xref: /openbmc/linux/net/core/dev.c (revision e6dec923)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 
148 #include "net-sysfs.h"
149 
150 /* Instead of increasing this, you should create a hash table. */
151 #define MAX_GRO_SKBS 8
152 
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155 
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;	/* Taps */
160 static struct list_head offload_base __read_mostly;
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 					 struct net_device *dev,
165 					 struct netdev_notifier_info *info);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167 
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189 
190 /* protects napi_hash addition/deletion and napi_gen_id */
191 static DEFINE_SPINLOCK(napi_hash_lock);
192 
193 static unsigned int napi_gen_id = NR_CPUS;
194 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
195 
196 static seqcount_t devnet_rename_seq;
197 
198 static inline void dev_base_seq_inc(struct net *net)
199 {
200 	while (++net->dev_base_seq == 0)
201 		;
202 }
203 
204 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
205 {
206 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
207 
208 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
209 }
210 
211 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
212 {
213 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
214 }
215 
216 static inline void rps_lock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219 	spin_lock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222 
223 static inline void rps_unlock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226 	spin_unlock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229 
230 /* Device list insertion */
231 static void list_netdevice(struct net_device *dev)
232 {
233 	struct net *net = dev_net(dev);
234 
235 	ASSERT_RTNL();
236 
237 	write_lock_bh(&dev_base_lock);
238 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
239 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
240 	hlist_add_head_rcu(&dev->index_hlist,
241 			   dev_index_hash(net, dev->ifindex));
242 	write_unlock_bh(&dev_base_lock);
243 
244 	dev_base_seq_inc(net);
245 }
246 
247 /* Device list removal
248  * caller must respect a RCU grace period before freeing/reusing dev
249  */
250 static void unlist_netdevice(struct net_device *dev)
251 {
252 	ASSERT_RTNL();
253 
254 	/* Unlink dev from the device chain */
255 	write_lock_bh(&dev_base_lock);
256 	list_del_rcu(&dev->dev_list);
257 	hlist_del_rcu(&dev->name_hlist);
258 	hlist_del_rcu(&dev->index_hlist);
259 	write_unlock_bh(&dev_base_lock);
260 
261 	dev_base_seq_inc(dev_net(dev));
262 }
263 
264 /*
265  *	Our notifier list
266  */
267 
268 static RAW_NOTIFIER_HEAD(netdev_chain);
269 
270 /*
271  *	Device drivers call our routines to queue packets here. We empty the
272  *	queue in the local softnet handler.
273  */
274 
275 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
276 EXPORT_PER_CPU_SYMBOL(softnet_data);
277 
278 #ifdef CONFIG_LOCKDEP
279 /*
280  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
281  * according to dev->type
282  */
283 static const unsigned short netdev_lock_type[] = {
284 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
285 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
286 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
287 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
288 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
289 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
290 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
291 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
292 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
293 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
294 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
295 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
296 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
297 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
298 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
299 
300 static const char *const netdev_lock_name[] = {
301 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
302 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
303 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
304 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
305 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
306 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
307 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
308 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
309 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
310 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
311 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
312 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
313 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
314 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
315 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
316 
317 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
318 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 
320 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
321 {
322 	int i;
323 
324 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
325 		if (netdev_lock_type[i] == dev_type)
326 			return i;
327 	/* the last key is used by default */
328 	return ARRAY_SIZE(netdev_lock_type) - 1;
329 }
330 
331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
332 						 unsigned short dev_type)
333 {
334 	int i;
335 
336 	i = netdev_lock_pos(dev_type);
337 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
338 				   netdev_lock_name[i]);
339 }
340 
341 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
342 {
343 	int i;
344 
345 	i = netdev_lock_pos(dev->type);
346 	lockdep_set_class_and_name(&dev->addr_list_lock,
347 				   &netdev_addr_lock_key[i],
348 				   netdev_lock_name[i]);
349 }
350 #else
351 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
352 						 unsigned short dev_type)
353 {
354 }
355 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
356 {
357 }
358 #endif
359 
360 /*******************************************************************************
361  *
362  *		Protocol management and registration routines
363  *
364  *******************************************************************************/
365 
366 
367 /*
368  *	Add a protocol ID to the list. Now that the input handler is
369  *	smarter we can dispense with all the messy stuff that used to be
370  *	here.
371  *
372  *	BEWARE!!! Protocol handlers, mangling input packets,
373  *	MUST BE last in hash buckets and checking protocol handlers
374  *	MUST start from promiscuous ptype_all chain in net_bh.
375  *	It is true now, do not change it.
376  *	Explanation follows: if protocol handler, mangling packet, will
377  *	be the first on list, it is not able to sense, that packet
378  *	is cloned and should be copied-on-write, so that it will
379  *	change it and subsequent readers will get broken packet.
380  *							--ANK (980803)
381  */
382 
383 static inline struct list_head *ptype_head(const struct packet_type *pt)
384 {
385 	if (pt->type == htons(ETH_P_ALL))
386 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
387 	else
388 		return pt->dev ? &pt->dev->ptype_specific :
389 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
390 }
391 
392 /**
393  *	dev_add_pack - add packet handler
394  *	@pt: packet type declaration
395  *
396  *	Add a protocol handler to the networking stack. The passed &packet_type
397  *	is linked into kernel lists and may not be freed until it has been
398  *	removed from the kernel lists.
399  *
400  *	This call does not sleep therefore it can not
401  *	guarantee all CPU's that are in middle of receiving packets
402  *	will see the new packet type (until the next received packet).
403  */
404 
405 void dev_add_pack(struct packet_type *pt)
406 {
407 	struct list_head *head = ptype_head(pt);
408 
409 	spin_lock(&ptype_lock);
410 	list_add_rcu(&pt->list, head);
411 	spin_unlock(&ptype_lock);
412 }
413 EXPORT_SYMBOL(dev_add_pack);
414 
415 /**
416  *	__dev_remove_pack	 - remove packet handler
417  *	@pt: packet type declaration
418  *
419  *	Remove a protocol handler that was previously added to the kernel
420  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
421  *	from the kernel lists and can be freed or reused once this function
422  *	returns.
423  *
424  *      The packet type might still be in use by receivers
425  *	and must not be freed until after all the CPU's have gone
426  *	through a quiescent state.
427  */
428 void __dev_remove_pack(struct packet_type *pt)
429 {
430 	struct list_head *head = ptype_head(pt);
431 	struct packet_type *pt1;
432 
433 	spin_lock(&ptype_lock);
434 
435 	list_for_each_entry(pt1, head, list) {
436 		if (pt == pt1) {
437 			list_del_rcu(&pt->list);
438 			goto out;
439 		}
440 	}
441 
442 	pr_warn("dev_remove_pack: %p not found\n", pt);
443 out:
444 	spin_unlock(&ptype_lock);
445 }
446 EXPORT_SYMBOL(__dev_remove_pack);
447 
448 /**
449  *	dev_remove_pack	 - remove packet handler
450  *	@pt: packet type declaration
451  *
452  *	Remove a protocol handler that was previously added to the kernel
453  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
454  *	from the kernel lists and can be freed or reused once this function
455  *	returns.
456  *
457  *	This call sleeps to guarantee that no CPU is looking at the packet
458  *	type after return.
459  */
460 void dev_remove_pack(struct packet_type *pt)
461 {
462 	__dev_remove_pack(pt);
463 
464 	synchronize_net();
465 }
466 EXPORT_SYMBOL(dev_remove_pack);
467 
468 
469 /**
470  *	dev_add_offload - register offload handlers
471  *	@po: protocol offload declaration
472  *
473  *	Add protocol offload handlers to the networking stack. The passed
474  *	&proto_offload is linked into kernel lists and may not be freed until
475  *	it has been removed from the kernel lists.
476  *
477  *	This call does not sleep therefore it can not
478  *	guarantee all CPU's that are in middle of receiving packets
479  *	will see the new offload handlers (until the next received packet).
480  */
481 void dev_add_offload(struct packet_offload *po)
482 {
483 	struct packet_offload *elem;
484 
485 	spin_lock(&offload_lock);
486 	list_for_each_entry(elem, &offload_base, list) {
487 		if (po->priority < elem->priority)
488 			break;
489 	}
490 	list_add_rcu(&po->list, elem->list.prev);
491 	spin_unlock(&offload_lock);
492 }
493 EXPORT_SYMBOL(dev_add_offload);
494 
495 /**
496  *	__dev_remove_offload	 - remove offload handler
497  *	@po: packet offload declaration
498  *
499  *	Remove a protocol offload handler that was previously added to the
500  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
501  *	is removed from the kernel lists and can be freed or reused once this
502  *	function returns.
503  *
504  *      The packet type might still be in use by receivers
505  *	and must not be freed until after all the CPU's have gone
506  *	through a quiescent state.
507  */
508 static void __dev_remove_offload(struct packet_offload *po)
509 {
510 	struct list_head *head = &offload_base;
511 	struct packet_offload *po1;
512 
513 	spin_lock(&offload_lock);
514 
515 	list_for_each_entry(po1, head, list) {
516 		if (po == po1) {
517 			list_del_rcu(&po->list);
518 			goto out;
519 		}
520 	}
521 
522 	pr_warn("dev_remove_offload: %p not found\n", po);
523 out:
524 	spin_unlock(&offload_lock);
525 }
526 
527 /**
528  *	dev_remove_offload	 - remove packet offload handler
529  *	@po: packet offload declaration
530  *
531  *	Remove a packet offload handler that was previously added to the kernel
532  *	offload handlers by dev_add_offload(). The passed &offload_type is
533  *	removed from the kernel lists and can be freed or reused once this
534  *	function returns.
535  *
536  *	This call sleeps to guarantee that no CPU is looking at the packet
537  *	type after return.
538  */
539 void dev_remove_offload(struct packet_offload *po)
540 {
541 	__dev_remove_offload(po);
542 
543 	synchronize_net();
544 }
545 EXPORT_SYMBOL(dev_remove_offload);
546 
547 /******************************************************************************
548  *
549  *		      Device Boot-time Settings Routines
550  *
551  ******************************************************************************/
552 
553 /* Boot time configuration table */
554 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
555 
556 /**
557  *	netdev_boot_setup_add	- add new setup entry
558  *	@name: name of the device
559  *	@map: configured settings for the device
560  *
561  *	Adds new setup entry to the dev_boot_setup list.  The function
562  *	returns 0 on error and 1 on success.  This is a generic routine to
563  *	all netdevices.
564  */
565 static int netdev_boot_setup_add(char *name, struct ifmap *map)
566 {
567 	struct netdev_boot_setup *s;
568 	int i;
569 
570 	s = dev_boot_setup;
571 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
572 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
573 			memset(s[i].name, 0, sizeof(s[i].name));
574 			strlcpy(s[i].name, name, IFNAMSIZ);
575 			memcpy(&s[i].map, map, sizeof(s[i].map));
576 			break;
577 		}
578 	}
579 
580 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
581 }
582 
583 /**
584  * netdev_boot_setup_check	- check boot time settings
585  * @dev: the netdevice
586  *
587  * Check boot time settings for the device.
588  * The found settings are set for the device to be used
589  * later in the device probing.
590  * Returns 0 if no settings found, 1 if they are.
591  */
592 int netdev_boot_setup_check(struct net_device *dev)
593 {
594 	struct netdev_boot_setup *s = dev_boot_setup;
595 	int i;
596 
597 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
598 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
599 		    !strcmp(dev->name, s[i].name)) {
600 			dev->irq = s[i].map.irq;
601 			dev->base_addr = s[i].map.base_addr;
602 			dev->mem_start = s[i].map.mem_start;
603 			dev->mem_end = s[i].map.mem_end;
604 			return 1;
605 		}
606 	}
607 	return 0;
608 }
609 EXPORT_SYMBOL(netdev_boot_setup_check);
610 
611 
612 /**
613  * netdev_boot_base	- get address from boot time settings
614  * @prefix: prefix for network device
615  * @unit: id for network device
616  *
617  * Check boot time settings for the base address of device.
618  * The found settings are set for the device to be used
619  * later in the device probing.
620  * Returns 0 if no settings found.
621  */
622 unsigned long netdev_boot_base(const char *prefix, int unit)
623 {
624 	const struct netdev_boot_setup *s = dev_boot_setup;
625 	char name[IFNAMSIZ];
626 	int i;
627 
628 	sprintf(name, "%s%d", prefix, unit);
629 
630 	/*
631 	 * If device already registered then return base of 1
632 	 * to indicate not to probe for this interface
633 	 */
634 	if (__dev_get_by_name(&init_net, name))
635 		return 1;
636 
637 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
638 		if (!strcmp(name, s[i].name))
639 			return s[i].map.base_addr;
640 	return 0;
641 }
642 
643 /*
644  * Saves at boot time configured settings for any netdevice.
645  */
646 int __init netdev_boot_setup(char *str)
647 {
648 	int ints[5];
649 	struct ifmap map;
650 
651 	str = get_options(str, ARRAY_SIZE(ints), ints);
652 	if (!str || !*str)
653 		return 0;
654 
655 	/* Save settings */
656 	memset(&map, 0, sizeof(map));
657 	if (ints[0] > 0)
658 		map.irq = ints[1];
659 	if (ints[0] > 1)
660 		map.base_addr = ints[2];
661 	if (ints[0] > 2)
662 		map.mem_start = ints[3];
663 	if (ints[0] > 3)
664 		map.mem_end = ints[4];
665 
666 	/* Add new entry to the list */
667 	return netdev_boot_setup_add(str, &map);
668 }
669 
670 __setup("netdev=", netdev_boot_setup);
671 
672 /*******************************************************************************
673  *
674  *			    Device Interface Subroutines
675  *
676  *******************************************************************************/
677 
678 /**
679  *	dev_get_iflink	- get 'iflink' value of a interface
680  *	@dev: targeted interface
681  *
682  *	Indicates the ifindex the interface is linked to.
683  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
684  */
685 
686 int dev_get_iflink(const struct net_device *dev)
687 {
688 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
689 		return dev->netdev_ops->ndo_get_iflink(dev);
690 
691 	return dev->ifindex;
692 }
693 EXPORT_SYMBOL(dev_get_iflink);
694 
695 /**
696  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
697  *	@dev: targeted interface
698  *	@skb: The packet.
699  *
700  *	For better visibility of tunnel traffic OVS needs to retrieve
701  *	egress tunnel information for a packet. Following API allows
702  *	user to get this info.
703  */
704 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
705 {
706 	struct ip_tunnel_info *info;
707 
708 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
709 		return -EINVAL;
710 
711 	info = skb_tunnel_info_unclone(skb);
712 	if (!info)
713 		return -ENOMEM;
714 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
715 		return -EINVAL;
716 
717 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
720 
721 /**
722  *	__dev_get_by_name	- find a device by its name
723  *	@net: the applicable net namespace
724  *	@name: name to find
725  *
726  *	Find an interface by name. Must be called under RTNL semaphore
727  *	or @dev_base_lock. If the name is found a pointer to the device
728  *	is returned. If the name is not found then %NULL is returned. The
729  *	reference counters are not incremented so the caller must be
730  *	careful with locks.
731  */
732 
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735 	struct net_device *dev;
736 	struct hlist_head *head = dev_name_hash(net, name);
737 
738 	hlist_for_each_entry(dev, head, name_hlist)
739 		if (!strncmp(dev->name, name, IFNAMSIZ))
740 			return dev;
741 
742 	return NULL;
743 }
744 EXPORT_SYMBOL(__dev_get_by_name);
745 
746 /**
747  * dev_get_by_name_rcu	- find a device by its name
748  * @net: the applicable net namespace
749  * @name: name to find
750  *
751  * Find an interface by name.
752  * If the name is found a pointer to the device is returned.
753  * If the name is not found then %NULL is returned.
754  * The reference counters are not incremented so the caller must be
755  * careful with locks. The caller must hold RCU lock.
756  */
757 
758 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
759 {
760 	struct net_device *dev;
761 	struct hlist_head *head = dev_name_hash(net, name);
762 
763 	hlist_for_each_entry_rcu(dev, head, name_hlist)
764 		if (!strncmp(dev->name, name, IFNAMSIZ))
765 			return dev;
766 
767 	return NULL;
768 }
769 EXPORT_SYMBOL(dev_get_by_name_rcu);
770 
771 /**
772  *	dev_get_by_name		- find a device by its name
773  *	@net: the applicable net namespace
774  *	@name: name to find
775  *
776  *	Find an interface by name. This can be called from any
777  *	context and does its own locking. The returned handle has
778  *	the usage count incremented and the caller must use dev_put() to
779  *	release it when it is no longer needed. %NULL is returned if no
780  *	matching device is found.
781  */
782 
783 struct net_device *dev_get_by_name(struct net *net, const char *name)
784 {
785 	struct net_device *dev;
786 
787 	rcu_read_lock();
788 	dev = dev_get_by_name_rcu(net, name);
789 	if (dev)
790 		dev_hold(dev);
791 	rcu_read_unlock();
792 	return dev;
793 }
794 EXPORT_SYMBOL(dev_get_by_name);
795 
796 /**
797  *	__dev_get_by_index - find a device by its ifindex
798  *	@net: the applicable net namespace
799  *	@ifindex: index of device
800  *
801  *	Search for an interface by index. Returns %NULL if the device
802  *	is not found or a pointer to the device. The device has not
803  *	had its reference counter increased so the caller must be careful
804  *	about locking. The caller must hold either the RTNL semaphore
805  *	or @dev_base_lock.
806  */
807 
808 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
809 {
810 	struct net_device *dev;
811 	struct hlist_head *head = dev_index_hash(net, ifindex);
812 
813 	hlist_for_each_entry(dev, head, index_hlist)
814 		if (dev->ifindex == ifindex)
815 			return dev;
816 
817 	return NULL;
818 }
819 EXPORT_SYMBOL(__dev_get_by_index);
820 
821 /**
822  *	dev_get_by_index_rcu - find a device by its ifindex
823  *	@net: the applicable net namespace
824  *	@ifindex: index of device
825  *
826  *	Search for an interface by index. Returns %NULL if the device
827  *	is not found or a pointer to the device. The device has not
828  *	had its reference counter increased so the caller must be careful
829  *	about locking. The caller must hold RCU lock.
830  */
831 
832 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
833 {
834 	struct net_device *dev;
835 	struct hlist_head *head = dev_index_hash(net, ifindex);
836 
837 	hlist_for_each_entry_rcu(dev, head, index_hlist)
838 		if (dev->ifindex == ifindex)
839 			return dev;
840 
841 	return NULL;
842 }
843 EXPORT_SYMBOL(dev_get_by_index_rcu);
844 
845 
846 /**
847  *	dev_get_by_index - find a device by its ifindex
848  *	@net: the applicable net namespace
849  *	@ifindex: index of device
850  *
851  *	Search for an interface by index. Returns NULL if the device
852  *	is not found or a pointer to the device. The device returned has
853  *	had a reference added and the pointer is safe until the user calls
854  *	dev_put to indicate they have finished with it.
855  */
856 
857 struct net_device *dev_get_by_index(struct net *net, int ifindex)
858 {
859 	struct net_device *dev;
860 
861 	rcu_read_lock();
862 	dev = dev_get_by_index_rcu(net, ifindex);
863 	if (dev)
864 		dev_hold(dev);
865 	rcu_read_unlock();
866 	return dev;
867 }
868 EXPORT_SYMBOL(dev_get_by_index);
869 
870 /**
871  *	dev_get_by_napi_id - find a device by napi_id
872  *	@napi_id: ID of the NAPI struct
873  *
874  *	Search for an interface by NAPI ID. Returns %NULL if the device
875  *	is not found or a pointer to the device. The device has not had
876  *	its reference counter increased so the caller must be careful
877  *	about locking. The caller must hold RCU lock.
878  */
879 
880 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
881 {
882 	struct napi_struct *napi;
883 
884 	WARN_ON_ONCE(!rcu_read_lock_held());
885 
886 	if (napi_id < MIN_NAPI_ID)
887 		return NULL;
888 
889 	napi = napi_by_id(napi_id);
890 
891 	return napi ? napi->dev : NULL;
892 }
893 EXPORT_SYMBOL(dev_get_by_napi_id);
894 
895 /**
896  *	netdev_get_name - get a netdevice name, knowing its ifindex.
897  *	@net: network namespace
898  *	@name: a pointer to the buffer where the name will be stored.
899  *	@ifindex: the ifindex of the interface to get the name from.
900  *
901  *	The use of raw_seqcount_begin() and cond_resched() before
902  *	retrying is required as we want to give the writers a chance
903  *	to complete when CONFIG_PREEMPT is not set.
904  */
905 int netdev_get_name(struct net *net, char *name, int ifindex)
906 {
907 	struct net_device *dev;
908 	unsigned int seq;
909 
910 retry:
911 	seq = raw_seqcount_begin(&devnet_rename_seq);
912 	rcu_read_lock();
913 	dev = dev_get_by_index_rcu(net, ifindex);
914 	if (!dev) {
915 		rcu_read_unlock();
916 		return -ENODEV;
917 	}
918 
919 	strcpy(name, dev->name);
920 	rcu_read_unlock();
921 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
922 		cond_resched();
923 		goto retry;
924 	}
925 
926 	return 0;
927 }
928 
929 /**
930  *	dev_getbyhwaddr_rcu - find a device by its hardware address
931  *	@net: the applicable net namespace
932  *	@type: media type of device
933  *	@ha: hardware address
934  *
935  *	Search for an interface by MAC address. Returns NULL if the device
936  *	is not found or a pointer to the device.
937  *	The caller must hold RCU or RTNL.
938  *	The returned device has not had its ref count increased
939  *	and the caller must therefore be careful about locking
940  *
941  */
942 
943 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
944 				       const char *ha)
945 {
946 	struct net_device *dev;
947 
948 	for_each_netdev_rcu(net, dev)
949 		if (dev->type == type &&
950 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
951 			return dev;
952 
953 	return NULL;
954 }
955 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
956 
957 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
958 {
959 	struct net_device *dev;
960 
961 	ASSERT_RTNL();
962 	for_each_netdev(net, dev)
963 		if (dev->type == type)
964 			return dev;
965 
966 	return NULL;
967 }
968 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
969 
970 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
971 {
972 	struct net_device *dev, *ret = NULL;
973 
974 	rcu_read_lock();
975 	for_each_netdev_rcu(net, dev)
976 		if (dev->type == type) {
977 			dev_hold(dev);
978 			ret = dev;
979 			break;
980 		}
981 	rcu_read_unlock();
982 	return ret;
983 }
984 EXPORT_SYMBOL(dev_getfirstbyhwtype);
985 
986 /**
987  *	__dev_get_by_flags - find any device with given flags
988  *	@net: the applicable net namespace
989  *	@if_flags: IFF_* values
990  *	@mask: bitmask of bits in if_flags to check
991  *
992  *	Search for any interface with the given flags. Returns NULL if a device
993  *	is not found or a pointer to the device. Must be called inside
994  *	rtnl_lock(), and result refcount is unchanged.
995  */
996 
997 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
998 				      unsigned short mask)
999 {
1000 	struct net_device *dev, *ret;
1001 
1002 	ASSERT_RTNL();
1003 
1004 	ret = NULL;
1005 	for_each_netdev(net, dev) {
1006 		if (((dev->flags ^ if_flags) & mask) == 0) {
1007 			ret = dev;
1008 			break;
1009 		}
1010 	}
1011 	return ret;
1012 }
1013 EXPORT_SYMBOL(__dev_get_by_flags);
1014 
1015 /**
1016  *	dev_valid_name - check if name is okay for network device
1017  *	@name: name string
1018  *
1019  *	Network device names need to be valid file names to
1020  *	to allow sysfs to work.  We also disallow any kind of
1021  *	whitespace.
1022  */
1023 bool dev_valid_name(const char *name)
1024 {
1025 	if (*name == '\0')
1026 		return false;
1027 	if (strlen(name) >= IFNAMSIZ)
1028 		return false;
1029 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1030 		return false;
1031 
1032 	while (*name) {
1033 		if (*name == '/' || *name == ':' || isspace(*name))
1034 			return false;
1035 		name++;
1036 	}
1037 	return true;
1038 }
1039 EXPORT_SYMBOL(dev_valid_name);
1040 
1041 /**
1042  *	__dev_alloc_name - allocate a name for a device
1043  *	@net: network namespace to allocate the device name in
1044  *	@name: name format string
1045  *	@buf:  scratch buffer and result name string
1046  *
1047  *	Passed a format string - eg "lt%d" it will try and find a suitable
1048  *	id. It scans list of devices to build up a free map, then chooses
1049  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1050  *	while allocating the name and adding the device in order to avoid
1051  *	duplicates.
1052  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1053  *	Returns the number of the unit assigned or a negative errno code.
1054  */
1055 
1056 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1057 {
1058 	int i = 0;
1059 	const char *p;
1060 	const int max_netdevices = 8*PAGE_SIZE;
1061 	unsigned long *inuse;
1062 	struct net_device *d;
1063 
1064 	p = strnchr(name, IFNAMSIZ-1, '%');
1065 	if (p) {
1066 		/*
1067 		 * Verify the string as this thing may have come from
1068 		 * the user.  There must be either one "%d" and no other "%"
1069 		 * characters.
1070 		 */
1071 		if (p[1] != 'd' || strchr(p + 2, '%'))
1072 			return -EINVAL;
1073 
1074 		/* Use one page as a bit array of possible slots */
1075 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1076 		if (!inuse)
1077 			return -ENOMEM;
1078 
1079 		for_each_netdev(net, d) {
1080 			if (!sscanf(d->name, name, &i))
1081 				continue;
1082 			if (i < 0 || i >= max_netdevices)
1083 				continue;
1084 
1085 			/*  avoid cases where sscanf is not exact inverse of printf */
1086 			snprintf(buf, IFNAMSIZ, name, i);
1087 			if (!strncmp(buf, d->name, IFNAMSIZ))
1088 				set_bit(i, inuse);
1089 		}
1090 
1091 		i = find_first_zero_bit(inuse, max_netdevices);
1092 		free_page((unsigned long) inuse);
1093 	}
1094 
1095 	if (buf != name)
1096 		snprintf(buf, IFNAMSIZ, name, i);
1097 	if (!__dev_get_by_name(net, buf))
1098 		return i;
1099 
1100 	/* It is possible to run out of possible slots
1101 	 * when the name is long and there isn't enough space left
1102 	 * for the digits, or if all bits are used.
1103 	 */
1104 	return -ENFILE;
1105 }
1106 
1107 /**
1108  *	dev_alloc_name - allocate a name for a device
1109  *	@dev: device
1110  *	@name: name format string
1111  *
1112  *	Passed a format string - eg "lt%d" it will try and find a suitable
1113  *	id. It scans list of devices to build up a free map, then chooses
1114  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *	while allocating the name and adding the device in order to avoid
1116  *	duplicates.
1117  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *	Returns the number of the unit assigned or a negative errno code.
1119  */
1120 
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123 	char buf[IFNAMSIZ];
1124 	struct net *net;
1125 	int ret;
1126 
1127 	BUG_ON(!dev_net(dev));
1128 	net = dev_net(dev);
1129 	ret = __dev_alloc_name(net, name, buf);
1130 	if (ret >= 0)
1131 		strlcpy(dev->name, buf, IFNAMSIZ);
1132 	return ret;
1133 }
1134 EXPORT_SYMBOL(dev_alloc_name);
1135 
1136 static int dev_alloc_name_ns(struct net *net,
1137 			     struct net_device *dev,
1138 			     const char *name)
1139 {
1140 	char buf[IFNAMSIZ];
1141 	int ret;
1142 
1143 	ret = __dev_alloc_name(net, name, buf);
1144 	if (ret >= 0)
1145 		strlcpy(dev->name, buf, IFNAMSIZ);
1146 	return ret;
1147 }
1148 
1149 static int dev_get_valid_name(struct net *net,
1150 			      struct net_device *dev,
1151 			      const char *name)
1152 {
1153 	BUG_ON(!net);
1154 
1155 	if (!dev_valid_name(name))
1156 		return -EINVAL;
1157 
1158 	if (strchr(name, '%'))
1159 		return dev_alloc_name_ns(net, dev, name);
1160 	else if (__dev_get_by_name(net, name))
1161 		return -EEXIST;
1162 	else if (dev->name != name)
1163 		strlcpy(dev->name, name, IFNAMSIZ);
1164 
1165 	return 0;
1166 }
1167 
1168 /**
1169  *	dev_change_name - change name of a device
1170  *	@dev: device
1171  *	@newname: name (or format string) must be at least IFNAMSIZ
1172  *
1173  *	Change name of a device, can pass format strings "eth%d".
1174  *	for wildcarding.
1175  */
1176 int dev_change_name(struct net_device *dev, const char *newname)
1177 {
1178 	unsigned char old_assign_type;
1179 	char oldname[IFNAMSIZ];
1180 	int err = 0;
1181 	int ret;
1182 	struct net *net;
1183 
1184 	ASSERT_RTNL();
1185 	BUG_ON(!dev_net(dev));
1186 
1187 	net = dev_net(dev);
1188 	if (dev->flags & IFF_UP)
1189 		return -EBUSY;
1190 
1191 	write_seqcount_begin(&devnet_rename_seq);
1192 
1193 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1194 		write_seqcount_end(&devnet_rename_seq);
1195 		return 0;
1196 	}
1197 
1198 	memcpy(oldname, dev->name, IFNAMSIZ);
1199 
1200 	err = dev_get_valid_name(net, dev, newname);
1201 	if (err < 0) {
1202 		write_seqcount_end(&devnet_rename_seq);
1203 		return err;
1204 	}
1205 
1206 	if (oldname[0] && !strchr(oldname, '%'))
1207 		netdev_info(dev, "renamed from %s\n", oldname);
1208 
1209 	old_assign_type = dev->name_assign_type;
1210 	dev->name_assign_type = NET_NAME_RENAMED;
1211 
1212 rollback:
1213 	ret = device_rename(&dev->dev, dev->name);
1214 	if (ret) {
1215 		memcpy(dev->name, oldname, IFNAMSIZ);
1216 		dev->name_assign_type = old_assign_type;
1217 		write_seqcount_end(&devnet_rename_seq);
1218 		return ret;
1219 	}
1220 
1221 	write_seqcount_end(&devnet_rename_seq);
1222 
1223 	netdev_adjacent_rename_links(dev, oldname);
1224 
1225 	write_lock_bh(&dev_base_lock);
1226 	hlist_del_rcu(&dev->name_hlist);
1227 	write_unlock_bh(&dev_base_lock);
1228 
1229 	synchronize_rcu();
1230 
1231 	write_lock_bh(&dev_base_lock);
1232 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1233 	write_unlock_bh(&dev_base_lock);
1234 
1235 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1236 	ret = notifier_to_errno(ret);
1237 
1238 	if (ret) {
1239 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1240 		if (err >= 0) {
1241 			err = ret;
1242 			write_seqcount_begin(&devnet_rename_seq);
1243 			memcpy(dev->name, oldname, IFNAMSIZ);
1244 			memcpy(oldname, newname, IFNAMSIZ);
1245 			dev->name_assign_type = old_assign_type;
1246 			old_assign_type = NET_NAME_RENAMED;
1247 			goto rollback;
1248 		} else {
1249 			pr_err("%s: name change rollback failed: %d\n",
1250 			       dev->name, ret);
1251 		}
1252 	}
1253 
1254 	return err;
1255 }
1256 
1257 /**
1258  *	dev_set_alias - change ifalias of a device
1259  *	@dev: device
1260  *	@alias: name up to IFALIASZ
1261  *	@len: limit of bytes to copy from info
1262  *
1263  *	Set ifalias for a device,
1264  */
1265 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1266 {
1267 	char *new_ifalias;
1268 
1269 	ASSERT_RTNL();
1270 
1271 	if (len >= IFALIASZ)
1272 		return -EINVAL;
1273 
1274 	if (!len) {
1275 		kfree(dev->ifalias);
1276 		dev->ifalias = NULL;
1277 		return 0;
1278 	}
1279 
1280 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1281 	if (!new_ifalias)
1282 		return -ENOMEM;
1283 	dev->ifalias = new_ifalias;
1284 	memcpy(dev->ifalias, alias, len);
1285 	dev->ifalias[len] = 0;
1286 
1287 	return len;
1288 }
1289 
1290 
1291 /**
1292  *	netdev_features_change - device changes features
1293  *	@dev: device to cause notification
1294  *
1295  *	Called to indicate a device has changed features.
1296  */
1297 void netdev_features_change(struct net_device *dev)
1298 {
1299 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1300 }
1301 EXPORT_SYMBOL(netdev_features_change);
1302 
1303 /**
1304  *	netdev_state_change - device changes state
1305  *	@dev: device to cause notification
1306  *
1307  *	Called to indicate a device has changed state. This function calls
1308  *	the notifier chains for netdev_chain and sends a NEWLINK message
1309  *	to the routing socket.
1310  */
1311 void netdev_state_change(struct net_device *dev)
1312 {
1313 	if (dev->flags & IFF_UP) {
1314 		struct netdev_notifier_change_info change_info;
1315 
1316 		change_info.flags_changed = 0;
1317 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1318 					      &change_info.info);
1319 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1320 	}
1321 }
1322 EXPORT_SYMBOL(netdev_state_change);
1323 
1324 /**
1325  * netdev_notify_peers - notify network peers about existence of @dev
1326  * @dev: network device
1327  *
1328  * Generate traffic such that interested network peers are aware of
1329  * @dev, such as by generating a gratuitous ARP. This may be used when
1330  * a device wants to inform the rest of the network about some sort of
1331  * reconfiguration such as a failover event or virtual machine
1332  * migration.
1333  */
1334 void netdev_notify_peers(struct net_device *dev)
1335 {
1336 	rtnl_lock();
1337 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1338 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1339 	rtnl_unlock();
1340 }
1341 EXPORT_SYMBOL(netdev_notify_peers);
1342 
1343 static int __dev_open(struct net_device *dev)
1344 {
1345 	const struct net_device_ops *ops = dev->netdev_ops;
1346 	int ret;
1347 
1348 	ASSERT_RTNL();
1349 
1350 	if (!netif_device_present(dev))
1351 		return -ENODEV;
1352 
1353 	/* Block netpoll from trying to do any rx path servicing.
1354 	 * If we don't do this there is a chance ndo_poll_controller
1355 	 * or ndo_poll may be running while we open the device
1356 	 */
1357 	netpoll_poll_disable(dev);
1358 
1359 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1360 	ret = notifier_to_errno(ret);
1361 	if (ret)
1362 		return ret;
1363 
1364 	set_bit(__LINK_STATE_START, &dev->state);
1365 
1366 	if (ops->ndo_validate_addr)
1367 		ret = ops->ndo_validate_addr(dev);
1368 
1369 	if (!ret && ops->ndo_open)
1370 		ret = ops->ndo_open(dev);
1371 
1372 	netpoll_poll_enable(dev);
1373 
1374 	if (ret)
1375 		clear_bit(__LINK_STATE_START, &dev->state);
1376 	else {
1377 		dev->flags |= IFF_UP;
1378 		dev_set_rx_mode(dev);
1379 		dev_activate(dev);
1380 		add_device_randomness(dev->dev_addr, dev->addr_len);
1381 	}
1382 
1383 	return ret;
1384 }
1385 
1386 /**
1387  *	dev_open	- prepare an interface for use.
1388  *	@dev:	device to open
1389  *
1390  *	Takes a device from down to up state. The device's private open
1391  *	function is invoked and then the multicast lists are loaded. Finally
1392  *	the device is moved into the up state and a %NETDEV_UP message is
1393  *	sent to the netdev notifier chain.
1394  *
1395  *	Calling this function on an active interface is a nop. On a failure
1396  *	a negative errno code is returned.
1397  */
1398 int dev_open(struct net_device *dev)
1399 {
1400 	int ret;
1401 
1402 	if (dev->flags & IFF_UP)
1403 		return 0;
1404 
1405 	ret = __dev_open(dev);
1406 	if (ret < 0)
1407 		return ret;
1408 
1409 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1410 	call_netdevice_notifiers(NETDEV_UP, dev);
1411 
1412 	return ret;
1413 }
1414 EXPORT_SYMBOL(dev_open);
1415 
1416 static int __dev_close_many(struct list_head *head)
1417 {
1418 	struct net_device *dev;
1419 
1420 	ASSERT_RTNL();
1421 	might_sleep();
1422 
1423 	list_for_each_entry(dev, head, close_list) {
1424 		/* Temporarily disable netpoll until the interface is down */
1425 		netpoll_poll_disable(dev);
1426 
1427 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1428 
1429 		clear_bit(__LINK_STATE_START, &dev->state);
1430 
1431 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1432 		 * can be even on different cpu. So just clear netif_running().
1433 		 *
1434 		 * dev->stop() will invoke napi_disable() on all of it's
1435 		 * napi_struct instances on this device.
1436 		 */
1437 		smp_mb__after_atomic(); /* Commit netif_running(). */
1438 	}
1439 
1440 	dev_deactivate_many(head);
1441 
1442 	list_for_each_entry(dev, head, close_list) {
1443 		const struct net_device_ops *ops = dev->netdev_ops;
1444 
1445 		/*
1446 		 *	Call the device specific close. This cannot fail.
1447 		 *	Only if device is UP
1448 		 *
1449 		 *	We allow it to be called even after a DETACH hot-plug
1450 		 *	event.
1451 		 */
1452 		if (ops->ndo_stop)
1453 			ops->ndo_stop(dev);
1454 
1455 		dev->flags &= ~IFF_UP;
1456 		netpoll_poll_enable(dev);
1457 	}
1458 
1459 	return 0;
1460 }
1461 
1462 static int __dev_close(struct net_device *dev)
1463 {
1464 	int retval;
1465 	LIST_HEAD(single);
1466 
1467 	list_add(&dev->close_list, &single);
1468 	retval = __dev_close_many(&single);
1469 	list_del(&single);
1470 
1471 	return retval;
1472 }
1473 
1474 int dev_close_many(struct list_head *head, bool unlink)
1475 {
1476 	struct net_device *dev, *tmp;
1477 
1478 	/* Remove the devices that don't need to be closed */
1479 	list_for_each_entry_safe(dev, tmp, head, close_list)
1480 		if (!(dev->flags & IFF_UP))
1481 			list_del_init(&dev->close_list);
1482 
1483 	__dev_close_many(head);
1484 
1485 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1486 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1487 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1488 		if (unlink)
1489 			list_del_init(&dev->close_list);
1490 	}
1491 
1492 	return 0;
1493 }
1494 EXPORT_SYMBOL(dev_close_many);
1495 
1496 /**
1497  *	dev_close - shutdown an interface.
1498  *	@dev: device to shutdown
1499  *
1500  *	This function moves an active device into down state. A
1501  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1502  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1503  *	chain.
1504  */
1505 int dev_close(struct net_device *dev)
1506 {
1507 	if (dev->flags & IFF_UP) {
1508 		LIST_HEAD(single);
1509 
1510 		list_add(&dev->close_list, &single);
1511 		dev_close_many(&single, true);
1512 		list_del(&single);
1513 	}
1514 	return 0;
1515 }
1516 EXPORT_SYMBOL(dev_close);
1517 
1518 
1519 /**
1520  *	dev_disable_lro - disable Large Receive Offload on a device
1521  *	@dev: device
1522  *
1523  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1524  *	called under RTNL.  This is needed if received packets may be
1525  *	forwarded to another interface.
1526  */
1527 void dev_disable_lro(struct net_device *dev)
1528 {
1529 	struct net_device *lower_dev;
1530 	struct list_head *iter;
1531 
1532 	dev->wanted_features &= ~NETIF_F_LRO;
1533 	netdev_update_features(dev);
1534 
1535 	if (unlikely(dev->features & NETIF_F_LRO))
1536 		netdev_WARN(dev, "failed to disable LRO!\n");
1537 
1538 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1539 		dev_disable_lro(lower_dev);
1540 }
1541 EXPORT_SYMBOL(dev_disable_lro);
1542 
1543 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1544 				   struct net_device *dev)
1545 {
1546 	struct netdev_notifier_info info;
1547 
1548 	netdev_notifier_info_init(&info, dev);
1549 	return nb->notifier_call(nb, val, &info);
1550 }
1551 
1552 static int dev_boot_phase = 1;
1553 
1554 /**
1555  * register_netdevice_notifier - register a network notifier block
1556  * @nb: notifier
1557  *
1558  * Register a notifier to be called when network device events occur.
1559  * The notifier passed is linked into the kernel structures and must
1560  * not be reused until it has been unregistered. A negative errno code
1561  * is returned on a failure.
1562  *
1563  * When registered all registration and up events are replayed
1564  * to the new notifier to allow device to have a race free
1565  * view of the network device list.
1566  */
1567 
1568 int register_netdevice_notifier(struct notifier_block *nb)
1569 {
1570 	struct net_device *dev;
1571 	struct net_device *last;
1572 	struct net *net;
1573 	int err;
1574 
1575 	rtnl_lock();
1576 	err = raw_notifier_chain_register(&netdev_chain, nb);
1577 	if (err)
1578 		goto unlock;
1579 	if (dev_boot_phase)
1580 		goto unlock;
1581 	for_each_net(net) {
1582 		for_each_netdev(net, dev) {
1583 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1584 			err = notifier_to_errno(err);
1585 			if (err)
1586 				goto rollback;
1587 
1588 			if (!(dev->flags & IFF_UP))
1589 				continue;
1590 
1591 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1592 		}
1593 	}
1594 
1595 unlock:
1596 	rtnl_unlock();
1597 	return err;
1598 
1599 rollback:
1600 	last = dev;
1601 	for_each_net(net) {
1602 		for_each_netdev(net, dev) {
1603 			if (dev == last)
1604 				goto outroll;
1605 
1606 			if (dev->flags & IFF_UP) {
1607 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1608 							dev);
1609 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1610 			}
1611 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1612 		}
1613 	}
1614 
1615 outroll:
1616 	raw_notifier_chain_unregister(&netdev_chain, nb);
1617 	goto unlock;
1618 }
1619 EXPORT_SYMBOL(register_netdevice_notifier);
1620 
1621 /**
1622  * unregister_netdevice_notifier - unregister a network notifier block
1623  * @nb: notifier
1624  *
1625  * Unregister a notifier previously registered by
1626  * register_netdevice_notifier(). The notifier is unlinked into the
1627  * kernel structures and may then be reused. A negative errno code
1628  * is returned on a failure.
1629  *
1630  * After unregistering unregister and down device events are synthesized
1631  * for all devices on the device list to the removed notifier to remove
1632  * the need for special case cleanup code.
1633  */
1634 
1635 int unregister_netdevice_notifier(struct notifier_block *nb)
1636 {
1637 	struct net_device *dev;
1638 	struct net *net;
1639 	int err;
1640 
1641 	rtnl_lock();
1642 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1643 	if (err)
1644 		goto unlock;
1645 
1646 	for_each_net(net) {
1647 		for_each_netdev(net, dev) {
1648 			if (dev->flags & IFF_UP) {
1649 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1650 							dev);
1651 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1652 			}
1653 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1654 		}
1655 	}
1656 unlock:
1657 	rtnl_unlock();
1658 	return err;
1659 }
1660 EXPORT_SYMBOL(unregister_netdevice_notifier);
1661 
1662 /**
1663  *	call_netdevice_notifiers_info - call all network notifier blocks
1664  *	@val: value passed unmodified to notifier function
1665  *	@dev: net_device pointer passed unmodified to notifier function
1666  *	@info: notifier information data
1667  *
1668  *	Call all network notifier blocks.  Parameters and return value
1669  *	are as for raw_notifier_call_chain().
1670  */
1671 
1672 static int call_netdevice_notifiers_info(unsigned long val,
1673 					 struct net_device *dev,
1674 					 struct netdev_notifier_info *info)
1675 {
1676 	ASSERT_RTNL();
1677 	netdev_notifier_info_init(info, dev);
1678 	return raw_notifier_call_chain(&netdev_chain, val, info);
1679 }
1680 
1681 /**
1682  *	call_netdevice_notifiers - call all network notifier blocks
1683  *      @val: value passed unmodified to notifier function
1684  *      @dev: net_device pointer passed unmodified to notifier function
1685  *
1686  *	Call all network notifier blocks.  Parameters and return value
1687  *	are as for raw_notifier_call_chain().
1688  */
1689 
1690 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1691 {
1692 	struct netdev_notifier_info info;
1693 
1694 	return call_netdevice_notifiers_info(val, dev, &info);
1695 }
1696 EXPORT_SYMBOL(call_netdevice_notifiers);
1697 
1698 #ifdef CONFIG_NET_INGRESS
1699 static struct static_key ingress_needed __read_mostly;
1700 
1701 void net_inc_ingress_queue(void)
1702 {
1703 	static_key_slow_inc(&ingress_needed);
1704 }
1705 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1706 
1707 void net_dec_ingress_queue(void)
1708 {
1709 	static_key_slow_dec(&ingress_needed);
1710 }
1711 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1712 #endif
1713 
1714 #ifdef CONFIG_NET_EGRESS
1715 static struct static_key egress_needed __read_mostly;
1716 
1717 void net_inc_egress_queue(void)
1718 {
1719 	static_key_slow_inc(&egress_needed);
1720 }
1721 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1722 
1723 void net_dec_egress_queue(void)
1724 {
1725 	static_key_slow_dec(&egress_needed);
1726 }
1727 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1728 #endif
1729 
1730 static struct static_key netstamp_needed __read_mostly;
1731 #ifdef HAVE_JUMP_LABEL
1732 static atomic_t netstamp_needed_deferred;
1733 static atomic_t netstamp_wanted;
1734 static void netstamp_clear(struct work_struct *work)
1735 {
1736 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1737 	int wanted;
1738 
1739 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1740 	if (wanted > 0)
1741 		static_key_enable(&netstamp_needed);
1742 	else
1743 		static_key_disable(&netstamp_needed);
1744 }
1745 static DECLARE_WORK(netstamp_work, netstamp_clear);
1746 #endif
1747 
1748 void net_enable_timestamp(void)
1749 {
1750 #ifdef HAVE_JUMP_LABEL
1751 	int wanted;
1752 
1753 	while (1) {
1754 		wanted = atomic_read(&netstamp_wanted);
1755 		if (wanted <= 0)
1756 			break;
1757 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1758 			return;
1759 	}
1760 	atomic_inc(&netstamp_needed_deferred);
1761 	schedule_work(&netstamp_work);
1762 #else
1763 	static_key_slow_inc(&netstamp_needed);
1764 #endif
1765 }
1766 EXPORT_SYMBOL(net_enable_timestamp);
1767 
1768 void net_disable_timestamp(void)
1769 {
1770 #ifdef HAVE_JUMP_LABEL
1771 	int wanted;
1772 
1773 	while (1) {
1774 		wanted = atomic_read(&netstamp_wanted);
1775 		if (wanted <= 1)
1776 			break;
1777 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1778 			return;
1779 	}
1780 	atomic_dec(&netstamp_needed_deferred);
1781 	schedule_work(&netstamp_work);
1782 #else
1783 	static_key_slow_dec(&netstamp_needed);
1784 #endif
1785 }
1786 EXPORT_SYMBOL(net_disable_timestamp);
1787 
1788 static inline void net_timestamp_set(struct sk_buff *skb)
1789 {
1790 	skb->tstamp = 0;
1791 	if (static_key_false(&netstamp_needed))
1792 		__net_timestamp(skb);
1793 }
1794 
1795 #define net_timestamp_check(COND, SKB)			\
1796 	if (static_key_false(&netstamp_needed)) {		\
1797 		if ((COND) && !(SKB)->tstamp)	\
1798 			__net_timestamp(SKB);		\
1799 	}						\
1800 
1801 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1802 {
1803 	unsigned int len;
1804 
1805 	if (!(dev->flags & IFF_UP))
1806 		return false;
1807 
1808 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1809 	if (skb->len <= len)
1810 		return true;
1811 
1812 	/* if TSO is enabled, we don't care about the length as the packet
1813 	 * could be forwarded without being segmented before
1814 	 */
1815 	if (skb_is_gso(skb))
1816 		return true;
1817 
1818 	return false;
1819 }
1820 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1821 
1822 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1823 {
1824 	int ret = ____dev_forward_skb(dev, skb);
1825 
1826 	if (likely(!ret)) {
1827 		skb->protocol = eth_type_trans(skb, dev);
1828 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1829 	}
1830 
1831 	return ret;
1832 }
1833 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1834 
1835 /**
1836  * dev_forward_skb - loopback an skb to another netif
1837  *
1838  * @dev: destination network device
1839  * @skb: buffer to forward
1840  *
1841  * return values:
1842  *	NET_RX_SUCCESS	(no congestion)
1843  *	NET_RX_DROP     (packet was dropped, but freed)
1844  *
1845  * dev_forward_skb can be used for injecting an skb from the
1846  * start_xmit function of one device into the receive queue
1847  * of another device.
1848  *
1849  * The receiving device may be in another namespace, so
1850  * we have to clear all information in the skb that could
1851  * impact namespace isolation.
1852  */
1853 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1854 {
1855 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1856 }
1857 EXPORT_SYMBOL_GPL(dev_forward_skb);
1858 
1859 static inline int deliver_skb(struct sk_buff *skb,
1860 			      struct packet_type *pt_prev,
1861 			      struct net_device *orig_dev)
1862 {
1863 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1864 		return -ENOMEM;
1865 	refcount_inc(&skb->users);
1866 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1867 }
1868 
1869 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1870 					  struct packet_type **pt,
1871 					  struct net_device *orig_dev,
1872 					  __be16 type,
1873 					  struct list_head *ptype_list)
1874 {
1875 	struct packet_type *ptype, *pt_prev = *pt;
1876 
1877 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1878 		if (ptype->type != type)
1879 			continue;
1880 		if (pt_prev)
1881 			deliver_skb(skb, pt_prev, orig_dev);
1882 		pt_prev = ptype;
1883 	}
1884 	*pt = pt_prev;
1885 }
1886 
1887 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1888 {
1889 	if (!ptype->af_packet_priv || !skb->sk)
1890 		return false;
1891 
1892 	if (ptype->id_match)
1893 		return ptype->id_match(ptype, skb->sk);
1894 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1895 		return true;
1896 
1897 	return false;
1898 }
1899 
1900 /*
1901  *	Support routine. Sends outgoing frames to any network
1902  *	taps currently in use.
1903  */
1904 
1905 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1906 {
1907 	struct packet_type *ptype;
1908 	struct sk_buff *skb2 = NULL;
1909 	struct packet_type *pt_prev = NULL;
1910 	struct list_head *ptype_list = &ptype_all;
1911 
1912 	rcu_read_lock();
1913 again:
1914 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1915 		/* Never send packets back to the socket
1916 		 * they originated from - MvS (miquels@drinkel.ow.org)
1917 		 */
1918 		if (skb_loop_sk(ptype, skb))
1919 			continue;
1920 
1921 		if (pt_prev) {
1922 			deliver_skb(skb2, pt_prev, skb->dev);
1923 			pt_prev = ptype;
1924 			continue;
1925 		}
1926 
1927 		/* need to clone skb, done only once */
1928 		skb2 = skb_clone(skb, GFP_ATOMIC);
1929 		if (!skb2)
1930 			goto out_unlock;
1931 
1932 		net_timestamp_set(skb2);
1933 
1934 		/* skb->nh should be correctly
1935 		 * set by sender, so that the second statement is
1936 		 * just protection against buggy protocols.
1937 		 */
1938 		skb_reset_mac_header(skb2);
1939 
1940 		if (skb_network_header(skb2) < skb2->data ||
1941 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1942 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1943 					     ntohs(skb2->protocol),
1944 					     dev->name);
1945 			skb_reset_network_header(skb2);
1946 		}
1947 
1948 		skb2->transport_header = skb2->network_header;
1949 		skb2->pkt_type = PACKET_OUTGOING;
1950 		pt_prev = ptype;
1951 	}
1952 
1953 	if (ptype_list == &ptype_all) {
1954 		ptype_list = &dev->ptype_all;
1955 		goto again;
1956 	}
1957 out_unlock:
1958 	if (pt_prev)
1959 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1960 	rcu_read_unlock();
1961 }
1962 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1963 
1964 /**
1965  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1966  * @dev: Network device
1967  * @txq: number of queues available
1968  *
1969  * If real_num_tx_queues is changed the tc mappings may no longer be
1970  * valid. To resolve this verify the tc mapping remains valid and if
1971  * not NULL the mapping. With no priorities mapping to this
1972  * offset/count pair it will no longer be used. In the worst case TC0
1973  * is invalid nothing can be done so disable priority mappings. If is
1974  * expected that drivers will fix this mapping if they can before
1975  * calling netif_set_real_num_tx_queues.
1976  */
1977 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1978 {
1979 	int i;
1980 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1981 
1982 	/* If TC0 is invalidated disable TC mapping */
1983 	if (tc->offset + tc->count > txq) {
1984 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1985 		dev->num_tc = 0;
1986 		return;
1987 	}
1988 
1989 	/* Invalidated prio to tc mappings set to TC0 */
1990 	for (i = 1; i < TC_BITMASK + 1; i++) {
1991 		int q = netdev_get_prio_tc_map(dev, i);
1992 
1993 		tc = &dev->tc_to_txq[q];
1994 		if (tc->offset + tc->count > txq) {
1995 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1996 				i, q);
1997 			netdev_set_prio_tc_map(dev, i, 0);
1998 		}
1999 	}
2000 }
2001 
2002 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2003 {
2004 	if (dev->num_tc) {
2005 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2006 		int i;
2007 
2008 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2009 			if ((txq - tc->offset) < tc->count)
2010 				return i;
2011 		}
2012 
2013 		return -1;
2014 	}
2015 
2016 	return 0;
2017 }
2018 
2019 #ifdef CONFIG_XPS
2020 static DEFINE_MUTEX(xps_map_mutex);
2021 #define xmap_dereference(P)		\
2022 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2023 
2024 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2025 			     int tci, u16 index)
2026 {
2027 	struct xps_map *map = NULL;
2028 	int pos;
2029 
2030 	if (dev_maps)
2031 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2032 	if (!map)
2033 		return false;
2034 
2035 	for (pos = map->len; pos--;) {
2036 		if (map->queues[pos] != index)
2037 			continue;
2038 
2039 		if (map->len > 1) {
2040 			map->queues[pos] = map->queues[--map->len];
2041 			break;
2042 		}
2043 
2044 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2045 		kfree_rcu(map, rcu);
2046 		return false;
2047 	}
2048 
2049 	return true;
2050 }
2051 
2052 static bool remove_xps_queue_cpu(struct net_device *dev,
2053 				 struct xps_dev_maps *dev_maps,
2054 				 int cpu, u16 offset, u16 count)
2055 {
2056 	int num_tc = dev->num_tc ? : 1;
2057 	bool active = false;
2058 	int tci;
2059 
2060 	for (tci = cpu * num_tc; num_tc--; tci++) {
2061 		int i, j;
2062 
2063 		for (i = count, j = offset; i--; j++) {
2064 			if (!remove_xps_queue(dev_maps, cpu, j))
2065 				break;
2066 		}
2067 
2068 		active |= i < 0;
2069 	}
2070 
2071 	return active;
2072 }
2073 
2074 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2075 				   u16 count)
2076 {
2077 	struct xps_dev_maps *dev_maps;
2078 	int cpu, i;
2079 	bool active = false;
2080 
2081 	mutex_lock(&xps_map_mutex);
2082 	dev_maps = xmap_dereference(dev->xps_maps);
2083 
2084 	if (!dev_maps)
2085 		goto out_no_maps;
2086 
2087 	for_each_possible_cpu(cpu)
2088 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2089 					       offset, count);
2090 
2091 	if (!active) {
2092 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2093 		kfree_rcu(dev_maps, rcu);
2094 	}
2095 
2096 	for (i = offset + (count - 1); count--; i--)
2097 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2098 					     NUMA_NO_NODE);
2099 
2100 out_no_maps:
2101 	mutex_unlock(&xps_map_mutex);
2102 }
2103 
2104 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2105 {
2106 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2107 }
2108 
2109 static struct xps_map *expand_xps_map(struct xps_map *map,
2110 				      int cpu, u16 index)
2111 {
2112 	struct xps_map *new_map;
2113 	int alloc_len = XPS_MIN_MAP_ALLOC;
2114 	int i, pos;
2115 
2116 	for (pos = 0; map && pos < map->len; pos++) {
2117 		if (map->queues[pos] != index)
2118 			continue;
2119 		return map;
2120 	}
2121 
2122 	/* Need to add queue to this CPU's existing map */
2123 	if (map) {
2124 		if (pos < map->alloc_len)
2125 			return map;
2126 
2127 		alloc_len = map->alloc_len * 2;
2128 	}
2129 
2130 	/* Need to allocate new map to store queue on this CPU's map */
2131 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2132 			       cpu_to_node(cpu));
2133 	if (!new_map)
2134 		return NULL;
2135 
2136 	for (i = 0; i < pos; i++)
2137 		new_map->queues[i] = map->queues[i];
2138 	new_map->alloc_len = alloc_len;
2139 	new_map->len = pos;
2140 
2141 	return new_map;
2142 }
2143 
2144 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2145 			u16 index)
2146 {
2147 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2148 	int i, cpu, tci, numa_node_id = -2;
2149 	int maps_sz, num_tc = 1, tc = 0;
2150 	struct xps_map *map, *new_map;
2151 	bool active = false;
2152 
2153 	if (dev->num_tc) {
2154 		num_tc = dev->num_tc;
2155 		tc = netdev_txq_to_tc(dev, index);
2156 		if (tc < 0)
2157 			return -EINVAL;
2158 	}
2159 
2160 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2161 	if (maps_sz < L1_CACHE_BYTES)
2162 		maps_sz = L1_CACHE_BYTES;
2163 
2164 	mutex_lock(&xps_map_mutex);
2165 
2166 	dev_maps = xmap_dereference(dev->xps_maps);
2167 
2168 	/* allocate memory for queue storage */
2169 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2170 		if (!new_dev_maps)
2171 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2172 		if (!new_dev_maps) {
2173 			mutex_unlock(&xps_map_mutex);
2174 			return -ENOMEM;
2175 		}
2176 
2177 		tci = cpu * num_tc + tc;
2178 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2179 				 NULL;
2180 
2181 		map = expand_xps_map(map, cpu, index);
2182 		if (!map)
2183 			goto error;
2184 
2185 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2186 	}
2187 
2188 	if (!new_dev_maps)
2189 		goto out_no_new_maps;
2190 
2191 	for_each_possible_cpu(cpu) {
2192 		/* copy maps belonging to foreign traffic classes */
2193 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2194 			/* fill in the new device map from the old device map */
2195 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2196 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2197 		}
2198 
2199 		/* We need to explicitly update tci as prevous loop
2200 		 * could break out early if dev_maps is NULL.
2201 		 */
2202 		tci = cpu * num_tc + tc;
2203 
2204 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2205 			/* add queue to CPU maps */
2206 			int pos = 0;
2207 
2208 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2209 			while ((pos < map->len) && (map->queues[pos] != index))
2210 				pos++;
2211 
2212 			if (pos == map->len)
2213 				map->queues[map->len++] = index;
2214 #ifdef CONFIG_NUMA
2215 			if (numa_node_id == -2)
2216 				numa_node_id = cpu_to_node(cpu);
2217 			else if (numa_node_id != cpu_to_node(cpu))
2218 				numa_node_id = -1;
2219 #endif
2220 		} else if (dev_maps) {
2221 			/* fill in the new device map from the old device map */
2222 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2223 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2224 		}
2225 
2226 		/* copy maps belonging to foreign traffic classes */
2227 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2228 			/* fill in the new device map from the old device map */
2229 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2230 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2231 		}
2232 	}
2233 
2234 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2235 
2236 	/* Cleanup old maps */
2237 	if (!dev_maps)
2238 		goto out_no_old_maps;
2239 
2240 	for_each_possible_cpu(cpu) {
2241 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2242 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2243 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2244 			if (map && map != new_map)
2245 				kfree_rcu(map, rcu);
2246 		}
2247 	}
2248 
2249 	kfree_rcu(dev_maps, rcu);
2250 
2251 out_no_old_maps:
2252 	dev_maps = new_dev_maps;
2253 	active = true;
2254 
2255 out_no_new_maps:
2256 	/* update Tx queue numa node */
2257 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2258 				     (numa_node_id >= 0) ? numa_node_id :
2259 				     NUMA_NO_NODE);
2260 
2261 	if (!dev_maps)
2262 		goto out_no_maps;
2263 
2264 	/* removes queue from unused CPUs */
2265 	for_each_possible_cpu(cpu) {
2266 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2267 			active |= remove_xps_queue(dev_maps, tci, index);
2268 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2269 			active |= remove_xps_queue(dev_maps, tci, index);
2270 		for (i = num_tc - tc, tci++; --i; tci++)
2271 			active |= remove_xps_queue(dev_maps, tci, index);
2272 	}
2273 
2274 	/* free map if not active */
2275 	if (!active) {
2276 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2277 		kfree_rcu(dev_maps, rcu);
2278 	}
2279 
2280 out_no_maps:
2281 	mutex_unlock(&xps_map_mutex);
2282 
2283 	return 0;
2284 error:
2285 	/* remove any maps that we added */
2286 	for_each_possible_cpu(cpu) {
2287 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2288 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2289 			map = dev_maps ?
2290 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2291 			      NULL;
2292 			if (new_map && new_map != map)
2293 				kfree(new_map);
2294 		}
2295 	}
2296 
2297 	mutex_unlock(&xps_map_mutex);
2298 
2299 	kfree(new_dev_maps);
2300 	return -ENOMEM;
2301 }
2302 EXPORT_SYMBOL(netif_set_xps_queue);
2303 
2304 #endif
2305 void netdev_reset_tc(struct net_device *dev)
2306 {
2307 #ifdef CONFIG_XPS
2308 	netif_reset_xps_queues_gt(dev, 0);
2309 #endif
2310 	dev->num_tc = 0;
2311 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2312 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2313 }
2314 EXPORT_SYMBOL(netdev_reset_tc);
2315 
2316 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2317 {
2318 	if (tc >= dev->num_tc)
2319 		return -EINVAL;
2320 
2321 #ifdef CONFIG_XPS
2322 	netif_reset_xps_queues(dev, offset, count);
2323 #endif
2324 	dev->tc_to_txq[tc].count = count;
2325 	dev->tc_to_txq[tc].offset = offset;
2326 	return 0;
2327 }
2328 EXPORT_SYMBOL(netdev_set_tc_queue);
2329 
2330 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2331 {
2332 	if (num_tc > TC_MAX_QUEUE)
2333 		return -EINVAL;
2334 
2335 #ifdef CONFIG_XPS
2336 	netif_reset_xps_queues_gt(dev, 0);
2337 #endif
2338 	dev->num_tc = num_tc;
2339 	return 0;
2340 }
2341 EXPORT_SYMBOL(netdev_set_num_tc);
2342 
2343 /*
2344  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2345  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2346  */
2347 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2348 {
2349 	int rc;
2350 
2351 	if (txq < 1 || txq > dev->num_tx_queues)
2352 		return -EINVAL;
2353 
2354 	if (dev->reg_state == NETREG_REGISTERED ||
2355 	    dev->reg_state == NETREG_UNREGISTERING) {
2356 		ASSERT_RTNL();
2357 
2358 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2359 						  txq);
2360 		if (rc)
2361 			return rc;
2362 
2363 		if (dev->num_tc)
2364 			netif_setup_tc(dev, txq);
2365 
2366 		if (txq < dev->real_num_tx_queues) {
2367 			qdisc_reset_all_tx_gt(dev, txq);
2368 #ifdef CONFIG_XPS
2369 			netif_reset_xps_queues_gt(dev, txq);
2370 #endif
2371 		}
2372 	}
2373 
2374 	dev->real_num_tx_queues = txq;
2375 	return 0;
2376 }
2377 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2378 
2379 #ifdef CONFIG_SYSFS
2380 /**
2381  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2382  *	@dev: Network device
2383  *	@rxq: Actual number of RX queues
2384  *
2385  *	This must be called either with the rtnl_lock held or before
2386  *	registration of the net device.  Returns 0 on success, or a
2387  *	negative error code.  If called before registration, it always
2388  *	succeeds.
2389  */
2390 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2391 {
2392 	int rc;
2393 
2394 	if (rxq < 1 || rxq > dev->num_rx_queues)
2395 		return -EINVAL;
2396 
2397 	if (dev->reg_state == NETREG_REGISTERED) {
2398 		ASSERT_RTNL();
2399 
2400 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2401 						  rxq);
2402 		if (rc)
2403 			return rc;
2404 	}
2405 
2406 	dev->real_num_rx_queues = rxq;
2407 	return 0;
2408 }
2409 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2410 #endif
2411 
2412 /**
2413  * netif_get_num_default_rss_queues - default number of RSS queues
2414  *
2415  * This routine should set an upper limit on the number of RSS queues
2416  * used by default by multiqueue devices.
2417  */
2418 int netif_get_num_default_rss_queues(void)
2419 {
2420 	return is_kdump_kernel() ?
2421 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2422 }
2423 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2424 
2425 static void __netif_reschedule(struct Qdisc *q)
2426 {
2427 	struct softnet_data *sd;
2428 	unsigned long flags;
2429 
2430 	local_irq_save(flags);
2431 	sd = this_cpu_ptr(&softnet_data);
2432 	q->next_sched = NULL;
2433 	*sd->output_queue_tailp = q;
2434 	sd->output_queue_tailp = &q->next_sched;
2435 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2436 	local_irq_restore(flags);
2437 }
2438 
2439 void __netif_schedule(struct Qdisc *q)
2440 {
2441 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2442 		__netif_reschedule(q);
2443 }
2444 EXPORT_SYMBOL(__netif_schedule);
2445 
2446 struct dev_kfree_skb_cb {
2447 	enum skb_free_reason reason;
2448 };
2449 
2450 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2451 {
2452 	return (struct dev_kfree_skb_cb *)skb->cb;
2453 }
2454 
2455 void netif_schedule_queue(struct netdev_queue *txq)
2456 {
2457 	rcu_read_lock();
2458 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2459 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2460 
2461 		__netif_schedule(q);
2462 	}
2463 	rcu_read_unlock();
2464 }
2465 EXPORT_SYMBOL(netif_schedule_queue);
2466 
2467 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2468 {
2469 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2470 		struct Qdisc *q;
2471 
2472 		rcu_read_lock();
2473 		q = rcu_dereference(dev_queue->qdisc);
2474 		__netif_schedule(q);
2475 		rcu_read_unlock();
2476 	}
2477 }
2478 EXPORT_SYMBOL(netif_tx_wake_queue);
2479 
2480 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2481 {
2482 	unsigned long flags;
2483 
2484 	if (unlikely(!skb))
2485 		return;
2486 
2487 	if (likely(refcount_read(&skb->users) == 1)) {
2488 		smp_rmb();
2489 		refcount_set(&skb->users, 0);
2490 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2491 		return;
2492 	}
2493 	get_kfree_skb_cb(skb)->reason = reason;
2494 	local_irq_save(flags);
2495 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2496 	__this_cpu_write(softnet_data.completion_queue, skb);
2497 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2498 	local_irq_restore(flags);
2499 }
2500 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2501 
2502 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2503 {
2504 	if (in_irq() || irqs_disabled())
2505 		__dev_kfree_skb_irq(skb, reason);
2506 	else
2507 		dev_kfree_skb(skb);
2508 }
2509 EXPORT_SYMBOL(__dev_kfree_skb_any);
2510 
2511 
2512 /**
2513  * netif_device_detach - mark device as removed
2514  * @dev: network device
2515  *
2516  * Mark device as removed from system and therefore no longer available.
2517  */
2518 void netif_device_detach(struct net_device *dev)
2519 {
2520 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2521 	    netif_running(dev)) {
2522 		netif_tx_stop_all_queues(dev);
2523 	}
2524 }
2525 EXPORT_SYMBOL(netif_device_detach);
2526 
2527 /**
2528  * netif_device_attach - mark device as attached
2529  * @dev: network device
2530  *
2531  * Mark device as attached from system and restart if needed.
2532  */
2533 void netif_device_attach(struct net_device *dev)
2534 {
2535 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2536 	    netif_running(dev)) {
2537 		netif_tx_wake_all_queues(dev);
2538 		__netdev_watchdog_up(dev);
2539 	}
2540 }
2541 EXPORT_SYMBOL(netif_device_attach);
2542 
2543 /*
2544  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2545  * to be used as a distribution range.
2546  */
2547 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2548 		  unsigned int num_tx_queues)
2549 {
2550 	u32 hash;
2551 	u16 qoffset = 0;
2552 	u16 qcount = num_tx_queues;
2553 
2554 	if (skb_rx_queue_recorded(skb)) {
2555 		hash = skb_get_rx_queue(skb);
2556 		while (unlikely(hash >= num_tx_queues))
2557 			hash -= num_tx_queues;
2558 		return hash;
2559 	}
2560 
2561 	if (dev->num_tc) {
2562 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2563 
2564 		qoffset = dev->tc_to_txq[tc].offset;
2565 		qcount = dev->tc_to_txq[tc].count;
2566 	}
2567 
2568 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2569 }
2570 EXPORT_SYMBOL(__skb_tx_hash);
2571 
2572 static void skb_warn_bad_offload(const struct sk_buff *skb)
2573 {
2574 	static const netdev_features_t null_features;
2575 	struct net_device *dev = skb->dev;
2576 	const char *name = "";
2577 
2578 	if (!net_ratelimit())
2579 		return;
2580 
2581 	if (dev) {
2582 		if (dev->dev.parent)
2583 			name = dev_driver_string(dev->dev.parent);
2584 		else
2585 			name = netdev_name(dev);
2586 	}
2587 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2588 	     "gso_type=%d ip_summed=%d\n",
2589 	     name, dev ? &dev->features : &null_features,
2590 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2591 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2592 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2593 }
2594 
2595 /*
2596  * Invalidate hardware checksum when packet is to be mangled, and
2597  * complete checksum manually on outgoing path.
2598  */
2599 int skb_checksum_help(struct sk_buff *skb)
2600 {
2601 	__wsum csum;
2602 	int ret = 0, offset;
2603 
2604 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2605 		goto out_set_summed;
2606 
2607 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2608 		skb_warn_bad_offload(skb);
2609 		return -EINVAL;
2610 	}
2611 
2612 	/* Before computing a checksum, we should make sure no frag could
2613 	 * be modified by an external entity : checksum could be wrong.
2614 	 */
2615 	if (skb_has_shared_frag(skb)) {
2616 		ret = __skb_linearize(skb);
2617 		if (ret)
2618 			goto out;
2619 	}
2620 
2621 	offset = skb_checksum_start_offset(skb);
2622 	BUG_ON(offset >= skb_headlen(skb));
2623 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2624 
2625 	offset += skb->csum_offset;
2626 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2627 
2628 	if (skb_cloned(skb) &&
2629 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2630 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2631 		if (ret)
2632 			goto out;
2633 	}
2634 
2635 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2636 out_set_summed:
2637 	skb->ip_summed = CHECKSUM_NONE;
2638 out:
2639 	return ret;
2640 }
2641 EXPORT_SYMBOL(skb_checksum_help);
2642 
2643 int skb_crc32c_csum_help(struct sk_buff *skb)
2644 {
2645 	__le32 crc32c_csum;
2646 	int ret = 0, offset, start;
2647 
2648 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2649 		goto out;
2650 
2651 	if (unlikely(skb_is_gso(skb)))
2652 		goto out;
2653 
2654 	/* Before computing a checksum, we should make sure no frag could
2655 	 * be modified by an external entity : checksum could be wrong.
2656 	 */
2657 	if (unlikely(skb_has_shared_frag(skb))) {
2658 		ret = __skb_linearize(skb);
2659 		if (ret)
2660 			goto out;
2661 	}
2662 	start = skb_checksum_start_offset(skb);
2663 	offset = start + offsetof(struct sctphdr, checksum);
2664 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2665 		ret = -EINVAL;
2666 		goto out;
2667 	}
2668 	if (skb_cloned(skb) &&
2669 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2670 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2671 		if (ret)
2672 			goto out;
2673 	}
2674 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2675 						  skb->len - start, ~(__u32)0,
2676 						  crc32c_csum_stub));
2677 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2678 	skb->ip_summed = CHECKSUM_NONE;
2679 	skb->csum_not_inet = 0;
2680 out:
2681 	return ret;
2682 }
2683 
2684 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2685 {
2686 	__be16 type = skb->protocol;
2687 
2688 	/* Tunnel gso handlers can set protocol to ethernet. */
2689 	if (type == htons(ETH_P_TEB)) {
2690 		struct ethhdr *eth;
2691 
2692 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2693 			return 0;
2694 
2695 		eth = (struct ethhdr *)skb_mac_header(skb);
2696 		type = eth->h_proto;
2697 	}
2698 
2699 	return __vlan_get_protocol(skb, type, depth);
2700 }
2701 
2702 /**
2703  *	skb_mac_gso_segment - mac layer segmentation handler.
2704  *	@skb: buffer to segment
2705  *	@features: features for the output path (see dev->features)
2706  */
2707 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2708 				    netdev_features_t features)
2709 {
2710 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2711 	struct packet_offload *ptype;
2712 	int vlan_depth = skb->mac_len;
2713 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2714 
2715 	if (unlikely(!type))
2716 		return ERR_PTR(-EINVAL);
2717 
2718 	__skb_pull(skb, vlan_depth);
2719 
2720 	rcu_read_lock();
2721 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2722 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2723 			segs = ptype->callbacks.gso_segment(skb, features);
2724 			break;
2725 		}
2726 	}
2727 	rcu_read_unlock();
2728 
2729 	__skb_push(skb, skb->data - skb_mac_header(skb));
2730 
2731 	return segs;
2732 }
2733 EXPORT_SYMBOL(skb_mac_gso_segment);
2734 
2735 
2736 /* openvswitch calls this on rx path, so we need a different check.
2737  */
2738 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2739 {
2740 	if (tx_path)
2741 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2742 		       skb->ip_summed != CHECKSUM_NONE;
2743 
2744 	return skb->ip_summed == CHECKSUM_NONE;
2745 }
2746 
2747 /**
2748  *	__skb_gso_segment - Perform segmentation on skb.
2749  *	@skb: buffer to segment
2750  *	@features: features for the output path (see dev->features)
2751  *	@tx_path: whether it is called in TX path
2752  *
2753  *	This function segments the given skb and returns a list of segments.
2754  *
2755  *	It may return NULL if the skb requires no segmentation.  This is
2756  *	only possible when GSO is used for verifying header integrity.
2757  *
2758  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2759  */
2760 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2761 				  netdev_features_t features, bool tx_path)
2762 {
2763 	struct sk_buff *segs;
2764 
2765 	if (unlikely(skb_needs_check(skb, tx_path))) {
2766 		int err;
2767 
2768 		/* We're going to init ->check field in TCP or UDP header */
2769 		err = skb_cow_head(skb, 0);
2770 		if (err < 0)
2771 			return ERR_PTR(err);
2772 	}
2773 
2774 	/* Only report GSO partial support if it will enable us to
2775 	 * support segmentation on this frame without needing additional
2776 	 * work.
2777 	 */
2778 	if (features & NETIF_F_GSO_PARTIAL) {
2779 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2780 		struct net_device *dev = skb->dev;
2781 
2782 		partial_features |= dev->features & dev->gso_partial_features;
2783 		if (!skb_gso_ok(skb, features | partial_features))
2784 			features &= ~NETIF_F_GSO_PARTIAL;
2785 	}
2786 
2787 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2788 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2789 
2790 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2791 	SKB_GSO_CB(skb)->encap_level = 0;
2792 
2793 	skb_reset_mac_header(skb);
2794 	skb_reset_mac_len(skb);
2795 
2796 	segs = skb_mac_gso_segment(skb, features);
2797 
2798 	if (unlikely(skb_needs_check(skb, tx_path)))
2799 		skb_warn_bad_offload(skb);
2800 
2801 	return segs;
2802 }
2803 EXPORT_SYMBOL(__skb_gso_segment);
2804 
2805 /* Take action when hardware reception checksum errors are detected. */
2806 #ifdef CONFIG_BUG
2807 void netdev_rx_csum_fault(struct net_device *dev)
2808 {
2809 	if (net_ratelimit()) {
2810 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2811 		dump_stack();
2812 	}
2813 }
2814 EXPORT_SYMBOL(netdev_rx_csum_fault);
2815 #endif
2816 
2817 /* Actually, we should eliminate this check as soon as we know, that:
2818  * 1. IOMMU is present and allows to map all the memory.
2819  * 2. No high memory really exists on this machine.
2820  */
2821 
2822 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2823 {
2824 #ifdef CONFIG_HIGHMEM
2825 	int i;
2826 
2827 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2828 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2829 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2830 
2831 			if (PageHighMem(skb_frag_page(frag)))
2832 				return 1;
2833 		}
2834 	}
2835 
2836 	if (PCI_DMA_BUS_IS_PHYS) {
2837 		struct device *pdev = dev->dev.parent;
2838 
2839 		if (!pdev)
2840 			return 0;
2841 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2842 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2843 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2844 
2845 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2846 				return 1;
2847 		}
2848 	}
2849 #endif
2850 	return 0;
2851 }
2852 
2853 /* If MPLS offload request, verify we are testing hardware MPLS features
2854  * instead of standard features for the netdev.
2855  */
2856 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2857 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2858 					   netdev_features_t features,
2859 					   __be16 type)
2860 {
2861 	if (eth_p_mpls(type))
2862 		features &= skb->dev->mpls_features;
2863 
2864 	return features;
2865 }
2866 #else
2867 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2868 					   netdev_features_t features,
2869 					   __be16 type)
2870 {
2871 	return features;
2872 }
2873 #endif
2874 
2875 static netdev_features_t harmonize_features(struct sk_buff *skb,
2876 	netdev_features_t features)
2877 {
2878 	int tmp;
2879 	__be16 type;
2880 
2881 	type = skb_network_protocol(skb, &tmp);
2882 	features = net_mpls_features(skb, features, type);
2883 
2884 	if (skb->ip_summed != CHECKSUM_NONE &&
2885 	    !can_checksum_protocol(features, type)) {
2886 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2887 	}
2888 	if (illegal_highdma(skb->dev, skb))
2889 		features &= ~NETIF_F_SG;
2890 
2891 	return features;
2892 }
2893 
2894 netdev_features_t passthru_features_check(struct sk_buff *skb,
2895 					  struct net_device *dev,
2896 					  netdev_features_t features)
2897 {
2898 	return features;
2899 }
2900 EXPORT_SYMBOL(passthru_features_check);
2901 
2902 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2903 					     struct net_device *dev,
2904 					     netdev_features_t features)
2905 {
2906 	return vlan_features_check(skb, features);
2907 }
2908 
2909 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2910 					    struct net_device *dev,
2911 					    netdev_features_t features)
2912 {
2913 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2914 
2915 	if (gso_segs > dev->gso_max_segs)
2916 		return features & ~NETIF_F_GSO_MASK;
2917 
2918 	/* Support for GSO partial features requires software
2919 	 * intervention before we can actually process the packets
2920 	 * so we need to strip support for any partial features now
2921 	 * and we can pull them back in after we have partially
2922 	 * segmented the frame.
2923 	 */
2924 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2925 		features &= ~dev->gso_partial_features;
2926 
2927 	/* Make sure to clear the IPv4 ID mangling feature if the
2928 	 * IPv4 header has the potential to be fragmented.
2929 	 */
2930 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2931 		struct iphdr *iph = skb->encapsulation ?
2932 				    inner_ip_hdr(skb) : ip_hdr(skb);
2933 
2934 		if (!(iph->frag_off & htons(IP_DF)))
2935 			features &= ~NETIF_F_TSO_MANGLEID;
2936 	}
2937 
2938 	return features;
2939 }
2940 
2941 netdev_features_t netif_skb_features(struct sk_buff *skb)
2942 {
2943 	struct net_device *dev = skb->dev;
2944 	netdev_features_t features = dev->features;
2945 
2946 	if (skb_is_gso(skb))
2947 		features = gso_features_check(skb, dev, features);
2948 
2949 	/* If encapsulation offload request, verify we are testing
2950 	 * hardware encapsulation features instead of standard
2951 	 * features for the netdev
2952 	 */
2953 	if (skb->encapsulation)
2954 		features &= dev->hw_enc_features;
2955 
2956 	if (skb_vlan_tagged(skb))
2957 		features = netdev_intersect_features(features,
2958 						     dev->vlan_features |
2959 						     NETIF_F_HW_VLAN_CTAG_TX |
2960 						     NETIF_F_HW_VLAN_STAG_TX);
2961 
2962 	if (dev->netdev_ops->ndo_features_check)
2963 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2964 								features);
2965 	else
2966 		features &= dflt_features_check(skb, dev, features);
2967 
2968 	return harmonize_features(skb, features);
2969 }
2970 EXPORT_SYMBOL(netif_skb_features);
2971 
2972 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2973 		    struct netdev_queue *txq, bool more)
2974 {
2975 	unsigned int len;
2976 	int rc;
2977 
2978 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2979 		dev_queue_xmit_nit(skb, dev);
2980 
2981 	len = skb->len;
2982 	trace_net_dev_start_xmit(skb, dev);
2983 	rc = netdev_start_xmit(skb, dev, txq, more);
2984 	trace_net_dev_xmit(skb, rc, dev, len);
2985 
2986 	return rc;
2987 }
2988 
2989 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2990 				    struct netdev_queue *txq, int *ret)
2991 {
2992 	struct sk_buff *skb = first;
2993 	int rc = NETDEV_TX_OK;
2994 
2995 	while (skb) {
2996 		struct sk_buff *next = skb->next;
2997 
2998 		skb->next = NULL;
2999 		rc = xmit_one(skb, dev, txq, next != NULL);
3000 		if (unlikely(!dev_xmit_complete(rc))) {
3001 			skb->next = next;
3002 			goto out;
3003 		}
3004 
3005 		skb = next;
3006 		if (netif_xmit_stopped(txq) && skb) {
3007 			rc = NETDEV_TX_BUSY;
3008 			break;
3009 		}
3010 	}
3011 
3012 out:
3013 	*ret = rc;
3014 	return skb;
3015 }
3016 
3017 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3018 					  netdev_features_t features)
3019 {
3020 	if (skb_vlan_tag_present(skb) &&
3021 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3022 		skb = __vlan_hwaccel_push_inside(skb);
3023 	return skb;
3024 }
3025 
3026 int skb_csum_hwoffload_help(struct sk_buff *skb,
3027 			    const netdev_features_t features)
3028 {
3029 	if (unlikely(skb->csum_not_inet))
3030 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3031 			skb_crc32c_csum_help(skb);
3032 
3033 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3034 }
3035 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3036 
3037 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3038 {
3039 	netdev_features_t features;
3040 
3041 	features = netif_skb_features(skb);
3042 	skb = validate_xmit_vlan(skb, features);
3043 	if (unlikely(!skb))
3044 		goto out_null;
3045 
3046 	if (netif_needs_gso(skb, features)) {
3047 		struct sk_buff *segs;
3048 
3049 		segs = skb_gso_segment(skb, features);
3050 		if (IS_ERR(segs)) {
3051 			goto out_kfree_skb;
3052 		} else if (segs) {
3053 			consume_skb(skb);
3054 			skb = segs;
3055 		}
3056 	} else {
3057 		if (skb_needs_linearize(skb, features) &&
3058 		    __skb_linearize(skb))
3059 			goto out_kfree_skb;
3060 
3061 		if (validate_xmit_xfrm(skb, features))
3062 			goto out_kfree_skb;
3063 
3064 		/* If packet is not checksummed and device does not
3065 		 * support checksumming for this protocol, complete
3066 		 * checksumming here.
3067 		 */
3068 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3069 			if (skb->encapsulation)
3070 				skb_set_inner_transport_header(skb,
3071 							       skb_checksum_start_offset(skb));
3072 			else
3073 				skb_set_transport_header(skb,
3074 							 skb_checksum_start_offset(skb));
3075 			if (skb_csum_hwoffload_help(skb, features))
3076 				goto out_kfree_skb;
3077 		}
3078 	}
3079 
3080 	return skb;
3081 
3082 out_kfree_skb:
3083 	kfree_skb(skb);
3084 out_null:
3085 	atomic_long_inc(&dev->tx_dropped);
3086 	return NULL;
3087 }
3088 
3089 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3090 {
3091 	struct sk_buff *next, *head = NULL, *tail;
3092 
3093 	for (; skb != NULL; skb = next) {
3094 		next = skb->next;
3095 		skb->next = NULL;
3096 
3097 		/* in case skb wont be segmented, point to itself */
3098 		skb->prev = skb;
3099 
3100 		skb = validate_xmit_skb(skb, dev);
3101 		if (!skb)
3102 			continue;
3103 
3104 		if (!head)
3105 			head = skb;
3106 		else
3107 			tail->next = skb;
3108 		/* If skb was segmented, skb->prev points to
3109 		 * the last segment. If not, it still contains skb.
3110 		 */
3111 		tail = skb->prev;
3112 	}
3113 	return head;
3114 }
3115 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3116 
3117 static void qdisc_pkt_len_init(struct sk_buff *skb)
3118 {
3119 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3120 
3121 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3122 
3123 	/* To get more precise estimation of bytes sent on wire,
3124 	 * we add to pkt_len the headers size of all segments
3125 	 */
3126 	if (shinfo->gso_size)  {
3127 		unsigned int hdr_len;
3128 		u16 gso_segs = shinfo->gso_segs;
3129 
3130 		/* mac layer + network layer */
3131 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3132 
3133 		/* + transport layer */
3134 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3135 			hdr_len += tcp_hdrlen(skb);
3136 		else
3137 			hdr_len += sizeof(struct udphdr);
3138 
3139 		if (shinfo->gso_type & SKB_GSO_DODGY)
3140 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3141 						shinfo->gso_size);
3142 
3143 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3144 	}
3145 }
3146 
3147 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3148 				 struct net_device *dev,
3149 				 struct netdev_queue *txq)
3150 {
3151 	spinlock_t *root_lock = qdisc_lock(q);
3152 	struct sk_buff *to_free = NULL;
3153 	bool contended;
3154 	int rc;
3155 
3156 	qdisc_calculate_pkt_len(skb, q);
3157 	/*
3158 	 * Heuristic to force contended enqueues to serialize on a
3159 	 * separate lock before trying to get qdisc main lock.
3160 	 * This permits qdisc->running owner to get the lock more
3161 	 * often and dequeue packets faster.
3162 	 */
3163 	contended = qdisc_is_running(q);
3164 	if (unlikely(contended))
3165 		spin_lock(&q->busylock);
3166 
3167 	spin_lock(root_lock);
3168 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3169 		__qdisc_drop(skb, &to_free);
3170 		rc = NET_XMIT_DROP;
3171 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3172 		   qdisc_run_begin(q)) {
3173 		/*
3174 		 * This is a work-conserving queue; there are no old skbs
3175 		 * waiting to be sent out; and the qdisc is not running -
3176 		 * xmit the skb directly.
3177 		 */
3178 
3179 		qdisc_bstats_update(q, skb);
3180 
3181 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3182 			if (unlikely(contended)) {
3183 				spin_unlock(&q->busylock);
3184 				contended = false;
3185 			}
3186 			__qdisc_run(q);
3187 		} else
3188 			qdisc_run_end(q);
3189 
3190 		rc = NET_XMIT_SUCCESS;
3191 	} else {
3192 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3193 		if (qdisc_run_begin(q)) {
3194 			if (unlikely(contended)) {
3195 				spin_unlock(&q->busylock);
3196 				contended = false;
3197 			}
3198 			__qdisc_run(q);
3199 		}
3200 	}
3201 	spin_unlock(root_lock);
3202 	if (unlikely(to_free))
3203 		kfree_skb_list(to_free);
3204 	if (unlikely(contended))
3205 		spin_unlock(&q->busylock);
3206 	return rc;
3207 }
3208 
3209 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3210 static void skb_update_prio(struct sk_buff *skb)
3211 {
3212 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3213 
3214 	if (!skb->priority && skb->sk && map) {
3215 		unsigned int prioidx =
3216 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3217 
3218 		if (prioidx < map->priomap_len)
3219 			skb->priority = map->priomap[prioidx];
3220 	}
3221 }
3222 #else
3223 #define skb_update_prio(skb)
3224 #endif
3225 
3226 DEFINE_PER_CPU(int, xmit_recursion);
3227 EXPORT_SYMBOL(xmit_recursion);
3228 
3229 /**
3230  *	dev_loopback_xmit - loop back @skb
3231  *	@net: network namespace this loopback is happening in
3232  *	@sk:  sk needed to be a netfilter okfn
3233  *	@skb: buffer to transmit
3234  */
3235 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3236 {
3237 	skb_reset_mac_header(skb);
3238 	__skb_pull(skb, skb_network_offset(skb));
3239 	skb->pkt_type = PACKET_LOOPBACK;
3240 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3241 	WARN_ON(!skb_dst(skb));
3242 	skb_dst_force(skb);
3243 	netif_rx_ni(skb);
3244 	return 0;
3245 }
3246 EXPORT_SYMBOL(dev_loopback_xmit);
3247 
3248 #ifdef CONFIG_NET_EGRESS
3249 static struct sk_buff *
3250 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3251 {
3252 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3253 	struct tcf_result cl_res;
3254 
3255 	if (!cl)
3256 		return skb;
3257 
3258 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3259 	qdisc_bstats_cpu_update(cl->q, skb);
3260 
3261 	switch (tcf_classify(skb, cl, &cl_res, false)) {
3262 	case TC_ACT_OK:
3263 	case TC_ACT_RECLASSIFY:
3264 		skb->tc_index = TC_H_MIN(cl_res.classid);
3265 		break;
3266 	case TC_ACT_SHOT:
3267 		qdisc_qstats_cpu_drop(cl->q);
3268 		*ret = NET_XMIT_DROP;
3269 		kfree_skb(skb);
3270 		return NULL;
3271 	case TC_ACT_STOLEN:
3272 	case TC_ACT_QUEUED:
3273 	case TC_ACT_TRAP:
3274 		*ret = NET_XMIT_SUCCESS;
3275 		consume_skb(skb);
3276 		return NULL;
3277 	case TC_ACT_REDIRECT:
3278 		/* No need to push/pop skb's mac_header here on egress! */
3279 		skb_do_redirect(skb);
3280 		*ret = NET_XMIT_SUCCESS;
3281 		return NULL;
3282 	default:
3283 		break;
3284 	}
3285 
3286 	return skb;
3287 }
3288 #endif /* CONFIG_NET_EGRESS */
3289 
3290 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3291 {
3292 #ifdef CONFIG_XPS
3293 	struct xps_dev_maps *dev_maps;
3294 	struct xps_map *map;
3295 	int queue_index = -1;
3296 
3297 	rcu_read_lock();
3298 	dev_maps = rcu_dereference(dev->xps_maps);
3299 	if (dev_maps) {
3300 		unsigned int tci = skb->sender_cpu - 1;
3301 
3302 		if (dev->num_tc) {
3303 			tci *= dev->num_tc;
3304 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3305 		}
3306 
3307 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3308 		if (map) {
3309 			if (map->len == 1)
3310 				queue_index = map->queues[0];
3311 			else
3312 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3313 									   map->len)];
3314 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3315 				queue_index = -1;
3316 		}
3317 	}
3318 	rcu_read_unlock();
3319 
3320 	return queue_index;
3321 #else
3322 	return -1;
3323 #endif
3324 }
3325 
3326 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3327 {
3328 	struct sock *sk = skb->sk;
3329 	int queue_index = sk_tx_queue_get(sk);
3330 
3331 	if (queue_index < 0 || skb->ooo_okay ||
3332 	    queue_index >= dev->real_num_tx_queues) {
3333 		int new_index = get_xps_queue(dev, skb);
3334 
3335 		if (new_index < 0)
3336 			new_index = skb_tx_hash(dev, skb);
3337 
3338 		if (queue_index != new_index && sk &&
3339 		    sk_fullsock(sk) &&
3340 		    rcu_access_pointer(sk->sk_dst_cache))
3341 			sk_tx_queue_set(sk, new_index);
3342 
3343 		queue_index = new_index;
3344 	}
3345 
3346 	return queue_index;
3347 }
3348 
3349 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3350 				    struct sk_buff *skb,
3351 				    void *accel_priv)
3352 {
3353 	int queue_index = 0;
3354 
3355 #ifdef CONFIG_XPS
3356 	u32 sender_cpu = skb->sender_cpu - 1;
3357 
3358 	if (sender_cpu >= (u32)NR_CPUS)
3359 		skb->sender_cpu = raw_smp_processor_id() + 1;
3360 #endif
3361 
3362 	if (dev->real_num_tx_queues != 1) {
3363 		const struct net_device_ops *ops = dev->netdev_ops;
3364 
3365 		if (ops->ndo_select_queue)
3366 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3367 							    __netdev_pick_tx);
3368 		else
3369 			queue_index = __netdev_pick_tx(dev, skb);
3370 
3371 		if (!accel_priv)
3372 			queue_index = netdev_cap_txqueue(dev, queue_index);
3373 	}
3374 
3375 	skb_set_queue_mapping(skb, queue_index);
3376 	return netdev_get_tx_queue(dev, queue_index);
3377 }
3378 
3379 /**
3380  *	__dev_queue_xmit - transmit a buffer
3381  *	@skb: buffer to transmit
3382  *	@accel_priv: private data used for L2 forwarding offload
3383  *
3384  *	Queue a buffer for transmission to a network device. The caller must
3385  *	have set the device and priority and built the buffer before calling
3386  *	this function. The function can be called from an interrupt.
3387  *
3388  *	A negative errno code is returned on a failure. A success does not
3389  *	guarantee the frame will be transmitted as it may be dropped due
3390  *	to congestion or traffic shaping.
3391  *
3392  * -----------------------------------------------------------------------------------
3393  *      I notice this method can also return errors from the queue disciplines,
3394  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3395  *      be positive.
3396  *
3397  *      Regardless of the return value, the skb is consumed, so it is currently
3398  *      difficult to retry a send to this method.  (You can bump the ref count
3399  *      before sending to hold a reference for retry if you are careful.)
3400  *
3401  *      When calling this method, interrupts MUST be enabled.  This is because
3402  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3403  *          --BLG
3404  */
3405 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3406 {
3407 	struct net_device *dev = skb->dev;
3408 	struct netdev_queue *txq;
3409 	struct Qdisc *q;
3410 	int rc = -ENOMEM;
3411 
3412 	skb_reset_mac_header(skb);
3413 
3414 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3415 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3416 
3417 	/* Disable soft irqs for various locks below. Also
3418 	 * stops preemption for RCU.
3419 	 */
3420 	rcu_read_lock_bh();
3421 
3422 	skb_update_prio(skb);
3423 
3424 	qdisc_pkt_len_init(skb);
3425 #ifdef CONFIG_NET_CLS_ACT
3426 	skb->tc_at_ingress = 0;
3427 # ifdef CONFIG_NET_EGRESS
3428 	if (static_key_false(&egress_needed)) {
3429 		skb = sch_handle_egress(skb, &rc, dev);
3430 		if (!skb)
3431 			goto out;
3432 	}
3433 # endif
3434 #endif
3435 	/* If device/qdisc don't need skb->dst, release it right now while
3436 	 * its hot in this cpu cache.
3437 	 */
3438 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3439 		skb_dst_drop(skb);
3440 	else
3441 		skb_dst_force(skb);
3442 
3443 	txq = netdev_pick_tx(dev, skb, accel_priv);
3444 	q = rcu_dereference_bh(txq->qdisc);
3445 
3446 	trace_net_dev_queue(skb);
3447 	if (q->enqueue) {
3448 		rc = __dev_xmit_skb(skb, q, dev, txq);
3449 		goto out;
3450 	}
3451 
3452 	/* The device has no queue. Common case for software devices:
3453 	 * loopback, all the sorts of tunnels...
3454 
3455 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3456 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3457 	 * counters.)
3458 	 * However, it is possible, that they rely on protection
3459 	 * made by us here.
3460 
3461 	 * Check this and shot the lock. It is not prone from deadlocks.
3462 	 *Either shot noqueue qdisc, it is even simpler 8)
3463 	 */
3464 	if (dev->flags & IFF_UP) {
3465 		int cpu = smp_processor_id(); /* ok because BHs are off */
3466 
3467 		if (txq->xmit_lock_owner != cpu) {
3468 			if (unlikely(__this_cpu_read(xmit_recursion) >
3469 				     XMIT_RECURSION_LIMIT))
3470 				goto recursion_alert;
3471 
3472 			skb = validate_xmit_skb(skb, dev);
3473 			if (!skb)
3474 				goto out;
3475 
3476 			HARD_TX_LOCK(dev, txq, cpu);
3477 
3478 			if (!netif_xmit_stopped(txq)) {
3479 				__this_cpu_inc(xmit_recursion);
3480 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3481 				__this_cpu_dec(xmit_recursion);
3482 				if (dev_xmit_complete(rc)) {
3483 					HARD_TX_UNLOCK(dev, txq);
3484 					goto out;
3485 				}
3486 			}
3487 			HARD_TX_UNLOCK(dev, txq);
3488 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3489 					     dev->name);
3490 		} else {
3491 			/* Recursion is detected! It is possible,
3492 			 * unfortunately
3493 			 */
3494 recursion_alert:
3495 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3496 					     dev->name);
3497 		}
3498 	}
3499 
3500 	rc = -ENETDOWN;
3501 	rcu_read_unlock_bh();
3502 
3503 	atomic_long_inc(&dev->tx_dropped);
3504 	kfree_skb_list(skb);
3505 	return rc;
3506 out:
3507 	rcu_read_unlock_bh();
3508 	return rc;
3509 }
3510 
3511 int dev_queue_xmit(struct sk_buff *skb)
3512 {
3513 	return __dev_queue_xmit(skb, NULL);
3514 }
3515 EXPORT_SYMBOL(dev_queue_xmit);
3516 
3517 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3518 {
3519 	return __dev_queue_xmit(skb, accel_priv);
3520 }
3521 EXPORT_SYMBOL(dev_queue_xmit_accel);
3522 
3523 
3524 /*************************************************************************
3525  *			Receiver routines
3526  *************************************************************************/
3527 
3528 int netdev_max_backlog __read_mostly = 1000;
3529 EXPORT_SYMBOL(netdev_max_backlog);
3530 
3531 int netdev_tstamp_prequeue __read_mostly = 1;
3532 int netdev_budget __read_mostly = 300;
3533 unsigned int __read_mostly netdev_budget_usecs = 2000;
3534 int weight_p __read_mostly = 64;           /* old backlog weight */
3535 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3536 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3537 int dev_rx_weight __read_mostly = 64;
3538 int dev_tx_weight __read_mostly = 64;
3539 
3540 /* Called with irq disabled */
3541 static inline void ____napi_schedule(struct softnet_data *sd,
3542 				     struct napi_struct *napi)
3543 {
3544 	list_add_tail(&napi->poll_list, &sd->poll_list);
3545 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3546 }
3547 
3548 #ifdef CONFIG_RPS
3549 
3550 /* One global table that all flow-based protocols share. */
3551 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3552 EXPORT_SYMBOL(rps_sock_flow_table);
3553 u32 rps_cpu_mask __read_mostly;
3554 EXPORT_SYMBOL(rps_cpu_mask);
3555 
3556 struct static_key rps_needed __read_mostly;
3557 EXPORT_SYMBOL(rps_needed);
3558 struct static_key rfs_needed __read_mostly;
3559 EXPORT_SYMBOL(rfs_needed);
3560 
3561 static struct rps_dev_flow *
3562 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3563 	    struct rps_dev_flow *rflow, u16 next_cpu)
3564 {
3565 	if (next_cpu < nr_cpu_ids) {
3566 #ifdef CONFIG_RFS_ACCEL
3567 		struct netdev_rx_queue *rxqueue;
3568 		struct rps_dev_flow_table *flow_table;
3569 		struct rps_dev_flow *old_rflow;
3570 		u32 flow_id;
3571 		u16 rxq_index;
3572 		int rc;
3573 
3574 		/* Should we steer this flow to a different hardware queue? */
3575 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3576 		    !(dev->features & NETIF_F_NTUPLE))
3577 			goto out;
3578 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3579 		if (rxq_index == skb_get_rx_queue(skb))
3580 			goto out;
3581 
3582 		rxqueue = dev->_rx + rxq_index;
3583 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3584 		if (!flow_table)
3585 			goto out;
3586 		flow_id = skb_get_hash(skb) & flow_table->mask;
3587 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3588 							rxq_index, flow_id);
3589 		if (rc < 0)
3590 			goto out;
3591 		old_rflow = rflow;
3592 		rflow = &flow_table->flows[flow_id];
3593 		rflow->filter = rc;
3594 		if (old_rflow->filter == rflow->filter)
3595 			old_rflow->filter = RPS_NO_FILTER;
3596 	out:
3597 #endif
3598 		rflow->last_qtail =
3599 			per_cpu(softnet_data, next_cpu).input_queue_head;
3600 	}
3601 
3602 	rflow->cpu = next_cpu;
3603 	return rflow;
3604 }
3605 
3606 /*
3607  * get_rps_cpu is called from netif_receive_skb and returns the target
3608  * CPU from the RPS map of the receiving queue for a given skb.
3609  * rcu_read_lock must be held on entry.
3610  */
3611 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3612 		       struct rps_dev_flow **rflowp)
3613 {
3614 	const struct rps_sock_flow_table *sock_flow_table;
3615 	struct netdev_rx_queue *rxqueue = dev->_rx;
3616 	struct rps_dev_flow_table *flow_table;
3617 	struct rps_map *map;
3618 	int cpu = -1;
3619 	u32 tcpu;
3620 	u32 hash;
3621 
3622 	if (skb_rx_queue_recorded(skb)) {
3623 		u16 index = skb_get_rx_queue(skb);
3624 
3625 		if (unlikely(index >= dev->real_num_rx_queues)) {
3626 			WARN_ONCE(dev->real_num_rx_queues > 1,
3627 				  "%s received packet on queue %u, but number "
3628 				  "of RX queues is %u\n",
3629 				  dev->name, index, dev->real_num_rx_queues);
3630 			goto done;
3631 		}
3632 		rxqueue += index;
3633 	}
3634 
3635 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3636 
3637 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3638 	map = rcu_dereference(rxqueue->rps_map);
3639 	if (!flow_table && !map)
3640 		goto done;
3641 
3642 	skb_reset_network_header(skb);
3643 	hash = skb_get_hash(skb);
3644 	if (!hash)
3645 		goto done;
3646 
3647 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3648 	if (flow_table && sock_flow_table) {
3649 		struct rps_dev_flow *rflow;
3650 		u32 next_cpu;
3651 		u32 ident;
3652 
3653 		/* First check into global flow table if there is a match */
3654 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3655 		if ((ident ^ hash) & ~rps_cpu_mask)
3656 			goto try_rps;
3657 
3658 		next_cpu = ident & rps_cpu_mask;
3659 
3660 		/* OK, now we know there is a match,
3661 		 * we can look at the local (per receive queue) flow table
3662 		 */
3663 		rflow = &flow_table->flows[hash & flow_table->mask];
3664 		tcpu = rflow->cpu;
3665 
3666 		/*
3667 		 * If the desired CPU (where last recvmsg was done) is
3668 		 * different from current CPU (one in the rx-queue flow
3669 		 * table entry), switch if one of the following holds:
3670 		 *   - Current CPU is unset (>= nr_cpu_ids).
3671 		 *   - Current CPU is offline.
3672 		 *   - The current CPU's queue tail has advanced beyond the
3673 		 *     last packet that was enqueued using this table entry.
3674 		 *     This guarantees that all previous packets for the flow
3675 		 *     have been dequeued, thus preserving in order delivery.
3676 		 */
3677 		if (unlikely(tcpu != next_cpu) &&
3678 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3679 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3680 		      rflow->last_qtail)) >= 0)) {
3681 			tcpu = next_cpu;
3682 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3683 		}
3684 
3685 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3686 			*rflowp = rflow;
3687 			cpu = tcpu;
3688 			goto done;
3689 		}
3690 	}
3691 
3692 try_rps:
3693 
3694 	if (map) {
3695 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3696 		if (cpu_online(tcpu)) {
3697 			cpu = tcpu;
3698 			goto done;
3699 		}
3700 	}
3701 
3702 done:
3703 	return cpu;
3704 }
3705 
3706 #ifdef CONFIG_RFS_ACCEL
3707 
3708 /**
3709  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3710  * @dev: Device on which the filter was set
3711  * @rxq_index: RX queue index
3712  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3713  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3714  *
3715  * Drivers that implement ndo_rx_flow_steer() should periodically call
3716  * this function for each installed filter and remove the filters for
3717  * which it returns %true.
3718  */
3719 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3720 			 u32 flow_id, u16 filter_id)
3721 {
3722 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3723 	struct rps_dev_flow_table *flow_table;
3724 	struct rps_dev_flow *rflow;
3725 	bool expire = true;
3726 	unsigned int cpu;
3727 
3728 	rcu_read_lock();
3729 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3730 	if (flow_table && flow_id <= flow_table->mask) {
3731 		rflow = &flow_table->flows[flow_id];
3732 		cpu = ACCESS_ONCE(rflow->cpu);
3733 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3734 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3735 			   rflow->last_qtail) <
3736 		     (int)(10 * flow_table->mask)))
3737 			expire = false;
3738 	}
3739 	rcu_read_unlock();
3740 	return expire;
3741 }
3742 EXPORT_SYMBOL(rps_may_expire_flow);
3743 
3744 #endif /* CONFIG_RFS_ACCEL */
3745 
3746 /* Called from hardirq (IPI) context */
3747 static void rps_trigger_softirq(void *data)
3748 {
3749 	struct softnet_data *sd = data;
3750 
3751 	____napi_schedule(sd, &sd->backlog);
3752 	sd->received_rps++;
3753 }
3754 
3755 #endif /* CONFIG_RPS */
3756 
3757 /*
3758  * Check if this softnet_data structure is another cpu one
3759  * If yes, queue it to our IPI list and return 1
3760  * If no, return 0
3761  */
3762 static int rps_ipi_queued(struct softnet_data *sd)
3763 {
3764 #ifdef CONFIG_RPS
3765 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3766 
3767 	if (sd != mysd) {
3768 		sd->rps_ipi_next = mysd->rps_ipi_list;
3769 		mysd->rps_ipi_list = sd;
3770 
3771 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3772 		return 1;
3773 	}
3774 #endif /* CONFIG_RPS */
3775 	return 0;
3776 }
3777 
3778 #ifdef CONFIG_NET_FLOW_LIMIT
3779 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3780 #endif
3781 
3782 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3783 {
3784 #ifdef CONFIG_NET_FLOW_LIMIT
3785 	struct sd_flow_limit *fl;
3786 	struct softnet_data *sd;
3787 	unsigned int old_flow, new_flow;
3788 
3789 	if (qlen < (netdev_max_backlog >> 1))
3790 		return false;
3791 
3792 	sd = this_cpu_ptr(&softnet_data);
3793 
3794 	rcu_read_lock();
3795 	fl = rcu_dereference(sd->flow_limit);
3796 	if (fl) {
3797 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3798 		old_flow = fl->history[fl->history_head];
3799 		fl->history[fl->history_head] = new_flow;
3800 
3801 		fl->history_head++;
3802 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3803 
3804 		if (likely(fl->buckets[old_flow]))
3805 			fl->buckets[old_flow]--;
3806 
3807 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3808 			fl->count++;
3809 			rcu_read_unlock();
3810 			return true;
3811 		}
3812 	}
3813 	rcu_read_unlock();
3814 #endif
3815 	return false;
3816 }
3817 
3818 /*
3819  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3820  * queue (may be a remote CPU queue).
3821  */
3822 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3823 			      unsigned int *qtail)
3824 {
3825 	struct softnet_data *sd;
3826 	unsigned long flags;
3827 	unsigned int qlen;
3828 
3829 	sd = &per_cpu(softnet_data, cpu);
3830 
3831 	local_irq_save(flags);
3832 
3833 	rps_lock(sd);
3834 	if (!netif_running(skb->dev))
3835 		goto drop;
3836 	qlen = skb_queue_len(&sd->input_pkt_queue);
3837 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3838 		if (qlen) {
3839 enqueue:
3840 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3841 			input_queue_tail_incr_save(sd, qtail);
3842 			rps_unlock(sd);
3843 			local_irq_restore(flags);
3844 			return NET_RX_SUCCESS;
3845 		}
3846 
3847 		/* Schedule NAPI for backlog device
3848 		 * We can use non atomic operation since we own the queue lock
3849 		 */
3850 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3851 			if (!rps_ipi_queued(sd))
3852 				____napi_schedule(sd, &sd->backlog);
3853 		}
3854 		goto enqueue;
3855 	}
3856 
3857 drop:
3858 	sd->dropped++;
3859 	rps_unlock(sd);
3860 
3861 	local_irq_restore(flags);
3862 
3863 	atomic_long_inc(&skb->dev->rx_dropped);
3864 	kfree_skb(skb);
3865 	return NET_RX_DROP;
3866 }
3867 
3868 static int netif_rx_internal(struct sk_buff *skb)
3869 {
3870 	int ret;
3871 
3872 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3873 
3874 	trace_netif_rx(skb);
3875 #ifdef CONFIG_RPS
3876 	if (static_key_false(&rps_needed)) {
3877 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3878 		int cpu;
3879 
3880 		preempt_disable();
3881 		rcu_read_lock();
3882 
3883 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3884 		if (cpu < 0)
3885 			cpu = smp_processor_id();
3886 
3887 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3888 
3889 		rcu_read_unlock();
3890 		preempt_enable();
3891 	} else
3892 #endif
3893 	{
3894 		unsigned int qtail;
3895 
3896 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3897 		put_cpu();
3898 	}
3899 	return ret;
3900 }
3901 
3902 /**
3903  *	netif_rx	-	post buffer to the network code
3904  *	@skb: buffer to post
3905  *
3906  *	This function receives a packet from a device driver and queues it for
3907  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3908  *	may be dropped during processing for congestion control or by the
3909  *	protocol layers.
3910  *
3911  *	return values:
3912  *	NET_RX_SUCCESS	(no congestion)
3913  *	NET_RX_DROP     (packet was dropped)
3914  *
3915  */
3916 
3917 int netif_rx(struct sk_buff *skb)
3918 {
3919 	trace_netif_rx_entry(skb);
3920 
3921 	return netif_rx_internal(skb);
3922 }
3923 EXPORT_SYMBOL(netif_rx);
3924 
3925 int netif_rx_ni(struct sk_buff *skb)
3926 {
3927 	int err;
3928 
3929 	trace_netif_rx_ni_entry(skb);
3930 
3931 	preempt_disable();
3932 	err = netif_rx_internal(skb);
3933 	if (local_softirq_pending())
3934 		do_softirq();
3935 	preempt_enable();
3936 
3937 	return err;
3938 }
3939 EXPORT_SYMBOL(netif_rx_ni);
3940 
3941 static __latent_entropy void net_tx_action(struct softirq_action *h)
3942 {
3943 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3944 
3945 	if (sd->completion_queue) {
3946 		struct sk_buff *clist;
3947 
3948 		local_irq_disable();
3949 		clist = sd->completion_queue;
3950 		sd->completion_queue = NULL;
3951 		local_irq_enable();
3952 
3953 		while (clist) {
3954 			struct sk_buff *skb = clist;
3955 
3956 			clist = clist->next;
3957 
3958 			WARN_ON(refcount_read(&skb->users));
3959 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3960 				trace_consume_skb(skb);
3961 			else
3962 				trace_kfree_skb(skb, net_tx_action);
3963 
3964 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3965 				__kfree_skb(skb);
3966 			else
3967 				__kfree_skb_defer(skb);
3968 		}
3969 
3970 		__kfree_skb_flush();
3971 	}
3972 
3973 	if (sd->output_queue) {
3974 		struct Qdisc *head;
3975 
3976 		local_irq_disable();
3977 		head = sd->output_queue;
3978 		sd->output_queue = NULL;
3979 		sd->output_queue_tailp = &sd->output_queue;
3980 		local_irq_enable();
3981 
3982 		while (head) {
3983 			struct Qdisc *q = head;
3984 			spinlock_t *root_lock;
3985 
3986 			head = head->next_sched;
3987 
3988 			root_lock = qdisc_lock(q);
3989 			spin_lock(root_lock);
3990 			/* We need to make sure head->next_sched is read
3991 			 * before clearing __QDISC_STATE_SCHED
3992 			 */
3993 			smp_mb__before_atomic();
3994 			clear_bit(__QDISC_STATE_SCHED, &q->state);
3995 			qdisc_run(q);
3996 			spin_unlock(root_lock);
3997 		}
3998 	}
3999 }
4000 
4001 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4002 /* This hook is defined here for ATM LANE */
4003 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4004 			     unsigned char *addr) __read_mostly;
4005 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4006 #endif
4007 
4008 static inline struct sk_buff *
4009 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4010 		   struct net_device *orig_dev)
4011 {
4012 #ifdef CONFIG_NET_CLS_ACT
4013 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4014 	struct tcf_result cl_res;
4015 
4016 	/* If there's at least one ingress present somewhere (so
4017 	 * we get here via enabled static key), remaining devices
4018 	 * that are not configured with an ingress qdisc will bail
4019 	 * out here.
4020 	 */
4021 	if (!cl)
4022 		return skb;
4023 	if (*pt_prev) {
4024 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4025 		*pt_prev = NULL;
4026 	}
4027 
4028 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4029 	skb->tc_at_ingress = 1;
4030 	qdisc_bstats_cpu_update(cl->q, skb);
4031 
4032 	switch (tcf_classify(skb, cl, &cl_res, false)) {
4033 	case TC_ACT_OK:
4034 	case TC_ACT_RECLASSIFY:
4035 		skb->tc_index = TC_H_MIN(cl_res.classid);
4036 		break;
4037 	case TC_ACT_SHOT:
4038 		qdisc_qstats_cpu_drop(cl->q);
4039 		kfree_skb(skb);
4040 		return NULL;
4041 	case TC_ACT_STOLEN:
4042 	case TC_ACT_QUEUED:
4043 	case TC_ACT_TRAP:
4044 		consume_skb(skb);
4045 		return NULL;
4046 	case TC_ACT_REDIRECT:
4047 		/* skb_mac_header check was done by cls/act_bpf, so
4048 		 * we can safely push the L2 header back before
4049 		 * redirecting to another netdev
4050 		 */
4051 		__skb_push(skb, skb->mac_len);
4052 		skb_do_redirect(skb);
4053 		return NULL;
4054 	default:
4055 		break;
4056 	}
4057 #endif /* CONFIG_NET_CLS_ACT */
4058 	return skb;
4059 }
4060 
4061 /**
4062  *	netdev_is_rx_handler_busy - check if receive handler is registered
4063  *	@dev: device to check
4064  *
4065  *	Check if a receive handler is already registered for a given device.
4066  *	Return true if there one.
4067  *
4068  *	The caller must hold the rtnl_mutex.
4069  */
4070 bool netdev_is_rx_handler_busy(struct net_device *dev)
4071 {
4072 	ASSERT_RTNL();
4073 	return dev && rtnl_dereference(dev->rx_handler);
4074 }
4075 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4076 
4077 /**
4078  *	netdev_rx_handler_register - register receive handler
4079  *	@dev: device to register a handler for
4080  *	@rx_handler: receive handler to register
4081  *	@rx_handler_data: data pointer that is used by rx handler
4082  *
4083  *	Register a receive handler for a device. This handler will then be
4084  *	called from __netif_receive_skb. A negative errno code is returned
4085  *	on a failure.
4086  *
4087  *	The caller must hold the rtnl_mutex.
4088  *
4089  *	For a general description of rx_handler, see enum rx_handler_result.
4090  */
4091 int netdev_rx_handler_register(struct net_device *dev,
4092 			       rx_handler_func_t *rx_handler,
4093 			       void *rx_handler_data)
4094 {
4095 	if (netdev_is_rx_handler_busy(dev))
4096 		return -EBUSY;
4097 
4098 	/* Note: rx_handler_data must be set before rx_handler */
4099 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4100 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4101 
4102 	return 0;
4103 }
4104 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4105 
4106 /**
4107  *	netdev_rx_handler_unregister - unregister receive handler
4108  *	@dev: device to unregister a handler from
4109  *
4110  *	Unregister a receive handler from a device.
4111  *
4112  *	The caller must hold the rtnl_mutex.
4113  */
4114 void netdev_rx_handler_unregister(struct net_device *dev)
4115 {
4116 
4117 	ASSERT_RTNL();
4118 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4119 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4120 	 * section has a guarantee to see a non NULL rx_handler_data
4121 	 * as well.
4122 	 */
4123 	synchronize_net();
4124 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4125 }
4126 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4127 
4128 /*
4129  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4130  * the special handling of PFMEMALLOC skbs.
4131  */
4132 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4133 {
4134 	switch (skb->protocol) {
4135 	case htons(ETH_P_ARP):
4136 	case htons(ETH_P_IP):
4137 	case htons(ETH_P_IPV6):
4138 	case htons(ETH_P_8021Q):
4139 	case htons(ETH_P_8021AD):
4140 		return true;
4141 	default:
4142 		return false;
4143 	}
4144 }
4145 
4146 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4147 			     int *ret, struct net_device *orig_dev)
4148 {
4149 #ifdef CONFIG_NETFILTER_INGRESS
4150 	if (nf_hook_ingress_active(skb)) {
4151 		int ingress_retval;
4152 
4153 		if (*pt_prev) {
4154 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4155 			*pt_prev = NULL;
4156 		}
4157 
4158 		rcu_read_lock();
4159 		ingress_retval = nf_hook_ingress(skb);
4160 		rcu_read_unlock();
4161 		return ingress_retval;
4162 	}
4163 #endif /* CONFIG_NETFILTER_INGRESS */
4164 	return 0;
4165 }
4166 
4167 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4168 {
4169 	struct packet_type *ptype, *pt_prev;
4170 	rx_handler_func_t *rx_handler;
4171 	struct net_device *orig_dev;
4172 	bool deliver_exact = false;
4173 	int ret = NET_RX_DROP;
4174 	__be16 type;
4175 
4176 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4177 
4178 	trace_netif_receive_skb(skb);
4179 
4180 	orig_dev = skb->dev;
4181 
4182 	skb_reset_network_header(skb);
4183 	if (!skb_transport_header_was_set(skb))
4184 		skb_reset_transport_header(skb);
4185 	skb_reset_mac_len(skb);
4186 
4187 	pt_prev = NULL;
4188 
4189 another_round:
4190 	skb->skb_iif = skb->dev->ifindex;
4191 
4192 	__this_cpu_inc(softnet_data.processed);
4193 
4194 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4195 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4196 		skb = skb_vlan_untag(skb);
4197 		if (unlikely(!skb))
4198 			goto out;
4199 	}
4200 
4201 	if (skb_skip_tc_classify(skb))
4202 		goto skip_classify;
4203 
4204 	if (pfmemalloc)
4205 		goto skip_taps;
4206 
4207 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4208 		if (pt_prev)
4209 			ret = deliver_skb(skb, pt_prev, orig_dev);
4210 		pt_prev = ptype;
4211 	}
4212 
4213 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4214 		if (pt_prev)
4215 			ret = deliver_skb(skb, pt_prev, orig_dev);
4216 		pt_prev = ptype;
4217 	}
4218 
4219 skip_taps:
4220 #ifdef CONFIG_NET_INGRESS
4221 	if (static_key_false(&ingress_needed)) {
4222 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4223 		if (!skb)
4224 			goto out;
4225 
4226 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4227 			goto out;
4228 	}
4229 #endif
4230 	skb_reset_tc(skb);
4231 skip_classify:
4232 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4233 		goto drop;
4234 
4235 	if (skb_vlan_tag_present(skb)) {
4236 		if (pt_prev) {
4237 			ret = deliver_skb(skb, pt_prev, orig_dev);
4238 			pt_prev = NULL;
4239 		}
4240 		if (vlan_do_receive(&skb))
4241 			goto another_round;
4242 		else if (unlikely(!skb))
4243 			goto out;
4244 	}
4245 
4246 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4247 	if (rx_handler) {
4248 		if (pt_prev) {
4249 			ret = deliver_skb(skb, pt_prev, orig_dev);
4250 			pt_prev = NULL;
4251 		}
4252 		switch (rx_handler(&skb)) {
4253 		case RX_HANDLER_CONSUMED:
4254 			ret = NET_RX_SUCCESS;
4255 			goto out;
4256 		case RX_HANDLER_ANOTHER:
4257 			goto another_round;
4258 		case RX_HANDLER_EXACT:
4259 			deliver_exact = true;
4260 		case RX_HANDLER_PASS:
4261 			break;
4262 		default:
4263 			BUG();
4264 		}
4265 	}
4266 
4267 	if (unlikely(skb_vlan_tag_present(skb))) {
4268 		if (skb_vlan_tag_get_id(skb))
4269 			skb->pkt_type = PACKET_OTHERHOST;
4270 		/* Note: we might in the future use prio bits
4271 		 * and set skb->priority like in vlan_do_receive()
4272 		 * For the time being, just ignore Priority Code Point
4273 		 */
4274 		skb->vlan_tci = 0;
4275 	}
4276 
4277 	type = skb->protocol;
4278 
4279 	/* deliver only exact match when indicated */
4280 	if (likely(!deliver_exact)) {
4281 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4282 				       &ptype_base[ntohs(type) &
4283 						   PTYPE_HASH_MASK]);
4284 	}
4285 
4286 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4287 			       &orig_dev->ptype_specific);
4288 
4289 	if (unlikely(skb->dev != orig_dev)) {
4290 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4291 				       &skb->dev->ptype_specific);
4292 	}
4293 
4294 	if (pt_prev) {
4295 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4296 			goto drop;
4297 		else
4298 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4299 	} else {
4300 drop:
4301 		if (!deliver_exact)
4302 			atomic_long_inc(&skb->dev->rx_dropped);
4303 		else
4304 			atomic_long_inc(&skb->dev->rx_nohandler);
4305 		kfree_skb(skb);
4306 		/* Jamal, now you will not able to escape explaining
4307 		 * me how you were going to use this. :-)
4308 		 */
4309 		ret = NET_RX_DROP;
4310 	}
4311 
4312 out:
4313 	return ret;
4314 }
4315 
4316 static int __netif_receive_skb(struct sk_buff *skb)
4317 {
4318 	int ret;
4319 
4320 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4321 		unsigned int noreclaim_flag;
4322 
4323 		/*
4324 		 * PFMEMALLOC skbs are special, they should
4325 		 * - be delivered to SOCK_MEMALLOC sockets only
4326 		 * - stay away from userspace
4327 		 * - have bounded memory usage
4328 		 *
4329 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4330 		 * context down to all allocation sites.
4331 		 */
4332 		noreclaim_flag = memalloc_noreclaim_save();
4333 		ret = __netif_receive_skb_core(skb, true);
4334 		memalloc_noreclaim_restore(noreclaim_flag);
4335 	} else
4336 		ret = __netif_receive_skb_core(skb, false);
4337 
4338 	return ret;
4339 }
4340 
4341 static struct static_key generic_xdp_needed __read_mostly;
4342 
4343 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4344 {
4345 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4346 	struct bpf_prog *new = xdp->prog;
4347 	int ret = 0;
4348 
4349 	switch (xdp->command) {
4350 	case XDP_SETUP_PROG:
4351 		rcu_assign_pointer(dev->xdp_prog, new);
4352 		if (old)
4353 			bpf_prog_put(old);
4354 
4355 		if (old && !new) {
4356 			static_key_slow_dec(&generic_xdp_needed);
4357 		} else if (new && !old) {
4358 			static_key_slow_inc(&generic_xdp_needed);
4359 			dev_disable_lro(dev);
4360 		}
4361 		break;
4362 
4363 	case XDP_QUERY_PROG:
4364 		xdp->prog_attached = !!old;
4365 		xdp->prog_id = old ? old->aux->id : 0;
4366 		break;
4367 
4368 	default:
4369 		ret = -EINVAL;
4370 		break;
4371 	}
4372 
4373 	return ret;
4374 }
4375 
4376 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4377 				     struct bpf_prog *xdp_prog)
4378 {
4379 	struct xdp_buff xdp;
4380 	u32 act = XDP_DROP;
4381 	void *orig_data;
4382 	int hlen, off;
4383 	u32 mac_len;
4384 
4385 	/* Reinjected packets coming from act_mirred or similar should
4386 	 * not get XDP generic processing.
4387 	 */
4388 	if (skb_cloned(skb))
4389 		return XDP_PASS;
4390 
4391 	if (skb_linearize(skb))
4392 		goto do_drop;
4393 
4394 	/* The XDP program wants to see the packet starting at the MAC
4395 	 * header.
4396 	 */
4397 	mac_len = skb->data - skb_mac_header(skb);
4398 	hlen = skb_headlen(skb) + mac_len;
4399 	xdp.data = skb->data - mac_len;
4400 	xdp.data_end = xdp.data + hlen;
4401 	xdp.data_hard_start = skb->data - skb_headroom(skb);
4402 	orig_data = xdp.data;
4403 
4404 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
4405 
4406 	off = xdp.data - orig_data;
4407 	if (off > 0)
4408 		__skb_pull(skb, off);
4409 	else if (off < 0)
4410 		__skb_push(skb, -off);
4411 
4412 	switch (act) {
4413 	case XDP_TX:
4414 		__skb_push(skb, mac_len);
4415 		/* fall through */
4416 	case XDP_PASS:
4417 		break;
4418 
4419 	default:
4420 		bpf_warn_invalid_xdp_action(act);
4421 		/* fall through */
4422 	case XDP_ABORTED:
4423 		trace_xdp_exception(skb->dev, xdp_prog, act);
4424 		/* fall through */
4425 	case XDP_DROP:
4426 	do_drop:
4427 		kfree_skb(skb);
4428 		break;
4429 	}
4430 
4431 	return act;
4432 }
4433 
4434 /* When doing generic XDP we have to bypass the qdisc layer and the
4435  * network taps in order to match in-driver-XDP behavior.
4436  */
4437 static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4438 {
4439 	struct net_device *dev = skb->dev;
4440 	struct netdev_queue *txq;
4441 	bool free_skb = true;
4442 	int cpu, rc;
4443 
4444 	txq = netdev_pick_tx(dev, skb, NULL);
4445 	cpu = smp_processor_id();
4446 	HARD_TX_LOCK(dev, txq, cpu);
4447 	if (!netif_xmit_stopped(txq)) {
4448 		rc = netdev_start_xmit(skb, dev, txq, 0);
4449 		if (dev_xmit_complete(rc))
4450 			free_skb = false;
4451 	}
4452 	HARD_TX_UNLOCK(dev, txq);
4453 	if (free_skb) {
4454 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4455 		kfree_skb(skb);
4456 	}
4457 }
4458 
4459 static int netif_receive_skb_internal(struct sk_buff *skb)
4460 {
4461 	int ret;
4462 
4463 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4464 
4465 	if (skb_defer_rx_timestamp(skb))
4466 		return NET_RX_SUCCESS;
4467 
4468 	rcu_read_lock();
4469 
4470 	if (static_key_false(&generic_xdp_needed)) {
4471 		struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
4472 
4473 		if (xdp_prog) {
4474 			u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4475 
4476 			if (act != XDP_PASS) {
4477 				rcu_read_unlock();
4478 				if (act == XDP_TX)
4479 					generic_xdp_tx(skb, xdp_prog);
4480 				return NET_RX_DROP;
4481 			}
4482 		}
4483 	}
4484 
4485 #ifdef CONFIG_RPS
4486 	if (static_key_false(&rps_needed)) {
4487 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4488 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4489 
4490 		if (cpu >= 0) {
4491 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4492 			rcu_read_unlock();
4493 			return ret;
4494 		}
4495 	}
4496 #endif
4497 	ret = __netif_receive_skb(skb);
4498 	rcu_read_unlock();
4499 	return ret;
4500 }
4501 
4502 /**
4503  *	netif_receive_skb - process receive buffer from network
4504  *	@skb: buffer to process
4505  *
4506  *	netif_receive_skb() is the main receive data processing function.
4507  *	It always succeeds. The buffer may be dropped during processing
4508  *	for congestion control or by the protocol layers.
4509  *
4510  *	This function may only be called from softirq context and interrupts
4511  *	should be enabled.
4512  *
4513  *	Return values (usually ignored):
4514  *	NET_RX_SUCCESS: no congestion
4515  *	NET_RX_DROP: packet was dropped
4516  */
4517 int netif_receive_skb(struct sk_buff *skb)
4518 {
4519 	trace_netif_receive_skb_entry(skb);
4520 
4521 	return netif_receive_skb_internal(skb);
4522 }
4523 EXPORT_SYMBOL(netif_receive_skb);
4524 
4525 DEFINE_PER_CPU(struct work_struct, flush_works);
4526 
4527 /* Network device is going away, flush any packets still pending */
4528 static void flush_backlog(struct work_struct *work)
4529 {
4530 	struct sk_buff *skb, *tmp;
4531 	struct softnet_data *sd;
4532 
4533 	local_bh_disable();
4534 	sd = this_cpu_ptr(&softnet_data);
4535 
4536 	local_irq_disable();
4537 	rps_lock(sd);
4538 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4539 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4540 			__skb_unlink(skb, &sd->input_pkt_queue);
4541 			kfree_skb(skb);
4542 			input_queue_head_incr(sd);
4543 		}
4544 	}
4545 	rps_unlock(sd);
4546 	local_irq_enable();
4547 
4548 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4549 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4550 			__skb_unlink(skb, &sd->process_queue);
4551 			kfree_skb(skb);
4552 			input_queue_head_incr(sd);
4553 		}
4554 	}
4555 	local_bh_enable();
4556 }
4557 
4558 static void flush_all_backlogs(void)
4559 {
4560 	unsigned int cpu;
4561 
4562 	get_online_cpus();
4563 
4564 	for_each_online_cpu(cpu)
4565 		queue_work_on(cpu, system_highpri_wq,
4566 			      per_cpu_ptr(&flush_works, cpu));
4567 
4568 	for_each_online_cpu(cpu)
4569 		flush_work(per_cpu_ptr(&flush_works, cpu));
4570 
4571 	put_online_cpus();
4572 }
4573 
4574 static int napi_gro_complete(struct sk_buff *skb)
4575 {
4576 	struct packet_offload *ptype;
4577 	__be16 type = skb->protocol;
4578 	struct list_head *head = &offload_base;
4579 	int err = -ENOENT;
4580 
4581 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4582 
4583 	if (NAPI_GRO_CB(skb)->count == 1) {
4584 		skb_shinfo(skb)->gso_size = 0;
4585 		goto out;
4586 	}
4587 
4588 	rcu_read_lock();
4589 	list_for_each_entry_rcu(ptype, head, list) {
4590 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4591 			continue;
4592 
4593 		err = ptype->callbacks.gro_complete(skb, 0);
4594 		break;
4595 	}
4596 	rcu_read_unlock();
4597 
4598 	if (err) {
4599 		WARN_ON(&ptype->list == head);
4600 		kfree_skb(skb);
4601 		return NET_RX_SUCCESS;
4602 	}
4603 
4604 out:
4605 	return netif_receive_skb_internal(skb);
4606 }
4607 
4608 /* napi->gro_list contains packets ordered by age.
4609  * youngest packets at the head of it.
4610  * Complete skbs in reverse order to reduce latencies.
4611  */
4612 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4613 {
4614 	struct sk_buff *skb, *prev = NULL;
4615 
4616 	/* scan list and build reverse chain */
4617 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4618 		skb->prev = prev;
4619 		prev = skb;
4620 	}
4621 
4622 	for (skb = prev; skb; skb = prev) {
4623 		skb->next = NULL;
4624 
4625 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4626 			return;
4627 
4628 		prev = skb->prev;
4629 		napi_gro_complete(skb);
4630 		napi->gro_count--;
4631 	}
4632 
4633 	napi->gro_list = NULL;
4634 }
4635 EXPORT_SYMBOL(napi_gro_flush);
4636 
4637 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4638 {
4639 	struct sk_buff *p;
4640 	unsigned int maclen = skb->dev->hard_header_len;
4641 	u32 hash = skb_get_hash_raw(skb);
4642 
4643 	for (p = napi->gro_list; p; p = p->next) {
4644 		unsigned long diffs;
4645 
4646 		NAPI_GRO_CB(p)->flush = 0;
4647 
4648 		if (hash != skb_get_hash_raw(p)) {
4649 			NAPI_GRO_CB(p)->same_flow = 0;
4650 			continue;
4651 		}
4652 
4653 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4654 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4655 		diffs |= skb_metadata_dst_cmp(p, skb);
4656 		if (maclen == ETH_HLEN)
4657 			diffs |= compare_ether_header(skb_mac_header(p),
4658 						      skb_mac_header(skb));
4659 		else if (!diffs)
4660 			diffs = memcmp(skb_mac_header(p),
4661 				       skb_mac_header(skb),
4662 				       maclen);
4663 		NAPI_GRO_CB(p)->same_flow = !diffs;
4664 	}
4665 }
4666 
4667 static void skb_gro_reset_offset(struct sk_buff *skb)
4668 {
4669 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4670 	const skb_frag_t *frag0 = &pinfo->frags[0];
4671 
4672 	NAPI_GRO_CB(skb)->data_offset = 0;
4673 	NAPI_GRO_CB(skb)->frag0 = NULL;
4674 	NAPI_GRO_CB(skb)->frag0_len = 0;
4675 
4676 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4677 	    pinfo->nr_frags &&
4678 	    !PageHighMem(skb_frag_page(frag0))) {
4679 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4680 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4681 						    skb_frag_size(frag0),
4682 						    skb->end - skb->tail);
4683 	}
4684 }
4685 
4686 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4687 {
4688 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4689 
4690 	BUG_ON(skb->end - skb->tail < grow);
4691 
4692 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4693 
4694 	skb->data_len -= grow;
4695 	skb->tail += grow;
4696 
4697 	pinfo->frags[0].page_offset += grow;
4698 	skb_frag_size_sub(&pinfo->frags[0], grow);
4699 
4700 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4701 		skb_frag_unref(skb, 0);
4702 		memmove(pinfo->frags, pinfo->frags + 1,
4703 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4704 	}
4705 }
4706 
4707 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4708 {
4709 	struct sk_buff **pp = NULL;
4710 	struct packet_offload *ptype;
4711 	__be16 type = skb->protocol;
4712 	struct list_head *head = &offload_base;
4713 	int same_flow;
4714 	enum gro_result ret;
4715 	int grow;
4716 
4717 	if (netif_elide_gro(skb->dev))
4718 		goto normal;
4719 
4720 	gro_list_prepare(napi, skb);
4721 
4722 	rcu_read_lock();
4723 	list_for_each_entry_rcu(ptype, head, list) {
4724 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4725 			continue;
4726 
4727 		skb_set_network_header(skb, skb_gro_offset(skb));
4728 		skb_reset_mac_len(skb);
4729 		NAPI_GRO_CB(skb)->same_flow = 0;
4730 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4731 		NAPI_GRO_CB(skb)->free = 0;
4732 		NAPI_GRO_CB(skb)->encap_mark = 0;
4733 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4734 		NAPI_GRO_CB(skb)->is_fou = 0;
4735 		NAPI_GRO_CB(skb)->is_atomic = 1;
4736 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4737 
4738 		/* Setup for GRO checksum validation */
4739 		switch (skb->ip_summed) {
4740 		case CHECKSUM_COMPLETE:
4741 			NAPI_GRO_CB(skb)->csum = skb->csum;
4742 			NAPI_GRO_CB(skb)->csum_valid = 1;
4743 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4744 			break;
4745 		case CHECKSUM_UNNECESSARY:
4746 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4747 			NAPI_GRO_CB(skb)->csum_valid = 0;
4748 			break;
4749 		default:
4750 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4751 			NAPI_GRO_CB(skb)->csum_valid = 0;
4752 		}
4753 
4754 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4755 		break;
4756 	}
4757 	rcu_read_unlock();
4758 
4759 	if (&ptype->list == head)
4760 		goto normal;
4761 
4762 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4763 		ret = GRO_CONSUMED;
4764 		goto ok;
4765 	}
4766 
4767 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4768 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4769 
4770 	if (pp) {
4771 		struct sk_buff *nskb = *pp;
4772 
4773 		*pp = nskb->next;
4774 		nskb->next = NULL;
4775 		napi_gro_complete(nskb);
4776 		napi->gro_count--;
4777 	}
4778 
4779 	if (same_flow)
4780 		goto ok;
4781 
4782 	if (NAPI_GRO_CB(skb)->flush)
4783 		goto normal;
4784 
4785 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4786 		struct sk_buff *nskb = napi->gro_list;
4787 
4788 		/* locate the end of the list to select the 'oldest' flow */
4789 		while (nskb->next) {
4790 			pp = &nskb->next;
4791 			nskb = *pp;
4792 		}
4793 		*pp = NULL;
4794 		nskb->next = NULL;
4795 		napi_gro_complete(nskb);
4796 	} else {
4797 		napi->gro_count++;
4798 	}
4799 	NAPI_GRO_CB(skb)->count = 1;
4800 	NAPI_GRO_CB(skb)->age = jiffies;
4801 	NAPI_GRO_CB(skb)->last = skb;
4802 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4803 	skb->next = napi->gro_list;
4804 	napi->gro_list = skb;
4805 	ret = GRO_HELD;
4806 
4807 pull:
4808 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4809 	if (grow > 0)
4810 		gro_pull_from_frag0(skb, grow);
4811 ok:
4812 	return ret;
4813 
4814 normal:
4815 	ret = GRO_NORMAL;
4816 	goto pull;
4817 }
4818 
4819 struct packet_offload *gro_find_receive_by_type(__be16 type)
4820 {
4821 	struct list_head *offload_head = &offload_base;
4822 	struct packet_offload *ptype;
4823 
4824 	list_for_each_entry_rcu(ptype, offload_head, list) {
4825 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4826 			continue;
4827 		return ptype;
4828 	}
4829 	return NULL;
4830 }
4831 EXPORT_SYMBOL(gro_find_receive_by_type);
4832 
4833 struct packet_offload *gro_find_complete_by_type(__be16 type)
4834 {
4835 	struct list_head *offload_head = &offload_base;
4836 	struct packet_offload *ptype;
4837 
4838 	list_for_each_entry_rcu(ptype, offload_head, list) {
4839 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4840 			continue;
4841 		return ptype;
4842 	}
4843 	return NULL;
4844 }
4845 EXPORT_SYMBOL(gro_find_complete_by_type);
4846 
4847 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4848 {
4849 	skb_dst_drop(skb);
4850 	secpath_reset(skb);
4851 	kmem_cache_free(skbuff_head_cache, skb);
4852 }
4853 
4854 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4855 {
4856 	switch (ret) {
4857 	case GRO_NORMAL:
4858 		if (netif_receive_skb_internal(skb))
4859 			ret = GRO_DROP;
4860 		break;
4861 
4862 	case GRO_DROP:
4863 		kfree_skb(skb);
4864 		break;
4865 
4866 	case GRO_MERGED_FREE:
4867 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4868 			napi_skb_free_stolen_head(skb);
4869 		else
4870 			__kfree_skb(skb);
4871 		break;
4872 
4873 	case GRO_HELD:
4874 	case GRO_MERGED:
4875 	case GRO_CONSUMED:
4876 		break;
4877 	}
4878 
4879 	return ret;
4880 }
4881 
4882 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4883 {
4884 	skb_mark_napi_id(skb, napi);
4885 	trace_napi_gro_receive_entry(skb);
4886 
4887 	skb_gro_reset_offset(skb);
4888 
4889 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4890 }
4891 EXPORT_SYMBOL(napi_gro_receive);
4892 
4893 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4894 {
4895 	if (unlikely(skb->pfmemalloc)) {
4896 		consume_skb(skb);
4897 		return;
4898 	}
4899 	__skb_pull(skb, skb_headlen(skb));
4900 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4901 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4902 	skb->vlan_tci = 0;
4903 	skb->dev = napi->dev;
4904 	skb->skb_iif = 0;
4905 	skb->encapsulation = 0;
4906 	skb_shinfo(skb)->gso_type = 0;
4907 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4908 	secpath_reset(skb);
4909 
4910 	napi->skb = skb;
4911 }
4912 
4913 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4914 {
4915 	struct sk_buff *skb = napi->skb;
4916 
4917 	if (!skb) {
4918 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4919 		if (skb) {
4920 			napi->skb = skb;
4921 			skb_mark_napi_id(skb, napi);
4922 		}
4923 	}
4924 	return skb;
4925 }
4926 EXPORT_SYMBOL(napi_get_frags);
4927 
4928 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4929 				      struct sk_buff *skb,
4930 				      gro_result_t ret)
4931 {
4932 	switch (ret) {
4933 	case GRO_NORMAL:
4934 	case GRO_HELD:
4935 		__skb_push(skb, ETH_HLEN);
4936 		skb->protocol = eth_type_trans(skb, skb->dev);
4937 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4938 			ret = GRO_DROP;
4939 		break;
4940 
4941 	case GRO_DROP:
4942 		napi_reuse_skb(napi, skb);
4943 		break;
4944 
4945 	case GRO_MERGED_FREE:
4946 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4947 			napi_skb_free_stolen_head(skb);
4948 		else
4949 			napi_reuse_skb(napi, skb);
4950 		break;
4951 
4952 	case GRO_MERGED:
4953 	case GRO_CONSUMED:
4954 		break;
4955 	}
4956 
4957 	return ret;
4958 }
4959 
4960 /* Upper GRO stack assumes network header starts at gro_offset=0
4961  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4962  * We copy ethernet header into skb->data to have a common layout.
4963  */
4964 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4965 {
4966 	struct sk_buff *skb = napi->skb;
4967 	const struct ethhdr *eth;
4968 	unsigned int hlen = sizeof(*eth);
4969 
4970 	napi->skb = NULL;
4971 
4972 	skb_reset_mac_header(skb);
4973 	skb_gro_reset_offset(skb);
4974 
4975 	eth = skb_gro_header_fast(skb, 0);
4976 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4977 		eth = skb_gro_header_slow(skb, hlen, 0);
4978 		if (unlikely(!eth)) {
4979 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4980 					     __func__, napi->dev->name);
4981 			napi_reuse_skb(napi, skb);
4982 			return NULL;
4983 		}
4984 	} else {
4985 		gro_pull_from_frag0(skb, hlen);
4986 		NAPI_GRO_CB(skb)->frag0 += hlen;
4987 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4988 	}
4989 	__skb_pull(skb, hlen);
4990 
4991 	/*
4992 	 * This works because the only protocols we care about don't require
4993 	 * special handling.
4994 	 * We'll fix it up properly in napi_frags_finish()
4995 	 */
4996 	skb->protocol = eth->h_proto;
4997 
4998 	return skb;
4999 }
5000 
5001 gro_result_t napi_gro_frags(struct napi_struct *napi)
5002 {
5003 	struct sk_buff *skb = napi_frags_skb(napi);
5004 
5005 	if (!skb)
5006 		return GRO_DROP;
5007 
5008 	trace_napi_gro_frags_entry(skb);
5009 
5010 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5011 }
5012 EXPORT_SYMBOL(napi_gro_frags);
5013 
5014 /* Compute the checksum from gro_offset and return the folded value
5015  * after adding in any pseudo checksum.
5016  */
5017 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5018 {
5019 	__wsum wsum;
5020 	__sum16 sum;
5021 
5022 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5023 
5024 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5025 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5026 	if (likely(!sum)) {
5027 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5028 		    !skb->csum_complete_sw)
5029 			netdev_rx_csum_fault(skb->dev);
5030 	}
5031 
5032 	NAPI_GRO_CB(skb)->csum = wsum;
5033 	NAPI_GRO_CB(skb)->csum_valid = 1;
5034 
5035 	return sum;
5036 }
5037 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5038 
5039 static void net_rps_send_ipi(struct softnet_data *remsd)
5040 {
5041 #ifdef CONFIG_RPS
5042 	while (remsd) {
5043 		struct softnet_data *next = remsd->rps_ipi_next;
5044 
5045 		if (cpu_online(remsd->cpu))
5046 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5047 		remsd = next;
5048 	}
5049 #endif
5050 }
5051 
5052 /*
5053  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5054  * Note: called with local irq disabled, but exits with local irq enabled.
5055  */
5056 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5057 {
5058 #ifdef CONFIG_RPS
5059 	struct softnet_data *remsd = sd->rps_ipi_list;
5060 
5061 	if (remsd) {
5062 		sd->rps_ipi_list = NULL;
5063 
5064 		local_irq_enable();
5065 
5066 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5067 		net_rps_send_ipi(remsd);
5068 	} else
5069 #endif
5070 		local_irq_enable();
5071 }
5072 
5073 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5074 {
5075 #ifdef CONFIG_RPS
5076 	return sd->rps_ipi_list != NULL;
5077 #else
5078 	return false;
5079 #endif
5080 }
5081 
5082 static int process_backlog(struct napi_struct *napi, int quota)
5083 {
5084 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5085 	bool again = true;
5086 	int work = 0;
5087 
5088 	/* Check if we have pending ipi, its better to send them now,
5089 	 * not waiting net_rx_action() end.
5090 	 */
5091 	if (sd_has_rps_ipi_waiting(sd)) {
5092 		local_irq_disable();
5093 		net_rps_action_and_irq_enable(sd);
5094 	}
5095 
5096 	napi->weight = dev_rx_weight;
5097 	while (again) {
5098 		struct sk_buff *skb;
5099 
5100 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5101 			rcu_read_lock();
5102 			__netif_receive_skb(skb);
5103 			rcu_read_unlock();
5104 			input_queue_head_incr(sd);
5105 			if (++work >= quota)
5106 				return work;
5107 
5108 		}
5109 
5110 		local_irq_disable();
5111 		rps_lock(sd);
5112 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5113 			/*
5114 			 * Inline a custom version of __napi_complete().
5115 			 * only current cpu owns and manipulates this napi,
5116 			 * and NAPI_STATE_SCHED is the only possible flag set
5117 			 * on backlog.
5118 			 * We can use a plain write instead of clear_bit(),
5119 			 * and we dont need an smp_mb() memory barrier.
5120 			 */
5121 			napi->state = 0;
5122 			again = false;
5123 		} else {
5124 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5125 						   &sd->process_queue);
5126 		}
5127 		rps_unlock(sd);
5128 		local_irq_enable();
5129 	}
5130 
5131 	return work;
5132 }
5133 
5134 /**
5135  * __napi_schedule - schedule for receive
5136  * @n: entry to schedule
5137  *
5138  * The entry's receive function will be scheduled to run.
5139  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5140  */
5141 void __napi_schedule(struct napi_struct *n)
5142 {
5143 	unsigned long flags;
5144 
5145 	local_irq_save(flags);
5146 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5147 	local_irq_restore(flags);
5148 }
5149 EXPORT_SYMBOL(__napi_schedule);
5150 
5151 /**
5152  *	napi_schedule_prep - check if napi can be scheduled
5153  *	@n: napi context
5154  *
5155  * Test if NAPI routine is already running, and if not mark
5156  * it as running.  This is used as a condition variable
5157  * insure only one NAPI poll instance runs.  We also make
5158  * sure there is no pending NAPI disable.
5159  */
5160 bool napi_schedule_prep(struct napi_struct *n)
5161 {
5162 	unsigned long val, new;
5163 
5164 	do {
5165 		val = READ_ONCE(n->state);
5166 		if (unlikely(val & NAPIF_STATE_DISABLE))
5167 			return false;
5168 		new = val | NAPIF_STATE_SCHED;
5169 
5170 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5171 		 * This was suggested by Alexander Duyck, as compiler
5172 		 * emits better code than :
5173 		 * if (val & NAPIF_STATE_SCHED)
5174 		 *     new |= NAPIF_STATE_MISSED;
5175 		 */
5176 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5177 						   NAPIF_STATE_MISSED;
5178 	} while (cmpxchg(&n->state, val, new) != val);
5179 
5180 	return !(val & NAPIF_STATE_SCHED);
5181 }
5182 EXPORT_SYMBOL(napi_schedule_prep);
5183 
5184 /**
5185  * __napi_schedule_irqoff - schedule for receive
5186  * @n: entry to schedule
5187  *
5188  * Variant of __napi_schedule() assuming hard irqs are masked
5189  */
5190 void __napi_schedule_irqoff(struct napi_struct *n)
5191 {
5192 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5193 }
5194 EXPORT_SYMBOL(__napi_schedule_irqoff);
5195 
5196 bool napi_complete_done(struct napi_struct *n, int work_done)
5197 {
5198 	unsigned long flags, val, new;
5199 
5200 	/*
5201 	 * 1) Don't let napi dequeue from the cpu poll list
5202 	 *    just in case its running on a different cpu.
5203 	 * 2) If we are busy polling, do nothing here, we have
5204 	 *    the guarantee we will be called later.
5205 	 */
5206 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5207 				 NAPIF_STATE_IN_BUSY_POLL)))
5208 		return false;
5209 
5210 	if (n->gro_list) {
5211 		unsigned long timeout = 0;
5212 
5213 		if (work_done)
5214 			timeout = n->dev->gro_flush_timeout;
5215 
5216 		if (timeout)
5217 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5218 				      HRTIMER_MODE_REL_PINNED);
5219 		else
5220 			napi_gro_flush(n, false);
5221 	}
5222 	if (unlikely(!list_empty(&n->poll_list))) {
5223 		/* If n->poll_list is not empty, we need to mask irqs */
5224 		local_irq_save(flags);
5225 		list_del_init(&n->poll_list);
5226 		local_irq_restore(flags);
5227 	}
5228 
5229 	do {
5230 		val = READ_ONCE(n->state);
5231 
5232 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5233 
5234 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5235 
5236 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5237 		 * because we will call napi->poll() one more time.
5238 		 * This C code was suggested by Alexander Duyck to help gcc.
5239 		 */
5240 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5241 						    NAPIF_STATE_SCHED;
5242 	} while (cmpxchg(&n->state, val, new) != val);
5243 
5244 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5245 		__napi_schedule(n);
5246 		return false;
5247 	}
5248 
5249 	return true;
5250 }
5251 EXPORT_SYMBOL(napi_complete_done);
5252 
5253 /* must be called under rcu_read_lock(), as we dont take a reference */
5254 static struct napi_struct *napi_by_id(unsigned int napi_id)
5255 {
5256 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5257 	struct napi_struct *napi;
5258 
5259 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5260 		if (napi->napi_id == napi_id)
5261 			return napi;
5262 
5263 	return NULL;
5264 }
5265 
5266 #if defined(CONFIG_NET_RX_BUSY_POLL)
5267 
5268 #define BUSY_POLL_BUDGET 8
5269 
5270 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5271 {
5272 	int rc;
5273 
5274 	/* Busy polling means there is a high chance device driver hard irq
5275 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5276 	 * set in napi_schedule_prep().
5277 	 * Since we are about to call napi->poll() once more, we can safely
5278 	 * clear NAPI_STATE_MISSED.
5279 	 *
5280 	 * Note: x86 could use a single "lock and ..." instruction
5281 	 * to perform these two clear_bit()
5282 	 */
5283 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5284 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5285 
5286 	local_bh_disable();
5287 
5288 	/* All we really want here is to re-enable device interrupts.
5289 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5290 	 */
5291 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5292 	netpoll_poll_unlock(have_poll_lock);
5293 	if (rc == BUSY_POLL_BUDGET)
5294 		__napi_schedule(napi);
5295 	local_bh_enable();
5296 }
5297 
5298 void napi_busy_loop(unsigned int napi_id,
5299 		    bool (*loop_end)(void *, unsigned long),
5300 		    void *loop_end_arg)
5301 {
5302 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5303 	int (*napi_poll)(struct napi_struct *napi, int budget);
5304 	void *have_poll_lock = NULL;
5305 	struct napi_struct *napi;
5306 
5307 restart:
5308 	napi_poll = NULL;
5309 
5310 	rcu_read_lock();
5311 
5312 	napi = napi_by_id(napi_id);
5313 	if (!napi)
5314 		goto out;
5315 
5316 	preempt_disable();
5317 	for (;;) {
5318 		int work = 0;
5319 
5320 		local_bh_disable();
5321 		if (!napi_poll) {
5322 			unsigned long val = READ_ONCE(napi->state);
5323 
5324 			/* If multiple threads are competing for this napi,
5325 			 * we avoid dirtying napi->state as much as we can.
5326 			 */
5327 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5328 				   NAPIF_STATE_IN_BUSY_POLL))
5329 				goto count;
5330 			if (cmpxchg(&napi->state, val,
5331 				    val | NAPIF_STATE_IN_BUSY_POLL |
5332 					  NAPIF_STATE_SCHED) != val)
5333 				goto count;
5334 			have_poll_lock = netpoll_poll_lock(napi);
5335 			napi_poll = napi->poll;
5336 		}
5337 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5338 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5339 count:
5340 		if (work > 0)
5341 			__NET_ADD_STATS(dev_net(napi->dev),
5342 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5343 		local_bh_enable();
5344 
5345 		if (!loop_end || loop_end(loop_end_arg, start_time))
5346 			break;
5347 
5348 		if (unlikely(need_resched())) {
5349 			if (napi_poll)
5350 				busy_poll_stop(napi, have_poll_lock);
5351 			preempt_enable();
5352 			rcu_read_unlock();
5353 			cond_resched();
5354 			if (loop_end(loop_end_arg, start_time))
5355 				return;
5356 			goto restart;
5357 		}
5358 		cpu_relax();
5359 	}
5360 	if (napi_poll)
5361 		busy_poll_stop(napi, have_poll_lock);
5362 	preempt_enable();
5363 out:
5364 	rcu_read_unlock();
5365 }
5366 EXPORT_SYMBOL(napi_busy_loop);
5367 
5368 #endif /* CONFIG_NET_RX_BUSY_POLL */
5369 
5370 static void napi_hash_add(struct napi_struct *napi)
5371 {
5372 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5373 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5374 		return;
5375 
5376 	spin_lock(&napi_hash_lock);
5377 
5378 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5379 	do {
5380 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5381 			napi_gen_id = MIN_NAPI_ID;
5382 	} while (napi_by_id(napi_gen_id));
5383 	napi->napi_id = napi_gen_id;
5384 
5385 	hlist_add_head_rcu(&napi->napi_hash_node,
5386 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5387 
5388 	spin_unlock(&napi_hash_lock);
5389 }
5390 
5391 /* Warning : caller is responsible to make sure rcu grace period
5392  * is respected before freeing memory containing @napi
5393  */
5394 bool napi_hash_del(struct napi_struct *napi)
5395 {
5396 	bool rcu_sync_needed = false;
5397 
5398 	spin_lock(&napi_hash_lock);
5399 
5400 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5401 		rcu_sync_needed = true;
5402 		hlist_del_rcu(&napi->napi_hash_node);
5403 	}
5404 	spin_unlock(&napi_hash_lock);
5405 	return rcu_sync_needed;
5406 }
5407 EXPORT_SYMBOL_GPL(napi_hash_del);
5408 
5409 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5410 {
5411 	struct napi_struct *napi;
5412 
5413 	napi = container_of(timer, struct napi_struct, timer);
5414 
5415 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5416 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5417 	 */
5418 	if (napi->gro_list && !napi_disable_pending(napi) &&
5419 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5420 		__napi_schedule_irqoff(napi);
5421 
5422 	return HRTIMER_NORESTART;
5423 }
5424 
5425 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5426 		    int (*poll)(struct napi_struct *, int), int weight)
5427 {
5428 	INIT_LIST_HEAD(&napi->poll_list);
5429 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5430 	napi->timer.function = napi_watchdog;
5431 	napi->gro_count = 0;
5432 	napi->gro_list = NULL;
5433 	napi->skb = NULL;
5434 	napi->poll = poll;
5435 	if (weight > NAPI_POLL_WEIGHT)
5436 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5437 			    weight, dev->name);
5438 	napi->weight = weight;
5439 	list_add(&napi->dev_list, &dev->napi_list);
5440 	napi->dev = dev;
5441 #ifdef CONFIG_NETPOLL
5442 	napi->poll_owner = -1;
5443 #endif
5444 	set_bit(NAPI_STATE_SCHED, &napi->state);
5445 	napi_hash_add(napi);
5446 }
5447 EXPORT_SYMBOL(netif_napi_add);
5448 
5449 void napi_disable(struct napi_struct *n)
5450 {
5451 	might_sleep();
5452 	set_bit(NAPI_STATE_DISABLE, &n->state);
5453 
5454 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5455 		msleep(1);
5456 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5457 		msleep(1);
5458 
5459 	hrtimer_cancel(&n->timer);
5460 
5461 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5462 }
5463 EXPORT_SYMBOL(napi_disable);
5464 
5465 /* Must be called in process context */
5466 void netif_napi_del(struct napi_struct *napi)
5467 {
5468 	might_sleep();
5469 	if (napi_hash_del(napi))
5470 		synchronize_net();
5471 	list_del_init(&napi->dev_list);
5472 	napi_free_frags(napi);
5473 
5474 	kfree_skb_list(napi->gro_list);
5475 	napi->gro_list = NULL;
5476 	napi->gro_count = 0;
5477 }
5478 EXPORT_SYMBOL(netif_napi_del);
5479 
5480 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5481 {
5482 	void *have;
5483 	int work, weight;
5484 
5485 	list_del_init(&n->poll_list);
5486 
5487 	have = netpoll_poll_lock(n);
5488 
5489 	weight = n->weight;
5490 
5491 	/* This NAPI_STATE_SCHED test is for avoiding a race
5492 	 * with netpoll's poll_napi().  Only the entity which
5493 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5494 	 * actually make the ->poll() call.  Therefore we avoid
5495 	 * accidentally calling ->poll() when NAPI is not scheduled.
5496 	 */
5497 	work = 0;
5498 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5499 		work = n->poll(n, weight);
5500 		trace_napi_poll(n, work, weight);
5501 	}
5502 
5503 	WARN_ON_ONCE(work > weight);
5504 
5505 	if (likely(work < weight))
5506 		goto out_unlock;
5507 
5508 	/* Drivers must not modify the NAPI state if they
5509 	 * consume the entire weight.  In such cases this code
5510 	 * still "owns" the NAPI instance and therefore can
5511 	 * move the instance around on the list at-will.
5512 	 */
5513 	if (unlikely(napi_disable_pending(n))) {
5514 		napi_complete(n);
5515 		goto out_unlock;
5516 	}
5517 
5518 	if (n->gro_list) {
5519 		/* flush too old packets
5520 		 * If HZ < 1000, flush all packets.
5521 		 */
5522 		napi_gro_flush(n, HZ >= 1000);
5523 	}
5524 
5525 	/* Some drivers may have called napi_schedule
5526 	 * prior to exhausting their budget.
5527 	 */
5528 	if (unlikely(!list_empty(&n->poll_list))) {
5529 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5530 			     n->dev ? n->dev->name : "backlog");
5531 		goto out_unlock;
5532 	}
5533 
5534 	list_add_tail(&n->poll_list, repoll);
5535 
5536 out_unlock:
5537 	netpoll_poll_unlock(have);
5538 
5539 	return work;
5540 }
5541 
5542 static __latent_entropy void net_rx_action(struct softirq_action *h)
5543 {
5544 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5545 	unsigned long time_limit = jiffies +
5546 		usecs_to_jiffies(netdev_budget_usecs);
5547 	int budget = netdev_budget;
5548 	LIST_HEAD(list);
5549 	LIST_HEAD(repoll);
5550 
5551 	local_irq_disable();
5552 	list_splice_init(&sd->poll_list, &list);
5553 	local_irq_enable();
5554 
5555 	for (;;) {
5556 		struct napi_struct *n;
5557 
5558 		if (list_empty(&list)) {
5559 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5560 				goto out;
5561 			break;
5562 		}
5563 
5564 		n = list_first_entry(&list, struct napi_struct, poll_list);
5565 		budget -= napi_poll(n, &repoll);
5566 
5567 		/* If softirq window is exhausted then punt.
5568 		 * Allow this to run for 2 jiffies since which will allow
5569 		 * an average latency of 1.5/HZ.
5570 		 */
5571 		if (unlikely(budget <= 0 ||
5572 			     time_after_eq(jiffies, time_limit))) {
5573 			sd->time_squeeze++;
5574 			break;
5575 		}
5576 	}
5577 
5578 	local_irq_disable();
5579 
5580 	list_splice_tail_init(&sd->poll_list, &list);
5581 	list_splice_tail(&repoll, &list);
5582 	list_splice(&list, &sd->poll_list);
5583 	if (!list_empty(&sd->poll_list))
5584 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5585 
5586 	net_rps_action_and_irq_enable(sd);
5587 out:
5588 	__kfree_skb_flush();
5589 }
5590 
5591 struct netdev_adjacent {
5592 	struct net_device *dev;
5593 
5594 	/* upper master flag, there can only be one master device per list */
5595 	bool master;
5596 
5597 	/* counter for the number of times this device was added to us */
5598 	u16 ref_nr;
5599 
5600 	/* private field for the users */
5601 	void *private;
5602 
5603 	struct list_head list;
5604 	struct rcu_head rcu;
5605 };
5606 
5607 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5608 						 struct list_head *adj_list)
5609 {
5610 	struct netdev_adjacent *adj;
5611 
5612 	list_for_each_entry(adj, adj_list, list) {
5613 		if (adj->dev == adj_dev)
5614 			return adj;
5615 	}
5616 	return NULL;
5617 }
5618 
5619 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5620 {
5621 	struct net_device *dev = data;
5622 
5623 	return upper_dev == dev;
5624 }
5625 
5626 /**
5627  * netdev_has_upper_dev - Check if device is linked to an upper device
5628  * @dev: device
5629  * @upper_dev: upper device to check
5630  *
5631  * Find out if a device is linked to specified upper device and return true
5632  * in case it is. Note that this checks only immediate upper device,
5633  * not through a complete stack of devices. The caller must hold the RTNL lock.
5634  */
5635 bool netdev_has_upper_dev(struct net_device *dev,
5636 			  struct net_device *upper_dev)
5637 {
5638 	ASSERT_RTNL();
5639 
5640 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5641 					     upper_dev);
5642 }
5643 EXPORT_SYMBOL(netdev_has_upper_dev);
5644 
5645 /**
5646  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5647  * @dev: device
5648  * @upper_dev: upper device to check
5649  *
5650  * Find out if a device is linked to specified upper device and return true
5651  * in case it is. Note that this checks the entire upper device chain.
5652  * The caller must hold rcu lock.
5653  */
5654 
5655 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5656 				  struct net_device *upper_dev)
5657 {
5658 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5659 					       upper_dev);
5660 }
5661 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5662 
5663 /**
5664  * netdev_has_any_upper_dev - Check if device is linked to some device
5665  * @dev: device
5666  *
5667  * Find out if a device is linked to an upper device and return true in case
5668  * it is. The caller must hold the RTNL lock.
5669  */
5670 static bool netdev_has_any_upper_dev(struct net_device *dev)
5671 {
5672 	ASSERT_RTNL();
5673 
5674 	return !list_empty(&dev->adj_list.upper);
5675 }
5676 
5677 /**
5678  * netdev_master_upper_dev_get - Get master upper device
5679  * @dev: device
5680  *
5681  * Find a master upper device and return pointer to it or NULL in case
5682  * it's not there. The caller must hold the RTNL lock.
5683  */
5684 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5685 {
5686 	struct netdev_adjacent *upper;
5687 
5688 	ASSERT_RTNL();
5689 
5690 	if (list_empty(&dev->adj_list.upper))
5691 		return NULL;
5692 
5693 	upper = list_first_entry(&dev->adj_list.upper,
5694 				 struct netdev_adjacent, list);
5695 	if (likely(upper->master))
5696 		return upper->dev;
5697 	return NULL;
5698 }
5699 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5700 
5701 /**
5702  * netdev_has_any_lower_dev - Check if device is linked to some device
5703  * @dev: device
5704  *
5705  * Find out if a device is linked to a lower device and return true in case
5706  * it is. The caller must hold the RTNL lock.
5707  */
5708 static bool netdev_has_any_lower_dev(struct net_device *dev)
5709 {
5710 	ASSERT_RTNL();
5711 
5712 	return !list_empty(&dev->adj_list.lower);
5713 }
5714 
5715 void *netdev_adjacent_get_private(struct list_head *adj_list)
5716 {
5717 	struct netdev_adjacent *adj;
5718 
5719 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5720 
5721 	return adj->private;
5722 }
5723 EXPORT_SYMBOL(netdev_adjacent_get_private);
5724 
5725 /**
5726  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5727  * @dev: device
5728  * @iter: list_head ** of the current position
5729  *
5730  * Gets the next device from the dev's upper list, starting from iter
5731  * position. The caller must hold RCU read lock.
5732  */
5733 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5734 						 struct list_head **iter)
5735 {
5736 	struct netdev_adjacent *upper;
5737 
5738 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5739 
5740 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5741 
5742 	if (&upper->list == &dev->adj_list.upper)
5743 		return NULL;
5744 
5745 	*iter = &upper->list;
5746 
5747 	return upper->dev;
5748 }
5749 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5750 
5751 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5752 						    struct list_head **iter)
5753 {
5754 	struct netdev_adjacent *upper;
5755 
5756 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5757 
5758 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5759 
5760 	if (&upper->list == &dev->adj_list.upper)
5761 		return NULL;
5762 
5763 	*iter = &upper->list;
5764 
5765 	return upper->dev;
5766 }
5767 
5768 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5769 				  int (*fn)(struct net_device *dev,
5770 					    void *data),
5771 				  void *data)
5772 {
5773 	struct net_device *udev;
5774 	struct list_head *iter;
5775 	int ret;
5776 
5777 	for (iter = &dev->adj_list.upper,
5778 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5779 	     udev;
5780 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5781 		/* first is the upper device itself */
5782 		ret = fn(udev, data);
5783 		if (ret)
5784 			return ret;
5785 
5786 		/* then look at all of its upper devices */
5787 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5788 		if (ret)
5789 			return ret;
5790 	}
5791 
5792 	return 0;
5793 }
5794 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5795 
5796 /**
5797  * netdev_lower_get_next_private - Get the next ->private from the
5798  *				   lower neighbour list
5799  * @dev: device
5800  * @iter: list_head ** of the current position
5801  *
5802  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5803  * list, starting from iter position. The caller must hold either hold the
5804  * RTNL lock or its own locking that guarantees that the neighbour lower
5805  * list will remain unchanged.
5806  */
5807 void *netdev_lower_get_next_private(struct net_device *dev,
5808 				    struct list_head **iter)
5809 {
5810 	struct netdev_adjacent *lower;
5811 
5812 	lower = list_entry(*iter, struct netdev_adjacent, list);
5813 
5814 	if (&lower->list == &dev->adj_list.lower)
5815 		return NULL;
5816 
5817 	*iter = lower->list.next;
5818 
5819 	return lower->private;
5820 }
5821 EXPORT_SYMBOL(netdev_lower_get_next_private);
5822 
5823 /**
5824  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5825  *				       lower neighbour list, RCU
5826  *				       variant
5827  * @dev: device
5828  * @iter: list_head ** of the current position
5829  *
5830  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5831  * list, starting from iter position. The caller must hold RCU read lock.
5832  */
5833 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5834 					struct list_head **iter)
5835 {
5836 	struct netdev_adjacent *lower;
5837 
5838 	WARN_ON_ONCE(!rcu_read_lock_held());
5839 
5840 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5841 
5842 	if (&lower->list == &dev->adj_list.lower)
5843 		return NULL;
5844 
5845 	*iter = &lower->list;
5846 
5847 	return lower->private;
5848 }
5849 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5850 
5851 /**
5852  * netdev_lower_get_next - Get the next device from the lower neighbour
5853  *                         list
5854  * @dev: device
5855  * @iter: list_head ** of the current position
5856  *
5857  * Gets the next netdev_adjacent from the dev's lower neighbour
5858  * list, starting from iter position. The caller must hold RTNL lock or
5859  * its own locking that guarantees that the neighbour lower
5860  * list will remain unchanged.
5861  */
5862 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5863 {
5864 	struct netdev_adjacent *lower;
5865 
5866 	lower = list_entry(*iter, struct netdev_adjacent, list);
5867 
5868 	if (&lower->list == &dev->adj_list.lower)
5869 		return NULL;
5870 
5871 	*iter = lower->list.next;
5872 
5873 	return lower->dev;
5874 }
5875 EXPORT_SYMBOL(netdev_lower_get_next);
5876 
5877 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5878 						struct list_head **iter)
5879 {
5880 	struct netdev_adjacent *lower;
5881 
5882 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5883 
5884 	if (&lower->list == &dev->adj_list.lower)
5885 		return NULL;
5886 
5887 	*iter = &lower->list;
5888 
5889 	return lower->dev;
5890 }
5891 
5892 int netdev_walk_all_lower_dev(struct net_device *dev,
5893 			      int (*fn)(struct net_device *dev,
5894 					void *data),
5895 			      void *data)
5896 {
5897 	struct net_device *ldev;
5898 	struct list_head *iter;
5899 	int ret;
5900 
5901 	for (iter = &dev->adj_list.lower,
5902 	     ldev = netdev_next_lower_dev(dev, &iter);
5903 	     ldev;
5904 	     ldev = netdev_next_lower_dev(dev, &iter)) {
5905 		/* first is the lower device itself */
5906 		ret = fn(ldev, data);
5907 		if (ret)
5908 			return ret;
5909 
5910 		/* then look at all of its lower devices */
5911 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
5912 		if (ret)
5913 			return ret;
5914 	}
5915 
5916 	return 0;
5917 }
5918 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5919 
5920 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5921 						    struct list_head **iter)
5922 {
5923 	struct netdev_adjacent *lower;
5924 
5925 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5926 	if (&lower->list == &dev->adj_list.lower)
5927 		return NULL;
5928 
5929 	*iter = &lower->list;
5930 
5931 	return lower->dev;
5932 }
5933 
5934 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5935 				  int (*fn)(struct net_device *dev,
5936 					    void *data),
5937 				  void *data)
5938 {
5939 	struct net_device *ldev;
5940 	struct list_head *iter;
5941 	int ret;
5942 
5943 	for (iter = &dev->adj_list.lower,
5944 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
5945 	     ldev;
5946 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5947 		/* first is the lower device itself */
5948 		ret = fn(ldev, data);
5949 		if (ret)
5950 			return ret;
5951 
5952 		/* then look at all of its lower devices */
5953 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5954 		if (ret)
5955 			return ret;
5956 	}
5957 
5958 	return 0;
5959 }
5960 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5961 
5962 /**
5963  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5964  *				       lower neighbour list, RCU
5965  *				       variant
5966  * @dev: device
5967  *
5968  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5969  * list. The caller must hold RCU read lock.
5970  */
5971 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5972 {
5973 	struct netdev_adjacent *lower;
5974 
5975 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5976 			struct netdev_adjacent, list);
5977 	if (lower)
5978 		return lower->private;
5979 	return NULL;
5980 }
5981 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5982 
5983 /**
5984  * netdev_master_upper_dev_get_rcu - Get master upper device
5985  * @dev: device
5986  *
5987  * Find a master upper device and return pointer to it or NULL in case
5988  * it's not there. The caller must hold the RCU read lock.
5989  */
5990 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5991 {
5992 	struct netdev_adjacent *upper;
5993 
5994 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5995 				       struct netdev_adjacent, list);
5996 	if (upper && likely(upper->master))
5997 		return upper->dev;
5998 	return NULL;
5999 }
6000 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6001 
6002 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6003 			      struct net_device *adj_dev,
6004 			      struct list_head *dev_list)
6005 {
6006 	char linkname[IFNAMSIZ+7];
6007 
6008 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6009 		"upper_%s" : "lower_%s", adj_dev->name);
6010 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6011 				 linkname);
6012 }
6013 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6014 			       char *name,
6015 			       struct list_head *dev_list)
6016 {
6017 	char linkname[IFNAMSIZ+7];
6018 
6019 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6020 		"upper_%s" : "lower_%s", name);
6021 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6022 }
6023 
6024 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6025 						 struct net_device *adj_dev,
6026 						 struct list_head *dev_list)
6027 {
6028 	return (dev_list == &dev->adj_list.upper ||
6029 		dev_list == &dev->adj_list.lower) &&
6030 		net_eq(dev_net(dev), dev_net(adj_dev));
6031 }
6032 
6033 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6034 					struct net_device *adj_dev,
6035 					struct list_head *dev_list,
6036 					void *private, bool master)
6037 {
6038 	struct netdev_adjacent *adj;
6039 	int ret;
6040 
6041 	adj = __netdev_find_adj(adj_dev, dev_list);
6042 
6043 	if (adj) {
6044 		adj->ref_nr += 1;
6045 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6046 			 dev->name, adj_dev->name, adj->ref_nr);
6047 
6048 		return 0;
6049 	}
6050 
6051 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6052 	if (!adj)
6053 		return -ENOMEM;
6054 
6055 	adj->dev = adj_dev;
6056 	adj->master = master;
6057 	adj->ref_nr = 1;
6058 	adj->private = private;
6059 	dev_hold(adj_dev);
6060 
6061 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6062 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6063 
6064 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6065 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6066 		if (ret)
6067 			goto free_adj;
6068 	}
6069 
6070 	/* Ensure that master link is always the first item in list. */
6071 	if (master) {
6072 		ret = sysfs_create_link(&(dev->dev.kobj),
6073 					&(adj_dev->dev.kobj), "master");
6074 		if (ret)
6075 			goto remove_symlinks;
6076 
6077 		list_add_rcu(&adj->list, dev_list);
6078 	} else {
6079 		list_add_tail_rcu(&adj->list, dev_list);
6080 	}
6081 
6082 	return 0;
6083 
6084 remove_symlinks:
6085 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6086 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6087 free_adj:
6088 	kfree(adj);
6089 	dev_put(adj_dev);
6090 
6091 	return ret;
6092 }
6093 
6094 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6095 					 struct net_device *adj_dev,
6096 					 u16 ref_nr,
6097 					 struct list_head *dev_list)
6098 {
6099 	struct netdev_adjacent *adj;
6100 
6101 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6102 		 dev->name, adj_dev->name, ref_nr);
6103 
6104 	adj = __netdev_find_adj(adj_dev, dev_list);
6105 
6106 	if (!adj) {
6107 		pr_err("Adjacency does not exist for device %s from %s\n",
6108 		       dev->name, adj_dev->name);
6109 		WARN_ON(1);
6110 		return;
6111 	}
6112 
6113 	if (adj->ref_nr > ref_nr) {
6114 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6115 			 dev->name, adj_dev->name, ref_nr,
6116 			 adj->ref_nr - ref_nr);
6117 		adj->ref_nr -= ref_nr;
6118 		return;
6119 	}
6120 
6121 	if (adj->master)
6122 		sysfs_remove_link(&(dev->dev.kobj), "master");
6123 
6124 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6125 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6126 
6127 	list_del_rcu(&adj->list);
6128 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6129 		 adj_dev->name, dev->name, adj_dev->name);
6130 	dev_put(adj_dev);
6131 	kfree_rcu(adj, rcu);
6132 }
6133 
6134 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6135 					    struct net_device *upper_dev,
6136 					    struct list_head *up_list,
6137 					    struct list_head *down_list,
6138 					    void *private, bool master)
6139 {
6140 	int ret;
6141 
6142 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6143 					   private, master);
6144 	if (ret)
6145 		return ret;
6146 
6147 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6148 					   private, false);
6149 	if (ret) {
6150 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6151 		return ret;
6152 	}
6153 
6154 	return 0;
6155 }
6156 
6157 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6158 					       struct net_device *upper_dev,
6159 					       u16 ref_nr,
6160 					       struct list_head *up_list,
6161 					       struct list_head *down_list)
6162 {
6163 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6164 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6165 }
6166 
6167 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6168 						struct net_device *upper_dev,
6169 						void *private, bool master)
6170 {
6171 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6172 						&dev->adj_list.upper,
6173 						&upper_dev->adj_list.lower,
6174 						private, master);
6175 }
6176 
6177 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6178 						   struct net_device *upper_dev)
6179 {
6180 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6181 					   &dev->adj_list.upper,
6182 					   &upper_dev->adj_list.lower);
6183 }
6184 
6185 static int __netdev_upper_dev_link(struct net_device *dev,
6186 				   struct net_device *upper_dev, bool master,
6187 				   void *upper_priv, void *upper_info)
6188 {
6189 	struct netdev_notifier_changeupper_info changeupper_info;
6190 	int ret = 0;
6191 
6192 	ASSERT_RTNL();
6193 
6194 	if (dev == upper_dev)
6195 		return -EBUSY;
6196 
6197 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6198 	if (netdev_has_upper_dev(upper_dev, dev))
6199 		return -EBUSY;
6200 
6201 	if (netdev_has_upper_dev(dev, upper_dev))
6202 		return -EEXIST;
6203 
6204 	if (master && netdev_master_upper_dev_get(dev))
6205 		return -EBUSY;
6206 
6207 	changeupper_info.upper_dev = upper_dev;
6208 	changeupper_info.master = master;
6209 	changeupper_info.linking = true;
6210 	changeupper_info.upper_info = upper_info;
6211 
6212 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6213 					    &changeupper_info.info);
6214 	ret = notifier_to_errno(ret);
6215 	if (ret)
6216 		return ret;
6217 
6218 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6219 						   master);
6220 	if (ret)
6221 		return ret;
6222 
6223 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6224 					    &changeupper_info.info);
6225 	ret = notifier_to_errno(ret);
6226 	if (ret)
6227 		goto rollback;
6228 
6229 	return 0;
6230 
6231 rollback:
6232 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6233 
6234 	return ret;
6235 }
6236 
6237 /**
6238  * netdev_upper_dev_link - Add a link to the upper device
6239  * @dev: device
6240  * @upper_dev: new upper device
6241  *
6242  * Adds a link to device which is upper to this one. The caller must hold
6243  * the RTNL lock. On a failure a negative errno code is returned.
6244  * On success the reference counts are adjusted and the function
6245  * returns zero.
6246  */
6247 int netdev_upper_dev_link(struct net_device *dev,
6248 			  struct net_device *upper_dev)
6249 {
6250 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6251 }
6252 EXPORT_SYMBOL(netdev_upper_dev_link);
6253 
6254 /**
6255  * netdev_master_upper_dev_link - Add a master link to the upper device
6256  * @dev: device
6257  * @upper_dev: new upper device
6258  * @upper_priv: upper device private
6259  * @upper_info: upper info to be passed down via notifier
6260  *
6261  * Adds a link to device which is upper to this one. In this case, only
6262  * one master upper device can be linked, although other non-master devices
6263  * might be linked as well. The caller must hold the RTNL lock.
6264  * On a failure a negative errno code is returned. On success the reference
6265  * counts are adjusted and the function returns zero.
6266  */
6267 int netdev_master_upper_dev_link(struct net_device *dev,
6268 				 struct net_device *upper_dev,
6269 				 void *upper_priv, void *upper_info)
6270 {
6271 	return __netdev_upper_dev_link(dev, upper_dev, true,
6272 				       upper_priv, upper_info);
6273 }
6274 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6275 
6276 /**
6277  * netdev_upper_dev_unlink - Removes a link to upper device
6278  * @dev: device
6279  * @upper_dev: new upper device
6280  *
6281  * Removes a link to device which is upper to this one. The caller must hold
6282  * the RTNL lock.
6283  */
6284 void netdev_upper_dev_unlink(struct net_device *dev,
6285 			     struct net_device *upper_dev)
6286 {
6287 	struct netdev_notifier_changeupper_info changeupper_info;
6288 
6289 	ASSERT_RTNL();
6290 
6291 	changeupper_info.upper_dev = upper_dev;
6292 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6293 	changeupper_info.linking = false;
6294 
6295 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6296 				      &changeupper_info.info);
6297 
6298 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6299 
6300 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6301 				      &changeupper_info.info);
6302 }
6303 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6304 
6305 /**
6306  * netdev_bonding_info_change - Dispatch event about slave change
6307  * @dev: device
6308  * @bonding_info: info to dispatch
6309  *
6310  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6311  * The caller must hold the RTNL lock.
6312  */
6313 void netdev_bonding_info_change(struct net_device *dev,
6314 				struct netdev_bonding_info *bonding_info)
6315 {
6316 	struct netdev_notifier_bonding_info	info;
6317 
6318 	memcpy(&info.bonding_info, bonding_info,
6319 	       sizeof(struct netdev_bonding_info));
6320 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6321 				      &info.info);
6322 }
6323 EXPORT_SYMBOL(netdev_bonding_info_change);
6324 
6325 static void netdev_adjacent_add_links(struct net_device *dev)
6326 {
6327 	struct netdev_adjacent *iter;
6328 
6329 	struct net *net = dev_net(dev);
6330 
6331 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6332 		if (!net_eq(net, dev_net(iter->dev)))
6333 			continue;
6334 		netdev_adjacent_sysfs_add(iter->dev, dev,
6335 					  &iter->dev->adj_list.lower);
6336 		netdev_adjacent_sysfs_add(dev, iter->dev,
6337 					  &dev->adj_list.upper);
6338 	}
6339 
6340 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6341 		if (!net_eq(net, dev_net(iter->dev)))
6342 			continue;
6343 		netdev_adjacent_sysfs_add(iter->dev, dev,
6344 					  &iter->dev->adj_list.upper);
6345 		netdev_adjacent_sysfs_add(dev, iter->dev,
6346 					  &dev->adj_list.lower);
6347 	}
6348 }
6349 
6350 static void netdev_adjacent_del_links(struct net_device *dev)
6351 {
6352 	struct netdev_adjacent *iter;
6353 
6354 	struct net *net = dev_net(dev);
6355 
6356 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6357 		if (!net_eq(net, dev_net(iter->dev)))
6358 			continue;
6359 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6360 					  &iter->dev->adj_list.lower);
6361 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6362 					  &dev->adj_list.upper);
6363 	}
6364 
6365 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6366 		if (!net_eq(net, dev_net(iter->dev)))
6367 			continue;
6368 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6369 					  &iter->dev->adj_list.upper);
6370 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6371 					  &dev->adj_list.lower);
6372 	}
6373 }
6374 
6375 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6376 {
6377 	struct netdev_adjacent *iter;
6378 
6379 	struct net *net = dev_net(dev);
6380 
6381 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6382 		if (!net_eq(net, dev_net(iter->dev)))
6383 			continue;
6384 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6385 					  &iter->dev->adj_list.lower);
6386 		netdev_adjacent_sysfs_add(iter->dev, dev,
6387 					  &iter->dev->adj_list.lower);
6388 	}
6389 
6390 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6391 		if (!net_eq(net, dev_net(iter->dev)))
6392 			continue;
6393 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6394 					  &iter->dev->adj_list.upper);
6395 		netdev_adjacent_sysfs_add(iter->dev, dev,
6396 					  &iter->dev->adj_list.upper);
6397 	}
6398 }
6399 
6400 void *netdev_lower_dev_get_private(struct net_device *dev,
6401 				   struct net_device *lower_dev)
6402 {
6403 	struct netdev_adjacent *lower;
6404 
6405 	if (!lower_dev)
6406 		return NULL;
6407 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6408 	if (!lower)
6409 		return NULL;
6410 
6411 	return lower->private;
6412 }
6413 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6414 
6415 
6416 int dev_get_nest_level(struct net_device *dev)
6417 {
6418 	struct net_device *lower = NULL;
6419 	struct list_head *iter;
6420 	int max_nest = -1;
6421 	int nest;
6422 
6423 	ASSERT_RTNL();
6424 
6425 	netdev_for_each_lower_dev(dev, lower, iter) {
6426 		nest = dev_get_nest_level(lower);
6427 		if (max_nest < nest)
6428 			max_nest = nest;
6429 	}
6430 
6431 	return max_nest + 1;
6432 }
6433 EXPORT_SYMBOL(dev_get_nest_level);
6434 
6435 /**
6436  * netdev_lower_change - Dispatch event about lower device state change
6437  * @lower_dev: device
6438  * @lower_state_info: state to dispatch
6439  *
6440  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6441  * The caller must hold the RTNL lock.
6442  */
6443 void netdev_lower_state_changed(struct net_device *lower_dev,
6444 				void *lower_state_info)
6445 {
6446 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6447 
6448 	ASSERT_RTNL();
6449 	changelowerstate_info.lower_state_info = lower_state_info;
6450 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6451 				      &changelowerstate_info.info);
6452 }
6453 EXPORT_SYMBOL(netdev_lower_state_changed);
6454 
6455 static void dev_change_rx_flags(struct net_device *dev, int flags)
6456 {
6457 	const struct net_device_ops *ops = dev->netdev_ops;
6458 
6459 	if (ops->ndo_change_rx_flags)
6460 		ops->ndo_change_rx_flags(dev, flags);
6461 }
6462 
6463 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6464 {
6465 	unsigned int old_flags = dev->flags;
6466 	kuid_t uid;
6467 	kgid_t gid;
6468 
6469 	ASSERT_RTNL();
6470 
6471 	dev->flags |= IFF_PROMISC;
6472 	dev->promiscuity += inc;
6473 	if (dev->promiscuity == 0) {
6474 		/*
6475 		 * Avoid overflow.
6476 		 * If inc causes overflow, untouch promisc and return error.
6477 		 */
6478 		if (inc < 0)
6479 			dev->flags &= ~IFF_PROMISC;
6480 		else {
6481 			dev->promiscuity -= inc;
6482 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6483 				dev->name);
6484 			return -EOVERFLOW;
6485 		}
6486 	}
6487 	if (dev->flags != old_flags) {
6488 		pr_info("device %s %s promiscuous mode\n",
6489 			dev->name,
6490 			dev->flags & IFF_PROMISC ? "entered" : "left");
6491 		if (audit_enabled) {
6492 			current_uid_gid(&uid, &gid);
6493 			audit_log(current->audit_context, GFP_ATOMIC,
6494 				AUDIT_ANOM_PROMISCUOUS,
6495 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6496 				dev->name, (dev->flags & IFF_PROMISC),
6497 				(old_flags & IFF_PROMISC),
6498 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6499 				from_kuid(&init_user_ns, uid),
6500 				from_kgid(&init_user_ns, gid),
6501 				audit_get_sessionid(current));
6502 		}
6503 
6504 		dev_change_rx_flags(dev, IFF_PROMISC);
6505 	}
6506 	if (notify)
6507 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6508 	return 0;
6509 }
6510 
6511 /**
6512  *	dev_set_promiscuity	- update promiscuity count on a device
6513  *	@dev: device
6514  *	@inc: modifier
6515  *
6516  *	Add or remove promiscuity from a device. While the count in the device
6517  *	remains above zero the interface remains promiscuous. Once it hits zero
6518  *	the device reverts back to normal filtering operation. A negative inc
6519  *	value is used to drop promiscuity on the device.
6520  *	Return 0 if successful or a negative errno code on error.
6521  */
6522 int dev_set_promiscuity(struct net_device *dev, int inc)
6523 {
6524 	unsigned int old_flags = dev->flags;
6525 	int err;
6526 
6527 	err = __dev_set_promiscuity(dev, inc, true);
6528 	if (err < 0)
6529 		return err;
6530 	if (dev->flags != old_flags)
6531 		dev_set_rx_mode(dev);
6532 	return err;
6533 }
6534 EXPORT_SYMBOL(dev_set_promiscuity);
6535 
6536 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6537 {
6538 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6539 
6540 	ASSERT_RTNL();
6541 
6542 	dev->flags |= IFF_ALLMULTI;
6543 	dev->allmulti += inc;
6544 	if (dev->allmulti == 0) {
6545 		/*
6546 		 * Avoid overflow.
6547 		 * If inc causes overflow, untouch allmulti and return error.
6548 		 */
6549 		if (inc < 0)
6550 			dev->flags &= ~IFF_ALLMULTI;
6551 		else {
6552 			dev->allmulti -= inc;
6553 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6554 				dev->name);
6555 			return -EOVERFLOW;
6556 		}
6557 	}
6558 	if (dev->flags ^ old_flags) {
6559 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6560 		dev_set_rx_mode(dev);
6561 		if (notify)
6562 			__dev_notify_flags(dev, old_flags,
6563 					   dev->gflags ^ old_gflags);
6564 	}
6565 	return 0;
6566 }
6567 
6568 /**
6569  *	dev_set_allmulti	- update allmulti count on a device
6570  *	@dev: device
6571  *	@inc: modifier
6572  *
6573  *	Add or remove reception of all multicast frames to a device. While the
6574  *	count in the device remains above zero the interface remains listening
6575  *	to all interfaces. Once it hits zero the device reverts back to normal
6576  *	filtering operation. A negative @inc value is used to drop the counter
6577  *	when releasing a resource needing all multicasts.
6578  *	Return 0 if successful or a negative errno code on error.
6579  */
6580 
6581 int dev_set_allmulti(struct net_device *dev, int inc)
6582 {
6583 	return __dev_set_allmulti(dev, inc, true);
6584 }
6585 EXPORT_SYMBOL(dev_set_allmulti);
6586 
6587 /*
6588  *	Upload unicast and multicast address lists to device and
6589  *	configure RX filtering. When the device doesn't support unicast
6590  *	filtering it is put in promiscuous mode while unicast addresses
6591  *	are present.
6592  */
6593 void __dev_set_rx_mode(struct net_device *dev)
6594 {
6595 	const struct net_device_ops *ops = dev->netdev_ops;
6596 
6597 	/* dev_open will call this function so the list will stay sane. */
6598 	if (!(dev->flags&IFF_UP))
6599 		return;
6600 
6601 	if (!netif_device_present(dev))
6602 		return;
6603 
6604 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6605 		/* Unicast addresses changes may only happen under the rtnl,
6606 		 * therefore calling __dev_set_promiscuity here is safe.
6607 		 */
6608 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6609 			__dev_set_promiscuity(dev, 1, false);
6610 			dev->uc_promisc = true;
6611 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6612 			__dev_set_promiscuity(dev, -1, false);
6613 			dev->uc_promisc = false;
6614 		}
6615 	}
6616 
6617 	if (ops->ndo_set_rx_mode)
6618 		ops->ndo_set_rx_mode(dev);
6619 }
6620 
6621 void dev_set_rx_mode(struct net_device *dev)
6622 {
6623 	netif_addr_lock_bh(dev);
6624 	__dev_set_rx_mode(dev);
6625 	netif_addr_unlock_bh(dev);
6626 }
6627 
6628 /**
6629  *	dev_get_flags - get flags reported to userspace
6630  *	@dev: device
6631  *
6632  *	Get the combination of flag bits exported through APIs to userspace.
6633  */
6634 unsigned int dev_get_flags(const struct net_device *dev)
6635 {
6636 	unsigned int flags;
6637 
6638 	flags = (dev->flags & ~(IFF_PROMISC |
6639 				IFF_ALLMULTI |
6640 				IFF_RUNNING |
6641 				IFF_LOWER_UP |
6642 				IFF_DORMANT)) |
6643 		(dev->gflags & (IFF_PROMISC |
6644 				IFF_ALLMULTI));
6645 
6646 	if (netif_running(dev)) {
6647 		if (netif_oper_up(dev))
6648 			flags |= IFF_RUNNING;
6649 		if (netif_carrier_ok(dev))
6650 			flags |= IFF_LOWER_UP;
6651 		if (netif_dormant(dev))
6652 			flags |= IFF_DORMANT;
6653 	}
6654 
6655 	return flags;
6656 }
6657 EXPORT_SYMBOL(dev_get_flags);
6658 
6659 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6660 {
6661 	unsigned int old_flags = dev->flags;
6662 	int ret;
6663 
6664 	ASSERT_RTNL();
6665 
6666 	/*
6667 	 *	Set the flags on our device.
6668 	 */
6669 
6670 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6671 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6672 			       IFF_AUTOMEDIA)) |
6673 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6674 				    IFF_ALLMULTI));
6675 
6676 	/*
6677 	 *	Load in the correct multicast list now the flags have changed.
6678 	 */
6679 
6680 	if ((old_flags ^ flags) & IFF_MULTICAST)
6681 		dev_change_rx_flags(dev, IFF_MULTICAST);
6682 
6683 	dev_set_rx_mode(dev);
6684 
6685 	/*
6686 	 *	Have we downed the interface. We handle IFF_UP ourselves
6687 	 *	according to user attempts to set it, rather than blindly
6688 	 *	setting it.
6689 	 */
6690 
6691 	ret = 0;
6692 	if ((old_flags ^ flags) & IFF_UP)
6693 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6694 
6695 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6696 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6697 		unsigned int old_flags = dev->flags;
6698 
6699 		dev->gflags ^= IFF_PROMISC;
6700 
6701 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6702 			if (dev->flags != old_flags)
6703 				dev_set_rx_mode(dev);
6704 	}
6705 
6706 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6707 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6708 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6709 	 */
6710 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6711 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6712 
6713 		dev->gflags ^= IFF_ALLMULTI;
6714 		__dev_set_allmulti(dev, inc, false);
6715 	}
6716 
6717 	return ret;
6718 }
6719 
6720 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6721 			unsigned int gchanges)
6722 {
6723 	unsigned int changes = dev->flags ^ old_flags;
6724 
6725 	if (gchanges)
6726 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6727 
6728 	if (changes & IFF_UP) {
6729 		if (dev->flags & IFF_UP)
6730 			call_netdevice_notifiers(NETDEV_UP, dev);
6731 		else
6732 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6733 	}
6734 
6735 	if (dev->flags & IFF_UP &&
6736 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6737 		struct netdev_notifier_change_info change_info;
6738 
6739 		change_info.flags_changed = changes;
6740 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6741 					      &change_info.info);
6742 	}
6743 }
6744 
6745 /**
6746  *	dev_change_flags - change device settings
6747  *	@dev: device
6748  *	@flags: device state flags
6749  *
6750  *	Change settings on device based state flags. The flags are
6751  *	in the userspace exported format.
6752  */
6753 int dev_change_flags(struct net_device *dev, unsigned int flags)
6754 {
6755 	int ret;
6756 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6757 
6758 	ret = __dev_change_flags(dev, flags);
6759 	if (ret < 0)
6760 		return ret;
6761 
6762 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6763 	__dev_notify_flags(dev, old_flags, changes);
6764 	return ret;
6765 }
6766 EXPORT_SYMBOL(dev_change_flags);
6767 
6768 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6769 {
6770 	const struct net_device_ops *ops = dev->netdev_ops;
6771 
6772 	if (ops->ndo_change_mtu)
6773 		return ops->ndo_change_mtu(dev, new_mtu);
6774 
6775 	dev->mtu = new_mtu;
6776 	return 0;
6777 }
6778 EXPORT_SYMBOL(__dev_set_mtu);
6779 
6780 /**
6781  *	dev_set_mtu - Change maximum transfer unit
6782  *	@dev: device
6783  *	@new_mtu: new transfer unit
6784  *
6785  *	Change the maximum transfer size of the network device.
6786  */
6787 int dev_set_mtu(struct net_device *dev, int new_mtu)
6788 {
6789 	int err, orig_mtu;
6790 
6791 	if (new_mtu == dev->mtu)
6792 		return 0;
6793 
6794 	/* MTU must be positive, and in range */
6795 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6796 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6797 				    dev->name, new_mtu, dev->min_mtu);
6798 		return -EINVAL;
6799 	}
6800 
6801 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6802 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6803 				    dev->name, new_mtu, dev->max_mtu);
6804 		return -EINVAL;
6805 	}
6806 
6807 	if (!netif_device_present(dev))
6808 		return -ENODEV;
6809 
6810 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6811 	err = notifier_to_errno(err);
6812 	if (err)
6813 		return err;
6814 
6815 	orig_mtu = dev->mtu;
6816 	err = __dev_set_mtu(dev, new_mtu);
6817 
6818 	if (!err) {
6819 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6820 		err = notifier_to_errno(err);
6821 		if (err) {
6822 			/* setting mtu back and notifying everyone again,
6823 			 * so that they have a chance to revert changes.
6824 			 */
6825 			__dev_set_mtu(dev, orig_mtu);
6826 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6827 		}
6828 	}
6829 	return err;
6830 }
6831 EXPORT_SYMBOL(dev_set_mtu);
6832 
6833 /**
6834  *	dev_set_group - Change group this device belongs to
6835  *	@dev: device
6836  *	@new_group: group this device should belong to
6837  */
6838 void dev_set_group(struct net_device *dev, int new_group)
6839 {
6840 	dev->group = new_group;
6841 }
6842 EXPORT_SYMBOL(dev_set_group);
6843 
6844 /**
6845  *	dev_set_mac_address - Change Media Access Control Address
6846  *	@dev: device
6847  *	@sa: new address
6848  *
6849  *	Change the hardware (MAC) address of the device
6850  */
6851 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6852 {
6853 	const struct net_device_ops *ops = dev->netdev_ops;
6854 	int err;
6855 
6856 	if (!ops->ndo_set_mac_address)
6857 		return -EOPNOTSUPP;
6858 	if (sa->sa_family != dev->type)
6859 		return -EINVAL;
6860 	if (!netif_device_present(dev))
6861 		return -ENODEV;
6862 	err = ops->ndo_set_mac_address(dev, sa);
6863 	if (err)
6864 		return err;
6865 	dev->addr_assign_type = NET_ADDR_SET;
6866 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6867 	add_device_randomness(dev->dev_addr, dev->addr_len);
6868 	return 0;
6869 }
6870 EXPORT_SYMBOL(dev_set_mac_address);
6871 
6872 /**
6873  *	dev_change_carrier - Change device carrier
6874  *	@dev: device
6875  *	@new_carrier: new value
6876  *
6877  *	Change device carrier
6878  */
6879 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6880 {
6881 	const struct net_device_ops *ops = dev->netdev_ops;
6882 
6883 	if (!ops->ndo_change_carrier)
6884 		return -EOPNOTSUPP;
6885 	if (!netif_device_present(dev))
6886 		return -ENODEV;
6887 	return ops->ndo_change_carrier(dev, new_carrier);
6888 }
6889 EXPORT_SYMBOL(dev_change_carrier);
6890 
6891 /**
6892  *	dev_get_phys_port_id - Get device physical port ID
6893  *	@dev: device
6894  *	@ppid: port ID
6895  *
6896  *	Get device physical port ID
6897  */
6898 int dev_get_phys_port_id(struct net_device *dev,
6899 			 struct netdev_phys_item_id *ppid)
6900 {
6901 	const struct net_device_ops *ops = dev->netdev_ops;
6902 
6903 	if (!ops->ndo_get_phys_port_id)
6904 		return -EOPNOTSUPP;
6905 	return ops->ndo_get_phys_port_id(dev, ppid);
6906 }
6907 EXPORT_SYMBOL(dev_get_phys_port_id);
6908 
6909 /**
6910  *	dev_get_phys_port_name - Get device physical port name
6911  *	@dev: device
6912  *	@name: port name
6913  *	@len: limit of bytes to copy to name
6914  *
6915  *	Get device physical port name
6916  */
6917 int dev_get_phys_port_name(struct net_device *dev,
6918 			   char *name, size_t len)
6919 {
6920 	const struct net_device_ops *ops = dev->netdev_ops;
6921 
6922 	if (!ops->ndo_get_phys_port_name)
6923 		return -EOPNOTSUPP;
6924 	return ops->ndo_get_phys_port_name(dev, name, len);
6925 }
6926 EXPORT_SYMBOL(dev_get_phys_port_name);
6927 
6928 /**
6929  *	dev_change_proto_down - update protocol port state information
6930  *	@dev: device
6931  *	@proto_down: new value
6932  *
6933  *	This info can be used by switch drivers to set the phys state of the
6934  *	port.
6935  */
6936 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6937 {
6938 	const struct net_device_ops *ops = dev->netdev_ops;
6939 
6940 	if (!ops->ndo_change_proto_down)
6941 		return -EOPNOTSUPP;
6942 	if (!netif_device_present(dev))
6943 		return -ENODEV;
6944 	return ops->ndo_change_proto_down(dev, proto_down);
6945 }
6946 EXPORT_SYMBOL(dev_change_proto_down);
6947 
6948 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
6949 {
6950 	struct netdev_xdp xdp;
6951 
6952 	memset(&xdp, 0, sizeof(xdp));
6953 	xdp.command = XDP_QUERY_PROG;
6954 
6955 	/* Query must always succeed. */
6956 	WARN_ON(xdp_op(dev, &xdp) < 0);
6957 	if (prog_id)
6958 		*prog_id = xdp.prog_id;
6959 
6960 	return xdp.prog_attached;
6961 }
6962 
6963 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
6964 			   struct netlink_ext_ack *extack, u32 flags,
6965 			   struct bpf_prog *prog)
6966 {
6967 	struct netdev_xdp xdp;
6968 
6969 	memset(&xdp, 0, sizeof(xdp));
6970 	if (flags & XDP_FLAGS_HW_MODE)
6971 		xdp.command = XDP_SETUP_PROG_HW;
6972 	else
6973 		xdp.command = XDP_SETUP_PROG;
6974 	xdp.extack = extack;
6975 	xdp.flags = flags;
6976 	xdp.prog = prog;
6977 
6978 	return xdp_op(dev, &xdp);
6979 }
6980 
6981 /**
6982  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
6983  *	@dev: device
6984  *	@extack: netlink extended ack
6985  *	@fd: new program fd or negative value to clear
6986  *	@flags: xdp-related flags
6987  *
6988  *	Set or clear a bpf program for a device
6989  */
6990 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
6991 		      int fd, u32 flags)
6992 {
6993 	const struct net_device_ops *ops = dev->netdev_ops;
6994 	struct bpf_prog *prog = NULL;
6995 	xdp_op_t xdp_op, xdp_chk;
6996 	int err;
6997 
6998 	ASSERT_RTNL();
6999 
7000 	xdp_op = xdp_chk = ops->ndo_xdp;
7001 	if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7002 		return -EOPNOTSUPP;
7003 	if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7004 		xdp_op = generic_xdp_install;
7005 	if (xdp_op == xdp_chk)
7006 		xdp_chk = generic_xdp_install;
7007 
7008 	if (fd >= 0) {
7009 		if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
7010 			return -EEXIST;
7011 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7012 		    __dev_xdp_attached(dev, xdp_op, NULL))
7013 			return -EBUSY;
7014 
7015 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7016 		if (IS_ERR(prog))
7017 			return PTR_ERR(prog);
7018 	}
7019 
7020 	err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
7021 	if (err < 0 && prog)
7022 		bpf_prog_put(prog);
7023 
7024 	return err;
7025 }
7026 
7027 /**
7028  *	dev_new_index	-	allocate an ifindex
7029  *	@net: the applicable net namespace
7030  *
7031  *	Returns a suitable unique value for a new device interface
7032  *	number.  The caller must hold the rtnl semaphore or the
7033  *	dev_base_lock to be sure it remains unique.
7034  */
7035 static int dev_new_index(struct net *net)
7036 {
7037 	int ifindex = net->ifindex;
7038 
7039 	for (;;) {
7040 		if (++ifindex <= 0)
7041 			ifindex = 1;
7042 		if (!__dev_get_by_index(net, ifindex))
7043 			return net->ifindex = ifindex;
7044 	}
7045 }
7046 
7047 /* Delayed registration/unregisteration */
7048 static LIST_HEAD(net_todo_list);
7049 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7050 
7051 static void net_set_todo(struct net_device *dev)
7052 {
7053 	list_add_tail(&dev->todo_list, &net_todo_list);
7054 	dev_net(dev)->dev_unreg_count++;
7055 }
7056 
7057 static void rollback_registered_many(struct list_head *head)
7058 {
7059 	struct net_device *dev, *tmp;
7060 	LIST_HEAD(close_head);
7061 
7062 	BUG_ON(dev_boot_phase);
7063 	ASSERT_RTNL();
7064 
7065 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7066 		/* Some devices call without registering
7067 		 * for initialization unwind. Remove those
7068 		 * devices and proceed with the remaining.
7069 		 */
7070 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7071 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7072 				 dev->name, dev);
7073 
7074 			WARN_ON(1);
7075 			list_del(&dev->unreg_list);
7076 			continue;
7077 		}
7078 		dev->dismantle = true;
7079 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7080 	}
7081 
7082 	/* If device is running, close it first. */
7083 	list_for_each_entry(dev, head, unreg_list)
7084 		list_add_tail(&dev->close_list, &close_head);
7085 	dev_close_many(&close_head, true);
7086 
7087 	list_for_each_entry(dev, head, unreg_list) {
7088 		/* And unlink it from device chain. */
7089 		unlist_netdevice(dev);
7090 
7091 		dev->reg_state = NETREG_UNREGISTERING;
7092 	}
7093 	flush_all_backlogs();
7094 
7095 	synchronize_net();
7096 
7097 	list_for_each_entry(dev, head, unreg_list) {
7098 		struct sk_buff *skb = NULL;
7099 
7100 		/* Shutdown queueing discipline. */
7101 		dev_shutdown(dev);
7102 
7103 
7104 		/* Notify protocols, that we are about to destroy
7105 		 * this device. They should clean all the things.
7106 		 */
7107 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7108 
7109 		if (!dev->rtnl_link_ops ||
7110 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7111 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7112 						     GFP_KERNEL);
7113 
7114 		/*
7115 		 *	Flush the unicast and multicast chains
7116 		 */
7117 		dev_uc_flush(dev);
7118 		dev_mc_flush(dev);
7119 
7120 		if (dev->netdev_ops->ndo_uninit)
7121 			dev->netdev_ops->ndo_uninit(dev);
7122 
7123 		if (skb)
7124 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7125 
7126 		/* Notifier chain MUST detach us all upper devices. */
7127 		WARN_ON(netdev_has_any_upper_dev(dev));
7128 		WARN_ON(netdev_has_any_lower_dev(dev));
7129 
7130 		/* Remove entries from kobject tree */
7131 		netdev_unregister_kobject(dev);
7132 #ifdef CONFIG_XPS
7133 		/* Remove XPS queueing entries */
7134 		netif_reset_xps_queues_gt(dev, 0);
7135 #endif
7136 	}
7137 
7138 	synchronize_net();
7139 
7140 	list_for_each_entry(dev, head, unreg_list)
7141 		dev_put(dev);
7142 }
7143 
7144 static void rollback_registered(struct net_device *dev)
7145 {
7146 	LIST_HEAD(single);
7147 
7148 	list_add(&dev->unreg_list, &single);
7149 	rollback_registered_many(&single);
7150 	list_del(&single);
7151 }
7152 
7153 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7154 	struct net_device *upper, netdev_features_t features)
7155 {
7156 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7157 	netdev_features_t feature;
7158 	int feature_bit;
7159 
7160 	for_each_netdev_feature(&upper_disables, feature_bit) {
7161 		feature = __NETIF_F_BIT(feature_bit);
7162 		if (!(upper->wanted_features & feature)
7163 		    && (features & feature)) {
7164 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7165 				   &feature, upper->name);
7166 			features &= ~feature;
7167 		}
7168 	}
7169 
7170 	return features;
7171 }
7172 
7173 static void netdev_sync_lower_features(struct net_device *upper,
7174 	struct net_device *lower, netdev_features_t features)
7175 {
7176 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7177 	netdev_features_t feature;
7178 	int feature_bit;
7179 
7180 	for_each_netdev_feature(&upper_disables, feature_bit) {
7181 		feature = __NETIF_F_BIT(feature_bit);
7182 		if (!(features & feature) && (lower->features & feature)) {
7183 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7184 				   &feature, lower->name);
7185 			lower->wanted_features &= ~feature;
7186 			netdev_update_features(lower);
7187 
7188 			if (unlikely(lower->features & feature))
7189 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7190 					    &feature, lower->name);
7191 		}
7192 	}
7193 }
7194 
7195 static netdev_features_t netdev_fix_features(struct net_device *dev,
7196 	netdev_features_t features)
7197 {
7198 	/* Fix illegal checksum combinations */
7199 	if ((features & NETIF_F_HW_CSUM) &&
7200 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7201 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7202 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7203 	}
7204 
7205 	/* TSO requires that SG is present as well. */
7206 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7207 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7208 		features &= ~NETIF_F_ALL_TSO;
7209 	}
7210 
7211 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7212 					!(features & NETIF_F_IP_CSUM)) {
7213 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7214 		features &= ~NETIF_F_TSO;
7215 		features &= ~NETIF_F_TSO_ECN;
7216 	}
7217 
7218 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7219 					 !(features & NETIF_F_IPV6_CSUM)) {
7220 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7221 		features &= ~NETIF_F_TSO6;
7222 	}
7223 
7224 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7225 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7226 		features &= ~NETIF_F_TSO_MANGLEID;
7227 
7228 	/* TSO ECN requires that TSO is present as well. */
7229 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7230 		features &= ~NETIF_F_TSO_ECN;
7231 
7232 	/* Software GSO depends on SG. */
7233 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7234 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7235 		features &= ~NETIF_F_GSO;
7236 	}
7237 
7238 	/* UFO needs SG and checksumming */
7239 	if (features & NETIF_F_UFO) {
7240 		/* maybe split UFO into V4 and V6? */
7241 		if (!(features & NETIF_F_HW_CSUM) &&
7242 		    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
7243 		     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
7244 			netdev_dbg(dev,
7245 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
7246 			features &= ~NETIF_F_UFO;
7247 		}
7248 
7249 		if (!(features & NETIF_F_SG)) {
7250 			netdev_dbg(dev,
7251 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
7252 			features &= ~NETIF_F_UFO;
7253 		}
7254 	}
7255 
7256 	/* GSO partial features require GSO partial be set */
7257 	if ((features & dev->gso_partial_features) &&
7258 	    !(features & NETIF_F_GSO_PARTIAL)) {
7259 		netdev_dbg(dev,
7260 			   "Dropping partially supported GSO features since no GSO partial.\n");
7261 		features &= ~dev->gso_partial_features;
7262 	}
7263 
7264 	return features;
7265 }
7266 
7267 int __netdev_update_features(struct net_device *dev)
7268 {
7269 	struct net_device *upper, *lower;
7270 	netdev_features_t features;
7271 	struct list_head *iter;
7272 	int err = -1;
7273 
7274 	ASSERT_RTNL();
7275 
7276 	features = netdev_get_wanted_features(dev);
7277 
7278 	if (dev->netdev_ops->ndo_fix_features)
7279 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7280 
7281 	/* driver might be less strict about feature dependencies */
7282 	features = netdev_fix_features(dev, features);
7283 
7284 	/* some features can't be enabled if they're off an an upper device */
7285 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7286 		features = netdev_sync_upper_features(dev, upper, features);
7287 
7288 	if (dev->features == features)
7289 		goto sync_lower;
7290 
7291 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7292 		&dev->features, &features);
7293 
7294 	if (dev->netdev_ops->ndo_set_features)
7295 		err = dev->netdev_ops->ndo_set_features(dev, features);
7296 	else
7297 		err = 0;
7298 
7299 	if (unlikely(err < 0)) {
7300 		netdev_err(dev,
7301 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7302 			err, &features, &dev->features);
7303 		/* return non-0 since some features might have changed and
7304 		 * it's better to fire a spurious notification than miss it
7305 		 */
7306 		return -1;
7307 	}
7308 
7309 sync_lower:
7310 	/* some features must be disabled on lower devices when disabled
7311 	 * on an upper device (think: bonding master or bridge)
7312 	 */
7313 	netdev_for_each_lower_dev(dev, lower, iter)
7314 		netdev_sync_lower_features(dev, lower, features);
7315 
7316 	if (!err)
7317 		dev->features = features;
7318 
7319 	return err < 0 ? 0 : 1;
7320 }
7321 
7322 /**
7323  *	netdev_update_features - recalculate device features
7324  *	@dev: the device to check
7325  *
7326  *	Recalculate dev->features set and send notifications if it
7327  *	has changed. Should be called after driver or hardware dependent
7328  *	conditions might have changed that influence the features.
7329  */
7330 void netdev_update_features(struct net_device *dev)
7331 {
7332 	if (__netdev_update_features(dev))
7333 		netdev_features_change(dev);
7334 }
7335 EXPORT_SYMBOL(netdev_update_features);
7336 
7337 /**
7338  *	netdev_change_features - recalculate device features
7339  *	@dev: the device to check
7340  *
7341  *	Recalculate dev->features set and send notifications even
7342  *	if they have not changed. Should be called instead of
7343  *	netdev_update_features() if also dev->vlan_features might
7344  *	have changed to allow the changes to be propagated to stacked
7345  *	VLAN devices.
7346  */
7347 void netdev_change_features(struct net_device *dev)
7348 {
7349 	__netdev_update_features(dev);
7350 	netdev_features_change(dev);
7351 }
7352 EXPORT_SYMBOL(netdev_change_features);
7353 
7354 /**
7355  *	netif_stacked_transfer_operstate -	transfer operstate
7356  *	@rootdev: the root or lower level device to transfer state from
7357  *	@dev: the device to transfer operstate to
7358  *
7359  *	Transfer operational state from root to device. This is normally
7360  *	called when a stacking relationship exists between the root
7361  *	device and the device(a leaf device).
7362  */
7363 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7364 					struct net_device *dev)
7365 {
7366 	if (rootdev->operstate == IF_OPER_DORMANT)
7367 		netif_dormant_on(dev);
7368 	else
7369 		netif_dormant_off(dev);
7370 
7371 	if (netif_carrier_ok(rootdev))
7372 		netif_carrier_on(dev);
7373 	else
7374 		netif_carrier_off(dev);
7375 }
7376 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7377 
7378 #ifdef CONFIG_SYSFS
7379 static int netif_alloc_rx_queues(struct net_device *dev)
7380 {
7381 	unsigned int i, count = dev->num_rx_queues;
7382 	struct netdev_rx_queue *rx;
7383 	size_t sz = count * sizeof(*rx);
7384 
7385 	BUG_ON(count < 1);
7386 
7387 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7388 	if (!rx)
7389 		return -ENOMEM;
7390 
7391 	dev->_rx = rx;
7392 
7393 	for (i = 0; i < count; i++)
7394 		rx[i].dev = dev;
7395 	return 0;
7396 }
7397 #endif
7398 
7399 static void netdev_init_one_queue(struct net_device *dev,
7400 				  struct netdev_queue *queue, void *_unused)
7401 {
7402 	/* Initialize queue lock */
7403 	spin_lock_init(&queue->_xmit_lock);
7404 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7405 	queue->xmit_lock_owner = -1;
7406 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7407 	queue->dev = dev;
7408 #ifdef CONFIG_BQL
7409 	dql_init(&queue->dql, HZ);
7410 #endif
7411 }
7412 
7413 static void netif_free_tx_queues(struct net_device *dev)
7414 {
7415 	kvfree(dev->_tx);
7416 }
7417 
7418 static int netif_alloc_netdev_queues(struct net_device *dev)
7419 {
7420 	unsigned int count = dev->num_tx_queues;
7421 	struct netdev_queue *tx;
7422 	size_t sz = count * sizeof(*tx);
7423 
7424 	if (count < 1 || count > 0xffff)
7425 		return -EINVAL;
7426 
7427 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7428 	if (!tx)
7429 		return -ENOMEM;
7430 
7431 	dev->_tx = tx;
7432 
7433 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7434 	spin_lock_init(&dev->tx_global_lock);
7435 
7436 	return 0;
7437 }
7438 
7439 void netif_tx_stop_all_queues(struct net_device *dev)
7440 {
7441 	unsigned int i;
7442 
7443 	for (i = 0; i < dev->num_tx_queues; i++) {
7444 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7445 
7446 		netif_tx_stop_queue(txq);
7447 	}
7448 }
7449 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7450 
7451 /**
7452  *	register_netdevice	- register a network device
7453  *	@dev: device to register
7454  *
7455  *	Take a completed network device structure and add it to the kernel
7456  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7457  *	chain. 0 is returned on success. A negative errno code is returned
7458  *	on a failure to set up the device, or if the name is a duplicate.
7459  *
7460  *	Callers must hold the rtnl semaphore. You may want
7461  *	register_netdev() instead of this.
7462  *
7463  *	BUGS:
7464  *	The locking appears insufficient to guarantee two parallel registers
7465  *	will not get the same name.
7466  */
7467 
7468 int register_netdevice(struct net_device *dev)
7469 {
7470 	int ret;
7471 	struct net *net = dev_net(dev);
7472 
7473 	BUG_ON(dev_boot_phase);
7474 	ASSERT_RTNL();
7475 
7476 	might_sleep();
7477 
7478 	/* When net_device's are persistent, this will be fatal. */
7479 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7480 	BUG_ON(!net);
7481 
7482 	spin_lock_init(&dev->addr_list_lock);
7483 	netdev_set_addr_lockdep_class(dev);
7484 
7485 	ret = dev_get_valid_name(net, dev, dev->name);
7486 	if (ret < 0)
7487 		goto out;
7488 
7489 	/* Init, if this function is available */
7490 	if (dev->netdev_ops->ndo_init) {
7491 		ret = dev->netdev_ops->ndo_init(dev);
7492 		if (ret) {
7493 			if (ret > 0)
7494 				ret = -EIO;
7495 			goto out;
7496 		}
7497 	}
7498 
7499 	if (((dev->hw_features | dev->features) &
7500 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7501 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7502 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7503 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7504 		ret = -EINVAL;
7505 		goto err_uninit;
7506 	}
7507 
7508 	ret = -EBUSY;
7509 	if (!dev->ifindex)
7510 		dev->ifindex = dev_new_index(net);
7511 	else if (__dev_get_by_index(net, dev->ifindex))
7512 		goto err_uninit;
7513 
7514 	/* Transfer changeable features to wanted_features and enable
7515 	 * software offloads (GSO and GRO).
7516 	 */
7517 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7518 	dev->features |= NETIF_F_SOFT_FEATURES;
7519 	dev->wanted_features = dev->features & dev->hw_features;
7520 
7521 	if (!(dev->flags & IFF_LOOPBACK))
7522 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7523 
7524 	/* If IPv4 TCP segmentation offload is supported we should also
7525 	 * allow the device to enable segmenting the frame with the option
7526 	 * of ignoring a static IP ID value.  This doesn't enable the
7527 	 * feature itself but allows the user to enable it later.
7528 	 */
7529 	if (dev->hw_features & NETIF_F_TSO)
7530 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7531 	if (dev->vlan_features & NETIF_F_TSO)
7532 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7533 	if (dev->mpls_features & NETIF_F_TSO)
7534 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7535 	if (dev->hw_enc_features & NETIF_F_TSO)
7536 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7537 
7538 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7539 	 */
7540 	dev->vlan_features |= NETIF_F_HIGHDMA;
7541 
7542 	/* Make NETIF_F_SG inheritable to tunnel devices.
7543 	 */
7544 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7545 
7546 	/* Make NETIF_F_SG inheritable to MPLS.
7547 	 */
7548 	dev->mpls_features |= NETIF_F_SG;
7549 
7550 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7551 	ret = notifier_to_errno(ret);
7552 	if (ret)
7553 		goto err_uninit;
7554 
7555 	ret = netdev_register_kobject(dev);
7556 	if (ret)
7557 		goto err_uninit;
7558 	dev->reg_state = NETREG_REGISTERED;
7559 
7560 	__netdev_update_features(dev);
7561 
7562 	/*
7563 	 *	Default initial state at registry is that the
7564 	 *	device is present.
7565 	 */
7566 
7567 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7568 
7569 	linkwatch_init_dev(dev);
7570 
7571 	dev_init_scheduler(dev);
7572 	dev_hold(dev);
7573 	list_netdevice(dev);
7574 	add_device_randomness(dev->dev_addr, dev->addr_len);
7575 
7576 	/* If the device has permanent device address, driver should
7577 	 * set dev_addr and also addr_assign_type should be set to
7578 	 * NET_ADDR_PERM (default value).
7579 	 */
7580 	if (dev->addr_assign_type == NET_ADDR_PERM)
7581 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7582 
7583 	/* Notify protocols, that a new device appeared. */
7584 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7585 	ret = notifier_to_errno(ret);
7586 	if (ret) {
7587 		rollback_registered(dev);
7588 		dev->reg_state = NETREG_UNREGISTERED;
7589 	}
7590 	/*
7591 	 *	Prevent userspace races by waiting until the network
7592 	 *	device is fully setup before sending notifications.
7593 	 */
7594 	if (!dev->rtnl_link_ops ||
7595 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7596 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7597 
7598 out:
7599 	return ret;
7600 
7601 err_uninit:
7602 	if (dev->netdev_ops->ndo_uninit)
7603 		dev->netdev_ops->ndo_uninit(dev);
7604 	if (dev->priv_destructor)
7605 		dev->priv_destructor(dev);
7606 	goto out;
7607 }
7608 EXPORT_SYMBOL(register_netdevice);
7609 
7610 /**
7611  *	init_dummy_netdev	- init a dummy network device for NAPI
7612  *	@dev: device to init
7613  *
7614  *	This takes a network device structure and initialize the minimum
7615  *	amount of fields so it can be used to schedule NAPI polls without
7616  *	registering a full blown interface. This is to be used by drivers
7617  *	that need to tie several hardware interfaces to a single NAPI
7618  *	poll scheduler due to HW limitations.
7619  */
7620 int init_dummy_netdev(struct net_device *dev)
7621 {
7622 	/* Clear everything. Note we don't initialize spinlocks
7623 	 * are they aren't supposed to be taken by any of the
7624 	 * NAPI code and this dummy netdev is supposed to be
7625 	 * only ever used for NAPI polls
7626 	 */
7627 	memset(dev, 0, sizeof(struct net_device));
7628 
7629 	/* make sure we BUG if trying to hit standard
7630 	 * register/unregister code path
7631 	 */
7632 	dev->reg_state = NETREG_DUMMY;
7633 
7634 	/* NAPI wants this */
7635 	INIT_LIST_HEAD(&dev->napi_list);
7636 
7637 	/* a dummy interface is started by default */
7638 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7639 	set_bit(__LINK_STATE_START, &dev->state);
7640 
7641 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7642 	 * because users of this 'device' dont need to change
7643 	 * its refcount.
7644 	 */
7645 
7646 	return 0;
7647 }
7648 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7649 
7650 
7651 /**
7652  *	register_netdev	- register a network device
7653  *	@dev: device to register
7654  *
7655  *	Take a completed network device structure and add it to the kernel
7656  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7657  *	chain. 0 is returned on success. A negative errno code is returned
7658  *	on a failure to set up the device, or if the name is a duplicate.
7659  *
7660  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7661  *	and expands the device name if you passed a format string to
7662  *	alloc_netdev.
7663  */
7664 int register_netdev(struct net_device *dev)
7665 {
7666 	int err;
7667 
7668 	rtnl_lock();
7669 	err = register_netdevice(dev);
7670 	rtnl_unlock();
7671 	return err;
7672 }
7673 EXPORT_SYMBOL(register_netdev);
7674 
7675 int netdev_refcnt_read(const struct net_device *dev)
7676 {
7677 	int i, refcnt = 0;
7678 
7679 	for_each_possible_cpu(i)
7680 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7681 	return refcnt;
7682 }
7683 EXPORT_SYMBOL(netdev_refcnt_read);
7684 
7685 /**
7686  * netdev_wait_allrefs - wait until all references are gone.
7687  * @dev: target net_device
7688  *
7689  * This is called when unregistering network devices.
7690  *
7691  * Any protocol or device that holds a reference should register
7692  * for netdevice notification, and cleanup and put back the
7693  * reference if they receive an UNREGISTER event.
7694  * We can get stuck here if buggy protocols don't correctly
7695  * call dev_put.
7696  */
7697 static void netdev_wait_allrefs(struct net_device *dev)
7698 {
7699 	unsigned long rebroadcast_time, warning_time;
7700 	int refcnt;
7701 
7702 	linkwatch_forget_dev(dev);
7703 
7704 	rebroadcast_time = warning_time = jiffies;
7705 	refcnt = netdev_refcnt_read(dev);
7706 
7707 	while (refcnt != 0) {
7708 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7709 			rtnl_lock();
7710 
7711 			/* Rebroadcast unregister notification */
7712 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7713 
7714 			__rtnl_unlock();
7715 			rcu_barrier();
7716 			rtnl_lock();
7717 
7718 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7719 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7720 				     &dev->state)) {
7721 				/* We must not have linkwatch events
7722 				 * pending on unregister. If this
7723 				 * happens, we simply run the queue
7724 				 * unscheduled, resulting in a noop
7725 				 * for this device.
7726 				 */
7727 				linkwatch_run_queue();
7728 			}
7729 
7730 			__rtnl_unlock();
7731 
7732 			rebroadcast_time = jiffies;
7733 		}
7734 
7735 		msleep(250);
7736 
7737 		refcnt = netdev_refcnt_read(dev);
7738 
7739 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7740 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7741 				 dev->name, refcnt);
7742 			warning_time = jiffies;
7743 		}
7744 	}
7745 }
7746 
7747 /* The sequence is:
7748  *
7749  *	rtnl_lock();
7750  *	...
7751  *	register_netdevice(x1);
7752  *	register_netdevice(x2);
7753  *	...
7754  *	unregister_netdevice(y1);
7755  *	unregister_netdevice(y2);
7756  *      ...
7757  *	rtnl_unlock();
7758  *	free_netdev(y1);
7759  *	free_netdev(y2);
7760  *
7761  * We are invoked by rtnl_unlock().
7762  * This allows us to deal with problems:
7763  * 1) We can delete sysfs objects which invoke hotplug
7764  *    without deadlocking with linkwatch via keventd.
7765  * 2) Since we run with the RTNL semaphore not held, we can sleep
7766  *    safely in order to wait for the netdev refcnt to drop to zero.
7767  *
7768  * We must not return until all unregister events added during
7769  * the interval the lock was held have been completed.
7770  */
7771 void netdev_run_todo(void)
7772 {
7773 	struct list_head list;
7774 
7775 	/* Snapshot list, allow later requests */
7776 	list_replace_init(&net_todo_list, &list);
7777 
7778 	__rtnl_unlock();
7779 
7780 
7781 	/* Wait for rcu callbacks to finish before next phase */
7782 	if (!list_empty(&list))
7783 		rcu_barrier();
7784 
7785 	while (!list_empty(&list)) {
7786 		struct net_device *dev
7787 			= list_first_entry(&list, struct net_device, todo_list);
7788 		list_del(&dev->todo_list);
7789 
7790 		rtnl_lock();
7791 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7792 		__rtnl_unlock();
7793 
7794 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7795 			pr_err("network todo '%s' but state %d\n",
7796 			       dev->name, dev->reg_state);
7797 			dump_stack();
7798 			continue;
7799 		}
7800 
7801 		dev->reg_state = NETREG_UNREGISTERED;
7802 
7803 		netdev_wait_allrefs(dev);
7804 
7805 		/* paranoia */
7806 		BUG_ON(netdev_refcnt_read(dev));
7807 		BUG_ON(!list_empty(&dev->ptype_all));
7808 		BUG_ON(!list_empty(&dev->ptype_specific));
7809 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7810 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7811 		WARN_ON(dev->dn_ptr);
7812 
7813 		if (dev->priv_destructor)
7814 			dev->priv_destructor(dev);
7815 		if (dev->needs_free_netdev)
7816 			free_netdev(dev);
7817 
7818 		/* Report a network device has been unregistered */
7819 		rtnl_lock();
7820 		dev_net(dev)->dev_unreg_count--;
7821 		__rtnl_unlock();
7822 		wake_up(&netdev_unregistering_wq);
7823 
7824 		/* Free network device */
7825 		kobject_put(&dev->dev.kobj);
7826 	}
7827 }
7828 
7829 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7830  * all the same fields in the same order as net_device_stats, with only
7831  * the type differing, but rtnl_link_stats64 may have additional fields
7832  * at the end for newer counters.
7833  */
7834 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7835 			     const struct net_device_stats *netdev_stats)
7836 {
7837 #if BITS_PER_LONG == 64
7838 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7839 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7840 	/* zero out counters that only exist in rtnl_link_stats64 */
7841 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7842 	       sizeof(*stats64) - sizeof(*netdev_stats));
7843 #else
7844 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7845 	const unsigned long *src = (const unsigned long *)netdev_stats;
7846 	u64 *dst = (u64 *)stats64;
7847 
7848 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7849 	for (i = 0; i < n; i++)
7850 		dst[i] = src[i];
7851 	/* zero out counters that only exist in rtnl_link_stats64 */
7852 	memset((char *)stats64 + n * sizeof(u64), 0,
7853 	       sizeof(*stats64) - n * sizeof(u64));
7854 #endif
7855 }
7856 EXPORT_SYMBOL(netdev_stats_to_stats64);
7857 
7858 /**
7859  *	dev_get_stats	- get network device statistics
7860  *	@dev: device to get statistics from
7861  *	@storage: place to store stats
7862  *
7863  *	Get network statistics from device. Return @storage.
7864  *	The device driver may provide its own method by setting
7865  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7866  *	otherwise the internal statistics structure is used.
7867  */
7868 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7869 					struct rtnl_link_stats64 *storage)
7870 {
7871 	const struct net_device_ops *ops = dev->netdev_ops;
7872 
7873 	if (ops->ndo_get_stats64) {
7874 		memset(storage, 0, sizeof(*storage));
7875 		ops->ndo_get_stats64(dev, storage);
7876 	} else if (ops->ndo_get_stats) {
7877 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7878 	} else {
7879 		netdev_stats_to_stats64(storage, &dev->stats);
7880 	}
7881 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
7882 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
7883 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
7884 	return storage;
7885 }
7886 EXPORT_SYMBOL(dev_get_stats);
7887 
7888 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7889 {
7890 	struct netdev_queue *queue = dev_ingress_queue(dev);
7891 
7892 #ifdef CONFIG_NET_CLS_ACT
7893 	if (queue)
7894 		return queue;
7895 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7896 	if (!queue)
7897 		return NULL;
7898 	netdev_init_one_queue(dev, queue, NULL);
7899 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7900 	queue->qdisc_sleeping = &noop_qdisc;
7901 	rcu_assign_pointer(dev->ingress_queue, queue);
7902 #endif
7903 	return queue;
7904 }
7905 
7906 static const struct ethtool_ops default_ethtool_ops;
7907 
7908 void netdev_set_default_ethtool_ops(struct net_device *dev,
7909 				    const struct ethtool_ops *ops)
7910 {
7911 	if (dev->ethtool_ops == &default_ethtool_ops)
7912 		dev->ethtool_ops = ops;
7913 }
7914 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7915 
7916 void netdev_freemem(struct net_device *dev)
7917 {
7918 	char *addr = (char *)dev - dev->padded;
7919 
7920 	kvfree(addr);
7921 }
7922 
7923 /**
7924  * alloc_netdev_mqs - allocate network device
7925  * @sizeof_priv: size of private data to allocate space for
7926  * @name: device name format string
7927  * @name_assign_type: origin of device name
7928  * @setup: callback to initialize device
7929  * @txqs: the number of TX subqueues to allocate
7930  * @rxqs: the number of RX subqueues to allocate
7931  *
7932  * Allocates a struct net_device with private data area for driver use
7933  * and performs basic initialization.  Also allocates subqueue structs
7934  * for each queue on the device.
7935  */
7936 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7937 		unsigned char name_assign_type,
7938 		void (*setup)(struct net_device *),
7939 		unsigned int txqs, unsigned int rxqs)
7940 {
7941 	struct net_device *dev;
7942 	size_t alloc_size;
7943 	struct net_device *p;
7944 
7945 	BUG_ON(strlen(name) >= sizeof(dev->name));
7946 
7947 	if (txqs < 1) {
7948 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7949 		return NULL;
7950 	}
7951 
7952 #ifdef CONFIG_SYSFS
7953 	if (rxqs < 1) {
7954 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7955 		return NULL;
7956 	}
7957 #endif
7958 
7959 	alloc_size = sizeof(struct net_device);
7960 	if (sizeof_priv) {
7961 		/* ensure 32-byte alignment of private area */
7962 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7963 		alloc_size += sizeof_priv;
7964 	}
7965 	/* ensure 32-byte alignment of whole construct */
7966 	alloc_size += NETDEV_ALIGN - 1;
7967 
7968 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7969 	if (!p)
7970 		return NULL;
7971 
7972 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7973 	dev->padded = (char *)dev - (char *)p;
7974 
7975 	dev->pcpu_refcnt = alloc_percpu(int);
7976 	if (!dev->pcpu_refcnt)
7977 		goto free_dev;
7978 
7979 	if (dev_addr_init(dev))
7980 		goto free_pcpu;
7981 
7982 	dev_mc_init(dev);
7983 	dev_uc_init(dev);
7984 
7985 	dev_net_set(dev, &init_net);
7986 
7987 	dev->gso_max_size = GSO_MAX_SIZE;
7988 	dev->gso_max_segs = GSO_MAX_SEGS;
7989 
7990 	INIT_LIST_HEAD(&dev->napi_list);
7991 	INIT_LIST_HEAD(&dev->unreg_list);
7992 	INIT_LIST_HEAD(&dev->close_list);
7993 	INIT_LIST_HEAD(&dev->link_watch_list);
7994 	INIT_LIST_HEAD(&dev->adj_list.upper);
7995 	INIT_LIST_HEAD(&dev->adj_list.lower);
7996 	INIT_LIST_HEAD(&dev->ptype_all);
7997 	INIT_LIST_HEAD(&dev->ptype_specific);
7998 #ifdef CONFIG_NET_SCHED
7999 	hash_init(dev->qdisc_hash);
8000 #endif
8001 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8002 	setup(dev);
8003 
8004 	if (!dev->tx_queue_len) {
8005 		dev->priv_flags |= IFF_NO_QUEUE;
8006 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8007 	}
8008 
8009 	dev->num_tx_queues = txqs;
8010 	dev->real_num_tx_queues = txqs;
8011 	if (netif_alloc_netdev_queues(dev))
8012 		goto free_all;
8013 
8014 #ifdef CONFIG_SYSFS
8015 	dev->num_rx_queues = rxqs;
8016 	dev->real_num_rx_queues = rxqs;
8017 	if (netif_alloc_rx_queues(dev))
8018 		goto free_all;
8019 #endif
8020 
8021 	strcpy(dev->name, name);
8022 	dev->name_assign_type = name_assign_type;
8023 	dev->group = INIT_NETDEV_GROUP;
8024 	if (!dev->ethtool_ops)
8025 		dev->ethtool_ops = &default_ethtool_ops;
8026 
8027 	nf_hook_ingress_init(dev);
8028 
8029 	return dev;
8030 
8031 free_all:
8032 	free_netdev(dev);
8033 	return NULL;
8034 
8035 free_pcpu:
8036 	free_percpu(dev->pcpu_refcnt);
8037 free_dev:
8038 	netdev_freemem(dev);
8039 	return NULL;
8040 }
8041 EXPORT_SYMBOL(alloc_netdev_mqs);
8042 
8043 /**
8044  * free_netdev - free network device
8045  * @dev: device
8046  *
8047  * This function does the last stage of destroying an allocated device
8048  * interface. The reference to the device object is released. If this
8049  * is the last reference then it will be freed.Must be called in process
8050  * context.
8051  */
8052 void free_netdev(struct net_device *dev)
8053 {
8054 	struct napi_struct *p, *n;
8055 	struct bpf_prog *prog;
8056 
8057 	might_sleep();
8058 	netif_free_tx_queues(dev);
8059 #ifdef CONFIG_SYSFS
8060 	kvfree(dev->_rx);
8061 #endif
8062 
8063 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8064 
8065 	/* Flush device addresses */
8066 	dev_addr_flush(dev);
8067 
8068 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8069 		netif_napi_del(p);
8070 
8071 	free_percpu(dev->pcpu_refcnt);
8072 	dev->pcpu_refcnt = NULL;
8073 
8074 	prog = rcu_dereference_protected(dev->xdp_prog, 1);
8075 	if (prog) {
8076 		bpf_prog_put(prog);
8077 		static_key_slow_dec(&generic_xdp_needed);
8078 	}
8079 
8080 	/*  Compatibility with error handling in drivers */
8081 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8082 		netdev_freemem(dev);
8083 		return;
8084 	}
8085 
8086 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8087 	dev->reg_state = NETREG_RELEASED;
8088 
8089 	/* will free via device release */
8090 	put_device(&dev->dev);
8091 }
8092 EXPORT_SYMBOL(free_netdev);
8093 
8094 /**
8095  *	synchronize_net -  Synchronize with packet receive processing
8096  *
8097  *	Wait for packets currently being received to be done.
8098  *	Does not block later packets from starting.
8099  */
8100 void synchronize_net(void)
8101 {
8102 	might_sleep();
8103 	if (rtnl_is_locked())
8104 		synchronize_rcu_expedited();
8105 	else
8106 		synchronize_rcu();
8107 }
8108 EXPORT_SYMBOL(synchronize_net);
8109 
8110 /**
8111  *	unregister_netdevice_queue - remove device from the kernel
8112  *	@dev: device
8113  *	@head: list
8114  *
8115  *	This function shuts down a device interface and removes it
8116  *	from the kernel tables.
8117  *	If head not NULL, device is queued to be unregistered later.
8118  *
8119  *	Callers must hold the rtnl semaphore.  You may want
8120  *	unregister_netdev() instead of this.
8121  */
8122 
8123 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8124 {
8125 	ASSERT_RTNL();
8126 
8127 	if (head) {
8128 		list_move_tail(&dev->unreg_list, head);
8129 	} else {
8130 		rollback_registered(dev);
8131 		/* Finish processing unregister after unlock */
8132 		net_set_todo(dev);
8133 	}
8134 }
8135 EXPORT_SYMBOL(unregister_netdevice_queue);
8136 
8137 /**
8138  *	unregister_netdevice_many - unregister many devices
8139  *	@head: list of devices
8140  *
8141  *  Note: As most callers use a stack allocated list_head,
8142  *  we force a list_del() to make sure stack wont be corrupted later.
8143  */
8144 void unregister_netdevice_many(struct list_head *head)
8145 {
8146 	struct net_device *dev;
8147 
8148 	if (!list_empty(head)) {
8149 		rollback_registered_many(head);
8150 		list_for_each_entry(dev, head, unreg_list)
8151 			net_set_todo(dev);
8152 		list_del(head);
8153 	}
8154 }
8155 EXPORT_SYMBOL(unregister_netdevice_many);
8156 
8157 /**
8158  *	unregister_netdev - remove device from the kernel
8159  *	@dev: device
8160  *
8161  *	This function shuts down a device interface and removes it
8162  *	from the kernel tables.
8163  *
8164  *	This is just a wrapper for unregister_netdevice that takes
8165  *	the rtnl semaphore.  In general you want to use this and not
8166  *	unregister_netdevice.
8167  */
8168 void unregister_netdev(struct net_device *dev)
8169 {
8170 	rtnl_lock();
8171 	unregister_netdevice(dev);
8172 	rtnl_unlock();
8173 }
8174 EXPORT_SYMBOL(unregister_netdev);
8175 
8176 /**
8177  *	dev_change_net_namespace - move device to different nethost namespace
8178  *	@dev: device
8179  *	@net: network namespace
8180  *	@pat: If not NULL name pattern to try if the current device name
8181  *	      is already taken in the destination network namespace.
8182  *
8183  *	This function shuts down a device interface and moves it
8184  *	to a new network namespace. On success 0 is returned, on
8185  *	a failure a netagive errno code is returned.
8186  *
8187  *	Callers must hold the rtnl semaphore.
8188  */
8189 
8190 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8191 {
8192 	int err;
8193 
8194 	ASSERT_RTNL();
8195 
8196 	/* Don't allow namespace local devices to be moved. */
8197 	err = -EINVAL;
8198 	if (dev->features & NETIF_F_NETNS_LOCAL)
8199 		goto out;
8200 
8201 	/* Ensure the device has been registrered */
8202 	if (dev->reg_state != NETREG_REGISTERED)
8203 		goto out;
8204 
8205 	/* Get out if there is nothing todo */
8206 	err = 0;
8207 	if (net_eq(dev_net(dev), net))
8208 		goto out;
8209 
8210 	/* Pick the destination device name, and ensure
8211 	 * we can use it in the destination network namespace.
8212 	 */
8213 	err = -EEXIST;
8214 	if (__dev_get_by_name(net, dev->name)) {
8215 		/* We get here if we can't use the current device name */
8216 		if (!pat)
8217 			goto out;
8218 		if (dev_get_valid_name(net, dev, pat) < 0)
8219 			goto out;
8220 	}
8221 
8222 	/*
8223 	 * And now a mini version of register_netdevice unregister_netdevice.
8224 	 */
8225 
8226 	/* If device is running close it first. */
8227 	dev_close(dev);
8228 
8229 	/* And unlink it from device chain */
8230 	err = -ENODEV;
8231 	unlist_netdevice(dev);
8232 
8233 	synchronize_net();
8234 
8235 	/* Shutdown queueing discipline. */
8236 	dev_shutdown(dev);
8237 
8238 	/* Notify protocols, that we are about to destroy
8239 	 * this device. They should clean all the things.
8240 	 *
8241 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8242 	 * This is wanted because this way 8021q and macvlan know
8243 	 * the device is just moving and can keep their slaves up.
8244 	 */
8245 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8246 	rcu_barrier();
8247 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8248 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8249 
8250 	/*
8251 	 *	Flush the unicast and multicast chains
8252 	 */
8253 	dev_uc_flush(dev);
8254 	dev_mc_flush(dev);
8255 
8256 	/* Send a netdev-removed uevent to the old namespace */
8257 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8258 	netdev_adjacent_del_links(dev);
8259 
8260 	/* Actually switch the network namespace */
8261 	dev_net_set(dev, net);
8262 
8263 	/* If there is an ifindex conflict assign a new one */
8264 	if (__dev_get_by_index(net, dev->ifindex))
8265 		dev->ifindex = dev_new_index(net);
8266 
8267 	/* Send a netdev-add uevent to the new namespace */
8268 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8269 	netdev_adjacent_add_links(dev);
8270 
8271 	/* Fixup kobjects */
8272 	err = device_rename(&dev->dev, dev->name);
8273 	WARN_ON(err);
8274 
8275 	/* Add the device back in the hashes */
8276 	list_netdevice(dev);
8277 
8278 	/* Notify protocols, that a new device appeared. */
8279 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8280 
8281 	/*
8282 	 *	Prevent userspace races by waiting until the network
8283 	 *	device is fully setup before sending notifications.
8284 	 */
8285 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8286 
8287 	synchronize_net();
8288 	err = 0;
8289 out:
8290 	return err;
8291 }
8292 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8293 
8294 static int dev_cpu_dead(unsigned int oldcpu)
8295 {
8296 	struct sk_buff **list_skb;
8297 	struct sk_buff *skb;
8298 	unsigned int cpu;
8299 	struct softnet_data *sd, *oldsd, *remsd = NULL;
8300 
8301 	local_irq_disable();
8302 	cpu = smp_processor_id();
8303 	sd = &per_cpu(softnet_data, cpu);
8304 	oldsd = &per_cpu(softnet_data, oldcpu);
8305 
8306 	/* Find end of our completion_queue. */
8307 	list_skb = &sd->completion_queue;
8308 	while (*list_skb)
8309 		list_skb = &(*list_skb)->next;
8310 	/* Append completion queue from offline CPU. */
8311 	*list_skb = oldsd->completion_queue;
8312 	oldsd->completion_queue = NULL;
8313 
8314 	/* Append output queue from offline CPU. */
8315 	if (oldsd->output_queue) {
8316 		*sd->output_queue_tailp = oldsd->output_queue;
8317 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8318 		oldsd->output_queue = NULL;
8319 		oldsd->output_queue_tailp = &oldsd->output_queue;
8320 	}
8321 	/* Append NAPI poll list from offline CPU, with one exception :
8322 	 * process_backlog() must be called by cpu owning percpu backlog.
8323 	 * We properly handle process_queue & input_pkt_queue later.
8324 	 */
8325 	while (!list_empty(&oldsd->poll_list)) {
8326 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8327 							    struct napi_struct,
8328 							    poll_list);
8329 
8330 		list_del_init(&napi->poll_list);
8331 		if (napi->poll == process_backlog)
8332 			napi->state = 0;
8333 		else
8334 			____napi_schedule(sd, napi);
8335 	}
8336 
8337 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8338 	local_irq_enable();
8339 
8340 #ifdef CONFIG_RPS
8341 	remsd = oldsd->rps_ipi_list;
8342 	oldsd->rps_ipi_list = NULL;
8343 #endif
8344 	/* send out pending IPI's on offline CPU */
8345 	net_rps_send_ipi(remsd);
8346 
8347 	/* Process offline CPU's input_pkt_queue */
8348 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8349 		netif_rx_ni(skb);
8350 		input_queue_head_incr(oldsd);
8351 	}
8352 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8353 		netif_rx_ni(skb);
8354 		input_queue_head_incr(oldsd);
8355 	}
8356 
8357 	return 0;
8358 }
8359 
8360 /**
8361  *	netdev_increment_features - increment feature set by one
8362  *	@all: current feature set
8363  *	@one: new feature set
8364  *	@mask: mask feature set
8365  *
8366  *	Computes a new feature set after adding a device with feature set
8367  *	@one to the master device with current feature set @all.  Will not
8368  *	enable anything that is off in @mask. Returns the new feature set.
8369  */
8370 netdev_features_t netdev_increment_features(netdev_features_t all,
8371 	netdev_features_t one, netdev_features_t mask)
8372 {
8373 	if (mask & NETIF_F_HW_CSUM)
8374 		mask |= NETIF_F_CSUM_MASK;
8375 	mask |= NETIF_F_VLAN_CHALLENGED;
8376 
8377 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8378 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8379 
8380 	/* If one device supports hw checksumming, set for all. */
8381 	if (all & NETIF_F_HW_CSUM)
8382 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8383 
8384 	return all;
8385 }
8386 EXPORT_SYMBOL(netdev_increment_features);
8387 
8388 static struct hlist_head * __net_init netdev_create_hash(void)
8389 {
8390 	int i;
8391 	struct hlist_head *hash;
8392 
8393 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8394 	if (hash != NULL)
8395 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8396 			INIT_HLIST_HEAD(&hash[i]);
8397 
8398 	return hash;
8399 }
8400 
8401 /* Initialize per network namespace state */
8402 static int __net_init netdev_init(struct net *net)
8403 {
8404 	if (net != &init_net)
8405 		INIT_LIST_HEAD(&net->dev_base_head);
8406 
8407 	net->dev_name_head = netdev_create_hash();
8408 	if (net->dev_name_head == NULL)
8409 		goto err_name;
8410 
8411 	net->dev_index_head = netdev_create_hash();
8412 	if (net->dev_index_head == NULL)
8413 		goto err_idx;
8414 
8415 	return 0;
8416 
8417 err_idx:
8418 	kfree(net->dev_name_head);
8419 err_name:
8420 	return -ENOMEM;
8421 }
8422 
8423 /**
8424  *	netdev_drivername - network driver for the device
8425  *	@dev: network device
8426  *
8427  *	Determine network driver for device.
8428  */
8429 const char *netdev_drivername(const struct net_device *dev)
8430 {
8431 	const struct device_driver *driver;
8432 	const struct device *parent;
8433 	const char *empty = "";
8434 
8435 	parent = dev->dev.parent;
8436 	if (!parent)
8437 		return empty;
8438 
8439 	driver = parent->driver;
8440 	if (driver && driver->name)
8441 		return driver->name;
8442 	return empty;
8443 }
8444 
8445 static void __netdev_printk(const char *level, const struct net_device *dev,
8446 			    struct va_format *vaf)
8447 {
8448 	if (dev && dev->dev.parent) {
8449 		dev_printk_emit(level[1] - '0',
8450 				dev->dev.parent,
8451 				"%s %s %s%s: %pV",
8452 				dev_driver_string(dev->dev.parent),
8453 				dev_name(dev->dev.parent),
8454 				netdev_name(dev), netdev_reg_state(dev),
8455 				vaf);
8456 	} else if (dev) {
8457 		printk("%s%s%s: %pV",
8458 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8459 	} else {
8460 		printk("%s(NULL net_device): %pV", level, vaf);
8461 	}
8462 }
8463 
8464 void netdev_printk(const char *level, const struct net_device *dev,
8465 		   const char *format, ...)
8466 {
8467 	struct va_format vaf;
8468 	va_list args;
8469 
8470 	va_start(args, format);
8471 
8472 	vaf.fmt = format;
8473 	vaf.va = &args;
8474 
8475 	__netdev_printk(level, dev, &vaf);
8476 
8477 	va_end(args);
8478 }
8479 EXPORT_SYMBOL(netdev_printk);
8480 
8481 #define define_netdev_printk_level(func, level)			\
8482 void func(const struct net_device *dev, const char *fmt, ...)	\
8483 {								\
8484 	struct va_format vaf;					\
8485 	va_list args;						\
8486 								\
8487 	va_start(args, fmt);					\
8488 								\
8489 	vaf.fmt = fmt;						\
8490 	vaf.va = &args;						\
8491 								\
8492 	__netdev_printk(level, dev, &vaf);			\
8493 								\
8494 	va_end(args);						\
8495 }								\
8496 EXPORT_SYMBOL(func);
8497 
8498 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8499 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8500 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8501 define_netdev_printk_level(netdev_err, KERN_ERR);
8502 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8503 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8504 define_netdev_printk_level(netdev_info, KERN_INFO);
8505 
8506 static void __net_exit netdev_exit(struct net *net)
8507 {
8508 	kfree(net->dev_name_head);
8509 	kfree(net->dev_index_head);
8510 }
8511 
8512 static struct pernet_operations __net_initdata netdev_net_ops = {
8513 	.init = netdev_init,
8514 	.exit = netdev_exit,
8515 };
8516 
8517 static void __net_exit default_device_exit(struct net *net)
8518 {
8519 	struct net_device *dev, *aux;
8520 	/*
8521 	 * Push all migratable network devices back to the
8522 	 * initial network namespace
8523 	 */
8524 	rtnl_lock();
8525 	for_each_netdev_safe(net, dev, aux) {
8526 		int err;
8527 		char fb_name[IFNAMSIZ];
8528 
8529 		/* Ignore unmoveable devices (i.e. loopback) */
8530 		if (dev->features & NETIF_F_NETNS_LOCAL)
8531 			continue;
8532 
8533 		/* Leave virtual devices for the generic cleanup */
8534 		if (dev->rtnl_link_ops)
8535 			continue;
8536 
8537 		/* Push remaining network devices to init_net */
8538 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8539 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8540 		if (err) {
8541 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8542 				 __func__, dev->name, err);
8543 			BUG();
8544 		}
8545 	}
8546 	rtnl_unlock();
8547 }
8548 
8549 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8550 {
8551 	/* Return with the rtnl_lock held when there are no network
8552 	 * devices unregistering in any network namespace in net_list.
8553 	 */
8554 	struct net *net;
8555 	bool unregistering;
8556 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8557 
8558 	add_wait_queue(&netdev_unregistering_wq, &wait);
8559 	for (;;) {
8560 		unregistering = false;
8561 		rtnl_lock();
8562 		list_for_each_entry(net, net_list, exit_list) {
8563 			if (net->dev_unreg_count > 0) {
8564 				unregistering = true;
8565 				break;
8566 			}
8567 		}
8568 		if (!unregistering)
8569 			break;
8570 		__rtnl_unlock();
8571 
8572 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8573 	}
8574 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8575 }
8576 
8577 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8578 {
8579 	/* At exit all network devices most be removed from a network
8580 	 * namespace.  Do this in the reverse order of registration.
8581 	 * Do this across as many network namespaces as possible to
8582 	 * improve batching efficiency.
8583 	 */
8584 	struct net_device *dev;
8585 	struct net *net;
8586 	LIST_HEAD(dev_kill_list);
8587 
8588 	/* To prevent network device cleanup code from dereferencing
8589 	 * loopback devices or network devices that have been freed
8590 	 * wait here for all pending unregistrations to complete,
8591 	 * before unregistring the loopback device and allowing the
8592 	 * network namespace be freed.
8593 	 *
8594 	 * The netdev todo list containing all network devices
8595 	 * unregistrations that happen in default_device_exit_batch
8596 	 * will run in the rtnl_unlock() at the end of
8597 	 * default_device_exit_batch.
8598 	 */
8599 	rtnl_lock_unregistering(net_list);
8600 	list_for_each_entry(net, net_list, exit_list) {
8601 		for_each_netdev_reverse(net, dev) {
8602 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8603 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8604 			else
8605 				unregister_netdevice_queue(dev, &dev_kill_list);
8606 		}
8607 	}
8608 	unregister_netdevice_many(&dev_kill_list);
8609 	rtnl_unlock();
8610 }
8611 
8612 static struct pernet_operations __net_initdata default_device_ops = {
8613 	.exit = default_device_exit,
8614 	.exit_batch = default_device_exit_batch,
8615 };
8616 
8617 /*
8618  *	Initialize the DEV module. At boot time this walks the device list and
8619  *	unhooks any devices that fail to initialise (normally hardware not
8620  *	present) and leaves us with a valid list of present and active devices.
8621  *
8622  */
8623 
8624 /*
8625  *       This is called single threaded during boot, so no need
8626  *       to take the rtnl semaphore.
8627  */
8628 static int __init net_dev_init(void)
8629 {
8630 	int i, rc = -ENOMEM;
8631 
8632 	BUG_ON(!dev_boot_phase);
8633 
8634 	if (dev_proc_init())
8635 		goto out;
8636 
8637 	if (netdev_kobject_init())
8638 		goto out;
8639 
8640 	INIT_LIST_HEAD(&ptype_all);
8641 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8642 		INIT_LIST_HEAD(&ptype_base[i]);
8643 
8644 	INIT_LIST_HEAD(&offload_base);
8645 
8646 	if (register_pernet_subsys(&netdev_net_ops))
8647 		goto out;
8648 
8649 	/*
8650 	 *	Initialise the packet receive queues.
8651 	 */
8652 
8653 	for_each_possible_cpu(i) {
8654 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8655 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8656 
8657 		INIT_WORK(flush, flush_backlog);
8658 
8659 		skb_queue_head_init(&sd->input_pkt_queue);
8660 		skb_queue_head_init(&sd->process_queue);
8661 		INIT_LIST_HEAD(&sd->poll_list);
8662 		sd->output_queue_tailp = &sd->output_queue;
8663 #ifdef CONFIG_RPS
8664 		sd->csd.func = rps_trigger_softirq;
8665 		sd->csd.info = sd;
8666 		sd->cpu = i;
8667 #endif
8668 
8669 		sd->backlog.poll = process_backlog;
8670 		sd->backlog.weight = weight_p;
8671 	}
8672 
8673 	dev_boot_phase = 0;
8674 
8675 	/* The loopback device is special if any other network devices
8676 	 * is present in a network namespace the loopback device must
8677 	 * be present. Since we now dynamically allocate and free the
8678 	 * loopback device ensure this invariant is maintained by
8679 	 * keeping the loopback device as the first device on the
8680 	 * list of network devices.  Ensuring the loopback devices
8681 	 * is the first device that appears and the last network device
8682 	 * that disappears.
8683 	 */
8684 	if (register_pernet_device(&loopback_net_ops))
8685 		goto out;
8686 
8687 	if (register_pernet_device(&default_device_ops))
8688 		goto out;
8689 
8690 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8691 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8692 
8693 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8694 				       NULL, dev_cpu_dead);
8695 	WARN_ON(rc < 0);
8696 	rc = 0;
8697 out:
8698 	return rc;
8699 }
8700 
8701 subsys_initcall(net_dev_init);
8702