returned, on
7847  *	a failure a netagive errno code is returned.
7848  *
7849  *	Callers must hold the rtnl semaphore.
7850  */
7851 
7852 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7853 {
7854 	int err;
7855 
7856 	ASSERT_RTNL();
7857 
7858 	/* Don't allow namespace local devices to be moved. */
7859 	err = -EINVAL;
7860 	if (dev->features & NETIF_F_NETNS_LOCAL)
7861 		goto out;
7862 
7863 	/* Ensure the device has been registrered */
7864 	if (dev->reg_state != NETREG_REGISTERED)
7865 		goto out;
7866 
7867 	/* Get out if there is nothing todo */
7868 	err = 0;
7869 	if (net_eq(dev_net(dev), net))
7870 		goto out;
7871 
7872 	/* Pick the destination device name, and ensure
7873 	 * we can use it in the destination network namespace.
7874 	 */
7875 	err = -EEXIST;
7876 	if (__dev_get_by_name(net, dev->name)) {
7877 		/* We get here if we can't use the current device name */
7878 		if (!pat)
7879 			goto out;
7880 		if (dev_get_valid_name(net, dev, pat) < 0)
7881 			goto out;
7882 	}
7883 
7884 	/*
7885 	 * And now a mini version of register_netdevice unregister_netdevice.
7886 	 */
7887 
7888 	/* If device is running close it first. */
7889 	dev_close(dev);
7890 
7891 	/* And unlink it from device chain */
7892 	err = -ENODEV;
7893 	unlist_netdevice(dev);
7894 
7895 	synchronize_net();
7896 
7897 	/* Shutdown queueing discipline. */
7898 	dev_shutdown(dev);
7899 
7900 	/* Notify protocols, that we are about to destroy
7901 	   this device. They should clean all the things.
7902 
7903 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7904 	   This is wanted because this way 8021q and macvlan know
7905 	   the device is just moving and can keep their slaves up.
7906 	*/
7907 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7908 	rcu_barrier();
7909 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7910 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7911 
7912 	/*
7913 	 *	Flush the unicast and multicast chains
7914 	 */
7915 	dev_uc_flush(dev);
7916 	dev_mc_flush(dev);
7917 
7918 	/* Send a netdev-removed uevent to the old namespace */
7919 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7920 	netdev_adjacent_del_links(dev);
7921 
7922 	/* Actually switch the network namespace */
7923 	dev_net_set(dev, net);
7924 
7925 	/* If there is an ifindex conflict assign a new one */
7926 	if (__dev_get_by_index(net, dev->ifindex))
7927 		dev->ifindex = dev_new_index(net);
7928 
7929 	/* Send a netdev-add uevent to the new namespace */
7930 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7931 	netdev_adjacent_add_links(dev);
7932 
7933 	/* Fixup kobjects */
7934 	err = device_rename(&dev->dev, dev->name);
7935 	WARN_ON(err);
7936 
7937 	/* Add the device back in the hashes */
7938 	list_netdevice(dev);
7939 
7940 	/* Notify protocols, that a new device appeared. */
7941 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7942 
7943 	/*
7944 	 *	Prevent userspace races by waiting until the network
7945 	 *	device is fully setup before sending notifications.
7946 	 */
7947 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7948 
7949 	synchronize_net();
7950 	err = 0;
7951 out:
7952 	return err;
7953 }
7954 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7955 
7956 static int dev_cpu_callback(struct notifier_block *nfb,
7957 			    unsigned long action,
7958 			    void *ocpu)
7959 {
7960 	struct sk_buff **list_skb;
7961 	struct sk_buff *skb;
7962 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7963 	struct softnet_data *sd, *oldsd;
7964 
7965 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7966 		return NOTIFY_OK;
7967 
7968 	local_irq_disable();
7969 	cpu = smp_processor_id();
7970 	sd = &per_cpu(softnet_data, cpu);
7971 	oldsd = &per_cpu(softnet_data, oldcpu);
7972 
7973 	/* Find end of our completion_queue. */
7974 	list_skb = &sd->completion_queue;
7975 	while (*list_skb)
7976 		list_skb = &(*list_skb)->next;
7977 	/* Append completion queue from offline CPU. */
7978 	*list_skb = oldsd->completion_queue;
7979 	oldsd->completion_queue = NULL;
7980 
7981 	/* Append output queue from offline CPU. */
7982 	if (oldsd->output_queue) {
7983 		*sd->output_queue_tailp = oldsd->output_queue;
7984 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7985 		oldsd->output_queue = NULL;
7986 		oldsd->output_queue_tailp = &oldsd->output_queue;
7987 	}
7988 	/* Append NAPI poll list from offline CPU, with one exception :
7989 	 * process_backlog() must be called by cpu owning percpu backlog.
7990 	 * We properly handle process_queue & input_pkt_queue later.
7991 	 */
7992 	while (!list_empty(&oldsd->poll_list)) {
7993 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7994 							    struct napi_struct,
7995 							    poll_list);
7996 
7997 		list_del_init(&napi->poll_list);
7998 		if (napi->poll == process_backlog)
7999 			napi->state = 0;
8000 		else
8001 			____napi_schedule(sd, napi);
8002 	}
8003 
8004 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8005 	local_irq_enable();
8006 
8007 	/* Process offline CPU's input_pkt_queue */
8008 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8009 		netif_rx_ni(skb);
8010 		input_queue_head_incr(oldsd);
8011 	}
8012 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8013 		netif_rx_ni(skb);
8014 		input_queue_head_incr(oldsd);
8015 	}
8016 
8017 	return NOTIFY_OK;
8018 }
8019 
8020 
8021 /**
8022  *	netdev_increment_features - increment feature set by one
8023  *	@all: current feature set
8024  *	@one: new feature set
8025  *	@mask: mask feature set
8026  *
8027  *	Computes a new feature set after adding a device with feature set
8028  *	@one to the master device with current feature set @all.  Will not
8029  *	enable anything that is off in @mask. Returns the new feature set.
8030  */
8031 netdev_features_t netdev_increment_features(netdev_features_t all,
8032 	netdev_features_t one, netdev_features_t mask)
8033 {
8034 	if (mask & NETIF_F_HW_CSUM)
8035 		mask |= NETIF_F_CSUM_MASK;
8036 	mask |= NETIF_F_VLAN_CHALLENGED;
8037 
8038 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8039 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8040 
8041 	/* If one device supports hw checksumming, set for all. */
8042 	if (all & NETIF_F_HW_CSUM)
8043 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8044 
8045 	return all;
8046 }
8047 EXPORT_SYMBOL(netdev_increment_features);
8048 
8049 static struct hlist_head * __net_init netdev_create_hash(void)
8050 {
8051 	int i;
8052 	struct hlist_head *hash;
8053 
8054 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8055 	if (hash != NULL)
8056 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8057 			INIT_HLIST_HEAD(&hash[i]);
8058 
8059 	return hash;
8060 }
8061 
8062 /* Initialize per network namespace state */
8063 static int __net_init netdev_init(struct net *net)
8064 {
8065 	if (net != &init_net)
8066 		INIT_LIST_HEAD(&net->dev_base_head);
8067 
8068 	net->dev_name_head = netdev_create_hash();
8069 	if (net->dev_name_head == NULL)
8070 		goto err_name;
8071 
8072 	net->dev_index_head = netdev_create_hash();
8073 	if (net->dev_index_head == NULL)
8074 		goto err_idx;
8075 
8076 	return 0;
8077 
8078 err_idx:
8079 	kfree(net->dev_name_head);
8080 err_name:
8081 	return -ENOMEM;
8082 }
8083 
8084 /**
8085  *	netdev_drivername - network driver for the device
8086  *	@dev: network device
8087  *
8088  *	Determine network driver for device.
8089  */
8090 const char *netdev_drivername(const struct net_device *dev)
8091 {
8092 	const struct device_driver *driver;
8093 	const struct device *parent;
8094 	const char *empty = "";
8095 
8096 	parent = dev->dev.parent;
8097 	if (!parent)
8098 		return empty;
8099 
8100 	driver = parent->driver;
8101 	if (driver && driver->name)
8102 		return driver->name;
8103 	return empty;
8104 }
8105 
8106 static void __netdev_printk(const char *level, const struct net_device *dev,
8107 			    struct va_format *vaf)
8108 {
8109 	if (dev && dev->dev.parent) {
8110 		dev_printk_emit(level[1] - '0',
8111 				dev->dev.parent,
8112 				"%s %s %s%s: %pV",
8113 				dev_driver_string(dev->dev.parent),
8114 				dev_name(dev->dev.parent),
8115 				netdev_name(dev), netdev_reg_state(dev),
8116 				vaf);
8117 	} else if (dev) {
8118 		printk("%s%s%s: %pV",
8119 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8120 	} else {
8121 		printk("%s(NULL net_device): %pV", level, vaf);
8122 	}
8123 }
8124 
8125 void netdev_printk(const char *level, const struct net_device *dev,
8126 		   const char *format, ...)
8127 {
8128 	struct va_format vaf;
8129 	va_list args;
8130 
8131 	va_start(args, format);
8132 
8133 	vaf.fmt = format;
8134 	vaf.va = &args;
8135 
8136 	__netdev_printk(level, dev, &vaf);
8137 
8138 	va_end(args);
8139 }
8140 EXPORT_SYMBOL(netdev_printk);
8141 
8142 #define define_netdev_printk_level(func, level)			\
8143 void func(const struct net_device *dev, const char *fmt, ...)	\
8144 {								\
8145 	struct va_format vaf;					\
8146 	va_list args;						\
8147 								\
8148 	va_start(args, fmt);					\
8149 								\
8150 	vaf.fmt = fmt;						\
8151 	vaf.va = &args;						\
8152 								\
8153 	__netdev_printk(level, dev, &vaf);			\
8154 								\
8155 	va_end(args);						\
8156 }								\
8157 EXPORT_SYMBOL(func);
8158 
8159 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8160 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8161 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8162 define_netdev_printk_level(netdev_err, KERN_ERR);
8163 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8164 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8165 define_netdev_printk_level(netdev_info, KERN_INFO);
8166 
8167 static void __net_exit netdev_exit(struct net *net)
8168 {
8169 	kfree(net->dev_name_head);
8170 	kfree(net->dev_index_head);
8171 }
8172 
8173 static struct pernet_operations __net_initdata netdev_net_ops = {
8174 	.init = netdev_init,
8175 	.exit = netdev_exit,
8176 };
8177 
8178 static void __net_exit default_device_exit(struct net *net)
8179 {
8180 	struct net_device *dev, *aux;
8181 	/*
8182 	 * Push all migratable network devices back to the
8183 	 * initial network namespace
8184 	 */
8185 	rtnl_lock();
8186 	for_each_netdev_safe(net, dev, aux) {
8187 		int err;
8188 		char fb_name[IFNAMSIZ];
8189 
8190 		/* Ignore unmoveable devices (i.e. loopback) */
8191 		if (dev->features & NETIF_F_NETNS_LOCAL)
8192 			continue;
8193 
8194 		/* Leave virtual devices for the generic cleanup */
8195 		if (dev->rtnl_link_ops)
8196 			continue;
8197 
8198 		/* Push remaining network devices to init_net */
8199 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8200 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8201 		if (err) {
8202 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8203 				 __func__, dev->name, err);
8204 			BUG();
8205 		}
8206 	}
8207 	rtnl_unlock();
8208 }
8209 
8210 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8211 {
8212 	/* Return with the rtnl_lock held when there are no network
8213 	 * devices unregistering in any network namespace in net_list.
8214 	 */
8215 	struct net *net;
8216 	bool unregistering;
8217 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8218 
8219 	add_wait_queue(&netdev_unregistering_wq, &wait);
8220 	for (;;) {
8221 		unregistering = false;
8222 		rtnl_lock();
8223 		list_for_each_entry(net, net_list, exit_list) {
8224 			if (net->dev_unreg_count > 0) {
8225 				unregistering = true;
8226 				break;
8227 			}
8228 		}
8229 		if (!unregistering)
8230 			break;
8231 		__rtnl_unlock();
8232 
8233 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8234 	}
8235 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8236 }
8237 
8238 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8239 {
8240 	/* At exit all network devices most be removed from a network
8241 	 * namespace.  Do this in the reverse order of registration.
8242 	 * Do this across as many network namespaces as possible to
8243 	 * improve batching efficiency.
8244 	 */
8245 	struct net_device *dev;
8246 	struct net *net;
8247 	LIST_HEAD(dev_kill_list);
8248 
8249 	/* To prevent network device cleanup code from dereferencing
8250 	 * loopback devices or network devices that have been freed
8251 	 * wait here for all pending unregistrations to complete,
8252 	 * before unregistring the loopback device and allowing the
8253 	 * network namespace be freed.
8254 	 *
8255 	 * The netdev todo list containing all network devices
8256 	 * unregistrations that happen in default_device_exit_batch
8257 	 * will run in the rtnl_unlock() at the end of
8258 	 * default_device_exit_batch.
8259 	 */
8260 	rtnl_lock_unregistering(net_list);
8261 	list_for_each_entry(net, net_list, exit_list) {
8262 		for_each_netdev_reverse(net, dev) {
8263 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8264 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8265 			else
8266 				unregister_netdevice_queue(dev, &dev_kill_list);
8267 		}
8268 	}
8269 	unregister_netdevice_many(&dev_kill_list);
8270 	rtnl_unlock();
8271 }
8272 
8273 static struct pernet_operations __net_initdata default_device_ops = {
8274 	.exit = default_device_exit,
8275 	.exit_batch = default_device_exit_batch,
8276 };
8277 
8278 /*
8279  *	Initialize the DEV module. At boot time this walks the device list and
8280  *	unhooks any devices that fail to initialise (normally hardware not
8281  *	present) and leaves us with a valid list of present and active devices.
8282  *
8283  */
8284 
8285 /*
8286  *       This is called single threaded during boot, so no need
8287  *       to take the rtnl semaphore.
8288  */
8289 static int __init net_dev_init(void)
8290 {
8291 	int i, rc = -ENOMEM;
8292 
8293 	BUG_ON(!dev_boot_phase);
8294 
8295 	if (dev_proc_init())
8296 		goto out;
8297 
8298 	if (netdev_kobject_init())
8299 		goto out;
8300 
8301 	INIT_LIST_HEAD(&ptype_all);
8302 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8303 		INIT_LIST_HEAD(&ptype_base[i]);
8304 
8305 	INIT_LIST_HEAD(&offload_base);
8306 
8307 	if (register_pernet_subsys(&netdev_net_ops))
8308 		goto out;
8309 
8310 	/*
8311 	 *	Initialise the packet receive queues.
8312 	 */
8313 
8314 	for_each_possible_cpu(i) {
8315 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8316 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8317 
8318 		INIT_WORK(flush, flush_backlog);
8319 
8320 		skb_queue_head_init(&sd->input_pkt_queue);
8321 		skb_queue_head_init(&sd->process_queue);
8322 		INIT_LIST_HEAD(&sd->poll_list);
8323 		sd->output_queue_tailp = &sd->output_queue;
8324 #ifdef CONFIG_RPS
8325 		sd->csd.func = rps_trigger_softirq;
8326 		sd->csd.info = sd;
8327 		sd->cpu = i;
8328 #endif
8329 
8330 		sd->backlog.poll = process_backlog;
8331 		sd->backlog.weight = weight_p;
8332 	}
8333 
8334 	dev_boot_phase = 0;
8335 
8336 	/* The loopback device is special if any other network devices
8337 	 * is present in a network namespace the loopback device must
8338 	 * be present. Since we now dynamically allocate and free the
8339 	 * loopback device ensure this invariant is maintained by
8340 	 * keeping the loopback device as the first device on the
8341 	 * list of network devices.  Ensuring the loopback devices
8342 	 * is the first device that appears and the last network device
8343 	 * that disappears.
8344 	 */
8345 	if (register_pernet_device(&loopback_net_ops))
8346 		goto out;
8347 
8348 	if (register_pernet_device(&default_device_ops))
8349 		goto out;
8350 
8351 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8352 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8353 
8354 	hotcpu_notifier(dev_cpu_callback, 0);
8355 	dst_subsys_init();
8356 	rc = 0;
8357 out:
8358 	return rc;
8359 }
8360 
8361 subsys_initcall(net_dev_init);
8362