xref: /openbmc/linux/net/core/dev.c (revision f39650de)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151 
152 #include "net-sysfs.h"
153 
154 #define MAX_GRO_SKBS 8
155 
156 /* This should be increased if a protocol with a bigger head is added. */
157 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158 
159 static DEFINE_SPINLOCK(ptype_lock);
160 static DEFINE_SPINLOCK(offload_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;	/* Taps */
163 static struct list_head offload_base __read_mostly;
164 
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_info(unsigned long val,
167 					 struct netdev_notifier_info *info);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169 					   struct net_device *dev,
170 					   struct netlink_ext_ack *extack);
171 static struct napi_struct *napi_by_id(unsigned int napi_id);
172 
173 /*
174  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175  * semaphore.
176  *
177  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178  *
179  * Writers must hold the rtnl semaphore while they loop through the
180  * dev_base_head list, and hold dev_base_lock for writing when they do the
181  * actual updates.  This allows pure readers to access the list even
182  * while a writer is preparing to update it.
183  *
184  * To put it another way, dev_base_lock is held for writing only to
185  * protect against pure readers; the rtnl semaphore provides the
186  * protection against other writers.
187  *
188  * See, for example usages, register_netdevice() and
189  * unregister_netdevice(), which must be called with the rtnl
190  * semaphore held.
191  */
192 DEFINE_RWLOCK(dev_base_lock);
193 EXPORT_SYMBOL(dev_base_lock);
194 
195 static DEFINE_MUTEX(ifalias_mutex);
196 
197 /* protects napi_hash addition/deletion and napi_gen_id */
198 static DEFINE_SPINLOCK(napi_hash_lock);
199 
200 static unsigned int napi_gen_id = NR_CPUS;
201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202 
203 static DECLARE_RWSEM(devnet_rename_sem);
204 
205 static inline void dev_base_seq_inc(struct net *net)
206 {
207 	while (++net->dev_base_seq == 0)
208 		;
209 }
210 
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212 {
213 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214 
215 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 }
217 
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 }
222 
223 static inline void rps_lock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226 	spin_lock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229 
230 static inline void rps_unlock(struct softnet_data *sd)
231 {
232 #ifdef CONFIG_RPS
233 	spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
235 }
236 
237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238 						       const char *name)
239 {
240 	struct netdev_name_node *name_node;
241 
242 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243 	if (!name_node)
244 		return NULL;
245 	INIT_HLIST_NODE(&name_node->hlist);
246 	name_node->dev = dev;
247 	name_node->name = name;
248 	return name_node;
249 }
250 
251 static struct netdev_name_node *
252 netdev_name_node_head_alloc(struct net_device *dev)
253 {
254 	struct netdev_name_node *name_node;
255 
256 	name_node = netdev_name_node_alloc(dev, dev->name);
257 	if (!name_node)
258 		return NULL;
259 	INIT_LIST_HEAD(&name_node->list);
260 	return name_node;
261 }
262 
263 static void netdev_name_node_free(struct netdev_name_node *name_node)
264 {
265 	kfree(name_node);
266 }
267 
268 static void netdev_name_node_add(struct net *net,
269 				 struct netdev_name_node *name_node)
270 {
271 	hlist_add_head_rcu(&name_node->hlist,
272 			   dev_name_hash(net, name_node->name));
273 }
274 
275 static void netdev_name_node_del(struct netdev_name_node *name_node)
276 {
277 	hlist_del_rcu(&name_node->hlist);
278 }
279 
280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281 							const char *name)
282 {
283 	struct hlist_head *head = dev_name_hash(net, name);
284 	struct netdev_name_node *name_node;
285 
286 	hlist_for_each_entry(name_node, head, hlist)
287 		if (!strcmp(name_node->name, name))
288 			return name_node;
289 	return NULL;
290 }
291 
292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293 							    const char *name)
294 {
295 	struct hlist_head *head = dev_name_hash(net, name);
296 	struct netdev_name_node *name_node;
297 
298 	hlist_for_each_entry_rcu(name_node, head, hlist)
299 		if (!strcmp(name_node->name, name))
300 			return name_node;
301 	return NULL;
302 }
303 
304 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305 {
306 	struct netdev_name_node *name_node;
307 	struct net *net = dev_net(dev);
308 
309 	name_node = netdev_name_node_lookup(net, name);
310 	if (name_node)
311 		return -EEXIST;
312 	name_node = netdev_name_node_alloc(dev, name);
313 	if (!name_node)
314 		return -ENOMEM;
315 	netdev_name_node_add(net, name_node);
316 	/* The node that holds dev->name acts as a head of per-device list. */
317 	list_add_tail(&name_node->list, &dev->name_node->list);
318 
319 	return 0;
320 }
321 EXPORT_SYMBOL(netdev_name_node_alt_create);
322 
323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324 {
325 	list_del(&name_node->list);
326 	netdev_name_node_del(name_node);
327 	kfree(name_node->name);
328 	netdev_name_node_free(name_node);
329 }
330 
331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332 {
333 	struct netdev_name_node *name_node;
334 	struct net *net = dev_net(dev);
335 
336 	name_node = netdev_name_node_lookup(net, name);
337 	if (!name_node)
338 		return -ENOENT;
339 	/* lookup might have found our primary name or a name belonging
340 	 * to another device.
341 	 */
342 	if (name_node == dev->name_node || name_node->dev != dev)
343 		return -EINVAL;
344 
345 	__netdev_name_node_alt_destroy(name_node);
346 
347 	return 0;
348 }
349 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350 
351 static void netdev_name_node_alt_flush(struct net_device *dev)
352 {
353 	struct netdev_name_node *name_node, *tmp;
354 
355 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356 		__netdev_name_node_alt_destroy(name_node);
357 }
358 
359 /* Device list insertion */
360 static void list_netdevice(struct net_device *dev)
361 {
362 	struct net *net = dev_net(dev);
363 
364 	ASSERT_RTNL();
365 
366 	write_lock_bh(&dev_base_lock);
367 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368 	netdev_name_node_add(net, dev->name_node);
369 	hlist_add_head_rcu(&dev->index_hlist,
370 			   dev_index_hash(net, dev->ifindex));
371 	write_unlock_bh(&dev_base_lock);
372 
373 	dev_base_seq_inc(net);
374 }
375 
376 /* Device list removal
377  * caller must respect a RCU grace period before freeing/reusing dev
378  */
379 static void unlist_netdevice(struct net_device *dev)
380 {
381 	ASSERT_RTNL();
382 
383 	/* Unlink dev from the device chain */
384 	write_lock_bh(&dev_base_lock);
385 	list_del_rcu(&dev->dev_list);
386 	netdev_name_node_del(dev->name_node);
387 	hlist_del_rcu(&dev->index_hlist);
388 	write_unlock_bh(&dev_base_lock);
389 
390 	dev_base_seq_inc(dev_net(dev));
391 }
392 
393 /*
394  *	Our notifier list
395  */
396 
397 static RAW_NOTIFIER_HEAD(netdev_chain);
398 
399 /*
400  *	Device drivers call our routines to queue packets here. We empty the
401  *	queue in the local softnet handler.
402  */
403 
404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405 EXPORT_PER_CPU_SYMBOL(softnet_data);
406 
407 #ifdef CONFIG_LOCKDEP
408 /*
409  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410  * according to dev->type
411  */
412 static const unsigned short netdev_lock_type[] = {
413 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428 
429 static const char *const netdev_lock_name[] = {
430 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445 
446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448 
449 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450 {
451 	int i;
452 
453 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454 		if (netdev_lock_type[i] == dev_type)
455 			return i;
456 	/* the last key is used by default */
457 	return ARRAY_SIZE(netdev_lock_type) - 1;
458 }
459 
460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461 						 unsigned short dev_type)
462 {
463 	int i;
464 
465 	i = netdev_lock_pos(dev_type);
466 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467 				   netdev_lock_name[i]);
468 }
469 
470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471 {
472 	int i;
473 
474 	i = netdev_lock_pos(dev->type);
475 	lockdep_set_class_and_name(&dev->addr_list_lock,
476 				   &netdev_addr_lock_key[i],
477 				   netdev_lock_name[i]);
478 }
479 #else
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 						 unsigned short dev_type)
482 {
483 }
484 
485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486 {
487 }
488 #endif
489 
490 /*******************************************************************************
491  *
492  *		Protocol management and registration routines
493  *
494  *******************************************************************************/
495 
496 
497 /*
498  *	Add a protocol ID to the list. Now that the input handler is
499  *	smarter we can dispense with all the messy stuff that used to be
500  *	here.
501  *
502  *	BEWARE!!! Protocol handlers, mangling input packets,
503  *	MUST BE last in hash buckets and checking protocol handlers
504  *	MUST start from promiscuous ptype_all chain in net_bh.
505  *	It is true now, do not change it.
506  *	Explanation follows: if protocol handler, mangling packet, will
507  *	be the first on list, it is not able to sense, that packet
508  *	is cloned and should be copied-on-write, so that it will
509  *	change it and subsequent readers will get broken packet.
510  *							--ANK (980803)
511  */
512 
513 static inline struct list_head *ptype_head(const struct packet_type *pt)
514 {
515 	if (pt->type == htons(ETH_P_ALL))
516 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517 	else
518 		return pt->dev ? &pt->dev->ptype_specific :
519 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520 }
521 
522 /**
523  *	dev_add_pack - add packet handler
524  *	@pt: packet type declaration
525  *
526  *	Add a protocol handler to the networking stack. The passed &packet_type
527  *	is linked into kernel lists and may not be freed until it has been
528  *	removed from the kernel lists.
529  *
530  *	This call does not sleep therefore it can not
531  *	guarantee all CPU's that are in middle of receiving packets
532  *	will see the new packet type (until the next received packet).
533  */
534 
535 void dev_add_pack(struct packet_type *pt)
536 {
537 	struct list_head *head = ptype_head(pt);
538 
539 	spin_lock(&ptype_lock);
540 	list_add_rcu(&pt->list, head);
541 	spin_unlock(&ptype_lock);
542 }
543 EXPORT_SYMBOL(dev_add_pack);
544 
545 /**
546  *	__dev_remove_pack	 - remove packet handler
547  *	@pt: packet type declaration
548  *
549  *	Remove a protocol handler that was previously added to the kernel
550  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
551  *	from the kernel lists and can be freed or reused once this function
552  *	returns.
553  *
554  *      The packet type might still be in use by receivers
555  *	and must not be freed until after all the CPU's have gone
556  *	through a quiescent state.
557  */
558 void __dev_remove_pack(struct packet_type *pt)
559 {
560 	struct list_head *head = ptype_head(pt);
561 	struct packet_type *pt1;
562 
563 	spin_lock(&ptype_lock);
564 
565 	list_for_each_entry(pt1, head, list) {
566 		if (pt == pt1) {
567 			list_del_rcu(&pt->list);
568 			goto out;
569 		}
570 	}
571 
572 	pr_warn("dev_remove_pack: %p not found\n", pt);
573 out:
574 	spin_unlock(&ptype_lock);
575 }
576 EXPORT_SYMBOL(__dev_remove_pack);
577 
578 /**
579  *	dev_remove_pack	 - remove packet handler
580  *	@pt: packet type declaration
581  *
582  *	Remove a protocol handler that was previously added to the kernel
583  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
584  *	from the kernel lists and can be freed or reused once this function
585  *	returns.
586  *
587  *	This call sleeps to guarantee that no CPU is looking at the packet
588  *	type after return.
589  */
590 void dev_remove_pack(struct packet_type *pt)
591 {
592 	__dev_remove_pack(pt);
593 
594 	synchronize_net();
595 }
596 EXPORT_SYMBOL(dev_remove_pack);
597 
598 
599 /**
600  *	dev_add_offload - register offload handlers
601  *	@po: protocol offload declaration
602  *
603  *	Add protocol offload handlers to the networking stack. The passed
604  *	&proto_offload is linked into kernel lists and may not be freed until
605  *	it has been removed from the kernel lists.
606  *
607  *	This call does not sleep therefore it can not
608  *	guarantee all CPU's that are in middle of receiving packets
609  *	will see the new offload handlers (until the next received packet).
610  */
611 void dev_add_offload(struct packet_offload *po)
612 {
613 	struct packet_offload *elem;
614 
615 	spin_lock(&offload_lock);
616 	list_for_each_entry(elem, &offload_base, list) {
617 		if (po->priority < elem->priority)
618 			break;
619 	}
620 	list_add_rcu(&po->list, elem->list.prev);
621 	spin_unlock(&offload_lock);
622 }
623 EXPORT_SYMBOL(dev_add_offload);
624 
625 /**
626  *	__dev_remove_offload	 - remove offload handler
627  *	@po: packet offload declaration
628  *
629  *	Remove a protocol offload handler that was previously added to the
630  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
631  *	is removed from the kernel lists and can be freed or reused once this
632  *	function returns.
633  *
634  *      The packet type might still be in use by receivers
635  *	and must not be freed until after all the CPU's have gone
636  *	through a quiescent state.
637  */
638 static void __dev_remove_offload(struct packet_offload *po)
639 {
640 	struct list_head *head = &offload_base;
641 	struct packet_offload *po1;
642 
643 	spin_lock(&offload_lock);
644 
645 	list_for_each_entry(po1, head, list) {
646 		if (po == po1) {
647 			list_del_rcu(&po->list);
648 			goto out;
649 		}
650 	}
651 
652 	pr_warn("dev_remove_offload: %p not found\n", po);
653 out:
654 	spin_unlock(&offload_lock);
655 }
656 
657 /**
658  *	dev_remove_offload	 - remove packet offload handler
659  *	@po: packet offload declaration
660  *
661  *	Remove a packet offload handler that was previously added to the kernel
662  *	offload handlers by dev_add_offload(). The passed &offload_type is
663  *	removed from the kernel lists and can be freed or reused once this
664  *	function returns.
665  *
666  *	This call sleeps to guarantee that no CPU is looking at the packet
667  *	type after return.
668  */
669 void dev_remove_offload(struct packet_offload *po)
670 {
671 	__dev_remove_offload(po);
672 
673 	synchronize_net();
674 }
675 EXPORT_SYMBOL(dev_remove_offload);
676 
677 /******************************************************************************
678  *
679  *		      Device Boot-time Settings Routines
680  *
681  ******************************************************************************/
682 
683 /* Boot time configuration table */
684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685 
686 /**
687  *	netdev_boot_setup_add	- add new setup entry
688  *	@name: name of the device
689  *	@map: configured settings for the device
690  *
691  *	Adds new setup entry to the dev_boot_setup list.  The function
692  *	returns 0 on error and 1 on success.  This is a generic routine to
693  *	all netdevices.
694  */
695 static int netdev_boot_setup_add(char *name, struct ifmap *map)
696 {
697 	struct netdev_boot_setup *s;
698 	int i;
699 
700 	s = dev_boot_setup;
701 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703 			memset(s[i].name, 0, sizeof(s[i].name));
704 			strlcpy(s[i].name, name, IFNAMSIZ);
705 			memcpy(&s[i].map, map, sizeof(s[i].map));
706 			break;
707 		}
708 	}
709 
710 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711 }
712 
713 /**
714  * netdev_boot_setup_check	- check boot time settings
715  * @dev: the netdevice
716  *
717  * Check boot time settings for the device.
718  * The found settings are set for the device to be used
719  * later in the device probing.
720  * Returns 0 if no settings found, 1 if they are.
721  */
722 int netdev_boot_setup_check(struct net_device *dev)
723 {
724 	struct netdev_boot_setup *s = dev_boot_setup;
725 	int i;
726 
727 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729 		    !strcmp(dev->name, s[i].name)) {
730 			dev->irq = s[i].map.irq;
731 			dev->base_addr = s[i].map.base_addr;
732 			dev->mem_start = s[i].map.mem_start;
733 			dev->mem_end = s[i].map.mem_end;
734 			return 1;
735 		}
736 	}
737 	return 0;
738 }
739 EXPORT_SYMBOL(netdev_boot_setup_check);
740 
741 
742 /**
743  * netdev_boot_base	- get address from boot time settings
744  * @prefix: prefix for network device
745  * @unit: id for network device
746  *
747  * Check boot time settings for the base address of device.
748  * The found settings are set for the device to be used
749  * later in the device probing.
750  * Returns 0 if no settings found.
751  */
752 unsigned long netdev_boot_base(const char *prefix, int unit)
753 {
754 	const struct netdev_boot_setup *s = dev_boot_setup;
755 	char name[IFNAMSIZ];
756 	int i;
757 
758 	sprintf(name, "%s%d", prefix, unit);
759 
760 	/*
761 	 * If device already registered then return base of 1
762 	 * to indicate not to probe for this interface
763 	 */
764 	if (__dev_get_by_name(&init_net, name))
765 		return 1;
766 
767 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768 		if (!strcmp(name, s[i].name))
769 			return s[i].map.base_addr;
770 	return 0;
771 }
772 
773 /*
774  * Saves at boot time configured settings for any netdevice.
775  */
776 int __init netdev_boot_setup(char *str)
777 {
778 	int ints[5];
779 	struct ifmap map;
780 
781 	str = get_options(str, ARRAY_SIZE(ints), ints);
782 	if (!str || !*str)
783 		return 0;
784 
785 	/* Save settings */
786 	memset(&map, 0, sizeof(map));
787 	if (ints[0] > 0)
788 		map.irq = ints[1];
789 	if (ints[0] > 1)
790 		map.base_addr = ints[2];
791 	if (ints[0] > 2)
792 		map.mem_start = ints[3];
793 	if (ints[0] > 3)
794 		map.mem_end = ints[4];
795 
796 	/* Add new entry to the list */
797 	return netdev_boot_setup_add(str, &map);
798 }
799 
800 __setup("netdev=", netdev_boot_setup);
801 
802 /*******************************************************************************
803  *
804  *			    Device Interface Subroutines
805  *
806  *******************************************************************************/
807 
808 /**
809  *	dev_get_iflink	- get 'iflink' value of a interface
810  *	@dev: targeted interface
811  *
812  *	Indicates the ifindex the interface is linked to.
813  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
814  */
815 
816 int dev_get_iflink(const struct net_device *dev)
817 {
818 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819 		return dev->netdev_ops->ndo_get_iflink(dev);
820 
821 	return dev->ifindex;
822 }
823 EXPORT_SYMBOL(dev_get_iflink);
824 
825 /**
826  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
827  *	@dev: targeted interface
828  *	@skb: The packet.
829  *
830  *	For better visibility of tunnel traffic OVS needs to retrieve
831  *	egress tunnel information for a packet. Following API allows
832  *	user to get this info.
833  */
834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835 {
836 	struct ip_tunnel_info *info;
837 
838 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
839 		return -EINVAL;
840 
841 	info = skb_tunnel_info_unclone(skb);
842 	if (!info)
843 		return -ENOMEM;
844 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845 		return -EINVAL;
846 
847 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848 }
849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850 
851 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
852 {
853 	int k = stack->num_paths++;
854 
855 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
856 		return NULL;
857 
858 	return &stack->path[k];
859 }
860 
861 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
862 			  struct net_device_path_stack *stack)
863 {
864 	const struct net_device *last_dev;
865 	struct net_device_path_ctx ctx = {
866 		.dev	= dev,
867 		.daddr	= daddr,
868 	};
869 	struct net_device_path *path;
870 	int ret = 0;
871 
872 	stack->num_paths = 0;
873 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
874 		last_dev = ctx.dev;
875 		path = dev_fwd_path(stack);
876 		if (!path)
877 			return -1;
878 
879 		memset(path, 0, sizeof(struct net_device_path));
880 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
881 		if (ret < 0)
882 			return -1;
883 
884 		if (WARN_ON_ONCE(last_dev == ctx.dev))
885 			return -1;
886 	}
887 	path = dev_fwd_path(stack);
888 	if (!path)
889 		return -1;
890 	path->type = DEV_PATH_ETHERNET;
891 	path->dev = ctx.dev;
892 
893 	return ret;
894 }
895 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
896 
897 /**
898  *	__dev_get_by_name	- find a device by its name
899  *	@net: the applicable net namespace
900  *	@name: name to find
901  *
902  *	Find an interface by name. Must be called under RTNL semaphore
903  *	or @dev_base_lock. If the name is found a pointer to the device
904  *	is returned. If the name is not found then %NULL is returned. The
905  *	reference counters are not incremented so the caller must be
906  *	careful with locks.
907  */
908 
909 struct net_device *__dev_get_by_name(struct net *net, const char *name)
910 {
911 	struct netdev_name_node *node_name;
912 
913 	node_name = netdev_name_node_lookup(net, name);
914 	return node_name ? node_name->dev : NULL;
915 }
916 EXPORT_SYMBOL(__dev_get_by_name);
917 
918 /**
919  * dev_get_by_name_rcu	- find a device by its name
920  * @net: the applicable net namespace
921  * @name: name to find
922  *
923  * Find an interface by name.
924  * If the name is found a pointer to the device is returned.
925  * If the name is not found then %NULL is returned.
926  * The reference counters are not incremented so the caller must be
927  * careful with locks. The caller must hold RCU lock.
928  */
929 
930 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
931 {
932 	struct netdev_name_node *node_name;
933 
934 	node_name = netdev_name_node_lookup_rcu(net, name);
935 	return node_name ? node_name->dev : NULL;
936 }
937 EXPORT_SYMBOL(dev_get_by_name_rcu);
938 
939 /**
940  *	dev_get_by_name		- find a device by its name
941  *	@net: the applicable net namespace
942  *	@name: name to find
943  *
944  *	Find an interface by name. This can be called from any
945  *	context and does its own locking. The returned handle has
946  *	the usage count incremented and the caller must use dev_put() to
947  *	release it when it is no longer needed. %NULL is returned if no
948  *	matching device is found.
949  */
950 
951 struct net_device *dev_get_by_name(struct net *net, const char *name)
952 {
953 	struct net_device *dev;
954 
955 	rcu_read_lock();
956 	dev = dev_get_by_name_rcu(net, name);
957 	if (dev)
958 		dev_hold(dev);
959 	rcu_read_unlock();
960 	return dev;
961 }
962 EXPORT_SYMBOL(dev_get_by_name);
963 
964 /**
965  *	__dev_get_by_index - find a device by its ifindex
966  *	@net: the applicable net namespace
967  *	@ifindex: index of device
968  *
969  *	Search for an interface by index. Returns %NULL if the device
970  *	is not found or a pointer to the device. The device has not
971  *	had its reference counter increased so the caller must be careful
972  *	about locking. The caller must hold either the RTNL semaphore
973  *	or @dev_base_lock.
974  */
975 
976 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
977 {
978 	struct net_device *dev;
979 	struct hlist_head *head = dev_index_hash(net, ifindex);
980 
981 	hlist_for_each_entry(dev, head, index_hlist)
982 		if (dev->ifindex == ifindex)
983 			return dev;
984 
985 	return NULL;
986 }
987 EXPORT_SYMBOL(__dev_get_by_index);
988 
989 /**
990  *	dev_get_by_index_rcu - find a device by its ifindex
991  *	@net: the applicable net namespace
992  *	@ifindex: index of device
993  *
994  *	Search for an interface by index. Returns %NULL if the device
995  *	is not found or a pointer to the device. The device has not
996  *	had its reference counter increased so the caller must be careful
997  *	about locking. The caller must hold RCU lock.
998  */
999 
1000 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1001 {
1002 	struct net_device *dev;
1003 	struct hlist_head *head = dev_index_hash(net, ifindex);
1004 
1005 	hlist_for_each_entry_rcu(dev, head, index_hlist)
1006 		if (dev->ifindex == ifindex)
1007 			return dev;
1008 
1009 	return NULL;
1010 }
1011 EXPORT_SYMBOL(dev_get_by_index_rcu);
1012 
1013 
1014 /**
1015  *	dev_get_by_index - find a device by its ifindex
1016  *	@net: the applicable net namespace
1017  *	@ifindex: index of device
1018  *
1019  *	Search for an interface by index. Returns NULL if the device
1020  *	is not found or a pointer to the device. The device returned has
1021  *	had a reference added and the pointer is safe until the user calls
1022  *	dev_put to indicate they have finished with it.
1023  */
1024 
1025 struct net_device *dev_get_by_index(struct net *net, int ifindex)
1026 {
1027 	struct net_device *dev;
1028 
1029 	rcu_read_lock();
1030 	dev = dev_get_by_index_rcu(net, ifindex);
1031 	if (dev)
1032 		dev_hold(dev);
1033 	rcu_read_unlock();
1034 	return dev;
1035 }
1036 EXPORT_SYMBOL(dev_get_by_index);
1037 
1038 /**
1039  *	dev_get_by_napi_id - find a device by napi_id
1040  *	@napi_id: ID of the NAPI struct
1041  *
1042  *	Search for an interface by NAPI ID. Returns %NULL if the device
1043  *	is not found or a pointer to the device. The device has not had
1044  *	its reference counter increased so the caller must be careful
1045  *	about locking. The caller must hold RCU lock.
1046  */
1047 
1048 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1049 {
1050 	struct napi_struct *napi;
1051 
1052 	WARN_ON_ONCE(!rcu_read_lock_held());
1053 
1054 	if (napi_id < MIN_NAPI_ID)
1055 		return NULL;
1056 
1057 	napi = napi_by_id(napi_id);
1058 
1059 	return napi ? napi->dev : NULL;
1060 }
1061 EXPORT_SYMBOL(dev_get_by_napi_id);
1062 
1063 /**
1064  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1065  *	@net: network namespace
1066  *	@name: a pointer to the buffer where the name will be stored.
1067  *	@ifindex: the ifindex of the interface to get the name from.
1068  */
1069 int netdev_get_name(struct net *net, char *name, int ifindex)
1070 {
1071 	struct net_device *dev;
1072 	int ret;
1073 
1074 	down_read(&devnet_rename_sem);
1075 	rcu_read_lock();
1076 
1077 	dev = dev_get_by_index_rcu(net, ifindex);
1078 	if (!dev) {
1079 		ret = -ENODEV;
1080 		goto out;
1081 	}
1082 
1083 	strcpy(name, dev->name);
1084 
1085 	ret = 0;
1086 out:
1087 	rcu_read_unlock();
1088 	up_read(&devnet_rename_sem);
1089 	return ret;
1090 }
1091 
1092 /**
1093  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1094  *	@net: the applicable net namespace
1095  *	@type: media type of device
1096  *	@ha: hardware address
1097  *
1098  *	Search for an interface by MAC address. Returns NULL if the device
1099  *	is not found or a pointer to the device.
1100  *	The caller must hold RCU or RTNL.
1101  *	The returned device has not had its ref count increased
1102  *	and the caller must therefore be careful about locking
1103  *
1104  */
1105 
1106 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1107 				       const char *ha)
1108 {
1109 	struct net_device *dev;
1110 
1111 	for_each_netdev_rcu(net, dev)
1112 		if (dev->type == type &&
1113 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1114 			return dev;
1115 
1116 	return NULL;
1117 }
1118 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1119 
1120 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1121 {
1122 	struct net_device *dev, *ret = NULL;
1123 
1124 	rcu_read_lock();
1125 	for_each_netdev_rcu(net, dev)
1126 		if (dev->type == type) {
1127 			dev_hold(dev);
1128 			ret = dev;
1129 			break;
1130 		}
1131 	rcu_read_unlock();
1132 	return ret;
1133 }
1134 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1135 
1136 /**
1137  *	__dev_get_by_flags - find any device with given flags
1138  *	@net: the applicable net namespace
1139  *	@if_flags: IFF_* values
1140  *	@mask: bitmask of bits in if_flags to check
1141  *
1142  *	Search for any interface with the given flags. Returns NULL if a device
1143  *	is not found or a pointer to the device. Must be called inside
1144  *	rtnl_lock(), and result refcount is unchanged.
1145  */
1146 
1147 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1148 				      unsigned short mask)
1149 {
1150 	struct net_device *dev, *ret;
1151 
1152 	ASSERT_RTNL();
1153 
1154 	ret = NULL;
1155 	for_each_netdev(net, dev) {
1156 		if (((dev->flags ^ if_flags) & mask) == 0) {
1157 			ret = dev;
1158 			break;
1159 		}
1160 	}
1161 	return ret;
1162 }
1163 EXPORT_SYMBOL(__dev_get_by_flags);
1164 
1165 /**
1166  *	dev_valid_name - check if name is okay for network device
1167  *	@name: name string
1168  *
1169  *	Network device names need to be valid file names to
1170  *	allow sysfs to work.  We also disallow any kind of
1171  *	whitespace.
1172  */
1173 bool dev_valid_name(const char *name)
1174 {
1175 	if (*name == '\0')
1176 		return false;
1177 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1178 		return false;
1179 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1180 		return false;
1181 
1182 	while (*name) {
1183 		if (*name == '/' || *name == ':' || isspace(*name))
1184 			return false;
1185 		name++;
1186 	}
1187 	return true;
1188 }
1189 EXPORT_SYMBOL(dev_valid_name);
1190 
1191 /**
1192  *	__dev_alloc_name - allocate a name for a device
1193  *	@net: network namespace to allocate the device name in
1194  *	@name: name format string
1195  *	@buf:  scratch buffer and result name string
1196  *
1197  *	Passed a format string - eg "lt%d" it will try and find a suitable
1198  *	id. It scans list of devices to build up a free map, then chooses
1199  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1200  *	while allocating the name and adding the device in order to avoid
1201  *	duplicates.
1202  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1203  *	Returns the number of the unit assigned or a negative errno code.
1204  */
1205 
1206 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1207 {
1208 	int i = 0;
1209 	const char *p;
1210 	const int max_netdevices = 8*PAGE_SIZE;
1211 	unsigned long *inuse;
1212 	struct net_device *d;
1213 
1214 	if (!dev_valid_name(name))
1215 		return -EINVAL;
1216 
1217 	p = strchr(name, '%');
1218 	if (p) {
1219 		/*
1220 		 * Verify the string as this thing may have come from
1221 		 * the user.  There must be either one "%d" and no other "%"
1222 		 * characters.
1223 		 */
1224 		if (p[1] != 'd' || strchr(p + 2, '%'))
1225 			return -EINVAL;
1226 
1227 		/* Use one page as a bit array of possible slots */
1228 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1229 		if (!inuse)
1230 			return -ENOMEM;
1231 
1232 		for_each_netdev(net, d) {
1233 			struct netdev_name_node *name_node;
1234 			list_for_each_entry(name_node, &d->name_node->list, list) {
1235 				if (!sscanf(name_node->name, name, &i))
1236 					continue;
1237 				if (i < 0 || i >= max_netdevices)
1238 					continue;
1239 
1240 				/*  avoid cases where sscanf is not exact inverse of printf */
1241 				snprintf(buf, IFNAMSIZ, name, i);
1242 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1243 					set_bit(i, inuse);
1244 			}
1245 			if (!sscanf(d->name, name, &i))
1246 				continue;
1247 			if (i < 0 || i >= max_netdevices)
1248 				continue;
1249 
1250 			/*  avoid cases where sscanf is not exact inverse of printf */
1251 			snprintf(buf, IFNAMSIZ, name, i);
1252 			if (!strncmp(buf, d->name, IFNAMSIZ))
1253 				set_bit(i, inuse);
1254 		}
1255 
1256 		i = find_first_zero_bit(inuse, max_netdevices);
1257 		free_page((unsigned long) inuse);
1258 	}
1259 
1260 	snprintf(buf, IFNAMSIZ, name, i);
1261 	if (!__dev_get_by_name(net, buf))
1262 		return i;
1263 
1264 	/* It is possible to run out of possible slots
1265 	 * when the name is long and there isn't enough space left
1266 	 * for the digits, or if all bits are used.
1267 	 */
1268 	return -ENFILE;
1269 }
1270 
1271 static int dev_alloc_name_ns(struct net *net,
1272 			     struct net_device *dev,
1273 			     const char *name)
1274 {
1275 	char buf[IFNAMSIZ];
1276 	int ret;
1277 
1278 	BUG_ON(!net);
1279 	ret = __dev_alloc_name(net, name, buf);
1280 	if (ret >= 0)
1281 		strlcpy(dev->name, buf, IFNAMSIZ);
1282 	return ret;
1283 }
1284 
1285 /**
1286  *	dev_alloc_name - allocate a name for a device
1287  *	@dev: device
1288  *	@name: name format string
1289  *
1290  *	Passed a format string - eg "lt%d" it will try and find a suitable
1291  *	id. It scans list of devices to build up a free map, then chooses
1292  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1293  *	while allocating the name and adding the device in order to avoid
1294  *	duplicates.
1295  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1296  *	Returns the number of the unit assigned or a negative errno code.
1297  */
1298 
1299 int dev_alloc_name(struct net_device *dev, const char *name)
1300 {
1301 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1302 }
1303 EXPORT_SYMBOL(dev_alloc_name);
1304 
1305 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1306 			      const char *name)
1307 {
1308 	BUG_ON(!net);
1309 
1310 	if (!dev_valid_name(name))
1311 		return -EINVAL;
1312 
1313 	if (strchr(name, '%'))
1314 		return dev_alloc_name_ns(net, dev, name);
1315 	else if (__dev_get_by_name(net, name))
1316 		return -EEXIST;
1317 	else if (dev->name != name)
1318 		strlcpy(dev->name, name, IFNAMSIZ);
1319 
1320 	return 0;
1321 }
1322 
1323 /**
1324  *	dev_change_name - change name of a device
1325  *	@dev: device
1326  *	@newname: name (or format string) must be at least IFNAMSIZ
1327  *
1328  *	Change name of a device, can pass format strings "eth%d".
1329  *	for wildcarding.
1330  */
1331 int dev_change_name(struct net_device *dev, const char *newname)
1332 {
1333 	unsigned char old_assign_type;
1334 	char oldname[IFNAMSIZ];
1335 	int err = 0;
1336 	int ret;
1337 	struct net *net;
1338 
1339 	ASSERT_RTNL();
1340 	BUG_ON(!dev_net(dev));
1341 
1342 	net = dev_net(dev);
1343 
1344 	/* Some auto-enslaved devices e.g. failover slaves are
1345 	 * special, as userspace might rename the device after
1346 	 * the interface had been brought up and running since
1347 	 * the point kernel initiated auto-enslavement. Allow
1348 	 * live name change even when these slave devices are
1349 	 * up and running.
1350 	 *
1351 	 * Typically, users of these auto-enslaving devices
1352 	 * don't actually care about slave name change, as
1353 	 * they are supposed to operate on master interface
1354 	 * directly.
1355 	 */
1356 	if (dev->flags & IFF_UP &&
1357 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1358 		return -EBUSY;
1359 
1360 	down_write(&devnet_rename_sem);
1361 
1362 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1363 		up_write(&devnet_rename_sem);
1364 		return 0;
1365 	}
1366 
1367 	memcpy(oldname, dev->name, IFNAMSIZ);
1368 
1369 	err = dev_get_valid_name(net, dev, newname);
1370 	if (err < 0) {
1371 		up_write(&devnet_rename_sem);
1372 		return err;
1373 	}
1374 
1375 	if (oldname[0] && !strchr(oldname, '%'))
1376 		netdev_info(dev, "renamed from %s\n", oldname);
1377 
1378 	old_assign_type = dev->name_assign_type;
1379 	dev->name_assign_type = NET_NAME_RENAMED;
1380 
1381 rollback:
1382 	ret = device_rename(&dev->dev, dev->name);
1383 	if (ret) {
1384 		memcpy(dev->name, oldname, IFNAMSIZ);
1385 		dev->name_assign_type = old_assign_type;
1386 		up_write(&devnet_rename_sem);
1387 		return ret;
1388 	}
1389 
1390 	up_write(&devnet_rename_sem);
1391 
1392 	netdev_adjacent_rename_links(dev, oldname);
1393 
1394 	write_lock_bh(&dev_base_lock);
1395 	netdev_name_node_del(dev->name_node);
1396 	write_unlock_bh(&dev_base_lock);
1397 
1398 	synchronize_rcu();
1399 
1400 	write_lock_bh(&dev_base_lock);
1401 	netdev_name_node_add(net, dev->name_node);
1402 	write_unlock_bh(&dev_base_lock);
1403 
1404 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1405 	ret = notifier_to_errno(ret);
1406 
1407 	if (ret) {
1408 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1409 		if (err >= 0) {
1410 			err = ret;
1411 			down_write(&devnet_rename_sem);
1412 			memcpy(dev->name, oldname, IFNAMSIZ);
1413 			memcpy(oldname, newname, IFNAMSIZ);
1414 			dev->name_assign_type = old_assign_type;
1415 			old_assign_type = NET_NAME_RENAMED;
1416 			goto rollback;
1417 		} else {
1418 			pr_err("%s: name change rollback failed: %d\n",
1419 			       dev->name, ret);
1420 		}
1421 	}
1422 
1423 	return err;
1424 }
1425 
1426 /**
1427  *	dev_set_alias - change ifalias of a device
1428  *	@dev: device
1429  *	@alias: name up to IFALIASZ
1430  *	@len: limit of bytes to copy from info
1431  *
1432  *	Set ifalias for a device,
1433  */
1434 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1435 {
1436 	struct dev_ifalias *new_alias = NULL;
1437 
1438 	if (len >= IFALIASZ)
1439 		return -EINVAL;
1440 
1441 	if (len) {
1442 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1443 		if (!new_alias)
1444 			return -ENOMEM;
1445 
1446 		memcpy(new_alias->ifalias, alias, len);
1447 		new_alias->ifalias[len] = 0;
1448 	}
1449 
1450 	mutex_lock(&ifalias_mutex);
1451 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1452 					mutex_is_locked(&ifalias_mutex));
1453 	mutex_unlock(&ifalias_mutex);
1454 
1455 	if (new_alias)
1456 		kfree_rcu(new_alias, rcuhead);
1457 
1458 	return len;
1459 }
1460 EXPORT_SYMBOL(dev_set_alias);
1461 
1462 /**
1463  *	dev_get_alias - get ifalias of a device
1464  *	@dev: device
1465  *	@name: buffer to store name of ifalias
1466  *	@len: size of buffer
1467  *
1468  *	get ifalias for a device.  Caller must make sure dev cannot go
1469  *	away,  e.g. rcu read lock or own a reference count to device.
1470  */
1471 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1472 {
1473 	const struct dev_ifalias *alias;
1474 	int ret = 0;
1475 
1476 	rcu_read_lock();
1477 	alias = rcu_dereference(dev->ifalias);
1478 	if (alias)
1479 		ret = snprintf(name, len, "%s", alias->ifalias);
1480 	rcu_read_unlock();
1481 
1482 	return ret;
1483 }
1484 
1485 /**
1486  *	netdev_features_change - device changes features
1487  *	@dev: device to cause notification
1488  *
1489  *	Called to indicate a device has changed features.
1490  */
1491 void netdev_features_change(struct net_device *dev)
1492 {
1493 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1494 }
1495 EXPORT_SYMBOL(netdev_features_change);
1496 
1497 /**
1498  *	netdev_state_change - device changes state
1499  *	@dev: device to cause notification
1500  *
1501  *	Called to indicate a device has changed state. This function calls
1502  *	the notifier chains for netdev_chain and sends a NEWLINK message
1503  *	to the routing socket.
1504  */
1505 void netdev_state_change(struct net_device *dev)
1506 {
1507 	if (dev->flags & IFF_UP) {
1508 		struct netdev_notifier_change_info change_info = {
1509 			.info.dev = dev,
1510 		};
1511 
1512 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1513 					      &change_info.info);
1514 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1515 	}
1516 }
1517 EXPORT_SYMBOL(netdev_state_change);
1518 
1519 /**
1520  * __netdev_notify_peers - notify network peers about existence of @dev,
1521  * to be called when rtnl lock is already held.
1522  * @dev: network device
1523  *
1524  * Generate traffic such that interested network peers are aware of
1525  * @dev, such as by generating a gratuitous ARP. This may be used when
1526  * a device wants to inform the rest of the network about some sort of
1527  * reconfiguration such as a failover event or virtual machine
1528  * migration.
1529  */
1530 void __netdev_notify_peers(struct net_device *dev)
1531 {
1532 	ASSERT_RTNL();
1533 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1534 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1535 }
1536 EXPORT_SYMBOL(__netdev_notify_peers);
1537 
1538 /**
1539  * netdev_notify_peers - notify network peers about existence of @dev
1540  * @dev: network device
1541  *
1542  * Generate traffic such that interested network peers are aware of
1543  * @dev, such as by generating a gratuitous ARP. This may be used when
1544  * a device wants to inform the rest of the network about some sort of
1545  * reconfiguration such as a failover event or virtual machine
1546  * migration.
1547  */
1548 void netdev_notify_peers(struct net_device *dev)
1549 {
1550 	rtnl_lock();
1551 	__netdev_notify_peers(dev);
1552 	rtnl_unlock();
1553 }
1554 EXPORT_SYMBOL(netdev_notify_peers);
1555 
1556 static int napi_threaded_poll(void *data);
1557 
1558 static int napi_kthread_create(struct napi_struct *n)
1559 {
1560 	int err = 0;
1561 
1562 	/* Create and wake up the kthread once to put it in
1563 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1564 	 * warning and work with loadavg.
1565 	 */
1566 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1567 				n->dev->name, n->napi_id);
1568 	if (IS_ERR(n->thread)) {
1569 		err = PTR_ERR(n->thread);
1570 		pr_err("kthread_run failed with err %d\n", err);
1571 		n->thread = NULL;
1572 	}
1573 
1574 	return err;
1575 }
1576 
1577 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1578 {
1579 	const struct net_device_ops *ops = dev->netdev_ops;
1580 	int ret;
1581 
1582 	ASSERT_RTNL();
1583 
1584 	if (!netif_device_present(dev)) {
1585 		/* may be detached because parent is runtime-suspended */
1586 		if (dev->dev.parent)
1587 			pm_runtime_resume(dev->dev.parent);
1588 		if (!netif_device_present(dev))
1589 			return -ENODEV;
1590 	}
1591 
1592 	/* Block netpoll from trying to do any rx path servicing.
1593 	 * If we don't do this there is a chance ndo_poll_controller
1594 	 * or ndo_poll may be running while we open the device
1595 	 */
1596 	netpoll_poll_disable(dev);
1597 
1598 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1599 	ret = notifier_to_errno(ret);
1600 	if (ret)
1601 		return ret;
1602 
1603 	set_bit(__LINK_STATE_START, &dev->state);
1604 
1605 	if (ops->ndo_validate_addr)
1606 		ret = ops->ndo_validate_addr(dev);
1607 
1608 	if (!ret && ops->ndo_open)
1609 		ret = ops->ndo_open(dev);
1610 
1611 	netpoll_poll_enable(dev);
1612 
1613 	if (ret)
1614 		clear_bit(__LINK_STATE_START, &dev->state);
1615 	else {
1616 		dev->flags |= IFF_UP;
1617 		dev_set_rx_mode(dev);
1618 		dev_activate(dev);
1619 		add_device_randomness(dev->dev_addr, dev->addr_len);
1620 	}
1621 
1622 	return ret;
1623 }
1624 
1625 /**
1626  *	dev_open	- prepare an interface for use.
1627  *	@dev: device to open
1628  *	@extack: netlink extended ack
1629  *
1630  *	Takes a device from down to up state. The device's private open
1631  *	function is invoked and then the multicast lists are loaded. Finally
1632  *	the device is moved into the up state and a %NETDEV_UP message is
1633  *	sent to the netdev notifier chain.
1634  *
1635  *	Calling this function on an active interface is a nop. On a failure
1636  *	a negative errno code is returned.
1637  */
1638 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1639 {
1640 	int ret;
1641 
1642 	if (dev->flags & IFF_UP)
1643 		return 0;
1644 
1645 	ret = __dev_open(dev, extack);
1646 	if (ret < 0)
1647 		return ret;
1648 
1649 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1650 	call_netdevice_notifiers(NETDEV_UP, dev);
1651 
1652 	return ret;
1653 }
1654 EXPORT_SYMBOL(dev_open);
1655 
1656 static void __dev_close_many(struct list_head *head)
1657 {
1658 	struct net_device *dev;
1659 
1660 	ASSERT_RTNL();
1661 	might_sleep();
1662 
1663 	list_for_each_entry(dev, head, close_list) {
1664 		/* Temporarily disable netpoll until the interface is down */
1665 		netpoll_poll_disable(dev);
1666 
1667 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1668 
1669 		clear_bit(__LINK_STATE_START, &dev->state);
1670 
1671 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1672 		 * can be even on different cpu. So just clear netif_running().
1673 		 *
1674 		 * dev->stop() will invoke napi_disable() on all of it's
1675 		 * napi_struct instances on this device.
1676 		 */
1677 		smp_mb__after_atomic(); /* Commit netif_running(). */
1678 	}
1679 
1680 	dev_deactivate_many(head);
1681 
1682 	list_for_each_entry(dev, head, close_list) {
1683 		const struct net_device_ops *ops = dev->netdev_ops;
1684 
1685 		/*
1686 		 *	Call the device specific close. This cannot fail.
1687 		 *	Only if device is UP
1688 		 *
1689 		 *	We allow it to be called even after a DETACH hot-plug
1690 		 *	event.
1691 		 */
1692 		if (ops->ndo_stop)
1693 			ops->ndo_stop(dev);
1694 
1695 		dev->flags &= ~IFF_UP;
1696 		netpoll_poll_enable(dev);
1697 	}
1698 }
1699 
1700 static void __dev_close(struct net_device *dev)
1701 {
1702 	LIST_HEAD(single);
1703 
1704 	list_add(&dev->close_list, &single);
1705 	__dev_close_many(&single);
1706 	list_del(&single);
1707 }
1708 
1709 void dev_close_many(struct list_head *head, bool unlink)
1710 {
1711 	struct net_device *dev, *tmp;
1712 
1713 	/* Remove the devices that don't need to be closed */
1714 	list_for_each_entry_safe(dev, tmp, head, close_list)
1715 		if (!(dev->flags & IFF_UP))
1716 			list_del_init(&dev->close_list);
1717 
1718 	__dev_close_many(head);
1719 
1720 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1721 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1722 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1723 		if (unlink)
1724 			list_del_init(&dev->close_list);
1725 	}
1726 }
1727 EXPORT_SYMBOL(dev_close_many);
1728 
1729 /**
1730  *	dev_close - shutdown an interface.
1731  *	@dev: device to shutdown
1732  *
1733  *	This function moves an active device into down state. A
1734  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1735  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1736  *	chain.
1737  */
1738 void dev_close(struct net_device *dev)
1739 {
1740 	if (dev->flags & IFF_UP) {
1741 		LIST_HEAD(single);
1742 
1743 		list_add(&dev->close_list, &single);
1744 		dev_close_many(&single, true);
1745 		list_del(&single);
1746 	}
1747 }
1748 EXPORT_SYMBOL(dev_close);
1749 
1750 
1751 /**
1752  *	dev_disable_lro - disable Large Receive Offload on a device
1753  *	@dev: device
1754  *
1755  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1756  *	called under RTNL.  This is needed if received packets may be
1757  *	forwarded to another interface.
1758  */
1759 void dev_disable_lro(struct net_device *dev)
1760 {
1761 	struct net_device *lower_dev;
1762 	struct list_head *iter;
1763 
1764 	dev->wanted_features &= ~NETIF_F_LRO;
1765 	netdev_update_features(dev);
1766 
1767 	if (unlikely(dev->features & NETIF_F_LRO))
1768 		netdev_WARN(dev, "failed to disable LRO!\n");
1769 
1770 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1771 		dev_disable_lro(lower_dev);
1772 }
1773 EXPORT_SYMBOL(dev_disable_lro);
1774 
1775 /**
1776  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1777  *	@dev: device
1778  *
1779  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1780  *	called under RTNL.  This is needed if Generic XDP is installed on
1781  *	the device.
1782  */
1783 static void dev_disable_gro_hw(struct net_device *dev)
1784 {
1785 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1786 	netdev_update_features(dev);
1787 
1788 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1789 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1790 }
1791 
1792 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1793 {
1794 #define N(val) 						\
1795 	case NETDEV_##val:				\
1796 		return "NETDEV_" __stringify(val);
1797 	switch (cmd) {
1798 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1799 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1800 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1801 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1802 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1803 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1804 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1805 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1806 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1807 	N(PRE_CHANGEADDR)
1808 	}
1809 #undef N
1810 	return "UNKNOWN_NETDEV_EVENT";
1811 }
1812 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1813 
1814 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1815 				   struct net_device *dev)
1816 {
1817 	struct netdev_notifier_info info = {
1818 		.dev = dev,
1819 	};
1820 
1821 	return nb->notifier_call(nb, val, &info);
1822 }
1823 
1824 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1825 					     struct net_device *dev)
1826 {
1827 	int err;
1828 
1829 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1830 	err = notifier_to_errno(err);
1831 	if (err)
1832 		return err;
1833 
1834 	if (!(dev->flags & IFF_UP))
1835 		return 0;
1836 
1837 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1838 	return 0;
1839 }
1840 
1841 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1842 						struct net_device *dev)
1843 {
1844 	if (dev->flags & IFF_UP) {
1845 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1846 					dev);
1847 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1848 	}
1849 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1850 }
1851 
1852 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1853 						 struct net *net)
1854 {
1855 	struct net_device *dev;
1856 	int err;
1857 
1858 	for_each_netdev(net, dev) {
1859 		err = call_netdevice_register_notifiers(nb, dev);
1860 		if (err)
1861 			goto rollback;
1862 	}
1863 	return 0;
1864 
1865 rollback:
1866 	for_each_netdev_continue_reverse(net, dev)
1867 		call_netdevice_unregister_notifiers(nb, dev);
1868 	return err;
1869 }
1870 
1871 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1872 						    struct net *net)
1873 {
1874 	struct net_device *dev;
1875 
1876 	for_each_netdev(net, dev)
1877 		call_netdevice_unregister_notifiers(nb, dev);
1878 }
1879 
1880 static int dev_boot_phase = 1;
1881 
1882 /**
1883  * register_netdevice_notifier - register a network notifier block
1884  * @nb: notifier
1885  *
1886  * Register a notifier to be called when network device events occur.
1887  * The notifier passed is linked into the kernel structures and must
1888  * not be reused until it has been unregistered. A negative errno code
1889  * is returned on a failure.
1890  *
1891  * When registered all registration and up events are replayed
1892  * to the new notifier to allow device to have a race free
1893  * view of the network device list.
1894  */
1895 
1896 int register_netdevice_notifier(struct notifier_block *nb)
1897 {
1898 	struct net *net;
1899 	int err;
1900 
1901 	/* Close race with setup_net() and cleanup_net() */
1902 	down_write(&pernet_ops_rwsem);
1903 	rtnl_lock();
1904 	err = raw_notifier_chain_register(&netdev_chain, nb);
1905 	if (err)
1906 		goto unlock;
1907 	if (dev_boot_phase)
1908 		goto unlock;
1909 	for_each_net(net) {
1910 		err = call_netdevice_register_net_notifiers(nb, net);
1911 		if (err)
1912 			goto rollback;
1913 	}
1914 
1915 unlock:
1916 	rtnl_unlock();
1917 	up_write(&pernet_ops_rwsem);
1918 	return err;
1919 
1920 rollback:
1921 	for_each_net_continue_reverse(net)
1922 		call_netdevice_unregister_net_notifiers(nb, net);
1923 
1924 	raw_notifier_chain_unregister(&netdev_chain, nb);
1925 	goto unlock;
1926 }
1927 EXPORT_SYMBOL(register_netdevice_notifier);
1928 
1929 /**
1930  * unregister_netdevice_notifier - unregister a network notifier block
1931  * @nb: notifier
1932  *
1933  * Unregister a notifier previously registered by
1934  * register_netdevice_notifier(). The notifier is unlinked into the
1935  * kernel structures and may then be reused. A negative errno code
1936  * is returned on a failure.
1937  *
1938  * After unregistering unregister and down device events are synthesized
1939  * for all devices on the device list to the removed notifier to remove
1940  * the need for special case cleanup code.
1941  */
1942 
1943 int unregister_netdevice_notifier(struct notifier_block *nb)
1944 {
1945 	struct net *net;
1946 	int err;
1947 
1948 	/* Close race with setup_net() and cleanup_net() */
1949 	down_write(&pernet_ops_rwsem);
1950 	rtnl_lock();
1951 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1952 	if (err)
1953 		goto unlock;
1954 
1955 	for_each_net(net)
1956 		call_netdevice_unregister_net_notifiers(nb, net);
1957 
1958 unlock:
1959 	rtnl_unlock();
1960 	up_write(&pernet_ops_rwsem);
1961 	return err;
1962 }
1963 EXPORT_SYMBOL(unregister_netdevice_notifier);
1964 
1965 static int __register_netdevice_notifier_net(struct net *net,
1966 					     struct notifier_block *nb,
1967 					     bool ignore_call_fail)
1968 {
1969 	int err;
1970 
1971 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1972 	if (err)
1973 		return err;
1974 	if (dev_boot_phase)
1975 		return 0;
1976 
1977 	err = call_netdevice_register_net_notifiers(nb, net);
1978 	if (err && !ignore_call_fail)
1979 		goto chain_unregister;
1980 
1981 	return 0;
1982 
1983 chain_unregister:
1984 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1985 	return err;
1986 }
1987 
1988 static int __unregister_netdevice_notifier_net(struct net *net,
1989 					       struct notifier_block *nb)
1990 {
1991 	int err;
1992 
1993 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1994 	if (err)
1995 		return err;
1996 
1997 	call_netdevice_unregister_net_notifiers(nb, net);
1998 	return 0;
1999 }
2000 
2001 /**
2002  * register_netdevice_notifier_net - register a per-netns network notifier block
2003  * @net: network namespace
2004  * @nb: notifier
2005  *
2006  * Register a notifier to be called when network device events occur.
2007  * The notifier passed is linked into the kernel structures and must
2008  * not be reused until it has been unregistered. A negative errno code
2009  * is returned on a failure.
2010  *
2011  * When registered all registration and up events are replayed
2012  * to the new notifier to allow device to have a race free
2013  * view of the network device list.
2014  */
2015 
2016 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2017 {
2018 	int err;
2019 
2020 	rtnl_lock();
2021 	err = __register_netdevice_notifier_net(net, nb, false);
2022 	rtnl_unlock();
2023 	return err;
2024 }
2025 EXPORT_SYMBOL(register_netdevice_notifier_net);
2026 
2027 /**
2028  * unregister_netdevice_notifier_net - unregister a per-netns
2029  *                                     network notifier block
2030  * @net: network namespace
2031  * @nb: notifier
2032  *
2033  * Unregister a notifier previously registered by
2034  * register_netdevice_notifier(). The notifier is unlinked into the
2035  * kernel structures and may then be reused. A negative errno code
2036  * is returned on a failure.
2037  *
2038  * After unregistering unregister and down device events are synthesized
2039  * for all devices on the device list to the removed notifier to remove
2040  * the need for special case cleanup code.
2041  */
2042 
2043 int unregister_netdevice_notifier_net(struct net *net,
2044 				      struct notifier_block *nb)
2045 {
2046 	int err;
2047 
2048 	rtnl_lock();
2049 	err = __unregister_netdevice_notifier_net(net, nb);
2050 	rtnl_unlock();
2051 	return err;
2052 }
2053 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2054 
2055 int register_netdevice_notifier_dev_net(struct net_device *dev,
2056 					struct notifier_block *nb,
2057 					struct netdev_net_notifier *nn)
2058 {
2059 	int err;
2060 
2061 	rtnl_lock();
2062 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2063 	if (!err) {
2064 		nn->nb = nb;
2065 		list_add(&nn->list, &dev->net_notifier_list);
2066 	}
2067 	rtnl_unlock();
2068 	return err;
2069 }
2070 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2071 
2072 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2073 					  struct notifier_block *nb,
2074 					  struct netdev_net_notifier *nn)
2075 {
2076 	int err;
2077 
2078 	rtnl_lock();
2079 	list_del(&nn->list);
2080 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2081 	rtnl_unlock();
2082 	return err;
2083 }
2084 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2085 
2086 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2087 					     struct net *net)
2088 {
2089 	struct netdev_net_notifier *nn;
2090 
2091 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2092 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2093 		__register_netdevice_notifier_net(net, nn->nb, true);
2094 	}
2095 }
2096 
2097 /**
2098  *	call_netdevice_notifiers_info - call all network notifier blocks
2099  *	@val: value passed unmodified to notifier function
2100  *	@info: notifier information data
2101  *
2102  *	Call all network notifier blocks.  Parameters and return value
2103  *	are as for raw_notifier_call_chain().
2104  */
2105 
2106 static int call_netdevice_notifiers_info(unsigned long val,
2107 					 struct netdev_notifier_info *info)
2108 {
2109 	struct net *net = dev_net(info->dev);
2110 	int ret;
2111 
2112 	ASSERT_RTNL();
2113 
2114 	/* Run per-netns notifier block chain first, then run the global one.
2115 	 * Hopefully, one day, the global one is going to be removed after
2116 	 * all notifier block registrators get converted to be per-netns.
2117 	 */
2118 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2119 	if (ret & NOTIFY_STOP_MASK)
2120 		return ret;
2121 	return raw_notifier_call_chain(&netdev_chain, val, info);
2122 }
2123 
2124 static int call_netdevice_notifiers_extack(unsigned long val,
2125 					   struct net_device *dev,
2126 					   struct netlink_ext_ack *extack)
2127 {
2128 	struct netdev_notifier_info info = {
2129 		.dev = dev,
2130 		.extack = extack,
2131 	};
2132 
2133 	return call_netdevice_notifiers_info(val, &info);
2134 }
2135 
2136 /**
2137  *	call_netdevice_notifiers - call all network notifier blocks
2138  *      @val: value passed unmodified to notifier function
2139  *      @dev: net_device pointer passed unmodified to notifier function
2140  *
2141  *	Call all network notifier blocks.  Parameters and return value
2142  *	are as for raw_notifier_call_chain().
2143  */
2144 
2145 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2146 {
2147 	return call_netdevice_notifiers_extack(val, dev, NULL);
2148 }
2149 EXPORT_SYMBOL(call_netdevice_notifiers);
2150 
2151 /**
2152  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2153  *	@val: value passed unmodified to notifier function
2154  *	@dev: net_device pointer passed unmodified to notifier function
2155  *	@arg: additional u32 argument passed to the notifier function
2156  *
2157  *	Call all network notifier blocks.  Parameters and return value
2158  *	are as for raw_notifier_call_chain().
2159  */
2160 static int call_netdevice_notifiers_mtu(unsigned long val,
2161 					struct net_device *dev, u32 arg)
2162 {
2163 	struct netdev_notifier_info_ext info = {
2164 		.info.dev = dev,
2165 		.ext.mtu = arg,
2166 	};
2167 
2168 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2169 
2170 	return call_netdevice_notifiers_info(val, &info.info);
2171 }
2172 
2173 #ifdef CONFIG_NET_INGRESS
2174 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2175 
2176 void net_inc_ingress_queue(void)
2177 {
2178 	static_branch_inc(&ingress_needed_key);
2179 }
2180 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2181 
2182 void net_dec_ingress_queue(void)
2183 {
2184 	static_branch_dec(&ingress_needed_key);
2185 }
2186 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2187 #endif
2188 
2189 #ifdef CONFIG_NET_EGRESS
2190 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2191 
2192 void net_inc_egress_queue(void)
2193 {
2194 	static_branch_inc(&egress_needed_key);
2195 }
2196 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2197 
2198 void net_dec_egress_queue(void)
2199 {
2200 	static_branch_dec(&egress_needed_key);
2201 }
2202 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2203 #endif
2204 
2205 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2206 #ifdef CONFIG_JUMP_LABEL
2207 static atomic_t netstamp_needed_deferred;
2208 static atomic_t netstamp_wanted;
2209 static void netstamp_clear(struct work_struct *work)
2210 {
2211 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2212 	int wanted;
2213 
2214 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2215 	if (wanted > 0)
2216 		static_branch_enable(&netstamp_needed_key);
2217 	else
2218 		static_branch_disable(&netstamp_needed_key);
2219 }
2220 static DECLARE_WORK(netstamp_work, netstamp_clear);
2221 #endif
2222 
2223 void net_enable_timestamp(void)
2224 {
2225 #ifdef CONFIG_JUMP_LABEL
2226 	int wanted;
2227 
2228 	while (1) {
2229 		wanted = atomic_read(&netstamp_wanted);
2230 		if (wanted <= 0)
2231 			break;
2232 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2233 			return;
2234 	}
2235 	atomic_inc(&netstamp_needed_deferred);
2236 	schedule_work(&netstamp_work);
2237 #else
2238 	static_branch_inc(&netstamp_needed_key);
2239 #endif
2240 }
2241 EXPORT_SYMBOL(net_enable_timestamp);
2242 
2243 void net_disable_timestamp(void)
2244 {
2245 #ifdef CONFIG_JUMP_LABEL
2246 	int wanted;
2247 
2248 	while (1) {
2249 		wanted = atomic_read(&netstamp_wanted);
2250 		if (wanted <= 1)
2251 			break;
2252 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2253 			return;
2254 	}
2255 	atomic_dec(&netstamp_needed_deferred);
2256 	schedule_work(&netstamp_work);
2257 #else
2258 	static_branch_dec(&netstamp_needed_key);
2259 #endif
2260 }
2261 EXPORT_SYMBOL(net_disable_timestamp);
2262 
2263 static inline void net_timestamp_set(struct sk_buff *skb)
2264 {
2265 	skb->tstamp = 0;
2266 	if (static_branch_unlikely(&netstamp_needed_key))
2267 		__net_timestamp(skb);
2268 }
2269 
2270 #define net_timestamp_check(COND, SKB)				\
2271 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2272 		if ((COND) && !(SKB)->tstamp)			\
2273 			__net_timestamp(SKB);			\
2274 	}							\
2275 
2276 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2277 {
2278 	return __is_skb_forwardable(dev, skb, true);
2279 }
2280 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2281 
2282 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2283 			      bool check_mtu)
2284 {
2285 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2286 
2287 	if (likely(!ret)) {
2288 		skb->protocol = eth_type_trans(skb, dev);
2289 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2290 	}
2291 
2292 	return ret;
2293 }
2294 
2295 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2296 {
2297 	return __dev_forward_skb2(dev, skb, true);
2298 }
2299 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2300 
2301 /**
2302  * dev_forward_skb - loopback an skb to another netif
2303  *
2304  * @dev: destination network device
2305  * @skb: buffer to forward
2306  *
2307  * return values:
2308  *	NET_RX_SUCCESS	(no congestion)
2309  *	NET_RX_DROP     (packet was dropped, but freed)
2310  *
2311  * dev_forward_skb can be used for injecting an skb from the
2312  * start_xmit function of one device into the receive queue
2313  * of another device.
2314  *
2315  * The receiving device may be in another namespace, so
2316  * we have to clear all information in the skb that could
2317  * impact namespace isolation.
2318  */
2319 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2320 {
2321 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2322 }
2323 EXPORT_SYMBOL_GPL(dev_forward_skb);
2324 
2325 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2326 {
2327 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2328 }
2329 
2330 static inline int deliver_skb(struct sk_buff *skb,
2331 			      struct packet_type *pt_prev,
2332 			      struct net_device *orig_dev)
2333 {
2334 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2335 		return -ENOMEM;
2336 	refcount_inc(&skb->users);
2337 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2338 }
2339 
2340 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2341 					  struct packet_type **pt,
2342 					  struct net_device *orig_dev,
2343 					  __be16 type,
2344 					  struct list_head *ptype_list)
2345 {
2346 	struct packet_type *ptype, *pt_prev = *pt;
2347 
2348 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2349 		if (ptype->type != type)
2350 			continue;
2351 		if (pt_prev)
2352 			deliver_skb(skb, pt_prev, orig_dev);
2353 		pt_prev = ptype;
2354 	}
2355 	*pt = pt_prev;
2356 }
2357 
2358 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2359 {
2360 	if (!ptype->af_packet_priv || !skb->sk)
2361 		return false;
2362 
2363 	if (ptype->id_match)
2364 		return ptype->id_match(ptype, skb->sk);
2365 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2366 		return true;
2367 
2368 	return false;
2369 }
2370 
2371 /**
2372  * dev_nit_active - return true if any network interface taps are in use
2373  *
2374  * @dev: network device to check for the presence of taps
2375  */
2376 bool dev_nit_active(struct net_device *dev)
2377 {
2378 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2379 }
2380 EXPORT_SYMBOL_GPL(dev_nit_active);
2381 
2382 /*
2383  *	Support routine. Sends outgoing frames to any network
2384  *	taps currently in use.
2385  */
2386 
2387 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2388 {
2389 	struct packet_type *ptype;
2390 	struct sk_buff *skb2 = NULL;
2391 	struct packet_type *pt_prev = NULL;
2392 	struct list_head *ptype_list = &ptype_all;
2393 
2394 	rcu_read_lock();
2395 again:
2396 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2397 		if (ptype->ignore_outgoing)
2398 			continue;
2399 
2400 		/* Never send packets back to the socket
2401 		 * they originated from - MvS (miquels@drinkel.ow.org)
2402 		 */
2403 		if (skb_loop_sk(ptype, skb))
2404 			continue;
2405 
2406 		if (pt_prev) {
2407 			deliver_skb(skb2, pt_prev, skb->dev);
2408 			pt_prev = ptype;
2409 			continue;
2410 		}
2411 
2412 		/* need to clone skb, done only once */
2413 		skb2 = skb_clone(skb, GFP_ATOMIC);
2414 		if (!skb2)
2415 			goto out_unlock;
2416 
2417 		net_timestamp_set(skb2);
2418 
2419 		/* skb->nh should be correctly
2420 		 * set by sender, so that the second statement is
2421 		 * just protection against buggy protocols.
2422 		 */
2423 		skb_reset_mac_header(skb2);
2424 
2425 		if (skb_network_header(skb2) < skb2->data ||
2426 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2427 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2428 					     ntohs(skb2->protocol),
2429 					     dev->name);
2430 			skb_reset_network_header(skb2);
2431 		}
2432 
2433 		skb2->transport_header = skb2->network_header;
2434 		skb2->pkt_type = PACKET_OUTGOING;
2435 		pt_prev = ptype;
2436 	}
2437 
2438 	if (ptype_list == &ptype_all) {
2439 		ptype_list = &dev->ptype_all;
2440 		goto again;
2441 	}
2442 out_unlock:
2443 	if (pt_prev) {
2444 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2445 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2446 		else
2447 			kfree_skb(skb2);
2448 	}
2449 	rcu_read_unlock();
2450 }
2451 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2452 
2453 /**
2454  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2455  * @dev: Network device
2456  * @txq: number of queues available
2457  *
2458  * If real_num_tx_queues is changed the tc mappings may no longer be
2459  * valid. To resolve this verify the tc mapping remains valid and if
2460  * not NULL the mapping. With no priorities mapping to this
2461  * offset/count pair it will no longer be used. In the worst case TC0
2462  * is invalid nothing can be done so disable priority mappings. If is
2463  * expected that drivers will fix this mapping if they can before
2464  * calling netif_set_real_num_tx_queues.
2465  */
2466 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2467 {
2468 	int i;
2469 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2470 
2471 	/* If TC0 is invalidated disable TC mapping */
2472 	if (tc->offset + tc->count > txq) {
2473 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2474 		dev->num_tc = 0;
2475 		return;
2476 	}
2477 
2478 	/* Invalidated prio to tc mappings set to TC0 */
2479 	for (i = 1; i < TC_BITMASK + 1; i++) {
2480 		int q = netdev_get_prio_tc_map(dev, i);
2481 
2482 		tc = &dev->tc_to_txq[q];
2483 		if (tc->offset + tc->count > txq) {
2484 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2485 				i, q);
2486 			netdev_set_prio_tc_map(dev, i, 0);
2487 		}
2488 	}
2489 }
2490 
2491 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2492 {
2493 	if (dev->num_tc) {
2494 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2495 		int i;
2496 
2497 		/* walk through the TCs and see if it falls into any of them */
2498 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2499 			if ((txq - tc->offset) < tc->count)
2500 				return i;
2501 		}
2502 
2503 		/* didn't find it, just return -1 to indicate no match */
2504 		return -1;
2505 	}
2506 
2507 	return 0;
2508 }
2509 EXPORT_SYMBOL(netdev_txq_to_tc);
2510 
2511 #ifdef CONFIG_XPS
2512 static struct static_key xps_needed __read_mostly;
2513 static struct static_key xps_rxqs_needed __read_mostly;
2514 static DEFINE_MUTEX(xps_map_mutex);
2515 #define xmap_dereference(P)		\
2516 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2517 
2518 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2519 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2520 {
2521 	struct xps_map *map = NULL;
2522 	int pos;
2523 
2524 	if (dev_maps)
2525 		map = xmap_dereference(dev_maps->attr_map[tci]);
2526 	if (!map)
2527 		return false;
2528 
2529 	for (pos = map->len; pos--;) {
2530 		if (map->queues[pos] != index)
2531 			continue;
2532 
2533 		if (map->len > 1) {
2534 			map->queues[pos] = map->queues[--map->len];
2535 			break;
2536 		}
2537 
2538 		if (old_maps)
2539 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2540 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2541 		kfree_rcu(map, rcu);
2542 		return false;
2543 	}
2544 
2545 	return true;
2546 }
2547 
2548 static bool remove_xps_queue_cpu(struct net_device *dev,
2549 				 struct xps_dev_maps *dev_maps,
2550 				 int cpu, u16 offset, u16 count)
2551 {
2552 	int num_tc = dev_maps->num_tc;
2553 	bool active = false;
2554 	int tci;
2555 
2556 	for (tci = cpu * num_tc; num_tc--; tci++) {
2557 		int i, j;
2558 
2559 		for (i = count, j = offset; i--; j++) {
2560 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2561 				break;
2562 		}
2563 
2564 		active |= i < 0;
2565 	}
2566 
2567 	return active;
2568 }
2569 
2570 static void reset_xps_maps(struct net_device *dev,
2571 			   struct xps_dev_maps *dev_maps,
2572 			   enum xps_map_type type)
2573 {
2574 	static_key_slow_dec_cpuslocked(&xps_needed);
2575 	if (type == XPS_RXQS)
2576 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2577 
2578 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2579 
2580 	kfree_rcu(dev_maps, rcu);
2581 }
2582 
2583 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2584 			   u16 offset, u16 count)
2585 {
2586 	struct xps_dev_maps *dev_maps;
2587 	bool active = false;
2588 	int i, j;
2589 
2590 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2591 	if (!dev_maps)
2592 		return;
2593 
2594 	for (j = 0; j < dev_maps->nr_ids; j++)
2595 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2596 	if (!active)
2597 		reset_xps_maps(dev, dev_maps, type);
2598 
2599 	if (type == XPS_CPUS) {
2600 		for (i = offset + (count - 1); count--; i--)
2601 			netdev_queue_numa_node_write(
2602 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2603 	}
2604 }
2605 
2606 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2607 				   u16 count)
2608 {
2609 	if (!static_key_false(&xps_needed))
2610 		return;
2611 
2612 	cpus_read_lock();
2613 	mutex_lock(&xps_map_mutex);
2614 
2615 	if (static_key_false(&xps_rxqs_needed))
2616 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2617 
2618 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2619 
2620 	mutex_unlock(&xps_map_mutex);
2621 	cpus_read_unlock();
2622 }
2623 
2624 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2625 {
2626 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2627 }
2628 
2629 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2630 				      u16 index, bool is_rxqs_map)
2631 {
2632 	struct xps_map *new_map;
2633 	int alloc_len = XPS_MIN_MAP_ALLOC;
2634 	int i, pos;
2635 
2636 	for (pos = 0; map && pos < map->len; pos++) {
2637 		if (map->queues[pos] != index)
2638 			continue;
2639 		return map;
2640 	}
2641 
2642 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2643 	if (map) {
2644 		if (pos < map->alloc_len)
2645 			return map;
2646 
2647 		alloc_len = map->alloc_len * 2;
2648 	}
2649 
2650 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2651 	 *  map
2652 	 */
2653 	if (is_rxqs_map)
2654 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2655 	else
2656 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2657 				       cpu_to_node(attr_index));
2658 	if (!new_map)
2659 		return NULL;
2660 
2661 	for (i = 0; i < pos; i++)
2662 		new_map->queues[i] = map->queues[i];
2663 	new_map->alloc_len = alloc_len;
2664 	new_map->len = pos;
2665 
2666 	return new_map;
2667 }
2668 
2669 /* Copy xps maps at a given index */
2670 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2671 			      struct xps_dev_maps *new_dev_maps, int index,
2672 			      int tc, bool skip_tc)
2673 {
2674 	int i, tci = index * dev_maps->num_tc;
2675 	struct xps_map *map;
2676 
2677 	/* copy maps belonging to foreign traffic classes */
2678 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2679 		if (i == tc && skip_tc)
2680 			continue;
2681 
2682 		/* fill in the new device map from the old device map */
2683 		map = xmap_dereference(dev_maps->attr_map[tci]);
2684 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2685 	}
2686 }
2687 
2688 /* Must be called under cpus_read_lock */
2689 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2690 			  u16 index, enum xps_map_type type)
2691 {
2692 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2693 	const unsigned long *online_mask = NULL;
2694 	bool active = false, copy = false;
2695 	int i, j, tci, numa_node_id = -2;
2696 	int maps_sz, num_tc = 1, tc = 0;
2697 	struct xps_map *map, *new_map;
2698 	unsigned int nr_ids;
2699 
2700 	if (dev->num_tc) {
2701 		/* Do not allow XPS on subordinate device directly */
2702 		num_tc = dev->num_tc;
2703 		if (num_tc < 0)
2704 			return -EINVAL;
2705 
2706 		/* If queue belongs to subordinate dev use its map */
2707 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2708 
2709 		tc = netdev_txq_to_tc(dev, index);
2710 		if (tc < 0)
2711 			return -EINVAL;
2712 	}
2713 
2714 	mutex_lock(&xps_map_mutex);
2715 
2716 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2717 	if (type == XPS_RXQS) {
2718 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2719 		nr_ids = dev->num_rx_queues;
2720 	} else {
2721 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2722 		if (num_possible_cpus() > 1)
2723 			online_mask = cpumask_bits(cpu_online_mask);
2724 		nr_ids = nr_cpu_ids;
2725 	}
2726 
2727 	if (maps_sz < L1_CACHE_BYTES)
2728 		maps_sz = L1_CACHE_BYTES;
2729 
2730 	/* The old dev_maps could be larger or smaller than the one we're
2731 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2732 	 * between. We could try to be smart, but let's be safe instead and only
2733 	 * copy foreign traffic classes if the two map sizes match.
2734 	 */
2735 	if (dev_maps &&
2736 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2737 		copy = true;
2738 
2739 	/* allocate memory for queue storage */
2740 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2741 	     j < nr_ids;) {
2742 		if (!new_dev_maps) {
2743 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2744 			if (!new_dev_maps) {
2745 				mutex_unlock(&xps_map_mutex);
2746 				return -ENOMEM;
2747 			}
2748 
2749 			new_dev_maps->nr_ids = nr_ids;
2750 			new_dev_maps->num_tc = num_tc;
2751 		}
2752 
2753 		tci = j * num_tc + tc;
2754 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2755 
2756 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2757 		if (!map)
2758 			goto error;
2759 
2760 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2761 	}
2762 
2763 	if (!new_dev_maps)
2764 		goto out_no_new_maps;
2765 
2766 	if (!dev_maps) {
2767 		/* Increment static keys at most once per type */
2768 		static_key_slow_inc_cpuslocked(&xps_needed);
2769 		if (type == XPS_RXQS)
2770 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2771 	}
2772 
2773 	for (j = 0; j < nr_ids; j++) {
2774 		bool skip_tc = false;
2775 
2776 		tci = j * num_tc + tc;
2777 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2778 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2779 			/* add tx-queue to CPU/rx-queue maps */
2780 			int pos = 0;
2781 
2782 			skip_tc = true;
2783 
2784 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2785 			while ((pos < map->len) && (map->queues[pos] != index))
2786 				pos++;
2787 
2788 			if (pos == map->len)
2789 				map->queues[map->len++] = index;
2790 #ifdef CONFIG_NUMA
2791 			if (type == XPS_CPUS) {
2792 				if (numa_node_id == -2)
2793 					numa_node_id = cpu_to_node(j);
2794 				else if (numa_node_id != cpu_to_node(j))
2795 					numa_node_id = -1;
2796 			}
2797 #endif
2798 		}
2799 
2800 		if (copy)
2801 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2802 					  skip_tc);
2803 	}
2804 
2805 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2806 
2807 	/* Cleanup old maps */
2808 	if (!dev_maps)
2809 		goto out_no_old_maps;
2810 
2811 	for (j = 0; j < dev_maps->nr_ids; j++) {
2812 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2813 			map = xmap_dereference(dev_maps->attr_map[tci]);
2814 			if (!map)
2815 				continue;
2816 
2817 			if (copy) {
2818 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2819 				if (map == new_map)
2820 					continue;
2821 			}
2822 
2823 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2824 			kfree_rcu(map, rcu);
2825 		}
2826 	}
2827 
2828 	old_dev_maps = dev_maps;
2829 
2830 out_no_old_maps:
2831 	dev_maps = new_dev_maps;
2832 	active = true;
2833 
2834 out_no_new_maps:
2835 	if (type == XPS_CPUS)
2836 		/* update Tx queue numa node */
2837 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2838 					     (numa_node_id >= 0) ?
2839 					     numa_node_id : NUMA_NO_NODE);
2840 
2841 	if (!dev_maps)
2842 		goto out_no_maps;
2843 
2844 	/* removes tx-queue from unused CPUs/rx-queues */
2845 	for (j = 0; j < dev_maps->nr_ids; j++) {
2846 		tci = j * dev_maps->num_tc;
2847 
2848 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2849 			if (i == tc &&
2850 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2851 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2852 				continue;
2853 
2854 			active |= remove_xps_queue(dev_maps,
2855 						   copy ? old_dev_maps : NULL,
2856 						   tci, index);
2857 		}
2858 	}
2859 
2860 	if (old_dev_maps)
2861 		kfree_rcu(old_dev_maps, rcu);
2862 
2863 	/* free map if not active */
2864 	if (!active)
2865 		reset_xps_maps(dev, dev_maps, type);
2866 
2867 out_no_maps:
2868 	mutex_unlock(&xps_map_mutex);
2869 
2870 	return 0;
2871 error:
2872 	/* remove any maps that we added */
2873 	for (j = 0; j < nr_ids; j++) {
2874 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2875 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2876 			map = copy ?
2877 			      xmap_dereference(dev_maps->attr_map[tci]) :
2878 			      NULL;
2879 			if (new_map && new_map != map)
2880 				kfree(new_map);
2881 		}
2882 	}
2883 
2884 	mutex_unlock(&xps_map_mutex);
2885 
2886 	kfree(new_dev_maps);
2887 	return -ENOMEM;
2888 }
2889 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2890 
2891 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2892 			u16 index)
2893 {
2894 	int ret;
2895 
2896 	cpus_read_lock();
2897 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2898 	cpus_read_unlock();
2899 
2900 	return ret;
2901 }
2902 EXPORT_SYMBOL(netif_set_xps_queue);
2903 
2904 #endif
2905 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2906 {
2907 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2908 
2909 	/* Unbind any subordinate channels */
2910 	while (txq-- != &dev->_tx[0]) {
2911 		if (txq->sb_dev)
2912 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2913 	}
2914 }
2915 
2916 void netdev_reset_tc(struct net_device *dev)
2917 {
2918 #ifdef CONFIG_XPS
2919 	netif_reset_xps_queues_gt(dev, 0);
2920 #endif
2921 	netdev_unbind_all_sb_channels(dev);
2922 
2923 	/* Reset TC configuration of device */
2924 	dev->num_tc = 0;
2925 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2926 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2927 }
2928 EXPORT_SYMBOL(netdev_reset_tc);
2929 
2930 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2931 {
2932 	if (tc >= dev->num_tc)
2933 		return -EINVAL;
2934 
2935 #ifdef CONFIG_XPS
2936 	netif_reset_xps_queues(dev, offset, count);
2937 #endif
2938 	dev->tc_to_txq[tc].count = count;
2939 	dev->tc_to_txq[tc].offset = offset;
2940 	return 0;
2941 }
2942 EXPORT_SYMBOL(netdev_set_tc_queue);
2943 
2944 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2945 {
2946 	if (num_tc > TC_MAX_QUEUE)
2947 		return -EINVAL;
2948 
2949 #ifdef CONFIG_XPS
2950 	netif_reset_xps_queues_gt(dev, 0);
2951 #endif
2952 	netdev_unbind_all_sb_channels(dev);
2953 
2954 	dev->num_tc = num_tc;
2955 	return 0;
2956 }
2957 EXPORT_SYMBOL(netdev_set_num_tc);
2958 
2959 void netdev_unbind_sb_channel(struct net_device *dev,
2960 			      struct net_device *sb_dev)
2961 {
2962 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2963 
2964 #ifdef CONFIG_XPS
2965 	netif_reset_xps_queues_gt(sb_dev, 0);
2966 #endif
2967 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2968 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2969 
2970 	while (txq-- != &dev->_tx[0]) {
2971 		if (txq->sb_dev == sb_dev)
2972 			txq->sb_dev = NULL;
2973 	}
2974 }
2975 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2976 
2977 int netdev_bind_sb_channel_queue(struct net_device *dev,
2978 				 struct net_device *sb_dev,
2979 				 u8 tc, u16 count, u16 offset)
2980 {
2981 	/* Make certain the sb_dev and dev are already configured */
2982 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2983 		return -EINVAL;
2984 
2985 	/* We cannot hand out queues we don't have */
2986 	if ((offset + count) > dev->real_num_tx_queues)
2987 		return -EINVAL;
2988 
2989 	/* Record the mapping */
2990 	sb_dev->tc_to_txq[tc].count = count;
2991 	sb_dev->tc_to_txq[tc].offset = offset;
2992 
2993 	/* Provide a way for Tx queue to find the tc_to_txq map or
2994 	 * XPS map for itself.
2995 	 */
2996 	while (count--)
2997 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2998 
2999 	return 0;
3000 }
3001 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3002 
3003 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3004 {
3005 	/* Do not use a multiqueue device to represent a subordinate channel */
3006 	if (netif_is_multiqueue(dev))
3007 		return -ENODEV;
3008 
3009 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3010 	 * Channel 0 is meant to be "native" mode and used only to represent
3011 	 * the main root device. We allow writing 0 to reset the device back
3012 	 * to normal mode after being used as a subordinate channel.
3013 	 */
3014 	if (channel > S16_MAX)
3015 		return -EINVAL;
3016 
3017 	dev->num_tc = -channel;
3018 
3019 	return 0;
3020 }
3021 EXPORT_SYMBOL(netdev_set_sb_channel);
3022 
3023 /*
3024  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3025  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3026  */
3027 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3028 {
3029 	bool disabling;
3030 	int rc;
3031 
3032 	disabling = txq < dev->real_num_tx_queues;
3033 
3034 	if (txq < 1 || txq > dev->num_tx_queues)
3035 		return -EINVAL;
3036 
3037 	if (dev->reg_state == NETREG_REGISTERED ||
3038 	    dev->reg_state == NETREG_UNREGISTERING) {
3039 		ASSERT_RTNL();
3040 
3041 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3042 						  txq);
3043 		if (rc)
3044 			return rc;
3045 
3046 		if (dev->num_tc)
3047 			netif_setup_tc(dev, txq);
3048 
3049 		dev->real_num_tx_queues = txq;
3050 
3051 		if (disabling) {
3052 			synchronize_net();
3053 			qdisc_reset_all_tx_gt(dev, txq);
3054 #ifdef CONFIG_XPS
3055 			netif_reset_xps_queues_gt(dev, txq);
3056 #endif
3057 		}
3058 	} else {
3059 		dev->real_num_tx_queues = txq;
3060 	}
3061 
3062 	return 0;
3063 }
3064 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3065 
3066 #ifdef CONFIG_SYSFS
3067 /**
3068  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3069  *	@dev: Network device
3070  *	@rxq: Actual number of RX queues
3071  *
3072  *	This must be called either with the rtnl_lock held or before
3073  *	registration of the net device.  Returns 0 on success, or a
3074  *	negative error code.  If called before registration, it always
3075  *	succeeds.
3076  */
3077 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3078 {
3079 	int rc;
3080 
3081 	if (rxq < 1 || rxq > dev->num_rx_queues)
3082 		return -EINVAL;
3083 
3084 	if (dev->reg_state == NETREG_REGISTERED) {
3085 		ASSERT_RTNL();
3086 
3087 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3088 						  rxq);
3089 		if (rc)
3090 			return rc;
3091 	}
3092 
3093 	dev->real_num_rx_queues = rxq;
3094 	return 0;
3095 }
3096 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3097 #endif
3098 
3099 /**
3100  * netif_get_num_default_rss_queues - default number of RSS queues
3101  *
3102  * This routine should set an upper limit on the number of RSS queues
3103  * used by default by multiqueue devices.
3104  */
3105 int netif_get_num_default_rss_queues(void)
3106 {
3107 	return is_kdump_kernel() ?
3108 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3109 }
3110 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3111 
3112 static void __netif_reschedule(struct Qdisc *q)
3113 {
3114 	struct softnet_data *sd;
3115 	unsigned long flags;
3116 
3117 	local_irq_save(flags);
3118 	sd = this_cpu_ptr(&softnet_data);
3119 	q->next_sched = NULL;
3120 	*sd->output_queue_tailp = q;
3121 	sd->output_queue_tailp = &q->next_sched;
3122 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3123 	local_irq_restore(flags);
3124 }
3125 
3126 void __netif_schedule(struct Qdisc *q)
3127 {
3128 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3129 		__netif_reschedule(q);
3130 }
3131 EXPORT_SYMBOL(__netif_schedule);
3132 
3133 struct dev_kfree_skb_cb {
3134 	enum skb_free_reason reason;
3135 };
3136 
3137 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3138 {
3139 	return (struct dev_kfree_skb_cb *)skb->cb;
3140 }
3141 
3142 void netif_schedule_queue(struct netdev_queue *txq)
3143 {
3144 	rcu_read_lock();
3145 	if (!netif_xmit_stopped(txq)) {
3146 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3147 
3148 		__netif_schedule(q);
3149 	}
3150 	rcu_read_unlock();
3151 }
3152 EXPORT_SYMBOL(netif_schedule_queue);
3153 
3154 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3155 {
3156 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3157 		struct Qdisc *q;
3158 
3159 		rcu_read_lock();
3160 		q = rcu_dereference(dev_queue->qdisc);
3161 		__netif_schedule(q);
3162 		rcu_read_unlock();
3163 	}
3164 }
3165 EXPORT_SYMBOL(netif_tx_wake_queue);
3166 
3167 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3168 {
3169 	unsigned long flags;
3170 
3171 	if (unlikely(!skb))
3172 		return;
3173 
3174 	if (likely(refcount_read(&skb->users) == 1)) {
3175 		smp_rmb();
3176 		refcount_set(&skb->users, 0);
3177 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3178 		return;
3179 	}
3180 	get_kfree_skb_cb(skb)->reason = reason;
3181 	local_irq_save(flags);
3182 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3183 	__this_cpu_write(softnet_data.completion_queue, skb);
3184 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3185 	local_irq_restore(flags);
3186 }
3187 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3188 
3189 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3190 {
3191 	if (in_irq() || irqs_disabled())
3192 		__dev_kfree_skb_irq(skb, reason);
3193 	else
3194 		dev_kfree_skb(skb);
3195 }
3196 EXPORT_SYMBOL(__dev_kfree_skb_any);
3197 
3198 
3199 /**
3200  * netif_device_detach - mark device as removed
3201  * @dev: network device
3202  *
3203  * Mark device as removed from system and therefore no longer available.
3204  */
3205 void netif_device_detach(struct net_device *dev)
3206 {
3207 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3208 	    netif_running(dev)) {
3209 		netif_tx_stop_all_queues(dev);
3210 	}
3211 }
3212 EXPORT_SYMBOL(netif_device_detach);
3213 
3214 /**
3215  * netif_device_attach - mark device as attached
3216  * @dev: network device
3217  *
3218  * Mark device as attached from system and restart if needed.
3219  */
3220 void netif_device_attach(struct net_device *dev)
3221 {
3222 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3223 	    netif_running(dev)) {
3224 		netif_tx_wake_all_queues(dev);
3225 		__netdev_watchdog_up(dev);
3226 	}
3227 }
3228 EXPORT_SYMBOL(netif_device_attach);
3229 
3230 /*
3231  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3232  * to be used as a distribution range.
3233  */
3234 static u16 skb_tx_hash(const struct net_device *dev,
3235 		       const struct net_device *sb_dev,
3236 		       struct sk_buff *skb)
3237 {
3238 	u32 hash;
3239 	u16 qoffset = 0;
3240 	u16 qcount = dev->real_num_tx_queues;
3241 
3242 	if (dev->num_tc) {
3243 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3244 
3245 		qoffset = sb_dev->tc_to_txq[tc].offset;
3246 		qcount = sb_dev->tc_to_txq[tc].count;
3247 	}
3248 
3249 	if (skb_rx_queue_recorded(skb)) {
3250 		hash = skb_get_rx_queue(skb);
3251 		if (hash >= qoffset)
3252 			hash -= qoffset;
3253 		while (unlikely(hash >= qcount))
3254 			hash -= qcount;
3255 		return hash + qoffset;
3256 	}
3257 
3258 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3259 }
3260 
3261 static void skb_warn_bad_offload(const struct sk_buff *skb)
3262 {
3263 	static const netdev_features_t null_features;
3264 	struct net_device *dev = skb->dev;
3265 	const char *name = "";
3266 
3267 	if (!net_ratelimit())
3268 		return;
3269 
3270 	if (dev) {
3271 		if (dev->dev.parent)
3272 			name = dev_driver_string(dev->dev.parent);
3273 		else
3274 			name = netdev_name(dev);
3275 	}
3276 	skb_dump(KERN_WARNING, skb, false);
3277 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3278 	     name, dev ? &dev->features : &null_features,
3279 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3280 }
3281 
3282 /*
3283  * Invalidate hardware checksum when packet is to be mangled, and
3284  * complete checksum manually on outgoing path.
3285  */
3286 int skb_checksum_help(struct sk_buff *skb)
3287 {
3288 	__wsum csum;
3289 	int ret = 0, offset;
3290 
3291 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3292 		goto out_set_summed;
3293 
3294 	if (unlikely(skb_is_gso(skb))) {
3295 		skb_warn_bad_offload(skb);
3296 		return -EINVAL;
3297 	}
3298 
3299 	/* Before computing a checksum, we should make sure no frag could
3300 	 * be modified by an external entity : checksum could be wrong.
3301 	 */
3302 	if (skb_has_shared_frag(skb)) {
3303 		ret = __skb_linearize(skb);
3304 		if (ret)
3305 			goto out;
3306 	}
3307 
3308 	offset = skb_checksum_start_offset(skb);
3309 	BUG_ON(offset >= skb_headlen(skb));
3310 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3311 
3312 	offset += skb->csum_offset;
3313 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3314 
3315 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3316 	if (ret)
3317 		goto out;
3318 
3319 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3320 out_set_summed:
3321 	skb->ip_summed = CHECKSUM_NONE;
3322 out:
3323 	return ret;
3324 }
3325 EXPORT_SYMBOL(skb_checksum_help);
3326 
3327 int skb_crc32c_csum_help(struct sk_buff *skb)
3328 {
3329 	__le32 crc32c_csum;
3330 	int ret = 0, offset, start;
3331 
3332 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3333 		goto out;
3334 
3335 	if (unlikely(skb_is_gso(skb)))
3336 		goto out;
3337 
3338 	/* Before computing a checksum, we should make sure no frag could
3339 	 * be modified by an external entity : checksum could be wrong.
3340 	 */
3341 	if (unlikely(skb_has_shared_frag(skb))) {
3342 		ret = __skb_linearize(skb);
3343 		if (ret)
3344 			goto out;
3345 	}
3346 	start = skb_checksum_start_offset(skb);
3347 	offset = start + offsetof(struct sctphdr, checksum);
3348 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3349 		ret = -EINVAL;
3350 		goto out;
3351 	}
3352 
3353 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3354 	if (ret)
3355 		goto out;
3356 
3357 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3358 						  skb->len - start, ~(__u32)0,
3359 						  crc32c_csum_stub));
3360 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3361 	skb->ip_summed = CHECKSUM_NONE;
3362 	skb->csum_not_inet = 0;
3363 out:
3364 	return ret;
3365 }
3366 
3367 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3368 {
3369 	__be16 type = skb->protocol;
3370 
3371 	/* Tunnel gso handlers can set protocol to ethernet. */
3372 	if (type == htons(ETH_P_TEB)) {
3373 		struct ethhdr *eth;
3374 
3375 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3376 			return 0;
3377 
3378 		eth = (struct ethhdr *)skb->data;
3379 		type = eth->h_proto;
3380 	}
3381 
3382 	return __vlan_get_protocol(skb, type, depth);
3383 }
3384 
3385 /**
3386  *	skb_mac_gso_segment - mac layer segmentation handler.
3387  *	@skb: buffer to segment
3388  *	@features: features for the output path (see dev->features)
3389  */
3390 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3391 				    netdev_features_t features)
3392 {
3393 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3394 	struct packet_offload *ptype;
3395 	int vlan_depth = skb->mac_len;
3396 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3397 
3398 	if (unlikely(!type))
3399 		return ERR_PTR(-EINVAL);
3400 
3401 	__skb_pull(skb, vlan_depth);
3402 
3403 	rcu_read_lock();
3404 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3405 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3406 			segs = ptype->callbacks.gso_segment(skb, features);
3407 			break;
3408 		}
3409 	}
3410 	rcu_read_unlock();
3411 
3412 	__skb_push(skb, skb->data - skb_mac_header(skb));
3413 
3414 	return segs;
3415 }
3416 EXPORT_SYMBOL(skb_mac_gso_segment);
3417 
3418 
3419 /* openvswitch calls this on rx path, so we need a different check.
3420  */
3421 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3422 {
3423 	if (tx_path)
3424 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3425 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3426 
3427 	return skb->ip_summed == CHECKSUM_NONE;
3428 }
3429 
3430 /**
3431  *	__skb_gso_segment - Perform segmentation on skb.
3432  *	@skb: buffer to segment
3433  *	@features: features for the output path (see dev->features)
3434  *	@tx_path: whether it is called in TX path
3435  *
3436  *	This function segments the given skb and returns a list of segments.
3437  *
3438  *	It may return NULL if the skb requires no segmentation.  This is
3439  *	only possible when GSO is used for verifying header integrity.
3440  *
3441  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3442  */
3443 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3444 				  netdev_features_t features, bool tx_path)
3445 {
3446 	struct sk_buff *segs;
3447 
3448 	if (unlikely(skb_needs_check(skb, tx_path))) {
3449 		int err;
3450 
3451 		/* We're going to init ->check field in TCP or UDP header */
3452 		err = skb_cow_head(skb, 0);
3453 		if (err < 0)
3454 			return ERR_PTR(err);
3455 	}
3456 
3457 	/* Only report GSO partial support if it will enable us to
3458 	 * support segmentation on this frame without needing additional
3459 	 * work.
3460 	 */
3461 	if (features & NETIF_F_GSO_PARTIAL) {
3462 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3463 		struct net_device *dev = skb->dev;
3464 
3465 		partial_features |= dev->features & dev->gso_partial_features;
3466 		if (!skb_gso_ok(skb, features | partial_features))
3467 			features &= ~NETIF_F_GSO_PARTIAL;
3468 	}
3469 
3470 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3471 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3472 
3473 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3474 	SKB_GSO_CB(skb)->encap_level = 0;
3475 
3476 	skb_reset_mac_header(skb);
3477 	skb_reset_mac_len(skb);
3478 
3479 	segs = skb_mac_gso_segment(skb, features);
3480 
3481 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3482 		skb_warn_bad_offload(skb);
3483 
3484 	return segs;
3485 }
3486 EXPORT_SYMBOL(__skb_gso_segment);
3487 
3488 /* Take action when hardware reception checksum errors are detected. */
3489 #ifdef CONFIG_BUG
3490 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3491 {
3492 	if (net_ratelimit()) {
3493 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3494 		skb_dump(KERN_ERR, skb, true);
3495 		dump_stack();
3496 	}
3497 }
3498 EXPORT_SYMBOL(netdev_rx_csum_fault);
3499 #endif
3500 
3501 /* XXX: check that highmem exists at all on the given machine. */
3502 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3503 {
3504 #ifdef CONFIG_HIGHMEM
3505 	int i;
3506 
3507 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3508 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3509 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3510 
3511 			if (PageHighMem(skb_frag_page(frag)))
3512 				return 1;
3513 		}
3514 	}
3515 #endif
3516 	return 0;
3517 }
3518 
3519 /* If MPLS offload request, verify we are testing hardware MPLS features
3520  * instead of standard features for the netdev.
3521  */
3522 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3523 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3524 					   netdev_features_t features,
3525 					   __be16 type)
3526 {
3527 	if (eth_p_mpls(type))
3528 		features &= skb->dev->mpls_features;
3529 
3530 	return features;
3531 }
3532 #else
3533 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3534 					   netdev_features_t features,
3535 					   __be16 type)
3536 {
3537 	return features;
3538 }
3539 #endif
3540 
3541 static netdev_features_t harmonize_features(struct sk_buff *skb,
3542 	netdev_features_t features)
3543 {
3544 	__be16 type;
3545 
3546 	type = skb_network_protocol(skb, NULL);
3547 	features = net_mpls_features(skb, features, type);
3548 
3549 	if (skb->ip_summed != CHECKSUM_NONE &&
3550 	    !can_checksum_protocol(features, type)) {
3551 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3552 	}
3553 	if (illegal_highdma(skb->dev, skb))
3554 		features &= ~NETIF_F_SG;
3555 
3556 	return features;
3557 }
3558 
3559 netdev_features_t passthru_features_check(struct sk_buff *skb,
3560 					  struct net_device *dev,
3561 					  netdev_features_t features)
3562 {
3563 	return features;
3564 }
3565 EXPORT_SYMBOL(passthru_features_check);
3566 
3567 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3568 					     struct net_device *dev,
3569 					     netdev_features_t features)
3570 {
3571 	return vlan_features_check(skb, features);
3572 }
3573 
3574 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3575 					    struct net_device *dev,
3576 					    netdev_features_t features)
3577 {
3578 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3579 
3580 	if (gso_segs > dev->gso_max_segs)
3581 		return features & ~NETIF_F_GSO_MASK;
3582 
3583 	if (!skb_shinfo(skb)->gso_type) {
3584 		skb_warn_bad_offload(skb);
3585 		return features & ~NETIF_F_GSO_MASK;
3586 	}
3587 
3588 	/* Support for GSO partial features requires software
3589 	 * intervention before we can actually process the packets
3590 	 * so we need to strip support for any partial features now
3591 	 * and we can pull them back in after we have partially
3592 	 * segmented the frame.
3593 	 */
3594 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3595 		features &= ~dev->gso_partial_features;
3596 
3597 	/* Make sure to clear the IPv4 ID mangling feature if the
3598 	 * IPv4 header has the potential to be fragmented.
3599 	 */
3600 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3601 		struct iphdr *iph = skb->encapsulation ?
3602 				    inner_ip_hdr(skb) : ip_hdr(skb);
3603 
3604 		if (!(iph->frag_off & htons(IP_DF)))
3605 			features &= ~NETIF_F_TSO_MANGLEID;
3606 	}
3607 
3608 	return features;
3609 }
3610 
3611 netdev_features_t netif_skb_features(struct sk_buff *skb)
3612 {
3613 	struct net_device *dev = skb->dev;
3614 	netdev_features_t features = dev->features;
3615 
3616 	if (skb_is_gso(skb))
3617 		features = gso_features_check(skb, dev, features);
3618 
3619 	/* If encapsulation offload request, verify we are testing
3620 	 * hardware encapsulation features instead of standard
3621 	 * features for the netdev
3622 	 */
3623 	if (skb->encapsulation)
3624 		features &= dev->hw_enc_features;
3625 
3626 	if (skb_vlan_tagged(skb))
3627 		features = netdev_intersect_features(features,
3628 						     dev->vlan_features |
3629 						     NETIF_F_HW_VLAN_CTAG_TX |
3630 						     NETIF_F_HW_VLAN_STAG_TX);
3631 
3632 	if (dev->netdev_ops->ndo_features_check)
3633 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3634 								features);
3635 	else
3636 		features &= dflt_features_check(skb, dev, features);
3637 
3638 	return harmonize_features(skb, features);
3639 }
3640 EXPORT_SYMBOL(netif_skb_features);
3641 
3642 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3643 		    struct netdev_queue *txq, bool more)
3644 {
3645 	unsigned int len;
3646 	int rc;
3647 
3648 	if (dev_nit_active(dev))
3649 		dev_queue_xmit_nit(skb, dev);
3650 
3651 	len = skb->len;
3652 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3653 	trace_net_dev_start_xmit(skb, dev);
3654 	rc = netdev_start_xmit(skb, dev, txq, more);
3655 	trace_net_dev_xmit(skb, rc, dev, len);
3656 
3657 	return rc;
3658 }
3659 
3660 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3661 				    struct netdev_queue *txq, int *ret)
3662 {
3663 	struct sk_buff *skb = first;
3664 	int rc = NETDEV_TX_OK;
3665 
3666 	while (skb) {
3667 		struct sk_buff *next = skb->next;
3668 
3669 		skb_mark_not_on_list(skb);
3670 		rc = xmit_one(skb, dev, txq, next != NULL);
3671 		if (unlikely(!dev_xmit_complete(rc))) {
3672 			skb->next = next;
3673 			goto out;
3674 		}
3675 
3676 		skb = next;
3677 		if (netif_tx_queue_stopped(txq) && skb) {
3678 			rc = NETDEV_TX_BUSY;
3679 			break;
3680 		}
3681 	}
3682 
3683 out:
3684 	*ret = rc;
3685 	return skb;
3686 }
3687 
3688 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3689 					  netdev_features_t features)
3690 {
3691 	if (skb_vlan_tag_present(skb) &&
3692 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3693 		skb = __vlan_hwaccel_push_inside(skb);
3694 	return skb;
3695 }
3696 
3697 int skb_csum_hwoffload_help(struct sk_buff *skb,
3698 			    const netdev_features_t features)
3699 {
3700 	if (unlikely(skb_csum_is_sctp(skb)))
3701 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3702 			skb_crc32c_csum_help(skb);
3703 
3704 	if (features & NETIF_F_HW_CSUM)
3705 		return 0;
3706 
3707 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3708 		switch (skb->csum_offset) {
3709 		case offsetof(struct tcphdr, check):
3710 		case offsetof(struct udphdr, check):
3711 			return 0;
3712 		}
3713 	}
3714 
3715 	return skb_checksum_help(skb);
3716 }
3717 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3718 
3719 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3720 {
3721 	netdev_features_t features;
3722 
3723 	features = netif_skb_features(skb);
3724 	skb = validate_xmit_vlan(skb, features);
3725 	if (unlikely(!skb))
3726 		goto out_null;
3727 
3728 	skb = sk_validate_xmit_skb(skb, dev);
3729 	if (unlikely(!skb))
3730 		goto out_null;
3731 
3732 	if (netif_needs_gso(skb, features)) {
3733 		struct sk_buff *segs;
3734 
3735 		segs = skb_gso_segment(skb, features);
3736 		if (IS_ERR(segs)) {
3737 			goto out_kfree_skb;
3738 		} else if (segs) {
3739 			consume_skb(skb);
3740 			skb = segs;
3741 		}
3742 	} else {
3743 		if (skb_needs_linearize(skb, features) &&
3744 		    __skb_linearize(skb))
3745 			goto out_kfree_skb;
3746 
3747 		/* If packet is not checksummed and device does not
3748 		 * support checksumming for this protocol, complete
3749 		 * checksumming here.
3750 		 */
3751 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3752 			if (skb->encapsulation)
3753 				skb_set_inner_transport_header(skb,
3754 							       skb_checksum_start_offset(skb));
3755 			else
3756 				skb_set_transport_header(skb,
3757 							 skb_checksum_start_offset(skb));
3758 			if (skb_csum_hwoffload_help(skb, features))
3759 				goto out_kfree_skb;
3760 		}
3761 	}
3762 
3763 	skb = validate_xmit_xfrm(skb, features, again);
3764 
3765 	return skb;
3766 
3767 out_kfree_skb:
3768 	kfree_skb(skb);
3769 out_null:
3770 	atomic_long_inc(&dev->tx_dropped);
3771 	return NULL;
3772 }
3773 
3774 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3775 {
3776 	struct sk_buff *next, *head = NULL, *tail;
3777 
3778 	for (; skb != NULL; skb = next) {
3779 		next = skb->next;
3780 		skb_mark_not_on_list(skb);
3781 
3782 		/* in case skb wont be segmented, point to itself */
3783 		skb->prev = skb;
3784 
3785 		skb = validate_xmit_skb(skb, dev, again);
3786 		if (!skb)
3787 			continue;
3788 
3789 		if (!head)
3790 			head = skb;
3791 		else
3792 			tail->next = skb;
3793 		/* If skb was segmented, skb->prev points to
3794 		 * the last segment. If not, it still contains skb.
3795 		 */
3796 		tail = skb->prev;
3797 	}
3798 	return head;
3799 }
3800 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3801 
3802 static void qdisc_pkt_len_init(struct sk_buff *skb)
3803 {
3804 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3805 
3806 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3807 
3808 	/* To get more precise estimation of bytes sent on wire,
3809 	 * we add to pkt_len the headers size of all segments
3810 	 */
3811 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3812 		unsigned int hdr_len;
3813 		u16 gso_segs = shinfo->gso_segs;
3814 
3815 		/* mac layer + network layer */
3816 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3817 
3818 		/* + transport layer */
3819 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3820 			const struct tcphdr *th;
3821 			struct tcphdr _tcphdr;
3822 
3823 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3824 						sizeof(_tcphdr), &_tcphdr);
3825 			if (likely(th))
3826 				hdr_len += __tcp_hdrlen(th);
3827 		} else {
3828 			struct udphdr _udphdr;
3829 
3830 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3831 					       sizeof(_udphdr), &_udphdr))
3832 				hdr_len += sizeof(struct udphdr);
3833 		}
3834 
3835 		if (shinfo->gso_type & SKB_GSO_DODGY)
3836 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3837 						shinfo->gso_size);
3838 
3839 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3840 	}
3841 }
3842 
3843 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3844 				 struct net_device *dev,
3845 				 struct netdev_queue *txq)
3846 {
3847 	spinlock_t *root_lock = qdisc_lock(q);
3848 	struct sk_buff *to_free = NULL;
3849 	bool contended;
3850 	int rc;
3851 
3852 	qdisc_calculate_pkt_len(skb, q);
3853 
3854 	if (q->flags & TCQ_F_NOLOCK) {
3855 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3856 		if (likely(!netif_xmit_frozen_or_stopped(txq)))
3857 			qdisc_run(q);
3858 
3859 		if (unlikely(to_free))
3860 			kfree_skb_list(to_free);
3861 		return rc;
3862 	}
3863 
3864 	/*
3865 	 * Heuristic to force contended enqueues to serialize on a
3866 	 * separate lock before trying to get qdisc main lock.
3867 	 * This permits qdisc->running owner to get the lock more
3868 	 * often and dequeue packets faster.
3869 	 */
3870 	contended = qdisc_is_running(q);
3871 	if (unlikely(contended))
3872 		spin_lock(&q->busylock);
3873 
3874 	spin_lock(root_lock);
3875 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3876 		__qdisc_drop(skb, &to_free);
3877 		rc = NET_XMIT_DROP;
3878 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3879 		   qdisc_run_begin(q)) {
3880 		/*
3881 		 * This is a work-conserving queue; there are no old skbs
3882 		 * waiting to be sent out; and the qdisc is not running -
3883 		 * xmit the skb directly.
3884 		 */
3885 
3886 		qdisc_bstats_update(q, skb);
3887 
3888 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3889 			if (unlikely(contended)) {
3890 				spin_unlock(&q->busylock);
3891 				contended = false;
3892 			}
3893 			__qdisc_run(q);
3894 		}
3895 
3896 		qdisc_run_end(q);
3897 		rc = NET_XMIT_SUCCESS;
3898 	} else {
3899 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3900 		if (qdisc_run_begin(q)) {
3901 			if (unlikely(contended)) {
3902 				spin_unlock(&q->busylock);
3903 				contended = false;
3904 			}
3905 			__qdisc_run(q);
3906 			qdisc_run_end(q);
3907 		}
3908 	}
3909 	spin_unlock(root_lock);
3910 	if (unlikely(to_free))
3911 		kfree_skb_list(to_free);
3912 	if (unlikely(contended))
3913 		spin_unlock(&q->busylock);
3914 	return rc;
3915 }
3916 
3917 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3918 static void skb_update_prio(struct sk_buff *skb)
3919 {
3920 	const struct netprio_map *map;
3921 	const struct sock *sk;
3922 	unsigned int prioidx;
3923 
3924 	if (skb->priority)
3925 		return;
3926 	map = rcu_dereference_bh(skb->dev->priomap);
3927 	if (!map)
3928 		return;
3929 	sk = skb_to_full_sk(skb);
3930 	if (!sk)
3931 		return;
3932 
3933 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3934 
3935 	if (prioidx < map->priomap_len)
3936 		skb->priority = map->priomap[prioidx];
3937 }
3938 #else
3939 #define skb_update_prio(skb)
3940 #endif
3941 
3942 /**
3943  *	dev_loopback_xmit - loop back @skb
3944  *	@net: network namespace this loopback is happening in
3945  *	@sk:  sk needed to be a netfilter okfn
3946  *	@skb: buffer to transmit
3947  */
3948 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3949 {
3950 	skb_reset_mac_header(skb);
3951 	__skb_pull(skb, skb_network_offset(skb));
3952 	skb->pkt_type = PACKET_LOOPBACK;
3953 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3954 	WARN_ON(!skb_dst(skb));
3955 	skb_dst_force(skb);
3956 	netif_rx_ni(skb);
3957 	return 0;
3958 }
3959 EXPORT_SYMBOL(dev_loopback_xmit);
3960 
3961 #ifdef CONFIG_NET_EGRESS
3962 static struct sk_buff *
3963 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3964 {
3965 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3966 	struct tcf_result cl_res;
3967 
3968 	if (!miniq)
3969 		return skb;
3970 
3971 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3972 	qdisc_skb_cb(skb)->mru = 0;
3973 	qdisc_skb_cb(skb)->post_ct = false;
3974 	mini_qdisc_bstats_cpu_update(miniq, skb);
3975 
3976 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3977 	case TC_ACT_OK:
3978 	case TC_ACT_RECLASSIFY:
3979 		skb->tc_index = TC_H_MIN(cl_res.classid);
3980 		break;
3981 	case TC_ACT_SHOT:
3982 		mini_qdisc_qstats_cpu_drop(miniq);
3983 		*ret = NET_XMIT_DROP;
3984 		kfree_skb(skb);
3985 		return NULL;
3986 	case TC_ACT_STOLEN:
3987 	case TC_ACT_QUEUED:
3988 	case TC_ACT_TRAP:
3989 		*ret = NET_XMIT_SUCCESS;
3990 		consume_skb(skb);
3991 		return NULL;
3992 	case TC_ACT_REDIRECT:
3993 		/* No need to push/pop skb's mac_header here on egress! */
3994 		skb_do_redirect(skb);
3995 		*ret = NET_XMIT_SUCCESS;
3996 		return NULL;
3997 	default:
3998 		break;
3999 	}
4000 
4001 	return skb;
4002 }
4003 #endif /* CONFIG_NET_EGRESS */
4004 
4005 #ifdef CONFIG_XPS
4006 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4007 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4008 {
4009 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4010 	struct xps_map *map;
4011 	int queue_index = -1;
4012 
4013 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4014 		return queue_index;
4015 
4016 	tci *= dev_maps->num_tc;
4017 	tci += tc;
4018 
4019 	map = rcu_dereference(dev_maps->attr_map[tci]);
4020 	if (map) {
4021 		if (map->len == 1)
4022 			queue_index = map->queues[0];
4023 		else
4024 			queue_index = map->queues[reciprocal_scale(
4025 						skb_get_hash(skb), map->len)];
4026 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4027 			queue_index = -1;
4028 	}
4029 	return queue_index;
4030 }
4031 #endif
4032 
4033 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4034 			 struct sk_buff *skb)
4035 {
4036 #ifdef CONFIG_XPS
4037 	struct xps_dev_maps *dev_maps;
4038 	struct sock *sk = skb->sk;
4039 	int queue_index = -1;
4040 
4041 	if (!static_key_false(&xps_needed))
4042 		return -1;
4043 
4044 	rcu_read_lock();
4045 	if (!static_key_false(&xps_rxqs_needed))
4046 		goto get_cpus_map;
4047 
4048 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4049 	if (dev_maps) {
4050 		int tci = sk_rx_queue_get(sk);
4051 
4052 		if (tci >= 0)
4053 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4054 							  tci);
4055 	}
4056 
4057 get_cpus_map:
4058 	if (queue_index < 0) {
4059 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4060 		if (dev_maps) {
4061 			unsigned int tci = skb->sender_cpu - 1;
4062 
4063 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4064 							  tci);
4065 		}
4066 	}
4067 	rcu_read_unlock();
4068 
4069 	return queue_index;
4070 #else
4071 	return -1;
4072 #endif
4073 }
4074 
4075 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4076 		     struct net_device *sb_dev)
4077 {
4078 	return 0;
4079 }
4080 EXPORT_SYMBOL(dev_pick_tx_zero);
4081 
4082 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4083 		       struct net_device *sb_dev)
4084 {
4085 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4086 }
4087 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4088 
4089 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4090 		     struct net_device *sb_dev)
4091 {
4092 	struct sock *sk = skb->sk;
4093 	int queue_index = sk_tx_queue_get(sk);
4094 
4095 	sb_dev = sb_dev ? : dev;
4096 
4097 	if (queue_index < 0 || skb->ooo_okay ||
4098 	    queue_index >= dev->real_num_tx_queues) {
4099 		int new_index = get_xps_queue(dev, sb_dev, skb);
4100 
4101 		if (new_index < 0)
4102 			new_index = skb_tx_hash(dev, sb_dev, skb);
4103 
4104 		if (queue_index != new_index && sk &&
4105 		    sk_fullsock(sk) &&
4106 		    rcu_access_pointer(sk->sk_dst_cache))
4107 			sk_tx_queue_set(sk, new_index);
4108 
4109 		queue_index = new_index;
4110 	}
4111 
4112 	return queue_index;
4113 }
4114 EXPORT_SYMBOL(netdev_pick_tx);
4115 
4116 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4117 					 struct sk_buff *skb,
4118 					 struct net_device *sb_dev)
4119 {
4120 	int queue_index = 0;
4121 
4122 #ifdef CONFIG_XPS
4123 	u32 sender_cpu = skb->sender_cpu - 1;
4124 
4125 	if (sender_cpu >= (u32)NR_CPUS)
4126 		skb->sender_cpu = raw_smp_processor_id() + 1;
4127 #endif
4128 
4129 	if (dev->real_num_tx_queues != 1) {
4130 		const struct net_device_ops *ops = dev->netdev_ops;
4131 
4132 		if (ops->ndo_select_queue)
4133 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4134 		else
4135 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4136 
4137 		queue_index = netdev_cap_txqueue(dev, queue_index);
4138 	}
4139 
4140 	skb_set_queue_mapping(skb, queue_index);
4141 	return netdev_get_tx_queue(dev, queue_index);
4142 }
4143 
4144 /**
4145  *	__dev_queue_xmit - transmit a buffer
4146  *	@skb: buffer to transmit
4147  *	@sb_dev: suboordinate device used for L2 forwarding offload
4148  *
4149  *	Queue a buffer for transmission to a network device. The caller must
4150  *	have set the device and priority and built the buffer before calling
4151  *	this function. The function can be called from an interrupt.
4152  *
4153  *	A negative errno code is returned on a failure. A success does not
4154  *	guarantee the frame will be transmitted as it may be dropped due
4155  *	to congestion or traffic shaping.
4156  *
4157  * -----------------------------------------------------------------------------------
4158  *      I notice this method can also return errors from the queue disciplines,
4159  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4160  *      be positive.
4161  *
4162  *      Regardless of the return value, the skb is consumed, so it is currently
4163  *      difficult to retry a send to this method.  (You can bump the ref count
4164  *      before sending to hold a reference for retry if you are careful.)
4165  *
4166  *      When calling this method, interrupts MUST be enabled.  This is because
4167  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4168  *          --BLG
4169  */
4170 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4171 {
4172 	struct net_device *dev = skb->dev;
4173 	struct netdev_queue *txq;
4174 	struct Qdisc *q;
4175 	int rc = -ENOMEM;
4176 	bool again = false;
4177 
4178 	skb_reset_mac_header(skb);
4179 
4180 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4181 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4182 
4183 	/* Disable soft irqs for various locks below. Also
4184 	 * stops preemption for RCU.
4185 	 */
4186 	rcu_read_lock_bh();
4187 
4188 	skb_update_prio(skb);
4189 
4190 	qdisc_pkt_len_init(skb);
4191 #ifdef CONFIG_NET_CLS_ACT
4192 	skb->tc_at_ingress = 0;
4193 # ifdef CONFIG_NET_EGRESS
4194 	if (static_branch_unlikely(&egress_needed_key)) {
4195 		skb = sch_handle_egress(skb, &rc, dev);
4196 		if (!skb)
4197 			goto out;
4198 	}
4199 # endif
4200 #endif
4201 	/* If device/qdisc don't need skb->dst, release it right now while
4202 	 * its hot in this cpu cache.
4203 	 */
4204 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4205 		skb_dst_drop(skb);
4206 	else
4207 		skb_dst_force(skb);
4208 
4209 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4210 	q = rcu_dereference_bh(txq->qdisc);
4211 
4212 	trace_net_dev_queue(skb);
4213 	if (q->enqueue) {
4214 		rc = __dev_xmit_skb(skb, q, dev, txq);
4215 		goto out;
4216 	}
4217 
4218 	/* The device has no queue. Common case for software devices:
4219 	 * loopback, all the sorts of tunnels...
4220 
4221 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4222 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4223 	 * counters.)
4224 	 * However, it is possible, that they rely on protection
4225 	 * made by us here.
4226 
4227 	 * Check this and shot the lock. It is not prone from deadlocks.
4228 	 *Either shot noqueue qdisc, it is even simpler 8)
4229 	 */
4230 	if (dev->flags & IFF_UP) {
4231 		int cpu = smp_processor_id(); /* ok because BHs are off */
4232 
4233 		if (txq->xmit_lock_owner != cpu) {
4234 			if (dev_xmit_recursion())
4235 				goto recursion_alert;
4236 
4237 			skb = validate_xmit_skb(skb, dev, &again);
4238 			if (!skb)
4239 				goto out;
4240 
4241 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4242 			HARD_TX_LOCK(dev, txq, cpu);
4243 
4244 			if (!netif_xmit_stopped(txq)) {
4245 				dev_xmit_recursion_inc();
4246 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4247 				dev_xmit_recursion_dec();
4248 				if (dev_xmit_complete(rc)) {
4249 					HARD_TX_UNLOCK(dev, txq);
4250 					goto out;
4251 				}
4252 			}
4253 			HARD_TX_UNLOCK(dev, txq);
4254 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4255 					     dev->name);
4256 		} else {
4257 			/* Recursion is detected! It is possible,
4258 			 * unfortunately
4259 			 */
4260 recursion_alert:
4261 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4262 					     dev->name);
4263 		}
4264 	}
4265 
4266 	rc = -ENETDOWN;
4267 	rcu_read_unlock_bh();
4268 
4269 	atomic_long_inc(&dev->tx_dropped);
4270 	kfree_skb_list(skb);
4271 	return rc;
4272 out:
4273 	rcu_read_unlock_bh();
4274 	return rc;
4275 }
4276 
4277 int dev_queue_xmit(struct sk_buff *skb)
4278 {
4279 	return __dev_queue_xmit(skb, NULL);
4280 }
4281 EXPORT_SYMBOL(dev_queue_xmit);
4282 
4283 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4284 {
4285 	return __dev_queue_xmit(skb, sb_dev);
4286 }
4287 EXPORT_SYMBOL(dev_queue_xmit_accel);
4288 
4289 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4290 {
4291 	struct net_device *dev = skb->dev;
4292 	struct sk_buff *orig_skb = skb;
4293 	struct netdev_queue *txq;
4294 	int ret = NETDEV_TX_BUSY;
4295 	bool again = false;
4296 
4297 	if (unlikely(!netif_running(dev) ||
4298 		     !netif_carrier_ok(dev)))
4299 		goto drop;
4300 
4301 	skb = validate_xmit_skb_list(skb, dev, &again);
4302 	if (skb != orig_skb)
4303 		goto drop;
4304 
4305 	skb_set_queue_mapping(skb, queue_id);
4306 	txq = skb_get_tx_queue(dev, skb);
4307 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4308 
4309 	local_bh_disable();
4310 
4311 	dev_xmit_recursion_inc();
4312 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4313 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4314 		ret = netdev_start_xmit(skb, dev, txq, false);
4315 	HARD_TX_UNLOCK(dev, txq);
4316 	dev_xmit_recursion_dec();
4317 
4318 	local_bh_enable();
4319 	return ret;
4320 drop:
4321 	atomic_long_inc(&dev->tx_dropped);
4322 	kfree_skb_list(skb);
4323 	return NET_XMIT_DROP;
4324 }
4325 EXPORT_SYMBOL(__dev_direct_xmit);
4326 
4327 /*************************************************************************
4328  *			Receiver routines
4329  *************************************************************************/
4330 
4331 int netdev_max_backlog __read_mostly = 1000;
4332 EXPORT_SYMBOL(netdev_max_backlog);
4333 
4334 int netdev_tstamp_prequeue __read_mostly = 1;
4335 int netdev_budget __read_mostly = 300;
4336 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4337 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4338 int weight_p __read_mostly = 64;           /* old backlog weight */
4339 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4340 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4341 int dev_rx_weight __read_mostly = 64;
4342 int dev_tx_weight __read_mostly = 64;
4343 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4344 int gro_normal_batch __read_mostly = 8;
4345 
4346 /* Called with irq disabled */
4347 static inline void ____napi_schedule(struct softnet_data *sd,
4348 				     struct napi_struct *napi)
4349 {
4350 	struct task_struct *thread;
4351 
4352 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4353 		/* Paired with smp_mb__before_atomic() in
4354 		 * napi_enable()/dev_set_threaded().
4355 		 * Use READ_ONCE() to guarantee a complete
4356 		 * read on napi->thread. Only call
4357 		 * wake_up_process() when it's not NULL.
4358 		 */
4359 		thread = READ_ONCE(napi->thread);
4360 		if (thread) {
4361 			/* Avoid doing set_bit() if the thread is in
4362 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4363 			 * makes sure to proceed with napi polling
4364 			 * if the thread is explicitly woken from here.
4365 			 */
4366 			if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE)
4367 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4368 			wake_up_process(thread);
4369 			return;
4370 		}
4371 	}
4372 
4373 	list_add_tail(&napi->poll_list, &sd->poll_list);
4374 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4375 }
4376 
4377 #ifdef CONFIG_RPS
4378 
4379 /* One global table that all flow-based protocols share. */
4380 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4381 EXPORT_SYMBOL(rps_sock_flow_table);
4382 u32 rps_cpu_mask __read_mostly;
4383 EXPORT_SYMBOL(rps_cpu_mask);
4384 
4385 struct static_key_false rps_needed __read_mostly;
4386 EXPORT_SYMBOL(rps_needed);
4387 struct static_key_false rfs_needed __read_mostly;
4388 EXPORT_SYMBOL(rfs_needed);
4389 
4390 static struct rps_dev_flow *
4391 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4392 	    struct rps_dev_flow *rflow, u16 next_cpu)
4393 {
4394 	if (next_cpu < nr_cpu_ids) {
4395 #ifdef CONFIG_RFS_ACCEL
4396 		struct netdev_rx_queue *rxqueue;
4397 		struct rps_dev_flow_table *flow_table;
4398 		struct rps_dev_flow *old_rflow;
4399 		u32 flow_id;
4400 		u16 rxq_index;
4401 		int rc;
4402 
4403 		/* Should we steer this flow to a different hardware queue? */
4404 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4405 		    !(dev->features & NETIF_F_NTUPLE))
4406 			goto out;
4407 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4408 		if (rxq_index == skb_get_rx_queue(skb))
4409 			goto out;
4410 
4411 		rxqueue = dev->_rx + rxq_index;
4412 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4413 		if (!flow_table)
4414 			goto out;
4415 		flow_id = skb_get_hash(skb) & flow_table->mask;
4416 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4417 							rxq_index, flow_id);
4418 		if (rc < 0)
4419 			goto out;
4420 		old_rflow = rflow;
4421 		rflow = &flow_table->flows[flow_id];
4422 		rflow->filter = rc;
4423 		if (old_rflow->filter == rflow->filter)
4424 			old_rflow->filter = RPS_NO_FILTER;
4425 	out:
4426 #endif
4427 		rflow->last_qtail =
4428 			per_cpu(softnet_data, next_cpu).input_queue_head;
4429 	}
4430 
4431 	rflow->cpu = next_cpu;
4432 	return rflow;
4433 }
4434 
4435 /*
4436  * get_rps_cpu is called from netif_receive_skb and returns the target
4437  * CPU from the RPS map of the receiving queue for a given skb.
4438  * rcu_read_lock must be held on entry.
4439  */
4440 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4441 		       struct rps_dev_flow **rflowp)
4442 {
4443 	const struct rps_sock_flow_table *sock_flow_table;
4444 	struct netdev_rx_queue *rxqueue = dev->_rx;
4445 	struct rps_dev_flow_table *flow_table;
4446 	struct rps_map *map;
4447 	int cpu = -1;
4448 	u32 tcpu;
4449 	u32 hash;
4450 
4451 	if (skb_rx_queue_recorded(skb)) {
4452 		u16 index = skb_get_rx_queue(skb);
4453 
4454 		if (unlikely(index >= dev->real_num_rx_queues)) {
4455 			WARN_ONCE(dev->real_num_rx_queues > 1,
4456 				  "%s received packet on queue %u, but number "
4457 				  "of RX queues is %u\n",
4458 				  dev->name, index, dev->real_num_rx_queues);
4459 			goto done;
4460 		}
4461 		rxqueue += index;
4462 	}
4463 
4464 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4465 
4466 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4467 	map = rcu_dereference(rxqueue->rps_map);
4468 	if (!flow_table && !map)
4469 		goto done;
4470 
4471 	skb_reset_network_header(skb);
4472 	hash = skb_get_hash(skb);
4473 	if (!hash)
4474 		goto done;
4475 
4476 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4477 	if (flow_table && sock_flow_table) {
4478 		struct rps_dev_flow *rflow;
4479 		u32 next_cpu;
4480 		u32 ident;
4481 
4482 		/* First check into global flow table if there is a match */
4483 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4484 		if ((ident ^ hash) & ~rps_cpu_mask)
4485 			goto try_rps;
4486 
4487 		next_cpu = ident & rps_cpu_mask;
4488 
4489 		/* OK, now we know there is a match,
4490 		 * we can look at the local (per receive queue) flow table
4491 		 */
4492 		rflow = &flow_table->flows[hash & flow_table->mask];
4493 		tcpu = rflow->cpu;
4494 
4495 		/*
4496 		 * If the desired CPU (where last recvmsg was done) is
4497 		 * different from current CPU (one in the rx-queue flow
4498 		 * table entry), switch if one of the following holds:
4499 		 *   - Current CPU is unset (>= nr_cpu_ids).
4500 		 *   - Current CPU is offline.
4501 		 *   - The current CPU's queue tail has advanced beyond the
4502 		 *     last packet that was enqueued using this table entry.
4503 		 *     This guarantees that all previous packets for the flow
4504 		 *     have been dequeued, thus preserving in order delivery.
4505 		 */
4506 		if (unlikely(tcpu != next_cpu) &&
4507 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4508 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4509 		      rflow->last_qtail)) >= 0)) {
4510 			tcpu = next_cpu;
4511 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4512 		}
4513 
4514 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4515 			*rflowp = rflow;
4516 			cpu = tcpu;
4517 			goto done;
4518 		}
4519 	}
4520 
4521 try_rps:
4522 
4523 	if (map) {
4524 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4525 		if (cpu_online(tcpu)) {
4526 			cpu = tcpu;
4527 			goto done;
4528 		}
4529 	}
4530 
4531 done:
4532 	return cpu;
4533 }
4534 
4535 #ifdef CONFIG_RFS_ACCEL
4536 
4537 /**
4538  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4539  * @dev: Device on which the filter was set
4540  * @rxq_index: RX queue index
4541  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4542  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4543  *
4544  * Drivers that implement ndo_rx_flow_steer() should periodically call
4545  * this function for each installed filter and remove the filters for
4546  * which it returns %true.
4547  */
4548 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4549 			 u32 flow_id, u16 filter_id)
4550 {
4551 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4552 	struct rps_dev_flow_table *flow_table;
4553 	struct rps_dev_flow *rflow;
4554 	bool expire = true;
4555 	unsigned int cpu;
4556 
4557 	rcu_read_lock();
4558 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4559 	if (flow_table && flow_id <= flow_table->mask) {
4560 		rflow = &flow_table->flows[flow_id];
4561 		cpu = READ_ONCE(rflow->cpu);
4562 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4563 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4564 			   rflow->last_qtail) <
4565 		     (int)(10 * flow_table->mask)))
4566 			expire = false;
4567 	}
4568 	rcu_read_unlock();
4569 	return expire;
4570 }
4571 EXPORT_SYMBOL(rps_may_expire_flow);
4572 
4573 #endif /* CONFIG_RFS_ACCEL */
4574 
4575 /* Called from hardirq (IPI) context */
4576 static void rps_trigger_softirq(void *data)
4577 {
4578 	struct softnet_data *sd = data;
4579 
4580 	____napi_schedule(sd, &sd->backlog);
4581 	sd->received_rps++;
4582 }
4583 
4584 #endif /* CONFIG_RPS */
4585 
4586 /*
4587  * Check if this softnet_data structure is another cpu one
4588  * If yes, queue it to our IPI list and return 1
4589  * If no, return 0
4590  */
4591 static int rps_ipi_queued(struct softnet_data *sd)
4592 {
4593 #ifdef CONFIG_RPS
4594 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4595 
4596 	if (sd != mysd) {
4597 		sd->rps_ipi_next = mysd->rps_ipi_list;
4598 		mysd->rps_ipi_list = sd;
4599 
4600 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4601 		return 1;
4602 	}
4603 #endif /* CONFIG_RPS */
4604 	return 0;
4605 }
4606 
4607 #ifdef CONFIG_NET_FLOW_LIMIT
4608 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4609 #endif
4610 
4611 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4612 {
4613 #ifdef CONFIG_NET_FLOW_LIMIT
4614 	struct sd_flow_limit *fl;
4615 	struct softnet_data *sd;
4616 	unsigned int old_flow, new_flow;
4617 
4618 	if (qlen < (netdev_max_backlog >> 1))
4619 		return false;
4620 
4621 	sd = this_cpu_ptr(&softnet_data);
4622 
4623 	rcu_read_lock();
4624 	fl = rcu_dereference(sd->flow_limit);
4625 	if (fl) {
4626 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4627 		old_flow = fl->history[fl->history_head];
4628 		fl->history[fl->history_head] = new_flow;
4629 
4630 		fl->history_head++;
4631 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4632 
4633 		if (likely(fl->buckets[old_flow]))
4634 			fl->buckets[old_flow]--;
4635 
4636 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4637 			fl->count++;
4638 			rcu_read_unlock();
4639 			return true;
4640 		}
4641 	}
4642 	rcu_read_unlock();
4643 #endif
4644 	return false;
4645 }
4646 
4647 /*
4648  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4649  * queue (may be a remote CPU queue).
4650  */
4651 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4652 			      unsigned int *qtail)
4653 {
4654 	struct softnet_data *sd;
4655 	unsigned long flags;
4656 	unsigned int qlen;
4657 
4658 	sd = &per_cpu(softnet_data, cpu);
4659 
4660 	local_irq_save(flags);
4661 
4662 	rps_lock(sd);
4663 	if (!netif_running(skb->dev))
4664 		goto drop;
4665 	qlen = skb_queue_len(&sd->input_pkt_queue);
4666 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4667 		if (qlen) {
4668 enqueue:
4669 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4670 			input_queue_tail_incr_save(sd, qtail);
4671 			rps_unlock(sd);
4672 			local_irq_restore(flags);
4673 			return NET_RX_SUCCESS;
4674 		}
4675 
4676 		/* Schedule NAPI for backlog device
4677 		 * We can use non atomic operation since we own the queue lock
4678 		 */
4679 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4680 			if (!rps_ipi_queued(sd))
4681 				____napi_schedule(sd, &sd->backlog);
4682 		}
4683 		goto enqueue;
4684 	}
4685 
4686 drop:
4687 	sd->dropped++;
4688 	rps_unlock(sd);
4689 
4690 	local_irq_restore(flags);
4691 
4692 	atomic_long_inc(&skb->dev->rx_dropped);
4693 	kfree_skb(skb);
4694 	return NET_RX_DROP;
4695 }
4696 
4697 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4698 {
4699 	struct net_device *dev = skb->dev;
4700 	struct netdev_rx_queue *rxqueue;
4701 
4702 	rxqueue = dev->_rx;
4703 
4704 	if (skb_rx_queue_recorded(skb)) {
4705 		u16 index = skb_get_rx_queue(skb);
4706 
4707 		if (unlikely(index >= dev->real_num_rx_queues)) {
4708 			WARN_ONCE(dev->real_num_rx_queues > 1,
4709 				  "%s received packet on queue %u, but number "
4710 				  "of RX queues is %u\n",
4711 				  dev->name, index, dev->real_num_rx_queues);
4712 
4713 			return rxqueue; /* Return first rxqueue */
4714 		}
4715 		rxqueue += index;
4716 	}
4717 	return rxqueue;
4718 }
4719 
4720 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4721 				     struct xdp_buff *xdp,
4722 				     struct bpf_prog *xdp_prog)
4723 {
4724 	void *orig_data, *orig_data_end, *hard_start;
4725 	struct netdev_rx_queue *rxqueue;
4726 	u32 metalen, act = XDP_DROP;
4727 	bool orig_bcast, orig_host;
4728 	u32 mac_len, frame_sz;
4729 	__be16 orig_eth_type;
4730 	struct ethhdr *eth;
4731 	int off;
4732 
4733 	/* Reinjected packets coming from act_mirred or similar should
4734 	 * not get XDP generic processing.
4735 	 */
4736 	if (skb_is_redirected(skb))
4737 		return XDP_PASS;
4738 
4739 	/* XDP packets must be linear and must have sufficient headroom
4740 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4741 	 * native XDP provides, thus we need to do it here as well.
4742 	 */
4743 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4744 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4745 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4746 		int troom = skb->tail + skb->data_len - skb->end;
4747 
4748 		/* In case we have to go down the path and also linearize,
4749 		 * then lets do the pskb_expand_head() work just once here.
4750 		 */
4751 		if (pskb_expand_head(skb,
4752 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4753 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4754 			goto do_drop;
4755 		if (skb_linearize(skb))
4756 			goto do_drop;
4757 	}
4758 
4759 	/* The XDP program wants to see the packet starting at the MAC
4760 	 * header.
4761 	 */
4762 	mac_len = skb->data - skb_mac_header(skb);
4763 	hard_start = skb->data - skb_headroom(skb);
4764 
4765 	/* SKB "head" area always have tailroom for skb_shared_info */
4766 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4767 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4768 
4769 	rxqueue = netif_get_rxqueue(skb);
4770 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4771 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4772 			 skb_headlen(skb) + mac_len, true);
4773 
4774 	orig_data_end = xdp->data_end;
4775 	orig_data = xdp->data;
4776 	eth = (struct ethhdr *)xdp->data;
4777 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4778 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4779 	orig_eth_type = eth->h_proto;
4780 
4781 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4782 
4783 	/* check if bpf_xdp_adjust_head was used */
4784 	off = xdp->data - orig_data;
4785 	if (off) {
4786 		if (off > 0)
4787 			__skb_pull(skb, off);
4788 		else if (off < 0)
4789 			__skb_push(skb, -off);
4790 
4791 		skb->mac_header += off;
4792 		skb_reset_network_header(skb);
4793 	}
4794 
4795 	/* check if bpf_xdp_adjust_tail was used */
4796 	off = xdp->data_end - orig_data_end;
4797 	if (off != 0) {
4798 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4799 		skb->len += off; /* positive on grow, negative on shrink */
4800 	}
4801 
4802 	/* check if XDP changed eth hdr such SKB needs update */
4803 	eth = (struct ethhdr *)xdp->data;
4804 	if ((orig_eth_type != eth->h_proto) ||
4805 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4806 						  skb->dev->dev_addr)) ||
4807 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4808 		__skb_push(skb, ETH_HLEN);
4809 		skb->pkt_type = PACKET_HOST;
4810 		skb->protocol = eth_type_trans(skb, skb->dev);
4811 	}
4812 
4813 	switch (act) {
4814 	case XDP_REDIRECT:
4815 	case XDP_TX:
4816 		__skb_push(skb, mac_len);
4817 		break;
4818 	case XDP_PASS:
4819 		metalen = xdp->data - xdp->data_meta;
4820 		if (metalen)
4821 			skb_metadata_set(skb, metalen);
4822 		break;
4823 	default:
4824 		bpf_warn_invalid_xdp_action(act);
4825 		fallthrough;
4826 	case XDP_ABORTED:
4827 		trace_xdp_exception(skb->dev, xdp_prog, act);
4828 		fallthrough;
4829 	case XDP_DROP:
4830 	do_drop:
4831 		kfree_skb(skb);
4832 		break;
4833 	}
4834 
4835 	return act;
4836 }
4837 
4838 /* When doing generic XDP we have to bypass the qdisc layer and the
4839  * network taps in order to match in-driver-XDP behavior.
4840  */
4841 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4842 {
4843 	struct net_device *dev = skb->dev;
4844 	struct netdev_queue *txq;
4845 	bool free_skb = true;
4846 	int cpu, rc;
4847 
4848 	txq = netdev_core_pick_tx(dev, skb, NULL);
4849 	cpu = smp_processor_id();
4850 	HARD_TX_LOCK(dev, txq, cpu);
4851 	if (!netif_xmit_stopped(txq)) {
4852 		rc = netdev_start_xmit(skb, dev, txq, 0);
4853 		if (dev_xmit_complete(rc))
4854 			free_skb = false;
4855 	}
4856 	HARD_TX_UNLOCK(dev, txq);
4857 	if (free_skb) {
4858 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4859 		kfree_skb(skb);
4860 	}
4861 }
4862 
4863 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4864 
4865 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4866 {
4867 	if (xdp_prog) {
4868 		struct xdp_buff xdp;
4869 		u32 act;
4870 		int err;
4871 
4872 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4873 		if (act != XDP_PASS) {
4874 			switch (act) {
4875 			case XDP_REDIRECT:
4876 				err = xdp_do_generic_redirect(skb->dev, skb,
4877 							      &xdp, xdp_prog);
4878 				if (err)
4879 					goto out_redir;
4880 				break;
4881 			case XDP_TX:
4882 				generic_xdp_tx(skb, xdp_prog);
4883 				break;
4884 			}
4885 			return XDP_DROP;
4886 		}
4887 	}
4888 	return XDP_PASS;
4889 out_redir:
4890 	kfree_skb(skb);
4891 	return XDP_DROP;
4892 }
4893 EXPORT_SYMBOL_GPL(do_xdp_generic);
4894 
4895 static int netif_rx_internal(struct sk_buff *skb)
4896 {
4897 	int ret;
4898 
4899 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4900 
4901 	trace_netif_rx(skb);
4902 
4903 #ifdef CONFIG_RPS
4904 	if (static_branch_unlikely(&rps_needed)) {
4905 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4906 		int cpu;
4907 
4908 		preempt_disable();
4909 		rcu_read_lock();
4910 
4911 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4912 		if (cpu < 0)
4913 			cpu = smp_processor_id();
4914 
4915 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4916 
4917 		rcu_read_unlock();
4918 		preempt_enable();
4919 	} else
4920 #endif
4921 	{
4922 		unsigned int qtail;
4923 
4924 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4925 		put_cpu();
4926 	}
4927 	return ret;
4928 }
4929 
4930 /**
4931  *	netif_rx	-	post buffer to the network code
4932  *	@skb: buffer to post
4933  *
4934  *	This function receives a packet from a device driver and queues it for
4935  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4936  *	may be dropped during processing for congestion control or by the
4937  *	protocol layers.
4938  *
4939  *	return values:
4940  *	NET_RX_SUCCESS	(no congestion)
4941  *	NET_RX_DROP     (packet was dropped)
4942  *
4943  */
4944 
4945 int netif_rx(struct sk_buff *skb)
4946 {
4947 	int ret;
4948 
4949 	trace_netif_rx_entry(skb);
4950 
4951 	ret = netif_rx_internal(skb);
4952 	trace_netif_rx_exit(ret);
4953 
4954 	return ret;
4955 }
4956 EXPORT_SYMBOL(netif_rx);
4957 
4958 int netif_rx_ni(struct sk_buff *skb)
4959 {
4960 	int err;
4961 
4962 	trace_netif_rx_ni_entry(skb);
4963 
4964 	preempt_disable();
4965 	err = netif_rx_internal(skb);
4966 	if (local_softirq_pending())
4967 		do_softirq();
4968 	preempt_enable();
4969 	trace_netif_rx_ni_exit(err);
4970 
4971 	return err;
4972 }
4973 EXPORT_SYMBOL(netif_rx_ni);
4974 
4975 int netif_rx_any_context(struct sk_buff *skb)
4976 {
4977 	/*
4978 	 * If invoked from contexts which do not invoke bottom half
4979 	 * processing either at return from interrupt or when softrqs are
4980 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4981 	 * directly.
4982 	 */
4983 	if (in_interrupt())
4984 		return netif_rx(skb);
4985 	else
4986 		return netif_rx_ni(skb);
4987 }
4988 EXPORT_SYMBOL(netif_rx_any_context);
4989 
4990 static __latent_entropy void net_tx_action(struct softirq_action *h)
4991 {
4992 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4993 
4994 	if (sd->completion_queue) {
4995 		struct sk_buff *clist;
4996 
4997 		local_irq_disable();
4998 		clist = sd->completion_queue;
4999 		sd->completion_queue = NULL;
5000 		local_irq_enable();
5001 
5002 		while (clist) {
5003 			struct sk_buff *skb = clist;
5004 
5005 			clist = clist->next;
5006 
5007 			WARN_ON(refcount_read(&skb->users));
5008 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5009 				trace_consume_skb(skb);
5010 			else
5011 				trace_kfree_skb(skb, net_tx_action);
5012 
5013 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5014 				__kfree_skb(skb);
5015 			else
5016 				__kfree_skb_defer(skb);
5017 		}
5018 	}
5019 
5020 	if (sd->output_queue) {
5021 		struct Qdisc *head;
5022 
5023 		local_irq_disable();
5024 		head = sd->output_queue;
5025 		sd->output_queue = NULL;
5026 		sd->output_queue_tailp = &sd->output_queue;
5027 		local_irq_enable();
5028 
5029 		rcu_read_lock();
5030 
5031 		while (head) {
5032 			struct Qdisc *q = head;
5033 			spinlock_t *root_lock = NULL;
5034 
5035 			head = head->next_sched;
5036 
5037 			/* We need to make sure head->next_sched is read
5038 			 * before clearing __QDISC_STATE_SCHED
5039 			 */
5040 			smp_mb__before_atomic();
5041 
5042 			if (!(q->flags & TCQ_F_NOLOCK)) {
5043 				root_lock = qdisc_lock(q);
5044 				spin_lock(root_lock);
5045 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5046 						     &q->state))) {
5047 				/* There is a synchronize_net() between
5048 				 * STATE_DEACTIVATED flag being set and
5049 				 * qdisc_reset()/some_qdisc_is_busy() in
5050 				 * dev_deactivate(), so we can safely bail out
5051 				 * early here to avoid data race between
5052 				 * qdisc_deactivate() and some_qdisc_is_busy()
5053 				 * for lockless qdisc.
5054 				 */
5055 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5056 				continue;
5057 			}
5058 
5059 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5060 			qdisc_run(q);
5061 			if (root_lock)
5062 				spin_unlock(root_lock);
5063 		}
5064 
5065 		rcu_read_unlock();
5066 	}
5067 
5068 	xfrm_dev_backlog(sd);
5069 }
5070 
5071 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5072 /* This hook is defined here for ATM LANE */
5073 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5074 			     unsigned char *addr) __read_mostly;
5075 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5076 #endif
5077 
5078 static inline struct sk_buff *
5079 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5080 		   struct net_device *orig_dev, bool *another)
5081 {
5082 #ifdef CONFIG_NET_CLS_ACT
5083 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5084 	struct tcf_result cl_res;
5085 
5086 	/* If there's at least one ingress present somewhere (so
5087 	 * we get here via enabled static key), remaining devices
5088 	 * that are not configured with an ingress qdisc will bail
5089 	 * out here.
5090 	 */
5091 	if (!miniq)
5092 		return skb;
5093 
5094 	if (*pt_prev) {
5095 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5096 		*pt_prev = NULL;
5097 	}
5098 
5099 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5100 	qdisc_skb_cb(skb)->mru = 0;
5101 	qdisc_skb_cb(skb)->post_ct = false;
5102 	skb->tc_at_ingress = 1;
5103 	mini_qdisc_bstats_cpu_update(miniq, skb);
5104 
5105 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5106 				     &cl_res, false)) {
5107 	case TC_ACT_OK:
5108 	case TC_ACT_RECLASSIFY:
5109 		skb->tc_index = TC_H_MIN(cl_res.classid);
5110 		break;
5111 	case TC_ACT_SHOT:
5112 		mini_qdisc_qstats_cpu_drop(miniq);
5113 		kfree_skb(skb);
5114 		return NULL;
5115 	case TC_ACT_STOLEN:
5116 	case TC_ACT_QUEUED:
5117 	case TC_ACT_TRAP:
5118 		consume_skb(skb);
5119 		return NULL;
5120 	case TC_ACT_REDIRECT:
5121 		/* skb_mac_header check was done by cls/act_bpf, so
5122 		 * we can safely push the L2 header back before
5123 		 * redirecting to another netdev
5124 		 */
5125 		__skb_push(skb, skb->mac_len);
5126 		if (skb_do_redirect(skb) == -EAGAIN) {
5127 			__skb_pull(skb, skb->mac_len);
5128 			*another = true;
5129 			break;
5130 		}
5131 		return NULL;
5132 	case TC_ACT_CONSUMED:
5133 		return NULL;
5134 	default:
5135 		break;
5136 	}
5137 #endif /* CONFIG_NET_CLS_ACT */
5138 	return skb;
5139 }
5140 
5141 /**
5142  *	netdev_is_rx_handler_busy - check if receive handler is registered
5143  *	@dev: device to check
5144  *
5145  *	Check if a receive handler is already registered for a given device.
5146  *	Return true if there one.
5147  *
5148  *	The caller must hold the rtnl_mutex.
5149  */
5150 bool netdev_is_rx_handler_busy(struct net_device *dev)
5151 {
5152 	ASSERT_RTNL();
5153 	return dev && rtnl_dereference(dev->rx_handler);
5154 }
5155 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5156 
5157 /**
5158  *	netdev_rx_handler_register - register receive handler
5159  *	@dev: device to register a handler for
5160  *	@rx_handler: receive handler to register
5161  *	@rx_handler_data: data pointer that is used by rx handler
5162  *
5163  *	Register a receive handler for a device. This handler will then be
5164  *	called from __netif_receive_skb. A negative errno code is returned
5165  *	on a failure.
5166  *
5167  *	The caller must hold the rtnl_mutex.
5168  *
5169  *	For a general description of rx_handler, see enum rx_handler_result.
5170  */
5171 int netdev_rx_handler_register(struct net_device *dev,
5172 			       rx_handler_func_t *rx_handler,
5173 			       void *rx_handler_data)
5174 {
5175 	if (netdev_is_rx_handler_busy(dev))
5176 		return -EBUSY;
5177 
5178 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5179 		return -EINVAL;
5180 
5181 	/* Note: rx_handler_data must be set before rx_handler */
5182 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5183 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5184 
5185 	return 0;
5186 }
5187 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5188 
5189 /**
5190  *	netdev_rx_handler_unregister - unregister receive handler
5191  *	@dev: device to unregister a handler from
5192  *
5193  *	Unregister a receive handler from a device.
5194  *
5195  *	The caller must hold the rtnl_mutex.
5196  */
5197 void netdev_rx_handler_unregister(struct net_device *dev)
5198 {
5199 
5200 	ASSERT_RTNL();
5201 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5202 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5203 	 * section has a guarantee to see a non NULL rx_handler_data
5204 	 * as well.
5205 	 */
5206 	synchronize_net();
5207 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5208 }
5209 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5210 
5211 /*
5212  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5213  * the special handling of PFMEMALLOC skbs.
5214  */
5215 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5216 {
5217 	switch (skb->protocol) {
5218 	case htons(ETH_P_ARP):
5219 	case htons(ETH_P_IP):
5220 	case htons(ETH_P_IPV6):
5221 	case htons(ETH_P_8021Q):
5222 	case htons(ETH_P_8021AD):
5223 		return true;
5224 	default:
5225 		return false;
5226 	}
5227 }
5228 
5229 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5230 			     int *ret, struct net_device *orig_dev)
5231 {
5232 	if (nf_hook_ingress_active(skb)) {
5233 		int ingress_retval;
5234 
5235 		if (*pt_prev) {
5236 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5237 			*pt_prev = NULL;
5238 		}
5239 
5240 		rcu_read_lock();
5241 		ingress_retval = nf_hook_ingress(skb);
5242 		rcu_read_unlock();
5243 		return ingress_retval;
5244 	}
5245 	return 0;
5246 }
5247 
5248 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5249 				    struct packet_type **ppt_prev)
5250 {
5251 	struct packet_type *ptype, *pt_prev;
5252 	rx_handler_func_t *rx_handler;
5253 	struct sk_buff *skb = *pskb;
5254 	struct net_device *orig_dev;
5255 	bool deliver_exact = false;
5256 	int ret = NET_RX_DROP;
5257 	__be16 type;
5258 
5259 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5260 
5261 	trace_netif_receive_skb(skb);
5262 
5263 	orig_dev = skb->dev;
5264 
5265 	skb_reset_network_header(skb);
5266 	if (!skb_transport_header_was_set(skb))
5267 		skb_reset_transport_header(skb);
5268 	skb_reset_mac_len(skb);
5269 
5270 	pt_prev = NULL;
5271 
5272 another_round:
5273 	skb->skb_iif = skb->dev->ifindex;
5274 
5275 	__this_cpu_inc(softnet_data.processed);
5276 
5277 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5278 		int ret2;
5279 
5280 		preempt_disable();
5281 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5282 		preempt_enable();
5283 
5284 		if (ret2 != XDP_PASS) {
5285 			ret = NET_RX_DROP;
5286 			goto out;
5287 		}
5288 		skb_reset_mac_len(skb);
5289 	}
5290 
5291 	if (eth_type_vlan(skb->protocol)) {
5292 		skb = skb_vlan_untag(skb);
5293 		if (unlikely(!skb))
5294 			goto out;
5295 	}
5296 
5297 	if (skb_skip_tc_classify(skb))
5298 		goto skip_classify;
5299 
5300 	if (pfmemalloc)
5301 		goto skip_taps;
5302 
5303 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5304 		if (pt_prev)
5305 			ret = deliver_skb(skb, pt_prev, orig_dev);
5306 		pt_prev = ptype;
5307 	}
5308 
5309 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5310 		if (pt_prev)
5311 			ret = deliver_skb(skb, pt_prev, orig_dev);
5312 		pt_prev = ptype;
5313 	}
5314 
5315 skip_taps:
5316 #ifdef CONFIG_NET_INGRESS
5317 	if (static_branch_unlikely(&ingress_needed_key)) {
5318 		bool another = false;
5319 
5320 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5321 					 &another);
5322 		if (another)
5323 			goto another_round;
5324 		if (!skb)
5325 			goto out;
5326 
5327 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5328 			goto out;
5329 	}
5330 #endif
5331 	skb_reset_redirect(skb);
5332 skip_classify:
5333 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5334 		goto drop;
5335 
5336 	if (skb_vlan_tag_present(skb)) {
5337 		if (pt_prev) {
5338 			ret = deliver_skb(skb, pt_prev, orig_dev);
5339 			pt_prev = NULL;
5340 		}
5341 		if (vlan_do_receive(&skb))
5342 			goto another_round;
5343 		else if (unlikely(!skb))
5344 			goto out;
5345 	}
5346 
5347 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5348 	if (rx_handler) {
5349 		if (pt_prev) {
5350 			ret = deliver_skb(skb, pt_prev, orig_dev);
5351 			pt_prev = NULL;
5352 		}
5353 		switch (rx_handler(&skb)) {
5354 		case RX_HANDLER_CONSUMED:
5355 			ret = NET_RX_SUCCESS;
5356 			goto out;
5357 		case RX_HANDLER_ANOTHER:
5358 			goto another_round;
5359 		case RX_HANDLER_EXACT:
5360 			deliver_exact = true;
5361 			break;
5362 		case RX_HANDLER_PASS:
5363 			break;
5364 		default:
5365 			BUG();
5366 		}
5367 	}
5368 
5369 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5370 check_vlan_id:
5371 		if (skb_vlan_tag_get_id(skb)) {
5372 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5373 			 * find vlan device.
5374 			 */
5375 			skb->pkt_type = PACKET_OTHERHOST;
5376 		} else if (eth_type_vlan(skb->protocol)) {
5377 			/* Outer header is 802.1P with vlan 0, inner header is
5378 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5379 			 * not find vlan dev for vlan id 0.
5380 			 */
5381 			__vlan_hwaccel_clear_tag(skb);
5382 			skb = skb_vlan_untag(skb);
5383 			if (unlikely(!skb))
5384 				goto out;
5385 			if (vlan_do_receive(&skb))
5386 				/* After stripping off 802.1P header with vlan 0
5387 				 * vlan dev is found for inner header.
5388 				 */
5389 				goto another_round;
5390 			else if (unlikely(!skb))
5391 				goto out;
5392 			else
5393 				/* We have stripped outer 802.1P vlan 0 header.
5394 				 * But could not find vlan dev.
5395 				 * check again for vlan id to set OTHERHOST.
5396 				 */
5397 				goto check_vlan_id;
5398 		}
5399 		/* Note: we might in the future use prio bits
5400 		 * and set skb->priority like in vlan_do_receive()
5401 		 * For the time being, just ignore Priority Code Point
5402 		 */
5403 		__vlan_hwaccel_clear_tag(skb);
5404 	}
5405 
5406 	type = skb->protocol;
5407 
5408 	/* deliver only exact match when indicated */
5409 	if (likely(!deliver_exact)) {
5410 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5411 				       &ptype_base[ntohs(type) &
5412 						   PTYPE_HASH_MASK]);
5413 	}
5414 
5415 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5416 			       &orig_dev->ptype_specific);
5417 
5418 	if (unlikely(skb->dev != orig_dev)) {
5419 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5420 				       &skb->dev->ptype_specific);
5421 	}
5422 
5423 	if (pt_prev) {
5424 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5425 			goto drop;
5426 		*ppt_prev = pt_prev;
5427 	} else {
5428 drop:
5429 		if (!deliver_exact)
5430 			atomic_long_inc(&skb->dev->rx_dropped);
5431 		else
5432 			atomic_long_inc(&skb->dev->rx_nohandler);
5433 		kfree_skb(skb);
5434 		/* Jamal, now you will not able to escape explaining
5435 		 * me how you were going to use this. :-)
5436 		 */
5437 		ret = NET_RX_DROP;
5438 	}
5439 
5440 out:
5441 	/* The invariant here is that if *ppt_prev is not NULL
5442 	 * then skb should also be non-NULL.
5443 	 *
5444 	 * Apparently *ppt_prev assignment above holds this invariant due to
5445 	 * skb dereferencing near it.
5446 	 */
5447 	*pskb = skb;
5448 	return ret;
5449 }
5450 
5451 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5452 {
5453 	struct net_device *orig_dev = skb->dev;
5454 	struct packet_type *pt_prev = NULL;
5455 	int ret;
5456 
5457 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5458 	if (pt_prev)
5459 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5460 					 skb->dev, pt_prev, orig_dev);
5461 	return ret;
5462 }
5463 
5464 /**
5465  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5466  *	@skb: buffer to process
5467  *
5468  *	More direct receive version of netif_receive_skb().  It should
5469  *	only be used by callers that have a need to skip RPS and Generic XDP.
5470  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5471  *
5472  *	This function may only be called from softirq context and interrupts
5473  *	should be enabled.
5474  *
5475  *	Return values (usually ignored):
5476  *	NET_RX_SUCCESS: no congestion
5477  *	NET_RX_DROP: packet was dropped
5478  */
5479 int netif_receive_skb_core(struct sk_buff *skb)
5480 {
5481 	int ret;
5482 
5483 	rcu_read_lock();
5484 	ret = __netif_receive_skb_one_core(skb, false);
5485 	rcu_read_unlock();
5486 
5487 	return ret;
5488 }
5489 EXPORT_SYMBOL(netif_receive_skb_core);
5490 
5491 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5492 						  struct packet_type *pt_prev,
5493 						  struct net_device *orig_dev)
5494 {
5495 	struct sk_buff *skb, *next;
5496 
5497 	if (!pt_prev)
5498 		return;
5499 	if (list_empty(head))
5500 		return;
5501 	if (pt_prev->list_func != NULL)
5502 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5503 				   ip_list_rcv, head, pt_prev, orig_dev);
5504 	else
5505 		list_for_each_entry_safe(skb, next, head, list) {
5506 			skb_list_del_init(skb);
5507 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5508 		}
5509 }
5510 
5511 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5512 {
5513 	/* Fast-path assumptions:
5514 	 * - There is no RX handler.
5515 	 * - Only one packet_type matches.
5516 	 * If either of these fails, we will end up doing some per-packet
5517 	 * processing in-line, then handling the 'last ptype' for the whole
5518 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5519 	 * because the 'last ptype' must be constant across the sublist, and all
5520 	 * other ptypes are handled per-packet.
5521 	 */
5522 	/* Current (common) ptype of sublist */
5523 	struct packet_type *pt_curr = NULL;
5524 	/* Current (common) orig_dev of sublist */
5525 	struct net_device *od_curr = NULL;
5526 	struct list_head sublist;
5527 	struct sk_buff *skb, *next;
5528 
5529 	INIT_LIST_HEAD(&sublist);
5530 	list_for_each_entry_safe(skb, next, head, list) {
5531 		struct net_device *orig_dev = skb->dev;
5532 		struct packet_type *pt_prev = NULL;
5533 
5534 		skb_list_del_init(skb);
5535 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5536 		if (!pt_prev)
5537 			continue;
5538 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5539 			/* dispatch old sublist */
5540 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5541 			/* start new sublist */
5542 			INIT_LIST_HEAD(&sublist);
5543 			pt_curr = pt_prev;
5544 			od_curr = orig_dev;
5545 		}
5546 		list_add_tail(&skb->list, &sublist);
5547 	}
5548 
5549 	/* dispatch final sublist */
5550 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5551 }
5552 
5553 static int __netif_receive_skb(struct sk_buff *skb)
5554 {
5555 	int ret;
5556 
5557 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5558 		unsigned int noreclaim_flag;
5559 
5560 		/*
5561 		 * PFMEMALLOC skbs are special, they should
5562 		 * - be delivered to SOCK_MEMALLOC sockets only
5563 		 * - stay away from userspace
5564 		 * - have bounded memory usage
5565 		 *
5566 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5567 		 * context down to all allocation sites.
5568 		 */
5569 		noreclaim_flag = memalloc_noreclaim_save();
5570 		ret = __netif_receive_skb_one_core(skb, true);
5571 		memalloc_noreclaim_restore(noreclaim_flag);
5572 	} else
5573 		ret = __netif_receive_skb_one_core(skb, false);
5574 
5575 	return ret;
5576 }
5577 
5578 static void __netif_receive_skb_list(struct list_head *head)
5579 {
5580 	unsigned long noreclaim_flag = 0;
5581 	struct sk_buff *skb, *next;
5582 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5583 
5584 	list_for_each_entry_safe(skb, next, head, list) {
5585 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5586 			struct list_head sublist;
5587 
5588 			/* Handle the previous sublist */
5589 			list_cut_before(&sublist, head, &skb->list);
5590 			if (!list_empty(&sublist))
5591 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5592 			pfmemalloc = !pfmemalloc;
5593 			/* See comments in __netif_receive_skb */
5594 			if (pfmemalloc)
5595 				noreclaim_flag = memalloc_noreclaim_save();
5596 			else
5597 				memalloc_noreclaim_restore(noreclaim_flag);
5598 		}
5599 	}
5600 	/* Handle the remaining sublist */
5601 	if (!list_empty(head))
5602 		__netif_receive_skb_list_core(head, pfmemalloc);
5603 	/* Restore pflags */
5604 	if (pfmemalloc)
5605 		memalloc_noreclaim_restore(noreclaim_flag);
5606 }
5607 
5608 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5609 {
5610 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5611 	struct bpf_prog *new = xdp->prog;
5612 	int ret = 0;
5613 
5614 	if (new) {
5615 		u32 i;
5616 
5617 		mutex_lock(&new->aux->used_maps_mutex);
5618 
5619 		/* generic XDP does not work with DEVMAPs that can
5620 		 * have a bpf_prog installed on an entry
5621 		 */
5622 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5623 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5624 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5625 				mutex_unlock(&new->aux->used_maps_mutex);
5626 				return -EINVAL;
5627 			}
5628 		}
5629 
5630 		mutex_unlock(&new->aux->used_maps_mutex);
5631 	}
5632 
5633 	switch (xdp->command) {
5634 	case XDP_SETUP_PROG:
5635 		rcu_assign_pointer(dev->xdp_prog, new);
5636 		if (old)
5637 			bpf_prog_put(old);
5638 
5639 		if (old && !new) {
5640 			static_branch_dec(&generic_xdp_needed_key);
5641 		} else if (new && !old) {
5642 			static_branch_inc(&generic_xdp_needed_key);
5643 			dev_disable_lro(dev);
5644 			dev_disable_gro_hw(dev);
5645 		}
5646 		break;
5647 
5648 	default:
5649 		ret = -EINVAL;
5650 		break;
5651 	}
5652 
5653 	return ret;
5654 }
5655 
5656 static int netif_receive_skb_internal(struct sk_buff *skb)
5657 {
5658 	int ret;
5659 
5660 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5661 
5662 	if (skb_defer_rx_timestamp(skb))
5663 		return NET_RX_SUCCESS;
5664 
5665 	rcu_read_lock();
5666 #ifdef CONFIG_RPS
5667 	if (static_branch_unlikely(&rps_needed)) {
5668 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5669 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5670 
5671 		if (cpu >= 0) {
5672 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5673 			rcu_read_unlock();
5674 			return ret;
5675 		}
5676 	}
5677 #endif
5678 	ret = __netif_receive_skb(skb);
5679 	rcu_read_unlock();
5680 	return ret;
5681 }
5682 
5683 static void netif_receive_skb_list_internal(struct list_head *head)
5684 {
5685 	struct sk_buff *skb, *next;
5686 	struct list_head sublist;
5687 
5688 	INIT_LIST_HEAD(&sublist);
5689 	list_for_each_entry_safe(skb, next, head, list) {
5690 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5691 		skb_list_del_init(skb);
5692 		if (!skb_defer_rx_timestamp(skb))
5693 			list_add_tail(&skb->list, &sublist);
5694 	}
5695 	list_splice_init(&sublist, head);
5696 
5697 	rcu_read_lock();
5698 #ifdef CONFIG_RPS
5699 	if (static_branch_unlikely(&rps_needed)) {
5700 		list_for_each_entry_safe(skb, next, head, list) {
5701 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5702 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5703 
5704 			if (cpu >= 0) {
5705 				/* Will be handled, remove from list */
5706 				skb_list_del_init(skb);
5707 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5708 			}
5709 		}
5710 	}
5711 #endif
5712 	__netif_receive_skb_list(head);
5713 	rcu_read_unlock();
5714 }
5715 
5716 /**
5717  *	netif_receive_skb - process receive buffer from network
5718  *	@skb: buffer to process
5719  *
5720  *	netif_receive_skb() is the main receive data processing function.
5721  *	It always succeeds. The buffer may be dropped during processing
5722  *	for congestion control or by the protocol layers.
5723  *
5724  *	This function may only be called from softirq context and interrupts
5725  *	should be enabled.
5726  *
5727  *	Return values (usually ignored):
5728  *	NET_RX_SUCCESS: no congestion
5729  *	NET_RX_DROP: packet was dropped
5730  */
5731 int netif_receive_skb(struct sk_buff *skb)
5732 {
5733 	int ret;
5734 
5735 	trace_netif_receive_skb_entry(skb);
5736 
5737 	ret = netif_receive_skb_internal(skb);
5738 	trace_netif_receive_skb_exit(ret);
5739 
5740 	return ret;
5741 }
5742 EXPORT_SYMBOL(netif_receive_skb);
5743 
5744 /**
5745  *	netif_receive_skb_list - process many receive buffers from network
5746  *	@head: list of skbs to process.
5747  *
5748  *	Since return value of netif_receive_skb() is normally ignored, and
5749  *	wouldn't be meaningful for a list, this function returns void.
5750  *
5751  *	This function may only be called from softirq context and interrupts
5752  *	should be enabled.
5753  */
5754 void netif_receive_skb_list(struct list_head *head)
5755 {
5756 	struct sk_buff *skb;
5757 
5758 	if (list_empty(head))
5759 		return;
5760 	if (trace_netif_receive_skb_list_entry_enabled()) {
5761 		list_for_each_entry(skb, head, list)
5762 			trace_netif_receive_skb_list_entry(skb);
5763 	}
5764 	netif_receive_skb_list_internal(head);
5765 	trace_netif_receive_skb_list_exit(0);
5766 }
5767 EXPORT_SYMBOL(netif_receive_skb_list);
5768 
5769 static DEFINE_PER_CPU(struct work_struct, flush_works);
5770 
5771 /* Network device is going away, flush any packets still pending */
5772 static void flush_backlog(struct work_struct *work)
5773 {
5774 	struct sk_buff *skb, *tmp;
5775 	struct softnet_data *sd;
5776 
5777 	local_bh_disable();
5778 	sd = this_cpu_ptr(&softnet_data);
5779 
5780 	local_irq_disable();
5781 	rps_lock(sd);
5782 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5783 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5784 			__skb_unlink(skb, &sd->input_pkt_queue);
5785 			dev_kfree_skb_irq(skb);
5786 			input_queue_head_incr(sd);
5787 		}
5788 	}
5789 	rps_unlock(sd);
5790 	local_irq_enable();
5791 
5792 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5793 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5794 			__skb_unlink(skb, &sd->process_queue);
5795 			kfree_skb(skb);
5796 			input_queue_head_incr(sd);
5797 		}
5798 	}
5799 	local_bh_enable();
5800 }
5801 
5802 static bool flush_required(int cpu)
5803 {
5804 #if IS_ENABLED(CONFIG_RPS)
5805 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5806 	bool do_flush;
5807 
5808 	local_irq_disable();
5809 	rps_lock(sd);
5810 
5811 	/* as insertion into process_queue happens with the rps lock held,
5812 	 * process_queue access may race only with dequeue
5813 	 */
5814 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5815 		   !skb_queue_empty_lockless(&sd->process_queue);
5816 	rps_unlock(sd);
5817 	local_irq_enable();
5818 
5819 	return do_flush;
5820 #endif
5821 	/* without RPS we can't safely check input_pkt_queue: during a
5822 	 * concurrent remote skb_queue_splice() we can detect as empty both
5823 	 * input_pkt_queue and process_queue even if the latter could end-up
5824 	 * containing a lot of packets.
5825 	 */
5826 	return true;
5827 }
5828 
5829 static void flush_all_backlogs(void)
5830 {
5831 	static cpumask_t flush_cpus;
5832 	unsigned int cpu;
5833 
5834 	/* since we are under rtnl lock protection we can use static data
5835 	 * for the cpumask and avoid allocating on stack the possibly
5836 	 * large mask
5837 	 */
5838 	ASSERT_RTNL();
5839 
5840 	get_online_cpus();
5841 
5842 	cpumask_clear(&flush_cpus);
5843 	for_each_online_cpu(cpu) {
5844 		if (flush_required(cpu)) {
5845 			queue_work_on(cpu, system_highpri_wq,
5846 				      per_cpu_ptr(&flush_works, cpu));
5847 			cpumask_set_cpu(cpu, &flush_cpus);
5848 		}
5849 	}
5850 
5851 	/* we can have in flight packet[s] on the cpus we are not flushing,
5852 	 * synchronize_net() in unregister_netdevice_many() will take care of
5853 	 * them
5854 	 */
5855 	for_each_cpu(cpu, &flush_cpus)
5856 		flush_work(per_cpu_ptr(&flush_works, cpu));
5857 
5858 	put_online_cpus();
5859 }
5860 
5861 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5862 static void gro_normal_list(struct napi_struct *napi)
5863 {
5864 	if (!napi->rx_count)
5865 		return;
5866 	netif_receive_skb_list_internal(&napi->rx_list);
5867 	INIT_LIST_HEAD(&napi->rx_list);
5868 	napi->rx_count = 0;
5869 }
5870 
5871 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5872  * pass the whole batch up to the stack.
5873  */
5874 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5875 {
5876 	list_add_tail(&skb->list, &napi->rx_list);
5877 	napi->rx_count += segs;
5878 	if (napi->rx_count >= gro_normal_batch)
5879 		gro_normal_list(napi);
5880 }
5881 
5882 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5883 {
5884 	struct packet_offload *ptype;
5885 	__be16 type = skb->protocol;
5886 	struct list_head *head = &offload_base;
5887 	int err = -ENOENT;
5888 
5889 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5890 
5891 	if (NAPI_GRO_CB(skb)->count == 1) {
5892 		skb_shinfo(skb)->gso_size = 0;
5893 		goto out;
5894 	}
5895 
5896 	rcu_read_lock();
5897 	list_for_each_entry_rcu(ptype, head, list) {
5898 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5899 			continue;
5900 
5901 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5902 					 ipv6_gro_complete, inet_gro_complete,
5903 					 skb, 0);
5904 		break;
5905 	}
5906 	rcu_read_unlock();
5907 
5908 	if (err) {
5909 		WARN_ON(&ptype->list == head);
5910 		kfree_skb(skb);
5911 		return NET_RX_SUCCESS;
5912 	}
5913 
5914 out:
5915 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5916 	return NET_RX_SUCCESS;
5917 }
5918 
5919 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5920 				   bool flush_old)
5921 {
5922 	struct list_head *head = &napi->gro_hash[index].list;
5923 	struct sk_buff *skb, *p;
5924 
5925 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5926 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5927 			return;
5928 		skb_list_del_init(skb);
5929 		napi_gro_complete(napi, skb);
5930 		napi->gro_hash[index].count--;
5931 	}
5932 
5933 	if (!napi->gro_hash[index].count)
5934 		__clear_bit(index, &napi->gro_bitmask);
5935 }
5936 
5937 /* napi->gro_hash[].list contains packets ordered by age.
5938  * youngest packets at the head of it.
5939  * Complete skbs in reverse order to reduce latencies.
5940  */
5941 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5942 {
5943 	unsigned long bitmask = napi->gro_bitmask;
5944 	unsigned int i, base = ~0U;
5945 
5946 	while ((i = ffs(bitmask)) != 0) {
5947 		bitmask >>= i;
5948 		base += i;
5949 		__napi_gro_flush_chain(napi, base, flush_old);
5950 	}
5951 }
5952 EXPORT_SYMBOL(napi_gro_flush);
5953 
5954 static void gro_list_prepare(const struct list_head *head,
5955 			     const struct sk_buff *skb)
5956 {
5957 	unsigned int maclen = skb->dev->hard_header_len;
5958 	u32 hash = skb_get_hash_raw(skb);
5959 	struct sk_buff *p;
5960 
5961 	list_for_each_entry(p, head, list) {
5962 		unsigned long diffs;
5963 
5964 		NAPI_GRO_CB(p)->flush = 0;
5965 
5966 		if (hash != skb_get_hash_raw(p)) {
5967 			NAPI_GRO_CB(p)->same_flow = 0;
5968 			continue;
5969 		}
5970 
5971 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5972 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5973 		if (skb_vlan_tag_present(p))
5974 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5975 		diffs |= skb_metadata_dst_cmp(p, skb);
5976 		diffs |= skb_metadata_differs(p, skb);
5977 		if (maclen == ETH_HLEN)
5978 			diffs |= compare_ether_header(skb_mac_header(p),
5979 						      skb_mac_header(skb));
5980 		else if (!diffs)
5981 			diffs = memcmp(skb_mac_header(p),
5982 				       skb_mac_header(skb),
5983 				       maclen);
5984 		NAPI_GRO_CB(p)->same_flow = !diffs;
5985 	}
5986 }
5987 
5988 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5989 {
5990 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5991 	const skb_frag_t *frag0 = &pinfo->frags[0];
5992 
5993 	NAPI_GRO_CB(skb)->data_offset = 0;
5994 	NAPI_GRO_CB(skb)->frag0 = NULL;
5995 	NAPI_GRO_CB(skb)->frag0_len = 0;
5996 
5997 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5998 	    !PageHighMem(skb_frag_page(frag0)) &&
5999 	    (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6000 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6001 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6002 						    skb_frag_size(frag0),
6003 						    skb->end - skb->tail);
6004 	}
6005 }
6006 
6007 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6008 {
6009 	struct skb_shared_info *pinfo = skb_shinfo(skb);
6010 
6011 	BUG_ON(skb->end - skb->tail < grow);
6012 
6013 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6014 
6015 	skb->data_len -= grow;
6016 	skb->tail += grow;
6017 
6018 	skb_frag_off_add(&pinfo->frags[0], grow);
6019 	skb_frag_size_sub(&pinfo->frags[0], grow);
6020 
6021 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6022 		skb_frag_unref(skb, 0);
6023 		memmove(pinfo->frags, pinfo->frags + 1,
6024 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
6025 	}
6026 }
6027 
6028 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6029 {
6030 	struct sk_buff *oldest;
6031 
6032 	oldest = list_last_entry(head, struct sk_buff, list);
6033 
6034 	/* We are called with head length >= MAX_GRO_SKBS, so this is
6035 	 * impossible.
6036 	 */
6037 	if (WARN_ON_ONCE(!oldest))
6038 		return;
6039 
6040 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
6041 	 * SKB to the chain.
6042 	 */
6043 	skb_list_del_init(oldest);
6044 	napi_gro_complete(napi, oldest);
6045 }
6046 
6047 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6048 {
6049 	u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6050 	struct gro_list *gro_list = &napi->gro_hash[bucket];
6051 	struct list_head *head = &offload_base;
6052 	struct packet_offload *ptype;
6053 	__be16 type = skb->protocol;
6054 	struct sk_buff *pp = NULL;
6055 	enum gro_result ret;
6056 	int same_flow;
6057 	int grow;
6058 
6059 	if (netif_elide_gro(skb->dev))
6060 		goto normal;
6061 
6062 	gro_list_prepare(&gro_list->list, skb);
6063 
6064 	rcu_read_lock();
6065 	list_for_each_entry_rcu(ptype, head, list) {
6066 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6067 			continue;
6068 
6069 		skb_set_network_header(skb, skb_gro_offset(skb));
6070 		skb_reset_mac_len(skb);
6071 		NAPI_GRO_CB(skb)->same_flow = 0;
6072 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6073 		NAPI_GRO_CB(skb)->free = 0;
6074 		NAPI_GRO_CB(skb)->encap_mark = 0;
6075 		NAPI_GRO_CB(skb)->recursion_counter = 0;
6076 		NAPI_GRO_CB(skb)->is_fou = 0;
6077 		NAPI_GRO_CB(skb)->is_atomic = 1;
6078 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6079 
6080 		/* Setup for GRO checksum validation */
6081 		switch (skb->ip_summed) {
6082 		case CHECKSUM_COMPLETE:
6083 			NAPI_GRO_CB(skb)->csum = skb->csum;
6084 			NAPI_GRO_CB(skb)->csum_valid = 1;
6085 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6086 			break;
6087 		case CHECKSUM_UNNECESSARY:
6088 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6089 			NAPI_GRO_CB(skb)->csum_valid = 0;
6090 			break;
6091 		default:
6092 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6093 			NAPI_GRO_CB(skb)->csum_valid = 0;
6094 		}
6095 
6096 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6097 					ipv6_gro_receive, inet_gro_receive,
6098 					&gro_list->list, skb);
6099 		break;
6100 	}
6101 	rcu_read_unlock();
6102 
6103 	if (&ptype->list == head)
6104 		goto normal;
6105 
6106 	if (PTR_ERR(pp) == -EINPROGRESS) {
6107 		ret = GRO_CONSUMED;
6108 		goto ok;
6109 	}
6110 
6111 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6112 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6113 
6114 	if (pp) {
6115 		skb_list_del_init(pp);
6116 		napi_gro_complete(napi, pp);
6117 		gro_list->count--;
6118 	}
6119 
6120 	if (same_flow)
6121 		goto ok;
6122 
6123 	if (NAPI_GRO_CB(skb)->flush)
6124 		goto normal;
6125 
6126 	if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6127 		gro_flush_oldest(napi, &gro_list->list);
6128 	else
6129 		gro_list->count++;
6130 
6131 	NAPI_GRO_CB(skb)->count = 1;
6132 	NAPI_GRO_CB(skb)->age = jiffies;
6133 	NAPI_GRO_CB(skb)->last = skb;
6134 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6135 	list_add(&skb->list, &gro_list->list);
6136 	ret = GRO_HELD;
6137 
6138 pull:
6139 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6140 	if (grow > 0)
6141 		gro_pull_from_frag0(skb, grow);
6142 ok:
6143 	if (gro_list->count) {
6144 		if (!test_bit(bucket, &napi->gro_bitmask))
6145 			__set_bit(bucket, &napi->gro_bitmask);
6146 	} else if (test_bit(bucket, &napi->gro_bitmask)) {
6147 		__clear_bit(bucket, &napi->gro_bitmask);
6148 	}
6149 
6150 	return ret;
6151 
6152 normal:
6153 	ret = GRO_NORMAL;
6154 	goto pull;
6155 }
6156 
6157 struct packet_offload *gro_find_receive_by_type(__be16 type)
6158 {
6159 	struct list_head *offload_head = &offload_base;
6160 	struct packet_offload *ptype;
6161 
6162 	list_for_each_entry_rcu(ptype, offload_head, list) {
6163 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6164 			continue;
6165 		return ptype;
6166 	}
6167 	return NULL;
6168 }
6169 EXPORT_SYMBOL(gro_find_receive_by_type);
6170 
6171 struct packet_offload *gro_find_complete_by_type(__be16 type)
6172 {
6173 	struct list_head *offload_head = &offload_base;
6174 	struct packet_offload *ptype;
6175 
6176 	list_for_each_entry_rcu(ptype, offload_head, list) {
6177 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6178 			continue;
6179 		return ptype;
6180 	}
6181 	return NULL;
6182 }
6183 EXPORT_SYMBOL(gro_find_complete_by_type);
6184 
6185 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6186 				    struct sk_buff *skb,
6187 				    gro_result_t ret)
6188 {
6189 	switch (ret) {
6190 	case GRO_NORMAL:
6191 		gro_normal_one(napi, skb, 1);
6192 		break;
6193 
6194 	case GRO_MERGED_FREE:
6195 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6196 			napi_skb_free_stolen_head(skb);
6197 		else
6198 			__kfree_skb_defer(skb);
6199 		break;
6200 
6201 	case GRO_HELD:
6202 	case GRO_MERGED:
6203 	case GRO_CONSUMED:
6204 		break;
6205 	}
6206 
6207 	return ret;
6208 }
6209 
6210 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6211 {
6212 	gro_result_t ret;
6213 
6214 	skb_mark_napi_id(skb, napi);
6215 	trace_napi_gro_receive_entry(skb);
6216 
6217 	skb_gro_reset_offset(skb, 0);
6218 
6219 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6220 	trace_napi_gro_receive_exit(ret);
6221 
6222 	return ret;
6223 }
6224 EXPORT_SYMBOL(napi_gro_receive);
6225 
6226 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6227 {
6228 	if (unlikely(skb->pfmemalloc)) {
6229 		consume_skb(skb);
6230 		return;
6231 	}
6232 	__skb_pull(skb, skb_headlen(skb));
6233 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6234 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6235 	__vlan_hwaccel_clear_tag(skb);
6236 	skb->dev = napi->dev;
6237 	skb->skb_iif = 0;
6238 
6239 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6240 	skb->pkt_type = PACKET_HOST;
6241 
6242 	skb->encapsulation = 0;
6243 	skb_shinfo(skb)->gso_type = 0;
6244 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6245 	skb_ext_reset(skb);
6246 
6247 	napi->skb = skb;
6248 }
6249 
6250 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6251 {
6252 	struct sk_buff *skb = napi->skb;
6253 
6254 	if (!skb) {
6255 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6256 		if (skb) {
6257 			napi->skb = skb;
6258 			skb_mark_napi_id(skb, napi);
6259 		}
6260 	}
6261 	return skb;
6262 }
6263 EXPORT_SYMBOL(napi_get_frags);
6264 
6265 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6266 				      struct sk_buff *skb,
6267 				      gro_result_t ret)
6268 {
6269 	switch (ret) {
6270 	case GRO_NORMAL:
6271 	case GRO_HELD:
6272 		__skb_push(skb, ETH_HLEN);
6273 		skb->protocol = eth_type_trans(skb, skb->dev);
6274 		if (ret == GRO_NORMAL)
6275 			gro_normal_one(napi, skb, 1);
6276 		break;
6277 
6278 	case GRO_MERGED_FREE:
6279 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6280 			napi_skb_free_stolen_head(skb);
6281 		else
6282 			napi_reuse_skb(napi, skb);
6283 		break;
6284 
6285 	case GRO_MERGED:
6286 	case GRO_CONSUMED:
6287 		break;
6288 	}
6289 
6290 	return ret;
6291 }
6292 
6293 /* Upper GRO stack assumes network header starts at gro_offset=0
6294  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6295  * We copy ethernet header into skb->data to have a common layout.
6296  */
6297 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6298 {
6299 	struct sk_buff *skb = napi->skb;
6300 	const struct ethhdr *eth;
6301 	unsigned int hlen = sizeof(*eth);
6302 
6303 	napi->skb = NULL;
6304 
6305 	skb_reset_mac_header(skb);
6306 	skb_gro_reset_offset(skb, hlen);
6307 
6308 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6309 		eth = skb_gro_header_slow(skb, hlen, 0);
6310 		if (unlikely(!eth)) {
6311 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6312 					     __func__, napi->dev->name);
6313 			napi_reuse_skb(napi, skb);
6314 			return NULL;
6315 		}
6316 	} else {
6317 		eth = (const struct ethhdr *)skb->data;
6318 		gro_pull_from_frag0(skb, hlen);
6319 		NAPI_GRO_CB(skb)->frag0 += hlen;
6320 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6321 	}
6322 	__skb_pull(skb, hlen);
6323 
6324 	/*
6325 	 * This works because the only protocols we care about don't require
6326 	 * special handling.
6327 	 * We'll fix it up properly in napi_frags_finish()
6328 	 */
6329 	skb->protocol = eth->h_proto;
6330 
6331 	return skb;
6332 }
6333 
6334 gro_result_t napi_gro_frags(struct napi_struct *napi)
6335 {
6336 	gro_result_t ret;
6337 	struct sk_buff *skb = napi_frags_skb(napi);
6338 
6339 	trace_napi_gro_frags_entry(skb);
6340 
6341 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6342 	trace_napi_gro_frags_exit(ret);
6343 
6344 	return ret;
6345 }
6346 EXPORT_SYMBOL(napi_gro_frags);
6347 
6348 /* Compute the checksum from gro_offset and return the folded value
6349  * after adding in any pseudo checksum.
6350  */
6351 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6352 {
6353 	__wsum wsum;
6354 	__sum16 sum;
6355 
6356 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6357 
6358 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6359 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6360 	/* See comments in __skb_checksum_complete(). */
6361 	if (likely(!sum)) {
6362 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6363 		    !skb->csum_complete_sw)
6364 			netdev_rx_csum_fault(skb->dev, skb);
6365 	}
6366 
6367 	NAPI_GRO_CB(skb)->csum = wsum;
6368 	NAPI_GRO_CB(skb)->csum_valid = 1;
6369 
6370 	return sum;
6371 }
6372 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6373 
6374 static void net_rps_send_ipi(struct softnet_data *remsd)
6375 {
6376 #ifdef CONFIG_RPS
6377 	while (remsd) {
6378 		struct softnet_data *next = remsd->rps_ipi_next;
6379 
6380 		if (cpu_online(remsd->cpu))
6381 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6382 		remsd = next;
6383 	}
6384 #endif
6385 }
6386 
6387 /*
6388  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6389  * Note: called with local irq disabled, but exits with local irq enabled.
6390  */
6391 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6392 {
6393 #ifdef CONFIG_RPS
6394 	struct softnet_data *remsd = sd->rps_ipi_list;
6395 
6396 	if (remsd) {
6397 		sd->rps_ipi_list = NULL;
6398 
6399 		local_irq_enable();
6400 
6401 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6402 		net_rps_send_ipi(remsd);
6403 	} else
6404 #endif
6405 		local_irq_enable();
6406 }
6407 
6408 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6409 {
6410 #ifdef CONFIG_RPS
6411 	return sd->rps_ipi_list != NULL;
6412 #else
6413 	return false;
6414 #endif
6415 }
6416 
6417 static int process_backlog(struct napi_struct *napi, int quota)
6418 {
6419 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6420 	bool again = true;
6421 	int work = 0;
6422 
6423 	/* Check if we have pending ipi, its better to send them now,
6424 	 * not waiting net_rx_action() end.
6425 	 */
6426 	if (sd_has_rps_ipi_waiting(sd)) {
6427 		local_irq_disable();
6428 		net_rps_action_and_irq_enable(sd);
6429 	}
6430 
6431 	napi->weight = dev_rx_weight;
6432 	while (again) {
6433 		struct sk_buff *skb;
6434 
6435 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6436 			rcu_read_lock();
6437 			__netif_receive_skb(skb);
6438 			rcu_read_unlock();
6439 			input_queue_head_incr(sd);
6440 			if (++work >= quota)
6441 				return work;
6442 
6443 		}
6444 
6445 		local_irq_disable();
6446 		rps_lock(sd);
6447 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6448 			/*
6449 			 * Inline a custom version of __napi_complete().
6450 			 * only current cpu owns and manipulates this napi,
6451 			 * and NAPI_STATE_SCHED is the only possible flag set
6452 			 * on backlog.
6453 			 * We can use a plain write instead of clear_bit(),
6454 			 * and we dont need an smp_mb() memory barrier.
6455 			 */
6456 			napi->state = 0;
6457 			again = false;
6458 		} else {
6459 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6460 						   &sd->process_queue);
6461 		}
6462 		rps_unlock(sd);
6463 		local_irq_enable();
6464 	}
6465 
6466 	return work;
6467 }
6468 
6469 /**
6470  * __napi_schedule - schedule for receive
6471  * @n: entry to schedule
6472  *
6473  * The entry's receive function will be scheduled to run.
6474  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6475  */
6476 void __napi_schedule(struct napi_struct *n)
6477 {
6478 	unsigned long flags;
6479 
6480 	local_irq_save(flags);
6481 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6482 	local_irq_restore(flags);
6483 }
6484 EXPORT_SYMBOL(__napi_schedule);
6485 
6486 /**
6487  *	napi_schedule_prep - check if napi can be scheduled
6488  *	@n: napi context
6489  *
6490  * Test if NAPI routine is already running, and if not mark
6491  * it as running.  This is used as a condition variable to
6492  * insure only one NAPI poll instance runs.  We also make
6493  * sure there is no pending NAPI disable.
6494  */
6495 bool napi_schedule_prep(struct napi_struct *n)
6496 {
6497 	unsigned long val, new;
6498 
6499 	do {
6500 		val = READ_ONCE(n->state);
6501 		if (unlikely(val & NAPIF_STATE_DISABLE))
6502 			return false;
6503 		new = val | NAPIF_STATE_SCHED;
6504 
6505 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6506 		 * This was suggested by Alexander Duyck, as compiler
6507 		 * emits better code than :
6508 		 * if (val & NAPIF_STATE_SCHED)
6509 		 *     new |= NAPIF_STATE_MISSED;
6510 		 */
6511 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6512 						   NAPIF_STATE_MISSED;
6513 	} while (cmpxchg(&n->state, val, new) != val);
6514 
6515 	return !(val & NAPIF_STATE_SCHED);
6516 }
6517 EXPORT_SYMBOL(napi_schedule_prep);
6518 
6519 /**
6520  * __napi_schedule_irqoff - schedule for receive
6521  * @n: entry to schedule
6522  *
6523  * Variant of __napi_schedule() assuming hard irqs are masked
6524  */
6525 void __napi_schedule_irqoff(struct napi_struct *n)
6526 {
6527 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6528 }
6529 EXPORT_SYMBOL(__napi_schedule_irqoff);
6530 
6531 bool napi_complete_done(struct napi_struct *n, int work_done)
6532 {
6533 	unsigned long flags, val, new, timeout = 0;
6534 	bool ret = true;
6535 
6536 	/*
6537 	 * 1) Don't let napi dequeue from the cpu poll list
6538 	 *    just in case its running on a different cpu.
6539 	 * 2) If we are busy polling, do nothing here, we have
6540 	 *    the guarantee we will be called later.
6541 	 */
6542 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6543 				 NAPIF_STATE_IN_BUSY_POLL)))
6544 		return false;
6545 
6546 	if (work_done) {
6547 		if (n->gro_bitmask)
6548 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6549 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6550 	}
6551 	if (n->defer_hard_irqs_count > 0) {
6552 		n->defer_hard_irqs_count--;
6553 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6554 		if (timeout)
6555 			ret = false;
6556 	}
6557 	if (n->gro_bitmask) {
6558 		/* When the NAPI instance uses a timeout and keeps postponing
6559 		 * it, we need to bound somehow the time packets are kept in
6560 		 * the GRO layer
6561 		 */
6562 		napi_gro_flush(n, !!timeout);
6563 	}
6564 
6565 	gro_normal_list(n);
6566 
6567 	if (unlikely(!list_empty(&n->poll_list))) {
6568 		/* If n->poll_list is not empty, we need to mask irqs */
6569 		local_irq_save(flags);
6570 		list_del_init(&n->poll_list);
6571 		local_irq_restore(flags);
6572 	}
6573 
6574 	do {
6575 		val = READ_ONCE(n->state);
6576 
6577 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6578 
6579 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6580 			      NAPIF_STATE_SCHED_THREADED |
6581 			      NAPIF_STATE_PREFER_BUSY_POLL);
6582 
6583 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6584 		 * because we will call napi->poll() one more time.
6585 		 * This C code was suggested by Alexander Duyck to help gcc.
6586 		 */
6587 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6588 						    NAPIF_STATE_SCHED;
6589 	} while (cmpxchg(&n->state, val, new) != val);
6590 
6591 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6592 		__napi_schedule(n);
6593 		return false;
6594 	}
6595 
6596 	if (timeout)
6597 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6598 			      HRTIMER_MODE_REL_PINNED);
6599 	return ret;
6600 }
6601 EXPORT_SYMBOL(napi_complete_done);
6602 
6603 /* must be called under rcu_read_lock(), as we dont take a reference */
6604 static struct napi_struct *napi_by_id(unsigned int napi_id)
6605 {
6606 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6607 	struct napi_struct *napi;
6608 
6609 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6610 		if (napi->napi_id == napi_id)
6611 			return napi;
6612 
6613 	return NULL;
6614 }
6615 
6616 #if defined(CONFIG_NET_RX_BUSY_POLL)
6617 
6618 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6619 {
6620 	if (!skip_schedule) {
6621 		gro_normal_list(napi);
6622 		__napi_schedule(napi);
6623 		return;
6624 	}
6625 
6626 	if (napi->gro_bitmask) {
6627 		/* flush too old packets
6628 		 * If HZ < 1000, flush all packets.
6629 		 */
6630 		napi_gro_flush(napi, HZ >= 1000);
6631 	}
6632 
6633 	gro_normal_list(napi);
6634 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6635 }
6636 
6637 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6638 			   u16 budget)
6639 {
6640 	bool skip_schedule = false;
6641 	unsigned long timeout;
6642 	int rc;
6643 
6644 	/* Busy polling means there is a high chance device driver hard irq
6645 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6646 	 * set in napi_schedule_prep().
6647 	 * Since we are about to call napi->poll() once more, we can safely
6648 	 * clear NAPI_STATE_MISSED.
6649 	 *
6650 	 * Note: x86 could use a single "lock and ..." instruction
6651 	 * to perform these two clear_bit()
6652 	 */
6653 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6654 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6655 
6656 	local_bh_disable();
6657 
6658 	if (prefer_busy_poll) {
6659 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6660 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6661 		if (napi->defer_hard_irqs_count && timeout) {
6662 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6663 			skip_schedule = true;
6664 		}
6665 	}
6666 
6667 	/* All we really want here is to re-enable device interrupts.
6668 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6669 	 */
6670 	rc = napi->poll(napi, budget);
6671 	/* We can't gro_normal_list() here, because napi->poll() might have
6672 	 * rearmed the napi (napi_complete_done()) in which case it could
6673 	 * already be running on another CPU.
6674 	 */
6675 	trace_napi_poll(napi, rc, budget);
6676 	netpoll_poll_unlock(have_poll_lock);
6677 	if (rc == budget)
6678 		__busy_poll_stop(napi, skip_schedule);
6679 	local_bh_enable();
6680 }
6681 
6682 void napi_busy_loop(unsigned int napi_id,
6683 		    bool (*loop_end)(void *, unsigned long),
6684 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6685 {
6686 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6687 	int (*napi_poll)(struct napi_struct *napi, int budget);
6688 	void *have_poll_lock = NULL;
6689 	struct napi_struct *napi;
6690 
6691 restart:
6692 	napi_poll = NULL;
6693 
6694 	rcu_read_lock();
6695 
6696 	napi = napi_by_id(napi_id);
6697 	if (!napi)
6698 		goto out;
6699 
6700 	preempt_disable();
6701 	for (;;) {
6702 		int work = 0;
6703 
6704 		local_bh_disable();
6705 		if (!napi_poll) {
6706 			unsigned long val = READ_ONCE(napi->state);
6707 
6708 			/* If multiple threads are competing for this napi,
6709 			 * we avoid dirtying napi->state as much as we can.
6710 			 */
6711 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6712 				   NAPIF_STATE_IN_BUSY_POLL)) {
6713 				if (prefer_busy_poll)
6714 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6715 				goto count;
6716 			}
6717 			if (cmpxchg(&napi->state, val,
6718 				    val | NAPIF_STATE_IN_BUSY_POLL |
6719 					  NAPIF_STATE_SCHED) != val) {
6720 				if (prefer_busy_poll)
6721 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6722 				goto count;
6723 			}
6724 			have_poll_lock = netpoll_poll_lock(napi);
6725 			napi_poll = napi->poll;
6726 		}
6727 		work = napi_poll(napi, budget);
6728 		trace_napi_poll(napi, work, budget);
6729 		gro_normal_list(napi);
6730 count:
6731 		if (work > 0)
6732 			__NET_ADD_STATS(dev_net(napi->dev),
6733 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6734 		local_bh_enable();
6735 
6736 		if (!loop_end || loop_end(loop_end_arg, start_time))
6737 			break;
6738 
6739 		if (unlikely(need_resched())) {
6740 			if (napi_poll)
6741 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6742 			preempt_enable();
6743 			rcu_read_unlock();
6744 			cond_resched();
6745 			if (loop_end(loop_end_arg, start_time))
6746 				return;
6747 			goto restart;
6748 		}
6749 		cpu_relax();
6750 	}
6751 	if (napi_poll)
6752 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6753 	preempt_enable();
6754 out:
6755 	rcu_read_unlock();
6756 }
6757 EXPORT_SYMBOL(napi_busy_loop);
6758 
6759 #endif /* CONFIG_NET_RX_BUSY_POLL */
6760 
6761 static void napi_hash_add(struct napi_struct *napi)
6762 {
6763 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6764 		return;
6765 
6766 	spin_lock(&napi_hash_lock);
6767 
6768 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6769 	do {
6770 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6771 			napi_gen_id = MIN_NAPI_ID;
6772 	} while (napi_by_id(napi_gen_id));
6773 	napi->napi_id = napi_gen_id;
6774 
6775 	hlist_add_head_rcu(&napi->napi_hash_node,
6776 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6777 
6778 	spin_unlock(&napi_hash_lock);
6779 }
6780 
6781 /* Warning : caller is responsible to make sure rcu grace period
6782  * is respected before freeing memory containing @napi
6783  */
6784 static void napi_hash_del(struct napi_struct *napi)
6785 {
6786 	spin_lock(&napi_hash_lock);
6787 
6788 	hlist_del_init_rcu(&napi->napi_hash_node);
6789 
6790 	spin_unlock(&napi_hash_lock);
6791 }
6792 
6793 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6794 {
6795 	struct napi_struct *napi;
6796 
6797 	napi = container_of(timer, struct napi_struct, timer);
6798 
6799 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6800 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6801 	 */
6802 	if (!napi_disable_pending(napi) &&
6803 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6804 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6805 		__napi_schedule_irqoff(napi);
6806 	}
6807 
6808 	return HRTIMER_NORESTART;
6809 }
6810 
6811 static void init_gro_hash(struct napi_struct *napi)
6812 {
6813 	int i;
6814 
6815 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6816 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6817 		napi->gro_hash[i].count = 0;
6818 	}
6819 	napi->gro_bitmask = 0;
6820 }
6821 
6822 int dev_set_threaded(struct net_device *dev, bool threaded)
6823 {
6824 	struct napi_struct *napi;
6825 	int err = 0;
6826 
6827 	if (dev->threaded == threaded)
6828 		return 0;
6829 
6830 	if (threaded) {
6831 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6832 			if (!napi->thread) {
6833 				err = napi_kthread_create(napi);
6834 				if (err) {
6835 					threaded = false;
6836 					break;
6837 				}
6838 			}
6839 		}
6840 	}
6841 
6842 	dev->threaded = threaded;
6843 
6844 	/* Make sure kthread is created before THREADED bit
6845 	 * is set.
6846 	 */
6847 	smp_mb__before_atomic();
6848 
6849 	/* Setting/unsetting threaded mode on a napi might not immediately
6850 	 * take effect, if the current napi instance is actively being
6851 	 * polled. In this case, the switch between threaded mode and
6852 	 * softirq mode will happen in the next round of napi_schedule().
6853 	 * This should not cause hiccups/stalls to the live traffic.
6854 	 */
6855 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6856 		if (threaded)
6857 			set_bit(NAPI_STATE_THREADED, &napi->state);
6858 		else
6859 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6860 	}
6861 
6862 	return err;
6863 }
6864 EXPORT_SYMBOL(dev_set_threaded);
6865 
6866 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6867 		    int (*poll)(struct napi_struct *, int), int weight)
6868 {
6869 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6870 		return;
6871 
6872 	INIT_LIST_HEAD(&napi->poll_list);
6873 	INIT_HLIST_NODE(&napi->napi_hash_node);
6874 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6875 	napi->timer.function = napi_watchdog;
6876 	init_gro_hash(napi);
6877 	napi->skb = NULL;
6878 	INIT_LIST_HEAD(&napi->rx_list);
6879 	napi->rx_count = 0;
6880 	napi->poll = poll;
6881 	if (weight > NAPI_POLL_WEIGHT)
6882 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6883 				weight);
6884 	napi->weight = weight;
6885 	napi->dev = dev;
6886 #ifdef CONFIG_NETPOLL
6887 	napi->poll_owner = -1;
6888 #endif
6889 	set_bit(NAPI_STATE_SCHED, &napi->state);
6890 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6891 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6892 	napi_hash_add(napi);
6893 	/* Create kthread for this napi if dev->threaded is set.
6894 	 * Clear dev->threaded if kthread creation failed so that
6895 	 * threaded mode will not be enabled in napi_enable().
6896 	 */
6897 	if (dev->threaded && napi_kthread_create(napi))
6898 		dev->threaded = 0;
6899 }
6900 EXPORT_SYMBOL(netif_napi_add);
6901 
6902 void napi_disable(struct napi_struct *n)
6903 {
6904 	might_sleep();
6905 	set_bit(NAPI_STATE_DISABLE, &n->state);
6906 
6907 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6908 		msleep(1);
6909 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6910 		msleep(1);
6911 
6912 	hrtimer_cancel(&n->timer);
6913 
6914 	clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6915 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6916 	clear_bit(NAPI_STATE_THREADED, &n->state);
6917 }
6918 EXPORT_SYMBOL(napi_disable);
6919 
6920 /**
6921  *	napi_enable - enable NAPI scheduling
6922  *	@n: NAPI context
6923  *
6924  * Resume NAPI from being scheduled on this context.
6925  * Must be paired with napi_disable.
6926  */
6927 void napi_enable(struct napi_struct *n)
6928 {
6929 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6930 	smp_mb__before_atomic();
6931 	clear_bit(NAPI_STATE_SCHED, &n->state);
6932 	clear_bit(NAPI_STATE_NPSVC, &n->state);
6933 	if (n->dev->threaded && n->thread)
6934 		set_bit(NAPI_STATE_THREADED, &n->state);
6935 }
6936 EXPORT_SYMBOL(napi_enable);
6937 
6938 static void flush_gro_hash(struct napi_struct *napi)
6939 {
6940 	int i;
6941 
6942 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6943 		struct sk_buff *skb, *n;
6944 
6945 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6946 			kfree_skb(skb);
6947 		napi->gro_hash[i].count = 0;
6948 	}
6949 }
6950 
6951 /* Must be called in process context */
6952 void __netif_napi_del(struct napi_struct *napi)
6953 {
6954 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6955 		return;
6956 
6957 	napi_hash_del(napi);
6958 	list_del_rcu(&napi->dev_list);
6959 	napi_free_frags(napi);
6960 
6961 	flush_gro_hash(napi);
6962 	napi->gro_bitmask = 0;
6963 
6964 	if (napi->thread) {
6965 		kthread_stop(napi->thread);
6966 		napi->thread = NULL;
6967 	}
6968 }
6969 EXPORT_SYMBOL(__netif_napi_del);
6970 
6971 static int __napi_poll(struct napi_struct *n, bool *repoll)
6972 {
6973 	int work, weight;
6974 
6975 	weight = n->weight;
6976 
6977 	/* This NAPI_STATE_SCHED test is for avoiding a race
6978 	 * with netpoll's poll_napi().  Only the entity which
6979 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6980 	 * actually make the ->poll() call.  Therefore we avoid
6981 	 * accidentally calling ->poll() when NAPI is not scheduled.
6982 	 */
6983 	work = 0;
6984 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6985 		work = n->poll(n, weight);
6986 		trace_napi_poll(n, work, weight);
6987 	}
6988 
6989 	if (unlikely(work > weight))
6990 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6991 			    n->poll, work, weight);
6992 
6993 	if (likely(work < weight))
6994 		return work;
6995 
6996 	/* Drivers must not modify the NAPI state if they
6997 	 * consume the entire weight.  In such cases this code
6998 	 * still "owns" the NAPI instance and therefore can
6999 	 * move the instance around on the list at-will.
7000 	 */
7001 	if (unlikely(napi_disable_pending(n))) {
7002 		napi_complete(n);
7003 		return work;
7004 	}
7005 
7006 	/* The NAPI context has more processing work, but busy-polling
7007 	 * is preferred. Exit early.
7008 	 */
7009 	if (napi_prefer_busy_poll(n)) {
7010 		if (napi_complete_done(n, work)) {
7011 			/* If timeout is not set, we need to make sure
7012 			 * that the NAPI is re-scheduled.
7013 			 */
7014 			napi_schedule(n);
7015 		}
7016 		return work;
7017 	}
7018 
7019 	if (n->gro_bitmask) {
7020 		/* flush too old packets
7021 		 * If HZ < 1000, flush all packets.
7022 		 */
7023 		napi_gro_flush(n, HZ >= 1000);
7024 	}
7025 
7026 	gro_normal_list(n);
7027 
7028 	/* Some drivers may have called napi_schedule
7029 	 * prior to exhausting their budget.
7030 	 */
7031 	if (unlikely(!list_empty(&n->poll_list))) {
7032 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7033 			     n->dev ? n->dev->name : "backlog");
7034 		return work;
7035 	}
7036 
7037 	*repoll = true;
7038 
7039 	return work;
7040 }
7041 
7042 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7043 {
7044 	bool do_repoll = false;
7045 	void *have;
7046 	int work;
7047 
7048 	list_del_init(&n->poll_list);
7049 
7050 	have = netpoll_poll_lock(n);
7051 
7052 	work = __napi_poll(n, &do_repoll);
7053 
7054 	if (do_repoll)
7055 		list_add_tail(&n->poll_list, repoll);
7056 
7057 	netpoll_poll_unlock(have);
7058 
7059 	return work;
7060 }
7061 
7062 static int napi_thread_wait(struct napi_struct *napi)
7063 {
7064 	bool woken = false;
7065 
7066 	set_current_state(TASK_INTERRUPTIBLE);
7067 
7068 	while (!kthread_should_stop()) {
7069 		/* Testing SCHED_THREADED bit here to make sure the current
7070 		 * kthread owns this napi and could poll on this napi.
7071 		 * Testing SCHED bit is not enough because SCHED bit might be
7072 		 * set by some other busy poll thread or by napi_disable().
7073 		 */
7074 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7075 			WARN_ON(!list_empty(&napi->poll_list));
7076 			__set_current_state(TASK_RUNNING);
7077 			return 0;
7078 		}
7079 
7080 		schedule();
7081 		/* woken being true indicates this thread owns this napi. */
7082 		woken = true;
7083 		set_current_state(TASK_INTERRUPTIBLE);
7084 	}
7085 	__set_current_state(TASK_RUNNING);
7086 
7087 	return -1;
7088 }
7089 
7090 static int napi_threaded_poll(void *data)
7091 {
7092 	struct napi_struct *napi = data;
7093 	void *have;
7094 
7095 	while (!napi_thread_wait(napi)) {
7096 		for (;;) {
7097 			bool repoll = false;
7098 
7099 			local_bh_disable();
7100 
7101 			have = netpoll_poll_lock(napi);
7102 			__napi_poll(napi, &repoll);
7103 			netpoll_poll_unlock(have);
7104 
7105 			local_bh_enable();
7106 
7107 			if (!repoll)
7108 				break;
7109 
7110 			cond_resched();
7111 		}
7112 	}
7113 	return 0;
7114 }
7115 
7116 static __latent_entropy void net_rx_action(struct softirq_action *h)
7117 {
7118 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7119 	unsigned long time_limit = jiffies +
7120 		usecs_to_jiffies(netdev_budget_usecs);
7121 	int budget = netdev_budget;
7122 	LIST_HEAD(list);
7123 	LIST_HEAD(repoll);
7124 
7125 	local_irq_disable();
7126 	list_splice_init(&sd->poll_list, &list);
7127 	local_irq_enable();
7128 
7129 	for (;;) {
7130 		struct napi_struct *n;
7131 
7132 		if (list_empty(&list)) {
7133 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7134 				return;
7135 			break;
7136 		}
7137 
7138 		n = list_first_entry(&list, struct napi_struct, poll_list);
7139 		budget -= napi_poll(n, &repoll);
7140 
7141 		/* If softirq window is exhausted then punt.
7142 		 * Allow this to run for 2 jiffies since which will allow
7143 		 * an average latency of 1.5/HZ.
7144 		 */
7145 		if (unlikely(budget <= 0 ||
7146 			     time_after_eq(jiffies, time_limit))) {
7147 			sd->time_squeeze++;
7148 			break;
7149 		}
7150 	}
7151 
7152 	local_irq_disable();
7153 
7154 	list_splice_tail_init(&sd->poll_list, &list);
7155 	list_splice_tail(&repoll, &list);
7156 	list_splice(&list, &sd->poll_list);
7157 	if (!list_empty(&sd->poll_list))
7158 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7159 
7160 	net_rps_action_and_irq_enable(sd);
7161 }
7162 
7163 struct netdev_adjacent {
7164 	struct net_device *dev;
7165 
7166 	/* upper master flag, there can only be one master device per list */
7167 	bool master;
7168 
7169 	/* lookup ignore flag */
7170 	bool ignore;
7171 
7172 	/* counter for the number of times this device was added to us */
7173 	u16 ref_nr;
7174 
7175 	/* private field for the users */
7176 	void *private;
7177 
7178 	struct list_head list;
7179 	struct rcu_head rcu;
7180 };
7181 
7182 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7183 						 struct list_head *adj_list)
7184 {
7185 	struct netdev_adjacent *adj;
7186 
7187 	list_for_each_entry(adj, adj_list, list) {
7188 		if (adj->dev == adj_dev)
7189 			return adj;
7190 	}
7191 	return NULL;
7192 }
7193 
7194 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7195 				    struct netdev_nested_priv *priv)
7196 {
7197 	struct net_device *dev = (struct net_device *)priv->data;
7198 
7199 	return upper_dev == dev;
7200 }
7201 
7202 /**
7203  * netdev_has_upper_dev - Check if device is linked to an upper device
7204  * @dev: device
7205  * @upper_dev: upper device to check
7206  *
7207  * Find out if a device is linked to specified upper device and return true
7208  * in case it is. Note that this checks only immediate upper device,
7209  * not through a complete stack of devices. The caller must hold the RTNL lock.
7210  */
7211 bool netdev_has_upper_dev(struct net_device *dev,
7212 			  struct net_device *upper_dev)
7213 {
7214 	struct netdev_nested_priv priv = {
7215 		.data = (void *)upper_dev,
7216 	};
7217 
7218 	ASSERT_RTNL();
7219 
7220 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7221 					     &priv);
7222 }
7223 EXPORT_SYMBOL(netdev_has_upper_dev);
7224 
7225 /**
7226  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7227  * @dev: device
7228  * @upper_dev: upper device to check
7229  *
7230  * Find out if a device is linked to specified upper device and return true
7231  * in case it is. Note that this checks the entire upper device chain.
7232  * The caller must hold rcu lock.
7233  */
7234 
7235 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7236 				  struct net_device *upper_dev)
7237 {
7238 	struct netdev_nested_priv priv = {
7239 		.data = (void *)upper_dev,
7240 	};
7241 
7242 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7243 					       &priv);
7244 }
7245 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7246 
7247 /**
7248  * netdev_has_any_upper_dev - Check if device is linked to some device
7249  * @dev: device
7250  *
7251  * Find out if a device is linked to an upper device and return true in case
7252  * it is. The caller must hold the RTNL lock.
7253  */
7254 bool netdev_has_any_upper_dev(struct net_device *dev)
7255 {
7256 	ASSERT_RTNL();
7257 
7258 	return !list_empty(&dev->adj_list.upper);
7259 }
7260 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7261 
7262 /**
7263  * netdev_master_upper_dev_get - Get master upper device
7264  * @dev: device
7265  *
7266  * Find a master upper device and return pointer to it or NULL in case
7267  * it's not there. The caller must hold the RTNL lock.
7268  */
7269 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7270 {
7271 	struct netdev_adjacent *upper;
7272 
7273 	ASSERT_RTNL();
7274 
7275 	if (list_empty(&dev->adj_list.upper))
7276 		return NULL;
7277 
7278 	upper = list_first_entry(&dev->adj_list.upper,
7279 				 struct netdev_adjacent, list);
7280 	if (likely(upper->master))
7281 		return upper->dev;
7282 	return NULL;
7283 }
7284 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7285 
7286 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7287 {
7288 	struct netdev_adjacent *upper;
7289 
7290 	ASSERT_RTNL();
7291 
7292 	if (list_empty(&dev->adj_list.upper))
7293 		return NULL;
7294 
7295 	upper = list_first_entry(&dev->adj_list.upper,
7296 				 struct netdev_adjacent, list);
7297 	if (likely(upper->master) && !upper->ignore)
7298 		return upper->dev;
7299 	return NULL;
7300 }
7301 
7302 /**
7303  * netdev_has_any_lower_dev - Check if device is linked to some device
7304  * @dev: device
7305  *
7306  * Find out if a device is linked to a lower device and return true in case
7307  * it is. The caller must hold the RTNL lock.
7308  */
7309 static bool netdev_has_any_lower_dev(struct net_device *dev)
7310 {
7311 	ASSERT_RTNL();
7312 
7313 	return !list_empty(&dev->adj_list.lower);
7314 }
7315 
7316 void *netdev_adjacent_get_private(struct list_head *adj_list)
7317 {
7318 	struct netdev_adjacent *adj;
7319 
7320 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7321 
7322 	return adj->private;
7323 }
7324 EXPORT_SYMBOL(netdev_adjacent_get_private);
7325 
7326 /**
7327  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7328  * @dev: device
7329  * @iter: list_head ** of the current position
7330  *
7331  * Gets the next device from the dev's upper list, starting from iter
7332  * position. The caller must hold RCU read lock.
7333  */
7334 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7335 						 struct list_head **iter)
7336 {
7337 	struct netdev_adjacent *upper;
7338 
7339 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7340 
7341 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7342 
7343 	if (&upper->list == &dev->adj_list.upper)
7344 		return NULL;
7345 
7346 	*iter = &upper->list;
7347 
7348 	return upper->dev;
7349 }
7350 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7351 
7352 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7353 						  struct list_head **iter,
7354 						  bool *ignore)
7355 {
7356 	struct netdev_adjacent *upper;
7357 
7358 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7359 
7360 	if (&upper->list == &dev->adj_list.upper)
7361 		return NULL;
7362 
7363 	*iter = &upper->list;
7364 	*ignore = upper->ignore;
7365 
7366 	return upper->dev;
7367 }
7368 
7369 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7370 						    struct list_head **iter)
7371 {
7372 	struct netdev_adjacent *upper;
7373 
7374 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7375 
7376 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7377 
7378 	if (&upper->list == &dev->adj_list.upper)
7379 		return NULL;
7380 
7381 	*iter = &upper->list;
7382 
7383 	return upper->dev;
7384 }
7385 
7386 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7387 				       int (*fn)(struct net_device *dev,
7388 					 struct netdev_nested_priv *priv),
7389 				       struct netdev_nested_priv *priv)
7390 {
7391 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7392 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7393 	int ret, cur = 0;
7394 	bool ignore;
7395 
7396 	now = dev;
7397 	iter = &dev->adj_list.upper;
7398 
7399 	while (1) {
7400 		if (now != dev) {
7401 			ret = fn(now, priv);
7402 			if (ret)
7403 				return ret;
7404 		}
7405 
7406 		next = NULL;
7407 		while (1) {
7408 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7409 			if (!udev)
7410 				break;
7411 			if (ignore)
7412 				continue;
7413 
7414 			next = udev;
7415 			niter = &udev->adj_list.upper;
7416 			dev_stack[cur] = now;
7417 			iter_stack[cur++] = iter;
7418 			break;
7419 		}
7420 
7421 		if (!next) {
7422 			if (!cur)
7423 				return 0;
7424 			next = dev_stack[--cur];
7425 			niter = iter_stack[cur];
7426 		}
7427 
7428 		now = next;
7429 		iter = niter;
7430 	}
7431 
7432 	return 0;
7433 }
7434 
7435 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7436 				  int (*fn)(struct net_device *dev,
7437 					    struct netdev_nested_priv *priv),
7438 				  struct netdev_nested_priv *priv)
7439 {
7440 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7441 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7442 	int ret, cur = 0;
7443 
7444 	now = dev;
7445 	iter = &dev->adj_list.upper;
7446 
7447 	while (1) {
7448 		if (now != dev) {
7449 			ret = fn(now, priv);
7450 			if (ret)
7451 				return ret;
7452 		}
7453 
7454 		next = NULL;
7455 		while (1) {
7456 			udev = netdev_next_upper_dev_rcu(now, &iter);
7457 			if (!udev)
7458 				break;
7459 
7460 			next = udev;
7461 			niter = &udev->adj_list.upper;
7462 			dev_stack[cur] = now;
7463 			iter_stack[cur++] = iter;
7464 			break;
7465 		}
7466 
7467 		if (!next) {
7468 			if (!cur)
7469 				return 0;
7470 			next = dev_stack[--cur];
7471 			niter = iter_stack[cur];
7472 		}
7473 
7474 		now = next;
7475 		iter = niter;
7476 	}
7477 
7478 	return 0;
7479 }
7480 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7481 
7482 static bool __netdev_has_upper_dev(struct net_device *dev,
7483 				   struct net_device *upper_dev)
7484 {
7485 	struct netdev_nested_priv priv = {
7486 		.flags = 0,
7487 		.data = (void *)upper_dev,
7488 	};
7489 
7490 	ASSERT_RTNL();
7491 
7492 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7493 					   &priv);
7494 }
7495 
7496 /**
7497  * netdev_lower_get_next_private - Get the next ->private from the
7498  *				   lower neighbour list
7499  * @dev: device
7500  * @iter: list_head ** of the current position
7501  *
7502  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7503  * list, starting from iter position. The caller must hold either hold the
7504  * RTNL lock or its own locking that guarantees that the neighbour lower
7505  * list will remain unchanged.
7506  */
7507 void *netdev_lower_get_next_private(struct net_device *dev,
7508 				    struct list_head **iter)
7509 {
7510 	struct netdev_adjacent *lower;
7511 
7512 	lower = list_entry(*iter, struct netdev_adjacent, list);
7513 
7514 	if (&lower->list == &dev->adj_list.lower)
7515 		return NULL;
7516 
7517 	*iter = lower->list.next;
7518 
7519 	return lower->private;
7520 }
7521 EXPORT_SYMBOL(netdev_lower_get_next_private);
7522 
7523 /**
7524  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7525  *				       lower neighbour list, RCU
7526  *				       variant
7527  * @dev: device
7528  * @iter: list_head ** of the current position
7529  *
7530  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7531  * list, starting from iter position. The caller must hold RCU read lock.
7532  */
7533 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7534 					struct list_head **iter)
7535 {
7536 	struct netdev_adjacent *lower;
7537 
7538 	WARN_ON_ONCE(!rcu_read_lock_held());
7539 
7540 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7541 
7542 	if (&lower->list == &dev->adj_list.lower)
7543 		return NULL;
7544 
7545 	*iter = &lower->list;
7546 
7547 	return lower->private;
7548 }
7549 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7550 
7551 /**
7552  * netdev_lower_get_next - Get the next device from the lower neighbour
7553  *                         list
7554  * @dev: device
7555  * @iter: list_head ** of the current position
7556  *
7557  * Gets the next netdev_adjacent from the dev's lower neighbour
7558  * list, starting from iter position. The caller must hold RTNL lock or
7559  * its own locking that guarantees that the neighbour lower
7560  * list will remain unchanged.
7561  */
7562 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7563 {
7564 	struct netdev_adjacent *lower;
7565 
7566 	lower = list_entry(*iter, struct netdev_adjacent, list);
7567 
7568 	if (&lower->list == &dev->adj_list.lower)
7569 		return NULL;
7570 
7571 	*iter = lower->list.next;
7572 
7573 	return lower->dev;
7574 }
7575 EXPORT_SYMBOL(netdev_lower_get_next);
7576 
7577 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7578 						struct list_head **iter)
7579 {
7580 	struct netdev_adjacent *lower;
7581 
7582 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7583 
7584 	if (&lower->list == &dev->adj_list.lower)
7585 		return NULL;
7586 
7587 	*iter = &lower->list;
7588 
7589 	return lower->dev;
7590 }
7591 
7592 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7593 						  struct list_head **iter,
7594 						  bool *ignore)
7595 {
7596 	struct netdev_adjacent *lower;
7597 
7598 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7599 
7600 	if (&lower->list == &dev->adj_list.lower)
7601 		return NULL;
7602 
7603 	*iter = &lower->list;
7604 	*ignore = lower->ignore;
7605 
7606 	return lower->dev;
7607 }
7608 
7609 int netdev_walk_all_lower_dev(struct net_device *dev,
7610 			      int (*fn)(struct net_device *dev,
7611 					struct netdev_nested_priv *priv),
7612 			      struct netdev_nested_priv *priv)
7613 {
7614 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7615 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7616 	int ret, cur = 0;
7617 
7618 	now = dev;
7619 	iter = &dev->adj_list.lower;
7620 
7621 	while (1) {
7622 		if (now != dev) {
7623 			ret = fn(now, priv);
7624 			if (ret)
7625 				return ret;
7626 		}
7627 
7628 		next = NULL;
7629 		while (1) {
7630 			ldev = netdev_next_lower_dev(now, &iter);
7631 			if (!ldev)
7632 				break;
7633 
7634 			next = ldev;
7635 			niter = &ldev->adj_list.lower;
7636 			dev_stack[cur] = now;
7637 			iter_stack[cur++] = iter;
7638 			break;
7639 		}
7640 
7641 		if (!next) {
7642 			if (!cur)
7643 				return 0;
7644 			next = dev_stack[--cur];
7645 			niter = iter_stack[cur];
7646 		}
7647 
7648 		now = next;
7649 		iter = niter;
7650 	}
7651 
7652 	return 0;
7653 }
7654 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7655 
7656 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7657 				       int (*fn)(struct net_device *dev,
7658 					 struct netdev_nested_priv *priv),
7659 				       struct netdev_nested_priv *priv)
7660 {
7661 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7662 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7663 	int ret, cur = 0;
7664 	bool ignore;
7665 
7666 	now = dev;
7667 	iter = &dev->adj_list.lower;
7668 
7669 	while (1) {
7670 		if (now != dev) {
7671 			ret = fn(now, priv);
7672 			if (ret)
7673 				return ret;
7674 		}
7675 
7676 		next = NULL;
7677 		while (1) {
7678 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7679 			if (!ldev)
7680 				break;
7681 			if (ignore)
7682 				continue;
7683 
7684 			next = ldev;
7685 			niter = &ldev->adj_list.lower;
7686 			dev_stack[cur] = now;
7687 			iter_stack[cur++] = iter;
7688 			break;
7689 		}
7690 
7691 		if (!next) {
7692 			if (!cur)
7693 				return 0;
7694 			next = dev_stack[--cur];
7695 			niter = iter_stack[cur];
7696 		}
7697 
7698 		now = next;
7699 		iter = niter;
7700 	}
7701 
7702 	return 0;
7703 }
7704 
7705 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7706 					     struct list_head **iter)
7707 {
7708 	struct netdev_adjacent *lower;
7709 
7710 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7711 	if (&lower->list == &dev->adj_list.lower)
7712 		return NULL;
7713 
7714 	*iter = &lower->list;
7715 
7716 	return lower->dev;
7717 }
7718 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7719 
7720 static u8 __netdev_upper_depth(struct net_device *dev)
7721 {
7722 	struct net_device *udev;
7723 	struct list_head *iter;
7724 	u8 max_depth = 0;
7725 	bool ignore;
7726 
7727 	for (iter = &dev->adj_list.upper,
7728 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7729 	     udev;
7730 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7731 		if (ignore)
7732 			continue;
7733 		if (max_depth < udev->upper_level)
7734 			max_depth = udev->upper_level;
7735 	}
7736 
7737 	return max_depth;
7738 }
7739 
7740 static u8 __netdev_lower_depth(struct net_device *dev)
7741 {
7742 	struct net_device *ldev;
7743 	struct list_head *iter;
7744 	u8 max_depth = 0;
7745 	bool ignore;
7746 
7747 	for (iter = &dev->adj_list.lower,
7748 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7749 	     ldev;
7750 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7751 		if (ignore)
7752 			continue;
7753 		if (max_depth < ldev->lower_level)
7754 			max_depth = ldev->lower_level;
7755 	}
7756 
7757 	return max_depth;
7758 }
7759 
7760 static int __netdev_update_upper_level(struct net_device *dev,
7761 				       struct netdev_nested_priv *__unused)
7762 {
7763 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7764 	return 0;
7765 }
7766 
7767 static int __netdev_update_lower_level(struct net_device *dev,
7768 				       struct netdev_nested_priv *priv)
7769 {
7770 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7771 
7772 #ifdef CONFIG_LOCKDEP
7773 	if (!priv)
7774 		return 0;
7775 
7776 	if (priv->flags & NESTED_SYNC_IMM)
7777 		dev->nested_level = dev->lower_level - 1;
7778 	if (priv->flags & NESTED_SYNC_TODO)
7779 		net_unlink_todo(dev);
7780 #endif
7781 	return 0;
7782 }
7783 
7784 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7785 				  int (*fn)(struct net_device *dev,
7786 					    struct netdev_nested_priv *priv),
7787 				  struct netdev_nested_priv *priv)
7788 {
7789 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7790 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7791 	int ret, cur = 0;
7792 
7793 	now = dev;
7794 	iter = &dev->adj_list.lower;
7795 
7796 	while (1) {
7797 		if (now != dev) {
7798 			ret = fn(now, priv);
7799 			if (ret)
7800 				return ret;
7801 		}
7802 
7803 		next = NULL;
7804 		while (1) {
7805 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7806 			if (!ldev)
7807 				break;
7808 
7809 			next = ldev;
7810 			niter = &ldev->adj_list.lower;
7811 			dev_stack[cur] = now;
7812 			iter_stack[cur++] = iter;
7813 			break;
7814 		}
7815 
7816 		if (!next) {
7817 			if (!cur)
7818 				return 0;
7819 			next = dev_stack[--cur];
7820 			niter = iter_stack[cur];
7821 		}
7822 
7823 		now = next;
7824 		iter = niter;
7825 	}
7826 
7827 	return 0;
7828 }
7829 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7830 
7831 /**
7832  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7833  *				       lower neighbour list, RCU
7834  *				       variant
7835  * @dev: device
7836  *
7837  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7838  * list. The caller must hold RCU read lock.
7839  */
7840 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7841 {
7842 	struct netdev_adjacent *lower;
7843 
7844 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7845 			struct netdev_adjacent, list);
7846 	if (lower)
7847 		return lower->private;
7848 	return NULL;
7849 }
7850 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7851 
7852 /**
7853  * netdev_master_upper_dev_get_rcu - Get master upper device
7854  * @dev: device
7855  *
7856  * Find a master upper device and return pointer to it or NULL in case
7857  * it's not there. The caller must hold the RCU read lock.
7858  */
7859 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7860 {
7861 	struct netdev_adjacent *upper;
7862 
7863 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7864 				       struct netdev_adjacent, list);
7865 	if (upper && likely(upper->master))
7866 		return upper->dev;
7867 	return NULL;
7868 }
7869 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7870 
7871 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7872 			      struct net_device *adj_dev,
7873 			      struct list_head *dev_list)
7874 {
7875 	char linkname[IFNAMSIZ+7];
7876 
7877 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7878 		"upper_%s" : "lower_%s", adj_dev->name);
7879 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7880 				 linkname);
7881 }
7882 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7883 			       char *name,
7884 			       struct list_head *dev_list)
7885 {
7886 	char linkname[IFNAMSIZ+7];
7887 
7888 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7889 		"upper_%s" : "lower_%s", name);
7890 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7891 }
7892 
7893 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7894 						 struct net_device *adj_dev,
7895 						 struct list_head *dev_list)
7896 {
7897 	return (dev_list == &dev->adj_list.upper ||
7898 		dev_list == &dev->adj_list.lower) &&
7899 		net_eq(dev_net(dev), dev_net(adj_dev));
7900 }
7901 
7902 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7903 					struct net_device *adj_dev,
7904 					struct list_head *dev_list,
7905 					void *private, bool master)
7906 {
7907 	struct netdev_adjacent *adj;
7908 	int ret;
7909 
7910 	adj = __netdev_find_adj(adj_dev, dev_list);
7911 
7912 	if (adj) {
7913 		adj->ref_nr += 1;
7914 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7915 			 dev->name, adj_dev->name, adj->ref_nr);
7916 
7917 		return 0;
7918 	}
7919 
7920 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7921 	if (!adj)
7922 		return -ENOMEM;
7923 
7924 	adj->dev = adj_dev;
7925 	adj->master = master;
7926 	adj->ref_nr = 1;
7927 	adj->private = private;
7928 	adj->ignore = false;
7929 	dev_hold(adj_dev);
7930 
7931 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7932 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7933 
7934 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7935 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7936 		if (ret)
7937 			goto free_adj;
7938 	}
7939 
7940 	/* Ensure that master link is always the first item in list. */
7941 	if (master) {
7942 		ret = sysfs_create_link(&(dev->dev.kobj),
7943 					&(adj_dev->dev.kobj), "master");
7944 		if (ret)
7945 			goto remove_symlinks;
7946 
7947 		list_add_rcu(&adj->list, dev_list);
7948 	} else {
7949 		list_add_tail_rcu(&adj->list, dev_list);
7950 	}
7951 
7952 	return 0;
7953 
7954 remove_symlinks:
7955 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7956 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7957 free_adj:
7958 	kfree(adj);
7959 	dev_put(adj_dev);
7960 
7961 	return ret;
7962 }
7963 
7964 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7965 					 struct net_device *adj_dev,
7966 					 u16 ref_nr,
7967 					 struct list_head *dev_list)
7968 {
7969 	struct netdev_adjacent *adj;
7970 
7971 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7972 		 dev->name, adj_dev->name, ref_nr);
7973 
7974 	adj = __netdev_find_adj(adj_dev, dev_list);
7975 
7976 	if (!adj) {
7977 		pr_err("Adjacency does not exist for device %s from %s\n",
7978 		       dev->name, adj_dev->name);
7979 		WARN_ON(1);
7980 		return;
7981 	}
7982 
7983 	if (adj->ref_nr > ref_nr) {
7984 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7985 			 dev->name, adj_dev->name, ref_nr,
7986 			 adj->ref_nr - ref_nr);
7987 		adj->ref_nr -= ref_nr;
7988 		return;
7989 	}
7990 
7991 	if (adj->master)
7992 		sysfs_remove_link(&(dev->dev.kobj), "master");
7993 
7994 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7995 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7996 
7997 	list_del_rcu(&adj->list);
7998 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7999 		 adj_dev->name, dev->name, adj_dev->name);
8000 	dev_put(adj_dev);
8001 	kfree_rcu(adj, rcu);
8002 }
8003 
8004 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8005 					    struct net_device *upper_dev,
8006 					    struct list_head *up_list,
8007 					    struct list_head *down_list,
8008 					    void *private, bool master)
8009 {
8010 	int ret;
8011 
8012 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8013 					   private, master);
8014 	if (ret)
8015 		return ret;
8016 
8017 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8018 					   private, false);
8019 	if (ret) {
8020 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8021 		return ret;
8022 	}
8023 
8024 	return 0;
8025 }
8026 
8027 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8028 					       struct net_device *upper_dev,
8029 					       u16 ref_nr,
8030 					       struct list_head *up_list,
8031 					       struct list_head *down_list)
8032 {
8033 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8034 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8035 }
8036 
8037 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8038 						struct net_device *upper_dev,
8039 						void *private, bool master)
8040 {
8041 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8042 						&dev->adj_list.upper,
8043 						&upper_dev->adj_list.lower,
8044 						private, master);
8045 }
8046 
8047 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8048 						   struct net_device *upper_dev)
8049 {
8050 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8051 					   &dev->adj_list.upper,
8052 					   &upper_dev->adj_list.lower);
8053 }
8054 
8055 static int __netdev_upper_dev_link(struct net_device *dev,
8056 				   struct net_device *upper_dev, bool master,
8057 				   void *upper_priv, void *upper_info,
8058 				   struct netdev_nested_priv *priv,
8059 				   struct netlink_ext_ack *extack)
8060 {
8061 	struct netdev_notifier_changeupper_info changeupper_info = {
8062 		.info = {
8063 			.dev = dev,
8064 			.extack = extack,
8065 		},
8066 		.upper_dev = upper_dev,
8067 		.master = master,
8068 		.linking = true,
8069 		.upper_info = upper_info,
8070 	};
8071 	struct net_device *master_dev;
8072 	int ret = 0;
8073 
8074 	ASSERT_RTNL();
8075 
8076 	if (dev == upper_dev)
8077 		return -EBUSY;
8078 
8079 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8080 	if (__netdev_has_upper_dev(upper_dev, dev))
8081 		return -EBUSY;
8082 
8083 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8084 		return -EMLINK;
8085 
8086 	if (!master) {
8087 		if (__netdev_has_upper_dev(dev, upper_dev))
8088 			return -EEXIST;
8089 	} else {
8090 		master_dev = __netdev_master_upper_dev_get(dev);
8091 		if (master_dev)
8092 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8093 	}
8094 
8095 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8096 					    &changeupper_info.info);
8097 	ret = notifier_to_errno(ret);
8098 	if (ret)
8099 		return ret;
8100 
8101 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8102 						   master);
8103 	if (ret)
8104 		return ret;
8105 
8106 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8107 					    &changeupper_info.info);
8108 	ret = notifier_to_errno(ret);
8109 	if (ret)
8110 		goto rollback;
8111 
8112 	__netdev_update_upper_level(dev, NULL);
8113 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8114 
8115 	__netdev_update_lower_level(upper_dev, priv);
8116 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8117 				    priv);
8118 
8119 	return 0;
8120 
8121 rollback:
8122 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8123 
8124 	return ret;
8125 }
8126 
8127 /**
8128  * netdev_upper_dev_link - Add a link to the upper device
8129  * @dev: device
8130  * @upper_dev: new upper device
8131  * @extack: netlink extended ack
8132  *
8133  * Adds a link to device which is upper to this one. The caller must hold
8134  * the RTNL lock. On a failure a negative errno code is returned.
8135  * On success the reference counts are adjusted and the function
8136  * returns zero.
8137  */
8138 int netdev_upper_dev_link(struct net_device *dev,
8139 			  struct net_device *upper_dev,
8140 			  struct netlink_ext_ack *extack)
8141 {
8142 	struct netdev_nested_priv priv = {
8143 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8144 		.data = NULL,
8145 	};
8146 
8147 	return __netdev_upper_dev_link(dev, upper_dev, false,
8148 				       NULL, NULL, &priv, extack);
8149 }
8150 EXPORT_SYMBOL(netdev_upper_dev_link);
8151 
8152 /**
8153  * netdev_master_upper_dev_link - Add a master link to the upper device
8154  * @dev: device
8155  * @upper_dev: new upper device
8156  * @upper_priv: upper device private
8157  * @upper_info: upper info to be passed down via notifier
8158  * @extack: netlink extended ack
8159  *
8160  * Adds a link to device which is upper to this one. In this case, only
8161  * one master upper device can be linked, although other non-master devices
8162  * might be linked as well. The caller must hold the RTNL lock.
8163  * On a failure a negative errno code is returned. On success the reference
8164  * counts are adjusted and the function returns zero.
8165  */
8166 int netdev_master_upper_dev_link(struct net_device *dev,
8167 				 struct net_device *upper_dev,
8168 				 void *upper_priv, void *upper_info,
8169 				 struct netlink_ext_ack *extack)
8170 {
8171 	struct netdev_nested_priv priv = {
8172 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8173 		.data = NULL,
8174 	};
8175 
8176 	return __netdev_upper_dev_link(dev, upper_dev, true,
8177 				       upper_priv, upper_info, &priv, extack);
8178 }
8179 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8180 
8181 static void __netdev_upper_dev_unlink(struct net_device *dev,
8182 				      struct net_device *upper_dev,
8183 				      struct netdev_nested_priv *priv)
8184 {
8185 	struct netdev_notifier_changeupper_info changeupper_info = {
8186 		.info = {
8187 			.dev = dev,
8188 		},
8189 		.upper_dev = upper_dev,
8190 		.linking = false,
8191 	};
8192 
8193 	ASSERT_RTNL();
8194 
8195 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8196 
8197 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8198 				      &changeupper_info.info);
8199 
8200 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8201 
8202 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8203 				      &changeupper_info.info);
8204 
8205 	__netdev_update_upper_level(dev, NULL);
8206 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8207 
8208 	__netdev_update_lower_level(upper_dev, priv);
8209 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8210 				    priv);
8211 }
8212 
8213 /**
8214  * netdev_upper_dev_unlink - Removes a link to upper device
8215  * @dev: device
8216  * @upper_dev: new upper device
8217  *
8218  * Removes a link to device which is upper to this one. The caller must hold
8219  * the RTNL lock.
8220  */
8221 void netdev_upper_dev_unlink(struct net_device *dev,
8222 			     struct net_device *upper_dev)
8223 {
8224 	struct netdev_nested_priv priv = {
8225 		.flags = NESTED_SYNC_TODO,
8226 		.data = NULL,
8227 	};
8228 
8229 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8230 }
8231 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8232 
8233 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8234 				      struct net_device *lower_dev,
8235 				      bool val)
8236 {
8237 	struct netdev_adjacent *adj;
8238 
8239 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8240 	if (adj)
8241 		adj->ignore = val;
8242 
8243 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8244 	if (adj)
8245 		adj->ignore = val;
8246 }
8247 
8248 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8249 					struct net_device *lower_dev)
8250 {
8251 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8252 }
8253 
8254 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8255 				       struct net_device *lower_dev)
8256 {
8257 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8258 }
8259 
8260 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8261 				   struct net_device *new_dev,
8262 				   struct net_device *dev,
8263 				   struct netlink_ext_ack *extack)
8264 {
8265 	struct netdev_nested_priv priv = {
8266 		.flags = 0,
8267 		.data = NULL,
8268 	};
8269 	int err;
8270 
8271 	if (!new_dev)
8272 		return 0;
8273 
8274 	if (old_dev && new_dev != old_dev)
8275 		netdev_adjacent_dev_disable(dev, old_dev);
8276 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8277 				      extack);
8278 	if (err) {
8279 		if (old_dev && new_dev != old_dev)
8280 			netdev_adjacent_dev_enable(dev, old_dev);
8281 		return err;
8282 	}
8283 
8284 	return 0;
8285 }
8286 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8287 
8288 void netdev_adjacent_change_commit(struct net_device *old_dev,
8289 				   struct net_device *new_dev,
8290 				   struct net_device *dev)
8291 {
8292 	struct netdev_nested_priv priv = {
8293 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8294 		.data = NULL,
8295 	};
8296 
8297 	if (!new_dev || !old_dev)
8298 		return;
8299 
8300 	if (new_dev == old_dev)
8301 		return;
8302 
8303 	netdev_adjacent_dev_enable(dev, old_dev);
8304 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8305 }
8306 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8307 
8308 void netdev_adjacent_change_abort(struct net_device *old_dev,
8309 				  struct net_device *new_dev,
8310 				  struct net_device *dev)
8311 {
8312 	struct netdev_nested_priv priv = {
8313 		.flags = 0,
8314 		.data = NULL,
8315 	};
8316 
8317 	if (!new_dev)
8318 		return;
8319 
8320 	if (old_dev && new_dev != old_dev)
8321 		netdev_adjacent_dev_enable(dev, old_dev);
8322 
8323 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8324 }
8325 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8326 
8327 /**
8328  * netdev_bonding_info_change - Dispatch event about slave change
8329  * @dev: device
8330  * @bonding_info: info to dispatch
8331  *
8332  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8333  * The caller must hold the RTNL lock.
8334  */
8335 void netdev_bonding_info_change(struct net_device *dev,
8336 				struct netdev_bonding_info *bonding_info)
8337 {
8338 	struct netdev_notifier_bonding_info info = {
8339 		.info.dev = dev,
8340 	};
8341 
8342 	memcpy(&info.bonding_info, bonding_info,
8343 	       sizeof(struct netdev_bonding_info));
8344 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8345 				      &info.info);
8346 }
8347 EXPORT_SYMBOL(netdev_bonding_info_change);
8348 
8349 /**
8350  * netdev_get_xmit_slave - Get the xmit slave of master device
8351  * @dev: device
8352  * @skb: The packet
8353  * @all_slaves: assume all the slaves are active
8354  *
8355  * The reference counters are not incremented so the caller must be
8356  * careful with locks. The caller must hold RCU lock.
8357  * %NULL is returned if no slave is found.
8358  */
8359 
8360 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8361 					 struct sk_buff *skb,
8362 					 bool all_slaves)
8363 {
8364 	const struct net_device_ops *ops = dev->netdev_ops;
8365 
8366 	if (!ops->ndo_get_xmit_slave)
8367 		return NULL;
8368 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8369 }
8370 EXPORT_SYMBOL(netdev_get_xmit_slave);
8371 
8372 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8373 						  struct sock *sk)
8374 {
8375 	const struct net_device_ops *ops = dev->netdev_ops;
8376 
8377 	if (!ops->ndo_sk_get_lower_dev)
8378 		return NULL;
8379 	return ops->ndo_sk_get_lower_dev(dev, sk);
8380 }
8381 
8382 /**
8383  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8384  * @dev: device
8385  * @sk: the socket
8386  *
8387  * %NULL is returned if no lower device is found.
8388  */
8389 
8390 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8391 					    struct sock *sk)
8392 {
8393 	struct net_device *lower;
8394 
8395 	lower = netdev_sk_get_lower_dev(dev, sk);
8396 	while (lower) {
8397 		dev = lower;
8398 		lower = netdev_sk_get_lower_dev(dev, sk);
8399 	}
8400 
8401 	return dev;
8402 }
8403 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8404 
8405 static void netdev_adjacent_add_links(struct net_device *dev)
8406 {
8407 	struct netdev_adjacent *iter;
8408 
8409 	struct net *net = dev_net(dev);
8410 
8411 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8412 		if (!net_eq(net, dev_net(iter->dev)))
8413 			continue;
8414 		netdev_adjacent_sysfs_add(iter->dev, dev,
8415 					  &iter->dev->adj_list.lower);
8416 		netdev_adjacent_sysfs_add(dev, iter->dev,
8417 					  &dev->adj_list.upper);
8418 	}
8419 
8420 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8421 		if (!net_eq(net, dev_net(iter->dev)))
8422 			continue;
8423 		netdev_adjacent_sysfs_add(iter->dev, dev,
8424 					  &iter->dev->adj_list.upper);
8425 		netdev_adjacent_sysfs_add(dev, iter->dev,
8426 					  &dev->adj_list.lower);
8427 	}
8428 }
8429 
8430 static void netdev_adjacent_del_links(struct net_device *dev)
8431 {
8432 	struct netdev_adjacent *iter;
8433 
8434 	struct net *net = dev_net(dev);
8435 
8436 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8437 		if (!net_eq(net, dev_net(iter->dev)))
8438 			continue;
8439 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8440 					  &iter->dev->adj_list.lower);
8441 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8442 					  &dev->adj_list.upper);
8443 	}
8444 
8445 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8446 		if (!net_eq(net, dev_net(iter->dev)))
8447 			continue;
8448 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8449 					  &iter->dev->adj_list.upper);
8450 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8451 					  &dev->adj_list.lower);
8452 	}
8453 }
8454 
8455 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8456 {
8457 	struct netdev_adjacent *iter;
8458 
8459 	struct net *net = dev_net(dev);
8460 
8461 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8462 		if (!net_eq(net, dev_net(iter->dev)))
8463 			continue;
8464 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8465 					  &iter->dev->adj_list.lower);
8466 		netdev_adjacent_sysfs_add(iter->dev, dev,
8467 					  &iter->dev->adj_list.lower);
8468 	}
8469 
8470 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8471 		if (!net_eq(net, dev_net(iter->dev)))
8472 			continue;
8473 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8474 					  &iter->dev->adj_list.upper);
8475 		netdev_adjacent_sysfs_add(iter->dev, dev,
8476 					  &iter->dev->adj_list.upper);
8477 	}
8478 }
8479 
8480 void *netdev_lower_dev_get_private(struct net_device *dev,
8481 				   struct net_device *lower_dev)
8482 {
8483 	struct netdev_adjacent *lower;
8484 
8485 	if (!lower_dev)
8486 		return NULL;
8487 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8488 	if (!lower)
8489 		return NULL;
8490 
8491 	return lower->private;
8492 }
8493 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8494 
8495 
8496 /**
8497  * netdev_lower_state_changed - Dispatch event about lower device state change
8498  * @lower_dev: device
8499  * @lower_state_info: state to dispatch
8500  *
8501  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8502  * The caller must hold the RTNL lock.
8503  */
8504 void netdev_lower_state_changed(struct net_device *lower_dev,
8505 				void *lower_state_info)
8506 {
8507 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8508 		.info.dev = lower_dev,
8509 	};
8510 
8511 	ASSERT_RTNL();
8512 	changelowerstate_info.lower_state_info = lower_state_info;
8513 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8514 				      &changelowerstate_info.info);
8515 }
8516 EXPORT_SYMBOL(netdev_lower_state_changed);
8517 
8518 static void dev_change_rx_flags(struct net_device *dev, int flags)
8519 {
8520 	const struct net_device_ops *ops = dev->netdev_ops;
8521 
8522 	if (ops->ndo_change_rx_flags)
8523 		ops->ndo_change_rx_flags(dev, flags);
8524 }
8525 
8526 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8527 {
8528 	unsigned int old_flags = dev->flags;
8529 	kuid_t uid;
8530 	kgid_t gid;
8531 
8532 	ASSERT_RTNL();
8533 
8534 	dev->flags |= IFF_PROMISC;
8535 	dev->promiscuity += inc;
8536 	if (dev->promiscuity == 0) {
8537 		/*
8538 		 * Avoid overflow.
8539 		 * If inc causes overflow, untouch promisc and return error.
8540 		 */
8541 		if (inc < 0)
8542 			dev->flags &= ~IFF_PROMISC;
8543 		else {
8544 			dev->promiscuity -= inc;
8545 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8546 				dev->name);
8547 			return -EOVERFLOW;
8548 		}
8549 	}
8550 	if (dev->flags != old_flags) {
8551 		pr_info("device %s %s promiscuous mode\n",
8552 			dev->name,
8553 			dev->flags & IFF_PROMISC ? "entered" : "left");
8554 		if (audit_enabled) {
8555 			current_uid_gid(&uid, &gid);
8556 			audit_log(audit_context(), GFP_ATOMIC,
8557 				  AUDIT_ANOM_PROMISCUOUS,
8558 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8559 				  dev->name, (dev->flags & IFF_PROMISC),
8560 				  (old_flags & IFF_PROMISC),
8561 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8562 				  from_kuid(&init_user_ns, uid),
8563 				  from_kgid(&init_user_ns, gid),
8564 				  audit_get_sessionid(current));
8565 		}
8566 
8567 		dev_change_rx_flags(dev, IFF_PROMISC);
8568 	}
8569 	if (notify)
8570 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8571 	return 0;
8572 }
8573 
8574 /**
8575  *	dev_set_promiscuity	- update promiscuity count on a device
8576  *	@dev: device
8577  *	@inc: modifier
8578  *
8579  *	Add or remove promiscuity from a device. While the count in the device
8580  *	remains above zero the interface remains promiscuous. Once it hits zero
8581  *	the device reverts back to normal filtering operation. A negative inc
8582  *	value is used to drop promiscuity on the device.
8583  *	Return 0 if successful or a negative errno code on error.
8584  */
8585 int dev_set_promiscuity(struct net_device *dev, int inc)
8586 {
8587 	unsigned int old_flags = dev->flags;
8588 	int err;
8589 
8590 	err = __dev_set_promiscuity(dev, inc, true);
8591 	if (err < 0)
8592 		return err;
8593 	if (dev->flags != old_flags)
8594 		dev_set_rx_mode(dev);
8595 	return err;
8596 }
8597 EXPORT_SYMBOL(dev_set_promiscuity);
8598 
8599 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8600 {
8601 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8602 
8603 	ASSERT_RTNL();
8604 
8605 	dev->flags |= IFF_ALLMULTI;
8606 	dev->allmulti += inc;
8607 	if (dev->allmulti == 0) {
8608 		/*
8609 		 * Avoid overflow.
8610 		 * If inc causes overflow, untouch allmulti and return error.
8611 		 */
8612 		if (inc < 0)
8613 			dev->flags &= ~IFF_ALLMULTI;
8614 		else {
8615 			dev->allmulti -= inc;
8616 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8617 				dev->name);
8618 			return -EOVERFLOW;
8619 		}
8620 	}
8621 	if (dev->flags ^ old_flags) {
8622 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8623 		dev_set_rx_mode(dev);
8624 		if (notify)
8625 			__dev_notify_flags(dev, old_flags,
8626 					   dev->gflags ^ old_gflags);
8627 	}
8628 	return 0;
8629 }
8630 
8631 /**
8632  *	dev_set_allmulti	- update allmulti count on a device
8633  *	@dev: device
8634  *	@inc: modifier
8635  *
8636  *	Add or remove reception of all multicast frames to a device. While the
8637  *	count in the device remains above zero the interface remains listening
8638  *	to all interfaces. Once it hits zero the device reverts back to normal
8639  *	filtering operation. A negative @inc value is used to drop the counter
8640  *	when releasing a resource needing all multicasts.
8641  *	Return 0 if successful or a negative errno code on error.
8642  */
8643 
8644 int dev_set_allmulti(struct net_device *dev, int inc)
8645 {
8646 	return __dev_set_allmulti(dev, inc, true);
8647 }
8648 EXPORT_SYMBOL(dev_set_allmulti);
8649 
8650 /*
8651  *	Upload unicast and multicast address lists to device and
8652  *	configure RX filtering. When the device doesn't support unicast
8653  *	filtering it is put in promiscuous mode while unicast addresses
8654  *	are present.
8655  */
8656 void __dev_set_rx_mode(struct net_device *dev)
8657 {
8658 	const struct net_device_ops *ops = dev->netdev_ops;
8659 
8660 	/* dev_open will call this function so the list will stay sane. */
8661 	if (!(dev->flags&IFF_UP))
8662 		return;
8663 
8664 	if (!netif_device_present(dev))
8665 		return;
8666 
8667 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8668 		/* Unicast addresses changes may only happen under the rtnl,
8669 		 * therefore calling __dev_set_promiscuity here is safe.
8670 		 */
8671 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8672 			__dev_set_promiscuity(dev, 1, false);
8673 			dev->uc_promisc = true;
8674 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8675 			__dev_set_promiscuity(dev, -1, false);
8676 			dev->uc_promisc = false;
8677 		}
8678 	}
8679 
8680 	if (ops->ndo_set_rx_mode)
8681 		ops->ndo_set_rx_mode(dev);
8682 }
8683 
8684 void dev_set_rx_mode(struct net_device *dev)
8685 {
8686 	netif_addr_lock_bh(dev);
8687 	__dev_set_rx_mode(dev);
8688 	netif_addr_unlock_bh(dev);
8689 }
8690 
8691 /**
8692  *	dev_get_flags - get flags reported to userspace
8693  *	@dev: device
8694  *
8695  *	Get the combination of flag bits exported through APIs to userspace.
8696  */
8697 unsigned int dev_get_flags(const struct net_device *dev)
8698 {
8699 	unsigned int flags;
8700 
8701 	flags = (dev->flags & ~(IFF_PROMISC |
8702 				IFF_ALLMULTI |
8703 				IFF_RUNNING |
8704 				IFF_LOWER_UP |
8705 				IFF_DORMANT)) |
8706 		(dev->gflags & (IFF_PROMISC |
8707 				IFF_ALLMULTI));
8708 
8709 	if (netif_running(dev)) {
8710 		if (netif_oper_up(dev))
8711 			flags |= IFF_RUNNING;
8712 		if (netif_carrier_ok(dev))
8713 			flags |= IFF_LOWER_UP;
8714 		if (netif_dormant(dev))
8715 			flags |= IFF_DORMANT;
8716 	}
8717 
8718 	return flags;
8719 }
8720 EXPORT_SYMBOL(dev_get_flags);
8721 
8722 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8723 		       struct netlink_ext_ack *extack)
8724 {
8725 	unsigned int old_flags = dev->flags;
8726 	int ret;
8727 
8728 	ASSERT_RTNL();
8729 
8730 	/*
8731 	 *	Set the flags on our device.
8732 	 */
8733 
8734 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8735 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8736 			       IFF_AUTOMEDIA)) |
8737 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8738 				    IFF_ALLMULTI));
8739 
8740 	/*
8741 	 *	Load in the correct multicast list now the flags have changed.
8742 	 */
8743 
8744 	if ((old_flags ^ flags) & IFF_MULTICAST)
8745 		dev_change_rx_flags(dev, IFF_MULTICAST);
8746 
8747 	dev_set_rx_mode(dev);
8748 
8749 	/*
8750 	 *	Have we downed the interface. We handle IFF_UP ourselves
8751 	 *	according to user attempts to set it, rather than blindly
8752 	 *	setting it.
8753 	 */
8754 
8755 	ret = 0;
8756 	if ((old_flags ^ flags) & IFF_UP) {
8757 		if (old_flags & IFF_UP)
8758 			__dev_close(dev);
8759 		else
8760 			ret = __dev_open(dev, extack);
8761 	}
8762 
8763 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8764 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8765 		unsigned int old_flags = dev->flags;
8766 
8767 		dev->gflags ^= IFF_PROMISC;
8768 
8769 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8770 			if (dev->flags != old_flags)
8771 				dev_set_rx_mode(dev);
8772 	}
8773 
8774 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8775 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8776 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8777 	 */
8778 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8779 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8780 
8781 		dev->gflags ^= IFF_ALLMULTI;
8782 		__dev_set_allmulti(dev, inc, false);
8783 	}
8784 
8785 	return ret;
8786 }
8787 
8788 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8789 			unsigned int gchanges)
8790 {
8791 	unsigned int changes = dev->flags ^ old_flags;
8792 
8793 	if (gchanges)
8794 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8795 
8796 	if (changes & IFF_UP) {
8797 		if (dev->flags & IFF_UP)
8798 			call_netdevice_notifiers(NETDEV_UP, dev);
8799 		else
8800 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8801 	}
8802 
8803 	if (dev->flags & IFF_UP &&
8804 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8805 		struct netdev_notifier_change_info change_info = {
8806 			.info = {
8807 				.dev = dev,
8808 			},
8809 			.flags_changed = changes,
8810 		};
8811 
8812 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8813 	}
8814 }
8815 
8816 /**
8817  *	dev_change_flags - change device settings
8818  *	@dev: device
8819  *	@flags: device state flags
8820  *	@extack: netlink extended ack
8821  *
8822  *	Change settings on device based state flags. The flags are
8823  *	in the userspace exported format.
8824  */
8825 int dev_change_flags(struct net_device *dev, unsigned int flags,
8826 		     struct netlink_ext_ack *extack)
8827 {
8828 	int ret;
8829 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8830 
8831 	ret = __dev_change_flags(dev, flags, extack);
8832 	if (ret < 0)
8833 		return ret;
8834 
8835 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8836 	__dev_notify_flags(dev, old_flags, changes);
8837 	return ret;
8838 }
8839 EXPORT_SYMBOL(dev_change_flags);
8840 
8841 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8842 {
8843 	const struct net_device_ops *ops = dev->netdev_ops;
8844 
8845 	if (ops->ndo_change_mtu)
8846 		return ops->ndo_change_mtu(dev, new_mtu);
8847 
8848 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8849 	WRITE_ONCE(dev->mtu, new_mtu);
8850 	return 0;
8851 }
8852 EXPORT_SYMBOL(__dev_set_mtu);
8853 
8854 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8855 		     struct netlink_ext_ack *extack)
8856 {
8857 	/* MTU must be positive, and in range */
8858 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8859 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8860 		return -EINVAL;
8861 	}
8862 
8863 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8864 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8865 		return -EINVAL;
8866 	}
8867 	return 0;
8868 }
8869 
8870 /**
8871  *	dev_set_mtu_ext - Change maximum transfer unit
8872  *	@dev: device
8873  *	@new_mtu: new transfer unit
8874  *	@extack: netlink extended ack
8875  *
8876  *	Change the maximum transfer size of the network device.
8877  */
8878 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8879 		    struct netlink_ext_ack *extack)
8880 {
8881 	int err, orig_mtu;
8882 
8883 	if (new_mtu == dev->mtu)
8884 		return 0;
8885 
8886 	err = dev_validate_mtu(dev, new_mtu, extack);
8887 	if (err)
8888 		return err;
8889 
8890 	if (!netif_device_present(dev))
8891 		return -ENODEV;
8892 
8893 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8894 	err = notifier_to_errno(err);
8895 	if (err)
8896 		return err;
8897 
8898 	orig_mtu = dev->mtu;
8899 	err = __dev_set_mtu(dev, new_mtu);
8900 
8901 	if (!err) {
8902 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8903 						   orig_mtu);
8904 		err = notifier_to_errno(err);
8905 		if (err) {
8906 			/* setting mtu back and notifying everyone again,
8907 			 * so that they have a chance to revert changes.
8908 			 */
8909 			__dev_set_mtu(dev, orig_mtu);
8910 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8911 						     new_mtu);
8912 		}
8913 	}
8914 	return err;
8915 }
8916 
8917 int dev_set_mtu(struct net_device *dev, int new_mtu)
8918 {
8919 	struct netlink_ext_ack extack;
8920 	int err;
8921 
8922 	memset(&extack, 0, sizeof(extack));
8923 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8924 	if (err && extack._msg)
8925 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8926 	return err;
8927 }
8928 EXPORT_SYMBOL(dev_set_mtu);
8929 
8930 /**
8931  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8932  *	@dev: device
8933  *	@new_len: new tx queue length
8934  */
8935 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8936 {
8937 	unsigned int orig_len = dev->tx_queue_len;
8938 	int res;
8939 
8940 	if (new_len != (unsigned int)new_len)
8941 		return -ERANGE;
8942 
8943 	if (new_len != orig_len) {
8944 		dev->tx_queue_len = new_len;
8945 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8946 		res = notifier_to_errno(res);
8947 		if (res)
8948 			goto err_rollback;
8949 		res = dev_qdisc_change_tx_queue_len(dev);
8950 		if (res)
8951 			goto err_rollback;
8952 	}
8953 
8954 	return 0;
8955 
8956 err_rollback:
8957 	netdev_err(dev, "refused to change device tx_queue_len\n");
8958 	dev->tx_queue_len = orig_len;
8959 	return res;
8960 }
8961 
8962 /**
8963  *	dev_set_group - Change group this device belongs to
8964  *	@dev: device
8965  *	@new_group: group this device should belong to
8966  */
8967 void dev_set_group(struct net_device *dev, int new_group)
8968 {
8969 	dev->group = new_group;
8970 }
8971 EXPORT_SYMBOL(dev_set_group);
8972 
8973 /**
8974  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8975  *	@dev: device
8976  *	@addr: new address
8977  *	@extack: netlink extended ack
8978  */
8979 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8980 			      struct netlink_ext_ack *extack)
8981 {
8982 	struct netdev_notifier_pre_changeaddr_info info = {
8983 		.info.dev = dev,
8984 		.info.extack = extack,
8985 		.dev_addr = addr,
8986 	};
8987 	int rc;
8988 
8989 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8990 	return notifier_to_errno(rc);
8991 }
8992 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8993 
8994 /**
8995  *	dev_set_mac_address - Change Media Access Control Address
8996  *	@dev: device
8997  *	@sa: new address
8998  *	@extack: netlink extended ack
8999  *
9000  *	Change the hardware (MAC) address of the device
9001  */
9002 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9003 			struct netlink_ext_ack *extack)
9004 {
9005 	const struct net_device_ops *ops = dev->netdev_ops;
9006 	int err;
9007 
9008 	if (!ops->ndo_set_mac_address)
9009 		return -EOPNOTSUPP;
9010 	if (sa->sa_family != dev->type)
9011 		return -EINVAL;
9012 	if (!netif_device_present(dev))
9013 		return -ENODEV;
9014 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9015 	if (err)
9016 		return err;
9017 	err = ops->ndo_set_mac_address(dev, sa);
9018 	if (err)
9019 		return err;
9020 	dev->addr_assign_type = NET_ADDR_SET;
9021 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9022 	add_device_randomness(dev->dev_addr, dev->addr_len);
9023 	return 0;
9024 }
9025 EXPORT_SYMBOL(dev_set_mac_address);
9026 
9027 static DECLARE_RWSEM(dev_addr_sem);
9028 
9029 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9030 			     struct netlink_ext_ack *extack)
9031 {
9032 	int ret;
9033 
9034 	down_write(&dev_addr_sem);
9035 	ret = dev_set_mac_address(dev, sa, extack);
9036 	up_write(&dev_addr_sem);
9037 	return ret;
9038 }
9039 EXPORT_SYMBOL(dev_set_mac_address_user);
9040 
9041 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9042 {
9043 	size_t size = sizeof(sa->sa_data);
9044 	struct net_device *dev;
9045 	int ret = 0;
9046 
9047 	down_read(&dev_addr_sem);
9048 	rcu_read_lock();
9049 
9050 	dev = dev_get_by_name_rcu(net, dev_name);
9051 	if (!dev) {
9052 		ret = -ENODEV;
9053 		goto unlock;
9054 	}
9055 	if (!dev->addr_len)
9056 		memset(sa->sa_data, 0, size);
9057 	else
9058 		memcpy(sa->sa_data, dev->dev_addr,
9059 		       min_t(size_t, size, dev->addr_len));
9060 	sa->sa_family = dev->type;
9061 
9062 unlock:
9063 	rcu_read_unlock();
9064 	up_read(&dev_addr_sem);
9065 	return ret;
9066 }
9067 EXPORT_SYMBOL(dev_get_mac_address);
9068 
9069 /**
9070  *	dev_change_carrier - Change device carrier
9071  *	@dev: device
9072  *	@new_carrier: new value
9073  *
9074  *	Change device carrier
9075  */
9076 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9077 {
9078 	const struct net_device_ops *ops = dev->netdev_ops;
9079 
9080 	if (!ops->ndo_change_carrier)
9081 		return -EOPNOTSUPP;
9082 	if (!netif_device_present(dev))
9083 		return -ENODEV;
9084 	return ops->ndo_change_carrier(dev, new_carrier);
9085 }
9086 EXPORT_SYMBOL(dev_change_carrier);
9087 
9088 /**
9089  *	dev_get_phys_port_id - Get device physical port ID
9090  *	@dev: device
9091  *	@ppid: port ID
9092  *
9093  *	Get device physical port ID
9094  */
9095 int dev_get_phys_port_id(struct net_device *dev,
9096 			 struct netdev_phys_item_id *ppid)
9097 {
9098 	const struct net_device_ops *ops = dev->netdev_ops;
9099 
9100 	if (!ops->ndo_get_phys_port_id)
9101 		return -EOPNOTSUPP;
9102 	return ops->ndo_get_phys_port_id(dev, ppid);
9103 }
9104 EXPORT_SYMBOL(dev_get_phys_port_id);
9105 
9106 /**
9107  *	dev_get_phys_port_name - Get device physical port name
9108  *	@dev: device
9109  *	@name: port name
9110  *	@len: limit of bytes to copy to name
9111  *
9112  *	Get device physical port name
9113  */
9114 int dev_get_phys_port_name(struct net_device *dev,
9115 			   char *name, size_t len)
9116 {
9117 	const struct net_device_ops *ops = dev->netdev_ops;
9118 	int err;
9119 
9120 	if (ops->ndo_get_phys_port_name) {
9121 		err = ops->ndo_get_phys_port_name(dev, name, len);
9122 		if (err != -EOPNOTSUPP)
9123 			return err;
9124 	}
9125 	return devlink_compat_phys_port_name_get(dev, name, len);
9126 }
9127 EXPORT_SYMBOL(dev_get_phys_port_name);
9128 
9129 /**
9130  *	dev_get_port_parent_id - Get the device's port parent identifier
9131  *	@dev: network device
9132  *	@ppid: pointer to a storage for the port's parent identifier
9133  *	@recurse: allow/disallow recursion to lower devices
9134  *
9135  *	Get the devices's port parent identifier
9136  */
9137 int dev_get_port_parent_id(struct net_device *dev,
9138 			   struct netdev_phys_item_id *ppid,
9139 			   bool recurse)
9140 {
9141 	const struct net_device_ops *ops = dev->netdev_ops;
9142 	struct netdev_phys_item_id first = { };
9143 	struct net_device *lower_dev;
9144 	struct list_head *iter;
9145 	int err;
9146 
9147 	if (ops->ndo_get_port_parent_id) {
9148 		err = ops->ndo_get_port_parent_id(dev, ppid);
9149 		if (err != -EOPNOTSUPP)
9150 			return err;
9151 	}
9152 
9153 	err = devlink_compat_switch_id_get(dev, ppid);
9154 	if (!err || err != -EOPNOTSUPP)
9155 		return err;
9156 
9157 	if (!recurse)
9158 		return -EOPNOTSUPP;
9159 
9160 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9161 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9162 		if (err)
9163 			break;
9164 		if (!first.id_len)
9165 			first = *ppid;
9166 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9167 			return -EOPNOTSUPP;
9168 	}
9169 
9170 	return err;
9171 }
9172 EXPORT_SYMBOL(dev_get_port_parent_id);
9173 
9174 /**
9175  *	netdev_port_same_parent_id - Indicate if two network devices have
9176  *	the same port parent identifier
9177  *	@a: first network device
9178  *	@b: second network device
9179  */
9180 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9181 {
9182 	struct netdev_phys_item_id a_id = { };
9183 	struct netdev_phys_item_id b_id = { };
9184 
9185 	if (dev_get_port_parent_id(a, &a_id, true) ||
9186 	    dev_get_port_parent_id(b, &b_id, true))
9187 		return false;
9188 
9189 	return netdev_phys_item_id_same(&a_id, &b_id);
9190 }
9191 EXPORT_SYMBOL(netdev_port_same_parent_id);
9192 
9193 /**
9194  *	dev_change_proto_down - update protocol port state information
9195  *	@dev: device
9196  *	@proto_down: new value
9197  *
9198  *	This info can be used by switch drivers to set the phys state of the
9199  *	port.
9200  */
9201 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9202 {
9203 	const struct net_device_ops *ops = dev->netdev_ops;
9204 
9205 	if (!ops->ndo_change_proto_down)
9206 		return -EOPNOTSUPP;
9207 	if (!netif_device_present(dev))
9208 		return -ENODEV;
9209 	return ops->ndo_change_proto_down(dev, proto_down);
9210 }
9211 EXPORT_SYMBOL(dev_change_proto_down);
9212 
9213 /**
9214  *	dev_change_proto_down_generic - generic implementation for
9215  * 	ndo_change_proto_down that sets carrier according to
9216  * 	proto_down.
9217  *
9218  *	@dev: device
9219  *	@proto_down: new value
9220  */
9221 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9222 {
9223 	if (proto_down)
9224 		netif_carrier_off(dev);
9225 	else
9226 		netif_carrier_on(dev);
9227 	dev->proto_down = proto_down;
9228 	return 0;
9229 }
9230 EXPORT_SYMBOL(dev_change_proto_down_generic);
9231 
9232 /**
9233  *	dev_change_proto_down_reason - proto down reason
9234  *
9235  *	@dev: device
9236  *	@mask: proto down mask
9237  *	@value: proto down value
9238  */
9239 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9240 				  u32 value)
9241 {
9242 	int b;
9243 
9244 	if (!mask) {
9245 		dev->proto_down_reason = value;
9246 	} else {
9247 		for_each_set_bit(b, &mask, 32) {
9248 			if (value & (1 << b))
9249 				dev->proto_down_reason |= BIT(b);
9250 			else
9251 				dev->proto_down_reason &= ~BIT(b);
9252 		}
9253 	}
9254 }
9255 EXPORT_SYMBOL(dev_change_proto_down_reason);
9256 
9257 struct bpf_xdp_link {
9258 	struct bpf_link link;
9259 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9260 	int flags;
9261 };
9262 
9263 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9264 {
9265 	if (flags & XDP_FLAGS_HW_MODE)
9266 		return XDP_MODE_HW;
9267 	if (flags & XDP_FLAGS_DRV_MODE)
9268 		return XDP_MODE_DRV;
9269 	if (flags & XDP_FLAGS_SKB_MODE)
9270 		return XDP_MODE_SKB;
9271 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9272 }
9273 
9274 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9275 {
9276 	switch (mode) {
9277 	case XDP_MODE_SKB:
9278 		return generic_xdp_install;
9279 	case XDP_MODE_DRV:
9280 	case XDP_MODE_HW:
9281 		return dev->netdev_ops->ndo_bpf;
9282 	default:
9283 		return NULL;
9284 	}
9285 }
9286 
9287 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9288 					 enum bpf_xdp_mode mode)
9289 {
9290 	return dev->xdp_state[mode].link;
9291 }
9292 
9293 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9294 				     enum bpf_xdp_mode mode)
9295 {
9296 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9297 
9298 	if (link)
9299 		return link->link.prog;
9300 	return dev->xdp_state[mode].prog;
9301 }
9302 
9303 static u8 dev_xdp_prog_count(struct net_device *dev)
9304 {
9305 	u8 count = 0;
9306 	int i;
9307 
9308 	for (i = 0; i < __MAX_XDP_MODE; i++)
9309 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9310 			count++;
9311 	return count;
9312 }
9313 
9314 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9315 {
9316 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9317 
9318 	return prog ? prog->aux->id : 0;
9319 }
9320 
9321 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9322 			     struct bpf_xdp_link *link)
9323 {
9324 	dev->xdp_state[mode].link = link;
9325 	dev->xdp_state[mode].prog = NULL;
9326 }
9327 
9328 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9329 			     struct bpf_prog *prog)
9330 {
9331 	dev->xdp_state[mode].link = NULL;
9332 	dev->xdp_state[mode].prog = prog;
9333 }
9334 
9335 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9336 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9337 			   u32 flags, struct bpf_prog *prog)
9338 {
9339 	struct netdev_bpf xdp;
9340 	int err;
9341 
9342 	memset(&xdp, 0, sizeof(xdp));
9343 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9344 	xdp.extack = extack;
9345 	xdp.flags = flags;
9346 	xdp.prog = prog;
9347 
9348 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9349 	 * "moved" into driver), so they don't increment it on their own, but
9350 	 * they do decrement refcnt when program is detached or replaced.
9351 	 * Given net_device also owns link/prog, we need to bump refcnt here
9352 	 * to prevent drivers from underflowing it.
9353 	 */
9354 	if (prog)
9355 		bpf_prog_inc(prog);
9356 	err = bpf_op(dev, &xdp);
9357 	if (err) {
9358 		if (prog)
9359 			bpf_prog_put(prog);
9360 		return err;
9361 	}
9362 
9363 	if (mode != XDP_MODE_HW)
9364 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9365 
9366 	return 0;
9367 }
9368 
9369 static void dev_xdp_uninstall(struct net_device *dev)
9370 {
9371 	struct bpf_xdp_link *link;
9372 	struct bpf_prog *prog;
9373 	enum bpf_xdp_mode mode;
9374 	bpf_op_t bpf_op;
9375 
9376 	ASSERT_RTNL();
9377 
9378 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9379 		prog = dev_xdp_prog(dev, mode);
9380 		if (!prog)
9381 			continue;
9382 
9383 		bpf_op = dev_xdp_bpf_op(dev, mode);
9384 		if (!bpf_op)
9385 			continue;
9386 
9387 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9388 
9389 		/* auto-detach link from net device */
9390 		link = dev_xdp_link(dev, mode);
9391 		if (link)
9392 			link->dev = NULL;
9393 		else
9394 			bpf_prog_put(prog);
9395 
9396 		dev_xdp_set_link(dev, mode, NULL);
9397 	}
9398 }
9399 
9400 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9401 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9402 			  struct bpf_prog *old_prog, u32 flags)
9403 {
9404 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9405 	struct bpf_prog *cur_prog;
9406 	enum bpf_xdp_mode mode;
9407 	bpf_op_t bpf_op;
9408 	int err;
9409 
9410 	ASSERT_RTNL();
9411 
9412 	/* either link or prog attachment, never both */
9413 	if (link && (new_prog || old_prog))
9414 		return -EINVAL;
9415 	/* link supports only XDP mode flags */
9416 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9417 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9418 		return -EINVAL;
9419 	}
9420 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9421 	if (num_modes > 1) {
9422 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9423 		return -EINVAL;
9424 	}
9425 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9426 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9427 		NL_SET_ERR_MSG(extack,
9428 			       "More than one program loaded, unset mode is ambiguous");
9429 		return -EINVAL;
9430 	}
9431 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9432 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9433 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9434 		return -EINVAL;
9435 	}
9436 
9437 	mode = dev_xdp_mode(dev, flags);
9438 	/* can't replace attached link */
9439 	if (dev_xdp_link(dev, mode)) {
9440 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9441 		return -EBUSY;
9442 	}
9443 
9444 	cur_prog = dev_xdp_prog(dev, mode);
9445 	/* can't replace attached prog with link */
9446 	if (link && cur_prog) {
9447 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9448 		return -EBUSY;
9449 	}
9450 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9451 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9452 		return -EEXIST;
9453 	}
9454 
9455 	/* put effective new program into new_prog */
9456 	if (link)
9457 		new_prog = link->link.prog;
9458 
9459 	if (new_prog) {
9460 		bool offload = mode == XDP_MODE_HW;
9461 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9462 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9463 
9464 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9465 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9466 			return -EBUSY;
9467 		}
9468 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9469 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9470 			return -EEXIST;
9471 		}
9472 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9473 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9474 			return -EINVAL;
9475 		}
9476 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9477 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9478 			return -EINVAL;
9479 		}
9480 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9481 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9482 			return -EINVAL;
9483 		}
9484 	}
9485 
9486 	/* don't call drivers if the effective program didn't change */
9487 	if (new_prog != cur_prog) {
9488 		bpf_op = dev_xdp_bpf_op(dev, mode);
9489 		if (!bpf_op) {
9490 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9491 			return -EOPNOTSUPP;
9492 		}
9493 
9494 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9495 		if (err)
9496 			return err;
9497 	}
9498 
9499 	if (link)
9500 		dev_xdp_set_link(dev, mode, link);
9501 	else
9502 		dev_xdp_set_prog(dev, mode, new_prog);
9503 	if (cur_prog)
9504 		bpf_prog_put(cur_prog);
9505 
9506 	return 0;
9507 }
9508 
9509 static int dev_xdp_attach_link(struct net_device *dev,
9510 			       struct netlink_ext_ack *extack,
9511 			       struct bpf_xdp_link *link)
9512 {
9513 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9514 }
9515 
9516 static int dev_xdp_detach_link(struct net_device *dev,
9517 			       struct netlink_ext_ack *extack,
9518 			       struct bpf_xdp_link *link)
9519 {
9520 	enum bpf_xdp_mode mode;
9521 	bpf_op_t bpf_op;
9522 
9523 	ASSERT_RTNL();
9524 
9525 	mode = dev_xdp_mode(dev, link->flags);
9526 	if (dev_xdp_link(dev, mode) != link)
9527 		return -EINVAL;
9528 
9529 	bpf_op = dev_xdp_bpf_op(dev, mode);
9530 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9531 	dev_xdp_set_link(dev, mode, NULL);
9532 	return 0;
9533 }
9534 
9535 static void bpf_xdp_link_release(struct bpf_link *link)
9536 {
9537 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9538 
9539 	rtnl_lock();
9540 
9541 	/* if racing with net_device's tear down, xdp_link->dev might be
9542 	 * already NULL, in which case link was already auto-detached
9543 	 */
9544 	if (xdp_link->dev) {
9545 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9546 		xdp_link->dev = NULL;
9547 	}
9548 
9549 	rtnl_unlock();
9550 }
9551 
9552 static int bpf_xdp_link_detach(struct bpf_link *link)
9553 {
9554 	bpf_xdp_link_release(link);
9555 	return 0;
9556 }
9557 
9558 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9559 {
9560 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9561 
9562 	kfree(xdp_link);
9563 }
9564 
9565 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9566 				     struct seq_file *seq)
9567 {
9568 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9569 	u32 ifindex = 0;
9570 
9571 	rtnl_lock();
9572 	if (xdp_link->dev)
9573 		ifindex = xdp_link->dev->ifindex;
9574 	rtnl_unlock();
9575 
9576 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9577 }
9578 
9579 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9580 				       struct bpf_link_info *info)
9581 {
9582 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9583 	u32 ifindex = 0;
9584 
9585 	rtnl_lock();
9586 	if (xdp_link->dev)
9587 		ifindex = xdp_link->dev->ifindex;
9588 	rtnl_unlock();
9589 
9590 	info->xdp.ifindex = ifindex;
9591 	return 0;
9592 }
9593 
9594 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9595 			       struct bpf_prog *old_prog)
9596 {
9597 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9598 	enum bpf_xdp_mode mode;
9599 	bpf_op_t bpf_op;
9600 	int err = 0;
9601 
9602 	rtnl_lock();
9603 
9604 	/* link might have been auto-released already, so fail */
9605 	if (!xdp_link->dev) {
9606 		err = -ENOLINK;
9607 		goto out_unlock;
9608 	}
9609 
9610 	if (old_prog && link->prog != old_prog) {
9611 		err = -EPERM;
9612 		goto out_unlock;
9613 	}
9614 	old_prog = link->prog;
9615 	if (old_prog == new_prog) {
9616 		/* no-op, don't disturb drivers */
9617 		bpf_prog_put(new_prog);
9618 		goto out_unlock;
9619 	}
9620 
9621 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9622 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9623 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9624 			      xdp_link->flags, new_prog);
9625 	if (err)
9626 		goto out_unlock;
9627 
9628 	old_prog = xchg(&link->prog, new_prog);
9629 	bpf_prog_put(old_prog);
9630 
9631 out_unlock:
9632 	rtnl_unlock();
9633 	return err;
9634 }
9635 
9636 static const struct bpf_link_ops bpf_xdp_link_lops = {
9637 	.release = bpf_xdp_link_release,
9638 	.dealloc = bpf_xdp_link_dealloc,
9639 	.detach = bpf_xdp_link_detach,
9640 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9641 	.fill_link_info = bpf_xdp_link_fill_link_info,
9642 	.update_prog = bpf_xdp_link_update,
9643 };
9644 
9645 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9646 {
9647 	struct net *net = current->nsproxy->net_ns;
9648 	struct bpf_link_primer link_primer;
9649 	struct bpf_xdp_link *link;
9650 	struct net_device *dev;
9651 	int err, fd;
9652 
9653 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9654 	if (!dev)
9655 		return -EINVAL;
9656 
9657 	link = kzalloc(sizeof(*link), GFP_USER);
9658 	if (!link) {
9659 		err = -ENOMEM;
9660 		goto out_put_dev;
9661 	}
9662 
9663 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9664 	link->dev = dev;
9665 	link->flags = attr->link_create.flags;
9666 
9667 	err = bpf_link_prime(&link->link, &link_primer);
9668 	if (err) {
9669 		kfree(link);
9670 		goto out_put_dev;
9671 	}
9672 
9673 	rtnl_lock();
9674 	err = dev_xdp_attach_link(dev, NULL, link);
9675 	rtnl_unlock();
9676 
9677 	if (err) {
9678 		bpf_link_cleanup(&link_primer);
9679 		goto out_put_dev;
9680 	}
9681 
9682 	fd = bpf_link_settle(&link_primer);
9683 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9684 	dev_put(dev);
9685 	return fd;
9686 
9687 out_put_dev:
9688 	dev_put(dev);
9689 	return err;
9690 }
9691 
9692 /**
9693  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9694  *	@dev: device
9695  *	@extack: netlink extended ack
9696  *	@fd: new program fd or negative value to clear
9697  *	@expected_fd: old program fd that userspace expects to replace or clear
9698  *	@flags: xdp-related flags
9699  *
9700  *	Set or clear a bpf program for a device
9701  */
9702 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9703 		      int fd, int expected_fd, u32 flags)
9704 {
9705 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9706 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9707 	int err;
9708 
9709 	ASSERT_RTNL();
9710 
9711 	if (fd >= 0) {
9712 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9713 						 mode != XDP_MODE_SKB);
9714 		if (IS_ERR(new_prog))
9715 			return PTR_ERR(new_prog);
9716 	}
9717 
9718 	if (expected_fd >= 0) {
9719 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9720 						 mode != XDP_MODE_SKB);
9721 		if (IS_ERR(old_prog)) {
9722 			err = PTR_ERR(old_prog);
9723 			old_prog = NULL;
9724 			goto err_out;
9725 		}
9726 	}
9727 
9728 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9729 
9730 err_out:
9731 	if (err && new_prog)
9732 		bpf_prog_put(new_prog);
9733 	if (old_prog)
9734 		bpf_prog_put(old_prog);
9735 	return err;
9736 }
9737 
9738 /**
9739  *	dev_new_index	-	allocate an ifindex
9740  *	@net: the applicable net namespace
9741  *
9742  *	Returns a suitable unique value for a new device interface
9743  *	number.  The caller must hold the rtnl semaphore or the
9744  *	dev_base_lock to be sure it remains unique.
9745  */
9746 static int dev_new_index(struct net *net)
9747 {
9748 	int ifindex = net->ifindex;
9749 
9750 	for (;;) {
9751 		if (++ifindex <= 0)
9752 			ifindex = 1;
9753 		if (!__dev_get_by_index(net, ifindex))
9754 			return net->ifindex = ifindex;
9755 	}
9756 }
9757 
9758 /* Delayed registration/unregisteration */
9759 static LIST_HEAD(net_todo_list);
9760 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9761 
9762 static void net_set_todo(struct net_device *dev)
9763 {
9764 	list_add_tail(&dev->todo_list, &net_todo_list);
9765 	dev_net(dev)->dev_unreg_count++;
9766 }
9767 
9768 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9769 	struct net_device *upper, netdev_features_t features)
9770 {
9771 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9772 	netdev_features_t feature;
9773 	int feature_bit;
9774 
9775 	for_each_netdev_feature(upper_disables, feature_bit) {
9776 		feature = __NETIF_F_BIT(feature_bit);
9777 		if (!(upper->wanted_features & feature)
9778 		    && (features & feature)) {
9779 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9780 				   &feature, upper->name);
9781 			features &= ~feature;
9782 		}
9783 	}
9784 
9785 	return features;
9786 }
9787 
9788 static void netdev_sync_lower_features(struct net_device *upper,
9789 	struct net_device *lower, netdev_features_t features)
9790 {
9791 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9792 	netdev_features_t feature;
9793 	int feature_bit;
9794 
9795 	for_each_netdev_feature(upper_disables, feature_bit) {
9796 		feature = __NETIF_F_BIT(feature_bit);
9797 		if (!(features & feature) && (lower->features & feature)) {
9798 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9799 				   &feature, lower->name);
9800 			lower->wanted_features &= ~feature;
9801 			__netdev_update_features(lower);
9802 
9803 			if (unlikely(lower->features & feature))
9804 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9805 					    &feature, lower->name);
9806 			else
9807 				netdev_features_change(lower);
9808 		}
9809 	}
9810 }
9811 
9812 static netdev_features_t netdev_fix_features(struct net_device *dev,
9813 	netdev_features_t features)
9814 {
9815 	/* Fix illegal checksum combinations */
9816 	if ((features & NETIF_F_HW_CSUM) &&
9817 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9818 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9819 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9820 	}
9821 
9822 	/* TSO requires that SG is present as well. */
9823 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9824 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9825 		features &= ~NETIF_F_ALL_TSO;
9826 	}
9827 
9828 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9829 					!(features & NETIF_F_IP_CSUM)) {
9830 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9831 		features &= ~NETIF_F_TSO;
9832 		features &= ~NETIF_F_TSO_ECN;
9833 	}
9834 
9835 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9836 					 !(features & NETIF_F_IPV6_CSUM)) {
9837 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9838 		features &= ~NETIF_F_TSO6;
9839 	}
9840 
9841 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9842 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9843 		features &= ~NETIF_F_TSO_MANGLEID;
9844 
9845 	/* TSO ECN requires that TSO is present as well. */
9846 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9847 		features &= ~NETIF_F_TSO_ECN;
9848 
9849 	/* Software GSO depends on SG. */
9850 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9851 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9852 		features &= ~NETIF_F_GSO;
9853 	}
9854 
9855 	/* GSO partial features require GSO partial be set */
9856 	if ((features & dev->gso_partial_features) &&
9857 	    !(features & NETIF_F_GSO_PARTIAL)) {
9858 		netdev_dbg(dev,
9859 			   "Dropping partially supported GSO features since no GSO partial.\n");
9860 		features &= ~dev->gso_partial_features;
9861 	}
9862 
9863 	if (!(features & NETIF_F_RXCSUM)) {
9864 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9865 		 * successfully merged by hardware must also have the
9866 		 * checksum verified by hardware.  If the user does not
9867 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9868 		 */
9869 		if (features & NETIF_F_GRO_HW) {
9870 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9871 			features &= ~NETIF_F_GRO_HW;
9872 		}
9873 	}
9874 
9875 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9876 	if (features & NETIF_F_RXFCS) {
9877 		if (features & NETIF_F_LRO) {
9878 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9879 			features &= ~NETIF_F_LRO;
9880 		}
9881 
9882 		if (features & NETIF_F_GRO_HW) {
9883 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9884 			features &= ~NETIF_F_GRO_HW;
9885 		}
9886 	}
9887 
9888 	if (features & NETIF_F_HW_TLS_TX) {
9889 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9890 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9891 		bool hw_csum = features & NETIF_F_HW_CSUM;
9892 
9893 		if (!ip_csum && !hw_csum) {
9894 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9895 			features &= ~NETIF_F_HW_TLS_TX;
9896 		}
9897 	}
9898 
9899 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9900 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9901 		features &= ~NETIF_F_HW_TLS_RX;
9902 	}
9903 
9904 	return features;
9905 }
9906 
9907 int __netdev_update_features(struct net_device *dev)
9908 {
9909 	struct net_device *upper, *lower;
9910 	netdev_features_t features;
9911 	struct list_head *iter;
9912 	int err = -1;
9913 
9914 	ASSERT_RTNL();
9915 
9916 	features = netdev_get_wanted_features(dev);
9917 
9918 	if (dev->netdev_ops->ndo_fix_features)
9919 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9920 
9921 	/* driver might be less strict about feature dependencies */
9922 	features = netdev_fix_features(dev, features);
9923 
9924 	/* some features can't be enabled if they're off on an upper device */
9925 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9926 		features = netdev_sync_upper_features(dev, upper, features);
9927 
9928 	if (dev->features == features)
9929 		goto sync_lower;
9930 
9931 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9932 		&dev->features, &features);
9933 
9934 	if (dev->netdev_ops->ndo_set_features)
9935 		err = dev->netdev_ops->ndo_set_features(dev, features);
9936 	else
9937 		err = 0;
9938 
9939 	if (unlikely(err < 0)) {
9940 		netdev_err(dev,
9941 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9942 			err, &features, &dev->features);
9943 		/* return non-0 since some features might have changed and
9944 		 * it's better to fire a spurious notification than miss it
9945 		 */
9946 		return -1;
9947 	}
9948 
9949 sync_lower:
9950 	/* some features must be disabled on lower devices when disabled
9951 	 * on an upper device (think: bonding master or bridge)
9952 	 */
9953 	netdev_for_each_lower_dev(dev, lower, iter)
9954 		netdev_sync_lower_features(dev, lower, features);
9955 
9956 	if (!err) {
9957 		netdev_features_t diff = features ^ dev->features;
9958 
9959 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9960 			/* udp_tunnel_{get,drop}_rx_info both need
9961 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9962 			 * device, or they won't do anything.
9963 			 * Thus we need to update dev->features
9964 			 * *before* calling udp_tunnel_get_rx_info,
9965 			 * but *after* calling udp_tunnel_drop_rx_info.
9966 			 */
9967 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9968 				dev->features = features;
9969 				udp_tunnel_get_rx_info(dev);
9970 			} else {
9971 				udp_tunnel_drop_rx_info(dev);
9972 			}
9973 		}
9974 
9975 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9976 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9977 				dev->features = features;
9978 				err |= vlan_get_rx_ctag_filter_info(dev);
9979 			} else {
9980 				vlan_drop_rx_ctag_filter_info(dev);
9981 			}
9982 		}
9983 
9984 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9985 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9986 				dev->features = features;
9987 				err |= vlan_get_rx_stag_filter_info(dev);
9988 			} else {
9989 				vlan_drop_rx_stag_filter_info(dev);
9990 			}
9991 		}
9992 
9993 		dev->features = features;
9994 	}
9995 
9996 	return err < 0 ? 0 : 1;
9997 }
9998 
9999 /**
10000  *	netdev_update_features - recalculate device features
10001  *	@dev: the device to check
10002  *
10003  *	Recalculate dev->features set and send notifications if it
10004  *	has changed. Should be called after driver or hardware dependent
10005  *	conditions might have changed that influence the features.
10006  */
10007 void netdev_update_features(struct net_device *dev)
10008 {
10009 	if (__netdev_update_features(dev))
10010 		netdev_features_change(dev);
10011 }
10012 EXPORT_SYMBOL(netdev_update_features);
10013 
10014 /**
10015  *	netdev_change_features - recalculate device features
10016  *	@dev: the device to check
10017  *
10018  *	Recalculate dev->features set and send notifications even
10019  *	if they have not changed. Should be called instead of
10020  *	netdev_update_features() if also dev->vlan_features might
10021  *	have changed to allow the changes to be propagated to stacked
10022  *	VLAN devices.
10023  */
10024 void netdev_change_features(struct net_device *dev)
10025 {
10026 	__netdev_update_features(dev);
10027 	netdev_features_change(dev);
10028 }
10029 EXPORT_SYMBOL(netdev_change_features);
10030 
10031 /**
10032  *	netif_stacked_transfer_operstate -	transfer operstate
10033  *	@rootdev: the root or lower level device to transfer state from
10034  *	@dev: the device to transfer operstate to
10035  *
10036  *	Transfer operational state from root to device. This is normally
10037  *	called when a stacking relationship exists between the root
10038  *	device and the device(a leaf device).
10039  */
10040 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10041 					struct net_device *dev)
10042 {
10043 	if (rootdev->operstate == IF_OPER_DORMANT)
10044 		netif_dormant_on(dev);
10045 	else
10046 		netif_dormant_off(dev);
10047 
10048 	if (rootdev->operstate == IF_OPER_TESTING)
10049 		netif_testing_on(dev);
10050 	else
10051 		netif_testing_off(dev);
10052 
10053 	if (netif_carrier_ok(rootdev))
10054 		netif_carrier_on(dev);
10055 	else
10056 		netif_carrier_off(dev);
10057 }
10058 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10059 
10060 static int netif_alloc_rx_queues(struct net_device *dev)
10061 {
10062 	unsigned int i, count = dev->num_rx_queues;
10063 	struct netdev_rx_queue *rx;
10064 	size_t sz = count * sizeof(*rx);
10065 	int err = 0;
10066 
10067 	BUG_ON(count < 1);
10068 
10069 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10070 	if (!rx)
10071 		return -ENOMEM;
10072 
10073 	dev->_rx = rx;
10074 
10075 	for (i = 0; i < count; i++) {
10076 		rx[i].dev = dev;
10077 
10078 		/* XDP RX-queue setup */
10079 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10080 		if (err < 0)
10081 			goto err_rxq_info;
10082 	}
10083 	return 0;
10084 
10085 err_rxq_info:
10086 	/* Rollback successful reg's and free other resources */
10087 	while (i--)
10088 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10089 	kvfree(dev->_rx);
10090 	dev->_rx = NULL;
10091 	return err;
10092 }
10093 
10094 static void netif_free_rx_queues(struct net_device *dev)
10095 {
10096 	unsigned int i, count = dev->num_rx_queues;
10097 
10098 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10099 	if (!dev->_rx)
10100 		return;
10101 
10102 	for (i = 0; i < count; i++)
10103 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10104 
10105 	kvfree(dev->_rx);
10106 }
10107 
10108 static void netdev_init_one_queue(struct net_device *dev,
10109 				  struct netdev_queue *queue, void *_unused)
10110 {
10111 	/* Initialize queue lock */
10112 	spin_lock_init(&queue->_xmit_lock);
10113 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10114 	queue->xmit_lock_owner = -1;
10115 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10116 	queue->dev = dev;
10117 #ifdef CONFIG_BQL
10118 	dql_init(&queue->dql, HZ);
10119 #endif
10120 }
10121 
10122 static void netif_free_tx_queues(struct net_device *dev)
10123 {
10124 	kvfree(dev->_tx);
10125 }
10126 
10127 static int netif_alloc_netdev_queues(struct net_device *dev)
10128 {
10129 	unsigned int count = dev->num_tx_queues;
10130 	struct netdev_queue *tx;
10131 	size_t sz = count * sizeof(*tx);
10132 
10133 	if (count < 1 || count > 0xffff)
10134 		return -EINVAL;
10135 
10136 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10137 	if (!tx)
10138 		return -ENOMEM;
10139 
10140 	dev->_tx = tx;
10141 
10142 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10143 	spin_lock_init(&dev->tx_global_lock);
10144 
10145 	return 0;
10146 }
10147 
10148 void netif_tx_stop_all_queues(struct net_device *dev)
10149 {
10150 	unsigned int i;
10151 
10152 	for (i = 0; i < dev->num_tx_queues; i++) {
10153 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10154 
10155 		netif_tx_stop_queue(txq);
10156 	}
10157 }
10158 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10159 
10160 /**
10161  *	register_netdevice	- register a network device
10162  *	@dev: device to register
10163  *
10164  *	Take a completed network device structure and add it to the kernel
10165  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10166  *	chain. 0 is returned on success. A negative errno code is returned
10167  *	on a failure to set up the device, or if the name is a duplicate.
10168  *
10169  *	Callers must hold the rtnl semaphore. You may want
10170  *	register_netdev() instead of this.
10171  *
10172  *	BUGS:
10173  *	The locking appears insufficient to guarantee two parallel registers
10174  *	will not get the same name.
10175  */
10176 
10177 int register_netdevice(struct net_device *dev)
10178 {
10179 	int ret;
10180 	struct net *net = dev_net(dev);
10181 
10182 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10183 		     NETDEV_FEATURE_COUNT);
10184 	BUG_ON(dev_boot_phase);
10185 	ASSERT_RTNL();
10186 
10187 	might_sleep();
10188 
10189 	/* When net_device's are persistent, this will be fatal. */
10190 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10191 	BUG_ON(!net);
10192 
10193 	ret = ethtool_check_ops(dev->ethtool_ops);
10194 	if (ret)
10195 		return ret;
10196 
10197 	spin_lock_init(&dev->addr_list_lock);
10198 	netdev_set_addr_lockdep_class(dev);
10199 
10200 	ret = dev_get_valid_name(net, dev, dev->name);
10201 	if (ret < 0)
10202 		goto out;
10203 
10204 	ret = -ENOMEM;
10205 	dev->name_node = netdev_name_node_head_alloc(dev);
10206 	if (!dev->name_node)
10207 		goto out;
10208 
10209 	/* Init, if this function is available */
10210 	if (dev->netdev_ops->ndo_init) {
10211 		ret = dev->netdev_ops->ndo_init(dev);
10212 		if (ret) {
10213 			if (ret > 0)
10214 				ret = -EIO;
10215 			goto err_free_name;
10216 		}
10217 	}
10218 
10219 	if (((dev->hw_features | dev->features) &
10220 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10221 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10222 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10223 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10224 		ret = -EINVAL;
10225 		goto err_uninit;
10226 	}
10227 
10228 	ret = -EBUSY;
10229 	if (!dev->ifindex)
10230 		dev->ifindex = dev_new_index(net);
10231 	else if (__dev_get_by_index(net, dev->ifindex))
10232 		goto err_uninit;
10233 
10234 	/* Transfer changeable features to wanted_features and enable
10235 	 * software offloads (GSO and GRO).
10236 	 */
10237 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10238 	dev->features |= NETIF_F_SOFT_FEATURES;
10239 
10240 	if (dev->udp_tunnel_nic_info) {
10241 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10242 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10243 	}
10244 
10245 	dev->wanted_features = dev->features & dev->hw_features;
10246 
10247 	if (!(dev->flags & IFF_LOOPBACK))
10248 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10249 
10250 	/* If IPv4 TCP segmentation offload is supported we should also
10251 	 * allow the device to enable segmenting the frame with the option
10252 	 * of ignoring a static IP ID value.  This doesn't enable the
10253 	 * feature itself but allows the user to enable it later.
10254 	 */
10255 	if (dev->hw_features & NETIF_F_TSO)
10256 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10257 	if (dev->vlan_features & NETIF_F_TSO)
10258 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10259 	if (dev->mpls_features & NETIF_F_TSO)
10260 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10261 	if (dev->hw_enc_features & NETIF_F_TSO)
10262 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10263 
10264 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10265 	 */
10266 	dev->vlan_features |= NETIF_F_HIGHDMA;
10267 
10268 	/* Make NETIF_F_SG inheritable to tunnel devices.
10269 	 */
10270 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10271 
10272 	/* Make NETIF_F_SG inheritable to MPLS.
10273 	 */
10274 	dev->mpls_features |= NETIF_F_SG;
10275 
10276 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10277 	ret = notifier_to_errno(ret);
10278 	if (ret)
10279 		goto err_uninit;
10280 
10281 	ret = netdev_register_kobject(dev);
10282 	if (ret) {
10283 		dev->reg_state = NETREG_UNREGISTERED;
10284 		goto err_uninit;
10285 	}
10286 	dev->reg_state = NETREG_REGISTERED;
10287 
10288 	__netdev_update_features(dev);
10289 
10290 	/*
10291 	 *	Default initial state at registry is that the
10292 	 *	device is present.
10293 	 */
10294 
10295 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10296 
10297 	linkwatch_init_dev(dev);
10298 
10299 	dev_init_scheduler(dev);
10300 	dev_hold(dev);
10301 	list_netdevice(dev);
10302 	add_device_randomness(dev->dev_addr, dev->addr_len);
10303 
10304 	/* If the device has permanent device address, driver should
10305 	 * set dev_addr and also addr_assign_type should be set to
10306 	 * NET_ADDR_PERM (default value).
10307 	 */
10308 	if (dev->addr_assign_type == NET_ADDR_PERM)
10309 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10310 
10311 	/* Notify protocols, that a new device appeared. */
10312 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10313 	ret = notifier_to_errno(ret);
10314 	if (ret) {
10315 		/* Expect explicit free_netdev() on failure */
10316 		dev->needs_free_netdev = false;
10317 		unregister_netdevice_queue(dev, NULL);
10318 		goto out;
10319 	}
10320 	/*
10321 	 *	Prevent userspace races by waiting until the network
10322 	 *	device is fully setup before sending notifications.
10323 	 */
10324 	if (!dev->rtnl_link_ops ||
10325 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10326 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10327 
10328 out:
10329 	return ret;
10330 
10331 err_uninit:
10332 	if (dev->netdev_ops->ndo_uninit)
10333 		dev->netdev_ops->ndo_uninit(dev);
10334 	if (dev->priv_destructor)
10335 		dev->priv_destructor(dev);
10336 err_free_name:
10337 	netdev_name_node_free(dev->name_node);
10338 	goto out;
10339 }
10340 EXPORT_SYMBOL(register_netdevice);
10341 
10342 /**
10343  *	init_dummy_netdev	- init a dummy network device for NAPI
10344  *	@dev: device to init
10345  *
10346  *	This takes a network device structure and initialize the minimum
10347  *	amount of fields so it can be used to schedule NAPI polls without
10348  *	registering a full blown interface. This is to be used by drivers
10349  *	that need to tie several hardware interfaces to a single NAPI
10350  *	poll scheduler due to HW limitations.
10351  */
10352 int init_dummy_netdev(struct net_device *dev)
10353 {
10354 	/* Clear everything. Note we don't initialize spinlocks
10355 	 * are they aren't supposed to be taken by any of the
10356 	 * NAPI code and this dummy netdev is supposed to be
10357 	 * only ever used for NAPI polls
10358 	 */
10359 	memset(dev, 0, sizeof(struct net_device));
10360 
10361 	/* make sure we BUG if trying to hit standard
10362 	 * register/unregister code path
10363 	 */
10364 	dev->reg_state = NETREG_DUMMY;
10365 
10366 	/* NAPI wants this */
10367 	INIT_LIST_HEAD(&dev->napi_list);
10368 
10369 	/* a dummy interface is started by default */
10370 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10371 	set_bit(__LINK_STATE_START, &dev->state);
10372 
10373 	/* napi_busy_loop stats accounting wants this */
10374 	dev_net_set(dev, &init_net);
10375 
10376 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10377 	 * because users of this 'device' dont need to change
10378 	 * its refcount.
10379 	 */
10380 
10381 	return 0;
10382 }
10383 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10384 
10385 
10386 /**
10387  *	register_netdev	- register a network device
10388  *	@dev: device to register
10389  *
10390  *	Take a completed network device structure and add it to the kernel
10391  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10392  *	chain. 0 is returned on success. A negative errno code is returned
10393  *	on a failure to set up the device, or if the name is a duplicate.
10394  *
10395  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10396  *	and expands the device name if you passed a format string to
10397  *	alloc_netdev.
10398  */
10399 int register_netdev(struct net_device *dev)
10400 {
10401 	int err;
10402 
10403 	if (rtnl_lock_killable())
10404 		return -EINTR;
10405 	err = register_netdevice(dev);
10406 	rtnl_unlock();
10407 	return err;
10408 }
10409 EXPORT_SYMBOL(register_netdev);
10410 
10411 int netdev_refcnt_read(const struct net_device *dev)
10412 {
10413 #ifdef CONFIG_PCPU_DEV_REFCNT
10414 	int i, refcnt = 0;
10415 
10416 	for_each_possible_cpu(i)
10417 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10418 	return refcnt;
10419 #else
10420 	return refcount_read(&dev->dev_refcnt);
10421 #endif
10422 }
10423 EXPORT_SYMBOL(netdev_refcnt_read);
10424 
10425 int netdev_unregister_timeout_secs __read_mostly = 10;
10426 
10427 #define WAIT_REFS_MIN_MSECS 1
10428 #define WAIT_REFS_MAX_MSECS 250
10429 /**
10430  * netdev_wait_allrefs - wait until all references are gone.
10431  * @dev: target net_device
10432  *
10433  * This is called when unregistering network devices.
10434  *
10435  * Any protocol or device that holds a reference should register
10436  * for netdevice notification, and cleanup and put back the
10437  * reference if they receive an UNREGISTER event.
10438  * We can get stuck here if buggy protocols don't correctly
10439  * call dev_put.
10440  */
10441 static void netdev_wait_allrefs(struct net_device *dev)
10442 {
10443 	unsigned long rebroadcast_time, warning_time;
10444 	int wait = 0, refcnt;
10445 
10446 	linkwatch_forget_dev(dev);
10447 
10448 	rebroadcast_time = warning_time = jiffies;
10449 	refcnt = netdev_refcnt_read(dev);
10450 
10451 	while (refcnt != 1) {
10452 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10453 			rtnl_lock();
10454 
10455 			/* Rebroadcast unregister notification */
10456 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10457 
10458 			__rtnl_unlock();
10459 			rcu_barrier();
10460 			rtnl_lock();
10461 
10462 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10463 				     &dev->state)) {
10464 				/* We must not have linkwatch events
10465 				 * pending on unregister. If this
10466 				 * happens, we simply run the queue
10467 				 * unscheduled, resulting in a noop
10468 				 * for this device.
10469 				 */
10470 				linkwatch_run_queue();
10471 			}
10472 
10473 			__rtnl_unlock();
10474 
10475 			rebroadcast_time = jiffies;
10476 		}
10477 
10478 		if (!wait) {
10479 			rcu_barrier();
10480 			wait = WAIT_REFS_MIN_MSECS;
10481 		} else {
10482 			msleep(wait);
10483 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10484 		}
10485 
10486 		refcnt = netdev_refcnt_read(dev);
10487 
10488 		if (refcnt != 1 &&
10489 		    time_after(jiffies, warning_time +
10490 			       netdev_unregister_timeout_secs * HZ)) {
10491 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10492 				 dev->name, refcnt);
10493 			warning_time = jiffies;
10494 		}
10495 	}
10496 }
10497 
10498 /* The sequence is:
10499  *
10500  *	rtnl_lock();
10501  *	...
10502  *	register_netdevice(x1);
10503  *	register_netdevice(x2);
10504  *	...
10505  *	unregister_netdevice(y1);
10506  *	unregister_netdevice(y2);
10507  *      ...
10508  *	rtnl_unlock();
10509  *	free_netdev(y1);
10510  *	free_netdev(y2);
10511  *
10512  * We are invoked by rtnl_unlock().
10513  * This allows us to deal with problems:
10514  * 1) We can delete sysfs objects which invoke hotplug
10515  *    without deadlocking with linkwatch via keventd.
10516  * 2) Since we run with the RTNL semaphore not held, we can sleep
10517  *    safely in order to wait for the netdev refcnt to drop to zero.
10518  *
10519  * We must not return until all unregister events added during
10520  * the interval the lock was held have been completed.
10521  */
10522 void netdev_run_todo(void)
10523 {
10524 	struct list_head list;
10525 #ifdef CONFIG_LOCKDEP
10526 	struct list_head unlink_list;
10527 
10528 	list_replace_init(&net_unlink_list, &unlink_list);
10529 
10530 	while (!list_empty(&unlink_list)) {
10531 		struct net_device *dev = list_first_entry(&unlink_list,
10532 							  struct net_device,
10533 							  unlink_list);
10534 		list_del_init(&dev->unlink_list);
10535 		dev->nested_level = dev->lower_level - 1;
10536 	}
10537 #endif
10538 
10539 	/* Snapshot list, allow later requests */
10540 	list_replace_init(&net_todo_list, &list);
10541 
10542 	__rtnl_unlock();
10543 
10544 
10545 	/* Wait for rcu callbacks to finish before next phase */
10546 	if (!list_empty(&list))
10547 		rcu_barrier();
10548 
10549 	while (!list_empty(&list)) {
10550 		struct net_device *dev
10551 			= list_first_entry(&list, struct net_device, todo_list);
10552 		list_del(&dev->todo_list);
10553 
10554 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10555 			pr_err("network todo '%s' but state %d\n",
10556 			       dev->name, dev->reg_state);
10557 			dump_stack();
10558 			continue;
10559 		}
10560 
10561 		dev->reg_state = NETREG_UNREGISTERED;
10562 
10563 		netdev_wait_allrefs(dev);
10564 
10565 		/* paranoia */
10566 		BUG_ON(netdev_refcnt_read(dev) != 1);
10567 		BUG_ON(!list_empty(&dev->ptype_all));
10568 		BUG_ON(!list_empty(&dev->ptype_specific));
10569 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10570 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10571 #if IS_ENABLED(CONFIG_DECNET)
10572 		WARN_ON(dev->dn_ptr);
10573 #endif
10574 		if (dev->priv_destructor)
10575 			dev->priv_destructor(dev);
10576 		if (dev->needs_free_netdev)
10577 			free_netdev(dev);
10578 
10579 		/* Report a network device has been unregistered */
10580 		rtnl_lock();
10581 		dev_net(dev)->dev_unreg_count--;
10582 		__rtnl_unlock();
10583 		wake_up(&netdev_unregistering_wq);
10584 
10585 		/* Free network device */
10586 		kobject_put(&dev->dev.kobj);
10587 	}
10588 }
10589 
10590 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10591  * all the same fields in the same order as net_device_stats, with only
10592  * the type differing, but rtnl_link_stats64 may have additional fields
10593  * at the end for newer counters.
10594  */
10595 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10596 			     const struct net_device_stats *netdev_stats)
10597 {
10598 #if BITS_PER_LONG == 64
10599 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10600 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10601 	/* zero out counters that only exist in rtnl_link_stats64 */
10602 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10603 	       sizeof(*stats64) - sizeof(*netdev_stats));
10604 #else
10605 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10606 	const unsigned long *src = (const unsigned long *)netdev_stats;
10607 	u64 *dst = (u64 *)stats64;
10608 
10609 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10610 	for (i = 0; i < n; i++)
10611 		dst[i] = src[i];
10612 	/* zero out counters that only exist in rtnl_link_stats64 */
10613 	memset((char *)stats64 + n * sizeof(u64), 0,
10614 	       sizeof(*stats64) - n * sizeof(u64));
10615 #endif
10616 }
10617 EXPORT_SYMBOL(netdev_stats_to_stats64);
10618 
10619 /**
10620  *	dev_get_stats	- get network device statistics
10621  *	@dev: device to get statistics from
10622  *	@storage: place to store stats
10623  *
10624  *	Get network statistics from device. Return @storage.
10625  *	The device driver may provide its own method by setting
10626  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10627  *	otherwise the internal statistics structure is used.
10628  */
10629 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10630 					struct rtnl_link_stats64 *storage)
10631 {
10632 	const struct net_device_ops *ops = dev->netdev_ops;
10633 
10634 	if (ops->ndo_get_stats64) {
10635 		memset(storage, 0, sizeof(*storage));
10636 		ops->ndo_get_stats64(dev, storage);
10637 	} else if (ops->ndo_get_stats) {
10638 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10639 	} else {
10640 		netdev_stats_to_stats64(storage, &dev->stats);
10641 	}
10642 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10643 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10644 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10645 	return storage;
10646 }
10647 EXPORT_SYMBOL(dev_get_stats);
10648 
10649 /**
10650  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10651  *	@s: place to store stats
10652  *	@netstats: per-cpu network stats to read from
10653  *
10654  *	Read per-cpu network statistics and populate the related fields in @s.
10655  */
10656 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10657 			   const struct pcpu_sw_netstats __percpu *netstats)
10658 {
10659 	int cpu;
10660 
10661 	for_each_possible_cpu(cpu) {
10662 		const struct pcpu_sw_netstats *stats;
10663 		struct pcpu_sw_netstats tmp;
10664 		unsigned int start;
10665 
10666 		stats = per_cpu_ptr(netstats, cpu);
10667 		do {
10668 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10669 			tmp.rx_packets = stats->rx_packets;
10670 			tmp.rx_bytes   = stats->rx_bytes;
10671 			tmp.tx_packets = stats->tx_packets;
10672 			tmp.tx_bytes   = stats->tx_bytes;
10673 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10674 
10675 		s->rx_packets += tmp.rx_packets;
10676 		s->rx_bytes   += tmp.rx_bytes;
10677 		s->tx_packets += tmp.tx_packets;
10678 		s->tx_bytes   += tmp.tx_bytes;
10679 	}
10680 }
10681 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10682 
10683 /**
10684  *	dev_get_tstats64 - ndo_get_stats64 implementation
10685  *	@dev: device to get statistics from
10686  *	@s: place to store stats
10687  *
10688  *	Populate @s from dev->stats and dev->tstats. Can be used as
10689  *	ndo_get_stats64() callback.
10690  */
10691 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10692 {
10693 	netdev_stats_to_stats64(s, &dev->stats);
10694 	dev_fetch_sw_netstats(s, dev->tstats);
10695 }
10696 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10697 
10698 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10699 {
10700 	struct netdev_queue *queue = dev_ingress_queue(dev);
10701 
10702 #ifdef CONFIG_NET_CLS_ACT
10703 	if (queue)
10704 		return queue;
10705 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10706 	if (!queue)
10707 		return NULL;
10708 	netdev_init_one_queue(dev, queue, NULL);
10709 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10710 	queue->qdisc_sleeping = &noop_qdisc;
10711 	rcu_assign_pointer(dev->ingress_queue, queue);
10712 #endif
10713 	return queue;
10714 }
10715 
10716 static const struct ethtool_ops default_ethtool_ops;
10717 
10718 void netdev_set_default_ethtool_ops(struct net_device *dev,
10719 				    const struct ethtool_ops *ops)
10720 {
10721 	if (dev->ethtool_ops == &default_ethtool_ops)
10722 		dev->ethtool_ops = ops;
10723 }
10724 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10725 
10726 void netdev_freemem(struct net_device *dev)
10727 {
10728 	char *addr = (char *)dev - dev->padded;
10729 
10730 	kvfree(addr);
10731 }
10732 
10733 /**
10734  * alloc_netdev_mqs - allocate network device
10735  * @sizeof_priv: size of private data to allocate space for
10736  * @name: device name format string
10737  * @name_assign_type: origin of device name
10738  * @setup: callback to initialize device
10739  * @txqs: the number of TX subqueues to allocate
10740  * @rxqs: the number of RX subqueues to allocate
10741  *
10742  * Allocates a struct net_device with private data area for driver use
10743  * and performs basic initialization.  Also allocates subqueue structs
10744  * for each queue on the device.
10745  */
10746 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10747 		unsigned char name_assign_type,
10748 		void (*setup)(struct net_device *),
10749 		unsigned int txqs, unsigned int rxqs)
10750 {
10751 	struct net_device *dev;
10752 	unsigned int alloc_size;
10753 	struct net_device *p;
10754 
10755 	BUG_ON(strlen(name) >= sizeof(dev->name));
10756 
10757 	if (txqs < 1) {
10758 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10759 		return NULL;
10760 	}
10761 
10762 	if (rxqs < 1) {
10763 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10764 		return NULL;
10765 	}
10766 
10767 	alloc_size = sizeof(struct net_device);
10768 	if (sizeof_priv) {
10769 		/* ensure 32-byte alignment of private area */
10770 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10771 		alloc_size += sizeof_priv;
10772 	}
10773 	/* ensure 32-byte alignment of whole construct */
10774 	alloc_size += NETDEV_ALIGN - 1;
10775 
10776 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10777 	if (!p)
10778 		return NULL;
10779 
10780 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10781 	dev->padded = (char *)dev - (char *)p;
10782 
10783 #ifdef CONFIG_PCPU_DEV_REFCNT
10784 	dev->pcpu_refcnt = alloc_percpu(int);
10785 	if (!dev->pcpu_refcnt)
10786 		goto free_dev;
10787 	dev_hold(dev);
10788 #else
10789 	refcount_set(&dev->dev_refcnt, 1);
10790 #endif
10791 
10792 	if (dev_addr_init(dev))
10793 		goto free_pcpu;
10794 
10795 	dev_mc_init(dev);
10796 	dev_uc_init(dev);
10797 
10798 	dev_net_set(dev, &init_net);
10799 
10800 	dev->gso_max_size = GSO_MAX_SIZE;
10801 	dev->gso_max_segs = GSO_MAX_SEGS;
10802 	dev->upper_level = 1;
10803 	dev->lower_level = 1;
10804 #ifdef CONFIG_LOCKDEP
10805 	dev->nested_level = 0;
10806 	INIT_LIST_HEAD(&dev->unlink_list);
10807 #endif
10808 
10809 	INIT_LIST_HEAD(&dev->napi_list);
10810 	INIT_LIST_HEAD(&dev->unreg_list);
10811 	INIT_LIST_HEAD(&dev->close_list);
10812 	INIT_LIST_HEAD(&dev->link_watch_list);
10813 	INIT_LIST_HEAD(&dev->adj_list.upper);
10814 	INIT_LIST_HEAD(&dev->adj_list.lower);
10815 	INIT_LIST_HEAD(&dev->ptype_all);
10816 	INIT_LIST_HEAD(&dev->ptype_specific);
10817 	INIT_LIST_HEAD(&dev->net_notifier_list);
10818 #ifdef CONFIG_NET_SCHED
10819 	hash_init(dev->qdisc_hash);
10820 #endif
10821 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10822 	setup(dev);
10823 
10824 	if (!dev->tx_queue_len) {
10825 		dev->priv_flags |= IFF_NO_QUEUE;
10826 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10827 	}
10828 
10829 	dev->num_tx_queues = txqs;
10830 	dev->real_num_tx_queues = txqs;
10831 	if (netif_alloc_netdev_queues(dev))
10832 		goto free_all;
10833 
10834 	dev->num_rx_queues = rxqs;
10835 	dev->real_num_rx_queues = rxqs;
10836 	if (netif_alloc_rx_queues(dev))
10837 		goto free_all;
10838 
10839 	strcpy(dev->name, name);
10840 	dev->name_assign_type = name_assign_type;
10841 	dev->group = INIT_NETDEV_GROUP;
10842 	if (!dev->ethtool_ops)
10843 		dev->ethtool_ops = &default_ethtool_ops;
10844 
10845 	nf_hook_ingress_init(dev);
10846 
10847 	return dev;
10848 
10849 free_all:
10850 	free_netdev(dev);
10851 	return NULL;
10852 
10853 free_pcpu:
10854 #ifdef CONFIG_PCPU_DEV_REFCNT
10855 	free_percpu(dev->pcpu_refcnt);
10856 free_dev:
10857 #endif
10858 	netdev_freemem(dev);
10859 	return NULL;
10860 }
10861 EXPORT_SYMBOL(alloc_netdev_mqs);
10862 
10863 /**
10864  * free_netdev - free network device
10865  * @dev: device
10866  *
10867  * This function does the last stage of destroying an allocated device
10868  * interface. The reference to the device object is released. If this
10869  * is the last reference then it will be freed.Must be called in process
10870  * context.
10871  */
10872 void free_netdev(struct net_device *dev)
10873 {
10874 	struct napi_struct *p, *n;
10875 
10876 	might_sleep();
10877 
10878 	/* When called immediately after register_netdevice() failed the unwind
10879 	 * handling may still be dismantling the device. Handle that case by
10880 	 * deferring the free.
10881 	 */
10882 	if (dev->reg_state == NETREG_UNREGISTERING) {
10883 		ASSERT_RTNL();
10884 		dev->needs_free_netdev = true;
10885 		return;
10886 	}
10887 
10888 	netif_free_tx_queues(dev);
10889 	netif_free_rx_queues(dev);
10890 
10891 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10892 
10893 	/* Flush device addresses */
10894 	dev_addr_flush(dev);
10895 
10896 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10897 		netif_napi_del(p);
10898 
10899 #ifdef CONFIG_PCPU_DEV_REFCNT
10900 	free_percpu(dev->pcpu_refcnt);
10901 	dev->pcpu_refcnt = NULL;
10902 #endif
10903 	free_percpu(dev->xdp_bulkq);
10904 	dev->xdp_bulkq = NULL;
10905 
10906 	/*  Compatibility with error handling in drivers */
10907 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10908 		netdev_freemem(dev);
10909 		return;
10910 	}
10911 
10912 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10913 	dev->reg_state = NETREG_RELEASED;
10914 
10915 	/* will free via device release */
10916 	put_device(&dev->dev);
10917 }
10918 EXPORT_SYMBOL(free_netdev);
10919 
10920 /**
10921  *	synchronize_net -  Synchronize with packet receive processing
10922  *
10923  *	Wait for packets currently being received to be done.
10924  *	Does not block later packets from starting.
10925  */
10926 void synchronize_net(void)
10927 {
10928 	might_sleep();
10929 	if (rtnl_is_locked())
10930 		synchronize_rcu_expedited();
10931 	else
10932 		synchronize_rcu();
10933 }
10934 EXPORT_SYMBOL(synchronize_net);
10935 
10936 /**
10937  *	unregister_netdevice_queue - remove device from the kernel
10938  *	@dev: device
10939  *	@head: list
10940  *
10941  *	This function shuts down a device interface and removes it
10942  *	from the kernel tables.
10943  *	If head not NULL, device is queued to be unregistered later.
10944  *
10945  *	Callers must hold the rtnl semaphore.  You may want
10946  *	unregister_netdev() instead of this.
10947  */
10948 
10949 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10950 {
10951 	ASSERT_RTNL();
10952 
10953 	if (head) {
10954 		list_move_tail(&dev->unreg_list, head);
10955 	} else {
10956 		LIST_HEAD(single);
10957 
10958 		list_add(&dev->unreg_list, &single);
10959 		unregister_netdevice_many(&single);
10960 	}
10961 }
10962 EXPORT_SYMBOL(unregister_netdevice_queue);
10963 
10964 /**
10965  *	unregister_netdevice_many - unregister many devices
10966  *	@head: list of devices
10967  *
10968  *  Note: As most callers use a stack allocated list_head,
10969  *  we force a list_del() to make sure stack wont be corrupted later.
10970  */
10971 void unregister_netdevice_many(struct list_head *head)
10972 {
10973 	struct net_device *dev, *tmp;
10974 	LIST_HEAD(close_head);
10975 
10976 	BUG_ON(dev_boot_phase);
10977 	ASSERT_RTNL();
10978 
10979 	if (list_empty(head))
10980 		return;
10981 
10982 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10983 		/* Some devices call without registering
10984 		 * for initialization unwind. Remove those
10985 		 * devices and proceed with the remaining.
10986 		 */
10987 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10988 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10989 				 dev->name, dev);
10990 
10991 			WARN_ON(1);
10992 			list_del(&dev->unreg_list);
10993 			continue;
10994 		}
10995 		dev->dismantle = true;
10996 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10997 	}
10998 
10999 	/* If device is running, close it first. */
11000 	list_for_each_entry(dev, head, unreg_list)
11001 		list_add_tail(&dev->close_list, &close_head);
11002 	dev_close_many(&close_head, true);
11003 
11004 	list_for_each_entry(dev, head, unreg_list) {
11005 		/* And unlink it from device chain. */
11006 		unlist_netdevice(dev);
11007 
11008 		dev->reg_state = NETREG_UNREGISTERING;
11009 	}
11010 	flush_all_backlogs();
11011 
11012 	synchronize_net();
11013 
11014 	list_for_each_entry(dev, head, unreg_list) {
11015 		struct sk_buff *skb = NULL;
11016 
11017 		/* Shutdown queueing discipline. */
11018 		dev_shutdown(dev);
11019 
11020 		dev_xdp_uninstall(dev);
11021 
11022 		/* Notify protocols, that we are about to destroy
11023 		 * this device. They should clean all the things.
11024 		 */
11025 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11026 
11027 		if (!dev->rtnl_link_ops ||
11028 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11029 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11030 						     GFP_KERNEL, NULL, 0);
11031 
11032 		/*
11033 		 *	Flush the unicast and multicast chains
11034 		 */
11035 		dev_uc_flush(dev);
11036 		dev_mc_flush(dev);
11037 
11038 		netdev_name_node_alt_flush(dev);
11039 		netdev_name_node_free(dev->name_node);
11040 
11041 		if (dev->netdev_ops->ndo_uninit)
11042 			dev->netdev_ops->ndo_uninit(dev);
11043 
11044 		if (skb)
11045 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11046 
11047 		/* Notifier chain MUST detach us all upper devices. */
11048 		WARN_ON(netdev_has_any_upper_dev(dev));
11049 		WARN_ON(netdev_has_any_lower_dev(dev));
11050 
11051 		/* Remove entries from kobject tree */
11052 		netdev_unregister_kobject(dev);
11053 #ifdef CONFIG_XPS
11054 		/* Remove XPS queueing entries */
11055 		netif_reset_xps_queues_gt(dev, 0);
11056 #endif
11057 	}
11058 
11059 	synchronize_net();
11060 
11061 	list_for_each_entry(dev, head, unreg_list) {
11062 		dev_put(dev);
11063 		net_set_todo(dev);
11064 	}
11065 
11066 	list_del(head);
11067 }
11068 EXPORT_SYMBOL(unregister_netdevice_many);
11069 
11070 /**
11071  *	unregister_netdev - remove device from the kernel
11072  *	@dev: device
11073  *
11074  *	This function shuts down a device interface and removes it
11075  *	from the kernel tables.
11076  *
11077  *	This is just a wrapper for unregister_netdevice that takes
11078  *	the rtnl semaphore.  In general you want to use this and not
11079  *	unregister_netdevice.
11080  */
11081 void unregister_netdev(struct net_device *dev)
11082 {
11083 	rtnl_lock();
11084 	unregister_netdevice(dev);
11085 	rtnl_unlock();
11086 }
11087 EXPORT_SYMBOL(unregister_netdev);
11088 
11089 /**
11090  *	__dev_change_net_namespace - move device to different nethost namespace
11091  *	@dev: device
11092  *	@net: network namespace
11093  *	@pat: If not NULL name pattern to try if the current device name
11094  *	      is already taken in the destination network namespace.
11095  *	@new_ifindex: If not zero, specifies device index in the target
11096  *	              namespace.
11097  *
11098  *	This function shuts down a device interface and moves it
11099  *	to a new network namespace. On success 0 is returned, on
11100  *	a failure a netagive errno code is returned.
11101  *
11102  *	Callers must hold the rtnl semaphore.
11103  */
11104 
11105 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11106 			       const char *pat, int new_ifindex)
11107 {
11108 	struct net *net_old = dev_net(dev);
11109 	int err, new_nsid;
11110 
11111 	ASSERT_RTNL();
11112 
11113 	/* Don't allow namespace local devices to be moved. */
11114 	err = -EINVAL;
11115 	if (dev->features & NETIF_F_NETNS_LOCAL)
11116 		goto out;
11117 
11118 	/* Ensure the device has been registrered */
11119 	if (dev->reg_state != NETREG_REGISTERED)
11120 		goto out;
11121 
11122 	/* Get out if there is nothing todo */
11123 	err = 0;
11124 	if (net_eq(net_old, net))
11125 		goto out;
11126 
11127 	/* Pick the destination device name, and ensure
11128 	 * we can use it in the destination network namespace.
11129 	 */
11130 	err = -EEXIST;
11131 	if (__dev_get_by_name(net, dev->name)) {
11132 		/* We get here if we can't use the current device name */
11133 		if (!pat)
11134 			goto out;
11135 		err = dev_get_valid_name(net, dev, pat);
11136 		if (err < 0)
11137 			goto out;
11138 	}
11139 
11140 	/* Check that new_ifindex isn't used yet. */
11141 	err = -EBUSY;
11142 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11143 		goto out;
11144 
11145 	/*
11146 	 * And now a mini version of register_netdevice unregister_netdevice.
11147 	 */
11148 
11149 	/* If device is running close it first. */
11150 	dev_close(dev);
11151 
11152 	/* And unlink it from device chain */
11153 	unlist_netdevice(dev);
11154 
11155 	synchronize_net();
11156 
11157 	/* Shutdown queueing discipline. */
11158 	dev_shutdown(dev);
11159 
11160 	/* Notify protocols, that we are about to destroy
11161 	 * this device. They should clean all the things.
11162 	 *
11163 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11164 	 * This is wanted because this way 8021q and macvlan know
11165 	 * the device is just moving and can keep their slaves up.
11166 	 */
11167 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11168 	rcu_barrier();
11169 
11170 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11171 	/* If there is an ifindex conflict assign a new one */
11172 	if (!new_ifindex) {
11173 		if (__dev_get_by_index(net, dev->ifindex))
11174 			new_ifindex = dev_new_index(net);
11175 		else
11176 			new_ifindex = dev->ifindex;
11177 	}
11178 
11179 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11180 			    new_ifindex);
11181 
11182 	/*
11183 	 *	Flush the unicast and multicast chains
11184 	 */
11185 	dev_uc_flush(dev);
11186 	dev_mc_flush(dev);
11187 
11188 	/* Send a netdev-removed uevent to the old namespace */
11189 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11190 	netdev_adjacent_del_links(dev);
11191 
11192 	/* Move per-net netdevice notifiers that are following the netdevice */
11193 	move_netdevice_notifiers_dev_net(dev, net);
11194 
11195 	/* Actually switch the network namespace */
11196 	dev_net_set(dev, net);
11197 	dev->ifindex = new_ifindex;
11198 
11199 	/* Send a netdev-add uevent to the new namespace */
11200 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11201 	netdev_adjacent_add_links(dev);
11202 
11203 	/* Fixup kobjects */
11204 	err = device_rename(&dev->dev, dev->name);
11205 	WARN_ON(err);
11206 
11207 	/* Adapt owner in case owning user namespace of target network
11208 	 * namespace is different from the original one.
11209 	 */
11210 	err = netdev_change_owner(dev, net_old, net);
11211 	WARN_ON(err);
11212 
11213 	/* Add the device back in the hashes */
11214 	list_netdevice(dev);
11215 
11216 	/* Notify protocols, that a new device appeared. */
11217 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11218 
11219 	/*
11220 	 *	Prevent userspace races by waiting until the network
11221 	 *	device is fully setup before sending notifications.
11222 	 */
11223 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11224 
11225 	synchronize_net();
11226 	err = 0;
11227 out:
11228 	return err;
11229 }
11230 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11231 
11232 static int dev_cpu_dead(unsigned int oldcpu)
11233 {
11234 	struct sk_buff **list_skb;
11235 	struct sk_buff *skb;
11236 	unsigned int cpu;
11237 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11238 
11239 	local_irq_disable();
11240 	cpu = smp_processor_id();
11241 	sd = &per_cpu(softnet_data, cpu);
11242 	oldsd = &per_cpu(softnet_data, oldcpu);
11243 
11244 	/* Find end of our completion_queue. */
11245 	list_skb = &sd->completion_queue;
11246 	while (*list_skb)
11247 		list_skb = &(*list_skb)->next;
11248 	/* Append completion queue from offline CPU. */
11249 	*list_skb = oldsd->completion_queue;
11250 	oldsd->completion_queue = NULL;
11251 
11252 	/* Append output queue from offline CPU. */
11253 	if (oldsd->output_queue) {
11254 		*sd->output_queue_tailp = oldsd->output_queue;
11255 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11256 		oldsd->output_queue = NULL;
11257 		oldsd->output_queue_tailp = &oldsd->output_queue;
11258 	}
11259 	/* Append NAPI poll list from offline CPU, with one exception :
11260 	 * process_backlog() must be called by cpu owning percpu backlog.
11261 	 * We properly handle process_queue & input_pkt_queue later.
11262 	 */
11263 	while (!list_empty(&oldsd->poll_list)) {
11264 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11265 							    struct napi_struct,
11266 							    poll_list);
11267 
11268 		list_del_init(&napi->poll_list);
11269 		if (napi->poll == process_backlog)
11270 			napi->state = 0;
11271 		else
11272 			____napi_schedule(sd, napi);
11273 	}
11274 
11275 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11276 	local_irq_enable();
11277 
11278 #ifdef CONFIG_RPS
11279 	remsd = oldsd->rps_ipi_list;
11280 	oldsd->rps_ipi_list = NULL;
11281 #endif
11282 	/* send out pending IPI's on offline CPU */
11283 	net_rps_send_ipi(remsd);
11284 
11285 	/* Process offline CPU's input_pkt_queue */
11286 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11287 		netif_rx_ni(skb);
11288 		input_queue_head_incr(oldsd);
11289 	}
11290 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11291 		netif_rx_ni(skb);
11292 		input_queue_head_incr(oldsd);
11293 	}
11294 
11295 	return 0;
11296 }
11297 
11298 /**
11299  *	netdev_increment_features - increment feature set by one
11300  *	@all: current feature set
11301  *	@one: new feature set
11302  *	@mask: mask feature set
11303  *
11304  *	Computes a new feature set after adding a device with feature set
11305  *	@one to the master device with current feature set @all.  Will not
11306  *	enable anything that is off in @mask. Returns the new feature set.
11307  */
11308 netdev_features_t netdev_increment_features(netdev_features_t all,
11309 	netdev_features_t one, netdev_features_t mask)
11310 {
11311 	if (mask & NETIF_F_HW_CSUM)
11312 		mask |= NETIF_F_CSUM_MASK;
11313 	mask |= NETIF_F_VLAN_CHALLENGED;
11314 
11315 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11316 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11317 
11318 	/* If one device supports hw checksumming, set for all. */
11319 	if (all & NETIF_F_HW_CSUM)
11320 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11321 
11322 	return all;
11323 }
11324 EXPORT_SYMBOL(netdev_increment_features);
11325 
11326 static struct hlist_head * __net_init netdev_create_hash(void)
11327 {
11328 	int i;
11329 	struct hlist_head *hash;
11330 
11331 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11332 	if (hash != NULL)
11333 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11334 			INIT_HLIST_HEAD(&hash[i]);
11335 
11336 	return hash;
11337 }
11338 
11339 /* Initialize per network namespace state */
11340 static int __net_init netdev_init(struct net *net)
11341 {
11342 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11343 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11344 
11345 	if (net != &init_net)
11346 		INIT_LIST_HEAD(&net->dev_base_head);
11347 
11348 	net->dev_name_head = netdev_create_hash();
11349 	if (net->dev_name_head == NULL)
11350 		goto err_name;
11351 
11352 	net->dev_index_head = netdev_create_hash();
11353 	if (net->dev_index_head == NULL)
11354 		goto err_idx;
11355 
11356 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11357 
11358 	return 0;
11359 
11360 err_idx:
11361 	kfree(net->dev_name_head);
11362 err_name:
11363 	return -ENOMEM;
11364 }
11365 
11366 /**
11367  *	netdev_drivername - network driver for the device
11368  *	@dev: network device
11369  *
11370  *	Determine network driver for device.
11371  */
11372 const char *netdev_drivername(const struct net_device *dev)
11373 {
11374 	const struct device_driver *driver;
11375 	const struct device *parent;
11376 	const char *empty = "";
11377 
11378 	parent = dev->dev.parent;
11379 	if (!parent)
11380 		return empty;
11381 
11382 	driver = parent->driver;
11383 	if (driver && driver->name)
11384 		return driver->name;
11385 	return empty;
11386 }
11387 
11388 static void __netdev_printk(const char *level, const struct net_device *dev,
11389 			    struct va_format *vaf)
11390 {
11391 	if (dev && dev->dev.parent) {
11392 		dev_printk_emit(level[1] - '0',
11393 				dev->dev.parent,
11394 				"%s %s %s%s: %pV",
11395 				dev_driver_string(dev->dev.parent),
11396 				dev_name(dev->dev.parent),
11397 				netdev_name(dev), netdev_reg_state(dev),
11398 				vaf);
11399 	} else if (dev) {
11400 		printk("%s%s%s: %pV",
11401 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11402 	} else {
11403 		printk("%s(NULL net_device): %pV", level, vaf);
11404 	}
11405 }
11406 
11407 void netdev_printk(const char *level, const struct net_device *dev,
11408 		   const char *format, ...)
11409 {
11410 	struct va_format vaf;
11411 	va_list args;
11412 
11413 	va_start(args, format);
11414 
11415 	vaf.fmt = format;
11416 	vaf.va = &args;
11417 
11418 	__netdev_printk(level, dev, &vaf);
11419 
11420 	va_end(args);
11421 }
11422 EXPORT_SYMBOL(netdev_printk);
11423 
11424 #define define_netdev_printk_level(func, level)			\
11425 void func(const struct net_device *dev, const char *fmt, ...)	\
11426 {								\
11427 	struct va_format vaf;					\
11428 	va_list args;						\
11429 								\
11430 	va_start(args, fmt);					\
11431 								\
11432 	vaf.fmt = fmt;						\
11433 	vaf.va = &args;						\
11434 								\
11435 	__netdev_printk(level, dev, &vaf);			\
11436 								\
11437 	va_end(args);						\
11438 }								\
11439 EXPORT_SYMBOL(func);
11440 
11441 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11442 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11443 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11444 define_netdev_printk_level(netdev_err, KERN_ERR);
11445 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11446 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11447 define_netdev_printk_level(netdev_info, KERN_INFO);
11448 
11449 static void __net_exit netdev_exit(struct net *net)
11450 {
11451 	kfree(net->dev_name_head);
11452 	kfree(net->dev_index_head);
11453 	if (net != &init_net)
11454 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11455 }
11456 
11457 static struct pernet_operations __net_initdata netdev_net_ops = {
11458 	.init = netdev_init,
11459 	.exit = netdev_exit,
11460 };
11461 
11462 static void __net_exit default_device_exit(struct net *net)
11463 {
11464 	struct net_device *dev, *aux;
11465 	/*
11466 	 * Push all migratable network devices back to the
11467 	 * initial network namespace
11468 	 */
11469 	rtnl_lock();
11470 	for_each_netdev_safe(net, dev, aux) {
11471 		int err;
11472 		char fb_name[IFNAMSIZ];
11473 
11474 		/* Ignore unmoveable devices (i.e. loopback) */
11475 		if (dev->features & NETIF_F_NETNS_LOCAL)
11476 			continue;
11477 
11478 		/* Leave virtual devices for the generic cleanup */
11479 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11480 			continue;
11481 
11482 		/* Push remaining network devices to init_net */
11483 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11484 		if (__dev_get_by_name(&init_net, fb_name))
11485 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11486 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11487 		if (err) {
11488 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11489 				 __func__, dev->name, err);
11490 			BUG();
11491 		}
11492 	}
11493 	rtnl_unlock();
11494 }
11495 
11496 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11497 {
11498 	/* Return with the rtnl_lock held when there are no network
11499 	 * devices unregistering in any network namespace in net_list.
11500 	 */
11501 	struct net *net;
11502 	bool unregistering;
11503 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11504 
11505 	add_wait_queue(&netdev_unregistering_wq, &wait);
11506 	for (;;) {
11507 		unregistering = false;
11508 		rtnl_lock();
11509 		list_for_each_entry(net, net_list, exit_list) {
11510 			if (net->dev_unreg_count > 0) {
11511 				unregistering = true;
11512 				break;
11513 			}
11514 		}
11515 		if (!unregistering)
11516 			break;
11517 		__rtnl_unlock();
11518 
11519 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11520 	}
11521 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11522 }
11523 
11524 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11525 {
11526 	/* At exit all network devices most be removed from a network
11527 	 * namespace.  Do this in the reverse order of registration.
11528 	 * Do this across as many network namespaces as possible to
11529 	 * improve batching efficiency.
11530 	 */
11531 	struct net_device *dev;
11532 	struct net *net;
11533 	LIST_HEAD(dev_kill_list);
11534 
11535 	/* To prevent network device cleanup code from dereferencing
11536 	 * loopback devices or network devices that have been freed
11537 	 * wait here for all pending unregistrations to complete,
11538 	 * before unregistring the loopback device and allowing the
11539 	 * network namespace be freed.
11540 	 *
11541 	 * The netdev todo list containing all network devices
11542 	 * unregistrations that happen in default_device_exit_batch
11543 	 * will run in the rtnl_unlock() at the end of
11544 	 * default_device_exit_batch.
11545 	 */
11546 	rtnl_lock_unregistering(net_list);
11547 	list_for_each_entry(net, net_list, exit_list) {
11548 		for_each_netdev_reverse(net, dev) {
11549 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11550 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11551 			else
11552 				unregister_netdevice_queue(dev, &dev_kill_list);
11553 		}
11554 	}
11555 	unregister_netdevice_many(&dev_kill_list);
11556 	rtnl_unlock();
11557 }
11558 
11559 static struct pernet_operations __net_initdata default_device_ops = {
11560 	.exit = default_device_exit,
11561 	.exit_batch = default_device_exit_batch,
11562 };
11563 
11564 /*
11565  *	Initialize the DEV module. At boot time this walks the device list and
11566  *	unhooks any devices that fail to initialise (normally hardware not
11567  *	present) and leaves us with a valid list of present and active devices.
11568  *
11569  */
11570 
11571 /*
11572  *       This is called single threaded during boot, so no need
11573  *       to take the rtnl semaphore.
11574  */
11575 static int __init net_dev_init(void)
11576 {
11577 	int i, rc = -ENOMEM;
11578 
11579 	BUG_ON(!dev_boot_phase);
11580 
11581 	if (dev_proc_init())
11582 		goto out;
11583 
11584 	if (netdev_kobject_init())
11585 		goto out;
11586 
11587 	INIT_LIST_HEAD(&ptype_all);
11588 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11589 		INIT_LIST_HEAD(&ptype_base[i]);
11590 
11591 	INIT_LIST_HEAD(&offload_base);
11592 
11593 	if (register_pernet_subsys(&netdev_net_ops))
11594 		goto out;
11595 
11596 	/*
11597 	 *	Initialise the packet receive queues.
11598 	 */
11599 
11600 	for_each_possible_cpu(i) {
11601 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11602 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11603 
11604 		INIT_WORK(flush, flush_backlog);
11605 
11606 		skb_queue_head_init(&sd->input_pkt_queue);
11607 		skb_queue_head_init(&sd->process_queue);
11608 #ifdef CONFIG_XFRM_OFFLOAD
11609 		skb_queue_head_init(&sd->xfrm_backlog);
11610 #endif
11611 		INIT_LIST_HEAD(&sd->poll_list);
11612 		sd->output_queue_tailp = &sd->output_queue;
11613 #ifdef CONFIG_RPS
11614 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11615 		sd->cpu = i;
11616 #endif
11617 
11618 		init_gro_hash(&sd->backlog);
11619 		sd->backlog.poll = process_backlog;
11620 		sd->backlog.weight = weight_p;
11621 	}
11622 
11623 	dev_boot_phase = 0;
11624 
11625 	/* The loopback device is special if any other network devices
11626 	 * is present in a network namespace the loopback device must
11627 	 * be present. Since we now dynamically allocate and free the
11628 	 * loopback device ensure this invariant is maintained by
11629 	 * keeping the loopback device as the first device on the
11630 	 * list of network devices.  Ensuring the loopback devices
11631 	 * is the first device that appears and the last network device
11632 	 * that disappears.
11633 	 */
11634 	if (register_pernet_device(&loopback_net_ops))
11635 		goto out;
11636 
11637 	if (register_pernet_device(&default_device_ops))
11638 		goto out;
11639 
11640 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11641 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11642 
11643 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11644 				       NULL, dev_cpu_dead);
11645 	WARN_ON(rc < 0);
11646 	rc = 0;
11647 out:
11648 	return rc;
11649 }
11650 
11651 subsys_initcall(net_dev_init);
11652