1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <linux/bpf.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <net/busy_poll.h> 101 #include <linux/rtnetlink.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/iw_handler.h> 115 #include <asm/current.h> 116 #include <linux/audit.h> 117 #include <linux/dmaengine.h> 118 #include <linux/err.h> 119 #include <linux/ctype.h> 120 #include <linux/if_arp.h> 121 #include <linux/if_vlan.h> 122 #include <linux/ip.h> 123 #include <net/ip.h> 124 #include <net/mpls.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/static_key.h> 136 #include <linux/hashtable.h> 137 #include <linux/vmalloc.h> 138 #include <linux/if_macvlan.h> 139 #include <linux/errqueue.h> 140 #include <linux/hrtimer.h> 141 #include <linux/netfilter_ingress.h> 142 #include <linux/crash_dump.h> 143 144 #include "net-sysfs.h" 145 146 /* Instead of increasing this, you should create a hash table. */ 147 #define MAX_GRO_SKBS 8 148 149 /* This should be increased if a protocol with a bigger head is added. */ 150 #define GRO_MAX_HEAD (MAX_HEADER + 128) 151 152 static DEFINE_SPINLOCK(ptype_lock); 153 static DEFINE_SPINLOCK(offload_lock); 154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 155 struct list_head ptype_all __read_mostly; /* Taps */ 156 static struct list_head offload_base __read_mostly; 157 158 static int netif_rx_internal(struct sk_buff *skb); 159 static int call_netdevice_notifiers_info(unsigned long val, 160 struct net_device *dev, 161 struct netdev_notifier_info *info); 162 163 /* 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 165 * semaphore. 166 * 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 168 * 169 * Writers must hold the rtnl semaphore while they loop through the 170 * dev_base_head list, and hold dev_base_lock for writing when they do the 171 * actual updates. This allows pure readers to access the list even 172 * while a writer is preparing to update it. 173 * 174 * To put it another way, dev_base_lock is held for writing only to 175 * protect against pure readers; the rtnl semaphore provides the 176 * protection against other writers. 177 * 178 * See, for example usages, register_netdevice() and 179 * unregister_netdevice(), which must be called with the rtnl 180 * semaphore held. 181 */ 182 DEFINE_RWLOCK(dev_base_lock); 183 EXPORT_SYMBOL(dev_base_lock); 184 185 /* protects napi_hash addition/deletion and napi_gen_id */ 186 static DEFINE_SPINLOCK(napi_hash_lock); 187 188 static unsigned int napi_gen_id = NR_CPUS; 189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 190 191 static seqcount_t devnet_rename_seq; 192 193 static inline void dev_base_seq_inc(struct net *net) 194 { 195 while (++net->dev_base_seq == 0); 196 } 197 198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 199 { 200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 201 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 203 } 204 205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 206 { 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 208 } 209 210 static inline void rps_lock(struct softnet_data *sd) 211 { 212 #ifdef CONFIG_RPS 213 spin_lock(&sd->input_pkt_queue.lock); 214 #endif 215 } 216 217 static inline void rps_unlock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_unlock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 /* Device list insertion */ 225 static void list_netdevice(struct net_device *dev) 226 { 227 struct net *net = dev_net(dev); 228 229 ASSERT_RTNL(); 230 231 write_lock_bh(&dev_base_lock); 232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 234 hlist_add_head_rcu(&dev->index_hlist, 235 dev_index_hash(net, dev->ifindex)); 236 write_unlock_bh(&dev_base_lock); 237 238 dev_base_seq_inc(net); 239 } 240 241 /* Device list removal 242 * caller must respect a RCU grace period before freeing/reusing dev 243 */ 244 static void unlist_netdevice(struct net_device *dev) 245 { 246 ASSERT_RTNL(); 247 248 /* Unlink dev from the device chain */ 249 write_lock_bh(&dev_base_lock); 250 list_del_rcu(&dev->dev_list); 251 hlist_del_rcu(&dev->name_hlist); 252 hlist_del_rcu(&dev->index_hlist); 253 write_unlock_bh(&dev_base_lock); 254 255 dev_base_seq_inc(dev_net(dev)); 256 } 257 258 /* 259 * Our notifier list 260 */ 261 262 static RAW_NOTIFIER_HEAD(netdev_chain); 263 264 /* 265 * Device drivers call our routines to queue packets here. We empty the 266 * queue in the local softnet handler. 267 */ 268 269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 270 EXPORT_PER_CPU_SYMBOL(softnet_data); 271 272 #ifdef CONFIG_LOCKDEP 273 /* 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 275 * according to dev->type 276 */ 277 static const unsigned short netdev_lock_type[] = 278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 293 294 static const char *const netdev_lock_name[] = 295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 310 311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 314 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 315 { 316 int i; 317 318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 319 if (netdev_lock_type[i] == dev_type) 320 return i; 321 /* the last key is used by default */ 322 return ARRAY_SIZE(netdev_lock_type) - 1; 323 } 324 325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 326 unsigned short dev_type) 327 { 328 int i; 329 330 i = netdev_lock_pos(dev_type); 331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 332 netdev_lock_name[i]); 333 } 334 335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev->type); 340 lockdep_set_class_and_name(&dev->addr_list_lock, 341 &netdev_addr_lock_key[i], 342 netdev_lock_name[i]); 343 } 344 #else 345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 346 unsigned short dev_type) 347 { 348 } 349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 350 { 351 } 352 #endif 353 354 /******************************************************************************* 355 356 Protocol management and registration routines 357 358 *******************************************************************************/ 359 360 /* 361 * Add a protocol ID to the list. Now that the input handler is 362 * smarter we can dispense with all the messy stuff that used to be 363 * here. 364 * 365 * BEWARE!!! Protocol handlers, mangling input packets, 366 * MUST BE last in hash buckets and checking protocol handlers 367 * MUST start from promiscuous ptype_all chain in net_bh. 368 * It is true now, do not change it. 369 * Explanation follows: if protocol handler, mangling packet, will 370 * be the first on list, it is not able to sense, that packet 371 * is cloned and should be copied-on-write, so that it will 372 * change it and subsequent readers will get broken packet. 373 * --ANK (980803) 374 */ 375 376 static inline struct list_head *ptype_head(const struct packet_type *pt) 377 { 378 if (pt->type == htons(ETH_P_ALL)) 379 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 380 else 381 return pt->dev ? &pt->dev->ptype_specific : 382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 383 } 384 385 /** 386 * dev_add_pack - add packet handler 387 * @pt: packet type declaration 388 * 389 * Add a protocol handler to the networking stack. The passed &packet_type 390 * is linked into kernel lists and may not be freed until it has been 391 * removed from the kernel lists. 392 * 393 * This call does not sleep therefore it can not 394 * guarantee all CPU's that are in middle of receiving packets 395 * will see the new packet type (until the next received packet). 396 */ 397 398 void dev_add_pack(struct packet_type *pt) 399 { 400 struct list_head *head = ptype_head(pt); 401 402 spin_lock(&ptype_lock); 403 list_add_rcu(&pt->list, head); 404 spin_unlock(&ptype_lock); 405 } 406 EXPORT_SYMBOL(dev_add_pack); 407 408 /** 409 * __dev_remove_pack - remove packet handler 410 * @pt: packet type declaration 411 * 412 * Remove a protocol handler that was previously added to the kernel 413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 414 * from the kernel lists and can be freed or reused once this function 415 * returns. 416 * 417 * The packet type might still be in use by receivers 418 * and must not be freed until after all the CPU's have gone 419 * through a quiescent state. 420 */ 421 void __dev_remove_pack(struct packet_type *pt) 422 { 423 struct list_head *head = ptype_head(pt); 424 struct packet_type *pt1; 425 426 spin_lock(&ptype_lock); 427 428 list_for_each_entry(pt1, head, list) { 429 if (pt == pt1) { 430 list_del_rcu(&pt->list); 431 goto out; 432 } 433 } 434 435 pr_warn("dev_remove_pack: %p not found\n", pt); 436 out: 437 spin_unlock(&ptype_lock); 438 } 439 EXPORT_SYMBOL(__dev_remove_pack); 440 441 /** 442 * dev_remove_pack - remove packet handler 443 * @pt: packet type declaration 444 * 445 * Remove a protocol handler that was previously added to the kernel 446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 447 * from the kernel lists and can be freed or reused once this function 448 * returns. 449 * 450 * This call sleeps to guarantee that no CPU is looking at the packet 451 * type after return. 452 */ 453 void dev_remove_pack(struct packet_type *pt) 454 { 455 __dev_remove_pack(pt); 456 457 synchronize_net(); 458 } 459 EXPORT_SYMBOL(dev_remove_pack); 460 461 462 /** 463 * dev_add_offload - register offload handlers 464 * @po: protocol offload declaration 465 * 466 * Add protocol offload handlers to the networking stack. The passed 467 * &proto_offload is linked into kernel lists and may not be freed until 468 * it has been removed from the kernel lists. 469 * 470 * This call does not sleep therefore it can not 471 * guarantee all CPU's that are in middle of receiving packets 472 * will see the new offload handlers (until the next received packet). 473 */ 474 void dev_add_offload(struct packet_offload *po) 475 { 476 struct packet_offload *elem; 477 478 spin_lock(&offload_lock); 479 list_for_each_entry(elem, &offload_base, list) { 480 if (po->priority < elem->priority) 481 break; 482 } 483 list_add_rcu(&po->list, elem->list.prev); 484 spin_unlock(&offload_lock); 485 } 486 EXPORT_SYMBOL(dev_add_offload); 487 488 /** 489 * __dev_remove_offload - remove offload handler 490 * @po: packet offload declaration 491 * 492 * Remove a protocol offload handler that was previously added to the 493 * kernel offload handlers by dev_add_offload(). The passed &offload_type 494 * is removed from the kernel lists and can be freed or reused once this 495 * function returns. 496 * 497 * The packet type might still be in use by receivers 498 * and must not be freed until after all the CPU's have gone 499 * through a quiescent state. 500 */ 501 static void __dev_remove_offload(struct packet_offload *po) 502 { 503 struct list_head *head = &offload_base; 504 struct packet_offload *po1; 505 506 spin_lock(&offload_lock); 507 508 list_for_each_entry(po1, head, list) { 509 if (po == po1) { 510 list_del_rcu(&po->list); 511 goto out; 512 } 513 } 514 515 pr_warn("dev_remove_offload: %p not found\n", po); 516 out: 517 spin_unlock(&offload_lock); 518 } 519 520 /** 521 * dev_remove_offload - remove packet offload handler 522 * @po: packet offload declaration 523 * 524 * Remove a packet offload handler that was previously added to the kernel 525 * offload handlers by dev_add_offload(). The passed &offload_type is 526 * removed from the kernel lists and can be freed or reused once this 527 * function returns. 528 * 529 * This call sleeps to guarantee that no CPU is looking at the packet 530 * type after return. 531 */ 532 void dev_remove_offload(struct packet_offload *po) 533 { 534 __dev_remove_offload(po); 535 536 synchronize_net(); 537 } 538 EXPORT_SYMBOL(dev_remove_offload); 539 540 /****************************************************************************** 541 542 Device Boot-time Settings Routines 543 544 *******************************************************************************/ 545 546 /* Boot time configuration table */ 547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 548 549 /** 550 * netdev_boot_setup_add - add new setup entry 551 * @name: name of the device 552 * @map: configured settings for the device 553 * 554 * Adds new setup entry to the dev_boot_setup list. The function 555 * returns 0 on error and 1 on success. This is a generic routine to 556 * all netdevices. 557 */ 558 static int netdev_boot_setup_add(char *name, struct ifmap *map) 559 { 560 struct netdev_boot_setup *s; 561 int i; 562 563 s = dev_boot_setup; 564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 566 memset(s[i].name, 0, sizeof(s[i].name)); 567 strlcpy(s[i].name, name, IFNAMSIZ); 568 memcpy(&s[i].map, map, sizeof(s[i].map)); 569 break; 570 } 571 } 572 573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 574 } 575 576 /** 577 * netdev_boot_setup_check - check boot time settings 578 * @dev: the netdevice 579 * 580 * Check boot time settings for the device. 581 * The found settings are set for the device to be used 582 * later in the device probing. 583 * Returns 0 if no settings found, 1 if they are. 584 */ 585 int netdev_boot_setup_check(struct net_device *dev) 586 { 587 struct netdev_boot_setup *s = dev_boot_setup; 588 int i; 589 590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 592 !strcmp(dev->name, s[i].name)) { 593 dev->irq = s[i].map.irq; 594 dev->base_addr = s[i].map.base_addr; 595 dev->mem_start = s[i].map.mem_start; 596 dev->mem_end = s[i].map.mem_end; 597 return 1; 598 } 599 } 600 return 0; 601 } 602 EXPORT_SYMBOL(netdev_boot_setup_check); 603 604 605 /** 606 * netdev_boot_base - get address from boot time settings 607 * @prefix: prefix for network device 608 * @unit: id for network device 609 * 610 * Check boot time settings for the base address of device. 611 * The found settings are set for the device to be used 612 * later in the device probing. 613 * Returns 0 if no settings found. 614 */ 615 unsigned long netdev_boot_base(const char *prefix, int unit) 616 { 617 const struct netdev_boot_setup *s = dev_boot_setup; 618 char name[IFNAMSIZ]; 619 int i; 620 621 sprintf(name, "%s%d", prefix, unit); 622 623 /* 624 * If device already registered then return base of 1 625 * to indicate not to probe for this interface 626 */ 627 if (__dev_get_by_name(&init_net, name)) 628 return 1; 629 630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 631 if (!strcmp(name, s[i].name)) 632 return s[i].map.base_addr; 633 return 0; 634 } 635 636 /* 637 * Saves at boot time configured settings for any netdevice. 638 */ 639 int __init netdev_boot_setup(char *str) 640 { 641 int ints[5]; 642 struct ifmap map; 643 644 str = get_options(str, ARRAY_SIZE(ints), ints); 645 if (!str || !*str) 646 return 0; 647 648 /* Save settings */ 649 memset(&map, 0, sizeof(map)); 650 if (ints[0] > 0) 651 map.irq = ints[1]; 652 if (ints[0] > 1) 653 map.base_addr = ints[2]; 654 if (ints[0] > 2) 655 map.mem_start = ints[3]; 656 if (ints[0] > 3) 657 map.mem_end = ints[4]; 658 659 /* Add new entry to the list */ 660 return netdev_boot_setup_add(str, &map); 661 } 662 663 __setup("netdev=", netdev_boot_setup); 664 665 /******************************************************************************* 666 667 Device Interface Subroutines 668 669 *******************************************************************************/ 670 671 /** 672 * dev_get_iflink - get 'iflink' value of a interface 673 * @dev: targeted interface 674 * 675 * Indicates the ifindex the interface is linked to. 676 * Physical interfaces have the same 'ifindex' and 'iflink' values. 677 */ 678 679 int dev_get_iflink(const struct net_device *dev) 680 { 681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 682 return dev->netdev_ops->ndo_get_iflink(dev); 683 684 return dev->ifindex; 685 } 686 EXPORT_SYMBOL(dev_get_iflink); 687 688 /** 689 * dev_fill_metadata_dst - Retrieve tunnel egress information. 690 * @dev: targeted interface 691 * @skb: The packet. 692 * 693 * For better visibility of tunnel traffic OVS needs to retrieve 694 * egress tunnel information for a packet. Following API allows 695 * user to get this info. 696 */ 697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 698 { 699 struct ip_tunnel_info *info; 700 701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 702 return -EINVAL; 703 704 info = skb_tunnel_info_unclone(skb); 705 if (!info) 706 return -ENOMEM; 707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 708 return -EINVAL; 709 710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 711 } 712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 713 714 /** 715 * __dev_get_by_name - find a device by its name 716 * @net: the applicable net namespace 717 * @name: name to find 718 * 719 * Find an interface by name. Must be called under RTNL semaphore 720 * or @dev_base_lock. If the name is found a pointer to the device 721 * is returned. If the name is not found then %NULL is returned. The 722 * reference counters are not incremented so the caller must be 723 * careful with locks. 724 */ 725 726 struct net_device *__dev_get_by_name(struct net *net, const char *name) 727 { 728 struct net_device *dev; 729 struct hlist_head *head = dev_name_hash(net, name); 730 731 hlist_for_each_entry(dev, head, name_hlist) 732 if (!strncmp(dev->name, name, IFNAMSIZ)) 733 return dev; 734 735 return NULL; 736 } 737 EXPORT_SYMBOL(__dev_get_by_name); 738 739 /** 740 * dev_get_by_name_rcu - find a device by its name 741 * @net: the applicable net namespace 742 * @name: name to find 743 * 744 * Find an interface by name. 745 * If the name is found a pointer to the device is returned. 746 * If the name is not found then %NULL is returned. 747 * The reference counters are not incremented so the caller must be 748 * careful with locks. The caller must hold RCU lock. 749 */ 750 751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 752 { 753 struct net_device *dev; 754 struct hlist_head *head = dev_name_hash(net, name); 755 756 hlist_for_each_entry_rcu(dev, head, name_hlist) 757 if (!strncmp(dev->name, name, IFNAMSIZ)) 758 return dev; 759 760 return NULL; 761 } 762 EXPORT_SYMBOL(dev_get_by_name_rcu); 763 764 /** 765 * dev_get_by_name - find a device by its name 766 * @net: the applicable net namespace 767 * @name: name to find 768 * 769 * Find an interface by name. This can be called from any 770 * context and does its own locking. The returned handle has 771 * the usage count incremented and the caller must use dev_put() to 772 * release it when it is no longer needed. %NULL is returned if no 773 * matching device is found. 774 */ 775 776 struct net_device *dev_get_by_name(struct net *net, const char *name) 777 { 778 struct net_device *dev; 779 780 rcu_read_lock(); 781 dev = dev_get_by_name_rcu(net, name); 782 if (dev) 783 dev_hold(dev); 784 rcu_read_unlock(); 785 return dev; 786 } 787 EXPORT_SYMBOL(dev_get_by_name); 788 789 /** 790 * __dev_get_by_index - find a device by its ifindex 791 * @net: the applicable net namespace 792 * @ifindex: index of device 793 * 794 * Search for an interface by index. Returns %NULL if the device 795 * is not found or a pointer to the device. The device has not 796 * had its reference counter increased so the caller must be careful 797 * about locking. The caller must hold either the RTNL semaphore 798 * or @dev_base_lock. 799 */ 800 801 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 802 { 803 struct net_device *dev; 804 struct hlist_head *head = dev_index_hash(net, ifindex); 805 806 hlist_for_each_entry(dev, head, index_hlist) 807 if (dev->ifindex == ifindex) 808 return dev; 809 810 return NULL; 811 } 812 EXPORT_SYMBOL(__dev_get_by_index); 813 814 /** 815 * dev_get_by_index_rcu - find a device by its ifindex 816 * @net: the applicable net namespace 817 * @ifindex: index of device 818 * 819 * Search for an interface by index. Returns %NULL if the device 820 * is not found or a pointer to the device. The device has not 821 * had its reference counter increased so the caller must be careful 822 * about locking. The caller must hold RCU lock. 823 */ 824 825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 826 { 827 struct net_device *dev; 828 struct hlist_head *head = dev_index_hash(net, ifindex); 829 830 hlist_for_each_entry_rcu(dev, head, index_hlist) 831 if (dev->ifindex == ifindex) 832 return dev; 833 834 return NULL; 835 } 836 EXPORT_SYMBOL(dev_get_by_index_rcu); 837 838 839 /** 840 * dev_get_by_index - find a device by its ifindex 841 * @net: the applicable net namespace 842 * @ifindex: index of device 843 * 844 * Search for an interface by index. Returns NULL if the device 845 * is not found or a pointer to the device. The device returned has 846 * had a reference added and the pointer is safe until the user calls 847 * dev_put to indicate they have finished with it. 848 */ 849 850 struct net_device *dev_get_by_index(struct net *net, int ifindex) 851 { 852 struct net_device *dev; 853 854 rcu_read_lock(); 855 dev = dev_get_by_index_rcu(net, ifindex); 856 if (dev) 857 dev_hold(dev); 858 rcu_read_unlock(); 859 return dev; 860 } 861 EXPORT_SYMBOL(dev_get_by_index); 862 863 /** 864 * netdev_get_name - get a netdevice name, knowing its ifindex. 865 * @net: network namespace 866 * @name: a pointer to the buffer where the name will be stored. 867 * @ifindex: the ifindex of the interface to get the name from. 868 * 869 * The use of raw_seqcount_begin() and cond_resched() before 870 * retrying is required as we want to give the writers a chance 871 * to complete when CONFIG_PREEMPT is not set. 872 */ 873 int netdev_get_name(struct net *net, char *name, int ifindex) 874 { 875 struct net_device *dev; 876 unsigned int seq; 877 878 retry: 879 seq = raw_seqcount_begin(&devnet_rename_seq); 880 rcu_read_lock(); 881 dev = dev_get_by_index_rcu(net, ifindex); 882 if (!dev) { 883 rcu_read_unlock(); 884 return -ENODEV; 885 } 886 887 strcpy(name, dev->name); 888 rcu_read_unlock(); 889 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 890 cond_resched(); 891 goto retry; 892 } 893 894 return 0; 895 } 896 897 /** 898 * dev_getbyhwaddr_rcu - find a device by its hardware address 899 * @net: the applicable net namespace 900 * @type: media type of device 901 * @ha: hardware address 902 * 903 * Search for an interface by MAC address. Returns NULL if the device 904 * is not found or a pointer to the device. 905 * The caller must hold RCU or RTNL. 906 * The returned device has not had its ref count increased 907 * and the caller must therefore be careful about locking 908 * 909 */ 910 911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 912 const char *ha) 913 { 914 struct net_device *dev; 915 916 for_each_netdev_rcu(net, dev) 917 if (dev->type == type && 918 !memcmp(dev->dev_addr, ha, dev->addr_len)) 919 return dev; 920 921 return NULL; 922 } 923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 924 925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 926 { 927 struct net_device *dev; 928 929 ASSERT_RTNL(); 930 for_each_netdev(net, dev) 931 if (dev->type == type) 932 return dev; 933 934 return NULL; 935 } 936 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 937 938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 939 { 940 struct net_device *dev, *ret = NULL; 941 942 rcu_read_lock(); 943 for_each_netdev_rcu(net, dev) 944 if (dev->type == type) { 945 dev_hold(dev); 946 ret = dev; 947 break; 948 } 949 rcu_read_unlock(); 950 return ret; 951 } 952 EXPORT_SYMBOL(dev_getfirstbyhwtype); 953 954 /** 955 * __dev_get_by_flags - find any device with given flags 956 * @net: the applicable net namespace 957 * @if_flags: IFF_* values 958 * @mask: bitmask of bits in if_flags to check 959 * 960 * Search for any interface with the given flags. Returns NULL if a device 961 * is not found or a pointer to the device. Must be called inside 962 * rtnl_lock(), and result refcount is unchanged. 963 */ 964 965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 966 unsigned short mask) 967 { 968 struct net_device *dev, *ret; 969 970 ASSERT_RTNL(); 971 972 ret = NULL; 973 for_each_netdev(net, dev) { 974 if (((dev->flags ^ if_flags) & mask) == 0) { 975 ret = dev; 976 break; 977 } 978 } 979 return ret; 980 } 981 EXPORT_SYMBOL(__dev_get_by_flags); 982 983 /** 984 * dev_valid_name - check if name is okay for network device 985 * @name: name string 986 * 987 * Network device names need to be valid file names to 988 * to allow sysfs to work. We also disallow any kind of 989 * whitespace. 990 */ 991 bool dev_valid_name(const char *name) 992 { 993 if (*name == '\0') 994 return false; 995 if (strlen(name) >= IFNAMSIZ) 996 return false; 997 if (!strcmp(name, ".") || !strcmp(name, "..")) 998 return false; 999 1000 while (*name) { 1001 if (*name == '/' || *name == ':' || isspace(*name)) 1002 return false; 1003 name++; 1004 } 1005 return true; 1006 } 1007 EXPORT_SYMBOL(dev_valid_name); 1008 1009 /** 1010 * __dev_alloc_name - allocate a name for a device 1011 * @net: network namespace to allocate the device name in 1012 * @name: name format string 1013 * @buf: scratch buffer and result name string 1014 * 1015 * Passed a format string - eg "lt%d" it will try and find a suitable 1016 * id. It scans list of devices to build up a free map, then chooses 1017 * the first empty slot. The caller must hold the dev_base or rtnl lock 1018 * while allocating the name and adding the device in order to avoid 1019 * duplicates. 1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1021 * Returns the number of the unit assigned or a negative errno code. 1022 */ 1023 1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1025 { 1026 int i = 0; 1027 const char *p; 1028 const int max_netdevices = 8*PAGE_SIZE; 1029 unsigned long *inuse; 1030 struct net_device *d; 1031 1032 p = strnchr(name, IFNAMSIZ-1, '%'); 1033 if (p) { 1034 /* 1035 * Verify the string as this thing may have come from 1036 * the user. There must be either one "%d" and no other "%" 1037 * characters. 1038 */ 1039 if (p[1] != 'd' || strchr(p + 2, '%')) 1040 return -EINVAL; 1041 1042 /* Use one page as a bit array of possible slots */ 1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1044 if (!inuse) 1045 return -ENOMEM; 1046 1047 for_each_netdev(net, d) { 1048 if (!sscanf(d->name, name, &i)) 1049 continue; 1050 if (i < 0 || i >= max_netdevices) 1051 continue; 1052 1053 /* avoid cases where sscanf is not exact inverse of printf */ 1054 snprintf(buf, IFNAMSIZ, name, i); 1055 if (!strncmp(buf, d->name, IFNAMSIZ)) 1056 set_bit(i, inuse); 1057 } 1058 1059 i = find_first_zero_bit(inuse, max_netdevices); 1060 free_page((unsigned long) inuse); 1061 } 1062 1063 if (buf != name) 1064 snprintf(buf, IFNAMSIZ, name, i); 1065 if (!__dev_get_by_name(net, buf)) 1066 return i; 1067 1068 /* It is possible to run out of possible slots 1069 * when the name is long and there isn't enough space left 1070 * for the digits, or if all bits are used. 1071 */ 1072 return -ENFILE; 1073 } 1074 1075 /** 1076 * dev_alloc_name - allocate a name for a device 1077 * @dev: device 1078 * @name: name format string 1079 * 1080 * Passed a format string - eg "lt%d" it will try and find a suitable 1081 * id. It scans list of devices to build up a free map, then chooses 1082 * the first empty slot. The caller must hold the dev_base or rtnl lock 1083 * while allocating the name and adding the device in order to avoid 1084 * duplicates. 1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1086 * Returns the number of the unit assigned or a negative errno code. 1087 */ 1088 1089 int dev_alloc_name(struct net_device *dev, const char *name) 1090 { 1091 char buf[IFNAMSIZ]; 1092 struct net *net; 1093 int ret; 1094 1095 BUG_ON(!dev_net(dev)); 1096 net = dev_net(dev); 1097 ret = __dev_alloc_name(net, name, buf); 1098 if (ret >= 0) 1099 strlcpy(dev->name, buf, IFNAMSIZ); 1100 return ret; 1101 } 1102 EXPORT_SYMBOL(dev_alloc_name); 1103 1104 static int dev_alloc_name_ns(struct net *net, 1105 struct net_device *dev, 1106 const char *name) 1107 { 1108 char buf[IFNAMSIZ]; 1109 int ret; 1110 1111 ret = __dev_alloc_name(net, name, buf); 1112 if (ret >= 0) 1113 strlcpy(dev->name, buf, IFNAMSIZ); 1114 return ret; 1115 } 1116 1117 static int dev_get_valid_name(struct net *net, 1118 struct net_device *dev, 1119 const char *name) 1120 { 1121 BUG_ON(!net); 1122 1123 if (!dev_valid_name(name)) 1124 return -EINVAL; 1125 1126 if (strchr(name, '%')) 1127 return dev_alloc_name_ns(net, dev, name); 1128 else if (__dev_get_by_name(net, name)) 1129 return -EEXIST; 1130 else if (dev->name != name) 1131 strlcpy(dev->name, name, IFNAMSIZ); 1132 1133 return 0; 1134 } 1135 1136 /** 1137 * dev_change_name - change name of a device 1138 * @dev: device 1139 * @newname: name (or format string) must be at least IFNAMSIZ 1140 * 1141 * Change name of a device, can pass format strings "eth%d". 1142 * for wildcarding. 1143 */ 1144 int dev_change_name(struct net_device *dev, const char *newname) 1145 { 1146 unsigned char old_assign_type; 1147 char oldname[IFNAMSIZ]; 1148 int err = 0; 1149 int ret; 1150 struct net *net; 1151 1152 ASSERT_RTNL(); 1153 BUG_ON(!dev_net(dev)); 1154 1155 net = dev_net(dev); 1156 if (dev->flags & IFF_UP) 1157 return -EBUSY; 1158 1159 write_seqcount_begin(&devnet_rename_seq); 1160 1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1162 write_seqcount_end(&devnet_rename_seq); 1163 return 0; 1164 } 1165 1166 memcpy(oldname, dev->name, IFNAMSIZ); 1167 1168 err = dev_get_valid_name(net, dev, newname); 1169 if (err < 0) { 1170 write_seqcount_end(&devnet_rename_seq); 1171 return err; 1172 } 1173 1174 if (oldname[0] && !strchr(oldname, '%')) 1175 netdev_info(dev, "renamed from %s\n", oldname); 1176 1177 old_assign_type = dev->name_assign_type; 1178 dev->name_assign_type = NET_NAME_RENAMED; 1179 1180 rollback: 1181 ret = device_rename(&dev->dev, dev->name); 1182 if (ret) { 1183 memcpy(dev->name, oldname, IFNAMSIZ); 1184 dev->name_assign_type = old_assign_type; 1185 write_seqcount_end(&devnet_rename_seq); 1186 return ret; 1187 } 1188 1189 write_seqcount_end(&devnet_rename_seq); 1190 1191 netdev_adjacent_rename_links(dev, oldname); 1192 1193 write_lock_bh(&dev_base_lock); 1194 hlist_del_rcu(&dev->name_hlist); 1195 write_unlock_bh(&dev_base_lock); 1196 1197 synchronize_rcu(); 1198 1199 write_lock_bh(&dev_base_lock); 1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1201 write_unlock_bh(&dev_base_lock); 1202 1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1204 ret = notifier_to_errno(ret); 1205 1206 if (ret) { 1207 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1208 if (err >= 0) { 1209 err = ret; 1210 write_seqcount_begin(&devnet_rename_seq); 1211 memcpy(dev->name, oldname, IFNAMSIZ); 1212 memcpy(oldname, newname, IFNAMSIZ); 1213 dev->name_assign_type = old_assign_type; 1214 old_assign_type = NET_NAME_RENAMED; 1215 goto rollback; 1216 } else { 1217 pr_err("%s: name change rollback failed: %d\n", 1218 dev->name, ret); 1219 } 1220 } 1221 1222 return err; 1223 } 1224 1225 /** 1226 * dev_set_alias - change ifalias of a device 1227 * @dev: device 1228 * @alias: name up to IFALIASZ 1229 * @len: limit of bytes to copy from info 1230 * 1231 * Set ifalias for a device, 1232 */ 1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1234 { 1235 char *new_ifalias; 1236 1237 ASSERT_RTNL(); 1238 1239 if (len >= IFALIASZ) 1240 return -EINVAL; 1241 1242 if (!len) { 1243 kfree(dev->ifalias); 1244 dev->ifalias = NULL; 1245 return 0; 1246 } 1247 1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1249 if (!new_ifalias) 1250 return -ENOMEM; 1251 dev->ifalias = new_ifalias; 1252 1253 strlcpy(dev->ifalias, alias, len+1); 1254 return len; 1255 } 1256 1257 1258 /** 1259 * netdev_features_change - device changes features 1260 * @dev: device to cause notification 1261 * 1262 * Called to indicate a device has changed features. 1263 */ 1264 void netdev_features_change(struct net_device *dev) 1265 { 1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1267 } 1268 EXPORT_SYMBOL(netdev_features_change); 1269 1270 /** 1271 * netdev_state_change - device changes state 1272 * @dev: device to cause notification 1273 * 1274 * Called to indicate a device has changed state. This function calls 1275 * the notifier chains for netdev_chain and sends a NEWLINK message 1276 * to the routing socket. 1277 */ 1278 void netdev_state_change(struct net_device *dev) 1279 { 1280 if (dev->flags & IFF_UP) { 1281 struct netdev_notifier_change_info change_info; 1282 1283 change_info.flags_changed = 0; 1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1285 &change_info.info); 1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1287 } 1288 } 1289 EXPORT_SYMBOL(netdev_state_change); 1290 1291 /** 1292 * netdev_notify_peers - notify network peers about existence of @dev 1293 * @dev: network device 1294 * 1295 * Generate traffic such that interested network peers are aware of 1296 * @dev, such as by generating a gratuitous ARP. This may be used when 1297 * a device wants to inform the rest of the network about some sort of 1298 * reconfiguration such as a failover event or virtual machine 1299 * migration. 1300 */ 1301 void netdev_notify_peers(struct net_device *dev) 1302 { 1303 rtnl_lock(); 1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1305 rtnl_unlock(); 1306 } 1307 EXPORT_SYMBOL(netdev_notify_peers); 1308 1309 static int __dev_open(struct net_device *dev) 1310 { 1311 const struct net_device_ops *ops = dev->netdev_ops; 1312 int ret; 1313 1314 ASSERT_RTNL(); 1315 1316 if (!netif_device_present(dev)) 1317 return -ENODEV; 1318 1319 /* Block netpoll from trying to do any rx path servicing. 1320 * If we don't do this there is a chance ndo_poll_controller 1321 * or ndo_poll may be running while we open the device 1322 */ 1323 netpoll_poll_disable(dev); 1324 1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1326 ret = notifier_to_errno(ret); 1327 if (ret) 1328 return ret; 1329 1330 set_bit(__LINK_STATE_START, &dev->state); 1331 1332 if (ops->ndo_validate_addr) 1333 ret = ops->ndo_validate_addr(dev); 1334 1335 if (!ret && ops->ndo_open) 1336 ret = ops->ndo_open(dev); 1337 1338 netpoll_poll_enable(dev); 1339 1340 if (ret) 1341 clear_bit(__LINK_STATE_START, &dev->state); 1342 else { 1343 dev->flags |= IFF_UP; 1344 dev_set_rx_mode(dev); 1345 dev_activate(dev); 1346 add_device_randomness(dev->dev_addr, dev->addr_len); 1347 } 1348 1349 return ret; 1350 } 1351 1352 /** 1353 * dev_open - prepare an interface for use. 1354 * @dev: device to open 1355 * 1356 * Takes a device from down to up state. The device's private open 1357 * function is invoked and then the multicast lists are loaded. Finally 1358 * the device is moved into the up state and a %NETDEV_UP message is 1359 * sent to the netdev notifier chain. 1360 * 1361 * Calling this function on an active interface is a nop. On a failure 1362 * a negative errno code is returned. 1363 */ 1364 int dev_open(struct net_device *dev) 1365 { 1366 int ret; 1367 1368 if (dev->flags & IFF_UP) 1369 return 0; 1370 1371 ret = __dev_open(dev); 1372 if (ret < 0) 1373 return ret; 1374 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1376 call_netdevice_notifiers(NETDEV_UP, dev); 1377 1378 return ret; 1379 } 1380 EXPORT_SYMBOL(dev_open); 1381 1382 static int __dev_close_many(struct list_head *head) 1383 { 1384 struct net_device *dev; 1385 1386 ASSERT_RTNL(); 1387 might_sleep(); 1388 1389 list_for_each_entry(dev, head, close_list) { 1390 /* Temporarily disable netpoll until the interface is down */ 1391 netpoll_poll_disable(dev); 1392 1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1394 1395 clear_bit(__LINK_STATE_START, &dev->state); 1396 1397 /* Synchronize to scheduled poll. We cannot touch poll list, it 1398 * can be even on different cpu. So just clear netif_running(). 1399 * 1400 * dev->stop() will invoke napi_disable() on all of it's 1401 * napi_struct instances on this device. 1402 */ 1403 smp_mb__after_atomic(); /* Commit netif_running(). */ 1404 } 1405 1406 dev_deactivate_many(head); 1407 1408 list_for_each_entry(dev, head, close_list) { 1409 const struct net_device_ops *ops = dev->netdev_ops; 1410 1411 /* 1412 * Call the device specific close. This cannot fail. 1413 * Only if device is UP 1414 * 1415 * We allow it to be called even after a DETACH hot-plug 1416 * event. 1417 */ 1418 if (ops->ndo_stop) 1419 ops->ndo_stop(dev); 1420 1421 dev->flags &= ~IFF_UP; 1422 netpoll_poll_enable(dev); 1423 } 1424 1425 return 0; 1426 } 1427 1428 static int __dev_close(struct net_device *dev) 1429 { 1430 int retval; 1431 LIST_HEAD(single); 1432 1433 list_add(&dev->close_list, &single); 1434 retval = __dev_close_many(&single); 1435 list_del(&single); 1436 1437 return retval; 1438 } 1439 1440 int dev_close_many(struct list_head *head, bool unlink) 1441 { 1442 struct net_device *dev, *tmp; 1443 1444 /* Remove the devices that don't need to be closed */ 1445 list_for_each_entry_safe(dev, tmp, head, close_list) 1446 if (!(dev->flags & IFF_UP)) 1447 list_del_init(&dev->close_list); 1448 1449 __dev_close_many(head); 1450 1451 list_for_each_entry_safe(dev, tmp, head, close_list) { 1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1453 call_netdevice_notifiers(NETDEV_DOWN, dev); 1454 if (unlink) 1455 list_del_init(&dev->close_list); 1456 } 1457 1458 return 0; 1459 } 1460 EXPORT_SYMBOL(dev_close_many); 1461 1462 /** 1463 * dev_close - shutdown an interface. 1464 * @dev: device to shutdown 1465 * 1466 * This function moves an active device into down state. A 1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1469 * chain. 1470 */ 1471 int dev_close(struct net_device *dev) 1472 { 1473 if (dev->flags & IFF_UP) { 1474 LIST_HEAD(single); 1475 1476 list_add(&dev->close_list, &single); 1477 dev_close_many(&single, true); 1478 list_del(&single); 1479 } 1480 return 0; 1481 } 1482 EXPORT_SYMBOL(dev_close); 1483 1484 1485 /** 1486 * dev_disable_lro - disable Large Receive Offload on a device 1487 * @dev: device 1488 * 1489 * Disable Large Receive Offload (LRO) on a net device. Must be 1490 * called under RTNL. This is needed if received packets may be 1491 * forwarded to another interface. 1492 */ 1493 void dev_disable_lro(struct net_device *dev) 1494 { 1495 struct net_device *lower_dev; 1496 struct list_head *iter; 1497 1498 dev->wanted_features &= ~NETIF_F_LRO; 1499 netdev_update_features(dev); 1500 1501 if (unlikely(dev->features & NETIF_F_LRO)) 1502 netdev_WARN(dev, "failed to disable LRO!\n"); 1503 1504 netdev_for_each_lower_dev(dev, lower_dev, iter) 1505 dev_disable_lro(lower_dev); 1506 } 1507 EXPORT_SYMBOL(dev_disable_lro); 1508 1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1510 struct net_device *dev) 1511 { 1512 struct netdev_notifier_info info; 1513 1514 netdev_notifier_info_init(&info, dev); 1515 return nb->notifier_call(nb, val, &info); 1516 } 1517 1518 static int dev_boot_phase = 1; 1519 1520 /** 1521 * register_netdevice_notifier - register a network notifier block 1522 * @nb: notifier 1523 * 1524 * Register a notifier to be called when network device events occur. 1525 * The notifier passed is linked into the kernel structures and must 1526 * not be reused until it has been unregistered. A negative errno code 1527 * is returned on a failure. 1528 * 1529 * When registered all registration and up events are replayed 1530 * to the new notifier to allow device to have a race free 1531 * view of the network device list. 1532 */ 1533 1534 int register_netdevice_notifier(struct notifier_block *nb) 1535 { 1536 struct net_device *dev; 1537 struct net_device *last; 1538 struct net *net; 1539 int err; 1540 1541 rtnl_lock(); 1542 err = raw_notifier_chain_register(&netdev_chain, nb); 1543 if (err) 1544 goto unlock; 1545 if (dev_boot_phase) 1546 goto unlock; 1547 for_each_net(net) { 1548 for_each_netdev(net, dev) { 1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1550 err = notifier_to_errno(err); 1551 if (err) 1552 goto rollback; 1553 1554 if (!(dev->flags & IFF_UP)) 1555 continue; 1556 1557 call_netdevice_notifier(nb, NETDEV_UP, dev); 1558 } 1559 } 1560 1561 unlock: 1562 rtnl_unlock(); 1563 return err; 1564 1565 rollback: 1566 last = dev; 1567 for_each_net(net) { 1568 for_each_netdev(net, dev) { 1569 if (dev == last) 1570 goto outroll; 1571 1572 if (dev->flags & IFF_UP) { 1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1574 dev); 1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1576 } 1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1578 } 1579 } 1580 1581 outroll: 1582 raw_notifier_chain_unregister(&netdev_chain, nb); 1583 goto unlock; 1584 } 1585 EXPORT_SYMBOL(register_netdevice_notifier); 1586 1587 /** 1588 * unregister_netdevice_notifier - unregister a network notifier block 1589 * @nb: notifier 1590 * 1591 * Unregister a notifier previously registered by 1592 * register_netdevice_notifier(). The notifier is unlinked into the 1593 * kernel structures and may then be reused. A negative errno code 1594 * is returned on a failure. 1595 * 1596 * After unregistering unregister and down device events are synthesized 1597 * for all devices on the device list to the removed notifier to remove 1598 * the need for special case cleanup code. 1599 */ 1600 1601 int unregister_netdevice_notifier(struct notifier_block *nb) 1602 { 1603 struct net_device *dev; 1604 struct net *net; 1605 int err; 1606 1607 rtnl_lock(); 1608 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1609 if (err) 1610 goto unlock; 1611 1612 for_each_net(net) { 1613 for_each_netdev(net, dev) { 1614 if (dev->flags & IFF_UP) { 1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1616 dev); 1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1618 } 1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1620 } 1621 } 1622 unlock: 1623 rtnl_unlock(); 1624 return err; 1625 } 1626 EXPORT_SYMBOL(unregister_netdevice_notifier); 1627 1628 /** 1629 * call_netdevice_notifiers_info - call all network notifier blocks 1630 * @val: value passed unmodified to notifier function 1631 * @dev: net_device pointer passed unmodified to notifier function 1632 * @info: notifier information data 1633 * 1634 * Call all network notifier blocks. Parameters and return value 1635 * are as for raw_notifier_call_chain(). 1636 */ 1637 1638 static int call_netdevice_notifiers_info(unsigned long val, 1639 struct net_device *dev, 1640 struct netdev_notifier_info *info) 1641 { 1642 ASSERT_RTNL(); 1643 netdev_notifier_info_init(info, dev); 1644 return raw_notifier_call_chain(&netdev_chain, val, info); 1645 } 1646 1647 /** 1648 * call_netdevice_notifiers - call all network notifier blocks 1649 * @val: value passed unmodified to notifier function 1650 * @dev: net_device pointer passed unmodified to notifier function 1651 * 1652 * Call all network notifier blocks. Parameters and return value 1653 * are as for raw_notifier_call_chain(). 1654 */ 1655 1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1657 { 1658 struct netdev_notifier_info info; 1659 1660 return call_netdevice_notifiers_info(val, dev, &info); 1661 } 1662 EXPORT_SYMBOL(call_netdevice_notifiers); 1663 1664 #ifdef CONFIG_NET_INGRESS 1665 static struct static_key ingress_needed __read_mostly; 1666 1667 void net_inc_ingress_queue(void) 1668 { 1669 static_key_slow_inc(&ingress_needed); 1670 } 1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1672 1673 void net_dec_ingress_queue(void) 1674 { 1675 static_key_slow_dec(&ingress_needed); 1676 } 1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1678 #endif 1679 1680 #ifdef CONFIG_NET_EGRESS 1681 static struct static_key egress_needed __read_mostly; 1682 1683 void net_inc_egress_queue(void) 1684 { 1685 static_key_slow_inc(&egress_needed); 1686 } 1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1688 1689 void net_dec_egress_queue(void) 1690 { 1691 static_key_slow_dec(&egress_needed); 1692 } 1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1694 #endif 1695 1696 static struct static_key netstamp_needed __read_mostly; 1697 #ifdef HAVE_JUMP_LABEL 1698 /* We are not allowed to call static_key_slow_dec() from irq context 1699 * If net_disable_timestamp() is called from irq context, defer the 1700 * static_key_slow_dec() calls. 1701 */ 1702 static atomic_t netstamp_needed_deferred; 1703 #endif 1704 1705 void net_enable_timestamp(void) 1706 { 1707 #ifdef HAVE_JUMP_LABEL 1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1709 1710 if (deferred) { 1711 while (--deferred) 1712 static_key_slow_dec(&netstamp_needed); 1713 return; 1714 } 1715 #endif 1716 static_key_slow_inc(&netstamp_needed); 1717 } 1718 EXPORT_SYMBOL(net_enable_timestamp); 1719 1720 void net_disable_timestamp(void) 1721 { 1722 #ifdef HAVE_JUMP_LABEL 1723 if (in_interrupt()) { 1724 atomic_inc(&netstamp_needed_deferred); 1725 return; 1726 } 1727 #endif 1728 static_key_slow_dec(&netstamp_needed); 1729 } 1730 EXPORT_SYMBOL(net_disable_timestamp); 1731 1732 static inline void net_timestamp_set(struct sk_buff *skb) 1733 { 1734 skb->tstamp = 0; 1735 if (static_key_false(&netstamp_needed)) 1736 __net_timestamp(skb); 1737 } 1738 1739 #define net_timestamp_check(COND, SKB) \ 1740 if (static_key_false(&netstamp_needed)) { \ 1741 if ((COND) && !(SKB)->tstamp) \ 1742 __net_timestamp(SKB); \ 1743 } \ 1744 1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1746 { 1747 unsigned int len; 1748 1749 if (!(dev->flags & IFF_UP)) 1750 return false; 1751 1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1753 if (skb->len <= len) 1754 return true; 1755 1756 /* if TSO is enabled, we don't care about the length as the packet 1757 * could be forwarded without being segmented before 1758 */ 1759 if (skb_is_gso(skb)) 1760 return true; 1761 1762 return false; 1763 } 1764 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1765 1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1767 { 1768 int ret = ____dev_forward_skb(dev, skb); 1769 1770 if (likely(!ret)) { 1771 skb->protocol = eth_type_trans(skb, dev); 1772 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1773 } 1774 1775 return ret; 1776 } 1777 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1778 1779 /** 1780 * dev_forward_skb - loopback an skb to another netif 1781 * 1782 * @dev: destination network device 1783 * @skb: buffer to forward 1784 * 1785 * return values: 1786 * NET_RX_SUCCESS (no congestion) 1787 * NET_RX_DROP (packet was dropped, but freed) 1788 * 1789 * dev_forward_skb can be used for injecting an skb from the 1790 * start_xmit function of one device into the receive queue 1791 * of another device. 1792 * 1793 * The receiving device may be in another namespace, so 1794 * we have to clear all information in the skb that could 1795 * impact namespace isolation. 1796 */ 1797 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1798 { 1799 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1800 } 1801 EXPORT_SYMBOL_GPL(dev_forward_skb); 1802 1803 static inline int deliver_skb(struct sk_buff *skb, 1804 struct packet_type *pt_prev, 1805 struct net_device *orig_dev) 1806 { 1807 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1808 return -ENOMEM; 1809 atomic_inc(&skb->users); 1810 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1811 } 1812 1813 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1814 struct packet_type **pt, 1815 struct net_device *orig_dev, 1816 __be16 type, 1817 struct list_head *ptype_list) 1818 { 1819 struct packet_type *ptype, *pt_prev = *pt; 1820 1821 list_for_each_entry_rcu(ptype, ptype_list, list) { 1822 if (ptype->type != type) 1823 continue; 1824 if (pt_prev) 1825 deliver_skb(skb, pt_prev, orig_dev); 1826 pt_prev = ptype; 1827 } 1828 *pt = pt_prev; 1829 } 1830 1831 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1832 { 1833 if (!ptype->af_packet_priv || !skb->sk) 1834 return false; 1835 1836 if (ptype->id_match) 1837 return ptype->id_match(ptype, skb->sk); 1838 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1839 return true; 1840 1841 return false; 1842 } 1843 1844 /* 1845 * Support routine. Sends outgoing frames to any network 1846 * taps currently in use. 1847 */ 1848 1849 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1850 { 1851 struct packet_type *ptype; 1852 struct sk_buff *skb2 = NULL; 1853 struct packet_type *pt_prev = NULL; 1854 struct list_head *ptype_list = &ptype_all; 1855 1856 rcu_read_lock(); 1857 again: 1858 list_for_each_entry_rcu(ptype, ptype_list, list) { 1859 /* Never send packets back to the socket 1860 * they originated from - MvS (miquels@drinkel.ow.org) 1861 */ 1862 if (skb_loop_sk(ptype, skb)) 1863 continue; 1864 1865 if (pt_prev) { 1866 deliver_skb(skb2, pt_prev, skb->dev); 1867 pt_prev = ptype; 1868 continue; 1869 } 1870 1871 /* need to clone skb, done only once */ 1872 skb2 = skb_clone(skb, GFP_ATOMIC); 1873 if (!skb2) 1874 goto out_unlock; 1875 1876 net_timestamp_set(skb2); 1877 1878 /* skb->nh should be correctly 1879 * set by sender, so that the second statement is 1880 * just protection against buggy protocols. 1881 */ 1882 skb_reset_mac_header(skb2); 1883 1884 if (skb_network_header(skb2) < skb2->data || 1885 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1886 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1887 ntohs(skb2->protocol), 1888 dev->name); 1889 skb_reset_network_header(skb2); 1890 } 1891 1892 skb2->transport_header = skb2->network_header; 1893 skb2->pkt_type = PACKET_OUTGOING; 1894 pt_prev = ptype; 1895 } 1896 1897 if (ptype_list == &ptype_all) { 1898 ptype_list = &dev->ptype_all; 1899 goto again; 1900 } 1901 out_unlock: 1902 if (pt_prev) 1903 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1904 rcu_read_unlock(); 1905 } 1906 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1907 1908 /** 1909 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1910 * @dev: Network device 1911 * @txq: number of queues available 1912 * 1913 * If real_num_tx_queues is changed the tc mappings may no longer be 1914 * valid. To resolve this verify the tc mapping remains valid and if 1915 * not NULL the mapping. With no priorities mapping to this 1916 * offset/count pair it will no longer be used. In the worst case TC0 1917 * is invalid nothing can be done so disable priority mappings. If is 1918 * expected that drivers will fix this mapping if they can before 1919 * calling netif_set_real_num_tx_queues. 1920 */ 1921 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1922 { 1923 int i; 1924 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1925 1926 /* If TC0 is invalidated disable TC mapping */ 1927 if (tc->offset + tc->count > txq) { 1928 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1929 dev->num_tc = 0; 1930 return; 1931 } 1932 1933 /* Invalidated prio to tc mappings set to TC0 */ 1934 for (i = 1; i < TC_BITMASK + 1; i++) { 1935 int q = netdev_get_prio_tc_map(dev, i); 1936 1937 tc = &dev->tc_to_txq[q]; 1938 if (tc->offset + tc->count > txq) { 1939 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1940 i, q); 1941 netdev_set_prio_tc_map(dev, i, 0); 1942 } 1943 } 1944 } 1945 1946 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 1947 { 1948 if (dev->num_tc) { 1949 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1950 int i; 1951 1952 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 1953 if ((txq - tc->offset) < tc->count) 1954 return i; 1955 } 1956 1957 return -1; 1958 } 1959 1960 return 0; 1961 } 1962 1963 #ifdef CONFIG_XPS 1964 static DEFINE_MUTEX(xps_map_mutex); 1965 #define xmap_dereference(P) \ 1966 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1967 1968 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 1969 int tci, u16 index) 1970 { 1971 struct xps_map *map = NULL; 1972 int pos; 1973 1974 if (dev_maps) 1975 map = xmap_dereference(dev_maps->cpu_map[tci]); 1976 if (!map) 1977 return false; 1978 1979 for (pos = map->len; pos--;) { 1980 if (map->queues[pos] != index) 1981 continue; 1982 1983 if (map->len > 1) { 1984 map->queues[pos] = map->queues[--map->len]; 1985 break; 1986 } 1987 1988 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 1989 kfree_rcu(map, rcu); 1990 return false; 1991 } 1992 1993 return true; 1994 } 1995 1996 static bool remove_xps_queue_cpu(struct net_device *dev, 1997 struct xps_dev_maps *dev_maps, 1998 int cpu, u16 offset, u16 count) 1999 { 2000 int num_tc = dev->num_tc ? : 1; 2001 bool active = false; 2002 int tci; 2003 2004 for (tci = cpu * num_tc; num_tc--; tci++) { 2005 int i, j; 2006 2007 for (i = count, j = offset; i--; j++) { 2008 if (!remove_xps_queue(dev_maps, cpu, j)) 2009 break; 2010 } 2011 2012 active |= i < 0; 2013 } 2014 2015 return active; 2016 } 2017 2018 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2019 u16 count) 2020 { 2021 struct xps_dev_maps *dev_maps; 2022 int cpu, i; 2023 bool active = false; 2024 2025 mutex_lock(&xps_map_mutex); 2026 dev_maps = xmap_dereference(dev->xps_maps); 2027 2028 if (!dev_maps) 2029 goto out_no_maps; 2030 2031 for_each_possible_cpu(cpu) 2032 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2033 offset, count); 2034 2035 if (!active) { 2036 RCU_INIT_POINTER(dev->xps_maps, NULL); 2037 kfree_rcu(dev_maps, rcu); 2038 } 2039 2040 for (i = offset + (count - 1); count--; i--) 2041 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2042 NUMA_NO_NODE); 2043 2044 out_no_maps: 2045 mutex_unlock(&xps_map_mutex); 2046 } 2047 2048 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2049 { 2050 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2051 } 2052 2053 static struct xps_map *expand_xps_map(struct xps_map *map, 2054 int cpu, u16 index) 2055 { 2056 struct xps_map *new_map; 2057 int alloc_len = XPS_MIN_MAP_ALLOC; 2058 int i, pos; 2059 2060 for (pos = 0; map && pos < map->len; pos++) { 2061 if (map->queues[pos] != index) 2062 continue; 2063 return map; 2064 } 2065 2066 /* Need to add queue to this CPU's existing map */ 2067 if (map) { 2068 if (pos < map->alloc_len) 2069 return map; 2070 2071 alloc_len = map->alloc_len * 2; 2072 } 2073 2074 /* Need to allocate new map to store queue on this CPU's map */ 2075 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2076 cpu_to_node(cpu)); 2077 if (!new_map) 2078 return NULL; 2079 2080 for (i = 0; i < pos; i++) 2081 new_map->queues[i] = map->queues[i]; 2082 new_map->alloc_len = alloc_len; 2083 new_map->len = pos; 2084 2085 return new_map; 2086 } 2087 2088 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2089 u16 index) 2090 { 2091 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2092 int i, cpu, tci, numa_node_id = -2; 2093 int maps_sz, num_tc = 1, tc = 0; 2094 struct xps_map *map, *new_map; 2095 bool active = false; 2096 2097 if (dev->num_tc) { 2098 num_tc = dev->num_tc; 2099 tc = netdev_txq_to_tc(dev, index); 2100 if (tc < 0) 2101 return -EINVAL; 2102 } 2103 2104 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2105 if (maps_sz < L1_CACHE_BYTES) 2106 maps_sz = L1_CACHE_BYTES; 2107 2108 mutex_lock(&xps_map_mutex); 2109 2110 dev_maps = xmap_dereference(dev->xps_maps); 2111 2112 /* allocate memory for queue storage */ 2113 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2114 if (!new_dev_maps) 2115 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2116 if (!new_dev_maps) { 2117 mutex_unlock(&xps_map_mutex); 2118 return -ENOMEM; 2119 } 2120 2121 tci = cpu * num_tc + tc; 2122 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2123 NULL; 2124 2125 map = expand_xps_map(map, cpu, index); 2126 if (!map) 2127 goto error; 2128 2129 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2130 } 2131 2132 if (!new_dev_maps) 2133 goto out_no_new_maps; 2134 2135 for_each_possible_cpu(cpu) { 2136 /* copy maps belonging to foreign traffic classes */ 2137 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2138 /* fill in the new device map from the old device map */ 2139 map = xmap_dereference(dev_maps->cpu_map[tci]); 2140 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2141 } 2142 2143 /* We need to explicitly update tci as prevous loop 2144 * could break out early if dev_maps is NULL. 2145 */ 2146 tci = cpu * num_tc + tc; 2147 2148 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2149 /* add queue to CPU maps */ 2150 int pos = 0; 2151 2152 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2153 while ((pos < map->len) && (map->queues[pos] != index)) 2154 pos++; 2155 2156 if (pos == map->len) 2157 map->queues[map->len++] = index; 2158 #ifdef CONFIG_NUMA 2159 if (numa_node_id == -2) 2160 numa_node_id = cpu_to_node(cpu); 2161 else if (numa_node_id != cpu_to_node(cpu)) 2162 numa_node_id = -1; 2163 #endif 2164 } else if (dev_maps) { 2165 /* fill in the new device map from the old device map */ 2166 map = xmap_dereference(dev_maps->cpu_map[tci]); 2167 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2168 } 2169 2170 /* copy maps belonging to foreign traffic classes */ 2171 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2172 /* fill in the new device map from the old device map */ 2173 map = xmap_dereference(dev_maps->cpu_map[tci]); 2174 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2175 } 2176 } 2177 2178 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2179 2180 /* Cleanup old maps */ 2181 if (!dev_maps) 2182 goto out_no_old_maps; 2183 2184 for_each_possible_cpu(cpu) { 2185 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2186 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2187 map = xmap_dereference(dev_maps->cpu_map[tci]); 2188 if (map && map != new_map) 2189 kfree_rcu(map, rcu); 2190 } 2191 } 2192 2193 kfree_rcu(dev_maps, rcu); 2194 2195 out_no_old_maps: 2196 dev_maps = new_dev_maps; 2197 active = true; 2198 2199 out_no_new_maps: 2200 /* update Tx queue numa node */ 2201 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2202 (numa_node_id >= 0) ? numa_node_id : 2203 NUMA_NO_NODE); 2204 2205 if (!dev_maps) 2206 goto out_no_maps; 2207 2208 /* removes queue from unused CPUs */ 2209 for_each_possible_cpu(cpu) { 2210 for (i = tc, tci = cpu * num_tc; i--; tci++) 2211 active |= remove_xps_queue(dev_maps, tci, index); 2212 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2213 active |= remove_xps_queue(dev_maps, tci, index); 2214 for (i = num_tc - tc, tci++; --i; tci++) 2215 active |= remove_xps_queue(dev_maps, tci, index); 2216 } 2217 2218 /* free map if not active */ 2219 if (!active) { 2220 RCU_INIT_POINTER(dev->xps_maps, NULL); 2221 kfree_rcu(dev_maps, rcu); 2222 } 2223 2224 out_no_maps: 2225 mutex_unlock(&xps_map_mutex); 2226 2227 return 0; 2228 error: 2229 /* remove any maps that we added */ 2230 for_each_possible_cpu(cpu) { 2231 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2232 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2233 map = dev_maps ? 2234 xmap_dereference(dev_maps->cpu_map[tci]) : 2235 NULL; 2236 if (new_map && new_map != map) 2237 kfree(new_map); 2238 } 2239 } 2240 2241 mutex_unlock(&xps_map_mutex); 2242 2243 kfree(new_dev_maps); 2244 return -ENOMEM; 2245 } 2246 EXPORT_SYMBOL(netif_set_xps_queue); 2247 2248 #endif 2249 void netdev_reset_tc(struct net_device *dev) 2250 { 2251 #ifdef CONFIG_XPS 2252 netif_reset_xps_queues_gt(dev, 0); 2253 #endif 2254 dev->num_tc = 0; 2255 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2256 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2257 } 2258 EXPORT_SYMBOL(netdev_reset_tc); 2259 2260 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2261 { 2262 if (tc >= dev->num_tc) 2263 return -EINVAL; 2264 2265 #ifdef CONFIG_XPS 2266 netif_reset_xps_queues(dev, offset, count); 2267 #endif 2268 dev->tc_to_txq[tc].count = count; 2269 dev->tc_to_txq[tc].offset = offset; 2270 return 0; 2271 } 2272 EXPORT_SYMBOL(netdev_set_tc_queue); 2273 2274 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2275 { 2276 if (num_tc > TC_MAX_QUEUE) 2277 return -EINVAL; 2278 2279 #ifdef CONFIG_XPS 2280 netif_reset_xps_queues_gt(dev, 0); 2281 #endif 2282 dev->num_tc = num_tc; 2283 return 0; 2284 } 2285 EXPORT_SYMBOL(netdev_set_num_tc); 2286 2287 /* 2288 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2289 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2290 */ 2291 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2292 { 2293 int rc; 2294 2295 if (txq < 1 || txq > dev->num_tx_queues) 2296 return -EINVAL; 2297 2298 if (dev->reg_state == NETREG_REGISTERED || 2299 dev->reg_state == NETREG_UNREGISTERING) { 2300 ASSERT_RTNL(); 2301 2302 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2303 txq); 2304 if (rc) 2305 return rc; 2306 2307 if (dev->num_tc) 2308 netif_setup_tc(dev, txq); 2309 2310 if (txq < dev->real_num_tx_queues) { 2311 qdisc_reset_all_tx_gt(dev, txq); 2312 #ifdef CONFIG_XPS 2313 netif_reset_xps_queues_gt(dev, txq); 2314 #endif 2315 } 2316 } 2317 2318 dev->real_num_tx_queues = txq; 2319 return 0; 2320 } 2321 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2322 2323 #ifdef CONFIG_SYSFS 2324 /** 2325 * netif_set_real_num_rx_queues - set actual number of RX queues used 2326 * @dev: Network device 2327 * @rxq: Actual number of RX queues 2328 * 2329 * This must be called either with the rtnl_lock held or before 2330 * registration of the net device. Returns 0 on success, or a 2331 * negative error code. If called before registration, it always 2332 * succeeds. 2333 */ 2334 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2335 { 2336 int rc; 2337 2338 if (rxq < 1 || rxq > dev->num_rx_queues) 2339 return -EINVAL; 2340 2341 if (dev->reg_state == NETREG_REGISTERED) { 2342 ASSERT_RTNL(); 2343 2344 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2345 rxq); 2346 if (rc) 2347 return rc; 2348 } 2349 2350 dev->real_num_rx_queues = rxq; 2351 return 0; 2352 } 2353 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2354 #endif 2355 2356 /** 2357 * netif_get_num_default_rss_queues - default number of RSS queues 2358 * 2359 * This routine should set an upper limit on the number of RSS queues 2360 * used by default by multiqueue devices. 2361 */ 2362 int netif_get_num_default_rss_queues(void) 2363 { 2364 return is_kdump_kernel() ? 2365 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2366 } 2367 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2368 2369 static void __netif_reschedule(struct Qdisc *q) 2370 { 2371 struct softnet_data *sd; 2372 unsigned long flags; 2373 2374 local_irq_save(flags); 2375 sd = this_cpu_ptr(&softnet_data); 2376 q->next_sched = NULL; 2377 *sd->output_queue_tailp = q; 2378 sd->output_queue_tailp = &q->next_sched; 2379 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2380 local_irq_restore(flags); 2381 } 2382 2383 void __netif_schedule(struct Qdisc *q) 2384 { 2385 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2386 __netif_reschedule(q); 2387 } 2388 EXPORT_SYMBOL(__netif_schedule); 2389 2390 struct dev_kfree_skb_cb { 2391 enum skb_free_reason reason; 2392 }; 2393 2394 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2395 { 2396 return (struct dev_kfree_skb_cb *)skb->cb; 2397 } 2398 2399 void netif_schedule_queue(struct netdev_queue *txq) 2400 { 2401 rcu_read_lock(); 2402 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2403 struct Qdisc *q = rcu_dereference(txq->qdisc); 2404 2405 __netif_schedule(q); 2406 } 2407 rcu_read_unlock(); 2408 } 2409 EXPORT_SYMBOL(netif_schedule_queue); 2410 2411 /** 2412 * netif_wake_subqueue - allow sending packets on subqueue 2413 * @dev: network device 2414 * @queue_index: sub queue index 2415 * 2416 * Resume individual transmit queue of a device with multiple transmit queues. 2417 */ 2418 void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2419 { 2420 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2421 2422 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2423 struct Qdisc *q; 2424 2425 rcu_read_lock(); 2426 q = rcu_dereference(txq->qdisc); 2427 __netif_schedule(q); 2428 rcu_read_unlock(); 2429 } 2430 } 2431 EXPORT_SYMBOL(netif_wake_subqueue); 2432 2433 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2434 { 2435 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2436 struct Qdisc *q; 2437 2438 rcu_read_lock(); 2439 q = rcu_dereference(dev_queue->qdisc); 2440 __netif_schedule(q); 2441 rcu_read_unlock(); 2442 } 2443 } 2444 EXPORT_SYMBOL(netif_tx_wake_queue); 2445 2446 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2447 { 2448 unsigned long flags; 2449 2450 if (likely(atomic_read(&skb->users) == 1)) { 2451 smp_rmb(); 2452 atomic_set(&skb->users, 0); 2453 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2454 return; 2455 } 2456 get_kfree_skb_cb(skb)->reason = reason; 2457 local_irq_save(flags); 2458 skb->next = __this_cpu_read(softnet_data.completion_queue); 2459 __this_cpu_write(softnet_data.completion_queue, skb); 2460 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2461 local_irq_restore(flags); 2462 } 2463 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2464 2465 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2466 { 2467 if (in_irq() || irqs_disabled()) 2468 __dev_kfree_skb_irq(skb, reason); 2469 else 2470 dev_kfree_skb(skb); 2471 } 2472 EXPORT_SYMBOL(__dev_kfree_skb_any); 2473 2474 2475 /** 2476 * netif_device_detach - mark device as removed 2477 * @dev: network device 2478 * 2479 * Mark device as removed from system and therefore no longer available. 2480 */ 2481 void netif_device_detach(struct net_device *dev) 2482 { 2483 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2484 netif_running(dev)) { 2485 netif_tx_stop_all_queues(dev); 2486 } 2487 } 2488 EXPORT_SYMBOL(netif_device_detach); 2489 2490 /** 2491 * netif_device_attach - mark device as attached 2492 * @dev: network device 2493 * 2494 * Mark device as attached from system and restart if needed. 2495 */ 2496 void netif_device_attach(struct net_device *dev) 2497 { 2498 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2499 netif_running(dev)) { 2500 netif_tx_wake_all_queues(dev); 2501 __netdev_watchdog_up(dev); 2502 } 2503 } 2504 EXPORT_SYMBOL(netif_device_attach); 2505 2506 /* 2507 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2508 * to be used as a distribution range. 2509 */ 2510 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2511 unsigned int num_tx_queues) 2512 { 2513 u32 hash; 2514 u16 qoffset = 0; 2515 u16 qcount = num_tx_queues; 2516 2517 if (skb_rx_queue_recorded(skb)) { 2518 hash = skb_get_rx_queue(skb); 2519 while (unlikely(hash >= num_tx_queues)) 2520 hash -= num_tx_queues; 2521 return hash; 2522 } 2523 2524 if (dev->num_tc) { 2525 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2526 qoffset = dev->tc_to_txq[tc].offset; 2527 qcount = dev->tc_to_txq[tc].count; 2528 } 2529 2530 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2531 } 2532 EXPORT_SYMBOL(__skb_tx_hash); 2533 2534 static void skb_warn_bad_offload(const struct sk_buff *skb) 2535 { 2536 static const netdev_features_t null_features; 2537 struct net_device *dev = skb->dev; 2538 const char *name = ""; 2539 2540 if (!net_ratelimit()) 2541 return; 2542 2543 if (dev) { 2544 if (dev->dev.parent) 2545 name = dev_driver_string(dev->dev.parent); 2546 else 2547 name = netdev_name(dev); 2548 } 2549 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2550 "gso_type=%d ip_summed=%d\n", 2551 name, dev ? &dev->features : &null_features, 2552 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2553 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2554 skb_shinfo(skb)->gso_type, skb->ip_summed); 2555 } 2556 2557 /* 2558 * Invalidate hardware checksum when packet is to be mangled, and 2559 * complete checksum manually on outgoing path. 2560 */ 2561 int skb_checksum_help(struct sk_buff *skb) 2562 { 2563 __wsum csum; 2564 int ret = 0, offset; 2565 2566 if (skb->ip_summed == CHECKSUM_COMPLETE) 2567 goto out_set_summed; 2568 2569 if (unlikely(skb_shinfo(skb)->gso_size)) { 2570 skb_warn_bad_offload(skb); 2571 return -EINVAL; 2572 } 2573 2574 /* Before computing a checksum, we should make sure no frag could 2575 * be modified by an external entity : checksum could be wrong. 2576 */ 2577 if (skb_has_shared_frag(skb)) { 2578 ret = __skb_linearize(skb); 2579 if (ret) 2580 goto out; 2581 } 2582 2583 offset = skb_checksum_start_offset(skb); 2584 BUG_ON(offset >= skb_headlen(skb)); 2585 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2586 2587 offset += skb->csum_offset; 2588 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2589 2590 if (skb_cloned(skb) && 2591 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2592 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2593 if (ret) 2594 goto out; 2595 } 2596 2597 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2598 out_set_summed: 2599 skb->ip_summed = CHECKSUM_NONE; 2600 out: 2601 return ret; 2602 } 2603 EXPORT_SYMBOL(skb_checksum_help); 2604 2605 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2606 { 2607 __be16 type = skb->protocol; 2608 2609 /* Tunnel gso handlers can set protocol to ethernet. */ 2610 if (type == htons(ETH_P_TEB)) { 2611 struct ethhdr *eth; 2612 2613 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2614 return 0; 2615 2616 eth = (struct ethhdr *)skb_mac_header(skb); 2617 type = eth->h_proto; 2618 } 2619 2620 return __vlan_get_protocol(skb, type, depth); 2621 } 2622 2623 /** 2624 * skb_mac_gso_segment - mac layer segmentation handler. 2625 * @skb: buffer to segment 2626 * @features: features for the output path (see dev->features) 2627 */ 2628 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2629 netdev_features_t features) 2630 { 2631 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2632 struct packet_offload *ptype; 2633 int vlan_depth = skb->mac_len; 2634 __be16 type = skb_network_protocol(skb, &vlan_depth); 2635 2636 if (unlikely(!type)) 2637 return ERR_PTR(-EINVAL); 2638 2639 __skb_pull(skb, vlan_depth); 2640 2641 rcu_read_lock(); 2642 list_for_each_entry_rcu(ptype, &offload_base, list) { 2643 if (ptype->type == type && ptype->callbacks.gso_segment) { 2644 segs = ptype->callbacks.gso_segment(skb, features); 2645 break; 2646 } 2647 } 2648 rcu_read_unlock(); 2649 2650 __skb_push(skb, skb->data - skb_mac_header(skb)); 2651 2652 return segs; 2653 } 2654 EXPORT_SYMBOL(skb_mac_gso_segment); 2655 2656 2657 /* openvswitch calls this on rx path, so we need a different check. 2658 */ 2659 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2660 { 2661 if (tx_path) 2662 return skb->ip_summed != CHECKSUM_PARTIAL; 2663 else 2664 return skb->ip_summed == CHECKSUM_NONE; 2665 } 2666 2667 /** 2668 * __skb_gso_segment - Perform segmentation on skb. 2669 * @skb: buffer to segment 2670 * @features: features for the output path (see dev->features) 2671 * @tx_path: whether it is called in TX path 2672 * 2673 * This function segments the given skb and returns a list of segments. 2674 * 2675 * It may return NULL if the skb requires no segmentation. This is 2676 * only possible when GSO is used for verifying header integrity. 2677 * 2678 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2679 */ 2680 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2681 netdev_features_t features, bool tx_path) 2682 { 2683 if (unlikely(skb_needs_check(skb, tx_path))) { 2684 int err; 2685 2686 skb_warn_bad_offload(skb); 2687 2688 err = skb_cow_head(skb, 0); 2689 if (err < 0) 2690 return ERR_PTR(err); 2691 } 2692 2693 /* Only report GSO partial support if it will enable us to 2694 * support segmentation on this frame without needing additional 2695 * work. 2696 */ 2697 if (features & NETIF_F_GSO_PARTIAL) { 2698 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2699 struct net_device *dev = skb->dev; 2700 2701 partial_features |= dev->features & dev->gso_partial_features; 2702 if (!skb_gso_ok(skb, features | partial_features)) 2703 features &= ~NETIF_F_GSO_PARTIAL; 2704 } 2705 2706 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2707 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2708 2709 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2710 SKB_GSO_CB(skb)->encap_level = 0; 2711 2712 skb_reset_mac_header(skb); 2713 skb_reset_mac_len(skb); 2714 2715 return skb_mac_gso_segment(skb, features); 2716 } 2717 EXPORT_SYMBOL(__skb_gso_segment); 2718 2719 /* Take action when hardware reception checksum errors are detected. */ 2720 #ifdef CONFIG_BUG 2721 void netdev_rx_csum_fault(struct net_device *dev) 2722 { 2723 if (net_ratelimit()) { 2724 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2725 dump_stack(); 2726 } 2727 } 2728 EXPORT_SYMBOL(netdev_rx_csum_fault); 2729 #endif 2730 2731 /* Actually, we should eliminate this check as soon as we know, that: 2732 * 1. IOMMU is present and allows to map all the memory. 2733 * 2. No high memory really exists on this machine. 2734 */ 2735 2736 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2737 { 2738 #ifdef CONFIG_HIGHMEM 2739 int i; 2740 if (!(dev->features & NETIF_F_HIGHDMA)) { 2741 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2742 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2743 if (PageHighMem(skb_frag_page(frag))) 2744 return 1; 2745 } 2746 } 2747 2748 if (PCI_DMA_BUS_IS_PHYS) { 2749 struct device *pdev = dev->dev.parent; 2750 2751 if (!pdev) 2752 return 0; 2753 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2754 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2755 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2756 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2757 return 1; 2758 } 2759 } 2760 #endif 2761 return 0; 2762 } 2763 2764 /* If MPLS offload request, verify we are testing hardware MPLS features 2765 * instead of standard features for the netdev. 2766 */ 2767 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2768 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2769 netdev_features_t features, 2770 __be16 type) 2771 { 2772 if (eth_p_mpls(type)) 2773 features &= skb->dev->mpls_features; 2774 2775 return features; 2776 } 2777 #else 2778 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2779 netdev_features_t features, 2780 __be16 type) 2781 { 2782 return features; 2783 } 2784 #endif 2785 2786 static netdev_features_t harmonize_features(struct sk_buff *skb, 2787 netdev_features_t features) 2788 { 2789 int tmp; 2790 __be16 type; 2791 2792 type = skb_network_protocol(skb, &tmp); 2793 features = net_mpls_features(skb, features, type); 2794 2795 if (skb->ip_summed != CHECKSUM_NONE && 2796 !can_checksum_protocol(features, type)) { 2797 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2798 } else if (illegal_highdma(skb->dev, skb)) { 2799 features &= ~NETIF_F_SG; 2800 } 2801 2802 return features; 2803 } 2804 2805 netdev_features_t passthru_features_check(struct sk_buff *skb, 2806 struct net_device *dev, 2807 netdev_features_t features) 2808 { 2809 return features; 2810 } 2811 EXPORT_SYMBOL(passthru_features_check); 2812 2813 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2814 struct net_device *dev, 2815 netdev_features_t features) 2816 { 2817 return vlan_features_check(skb, features); 2818 } 2819 2820 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2821 struct net_device *dev, 2822 netdev_features_t features) 2823 { 2824 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2825 2826 if (gso_segs > dev->gso_max_segs) 2827 return features & ~NETIF_F_GSO_MASK; 2828 2829 /* Support for GSO partial features requires software 2830 * intervention before we can actually process the packets 2831 * so we need to strip support for any partial features now 2832 * and we can pull them back in after we have partially 2833 * segmented the frame. 2834 */ 2835 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2836 features &= ~dev->gso_partial_features; 2837 2838 /* Make sure to clear the IPv4 ID mangling feature if the 2839 * IPv4 header has the potential to be fragmented. 2840 */ 2841 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2842 struct iphdr *iph = skb->encapsulation ? 2843 inner_ip_hdr(skb) : ip_hdr(skb); 2844 2845 if (!(iph->frag_off & htons(IP_DF))) 2846 features &= ~NETIF_F_TSO_MANGLEID; 2847 } 2848 2849 return features; 2850 } 2851 2852 netdev_features_t netif_skb_features(struct sk_buff *skb) 2853 { 2854 struct net_device *dev = skb->dev; 2855 netdev_features_t features = dev->features; 2856 2857 if (skb_is_gso(skb)) 2858 features = gso_features_check(skb, dev, features); 2859 2860 /* If encapsulation offload request, verify we are testing 2861 * hardware encapsulation features instead of standard 2862 * features for the netdev 2863 */ 2864 if (skb->encapsulation) 2865 features &= dev->hw_enc_features; 2866 2867 if (skb_vlan_tagged(skb)) 2868 features = netdev_intersect_features(features, 2869 dev->vlan_features | 2870 NETIF_F_HW_VLAN_CTAG_TX | 2871 NETIF_F_HW_VLAN_STAG_TX); 2872 2873 if (dev->netdev_ops->ndo_features_check) 2874 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2875 features); 2876 else 2877 features &= dflt_features_check(skb, dev, features); 2878 2879 return harmonize_features(skb, features); 2880 } 2881 EXPORT_SYMBOL(netif_skb_features); 2882 2883 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2884 struct netdev_queue *txq, bool more) 2885 { 2886 unsigned int len; 2887 int rc; 2888 2889 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2890 dev_queue_xmit_nit(skb, dev); 2891 2892 len = skb->len; 2893 trace_net_dev_start_xmit(skb, dev); 2894 rc = netdev_start_xmit(skb, dev, txq, more); 2895 trace_net_dev_xmit(skb, rc, dev, len); 2896 2897 return rc; 2898 } 2899 2900 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2901 struct netdev_queue *txq, int *ret) 2902 { 2903 struct sk_buff *skb = first; 2904 int rc = NETDEV_TX_OK; 2905 2906 while (skb) { 2907 struct sk_buff *next = skb->next; 2908 2909 skb->next = NULL; 2910 rc = xmit_one(skb, dev, txq, next != NULL); 2911 if (unlikely(!dev_xmit_complete(rc))) { 2912 skb->next = next; 2913 goto out; 2914 } 2915 2916 skb = next; 2917 if (netif_xmit_stopped(txq) && skb) { 2918 rc = NETDEV_TX_BUSY; 2919 break; 2920 } 2921 } 2922 2923 out: 2924 *ret = rc; 2925 return skb; 2926 } 2927 2928 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2929 netdev_features_t features) 2930 { 2931 if (skb_vlan_tag_present(skb) && 2932 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2933 skb = __vlan_hwaccel_push_inside(skb); 2934 return skb; 2935 } 2936 2937 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2938 { 2939 netdev_features_t features; 2940 2941 features = netif_skb_features(skb); 2942 skb = validate_xmit_vlan(skb, features); 2943 if (unlikely(!skb)) 2944 goto out_null; 2945 2946 if (netif_needs_gso(skb, features)) { 2947 struct sk_buff *segs; 2948 2949 segs = skb_gso_segment(skb, features); 2950 if (IS_ERR(segs)) { 2951 goto out_kfree_skb; 2952 } else if (segs) { 2953 consume_skb(skb); 2954 skb = segs; 2955 } 2956 } else { 2957 if (skb_needs_linearize(skb, features) && 2958 __skb_linearize(skb)) 2959 goto out_kfree_skb; 2960 2961 /* If packet is not checksummed and device does not 2962 * support checksumming for this protocol, complete 2963 * checksumming here. 2964 */ 2965 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2966 if (skb->encapsulation) 2967 skb_set_inner_transport_header(skb, 2968 skb_checksum_start_offset(skb)); 2969 else 2970 skb_set_transport_header(skb, 2971 skb_checksum_start_offset(skb)); 2972 if (!(features & NETIF_F_CSUM_MASK) && 2973 skb_checksum_help(skb)) 2974 goto out_kfree_skb; 2975 } 2976 } 2977 2978 return skb; 2979 2980 out_kfree_skb: 2981 kfree_skb(skb); 2982 out_null: 2983 atomic_long_inc(&dev->tx_dropped); 2984 return NULL; 2985 } 2986 2987 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 2988 { 2989 struct sk_buff *next, *head = NULL, *tail; 2990 2991 for (; skb != NULL; skb = next) { 2992 next = skb->next; 2993 skb->next = NULL; 2994 2995 /* in case skb wont be segmented, point to itself */ 2996 skb->prev = skb; 2997 2998 skb = validate_xmit_skb(skb, dev); 2999 if (!skb) 3000 continue; 3001 3002 if (!head) 3003 head = skb; 3004 else 3005 tail->next = skb; 3006 /* If skb was segmented, skb->prev points to 3007 * the last segment. If not, it still contains skb. 3008 */ 3009 tail = skb->prev; 3010 } 3011 return head; 3012 } 3013 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3014 3015 static void qdisc_pkt_len_init(struct sk_buff *skb) 3016 { 3017 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3018 3019 qdisc_skb_cb(skb)->pkt_len = skb->len; 3020 3021 /* To get more precise estimation of bytes sent on wire, 3022 * we add to pkt_len the headers size of all segments 3023 */ 3024 if (shinfo->gso_size) { 3025 unsigned int hdr_len; 3026 u16 gso_segs = shinfo->gso_segs; 3027 3028 /* mac layer + network layer */ 3029 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3030 3031 /* + transport layer */ 3032 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3033 hdr_len += tcp_hdrlen(skb); 3034 else 3035 hdr_len += sizeof(struct udphdr); 3036 3037 if (shinfo->gso_type & SKB_GSO_DODGY) 3038 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3039 shinfo->gso_size); 3040 3041 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3042 } 3043 } 3044 3045 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3046 struct net_device *dev, 3047 struct netdev_queue *txq) 3048 { 3049 spinlock_t *root_lock = qdisc_lock(q); 3050 struct sk_buff *to_free = NULL; 3051 bool contended; 3052 int rc; 3053 3054 qdisc_calculate_pkt_len(skb, q); 3055 /* 3056 * Heuristic to force contended enqueues to serialize on a 3057 * separate lock before trying to get qdisc main lock. 3058 * This permits qdisc->running owner to get the lock more 3059 * often and dequeue packets faster. 3060 */ 3061 contended = qdisc_is_running(q); 3062 if (unlikely(contended)) 3063 spin_lock(&q->busylock); 3064 3065 spin_lock(root_lock); 3066 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3067 __qdisc_drop(skb, &to_free); 3068 rc = NET_XMIT_DROP; 3069 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3070 qdisc_run_begin(q)) { 3071 /* 3072 * This is a work-conserving queue; there are no old skbs 3073 * waiting to be sent out; and the qdisc is not running - 3074 * xmit the skb directly. 3075 */ 3076 3077 qdisc_bstats_update(q, skb); 3078 3079 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3080 if (unlikely(contended)) { 3081 spin_unlock(&q->busylock); 3082 contended = false; 3083 } 3084 __qdisc_run(q); 3085 } else 3086 qdisc_run_end(q); 3087 3088 rc = NET_XMIT_SUCCESS; 3089 } else { 3090 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3091 if (qdisc_run_begin(q)) { 3092 if (unlikely(contended)) { 3093 spin_unlock(&q->busylock); 3094 contended = false; 3095 } 3096 __qdisc_run(q); 3097 } 3098 } 3099 spin_unlock(root_lock); 3100 if (unlikely(to_free)) 3101 kfree_skb_list(to_free); 3102 if (unlikely(contended)) 3103 spin_unlock(&q->busylock); 3104 return rc; 3105 } 3106 3107 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3108 static void skb_update_prio(struct sk_buff *skb) 3109 { 3110 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3111 3112 if (!skb->priority && skb->sk && map) { 3113 unsigned int prioidx = 3114 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3115 3116 if (prioidx < map->priomap_len) 3117 skb->priority = map->priomap[prioidx]; 3118 } 3119 } 3120 #else 3121 #define skb_update_prio(skb) 3122 #endif 3123 3124 DEFINE_PER_CPU(int, xmit_recursion); 3125 EXPORT_SYMBOL(xmit_recursion); 3126 3127 /** 3128 * dev_loopback_xmit - loop back @skb 3129 * @net: network namespace this loopback is happening in 3130 * @sk: sk needed to be a netfilter okfn 3131 * @skb: buffer to transmit 3132 */ 3133 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3134 { 3135 skb_reset_mac_header(skb); 3136 __skb_pull(skb, skb_network_offset(skb)); 3137 skb->pkt_type = PACKET_LOOPBACK; 3138 skb->ip_summed = CHECKSUM_UNNECESSARY; 3139 WARN_ON(!skb_dst(skb)); 3140 skb_dst_force(skb); 3141 netif_rx_ni(skb); 3142 return 0; 3143 } 3144 EXPORT_SYMBOL(dev_loopback_xmit); 3145 3146 #ifdef CONFIG_NET_EGRESS 3147 static struct sk_buff * 3148 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3149 { 3150 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3151 struct tcf_result cl_res; 3152 3153 if (!cl) 3154 return skb; 3155 3156 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set 3157 * earlier by the caller. 3158 */ 3159 qdisc_bstats_cpu_update(cl->q, skb); 3160 3161 switch (tc_classify(skb, cl, &cl_res, false)) { 3162 case TC_ACT_OK: 3163 case TC_ACT_RECLASSIFY: 3164 skb->tc_index = TC_H_MIN(cl_res.classid); 3165 break; 3166 case TC_ACT_SHOT: 3167 qdisc_qstats_cpu_drop(cl->q); 3168 *ret = NET_XMIT_DROP; 3169 kfree_skb(skb); 3170 return NULL; 3171 case TC_ACT_STOLEN: 3172 case TC_ACT_QUEUED: 3173 *ret = NET_XMIT_SUCCESS; 3174 consume_skb(skb); 3175 return NULL; 3176 case TC_ACT_REDIRECT: 3177 /* No need to push/pop skb's mac_header here on egress! */ 3178 skb_do_redirect(skb); 3179 *ret = NET_XMIT_SUCCESS; 3180 return NULL; 3181 default: 3182 break; 3183 } 3184 3185 return skb; 3186 } 3187 #endif /* CONFIG_NET_EGRESS */ 3188 3189 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3190 { 3191 #ifdef CONFIG_XPS 3192 struct xps_dev_maps *dev_maps; 3193 struct xps_map *map; 3194 int queue_index = -1; 3195 3196 rcu_read_lock(); 3197 dev_maps = rcu_dereference(dev->xps_maps); 3198 if (dev_maps) { 3199 unsigned int tci = skb->sender_cpu - 1; 3200 3201 if (dev->num_tc) { 3202 tci *= dev->num_tc; 3203 tci += netdev_get_prio_tc_map(dev, skb->priority); 3204 } 3205 3206 map = rcu_dereference(dev_maps->cpu_map[tci]); 3207 if (map) { 3208 if (map->len == 1) 3209 queue_index = map->queues[0]; 3210 else 3211 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3212 map->len)]; 3213 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3214 queue_index = -1; 3215 } 3216 } 3217 rcu_read_unlock(); 3218 3219 return queue_index; 3220 #else 3221 return -1; 3222 #endif 3223 } 3224 3225 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3226 { 3227 struct sock *sk = skb->sk; 3228 int queue_index = sk_tx_queue_get(sk); 3229 3230 if (queue_index < 0 || skb->ooo_okay || 3231 queue_index >= dev->real_num_tx_queues) { 3232 int new_index = get_xps_queue(dev, skb); 3233 if (new_index < 0) 3234 new_index = skb_tx_hash(dev, skb); 3235 3236 if (queue_index != new_index && sk && 3237 sk_fullsock(sk) && 3238 rcu_access_pointer(sk->sk_dst_cache)) 3239 sk_tx_queue_set(sk, new_index); 3240 3241 queue_index = new_index; 3242 } 3243 3244 return queue_index; 3245 } 3246 3247 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3248 struct sk_buff *skb, 3249 void *accel_priv) 3250 { 3251 int queue_index = 0; 3252 3253 #ifdef CONFIG_XPS 3254 u32 sender_cpu = skb->sender_cpu - 1; 3255 3256 if (sender_cpu >= (u32)NR_CPUS) 3257 skb->sender_cpu = raw_smp_processor_id() + 1; 3258 #endif 3259 3260 if (dev->real_num_tx_queues != 1) { 3261 const struct net_device_ops *ops = dev->netdev_ops; 3262 if (ops->ndo_select_queue) 3263 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3264 __netdev_pick_tx); 3265 else 3266 queue_index = __netdev_pick_tx(dev, skb); 3267 3268 if (!accel_priv) 3269 queue_index = netdev_cap_txqueue(dev, queue_index); 3270 } 3271 3272 skb_set_queue_mapping(skb, queue_index); 3273 return netdev_get_tx_queue(dev, queue_index); 3274 } 3275 3276 /** 3277 * __dev_queue_xmit - transmit a buffer 3278 * @skb: buffer to transmit 3279 * @accel_priv: private data used for L2 forwarding offload 3280 * 3281 * Queue a buffer for transmission to a network device. The caller must 3282 * have set the device and priority and built the buffer before calling 3283 * this function. The function can be called from an interrupt. 3284 * 3285 * A negative errno code is returned on a failure. A success does not 3286 * guarantee the frame will be transmitted as it may be dropped due 3287 * to congestion or traffic shaping. 3288 * 3289 * ----------------------------------------------------------------------------------- 3290 * I notice this method can also return errors from the queue disciplines, 3291 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3292 * be positive. 3293 * 3294 * Regardless of the return value, the skb is consumed, so it is currently 3295 * difficult to retry a send to this method. (You can bump the ref count 3296 * before sending to hold a reference for retry if you are careful.) 3297 * 3298 * When calling this method, interrupts MUST be enabled. This is because 3299 * the BH enable code must have IRQs enabled so that it will not deadlock. 3300 * --BLG 3301 */ 3302 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3303 { 3304 struct net_device *dev = skb->dev; 3305 struct netdev_queue *txq; 3306 struct Qdisc *q; 3307 int rc = -ENOMEM; 3308 3309 skb_reset_mac_header(skb); 3310 3311 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3312 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3313 3314 /* Disable soft irqs for various locks below. Also 3315 * stops preemption for RCU. 3316 */ 3317 rcu_read_lock_bh(); 3318 3319 skb_update_prio(skb); 3320 3321 qdisc_pkt_len_init(skb); 3322 #ifdef CONFIG_NET_CLS_ACT 3323 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 3324 # ifdef CONFIG_NET_EGRESS 3325 if (static_key_false(&egress_needed)) { 3326 skb = sch_handle_egress(skb, &rc, dev); 3327 if (!skb) 3328 goto out; 3329 } 3330 # endif 3331 #endif 3332 /* If device/qdisc don't need skb->dst, release it right now while 3333 * its hot in this cpu cache. 3334 */ 3335 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3336 skb_dst_drop(skb); 3337 else 3338 skb_dst_force(skb); 3339 3340 txq = netdev_pick_tx(dev, skb, accel_priv); 3341 q = rcu_dereference_bh(txq->qdisc); 3342 3343 trace_net_dev_queue(skb); 3344 if (q->enqueue) { 3345 rc = __dev_xmit_skb(skb, q, dev, txq); 3346 goto out; 3347 } 3348 3349 /* The device has no queue. Common case for software devices: 3350 loopback, all the sorts of tunnels... 3351 3352 Really, it is unlikely that netif_tx_lock protection is necessary 3353 here. (f.e. loopback and IP tunnels are clean ignoring statistics 3354 counters.) 3355 However, it is possible, that they rely on protection 3356 made by us here. 3357 3358 Check this and shot the lock. It is not prone from deadlocks. 3359 Either shot noqueue qdisc, it is even simpler 8) 3360 */ 3361 if (dev->flags & IFF_UP) { 3362 int cpu = smp_processor_id(); /* ok because BHs are off */ 3363 3364 if (txq->xmit_lock_owner != cpu) { 3365 if (unlikely(__this_cpu_read(xmit_recursion) > 3366 XMIT_RECURSION_LIMIT)) 3367 goto recursion_alert; 3368 3369 skb = validate_xmit_skb(skb, dev); 3370 if (!skb) 3371 goto out; 3372 3373 HARD_TX_LOCK(dev, txq, cpu); 3374 3375 if (!netif_xmit_stopped(txq)) { 3376 __this_cpu_inc(xmit_recursion); 3377 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3378 __this_cpu_dec(xmit_recursion); 3379 if (dev_xmit_complete(rc)) { 3380 HARD_TX_UNLOCK(dev, txq); 3381 goto out; 3382 } 3383 } 3384 HARD_TX_UNLOCK(dev, txq); 3385 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3386 dev->name); 3387 } else { 3388 /* Recursion is detected! It is possible, 3389 * unfortunately 3390 */ 3391 recursion_alert: 3392 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3393 dev->name); 3394 } 3395 } 3396 3397 rc = -ENETDOWN; 3398 rcu_read_unlock_bh(); 3399 3400 atomic_long_inc(&dev->tx_dropped); 3401 kfree_skb_list(skb); 3402 return rc; 3403 out: 3404 rcu_read_unlock_bh(); 3405 return rc; 3406 } 3407 3408 int dev_queue_xmit(struct sk_buff *skb) 3409 { 3410 return __dev_queue_xmit(skb, NULL); 3411 } 3412 EXPORT_SYMBOL(dev_queue_xmit); 3413 3414 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3415 { 3416 return __dev_queue_xmit(skb, accel_priv); 3417 } 3418 EXPORT_SYMBOL(dev_queue_xmit_accel); 3419 3420 3421 /*======================================================================= 3422 Receiver routines 3423 =======================================================================*/ 3424 3425 int netdev_max_backlog __read_mostly = 1000; 3426 EXPORT_SYMBOL(netdev_max_backlog); 3427 3428 int netdev_tstamp_prequeue __read_mostly = 1; 3429 int netdev_budget __read_mostly = 300; 3430 int weight_p __read_mostly = 64; /* old backlog weight */ 3431 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3432 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3433 int dev_rx_weight __read_mostly = 64; 3434 int dev_tx_weight __read_mostly = 64; 3435 3436 /* Called with irq disabled */ 3437 static inline void ____napi_schedule(struct softnet_data *sd, 3438 struct napi_struct *napi) 3439 { 3440 list_add_tail(&napi->poll_list, &sd->poll_list); 3441 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3442 } 3443 3444 #ifdef CONFIG_RPS 3445 3446 /* One global table that all flow-based protocols share. */ 3447 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3448 EXPORT_SYMBOL(rps_sock_flow_table); 3449 u32 rps_cpu_mask __read_mostly; 3450 EXPORT_SYMBOL(rps_cpu_mask); 3451 3452 struct static_key rps_needed __read_mostly; 3453 EXPORT_SYMBOL(rps_needed); 3454 struct static_key rfs_needed __read_mostly; 3455 EXPORT_SYMBOL(rfs_needed); 3456 3457 static struct rps_dev_flow * 3458 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3459 struct rps_dev_flow *rflow, u16 next_cpu) 3460 { 3461 if (next_cpu < nr_cpu_ids) { 3462 #ifdef CONFIG_RFS_ACCEL 3463 struct netdev_rx_queue *rxqueue; 3464 struct rps_dev_flow_table *flow_table; 3465 struct rps_dev_flow *old_rflow; 3466 u32 flow_id; 3467 u16 rxq_index; 3468 int rc; 3469 3470 /* Should we steer this flow to a different hardware queue? */ 3471 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3472 !(dev->features & NETIF_F_NTUPLE)) 3473 goto out; 3474 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3475 if (rxq_index == skb_get_rx_queue(skb)) 3476 goto out; 3477 3478 rxqueue = dev->_rx + rxq_index; 3479 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3480 if (!flow_table) 3481 goto out; 3482 flow_id = skb_get_hash(skb) & flow_table->mask; 3483 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3484 rxq_index, flow_id); 3485 if (rc < 0) 3486 goto out; 3487 old_rflow = rflow; 3488 rflow = &flow_table->flows[flow_id]; 3489 rflow->filter = rc; 3490 if (old_rflow->filter == rflow->filter) 3491 old_rflow->filter = RPS_NO_FILTER; 3492 out: 3493 #endif 3494 rflow->last_qtail = 3495 per_cpu(softnet_data, next_cpu).input_queue_head; 3496 } 3497 3498 rflow->cpu = next_cpu; 3499 return rflow; 3500 } 3501 3502 /* 3503 * get_rps_cpu is called from netif_receive_skb and returns the target 3504 * CPU from the RPS map of the receiving queue for a given skb. 3505 * rcu_read_lock must be held on entry. 3506 */ 3507 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3508 struct rps_dev_flow **rflowp) 3509 { 3510 const struct rps_sock_flow_table *sock_flow_table; 3511 struct netdev_rx_queue *rxqueue = dev->_rx; 3512 struct rps_dev_flow_table *flow_table; 3513 struct rps_map *map; 3514 int cpu = -1; 3515 u32 tcpu; 3516 u32 hash; 3517 3518 if (skb_rx_queue_recorded(skb)) { 3519 u16 index = skb_get_rx_queue(skb); 3520 3521 if (unlikely(index >= dev->real_num_rx_queues)) { 3522 WARN_ONCE(dev->real_num_rx_queues > 1, 3523 "%s received packet on queue %u, but number " 3524 "of RX queues is %u\n", 3525 dev->name, index, dev->real_num_rx_queues); 3526 goto done; 3527 } 3528 rxqueue += index; 3529 } 3530 3531 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3532 3533 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3534 map = rcu_dereference(rxqueue->rps_map); 3535 if (!flow_table && !map) 3536 goto done; 3537 3538 skb_reset_network_header(skb); 3539 hash = skb_get_hash(skb); 3540 if (!hash) 3541 goto done; 3542 3543 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3544 if (flow_table && sock_flow_table) { 3545 struct rps_dev_flow *rflow; 3546 u32 next_cpu; 3547 u32 ident; 3548 3549 /* First check into global flow table if there is a match */ 3550 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3551 if ((ident ^ hash) & ~rps_cpu_mask) 3552 goto try_rps; 3553 3554 next_cpu = ident & rps_cpu_mask; 3555 3556 /* OK, now we know there is a match, 3557 * we can look at the local (per receive queue) flow table 3558 */ 3559 rflow = &flow_table->flows[hash & flow_table->mask]; 3560 tcpu = rflow->cpu; 3561 3562 /* 3563 * If the desired CPU (where last recvmsg was done) is 3564 * different from current CPU (one in the rx-queue flow 3565 * table entry), switch if one of the following holds: 3566 * - Current CPU is unset (>= nr_cpu_ids). 3567 * - Current CPU is offline. 3568 * - The current CPU's queue tail has advanced beyond the 3569 * last packet that was enqueued using this table entry. 3570 * This guarantees that all previous packets for the flow 3571 * have been dequeued, thus preserving in order delivery. 3572 */ 3573 if (unlikely(tcpu != next_cpu) && 3574 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3575 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3576 rflow->last_qtail)) >= 0)) { 3577 tcpu = next_cpu; 3578 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3579 } 3580 3581 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3582 *rflowp = rflow; 3583 cpu = tcpu; 3584 goto done; 3585 } 3586 } 3587 3588 try_rps: 3589 3590 if (map) { 3591 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3592 if (cpu_online(tcpu)) { 3593 cpu = tcpu; 3594 goto done; 3595 } 3596 } 3597 3598 done: 3599 return cpu; 3600 } 3601 3602 #ifdef CONFIG_RFS_ACCEL 3603 3604 /** 3605 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3606 * @dev: Device on which the filter was set 3607 * @rxq_index: RX queue index 3608 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3609 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3610 * 3611 * Drivers that implement ndo_rx_flow_steer() should periodically call 3612 * this function for each installed filter and remove the filters for 3613 * which it returns %true. 3614 */ 3615 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3616 u32 flow_id, u16 filter_id) 3617 { 3618 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3619 struct rps_dev_flow_table *flow_table; 3620 struct rps_dev_flow *rflow; 3621 bool expire = true; 3622 unsigned int cpu; 3623 3624 rcu_read_lock(); 3625 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3626 if (flow_table && flow_id <= flow_table->mask) { 3627 rflow = &flow_table->flows[flow_id]; 3628 cpu = ACCESS_ONCE(rflow->cpu); 3629 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3630 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3631 rflow->last_qtail) < 3632 (int)(10 * flow_table->mask))) 3633 expire = false; 3634 } 3635 rcu_read_unlock(); 3636 return expire; 3637 } 3638 EXPORT_SYMBOL(rps_may_expire_flow); 3639 3640 #endif /* CONFIG_RFS_ACCEL */ 3641 3642 /* Called from hardirq (IPI) context */ 3643 static void rps_trigger_softirq(void *data) 3644 { 3645 struct softnet_data *sd = data; 3646 3647 ____napi_schedule(sd, &sd->backlog); 3648 sd->received_rps++; 3649 } 3650 3651 #endif /* CONFIG_RPS */ 3652 3653 /* 3654 * Check if this softnet_data structure is another cpu one 3655 * If yes, queue it to our IPI list and return 1 3656 * If no, return 0 3657 */ 3658 static int rps_ipi_queued(struct softnet_data *sd) 3659 { 3660 #ifdef CONFIG_RPS 3661 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3662 3663 if (sd != mysd) { 3664 sd->rps_ipi_next = mysd->rps_ipi_list; 3665 mysd->rps_ipi_list = sd; 3666 3667 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3668 return 1; 3669 } 3670 #endif /* CONFIG_RPS */ 3671 return 0; 3672 } 3673 3674 #ifdef CONFIG_NET_FLOW_LIMIT 3675 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3676 #endif 3677 3678 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3679 { 3680 #ifdef CONFIG_NET_FLOW_LIMIT 3681 struct sd_flow_limit *fl; 3682 struct softnet_data *sd; 3683 unsigned int old_flow, new_flow; 3684 3685 if (qlen < (netdev_max_backlog >> 1)) 3686 return false; 3687 3688 sd = this_cpu_ptr(&softnet_data); 3689 3690 rcu_read_lock(); 3691 fl = rcu_dereference(sd->flow_limit); 3692 if (fl) { 3693 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3694 old_flow = fl->history[fl->history_head]; 3695 fl->history[fl->history_head] = new_flow; 3696 3697 fl->history_head++; 3698 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3699 3700 if (likely(fl->buckets[old_flow])) 3701 fl->buckets[old_flow]--; 3702 3703 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3704 fl->count++; 3705 rcu_read_unlock(); 3706 return true; 3707 } 3708 } 3709 rcu_read_unlock(); 3710 #endif 3711 return false; 3712 } 3713 3714 /* 3715 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3716 * queue (may be a remote CPU queue). 3717 */ 3718 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3719 unsigned int *qtail) 3720 { 3721 struct softnet_data *sd; 3722 unsigned long flags; 3723 unsigned int qlen; 3724 3725 sd = &per_cpu(softnet_data, cpu); 3726 3727 local_irq_save(flags); 3728 3729 rps_lock(sd); 3730 if (!netif_running(skb->dev)) 3731 goto drop; 3732 qlen = skb_queue_len(&sd->input_pkt_queue); 3733 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3734 if (qlen) { 3735 enqueue: 3736 __skb_queue_tail(&sd->input_pkt_queue, skb); 3737 input_queue_tail_incr_save(sd, qtail); 3738 rps_unlock(sd); 3739 local_irq_restore(flags); 3740 return NET_RX_SUCCESS; 3741 } 3742 3743 /* Schedule NAPI for backlog device 3744 * We can use non atomic operation since we own the queue lock 3745 */ 3746 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3747 if (!rps_ipi_queued(sd)) 3748 ____napi_schedule(sd, &sd->backlog); 3749 } 3750 goto enqueue; 3751 } 3752 3753 drop: 3754 sd->dropped++; 3755 rps_unlock(sd); 3756 3757 local_irq_restore(flags); 3758 3759 atomic_long_inc(&skb->dev->rx_dropped); 3760 kfree_skb(skb); 3761 return NET_RX_DROP; 3762 } 3763 3764 static int netif_rx_internal(struct sk_buff *skb) 3765 { 3766 int ret; 3767 3768 net_timestamp_check(netdev_tstamp_prequeue, skb); 3769 3770 trace_netif_rx(skb); 3771 #ifdef CONFIG_RPS 3772 if (static_key_false(&rps_needed)) { 3773 struct rps_dev_flow voidflow, *rflow = &voidflow; 3774 int cpu; 3775 3776 preempt_disable(); 3777 rcu_read_lock(); 3778 3779 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3780 if (cpu < 0) 3781 cpu = smp_processor_id(); 3782 3783 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3784 3785 rcu_read_unlock(); 3786 preempt_enable(); 3787 } else 3788 #endif 3789 { 3790 unsigned int qtail; 3791 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3792 put_cpu(); 3793 } 3794 return ret; 3795 } 3796 3797 /** 3798 * netif_rx - post buffer to the network code 3799 * @skb: buffer to post 3800 * 3801 * This function receives a packet from a device driver and queues it for 3802 * the upper (protocol) levels to process. It always succeeds. The buffer 3803 * may be dropped during processing for congestion control or by the 3804 * protocol layers. 3805 * 3806 * return values: 3807 * NET_RX_SUCCESS (no congestion) 3808 * NET_RX_DROP (packet was dropped) 3809 * 3810 */ 3811 3812 int netif_rx(struct sk_buff *skb) 3813 { 3814 trace_netif_rx_entry(skb); 3815 3816 return netif_rx_internal(skb); 3817 } 3818 EXPORT_SYMBOL(netif_rx); 3819 3820 int netif_rx_ni(struct sk_buff *skb) 3821 { 3822 int err; 3823 3824 trace_netif_rx_ni_entry(skb); 3825 3826 preempt_disable(); 3827 err = netif_rx_internal(skb); 3828 if (local_softirq_pending()) 3829 do_softirq(); 3830 preempt_enable(); 3831 3832 return err; 3833 } 3834 EXPORT_SYMBOL(netif_rx_ni); 3835 3836 static __latent_entropy void net_tx_action(struct softirq_action *h) 3837 { 3838 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3839 3840 if (sd->completion_queue) { 3841 struct sk_buff *clist; 3842 3843 local_irq_disable(); 3844 clist = sd->completion_queue; 3845 sd->completion_queue = NULL; 3846 local_irq_enable(); 3847 3848 while (clist) { 3849 struct sk_buff *skb = clist; 3850 clist = clist->next; 3851 3852 WARN_ON(atomic_read(&skb->users)); 3853 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3854 trace_consume_skb(skb); 3855 else 3856 trace_kfree_skb(skb, net_tx_action); 3857 3858 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 3859 __kfree_skb(skb); 3860 else 3861 __kfree_skb_defer(skb); 3862 } 3863 3864 __kfree_skb_flush(); 3865 } 3866 3867 if (sd->output_queue) { 3868 struct Qdisc *head; 3869 3870 local_irq_disable(); 3871 head = sd->output_queue; 3872 sd->output_queue = NULL; 3873 sd->output_queue_tailp = &sd->output_queue; 3874 local_irq_enable(); 3875 3876 while (head) { 3877 struct Qdisc *q = head; 3878 spinlock_t *root_lock; 3879 3880 head = head->next_sched; 3881 3882 root_lock = qdisc_lock(q); 3883 spin_lock(root_lock); 3884 /* We need to make sure head->next_sched is read 3885 * before clearing __QDISC_STATE_SCHED 3886 */ 3887 smp_mb__before_atomic(); 3888 clear_bit(__QDISC_STATE_SCHED, &q->state); 3889 qdisc_run(q); 3890 spin_unlock(root_lock); 3891 } 3892 } 3893 } 3894 3895 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 3896 /* This hook is defined here for ATM LANE */ 3897 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3898 unsigned char *addr) __read_mostly; 3899 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3900 #endif 3901 3902 static inline struct sk_buff * 3903 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 3904 struct net_device *orig_dev) 3905 { 3906 #ifdef CONFIG_NET_CLS_ACT 3907 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 3908 struct tcf_result cl_res; 3909 3910 /* If there's at least one ingress present somewhere (so 3911 * we get here via enabled static key), remaining devices 3912 * that are not configured with an ingress qdisc will bail 3913 * out here. 3914 */ 3915 if (!cl) 3916 return skb; 3917 if (*pt_prev) { 3918 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3919 *pt_prev = NULL; 3920 } 3921 3922 qdisc_skb_cb(skb)->pkt_len = skb->len; 3923 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3924 qdisc_bstats_cpu_update(cl->q, skb); 3925 3926 switch (tc_classify(skb, cl, &cl_res, false)) { 3927 case TC_ACT_OK: 3928 case TC_ACT_RECLASSIFY: 3929 skb->tc_index = TC_H_MIN(cl_res.classid); 3930 break; 3931 case TC_ACT_SHOT: 3932 qdisc_qstats_cpu_drop(cl->q); 3933 kfree_skb(skb); 3934 return NULL; 3935 case TC_ACT_STOLEN: 3936 case TC_ACT_QUEUED: 3937 consume_skb(skb); 3938 return NULL; 3939 case TC_ACT_REDIRECT: 3940 /* skb_mac_header check was done by cls/act_bpf, so 3941 * we can safely push the L2 header back before 3942 * redirecting to another netdev 3943 */ 3944 __skb_push(skb, skb->mac_len); 3945 skb_do_redirect(skb); 3946 return NULL; 3947 default: 3948 break; 3949 } 3950 #endif /* CONFIG_NET_CLS_ACT */ 3951 return skb; 3952 } 3953 3954 /** 3955 * netdev_is_rx_handler_busy - check if receive handler is registered 3956 * @dev: device to check 3957 * 3958 * Check if a receive handler is already registered for a given device. 3959 * Return true if there one. 3960 * 3961 * The caller must hold the rtnl_mutex. 3962 */ 3963 bool netdev_is_rx_handler_busy(struct net_device *dev) 3964 { 3965 ASSERT_RTNL(); 3966 return dev && rtnl_dereference(dev->rx_handler); 3967 } 3968 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 3969 3970 /** 3971 * netdev_rx_handler_register - register receive handler 3972 * @dev: device to register a handler for 3973 * @rx_handler: receive handler to register 3974 * @rx_handler_data: data pointer that is used by rx handler 3975 * 3976 * Register a receive handler for a device. This handler will then be 3977 * called from __netif_receive_skb. A negative errno code is returned 3978 * on a failure. 3979 * 3980 * The caller must hold the rtnl_mutex. 3981 * 3982 * For a general description of rx_handler, see enum rx_handler_result. 3983 */ 3984 int netdev_rx_handler_register(struct net_device *dev, 3985 rx_handler_func_t *rx_handler, 3986 void *rx_handler_data) 3987 { 3988 ASSERT_RTNL(); 3989 3990 if (dev->rx_handler) 3991 return -EBUSY; 3992 3993 /* Note: rx_handler_data must be set before rx_handler */ 3994 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3995 rcu_assign_pointer(dev->rx_handler, rx_handler); 3996 3997 return 0; 3998 } 3999 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4000 4001 /** 4002 * netdev_rx_handler_unregister - unregister receive handler 4003 * @dev: device to unregister a handler from 4004 * 4005 * Unregister a receive handler from a device. 4006 * 4007 * The caller must hold the rtnl_mutex. 4008 */ 4009 void netdev_rx_handler_unregister(struct net_device *dev) 4010 { 4011 4012 ASSERT_RTNL(); 4013 RCU_INIT_POINTER(dev->rx_handler, NULL); 4014 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4015 * section has a guarantee to see a non NULL rx_handler_data 4016 * as well. 4017 */ 4018 synchronize_net(); 4019 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4020 } 4021 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4022 4023 /* 4024 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4025 * the special handling of PFMEMALLOC skbs. 4026 */ 4027 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4028 { 4029 switch (skb->protocol) { 4030 case htons(ETH_P_ARP): 4031 case htons(ETH_P_IP): 4032 case htons(ETH_P_IPV6): 4033 case htons(ETH_P_8021Q): 4034 case htons(ETH_P_8021AD): 4035 return true; 4036 default: 4037 return false; 4038 } 4039 } 4040 4041 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4042 int *ret, struct net_device *orig_dev) 4043 { 4044 #ifdef CONFIG_NETFILTER_INGRESS 4045 if (nf_hook_ingress_active(skb)) { 4046 int ingress_retval; 4047 4048 if (*pt_prev) { 4049 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4050 *pt_prev = NULL; 4051 } 4052 4053 rcu_read_lock(); 4054 ingress_retval = nf_hook_ingress(skb); 4055 rcu_read_unlock(); 4056 return ingress_retval; 4057 } 4058 #endif /* CONFIG_NETFILTER_INGRESS */ 4059 return 0; 4060 } 4061 4062 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4063 { 4064 struct packet_type *ptype, *pt_prev; 4065 rx_handler_func_t *rx_handler; 4066 struct net_device *orig_dev; 4067 bool deliver_exact = false; 4068 int ret = NET_RX_DROP; 4069 __be16 type; 4070 4071 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4072 4073 trace_netif_receive_skb(skb); 4074 4075 orig_dev = skb->dev; 4076 4077 skb_reset_network_header(skb); 4078 if (!skb_transport_header_was_set(skb)) 4079 skb_reset_transport_header(skb); 4080 skb_reset_mac_len(skb); 4081 4082 pt_prev = NULL; 4083 4084 another_round: 4085 skb->skb_iif = skb->dev->ifindex; 4086 4087 __this_cpu_inc(softnet_data.processed); 4088 4089 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4090 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4091 skb = skb_vlan_untag(skb); 4092 if (unlikely(!skb)) 4093 goto out; 4094 } 4095 4096 #ifdef CONFIG_NET_CLS_ACT 4097 if (skb->tc_verd & TC_NCLS) { 4098 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 4099 goto ncls; 4100 } 4101 #endif 4102 4103 if (pfmemalloc) 4104 goto skip_taps; 4105 4106 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4107 if (pt_prev) 4108 ret = deliver_skb(skb, pt_prev, orig_dev); 4109 pt_prev = ptype; 4110 } 4111 4112 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4113 if (pt_prev) 4114 ret = deliver_skb(skb, pt_prev, orig_dev); 4115 pt_prev = ptype; 4116 } 4117 4118 skip_taps: 4119 #ifdef CONFIG_NET_INGRESS 4120 if (static_key_false(&ingress_needed)) { 4121 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4122 if (!skb) 4123 goto out; 4124 4125 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4126 goto out; 4127 } 4128 #endif 4129 #ifdef CONFIG_NET_CLS_ACT 4130 skb->tc_verd = 0; 4131 ncls: 4132 #endif 4133 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4134 goto drop; 4135 4136 if (skb_vlan_tag_present(skb)) { 4137 if (pt_prev) { 4138 ret = deliver_skb(skb, pt_prev, orig_dev); 4139 pt_prev = NULL; 4140 } 4141 if (vlan_do_receive(&skb)) 4142 goto another_round; 4143 else if (unlikely(!skb)) 4144 goto out; 4145 } 4146 4147 rx_handler = rcu_dereference(skb->dev->rx_handler); 4148 if (rx_handler) { 4149 if (pt_prev) { 4150 ret = deliver_skb(skb, pt_prev, orig_dev); 4151 pt_prev = NULL; 4152 } 4153 switch (rx_handler(&skb)) { 4154 case RX_HANDLER_CONSUMED: 4155 ret = NET_RX_SUCCESS; 4156 goto out; 4157 case RX_HANDLER_ANOTHER: 4158 goto another_round; 4159 case RX_HANDLER_EXACT: 4160 deliver_exact = true; 4161 case RX_HANDLER_PASS: 4162 break; 4163 default: 4164 BUG(); 4165 } 4166 } 4167 4168 if (unlikely(skb_vlan_tag_present(skb))) { 4169 if (skb_vlan_tag_get_id(skb)) 4170 skb->pkt_type = PACKET_OTHERHOST; 4171 /* Note: we might in the future use prio bits 4172 * and set skb->priority like in vlan_do_receive() 4173 * For the time being, just ignore Priority Code Point 4174 */ 4175 skb->vlan_tci = 0; 4176 } 4177 4178 type = skb->protocol; 4179 4180 /* deliver only exact match when indicated */ 4181 if (likely(!deliver_exact)) { 4182 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4183 &ptype_base[ntohs(type) & 4184 PTYPE_HASH_MASK]); 4185 } 4186 4187 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4188 &orig_dev->ptype_specific); 4189 4190 if (unlikely(skb->dev != orig_dev)) { 4191 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4192 &skb->dev->ptype_specific); 4193 } 4194 4195 if (pt_prev) { 4196 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 4197 goto drop; 4198 else 4199 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4200 } else { 4201 drop: 4202 if (!deliver_exact) 4203 atomic_long_inc(&skb->dev->rx_dropped); 4204 else 4205 atomic_long_inc(&skb->dev->rx_nohandler); 4206 kfree_skb(skb); 4207 /* Jamal, now you will not able to escape explaining 4208 * me how you were going to use this. :-) 4209 */ 4210 ret = NET_RX_DROP; 4211 } 4212 4213 out: 4214 return ret; 4215 } 4216 4217 static int __netif_receive_skb(struct sk_buff *skb) 4218 { 4219 int ret; 4220 4221 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4222 unsigned long pflags = current->flags; 4223 4224 /* 4225 * PFMEMALLOC skbs are special, they should 4226 * - be delivered to SOCK_MEMALLOC sockets only 4227 * - stay away from userspace 4228 * - have bounded memory usage 4229 * 4230 * Use PF_MEMALLOC as this saves us from propagating the allocation 4231 * context down to all allocation sites. 4232 */ 4233 current->flags |= PF_MEMALLOC; 4234 ret = __netif_receive_skb_core(skb, true); 4235 tsk_restore_flags(current, pflags, PF_MEMALLOC); 4236 } else 4237 ret = __netif_receive_skb_core(skb, false); 4238 4239 return ret; 4240 } 4241 4242 static int netif_receive_skb_internal(struct sk_buff *skb) 4243 { 4244 int ret; 4245 4246 net_timestamp_check(netdev_tstamp_prequeue, skb); 4247 4248 if (skb_defer_rx_timestamp(skb)) 4249 return NET_RX_SUCCESS; 4250 4251 rcu_read_lock(); 4252 4253 #ifdef CONFIG_RPS 4254 if (static_key_false(&rps_needed)) { 4255 struct rps_dev_flow voidflow, *rflow = &voidflow; 4256 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4257 4258 if (cpu >= 0) { 4259 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4260 rcu_read_unlock(); 4261 return ret; 4262 } 4263 } 4264 #endif 4265 ret = __netif_receive_skb(skb); 4266 rcu_read_unlock(); 4267 return ret; 4268 } 4269 4270 /** 4271 * netif_receive_skb - process receive buffer from network 4272 * @skb: buffer to process 4273 * 4274 * netif_receive_skb() is the main receive data processing function. 4275 * It always succeeds. The buffer may be dropped during processing 4276 * for congestion control or by the protocol layers. 4277 * 4278 * This function may only be called from softirq context and interrupts 4279 * should be enabled. 4280 * 4281 * Return values (usually ignored): 4282 * NET_RX_SUCCESS: no congestion 4283 * NET_RX_DROP: packet was dropped 4284 */ 4285 int netif_receive_skb(struct sk_buff *skb) 4286 { 4287 trace_netif_receive_skb_entry(skb); 4288 4289 return netif_receive_skb_internal(skb); 4290 } 4291 EXPORT_SYMBOL(netif_receive_skb); 4292 4293 DEFINE_PER_CPU(struct work_struct, flush_works); 4294 4295 /* Network device is going away, flush any packets still pending */ 4296 static void flush_backlog(struct work_struct *work) 4297 { 4298 struct sk_buff *skb, *tmp; 4299 struct softnet_data *sd; 4300 4301 local_bh_disable(); 4302 sd = this_cpu_ptr(&softnet_data); 4303 4304 local_irq_disable(); 4305 rps_lock(sd); 4306 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4307 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4308 __skb_unlink(skb, &sd->input_pkt_queue); 4309 kfree_skb(skb); 4310 input_queue_head_incr(sd); 4311 } 4312 } 4313 rps_unlock(sd); 4314 local_irq_enable(); 4315 4316 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4317 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4318 __skb_unlink(skb, &sd->process_queue); 4319 kfree_skb(skb); 4320 input_queue_head_incr(sd); 4321 } 4322 } 4323 local_bh_enable(); 4324 } 4325 4326 static void flush_all_backlogs(void) 4327 { 4328 unsigned int cpu; 4329 4330 get_online_cpus(); 4331 4332 for_each_online_cpu(cpu) 4333 queue_work_on(cpu, system_highpri_wq, 4334 per_cpu_ptr(&flush_works, cpu)); 4335 4336 for_each_online_cpu(cpu) 4337 flush_work(per_cpu_ptr(&flush_works, cpu)); 4338 4339 put_online_cpus(); 4340 } 4341 4342 static int napi_gro_complete(struct sk_buff *skb) 4343 { 4344 struct packet_offload *ptype; 4345 __be16 type = skb->protocol; 4346 struct list_head *head = &offload_base; 4347 int err = -ENOENT; 4348 4349 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4350 4351 if (NAPI_GRO_CB(skb)->count == 1) { 4352 skb_shinfo(skb)->gso_size = 0; 4353 goto out; 4354 } 4355 4356 rcu_read_lock(); 4357 list_for_each_entry_rcu(ptype, head, list) { 4358 if (ptype->type != type || !ptype->callbacks.gro_complete) 4359 continue; 4360 4361 err = ptype->callbacks.gro_complete(skb, 0); 4362 break; 4363 } 4364 rcu_read_unlock(); 4365 4366 if (err) { 4367 WARN_ON(&ptype->list == head); 4368 kfree_skb(skb); 4369 return NET_RX_SUCCESS; 4370 } 4371 4372 out: 4373 return netif_receive_skb_internal(skb); 4374 } 4375 4376 /* napi->gro_list contains packets ordered by age. 4377 * youngest packets at the head of it. 4378 * Complete skbs in reverse order to reduce latencies. 4379 */ 4380 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4381 { 4382 struct sk_buff *skb, *prev = NULL; 4383 4384 /* scan list and build reverse chain */ 4385 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4386 skb->prev = prev; 4387 prev = skb; 4388 } 4389 4390 for (skb = prev; skb; skb = prev) { 4391 skb->next = NULL; 4392 4393 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4394 return; 4395 4396 prev = skb->prev; 4397 napi_gro_complete(skb); 4398 napi->gro_count--; 4399 } 4400 4401 napi->gro_list = NULL; 4402 } 4403 EXPORT_SYMBOL(napi_gro_flush); 4404 4405 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4406 { 4407 struct sk_buff *p; 4408 unsigned int maclen = skb->dev->hard_header_len; 4409 u32 hash = skb_get_hash_raw(skb); 4410 4411 for (p = napi->gro_list; p; p = p->next) { 4412 unsigned long diffs; 4413 4414 NAPI_GRO_CB(p)->flush = 0; 4415 4416 if (hash != skb_get_hash_raw(p)) { 4417 NAPI_GRO_CB(p)->same_flow = 0; 4418 continue; 4419 } 4420 4421 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4422 diffs |= p->vlan_tci ^ skb->vlan_tci; 4423 diffs |= skb_metadata_dst_cmp(p, skb); 4424 if (maclen == ETH_HLEN) 4425 diffs |= compare_ether_header(skb_mac_header(p), 4426 skb_mac_header(skb)); 4427 else if (!diffs) 4428 diffs = memcmp(skb_mac_header(p), 4429 skb_mac_header(skb), 4430 maclen); 4431 NAPI_GRO_CB(p)->same_flow = !diffs; 4432 } 4433 } 4434 4435 static void skb_gro_reset_offset(struct sk_buff *skb) 4436 { 4437 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4438 const skb_frag_t *frag0 = &pinfo->frags[0]; 4439 4440 NAPI_GRO_CB(skb)->data_offset = 0; 4441 NAPI_GRO_CB(skb)->frag0 = NULL; 4442 NAPI_GRO_CB(skb)->frag0_len = 0; 4443 4444 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4445 pinfo->nr_frags && 4446 !PageHighMem(skb_frag_page(frag0))) { 4447 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4448 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 4449 } 4450 } 4451 4452 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4453 { 4454 struct skb_shared_info *pinfo = skb_shinfo(skb); 4455 4456 BUG_ON(skb->end - skb->tail < grow); 4457 4458 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4459 4460 skb->data_len -= grow; 4461 skb->tail += grow; 4462 4463 pinfo->frags[0].page_offset += grow; 4464 skb_frag_size_sub(&pinfo->frags[0], grow); 4465 4466 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4467 skb_frag_unref(skb, 0); 4468 memmove(pinfo->frags, pinfo->frags + 1, 4469 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4470 } 4471 } 4472 4473 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4474 { 4475 struct sk_buff **pp = NULL; 4476 struct packet_offload *ptype; 4477 __be16 type = skb->protocol; 4478 struct list_head *head = &offload_base; 4479 int same_flow; 4480 enum gro_result ret; 4481 int grow; 4482 4483 if (!(skb->dev->features & NETIF_F_GRO)) 4484 goto normal; 4485 4486 if (skb->csum_bad) 4487 goto normal; 4488 4489 gro_list_prepare(napi, skb); 4490 4491 rcu_read_lock(); 4492 list_for_each_entry_rcu(ptype, head, list) { 4493 if (ptype->type != type || !ptype->callbacks.gro_receive) 4494 continue; 4495 4496 skb_set_network_header(skb, skb_gro_offset(skb)); 4497 skb_reset_mac_len(skb); 4498 NAPI_GRO_CB(skb)->same_flow = 0; 4499 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4500 NAPI_GRO_CB(skb)->free = 0; 4501 NAPI_GRO_CB(skb)->encap_mark = 0; 4502 NAPI_GRO_CB(skb)->recursion_counter = 0; 4503 NAPI_GRO_CB(skb)->is_fou = 0; 4504 NAPI_GRO_CB(skb)->is_atomic = 1; 4505 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4506 4507 /* Setup for GRO checksum validation */ 4508 switch (skb->ip_summed) { 4509 case CHECKSUM_COMPLETE: 4510 NAPI_GRO_CB(skb)->csum = skb->csum; 4511 NAPI_GRO_CB(skb)->csum_valid = 1; 4512 NAPI_GRO_CB(skb)->csum_cnt = 0; 4513 break; 4514 case CHECKSUM_UNNECESSARY: 4515 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4516 NAPI_GRO_CB(skb)->csum_valid = 0; 4517 break; 4518 default: 4519 NAPI_GRO_CB(skb)->csum_cnt = 0; 4520 NAPI_GRO_CB(skb)->csum_valid = 0; 4521 } 4522 4523 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4524 break; 4525 } 4526 rcu_read_unlock(); 4527 4528 if (&ptype->list == head) 4529 goto normal; 4530 4531 same_flow = NAPI_GRO_CB(skb)->same_flow; 4532 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4533 4534 if (pp) { 4535 struct sk_buff *nskb = *pp; 4536 4537 *pp = nskb->next; 4538 nskb->next = NULL; 4539 napi_gro_complete(nskb); 4540 napi->gro_count--; 4541 } 4542 4543 if (same_flow) 4544 goto ok; 4545 4546 if (NAPI_GRO_CB(skb)->flush) 4547 goto normal; 4548 4549 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4550 struct sk_buff *nskb = napi->gro_list; 4551 4552 /* locate the end of the list to select the 'oldest' flow */ 4553 while (nskb->next) { 4554 pp = &nskb->next; 4555 nskb = *pp; 4556 } 4557 *pp = NULL; 4558 nskb->next = NULL; 4559 napi_gro_complete(nskb); 4560 } else { 4561 napi->gro_count++; 4562 } 4563 NAPI_GRO_CB(skb)->count = 1; 4564 NAPI_GRO_CB(skb)->age = jiffies; 4565 NAPI_GRO_CB(skb)->last = skb; 4566 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4567 skb->next = napi->gro_list; 4568 napi->gro_list = skb; 4569 ret = GRO_HELD; 4570 4571 pull: 4572 grow = skb_gro_offset(skb) - skb_headlen(skb); 4573 if (grow > 0) 4574 gro_pull_from_frag0(skb, grow); 4575 ok: 4576 return ret; 4577 4578 normal: 4579 ret = GRO_NORMAL; 4580 goto pull; 4581 } 4582 4583 struct packet_offload *gro_find_receive_by_type(__be16 type) 4584 { 4585 struct list_head *offload_head = &offload_base; 4586 struct packet_offload *ptype; 4587 4588 list_for_each_entry_rcu(ptype, offload_head, list) { 4589 if (ptype->type != type || !ptype->callbacks.gro_receive) 4590 continue; 4591 return ptype; 4592 } 4593 return NULL; 4594 } 4595 EXPORT_SYMBOL(gro_find_receive_by_type); 4596 4597 struct packet_offload *gro_find_complete_by_type(__be16 type) 4598 { 4599 struct list_head *offload_head = &offload_base; 4600 struct packet_offload *ptype; 4601 4602 list_for_each_entry_rcu(ptype, offload_head, list) { 4603 if (ptype->type != type || !ptype->callbacks.gro_complete) 4604 continue; 4605 return ptype; 4606 } 4607 return NULL; 4608 } 4609 EXPORT_SYMBOL(gro_find_complete_by_type); 4610 4611 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4612 { 4613 switch (ret) { 4614 case GRO_NORMAL: 4615 if (netif_receive_skb_internal(skb)) 4616 ret = GRO_DROP; 4617 break; 4618 4619 case GRO_DROP: 4620 kfree_skb(skb); 4621 break; 4622 4623 case GRO_MERGED_FREE: 4624 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) { 4625 skb_dst_drop(skb); 4626 kmem_cache_free(skbuff_head_cache, skb); 4627 } else { 4628 __kfree_skb(skb); 4629 } 4630 break; 4631 4632 case GRO_HELD: 4633 case GRO_MERGED: 4634 break; 4635 } 4636 4637 return ret; 4638 } 4639 4640 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4641 { 4642 skb_mark_napi_id(skb, napi); 4643 trace_napi_gro_receive_entry(skb); 4644 4645 skb_gro_reset_offset(skb); 4646 4647 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4648 } 4649 EXPORT_SYMBOL(napi_gro_receive); 4650 4651 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4652 { 4653 if (unlikely(skb->pfmemalloc)) { 4654 consume_skb(skb); 4655 return; 4656 } 4657 __skb_pull(skb, skb_headlen(skb)); 4658 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4659 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4660 skb->vlan_tci = 0; 4661 skb->dev = napi->dev; 4662 skb->skb_iif = 0; 4663 skb->encapsulation = 0; 4664 skb_shinfo(skb)->gso_type = 0; 4665 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4666 4667 napi->skb = skb; 4668 } 4669 4670 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4671 { 4672 struct sk_buff *skb = napi->skb; 4673 4674 if (!skb) { 4675 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4676 if (skb) { 4677 napi->skb = skb; 4678 skb_mark_napi_id(skb, napi); 4679 } 4680 } 4681 return skb; 4682 } 4683 EXPORT_SYMBOL(napi_get_frags); 4684 4685 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4686 struct sk_buff *skb, 4687 gro_result_t ret) 4688 { 4689 switch (ret) { 4690 case GRO_NORMAL: 4691 case GRO_HELD: 4692 __skb_push(skb, ETH_HLEN); 4693 skb->protocol = eth_type_trans(skb, skb->dev); 4694 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4695 ret = GRO_DROP; 4696 break; 4697 4698 case GRO_DROP: 4699 case GRO_MERGED_FREE: 4700 napi_reuse_skb(napi, skb); 4701 break; 4702 4703 case GRO_MERGED: 4704 break; 4705 } 4706 4707 return ret; 4708 } 4709 4710 /* Upper GRO stack assumes network header starts at gro_offset=0 4711 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4712 * We copy ethernet header into skb->data to have a common layout. 4713 */ 4714 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4715 { 4716 struct sk_buff *skb = napi->skb; 4717 const struct ethhdr *eth; 4718 unsigned int hlen = sizeof(*eth); 4719 4720 napi->skb = NULL; 4721 4722 skb_reset_mac_header(skb); 4723 skb_gro_reset_offset(skb); 4724 4725 eth = skb_gro_header_fast(skb, 0); 4726 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4727 eth = skb_gro_header_slow(skb, hlen, 0); 4728 if (unlikely(!eth)) { 4729 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 4730 __func__, napi->dev->name); 4731 napi_reuse_skb(napi, skb); 4732 return NULL; 4733 } 4734 } else { 4735 gro_pull_from_frag0(skb, hlen); 4736 NAPI_GRO_CB(skb)->frag0 += hlen; 4737 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4738 } 4739 __skb_pull(skb, hlen); 4740 4741 /* 4742 * This works because the only protocols we care about don't require 4743 * special handling. 4744 * We'll fix it up properly in napi_frags_finish() 4745 */ 4746 skb->protocol = eth->h_proto; 4747 4748 return skb; 4749 } 4750 4751 gro_result_t napi_gro_frags(struct napi_struct *napi) 4752 { 4753 struct sk_buff *skb = napi_frags_skb(napi); 4754 4755 if (!skb) 4756 return GRO_DROP; 4757 4758 trace_napi_gro_frags_entry(skb); 4759 4760 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4761 } 4762 EXPORT_SYMBOL(napi_gro_frags); 4763 4764 /* Compute the checksum from gro_offset and return the folded value 4765 * after adding in any pseudo checksum. 4766 */ 4767 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4768 { 4769 __wsum wsum; 4770 __sum16 sum; 4771 4772 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4773 4774 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4775 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4776 if (likely(!sum)) { 4777 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4778 !skb->csum_complete_sw) 4779 netdev_rx_csum_fault(skb->dev); 4780 } 4781 4782 NAPI_GRO_CB(skb)->csum = wsum; 4783 NAPI_GRO_CB(skb)->csum_valid = 1; 4784 4785 return sum; 4786 } 4787 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4788 4789 /* 4790 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4791 * Note: called with local irq disabled, but exits with local irq enabled. 4792 */ 4793 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4794 { 4795 #ifdef CONFIG_RPS 4796 struct softnet_data *remsd = sd->rps_ipi_list; 4797 4798 if (remsd) { 4799 sd->rps_ipi_list = NULL; 4800 4801 local_irq_enable(); 4802 4803 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4804 while (remsd) { 4805 struct softnet_data *next = remsd->rps_ipi_next; 4806 4807 if (cpu_online(remsd->cpu)) 4808 smp_call_function_single_async(remsd->cpu, 4809 &remsd->csd); 4810 remsd = next; 4811 } 4812 } else 4813 #endif 4814 local_irq_enable(); 4815 } 4816 4817 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4818 { 4819 #ifdef CONFIG_RPS 4820 return sd->rps_ipi_list != NULL; 4821 #else 4822 return false; 4823 #endif 4824 } 4825 4826 static int process_backlog(struct napi_struct *napi, int quota) 4827 { 4828 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4829 bool again = true; 4830 int work = 0; 4831 4832 /* Check if we have pending ipi, its better to send them now, 4833 * not waiting net_rx_action() end. 4834 */ 4835 if (sd_has_rps_ipi_waiting(sd)) { 4836 local_irq_disable(); 4837 net_rps_action_and_irq_enable(sd); 4838 } 4839 4840 napi->weight = dev_rx_weight; 4841 while (again) { 4842 struct sk_buff *skb; 4843 4844 while ((skb = __skb_dequeue(&sd->process_queue))) { 4845 rcu_read_lock(); 4846 __netif_receive_skb(skb); 4847 rcu_read_unlock(); 4848 input_queue_head_incr(sd); 4849 if (++work >= quota) 4850 return work; 4851 4852 } 4853 4854 local_irq_disable(); 4855 rps_lock(sd); 4856 if (skb_queue_empty(&sd->input_pkt_queue)) { 4857 /* 4858 * Inline a custom version of __napi_complete(). 4859 * only current cpu owns and manipulates this napi, 4860 * and NAPI_STATE_SCHED is the only possible flag set 4861 * on backlog. 4862 * We can use a plain write instead of clear_bit(), 4863 * and we dont need an smp_mb() memory barrier. 4864 */ 4865 napi->state = 0; 4866 again = false; 4867 } else { 4868 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4869 &sd->process_queue); 4870 } 4871 rps_unlock(sd); 4872 local_irq_enable(); 4873 } 4874 4875 return work; 4876 } 4877 4878 /** 4879 * __napi_schedule - schedule for receive 4880 * @n: entry to schedule 4881 * 4882 * The entry's receive function will be scheduled to run. 4883 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4884 */ 4885 void __napi_schedule(struct napi_struct *n) 4886 { 4887 unsigned long flags; 4888 4889 local_irq_save(flags); 4890 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4891 local_irq_restore(flags); 4892 } 4893 EXPORT_SYMBOL(__napi_schedule); 4894 4895 /** 4896 * __napi_schedule_irqoff - schedule for receive 4897 * @n: entry to schedule 4898 * 4899 * Variant of __napi_schedule() assuming hard irqs are masked 4900 */ 4901 void __napi_schedule_irqoff(struct napi_struct *n) 4902 { 4903 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4904 } 4905 EXPORT_SYMBOL(__napi_schedule_irqoff); 4906 4907 bool __napi_complete(struct napi_struct *n) 4908 { 4909 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4910 4911 /* Some drivers call us directly, instead of calling 4912 * napi_complete_done(). 4913 */ 4914 if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state))) 4915 return false; 4916 4917 list_del_init(&n->poll_list); 4918 smp_mb__before_atomic(); 4919 clear_bit(NAPI_STATE_SCHED, &n->state); 4920 return true; 4921 } 4922 EXPORT_SYMBOL(__napi_complete); 4923 4924 bool napi_complete_done(struct napi_struct *n, int work_done) 4925 { 4926 unsigned long flags; 4927 4928 /* 4929 * 1) Don't let napi dequeue from the cpu poll list 4930 * just in case its running on a different cpu. 4931 * 2) If we are busy polling, do nothing here, we have 4932 * the guarantee we will be called later. 4933 */ 4934 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 4935 NAPIF_STATE_IN_BUSY_POLL))) 4936 return false; 4937 4938 if (n->gro_list) { 4939 unsigned long timeout = 0; 4940 4941 if (work_done) 4942 timeout = n->dev->gro_flush_timeout; 4943 4944 if (timeout) 4945 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4946 HRTIMER_MODE_REL_PINNED); 4947 else 4948 napi_gro_flush(n, false); 4949 } 4950 if (likely(list_empty(&n->poll_list))) { 4951 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4952 } else { 4953 /* If n->poll_list is not empty, we need to mask irqs */ 4954 local_irq_save(flags); 4955 __napi_complete(n); 4956 local_irq_restore(flags); 4957 } 4958 return true; 4959 } 4960 EXPORT_SYMBOL(napi_complete_done); 4961 4962 /* must be called under rcu_read_lock(), as we dont take a reference */ 4963 static struct napi_struct *napi_by_id(unsigned int napi_id) 4964 { 4965 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4966 struct napi_struct *napi; 4967 4968 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4969 if (napi->napi_id == napi_id) 4970 return napi; 4971 4972 return NULL; 4973 } 4974 4975 #if defined(CONFIG_NET_RX_BUSY_POLL) 4976 4977 #define BUSY_POLL_BUDGET 8 4978 4979 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 4980 { 4981 int rc; 4982 4983 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 4984 4985 local_bh_disable(); 4986 4987 /* All we really want here is to re-enable device interrupts. 4988 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 4989 */ 4990 rc = napi->poll(napi, BUSY_POLL_BUDGET); 4991 netpoll_poll_unlock(have_poll_lock); 4992 if (rc == BUSY_POLL_BUDGET) 4993 __napi_schedule(napi); 4994 local_bh_enable(); 4995 if (local_softirq_pending()) 4996 do_softirq(); 4997 } 4998 4999 bool sk_busy_loop(struct sock *sk, int nonblock) 5000 { 5001 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0; 5002 int (*napi_poll)(struct napi_struct *napi, int budget); 5003 int (*busy_poll)(struct napi_struct *dev); 5004 void *have_poll_lock = NULL; 5005 struct napi_struct *napi; 5006 int rc; 5007 5008 restart: 5009 rc = false; 5010 napi_poll = NULL; 5011 5012 rcu_read_lock(); 5013 5014 napi = napi_by_id(sk->sk_napi_id); 5015 if (!napi) 5016 goto out; 5017 5018 /* Note: ndo_busy_poll method is optional in linux-4.5 */ 5019 busy_poll = napi->dev->netdev_ops->ndo_busy_poll; 5020 5021 preempt_disable(); 5022 for (;;) { 5023 rc = 0; 5024 local_bh_disable(); 5025 if (busy_poll) { 5026 rc = busy_poll(napi); 5027 goto count; 5028 } 5029 if (!napi_poll) { 5030 unsigned long val = READ_ONCE(napi->state); 5031 5032 /* If multiple threads are competing for this napi, 5033 * we avoid dirtying napi->state as much as we can. 5034 */ 5035 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5036 NAPIF_STATE_IN_BUSY_POLL)) 5037 goto count; 5038 if (cmpxchg(&napi->state, val, 5039 val | NAPIF_STATE_IN_BUSY_POLL | 5040 NAPIF_STATE_SCHED) != val) 5041 goto count; 5042 have_poll_lock = netpoll_poll_lock(napi); 5043 napi_poll = napi->poll; 5044 } 5045 rc = napi_poll(napi, BUSY_POLL_BUDGET); 5046 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5047 count: 5048 if (rc > 0) 5049 __NET_ADD_STATS(sock_net(sk), 5050 LINUX_MIB_BUSYPOLLRXPACKETS, rc); 5051 local_bh_enable(); 5052 5053 if (rc == LL_FLUSH_FAILED) 5054 break; /* permanent failure */ 5055 5056 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) || 5057 busy_loop_timeout(end_time)) 5058 break; 5059 5060 if (unlikely(need_resched())) { 5061 if (napi_poll) 5062 busy_poll_stop(napi, have_poll_lock); 5063 preempt_enable(); 5064 rcu_read_unlock(); 5065 cond_resched(); 5066 rc = !skb_queue_empty(&sk->sk_receive_queue); 5067 if (rc || busy_loop_timeout(end_time)) 5068 return rc; 5069 goto restart; 5070 } 5071 cpu_relax(); 5072 } 5073 if (napi_poll) 5074 busy_poll_stop(napi, have_poll_lock); 5075 preempt_enable(); 5076 rc = !skb_queue_empty(&sk->sk_receive_queue); 5077 out: 5078 rcu_read_unlock(); 5079 return rc; 5080 } 5081 EXPORT_SYMBOL(sk_busy_loop); 5082 5083 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5084 5085 static void napi_hash_add(struct napi_struct *napi) 5086 { 5087 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5088 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5089 return; 5090 5091 spin_lock(&napi_hash_lock); 5092 5093 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */ 5094 do { 5095 if (unlikely(++napi_gen_id < NR_CPUS + 1)) 5096 napi_gen_id = NR_CPUS + 1; 5097 } while (napi_by_id(napi_gen_id)); 5098 napi->napi_id = napi_gen_id; 5099 5100 hlist_add_head_rcu(&napi->napi_hash_node, 5101 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5102 5103 spin_unlock(&napi_hash_lock); 5104 } 5105 5106 /* Warning : caller is responsible to make sure rcu grace period 5107 * is respected before freeing memory containing @napi 5108 */ 5109 bool napi_hash_del(struct napi_struct *napi) 5110 { 5111 bool rcu_sync_needed = false; 5112 5113 spin_lock(&napi_hash_lock); 5114 5115 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5116 rcu_sync_needed = true; 5117 hlist_del_rcu(&napi->napi_hash_node); 5118 } 5119 spin_unlock(&napi_hash_lock); 5120 return rcu_sync_needed; 5121 } 5122 EXPORT_SYMBOL_GPL(napi_hash_del); 5123 5124 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5125 { 5126 struct napi_struct *napi; 5127 5128 napi = container_of(timer, struct napi_struct, timer); 5129 if (napi->gro_list) 5130 napi_schedule(napi); 5131 5132 return HRTIMER_NORESTART; 5133 } 5134 5135 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5136 int (*poll)(struct napi_struct *, int), int weight) 5137 { 5138 INIT_LIST_HEAD(&napi->poll_list); 5139 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5140 napi->timer.function = napi_watchdog; 5141 napi->gro_count = 0; 5142 napi->gro_list = NULL; 5143 napi->skb = NULL; 5144 napi->poll = poll; 5145 if (weight > NAPI_POLL_WEIGHT) 5146 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5147 weight, dev->name); 5148 napi->weight = weight; 5149 list_add(&napi->dev_list, &dev->napi_list); 5150 napi->dev = dev; 5151 #ifdef CONFIG_NETPOLL 5152 napi->poll_owner = -1; 5153 #endif 5154 set_bit(NAPI_STATE_SCHED, &napi->state); 5155 napi_hash_add(napi); 5156 } 5157 EXPORT_SYMBOL(netif_napi_add); 5158 5159 void napi_disable(struct napi_struct *n) 5160 { 5161 might_sleep(); 5162 set_bit(NAPI_STATE_DISABLE, &n->state); 5163 5164 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5165 msleep(1); 5166 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5167 msleep(1); 5168 5169 hrtimer_cancel(&n->timer); 5170 5171 clear_bit(NAPI_STATE_DISABLE, &n->state); 5172 } 5173 EXPORT_SYMBOL(napi_disable); 5174 5175 /* Must be called in process context */ 5176 void netif_napi_del(struct napi_struct *napi) 5177 { 5178 might_sleep(); 5179 if (napi_hash_del(napi)) 5180 synchronize_net(); 5181 list_del_init(&napi->dev_list); 5182 napi_free_frags(napi); 5183 5184 kfree_skb_list(napi->gro_list); 5185 napi->gro_list = NULL; 5186 napi->gro_count = 0; 5187 } 5188 EXPORT_SYMBOL(netif_napi_del); 5189 5190 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5191 { 5192 void *have; 5193 int work, weight; 5194 5195 list_del_init(&n->poll_list); 5196 5197 have = netpoll_poll_lock(n); 5198 5199 weight = n->weight; 5200 5201 /* This NAPI_STATE_SCHED test is for avoiding a race 5202 * with netpoll's poll_napi(). Only the entity which 5203 * obtains the lock and sees NAPI_STATE_SCHED set will 5204 * actually make the ->poll() call. Therefore we avoid 5205 * accidentally calling ->poll() when NAPI is not scheduled. 5206 */ 5207 work = 0; 5208 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5209 work = n->poll(n, weight); 5210 trace_napi_poll(n, work, weight); 5211 } 5212 5213 WARN_ON_ONCE(work > weight); 5214 5215 if (likely(work < weight)) 5216 goto out_unlock; 5217 5218 /* Drivers must not modify the NAPI state if they 5219 * consume the entire weight. In such cases this code 5220 * still "owns" the NAPI instance and therefore can 5221 * move the instance around on the list at-will. 5222 */ 5223 if (unlikely(napi_disable_pending(n))) { 5224 napi_complete(n); 5225 goto out_unlock; 5226 } 5227 5228 if (n->gro_list) { 5229 /* flush too old packets 5230 * If HZ < 1000, flush all packets. 5231 */ 5232 napi_gro_flush(n, HZ >= 1000); 5233 } 5234 5235 /* Some drivers may have called napi_schedule 5236 * prior to exhausting their budget. 5237 */ 5238 if (unlikely(!list_empty(&n->poll_list))) { 5239 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5240 n->dev ? n->dev->name : "backlog"); 5241 goto out_unlock; 5242 } 5243 5244 list_add_tail(&n->poll_list, repoll); 5245 5246 out_unlock: 5247 netpoll_poll_unlock(have); 5248 5249 return work; 5250 } 5251 5252 static __latent_entropy void net_rx_action(struct softirq_action *h) 5253 { 5254 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5255 unsigned long time_limit = jiffies + 2; 5256 int budget = netdev_budget; 5257 LIST_HEAD(list); 5258 LIST_HEAD(repoll); 5259 5260 local_irq_disable(); 5261 list_splice_init(&sd->poll_list, &list); 5262 local_irq_enable(); 5263 5264 for (;;) { 5265 struct napi_struct *n; 5266 5267 if (list_empty(&list)) { 5268 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5269 goto out; 5270 break; 5271 } 5272 5273 n = list_first_entry(&list, struct napi_struct, poll_list); 5274 budget -= napi_poll(n, &repoll); 5275 5276 /* If softirq window is exhausted then punt. 5277 * Allow this to run for 2 jiffies since which will allow 5278 * an average latency of 1.5/HZ. 5279 */ 5280 if (unlikely(budget <= 0 || 5281 time_after_eq(jiffies, time_limit))) { 5282 sd->time_squeeze++; 5283 break; 5284 } 5285 } 5286 5287 local_irq_disable(); 5288 5289 list_splice_tail_init(&sd->poll_list, &list); 5290 list_splice_tail(&repoll, &list); 5291 list_splice(&list, &sd->poll_list); 5292 if (!list_empty(&sd->poll_list)) 5293 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5294 5295 net_rps_action_and_irq_enable(sd); 5296 out: 5297 __kfree_skb_flush(); 5298 } 5299 5300 struct netdev_adjacent { 5301 struct net_device *dev; 5302 5303 /* upper master flag, there can only be one master device per list */ 5304 bool master; 5305 5306 /* counter for the number of times this device was added to us */ 5307 u16 ref_nr; 5308 5309 /* private field for the users */ 5310 void *private; 5311 5312 struct list_head list; 5313 struct rcu_head rcu; 5314 }; 5315 5316 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5317 struct list_head *adj_list) 5318 { 5319 struct netdev_adjacent *adj; 5320 5321 list_for_each_entry(adj, adj_list, list) { 5322 if (adj->dev == adj_dev) 5323 return adj; 5324 } 5325 return NULL; 5326 } 5327 5328 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5329 { 5330 struct net_device *dev = data; 5331 5332 return upper_dev == dev; 5333 } 5334 5335 /** 5336 * netdev_has_upper_dev - Check if device is linked to an upper device 5337 * @dev: device 5338 * @upper_dev: upper device to check 5339 * 5340 * Find out if a device is linked to specified upper device and return true 5341 * in case it is. Note that this checks only immediate upper device, 5342 * not through a complete stack of devices. The caller must hold the RTNL lock. 5343 */ 5344 bool netdev_has_upper_dev(struct net_device *dev, 5345 struct net_device *upper_dev) 5346 { 5347 ASSERT_RTNL(); 5348 5349 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5350 upper_dev); 5351 } 5352 EXPORT_SYMBOL(netdev_has_upper_dev); 5353 5354 /** 5355 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5356 * @dev: device 5357 * @upper_dev: upper device to check 5358 * 5359 * Find out if a device is linked to specified upper device and return true 5360 * in case it is. Note that this checks the entire upper device chain. 5361 * The caller must hold rcu lock. 5362 */ 5363 5364 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5365 struct net_device *upper_dev) 5366 { 5367 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5368 upper_dev); 5369 } 5370 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5371 5372 /** 5373 * netdev_has_any_upper_dev - Check if device is linked to some device 5374 * @dev: device 5375 * 5376 * Find out if a device is linked to an upper device and return true in case 5377 * it is. The caller must hold the RTNL lock. 5378 */ 5379 static bool netdev_has_any_upper_dev(struct net_device *dev) 5380 { 5381 ASSERT_RTNL(); 5382 5383 return !list_empty(&dev->adj_list.upper); 5384 } 5385 5386 /** 5387 * netdev_master_upper_dev_get - Get master upper device 5388 * @dev: device 5389 * 5390 * Find a master upper device and return pointer to it or NULL in case 5391 * it's not there. The caller must hold the RTNL lock. 5392 */ 5393 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5394 { 5395 struct netdev_adjacent *upper; 5396 5397 ASSERT_RTNL(); 5398 5399 if (list_empty(&dev->adj_list.upper)) 5400 return NULL; 5401 5402 upper = list_first_entry(&dev->adj_list.upper, 5403 struct netdev_adjacent, list); 5404 if (likely(upper->master)) 5405 return upper->dev; 5406 return NULL; 5407 } 5408 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5409 5410 /** 5411 * netdev_has_any_lower_dev - Check if device is linked to some device 5412 * @dev: device 5413 * 5414 * Find out if a device is linked to a lower device and return true in case 5415 * it is. The caller must hold the RTNL lock. 5416 */ 5417 static bool netdev_has_any_lower_dev(struct net_device *dev) 5418 { 5419 ASSERT_RTNL(); 5420 5421 return !list_empty(&dev->adj_list.lower); 5422 } 5423 5424 void *netdev_adjacent_get_private(struct list_head *adj_list) 5425 { 5426 struct netdev_adjacent *adj; 5427 5428 adj = list_entry(adj_list, struct netdev_adjacent, list); 5429 5430 return adj->private; 5431 } 5432 EXPORT_SYMBOL(netdev_adjacent_get_private); 5433 5434 /** 5435 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5436 * @dev: device 5437 * @iter: list_head ** of the current position 5438 * 5439 * Gets the next device from the dev's upper list, starting from iter 5440 * position. The caller must hold RCU read lock. 5441 */ 5442 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5443 struct list_head **iter) 5444 { 5445 struct netdev_adjacent *upper; 5446 5447 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5448 5449 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5450 5451 if (&upper->list == &dev->adj_list.upper) 5452 return NULL; 5453 5454 *iter = &upper->list; 5455 5456 return upper->dev; 5457 } 5458 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5459 5460 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5461 struct list_head **iter) 5462 { 5463 struct netdev_adjacent *upper; 5464 5465 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5466 5467 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5468 5469 if (&upper->list == &dev->adj_list.upper) 5470 return NULL; 5471 5472 *iter = &upper->list; 5473 5474 return upper->dev; 5475 } 5476 5477 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5478 int (*fn)(struct net_device *dev, 5479 void *data), 5480 void *data) 5481 { 5482 struct net_device *udev; 5483 struct list_head *iter; 5484 int ret; 5485 5486 for (iter = &dev->adj_list.upper, 5487 udev = netdev_next_upper_dev_rcu(dev, &iter); 5488 udev; 5489 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5490 /* first is the upper device itself */ 5491 ret = fn(udev, data); 5492 if (ret) 5493 return ret; 5494 5495 /* then look at all of its upper devices */ 5496 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5497 if (ret) 5498 return ret; 5499 } 5500 5501 return 0; 5502 } 5503 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5504 5505 /** 5506 * netdev_lower_get_next_private - Get the next ->private from the 5507 * lower neighbour list 5508 * @dev: device 5509 * @iter: list_head ** of the current position 5510 * 5511 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5512 * list, starting from iter position. The caller must hold either hold the 5513 * RTNL lock or its own locking that guarantees that the neighbour lower 5514 * list will remain unchanged. 5515 */ 5516 void *netdev_lower_get_next_private(struct net_device *dev, 5517 struct list_head **iter) 5518 { 5519 struct netdev_adjacent *lower; 5520 5521 lower = list_entry(*iter, struct netdev_adjacent, list); 5522 5523 if (&lower->list == &dev->adj_list.lower) 5524 return NULL; 5525 5526 *iter = lower->list.next; 5527 5528 return lower->private; 5529 } 5530 EXPORT_SYMBOL(netdev_lower_get_next_private); 5531 5532 /** 5533 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5534 * lower neighbour list, RCU 5535 * variant 5536 * @dev: device 5537 * @iter: list_head ** of the current position 5538 * 5539 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5540 * list, starting from iter position. The caller must hold RCU read lock. 5541 */ 5542 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5543 struct list_head **iter) 5544 { 5545 struct netdev_adjacent *lower; 5546 5547 WARN_ON_ONCE(!rcu_read_lock_held()); 5548 5549 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5550 5551 if (&lower->list == &dev->adj_list.lower) 5552 return NULL; 5553 5554 *iter = &lower->list; 5555 5556 return lower->private; 5557 } 5558 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5559 5560 /** 5561 * netdev_lower_get_next - Get the next device from the lower neighbour 5562 * list 5563 * @dev: device 5564 * @iter: list_head ** of the current position 5565 * 5566 * Gets the next netdev_adjacent from the dev's lower neighbour 5567 * list, starting from iter position. The caller must hold RTNL lock or 5568 * its own locking that guarantees that the neighbour lower 5569 * list will remain unchanged. 5570 */ 5571 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5572 { 5573 struct netdev_adjacent *lower; 5574 5575 lower = list_entry(*iter, struct netdev_adjacent, list); 5576 5577 if (&lower->list == &dev->adj_list.lower) 5578 return NULL; 5579 5580 *iter = lower->list.next; 5581 5582 return lower->dev; 5583 } 5584 EXPORT_SYMBOL(netdev_lower_get_next); 5585 5586 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 5587 struct list_head **iter) 5588 { 5589 struct netdev_adjacent *lower; 5590 5591 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5592 5593 if (&lower->list == &dev->adj_list.lower) 5594 return NULL; 5595 5596 *iter = &lower->list; 5597 5598 return lower->dev; 5599 } 5600 5601 int netdev_walk_all_lower_dev(struct net_device *dev, 5602 int (*fn)(struct net_device *dev, 5603 void *data), 5604 void *data) 5605 { 5606 struct net_device *ldev; 5607 struct list_head *iter; 5608 int ret; 5609 5610 for (iter = &dev->adj_list.lower, 5611 ldev = netdev_next_lower_dev(dev, &iter); 5612 ldev; 5613 ldev = netdev_next_lower_dev(dev, &iter)) { 5614 /* first is the lower device itself */ 5615 ret = fn(ldev, data); 5616 if (ret) 5617 return ret; 5618 5619 /* then look at all of its lower devices */ 5620 ret = netdev_walk_all_lower_dev(ldev, fn, data); 5621 if (ret) 5622 return ret; 5623 } 5624 5625 return 0; 5626 } 5627 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 5628 5629 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 5630 struct list_head **iter) 5631 { 5632 struct netdev_adjacent *lower; 5633 5634 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5635 if (&lower->list == &dev->adj_list.lower) 5636 return NULL; 5637 5638 *iter = &lower->list; 5639 5640 return lower->dev; 5641 } 5642 5643 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 5644 int (*fn)(struct net_device *dev, 5645 void *data), 5646 void *data) 5647 { 5648 struct net_device *ldev; 5649 struct list_head *iter; 5650 int ret; 5651 5652 for (iter = &dev->adj_list.lower, 5653 ldev = netdev_next_lower_dev_rcu(dev, &iter); 5654 ldev; 5655 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 5656 /* first is the lower device itself */ 5657 ret = fn(ldev, data); 5658 if (ret) 5659 return ret; 5660 5661 /* then look at all of its lower devices */ 5662 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 5663 if (ret) 5664 return ret; 5665 } 5666 5667 return 0; 5668 } 5669 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 5670 5671 /** 5672 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5673 * lower neighbour list, RCU 5674 * variant 5675 * @dev: device 5676 * 5677 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5678 * list. The caller must hold RCU read lock. 5679 */ 5680 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5681 { 5682 struct netdev_adjacent *lower; 5683 5684 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5685 struct netdev_adjacent, list); 5686 if (lower) 5687 return lower->private; 5688 return NULL; 5689 } 5690 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5691 5692 /** 5693 * netdev_master_upper_dev_get_rcu - Get master upper device 5694 * @dev: device 5695 * 5696 * Find a master upper device and return pointer to it or NULL in case 5697 * it's not there. The caller must hold the RCU read lock. 5698 */ 5699 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5700 { 5701 struct netdev_adjacent *upper; 5702 5703 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5704 struct netdev_adjacent, list); 5705 if (upper && likely(upper->master)) 5706 return upper->dev; 5707 return NULL; 5708 } 5709 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5710 5711 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5712 struct net_device *adj_dev, 5713 struct list_head *dev_list) 5714 { 5715 char linkname[IFNAMSIZ+7]; 5716 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5717 "upper_%s" : "lower_%s", adj_dev->name); 5718 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5719 linkname); 5720 } 5721 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5722 char *name, 5723 struct list_head *dev_list) 5724 { 5725 char linkname[IFNAMSIZ+7]; 5726 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5727 "upper_%s" : "lower_%s", name); 5728 sysfs_remove_link(&(dev->dev.kobj), linkname); 5729 } 5730 5731 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5732 struct net_device *adj_dev, 5733 struct list_head *dev_list) 5734 { 5735 return (dev_list == &dev->adj_list.upper || 5736 dev_list == &dev->adj_list.lower) && 5737 net_eq(dev_net(dev), dev_net(adj_dev)); 5738 } 5739 5740 static int __netdev_adjacent_dev_insert(struct net_device *dev, 5741 struct net_device *adj_dev, 5742 struct list_head *dev_list, 5743 void *private, bool master) 5744 { 5745 struct netdev_adjacent *adj; 5746 int ret; 5747 5748 adj = __netdev_find_adj(adj_dev, dev_list); 5749 5750 if (adj) { 5751 adj->ref_nr += 1; 5752 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 5753 dev->name, adj_dev->name, adj->ref_nr); 5754 5755 return 0; 5756 } 5757 5758 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5759 if (!adj) 5760 return -ENOMEM; 5761 5762 adj->dev = adj_dev; 5763 adj->master = master; 5764 adj->ref_nr = 1; 5765 adj->private = private; 5766 dev_hold(adj_dev); 5767 5768 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 5769 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 5770 5771 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5772 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5773 if (ret) 5774 goto free_adj; 5775 } 5776 5777 /* Ensure that master link is always the first item in list. */ 5778 if (master) { 5779 ret = sysfs_create_link(&(dev->dev.kobj), 5780 &(adj_dev->dev.kobj), "master"); 5781 if (ret) 5782 goto remove_symlinks; 5783 5784 list_add_rcu(&adj->list, dev_list); 5785 } else { 5786 list_add_tail_rcu(&adj->list, dev_list); 5787 } 5788 5789 return 0; 5790 5791 remove_symlinks: 5792 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5793 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5794 free_adj: 5795 kfree(adj); 5796 dev_put(adj_dev); 5797 5798 return ret; 5799 } 5800 5801 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5802 struct net_device *adj_dev, 5803 u16 ref_nr, 5804 struct list_head *dev_list) 5805 { 5806 struct netdev_adjacent *adj; 5807 5808 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 5809 dev->name, adj_dev->name, ref_nr); 5810 5811 adj = __netdev_find_adj(adj_dev, dev_list); 5812 5813 if (!adj) { 5814 pr_err("Adjacency does not exist for device %s from %s\n", 5815 dev->name, adj_dev->name); 5816 WARN_ON(1); 5817 return; 5818 } 5819 5820 if (adj->ref_nr > ref_nr) { 5821 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 5822 dev->name, adj_dev->name, ref_nr, 5823 adj->ref_nr - ref_nr); 5824 adj->ref_nr -= ref_nr; 5825 return; 5826 } 5827 5828 if (adj->master) 5829 sysfs_remove_link(&(dev->dev.kobj), "master"); 5830 5831 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5832 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5833 5834 list_del_rcu(&adj->list); 5835 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 5836 adj_dev->name, dev->name, adj_dev->name); 5837 dev_put(adj_dev); 5838 kfree_rcu(adj, rcu); 5839 } 5840 5841 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5842 struct net_device *upper_dev, 5843 struct list_head *up_list, 5844 struct list_head *down_list, 5845 void *private, bool master) 5846 { 5847 int ret; 5848 5849 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 5850 private, master); 5851 if (ret) 5852 return ret; 5853 5854 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 5855 private, false); 5856 if (ret) { 5857 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 5858 return ret; 5859 } 5860 5861 return 0; 5862 } 5863 5864 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5865 struct net_device *upper_dev, 5866 u16 ref_nr, 5867 struct list_head *up_list, 5868 struct list_head *down_list) 5869 { 5870 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 5871 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 5872 } 5873 5874 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5875 struct net_device *upper_dev, 5876 void *private, bool master) 5877 { 5878 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5879 &dev->adj_list.upper, 5880 &upper_dev->adj_list.lower, 5881 private, master); 5882 } 5883 5884 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5885 struct net_device *upper_dev) 5886 { 5887 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 5888 &dev->adj_list.upper, 5889 &upper_dev->adj_list.lower); 5890 } 5891 5892 static int __netdev_upper_dev_link(struct net_device *dev, 5893 struct net_device *upper_dev, bool master, 5894 void *upper_priv, void *upper_info) 5895 { 5896 struct netdev_notifier_changeupper_info changeupper_info; 5897 int ret = 0; 5898 5899 ASSERT_RTNL(); 5900 5901 if (dev == upper_dev) 5902 return -EBUSY; 5903 5904 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5905 if (netdev_has_upper_dev(upper_dev, dev)) 5906 return -EBUSY; 5907 5908 if (netdev_has_upper_dev(dev, upper_dev)) 5909 return -EEXIST; 5910 5911 if (master && netdev_master_upper_dev_get(dev)) 5912 return -EBUSY; 5913 5914 changeupper_info.upper_dev = upper_dev; 5915 changeupper_info.master = master; 5916 changeupper_info.linking = true; 5917 changeupper_info.upper_info = upper_info; 5918 5919 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5920 &changeupper_info.info); 5921 ret = notifier_to_errno(ret); 5922 if (ret) 5923 return ret; 5924 5925 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 5926 master); 5927 if (ret) 5928 return ret; 5929 5930 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5931 &changeupper_info.info); 5932 ret = notifier_to_errno(ret); 5933 if (ret) 5934 goto rollback; 5935 5936 return 0; 5937 5938 rollback: 5939 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5940 5941 return ret; 5942 } 5943 5944 /** 5945 * netdev_upper_dev_link - Add a link to the upper device 5946 * @dev: device 5947 * @upper_dev: new upper device 5948 * 5949 * Adds a link to device which is upper to this one. The caller must hold 5950 * the RTNL lock. On a failure a negative errno code is returned. 5951 * On success the reference counts are adjusted and the function 5952 * returns zero. 5953 */ 5954 int netdev_upper_dev_link(struct net_device *dev, 5955 struct net_device *upper_dev) 5956 { 5957 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 5958 } 5959 EXPORT_SYMBOL(netdev_upper_dev_link); 5960 5961 /** 5962 * netdev_master_upper_dev_link - Add a master link to the upper device 5963 * @dev: device 5964 * @upper_dev: new upper device 5965 * @upper_priv: upper device private 5966 * @upper_info: upper info to be passed down via notifier 5967 * 5968 * Adds a link to device which is upper to this one. In this case, only 5969 * one master upper device can be linked, although other non-master devices 5970 * might be linked as well. The caller must hold the RTNL lock. 5971 * On a failure a negative errno code is returned. On success the reference 5972 * counts are adjusted and the function returns zero. 5973 */ 5974 int netdev_master_upper_dev_link(struct net_device *dev, 5975 struct net_device *upper_dev, 5976 void *upper_priv, void *upper_info) 5977 { 5978 return __netdev_upper_dev_link(dev, upper_dev, true, 5979 upper_priv, upper_info); 5980 } 5981 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5982 5983 /** 5984 * netdev_upper_dev_unlink - Removes a link to upper device 5985 * @dev: device 5986 * @upper_dev: new upper device 5987 * 5988 * Removes a link to device which is upper to this one. The caller must hold 5989 * the RTNL lock. 5990 */ 5991 void netdev_upper_dev_unlink(struct net_device *dev, 5992 struct net_device *upper_dev) 5993 { 5994 struct netdev_notifier_changeupper_info changeupper_info; 5995 ASSERT_RTNL(); 5996 5997 changeupper_info.upper_dev = upper_dev; 5998 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 5999 changeupper_info.linking = false; 6000 6001 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6002 &changeupper_info.info); 6003 6004 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6005 6006 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6007 &changeupper_info.info); 6008 } 6009 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6010 6011 /** 6012 * netdev_bonding_info_change - Dispatch event about slave change 6013 * @dev: device 6014 * @bonding_info: info to dispatch 6015 * 6016 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6017 * The caller must hold the RTNL lock. 6018 */ 6019 void netdev_bonding_info_change(struct net_device *dev, 6020 struct netdev_bonding_info *bonding_info) 6021 { 6022 struct netdev_notifier_bonding_info info; 6023 6024 memcpy(&info.bonding_info, bonding_info, 6025 sizeof(struct netdev_bonding_info)); 6026 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 6027 &info.info); 6028 } 6029 EXPORT_SYMBOL(netdev_bonding_info_change); 6030 6031 static void netdev_adjacent_add_links(struct net_device *dev) 6032 { 6033 struct netdev_adjacent *iter; 6034 6035 struct net *net = dev_net(dev); 6036 6037 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6038 if (!net_eq(net, dev_net(iter->dev))) 6039 continue; 6040 netdev_adjacent_sysfs_add(iter->dev, dev, 6041 &iter->dev->adj_list.lower); 6042 netdev_adjacent_sysfs_add(dev, iter->dev, 6043 &dev->adj_list.upper); 6044 } 6045 6046 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6047 if (!net_eq(net, dev_net(iter->dev))) 6048 continue; 6049 netdev_adjacent_sysfs_add(iter->dev, dev, 6050 &iter->dev->adj_list.upper); 6051 netdev_adjacent_sysfs_add(dev, iter->dev, 6052 &dev->adj_list.lower); 6053 } 6054 } 6055 6056 static void netdev_adjacent_del_links(struct net_device *dev) 6057 { 6058 struct netdev_adjacent *iter; 6059 6060 struct net *net = dev_net(dev); 6061 6062 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6063 if (!net_eq(net, dev_net(iter->dev))) 6064 continue; 6065 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6066 &iter->dev->adj_list.lower); 6067 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6068 &dev->adj_list.upper); 6069 } 6070 6071 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6072 if (!net_eq(net, dev_net(iter->dev))) 6073 continue; 6074 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6075 &iter->dev->adj_list.upper); 6076 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6077 &dev->adj_list.lower); 6078 } 6079 } 6080 6081 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6082 { 6083 struct netdev_adjacent *iter; 6084 6085 struct net *net = dev_net(dev); 6086 6087 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6088 if (!net_eq(net, dev_net(iter->dev))) 6089 continue; 6090 netdev_adjacent_sysfs_del(iter->dev, oldname, 6091 &iter->dev->adj_list.lower); 6092 netdev_adjacent_sysfs_add(iter->dev, dev, 6093 &iter->dev->adj_list.lower); 6094 } 6095 6096 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6097 if (!net_eq(net, dev_net(iter->dev))) 6098 continue; 6099 netdev_adjacent_sysfs_del(iter->dev, oldname, 6100 &iter->dev->adj_list.upper); 6101 netdev_adjacent_sysfs_add(iter->dev, dev, 6102 &iter->dev->adj_list.upper); 6103 } 6104 } 6105 6106 void *netdev_lower_dev_get_private(struct net_device *dev, 6107 struct net_device *lower_dev) 6108 { 6109 struct netdev_adjacent *lower; 6110 6111 if (!lower_dev) 6112 return NULL; 6113 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6114 if (!lower) 6115 return NULL; 6116 6117 return lower->private; 6118 } 6119 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6120 6121 6122 int dev_get_nest_level(struct net_device *dev) 6123 { 6124 struct net_device *lower = NULL; 6125 struct list_head *iter; 6126 int max_nest = -1; 6127 int nest; 6128 6129 ASSERT_RTNL(); 6130 6131 netdev_for_each_lower_dev(dev, lower, iter) { 6132 nest = dev_get_nest_level(lower); 6133 if (max_nest < nest) 6134 max_nest = nest; 6135 } 6136 6137 return max_nest + 1; 6138 } 6139 EXPORT_SYMBOL(dev_get_nest_level); 6140 6141 /** 6142 * netdev_lower_change - Dispatch event about lower device state change 6143 * @lower_dev: device 6144 * @lower_state_info: state to dispatch 6145 * 6146 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6147 * The caller must hold the RTNL lock. 6148 */ 6149 void netdev_lower_state_changed(struct net_device *lower_dev, 6150 void *lower_state_info) 6151 { 6152 struct netdev_notifier_changelowerstate_info changelowerstate_info; 6153 6154 ASSERT_RTNL(); 6155 changelowerstate_info.lower_state_info = lower_state_info; 6156 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 6157 &changelowerstate_info.info); 6158 } 6159 EXPORT_SYMBOL(netdev_lower_state_changed); 6160 6161 int netdev_default_l2upper_neigh_construct(struct net_device *dev, 6162 struct neighbour *n) 6163 { 6164 struct net_device *lower_dev, *stop_dev; 6165 struct list_head *iter; 6166 int err; 6167 6168 netdev_for_each_lower_dev(dev, lower_dev, iter) { 6169 if (!lower_dev->netdev_ops->ndo_neigh_construct) 6170 continue; 6171 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n); 6172 if (err) { 6173 stop_dev = lower_dev; 6174 goto rollback; 6175 } 6176 } 6177 return 0; 6178 6179 rollback: 6180 netdev_for_each_lower_dev(dev, lower_dev, iter) { 6181 if (lower_dev == stop_dev) 6182 break; 6183 if (!lower_dev->netdev_ops->ndo_neigh_destroy) 6184 continue; 6185 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n); 6186 } 6187 return err; 6188 } 6189 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct); 6190 6191 void netdev_default_l2upper_neigh_destroy(struct net_device *dev, 6192 struct neighbour *n) 6193 { 6194 struct net_device *lower_dev; 6195 struct list_head *iter; 6196 6197 netdev_for_each_lower_dev(dev, lower_dev, iter) { 6198 if (!lower_dev->netdev_ops->ndo_neigh_destroy) 6199 continue; 6200 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n); 6201 } 6202 } 6203 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy); 6204 6205 static void dev_change_rx_flags(struct net_device *dev, int flags) 6206 { 6207 const struct net_device_ops *ops = dev->netdev_ops; 6208 6209 if (ops->ndo_change_rx_flags) 6210 ops->ndo_change_rx_flags(dev, flags); 6211 } 6212 6213 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6214 { 6215 unsigned int old_flags = dev->flags; 6216 kuid_t uid; 6217 kgid_t gid; 6218 6219 ASSERT_RTNL(); 6220 6221 dev->flags |= IFF_PROMISC; 6222 dev->promiscuity += inc; 6223 if (dev->promiscuity == 0) { 6224 /* 6225 * Avoid overflow. 6226 * If inc causes overflow, untouch promisc and return error. 6227 */ 6228 if (inc < 0) 6229 dev->flags &= ~IFF_PROMISC; 6230 else { 6231 dev->promiscuity -= inc; 6232 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6233 dev->name); 6234 return -EOVERFLOW; 6235 } 6236 } 6237 if (dev->flags != old_flags) { 6238 pr_info("device %s %s promiscuous mode\n", 6239 dev->name, 6240 dev->flags & IFF_PROMISC ? "entered" : "left"); 6241 if (audit_enabled) { 6242 current_uid_gid(&uid, &gid); 6243 audit_log(current->audit_context, GFP_ATOMIC, 6244 AUDIT_ANOM_PROMISCUOUS, 6245 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6246 dev->name, (dev->flags & IFF_PROMISC), 6247 (old_flags & IFF_PROMISC), 6248 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6249 from_kuid(&init_user_ns, uid), 6250 from_kgid(&init_user_ns, gid), 6251 audit_get_sessionid(current)); 6252 } 6253 6254 dev_change_rx_flags(dev, IFF_PROMISC); 6255 } 6256 if (notify) 6257 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6258 return 0; 6259 } 6260 6261 /** 6262 * dev_set_promiscuity - update promiscuity count on a device 6263 * @dev: device 6264 * @inc: modifier 6265 * 6266 * Add or remove promiscuity from a device. While the count in the device 6267 * remains above zero the interface remains promiscuous. Once it hits zero 6268 * the device reverts back to normal filtering operation. A negative inc 6269 * value is used to drop promiscuity on the device. 6270 * Return 0 if successful or a negative errno code on error. 6271 */ 6272 int dev_set_promiscuity(struct net_device *dev, int inc) 6273 { 6274 unsigned int old_flags = dev->flags; 6275 int err; 6276 6277 err = __dev_set_promiscuity(dev, inc, true); 6278 if (err < 0) 6279 return err; 6280 if (dev->flags != old_flags) 6281 dev_set_rx_mode(dev); 6282 return err; 6283 } 6284 EXPORT_SYMBOL(dev_set_promiscuity); 6285 6286 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6287 { 6288 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6289 6290 ASSERT_RTNL(); 6291 6292 dev->flags |= IFF_ALLMULTI; 6293 dev->allmulti += inc; 6294 if (dev->allmulti == 0) { 6295 /* 6296 * Avoid overflow. 6297 * If inc causes overflow, untouch allmulti and return error. 6298 */ 6299 if (inc < 0) 6300 dev->flags &= ~IFF_ALLMULTI; 6301 else { 6302 dev->allmulti -= inc; 6303 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6304 dev->name); 6305 return -EOVERFLOW; 6306 } 6307 } 6308 if (dev->flags ^ old_flags) { 6309 dev_change_rx_flags(dev, IFF_ALLMULTI); 6310 dev_set_rx_mode(dev); 6311 if (notify) 6312 __dev_notify_flags(dev, old_flags, 6313 dev->gflags ^ old_gflags); 6314 } 6315 return 0; 6316 } 6317 6318 /** 6319 * dev_set_allmulti - update allmulti count on a device 6320 * @dev: device 6321 * @inc: modifier 6322 * 6323 * Add or remove reception of all multicast frames to a device. While the 6324 * count in the device remains above zero the interface remains listening 6325 * to all interfaces. Once it hits zero the device reverts back to normal 6326 * filtering operation. A negative @inc value is used to drop the counter 6327 * when releasing a resource needing all multicasts. 6328 * Return 0 if successful or a negative errno code on error. 6329 */ 6330 6331 int dev_set_allmulti(struct net_device *dev, int inc) 6332 { 6333 return __dev_set_allmulti(dev, inc, true); 6334 } 6335 EXPORT_SYMBOL(dev_set_allmulti); 6336 6337 /* 6338 * Upload unicast and multicast address lists to device and 6339 * configure RX filtering. When the device doesn't support unicast 6340 * filtering it is put in promiscuous mode while unicast addresses 6341 * are present. 6342 */ 6343 void __dev_set_rx_mode(struct net_device *dev) 6344 { 6345 const struct net_device_ops *ops = dev->netdev_ops; 6346 6347 /* dev_open will call this function so the list will stay sane. */ 6348 if (!(dev->flags&IFF_UP)) 6349 return; 6350 6351 if (!netif_device_present(dev)) 6352 return; 6353 6354 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6355 /* Unicast addresses changes may only happen under the rtnl, 6356 * therefore calling __dev_set_promiscuity here is safe. 6357 */ 6358 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6359 __dev_set_promiscuity(dev, 1, false); 6360 dev->uc_promisc = true; 6361 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6362 __dev_set_promiscuity(dev, -1, false); 6363 dev->uc_promisc = false; 6364 } 6365 } 6366 6367 if (ops->ndo_set_rx_mode) 6368 ops->ndo_set_rx_mode(dev); 6369 } 6370 6371 void dev_set_rx_mode(struct net_device *dev) 6372 { 6373 netif_addr_lock_bh(dev); 6374 __dev_set_rx_mode(dev); 6375 netif_addr_unlock_bh(dev); 6376 } 6377 6378 /** 6379 * dev_get_flags - get flags reported to userspace 6380 * @dev: device 6381 * 6382 * Get the combination of flag bits exported through APIs to userspace. 6383 */ 6384 unsigned int dev_get_flags(const struct net_device *dev) 6385 { 6386 unsigned int flags; 6387 6388 flags = (dev->flags & ~(IFF_PROMISC | 6389 IFF_ALLMULTI | 6390 IFF_RUNNING | 6391 IFF_LOWER_UP | 6392 IFF_DORMANT)) | 6393 (dev->gflags & (IFF_PROMISC | 6394 IFF_ALLMULTI)); 6395 6396 if (netif_running(dev)) { 6397 if (netif_oper_up(dev)) 6398 flags |= IFF_RUNNING; 6399 if (netif_carrier_ok(dev)) 6400 flags |= IFF_LOWER_UP; 6401 if (netif_dormant(dev)) 6402 flags |= IFF_DORMANT; 6403 } 6404 6405 return flags; 6406 } 6407 EXPORT_SYMBOL(dev_get_flags); 6408 6409 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6410 { 6411 unsigned int old_flags = dev->flags; 6412 int ret; 6413 6414 ASSERT_RTNL(); 6415 6416 /* 6417 * Set the flags on our device. 6418 */ 6419 6420 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6421 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6422 IFF_AUTOMEDIA)) | 6423 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6424 IFF_ALLMULTI)); 6425 6426 /* 6427 * Load in the correct multicast list now the flags have changed. 6428 */ 6429 6430 if ((old_flags ^ flags) & IFF_MULTICAST) 6431 dev_change_rx_flags(dev, IFF_MULTICAST); 6432 6433 dev_set_rx_mode(dev); 6434 6435 /* 6436 * Have we downed the interface. We handle IFF_UP ourselves 6437 * according to user attempts to set it, rather than blindly 6438 * setting it. 6439 */ 6440 6441 ret = 0; 6442 if ((old_flags ^ flags) & IFF_UP) 6443 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 6444 6445 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6446 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6447 unsigned int old_flags = dev->flags; 6448 6449 dev->gflags ^= IFF_PROMISC; 6450 6451 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6452 if (dev->flags != old_flags) 6453 dev_set_rx_mode(dev); 6454 } 6455 6456 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6457 is important. Some (broken) drivers set IFF_PROMISC, when 6458 IFF_ALLMULTI is requested not asking us and not reporting. 6459 */ 6460 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6461 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6462 6463 dev->gflags ^= IFF_ALLMULTI; 6464 __dev_set_allmulti(dev, inc, false); 6465 } 6466 6467 return ret; 6468 } 6469 6470 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6471 unsigned int gchanges) 6472 { 6473 unsigned int changes = dev->flags ^ old_flags; 6474 6475 if (gchanges) 6476 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6477 6478 if (changes & IFF_UP) { 6479 if (dev->flags & IFF_UP) 6480 call_netdevice_notifiers(NETDEV_UP, dev); 6481 else 6482 call_netdevice_notifiers(NETDEV_DOWN, dev); 6483 } 6484 6485 if (dev->flags & IFF_UP && 6486 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6487 struct netdev_notifier_change_info change_info; 6488 6489 change_info.flags_changed = changes; 6490 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6491 &change_info.info); 6492 } 6493 } 6494 6495 /** 6496 * dev_change_flags - change device settings 6497 * @dev: device 6498 * @flags: device state flags 6499 * 6500 * Change settings on device based state flags. The flags are 6501 * in the userspace exported format. 6502 */ 6503 int dev_change_flags(struct net_device *dev, unsigned int flags) 6504 { 6505 int ret; 6506 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6507 6508 ret = __dev_change_flags(dev, flags); 6509 if (ret < 0) 6510 return ret; 6511 6512 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6513 __dev_notify_flags(dev, old_flags, changes); 6514 return ret; 6515 } 6516 EXPORT_SYMBOL(dev_change_flags); 6517 6518 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 6519 { 6520 const struct net_device_ops *ops = dev->netdev_ops; 6521 6522 if (ops->ndo_change_mtu) 6523 return ops->ndo_change_mtu(dev, new_mtu); 6524 6525 dev->mtu = new_mtu; 6526 return 0; 6527 } 6528 6529 /** 6530 * dev_set_mtu - Change maximum transfer unit 6531 * @dev: device 6532 * @new_mtu: new transfer unit 6533 * 6534 * Change the maximum transfer size of the network device. 6535 */ 6536 int dev_set_mtu(struct net_device *dev, int new_mtu) 6537 { 6538 int err, orig_mtu; 6539 6540 if (new_mtu == dev->mtu) 6541 return 0; 6542 6543 /* MTU must be positive, and in range */ 6544 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6545 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6546 dev->name, new_mtu, dev->min_mtu); 6547 return -EINVAL; 6548 } 6549 6550 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6551 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6552 dev->name, new_mtu, dev->max_mtu); 6553 return -EINVAL; 6554 } 6555 6556 if (!netif_device_present(dev)) 6557 return -ENODEV; 6558 6559 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6560 err = notifier_to_errno(err); 6561 if (err) 6562 return err; 6563 6564 orig_mtu = dev->mtu; 6565 err = __dev_set_mtu(dev, new_mtu); 6566 6567 if (!err) { 6568 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6569 err = notifier_to_errno(err); 6570 if (err) { 6571 /* setting mtu back and notifying everyone again, 6572 * so that they have a chance to revert changes. 6573 */ 6574 __dev_set_mtu(dev, orig_mtu); 6575 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6576 } 6577 } 6578 return err; 6579 } 6580 EXPORT_SYMBOL(dev_set_mtu); 6581 6582 /** 6583 * dev_set_group - Change group this device belongs to 6584 * @dev: device 6585 * @new_group: group this device should belong to 6586 */ 6587 void dev_set_group(struct net_device *dev, int new_group) 6588 { 6589 dev->group = new_group; 6590 } 6591 EXPORT_SYMBOL(dev_set_group); 6592 6593 /** 6594 * dev_set_mac_address - Change Media Access Control Address 6595 * @dev: device 6596 * @sa: new address 6597 * 6598 * Change the hardware (MAC) address of the device 6599 */ 6600 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6601 { 6602 const struct net_device_ops *ops = dev->netdev_ops; 6603 int err; 6604 6605 if (!ops->ndo_set_mac_address) 6606 return -EOPNOTSUPP; 6607 if (sa->sa_family != dev->type) 6608 return -EINVAL; 6609 if (!netif_device_present(dev)) 6610 return -ENODEV; 6611 err = ops->ndo_set_mac_address(dev, sa); 6612 if (err) 6613 return err; 6614 dev->addr_assign_type = NET_ADDR_SET; 6615 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6616 add_device_randomness(dev->dev_addr, dev->addr_len); 6617 return 0; 6618 } 6619 EXPORT_SYMBOL(dev_set_mac_address); 6620 6621 /** 6622 * dev_change_carrier - Change device carrier 6623 * @dev: device 6624 * @new_carrier: new value 6625 * 6626 * Change device carrier 6627 */ 6628 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6629 { 6630 const struct net_device_ops *ops = dev->netdev_ops; 6631 6632 if (!ops->ndo_change_carrier) 6633 return -EOPNOTSUPP; 6634 if (!netif_device_present(dev)) 6635 return -ENODEV; 6636 return ops->ndo_change_carrier(dev, new_carrier); 6637 } 6638 EXPORT_SYMBOL(dev_change_carrier); 6639 6640 /** 6641 * dev_get_phys_port_id - Get device physical port ID 6642 * @dev: device 6643 * @ppid: port ID 6644 * 6645 * Get device physical port ID 6646 */ 6647 int dev_get_phys_port_id(struct net_device *dev, 6648 struct netdev_phys_item_id *ppid) 6649 { 6650 const struct net_device_ops *ops = dev->netdev_ops; 6651 6652 if (!ops->ndo_get_phys_port_id) 6653 return -EOPNOTSUPP; 6654 return ops->ndo_get_phys_port_id(dev, ppid); 6655 } 6656 EXPORT_SYMBOL(dev_get_phys_port_id); 6657 6658 /** 6659 * dev_get_phys_port_name - Get device physical port name 6660 * @dev: device 6661 * @name: port name 6662 * @len: limit of bytes to copy to name 6663 * 6664 * Get device physical port name 6665 */ 6666 int dev_get_phys_port_name(struct net_device *dev, 6667 char *name, size_t len) 6668 { 6669 const struct net_device_ops *ops = dev->netdev_ops; 6670 6671 if (!ops->ndo_get_phys_port_name) 6672 return -EOPNOTSUPP; 6673 return ops->ndo_get_phys_port_name(dev, name, len); 6674 } 6675 EXPORT_SYMBOL(dev_get_phys_port_name); 6676 6677 /** 6678 * dev_change_proto_down - update protocol port state information 6679 * @dev: device 6680 * @proto_down: new value 6681 * 6682 * This info can be used by switch drivers to set the phys state of the 6683 * port. 6684 */ 6685 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6686 { 6687 const struct net_device_ops *ops = dev->netdev_ops; 6688 6689 if (!ops->ndo_change_proto_down) 6690 return -EOPNOTSUPP; 6691 if (!netif_device_present(dev)) 6692 return -ENODEV; 6693 return ops->ndo_change_proto_down(dev, proto_down); 6694 } 6695 EXPORT_SYMBOL(dev_change_proto_down); 6696 6697 /** 6698 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 6699 * @dev: device 6700 * @fd: new program fd or negative value to clear 6701 * @flags: xdp-related flags 6702 * 6703 * Set or clear a bpf program for a device 6704 */ 6705 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags) 6706 { 6707 const struct net_device_ops *ops = dev->netdev_ops; 6708 struct bpf_prog *prog = NULL; 6709 struct netdev_xdp xdp; 6710 int err; 6711 6712 ASSERT_RTNL(); 6713 6714 if (!ops->ndo_xdp) 6715 return -EOPNOTSUPP; 6716 if (fd >= 0) { 6717 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) { 6718 memset(&xdp, 0, sizeof(xdp)); 6719 xdp.command = XDP_QUERY_PROG; 6720 6721 err = ops->ndo_xdp(dev, &xdp); 6722 if (err < 0) 6723 return err; 6724 if (xdp.prog_attached) 6725 return -EBUSY; 6726 } 6727 6728 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 6729 if (IS_ERR(prog)) 6730 return PTR_ERR(prog); 6731 } 6732 6733 memset(&xdp, 0, sizeof(xdp)); 6734 xdp.command = XDP_SETUP_PROG; 6735 xdp.prog = prog; 6736 6737 err = ops->ndo_xdp(dev, &xdp); 6738 if (err < 0 && prog) 6739 bpf_prog_put(prog); 6740 6741 return err; 6742 } 6743 EXPORT_SYMBOL(dev_change_xdp_fd); 6744 6745 /** 6746 * dev_new_index - allocate an ifindex 6747 * @net: the applicable net namespace 6748 * 6749 * Returns a suitable unique value for a new device interface 6750 * number. The caller must hold the rtnl semaphore or the 6751 * dev_base_lock to be sure it remains unique. 6752 */ 6753 static int dev_new_index(struct net *net) 6754 { 6755 int ifindex = net->ifindex; 6756 for (;;) { 6757 if (++ifindex <= 0) 6758 ifindex = 1; 6759 if (!__dev_get_by_index(net, ifindex)) 6760 return net->ifindex = ifindex; 6761 } 6762 } 6763 6764 /* Delayed registration/unregisteration */ 6765 static LIST_HEAD(net_todo_list); 6766 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 6767 6768 static void net_set_todo(struct net_device *dev) 6769 { 6770 list_add_tail(&dev->todo_list, &net_todo_list); 6771 dev_net(dev)->dev_unreg_count++; 6772 } 6773 6774 static void rollback_registered_many(struct list_head *head) 6775 { 6776 struct net_device *dev, *tmp; 6777 LIST_HEAD(close_head); 6778 6779 BUG_ON(dev_boot_phase); 6780 ASSERT_RTNL(); 6781 6782 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6783 /* Some devices call without registering 6784 * for initialization unwind. Remove those 6785 * devices and proceed with the remaining. 6786 */ 6787 if (dev->reg_state == NETREG_UNINITIALIZED) { 6788 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6789 dev->name, dev); 6790 6791 WARN_ON(1); 6792 list_del(&dev->unreg_list); 6793 continue; 6794 } 6795 dev->dismantle = true; 6796 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6797 } 6798 6799 /* If device is running, close it first. */ 6800 list_for_each_entry(dev, head, unreg_list) 6801 list_add_tail(&dev->close_list, &close_head); 6802 dev_close_many(&close_head, true); 6803 6804 list_for_each_entry(dev, head, unreg_list) { 6805 /* And unlink it from device chain. */ 6806 unlist_netdevice(dev); 6807 6808 dev->reg_state = NETREG_UNREGISTERING; 6809 } 6810 flush_all_backlogs(); 6811 6812 synchronize_net(); 6813 6814 list_for_each_entry(dev, head, unreg_list) { 6815 struct sk_buff *skb = NULL; 6816 6817 /* Shutdown queueing discipline. */ 6818 dev_shutdown(dev); 6819 6820 6821 /* Notify protocols, that we are about to destroy 6822 this device. They should clean all the things. 6823 */ 6824 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6825 6826 if (!dev->rtnl_link_ops || 6827 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6828 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6829 GFP_KERNEL); 6830 6831 /* 6832 * Flush the unicast and multicast chains 6833 */ 6834 dev_uc_flush(dev); 6835 dev_mc_flush(dev); 6836 6837 if (dev->netdev_ops->ndo_uninit) 6838 dev->netdev_ops->ndo_uninit(dev); 6839 6840 if (skb) 6841 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6842 6843 /* Notifier chain MUST detach us all upper devices. */ 6844 WARN_ON(netdev_has_any_upper_dev(dev)); 6845 WARN_ON(netdev_has_any_lower_dev(dev)); 6846 6847 /* Remove entries from kobject tree */ 6848 netdev_unregister_kobject(dev); 6849 #ifdef CONFIG_XPS 6850 /* Remove XPS queueing entries */ 6851 netif_reset_xps_queues_gt(dev, 0); 6852 #endif 6853 } 6854 6855 synchronize_net(); 6856 6857 list_for_each_entry(dev, head, unreg_list) 6858 dev_put(dev); 6859 } 6860 6861 static void rollback_registered(struct net_device *dev) 6862 { 6863 LIST_HEAD(single); 6864 6865 list_add(&dev->unreg_list, &single); 6866 rollback_registered_many(&single); 6867 list_del(&single); 6868 } 6869 6870 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 6871 struct net_device *upper, netdev_features_t features) 6872 { 6873 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6874 netdev_features_t feature; 6875 int feature_bit; 6876 6877 for_each_netdev_feature(&upper_disables, feature_bit) { 6878 feature = __NETIF_F_BIT(feature_bit); 6879 if (!(upper->wanted_features & feature) 6880 && (features & feature)) { 6881 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 6882 &feature, upper->name); 6883 features &= ~feature; 6884 } 6885 } 6886 6887 return features; 6888 } 6889 6890 static void netdev_sync_lower_features(struct net_device *upper, 6891 struct net_device *lower, netdev_features_t features) 6892 { 6893 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6894 netdev_features_t feature; 6895 int feature_bit; 6896 6897 for_each_netdev_feature(&upper_disables, feature_bit) { 6898 feature = __NETIF_F_BIT(feature_bit); 6899 if (!(features & feature) && (lower->features & feature)) { 6900 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 6901 &feature, lower->name); 6902 lower->wanted_features &= ~feature; 6903 netdev_update_features(lower); 6904 6905 if (unlikely(lower->features & feature)) 6906 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 6907 &feature, lower->name); 6908 } 6909 } 6910 } 6911 6912 static netdev_features_t netdev_fix_features(struct net_device *dev, 6913 netdev_features_t features) 6914 { 6915 /* Fix illegal checksum combinations */ 6916 if ((features & NETIF_F_HW_CSUM) && 6917 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6918 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6919 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6920 } 6921 6922 /* TSO requires that SG is present as well. */ 6923 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6924 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6925 features &= ~NETIF_F_ALL_TSO; 6926 } 6927 6928 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6929 !(features & NETIF_F_IP_CSUM)) { 6930 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6931 features &= ~NETIF_F_TSO; 6932 features &= ~NETIF_F_TSO_ECN; 6933 } 6934 6935 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6936 !(features & NETIF_F_IPV6_CSUM)) { 6937 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6938 features &= ~NETIF_F_TSO6; 6939 } 6940 6941 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 6942 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 6943 features &= ~NETIF_F_TSO_MANGLEID; 6944 6945 /* TSO ECN requires that TSO is present as well. */ 6946 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6947 features &= ~NETIF_F_TSO_ECN; 6948 6949 /* Software GSO depends on SG. */ 6950 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6951 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6952 features &= ~NETIF_F_GSO; 6953 } 6954 6955 /* UFO needs SG and checksumming */ 6956 if (features & NETIF_F_UFO) { 6957 /* maybe split UFO into V4 and V6? */ 6958 if (!(features & NETIF_F_HW_CSUM) && 6959 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) != 6960 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) { 6961 netdev_dbg(dev, 6962 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6963 features &= ~NETIF_F_UFO; 6964 } 6965 6966 if (!(features & NETIF_F_SG)) { 6967 netdev_dbg(dev, 6968 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6969 features &= ~NETIF_F_UFO; 6970 } 6971 } 6972 6973 /* GSO partial features require GSO partial be set */ 6974 if ((features & dev->gso_partial_features) && 6975 !(features & NETIF_F_GSO_PARTIAL)) { 6976 netdev_dbg(dev, 6977 "Dropping partially supported GSO features since no GSO partial.\n"); 6978 features &= ~dev->gso_partial_features; 6979 } 6980 6981 #ifdef CONFIG_NET_RX_BUSY_POLL 6982 if (dev->netdev_ops->ndo_busy_poll) 6983 features |= NETIF_F_BUSY_POLL; 6984 else 6985 #endif 6986 features &= ~NETIF_F_BUSY_POLL; 6987 6988 return features; 6989 } 6990 6991 int __netdev_update_features(struct net_device *dev) 6992 { 6993 struct net_device *upper, *lower; 6994 netdev_features_t features; 6995 struct list_head *iter; 6996 int err = -1; 6997 6998 ASSERT_RTNL(); 6999 7000 features = netdev_get_wanted_features(dev); 7001 7002 if (dev->netdev_ops->ndo_fix_features) 7003 features = dev->netdev_ops->ndo_fix_features(dev, features); 7004 7005 /* driver might be less strict about feature dependencies */ 7006 features = netdev_fix_features(dev, features); 7007 7008 /* some features can't be enabled if they're off an an upper device */ 7009 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7010 features = netdev_sync_upper_features(dev, upper, features); 7011 7012 if (dev->features == features) 7013 goto sync_lower; 7014 7015 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7016 &dev->features, &features); 7017 7018 if (dev->netdev_ops->ndo_set_features) 7019 err = dev->netdev_ops->ndo_set_features(dev, features); 7020 else 7021 err = 0; 7022 7023 if (unlikely(err < 0)) { 7024 netdev_err(dev, 7025 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7026 err, &features, &dev->features); 7027 /* return non-0 since some features might have changed and 7028 * it's better to fire a spurious notification than miss it 7029 */ 7030 return -1; 7031 } 7032 7033 sync_lower: 7034 /* some features must be disabled on lower devices when disabled 7035 * on an upper device (think: bonding master or bridge) 7036 */ 7037 netdev_for_each_lower_dev(dev, lower, iter) 7038 netdev_sync_lower_features(dev, lower, features); 7039 7040 if (!err) 7041 dev->features = features; 7042 7043 return err < 0 ? 0 : 1; 7044 } 7045 7046 /** 7047 * netdev_update_features - recalculate device features 7048 * @dev: the device to check 7049 * 7050 * Recalculate dev->features set and send notifications if it 7051 * has changed. Should be called after driver or hardware dependent 7052 * conditions might have changed that influence the features. 7053 */ 7054 void netdev_update_features(struct net_device *dev) 7055 { 7056 if (__netdev_update_features(dev)) 7057 netdev_features_change(dev); 7058 } 7059 EXPORT_SYMBOL(netdev_update_features); 7060 7061 /** 7062 * netdev_change_features - recalculate device features 7063 * @dev: the device to check 7064 * 7065 * Recalculate dev->features set and send notifications even 7066 * if they have not changed. Should be called instead of 7067 * netdev_update_features() if also dev->vlan_features might 7068 * have changed to allow the changes to be propagated to stacked 7069 * VLAN devices. 7070 */ 7071 void netdev_change_features(struct net_device *dev) 7072 { 7073 __netdev_update_features(dev); 7074 netdev_features_change(dev); 7075 } 7076 EXPORT_SYMBOL(netdev_change_features); 7077 7078 /** 7079 * netif_stacked_transfer_operstate - transfer operstate 7080 * @rootdev: the root or lower level device to transfer state from 7081 * @dev: the device to transfer operstate to 7082 * 7083 * Transfer operational state from root to device. This is normally 7084 * called when a stacking relationship exists between the root 7085 * device and the device(a leaf device). 7086 */ 7087 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7088 struct net_device *dev) 7089 { 7090 if (rootdev->operstate == IF_OPER_DORMANT) 7091 netif_dormant_on(dev); 7092 else 7093 netif_dormant_off(dev); 7094 7095 if (netif_carrier_ok(rootdev)) { 7096 if (!netif_carrier_ok(dev)) 7097 netif_carrier_on(dev); 7098 } else { 7099 if (netif_carrier_ok(dev)) 7100 netif_carrier_off(dev); 7101 } 7102 } 7103 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7104 7105 #ifdef CONFIG_SYSFS 7106 static int netif_alloc_rx_queues(struct net_device *dev) 7107 { 7108 unsigned int i, count = dev->num_rx_queues; 7109 struct netdev_rx_queue *rx; 7110 size_t sz = count * sizeof(*rx); 7111 7112 BUG_ON(count < 1); 7113 7114 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7115 if (!rx) { 7116 rx = vzalloc(sz); 7117 if (!rx) 7118 return -ENOMEM; 7119 } 7120 dev->_rx = rx; 7121 7122 for (i = 0; i < count; i++) 7123 rx[i].dev = dev; 7124 return 0; 7125 } 7126 #endif 7127 7128 static void netdev_init_one_queue(struct net_device *dev, 7129 struct netdev_queue *queue, void *_unused) 7130 { 7131 /* Initialize queue lock */ 7132 spin_lock_init(&queue->_xmit_lock); 7133 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7134 queue->xmit_lock_owner = -1; 7135 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7136 queue->dev = dev; 7137 #ifdef CONFIG_BQL 7138 dql_init(&queue->dql, HZ); 7139 #endif 7140 } 7141 7142 static void netif_free_tx_queues(struct net_device *dev) 7143 { 7144 kvfree(dev->_tx); 7145 } 7146 7147 static int netif_alloc_netdev_queues(struct net_device *dev) 7148 { 7149 unsigned int count = dev->num_tx_queues; 7150 struct netdev_queue *tx; 7151 size_t sz = count * sizeof(*tx); 7152 7153 if (count < 1 || count > 0xffff) 7154 return -EINVAL; 7155 7156 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7157 if (!tx) { 7158 tx = vzalloc(sz); 7159 if (!tx) 7160 return -ENOMEM; 7161 } 7162 dev->_tx = tx; 7163 7164 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7165 spin_lock_init(&dev->tx_global_lock); 7166 7167 return 0; 7168 } 7169 7170 void netif_tx_stop_all_queues(struct net_device *dev) 7171 { 7172 unsigned int i; 7173 7174 for (i = 0; i < dev->num_tx_queues; i++) { 7175 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7176 netif_tx_stop_queue(txq); 7177 } 7178 } 7179 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7180 7181 /** 7182 * register_netdevice - register a network device 7183 * @dev: device to register 7184 * 7185 * Take a completed network device structure and add it to the kernel 7186 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7187 * chain. 0 is returned on success. A negative errno code is returned 7188 * on a failure to set up the device, or if the name is a duplicate. 7189 * 7190 * Callers must hold the rtnl semaphore. You may want 7191 * register_netdev() instead of this. 7192 * 7193 * BUGS: 7194 * The locking appears insufficient to guarantee two parallel registers 7195 * will not get the same name. 7196 */ 7197 7198 int register_netdevice(struct net_device *dev) 7199 { 7200 int ret; 7201 struct net *net = dev_net(dev); 7202 7203 BUG_ON(dev_boot_phase); 7204 ASSERT_RTNL(); 7205 7206 might_sleep(); 7207 7208 /* When net_device's are persistent, this will be fatal. */ 7209 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7210 BUG_ON(!net); 7211 7212 spin_lock_init(&dev->addr_list_lock); 7213 netdev_set_addr_lockdep_class(dev); 7214 7215 ret = dev_get_valid_name(net, dev, dev->name); 7216 if (ret < 0) 7217 goto out; 7218 7219 /* Init, if this function is available */ 7220 if (dev->netdev_ops->ndo_init) { 7221 ret = dev->netdev_ops->ndo_init(dev); 7222 if (ret) { 7223 if (ret > 0) 7224 ret = -EIO; 7225 goto out; 7226 } 7227 } 7228 7229 if (((dev->hw_features | dev->features) & 7230 NETIF_F_HW_VLAN_CTAG_FILTER) && 7231 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7232 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7233 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7234 ret = -EINVAL; 7235 goto err_uninit; 7236 } 7237 7238 ret = -EBUSY; 7239 if (!dev->ifindex) 7240 dev->ifindex = dev_new_index(net); 7241 else if (__dev_get_by_index(net, dev->ifindex)) 7242 goto err_uninit; 7243 7244 /* Transfer changeable features to wanted_features and enable 7245 * software offloads (GSO and GRO). 7246 */ 7247 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7248 dev->features |= NETIF_F_SOFT_FEATURES; 7249 dev->wanted_features = dev->features & dev->hw_features; 7250 7251 if (!(dev->flags & IFF_LOOPBACK)) 7252 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7253 7254 /* If IPv4 TCP segmentation offload is supported we should also 7255 * allow the device to enable segmenting the frame with the option 7256 * of ignoring a static IP ID value. This doesn't enable the 7257 * feature itself but allows the user to enable it later. 7258 */ 7259 if (dev->hw_features & NETIF_F_TSO) 7260 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7261 if (dev->vlan_features & NETIF_F_TSO) 7262 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7263 if (dev->mpls_features & NETIF_F_TSO) 7264 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7265 if (dev->hw_enc_features & NETIF_F_TSO) 7266 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7267 7268 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7269 */ 7270 dev->vlan_features |= NETIF_F_HIGHDMA; 7271 7272 /* Make NETIF_F_SG inheritable to tunnel devices. 7273 */ 7274 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7275 7276 /* Make NETIF_F_SG inheritable to MPLS. 7277 */ 7278 dev->mpls_features |= NETIF_F_SG; 7279 7280 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7281 ret = notifier_to_errno(ret); 7282 if (ret) 7283 goto err_uninit; 7284 7285 ret = netdev_register_kobject(dev); 7286 if (ret) 7287 goto err_uninit; 7288 dev->reg_state = NETREG_REGISTERED; 7289 7290 __netdev_update_features(dev); 7291 7292 /* 7293 * Default initial state at registry is that the 7294 * device is present. 7295 */ 7296 7297 set_bit(__LINK_STATE_PRESENT, &dev->state); 7298 7299 linkwatch_init_dev(dev); 7300 7301 dev_init_scheduler(dev); 7302 dev_hold(dev); 7303 list_netdevice(dev); 7304 add_device_randomness(dev->dev_addr, dev->addr_len); 7305 7306 /* If the device has permanent device address, driver should 7307 * set dev_addr and also addr_assign_type should be set to 7308 * NET_ADDR_PERM (default value). 7309 */ 7310 if (dev->addr_assign_type == NET_ADDR_PERM) 7311 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7312 7313 /* Notify protocols, that a new device appeared. */ 7314 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7315 ret = notifier_to_errno(ret); 7316 if (ret) { 7317 rollback_registered(dev); 7318 dev->reg_state = NETREG_UNREGISTERED; 7319 } 7320 /* 7321 * Prevent userspace races by waiting until the network 7322 * device is fully setup before sending notifications. 7323 */ 7324 if (!dev->rtnl_link_ops || 7325 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7326 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7327 7328 out: 7329 return ret; 7330 7331 err_uninit: 7332 if (dev->netdev_ops->ndo_uninit) 7333 dev->netdev_ops->ndo_uninit(dev); 7334 goto out; 7335 } 7336 EXPORT_SYMBOL(register_netdevice); 7337 7338 /** 7339 * init_dummy_netdev - init a dummy network device for NAPI 7340 * @dev: device to init 7341 * 7342 * This takes a network device structure and initialize the minimum 7343 * amount of fields so it can be used to schedule NAPI polls without 7344 * registering a full blown interface. This is to be used by drivers 7345 * that need to tie several hardware interfaces to a single NAPI 7346 * poll scheduler due to HW limitations. 7347 */ 7348 int init_dummy_netdev(struct net_device *dev) 7349 { 7350 /* Clear everything. Note we don't initialize spinlocks 7351 * are they aren't supposed to be taken by any of the 7352 * NAPI code and this dummy netdev is supposed to be 7353 * only ever used for NAPI polls 7354 */ 7355 memset(dev, 0, sizeof(struct net_device)); 7356 7357 /* make sure we BUG if trying to hit standard 7358 * register/unregister code path 7359 */ 7360 dev->reg_state = NETREG_DUMMY; 7361 7362 /* NAPI wants this */ 7363 INIT_LIST_HEAD(&dev->napi_list); 7364 7365 /* a dummy interface is started by default */ 7366 set_bit(__LINK_STATE_PRESENT, &dev->state); 7367 set_bit(__LINK_STATE_START, &dev->state); 7368 7369 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7370 * because users of this 'device' dont need to change 7371 * its refcount. 7372 */ 7373 7374 return 0; 7375 } 7376 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7377 7378 7379 /** 7380 * register_netdev - register a network device 7381 * @dev: device to register 7382 * 7383 * Take a completed network device structure and add it to the kernel 7384 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7385 * chain. 0 is returned on success. A negative errno code is returned 7386 * on a failure to set up the device, or if the name is a duplicate. 7387 * 7388 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7389 * and expands the device name if you passed a format string to 7390 * alloc_netdev. 7391 */ 7392 int register_netdev(struct net_device *dev) 7393 { 7394 int err; 7395 7396 rtnl_lock(); 7397 err = register_netdevice(dev); 7398 rtnl_unlock(); 7399 return err; 7400 } 7401 EXPORT_SYMBOL(register_netdev); 7402 7403 int netdev_refcnt_read(const struct net_device *dev) 7404 { 7405 int i, refcnt = 0; 7406 7407 for_each_possible_cpu(i) 7408 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7409 return refcnt; 7410 } 7411 EXPORT_SYMBOL(netdev_refcnt_read); 7412 7413 /** 7414 * netdev_wait_allrefs - wait until all references are gone. 7415 * @dev: target net_device 7416 * 7417 * This is called when unregistering network devices. 7418 * 7419 * Any protocol or device that holds a reference should register 7420 * for netdevice notification, and cleanup and put back the 7421 * reference if they receive an UNREGISTER event. 7422 * We can get stuck here if buggy protocols don't correctly 7423 * call dev_put. 7424 */ 7425 static void netdev_wait_allrefs(struct net_device *dev) 7426 { 7427 unsigned long rebroadcast_time, warning_time; 7428 int refcnt; 7429 7430 linkwatch_forget_dev(dev); 7431 7432 rebroadcast_time = warning_time = jiffies; 7433 refcnt = netdev_refcnt_read(dev); 7434 7435 while (refcnt != 0) { 7436 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7437 rtnl_lock(); 7438 7439 /* Rebroadcast unregister notification */ 7440 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7441 7442 __rtnl_unlock(); 7443 rcu_barrier(); 7444 rtnl_lock(); 7445 7446 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7447 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7448 &dev->state)) { 7449 /* We must not have linkwatch events 7450 * pending on unregister. If this 7451 * happens, we simply run the queue 7452 * unscheduled, resulting in a noop 7453 * for this device. 7454 */ 7455 linkwatch_run_queue(); 7456 } 7457 7458 __rtnl_unlock(); 7459 7460 rebroadcast_time = jiffies; 7461 } 7462 7463 msleep(250); 7464 7465 refcnt = netdev_refcnt_read(dev); 7466 7467 if (time_after(jiffies, warning_time + 10 * HZ)) { 7468 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7469 dev->name, refcnt); 7470 warning_time = jiffies; 7471 } 7472 } 7473 } 7474 7475 /* The sequence is: 7476 * 7477 * rtnl_lock(); 7478 * ... 7479 * register_netdevice(x1); 7480 * register_netdevice(x2); 7481 * ... 7482 * unregister_netdevice(y1); 7483 * unregister_netdevice(y2); 7484 * ... 7485 * rtnl_unlock(); 7486 * free_netdev(y1); 7487 * free_netdev(y2); 7488 * 7489 * We are invoked by rtnl_unlock(). 7490 * This allows us to deal with problems: 7491 * 1) We can delete sysfs objects which invoke hotplug 7492 * without deadlocking with linkwatch via keventd. 7493 * 2) Since we run with the RTNL semaphore not held, we can sleep 7494 * safely in order to wait for the netdev refcnt to drop to zero. 7495 * 7496 * We must not return until all unregister events added during 7497 * the interval the lock was held have been completed. 7498 */ 7499 void netdev_run_todo(void) 7500 { 7501 struct list_head list; 7502 7503 /* Snapshot list, allow later requests */ 7504 list_replace_init(&net_todo_list, &list); 7505 7506 __rtnl_unlock(); 7507 7508 7509 /* Wait for rcu callbacks to finish before next phase */ 7510 if (!list_empty(&list)) 7511 rcu_barrier(); 7512 7513 while (!list_empty(&list)) { 7514 struct net_device *dev 7515 = list_first_entry(&list, struct net_device, todo_list); 7516 list_del(&dev->todo_list); 7517 7518 rtnl_lock(); 7519 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7520 __rtnl_unlock(); 7521 7522 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7523 pr_err("network todo '%s' but state %d\n", 7524 dev->name, dev->reg_state); 7525 dump_stack(); 7526 continue; 7527 } 7528 7529 dev->reg_state = NETREG_UNREGISTERED; 7530 7531 netdev_wait_allrefs(dev); 7532 7533 /* paranoia */ 7534 BUG_ON(netdev_refcnt_read(dev)); 7535 BUG_ON(!list_empty(&dev->ptype_all)); 7536 BUG_ON(!list_empty(&dev->ptype_specific)); 7537 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7538 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7539 WARN_ON(dev->dn_ptr); 7540 7541 if (dev->destructor) 7542 dev->destructor(dev); 7543 7544 /* Report a network device has been unregistered */ 7545 rtnl_lock(); 7546 dev_net(dev)->dev_unreg_count--; 7547 __rtnl_unlock(); 7548 wake_up(&netdev_unregistering_wq); 7549 7550 /* Free network device */ 7551 kobject_put(&dev->dev.kobj); 7552 } 7553 } 7554 7555 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7556 * all the same fields in the same order as net_device_stats, with only 7557 * the type differing, but rtnl_link_stats64 may have additional fields 7558 * at the end for newer counters. 7559 */ 7560 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7561 const struct net_device_stats *netdev_stats) 7562 { 7563 #if BITS_PER_LONG == 64 7564 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7565 memcpy(stats64, netdev_stats, sizeof(*stats64)); 7566 /* zero out counters that only exist in rtnl_link_stats64 */ 7567 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7568 sizeof(*stats64) - sizeof(*netdev_stats)); 7569 #else 7570 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7571 const unsigned long *src = (const unsigned long *)netdev_stats; 7572 u64 *dst = (u64 *)stats64; 7573 7574 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7575 for (i = 0; i < n; i++) 7576 dst[i] = src[i]; 7577 /* zero out counters that only exist in rtnl_link_stats64 */ 7578 memset((char *)stats64 + n * sizeof(u64), 0, 7579 sizeof(*stats64) - n * sizeof(u64)); 7580 #endif 7581 } 7582 EXPORT_SYMBOL(netdev_stats_to_stats64); 7583 7584 /** 7585 * dev_get_stats - get network device statistics 7586 * @dev: device to get statistics from 7587 * @storage: place to store stats 7588 * 7589 * Get network statistics from device. Return @storage. 7590 * The device driver may provide its own method by setting 7591 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7592 * otherwise the internal statistics structure is used. 7593 */ 7594 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7595 struct rtnl_link_stats64 *storage) 7596 { 7597 const struct net_device_ops *ops = dev->netdev_ops; 7598 7599 if (ops->ndo_get_stats64) { 7600 memset(storage, 0, sizeof(*storage)); 7601 ops->ndo_get_stats64(dev, storage); 7602 } else if (ops->ndo_get_stats) { 7603 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 7604 } else { 7605 netdev_stats_to_stats64(storage, &dev->stats); 7606 } 7607 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 7608 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 7609 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler); 7610 return storage; 7611 } 7612 EXPORT_SYMBOL(dev_get_stats); 7613 7614 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7615 { 7616 struct netdev_queue *queue = dev_ingress_queue(dev); 7617 7618 #ifdef CONFIG_NET_CLS_ACT 7619 if (queue) 7620 return queue; 7621 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7622 if (!queue) 7623 return NULL; 7624 netdev_init_one_queue(dev, queue, NULL); 7625 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7626 queue->qdisc_sleeping = &noop_qdisc; 7627 rcu_assign_pointer(dev->ingress_queue, queue); 7628 #endif 7629 return queue; 7630 } 7631 7632 static const struct ethtool_ops default_ethtool_ops; 7633 7634 void netdev_set_default_ethtool_ops(struct net_device *dev, 7635 const struct ethtool_ops *ops) 7636 { 7637 if (dev->ethtool_ops == &default_ethtool_ops) 7638 dev->ethtool_ops = ops; 7639 } 7640 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7641 7642 void netdev_freemem(struct net_device *dev) 7643 { 7644 char *addr = (char *)dev - dev->padded; 7645 7646 kvfree(addr); 7647 } 7648 7649 /** 7650 * alloc_netdev_mqs - allocate network device 7651 * @sizeof_priv: size of private data to allocate space for 7652 * @name: device name format string 7653 * @name_assign_type: origin of device name 7654 * @setup: callback to initialize device 7655 * @txqs: the number of TX subqueues to allocate 7656 * @rxqs: the number of RX subqueues to allocate 7657 * 7658 * Allocates a struct net_device with private data area for driver use 7659 * and performs basic initialization. Also allocates subqueue structs 7660 * for each queue on the device. 7661 */ 7662 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7663 unsigned char name_assign_type, 7664 void (*setup)(struct net_device *), 7665 unsigned int txqs, unsigned int rxqs) 7666 { 7667 struct net_device *dev; 7668 size_t alloc_size; 7669 struct net_device *p; 7670 7671 BUG_ON(strlen(name) >= sizeof(dev->name)); 7672 7673 if (txqs < 1) { 7674 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 7675 return NULL; 7676 } 7677 7678 #ifdef CONFIG_SYSFS 7679 if (rxqs < 1) { 7680 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 7681 return NULL; 7682 } 7683 #endif 7684 7685 alloc_size = sizeof(struct net_device); 7686 if (sizeof_priv) { 7687 /* ensure 32-byte alignment of private area */ 7688 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 7689 alloc_size += sizeof_priv; 7690 } 7691 /* ensure 32-byte alignment of whole construct */ 7692 alloc_size += NETDEV_ALIGN - 1; 7693 7694 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7695 if (!p) 7696 p = vzalloc(alloc_size); 7697 if (!p) 7698 return NULL; 7699 7700 dev = PTR_ALIGN(p, NETDEV_ALIGN); 7701 dev->padded = (char *)dev - (char *)p; 7702 7703 dev->pcpu_refcnt = alloc_percpu(int); 7704 if (!dev->pcpu_refcnt) 7705 goto free_dev; 7706 7707 if (dev_addr_init(dev)) 7708 goto free_pcpu; 7709 7710 dev_mc_init(dev); 7711 dev_uc_init(dev); 7712 7713 dev_net_set(dev, &init_net); 7714 7715 dev->gso_max_size = GSO_MAX_SIZE; 7716 dev->gso_max_segs = GSO_MAX_SEGS; 7717 7718 INIT_LIST_HEAD(&dev->napi_list); 7719 INIT_LIST_HEAD(&dev->unreg_list); 7720 INIT_LIST_HEAD(&dev->close_list); 7721 INIT_LIST_HEAD(&dev->link_watch_list); 7722 INIT_LIST_HEAD(&dev->adj_list.upper); 7723 INIT_LIST_HEAD(&dev->adj_list.lower); 7724 INIT_LIST_HEAD(&dev->ptype_all); 7725 INIT_LIST_HEAD(&dev->ptype_specific); 7726 #ifdef CONFIG_NET_SCHED 7727 hash_init(dev->qdisc_hash); 7728 #endif 7729 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7730 setup(dev); 7731 7732 if (!dev->tx_queue_len) { 7733 dev->priv_flags |= IFF_NO_QUEUE; 7734 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 7735 } 7736 7737 dev->num_tx_queues = txqs; 7738 dev->real_num_tx_queues = txqs; 7739 if (netif_alloc_netdev_queues(dev)) 7740 goto free_all; 7741 7742 #ifdef CONFIG_SYSFS 7743 dev->num_rx_queues = rxqs; 7744 dev->real_num_rx_queues = rxqs; 7745 if (netif_alloc_rx_queues(dev)) 7746 goto free_all; 7747 #endif 7748 7749 strcpy(dev->name, name); 7750 dev->name_assign_type = name_assign_type; 7751 dev->group = INIT_NETDEV_GROUP; 7752 if (!dev->ethtool_ops) 7753 dev->ethtool_ops = &default_ethtool_ops; 7754 7755 nf_hook_ingress_init(dev); 7756 7757 return dev; 7758 7759 free_all: 7760 free_netdev(dev); 7761 return NULL; 7762 7763 free_pcpu: 7764 free_percpu(dev->pcpu_refcnt); 7765 free_dev: 7766 netdev_freemem(dev); 7767 return NULL; 7768 } 7769 EXPORT_SYMBOL(alloc_netdev_mqs); 7770 7771 /** 7772 * free_netdev - free network device 7773 * @dev: device 7774 * 7775 * This function does the last stage of destroying an allocated device 7776 * interface. The reference to the device object is released. 7777 * If this is the last reference then it will be freed. 7778 * Must be called in process context. 7779 */ 7780 void free_netdev(struct net_device *dev) 7781 { 7782 struct napi_struct *p, *n; 7783 7784 might_sleep(); 7785 netif_free_tx_queues(dev); 7786 #ifdef CONFIG_SYSFS 7787 kvfree(dev->_rx); 7788 #endif 7789 7790 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 7791 7792 /* Flush device addresses */ 7793 dev_addr_flush(dev); 7794 7795 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 7796 netif_napi_del(p); 7797 7798 free_percpu(dev->pcpu_refcnt); 7799 dev->pcpu_refcnt = NULL; 7800 7801 /* Compatibility with error handling in drivers */ 7802 if (dev->reg_state == NETREG_UNINITIALIZED) { 7803 netdev_freemem(dev); 7804 return; 7805 } 7806 7807 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 7808 dev->reg_state = NETREG_RELEASED; 7809 7810 /* will free via device release */ 7811 put_device(&dev->dev); 7812 } 7813 EXPORT_SYMBOL(free_netdev); 7814 7815 /** 7816 * synchronize_net - Synchronize with packet receive processing 7817 * 7818 * Wait for packets currently being received to be done. 7819 * Does not block later packets from starting. 7820 */ 7821 void synchronize_net(void) 7822 { 7823 might_sleep(); 7824 if (rtnl_is_locked()) 7825 synchronize_rcu_expedited(); 7826 else 7827 synchronize_rcu(); 7828 } 7829 EXPORT_SYMBOL(synchronize_net); 7830 7831 /** 7832 * unregister_netdevice_queue - remove device from the kernel 7833 * @dev: device 7834 * @head: list 7835 * 7836 * This function shuts down a device interface and removes it 7837 * from the kernel tables. 7838 * If head not NULL, device is queued to be unregistered later. 7839 * 7840 * Callers must hold the rtnl semaphore. You may want 7841 * unregister_netdev() instead of this. 7842 */ 7843 7844 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 7845 { 7846 ASSERT_RTNL(); 7847 7848 if (head) { 7849 list_move_tail(&dev->unreg_list, head); 7850 } else { 7851 rollback_registered(dev); 7852 /* Finish processing unregister after unlock */ 7853 net_set_todo(dev); 7854 } 7855 } 7856 EXPORT_SYMBOL(unregister_netdevice_queue); 7857 7858 /** 7859 * unregister_netdevice_many - unregister many devices 7860 * @head: list of devices 7861 * 7862 * Note: As most callers use a stack allocated list_head, 7863 * we force a list_del() to make sure stack wont be corrupted later. 7864 */ 7865 void unregister_netdevice_many(struct list_head *head) 7866 { 7867 struct net_device *dev; 7868 7869 if (!list_empty(head)) { 7870 rollback_registered_many(head); 7871 list_for_each_entry(dev, head, unreg_list) 7872 net_set_todo(dev); 7873 list_del(head); 7874 } 7875 } 7876 EXPORT_SYMBOL(unregister_netdevice_many); 7877 7878 /** 7879 * unregister_netdev - remove device from the kernel 7880 * @dev: device 7881 * 7882 * This function shuts down a device interface and removes it 7883 * from the kernel tables. 7884 * 7885 * This is just a wrapper for unregister_netdevice that takes 7886 * the rtnl semaphore. In general you want to use this and not 7887 * unregister_netdevice. 7888 */ 7889 void unregister_netdev(struct net_device *dev) 7890 { 7891 rtnl_lock(); 7892 unregister_netdevice(dev); 7893 rtnl_unlock(); 7894 } 7895 EXPORT_SYMBOL(unregister_netdev); 7896 7897 /** 7898 * dev_change_net_namespace - move device to different nethost namespace 7899 * @dev: device 7900 * @net: network namespace 7901 * @pat: If not NULL name pattern to try if the current device name 7902 * is already taken in the destination network namespace. 7903 * 7904 * This function shuts down a device interface and moves it 7905 * to a new network namespace. On success 0 is returned, on 7906 * a failure a netagive errno code is returned. 7907 * 7908 * Callers must hold the rtnl semaphore. 7909 */ 7910 7911 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 7912 { 7913 int err; 7914 7915 ASSERT_RTNL(); 7916 7917 /* Don't allow namespace local devices to be moved. */ 7918 err = -EINVAL; 7919 if (dev->features & NETIF_F_NETNS_LOCAL) 7920 goto out; 7921 7922 /* Ensure the device has been registrered */ 7923 if (dev->reg_state != NETREG_REGISTERED) 7924 goto out; 7925 7926 /* Get out if there is nothing todo */ 7927 err = 0; 7928 if (net_eq(dev_net(dev), net)) 7929 goto out; 7930 7931 /* Pick the destination device name, and ensure 7932 * we can use it in the destination network namespace. 7933 */ 7934 err = -EEXIST; 7935 if (__dev_get_by_name(net, dev->name)) { 7936 /* We get here if we can't use the current device name */ 7937 if (!pat) 7938 goto out; 7939 if (dev_get_valid_name(net, dev, pat) < 0) 7940 goto out; 7941 } 7942 7943 /* 7944 * And now a mini version of register_netdevice unregister_netdevice. 7945 */ 7946 7947 /* If device is running close it first. */ 7948 dev_close(dev); 7949 7950 /* And unlink it from device chain */ 7951 err = -ENODEV; 7952 unlist_netdevice(dev); 7953 7954 synchronize_net(); 7955 7956 /* Shutdown queueing discipline. */ 7957 dev_shutdown(dev); 7958 7959 /* Notify protocols, that we are about to destroy 7960 this device. They should clean all the things. 7961 7962 Note that dev->reg_state stays at NETREG_REGISTERED. 7963 This is wanted because this way 8021q and macvlan know 7964 the device is just moving and can keep their slaves up. 7965 */ 7966 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7967 rcu_barrier(); 7968 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7969 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7970 7971 /* 7972 * Flush the unicast and multicast chains 7973 */ 7974 dev_uc_flush(dev); 7975 dev_mc_flush(dev); 7976 7977 /* Send a netdev-removed uevent to the old namespace */ 7978 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7979 netdev_adjacent_del_links(dev); 7980 7981 /* Actually switch the network namespace */ 7982 dev_net_set(dev, net); 7983 7984 /* If there is an ifindex conflict assign a new one */ 7985 if (__dev_get_by_index(net, dev->ifindex)) 7986 dev->ifindex = dev_new_index(net); 7987 7988 /* Send a netdev-add uevent to the new namespace */ 7989 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 7990 netdev_adjacent_add_links(dev); 7991 7992 /* Fixup kobjects */ 7993 err = device_rename(&dev->dev, dev->name); 7994 WARN_ON(err); 7995 7996 /* Add the device back in the hashes */ 7997 list_netdevice(dev); 7998 7999 /* Notify protocols, that a new device appeared. */ 8000 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8001 8002 /* 8003 * Prevent userspace races by waiting until the network 8004 * device is fully setup before sending notifications. 8005 */ 8006 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8007 8008 synchronize_net(); 8009 err = 0; 8010 out: 8011 return err; 8012 } 8013 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8014 8015 static int dev_cpu_dead(unsigned int oldcpu) 8016 { 8017 struct sk_buff **list_skb; 8018 struct sk_buff *skb; 8019 unsigned int cpu; 8020 struct softnet_data *sd, *oldsd; 8021 8022 local_irq_disable(); 8023 cpu = smp_processor_id(); 8024 sd = &per_cpu(softnet_data, cpu); 8025 oldsd = &per_cpu(softnet_data, oldcpu); 8026 8027 /* Find end of our completion_queue. */ 8028 list_skb = &sd->completion_queue; 8029 while (*list_skb) 8030 list_skb = &(*list_skb)->next; 8031 /* Append completion queue from offline CPU. */ 8032 *list_skb = oldsd->completion_queue; 8033 oldsd->completion_queue = NULL; 8034 8035 /* Append output queue from offline CPU. */ 8036 if (oldsd->output_queue) { 8037 *sd->output_queue_tailp = oldsd->output_queue; 8038 sd->output_queue_tailp = oldsd->output_queue_tailp; 8039 oldsd->output_queue = NULL; 8040 oldsd->output_queue_tailp = &oldsd->output_queue; 8041 } 8042 /* Append NAPI poll list from offline CPU, with one exception : 8043 * process_backlog() must be called by cpu owning percpu backlog. 8044 * We properly handle process_queue & input_pkt_queue later. 8045 */ 8046 while (!list_empty(&oldsd->poll_list)) { 8047 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8048 struct napi_struct, 8049 poll_list); 8050 8051 list_del_init(&napi->poll_list); 8052 if (napi->poll == process_backlog) 8053 napi->state = 0; 8054 else 8055 ____napi_schedule(sd, napi); 8056 } 8057 8058 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8059 local_irq_enable(); 8060 8061 /* Process offline CPU's input_pkt_queue */ 8062 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8063 netif_rx_ni(skb); 8064 input_queue_head_incr(oldsd); 8065 } 8066 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8067 netif_rx_ni(skb); 8068 input_queue_head_incr(oldsd); 8069 } 8070 8071 return 0; 8072 } 8073 8074 /** 8075 * netdev_increment_features - increment feature set by one 8076 * @all: current feature set 8077 * @one: new feature set 8078 * @mask: mask feature set 8079 * 8080 * Computes a new feature set after adding a device with feature set 8081 * @one to the master device with current feature set @all. Will not 8082 * enable anything that is off in @mask. Returns the new feature set. 8083 */ 8084 netdev_features_t netdev_increment_features(netdev_features_t all, 8085 netdev_features_t one, netdev_features_t mask) 8086 { 8087 if (mask & NETIF_F_HW_CSUM) 8088 mask |= NETIF_F_CSUM_MASK; 8089 mask |= NETIF_F_VLAN_CHALLENGED; 8090 8091 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8092 all &= one | ~NETIF_F_ALL_FOR_ALL; 8093 8094 /* If one device supports hw checksumming, set for all. */ 8095 if (all & NETIF_F_HW_CSUM) 8096 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8097 8098 return all; 8099 } 8100 EXPORT_SYMBOL(netdev_increment_features); 8101 8102 static struct hlist_head * __net_init netdev_create_hash(void) 8103 { 8104 int i; 8105 struct hlist_head *hash; 8106 8107 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8108 if (hash != NULL) 8109 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8110 INIT_HLIST_HEAD(&hash[i]); 8111 8112 return hash; 8113 } 8114 8115 /* Initialize per network namespace state */ 8116 static int __net_init netdev_init(struct net *net) 8117 { 8118 if (net != &init_net) 8119 INIT_LIST_HEAD(&net->dev_base_head); 8120 8121 net->dev_name_head = netdev_create_hash(); 8122 if (net->dev_name_head == NULL) 8123 goto err_name; 8124 8125 net->dev_index_head = netdev_create_hash(); 8126 if (net->dev_index_head == NULL) 8127 goto err_idx; 8128 8129 return 0; 8130 8131 err_idx: 8132 kfree(net->dev_name_head); 8133 err_name: 8134 return -ENOMEM; 8135 } 8136 8137 /** 8138 * netdev_drivername - network driver for the device 8139 * @dev: network device 8140 * 8141 * Determine network driver for device. 8142 */ 8143 const char *netdev_drivername(const struct net_device *dev) 8144 { 8145 const struct device_driver *driver; 8146 const struct device *parent; 8147 const char *empty = ""; 8148 8149 parent = dev->dev.parent; 8150 if (!parent) 8151 return empty; 8152 8153 driver = parent->driver; 8154 if (driver && driver->name) 8155 return driver->name; 8156 return empty; 8157 } 8158 8159 static void __netdev_printk(const char *level, const struct net_device *dev, 8160 struct va_format *vaf) 8161 { 8162 if (dev && dev->dev.parent) { 8163 dev_printk_emit(level[1] - '0', 8164 dev->dev.parent, 8165 "%s %s %s%s: %pV", 8166 dev_driver_string(dev->dev.parent), 8167 dev_name(dev->dev.parent), 8168 netdev_name(dev), netdev_reg_state(dev), 8169 vaf); 8170 } else if (dev) { 8171 printk("%s%s%s: %pV", 8172 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8173 } else { 8174 printk("%s(NULL net_device): %pV", level, vaf); 8175 } 8176 } 8177 8178 void netdev_printk(const char *level, const struct net_device *dev, 8179 const char *format, ...) 8180 { 8181 struct va_format vaf; 8182 va_list args; 8183 8184 va_start(args, format); 8185 8186 vaf.fmt = format; 8187 vaf.va = &args; 8188 8189 __netdev_printk(level, dev, &vaf); 8190 8191 va_end(args); 8192 } 8193 EXPORT_SYMBOL(netdev_printk); 8194 8195 #define define_netdev_printk_level(func, level) \ 8196 void func(const struct net_device *dev, const char *fmt, ...) \ 8197 { \ 8198 struct va_format vaf; \ 8199 va_list args; \ 8200 \ 8201 va_start(args, fmt); \ 8202 \ 8203 vaf.fmt = fmt; \ 8204 vaf.va = &args; \ 8205 \ 8206 __netdev_printk(level, dev, &vaf); \ 8207 \ 8208 va_end(args); \ 8209 } \ 8210 EXPORT_SYMBOL(func); 8211 8212 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8213 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8214 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8215 define_netdev_printk_level(netdev_err, KERN_ERR); 8216 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8217 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8218 define_netdev_printk_level(netdev_info, KERN_INFO); 8219 8220 static void __net_exit netdev_exit(struct net *net) 8221 { 8222 kfree(net->dev_name_head); 8223 kfree(net->dev_index_head); 8224 } 8225 8226 static struct pernet_operations __net_initdata netdev_net_ops = { 8227 .init = netdev_init, 8228 .exit = netdev_exit, 8229 }; 8230 8231 static void __net_exit default_device_exit(struct net *net) 8232 { 8233 struct net_device *dev, *aux; 8234 /* 8235 * Push all migratable network devices back to the 8236 * initial network namespace 8237 */ 8238 rtnl_lock(); 8239 for_each_netdev_safe(net, dev, aux) { 8240 int err; 8241 char fb_name[IFNAMSIZ]; 8242 8243 /* Ignore unmoveable devices (i.e. loopback) */ 8244 if (dev->features & NETIF_F_NETNS_LOCAL) 8245 continue; 8246 8247 /* Leave virtual devices for the generic cleanup */ 8248 if (dev->rtnl_link_ops) 8249 continue; 8250 8251 /* Push remaining network devices to init_net */ 8252 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8253 err = dev_change_net_namespace(dev, &init_net, fb_name); 8254 if (err) { 8255 pr_emerg("%s: failed to move %s to init_net: %d\n", 8256 __func__, dev->name, err); 8257 BUG(); 8258 } 8259 } 8260 rtnl_unlock(); 8261 } 8262 8263 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8264 { 8265 /* Return with the rtnl_lock held when there are no network 8266 * devices unregistering in any network namespace in net_list. 8267 */ 8268 struct net *net; 8269 bool unregistering; 8270 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8271 8272 add_wait_queue(&netdev_unregistering_wq, &wait); 8273 for (;;) { 8274 unregistering = false; 8275 rtnl_lock(); 8276 list_for_each_entry(net, net_list, exit_list) { 8277 if (net->dev_unreg_count > 0) { 8278 unregistering = true; 8279 break; 8280 } 8281 } 8282 if (!unregistering) 8283 break; 8284 __rtnl_unlock(); 8285 8286 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8287 } 8288 remove_wait_queue(&netdev_unregistering_wq, &wait); 8289 } 8290 8291 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8292 { 8293 /* At exit all network devices most be removed from a network 8294 * namespace. Do this in the reverse order of registration. 8295 * Do this across as many network namespaces as possible to 8296 * improve batching efficiency. 8297 */ 8298 struct net_device *dev; 8299 struct net *net; 8300 LIST_HEAD(dev_kill_list); 8301 8302 /* To prevent network device cleanup code from dereferencing 8303 * loopback devices or network devices that have been freed 8304 * wait here for all pending unregistrations to complete, 8305 * before unregistring the loopback device and allowing the 8306 * network namespace be freed. 8307 * 8308 * The netdev todo list containing all network devices 8309 * unregistrations that happen in default_device_exit_batch 8310 * will run in the rtnl_unlock() at the end of 8311 * default_device_exit_batch. 8312 */ 8313 rtnl_lock_unregistering(net_list); 8314 list_for_each_entry(net, net_list, exit_list) { 8315 for_each_netdev_reverse(net, dev) { 8316 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8317 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8318 else 8319 unregister_netdevice_queue(dev, &dev_kill_list); 8320 } 8321 } 8322 unregister_netdevice_many(&dev_kill_list); 8323 rtnl_unlock(); 8324 } 8325 8326 static struct pernet_operations __net_initdata default_device_ops = { 8327 .exit = default_device_exit, 8328 .exit_batch = default_device_exit_batch, 8329 }; 8330 8331 /* 8332 * Initialize the DEV module. At boot time this walks the device list and 8333 * unhooks any devices that fail to initialise (normally hardware not 8334 * present) and leaves us with a valid list of present and active devices. 8335 * 8336 */ 8337 8338 /* 8339 * This is called single threaded during boot, so no need 8340 * to take the rtnl semaphore. 8341 */ 8342 static int __init net_dev_init(void) 8343 { 8344 int i, rc = -ENOMEM; 8345 8346 BUG_ON(!dev_boot_phase); 8347 8348 if (dev_proc_init()) 8349 goto out; 8350 8351 if (netdev_kobject_init()) 8352 goto out; 8353 8354 INIT_LIST_HEAD(&ptype_all); 8355 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8356 INIT_LIST_HEAD(&ptype_base[i]); 8357 8358 INIT_LIST_HEAD(&offload_base); 8359 8360 if (register_pernet_subsys(&netdev_net_ops)) 8361 goto out; 8362 8363 /* 8364 * Initialise the packet receive queues. 8365 */ 8366 8367 for_each_possible_cpu(i) { 8368 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8369 struct softnet_data *sd = &per_cpu(softnet_data, i); 8370 8371 INIT_WORK(flush, flush_backlog); 8372 8373 skb_queue_head_init(&sd->input_pkt_queue); 8374 skb_queue_head_init(&sd->process_queue); 8375 INIT_LIST_HEAD(&sd->poll_list); 8376 sd->output_queue_tailp = &sd->output_queue; 8377 #ifdef CONFIG_RPS 8378 sd->csd.func = rps_trigger_softirq; 8379 sd->csd.info = sd; 8380 sd->cpu = i; 8381 #endif 8382 8383 sd->backlog.poll = process_backlog; 8384 sd->backlog.weight = weight_p; 8385 } 8386 8387 dev_boot_phase = 0; 8388 8389 /* The loopback device is special if any other network devices 8390 * is present in a network namespace the loopback device must 8391 * be present. Since we now dynamically allocate and free the 8392 * loopback device ensure this invariant is maintained by 8393 * keeping the loopback device as the first device on the 8394 * list of network devices. Ensuring the loopback devices 8395 * is the first device that appears and the last network device 8396 * that disappears. 8397 */ 8398 if (register_pernet_device(&loopback_net_ops)) 8399 goto out; 8400 8401 if (register_pernet_device(&default_device_ops)) 8402 goto out; 8403 8404 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8405 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8406 8407 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 8408 NULL, dev_cpu_dead); 8409 WARN_ON(rc < 0); 8410 dst_subsys_init(); 8411 rc = 0; 8412 out: 8413 return rc; 8414 } 8415 8416 subsys_initcall(net_dev_init); 8417