1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <linux/ipv6.h> 122 #include <linux/in.h> 123 #include <linux/jhash.h> 124 #include <linux/random.h> 125 #include <trace/events/napi.h> 126 #include <trace/events/net.h> 127 #include <trace/events/skb.h> 128 #include <linux/pci.h> 129 #include <linux/inetdevice.h> 130 #include <linux/cpu_rmap.h> 131 #include <linux/static_key.h> 132 133 #include "net-sysfs.h" 134 135 /* Instead of increasing this, you should create a hash table. */ 136 #define MAX_GRO_SKBS 8 137 138 /* This should be increased if a protocol with a bigger head is added. */ 139 #define GRO_MAX_HEAD (MAX_HEADER + 128) 140 141 static DEFINE_SPINLOCK(ptype_lock); 142 static DEFINE_SPINLOCK(offload_lock); 143 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 144 struct list_head ptype_all __read_mostly; /* Taps */ 145 static struct list_head offload_base __read_mostly; 146 147 /* 148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 149 * semaphore. 150 * 151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 152 * 153 * Writers must hold the rtnl semaphore while they loop through the 154 * dev_base_head list, and hold dev_base_lock for writing when they do the 155 * actual updates. This allows pure readers to access the list even 156 * while a writer is preparing to update it. 157 * 158 * To put it another way, dev_base_lock is held for writing only to 159 * protect against pure readers; the rtnl semaphore provides the 160 * protection against other writers. 161 * 162 * See, for example usages, register_netdevice() and 163 * unregister_netdevice(), which must be called with the rtnl 164 * semaphore held. 165 */ 166 DEFINE_RWLOCK(dev_base_lock); 167 EXPORT_SYMBOL(dev_base_lock); 168 169 seqcount_t devnet_rename_seq; 170 171 static inline void dev_base_seq_inc(struct net *net) 172 { 173 while (++net->dev_base_seq == 0); 174 } 175 176 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 177 { 178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 179 180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 181 } 182 183 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 184 { 185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 186 } 187 188 static inline void rps_lock(struct softnet_data *sd) 189 { 190 #ifdef CONFIG_RPS 191 spin_lock(&sd->input_pkt_queue.lock); 192 #endif 193 } 194 195 static inline void rps_unlock(struct softnet_data *sd) 196 { 197 #ifdef CONFIG_RPS 198 spin_unlock(&sd->input_pkt_queue.lock); 199 #endif 200 } 201 202 /* Device list insertion */ 203 static void list_netdevice(struct net_device *dev) 204 { 205 struct net *net = dev_net(dev); 206 207 ASSERT_RTNL(); 208 209 write_lock_bh(&dev_base_lock); 210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 212 hlist_add_head_rcu(&dev->index_hlist, 213 dev_index_hash(net, dev->ifindex)); 214 write_unlock_bh(&dev_base_lock); 215 216 dev_base_seq_inc(net); 217 } 218 219 /* Device list removal 220 * caller must respect a RCU grace period before freeing/reusing dev 221 */ 222 static void unlist_netdevice(struct net_device *dev) 223 { 224 ASSERT_RTNL(); 225 226 /* Unlink dev from the device chain */ 227 write_lock_bh(&dev_base_lock); 228 list_del_rcu(&dev->dev_list); 229 hlist_del_rcu(&dev->name_hlist); 230 hlist_del_rcu(&dev->index_hlist); 231 write_unlock_bh(&dev_base_lock); 232 233 dev_base_seq_inc(dev_net(dev)); 234 } 235 236 /* 237 * Our notifier list 238 */ 239 240 static RAW_NOTIFIER_HEAD(netdev_chain); 241 242 /* 243 * Device drivers call our routines to queue packets here. We empty the 244 * queue in the local softnet handler. 245 */ 246 247 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 248 EXPORT_PER_CPU_SYMBOL(softnet_data); 249 250 #ifdef CONFIG_LOCKDEP 251 /* 252 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 253 * according to dev->type 254 */ 255 static const unsigned short netdev_lock_type[] = 256 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 257 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 258 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 259 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 260 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 261 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 262 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 263 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 264 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 265 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 266 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 267 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 268 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 269 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 270 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 271 272 static const char *const netdev_lock_name[] = 273 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 274 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 275 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 276 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 277 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 278 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 279 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 280 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 281 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 282 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 283 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 284 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 285 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 286 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 287 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 288 289 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 290 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 291 292 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 293 { 294 int i; 295 296 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 297 if (netdev_lock_type[i] == dev_type) 298 return i; 299 /* the last key is used by default */ 300 return ARRAY_SIZE(netdev_lock_type) - 1; 301 } 302 303 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 304 unsigned short dev_type) 305 { 306 int i; 307 308 i = netdev_lock_pos(dev_type); 309 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 310 netdev_lock_name[i]); 311 } 312 313 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 314 { 315 int i; 316 317 i = netdev_lock_pos(dev->type); 318 lockdep_set_class_and_name(&dev->addr_list_lock, 319 &netdev_addr_lock_key[i], 320 netdev_lock_name[i]); 321 } 322 #else 323 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 324 unsigned short dev_type) 325 { 326 } 327 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 328 { 329 } 330 #endif 331 332 /******************************************************************************* 333 334 Protocol management and registration routines 335 336 *******************************************************************************/ 337 338 /* 339 * Add a protocol ID to the list. Now that the input handler is 340 * smarter we can dispense with all the messy stuff that used to be 341 * here. 342 * 343 * BEWARE!!! Protocol handlers, mangling input packets, 344 * MUST BE last in hash buckets and checking protocol handlers 345 * MUST start from promiscuous ptype_all chain in net_bh. 346 * It is true now, do not change it. 347 * Explanation follows: if protocol handler, mangling packet, will 348 * be the first on list, it is not able to sense, that packet 349 * is cloned and should be copied-on-write, so that it will 350 * change it and subsequent readers will get broken packet. 351 * --ANK (980803) 352 */ 353 354 static inline struct list_head *ptype_head(const struct packet_type *pt) 355 { 356 if (pt->type == htons(ETH_P_ALL)) 357 return &ptype_all; 358 else 359 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 360 } 361 362 /** 363 * dev_add_pack - add packet handler 364 * @pt: packet type declaration 365 * 366 * Add a protocol handler to the networking stack. The passed &packet_type 367 * is linked into kernel lists and may not be freed until it has been 368 * removed from the kernel lists. 369 * 370 * This call does not sleep therefore it can not 371 * guarantee all CPU's that are in middle of receiving packets 372 * will see the new packet type (until the next received packet). 373 */ 374 375 void dev_add_pack(struct packet_type *pt) 376 { 377 struct list_head *head = ptype_head(pt); 378 379 spin_lock(&ptype_lock); 380 list_add_rcu(&pt->list, head); 381 spin_unlock(&ptype_lock); 382 } 383 EXPORT_SYMBOL(dev_add_pack); 384 385 /** 386 * __dev_remove_pack - remove packet handler 387 * @pt: packet type declaration 388 * 389 * Remove a protocol handler that was previously added to the kernel 390 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 391 * from the kernel lists and can be freed or reused once this function 392 * returns. 393 * 394 * The packet type might still be in use by receivers 395 * and must not be freed until after all the CPU's have gone 396 * through a quiescent state. 397 */ 398 void __dev_remove_pack(struct packet_type *pt) 399 { 400 struct list_head *head = ptype_head(pt); 401 struct packet_type *pt1; 402 403 spin_lock(&ptype_lock); 404 405 list_for_each_entry(pt1, head, list) { 406 if (pt == pt1) { 407 list_del_rcu(&pt->list); 408 goto out; 409 } 410 } 411 412 pr_warn("dev_remove_pack: %p not found\n", pt); 413 out: 414 spin_unlock(&ptype_lock); 415 } 416 EXPORT_SYMBOL(__dev_remove_pack); 417 418 /** 419 * dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * This call sleeps to guarantee that no CPU is looking at the packet 428 * type after return. 429 */ 430 void dev_remove_pack(struct packet_type *pt) 431 { 432 __dev_remove_pack(pt); 433 434 synchronize_net(); 435 } 436 EXPORT_SYMBOL(dev_remove_pack); 437 438 439 /** 440 * dev_add_offload - register offload handlers 441 * @po: protocol offload declaration 442 * 443 * Add protocol offload handlers to the networking stack. The passed 444 * &proto_offload is linked into kernel lists and may not be freed until 445 * it has been removed from the kernel lists. 446 * 447 * This call does not sleep therefore it can not 448 * guarantee all CPU's that are in middle of receiving packets 449 * will see the new offload handlers (until the next received packet). 450 */ 451 void dev_add_offload(struct packet_offload *po) 452 { 453 struct list_head *head = &offload_base; 454 455 spin_lock(&offload_lock); 456 list_add_rcu(&po->list, head); 457 spin_unlock(&offload_lock); 458 } 459 EXPORT_SYMBOL(dev_add_offload); 460 461 /** 462 * __dev_remove_offload - remove offload handler 463 * @po: packet offload declaration 464 * 465 * Remove a protocol offload handler that was previously added to the 466 * kernel offload handlers by dev_add_offload(). The passed &offload_type 467 * is removed from the kernel lists and can be freed or reused once this 468 * function returns. 469 * 470 * The packet type might still be in use by receivers 471 * and must not be freed until after all the CPU's have gone 472 * through a quiescent state. 473 */ 474 void __dev_remove_offload(struct packet_offload *po) 475 { 476 struct list_head *head = &offload_base; 477 struct packet_offload *po1; 478 479 spin_lock(&offload_lock); 480 481 list_for_each_entry(po1, head, list) { 482 if (po == po1) { 483 list_del_rcu(&po->list); 484 goto out; 485 } 486 } 487 488 pr_warn("dev_remove_offload: %p not found\n", po); 489 out: 490 spin_unlock(&offload_lock); 491 } 492 EXPORT_SYMBOL(__dev_remove_offload); 493 494 /** 495 * dev_remove_offload - remove packet offload handler 496 * @po: packet offload declaration 497 * 498 * Remove a packet offload handler that was previously added to the kernel 499 * offload handlers by dev_add_offload(). The passed &offload_type is 500 * removed from the kernel lists and can be freed or reused once this 501 * function returns. 502 * 503 * This call sleeps to guarantee that no CPU is looking at the packet 504 * type after return. 505 */ 506 void dev_remove_offload(struct packet_offload *po) 507 { 508 __dev_remove_offload(po); 509 510 synchronize_net(); 511 } 512 EXPORT_SYMBOL(dev_remove_offload); 513 514 /****************************************************************************** 515 516 Device Boot-time Settings Routines 517 518 *******************************************************************************/ 519 520 /* Boot time configuration table */ 521 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 522 523 /** 524 * netdev_boot_setup_add - add new setup entry 525 * @name: name of the device 526 * @map: configured settings for the device 527 * 528 * Adds new setup entry to the dev_boot_setup list. The function 529 * returns 0 on error and 1 on success. This is a generic routine to 530 * all netdevices. 531 */ 532 static int netdev_boot_setup_add(char *name, struct ifmap *map) 533 { 534 struct netdev_boot_setup *s; 535 int i; 536 537 s = dev_boot_setup; 538 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 539 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 540 memset(s[i].name, 0, sizeof(s[i].name)); 541 strlcpy(s[i].name, name, IFNAMSIZ); 542 memcpy(&s[i].map, map, sizeof(s[i].map)); 543 break; 544 } 545 } 546 547 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 548 } 549 550 /** 551 * netdev_boot_setup_check - check boot time settings 552 * @dev: the netdevice 553 * 554 * Check boot time settings for the device. 555 * The found settings are set for the device to be used 556 * later in the device probing. 557 * Returns 0 if no settings found, 1 if they are. 558 */ 559 int netdev_boot_setup_check(struct net_device *dev) 560 { 561 struct netdev_boot_setup *s = dev_boot_setup; 562 int i; 563 564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 565 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 566 !strcmp(dev->name, s[i].name)) { 567 dev->irq = s[i].map.irq; 568 dev->base_addr = s[i].map.base_addr; 569 dev->mem_start = s[i].map.mem_start; 570 dev->mem_end = s[i].map.mem_end; 571 return 1; 572 } 573 } 574 return 0; 575 } 576 EXPORT_SYMBOL(netdev_boot_setup_check); 577 578 579 /** 580 * netdev_boot_base - get address from boot time settings 581 * @prefix: prefix for network device 582 * @unit: id for network device 583 * 584 * Check boot time settings for the base address of device. 585 * The found settings are set for the device to be used 586 * later in the device probing. 587 * Returns 0 if no settings found. 588 */ 589 unsigned long netdev_boot_base(const char *prefix, int unit) 590 { 591 const struct netdev_boot_setup *s = dev_boot_setup; 592 char name[IFNAMSIZ]; 593 int i; 594 595 sprintf(name, "%s%d", prefix, unit); 596 597 /* 598 * If device already registered then return base of 1 599 * to indicate not to probe for this interface 600 */ 601 if (__dev_get_by_name(&init_net, name)) 602 return 1; 603 604 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 605 if (!strcmp(name, s[i].name)) 606 return s[i].map.base_addr; 607 return 0; 608 } 609 610 /* 611 * Saves at boot time configured settings for any netdevice. 612 */ 613 int __init netdev_boot_setup(char *str) 614 { 615 int ints[5]; 616 struct ifmap map; 617 618 str = get_options(str, ARRAY_SIZE(ints), ints); 619 if (!str || !*str) 620 return 0; 621 622 /* Save settings */ 623 memset(&map, 0, sizeof(map)); 624 if (ints[0] > 0) 625 map.irq = ints[1]; 626 if (ints[0] > 1) 627 map.base_addr = ints[2]; 628 if (ints[0] > 2) 629 map.mem_start = ints[3]; 630 if (ints[0] > 3) 631 map.mem_end = ints[4]; 632 633 /* Add new entry to the list */ 634 return netdev_boot_setup_add(str, &map); 635 } 636 637 __setup("netdev=", netdev_boot_setup); 638 639 /******************************************************************************* 640 641 Device Interface Subroutines 642 643 *******************************************************************************/ 644 645 /** 646 * __dev_get_by_name - find a device by its name 647 * @net: the applicable net namespace 648 * @name: name to find 649 * 650 * Find an interface by name. Must be called under RTNL semaphore 651 * or @dev_base_lock. If the name is found a pointer to the device 652 * is returned. If the name is not found then %NULL is returned. The 653 * reference counters are not incremented so the caller must be 654 * careful with locks. 655 */ 656 657 struct net_device *__dev_get_by_name(struct net *net, const char *name) 658 { 659 struct net_device *dev; 660 struct hlist_head *head = dev_name_hash(net, name); 661 662 hlist_for_each_entry(dev, head, name_hlist) 663 if (!strncmp(dev->name, name, IFNAMSIZ)) 664 return dev; 665 666 return NULL; 667 } 668 EXPORT_SYMBOL(__dev_get_by_name); 669 670 /** 671 * dev_get_by_name_rcu - find a device by its name 672 * @net: the applicable net namespace 673 * @name: name to find 674 * 675 * Find an interface by name. 676 * If the name is found a pointer to the device is returned. 677 * If the name is not found then %NULL is returned. 678 * The reference counters are not incremented so the caller must be 679 * careful with locks. The caller must hold RCU lock. 680 */ 681 682 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 683 { 684 struct net_device *dev; 685 struct hlist_head *head = dev_name_hash(net, name); 686 687 hlist_for_each_entry_rcu(dev, head, name_hlist) 688 if (!strncmp(dev->name, name, IFNAMSIZ)) 689 return dev; 690 691 return NULL; 692 } 693 EXPORT_SYMBOL(dev_get_by_name_rcu); 694 695 /** 696 * dev_get_by_name - find a device by its name 697 * @net: the applicable net namespace 698 * @name: name to find 699 * 700 * Find an interface by name. This can be called from any 701 * context and does its own locking. The returned handle has 702 * the usage count incremented and the caller must use dev_put() to 703 * release it when it is no longer needed. %NULL is returned if no 704 * matching device is found. 705 */ 706 707 struct net_device *dev_get_by_name(struct net *net, const char *name) 708 { 709 struct net_device *dev; 710 711 rcu_read_lock(); 712 dev = dev_get_by_name_rcu(net, name); 713 if (dev) 714 dev_hold(dev); 715 rcu_read_unlock(); 716 return dev; 717 } 718 EXPORT_SYMBOL(dev_get_by_name); 719 720 /** 721 * __dev_get_by_index - find a device by its ifindex 722 * @net: the applicable net namespace 723 * @ifindex: index of device 724 * 725 * Search for an interface by index. Returns %NULL if the device 726 * is not found or a pointer to the device. The device has not 727 * had its reference counter increased so the caller must be careful 728 * about locking. The caller must hold either the RTNL semaphore 729 * or @dev_base_lock. 730 */ 731 732 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 733 { 734 struct net_device *dev; 735 struct hlist_head *head = dev_index_hash(net, ifindex); 736 737 hlist_for_each_entry(dev, head, index_hlist) 738 if (dev->ifindex == ifindex) 739 return dev; 740 741 return NULL; 742 } 743 EXPORT_SYMBOL(__dev_get_by_index); 744 745 /** 746 * dev_get_by_index_rcu - find a device by its ifindex 747 * @net: the applicable net namespace 748 * @ifindex: index of device 749 * 750 * Search for an interface by index. Returns %NULL if the device 751 * is not found or a pointer to the device. The device has not 752 * had its reference counter increased so the caller must be careful 753 * about locking. The caller must hold RCU lock. 754 */ 755 756 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 757 { 758 struct net_device *dev; 759 struct hlist_head *head = dev_index_hash(net, ifindex); 760 761 hlist_for_each_entry_rcu(dev, head, index_hlist) 762 if (dev->ifindex == ifindex) 763 return dev; 764 765 return NULL; 766 } 767 EXPORT_SYMBOL(dev_get_by_index_rcu); 768 769 770 /** 771 * dev_get_by_index - find a device by its ifindex 772 * @net: the applicable net namespace 773 * @ifindex: index of device 774 * 775 * Search for an interface by index. Returns NULL if the device 776 * is not found or a pointer to the device. The device returned has 777 * had a reference added and the pointer is safe until the user calls 778 * dev_put to indicate they have finished with it. 779 */ 780 781 struct net_device *dev_get_by_index(struct net *net, int ifindex) 782 { 783 struct net_device *dev; 784 785 rcu_read_lock(); 786 dev = dev_get_by_index_rcu(net, ifindex); 787 if (dev) 788 dev_hold(dev); 789 rcu_read_unlock(); 790 return dev; 791 } 792 EXPORT_SYMBOL(dev_get_by_index); 793 794 /** 795 * dev_getbyhwaddr_rcu - find a device by its hardware address 796 * @net: the applicable net namespace 797 * @type: media type of device 798 * @ha: hardware address 799 * 800 * Search for an interface by MAC address. Returns NULL if the device 801 * is not found or a pointer to the device. 802 * The caller must hold RCU or RTNL. 803 * The returned device has not had its ref count increased 804 * and the caller must therefore be careful about locking 805 * 806 */ 807 808 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 809 const char *ha) 810 { 811 struct net_device *dev; 812 813 for_each_netdev_rcu(net, dev) 814 if (dev->type == type && 815 !memcmp(dev->dev_addr, ha, dev->addr_len)) 816 return dev; 817 818 return NULL; 819 } 820 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 821 822 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 823 { 824 struct net_device *dev; 825 826 ASSERT_RTNL(); 827 for_each_netdev(net, dev) 828 if (dev->type == type) 829 return dev; 830 831 return NULL; 832 } 833 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 834 835 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 836 { 837 struct net_device *dev, *ret = NULL; 838 839 rcu_read_lock(); 840 for_each_netdev_rcu(net, dev) 841 if (dev->type == type) { 842 dev_hold(dev); 843 ret = dev; 844 break; 845 } 846 rcu_read_unlock(); 847 return ret; 848 } 849 EXPORT_SYMBOL(dev_getfirstbyhwtype); 850 851 /** 852 * dev_get_by_flags_rcu - find any device with given flags 853 * @net: the applicable net namespace 854 * @if_flags: IFF_* values 855 * @mask: bitmask of bits in if_flags to check 856 * 857 * Search for any interface with the given flags. Returns NULL if a device 858 * is not found or a pointer to the device. Must be called inside 859 * rcu_read_lock(), and result refcount is unchanged. 860 */ 861 862 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 863 unsigned short mask) 864 { 865 struct net_device *dev, *ret; 866 867 ret = NULL; 868 for_each_netdev_rcu(net, dev) { 869 if (((dev->flags ^ if_flags) & mask) == 0) { 870 ret = dev; 871 break; 872 } 873 } 874 return ret; 875 } 876 EXPORT_SYMBOL(dev_get_by_flags_rcu); 877 878 /** 879 * dev_valid_name - check if name is okay for network device 880 * @name: name string 881 * 882 * Network device names need to be valid file names to 883 * to allow sysfs to work. We also disallow any kind of 884 * whitespace. 885 */ 886 bool dev_valid_name(const char *name) 887 { 888 if (*name == '\0') 889 return false; 890 if (strlen(name) >= IFNAMSIZ) 891 return false; 892 if (!strcmp(name, ".") || !strcmp(name, "..")) 893 return false; 894 895 while (*name) { 896 if (*name == '/' || isspace(*name)) 897 return false; 898 name++; 899 } 900 return true; 901 } 902 EXPORT_SYMBOL(dev_valid_name); 903 904 /** 905 * __dev_alloc_name - allocate a name for a device 906 * @net: network namespace to allocate the device name in 907 * @name: name format string 908 * @buf: scratch buffer and result name string 909 * 910 * Passed a format string - eg "lt%d" it will try and find a suitable 911 * id. It scans list of devices to build up a free map, then chooses 912 * the first empty slot. The caller must hold the dev_base or rtnl lock 913 * while allocating the name and adding the device in order to avoid 914 * duplicates. 915 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 916 * Returns the number of the unit assigned or a negative errno code. 917 */ 918 919 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 920 { 921 int i = 0; 922 const char *p; 923 const int max_netdevices = 8*PAGE_SIZE; 924 unsigned long *inuse; 925 struct net_device *d; 926 927 p = strnchr(name, IFNAMSIZ-1, '%'); 928 if (p) { 929 /* 930 * Verify the string as this thing may have come from 931 * the user. There must be either one "%d" and no other "%" 932 * characters. 933 */ 934 if (p[1] != 'd' || strchr(p + 2, '%')) 935 return -EINVAL; 936 937 /* Use one page as a bit array of possible slots */ 938 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 939 if (!inuse) 940 return -ENOMEM; 941 942 for_each_netdev(net, d) { 943 if (!sscanf(d->name, name, &i)) 944 continue; 945 if (i < 0 || i >= max_netdevices) 946 continue; 947 948 /* avoid cases where sscanf is not exact inverse of printf */ 949 snprintf(buf, IFNAMSIZ, name, i); 950 if (!strncmp(buf, d->name, IFNAMSIZ)) 951 set_bit(i, inuse); 952 } 953 954 i = find_first_zero_bit(inuse, max_netdevices); 955 free_page((unsigned long) inuse); 956 } 957 958 if (buf != name) 959 snprintf(buf, IFNAMSIZ, name, i); 960 if (!__dev_get_by_name(net, buf)) 961 return i; 962 963 /* It is possible to run out of possible slots 964 * when the name is long and there isn't enough space left 965 * for the digits, or if all bits are used. 966 */ 967 return -ENFILE; 968 } 969 970 /** 971 * dev_alloc_name - allocate a name for a device 972 * @dev: device 973 * @name: name format string 974 * 975 * Passed a format string - eg "lt%d" it will try and find a suitable 976 * id. It scans list of devices to build up a free map, then chooses 977 * the first empty slot. The caller must hold the dev_base or rtnl lock 978 * while allocating the name and adding the device in order to avoid 979 * duplicates. 980 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 981 * Returns the number of the unit assigned or a negative errno code. 982 */ 983 984 int dev_alloc_name(struct net_device *dev, const char *name) 985 { 986 char buf[IFNAMSIZ]; 987 struct net *net; 988 int ret; 989 990 BUG_ON(!dev_net(dev)); 991 net = dev_net(dev); 992 ret = __dev_alloc_name(net, name, buf); 993 if (ret >= 0) 994 strlcpy(dev->name, buf, IFNAMSIZ); 995 return ret; 996 } 997 EXPORT_SYMBOL(dev_alloc_name); 998 999 static int dev_alloc_name_ns(struct net *net, 1000 struct net_device *dev, 1001 const char *name) 1002 { 1003 char buf[IFNAMSIZ]; 1004 int ret; 1005 1006 ret = __dev_alloc_name(net, name, buf); 1007 if (ret >= 0) 1008 strlcpy(dev->name, buf, IFNAMSIZ); 1009 return ret; 1010 } 1011 1012 static int dev_get_valid_name(struct net *net, 1013 struct net_device *dev, 1014 const char *name) 1015 { 1016 BUG_ON(!net); 1017 1018 if (!dev_valid_name(name)) 1019 return -EINVAL; 1020 1021 if (strchr(name, '%')) 1022 return dev_alloc_name_ns(net, dev, name); 1023 else if (__dev_get_by_name(net, name)) 1024 return -EEXIST; 1025 else if (dev->name != name) 1026 strlcpy(dev->name, name, IFNAMSIZ); 1027 1028 return 0; 1029 } 1030 1031 /** 1032 * dev_change_name - change name of a device 1033 * @dev: device 1034 * @newname: name (or format string) must be at least IFNAMSIZ 1035 * 1036 * Change name of a device, can pass format strings "eth%d". 1037 * for wildcarding. 1038 */ 1039 int dev_change_name(struct net_device *dev, const char *newname) 1040 { 1041 char oldname[IFNAMSIZ]; 1042 int err = 0; 1043 int ret; 1044 struct net *net; 1045 1046 ASSERT_RTNL(); 1047 BUG_ON(!dev_net(dev)); 1048 1049 net = dev_net(dev); 1050 if (dev->flags & IFF_UP) 1051 return -EBUSY; 1052 1053 write_seqcount_begin(&devnet_rename_seq); 1054 1055 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1056 write_seqcount_end(&devnet_rename_seq); 1057 return 0; 1058 } 1059 1060 memcpy(oldname, dev->name, IFNAMSIZ); 1061 1062 err = dev_get_valid_name(net, dev, newname); 1063 if (err < 0) { 1064 write_seqcount_end(&devnet_rename_seq); 1065 return err; 1066 } 1067 1068 rollback: 1069 ret = device_rename(&dev->dev, dev->name); 1070 if (ret) { 1071 memcpy(dev->name, oldname, IFNAMSIZ); 1072 write_seqcount_end(&devnet_rename_seq); 1073 return ret; 1074 } 1075 1076 write_seqcount_end(&devnet_rename_seq); 1077 1078 write_lock_bh(&dev_base_lock); 1079 hlist_del_rcu(&dev->name_hlist); 1080 write_unlock_bh(&dev_base_lock); 1081 1082 synchronize_rcu(); 1083 1084 write_lock_bh(&dev_base_lock); 1085 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1086 write_unlock_bh(&dev_base_lock); 1087 1088 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1089 ret = notifier_to_errno(ret); 1090 1091 if (ret) { 1092 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1093 if (err >= 0) { 1094 err = ret; 1095 write_seqcount_begin(&devnet_rename_seq); 1096 memcpy(dev->name, oldname, IFNAMSIZ); 1097 goto rollback; 1098 } else { 1099 pr_err("%s: name change rollback failed: %d\n", 1100 dev->name, ret); 1101 } 1102 } 1103 1104 return err; 1105 } 1106 1107 /** 1108 * dev_set_alias - change ifalias of a device 1109 * @dev: device 1110 * @alias: name up to IFALIASZ 1111 * @len: limit of bytes to copy from info 1112 * 1113 * Set ifalias for a device, 1114 */ 1115 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1116 { 1117 char *new_ifalias; 1118 1119 ASSERT_RTNL(); 1120 1121 if (len >= IFALIASZ) 1122 return -EINVAL; 1123 1124 if (!len) { 1125 kfree(dev->ifalias); 1126 dev->ifalias = NULL; 1127 return 0; 1128 } 1129 1130 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1131 if (!new_ifalias) 1132 return -ENOMEM; 1133 dev->ifalias = new_ifalias; 1134 1135 strlcpy(dev->ifalias, alias, len+1); 1136 return len; 1137 } 1138 1139 1140 /** 1141 * netdev_features_change - device changes features 1142 * @dev: device to cause notification 1143 * 1144 * Called to indicate a device has changed features. 1145 */ 1146 void netdev_features_change(struct net_device *dev) 1147 { 1148 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1149 } 1150 EXPORT_SYMBOL(netdev_features_change); 1151 1152 /** 1153 * netdev_state_change - device changes state 1154 * @dev: device to cause notification 1155 * 1156 * Called to indicate a device has changed state. This function calls 1157 * the notifier chains for netdev_chain and sends a NEWLINK message 1158 * to the routing socket. 1159 */ 1160 void netdev_state_change(struct net_device *dev) 1161 { 1162 if (dev->flags & IFF_UP) { 1163 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1164 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1165 } 1166 } 1167 EXPORT_SYMBOL(netdev_state_change); 1168 1169 /** 1170 * netdev_notify_peers - notify network peers about existence of @dev 1171 * @dev: network device 1172 * 1173 * Generate traffic such that interested network peers are aware of 1174 * @dev, such as by generating a gratuitous ARP. This may be used when 1175 * a device wants to inform the rest of the network about some sort of 1176 * reconfiguration such as a failover event or virtual machine 1177 * migration. 1178 */ 1179 void netdev_notify_peers(struct net_device *dev) 1180 { 1181 rtnl_lock(); 1182 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1183 rtnl_unlock(); 1184 } 1185 EXPORT_SYMBOL(netdev_notify_peers); 1186 1187 static int __dev_open(struct net_device *dev) 1188 { 1189 const struct net_device_ops *ops = dev->netdev_ops; 1190 int ret; 1191 1192 ASSERT_RTNL(); 1193 1194 if (!netif_device_present(dev)) 1195 return -ENODEV; 1196 1197 /* Block netpoll from trying to do any rx path servicing. 1198 * If we don't do this there is a chance ndo_poll_controller 1199 * or ndo_poll may be running while we open the device 1200 */ 1201 ret = netpoll_rx_disable(dev); 1202 if (ret) 1203 return ret; 1204 1205 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1206 ret = notifier_to_errno(ret); 1207 if (ret) 1208 return ret; 1209 1210 set_bit(__LINK_STATE_START, &dev->state); 1211 1212 if (ops->ndo_validate_addr) 1213 ret = ops->ndo_validate_addr(dev); 1214 1215 if (!ret && ops->ndo_open) 1216 ret = ops->ndo_open(dev); 1217 1218 netpoll_rx_enable(dev); 1219 1220 if (ret) 1221 clear_bit(__LINK_STATE_START, &dev->state); 1222 else { 1223 dev->flags |= IFF_UP; 1224 net_dmaengine_get(); 1225 dev_set_rx_mode(dev); 1226 dev_activate(dev); 1227 add_device_randomness(dev->dev_addr, dev->addr_len); 1228 } 1229 1230 return ret; 1231 } 1232 1233 /** 1234 * dev_open - prepare an interface for use. 1235 * @dev: device to open 1236 * 1237 * Takes a device from down to up state. The device's private open 1238 * function is invoked and then the multicast lists are loaded. Finally 1239 * the device is moved into the up state and a %NETDEV_UP message is 1240 * sent to the netdev notifier chain. 1241 * 1242 * Calling this function on an active interface is a nop. On a failure 1243 * a negative errno code is returned. 1244 */ 1245 int dev_open(struct net_device *dev) 1246 { 1247 int ret; 1248 1249 if (dev->flags & IFF_UP) 1250 return 0; 1251 1252 ret = __dev_open(dev); 1253 if (ret < 0) 1254 return ret; 1255 1256 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1257 call_netdevice_notifiers(NETDEV_UP, dev); 1258 1259 return ret; 1260 } 1261 EXPORT_SYMBOL(dev_open); 1262 1263 static int __dev_close_many(struct list_head *head) 1264 { 1265 struct net_device *dev; 1266 1267 ASSERT_RTNL(); 1268 might_sleep(); 1269 1270 list_for_each_entry(dev, head, unreg_list) { 1271 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1272 1273 clear_bit(__LINK_STATE_START, &dev->state); 1274 1275 /* Synchronize to scheduled poll. We cannot touch poll list, it 1276 * can be even on different cpu. So just clear netif_running(). 1277 * 1278 * dev->stop() will invoke napi_disable() on all of it's 1279 * napi_struct instances on this device. 1280 */ 1281 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1282 } 1283 1284 dev_deactivate_many(head); 1285 1286 list_for_each_entry(dev, head, unreg_list) { 1287 const struct net_device_ops *ops = dev->netdev_ops; 1288 1289 /* 1290 * Call the device specific close. This cannot fail. 1291 * Only if device is UP 1292 * 1293 * We allow it to be called even after a DETACH hot-plug 1294 * event. 1295 */ 1296 if (ops->ndo_stop) 1297 ops->ndo_stop(dev); 1298 1299 dev->flags &= ~IFF_UP; 1300 net_dmaengine_put(); 1301 } 1302 1303 return 0; 1304 } 1305 1306 static int __dev_close(struct net_device *dev) 1307 { 1308 int retval; 1309 LIST_HEAD(single); 1310 1311 /* Temporarily disable netpoll until the interface is down */ 1312 retval = netpoll_rx_disable(dev); 1313 if (retval) 1314 return retval; 1315 1316 list_add(&dev->unreg_list, &single); 1317 retval = __dev_close_many(&single); 1318 list_del(&single); 1319 1320 netpoll_rx_enable(dev); 1321 return retval; 1322 } 1323 1324 static int dev_close_many(struct list_head *head) 1325 { 1326 struct net_device *dev, *tmp; 1327 LIST_HEAD(tmp_list); 1328 1329 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1330 if (!(dev->flags & IFF_UP)) 1331 list_move(&dev->unreg_list, &tmp_list); 1332 1333 __dev_close_many(head); 1334 1335 list_for_each_entry(dev, head, unreg_list) { 1336 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1337 call_netdevice_notifiers(NETDEV_DOWN, dev); 1338 } 1339 1340 /* rollback_registered_many needs the complete original list */ 1341 list_splice(&tmp_list, head); 1342 return 0; 1343 } 1344 1345 /** 1346 * dev_close - shutdown an interface. 1347 * @dev: device to shutdown 1348 * 1349 * This function moves an active device into down state. A 1350 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1351 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1352 * chain. 1353 */ 1354 int dev_close(struct net_device *dev) 1355 { 1356 int ret = 0; 1357 if (dev->flags & IFF_UP) { 1358 LIST_HEAD(single); 1359 1360 /* Block netpoll rx while the interface is going down */ 1361 ret = netpoll_rx_disable(dev); 1362 if (ret) 1363 return ret; 1364 1365 list_add(&dev->unreg_list, &single); 1366 dev_close_many(&single); 1367 list_del(&single); 1368 1369 netpoll_rx_enable(dev); 1370 } 1371 return ret; 1372 } 1373 EXPORT_SYMBOL(dev_close); 1374 1375 1376 /** 1377 * dev_disable_lro - disable Large Receive Offload on a device 1378 * @dev: device 1379 * 1380 * Disable Large Receive Offload (LRO) on a net device. Must be 1381 * called under RTNL. This is needed if received packets may be 1382 * forwarded to another interface. 1383 */ 1384 void dev_disable_lro(struct net_device *dev) 1385 { 1386 /* 1387 * If we're trying to disable lro on a vlan device 1388 * use the underlying physical device instead 1389 */ 1390 if (is_vlan_dev(dev)) 1391 dev = vlan_dev_real_dev(dev); 1392 1393 dev->wanted_features &= ~NETIF_F_LRO; 1394 netdev_update_features(dev); 1395 1396 if (unlikely(dev->features & NETIF_F_LRO)) 1397 netdev_WARN(dev, "failed to disable LRO!\n"); 1398 } 1399 EXPORT_SYMBOL(dev_disable_lro); 1400 1401 1402 static int dev_boot_phase = 1; 1403 1404 /** 1405 * register_netdevice_notifier - register a network notifier block 1406 * @nb: notifier 1407 * 1408 * Register a notifier to be called when network device events occur. 1409 * The notifier passed is linked into the kernel structures and must 1410 * not be reused until it has been unregistered. A negative errno code 1411 * is returned on a failure. 1412 * 1413 * When registered all registration and up events are replayed 1414 * to the new notifier to allow device to have a race free 1415 * view of the network device list. 1416 */ 1417 1418 int register_netdevice_notifier(struct notifier_block *nb) 1419 { 1420 struct net_device *dev; 1421 struct net_device *last; 1422 struct net *net; 1423 int err; 1424 1425 rtnl_lock(); 1426 err = raw_notifier_chain_register(&netdev_chain, nb); 1427 if (err) 1428 goto unlock; 1429 if (dev_boot_phase) 1430 goto unlock; 1431 for_each_net(net) { 1432 for_each_netdev(net, dev) { 1433 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1434 err = notifier_to_errno(err); 1435 if (err) 1436 goto rollback; 1437 1438 if (!(dev->flags & IFF_UP)) 1439 continue; 1440 1441 nb->notifier_call(nb, NETDEV_UP, dev); 1442 } 1443 } 1444 1445 unlock: 1446 rtnl_unlock(); 1447 return err; 1448 1449 rollback: 1450 last = dev; 1451 for_each_net(net) { 1452 for_each_netdev(net, dev) { 1453 if (dev == last) 1454 goto outroll; 1455 1456 if (dev->flags & IFF_UP) { 1457 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1458 nb->notifier_call(nb, NETDEV_DOWN, dev); 1459 } 1460 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1461 } 1462 } 1463 1464 outroll: 1465 raw_notifier_chain_unregister(&netdev_chain, nb); 1466 goto unlock; 1467 } 1468 EXPORT_SYMBOL(register_netdevice_notifier); 1469 1470 /** 1471 * unregister_netdevice_notifier - unregister a network notifier block 1472 * @nb: notifier 1473 * 1474 * Unregister a notifier previously registered by 1475 * register_netdevice_notifier(). The notifier is unlinked into the 1476 * kernel structures and may then be reused. A negative errno code 1477 * is returned on a failure. 1478 * 1479 * After unregistering unregister and down device events are synthesized 1480 * for all devices on the device list to the removed notifier to remove 1481 * the need for special case cleanup code. 1482 */ 1483 1484 int unregister_netdevice_notifier(struct notifier_block *nb) 1485 { 1486 struct net_device *dev; 1487 struct net *net; 1488 int err; 1489 1490 rtnl_lock(); 1491 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1492 if (err) 1493 goto unlock; 1494 1495 for_each_net(net) { 1496 for_each_netdev(net, dev) { 1497 if (dev->flags & IFF_UP) { 1498 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1499 nb->notifier_call(nb, NETDEV_DOWN, dev); 1500 } 1501 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1502 } 1503 } 1504 unlock: 1505 rtnl_unlock(); 1506 return err; 1507 } 1508 EXPORT_SYMBOL(unregister_netdevice_notifier); 1509 1510 /** 1511 * call_netdevice_notifiers - call all network notifier blocks 1512 * @val: value passed unmodified to notifier function 1513 * @dev: net_device pointer passed unmodified to notifier function 1514 * 1515 * Call all network notifier blocks. Parameters and return value 1516 * are as for raw_notifier_call_chain(). 1517 */ 1518 1519 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1520 { 1521 ASSERT_RTNL(); 1522 return raw_notifier_call_chain(&netdev_chain, val, dev); 1523 } 1524 EXPORT_SYMBOL(call_netdevice_notifiers); 1525 1526 static struct static_key netstamp_needed __read_mostly; 1527 #ifdef HAVE_JUMP_LABEL 1528 /* We are not allowed to call static_key_slow_dec() from irq context 1529 * If net_disable_timestamp() is called from irq context, defer the 1530 * static_key_slow_dec() calls. 1531 */ 1532 static atomic_t netstamp_needed_deferred; 1533 #endif 1534 1535 void net_enable_timestamp(void) 1536 { 1537 #ifdef HAVE_JUMP_LABEL 1538 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1539 1540 if (deferred) { 1541 while (--deferred) 1542 static_key_slow_dec(&netstamp_needed); 1543 return; 1544 } 1545 #endif 1546 static_key_slow_inc(&netstamp_needed); 1547 } 1548 EXPORT_SYMBOL(net_enable_timestamp); 1549 1550 void net_disable_timestamp(void) 1551 { 1552 #ifdef HAVE_JUMP_LABEL 1553 if (in_interrupt()) { 1554 atomic_inc(&netstamp_needed_deferred); 1555 return; 1556 } 1557 #endif 1558 static_key_slow_dec(&netstamp_needed); 1559 } 1560 EXPORT_SYMBOL(net_disable_timestamp); 1561 1562 static inline void net_timestamp_set(struct sk_buff *skb) 1563 { 1564 skb->tstamp.tv64 = 0; 1565 if (static_key_false(&netstamp_needed)) 1566 __net_timestamp(skb); 1567 } 1568 1569 #define net_timestamp_check(COND, SKB) \ 1570 if (static_key_false(&netstamp_needed)) { \ 1571 if ((COND) && !(SKB)->tstamp.tv64) \ 1572 __net_timestamp(SKB); \ 1573 } \ 1574 1575 static inline bool is_skb_forwardable(struct net_device *dev, 1576 struct sk_buff *skb) 1577 { 1578 unsigned int len; 1579 1580 if (!(dev->flags & IFF_UP)) 1581 return false; 1582 1583 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1584 if (skb->len <= len) 1585 return true; 1586 1587 /* if TSO is enabled, we don't care about the length as the packet 1588 * could be forwarded without being segmented before 1589 */ 1590 if (skb_is_gso(skb)) 1591 return true; 1592 1593 return false; 1594 } 1595 1596 /** 1597 * dev_forward_skb - loopback an skb to another netif 1598 * 1599 * @dev: destination network device 1600 * @skb: buffer to forward 1601 * 1602 * return values: 1603 * NET_RX_SUCCESS (no congestion) 1604 * NET_RX_DROP (packet was dropped, but freed) 1605 * 1606 * dev_forward_skb can be used for injecting an skb from the 1607 * start_xmit function of one device into the receive queue 1608 * of another device. 1609 * 1610 * The receiving device may be in another namespace, so 1611 * we have to clear all information in the skb that could 1612 * impact namespace isolation. 1613 */ 1614 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1615 { 1616 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1617 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1618 atomic_long_inc(&dev->rx_dropped); 1619 kfree_skb(skb); 1620 return NET_RX_DROP; 1621 } 1622 } 1623 1624 skb_orphan(skb); 1625 1626 if (unlikely(!is_skb_forwardable(dev, skb))) { 1627 atomic_long_inc(&dev->rx_dropped); 1628 kfree_skb(skb); 1629 return NET_RX_DROP; 1630 } 1631 skb->skb_iif = 0; 1632 skb->dev = dev; 1633 skb_dst_drop(skb); 1634 skb->tstamp.tv64 = 0; 1635 skb->pkt_type = PACKET_HOST; 1636 skb->protocol = eth_type_trans(skb, dev); 1637 skb->mark = 0; 1638 secpath_reset(skb); 1639 nf_reset(skb); 1640 nf_reset_trace(skb); 1641 return netif_rx(skb); 1642 } 1643 EXPORT_SYMBOL_GPL(dev_forward_skb); 1644 1645 static inline int deliver_skb(struct sk_buff *skb, 1646 struct packet_type *pt_prev, 1647 struct net_device *orig_dev) 1648 { 1649 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1650 return -ENOMEM; 1651 atomic_inc(&skb->users); 1652 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1653 } 1654 1655 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1656 { 1657 if (!ptype->af_packet_priv || !skb->sk) 1658 return false; 1659 1660 if (ptype->id_match) 1661 return ptype->id_match(ptype, skb->sk); 1662 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1663 return true; 1664 1665 return false; 1666 } 1667 1668 /* 1669 * Support routine. Sends outgoing frames to any network 1670 * taps currently in use. 1671 */ 1672 1673 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1674 { 1675 struct packet_type *ptype; 1676 struct sk_buff *skb2 = NULL; 1677 struct packet_type *pt_prev = NULL; 1678 1679 rcu_read_lock(); 1680 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1681 /* Never send packets back to the socket 1682 * they originated from - MvS (miquels@drinkel.ow.org) 1683 */ 1684 if ((ptype->dev == dev || !ptype->dev) && 1685 (!skb_loop_sk(ptype, skb))) { 1686 if (pt_prev) { 1687 deliver_skb(skb2, pt_prev, skb->dev); 1688 pt_prev = ptype; 1689 continue; 1690 } 1691 1692 skb2 = skb_clone(skb, GFP_ATOMIC); 1693 if (!skb2) 1694 break; 1695 1696 net_timestamp_set(skb2); 1697 1698 /* skb->nh should be correctly 1699 set by sender, so that the second statement is 1700 just protection against buggy protocols. 1701 */ 1702 skb_reset_mac_header(skb2); 1703 1704 if (skb_network_header(skb2) < skb2->data || 1705 skb2->network_header > skb2->tail) { 1706 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1707 ntohs(skb2->protocol), 1708 dev->name); 1709 skb_reset_network_header(skb2); 1710 } 1711 1712 skb2->transport_header = skb2->network_header; 1713 skb2->pkt_type = PACKET_OUTGOING; 1714 pt_prev = ptype; 1715 } 1716 } 1717 if (pt_prev) 1718 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1719 rcu_read_unlock(); 1720 } 1721 1722 /** 1723 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1724 * @dev: Network device 1725 * @txq: number of queues available 1726 * 1727 * If real_num_tx_queues is changed the tc mappings may no longer be 1728 * valid. To resolve this verify the tc mapping remains valid and if 1729 * not NULL the mapping. With no priorities mapping to this 1730 * offset/count pair it will no longer be used. In the worst case TC0 1731 * is invalid nothing can be done so disable priority mappings. If is 1732 * expected that drivers will fix this mapping if they can before 1733 * calling netif_set_real_num_tx_queues. 1734 */ 1735 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1736 { 1737 int i; 1738 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1739 1740 /* If TC0 is invalidated disable TC mapping */ 1741 if (tc->offset + tc->count > txq) { 1742 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1743 dev->num_tc = 0; 1744 return; 1745 } 1746 1747 /* Invalidated prio to tc mappings set to TC0 */ 1748 for (i = 1; i < TC_BITMASK + 1; i++) { 1749 int q = netdev_get_prio_tc_map(dev, i); 1750 1751 tc = &dev->tc_to_txq[q]; 1752 if (tc->offset + tc->count > txq) { 1753 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1754 i, q); 1755 netdev_set_prio_tc_map(dev, i, 0); 1756 } 1757 } 1758 } 1759 1760 #ifdef CONFIG_XPS 1761 static DEFINE_MUTEX(xps_map_mutex); 1762 #define xmap_dereference(P) \ 1763 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1764 1765 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1766 int cpu, u16 index) 1767 { 1768 struct xps_map *map = NULL; 1769 int pos; 1770 1771 if (dev_maps) 1772 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1773 1774 for (pos = 0; map && pos < map->len; pos++) { 1775 if (map->queues[pos] == index) { 1776 if (map->len > 1) { 1777 map->queues[pos] = map->queues[--map->len]; 1778 } else { 1779 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1780 kfree_rcu(map, rcu); 1781 map = NULL; 1782 } 1783 break; 1784 } 1785 } 1786 1787 return map; 1788 } 1789 1790 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1791 { 1792 struct xps_dev_maps *dev_maps; 1793 int cpu, i; 1794 bool active = false; 1795 1796 mutex_lock(&xps_map_mutex); 1797 dev_maps = xmap_dereference(dev->xps_maps); 1798 1799 if (!dev_maps) 1800 goto out_no_maps; 1801 1802 for_each_possible_cpu(cpu) { 1803 for (i = index; i < dev->num_tx_queues; i++) { 1804 if (!remove_xps_queue(dev_maps, cpu, i)) 1805 break; 1806 } 1807 if (i == dev->num_tx_queues) 1808 active = true; 1809 } 1810 1811 if (!active) { 1812 RCU_INIT_POINTER(dev->xps_maps, NULL); 1813 kfree_rcu(dev_maps, rcu); 1814 } 1815 1816 for (i = index; i < dev->num_tx_queues; i++) 1817 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1818 NUMA_NO_NODE); 1819 1820 out_no_maps: 1821 mutex_unlock(&xps_map_mutex); 1822 } 1823 1824 static struct xps_map *expand_xps_map(struct xps_map *map, 1825 int cpu, u16 index) 1826 { 1827 struct xps_map *new_map; 1828 int alloc_len = XPS_MIN_MAP_ALLOC; 1829 int i, pos; 1830 1831 for (pos = 0; map && pos < map->len; pos++) { 1832 if (map->queues[pos] != index) 1833 continue; 1834 return map; 1835 } 1836 1837 /* Need to add queue to this CPU's existing map */ 1838 if (map) { 1839 if (pos < map->alloc_len) 1840 return map; 1841 1842 alloc_len = map->alloc_len * 2; 1843 } 1844 1845 /* Need to allocate new map to store queue on this CPU's map */ 1846 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1847 cpu_to_node(cpu)); 1848 if (!new_map) 1849 return NULL; 1850 1851 for (i = 0; i < pos; i++) 1852 new_map->queues[i] = map->queues[i]; 1853 new_map->alloc_len = alloc_len; 1854 new_map->len = pos; 1855 1856 return new_map; 1857 } 1858 1859 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index) 1860 { 1861 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1862 struct xps_map *map, *new_map; 1863 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1864 int cpu, numa_node_id = -2; 1865 bool active = false; 1866 1867 mutex_lock(&xps_map_mutex); 1868 1869 dev_maps = xmap_dereference(dev->xps_maps); 1870 1871 /* allocate memory for queue storage */ 1872 for_each_online_cpu(cpu) { 1873 if (!cpumask_test_cpu(cpu, mask)) 1874 continue; 1875 1876 if (!new_dev_maps) 1877 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1878 if (!new_dev_maps) { 1879 mutex_unlock(&xps_map_mutex); 1880 return -ENOMEM; 1881 } 1882 1883 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1884 NULL; 1885 1886 map = expand_xps_map(map, cpu, index); 1887 if (!map) 1888 goto error; 1889 1890 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1891 } 1892 1893 if (!new_dev_maps) 1894 goto out_no_new_maps; 1895 1896 for_each_possible_cpu(cpu) { 1897 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1898 /* add queue to CPU maps */ 1899 int pos = 0; 1900 1901 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1902 while ((pos < map->len) && (map->queues[pos] != index)) 1903 pos++; 1904 1905 if (pos == map->len) 1906 map->queues[map->len++] = index; 1907 #ifdef CONFIG_NUMA 1908 if (numa_node_id == -2) 1909 numa_node_id = cpu_to_node(cpu); 1910 else if (numa_node_id != cpu_to_node(cpu)) 1911 numa_node_id = -1; 1912 #endif 1913 } else if (dev_maps) { 1914 /* fill in the new device map from the old device map */ 1915 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1916 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1917 } 1918 1919 } 1920 1921 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 1922 1923 /* Cleanup old maps */ 1924 if (dev_maps) { 1925 for_each_possible_cpu(cpu) { 1926 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1927 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1928 if (map && map != new_map) 1929 kfree_rcu(map, rcu); 1930 } 1931 1932 kfree_rcu(dev_maps, rcu); 1933 } 1934 1935 dev_maps = new_dev_maps; 1936 active = true; 1937 1938 out_no_new_maps: 1939 /* update Tx queue numa node */ 1940 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 1941 (numa_node_id >= 0) ? numa_node_id : 1942 NUMA_NO_NODE); 1943 1944 if (!dev_maps) 1945 goto out_no_maps; 1946 1947 /* removes queue from unused CPUs */ 1948 for_each_possible_cpu(cpu) { 1949 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 1950 continue; 1951 1952 if (remove_xps_queue(dev_maps, cpu, index)) 1953 active = true; 1954 } 1955 1956 /* free map if not active */ 1957 if (!active) { 1958 RCU_INIT_POINTER(dev->xps_maps, NULL); 1959 kfree_rcu(dev_maps, rcu); 1960 } 1961 1962 out_no_maps: 1963 mutex_unlock(&xps_map_mutex); 1964 1965 return 0; 1966 error: 1967 /* remove any maps that we added */ 1968 for_each_possible_cpu(cpu) { 1969 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1970 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1971 NULL; 1972 if (new_map && new_map != map) 1973 kfree(new_map); 1974 } 1975 1976 mutex_unlock(&xps_map_mutex); 1977 1978 kfree(new_dev_maps); 1979 return -ENOMEM; 1980 } 1981 EXPORT_SYMBOL(netif_set_xps_queue); 1982 1983 #endif 1984 /* 1985 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1986 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1987 */ 1988 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1989 { 1990 int rc; 1991 1992 if (txq < 1 || txq > dev->num_tx_queues) 1993 return -EINVAL; 1994 1995 if (dev->reg_state == NETREG_REGISTERED || 1996 dev->reg_state == NETREG_UNREGISTERING) { 1997 ASSERT_RTNL(); 1998 1999 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2000 txq); 2001 if (rc) 2002 return rc; 2003 2004 if (dev->num_tc) 2005 netif_setup_tc(dev, txq); 2006 2007 if (txq < dev->real_num_tx_queues) { 2008 qdisc_reset_all_tx_gt(dev, txq); 2009 #ifdef CONFIG_XPS 2010 netif_reset_xps_queues_gt(dev, txq); 2011 #endif 2012 } 2013 } 2014 2015 dev->real_num_tx_queues = txq; 2016 return 0; 2017 } 2018 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2019 2020 #ifdef CONFIG_RPS 2021 /** 2022 * netif_set_real_num_rx_queues - set actual number of RX queues used 2023 * @dev: Network device 2024 * @rxq: Actual number of RX queues 2025 * 2026 * This must be called either with the rtnl_lock held or before 2027 * registration of the net device. Returns 0 on success, or a 2028 * negative error code. If called before registration, it always 2029 * succeeds. 2030 */ 2031 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2032 { 2033 int rc; 2034 2035 if (rxq < 1 || rxq > dev->num_rx_queues) 2036 return -EINVAL; 2037 2038 if (dev->reg_state == NETREG_REGISTERED) { 2039 ASSERT_RTNL(); 2040 2041 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2042 rxq); 2043 if (rc) 2044 return rc; 2045 } 2046 2047 dev->real_num_rx_queues = rxq; 2048 return 0; 2049 } 2050 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2051 #endif 2052 2053 /** 2054 * netif_get_num_default_rss_queues - default number of RSS queues 2055 * 2056 * This routine should set an upper limit on the number of RSS queues 2057 * used by default by multiqueue devices. 2058 */ 2059 int netif_get_num_default_rss_queues(void) 2060 { 2061 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2062 } 2063 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2064 2065 static inline void __netif_reschedule(struct Qdisc *q) 2066 { 2067 struct softnet_data *sd; 2068 unsigned long flags; 2069 2070 local_irq_save(flags); 2071 sd = &__get_cpu_var(softnet_data); 2072 q->next_sched = NULL; 2073 *sd->output_queue_tailp = q; 2074 sd->output_queue_tailp = &q->next_sched; 2075 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2076 local_irq_restore(flags); 2077 } 2078 2079 void __netif_schedule(struct Qdisc *q) 2080 { 2081 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2082 __netif_reschedule(q); 2083 } 2084 EXPORT_SYMBOL(__netif_schedule); 2085 2086 void dev_kfree_skb_irq(struct sk_buff *skb) 2087 { 2088 if (atomic_dec_and_test(&skb->users)) { 2089 struct softnet_data *sd; 2090 unsigned long flags; 2091 2092 local_irq_save(flags); 2093 sd = &__get_cpu_var(softnet_data); 2094 skb->next = sd->completion_queue; 2095 sd->completion_queue = skb; 2096 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2097 local_irq_restore(flags); 2098 } 2099 } 2100 EXPORT_SYMBOL(dev_kfree_skb_irq); 2101 2102 void dev_kfree_skb_any(struct sk_buff *skb) 2103 { 2104 if (in_irq() || irqs_disabled()) 2105 dev_kfree_skb_irq(skb); 2106 else 2107 dev_kfree_skb(skb); 2108 } 2109 EXPORT_SYMBOL(dev_kfree_skb_any); 2110 2111 2112 /** 2113 * netif_device_detach - mark device as removed 2114 * @dev: network device 2115 * 2116 * Mark device as removed from system and therefore no longer available. 2117 */ 2118 void netif_device_detach(struct net_device *dev) 2119 { 2120 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2121 netif_running(dev)) { 2122 netif_tx_stop_all_queues(dev); 2123 } 2124 } 2125 EXPORT_SYMBOL(netif_device_detach); 2126 2127 /** 2128 * netif_device_attach - mark device as attached 2129 * @dev: network device 2130 * 2131 * Mark device as attached from system and restart if needed. 2132 */ 2133 void netif_device_attach(struct net_device *dev) 2134 { 2135 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2136 netif_running(dev)) { 2137 netif_tx_wake_all_queues(dev); 2138 __netdev_watchdog_up(dev); 2139 } 2140 } 2141 EXPORT_SYMBOL(netif_device_attach); 2142 2143 static void skb_warn_bad_offload(const struct sk_buff *skb) 2144 { 2145 static const netdev_features_t null_features = 0; 2146 struct net_device *dev = skb->dev; 2147 const char *driver = ""; 2148 2149 if (!net_ratelimit()) 2150 return; 2151 2152 if (dev && dev->dev.parent) 2153 driver = dev_driver_string(dev->dev.parent); 2154 2155 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2156 "gso_type=%d ip_summed=%d\n", 2157 driver, dev ? &dev->features : &null_features, 2158 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2159 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2160 skb_shinfo(skb)->gso_type, skb->ip_summed); 2161 } 2162 2163 /* 2164 * Invalidate hardware checksum when packet is to be mangled, and 2165 * complete checksum manually on outgoing path. 2166 */ 2167 int skb_checksum_help(struct sk_buff *skb) 2168 { 2169 __wsum csum; 2170 int ret = 0, offset; 2171 2172 if (skb->ip_summed == CHECKSUM_COMPLETE) 2173 goto out_set_summed; 2174 2175 if (unlikely(skb_shinfo(skb)->gso_size)) { 2176 skb_warn_bad_offload(skb); 2177 return -EINVAL; 2178 } 2179 2180 /* Before computing a checksum, we should make sure no frag could 2181 * be modified by an external entity : checksum could be wrong. 2182 */ 2183 if (skb_has_shared_frag(skb)) { 2184 ret = __skb_linearize(skb); 2185 if (ret) 2186 goto out; 2187 } 2188 2189 offset = skb_checksum_start_offset(skb); 2190 BUG_ON(offset >= skb_headlen(skb)); 2191 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2192 2193 offset += skb->csum_offset; 2194 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2195 2196 if (skb_cloned(skb) && 2197 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2198 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2199 if (ret) 2200 goto out; 2201 } 2202 2203 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2204 out_set_summed: 2205 skb->ip_summed = CHECKSUM_NONE; 2206 out: 2207 return ret; 2208 } 2209 EXPORT_SYMBOL(skb_checksum_help); 2210 2211 __be16 skb_network_protocol(struct sk_buff *skb) 2212 { 2213 __be16 type = skb->protocol; 2214 int vlan_depth = ETH_HLEN; 2215 2216 /* Tunnel gso handlers can set protocol to ethernet. */ 2217 if (type == htons(ETH_P_TEB)) { 2218 struct ethhdr *eth; 2219 2220 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2221 return 0; 2222 2223 eth = (struct ethhdr *)skb_mac_header(skb); 2224 type = eth->h_proto; 2225 } 2226 2227 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2228 struct vlan_hdr *vh; 2229 2230 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 2231 return 0; 2232 2233 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2234 type = vh->h_vlan_encapsulated_proto; 2235 vlan_depth += VLAN_HLEN; 2236 } 2237 2238 return type; 2239 } 2240 2241 /** 2242 * skb_mac_gso_segment - mac layer segmentation handler. 2243 * @skb: buffer to segment 2244 * @features: features for the output path (see dev->features) 2245 */ 2246 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2247 netdev_features_t features) 2248 { 2249 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2250 struct packet_offload *ptype; 2251 __be16 type = skb_network_protocol(skb); 2252 2253 if (unlikely(!type)) 2254 return ERR_PTR(-EINVAL); 2255 2256 __skb_pull(skb, skb->mac_len); 2257 2258 rcu_read_lock(); 2259 list_for_each_entry_rcu(ptype, &offload_base, list) { 2260 if (ptype->type == type && ptype->callbacks.gso_segment) { 2261 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2262 int err; 2263 2264 err = ptype->callbacks.gso_send_check(skb); 2265 segs = ERR_PTR(err); 2266 if (err || skb_gso_ok(skb, features)) 2267 break; 2268 __skb_push(skb, (skb->data - 2269 skb_network_header(skb))); 2270 } 2271 segs = ptype->callbacks.gso_segment(skb, features); 2272 break; 2273 } 2274 } 2275 rcu_read_unlock(); 2276 2277 __skb_push(skb, skb->data - skb_mac_header(skb)); 2278 2279 return segs; 2280 } 2281 EXPORT_SYMBOL(skb_mac_gso_segment); 2282 2283 2284 /* openvswitch calls this on rx path, so we need a different check. 2285 */ 2286 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2287 { 2288 if (tx_path) 2289 return skb->ip_summed != CHECKSUM_PARTIAL; 2290 else 2291 return skb->ip_summed == CHECKSUM_NONE; 2292 } 2293 2294 /** 2295 * __skb_gso_segment - Perform segmentation on skb. 2296 * @skb: buffer to segment 2297 * @features: features for the output path (see dev->features) 2298 * @tx_path: whether it is called in TX path 2299 * 2300 * This function segments the given skb and returns a list of segments. 2301 * 2302 * It may return NULL if the skb requires no segmentation. This is 2303 * only possible when GSO is used for verifying header integrity. 2304 */ 2305 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2306 netdev_features_t features, bool tx_path) 2307 { 2308 if (unlikely(skb_needs_check(skb, tx_path))) { 2309 int err; 2310 2311 skb_warn_bad_offload(skb); 2312 2313 if (skb_header_cloned(skb) && 2314 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2315 return ERR_PTR(err); 2316 } 2317 2318 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2319 skb_reset_mac_header(skb); 2320 skb_reset_mac_len(skb); 2321 2322 return skb_mac_gso_segment(skb, features); 2323 } 2324 EXPORT_SYMBOL(__skb_gso_segment); 2325 2326 /* Take action when hardware reception checksum errors are detected. */ 2327 #ifdef CONFIG_BUG 2328 void netdev_rx_csum_fault(struct net_device *dev) 2329 { 2330 if (net_ratelimit()) { 2331 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2332 dump_stack(); 2333 } 2334 } 2335 EXPORT_SYMBOL(netdev_rx_csum_fault); 2336 #endif 2337 2338 /* Actually, we should eliminate this check as soon as we know, that: 2339 * 1. IOMMU is present and allows to map all the memory. 2340 * 2. No high memory really exists on this machine. 2341 */ 2342 2343 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2344 { 2345 #ifdef CONFIG_HIGHMEM 2346 int i; 2347 if (!(dev->features & NETIF_F_HIGHDMA)) { 2348 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2349 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2350 if (PageHighMem(skb_frag_page(frag))) 2351 return 1; 2352 } 2353 } 2354 2355 if (PCI_DMA_BUS_IS_PHYS) { 2356 struct device *pdev = dev->dev.parent; 2357 2358 if (!pdev) 2359 return 0; 2360 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2361 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2362 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2363 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2364 return 1; 2365 } 2366 } 2367 #endif 2368 return 0; 2369 } 2370 2371 struct dev_gso_cb { 2372 void (*destructor)(struct sk_buff *skb); 2373 }; 2374 2375 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2376 2377 static void dev_gso_skb_destructor(struct sk_buff *skb) 2378 { 2379 struct dev_gso_cb *cb; 2380 2381 do { 2382 struct sk_buff *nskb = skb->next; 2383 2384 skb->next = nskb->next; 2385 nskb->next = NULL; 2386 kfree_skb(nskb); 2387 } while (skb->next); 2388 2389 cb = DEV_GSO_CB(skb); 2390 if (cb->destructor) 2391 cb->destructor(skb); 2392 } 2393 2394 /** 2395 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2396 * @skb: buffer to segment 2397 * @features: device features as applicable to this skb 2398 * 2399 * This function segments the given skb and stores the list of segments 2400 * in skb->next. 2401 */ 2402 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2403 { 2404 struct sk_buff *segs; 2405 2406 segs = skb_gso_segment(skb, features); 2407 2408 /* Verifying header integrity only. */ 2409 if (!segs) 2410 return 0; 2411 2412 if (IS_ERR(segs)) 2413 return PTR_ERR(segs); 2414 2415 skb->next = segs; 2416 DEV_GSO_CB(skb)->destructor = skb->destructor; 2417 skb->destructor = dev_gso_skb_destructor; 2418 2419 return 0; 2420 } 2421 2422 static netdev_features_t harmonize_features(struct sk_buff *skb, 2423 __be16 protocol, netdev_features_t features) 2424 { 2425 if (skb->ip_summed != CHECKSUM_NONE && 2426 !can_checksum_protocol(features, protocol)) { 2427 features &= ~NETIF_F_ALL_CSUM; 2428 } else if (illegal_highdma(skb->dev, skb)) { 2429 features &= ~NETIF_F_SG; 2430 } 2431 2432 return features; 2433 } 2434 2435 netdev_features_t netif_skb_features(struct sk_buff *skb) 2436 { 2437 __be16 protocol = skb->protocol; 2438 netdev_features_t features = skb->dev->features; 2439 2440 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2441 features &= ~NETIF_F_GSO_MASK; 2442 2443 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) { 2444 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2445 protocol = veh->h_vlan_encapsulated_proto; 2446 } else if (!vlan_tx_tag_present(skb)) { 2447 return harmonize_features(skb, protocol, features); 2448 } 2449 2450 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX | 2451 NETIF_F_HW_VLAN_STAG_TX); 2452 2453 if (protocol != htons(ETH_P_8021Q) && protocol != htons(ETH_P_8021AD)) { 2454 return harmonize_features(skb, protocol, features); 2455 } else { 2456 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2457 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX | 2458 NETIF_F_HW_VLAN_STAG_TX; 2459 return harmonize_features(skb, protocol, features); 2460 } 2461 } 2462 EXPORT_SYMBOL(netif_skb_features); 2463 2464 /* 2465 * Returns true if either: 2466 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2467 * 2. skb is fragmented and the device does not support SG. 2468 */ 2469 static inline int skb_needs_linearize(struct sk_buff *skb, 2470 netdev_features_t features) 2471 { 2472 return skb_is_nonlinear(skb) && 2473 ((skb_has_frag_list(skb) && 2474 !(features & NETIF_F_FRAGLIST)) || 2475 (skb_shinfo(skb)->nr_frags && 2476 !(features & NETIF_F_SG))); 2477 } 2478 2479 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2480 struct netdev_queue *txq) 2481 { 2482 const struct net_device_ops *ops = dev->netdev_ops; 2483 int rc = NETDEV_TX_OK; 2484 unsigned int skb_len; 2485 2486 if (likely(!skb->next)) { 2487 netdev_features_t features; 2488 2489 /* 2490 * If device doesn't need skb->dst, release it right now while 2491 * its hot in this cpu cache 2492 */ 2493 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2494 skb_dst_drop(skb); 2495 2496 features = netif_skb_features(skb); 2497 2498 if (vlan_tx_tag_present(skb) && 2499 !vlan_hw_offload_capable(features, skb->vlan_proto)) { 2500 skb = __vlan_put_tag(skb, skb->vlan_proto, 2501 vlan_tx_tag_get(skb)); 2502 if (unlikely(!skb)) 2503 goto out; 2504 2505 skb->vlan_tci = 0; 2506 } 2507 2508 /* If encapsulation offload request, verify we are testing 2509 * hardware encapsulation features instead of standard 2510 * features for the netdev 2511 */ 2512 if (skb->encapsulation) 2513 features &= dev->hw_enc_features; 2514 2515 if (netif_needs_gso(skb, features)) { 2516 if (unlikely(dev_gso_segment(skb, features))) 2517 goto out_kfree_skb; 2518 if (skb->next) 2519 goto gso; 2520 } else { 2521 if (skb_needs_linearize(skb, features) && 2522 __skb_linearize(skb)) 2523 goto out_kfree_skb; 2524 2525 /* If packet is not checksummed and device does not 2526 * support checksumming for this protocol, complete 2527 * checksumming here. 2528 */ 2529 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2530 if (skb->encapsulation) 2531 skb_set_inner_transport_header(skb, 2532 skb_checksum_start_offset(skb)); 2533 else 2534 skb_set_transport_header(skb, 2535 skb_checksum_start_offset(skb)); 2536 if (!(features & NETIF_F_ALL_CSUM) && 2537 skb_checksum_help(skb)) 2538 goto out_kfree_skb; 2539 } 2540 } 2541 2542 if (!list_empty(&ptype_all)) 2543 dev_queue_xmit_nit(skb, dev); 2544 2545 skb_len = skb->len; 2546 rc = ops->ndo_start_xmit(skb, dev); 2547 trace_net_dev_xmit(skb, rc, dev, skb_len); 2548 if (rc == NETDEV_TX_OK) 2549 txq_trans_update(txq); 2550 return rc; 2551 } 2552 2553 gso: 2554 do { 2555 struct sk_buff *nskb = skb->next; 2556 2557 skb->next = nskb->next; 2558 nskb->next = NULL; 2559 2560 if (!list_empty(&ptype_all)) 2561 dev_queue_xmit_nit(nskb, dev); 2562 2563 skb_len = nskb->len; 2564 rc = ops->ndo_start_xmit(nskb, dev); 2565 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2566 if (unlikely(rc != NETDEV_TX_OK)) { 2567 if (rc & ~NETDEV_TX_MASK) 2568 goto out_kfree_gso_skb; 2569 nskb->next = skb->next; 2570 skb->next = nskb; 2571 return rc; 2572 } 2573 txq_trans_update(txq); 2574 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2575 return NETDEV_TX_BUSY; 2576 } while (skb->next); 2577 2578 out_kfree_gso_skb: 2579 if (likely(skb->next == NULL)) { 2580 skb->destructor = DEV_GSO_CB(skb)->destructor; 2581 consume_skb(skb); 2582 return rc; 2583 } 2584 out_kfree_skb: 2585 kfree_skb(skb); 2586 out: 2587 return rc; 2588 } 2589 2590 static void qdisc_pkt_len_init(struct sk_buff *skb) 2591 { 2592 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2593 2594 qdisc_skb_cb(skb)->pkt_len = skb->len; 2595 2596 /* To get more precise estimation of bytes sent on wire, 2597 * we add to pkt_len the headers size of all segments 2598 */ 2599 if (shinfo->gso_size) { 2600 unsigned int hdr_len; 2601 u16 gso_segs = shinfo->gso_segs; 2602 2603 /* mac layer + network layer */ 2604 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2605 2606 /* + transport layer */ 2607 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2608 hdr_len += tcp_hdrlen(skb); 2609 else 2610 hdr_len += sizeof(struct udphdr); 2611 2612 if (shinfo->gso_type & SKB_GSO_DODGY) 2613 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2614 shinfo->gso_size); 2615 2616 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2617 } 2618 } 2619 2620 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2621 struct net_device *dev, 2622 struct netdev_queue *txq) 2623 { 2624 spinlock_t *root_lock = qdisc_lock(q); 2625 bool contended; 2626 int rc; 2627 2628 qdisc_pkt_len_init(skb); 2629 qdisc_calculate_pkt_len(skb, q); 2630 /* 2631 * Heuristic to force contended enqueues to serialize on a 2632 * separate lock before trying to get qdisc main lock. 2633 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2634 * and dequeue packets faster. 2635 */ 2636 contended = qdisc_is_running(q); 2637 if (unlikely(contended)) 2638 spin_lock(&q->busylock); 2639 2640 spin_lock(root_lock); 2641 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2642 kfree_skb(skb); 2643 rc = NET_XMIT_DROP; 2644 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2645 qdisc_run_begin(q)) { 2646 /* 2647 * This is a work-conserving queue; there are no old skbs 2648 * waiting to be sent out; and the qdisc is not running - 2649 * xmit the skb directly. 2650 */ 2651 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2652 skb_dst_force(skb); 2653 2654 qdisc_bstats_update(q, skb); 2655 2656 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2657 if (unlikely(contended)) { 2658 spin_unlock(&q->busylock); 2659 contended = false; 2660 } 2661 __qdisc_run(q); 2662 } else 2663 qdisc_run_end(q); 2664 2665 rc = NET_XMIT_SUCCESS; 2666 } else { 2667 skb_dst_force(skb); 2668 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2669 if (qdisc_run_begin(q)) { 2670 if (unlikely(contended)) { 2671 spin_unlock(&q->busylock); 2672 contended = false; 2673 } 2674 __qdisc_run(q); 2675 } 2676 } 2677 spin_unlock(root_lock); 2678 if (unlikely(contended)) 2679 spin_unlock(&q->busylock); 2680 return rc; 2681 } 2682 2683 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2684 static void skb_update_prio(struct sk_buff *skb) 2685 { 2686 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2687 2688 if (!skb->priority && skb->sk && map) { 2689 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2690 2691 if (prioidx < map->priomap_len) 2692 skb->priority = map->priomap[prioidx]; 2693 } 2694 } 2695 #else 2696 #define skb_update_prio(skb) 2697 #endif 2698 2699 static DEFINE_PER_CPU(int, xmit_recursion); 2700 #define RECURSION_LIMIT 10 2701 2702 /** 2703 * dev_loopback_xmit - loop back @skb 2704 * @skb: buffer to transmit 2705 */ 2706 int dev_loopback_xmit(struct sk_buff *skb) 2707 { 2708 skb_reset_mac_header(skb); 2709 __skb_pull(skb, skb_network_offset(skb)); 2710 skb->pkt_type = PACKET_LOOPBACK; 2711 skb->ip_summed = CHECKSUM_UNNECESSARY; 2712 WARN_ON(!skb_dst(skb)); 2713 skb_dst_force(skb); 2714 netif_rx_ni(skb); 2715 return 0; 2716 } 2717 EXPORT_SYMBOL(dev_loopback_xmit); 2718 2719 /** 2720 * dev_queue_xmit - transmit a buffer 2721 * @skb: buffer to transmit 2722 * 2723 * Queue a buffer for transmission to a network device. The caller must 2724 * have set the device and priority and built the buffer before calling 2725 * this function. The function can be called from an interrupt. 2726 * 2727 * A negative errno code is returned on a failure. A success does not 2728 * guarantee the frame will be transmitted as it may be dropped due 2729 * to congestion or traffic shaping. 2730 * 2731 * ----------------------------------------------------------------------------------- 2732 * I notice this method can also return errors from the queue disciplines, 2733 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2734 * be positive. 2735 * 2736 * Regardless of the return value, the skb is consumed, so it is currently 2737 * difficult to retry a send to this method. (You can bump the ref count 2738 * before sending to hold a reference for retry if you are careful.) 2739 * 2740 * When calling this method, interrupts MUST be enabled. This is because 2741 * the BH enable code must have IRQs enabled so that it will not deadlock. 2742 * --BLG 2743 */ 2744 int dev_queue_xmit(struct sk_buff *skb) 2745 { 2746 struct net_device *dev = skb->dev; 2747 struct netdev_queue *txq; 2748 struct Qdisc *q; 2749 int rc = -ENOMEM; 2750 2751 skb_reset_mac_header(skb); 2752 2753 /* Disable soft irqs for various locks below. Also 2754 * stops preemption for RCU. 2755 */ 2756 rcu_read_lock_bh(); 2757 2758 skb_update_prio(skb); 2759 2760 txq = netdev_pick_tx(dev, skb); 2761 q = rcu_dereference_bh(txq->qdisc); 2762 2763 #ifdef CONFIG_NET_CLS_ACT 2764 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2765 #endif 2766 trace_net_dev_queue(skb); 2767 if (q->enqueue) { 2768 rc = __dev_xmit_skb(skb, q, dev, txq); 2769 goto out; 2770 } 2771 2772 /* The device has no queue. Common case for software devices: 2773 loopback, all the sorts of tunnels... 2774 2775 Really, it is unlikely that netif_tx_lock protection is necessary 2776 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2777 counters.) 2778 However, it is possible, that they rely on protection 2779 made by us here. 2780 2781 Check this and shot the lock. It is not prone from deadlocks. 2782 Either shot noqueue qdisc, it is even simpler 8) 2783 */ 2784 if (dev->flags & IFF_UP) { 2785 int cpu = smp_processor_id(); /* ok because BHs are off */ 2786 2787 if (txq->xmit_lock_owner != cpu) { 2788 2789 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2790 goto recursion_alert; 2791 2792 HARD_TX_LOCK(dev, txq, cpu); 2793 2794 if (!netif_xmit_stopped(txq)) { 2795 __this_cpu_inc(xmit_recursion); 2796 rc = dev_hard_start_xmit(skb, dev, txq); 2797 __this_cpu_dec(xmit_recursion); 2798 if (dev_xmit_complete(rc)) { 2799 HARD_TX_UNLOCK(dev, txq); 2800 goto out; 2801 } 2802 } 2803 HARD_TX_UNLOCK(dev, txq); 2804 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2805 dev->name); 2806 } else { 2807 /* Recursion is detected! It is possible, 2808 * unfortunately 2809 */ 2810 recursion_alert: 2811 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2812 dev->name); 2813 } 2814 } 2815 2816 rc = -ENETDOWN; 2817 rcu_read_unlock_bh(); 2818 2819 kfree_skb(skb); 2820 return rc; 2821 out: 2822 rcu_read_unlock_bh(); 2823 return rc; 2824 } 2825 EXPORT_SYMBOL(dev_queue_xmit); 2826 2827 2828 /*======================================================================= 2829 Receiver routines 2830 =======================================================================*/ 2831 2832 int netdev_max_backlog __read_mostly = 1000; 2833 EXPORT_SYMBOL(netdev_max_backlog); 2834 2835 int netdev_tstamp_prequeue __read_mostly = 1; 2836 int netdev_budget __read_mostly = 300; 2837 int weight_p __read_mostly = 64; /* old backlog weight */ 2838 2839 /* Called with irq disabled */ 2840 static inline void ____napi_schedule(struct softnet_data *sd, 2841 struct napi_struct *napi) 2842 { 2843 list_add_tail(&napi->poll_list, &sd->poll_list); 2844 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2845 } 2846 2847 #ifdef CONFIG_RPS 2848 2849 /* One global table that all flow-based protocols share. */ 2850 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2851 EXPORT_SYMBOL(rps_sock_flow_table); 2852 2853 struct static_key rps_needed __read_mostly; 2854 2855 static struct rps_dev_flow * 2856 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2857 struct rps_dev_flow *rflow, u16 next_cpu) 2858 { 2859 if (next_cpu != RPS_NO_CPU) { 2860 #ifdef CONFIG_RFS_ACCEL 2861 struct netdev_rx_queue *rxqueue; 2862 struct rps_dev_flow_table *flow_table; 2863 struct rps_dev_flow *old_rflow; 2864 u32 flow_id; 2865 u16 rxq_index; 2866 int rc; 2867 2868 /* Should we steer this flow to a different hardware queue? */ 2869 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2870 !(dev->features & NETIF_F_NTUPLE)) 2871 goto out; 2872 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2873 if (rxq_index == skb_get_rx_queue(skb)) 2874 goto out; 2875 2876 rxqueue = dev->_rx + rxq_index; 2877 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2878 if (!flow_table) 2879 goto out; 2880 flow_id = skb->rxhash & flow_table->mask; 2881 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2882 rxq_index, flow_id); 2883 if (rc < 0) 2884 goto out; 2885 old_rflow = rflow; 2886 rflow = &flow_table->flows[flow_id]; 2887 rflow->filter = rc; 2888 if (old_rflow->filter == rflow->filter) 2889 old_rflow->filter = RPS_NO_FILTER; 2890 out: 2891 #endif 2892 rflow->last_qtail = 2893 per_cpu(softnet_data, next_cpu).input_queue_head; 2894 } 2895 2896 rflow->cpu = next_cpu; 2897 return rflow; 2898 } 2899 2900 /* 2901 * get_rps_cpu is called from netif_receive_skb and returns the target 2902 * CPU from the RPS map of the receiving queue for a given skb. 2903 * rcu_read_lock must be held on entry. 2904 */ 2905 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2906 struct rps_dev_flow **rflowp) 2907 { 2908 struct netdev_rx_queue *rxqueue; 2909 struct rps_map *map; 2910 struct rps_dev_flow_table *flow_table; 2911 struct rps_sock_flow_table *sock_flow_table; 2912 int cpu = -1; 2913 u16 tcpu; 2914 2915 if (skb_rx_queue_recorded(skb)) { 2916 u16 index = skb_get_rx_queue(skb); 2917 if (unlikely(index >= dev->real_num_rx_queues)) { 2918 WARN_ONCE(dev->real_num_rx_queues > 1, 2919 "%s received packet on queue %u, but number " 2920 "of RX queues is %u\n", 2921 dev->name, index, dev->real_num_rx_queues); 2922 goto done; 2923 } 2924 rxqueue = dev->_rx + index; 2925 } else 2926 rxqueue = dev->_rx; 2927 2928 map = rcu_dereference(rxqueue->rps_map); 2929 if (map) { 2930 if (map->len == 1 && 2931 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2932 tcpu = map->cpus[0]; 2933 if (cpu_online(tcpu)) 2934 cpu = tcpu; 2935 goto done; 2936 } 2937 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2938 goto done; 2939 } 2940 2941 skb_reset_network_header(skb); 2942 if (!skb_get_rxhash(skb)) 2943 goto done; 2944 2945 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2946 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2947 if (flow_table && sock_flow_table) { 2948 u16 next_cpu; 2949 struct rps_dev_flow *rflow; 2950 2951 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2952 tcpu = rflow->cpu; 2953 2954 next_cpu = sock_flow_table->ents[skb->rxhash & 2955 sock_flow_table->mask]; 2956 2957 /* 2958 * If the desired CPU (where last recvmsg was done) is 2959 * different from current CPU (one in the rx-queue flow 2960 * table entry), switch if one of the following holds: 2961 * - Current CPU is unset (equal to RPS_NO_CPU). 2962 * - Current CPU is offline. 2963 * - The current CPU's queue tail has advanced beyond the 2964 * last packet that was enqueued using this table entry. 2965 * This guarantees that all previous packets for the flow 2966 * have been dequeued, thus preserving in order delivery. 2967 */ 2968 if (unlikely(tcpu != next_cpu) && 2969 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2970 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2971 rflow->last_qtail)) >= 0)) { 2972 tcpu = next_cpu; 2973 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2974 } 2975 2976 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2977 *rflowp = rflow; 2978 cpu = tcpu; 2979 goto done; 2980 } 2981 } 2982 2983 if (map) { 2984 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2985 2986 if (cpu_online(tcpu)) { 2987 cpu = tcpu; 2988 goto done; 2989 } 2990 } 2991 2992 done: 2993 return cpu; 2994 } 2995 2996 #ifdef CONFIG_RFS_ACCEL 2997 2998 /** 2999 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3000 * @dev: Device on which the filter was set 3001 * @rxq_index: RX queue index 3002 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3003 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3004 * 3005 * Drivers that implement ndo_rx_flow_steer() should periodically call 3006 * this function for each installed filter and remove the filters for 3007 * which it returns %true. 3008 */ 3009 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3010 u32 flow_id, u16 filter_id) 3011 { 3012 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3013 struct rps_dev_flow_table *flow_table; 3014 struct rps_dev_flow *rflow; 3015 bool expire = true; 3016 int cpu; 3017 3018 rcu_read_lock(); 3019 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3020 if (flow_table && flow_id <= flow_table->mask) { 3021 rflow = &flow_table->flows[flow_id]; 3022 cpu = ACCESS_ONCE(rflow->cpu); 3023 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3024 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3025 rflow->last_qtail) < 3026 (int)(10 * flow_table->mask))) 3027 expire = false; 3028 } 3029 rcu_read_unlock(); 3030 return expire; 3031 } 3032 EXPORT_SYMBOL(rps_may_expire_flow); 3033 3034 #endif /* CONFIG_RFS_ACCEL */ 3035 3036 /* Called from hardirq (IPI) context */ 3037 static void rps_trigger_softirq(void *data) 3038 { 3039 struct softnet_data *sd = data; 3040 3041 ____napi_schedule(sd, &sd->backlog); 3042 sd->received_rps++; 3043 } 3044 3045 #endif /* CONFIG_RPS */ 3046 3047 /* 3048 * Check if this softnet_data structure is another cpu one 3049 * If yes, queue it to our IPI list and return 1 3050 * If no, return 0 3051 */ 3052 static int rps_ipi_queued(struct softnet_data *sd) 3053 { 3054 #ifdef CONFIG_RPS 3055 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3056 3057 if (sd != mysd) { 3058 sd->rps_ipi_next = mysd->rps_ipi_list; 3059 mysd->rps_ipi_list = sd; 3060 3061 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3062 return 1; 3063 } 3064 #endif /* CONFIG_RPS */ 3065 return 0; 3066 } 3067 3068 /* 3069 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3070 * queue (may be a remote CPU queue). 3071 */ 3072 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3073 unsigned int *qtail) 3074 { 3075 struct softnet_data *sd; 3076 unsigned long flags; 3077 3078 sd = &per_cpu(softnet_data, cpu); 3079 3080 local_irq_save(flags); 3081 3082 rps_lock(sd); 3083 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 3084 if (skb_queue_len(&sd->input_pkt_queue)) { 3085 enqueue: 3086 __skb_queue_tail(&sd->input_pkt_queue, skb); 3087 input_queue_tail_incr_save(sd, qtail); 3088 rps_unlock(sd); 3089 local_irq_restore(flags); 3090 return NET_RX_SUCCESS; 3091 } 3092 3093 /* Schedule NAPI for backlog device 3094 * We can use non atomic operation since we own the queue lock 3095 */ 3096 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3097 if (!rps_ipi_queued(sd)) 3098 ____napi_schedule(sd, &sd->backlog); 3099 } 3100 goto enqueue; 3101 } 3102 3103 sd->dropped++; 3104 rps_unlock(sd); 3105 3106 local_irq_restore(flags); 3107 3108 atomic_long_inc(&skb->dev->rx_dropped); 3109 kfree_skb(skb); 3110 return NET_RX_DROP; 3111 } 3112 3113 /** 3114 * netif_rx - post buffer to the network code 3115 * @skb: buffer to post 3116 * 3117 * This function receives a packet from a device driver and queues it for 3118 * the upper (protocol) levels to process. It always succeeds. The buffer 3119 * may be dropped during processing for congestion control or by the 3120 * protocol layers. 3121 * 3122 * return values: 3123 * NET_RX_SUCCESS (no congestion) 3124 * NET_RX_DROP (packet was dropped) 3125 * 3126 */ 3127 3128 int netif_rx(struct sk_buff *skb) 3129 { 3130 int ret; 3131 3132 /* if netpoll wants it, pretend we never saw it */ 3133 if (netpoll_rx(skb)) 3134 return NET_RX_DROP; 3135 3136 net_timestamp_check(netdev_tstamp_prequeue, skb); 3137 3138 trace_netif_rx(skb); 3139 #ifdef CONFIG_RPS 3140 if (static_key_false(&rps_needed)) { 3141 struct rps_dev_flow voidflow, *rflow = &voidflow; 3142 int cpu; 3143 3144 preempt_disable(); 3145 rcu_read_lock(); 3146 3147 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3148 if (cpu < 0) 3149 cpu = smp_processor_id(); 3150 3151 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3152 3153 rcu_read_unlock(); 3154 preempt_enable(); 3155 } else 3156 #endif 3157 { 3158 unsigned int qtail; 3159 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3160 put_cpu(); 3161 } 3162 return ret; 3163 } 3164 EXPORT_SYMBOL(netif_rx); 3165 3166 int netif_rx_ni(struct sk_buff *skb) 3167 { 3168 int err; 3169 3170 preempt_disable(); 3171 err = netif_rx(skb); 3172 if (local_softirq_pending()) 3173 do_softirq(); 3174 preempt_enable(); 3175 3176 return err; 3177 } 3178 EXPORT_SYMBOL(netif_rx_ni); 3179 3180 static void net_tx_action(struct softirq_action *h) 3181 { 3182 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3183 3184 if (sd->completion_queue) { 3185 struct sk_buff *clist; 3186 3187 local_irq_disable(); 3188 clist = sd->completion_queue; 3189 sd->completion_queue = NULL; 3190 local_irq_enable(); 3191 3192 while (clist) { 3193 struct sk_buff *skb = clist; 3194 clist = clist->next; 3195 3196 WARN_ON(atomic_read(&skb->users)); 3197 trace_kfree_skb(skb, net_tx_action); 3198 __kfree_skb(skb); 3199 } 3200 } 3201 3202 if (sd->output_queue) { 3203 struct Qdisc *head; 3204 3205 local_irq_disable(); 3206 head = sd->output_queue; 3207 sd->output_queue = NULL; 3208 sd->output_queue_tailp = &sd->output_queue; 3209 local_irq_enable(); 3210 3211 while (head) { 3212 struct Qdisc *q = head; 3213 spinlock_t *root_lock; 3214 3215 head = head->next_sched; 3216 3217 root_lock = qdisc_lock(q); 3218 if (spin_trylock(root_lock)) { 3219 smp_mb__before_clear_bit(); 3220 clear_bit(__QDISC_STATE_SCHED, 3221 &q->state); 3222 qdisc_run(q); 3223 spin_unlock(root_lock); 3224 } else { 3225 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3226 &q->state)) { 3227 __netif_reschedule(q); 3228 } else { 3229 smp_mb__before_clear_bit(); 3230 clear_bit(__QDISC_STATE_SCHED, 3231 &q->state); 3232 } 3233 } 3234 } 3235 } 3236 } 3237 3238 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3239 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3240 /* This hook is defined here for ATM LANE */ 3241 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3242 unsigned char *addr) __read_mostly; 3243 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3244 #endif 3245 3246 #ifdef CONFIG_NET_CLS_ACT 3247 /* TODO: Maybe we should just force sch_ingress to be compiled in 3248 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3249 * a compare and 2 stores extra right now if we dont have it on 3250 * but have CONFIG_NET_CLS_ACT 3251 * NOTE: This doesn't stop any functionality; if you dont have 3252 * the ingress scheduler, you just can't add policies on ingress. 3253 * 3254 */ 3255 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3256 { 3257 struct net_device *dev = skb->dev; 3258 u32 ttl = G_TC_RTTL(skb->tc_verd); 3259 int result = TC_ACT_OK; 3260 struct Qdisc *q; 3261 3262 if (unlikely(MAX_RED_LOOP < ttl++)) { 3263 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3264 skb->skb_iif, dev->ifindex); 3265 return TC_ACT_SHOT; 3266 } 3267 3268 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3269 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3270 3271 q = rxq->qdisc; 3272 if (q != &noop_qdisc) { 3273 spin_lock(qdisc_lock(q)); 3274 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3275 result = qdisc_enqueue_root(skb, q); 3276 spin_unlock(qdisc_lock(q)); 3277 } 3278 3279 return result; 3280 } 3281 3282 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3283 struct packet_type **pt_prev, 3284 int *ret, struct net_device *orig_dev) 3285 { 3286 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3287 3288 if (!rxq || rxq->qdisc == &noop_qdisc) 3289 goto out; 3290 3291 if (*pt_prev) { 3292 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3293 *pt_prev = NULL; 3294 } 3295 3296 switch (ing_filter(skb, rxq)) { 3297 case TC_ACT_SHOT: 3298 case TC_ACT_STOLEN: 3299 kfree_skb(skb); 3300 return NULL; 3301 } 3302 3303 out: 3304 skb->tc_verd = 0; 3305 return skb; 3306 } 3307 #endif 3308 3309 /** 3310 * netdev_rx_handler_register - register receive handler 3311 * @dev: device to register a handler for 3312 * @rx_handler: receive handler to register 3313 * @rx_handler_data: data pointer that is used by rx handler 3314 * 3315 * Register a receive hander for a device. This handler will then be 3316 * called from __netif_receive_skb. A negative errno code is returned 3317 * on a failure. 3318 * 3319 * The caller must hold the rtnl_mutex. 3320 * 3321 * For a general description of rx_handler, see enum rx_handler_result. 3322 */ 3323 int netdev_rx_handler_register(struct net_device *dev, 3324 rx_handler_func_t *rx_handler, 3325 void *rx_handler_data) 3326 { 3327 ASSERT_RTNL(); 3328 3329 if (dev->rx_handler) 3330 return -EBUSY; 3331 3332 /* Note: rx_handler_data must be set before rx_handler */ 3333 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3334 rcu_assign_pointer(dev->rx_handler, rx_handler); 3335 3336 return 0; 3337 } 3338 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3339 3340 /** 3341 * netdev_rx_handler_unregister - unregister receive handler 3342 * @dev: device to unregister a handler from 3343 * 3344 * Unregister a receive handler from a device. 3345 * 3346 * The caller must hold the rtnl_mutex. 3347 */ 3348 void netdev_rx_handler_unregister(struct net_device *dev) 3349 { 3350 3351 ASSERT_RTNL(); 3352 RCU_INIT_POINTER(dev->rx_handler, NULL); 3353 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3354 * section has a guarantee to see a non NULL rx_handler_data 3355 * as well. 3356 */ 3357 synchronize_net(); 3358 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3359 } 3360 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3361 3362 /* 3363 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3364 * the special handling of PFMEMALLOC skbs. 3365 */ 3366 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3367 { 3368 switch (skb->protocol) { 3369 case __constant_htons(ETH_P_ARP): 3370 case __constant_htons(ETH_P_IP): 3371 case __constant_htons(ETH_P_IPV6): 3372 case __constant_htons(ETH_P_8021Q): 3373 case __constant_htons(ETH_P_8021AD): 3374 return true; 3375 default: 3376 return false; 3377 } 3378 } 3379 3380 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3381 { 3382 struct packet_type *ptype, *pt_prev; 3383 rx_handler_func_t *rx_handler; 3384 struct net_device *orig_dev; 3385 struct net_device *null_or_dev; 3386 bool deliver_exact = false; 3387 int ret = NET_RX_DROP; 3388 __be16 type; 3389 3390 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3391 3392 trace_netif_receive_skb(skb); 3393 3394 /* if we've gotten here through NAPI, check netpoll */ 3395 if (netpoll_receive_skb(skb)) 3396 goto out; 3397 3398 orig_dev = skb->dev; 3399 3400 skb_reset_network_header(skb); 3401 if (!skb_transport_header_was_set(skb)) 3402 skb_reset_transport_header(skb); 3403 skb_reset_mac_len(skb); 3404 3405 pt_prev = NULL; 3406 3407 rcu_read_lock(); 3408 3409 another_round: 3410 skb->skb_iif = skb->dev->ifindex; 3411 3412 __this_cpu_inc(softnet_data.processed); 3413 3414 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3415 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3416 skb = vlan_untag(skb); 3417 if (unlikely(!skb)) 3418 goto unlock; 3419 } 3420 3421 #ifdef CONFIG_NET_CLS_ACT 3422 if (skb->tc_verd & TC_NCLS) { 3423 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3424 goto ncls; 3425 } 3426 #endif 3427 3428 if (pfmemalloc) 3429 goto skip_taps; 3430 3431 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3432 if (!ptype->dev || ptype->dev == skb->dev) { 3433 if (pt_prev) 3434 ret = deliver_skb(skb, pt_prev, orig_dev); 3435 pt_prev = ptype; 3436 } 3437 } 3438 3439 skip_taps: 3440 #ifdef CONFIG_NET_CLS_ACT 3441 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3442 if (!skb) 3443 goto unlock; 3444 ncls: 3445 #endif 3446 3447 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3448 goto drop; 3449 3450 if (vlan_tx_tag_present(skb)) { 3451 if (pt_prev) { 3452 ret = deliver_skb(skb, pt_prev, orig_dev); 3453 pt_prev = NULL; 3454 } 3455 if (vlan_do_receive(&skb)) 3456 goto another_round; 3457 else if (unlikely(!skb)) 3458 goto unlock; 3459 } 3460 3461 rx_handler = rcu_dereference(skb->dev->rx_handler); 3462 if (rx_handler) { 3463 if (pt_prev) { 3464 ret = deliver_skb(skb, pt_prev, orig_dev); 3465 pt_prev = NULL; 3466 } 3467 switch (rx_handler(&skb)) { 3468 case RX_HANDLER_CONSUMED: 3469 ret = NET_RX_SUCCESS; 3470 goto unlock; 3471 case RX_HANDLER_ANOTHER: 3472 goto another_round; 3473 case RX_HANDLER_EXACT: 3474 deliver_exact = true; 3475 case RX_HANDLER_PASS: 3476 break; 3477 default: 3478 BUG(); 3479 } 3480 } 3481 3482 if (vlan_tx_nonzero_tag_present(skb)) 3483 skb->pkt_type = PACKET_OTHERHOST; 3484 3485 /* deliver only exact match when indicated */ 3486 null_or_dev = deliver_exact ? skb->dev : NULL; 3487 3488 type = skb->protocol; 3489 list_for_each_entry_rcu(ptype, 3490 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3491 if (ptype->type == type && 3492 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3493 ptype->dev == orig_dev)) { 3494 if (pt_prev) 3495 ret = deliver_skb(skb, pt_prev, orig_dev); 3496 pt_prev = ptype; 3497 } 3498 } 3499 3500 if (pt_prev) { 3501 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3502 goto drop; 3503 else 3504 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3505 } else { 3506 drop: 3507 atomic_long_inc(&skb->dev->rx_dropped); 3508 kfree_skb(skb); 3509 /* Jamal, now you will not able to escape explaining 3510 * me how you were going to use this. :-) 3511 */ 3512 ret = NET_RX_DROP; 3513 } 3514 3515 unlock: 3516 rcu_read_unlock(); 3517 out: 3518 return ret; 3519 } 3520 3521 static int __netif_receive_skb(struct sk_buff *skb) 3522 { 3523 int ret; 3524 3525 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3526 unsigned long pflags = current->flags; 3527 3528 /* 3529 * PFMEMALLOC skbs are special, they should 3530 * - be delivered to SOCK_MEMALLOC sockets only 3531 * - stay away from userspace 3532 * - have bounded memory usage 3533 * 3534 * Use PF_MEMALLOC as this saves us from propagating the allocation 3535 * context down to all allocation sites. 3536 */ 3537 current->flags |= PF_MEMALLOC; 3538 ret = __netif_receive_skb_core(skb, true); 3539 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3540 } else 3541 ret = __netif_receive_skb_core(skb, false); 3542 3543 return ret; 3544 } 3545 3546 /** 3547 * netif_receive_skb - process receive buffer from network 3548 * @skb: buffer to process 3549 * 3550 * netif_receive_skb() is the main receive data processing function. 3551 * It always succeeds. The buffer may be dropped during processing 3552 * for congestion control or by the protocol layers. 3553 * 3554 * This function may only be called from softirq context and interrupts 3555 * should be enabled. 3556 * 3557 * Return values (usually ignored): 3558 * NET_RX_SUCCESS: no congestion 3559 * NET_RX_DROP: packet was dropped 3560 */ 3561 int netif_receive_skb(struct sk_buff *skb) 3562 { 3563 net_timestamp_check(netdev_tstamp_prequeue, skb); 3564 3565 if (skb_defer_rx_timestamp(skb)) 3566 return NET_RX_SUCCESS; 3567 3568 #ifdef CONFIG_RPS 3569 if (static_key_false(&rps_needed)) { 3570 struct rps_dev_flow voidflow, *rflow = &voidflow; 3571 int cpu, ret; 3572 3573 rcu_read_lock(); 3574 3575 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3576 3577 if (cpu >= 0) { 3578 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3579 rcu_read_unlock(); 3580 return ret; 3581 } 3582 rcu_read_unlock(); 3583 } 3584 #endif 3585 return __netif_receive_skb(skb); 3586 } 3587 EXPORT_SYMBOL(netif_receive_skb); 3588 3589 /* Network device is going away, flush any packets still pending 3590 * Called with irqs disabled. 3591 */ 3592 static void flush_backlog(void *arg) 3593 { 3594 struct net_device *dev = arg; 3595 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3596 struct sk_buff *skb, *tmp; 3597 3598 rps_lock(sd); 3599 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3600 if (skb->dev == dev) { 3601 __skb_unlink(skb, &sd->input_pkt_queue); 3602 kfree_skb(skb); 3603 input_queue_head_incr(sd); 3604 } 3605 } 3606 rps_unlock(sd); 3607 3608 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3609 if (skb->dev == dev) { 3610 __skb_unlink(skb, &sd->process_queue); 3611 kfree_skb(skb); 3612 input_queue_head_incr(sd); 3613 } 3614 } 3615 } 3616 3617 static int napi_gro_complete(struct sk_buff *skb) 3618 { 3619 struct packet_offload *ptype; 3620 __be16 type = skb->protocol; 3621 struct list_head *head = &offload_base; 3622 int err = -ENOENT; 3623 3624 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3625 3626 if (NAPI_GRO_CB(skb)->count == 1) { 3627 skb_shinfo(skb)->gso_size = 0; 3628 goto out; 3629 } 3630 3631 rcu_read_lock(); 3632 list_for_each_entry_rcu(ptype, head, list) { 3633 if (ptype->type != type || !ptype->callbacks.gro_complete) 3634 continue; 3635 3636 err = ptype->callbacks.gro_complete(skb); 3637 break; 3638 } 3639 rcu_read_unlock(); 3640 3641 if (err) { 3642 WARN_ON(&ptype->list == head); 3643 kfree_skb(skb); 3644 return NET_RX_SUCCESS; 3645 } 3646 3647 out: 3648 return netif_receive_skb(skb); 3649 } 3650 3651 /* napi->gro_list contains packets ordered by age. 3652 * youngest packets at the head of it. 3653 * Complete skbs in reverse order to reduce latencies. 3654 */ 3655 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3656 { 3657 struct sk_buff *skb, *prev = NULL; 3658 3659 /* scan list and build reverse chain */ 3660 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3661 skb->prev = prev; 3662 prev = skb; 3663 } 3664 3665 for (skb = prev; skb; skb = prev) { 3666 skb->next = NULL; 3667 3668 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3669 return; 3670 3671 prev = skb->prev; 3672 napi_gro_complete(skb); 3673 napi->gro_count--; 3674 } 3675 3676 napi->gro_list = NULL; 3677 } 3678 EXPORT_SYMBOL(napi_gro_flush); 3679 3680 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3681 { 3682 struct sk_buff *p; 3683 unsigned int maclen = skb->dev->hard_header_len; 3684 3685 for (p = napi->gro_list; p; p = p->next) { 3686 unsigned long diffs; 3687 3688 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3689 diffs |= p->vlan_tci ^ skb->vlan_tci; 3690 if (maclen == ETH_HLEN) 3691 diffs |= compare_ether_header(skb_mac_header(p), 3692 skb_gro_mac_header(skb)); 3693 else if (!diffs) 3694 diffs = memcmp(skb_mac_header(p), 3695 skb_gro_mac_header(skb), 3696 maclen); 3697 NAPI_GRO_CB(p)->same_flow = !diffs; 3698 NAPI_GRO_CB(p)->flush = 0; 3699 } 3700 } 3701 3702 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3703 { 3704 struct sk_buff **pp = NULL; 3705 struct packet_offload *ptype; 3706 __be16 type = skb->protocol; 3707 struct list_head *head = &offload_base; 3708 int same_flow; 3709 enum gro_result ret; 3710 3711 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3712 goto normal; 3713 3714 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3715 goto normal; 3716 3717 gro_list_prepare(napi, skb); 3718 3719 rcu_read_lock(); 3720 list_for_each_entry_rcu(ptype, head, list) { 3721 if (ptype->type != type || !ptype->callbacks.gro_receive) 3722 continue; 3723 3724 skb_set_network_header(skb, skb_gro_offset(skb)); 3725 skb_reset_mac_len(skb); 3726 NAPI_GRO_CB(skb)->same_flow = 0; 3727 NAPI_GRO_CB(skb)->flush = 0; 3728 NAPI_GRO_CB(skb)->free = 0; 3729 3730 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3731 break; 3732 } 3733 rcu_read_unlock(); 3734 3735 if (&ptype->list == head) 3736 goto normal; 3737 3738 same_flow = NAPI_GRO_CB(skb)->same_flow; 3739 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3740 3741 if (pp) { 3742 struct sk_buff *nskb = *pp; 3743 3744 *pp = nskb->next; 3745 nskb->next = NULL; 3746 napi_gro_complete(nskb); 3747 napi->gro_count--; 3748 } 3749 3750 if (same_flow) 3751 goto ok; 3752 3753 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3754 goto normal; 3755 3756 napi->gro_count++; 3757 NAPI_GRO_CB(skb)->count = 1; 3758 NAPI_GRO_CB(skb)->age = jiffies; 3759 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3760 skb->next = napi->gro_list; 3761 napi->gro_list = skb; 3762 ret = GRO_HELD; 3763 3764 pull: 3765 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3766 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3767 3768 BUG_ON(skb->end - skb->tail < grow); 3769 3770 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3771 3772 skb->tail += grow; 3773 skb->data_len -= grow; 3774 3775 skb_shinfo(skb)->frags[0].page_offset += grow; 3776 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3777 3778 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3779 skb_frag_unref(skb, 0); 3780 memmove(skb_shinfo(skb)->frags, 3781 skb_shinfo(skb)->frags + 1, 3782 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3783 } 3784 } 3785 3786 ok: 3787 return ret; 3788 3789 normal: 3790 ret = GRO_NORMAL; 3791 goto pull; 3792 } 3793 3794 3795 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3796 { 3797 switch (ret) { 3798 case GRO_NORMAL: 3799 if (netif_receive_skb(skb)) 3800 ret = GRO_DROP; 3801 break; 3802 3803 case GRO_DROP: 3804 kfree_skb(skb); 3805 break; 3806 3807 case GRO_MERGED_FREE: 3808 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3809 kmem_cache_free(skbuff_head_cache, skb); 3810 else 3811 __kfree_skb(skb); 3812 break; 3813 3814 case GRO_HELD: 3815 case GRO_MERGED: 3816 break; 3817 } 3818 3819 return ret; 3820 } 3821 3822 static void skb_gro_reset_offset(struct sk_buff *skb) 3823 { 3824 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3825 const skb_frag_t *frag0 = &pinfo->frags[0]; 3826 3827 NAPI_GRO_CB(skb)->data_offset = 0; 3828 NAPI_GRO_CB(skb)->frag0 = NULL; 3829 NAPI_GRO_CB(skb)->frag0_len = 0; 3830 3831 if (skb->mac_header == skb->tail && 3832 pinfo->nr_frags && 3833 !PageHighMem(skb_frag_page(frag0))) { 3834 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3835 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3836 } 3837 } 3838 3839 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3840 { 3841 skb_gro_reset_offset(skb); 3842 3843 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 3844 } 3845 EXPORT_SYMBOL(napi_gro_receive); 3846 3847 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3848 { 3849 __skb_pull(skb, skb_headlen(skb)); 3850 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3851 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3852 skb->vlan_tci = 0; 3853 skb->dev = napi->dev; 3854 skb->skb_iif = 0; 3855 3856 napi->skb = skb; 3857 } 3858 3859 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3860 { 3861 struct sk_buff *skb = napi->skb; 3862 3863 if (!skb) { 3864 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3865 if (skb) 3866 napi->skb = skb; 3867 } 3868 return skb; 3869 } 3870 EXPORT_SYMBOL(napi_get_frags); 3871 3872 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3873 gro_result_t ret) 3874 { 3875 switch (ret) { 3876 case GRO_NORMAL: 3877 case GRO_HELD: 3878 skb->protocol = eth_type_trans(skb, skb->dev); 3879 3880 if (ret == GRO_HELD) 3881 skb_gro_pull(skb, -ETH_HLEN); 3882 else if (netif_receive_skb(skb)) 3883 ret = GRO_DROP; 3884 break; 3885 3886 case GRO_DROP: 3887 case GRO_MERGED_FREE: 3888 napi_reuse_skb(napi, skb); 3889 break; 3890 3891 case GRO_MERGED: 3892 break; 3893 } 3894 3895 return ret; 3896 } 3897 3898 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3899 { 3900 struct sk_buff *skb = napi->skb; 3901 struct ethhdr *eth; 3902 unsigned int hlen; 3903 unsigned int off; 3904 3905 napi->skb = NULL; 3906 3907 skb_reset_mac_header(skb); 3908 skb_gro_reset_offset(skb); 3909 3910 off = skb_gro_offset(skb); 3911 hlen = off + sizeof(*eth); 3912 eth = skb_gro_header_fast(skb, off); 3913 if (skb_gro_header_hard(skb, hlen)) { 3914 eth = skb_gro_header_slow(skb, hlen, off); 3915 if (unlikely(!eth)) { 3916 napi_reuse_skb(napi, skb); 3917 skb = NULL; 3918 goto out; 3919 } 3920 } 3921 3922 skb_gro_pull(skb, sizeof(*eth)); 3923 3924 /* 3925 * This works because the only protocols we care about don't require 3926 * special handling. We'll fix it up properly at the end. 3927 */ 3928 skb->protocol = eth->h_proto; 3929 3930 out: 3931 return skb; 3932 } 3933 3934 gro_result_t napi_gro_frags(struct napi_struct *napi) 3935 { 3936 struct sk_buff *skb = napi_frags_skb(napi); 3937 3938 if (!skb) 3939 return GRO_DROP; 3940 3941 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 3942 } 3943 EXPORT_SYMBOL(napi_gro_frags); 3944 3945 /* 3946 * net_rps_action sends any pending IPI's for rps. 3947 * Note: called with local irq disabled, but exits with local irq enabled. 3948 */ 3949 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3950 { 3951 #ifdef CONFIG_RPS 3952 struct softnet_data *remsd = sd->rps_ipi_list; 3953 3954 if (remsd) { 3955 sd->rps_ipi_list = NULL; 3956 3957 local_irq_enable(); 3958 3959 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3960 while (remsd) { 3961 struct softnet_data *next = remsd->rps_ipi_next; 3962 3963 if (cpu_online(remsd->cpu)) 3964 __smp_call_function_single(remsd->cpu, 3965 &remsd->csd, 0); 3966 remsd = next; 3967 } 3968 } else 3969 #endif 3970 local_irq_enable(); 3971 } 3972 3973 static int process_backlog(struct napi_struct *napi, int quota) 3974 { 3975 int work = 0; 3976 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3977 3978 #ifdef CONFIG_RPS 3979 /* Check if we have pending ipi, its better to send them now, 3980 * not waiting net_rx_action() end. 3981 */ 3982 if (sd->rps_ipi_list) { 3983 local_irq_disable(); 3984 net_rps_action_and_irq_enable(sd); 3985 } 3986 #endif 3987 napi->weight = weight_p; 3988 local_irq_disable(); 3989 while (work < quota) { 3990 struct sk_buff *skb; 3991 unsigned int qlen; 3992 3993 while ((skb = __skb_dequeue(&sd->process_queue))) { 3994 local_irq_enable(); 3995 __netif_receive_skb(skb); 3996 local_irq_disable(); 3997 input_queue_head_incr(sd); 3998 if (++work >= quota) { 3999 local_irq_enable(); 4000 return work; 4001 } 4002 } 4003 4004 rps_lock(sd); 4005 qlen = skb_queue_len(&sd->input_pkt_queue); 4006 if (qlen) 4007 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4008 &sd->process_queue); 4009 4010 if (qlen < quota - work) { 4011 /* 4012 * Inline a custom version of __napi_complete(). 4013 * only current cpu owns and manipulates this napi, 4014 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 4015 * we can use a plain write instead of clear_bit(), 4016 * and we dont need an smp_mb() memory barrier. 4017 */ 4018 list_del(&napi->poll_list); 4019 napi->state = 0; 4020 4021 quota = work + qlen; 4022 } 4023 rps_unlock(sd); 4024 } 4025 local_irq_enable(); 4026 4027 return work; 4028 } 4029 4030 /** 4031 * __napi_schedule - schedule for receive 4032 * @n: entry to schedule 4033 * 4034 * The entry's receive function will be scheduled to run 4035 */ 4036 void __napi_schedule(struct napi_struct *n) 4037 { 4038 unsigned long flags; 4039 4040 local_irq_save(flags); 4041 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4042 local_irq_restore(flags); 4043 } 4044 EXPORT_SYMBOL(__napi_schedule); 4045 4046 void __napi_complete(struct napi_struct *n) 4047 { 4048 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4049 BUG_ON(n->gro_list); 4050 4051 list_del(&n->poll_list); 4052 smp_mb__before_clear_bit(); 4053 clear_bit(NAPI_STATE_SCHED, &n->state); 4054 } 4055 EXPORT_SYMBOL(__napi_complete); 4056 4057 void napi_complete(struct napi_struct *n) 4058 { 4059 unsigned long flags; 4060 4061 /* 4062 * don't let napi dequeue from the cpu poll list 4063 * just in case its running on a different cpu 4064 */ 4065 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4066 return; 4067 4068 napi_gro_flush(n, false); 4069 local_irq_save(flags); 4070 __napi_complete(n); 4071 local_irq_restore(flags); 4072 } 4073 EXPORT_SYMBOL(napi_complete); 4074 4075 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4076 int (*poll)(struct napi_struct *, int), int weight) 4077 { 4078 INIT_LIST_HEAD(&napi->poll_list); 4079 napi->gro_count = 0; 4080 napi->gro_list = NULL; 4081 napi->skb = NULL; 4082 napi->poll = poll; 4083 if (weight > NAPI_POLL_WEIGHT) 4084 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4085 weight, dev->name); 4086 napi->weight = weight; 4087 list_add(&napi->dev_list, &dev->napi_list); 4088 napi->dev = dev; 4089 #ifdef CONFIG_NETPOLL 4090 spin_lock_init(&napi->poll_lock); 4091 napi->poll_owner = -1; 4092 #endif 4093 set_bit(NAPI_STATE_SCHED, &napi->state); 4094 } 4095 EXPORT_SYMBOL(netif_napi_add); 4096 4097 void netif_napi_del(struct napi_struct *napi) 4098 { 4099 struct sk_buff *skb, *next; 4100 4101 list_del_init(&napi->dev_list); 4102 napi_free_frags(napi); 4103 4104 for (skb = napi->gro_list; skb; skb = next) { 4105 next = skb->next; 4106 skb->next = NULL; 4107 kfree_skb(skb); 4108 } 4109 4110 napi->gro_list = NULL; 4111 napi->gro_count = 0; 4112 } 4113 EXPORT_SYMBOL(netif_napi_del); 4114 4115 static void net_rx_action(struct softirq_action *h) 4116 { 4117 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4118 unsigned long time_limit = jiffies + 2; 4119 int budget = netdev_budget; 4120 void *have; 4121 4122 local_irq_disable(); 4123 4124 while (!list_empty(&sd->poll_list)) { 4125 struct napi_struct *n; 4126 int work, weight; 4127 4128 /* If softirq window is exhuasted then punt. 4129 * Allow this to run for 2 jiffies since which will allow 4130 * an average latency of 1.5/HZ. 4131 */ 4132 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4133 goto softnet_break; 4134 4135 local_irq_enable(); 4136 4137 /* Even though interrupts have been re-enabled, this 4138 * access is safe because interrupts can only add new 4139 * entries to the tail of this list, and only ->poll() 4140 * calls can remove this head entry from the list. 4141 */ 4142 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4143 4144 have = netpoll_poll_lock(n); 4145 4146 weight = n->weight; 4147 4148 /* This NAPI_STATE_SCHED test is for avoiding a race 4149 * with netpoll's poll_napi(). Only the entity which 4150 * obtains the lock and sees NAPI_STATE_SCHED set will 4151 * actually make the ->poll() call. Therefore we avoid 4152 * accidentally calling ->poll() when NAPI is not scheduled. 4153 */ 4154 work = 0; 4155 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4156 work = n->poll(n, weight); 4157 trace_napi_poll(n); 4158 } 4159 4160 WARN_ON_ONCE(work > weight); 4161 4162 budget -= work; 4163 4164 local_irq_disable(); 4165 4166 /* Drivers must not modify the NAPI state if they 4167 * consume the entire weight. In such cases this code 4168 * still "owns" the NAPI instance and therefore can 4169 * move the instance around on the list at-will. 4170 */ 4171 if (unlikely(work == weight)) { 4172 if (unlikely(napi_disable_pending(n))) { 4173 local_irq_enable(); 4174 napi_complete(n); 4175 local_irq_disable(); 4176 } else { 4177 if (n->gro_list) { 4178 /* flush too old packets 4179 * If HZ < 1000, flush all packets. 4180 */ 4181 local_irq_enable(); 4182 napi_gro_flush(n, HZ >= 1000); 4183 local_irq_disable(); 4184 } 4185 list_move_tail(&n->poll_list, &sd->poll_list); 4186 } 4187 } 4188 4189 netpoll_poll_unlock(have); 4190 } 4191 out: 4192 net_rps_action_and_irq_enable(sd); 4193 4194 #ifdef CONFIG_NET_DMA 4195 /* 4196 * There may not be any more sk_buffs coming right now, so push 4197 * any pending DMA copies to hardware 4198 */ 4199 dma_issue_pending_all(); 4200 #endif 4201 4202 return; 4203 4204 softnet_break: 4205 sd->time_squeeze++; 4206 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4207 goto out; 4208 } 4209 4210 struct netdev_upper { 4211 struct net_device *dev; 4212 bool master; 4213 struct list_head list; 4214 struct rcu_head rcu; 4215 struct list_head search_list; 4216 }; 4217 4218 static void __append_search_uppers(struct list_head *search_list, 4219 struct net_device *dev) 4220 { 4221 struct netdev_upper *upper; 4222 4223 list_for_each_entry(upper, &dev->upper_dev_list, list) { 4224 /* check if this upper is not already in search list */ 4225 if (list_empty(&upper->search_list)) 4226 list_add_tail(&upper->search_list, search_list); 4227 } 4228 } 4229 4230 static bool __netdev_search_upper_dev(struct net_device *dev, 4231 struct net_device *upper_dev) 4232 { 4233 LIST_HEAD(search_list); 4234 struct netdev_upper *upper; 4235 struct netdev_upper *tmp; 4236 bool ret = false; 4237 4238 __append_search_uppers(&search_list, dev); 4239 list_for_each_entry(upper, &search_list, search_list) { 4240 if (upper->dev == upper_dev) { 4241 ret = true; 4242 break; 4243 } 4244 __append_search_uppers(&search_list, upper->dev); 4245 } 4246 list_for_each_entry_safe(upper, tmp, &search_list, search_list) 4247 INIT_LIST_HEAD(&upper->search_list); 4248 return ret; 4249 } 4250 4251 static struct netdev_upper *__netdev_find_upper(struct net_device *dev, 4252 struct net_device *upper_dev) 4253 { 4254 struct netdev_upper *upper; 4255 4256 list_for_each_entry(upper, &dev->upper_dev_list, list) { 4257 if (upper->dev == upper_dev) 4258 return upper; 4259 } 4260 return NULL; 4261 } 4262 4263 /** 4264 * netdev_has_upper_dev - Check if device is linked to an upper device 4265 * @dev: device 4266 * @upper_dev: upper device to check 4267 * 4268 * Find out if a device is linked to specified upper device and return true 4269 * in case it is. Note that this checks only immediate upper device, 4270 * not through a complete stack of devices. The caller must hold the RTNL lock. 4271 */ 4272 bool netdev_has_upper_dev(struct net_device *dev, 4273 struct net_device *upper_dev) 4274 { 4275 ASSERT_RTNL(); 4276 4277 return __netdev_find_upper(dev, upper_dev); 4278 } 4279 EXPORT_SYMBOL(netdev_has_upper_dev); 4280 4281 /** 4282 * netdev_has_any_upper_dev - Check if device is linked to some device 4283 * @dev: device 4284 * 4285 * Find out if a device is linked to an upper device and return true in case 4286 * it is. The caller must hold the RTNL lock. 4287 */ 4288 bool netdev_has_any_upper_dev(struct net_device *dev) 4289 { 4290 ASSERT_RTNL(); 4291 4292 return !list_empty(&dev->upper_dev_list); 4293 } 4294 EXPORT_SYMBOL(netdev_has_any_upper_dev); 4295 4296 /** 4297 * netdev_master_upper_dev_get - Get master upper device 4298 * @dev: device 4299 * 4300 * Find a master upper device and return pointer to it or NULL in case 4301 * it's not there. The caller must hold the RTNL lock. 4302 */ 4303 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4304 { 4305 struct netdev_upper *upper; 4306 4307 ASSERT_RTNL(); 4308 4309 if (list_empty(&dev->upper_dev_list)) 4310 return NULL; 4311 4312 upper = list_first_entry(&dev->upper_dev_list, 4313 struct netdev_upper, list); 4314 if (likely(upper->master)) 4315 return upper->dev; 4316 return NULL; 4317 } 4318 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4319 4320 /** 4321 * netdev_master_upper_dev_get_rcu - Get master upper device 4322 * @dev: device 4323 * 4324 * Find a master upper device and return pointer to it or NULL in case 4325 * it's not there. The caller must hold the RCU read lock. 4326 */ 4327 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4328 { 4329 struct netdev_upper *upper; 4330 4331 upper = list_first_or_null_rcu(&dev->upper_dev_list, 4332 struct netdev_upper, list); 4333 if (upper && likely(upper->master)) 4334 return upper->dev; 4335 return NULL; 4336 } 4337 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4338 4339 static int __netdev_upper_dev_link(struct net_device *dev, 4340 struct net_device *upper_dev, bool master) 4341 { 4342 struct netdev_upper *upper; 4343 4344 ASSERT_RTNL(); 4345 4346 if (dev == upper_dev) 4347 return -EBUSY; 4348 4349 /* To prevent loops, check if dev is not upper device to upper_dev. */ 4350 if (__netdev_search_upper_dev(upper_dev, dev)) 4351 return -EBUSY; 4352 4353 if (__netdev_find_upper(dev, upper_dev)) 4354 return -EEXIST; 4355 4356 if (master && netdev_master_upper_dev_get(dev)) 4357 return -EBUSY; 4358 4359 upper = kmalloc(sizeof(*upper), GFP_KERNEL); 4360 if (!upper) 4361 return -ENOMEM; 4362 4363 upper->dev = upper_dev; 4364 upper->master = master; 4365 INIT_LIST_HEAD(&upper->search_list); 4366 4367 /* Ensure that master upper link is always the first item in list. */ 4368 if (master) 4369 list_add_rcu(&upper->list, &dev->upper_dev_list); 4370 else 4371 list_add_tail_rcu(&upper->list, &dev->upper_dev_list); 4372 dev_hold(upper_dev); 4373 4374 return 0; 4375 } 4376 4377 /** 4378 * netdev_upper_dev_link - Add a link to the upper device 4379 * @dev: device 4380 * @upper_dev: new upper device 4381 * 4382 * Adds a link to device which is upper to this one. The caller must hold 4383 * the RTNL lock. On a failure a negative errno code is returned. 4384 * On success the reference counts are adjusted and the function 4385 * returns zero. 4386 */ 4387 int netdev_upper_dev_link(struct net_device *dev, 4388 struct net_device *upper_dev) 4389 { 4390 return __netdev_upper_dev_link(dev, upper_dev, false); 4391 } 4392 EXPORT_SYMBOL(netdev_upper_dev_link); 4393 4394 /** 4395 * netdev_master_upper_dev_link - Add a master link to the upper device 4396 * @dev: device 4397 * @upper_dev: new upper device 4398 * 4399 * Adds a link to device which is upper to this one. In this case, only 4400 * one master upper device can be linked, although other non-master devices 4401 * might be linked as well. The caller must hold the RTNL lock. 4402 * On a failure a negative errno code is returned. On success the reference 4403 * counts are adjusted and the function returns zero. 4404 */ 4405 int netdev_master_upper_dev_link(struct net_device *dev, 4406 struct net_device *upper_dev) 4407 { 4408 return __netdev_upper_dev_link(dev, upper_dev, true); 4409 } 4410 EXPORT_SYMBOL(netdev_master_upper_dev_link); 4411 4412 /** 4413 * netdev_upper_dev_unlink - Removes a link to upper device 4414 * @dev: device 4415 * @upper_dev: new upper device 4416 * 4417 * Removes a link to device which is upper to this one. The caller must hold 4418 * the RTNL lock. 4419 */ 4420 void netdev_upper_dev_unlink(struct net_device *dev, 4421 struct net_device *upper_dev) 4422 { 4423 struct netdev_upper *upper; 4424 4425 ASSERT_RTNL(); 4426 4427 upper = __netdev_find_upper(dev, upper_dev); 4428 if (!upper) 4429 return; 4430 list_del_rcu(&upper->list); 4431 dev_put(upper_dev); 4432 kfree_rcu(upper, rcu); 4433 } 4434 EXPORT_SYMBOL(netdev_upper_dev_unlink); 4435 4436 static void dev_change_rx_flags(struct net_device *dev, int flags) 4437 { 4438 const struct net_device_ops *ops = dev->netdev_ops; 4439 4440 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4441 ops->ndo_change_rx_flags(dev, flags); 4442 } 4443 4444 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4445 { 4446 unsigned int old_flags = dev->flags; 4447 kuid_t uid; 4448 kgid_t gid; 4449 4450 ASSERT_RTNL(); 4451 4452 dev->flags |= IFF_PROMISC; 4453 dev->promiscuity += inc; 4454 if (dev->promiscuity == 0) { 4455 /* 4456 * Avoid overflow. 4457 * If inc causes overflow, untouch promisc and return error. 4458 */ 4459 if (inc < 0) 4460 dev->flags &= ~IFF_PROMISC; 4461 else { 4462 dev->promiscuity -= inc; 4463 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4464 dev->name); 4465 return -EOVERFLOW; 4466 } 4467 } 4468 if (dev->flags != old_flags) { 4469 pr_info("device %s %s promiscuous mode\n", 4470 dev->name, 4471 dev->flags & IFF_PROMISC ? "entered" : "left"); 4472 if (audit_enabled) { 4473 current_uid_gid(&uid, &gid); 4474 audit_log(current->audit_context, GFP_ATOMIC, 4475 AUDIT_ANOM_PROMISCUOUS, 4476 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4477 dev->name, (dev->flags & IFF_PROMISC), 4478 (old_flags & IFF_PROMISC), 4479 from_kuid(&init_user_ns, audit_get_loginuid(current)), 4480 from_kuid(&init_user_ns, uid), 4481 from_kgid(&init_user_ns, gid), 4482 audit_get_sessionid(current)); 4483 } 4484 4485 dev_change_rx_flags(dev, IFF_PROMISC); 4486 } 4487 return 0; 4488 } 4489 4490 /** 4491 * dev_set_promiscuity - update promiscuity count on a device 4492 * @dev: device 4493 * @inc: modifier 4494 * 4495 * Add or remove promiscuity from a device. While the count in the device 4496 * remains above zero the interface remains promiscuous. Once it hits zero 4497 * the device reverts back to normal filtering operation. A negative inc 4498 * value is used to drop promiscuity on the device. 4499 * Return 0 if successful or a negative errno code on error. 4500 */ 4501 int dev_set_promiscuity(struct net_device *dev, int inc) 4502 { 4503 unsigned int old_flags = dev->flags; 4504 int err; 4505 4506 err = __dev_set_promiscuity(dev, inc); 4507 if (err < 0) 4508 return err; 4509 if (dev->flags != old_flags) 4510 dev_set_rx_mode(dev); 4511 return err; 4512 } 4513 EXPORT_SYMBOL(dev_set_promiscuity); 4514 4515 /** 4516 * dev_set_allmulti - update allmulti count on a device 4517 * @dev: device 4518 * @inc: modifier 4519 * 4520 * Add or remove reception of all multicast frames to a device. While the 4521 * count in the device remains above zero the interface remains listening 4522 * to all interfaces. Once it hits zero the device reverts back to normal 4523 * filtering operation. A negative @inc value is used to drop the counter 4524 * when releasing a resource needing all multicasts. 4525 * Return 0 if successful or a negative errno code on error. 4526 */ 4527 4528 int dev_set_allmulti(struct net_device *dev, int inc) 4529 { 4530 unsigned int old_flags = dev->flags; 4531 4532 ASSERT_RTNL(); 4533 4534 dev->flags |= IFF_ALLMULTI; 4535 dev->allmulti += inc; 4536 if (dev->allmulti == 0) { 4537 /* 4538 * Avoid overflow. 4539 * If inc causes overflow, untouch allmulti and return error. 4540 */ 4541 if (inc < 0) 4542 dev->flags &= ~IFF_ALLMULTI; 4543 else { 4544 dev->allmulti -= inc; 4545 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4546 dev->name); 4547 return -EOVERFLOW; 4548 } 4549 } 4550 if (dev->flags ^ old_flags) { 4551 dev_change_rx_flags(dev, IFF_ALLMULTI); 4552 dev_set_rx_mode(dev); 4553 } 4554 return 0; 4555 } 4556 EXPORT_SYMBOL(dev_set_allmulti); 4557 4558 /* 4559 * Upload unicast and multicast address lists to device and 4560 * configure RX filtering. When the device doesn't support unicast 4561 * filtering it is put in promiscuous mode while unicast addresses 4562 * are present. 4563 */ 4564 void __dev_set_rx_mode(struct net_device *dev) 4565 { 4566 const struct net_device_ops *ops = dev->netdev_ops; 4567 4568 /* dev_open will call this function so the list will stay sane. */ 4569 if (!(dev->flags&IFF_UP)) 4570 return; 4571 4572 if (!netif_device_present(dev)) 4573 return; 4574 4575 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4576 /* Unicast addresses changes may only happen under the rtnl, 4577 * therefore calling __dev_set_promiscuity here is safe. 4578 */ 4579 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4580 __dev_set_promiscuity(dev, 1); 4581 dev->uc_promisc = true; 4582 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4583 __dev_set_promiscuity(dev, -1); 4584 dev->uc_promisc = false; 4585 } 4586 } 4587 4588 if (ops->ndo_set_rx_mode) 4589 ops->ndo_set_rx_mode(dev); 4590 } 4591 4592 void dev_set_rx_mode(struct net_device *dev) 4593 { 4594 netif_addr_lock_bh(dev); 4595 __dev_set_rx_mode(dev); 4596 netif_addr_unlock_bh(dev); 4597 } 4598 4599 /** 4600 * dev_get_flags - get flags reported to userspace 4601 * @dev: device 4602 * 4603 * Get the combination of flag bits exported through APIs to userspace. 4604 */ 4605 unsigned int dev_get_flags(const struct net_device *dev) 4606 { 4607 unsigned int flags; 4608 4609 flags = (dev->flags & ~(IFF_PROMISC | 4610 IFF_ALLMULTI | 4611 IFF_RUNNING | 4612 IFF_LOWER_UP | 4613 IFF_DORMANT)) | 4614 (dev->gflags & (IFF_PROMISC | 4615 IFF_ALLMULTI)); 4616 4617 if (netif_running(dev)) { 4618 if (netif_oper_up(dev)) 4619 flags |= IFF_RUNNING; 4620 if (netif_carrier_ok(dev)) 4621 flags |= IFF_LOWER_UP; 4622 if (netif_dormant(dev)) 4623 flags |= IFF_DORMANT; 4624 } 4625 4626 return flags; 4627 } 4628 EXPORT_SYMBOL(dev_get_flags); 4629 4630 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4631 { 4632 unsigned int old_flags = dev->flags; 4633 int ret; 4634 4635 ASSERT_RTNL(); 4636 4637 /* 4638 * Set the flags on our device. 4639 */ 4640 4641 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4642 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4643 IFF_AUTOMEDIA)) | 4644 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4645 IFF_ALLMULTI)); 4646 4647 /* 4648 * Load in the correct multicast list now the flags have changed. 4649 */ 4650 4651 if ((old_flags ^ flags) & IFF_MULTICAST) 4652 dev_change_rx_flags(dev, IFF_MULTICAST); 4653 4654 dev_set_rx_mode(dev); 4655 4656 /* 4657 * Have we downed the interface. We handle IFF_UP ourselves 4658 * according to user attempts to set it, rather than blindly 4659 * setting it. 4660 */ 4661 4662 ret = 0; 4663 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4664 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4665 4666 if (!ret) 4667 dev_set_rx_mode(dev); 4668 } 4669 4670 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4671 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4672 4673 dev->gflags ^= IFF_PROMISC; 4674 dev_set_promiscuity(dev, inc); 4675 } 4676 4677 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4678 is important. Some (broken) drivers set IFF_PROMISC, when 4679 IFF_ALLMULTI is requested not asking us and not reporting. 4680 */ 4681 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4682 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4683 4684 dev->gflags ^= IFF_ALLMULTI; 4685 dev_set_allmulti(dev, inc); 4686 } 4687 4688 return ret; 4689 } 4690 4691 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4692 { 4693 unsigned int changes = dev->flags ^ old_flags; 4694 4695 if (changes & IFF_UP) { 4696 if (dev->flags & IFF_UP) 4697 call_netdevice_notifiers(NETDEV_UP, dev); 4698 else 4699 call_netdevice_notifiers(NETDEV_DOWN, dev); 4700 } 4701 4702 if (dev->flags & IFF_UP && 4703 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4704 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4705 } 4706 4707 /** 4708 * dev_change_flags - change device settings 4709 * @dev: device 4710 * @flags: device state flags 4711 * 4712 * Change settings on device based state flags. The flags are 4713 * in the userspace exported format. 4714 */ 4715 int dev_change_flags(struct net_device *dev, unsigned int flags) 4716 { 4717 int ret; 4718 unsigned int changes, old_flags = dev->flags; 4719 4720 ret = __dev_change_flags(dev, flags); 4721 if (ret < 0) 4722 return ret; 4723 4724 changes = old_flags ^ dev->flags; 4725 if (changes) 4726 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4727 4728 __dev_notify_flags(dev, old_flags); 4729 return ret; 4730 } 4731 EXPORT_SYMBOL(dev_change_flags); 4732 4733 /** 4734 * dev_set_mtu - Change maximum transfer unit 4735 * @dev: device 4736 * @new_mtu: new transfer unit 4737 * 4738 * Change the maximum transfer size of the network device. 4739 */ 4740 int dev_set_mtu(struct net_device *dev, int new_mtu) 4741 { 4742 const struct net_device_ops *ops = dev->netdev_ops; 4743 int err; 4744 4745 if (new_mtu == dev->mtu) 4746 return 0; 4747 4748 /* MTU must be positive. */ 4749 if (new_mtu < 0) 4750 return -EINVAL; 4751 4752 if (!netif_device_present(dev)) 4753 return -ENODEV; 4754 4755 err = 0; 4756 if (ops->ndo_change_mtu) 4757 err = ops->ndo_change_mtu(dev, new_mtu); 4758 else 4759 dev->mtu = new_mtu; 4760 4761 if (!err) 4762 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4763 return err; 4764 } 4765 EXPORT_SYMBOL(dev_set_mtu); 4766 4767 /** 4768 * dev_set_group - Change group this device belongs to 4769 * @dev: device 4770 * @new_group: group this device should belong to 4771 */ 4772 void dev_set_group(struct net_device *dev, int new_group) 4773 { 4774 dev->group = new_group; 4775 } 4776 EXPORT_SYMBOL(dev_set_group); 4777 4778 /** 4779 * dev_set_mac_address - Change Media Access Control Address 4780 * @dev: device 4781 * @sa: new address 4782 * 4783 * Change the hardware (MAC) address of the device 4784 */ 4785 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4786 { 4787 const struct net_device_ops *ops = dev->netdev_ops; 4788 int err; 4789 4790 if (!ops->ndo_set_mac_address) 4791 return -EOPNOTSUPP; 4792 if (sa->sa_family != dev->type) 4793 return -EINVAL; 4794 if (!netif_device_present(dev)) 4795 return -ENODEV; 4796 err = ops->ndo_set_mac_address(dev, sa); 4797 if (err) 4798 return err; 4799 dev->addr_assign_type = NET_ADDR_SET; 4800 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4801 add_device_randomness(dev->dev_addr, dev->addr_len); 4802 return 0; 4803 } 4804 EXPORT_SYMBOL(dev_set_mac_address); 4805 4806 /** 4807 * dev_change_carrier - Change device carrier 4808 * @dev: device 4809 * @new_carrier: new value 4810 * 4811 * Change device carrier 4812 */ 4813 int dev_change_carrier(struct net_device *dev, bool new_carrier) 4814 { 4815 const struct net_device_ops *ops = dev->netdev_ops; 4816 4817 if (!ops->ndo_change_carrier) 4818 return -EOPNOTSUPP; 4819 if (!netif_device_present(dev)) 4820 return -ENODEV; 4821 return ops->ndo_change_carrier(dev, new_carrier); 4822 } 4823 EXPORT_SYMBOL(dev_change_carrier); 4824 4825 /** 4826 * dev_new_index - allocate an ifindex 4827 * @net: the applicable net namespace 4828 * 4829 * Returns a suitable unique value for a new device interface 4830 * number. The caller must hold the rtnl semaphore or the 4831 * dev_base_lock to be sure it remains unique. 4832 */ 4833 static int dev_new_index(struct net *net) 4834 { 4835 int ifindex = net->ifindex; 4836 for (;;) { 4837 if (++ifindex <= 0) 4838 ifindex = 1; 4839 if (!__dev_get_by_index(net, ifindex)) 4840 return net->ifindex = ifindex; 4841 } 4842 } 4843 4844 /* Delayed registration/unregisteration */ 4845 static LIST_HEAD(net_todo_list); 4846 4847 static void net_set_todo(struct net_device *dev) 4848 { 4849 list_add_tail(&dev->todo_list, &net_todo_list); 4850 } 4851 4852 static void rollback_registered_many(struct list_head *head) 4853 { 4854 struct net_device *dev, *tmp; 4855 4856 BUG_ON(dev_boot_phase); 4857 ASSERT_RTNL(); 4858 4859 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 4860 /* Some devices call without registering 4861 * for initialization unwind. Remove those 4862 * devices and proceed with the remaining. 4863 */ 4864 if (dev->reg_state == NETREG_UNINITIALIZED) { 4865 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 4866 dev->name, dev); 4867 4868 WARN_ON(1); 4869 list_del(&dev->unreg_list); 4870 continue; 4871 } 4872 dev->dismantle = true; 4873 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4874 } 4875 4876 /* If device is running, close it first. */ 4877 dev_close_many(head); 4878 4879 list_for_each_entry(dev, head, unreg_list) { 4880 /* And unlink it from device chain. */ 4881 unlist_netdevice(dev); 4882 4883 dev->reg_state = NETREG_UNREGISTERING; 4884 } 4885 4886 synchronize_net(); 4887 4888 list_for_each_entry(dev, head, unreg_list) { 4889 /* Shutdown queueing discipline. */ 4890 dev_shutdown(dev); 4891 4892 4893 /* Notify protocols, that we are about to destroy 4894 this device. They should clean all the things. 4895 */ 4896 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4897 4898 if (!dev->rtnl_link_ops || 4899 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 4900 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 4901 4902 /* 4903 * Flush the unicast and multicast chains 4904 */ 4905 dev_uc_flush(dev); 4906 dev_mc_flush(dev); 4907 4908 if (dev->netdev_ops->ndo_uninit) 4909 dev->netdev_ops->ndo_uninit(dev); 4910 4911 /* Notifier chain MUST detach us all upper devices. */ 4912 WARN_ON(netdev_has_any_upper_dev(dev)); 4913 4914 /* Remove entries from kobject tree */ 4915 netdev_unregister_kobject(dev); 4916 #ifdef CONFIG_XPS 4917 /* Remove XPS queueing entries */ 4918 netif_reset_xps_queues_gt(dev, 0); 4919 #endif 4920 } 4921 4922 synchronize_net(); 4923 4924 list_for_each_entry(dev, head, unreg_list) 4925 dev_put(dev); 4926 } 4927 4928 static void rollback_registered(struct net_device *dev) 4929 { 4930 LIST_HEAD(single); 4931 4932 list_add(&dev->unreg_list, &single); 4933 rollback_registered_many(&single); 4934 list_del(&single); 4935 } 4936 4937 static netdev_features_t netdev_fix_features(struct net_device *dev, 4938 netdev_features_t features) 4939 { 4940 /* Fix illegal checksum combinations */ 4941 if ((features & NETIF_F_HW_CSUM) && 4942 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4943 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 4944 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4945 } 4946 4947 /* TSO requires that SG is present as well. */ 4948 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 4949 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 4950 features &= ~NETIF_F_ALL_TSO; 4951 } 4952 4953 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 4954 !(features & NETIF_F_IP_CSUM)) { 4955 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 4956 features &= ~NETIF_F_TSO; 4957 features &= ~NETIF_F_TSO_ECN; 4958 } 4959 4960 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 4961 !(features & NETIF_F_IPV6_CSUM)) { 4962 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 4963 features &= ~NETIF_F_TSO6; 4964 } 4965 4966 /* TSO ECN requires that TSO is present as well. */ 4967 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 4968 features &= ~NETIF_F_TSO_ECN; 4969 4970 /* Software GSO depends on SG. */ 4971 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 4972 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 4973 features &= ~NETIF_F_GSO; 4974 } 4975 4976 /* UFO needs SG and checksumming */ 4977 if (features & NETIF_F_UFO) { 4978 /* maybe split UFO into V4 and V6? */ 4979 if (!((features & NETIF_F_GEN_CSUM) || 4980 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 4981 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4982 netdev_dbg(dev, 4983 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 4984 features &= ~NETIF_F_UFO; 4985 } 4986 4987 if (!(features & NETIF_F_SG)) { 4988 netdev_dbg(dev, 4989 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 4990 features &= ~NETIF_F_UFO; 4991 } 4992 } 4993 4994 return features; 4995 } 4996 4997 int __netdev_update_features(struct net_device *dev) 4998 { 4999 netdev_features_t features; 5000 int err = 0; 5001 5002 ASSERT_RTNL(); 5003 5004 features = netdev_get_wanted_features(dev); 5005 5006 if (dev->netdev_ops->ndo_fix_features) 5007 features = dev->netdev_ops->ndo_fix_features(dev, features); 5008 5009 /* driver might be less strict about feature dependencies */ 5010 features = netdev_fix_features(dev, features); 5011 5012 if (dev->features == features) 5013 return 0; 5014 5015 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5016 &dev->features, &features); 5017 5018 if (dev->netdev_ops->ndo_set_features) 5019 err = dev->netdev_ops->ndo_set_features(dev, features); 5020 5021 if (unlikely(err < 0)) { 5022 netdev_err(dev, 5023 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5024 err, &features, &dev->features); 5025 return -1; 5026 } 5027 5028 if (!err) 5029 dev->features = features; 5030 5031 return 1; 5032 } 5033 5034 /** 5035 * netdev_update_features - recalculate device features 5036 * @dev: the device to check 5037 * 5038 * Recalculate dev->features set and send notifications if it 5039 * has changed. Should be called after driver or hardware dependent 5040 * conditions might have changed that influence the features. 5041 */ 5042 void netdev_update_features(struct net_device *dev) 5043 { 5044 if (__netdev_update_features(dev)) 5045 netdev_features_change(dev); 5046 } 5047 EXPORT_SYMBOL(netdev_update_features); 5048 5049 /** 5050 * netdev_change_features - recalculate device features 5051 * @dev: the device to check 5052 * 5053 * Recalculate dev->features set and send notifications even 5054 * if they have not changed. Should be called instead of 5055 * netdev_update_features() if also dev->vlan_features might 5056 * have changed to allow the changes to be propagated to stacked 5057 * VLAN devices. 5058 */ 5059 void netdev_change_features(struct net_device *dev) 5060 { 5061 __netdev_update_features(dev); 5062 netdev_features_change(dev); 5063 } 5064 EXPORT_SYMBOL(netdev_change_features); 5065 5066 /** 5067 * netif_stacked_transfer_operstate - transfer operstate 5068 * @rootdev: the root or lower level device to transfer state from 5069 * @dev: the device to transfer operstate to 5070 * 5071 * Transfer operational state from root to device. This is normally 5072 * called when a stacking relationship exists between the root 5073 * device and the device(a leaf device). 5074 */ 5075 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5076 struct net_device *dev) 5077 { 5078 if (rootdev->operstate == IF_OPER_DORMANT) 5079 netif_dormant_on(dev); 5080 else 5081 netif_dormant_off(dev); 5082 5083 if (netif_carrier_ok(rootdev)) { 5084 if (!netif_carrier_ok(dev)) 5085 netif_carrier_on(dev); 5086 } else { 5087 if (netif_carrier_ok(dev)) 5088 netif_carrier_off(dev); 5089 } 5090 } 5091 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5092 5093 #ifdef CONFIG_RPS 5094 static int netif_alloc_rx_queues(struct net_device *dev) 5095 { 5096 unsigned int i, count = dev->num_rx_queues; 5097 struct netdev_rx_queue *rx; 5098 5099 BUG_ON(count < 1); 5100 5101 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5102 if (!rx) 5103 return -ENOMEM; 5104 5105 dev->_rx = rx; 5106 5107 for (i = 0; i < count; i++) 5108 rx[i].dev = dev; 5109 return 0; 5110 } 5111 #endif 5112 5113 static void netdev_init_one_queue(struct net_device *dev, 5114 struct netdev_queue *queue, void *_unused) 5115 { 5116 /* Initialize queue lock */ 5117 spin_lock_init(&queue->_xmit_lock); 5118 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5119 queue->xmit_lock_owner = -1; 5120 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5121 queue->dev = dev; 5122 #ifdef CONFIG_BQL 5123 dql_init(&queue->dql, HZ); 5124 #endif 5125 } 5126 5127 static int netif_alloc_netdev_queues(struct net_device *dev) 5128 { 5129 unsigned int count = dev->num_tx_queues; 5130 struct netdev_queue *tx; 5131 5132 BUG_ON(count < 1); 5133 5134 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5135 if (!tx) 5136 return -ENOMEM; 5137 5138 dev->_tx = tx; 5139 5140 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5141 spin_lock_init(&dev->tx_global_lock); 5142 5143 return 0; 5144 } 5145 5146 /** 5147 * register_netdevice - register a network device 5148 * @dev: device to register 5149 * 5150 * Take a completed network device structure and add it to the kernel 5151 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5152 * chain. 0 is returned on success. A negative errno code is returned 5153 * on a failure to set up the device, or if the name is a duplicate. 5154 * 5155 * Callers must hold the rtnl semaphore. You may want 5156 * register_netdev() instead of this. 5157 * 5158 * BUGS: 5159 * The locking appears insufficient to guarantee two parallel registers 5160 * will not get the same name. 5161 */ 5162 5163 int register_netdevice(struct net_device *dev) 5164 { 5165 int ret; 5166 struct net *net = dev_net(dev); 5167 5168 BUG_ON(dev_boot_phase); 5169 ASSERT_RTNL(); 5170 5171 might_sleep(); 5172 5173 /* When net_device's are persistent, this will be fatal. */ 5174 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5175 BUG_ON(!net); 5176 5177 spin_lock_init(&dev->addr_list_lock); 5178 netdev_set_addr_lockdep_class(dev); 5179 5180 dev->iflink = -1; 5181 5182 ret = dev_get_valid_name(net, dev, dev->name); 5183 if (ret < 0) 5184 goto out; 5185 5186 /* Init, if this function is available */ 5187 if (dev->netdev_ops->ndo_init) { 5188 ret = dev->netdev_ops->ndo_init(dev); 5189 if (ret) { 5190 if (ret > 0) 5191 ret = -EIO; 5192 goto out; 5193 } 5194 } 5195 5196 if (((dev->hw_features | dev->features) & 5197 NETIF_F_HW_VLAN_CTAG_FILTER) && 5198 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 5199 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 5200 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 5201 ret = -EINVAL; 5202 goto err_uninit; 5203 } 5204 5205 ret = -EBUSY; 5206 if (!dev->ifindex) 5207 dev->ifindex = dev_new_index(net); 5208 else if (__dev_get_by_index(net, dev->ifindex)) 5209 goto err_uninit; 5210 5211 if (dev->iflink == -1) 5212 dev->iflink = dev->ifindex; 5213 5214 /* Transfer changeable features to wanted_features and enable 5215 * software offloads (GSO and GRO). 5216 */ 5217 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5218 dev->features |= NETIF_F_SOFT_FEATURES; 5219 dev->wanted_features = dev->features & dev->hw_features; 5220 5221 /* Turn on no cache copy if HW is doing checksum */ 5222 if (!(dev->flags & IFF_LOOPBACK)) { 5223 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5224 if (dev->features & NETIF_F_ALL_CSUM) { 5225 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5226 dev->features |= NETIF_F_NOCACHE_COPY; 5227 } 5228 } 5229 5230 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5231 */ 5232 dev->vlan_features |= NETIF_F_HIGHDMA; 5233 5234 /* Make NETIF_F_SG inheritable to tunnel devices. 5235 */ 5236 dev->hw_enc_features |= NETIF_F_SG; 5237 5238 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5239 ret = notifier_to_errno(ret); 5240 if (ret) 5241 goto err_uninit; 5242 5243 ret = netdev_register_kobject(dev); 5244 if (ret) 5245 goto err_uninit; 5246 dev->reg_state = NETREG_REGISTERED; 5247 5248 __netdev_update_features(dev); 5249 5250 /* 5251 * Default initial state at registry is that the 5252 * device is present. 5253 */ 5254 5255 set_bit(__LINK_STATE_PRESENT, &dev->state); 5256 5257 linkwatch_init_dev(dev); 5258 5259 dev_init_scheduler(dev); 5260 dev_hold(dev); 5261 list_netdevice(dev); 5262 add_device_randomness(dev->dev_addr, dev->addr_len); 5263 5264 /* If the device has permanent device address, driver should 5265 * set dev_addr and also addr_assign_type should be set to 5266 * NET_ADDR_PERM (default value). 5267 */ 5268 if (dev->addr_assign_type == NET_ADDR_PERM) 5269 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 5270 5271 /* Notify protocols, that a new device appeared. */ 5272 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5273 ret = notifier_to_errno(ret); 5274 if (ret) { 5275 rollback_registered(dev); 5276 dev->reg_state = NETREG_UNREGISTERED; 5277 } 5278 /* 5279 * Prevent userspace races by waiting until the network 5280 * device is fully setup before sending notifications. 5281 */ 5282 if (!dev->rtnl_link_ops || 5283 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5284 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5285 5286 out: 5287 return ret; 5288 5289 err_uninit: 5290 if (dev->netdev_ops->ndo_uninit) 5291 dev->netdev_ops->ndo_uninit(dev); 5292 goto out; 5293 } 5294 EXPORT_SYMBOL(register_netdevice); 5295 5296 /** 5297 * init_dummy_netdev - init a dummy network device for NAPI 5298 * @dev: device to init 5299 * 5300 * This takes a network device structure and initialize the minimum 5301 * amount of fields so it can be used to schedule NAPI polls without 5302 * registering a full blown interface. This is to be used by drivers 5303 * that need to tie several hardware interfaces to a single NAPI 5304 * poll scheduler due to HW limitations. 5305 */ 5306 int init_dummy_netdev(struct net_device *dev) 5307 { 5308 /* Clear everything. Note we don't initialize spinlocks 5309 * are they aren't supposed to be taken by any of the 5310 * NAPI code and this dummy netdev is supposed to be 5311 * only ever used for NAPI polls 5312 */ 5313 memset(dev, 0, sizeof(struct net_device)); 5314 5315 /* make sure we BUG if trying to hit standard 5316 * register/unregister code path 5317 */ 5318 dev->reg_state = NETREG_DUMMY; 5319 5320 /* NAPI wants this */ 5321 INIT_LIST_HEAD(&dev->napi_list); 5322 5323 /* a dummy interface is started by default */ 5324 set_bit(__LINK_STATE_PRESENT, &dev->state); 5325 set_bit(__LINK_STATE_START, &dev->state); 5326 5327 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5328 * because users of this 'device' dont need to change 5329 * its refcount. 5330 */ 5331 5332 return 0; 5333 } 5334 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5335 5336 5337 /** 5338 * register_netdev - register a network device 5339 * @dev: device to register 5340 * 5341 * Take a completed network device structure and add it to the kernel 5342 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5343 * chain. 0 is returned on success. A negative errno code is returned 5344 * on a failure to set up the device, or if the name is a duplicate. 5345 * 5346 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5347 * and expands the device name if you passed a format string to 5348 * alloc_netdev. 5349 */ 5350 int register_netdev(struct net_device *dev) 5351 { 5352 int err; 5353 5354 rtnl_lock(); 5355 err = register_netdevice(dev); 5356 rtnl_unlock(); 5357 return err; 5358 } 5359 EXPORT_SYMBOL(register_netdev); 5360 5361 int netdev_refcnt_read(const struct net_device *dev) 5362 { 5363 int i, refcnt = 0; 5364 5365 for_each_possible_cpu(i) 5366 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5367 return refcnt; 5368 } 5369 EXPORT_SYMBOL(netdev_refcnt_read); 5370 5371 /** 5372 * netdev_wait_allrefs - wait until all references are gone. 5373 * @dev: target net_device 5374 * 5375 * This is called when unregistering network devices. 5376 * 5377 * Any protocol or device that holds a reference should register 5378 * for netdevice notification, and cleanup and put back the 5379 * reference if they receive an UNREGISTER event. 5380 * We can get stuck here if buggy protocols don't correctly 5381 * call dev_put. 5382 */ 5383 static void netdev_wait_allrefs(struct net_device *dev) 5384 { 5385 unsigned long rebroadcast_time, warning_time; 5386 int refcnt; 5387 5388 linkwatch_forget_dev(dev); 5389 5390 rebroadcast_time = warning_time = jiffies; 5391 refcnt = netdev_refcnt_read(dev); 5392 5393 while (refcnt != 0) { 5394 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5395 rtnl_lock(); 5396 5397 /* Rebroadcast unregister notification */ 5398 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5399 5400 __rtnl_unlock(); 5401 rcu_barrier(); 5402 rtnl_lock(); 5403 5404 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5405 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5406 &dev->state)) { 5407 /* We must not have linkwatch events 5408 * pending on unregister. If this 5409 * happens, we simply run the queue 5410 * unscheduled, resulting in a noop 5411 * for this device. 5412 */ 5413 linkwatch_run_queue(); 5414 } 5415 5416 __rtnl_unlock(); 5417 5418 rebroadcast_time = jiffies; 5419 } 5420 5421 msleep(250); 5422 5423 refcnt = netdev_refcnt_read(dev); 5424 5425 if (time_after(jiffies, warning_time + 10 * HZ)) { 5426 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5427 dev->name, refcnt); 5428 warning_time = jiffies; 5429 } 5430 } 5431 } 5432 5433 /* The sequence is: 5434 * 5435 * rtnl_lock(); 5436 * ... 5437 * register_netdevice(x1); 5438 * register_netdevice(x2); 5439 * ... 5440 * unregister_netdevice(y1); 5441 * unregister_netdevice(y2); 5442 * ... 5443 * rtnl_unlock(); 5444 * free_netdev(y1); 5445 * free_netdev(y2); 5446 * 5447 * We are invoked by rtnl_unlock(). 5448 * This allows us to deal with problems: 5449 * 1) We can delete sysfs objects which invoke hotplug 5450 * without deadlocking with linkwatch via keventd. 5451 * 2) Since we run with the RTNL semaphore not held, we can sleep 5452 * safely in order to wait for the netdev refcnt to drop to zero. 5453 * 5454 * We must not return until all unregister events added during 5455 * the interval the lock was held have been completed. 5456 */ 5457 void netdev_run_todo(void) 5458 { 5459 struct list_head list; 5460 5461 /* Snapshot list, allow later requests */ 5462 list_replace_init(&net_todo_list, &list); 5463 5464 __rtnl_unlock(); 5465 5466 5467 /* Wait for rcu callbacks to finish before next phase */ 5468 if (!list_empty(&list)) 5469 rcu_barrier(); 5470 5471 while (!list_empty(&list)) { 5472 struct net_device *dev 5473 = list_first_entry(&list, struct net_device, todo_list); 5474 list_del(&dev->todo_list); 5475 5476 rtnl_lock(); 5477 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5478 __rtnl_unlock(); 5479 5480 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5481 pr_err("network todo '%s' but state %d\n", 5482 dev->name, dev->reg_state); 5483 dump_stack(); 5484 continue; 5485 } 5486 5487 dev->reg_state = NETREG_UNREGISTERED; 5488 5489 on_each_cpu(flush_backlog, dev, 1); 5490 5491 netdev_wait_allrefs(dev); 5492 5493 /* paranoia */ 5494 BUG_ON(netdev_refcnt_read(dev)); 5495 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5496 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5497 WARN_ON(dev->dn_ptr); 5498 5499 if (dev->destructor) 5500 dev->destructor(dev); 5501 5502 /* Free network device */ 5503 kobject_put(&dev->dev.kobj); 5504 } 5505 } 5506 5507 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5508 * fields in the same order, with only the type differing. 5509 */ 5510 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5511 const struct net_device_stats *netdev_stats) 5512 { 5513 #if BITS_PER_LONG == 64 5514 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5515 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5516 #else 5517 size_t i, n = sizeof(*stats64) / sizeof(u64); 5518 const unsigned long *src = (const unsigned long *)netdev_stats; 5519 u64 *dst = (u64 *)stats64; 5520 5521 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5522 sizeof(*stats64) / sizeof(u64)); 5523 for (i = 0; i < n; i++) 5524 dst[i] = src[i]; 5525 #endif 5526 } 5527 EXPORT_SYMBOL(netdev_stats_to_stats64); 5528 5529 /** 5530 * dev_get_stats - get network device statistics 5531 * @dev: device to get statistics from 5532 * @storage: place to store stats 5533 * 5534 * Get network statistics from device. Return @storage. 5535 * The device driver may provide its own method by setting 5536 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5537 * otherwise the internal statistics structure is used. 5538 */ 5539 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5540 struct rtnl_link_stats64 *storage) 5541 { 5542 const struct net_device_ops *ops = dev->netdev_ops; 5543 5544 if (ops->ndo_get_stats64) { 5545 memset(storage, 0, sizeof(*storage)); 5546 ops->ndo_get_stats64(dev, storage); 5547 } else if (ops->ndo_get_stats) { 5548 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5549 } else { 5550 netdev_stats_to_stats64(storage, &dev->stats); 5551 } 5552 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5553 return storage; 5554 } 5555 EXPORT_SYMBOL(dev_get_stats); 5556 5557 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5558 { 5559 struct netdev_queue *queue = dev_ingress_queue(dev); 5560 5561 #ifdef CONFIG_NET_CLS_ACT 5562 if (queue) 5563 return queue; 5564 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5565 if (!queue) 5566 return NULL; 5567 netdev_init_one_queue(dev, queue, NULL); 5568 queue->qdisc = &noop_qdisc; 5569 queue->qdisc_sleeping = &noop_qdisc; 5570 rcu_assign_pointer(dev->ingress_queue, queue); 5571 #endif 5572 return queue; 5573 } 5574 5575 static const struct ethtool_ops default_ethtool_ops; 5576 5577 void netdev_set_default_ethtool_ops(struct net_device *dev, 5578 const struct ethtool_ops *ops) 5579 { 5580 if (dev->ethtool_ops == &default_ethtool_ops) 5581 dev->ethtool_ops = ops; 5582 } 5583 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 5584 5585 /** 5586 * alloc_netdev_mqs - allocate network device 5587 * @sizeof_priv: size of private data to allocate space for 5588 * @name: device name format string 5589 * @setup: callback to initialize device 5590 * @txqs: the number of TX subqueues to allocate 5591 * @rxqs: the number of RX subqueues to allocate 5592 * 5593 * Allocates a struct net_device with private data area for driver use 5594 * and performs basic initialization. Also allocates subquue structs 5595 * for each queue on the device. 5596 */ 5597 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5598 void (*setup)(struct net_device *), 5599 unsigned int txqs, unsigned int rxqs) 5600 { 5601 struct net_device *dev; 5602 size_t alloc_size; 5603 struct net_device *p; 5604 5605 BUG_ON(strlen(name) >= sizeof(dev->name)); 5606 5607 if (txqs < 1) { 5608 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 5609 return NULL; 5610 } 5611 5612 #ifdef CONFIG_RPS 5613 if (rxqs < 1) { 5614 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 5615 return NULL; 5616 } 5617 #endif 5618 5619 alloc_size = sizeof(struct net_device); 5620 if (sizeof_priv) { 5621 /* ensure 32-byte alignment of private area */ 5622 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5623 alloc_size += sizeof_priv; 5624 } 5625 /* ensure 32-byte alignment of whole construct */ 5626 alloc_size += NETDEV_ALIGN - 1; 5627 5628 p = kzalloc(alloc_size, GFP_KERNEL); 5629 if (!p) 5630 return NULL; 5631 5632 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5633 dev->padded = (char *)dev - (char *)p; 5634 5635 dev->pcpu_refcnt = alloc_percpu(int); 5636 if (!dev->pcpu_refcnt) 5637 goto free_p; 5638 5639 if (dev_addr_init(dev)) 5640 goto free_pcpu; 5641 5642 dev_mc_init(dev); 5643 dev_uc_init(dev); 5644 5645 dev_net_set(dev, &init_net); 5646 5647 dev->gso_max_size = GSO_MAX_SIZE; 5648 dev->gso_max_segs = GSO_MAX_SEGS; 5649 5650 INIT_LIST_HEAD(&dev->napi_list); 5651 INIT_LIST_HEAD(&dev->unreg_list); 5652 INIT_LIST_HEAD(&dev->link_watch_list); 5653 INIT_LIST_HEAD(&dev->upper_dev_list); 5654 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5655 setup(dev); 5656 5657 dev->num_tx_queues = txqs; 5658 dev->real_num_tx_queues = txqs; 5659 if (netif_alloc_netdev_queues(dev)) 5660 goto free_all; 5661 5662 #ifdef CONFIG_RPS 5663 dev->num_rx_queues = rxqs; 5664 dev->real_num_rx_queues = rxqs; 5665 if (netif_alloc_rx_queues(dev)) 5666 goto free_all; 5667 #endif 5668 5669 strcpy(dev->name, name); 5670 dev->group = INIT_NETDEV_GROUP; 5671 if (!dev->ethtool_ops) 5672 dev->ethtool_ops = &default_ethtool_ops; 5673 return dev; 5674 5675 free_all: 5676 free_netdev(dev); 5677 return NULL; 5678 5679 free_pcpu: 5680 free_percpu(dev->pcpu_refcnt); 5681 kfree(dev->_tx); 5682 #ifdef CONFIG_RPS 5683 kfree(dev->_rx); 5684 #endif 5685 5686 free_p: 5687 kfree(p); 5688 return NULL; 5689 } 5690 EXPORT_SYMBOL(alloc_netdev_mqs); 5691 5692 /** 5693 * free_netdev - free network device 5694 * @dev: device 5695 * 5696 * This function does the last stage of destroying an allocated device 5697 * interface. The reference to the device object is released. 5698 * If this is the last reference then it will be freed. 5699 */ 5700 void free_netdev(struct net_device *dev) 5701 { 5702 struct napi_struct *p, *n; 5703 5704 release_net(dev_net(dev)); 5705 5706 kfree(dev->_tx); 5707 #ifdef CONFIG_RPS 5708 kfree(dev->_rx); 5709 #endif 5710 5711 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 5712 5713 /* Flush device addresses */ 5714 dev_addr_flush(dev); 5715 5716 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5717 netif_napi_del(p); 5718 5719 free_percpu(dev->pcpu_refcnt); 5720 dev->pcpu_refcnt = NULL; 5721 5722 /* Compatibility with error handling in drivers */ 5723 if (dev->reg_state == NETREG_UNINITIALIZED) { 5724 kfree((char *)dev - dev->padded); 5725 return; 5726 } 5727 5728 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5729 dev->reg_state = NETREG_RELEASED; 5730 5731 /* will free via device release */ 5732 put_device(&dev->dev); 5733 } 5734 EXPORT_SYMBOL(free_netdev); 5735 5736 /** 5737 * synchronize_net - Synchronize with packet receive processing 5738 * 5739 * Wait for packets currently being received to be done. 5740 * Does not block later packets from starting. 5741 */ 5742 void synchronize_net(void) 5743 { 5744 might_sleep(); 5745 if (rtnl_is_locked()) 5746 synchronize_rcu_expedited(); 5747 else 5748 synchronize_rcu(); 5749 } 5750 EXPORT_SYMBOL(synchronize_net); 5751 5752 /** 5753 * unregister_netdevice_queue - remove device from the kernel 5754 * @dev: device 5755 * @head: list 5756 * 5757 * This function shuts down a device interface and removes it 5758 * from the kernel tables. 5759 * If head not NULL, device is queued to be unregistered later. 5760 * 5761 * Callers must hold the rtnl semaphore. You may want 5762 * unregister_netdev() instead of this. 5763 */ 5764 5765 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5766 { 5767 ASSERT_RTNL(); 5768 5769 if (head) { 5770 list_move_tail(&dev->unreg_list, head); 5771 } else { 5772 rollback_registered(dev); 5773 /* Finish processing unregister after unlock */ 5774 net_set_todo(dev); 5775 } 5776 } 5777 EXPORT_SYMBOL(unregister_netdevice_queue); 5778 5779 /** 5780 * unregister_netdevice_many - unregister many devices 5781 * @head: list of devices 5782 */ 5783 void unregister_netdevice_many(struct list_head *head) 5784 { 5785 struct net_device *dev; 5786 5787 if (!list_empty(head)) { 5788 rollback_registered_many(head); 5789 list_for_each_entry(dev, head, unreg_list) 5790 net_set_todo(dev); 5791 } 5792 } 5793 EXPORT_SYMBOL(unregister_netdevice_many); 5794 5795 /** 5796 * unregister_netdev - remove device from the kernel 5797 * @dev: device 5798 * 5799 * This function shuts down a device interface and removes it 5800 * from the kernel tables. 5801 * 5802 * This is just a wrapper for unregister_netdevice that takes 5803 * the rtnl semaphore. In general you want to use this and not 5804 * unregister_netdevice. 5805 */ 5806 void unregister_netdev(struct net_device *dev) 5807 { 5808 rtnl_lock(); 5809 unregister_netdevice(dev); 5810 rtnl_unlock(); 5811 } 5812 EXPORT_SYMBOL(unregister_netdev); 5813 5814 /** 5815 * dev_change_net_namespace - move device to different nethost namespace 5816 * @dev: device 5817 * @net: network namespace 5818 * @pat: If not NULL name pattern to try if the current device name 5819 * is already taken in the destination network namespace. 5820 * 5821 * This function shuts down a device interface and moves it 5822 * to a new network namespace. On success 0 is returned, on 5823 * a failure a netagive errno code is returned. 5824 * 5825 * Callers must hold the rtnl semaphore. 5826 */ 5827 5828 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5829 { 5830 int err; 5831 5832 ASSERT_RTNL(); 5833 5834 /* Don't allow namespace local devices to be moved. */ 5835 err = -EINVAL; 5836 if (dev->features & NETIF_F_NETNS_LOCAL) 5837 goto out; 5838 5839 /* Ensure the device has been registrered */ 5840 if (dev->reg_state != NETREG_REGISTERED) 5841 goto out; 5842 5843 /* Get out if there is nothing todo */ 5844 err = 0; 5845 if (net_eq(dev_net(dev), net)) 5846 goto out; 5847 5848 /* Pick the destination device name, and ensure 5849 * we can use it in the destination network namespace. 5850 */ 5851 err = -EEXIST; 5852 if (__dev_get_by_name(net, dev->name)) { 5853 /* We get here if we can't use the current device name */ 5854 if (!pat) 5855 goto out; 5856 if (dev_get_valid_name(net, dev, pat) < 0) 5857 goto out; 5858 } 5859 5860 /* 5861 * And now a mini version of register_netdevice unregister_netdevice. 5862 */ 5863 5864 /* If device is running close it first. */ 5865 dev_close(dev); 5866 5867 /* And unlink it from device chain */ 5868 err = -ENODEV; 5869 unlist_netdevice(dev); 5870 5871 synchronize_net(); 5872 5873 /* Shutdown queueing discipline. */ 5874 dev_shutdown(dev); 5875 5876 /* Notify protocols, that we are about to destroy 5877 this device. They should clean all the things. 5878 5879 Note that dev->reg_state stays at NETREG_REGISTERED. 5880 This is wanted because this way 8021q and macvlan know 5881 the device is just moving and can keep their slaves up. 5882 */ 5883 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5884 rcu_barrier(); 5885 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5886 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5887 5888 /* 5889 * Flush the unicast and multicast chains 5890 */ 5891 dev_uc_flush(dev); 5892 dev_mc_flush(dev); 5893 5894 /* Send a netdev-removed uevent to the old namespace */ 5895 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 5896 5897 /* Actually switch the network namespace */ 5898 dev_net_set(dev, net); 5899 5900 /* If there is an ifindex conflict assign a new one */ 5901 if (__dev_get_by_index(net, dev->ifindex)) { 5902 int iflink = (dev->iflink == dev->ifindex); 5903 dev->ifindex = dev_new_index(net); 5904 if (iflink) 5905 dev->iflink = dev->ifindex; 5906 } 5907 5908 /* Send a netdev-add uevent to the new namespace */ 5909 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 5910 5911 /* Fixup kobjects */ 5912 err = device_rename(&dev->dev, dev->name); 5913 WARN_ON(err); 5914 5915 /* Add the device back in the hashes */ 5916 list_netdevice(dev); 5917 5918 /* Notify protocols, that a new device appeared. */ 5919 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5920 5921 /* 5922 * Prevent userspace races by waiting until the network 5923 * device is fully setup before sending notifications. 5924 */ 5925 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5926 5927 synchronize_net(); 5928 err = 0; 5929 out: 5930 return err; 5931 } 5932 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5933 5934 static int dev_cpu_callback(struct notifier_block *nfb, 5935 unsigned long action, 5936 void *ocpu) 5937 { 5938 struct sk_buff **list_skb; 5939 struct sk_buff *skb; 5940 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5941 struct softnet_data *sd, *oldsd; 5942 5943 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5944 return NOTIFY_OK; 5945 5946 local_irq_disable(); 5947 cpu = smp_processor_id(); 5948 sd = &per_cpu(softnet_data, cpu); 5949 oldsd = &per_cpu(softnet_data, oldcpu); 5950 5951 /* Find end of our completion_queue. */ 5952 list_skb = &sd->completion_queue; 5953 while (*list_skb) 5954 list_skb = &(*list_skb)->next; 5955 /* Append completion queue from offline CPU. */ 5956 *list_skb = oldsd->completion_queue; 5957 oldsd->completion_queue = NULL; 5958 5959 /* Append output queue from offline CPU. */ 5960 if (oldsd->output_queue) { 5961 *sd->output_queue_tailp = oldsd->output_queue; 5962 sd->output_queue_tailp = oldsd->output_queue_tailp; 5963 oldsd->output_queue = NULL; 5964 oldsd->output_queue_tailp = &oldsd->output_queue; 5965 } 5966 /* Append NAPI poll list from offline CPU. */ 5967 if (!list_empty(&oldsd->poll_list)) { 5968 list_splice_init(&oldsd->poll_list, &sd->poll_list); 5969 raise_softirq_irqoff(NET_RX_SOFTIRQ); 5970 } 5971 5972 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5973 local_irq_enable(); 5974 5975 /* Process offline CPU's input_pkt_queue */ 5976 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 5977 netif_rx(skb); 5978 input_queue_head_incr(oldsd); 5979 } 5980 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 5981 netif_rx(skb); 5982 input_queue_head_incr(oldsd); 5983 } 5984 5985 return NOTIFY_OK; 5986 } 5987 5988 5989 /** 5990 * netdev_increment_features - increment feature set by one 5991 * @all: current feature set 5992 * @one: new feature set 5993 * @mask: mask feature set 5994 * 5995 * Computes a new feature set after adding a device with feature set 5996 * @one to the master device with current feature set @all. Will not 5997 * enable anything that is off in @mask. Returns the new feature set. 5998 */ 5999 netdev_features_t netdev_increment_features(netdev_features_t all, 6000 netdev_features_t one, netdev_features_t mask) 6001 { 6002 if (mask & NETIF_F_GEN_CSUM) 6003 mask |= NETIF_F_ALL_CSUM; 6004 mask |= NETIF_F_VLAN_CHALLENGED; 6005 6006 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6007 all &= one | ~NETIF_F_ALL_FOR_ALL; 6008 6009 /* If one device supports hw checksumming, set for all. */ 6010 if (all & NETIF_F_GEN_CSUM) 6011 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6012 6013 return all; 6014 } 6015 EXPORT_SYMBOL(netdev_increment_features); 6016 6017 static struct hlist_head *netdev_create_hash(void) 6018 { 6019 int i; 6020 struct hlist_head *hash; 6021 6022 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6023 if (hash != NULL) 6024 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6025 INIT_HLIST_HEAD(&hash[i]); 6026 6027 return hash; 6028 } 6029 6030 /* Initialize per network namespace state */ 6031 static int __net_init netdev_init(struct net *net) 6032 { 6033 if (net != &init_net) 6034 INIT_LIST_HEAD(&net->dev_base_head); 6035 6036 net->dev_name_head = netdev_create_hash(); 6037 if (net->dev_name_head == NULL) 6038 goto err_name; 6039 6040 net->dev_index_head = netdev_create_hash(); 6041 if (net->dev_index_head == NULL) 6042 goto err_idx; 6043 6044 return 0; 6045 6046 err_idx: 6047 kfree(net->dev_name_head); 6048 err_name: 6049 return -ENOMEM; 6050 } 6051 6052 /** 6053 * netdev_drivername - network driver for the device 6054 * @dev: network device 6055 * 6056 * Determine network driver for device. 6057 */ 6058 const char *netdev_drivername(const struct net_device *dev) 6059 { 6060 const struct device_driver *driver; 6061 const struct device *parent; 6062 const char *empty = ""; 6063 6064 parent = dev->dev.parent; 6065 if (!parent) 6066 return empty; 6067 6068 driver = parent->driver; 6069 if (driver && driver->name) 6070 return driver->name; 6071 return empty; 6072 } 6073 6074 static int __netdev_printk(const char *level, const struct net_device *dev, 6075 struct va_format *vaf) 6076 { 6077 int r; 6078 6079 if (dev && dev->dev.parent) { 6080 r = dev_printk_emit(level[1] - '0', 6081 dev->dev.parent, 6082 "%s %s %s: %pV", 6083 dev_driver_string(dev->dev.parent), 6084 dev_name(dev->dev.parent), 6085 netdev_name(dev), vaf); 6086 } else if (dev) { 6087 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6088 } else { 6089 r = printk("%s(NULL net_device): %pV", level, vaf); 6090 } 6091 6092 return r; 6093 } 6094 6095 int netdev_printk(const char *level, const struct net_device *dev, 6096 const char *format, ...) 6097 { 6098 struct va_format vaf; 6099 va_list args; 6100 int r; 6101 6102 va_start(args, format); 6103 6104 vaf.fmt = format; 6105 vaf.va = &args; 6106 6107 r = __netdev_printk(level, dev, &vaf); 6108 6109 va_end(args); 6110 6111 return r; 6112 } 6113 EXPORT_SYMBOL(netdev_printk); 6114 6115 #define define_netdev_printk_level(func, level) \ 6116 int func(const struct net_device *dev, const char *fmt, ...) \ 6117 { \ 6118 int r; \ 6119 struct va_format vaf; \ 6120 va_list args; \ 6121 \ 6122 va_start(args, fmt); \ 6123 \ 6124 vaf.fmt = fmt; \ 6125 vaf.va = &args; \ 6126 \ 6127 r = __netdev_printk(level, dev, &vaf); \ 6128 \ 6129 va_end(args); \ 6130 \ 6131 return r; \ 6132 } \ 6133 EXPORT_SYMBOL(func); 6134 6135 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6136 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6137 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6138 define_netdev_printk_level(netdev_err, KERN_ERR); 6139 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6140 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6141 define_netdev_printk_level(netdev_info, KERN_INFO); 6142 6143 static void __net_exit netdev_exit(struct net *net) 6144 { 6145 kfree(net->dev_name_head); 6146 kfree(net->dev_index_head); 6147 } 6148 6149 static struct pernet_operations __net_initdata netdev_net_ops = { 6150 .init = netdev_init, 6151 .exit = netdev_exit, 6152 }; 6153 6154 static void __net_exit default_device_exit(struct net *net) 6155 { 6156 struct net_device *dev, *aux; 6157 /* 6158 * Push all migratable network devices back to the 6159 * initial network namespace 6160 */ 6161 rtnl_lock(); 6162 for_each_netdev_safe(net, dev, aux) { 6163 int err; 6164 char fb_name[IFNAMSIZ]; 6165 6166 /* Ignore unmoveable devices (i.e. loopback) */ 6167 if (dev->features & NETIF_F_NETNS_LOCAL) 6168 continue; 6169 6170 /* Leave virtual devices for the generic cleanup */ 6171 if (dev->rtnl_link_ops) 6172 continue; 6173 6174 /* Push remaining network devices to init_net */ 6175 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6176 err = dev_change_net_namespace(dev, &init_net, fb_name); 6177 if (err) { 6178 pr_emerg("%s: failed to move %s to init_net: %d\n", 6179 __func__, dev->name, err); 6180 BUG(); 6181 } 6182 } 6183 rtnl_unlock(); 6184 } 6185 6186 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6187 { 6188 /* At exit all network devices most be removed from a network 6189 * namespace. Do this in the reverse order of registration. 6190 * Do this across as many network namespaces as possible to 6191 * improve batching efficiency. 6192 */ 6193 struct net_device *dev; 6194 struct net *net; 6195 LIST_HEAD(dev_kill_list); 6196 6197 rtnl_lock(); 6198 list_for_each_entry(net, net_list, exit_list) { 6199 for_each_netdev_reverse(net, dev) { 6200 if (dev->rtnl_link_ops) 6201 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6202 else 6203 unregister_netdevice_queue(dev, &dev_kill_list); 6204 } 6205 } 6206 unregister_netdevice_many(&dev_kill_list); 6207 list_del(&dev_kill_list); 6208 rtnl_unlock(); 6209 } 6210 6211 static struct pernet_operations __net_initdata default_device_ops = { 6212 .exit = default_device_exit, 6213 .exit_batch = default_device_exit_batch, 6214 }; 6215 6216 /* 6217 * Initialize the DEV module. At boot time this walks the device list and 6218 * unhooks any devices that fail to initialise (normally hardware not 6219 * present) and leaves us with a valid list of present and active devices. 6220 * 6221 */ 6222 6223 /* 6224 * This is called single threaded during boot, so no need 6225 * to take the rtnl semaphore. 6226 */ 6227 static int __init net_dev_init(void) 6228 { 6229 int i, rc = -ENOMEM; 6230 6231 BUG_ON(!dev_boot_phase); 6232 6233 if (dev_proc_init()) 6234 goto out; 6235 6236 if (netdev_kobject_init()) 6237 goto out; 6238 6239 INIT_LIST_HEAD(&ptype_all); 6240 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6241 INIT_LIST_HEAD(&ptype_base[i]); 6242 6243 INIT_LIST_HEAD(&offload_base); 6244 6245 if (register_pernet_subsys(&netdev_net_ops)) 6246 goto out; 6247 6248 /* 6249 * Initialise the packet receive queues. 6250 */ 6251 6252 for_each_possible_cpu(i) { 6253 struct softnet_data *sd = &per_cpu(softnet_data, i); 6254 6255 memset(sd, 0, sizeof(*sd)); 6256 skb_queue_head_init(&sd->input_pkt_queue); 6257 skb_queue_head_init(&sd->process_queue); 6258 sd->completion_queue = NULL; 6259 INIT_LIST_HEAD(&sd->poll_list); 6260 sd->output_queue = NULL; 6261 sd->output_queue_tailp = &sd->output_queue; 6262 #ifdef CONFIG_RPS 6263 sd->csd.func = rps_trigger_softirq; 6264 sd->csd.info = sd; 6265 sd->csd.flags = 0; 6266 sd->cpu = i; 6267 #endif 6268 6269 sd->backlog.poll = process_backlog; 6270 sd->backlog.weight = weight_p; 6271 sd->backlog.gro_list = NULL; 6272 sd->backlog.gro_count = 0; 6273 } 6274 6275 dev_boot_phase = 0; 6276 6277 /* The loopback device is special if any other network devices 6278 * is present in a network namespace the loopback device must 6279 * be present. Since we now dynamically allocate and free the 6280 * loopback device ensure this invariant is maintained by 6281 * keeping the loopback device as the first device on the 6282 * list of network devices. Ensuring the loopback devices 6283 * is the first device that appears and the last network device 6284 * that disappears. 6285 */ 6286 if (register_pernet_device(&loopback_net_ops)) 6287 goto out; 6288 6289 if (register_pernet_device(&default_device_ops)) 6290 goto out; 6291 6292 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6293 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6294 6295 hotcpu_notifier(dev_cpu_callback, 0); 6296 dst_init(); 6297 rc = 0; 6298 out: 6299 return rc; 6300 } 6301 6302 subsys_initcall(net_dev_init); 6303