xref: /openbmc/linux/net/core/dev.c (revision ecfa80ce)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "dev.h"
155 #include "net-sysfs.h"
156 
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 					 struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191 
192 static DEFINE_MUTEX(ifalias_mutex);
193 
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196 
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 
200 static DECLARE_RWSEM(devnet_rename_sem);
201 
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 	while (++net->dev_base_seq == 0)
205 		;
206 }
207 
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 				    unsigned long *flags)
222 {
223 	if (IS_ENABLED(CONFIG_RPS))
224 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 		local_irq_save(*flags);
227 }
228 
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 	if (IS_ENABLED(CONFIG_RPS))
232 		spin_lock_irq(&sd->input_pkt_queue.lock);
233 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 		local_irq_disable();
235 }
236 
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 					  unsigned long *flags)
239 {
240 	if (IS_ENABLED(CONFIG_RPS))
241 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 		local_irq_restore(*flags);
244 }
245 
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 	if (IS_ENABLED(CONFIG_RPS))
249 		spin_unlock_irq(&sd->input_pkt_queue.lock);
250 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 		local_irq_enable();
252 }
253 
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 						       const char *name)
256 {
257 	struct netdev_name_node *name_node;
258 
259 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 	if (!name_node)
261 		return NULL;
262 	INIT_HLIST_NODE(&name_node->hlist);
263 	name_node->dev = dev;
264 	name_node->name = name;
265 	return name_node;
266 }
267 
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 	struct netdev_name_node *name_node;
272 
273 	name_node = netdev_name_node_alloc(dev, dev->name);
274 	if (!name_node)
275 		return NULL;
276 	INIT_LIST_HEAD(&name_node->list);
277 	return name_node;
278 }
279 
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 	kfree(name_node);
283 }
284 
285 static void netdev_name_node_add(struct net *net,
286 				 struct netdev_name_node *name_node)
287 {
288 	hlist_add_head_rcu(&name_node->hlist,
289 			   dev_name_hash(net, name_node->name));
290 }
291 
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 	hlist_del_rcu(&name_node->hlist);
295 }
296 
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 							const char *name)
299 {
300 	struct hlist_head *head = dev_name_hash(net, name);
301 	struct netdev_name_node *name_node;
302 
303 	hlist_for_each_entry(name_node, head, hlist)
304 		if (!strcmp(name_node->name, name))
305 			return name_node;
306 	return NULL;
307 }
308 
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 							    const char *name)
311 {
312 	struct hlist_head *head = dev_name_hash(net, name);
313 	struct netdev_name_node *name_node;
314 
315 	hlist_for_each_entry_rcu(name_node, head, hlist)
316 		if (!strcmp(name_node->name, name))
317 			return name_node;
318 	return NULL;
319 }
320 
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 	return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326 
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (name_node)
334 		return -EEXIST;
335 	name_node = netdev_name_node_alloc(dev, name);
336 	if (!name_node)
337 		return -ENOMEM;
338 	netdev_name_node_add(net, name_node);
339 	/* The node that holds dev->name acts as a head of per-device list. */
340 	list_add_tail(&name_node->list, &dev->name_node->list);
341 
342 	return 0;
343 }
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	netdev_name_node_del(name_node);
349 	kfree(name_node->name);
350 	netdev_name_node_free(name_node);
351 }
352 
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355 	struct netdev_name_node *name_node;
356 	struct net *net = dev_net(dev);
357 
358 	name_node = netdev_name_node_lookup(net, name);
359 	if (!name_node)
360 		return -ENOENT;
361 	/* lookup might have found our primary name or a name belonging
362 	 * to another device.
363 	 */
364 	if (name_node == dev->name_node || name_node->dev != dev)
365 		return -EINVAL;
366 
367 	__netdev_name_node_alt_destroy(name_node);
368 
369 	return 0;
370 }
371 
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374 	struct netdev_name_node *name_node, *tmp;
375 
376 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 		__netdev_name_node_alt_destroy(name_node);
378 }
379 
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383 	struct net *net = dev_net(dev);
384 
385 	ASSERT_RTNL();
386 
387 	write_lock(&dev_base_lock);
388 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 	netdev_name_node_add(net, dev->name_node);
390 	hlist_add_head_rcu(&dev->index_hlist,
391 			   dev_index_hash(net, dev->ifindex));
392 	write_unlock(&dev_base_lock);
393 
394 	dev_base_seq_inc(net);
395 }
396 
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev, bool lock)
401 {
402 	ASSERT_RTNL();
403 
404 	/* Unlink dev from the device chain */
405 	if (lock)
406 		write_lock(&dev_base_lock);
407 	list_del_rcu(&dev->dev_list);
408 	netdev_name_node_del(dev->name_node);
409 	hlist_del_rcu(&dev->index_hlist);
410 	if (lock)
411 		write_unlock(&dev_base_lock);
412 
413 	dev_base_seq_inc(dev_net(dev));
414 }
415 
416 /*
417  *	Our notifier list
418  */
419 
420 static RAW_NOTIFIER_HEAD(netdev_chain);
421 
422 /*
423  *	Device drivers call our routines to queue packets here. We empty the
424  *	queue in the local softnet handler.
425  */
426 
427 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428 EXPORT_PER_CPU_SYMBOL(softnet_data);
429 
430 #ifdef CONFIG_LOCKDEP
431 /*
432  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433  * according to dev->type
434  */
435 static const unsigned short netdev_lock_type[] = {
436 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451 
452 static const char *const netdev_lock_name[] = {
453 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468 
469 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471 
472 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473 {
474 	int i;
475 
476 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477 		if (netdev_lock_type[i] == dev_type)
478 			return i;
479 	/* the last key is used by default */
480 	return ARRAY_SIZE(netdev_lock_type) - 1;
481 }
482 
483 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484 						 unsigned short dev_type)
485 {
486 	int i;
487 
488 	i = netdev_lock_pos(dev_type);
489 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490 				   netdev_lock_name[i]);
491 }
492 
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495 	int i;
496 
497 	i = netdev_lock_pos(dev->type);
498 	lockdep_set_class_and_name(&dev->addr_list_lock,
499 				   &netdev_addr_lock_key[i],
500 				   netdev_lock_name[i]);
501 }
502 #else
503 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504 						 unsigned short dev_type)
505 {
506 }
507 
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510 }
511 #endif
512 
513 /*******************************************************************************
514  *
515  *		Protocol management and registration routines
516  *
517  *******************************************************************************/
518 
519 
520 /*
521  *	Add a protocol ID to the list. Now that the input handler is
522  *	smarter we can dispense with all the messy stuff that used to be
523  *	here.
524  *
525  *	BEWARE!!! Protocol handlers, mangling input packets,
526  *	MUST BE last in hash buckets and checking protocol handlers
527  *	MUST start from promiscuous ptype_all chain in net_bh.
528  *	It is true now, do not change it.
529  *	Explanation follows: if protocol handler, mangling packet, will
530  *	be the first on list, it is not able to sense, that packet
531  *	is cloned and should be copied-on-write, so that it will
532  *	change it and subsequent readers will get broken packet.
533  *							--ANK (980803)
534  */
535 
536 static inline struct list_head *ptype_head(const struct packet_type *pt)
537 {
538 	if (pt->type == htons(ETH_P_ALL))
539 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540 	else
541 		return pt->dev ? &pt->dev->ptype_specific :
542 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543 }
544 
545 /**
546  *	dev_add_pack - add packet handler
547  *	@pt: packet type declaration
548  *
549  *	Add a protocol handler to the networking stack. The passed &packet_type
550  *	is linked into kernel lists and may not be freed until it has been
551  *	removed from the kernel lists.
552  *
553  *	This call does not sleep therefore it can not
554  *	guarantee all CPU's that are in middle of receiving packets
555  *	will see the new packet type (until the next received packet).
556  */
557 
558 void dev_add_pack(struct packet_type *pt)
559 {
560 	struct list_head *head = ptype_head(pt);
561 
562 	spin_lock(&ptype_lock);
563 	list_add_rcu(&pt->list, head);
564 	spin_unlock(&ptype_lock);
565 }
566 EXPORT_SYMBOL(dev_add_pack);
567 
568 /**
569  *	__dev_remove_pack	 - remove packet handler
570  *	@pt: packet type declaration
571  *
572  *	Remove a protocol handler that was previously added to the kernel
573  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
574  *	from the kernel lists and can be freed or reused once this function
575  *	returns.
576  *
577  *      The packet type might still be in use by receivers
578  *	and must not be freed until after all the CPU's have gone
579  *	through a quiescent state.
580  */
581 void __dev_remove_pack(struct packet_type *pt)
582 {
583 	struct list_head *head = ptype_head(pt);
584 	struct packet_type *pt1;
585 
586 	spin_lock(&ptype_lock);
587 
588 	list_for_each_entry(pt1, head, list) {
589 		if (pt == pt1) {
590 			list_del_rcu(&pt->list);
591 			goto out;
592 		}
593 	}
594 
595 	pr_warn("dev_remove_pack: %p not found\n", pt);
596 out:
597 	spin_unlock(&ptype_lock);
598 }
599 EXPORT_SYMBOL(__dev_remove_pack);
600 
601 /**
602  *	dev_remove_pack	 - remove packet handler
603  *	@pt: packet type declaration
604  *
605  *	Remove a protocol handler that was previously added to the kernel
606  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
607  *	from the kernel lists and can be freed or reused once this function
608  *	returns.
609  *
610  *	This call sleeps to guarantee that no CPU is looking at the packet
611  *	type after return.
612  */
613 void dev_remove_pack(struct packet_type *pt)
614 {
615 	__dev_remove_pack(pt);
616 
617 	synchronize_net();
618 }
619 EXPORT_SYMBOL(dev_remove_pack);
620 
621 
622 /*******************************************************************************
623  *
624  *			    Device Interface Subroutines
625  *
626  *******************************************************************************/
627 
628 /**
629  *	dev_get_iflink	- get 'iflink' value of a interface
630  *	@dev: targeted interface
631  *
632  *	Indicates the ifindex the interface is linked to.
633  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
634  */
635 
636 int dev_get_iflink(const struct net_device *dev)
637 {
638 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639 		return dev->netdev_ops->ndo_get_iflink(dev);
640 
641 	return dev->ifindex;
642 }
643 EXPORT_SYMBOL(dev_get_iflink);
644 
645 /**
646  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
647  *	@dev: targeted interface
648  *	@skb: The packet.
649  *
650  *	For better visibility of tunnel traffic OVS needs to retrieve
651  *	egress tunnel information for a packet. Following API allows
652  *	user to get this info.
653  */
654 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655 {
656 	struct ip_tunnel_info *info;
657 
658 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
659 		return -EINVAL;
660 
661 	info = skb_tunnel_info_unclone(skb);
662 	if (!info)
663 		return -ENOMEM;
664 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665 		return -EINVAL;
666 
667 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668 }
669 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670 
671 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672 {
673 	int k = stack->num_paths++;
674 
675 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676 		return NULL;
677 
678 	return &stack->path[k];
679 }
680 
681 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682 			  struct net_device_path_stack *stack)
683 {
684 	const struct net_device *last_dev;
685 	struct net_device_path_ctx ctx = {
686 		.dev	= dev,
687 	};
688 	struct net_device_path *path;
689 	int ret = 0;
690 
691 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692 	stack->num_paths = 0;
693 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694 		last_dev = ctx.dev;
695 		path = dev_fwd_path(stack);
696 		if (!path)
697 			return -1;
698 
699 		memset(path, 0, sizeof(struct net_device_path));
700 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701 		if (ret < 0)
702 			return -1;
703 
704 		if (WARN_ON_ONCE(last_dev == ctx.dev))
705 			return -1;
706 	}
707 
708 	if (!ctx.dev)
709 		return ret;
710 
711 	path = dev_fwd_path(stack);
712 	if (!path)
713 		return -1;
714 	path->type = DEV_PATH_ETHERNET;
715 	path->dev = ctx.dev;
716 
717 	return ret;
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720 
721 /**
722  *	__dev_get_by_name	- find a device by its name
723  *	@net: the applicable net namespace
724  *	@name: name to find
725  *
726  *	Find an interface by name. Must be called under RTNL semaphore
727  *	or @dev_base_lock. If the name is found a pointer to the device
728  *	is returned. If the name is not found then %NULL is returned. The
729  *	reference counters are not incremented so the caller must be
730  *	careful with locks.
731  */
732 
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735 	struct netdev_name_node *node_name;
736 
737 	node_name = netdev_name_node_lookup(net, name);
738 	return node_name ? node_name->dev : NULL;
739 }
740 EXPORT_SYMBOL(__dev_get_by_name);
741 
742 /**
743  * dev_get_by_name_rcu	- find a device by its name
744  * @net: the applicable net namespace
745  * @name: name to find
746  *
747  * Find an interface by name.
748  * If the name is found a pointer to the device is returned.
749  * If the name is not found then %NULL is returned.
750  * The reference counters are not incremented so the caller must be
751  * careful with locks. The caller must hold RCU lock.
752  */
753 
754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755 {
756 	struct netdev_name_node *node_name;
757 
758 	node_name = netdev_name_node_lookup_rcu(net, name);
759 	return node_name ? node_name->dev : NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762 
763 /**
764  *	dev_get_by_name		- find a device by its name
765  *	@net: the applicable net namespace
766  *	@name: name to find
767  *
768  *	Find an interface by name. This can be called from any
769  *	context and does its own locking. The returned handle has
770  *	the usage count incremented and the caller must use dev_put() to
771  *	release it when it is no longer needed. %NULL is returned if no
772  *	matching device is found.
773  */
774 
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777 	struct net_device *dev;
778 
779 	rcu_read_lock();
780 	dev = dev_get_by_name_rcu(net, name);
781 	dev_hold(dev);
782 	rcu_read_unlock();
783 	return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786 
787 /**
788  *	__dev_get_by_index - find a device by its ifindex
789  *	@net: the applicable net namespace
790  *	@ifindex: index of device
791  *
792  *	Search for an interface by index. Returns %NULL if the device
793  *	is not found or a pointer to the device. The device has not
794  *	had its reference counter increased so the caller must be careful
795  *	about locking. The caller must hold either the RTNL semaphore
796  *	or @dev_base_lock.
797  */
798 
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801 	struct net_device *dev;
802 	struct hlist_head *head = dev_index_hash(net, ifindex);
803 
804 	hlist_for_each_entry(dev, head, index_hlist)
805 		if (dev->ifindex == ifindex)
806 			return dev;
807 
808 	return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811 
812 /**
813  *	dev_get_by_index_rcu - find a device by its ifindex
814  *	@net: the applicable net namespace
815  *	@ifindex: index of device
816  *
817  *	Search for an interface by index. Returns %NULL if the device
818  *	is not found or a pointer to the device. The device has not
819  *	had its reference counter increased so the caller must be careful
820  *	about locking. The caller must hold RCU lock.
821  */
822 
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825 	struct net_device *dev;
826 	struct hlist_head *head = dev_index_hash(net, ifindex);
827 
828 	hlist_for_each_entry_rcu(dev, head, index_hlist)
829 		if (dev->ifindex == ifindex)
830 			return dev;
831 
832 	return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835 
836 
837 /**
838  *	dev_get_by_index - find a device by its ifindex
839  *	@net: the applicable net namespace
840  *	@ifindex: index of device
841  *
842  *	Search for an interface by index. Returns NULL if the device
843  *	is not found or a pointer to the device. The device returned has
844  *	had a reference added and the pointer is safe until the user calls
845  *	dev_put to indicate they have finished with it.
846  */
847 
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850 	struct net_device *dev;
851 
852 	rcu_read_lock();
853 	dev = dev_get_by_index_rcu(net, ifindex);
854 	dev_hold(dev);
855 	rcu_read_unlock();
856 	return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859 
860 /**
861  *	dev_get_by_napi_id - find a device by napi_id
862  *	@napi_id: ID of the NAPI struct
863  *
864  *	Search for an interface by NAPI ID. Returns %NULL if the device
865  *	is not found or a pointer to the device. The device has not had
866  *	its reference counter increased so the caller must be careful
867  *	about locking. The caller must hold RCU lock.
868  */
869 
870 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871 {
872 	struct napi_struct *napi;
873 
874 	WARN_ON_ONCE(!rcu_read_lock_held());
875 
876 	if (napi_id < MIN_NAPI_ID)
877 		return NULL;
878 
879 	napi = napi_by_id(napi_id);
880 
881 	return napi ? napi->dev : NULL;
882 }
883 EXPORT_SYMBOL(dev_get_by_napi_id);
884 
885 /**
886  *	netdev_get_name - get a netdevice name, knowing its ifindex.
887  *	@net: network namespace
888  *	@name: a pointer to the buffer where the name will be stored.
889  *	@ifindex: the ifindex of the interface to get the name from.
890  */
891 int netdev_get_name(struct net *net, char *name, int ifindex)
892 {
893 	struct net_device *dev;
894 	int ret;
895 
896 	down_read(&devnet_rename_sem);
897 	rcu_read_lock();
898 
899 	dev = dev_get_by_index_rcu(net, ifindex);
900 	if (!dev) {
901 		ret = -ENODEV;
902 		goto out;
903 	}
904 
905 	strcpy(name, dev->name);
906 
907 	ret = 0;
908 out:
909 	rcu_read_unlock();
910 	up_read(&devnet_rename_sem);
911 	return ret;
912 }
913 
914 /**
915  *	dev_getbyhwaddr_rcu - find a device by its hardware address
916  *	@net: the applicable net namespace
917  *	@type: media type of device
918  *	@ha: hardware address
919  *
920  *	Search for an interface by MAC address. Returns NULL if the device
921  *	is not found or a pointer to the device.
922  *	The caller must hold RCU or RTNL.
923  *	The returned device has not had its ref count increased
924  *	and the caller must therefore be careful about locking
925  *
926  */
927 
928 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929 				       const char *ha)
930 {
931 	struct net_device *dev;
932 
933 	for_each_netdev_rcu(net, dev)
934 		if (dev->type == type &&
935 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
936 			return dev;
937 
938 	return NULL;
939 }
940 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941 
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944 	struct net_device *dev, *ret = NULL;
945 
946 	rcu_read_lock();
947 	for_each_netdev_rcu(net, dev)
948 		if (dev->type == type) {
949 			dev_hold(dev);
950 			ret = dev;
951 			break;
952 		}
953 	rcu_read_unlock();
954 	return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957 
958 /**
959  *	__dev_get_by_flags - find any device with given flags
960  *	@net: the applicable net namespace
961  *	@if_flags: IFF_* values
962  *	@mask: bitmask of bits in if_flags to check
963  *
964  *	Search for any interface with the given flags. Returns NULL if a device
965  *	is not found or a pointer to the device. Must be called inside
966  *	rtnl_lock(), and result refcount is unchanged.
967  */
968 
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970 				      unsigned short mask)
971 {
972 	struct net_device *dev, *ret;
973 
974 	ASSERT_RTNL();
975 
976 	ret = NULL;
977 	for_each_netdev(net, dev) {
978 		if (((dev->flags ^ if_flags) & mask) == 0) {
979 			ret = dev;
980 			break;
981 		}
982 	}
983 	return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986 
987 /**
988  *	dev_valid_name - check if name is okay for network device
989  *	@name: name string
990  *
991  *	Network device names need to be valid file names to
992  *	allow sysfs to work.  We also disallow any kind of
993  *	whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997 	if (*name == '\0')
998 		return false;
999 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000 		return false;
1001 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1002 		return false;
1003 
1004 	while (*name) {
1005 		if (*name == '/' || *name == ':' || isspace(*name))
1006 			return false;
1007 		name++;
1008 	}
1009 	return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012 
1013 /**
1014  *	__dev_alloc_name - allocate a name for a device
1015  *	@net: network namespace to allocate the device name in
1016  *	@name: name format string
1017  *	@buf:  scratch buffer and result name string
1018  *
1019  *	Passed a format string - eg "lt%d" it will try and find a suitable
1020  *	id. It scans list of devices to build up a free map, then chooses
1021  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *	while allocating the name and adding the device in order to avoid
1023  *	duplicates.
1024  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *	Returns the number of the unit assigned or a negative errno code.
1026  */
1027 
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030 	int i = 0;
1031 	const char *p;
1032 	const int max_netdevices = 8*PAGE_SIZE;
1033 	unsigned long *inuse;
1034 	struct net_device *d;
1035 
1036 	if (!dev_valid_name(name))
1037 		return -EINVAL;
1038 
1039 	p = strchr(name, '%');
1040 	if (p) {
1041 		/*
1042 		 * Verify the string as this thing may have come from
1043 		 * the user.  There must be either one "%d" and no other "%"
1044 		 * characters.
1045 		 */
1046 		if (p[1] != 'd' || strchr(p + 2, '%'))
1047 			return -EINVAL;
1048 
1049 		/* Use one page as a bit array of possible slots */
1050 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051 		if (!inuse)
1052 			return -ENOMEM;
1053 
1054 		for_each_netdev(net, d) {
1055 			struct netdev_name_node *name_node;
1056 			list_for_each_entry(name_node, &d->name_node->list, list) {
1057 				if (!sscanf(name_node->name, name, &i))
1058 					continue;
1059 				if (i < 0 || i >= max_netdevices)
1060 					continue;
1061 
1062 				/*  avoid cases where sscanf is not exact inverse of printf */
1063 				snprintf(buf, IFNAMSIZ, name, i);
1064 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065 					__set_bit(i, inuse);
1066 			}
1067 			if (!sscanf(d->name, name, &i))
1068 				continue;
1069 			if (i < 0 || i >= max_netdevices)
1070 				continue;
1071 
1072 			/*  avoid cases where sscanf is not exact inverse of printf */
1073 			snprintf(buf, IFNAMSIZ, name, i);
1074 			if (!strncmp(buf, d->name, IFNAMSIZ))
1075 				__set_bit(i, inuse);
1076 		}
1077 
1078 		i = find_first_zero_bit(inuse, max_netdevices);
1079 		free_page((unsigned long) inuse);
1080 	}
1081 
1082 	snprintf(buf, IFNAMSIZ, name, i);
1083 	if (!netdev_name_in_use(net, buf))
1084 		return i;
1085 
1086 	/* It is possible to run out of possible slots
1087 	 * when the name is long and there isn't enough space left
1088 	 * for the digits, or if all bits are used.
1089 	 */
1090 	return -ENFILE;
1091 }
1092 
1093 static int dev_alloc_name_ns(struct net *net,
1094 			     struct net_device *dev,
1095 			     const char *name)
1096 {
1097 	char buf[IFNAMSIZ];
1098 	int ret;
1099 
1100 	BUG_ON(!net);
1101 	ret = __dev_alloc_name(net, name, buf);
1102 	if (ret >= 0)
1103 		strscpy(dev->name, buf, IFNAMSIZ);
1104 	return ret;
1105 }
1106 
1107 /**
1108  *	dev_alloc_name - allocate a name for a device
1109  *	@dev: device
1110  *	@name: name format string
1111  *
1112  *	Passed a format string - eg "lt%d" it will try and find a suitable
1113  *	id. It scans list of devices to build up a free map, then chooses
1114  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *	while allocating the name and adding the device in order to avoid
1116  *	duplicates.
1117  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *	Returns the number of the unit assigned or a negative errno code.
1119  */
1120 
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1124 }
1125 EXPORT_SYMBOL(dev_alloc_name);
1126 
1127 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128 			      const char *name)
1129 {
1130 	BUG_ON(!net);
1131 
1132 	if (!dev_valid_name(name))
1133 		return -EINVAL;
1134 
1135 	if (strchr(name, '%'))
1136 		return dev_alloc_name_ns(net, dev, name);
1137 	else if (netdev_name_in_use(net, name))
1138 		return -EEXIST;
1139 	else if (dev->name != name)
1140 		strscpy(dev->name, name, IFNAMSIZ);
1141 
1142 	return 0;
1143 }
1144 
1145 /**
1146  *	dev_change_name - change name of a device
1147  *	@dev: device
1148  *	@newname: name (or format string) must be at least IFNAMSIZ
1149  *
1150  *	Change name of a device, can pass format strings "eth%d".
1151  *	for wildcarding.
1152  */
1153 int dev_change_name(struct net_device *dev, const char *newname)
1154 {
1155 	unsigned char old_assign_type;
1156 	char oldname[IFNAMSIZ];
1157 	int err = 0;
1158 	int ret;
1159 	struct net *net;
1160 
1161 	ASSERT_RTNL();
1162 	BUG_ON(!dev_net(dev));
1163 
1164 	net = dev_net(dev);
1165 
1166 	down_write(&devnet_rename_sem);
1167 
1168 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1169 		up_write(&devnet_rename_sem);
1170 		return 0;
1171 	}
1172 
1173 	memcpy(oldname, dev->name, IFNAMSIZ);
1174 
1175 	err = dev_get_valid_name(net, dev, newname);
1176 	if (err < 0) {
1177 		up_write(&devnet_rename_sem);
1178 		return err;
1179 	}
1180 
1181 	if (oldname[0] && !strchr(oldname, '%'))
1182 		netdev_info(dev, "renamed from %s%s\n", oldname,
1183 			    dev->flags & IFF_UP ? " (while UP)" : "");
1184 
1185 	old_assign_type = dev->name_assign_type;
1186 	dev->name_assign_type = NET_NAME_RENAMED;
1187 
1188 rollback:
1189 	ret = device_rename(&dev->dev, dev->name);
1190 	if (ret) {
1191 		memcpy(dev->name, oldname, IFNAMSIZ);
1192 		dev->name_assign_type = old_assign_type;
1193 		up_write(&devnet_rename_sem);
1194 		return ret;
1195 	}
1196 
1197 	up_write(&devnet_rename_sem);
1198 
1199 	netdev_adjacent_rename_links(dev, oldname);
1200 
1201 	write_lock(&dev_base_lock);
1202 	netdev_name_node_del(dev->name_node);
1203 	write_unlock(&dev_base_lock);
1204 
1205 	synchronize_rcu();
1206 
1207 	write_lock(&dev_base_lock);
1208 	netdev_name_node_add(net, dev->name_node);
1209 	write_unlock(&dev_base_lock);
1210 
1211 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1212 	ret = notifier_to_errno(ret);
1213 
1214 	if (ret) {
1215 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1216 		if (err >= 0) {
1217 			err = ret;
1218 			down_write(&devnet_rename_sem);
1219 			memcpy(dev->name, oldname, IFNAMSIZ);
1220 			memcpy(oldname, newname, IFNAMSIZ);
1221 			dev->name_assign_type = old_assign_type;
1222 			old_assign_type = NET_NAME_RENAMED;
1223 			goto rollback;
1224 		} else {
1225 			netdev_err(dev, "name change rollback failed: %d\n",
1226 				   ret);
1227 		}
1228 	}
1229 
1230 	return err;
1231 }
1232 
1233 /**
1234  *	dev_set_alias - change ifalias of a device
1235  *	@dev: device
1236  *	@alias: name up to IFALIASZ
1237  *	@len: limit of bytes to copy from info
1238  *
1239  *	Set ifalias for a device,
1240  */
1241 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1242 {
1243 	struct dev_ifalias *new_alias = NULL;
1244 
1245 	if (len >= IFALIASZ)
1246 		return -EINVAL;
1247 
1248 	if (len) {
1249 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1250 		if (!new_alias)
1251 			return -ENOMEM;
1252 
1253 		memcpy(new_alias->ifalias, alias, len);
1254 		new_alias->ifalias[len] = 0;
1255 	}
1256 
1257 	mutex_lock(&ifalias_mutex);
1258 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1259 					mutex_is_locked(&ifalias_mutex));
1260 	mutex_unlock(&ifalias_mutex);
1261 
1262 	if (new_alias)
1263 		kfree_rcu(new_alias, rcuhead);
1264 
1265 	return len;
1266 }
1267 EXPORT_SYMBOL(dev_set_alias);
1268 
1269 /**
1270  *	dev_get_alias - get ifalias of a device
1271  *	@dev: device
1272  *	@name: buffer to store name of ifalias
1273  *	@len: size of buffer
1274  *
1275  *	get ifalias for a device.  Caller must make sure dev cannot go
1276  *	away,  e.g. rcu read lock or own a reference count to device.
1277  */
1278 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1279 {
1280 	const struct dev_ifalias *alias;
1281 	int ret = 0;
1282 
1283 	rcu_read_lock();
1284 	alias = rcu_dereference(dev->ifalias);
1285 	if (alias)
1286 		ret = snprintf(name, len, "%s", alias->ifalias);
1287 	rcu_read_unlock();
1288 
1289 	return ret;
1290 }
1291 
1292 /**
1293  *	netdev_features_change - device changes features
1294  *	@dev: device to cause notification
1295  *
1296  *	Called to indicate a device has changed features.
1297  */
1298 void netdev_features_change(struct net_device *dev)
1299 {
1300 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1301 }
1302 EXPORT_SYMBOL(netdev_features_change);
1303 
1304 /**
1305  *	netdev_state_change - device changes state
1306  *	@dev: device to cause notification
1307  *
1308  *	Called to indicate a device has changed state. This function calls
1309  *	the notifier chains for netdev_chain and sends a NEWLINK message
1310  *	to the routing socket.
1311  */
1312 void netdev_state_change(struct net_device *dev)
1313 {
1314 	if (dev->flags & IFF_UP) {
1315 		struct netdev_notifier_change_info change_info = {
1316 			.info.dev = dev,
1317 		};
1318 
1319 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1320 					      &change_info.info);
1321 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1322 	}
1323 }
1324 EXPORT_SYMBOL(netdev_state_change);
1325 
1326 /**
1327  * __netdev_notify_peers - notify network peers about existence of @dev,
1328  * to be called when rtnl lock is already held.
1329  * @dev: network device
1330  *
1331  * Generate traffic such that interested network peers are aware of
1332  * @dev, such as by generating a gratuitous ARP. This may be used when
1333  * a device wants to inform the rest of the network about some sort of
1334  * reconfiguration such as a failover event or virtual machine
1335  * migration.
1336  */
1337 void __netdev_notify_peers(struct net_device *dev)
1338 {
1339 	ASSERT_RTNL();
1340 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1341 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1342 }
1343 EXPORT_SYMBOL(__netdev_notify_peers);
1344 
1345 /**
1346  * netdev_notify_peers - notify network peers about existence of @dev
1347  * @dev: network device
1348  *
1349  * Generate traffic such that interested network peers are aware of
1350  * @dev, such as by generating a gratuitous ARP. This may be used when
1351  * a device wants to inform the rest of the network about some sort of
1352  * reconfiguration such as a failover event or virtual machine
1353  * migration.
1354  */
1355 void netdev_notify_peers(struct net_device *dev)
1356 {
1357 	rtnl_lock();
1358 	__netdev_notify_peers(dev);
1359 	rtnl_unlock();
1360 }
1361 EXPORT_SYMBOL(netdev_notify_peers);
1362 
1363 static int napi_threaded_poll(void *data);
1364 
1365 static int napi_kthread_create(struct napi_struct *n)
1366 {
1367 	int err = 0;
1368 
1369 	/* Create and wake up the kthread once to put it in
1370 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1371 	 * warning and work with loadavg.
1372 	 */
1373 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1374 				n->dev->name, n->napi_id);
1375 	if (IS_ERR(n->thread)) {
1376 		err = PTR_ERR(n->thread);
1377 		pr_err("kthread_run failed with err %d\n", err);
1378 		n->thread = NULL;
1379 	}
1380 
1381 	return err;
1382 }
1383 
1384 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1385 {
1386 	const struct net_device_ops *ops = dev->netdev_ops;
1387 	int ret;
1388 
1389 	ASSERT_RTNL();
1390 	dev_addr_check(dev);
1391 
1392 	if (!netif_device_present(dev)) {
1393 		/* may be detached because parent is runtime-suspended */
1394 		if (dev->dev.parent)
1395 			pm_runtime_resume(dev->dev.parent);
1396 		if (!netif_device_present(dev))
1397 			return -ENODEV;
1398 	}
1399 
1400 	/* Block netpoll from trying to do any rx path servicing.
1401 	 * If we don't do this there is a chance ndo_poll_controller
1402 	 * or ndo_poll may be running while we open the device
1403 	 */
1404 	netpoll_poll_disable(dev);
1405 
1406 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1407 	ret = notifier_to_errno(ret);
1408 	if (ret)
1409 		return ret;
1410 
1411 	set_bit(__LINK_STATE_START, &dev->state);
1412 
1413 	if (ops->ndo_validate_addr)
1414 		ret = ops->ndo_validate_addr(dev);
1415 
1416 	if (!ret && ops->ndo_open)
1417 		ret = ops->ndo_open(dev);
1418 
1419 	netpoll_poll_enable(dev);
1420 
1421 	if (ret)
1422 		clear_bit(__LINK_STATE_START, &dev->state);
1423 	else {
1424 		dev->flags |= IFF_UP;
1425 		dev_set_rx_mode(dev);
1426 		dev_activate(dev);
1427 		add_device_randomness(dev->dev_addr, dev->addr_len);
1428 	}
1429 
1430 	return ret;
1431 }
1432 
1433 /**
1434  *	dev_open	- prepare an interface for use.
1435  *	@dev: device to open
1436  *	@extack: netlink extended ack
1437  *
1438  *	Takes a device from down to up state. The device's private open
1439  *	function is invoked and then the multicast lists are loaded. Finally
1440  *	the device is moved into the up state and a %NETDEV_UP message is
1441  *	sent to the netdev notifier chain.
1442  *
1443  *	Calling this function on an active interface is a nop. On a failure
1444  *	a negative errno code is returned.
1445  */
1446 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1447 {
1448 	int ret;
1449 
1450 	if (dev->flags & IFF_UP)
1451 		return 0;
1452 
1453 	ret = __dev_open(dev, extack);
1454 	if (ret < 0)
1455 		return ret;
1456 
1457 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1458 	call_netdevice_notifiers(NETDEV_UP, dev);
1459 
1460 	return ret;
1461 }
1462 EXPORT_SYMBOL(dev_open);
1463 
1464 static void __dev_close_many(struct list_head *head)
1465 {
1466 	struct net_device *dev;
1467 
1468 	ASSERT_RTNL();
1469 	might_sleep();
1470 
1471 	list_for_each_entry(dev, head, close_list) {
1472 		/* Temporarily disable netpoll until the interface is down */
1473 		netpoll_poll_disable(dev);
1474 
1475 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1476 
1477 		clear_bit(__LINK_STATE_START, &dev->state);
1478 
1479 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1480 		 * can be even on different cpu. So just clear netif_running().
1481 		 *
1482 		 * dev->stop() will invoke napi_disable() on all of it's
1483 		 * napi_struct instances on this device.
1484 		 */
1485 		smp_mb__after_atomic(); /* Commit netif_running(). */
1486 	}
1487 
1488 	dev_deactivate_many(head);
1489 
1490 	list_for_each_entry(dev, head, close_list) {
1491 		const struct net_device_ops *ops = dev->netdev_ops;
1492 
1493 		/*
1494 		 *	Call the device specific close. This cannot fail.
1495 		 *	Only if device is UP
1496 		 *
1497 		 *	We allow it to be called even after a DETACH hot-plug
1498 		 *	event.
1499 		 */
1500 		if (ops->ndo_stop)
1501 			ops->ndo_stop(dev);
1502 
1503 		dev->flags &= ~IFF_UP;
1504 		netpoll_poll_enable(dev);
1505 	}
1506 }
1507 
1508 static void __dev_close(struct net_device *dev)
1509 {
1510 	LIST_HEAD(single);
1511 
1512 	list_add(&dev->close_list, &single);
1513 	__dev_close_many(&single);
1514 	list_del(&single);
1515 }
1516 
1517 void dev_close_many(struct list_head *head, bool unlink)
1518 {
1519 	struct net_device *dev, *tmp;
1520 
1521 	/* Remove the devices that don't need to be closed */
1522 	list_for_each_entry_safe(dev, tmp, head, close_list)
1523 		if (!(dev->flags & IFF_UP))
1524 			list_del_init(&dev->close_list);
1525 
1526 	__dev_close_many(head);
1527 
1528 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1529 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1530 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1531 		if (unlink)
1532 			list_del_init(&dev->close_list);
1533 	}
1534 }
1535 EXPORT_SYMBOL(dev_close_many);
1536 
1537 /**
1538  *	dev_close - shutdown an interface.
1539  *	@dev: device to shutdown
1540  *
1541  *	This function moves an active device into down state. A
1542  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1543  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1544  *	chain.
1545  */
1546 void dev_close(struct net_device *dev)
1547 {
1548 	if (dev->flags & IFF_UP) {
1549 		LIST_HEAD(single);
1550 
1551 		list_add(&dev->close_list, &single);
1552 		dev_close_many(&single, true);
1553 		list_del(&single);
1554 	}
1555 }
1556 EXPORT_SYMBOL(dev_close);
1557 
1558 
1559 /**
1560  *	dev_disable_lro - disable Large Receive Offload on a device
1561  *	@dev: device
1562  *
1563  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1564  *	called under RTNL.  This is needed if received packets may be
1565  *	forwarded to another interface.
1566  */
1567 void dev_disable_lro(struct net_device *dev)
1568 {
1569 	struct net_device *lower_dev;
1570 	struct list_head *iter;
1571 
1572 	dev->wanted_features &= ~NETIF_F_LRO;
1573 	netdev_update_features(dev);
1574 
1575 	if (unlikely(dev->features & NETIF_F_LRO))
1576 		netdev_WARN(dev, "failed to disable LRO!\n");
1577 
1578 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1579 		dev_disable_lro(lower_dev);
1580 }
1581 EXPORT_SYMBOL(dev_disable_lro);
1582 
1583 /**
1584  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1585  *	@dev: device
1586  *
1587  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1588  *	called under RTNL.  This is needed if Generic XDP is installed on
1589  *	the device.
1590  */
1591 static void dev_disable_gro_hw(struct net_device *dev)
1592 {
1593 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1594 	netdev_update_features(dev);
1595 
1596 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1597 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1598 }
1599 
1600 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1601 {
1602 #define N(val) 						\
1603 	case NETDEV_##val:				\
1604 		return "NETDEV_" __stringify(val);
1605 	switch (cmd) {
1606 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1607 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1608 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1609 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1610 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1611 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1612 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1613 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1614 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1615 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1616 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1617 	N(XDP_FEAT_CHANGE)
1618 	}
1619 #undef N
1620 	return "UNKNOWN_NETDEV_EVENT";
1621 }
1622 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1623 
1624 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1625 				   struct net_device *dev)
1626 {
1627 	struct netdev_notifier_info info = {
1628 		.dev = dev,
1629 	};
1630 
1631 	return nb->notifier_call(nb, val, &info);
1632 }
1633 
1634 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1635 					     struct net_device *dev)
1636 {
1637 	int err;
1638 
1639 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1640 	err = notifier_to_errno(err);
1641 	if (err)
1642 		return err;
1643 
1644 	if (!(dev->flags & IFF_UP))
1645 		return 0;
1646 
1647 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1648 	return 0;
1649 }
1650 
1651 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1652 						struct net_device *dev)
1653 {
1654 	if (dev->flags & IFF_UP) {
1655 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1656 					dev);
1657 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1658 	}
1659 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1660 }
1661 
1662 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1663 						 struct net *net)
1664 {
1665 	struct net_device *dev;
1666 	int err;
1667 
1668 	for_each_netdev(net, dev) {
1669 		err = call_netdevice_register_notifiers(nb, dev);
1670 		if (err)
1671 			goto rollback;
1672 	}
1673 	return 0;
1674 
1675 rollback:
1676 	for_each_netdev_continue_reverse(net, dev)
1677 		call_netdevice_unregister_notifiers(nb, dev);
1678 	return err;
1679 }
1680 
1681 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1682 						    struct net *net)
1683 {
1684 	struct net_device *dev;
1685 
1686 	for_each_netdev(net, dev)
1687 		call_netdevice_unregister_notifiers(nb, dev);
1688 }
1689 
1690 static int dev_boot_phase = 1;
1691 
1692 /**
1693  * register_netdevice_notifier - register a network notifier block
1694  * @nb: notifier
1695  *
1696  * Register a notifier to be called when network device events occur.
1697  * The notifier passed is linked into the kernel structures and must
1698  * not be reused until it has been unregistered. A negative errno code
1699  * is returned on a failure.
1700  *
1701  * When registered all registration and up events are replayed
1702  * to the new notifier to allow device to have a race free
1703  * view of the network device list.
1704  */
1705 
1706 int register_netdevice_notifier(struct notifier_block *nb)
1707 {
1708 	struct net *net;
1709 	int err;
1710 
1711 	/* Close race with setup_net() and cleanup_net() */
1712 	down_write(&pernet_ops_rwsem);
1713 	rtnl_lock();
1714 	err = raw_notifier_chain_register(&netdev_chain, nb);
1715 	if (err)
1716 		goto unlock;
1717 	if (dev_boot_phase)
1718 		goto unlock;
1719 	for_each_net(net) {
1720 		err = call_netdevice_register_net_notifiers(nb, net);
1721 		if (err)
1722 			goto rollback;
1723 	}
1724 
1725 unlock:
1726 	rtnl_unlock();
1727 	up_write(&pernet_ops_rwsem);
1728 	return err;
1729 
1730 rollback:
1731 	for_each_net_continue_reverse(net)
1732 		call_netdevice_unregister_net_notifiers(nb, net);
1733 
1734 	raw_notifier_chain_unregister(&netdev_chain, nb);
1735 	goto unlock;
1736 }
1737 EXPORT_SYMBOL(register_netdevice_notifier);
1738 
1739 /**
1740  * unregister_netdevice_notifier - unregister a network notifier block
1741  * @nb: notifier
1742  *
1743  * Unregister a notifier previously registered by
1744  * register_netdevice_notifier(). The notifier is unlinked into the
1745  * kernel structures and may then be reused. A negative errno code
1746  * is returned on a failure.
1747  *
1748  * After unregistering unregister and down device events are synthesized
1749  * for all devices on the device list to the removed notifier to remove
1750  * the need for special case cleanup code.
1751  */
1752 
1753 int unregister_netdevice_notifier(struct notifier_block *nb)
1754 {
1755 	struct net *net;
1756 	int err;
1757 
1758 	/* Close race with setup_net() and cleanup_net() */
1759 	down_write(&pernet_ops_rwsem);
1760 	rtnl_lock();
1761 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1762 	if (err)
1763 		goto unlock;
1764 
1765 	for_each_net(net)
1766 		call_netdevice_unregister_net_notifiers(nb, net);
1767 
1768 unlock:
1769 	rtnl_unlock();
1770 	up_write(&pernet_ops_rwsem);
1771 	return err;
1772 }
1773 EXPORT_SYMBOL(unregister_netdevice_notifier);
1774 
1775 static int __register_netdevice_notifier_net(struct net *net,
1776 					     struct notifier_block *nb,
1777 					     bool ignore_call_fail)
1778 {
1779 	int err;
1780 
1781 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1782 	if (err)
1783 		return err;
1784 	if (dev_boot_phase)
1785 		return 0;
1786 
1787 	err = call_netdevice_register_net_notifiers(nb, net);
1788 	if (err && !ignore_call_fail)
1789 		goto chain_unregister;
1790 
1791 	return 0;
1792 
1793 chain_unregister:
1794 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1795 	return err;
1796 }
1797 
1798 static int __unregister_netdevice_notifier_net(struct net *net,
1799 					       struct notifier_block *nb)
1800 {
1801 	int err;
1802 
1803 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1804 	if (err)
1805 		return err;
1806 
1807 	call_netdevice_unregister_net_notifiers(nb, net);
1808 	return 0;
1809 }
1810 
1811 /**
1812  * register_netdevice_notifier_net - register a per-netns network notifier block
1813  * @net: network namespace
1814  * @nb: notifier
1815  *
1816  * Register a notifier to be called when network device events occur.
1817  * The notifier passed is linked into the kernel structures and must
1818  * not be reused until it has been unregistered. A negative errno code
1819  * is returned on a failure.
1820  *
1821  * When registered all registration and up events are replayed
1822  * to the new notifier to allow device to have a race free
1823  * view of the network device list.
1824  */
1825 
1826 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1827 {
1828 	int err;
1829 
1830 	rtnl_lock();
1831 	err = __register_netdevice_notifier_net(net, nb, false);
1832 	rtnl_unlock();
1833 	return err;
1834 }
1835 EXPORT_SYMBOL(register_netdevice_notifier_net);
1836 
1837 /**
1838  * unregister_netdevice_notifier_net - unregister a per-netns
1839  *                                     network notifier block
1840  * @net: network namespace
1841  * @nb: notifier
1842  *
1843  * Unregister a notifier previously registered by
1844  * register_netdevice_notifier_net(). The notifier is unlinked from the
1845  * kernel structures and may then be reused. A negative errno code
1846  * is returned on a failure.
1847  *
1848  * After unregistering unregister and down device events are synthesized
1849  * for all devices on the device list to the removed notifier to remove
1850  * the need for special case cleanup code.
1851  */
1852 
1853 int unregister_netdevice_notifier_net(struct net *net,
1854 				      struct notifier_block *nb)
1855 {
1856 	int err;
1857 
1858 	rtnl_lock();
1859 	err = __unregister_netdevice_notifier_net(net, nb);
1860 	rtnl_unlock();
1861 	return err;
1862 }
1863 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1864 
1865 static void __move_netdevice_notifier_net(struct net *src_net,
1866 					  struct net *dst_net,
1867 					  struct notifier_block *nb)
1868 {
1869 	__unregister_netdevice_notifier_net(src_net, nb);
1870 	__register_netdevice_notifier_net(dst_net, nb, true);
1871 }
1872 
1873 int register_netdevice_notifier_dev_net(struct net_device *dev,
1874 					struct notifier_block *nb,
1875 					struct netdev_net_notifier *nn)
1876 {
1877 	int err;
1878 
1879 	rtnl_lock();
1880 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1881 	if (!err) {
1882 		nn->nb = nb;
1883 		list_add(&nn->list, &dev->net_notifier_list);
1884 	}
1885 	rtnl_unlock();
1886 	return err;
1887 }
1888 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1889 
1890 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1891 					  struct notifier_block *nb,
1892 					  struct netdev_net_notifier *nn)
1893 {
1894 	int err;
1895 
1896 	rtnl_lock();
1897 	list_del(&nn->list);
1898 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1899 	rtnl_unlock();
1900 	return err;
1901 }
1902 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1903 
1904 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1905 					     struct net *net)
1906 {
1907 	struct netdev_net_notifier *nn;
1908 
1909 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1910 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1911 }
1912 
1913 /**
1914  *	call_netdevice_notifiers_info - call all network notifier blocks
1915  *	@val: value passed unmodified to notifier function
1916  *	@info: notifier information data
1917  *
1918  *	Call all network notifier blocks.  Parameters and return value
1919  *	are as for raw_notifier_call_chain().
1920  */
1921 
1922 static int call_netdevice_notifiers_info(unsigned long val,
1923 					 struct netdev_notifier_info *info)
1924 {
1925 	struct net *net = dev_net(info->dev);
1926 	int ret;
1927 
1928 	ASSERT_RTNL();
1929 
1930 	/* Run per-netns notifier block chain first, then run the global one.
1931 	 * Hopefully, one day, the global one is going to be removed after
1932 	 * all notifier block registrators get converted to be per-netns.
1933 	 */
1934 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1935 	if (ret & NOTIFY_STOP_MASK)
1936 		return ret;
1937 	return raw_notifier_call_chain(&netdev_chain, val, info);
1938 }
1939 
1940 /**
1941  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1942  *	                                       for and rollback on error
1943  *	@val_up: value passed unmodified to notifier function
1944  *	@val_down: value passed unmodified to the notifier function when
1945  *	           recovering from an error on @val_up
1946  *	@info: notifier information data
1947  *
1948  *	Call all per-netns network notifier blocks, but not notifier blocks on
1949  *	the global notifier chain. Parameters and return value are as for
1950  *	raw_notifier_call_chain_robust().
1951  */
1952 
1953 static int
1954 call_netdevice_notifiers_info_robust(unsigned long val_up,
1955 				     unsigned long val_down,
1956 				     struct netdev_notifier_info *info)
1957 {
1958 	struct net *net = dev_net(info->dev);
1959 
1960 	ASSERT_RTNL();
1961 
1962 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1963 					      val_up, val_down, info);
1964 }
1965 
1966 static int call_netdevice_notifiers_extack(unsigned long val,
1967 					   struct net_device *dev,
1968 					   struct netlink_ext_ack *extack)
1969 {
1970 	struct netdev_notifier_info info = {
1971 		.dev = dev,
1972 		.extack = extack,
1973 	};
1974 
1975 	return call_netdevice_notifiers_info(val, &info);
1976 }
1977 
1978 /**
1979  *	call_netdevice_notifiers - call all network notifier blocks
1980  *      @val: value passed unmodified to notifier function
1981  *      @dev: net_device pointer passed unmodified to notifier function
1982  *
1983  *	Call all network notifier blocks.  Parameters and return value
1984  *	are as for raw_notifier_call_chain().
1985  */
1986 
1987 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1988 {
1989 	return call_netdevice_notifiers_extack(val, dev, NULL);
1990 }
1991 EXPORT_SYMBOL(call_netdevice_notifiers);
1992 
1993 /**
1994  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1995  *	@val: value passed unmodified to notifier function
1996  *	@dev: net_device pointer passed unmodified to notifier function
1997  *	@arg: additional u32 argument passed to the notifier function
1998  *
1999  *	Call all network notifier blocks.  Parameters and return value
2000  *	are as for raw_notifier_call_chain().
2001  */
2002 static int call_netdevice_notifiers_mtu(unsigned long val,
2003 					struct net_device *dev, u32 arg)
2004 {
2005 	struct netdev_notifier_info_ext info = {
2006 		.info.dev = dev,
2007 		.ext.mtu = arg,
2008 	};
2009 
2010 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2011 
2012 	return call_netdevice_notifiers_info(val, &info.info);
2013 }
2014 
2015 #ifdef CONFIG_NET_INGRESS
2016 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2017 
2018 void net_inc_ingress_queue(void)
2019 {
2020 	static_branch_inc(&ingress_needed_key);
2021 }
2022 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2023 
2024 void net_dec_ingress_queue(void)
2025 {
2026 	static_branch_dec(&ingress_needed_key);
2027 }
2028 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2029 #endif
2030 
2031 #ifdef CONFIG_NET_EGRESS
2032 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2033 
2034 void net_inc_egress_queue(void)
2035 {
2036 	static_branch_inc(&egress_needed_key);
2037 }
2038 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2039 
2040 void net_dec_egress_queue(void)
2041 {
2042 	static_branch_dec(&egress_needed_key);
2043 }
2044 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2045 #endif
2046 
2047 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2048 EXPORT_SYMBOL(netstamp_needed_key);
2049 #ifdef CONFIG_JUMP_LABEL
2050 static atomic_t netstamp_needed_deferred;
2051 static atomic_t netstamp_wanted;
2052 static void netstamp_clear(struct work_struct *work)
2053 {
2054 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2055 	int wanted;
2056 
2057 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2058 	if (wanted > 0)
2059 		static_branch_enable(&netstamp_needed_key);
2060 	else
2061 		static_branch_disable(&netstamp_needed_key);
2062 }
2063 static DECLARE_WORK(netstamp_work, netstamp_clear);
2064 #endif
2065 
2066 void net_enable_timestamp(void)
2067 {
2068 #ifdef CONFIG_JUMP_LABEL
2069 	int wanted = atomic_read(&netstamp_wanted);
2070 
2071 	while (wanted > 0) {
2072 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2073 			return;
2074 	}
2075 	atomic_inc(&netstamp_needed_deferred);
2076 	schedule_work(&netstamp_work);
2077 #else
2078 	static_branch_inc(&netstamp_needed_key);
2079 #endif
2080 }
2081 EXPORT_SYMBOL(net_enable_timestamp);
2082 
2083 void net_disable_timestamp(void)
2084 {
2085 #ifdef CONFIG_JUMP_LABEL
2086 	int wanted = atomic_read(&netstamp_wanted);
2087 
2088 	while (wanted > 1) {
2089 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2090 			return;
2091 	}
2092 	atomic_dec(&netstamp_needed_deferred);
2093 	schedule_work(&netstamp_work);
2094 #else
2095 	static_branch_dec(&netstamp_needed_key);
2096 #endif
2097 }
2098 EXPORT_SYMBOL(net_disable_timestamp);
2099 
2100 static inline void net_timestamp_set(struct sk_buff *skb)
2101 {
2102 	skb->tstamp = 0;
2103 	skb->mono_delivery_time = 0;
2104 	if (static_branch_unlikely(&netstamp_needed_key))
2105 		skb->tstamp = ktime_get_real();
2106 }
2107 
2108 #define net_timestamp_check(COND, SKB)				\
2109 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2110 		if ((COND) && !(SKB)->tstamp)			\
2111 			(SKB)->tstamp = ktime_get_real();	\
2112 	}							\
2113 
2114 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2115 {
2116 	return __is_skb_forwardable(dev, skb, true);
2117 }
2118 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2119 
2120 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2121 			      bool check_mtu)
2122 {
2123 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2124 
2125 	if (likely(!ret)) {
2126 		skb->protocol = eth_type_trans(skb, dev);
2127 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2128 	}
2129 
2130 	return ret;
2131 }
2132 
2133 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2134 {
2135 	return __dev_forward_skb2(dev, skb, true);
2136 }
2137 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2138 
2139 /**
2140  * dev_forward_skb - loopback an skb to another netif
2141  *
2142  * @dev: destination network device
2143  * @skb: buffer to forward
2144  *
2145  * return values:
2146  *	NET_RX_SUCCESS	(no congestion)
2147  *	NET_RX_DROP     (packet was dropped, but freed)
2148  *
2149  * dev_forward_skb can be used for injecting an skb from the
2150  * start_xmit function of one device into the receive queue
2151  * of another device.
2152  *
2153  * The receiving device may be in another namespace, so
2154  * we have to clear all information in the skb that could
2155  * impact namespace isolation.
2156  */
2157 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2158 {
2159 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2160 }
2161 EXPORT_SYMBOL_GPL(dev_forward_skb);
2162 
2163 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2164 {
2165 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2166 }
2167 
2168 static inline int deliver_skb(struct sk_buff *skb,
2169 			      struct packet_type *pt_prev,
2170 			      struct net_device *orig_dev)
2171 {
2172 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2173 		return -ENOMEM;
2174 	refcount_inc(&skb->users);
2175 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2176 }
2177 
2178 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2179 					  struct packet_type **pt,
2180 					  struct net_device *orig_dev,
2181 					  __be16 type,
2182 					  struct list_head *ptype_list)
2183 {
2184 	struct packet_type *ptype, *pt_prev = *pt;
2185 
2186 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2187 		if (ptype->type != type)
2188 			continue;
2189 		if (pt_prev)
2190 			deliver_skb(skb, pt_prev, orig_dev);
2191 		pt_prev = ptype;
2192 	}
2193 	*pt = pt_prev;
2194 }
2195 
2196 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2197 {
2198 	if (!ptype->af_packet_priv || !skb->sk)
2199 		return false;
2200 
2201 	if (ptype->id_match)
2202 		return ptype->id_match(ptype, skb->sk);
2203 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2204 		return true;
2205 
2206 	return false;
2207 }
2208 
2209 /**
2210  * dev_nit_active - return true if any network interface taps are in use
2211  *
2212  * @dev: network device to check for the presence of taps
2213  */
2214 bool dev_nit_active(struct net_device *dev)
2215 {
2216 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2217 }
2218 EXPORT_SYMBOL_GPL(dev_nit_active);
2219 
2220 /*
2221  *	Support routine. Sends outgoing frames to any network
2222  *	taps currently in use.
2223  */
2224 
2225 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2226 {
2227 	struct packet_type *ptype;
2228 	struct sk_buff *skb2 = NULL;
2229 	struct packet_type *pt_prev = NULL;
2230 	struct list_head *ptype_list = &ptype_all;
2231 
2232 	rcu_read_lock();
2233 again:
2234 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2235 		if (ptype->ignore_outgoing)
2236 			continue;
2237 
2238 		/* Never send packets back to the socket
2239 		 * they originated from - MvS (miquels@drinkel.ow.org)
2240 		 */
2241 		if (skb_loop_sk(ptype, skb))
2242 			continue;
2243 
2244 		if (pt_prev) {
2245 			deliver_skb(skb2, pt_prev, skb->dev);
2246 			pt_prev = ptype;
2247 			continue;
2248 		}
2249 
2250 		/* need to clone skb, done only once */
2251 		skb2 = skb_clone(skb, GFP_ATOMIC);
2252 		if (!skb2)
2253 			goto out_unlock;
2254 
2255 		net_timestamp_set(skb2);
2256 
2257 		/* skb->nh should be correctly
2258 		 * set by sender, so that the second statement is
2259 		 * just protection against buggy protocols.
2260 		 */
2261 		skb_reset_mac_header(skb2);
2262 
2263 		if (skb_network_header(skb2) < skb2->data ||
2264 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2265 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2266 					     ntohs(skb2->protocol),
2267 					     dev->name);
2268 			skb_reset_network_header(skb2);
2269 		}
2270 
2271 		skb2->transport_header = skb2->network_header;
2272 		skb2->pkt_type = PACKET_OUTGOING;
2273 		pt_prev = ptype;
2274 	}
2275 
2276 	if (ptype_list == &ptype_all) {
2277 		ptype_list = &dev->ptype_all;
2278 		goto again;
2279 	}
2280 out_unlock:
2281 	if (pt_prev) {
2282 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2283 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2284 		else
2285 			kfree_skb(skb2);
2286 	}
2287 	rcu_read_unlock();
2288 }
2289 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2290 
2291 /**
2292  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2293  * @dev: Network device
2294  * @txq: number of queues available
2295  *
2296  * If real_num_tx_queues is changed the tc mappings may no longer be
2297  * valid. To resolve this verify the tc mapping remains valid and if
2298  * not NULL the mapping. With no priorities mapping to this
2299  * offset/count pair it will no longer be used. In the worst case TC0
2300  * is invalid nothing can be done so disable priority mappings. If is
2301  * expected that drivers will fix this mapping if they can before
2302  * calling netif_set_real_num_tx_queues.
2303  */
2304 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2305 {
2306 	int i;
2307 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2308 
2309 	/* If TC0 is invalidated disable TC mapping */
2310 	if (tc->offset + tc->count > txq) {
2311 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2312 		dev->num_tc = 0;
2313 		return;
2314 	}
2315 
2316 	/* Invalidated prio to tc mappings set to TC0 */
2317 	for (i = 1; i < TC_BITMASK + 1; i++) {
2318 		int q = netdev_get_prio_tc_map(dev, i);
2319 
2320 		tc = &dev->tc_to_txq[q];
2321 		if (tc->offset + tc->count > txq) {
2322 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2323 				    i, q);
2324 			netdev_set_prio_tc_map(dev, i, 0);
2325 		}
2326 	}
2327 }
2328 
2329 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2330 {
2331 	if (dev->num_tc) {
2332 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2333 		int i;
2334 
2335 		/* walk through the TCs and see if it falls into any of them */
2336 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2337 			if ((txq - tc->offset) < tc->count)
2338 				return i;
2339 		}
2340 
2341 		/* didn't find it, just return -1 to indicate no match */
2342 		return -1;
2343 	}
2344 
2345 	return 0;
2346 }
2347 EXPORT_SYMBOL(netdev_txq_to_tc);
2348 
2349 #ifdef CONFIG_XPS
2350 static struct static_key xps_needed __read_mostly;
2351 static struct static_key xps_rxqs_needed __read_mostly;
2352 static DEFINE_MUTEX(xps_map_mutex);
2353 #define xmap_dereference(P)		\
2354 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2355 
2356 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2357 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2358 {
2359 	struct xps_map *map = NULL;
2360 	int pos;
2361 
2362 	if (dev_maps)
2363 		map = xmap_dereference(dev_maps->attr_map[tci]);
2364 	if (!map)
2365 		return false;
2366 
2367 	for (pos = map->len; pos--;) {
2368 		if (map->queues[pos] != index)
2369 			continue;
2370 
2371 		if (map->len > 1) {
2372 			map->queues[pos] = map->queues[--map->len];
2373 			break;
2374 		}
2375 
2376 		if (old_maps)
2377 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2378 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2379 		kfree_rcu(map, rcu);
2380 		return false;
2381 	}
2382 
2383 	return true;
2384 }
2385 
2386 static bool remove_xps_queue_cpu(struct net_device *dev,
2387 				 struct xps_dev_maps *dev_maps,
2388 				 int cpu, u16 offset, u16 count)
2389 {
2390 	int num_tc = dev_maps->num_tc;
2391 	bool active = false;
2392 	int tci;
2393 
2394 	for (tci = cpu * num_tc; num_tc--; tci++) {
2395 		int i, j;
2396 
2397 		for (i = count, j = offset; i--; j++) {
2398 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2399 				break;
2400 		}
2401 
2402 		active |= i < 0;
2403 	}
2404 
2405 	return active;
2406 }
2407 
2408 static void reset_xps_maps(struct net_device *dev,
2409 			   struct xps_dev_maps *dev_maps,
2410 			   enum xps_map_type type)
2411 {
2412 	static_key_slow_dec_cpuslocked(&xps_needed);
2413 	if (type == XPS_RXQS)
2414 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2415 
2416 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2417 
2418 	kfree_rcu(dev_maps, rcu);
2419 }
2420 
2421 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2422 			   u16 offset, u16 count)
2423 {
2424 	struct xps_dev_maps *dev_maps;
2425 	bool active = false;
2426 	int i, j;
2427 
2428 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2429 	if (!dev_maps)
2430 		return;
2431 
2432 	for (j = 0; j < dev_maps->nr_ids; j++)
2433 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2434 	if (!active)
2435 		reset_xps_maps(dev, dev_maps, type);
2436 
2437 	if (type == XPS_CPUS) {
2438 		for (i = offset + (count - 1); count--; i--)
2439 			netdev_queue_numa_node_write(
2440 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2441 	}
2442 }
2443 
2444 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2445 				   u16 count)
2446 {
2447 	if (!static_key_false(&xps_needed))
2448 		return;
2449 
2450 	cpus_read_lock();
2451 	mutex_lock(&xps_map_mutex);
2452 
2453 	if (static_key_false(&xps_rxqs_needed))
2454 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2455 
2456 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2457 
2458 	mutex_unlock(&xps_map_mutex);
2459 	cpus_read_unlock();
2460 }
2461 
2462 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2463 {
2464 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2465 }
2466 
2467 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2468 				      u16 index, bool is_rxqs_map)
2469 {
2470 	struct xps_map *new_map;
2471 	int alloc_len = XPS_MIN_MAP_ALLOC;
2472 	int i, pos;
2473 
2474 	for (pos = 0; map && pos < map->len; pos++) {
2475 		if (map->queues[pos] != index)
2476 			continue;
2477 		return map;
2478 	}
2479 
2480 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2481 	if (map) {
2482 		if (pos < map->alloc_len)
2483 			return map;
2484 
2485 		alloc_len = map->alloc_len * 2;
2486 	}
2487 
2488 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2489 	 *  map
2490 	 */
2491 	if (is_rxqs_map)
2492 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2493 	else
2494 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2495 				       cpu_to_node(attr_index));
2496 	if (!new_map)
2497 		return NULL;
2498 
2499 	for (i = 0; i < pos; i++)
2500 		new_map->queues[i] = map->queues[i];
2501 	new_map->alloc_len = alloc_len;
2502 	new_map->len = pos;
2503 
2504 	return new_map;
2505 }
2506 
2507 /* Copy xps maps at a given index */
2508 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2509 			      struct xps_dev_maps *new_dev_maps, int index,
2510 			      int tc, bool skip_tc)
2511 {
2512 	int i, tci = index * dev_maps->num_tc;
2513 	struct xps_map *map;
2514 
2515 	/* copy maps belonging to foreign traffic classes */
2516 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2517 		if (i == tc && skip_tc)
2518 			continue;
2519 
2520 		/* fill in the new device map from the old device map */
2521 		map = xmap_dereference(dev_maps->attr_map[tci]);
2522 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2523 	}
2524 }
2525 
2526 /* Must be called under cpus_read_lock */
2527 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2528 			  u16 index, enum xps_map_type type)
2529 {
2530 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2531 	const unsigned long *online_mask = NULL;
2532 	bool active = false, copy = false;
2533 	int i, j, tci, numa_node_id = -2;
2534 	int maps_sz, num_tc = 1, tc = 0;
2535 	struct xps_map *map, *new_map;
2536 	unsigned int nr_ids;
2537 
2538 	if (dev->num_tc) {
2539 		/* Do not allow XPS on subordinate device directly */
2540 		num_tc = dev->num_tc;
2541 		if (num_tc < 0)
2542 			return -EINVAL;
2543 
2544 		/* If queue belongs to subordinate dev use its map */
2545 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2546 
2547 		tc = netdev_txq_to_tc(dev, index);
2548 		if (tc < 0)
2549 			return -EINVAL;
2550 	}
2551 
2552 	mutex_lock(&xps_map_mutex);
2553 
2554 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2555 	if (type == XPS_RXQS) {
2556 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2557 		nr_ids = dev->num_rx_queues;
2558 	} else {
2559 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2560 		if (num_possible_cpus() > 1)
2561 			online_mask = cpumask_bits(cpu_online_mask);
2562 		nr_ids = nr_cpu_ids;
2563 	}
2564 
2565 	if (maps_sz < L1_CACHE_BYTES)
2566 		maps_sz = L1_CACHE_BYTES;
2567 
2568 	/* The old dev_maps could be larger or smaller than the one we're
2569 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2570 	 * between. We could try to be smart, but let's be safe instead and only
2571 	 * copy foreign traffic classes if the two map sizes match.
2572 	 */
2573 	if (dev_maps &&
2574 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2575 		copy = true;
2576 
2577 	/* allocate memory for queue storage */
2578 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2579 	     j < nr_ids;) {
2580 		if (!new_dev_maps) {
2581 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2582 			if (!new_dev_maps) {
2583 				mutex_unlock(&xps_map_mutex);
2584 				return -ENOMEM;
2585 			}
2586 
2587 			new_dev_maps->nr_ids = nr_ids;
2588 			new_dev_maps->num_tc = num_tc;
2589 		}
2590 
2591 		tci = j * num_tc + tc;
2592 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2593 
2594 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2595 		if (!map)
2596 			goto error;
2597 
2598 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2599 	}
2600 
2601 	if (!new_dev_maps)
2602 		goto out_no_new_maps;
2603 
2604 	if (!dev_maps) {
2605 		/* Increment static keys at most once per type */
2606 		static_key_slow_inc_cpuslocked(&xps_needed);
2607 		if (type == XPS_RXQS)
2608 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2609 	}
2610 
2611 	for (j = 0; j < nr_ids; j++) {
2612 		bool skip_tc = false;
2613 
2614 		tci = j * num_tc + tc;
2615 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2616 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2617 			/* add tx-queue to CPU/rx-queue maps */
2618 			int pos = 0;
2619 
2620 			skip_tc = true;
2621 
2622 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2623 			while ((pos < map->len) && (map->queues[pos] != index))
2624 				pos++;
2625 
2626 			if (pos == map->len)
2627 				map->queues[map->len++] = index;
2628 #ifdef CONFIG_NUMA
2629 			if (type == XPS_CPUS) {
2630 				if (numa_node_id == -2)
2631 					numa_node_id = cpu_to_node(j);
2632 				else if (numa_node_id != cpu_to_node(j))
2633 					numa_node_id = -1;
2634 			}
2635 #endif
2636 		}
2637 
2638 		if (copy)
2639 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2640 					  skip_tc);
2641 	}
2642 
2643 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2644 
2645 	/* Cleanup old maps */
2646 	if (!dev_maps)
2647 		goto out_no_old_maps;
2648 
2649 	for (j = 0; j < dev_maps->nr_ids; j++) {
2650 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2651 			map = xmap_dereference(dev_maps->attr_map[tci]);
2652 			if (!map)
2653 				continue;
2654 
2655 			if (copy) {
2656 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2657 				if (map == new_map)
2658 					continue;
2659 			}
2660 
2661 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2662 			kfree_rcu(map, rcu);
2663 		}
2664 	}
2665 
2666 	old_dev_maps = dev_maps;
2667 
2668 out_no_old_maps:
2669 	dev_maps = new_dev_maps;
2670 	active = true;
2671 
2672 out_no_new_maps:
2673 	if (type == XPS_CPUS)
2674 		/* update Tx queue numa node */
2675 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2676 					     (numa_node_id >= 0) ?
2677 					     numa_node_id : NUMA_NO_NODE);
2678 
2679 	if (!dev_maps)
2680 		goto out_no_maps;
2681 
2682 	/* removes tx-queue from unused CPUs/rx-queues */
2683 	for (j = 0; j < dev_maps->nr_ids; j++) {
2684 		tci = j * dev_maps->num_tc;
2685 
2686 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2687 			if (i == tc &&
2688 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2689 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2690 				continue;
2691 
2692 			active |= remove_xps_queue(dev_maps,
2693 						   copy ? old_dev_maps : NULL,
2694 						   tci, index);
2695 		}
2696 	}
2697 
2698 	if (old_dev_maps)
2699 		kfree_rcu(old_dev_maps, rcu);
2700 
2701 	/* free map if not active */
2702 	if (!active)
2703 		reset_xps_maps(dev, dev_maps, type);
2704 
2705 out_no_maps:
2706 	mutex_unlock(&xps_map_mutex);
2707 
2708 	return 0;
2709 error:
2710 	/* remove any maps that we added */
2711 	for (j = 0; j < nr_ids; j++) {
2712 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2713 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2714 			map = copy ?
2715 			      xmap_dereference(dev_maps->attr_map[tci]) :
2716 			      NULL;
2717 			if (new_map && new_map != map)
2718 				kfree(new_map);
2719 		}
2720 	}
2721 
2722 	mutex_unlock(&xps_map_mutex);
2723 
2724 	kfree(new_dev_maps);
2725 	return -ENOMEM;
2726 }
2727 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2728 
2729 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2730 			u16 index)
2731 {
2732 	int ret;
2733 
2734 	cpus_read_lock();
2735 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2736 	cpus_read_unlock();
2737 
2738 	return ret;
2739 }
2740 EXPORT_SYMBOL(netif_set_xps_queue);
2741 
2742 #endif
2743 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2744 {
2745 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2746 
2747 	/* Unbind any subordinate channels */
2748 	while (txq-- != &dev->_tx[0]) {
2749 		if (txq->sb_dev)
2750 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2751 	}
2752 }
2753 
2754 void netdev_reset_tc(struct net_device *dev)
2755 {
2756 #ifdef CONFIG_XPS
2757 	netif_reset_xps_queues_gt(dev, 0);
2758 #endif
2759 	netdev_unbind_all_sb_channels(dev);
2760 
2761 	/* Reset TC configuration of device */
2762 	dev->num_tc = 0;
2763 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2764 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2765 }
2766 EXPORT_SYMBOL(netdev_reset_tc);
2767 
2768 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2769 {
2770 	if (tc >= dev->num_tc)
2771 		return -EINVAL;
2772 
2773 #ifdef CONFIG_XPS
2774 	netif_reset_xps_queues(dev, offset, count);
2775 #endif
2776 	dev->tc_to_txq[tc].count = count;
2777 	dev->tc_to_txq[tc].offset = offset;
2778 	return 0;
2779 }
2780 EXPORT_SYMBOL(netdev_set_tc_queue);
2781 
2782 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2783 {
2784 	if (num_tc > TC_MAX_QUEUE)
2785 		return -EINVAL;
2786 
2787 #ifdef CONFIG_XPS
2788 	netif_reset_xps_queues_gt(dev, 0);
2789 #endif
2790 	netdev_unbind_all_sb_channels(dev);
2791 
2792 	dev->num_tc = num_tc;
2793 	return 0;
2794 }
2795 EXPORT_SYMBOL(netdev_set_num_tc);
2796 
2797 void netdev_unbind_sb_channel(struct net_device *dev,
2798 			      struct net_device *sb_dev)
2799 {
2800 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2801 
2802 #ifdef CONFIG_XPS
2803 	netif_reset_xps_queues_gt(sb_dev, 0);
2804 #endif
2805 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2806 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2807 
2808 	while (txq-- != &dev->_tx[0]) {
2809 		if (txq->sb_dev == sb_dev)
2810 			txq->sb_dev = NULL;
2811 	}
2812 }
2813 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2814 
2815 int netdev_bind_sb_channel_queue(struct net_device *dev,
2816 				 struct net_device *sb_dev,
2817 				 u8 tc, u16 count, u16 offset)
2818 {
2819 	/* Make certain the sb_dev and dev are already configured */
2820 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2821 		return -EINVAL;
2822 
2823 	/* We cannot hand out queues we don't have */
2824 	if ((offset + count) > dev->real_num_tx_queues)
2825 		return -EINVAL;
2826 
2827 	/* Record the mapping */
2828 	sb_dev->tc_to_txq[tc].count = count;
2829 	sb_dev->tc_to_txq[tc].offset = offset;
2830 
2831 	/* Provide a way for Tx queue to find the tc_to_txq map or
2832 	 * XPS map for itself.
2833 	 */
2834 	while (count--)
2835 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2836 
2837 	return 0;
2838 }
2839 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2840 
2841 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2842 {
2843 	/* Do not use a multiqueue device to represent a subordinate channel */
2844 	if (netif_is_multiqueue(dev))
2845 		return -ENODEV;
2846 
2847 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2848 	 * Channel 0 is meant to be "native" mode and used only to represent
2849 	 * the main root device. We allow writing 0 to reset the device back
2850 	 * to normal mode after being used as a subordinate channel.
2851 	 */
2852 	if (channel > S16_MAX)
2853 		return -EINVAL;
2854 
2855 	dev->num_tc = -channel;
2856 
2857 	return 0;
2858 }
2859 EXPORT_SYMBOL(netdev_set_sb_channel);
2860 
2861 /*
2862  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2863  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2864  */
2865 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2866 {
2867 	bool disabling;
2868 	int rc;
2869 
2870 	disabling = txq < dev->real_num_tx_queues;
2871 
2872 	if (txq < 1 || txq > dev->num_tx_queues)
2873 		return -EINVAL;
2874 
2875 	if (dev->reg_state == NETREG_REGISTERED ||
2876 	    dev->reg_state == NETREG_UNREGISTERING) {
2877 		ASSERT_RTNL();
2878 
2879 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2880 						  txq);
2881 		if (rc)
2882 			return rc;
2883 
2884 		if (dev->num_tc)
2885 			netif_setup_tc(dev, txq);
2886 
2887 		dev_qdisc_change_real_num_tx(dev, txq);
2888 
2889 		dev->real_num_tx_queues = txq;
2890 
2891 		if (disabling) {
2892 			synchronize_net();
2893 			qdisc_reset_all_tx_gt(dev, txq);
2894 #ifdef CONFIG_XPS
2895 			netif_reset_xps_queues_gt(dev, txq);
2896 #endif
2897 		}
2898 	} else {
2899 		dev->real_num_tx_queues = txq;
2900 	}
2901 
2902 	return 0;
2903 }
2904 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2905 
2906 #ifdef CONFIG_SYSFS
2907 /**
2908  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2909  *	@dev: Network device
2910  *	@rxq: Actual number of RX queues
2911  *
2912  *	This must be called either with the rtnl_lock held or before
2913  *	registration of the net device.  Returns 0 on success, or a
2914  *	negative error code.  If called before registration, it always
2915  *	succeeds.
2916  */
2917 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2918 {
2919 	int rc;
2920 
2921 	if (rxq < 1 || rxq > dev->num_rx_queues)
2922 		return -EINVAL;
2923 
2924 	if (dev->reg_state == NETREG_REGISTERED) {
2925 		ASSERT_RTNL();
2926 
2927 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2928 						  rxq);
2929 		if (rc)
2930 			return rc;
2931 	}
2932 
2933 	dev->real_num_rx_queues = rxq;
2934 	return 0;
2935 }
2936 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2937 #endif
2938 
2939 /**
2940  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2941  *	@dev: Network device
2942  *	@txq: Actual number of TX queues
2943  *	@rxq: Actual number of RX queues
2944  *
2945  *	Set the real number of both TX and RX queues.
2946  *	Does nothing if the number of queues is already correct.
2947  */
2948 int netif_set_real_num_queues(struct net_device *dev,
2949 			      unsigned int txq, unsigned int rxq)
2950 {
2951 	unsigned int old_rxq = dev->real_num_rx_queues;
2952 	int err;
2953 
2954 	if (txq < 1 || txq > dev->num_tx_queues ||
2955 	    rxq < 1 || rxq > dev->num_rx_queues)
2956 		return -EINVAL;
2957 
2958 	/* Start from increases, so the error path only does decreases -
2959 	 * decreases can't fail.
2960 	 */
2961 	if (rxq > dev->real_num_rx_queues) {
2962 		err = netif_set_real_num_rx_queues(dev, rxq);
2963 		if (err)
2964 			return err;
2965 	}
2966 	if (txq > dev->real_num_tx_queues) {
2967 		err = netif_set_real_num_tx_queues(dev, txq);
2968 		if (err)
2969 			goto undo_rx;
2970 	}
2971 	if (rxq < dev->real_num_rx_queues)
2972 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2973 	if (txq < dev->real_num_tx_queues)
2974 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2975 
2976 	return 0;
2977 undo_rx:
2978 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2979 	return err;
2980 }
2981 EXPORT_SYMBOL(netif_set_real_num_queues);
2982 
2983 /**
2984  * netif_set_tso_max_size() - set the max size of TSO frames supported
2985  * @dev:	netdev to update
2986  * @size:	max skb->len of a TSO frame
2987  *
2988  * Set the limit on the size of TSO super-frames the device can handle.
2989  * Unless explicitly set the stack will assume the value of
2990  * %GSO_LEGACY_MAX_SIZE.
2991  */
2992 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
2993 {
2994 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
2995 	if (size < READ_ONCE(dev->gso_max_size))
2996 		netif_set_gso_max_size(dev, size);
2997 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
2998 		netif_set_gso_ipv4_max_size(dev, size);
2999 }
3000 EXPORT_SYMBOL(netif_set_tso_max_size);
3001 
3002 /**
3003  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3004  * @dev:	netdev to update
3005  * @segs:	max number of TCP segments
3006  *
3007  * Set the limit on the number of TCP segments the device can generate from
3008  * a single TSO super-frame.
3009  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3010  */
3011 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3012 {
3013 	dev->tso_max_segs = segs;
3014 	if (segs < READ_ONCE(dev->gso_max_segs))
3015 		netif_set_gso_max_segs(dev, segs);
3016 }
3017 EXPORT_SYMBOL(netif_set_tso_max_segs);
3018 
3019 /**
3020  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3021  * @to:		netdev to update
3022  * @from:	netdev from which to copy the limits
3023  */
3024 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3025 {
3026 	netif_set_tso_max_size(to, from->tso_max_size);
3027 	netif_set_tso_max_segs(to, from->tso_max_segs);
3028 }
3029 EXPORT_SYMBOL(netif_inherit_tso_max);
3030 
3031 /**
3032  * netif_get_num_default_rss_queues - default number of RSS queues
3033  *
3034  * Default value is the number of physical cores if there are only 1 or 2, or
3035  * divided by 2 if there are more.
3036  */
3037 int netif_get_num_default_rss_queues(void)
3038 {
3039 	cpumask_var_t cpus;
3040 	int cpu, count = 0;
3041 
3042 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3043 		return 1;
3044 
3045 	cpumask_copy(cpus, cpu_online_mask);
3046 	for_each_cpu(cpu, cpus) {
3047 		++count;
3048 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3049 	}
3050 	free_cpumask_var(cpus);
3051 
3052 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3053 }
3054 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3055 
3056 static void __netif_reschedule(struct Qdisc *q)
3057 {
3058 	struct softnet_data *sd;
3059 	unsigned long flags;
3060 
3061 	local_irq_save(flags);
3062 	sd = this_cpu_ptr(&softnet_data);
3063 	q->next_sched = NULL;
3064 	*sd->output_queue_tailp = q;
3065 	sd->output_queue_tailp = &q->next_sched;
3066 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3067 	local_irq_restore(flags);
3068 }
3069 
3070 void __netif_schedule(struct Qdisc *q)
3071 {
3072 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3073 		__netif_reschedule(q);
3074 }
3075 EXPORT_SYMBOL(__netif_schedule);
3076 
3077 struct dev_kfree_skb_cb {
3078 	enum skb_free_reason reason;
3079 };
3080 
3081 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3082 {
3083 	return (struct dev_kfree_skb_cb *)skb->cb;
3084 }
3085 
3086 void netif_schedule_queue(struct netdev_queue *txq)
3087 {
3088 	rcu_read_lock();
3089 	if (!netif_xmit_stopped(txq)) {
3090 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3091 
3092 		__netif_schedule(q);
3093 	}
3094 	rcu_read_unlock();
3095 }
3096 EXPORT_SYMBOL(netif_schedule_queue);
3097 
3098 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3099 {
3100 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3101 		struct Qdisc *q;
3102 
3103 		rcu_read_lock();
3104 		q = rcu_dereference(dev_queue->qdisc);
3105 		__netif_schedule(q);
3106 		rcu_read_unlock();
3107 	}
3108 }
3109 EXPORT_SYMBOL(netif_tx_wake_queue);
3110 
3111 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3112 {
3113 	unsigned long flags;
3114 
3115 	if (unlikely(!skb))
3116 		return;
3117 
3118 	if (likely(refcount_read(&skb->users) == 1)) {
3119 		smp_rmb();
3120 		refcount_set(&skb->users, 0);
3121 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3122 		return;
3123 	}
3124 	get_kfree_skb_cb(skb)->reason = reason;
3125 	local_irq_save(flags);
3126 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3127 	__this_cpu_write(softnet_data.completion_queue, skb);
3128 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3129 	local_irq_restore(flags);
3130 }
3131 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3132 
3133 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3134 {
3135 	if (in_hardirq() || irqs_disabled())
3136 		__dev_kfree_skb_irq(skb, reason);
3137 	else
3138 		dev_kfree_skb(skb);
3139 }
3140 EXPORT_SYMBOL(__dev_kfree_skb_any);
3141 
3142 
3143 /**
3144  * netif_device_detach - mark device as removed
3145  * @dev: network device
3146  *
3147  * Mark device as removed from system and therefore no longer available.
3148  */
3149 void netif_device_detach(struct net_device *dev)
3150 {
3151 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3152 	    netif_running(dev)) {
3153 		netif_tx_stop_all_queues(dev);
3154 	}
3155 }
3156 EXPORT_SYMBOL(netif_device_detach);
3157 
3158 /**
3159  * netif_device_attach - mark device as attached
3160  * @dev: network device
3161  *
3162  * Mark device as attached from system and restart if needed.
3163  */
3164 void netif_device_attach(struct net_device *dev)
3165 {
3166 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3167 	    netif_running(dev)) {
3168 		netif_tx_wake_all_queues(dev);
3169 		__netdev_watchdog_up(dev);
3170 	}
3171 }
3172 EXPORT_SYMBOL(netif_device_attach);
3173 
3174 /*
3175  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3176  * to be used as a distribution range.
3177  */
3178 static u16 skb_tx_hash(const struct net_device *dev,
3179 		       const struct net_device *sb_dev,
3180 		       struct sk_buff *skb)
3181 {
3182 	u32 hash;
3183 	u16 qoffset = 0;
3184 	u16 qcount = dev->real_num_tx_queues;
3185 
3186 	if (dev->num_tc) {
3187 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3188 
3189 		qoffset = sb_dev->tc_to_txq[tc].offset;
3190 		qcount = sb_dev->tc_to_txq[tc].count;
3191 		if (unlikely(!qcount)) {
3192 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3193 					     sb_dev->name, qoffset, tc);
3194 			qoffset = 0;
3195 			qcount = dev->real_num_tx_queues;
3196 		}
3197 	}
3198 
3199 	if (skb_rx_queue_recorded(skb)) {
3200 		hash = skb_get_rx_queue(skb);
3201 		if (hash >= qoffset)
3202 			hash -= qoffset;
3203 		while (unlikely(hash >= qcount))
3204 			hash -= qcount;
3205 		return hash + qoffset;
3206 	}
3207 
3208 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3209 }
3210 
3211 static void skb_warn_bad_offload(const struct sk_buff *skb)
3212 {
3213 	static const netdev_features_t null_features;
3214 	struct net_device *dev = skb->dev;
3215 	const char *name = "";
3216 
3217 	if (!net_ratelimit())
3218 		return;
3219 
3220 	if (dev) {
3221 		if (dev->dev.parent)
3222 			name = dev_driver_string(dev->dev.parent);
3223 		else
3224 			name = netdev_name(dev);
3225 	}
3226 	skb_dump(KERN_WARNING, skb, false);
3227 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3228 	     name, dev ? &dev->features : &null_features,
3229 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3230 }
3231 
3232 /*
3233  * Invalidate hardware checksum when packet is to be mangled, and
3234  * complete checksum manually on outgoing path.
3235  */
3236 int skb_checksum_help(struct sk_buff *skb)
3237 {
3238 	__wsum csum;
3239 	int ret = 0, offset;
3240 
3241 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3242 		goto out_set_summed;
3243 
3244 	if (unlikely(skb_is_gso(skb))) {
3245 		skb_warn_bad_offload(skb);
3246 		return -EINVAL;
3247 	}
3248 
3249 	/* Before computing a checksum, we should make sure no frag could
3250 	 * be modified by an external entity : checksum could be wrong.
3251 	 */
3252 	if (skb_has_shared_frag(skb)) {
3253 		ret = __skb_linearize(skb);
3254 		if (ret)
3255 			goto out;
3256 	}
3257 
3258 	offset = skb_checksum_start_offset(skb);
3259 	ret = -EINVAL;
3260 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3261 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3262 		goto out;
3263 	}
3264 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3265 
3266 	offset += skb->csum_offset;
3267 	if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3268 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3269 		goto out;
3270 	}
3271 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3272 	if (ret)
3273 		goto out;
3274 
3275 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3276 out_set_summed:
3277 	skb->ip_summed = CHECKSUM_NONE;
3278 out:
3279 	return ret;
3280 }
3281 EXPORT_SYMBOL(skb_checksum_help);
3282 
3283 int skb_crc32c_csum_help(struct sk_buff *skb)
3284 {
3285 	__le32 crc32c_csum;
3286 	int ret = 0, offset, start;
3287 
3288 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3289 		goto out;
3290 
3291 	if (unlikely(skb_is_gso(skb)))
3292 		goto out;
3293 
3294 	/* Before computing a checksum, we should make sure no frag could
3295 	 * be modified by an external entity : checksum could be wrong.
3296 	 */
3297 	if (unlikely(skb_has_shared_frag(skb))) {
3298 		ret = __skb_linearize(skb);
3299 		if (ret)
3300 			goto out;
3301 	}
3302 	start = skb_checksum_start_offset(skb);
3303 	offset = start + offsetof(struct sctphdr, checksum);
3304 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3305 		ret = -EINVAL;
3306 		goto out;
3307 	}
3308 
3309 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3310 	if (ret)
3311 		goto out;
3312 
3313 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3314 						  skb->len - start, ~(__u32)0,
3315 						  crc32c_csum_stub));
3316 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3317 	skb->ip_summed = CHECKSUM_NONE;
3318 	skb->csum_not_inet = 0;
3319 out:
3320 	return ret;
3321 }
3322 
3323 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3324 {
3325 	__be16 type = skb->protocol;
3326 
3327 	/* Tunnel gso handlers can set protocol to ethernet. */
3328 	if (type == htons(ETH_P_TEB)) {
3329 		struct ethhdr *eth;
3330 
3331 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3332 			return 0;
3333 
3334 		eth = (struct ethhdr *)skb->data;
3335 		type = eth->h_proto;
3336 	}
3337 
3338 	return __vlan_get_protocol(skb, type, depth);
3339 }
3340 
3341 /* openvswitch calls this on rx path, so we need a different check.
3342  */
3343 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3344 {
3345 	if (tx_path)
3346 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3347 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3348 
3349 	return skb->ip_summed == CHECKSUM_NONE;
3350 }
3351 
3352 /**
3353  *	__skb_gso_segment - Perform segmentation on skb.
3354  *	@skb: buffer to segment
3355  *	@features: features for the output path (see dev->features)
3356  *	@tx_path: whether it is called in TX path
3357  *
3358  *	This function segments the given skb and returns a list of segments.
3359  *
3360  *	It may return NULL if the skb requires no segmentation.  This is
3361  *	only possible when GSO is used for verifying header integrity.
3362  *
3363  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3364  */
3365 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3366 				  netdev_features_t features, bool tx_path)
3367 {
3368 	struct sk_buff *segs;
3369 
3370 	if (unlikely(skb_needs_check(skb, tx_path))) {
3371 		int err;
3372 
3373 		/* We're going to init ->check field in TCP or UDP header */
3374 		err = skb_cow_head(skb, 0);
3375 		if (err < 0)
3376 			return ERR_PTR(err);
3377 	}
3378 
3379 	/* Only report GSO partial support if it will enable us to
3380 	 * support segmentation on this frame without needing additional
3381 	 * work.
3382 	 */
3383 	if (features & NETIF_F_GSO_PARTIAL) {
3384 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3385 		struct net_device *dev = skb->dev;
3386 
3387 		partial_features |= dev->features & dev->gso_partial_features;
3388 		if (!skb_gso_ok(skb, features | partial_features))
3389 			features &= ~NETIF_F_GSO_PARTIAL;
3390 	}
3391 
3392 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3393 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3394 
3395 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3396 	SKB_GSO_CB(skb)->encap_level = 0;
3397 
3398 	skb_reset_mac_header(skb);
3399 	skb_reset_mac_len(skb);
3400 
3401 	segs = skb_mac_gso_segment(skb, features);
3402 
3403 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3404 		skb_warn_bad_offload(skb);
3405 
3406 	return segs;
3407 }
3408 EXPORT_SYMBOL(__skb_gso_segment);
3409 
3410 /* Take action when hardware reception checksum errors are detected. */
3411 #ifdef CONFIG_BUG
3412 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3413 {
3414 	netdev_err(dev, "hw csum failure\n");
3415 	skb_dump(KERN_ERR, skb, true);
3416 	dump_stack();
3417 }
3418 
3419 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3420 {
3421 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3422 }
3423 EXPORT_SYMBOL(netdev_rx_csum_fault);
3424 #endif
3425 
3426 /* XXX: check that highmem exists at all on the given machine. */
3427 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3428 {
3429 #ifdef CONFIG_HIGHMEM
3430 	int i;
3431 
3432 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3433 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3434 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3435 
3436 			if (PageHighMem(skb_frag_page(frag)))
3437 				return 1;
3438 		}
3439 	}
3440 #endif
3441 	return 0;
3442 }
3443 
3444 /* If MPLS offload request, verify we are testing hardware MPLS features
3445  * instead of standard features for the netdev.
3446  */
3447 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3448 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3449 					   netdev_features_t features,
3450 					   __be16 type)
3451 {
3452 	if (eth_p_mpls(type))
3453 		features &= skb->dev->mpls_features;
3454 
3455 	return features;
3456 }
3457 #else
3458 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3459 					   netdev_features_t features,
3460 					   __be16 type)
3461 {
3462 	return features;
3463 }
3464 #endif
3465 
3466 static netdev_features_t harmonize_features(struct sk_buff *skb,
3467 	netdev_features_t features)
3468 {
3469 	__be16 type;
3470 
3471 	type = skb_network_protocol(skb, NULL);
3472 	features = net_mpls_features(skb, features, type);
3473 
3474 	if (skb->ip_summed != CHECKSUM_NONE &&
3475 	    !can_checksum_protocol(features, type)) {
3476 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3477 	}
3478 	if (illegal_highdma(skb->dev, skb))
3479 		features &= ~NETIF_F_SG;
3480 
3481 	return features;
3482 }
3483 
3484 netdev_features_t passthru_features_check(struct sk_buff *skb,
3485 					  struct net_device *dev,
3486 					  netdev_features_t features)
3487 {
3488 	return features;
3489 }
3490 EXPORT_SYMBOL(passthru_features_check);
3491 
3492 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3493 					     struct net_device *dev,
3494 					     netdev_features_t features)
3495 {
3496 	return vlan_features_check(skb, features);
3497 }
3498 
3499 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3500 					    struct net_device *dev,
3501 					    netdev_features_t features)
3502 {
3503 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3504 
3505 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3506 		return features & ~NETIF_F_GSO_MASK;
3507 
3508 	if (!skb_shinfo(skb)->gso_type) {
3509 		skb_warn_bad_offload(skb);
3510 		return features & ~NETIF_F_GSO_MASK;
3511 	}
3512 
3513 	/* Support for GSO partial features requires software
3514 	 * intervention before we can actually process the packets
3515 	 * so we need to strip support for any partial features now
3516 	 * and we can pull them back in after we have partially
3517 	 * segmented the frame.
3518 	 */
3519 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3520 		features &= ~dev->gso_partial_features;
3521 
3522 	/* Make sure to clear the IPv4 ID mangling feature if the
3523 	 * IPv4 header has the potential to be fragmented.
3524 	 */
3525 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3526 		struct iphdr *iph = skb->encapsulation ?
3527 				    inner_ip_hdr(skb) : ip_hdr(skb);
3528 
3529 		if (!(iph->frag_off & htons(IP_DF)))
3530 			features &= ~NETIF_F_TSO_MANGLEID;
3531 	}
3532 
3533 	return features;
3534 }
3535 
3536 netdev_features_t netif_skb_features(struct sk_buff *skb)
3537 {
3538 	struct net_device *dev = skb->dev;
3539 	netdev_features_t features = dev->features;
3540 
3541 	if (skb_is_gso(skb))
3542 		features = gso_features_check(skb, dev, features);
3543 
3544 	/* If encapsulation offload request, verify we are testing
3545 	 * hardware encapsulation features instead of standard
3546 	 * features for the netdev
3547 	 */
3548 	if (skb->encapsulation)
3549 		features &= dev->hw_enc_features;
3550 
3551 	if (skb_vlan_tagged(skb))
3552 		features = netdev_intersect_features(features,
3553 						     dev->vlan_features |
3554 						     NETIF_F_HW_VLAN_CTAG_TX |
3555 						     NETIF_F_HW_VLAN_STAG_TX);
3556 
3557 	if (dev->netdev_ops->ndo_features_check)
3558 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3559 								features);
3560 	else
3561 		features &= dflt_features_check(skb, dev, features);
3562 
3563 	return harmonize_features(skb, features);
3564 }
3565 EXPORT_SYMBOL(netif_skb_features);
3566 
3567 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3568 		    struct netdev_queue *txq, bool more)
3569 {
3570 	unsigned int len;
3571 	int rc;
3572 
3573 	if (dev_nit_active(dev))
3574 		dev_queue_xmit_nit(skb, dev);
3575 
3576 	len = skb->len;
3577 	trace_net_dev_start_xmit(skb, dev);
3578 	rc = netdev_start_xmit(skb, dev, txq, more);
3579 	trace_net_dev_xmit(skb, rc, dev, len);
3580 
3581 	return rc;
3582 }
3583 
3584 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3585 				    struct netdev_queue *txq, int *ret)
3586 {
3587 	struct sk_buff *skb = first;
3588 	int rc = NETDEV_TX_OK;
3589 
3590 	while (skb) {
3591 		struct sk_buff *next = skb->next;
3592 
3593 		skb_mark_not_on_list(skb);
3594 		rc = xmit_one(skb, dev, txq, next != NULL);
3595 		if (unlikely(!dev_xmit_complete(rc))) {
3596 			skb->next = next;
3597 			goto out;
3598 		}
3599 
3600 		skb = next;
3601 		if (netif_tx_queue_stopped(txq) && skb) {
3602 			rc = NETDEV_TX_BUSY;
3603 			break;
3604 		}
3605 	}
3606 
3607 out:
3608 	*ret = rc;
3609 	return skb;
3610 }
3611 
3612 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3613 					  netdev_features_t features)
3614 {
3615 	if (skb_vlan_tag_present(skb) &&
3616 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3617 		skb = __vlan_hwaccel_push_inside(skb);
3618 	return skb;
3619 }
3620 
3621 int skb_csum_hwoffload_help(struct sk_buff *skb,
3622 			    const netdev_features_t features)
3623 {
3624 	if (unlikely(skb_csum_is_sctp(skb)))
3625 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3626 			skb_crc32c_csum_help(skb);
3627 
3628 	if (features & NETIF_F_HW_CSUM)
3629 		return 0;
3630 
3631 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3632 		switch (skb->csum_offset) {
3633 		case offsetof(struct tcphdr, check):
3634 		case offsetof(struct udphdr, check):
3635 			return 0;
3636 		}
3637 	}
3638 
3639 	return skb_checksum_help(skb);
3640 }
3641 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3642 
3643 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3644 {
3645 	netdev_features_t features;
3646 
3647 	features = netif_skb_features(skb);
3648 	skb = validate_xmit_vlan(skb, features);
3649 	if (unlikely(!skb))
3650 		goto out_null;
3651 
3652 	skb = sk_validate_xmit_skb(skb, dev);
3653 	if (unlikely(!skb))
3654 		goto out_null;
3655 
3656 	if (netif_needs_gso(skb, features)) {
3657 		struct sk_buff *segs;
3658 
3659 		segs = skb_gso_segment(skb, features);
3660 		if (IS_ERR(segs)) {
3661 			goto out_kfree_skb;
3662 		} else if (segs) {
3663 			consume_skb(skb);
3664 			skb = segs;
3665 		}
3666 	} else {
3667 		if (skb_needs_linearize(skb, features) &&
3668 		    __skb_linearize(skb))
3669 			goto out_kfree_skb;
3670 
3671 		/* If packet is not checksummed and device does not
3672 		 * support checksumming for this protocol, complete
3673 		 * checksumming here.
3674 		 */
3675 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3676 			if (skb->encapsulation)
3677 				skb_set_inner_transport_header(skb,
3678 							       skb_checksum_start_offset(skb));
3679 			else
3680 				skb_set_transport_header(skb,
3681 							 skb_checksum_start_offset(skb));
3682 			if (skb_csum_hwoffload_help(skb, features))
3683 				goto out_kfree_skb;
3684 		}
3685 	}
3686 
3687 	skb = validate_xmit_xfrm(skb, features, again);
3688 
3689 	return skb;
3690 
3691 out_kfree_skb:
3692 	kfree_skb(skb);
3693 out_null:
3694 	dev_core_stats_tx_dropped_inc(dev);
3695 	return NULL;
3696 }
3697 
3698 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3699 {
3700 	struct sk_buff *next, *head = NULL, *tail;
3701 
3702 	for (; skb != NULL; skb = next) {
3703 		next = skb->next;
3704 		skb_mark_not_on_list(skb);
3705 
3706 		/* in case skb wont be segmented, point to itself */
3707 		skb->prev = skb;
3708 
3709 		skb = validate_xmit_skb(skb, dev, again);
3710 		if (!skb)
3711 			continue;
3712 
3713 		if (!head)
3714 			head = skb;
3715 		else
3716 			tail->next = skb;
3717 		/* If skb was segmented, skb->prev points to
3718 		 * the last segment. If not, it still contains skb.
3719 		 */
3720 		tail = skb->prev;
3721 	}
3722 	return head;
3723 }
3724 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3725 
3726 static void qdisc_pkt_len_init(struct sk_buff *skb)
3727 {
3728 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3729 
3730 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3731 
3732 	/* To get more precise estimation of bytes sent on wire,
3733 	 * we add to pkt_len the headers size of all segments
3734 	 */
3735 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3736 		unsigned int hdr_len;
3737 		u16 gso_segs = shinfo->gso_segs;
3738 
3739 		/* mac layer + network layer */
3740 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3741 
3742 		/* + transport layer */
3743 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3744 			const struct tcphdr *th;
3745 			struct tcphdr _tcphdr;
3746 
3747 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3748 						sizeof(_tcphdr), &_tcphdr);
3749 			if (likely(th))
3750 				hdr_len += __tcp_hdrlen(th);
3751 		} else {
3752 			struct udphdr _udphdr;
3753 
3754 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3755 					       sizeof(_udphdr), &_udphdr))
3756 				hdr_len += sizeof(struct udphdr);
3757 		}
3758 
3759 		if (shinfo->gso_type & SKB_GSO_DODGY)
3760 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3761 						shinfo->gso_size);
3762 
3763 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3764 	}
3765 }
3766 
3767 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3768 			     struct sk_buff **to_free,
3769 			     struct netdev_queue *txq)
3770 {
3771 	int rc;
3772 
3773 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3774 	if (rc == NET_XMIT_SUCCESS)
3775 		trace_qdisc_enqueue(q, txq, skb);
3776 	return rc;
3777 }
3778 
3779 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3780 				 struct net_device *dev,
3781 				 struct netdev_queue *txq)
3782 {
3783 	spinlock_t *root_lock = qdisc_lock(q);
3784 	struct sk_buff *to_free = NULL;
3785 	bool contended;
3786 	int rc;
3787 
3788 	qdisc_calculate_pkt_len(skb, q);
3789 
3790 	if (q->flags & TCQ_F_NOLOCK) {
3791 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3792 		    qdisc_run_begin(q)) {
3793 			/* Retest nolock_qdisc_is_empty() within the protection
3794 			 * of q->seqlock to protect from racing with requeuing.
3795 			 */
3796 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3797 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3798 				__qdisc_run(q);
3799 				qdisc_run_end(q);
3800 
3801 				goto no_lock_out;
3802 			}
3803 
3804 			qdisc_bstats_cpu_update(q, skb);
3805 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3806 			    !nolock_qdisc_is_empty(q))
3807 				__qdisc_run(q);
3808 
3809 			qdisc_run_end(q);
3810 			return NET_XMIT_SUCCESS;
3811 		}
3812 
3813 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3814 		qdisc_run(q);
3815 
3816 no_lock_out:
3817 		if (unlikely(to_free))
3818 			kfree_skb_list_reason(to_free,
3819 					      SKB_DROP_REASON_QDISC_DROP);
3820 		return rc;
3821 	}
3822 
3823 	/*
3824 	 * Heuristic to force contended enqueues to serialize on a
3825 	 * separate lock before trying to get qdisc main lock.
3826 	 * This permits qdisc->running owner to get the lock more
3827 	 * often and dequeue packets faster.
3828 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3829 	 * and then other tasks will only enqueue packets. The packets will be
3830 	 * sent after the qdisc owner is scheduled again. To prevent this
3831 	 * scenario the task always serialize on the lock.
3832 	 */
3833 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3834 	if (unlikely(contended))
3835 		spin_lock(&q->busylock);
3836 
3837 	spin_lock(root_lock);
3838 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3839 		__qdisc_drop(skb, &to_free);
3840 		rc = NET_XMIT_DROP;
3841 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3842 		   qdisc_run_begin(q)) {
3843 		/*
3844 		 * This is a work-conserving queue; there are no old skbs
3845 		 * waiting to be sent out; and the qdisc is not running -
3846 		 * xmit the skb directly.
3847 		 */
3848 
3849 		qdisc_bstats_update(q, skb);
3850 
3851 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3852 			if (unlikely(contended)) {
3853 				spin_unlock(&q->busylock);
3854 				contended = false;
3855 			}
3856 			__qdisc_run(q);
3857 		}
3858 
3859 		qdisc_run_end(q);
3860 		rc = NET_XMIT_SUCCESS;
3861 	} else {
3862 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3863 		if (qdisc_run_begin(q)) {
3864 			if (unlikely(contended)) {
3865 				spin_unlock(&q->busylock);
3866 				contended = false;
3867 			}
3868 			__qdisc_run(q);
3869 			qdisc_run_end(q);
3870 		}
3871 	}
3872 	spin_unlock(root_lock);
3873 	if (unlikely(to_free))
3874 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3875 	if (unlikely(contended))
3876 		spin_unlock(&q->busylock);
3877 	return rc;
3878 }
3879 
3880 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3881 static void skb_update_prio(struct sk_buff *skb)
3882 {
3883 	const struct netprio_map *map;
3884 	const struct sock *sk;
3885 	unsigned int prioidx;
3886 
3887 	if (skb->priority)
3888 		return;
3889 	map = rcu_dereference_bh(skb->dev->priomap);
3890 	if (!map)
3891 		return;
3892 	sk = skb_to_full_sk(skb);
3893 	if (!sk)
3894 		return;
3895 
3896 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3897 
3898 	if (prioidx < map->priomap_len)
3899 		skb->priority = map->priomap[prioidx];
3900 }
3901 #else
3902 #define skb_update_prio(skb)
3903 #endif
3904 
3905 /**
3906  *	dev_loopback_xmit - loop back @skb
3907  *	@net: network namespace this loopback is happening in
3908  *	@sk:  sk needed to be a netfilter okfn
3909  *	@skb: buffer to transmit
3910  */
3911 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3912 {
3913 	skb_reset_mac_header(skb);
3914 	__skb_pull(skb, skb_network_offset(skb));
3915 	skb->pkt_type = PACKET_LOOPBACK;
3916 	if (skb->ip_summed == CHECKSUM_NONE)
3917 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3918 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3919 	skb_dst_force(skb);
3920 	netif_rx(skb);
3921 	return 0;
3922 }
3923 EXPORT_SYMBOL(dev_loopback_xmit);
3924 
3925 #ifdef CONFIG_NET_EGRESS
3926 static struct sk_buff *
3927 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3928 {
3929 #ifdef CONFIG_NET_CLS_ACT
3930 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3931 	struct tcf_result cl_res;
3932 
3933 	if (!miniq)
3934 		return skb;
3935 
3936 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3937 	tc_skb_cb(skb)->mru = 0;
3938 	tc_skb_cb(skb)->post_ct = false;
3939 	mini_qdisc_bstats_cpu_update(miniq, skb);
3940 
3941 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3942 	case TC_ACT_OK:
3943 	case TC_ACT_RECLASSIFY:
3944 		skb->tc_index = TC_H_MIN(cl_res.classid);
3945 		break;
3946 	case TC_ACT_SHOT:
3947 		mini_qdisc_qstats_cpu_drop(miniq);
3948 		*ret = NET_XMIT_DROP;
3949 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3950 		return NULL;
3951 	case TC_ACT_STOLEN:
3952 	case TC_ACT_QUEUED:
3953 	case TC_ACT_TRAP:
3954 		*ret = NET_XMIT_SUCCESS;
3955 		consume_skb(skb);
3956 		return NULL;
3957 	case TC_ACT_REDIRECT:
3958 		/* No need to push/pop skb's mac_header here on egress! */
3959 		skb_do_redirect(skb);
3960 		*ret = NET_XMIT_SUCCESS;
3961 		return NULL;
3962 	default:
3963 		break;
3964 	}
3965 #endif /* CONFIG_NET_CLS_ACT */
3966 
3967 	return skb;
3968 }
3969 
3970 static struct netdev_queue *
3971 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3972 {
3973 	int qm = skb_get_queue_mapping(skb);
3974 
3975 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3976 }
3977 
3978 static bool netdev_xmit_txqueue_skipped(void)
3979 {
3980 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3981 }
3982 
3983 void netdev_xmit_skip_txqueue(bool skip)
3984 {
3985 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3986 }
3987 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3988 #endif /* CONFIG_NET_EGRESS */
3989 
3990 #ifdef CONFIG_XPS
3991 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3992 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3993 {
3994 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
3995 	struct xps_map *map;
3996 	int queue_index = -1;
3997 
3998 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3999 		return queue_index;
4000 
4001 	tci *= dev_maps->num_tc;
4002 	tci += tc;
4003 
4004 	map = rcu_dereference(dev_maps->attr_map[tci]);
4005 	if (map) {
4006 		if (map->len == 1)
4007 			queue_index = map->queues[0];
4008 		else
4009 			queue_index = map->queues[reciprocal_scale(
4010 						skb_get_hash(skb), map->len)];
4011 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4012 			queue_index = -1;
4013 	}
4014 	return queue_index;
4015 }
4016 #endif
4017 
4018 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4019 			 struct sk_buff *skb)
4020 {
4021 #ifdef CONFIG_XPS
4022 	struct xps_dev_maps *dev_maps;
4023 	struct sock *sk = skb->sk;
4024 	int queue_index = -1;
4025 
4026 	if (!static_key_false(&xps_needed))
4027 		return -1;
4028 
4029 	rcu_read_lock();
4030 	if (!static_key_false(&xps_rxqs_needed))
4031 		goto get_cpus_map;
4032 
4033 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4034 	if (dev_maps) {
4035 		int tci = sk_rx_queue_get(sk);
4036 
4037 		if (tci >= 0)
4038 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4039 							  tci);
4040 	}
4041 
4042 get_cpus_map:
4043 	if (queue_index < 0) {
4044 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4045 		if (dev_maps) {
4046 			unsigned int tci = skb->sender_cpu - 1;
4047 
4048 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4049 							  tci);
4050 		}
4051 	}
4052 	rcu_read_unlock();
4053 
4054 	return queue_index;
4055 #else
4056 	return -1;
4057 #endif
4058 }
4059 
4060 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4061 		     struct net_device *sb_dev)
4062 {
4063 	return 0;
4064 }
4065 EXPORT_SYMBOL(dev_pick_tx_zero);
4066 
4067 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4068 		       struct net_device *sb_dev)
4069 {
4070 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4071 }
4072 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4073 
4074 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4075 		     struct net_device *sb_dev)
4076 {
4077 	struct sock *sk = skb->sk;
4078 	int queue_index = sk_tx_queue_get(sk);
4079 
4080 	sb_dev = sb_dev ? : dev;
4081 
4082 	if (queue_index < 0 || skb->ooo_okay ||
4083 	    queue_index >= dev->real_num_tx_queues) {
4084 		int new_index = get_xps_queue(dev, sb_dev, skb);
4085 
4086 		if (new_index < 0)
4087 			new_index = skb_tx_hash(dev, sb_dev, skb);
4088 
4089 		if (queue_index != new_index && sk &&
4090 		    sk_fullsock(sk) &&
4091 		    rcu_access_pointer(sk->sk_dst_cache))
4092 			sk_tx_queue_set(sk, new_index);
4093 
4094 		queue_index = new_index;
4095 	}
4096 
4097 	return queue_index;
4098 }
4099 EXPORT_SYMBOL(netdev_pick_tx);
4100 
4101 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4102 					 struct sk_buff *skb,
4103 					 struct net_device *sb_dev)
4104 {
4105 	int queue_index = 0;
4106 
4107 #ifdef CONFIG_XPS
4108 	u32 sender_cpu = skb->sender_cpu - 1;
4109 
4110 	if (sender_cpu >= (u32)NR_CPUS)
4111 		skb->sender_cpu = raw_smp_processor_id() + 1;
4112 #endif
4113 
4114 	if (dev->real_num_tx_queues != 1) {
4115 		const struct net_device_ops *ops = dev->netdev_ops;
4116 
4117 		if (ops->ndo_select_queue)
4118 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4119 		else
4120 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4121 
4122 		queue_index = netdev_cap_txqueue(dev, queue_index);
4123 	}
4124 
4125 	skb_set_queue_mapping(skb, queue_index);
4126 	return netdev_get_tx_queue(dev, queue_index);
4127 }
4128 
4129 /**
4130  * __dev_queue_xmit() - transmit a buffer
4131  * @skb:	buffer to transmit
4132  * @sb_dev:	suboordinate device used for L2 forwarding offload
4133  *
4134  * Queue a buffer for transmission to a network device. The caller must
4135  * have set the device and priority and built the buffer before calling
4136  * this function. The function can be called from an interrupt.
4137  *
4138  * When calling this method, interrupts MUST be enabled. This is because
4139  * the BH enable code must have IRQs enabled so that it will not deadlock.
4140  *
4141  * Regardless of the return value, the skb is consumed, so it is currently
4142  * difficult to retry a send to this method. (You can bump the ref count
4143  * before sending to hold a reference for retry if you are careful.)
4144  *
4145  * Return:
4146  * * 0				- buffer successfully transmitted
4147  * * positive qdisc return code	- NET_XMIT_DROP etc.
4148  * * negative errno		- other errors
4149  */
4150 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4151 {
4152 	struct net_device *dev = skb->dev;
4153 	struct netdev_queue *txq = NULL;
4154 	struct Qdisc *q;
4155 	int rc = -ENOMEM;
4156 	bool again = false;
4157 
4158 	skb_reset_mac_header(skb);
4159 	skb_assert_len(skb);
4160 
4161 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4162 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4163 
4164 	/* Disable soft irqs for various locks below. Also
4165 	 * stops preemption for RCU.
4166 	 */
4167 	rcu_read_lock_bh();
4168 
4169 	skb_update_prio(skb);
4170 
4171 	qdisc_pkt_len_init(skb);
4172 #ifdef CONFIG_NET_CLS_ACT
4173 	skb->tc_at_ingress = 0;
4174 #endif
4175 #ifdef CONFIG_NET_EGRESS
4176 	if (static_branch_unlikely(&egress_needed_key)) {
4177 		if (nf_hook_egress_active()) {
4178 			skb = nf_hook_egress(skb, &rc, dev);
4179 			if (!skb)
4180 				goto out;
4181 		}
4182 
4183 		netdev_xmit_skip_txqueue(false);
4184 
4185 		nf_skip_egress(skb, true);
4186 		skb = sch_handle_egress(skb, &rc, dev);
4187 		if (!skb)
4188 			goto out;
4189 		nf_skip_egress(skb, false);
4190 
4191 		if (netdev_xmit_txqueue_skipped())
4192 			txq = netdev_tx_queue_mapping(dev, skb);
4193 	}
4194 #endif
4195 	/* If device/qdisc don't need skb->dst, release it right now while
4196 	 * its hot in this cpu cache.
4197 	 */
4198 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4199 		skb_dst_drop(skb);
4200 	else
4201 		skb_dst_force(skb);
4202 
4203 	if (!txq)
4204 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4205 
4206 	q = rcu_dereference_bh(txq->qdisc);
4207 
4208 	trace_net_dev_queue(skb);
4209 	if (q->enqueue) {
4210 		rc = __dev_xmit_skb(skb, q, dev, txq);
4211 		goto out;
4212 	}
4213 
4214 	/* The device has no queue. Common case for software devices:
4215 	 * loopback, all the sorts of tunnels...
4216 
4217 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4218 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4219 	 * counters.)
4220 	 * However, it is possible, that they rely on protection
4221 	 * made by us here.
4222 
4223 	 * Check this and shot the lock. It is not prone from deadlocks.
4224 	 *Either shot noqueue qdisc, it is even simpler 8)
4225 	 */
4226 	if (dev->flags & IFF_UP) {
4227 		int cpu = smp_processor_id(); /* ok because BHs are off */
4228 
4229 		/* Other cpus might concurrently change txq->xmit_lock_owner
4230 		 * to -1 or to their cpu id, but not to our id.
4231 		 */
4232 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4233 			if (dev_xmit_recursion())
4234 				goto recursion_alert;
4235 
4236 			skb = validate_xmit_skb(skb, dev, &again);
4237 			if (!skb)
4238 				goto out;
4239 
4240 			HARD_TX_LOCK(dev, txq, cpu);
4241 
4242 			if (!netif_xmit_stopped(txq)) {
4243 				dev_xmit_recursion_inc();
4244 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4245 				dev_xmit_recursion_dec();
4246 				if (dev_xmit_complete(rc)) {
4247 					HARD_TX_UNLOCK(dev, txq);
4248 					goto out;
4249 				}
4250 			}
4251 			HARD_TX_UNLOCK(dev, txq);
4252 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4253 					     dev->name);
4254 		} else {
4255 			/* Recursion is detected! It is possible,
4256 			 * unfortunately
4257 			 */
4258 recursion_alert:
4259 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4260 					     dev->name);
4261 		}
4262 	}
4263 
4264 	rc = -ENETDOWN;
4265 	rcu_read_unlock_bh();
4266 
4267 	dev_core_stats_tx_dropped_inc(dev);
4268 	kfree_skb_list(skb);
4269 	return rc;
4270 out:
4271 	rcu_read_unlock_bh();
4272 	return rc;
4273 }
4274 EXPORT_SYMBOL(__dev_queue_xmit);
4275 
4276 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4277 {
4278 	struct net_device *dev = skb->dev;
4279 	struct sk_buff *orig_skb = skb;
4280 	struct netdev_queue *txq;
4281 	int ret = NETDEV_TX_BUSY;
4282 	bool again = false;
4283 
4284 	if (unlikely(!netif_running(dev) ||
4285 		     !netif_carrier_ok(dev)))
4286 		goto drop;
4287 
4288 	skb = validate_xmit_skb_list(skb, dev, &again);
4289 	if (skb != orig_skb)
4290 		goto drop;
4291 
4292 	skb_set_queue_mapping(skb, queue_id);
4293 	txq = skb_get_tx_queue(dev, skb);
4294 
4295 	local_bh_disable();
4296 
4297 	dev_xmit_recursion_inc();
4298 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4299 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4300 		ret = netdev_start_xmit(skb, dev, txq, false);
4301 	HARD_TX_UNLOCK(dev, txq);
4302 	dev_xmit_recursion_dec();
4303 
4304 	local_bh_enable();
4305 	return ret;
4306 drop:
4307 	dev_core_stats_tx_dropped_inc(dev);
4308 	kfree_skb_list(skb);
4309 	return NET_XMIT_DROP;
4310 }
4311 EXPORT_SYMBOL(__dev_direct_xmit);
4312 
4313 /*************************************************************************
4314  *			Receiver routines
4315  *************************************************************************/
4316 
4317 int netdev_max_backlog __read_mostly = 1000;
4318 EXPORT_SYMBOL(netdev_max_backlog);
4319 
4320 int netdev_tstamp_prequeue __read_mostly = 1;
4321 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4322 int netdev_budget __read_mostly = 300;
4323 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4324 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4325 int weight_p __read_mostly = 64;           /* old backlog weight */
4326 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4327 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4328 int dev_rx_weight __read_mostly = 64;
4329 int dev_tx_weight __read_mostly = 64;
4330 
4331 /* Called with irq disabled */
4332 static inline void ____napi_schedule(struct softnet_data *sd,
4333 				     struct napi_struct *napi)
4334 {
4335 	struct task_struct *thread;
4336 
4337 	lockdep_assert_irqs_disabled();
4338 
4339 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4340 		/* Paired with smp_mb__before_atomic() in
4341 		 * napi_enable()/dev_set_threaded().
4342 		 * Use READ_ONCE() to guarantee a complete
4343 		 * read on napi->thread. Only call
4344 		 * wake_up_process() when it's not NULL.
4345 		 */
4346 		thread = READ_ONCE(napi->thread);
4347 		if (thread) {
4348 			/* Avoid doing set_bit() if the thread is in
4349 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4350 			 * makes sure to proceed with napi polling
4351 			 * if the thread is explicitly woken from here.
4352 			 */
4353 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4354 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4355 			wake_up_process(thread);
4356 			return;
4357 		}
4358 	}
4359 
4360 	list_add_tail(&napi->poll_list, &sd->poll_list);
4361 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4362 }
4363 
4364 #ifdef CONFIG_RPS
4365 
4366 /* One global table that all flow-based protocols share. */
4367 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4368 EXPORT_SYMBOL(rps_sock_flow_table);
4369 u32 rps_cpu_mask __read_mostly;
4370 EXPORT_SYMBOL(rps_cpu_mask);
4371 
4372 struct static_key_false rps_needed __read_mostly;
4373 EXPORT_SYMBOL(rps_needed);
4374 struct static_key_false rfs_needed __read_mostly;
4375 EXPORT_SYMBOL(rfs_needed);
4376 
4377 static struct rps_dev_flow *
4378 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4379 	    struct rps_dev_flow *rflow, u16 next_cpu)
4380 {
4381 	if (next_cpu < nr_cpu_ids) {
4382 #ifdef CONFIG_RFS_ACCEL
4383 		struct netdev_rx_queue *rxqueue;
4384 		struct rps_dev_flow_table *flow_table;
4385 		struct rps_dev_flow *old_rflow;
4386 		u32 flow_id;
4387 		u16 rxq_index;
4388 		int rc;
4389 
4390 		/* Should we steer this flow to a different hardware queue? */
4391 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4392 		    !(dev->features & NETIF_F_NTUPLE))
4393 			goto out;
4394 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4395 		if (rxq_index == skb_get_rx_queue(skb))
4396 			goto out;
4397 
4398 		rxqueue = dev->_rx + rxq_index;
4399 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4400 		if (!flow_table)
4401 			goto out;
4402 		flow_id = skb_get_hash(skb) & flow_table->mask;
4403 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4404 							rxq_index, flow_id);
4405 		if (rc < 0)
4406 			goto out;
4407 		old_rflow = rflow;
4408 		rflow = &flow_table->flows[flow_id];
4409 		rflow->filter = rc;
4410 		if (old_rflow->filter == rflow->filter)
4411 			old_rflow->filter = RPS_NO_FILTER;
4412 	out:
4413 #endif
4414 		rflow->last_qtail =
4415 			per_cpu(softnet_data, next_cpu).input_queue_head;
4416 	}
4417 
4418 	rflow->cpu = next_cpu;
4419 	return rflow;
4420 }
4421 
4422 /*
4423  * get_rps_cpu is called from netif_receive_skb and returns the target
4424  * CPU from the RPS map of the receiving queue for a given skb.
4425  * rcu_read_lock must be held on entry.
4426  */
4427 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4428 		       struct rps_dev_flow **rflowp)
4429 {
4430 	const struct rps_sock_flow_table *sock_flow_table;
4431 	struct netdev_rx_queue *rxqueue = dev->_rx;
4432 	struct rps_dev_flow_table *flow_table;
4433 	struct rps_map *map;
4434 	int cpu = -1;
4435 	u32 tcpu;
4436 	u32 hash;
4437 
4438 	if (skb_rx_queue_recorded(skb)) {
4439 		u16 index = skb_get_rx_queue(skb);
4440 
4441 		if (unlikely(index >= dev->real_num_rx_queues)) {
4442 			WARN_ONCE(dev->real_num_rx_queues > 1,
4443 				  "%s received packet on queue %u, but number "
4444 				  "of RX queues is %u\n",
4445 				  dev->name, index, dev->real_num_rx_queues);
4446 			goto done;
4447 		}
4448 		rxqueue += index;
4449 	}
4450 
4451 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4452 
4453 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4454 	map = rcu_dereference(rxqueue->rps_map);
4455 	if (!flow_table && !map)
4456 		goto done;
4457 
4458 	skb_reset_network_header(skb);
4459 	hash = skb_get_hash(skb);
4460 	if (!hash)
4461 		goto done;
4462 
4463 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4464 	if (flow_table && sock_flow_table) {
4465 		struct rps_dev_flow *rflow;
4466 		u32 next_cpu;
4467 		u32 ident;
4468 
4469 		/* First check into global flow table if there is a match */
4470 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4471 		if ((ident ^ hash) & ~rps_cpu_mask)
4472 			goto try_rps;
4473 
4474 		next_cpu = ident & rps_cpu_mask;
4475 
4476 		/* OK, now we know there is a match,
4477 		 * we can look at the local (per receive queue) flow table
4478 		 */
4479 		rflow = &flow_table->flows[hash & flow_table->mask];
4480 		tcpu = rflow->cpu;
4481 
4482 		/*
4483 		 * If the desired CPU (where last recvmsg was done) is
4484 		 * different from current CPU (one in the rx-queue flow
4485 		 * table entry), switch if one of the following holds:
4486 		 *   - Current CPU is unset (>= nr_cpu_ids).
4487 		 *   - Current CPU is offline.
4488 		 *   - The current CPU's queue tail has advanced beyond the
4489 		 *     last packet that was enqueued using this table entry.
4490 		 *     This guarantees that all previous packets for the flow
4491 		 *     have been dequeued, thus preserving in order delivery.
4492 		 */
4493 		if (unlikely(tcpu != next_cpu) &&
4494 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4495 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4496 		      rflow->last_qtail)) >= 0)) {
4497 			tcpu = next_cpu;
4498 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4499 		}
4500 
4501 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4502 			*rflowp = rflow;
4503 			cpu = tcpu;
4504 			goto done;
4505 		}
4506 	}
4507 
4508 try_rps:
4509 
4510 	if (map) {
4511 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4512 		if (cpu_online(tcpu)) {
4513 			cpu = tcpu;
4514 			goto done;
4515 		}
4516 	}
4517 
4518 done:
4519 	return cpu;
4520 }
4521 
4522 #ifdef CONFIG_RFS_ACCEL
4523 
4524 /**
4525  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4526  * @dev: Device on which the filter was set
4527  * @rxq_index: RX queue index
4528  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4529  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4530  *
4531  * Drivers that implement ndo_rx_flow_steer() should periodically call
4532  * this function for each installed filter and remove the filters for
4533  * which it returns %true.
4534  */
4535 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4536 			 u32 flow_id, u16 filter_id)
4537 {
4538 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4539 	struct rps_dev_flow_table *flow_table;
4540 	struct rps_dev_flow *rflow;
4541 	bool expire = true;
4542 	unsigned int cpu;
4543 
4544 	rcu_read_lock();
4545 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4546 	if (flow_table && flow_id <= flow_table->mask) {
4547 		rflow = &flow_table->flows[flow_id];
4548 		cpu = READ_ONCE(rflow->cpu);
4549 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4550 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4551 			   rflow->last_qtail) <
4552 		     (int)(10 * flow_table->mask)))
4553 			expire = false;
4554 	}
4555 	rcu_read_unlock();
4556 	return expire;
4557 }
4558 EXPORT_SYMBOL(rps_may_expire_flow);
4559 
4560 #endif /* CONFIG_RFS_ACCEL */
4561 
4562 /* Called from hardirq (IPI) context */
4563 static void rps_trigger_softirq(void *data)
4564 {
4565 	struct softnet_data *sd = data;
4566 
4567 	____napi_schedule(sd, &sd->backlog);
4568 	sd->received_rps++;
4569 }
4570 
4571 #endif /* CONFIG_RPS */
4572 
4573 /* Called from hardirq (IPI) context */
4574 static void trigger_rx_softirq(void *data)
4575 {
4576 	struct softnet_data *sd = data;
4577 
4578 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4579 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4580 }
4581 
4582 /*
4583  * Check if this softnet_data structure is another cpu one
4584  * If yes, queue it to our IPI list and return 1
4585  * If no, return 0
4586  */
4587 static int napi_schedule_rps(struct softnet_data *sd)
4588 {
4589 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4590 
4591 #ifdef CONFIG_RPS
4592 	if (sd != mysd) {
4593 		sd->rps_ipi_next = mysd->rps_ipi_list;
4594 		mysd->rps_ipi_list = sd;
4595 
4596 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4597 		return 1;
4598 	}
4599 #endif /* CONFIG_RPS */
4600 	__napi_schedule_irqoff(&mysd->backlog);
4601 	return 0;
4602 }
4603 
4604 #ifdef CONFIG_NET_FLOW_LIMIT
4605 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4606 #endif
4607 
4608 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4609 {
4610 #ifdef CONFIG_NET_FLOW_LIMIT
4611 	struct sd_flow_limit *fl;
4612 	struct softnet_data *sd;
4613 	unsigned int old_flow, new_flow;
4614 
4615 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4616 		return false;
4617 
4618 	sd = this_cpu_ptr(&softnet_data);
4619 
4620 	rcu_read_lock();
4621 	fl = rcu_dereference(sd->flow_limit);
4622 	if (fl) {
4623 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4624 		old_flow = fl->history[fl->history_head];
4625 		fl->history[fl->history_head] = new_flow;
4626 
4627 		fl->history_head++;
4628 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4629 
4630 		if (likely(fl->buckets[old_flow]))
4631 			fl->buckets[old_flow]--;
4632 
4633 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4634 			fl->count++;
4635 			rcu_read_unlock();
4636 			return true;
4637 		}
4638 	}
4639 	rcu_read_unlock();
4640 #endif
4641 	return false;
4642 }
4643 
4644 /*
4645  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4646  * queue (may be a remote CPU queue).
4647  */
4648 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4649 			      unsigned int *qtail)
4650 {
4651 	enum skb_drop_reason reason;
4652 	struct softnet_data *sd;
4653 	unsigned long flags;
4654 	unsigned int qlen;
4655 
4656 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4657 	sd = &per_cpu(softnet_data, cpu);
4658 
4659 	rps_lock_irqsave(sd, &flags);
4660 	if (!netif_running(skb->dev))
4661 		goto drop;
4662 	qlen = skb_queue_len(&sd->input_pkt_queue);
4663 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4664 		if (qlen) {
4665 enqueue:
4666 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4667 			input_queue_tail_incr_save(sd, qtail);
4668 			rps_unlock_irq_restore(sd, &flags);
4669 			return NET_RX_SUCCESS;
4670 		}
4671 
4672 		/* Schedule NAPI for backlog device
4673 		 * We can use non atomic operation since we own the queue lock
4674 		 */
4675 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4676 			napi_schedule_rps(sd);
4677 		goto enqueue;
4678 	}
4679 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4680 
4681 drop:
4682 	sd->dropped++;
4683 	rps_unlock_irq_restore(sd, &flags);
4684 
4685 	dev_core_stats_rx_dropped_inc(skb->dev);
4686 	kfree_skb_reason(skb, reason);
4687 	return NET_RX_DROP;
4688 }
4689 
4690 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4691 {
4692 	struct net_device *dev = skb->dev;
4693 	struct netdev_rx_queue *rxqueue;
4694 
4695 	rxqueue = dev->_rx;
4696 
4697 	if (skb_rx_queue_recorded(skb)) {
4698 		u16 index = skb_get_rx_queue(skb);
4699 
4700 		if (unlikely(index >= dev->real_num_rx_queues)) {
4701 			WARN_ONCE(dev->real_num_rx_queues > 1,
4702 				  "%s received packet on queue %u, but number "
4703 				  "of RX queues is %u\n",
4704 				  dev->name, index, dev->real_num_rx_queues);
4705 
4706 			return rxqueue; /* Return first rxqueue */
4707 		}
4708 		rxqueue += index;
4709 	}
4710 	return rxqueue;
4711 }
4712 
4713 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4714 			     struct bpf_prog *xdp_prog)
4715 {
4716 	void *orig_data, *orig_data_end, *hard_start;
4717 	struct netdev_rx_queue *rxqueue;
4718 	bool orig_bcast, orig_host;
4719 	u32 mac_len, frame_sz;
4720 	__be16 orig_eth_type;
4721 	struct ethhdr *eth;
4722 	u32 metalen, act;
4723 	int off;
4724 
4725 	/* The XDP program wants to see the packet starting at the MAC
4726 	 * header.
4727 	 */
4728 	mac_len = skb->data - skb_mac_header(skb);
4729 	hard_start = skb->data - skb_headroom(skb);
4730 
4731 	/* SKB "head" area always have tailroom for skb_shared_info */
4732 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4733 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4734 
4735 	rxqueue = netif_get_rxqueue(skb);
4736 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4737 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4738 			 skb_headlen(skb) + mac_len, true);
4739 
4740 	orig_data_end = xdp->data_end;
4741 	orig_data = xdp->data;
4742 	eth = (struct ethhdr *)xdp->data;
4743 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4744 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4745 	orig_eth_type = eth->h_proto;
4746 
4747 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4748 
4749 	/* check if bpf_xdp_adjust_head was used */
4750 	off = xdp->data - orig_data;
4751 	if (off) {
4752 		if (off > 0)
4753 			__skb_pull(skb, off);
4754 		else if (off < 0)
4755 			__skb_push(skb, -off);
4756 
4757 		skb->mac_header += off;
4758 		skb_reset_network_header(skb);
4759 	}
4760 
4761 	/* check if bpf_xdp_adjust_tail was used */
4762 	off = xdp->data_end - orig_data_end;
4763 	if (off != 0) {
4764 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4765 		skb->len += off; /* positive on grow, negative on shrink */
4766 	}
4767 
4768 	/* check if XDP changed eth hdr such SKB needs update */
4769 	eth = (struct ethhdr *)xdp->data;
4770 	if ((orig_eth_type != eth->h_proto) ||
4771 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4772 						  skb->dev->dev_addr)) ||
4773 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4774 		__skb_push(skb, ETH_HLEN);
4775 		skb->pkt_type = PACKET_HOST;
4776 		skb->protocol = eth_type_trans(skb, skb->dev);
4777 	}
4778 
4779 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4780 	 * before calling us again on redirect path. We do not call do_redirect
4781 	 * as we leave that up to the caller.
4782 	 *
4783 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4784 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4785 	 */
4786 	switch (act) {
4787 	case XDP_REDIRECT:
4788 	case XDP_TX:
4789 		__skb_push(skb, mac_len);
4790 		break;
4791 	case XDP_PASS:
4792 		metalen = xdp->data - xdp->data_meta;
4793 		if (metalen)
4794 			skb_metadata_set(skb, metalen);
4795 		break;
4796 	}
4797 
4798 	return act;
4799 }
4800 
4801 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4802 				     struct xdp_buff *xdp,
4803 				     struct bpf_prog *xdp_prog)
4804 {
4805 	u32 act = XDP_DROP;
4806 
4807 	/* Reinjected packets coming from act_mirred or similar should
4808 	 * not get XDP generic processing.
4809 	 */
4810 	if (skb_is_redirected(skb))
4811 		return XDP_PASS;
4812 
4813 	/* XDP packets must be linear and must have sufficient headroom
4814 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4815 	 * native XDP provides, thus we need to do it here as well.
4816 	 */
4817 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4818 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4819 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4820 		int troom = skb->tail + skb->data_len - skb->end;
4821 
4822 		/* In case we have to go down the path and also linearize,
4823 		 * then lets do the pskb_expand_head() work just once here.
4824 		 */
4825 		if (pskb_expand_head(skb,
4826 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4827 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4828 			goto do_drop;
4829 		if (skb_linearize(skb))
4830 			goto do_drop;
4831 	}
4832 
4833 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4834 	switch (act) {
4835 	case XDP_REDIRECT:
4836 	case XDP_TX:
4837 	case XDP_PASS:
4838 		break;
4839 	default:
4840 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4841 		fallthrough;
4842 	case XDP_ABORTED:
4843 		trace_xdp_exception(skb->dev, xdp_prog, act);
4844 		fallthrough;
4845 	case XDP_DROP:
4846 	do_drop:
4847 		kfree_skb(skb);
4848 		break;
4849 	}
4850 
4851 	return act;
4852 }
4853 
4854 /* When doing generic XDP we have to bypass the qdisc layer and the
4855  * network taps in order to match in-driver-XDP behavior. This also means
4856  * that XDP packets are able to starve other packets going through a qdisc,
4857  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4858  * queues, so they do not have this starvation issue.
4859  */
4860 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4861 {
4862 	struct net_device *dev = skb->dev;
4863 	struct netdev_queue *txq;
4864 	bool free_skb = true;
4865 	int cpu, rc;
4866 
4867 	txq = netdev_core_pick_tx(dev, skb, NULL);
4868 	cpu = smp_processor_id();
4869 	HARD_TX_LOCK(dev, txq, cpu);
4870 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4871 		rc = netdev_start_xmit(skb, dev, txq, 0);
4872 		if (dev_xmit_complete(rc))
4873 			free_skb = false;
4874 	}
4875 	HARD_TX_UNLOCK(dev, txq);
4876 	if (free_skb) {
4877 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4878 		dev_core_stats_tx_dropped_inc(dev);
4879 		kfree_skb(skb);
4880 	}
4881 }
4882 
4883 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4884 
4885 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4886 {
4887 	if (xdp_prog) {
4888 		struct xdp_buff xdp;
4889 		u32 act;
4890 		int err;
4891 
4892 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4893 		if (act != XDP_PASS) {
4894 			switch (act) {
4895 			case XDP_REDIRECT:
4896 				err = xdp_do_generic_redirect(skb->dev, skb,
4897 							      &xdp, xdp_prog);
4898 				if (err)
4899 					goto out_redir;
4900 				break;
4901 			case XDP_TX:
4902 				generic_xdp_tx(skb, xdp_prog);
4903 				break;
4904 			}
4905 			return XDP_DROP;
4906 		}
4907 	}
4908 	return XDP_PASS;
4909 out_redir:
4910 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4911 	return XDP_DROP;
4912 }
4913 EXPORT_SYMBOL_GPL(do_xdp_generic);
4914 
4915 static int netif_rx_internal(struct sk_buff *skb)
4916 {
4917 	int ret;
4918 
4919 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4920 
4921 	trace_netif_rx(skb);
4922 
4923 #ifdef CONFIG_RPS
4924 	if (static_branch_unlikely(&rps_needed)) {
4925 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4926 		int cpu;
4927 
4928 		rcu_read_lock();
4929 
4930 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4931 		if (cpu < 0)
4932 			cpu = smp_processor_id();
4933 
4934 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4935 
4936 		rcu_read_unlock();
4937 	} else
4938 #endif
4939 	{
4940 		unsigned int qtail;
4941 
4942 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4943 	}
4944 	return ret;
4945 }
4946 
4947 /**
4948  *	__netif_rx	-	Slightly optimized version of netif_rx
4949  *	@skb: buffer to post
4950  *
4951  *	This behaves as netif_rx except that it does not disable bottom halves.
4952  *	As a result this function may only be invoked from the interrupt context
4953  *	(either hard or soft interrupt).
4954  */
4955 int __netif_rx(struct sk_buff *skb)
4956 {
4957 	int ret;
4958 
4959 	lockdep_assert_once(hardirq_count() | softirq_count());
4960 
4961 	trace_netif_rx_entry(skb);
4962 	ret = netif_rx_internal(skb);
4963 	trace_netif_rx_exit(ret);
4964 	return ret;
4965 }
4966 EXPORT_SYMBOL(__netif_rx);
4967 
4968 /**
4969  *	netif_rx	-	post buffer to the network code
4970  *	@skb: buffer to post
4971  *
4972  *	This function receives a packet from a device driver and queues it for
4973  *	the upper (protocol) levels to process via the backlog NAPI device. It
4974  *	always succeeds. The buffer may be dropped during processing for
4975  *	congestion control or by the protocol layers.
4976  *	The network buffer is passed via the backlog NAPI device. Modern NIC
4977  *	driver should use NAPI and GRO.
4978  *	This function can used from interrupt and from process context. The
4979  *	caller from process context must not disable interrupts before invoking
4980  *	this function.
4981  *
4982  *	return values:
4983  *	NET_RX_SUCCESS	(no congestion)
4984  *	NET_RX_DROP     (packet was dropped)
4985  *
4986  */
4987 int netif_rx(struct sk_buff *skb)
4988 {
4989 	bool need_bh_off = !(hardirq_count() | softirq_count());
4990 	int ret;
4991 
4992 	if (need_bh_off)
4993 		local_bh_disable();
4994 	trace_netif_rx_entry(skb);
4995 	ret = netif_rx_internal(skb);
4996 	trace_netif_rx_exit(ret);
4997 	if (need_bh_off)
4998 		local_bh_enable();
4999 	return ret;
5000 }
5001 EXPORT_SYMBOL(netif_rx);
5002 
5003 static __latent_entropy void net_tx_action(struct softirq_action *h)
5004 {
5005 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5006 
5007 	if (sd->completion_queue) {
5008 		struct sk_buff *clist;
5009 
5010 		local_irq_disable();
5011 		clist = sd->completion_queue;
5012 		sd->completion_queue = NULL;
5013 		local_irq_enable();
5014 
5015 		while (clist) {
5016 			struct sk_buff *skb = clist;
5017 
5018 			clist = clist->next;
5019 
5020 			WARN_ON(refcount_read(&skb->users));
5021 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5022 				trace_consume_skb(skb);
5023 			else
5024 				trace_kfree_skb(skb, net_tx_action,
5025 						SKB_DROP_REASON_NOT_SPECIFIED);
5026 
5027 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5028 				__kfree_skb(skb);
5029 			else
5030 				__kfree_skb_defer(skb);
5031 		}
5032 	}
5033 
5034 	if (sd->output_queue) {
5035 		struct Qdisc *head;
5036 
5037 		local_irq_disable();
5038 		head = sd->output_queue;
5039 		sd->output_queue = NULL;
5040 		sd->output_queue_tailp = &sd->output_queue;
5041 		local_irq_enable();
5042 
5043 		rcu_read_lock();
5044 
5045 		while (head) {
5046 			struct Qdisc *q = head;
5047 			spinlock_t *root_lock = NULL;
5048 
5049 			head = head->next_sched;
5050 
5051 			/* We need to make sure head->next_sched is read
5052 			 * before clearing __QDISC_STATE_SCHED
5053 			 */
5054 			smp_mb__before_atomic();
5055 
5056 			if (!(q->flags & TCQ_F_NOLOCK)) {
5057 				root_lock = qdisc_lock(q);
5058 				spin_lock(root_lock);
5059 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5060 						     &q->state))) {
5061 				/* There is a synchronize_net() between
5062 				 * STATE_DEACTIVATED flag being set and
5063 				 * qdisc_reset()/some_qdisc_is_busy() in
5064 				 * dev_deactivate(), so we can safely bail out
5065 				 * early here to avoid data race between
5066 				 * qdisc_deactivate() and some_qdisc_is_busy()
5067 				 * for lockless qdisc.
5068 				 */
5069 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5070 				continue;
5071 			}
5072 
5073 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5074 			qdisc_run(q);
5075 			if (root_lock)
5076 				spin_unlock(root_lock);
5077 		}
5078 
5079 		rcu_read_unlock();
5080 	}
5081 
5082 	xfrm_dev_backlog(sd);
5083 }
5084 
5085 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5086 /* This hook is defined here for ATM LANE */
5087 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5088 			     unsigned char *addr) __read_mostly;
5089 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5090 #endif
5091 
5092 static inline struct sk_buff *
5093 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5094 		   struct net_device *orig_dev, bool *another)
5095 {
5096 #ifdef CONFIG_NET_CLS_ACT
5097 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5098 	struct tcf_result cl_res;
5099 
5100 	/* If there's at least one ingress present somewhere (so
5101 	 * we get here via enabled static key), remaining devices
5102 	 * that are not configured with an ingress qdisc will bail
5103 	 * out here.
5104 	 */
5105 	if (!miniq)
5106 		return skb;
5107 
5108 	if (*pt_prev) {
5109 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5110 		*pt_prev = NULL;
5111 	}
5112 
5113 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5114 	tc_skb_cb(skb)->mru = 0;
5115 	tc_skb_cb(skb)->post_ct = false;
5116 	skb->tc_at_ingress = 1;
5117 	mini_qdisc_bstats_cpu_update(miniq, skb);
5118 
5119 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5120 	case TC_ACT_OK:
5121 	case TC_ACT_RECLASSIFY:
5122 		skb->tc_index = TC_H_MIN(cl_res.classid);
5123 		break;
5124 	case TC_ACT_SHOT:
5125 		mini_qdisc_qstats_cpu_drop(miniq);
5126 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5127 		*ret = NET_RX_DROP;
5128 		return NULL;
5129 	case TC_ACT_STOLEN:
5130 	case TC_ACT_QUEUED:
5131 	case TC_ACT_TRAP:
5132 		consume_skb(skb);
5133 		*ret = NET_RX_SUCCESS;
5134 		return NULL;
5135 	case TC_ACT_REDIRECT:
5136 		/* skb_mac_header check was done by cls/act_bpf, so
5137 		 * we can safely push the L2 header back before
5138 		 * redirecting to another netdev
5139 		 */
5140 		__skb_push(skb, skb->mac_len);
5141 		if (skb_do_redirect(skb) == -EAGAIN) {
5142 			__skb_pull(skb, skb->mac_len);
5143 			*another = true;
5144 			break;
5145 		}
5146 		*ret = NET_RX_SUCCESS;
5147 		return NULL;
5148 	case TC_ACT_CONSUMED:
5149 		*ret = NET_RX_SUCCESS;
5150 		return NULL;
5151 	default:
5152 		break;
5153 	}
5154 #endif /* CONFIG_NET_CLS_ACT */
5155 	return skb;
5156 }
5157 
5158 /**
5159  *	netdev_is_rx_handler_busy - check if receive handler is registered
5160  *	@dev: device to check
5161  *
5162  *	Check if a receive handler is already registered for a given device.
5163  *	Return true if there one.
5164  *
5165  *	The caller must hold the rtnl_mutex.
5166  */
5167 bool netdev_is_rx_handler_busy(struct net_device *dev)
5168 {
5169 	ASSERT_RTNL();
5170 	return dev && rtnl_dereference(dev->rx_handler);
5171 }
5172 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5173 
5174 /**
5175  *	netdev_rx_handler_register - register receive handler
5176  *	@dev: device to register a handler for
5177  *	@rx_handler: receive handler to register
5178  *	@rx_handler_data: data pointer that is used by rx handler
5179  *
5180  *	Register a receive handler for a device. This handler will then be
5181  *	called from __netif_receive_skb. A negative errno code is returned
5182  *	on a failure.
5183  *
5184  *	The caller must hold the rtnl_mutex.
5185  *
5186  *	For a general description of rx_handler, see enum rx_handler_result.
5187  */
5188 int netdev_rx_handler_register(struct net_device *dev,
5189 			       rx_handler_func_t *rx_handler,
5190 			       void *rx_handler_data)
5191 {
5192 	if (netdev_is_rx_handler_busy(dev))
5193 		return -EBUSY;
5194 
5195 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5196 		return -EINVAL;
5197 
5198 	/* Note: rx_handler_data must be set before rx_handler */
5199 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5200 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5201 
5202 	return 0;
5203 }
5204 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5205 
5206 /**
5207  *	netdev_rx_handler_unregister - unregister receive handler
5208  *	@dev: device to unregister a handler from
5209  *
5210  *	Unregister a receive handler from a device.
5211  *
5212  *	The caller must hold the rtnl_mutex.
5213  */
5214 void netdev_rx_handler_unregister(struct net_device *dev)
5215 {
5216 
5217 	ASSERT_RTNL();
5218 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5219 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5220 	 * section has a guarantee to see a non NULL rx_handler_data
5221 	 * as well.
5222 	 */
5223 	synchronize_net();
5224 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5225 }
5226 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5227 
5228 /*
5229  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5230  * the special handling of PFMEMALLOC skbs.
5231  */
5232 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5233 {
5234 	switch (skb->protocol) {
5235 	case htons(ETH_P_ARP):
5236 	case htons(ETH_P_IP):
5237 	case htons(ETH_P_IPV6):
5238 	case htons(ETH_P_8021Q):
5239 	case htons(ETH_P_8021AD):
5240 		return true;
5241 	default:
5242 		return false;
5243 	}
5244 }
5245 
5246 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5247 			     int *ret, struct net_device *orig_dev)
5248 {
5249 	if (nf_hook_ingress_active(skb)) {
5250 		int ingress_retval;
5251 
5252 		if (*pt_prev) {
5253 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5254 			*pt_prev = NULL;
5255 		}
5256 
5257 		rcu_read_lock();
5258 		ingress_retval = nf_hook_ingress(skb);
5259 		rcu_read_unlock();
5260 		return ingress_retval;
5261 	}
5262 	return 0;
5263 }
5264 
5265 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5266 				    struct packet_type **ppt_prev)
5267 {
5268 	struct packet_type *ptype, *pt_prev;
5269 	rx_handler_func_t *rx_handler;
5270 	struct sk_buff *skb = *pskb;
5271 	struct net_device *orig_dev;
5272 	bool deliver_exact = false;
5273 	int ret = NET_RX_DROP;
5274 	__be16 type;
5275 
5276 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5277 
5278 	trace_netif_receive_skb(skb);
5279 
5280 	orig_dev = skb->dev;
5281 
5282 	skb_reset_network_header(skb);
5283 	if (!skb_transport_header_was_set(skb))
5284 		skb_reset_transport_header(skb);
5285 	skb_reset_mac_len(skb);
5286 
5287 	pt_prev = NULL;
5288 
5289 another_round:
5290 	skb->skb_iif = skb->dev->ifindex;
5291 
5292 	__this_cpu_inc(softnet_data.processed);
5293 
5294 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5295 		int ret2;
5296 
5297 		migrate_disable();
5298 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5299 		migrate_enable();
5300 
5301 		if (ret2 != XDP_PASS) {
5302 			ret = NET_RX_DROP;
5303 			goto out;
5304 		}
5305 	}
5306 
5307 	if (eth_type_vlan(skb->protocol)) {
5308 		skb = skb_vlan_untag(skb);
5309 		if (unlikely(!skb))
5310 			goto out;
5311 	}
5312 
5313 	if (skb_skip_tc_classify(skb))
5314 		goto skip_classify;
5315 
5316 	if (pfmemalloc)
5317 		goto skip_taps;
5318 
5319 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5320 		if (pt_prev)
5321 			ret = deliver_skb(skb, pt_prev, orig_dev);
5322 		pt_prev = ptype;
5323 	}
5324 
5325 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5326 		if (pt_prev)
5327 			ret = deliver_skb(skb, pt_prev, orig_dev);
5328 		pt_prev = ptype;
5329 	}
5330 
5331 skip_taps:
5332 #ifdef CONFIG_NET_INGRESS
5333 	if (static_branch_unlikely(&ingress_needed_key)) {
5334 		bool another = false;
5335 
5336 		nf_skip_egress(skb, true);
5337 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5338 					 &another);
5339 		if (another)
5340 			goto another_round;
5341 		if (!skb)
5342 			goto out;
5343 
5344 		nf_skip_egress(skb, false);
5345 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5346 			goto out;
5347 	}
5348 #endif
5349 	skb_reset_redirect(skb);
5350 skip_classify:
5351 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5352 		goto drop;
5353 
5354 	if (skb_vlan_tag_present(skb)) {
5355 		if (pt_prev) {
5356 			ret = deliver_skb(skb, pt_prev, orig_dev);
5357 			pt_prev = NULL;
5358 		}
5359 		if (vlan_do_receive(&skb))
5360 			goto another_round;
5361 		else if (unlikely(!skb))
5362 			goto out;
5363 	}
5364 
5365 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5366 	if (rx_handler) {
5367 		if (pt_prev) {
5368 			ret = deliver_skb(skb, pt_prev, orig_dev);
5369 			pt_prev = NULL;
5370 		}
5371 		switch (rx_handler(&skb)) {
5372 		case RX_HANDLER_CONSUMED:
5373 			ret = NET_RX_SUCCESS;
5374 			goto out;
5375 		case RX_HANDLER_ANOTHER:
5376 			goto another_round;
5377 		case RX_HANDLER_EXACT:
5378 			deliver_exact = true;
5379 			break;
5380 		case RX_HANDLER_PASS:
5381 			break;
5382 		default:
5383 			BUG();
5384 		}
5385 	}
5386 
5387 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5388 check_vlan_id:
5389 		if (skb_vlan_tag_get_id(skb)) {
5390 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5391 			 * find vlan device.
5392 			 */
5393 			skb->pkt_type = PACKET_OTHERHOST;
5394 		} else if (eth_type_vlan(skb->protocol)) {
5395 			/* Outer header is 802.1P with vlan 0, inner header is
5396 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5397 			 * not find vlan dev for vlan id 0.
5398 			 */
5399 			__vlan_hwaccel_clear_tag(skb);
5400 			skb = skb_vlan_untag(skb);
5401 			if (unlikely(!skb))
5402 				goto out;
5403 			if (vlan_do_receive(&skb))
5404 				/* After stripping off 802.1P header with vlan 0
5405 				 * vlan dev is found for inner header.
5406 				 */
5407 				goto another_round;
5408 			else if (unlikely(!skb))
5409 				goto out;
5410 			else
5411 				/* We have stripped outer 802.1P vlan 0 header.
5412 				 * But could not find vlan dev.
5413 				 * check again for vlan id to set OTHERHOST.
5414 				 */
5415 				goto check_vlan_id;
5416 		}
5417 		/* Note: we might in the future use prio bits
5418 		 * and set skb->priority like in vlan_do_receive()
5419 		 * For the time being, just ignore Priority Code Point
5420 		 */
5421 		__vlan_hwaccel_clear_tag(skb);
5422 	}
5423 
5424 	type = skb->protocol;
5425 
5426 	/* deliver only exact match when indicated */
5427 	if (likely(!deliver_exact)) {
5428 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5429 				       &ptype_base[ntohs(type) &
5430 						   PTYPE_HASH_MASK]);
5431 	}
5432 
5433 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5434 			       &orig_dev->ptype_specific);
5435 
5436 	if (unlikely(skb->dev != orig_dev)) {
5437 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5438 				       &skb->dev->ptype_specific);
5439 	}
5440 
5441 	if (pt_prev) {
5442 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5443 			goto drop;
5444 		*ppt_prev = pt_prev;
5445 	} else {
5446 drop:
5447 		if (!deliver_exact)
5448 			dev_core_stats_rx_dropped_inc(skb->dev);
5449 		else
5450 			dev_core_stats_rx_nohandler_inc(skb->dev);
5451 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5452 		/* Jamal, now you will not able to escape explaining
5453 		 * me how you were going to use this. :-)
5454 		 */
5455 		ret = NET_RX_DROP;
5456 	}
5457 
5458 out:
5459 	/* The invariant here is that if *ppt_prev is not NULL
5460 	 * then skb should also be non-NULL.
5461 	 *
5462 	 * Apparently *ppt_prev assignment above holds this invariant due to
5463 	 * skb dereferencing near it.
5464 	 */
5465 	*pskb = skb;
5466 	return ret;
5467 }
5468 
5469 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5470 {
5471 	struct net_device *orig_dev = skb->dev;
5472 	struct packet_type *pt_prev = NULL;
5473 	int ret;
5474 
5475 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5476 	if (pt_prev)
5477 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5478 					 skb->dev, pt_prev, orig_dev);
5479 	return ret;
5480 }
5481 
5482 /**
5483  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5484  *	@skb: buffer to process
5485  *
5486  *	More direct receive version of netif_receive_skb().  It should
5487  *	only be used by callers that have a need to skip RPS and Generic XDP.
5488  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5489  *
5490  *	This function may only be called from softirq context and interrupts
5491  *	should be enabled.
5492  *
5493  *	Return values (usually ignored):
5494  *	NET_RX_SUCCESS: no congestion
5495  *	NET_RX_DROP: packet was dropped
5496  */
5497 int netif_receive_skb_core(struct sk_buff *skb)
5498 {
5499 	int ret;
5500 
5501 	rcu_read_lock();
5502 	ret = __netif_receive_skb_one_core(skb, false);
5503 	rcu_read_unlock();
5504 
5505 	return ret;
5506 }
5507 EXPORT_SYMBOL(netif_receive_skb_core);
5508 
5509 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5510 						  struct packet_type *pt_prev,
5511 						  struct net_device *orig_dev)
5512 {
5513 	struct sk_buff *skb, *next;
5514 
5515 	if (!pt_prev)
5516 		return;
5517 	if (list_empty(head))
5518 		return;
5519 	if (pt_prev->list_func != NULL)
5520 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5521 				   ip_list_rcv, head, pt_prev, orig_dev);
5522 	else
5523 		list_for_each_entry_safe(skb, next, head, list) {
5524 			skb_list_del_init(skb);
5525 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5526 		}
5527 }
5528 
5529 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5530 {
5531 	/* Fast-path assumptions:
5532 	 * - There is no RX handler.
5533 	 * - Only one packet_type matches.
5534 	 * If either of these fails, we will end up doing some per-packet
5535 	 * processing in-line, then handling the 'last ptype' for the whole
5536 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5537 	 * because the 'last ptype' must be constant across the sublist, and all
5538 	 * other ptypes are handled per-packet.
5539 	 */
5540 	/* Current (common) ptype of sublist */
5541 	struct packet_type *pt_curr = NULL;
5542 	/* Current (common) orig_dev of sublist */
5543 	struct net_device *od_curr = NULL;
5544 	struct list_head sublist;
5545 	struct sk_buff *skb, *next;
5546 
5547 	INIT_LIST_HEAD(&sublist);
5548 	list_for_each_entry_safe(skb, next, head, list) {
5549 		struct net_device *orig_dev = skb->dev;
5550 		struct packet_type *pt_prev = NULL;
5551 
5552 		skb_list_del_init(skb);
5553 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5554 		if (!pt_prev)
5555 			continue;
5556 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5557 			/* dispatch old sublist */
5558 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5559 			/* start new sublist */
5560 			INIT_LIST_HEAD(&sublist);
5561 			pt_curr = pt_prev;
5562 			od_curr = orig_dev;
5563 		}
5564 		list_add_tail(&skb->list, &sublist);
5565 	}
5566 
5567 	/* dispatch final sublist */
5568 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5569 }
5570 
5571 static int __netif_receive_skb(struct sk_buff *skb)
5572 {
5573 	int ret;
5574 
5575 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5576 		unsigned int noreclaim_flag;
5577 
5578 		/*
5579 		 * PFMEMALLOC skbs are special, they should
5580 		 * - be delivered to SOCK_MEMALLOC sockets only
5581 		 * - stay away from userspace
5582 		 * - have bounded memory usage
5583 		 *
5584 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5585 		 * context down to all allocation sites.
5586 		 */
5587 		noreclaim_flag = memalloc_noreclaim_save();
5588 		ret = __netif_receive_skb_one_core(skb, true);
5589 		memalloc_noreclaim_restore(noreclaim_flag);
5590 	} else
5591 		ret = __netif_receive_skb_one_core(skb, false);
5592 
5593 	return ret;
5594 }
5595 
5596 static void __netif_receive_skb_list(struct list_head *head)
5597 {
5598 	unsigned long noreclaim_flag = 0;
5599 	struct sk_buff *skb, *next;
5600 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5601 
5602 	list_for_each_entry_safe(skb, next, head, list) {
5603 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5604 			struct list_head sublist;
5605 
5606 			/* Handle the previous sublist */
5607 			list_cut_before(&sublist, head, &skb->list);
5608 			if (!list_empty(&sublist))
5609 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5610 			pfmemalloc = !pfmemalloc;
5611 			/* See comments in __netif_receive_skb */
5612 			if (pfmemalloc)
5613 				noreclaim_flag = memalloc_noreclaim_save();
5614 			else
5615 				memalloc_noreclaim_restore(noreclaim_flag);
5616 		}
5617 	}
5618 	/* Handle the remaining sublist */
5619 	if (!list_empty(head))
5620 		__netif_receive_skb_list_core(head, pfmemalloc);
5621 	/* Restore pflags */
5622 	if (pfmemalloc)
5623 		memalloc_noreclaim_restore(noreclaim_flag);
5624 }
5625 
5626 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5627 {
5628 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5629 	struct bpf_prog *new = xdp->prog;
5630 	int ret = 0;
5631 
5632 	switch (xdp->command) {
5633 	case XDP_SETUP_PROG:
5634 		rcu_assign_pointer(dev->xdp_prog, new);
5635 		if (old)
5636 			bpf_prog_put(old);
5637 
5638 		if (old && !new) {
5639 			static_branch_dec(&generic_xdp_needed_key);
5640 		} else if (new && !old) {
5641 			static_branch_inc(&generic_xdp_needed_key);
5642 			dev_disable_lro(dev);
5643 			dev_disable_gro_hw(dev);
5644 		}
5645 		break;
5646 
5647 	default:
5648 		ret = -EINVAL;
5649 		break;
5650 	}
5651 
5652 	return ret;
5653 }
5654 
5655 static int netif_receive_skb_internal(struct sk_buff *skb)
5656 {
5657 	int ret;
5658 
5659 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5660 
5661 	if (skb_defer_rx_timestamp(skb))
5662 		return NET_RX_SUCCESS;
5663 
5664 	rcu_read_lock();
5665 #ifdef CONFIG_RPS
5666 	if (static_branch_unlikely(&rps_needed)) {
5667 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5668 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5669 
5670 		if (cpu >= 0) {
5671 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5672 			rcu_read_unlock();
5673 			return ret;
5674 		}
5675 	}
5676 #endif
5677 	ret = __netif_receive_skb(skb);
5678 	rcu_read_unlock();
5679 	return ret;
5680 }
5681 
5682 void netif_receive_skb_list_internal(struct list_head *head)
5683 {
5684 	struct sk_buff *skb, *next;
5685 	struct list_head sublist;
5686 
5687 	INIT_LIST_HEAD(&sublist);
5688 	list_for_each_entry_safe(skb, next, head, list) {
5689 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5690 		skb_list_del_init(skb);
5691 		if (!skb_defer_rx_timestamp(skb))
5692 			list_add_tail(&skb->list, &sublist);
5693 	}
5694 	list_splice_init(&sublist, head);
5695 
5696 	rcu_read_lock();
5697 #ifdef CONFIG_RPS
5698 	if (static_branch_unlikely(&rps_needed)) {
5699 		list_for_each_entry_safe(skb, next, head, list) {
5700 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5701 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5702 
5703 			if (cpu >= 0) {
5704 				/* Will be handled, remove from list */
5705 				skb_list_del_init(skb);
5706 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5707 			}
5708 		}
5709 	}
5710 #endif
5711 	__netif_receive_skb_list(head);
5712 	rcu_read_unlock();
5713 }
5714 
5715 /**
5716  *	netif_receive_skb - process receive buffer from network
5717  *	@skb: buffer to process
5718  *
5719  *	netif_receive_skb() is the main receive data processing function.
5720  *	It always succeeds. The buffer may be dropped during processing
5721  *	for congestion control or by the protocol layers.
5722  *
5723  *	This function may only be called from softirq context and interrupts
5724  *	should be enabled.
5725  *
5726  *	Return values (usually ignored):
5727  *	NET_RX_SUCCESS: no congestion
5728  *	NET_RX_DROP: packet was dropped
5729  */
5730 int netif_receive_skb(struct sk_buff *skb)
5731 {
5732 	int ret;
5733 
5734 	trace_netif_receive_skb_entry(skb);
5735 
5736 	ret = netif_receive_skb_internal(skb);
5737 	trace_netif_receive_skb_exit(ret);
5738 
5739 	return ret;
5740 }
5741 EXPORT_SYMBOL(netif_receive_skb);
5742 
5743 /**
5744  *	netif_receive_skb_list - process many receive buffers from network
5745  *	@head: list of skbs to process.
5746  *
5747  *	Since return value of netif_receive_skb() is normally ignored, and
5748  *	wouldn't be meaningful for a list, this function returns void.
5749  *
5750  *	This function may only be called from softirq context and interrupts
5751  *	should be enabled.
5752  */
5753 void netif_receive_skb_list(struct list_head *head)
5754 {
5755 	struct sk_buff *skb;
5756 
5757 	if (list_empty(head))
5758 		return;
5759 	if (trace_netif_receive_skb_list_entry_enabled()) {
5760 		list_for_each_entry(skb, head, list)
5761 			trace_netif_receive_skb_list_entry(skb);
5762 	}
5763 	netif_receive_skb_list_internal(head);
5764 	trace_netif_receive_skb_list_exit(0);
5765 }
5766 EXPORT_SYMBOL(netif_receive_skb_list);
5767 
5768 static DEFINE_PER_CPU(struct work_struct, flush_works);
5769 
5770 /* Network device is going away, flush any packets still pending */
5771 static void flush_backlog(struct work_struct *work)
5772 {
5773 	struct sk_buff *skb, *tmp;
5774 	struct softnet_data *sd;
5775 
5776 	local_bh_disable();
5777 	sd = this_cpu_ptr(&softnet_data);
5778 
5779 	rps_lock_irq_disable(sd);
5780 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5781 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5782 			__skb_unlink(skb, &sd->input_pkt_queue);
5783 			dev_kfree_skb_irq(skb);
5784 			input_queue_head_incr(sd);
5785 		}
5786 	}
5787 	rps_unlock_irq_enable(sd);
5788 
5789 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5790 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5791 			__skb_unlink(skb, &sd->process_queue);
5792 			kfree_skb(skb);
5793 			input_queue_head_incr(sd);
5794 		}
5795 	}
5796 	local_bh_enable();
5797 }
5798 
5799 static bool flush_required(int cpu)
5800 {
5801 #if IS_ENABLED(CONFIG_RPS)
5802 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5803 	bool do_flush;
5804 
5805 	rps_lock_irq_disable(sd);
5806 
5807 	/* as insertion into process_queue happens with the rps lock held,
5808 	 * process_queue access may race only with dequeue
5809 	 */
5810 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5811 		   !skb_queue_empty_lockless(&sd->process_queue);
5812 	rps_unlock_irq_enable(sd);
5813 
5814 	return do_flush;
5815 #endif
5816 	/* without RPS we can't safely check input_pkt_queue: during a
5817 	 * concurrent remote skb_queue_splice() we can detect as empty both
5818 	 * input_pkt_queue and process_queue even if the latter could end-up
5819 	 * containing a lot of packets.
5820 	 */
5821 	return true;
5822 }
5823 
5824 static void flush_all_backlogs(void)
5825 {
5826 	static cpumask_t flush_cpus;
5827 	unsigned int cpu;
5828 
5829 	/* since we are under rtnl lock protection we can use static data
5830 	 * for the cpumask and avoid allocating on stack the possibly
5831 	 * large mask
5832 	 */
5833 	ASSERT_RTNL();
5834 
5835 	cpus_read_lock();
5836 
5837 	cpumask_clear(&flush_cpus);
5838 	for_each_online_cpu(cpu) {
5839 		if (flush_required(cpu)) {
5840 			queue_work_on(cpu, system_highpri_wq,
5841 				      per_cpu_ptr(&flush_works, cpu));
5842 			cpumask_set_cpu(cpu, &flush_cpus);
5843 		}
5844 	}
5845 
5846 	/* we can have in flight packet[s] on the cpus we are not flushing,
5847 	 * synchronize_net() in unregister_netdevice_many() will take care of
5848 	 * them
5849 	 */
5850 	for_each_cpu(cpu, &flush_cpus)
5851 		flush_work(per_cpu_ptr(&flush_works, cpu));
5852 
5853 	cpus_read_unlock();
5854 }
5855 
5856 static void net_rps_send_ipi(struct softnet_data *remsd)
5857 {
5858 #ifdef CONFIG_RPS
5859 	while (remsd) {
5860 		struct softnet_data *next = remsd->rps_ipi_next;
5861 
5862 		if (cpu_online(remsd->cpu))
5863 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5864 		remsd = next;
5865 	}
5866 #endif
5867 }
5868 
5869 /*
5870  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5871  * Note: called with local irq disabled, but exits with local irq enabled.
5872  */
5873 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5874 {
5875 #ifdef CONFIG_RPS
5876 	struct softnet_data *remsd = sd->rps_ipi_list;
5877 
5878 	if (remsd) {
5879 		sd->rps_ipi_list = NULL;
5880 
5881 		local_irq_enable();
5882 
5883 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5884 		net_rps_send_ipi(remsd);
5885 	} else
5886 #endif
5887 		local_irq_enable();
5888 }
5889 
5890 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5891 {
5892 #ifdef CONFIG_RPS
5893 	return sd->rps_ipi_list != NULL;
5894 #else
5895 	return false;
5896 #endif
5897 }
5898 
5899 static int process_backlog(struct napi_struct *napi, int quota)
5900 {
5901 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5902 	bool again = true;
5903 	int work = 0;
5904 
5905 	/* Check if we have pending ipi, its better to send them now,
5906 	 * not waiting net_rx_action() end.
5907 	 */
5908 	if (sd_has_rps_ipi_waiting(sd)) {
5909 		local_irq_disable();
5910 		net_rps_action_and_irq_enable(sd);
5911 	}
5912 
5913 	napi->weight = READ_ONCE(dev_rx_weight);
5914 	while (again) {
5915 		struct sk_buff *skb;
5916 
5917 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5918 			rcu_read_lock();
5919 			__netif_receive_skb(skb);
5920 			rcu_read_unlock();
5921 			input_queue_head_incr(sd);
5922 			if (++work >= quota)
5923 				return work;
5924 
5925 		}
5926 
5927 		rps_lock_irq_disable(sd);
5928 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5929 			/*
5930 			 * Inline a custom version of __napi_complete().
5931 			 * only current cpu owns and manipulates this napi,
5932 			 * and NAPI_STATE_SCHED is the only possible flag set
5933 			 * on backlog.
5934 			 * We can use a plain write instead of clear_bit(),
5935 			 * and we dont need an smp_mb() memory barrier.
5936 			 */
5937 			napi->state = 0;
5938 			again = false;
5939 		} else {
5940 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5941 						   &sd->process_queue);
5942 		}
5943 		rps_unlock_irq_enable(sd);
5944 	}
5945 
5946 	return work;
5947 }
5948 
5949 /**
5950  * __napi_schedule - schedule for receive
5951  * @n: entry to schedule
5952  *
5953  * The entry's receive function will be scheduled to run.
5954  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5955  */
5956 void __napi_schedule(struct napi_struct *n)
5957 {
5958 	unsigned long flags;
5959 
5960 	local_irq_save(flags);
5961 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5962 	local_irq_restore(flags);
5963 }
5964 EXPORT_SYMBOL(__napi_schedule);
5965 
5966 /**
5967  *	napi_schedule_prep - check if napi can be scheduled
5968  *	@n: napi context
5969  *
5970  * Test if NAPI routine is already running, and if not mark
5971  * it as running.  This is used as a condition variable to
5972  * insure only one NAPI poll instance runs.  We also make
5973  * sure there is no pending NAPI disable.
5974  */
5975 bool napi_schedule_prep(struct napi_struct *n)
5976 {
5977 	unsigned long new, val = READ_ONCE(n->state);
5978 
5979 	do {
5980 		if (unlikely(val & NAPIF_STATE_DISABLE))
5981 			return false;
5982 		new = val | NAPIF_STATE_SCHED;
5983 
5984 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5985 		 * This was suggested by Alexander Duyck, as compiler
5986 		 * emits better code than :
5987 		 * if (val & NAPIF_STATE_SCHED)
5988 		 *     new |= NAPIF_STATE_MISSED;
5989 		 */
5990 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5991 						   NAPIF_STATE_MISSED;
5992 	} while (!try_cmpxchg(&n->state, &val, new));
5993 
5994 	return !(val & NAPIF_STATE_SCHED);
5995 }
5996 EXPORT_SYMBOL(napi_schedule_prep);
5997 
5998 /**
5999  * __napi_schedule_irqoff - schedule for receive
6000  * @n: entry to schedule
6001  *
6002  * Variant of __napi_schedule() assuming hard irqs are masked.
6003  *
6004  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6005  * because the interrupt disabled assumption might not be true
6006  * due to force-threaded interrupts and spinlock substitution.
6007  */
6008 void __napi_schedule_irqoff(struct napi_struct *n)
6009 {
6010 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6011 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6012 	else
6013 		__napi_schedule(n);
6014 }
6015 EXPORT_SYMBOL(__napi_schedule_irqoff);
6016 
6017 bool napi_complete_done(struct napi_struct *n, int work_done)
6018 {
6019 	unsigned long flags, val, new, timeout = 0;
6020 	bool ret = true;
6021 
6022 	/*
6023 	 * 1) Don't let napi dequeue from the cpu poll list
6024 	 *    just in case its running on a different cpu.
6025 	 * 2) If we are busy polling, do nothing here, we have
6026 	 *    the guarantee we will be called later.
6027 	 */
6028 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6029 				 NAPIF_STATE_IN_BUSY_POLL)))
6030 		return false;
6031 
6032 	if (work_done) {
6033 		if (n->gro_bitmask)
6034 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6035 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6036 	}
6037 	if (n->defer_hard_irqs_count > 0) {
6038 		n->defer_hard_irqs_count--;
6039 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6040 		if (timeout)
6041 			ret = false;
6042 	}
6043 	if (n->gro_bitmask) {
6044 		/* When the NAPI instance uses a timeout and keeps postponing
6045 		 * it, we need to bound somehow the time packets are kept in
6046 		 * the GRO layer
6047 		 */
6048 		napi_gro_flush(n, !!timeout);
6049 	}
6050 
6051 	gro_normal_list(n);
6052 
6053 	if (unlikely(!list_empty(&n->poll_list))) {
6054 		/* If n->poll_list is not empty, we need to mask irqs */
6055 		local_irq_save(flags);
6056 		list_del_init(&n->poll_list);
6057 		local_irq_restore(flags);
6058 	}
6059 
6060 	val = READ_ONCE(n->state);
6061 	do {
6062 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6063 
6064 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6065 			      NAPIF_STATE_SCHED_THREADED |
6066 			      NAPIF_STATE_PREFER_BUSY_POLL);
6067 
6068 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6069 		 * because we will call napi->poll() one more time.
6070 		 * This C code was suggested by Alexander Duyck to help gcc.
6071 		 */
6072 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6073 						    NAPIF_STATE_SCHED;
6074 	} while (!try_cmpxchg(&n->state, &val, new));
6075 
6076 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6077 		__napi_schedule(n);
6078 		return false;
6079 	}
6080 
6081 	if (timeout)
6082 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6083 			      HRTIMER_MODE_REL_PINNED);
6084 	return ret;
6085 }
6086 EXPORT_SYMBOL(napi_complete_done);
6087 
6088 /* must be called under rcu_read_lock(), as we dont take a reference */
6089 static struct napi_struct *napi_by_id(unsigned int napi_id)
6090 {
6091 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6092 	struct napi_struct *napi;
6093 
6094 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6095 		if (napi->napi_id == napi_id)
6096 			return napi;
6097 
6098 	return NULL;
6099 }
6100 
6101 #if defined(CONFIG_NET_RX_BUSY_POLL)
6102 
6103 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6104 {
6105 	if (!skip_schedule) {
6106 		gro_normal_list(napi);
6107 		__napi_schedule(napi);
6108 		return;
6109 	}
6110 
6111 	if (napi->gro_bitmask) {
6112 		/* flush too old packets
6113 		 * If HZ < 1000, flush all packets.
6114 		 */
6115 		napi_gro_flush(napi, HZ >= 1000);
6116 	}
6117 
6118 	gro_normal_list(napi);
6119 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6120 }
6121 
6122 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6123 			   u16 budget)
6124 {
6125 	bool skip_schedule = false;
6126 	unsigned long timeout;
6127 	int rc;
6128 
6129 	/* Busy polling means there is a high chance device driver hard irq
6130 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6131 	 * set in napi_schedule_prep().
6132 	 * Since we are about to call napi->poll() once more, we can safely
6133 	 * clear NAPI_STATE_MISSED.
6134 	 *
6135 	 * Note: x86 could use a single "lock and ..." instruction
6136 	 * to perform these two clear_bit()
6137 	 */
6138 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6139 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6140 
6141 	local_bh_disable();
6142 
6143 	if (prefer_busy_poll) {
6144 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6145 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6146 		if (napi->defer_hard_irqs_count && timeout) {
6147 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6148 			skip_schedule = true;
6149 		}
6150 	}
6151 
6152 	/* All we really want here is to re-enable device interrupts.
6153 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6154 	 */
6155 	rc = napi->poll(napi, budget);
6156 	/* We can't gro_normal_list() here, because napi->poll() might have
6157 	 * rearmed the napi (napi_complete_done()) in which case it could
6158 	 * already be running on another CPU.
6159 	 */
6160 	trace_napi_poll(napi, rc, budget);
6161 	netpoll_poll_unlock(have_poll_lock);
6162 	if (rc == budget)
6163 		__busy_poll_stop(napi, skip_schedule);
6164 	local_bh_enable();
6165 }
6166 
6167 void napi_busy_loop(unsigned int napi_id,
6168 		    bool (*loop_end)(void *, unsigned long),
6169 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6170 {
6171 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6172 	int (*napi_poll)(struct napi_struct *napi, int budget);
6173 	void *have_poll_lock = NULL;
6174 	struct napi_struct *napi;
6175 
6176 restart:
6177 	napi_poll = NULL;
6178 
6179 	rcu_read_lock();
6180 
6181 	napi = napi_by_id(napi_id);
6182 	if (!napi)
6183 		goto out;
6184 
6185 	preempt_disable();
6186 	for (;;) {
6187 		int work = 0;
6188 
6189 		local_bh_disable();
6190 		if (!napi_poll) {
6191 			unsigned long val = READ_ONCE(napi->state);
6192 
6193 			/* If multiple threads are competing for this napi,
6194 			 * we avoid dirtying napi->state as much as we can.
6195 			 */
6196 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6197 				   NAPIF_STATE_IN_BUSY_POLL)) {
6198 				if (prefer_busy_poll)
6199 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6200 				goto count;
6201 			}
6202 			if (cmpxchg(&napi->state, val,
6203 				    val | NAPIF_STATE_IN_BUSY_POLL |
6204 					  NAPIF_STATE_SCHED) != val) {
6205 				if (prefer_busy_poll)
6206 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6207 				goto count;
6208 			}
6209 			have_poll_lock = netpoll_poll_lock(napi);
6210 			napi_poll = napi->poll;
6211 		}
6212 		work = napi_poll(napi, budget);
6213 		trace_napi_poll(napi, work, budget);
6214 		gro_normal_list(napi);
6215 count:
6216 		if (work > 0)
6217 			__NET_ADD_STATS(dev_net(napi->dev),
6218 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6219 		local_bh_enable();
6220 
6221 		if (!loop_end || loop_end(loop_end_arg, start_time))
6222 			break;
6223 
6224 		if (unlikely(need_resched())) {
6225 			if (napi_poll)
6226 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6227 			preempt_enable();
6228 			rcu_read_unlock();
6229 			cond_resched();
6230 			if (loop_end(loop_end_arg, start_time))
6231 				return;
6232 			goto restart;
6233 		}
6234 		cpu_relax();
6235 	}
6236 	if (napi_poll)
6237 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6238 	preempt_enable();
6239 out:
6240 	rcu_read_unlock();
6241 }
6242 EXPORT_SYMBOL(napi_busy_loop);
6243 
6244 #endif /* CONFIG_NET_RX_BUSY_POLL */
6245 
6246 static void napi_hash_add(struct napi_struct *napi)
6247 {
6248 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6249 		return;
6250 
6251 	spin_lock(&napi_hash_lock);
6252 
6253 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6254 	do {
6255 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6256 			napi_gen_id = MIN_NAPI_ID;
6257 	} while (napi_by_id(napi_gen_id));
6258 	napi->napi_id = napi_gen_id;
6259 
6260 	hlist_add_head_rcu(&napi->napi_hash_node,
6261 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6262 
6263 	spin_unlock(&napi_hash_lock);
6264 }
6265 
6266 /* Warning : caller is responsible to make sure rcu grace period
6267  * is respected before freeing memory containing @napi
6268  */
6269 static void napi_hash_del(struct napi_struct *napi)
6270 {
6271 	spin_lock(&napi_hash_lock);
6272 
6273 	hlist_del_init_rcu(&napi->napi_hash_node);
6274 
6275 	spin_unlock(&napi_hash_lock);
6276 }
6277 
6278 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6279 {
6280 	struct napi_struct *napi;
6281 
6282 	napi = container_of(timer, struct napi_struct, timer);
6283 
6284 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6285 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6286 	 */
6287 	if (!napi_disable_pending(napi) &&
6288 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6289 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6290 		__napi_schedule_irqoff(napi);
6291 	}
6292 
6293 	return HRTIMER_NORESTART;
6294 }
6295 
6296 static void init_gro_hash(struct napi_struct *napi)
6297 {
6298 	int i;
6299 
6300 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6301 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6302 		napi->gro_hash[i].count = 0;
6303 	}
6304 	napi->gro_bitmask = 0;
6305 }
6306 
6307 int dev_set_threaded(struct net_device *dev, bool threaded)
6308 {
6309 	struct napi_struct *napi;
6310 	int err = 0;
6311 
6312 	if (dev->threaded == threaded)
6313 		return 0;
6314 
6315 	if (threaded) {
6316 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6317 			if (!napi->thread) {
6318 				err = napi_kthread_create(napi);
6319 				if (err) {
6320 					threaded = false;
6321 					break;
6322 				}
6323 			}
6324 		}
6325 	}
6326 
6327 	dev->threaded = threaded;
6328 
6329 	/* Make sure kthread is created before THREADED bit
6330 	 * is set.
6331 	 */
6332 	smp_mb__before_atomic();
6333 
6334 	/* Setting/unsetting threaded mode on a napi might not immediately
6335 	 * take effect, if the current napi instance is actively being
6336 	 * polled. In this case, the switch between threaded mode and
6337 	 * softirq mode will happen in the next round of napi_schedule().
6338 	 * This should not cause hiccups/stalls to the live traffic.
6339 	 */
6340 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6341 		if (threaded)
6342 			set_bit(NAPI_STATE_THREADED, &napi->state);
6343 		else
6344 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6345 	}
6346 
6347 	return err;
6348 }
6349 EXPORT_SYMBOL(dev_set_threaded);
6350 
6351 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6352 			   int (*poll)(struct napi_struct *, int), int weight)
6353 {
6354 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6355 		return;
6356 
6357 	INIT_LIST_HEAD(&napi->poll_list);
6358 	INIT_HLIST_NODE(&napi->napi_hash_node);
6359 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6360 	napi->timer.function = napi_watchdog;
6361 	init_gro_hash(napi);
6362 	napi->skb = NULL;
6363 	INIT_LIST_HEAD(&napi->rx_list);
6364 	napi->rx_count = 0;
6365 	napi->poll = poll;
6366 	if (weight > NAPI_POLL_WEIGHT)
6367 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6368 				weight);
6369 	napi->weight = weight;
6370 	napi->dev = dev;
6371 #ifdef CONFIG_NETPOLL
6372 	napi->poll_owner = -1;
6373 #endif
6374 	set_bit(NAPI_STATE_SCHED, &napi->state);
6375 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6376 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6377 	napi_hash_add(napi);
6378 	napi_get_frags_check(napi);
6379 	/* Create kthread for this napi if dev->threaded is set.
6380 	 * Clear dev->threaded if kthread creation failed so that
6381 	 * threaded mode will not be enabled in napi_enable().
6382 	 */
6383 	if (dev->threaded && napi_kthread_create(napi))
6384 		dev->threaded = 0;
6385 }
6386 EXPORT_SYMBOL(netif_napi_add_weight);
6387 
6388 void napi_disable(struct napi_struct *n)
6389 {
6390 	unsigned long val, new;
6391 
6392 	might_sleep();
6393 	set_bit(NAPI_STATE_DISABLE, &n->state);
6394 
6395 	val = READ_ONCE(n->state);
6396 	do {
6397 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6398 			usleep_range(20, 200);
6399 			val = READ_ONCE(n->state);
6400 		}
6401 
6402 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6403 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6404 	} while (!try_cmpxchg(&n->state, &val, new));
6405 
6406 	hrtimer_cancel(&n->timer);
6407 
6408 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6409 }
6410 EXPORT_SYMBOL(napi_disable);
6411 
6412 /**
6413  *	napi_enable - enable NAPI scheduling
6414  *	@n: NAPI context
6415  *
6416  * Resume NAPI from being scheduled on this context.
6417  * Must be paired with napi_disable.
6418  */
6419 void napi_enable(struct napi_struct *n)
6420 {
6421 	unsigned long new, val = READ_ONCE(n->state);
6422 
6423 	do {
6424 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6425 
6426 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6427 		if (n->dev->threaded && n->thread)
6428 			new |= NAPIF_STATE_THREADED;
6429 	} while (!try_cmpxchg(&n->state, &val, new));
6430 }
6431 EXPORT_SYMBOL(napi_enable);
6432 
6433 static void flush_gro_hash(struct napi_struct *napi)
6434 {
6435 	int i;
6436 
6437 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6438 		struct sk_buff *skb, *n;
6439 
6440 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6441 			kfree_skb(skb);
6442 		napi->gro_hash[i].count = 0;
6443 	}
6444 }
6445 
6446 /* Must be called in process context */
6447 void __netif_napi_del(struct napi_struct *napi)
6448 {
6449 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6450 		return;
6451 
6452 	napi_hash_del(napi);
6453 	list_del_rcu(&napi->dev_list);
6454 	napi_free_frags(napi);
6455 
6456 	flush_gro_hash(napi);
6457 	napi->gro_bitmask = 0;
6458 
6459 	if (napi->thread) {
6460 		kthread_stop(napi->thread);
6461 		napi->thread = NULL;
6462 	}
6463 }
6464 EXPORT_SYMBOL(__netif_napi_del);
6465 
6466 static int __napi_poll(struct napi_struct *n, bool *repoll)
6467 {
6468 	int work, weight;
6469 
6470 	weight = n->weight;
6471 
6472 	/* This NAPI_STATE_SCHED test is for avoiding a race
6473 	 * with netpoll's poll_napi().  Only the entity which
6474 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6475 	 * actually make the ->poll() call.  Therefore we avoid
6476 	 * accidentally calling ->poll() when NAPI is not scheduled.
6477 	 */
6478 	work = 0;
6479 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6480 		work = n->poll(n, weight);
6481 		trace_napi_poll(n, work, weight);
6482 	}
6483 
6484 	if (unlikely(work > weight))
6485 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6486 				n->poll, work, weight);
6487 
6488 	if (likely(work < weight))
6489 		return work;
6490 
6491 	/* Drivers must not modify the NAPI state if they
6492 	 * consume the entire weight.  In such cases this code
6493 	 * still "owns" the NAPI instance and therefore can
6494 	 * move the instance around on the list at-will.
6495 	 */
6496 	if (unlikely(napi_disable_pending(n))) {
6497 		napi_complete(n);
6498 		return work;
6499 	}
6500 
6501 	/* The NAPI context has more processing work, but busy-polling
6502 	 * is preferred. Exit early.
6503 	 */
6504 	if (napi_prefer_busy_poll(n)) {
6505 		if (napi_complete_done(n, work)) {
6506 			/* If timeout is not set, we need to make sure
6507 			 * that the NAPI is re-scheduled.
6508 			 */
6509 			napi_schedule(n);
6510 		}
6511 		return work;
6512 	}
6513 
6514 	if (n->gro_bitmask) {
6515 		/* flush too old packets
6516 		 * If HZ < 1000, flush all packets.
6517 		 */
6518 		napi_gro_flush(n, HZ >= 1000);
6519 	}
6520 
6521 	gro_normal_list(n);
6522 
6523 	/* Some drivers may have called napi_schedule
6524 	 * prior to exhausting their budget.
6525 	 */
6526 	if (unlikely(!list_empty(&n->poll_list))) {
6527 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6528 			     n->dev ? n->dev->name : "backlog");
6529 		return work;
6530 	}
6531 
6532 	*repoll = true;
6533 
6534 	return work;
6535 }
6536 
6537 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6538 {
6539 	bool do_repoll = false;
6540 	void *have;
6541 	int work;
6542 
6543 	list_del_init(&n->poll_list);
6544 
6545 	have = netpoll_poll_lock(n);
6546 
6547 	work = __napi_poll(n, &do_repoll);
6548 
6549 	if (do_repoll)
6550 		list_add_tail(&n->poll_list, repoll);
6551 
6552 	netpoll_poll_unlock(have);
6553 
6554 	return work;
6555 }
6556 
6557 static int napi_thread_wait(struct napi_struct *napi)
6558 {
6559 	bool woken = false;
6560 
6561 	set_current_state(TASK_INTERRUPTIBLE);
6562 
6563 	while (!kthread_should_stop()) {
6564 		/* Testing SCHED_THREADED bit here to make sure the current
6565 		 * kthread owns this napi and could poll on this napi.
6566 		 * Testing SCHED bit is not enough because SCHED bit might be
6567 		 * set by some other busy poll thread or by napi_disable().
6568 		 */
6569 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6570 			WARN_ON(!list_empty(&napi->poll_list));
6571 			__set_current_state(TASK_RUNNING);
6572 			return 0;
6573 		}
6574 
6575 		schedule();
6576 		/* woken being true indicates this thread owns this napi. */
6577 		woken = true;
6578 		set_current_state(TASK_INTERRUPTIBLE);
6579 	}
6580 	__set_current_state(TASK_RUNNING);
6581 
6582 	return -1;
6583 }
6584 
6585 static int napi_threaded_poll(void *data)
6586 {
6587 	struct napi_struct *napi = data;
6588 	void *have;
6589 
6590 	while (!napi_thread_wait(napi)) {
6591 		for (;;) {
6592 			bool repoll = false;
6593 
6594 			local_bh_disable();
6595 
6596 			have = netpoll_poll_lock(napi);
6597 			__napi_poll(napi, &repoll);
6598 			netpoll_poll_unlock(have);
6599 
6600 			local_bh_enable();
6601 
6602 			if (!repoll)
6603 				break;
6604 
6605 			cond_resched();
6606 		}
6607 	}
6608 	return 0;
6609 }
6610 
6611 static void skb_defer_free_flush(struct softnet_data *sd)
6612 {
6613 	struct sk_buff *skb, *next;
6614 
6615 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6616 	if (!READ_ONCE(sd->defer_list))
6617 		return;
6618 
6619 	spin_lock_irq(&sd->defer_lock);
6620 	skb = sd->defer_list;
6621 	sd->defer_list = NULL;
6622 	sd->defer_count = 0;
6623 	spin_unlock_irq(&sd->defer_lock);
6624 
6625 	while (skb != NULL) {
6626 		next = skb->next;
6627 		napi_consume_skb(skb, 1);
6628 		skb = next;
6629 	}
6630 }
6631 
6632 static __latent_entropy void net_rx_action(struct softirq_action *h)
6633 {
6634 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6635 	unsigned long time_limit = jiffies +
6636 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6637 	int budget = READ_ONCE(netdev_budget);
6638 	LIST_HEAD(list);
6639 	LIST_HEAD(repoll);
6640 
6641 	local_irq_disable();
6642 	list_splice_init(&sd->poll_list, &list);
6643 	local_irq_enable();
6644 
6645 	for (;;) {
6646 		struct napi_struct *n;
6647 
6648 		skb_defer_free_flush(sd);
6649 
6650 		if (list_empty(&list)) {
6651 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6652 				goto end;
6653 			break;
6654 		}
6655 
6656 		n = list_first_entry(&list, struct napi_struct, poll_list);
6657 		budget -= napi_poll(n, &repoll);
6658 
6659 		/* If softirq window is exhausted then punt.
6660 		 * Allow this to run for 2 jiffies since which will allow
6661 		 * an average latency of 1.5/HZ.
6662 		 */
6663 		if (unlikely(budget <= 0 ||
6664 			     time_after_eq(jiffies, time_limit))) {
6665 			sd->time_squeeze++;
6666 			break;
6667 		}
6668 	}
6669 
6670 	local_irq_disable();
6671 
6672 	list_splice_tail_init(&sd->poll_list, &list);
6673 	list_splice_tail(&repoll, &list);
6674 	list_splice(&list, &sd->poll_list);
6675 	if (!list_empty(&sd->poll_list))
6676 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6677 
6678 	net_rps_action_and_irq_enable(sd);
6679 end:;
6680 }
6681 
6682 struct netdev_adjacent {
6683 	struct net_device *dev;
6684 	netdevice_tracker dev_tracker;
6685 
6686 	/* upper master flag, there can only be one master device per list */
6687 	bool master;
6688 
6689 	/* lookup ignore flag */
6690 	bool ignore;
6691 
6692 	/* counter for the number of times this device was added to us */
6693 	u16 ref_nr;
6694 
6695 	/* private field for the users */
6696 	void *private;
6697 
6698 	struct list_head list;
6699 	struct rcu_head rcu;
6700 };
6701 
6702 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6703 						 struct list_head *adj_list)
6704 {
6705 	struct netdev_adjacent *adj;
6706 
6707 	list_for_each_entry(adj, adj_list, list) {
6708 		if (adj->dev == adj_dev)
6709 			return adj;
6710 	}
6711 	return NULL;
6712 }
6713 
6714 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6715 				    struct netdev_nested_priv *priv)
6716 {
6717 	struct net_device *dev = (struct net_device *)priv->data;
6718 
6719 	return upper_dev == dev;
6720 }
6721 
6722 /**
6723  * netdev_has_upper_dev - Check if device is linked to an upper device
6724  * @dev: device
6725  * @upper_dev: upper device to check
6726  *
6727  * Find out if a device is linked to specified upper device and return true
6728  * in case it is. Note that this checks only immediate upper device,
6729  * not through a complete stack of devices. The caller must hold the RTNL lock.
6730  */
6731 bool netdev_has_upper_dev(struct net_device *dev,
6732 			  struct net_device *upper_dev)
6733 {
6734 	struct netdev_nested_priv priv = {
6735 		.data = (void *)upper_dev,
6736 	};
6737 
6738 	ASSERT_RTNL();
6739 
6740 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6741 					     &priv);
6742 }
6743 EXPORT_SYMBOL(netdev_has_upper_dev);
6744 
6745 /**
6746  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6747  * @dev: device
6748  * @upper_dev: upper device to check
6749  *
6750  * Find out if a device is linked to specified upper device and return true
6751  * in case it is. Note that this checks the entire upper device chain.
6752  * The caller must hold rcu lock.
6753  */
6754 
6755 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6756 				  struct net_device *upper_dev)
6757 {
6758 	struct netdev_nested_priv priv = {
6759 		.data = (void *)upper_dev,
6760 	};
6761 
6762 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6763 					       &priv);
6764 }
6765 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6766 
6767 /**
6768  * netdev_has_any_upper_dev - Check if device is linked to some device
6769  * @dev: device
6770  *
6771  * Find out if a device is linked to an upper device and return true in case
6772  * it is. The caller must hold the RTNL lock.
6773  */
6774 bool netdev_has_any_upper_dev(struct net_device *dev)
6775 {
6776 	ASSERT_RTNL();
6777 
6778 	return !list_empty(&dev->adj_list.upper);
6779 }
6780 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6781 
6782 /**
6783  * netdev_master_upper_dev_get - Get master upper device
6784  * @dev: device
6785  *
6786  * Find a master upper device and return pointer to it or NULL in case
6787  * it's not there. The caller must hold the RTNL lock.
6788  */
6789 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6790 {
6791 	struct netdev_adjacent *upper;
6792 
6793 	ASSERT_RTNL();
6794 
6795 	if (list_empty(&dev->adj_list.upper))
6796 		return NULL;
6797 
6798 	upper = list_first_entry(&dev->adj_list.upper,
6799 				 struct netdev_adjacent, list);
6800 	if (likely(upper->master))
6801 		return upper->dev;
6802 	return NULL;
6803 }
6804 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6805 
6806 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6807 {
6808 	struct netdev_adjacent *upper;
6809 
6810 	ASSERT_RTNL();
6811 
6812 	if (list_empty(&dev->adj_list.upper))
6813 		return NULL;
6814 
6815 	upper = list_first_entry(&dev->adj_list.upper,
6816 				 struct netdev_adjacent, list);
6817 	if (likely(upper->master) && !upper->ignore)
6818 		return upper->dev;
6819 	return NULL;
6820 }
6821 
6822 /**
6823  * netdev_has_any_lower_dev - Check if device is linked to some device
6824  * @dev: device
6825  *
6826  * Find out if a device is linked to a lower device and return true in case
6827  * it is. The caller must hold the RTNL lock.
6828  */
6829 static bool netdev_has_any_lower_dev(struct net_device *dev)
6830 {
6831 	ASSERT_RTNL();
6832 
6833 	return !list_empty(&dev->adj_list.lower);
6834 }
6835 
6836 void *netdev_adjacent_get_private(struct list_head *adj_list)
6837 {
6838 	struct netdev_adjacent *adj;
6839 
6840 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6841 
6842 	return adj->private;
6843 }
6844 EXPORT_SYMBOL(netdev_adjacent_get_private);
6845 
6846 /**
6847  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6848  * @dev: device
6849  * @iter: list_head ** of the current position
6850  *
6851  * Gets the next device from the dev's upper list, starting from iter
6852  * position. The caller must hold RCU read lock.
6853  */
6854 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6855 						 struct list_head **iter)
6856 {
6857 	struct netdev_adjacent *upper;
6858 
6859 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6860 
6861 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6862 
6863 	if (&upper->list == &dev->adj_list.upper)
6864 		return NULL;
6865 
6866 	*iter = &upper->list;
6867 
6868 	return upper->dev;
6869 }
6870 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6871 
6872 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6873 						  struct list_head **iter,
6874 						  bool *ignore)
6875 {
6876 	struct netdev_adjacent *upper;
6877 
6878 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6879 
6880 	if (&upper->list == &dev->adj_list.upper)
6881 		return NULL;
6882 
6883 	*iter = &upper->list;
6884 	*ignore = upper->ignore;
6885 
6886 	return upper->dev;
6887 }
6888 
6889 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6890 						    struct list_head **iter)
6891 {
6892 	struct netdev_adjacent *upper;
6893 
6894 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6895 
6896 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6897 
6898 	if (&upper->list == &dev->adj_list.upper)
6899 		return NULL;
6900 
6901 	*iter = &upper->list;
6902 
6903 	return upper->dev;
6904 }
6905 
6906 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6907 				       int (*fn)(struct net_device *dev,
6908 					 struct netdev_nested_priv *priv),
6909 				       struct netdev_nested_priv *priv)
6910 {
6911 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6912 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6913 	int ret, cur = 0;
6914 	bool ignore;
6915 
6916 	now = dev;
6917 	iter = &dev->adj_list.upper;
6918 
6919 	while (1) {
6920 		if (now != dev) {
6921 			ret = fn(now, priv);
6922 			if (ret)
6923 				return ret;
6924 		}
6925 
6926 		next = NULL;
6927 		while (1) {
6928 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6929 			if (!udev)
6930 				break;
6931 			if (ignore)
6932 				continue;
6933 
6934 			next = udev;
6935 			niter = &udev->adj_list.upper;
6936 			dev_stack[cur] = now;
6937 			iter_stack[cur++] = iter;
6938 			break;
6939 		}
6940 
6941 		if (!next) {
6942 			if (!cur)
6943 				return 0;
6944 			next = dev_stack[--cur];
6945 			niter = iter_stack[cur];
6946 		}
6947 
6948 		now = next;
6949 		iter = niter;
6950 	}
6951 
6952 	return 0;
6953 }
6954 
6955 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6956 				  int (*fn)(struct net_device *dev,
6957 					    struct netdev_nested_priv *priv),
6958 				  struct netdev_nested_priv *priv)
6959 {
6960 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6961 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6962 	int ret, cur = 0;
6963 
6964 	now = dev;
6965 	iter = &dev->adj_list.upper;
6966 
6967 	while (1) {
6968 		if (now != dev) {
6969 			ret = fn(now, priv);
6970 			if (ret)
6971 				return ret;
6972 		}
6973 
6974 		next = NULL;
6975 		while (1) {
6976 			udev = netdev_next_upper_dev_rcu(now, &iter);
6977 			if (!udev)
6978 				break;
6979 
6980 			next = udev;
6981 			niter = &udev->adj_list.upper;
6982 			dev_stack[cur] = now;
6983 			iter_stack[cur++] = iter;
6984 			break;
6985 		}
6986 
6987 		if (!next) {
6988 			if (!cur)
6989 				return 0;
6990 			next = dev_stack[--cur];
6991 			niter = iter_stack[cur];
6992 		}
6993 
6994 		now = next;
6995 		iter = niter;
6996 	}
6997 
6998 	return 0;
6999 }
7000 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7001 
7002 static bool __netdev_has_upper_dev(struct net_device *dev,
7003 				   struct net_device *upper_dev)
7004 {
7005 	struct netdev_nested_priv priv = {
7006 		.flags = 0,
7007 		.data = (void *)upper_dev,
7008 	};
7009 
7010 	ASSERT_RTNL();
7011 
7012 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7013 					   &priv);
7014 }
7015 
7016 /**
7017  * netdev_lower_get_next_private - Get the next ->private from the
7018  *				   lower neighbour list
7019  * @dev: device
7020  * @iter: list_head ** of the current position
7021  *
7022  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7023  * list, starting from iter position. The caller must hold either hold the
7024  * RTNL lock or its own locking that guarantees that the neighbour lower
7025  * list will remain unchanged.
7026  */
7027 void *netdev_lower_get_next_private(struct net_device *dev,
7028 				    struct list_head **iter)
7029 {
7030 	struct netdev_adjacent *lower;
7031 
7032 	lower = list_entry(*iter, struct netdev_adjacent, list);
7033 
7034 	if (&lower->list == &dev->adj_list.lower)
7035 		return NULL;
7036 
7037 	*iter = lower->list.next;
7038 
7039 	return lower->private;
7040 }
7041 EXPORT_SYMBOL(netdev_lower_get_next_private);
7042 
7043 /**
7044  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7045  *				       lower neighbour list, RCU
7046  *				       variant
7047  * @dev: device
7048  * @iter: list_head ** of the current position
7049  *
7050  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7051  * list, starting from iter position. The caller must hold RCU read lock.
7052  */
7053 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7054 					struct list_head **iter)
7055 {
7056 	struct netdev_adjacent *lower;
7057 
7058 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7059 
7060 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7061 
7062 	if (&lower->list == &dev->adj_list.lower)
7063 		return NULL;
7064 
7065 	*iter = &lower->list;
7066 
7067 	return lower->private;
7068 }
7069 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7070 
7071 /**
7072  * netdev_lower_get_next - Get the next device from the lower neighbour
7073  *                         list
7074  * @dev: device
7075  * @iter: list_head ** of the current position
7076  *
7077  * Gets the next netdev_adjacent from the dev's lower neighbour
7078  * list, starting from iter position. The caller must hold RTNL lock or
7079  * its own locking that guarantees that the neighbour lower
7080  * list will remain unchanged.
7081  */
7082 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7083 {
7084 	struct netdev_adjacent *lower;
7085 
7086 	lower = list_entry(*iter, struct netdev_adjacent, list);
7087 
7088 	if (&lower->list == &dev->adj_list.lower)
7089 		return NULL;
7090 
7091 	*iter = lower->list.next;
7092 
7093 	return lower->dev;
7094 }
7095 EXPORT_SYMBOL(netdev_lower_get_next);
7096 
7097 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7098 						struct list_head **iter)
7099 {
7100 	struct netdev_adjacent *lower;
7101 
7102 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7103 
7104 	if (&lower->list == &dev->adj_list.lower)
7105 		return NULL;
7106 
7107 	*iter = &lower->list;
7108 
7109 	return lower->dev;
7110 }
7111 
7112 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7113 						  struct list_head **iter,
7114 						  bool *ignore)
7115 {
7116 	struct netdev_adjacent *lower;
7117 
7118 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7119 
7120 	if (&lower->list == &dev->adj_list.lower)
7121 		return NULL;
7122 
7123 	*iter = &lower->list;
7124 	*ignore = lower->ignore;
7125 
7126 	return lower->dev;
7127 }
7128 
7129 int netdev_walk_all_lower_dev(struct net_device *dev,
7130 			      int (*fn)(struct net_device *dev,
7131 					struct netdev_nested_priv *priv),
7132 			      struct netdev_nested_priv *priv)
7133 {
7134 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7135 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7136 	int ret, cur = 0;
7137 
7138 	now = dev;
7139 	iter = &dev->adj_list.lower;
7140 
7141 	while (1) {
7142 		if (now != dev) {
7143 			ret = fn(now, priv);
7144 			if (ret)
7145 				return ret;
7146 		}
7147 
7148 		next = NULL;
7149 		while (1) {
7150 			ldev = netdev_next_lower_dev(now, &iter);
7151 			if (!ldev)
7152 				break;
7153 
7154 			next = ldev;
7155 			niter = &ldev->adj_list.lower;
7156 			dev_stack[cur] = now;
7157 			iter_stack[cur++] = iter;
7158 			break;
7159 		}
7160 
7161 		if (!next) {
7162 			if (!cur)
7163 				return 0;
7164 			next = dev_stack[--cur];
7165 			niter = iter_stack[cur];
7166 		}
7167 
7168 		now = next;
7169 		iter = niter;
7170 	}
7171 
7172 	return 0;
7173 }
7174 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7175 
7176 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7177 				       int (*fn)(struct net_device *dev,
7178 					 struct netdev_nested_priv *priv),
7179 				       struct netdev_nested_priv *priv)
7180 {
7181 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7182 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7183 	int ret, cur = 0;
7184 	bool ignore;
7185 
7186 	now = dev;
7187 	iter = &dev->adj_list.lower;
7188 
7189 	while (1) {
7190 		if (now != dev) {
7191 			ret = fn(now, priv);
7192 			if (ret)
7193 				return ret;
7194 		}
7195 
7196 		next = NULL;
7197 		while (1) {
7198 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7199 			if (!ldev)
7200 				break;
7201 			if (ignore)
7202 				continue;
7203 
7204 			next = ldev;
7205 			niter = &ldev->adj_list.lower;
7206 			dev_stack[cur] = now;
7207 			iter_stack[cur++] = iter;
7208 			break;
7209 		}
7210 
7211 		if (!next) {
7212 			if (!cur)
7213 				return 0;
7214 			next = dev_stack[--cur];
7215 			niter = iter_stack[cur];
7216 		}
7217 
7218 		now = next;
7219 		iter = niter;
7220 	}
7221 
7222 	return 0;
7223 }
7224 
7225 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7226 					     struct list_head **iter)
7227 {
7228 	struct netdev_adjacent *lower;
7229 
7230 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7231 	if (&lower->list == &dev->adj_list.lower)
7232 		return NULL;
7233 
7234 	*iter = &lower->list;
7235 
7236 	return lower->dev;
7237 }
7238 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7239 
7240 static u8 __netdev_upper_depth(struct net_device *dev)
7241 {
7242 	struct net_device *udev;
7243 	struct list_head *iter;
7244 	u8 max_depth = 0;
7245 	bool ignore;
7246 
7247 	for (iter = &dev->adj_list.upper,
7248 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7249 	     udev;
7250 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7251 		if (ignore)
7252 			continue;
7253 		if (max_depth < udev->upper_level)
7254 			max_depth = udev->upper_level;
7255 	}
7256 
7257 	return max_depth;
7258 }
7259 
7260 static u8 __netdev_lower_depth(struct net_device *dev)
7261 {
7262 	struct net_device *ldev;
7263 	struct list_head *iter;
7264 	u8 max_depth = 0;
7265 	bool ignore;
7266 
7267 	for (iter = &dev->adj_list.lower,
7268 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7269 	     ldev;
7270 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7271 		if (ignore)
7272 			continue;
7273 		if (max_depth < ldev->lower_level)
7274 			max_depth = ldev->lower_level;
7275 	}
7276 
7277 	return max_depth;
7278 }
7279 
7280 static int __netdev_update_upper_level(struct net_device *dev,
7281 				       struct netdev_nested_priv *__unused)
7282 {
7283 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7284 	return 0;
7285 }
7286 
7287 #ifdef CONFIG_LOCKDEP
7288 static LIST_HEAD(net_unlink_list);
7289 
7290 static void net_unlink_todo(struct net_device *dev)
7291 {
7292 	if (list_empty(&dev->unlink_list))
7293 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7294 }
7295 #endif
7296 
7297 static int __netdev_update_lower_level(struct net_device *dev,
7298 				       struct netdev_nested_priv *priv)
7299 {
7300 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7301 
7302 #ifdef CONFIG_LOCKDEP
7303 	if (!priv)
7304 		return 0;
7305 
7306 	if (priv->flags & NESTED_SYNC_IMM)
7307 		dev->nested_level = dev->lower_level - 1;
7308 	if (priv->flags & NESTED_SYNC_TODO)
7309 		net_unlink_todo(dev);
7310 #endif
7311 	return 0;
7312 }
7313 
7314 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7315 				  int (*fn)(struct net_device *dev,
7316 					    struct netdev_nested_priv *priv),
7317 				  struct netdev_nested_priv *priv)
7318 {
7319 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7320 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7321 	int ret, cur = 0;
7322 
7323 	now = dev;
7324 	iter = &dev->adj_list.lower;
7325 
7326 	while (1) {
7327 		if (now != dev) {
7328 			ret = fn(now, priv);
7329 			if (ret)
7330 				return ret;
7331 		}
7332 
7333 		next = NULL;
7334 		while (1) {
7335 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7336 			if (!ldev)
7337 				break;
7338 
7339 			next = ldev;
7340 			niter = &ldev->adj_list.lower;
7341 			dev_stack[cur] = now;
7342 			iter_stack[cur++] = iter;
7343 			break;
7344 		}
7345 
7346 		if (!next) {
7347 			if (!cur)
7348 				return 0;
7349 			next = dev_stack[--cur];
7350 			niter = iter_stack[cur];
7351 		}
7352 
7353 		now = next;
7354 		iter = niter;
7355 	}
7356 
7357 	return 0;
7358 }
7359 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7360 
7361 /**
7362  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7363  *				       lower neighbour list, RCU
7364  *				       variant
7365  * @dev: device
7366  *
7367  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7368  * list. The caller must hold RCU read lock.
7369  */
7370 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7371 {
7372 	struct netdev_adjacent *lower;
7373 
7374 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7375 			struct netdev_adjacent, list);
7376 	if (lower)
7377 		return lower->private;
7378 	return NULL;
7379 }
7380 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7381 
7382 /**
7383  * netdev_master_upper_dev_get_rcu - Get master upper device
7384  * @dev: device
7385  *
7386  * Find a master upper device and return pointer to it or NULL in case
7387  * it's not there. The caller must hold the RCU read lock.
7388  */
7389 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7390 {
7391 	struct netdev_adjacent *upper;
7392 
7393 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7394 				       struct netdev_adjacent, list);
7395 	if (upper && likely(upper->master))
7396 		return upper->dev;
7397 	return NULL;
7398 }
7399 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7400 
7401 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7402 			      struct net_device *adj_dev,
7403 			      struct list_head *dev_list)
7404 {
7405 	char linkname[IFNAMSIZ+7];
7406 
7407 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7408 		"upper_%s" : "lower_%s", adj_dev->name);
7409 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7410 				 linkname);
7411 }
7412 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7413 			       char *name,
7414 			       struct list_head *dev_list)
7415 {
7416 	char linkname[IFNAMSIZ+7];
7417 
7418 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7419 		"upper_%s" : "lower_%s", name);
7420 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7421 }
7422 
7423 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7424 						 struct net_device *adj_dev,
7425 						 struct list_head *dev_list)
7426 {
7427 	return (dev_list == &dev->adj_list.upper ||
7428 		dev_list == &dev->adj_list.lower) &&
7429 		net_eq(dev_net(dev), dev_net(adj_dev));
7430 }
7431 
7432 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7433 					struct net_device *adj_dev,
7434 					struct list_head *dev_list,
7435 					void *private, bool master)
7436 {
7437 	struct netdev_adjacent *adj;
7438 	int ret;
7439 
7440 	adj = __netdev_find_adj(adj_dev, dev_list);
7441 
7442 	if (adj) {
7443 		adj->ref_nr += 1;
7444 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7445 			 dev->name, adj_dev->name, adj->ref_nr);
7446 
7447 		return 0;
7448 	}
7449 
7450 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7451 	if (!adj)
7452 		return -ENOMEM;
7453 
7454 	adj->dev = adj_dev;
7455 	adj->master = master;
7456 	adj->ref_nr = 1;
7457 	adj->private = private;
7458 	adj->ignore = false;
7459 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7460 
7461 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7462 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7463 
7464 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7465 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7466 		if (ret)
7467 			goto free_adj;
7468 	}
7469 
7470 	/* Ensure that master link is always the first item in list. */
7471 	if (master) {
7472 		ret = sysfs_create_link(&(dev->dev.kobj),
7473 					&(adj_dev->dev.kobj), "master");
7474 		if (ret)
7475 			goto remove_symlinks;
7476 
7477 		list_add_rcu(&adj->list, dev_list);
7478 	} else {
7479 		list_add_tail_rcu(&adj->list, dev_list);
7480 	}
7481 
7482 	return 0;
7483 
7484 remove_symlinks:
7485 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7486 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7487 free_adj:
7488 	netdev_put(adj_dev, &adj->dev_tracker);
7489 	kfree(adj);
7490 
7491 	return ret;
7492 }
7493 
7494 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7495 					 struct net_device *adj_dev,
7496 					 u16 ref_nr,
7497 					 struct list_head *dev_list)
7498 {
7499 	struct netdev_adjacent *adj;
7500 
7501 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7502 		 dev->name, adj_dev->name, ref_nr);
7503 
7504 	adj = __netdev_find_adj(adj_dev, dev_list);
7505 
7506 	if (!adj) {
7507 		pr_err("Adjacency does not exist for device %s from %s\n",
7508 		       dev->name, adj_dev->name);
7509 		WARN_ON(1);
7510 		return;
7511 	}
7512 
7513 	if (adj->ref_nr > ref_nr) {
7514 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7515 			 dev->name, adj_dev->name, ref_nr,
7516 			 adj->ref_nr - ref_nr);
7517 		adj->ref_nr -= ref_nr;
7518 		return;
7519 	}
7520 
7521 	if (adj->master)
7522 		sysfs_remove_link(&(dev->dev.kobj), "master");
7523 
7524 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7525 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7526 
7527 	list_del_rcu(&adj->list);
7528 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7529 		 adj_dev->name, dev->name, adj_dev->name);
7530 	netdev_put(adj_dev, &adj->dev_tracker);
7531 	kfree_rcu(adj, rcu);
7532 }
7533 
7534 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7535 					    struct net_device *upper_dev,
7536 					    struct list_head *up_list,
7537 					    struct list_head *down_list,
7538 					    void *private, bool master)
7539 {
7540 	int ret;
7541 
7542 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7543 					   private, master);
7544 	if (ret)
7545 		return ret;
7546 
7547 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7548 					   private, false);
7549 	if (ret) {
7550 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7551 		return ret;
7552 	}
7553 
7554 	return 0;
7555 }
7556 
7557 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7558 					       struct net_device *upper_dev,
7559 					       u16 ref_nr,
7560 					       struct list_head *up_list,
7561 					       struct list_head *down_list)
7562 {
7563 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7564 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7565 }
7566 
7567 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7568 						struct net_device *upper_dev,
7569 						void *private, bool master)
7570 {
7571 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7572 						&dev->adj_list.upper,
7573 						&upper_dev->adj_list.lower,
7574 						private, master);
7575 }
7576 
7577 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7578 						   struct net_device *upper_dev)
7579 {
7580 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7581 					   &dev->adj_list.upper,
7582 					   &upper_dev->adj_list.lower);
7583 }
7584 
7585 static int __netdev_upper_dev_link(struct net_device *dev,
7586 				   struct net_device *upper_dev, bool master,
7587 				   void *upper_priv, void *upper_info,
7588 				   struct netdev_nested_priv *priv,
7589 				   struct netlink_ext_ack *extack)
7590 {
7591 	struct netdev_notifier_changeupper_info changeupper_info = {
7592 		.info = {
7593 			.dev = dev,
7594 			.extack = extack,
7595 		},
7596 		.upper_dev = upper_dev,
7597 		.master = master,
7598 		.linking = true,
7599 		.upper_info = upper_info,
7600 	};
7601 	struct net_device *master_dev;
7602 	int ret = 0;
7603 
7604 	ASSERT_RTNL();
7605 
7606 	if (dev == upper_dev)
7607 		return -EBUSY;
7608 
7609 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7610 	if (__netdev_has_upper_dev(upper_dev, dev))
7611 		return -EBUSY;
7612 
7613 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7614 		return -EMLINK;
7615 
7616 	if (!master) {
7617 		if (__netdev_has_upper_dev(dev, upper_dev))
7618 			return -EEXIST;
7619 	} else {
7620 		master_dev = __netdev_master_upper_dev_get(dev);
7621 		if (master_dev)
7622 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7623 	}
7624 
7625 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7626 					    &changeupper_info.info);
7627 	ret = notifier_to_errno(ret);
7628 	if (ret)
7629 		return ret;
7630 
7631 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7632 						   master);
7633 	if (ret)
7634 		return ret;
7635 
7636 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7637 					    &changeupper_info.info);
7638 	ret = notifier_to_errno(ret);
7639 	if (ret)
7640 		goto rollback;
7641 
7642 	__netdev_update_upper_level(dev, NULL);
7643 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7644 
7645 	__netdev_update_lower_level(upper_dev, priv);
7646 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7647 				    priv);
7648 
7649 	return 0;
7650 
7651 rollback:
7652 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7653 
7654 	return ret;
7655 }
7656 
7657 /**
7658  * netdev_upper_dev_link - Add a link to the upper device
7659  * @dev: device
7660  * @upper_dev: new upper device
7661  * @extack: netlink extended ack
7662  *
7663  * Adds a link to device which is upper to this one. The caller must hold
7664  * the RTNL lock. On a failure a negative errno code is returned.
7665  * On success the reference counts are adjusted and the function
7666  * returns zero.
7667  */
7668 int netdev_upper_dev_link(struct net_device *dev,
7669 			  struct net_device *upper_dev,
7670 			  struct netlink_ext_ack *extack)
7671 {
7672 	struct netdev_nested_priv priv = {
7673 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7674 		.data = NULL,
7675 	};
7676 
7677 	return __netdev_upper_dev_link(dev, upper_dev, false,
7678 				       NULL, NULL, &priv, extack);
7679 }
7680 EXPORT_SYMBOL(netdev_upper_dev_link);
7681 
7682 /**
7683  * netdev_master_upper_dev_link - Add a master link to the upper device
7684  * @dev: device
7685  * @upper_dev: new upper device
7686  * @upper_priv: upper device private
7687  * @upper_info: upper info to be passed down via notifier
7688  * @extack: netlink extended ack
7689  *
7690  * Adds a link to device which is upper to this one. In this case, only
7691  * one master upper device can be linked, although other non-master devices
7692  * might be linked as well. The caller must hold the RTNL lock.
7693  * On a failure a negative errno code is returned. On success the reference
7694  * counts are adjusted and the function returns zero.
7695  */
7696 int netdev_master_upper_dev_link(struct net_device *dev,
7697 				 struct net_device *upper_dev,
7698 				 void *upper_priv, void *upper_info,
7699 				 struct netlink_ext_ack *extack)
7700 {
7701 	struct netdev_nested_priv priv = {
7702 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7703 		.data = NULL,
7704 	};
7705 
7706 	return __netdev_upper_dev_link(dev, upper_dev, true,
7707 				       upper_priv, upper_info, &priv, extack);
7708 }
7709 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7710 
7711 static void __netdev_upper_dev_unlink(struct net_device *dev,
7712 				      struct net_device *upper_dev,
7713 				      struct netdev_nested_priv *priv)
7714 {
7715 	struct netdev_notifier_changeupper_info changeupper_info = {
7716 		.info = {
7717 			.dev = dev,
7718 		},
7719 		.upper_dev = upper_dev,
7720 		.linking = false,
7721 	};
7722 
7723 	ASSERT_RTNL();
7724 
7725 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7726 
7727 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7728 				      &changeupper_info.info);
7729 
7730 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7731 
7732 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7733 				      &changeupper_info.info);
7734 
7735 	__netdev_update_upper_level(dev, NULL);
7736 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7737 
7738 	__netdev_update_lower_level(upper_dev, priv);
7739 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7740 				    priv);
7741 }
7742 
7743 /**
7744  * netdev_upper_dev_unlink - Removes a link to upper device
7745  * @dev: device
7746  * @upper_dev: new upper device
7747  *
7748  * Removes a link to device which is upper to this one. The caller must hold
7749  * the RTNL lock.
7750  */
7751 void netdev_upper_dev_unlink(struct net_device *dev,
7752 			     struct net_device *upper_dev)
7753 {
7754 	struct netdev_nested_priv priv = {
7755 		.flags = NESTED_SYNC_TODO,
7756 		.data = NULL,
7757 	};
7758 
7759 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7760 }
7761 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7762 
7763 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7764 				      struct net_device *lower_dev,
7765 				      bool val)
7766 {
7767 	struct netdev_adjacent *adj;
7768 
7769 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7770 	if (adj)
7771 		adj->ignore = val;
7772 
7773 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7774 	if (adj)
7775 		adj->ignore = val;
7776 }
7777 
7778 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7779 					struct net_device *lower_dev)
7780 {
7781 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7782 }
7783 
7784 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7785 				       struct net_device *lower_dev)
7786 {
7787 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7788 }
7789 
7790 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7791 				   struct net_device *new_dev,
7792 				   struct net_device *dev,
7793 				   struct netlink_ext_ack *extack)
7794 {
7795 	struct netdev_nested_priv priv = {
7796 		.flags = 0,
7797 		.data = NULL,
7798 	};
7799 	int err;
7800 
7801 	if (!new_dev)
7802 		return 0;
7803 
7804 	if (old_dev && new_dev != old_dev)
7805 		netdev_adjacent_dev_disable(dev, old_dev);
7806 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7807 				      extack);
7808 	if (err) {
7809 		if (old_dev && new_dev != old_dev)
7810 			netdev_adjacent_dev_enable(dev, old_dev);
7811 		return err;
7812 	}
7813 
7814 	return 0;
7815 }
7816 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7817 
7818 void netdev_adjacent_change_commit(struct net_device *old_dev,
7819 				   struct net_device *new_dev,
7820 				   struct net_device *dev)
7821 {
7822 	struct netdev_nested_priv priv = {
7823 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7824 		.data = NULL,
7825 	};
7826 
7827 	if (!new_dev || !old_dev)
7828 		return;
7829 
7830 	if (new_dev == old_dev)
7831 		return;
7832 
7833 	netdev_adjacent_dev_enable(dev, old_dev);
7834 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7835 }
7836 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7837 
7838 void netdev_adjacent_change_abort(struct net_device *old_dev,
7839 				  struct net_device *new_dev,
7840 				  struct net_device *dev)
7841 {
7842 	struct netdev_nested_priv priv = {
7843 		.flags = 0,
7844 		.data = NULL,
7845 	};
7846 
7847 	if (!new_dev)
7848 		return;
7849 
7850 	if (old_dev && new_dev != old_dev)
7851 		netdev_adjacent_dev_enable(dev, old_dev);
7852 
7853 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7854 }
7855 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7856 
7857 /**
7858  * netdev_bonding_info_change - Dispatch event about slave change
7859  * @dev: device
7860  * @bonding_info: info to dispatch
7861  *
7862  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7863  * The caller must hold the RTNL lock.
7864  */
7865 void netdev_bonding_info_change(struct net_device *dev,
7866 				struct netdev_bonding_info *bonding_info)
7867 {
7868 	struct netdev_notifier_bonding_info info = {
7869 		.info.dev = dev,
7870 	};
7871 
7872 	memcpy(&info.bonding_info, bonding_info,
7873 	       sizeof(struct netdev_bonding_info));
7874 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7875 				      &info.info);
7876 }
7877 EXPORT_SYMBOL(netdev_bonding_info_change);
7878 
7879 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7880 					   struct netlink_ext_ack *extack)
7881 {
7882 	struct netdev_notifier_offload_xstats_info info = {
7883 		.info.dev = dev,
7884 		.info.extack = extack,
7885 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7886 	};
7887 	int err;
7888 	int rc;
7889 
7890 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7891 					 GFP_KERNEL);
7892 	if (!dev->offload_xstats_l3)
7893 		return -ENOMEM;
7894 
7895 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7896 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
7897 						  &info.info);
7898 	err = notifier_to_errno(rc);
7899 	if (err)
7900 		goto free_stats;
7901 
7902 	return 0;
7903 
7904 free_stats:
7905 	kfree(dev->offload_xstats_l3);
7906 	dev->offload_xstats_l3 = NULL;
7907 	return err;
7908 }
7909 
7910 int netdev_offload_xstats_enable(struct net_device *dev,
7911 				 enum netdev_offload_xstats_type type,
7912 				 struct netlink_ext_ack *extack)
7913 {
7914 	ASSERT_RTNL();
7915 
7916 	if (netdev_offload_xstats_enabled(dev, type))
7917 		return -EALREADY;
7918 
7919 	switch (type) {
7920 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7921 		return netdev_offload_xstats_enable_l3(dev, extack);
7922 	}
7923 
7924 	WARN_ON(1);
7925 	return -EINVAL;
7926 }
7927 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7928 
7929 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7930 {
7931 	struct netdev_notifier_offload_xstats_info info = {
7932 		.info.dev = dev,
7933 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7934 	};
7935 
7936 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7937 				      &info.info);
7938 	kfree(dev->offload_xstats_l3);
7939 	dev->offload_xstats_l3 = NULL;
7940 }
7941 
7942 int netdev_offload_xstats_disable(struct net_device *dev,
7943 				  enum netdev_offload_xstats_type type)
7944 {
7945 	ASSERT_RTNL();
7946 
7947 	if (!netdev_offload_xstats_enabled(dev, type))
7948 		return -EALREADY;
7949 
7950 	switch (type) {
7951 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7952 		netdev_offload_xstats_disable_l3(dev);
7953 		return 0;
7954 	}
7955 
7956 	WARN_ON(1);
7957 	return -EINVAL;
7958 }
7959 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7960 
7961 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7962 {
7963 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7964 }
7965 
7966 static struct rtnl_hw_stats64 *
7967 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7968 			      enum netdev_offload_xstats_type type)
7969 {
7970 	switch (type) {
7971 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7972 		return dev->offload_xstats_l3;
7973 	}
7974 
7975 	WARN_ON(1);
7976 	return NULL;
7977 }
7978 
7979 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7980 				   enum netdev_offload_xstats_type type)
7981 {
7982 	ASSERT_RTNL();
7983 
7984 	return netdev_offload_xstats_get_ptr(dev, type);
7985 }
7986 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7987 
7988 struct netdev_notifier_offload_xstats_ru {
7989 	bool used;
7990 };
7991 
7992 struct netdev_notifier_offload_xstats_rd {
7993 	struct rtnl_hw_stats64 stats;
7994 	bool used;
7995 };
7996 
7997 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
7998 				  const struct rtnl_hw_stats64 *src)
7999 {
8000 	dest->rx_packets	  += src->rx_packets;
8001 	dest->tx_packets	  += src->tx_packets;
8002 	dest->rx_bytes		  += src->rx_bytes;
8003 	dest->tx_bytes		  += src->tx_bytes;
8004 	dest->rx_errors		  += src->rx_errors;
8005 	dest->tx_errors		  += src->tx_errors;
8006 	dest->rx_dropped	  += src->rx_dropped;
8007 	dest->tx_dropped	  += src->tx_dropped;
8008 	dest->multicast		  += src->multicast;
8009 }
8010 
8011 static int netdev_offload_xstats_get_used(struct net_device *dev,
8012 					  enum netdev_offload_xstats_type type,
8013 					  bool *p_used,
8014 					  struct netlink_ext_ack *extack)
8015 {
8016 	struct netdev_notifier_offload_xstats_ru report_used = {};
8017 	struct netdev_notifier_offload_xstats_info info = {
8018 		.info.dev = dev,
8019 		.info.extack = extack,
8020 		.type = type,
8021 		.report_used = &report_used,
8022 	};
8023 	int rc;
8024 
8025 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8026 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8027 					   &info.info);
8028 	*p_used = report_used.used;
8029 	return notifier_to_errno(rc);
8030 }
8031 
8032 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8033 					   enum netdev_offload_xstats_type type,
8034 					   struct rtnl_hw_stats64 *p_stats,
8035 					   bool *p_used,
8036 					   struct netlink_ext_ack *extack)
8037 {
8038 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8039 	struct netdev_notifier_offload_xstats_info info = {
8040 		.info.dev = dev,
8041 		.info.extack = extack,
8042 		.type = type,
8043 		.report_delta = &report_delta,
8044 	};
8045 	struct rtnl_hw_stats64 *stats;
8046 	int rc;
8047 
8048 	stats = netdev_offload_xstats_get_ptr(dev, type);
8049 	if (WARN_ON(!stats))
8050 		return -EINVAL;
8051 
8052 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8053 					   &info.info);
8054 
8055 	/* Cache whatever we got, even if there was an error, otherwise the
8056 	 * successful stats retrievals would get lost.
8057 	 */
8058 	netdev_hw_stats64_add(stats, &report_delta.stats);
8059 
8060 	if (p_stats)
8061 		*p_stats = *stats;
8062 	*p_used = report_delta.used;
8063 
8064 	return notifier_to_errno(rc);
8065 }
8066 
8067 int netdev_offload_xstats_get(struct net_device *dev,
8068 			      enum netdev_offload_xstats_type type,
8069 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8070 			      struct netlink_ext_ack *extack)
8071 {
8072 	ASSERT_RTNL();
8073 
8074 	if (p_stats)
8075 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8076 						       p_used, extack);
8077 	else
8078 		return netdev_offload_xstats_get_used(dev, type, p_used,
8079 						      extack);
8080 }
8081 EXPORT_SYMBOL(netdev_offload_xstats_get);
8082 
8083 void
8084 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8085 				   const struct rtnl_hw_stats64 *stats)
8086 {
8087 	report_delta->used = true;
8088 	netdev_hw_stats64_add(&report_delta->stats, stats);
8089 }
8090 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8091 
8092 void
8093 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8094 {
8095 	report_used->used = true;
8096 }
8097 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8098 
8099 void netdev_offload_xstats_push_delta(struct net_device *dev,
8100 				      enum netdev_offload_xstats_type type,
8101 				      const struct rtnl_hw_stats64 *p_stats)
8102 {
8103 	struct rtnl_hw_stats64 *stats;
8104 
8105 	ASSERT_RTNL();
8106 
8107 	stats = netdev_offload_xstats_get_ptr(dev, type);
8108 	if (WARN_ON(!stats))
8109 		return;
8110 
8111 	netdev_hw_stats64_add(stats, p_stats);
8112 }
8113 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8114 
8115 /**
8116  * netdev_get_xmit_slave - Get the xmit slave of master device
8117  * @dev: device
8118  * @skb: The packet
8119  * @all_slaves: assume all the slaves are active
8120  *
8121  * The reference counters are not incremented so the caller must be
8122  * careful with locks. The caller must hold RCU lock.
8123  * %NULL is returned if no slave is found.
8124  */
8125 
8126 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8127 					 struct sk_buff *skb,
8128 					 bool all_slaves)
8129 {
8130 	const struct net_device_ops *ops = dev->netdev_ops;
8131 
8132 	if (!ops->ndo_get_xmit_slave)
8133 		return NULL;
8134 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8135 }
8136 EXPORT_SYMBOL(netdev_get_xmit_slave);
8137 
8138 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8139 						  struct sock *sk)
8140 {
8141 	const struct net_device_ops *ops = dev->netdev_ops;
8142 
8143 	if (!ops->ndo_sk_get_lower_dev)
8144 		return NULL;
8145 	return ops->ndo_sk_get_lower_dev(dev, sk);
8146 }
8147 
8148 /**
8149  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8150  * @dev: device
8151  * @sk: the socket
8152  *
8153  * %NULL is returned if no lower device is found.
8154  */
8155 
8156 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8157 					    struct sock *sk)
8158 {
8159 	struct net_device *lower;
8160 
8161 	lower = netdev_sk_get_lower_dev(dev, sk);
8162 	while (lower) {
8163 		dev = lower;
8164 		lower = netdev_sk_get_lower_dev(dev, sk);
8165 	}
8166 
8167 	return dev;
8168 }
8169 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8170 
8171 static void netdev_adjacent_add_links(struct net_device *dev)
8172 {
8173 	struct netdev_adjacent *iter;
8174 
8175 	struct net *net = dev_net(dev);
8176 
8177 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8178 		if (!net_eq(net, dev_net(iter->dev)))
8179 			continue;
8180 		netdev_adjacent_sysfs_add(iter->dev, dev,
8181 					  &iter->dev->adj_list.lower);
8182 		netdev_adjacent_sysfs_add(dev, iter->dev,
8183 					  &dev->adj_list.upper);
8184 	}
8185 
8186 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8187 		if (!net_eq(net, dev_net(iter->dev)))
8188 			continue;
8189 		netdev_adjacent_sysfs_add(iter->dev, dev,
8190 					  &iter->dev->adj_list.upper);
8191 		netdev_adjacent_sysfs_add(dev, iter->dev,
8192 					  &dev->adj_list.lower);
8193 	}
8194 }
8195 
8196 static void netdev_adjacent_del_links(struct net_device *dev)
8197 {
8198 	struct netdev_adjacent *iter;
8199 
8200 	struct net *net = dev_net(dev);
8201 
8202 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8203 		if (!net_eq(net, dev_net(iter->dev)))
8204 			continue;
8205 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8206 					  &iter->dev->adj_list.lower);
8207 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8208 					  &dev->adj_list.upper);
8209 	}
8210 
8211 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8212 		if (!net_eq(net, dev_net(iter->dev)))
8213 			continue;
8214 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8215 					  &iter->dev->adj_list.upper);
8216 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8217 					  &dev->adj_list.lower);
8218 	}
8219 }
8220 
8221 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8222 {
8223 	struct netdev_adjacent *iter;
8224 
8225 	struct net *net = dev_net(dev);
8226 
8227 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8228 		if (!net_eq(net, dev_net(iter->dev)))
8229 			continue;
8230 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8231 					  &iter->dev->adj_list.lower);
8232 		netdev_adjacent_sysfs_add(iter->dev, dev,
8233 					  &iter->dev->adj_list.lower);
8234 	}
8235 
8236 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8237 		if (!net_eq(net, dev_net(iter->dev)))
8238 			continue;
8239 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8240 					  &iter->dev->adj_list.upper);
8241 		netdev_adjacent_sysfs_add(iter->dev, dev,
8242 					  &iter->dev->adj_list.upper);
8243 	}
8244 }
8245 
8246 void *netdev_lower_dev_get_private(struct net_device *dev,
8247 				   struct net_device *lower_dev)
8248 {
8249 	struct netdev_adjacent *lower;
8250 
8251 	if (!lower_dev)
8252 		return NULL;
8253 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8254 	if (!lower)
8255 		return NULL;
8256 
8257 	return lower->private;
8258 }
8259 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8260 
8261 
8262 /**
8263  * netdev_lower_state_changed - Dispatch event about lower device state change
8264  * @lower_dev: device
8265  * @lower_state_info: state to dispatch
8266  *
8267  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8268  * The caller must hold the RTNL lock.
8269  */
8270 void netdev_lower_state_changed(struct net_device *lower_dev,
8271 				void *lower_state_info)
8272 {
8273 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8274 		.info.dev = lower_dev,
8275 	};
8276 
8277 	ASSERT_RTNL();
8278 	changelowerstate_info.lower_state_info = lower_state_info;
8279 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8280 				      &changelowerstate_info.info);
8281 }
8282 EXPORT_SYMBOL(netdev_lower_state_changed);
8283 
8284 static void dev_change_rx_flags(struct net_device *dev, int flags)
8285 {
8286 	const struct net_device_ops *ops = dev->netdev_ops;
8287 
8288 	if (ops->ndo_change_rx_flags)
8289 		ops->ndo_change_rx_flags(dev, flags);
8290 }
8291 
8292 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8293 {
8294 	unsigned int old_flags = dev->flags;
8295 	kuid_t uid;
8296 	kgid_t gid;
8297 
8298 	ASSERT_RTNL();
8299 
8300 	dev->flags |= IFF_PROMISC;
8301 	dev->promiscuity += inc;
8302 	if (dev->promiscuity == 0) {
8303 		/*
8304 		 * Avoid overflow.
8305 		 * If inc causes overflow, untouch promisc and return error.
8306 		 */
8307 		if (inc < 0)
8308 			dev->flags &= ~IFF_PROMISC;
8309 		else {
8310 			dev->promiscuity -= inc;
8311 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8312 			return -EOVERFLOW;
8313 		}
8314 	}
8315 	if (dev->flags != old_flags) {
8316 		netdev_info(dev, "%s promiscuous mode\n",
8317 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8318 		if (audit_enabled) {
8319 			current_uid_gid(&uid, &gid);
8320 			audit_log(audit_context(), GFP_ATOMIC,
8321 				  AUDIT_ANOM_PROMISCUOUS,
8322 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8323 				  dev->name, (dev->flags & IFF_PROMISC),
8324 				  (old_flags & IFF_PROMISC),
8325 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8326 				  from_kuid(&init_user_ns, uid),
8327 				  from_kgid(&init_user_ns, gid),
8328 				  audit_get_sessionid(current));
8329 		}
8330 
8331 		dev_change_rx_flags(dev, IFF_PROMISC);
8332 	}
8333 	if (notify)
8334 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8335 	return 0;
8336 }
8337 
8338 /**
8339  *	dev_set_promiscuity	- update promiscuity count on a device
8340  *	@dev: device
8341  *	@inc: modifier
8342  *
8343  *	Add or remove promiscuity from a device. While the count in the device
8344  *	remains above zero the interface remains promiscuous. Once it hits zero
8345  *	the device reverts back to normal filtering operation. A negative inc
8346  *	value is used to drop promiscuity on the device.
8347  *	Return 0 if successful or a negative errno code on error.
8348  */
8349 int dev_set_promiscuity(struct net_device *dev, int inc)
8350 {
8351 	unsigned int old_flags = dev->flags;
8352 	int err;
8353 
8354 	err = __dev_set_promiscuity(dev, inc, true);
8355 	if (err < 0)
8356 		return err;
8357 	if (dev->flags != old_flags)
8358 		dev_set_rx_mode(dev);
8359 	return err;
8360 }
8361 EXPORT_SYMBOL(dev_set_promiscuity);
8362 
8363 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8364 {
8365 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8366 
8367 	ASSERT_RTNL();
8368 
8369 	dev->flags |= IFF_ALLMULTI;
8370 	dev->allmulti += inc;
8371 	if (dev->allmulti == 0) {
8372 		/*
8373 		 * Avoid overflow.
8374 		 * If inc causes overflow, untouch allmulti and return error.
8375 		 */
8376 		if (inc < 0)
8377 			dev->flags &= ~IFF_ALLMULTI;
8378 		else {
8379 			dev->allmulti -= inc;
8380 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8381 			return -EOVERFLOW;
8382 		}
8383 	}
8384 	if (dev->flags ^ old_flags) {
8385 		netdev_info(dev, "%s allmulticast mode\n",
8386 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8387 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8388 		dev_set_rx_mode(dev);
8389 		if (notify)
8390 			__dev_notify_flags(dev, old_flags,
8391 					   dev->gflags ^ old_gflags, 0, NULL);
8392 	}
8393 	return 0;
8394 }
8395 
8396 /**
8397  *	dev_set_allmulti	- update allmulti count on a device
8398  *	@dev: device
8399  *	@inc: modifier
8400  *
8401  *	Add or remove reception of all multicast frames to a device. While the
8402  *	count in the device remains above zero the interface remains listening
8403  *	to all interfaces. Once it hits zero the device reverts back to normal
8404  *	filtering operation. A negative @inc value is used to drop the counter
8405  *	when releasing a resource needing all multicasts.
8406  *	Return 0 if successful or a negative errno code on error.
8407  */
8408 
8409 int dev_set_allmulti(struct net_device *dev, int inc)
8410 {
8411 	return __dev_set_allmulti(dev, inc, true);
8412 }
8413 EXPORT_SYMBOL(dev_set_allmulti);
8414 
8415 /*
8416  *	Upload unicast and multicast address lists to device and
8417  *	configure RX filtering. When the device doesn't support unicast
8418  *	filtering it is put in promiscuous mode while unicast addresses
8419  *	are present.
8420  */
8421 void __dev_set_rx_mode(struct net_device *dev)
8422 {
8423 	const struct net_device_ops *ops = dev->netdev_ops;
8424 
8425 	/* dev_open will call this function so the list will stay sane. */
8426 	if (!(dev->flags&IFF_UP))
8427 		return;
8428 
8429 	if (!netif_device_present(dev))
8430 		return;
8431 
8432 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8433 		/* Unicast addresses changes may only happen under the rtnl,
8434 		 * therefore calling __dev_set_promiscuity here is safe.
8435 		 */
8436 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8437 			__dev_set_promiscuity(dev, 1, false);
8438 			dev->uc_promisc = true;
8439 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8440 			__dev_set_promiscuity(dev, -1, false);
8441 			dev->uc_promisc = false;
8442 		}
8443 	}
8444 
8445 	if (ops->ndo_set_rx_mode)
8446 		ops->ndo_set_rx_mode(dev);
8447 }
8448 
8449 void dev_set_rx_mode(struct net_device *dev)
8450 {
8451 	netif_addr_lock_bh(dev);
8452 	__dev_set_rx_mode(dev);
8453 	netif_addr_unlock_bh(dev);
8454 }
8455 
8456 /**
8457  *	dev_get_flags - get flags reported to userspace
8458  *	@dev: device
8459  *
8460  *	Get the combination of flag bits exported through APIs to userspace.
8461  */
8462 unsigned int dev_get_flags(const struct net_device *dev)
8463 {
8464 	unsigned int flags;
8465 
8466 	flags = (dev->flags & ~(IFF_PROMISC |
8467 				IFF_ALLMULTI |
8468 				IFF_RUNNING |
8469 				IFF_LOWER_UP |
8470 				IFF_DORMANT)) |
8471 		(dev->gflags & (IFF_PROMISC |
8472 				IFF_ALLMULTI));
8473 
8474 	if (netif_running(dev)) {
8475 		if (netif_oper_up(dev))
8476 			flags |= IFF_RUNNING;
8477 		if (netif_carrier_ok(dev))
8478 			flags |= IFF_LOWER_UP;
8479 		if (netif_dormant(dev))
8480 			flags |= IFF_DORMANT;
8481 	}
8482 
8483 	return flags;
8484 }
8485 EXPORT_SYMBOL(dev_get_flags);
8486 
8487 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8488 		       struct netlink_ext_ack *extack)
8489 {
8490 	unsigned int old_flags = dev->flags;
8491 	int ret;
8492 
8493 	ASSERT_RTNL();
8494 
8495 	/*
8496 	 *	Set the flags on our device.
8497 	 */
8498 
8499 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8500 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8501 			       IFF_AUTOMEDIA)) |
8502 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8503 				    IFF_ALLMULTI));
8504 
8505 	/*
8506 	 *	Load in the correct multicast list now the flags have changed.
8507 	 */
8508 
8509 	if ((old_flags ^ flags) & IFF_MULTICAST)
8510 		dev_change_rx_flags(dev, IFF_MULTICAST);
8511 
8512 	dev_set_rx_mode(dev);
8513 
8514 	/*
8515 	 *	Have we downed the interface. We handle IFF_UP ourselves
8516 	 *	according to user attempts to set it, rather than blindly
8517 	 *	setting it.
8518 	 */
8519 
8520 	ret = 0;
8521 	if ((old_flags ^ flags) & IFF_UP) {
8522 		if (old_flags & IFF_UP)
8523 			__dev_close(dev);
8524 		else
8525 			ret = __dev_open(dev, extack);
8526 	}
8527 
8528 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8529 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8530 		unsigned int old_flags = dev->flags;
8531 
8532 		dev->gflags ^= IFF_PROMISC;
8533 
8534 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8535 			if (dev->flags != old_flags)
8536 				dev_set_rx_mode(dev);
8537 	}
8538 
8539 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8540 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8541 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8542 	 */
8543 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8544 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8545 
8546 		dev->gflags ^= IFF_ALLMULTI;
8547 		__dev_set_allmulti(dev, inc, false);
8548 	}
8549 
8550 	return ret;
8551 }
8552 
8553 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8554 			unsigned int gchanges, u32 portid,
8555 			const struct nlmsghdr *nlh)
8556 {
8557 	unsigned int changes = dev->flags ^ old_flags;
8558 
8559 	if (gchanges)
8560 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8561 
8562 	if (changes & IFF_UP) {
8563 		if (dev->flags & IFF_UP)
8564 			call_netdevice_notifiers(NETDEV_UP, dev);
8565 		else
8566 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8567 	}
8568 
8569 	if (dev->flags & IFF_UP &&
8570 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8571 		struct netdev_notifier_change_info change_info = {
8572 			.info = {
8573 				.dev = dev,
8574 			},
8575 			.flags_changed = changes,
8576 		};
8577 
8578 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8579 	}
8580 }
8581 
8582 /**
8583  *	dev_change_flags - change device settings
8584  *	@dev: device
8585  *	@flags: device state flags
8586  *	@extack: netlink extended ack
8587  *
8588  *	Change settings on device based state flags. The flags are
8589  *	in the userspace exported format.
8590  */
8591 int dev_change_flags(struct net_device *dev, unsigned int flags,
8592 		     struct netlink_ext_ack *extack)
8593 {
8594 	int ret;
8595 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8596 
8597 	ret = __dev_change_flags(dev, flags, extack);
8598 	if (ret < 0)
8599 		return ret;
8600 
8601 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8602 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8603 	return ret;
8604 }
8605 EXPORT_SYMBOL(dev_change_flags);
8606 
8607 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8608 {
8609 	const struct net_device_ops *ops = dev->netdev_ops;
8610 
8611 	if (ops->ndo_change_mtu)
8612 		return ops->ndo_change_mtu(dev, new_mtu);
8613 
8614 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8615 	WRITE_ONCE(dev->mtu, new_mtu);
8616 	return 0;
8617 }
8618 EXPORT_SYMBOL(__dev_set_mtu);
8619 
8620 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8621 		     struct netlink_ext_ack *extack)
8622 {
8623 	/* MTU must be positive, and in range */
8624 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8625 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8626 		return -EINVAL;
8627 	}
8628 
8629 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8630 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8631 		return -EINVAL;
8632 	}
8633 	return 0;
8634 }
8635 
8636 /**
8637  *	dev_set_mtu_ext - Change maximum transfer unit
8638  *	@dev: device
8639  *	@new_mtu: new transfer unit
8640  *	@extack: netlink extended ack
8641  *
8642  *	Change the maximum transfer size of the network device.
8643  */
8644 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8645 		    struct netlink_ext_ack *extack)
8646 {
8647 	int err, orig_mtu;
8648 
8649 	if (new_mtu == dev->mtu)
8650 		return 0;
8651 
8652 	err = dev_validate_mtu(dev, new_mtu, extack);
8653 	if (err)
8654 		return err;
8655 
8656 	if (!netif_device_present(dev))
8657 		return -ENODEV;
8658 
8659 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8660 	err = notifier_to_errno(err);
8661 	if (err)
8662 		return err;
8663 
8664 	orig_mtu = dev->mtu;
8665 	err = __dev_set_mtu(dev, new_mtu);
8666 
8667 	if (!err) {
8668 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8669 						   orig_mtu);
8670 		err = notifier_to_errno(err);
8671 		if (err) {
8672 			/* setting mtu back and notifying everyone again,
8673 			 * so that they have a chance to revert changes.
8674 			 */
8675 			__dev_set_mtu(dev, orig_mtu);
8676 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8677 						     new_mtu);
8678 		}
8679 	}
8680 	return err;
8681 }
8682 
8683 int dev_set_mtu(struct net_device *dev, int new_mtu)
8684 {
8685 	struct netlink_ext_ack extack;
8686 	int err;
8687 
8688 	memset(&extack, 0, sizeof(extack));
8689 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8690 	if (err && extack._msg)
8691 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8692 	return err;
8693 }
8694 EXPORT_SYMBOL(dev_set_mtu);
8695 
8696 /**
8697  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8698  *	@dev: device
8699  *	@new_len: new tx queue length
8700  */
8701 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8702 {
8703 	unsigned int orig_len = dev->tx_queue_len;
8704 	int res;
8705 
8706 	if (new_len != (unsigned int)new_len)
8707 		return -ERANGE;
8708 
8709 	if (new_len != orig_len) {
8710 		dev->tx_queue_len = new_len;
8711 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8712 		res = notifier_to_errno(res);
8713 		if (res)
8714 			goto err_rollback;
8715 		res = dev_qdisc_change_tx_queue_len(dev);
8716 		if (res)
8717 			goto err_rollback;
8718 	}
8719 
8720 	return 0;
8721 
8722 err_rollback:
8723 	netdev_err(dev, "refused to change device tx_queue_len\n");
8724 	dev->tx_queue_len = orig_len;
8725 	return res;
8726 }
8727 
8728 /**
8729  *	dev_set_group - Change group this device belongs to
8730  *	@dev: device
8731  *	@new_group: group this device should belong to
8732  */
8733 void dev_set_group(struct net_device *dev, int new_group)
8734 {
8735 	dev->group = new_group;
8736 }
8737 
8738 /**
8739  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8740  *	@dev: device
8741  *	@addr: new address
8742  *	@extack: netlink extended ack
8743  */
8744 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8745 			      struct netlink_ext_ack *extack)
8746 {
8747 	struct netdev_notifier_pre_changeaddr_info info = {
8748 		.info.dev = dev,
8749 		.info.extack = extack,
8750 		.dev_addr = addr,
8751 	};
8752 	int rc;
8753 
8754 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8755 	return notifier_to_errno(rc);
8756 }
8757 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8758 
8759 /**
8760  *	dev_set_mac_address - Change Media Access Control Address
8761  *	@dev: device
8762  *	@sa: new address
8763  *	@extack: netlink extended ack
8764  *
8765  *	Change the hardware (MAC) address of the device
8766  */
8767 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8768 			struct netlink_ext_ack *extack)
8769 {
8770 	const struct net_device_ops *ops = dev->netdev_ops;
8771 	int err;
8772 
8773 	if (!ops->ndo_set_mac_address)
8774 		return -EOPNOTSUPP;
8775 	if (sa->sa_family != dev->type)
8776 		return -EINVAL;
8777 	if (!netif_device_present(dev))
8778 		return -ENODEV;
8779 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8780 	if (err)
8781 		return err;
8782 	err = ops->ndo_set_mac_address(dev, sa);
8783 	if (err)
8784 		return err;
8785 	dev->addr_assign_type = NET_ADDR_SET;
8786 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8787 	add_device_randomness(dev->dev_addr, dev->addr_len);
8788 	return 0;
8789 }
8790 EXPORT_SYMBOL(dev_set_mac_address);
8791 
8792 static DECLARE_RWSEM(dev_addr_sem);
8793 
8794 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8795 			     struct netlink_ext_ack *extack)
8796 {
8797 	int ret;
8798 
8799 	down_write(&dev_addr_sem);
8800 	ret = dev_set_mac_address(dev, sa, extack);
8801 	up_write(&dev_addr_sem);
8802 	return ret;
8803 }
8804 EXPORT_SYMBOL(dev_set_mac_address_user);
8805 
8806 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8807 {
8808 	size_t size = sizeof(sa->sa_data_min);
8809 	struct net_device *dev;
8810 	int ret = 0;
8811 
8812 	down_read(&dev_addr_sem);
8813 	rcu_read_lock();
8814 
8815 	dev = dev_get_by_name_rcu(net, dev_name);
8816 	if (!dev) {
8817 		ret = -ENODEV;
8818 		goto unlock;
8819 	}
8820 	if (!dev->addr_len)
8821 		memset(sa->sa_data, 0, size);
8822 	else
8823 		memcpy(sa->sa_data, dev->dev_addr,
8824 		       min_t(size_t, size, dev->addr_len));
8825 	sa->sa_family = dev->type;
8826 
8827 unlock:
8828 	rcu_read_unlock();
8829 	up_read(&dev_addr_sem);
8830 	return ret;
8831 }
8832 EXPORT_SYMBOL(dev_get_mac_address);
8833 
8834 /**
8835  *	dev_change_carrier - Change device carrier
8836  *	@dev: device
8837  *	@new_carrier: new value
8838  *
8839  *	Change device carrier
8840  */
8841 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8842 {
8843 	const struct net_device_ops *ops = dev->netdev_ops;
8844 
8845 	if (!ops->ndo_change_carrier)
8846 		return -EOPNOTSUPP;
8847 	if (!netif_device_present(dev))
8848 		return -ENODEV;
8849 	return ops->ndo_change_carrier(dev, new_carrier);
8850 }
8851 
8852 /**
8853  *	dev_get_phys_port_id - Get device physical port ID
8854  *	@dev: device
8855  *	@ppid: port ID
8856  *
8857  *	Get device physical port ID
8858  */
8859 int dev_get_phys_port_id(struct net_device *dev,
8860 			 struct netdev_phys_item_id *ppid)
8861 {
8862 	const struct net_device_ops *ops = dev->netdev_ops;
8863 
8864 	if (!ops->ndo_get_phys_port_id)
8865 		return -EOPNOTSUPP;
8866 	return ops->ndo_get_phys_port_id(dev, ppid);
8867 }
8868 
8869 /**
8870  *	dev_get_phys_port_name - Get device physical port name
8871  *	@dev: device
8872  *	@name: port name
8873  *	@len: limit of bytes to copy to name
8874  *
8875  *	Get device physical port name
8876  */
8877 int dev_get_phys_port_name(struct net_device *dev,
8878 			   char *name, size_t len)
8879 {
8880 	const struct net_device_ops *ops = dev->netdev_ops;
8881 	int err;
8882 
8883 	if (ops->ndo_get_phys_port_name) {
8884 		err = ops->ndo_get_phys_port_name(dev, name, len);
8885 		if (err != -EOPNOTSUPP)
8886 			return err;
8887 	}
8888 	return devlink_compat_phys_port_name_get(dev, name, len);
8889 }
8890 
8891 /**
8892  *	dev_get_port_parent_id - Get the device's port parent identifier
8893  *	@dev: network device
8894  *	@ppid: pointer to a storage for the port's parent identifier
8895  *	@recurse: allow/disallow recursion to lower devices
8896  *
8897  *	Get the devices's port parent identifier
8898  */
8899 int dev_get_port_parent_id(struct net_device *dev,
8900 			   struct netdev_phys_item_id *ppid,
8901 			   bool recurse)
8902 {
8903 	const struct net_device_ops *ops = dev->netdev_ops;
8904 	struct netdev_phys_item_id first = { };
8905 	struct net_device *lower_dev;
8906 	struct list_head *iter;
8907 	int err;
8908 
8909 	if (ops->ndo_get_port_parent_id) {
8910 		err = ops->ndo_get_port_parent_id(dev, ppid);
8911 		if (err != -EOPNOTSUPP)
8912 			return err;
8913 	}
8914 
8915 	err = devlink_compat_switch_id_get(dev, ppid);
8916 	if (!recurse || err != -EOPNOTSUPP)
8917 		return err;
8918 
8919 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8920 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8921 		if (err)
8922 			break;
8923 		if (!first.id_len)
8924 			first = *ppid;
8925 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8926 			return -EOPNOTSUPP;
8927 	}
8928 
8929 	return err;
8930 }
8931 EXPORT_SYMBOL(dev_get_port_parent_id);
8932 
8933 /**
8934  *	netdev_port_same_parent_id - Indicate if two network devices have
8935  *	the same port parent identifier
8936  *	@a: first network device
8937  *	@b: second network device
8938  */
8939 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8940 {
8941 	struct netdev_phys_item_id a_id = { };
8942 	struct netdev_phys_item_id b_id = { };
8943 
8944 	if (dev_get_port_parent_id(a, &a_id, true) ||
8945 	    dev_get_port_parent_id(b, &b_id, true))
8946 		return false;
8947 
8948 	return netdev_phys_item_id_same(&a_id, &b_id);
8949 }
8950 EXPORT_SYMBOL(netdev_port_same_parent_id);
8951 
8952 /**
8953  *	dev_change_proto_down - set carrier according to proto_down.
8954  *
8955  *	@dev: device
8956  *	@proto_down: new value
8957  */
8958 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8959 {
8960 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8961 		return -EOPNOTSUPP;
8962 	if (!netif_device_present(dev))
8963 		return -ENODEV;
8964 	if (proto_down)
8965 		netif_carrier_off(dev);
8966 	else
8967 		netif_carrier_on(dev);
8968 	dev->proto_down = proto_down;
8969 	return 0;
8970 }
8971 
8972 /**
8973  *	dev_change_proto_down_reason - proto down reason
8974  *
8975  *	@dev: device
8976  *	@mask: proto down mask
8977  *	@value: proto down value
8978  */
8979 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8980 				  u32 value)
8981 {
8982 	int b;
8983 
8984 	if (!mask) {
8985 		dev->proto_down_reason = value;
8986 	} else {
8987 		for_each_set_bit(b, &mask, 32) {
8988 			if (value & (1 << b))
8989 				dev->proto_down_reason |= BIT(b);
8990 			else
8991 				dev->proto_down_reason &= ~BIT(b);
8992 		}
8993 	}
8994 }
8995 
8996 struct bpf_xdp_link {
8997 	struct bpf_link link;
8998 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8999 	int flags;
9000 };
9001 
9002 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9003 {
9004 	if (flags & XDP_FLAGS_HW_MODE)
9005 		return XDP_MODE_HW;
9006 	if (flags & XDP_FLAGS_DRV_MODE)
9007 		return XDP_MODE_DRV;
9008 	if (flags & XDP_FLAGS_SKB_MODE)
9009 		return XDP_MODE_SKB;
9010 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9011 }
9012 
9013 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9014 {
9015 	switch (mode) {
9016 	case XDP_MODE_SKB:
9017 		return generic_xdp_install;
9018 	case XDP_MODE_DRV:
9019 	case XDP_MODE_HW:
9020 		return dev->netdev_ops->ndo_bpf;
9021 	default:
9022 		return NULL;
9023 	}
9024 }
9025 
9026 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9027 					 enum bpf_xdp_mode mode)
9028 {
9029 	return dev->xdp_state[mode].link;
9030 }
9031 
9032 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9033 				     enum bpf_xdp_mode mode)
9034 {
9035 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9036 
9037 	if (link)
9038 		return link->link.prog;
9039 	return dev->xdp_state[mode].prog;
9040 }
9041 
9042 u8 dev_xdp_prog_count(struct net_device *dev)
9043 {
9044 	u8 count = 0;
9045 	int i;
9046 
9047 	for (i = 0; i < __MAX_XDP_MODE; i++)
9048 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9049 			count++;
9050 	return count;
9051 }
9052 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9053 
9054 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9055 {
9056 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9057 
9058 	return prog ? prog->aux->id : 0;
9059 }
9060 
9061 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9062 			     struct bpf_xdp_link *link)
9063 {
9064 	dev->xdp_state[mode].link = link;
9065 	dev->xdp_state[mode].prog = NULL;
9066 }
9067 
9068 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9069 			     struct bpf_prog *prog)
9070 {
9071 	dev->xdp_state[mode].link = NULL;
9072 	dev->xdp_state[mode].prog = prog;
9073 }
9074 
9075 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9076 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9077 			   u32 flags, struct bpf_prog *prog)
9078 {
9079 	struct netdev_bpf xdp;
9080 	int err;
9081 
9082 	memset(&xdp, 0, sizeof(xdp));
9083 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9084 	xdp.extack = extack;
9085 	xdp.flags = flags;
9086 	xdp.prog = prog;
9087 
9088 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9089 	 * "moved" into driver), so they don't increment it on their own, but
9090 	 * they do decrement refcnt when program is detached or replaced.
9091 	 * Given net_device also owns link/prog, we need to bump refcnt here
9092 	 * to prevent drivers from underflowing it.
9093 	 */
9094 	if (prog)
9095 		bpf_prog_inc(prog);
9096 	err = bpf_op(dev, &xdp);
9097 	if (err) {
9098 		if (prog)
9099 			bpf_prog_put(prog);
9100 		return err;
9101 	}
9102 
9103 	if (mode != XDP_MODE_HW)
9104 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9105 
9106 	return 0;
9107 }
9108 
9109 static void dev_xdp_uninstall(struct net_device *dev)
9110 {
9111 	struct bpf_xdp_link *link;
9112 	struct bpf_prog *prog;
9113 	enum bpf_xdp_mode mode;
9114 	bpf_op_t bpf_op;
9115 
9116 	ASSERT_RTNL();
9117 
9118 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9119 		prog = dev_xdp_prog(dev, mode);
9120 		if (!prog)
9121 			continue;
9122 
9123 		bpf_op = dev_xdp_bpf_op(dev, mode);
9124 		if (!bpf_op)
9125 			continue;
9126 
9127 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9128 
9129 		/* auto-detach link from net device */
9130 		link = dev_xdp_link(dev, mode);
9131 		if (link)
9132 			link->dev = NULL;
9133 		else
9134 			bpf_prog_put(prog);
9135 
9136 		dev_xdp_set_link(dev, mode, NULL);
9137 	}
9138 }
9139 
9140 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9141 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9142 			  struct bpf_prog *old_prog, u32 flags)
9143 {
9144 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9145 	struct bpf_prog *cur_prog;
9146 	struct net_device *upper;
9147 	struct list_head *iter;
9148 	enum bpf_xdp_mode mode;
9149 	bpf_op_t bpf_op;
9150 	int err;
9151 
9152 	ASSERT_RTNL();
9153 
9154 	/* either link or prog attachment, never both */
9155 	if (link && (new_prog || old_prog))
9156 		return -EINVAL;
9157 	/* link supports only XDP mode flags */
9158 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9159 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9160 		return -EINVAL;
9161 	}
9162 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9163 	if (num_modes > 1) {
9164 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9165 		return -EINVAL;
9166 	}
9167 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9168 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9169 		NL_SET_ERR_MSG(extack,
9170 			       "More than one program loaded, unset mode is ambiguous");
9171 		return -EINVAL;
9172 	}
9173 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9174 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9175 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9176 		return -EINVAL;
9177 	}
9178 
9179 	mode = dev_xdp_mode(dev, flags);
9180 	/* can't replace attached link */
9181 	if (dev_xdp_link(dev, mode)) {
9182 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9183 		return -EBUSY;
9184 	}
9185 
9186 	/* don't allow if an upper device already has a program */
9187 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9188 		if (dev_xdp_prog_count(upper) > 0) {
9189 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9190 			return -EEXIST;
9191 		}
9192 	}
9193 
9194 	cur_prog = dev_xdp_prog(dev, mode);
9195 	/* can't replace attached prog with link */
9196 	if (link && cur_prog) {
9197 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9198 		return -EBUSY;
9199 	}
9200 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9201 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9202 		return -EEXIST;
9203 	}
9204 
9205 	/* put effective new program into new_prog */
9206 	if (link)
9207 		new_prog = link->link.prog;
9208 
9209 	if (new_prog) {
9210 		bool offload = mode == XDP_MODE_HW;
9211 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9212 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9213 
9214 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9215 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9216 			return -EBUSY;
9217 		}
9218 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9219 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9220 			return -EEXIST;
9221 		}
9222 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9223 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9224 			return -EINVAL;
9225 		}
9226 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9227 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9228 			return -EINVAL;
9229 		}
9230 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9231 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9232 			return -EINVAL;
9233 		}
9234 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9235 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9236 			return -EINVAL;
9237 		}
9238 	}
9239 
9240 	/* don't call drivers if the effective program didn't change */
9241 	if (new_prog != cur_prog) {
9242 		bpf_op = dev_xdp_bpf_op(dev, mode);
9243 		if (!bpf_op) {
9244 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9245 			return -EOPNOTSUPP;
9246 		}
9247 
9248 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9249 		if (err)
9250 			return err;
9251 	}
9252 
9253 	if (link)
9254 		dev_xdp_set_link(dev, mode, link);
9255 	else
9256 		dev_xdp_set_prog(dev, mode, new_prog);
9257 	if (cur_prog)
9258 		bpf_prog_put(cur_prog);
9259 
9260 	return 0;
9261 }
9262 
9263 static int dev_xdp_attach_link(struct net_device *dev,
9264 			       struct netlink_ext_ack *extack,
9265 			       struct bpf_xdp_link *link)
9266 {
9267 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9268 }
9269 
9270 static int dev_xdp_detach_link(struct net_device *dev,
9271 			       struct netlink_ext_ack *extack,
9272 			       struct bpf_xdp_link *link)
9273 {
9274 	enum bpf_xdp_mode mode;
9275 	bpf_op_t bpf_op;
9276 
9277 	ASSERT_RTNL();
9278 
9279 	mode = dev_xdp_mode(dev, link->flags);
9280 	if (dev_xdp_link(dev, mode) != link)
9281 		return -EINVAL;
9282 
9283 	bpf_op = dev_xdp_bpf_op(dev, mode);
9284 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9285 	dev_xdp_set_link(dev, mode, NULL);
9286 	return 0;
9287 }
9288 
9289 static void bpf_xdp_link_release(struct bpf_link *link)
9290 {
9291 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9292 
9293 	rtnl_lock();
9294 
9295 	/* if racing with net_device's tear down, xdp_link->dev might be
9296 	 * already NULL, in which case link was already auto-detached
9297 	 */
9298 	if (xdp_link->dev) {
9299 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9300 		xdp_link->dev = NULL;
9301 	}
9302 
9303 	rtnl_unlock();
9304 }
9305 
9306 static int bpf_xdp_link_detach(struct bpf_link *link)
9307 {
9308 	bpf_xdp_link_release(link);
9309 	return 0;
9310 }
9311 
9312 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9313 {
9314 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9315 
9316 	kfree(xdp_link);
9317 }
9318 
9319 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9320 				     struct seq_file *seq)
9321 {
9322 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9323 	u32 ifindex = 0;
9324 
9325 	rtnl_lock();
9326 	if (xdp_link->dev)
9327 		ifindex = xdp_link->dev->ifindex;
9328 	rtnl_unlock();
9329 
9330 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9331 }
9332 
9333 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9334 				       struct bpf_link_info *info)
9335 {
9336 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9337 	u32 ifindex = 0;
9338 
9339 	rtnl_lock();
9340 	if (xdp_link->dev)
9341 		ifindex = xdp_link->dev->ifindex;
9342 	rtnl_unlock();
9343 
9344 	info->xdp.ifindex = ifindex;
9345 	return 0;
9346 }
9347 
9348 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9349 			       struct bpf_prog *old_prog)
9350 {
9351 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9352 	enum bpf_xdp_mode mode;
9353 	bpf_op_t bpf_op;
9354 	int err = 0;
9355 
9356 	rtnl_lock();
9357 
9358 	/* link might have been auto-released already, so fail */
9359 	if (!xdp_link->dev) {
9360 		err = -ENOLINK;
9361 		goto out_unlock;
9362 	}
9363 
9364 	if (old_prog && link->prog != old_prog) {
9365 		err = -EPERM;
9366 		goto out_unlock;
9367 	}
9368 	old_prog = link->prog;
9369 	if (old_prog->type != new_prog->type ||
9370 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9371 		err = -EINVAL;
9372 		goto out_unlock;
9373 	}
9374 
9375 	if (old_prog == new_prog) {
9376 		/* no-op, don't disturb drivers */
9377 		bpf_prog_put(new_prog);
9378 		goto out_unlock;
9379 	}
9380 
9381 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9382 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9383 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9384 			      xdp_link->flags, new_prog);
9385 	if (err)
9386 		goto out_unlock;
9387 
9388 	old_prog = xchg(&link->prog, new_prog);
9389 	bpf_prog_put(old_prog);
9390 
9391 out_unlock:
9392 	rtnl_unlock();
9393 	return err;
9394 }
9395 
9396 static const struct bpf_link_ops bpf_xdp_link_lops = {
9397 	.release = bpf_xdp_link_release,
9398 	.dealloc = bpf_xdp_link_dealloc,
9399 	.detach = bpf_xdp_link_detach,
9400 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9401 	.fill_link_info = bpf_xdp_link_fill_link_info,
9402 	.update_prog = bpf_xdp_link_update,
9403 };
9404 
9405 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9406 {
9407 	struct net *net = current->nsproxy->net_ns;
9408 	struct bpf_link_primer link_primer;
9409 	struct bpf_xdp_link *link;
9410 	struct net_device *dev;
9411 	int err, fd;
9412 
9413 	rtnl_lock();
9414 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9415 	if (!dev) {
9416 		rtnl_unlock();
9417 		return -EINVAL;
9418 	}
9419 
9420 	link = kzalloc(sizeof(*link), GFP_USER);
9421 	if (!link) {
9422 		err = -ENOMEM;
9423 		goto unlock;
9424 	}
9425 
9426 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9427 	link->dev = dev;
9428 	link->flags = attr->link_create.flags;
9429 
9430 	err = bpf_link_prime(&link->link, &link_primer);
9431 	if (err) {
9432 		kfree(link);
9433 		goto unlock;
9434 	}
9435 
9436 	err = dev_xdp_attach_link(dev, NULL, link);
9437 	rtnl_unlock();
9438 
9439 	if (err) {
9440 		link->dev = NULL;
9441 		bpf_link_cleanup(&link_primer);
9442 		goto out_put_dev;
9443 	}
9444 
9445 	fd = bpf_link_settle(&link_primer);
9446 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9447 	dev_put(dev);
9448 	return fd;
9449 
9450 unlock:
9451 	rtnl_unlock();
9452 
9453 out_put_dev:
9454 	dev_put(dev);
9455 	return err;
9456 }
9457 
9458 /**
9459  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9460  *	@dev: device
9461  *	@extack: netlink extended ack
9462  *	@fd: new program fd or negative value to clear
9463  *	@expected_fd: old program fd that userspace expects to replace or clear
9464  *	@flags: xdp-related flags
9465  *
9466  *	Set or clear a bpf program for a device
9467  */
9468 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9469 		      int fd, int expected_fd, u32 flags)
9470 {
9471 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9472 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9473 	int err;
9474 
9475 	ASSERT_RTNL();
9476 
9477 	if (fd >= 0) {
9478 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9479 						 mode != XDP_MODE_SKB);
9480 		if (IS_ERR(new_prog))
9481 			return PTR_ERR(new_prog);
9482 	}
9483 
9484 	if (expected_fd >= 0) {
9485 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9486 						 mode != XDP_MODE_SKB);
9487 		if (IS_ERR(old_prog)) {
9488 			err = PTR_ERR(old_prog);
9489 			old_prog = NULL;
9490 			goto err_out;
9491 		}
9492 	}
9493 
9494 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9495 
9496 err_out:
9497 	if (err && new_prog)
9498 		bpf_prog_put(new_prog);
9499 	if (old_prog)
9500 		bpf_prog_put(old_prog);
9501 	return err;
9502 }
9503 
9504 /**
9505  *	dev_new_index	-	allocate an ifindex
9506  *	@net: the applicable net namespace
9507  *
9508  *	Returns a suitable unique value for a new device interface
9509  *	number.  The caller must hold the rtnl semaphore or the
9510  *	dev_base_lock to be sure it remains unique.
9511  */
9512 static int dev_new_index(struct net *net)
9513 {
9514 	int ifindex = net->ifindex;
9515 
9516 	for (;;) {
9517 		if (++ifindex <= 0)
9518 			ifindex = 1;
9519 		if (!__dev_get_by_index(net, ifindex))
9520 			return net->ifindex = ifindex;
9521 	}
9522 }
9523 
9524 /* Delayed registration/unregisteration */
9525 LIST_HEAD(net_todo_list);
9526 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9527 
9528 static void net_set_todo(struct net_device *dev)
9529 {
9530 	list_add_tail(&dev->todo_list, &net_todo_list);
9531 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9532 }
9533 
9534 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9535 	struct net_device *upper, netdev_features_t features)
9536 {
9537 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9538 	netdev_features_t feature;
9539 	int feature_bit;
9540 
9541 	for_each_netdev_feature(upper_disables, feature_bit) {
9542 		feature = __NETIF_F_BIT(feature_bit);
9543 		if (!(upper->wanted_features & feature)
9544 		    && (features & feature)) {
9545 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9546 				   &feature, upper->name);
9547 			features &= ~feature;
9548 		}
9549 	}
9550 
9551 	return features;
9552 }
9553 
9554 static void netdev_sync_lower_features(struct net_device *upper,
9555 	struct net_device *lower, netdev_features_t features)
9556 {
9557 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9558 	netdev_features_t feature;
9559 	int feature_bit;
9560 
9561 	for_each_netdev_feature(upper_disables, feature_bit) {
9562 		feature = __NETIF_F_BIT(feature_bit);
9563 		if (!(features & feature) && (lower->features & feature)) {
9564 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9565 				   &feature, lower->name);
9566 			lower->wanted_features &= ~feature;
9567 			__netdev_update_features(lower);
9568 
9569 			if (unlikely(lower->features & feature))
9570 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9571 					    &feature, lower->name);
9572 			else
9573 				netdev_features_change(lower);
9574 		}
9575 	}
9576 }
9577 
9578 static netdev_features_t netdev_fix_features(struct net_device *dev,
9579 	netdev_features_t features)
9580 {
9581 	/* Fix illegal checksum combinations */
9582 	if ((features & NETIF_F_HW_CSUM) &&
9583 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9584 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9585 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9586 	}
9587 
9588 	/* TSO requires that SG is present as well. */
9589 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9590 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9591 		features &= ~NETIF_F_ALL_TSO;
9592 	}
9593 
9594 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9595 					!(features & NETIF_F_IP_CSUM)) {
9596 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9597 		features &= ~NETIF_F_TSO;
9598 		features &= ~NETIF_F_TSO_ECN;
9599 	}
9600 
9601 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9602 					 !(features & NETIF_F_IPV6_CSUM)) {
9603 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9604 		features &= ~NETIF_F_TSO6;
9605 	}
9606 
9607 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9608 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9609 		features &= ~NETIF_F_TSO_MANGLEID;
9610 
9611 	/* TSO ECN requires that TSO is present as well. */
9612 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9613 		features &= ~NETIF_F_TSO_ECN;
9614 
9615 	/* Software GSO depends on SG. */
9616 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9617 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9618 		features &= ~NETIF_F_GSO;
9619 	}
9620 
9621 	/* GSO partial features require GSO partial be set */
9622 	if ((features & dev->gso_partial_features) &&
9623 	    !(features & NETIF_F_GSO_PARTIAL)) {
9624 		netdev_dbg(dev,
9625 			   "Dropping partially supported GSO features since no GSO partial.\n");
9626 		features &= ~dev->gso_partial_features;
9627 	}
9628 
9629 	if (!(features & NETIF_F_RXCSUM)) {
9630 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9631 		 * successfully merged by hardware must also have the
9632 		 * checksum verified by hardware.  If the user does not
9633 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9634 		 */
9635 		if (features & NETIF_F_GRO_HW) {
9636 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9637 			features &= ~NETIF_F_GRO_HW;
9638 		}
9639 	}
9640 
9641 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9642 	if (features & NETIF_F_RXFCS) {
9643 		if (features & NETIF_F_LRO) {
9644 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9645 			features &= ~NETIF_F_LRO;
9646 		}
9647 
9648 		if (features & NETIF_F_GRO_HW) {
9649 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9650 			features &= ~NETIF_F_GRO_HW;
9651 		}
9652 	}
9653 
9654 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9655 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9656 		features &= ~NETIF_F_LRO;
9657 	}
9658 
9659 	if (features & NETIF_F_HW_TLS_TX) {
9660 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9661 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9662 		bool hw_csum = features & NETIF_F_HW_CSUM;
9663 
9664 		if (!ip_csum && !hw_csum) {
9665 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9666 			features &= ~NETIF_F_HW_TLS_TX;
9667 		}
9668 	}
9669 
9670 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9671 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9672 		features &= ~NETIF_F_HW_TLS_RX;
9673 	}
9674 
9675 	return features;
9676 }
9677 
9678 int __netdev_update_features(struct net_device *dev)
9679 {
9680 	struct net_device *upper, *lower;
9681 	netdev_features_t features;
9682 	struct list_head *iter;
9683 	int err = -1;
9684 
9685 	ASSERT_RTNL();
9686 
9687 	features = netdev_get_wanted_features(dev);
9688 
9689 	if (dev->netdev_ops->ndo_fix_features)
9690 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9691 
9692 	/* driver might be less strict about feature dependencies */
9693 	features = netdev_fix_features(dev, features);
9694 
9695 	/* some features can't be enabled if they're off on an upper device */
9696 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9697 		features = netdev_sync_upper_features(dev, upper, features);
9698 
9699 	if (dev->features == features)
9700 		goto sync_lower;
9701 
9702 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9703 		&dev->features, &features);
9704 
9705 	if (dev->netdev_ops->ndo_set_features)
9706 		err = dev->netdev_ops->ndo_set_features(dev, features);
9707 	else
9708 		err = 0;
9709 
9710 	if (unlikely(err < 0)) {
9711 		netdev_err(dev,
9712 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9713 			err, &features, &dev->features);
9714 		/* return non-0 since some features might have changed and
9715 		 * it's better to fire a spurious notification than miss it
9716 		 */
9717 		return -1;
9718 	}
9719 
9720 sync_lower:
9721 	/* some features must be disabled on lower devices when disabled
9722 	 * on an upper device (think: bonding master or bridge)
9723 	 */
9724 	netdev_for_each_lower_dev(dev, lower, iter)
9725 		netdev_sync_lower_features(dev, lower, features);
9726 
9727 	if (!err) {
9728 		netdev_features_t diff = features ^ dev->features;
9729 
9730 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9731 			/* udp_tunnel_{get,drop}_rx_info both need
9732 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9733 			 * device, or they won't do anything.
9734 			 * Thus we need to update dev->features
9735 			 * *before* calling udp_tunnel_get_rx_info,
9736 			 * but *after* calling udp_tunnel_drop_rx_info.
9737 			 */
9738 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9739 				dev->features = features;
9740 				udp_tunnel_get_rx_info(dev);
9741 			} else {
9742 				udp_tunnel_drop_rx_info(dev);
9743 			}
9744 		}
9745 
9746 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9747 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9748 				dev->features = features;
9749 				err |= vlan_get_rx_ctag_filter_info(dev);
9750 			} else {
9751 				vlan_drop_rx_ctag_filter_info(dev);
9752 			}
9753 		}
9754 
9755 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9756 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9757 				dev->features = features;
9758 				err |= vlan_get_rx_stag_filter_info(dev);
9759 			} else {
9760 				vlan_drop_rx_stag_filter_info(dev);
9761 			}
9762 		}
9763 
9764 		dev->features = features;
9765 	}
9766 
9767 	return err < 0 ? 0 : 1;
9768 }
9769 
9770 /**
9771  *	netdev_update_features - recalculate device features
9772  *	@dev: the device to check
9773  *
9774  *	Recalculate dev->features set and send notifications if it
9775  *	has changed. Should be called after driver or hardware dependent
9776  *	conditions might have changed that influence the features.
9777  */
9778 void netdev_update_features(struct net_device *dev)
9779 {
9780 	if (__netdev_update_features(dev))
9781 		netdev_features_change(dev);
9782 }
9783 EXPORT_SYMBOL(netdev_update_features);
9784 
9785 /**
9786  *	netdev_change_features - recalculate device features
9787  *	@dev: the device to check
9788  *
9789  *	Recalculate dev->features set and send notifications even
9790  *	if they have not changed. Should be called instead of
9791  *	netdev_update_features() if also dev->vlan_features might
9792  *	have changed to allow the changes to be propagated to stacked
9793  *	VLAN devices.
9794  */
9795 void netdev_change_features(struct net_device *dev)
9796 {
9797 	__netdev_update_features(dev);
9798 	netdev_features_change(dev);
9799 }
9800 EXPORT_SYMBOL(netdev_change_features);
9801 
9802 /**
9803  *	netif_stacked_transfer_operstate -	transfer operstate
9804  *	@rootdev: the root or lower level device to transfer state from
9805  *	@dev: the device to transfer operstate to
9806  *
9807  *	Transfer operational state from root to device. This is normally
9808  *	called when a stacking relationship exists between the root
9809  *	device and the device(a leaf device).
9810  */
9811 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9812 					struct net_device *dev)
9813 {
9814 	if (rootdev->operstate == IF_OPER_DORMANT)
9815 		netif_dormant_on(dev);
9816 	else
9817 		netif_dormant_off(dev);
9818 
9819 	if (rootdev->operstate == IF_OPER_TESTING)
9820 		netif_testing_on(dev);
9821 	else
9822 		netif_testing_off(dev);
9823 
9824 	if (netif_carrier_ok(rootdev))
9825 		netif_carrier_on(dev);
9826 	else
9827 		netif_carrier_off(dev);
9828 }
9829 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9830 
9831 static int netif_alloc_rx_queues(struct net_device *dev)
9832 {
9833 	unsigned int i, count = dev->num_rx_queues;
9834 	struct netdev_rx_queue *rx;
9835 	size_t sz = count * sizeof(*rx);
9836 	int err = 0;
9837 
9838 	BUG_ON(count < 1);
9839 
9840 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9841 	if (!rx)
9842 		return -ENOMEM;
9843 
9844 	dev->_rx = rx;
9845 
9846 	for (i = 0; i < count; i++) {
9847 		rx[i].dev = dev;
9848 
9849 		/* XDP RX-queue setup */
9850 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9851 		if (err < 0)
9852 			goto err_rxq_info;
9853 	}
9854 	return 0;
9855 
9856 err_rxq_info:
9857 	/* Rollback successful reg's and free other resources */
9858 	while (i--)
9859 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9860 	kvfree(dev->_rx);
9861 	dev->_rx = NULL;
9862 	return err;
9863 }
9864 
9865 static void netif_free_rx_queues(struct net_device *dev)
9866 {
9867 	unsigned int i, count = dev->num_rx_queues;
9868 
9869 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9870 	if (!dev->_rx)
9871 		return;
9872 
9873 	for (i = 0; i < count; i++)
9874 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9875 
9876 	kvfree(dev->_rx);
9877 }
9878 
9879 static void netdev_init_one_queue(struct net_device *dev,
9880 				  struct netdev_queue *queue, void *_unused)
9881 {
9882 	/* Initialize queue lock */
9883 	spin_lock_init(&queue->_xmit_lock);
9884 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9885 	queue->xmit_lock_owner = -1;
9886 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9887 	queue->dev = dev;
9888 #ifdef CONFIG_BQL
9889 	dql_init(&queue->dql, HZ);
9890 #endif
9891 }
9892 
9893 static void netif_free_tx_queues(struct net_device *dev)
9894 {
9895 	kvfree(dev->_tx);
9896 }
9897 
9898 static int netif_alloc_netdev_queues(struct net_device *dev)
9899 {
9900 	unsigned int count = dev->num_tx_queues;
9901 	struct netdev_queue *tx;
9902 	size_t sz = count * sizeof(*tx);
9903 
9904 	if (count < 1 || count > 0xffff)
9905 		return -EINVAL;
9906 
9907 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9908 	if (!tx)
9909 		return -ENOMEM;
9910 
9911 	dev->_tx = tx;
9912 
9913 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9914 	spin_lock_init(&dev->tx_global_lock);
9915 
9916 	return 0;
9917 }
9918 
9919 void netif_tx_stop_all_queues(struct net_device *dev)
9920 {
9921 	unsigned int i;
9922 
9923 	for (i = 0; i < dev->num_tx_queues; i++) {
9924 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9925 
9926 		netif_tx_stop_queue(txq);
9927 	}
9928 }
9929 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9930 
9931 /**
9932  * register_netdevice() - register a network device
9933  * @dev: device to register
9934  *
9935  * Take a prepared network device structure and make it externally accessible.
9936  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9937  * Callers must hold the rtnl lock - you may want register_netdev()
9938  * instead of this.
9939  */
9940 int register_netdevice(struct net_device *dev)
9941 {
9942 	int ret;
9943 	struct net *net = dev_net(dev);
9944 
9945 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9946 		     NETDEV_FEATURE_COUNT);
9947 	BUG_ON(dev_boot_phase);
9948 	ASSERT_RTNL();
9949 
9950 	might_sleep();
9951 
9952 	/* When net_device's are persistent, this will be fatal. */
9953 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9954 	BUG_ON(!net);
9955 
9956 	ret = ethtool_check_ops(dev->ethtool_ops);
9957 	if (ret)
9958 		return ret;
9959 
9960 	spin_lock_init(&dev->addr_list_lock);
9961 	netdev_set_addr_lockdep_class(dev);
9962 
9963 	ret = dev_get_valid_name(net, dev, dev->name);
9964 	if (ret < 0)
9965 		goto out;
9966 
9967 	ret = -ENOMEM;
9968 	dev->name_node = netdev_name_node_head_alloc(dev);
9969 	if (!dev->name_node)
9970 		goto out;
9971 
9972 	/* Init, if this function is available */
9973 	if (dev->netdev_ops->ndo_init) {
9974 		ret = dev->netdev_ops->ndo_init(dev);
9975 		if (ret) {
9976 			if (ret > 0)
9977 				ret = -EIO;
9978 			goto err_free_name;
9979 		}
9980 	}
9981 
9982 	if (((dev->hw_features | dev->features) &
9983 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9984 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9985 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9986 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9987 		ret = -EINVAL;
9988 		goto err_uninit;
9989 	}
9990 
9991 	ret = -EBUSY;
9992 	if (!dev->ifindex)
9993 		dev->ifindex = dev_new_index(net);
9994 	else if (__dev_get_by_index(net, dev->ifindex))
9995 		goto err_uninit;
9996 
9997 	/* Transfer changeable features to wanted_features and enable
9998 	 * software offloads (GSO and GRO).
9999 	 */
10000 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10001 	dev->features |= NETIF_F_SOFT_FEATURES;
10002 
10003 	if (dev->udp_tunnel_nic_info) {
10004 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10005 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10006 	}
10007 
10008 	dev->wanted_features = dev->features & dev->hw_features;
10009 
10010 	if (!(dev->flags & IFF_LOOPBACK))
10011 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10012 
10013 	/* If IPv4 TCP segmentation offload is supported we should also
10014 	 * allow the device to enable segmenting the frame with the option
10015 	 * of ignoring a static IP ID value.  This doesn't enable the
10016 	 * feature itself but allows the user to enable it later.
10017 	 */
10018 	if (dev->hw_features & NETIF_F_TSO)
10019 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10020 	if (dev->vlan_features & NETIF_F_TSO)
10021 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10022 	if (dev->mpls_features & NETIF_F_TSO)
10023 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10024 	if (dev->hw_enc_features & NETIF_F_TSO)
10025 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10026 
10027 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10028 	 */
10029 	dev->vlan_features |= NETIF_F_HIGHDMA;
10030 
10031 	/* Make NETIF_F_SG inheritable to tunnel devices.
10032 	 */
10033 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10034 
10035 	/* Make NETIF_F_SG inheritable to MPLS.
10036 	 */
10037 	dev->mpls_features |= NETIF_F_SG;
10038 
10039 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10040 	ret = notifier_to_errno(ret);
10041 	if (ret)
10042 		goto err_uninit;
10043 
10044 	ret = netdev_register_kobject(dev);
10045 	write_lock(&dev_base_lock);
10046 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10047 	write_unlock(&dev_base_lock);
10048 	if (ret)
10049 		goto err_uninit_notify;
10050 
10051 	__netdev_update_features(dev);
10052 
10053 	/*
10054 	 *	Default initial state at registry is that the
10055 	 *	device is present.
10056 	 */
10057 
10058 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10059 
10060 	linkwatch_init_dev(dev);
10061 
10062 	dev_init_scheduler(dev);
10063 
10064 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10065 	list_netdevice(dev);
10066 
10067 	add_device_randomness(dev->dev_addr, dev->addr_len);
10068 
10069 	/* If the device has permanent device address, driver should
10070 	 * set dev_addr and also addr_assign_type should be set to
10071 	 * NET_ADDR_PERM (default value).
10072 	 */
10073 	if (dev->addr_assign_type == NET_ADDR_PERM)
10074 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10075 
10076 	/* Notify protocols, that a new device appeared. */
10077 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10078 	ret = notifier_to_errno(ret);
10079 	if (ret) {
10080 		/* Expect explicit free_netdev() on failure */
10081 		dev->needs_free_netdev = false;
10082 		unregister_netdevice_queue(dev, NULL);
10083 		goto out;
10084 	}
10085 	/*
10086 	 *	Prevent userspace races by waiting until the network
10087 	 *	device is fully setup before sending notifications.
10088 	 */
10089 	if (!dev->rtnl_link_ops ||
10090 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10091 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10092 
10093 out:
10094 	return ret;
10095 
10096 err_uninit_notify:
10097 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10098 err_uninit:
10099 	if (dev->netdev_ops->ndo_uninit)
10100 		dev->netdev_ops->ndo_uninit(dev);
10101 	if (dev->priv_destructor)
10102 		dev->priv_destructor(dev);
10103 err_free_name:
10104 	netdev_name_node_free(dev->name_node);
10105 	goto out;
10106 }
10107 EXPORT_SYMBOL(register_netdevice);
10108 
10109 /**
10110  *	init_dummy_netdev	- init a dummy network device for NAPI
10111  *	@dev: device to init
10112  *
10113  *	This takes a network device structure and initialize the minimum
10114  *	amount of fields so it can be used to schedule NAPI polls without
10115  *	registering a full blown interface. This is to be used by drivers
10116  *	that need to tie several hardware interfaces to a single NAPI
10117  *	poll scheduler due to HW limitations.
10118  */
10119 int init_dummy_netdev(struct net_device *dev)
10120 {
10121 	/* Clear everything. Note we don't initialize spinlocks
10122 	 * are they aren't supposed to be taken by any of the
10123 	 * NAPI code and this dummy netdev is supposed to be
10124 	 * only ever used for NAPI polls
10125 	 */
10126 	memset(dev, 0, sizeof(struct net_device));
10127 
10128 	/* make sure we BUG if trying to hit standard
10129 	 * register/unregister code path
10130 	 */
10131 	dev->reg_state = NETREG_DUMMY;
10132 
10133 	/* NAPI wants this */
10134 	INIT_LIST_HEAD(&dev->napi_list);
10135 
10136 	/* a dummy interface is started by default */
10137 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10138 	set_bit(__LINK_STATE_START, &dev->state);
10139 
10140 	/* napi_busy_loop stats accounting wants this */
10141 	dev_net_set(dev, &init_net);
10142 
10143 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10144 	 * because users of this 'device' dont need to change
10145 	 * its refcount.
10146 	 */
10147 
10148 	return 0;
10149 }
10150 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10151 
10152 
10153 /**
10154  *	register_netdev	- register a network device
10155  *	@dev: device to register
10156  *
10157  *	Take a completed network device structure and add it to the kernel
10158  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10159  *	chain. 0 is returned on success. A negative errno code is returned
10160  *	on a failure to set up the device, or if the name is a duplicate.
10161  *
10162  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10163  *	and expands the device name if you passed a format string to
10164  *	alloc_netdev.
10165  */
10166 int register_netdev(struct net_device *dev)
10167 {
10168 	int err;
10169 
10170 	if (rtnl_lock_killable())
10171 		return -EINTR;
10172 	err = register_netdevice(dev);
10173 	rtnl_unlock();
10174 	return err;
10175 }
10176 EXPORT_SYMBOL(register_netdev);
10177 
10178 int netdev_refcnt_read(const struct net_device *dev)
10179 {
10180 #ifdef CONFIG_PCPU_DEV_REFCNT
10181 	int i, refcnt = 0;
10182 
10183 	for_each_possible_cpu(i)
10184 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10185 	return refcnt;
10186 #else
10187 	return refcount_read(&dev->dev_refcnt);
10188 #endif
10189 }
10190 EXPORT_SYMBOL(netdev_refcnt_read);
10191 
10192 int netdev_unregister_timeout_secs __read_mostly = 10;
10193 
10194 #define WAIT_REFS_MIN_MSECS 1
10195 #define WAIT_REFS_MAX_MSECS 250
10196 /**
10197  * netdev_wait_allrefs_any - wait until all references are gone.
10198  * @list: list of net_devices to wait on
10199  *
10200  * This is called when unregistering network devices.
10201  *
10202  * Any protocol or device that holds a reference should register
10203  * for netdevice notification, and cleanup and put back the
10204  * reference if they receive an UNREGISTER event.
10205  * We can get stuck here if buggy protocols don't correctly
10206  * call dev_put.
10207  */
10208 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10209 {
10210 	unsigned long rebroadcast_time, warning_time;
10211 	struct net_device *dev;
10212 	int wait = 0;
10213 
10214 	rebroadcast_time = warning_time = jiffies;
10215 
10216 	list_for_each_entry(dev, list, todo_list)
10217 		if (netdev_refcnt_read(dev) == 1)
10218 			return dev;
10219 
10220 	while (true) {
10221 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10222 			rtnl_lock();
10223 
10224 			/* Rebroadcast unregister notification */
10225 			list_for_each_entry(dev, list, todo_list)
10226 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10227 
10228 			__rtnl_unlock();
10229 			rcu_barrier();
10230 			rtnl_lock();
10231 
10232 			list_for_each_entry(dev, list, todo_list)
10233 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10234 					     &dev->state)) {
10235 					/* We must not have linkwatch events
10236 					 * pending on unregister. If this
10237 					 * happens, we simply run the queue
10238 					 * unscheduled, resulting in a noop
10239 					 * for this device.
10240 					 */
10241 					linkwatch_run_queue();
10242 					break;
10243 				}
10244 
10245 			__rtnl_unlock();
10246 
10247 			rebroadcast_time = jiffies;
10248 		}
10249 
10250 		if (!wait) {
10251 			rcu_barrier();
10252 			wait = WAIT_REFS_MIN_MSECS;
10253 		} else {
10254 			msleep(wait);
10255 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10256 		}
10257 
10258 		list_for_each_entry(dev, list, todo_list)
10259 			if (netdev_refcnt_read(dev) == 1)
10260 				return dev;
10261 
10262 		if (time_after(jiffies, warning_time +
10263 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10264 			list_for_each_entry(dev, list, todo_list) {
10265 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10266 					 dev->name, netdev_refcnt_read(dev));
10267 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10268 			}
10269 
10270 			warning_time = jiffies;
10271 		}
10272 	}
10273 }
10274 
10275 /* The sequence is:
10276  *
10277  *	rtnl_lock();
10278  *	...
10279  *	register_netdevice(x1);
10280  *	register_netdevice(x2);
10281  *	...
10282  *	unregister_netdevice(y1);
10283  *	unregister_netdevice(y2);
10284  *      ...
10285  *	rtnl_unlock();
10286  *	free_netdev(y1);
10287  *	free_netdev(y2);
10288  *
10289  * We are invoked by rtnl_unlock().
10290  * This allows us to deal with problems:
10291  * 1) We can delete sysfs objects which invoke hotplug
10292  *    without deadlocking with linkwatch via keventd.
10293  * 2) Since we run with the RTNL semaphore not held, we can sleep
10294  *    safely in order to wait for the netdev refcnt to drop to zero.
10295  *
10296  * We must not return until all unregister events added during
10297  * the interval the lock was held have been completed.
10298  */
10299 void netdev_run_todo(void)
10300 {
10301 	struct net_device *dev, *tmp;
10302 	struct list_head list;
10303 #ifdef CONFIG_LOCKDEP
10304 	struct list_head unlink_list;
10305 
10306 	list_replace_init(&net_unlink_list, &unlink_list);
10307 
10308 	while (!list_empty(&unlink_list)) {
10309 		struct net_device *dev = list_first_entry(&unlink_list,
10310 							  struct net_device,
10311 							  unlink_list);
10312 		list_del_init(&dev->unlink_list);
10313 		dev->nested_level = dev->lower_level - 1;
10314 	}
10315 #endif
10316 
10317 	/* Snapshot list, allow later requests */
10318 	list_replace_init(&net_todo_list, &list);
10319 
10320 	__rtnl_unlock();
10321 
10322 	/* Wait for rcu callbacks to finish before next phase */
10323 	if (!list_empty(&list))
10324 		rcu_barrier();
10325 
10326 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10327 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10328 			netdev_WARN(dev, "run_todo but not unregistering\n");
10329 			list_del(&dev->todo_list);
10330 			continue;
10331 		}
10332 
10333 		write_lock(&dev_base_lock);
10334 		dev->reg_state = NETREG_UNREGISTERED;
10335 		write_unlock(&dev_base_lock);
10336 		linkwatch_forget_dev(dev);
10337 	}
10338 
10339 	while (!list_empty(&list)) {
10340 		dev = netdev_wait_allrefs_any(&list);
10341 		list_del(&dev->todo_list);
10342 
10343 		/* paranoia */
10344 		BUG_ON(netdev_refcnt_read(dev) != 1);
10345 		BUG_ON(!list_empty(&dev->ptype_all));
10346 		BUG_ON(!list_empty(&dev->ptype_specific));
10347 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10348 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10349 
10350 		if (dev->priv_destructor)
10351 			dev->priv_destructor(dev);
10352 		if (dev->needs_free_netdev)
10353 			free_netdev(dev);
10354 
10355 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10356 			wake_up(&netdev_unregistering_wq);
10357 
10358 		/* Free network device */
10359 		kobject_put(&dev->dev.kobj);
10360 	}
10361 }
10362 
10363 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10364  * all the same fields in the same order as net_device_stats, with only
10365  * the type differing, but rtnl_link_stats64 may have additional fields
10366  * at the end for newer counters.
10367  */
10368 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10369 			     const struct net_device_stats *netdev_stats)
10370 {
10371 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10372 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10373 	u64 *dst = (u64 *)stats64;
10374 
10375 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10376 	for (i = 0; i < n; i++)
10377 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10378 	/* zero out counters that only exist in rtnl_link_stats64 */
10379 	memset((char *)stats64 + n * sizeof(u64), 0,
10380 	       sizeof(*stats64) - n * sizeof(u64));
10381 }
10382 EXPORT_SYMBOL(netdev_stats_to_stats64);
10383 
10384 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10385 {
10386 	struct net_device_core_stats __percpu *p;
10387 
10388 	p = alloc_percpu_gfp(struct net_device_core_stats,
10389 			     GFP_ATOMIC | __GFP_NOWARN);
10390 
10391 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10392 		free_percpu(p);
10393 
10394 	/* This READ_ONCE() pairs with the cmpxchg() above */
10395 	return READ_ONCE(dev->core_stats);
10396 }
10397 EXPORT_SYMBOL(netdev_core_stats_alloc);
10398 
10399 /**
10400  *	dev_get_stats	- get network device statistics
10401  *	@dev: device to get statistics from
10402  *	@storage: place to store stats
10403  *
10404  *	Get network statistics from device. Return @storage.
10405  *	The device driver may provide its own method by setting
10406  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10407  *	otherwise the internal statistics structure is used.
10408  */
10409 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10410 					struct rtnl_link_stats64 *storage)
10411 {
10412 	const struct net_device_ops *ops = dev->netdev_ops;
10413 	const struct net_device_core_stats __percpu *p;
10414 
10415 	if (ops->ndo_get_stats64) {
10416 		memset(storage, 0, sizeof(*storage));
10417 		ops->ndo_get_stats64(dev, storage);
10418 	} else if (ops->ndo_get_stats) {
10419 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10420 	} else {
10421 		netdev_stats_to_stats64(storage, &dev->stats);
10422 	}
10423 
10424 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10425 	p = READ_ONCE(dev->core_stats);
10426 	if (p) {
10427 		const struct net_device_core_stats *core_stats;
10428 		int i;
10429 
10430 		for_each_possible_cpu(i) {
10431 			core_stats = per_cpu_ptr(p, i);
10432 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10433 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10434 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10435 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10436 		}
10437 	}
10438 	return storage;
10439 }
10440 EXPORT_SYMBOL(dev_get_stats);
10441 
10442 /**
10443  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10444  *	@s: place to store stats
10445  *	@netstats: per-cpu network stats to read from
10446  *
10447  *	Read per-cpu network statistics and populate the related fields in @s.
10448  */
10449 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10450 			   const struct pcpu_sw_netstats __percpu *netstats)
10451 {
10452 	int cpu;
10453 
10454 	for_each_possible_cpu(cpu) {
10455 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10456 		const struct pcpu_sw_netstats *stats;
10457 		unsigned int start;
10458 
10459 		stats = per_cpu_ptr(netstats, cpu);
10460 		do {
10461 			start = u64_stats_fetch_begin(&stats->syncp);
10462 			rx_packets = u64_stats_read(&stats->rx_packets);
10463 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10464 			tx_packets = u64_stats_read(&stats->tx_packets);
10465 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10466 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10467 
10468 		s->rx_packets += rx_packets;
10469 		s->rx_bytes   += rx_bytes;
10470 		s->tx_packets += tx_packets;
10471 		s->tx_bytes   += tx_bytes;
10472 	}
10473 }
10474 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10475 
10476 /**
10477  *	dev_get_tstats64 - ndo_get_stats64 implementation
10478  *	@dev: device to get statistics from
10479  *	@s: place to store stats
10480  *
10481  *	Populate @s from dev->stats and dev->tstats. Can be used as
10482  *	ndo_get_stats64() callback.
10483  */
10484 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10485 {
10486 	netdev_stats_to_stats64(s, &dev->stats);
10487 	dev_fetch_sw_netstats(s, dev->tstats);
10488 }
10489 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10490 
10491 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10492 {
10493 	struct netdev_queue *queue = dev_ingress_queue(dev);
10494 
10495 #ifdef CONFIG_NET_CLS_ACT
10496 	if (queue)
10497 		return queue;
10498 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10499 	if (!queue)
10500 		return NULL;
10501 	netdev_init_one_queue(dev, queue, NULL);
10502 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10503 	queue->qdisc_sleeping = &noop_qdisc;
10504 	rcu_assign_pointer(dev->ingress_queue, queue);
10505 #endif
10506 	return queue;
10507 }
10508 
10509 static const struct ethtool_ops default_ethtool_ops;
10510 
10511 void netdev_set_default_ethtool_ops(struct net_device *dev,
10512 				    const struct ethtool_ops *ops)
10513 {
10514 	if (dev->ethtool_ops == &default_ethtool_ops)
10515 		dev->ethtool_ops = ops;
10516 }
10517 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10518 
10519 /**
10520  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10521  * @dev: netdev to enable the IRQ coalescing on
10522  *
10523  * Sets a conservative default for SW IRQ coalescing. Users can use
10524  * sysfs attributes to override the default values.
10525  */
10526 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10527 {
10528 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10529 
10530 	dev->gro_flush_timeout = 20000;
10531 	dev->napi_defer_hard_irqs = 1;
10532 }
10533 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10534 
10535 void netdev_freemem(struct net_device *dev)
10536 {
10537 	char *addr = (char *)dev - dev->padded;
10538 
10539 	kvfree(addr);
10540 }
10541 
10542 /**
10543  * alloc_netdev_mqs - allocate network device
10544  * @sizeof_priv: size of private data to allocate space for
10545  * @name: device name format string
10546  * @name_assign_type: origin of device name
10547  * @setup: callback to initialize device
10548  * @txqs: the number of TX subqueues to allocate
10549  * @rxqs: the number of RX subqueues to allocate
10550  *
10551  * Allocates a struct net_device with private data area for driver use
10552  * and performs basic initialization.  Also allocates subqueue structs
10553  * for each queue on the device.
10554  */
10555 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10556 		unsigned char name_assign_type,
10557 		void (*setup)(struct net_device *),
10558 		unsigned int txqs, unsigned int rxqs)
10559 {
10560 	struct net_device *dev;
10561 	unsigned int alloc_size;
10562 	struct net_device *p;
10563 
10564 	BUG_ON(strlen(name) >= sizeof(dev->name));
10565 
10566 	if (txqs < 1) {
10567 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10568 		return NULL;
10569 	}
10570 
10571 	if (rxqs < 1) {
10572 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10573 		return NULL;
10574 	}
10575 
10576 	alloc_size = sizeof(struct net_device);
10577 	if (sizeof_priv) {
10578 		/* ensure 32-byte alignment of private area */
10579 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10580 		alloc_size += sizeof_priv;
10581 	}
10582 	/* ensure 32-byte alignment of whole construct */
10583 	alloc_size += NETDEV_ALIGN - 1;
10584 
10585 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10586 	if (!p)
10587 		return NULL;
10588 
10589 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10590 	dev->padded = (char *)dev - (char *)p;
10591 
10592 	ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10593 #ifdef CONFIG_PCPU_DEV_REFCNT
10594 	dev->pcpu_refcnt = alloc_percpu(int);
10595 	if (!dev->pcpu_refcnt)
10596 		goto free_dev;
10597 	__dev_hold(dev);
10598 #else
10599 	refcount_set(&dev->dev_refcnt, 1);
10600 #endif
10601 
10602 	if (dev_addr_init(dev))
10603 		goto free_pcpu;
10604 
10605 	dev_mc_init(dev);
10606 	dev_uc_init(dev);
10607 
10608 	dev_net_set(dev, &init_net);
10609 
10610 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10611 	dev->gso_max_segs = GSO_MAX_SEGS;
10612 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10613 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10614 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10615 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10616 	dev->tso_max_segs = TSO_MAX_SEGS;
10617 	dev->upper_level = 1;
10618 	dev->lower_level = 1;
10619 #ifdef CONFIG_LOCKDEP
10620 	dev->nested_level = 0;
10621 	INIT_LIST_HEAD(&dev->unlink_list);
10622 #endif
10623 
10624 	INIT_LIST_HEAD(&dev->napi_list);
10625 	INIT_LIST_HEAD(&dev->unreg_list);
10626 	INIT_LIST_HEAD(&dev->close_list);
10627 	INIT_LIST_HEAD(&dev->link_watch_list);
10628 	INIT_LIST_HEAD(&dev->adj_list.upper);
10629 	INIT_LIST_HEAD(&dev->adj_list.lower);
10630 	INIT_LIST_HEAD(&dev->ptype_all);
10631 	INIT_LIST_HEAD(&dev->ptype_specific);
10632 	INIT_LIST_HEAD(&dev->net_notifier_list);
10633 #ifdef CONFIG_NET_SCHED
10634 	hash_init(dev->qdisc_hash);
10635 #endif
10636 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10637 	setup(dev);
10638 
10639 	if (!dev->tx_queue_len) {
10640 		dev->priv_flags |= IFF_NO_QUEUE;
10641 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10642 	}
10643 
10644 	dev->num_tx_queues = txqs;
10645 	dev->real_num_tx_queues = txqs;
10646 	if (netif_alloc_netdev_queues(dev))
10647 		goto free_all;
10648 
10649 	dev->num_rx_queues = rxqs;
10650 	dev->real_num_rx_queues = rxqs;
10651 	if (netif_alloc_rx_queues(dev))
10652 		goto free_all;
10653 
10654 	strcpy(dev->name, name);
10655 	dev->name_assign_type = name_assign_type;
10656 	dev->group = INIT_NETDEV_GROUP;
10657 	if (!dev->ethtool_ops)
10658 		dev->ethtool_ops = &default_ethtool_ops;
10659 
10660 	nf_hook_netdev_init(dev);
10661 
10662 	return dev;
10663 
10664 free_all:
10665 	free_netdev(dev);
10666 	return NULL;
10667 
10668 free_pcpu:
10669 #ifdef CONFIG_PCPU_DEV_REFCNT
10670 	free_percpu(dev->pcpu_refcnt);
10671 free_dev:
10672 #endif
10673 	netdev_freemem(dev);
10674 	return NULL;
10675 }
10676 EXPORT_SYMBOL(alloc_netdev_mqs);
10677 
10678 /**
10679  * free_netdev - free network device
10680  * @dev: device
10681  *
10682  * This function does the last stage of destroying an allocated device
10683  * interface. The reference to the device object is released. If this
10684  * is the last reference then it will be freed.Must be called in process
10685  * context.
10686  */
10687 void free_netdev(struct net_device *dev)
10688 {
10689 	struct napi_struct *p, *n;
10690 
10691 	might_sleep();
10692 
10693 	/* When called immediately after register_netdevice() failed the unwind
10694 	 * handling may still be dismantling the device. Handle that case by
10695 	 * deferring the free.
10696 	 */
10697 	if (dev->reg_state == NETREG_UNREGISTERING) {
10698 		ASSERT_RTNL();
10699 		dev->needs_free_netdev = true;
10700 		return;
10701 	}
10702 
10703 	netif_free_tx_queues(dev);
10704 	netif_free_rx_queues(dev);
10705 
10706 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10707 
10708 	/* Flush device addresses */
10709 	dev_addr_flush(dev);
10710 
10711 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10712 		netif_napi_del(p);
10713 
10714 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10715 #ifdef CONFIG_PCPU_DEV_REFCNT
10716 	free_percpu(dev->pcpu_refcnt);
10717 	dev->pcpu_refcnt = NULL;
10718 #endif
10719 	free_percpu(dev->core_stats);
10720 	dev->core_stats = NULL;
10721 	free_percpu(dev->xdp_bulkq);
10722 	dev->xdp_bulkq = NULL;
10723 
10724 	/*  Compatibility with error handling in drivers */
10725 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10726 		netdev_freemem(dev);
10727 		return;
10728 	}
10729 
10730 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10731 	dev->reg_state = NETREG_RELEASED;
10732 
10733 	/* will free via device release */
10734 	put_device(&dev->dev);
10735 }
10736 EXPORT_SYMBOL(free_netdev);
10737 
10738 /**
10739  *	synchronize_net -  Synchronize with packet receive processing
10740  *
10741  *	Wait for packets currently being received to be done.
10742  *	Does not block later packets from starting.
10743  */
10744 void synchronize_net(void)
10745 {
10746 	might_sleep();
10747 	if (rtnl_is_locked())
10748 		synchronize_rcu_expedited();
10749 	else
10750 		synchronize_rcu();
10751 }
10752 EXPORT_SYMBOL(synchronize_net);
10753 
10754 /**
10755  *	unregister_netdevice_queue - remove device from the kernel
10756  *	@dev: device
10757  *	@head: list
10758  *
10759  *	This function shuts down a device interface and removes it
10760  *	from the kernel tables.
10761  *	If head not NULL, device is queued to be unregistered later.
10762  *
10763  *	Callers must hold the rtnl semaphore.  You may want
10764  *	unregister_netdev() instead of this.
10765  */
10766 
10767 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10768 {
10769 	ASSERT_RTNL();
10770 
10771 	if (head) {
10772 		list_move_tail(&dev->unreg_list, head);
10773 	} else {
10774 		LIST_HEAD(single);
10775 
10776 		list_add(&dev->unreg_list, &single);
10777 		unregister_netdevice_many(&single);
10778 	}
10779 }
10780 EXPORT_SYMBOL(unregister_netdevice_queue);
10781 
10782 void unregister_netdevice_many_notify(struct list_head *head,
10783 				      u32 portid, const struct nlmsghdr *nlh)
10784 {
10785 	struct net_device *dev, *tmp;
10786 	LIST_HEAD(close_head);
10787 
10788 	BUG_ON(dev_boot_phase);
10789 	ASSERT_RTNL();
10790 
10791 	if (list_empty(head))
10792 		return;
10793 
10794 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10795 		/* Some devices call without registering
10796 		 * for initialization unwind. Remove those
10797 		 * devices and proceed with the remaining.
10798 		 */
10799 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10800 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10801 				 dev->name, dev);
10802 
10803 			WARN_ON(1);
10804 			list_del(&dev->unreg_list);
10805 			continue;
10806 		}
10807 		dev->dismantle = true;
10808 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10809 	}
10810 
10811 	/* If device is running, close it first. */
10812 	list_for_each_entry(dev, head, unreg_list)
10813 		list_add_tail(&dev->close_list, &close_head);
10814 	dev_close_many(&close_head, true);
10815 
10816 	list_for_each_entry(dev, head, unreg_list) {
10817 		/* And unlink it from device chain. */
10818 		write_lock(&dev_base_lock);
10819 		unlist_netdevice(dev, false);
10820 		dev->reg_state = NETREG_UNREGISTERING;
10821 		write_unlock(&dev_base_lock);
10822 	}
10823 	flush_all_backlogs();
10824 
10825 	synchronize_net();
10826 
10827 	list_for_each_entry(dev, head, unreg_list) {
10828 		struct sk_buff *skb = NULL;
10829 
10830 		/* Shutdown queueing discipline. */
10831 		dev_shutdown(dev);
10832 
10833 		dev_xdp_uninstall(dev);
10834 		bpf_dev_bound_netdev_unregister(dev);
10835 
10836 		netdev_offload_xstats_disable_all(dev);
10837 
10838 		/* Notify protocols, that we are about to destroy
10839 		 * this device. They should clean all the things.
10840 		 */
10841 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10842 
10843 		if (!dev->rtnl_link_ops ||
10844 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10845 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10846 						     GFP_KERNEL, NULL, 0,
10847 						     portid, nlmsg_seq(nlh));
10848 
10849 		/*
10850 		 *	Flush the unicast and multicast chains
10851 		 */
10852 		dev_uc_flush(dev);
10853 		dev_mc_flush(dev);
10854 
10855 		netdev_name_node_alt_flush(dev);
10856 		netdev_name_node_free(dev->name_node);
10857 
10858 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10859 
10860 		if (dev->netdev_ops->ndo_uninit)
10861 			dev->netdev_ops->ndo_uninit(dev);
10862 
10863 		if (skb)
10864 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10865 
10866 		/* Notifier chain MUST detach us all upper devices. */
10867 		WARN_ON(netdev_has_any_upper_dev(dev));
10868 		WARN_ON(netdev_has_any_lower_dev(dev));
10869 
10870 		/* Remove entries from kobject tree */
10871 		netdev_unregister_kobject(dev);
10872 #ifdef CONFIG_XPS
10873 		/* Remove XPS queueing entries */
10874 		netif_reset_xps_queues_gt(dev, 0);
10875 #endif
10876 	}
10877 
10878 	synchronize_net();
10879 
10880 	list_for_each_entry(dev, head, unreg_list) {
10881 		netdev_put(dev, &dev->dev_registered_tracker);
10882 		net_set_todo(dev);
10883 	}
10884 
10885 	list_del(head);
10886 }
10887 
10888 /**
10889  *	unregister_netdevice_many - unregister many devices
10890  *	@head: list of devices
10891  *
10892  *  Note: As most callers use a stack allocated list_head,
10893  *  we force a list_del() to make sure stack wont be corrupted later.
10894  */
10895 void unregister_netdevice_many(struct list_head *head)
10896 {
10897 	unregister_netdevice_many_notify(head, 0, NULL);
10898 }
10899 EXPORT_SYMBOL(unregister_netdevice_many);
10900 
10901 /**
10902  *	unregister_netdev - remove device from the kernel
10903  *	@dev: device
10904  *
10905  *	This function shuts down a device interface and removes it
10906  *	from the kernel tables.
10907  *
10908  *	This is just a wrapper for unregister_netdevice that takes
10909  *	the rtnl semaphore.  In general you want to use this and not
10910  *	unregister_netdevice.
10911  */
10912 void unregister_netdev(struct net_device *dev)
10913 {
10914 	rtnl_lock();
10915 	unregister_netdevice(dev);
10916 	rtnl_unlock();
10917 }
10918 EXPORT_SYMBOL(unregister_netdev);
10919 
10920 /**
10921  *	__dev_change_net_namespace - move device to different nethost namespace
10922  *	@dev: device
10923  *	@net: network namespace
10924  *	@pat: If not NULL name pattern to try if the current device name
10925  *	      is already taken in the destination network namespace.
10926  *	@new_ifindex: If not zero, specifies device index in the target
10927  *	              namespace.
10928  *
10929  *	This function shuts down a device interface and moves it
10930  *	to a new network namespace. On success 0 is returned, on
10931  *	a failure a netagive errno code is returned.
10932  *
10933  *	Callers must hold the rtnl semaphore.
10934  */
10935 
10936 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10937 			       const char *pat, int new_ifindex)
10938 {
10939 	struct net *net_old = dev_net(dev);
10940 	int err, new_nsid;
10941 
10942 	ASSERT_RTNL();
10943 
10944 	/* Don't allow namespace local devices to be moved. */
10945 	err = -EINVAL;
10946 	if (dev->features & NETIF_F_NETNS_LOCAL)
10947 		goto out;
10948 
10949 	/* Ensure the device has been registrered */
10950 	if (dev->reg_state != NETREG_REGISTERED)
10951 		goto out;
10952 
10953 	/* Get out if there is nothing todo */
10954 	err = 0;
10955 	if (net_eq(net_old, net))
10956 		goto out;
10957 
10958 	/* Pick the destination device name, and ensure
10959 	 * we can use it in the destination network namespace.
10960 	 */
10961 	err = -EEXIST;
10962 	if (netdev_name_in_use(net, dev->name)) {
10963 		/* We get here if we can't use the current device name */
10964 		if (!pat)
10965 			goto out;
10966 		err = dev_get_valid_name(net, dev, pat);
10967 		if (err < 0)
10968 			goto out;
10969 	}
10970 
10971 	/* Check that new_ifindex isn't used yet. */
10972 	err = -EBUSY;
10973 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10974 		goto out;
10975 
10976 	/*
10977 	 * And now a mini version of register_netdevice unregister_netdevice.
10978 	 */
10979 
10980 	/* If device is running close it first. */
10981 	dev_close(dev);
10982 
10983 	/* And unlink it from device chain */
10984 	unlist_netdevice(dev, true);
10985 
10986 	synchronize_net();
10987 
10988 	/* Shutdown queueing discipline. */
10989 	dev_shutdown(dev);
10990 
10991 	/* Notify protocols, that we are about to destroy
10992 	 * this device. They should clean all the things.
10993 	 *
10994 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10995 	 * This is wanted because this way 8021q and macvlan know
10996 	 * the device is just moving and can keep their slaves up.
10997 	 */
10998 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10999 	rcu_barrier();
11000 
11001 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11002 	/* If there is an ifindex conflict assign a new one */
11003 	if (!new_ifindex) {
11004 		if (__dev_get_by_index(net, dev->ifindex))
11005 			new_ifindex = dev_new_index(net);
11006 		else
11007 			new_ifindex = dev->ifindex;
11008 	}
11009 
11010 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11011 			    new_ifindex);
11012 
11013 	/*
11014 	 *	Flush the unicast and multicast chains
11015 	 */
11016 	dev_uc_flush(dev);
11017 	dev_mc_flush(dev);
11018 
11019 	/* Send a netdev-removed uevent to the old namespace */
11020 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11021 	netdev_adjacent_del_links(dev);
11022 
11023 	/* Move per-net netdevice notifiers that are following the netdevice */
11024 	move_netdevice_notifiers_dev_net(dev, net);
11025 
11026 	/* Actually switch the network namespace */
11027 	dev_net_set(dev, net);
11028 	dev->ifindex = new_ifindex;
11029 
11030 	/* Send a netdev-add uevent to the new namespace */
11031 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11032 	netdev_adjacent_add_links(dev);
11033 
11034 	/* Fixup kobjects */
11035 	err = device_rename(&dev->dev, dev->name);
11036 	WARN_ON(err);
11037 
11038 	/* Adapt owner in case owning user namespace of target network
11039 	 * namespace is different from the original one.
11040 	 */
11041 	err = netdev_change_owner(dev, net_old, net);
11042 	WARN_ON(err);
11043 
11044 	/* Add the device back in the hashes */
11045 	list_netdevice(dev);
11046 
11047 	/* Notify protocols, that a new device appeared. */
11048 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11049 
11050 	/*
11051 	 *	Prevent userspace races by waiting until the network
11052 	 *	device is fully setup before sending notifications.
11053 	 */
11054 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11055 
11056 	synchronize_net();
11057 	err = 0;
11058 out:
11059 	return err;
11060 }
11061 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11062 
11063 static int dev_cpu_dead(unsigned int oldcpu)
11064 {
11065 	struct sk_buff **list_skb;
11066 	struct sk_buff *skb;
11067 	unsigned int cpu;
11068 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11069 
11070 	local_irq_disable();
11071 	cpu = smp_processor_id();
11072 	sd = &per_cpu(softnet_data, cpu);
11073 	oldsd = &per_cpu(softnet_data, oldcpu);
11074 
11075 	/* Find end of our completion_queue. */
11076 	list_skb = &sd->completion_queue;
11077 	while (*list_skb)
11078 		list_skb = &(*list_skb)->next;
11079 	/* Append completion queue from offline CPU. */
11080 	*list_skb = oldsd->completion_queue;
11081 	oldsd->completion_queue = NULL;
11082 
11083 	/* Append output queue from offline CPU. */
11084 	if (oldsd->output_queue) {
11085 		*sd->output_queue_tailp = oldsd->output_queue;
11086 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11087 		oldsd->output_queue = NULL;
11088 		oldsd->output_queue_tailp = &oldsd->output_queue;
11089 	}
11090 	/* Append NAPI poll list from offline CPU, with one exception :
11091 	 * process_backlog() must be called by cpu owning percpu backlog.
11092 	 * We properly handle process_queue & input_pkt_queue later.
11093 	 */
11094 	while (!list_empty(&oldsd->poll_list)) {
11095 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11096 							    struct napi_struct,
11097 							    poll_list);
11098 
11099 		list_del_init(&napi->poll_list);
11100 		if (napi->poll == process_backlog)
11101 			napi->state = 0;
11102 		else
11103 			____napi_schedule(sd, napi);
11104 	}
11105 
11106 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11107 	local_irq_enable();
11108 
11109 #ifdef CONFIG_RPS
11110 	remsd = oldsd->rps_ipi_list;
11111 	oldsd->rps_ipi_list = NULL;
11112 #endif
11113 	/* send out pending IPI's on offline CPU */
11114 	net_rps_send_ipi(remsd);
11115 
11116 	/* Process offline CPU's input_pkt_queue */
11117 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11118 		netif_rx(skb);
11119 		input_queue_head_incr(oldsd);
11120 	}
11121 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11122 		netif_rx(skb);
11123 		input_queue_head_incr(oldsd);
11124 	}
11125 
11126 	return 0;
11127 }
11128 
11129 /**
11130  *	netdev_increment_features - increment feature set by one
11131  *	@all: current feature set
11132  *	@one: new feature set
11133  *	@mask: mask feature set
11134  *
11135  *	Computes a new feature set after adding a device with feature set
11136  *	@one to the master device with current feature set @all.  Will not
11137  *	enable anything that is off in @mask. Returns the new feature set.
11138  */
11139 netdev_features_t netdev_increment_features(netdev_features_t all,
11140 	netdev_features_t one, netdev_features_t mask)
11141 {
11142 	if (mask & NETIF_F_HW_CSUM)
11143 		mask |= NETIF_F_CSUM_MASK;
11144 	mask |= NETIF_F_VLAN_CHALLENGED;
11145 
11146 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11147 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11148 
11149 	/* If one device supports hw checksumming, set for all. */
11150 	if (all & NETIF_F_HW_CSUM)
11151 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11152 
11153 	return all;
11154 }
11155 EXPORT_SYMBOL(netdev_increment_features);
11156 
11157 static struct hlist_head * __net_init netdev_create_hash(void)
11158 {
11159 	int i;
11160 	struct hlist_head *hash;
11161 
11162 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11163 	if (hash != NULL)
11164 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11165 			INIT_HLIST_HEAD(&hash[i]);
11166 
11167 	return hash;
11168 }
11169 
11170 /* Initialize per network namespace state */
11171 static int __net_init netdev_init(struct net *net)
11172 {
11173 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11174 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11175 
11176 	INIT_LIST_HEAD(&net->dev_base_head);
11177 
11178 	net->dev_name_head = netdev_create_hash();
11179 	if (net->dev_name_head == NULL)
11180 		goto err_name;
11181 
11182 	net->dev_index_head = netdev_create_hash();
11183 	if (net->dev_index_head == NULL)
11184 		goto err_idx;
11185 
11186 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11187 
11188 	return 0;
11189 
11190 err_idx:
11191 	kfree(net->dev_name_head);
11192 err_name:
11193 	return -ENOMEM;
11194 }
11195 
11196 /**
11197  *	netdev_drivername - network driver for the device
11198  *	@dev: network device
11199  *
11200  *	Determine network driver for device.
11201  */
11202 const char *netdev_drivername(const struct net_device *dev)
11203 {
11204 	const struct device_driver *driver;
11205 	const struct device *parent;
11206 	const char *empty = "";
11207 
11208 	parent = dev->dev.parent;
11209 	if (!parent)
11210 		return empty;
11211 
11212 	driver = parent->driver;
11213 	if (driver && driver->name)
11214 		return driver->name;
11215 	return empty;
11216 }
11217 
11218 static void __netdev_printk(const char *level, const struct net_device *dev,
11219 			    struct va_format *vaf)
11220 {
11221 	if (dev && dev->dev.parent) {
11222 		dev_printk_emit(level[1] - '0',
11223 				dev->dev.parent,
11224 				"%s %s %s%s: %pV",
11225 				dev_driver_string(dev->dev.parent),
11226 				dev_name(dev->dev.parent),
11227 				netdev_name(dev), netdev_reg_state(dev),
11228 				vaf);
11229 	} else if (dev) {
11230 		printk("%s%s%s: %pV",
11231 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11232 	} else {
11233 		printk("%s(NULL net_device): %pV", level, vaf);
11234 	}
11235 }
11236 
11237 void netdev_printk(const char *level, const struct net_device *dev,
11238 		   const char *format, ...)
11239 {
11240 	struct va_format vaf;
11241 	va_list args;
11242 
11243 	va_start(args, format);
11244 
11245 	vaf.fmt = format;
11246 	vaf.va = &args;
11247 
11248 	__netdev_printk(level, dev, &vaf);
11249 
11250 	va_end(args);
11251 }
11252 EXPORT_SYMBOL(netdev_printk);
11253 
11254 #define define_netdev_printk_level(func, level)			\
11255 void func(const struct net_device *dev, const char *fmt, ...)	\
11256 {								\
11257 	struct va_format vaf;					\
11258 	va_list args;						\
11259 								\
11260 	va_start(args, fmt);					\
11261 								\
11262 	vaf.fmt = fmt;						\
11263 	vaf.va = &args;						\
11264 								\
11265 	__netdev_printk(level, dev, &vaf);			\
11266 								\
11267 	va_end(args);						\
11268 }								\
11269 EXPORT_SYMBOL(func);
11270 
11271 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11272 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11273 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11274 define_netdev_printk_level(netdev_err, KERN_ERR);
11275 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11276 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11277 define_netdev_printk_level(netdev_info, KERN_INFO);
11278 
11279 static void __net_exit netdev_exit(struct net *net)
11280 {
11281 	kfree(net->dev_name_head);
11282 	kfree(net->dev_index_head);
11283 	if (net != &init_net)
11284 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11285 }
11286 
11287 static struct pernet_operations __net_initdata netdev_net_ops = {
11288 	.init = netdev_init,
11289 	.exit = netdev_exit,
11290 };
11291 
11292 static void __net_exit default_device_exit_net(struct net *net)
11293 {
11294 	struct net_device *dev, *aux;
11295 	/*
11296 	 * Push all migratable network devices back to the
11297 	 * initial network namespace
11298 	 */
11299 	ASSERT_RTNL();
11300 	for_each_netdev_safe(net, dev, aux) {
11301 		int err;
11302 		char fb_name[IFNAMSIZ];
11303 
11304 		/* Ignore unmoveable devices (i.e. loopback) */
11305 		if (dev->features & NETIF_F_NETNS_LOCAL)
11306 			continue;
11307 
11308 		/* Leave virtual devices for the generic cleanup */
11309 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11310 			continue;
11311 
11312 		/* Push remaining network devices to init_net */
11313 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11314 		if (netdev_name_in_use(&init_net, fb_name))
11315 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11316 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11317 		if (err) {
11318 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11319 				 __func__, dev->name, err);
11320 			BUG();
11321 		}
11322 	}
11323 }
11324 
11325 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11326 {
11327 	/* At exit all network devices most be removed from a network
11328 	 * namespace.  Do this in the reverse order of registration.
11329 	 * Do this across as many network namespaces as possible to
11330 	 * improve batching efficiency.
11331 	 */
11332 	struct net_device *dev;
11333 	struct net *net;
11334 	LIST_HEAD(dev_kill_list);
11335 
11336 	rtnl_lock();
11337 	list_for_each_entry(net, net_list, exit_list) {
11338 		default_device_exit_net(net);
11339 		cond_resched();
11340 	}
11341 
11342 	list_for_each_entry(net, net_list, exit_list) {
11343 		for_each_netdev_reverse(net, dev) {
11344 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11345 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11346 			else
11347 				unregister_netdevice_queue(dev, &dev_kill_list);
11348 		}
11349 	}
11350 	unregister_netdevice_many(&dev_kill_list);
11351 	rtnl_unlock();
11352 }
11353 
11354 static struct pernet_operations __net_initdata default_device_ops = {
11355 	.exit_batch = default_device_exit_batch,
11356 };
11357 
11358 /*
11359  *	Initialize the DEV module. At boot time this walks the device list and
11360  *	unhooks any devices that fail to initialise (normally hardware not
11361  *	present) and leaves us with a valid list of present and active devices.
11362  *
11363  */
11364 
11365 /*
11366  *       This is called single threaded during boot, so no need
11367  *       to take the rtnl semaphore.
11368  */
11369 static int __init net_dev_init(void)
11370 {
11371 	int i, rc = -ENOMEM;
11372 
11373 	BUG_ON(!dev_boot_phase);
11374 
11375 	if (dev_proc_init())
11376 		goto out;
11377 
11378 	if (netdev_kobject_init())
11379 		goto out;
11380 
11381 	INIT_LIST_HEAD(&ptype_all);
11382 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11383 		INIT_LIST_HEAD(&ptype_base[i]);
11384 
11385 	if (register_pernet_subsys(&netdev_net_ops))
11386 		goto out;
11387 
11388 	/*
11389 	 *	Initialise the packet receive queues.
11390 	 */
11391 
11392 	for_each_possible_cpu(i) {
11393 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11394 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11395 
11396 		INIT_WORK(flush, flush_backlog);
11397 
11398 		skb_queue_head_init(&sd->input_pkt_queue);
11399 		skb_queue_head_init(&sd->process_queue);
11400 #ifdef CONFIG_XFRM_OFFLOAD
11401 		skb_queue_head_init(&sd->xfrm_backlog);
11402 #endif
11403 		INIT_LIST_HEAD(&sd->poll_list);
11404 		sd->output_queue_tailp = &sd->output_queue;
11405 #ifdef CONFIG_RPS
11406 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11407 		sd->cpu = i;
11408 #endif
11409 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11410 		spin_lock_init(&sd->defer_lock);
11411 
11412 		init_gro_hash(&sd->backlog);
11413 		sd->backlog.poll = process_backlog;
11414 		sd->backlog.weight = weight_p;
11415 	}
11416 
11417 	dev_boot_phase = 0;
11418 
11419 	/* The loopback device is special if any other network devices
11420 	 * is present in a network namespace the loopback device must
11421 	 * be present. Since we now dynamically allocate and free the
11422 	 * loopback device ensure this invariant is maintained by
11423 	 * keeping the loopback device as the first device on the
11424 	 * list of network devices.  Ensuring the loopback devices
11425 	 * is the first device that appears and the last network device
11426 	 * that disappears.
11427 	 */
11428 	if (register_pernet_device(&loopback_net_ops))
11429 		goto out;
11430 
11431 	if (register_pernet_device(&default_device_ops))
11432 		goto out;
11433 
11434 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11435 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11436 
11437 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11438 				       NULL, dev_cpu_dead);
11439 	WARN_ON(rc < 0);
11440 	rc = 0;
11441 out:
11442 	return rc;
11443 }
11444 
11445 subsys_initcall(net_dev_init);
11446