xref: /openbmc/linux/net/core/dev.c (revision e8bd70250a821edb541c3abe1eacdad9f8dc7adf)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "net-sysfs.h"
155 
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;	/* Taps */
160 
161 static int netif_rx_internal(struct sk_buff *skb);
162 static int call_netdevice_notifiers_info(unsigned long val,
163 					 struct netdev_notifier_info *info);
164 static int call_netdevice_notifiers_extack(unsigned long val,
165 					   struct net_device *dev,
166 					   struct netlink_ext_ack *extack);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static DECLARE_RWSEM(devnet_rename_sem);
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock_irqsave(struct softnet_data *sd,
220 				    unsigned long *flags)
221 {
222 	if (IS_ENABLED(CONFIG_RPS))
223 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
224 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
225 		local_irq_save(*flags);
226 }
227 
228 static inline void rps_lock_irq_disable(struct softnet_data *sd)
229 {
230 	if (IS_ENABLED(CONFIG_RPS))
231 		spin_lock_irq(&sd->input_pkt_queue.lock);
232 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
233 		local_irq_disable();
234 }
235 
236 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
237 					  unsigned long *flags)
238 {
239 	if (IS_ENABLED(CONFIG_RPS))
240 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
241 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 		local_irq_restore(*flags);
243 }
244 
245 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
246 {
247 	if (IS_ENABLED(CONFIG_RPS))
248 		spin_unlock_irq(&sd->input_pkt_queue.lock);
249 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250 		local_irq_enable();
251 }
252 
253 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
254 						       const char *name)
255 {
256 	struct netdev_name_node *name_node;
257 
258 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
259 	if (!name_node)
260 		return NULL;
261 	INIT_HLIST_NODE(&name_node->hlist);
262 	name_node->dev = dev;
263 	name_node->name = name;
264 	return name_node;
265 }
266 
267 static struct netdev_name_node *
268 netdev_name_node_head_alloc(struct net_device *dev)
269 {
270 	struct netdev_name_node *name_node;
271 
272 	name_node = netdev_name_node_alloc(dev, dev->name);
273 	if (!name_node)
274 		return NULL;
275 	INIT_LIST_HEAD(&name_node->list);
276 	return name_node;
277 }
278 
279 static void netdev_name_node_free(struct netdev_name_node *name_node)
280 {
281 	kfree(name_node);
282 }
283 
284 static void netdev_name_node_add(struct net *net,
285 				 struct netdev_name_node *name_node)
286 {
287 	hlist_add_head_rcu(&name_node->hlist,
288 			   dev_name_hash(net, name_node->name));
289 }
290 
291 static void netdev_name_node_del(struct netdev_name_node *name_node)
292 {
293 	hlist_del_rcu(&name_node->hlist);
294 }
295 
296 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
297 							const char *name)
298 {
299 	struct hlist_head *head = dev_name_hash(net, name);
300 	struct netdev_name_node *name_node;
301 
302 	hlist_for_each_entry(name_node, head, hlist)
303 		if (!strcmp(name_node->name, name))
304 			return name_node;
305 	return NULL;
306 }
307 
308 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
309 							    const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry_rcu(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
320 bool netdev_name_in_use(struct net *net, const char *name)
321 {
322 	return netdev_name_node_lookup(net, name);
323 }
324 EXPORT_SYMBOL(netdev_name_in_use);
325 
326 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
327 {
328 	struct netdev_name_node *name_node;
329 	struct net *net = dev_net(dev);
330 
331 	name_node = netdev_name_node_lookup(net, name);
332 	if (name_node)
333 		return -EEXIST;
334 	name_node = netdev_name_node_alloc(dev, name);
335 	if (!name_node)
336 		return -ENOMEM;
337 	netdev_name_node_add(net, name_node);
338 	/* The node that holds dev->name acts as a head of per-device list. */
339 	list_add_tail(&name_node->list, &dev->name_node->list);
340 
341 	return 0;
342 }
343 
344 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
345 {
346 	list_del(&name_node->list);
347 	netdev_name_node_del(name_node);
348 	kfree(name_node->name);
349 	netdev_name_node_free(name_node);
350 }
351 
352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354 	struct netdev_name_node *name_node;
355 	struct net *net = dev_net(dev);
356 
357 	name_node = netdev_name_node_lookup(net, name);
358 	if (!name_node)
359 		return -ENOENT;
360 	/* lookup might have found our primary name or a name belonging
361 	 * to another device.
362 	 */
363 	if (name_node == dev->name_node || name_node->dev != dev)
364 		return -EINVAL;
365 
366 	__netdev_name_node_alt_destroy(name_node);
367 
368 	return 0;
369 }
370 
371 static void netdev_name_node_alt_flush(struct net_device *dev)
372 {
373 	struct netdev_name_node *name_node, *tmp;
374 
375 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
376 		__netdev_name_node_alt_destroy(name_node);
377 }
378 
379 /* Device list insertion */
380 static void list_netdevice(struct net_device *dev)
381 {
382 	struct net *net = dev_net(dev);
383 
384 	ASSERT_RTNL();
385 
386 	write_lock(&dev_base_lock);
387 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
388 	netdev_name_node_add(net, dev->name_node);
389 	hlist_add_head_rcu(&dev->index_hlist,
390 			   dev_index_hash(net, dev->ifindex));
391 	write_unlock(&dev_base_lock);
392 
393 	dev_base_seq_inc(net);
394 }
395 
396 /* Device list removal
397  * caller must respect a RCU grace period before freeing/reusing dev
398  */
399 static void unlist_netdevice(struct net_device *dev)
400 {
401 	ASSERT_RTNL();
402 
403 	/* Unlink dev from the device chain */
404 	write_lock(&dev_base_lock);
405 	list_del_rcu(&dev->dev_list);
406 	netdev_name_node_del(dev->name_node);
407 	hlist_del_rcu(&dev->index_hlist);
408 	write_unlock(&dev_base_lock);
409 
410 	dev_base_seq_inc(dev_net(dev));
411 }
412 
413 /*
414  *	Our notifier list
415  */
416 
417 static RAW_NOTIFIER_HEAD(netdev_chain);
418 
419 /*
420  *	Device drivers call our routines to queue packets here. We empty the
421  *	queue in the local softnet handler.
422  */
423 
424 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
425 EXPORT_PER_CPU_SYMBOL(softnet_data);
426 
427 #ifdef CONFIG_LOCKDEP
428 /*
429  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
430  * according to dev->type
431  */
432 static const unsigned short netdev_lock_type[] = {
433 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
434 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
435 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
436 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
437 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
438 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
439 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
440 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
441 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
442 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
443 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
444 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
445 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
446 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
447 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
448 
449 static const char *const netdev_lock_name[] = {
450 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
451 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
452 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
453 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
454 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
455 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
456 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
457 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
458 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
459 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
460 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
461 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
462 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
463 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
464 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
465 
466 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
467 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
468 
469 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
470 {
471 	int i;
472 
473 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
474 		if (netdev_lock_type[i] == dev_type)
475 			return i;
476 	/* the last key is used by default */
477 	return ARRAY_SIZE(netdev_lock_type) - 1;
478 }
479 
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 						 unsigned short dev_type)
482 {
483 	int i;
484 
485 	i = netdev_lock_pos(dev_type);
486 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
487 				   netdev_lock_name[i]);
488 }
489 
490 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
491 {
492 	int i;
493 
494 	i = netdev_lock_pos(dev->type);
495 	lockdep_set_class_and_name(&dev->addr_list_lock,
496 				   &netdev_addr_lock_key[i],
497 				   netdev_lock_name[i]);
498 }
499 #else
500 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
501 						 unsigned short dev_type)
502 {
503 }
504 
505 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
506 {
507 }
508 #endif
509 
510 /*******************************************************************************
511  *
512  *		Protocol management and registration routines
513  *
514  *******************************************************************************/
515 
516 
517 /*
518  *	Add a protocol ID to the list. Now that the input handler is
519  *	smarter we can dispense with all the messy stuff that used to be
520  *	here.
521  *
522  *	BEWARE!!! Protocol handlers, mangling input packets,
523  *	MUST BE last in hash buckets and checking protocol handlers
524  *	MUST start from promiscuous ptype_all chain in net_bh.
525  *	It is true now, do not change it.
526  *	Explanation follows: if protocol handler, mangling packet, will
527  *	be the first on list, it is not able to sense, that packet
528  *	is cloned and should be copied-on-write, so that it will
529  *	change it and subsequent readers will get broken packet.
530  *							--ANK (980803)
531  */
532 
533 static inline struct list_head *ptype_head(const struct packet_type *pt)
534 {
535 	if (pt->type == htons(ETH_P_ALL))
536 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
537 	else
538 		return pt->dev ? &pt->dev->ptype_specific :
539 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
540 }
541 
542 /**
543  *	dev_add_pack - add packet handler
544  *	@pt: packet type declaration
545  *
546  *	Add a protocol handler to the networking stack. The passed &packet_type
547  *	is linked into kernel lists and may not be freed until it has been
548  *	removed from the kernel lists.
549  *
550  *	This call does not sleep therefore it can not
551  *	guarantee all CPU's that are in middle of receiving packets
552  *	will see the new packet type (until the next received packet).
553  */
554 
555 void dev_add_pack(struct packet_type *pt)
556 {
557 	struct list_head *head = ptype_head(pt);
558 
559 	spin_lock(&ptype_lock);
560 	list_add_rcu(&pt->list, head);
561 	spin_unlock(&ptype_lock);
562 }
563 EXPORT_SYMBOL(dev_add_pack);
564 
565 /**
566  *	__dev_remove_pack	 - remove packet handler
567  *	@pt: packet type declaration
568  *
569  *	Remove a protocol handler that was previously added to the kernel
570  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
571  *	from the kernel lists and can be freed or reused once this function
572  *	returns.
573  *
574  *      The packet type might still be in use by receivers
575  *	and must not be freed until after all the CPU's have gone
576  *	through a quiescent state.
577  */
578 void __dev_remove_pack(struct packet_type *pt)
579 {
580 	struct list_head *head = ptype_head(pt);
581 	struct packet_type *pt1;
582 
583 	spin_lock(&ptype_lock);
584 
585 	list_for_each_entry(pt1, head, list) {
586 		if (pt == pt1) {
587 			list_del_rcu(&pt->list);
588 			goto out;
589 		}
590 	}
591 
592 	pr_warn("dev_remove_pack: %p not found\n", pt);
593 out:
594 	spin_unlock(&ptype_lock);
595 }
596 EXPORT_SYMBOL(__dev_remove_pack);
597 
598 /**
599  *	dev_remove_pack	 - remove packet handler
600  *	@pt: packet type declaration
601  *
602  *	Remove a protocol handler that was previously added to the kernel
603  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
604  *	from the kernel lists and can be freed or reused once this function
605  *	returns.
606  *
607  *	This call sleeps to guarantee that no CPU is looking at the packet
608  *	type after return.
609  */
610 void dev_remove_pack(struct packet_type *pt)
611 {
612 	__dev_remove_pack(pt);
613 
614 	synchronize_net();
615 }
616 EXPORT_SYMBOL(dev_remove_pack);
617 
618 
619 /*******************************************************************************
620  *
621  *			    Device Interface Subroutines
622  *
623  *******************************************************************************/
624 
625 /**
626  *	dev_get_iflink	- get 'iflink' value of a interface
627  *	@dev: targeted interface
628  *
629  *	Indicates the ifindex the interface is linked to.
630  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
631  */
632 
633 int dev_get_iflink(const struct net_device *dev)
634 {
635 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
636 		return dev->netdev_ops->ndo_get_iflink(dev);
637 
638 	return dev->ifindex;
639 }
640 EXPORT_SYMBOL(dev_get_iflink);
641 
642 /**
643  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
644  *	@dev: targeted interface
645  *	@skb: The packet.
646  *
647  *	For better visibility of tunnel traffic OVS needs to retrieve
648  *	egress tunnel information for a packet. Following API allows
649  *	user to get this info.
650  */
651 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
652 {
653 	struct ip_tunnel_info *info;
654 
655 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
656 		return -EINVAL;
657 
658 	info = skb_tunnel_info_unclone(skb);
659 	if (!info)
660 		return -ENOMEM;
661 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
662 		return -EINVAL;
663 
664 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
665 }
666 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
667 
668 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
669 {
670 	int k = stack->num_paths++;
671 
672 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
673 		return NULL;
674 
675 	return &stack->path[k];
676 }
677 
678 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
679 			  struct net_device_path_stack *stack)
680 {
681 	const struct net_device *last_dev;
682 	struct net_device_path_ctx ctx = {
683 		.dev	= dev,
684 		.daddr	= daddr,
685 	};
686 	struct net_device_path *path;
687 	int ret = 0;
688 
689 	stack->num_paths = 0;
690 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
691 		last_dev = ctx.dev;
692 		path = dev_fwd_path(stack);
693 		if (!path)
694 			return -1;
695 
696 		memset(path, 0, sizeof(struct net_device_path));
697 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
698 		if (ret < 0)
699 			return -1;
700 
701 		if (WARN_ON_ONCE(last_dev == ctx.dev))
702 			return -1;
703 	}
704 
705 	if (!ctx.dev)
706 		return ret;
707 
708 	path = dev_fwd_path(stack);
709 	if (!path)
710 		return -1;
711 	path->type = DEV_PATH_ETHERNET;
712 	path->dev = ctx.dev;
713 
714 	return ret;
715 }
716 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
717 
718 /**
719  *	__dev_get_by_name	- find a device by its name
720  *	@net: the applicable net namespace
721  *	@name: name to find
722  *
723  *	Find an interface by name. Must be called under RTNL semaphore
724  *	or @dev_base_lock. If the name is found a pointer to the device
725  *	is returned. If the name is not found then %NULL is returned. The
726  *	reference counters are not incremented so the caller must be
727  *	careful with locks.
728  */
729 
730 struct net_device *__dev_get_by_name(struct net *net, const char *name)
731 {
732 	struct netdev_name_node *node_name;
733 
734 	node_name = netdev_name_node_lookup(net, name);
735 	return node_name ? node_name->dev : NULL;
736 }
737 EXPORT_SYMBOL(__dev_get_by_name);
738 
739 /**
740  * dev_get_by_name_rcu	- find a device by its name
741  * @net: the applicable net namespace
742  * @name: name to find
743  *
744  * Find an interface by name.
745  * If the name is found a pointer to the device is returned.
746  * If the name is not found then %NULL is returned.
747  * The reference counters are not incremented so the caller must be
748  * careful with locks. The caller must hold RCU lock.
749  */
750 
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752 {
753 	struct netdev_name_node *node_name;
754 
755 	node_name = netdev_name_node_lookup_rcu(net, name);
756 	return node_name ? node_name->dev : NULL;
757 }
758 EXPORT_SYMBOL(dev_get_by_name_rcu);
759 
760 /**
761  *	dev_get_by_name		- find a device by its name
762  *	@net: the applicable net namespace
763  *	@name: name to find
764  *
765  *	Find an interface by name. This can be called from any
766  *	context and does its own locking. The returned handle has
767  *	the usage count incremented and the caller must use dev_put() to
768  *	release it when it is no longer needed. %NULL is returned if no
769  *	matching device is found.
770  */
771 
772 struct net_device *dev_get_by_name(struct net *net, const char *name)
773 {
774 	struct net_device *dev;
775 
776 	rcu_read_lock();
777 	dev = dev_get_by_name_rcu(net, name);
778 	dev_hold(dev);
779 	rcu_read_unlock();
780 	return dev;
781 }
782 EXPORT_SYMBOL(dev_get_by_name);
783 
784 /**
785  *	__dev_get_by_index - find a device by its ifindex
786  *	@net: the applicable net namespace
787  *	@ifindex: index of device
788  *
789  *	Search for an interface by index. Returns %NULL if the device
790  *	is not found or a pointer to the device. The device has not
791  *	had its reference counter increased so the caller must be careful
792  *	about locking. The caller must hold either the RTNL semaphore
793  *	or @dev_base_lock.
794  */
795 
796 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
797 {
798 	struct net_device *dev;
799 	struct hlist_head *head = dev_index_hash(net, ifindex);
800 
801 	hlist_for_each_entry(dev, head, index_hlist)
802 		if (dev->ifindex == ifindex)
803 			return dev;
804 
805 	return NULL;
806 }
807 EXPORT_SYMBOL(__dev_get_by_index);
808 
809 /**
810  *	dev_get_by_index_rcu - find a device by its ifindex
811  *	@net: the applicable net namespace
812  *	@ifindex: index of device
813  *
814  *	Search for an interface by index. Returns %NULL if the device
815  *	is not found or a pointer to the device. The device has not
816  *	had its reference counter increased so the caller must be careful
817  *	about locking. The caller must hold RCU lock.
818  */
819 
820 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
821 {
822 	struct net_device *dev;
823 	struct hlist_head *head = dev_index_hash(net, ifindex);
824 
825 	hlist_for_each_entry_rcu(dev, head, index_hlist)
826 		if (dev->ifindex == ifindex)
827 			return dev;
828 
829 	return NULL;
830 }
831 EXPORT_SYMBOL(dev_get_by_index_rcu);
832 
833 
834 /**
835  *	dev_get_by_index - find a device by its ifindex
836  *	@net: the applicable net namespace
837  *	@ifindex: index of device
838  *
839  *	Search for an interface by index. Returns NULL if the device
840  *	is not found or a pointer to the device. The device returned has
841  *	had a reference added and the pointer is safe until the user calls
842  *	dev_put to indicate they have finished with it.
843  */
844 
845 struct net_device *dev_get_by_index(struct net *net, int ifindex)
846 {
847 	struct net_device *dev;
848 
849 	rcu_read_lock();
850 	dev = dev_get_by_index_rcu(net, ifindex);
851 	dev_hold(dev);
852 	rcu_read_unlock();
853 	return dev;
854 }
855 EXPORT_SYMBOL(dev_get_by_index);
856 
857 /**
858  *	dev_get_by_napi_id - find a device by napi_id
859  *	@napi_id: ID of the NAPI struct
860  *
861  *	Search for an interface by NAPI ID. Returns %NULL if the device
862  *	is not found or a pointer to the device. The device has not had
863  *	its reference counter increased so the caller must be careful
864  *	about locking. The caller must hold RCU lock.
865  */
866 
867 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
868 {
869 	struct napi_struct *napi;
870 
871 	WARN_ON_ONCE(!rcu_read_lock_held());
872 
873 	if (napi_id < MIN_NAPI_ID)
874 		return NULL;
875 
876 	napi = napi_by_id(napi_id);
877 
878 	return napi ? napi->dev : NULL;
879 }
880 EXPORT_SYMBOL(dev_get_by_napi_id);
881 
882 /**
883  *	netdev_get_name - get a netdevice name, knowing its ifindex.
884  *	@net: network namespace
885  *	@name: a pointer to the buffer where the name will be stored.
886  *	@ifindex: the ifindex of the interface to get the name from.
887  */
888 int netdev_get_name(struct net *net, char *name, int ifindex)
889 {
890 	struct net_device *dev;
891 	int ret;
892 
893 	down_read(&devnet_rename_sem);
894 	rcu_read_lock();
895 
896 	dev = dev_get_by_index_rcu(net, ifindex);
897 	if (!dev) {
898 		ret = -ENODEV;
899 		goto out;
900 	}
901 
902 	strcpy(name, dev->name);
903 
904 	ret = 0;
905 out:
906 	rcu_read_unlock();
907 	up_read(&devnet_rename_sem);
908 	return ret;
909 }
910 
911 /**
912  *	dev_getbyhwaddr_rcu - find a device by its hardware address
913  *	@net: the applicable net namespace
914  *	@type: media type of device
915  *	@ha: hardware address
916  *
917  *	Search for an interface by MAC address. Returns NULL if the device
918  *	is not found or a pointer to the device.
919  *	The caller must hold RCU or RTNL.
920  *	The returned device has not had its ref count increased
921  *	and the caller must therefore be careful about locking
922  *
923  */
924 
925 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
926 				       const char *ha)
927 {
928 	struct net_device *dev;
929 
930 	for_each_netdev_rcu(net, dev)
931 		if (dev->type == type &&
932 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
933 			return dev;
934 
935 	return NULL;
936 }
937 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
938 
939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 {
941 	struct net_device *dev, *ret = NULL;
942 
943 	rcu_read_lock();
944 	for_each_netdev_rcu(net, dev)
945 		if (dev->type == type) {
946 			dev_hold(dev);
947 			ret = dev;
948 			break;
949 		}
950 	rcu_read_unlock();
951 	return ret;
952 }
953 EXPORT_SYMBOL(dev_getfirstbyhwtype);
954 
955 /**
956  *	__dev_get_by_flags - find any device with given flags
957  *	@net: the applicable net namespace
958  *	@if_flags: IFF_* values
959  *	@mask: bitmask of bits in if_flags to check
960  *
961  *	Search for any interface with the given flags. Returns NULL if a device
962  *	is not found or a pointer to the device. Must be called inside
963  *	rtnl_lock(), and result refcount is unchanged.
964  */
965 
966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967 				      unsigned short mask)
968 {
969 	struct net_device *dev, *ret;
970 
971 	ASSERT_RTNL();
972 
973 	ret = NULL;
974 	for_each_netdev(net, dev) {
975 		if (((dev->flags ^ if_flags) & mask) == 0) {
976 			ret = dev;
977 			break;
978 		}
979 	}
980 	return ret;
981 }
982 EXPORT_SYMBOL(__dev_get_by_flags);
983 
984 /**
985  *	dev_valid_name - check if name is okay for network device
986  *	@name: name string
987  *
988  *	Network device names need to be valid file names to
989  *	allow sysfs to work.  We also disallow any kind of
990  *	whitespace.
991  */
992 bool dev_valid_name(const char *name)
993 {
994 	if (*name == '\0')
995 		return false;
996 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
997 		return false;
998 	if (!strcmp(name, ".") || !strcmp(name, ".."))
999 		return false;
1000 
1001 	while (*name) {
1002 		if (*name == '/' || *name == ':' || isspace(*name))
1003 			return false;
1004 		name++;
1005 	}
1006 	return true;
1007 }
1008 EXPORT_SYMBOL(dev_valid_name);
1009 
1010 /**
1011  *	__dev_alloc_name - allocate a name for a device
1012  *	@net: network namespace to allocate the device name in
1013  *	@name: name format string
1014  *	@buf:  scratch buffer and result name string
1015  *
1016  *	Passed a format string - eg "lt%d" it will try and find a suitable
1017  *	id. It scans list of devices to build up a free map, then chooses
1018  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1019  *	while allocating the name and adding the device in order to avoid
1020  *	duplicates.
1021  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022  *	Returns the number of the unit assigned or a negative errno code.
1023  */
1024 
1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1026 {
1027 	int i = 0;
1028 	const char *p;
1029 	const int max_netdevices = 8*PAGE_SIZE;
1030 	unsigned long *inuse;
1031 	struct net_device *d;
1032 
1033 	if (!dev_valid_name(name))
1034 		return -EINVAL;
1035 
1036 	p = strchr(name, '%');
1037 	if (p) {
1038 		/*
1039 		 * Verify the string as this thing may have come from
1040 		 * the user.  There must be either one "%d" and no other "%"
1041 		 * characters.
1042 		 */
1043 		if (p[1] != 'd' || strchr(p + 2, '%'))
1044 			return -EINVAL;
1045 
1046 		/* Use one page as a bit array of possible slots */
1047 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1048 		if (!inuse)
1049 			return -ENOMEM;
1050 
1051 		for_each_netdev(net, d) {
1052 			struct netdev_name_node *name_node;
1053 			list_for_each_entry(name_node, &d->name_node->list, list) {
1054 				if (!sscanf(name_node->name, name, &i))
1055 					continue;
1056 				if (i < 0 || i >= max_netdevices)
1057 					continue;
1058 
1059 				/*  avoid cases where sscanf is not exact inverse of printf */
1060 				snprintf(buf, IFNAMSIZ, name, i);
1061 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1062 					__set_bit(i, inuse);
1063 			}
1064 			if (!sscanf(d->name, name, &i))
1065 				continue;
1066 			if (i < 0 || i >= max_netdevices)
1067 				continue;
1068 
1069 			/*  avoid cases where sscanf is not exact inverse of printf */
1070 			snprintf(buf, IFNAMSIZ, name, i);
1071 			if (!strncmp(buf, d->name, IFNAMSIZ))
1072 				__set_bit(i, inuse);
1073 		}
1074 
1075 		i = find_first_zero_bit(inuse, max_netdevices);
1076 		free_page((unsigned long) inuse);
1077 	}
1078 
1079 	snprintf(buf, IFNAMSIZ, name, i);
1080 	if (!netdev_name_in_use(net, buf))
1081 		return i;
1082 
1083 	/* It is possible to run out of possible slots
1084 	 * when the name is long and there isn't enough space left
1085 	 * for the digits, or if all bits are used.
1086 	 */
1087 	return -ENFILE;
1088 }
1089 
1090 static int dev_alloc_name_ns(struct net *net,
1091 			     struct net_device *dev,
1092 			     const char *name)
1093 {
1094 	char buf[IFNAMSIZ];
1095 	int ret;
1096 
1097 	BUG_ON(!net);
1098 	ret = __dev_alloc_name(net, name, buf);
1099 	if (ret >= 0)
1100 		strlcpy(dev->name, buf, IFNAMSIZ);
1101 	return ret;
1102 }
1103 
1104 /**
1105  *	dev_alloc_name - allocate a name for a device
1106  *	@dev: device
1107  *	@name: name format string
1108  *
1109  *	Passed a format string - eg "lt%d" it will try and find a suitable
1110  *	id. It scans list of devices to build up a free map, then chooses
1111  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1112  *	while allocating the name and adding the device in order to avoid
1113  *	duplicates.
1114  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1115  *	Returns the number of the unit assigned or a negative errno code.
1116  */
1117 
1118 int dev_alloc_name(struct net_device *dev, const char *name)
1119 {
1120 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1121 }
1122 EXPORT_SYMBOL(dev_alloc_name);
1123 
1124 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1125 			      const char *name)
1126 {
1127 	BUG_ON(!net);
1128 
1129 	if (!dev_valid_name(name))
1130 		return -EINVAL;
1131 
1132 	if (strchr(name, '%'))
1133 		return dev_alloc_name_ns(net, dev, name);
1134 	else if (netdev_name_in_use(net, name))
1135 		return -EEXIST;
1136 	else if (dev->name != name)
1137 		strlcpy(dev->name, name, IFNAMSIZ);
1138 
1139 	return 0;
1140 }
1141 
1142 /**
1143  *	dev_change_name - change name of a device
1144  *	@dev: device
1145  *	@newname: name (or format string) must be at least IFNAMSIZ
1146  *
1147  *	Change name of a device, can pass format strings "eth%d".
1148  *	for wildcarding.
1149  */
1150 int dev_change_name(struct net_device *dev, const char *newname)
1151 {
1152 	unsigned char old_assign_type;
1153 	char oldname[IFNAMSIZ];
1154 	int err = 0;
1155 	int ret;
1156 	struct net *net;
1157 
1158 	ASSERT_RTNL();
1159 	BUG_ON(!dev_net(dev));
1160 
1161 	net = dev_net(dev);
1162 
1163 	/* Some auto-enslaved devices e.g. failover slaves are
1164 	 * special, as userspace might rename the device after
1165 	 * the interface had been brought up and running since
1166 	 * the point kernel initiated auto-enslavement. Allow
1167 	 * live name change even when these slave devices are
1168 	 * up and running.
1169 	 *
1170 	 * Typically, users of these auto-enslaving devices
1171 	 * don't actually care about slave name change, as
1172 	 * they are supposed to operate on master interface
1173 	 * directly.
1174 	 */
1175 	if (dev->flags & IFF_UP &&
1176 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1177 		return -EBUSY;
1178 
1179 	down_write(&devnet_rename_sem);
1180 
1181 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1182 		up_write(&devnet_rename_sem);
1183 		return 0;
1184 	}
1185 
1186 	memcpy(oldname, dev->name, IFNAMSIZ);
1187 
1188 	err = dev_get_valid_name(net, dev, newname);
1189 	if (err < 0) {
1190 		up_write(&devnet_rename_sem);
1191 		return err;
1192 	}
1193 
1194 	if (oldname[0] && !strchr(oldname, '%'))
1195 		netdev_info(dev, "renamed from %s\n", oldname);
1196 
1197 	old_assign_type = dev->name_assign_type;
1198 	dev->name_assign_type = NET_NAME_RENAMED;
1199 
1200 rollback:
1201 	ret = device_rename(&dev->dev, dev->name);
1202 	if (ret) {
1203 		memcpy(dev->name, oldname, IFNAMSIZ);
1204 		dev->name_assign_type = old_assign_type;
1205 		up_write(&devnet_rename_sem);
1206 		return ret;
1207 	}
1208 
1209 	up_write(&devnet_rename_sem);
1210 
1211 	netdev_adjacent_rename_links(dev, oldname);
1212 
1213 	write_lock(&dev_base_lock);
1214 	netdev_name_node_del(dev->name_node);
1215 	write_unlock(&dev_base_lock);
1216 
1217 	synchronize_rcu();
1218 
1219 	write_lock(&dev_base_lock);
1220 	netdev_name_node_add(net, dev->name_node);
1221 	write_unlock(&dev_base_lock);
1222 
1223 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1224 	ret = notifier_to_errno(ret);
1225 
1226 	if (ret) {
1227 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1228 		if (err >= 0) {
1229 			err = ret;
1230 			down_write(&devnet_rename_sem);
1231 			memcpy(dev->name, oldname, IFNAMSIZ);
1232 			memcpy(oldname, newname, IFNAMSIZ);
1233 			dev->name_assign_type = old_assign_type;
1234 			old_assign_type = NET_NAME_RENAMED;
1235 			goto rollback;
1236 		} else {
1237 			netdev_err(dev, "name change rollback failed: %d\n",
1238 				   ret);
1239 		}
1240 	}
1241 
1242 	return err;
1243 }
1244 
1245 /**
1246  *	dev_set_alias - change ifalias of a device
1247  *	@dev: device
1248  *	@alias: name up to IFALIASZ
1249  *	@len: limit of bytes to copy from info
1250  *
1251  *	Set ifalias for a device,
1252  */
1253 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1254 {
1255 	struct dev_ifalias *new_alias = NULL;
1256 
1257 	if (len >= IFALIASZ)
1258 		return -EINVAL;
1259 
1260 	if (len) {
1261 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1262 		if (!new_alias)
1263 			return -ENOMEM;
1264 
1265 		memcpy(new_alias->ifalias, alias, len);
1266 		new_alias->ifalias[len] = 0;
1267 	}
1268 
1269 	mutex_lock(&ifalias_mutex);
1270 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1271 					mutex_is_locked(&ifalias_mutex));
1272 	mutex_unlock(&ifalias_mutex);
1273 
1274 	if (new_alias)
1275 		kfree_rcu(new_alias, rcuhead);
1276 
1277 	return len;
1278 }
1279 EXPORT_SYMBOL(dev_set_alias);
1280 
1281 /**
1282  *	dev_get_alias - get ifalias of a device
1283  *	@dev: device
1284  *	@name: buffer to store name of ifalias
1285  *	@len: size of buffer
1286  *
1287  *	get ifalias for a device.  Caller must make sure dev cannot go
1288  *	away,  e.g. rcu read lock or own a reference count to device.
1289  */
1290 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1291 {
1292 	const struct dev_ifalias *alias;
1293 	int ret = 0;
1294 
1295 	rcu_read_lock();
1296 	alias = rcu_dereference(dev->ifalias);
1297 	if (alias)
1298 		ret = snprintf(name, len, "%s", alias->ifalias);
1299 	rcu_read_unlock();
1300 
1301 	return ret;
1302 }
1303 
1304 /**
1305  *	netdev_features_change - device changes features
1306  *	@dev: device to cause notification
1307  *
1308  *	Called to indicate a device has changed features.
1309  */
1310 void netdev_features_change(struct net_device *dev)
1311 {
1312 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1313 }
1314 EXPORT_SYMBOL(netdev_features_change);
1315 
1316 /**
1317  *	netdev_state_change - device changes state
1318  *	@dev: device to cause notification
1319  *
1320  *	Called to indicate a device has changed state. This function calls
1321  *	the notifier chains for netdev_chain and sends a NEWLINK message
1322  *	to the routing socket.
1323  */
1324 void netdev_state_change(struct net_device *dev)
1325 {
1326 	if (dev->flags & IFF_UP) {
1327 		struct netdev_notifier_change_info change_info = {
1328 			.info.dev = dev,
1329 		};
1330 
1331 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1332 					      &change_info.info);
1333 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1334 	}
1335 }
1336 EXPORT_SYMBOL(netdev_state_change);
1337 
1338 /**
1339  * __netdev_notify_peers - notify network peers about existence of @dev,
1340  * to be called when rtnl lock is already held.
1341  * @dev: network device
1342  *
1343  * Generate traffic such that interested network peers are aware of
1344  * @dev, such as by generating a gratuitous ARP. This may be used when
1345  * a device wants to inform the rest of the network about some sort of
1346  * reconfiguration such as a failover event or virtual machine
1347  * migration.
1348  */
1349 void __netdev_notify_peers(struct net_device *dev)
1350 {
1351 	ASSERT_RTNL();
1352 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1353 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1354 }
1355 EXPORT_SYMBOL(__netdev_notify_peers);
1356 
1357 /**
1358  * netdev_notify_peers - notify network peers about existence of @dev
1359  * @dev: network device
1360  *
1361  * Generate traffic such that interested network peers are aware of
1362  * @dev, such as by generating a gratuitous ARP. This may be used when
1363  * a device wants to inform the rest of the network about some sort of
1364  * reconfiguration such as a failover event or virtual machine
1365  * migration.
1366  */
1367 void netdev_notify_peers(struct net_device *dev)
1368 {
1369 	rtnl_lock();
1370 	__netdev_notify_peers(dev);
1371 	rtnl_unlock();
1372 }
1373 EXPORT_SYMBOL(netdev_notify_peers);
1374 
1375 static int napi_threaded_poll(void *data);
1376 
1377 static int napi_kthread_create(struct napi_struct *n)
1378 {
1379 	int err = 0;
1380 
1381 	/* Create and wake up the kthread once to put it in
1382 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1383 	 * warning and work with loadavg.
1384 	 */
1385 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1386 				n->dev->name, n->napi_id);
1387 	if (IS_ERR(n->thread)) {
1388 		err = PTR_ERR(n->thread);
1389 		pr_err("kthread_run failed with err %d\n", err);
1390 		n->thread = NULL;
1391 	}
1392 
1393 	return err;
1394 }
1395 
1396 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1397 {
1398 	const struct net_device_ops *ops = dev->netdev_ops;
1399 	int ret;
1400 
1401 	ASSERT_RTNL();
1402 	dev_addr_check(dev);
1403 
1404 	if (!netif_device_present(dev)) {
1405 		/* may be detached because parent is runtime-suspended */
1406 		if (dev->dev.parent)
1407 			pm_runtime_resume(dev->dev.parent);
1408 		if (!netif_device_present(dev))
1409 			return -ENODEV;
1410 	}
1411 
1412 	/* Block netpoll from trying to do any rx path servicing.
1413 	 * If we don't do this there is a chance ndo_poll_controller
1414 	 * or ndo_poll may be running while we open the device
1415 	 */
1416 	netpoll_poll_disable(dev);
1417 
1418 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1419 	ret = notifier_to_errno(ret);
1420 	if (ret)
1421 		return ret;
1422 
1423 	set_bit(__LINK_STATE_START, &dev->state);
1424 
1425 	if (ops->ndo_validate_addr)
1426 		ret = ops->ndo_validate_addr(dev);
1427 
1428 	if (!ret && ops->ndo_open)
1429 		ret = ops->ndo_open(dev);
1430 
1431 	netpoll_poll_enable(dev);
1432 
1433 	if (ret)
1434 		clear_bit(__LINK_STATE_START, &dev->state);
1435 	else {
1436 		dev->flags |= IFF_UP;
1437 		dev_set_rx_mode(dev);
1438 		dev_activate(dev);
1439 		add_device_randomness(dev->dev_addr, dev->addr_len);
1440 	}
1441 
1442 	return ret;
1443 }
1444 
1445 /**
1446  *	dev_open	- prepare an interface for use.
1447  *	@dev: device to open
1448  *	@extack: netlink extended ack
1449  *
1450  *	Takes a device from down to up state. The device's private open
1451  *	function is invoked and then the multicast lists are loaded. Finally
1452  *	the device is moved into the up state and a %NETDEV_UP message is
1453  *	sent to the netdev notifier chain.
1454  *
1455  *	Calling this function on an active interface is a nop. On a failure
1456  *	a negative errno code is returned.
1457  */
1458 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1459 {
1460 	int ret;
1461 
1462 	if (dev->flags & IFF_UP)
1463 		return 0;
1464 
1465 	ret = __dev_open(dev, extack);
1466 	if (ret < 0)
1467 		return ret;
1468 
1469 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1470 	call_netdevice_notifiers(NETDEV_UP, dev);
1471 
1472 	return ret;
1473 }
1474 EXPORT_SYMBOL(dev_open);
1475 
1476 static void __dev_close_many(struct list_head *head)
1477 {
1478 	struct net_device *dev;
1479 
1480 	ASSERT_RTNL();
1481 	might_sleep();
1482 
1483 	list_for_each_entry(dev, head, close_list) {
1484 		/* Temporarily disable netpoll until the interface is down */
1485 		netpoll_poll_disable(dev);
1486 
1487 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1488 
1489 		clear_bit(__LINK_STATE_START, &dev->state);
1490 
1491 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1492 		 * can be even on different cpu. So just clear netif_running().
1493 		 *
1494 		 * dev->stop() will invoke napi_disable() on all of it's
1495 		 * napi_struct instances on this device.
1496 		 */
1497 		smp_mb__after_atomic(); /* Commit netif_running(). */
1498 	}
1499 
1500 	dev_deactivate_many(head);
1501 
1502 	list_for_each_entry(dev, head, close_list) {
1503 		const struct net_device_ops *ops = dev->netdev_ops;
1504 
1505 		/*
1506 		 *	Call the device specific close. This cannot fail.
1507 		 *	Only if device is UP
1508 		 *
1509 		 *	We allow it to be called even after a DETACH hot-plug
1510 		 *	event.
1511 		 */
1512 		if (ops->ndo_stop)
1513 			ops->ndo_stop(dev);
1514 
1515 		dev->flags &= ~IFF_UP;
1516 		netpoll_poll_enable(dev);
1517 	}
1518 }
1519 
1520 static void __dev_close(struct net_device *dev)
1521 {
1522 	LIST_HEAD(single);
1523 
1524 	list_add(&dev->close_list, &single);
1525 	__dev_close_many(&single);
1526 	list_del(&single);
1527 }
1528 
1529 void dev_close_many(struct list_head *head, bool unlink)
1530 {
1531 	struct net_device *dev, *tmp;
1532 
1533 	/* Remove the devices that don't need to be closed */
1534 	list_for_each_entry_safe(dev, tmp, head, close_list)
1535 		if (!(dev->flags & IFF_UP))
1536 			list_del_init(&dev->close_list);
1537 
1538 	__dev_close_many(head);
1539 
1540 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1541 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1542 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1543 		if (unlink)
1544 			list_del_init(&dev->close_list);
1545 	}
1546 }
1547 EXPORT_SYMBOL(dev_close_many);
1548 
1549 /**
1550  *	dev_close - shutdown an interface.
1551  *	@dev: device to shutdown
1552  *
1553  *	This function moves an active device into down state. A
1554  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1555  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1556  *	chain.
1557  */
1558 void dev_close(struct net_device *dev)
1559 {
1560 	if (dev->flags & IFF_UP) {
1561 		LIST_HEAD(single);
1562 
1563 		list_add(&dev->close_list, &single);
1564 		dev_close_many(&single, true);
1565 		list_del(&single);
1566 	}
1567 }
1568 EXPORT_SYMBOL(dev_close);
1569 
1570 
1571 /**
1572  *	dev_disable_lro - disable Large Receive Offload on a device
1573  *	@dev: device
1574  *
1575  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1576  *	called under RTNL.  This is needed if received packets may be
1577  *	forwarded to another interface.
1578  */
1579 void dev_disable_lro(struct net_device *dev)
1580 {
1581 	struct net_device *lower_dev;
1582 	struct list_head *iter;
1583 
1584 	dev->wanted_features &= ~NETIF_F_LRO;
1585 	netdev_update_features(dev);
1586 
1587 	if (unlikely(dev->features & NETIF_F_LRO))
1588 		netdev_WARN(dev, "failed to disable LRO!\n");
1589 
1590 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1591 		dev_disable_lro(lower_dev);
1592 }
1593 EXPORT_SYMBOL(dev_disable_lro);
1594 
1595 /**
1596  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1597  *	@dev: device
1598  *
1599  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1600  *	called under RTNL.  This is needed if Generic XDP is installed on
1601  *	the device.
1602  */
1603 static void dev_disable_gro_hw(struct net_device *dev)
1604 {
1605 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1606 	netdev_update_features(dev);
1607 
1608 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1609 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1610 }
1611 
1612 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1613 {
1614 #define N(val) 						\
1615 	case NETDEV_##val:				\
1616 		return "NETDEV_" __stringify(val);
1617 	switch (cmd) {
1618 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1619 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1620 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1621 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1622 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1623 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1624 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1625 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1626 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1627 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1628 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1629 	}
1630 #undef N
1631 	return "UNKNOWN_NETDEV_EVENT";
1632 }
1633 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1634 
1635 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1636 				   struct net_device *dev)
1637 {
1638 	struct netdev_notifier_info info = {
1639 		.dev = dev,
1640 	};
1641 
1642 	return nb->notifier_call(nb, val, &info);
1643 }
1644 
1645 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1646 					     struct net_device *dev)
1647 {
1648 	int err;
1649 
1650 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1651 	err = notifier_to_errno(err);
1652 	if (err)
1653 		return err;
1654 
1655 	if (!(dev->flags & IFF_UP))
1656 		return 0;
1657 
1658 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1659 	return 0;
1660 }
1661 
1662 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1663 						struct net_device *dev)
1664 {
1665 	if (dev->flags & IFF_UP) {
1666 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1667 					dev);
1668 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1669 	}
1670 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1671 }
1672 
1673 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1674 						 struct net *net)
1675 {
1676 	struct net_device *dev;
1677 	int err;
1678 
1679 	for_each_netdev(net, dev) {
1680 		err = call_netdevice_register_notifiers(nb, dev);
1681 		if (err)
1682 			goto rollback;
1683 	}
1684 	return 0;
1685 
1686 rollback:
1687 	for_each_netdev_continue_reverse(net, dev)
1688 		call_netdevice_unregister_notifiers(nb, dev);
1689 	return err;
1690 }
1691 
1692 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1693 						    struct net *net)
1694 {
1695 	struct net_device *dev;
1696 
1697 	for_each_netdev(net, dev)
1698 		call_netdevice_unregister_notifiers(nb, dev);
1699 }
1700 
1701 static int dev_boot_phase = 1;
1702 
1703 /**
1704  * register_netdevice_notifier - register a network notifier block
1705  * @nb: notifier
1706  *
1707  * Register a notifier to be called when network device events occur.
1708  * The notifier passed is linked into the kernel structures and must
1709  * not be reused until it has been unregistered. A negative errno code
1710  * is returned on a failure.
1711  *
1712  * When registered all registration and up events are replayed
1713  * to the new notifier to allow device to have a race free
1714  * view of the network device list.
1715  */
1716 
1717 int register_netdevice_notifier(struct notifier_block *nb)
1718 {
1719 	struct net *net;
1720 	int err;
1721 
1722 	/* Close race with setup_net() and cleanup_net() */
1723 	down_write(&pernet_ops_rwsem);
1724 	rtnl_lock();
1725 	err = raw_notifier_chain_register(&netdev_chain, nb);
1726 	if (err)
1727 		goto unlock;
1728 	if (dev_boot_phase)
1729 		goto unlock;
1730 	for_each_net(net) {
1731 		err = call_netdevice_register_net_notifiers(nb, net);
1732 		if (err)
1733 			goto rollback;
1734 	}
1735 
1736 unlock:
1737 	rtnl_unlock();
1738 	up_write(&pernet_ops_rwsem);
1739 	return err;
1740 
1741 rollback:
1742 	for_each_net_continue_reverse(net)
1743 		call_netdevice_unregister_net_notifiers(nb, net);
1744 
1745 	raw_notifier_chain_unregister(&netdev_chain, nb);
1746 	goto unlock;
1747 }
1748 EXPORT_SYMBOL(register_netdevice_notifier);
1749 
1750 /**
1751  * unregister_netdevice_notifier - unregister a network notifier block
1752  * @nb: notifier
1753  *
1754  * Unregister a notifier previously registered by
1755  * register_netdevice_notifier(). The notifier is unlinked into the
1756  * kernel structures and may then be reused. A negative errno code
1757  * is returned on a failure.
1758  *
1759  * After unregistering unregister and down device events are synthesized
1760  * for all devices on the device list to the removed notifier to remove
1761  * the need for special case cleanup code.
1762  */
1763 
1764 int unregister_netdevice_notifier(struct notifier_block *nb)
1765 {
1766 	struct net *net;
1767 	int err;
1768 
1769 	/* Close race with setup_net() and cleanup_net() */
1770 	down_write(&pernet_ops_rwsem);
1771 	rtnl_lock();
1772 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1773 	if (err)
1774 		goto unlock;
1775 
1776 	for_each_net(net)
1777 		call_netdevice_unregister_net_notifiers(nb, net);
1778 
1779 unlock:
1780 	rtnl_unlock();
1781 	up_write(&pernet_ops_rwsem);
1782 	return err;
1783 }
1784 EXPORT_SYMBOL(unregister_netdevice_notifier);
1785 
1786 static int __register_netdevice_notifier_net(struct net *net,
1787 					     struct notifier_block *nb,
1788 					     bool ignore_call_fail)
1789 {
1790 	int err;
1791 
1792 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1793 	if (err)
1794 		return err;
1795 	if (dev_boot_phase)
1796 		return 0;
1797 
1798 	err = call_netdevice_register_net_notifiers(nb, net);
1799 	if (err && !ignore_call_fail)
1800 		goto chain_unregister;
1801 
1802 	return 0;
1803 
1804 chain_unregister:
1805 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1806 	return err;
1807 }
1808 
1809 static int __unregister_netdevice_notifier_net(struct net *net,
1810 					       struct notifier_block *nb)
1811 {
1812 	int err;
1813 
1814 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1815 	if (err)
1816 		return err;
1817 
1818 	call_netdevice_unregister_net_notifiers(nb, net);
1819 	return 0;
1820 }
1821 
1822 /**
1823  * register_netdevice_notifier_net - register a per-netns network notifier block
1824  * @net: network namespace
1825  * @nb: notifier
1826  *
1827  * Register a notifier to be called when network device events occur.
1828  * The notifier passed is linked into the kernel structures and must
1829  * not be reused until it has been unregistered. A negative errno code
1830  * is returned on a failure.
1831  *
1832  * When registered all registration and up events are replayed
1833  * to the new notifier to allow device to have a race free
1834  * view of the network device list.
1835  */
1836 
1837 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1838 {
1839 	int err;
1840 
1841 	rtnl_lock();
1842 	err = __register_netdevice_notifier_net(net, nb, false);
1843 	rtnl_unlock();
1844 	return err;
1845 }
1846 EXPORT_SYMBOL(register_netdevice_notifier_net);
1847 
1848 /**
1849  * unregister_netdevice_notifier_net - unregister a per-netns
1850  *                                     network notifier block
1851  * @net: network namespace
1852  * @nb: notifier
1853  *
1854  * Unregister a notifier previously registered by
1855  * register_netdevice_notifier(). The notifier is unlinked into the
1856  * kernel structures and may then be reused. A negative errno code
1857  * is returned on a failure.
1858  *
1859  * After unregistering unregister and down device events are synthesized
1860  * for all devices on the device list to the removed notifier to remove
1861  * the need for special case cleanup code.
1862  */
1863 
1864 int unregister_netdevice_notifier_net(struct net *net,
1865 				      struct notifier_block *nb)
1866 {
1867 	int err;
1868 
1869 	rtnl_lock();
1870 	err = __unregister_netdevice_notifier_net(net, nb);
1871 	rtnl_unlock();
1872 	return err;
1873 }
1874 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1875 
1876 int register_netdevice_notifier_dev_net(struct net_device *dev,
1877 					struct notifier_block *nb,
1878 					struct netdev_net_notifier *nn)
1879 {
1880 	int err;
1881 
1882 	rtnl_lock();
1883 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1884 	if (!err) {
1885 		nn->nb = nb;
1886 		list_add(&nn->list, &dev->net_notifier_list);
1887 	}
1888 	rtnl_unlock();
1889 	return err;
1890 }
1891 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1892 
1893 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1894 					  struct notifier_block *nb,
1895 					  struct netdev_net_notifier *nn)
1896 {
1897 	int err;
1898 
1899 	rtnl_lock();
1900 	list_del(&nn->list);
1901 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1902 	rtnl_unlock();
1903 	return err;
1904 }
1905 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1906 
1907 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1908 					     struct net *net)
1909 {
1910 	struct netdev_net_notifier *nn;
1911 
1912 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1913 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1914 		__register_netdevice_notifier_net(net, nn->nb, true);
1915 	}
1916 }
1917 
1918 /**
1919  *	call_netdevice_notifiers_info - call all network notifier blocks
1920  *	@val: value passed unmodified to notifier function
1921  *	@info: notifier information data
1922  *
1923  *	Call all network notifier blocks.  Parameters and return value
1924  *	are as for raw_notifier_call_chain().
1925  */
1926 
1927 static int call_netdevice_notifiers_info(unsigned long val,
1928 					 struct netdev_notifier_info *info)
1929 {
1930 	struct net *net = dev_net(info->dev);
1931 	int ret;
1932 
1933 	ASSERT_RTNL();
1934 
1935 	/* Run per-netns notifier block chain first, then run the global one.
1936 	 * Hopefully, one day, the global one is going to be removed after
1937 	 * all notifier block registrators get converted to be per-netns.
1938 	 */
1939 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1940 	if (ret & NOTIFY_STOP_MASK)
1941 		return ret;
1942 	return raw_notifier_call_chain(&netdev_chain, val, info);
1943 }
1944 
1945 /**
1946  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1947  *	                                       for and rollback on error
1948  *	@val_up: value passed unmodified to notifier function
1949  *	@val_down: value passed unmodified to the notifier function when
1950  *	           recovering from an error on @val_up
1951  *	@info: notifier information data
1952  *
1953  *	Call all per-netns network notifier blocks, but not notifier blocks on
1954  *	the global notifier chain. Parameters and return value are as for
1955  *	raw_notifier_call_chain_robust().
1956  */
1957 
1958 static int
1959 call_netdevice_notifiers_info_robust(unsigned long val_up,
1960 				     unsigned long val_down,
1961 				     struct netdev_notifier_info *info)
1962 {
1963 	struct net *net = dev_net(info->dev);
1964 
1965 	ASSERT_RTNL();
1966 
1967 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1968 					      val_up, val_down, info);
1969 }
1970 
1971 static int call_netdevice_notifiers_extack(unsigned long val,
1972 					   struct net_device *dev,
1973 					   struct netlink_ext_ack *extack)
1974 {
1975 	struct netdev_notifier_info info = {
1976 		.dev = dev,
1977 		.extack = extack,
1978 	};
1979 
1980 	return call_netdevice_notifiers_info(val, &info);
1981 }
1982 
1983 /**
1984  *	call_netdevice_notifiers - call all network notifier blocks
1985  *      @val: value passed unmodified to notifier function
1986  *      @dev: net_device pointer passed unmodified to notifier function
1987  *
1988  *	Call all network notifier blocks.  Parameters and return value
1989  *	are as for raw_notifier_call_chain().
1990  */
1991 
1992 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1993 {
1994 	return call_netdevice_notifiers_extack(val, dev, NULL);
1995 }
1996 EXPORT_SYMBOL(call_netdevice_notifiers);
1997 
1998 /**
1999  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2000  *	@val: value passed unmodified to notifier function
2001  *	@dev: net_device pointer passed unmodified to notifier function
2002  *	@arg: additional u32 argument passed to the notifier function
2003  *
2004  *	Call all network notifier blocks.  Parameters and return value
2005  *	are as for raw_notifier_call_chain().
2006  */
2007 static int call_netdevice_notifiers_mtu(unsigned long val,
2008 					struct net_device *dev, u32 arg)
2009 {
2010 	struct netdev_notifier_info_ext info = {
2011 		.info.dev = dev,
2012 		.ext.mtu = arg,
2013 	};
2014 
2015 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2016 
2017 	return call_netdevice_notifiers_info(val, &info.info);
2018 }
2019 
2020 #ifdef CONFIG_NET_INGRESS
2021 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2022 
2023 void net_inc_ingress_queue(void)
2024 {
2025 	static_branch_inc(&ingress_needed_key);
2026 }
2027 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2028 
2029 void net_dec_ingress_queue(void)
2030 {
2031 	static_branch_dec(&ingress_needed_key);
2032 }
2033 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2034 #endif
2035 
2036 #ifdef CONFIG_NET_EGRESS
2037 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2038 
2039 void net_inc_egress_queue(void)
2040 {
2041 	static_branch_inc(&egress_needed_key);
2042 }
2043 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2044 
2045 void net_dec_egress_queue(void)
2046 {
2047 	static_branch_dec(&egress_needed_key);
2048 }
2049 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2050 #endif
2051 
2052 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2053 EXPORT_SYMBOL(netstamp_needed_key);
2054 #ifdef CONFIG_JUMP_LABEL
2055 static atomic_t netstamp_needed_deferred;
2056 static atomic_t netstamp_wanted;
2057 static void netstamp_clear(struct work_struct *work)
2058 {
2059 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2060 	int wanted;
2061 
2062 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2063 	if (wanted > 0)
2064 		static_branch_enable(&netstamp_needed_key);
2065 	else
2066 		static_branch_disable(&netstamp_needed_key);
2067 }
2068 static DECLARE_WORK(netstamp_work, netstamp_clear);
2069 #endif
2070 
2071 void net_enable_timestamp(void)
2072 {
2073 #ifdef CONFIG_JUMP_LABEL
2074 	int wanted;
2075 
2076 	while (1) {
2077 		wanted = atomic_read(&netstamp_wanted);
2078 		if (wanted <= 0)
2079 			break;
2080 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2081 			return;
2082 	}
2083 	atomic_inc(&netstamp_needed_deferred);
2084 	schedule_work(&netstamp_work);
2085 #else
2086 	static_branch_inc(&netstamp_needed_key);
2087 #endif
2088 }
2089 EXPORT_SYMBOL(net_enable_timestamp);
2090 
2091 void net_disable_timestamp(void)
2092 {
2093 #ifdef CONFIG_JUMP_LABEL
2094 	int wanted;
2095 
2096 	while (1) {
2097 		wanted = atomic_read(&netstamp_wanted);
2098 		if (wanted <= 1)
2099 			break;
2100 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2101 			return;
2102 	}
2103 	atomic_dec(&netstamp_needed_deferred);
2104 	schedule_work(&netstamp_work);
2105 #else
2106 	static_branch_dec(&netstamp_needed_key);
2107 #endif
2108 }
2109 EXPORT_SYMBOL(net_disable_timestamp);
2110 
2111 static inline void net_timestamp_set(struct sk_buff *skb)
2112 {
2113 	skb->tstamp = 0;
2114 	skb->mono_delivery_time = 0;
2115 	if (static_branch_unlikely(&netstamp_needed_key))
2116 		skb->tstamp = ktime_get_real();
2117 }
2118 
2119 #define net_timestamp_check(COND, SKB)				\
2120 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2121 		if ((COND) && !(SKB)->tstamp)			\
2122 			(SKB)->tstamp = ktime_get_real();	\
2123 	}							\
2124 
2125 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2126 {
2127 	return __is_skb_forwardable(dev, skb, true);
2128 }
2129 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2130 
2131 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2132 			      bool check_mtu)
2133 {
2134 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2135 
2136 	if (likely(!ret)) {
2137 		skb->protocol = eth_type_trans(skb, dev);
2138 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2139 	}
2140 
2141 	return ret;
2142 }
2143 
2144 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2145 {
2146 	return __dev_forward_skb2(dev, skb, true);
2147 }
2148 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2149 
2150 /**
2151  * dev_forward_skb - loopback an skb to another netif
2152  *
2153  * @dev: destination network device
2154  * @skb: buffer to forward
2155  *
2156  * return values:
2157  *	NET_RX_SUCCESS	(no congestion)
2158  *	NET_RX_DROP     (packet was dropped, but freed)
2159  *
2160  * dev_forward_skb can be used for injecting an skb from the
2161  * start_xmit function of one device into the receive queue
2162  * of another device.
2163  *
2164  * The receiving device may be in another namespace, so
2165  * we have to clear all information in the skb that could
2166  * impact namespace isolation.
2167  */
2168 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2169 {
2170 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2171 }
2172 EXPORT_SYMBOL_GPL(dev_forward_skb);
2173 
2174 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2175 {
2176 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2177 }
2178 
2179 static inline int deliver_skb(struct sk_buff *skb,
2180 			      struct packet_type *pt_prev,
2181 			      struct net_device *orig_dev)
2182 {
2183 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2184 		return -ENOMEM;
2185 	refcount_inc(&skb->users);
2186 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2187 }
2188 
2189 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2190 					  struct packet_type **pt,
2191 					  struct net_device *orig_dev,
2192 					  __be16 type,
2193 					  struct list_head *ptype_list)
2194 {
2195 	struct packet_type *ptype, *pt_prev = *pt;
2196 
2197 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2198 		if (ptype->type != type)
2199 			continue;
2200 		if (pt_prev)
2201 			deliver_skb(skb, pt_prev, orig_dev);
2202 		pt_prev = ptype;
2203 	}
2204 	*pt = pt_prev;
2205 }
2206 
2207 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2208 {
2209 	if (!ptype->af_packet_priv || !skb->sk)
2210 		return false;
2211 
2212 	if (ptype->id_match)
2213 		return ptype->id_match(ptype, skb->sk);
2214 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2215 		return true;
2216 
2217 	return false;
2218 }
2219 
2220 /**
2221  * dev_nit_active - return true if any network interface taps are in use
2222  *
2223  * @dev: network device to check for the presence of taps
2224  */
2225 bool dev_nit_active(struct net_device *dev)
2226 {
2227 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2228 }
2229 EXPORT_SYMBOL_GPL(dev_nit_active);
2230 
2231 /*
2232  *	Support routine. Sends outgoing frames to any network
2233  *	taps currently in use.
2234  */
2235 
2236 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2237 {
2238 	struct packet_type *ptype;
2239 	struct sk_buff *skb2 = NULL;
2240 	struct packet_type *pt_prev = NULL;
2241 	struct list_head *ptype_list = &ptype_all;
2242 
2243 	rcu_read_lock();
2244 again:
2245 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2246 		if (ptype->ignore_outgoing)
2247 			continue;
2248 
2249 		/* Never send packets back to the socket
2250 		 * they originated from - MvS (miquels@drinkel.ow.org)
2251 		 */
2252 		if (skb_loop_sk(ptype, skb))
2253 			continue;
2254 
2255 		if (pt_prev) {
2256 			deliver_skb(skb2, pt_prev, skb->dev);
2257 			pt_prev = ptype;
2258 			continue;
2259 		}
2260 
2261 		/* need to clone skb, done only once */
2262 		skb2 = skb_clone(skb, GFP_ATOMIC);
2263 		if (!skb2)
2264 			goto out_unlock;
2265 
2266 		net_timestamp_set(skb2);
2267 
2268 		/* skb->nh should be correctly
2269 		 * set by sender, so that the second statement is
2270 		 * just protection against buggy protocols.
2271 		 */
2272 		skb_reset_mac_header(skb2);
2273 
2274 		if (skb_network_header(skb2) < skb2->data ||
2275 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2276 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2277 					     ntohs(skb2->protocol),
2278 					     dev->name);
2279 			skb_reset_network_header(skb2);
2280 		}
2281 
2282 		skb2->transport_header = skb2->network_header;
2283 		skb2->pkt_type = PACKET_OUTGOING;
2284 		pt_prev = ptype;
2285 	}
2286 
2287 	if (ptype_list == &ptype_all) {
2288 		ptype_list = &dev->ptype_all;
2289 		goto again;
2290 	}
2291 out_unlock:
2292 	if (pt_prev) {
2293 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2294 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2295 		else
2296 			kfree_skb(skb2);
2297 	}
2298 	rcu_read_unlock();
2299 }
2300 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2301 
2302 /**
2303  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2304  * @dev: Network device
2305  * @txq: number of queues available
2306  *
2307  * If real_num_tx_queues is changed the tc mappings may no longer be
2308  * valid. To resolve this verify the tc mapping remains valid and if
2309  * not NULL the mapping. With no priorities mapping to this
2310  * offset/count pair it will no longer be used. In the worst case TC0
2311  * is invalid nothing can be done so disable priority mappings. If is
2312  * expected that drivers will fix this mapping if they can before
2313  * calling netif_set_real_num_tx_queues.
2314  */
2315 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2316 {
2317 	int i;
2318 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2319 
2320 	/* If TC0 is invalidated disable TC mapping */
2321 	if (tc->offset + tc->count > txq) {
2322 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2323 		dev->num_tc = 0;
2324 		return;
2325 	}
2326 
2327 	/* Invalidated prio to tc mappings set to TC0 */
2328 	for (i = 1; i < TC_BITMASK + 1; i++) {
2329 		int q = netdev_get_prio_tc_map(dev, i);
2330 
2331 		tc = &dev->tc_to_txq[q];
2332 		if (tc->offset + tc->count > txq) {
2333 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2334 				    i, q);
2335 			netdev_set_prio_tc_map(dev, i, 0);
2336 		}
2337 	}
2338 }
2339 
2340 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2341 {
2342 	if (dev->num_tc) {
2343 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2344 		int i;
2345 
2346 		/* walk through the TCs and see if it falls into any of them */
2347 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2348 			if ((txq - tc->offset) < tc->count)
2349 				return i;
2350 		}
2351 
2352 		/* didn't find it, just return -1 to indicate no match */
2353 		return -1;
2354 	}
2355 
2356 	return 0;
2357 }
2358 EXPORT_SYMBOL(netdev_txq_to_tc);
2359 
2360 #ifdef CONFIG_XPS
2361 static struct static_key xps_needed __read_mostly;
2362 static struct static_key xps_rxqs_needed __read_mostly;
2363 static DEFINE_MUTEX(xps_map_mutex);
2364 #define xmap_dereference(P)		\
2365 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2366 
2367 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2368 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2369 {
2370 	struct xps_map *map = NULL;
2371 	int pos;
2372 
2373 	if (dev_maps)
2374 		map = xmap_dereference(dev_maps->attr_map[tci]);
2375 	if (!map)
2376 		return false;
2377 
2378 	for (pos = map->len; pos--;) {
2379 		if (map->queues[pos] != index)
2380 			continue;
2381 
2382 		if (map->len > 1) {
2383 			map->queues[pos] = map->queues[--map->len];
2384 			break;
2385 		}
2386 
2387 		if (old_maps)
2388 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2389 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2390 		kfree_rcu(map, rcu);
2391 		return false;
2392 	}
2393 
2394 	return true;
2395 }
2396 
2397 static bool remove_xps_queue_cpu(struct net_device *dev,
2398 				 struct xps_dev_maps *dev_maps,
2399 				 int cpu, u16 offset, u16 count)
2400 {
2401 	int num_tc = dev_maps->num_tc;
2402 	bool active = false;
2403 	int tci;
2404 
2405 	for (tci = cpu * num_tc; num_tc--; tci++) {
2406 		int i, j;
2407 
2408 		for (i = count, j = offset; i--; j++) {
2409 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2410 				break;
2411 		}
2412 
2413 		active |= i < 0;
2414 	}
2415 
2416 	return active;
2417 }
2418 
2419 static void reset_xps_maps(struct net_device *dev,
2420 			   struct xps_dev_maps *dev_maps,
2421 			   enum xps_map_type type)
2422 {
2423 	static_key_slow_dec_cpuslocked(&xps_needed);
2424 	if (type == XPS_RXQS)
2425 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2426 
2427 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2428 
2429 	kfree_rcu(dev_maps, rcu);
2430 }
2431 
2432 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2433 			   u16 offset, u16 count)
2434 {
2435 	struct xps_dev_maps *dev_maps;
2436 	bool active = false;
2437 	int i, j;
2438 
2439 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2440 	if (!dev_maps)
2441 		return;
2442 
2443 	for (j = 0; j < dev_maps->nr_ids; j++)
2444 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2445 	if (!active)
2446 		reset_xps_maps(dev, dev_maps, type);
2447 
2448 	if (type == XPS_CPUS) {
2449 		for (i = offset + (count - 1); count--; i--)
2450 			netdev_queue_numa_node_write(
2451 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2452 	}
2453 }
2454 
2455 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2456 				   u16 count)
2457 {
2458 	if (!static_key_false(&xps_needed))
2459 		return;
2460 
2461 	cpus_read_lock();
2462 	mutex_lock(&xps_map_mutex);
2463 
2464 	if (static_key_false(&xps_rxqs_needed))
2465 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2466 
2467 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2468 
2469 	mutex_unlock(&xps_map_mutex);
2470 	cpus_read_unlock();
2471 }
2472 
2473 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2474 {
2475 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2476 }
2477 
2478 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2479 				      u16 index, bool is_rxqs_map)
2480 {
2481 	struct xps_map *new_map;
2482 	int alloc_len = XPS_MIN_MAP_ALLOC;
2483 	int i, pos;
2484 
2485 	for (pos = 0; map && pos < map->len; pos++) {
2486 		if (map->queues[pos] != index)
2487 			continue;
2488 		return map;
2489 	}
2490 
2491 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2492 	if (map) {
2493 		if (pos < map->alloc_len)
2494 			return map;
2495 
2496 		alloc_len = map->alloc_len * 2;
2497 	}
2498 
2499 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2500 	 *  map
2501 	 */
2502 	if (is_rxqs_map)
2503 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2504 	else
2505 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2506 				       cpu_to_node(attr_index));
2507 	if (!new_map)
2508 		return NULL;
2509 
2510 	for (i = 0; i < pos; i++)
2511 		new_map->queues[i] = map->queues[i];
2512 	new_map->alloc_len = alloc_len;
2513 	new_map->len = pos;
2514 
2515 	return new_map;
2516 }
2517 
2518 /* Copy xps maps at a given index */
2519 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2520 			      struct xps_dev_maps *new_dev_maps, int index,
2521 			      int tc, bool skip_tc)
2522 {
2523 	int i, tci = index * dev_maps->num_tc;
2524 	struct xps_map *map;
2525 
2526 	/* copy maps belonging to foreign traffic classes */
2527 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2528 		if (i == tc && skip_tc)
2529 			continue;
2530 
2531 		/* fill in the new device map from the old device map */
2532 		map = xmap_dereference(dev_maps->attr_map[tci]);
2533 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2534 	}
2535 }
2536 
2537 /* Must be called under cpus_read_lock */
2538 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2539 			  u16 index, enum xps_map_type type)
2540 {
2541 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2542 	const unsigned long *online_mask = NULL;
2543 	bool active = false, copy = false;
2544 	int i, j, tci, numa_node_id = -2;
2545 	int maps_sz, num_tc = 1, tc = 0;
2546 	struct xps_map *map, *new_map;
2547 	unsigned int nr_ids;
2548 
2549 	if (dev->num_tc) {
2550 		/* Do not allow XPS on subordinate device directly */
2551 		num_tc = dev->num_tc;
2552 		if (num_tc < 0)
2553 			return -EINVAL;
2554 
2555 		/* If queue belongs to subordinate dev use its map */
2556 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2557 
2558 		tc = netdev_txq_to_tc(dev, index);
2559 		if (tc < 0)
2560 			return -EINVAL;
2561 	}
2562 
2563 	mutex_lock(&xps_map_mutex);
2564 
2565 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2566 	if (type == XPS_RXQS) {
2567 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2568 		nr_ids = dev->num_rx_queues;
2569 	} else {
2570 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2571 		if (num_possible_cpus() > 1)
2572 			online_mask = cpumask_bits(cpu_online_mask);
2573 		nr_ids = nr_cpu_ids;
2574 	}
2575 
2576 	if (maps_sz < L1_CACHE_BYTES)
2577 		maps_sz = L1_CACHE_BYTES;
2578 
2579 	/* The old dev_maps could be larger or smaller than the one we're
2580 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2581 	 * between. We could try to be smart, but let's be safe instead and only
2582 	 * copy foreign traffic classes if the two map sizes match.
2583 	 */
2584 	if (dev_maps &&
2585 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2586 		copy = true;
2587 
2588 	/* allocate memory for queue storage */
2589 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2590 	     j < nr_ids;) {
2591 		if (!new_dev_maps) {
2592 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2593 			if (!new_dev_maps) {
2594 				mutex_unlock(&xps_map_mutex);
2595 				return -ENOMEM;
2596 			}
2597 
2598 			new_dev_maps->nr_ids = nr_ids;
2599 			new_dev_maps->num_tc = num_tc;
2600 		}
2601 
2602 		tci = j * num_tc + tc;
2603 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2604 
2605 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2606 		if (!map)
2607 			goto error;
2608 
2609 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2610 	}
2611 
2612 	if (!new_dev_maps)
2613 		goto out_no_new_maps;
2614 
2615 	if (!dev_maps) {
2616 		/* Increment static keys at most once per type */
2617 		static_key_slow_inc_cpuslocked(&xps_needed);
2618 		if (type == XPS_RXQS)
2619 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2620 	}
2621 
2622 	for (j = 0; j < nr_ids; j++) {
2623 		bool skip_tc = false;
2624 
2625 		tci = j * num_tc + tc;
2626 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2627 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2628 			/* add tx-queue to CPU/rx-queue maps */
2629 			int pos = 0;
2630 
2631 			skip_tc = true;
2632 
2633 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2634 			while ((pos < map->len) && (map->queues[pos] != index))
2635 				pos++;
2636 
2637 			if (pos == map->len)
2638 				map->queues[map->len++] = index;
2639 #ifdef CONFIG_NUMA
2640 			if (type == XPS_CPUS) {
2641 				if (numa_node_id == -2)
2642 					numa_node_id = cpu_to_node(j);
2643 				else if (numa_node_id != cpu_to_node(j))
2644 					numa_node_id = -1;
2645 			}
2646 #endif
2647 		}
2648 
2649 		if (copy)
2650 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2651 					  skip_tc);
2652 	}
2653 
2654 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2655 
2656 	/* Cleanup old maps */
2657 	if (!dev_maps)
2658 		goto out_no_old_maps;
2659 
2660 	for (j = 0; j < dev_maps->nr_ids; j++) {
2661 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2662 			map = xmap_dereference(dev_maps->attr_map[tci]);
2663 			if (!map)
2664 				continue;
2665 
2666 			if (copy) {
2667 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2668 				if (map == new_map)
2669 					continue;
2670 			}
2671 
2672 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2673 			kfree_rcu(map, rcu);
2674 		}
2675 	}
2676 
2677 	old_dev_maps = dev_maps;
2678 
2679 out_no_old_maps:
2680 	dev_maps = new_dev_maps;
2681 	active = true;
2682 
2683 out_no_new_maps:
2684 	if (type == XPS_CPUS)
2685 		/* update Tx queue numa node */
2686 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2687 					     (numa_node_id >= 0) ?
2688 					     numa_node_id : NUMA_NO_NODE);
2689 
2690 	if (!dev_maps)
2691 		goto out_no_maps;
2692 
2693 	/* removes tx-queue from unused CPUs/rx-queues */
2694 	for (j = 0; j < dev_maps->nr_ids; j++) {
2695 		tci = j * dev_maps->num_tc;
2696 
2697 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2698 			if (i == tc &&
2699 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2700 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2701 				continue;
2702 
2703 			active |= remove_xps_queue(dev_maps,
2704 						   copy ? old_dev_maps : NULL,
2705 						   tci, index);
2706 		}
2707 	}
2708 
2709 	if (old_dev_maps)
2710 		kfree_rcu(old_dev_maps, rcu);
2711 
2712 	/* free map if not active */
2713 	if (!active)
2714 		reset_xps_maps(dev, dev_maps, type);
2715 
2716 out_no_maps:
2717 	mutex_unlock(&xps_map_mutex);
2718 
2719 	return 0;
2720 error:
2721 	/* remove any maps that we added */
2722 	for (j = 0; j < nr_ids; j++) {
2723 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2724 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2725 			map = copy ?
2726 			      xmap_dereference(dev_maps->attr_map[tci]) :
2727 			      NULL;
2728 			if (new_map && new_map != map)
2729 				kfree(new_map);
2730 		}
2731 	}
2732 
2733 	mutex_unlock(&xps_map_mutex);
2734 
2735 	kfree(new_dev_maps);
2736 	return -ENOMEM;
2737 }
2738 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2739 
2740 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2741 			u16 index)
2742 {
2743 	int ret;
2744 
2745 	cpus_read_lock();
2746 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2747 	cpus_read_unlock();
2748 
2749 	return ret;
2750 }
2751 EXPORT_SYMBOL(netif_set_xps_queue);
2752 
2753 #endif
2754 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2755 {
2756 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2757 
2758 	/* Unbind any subordinate channels */
2759 	while (txq-- != &dev->_tx[0]) {
2760 		if (txq->sb_dev)
2761 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2762 	}
2763 }
2764 
2765 void netdev_reset_tc(struct net_device *dev)
2766 {
2767 #ifdef CONFIG_XPS
2768 	netif_reset_xps_queues_gt(dev, 0);
2769 #endif
2770 	netdev_unbind_all_sb_channels(dev);
2771 
2772 	/* Reset TC configuration of device */
2773 	dev->num_tc = 0;
2774 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2775 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2776 }
2777 EXPORT_SYMBOL(netdev_reset_tc);
2778 
2779 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2780 {
2781 	if (tc >= dev->num_tc)
2782 		return -EINVAL;
2783 
2784 #ifdef CONFIG_XPS
2785 	netif_reset_xps_queues(dev, offset, count);
2786 #endif
2787 	dev->tc_to_txq[tc].count = count;
2788 	dev->tc_to_txq[tc].offset = offset;
2789 	return 0;
2790 }
2791 EXPORT_SYMBOL(netdev_set_tc_queue);
2792 
2793 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2794 {
2795 	if (num_tc > TC_MAX_QUEUE)
2796 		return -EINVAL;
2797 
2798 #ifdef CONFIG_XPS
2799 	netif_reset_xps_queues_gt(dev, 0);
2800 #endif
2801 	netdev_unbind_all_sb_channels(dev);
2802 
2803 	dev->num_tc = num_tc;
2804 	return 0;
2805 }
2806 EXPORT_SYMBOL(netdev_set_num_tc);
2807 
2808 void netdev_unbind_sb_channel(struct net_device *dev,
2809 			      struct net_device *sb_dev)
2810 {
2811 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2812 
2813 #ifdef CONFIG_XPS
2814 	netif_reset_xps_queues_gt(sb_dev, 0);
2815 #endif
2816 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2817 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2818 
2819 	while (txq-- != &dev->_tx[0]) {
2820 		if (txq->sb_dev == sb_dev)
2821 			txq->sb_dev = NULL;
2822 	}
2823 }
2824 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2825 
2826 int netdev_bind_sb_channel_queue(struct net_device *dev,
2827 				 struct net_device *sb_dev,
2828 				 u8 tc, u16 count, u16 offset)
2829 {
2830 	/* Make certain the sb_dev and dev are already configured */
2831 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2832 		return -EINVAL;
2833 
2834 	/* We cannot hand out queues we don't have */
2835 	if ((offset + count) > dev->real_num_tx_queues)
2836 		return -EINVAL;
2837 
2838 	/* Record the mapping */
2839 	sb_dev->tc_to_txq[tc].count = count;
2840 	sb_dev->tc_to_txq[tc].offset = offset;
2841 
2842 	/* Provide a way for Tx queue to find the tc_to_txq map or
2843 	 * XPS map for itself.
2844 	 */
2845 	while (count--)
2846 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2847 
2848 	return 0;
2849 }
2850 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2851 
2852 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2853 {
2854 	/* Do not use a multiqueue device to represent a subordinate channel */
2855 	if (netif_is_multiqueue(dev))
2856 		return -ENODEV;
2857 
2858 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2859 	 * Channel 0 is meant to be "native" mode and used only to represent
2860 	 * the main root device. We allow writing 0 to reset the device back
2861 	 * to normal mode after being used as a subordinate channel.
2862 	 */
2863 	if (channel > S16_MAX)
2864 		return -EINVAL;
2865 
2866 	dev->num_tc = -channel;
2867 
2868 	return 0;
2869 }
2870 EXPORT_SYMBOL(netdev_set_sb_channel);
2871 
2872 /*
2873  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2874  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2875  */
2876 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2877 {
2878 	bool disabling;
2879 	int rc;
2880 
2881 	disabling = txq < dev->real_num_tx_queues;
2882 
2883 	if (txq < 1 || txq > dev->num_tx_queues)
2884 		return -EINVAL;
2885 
2886 	if (dev->reg_state == NETREG_REGISTERED ||
2887 	    dev->reg_state == NETREG_UNREGISTERING) {
2888 		ASSERT_RTNL();
2889 
2890 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2891 						  txq);
2892 		if (rc)
2893 			return rc;
2894 
2895 		if (dev->num_tc)
2896 			netif_setup_tc(dev, txq);
2897 
2898 		dev_qdisc_change_real_num_tx(dev, txq);
2899 
2900 		dev->real_num_tx_queues = txq;
2901 
2902 		if (disabling) {
2903 			synchronize_net();
2904 			qdisc_reset_all_tx_gt(dev, txq);
2905 #ifdef CONFIG_XPS
2906 			netif_reset_xps_queues_gt(dev, txq);
2907 #endif
2908 		}
2909 	} else {
2910 		dev->real_num_tx_queues = txq;
2911 	}
2912 
2913 	return 0;
2914 }
2915 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2916 
2917 #ifdef CONFIG_SYSFS
2918 /**
2919  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2920  *	@dev: Network device
2921  *	@rxq: Actual number of RX queues
2922  *
2923  *	This must be called either with the rtnl_lock held or before
2924  *	registration of the net device.  Returns 0 on success, or a
2925  *	negative error code.  If called before registration, it always
2926  *	succeeds.
2927  */
2928 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2929 {
2930 	int rc;
2931 
2932 	if (rxq < 1 || rxq > dev->num_rx_queues)
2933 		return -EINVAL;
2934 
2935 	if (dev->reg_state == NETREG_REGISTERED) {
2936 		ASSERT_RTNL();
2937 
2938 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2939 						  rxq);
2940 		if (rc)
2941 			return rc;
2942 	}
2943 
2944 	dev->real_num_rx_queues = rxq;
2945 	return 0;
2946 }
2947 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2948 #endif
2949 
2950 /**
2951  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2952  *	@dev: Network device
2953  *	@txq: Actual number of TX queues
2954  *	@rxq: Actual number of RX queues
2955  *
2956  *	Set the real number of both TX and RX queues.
2957  *	Does nothing if the number of queues is already correct.
2958  */
2959 int netif_set_real_num_queues(struct net_device *dev,
2960 			      unsigned int txq, unsigned int rxq)
2961 {
2962 	unsigned int old_rxq = dev->real_num_rx_queues;
2963 	int err;
2964 
2965 	if (txq < 1 || txq > dev->num_tx_queues ||
2966 	    rxq < 1 || rxq > dev->num_rx_queues)
2967 		return -EINVAL;
2968 
2969 	/* Start from increases, so the error path only does decreases -
2970 	 * decreases can't fail.
2971 	 */
2972 	if (rxq > dev->real_num_rx_queues) {
2973 		err = netif_set_real_num_rx_queues(dev, rxq);
2974 		if (err)
2975 			return err;
2976 	}
2977 	if (txq > dev->real_num_tx_queues) {
2978 		err = netif_set_real_num_tx_queues(dev, txq);
2979 		if (err)
2980 			goto undo_rx;
2981 	}
2982 	if (rxq < dev->real_num_rx_queues)
2983 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2984 	if (txq < dev->real_num_tx_queues)
2985 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2986 
2987 	return 0;
2988 undo_rx:
2989 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2990 	return err;
2991 }
2992 EXPORT_SYMBOL(netif_set_real_num_queues);
2993 
2994 /**
2995  * netif_get_num_default_rss_queues - default number of RSS queues
2996  *
2997  * Default value is the number of physical cores if there are only 1 or 2, or
2998  * divided by 2 if there are more.
2999  */
3000 int netif_get_num_default_rss_queues(void)
3001 {
3002 	cpumask_var_t cpus;
3003 	int cpu, count = 0;
3004 
3005 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3006 		return 1;
3007 
3008 	cpumask_copy(cpus, cpu_online_mask);
3009 	for_each_cpu(cpu, cpus) {
3010 		++count;
3011 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3012 	}
3013 	free_cpumask_var(cpus);
3014 
3015 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3016 }
3017 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3018 
3019 static void __netif_reschedule(struct Qdisc *q)
3020 {
3021 	struct softnet_data *sd;
3022 	unsigned long flags;
3023 
3024 	local_irq_save(flags);
3025 	sd = this_cpu_ptr(&softnet_data);
3026 	q->next_sched = NULL;
3027 	*sd->output_queue_tailp = q;
3028 	sd->output_queue_tailp = &q->next_sched;
3029 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3030 	local_irq_restore(flags);
3031 }
3032 
3033 void __netif_schedule(struct Qdisc *q)
3034 {
3035 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3036 		__netif_reschedule(q);
3037 }
3038 EXPORT_SYMBOL(__netif_schedule);
3039 
3040 struct dev_kfree_skb_cb {
3041 	enum skb_free_reason reason;
3042 };
3043 
3044 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3045 {
3046 	return (struct dev_kfree_skb_cb *)skb->cb;
3047 }
3048 
3049 void netif_schedule_queue(struct netdev_queue *txq)
3050 {
3051 	rcu_read_lock();
3052 	if (!netif_xmit_stopped(txq)) {
3053 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3054 
3055 		__netif_schedule(q);
3056 	}
3057 	rcu_read_unlock();
3058 }
3059 EXPORT_SYMBOL(netif_schedule_queue);
3060 
3061 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3062 {
3063 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3064 		struct Qdisc *q;
3065 
3066 		rcu_read_lock();
3067 		q = rcu_dereference(dev_queue->qdisc);
3068 		__netif_schedule(q);
3069 		rcu_read_unlock();
3070 	}
3071 }
3072 EXPORT_SYMBOL(netif_tx_wake_queue);
3073 
3074 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3075 {
3076 	unsigned long flags;
3077 
3078 	if (unlikely(!skb))
3079 		return;
3080 
3081 	if (likely(refcount_read(&skb->users) == 1)) {
3082 		smp_rmb();
3083 		refcount_set(&skb->users, 0);
3084 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3085 		return;
3086 	}
3087 	get_kfree_skb_cb(skb)->reason = reason;
3088 	local_irq_save(flags);
3089 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3090 	__this_cpu_write(softnet_data.completion_queue, skb);
3091 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3092 	local_irq_restore(flags);
3093 }
3094 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3095 
3096 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3097 {
3098 	if (in_hardirq() || irqs_disabled())
3099 		__dev_kfree_skb_irq(skb, reason);
3100 	else
3101 		dev_kfree_skb(skb);
3102 }
3103 EXPORT_SYMBOL(__dev_kfree_skb_any);
3104 
3105 
3106 /**
3107  * netif_device_detach - mark device as removed
3108  * @dev: network device
3109  *
3110  * Mark device as removed from system and therefore no longer available.
3111  */
3112 void netif_device_detach(struct net_device *dev)
3113 {
3114 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3115 	    netif_running(dev)) {
3116 		netif_tx_stop_all_queues(dev);
3117 	}
3118 }
3119 EXPORT_SYMBOL(netif_device_detach);
3120 
3121 /**
3122  * netif_device_attach - mark device as attached
3123  * @dev: network device
3124  *
3125  * Mark device as attached from system and restart if needed.
3126  */
3127 void netif_device_attach(struct net_device *dev)
3128 {
3129 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3130 	    netif_running(dev)) {
3131 		netif_tx_wake_all_queues(dev);
3132 		__netdev_watchdog_up(dev);
3133 	}
3134 }
3135 EXPORT_SYMBOL(netif_device_attach);
3136 
3137 /*
3138  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3139  * to be used as a distribution range.
3140  */
3141 static u16 skb_tx_hash(const struct net_device *dev,
3142 		       const struct net_device *sb_dev,
3143 		       struct sk_buff *skb)
3144 {
3145 	u32 hash;
3146 	u16 qoffset = 0;
3147 	u16 qcount = dev->real_num_tx_queues;
3148 
3149 	if (dev->num_tc) {
3150 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3151 
3152 		qoffset = sb_dev->tc_to_txq[tc].offset;
3153 		qcount = sb_dev->tc_to_txq[tc].count;
3154 		if (unlikely(!qcount)) {
3155 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3156 					     sb_dev->name, qoffset, tc);
3157 			qoffset = 0;
3158 			qcount = dev->real_num_tx_queues;
3159 		}
3160 	}
3161 
3162 	if (skb_rx_queue_recorded(skb)) {
3163 		hash = skb_get_rx_queue(skb);
3164 		if (hash >= qoffset)
3165 			hash -= qoffset;
3166 		while (unlikely(hash >= qcount))
3167 			hash -= qcount;
3168 		return hash + qoffset;
3169 	}
3170 
3171 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3172 }
3173 
3174 static void skb_warn_bad_offload(const struct sk_buff *skb)
3175 {
3176 	static const netdev_features_t null_features;
3177 	struct net_device *dev = skb->dev;
3178 	const char *name = "";
3179 
3180 	if (!net_ratelimit())
3181 		return;
3182 
3183 	if (dev) {
3184 		if (dev->dev.parent)
3185 			name = dev_driver_string(dev->dev.parent);
3186 		else
3187 			name = netdev_name(dev);
3188 	}
3189 	skb_dump(KERN_WARNING, skb, false);
3190 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3191 	     name, dev ? &dev->features : &null_features,
3192 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3193 }
3194 
3195 /*
3196  * Invalidate hardware checksum when packet is to be mangled, and
3197  * complete checksum manually on outgoing path.
3198  */
3199 int skb_checksum_help(struct sk_buff *skb)
3200 {
3201 	__wsum csum;
3202 	int ret = 0, offset;
3203 
3204 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3205 		goto out_set_summed;
3206 
3207 	if (unlikely(skb_is_gso(skb))) {
3208 		skb_warn_bad_offload(skb);
3209 		return -EINVAL;
3210 	}
3211 
3212 	/* Before computing a checksum, we should make sure no frag could
3213 	 * be modified by an external entity : checksum could be wrong.
3214 	 */
3215 	if (skb_has_shared_frag(skb)) {
3216 		ret = __skb_linearize(skb);
3217 		if (ret)
3218 			goto out;
3219 	}
3220 
3221 	offset = skb_checksum_start_offset(skb);
3222 	BUG_ON(offset >= skb_headlen(skb));
3223 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3224 
3225 	offset += skb->csum_offset;
3226 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3227 
3228 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3229 	if (ret)
3230 		goto out;
3231 
3232 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3233 out_set_summed:
3234 	skb->ip_summed = CHECKSUM_NONE;
3235 out:
3236 	return ret;
3237 }
3238 EXPORT_SYMBOL(skb_checksum_help);
3239 
3240 int skb_crc32c_csum_help(struct sk_buff *skb)
3241 {
3242 	__le32 crc32c_csum;
3243 	int ret = 0, offset, start;
3244 
3245 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3246 		goto out;
3247 
3248 	if (unlikely(skb_is_gso(skb)))
3249 		goto out;
3250 
3251 	/* Before computing a checksum, we should make sure no frag could
3252 	 * be modified by an external entity : checksum could be wrong.
3253 	 */
3254 	if (unlikely(skb_has_shared_frag(skb))) {
3255 		ret = __skb_linearize(skb);
3256 		if (ret)
3257 			goto out;
3258 	}
3259 	start = skb_checksum_start_offset(skb);
3260 	offset = start + offsetof(struct sctphdr, checksum);
3261 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3262 		ret = -EINVAL;
3263 		goto out;
3264 	}
3265 
3266 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3267 	if (ret)
3268 		goto out;
3269 
3270 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3271 						  skb->len - start, ~(__u32)0,
3272 						  crc32c_csum_stub));
3273 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3274 	skb->ip_summed = CHECKSUM_NONE;
3275 	skb->csum_not_inet = 0;
3276 out:
3277 	return ret;
3278 }
3279 
3280 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3281 {
3282 	__be16 type = skb->protocol;
3283 
3284 	/* Tunnel gso handlers can set protocol to ethernet. */
3285 	if (type == htons(ETH_P_TEB)) {
3286 		struct ethhdr *eth;
3287 
3288 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3289 			return 0;
3290 
3291 		eth = (struct ethhdr *)skb->data;
3292 		type = eth->h_proto;
3293 	}
3294 
3295 	return __vlan_get_protocol(skb, type, depth);
3296 }
3297 
3298 /* openvswitch calls this on rx path, so we need a different check.
3299  */
3300 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3301 {
3302 	if (tx_path)
3303 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3304 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3305 
3306 	return skb->ip_summed == CHECKSUM_NONE;
3307 }
3308 
3309 /**
3310  *	__skb_gso_segment - Perform segmentation on skb.
3311  *	@skb: buffer to segment
3312  *	@features: features for the output path (see dev->features)
3313  *	@tx_path: whether it is called in TX path
3314  *
3315  *	This function segments the given skb and returns a list of segments.
3316  *
3317  *	It may return NULL if the skb requires no segmentation.  This is
3318  *	only possible when GSO is used for verifying header integrity.
3319  *
3320  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3321  */
3322 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3323 				  netdev_features_t features, bool tx_path)
3324 {
3325 	struct sk_buff *segs;
3326 
3327 	if (unlikely(skb_needs_check(skb, tx_path))) {
3328 		int err;
3329 
3330 		/* We're going to init ->check field in TCP or UDP header */
3331 		err = skb_cow_head(skb, 0);
3332 		if (err < 0)
3333 			return ERR_PTR(err);
3334 	}
3335 
3336 	/* Only report GSO partial support if it will enable us to
3337 	 * support segmentation on this frame without needing additional
3338 	 * work.
3339 	 */
3340 	if (features & NETIF_F_GSO_PARTIAL) {
3341 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3342 		struct net_device *dev = skb->dev;
3343 
3344 		partial_features |= dev->features & dev->gso_partial_features;
3345 		if (!skb_gso_ok(skb, features | partial_features))
3346 			features &= ~NETIF_F_GSO_PARTIAL;
3347 	}
3348 
3349 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3350 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3351 
3352 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3353 	SKB_GSO_CB(skb)->encap_level = 0;
3354 
3355 	skb_reset_mac_header(skb);
3356 	skb_reset_mac_len(skb);
3357 
3358 	segs = skb_mac_gso_segment(skb, features);
3359 
3360 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3361 		skb_warn_bad_offload(skb);
3362 
3363 	return segs;
3364 }
3365 EXPORT_SYMBOL(__skb_gso_segment);
3366 
3367 /* Take action when hardware reception checksum errors are detected. */
3368 #ifdef CONFIG_BUG
3369 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3370 {
3371 	netdev_err(dev, "hw csum failure\n");
3372 	skb_dump(KERN_ERR, skb, true);
3373 	dump_stack();
3374 }
3375 
3376 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3377 {
3378 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3379 }
3380 EXPORT_SYMBOL(netdev_rx_csum_fault);
3381 #endif
3382 
3383 /* XXX: check that highmem exists at all on the given machine. */
3384 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3385 {
3386 #ifdef CONFIG_HIGHMEM
3387 	int i;
3388 
3389 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3390 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3391 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3392 
3393 			if (PageHighMem(skb_frag_page(frag)))
3394 				return 1;
3395 		}
3396 	}
3397 #endif
3398 	return 0;
3399 }
3400 
3401 /* If MPLS offload request, verify we are testing hardware MPLS features
3402  * instead of standard features for the netdev.
3403  */
3404 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3405 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3406 					   netdev_features_t features,
3407 					   __be16 type)
3408 {
3409 	if (eth_p_mpls(type))
3410 		features &= skb->dev->mpls_features;
3411 
3412 	return features;
3413 }
3414 #else
3415 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3416 					   netdev_features_t features,
3417 					   __be16 type)
3418 {
3419 	return features;
3420 }
3421 #endif
3422 
3423 static netdev_features_t harmonize_features(struct sk_buff *skb,
3424 	netdev_features_t features)
3425 {
3426 	__be16 type;
3427 
3428 	type = skb_network_protocol(skb, NULL);
3429 	features = net_mpls_features(skb, features, type);
3430 
3431 	if (skb->ip_summed != CHECKSUM_NONE &&
3432 	    !can_checksum_protocol(features, type)) {
3433 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3434 	}
3435 	if (illegal_highdma(skb->dev, skb))
3436 		features &= ~NETIF_F_SG;
3437 
3438 	return features;
3439 }
3440 
3441 netdev_features_t passthru_features_check(struct sk_buff *skb,
3442 					  struct net_device *dev,
3443 					  netdev_features_t features)
3444 {
3445 	return features;
3446 }
3447 EXPORT_SYMBOL(passthru_features_check);
3448 
3449 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3450 					     struct net_device *dev,
3451 					     netdev_features_t features)
3452 {
3453 	return vlan_features_check(skb, features);
3454 }
3455 
3456 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3457 					    struct net_device *dev,
3458 					    netdev_features_t features)
3459 {
3460 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3461 
3462 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3463 		return features & ~NETIF_F_GSO_MASK;
3464 
3465 	if (!skb_shinfo(skb)->gso_type) {
3466 		skb_warn_bad_offload(skb);
3467 		return features & ~NETIF_F_GSO_MASK;
3468 	}
3469 
3470 	/* Support for GSO partial features requires software
3471 	 * intervention before we can actually process the packets
3472 	 * so we need to strip support for any partial features now
3473 	 * and we can pull them back in after we have partially
3474 	 * segmented the frame.
3475 	 */
3476 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3477 		features &= ~dev->gso_partial_features;
3478 
3479 	/* Make sure to clear the IPv4 ID mangling feature if the
3480 	 * IPv4 header has the potential to be fragmented.
3481 	 */
3482 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3483 		struct iphdr *iph = skb->encapsulation ?
3484 				    inner_ip_hdr(skb) : ip_hdr(skb);
3485 
3486 		if (!(iph->frag_off & htons(IP_DF)))
3487 			features &= ~NETIF_F_TSO_MANGLEID;
3488 	}
3489 
3490 	return features;
3491 }
3492 
3493 netdev_features_t netif_skb_features(struct sk_buff *skb)
3494 {
3495 	struct net_device *dev = skb->dev;
3496 	netdev_features_t features = dev->features;
3497 
3498 	if (skb_is_gso(skb))
3499 		features = gso_features_check(skb, dev, features);
3500 
3501 	/* If encapsulation offload request, verify we are testing
3502 	 * hardware encapsulation features instead of standard
3503 	 * features for the netdev
3504 	 */
3505 	if (skb->encapsulation)
3506 		features &= dev->hw_enc_features;
3507 
3508 	if (skb_vlan_tagged(skb))
3509 		features = netdev_intersect_features(features,
3510 						     dev->vlan_features |
3511 						     NETIF_F_HW_VLAN_CTAG_TX |
3512 						     NETIF_F_HW_VLAN_STAG_TX);
3513 
3514 	if (dev->netdev_ops->ndo_features_check)
3515 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3516 								features);
3517 	else
3518 		features &= dflt_features_check(skb, dev, features);
3519 
3520 	return harmonize_features(skb, features);
3521 }
3522 EXPORT_SYMBOL(netif_skb_features);
3523 
3524 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3525 		    struct netdev_queue *txq, bool more)
3526 {
3527 	unsigned int len;
3528 	int rc;
3529 
3530 	if (dev_nit_active(dev))
3531 		dev_queue_xmit_nit(skb, dev);
3532 
3533 	len = skb->len;
3534 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3535 	trace_net_dev_start_xmit(skb, dev);
3536 	rc = netdev_start_xmit(skb, dev, txq, more);
3537 	trace_net_dev_xmit(skb, rc, dev, len);
3538 
3539 	return rc;
3540 }
3541 
3542 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3543 				    struct netdev_queue *txq, int *ret)
3544 {
3545 	struct sk_buff *skb = first;
3546 	int rc = NETDEV_TX_OK;
3547 
3548 	while (skb) {
3549 		struct sk_buff *next = skb->next;
3550 
3551 		skb_mark_not_on_list(skb);
3552 		rc = xmit_one(skb, dev, txq, next != NULL);
3553 		if (unlikely(!dev_xmit_complete(rc))) {
3554 			skb->next = next;
3555 			goto out;
3556 		}
3557 
3558 		skb = next;
3559 		if (netif_tx_queue_stopped(txq) && skb) {
3560 			rc = NETDEV_TX_BUSY;
3561 			break;
3562 		}
3563 	}
3564 
3565 out:
3566 	*ret = rc;
3567 	return skb;
3568 }
3569 
3570 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3571 					  netdev_features_t features)
3572 {
3573 	if (skb_vlan_tag_present(skb) &&
3574 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3575 		skb = __vlan_hwaccel_push_inside(skb);
3576 	return skb;
3577 }
3578 
3579 int skb_csum_hwoffload_help(struct sk_buff *skb,
3580 			    const netdev_features_t features)
3581 {
3582 	if (unlikely(skb_csum_is_sctp(skb)))
3583 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3584 			skb_crc32c_csum_help(skb);
3585 
3586 	if (features & NETIF_F_HW_CSUM)
3587 		return 0;
3588 
3589 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3590 		switch (skb->csum_offset) {
3591 		case offsetof(struct tcphdr, check):
3592 		case offsetof(struct udphdr, check):
3593 			return 0;
3594 		}
3595 	}
3596 
3597 	return skb_checksum_help(skb);
3598 }
3599 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3600 
3601 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3602 {
3603 	netdev_features_t features;
3604 
3605 	features = netif_skb_features(skb);
3606 	skb = validate_xmit_vlan(skb, features);
3607 	if (unlikely(!skb))
3608 		goto out_null;
3609 
3610 	skb = sk_validate_xmit_skb(skb, dev);
3611 	if (unlikely(!skb))
3612 		goto out_null;
3613 
3614 	if (netif_needs_gso(skb, features)) {
3615 		struct sk_buff *segs;
3616 
3617 		segs = skb_gso_segment(skb, features);
3618 		if (IS_ERR(segs)) {
3619 			goto out_kfree_skb;
3620 		} else if (segs) {
3621 			consume_skb(skb);
3622 			skb = segs;
3623 		}
3624 	} else {
3625 		if (skb_needs_linearize(skb, features) &&
3626 		    __skb_linearize(skb))
3627 			goto out_kfree_skb;
3628 
3629 		/* If packet is not checksummed and device does not
3630 		 * support checksumming for this protocol, complete
3631 		 * checksumming here.
3632 		 */
3633 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3634 			if (skb->encapsulation)
3635 				skb_set_inner_transport_header(skb,
3636 							       skb_checksum_start_offset(skb));
3637 			else
3638 				skb_set_transport_header(skb,
3639 							 skb_checksum_start_offset(skb));
3640 			if (skb_csum_hwoffload_help(skb, features))
3641 				goto out_kfree_skb;
3642 		}
3643 	}
3644 
3645 	skb = validate_xmit_xfrm(skb, features, again);
3646 
3647 	return skb;
3648 
3649 out_kfree_skb:
3650 	kfree_skb(skb);
3651 out_null:
3652 	dev_core_stats_tx_dropped_inc(dev);
3653 	return NULL;
3654 }
3655 
3656 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3657 {
3658 	struct sk_buff *next, *head = NULL, *tail;
3659 
3660 	for (; skb != NULL; skb = next) {
3661 		next = skb->next;
3662 		skb_mark_not_on_list(skb);
3663 
3664 		/* in case skb wont be segmented, point to itself */
3665 		skb->prev = skb;
3666 
3667 		skb = validate_xmit_skb(skb, dev, again);
3668 		if (!skb)
3669 			continue;
3670 
3671 		if (!head)
3672 			head = skb;
3673 		else
3674 			tail->next = skb;
3675 		/* If skb was segmented, skb->prev points to
3676 		 * the last segment. If not, it still contains skb.
3677 		 */
3678 		tail = skb->prev;
3679 	}
3680 	return head;
3681 }
3682 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3683 
3684 static void qdisc_pkt_len_init(struct sk_buff *skb)
3685 {
3686 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3687 
3688 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3689 
3690 	/* To get more precise estimation of bytes sent on wire,
3691 	 * we add to pkt_len the headers size of all segments
3692 	 */
3693 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3694 		unsigned int hdr_len;
3695 		u16 gso_segs = shinfo->gso_segs;
3696 
3697 		/* mac layer + network layer */
3698 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3699 
3700 		/* + transport layer */
3701 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3702 			const struct tcphdr *th;
3703 			struct tcphdr _tcphdr;
3704 
3705 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3706 						sizeof(_tcphdr), &_tcphdr);
3707 			if (likely(th))
3708 				hdr_len += __tcp_hdrlen(th);
3709 		} else {
3710 			struct udphdr _udphdr;
3711 
3712 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3713 					       sizeof(_udphdr), &_udphdr))
3714 				hdr_len += sizeof(struct udphdr);
3715 		}
3716 
3717 		if (shinfo->gso_type & SKB_GSO_DODGY)
3718 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3719 						shinfo->gso_size);
3720 
3721 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3722 	}
3723 }
3724 
3725 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3726 			     struct sk_buff **to_free,
3727 			     struct netdev_queue *txq)
3728 {
3729 	int rc;
3730 
3731 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3732 	if (rc == NET_XMIT_SUCCESS)
3733 		trace_qdisc_enqueue(q, txq, skb);
3734 	return rc;
3735 }
3736 
3737 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3738 				 struct net_device *dev,
3739 				 struct netdev_queue *txq)
3740 {
3741 	spinlock_t *root_lock = qdisc_lock(q);
3742 	struct sk_buff *to_free = NULL;
3743 	bool contended;
3744 	int rc;
3745 
3746 	qdisc_calculate_pkt_len(skb, q);
3747 
3748 	if (q->flags & TCQ_F_NOLOCK) {
3749 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3750 		    qdisc_run_begin(q)) {
3751 			/* Retest nolock_qdisc_is_empty() within the protection
3752 			 * of q->seqlock to protect from racing with requeuing.
3753 			 */
3754 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3755 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3756 				__qdisc_run(q);
3757 				qdisc_run_end(q);
3758 
3759 				goto no_lock_out;
3760 			}
3761 
3762 			qdisc_bstats_cpu_update(q, skb);
3763 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3764 			    !nolock_qdisc_is_empty(q))
3765 				__qdisc_run(q);
3766 
3767 			qdisc_run_end(q);
3768 			return NET_XMIT_SUCCESS;
3769 		}
3770 
3771 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3772 		qdisc_run(q);
3773 
3774 no_lock_out:
3775 		if (unlikely(to_free))
3776 			kfree_skb_list_reason(to_free,
3777 					      SKB_DROP_REASON_QDISC_DROP);
3778 		return rc;
3779 	}
3780 
3781 	/*
3782 	 * Heuristic to force contended enqueues to serialize on a
3783 	 * separate lock before trying to get qdisc main lock.
3784 	 * This permits qdisc->running owner to get the lock more
3785 	 * often and dequeue packets faster.
3786 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3787 	 * and then other tasks will only enqueue packets. The packets will be
3788 	 * sent after the qdisc owner is scheduled again. To prevent this
3789 	 * scenario the task always serialize on the lock.
3790 	 */
3791 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3792 	if (unlikely(contended))
3793 		spin_lock(&q->busylock);
3794 
3795 	spin_lock(root_lock);
3796 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3797 		__qdisc_drop(skb, &to_free);
3798 		rc = NET_XMIT_DROP;
3799 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3800 		   qdisc_run_begin(q)) {
3801 		/*
3802 		 * This is a work-conserving queue; there are no old skbs
3803 		 * waiting to be sent out; and the qdisc is not running -
3804 		 * xmit the skb directly.
3805 		 */
3806 
3807 		qdisc_bstats_update(q, skb);
3808 
3809 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3810 			if (unlikely(contended)) {
3811 				spin_unlock(&q->busylock);
3812 				contended = false;
3813 			}
3814 			__qdisc_run(q);
3815 		}
3816 
3817 		qdisc_run_end(q);
3818 		rc = NET_XMIT_SUCCESS;
3819 	} else {
3820 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3821 		if (qdisc_run_begin(q)) {
3822 			if (unlikely(contended)) {
3823 				spin_unlock(&q->busylock);
3824 				contended = false;
3825 			}
3826 			__qdisc_run(q);
3827 			qdisc_run_end(q);
3828 		}
3829 	}
3830 	spin_unlock(root_lock);
3831 	if (unlikely(to_free))
3832 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3833 	if (unlikely(contended))
3834 		spin_unlock(&q->busylock);
3835 	return rc;
3836 }
3837 
3838 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3839 static void skb_update_prio(struct sk_buff *skb)
3840 {
3841 	const struct netprio_map *map;
3842 	const struct sock *sk;
3843 	unsigned int prioidx;
3844 
3845 	if (skb->priority)
3846 		return;
3847 	map = rcu_dereference_bh(skb->dev->priomap);
3848 	if (!map)
3849 		return;
3850 	sk = skb_to_full_sk(skb);
3851 	if (!sk)
3852 		return;
3853 
3854 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3855 
3856 	if (prioidx < map->priomap_len)
3857 		skb->priority = map->priomap[prioidx];
3858 }
3859 #else
3860 #define skb_update_prio(skb)
3861 #endif
3862 
3863 /**
3864  *	dev_loopback_xmit - loop back @skb
3865  *	@net: network namespace this loopback is happening in
3866  *	@sk:  sk needed to be a netfilter okfn
3867  *	@skb: buffer to transmit
3868  */
3869 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3870 {
3871 	skb_reset_mac_header(skb);
3872 	__skb_pull(skb, skb_network_offset(skb));
3873 	skb->pkt_type = PACKET_LOOPBACK;
3874 	if (skb->ip_summed == CHECKSUM_NONE)
3875 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3876 	WARN_ON(!skb_dst(skb));
3877 	skb_dst_force(skb);
3878 	netif_rx(skb);
3879 	return 0;
3880 }
3881 EXPORT_SYMBOL(dev_loopback_xmit);
3882 
3883 #ifdef CONFIG_NET_EGRESS
3884 static struct sk_buff *
3885 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3886 {
3887 #ifdef CONFIG_NET_CLS_ACT
3888 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3889 	struct tcf_result cl_res;
3890 
3891 	if (!miniq)
3892 		return skb;
3893 
3894 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3895 	tc_skb_cb(skb)->mru = 0;
3896 	tc_skb_cb(skb)->post_ct = false;
3897 	mini_qdisc_bstats_cpu_update(miniq, skb);
3898 
3899 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3900 	case TC_ACT_OK:
3901 	case TC_ACT_RECLASSIFY:
3902 		skb->tc_index = TC_H_MIN(cl_res.classid);
3903 		break;
3904 	case TC_ACT_SHOT:
3905 		mini_qdisc_qstats_cpu_drop(miniq);
3906 		*ret = NET_XMIT_DROP;
3907 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3908 		return NULL;
3909 	case TC_ACT_STOLEN:
3910 	case TC_ACT_QUEUED:
3911 	case TC_ACT_TRAP:
3912 		*ret = NET_XMIT_SUCCESS;
3913 		consume_skb(skb);
3914 		return NULL;
3915 	case TC_ACT_REDIRECT:
3916 		/* No need to push/pop skb's mac_header here on egress! */
3917 		skb_do_redirect(skb);
3918 		*ret = NET_XMIT_SUCCESS;
3919 		return NULL;
3920 	default:
3921 		break;
3922 	}
3923 #endif /* CONFIG_NET_CLS_ACT */
3924 
3925 	return skb;
3926 }
3927 #endif /* CONFIG_NET_EGRESS */
3928 
3929 #ifdef CONFIG_XPS
3930 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3931 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3932 {
3933 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
3934 	struct xps_map *map;
3935 	int queue_index = -1;
3936 
3937 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3938 		return queue_index;
3939 
3940 	tci *= dev_maps->num_tc;
3941 	tci += tc;
3942 
3943 	map = rcu_dereference(dev_maps->attr_map[tci]);
3944 	if (map) {
3945 		if (map->len == 1)
3946 			queue_index = map->queues[0];
3947 		else
3948 			queue_index = map->queues[reciprocal_scale(
3949 						skb_get_hash(skb), map->len)];
3950 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3951 			queue_index = -1;
3952 	}
3953 	return queue_index;
3954 }
3955 #endif
3956 
3957 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3958 			 struct sk_buff *skb)
3959 {
3960 #ifdef CONFIG_XPS
3961 	struct xps_dev_maps *dev_maps;
3962 	struct sock *sk = skb->sk;
3963 	int queue_index = -1;
3964 
3965 	if (!static_key_false(&xps_needed))
3966 		return -1;
3967 
3968 	rcu_read_lock();
3969 	if (!static_key_false(&xps_rxqs_needed))
3970 		goto get_cpus_map;
3971 
3972 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
3973 	if (dev_maps) {
3974 		int tci = sk_rx_queue_get(sk);
3975 
3976 		if (tci >= 0)
3977 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3978 							  tci);
3979 	}
3980 
3981 get_cpus_map:
3982 	if (queue_index < 0) {
3983 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
3984 		if (dev_maps) {
3985 			unsigned int tci = skb->sender_cpu - 1;
3986 
3987 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3988 							  tci);
3989 		}
3990 	}
3991 	rcu_read_unlock();
3992 
3993 	return queue_index;
3994 #else
3995 	return -1;
3996 #endif
3997 }
3998 
3999 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4000 		     struct net_device *sb_dev)
4001 {
4002 	return 0;
4003 }
4004 EXPORT_SYMBOL(dev_pick_tx_zero);
4005 
4006 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4007 		       struct net_device *sb_dev)
4008 {
4009 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4010 }
4011 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4012 
4013 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4014 		     struct net_device *sb_dev)
4015 {
4016 	struct sock *sk = skb->sk;
4017 	int queue_index = sk_tx_queue_get(sk);
4018 
4019 	sb_dev = sb_dev ? : dev;
4020 
4021 	if (queue_index < 0 || skb->ooo_okay ||
4022 	    queue_index >= dev->real_num_tx_queues) {
4023 		int new_index = get_xps_queue(dev, sb_dev, skb);
4024 
4025 		if (new_index < 0)
4026 			new_index = skb_tx_hash(dev, sb_dev, skb);
4027 
4028 		if (queue_index != new_index && sk &&
4029 		    sk_fullsock(sk) &&
4030 		    rcu_access_pointer(sk->sk_dst_cache))
4031 			sk_tx_queue_set(sk, new_index);
4032 
4033 		queue_index = new_index;
4034 	}
4035 
4036 	return queue_index;
4037 }
4038 EXPORT_SYMBOL(netdev_pick_tx);
4039 
4040 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4041 					 struct sk_buff *skb,
4042 					 struct net_device *sb_dev)
4043 {
4044 	int queue_index = 0;
4045 
4046 #ifdef CONFIG_XPS
4047 	u32 sender_cpu = skb->sender_cpu - 1;
4048 
4049 	if (sender_cpu >= (u32)NR_CPUS)
4050 		skb->sender_cpu = raw_smp_processor_id() + 1;
4051 #endif
4052 
4053 	if (dev->real_num_tx_queues != 1) {
4054 		const struct net_device_ops *ops = dev->netdev_ops;
4055 
4056 		if (ops->ndo_select_queue)
4057 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4058 		else
4059 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4060 
4061 		queue_index = netdev_cap_txqueue(dev, queue_index);
4062 	}
4063 
4064 	skb_set_queue_mapping(skb, queue_index);
4065 	return netdev_get_tx_queue(dev, queue_index);
4066 }
4067 
4068 /**
4069  *	__dev_queue_xmit - transmit a buffer
4070  *	@skb: buffer to transmit
4071  *	@sb_dev: suboordinate device used for L2 forwarding offload
4072  *
4073  *	Queue a buffer for transmission to a network device. The caller must
4074  *	have set the device and priority and built the buffer before calling
4075  *	this function. The function can be called from an interrupt.
4076  *
4077  *	A negative errno code is returned on a failure. A success does not
4078  *	guarantee the frame will be transmitted as it may be dropped due
4079  *	to congestion or traffic shaping.
4080  *
4081  * -----------------------------------------------------------------------------------
4082  *      I notice this method can also return errors from the queue disciplines,
4083  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4084  *      be positive.
4085  *
4086  *      Regardless of the return value, the skb is consumed, so it is currently
4087  *      difficult to retry a send to this method.  (You can bump the ref count
4088  *      before sending to hold a reference for retry if you are careful.)
4089  *
4090  *      When calling this method, interrupts MUST be enabled.  This is because
4091  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4092  *          --BLG
4093  */
4094 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4095 {
4096 	struct net_device *dev = skb->dev;
4097 	struct netdev_queue *txq;
4098 	struct Qdisc *q;
4099 	int rc = -ENOMEM;
4100 	bool again = false;
4101 
4102 	skb_reset_mac_header(skb);
4103 
4104 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4105 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4106 
4107 	/* Disable soft irqs for various locks below. Also
4108 	 * stops preemption for RCU.
4109 	 */
4110 	rcu_read_lock_bh();
4111 
4112 	skb_update_prio(skb);
4113 
4114 	qdisc_pkt_len_init(skb);
4115 #ifdef CONFIG_NET_CLS_ACT
4116 	skb->tc_at_ingress = 0;
4117 #endif
4118 #ifdef CONFIG_NET_EGRESS
4119 	if (static_branch_unlikely(&egress_needed_key)) {
4120 		if (nf_hook_egress_active()) {
4121 			skb = nf_hook_egress(skb, &rc, dev);
4122 			if (!skb)
4123 				goto out;
4124 		}
4125 		nf_skip_egress(skb, true);
4126 		skb = sch_handle_egress(skb, &rc, dev);
4127 		if (!skb)
4128 			goto out;
4129 		nf_skip_egress(skb, false);
4130 	}
4131 #endif
4132 	/* If device/qdisc don't need skb->dst, release it right now while
4133 	 * its hot in this cpu cache.
4134 	 */
4135 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4136 		skb_dst_drop(skb);
4137 	else
4138 		skb_dst_force(skb);
4139 
4140 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4141 	q = rcu_dereference_bh(txq->qdisc);
4142 
4143 	trace_net_dev_queue(skb);
4144 	if (q->enqueue) {
4145 		rc = __dev_xmit_skb(skb, q, dev, txq);
4146 		goto out;
4147 	}
4148 
4149 	/* The device has no queue. Common case for software devices:
4150 	 * loopback, all the sorts of tunnels...
4151 
4152 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4153 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4154 	 * counters.)
4155 	 * However, it is possible, that they rely on protection
4156 	 * made by us here.
4157 
4158 	 * Check this and shot the lock. It is not prone from deadlocks.
4159 	 *Either shot noqueue qdisc, it is even simpler 8)
4160 	 */
4161 	if (dev->flags & IFF_UP) {
4162 		int cpu = smp_processor_id(); /* ok because BHs are off */
4163 
4164 		/* Other cpus might concurrently change txq->xmit_lock_owner
4165 		 * to -1 or to their cpu id, but not to our id.
4166 		 */
4167 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4168 			if (dev_xmit_recursion())
4169 				goto recursion_alert;
4170 
4171 			skb = validate_xmit_skb(skb, dev, &again);
4172 			if (!skb)
4173 				goto out;
4174 
4175 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4176 			HARD_TX_LOCK(dev, txq, cpu);
4177 
4178 			if (!netif_xmit_stopped(txq)) {
4179 				dev_xmit_recursion_inc();
4180 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4181 				dev_xmit_recursion_dec();
4182 				if (dev_xmit_complete(rc)) {
4183 					HARD_TX_UNLOCK(dev, txq);
4184 					goto out;
4185 				}
4186 			}
4187 			HARD_TX_UNLOCK(dev, txq);
4188 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4189 					     dev->name);
4190 		} else {
4191 			/* Recursion is detected! It is possible,
4192 			 * unfortunately
4193 			 */
4194 recursion_alert:
4195 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4196 					     dev->name);
4197 		}
4198 	}
4199 
4200 	rc = -ENETDOWN;
4201 	rcu_read_unlock_bh();
4202 
4203 	dev_core_stats_tx_dropped_inc(dev);
4204 	kfree_skb_list(skb);
4205 	return rc;
4206 out:
4207 	rcu_read_unlock_bh();
4208 	return rc;
4209 }
4210 
4211 int dev_queue_xmit(struct sk_buff *skb)
4212 {
4213 	return __dev_queue_xmit(skb, NULL);
4214 }
4215 EXPORT_SYMBOL(dev_queue_xmit);
4216 
4217 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4218 {
4219 	return __dev_queue_xmit(skb, sb_dev);
4220 }
4221 EXPORT_SYMBOL(dev_queue_xmit_accel);
4222 
4223 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4224 {
4225 	struct net_device *dev = skb->dev;
4226 	struct sk_buff *orig_skb = skb;
4227 	struct netdev_queue *txq;
4228 	int ret = NETDEV_TX_BUSY;
4229 	bool again = false;
4230 
4231 	if (unlikely(!netif_running(dev) ||
4232 		     !netif_carrier_ok(dev)))
4233 		goto drop;
4234 
4235 	skb = validate_xmit_skb_list(skb, dev, &again);
4236 	if (skb != orig_skb)
4237 		goto drop;
4238 
4239 	skb_set_queue_mapping(skb, queue_id);
4240 	txq = skb_get_tx_queue(dev, skb);
4241 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4242 
4243 	local_bh_disable();
4244 
4245 	dev_xmit_recursion_inc();
4246 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4247 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4248 		ret = netdev_start_xmit(skb, dev, txq, false);
4249 	HARD_TX_UNLOCK(dev, txq);
4250 	dev_xmit_recursion_dec();
4251 
4252 	local_bh_enable();
4253 	return ret;
4254 drop:
4255 	dev_core_stats_tx_dropped_inc(dev);
4256 	kfree_skb_list(skb);
4257 	return NET_XMIT_DROP;
4258 }
4259 EXPORT_SYMBOL(__dev_direct_xmit);
4260 
4261 /*************************************************************************
4262  *			Receiver routines
4263  *************************************************************************/
4264 
4265 int netdev_max_backlog __read_mostly = 1000;
4266 EXPORT_SYMBOL(netdev_max_backlog);
4267 
4268 int netdev_tstamp_prequeue __read_mostly = 1;
4269 int netdev_budget __read_mostly = 300;
4270 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4271 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4272 int weight_p __read_mostly = 64;           /* old backlog weight */
4273 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4274 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4275 int dev_rx_weight __read_mostly = 64;
4276 int dev_tx_weight __read_mostly = 64;
4277 
4278 /* Called with irq disabled */
4279 static inline void ____napi_schedule(struct softnet_data *sd,
4280 				     struct napi_struct *napi)
4281 {
4282 	struct task_struct *thread;
4283 
4284 	lockdep_assert_irqs_disabled();
4285 
4286 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4287 		/* Paired with smp_mb__before_atomic() in
4288 		 * napi_enable()/dev_set_threaded().
4289 		 * Use READ_ONCE() to guarantee a complete
4290 		 * read on napi->thread. Only call
4291 		 * wake_up_process() when it's not NULL.
4292 		 */
4293 		thread = READ_ONCE(napi->thread);
4294 		if (thread) {
4295 			/* Avoid doing set_bit() if the thread is in
4296 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4297 			 * makes sure to proceed with napi polling
4298 			 * if the thread is explicitly woken from here.
4299 			 */
4300 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4301 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4302 			wake_up_process(thread);
4303 			return;
4304 		}
4305 	}
4306 
4307 	list_add_tail(&napi->poll_list, &sd->poll_list);
4308 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4309 }
4310 
4311 #ifdef CONFIG_RPS
4312 
4313 /* One global table that all flow-based protocols share. */
4314 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4315 EXPORT_SYMBOL(rps_sock_flow_table);
4316 u32 rps_cpu_mask __read_mostly;
4317 EXPORT_SYMBOL(rps_cpu_mask);
4318 
4319 struct static_key_false rps_needed __read_mostly;
4320 EXPORT_SYMBOL(rps_needed);
4321 struct static_key_false rfs_needed __read_mostly;
4322 EXPORT_SYMBOL(rfs_needed);
4323 
4324 static struct rps_dev_flow *
4325 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4326 	    struct rps_dev_flow *rflow, u16 next_cpu)
4327 {
4328 	if (next_cpu < nr_cpu_ids) {
4329 #ifdef CONFIG_RFS_ACCEL
4330 		struct netdev_rx_queue *rxqueue;
4331 		struct rps_dev_flow_table *flow_table;
4332 		struct rps_dev_flow *old_rflow;
4333 		u32 flow_id;
4334 		u16 rxq_index;
4335 		int rc;
4336 
4337 		/* Should we steer this flow to a different hardware queue? */
4338 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4339 		    !(dev->features & NETIF_F_NTUPLE))
4340 			goto out;
4341 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4342 		if (rxq_index == skb_get_rx_queue(skb))
4343 			goto out;
4344 
4345 		rxqueue = dev->_rx + rxq_index;
4346 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4347 		if (!flow_table)
4348 			goto out;
4349 		flow_id = skb_get_hash(skb) & flow_table->mask;
4350 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4351 							rxq_index, flow_id);
4352 		if (rc < 0)
4353 			goto out;
4354 		old_rflow = rflow;
4355 		rflow = &flow_table->flows[flow_id];
4356 		rflow->filter = rc;
4357 		if (old_rflow->filter == rflow->filter)
4358 			old_rflow->filter = RPS_NO_FILTER;
4359 	out:
4360 #endif
4361 		rflow->last_qtail =
4362 			per_cpu(softnet_data, next_cpu).input_queue_head;
4363 	}
4364 
4365 	rflow->cpu = next_cpu;
4366 	return rflow;
4367 }
4368 
4369 /*
4370  * get_rps_cpu is called from netif_receive_skb and returns the target
4371  * CPU from the RPS map of the receiving queue for a given skb.
4372  * rcu_read_lock must be held on entry.
4373  */
4374 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4375 		       struct rps_dev_flow **rflowp)
4376 {
4377 	const struct rps_sock_flow_table *sock_flow_table;
4378 	struct netdev_rx_queue *rxqueue = dev->_rx;
4379 	struct rps_dev_flow_table *flow_table;
4380 	struct rps_map *map;
4381 	int cpu = -1;
4382 	u32 tcpu;
4383 	u32 hash;
4384 
4385 	if (skb_rx_queue_recorded(skb)) {
4386 		u16 index = skb_get_rx_queue(skb);
4387 
4388 		if (unlikely(index >= dev->real_num_rx_queues)) {
4389 			WARN_ONCE(dev->real_num_rx_queues > 1,
4390 				  "%s received packet on queue %u, but number "
4391 				  "of RX queues is %u\n",
4392 				  dev->name, index, dev->real_num_rx_queues);
4393 			goto done;
4394 		}
4395 		rxqueue += index;
4396 	}
4397 
4398 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4399 
4400 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4401 	map = rcu_dereference(rxqueue->rps_map);
4402 	if (!flow_table && !map)
4403 		goto done;
4404 
4405 	skb_reset_network_header(skb);
4406 	hash = skb_get_hash(skb);
4407 	if (!hash)
4408 		goto done;
4409 
4410 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4411 	if (flow_table && sock_flow_table) {
4412 		struct rps_dev_flow *rflow;
4413 		u32 next_cpu;
4414 		u32 ident;
4415 
4416 		/* First check into global flow table if there is a match */
4417 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4418 		if ((ident ^ hash) & ~rps_cpu_mask)
4419 			goto try_rps;
4420 
4421 		next_cpu = ident & rps_cpu_mask;
4422 
4423 		/* OK, now we know there is a match,
4424 		 * we can look at the local (per receive queue) flow table
4425 		 */
4426 		rflow = &flow_table->flows[hash & flow_table->mask];
4427 		tcpu = rflow->cpu;
4428 
4429 		/*
4430 		 * If the desired CPU (where last recvmsg was done) is
4431 		 * different from current CPU (one in the rx-queue flow
4432 		 * table entry), switch if one of the following holds:
4433 		 *   - Current CPU is unset (>= nr_cpu_ids).
4434 		 *   - Current CPU is offline.
4435 		 *   - The current CPU's queue tail has advanced beyond the
4436 		 *     last packet that was enqueued using this table entry.
4437 		 *     This guarantees that all previous packets for the flow
4438 		 *     have been dequeued, thus preserving in order delivery.
4439 		 */
4440 		if (unlikely(tcpu != next_cpu) &&
4441 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4442 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4443 		      rflow->last_qtail)) >= 0)) {
4444 			tcpu = next_cpu;
4445 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4446 		}
4447 
4448 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4449 			*rflowp = rflow;
4450 			cpu = tcpu;
4451 			goto done;
4452 		}
4453 	}
4454 
4455 try_rps:
4456 
4457 	if (map) {
4458 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4459 		if (cpu_online(tcpu)) {
4460 			cpu = tcpu;
4461 			goto done;
4462 		}
4463 	}
4464 
4465 done:
4466 	return cpu;
4467 }
4468 
4469 #ifdef CONFIG_RFS_ACCEL
4470 
4471 /**
4472  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4473  * @dev: Device on which the filter was set
4474  * @rxq_index: RX queue index
4475  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4476  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4477  *
4478  * Drivers that implement ndo_rx_flow_steer() should periodically call
4479  * this function for each installed filter and remove the filters for
4480  * which it returns %true.
4481  */
4482 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4483 			 u32 flow_id, u16 filter_id)
4484 {
4485 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4486 	struct rps_dev_flow_table *flow_table;
4487 	struct rps_dev_flow *rflow;
4488 	bool expire = true;
4489 	unsigned int cpu;
4490 
4491 	rcu_read_lock();
4492 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4493 	if (flow_table && flow_id <= flow_table->mask) {
4494 		rflow = &flow_table->flows[flow_id];
4495 		cpu = READ_ONCE(rflow->cpu);
4496 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4497 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4498 			   rflow->last_qtail) <
4499 		     (int)(10 * flow_table->mask)))
4500 			expire = false;
4501 	}
4502 	rcu_read_unlock();
4503 	return expire;
4504 }
4505 EXPORT_SYMBOL(rps_may_expire_flow);
4506 
4507 #endif /* CONFIG_RFS_ACCEL */
4508 
4509 /* Called from hardirq (IPI) context */
4510 static void rps_trigger_softirq(void *data)
4511 {
4512 	struct softnet_data *sd = data;
4513 
4514 	____napi_schedule(sd, &sd->backlog);
4515 	sd->received_rps++;
4516 }
4517 
4518 #endif /* CONFIG_RPS */
4519 
4520 /*
4521  * Check if this softnet_data structure is another cpu one
4522  * If yes, queue it to our IPI list and return 1
4523  * If no, return 0
4524  */
4525 static int napi_schedule_rps(struct softnet_data *sd)
4526 {
4527 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4528 
4529 #ifdef CONFIG_RPS
4530 	if (sd != mysd) {
4531 		sd->rps_ipi_next = mysd->rps_ipi_list;
4532 		mysd->rps_ipi_list = sd;
4533 
4534 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4535 		return 1;
4536 	}
4537 #endif /* CONFIG_RPS */
4538 	__napi_schedule_irqoff(&mysd->backlog);
4539 	return 0;
4540 }
4541 
4542 #ifdef CONFIG_NET_FLOW_LIMIT
4543 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4544 #endif
4545 
4546 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4547 {
4548 #ifdef CONFIG_NET_FLOW_LIMIT
4549 	struct sd_flow_limit *fl;
4550 	struct softnet_data *sd;
4551 	unsigned int old_flow, new_flow;
4552 
4553 	if (qlen < (netdev_max_backlog >> 1))
4554 		return false;
4555 
4556 	sd = this_cpu_ptr(&softnet_data);
4557 
4558 	rcu_read_lock();
4559 	fl = rcu_dereference(sd->flow_limit);
4560 	if (fl) {
4561 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4562 		old_flow = fl->history[fl->history_head];
4563 		fl->history[fl->history_head] = new_flow;
4564 
4565 		fl->history_head++;
4566 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4567 
4568 		if (likely(fl->buckets[old_flow]))
4569 			fl->buckets[old_flow]--;
4570 
4571 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4572 			fl->count++;
4573 			rcu_read_unlock();
4574 			return true;
4575 		}
4576 	}
4577 	rcu_read_unlock();
4578 #endif
4579 	return false;
4580 }
4581 
4582 /*
4583  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4584  * queue (may be a remote CPU queue).
4585  */
4586 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4587 			      unsigned int *qtail)
4588 {
4589 	enum skb_drop_reason reason;
4590 	struct softnet_data *sd;
4591 	unsigned long flags;
4592 	unsigned int qlen;
4593 
4594 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4595 	sd = &per_cpu(softnet_data, cpu);
4596 
4597 	rps_lock_irqsave(sd, &flags);
4598 	if (!netif_running(skb->dev))
4599 		goto drop;
4600 	qlen = skb_queue_len(&sd->input_pkt_queue);
4601 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4602 		if (qlen) {
4603 enqueue:
4604 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4605 			input_queue_tail_incr_save(sd, qtail);
4606 			rps_unlock_irq_restore(sd, &flags);
4607 			return NET_RX_SUCCESS;
4608 		}
4609 
4610 		/* Schedule NAPI for backlog device
4611 		 * We can use non atomic operation since we own the queue lock
4612 		 */
4613 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4614 			napi_schedule_rps(sd);
4615 		goto enqueue;
4616 	}
4617 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4618 
4619 drop:
4620 	sd->dropped++;
4621 	rps_unlock_irq_restore(sd, &flags);
4622 
4623 	dev_core_stats_rx_dropped_inc(skb->dev);
4624 	kfree_skb_reason(skb, reason);
4625 	return NET_RX_DROP;
4626 }
4627 
4628 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4629 {
4630 	struct net_device *dev = skb->dev;
4631 	struct netdev_rx_queue *rxqueue;
4632 
4633 	rxqueue = dev->_rx;
4634 
4635 	if (skb_rx_queue_recorded(skb)) {
4636 		u16 index = skb_get_rx_queue(skb);
4637 
4638 		if (unlikely(index >= dev->real_num_rx_queues)) {
4639 			WARN_ONCE(dev->real_num_rx_queues > 1,
4640 				  "%s received packet on queue %u, but number "
4641 				  "of RX queues is %u\n",
4642 				  dev->name, index, dev->real_num_rx_queues);
4643 
4644 			return rxqueue; /* Return first rxqueue */
4645 		}
4646 		rxqueue += index;
4647 	}
4648 	return rxqueue;
4649 }
4650 
4651 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4652 			     struct bpf_prog *xdp_prog)
4653 {
4654 	void *orig_data, *orig_data_end, *hard_start;
4655 	struct netdev_rx_queue *rxqueue;
4656 	bool orig_bcast, orig_host;
4657 	u32 mac_len, frame_sz;
4658 	__be16 orig_eth_type;
4659 	struct ethhdr *eth;
4660 	u32 metalen, act;
4661 	int off;
4662 
4663 	/* The XDP program wants to see the packet starting at the MAC
4664 	 * header.
4665 	 */
4666 	mac_len = skb->data - skb_mac_header(skb);
4667 	hard_start = skb->data - skb_headroom(skb);
4668 
4669 	/* SKB "head" area always have tailroom for skb_shared_info */
4670 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4671 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4672 
4673 	rxqueue = netif_get_rxqueue(skb);
4674 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4675 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4676 			 skb_headlen(skb) + mac_len, true);
4677 
4678 	orig_data_end = xdp->data_end;
4679 	orig_data = xdp->data;
4680 	eth = (struct ethhdr *)xdp->data;
4681 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4682 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4683 	orig_eth_type = eth->h_proto;
4684 
4685 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4686 
4687 	/* check if bpf_xdp_adjust_head was used */
4688 	off = xdp->data - orig_data;
4689 	if (off) {
4690 		if (off > 0)
4691 			__skb_pull(skb, off);
4692 		else if (off < 0)
4693 			__skb_push(skb, -off);
4694 
4695 		skb->mac_header += off;
4696 		skb_reset_network_header(skb);
4697 	}
4698 
4699 	/* check if bpf_xdp_adjust_tail was used */
4700 	off = xdp->data_end - orig_data_end;
4701 	if (off != 0) {
4702 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4703 		skb->len += off; /* positive on grow, negative on shrink */
4704 	}
4705 
4706 	/* check if XDP changed eth hdr such SKB needs update */
4707 	eth = (struct ethhdr *)xdp->data;
4708 	if ((orig_eth_type != eth->h_proto) ||
4709 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4710 						  skb->dev->dev_addr)) ||
4711 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4712 		__skb_push(skb, ETH_HLEN);
4713 		skb->pkt_type = PACKET_HOST;
4714 		skb->protocol = eth_type_trans(skb, skb->dev);
4715 	}
4716 
4717 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4718 	 * before calling us again on redirect path. We do not call do_redirect
4719 	 * as we leave that up to the caller.
4720 	 *
4721 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4722 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4723 	 */
4724 	switch (act) {
4725 	case XDP_REDIRECT:
4726 	case XDP_TX:
4727 		__skb_push(skb, mac_len);
4728 		break;
4729 	case XDP_PASS:
4730 		metalen = xdp->data - xdp->data_meta;
4731 		if (metalen)
4732 			skb_metadata_set(skb, metalen);
4733 		break;
4734 	}
4735 
4736 	return act;
4737 }
4738 
4739 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4740 				     struct xdp_buff *xdp,
4741 				     struct bpf_prog *xdp_prog)
4742 {
4743 	u32 act = XDP_DROP;
4744 
4745 	/* Reinjected packets coming from act_mirred or similar should
4746 	 * not get XDP generic processing.
4747 	 */
4748 	if (skb_is_redirected(skb))
4749 		return XDP_PASS;
4750 
4751 	/* XDP packets must be linear and must have sufficient headroom
4752 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4753 	 * native XDP provides, thus we need to do it here as well.
4754 	 */
4755 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4756 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4757 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4758 		int troom = skb->tail + skb->data_len - skb->end;
4759 
4760 		/* In case we have to go down the path and also linearize,
4761 		 * then lets do the pskb_expand_head() work just once here.
4762 		 */
4763 		if (pskb_expand_head(skb,
4764 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4765 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4766 			goto do_drop;
4767 		if (skb_linearize(skb))
4768 			goto do_drop;
4769 	}
4770 
4771 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4772 	switch (act) {
4773 	case XDP_REDIRECT:
4774 	case XDP_TX:
4775 	case XDP_PASS:
4776 		break;
4777 	default:
4778 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4779 		fallthrough;
4780 	case XDP_ABORTED:
4781 		trace_xdp_exception(skb->dev, xdp_prog, act);
4782 		fallthrough;
4783 	case XDP_DROP:
4784 	do_drop:
4785 		kfree_skb(skb);
4786 		break;
4787 	}
4788 
4789 	return act;
4790 }
4791 
4792 /* When doing generic XDP we have to bypass the qdisc layer and the
4793  * network taps in order to match in-driver-XDP behavior.
4794  */
4795 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4796 {
4797 	struct net_device *dev = skb->dev;
4798 	struct netdev_queue *txq;
4799 	bool free_skb = true;
4800 	int cpu, rc;
4801 
4802 	txq = netdev_core_pick_tx(dev, skb, NULL);
4803 	cpu = smp_processor_id();
4804 	HARD_TX_LOCK(dev, txq, cpu);
4805 	if (!netif_xmit_stopped(txq)) {
4806 		rc = netdev_start_xmit(skb, dev, txq, 0);
4807 		if (dev_xmit_complete(rc))
4808 			free_skb = false;
4809 	}
4810 	HARD_TX_UNLOCK(dev, txq);
4811 	if (free_skb) {
4812 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4813 		kfree_skb(skb);
4814 	}
4815 }
4816 
4817 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4818 
4819 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4820 {
4821 	if (xdp_prog) {
4822 		struct xdp_buff xdp;
4823 		u32 act;
4824 		int err;
4825 
4826 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4827 		if (act != XDP_PASS) {
4828 			switch (act) {
4829 			case XDP_REDIRECT:
4830 				err = xdp_do_generic_redirect(skb->dev, skb,
4831 							      &xdp, xdp_prog);
4832 				if (err)
4833 					goto out_redir;
4834 				break;
4835 			case XDP_TX:
4836 				generic_xdp_tx(skb, xdp_prog);
4837 				break;
4838 			}
4839 			return XDP_DROP;
4840 		}
4841 	}
4842 	return XDP_PASS;
4843 out_redir:
4844 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4845 	return XDP_DROP;
4846 }
4847 EXPORT_SYMBOL_GPL(do_xdp_generic);
4848 
4849 static int netif_rx_internal(struct sk_buff *skb)
4850 {
4851 	int ret;
4852 
4853 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4854 
4855 	trace_netif_rx(skb);
4856 
4857 #ifdef CONFIG_RPS
4858 	if (static_branch_unlikely(&rps_needed)) {
4859 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4860 		int cpu;
4861 
4862 		rcu_read_lock();
4863 
4864 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4865 		if (cpu < 0)
4866 			cpu = smp_processor_id();
4867 
4868 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4869 
4870 		rcu_read_unlock();
4871 	} else
4872 #endif
4873 	{
4874 		unsigned int qtail;
4875 
4876 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4877 	}
4878 	return ret;
4879 }
4880 
4881 /**
4882  *	__netif_rx	-	Slightly optimized version of netif_rx
4883  *	@skb: buffer to post
4884  *
4885  *	This behaves as netif_rx except that it does not disable bottom halves.
4886  *	As a result this function may only be invoked from the interrupt context
4887  *	(either hard or soft interrupt).
4888  */
4889 int __netif_rx(struct sk_buff *skb)
4890 {
4891 	int ret;
4892 
4893 	lockdep_assert_once(hardirq_count() | softirq_count());
4894 
4895 	trace_netif_rx_entry(skb);
4896 	ret = netif_rx_internal(skb);
4897 	trace_netif_rx_exit(ret);
4898 	return ret;
4899 }
4900 EXPORT_SYMBOL(__netif_rx);
4901 
4902 /**
4903  *	netif_rx	-	post buffer to the network code
4904  *	@skb: buffer to post
4905  *
4906  *	This function receives a packet from a device driver and queues it for
4907  *	the upper (protocol) levels to process via the backlog NAPI device. It
4908  *	always succeeds. The buffer may be dropped during processing for
4909  *	congestion control or by the protocol layers.
4910  *	The network buffer is passed via the backlog NAPI device. Modern NIC
4911  *	driver should use NAPI and GRO.
4912  *	This function can used from interrupt and from process context. The
4913  *	caller from process context must not disable interrupts before invoking
4914  *	this function.
4915  *
4916  *	return values:
4917  *	NET_RX_SUCCESS	(no congestion)
4918  *	NET_RX_DROP     (packet was dropped)
4919  *
4920  */
4921 int netif_rx(struct sk_buff *skb)
4922 {
4923 	bool need_bh_off = !(hardirq_count() | softirq_count());
4924 	int ret;
4925 
4926 	if (need_bh_off)
4927 		local_bh_disable();
4928 	trace_netif_rx_entry(skb);
4929 	ret = netif_rx_internal(skb);
4930 	trace_netif_rx_exit(ret);
4931 	if (need_bh_off)
4932 		local_bh_enable();
4933 	return ret;
4934 }
4935 EXPORT_SYMBOL(netif_rx);
4936 
4937 static __latent_entropy void net_tx_action(struct softirq_action *h)
4938 {
4939 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4940 
4941 	if (sd->completion_queue) {
4942 		struct sk_buff *clist;
4943 
4944 		local_irq_disable();
4945 		clist = sd->completion_queue;
4946 		sd->completion_queue = NULL;
4947 		local_irq_enable();
4948 
4949 		while (clist) {
4950 			struct sk_buff *skb = clist;
4951 
4952 			clist = clist->next;
4953 
4954 			WARN_ON(refcount_read(&skb->users));
4955 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4956 				trace_consume_skb(skb);
4957 			else
4958 				trace_kfree_skb(skb, net_tx_action,
4959 						SKB_DROP_REASON_NOT_SPECIFIED);
4960 
4961 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4962 				__kfree_skb(skb);
4963 			else
4964 				__kfree_skb_defer(skb);
4965 		}
4966 	}
4967 
4968 	if (sd->output_queue) {
4969 		struct Qdisc *head;
4970 
4971 		local_irq_disable();
4972 		head = sd->output_queue;
4973 		sd->output_queue = NULL;
4974 		sd->output_queue_tailp = &sd->output_queue;
4975 		local_irq_enable();
4976 
4977 		rcu_read_lock();
4978 
4979 		while (head) {
4980 			struct Qdisc *q = head;
4981 			spinlock_t *root_lock = NULL;
4982 
4983 			head = head->next_sched;
4984 
4985 			/* We need to make sure head->next_sched is read
4986 			 * before clearing __QDISC_STATE_SCHED
4987 			 */
4988 			smp_mb__before_atomic();
4989 
4990 			if (!(q->flags & TCQ_F_NOLOCK)) {
4991 				root_lock = qdisc_lock(q);
4992 				spin_lock(root_lock);
4993 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4994 						     &q->state))) {
4995 				/* There is a synchronize_net() between
4996 				 * STATE_DEACTIVATED flag being set and
4997 				 * qdisc_reset()/some_qdisc_is_busy() in
4998 				 * dev_deactivate(), so we can safely bail out
4999 				 * early here to avoid data race between
5000 				 * qdisc_deactivate() and some_qdisc_is_busy()
5001 				 * for lockless qdisc.
5002 				 */
5003 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5004 				continue;
5005 			}
5006 
5007 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5008 			qdisc_run(q);
5009 			if (root_lock)
5010 				spin_unlock(root_lock);
5011 		}
5012 
5013 		rcu_read_unlock();
5014 	}
5015 
5016 	xfrm_dev_backlog(sd);
5017 }
5018 
5019 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5020 /* This hook is defined here for ATM LANE */
5021 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5022 			     unsigned char *addr) __read_mostly;
5023 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5024 #endif
5025 
5026 static inline struct sk_buff *
5027 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5028 		   struct net_device *orig_dev, bool *another)
5029 {
5030 #ifdef CONFIG_NET_CLS_ACT
5031 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5032 	struct tcf_result cl_res;
5033 
5034 	/* If there's at least one ingress present somewhere (so
5035 	 * we get here via enabled static key), remaining devices
5036 	 * that are not configured with an ingress qdisc will bail
5037 	 * out here.
5038 	 */
5039 	if (!miniq)
5040 		return skb;
5041 
5042 	if (*pt_prev) {
5043 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5044 		*pt_prev = NULL;
5045 	}
5046 
5047 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5048 	tc_skb_cb(skb)->mru = 0;
5049 	tc_skb_cb(skb)->post_ct = false;
5050 	skb->tc_at_ingress = 1;
5051 	mini_qdisc_bstats_cpu_update(miniq, skb);
5052 
5053 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5054 	case TC_ACT_OK:
5055 	case TC_ACT_RECLASSIFY:
5056 		skb->tc_index = TC_H_MIN(cl_res.classid);
5057 		break;
5058 	case TC_ACT_SHOT:
5059 		mini_qdisc_qstats_cpu_drop(miniq);
5060 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5061 		return NULL;
5062 	case TC_ACT_STOLEN:
5063 	case TC_ACT_QUEUED:
5064 	case TC_ACT_TRAP:
5065 		consume_skb(skb);
5066 		return NULL;
5067 	case TC_ACT_REDIRECT:
5068 		/* skb_mac_header check was done by cls/act_bpf, so
5069 		 * we can safely push the L2 header back before
5070 		 * redirecting to another netdev
5071 		 */
5072 		__skb_push(skb, skb->mac_len);
5073 		if (skb_do_redirect(skb) == -EAGAIN) {
5074 			__skb_pull(skb, skb->mac_len);
5075 			*another = true;
5076 			break;
5077 		}
5078 		return NULL;
5079 	case TC_ACT_CONSUMED:
5080 		return NULL;
5081 	default:
5082 		break;
5083 	}
5084 #endif /* CONFIG_NET_CLS_ACT */
5085 	return skb;
5086 }
5087 
5088 /**
5089  *	netdev_is_rx_handler_busy - check if receive handler is registered
5090  *	@dev: device to check
5091  *
5092  *	Check if a receive handler is already registered for a given device.
5093  *	Return true if there one.
5094  *
5095  *	The caller must hold the rtnl_mutex.
5096  */
5097 bool netdev_is_rx_handler_busy(struct net_device *dev)
5098 {
5099 	ASSERT_RTNL();
5100 	return dev && rtnl_dereference(dev->rx_handler);
5101 }
5102 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5103 
5104 /**
5105  *	netdev_rx_handler_register - register receive handler
5106  *	@dev: device to register a handler for
5107  *	@rx_handler: receive handler to register
5108  *	@rx_handler_data: data pointer that is used by rx handler
5109  *
5110  *	Register a receive handler for a device. This handler will then be
5111  *	called from __netif_receive_skb. A negative errno code is returned
5112  *	on a failure.
5113  *
5114  *	The caller must hold the rtnl_mutex.
5115  *
5116  *	For a general description of rx_handler, see enum rx_handler_result.
5117  */
5118 int netdev_rx_handler_register(struct net_device *dev,
5119 			       rx_handler_func_t *rx_handler,
5120 			       void *rx_handler_data)
5121 {
5122 	if (netdev_is_rx_handler_busy(dev))
5123 		return -EBUSY;
5124 
5125 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5126 		return -EINVAL;
5127 
5128 	/* Note: rx_handler_data must be set before rx_handler */
5129 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5130 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5131 
5132 	return 0;
5133 }
5134 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5135 
5136 /**
5137  *	netdev_rx_handler_unregister - unregister receive handler
5138  *	@dev: device to unregister a handler from
5139  *
5140  *	Unregister a receive handler from a device.
5141  *
5142  *	The caller must hold the rtnl_mutex.
5143  */
5144 void netdev_rx_handler_unregister(struct net_device *dev)
5145 {
5146 
5147 	ASSERT_RTNL();
5148 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5149 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5150 	 * section has a guarantee to see a non NULL rx_handler_data
5151 	 * as well.
5152 	 */
5153 	synchronize_net();
5154 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5155 }
5156 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5157 
5158 /*
5159  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5160  * the special handling of PFMEMALLOC skbs.
5161  */
5162 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5163 {
5164 	switch (skb->protocol) {
5165 	case htons(ETH_P_ARP):
5166 	case htons(ETH_P_IP):
5167 	case htons(ETH_P_IPV6):
5168 	case htons(ETH_P_8021Q):
5169 	case htons(ETH_P_8021AD):
5170 		return true;
5171 	default:
5172 		return false;
5173 	}
5174 }
5175 
5176 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5177 			     int *ret, struct net_device *orig_dev)
5178 {
5179 	if (nf_hook_ingress_active(skb)) {
5180 		int ingress_retval;
5181 
5182 		if (*pt_prev) {
5183 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5184 			*pt_prev = NULL;
5185 		}
5186 
5187 		rcu_read_lock();
5188 		ingress_retval = nf_hook_ingress(skb);
5189 		rcu_read_unlock();
5190 		return ingress_retval;
5191 	}
5192 	return 0;
5193 }
5194 
5195 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5196 				    struct packet_type **ppt_prev)
5197 {
5198 	struct packet_type *ptype, *pt_prev;
5199 	rx_handler_func_t *rx_handler;
5200 	struct sk_buff *skb = *pskb;
5201 	struct net_device *orig_dev;
5202 	bool deliver_exact = false;
5203 	int ret = NET_RX_DROP;
5204 	__be16 type;
5205 
5206 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5207 
5208 	trace_netif_receive_skb(skb);
5209 
5210 	orig_dev = skb->dev;
5211 
5212 	skb_reset_network_header(skb);
5213 	if (!skb_transport_header_was_set(skb))
5214 		skb_reset_transport_header(skb);
5215 	skb_reset_mac_len(skb);
5216 
5217 	pt_prev = NULL;
5218 
5219 another_round:
5220 	skb->skb_iif = skb->dev->ifindex;
5221 
5222 	__this_cpu_inc(softnet_data.processed);
5223 
5224 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5225 		int ret2;
5226 
5227 		migrate_disable();
5228 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5229 		migrate_enable();
5230 
5231 		if (ret2 != XDP_PASS) {
5232 			ret = NET_RX_DROP;
5233 			goto out;
5234 		}
5235 	}
5236 
5237 	if (eth_type_vlan(skb->protocol)) {
5238 		skb = skb_vlan_untag(skb);
5239 		if (unlikely(!skb))
5240 			goto out;
5241 	}
5242 
5243 	if (skb_skip_tc_classify(skb))
5244 		goto skip_classify;
5245 
5246 	if (pfmemalloc)
5247 		goto skip_taps;
5248 
5249 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5250 		if (pt_prev)
5251 			ret = deliver_skb(skb, pt_prev, orig_dev);
5252 		pt_prev = ptype;
5253 	}
5254 
5255 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5256 		if (pt_prev)
5257 			ret = deliver_skb(skb, pt_prev, orig_dev);
5258 		pt_prev = ptype;
5259 	}
5260 
5261 skip_taps:
5262 #ifdef CONFIG_NET_INGRESS
5263 	if (static_branch_unlikely(&ingress_needed_key)) {
5264 		bool another = false;
5265 
5266 		nf_skip_egress(skb, true);
5267 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5268 					 &another);
5269 		if (another)
5270 			goto another_round;
5271 		if (!skb)
5272 			goto out;
5273 
5274 		nf_skip_egress(skb, false);
5275 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5276 			goto out;
5277 	}
5278 #endif
5279 	skb_reset_redirect(skb);
5280 skip_classify:
5281 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5282 		goto drop;
5283 
5284 	if (skb_vlan_tag_present(skb)) {
5285 		if (pt_prev) {
5286 			ret = deliver_skb(skb, pt_prev, orig_dev);
5287 			pt_prev = NULL;
5288 		}
5289 		if (vlan_do_receive(&skb))
5290 			goto another_round;
5291 		else if (unlikely(!skb))
5292 			goto out;
5293 	}
5294 
5295 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5296 	if (rx_handler) {
5297 		if (pt_prev) {
5298 			ret = deliver_skb(skb, pt_prev, orig_dev);
5299 			pt_prev = NULL;
5300 		}
5301 		switch (rx_handler(&skb)) {
5302 		case RX_HANDLER_CONSUMED:
5303 			ret = NET_RX_SUCCESS;
5304 			goto out;
5305 		case RX_HANDLER_ANOTHER:
5306 			goto another_round;
5307 		case RX_HANDLER_EXACT:
5308 			deliver_exact = true;
5309 			break;
5310 		case RX_HANDLER_PASS:
5311 			break;
5312 		default:
5313 			BUG();
5314 		}
5315 	}
5316 
5317 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5318 check_vlan_id:
5319 		if (skb_vlan_tag_get_id(skb)) {
5320 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5321 			 * find vlan device.
5322 			 */
5323 			skb->pkt_type = PACKET_OTHERHOST;
5324 		} else if (eth_type_vlan(skb->protocol)) {
5325 			/* Outer header is 802.1P with vlan 0, inner header is
5326 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5327 			 * not find vlan dev for vlan id 0.
5328 			 */
5329 			__vlan_hwaccel_clear_tag(skb);
5330 			skb = skb_vlan_untag(skb);
5331 			if (unlikely(!skb))
5332 				goto out;
5333 			if (vlan_do_receive(&skb))
5334 				/* After stripping off 802.1P header with vlan 0
5335 				 * vlan dev is found for inner header.
5336 				 */
5337 				goto another_round;
5338 			else if (unlikely(!skb))
5339 				goto out;
5340 			else
5341 				/* We have stripped outer 802.1P vlan 0 header.
5342 				 * But could not find vlan dev.
5343 				 * check again for vlan id to set OTHERHOST.
5344 				 */
5345 				goto check_vlan_id;
5346 		}
5347 		/* Note: we might in the future use prio bits
5348 		 * and set skb->priority like in vlan_do_receive()
5349 		 * For the time being, just ignore Priority Code Point
5350 		 */
5351 		__vlan_hwaccel_clear_tag(skb);
5352 	}
5353 
5354 	type = skb->protocol;
5355 
5356 	/* deliver only exact match when indicated */
5357 	if (likely(!deliver_exact)) {
5358 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5359 				       &ptype_base[ntohs(type) &
5360 						   PTYPE_HASH_MASK]);
5361 	}
5362 
5363 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5364 			       &orig_dev->ptype_specific);
5365 
5366 	if (unlikely(skb->dev != orig_dev)) {
5367 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5368 				       &skb->dev->ptype_specific);
5369 	}
5370 
5371 	if (pt_prev) {
5372 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5373 			goto drop;
5374 		*ppt_prev = pt_prev;
5375 	} else {
5376 drop:
5377 		if (!deliver_exact) {
5378 			dev_core_stats_rx_dropped_inc(skb->dev);
5379 			kfree_skb_reason(skb, SKB_DROP_REASON_PTYPE_ABSENT);
5380 		} else {
5381 			dev_core_stats_rx_nohandler_inc(skb->dev);
5382 			kfree_skb(skb);
5383 		}
5384 		/* Jamal, now you will not able to escape explaining
5385 		 * me how you were going to use this. :-)
5386 		 */
5387 		ret = NET_RX_DROP;
5388 	}
5389 
5390 out:
5391 	/* The invariant here is that if *ppt_prev is not NULL
5392 	 * then skb should also be non-NULL.
5393 	 *
5394 	 * Apparently *ppt_prev assignment above holds this invariant due to
5395 	 * skb dereferencing near it.
5396 	 */
5397 	*pskb = skb;
5398 	return ret;
5399 }
5400 
5401 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5402 {
5403 	struct net_device *orig_dev = skb->dev;
5404 	struct packet_type *pt_prev = NULL;
5405 	int ret;
5406 
5407 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5408 	if (pt_prev)
5409 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5410 					 skb->dev, pt_prev, orig_dev);
5411 	return ret;
5412 }
5413 
5414 /**
5415  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5416  *	@skb: buffer to process
5417  *
5418  *	More direct receive version of netif_receive_skb().  It should
5419  *	only be used by callers that have a need to skip RPS and Generic XDP.
5420  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5421  *
5422  *	This function may only be called from softirq context and interrupts
5423  *	should be enabled.
5424  *
5425  *	Return values (usually ignored):
5426  *	NET_RX_SUCCESS: no congestion
5427  *	NET_RX_DROP: packet was dropped
5428  */
5429 int netif_receive_skb_core(struct sk_buff *skb)
5430 {
5431 	int ret;
5432 
5433 	rcu_read_lock();
5434 	ret = __netif_receive_skb_one_core(skb, false);
5435 	rcu_read_unlock();
5436 
5437 	return ret;
5438 }
5439 EXPORT_SYMBOL(netif_receive_skb_core);
5440 
5441 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5442 						  struct packet_type *pt_prev,
5443 						  struct net_device *orig_dev)
5444 {
5445 	struct sk_buff *skb, *next;
5446 
5447 	if (!pt_prev)
5448 		return;
5449 	if (list_empty(head))
5450 		return;
5451 	if (pt_prev->list_func != NULL)
5452 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5453 				   ip_list_rcv, head, pt_prev, orig_dev);
5454 	else
5455 		list_for_each_entry_safe(skb, next, head, list) {
5456 			skb_list_del_init(skb);
5457 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5458 		}
5459 }
5460 
5461 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5462 {
5463 	/* Fast-path assumptions:
5464 	 * - There is no RX handler.
5465 	 * - Only one packet_type matches.
5466 	 * If either of these fails, we will end up doing some per-packet
5467 	 * processing in-line, then handling the 'last ptype' for the whole
5468 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5469 	 * because the 'last ptype' must be constant across the sublist, and all
5470 	 * other ptypes are handled per-packet.
5471 	 */
5472 	/* Current (common) ptype of sublist */
5473 	struct packet_type *pt_curr = NULL;
5474 	/* Current (common) orig_dev of sublist */
5475 	struct net_device *od_curr = NULL;
5476 	struct list_head sublist;
5477 	struct sk_buff *skb, *next;
5478 
5479 	INIT_LIST_HEAD(&sublist);
5480 	list_for_each_entry_safe(skb, next, head, list) {
5481 		struct net_device *orig_dev = skb->dev;
5482 		struct packet_type *pt_prev = NULL;
5483 
5484 		skb_list_del_init(skb);
5485 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5486 		if (!pt_prev)
5487 			continue;
5488 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5489 			/* dispatch old sublist */
5490 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5491 			/* start new sublist */
5492 			INIT_LIST_HEAD(&sublist);
5493 			pt_curr = pt_prev;
5494 			od_curr = orig_dev;
5495 		}
5496 		list_add_tail(&skb->list, &sublist);
5497 	}
5498 
5499 	/* dispatch final sublist */
5500 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5501 }
5502 
5503 static int __netif_receive_skb(struct sk_buff *skb)
5504 {
5505 	int ret;
5506 
5507 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5508 		unsigned int noreclaim_flag;
5509 
5510 		/*
5511 		 * PFMEMALLOC skbs are special, they should
5512 		 * - be delivered to SOCK_MEMALLOC sockets only
5513 		 * - stay away from userspace
5514 		 * - have bounded memory usage
5515 		 *
5516 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5517 		 * context down to all allocation sites.
5518 		 */
5519 		noreclaim_flag = memalloc_noreclaim_save();
5520 		ret = __netif_receive_skb_one_core(skb, true);
5521 		memalloc_noreclaim_restore(noreclaim_flag);
5522 	} else
5523 		ret = __netif_receive_skb_one_core(skb, false);
5524 
5525 	return ret;
5526 }
5527 
5528 static void __netif_receive_skb_list(struct list_head *head)
5529 {
5530 	unsigned long noreclaim_flag = 0;
5531 	struct sk_buff *skb, *next;
5532 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5533 
5534 	list_for_each_entry_safe(skb, next, head, list) {
5535 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5536 			struct list_head sublist;
5537 
5538 			/* Handle the previous sublist */
5539 			list_cut_before(&sublist, head, &skb->list);
5540 			if (!list_empty(&sublist))
5541 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5542 			pfmemalloc = !pfmemalloc;
5543 			/* See comments in __netif_receive_skb */
5544 			if (pfmemalloc)
5545 				noreclaim_flag = memalloc_noreclaim_save();
5546 			else
5547 				memalloc_noreclaim_restore(noreclaim_flag);
5548 		}
5549 	}
5550 	/* Handle the remaining sublist */
5551 	if (!list_empty(head))
5552 		__netif_receive_skb_list_core(head, pfmemalloc);
5553 	/* Restore pflags */
5554 	if (pfmemalloc)
5555 		memalloc_noreclaim_restore(noreclaim_flag);
5556 }
5557 
5558 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5559 {
5560 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5561 	struct bpf_prog *new = xdp->prog;
5562 	int ret = 0;
5563 
5564 	switch (xdp->command) {
5565 	case XDP_SETUP_PROG:
5566 		rcu_assign_pointer(dev->xdp_prog, new);
5567 		if (old)
5568 			bpf_prog_put(old);
5569 
5570 		if (old && !new) {
5571 			static_branch_dec(&generic_xdp_needed_key);
5572 		} else if (new && !old) {
5573 			static_branch_inc(&generic_xdp_needed_key);
5574 			dev_disable_lro(dev);
5575 			dev_disable_gro_hw(dev);
5576 		}
5577 		break;
5578 
5579 	default:
5580 		ret = -EINVAL;
5581 		break;
5582 	}
5583 
5584 	return ret;
5585 }
5586 
5587 static int netif_receive_skb_internal(struct sk_buff *skb)
5588 {
5589 	int ret;
5590 
5591 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5592 
5593 	if (skb_defer_rx_timestamp(skb))
5594 		return NET_RX_SUCCESS;
5595 
5596 	rcu_read_lock();
5597 #ifdef CONFIG_RPS
5598 	if (static_branch_unlikely(&rps_needed)) {
5599 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5600 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5601 
5602 		if (cpu >= 0) {
5603 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5604 			rcu_read_unlock();
5605 			return ret;
5606 		}
5607 	}
5608 #endif
5609 	ret = __netif_receive_skb(skb);
5610 	rcu_read_unlock();
5611 	return ret;
5612 }
5613 
5614 void netif_receive_skb_list_internal(struct list_head *head)
5615 {
5616 	struct sk_buff *skb, *next;
5617 	struct list_head sublist;
5618 
5619 	INIT_LIST_HEAD(&sublist);
5620 	list_for_each_entry_safe(skb, next, head, list) {
5621 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5622 		skb_list_del_init(skb);
5623 		if (!skb_defer_rx_timestamp(skb))
5624 			list_add_tail(&skb->list, &sublist);
5625 	}
5626 	list_splice_init(&sublist, head);
5627 
5628 	rcu_read_lock();
5629 #ifdef CONFIG_RPS
5630 	if (static_branch_unlikely(&rps_needed)) {
5631 		list_for_each_entry_safe(skb, next, head, list) {
5632 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5633 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5634 
5635 			if (cpu >= 0) {
5636 				/* Will be handled, remove from list */
5637 				skb_list_del_init(skb);
5638 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5639 			}
5640 		}
5641 	}
5642 #endif
5643 	__netif_receive_skb_list(head);
5644 	rcu_read_unlock();
5645 }
5646 
5647 /**
5648  *	netif_receive_skb - process receive buffer from network
5649  *	@skb: buffer to process
5650  *
5651  *	netif_receive_skb() is the main receive data processing function.
5652  *	It always succeeds. The buffer may be dropped during processing
5653  *	for congestion control or by the protocol layers.
5654  *
5655  *	This function may only be called from softirq context and interrupts
5656  *	should be enabled.
5657  *
5658  *	Return values (usually ignored):
5659  *	NET_RX_SUCCESS: no congestion
5660  *	NET_RX_DROP: packet was dropped
5661  */
5662 int netif_receive_skb(struct sk_buff *skb)
5663 {
5664 	int ret;
5665 
5666 	trace_netif_receive_skb_entry(skb);
5667 
5668 	ret = netif_receive_skb_internal(skb);
5669 	trace_netif_receive_skb_exit(ret);
5670 
5671 	return ret;
5672 }
5673 EXPORT_SYMBOL(netif_receive_skb);
5674 
5675 /**
5676  *	netif_receive_skb_list - process many receive buffers from network
5677  *	@head: list of skbs to process.
5678  *
5679  *	Since return value of netif_receive_skb() is normally ignored, and
5680  *	wouldn't be meaningful for a list, this function returns void.
5681  *
5682  *	This function may only be called from softirq context and interrupts
5683  *	should be enabled.
5684  */
5685 void netif_receive_skb_list(struct list_head *head)
5686 {
5687 	struct sk_buff *skb;
5688 
5689 	if (list_empty(head))
5690 		return;
5691 	if (trace_netif_receive_skb_list_entry_enabled()) {
5692 		list_for_each_entry(skb, head, list)
5693 			trace_netif_receive_skb_list_entry(skb);
5694 	}
5695 	netif_receive_skb_list_internal(head);
5696 	trace_netif_receive_skb_list_exit(0);
5697 }
5698 EXPORT_SYMBOL(netif_receive_skb_list);
5699 
5700 static DEFINE_PER_CPU(struct work_struct, flush_works);
5701 
5702 /* Network device is going away, flush any packets still pending */
5703 static void flush_backlog(struct work_struct *work)
5704 {
5705 	struct sk_buff *skb, *tmp;
5706 	struct softnet_data *sd;
5707 
5708 	local_bh_disable();
5709 	sd = this_cpu_ptr(&softnet_data);
5710 
5711 	rps_lock_irq_disable(sd);
5712 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5713 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5714 			__skb_unlink(skb, &sd->input_pkt_queue);
5715 			dev_kfree_skb_irq(skb);
5716 			input_queue_head_incr(sd);
5717 		}
5718 	}
5719 	rps_unlock_irq_enable(sd);
5720 
5721 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5722 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5723 			__skb_unlink(skb, &sd->process_queue);
5724 			kfree_skb(skb);
5725 			input_queue_head_incr(sd);
5726 		}
5727 	}
5728 	local_bh_enable();
5729 }
5730 
5731 static bool flush_required(int cpu)
5732 {
5733 #if IS_ENABLED(CONFIG_RPS)
5734 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5735 	bool do_flush;
5736 
5737 	rps_lock_irq_disable(sd);
5738 
5739 	/* as insertion into process_queue happens with the rps lock held,
5740 	 * process_queue access may race only with dequeue
5741 	 */
5742 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5743 		   !skb_queue_empty_lockless(&sd->process_queue);
5744 	rps_unlock_irq_enable(sd);
5745 
5746 	return do_flush;
5747 #endif
5748 	/* without RPS we can't safely check input_pkt_queue: during a
5749 	 * concurrent remote skb_queue_splice() we can detect as empty both
5750 	 * input_pkt_queue and process_queue even if the latter could end-up
5751 	 * containing a lot of packets.
5752 	 */
5753 	return true;
5754 }
5755 
5756 static void flush_all_backlogs(void)
5757 {
5758 	static cpumask_t flush_cpus;
5759 	unsigned int cpu;
5760 
5761 	/* since we are under rtnl lock protection we can use static data
5762 	 * for the cpumask and avoid allocating on stack the possibly
5763 	 * large mask
5764 	 */
5765 	ASSERT_RTNL();
5766 
5767 	cpus_read_lock();
5768 
5769 	cpumask_clear(&flush_cpus);
5770 	for_each_online_cpu(cpu) {
5771 		if (flush_required(cpu)) {
5772 			queue_work_on(cpu, system_highpri_wq,
5773 				      per_cpu_ptr(&flush_works, cpu));
5774 			cpumask_set_cpu(cpu, &flush_cpus);
5775 		}
5776 	}
5777 
5778 	/* we can have in flight packet[s] on the cpus we are not flushing,
5779 	 * synchronize_net() in unregister_netdevice_many() will take care of
5780 	 * them
5781 	 */
5782 	for_each_cpu(cpu, &flush_cpus)
5783 		flush_work(per_cpu_ptr(&flush_works, cpu));
5784 
5785 	cpus_read_unlock();
5786 }
5787 
5788 static void net_rps_send_ipi(struct softnet_data *remsd)
5789 {
5790 #ifdef CONFIG_RPS
5791 	while (remsd) {
5792 		struct softnet_data *next = remsd->rps_ipi_next;
5793 
5794 		if (cpu_online(remsd->cpu))
5795 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5796 		remsd = next;
5797 	}
5798 #endif
5799 }
5800 
5801 /*
5802  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5803  * Note: called with local irq disabled, but exits with local irq enabled.
5804  */
5805 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5806 {
5807 #ifdef CONFIG_RPS
5808 	struct softnet_data *remsd = sd->rps_ipi_list;
5809 
5810 	if (remsd) {
5811 		sd->rps_ipi_list = NULL;
5812 
5813 		local_irq_enable();
5814 
5815 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5816 		net_rps_send_ipi(remsd);
5817 	} else
5818 #endif
5819 		local_irq_enable();
5820 }
5821 
5822 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5823 {
5824 #ifdef CONFIG_RPS
5825 	return sd->rps_ipi_list != NULL;
5826 #else
5827 	return false;
5828 #endif
5829 }
5830 
5831 static int process_backlog(struct napi_struct *napi, int quota)
5832 {
5833 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5834 	bool again = true;
5835 	int work = 0;
5836 
5837 	/* Check if we have pending ipi, its better to send them now,
5838 	 * not waiting net_rx_action() end.
5839 	 */
5840 	if (sd_has_rps_ipi_waiting(sd)) {
5841 		local_irq_disable();
5842 		net_rps_action_and_irq_enable(sd);
5843 	}
5844 
5845 	napi->weight = dev_rx_weight;
5846 	while (again) {
5847 		struct sk_buff *skb;
5848 
5849 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5850 			rcu_read_lock();
5851 			__netif_receive_skb(skb);
5852 			rcu_read_unlock();
5853 			input_queue_head_incr(sd);
5854 			if (++work >= quota)
5855 				return work;
5856 
5857 		}
5858 
5859 		rps_lock_irq_disable(sd);
5860 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5861 			/*
5862 			 * Inline a custom version of __napi_complete().
5863 			 * only current cpu owns and manipulates this napi,
5864 			 * and NAPI_STATE_SCHED is the only possible flag set
5865 			 * on backlog.
5866 			 * We can use a plain write instead of clear_bit(),
5867 			 * and we dont need an smp_mb() memory barrier.
5868 			 */
5869 			napi->state = 0;
5870 			again = false;
5871 		} else {
5872 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5873 						   &sd->process_queue);
5874 		}
5875 		rps_unlock_irq_enable(sd);
5876 	}
5877 
5878 	return work;
5879 }
5880 
5881 /**
5882  * __napi_schedule - schedule for receive
5883  * @n: entry to schedule
5884  *
5885  * The entry's receive function will be scheduled to run.
5886  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5887  */
5888 void __napi_schedule(struct napi_struct *n)
5889 {
5890 	unsigned long flags;
5891 
5892 	local_irq_save(flags);
5893 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5894 	local_irq_restore(flags);
5895 }
5896 EXPORT_SYMBOL(__napi_schedule);
5897 
5898 /**
5899  *	napi_schedule_prep - check if napi can be scheduled
5900  *	@n: napi context
5901  *
5902  * Test if NAPI routine is already running, and if not mark
5903  * it as running.  This is used as a condition variable to
5904  * insure only one NAPI poll instance runs.  We also make
5905  * sure there is no pending NAPI disable.
5906  */
5907 bool napi_schedule_prep(struct napi_struct *n)
5908 {
5909 	unsigned long val, new;
5910 
5911 	do {
5912 		val = READ_ONCE(n->state);
5913 		if (unlikely(val & NAPIF_STATE_DISABLE))
5914 			return false;
5915 		new = val | NAPIF_STATE_SCHED;
5916 
5917 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5918 		 * This was suggested by Alexander Duyck, as compiler
5919 		 * emits better code than :
5920 		 * if (val & NAPIF_STATE_SCHED)
5921 		 *     new |= NAPIF_STATE_MISSED;
5922 		 */
5923 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5924 						   NAPIF_STATE_MISSED;
5925 	} while (cmpxchg(&n->state, val, new) != val);
5926 
5927 	return !(val & NAPIF_STATE_SCHED);
5928 }
5929 EXPORT_SYMBOL(napi_schedule_prep);
5930 
5931 /**
5932  * __napi_schedule_irqoff - schedule for receive
5933  * @n: entry to schedule
5934  *
5935  * Variant of __napi_schedule() assuming hard irqs are masked.
5936  *
5937  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5938  * because the interrupt disabled assumption might not be true
5939  * due to force-threaded interrupts and spinlock substitution.
5940  */
5941 void __napi_schedule_irqoff(struct napi_struct *n)
5942 {
5943 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5944 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
5945 	else
5946 		__napi_schedule(n);
5947 }
5948 EXPORT_SYMBOL(__napi_schedule_irqoff);
5949 
5950 bool napi_complete_done(struct napi_struct *n, int work_done)
5951 {
5952 	unsigned long flags, val, new, timeout = 0;
5953 	bool ret = true;
5954 
5955 	/*
5956 	 * 1) Don't let napi dequeue from the cpu poll list
5957 	 *    just in case its running on a different cpu.
5958 	 * 2) If we are busy polling, do nothing here, we have
5959 	 *    the guarantee we will be called later.
5960 	 */
5961 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5962 				 NAPIF_STATE_IN_BUSY_POLL)))
5963 		return false;
5964 
5965 	if (work_done) {
5966 		if (n->gro_bitmask)
5967 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
5968 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
5969 	}
5970 	if (n->defer_hard_irqs_count > 0) {
5971 		n->defer_hard_irqs_count--;
5972 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
5973 		if (timeout)
5974 			ret = false;
5975 	}
5976 	if (n->gro_bitmask) {
5977 		/* When the NAPI instance uses a timeout and keeps postponing
5978 		 * it, we need to bound somehow the time packets are kept in
5979 		 * the GRO layer
5980 		 */
5981 		napi_gro_flush(n, !!timeout);
5982 	}
5983 
5984 	gro_normal_list(n);
5985 
5986 	if (unlikely(!list_empty(&n->poll_list))) {
5987 		/* If n->poll_list is not empty, we need to mask irqs */
5988 		local_irq_save(flags);
5989 		list_del_init(&n->poll_list);
5990 		local_irq_restore(flags);
5991 	}
5992 
5993 	do {
5994 		val = READ_ONCE(n->state);
5995 
5996 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5997 
5998 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
5999 			      NAPIF_STATE_SCHED_THREADED |
6000 			      NAPIF_STATE_PREFER_BUSY_POLL);
6001 
6002 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6003 		 * because we will call napi->poll() one more time.
6004 		 * This C code was suggested by Alexander Duyck to help gcc.
6005 		 */
6006 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6007 						    NAPIF_STATE_SCHED;
6008 	} while (cmpxchg(&n->state, val, new) != val);
6009 
6010 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6011 		__napi_schedule(n);
6012 		return false;
6013 	}
6014 
6015 	if (timeout)
6016 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6017 			      HRTIMER_MODE_REL_PINNED);
6018 	return ret;
6019 }
6020 EXPORT_SYMBOL(napi_complete_done);
6021 
6022 /* must be called under rcu_read_lock(), as we dont take a reference */
6023 static struct napi_struct *napi_by_id(unsigned int napi_id)
6024 {
6025 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6026 	struct napi_struct *napi;
6027 
6028 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6029 		if (napi->napi_id == napi_id)
6030 			return napi;
6031 
6032 	return NULL;
6033 }
6034 
6035 #if defined(CONFIG_NET_RX_BUSY_POLL)
6036 
6037 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6038 {
6039 	if (!skip_schedule) {
6040 		gro_normal_list(napi);
6041 		__napi_schedule(napi);
6042 		return;
6043 	}
6044 
6045 	if (napi->gro_bitmask) {
6046 		/* flush too old packets
6047 		 * If HZ < 1000, flush all packets.
6048 		 */
6049 		napi_gro_flush(napi, HZ >= 1000);
6050 	}
6051 
6052 	gro_normal_list(napi);
6053 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6054 }
6055 
6056 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6057 			   u16 budget)
6058 {
6059 	bool skip_schedule = false;
6060 	unsigned long timeout;
6061 	int rc;
6062 
6063 	/* Busy polling means there is a high chance device driver hard irq
6064 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6065 	 * set in napi_schedule_prep().
6066 	 * Since we are about to call napi->poll() once more, we can safely
6067 	 * clear NAPI_STATE_MISSED.
6068 	 *
6069 	 * Note: x86 could use a single "lock and ..." instruction
6070 	 * to perform these two clear_bit()
6071 	 */
6072 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6073 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6074 
6075 	local_bh_disable();
6076 
6077 	if (prefer_busy_poll) {
6078 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6079 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6080 		if (napi->defer_hard_irqs_count && timeout) {
6081 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6082 			skip_schedule = true;
6083 		}
6084 	}
6085 
6086 	/* All we really want here is to re-enable device interrupts.
6087 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6088 	 */
6089 	rc = napi->poll(napi, budget);
6090 	/* We can't gro_normal_list() here, because napi->poll() might have
6091 	 * rearmed the napi (napi_complete_done()) in which case it could
6092 	 * already be running on another CPU.
6093 	 */
6094 	trace_napi_poll(napi, rc, budget);
6095 	netpoll_poll_unlock(have_poll_lock);
6096 	if (rc == budget)
6097 		__busy_poll_stop(napi, skip_schedule);
6098 	local_bh_enable();
6099 }
6100 
6101 void napi_busy_loop(unsigned int napi_id,
6102 		    bool (*loop_end)(void *, unsigned long),
6103 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6104 {
6105 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6106 	int (*napi_poll)(struct napi_struct *napi, int budget);
6107 	void *have_poll_lock = NULL;
6108 	struct napi_struct *napi;
6109 
6110 restart:
6111 	napi_poll = NULL;
6112 
6113 	rcu_read_lock();
6114 
6115 	napi = napi_by_id(napi_id);
6116 	if (!napi)
6117 		goto out;
6118 
6119 	preempt_disable();
6120 	for (;;) {
6121 		int work = 0;
6122 
6123 		local_bh_disable();
6124 		if (!napi_poll) {
6125 			unsigned long val = READ_ONCE(napi->state);
6126 
6127 			/* If multiple threads are competing for this napi,
6128 			 * we avoid dirtying napi->state as much as we can.
6129 			 */
6130 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6131 				   NAPIF_STATE_IN_BUSY_POLL)) {
6132 				if (prefer_busy_poll)
6133 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6134 				goto count;
6135 			}
6136 			if (cmpxchg(&napi->state, val,
6137 				    val | NAPIF_STATE_IN_BUSY_POLL |
6138 					  NAPIF_STATE_SCHED) != val) {
6139 				if (prefer_busy_poll)
6140 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6141 				goto count;
6142 			}
6143 			have_poll_lock = netpoll_poll_lock(napi);
6144 			napi_poll = napi->poll;
6145 		}
6146 		work = napi_poll(napi, budget);
6147 		trace_napi_poll(napi, work, budget);
6148 		gro_normal_list(napi);
6149 count:
6150 		if (work > 0)
6151 			__NET_ADD_STATS(dev_net(napi->dev),
6152 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6153 		local_bh_enable();
6154 
6155 		if (!loop_end || loop_end(loop_end_arg, start_time))
6156 			break;
6157 
6158 		if (unlikely(need_resched())) {
6159 			if (napi_poll)
6160 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6161 			preempt_enable();
6162 			rcu_read_unlock();
6163 			cond_resched();
6164 			if (loop_end(loop_end_arg, start_time))
6165 				return;
6166 			goto restart;
6167 		}
6168 		cpu_relax();
6169 	}
6170 	if (napi_poll)
6171 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6172 	preempt_enable();
6173 out:
6174 	rcu_read_unlock();
6175 }
6176 EXPORT_SYMBOL(napi_busy_loop);
6177 
6178 #endif /* CONFIG_NET_RX_BUSY_POLL */
6179 
6180 static void napi_hash_add(struct napi_struct *napi)
6181 {
6182 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6183 		return;
6184 
6185 	spin_lock(&napi_hash_lock);
6186 
6187 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6188 	do {
6189 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6190 			napi_gen_id = MIN_NAPI_ID;
6191 	} while (napi_by_id(napi_gen_id));
6192 	napi->napi_id = napi_gen_id;
6193 
6194 	hlist_add_head_rcu(&napi->napi_hash_node,
6195 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6196 
6197 	spin_unlock(&napi_hash_lock);
6198 }
6199 
6200 /* Warning : caller is responsible to make sure rcu grace period
6201  * is respected before freeing memory containing @napi
6202  */
6203 static void napi_hash_del(struct napi_struct *napi)
6204 {
6205 	spin_lock(&napi_hash_lock);
6206 
6207 	hlist_del_init_rcu(&napi->napi_hash_node);
6208 
6209 	spin_unlock(&napi_hash_lock);
6210 }
6211 
6212 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6213 {
6214 	struct napi_struct *napi;
6215 
6216 	napi = container_of(timer, struct napi_struct, timer);
6217 
6218 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6219 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6220 	 */
6221 	if (!napi_disable_pending(napi) &&
6222 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6223 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6224 		__napi_schedule_irqoff(napi);
6225 	}
6226 
6227 	return HRTIMER_NORESTART;
6228 }
6229 
6230 static void init_gro_hash(struct napi_struct *napi)
6231 {
6232 	int i;
6233 
6234 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6235 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6236 		napi->gro_hash[i].count = 0;
6237 	}
6238 	napi->gro_bitmask = 0;
6239 }
6240 
6241 int dev_set_threaded(struct net_device *dev, bool threaded)
6242 {
6243 	struct napi_struct *napi;
6244 	int err = 0;
6245 
6246 	if (dev->threaded == threaded)
6247 		return 0;
6248 
6249 	if (threaded) {
6250 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6251 			if (!napi->thread) {
6252 				err = napi_kthread_create(napi);
6253 				if (err) {
6254 					threaded = false;
6255 					break;
6256 				}
6257 			}
6258 		}
6259 	}
6260 
6261 	dev->threaded = threaded;
6262 
6263 	/* Make sure kthread is created before THREADED bit
6264 	 * is set.
6265 	 */
6266 	smp_mb__before_atomic();
6267 
6268 	/* Setting/unsetting threaded mode on a napi might not immediately
6269 	 * take effect, if the current napi instance is actively being
6270 	 * polled. In this case, the switch between threaded mode and
6271 	 * softirq mode will happen in the next round of napi_schedule().
6272 	 * This should not cause hiccups/stalls to the live traffic.
6273 	 */
6274 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6275 		if (threaded)
6276 			set_bit(NAPI_STATE_THREADED, &napi->state);
6277 		else
6278 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6279 	}
6280 
6281 	return err;
6282 }
6283 EXPORT_SYMBOL(dev_set_threaded);
6284 
6285 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6286 		    int (*poll)(struct napi_struct *, int), int weight)
6287 {
6288 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6289 		return;
6290 
6291 	INIT_LIST_HEAD(&napi->poll_list);
6292 	INIT_HLIST_NODE(&napi->napi_hash_node);
6293 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6294 	napi->timer.function = napi_watchdog;
6295 	init_gro_hash(napi);
6296 	napi->skb = NULL;
6297 	INIT_LIST_HEAD(&napi->rx_list);
6298 	napi->rx_count = 0;
6299 	napi->poll = poll;
6300 	if (weight > NAPI_POLL_WEIGHT)
6301 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6302 				weight);
6303 	napi->weight = weight;
6304 	napi->dev = dev;
6305 #ifdef CONFIG_NETPOLL
6306 	napi->poll_owner = -1;
6307 #endif
6308 	set_bit(NAPI_STATE_SCHED, &napi->state);
6309 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6310 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6311 	napi_hash_add(napi);
6312 	/* Create kthread for this napi if dev->threaded is set.
6313 	 * Clear dev->threaded if kthread creation failed so that
6314 	 * threaded mode will not be enabled in napi_enable().
6315 	 */
6316 	if (dev->threaded && napi_kthread_create(napi))
6317 		dev->threaded = 0;
6318 }
6319 EXPORT_SYMBOL(netif_napi_add);
6320 
6321 void napi_disable(struct napi_struct *n)
6322 {
6323 	unsigned long val, new;
6324 
6325 	might_sleep();
6326 	set_bit(NAPI_STATE_DISABLE, &n->state);
6327 
6328 	for ( ; ; ) {
6329 		val = READ_ONCE(n->state);
6330 		if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6331 			usleep_range(20, 200);
6332 			continue;
6333 		}
6334 
6335 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6336 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6337 
6338 		if (cmpxchg(&n->state, val, new) == val)
6339 			break;
6340 	}
6341 
6342 	hrtimer_cancel(&n->timer);
6343 
6344 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6345 }
6346 EXPORT_SYMBOL(napi_disable);
6347 
6348 /**
6349  *	napi_enable - enable NAPI scheduling
6350  *	@n: NAPI context
6351  *
6352  * Resume NAPI from being scheduled on this context.
6353  * Must be paired with napi_disable.
6354  */
6355 void napi_enable(struct napi_struct *n)
6356 {
6357 	unsigned long val, new;
6358 
6359 	do {
6360 		val = READ_ONCE(n->state);
6361 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6362 
6363 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6364 		if (n->dev->threaded && n->thread)
6365 			new |= NAPIF_STATE_THREADED;
6366 	} while (cmpxchg(&n->state, val, new) != val);
6367 }
6368 EXPORT_SYMBOL(napi_enable);
6369 
6370 static void flush_gro_hash(struct napi_struct *napi)
6371 {
6372 	int i;
6373 
6374 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6375 		struct sk_buff *skb, *n;
6376 
6377 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6378 			kfree_skb(skb);
6379 		napi->gro_hash[i].count = 0;
6380 	}
6381 }
6382 
6383 /* Must be called in process context */
6384 void __netif_napi_del(struct napi_struct *napi)
6385 {
6386 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6387 		return;
6388 
6389 	napi_hash_del(napi);
6390 	list_del_rcu(&napi->dev_list);
6391 	napi_free_frags(napi);
6392 
6393 	flush_gro_hash(napi);
6394 	napi->gro_bitmask = 0;
6395 
6396 	if (napi->thread) {
6397 		kthread_stop(napi->thread);
6398 		napi->thread = NULL;
6399 	}
6400 }
6401 EXPORT_SYMBOL(__netif_napi_del);
6402 
6403 static int __napi_poll(struct napi_struct *n, bool *repoll)
6404 {
6405 	int work, weight;
6406 
6407 	weight = n->weight;
6408 
6409 	/* This NAPI_STATE_SCHED test is for avoiding a race
6410 	 * with netpoll's poll_napi().  Only the entity which
6411 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6412 	 * actually make the ->poll() call.  Therefore we avoid
6413 	 * accidentally calling ->poll() when NAPI is not scheduled.
6414 	 */
6415 	work = 0;
6416 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6417 		work = n->poll(n, weight);
6418 		trace_napi_poll(n, work, weight);
6419 	}
6420 
6421 	if (unlikely(work > weight))
6422 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6423 				n->poll, work, weight);
6424 
6425 	if (likely(work < weight))
6426 		return work;
6427 
6428 	/* Drivers must not modify the NAPI state if they
6429 	 * consume the entire weight.  In such cases this code
6430 	 * still "owns" the NAPI instance and therefore can
6431 	 * move the instance around on the list at-will.
6432 	 */
6433 	if (unlikely(napi_disable_pending(n))) {
6434 		napi_complete(n);
6435 		return work;
6436 	}
6437 
6438 	/* The NAPI context has more processing work, but busy-polling
6439 	 * is preferred. Exit early.
6440 	 */
6441 	if (napi_prefer_busy_poll(n)) {
6442 		if (napi_complete_done(n, work)) {
6443 			/* If timeout is not set, we need to make sure
6444 			 * that the NAPI is re-scheduled.
6445 			 */
6446 			napi_schedule(n);
6447 		}
6448 		return work;
6449 	}
6450 
6451 	if (n->gro_bitmask) {
6452 		/* flush too old packets
6453 		 * If HZ < 1000, flush all packets.
6454 		 */
6455 		napi_gro_flush(n, HZ >= 1000);
6456 	}
6457 
6458 	gro_normal_list(n);
6459 
6460 	/* Some drivers may have called napi_schedule
6461 	 * prior to exhausting their budget.
6462 	 */
6463 	if (unlikely(!list_empty(&n->poll_list))) {
6464 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6465 			     n->dev ? n->dev->name : "backlog");
6466 		return work;
6467 	}
6468 
6469 	*repoll = true;
6470 
6471 	return work;
6472 }
6473 
6474 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6475 {
6476 	bool do_repoll = false;
6477 	void *have;
6478 	int work;
6479 
6480 	list_del_init(&n->poll_list);
6481 
6482 	have = netpoll_poll_lock(n);
6483 
6484 	work = __napi_poll(n, &do_repoll);
6485 
6486 	if (do_repoll)
6487 		list_add_tail(&n->poll_list, repoll);
6488 
6489 	netpoll_poll_unlock(have);
6490 
6491 	return work;
6492 }
6493 
6494 static int napi_thread_wait(struct napi_struct *napi)
6495 {
6496 	bool woken = false;
6497 
6498 	set_current_state(TASK_INTERRUPTIBLE);
6499 
6500 	while (!kthread_should_stop()) {
6501 		/* Testing SCHED_THREADED bit here to make sure the current
6502 		 * kthread owns this napi and could poll on this napi.
6503 		 * Testing SCHED bit is not enough because SCHED bit might be
6504 		 * set by some other busy poll thread or by napi_disable().
6505 		 */
6506 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6507 			WARN_ON(!list_empty(&napi->poll_list));
6508 			__set_current_state(TASK_RUNNING);
6509 			return 0;
6510 		}
6511 
6512 		schedule();
6513 		/* woken being true indicates this thread owns this napi. */
6514 		woken = true;
6515 		set_current_state(TASK_INTERRUPTIBLE);
6516 	}
6517 	__set_current_state(TASK_RUNNING);
6518 
6519 	return -1;
6520 }
6521 
6522 static int napi_threaded_poll(void *data)
6523 {
6524 	struct napi_struct *napi = data;
6525 	void *have;
6526 
6527 	while (!napi_thread_wait(napi)) {
6528 		for (;;) {
6529 			bool repoll = false;
6530 
6531 			local_bh_disable();
6532 
6533 			have = netpoll_poll_lock(napi);
6534 			__napi_poll(napi, &repoll);
6535 			netpoll_poll_unlock(have);
6536 
6537 			local_bh_enable();
6538 
6539 			if (!repoll)
6540 				break;
6541 
6542 			cond_resched();
6543 		}
6544 	}
6545 	return 0;
6546 }
6547 
6548 static __latent_entropy void net_rx_action(struct softirq_action *h)
6549 {
6550 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6551 	unsigned long time_limit = jiffies +
6552 		usecs_to_jiffies(netdev_budget_usecs);
6553 	int budget = netdev_budget;
6554 	LIST_HEAD(list);
6555 	LIST_HEAD(repoll);
6556 
6557 	local_irq_disable();
6558 	list_splice_init(&sd->poll_list, &list);
6559 	local_irq_enable();
6560 
6561 	for (;;) {
6562 		struct napi_struct *n;
6563 
6564 		if (list_empty(&list)) {
6565 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6566 				return;
6567 			break;
6568 		}
6569 
6570 		n = list_first_entry(&list, struct napi_struct, poll_list);
6571 		budget -= napi_poll(n, &repoll);
6572 
6573 		/* If softirq window is exhausted then punt.
6574 		 * Allow this to run for 2 jiffies since which will allow
6575 		 * an average latency of 1.5/HZ.
6576 		 */
6577 		if (unlikely(budget <= 0 ||
6578 			     time_after_eq(jiffies, time_limit))) {
6579 			sd->time_squeeze++;
6580 			break;
6581 		}
6582 	}
6583 
6584 	local_irq_disable();
6585 
6586 	list_splice_tail_init(&sd->poll_list, &list);
6587 	list_splice_tail(&repoll, &list);
6588 	list_splice(&list, &sd->poll_list);
6589 	if (!list_empty(&sd->poll_list))
6590 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6591 
6592 	net_rps_action_and_irq_enable(sd);
6593 }
6594 
6595 struct netdev_adjacent {
6596 	struct net_device *dev;
6597 	netdevice_tracker dev_tracker;
6598 
6599 	/* upper master flag, there can only be one master device per list */
6600 	bool master;
6601 
6602 	/* lookup ignore flag */
6603 	bool ignore;
6604 
6605 	/* counter for the number of times this device was added to us */
6606 	u16 ref_nr;
6607 
6608 	/* private field for the users */
6609 	void *private;
6610 
6611 	struct list_head list;
6612 	struct rcu_head rcu;
6613 };
6614 
6615 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6616 						 struct list_head *adj_list)
6617 {
6618 	struct netdev_adjacent *adj;
6619 
6620 	list_for_each_entry(adj, adj_list, list) {
6621 		if (adj->dev == adj_dev)
6622 			return adj;
6623 	}
6624 	return NULL;
6625 }
6626 
6627 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6628 				    struct netdev_nested_priv *priv)
6629 {
6630 	struct net_device *dev = (struct net_device *)priv->data;
6631 
6632 	return upper_dev == dev;
6633 }
6634 
6635 /**
6636  * netdev_has_upper_dev - Check if device is linked to an upper device
6637  * @dev: device
6638  * @upper_dev: upper device to check
6639  *
6640  * Find out if a device is linked to specified upper device and return true
6641  * in case it is. Note that this checks only immediate upper device,
6642  * not through a complete stack of devices. The caller must hold the RTNL lock.
6643  */
6644 bool netdev_has_upper_dev(struct net_device *dev,
6645 			  struct net_device *upper_dev)
6646 {
6647 	struct netdev_nested_priv priv = {
6648 		.data = (void *)upper_dev,
6649 	};
6650 
6651 	ASSERT_RTNL();
6652 
6653 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6654 					     &priv);
6655 }
6656 EXPORT_SYMBOL(netdev_has_upper_dev);
6657 
6658 /**
6659  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6660  * @dev: device
6661  * @upper_dev: upper device to check
6662  *
6663  * Find out if a device is linked to specified upper device and return true
6664  * in case it is. Note that this checks the entire upper device chain.
6665  * The caller must hold rcu lock.
6666  */
6667 
6668 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6669 				  struct net_device *upper_dev)
6670 {
6671 	struct netdev_nested_priv priv = {
6672 		.data = (void *)upper_dev,
6673 	};
6674 
6675 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6676 					       &priv);
6677 }
6678 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6679 
6680 /**
6681  * netdev_has_any_upper_dev - Check if device is linked to some device
6682  * @dev: device
6683  *
6684  * Find out if a device is linked to an upper device and return true in case
6685  * it is. The caller must hold the RTNL lock.
6686  */
6687 bool netdev_has_any_upper_dev(struct net_device *dev)
6688 {
6689 	ASSERT_RTNL();
6690 
6691 	return !list_empty(&dev->adj_list.upper);
6692 }
6693 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6694 
6695 /**
6696  * netdev_master_upper_dev_get - Get master upper device
6697  * @dev: device
6698  *
6699  * Find a master upper device and return pointer to it or NULL in case
6700  * it's not there. The caller must hold the RTNL lock.
6701  */
6702 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6703 {
6704 	struct netdev_adjacent *upper;
6705 
6706 	ASSERT_RTNL();
6707 
6708 	if (list_empty(&dev->adj_list.upper))
6709 		return NULL;
6710 
6711 	upper = list_first_entry(&dev->adj_list.upper,
6712 				 struct netdev_adjacent, list);
6713 	if (likely(upper->master))
6714 		return upper->dev;
6715 	return NULL;
6716 }
6717 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6718 
6719 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6720 {
6721 	struct netdev_adjacent *upper;
6722 
6723 	ASSERT_RTNL();
6724 
6725 	if (list_empty(&dev->adj_list.upper))
6726 		return NULL;
6727 
6728 	upper = list_first_entry(&dev->adj_list.upper,
6729 				 struct netdev_adjacent, list);
6730 	if (likely(upper->master) && !upper->ignore)
6731 		return upper->dev;
6732 	return NULL;
6733 }
6734 
6735 /**
6736  * netdev_has_any_lower_dev - Check if device is linked to some device
6737  * @dev: device
6738  *
6739  * Find out if a device is linked to a lower device and return true in case
6740  * it is. The caller must hold the RTNL lock.
6741  */
6742 static bool netdev_has_any_lower_dev(struct net_device *dev)
6743 {
6744 	ASSERT_RTNL();
6745 
6746 	return !list_empty(&dev->adj_list.lower);
6747 }
6748 
6749 void *netdev_adjacent_get_private(struct list_head *adj_list)
6750 {
6751 	struct netdev_adjacent *adj;
6752 
6753 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6754 
6755 	return adj->private;
6756 }
6757 EXPORT_SYMBOL(netdev_adjacent_get_private);
6758 
6759 /**
6760  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6761  * @dev: device
6762  * @iter: list_head ** of the current position
6763  *
6764  * Gets the next device from the dev's upper list, starting from iter
6765  * position. The caller must hold RCU read lock.
6766  */
6767 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6768 						 struct list_head **iter)
6769 {
6770 	struct netdev_adjacent *upper;
6771 
6772 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6773 
6774 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6775 
6776 	if (&upper->list == &dev->adj_list.upper)
6777 		return NULL;
6778 
6779 	*iter = &upper->list;
6780 
6781 	return upper->dev;
6782 }
6783 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6784 
6785 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6786 						  struct list_head **iter,
6787 						  bool *ignore)
6788 {
6789 	struct netdev_adjacent *upper;
6790 
6791 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6792 
6793 	if (&upper->list == &dev->adj_list.upper)
6794 		return NULL;
6795 
6796 	*iter = &upper->list;
6797 	*ignore = upper->ignore;
6798 
6799 	return upper->dev;
6800 }
6801 
6802 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6803 						    struct list_head **iter)
6804 {
6805 	struct netdev_adjacent *upper;
6806 
6807 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6808 
6809 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6810 
6811 	if (&upper->list == &dev->adj_list.upper)
6812 		return NULL;
6813 
6814 	*iter = &upper->list;
6815 
6816 	return upper->dev;
6817 }
6818 
6819 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6820 				       int (*fn)(struct net_device *dev,
6821 					 struct netdev_nested_priv *priv),
6822 				       struct netdev_nested_priv *priv)
6823 {
6824 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6825 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6826 	int ret, cur = 0;
6827 	bool ignore;
6828 
6829 	now = dev;
6830 	iter = &dev->adj_list.upper;
6831 
6832 	while (1) {
6833 		if (now != dev) {
6834 			ret = fn(now, priv);
6835 			if (ret)
6836 				return ret;
6837 		}
6838 
6839 		next = NULL;
6840 		while (1) {
6841 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6842 			if (!udev)
6843 				break;
6844 			if (ignore)
6845 				continue;
6846 
6847 			next = udev;
6848 			niter = &udev->adj_list.upper;
6849 			dev_stack[cur] = now;
6850 			iter_stack[cur++] = iter;
6851 			break;
6852 		}
6853 
6854 		if (!next) {
6855 			if (!cur)
6856 				return 0;
6857 			next = dev_stack[--cur];
6858 			niter = iter_stack[cur];
6859 		}
6860 
6861 		now = next;
6862 		iter = niter;
6863 	}
6864 
6865 	return 0;
6866 }
6867 
6868 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6869 				  int (*fn)(struct net_device *dev,
6870 					    struct netdev_nested_priv *priv),
6871 				  struct netdev_nested_priv *priv)
6872 {
6873 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6874 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6875 	int ret, cur = 0;
6876 
6877 	now = dev;
6878 	iter = &dev->adj_list.upper;
6879 
6880 	while (1) {
6881 		if (now != dev) {
6882 			ret = fn(now, priv);
6883 			if (ret)
6884 				return ret;
6885 		}
6886 
6887 		next = NULL;
6888 		while (1) {
6889 			udev = netdev_next_upper_dev_rcu(now, &iter);
6890 			if (!udev)
6891 				break;
6892 
6893 			next = udev;
6894 			niter = &udev->adj_list.upper;
6895 			dev_stack[cur] = now;
6896 			iter_stack[cur++] = iter;
6897 			break;
6898 		}
6899 
6900 		if (!next) {
6901 			if (!cur)
6902 				return 0;
6903 			next = dev_stack[--cur];
6904 			niter = iter_stack[cur];
6905 		}
6906 
6907 		now = next;
6908 		iter = niter;
6909 	}
6910 
6911 	return 0;
6912 }
6913 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6914 
6915 static bool __netdev_has_upper_dev(struct net_device *dev,
6916 				   struct net_device *upper_dev)
6917 {
6918 	struct netdev_nested_priv priv = {
6919 		.flags = 0,
6920 		.data = (void *)upper_dev,
6921 	};
6922 
6923 	ASSERT_RTNL();
6924 
6925 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6926 					   &priv);
6927 }
6928 
6929 /**
6930  * netdev_lower_get_next_private - Get the next ->private from the
6931  *				   lower neighbour list
6932  * @dev: device
6933  * @iter: list_head ** of the current position
6934  *
6935  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6936  * list, starting from iter position. The caller must hold either hold the
6937  * RTNL lock or its own locking that guarantees that the neighbour lower
6938  * list will remain unchanged.
6939  */
6940 void *netdev_lower_get_next_private(struct net_device *dev,
6941 				    struct list_head **iter)
6942 {
6943 	struct netdev_adjacent *lower;
6944 
6945 	lower = list_entry(*iter, struct netdev_adjacent, list);
6946 
6947 	if (&lower->list == &dev->adj_list.lower)
6948 		return NULL;
6949 
6950 	*iter = lower->list.next;
6951 
6952 	return lower->private;
6953 }
6954 EXPORT_SYMBOL(netdev_lower_get_next_private);
6955 
6956 /**
6957  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6958  *				       lower neighbour list, RCU
6959  *				       variant
6960  * @dev: device
6961  * @iter: list_head ** of the current position
6962  *
6963  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6964  * list, starting from iter position. The caller must hold RCU read lock.
6965  */
6966 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6967 					struct list_head **iter)
6968 {
6969 	struct netdev_adjacent *lower;
6970 
6971 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
6972 
6973 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6974 
6975 	if (&lower->list == &dev->adj_list.lower)
6976 		return NULL;
6977 
6978 	*iter = &lower->list;
6979 
6980 	return lower->private;
6981 }
6982 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6983 
6984 /**
6985  * netdev_lower_get_next - Get the next device from the lower neighbour
6986  *                         list
6987  * @dev: device
6988  * @iter: list_head ** of the current position
6989  *
6990  * Gets the next netdev_adjacent from the dev's lower neighbour
6991  * list, starting from iter position. The caller must hold RTNL lock or
6992  * its own locking that guarantees that the neighbour lower
6993  * list will remain unchanged.
6994  */
6995 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6996 {
6997 	struct netdev_adjacent *lower;
6998 
6999 	lower = list_entry(*iter, struct netdev_adjacent, list);
7000 
7001 	if (&lower->list == &dev->adj_list.lower)
7002 		return NULL;
7003 
7004 	*iter = lower->list.next;
7005 
7006 	return lower->dev;
7007 }
7008 EXPORT_SYMBOL(netdev_lower_get_next);
7009 
7010 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7011 						struct list_head **iter)
7012 {
7013 	struct netdev_adjacent *lower;
7014 
7015 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7016 
7017 	if (&lower->list == &dev->adj_list.lower)
7018 		return NULL;
7019 
7020 	*iter = &lower->list;
7021 
7022 	return lower->dev;
7023 }
7024 
7025 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7026 						  struct list_head **iter,
7027 						  bool *ignore)
7028 {
7029 	struct netdev_adjacent *lower;
7030 
7031 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7032 
7033 	if (&lower->list == &dev->adj_list.lower)
7034 		return NULL;
7035 
7036 	*iter = &lower->list;
7037 	*ignore = lower->ignore;
7038 
7039 	return lower->dev;
7040 }
7041 
7042 int netdev_walk_all_lower_dev(struct net_device *dev,
7043 			      int (*fn)(struct net_device *dev,
7044 					struct netdev_nested_priv *priv),
7045 			      struct netdev_nested_priv *priv)
7046 {
7047 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7048 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7049 	int ret, cur = 0;
7050 
7051 	now = dev;
7052 	iter = &dev->adj_list.lower;
7053 
7054 	while (1) {
7055 		if (now != dev) {
7056 			ret = fn(now, priv);
7057 			if (ret)
7058 				return ret;
7059 		}
7060 
7061 		next = NULL;
7062 		while (1) {
7063 			ldev = netdev_next_lower_dev(now, &iter);
7064 			if (!ldev)
7065 				break;
7066 
7067 			next = ldev;
7068 			niter = &ldev->adj_list.lower;
7069 			dev_stack[cur] = now;
7070 			iter_stack[cur++] = iter;
7071 			break;
7072 		}
7073 
7074 		if (!next) {
7075 			if (!cur)
7076 				return 0;
7077 			next = dev_stack[--cur];
7078 			niter = iter_stack[cur];
7079 		}
7080 
7081 		now = next;
7082 		iter = niter;
7083 	}
7084 
7085 	return 0;
7086 }
7087 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7088 
7089 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7090 				       int (*fn)(struct net_device *dev,
7091 					 struct netdev_nested_priv *priv),
7092 				       struct netdev_nested_priv *priv)
7093 {
7094 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7095 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7096 	int ret, cur = 0;
7097 	bool ignore;
7098 
7099 	now = dev;
7100 	iter = &dev->adj_list.lower;
7101 
7102 	while (1) {
7103 		if (now != dev) {
7104 			ret = fn(now, priv);
7105 			if (ret)
7106 				return ret;
7107 		}
7108 
7109 		next = NULL;
7110 		while (1) {
7111 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7112 			if (!ldev)
7113 				break;
7114 			if (ignore)
7115 				continue;
7116 
7117 			next = ldev;
7118 			niter = &ldev->adj_list.lower;
7119 			dev_stack[cur] = now;
7120 			iter_stack[cur++] = iter;
7121 			break;
7122 		}
7123 
7124 		if (!next) {
7125 			if (!cur)
7126 				return 0;
7127 			next = dev_stack[--cur];
7128 			niter = iter_stack[cur];
7129 		}
7130 
7131 		now = next;
7132 		iter = niter;
7133 	}
7134 
7135 	return 0;
7136 }
7137 
7138 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7139 					     struct list_head **iter)
7140 {
7141 	struct netdev_adjacent *lower;
7142 
7143 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7144 	if (&lower->list == &dev->adj_list.lower)
7145 		return NULL;
7146 
7147 	*iter = &lower->list;
7148 
7149 	return lower->dev;
7150 }
7151 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7152 
7153 static u8 __netdev_upper_depth(struct net_device *dev)
7154 {
7155 	struct net_device *udev;
7156 	struct list_head *iter;
7157 	u8 max_depth = 0;
7158 	bool ignore;
7159 
7160 	for (iter = &dev->adj_list.upper,
7161 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7162 	     udev;
7163 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7164 		if (ignore)
7165 			continue;
7166 		if (max_depth < udev->upper_level)
7167 			max_depth = udev->upper_level;
7168 	}
7169 
7170 	return max_depth;
7171 }
7172 
7173 static u8 __netdev_lower_depth(struct net_device *dev)
7174 {
7175 	struct net_device *ldev;
7176 	struct list_head *iter;
7177 	u8 max_depth = 0;
7178 	bool ignore;
7179 
7180 	for (iter = &dev->adj_list.lower,
7181 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7182 	     ldev;
7183 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7184 		if (ignore)
7185 			continue;
7186 		if (max_depth < ldev->lower_level)
7187 			max_depth = ldev->lower_level;
7188 	}
7189 
7190 	return max_depth;
7191 }
7192 
7193 static int __netdev_update_upper_level(struct net_device *dev,
7194 				       struct netdev_nested_priv *__unused)
7195 {
7196 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7197 	return 0;
7198 }
7199 
7200 #ifdef CONFIG_LOCKDEP
7201 static LIST_HEAD(net_unlink_list);
7202 
7203 static void net_unlink_todo(struct net_device *dev)
7204 {
7205 	if (list_empty(&dev->unlink_list))
7206 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7207 }
7208 #endif
7209 
7210 static int __netdev_update_lower_level(struct net_device *dev,
7211 				       struct netdev_nested_priv *priv)
7212 {
7213 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7214 
7215 #ifdef CONFIG_LOCKDEP
7216 	if (!priv)
7217 		return 0;
7218 
7219 	if (priv->flags & NESTED_SYNC_IMM)
7220 		dev->nested_level = dev->lower_level - 1;
7221 	if (priv->flags & NESTED_SYNC_TODO)
7222 		net_unlink_todo(dev);
7223 #endif
7224 	return 0;
7225 }
7226 
7227 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7228 				  int (*fn)(struct net_device *dev,
7229 					    struct netdev_nested_priv *priv),
7230 				  struct netdev_nested_priv *priv)
7231 {
7232 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7233 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7234 	int ret, cur = 0;
7235 
7236 	now = dev;
7237 	iter = &dev->adj_list.lower;
7238 
7239 	while (1) {
7240 		if (now != dev) {
7241 			ret = fn(now, priv);
7242 			if (ret)
7243 				return ret;
7244 		}
7245 
7246 		next = NULL;
7247 		while (1) {
7248 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7249 			if (!ldev)
7250 				break;
7251 
7252 			next = ldev;
7253 			niter = &ldev->adj_list.lower;
7254 			dev_stack[cur] = now;
7255 			iter_stack[cur++] = iter;
7256 			break;
7257 		}
7258 
7259 		if (!next) {
7260 			if (!cur)
7261 				return 0;
7262 			next = dev_stack[--cur];
7263 			niter = iter_stack[cur];
7264 		}
7265 
7266 		now = next;
7267 		iter = niter;
7268 	}
7269 
7270 	return 0;
7271 }
7272 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7273 
7274 /**
7275  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7276  *				       lower neighbour list, RCU
7277  *				       variant
7278  * @dev: device
7279  *
7280  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7281  * list. The caller must hold RCU read lock.
7282  */
7283 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7284 {
7285 	struct netdev_adjacent *lower;
7286 
7287 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7288 			struct netdev_adjacent, list);
7289 	if (lower)
7290 		return lower->private;
7291 	return NULL;
7292 }
7293 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7294 
7295 /**
7296  * netdev_master_upper_dev_get_rcu - Get master upper device
7297  * @dev: device
7298  *
7299  * Find a master upper device and return pointer to it or NULL in case
7300  * it's not there. The caller must hold the RCU read lock.
7301  */
7302 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7303 {
7304 	struct netdev_adjacent *upper;
7305 
7306 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7307 				       struct netdev_adjacent, list);
7308 	if (upper && likely(upper->master))
7309 		return upper->dev;
7310 	return NULL;
7311 }
7312 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7313 
7314 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7315 			      struct net_device *adj_dev,
7316 			      struct list_head *dev_list)
7317 {
7318 	char linkname[IFNAMSIZ+7];
7319 
7320 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7321 		"upper_%s" : "lower_%s", adj_dev->name);
7322 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7323 				 linkname);
7324 }
7325 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7326 			       char *name,
7327 			       struct list_head *dev_list)
7328 {
7329 	char linkname[IFNAMSIZ+7];
7330 
7331 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7332 		"upper_%s" : "lower_%s", name);
7333 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7334 }
7335 
7336 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7337 						 struct net_device *adj_dev,
7338 						 struct list_head *dev_list)
7339 {
7340 	return (dev_list == &dev->adj_list.upper ||
7341 		dev_list == &dev->adj_list.lower) &&
7342 		net_eq(dev_net(dev), dev_net(adj_dev));
7343 }
7344 
7345 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7346 					struct net_device *adj_dev,
7347 					struct list_head *dev_list,
7348 					void *private, bool master)
7349 {
7350 	struct netdev_adjacent *adj;
7351 	int ret;
7352 
7353 	adj = __netdev_find_adj(adj_dev, dev_list);
7354 
7355 	if (adj) {
7356 		adj->ref_nr += 1;
7357 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7358 			 dev->name, adj_dev->name, adj->ref_nr);
7359 
7360 		return 0;
7361 	}
7362 
7363 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7364 	if (!adj)
7365 		return -ENOMEM;
7366 
7367 	adj->dev = adj_dev;
7368 	adj->master = master;
7369 	adj->ref_nr = 1;
7370 	adj->private = private;
7371 	adj->ignore = false;
7372 	dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7373 
7374 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7375 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7376 
7377 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7378 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7379 		if (ret)
7380 			goto free_adj;
7381 	}
7382 
7383 	/* Ensure that master link is always the first item in list. */
7384 	if (master) {
7385 		ret = sysfs_create_link(&(dev->dev.kobj),
7386 					&(adj_dev->dev.kobj), "master");
7387 		if (ret)
7388 			goto remove_symlinks;
7389 
7390 		list_add_rcu(&adj->list, dev_list);
7391 	} else {
7392 		list_add_tail_rcu(&adj->list, dev_list);
7393 	}
7394 
7395 	return 0;
7396 
7397 remove_symlinks:
7398 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7399 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7400 free_adj:
7401 	dev_put_track(adj_dev, &adj->dev_tracker);
7402 	kfree(adj);
7403 
7404 	return ret;
7405 }
7406 
7407 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7408 					 struct net_device *adj_dev,
7409 					 u16 ref_nr,
7410 					 struct list_head *dev_list)
7411 {
7412 	struct netdev_adjacent *adj;
7413 
7414 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7415 		 dev->name, adj_dev->name, ref_nr);
7416 
7417 	adj = __netdev_find_adj(adj_dev, dev_list);
7418 
7419 	if (!adj) {
7420 		pr_err("Adjacency does not exist for device %s from %s\n",
7421 		       dev->name, adj_dev->name);
7422 		WARN_ON(1);
7423 		return;
7424 	}
7425 
7426 	if (adj->ref_nr > ref_nr) {
7427 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7428 			 dev->name, adj_dev->name, ref_nr,
7429 			 adj->ref_nr - ref_nr);
7430 		adj->ref_nr -= ref_nr;
7431 		return;
7432 	}
7433 
7434 	if (adj->master)
7435 		sysfs_remove_link(&(dev->dev.kobj), "master");
7436 
7437 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7438 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7439 
7440 	list_del_rcu(&adj->list);
7441 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7442 		 adj_dev->name, dev->name, adj_dev->name);
7443 	dev_put_track(adj_dev, &adj->dev_tracker);
7444 	kfree_rcu(adj, rcu);
7445 }
7446 
7447 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7448 					    struct net_device *upper_dev,
7449 					    struct list_head *up_list,
7450 					    struct list_head *down_list,
7451 					    void *private, bool master)
7452 {
7453 	int ret;
7454 
7455 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7456 					   private, master);
7457 	if (ret)
7458 		return ret;
7459 
7460 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7461 					   private, false);
7462 	if (ret) {
7463 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7464 		return ret;
7465 	}
7466 
7467 	return 0;
7468 }
7469 
7470 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7471 					       struct net_device *upper_dev,
7472 					       u16 ref_nr,
7473 					       struct list_head *up_list,
7474 					       struct list_head *down_list)
7475 {
7476 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7477 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7478 }
7479 
7480 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7481 						struct net_device *upper_dev,
7482 						void *private, bool master)
7483 {
7484 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7485 						&dev->adj_list.upper,
7486 						&upper_dev->adj_list.lower,
7487 						private, master);
7488 }
7489 
7490 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7491 						   struct net_device *upper_dev)
7492 {
7493 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7494 					   &dev->adj_list.upper,
7495 					   &upper_dev->adj_list.lower);
7496 }
7497 
7498 static int __netdev_upper_dev_link(struct net_device *dev,
7499 				   struct net_device *upper_dev, bool master,
7500 				   void *upper_priv, void *upper_info,
7501 				   struct netdev_nested_priv *priv,
7502 				   struct netlink_ext_ack *extack)
7503 {
7504 	struct netdev_notifier_changeupper_info changeupper_info = {
7505 		.info = {
7506 			.dev = dev,
7507 			.extack = extack,
7508 		},
7509 		.upper_dev = upper_dev,
7510 		.master = master,
7511 		.linking = true,
7512 		.upper_info = upper_info,
7513 	};
7514 	struct net_device *master_dev;
7515 	int ret = 0;
7516 
7517 	ASSERT_RTNL();
7518 
7519 	if (dev == upper_dev)
7520 		return -EBUSY;
7521 
7522 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7523 	if (__netdev_has_upper_dev(upper_dev, dev))
7524 		return -EBUSY;
7525 
7526 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7527 		return -EMLINK;
7528 
7529 	if (!master) {
7530 		if (__netdev_has_upper_dev(dev, upper_dev))
7531 			return -EEXIST;
7532 	} else {
7533 		master_dev = __netdev_master_upper_dev_get(dev);
7534 		if (master_dev)
7535 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7536 	}
7537 
7538 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7539 					    &changeupper_info.info);
7540 	ret = notifier_to_errno(ret);
7541 	if (ret)
7542 		return ret;
7543 
7544 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7545 						   master);
7546 	if (ret)
7547 		return ret;
7548 
7549 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7550 					    &changeupper_info.info);
7551 	ret = notifier_to_errno(ret);
7552 	if (ret)
7553 		goto rollback;
7554 
7555 	__netdev_update_upper_level(dev, NULL);
7556 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7557 
7558 	__netdev_update_lower_level(upper_dev, priv);
7559 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7560 				    priv);
7561 
7562 	return 0;
7563 
7564 rollback:
7565 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7566 
7567 	return ret;
7568 }
7569 
7570 /**
7571  * netdev_upper_dev_link - Add a link to the upper device
7572  * @dev: device
7573  * @upper_dev: new upper device
7574  * @extack: netlink extended ack
7575  *
7576  * Adds a link to device which is upper to this one. The caller must hold
7577  * the RTNL lock. On a failure a negative errno code is returned.
7578  * On success the reference counts are adjusted and the function
7579  * returns zero.
7580  */
7581 int netdev_upper_dev_link(struct net_device *dev,
7582 			  struct net_device *upper_dev,
7583 			  struct netlink_ext_ack *extack)
7584 {
7585 	struct netdev_nested_priv priv = {
7586 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7587 		.data = NULL,
7588 	};
7589 
7590 	return __netdev_upper_dev_link(dev, upper_dev, false,
7591 				       NULL, NULL, &priv, extack);
7592 }
7593 EXPORT_SYMBOL(netdev_upper_dev_link);
7594 
7595 /**
7596  * netdev_master_upper_dev_link - Add a master link to the upper device
7597  * @dev: device
7598  * @upper_dev: new upper device
7599  * @upper_priv: upper device private
7600  * @upper_info: upper info to be passed down via notifier
7601  * @extack: netlink extended ack
7602  *
7603  * Adds a link to device which is upper to this one. In this case, only
7604  * one master upper device can be linked, although other non-master devices
7605  * might be linked as well. The caller must hold the RTNL lock.
7606  * On a failure a negative errno code is returned. On success the reference
7607  * counts are adjusted and the function returns zero.
7608  */
7609 int netdev_master_upper_dev_link(struct net_device *dev,
7610 				 struct net_device *upper_dev,
7611 				 void *upper_priv, void *upper_info,
7612 				 struct netlink_ext_ack *extack)
7613 {
7614 	struct netdev_nested_priv priv = {
7615 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7616 		.data = NULL,
7617 	};
7618 
7619 	return __netdev_upper_dev_link(dev, upper_dev, true,
7620 				       upper_priv, upper_info, &priv, extack);
7621 }
7622 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7623 
7624 static void __netdev_upper_dev_unlink(struct net_device *dev,
7625 				      struct net_device *upper_dev,
7626 				      struct netdev_nested_priv *priv)
7627 {
7628 	struct netdev_notifier_changeupper_info changeupper_info = {
7629 		.info = {
7630 			.dev = dev,
7631 		},
7632 		.upper_dev = upper_dev,
7633 		.linking = false,
7634 	};
7635 
7636 	ASSERT_RTNL();
7637 
7638 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7639 
7640 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7641 				      &changeupper_info.info);
7642 
7643 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7644 
7645 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7646 				      &changeupper_info.info);
7647 
7648 	__netdev_update_upper_level(dev, NULL);
7649 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7650 
7651 	__netdev_update_lower_level(upper_dev, priv);
7652 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7653 				    priv);
7654 }
7655 
7656 /**
7657  * netdev_upper_dev_unlink - Removes a link to upper device
7658  * @dev: device
7659  * @upper_dev: new upper device
7660  *
7661  * Removes a link to device which is upper to this one. The caller must hold
7662  * the RTNL lock.
7663  */
7664 void netdev_upper_dev_unlink(struct net_device *dev,
7665 			     struct net_device *upper_dev)
7666 {
7667 	struct netdev_nested_priv priv = {
7668 		.flags = NESTED_SYNC_TODO,
7669 		.data = NULL,
7670 	};
7671 
7672 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7673 }
7674 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7675 
7676 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7677 				      struct net_device *lower_dev,
7678 				      bool val)
7679 {
7680 	struct netdev_adjacent *adj;
7681 
7682 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7683 	if (adj)
7684 		adj->ignore = val;
7685 
7686 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7687 	if (adj)
7688 		adj->ignore = val;
7689 }
7690 
7691 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7692 					struct net_device *lower_dev)
7693 {
7694 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7695 }
7696 
7697 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7698 				       struct net_device *lower_dev)
7699 {
7700 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7701 }
7702 
7703 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7704 				   struct net_device *new_dev,
7705 				   struct net_device *dev,
7706 				   struct netlink_ext_ack *extack)
7707 {
7708 	struct netdev_nested_priv priv = {
7709 		.flags = 0,
7710 		.data = NULL,
7711 	};
7712 	int err;
7713 
7714 	if (!new_dev)
7715 		return 0;
7716 
7717 	if (old_dev && new_dev != old_dev)
7718 		netdev_adjacent_dev_disable(dev, old_dev);
7719 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7720 				      extack);
7721 	if (err) {
7722 		if (old_dev && new_dev != old_dev)
7723 			netdev_adjacent_dev_enable(dev, old_dev);
7724 		return err;
7725 	}
7726 
7727 	return 0;
7728 }
7729 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7730 
7731 void netdev_adjacent_change_commit(struct net_device *old_dev,
7732 				   struct net_device *new_dev,
7733 				   struct net_device *dev)
7734 {
7735 	struct netdev_nested_priv priv = {
7736 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7737 		.data = NULL,
7738 	};
7739 
7740 	if (!new_dev || !old_dev)
7741 		return;
7742 
7743 	if (new_dev == old_dev)
7744 		return;
7745 
7746 	netdev_adjacent_dev_enable(dev, old_dev);
7747 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7748 }
7749 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7750 
7751 void netdev_adjacent_change_abort(struct net_device *old_dev,
7752 				  struct net_device *new_dev,
7753 				  struct net_device *dev)
7754 {
7755 	struct netdev_nested_priv priv = {
7756 		.flags = 0,
7757 		.data = NULL,
7758 	};
7759 
7760 	if (!new_dev)
7761 		return;
7762 
7763 	if (old_dev && new_dev != old_dev)
7764 		netdev_adjacent_dev_enable(dev, old_dev);
7765 
7766 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7767 }
7768 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7769 
7770 /**
7771  * netdev_bonding_info_change - Dispatch event about slave change
7772  * @dev: device
7773  * @bonding_info: info to dispatch
7774  *
7775  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7776  * The caller must hold the RTNL lock.
7777  */
7778 void netdev_bonding_info_change(struct net_device *dev,
7779 				struct netdev_bonding_info *bonding_info)
7780 {
7781 	struct netdev_notifier_bonding_info info = {
7782 		.info.dev = dev,
7783 	};
7784 
7785 	memcpy(&info.bonding_info, bonding_info,
7786 	       sizeof(struct netdev_bonding_info));
7787 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7788 				      &info.info);
7789 }
7790 EXPORT_SYMBOL(netdev_bonding_info_change);
7791 
7792 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7793 					   struct netlink_ext_ack *extack)
7794 {
7795 	struct netdev_notifier_offload_xstats_info info = {
7796 		.info.dev = dev,
7797 		.info.extack = extack,
7798 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7799 	};
7800 	int err;
7801 	int rc;
7802 
7803 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7804 					 GFP_KERNEL);
7805 	if (!dev->offload_xstats_l3)
7806 		return -ENOMEM;
7807 
7808 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7809 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
7810 						  &info.info);
7811 	err = notifier_to_errno(rc);
7812 	if (err)
7813 		goto free_stats;
7814 
7815 	return 0;
7816 
7817 free_stats:
7818 	kfree(dev->offload_xstats_l3);
7819 	dev->offload_xstats_l3 = NULL;
7820 	return err;
7821 }
7822 
7823 int netdev_offload_xstats_enable(struct net_device *dev,
7824 				 enum netdev_offload_xstats_type type,
7825 				 struct netlink_ext_ack *extack)
7826 {
7827 	ASSERT_RTNL();
7828 
7829 	if (netdev_offload_xstats_enabled(dev, type))
7830 		return -EALREADY;
7831 
7832 	switch (type) {
7833 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7834 		return netdev_offload_xstats_enable_l3(dev, extack);
7835 	}
7836 
7837 	WARN_ON(1);
7838 	return -EINVAL;
7839 }
7840 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7841 
7842 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7843 {
7844 	struct netdev_notifier_offload_xstats_info info = {
7845 		.info.dev = dev,
7846 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7847 	};
7848 
7849 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7850 				      &info.info);
7851 	kfree(dev->offload_xstats_l3);
7852 	dev->offload_xstats_l3 = NULL;
7853 }
7854 
7855 int netdev_offload_xstats_disable(struct net_device *dev,
7856 				  enum netdev_offload_xstats_type type)
7857 {
7858 	ASSERT_RTNL();
7859 
7860 	if (!netdev_offload_xstats_enabled(dev, type))
7861 		return -EALREADY;
7862 
7863 	switch (type) {
7864 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7865 		netdev_offload_xstats_disable_l3(dev);
7866 		return 0;
7867 	}
7868 
7869 	WARN_ON(1);
7870 	return -EINVAL;
7871 }
7872 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7873 
7874 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7875 {
7876 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7877 }
7878 
7879 static struct rtnl_hw_stats64 *
7880 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7881 			      enum netdev_offload_xstats_type type)
7882 {
7883 	switch (type) {
7884 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7885 		return dev->offload_xstats_l3;
7886 	}
7887 
7888 	WARN_ON(1);
7889 	return NULL;
7890 }
7891 
7892 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7893 				   enum netdev_offload_xstats_type type)
7894 {
7895 	ASSERT_RTNL();
7896 
7897 	return netdev_offload_xstats_get_ptr(dev, type);
7898 }
7899 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7900 
7901 struct netdev_notifier_offload_xstats_ru {
7902 	bool used;
7903 };
7904 
7905 struct netdev_notifier_offload_xstats_rd {
7906 	struct rtnl_hw_stats64 stats;
7907 	bool used;
7908 };
7909 
7910 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
7911 				  const struct rtnl_hw_stats64 *src)
7912 {
7913 	dest->rx_packets	  += src->rx_packets;
7914 	dest->tx_packets	  += src->tx_packets;
7915 	dest->rx_bytes		  += src->rx_bytes;
7916 	dest->tx_bytes		  += src->tx_bytes;
7917 	dest->rx_errors		  += src->rx_errors;
7918 	dest->tx_errors		  += src->tx_errors;
7919 	dest->rx_dropped	  += src->rx_dropped;
7920 	dest->tx_dropped	  += src->tx_dropped;
7921 	dest->multicast		  += src->multicast;
7922 }
7923 
7924 static int netdev_offload_xstats_get_used(struct net_device *dev,
7925 					  enum netdev_offload_xstats_type type,
7926 					  bool *p_used,
7927 					  struct netlink_ext_ack *extack)
7928 {
7929 	struct netdev_notifier_offload_xstats_ru report_used = {};
7930 	struct netdev_notifier_offload_xstats_info info = {
7931 		.info.dev = dev,
7932 		.info.extack = extack,
7933 		.type = type,
7934 		.report_used = &report_used,
7935 	};
7936 	int rc;
7937 
7938 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
7939 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
7940 					   &info.info);
7941 	*p_used = report_used.used;
7942 	return notifier_to_errno(rc);
7943 }
7944 
7945 static int netdev_offload_xstats_get_stats(struct net_device *dev,
7946 					   enum netdev_offload_xstats_type type,
7947 					   struct rtnl_hw_stats64 *p_stats,
7948 					   bool *p_used,
7949 					   struct netlink_ext_ack *extack)
7950 {
7951 	struct netdev_notifier_offload_xstats_rd report_delta = {};
7952 	struct netdev_notifier_offload_xstats_info info = {
7953 		.info.dev = dev,
7954 		.info.extack = extack,
7955 		.type = type,
7956 		.report_delta = &report_delta,
7957 	};
7958 	struct rtnl_hw_stats64 *stats;
7959 	int rc;
7960 
7961 	stats = netdev_offload_xstats_get_ptr(dev, type);
7962 	if (WARN_ON(!stats))
7963 		return -EINVAL;
7964 
7965 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
7966 					   &info.info);
7967 
7968 	/* Cache whatever we got, even if there was an error, otherwise the
7969 	 * successful stats retrievals would get lost.
7970 	 */
7971 	netdev_hw_stats64_add(stats, &report_delta.stats);
7972 
7973 	if (p_stats)
7974 		*p_stats = *stats;
7975 	*p_used = report_delta.used;
7976 
7977 	return notifier_to_errno(rc);
7978 }
7979 
7980 int netdev_offload_xstats_get(struct net_device *dev,
7981 			      enum netdev_offload_xstats_type type,
7982 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
7983 			      struct netlink_ext_ack *extack)
7984 {
7985 	ASSERT_RTNL();
7986 
7987 	if (p_stats)
7988 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
7989 						       p_used, extack);
7990 	else
7991 		return netdev_offload_xstats_get_used(dev, type, p_used,
7992 						      extack);
7993 }
7994 EXPORT_SYMBOL(netdev_offload_xstats_get);
7995 
7996 void
7997 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
7998 				   const struct rtnl_hw_stats64 *stats)
7999 {
8000 	report_delta->used = true;
8001 	netdev_hw_stats64_add(&report_delta->stats, stats);
8002 }
8003 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8004 
8005 void
8006 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8007 {
8008 	report_used->used = true;
8009 }
8010 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8011 
8012 void netdev_offload_xstats_push_delta(struct net_device *dev,
8013 				      enum netdev_offload_xstats_type type,
8014 				      const struct rtnl_hw_stats64 *p_stats)
8015 {
8016 	struct rtnl_hw_stats64 *stats;
8017 
8018 	ASSERT_RTNL();
8019 
8020 	stats = netdev_offload_xstats_get_ptr(dev, type);
8021 	if (WARN_ON(!stats))
8022 		return;
8023 
8024 	netdev_hw_stats64_add(stats, p_stats);
8025 }
8026 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8027 
8028 /**
8029  * netdev_get_xmit_slave - Get the xmit slave of master device
8030  * @dev: device
8031  * @skb: The packet
8032  * @all_slaves: assume all the slaves are active
8033  *
8034  * The reference counters are not incremented so the caller must be
8035  * careful with locks. The caller must hold RCU lock.
8036  * %NULL is returned if no slave is found.
8037  */
8038 
8039 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8040 					 struct sk_buff *skb,
8041 					 bool all_slaves)
8042 {
8043 	const struct net_device_ops *ops = dev->netdev_ops;
8044 
8045 	if (!ops->ndo_get_xmit_slave)
8046 		return NULL;
8047 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8048 }
8049 EXPORT_SYMBOL(netdev_get_xmit_slave);
8050 
8051 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8052 						  struct sock *sk)
8053 {
8054 	const struct net_device_ops *ops = dev->netdev_ops;
8055 
8056 	if (!ops->ndo_sk_get_lower_dev)
8057 		return NULL;
8058 	return ops->ndo_sk_get_lower_dev(dev, sk);
8059 }
8060 
8061 /**
8062  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8063  * @dev: device
8064  * @sk: the socket
8065  *
8066  * %NULL is returned if no lower device is found.
8067  */
8068 
8069 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8070 					    struct sock *sk)
8071 {
8072 	struct net_device *lower;
8073 
8074 	lower = netdev_sk_get_lower_dev(dev, sk);
8075 	while (lower) {
8076 		dev = lower;
8077 		lower = netdev_sk_get_lower_dev(dev, sk);
8078 	}
8079 
8080 	return dev;
8081 }
8082 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8083 
8084 static void netdev_adjacent_add_links(struct net_device *dev)
8085 {
8086 	struct netdev_adjacent *iter;
8087 
8088 	struct net *net = dev_net(dev);
8089 
8090 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8091 		if (!net_eq(net, dev_net(iter->dev)))
8092 			continue;
8093 		netdev_adjacent_sysfs_add(iter->dev, dev,
8094 					  &iter->dev->adj_list.lower);
8095 		netdev_adjacent_sysfs_add(dev, iter->dev,
8096 					  &dev->adj_list.upper);
8097 	}
8098 
8099 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8100 		if (!net_eq(net, dev_net(iter->dev)))
8101 			continue;
8102 		netdev_adjacent_sysfs_add(iter->dev, dev,
8103 					  &iter->dev->adj_list.upper);
8104 		netdev_adjacent_sysfs_add(dev, iter->dev,
8105 					  &dev->adj_list.lower);
8106 	}
8107 }
8108 
8109 static void netdev_adjacent_del_links(struct net_device *dev)
8110 {
8111 	struct netdev_adjacent *iter;
8112 
8113 	struct net *net = dev_net(dev);
8114 
8115 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8116 		if (!net_eq(net, dev_net(iter->dev)))
8117 			continue;
8118 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8119 					  &iter->dev->adj_list.lower);
8120 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8121 					  &dev->adj_list.upper);
8122 	}
8123 
8124 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8125 		if (!net_eq(net, dev_net(iter->dev)))
8126 			continue;
8127 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8128 					  &iter->dev->adj_list.upper);
8129 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8130 					  &dev->adj_list.lower);
8131 	}
8132 }
8133 
8134 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8135 {
8136 	struct netdev_adjacent *iter;
8137 
8138 	struct net *net = dev_net(dev);
8139 
8140 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8141 		if (!net_eq(net, dev_net(iter->dev)))
8142 			continue;
8143 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8144 					  &iter->dev->adj_list.lower);
8145 		netdev_adjacent_sysfs_add(iter->dev, dev,
8146 					  &iter->dev->adj_list.lower);
8147 	}
8148 
8149 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8150 		if (!net_eq(net, dev_net(iter->dev)))
8151 			continue;
8152 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8153 					  &iter->dev->adj_list.upper);
8154 		netdev_adjacent_sysfs_add(iter->dev, dev,
8155 					  &iter->dev->adj_list.upper);
8156 	}
8157 }
8158 
8159 void *netdev_lower_dev_get_private(struct net_device *dev,
8160 				   struct net_device *lower_dev)
8161 {
8162 	struct netdev_adjacent *lower;
8163 
8164 	if (!lower_dev)
8165 		return NULL;
8166 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8167 	if (!lower)
8168 		return NULL;
8169 
8170 	return lower->private;
8171 }
8172 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8173 
8174 
8175 /**
8176  * netdev_lower_state_changed - Dispatch event about lower device state change
8177  * @lower_dev: device
8178  * @lower_state_info: state to dispatch
8179  *
8180  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8181  * The caller must hold the RTNL lock.
8182  */
8183 void netdev_lower_state_changed(struct net_device *lower_dev,
8184 				void *lower_state_info)
8185 {
8186 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8187 		.info.dev = lower_dev,
8188 	};
8189 
8190 	ASSERT_RTNL();
8191 	changelowerstate_info.lower_state_info = lower_state_info;
8192 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8193 				      &changelowerstate_info.info);
8194 }
8195 EXPORT_SYMBOL(netdev_lower_state_changed);
8196 
8197 static void dev_change_rx_flags(struct net_device *dev, int flags)
8198 {
8199 	const struct net_device_ops *ops = dev->netdev_ops;
8200 
8201 	if (ops->ndo_change_rx_flags)
8202 		ops->ndo_change_rx_flags(dev, flags);
8203 }
8204 
8205 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8206 {
8207 	unsigned int old_flags = dev->flags;
8208 	kuid_t uid;
8209 	kgid_t gid;
8210 
8211 	ASSERT_RTNL();
8212 
8213 	dev->flags |= IFF_PROMISC;
8214 	dev->promiscuity += inc;
8215 	if (dev->promiscuity == 0) {
8216 		/*
8217 		 * Avoid overflow.
8218 		 * If inc causes overflow, untouch promisc and return error.
8219 		 */
8220 		if (inc < 0)
8221 			dev->flags &= ~IFF_PROMISC;
8222 		else {
8223 			dev->promiscuity -= inc;
8224 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8225 			return -EOVERFLOW;
8226 		}
8227 	}
8228 	if (dev->flags != old_flags) {
8229 		pr_info("device %s %s promiscuous mode\n",
8230 			dev->name,
8231 			dev->flags & IFF_PROMISC ? "entered" : "left");
8232 		if (audit_enabled) {
8233 			current_uid_gid(&uid, &gid);
8234 			audit_log(audit_context(), GFP_ATOMIC,
8235 				  AUDIT_ANOM_PROMISCUOUS,
8236 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8237 				  dev->name, (dev->flags & IFF_PROMISC),
8238 				  (old_flags & IFF_PROMISC),
8239 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8240 				  from_kuid(&init_user_ns, uid),
8241 				  from_kgid(&init_user_ns, gid),
8242 				  audit_get_sessionid(current));
8243 		}
8244 
8245 		dev_change_rx_flags(dev, IFF_PROMISC);
8246 	}
8247 	if (notify)
8248 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8249 	return 0;
8250 }
8251 
8252 /**
8253  *	dev_set_promiscuity	- update promiscuity count on a device
8254  *	@dev: device
8255  *	@inc: modifier
8256  *
8257  *	Add or remove promiscuity from a device. While the count in the device
8258  *	remains above zero the interface remains promiscuous. Once it hits zero
8259  *	the device reverts back to normal filtering operation. A negative inc
8260  *	value is used to drop promiscuity on the device.
8261  *	Return 0 if successful or a negative errno code on error.
8262  */
8263 int dev_set_promiscuity(struct net_device *dev, int inc)
8264 {
8265 	unsigned int old_flags = dev->flags;
8266 	int err;
8267 
8268 	err = __dev_set_promiscuity(dev, inc, true);
8269 	if (err < 0)
8270 		return err;
8271 	if (dev->flags != old_flags)
8272 		dev_set_rx_mode(dev);
8273 	return err;
8274 }
8275 EXPORT_SYMBOL(dev_set_promiscuity);
8276 
8277 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8278 {
8279 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8280 
8281 	ASSERT_RTNL();
8282 
8283 	dev->flags |= IFF_ALLMULTI;
8284 	dev->allmulti += inc;
8285 	if (dev->allmulti == 0) {
8286 		/*
8287 		 * Avoid overflow.
8288 		 * If inc causes overflow, untouch allmulti and return error.
8289 		 */
8290 		if (inc < 0)
8291 			dev->flags &= ~IFF_ALLMULTI;
8292 		else {
8293 			dev->allmulti -= inc;
8294 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8295 			return -EOVERFLOW;
8296 		}
8297 	}
8298 	if (dev->flags ^ old_flags) {
8299 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8300 		dev_set_rx_mode(dev);
8301 		if (notify)
8302 			__dev_notify_flags(dev, old_flags,
8303 					   dev->gflags ^ old_gflags);
8304 	}
8305 	return 0;
8306 }
8307 
8308 /**
8309  *	dev_set_allmulti	- update allmulti count on a device
8310  *	@dev: device
8311  *	@inc: modifier
8312  *
8313  *	Add or remove reception of all multicast frames to a device. While the
8314  *	count in the device remains above zero the interface remains listening
8315  *	to all interfaces. Once it hits zero the device reverts back to normal
8316  *	filtering operation. A negative @inc value is used to drop the counter
8317  *	when releasing a resource needing all multicasts.
8318  *	Return 0 if successful or a negative errno code on error.
8319  */
8320 
8321 int dev_set_allmulti(struct net_device *dev, int inc)
8322 {
8323 	return __dev_set_allmulti(dev, inc, true);
8324 }
8325 EXPORT_SYMBOL(dev_set_allmulti);
8326 
8327 /*
8328  *	Upload unicast and multicast address lists to device and
8329  *	configure RX filtering. When the device doesn't support unicast
8330  *	filtering it is put in promiscuous mode while unicast addresses
8331  *	are present.
8332  */
8333 void __dev_set_rx_mode(struct net_device *dev)
8334 {
8335 	const struct net_device_ops *ops = dev->netdev_ops;
8336 
8337 	/* dev_open will call this function so the list will stay sane. */
8338 	if (!(dev->flags&IFF_UP))
8339 		return;
8340 
8341 	if (!netif_device_present(dev))
8342 		return;
8343 
8344 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8345 		/* Unicast addresses changes may only happen under the rtnl,
8346 		 * therefore calling __dev_set_promiscuity here is safe.
8347 		 */
8348 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8349 			__dev_set_promiscuity(dev, 1, false);
8350 			dev->uc_promisc = true;
8351 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8352 			__dev_set_promiscuity(dev, -1, false);
8353 			dev->uc_promisc = false;
8354 		}
8355 	}
8356 
8357 	if (ops->ndo_set_rx_mode)
8358 		ops->ndo_set_rx_mode(dev);
8359 }
8360 
8361 void dev_set_rx_mode(struct net_device *dev)
8362 {
8363 	netif_addr_lock_bh(dev);
8364 	__dev_set_rx_mode(dev);
8365 	netif_addr_unlock_bh(dev);
8366 }
8367 
8368 /**
8369  *	dev_get_flags - get flags reported to userspace
8370  *	@dev: device
8371  *
8372  *	Get the combination of flag bits exported through APIs to userspace.
8373  */
8374 unsigned int dev_get_flags(const struct net_device *dev)
8375 {
8376 	unsigned int flags;
8377 
8378 	flags = (dev->flags & ~(IFF_PROMISC |
8379 				IFF_ALLMULTI |
8380 				IFF_RUNNING |
8381 				IFF_LOWER_UP |
8382 				IFF_DORMANT)) |
8383 		(dev->gflags & (IFF_PROMISC |
8384 				IFF_ALLMULTI));
8385 
8386 	if (netif_running(dev)) {
8387 		if (netif_oper_up(dev))
8388 			flags |= IFF_RUNNING;
8389 		if (netif_carrier_ok(dev))
8390 			flags |= IFF_LOWER_UP;
8391 		if (netif_dormant(dev))
8392 			flags |= IFF_DORMANT;
8393 	}
8394 
8395 	return flags;
8396 }
8397 EXPORT_SYMBOL(dev_get_flags);
8398 
8399 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8400 		       struct netlink_ext_ack *extack)
8401 {
8402 	unsigned int old_flags = dev->flags;
8403 	int ret;
8404 
8405 	ASSERT_RTNL();
8406 
8407 	/*
8408 	 *	Set the flags on our device.
8409 	 */
8410 
8411 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8412 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8413 			       IFF_AUTOMEDIA)) |
8414 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8415 				    IFF_ALLMULTI));
8416 
8417 	/*
8418 	 *	Load in the correct multicast list now the flags have changed.
8419 	 */
8420 
8421 	if ((old_flags ^ flags) & IFF_MULTICAST)
8422 		dev_change_rx_flags(dev, IFF_MULTICAST);
8423 
8424 	dev_set_rx_mode(dev);
8425 
8426 	/*
8427 	 *	Have we downed the interface. We handle IFF_UP ourselves
8428 	 *	according to user attempts to set it, rather than blindly
8429 	 *	setting it.
8430 	 */
8431 
8432 	ret = 0;
8433 	if ((old_flags ^ flags) & IFF_UP) {
8434 		if (old_flags & IFF_UP)
8435 			__dev_close(dev);
8436 		else
8437 			ret = __dev_open(dev, extack);
8438 	}
8439 
8440 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8441 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8442 		unsigned int old_flags = dev->flags;
8443 
8444 		dev->gflags ^= IFF_PROMISC;
8445 
8446 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8447 			if (dev->flags != old_flags)
8448 				dev_set_rx_mode(dev);
8449 	}
8450 
8451 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8452 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8453 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8454 	 */
8455 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8456 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8457 
8458 		dev->gflags ^= IFF_ALLMULTI;
8459 		__dev_set_allmulti(dev, inc, false);
8460 	}
8461 
8462 	return ret;
8463 }
8464 
8465 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8466 			unsigned int gchanges)
8467 {
8468 	unsigned int changes = dev->flags ^ old_flags;
8469 
8470 	if (gchanges)
8471 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8472 
8473 	if (changes & IFF_UP) {
8474 		if (dev->flags & IFF_UP)
8475 			call_netdevice_notifiers(NETDEV_UP, dev);
8476 		else
8477 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8478 	}
8479 
8480 	if (dev->flags & IFF_UP &&
8481 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8482 		struct netdev_notifier_change_info change_info = {
8483 			.info = {
8484 				.dev = dev,
8485 			},
8486 			.flags_changed = changes,
8487 		};
8488 
8489 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8490 	}
8491 }
8492 
8493 /**
8494  *	dev_change_flags - change device settings
8495  *	@dev: device
8496  *	@flags: device state flags
8497  *	@extack: netlink extended ack
8498  *
8499  *	Change settings on device based state flags. The flags are
8500  *	in the userspace exported format.
8501  */
8502 int dev_change_flags(struct net_device *dev, unsigned int flags,
8503 		     struct netlink_ext_ack *extack)
8504 {
8505 	int ret;
8506 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8507 
8508 	ret = __dev_change_flags(dev, flags, extack);
8509 	if (ret < 0)
8510 		return ret;
8511 
8512 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8513 	__dev_notify_flags(dev, old_flags, changes);
8514 	return ret;
8515 }
8516 EXPORT_SYMBOL(dev_change_flags);
8517 
8518 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8519 {
8520 	const struct net_device_ops *ops = dev->netdev_ops;
8521 
8522 	if (ops->ndo_change_mtu)
8523 		return ops->ndo_change_mtu(dev, new_mtu);
8524 
8525 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8526 	WRITE_ONCE(dev->mtu, new_mtu);
8527 	return 0;
8528 }
8529 EXPORT_SYMBOL(__dev_set_mtu);
8530 
8531 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8532 		     struct netlink_ext_ack *extack)
8533 {
8534 	/* MTU must be positive, and in range */
8535 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8536 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8537 		return -EINVAL;
8538 	}
8539 
8540 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8541 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8542 		return -EINVAL;
8543 	}
8544 	return 0;
8545 }
8546 
8547 /**
8548  *	dev_set_mtu_ext - Change maximum transfer unit
8549  *	@dev: device
8550  *	@new_mtu: new transfer unit
8551  *	@extack: netlink extended ack
8552  *
8553  *	Change the maximum transfer size of the network device.
8554  */
8555 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8556 		    struct netlink_ext_ack *extack)
8557 {
8558 	int err, orig_mtu;
8559 
8560 	if (new_mtu == dev->mtu)
8561 		return 0;
8562 
8563 	err = dev_validate_mtu(dev, new_mtu, extack);
8564 	if (err)
8565 		return err;
8566 
8567 	if (!netif_device_present(dev))
8568 		return -ENODEV;
8569 
8570 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8571 	err = notifier_to_errno(err);
8572 	if (err)
8573 		return err;
8574 
8575 	orig_mtu = dev->mtu;
8576 	err = __dev_set_mtu(dev, new_mtu);
8577 
8578 	if (!err) {
8579 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8580 						   orig_mtu);
8581 		err = notifier_to_errno(err);
8582 		if (err) {
8583 			/* setting mtu back and notifying everyone again,
8584 			 * so that they have a chance to revert changes.
8585 			 */
8586 			__dev_set_mtu(dev, orig_mtu);
8587 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8588 						     new_mtu);
8589 		}
8590 	}
8591 	return err;
8592 }
8593 
8594 int dev_set_mtu(struct net_device *dev, int new_mtu)
8595 {
8596 	struct netlink_ext_ack extack;
8597 	int err;
8598 
8599 	memset(&extack, 0, sizeof(extack));
8600 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8601 	if (err && extack._msg)
8602 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8603 	return err;
8604 }
8605 EXPORT_SYMBOL(dev_set_mtu);
8606 
8607 /**
8608  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8609  *	@dev: device
8610  *	@new_len: new tx queue length
8611  */
8612 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8613 {
8614 	unsigned int orig_len = dev->tx_queue_len;
8615 	int res;
8616 
8617 	if (new_len != (unsigned int)new_len)
8618 		return -ERANGE;
8619 
8620 	if (new_len != orig_len) {
8621 		dev->tx_queue_len = new_len;
8622 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8623 		res = notifier_to_errno(res);
8624 		if (res)
8625 			goto err_rollback;
8626 		res = dev_qdisc_change_tx_queue_len(dev);
8627 		if (res)
8628 			goto err_rollback;
8629 	}
8630 
8631 	return 0;
8632 
8633 err_rollback:
8634 	netdev_err(dev, "refused to change device tx_queue_len\n");
8635 	dev->tx_queue_len = orig_len;
8636 	return res;
8637 }
8638 
8639 /**
8640  *	dev_set_group - Change group this device belongs to
8641  *	@dev: device
8642  *	@new_group: group this device should belong to
8643  */
8644 void dev_set_group(struct net_device *dev, int new_group)
8645 {
8646 	dev->group = new_group;
8647 }
8648 EXPORT_SYMBOL(dev_set_group);
8649 
8650 /**
8651  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8652  *	@dev: device
8653  *	@addr: new address
8654  *	@extack: netlink extended ack
8655  */
8656 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8657 			      struct netlink_ext_ack *extack)
8658 {
8659 	struct netdev_notifier_pre_changeaddr_info info = {
8660 		.info.dev = dev,
8661 		.info.extack = extack,
8662 		.dev_addr = addr,
8663 	};
8664 	int rc;
8665 
8666 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8667 	return notifier_to_errno(rc);
8668 }
8669 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8670 
8671 /**
8672  *	dev_set_mac_address - Change Media Access Control Address
8673  *	@dev: device
8674  *	@sa: new address
8675  *	@extack: netlink extended ack
8676  *
8677  *	Change the hardware (MAC) address of the device
8678  */
8679 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8680 			struct netlink_ext_ack *extack)
8681 {
8682 	const struct net_device_ops *ops = dev->netdev_ops;
8683 	int err;
8684 
8685 	if (!ops->ndo_set_mac_address)
8686 		return -EOPNOTSUPP;
8687 	if (sa->sa_family != dev->type)
8688 		return -EINVAL;
8689 	if (!netif_device_present(dev))
8690 		return -ENODEV;
8691 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8692 	if (err)
8693 		return err;
8694 	err = ops->ndo_set_mac_address(dev, sa);
8695 	if (err)
8696 		return err;
8697 	dev->addr_assign_type = NET_ADDR_SET;
8698 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8699 	add_device_randomness(dev->dev_addr, dev->addr_len);
8700 	return 0;
8701 }
8702 EXPORT_SYMBOL(dev_set_mac_address);
8703 
8704 static DECLARE_RWSEM(dev_addr_sem);
8705 
8706 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8707 			     struct netlink_ext_ack *extack)
8708 {
8709 	int ret;
8710 
8711 	down_write(&dev_addr_sem);
8712 	ret = dev_set_mac_address(dev, sa, extack);
8713 	up_write(&dev_addr_sem);
8714 	return ret;
8715 }
8716 EXPORT_SYMBOL(dev_set_mac_address_user);
8717 
8718 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8719 {
8720 	size_t size = sizeof(sa->sa_data);
8721 	struct net_device *dev;
8722 	int ret = 0;
8723 
8724 	down_read(&dev_addr_sem);
8725 	rcu_read_lock();
8726 
8727 	dev = dev_get_by_name_rcu(net, dev_name);
8728 	if (!dev) {
8729 		ret = -ENODEV;
8730 		goto unlock;
8731 	}
8732 	if (!dev->addr_len)
8733 		memset(sa->sa_data, 0, size);
8734 	else
8735 		memcpy(sa->sa_data, dev->dev_addr,
8736 		       min_t(size_t, size, dev->addr_len));
8737 	sa->sa_family = dev->type;
8738 
8739 unlock:
8740 	rcu_read_unlock();
8741 	up_read(&dev_addr_sem);
8742 	return ret;
8743 }
8744 EXPORT_SYMBOL(dev_get_mac_address);
8745 
8746 /**
8747  *	dev_change_carrier - Change device carrier
8748  *	@dev: device
8749  *	@new_carrier: new value
8750  *
8751  *	Change device carrier
8752  */
8753 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8754 {
8755 	const struct net_device_ops *ops = dev->netdev_ops;
8756 
8757 	if (!ops->ndo_change_carrier)
8758 		return -EOPNOTSUPP;
8759 	if (!netif_device_present(dev))
8760 		return -ENODEV;
8761 	return ops->ndo_change_carrier(dev, new_carrier);
8762 }
8763 EXPORT_SYMBOL(dev_change_carrier);
8764 
8765 /**
8766  *	dev_get_phys_port_id - Get device physical port ID
8767  *	@dev: device
8768  *	@ppid: port ID
8769  *
8770  *	Get device physical port ID
8771  */
8772 int dev_get_phys_port_id(struct net_device *dev,
8773 			 struct netdev_phys_item_id *ppid)
8774 {
8775 	const struct net_device_ops *ops = dev->netdev_ops;
8776 
8777 	if (!ops->ndo_get_phys_port_id)
8778 		return -EOPNOTSUPP;
8779 	return ops->ndo_get_phys_port_id(dev, ppid);
8780 }
8781 EXPORT_SYMBOL(dev_get_phys_port_id);
8782 
8783 /**
8784  *	dev_get_phys_port_name - Get device physical port name
8785  *	@dev: device
8786  *	@name: port name
8787  *	@len: limit of bytes to copy to name
8788  *
8789  *	Get device physical port name
8790  */
8791 int dev_get_phys_port_name(struct net_device *dev,
8792 			   char *name, size_t len)
8793 {
8794 	const struct net_device_ops *ops = dev->netdev_ops;
8795 	int err;
8796 
8797 	if (ops->ndo_get_phys_port_name) {
8798 		err = ops->ndo_get_phys_port_name(dev, name, len);
8799 		if (err != -EOPNOTSUPP)
8800 			return err;
8801 	}
8802 	return devlink_compat_phys_port_name_get(dev, name, len);
8803 }
8804 EXPORT_SYMBOL(dev_get_phys_port_name);
8805 
8806 /**
8807  *	dev_get_port_parent_id - Get the device's port parent identifier
8808  *	@dev: network device
8809  *	@ppid: pointer to a storage for the port's parent identifier
8810  *	@recurse: allow/disallow recursion to lower devices
8811  *
8812  *	Get the devices's port parent identifier
8813  */
8814 int dev_get_port_parent_id(struct net_device *dev,
8815 			   struct netdev_phys_item_id *ppid,
8816 			   bool recurse)
8817 {
8818 	const struct net_device_ops *ops = dev->netdev_ops;
8819 	struct netdev_phys_item_id first = { };
8820 	struct net_device *lower_dev;
8821 	struct list_head *iter;
8822 	int err;
8823 
8824 	if (ops->ndo_get_port_parent_id) {
8825 		err = ops->ndo_get_port_parent_id(dev, ppid);
8826 		if (err != -EOPNOTSUPP)
8827 			return err;
8828 	}
8829 
8830 	err = devlink_compat_switch_id_get(dev, ppid);
8831 	if (!recurse || err != -EOPNOTSUPP)
8832 		return err;
8833 
8834 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8835 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8836 		if (err)
8837 			break;
8838 		if (!first.id_len)
8839 			first = *ppid;
8840 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8841 			return -EOPNOTSUPP;
8842 	}
8843 
8844 	return err;
8845 }
8846 EXPORT_SYMBOL(dev_get_port_parent_id);
8847 
8848 /**
8849  *	netdev_port_same_parent_id - Indicate if two network devices have
8850  *	the same port parent identifier
8851  *	@a: first network device
8852  *	@b: second network device
8853  */
8854 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8855 {
8856 	struct netdev_phys_item_id a_id = { };
8857 	struct netdev_phys_item_id b_id = { };
8858 
8859 	if (dev_get_port_parent_id(a, &a_id, true) ||
8860 	    dev_get_port_parent_id(b, &b_id, true))
8861 		return false;
8862 
8863 	return netdev_phys_item_id_same(&a_id, &b_id);
8864 }
8865 EXPORT_SYMBOL(netdev_port_same_parent_id);
8866 
8867 /**
8868  *	dev_change_proto_down - set carrier according to proto_down.
8869  *
8870  *	@dev: device
8871  *	@proto_down: new value
8872  */
8873 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8874 {
8875 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8876 		return -EOPNOTSUPP;
8877 	if (!netif_device_present(dev))
8878 		return -ENODEV;
8879 	if (proto_down)
8880 		netif_carrier_off(dev);
8881 	else
8882 		netif_carrier_on(dev);
8883 	dev->proto_down = proto_down;
8884 	return 0;
8885 }
8886 EXPORT_SYMBOL(dev_change_proto_down);
8887 
8888 /**
8889  *	dev_change_proto_down_reason - proto down reason
8890  *
8891  *	@dev: device
8892  *	@mask: proto down mask
8893  *	@value: proto down value
8894  */
8895 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8896 				  u32 value)
8897 {
8898 	int b;
8899 
8900 	if (!mask) {
8901 		dev->proto_down_reason = value;
8902 	} else {
8903 		for_each_set_bit(b, &mask, 32) {
8904 			if (value & (1 << b))
8905 				dev->proto_down_reason |= BIT(b);
8906 			else
8907 				dev->proto_down_reason &= ~BIT(b);
8908 		}
8909 	}
8910 }
8911 EXPORT_SYMBOL(dev_change_proto_down_reason);
8912 
8913 struct bpf_xdp_link {
8914 	struct bpf_link link;
8915 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8916 	int flags;
8917 };
8918 
8919 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8920 {
8921 	if (flags & XDP_FLAGS_HW_MODE)
8922 		return XDP_MODE_HW;
8923 	if (flags & XDP_FLAGS_DRV_MODE)
8924 		return XDP_MODE_DRV;
8925 	if (flags & XDP_FLAGS_SKB_MODE)
8926 		return XDP_MODE_SKB;
8927 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8928 }
8929 
8930 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8931 {
8932 	switch (mode) {
8933 	case XDP_MODE_SKB:
8934 		return generic_xdp_install;
8935 	case XDP_MODE_DRV:
8936 	case XDP_MODE_HW:
8937 		return dev->netdev_ops->ndo_bpf;
8938 	default:
8939 		return NULL;
8940 	}
8941 }
8942 
8943 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8944 					 enum bpf_xdp_mode mode)
8945 {
8946 	return dev->xdp_state[mode].link;
8947 }
8948 
8949 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8950 				     enum bpf_xdp_mode mode)
8951 {
8952 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8953 
8954 	if (link)
8955 		return link->link.prog;
8956 	return dev->xdp_state[mode].prog;
8957 }
8958 
8959 u8 dev_xdp_prog_count(struct net_device *dev)
8960 {
8961 	u8 count = 0;
8962 	int i;
8963 
8964 	for (i = 0; i < __MAX_XDP_MODE; i++)
8965 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8966 			count++;
8967 	return count;
8968 }
8969 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
8970 
8971 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8972 {
8973 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8974 
8975 	return prog ? prog->aux->id : 0;
8976 }
8977 
8978 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8979 			     struct bpf_xdp_link *link)
8980 {
8981 	dev->xdp_state[mode].link = link;
8982 	dev->xdp_state[mode].prog = NULL;
8983 }
8984 
8985 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8986 			     struct bpf_prog *prog)
8987 {
8988 	dev->xdp_state[mode].link = NULL;
8989 	dev->xdp_state[mode].prog = prog;
8990 }
8991 
8992 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8993 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8994 			   u32 flags, struct bpf_prog *prog)
8995 {
8996 	struct netdev_bpf xdp;
8997 	int err;
8998 
8999 	memset(&xdp, 0, sizeof(xdp));
9000 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9001 	xdp.extack = extack;
9002 	xdp.flags = flags;
9003 	xdp.prog = prog;
9004 
9005 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9006 	 * "moved" into driver), so they don't increment it on their own, but
9007 	 * they do decrement refcnt when program is detached or replaced.
9008 	 * Given net_device also owns link/prog, we need to bump refcnt here
9009 	 * to prevent drivers from underflowing it.
9010 	 */
9011 	if (prog)
9012 		bpf_prog_inc(prog);
9013 	err = bpf_op(dev, &xdp);
9014 	if (err) {
9015 		if (prog)
9016 			bpf_prog_put(prog);
9017 		return err;
9018 	}
9019 
9020 	if (mode != XDP_MODE_HW)
9021 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9022 
9023 	return 0;
9024 }
9025 
9026 static void dev_xdp_uninstall(struct net_device *dev)
9027 {
9028 	struct bpf_xdp_link *link;
9029 	struct bpf_prog *prog;
9030 	enum bpf_xdp_mode mode;
9031 	bpf_op_t bpf_op;
9032 
9033 	ASSERT_RTNL();
9034 
9035 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9036 		prog = dev_xdp_prog(dev, mode);
9037 		if (!prog)
9038 			continue;
9039 
9040 		bpf_op = dev_xdp_bpf_op(dev, mode);
9041 		if (!bpf_op)
9042 			continue;
9043 
9044 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9045 
9046 		/* auto-detach link from net device */
9047 		link = dev_xdp_link(dev, mode);
9048 		if (link)
9049 			link->dev = NULL;
9050 		else
9051 			bpf_prog_put(prog);
9052 
9053 		dev_xdp_set_link(dev, mode, NULL);
9054 	}
9055 }
9056 
9057 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9058 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9059 			  struct bpf_prog *old_prog, u32 flags)
9060 {
9061 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9062 	struct bpf_prog *cur_prog;
9063 	struct net_device *upper;
9064 	struct list_head *iter;
9065 	enum bpf_xdp_mode mode;
9066 	bpf_op_t bpf_op;
9067 	int err;
9068 
9069 	ASSERT_RTNL();
9070 
9071 	/* either link or prog attachment, never both */
9072 	if (link && (new_prog || old_prog))
9073 		return -EINVAL;
9074 	/* link supports only XDP mode flags */
9075 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9076 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9077 		return -EINVAL;
9078 	}
9079 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9080 	if (num_modes > 1) {
9081 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9082 		return -EINVAL;
9083 	}
9084 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9085 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9086 		NL_SET_ERR_MSG(extack,
9087 			       "More than one program loaded, unset mode is ambiguous");
9088 		return -EINVAL;
9089 	}
9090 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9091 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9092 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9093 		return -EINVAL;
9094 	}
9095 
9096 	mode = dev_xdp_mode(dev, flags);
9097 	/* can't replace attached link */
9098 	if (dev_xdp_link(dev, mode)) {
9099 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9100 		return -EBUSY;
9101 	}
9102 
9103 	/* don't allow if an upper device already has a program */
9104 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9105 		if (dev_xdp_prog_count(upper) > 0) {
9106 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9107 			return -EEXIST;
9108 		}
9109 	}
9110 
9111 	cur_prog = dev_xdp_prog(dev, mode);
9112 	/* can't replace attached prog with link */
9113 	if (link && cur_prog) {
9114 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9115 		return -EBUSY;
9116 	}
9117 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9118 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9119 		return -EEXIST;
9120 	}
9121 
9122 	/* put effective new program into new_prog */
9123 	if (link)
9124 		new_prog = link->link.prog;
9125 
9126 	if (new_prog) {
9127 		bool offload = mode == XDP_MODE_HW;
9128 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9129 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9130 
9131 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9132 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9133 			return -EBUSY;
9134 		}
9135 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9136 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9137 			return -EEXIST;
9138 		}
9139 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9140 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9141 			return -EINVAL;
9142 		}
9143 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9144 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9145 			return -EINVAL;
9146 		}
9147 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9148 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9149 			return -EINVAL;
9150 		}
9151 	}
9152 
9153 	/* don't call drivers if the effective program didn't change */
9154 	if (new_prog != cur_prog) {
9155 		bpf_op = dev_xdp_bpf_op(dev, mode);
9156 		if (!bpf_op) {
9157 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9158 			return -EOPNOTSUPP;
9159 		}
9160 
9161 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9162 		if (err)
9163 			return err;
9164 	}
9165 
9166 	if (link)
9167 		dev_xdp_set_link(dev, mode, link);
9168 	else
9169 		dev_xdp_set_prog(dev, mode, new_prog);
9170 	if (cur_prog)
9171 		bpf_prog_put(cur_prog);
9172 
9173 	return 0;
9174 }
9175 
9176 static int dev_xdp_attach_link(struct net_device *dev,
9177 			       struct netlink_ext_ack *extack,
9178 			       struct bpf_xdp_link *link)
9179 {
9180 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9181 }
9182 
9183 static int dev_xdp_detach_link(struct net_device *dev,
9184 			       struct netlink_ext_ack *extack,
9185 			       struct bpf_xdp_link *link)
9186 {
9187 	enum bpf_xdp_mode mode;
9188 	bpf_op_t bpf_op;
9189 
9190 	ASSERT_RTNL();
9191 
9192 	mode = dev_xdp_mode(dev, link->flags);
9193 	if (dev_xdp_link(dev, mode) != link)
9194 		return -EINVAL;
9195 
9196 	bpf_op = dev_xdp_bpf_op(dev, mode);
9197 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9198 	dev_xdp_set_link(dev, mode, NULL);
9199 	return 0;
9200 }
9201 
9202 static void bpf_xdp_link_release(struct bpf_link *link)
9203 {
9204 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9205 
9206 	rtnl_lock();
9207 
9208 	/* if racing with net_device's tear down, xdp_link->dev might be
9209 	 * already NULL, in which case link was already auto-detached
9210 	 */
9211 	if (xdp_link->dev) {
9212 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9213 		xdp_link->dev = NULL;
9214 	}
9215 
9216 	rtnl_unlock();
9217 }
9218 
9219 static int bpf_xdp_link_detach(struct bpf_link *link)
9220 {
9221 	bpf_xdp_link_release(link);
9222 	return 0;
9223 }
9224 
9225 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9226 {
9227 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9228 
9229 	kfree(xdp_link);
9230 }
9231 
9232 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9233 				     struct seq_file *seq)
9234 {
9235 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9236 	u32 ifindex = 0;
9237 
9238 	rtnl_lock();
9239 	if (xdp_link->dev)
9240 		ifindex = xdp_link->dev->ifindex;
9241 	rtnl_unlock();
9242 
9243 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9244 }
9245 
9246 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9247 				       struct bpf_link_info *info)
9248 {
9249 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9250 	u32 ifindex = 0;
9251 
9252 	rtnl_lock();
9253 	if (xdp_link->dev)
9254 		ifindex = xdp_link->dev->ifindex;
9255 	rtnl_unlock();
9256 
9257 	info->xdp.ifindex = ifindex;
9258 	return 0;
9259 }
9260 
9261 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9262 			       struct bpf_prog *old_prog)
9263 {
9264 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9265 	enum bpf_xdp_mode mode;
9266 	bpf_op_t bpf_op;
9267 	int err = 0;
9268 
9269 	rtnl_lock();
9270 
9271 	/* link might have been auto-released already, so fail */
9272 	if (!xdp_link->dev) {
9273 		err = -ENOLINK;
9274 		goto out_unlock;
9275 	}
9276 
9277 	if (old_prog && link->prog != old_prog) {
9278 		err = -EPERM;
9279 		goto out_unlock;
9280 	}
9281 	old_prog = link->prog;
9282 	if (old_prog->type != new_prog->type ||
9283 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9284 		err = -EINVAL;
9285 		goto out_unlock;
9286 	}
9287 
9288 	if (old_prog == new_prog) {
9289 		/* no-op, don't disturb drivers */
9290 		bpf_prog_put(new_prog);
9291 		goto out_unlock;
9292 	}
9293 
9294 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9295 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9296 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9297 			      xdp_link->flags, new_prog);
9298 	if (err)
9299 		goto out_unlock;
9300 
9301 	old_prog = xchg(&link->prog, new_prog);
9302 	bpf_prog_put(old_prog);
9303 
9304 out_unlock:
9305 	rtnl_unlock();
9306 	return err;
9307 }
9308 
9309 static const struct bpf_link_ops bpf_xdp_link_lops = {
9310 	.release = bpf_xdp_link_release,
9311 	.dealloc = bpf_xdp_link_dealloc,
9312 	.detach = bpf_xdp_link_detach,
9313 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9314 	.fill_link_info = bpf_xdp_link_fill_link_info,
9315 	.update_prog = bpf_xdp_link_update,
9316 };
9317 
9318 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9319 {
9320 	struct net *net = current->nsproxy->net_ns;
9321 	struct bpf_link_primer link_primer;
9322 	struct bpf_xdp_link *link;
9323 	struct net_device *dev;
9324 	int err, fd;
9325 
9326 	rtnl_lock();
9327 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9328 	if (!dev) {
9329 		rtnl_unlock();
9330 		return -EINVAL;
9331 	}
9332 
9333 	link = kzalloc(sizeof(*link), GFP_USER);
9334 	if (!link) {
9335 		err = -ENOMEM;
9336 		goto unlock;
9337 	}
9338 
9339 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9340 	link->dev = dev;
9341 	link->flags = attr->link_create.flags;
9342 
9343 	err = bpf_link_prime(&link->link, &link_primer);
9344 	if (err) {
9345 		kfree(link);
9346 		goto unlock;
9347 	}
9348 
9349 	err = dev_xdp_attach_link(dev, NULL, link);
9350 	rtnl_unlock();
9351 
9352 	if (err) {
9353 		link->dev = NULL;
9354 		bpf_link_cleanup(&link_primer);
9355 		goto out_put_dev;
9356 	}
9357 
9358 	fd = bpf_link_settle(&link_primer);
9359 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9360 	dev_put(dev);
9361 	return fd;
9362 
9363 unlock:
9364 	rtnl_unlock();
9365 
9366 out_put_dev:
9367 	dev_put(dev);
9368 	return err;
9369 }
9370 
9371 /**
9372  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9373  *	@dev: device
9374  *	@extack: netlink extended ack
9375  *	@fd: new program fd or negative value to clear
9376  *	@expected_fd: old program fd that userspace expects to replace or clear
9377  *	@flags: xdp-related flags
9378  *
9379  *	Set or clear a bpf program for a device
9380  */
9381 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9382 		      int fd, int expected_fd, u32 flags)
9383 {
9384 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9385 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9386 	int err;
9387 
9388 	ASSERT_RTNL();
9389 
9390 	if (fd >= 0) {
9391 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9392 						 mode != XDP_MODE_SKB);
9393 		if (IS_ERR(new_prog))
9394 			return PTR_ERR(new_prog);
9395 	}
9396 
9397 	if (expected_fd >= 0) {
9398 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9399 						 mode != XDP_MODE_SKB);
9400 		if (IS_ERR(old_prog)) {
9401 			err = PTR_ERR(old_prog);
9402 			old_prog = NULL;
9403 			goto err_out;
9404 		}
9405 	}
9406 
9407 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9408 
9409 err_out:
9410 	if (err && new_prog)
9411 		bpf_prog_put(new_prog);
9412 	if (old_prog)
9413 		bpf_prog_put(old_prog);
9414 	return err;
9415 }
9416 
9417 /**
9418  *	dev_new_index	-	allocate an ifindex
9419  *	@net: the applicable net namespace
9420  *
9421  *	Returns a suitable unique value for a new device interface
9422  *	number.  The caller must hold the rtnl semaphore or the
9423  *	dev_base_lock to be sure it remains unique.
9424  */
9425 static int dev_new_index(struct net *net)
9426 {
9427 	int ifindex = net->ifindex;
9428 
9429 	for (;;) {
9430 		if (++ifindex <= 0)
9431 			ifindex = 1;
9432 		if (!__dev_get_by_index(net, ifindex))
9433 			return net->ifindex = ifindex;
9434 	}
9435 }
9436 
9437 /* Delayed registration/unregisteration */
9438 LIST_HEAD(net_todo_list);
9439 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9440 
9441 static void net_set_todo(struct net_device *dev)
9442 {
9443 	list_add_tail(&dev->todo_list, &net_todo_list);
9444 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9445 }
9446 
9447 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9448 	struct net_device *upper, netdev_features_t features)
9449 {
9450 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9451 	netdev_features_t feature;
9452 	int feature_bit;
9453 
9454 	for_each_netdev_feature(upper_disables, feature_bit) {
9455 		feature = __NETIF_F_BIT(feature_bit);
9456 		if (!(upper->wanted_features & feature)
9457 		    && (features & feature)) {
9458 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9459 				   &feature, upper->name);
9460 			features &= ~feature;
9461 		}
9462 	}
9463 
9464 	return features;
9465 }
9466 
9467 static void netdev_sync_lower_features(struct net_device *upper,
9468 	struct net_device *lower, netdev_features_t features)
9469 {
9470 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9471 	netdev_features_t feature;
9472 	int feature_bit;
9473 
9474 	for_each_netdev_feature(upper_disables, feature_bit) {
9475 		feature = __NETIF_F_BIT(feature_bit);
9476 		if (!(features & feature) && (lower->features & feature)) {
9477 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9478 				   &feature, lower->name);
9479 			lower->wanted_features &= ~feature;
9480 			__netdev_update_features(lower);
9481 
9482 			if (unlikely(lower->features & feature))
9483 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9484 					    &feature, lower->name);
9485 			else
9486 				netdev_features_change(lower);
9487 		}
9488 	}
9489 }
9490 
9491 static netdev_features_t netdev_fix_features(struct net_device *dev,
9492 	netdev_features_t features)
9493 {
9494 	/* Fix illegal checksum combinations */
9495 	if ((features & NETIF_F_HW_CSUM) &&
9496 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9497 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9498 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9499 	}
9500 
9501 	/* TSO requires that SG is present as well. */
9502 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9503 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9504 		features &= ~NETIF_F_ALL_TSO;
9505 	}
9506 
9507 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9508 					!(features & NETIF_F_IP_CSUM)) {
9509 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9510 		features &= ~NETIF_F_TSO;
9511 		features &= ~NETIF_F_TSO_ECN;
9512 	}
9513 
9514 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9515 					 !(features & NETIF_F_IPV6_CSUM)) {
9516 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9517 		features &= ~NETIF_F_TSO6;
9518 	}
9519 
9520 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9521 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9522 		features &= ~NETIF_F_TSO_MANGLEID;
9523 
9524 	/* TSO ECN requires that TSO is present as well. */
9525 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9526 		features &= ~NETIF_F_TSO_ECN;
9527 
9528 	/* Software GSO depends on SG. */
9529 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9530 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9531 		features &= ~NETIF_F_GSO;
9532 	}
9533 
9534 	/* GSO partial features require GSO partial be set */
9535 	if ((features & dev->gso_partial_features) &&
9536 	    !(features & NETIF_F_GSO_PARTIAL)) {
9537 		netdev_dbg(dev,
9538 			   "Dropping partially supported GSO features since no GSO partial.\n");
9539 		features &= ~dev->gso_partial_features;
9540 	}
9541 
9542 	if (!(features & NETIF_F_RXCSUM)) {
9543 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9544 		 * successfully merged by hardware must also have the
9545 		 * checksum verified by hardware.  If the user does not
9546 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9547 		 */
9548 		if (features & NETIF_F_GRO_HW) {
9549 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9550 			features &= ~NETIF_F_GRO_HW;
9551 		}
9552 	}
9553 
9554 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9555 	if (features & NETIF_F_RXFCS) {
9556 		if (features & NETIF_F_LRO) {
9557 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9558 			features &= ~NETIF_F_LRO;
9559 		}
9560 
9561 		if (features & NETIF_F_GRO_HW) {
9562 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9563 			features &= ~NETIF_F_GRO_HW;
9564 		}
9565 	}
9566 
9567 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9568 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9569 		features &= ~NETIF_F_LRO;
9570 	}
9571 
9572 	if (features & NETIF_F_HW_TLS_TX) {
9573 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9574 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9575 		bool hw_csum = features & NETIF_F_HW_CSUM;
9576 
9577 		if (!ip_csum && !hw_csum) {
9578 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9579 			features &= ~NETIF_F_HW_TLS_TX;
9580 		}
9581 	}
9582 
9583 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9584 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9585 		features &= ~NETIF_F_HW_TLS_RX;
9586 	}
9587 
9588 	return features;
9589 }
9590 
9591 int __netdev_update_features(struct net_device *dev)
9592 {
9593 	struct net_device *upper, *lower;
9594 	netdev_features_t features;
9595 	struct list_head *iter;
9596 	int err = -1;
9597 
9598 	ASSERT_RTNL();
9599 
9600 	features = netdev_get_wanted_features(dev);
9601 
9602 	if (dev->netdev_ops->ndo_fix_features)
9603 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9604 
9605 	/* driver might be less strict about feature dependencies */
9606 	features = netdev_fix_features(dev, features);
9607 
9608 	/* some features can't be enabled if they're off on an upper device */
9609 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9610 		features = netdev_sync_upper_features(dev, upper, features);
9611 
9612 	if (dev->features == features)
9613 		goto sync_lower;
9614 
9615 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9616 		&dev->features, &features);
9617 
9618 	if (dev->netdev_ops->ndo_set_features)
9619 		err = dev->netdev_ops->ndo_set_features(dev, features);
9620 	else
9621 		err = 0;
9622 
9623 	if (unlikely(err < 0)) {
9624 		netdev_err(dev,
9625 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9626 			err, &features, &dev->features);
9627 		/* return non-0 since some features might have changed and
9628 		 * it's better to fire a spurious notification than miss it
9629 		 */
9630 		return -1;
9631 	}
9632 
9633 sync_lower:
9634 	/* some features must be disabled on lower devices when disabled
9635 	 * on an upper device (think: bonding master or bridge)
9636 	 */
9637 	netdev_for_each_lower_dev(dev, lower, iter)
9638 		netdev_sync_lower_features(dev, lower, features);
9639 
9640 	if (!err) {
9641 		netdev_features_t diff = features ^ dev->features;
9642 
9643 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9644 			/* udp_tunnel_{get,drop}_rx_info both need
9645 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9646 			 * device, or they won't do anything.
9647 			 * Thus we need to update dev->features
9648 			 * *before* calling udp_tunnel_get_rx_info,
9649 			 * but *after* calling udp_tunnel_drop_rx_info.
9650 			 */
9651 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9652 				dev->features = features;
9653 				udp_tunnel_get_rx_info(dev);
9654 			} else {
9655 				udp_tunnel_drop_rx_info(dev);
9656 			}
9657 		}
9658 
9659 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9660 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9661 				dev->features = features;
9662 				err |= vlan_get_rx_ctag_filter_info(dev);
9663 			} else {
9664 				vlan_drop_rx_ctag_filter_info(dev);
9665 			}
9666 		}
9667 
9668 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9669 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9670 				dev->features = features;
9671 				err |= vlan_get_rx_stag_filter_info(dev);
9672 			} else {
9673 				vlan_drop_rx_stag_filter_info(dev);
9674 			}
9675 		}
9676 
9677 		dev->features = features;
9678 	}
9679 
9680 	return err < 0 ? 0 : 1;
9681 }
9682 
9683 /**
9684  *	netdev_update_features - recalculate device features
9685  *	@dev: the device to check
9686  *
9687  *	Recalculate dev->features set and send notifications if it
9688  *	has changed. Should be called after driver or hardware dependent
9689  *	conditions might have changed that influence the features.
9690  */
9691 void netdev_update_features(struct net_device *dev)
9692 {
9693 	if (__netdev_update_features(dev))
9694 		netdev_features_change(dev);
9695 }
9696 EXPORT_SYMBOL(netdev_update_features);
9697 
9698 /**
9699  *	netdev_change_features - recalculate device features
9700  *	@dev: the device to check
9701  *
9702  *	Recalculate dev->features set and send notifications even
9703  *	if they have not changed. Should be called instead of
9704  *	netdev_update_features() if also dev->vlan_features might
9705  *	have changed to allow the changes to be propagated to stacked
9706  *	VLAN devices.
9707  */
9708 void netdev_change_features(struct net_device *dev)
9709 {
9710 	__netdev_update_features(dev);
9711 	netdev_features_change(dev);
9712 }
9713 EXPORT_SYMBOL(netdev_change_features);
9714 
9715 /**
9716  *	netif_stacked_transfer_operstate -	transfer operstate
9717  *	@rootdev: the root or lower level device to transfer state from
9718  *	@dev: the device to transfer operstate to
9719  *
9720  *	Transfer operational state from root to device. This is normally
9721  *	called when a stacking relationship exists between the root
9722  *	device and the device(a leaf device).
9723  */
9724 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9725 					struct net_device *dev)
9726 {
9727 	if (rootdev->operstate == IF_OPER_DORMANT)
9728 		netif_dormant_on(dev);
9729 	else
9730 		netif_dormant_off(dev);
9731 
9732 	if (rootdev->operstate == IF_OPER_TESTING)
9733 		netif_testing_on(dev);
9734 	else
9735 		netif_testing_off(dev);
9736 
9737 	if (netif_carrier_ok(rootdev))
9738 		netif_carrier_on(dev);
9739 	else
9740 		netif_carrier_off(dev);
9741 }
9742 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9743 
9744 static int netif_alloc_rx_queues(struct net_device *dev)
9745 {
9746 	unsigned int i, count = dev->num_rx_queues;
9747 	struct netdev_rx_queue *rx;
9748 	size_t sz = count * sizeof(*rx);
9749 	int err = 0;
9750 
9751 	BUG_ON(count < 1);
9752 
9753 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9754 	if (!rx)
9755 		return -ENOMEM;
9756 
9757 	dev->_rx = rx;
9758 
9759 	for (i = 0; i < count; i++) {
9760 		rx[i].dev = dev;
9761 
9762 		/* XDP RX-queue setup */
9763 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9764 		if (err < 0)
9765 			goto err_rxq_info;
9766 	}
9767 	return 0;
9768 
9769 err_rxq_info:
9770 	/* Rollback successful reg's and free other resources */
9771 	while (i--)
9772 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9773 	kvfree(dev->_rx);
9774 	dev->_rx = NULL;
9775 	return err;
9776 }
9777 
9778 static void netif_free_rx_queues(struct net_device *dev)
9779 {
9780 	unsigned int i, count = dev->num_rx_queues;
9781 
9782 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9783 	if (!dev->_rx)
9784 		return;
9785 
9786 	for (i = 0; i < count; i++)
9787 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9788 
9789 	kvfree(dev->_rx);
9790 }
9791 
9792 static void netdev_init_one_queue(struct net_device *dev,
9793 				  struct netdev_queue *queue, void *_unused)
9794 {
9795 	/* Initialize queue lock */
9796 	spin_lock_init(&queue->_xmit_lock);
9797 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9798 	queue->xmit_lock_owner = -1;
9799 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9800 	queue->dev = dev;
9801 #ifdef CONFIG_BQL
9802 	dql_init(&queue->dql, HZ);
9803 #endif
9804 }
9805 
9806 static void netif_free_tx_queues(struct net_device *dev)
9807 {
9808 	kvfree(dev->_tx);
9809 }
9810 
9811 static int netif_alloc_netdev_queues(struct net_device *dev)
9812 {
9813 	unsigned int count = dev->num_tx_queues;
9814 	struct netdev_queue *tx;
9815 	size_t sz = count * sizeof(*tx);
9816 
9817 	if (count < 1 || count > 0xffff)
9818 		return -EINVAL;
9819 
9820 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9821 	if (!tx)
9822 		return -ENOMEM;
9823 
9824 	dev->_tx = tx;
9825 
9826 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9827 	spin_lock_init(&dev->tx_global_lock);
9828 
9829 	return 0;
9830 }
9831 
9832 void netif_tx_stop_all_queues(struct net_device *dev)
9833 {
9834 	unsigned int i;
9835 
9836 	for (i = 0; i < dev->num_tx_queues; i++) {
9837 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9838 
9839 		netif_tx_stop_queue(txq);
9840 	}
9841 }
9842 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9843 
9844 /**
9845  *	register_netdevice	- register a network device
9846  *	@dev: device to register
9847  *
9848  *	Take a completed network device structure and add it to the kernel
9849  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9850  *	chain. 0 is returned on success. A negative errno code is returned
9851  *	on a failure to set up the device, or if the name is a duplicate.
9852  *
9853  *	Callers must hold the rtnl semaphore. You may want
9854  *	register_netdev() instead of this.
9855  *
9856  *	BUGS:
9857  *	The locking appears insufficient to guarantee two parallel registers
9858  *	will not get the same name.
9859  */
9860 
9861 int register_netdevice(struct net_device *dev)
9862 {
9863 	int ret;
9864 	struct net *net = dev_net(dev);
9865 
9866 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9867 		     NETDEV_FEATURE_COUNT);
9868 	BUG_ON(dev_boot_phase);
9869 	ASSERT_RTNL();
9870 
9871 	might_sleep();
9872 
9873 	/* When net_device's are persistent, this will be fatal. */
9874 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9875 	BUG_ON(!net);
9876 
9877 	ret = ethtool_check_ops(dev->ethtool_ops);
9878 	if (ret)
9879 		return ret;
9880 
9881 	spin_lock_init(&dev->addr_list_lock);
9882 	netdev_set_addr_lockdep_class(dev);
9883 
9884 	ret = dev_get_valid_name(net, dev, dev->name);
9885 	if (ret < 0)
9886 		goto out;
9887 
9888 	ret = -ENOMEM;
9889 	dev->name_node = netdev_name_node_head_alloc(dev);
9890 	if (!dev->name_node)
9891 		goto out;
9892 
9893 	/* Init, if this function is available */
9894 	if (dev->netdev_ops->ndo_init) {
9895 		ret = dev->netdev_ops->ndo_init(dev);
9896 		if (ret) {
9897 			if (ret > 0)
9898 				ret = -EIO;
9899 			goto err_free_name;
9900 		}
9901 	}
9902 
9903 	if (((dev->hw_features | dev->features) &
9904 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9905 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9906 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9907 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9908 		ret = -EINVAL;
9909 		goto err_uninit;
9910 	}
9911 
9912 	ret = -EBUSY;
9913 	if (!dev->ifindex)
9914 		dev->ifindex = dev_new_index(net);
9915 	else if (__dev_get_by_index(net, dev->ifindex))
9916 		goto err_uninit;
9917 
9918 	/* Transfer changeable features to wanted_features and enable
9919 	 * software offloads (GSO and GRO).
9920 	 */
9921 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9922 	dev->features |= NETIF_F_SOFT_FEATURES;
9923 
9924 	if (dev->udp_tunnel_nic_info) {
9925 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9926 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9927 	}
9928 
9929 	dev->wanted_features = dev->features & dev->hw_features;
9930 
9931 	if (!(dev->flags & IFF_LOOPBACK))
9932 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9933 
9934 	/* If IPv4 TCP segmentation offload is supported we should also
9935 	 * allow the device to enable segmenting the frame with the option
9936 	 * of ignoring a static IP ID value.  This doesn't enable the
9937 	 * feature itself but allows the user to enable it later.
9938 	 */
9939 	if (dev->hw_features & NETIF_F_TSO)
9940 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9941 	if (dev->vlan_features & NETIF_F_TSO)
9942 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9943 	if (dev->mpls_features & NETIF_F_TSO)
9944 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9945 	if (dev->hw_enc_features & NETIF_F_TSO)
9946 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9947 
9948 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9949 	 */
9950 	dev->vlan_features |= NETIF_F_HIGHDMA;
9951 
9952 	/* Make NETIF_F_SG inheritable to tunnel devices.
9953 	 */
9954 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9955 
9956 	/* Make NETIF_F_SG inheritable to MPLS.
9957 	 */
9958 	dev->mpls_features |= NETIF_F_SG;
9959 
9960 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9961 	ret = notifier_to_errno(ret);
9962 	if (ret)
9963 		goto err_uninit;
9964 
9965 	ret = netdev_register_kobject(dev);
9966 	if (ret) {
9967 		dev->reg_state = NETREG_UNREGISTERED;
9968 		goto err_uninit;
9969 	}
9970 	dev->reg_state = NETREG_REGISTERED;
9971 
9972 	__netdev_update_features(dev);
9973 
9974 	/*
9975 	 *	Default initial state at registry is that the
9976 	 *	device is present.
9977 	 */
9978 
9979 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9980 
9981 	linkwatch_init_dev(dev);
9982 
9983 	dev_init_scheduler(dev);
9984 
9985 	dev_hold_track(dev, &dev->dev_registered_tracker, GFP_KERNEL);
9986 	list_netdevice(dev);
9987 
9988 	add_device_randomness(dev->dev_addr, dev->addr_len);
9989 
9990 	/* If the device has permanent device address, driver should
9991 	 * set dev_addr and also addr_assign_type should be set to
9992 	 * NET_ADDR_PERM (default value).
9993 	 */
9994 	if (dev->addr_assign_type == NET_ADDR_PERM)
9995 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9996 
9997 	/* Notify protocols, that a new device appeared. */
9998 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9999 	ret = notifier_to_errno(ret);
10000 	if (ret) {
10001 		/* Expect explicit free_netdev() on failure */
10002 		dev->needs_free_netdev = false;
10003 		unregister_netdevice_queue(dev, NULL);
10004 		goto out;
10005 	}
10006 	/*
10007 	 *	Prevent userspace races by waiting until the network
10008 	 *	device is fully setup before sending notifications.
10009 	 */
10010 	if (!dev->rtnl_link_ops ||
10011 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10012 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10013 
10014 out:
10015 	return ret;
10016 
10017 err_uninit:
10018 	if (dev->netdev_ops->ndo_uninit)
10019 		dev->netdev_ops->ndo_uninit(dev);
10020 	if (dev->priv_destructor)
10021 		dev->priv_destructor(dev);
10022 err_free_name:
10023 	netdev_name_node_free(dev->name_node);
10024 	goto out;
10025 }
10026 EXPORT_SYMBOL(register_netdevice);
10027 
10028 /**
10029  *	init_dummy_netdev	- init a dummy network device for NAPI
10030  *	@dev: device to init
10031  *
10032  *	This takes a network device structure and initialize the minimum
10033  *	amount of fields so it can be used to schedule NAPI polls without
10034  *	registering a full blown interface. This is to be used by drivers
10035  *	that need to tie several hardware interfaces to a single NAPI
10036  *	poll scheduler due to HW limitations.
10037  */
10038 int init_dummy_netdev(struct net_device *dev)
10039 {
10040 	/* Clear everything. Note we don't initialize spinlocks
10041 	 * are they aren't supposed to be taken by any of the
10042 	 * NAPI code and this dummy netdev is supposed to be
10043 	 * only ever used for NAPI polls
10044 	 */
10045 	memset(dev, 0, sizeof(struct net_device));
10046 
10047 	/* make sure we BUG if trying to hit standard
10048 	 * register/unregister code path
10049 	 */
10050 	dev->reg_state = NETREG_DUMMY;
10051 
10052 	/* NAPI wants this */
10053 	INIT_LIST_HEAD(&dev->napi_list);
10054 
10055 	/* a dummy interface is started by default */
10056 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10057 	set_bit(__LINK_STATE_START, &dev->state);
10058 
10059 	/* napi_busy_loop stats accounting wants this */
10060 	dev_net_set(dev, &init_net);
10061 
10062 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10063 	 * because users of this 'device' dont need to change
10064 	 * its refcount.
10065 	 */
10066 
10067 	return 0;
10068 }
10069 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10070 
10071 
10072 /**
10073  *	register_netdev	- register a network device
10074  *	@dev: device to register
10075  *
10076  *	Take a completed network device structure and add it to the kernel
10077  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10078  *	chain. 0 is returned on success. A negative errno code is returned
10079  *	on a failure to set up the device, or if the name is a duplicate.
10080  *
10081  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10082  *	and expands the device name if you passed a format string to
10083  *	alloc_netdev.
10084  */
10085 int register_netdev(struct net_device *dev)
10086 {
10087 	int err;
10088 
10089 	if (rtnl_lock_killable())
10090 		return -EINTR;
10091 	err = register_netdevice(dev);
10092 	rtnl_unlock();
10093 	return err;
10094 }
10095 EXPORT_SYMBOL(register_netdev);
10096 
10097 int netdev_refcnt_read(const struct net_device *dev)
10098 {
10099 #ifdef CONFIG_PCPU_DEV_REFCNT
10100 	int i, refcnt = 0;
10101 
10102 	for_each_possible_cpu(i)
10103 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10104 	return refcnt;
10105 #else
10106 	return refcount_read(&dev->dev_refcnt);
10107 #endif
10108 }
10109 EXPORT_SYMBOL(netdev_refcnt_read);
10110 
10111 int netdev_unregister_timeout_secs __read_mostly = 10;
10112 
10113 #define WAIT_REFS_MIN_MSECS 1
10114 #define WAIT_REFS_MAX_MSECS 250
10115 /**
10116  * netdev_wait_allrefs_any - wait until all references are gone.
10117  * @list: list of net_devices to wait on
10118  *
10119  * This is called when unregistering network devices.
10120  *
10121  * Any protocol or device that holds a reference should register
10122  * for netdevice notification, and cleanup and put back the
10123  * reference if they receive an UNREGISTER event.
10124  * We can get stuck here if buggy protocols don't correctly
10125  * call dev_put.
10126  */
10127 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10128 {
10129 	unsigned long rebroadcast_time, warning_time;
10130 	struct net_device *dev;
10131 	int wait = 0;
10132 
10133 	rebroadcast_time = warning_time = jiffies;
10134 
10135 	list_for_each_entry(dev, list, todo_list)
10136 		if (netdev_refcnt_read(dev) == 1)
10137 			return dev;
10138 
10139 	while (true) {
10140 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10141 			rtnl_lock();
10142 
10143 			/* Rebroadcast unregister notification */
10144 			list_for_each_entry(dev, list, todo_list)
10145 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10146 
10147 			__rtnl_unlock();
10148 			rcu_barrier();
10149 			rtnl_lock();
10150 
10151 			list_for_each_entry(dev, list, todo_list)
10152 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10153 					     &dev->state)) {
10154 					/* We must not have linkwatch events
10155 					 * pending on unregister. If this
10156 					 * happens, we simply run the queue
10157 					 * unscheduled, resulting in a noop
10158 					 * for this device.
10159 					 */
10160 					linkwatch_run_queue();
10161 					break;
10162 				}
10163 
10164 			__rtnl_unlock();
10165 
10166 			rebroadcast_time = jiffies;
10167 		}
10168 
10169 		if (!wait) {
10170 			rcu_barrier();
10171 			wait = WAIT_REFS_MIN_MSECS;
10172 		} else {
10173 			msleep(wait);
10174 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10175 		}
10176 
10177 		list_for_each_entry(dev, list, todo_list)
10178 			if (netdev_refcnt_read(dev) == 1)
10179 				return dev;
10180 
10181 		if (time_after(jiffies, warning_time +
10182 			       netdev_unregister_timeout_secs * HZ)) {
10183 			list_for_each_entry(dev, list, todo_list) {
10184 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10185 					 dev->name, netdev_refcnt_read(dev));
10186 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10187 			}
10188 
10189 			warning_time = jiffies;
10190 		}
10191 	}
10192 }
10193 
10194 /* The sequence is:
10195  *
10196  *	rtnl_lock();
10197  *	...
10198  *	register_netdevice(x1);
10199  *	register_netdevice(x2);
10200  *	...
10201  *	unregister_netdevice(y1);
10202  *	unregister_netdevice(y2);
10203  *      ...
10204  *	rtnl_unlock();
10205  *	free_netdev(y1);
10206  *	free_netdev(y2);
10207  *
10208  * We are invoked by rtnl_unlock().
10209  * This allows us to deal with problems:
10210  * 1) We can delete sysfs objects which invoke hotplug
10211  *    without deadlocking with linkwatch via keventd.
10212  * 2) Since we run with the RTNL semaphore not held, we can sleep
10213  *    safely in order to wait for the netdev refcnt to drop to zero.
10214  *
10215  * We must not return until all unregister events added during
10216  * the interval the lock was held have been completed.
10217  */
10218 void netdev_run_todo(void)
10219 {
10220 	struct net_device *dev, *tmp;
10221 	struct list_head list;
10222 #ifdef CONFIG_LOCKDEP
10223 	struct list_head unlink_list;
10224 
10225 	list_replace_init(&net_unlink_list, &unlink_list);
10226 
10227 	while (!list_empty(&unlink_list)) {
10228 		struct net_device *dev = list_first_entry(&unlink_list,
10229 							  struct net_device,
10230 							  unlink_list);
10231 		list_del_init(&dev->unlink_list);
10232 		dev->nested_level = dev->lower_level - 1;
10233 	}
10234 #endif
10235 
10236 	/* Snapshot list, allow later requests */
10237 	list_replace_init(&net_todo_list, &list);
10238 
10239 	__rtnl_unlock();
10240 
10241 	/* Wait for rcu callbacks to finish before next phase */
10242 	if (!list_empty(&list))
10243 		rcu_barrier();
10244 
10245 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10246 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10247 			netdev_WARN(dev, "run_todo but not unregistering\n");
10248 			list_del(&dev->todo_list);
10249 			continue;
10250 		}
10251 
10252 		dev->reg_state = NETREG_UNREGISTERED;
10253 		linkwatch_forget_dev(dev);
10254 	}
10255 
10256 	while (!list_empty(&list)) {
10257 		dev = netdev_wait_allrefs_any(&list);
10258 		list_del(&dev->todo_list);
10259 
10260 		/* paranoia */
10261 		BUG_ON(netdev_refcnt_read(dev) != 1);
10262 		BUG_ON(!list_empty(&dev->ptype_all));
10263 		BUG_ON(!list_empty(&dev->ptype_specific));
10264 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10265 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10266 #if IS_ENABLED(CONFIG_DECNET)
10267 		WARN_ON(dev->dn_ptr);
10268 #endif
10269 		if (dev->priv_destructor)
10270 			dev->priv_destructor(dev);
10271 		if (dev->needs_free_netdev)
10272 			free_netdev(dev);
10273 
10274 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10275 			wake_up(&netdev_unregistering_wq);
10276 
10277 		/* Free network device */
10278 		kobject_put(&dev->dev.kobj);
10279 	}
10280 }
10281 
10282 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10283  * all the same fields in the same order as net_device_stats, with only
10284  * the type differing, but rtnl_link_stats64 may have additional fields
10285  * at the end for newer counters.
10286  */
10287 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10288 			     const struct net_device_stats *netdev_stats)
10289 {
10290 #if BITS_PER_LONG == 64
10291 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10292 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10293 	/* zero out counters that only exist in rtnl_link_stats64 */
10294 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10295 	       sizeof(*stats64) - sizeof(*netdev_stats));
10296 #else
10297 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10298 	const unsigned long *src = (const unsigned long *)netdev_stats;
10299 	u64 *dst = (u64 *)stats64;
10300 
10301 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10302 	for (i = 0; i < n; i++)
10303 		dst[i] = src[i];
10304 	/* zero out counters that only exist in rtnl_link_stats64 */
10305 	memset((char *)stats64 + n * sizeof(u64), 0,
10306 	       sizeof(*stats64) - n * sizeof(u64));
10307 #endif
10308 }
10309 EXPORT_SYMBOL(netdev_stats_to_stats64);
10310 
10311 struct net_device_core_stats *netdev_core_stats_alloc(struct net_device *dev)
10312 {
10313 	struct net_device_core_stats __percpu *p;
10314 
10315 	p = alloc_percpu_gfp(struct net_device_core_stats,
10316 			     GFP_ATOMIC | __GFP_NOWARN);
10317 
10318 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10319 		free_percpu(p);
10320 
10321 	/* This READ_ONCE() pairs with the cmpxchg() above */
10322 	p = READ_ONCE(dev->core_stats);
10323 	if (!p)
10324 		return NULL;
10325 
10326 	return this_cpu_ptr(p);
10327 }
10328 EXPORT_SYMBOL(netdev_core_stats_alloc);
10329 
10330 /**
10331  *	dev_get_stats	- get network device statistics
10332  *	@dev: device to get statistics from
10333  *	@storage: place to store stats
10334  *
10335  *	Get network statistics from device. Return @storage.
10336  *	The device driver may provide its own method by setting
10337  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10338  *	otherwise the internal statistics structure is used.
10339  */
10340 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10341 					struct rtnl_link_stats64 *storage)
10342 {
10343 	const struct net_device_ops *ops = dev->netdev_ops;
10344 	const struct net_device_core_stats __percpu *p;
10345 
10346 	if (ops->ndo_get_stats64) {
10347 		memset(storage, 0, sizeof(*storage));
10348 		ops->ndo_get_stats64(dev, storage);
10349 	} else if (ops->ndo_get_stats) {
10350 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10351 	} else {
10352 		netdev_stats_to_stats64(storage, &dev->stats);
10353 	}
10354 
10355 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10356 	p = READ_ONCE(dev->core_stats);
10357 	if (p) {
10358 		const struct net_device_core_stats *core_stats;
10359 		int i;
10360 
10361 		for_each_possible_cpu(i) {
10362 			core_stats = per_cpu_ptr(p, i);
10363 			storage->rx_dropped += local_read(&core_stats->rx_dropped);
10364 			storage->tx_dropped += local_read(&core_stats->tx_dropped);
10365 			storage->rx_nohandler += local_read(&core_stats->rx_nohandler);
10366 		}
10367 	}
10368 	return storage;
10369 }
10370 EXPORT_SYMBOL(dev_get_stats);
10371 
10372 /**
10373  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10374  *	@s: place to store stats
10375  *	@netstats: per-cpu network stats to read from
10376  *
10377  *	Read per-cpu network statistics and populate the related fields in @s.
10378  */
10379 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10380 			   const struct pcpu_sw_netstats __percpu *netstats)
10381 {
10382 	int cpu;
10383 
10384 	for_each_possible_cpu(cpu) {
10385 		const struct pcpu_sw_netstats *stats;
10386 		struct pcpu_sw_netstats tmp;
10387 		unsigned int start;
10388 
10389 		stats = per_cpu_ptr(netstats, cpu);
10390 		do {
10391 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10392 			tmp.rx_packets = stats->rx_packets;
10393 			tmp.rx_bytes   = stats->rx_bytes;
10394 			tmp.tx_packets = stats->tx_packets;
10395 			tmp.tx_bytes   = stats->tx_bytes;
10396 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10397 
10398 		s->rx_packets += tmp.rx_packets;
10399 		s->rx_bytes   += tmp.rx_bytes;
10400 		s->tx_packets += tmp.tx_packets;
10401 		s->tx_bytes   += tmp.tx_bytes;
10402 	}
10403 }
10404 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10405 
10406 /**
10407  *	dev_get_tstats64 - ndo_get_stats64 implementation
10408  *	@dev: device to get statistics from
10409  *	@s: place to store stats
10410  *
10411  *	Populate @s from dev->stats and dev->tstats. Can be used as
10412  *	ndo_get_stats64() callback.
10413  */
10414 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10415 {
10416 	netdev_stats_to_stats64(s, &dev->stats);
10417 	dev_fetch_sw_netstats(s, dev->tstats);
10418 }
10419 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10420 
10421 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10422 {
10423 	struct netdev_queue *queue = dev_ingress_queue(dev);
10424 
10425 #ifdef CONFIG_NET_CLS_ACT
10426 	if (queue)
10427 		return queue;
10428 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10429 	if (!queue)
10430 		return NULL;
10431 	netdev_init_one_queue(dev, queue, NULL);
10432 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10433 	queue->qdisc_sleeping = &noop_qdisc;
10434 	rcu_assign_pointer(dev->ingress_queue, queue);
10435 #endif
10436 	return queue;
10437 }
10438 
10439 static const struct ethtool_ops default_ethtool_ops;
10440 
10441 void netdev_set_default_ethtool_ops(struct net_device *dev,
10442 				    const struct ethtool_ops *ops)
10443 {
10444 	if (dev->ethtool_ops == &default_ethtool_ops)
10445 		dev->ethtool_ops = ops;
10446 }
10447 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10448 
10449 void netdev_freemem(struct net_device *dev)
10450 {
10451 	char *addr = (char *)dev - dev->padded;
10452 
10453 	kvfree(addr);
10454 }
10455 
10456 /**
10457  * alloc_netdev_mqs - allocate network device
10458  * @sizeof_priv: size of private data to allocate space for
10459  * @name: device name format string
10460  * @name_assign_type: origin of device name
10461  * @setup: callback to initialize device
10462  * @txqs: the number of TX subqueues to allocate
10463  * @rxqs: the number of RX subqueues to allocate
10464  *
10465  * Allocates a struct net_device with private data area for driver use
10466  * and performs basic initialization.  Also allocates subqueue structs
10467  * for each queue on the device.
10468  */
10469 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10470 		unsigned char name_assign_type,
10471 		void (*setup)(struct net_device *),
10472 		unsigned int txqs, unsigned int rxqs)
10473 {
10474 	struct net_device *dev;
10475 	unsigned int alloc_size;
10476 	struct net_device *p;
10477 
10478 	BUG_ON(strlen(name) >= sizeof(dev->name));
10479 
10480 	if (txqs < 1) {
10481 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10482 		return NULL;
10483 	}
10484 
10485 	if (rxqs < 1) {
10486 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10487 		return NULL;
10488 	}
10489 
10490 	alloc_size = sizeof(struct net_device);
10491 	if (sizeof_priv) {
10492 		/* ensure 32-byte alignment of private area */
10493 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10494 		alloc_size += sizeof_priv;
10495 	}
10496 	/* ensure 32-byte alignment of whole construct */
10497 	alloc_size += NETDEV_ALIGN - 1;
10498 
10499 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10500 	if (!p)
10501 		return NULL;
10502 
10503 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10504 	dev->padded = (char *)dev - (char *)p;
10505 
10506 	ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10507 #ifdef CONFIG_PCPU_DEV_REFCNT
10508 	dev->pcpu_refcnt = alloc_percpu(int);
10509 	if (!dev->pcpu_refcnt)
10510 		goto free_dev;
10511 	__dev_hold(dev);
10512 #else
10513 	refcount_set(&dev->dev_refcnt, 1);
10514 #endif
10515 
10516 	if (dev_addr_init(dev))
10517 		goto free_pcpu;
10518 
10519 	dev_mc_init(dev);
10520 	dev_uc_init(dev);
10521 
10522 	dev_net_set(dev, &init_net);
10523 
10524 	dev->gso_max_size = GSO_MAX_SIZE;
10525 	dev->gso_max_segs = GSO_MAX_SEGS;
10526 	dev->gro_max_size = GRO_MAX_SIZE;
10527 	dev->upper_level = 1;
10528 	dev->lower_level = 1;
10529 #ifdef CONFIG_LOCKDEP
10530 	dev->nested_level = 0;
10531 	INIT_LIST_HEAD(&dev->unlink_list);
10532 #endif
10533 
10534 	INIT_LIST_HEAD(&dev->napi_list);
10535 	INIT_LIST_HEAD(&dev->unreg_list);
10536 	INIT_LIST_HEAD(&dev->close_list);
10537 	INIT_LIST_HEAD(&dev->link_watch_list);
10538 	INIT_LIST_HEAD(&dev->adj_list.upper);
10539 	INIT_LIST_HEAD(&dev->adj_list.lower);
10540 	INIT_LIST_HEAD(&dev->ptype_all);
10541 	INIT_LIST_HEAD(&dev->ptype_specific);
10542 	INIT_LIST_HEAD(&dev->net_notifier_list);
10543 #ifdef CONFIG_NET_SCHED
10544 	hash_init(dev->qdisc_hash);
10545 #endif
10546 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10547 	setup(dev);
10548 
10549 	if (!dev->tx_queue_len) {
10550 		dev->priv_flags |= IFF_NO_QUEUE;
10551 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10552 	}
10553 
10554 	dev->num_tx_queues = txqs;
10555 	dev->real_num_tx_queues = txqs;
10556 	if (netif_alloc_netdev_queues(dev))
10557 		goto free_all;
10558 
10559 	dev->num_rx_queues = rxqs;
10560 	dev->real_num_rx_queues = rxqs;
10561 	if (netif_alloc_rx_queues(dev))
10562 		goto free_all;
10563 
10564 	strcpy(dev->name, name);
10565 	dev->name_assign_type = name_assign_type;
10566 	dev->group = INIT_NETDEV_GROUP;
10567 	if (!dev->ethtool_ops)
10568 		dev->ethtool_ops = &default_ethtool_ops;
10569 
10570 	nf_hook_netdev_init(dev);
10571 
10572 	return dev;
10573 
10574 free_all:
10575 	free_netdev(dev);
10576 	return NULL;
10577 
10578 free_pcpu:
10579 #ifdef CONFIG_PCPU_DEV_REFCNT
10580 	free_percpu(dev->pcpu_refcnt);
10581 free_dev:
10582 #endif
10583 	netdev_freemem(dev);
10584 	return NULL;
10585 }
10586 EXPORT_SYMBOL(alloc_netdev_mqs);
10587 
10588 /**
10589  * free_netdev - free network device
10590  * @dev: device
10591  *
10592  * This function does the last stage of destroying an allocated device
10593  * interface. The reference to the device object is released. If this
10594  * is the last reference then it will be freed.Must be called in process
10595  * context.
10596  */
10597 void free_netdev(struct net_device *dev)
10598 {
10599 	struct napi_struct *p, *n;
10600 
10601 	might_sleep();
10602 
10603 	/* When called immediately after register_netdevice() failed the unwind
10604 	 * handling may still be dismantling the device. Handle that case by
10605 	 * deferring the free.
10606 	 */
10607 	if (dev->reg_state == NETREG_UNREGISTERING) {
10608 		ASSERT_RTNL();
10609 		dev->needs_free_netdev = true;
10610 		return;
10611 	}
10612 
10613 	netif_free_tx_queues(dev);
10614 	netif_free_rx_queues(dev);
10615 
10616 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10617 
10618 	/* Flush device addresses */
10619 	dev_addr_flush(dev);
10620 
10621 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10622 		netif_napi_del(p);
10623 
10624 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10625 #ifdef CONFIG_PCPU_DEV_REFCNT
10626 	free_percpu(dev->pcpu_refcnt);
10627 	dev->pcpu_refcnt = NULL;
10628 #endif
10629 	free_percpu(dev->core_stats);
10630 	dev->core_stats = NULL;
10631 	free_percpu(dev->xdp_bulkq);
10632 	dev->xdp_bulkq = NULL;
10633 
10634 	/*  Compatibility with error handling in drivers */
10635 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10636 		netdev_freemem(dev);
10637 		return;
10638 	}
10639 
10640 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10641 	dev->reg_state = NETREG_RELEASED;
10642 
10643 	/* will free via device release */
10644 	put_device(&dev->dev);
10645 }
10646 EXPORT_SYMBOL(free_netdev);
10647 
10648 /**
10649  *	synchronize_net -  Synchronize with packet receive processing
10650  *
10651  *	Wait for packets currently being received to be done.
10652  *	Does not block later packets from starting.
10653  */
10654 void synchronize_net(void)
10655 {
10656 	might_sleep();
10657 	if (rtnl_is_locked())
10658 		synchronize_rcu_expedited();
10659 	else
10660 		synchronize_rcu();
10661 }
10662 EXPORT_SYMBOL(synchronize_net);
10663 
10664 /**
10665  *	unregister_netdevice_queue - remove device from the kernel
10666  *	@dev: device
10667  *	@head: list
10668  *
10669  *	This function shuts down a device interface and removes it
10670  *	from the kernel tables.
10671  *	If head not NULL, device is queued to be unregistered later.
10672  *
10673  *	Callers must hold the rtnl semaphore.  You may want
10674  *	unregister_netdev() instead of this.
10675  */
10676 
10677 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10678 {
10679 	ASSERT_RTNL();
10680 
10681 	if (head) {
10682 		list_move_tail(&dev->unreg_list, head);
10683 	} else {
10684 		LIST_HEAD(single);
10685 
10686 		list_add(&dev->unreg_list, &single);
10687 		unregister_netdevice_many(&single);
10688 	}
10689 }
10690 EXPORT_SYMBOL(unregister_netdevice_queue);
10691 
10692 /**
10693  *	unregister_netdevice_many - unregister many devices
10694  *	@head: list of devices
10695  *
10696  *  Note: As most callers use a stack allocated list_head,
10697  *  we force a list_del() to make sure stack wont be corrupted later.
10698  */
10699 void unregister_netdevice_many(struct list_head *head)
10700 {
10701 	struct net_device *dev, *tmp;
10702 	LIST_HEAD(close_head);
10703 
10704 	BUG_ON(dev_boot_phase);
10705 	ASSERT_RTNL();
10706 
10707 	if (list_empty(head))
10708 		return;
10709 
10710 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10711 		/* Some devices call without registering
10712 		 * for initialization unwind. Remove those
10713 		 * devices and proceed with the remaining.
10714 		 */
10715 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10716 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10717 				 dev->name, dev);
10718 
10719 			WARN_ON(1);
10720 			list_del(&dev->unreg_list);
10721 			continue;
10722 		}
10723 		dev->dismantle = true;
10724 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10725 	}
10726 
10727 	/* If device is running, close it first. */
10728 	list_for_each_entry(dev, head, unreg_list)
10729 		list_add_tail(&dev->close_list, &close_head);
10730 	dev_close_many(&close_head, true);
10731 
10732 	list_for_each_entry(dev, head, unreg_list) {
10733 		/* And unlink it from device chain. */
10734 		unlist_netdevice(dev);
10735 
10736 		dev->reg_state = NETREG_UNREGISTERING;
10737 	}
10738 	flush_all_backlogs();
10739 
10740 	synchronize_net();
10741 
10742 	list_for_each_entry(dev, head, unreg_list) {
10743 		struct sk_buff *skb = NULL;
10744 
10745 		/* Shutdown queueing discipline. */
10746 		dev_shutdown(dev);
10747 
10748 		dev_xdp_uninstall(dev);
10749 
10750 		netdev_offload_xstats_disable_all(dev);
10751 
10752 		/* Notify protocols, that we are about to destroy
10753 		 * this device. They should clean all the things.
10754 		 */
10755 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10756 
10757 		if (!dev->rtnl_link_ops ||
10758 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10759 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10760 						     GFP_KERNEL, NULL, 0);
10761 
10762 		/*
10763 		 *	Flush the unicast and multicast chains
10764 		 */
10765 		dev_uc_flush(dev);
10766 		dev_mc_flush(dev);
10767 
10768 		netdev_name_node_alt_flush(dev);
10769 		netdev_name_node_free(dev->name_node);
10770 
10771 		if (dev->netdev_ops->ndo_uninit)
10772 			dev->netdev_ops->ndo_uninit(dev);
10773 
10774 		if (skb)
10775 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10776 
10777 		/* Notifier chain MUST detach us all upper devices. */
10778 		WARN_ON(netdev_has_any_upper_dev(dev));
10779 		WARN_ON(netdev_has_any_lower_dev(dev));
10780 
10781 		/* Remove entries from kobject tree */
10782 		netdev_unregister_kobject(dev);
10783 #ifdef CONFIG_XPS
10784 		/* Remove XPS queueing entries */
10785 		netif_reset_xps_queues_gt(dev, 0);
10786 #endif
10787 	}
10788 
10789 	synchronize_net();
10790 
10791 	list_for_each_entry(dev, head, unreg_list) {
10792 		dev_put_track(dev, &dev->dev_registered_tracker);
10793 		net_set_todo(dev);
10794 	}
10795 
10796 	list_del(head);
10797 }
10798 EXPORT_SYMBOL(unregister_netdevice_many);
10799 
10800 /**
10801  *	unregister_netdev - remove device from the kernel
10802  *	@dev: device
10803  *
10804  *	This function shuts down a device interface and removes it
10805  *	from the kernel tables.
10806  *
10807  *	This is just a wrapper for unregister_netdevice that takes
10808  *	the rtnl semaphore.  In general you want to use this and not
10809  *	unregister_netdevice.
10810  */
10811 void unregister_netdev(struct net_device *dev)
10812 {
10813 	rtnl_lock();
10814 	unregister_netdevice(dev);
10815 	rtnl_unlock();
10816 }
10817 EXPORT_SYMBOL(unregister_netdev);
10818 
10819 /**
10820  *	__dev_change_net_namespace - move device to different nethost namespace
10821  *	@dev: device
10822  *	@net: network namespace
10823  *	@pat: If not NULL name pattern to try if the current device name
10824  *	      is already taken in the destination network namespace.
10825  *	@new_ifindex: If not zero, specifies device index in the target
10826  *	              namespace.
10827  *
10828  *	This function shuts down a device interface and moves it
10829  *	to a new network namespace. On success 0 is returned, on
10830  *	a failure a netagive errno code is returned.
10831  *
10832  *	Callers must hold the rtnl semaphore.
10833  */
10834 
10835 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10836 			       const char *pat, int new_ifindex)
10837 {
10838 	struct net *net_old = dev_net(dev);
10839 	int err, new_nsid;
10840 
10841 	ASSERT_RTNL();
10842 
10843 	/* Don't allow namespace local devices to be moved. */
10844 	err = -EINVAL;
10845 	if (dev->features & NETIF_F_NETNS_LOCAL)
10846 		goto out;
10847 
10848 	/* Ensure the device has been registrered */
10849 	if (dev->reg_state != NETREG_REGISTERED)
10850 		goto out;
10851 
10852 	/* Get out if there is nothing todo */
10853 	err = 0;
10854 	if (net_eq(net_old, net))
10855 		goto out;
10856 
10857 	/* Pick the destination device name, and ensure
10858 	 * we can use it in the destination network namespace.
10859 	 */
10860 	err = -EEXIST;
10861 	if (netdev_name_in_use(net, dev->name)) {
10862 		/* We get here if we can't use the current device name */
10863 		if (!pat)
10864 			goto out;
10865 		err = dev_get_valid_name(net, dev, pat);
10866 		if (err < 0)
10867 			goto out;
10868 	}
10869 
10870 	/* Check that new_ifindex isn't used yet. */
10871 	err = -EBUSY;
10872 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10873 		goto out;
10874 
10875 	/*
10876 	 * And now a mini version of register_netdevice unregister_netdevice.
10877 	 */
10878 
10879 	/* If device is running close it first. */
10880 	dev_close(dev);
10881 
10882 	/* And unlink it from device chain */
10883 	unlist_netdevice(dev);
10884 
10885 	synchronize_net();
10886 
10887 	/* Shutdown queueing discipline. */
10888 	dev_shutdown(dev);
10889 
10890 	/* Notify protocols, that we are about to destroy
10891 	 * this device. They should clean all the things.
10892 	 *
10893 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10894 	 * This is wanted because this way 8021q and macvlan know
10895 	 * the device is just moving and can keep their slaves up.
10896 	 */
10897 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10898 	rcu_barrier();
10899 
10900 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10901 	/* If there is an ifindex conflict assign a new one */
10902 	if (!new_ifindex) {
10903 		if (__dev_get_by_index(net, dev->ifindex))
10904 			new_ifindex = dev_new_index(net);
10905 		else
10906 			new_ifindex = dev->ifindex;
10907 	}
10908 
10909 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10910 			    new_ifindex);
10911 
10912 	/*
10913 	 *	Flush the unicast and multicast chains
10914 	 */
10915 	dev_uc_flush(dev);
10916 	dev_mc_flush(dev);
10917 
10918 	/* Send a netdev-removed uevent to the old namespace */
10919 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10920 	netdev_adjacent_del_links(dev);
10921 
10922 	/* Move per-net netdevice notifiers that are following the netdevice */
10923 	move_netdevice_notifiers_dev_net(dev, net);
10924 
10925 	/* Actually switch the network namespace */
10926 	dev_net_set(dev, net);
10927 	dev->ifindex = new_ifindex;
10928 
10929 	/* Send a netdev-add uevent to the new namespace */
10930 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10931 	netdev_adjacent_add_links(dev);
10932 
10933 	/* Fixup kobjects */
10934 	err = device_rename(&dev->dev, dev->name);
10935 	WARN_ON(err);
10936 
10937 	/* Adapt owner in case owning user namespace of target network
10938 	 * namespace is different from the original one.
10939 	 */
10940 	err = netdev_change_owner(dev, net_old, net);
10941 	WARN_ON(err);
10942 
10943 	/* Add the device back in the hashes */
10944 	list_netdevice(dev);
10945 
10946 	/* Notify protocols, that a new device appeared. */
10947 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10948 
10949 	/*
10950 	 *	Prevent userspace races by waiting until the network
10951 	 *	device is fully setup before sending notifications.
10952 	 */
10953 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10954 
10955 	synchronize_net();
10956 	err = 0;
10957 out:
10958 	return err;
10959 }
10960 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
10961 
10962 static int dev_cpu_dead(unsigned int oldcpu)
10963 {
10964 	struct sk_buff **list_skb;
10965 	struct sk_buff *skb;
10966 	unsigned int cpu;
10967 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10968 
10969 	local_irq_disable();
10970 	cpu = smp_processor_id();
10971 	sd = &per_cpu(softnet_data, cpu);
10972 	oldsd = &per_cpu(softnet_data, oldcpu);
10973 
10974 	/* Find end of our completion_queue. */
10975 	list_skb = &sd->completion_queue;
10976 	while (*list_skb)
10977 		list_skb = &(*list_skb)->next;
10978 	/* Append completion queue from offline CPU. */
10979 	*list_skb = oldsd->completion_queue;
10980 	oldsd->completion_queue = NULL;
10981 
10982 	/* Append output queue from offline CPU. */
10983 	if (oldsd->output_queue) {
10984 		*sd->output_queue_tailp = oldsd->output_queue;
10985 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10986 		oldsd->output_queue = NULL;
10987 		oldsd->output_queue_tailp = &oldsd->output_queue;
10988 	}
10989 	/* Append NAPI poll list from offline CPU, with one exception :
10990 	 * process_backlog() must be called by cpu owning percpu backlog.
10991 	 * We properly handle process_queue & input_pkt_queue later.
10992 	 */
10993 	while (!list_empty(&oldsd->poll_list)) {
10994 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10995 							    struct napi_struct,
10996 							    poll_list);
10997 
10998 		list_del_init(&napi->poll_list);
10999 		if (napi->poll == process_backlog)
11000 			napi->state = 0;
11001 		else
11002 			____napi_schedule(sd, napi);
11003 	}
11004 
11005 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11006 	local_irq_enable();
11007 
11008 #ifdef CONFIG_RPS
11009 	remsd = oldsd->rps_ipi_list;
11010 	oldsd->rps_ipi_list = NULL;
11011 #endif
11012 	/* send out pending IPI's on offline CPU */
11013 	net_rps_send_ipi(remsd);
11014 
11015 	/* Process offline CPU's input_pkt_queue */
11016 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11017 		netif_rx(skb);
11018 		input_queue_head_incr(oldsd);
11019 	}
11020 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11021 		netif_rx(skb);
11022 		input_queue_head_incr(oldsd);
11023 	}
11024 
11025 	return 0;
11026 }
11027 
11028 /**
11029  *	netdev_increment_features - increment feature set by one
11030  *	@all: current feature set
11031  *	@one: new feature set
11032  *	@mask: mask feature set
11033  *
11034  *	Computes a new feature set after adding a device with feature set
11035  *	@one to the master device with current feature set @all.  Will not
11036  *	enable anything that is off in @mask. Returns the new feature set.
11037  */
11038 netdev_features_t netdev_increment_features(netdev_features_t all,
11039 	netdev_features_t one, netdev_features_t mask)
11040 {
11041 	if (mask & NETIF_F_HW_CSUM)
11042 		mask |= NETIF_F_CSUM_MASK;
11043 	mask |= NETIF_F_VLAN_CHALLENGED;
11044 
11045 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11046 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11047 
11048 	/* If one device supports hw checksumming, set for all. */
11049 	if (all & NETIF_F_HW_CSUM)
11050 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11051 
11052 	return all;
11053 }
11054 EXPORT_SYMBOL(netdev_increment_features);
11055 
11056 static struct hlist_head * __net_init netdev_create_hash(void)
11057 {
11058 	int i;
11059 	struct hlist_head *hash;
11060 
11061 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11062 	if (hash != NULL)
11063 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11064 			INIT_HLIST_HEAD(&hash[i]);
11065 
11066 	return hash;
11067 }
11068 
11069 /* Initialize per network namespace state */
11070 static int __net_init netdev_init(struct net *net)
11071 {
11072 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11073 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11074 
11075 	INIT_LIST_HEAD(&net->dev_base_head);
11076 
11077 	net->dev_name_head = netdev_create_hash();
11078 	if (net->dev_name_head == NULL)
11079 		goto err_name;
11080 
11081 	net->dev_index_head = netdev_create_hash();
11082 	if (net->dev_index_head == NULL)
11083 		goto err_idx;
11084 
11085 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11086 
11087 	return 0;
11088 
11089 err_idx:
11090 	kfree(net->dev_name_head);
11091 err_name:
11092 	return -ENOMEM;
11093 }
11094 
11095 /**
11096  *	netdev_drivername - network driver for the device
11097  *	@dev: network device
11098  *
11099  *	Determine network driver for device.
11100  */
11101 const char *netdev_drivername(const struct net_device *dev)
11102 {
11103 	const struct device_driver *driver;
11104 	const struct device *parent;
11105 	const char *empty = "";
11106 
11107 	parent = dev->dev.parent;
11108 	if (!parent)
11109 		return empty;
11110 
11111 	driver = parent->driver;
11112 	if (driver && driver->name)
11113 		return driver->name;
11114 	return empty;
11115 }
11116 
11117 static void __netdev_printk(const char *level, const struct net_device *dev,
11118 			    struct va_format *vaf)
11119 {
11120 	if (dev && dev->dev.parent) {
11121 		dev_printk_emit(level[1] - '0',
11122 				dev->dev.parent,
11123 				"%s %s %s%s: %pV",
11124 				dev_driver_string(dev->dev.parent),
11125 				dev_name(dev->dev.parent),
11126 				netdev_name(dev), netdev_reg_state(dev),
11127 				vaf);
11128 	} else if (dev) {
11129 		printk("%s%s%s: %pV",
11130 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11131 	} else {
11132 		printk("%s(NULL net_device): %pV", level, vaf);
11133 	}
11134 }
11135 
11136 void netdev_printk(const char *level, const struct net_device *dev,
11137 		   const char *format, ...)
11138 {
11139 	struct va_format vaf;
11140 	va_list args;
11141 
11142 	va_start(args, format);
11143 
11144 	vaf.fmt = format;
11145 	vaf.va = &args;
11146 
11147 	__netdev_printk(level, dev, &vaf);
11148 
11149 	va_end(args);
11150 }
11151 EXPORT_SYMBOL(netdev_printk);
11152 
11153 #define define_netdev_printk_level(func, level)			\
11154 void func(const struct net_device *dev, const char *fmt, ...)	\
11155 {								\
11156 	struct va_format vaf;					\
11157 	va_list args;						\
11158 								\
11159 	va_start(args, fmt);					\
11160 								\
11161 	vaf.fmt = fmt;						\
11162 	vaf.va = &args;						\
11163 								\
11164 	__netdev_printk(level, dev, &vaf);			\
11165 								\
11166 	va_end(args);						\
11167 }								\
11168 EXPORT_SYMBOL(func);
11169 
11170 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11171 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11172 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11173 define_netdev_printk_level(netdev_err, KERN_ERR);
11174 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11175 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11176 define_netdev_printk_level(netdev_info, KERN_INFO);
11177 
11178 static void __net_exit netdev_exit(struct net *net)
11179 {
11180 	kfree(net->dev_name_head);
11181 	kfree(net->dev_index_head);
11182 	if (net != &init_net)
11183 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11184 }
11185 
11186 static struct pernet_operations __net_initdata netdev_net_ops = {
11187 	.init = netdev_init,
11188 	.exit = netdev_exit,
11189 };
11190 
11191 static void __net_exit default_device_exit_net(struct net *net)
11192 {
11193 	struct net_device *dev, *aux;
11194 	/*
11195 	 * Push all migratable network devices back to the
11196 	 * initial network namespace
11197 	 */
11198 	ASSERT_RTNL();
11199 	for_each_netdev_safe(net, dev, aux) {
11200 		int err;
11201 		char fb_name[IFNAMSIZ];
11202 
11203 		/* Ignore unmoveable devices (i.e. loopback) */
11204 		if (dev->features & NETIF_F_NETNS_LOCAL)
11205 			continue;
11206 
11207 		/* Leave virtual devices for the generic cleanup */
11208 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11209 			continue;
11210 
11211 		/* Push remaining network devices to init_net */
11212 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11213 		if (netdev_name_in_use(&init_net, fb_name))
11214 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11215 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11216 		if (err) {
11217 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11218 				 __func__, dev->name, err);
11219 			BUG();
11220 		}
11221 	}
11222 }
11223 
11224 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11225 {
11226 	/* At exit all network devices most be removed from a network
11227 	 * namespace.  Do this in the reverse order of registration.
11228 	 * Do this across as many network namespaces as possible to
11229 	 * improve batching efficiency.
11230 	 */
11231 	struct net_device *dev;
11232 	struct net *net;
11233 	LIST_HEAD(dev_kill_list);
11234 
11235 	rtnl_lock();
11236 	list_for_each_entry(net, net_list, exit_list) {
11237 		default_device_exit_net(net);
11238 		cond_resched();
11239 	}
11240 
11241 	list_for_each_entry(net, net_list, exit_list) {
11242 		for_each_netdev_reverse(net, dev) {
11243 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11244 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11245 			else
11246 				unregister_netdevice_queue(dev, &dev_kill_list);
11247 		}
11248 	}
11249 	unregister_netdevice_many(&dev_kill_list);
11250 	rtnl_unlock();
11251 }
11252 
11253 static struct pernet_operations __net_initdata default_device_ops = {
11254 	.exit_batch = default_device_exit_batch,
11255 };
11256 
11257 /*
11258  *	Initialize the DEV module. At boot time this walks the device list and
11259  *	unhooks any devices that fail to initialise (normally hardware not
11260  *	present) and leaves us with a valid list of present and active devices.
11261  *
11262  */
11263 
11264 /*
11265  *       This is called single threaded during boot, so no need
11266  *       to take the rtnl semaphore.
11267  */
11268 static int __init net_dev_init(void)
11269 {
11270 	int i, rc = -ENOMEM;
11271 
11272 	BUG_ON(!dev_boot_phase);
11273 
11274 	if (dev_proc_init())
11275 		goto out;
11276 
11277 	if (netdev_kobject_init())
11278 		goto out;
11279 
11280 	INIT_LIST_HEAD(&ptype_all);
11281 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11282 		INIT_LIST_HEAD(&ptype_base[i]);
11283 
11284 	if (register_pernet_subsys(&netdev_net_ops))
11285 		goto out;
11286 
11287 	/*
11288 	 *	Initialise the packet receive queues.
11289 	 */
11290 
11291 	for_each_possible_cpu(i) {
11292 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11293 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11294 
11295 		INIT_WORK(flush, flush_backlog);
11296 
11297 		skb_queue_head_init(&sd->input_pkt_queue);
11298 		skb_queue_head_init(&sd->process_queue);
11299 #ifdef CONFIG_XFRM_OFFLOAD
11300 		skb_queue_head_init(&sd->xfrm_backlog);
11301 #endif
11302 		INIT_LIST_HEAD(&sd->poll_list);
11303 		sd->output_queue_tailp = &sd->output_queue;
11304 #ifdef CONFIG_RPS
11305 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11306 		sd->cpu = i;
11307 #endif
11308 
11309 		init_gro_hash(&sd->backlog);
11310 		sd->backlog.poll = process_backlog;
11311 		sd->backlog.weight = weight_p;
11312 	}
11313 
11314 	dev_boot_phase = 0;
11315 
11316 	/* The loopback device is special if any other network devices
11317 	 * is present in a network namespace the loopback device must
11318 	 * be present. Since we now dynamically allocate and free the
11319 	 * loopback device ensure this invariant is maintained by
11320 	 * keeping the loopback device as the first device on the
11321 	 * list of network devices.  Ensuring the loopback devices
11322 	 * is the first device that appears and the last network device
11323 	 * that disappears.
11324 	 */
11325 	if (register_pernet_device(&loopback_net_ops))
11326 		goto out;
11327 
11328 	if (register_pernet_device(&default_device_ops))
11329 		goto out;
11330 
11331 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11332 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11333 
11334 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11335 				       NULL, dev_cpu_dead);
11336 	WARN_ON(rc < 0);
11337 	rc = 0;
11338 out:
11339 	return rc;
11340 }
11341 
11342 subsys_initcall(net_dev_init);
11343