xref: /openbmc/linux/net/core/dev.c (revision e4781421e883340b796da5a724bda7226817990b)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143 
144 #include "net-sysfs.h"
145 
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148 
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151 
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly;	/* Taps */
156 static struct list_head offload_base __read_mostly;
157 
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160 					 struct net_device *dev,
161 					 struct netdev_notifier_info *info);
162 
163 /*
164  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165  * semaphore.
166  *
167  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168  *
169  * Writers must hold the rtnl semaphore while they loop through the
170  * dev_base_head list, and hold dev_base_lock for writing when they do the
171  * actual updates.  This allows pure readers to access the list even
172  * while a writer is preparing to update it.
173  *
174  * To put it another way, dev_base_lock is held for writing only to
175  * protect against pure readers; the rtnl semaphore provides the
176  * protection against other writers.
177  *
178  * See, for example usages, register_netdevice() and
179  * unregister_netdevice(), which must be called with the rtnl
180  * semaphore held.
181  */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184 
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187 
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190 
191 static seqcount_t devnet_rename_seq;
192 
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195 	while (++net->dev_base_seq == 0);
196 }
197 
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
201 
202 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204 
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209 
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 	spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216 
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 /* Device list insertion */
225 static void list_netdevice(struct net_device *dev)
226 {
227 	struct net *net = dev_net(dev);
228 
229 	ASSERT_RTNL();
230 
231 	write_lock_bh(&dev_base_lock);
232 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234 	hlist_add_head_rcu(&dev->index_hlist,
235 			   dev_index_hash(net, dev->ifindex));
236 	write_unlock_bh(&dev_base_lock);
237 
238 	dev_base_seq_inc(net);
239 }
240 
241 /* Device list removal
242  * caller must respect a RCU grace period before freeing/reusing dev
243  */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 	ASSERT_RTNL();
247 
248 	/* Unlink dev from the device chain */
249 	write_lock_bh(&dev_base_lock);
250 	list_del_rcu(&dev->dev_list);
251 	hlist_del_rcu(&dev->name_hlist);
252 	hlist_del_rcu(&dev->index_hlist);
253 	write_unlock_bh(&dev_base_lock);
254 
255 	dev_base_seq_inc(dev_net(dev));
256 }
257 
258 /*
259  *	Our notifier list
260  */
261 
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263 
264 /*
265  *	Device drivers call our routines to queue packets here. We empty the
266  *	queue in the local softnet handler.
267  */
268 
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271 
272 #ifdef CONFIG_LOCKDEP
273 /*
274  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275  * according to dev->type
276  */
277 static const unsigned short netdev_lock_type[] =
278 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
293 
294 static const char *const netdev_lock_name[] =
295 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
310 
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 	int i;
317 
318 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 		if (netdev_lock_type[i] == dev_type)
320 			return i;
321 	/* the last key is used by default */
322 	return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324 
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 						 unsigned short dev_type)
327 {
328 	int i;
329 
330 	i = netdev_lock_pos(dev_type);
331 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 				   netdev_lock_name[i]);
333 }
334 
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev->type);
340 	lockdep_set_class_and_name(&dev->addr_list_lock,
341 				   &netdev_addr_lock_key[i],
342 				   netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 						 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353 
354 /*******************************************************************************
355 
356 		Protocol management and registration routines
357 
358 *******************************************************************************/
359 
360 /*
361  *	Add a protocol ID to the list. Now that the input handler is
362  *	smarter we can dispense with all the messy stuff that used to be
363  *	here.
364  *
365  *	BEWARE!!! Protocol handlers, mangling input packets,
366  *	MUST BE last in hash buckets and checking protocol handlers
367  *	MUST start from promiscuous ptype_all chain in net_bh.
368  *	It is true now, do not change it.
369  *	Explanation follows: if protocol handler, mangling packet, will
370  *	be the first on list, it is not able to sense, that packet
371  *	is cloned and should be copied-on-write, so that it will
372  *	change it and subsequent readers will get broken packet.
373  *							--ANK (980803)
374  */
375 
376 static inline struct list_head *ptype_head(const struct packet_type *pt)
377 {
378 	if (pt->type == htons(ETH_P_ALL))
379 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
380 	else
381 		return pt->dev ? &pt->dev->ptype_specific :
382 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384 
385 /**
386  *	dev_add_pack - add packet handler
387  *	@pt: packet type declaration
388  *
389  *	Add a protocol handler to the networking stack. The passed &packet_type
390  *	is linked into kernel lists and may not be freed until it has been
391  *	removed from the kernel lists.
392  *
393  *	This call does not sleep therefore it can not
394  *	guarantee all CPU's that are in middle of receiving packets
395  *	will see the new packet type (until the next received packet).
396  */
397 
398 void dev_add_pack(struct packet_type *pt)
399 {
400 	struct list_head *head = ptype_head(pt);
401 
402 	spin_lock(&ptype_lock);
403 	list_add_rcu(&pt->list, head);
404 	spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407 
408 /**
409  *	__dev_remove_pack	 - remove packet handler
410  *	@pt: packet type declaration
411  *
412  *	Remove a protocol handler that was previously added to the kernel
413  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
414  *	from the kernel lists and can be freed or reused once this function
415  *	returns.
416  *
417  *      The packet type might still be in use by receivers
418  *	and must not be freed until after all the CPU's have gone
419  *	through a quiescent state.
420  */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 	struct list_head *head = ptype_head(pt);
424 	struct packet_type *pt1;
425 
426 	spin_lock(&ptype_lock);
427 
428 	list_for_each_entry(pt1, head, list) {
429 		if (pt == pt1) {
430 			list_del_rcu(&pt->list);
431 			goto out;
432 		}
433 	}
434 
435 	pr_warn("dev_remove_pack: %p not found\n", pt);
436 out:
437 	spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440 
441 /**
442  *	dev_remove_pack	 - remove packet handler
443  *	@pt: packet type declaration
444  *
445  *	Remove a protocol handler that was previously added to the kernel
446  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
447  *	from the kernel lists and can be freed or reused once this function
448  *	returns.
449  *
450  *	This call sleeps to guarantee that no CPU is looking at the packet
451  *	type after return.
452  */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 	__dev_remove_pack(pt);
456 
457 	synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460 
461 
462 /**
463  *	dev_add_offload - register offload handlers
464  *	@po: protocol offload declaration
465  *
466  *	Add protocol offload handlers to the networking stack. The passed
467  *	&proto_offload is linked into kernel lists and may not be freed until
468  *	it has been removed from the kernel lists.
469  *
470  *	This call does not sleep therefore it can not
471  *	guarantee all CPU's that are in middle of receiving packets
472  *	will see the new offload handlers (until the next received packet).
473  */
474 void dev_add_offload(struct packet_offload *po)
475 {
476 	struct packet_offload *elem;
477 
478 	spin_lock(&offload_lock);
479 	list_for_each_entry(elem, &offload_base, list) {
480 		if (po->priority < elem->priority)
481 			break;
482 	}
483 	list_add_rcu(&po->list, elem->list.prev);
484 	spin_unlock(&offload_lock);
485 }
486 EXPORT_SYMBOL(dev_add_offload);
487 
488 /**
489  *	__dev_remove_offload	 - remove offload handler
490  *	@po: packet offload declaration
491  *
492  *	Remove a protocol offload handler that was previously added to the
493  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
494  *	is removed from the kernel lists and can be freed or reused once this
495  *	function returns.
496  *
497  *      The packet type might still be in use by receivers
498  *	and must not be freed until after all the CPU's have gone
499  *	through a quiescent state.
500  */
501 static void __dev_remove_offload(struct packet_offload *po)
502 {
503 	struct list_head *head = &offload_base;
504 	struct packet_offload *po1;
505 
506 	spin_lock(&offload_lock);
507 
508 	list_for_each_entry(po1, head, list) {
509 		if (po == po1) {
510 			list_del_rcu(&po->list);
511 			goto out;
512 		}
513 	}
514 
515 	pr_warn("dev_remove_offload: %p not found\n", po);
516 out:
517 	spin_unlock(&offload_lock);
518 }
519 
520 /**
521  *	dev_remove_offload	 - remove packet offload handler
522  *	@po: packet offload declaration
523  *
524  *	Remove a packet offload handler that was previously added to the kernel
525  *	offload handlers by dev_add_offload(). The passed &offload_type is
526  *	removed from the kernel lists and can be freed or reused once this
527  *	function returns.
528  *
529  *	This call sleeps to guarantee that no CPU is looking at the packet
530  *	type after return.
531  */
532 void dev_remove_offload(struct packet_offload *po)
533 {
534 	__dev_remove_offload(po);
535 
536 	synchronize_net();
537 }
538 EXPORT_SYMBOL(dev_remove_offload);
539 
540 /******************************************************************************
541 
542 		      Device Boot-time Settings Routines
543 
544 *******************************************************************************/
545 
546 /* Boot time configuration table */
547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548 
549 /**
550  *	netdev_boot_setup_add	- add new setup entry
551  *	@name: name of the device
552  *	@map: configured settings for the device
553  *
554  *	Adds new setup entry to the dev_boot_setup list.  The function
555  *	returns 0 on error and 1 on success.  This is a generic routine to
556  *	all netdevices.
557  */
558 static int netdev_boot_setup_add(char *name, struct ifmap *map)
559 {
560 	struct netdev_boot_setup *s;
561 	int i;
562 
563 	s = dev_boot_setup;
564 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 			memset(s[i].name, 0, sizeof(s[i].name));
567 			strlcpy(s[i].name, name, IFNAMSIZ);
568 			memcpy(&s[i].map, map, sizeof(s[i].map));
569 			break;
570 		}
571 	}
572 
573 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574 }
575 
576 /**
577  *	netdev_boot_setup_check	- check boot time settings
578  *	@dev: the netdevice
579  *
580  * 	Check boot time settings for the device.
581  *	The found settings are set for the device to be used
582  *	later in the device probing.
583  *	Returns 0 if no settings found, 1 if they are.
584  */
585 int netdev_boot_setup_check(struct net_device *dev)
586 {
587 	struct netdev_boot_setup *s = dev_boot_setup;
588 	int i;
589 
590 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
592 		    !strcmp(dev->name, s[i].name)) {
593 			dev->irq 	= s[i].map.irq;
594 			dev->base_addr 	= s[i].map.base_addr;
595 			dev->mem_start 	= s[i].map.mem_start;
596 			dev->mem_end 	= s[i].map.mem_end;
597 			return 1;
598 		}
599 	}
600 	return 0;
601 }
602 EXPORT_SYMBOL(netdev_boot_setup_check);
603 
604 
605 /**
606  *	netdev_boot_base	- get address from boot time settings
607  *	@prefix: prefix for network device
608  *	@unit: id for network device
609  *
610  * 	Check boot time settings for the base address of device.
611  *	The found settings are set for the device to be used
612  *	later in the device probing.
613  *	Returns 0 if no settings found.
614  */
615 unsigned long netdev_boot_base(const char *prefix, int unit)
616 {
617 	const struct netdev_boot_setup *s = dev_boot_setup;
618 	char name[IFNAMSIZ];
619 	int i;
620 
621 	sprintf(name, "%s%d", prefix, unit);
622 
623 	/*
624 	 * If device already registered then return base of 1
625 	 * to indicate not to probe for this interface
626 	 */
627 	if (__dev_get_by_name(&init_net, name))
628 		return 1;
629 
630 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 		if (!strcmp(name, s[i].name))
632 			return s[i].map.base_addr;
633 	return 0;
634 }
635 
636 /*
637  * Saves at boot time configured settings for any netdevice.
638  */
639 int __init netdev_boot_setup(char *str)
640 {
641 	int ints[5];
642 	struct ifmap map;
643 
644 	str = get_options(str, ARRAY_SIZE(ints), ints);
645 	if (!str || !*str)
646 		return 0;
647 
648 	/* Save settings */
649 	memset(&map, 0, sizeof(map));
650 	if (ints[0] > 0)
651 		map.irq = ints[1];
652 	if (ints[0] > 1)
653 		map.base_addr = ints[2];
654 	if (ints[0] > 2)
655 		map.mem_start = ints[3];
656 	if (ints[0] > 3)
657 		map.mem_end = ints[4];
658 
659 	/* Add new entry to the list */
660 	return netdev_boot_setup_add(str, &map);
661 }
662 
663 __setup("netdev=", netdev_boot_setup);
664 
665 /*******************************************************************************
666 
667 			    Device Interface Subroutines
668 
669 *******************************************************************************/
670 
671 /**
672  *	dev_get_iflink	- get 'iflink' value of a interface
673  *	@dev: targeted interface
674  *
675  *	Indicates the ifindex the interface is linked to.
676  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
677  */
678 
679 int dev_get_iflink(const struct net_device *dev)
680 {
681 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 		return dev->netdev_ops->ndo_get_iflink(dev);
683 
684 	return dev->ifindex;
685 }
686 EXPORT_SYMBOL(dev_get_iflink);
687 
688 /**
689  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
690  *	@dev: targeted interface
691  *	@skb: The packet.
692  *
693  *	For better visibility of tunnel traffic OVS needs to retrieve
694  *	egress tunnel information for a packet. Following API allows
695  *	user to get this info.
696  */
697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698 {
699 	struct ip_tunnel_info *info;
700 
701 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
702 		return -EINVAL;
703 
704 	info = skb_tunnel_info_unclone(skb);
705 	if (!info)
706 		return -ENOMEM;
707 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 		return -EINVAL;
709 
710 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711 }
712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713 
714 /**
715  *	__dev_get_by_name	- find a device by its name
716  *	@net: the applicable net namespace
717  *	@name: name to find
718  *
719  *	Find an interface by name. Must be called under RTNL semaphore
720  *	or @dev_base_lock. If the name is found a pointer to the device
721  *	is returned. If the name is not found then %NULL is returned. The
722  *	reference counters are not incremented so the caller must be
723  *	careful with locks.
724  */
725 
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 {
728 	struct net_device *dev;
729 	struct hlist_head *head = dev_name_hash(net, name);
730 
731 	hlist_for_each_entry(dev, head, name_hlist)
732 		if (!strncmp(dev->name, name, IFNAMSIZ))
733 			return dev;
734 
735 	return NULL;
736 }
737 EXPORT_SYMBOL(__dev_get_by_name);
738 
739 /**
740  *	dev_get_by_name_rcu	- find a device by its name
741  *	@net: the applicable net namespace
742  *	@name: name to find
743  *
744  *	Find an interface by name.
745  *	If the name is found a pointer to the device is returned.
746  * 	If the name is not found then %NULL is returned.
747  *	The reference counters are not incremented so the caller must be
748  *	careful with locks. The caller must hold RCU lock.
749  */
750 
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752 {
753 	struct net_device *dev;
754 	struct hlist_head *head = dev_name_hash(net, name);
755 
756 	hlist_for_each_entry_rcu(dev, head, name_hlist)
757 		if (!strncmp(dev->name, name, IFNAMSIZ))
758 			return dev;
759 
760 	return NULL;
761 }
762 EXPORT_SYMBOL(dev_get_by_name_rcu);
763 
764 /**
765  *	dev_get_by_name		- find a device by its name
766  *	@net: the applicable net namespace
767  *	@name: name to find
768  *
769  *	Find an interface by name. This can be called from any
770  *	context and does its own locking. The returned handle has
771  *	the usage count incremented and the caller must use dev_put() to
772  *	release it when it is no longer needed. %NULL is returned if no
773  *	matching device is found.
774  */
775 
776 struct net_device *dev_get_by_name(struct net *net, const char *name)
777 {
778 	struct net_device *dev;
779 
780 	rcu_read_lock();
781 	dev = dev_get_by_name_rcu(net, name);
782 	if (dev)
783 		dev_hold(dev);
784 	rcu_read_unlock();
785 	return dev;
786 }
787 EXPORT_SYMBOL(dev_get_by_name);
788 
789 /**
790  *	__dev_get_by_index - find a device by its ifindex
791  *	@net: the applicable net namespace
792  *	@ifindex: index of device
793  *
794  *	Search for an interface by index. Returns %NULL if the device
795  *	is not found or a pointer to the device. The device has not
796  *	had its reference counter increased so the caller must be careful
797  *	about locking. The caller must hold either the RTNL semaphore
798  *	or @dev_base_lock.
799  */
800 
801 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
802 {
803 	struct net_device *dev;
804 	struct hlist_head *head = dev_index_hash(net, ifindex);
805 
806 	hlist_for_each_entry(dev, head, index_hlist)
807 		if (dev->ifindex == ifindex)
808 			return dev;
809 
810 	return NULL;
811 }
812 EXPORT_SYMBOL(__dev_get_by_index);
813 
814 /**
815  *	dev_get_by_index_rcu - find a device by its ifindex
816  *	@net: the applicable net namespace
817  *	@ifindex: index of device
818  *
819  *	Search for an interface by index. Returns %NULL if the device
820  *	is not found or a pointer to the device. The device has not
821  *	had its reference counter increased so the caller must be careful
822  *	about locking. The caller must hold RCU lock.
823  */
824 
825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826 {
827 	struct net_device *dev;
828 	struct hlist_head *head = dev_index_hash(net, ifindex);
829 
830 	hlist_for_each_entry_rcu(dev, head, index_hlist)
831 		if (dev->ifindex == ifindex)
832 			return dev;
833 
834 	return NULL;
835 }
836 EXPORT_SYMBOL(dev_get_by_index_rcu);
837 
838 
839 /**
840  *	dev_get_by_index - find a device by its ifindex
841  *	@net: the applicable net namespace
842  *	@ifindex: index of device
843  *
844  *	Search for an interface by index. Returns NULL if the device
845  *	is not found or a pointer to the device. The device returned has
846  *	had a reference added and the pointer is safe until the user calls
847  *	dev_put to indicate they have finished with it.
848  */
849 
850 struct net_device *dev_get_by_index(struct net *net, int ifindex)
851 {
852 	struct net_device *dev;
853 
854 	rcu_read_lock();
855 	dev = dev_get_by_index_rcu(net, ifindex);
856 	if (dev)
857 		dev_hold(dev);
858 	rcu_read_unlock();
859 	return dev;
860 }
861 EXPORT_SYMBOL(dev_get_by_index);
862 
863 /**
864  *	netdev_get_name - get a netdevice name, knowing its ifindex.
865  *	@net: network namespace
866  *	@name: a pointer to the buffer where the name will be stored.
867  *	@ifindex: the ifindex of the interface to get the name from.
868  *
869  *	The use of raw_seqcount_begin() and cond_resched() before
870  *	retrying is required as we want to give the writers a chance
871  *	to complete when CONFIG_PREEMPT is not set.
872  */
873 int netdev_get_name(struct net *net, char *name, int ifindex)
874 {
875 	struct net_device *dev;
876 	unsigned int seq;
877 
878 retry:
879 	seq = raw_seqcount_begin(&devnet_rename_seq);
880 	rcu_read_lock();
881 	dev = dev_get_by_index_rcu(net, ifindex);
882 	if (!dev) {
883 		rcu_read_unlock();
884 		return -ENODEV;
885 	}
886 
887 	strcpy(name, dev->name);
888 	rcu_read_unlock();
889 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 		cond_resched();
891 		goto retry;
892 	}
893 
894 	return 0;
895 }
896 
897 /**
898  *	dev_getbyhwaddr_rcu - find a device by its hardware address
899  *	@net: the applicable net namespace
900  *	@type: media type of device
901  *	@ha: hardware address
902  *
903  *	Search for an interface by MAC address. Returns NULL if the device
904  *	is not found or a pointer to the device.
905  *	The caller must hold RCU or RTNL.
906  *	The returned device has not had its ref count increased
907  *	and the caller must therefore be careful about locking
908  *
909  */
910 
911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 				       const char *ha)
913 {
914 	struct net_device *dev;
915 
916 	for_each_netdev_rcu(net, dev)
917 		if (dev->type == type &&
918 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
919 			return dev;
920 
921 	return NULL;
922 }
923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
924 
925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
926 {
927 	struct net_device *dev;
928 
929 	ASSERT_RTNL();
930 	for_each_netdev(net, dev)
931 		if (dev->type == type)
932 			return dev;
933 
934 	return NULL;
935 }
936 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937 
938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
939 {
940 	struct net_device *dev, *ret = NULL;
941 
942 	rcu_read_lock();
943 	for_each_netdev_rcu(net, dev)
944 		if (dev->type == type) {
945 			dev_hold(dev);
946 			ret = dev;
947 			break;
948 		}
949 	rcu_read_unlock();
950 	return ret;
951 }
952 EXPORT_SYMBOL(dev_getfirstbyhwtype);
953 
954 /**
955  *	__dev_get_by_flags - find any device with given flags
956  *	@net: the applicable net namespace
957  *	@if_flags: IFF_* values
958  *	@mask: bitmask of bits in if_flags to check
959  *
960  *	Search for any interface with the given flags. Returns NULL if a device
961  *	is not found or a pointer to the device. Must be called inside
962  *	rtnl_lock(), and result refcount is unchanged.
963  */
964 
965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 				      unsigned short mask)
967 {
968 	struct net_device *dev, *ret;
969 
970 	ASSERT_RTNL();
971 
972 	ret = NULL;
973 	for_each_netdev(net, dev) {
974 		if (((dev->flags ^ if_flags) & mask) == 0) {
975 			ret = dev;
976 			break;
977 		}
978 	}
979 	return ret;
980 }
981 EXPORT_SYMBOL(__dev_get_by_flags);
982 
983 /**
984  *	dev_valid_name - check if name is okay for network device
985  *	@name: name string
986  *
987  *	Network device names need to be valid file names to
988  *	to allow sysfs to work.  We also disallow any kind of
989  *	whitespace.
990  */
991 bool dev_valid_name(const char *name)
992 {
993 	if (*name == '\0')
994 		return false;
995 	if (strlen(name) >= IFNAMSIZ)
996 		return false;
997 	if (!strcmp(name, ".") || !strcmp(name, ".."))
998 		return false;
999 
1000 	while (*name) {
1001 		if (*name == '/' || *name == ':' || isspace(*name))
1002 			return false;
1003 		name++;
1004 	}
1005 	return true;
1006 }
1007 EXPORT_SYMBOL(dev_valid_name);
1008 
1009 /**
1010  *	__dev_alloc_name - allocate a name for a device
1011  *	@net: network namespace to allocate the device name in
1012  *	@name: name format string
1013  *	@buf:  scratch buffer and result name string
1014  *
1015  *	Passed a format string - eg "lt%d" it will try and find a suitable
1016  *	id. It scans list of devices to build up a free map, then chooses
1017  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1018  *	while allocating the name and adding the device in order to avoid
1019  *	duplicates.
1020  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021  *	Returns the number of the unit assigned or a negative errno code.
1022  */
1023 
1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1025 {
1026 	int i = 0;
1027 	const char *p;
1028 	const int max_netdevices = 8*PAGE_SIZE;
1029 	unsigned long *inuse;
1030 	struct net_device *d;
1031 
1032 	p = strnchr(name, IFNAMSIZ-1, '%');
1033 	if (p) {
1034 		/*
1035 		 * Verify the string as this thing may have come from
1036 		 * the user.  There must be either one "%d" and no other "%"
1037 		 * characters.
1038 		 */
1039 		if (p[1] != 'd' || strchr(p + 2, '%'))
1040 			return -EINVAL;
1041 
1042 		/* Use one page as a bit array of possible slots */
1043 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044 		if (!inuse)
1045 			return -ENOMEM;
1046 
1047 		for_each_netdev(net, d) {
1048 			if (!sscanf(d->name, name, &i))
1049 				continue;
1050 			if (i < 0 || i >= max_netdevices)
1051 				continue;
1052 
1053 			/*  avoid cases where sscanf is not exact inverse of printf */
1054 			snprintf(buf, IFNAMSIZ, name, i);
1055 			if (!strncmp(buf, d->name, IFNAMSIZ))
1056 				set_bit(i, inuse);
1057 		}
1058 
1059 		i = find_first_zero_bit(inuse, max_netdevices);
1060 		free_page((unsigned long) inuse);
1061 	}
1062 
1063 	if (buf != name)
1064 		snprintf(buf, IFNAMSIZ, name, i);
1065 	if (!__dev_get_by_name(net, buf))
1066 		return i;
1067 
1068 	/* It is possible to run out of possible slots
1069 	 * when the name is long and there isn't enough space left
1070 	 * for the digits, or if all bits are used.
1071 	 */
1072 	return -ENFILE;
1073 }
1074 
1075 /**
1076  *	dev_alloc_name - allocate a name for a device
1077  *	@dev: device
1078  *	@name: name format string
1079  *
1080  *	Passed a format string - eg "lt%d" it will try and find a suitable
1081  *	id. It scans list of devices to build up a free map, then chooses
1082  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *	while allocating the name and adding the device in order to avoid
1084  *	duplicates.
1085  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *	Returns the number of the unit assigned or a negative errno code.
1087  */
1088 
1089 int dev_alloc_name(struct net_device *dev, const char *name)
1090 {
1091 	char buf[IFNAMSIZ];
1092 	struct net *net;
1093 	int ret;
1094 
1095 	BUG_ON(!dev_net(dev));
1096 	net = dev_net(dev);
1097 	ret = __dev_alloc_name(net, name, buf);
1098 	if (ret >= 0)
1099 		strlcpy(dev->name, buf, IFNAMSIZ);
1100 	return ret;
1101 }
1102 EXPORT_SYMBOL(dev_alloc_name);
1103 
1104 static int dev_alloc_name_ns(struct net *net,
1105 			     struct net_device *dev,
1106 			     const char *name)
1107 {
1108 	char buf[IFNAMSIZ];
1109 	int ret;
1110 
1111 	ret = __dev_alloc_name(net, name, buf);
1112 	if (ret >= 0)
1113 		strlcpy(dev->name, buf, IFNAMSIZ);
1114 	return ret;
1115 }
1116 
1117 static int dev_get_valid_name(struct net *net,
1118 			      struct net_device *dev,
1119 			      const char *name)
1120 {
1121 	BUG_ON(!net);
1122 
1123 	if (!dev_valid_name(name))
1124 		return -EINVAL;
1125 
1126 	if (strchr(name, '%'))
1127 		return dev_alloc_name_ns(net, dev, name);
1128 	else if (__dev_get_by_name(net, name))
1129 		return -EEXIST;
1130 	else if (dev->name != name)
1131 		strlcpy(dev->name, name, IFNAMSIZ);
1132 
1133 	return 0;
1134 }
1135 
1136 /**
1137  *	dev_change_name - change name of a device
1138  *	@dev: device
1139  *	@newname: name (or format string) must be at least IFNAMSIZ
1140  *
1141  *	Change name of a device, can pass format strings "eth%d".
1142  *	for wildcarding.
1143  */
1144 int dev_change_name(struct net_device *dev, const char *newname)
1145 {
1146 	unsigned char old_assign_type;
1147 	char oldname[IFNAMSIZ];
1148 	int err = 0;
1149 	int ret;
1150 	struct net *net;
1151 
1152 	ASSERT_RTNL();
1153 	BUG_ON(!dev_net(dev));
1154 
1155 	net = dev_net(dev);
1156 	if (dev->flags & IFF_UP)
1157 		return -EBUSY;
1158 
1159 	write_seqcount_begin(&devnet_rename_seq);
1160 
1161 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1162 		write_seqcount_end(&devnet_rename_seq);
1163 		return 0;
1164 	}
1165 
1166 	memcpy(oldname, dev->name, IFNAMSIZ);
1167 
1168 	err = dev_get_valid_name(net, dev, newname);
1169 	if (err < 0) {
1170 		write_seqcount_end(&devnet_rename_seq);
1171 		return err;
1172 	}
1173 
1174 	if (oldname[0] && !strchr(oldname, '%'))
1175 		netdev_info(dev, "renamed from %s\n", oldname);
1176 
1177 	old_assign_type = dev->name_assign_type;
1178 	dev->name_assign_type = NET_NAME_RENAMED;
1179 
1180 rollback:
1181 	ret = device_rename(&dev->dev, dev->name);
1182 	if (ret) {
1183 		memcpy(dev->name, oldname, IFNAMSIZ);
1184 		dev->name_assign_type = old_assign_type;
1185 		write_seqcount_end(&devnet_rename_seq);
1186 		return ret;
1187 	}
1188 
1189 	write_seqcount_end(&devnet_rename_seq);
1190 
1191 	netdev_adjacent_rename_links(dev, oldname);
1192 
1193 	write_lock_bh(&dev_base_lock);
1194 	hlist_del_rcu(&dev->name_hlist);
1195 	write_unlock_bh(&dev_base_lock);
1196 
1197 	synchronize_rcu();
1198 
1199 	write_lock_bh(&dev_base_lock);
1200 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1201 	write_unlock_bh(&dev_base_lock);
1202 
1203 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1204 	ret = notifier_to_errno(ret);
1205 
1206 	if (ret) {
1207 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1208 		if (err >= 0) {
1209 			err = ret;
1210 			write_seqcount_begin(&devnet_rename_seq);
1211 			memcpy(dev->name, oldname, IFNAMSIZ);
1212 			memcpy(oldname, newname, IFNAMSIZ);
1213 			dev->name_assign_type = old_assign_type;
1214 			old_assign_type = NET_NAME_RENAMED;
1215 			goto rollback;
1216 		} else {
1217 			pr_err("%s: name change rollback failed: %d\n",
1218 			       dev->name, ret);
1219 		}
1220 	}
1221 
1222 	return err;
1223 }
1224 
1225 /**
1226  *	dev_set_alias - change ifalias of a device
1227  *	@dev: device
1228  *	@alias: name up to IFALIASZ
1229  *	@len: limit of bytes to copy from info
1230  *
1231  *	Set ifalias for a device,
1232  */
1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234 {
1235 	char *new_ifalias;
1236 
1237 	ASSERT_RTNL();
1238 
1239 	if (len >= IFALIASZ)
1240 		return -EINVAL;
1241 
1242 	if (!len) {
1243 		kfree(dev->ifalias);
1244 		dev->ifalias = NULL;
1245 		return 0;
1246 	}
1247 
1248 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 	if (!new_ifalias)
1250 		return -ENOMEM;
1251 	dev->ifalias = new_ifalias;
1252 
1253 	strlcpy(dev->ifalias, alias, len+1);
1254 	return len;
1255 }
1256 
1257 
1258 /**
1259  *	netdev_features_change - device changes features
1260  *	@dev: device to cause notification
1261  *
1262  *	Called to indicate a device has changed features.
1263  */
1264 void netdev_features_change(struct net_device *dev)
1265 {
1266 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1267 }
1268 EXPORT_SYMBOL(netdev_features_change);
1269 
1270 /**
1271  *	netdev_state_change - device changes state
1272  *	@dev: device to cause notification
1273  *
1274  *	Called to indicate a device has changed state. This function calls
1275  *	the notifier chains for netdev_chain and sends a NEWLINK message
1276  *	to the routing socket.
1277  */
1278 void netdev_state_change(struct net_device *dev)
1279 {
1280 	if (dev->flags & IFF_UP) {
1281 		struct netdev_notifier_change_info change_info;
1282 
1283 		change_info.flags_changed = 0;
1284 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 					      &change_info.info);
1286 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1287 	}
1288 }
1289 EXPORT_SYMBOL(netdev_state_change);
1290 
1291 /**
1292  * 	netdev_notify_peers - notify network peers about existence of @dev
1293  * 	@dev: network device
1294  *
1295  * Generate traffic such that interested network peers are aware of
1296  * @dev, such as by generating a gratuitous ARP. This may be used when
1297  * a device wants to inform the rest of the network about some sort of
1298  * reconfiguration such as a failover event or virtual machine
1299  * migration.
1300  */
1301 void netdev_notify_peers(struct net_device *dev)
1302 {
1303 	rtnl_lock();
1304 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 	rtnl_unlock();
1306 }
1307 EXPORT_SYMBOL(netdev_notify_peers);
1308 
1309 static int __dev_open(struct net_device *dev)
1310 {
1311 	const struct net_device_ops *ops = dev->netdev_ops;
1312 	int ret;
1313 
1314 	ASSERT_RTNL();
1315 
1316 	if (!netif_device_present(dev))
1317 		return -ENODEV;
1318 
1319 	/* Block netpoll from trying to do any rx path servicing.
1320 	 * If we don't do this there is a chance ndo_poll_controller
1321 	 * or ndo_poll may be running while we open the device
1322 	 */
1323 	netpoll_poll_disable(dev);
1324 
1325 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 	ret = notifier_to_errno(ret);
1327 	if (ret)
1328 		return ret;
1329 
1330 	set_bit(__LINK_STATE_START, &dev->state);
1331 
1332 	if (ops->ndo_validate_addr)
1333 		ret = ops->ndo_validate_addr(dev);
1334 
1335 	if (!ret && ops->ndo_open)
1336 		ret = ops->ndo_open(dev);
1337 
1338 	netpoll_poll_enable(dev);
1339 
1340 	if (ret)
1341 		clear_bit(__LINK_STATE_START, &dev->state);
1342 	else {
1343 		dev->flags |= IFF_UP;
1344 		dev_set_rx_mode(dev);
1345 		dev_activate(dev);
1346 		add_device_randomness(dev->dev_addr, dev->addr_len);
1347 	}
1348 
1349 	return ret;
1350 }
1351 
1352 /**
1353  *	dev_open	- prepare an interface for use.
1354  *	@dev:	device to open
1355  *
1356  *	Takes a device from down to up state. The device's private open
1357  *	function is invoked and then the multicast lists are loaded. Finally
1358  *	the device is moved into the up state and a %NETDEV_UP message is
1359  *	sent to the netdev notifier chain.
1360  *
1361  *	Calling this function on an active interface is a nop. On a failure
1362  *	a negative errno code is returned.
1363  */
1364 int dev_open(struct net_device *dev)
1365 {
1366 	int ret;
1367 
1368 	if (dev->flags & IFF_UP)
1369 		return 0;
1370 
1371 	ret = __dev_open(dev);
1372 	if (ret < 0)
1373 		return ret;
1374 
1375 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376 	call_netdevice_notifiers(NETDEV_UP, dev);
1377 
1378 	return ret;
1379 }
1380 EXPORT_SYMBOL(dev_open);
1381 
1382 static int __dev_close_many(struct list_head *head)
1383 {
1384 	struct net_device *dev;
1385 
1386 	ASSERT_RTNL();
1387 	might_sleep();
1388 
1389 	list_for_each_entry(dev, head, close_list) {
1390 		/* Temporarily disable netpoll until the interface is down */
1391 		netpoll_poll_disable(dev);
1392 
1393 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1394 
1395 		clear_bit(__LINK_STATE_START, &dev->state);
1396 
1397 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1398 		 * can be even on different cpu. So just clear netif_running().
1399 		 *
1400 		 * dev->stop() will invoke napi_disable() on all of it's
1401 		 * napi_struct instances on this device.
1402 		 */
1403 		smp_mb__after_atomic(); /* Commit netif_running(). */
1404 	}
1405 
1406 	dev_deactivate_many(head);
1407 
1408 	list_for_each_entry(dev, head, close_list) {
1409 		const struct net_device_ops *ops = dev->netdev_ops;
1410 
1411 		/*
1412 		 *	Call the device specific close. This cannot fail.
1413 		 *	Only if device is UP
1414 		 *
1415 		 *	We allow it to be called even after a DETACH hot-plug
1416 		 *	event.
1417 		 */
1418 		if (ops->ndo_stop)
1419 			ops->ndo_stop(dev);
1420 
1421 		dev->flags &= ~IFF_UP;
1422 		netpoll_poll_enable(dev);
1423 	}
1424 
1425 	return 0;
1426 }
1427 
1428 static int __dev_close(struct net_device *dev)
1429 {
1430 	int retval;
1431 	LIST_HEAD(single);
1432 
1433 	list_add(&dev->close_list, &single);
1434 	retval = __dev_close_many(&single);
1435 	list_del(&single);
1436 
1437 	return retval;
1438 }
1439 
1440 int dev_close_many(struct list_head *head, bool unlink)
1441 {
1442 	struct net_device *dev, *tmp;
1443 
1444 	/* Remove the devices that don't need to be closed */
1445 	list_for_each_entry_safe(dev, tmp, head, close_list)
1446 		if (!(dev->flags & IFF_UP))
1447 			list_del_init(&dev->close_list);
1448 
1449 	__dev_close_many(head);
1450 
1451 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1452 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1453 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1454 		if (unlink)
1455 			list_del_init(&dev->close_list);
1456 	}
1457 
1458 	return 0;
1459 }
1460 EXPORT_SYMBOL(dev_close_many);
1461 
1462 /**
1463  *	dev_close - shutdown an interface.
1464  *	@dev: device to shutdown
1465  *
1466  *	This function moves an active device into down state. A
1467  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469  *	chain.
1470  */
1471 int dev_close(struct net_device *dev)
1472 {
1473 	if (dev->flags & IFF_UP) {
1474 		LIST_HEAD(single);
1475 
1476 		list_add(&dev->close_list, &single);
1477 		dev_close_many(&single, true);
1478 		list_del(&single);
1479 	}
1480 	return 0;
1481 }
1482 EXPORT_SYMBOL(dev_close);
1483 
1484 
1485 /**
1486  *	dev_disable_lro - disable Large Receive Offload on a device
1487  *	@dev: device
1488  *
1489  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1490  *	called under RTNL.  This is needed if received packets may be
1491  *	forwarded to another interface.
1492  */
1493 void dev_disable_lro(struct net_device *dev)
1494 {
1495 	struct net_device *lower_dev;
1496 	struct list_head *iter;
1497 
1498 	dev->wanted_features &= ~NETIF_F_LRO;
1499 	netdev_update_features(dev);
1500 
1501 	if (unlikely(dev->features & NETIF_F_LRO))
1502 		netdev_WARN(dev, "failed to disable LRO!\n");
1503 
1504 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 		dev_disable_lro(lower_dev);
1506 }
1507 EXPORT_SYMBOL(dev_disable_lro);
1508 
1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 				   struct net_device *dev)
1511 {
1512 	struct netdev_notifier_info info;
1513 
1514 	netdev_notifier_info_init(&info, dev);
1515 	return nb->notifier_call(nb, val, &info);
1516 }
1517 
1518 static int dev_boot_phase = 1;
1519 
1520 /**
1521  *	register_netdevice_notifier - register a network notifier block
1522  *	@nb: notifier
1523  *
1524  *	Register a notifier to be called when network device events occur.
1525  *	The notifier passed is linked into the kernel structures and must
1526  *	not be reused until it has been unregistered. A negative errno code
1527  *	is returned on a failure.
1528  *
1529  * 	When registered all registration and up events are replayed
1530  *	to the new notifier to allow device to have a race free
1531  *	view of the network device list.
1532  */
1533 
1534 int register_netdevice_notifier(struct notifier_block *nb)
1535 {
1536 	struct net_device *dev;
1537 	struct net_device *last;
1538 	struct net *net;
1539 	int err;
1540 
1541 	rtnl_lock();
1542 	err = raw_notifier_chain_register(&netdev_chain, nb);
1543 	if (err)
1544 		goto unlock;
1545 	if (dev_boot_phase)
1546 		goto unlock;
1547 	for_each_net(net) {
1548 		for_each_netdev(net, dev) {
1549 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1550 			err = notifier_to_errno(err);
1551 			if (err)
1552 				goto rollback;
1553 
1554 			if (!(dev->flags & IFF_UP))
1555 				continue;
1556 
1557 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1558 		}
1559 	}
1560 
1561 unlock:
1562 	rtnl_unlock();
1563 	return err;
1564 
1565 rollback:
1566 	last = dev;
1567 	for_each_net(net) {
1568 		for_each_netdev(net, dev) {
1569 			if (dev == last)
1570 				goto outroll;
1571 
1572 			if (dev->flags & IFF_UP) {
1573 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 							dev);
1575 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1576 			}
1577 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1578 		}
1579 	}
1580 
1581 outroll:
1582 	raw_notifier_chain_unregister(&netdev_chain, nb);
1583 	goto unlock;
1584 }
1585 EXPORT_SYMBOL(register_netdevice_notifier);
1586 
1587 /**
1588  *	unregister_netdevice_notifier - unregister a network notifier block
1589  *	@nb: notifier
1590  *
1591  *	Unregister a notifier previously registered by
1592  *	register_netdevice_notifier(). The notifier is unlinked into the
1593  *	kernel structures and may then be reused. A negative errno code
1594  *	is returned on a failure.
1595  *
1596  * 	After unregistering unregister and down device events are synthesized
1597  *	for all devices on the device list to the removed notifier to remove
1598  *	the need for special case cleanup code.
1599  */
1600 
1601 int unregister_netdevice_notifier(struct notifier_block *nb)
1602 {
1603 	struct net_device *dev;
1604 	struct net *net;
1605 	int err;
1606 
1607 	rtnl_lock();
1608 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1609 	if (err)
1610 		goto unlock;
1611 
1612 	for_each_net(net) {
1613 		for_each_netdev(net, dev) {
1614 			if (dev->flags & IFF_UP) {
1615 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 							dev);
1617 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1618 			}
1619 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1620 		}
1621 	}
1622 unlock:
1623 	rtnl_unlock();
1624 	return err;
1625 }
1626 EXPORT_SYMBOL(unregister_netdevice_notifier);
1627 
1628 /**
1629  *	call_netdevice_notifiers_info - call all network notifier blocks
1630  *	@val: value passed unmodified to notifier function
1631  *	@dev: net_device pointer passed unmodified to notifier function
1632  *	@info: notifier information data
1633  *
1634  *	Call all network notifier blocks.  Parameters and return value
1635  *	are as for raw_notifier_call_chain().
1636  */
1637 
1638 static int call_netdevice_notifiers_info(unsigned long val,
1639 					 struct net_device *dev,
1640 					 struct netdev_notifier_info *info)
1641 {
1642 	ASSERT_RTNL();
1643 	netdev_notifier_info_init(info, dev);
1644 	return raw_notifier_call_chain(&netdev_chain, val, info);
1645 }
1646 
1647 /**
1648  *	call_netdevice_notifiers - call all network notifier blocks
1649  *      @val: value passed unmodified to notifier function
1650  *      @dev: net_device pointer passed unmodified to notifier function
1651  *
1652  *	Call all network notifier blocks.  Parameters and return value
1653  *	are as for raw_notifier_call_chain().
1654  */
1655 
1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1657 {
1658 	struct netdev_notifier_info info;
1659 
1660 	return call_netdevice_notifiers_info(val, dev, &info);
1661 }
1662 EXPORT_SYMBOL(call_netdevice_notifiers);
1663 
1664 #ifdef CONFIG_NET_INGRESS
1665 static struct static_key ingress_needed __read_mostly;
1666 
1667 void net_inc_ingress_queue(void)
1668 {
1669 	static_key_slow_inc(&ingress_needed);
1670 }
1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672 
1673 void net_dec_ingress_queue(void)
1674 {
1675 	static_key_slow_dec(&ingress_needed);
1676 }
1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678 #endif
1679 
1680 #ifdef CONFIG_NET_EGRESS
1681 static struct static_key egress_needed __read_mostly;
1682 
1683 void net_inc_egress_queue(void)
1684 {
1685 	static_key_slow_inc(&egress_needed);
1686 }
1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688 
1689 void net_dec_egress_queue(void)
1690 {
1691 	static_key_slow_dec(&egress_needed);
1692 }
1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694 #endif
1695 
1696 static struct static_key netstamp_needed __read_mostly;
1697 #ifdef HAVE_JUMP_LABEL
1698 /* We are not allowed to call static_key_slow_dec() from irq context
1699  * If net_disable_timestamp() is called from irq context, defer the
1700  * static_key_slow_dec() calls.
1701  */
1702 static atomic_t netstamp_needed_deferred;
1703 #endif
1704 
1705 void net_enable_timestamp(void)
1706 {
1707 #ifdef HAVE_JUMP_LABEL
1708 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709 
1710 	if (deferred) {
1711 		while (--deferred)
1712 			static_key_slow_dec(&netstamp_needed);
1713 		return;
1714 	}
1715 #endif
1716 	static_key_slow_inc(&netstamp_needed);
1717 }
1718 EXPORT_SYMBOL(net_enable_timestamp);
1719 
1720 void net_disable_timestamp(void)
1721 {
1722 #ifdef HAVE_JUMP_LABEL
1723 	if (in_interrupt()) {
1724 		atomic_inc(&netstamp_needed_deferred);
1725 		return;
1726 	}
1727 #endif
1728 	static_key_slow_dec(&netstamp_needed);
1729 }
1730 EXPORT_SYMBOL(net_disable_timestamp);
1731 
1732 static inline void net_timestamp_set(struct sk_buff *skb)
1733 {
1734 	skb->tstamp = 0;
1735 	if (static_key_false(&netstamp_needed))
1736 		__net_timestamp(skb);
1737 }
1738 
1739 #define net_timestamp_check(COND, SKB)			\
1740 	if (static_key_false(&netstamp_needed)) {		\
1741 		if ((COND) && !(SKB)->tstamp)	\
1742 			__net_timestamp(SKB);		\
1743 	}						\
1744 
1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1746 {
1747 	unsigned int len;
1748 
1749 	if (!(dev->flags & IFF_UP))
1750 		return false;
1751 
1752 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753 	if (skb->len <= len)
1754 		return true;
1755 
1756 	/* if TSO is enabled, we don't care about the length as the packet
1757 	 * could be forwarded without being segmented before
1758 	 */
1759 	if (skb_is_gso(skb))
1760 		return true;
1761 
1762 	return false;
1763 }
1764 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1765 
1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767 {
1768 	int ret = ____dev_forward_skb(dev, skb);
1769 
1770 	if (likely(!ret)) {
1771 		skb->protocol = eth_type_trans(skb, dev);
1772 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1773 	}
1774 
1775 	return ret;
1776 }
1777 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1778 
1779 /**
1780  * dev_forward_skb - loopback an skb to another netif
1781  *
1782  * @dev: destination network device
1783  * @skb: buffer to forward
1784  *
1785  * return values:
1786  *	NET_RX_SUCCESS	(no congestion)
1787  *	NET_RX_DROP     (packet was dropped, but freed)
1788  *
1789  * dev_forward_skb can be used for injecting an skb from the
1790  * start_xmit function of one device into the receive queue
1791  * of another device.
1792  *
1793  * The receiving device may be in another namespace, so
1794  * we have to clear all information in the skb that could
1795  * impact namespace isolation.
1796  */
1797 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1798 {
1799 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1800 }
1801 EXPORT_SYMBOL_GPL(dev_forward_skb);
1802 
1803 static inline int deliver_skb(struct sk_buff *skb,
1804 			      struct packet_type *pt_prev,
1805 			      struct net_device *orig_dev)
1806 {
1807 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1808 		return -ENOMEM;
1809 	atomic_inc(&skb->users);
1810 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1811 }
1812 
1813 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1814 					  struct packet_type **pt,
1815 					  struct net_device *orig_dev,
1816 					  __be16 type,
1817 					  struct list_head *ptype_list)
1818 {
1819 	struct packet_type *ptype, *pt_prev = *pt;
1820 
1821 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1822 		if (ptype->type != type)
1823 			continue;
1824 		if (pt_prev)
1825 			deliver_skb(skb, pt_prev, orig_dev);
1826 		pt_prev = ptype;
1827 	}
1828 	*pt = pt_prev;
1829 }
1830 
1831 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1832 {
1833 	if (!ptype->af_packet_priv || !skb->sk)
1834 		return false;
1835 
1836 	if (ptype->id_match)
1837 		return ptype->id_match(ptype, skb->sk);
1838 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1839 		return true;
1840 
1841 	return false;
1842 }
1843 
1844 /*
1845  *	Support routine. Sends outgoing frames to any network
1846  *	taps currently in use.
1847  */
1848 
1849 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1850 {
1851 	struct packet_type *ptype;
1852 	struct sk_buff *skb2 = NULL;
1853 	struct packet_type *pt_prev = NULL;
1854 	struct list_head *ptype_list = &ptype_all;
1855 
1856 	rcu_read_lock();
1857 again:
1858 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1859 		/* Never send packets back to the socket
1860 		 * they originated from - MvS (miquels@drinkel.ow.org)
1861 		 */
1862 		if (skb_loop_sk(ptype, skb))
1863 			continue;
1864 
1865 		if (pt_prev) {
1866 			deliver_skb(skb2, pt_prev, skb->dev);
1867 			pt_prev = ptype;
1868 			continue;
1869 		}
1870 
1871 		/* need to clone skb, done only once */
1872 		skb2 = skb_clone(skb, GFP_ATOMIC);
1873 		if (!skb2)
1874 			goto out_unlock;
1875 
1876 		net_timestamp_set(skb2);
1877 
1878 		/* skb->nh should be correctly
1879 		 * set by sender, so that the second statement is
1880 		 * just protection against buggy protocols.
1881 		 */
1882 		skb_reset_mac_header(skb2);
1883 
1884 		if (skb_network_header(skb2) < skb2->data ||
1885 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1886 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1887 					     ntohs(skb2->protocol),
1888 					     dev->name);
1889 			skb_reset_network_header(skb2);
1890 		}
1891 
1892 		skb2->transport_header = skb2->network_header;
1893 		skb2->pkt_type = PACKET_OUTGOING;
1894 		pt_prev = ptype;
1895 	}
1896 
1897 	if (ptype_list == &ptype_all) {
1898 		ptype_list = &dev->ptype_all;
1899 		goto again;
1900 	}
1901 out_unlock:
1902 	if (pt_prev)
1903 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1904 	rcu_read_unlock();
1905 }
1906 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1907 
1908 /**
1909  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1910  * @dev: Network device
1911  * @txq: number of queues available
1912  *
1913  * If real_num_tx_queues is changed the tc mappings may no longer be
1914  * valid. To resolve this verify the tc mapping remains valid and if
1915  * not NULL the mapping. With no priorities mapping to this
1916  * offset/count pair it will no longer be used. In the worst case TC0
1917  * is invalid nothing can be done so disable priority mappings. If is
1918  * expected that drivers will fix this mapping if they can before
1919  * calling netif_set_real_num_tx_queues.
1920  */
1921 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1922 {
1923 	int i;
1924 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1925 
1926 	/* If TC0 is invalidated disable TC mapping */
1927 	if (tc->offset + tc->count > txq) {
1928 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1929 		dev->num_tc = 0;
1930 		return;
1931 	}
1932 
1933 	/* Invalidated prio to tc mappings set to TC0 */
1934 	for (i = 1; i < TC_BITMASK + 1; i++) {
1935 		int q = netdev_get_prio_tc_map(dev, i);
1936 
1937 		tc = &dev->tc_to_txq[q];
1938 		if (tc->offset + tc->count > txq) {
1939 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1940 				i, q);
1941 			netdev_set_prio_tc_map(dev, i, 0);
1942 		}
1943 	}
1944 }
1945 
1946 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1947 {
1948 	if (dev->num_tc) {
1949 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950 		int i;
1951 
1952 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1953 			if ((txq - tc->offset) < tc->count)
1954 				return i;
1955 		}
1956 
1957 		return -1;
1958 	}
1959 
1960 	return 0;
1961 }
1962 
1963 #ifdef CONFIG_XPS
1964 static DEFINE_MUTEX(xps_map_mutex);
1965 #define xmap_dereference(P)		\
1966 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1967 
1968 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1969 			     int tci, u16 index)
1970 {
1971 	struct xps_map *map = NULL;
1972 	int pos;
1973 
1974 	if (dev_maps)
1975 		map = xmap_dereference(dev_maps->cpu_map[tci]);
1976 	if (!map)
1977 		return false;
1978 
1979 	for (pos = map->len; pos--;) {
1980 		if (map->queues[pos] != index)
1981 			continue;
1982 
1983 		if (map->len > 1) {
1984 			map->queues[pos] = map->queues[--map->len];
1985 			break;
1986 		}
1987 
1988 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1989 		kfree_rcu(map, rcu);
1990 		return false;
1991 	}
1992 
1993 	return true;
1994 }
1995 
1996 static bool remove_xps_queue_cpu(struct net_device *dev,
1997 				 struct xps_dev_maps *dev_maps,
1998 				 int cpu, u16 offset, u16 count)
1999 {
2000 	int num_tc = dev->num_tc ? : 1;
2001 	bool active = false;
2002 	int tci;
2003 
2004 	for (tci = cpu * num_tc; num_tc--; tci++) {
2005 		int i, j;
2006 
2007 		for (i = count, j = offset; i--; j++) {
2008 			if (!remove_xps_queue(dev_maps, cpu, j))
2009 				break;
2010 		}
2011 
2012 		active |= i < 0;
2013 	}
2014 
2015 	return active;
2016 }
2017 
2018 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2019 				   u16 count)
2020 {
2021 	struct xps_dev_maps *dev_maps;
2022 	int cpu, i;
2023 	bool active = false;
2024 
2025 	mutex_lock(&xps_map_mutex);
2026 	dev_maps = xmap_dereference(dev->xps_maps);
2027 
2028 	if (!dev_maps)
2029 		goto out_no_maps;
2030 
2031 	for_each_possible_cpu(cpu)
2032 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2033 					       offset, count);
2034 
2035 	if (!active) {
2036 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2037 		kfree_rcu(dev_maps, rcu);
2038 	}
2039 
2040 	for (i = offset + (count - 1); count--; i--)
2041 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2042 					     NUMA_NO_NODE);
2043 
2044 out_no_maps:
2045 	mutex_unlock(&xps_map_mutex);
2046 }
2047 
2048 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2049 {
2050 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2051 }
2052 
2053 static struct xps_map *expand_xps_map(struct xps_map *map,
2054 				      int cpu, u16 index)
2055 {
2056 	struct xps_map *new_map;
2057 	int alloc_len = XPS_MIN_MAP_ALLOC;
2058 	int i, pos;
2059 
2060 	for (pos = 0; map && pos < map->len; pos++) {
2061 		if (map->queues[pos] != index)
2062 			continue;
2063 		return map;
2064 	}
2065 
2066 	/* Need to add queue to this CPU's existing map */
2067 	if (map) {
2068 		if (pos < map->alloc_len)
2069 			return map;
2070 
2071 		alloc_len = map->alloc_len * 2;
2072 	}
2073 
2074 	/* Need to allocate new map to store queue on this CPU's map */
2075 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2076 			       cpu_to_node(cpu));
2077 	if (!new_map)
2078 		return NULL;
2079 
2080 	for (i = 0; i < pos; i++)
2081 		new_map->queues[i] = map->queues[i];
2082 	new_map->alloc_len = alloc_len;
2083 	new_map->len = pos;
2084 
2085 	return new_map;
2086 }
2087 
2088 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2089 			u16 index)
2090 {
2091 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2092 	int i, cpu, tci, numa_node_id = -2;
2093 	int maps_sz, num_tc = 1, tc = 0;
2094 	struct xps_map *map, *new_map;
2095 	bool active = false;
2096 
2097 	if (dev->num_tc) {
2098 		num_tc = dev->num_tc;
2099 		tc = netdev_txq_to_tc(dev, index);
2100 		if (tc < 0)
2101 			return -EINVAL;
2102 	}
2103 
2104 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2105 	if (maps_sz < L1_CACHE_BYTES)
2106 		maps_sz = L1_CACHE_BYTES;
2107 
2108 	mutex_lock(&xps_map_mutex);
2109 
2110 	dev_maps = xmap_dereference(dev->xps_maps);
2111 
2112 	/* allocate memory for queue storage */
2113 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2114 		if (!new_dev_maps)
2115 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2116 		if (!new_dev_maps) {
2117 			mutex_unlock(&xps_map_mutex);
2118 			return -ENOMEM;
2119 		}
2120 
2121 		tci = cpu * num_tc + tc;
2122 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2123 				 NULL;
2124 
2125 		map = expand_xps_map(map, cpu, index);
2126 		if (!map)
2127 			goto error;
2128 
2129 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2130 	}
2131 
2132 	if (!new_dev_maps)
2133 		goto out_no_new_maps;
2134 
2135 	for_each_possible_cpu(cpu) {
2136 		/* copy maps belonging to foreign traffic classes */
2137 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2138 			/* fill in the new device map from the old device map */
2139 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2140 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2141 		}
2142 
2143 		/* We need to explicitly update tci as prevous loop
2144 		 * could break out early if dev_maps is NULL.
2145 		 */
2146 		tci = cpu * num_tc + tc;
2147 
2148 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2149 			/* add queue to CPU maps */
2150 			int pos = 0;
2151 
2152 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2153 			while ((pos < map->len) && (map->queues[pos] != index))
2154 				pos++;
2155 
2156 			if (pos == map->len)
2157 				map->queues[map->len++] = index;
2158 #ifdef CONFIG_NUMA
2159 			if (numa_node_id == -2)
2160 				numa_node_id = cpu_to_node(cpu);
2161 			else if (numa_node_id != cpu_to_node(cpu))
2162 				numa_node_id = -1;
2163 #endif
2164 		} else if (dev_maps) {
2165 			/* fill in the new device map from the old device map */
2166 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2167 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2168 		}
2169 
2170 		/* copy maps belonging to foreign traffic classes */
2171 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2172 			/* fill in the new device map from the old device map */
2173 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2174 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2175 		}
2176 	}
2177 
2178 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2179 
2180 	/* Cleanup old maps */
2181 	if (!dev_maps)
2182 		goto out_no_old_maps;
2183 
2184 	for_each_possible_cpu(cpu) {
2185 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2186 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2187 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2188 			if (map && map != new_map)
2189 				kfree_rcu(map, rcu);
2190 		}
2191 	}
2192 
2193 	kfree_rcu(dev_maps, rcu);
2194 
2195 out_no_old_maps:
2196 	dev_maps = new_dev_maps;
2197 	active = true;
2198 
2199 out_no_new_maps:
2200 	/* update Tx queue numa node */
2201 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2202 				     (numa_node_id >= 0) ? numa_node_id :
2203 				     NUMA_NO_NODE);
2204 
2205 	if (!dev_maps)
2206 		goto out_no_maps;
2207 
2208 	/* removes queue from unused CPUs */
2209 	for_each_possible_cpu(cpu) {
2210 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2211 			active |= remove_xps_queue(dev_maps, tci, index);
2212 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2213 			active |= remove_xps_queue(dev_maps, tci, index);
2214 		for (i = num_tc - tc, tci++; --i; tci++)
2215 			active |= remove_xps_queue(dev_maps, tci, index);
2216 	}
2217 
2218 	/* free map if not active */
2219 	if (!active) {
2220 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2221 		kfree_rcu(dev_maps, rcu);
2222 	}
2223 
2224 out_no_maps:
2225 	mutex_unlock(&xps_map_mutex);
2226 
2227 	return 0;
2228 error:
2229 	/* remove any maps that we added */
2230 	for_each_possible_cpu(cpu) {
2231 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2232 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2233 			map = dev_maps ?
2234 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2235 			      NULL;
2236 			if (new_map && new_map != map)
2237 				kfree(new_map);
2238 		}
2239 	}
2240 
2241 	mutex_unlock(&xps_map_mutex);
2242 
2243 	kfree(new_dev_maps);
2244 	return -ENOMEM;
2245 }
2246 EXPORT_SYMBOL(netif_set_xps_queue);
2247 
2248 #endif
2249 void netdev_reset_tc(struct net_device *dev)
2250 {
2251 #ifdef CONFIG_XPS
2252 	netif_reset_xps_queues_gt(dev, 0);
2253 #endif
2254 	dev->num_tc = 0;
2255 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2256 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2257 }
2258 EXPORT_SYMBOL(netdev_reset_tc);
2259 
2260 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2261 {
2262 	if (tc >= dev->num_tc)
2263 		return -EINVAL;
2264 
2265 #ifdef CONFIG_XPS
2266 	netif_reset_xps_queues(dev, offset, count);
2267 #endif
2268 	dev->tc_to_txq[tc].count = count;
2269 	dev->tc_to_txq[tc].offset = offset;
2270 	return 0;
2271 }
2272 EXPORT_SYMBOL(netdev_set_tc_queue);
2273 
2274 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2275 {
2276 	if (num_tc > TC_MAX_QUEUE)
2277 		return -EINVAL;
2278 
2279 #ifdef CONFIG_XPS
2280 	netif_reset_xps_queues_gt(dev, 0);
2281 #endif
2282 	dev->num_tc = num_tc;
2283 	return 0;
2284 }
2285 EXPORT_SYMBOL(netdev_set_num_tc);
2286 
2287 /*
2288  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2289  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2290  */
2291 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2292 {
2293 	int rc;
2294 
2295 	if (txq < 1 || txq > dev->num_tx_queues)
2296 		return -EINVAL;
2297 
2298 	if (dev->reg_state == NETREG_REGISTERED ||
2299 	    dev->reg_state == NETREG_UNREGISTERING) {
2300 		ASSERT_RTNL();
2301 
2302 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2303 						  txq);
2304 		if (rc)
2305 			return rc;
2306 
2307 		if (dev->num_tc)
2308 			netif_setup_tc(dev, txq);
2309 
2310 		if (txq < dev->real_num_tx_queues) {
2311 			qdisc_reset_all_tx_gt(dev, txq);
2312 #ifdef CONFIG_XPS
2313 			netif_reset_xps_queues_gt(dev, txq);
2314 #endif
2315 		}
2316 	}
2317 
2318 	dev->real_num_tx_queues = txq;
2319 	return 0;
2320 }
2321 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2322 
2323 #ifdef CONFIG_SYSFS
2324 /**
2325  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2326  *	@dev: Network device
2327  *	@rxq: Actual number of RX queues
2328  *
2329  *	This must be called either with the rtnl_lock held or before
2330  *	registration of the net device.  Returns 0 on success, or a
2331  *	negative error code.  If called before registration, it always
2332  *	succeeds.
2333  */
2334 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2335 {
2336 	int rc;
2337 
2338 	if (rxq < 1 || rxq > dev->num_rx_queues)
2339 		return -EINVAL;
2340 
2341 	if (dev->reg_state == NETREG_REGISTERED) {
2342 		ASSERT_RTNL();
2343 
2344 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2345 						  rxq);
2346 		if (rc)
2347 			return rc;
2348 	}
2349 
2350 	dev->real_num_rx_queues = rxq;
2351 	return 0;
2352 }
2353 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2354 #endif
2355 
2356 /**
2357  * netif_get_num_default_rss_queues - default number of RSS queues
2358  *
2359  * This routine should set an upper limit on the number of RSS queues
2360  * used by default by multiqueue devices.
2361  */
2362 int netif_get_num_default_rss_queues(void)
2363 {
2364 	return is_kdump_kernel() ?
2365 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2366 }
2367 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2368 
2369 static void __netif_reschedule(struct Qdisc *q)
2370 {
2371 	struct softnet_data *sd;
2372 	unsigned long flags;
2373 
2374 	local_irq_save(flags);
2375 	sd = this_cpu_ptr(&softnet_data);
2376 	q->next_sched = NULL;
2377 	*sd->output_queue_tailp = q;
2378 	sd->output_queue_tailp = &q->next_sched;
2379 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2380 	local_irq_restore(flags);
2381 }
2382 
2383 void __netif_schedule(struct Qdisc *q)
2384 {
2385 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2386 		__netif_reschedule(q);
2387 }
2388 EXPORT_SYMBOL(__netif_schedule);
2389 
2390 struct dev_kfree_skb_cb {
2391 	enum skb_free_reason reason;
2392 };
2393 
2394 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2395 {
2396 	return (struct dev_kfree_skb_cb *)skb->cb;
2397 }
2398 
2399 void netif_schedule_queue(struct netdev_queue *txq)
2400 {
2401 	rcu_read_lock();
2402 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2403 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2404 
2405 		__netif_schedule(q);
2406 	}
2407 	rcu_read_unlock();
2408 }
2409 EXPORT_SYMBOL(netif_schedule_queue);
2410 
2411 /**
2412  *	netif_wake_subqueue - allow sending packets on subqueue
2413  *	@dev: network device
2414  *	@queue_index: sub queue index
2415  *
2416  * Resume individual transmit queue of a device with multiple transmit queues.
2417  */
2418 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2419 {
2420 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2421 
2422 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2423 		struct Qdisc *q;
2424 
2425 		rcu_read_lock();
2426 		q = rcu_dereference(txq->qdisc);
2427 		__netif_schedule(q);
2428 		rcu_read_unlock();
2429 	}
2430 }
2431 EXPORT_SYMBOL(netif_wake_subqueue);
2432 
2433 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2434 {
2435 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2436 		struct Qdisc *q;
2437 
2438 		rcu_read_lock();
2439 		q = rcu_dereference(dev_queue->qdisc);
2440 		__netif_schedule(q);
2441 		rcu_read_unlock();
2442 	}
2443 }
2444 EXPORT_SYMBOL(netif_tx_wake_queue);
2445 
2446 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2447 {
2448 	unsigned long flags;
2449 
2450 	if (likely(atomic_read(&skb->users) == 1)) {
2451 		smp_rmb();
2452 		atomic_set(&skb->users, 0);
2453 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2454 		return;
2455 	}
2456 	get_kfree_skb_cb(skb)->reason = reason;
2457 	local_irq_save(flags);
2458 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2459 	__this_cpu_write(softnet_data.completion_queue, skb);
2460 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2461 	local_irq_restore(flags);
2462 }
2463 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2464 
2465 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2466 {
2467 	if (in_irq() || irqs_disabled())
2468 		__dev_kfree_skb_irq(skb, reason);
2469 	else
2470 		dev_kfree_skb(skb);
2471 }
2472 EXPORT_SYMBOL(__dev_kfree_skb_any);
2473 
2474 
2475 /**
2476  * netif_device_detach - mark device as removed
2477  * @dev: network device
2478  *
2479  * Mark device as removed from system and therefore no longer available.
2480  */
2481 void netif_device_detach(struct net_device *dev)
2482 {
2483 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2484 	    netif_running(dev)) {
2485 		netif_tx_stop_all_queues(dev);
2486 	}
2487 }
2488 EXPORT_SYMBOL(netif_device_detach);
2489 
2490 /**
2491  * netif_device_attach - mark device as attached
2492  * @dev: network device
2493  *
2494  * Mark device as attached from system and restart if needed.
2495  */
2496 void netif_device_attach(struct net_device *dev)
2497 {
2498 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2499 	    netif_running(dev)) {
2500 		netif_tx_wake_all_queues(dev);
2501 		__netdev_watchdog_up(dev);
2502 	}
2503 }
2504 EXPORT_SYMBOL(netif_device_attach);
2505 
2506 /*
2507  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2508  * to be used as a distribution range.
2509  */
2510 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2511 		  unsigned int num_tx_queues)
2512 {
2513 	u32 hash;
2514 	u16 qoffset = 0;
2515 	u16 qcount = num_tx_queues;
2516 
2517 	if (skb_rx_queue_recorded(skb)) {
2518 		hash = skb_get_rx_queue(skb);
2519 		while (unlikely(hash >= num_tx_queues))
2520 			hash -= num_tx_queues;
2521 		return hash;
2522 	}
2523 
2524 	if (dev->num_tc) {
2525 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2526 		qoffset = dev->tc_to_txq[tc].offset;
2527 		qcount = dev->tc_to_txq[tc].count;
2528 	}
2529 
2530 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2531 }
2532 EXPORT_SYMBOL(__skb_tx_hash);
2533 
2534 static void skb_warn_bad_offload(const struct sk_buff *skb)
2535 {
2536 	static const netdev_features_t null_features;
2537 	struct net_device *dev = skb->dev;
2538 	const char *name = "";
2539 
2540 	if (!net_ratelimit())
2541 		return;
2542 
2543 	if (dev) {
2544 		if (dev->dev.parent)
2545 			name = dev_driver_string(dev->dev.parent);
2546 		else
2547 			name = netdev_name(dev);
2548 	}
2549 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2550 	     "gso_type=%d ip_summed=%d\n",
2551 	     name, dev ? &dev->features : &null_features,
2552 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2553 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2554 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2555 }
2556 
2557 /*
2558  * Invalidate hardware checksum when packet is to be mangled, and
2559  * complete checksum manually on outgoing path.
2560  */
2561 int skb_checksum_help(struct sk_buff *skb)
2562 {
2563 	__wsum csum;
2564 	int ret = 0, offset;
2565 
2566 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2567 		goto out_set_summed;
2568 
2569 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2570 		skb_warn_bad_offload(skb);
2571 		return -EINVAL;
2572 	}
2573 
2574 	/* Before computing a checksum, we should make sure no frag could
2575 	 * be modified by an external entity : checksum could be wrong.
2576 	 */
2577 	if (skb_has_shared_frag(skb)) {
2578 		ret = __skb_linearize(skb);
2579 		if (ret)
2580 			goto out;
2581 	}
2582 
2583 	offset = skb_checksum_start_offset(skb);
2584 	BUG_ON(offset >= skb_headlen(skb));
2585 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2586 
2587 	offset += skb->csum_offset;
2588 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2589 
2590 	if (skb_cloned(skb) &&
2591 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2592 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2593 		if (ret)
2594 			goto out;
2595 	}
2596 
2597 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2598 out_set_summed:
2599 	skb->ip_summed = CHECKSUM_NONE;
2600 out:
2601 	return ret;
2602 }
2603 EXPORT_SYMBOL(skb_checksum_help);
2604 
2605 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2606 {
2607 	__be16 type = skb->protocol;
2608 
2609 	/* Tunnel gso handlers can set protocol to ethernet. */
2610 	if (type == htons(ETH_P_TEB)) {
2611 		struct ethhdr *eth;
2612 
2613 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2614 			return 0;
2615 
2616 		eth = (struct ethhdr *)skb_mac_header(skb);
2617 		type = eth->h_proto;
2618 	}
2619 
2620 	return __vlan_get_protocol(skb, type, depth);
2621 }
2622 
2623 /**
2624  *	skb_mac_gso_segment - mac layer segmentation handler.
2625  *	@skb: buffer to segment
2626  *	@features: features for the output path (see dev->features)
2627  */
2628 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2629 				    netdev_features_t features)
2630 {
2631 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2632 	struct packet_offload *ptype;
2633 	int vlan_depth = skb->mac_len;
2634 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2635 
2636 	if (unlikely(!type))
2637 		return ERR_PTR(-EINVAL);
2638 
2639 	__skb_pull(skb, vlan_depth);
2640 
2641 	rcu_read_lock();
2642 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2643 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2644 			segs = ptype->callbacks.gso_segment(skb, features);
2645 			break;
2646 		}
2647 	}
2648 	rcu_read_unlock();
2649 
2650 	__skb_push(skb, skb->data - skb_mac_header(skb));
2651 
2652 	return segs;
2653 }
2654 EXPORT_SYMBOL(skb_mac_gso_segment);
2655 
2656 
2657 /* openvswitch calls this on rx path, so we need a different check.
2658  */
2659 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2660 {
2661 	if (tx_path)
2662 		return skb->ip_summed != CHECKSUM_PARTIAL;
2663 	else
2664 		return skb->ip_summed == CHECKSUM_NONE;
2665 }
2666 
2667 /**
2668  *	__skb_gso_segment - Perform segmentation on skb.
2669  *	@skb: buffer to segment
2670  *	@features: features for the output path (see dev->features)
2671  *	@tx_path: whether it is called in TX path
2672  *
2673  *	This function segments the given skb and returns a list of segments.
2674  *
2675  *	It may return NULL if the skb requires no segmentation.  This is
2676  *	only possible when GSO is used for verifying header integrity.
2677  *
2678  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2679  */
2680 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2681 				  netdev_features_t features, bool tx_path)
2682 {
2683 	if (unlikely(skb_needs_check(skb, tx_path))) {
2684 		int err;
2685 
2686 		skb_warn_bad_offload(skb);
2687 
2688 		err = skb_cow_head(skb, 0);
2689 		if (err < 0)
2690 			return ERR_PTR(err);
2691 	}
2692 
2693 	/* Only report GSO partial support if it will enable us to
2694 	 * support segmentation on this frame without needing additional
2695 	 * work.
2696 	 */
2697 	if (features & NETIF_F_GSO_PARTIAL) {
2698 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2699 		struct net_device *dev = skb->dev;
2700 
2701 		partial_features |= dev->features & dev->gso_partial_features;
2702 		if (!skb_gso_ok(skb, features | partial_features))
2703 			features &= ~NETIF_F_GSO_PARTIAL;
2704 	}
2705 
2706 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2707 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2708 
2709 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2710 	SKB_GSO_CB(skb)->encap_level = 0;
2711 
2712 	skb_reset_mac_header(skb);
2713 	skb_reset_mac_len(skb);
2714 
2715 	return skb_mac_gso_segment(skb, features);
2716 }
2717 EXPORT_SYMBOL(__skb_gso_segment);
2718 
2719 /* Take action when hardware reception checksum errors are detected. */
2720 #ifdef CONFIG_BUG
2721 void netdev_rx_csum_fault(struct net_device *dev)
2722 {
2723 	if (net_ratelimit()) {
2724 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2725 		dump_stack();
2726 	}
2727 }
2728 EXPORT_SYMBOL(netdev_rx_csum_fault);
2729 #endif
2730 
2731 /* Actually, we should eliminate this check as soon as we know, that:
2732  * 1. IOMMU is present and allows to map all the memory.
2733  * 2. No high memory really exists on this machine.
2734  */
2735 
2736 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2737 {
2738 #ifdef CONFIG_HIGHMEM
2739 	int i;
2740 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2741 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2742 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2743 			if (PageHighMem(skb_frag_page(frag)))
2744 				return 1;
2745 		}
2746 	}
2747 
2748 	if (PCI_DMA_BUS_IS_PHYS) {
2749 		struct device *pdev = dev->dev.parent;
2750 
2751 		if (!pdev)
2752 			return 0;
2753 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2754 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2755 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2756 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2757 				return 1;
2758 		}
2759 	}
2760 #endif
2761 	return 0;
2762 }
2763 
2764 /* If MPLS offload request, verify we are testing hardware MPLS features
2765  * instead of standard features for the netdev.
2766  */
2767 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2768 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2769 					   netdev_features_t features,
2770 					   __be16 type)
2771 {
2772 	if (eth_p_mpls(type))
2773 		features &= skb->dev->mpls_features;
2774 
2775 	return features;
2776 }
2777 #else
2778 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2779 					   netdev_features_t features,
2780 					   __be16 type)
2781 {
2782 	return features;
2783 }
2784 #endif
2785 
2786 static netdev_features_t harmonize_features(struct sk_buff *skb,
2787 	netdev_features_t features)
2788 {
2789 	int tmp;
2790 	__be16 type;
2791 
2792 	type = skb_network_protocol(skb, &tmp);
2793 	features = net_mpls_features(skb, features, type);
2794 
2795 	if (skb->ip_summed != CHECKSUM_NONE &&
2796 	    !can_checksum_protocol(features, type)) {
2797 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2798 	} else if (illegal_highdma(skb->dev, skb)) {
2799 		features &= ~NETIF_F_SG;
2800 	}
2801 
2802 	return features;
2803 }
2804 
2805 netdev_features_t passthru_features_check(struct sk_buff *skb,
2806 					  struct net_device *dev,
2807 					  netdev_features_t features)
2808 {
2809 	return features;
2810 }
2811 EXPORT_SYMBOL(passthru_features_check);
2812 
2813 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2814 					     struct net_device *dev,
2815 					     netdev_features_t features)
2816 {
2817 	return vlan_features_check(skb, features);
2818 }
2819 
2820 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2821 					    struct net_device *dev,
2822 					    netdev_features_t features)
2823 {
2824 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2825 
2826 	if (gso_segs > dev->gso_max_segs)
2827 		return features & ~NETIF_F_GSO_MASK;
2828 
2829 	/* Support for GSO partial features requires software
2830 	 * intervention before we can actually process the packets
2831 	 * so we need to strip support for any partial features now
2832 	 * and we can pull them back in after we have partially
2833 	 * segmented the frame.
2834 	 */
2835 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2836 		features &= ~dev->gso_partial_features;
2837 
2838 	/* Make sure to clear the IPv4 ID mangling feature if the
2839 	 * IPv4 header has the potential to be fragmented.
2840 	 */
2841 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2842 		struct iphdr *iph = skb->encapsulation ?
2843 				    inner_ip_hdr(skb) : ip_hdr(skb);
2844 
2845 		if (!(iph->frag_off & htons(IP_DF)))
2846 			features &= ~NETIF_F_TSO_MANGLEID;
2847 	}
2848 
2849 	return features;
2850 }
2851 
2852 netdev_features_t netif_skb_features(struct sk_buff *skb)
2853 {
2854 	struct net_device *dev = skb->dev;
2855 	netdev_features_t features = dev->features;
2856 
2857 	if (skb_is_gso(skb))
2858 		features = gso_features_check(skb, dev, features);
2859 
2860 	/* If encapsulation offload request, verify we are testing
2861 	 * hardware encapsulation features instead of standard
2862 	 * features for the netdev
2863 	 */
2864 	if (skb->encapsulation)
2865 		features &= dev->hw_enc_features;
2866 
2867 	if (skb_vlan_tagged(skb))
2868 		features = netdev_intersect_features(features,
2869 						     dev->vlan_features |
2870 						     NETIF_F_HW_VLAN_CTAG_TX |
2871 						     NETIF_F_HW_VLAN_STAG_TX);
2872 
2873 	if (dev->netdev_ops->ndo_features_check)
2874 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2875 								features);
2876 	else
2877 		features &= dflt_features_check(skb, dev, features);
2878 
2879 	return harmonize_features(skb, features);
2880 }
2881 EXPORT_SYMBOL(netif_skb_features);
2882 
2883 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2884 		    struct netdev_queue *txq, bool more)
2885 {
2886 	unsigned int len;
2887 	int rc;
2888 
2889 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2890 		dev_queue_xmit_nit(skb, dev);
2891 
2892 	len = skb->len;
2893 	trace_net_dev_start_xmit(skb, dev);
2894 	rc = netdev_start_xmit(skb, dev, txq, more);
2895 	trace_net_dev_xmit(skb, rc, dev, len);
2896 
2897 	return rc;
2898 }
2899 
2900 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2901 				    struct netdev_queue *txq, int *ret)
2902 {
2903 	struct sk_buff *skb = first;
2904 	int rc = NETDEV_TX_OK;
2905 
2906 	while (skb) {
2907 		struct sk_buff *next = skb->next;
2908 
2909 		skb->next = NULL;
2910 		rc = xmit_one(skb, dev, txq, next != NULL);
2911 		if (unlikely(!dev_xmit_complete(rc))) {
2912 			skb->next = next;
2913 			goto out;
2914 		}
2915 
2916 		skb = next;
2917 		if (netif_xmit_stopped(txq) && skb) {
2918 			rc = NETDEV_TX_BUSY;
2919 			break;
2920 		}
2921 	}
2922 
2923 out:
2924 	*ret = rc;
2925 	return skb;
2926 }
2927 
2928 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2929 					  netdev_features_t features)
2930 {
2931 	if (skb_vlan_tag_present(skb) &&
2932 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2933 		skb = __vlan_hwaccel_push_inside(skb);
2934 	return skb;
2935 }
2936 
2937 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2938 {
2939 	netdev_features_t features;
2940 
2941 	features = netif_skb_features(skb);
2942 	skb = validate_xmit_vlan(skb, features);
2943 	if (unlikely(!skb))
2944 		goto out_null;
2945 
2946 	if (netif_needs_gso(skb, features)) {
2947 		struct sk_buff *segs;
2948 
2949 		segs = skb_gso_segment(skb, features);
2950 		if (IS_ERR(segs)) {
2951 			goto out_kfree_skb;
2952 		} else if (segs) {
2953 			consume_skb(skb);
2954 			skb = segs;
2955 		}
2956 	} else {
2957 		if (skb_needs_linearize(skb, features) &&
2958 		    __skb_linearize(skb))
2959 			goto out_kfree_skb;
2960 
2961 		/* If packet is not checksummed and device does not
2962 		 * support checksumming for this protocol, complete
2963 		 * checksumming here.
2964 		 */
2965 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2966 			if (skb->encapsulation)
2967 				skb_set_inner_transport_header(skb,
2968 							       skb_checksum_start_offset(skb));
2969 			else
2970 				skb_set_transport_header(skb,
2971 							 skb_checksum_start_offset(skb));
2972 			if (!(features & NETIF_F_CSUM_MASK) &&
2973 			    skb_checksum_help(skb))
2974 				goto out_kfree_skb;
2975 		}
2976 	}
2977 
2978 	return skb;
2979 
2980 out_kfree_skb:
2981 	kfree_skb(skb);
2982 out_null:
2983 	atomic_long_inc(&dev->tx_dropped);
2984 	return NULL;
2985 }
2986 
2987 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2988 {
2989 	struct sk_buff *next, *head = NULL, *tail;
2990 
2991 	for (; skb != NULL; skb = next) {
2992 		next = skb->next;
2993 		skb->next = NULL;
2994 
2995 		/* in case skb wont be segmented, point to itself */
2996 		skb->prev = skb;
2997 
2998 		skb = validate_xmit_skb(skb, dev);
2999 		if (!skb)
3000 			continue;
3001 
3002 		if (!head)
3003 			head = skb;
3004 		else
3005 			tail->next = skb;
3006 		/* If skb was segmented, skb->prev points to
3007 		 * the last segment. If not, it still contains skb.
3008 		 */
3009 		tail = skb->prev;
3010 	}
3011 	return head;
3012 }
3013 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3014 
3015 static void qdisc_pkt_len_init(struct sk_buff *skb)
3016 {
3017 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3018 
3019 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3020 
3021 	/* To get more precise estimation of bytes sent on wire,
3022 	 * we add to pkt_len the headers size of all segments
3023 	 */
3024 	if (shinfo->gso_size)  {
3025 		unsigned int hdr_len;
3026 		u16 gso_segs = shinfo->gso_segs;
3027 
3028 		/* mac layer + network layer */
3029 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3030 
3031 		/* + transport layer */
3032 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3033 			hdr_len += tcp_hdrlen(skb);
3034 		else
3035 			hdr_len += sizeof(struct udphdr);
3036 
3037 		if (shinfo->gso_type & SKB_GSO_DODGY)
3038 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3039 						shinfo->gso_size);
3040 
3041 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3042 	}
3043 }
3044 
3045 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3046 				 struct net_device *dev,
3047 				 struct netdev_queue *txq)
3048 {
3049 	spinlock_t *root_lock = qdisc_lock(q);
3050 	struct sk_buff *to_free = NULL;
3051 	bool contended;
3052 	int rc;
3053 
3054 	qdisc_calculate_pkt_len(skb, q);
3055 	/*
3056 	 * Heuristic to force contended enqueues to serialize on a
3057 	 * separate lock before trying to get qdisc main lock.
3058 	 * This permits qdisc->running owner to get the lock more
3059 	 * often and dequeue packets faster.
3060 	 */
3061 	contended = qdisc_is_running(q);
3062 	if (unlikely(contended))
3063 		spin_lock(&q->busylock);
3064 
3065 	spin_lock(root_lock);
3066 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3067 		__qdisc_drop(skb, &to_free);
3068 		rc = NET_XMIT_DROP;
3069 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3070 		   qdisc_run_begin(q)) {
3071 		/*
3072 		 * This is a work-conserving queue; there are no old skbs
3073 		 * waiting to be sent out; and the qdisc is not running -
3074 		 * xmit the skb directly.
3075 		 */
3076 
3077 		qdisc_bstats_update(q, skb);
3078 
3079 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3080 			if (unlikely(contended)) {
3081 				spin_unlock(&q->busylock);
3082 				contended = false;
3083 			}
3084 			__qdisc_run(q);
3085 		} else
3086 			qdisc_run_end(q);
3087 
3088 		rc = NET_XMIT_SUCCESS;
3089 	} else {
3090 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3091 		if (qdisc_run_begin(q)) {
3092 			if (unlikely(contended)) {
3093 				spin_unlock(&q->busylock);
3094 				contended = false;
3095 			}
3096 			__qdisc_run(q);
3097 		}
3098 	}
3099 	spin_unlock(root_lock);
3100 	if (unlikely(to_free))
3101 		kfree_skb_list(to_free);
3102 	if (unlikely(contended))
3103 		spin_unlock(&q->busylock);
3104 	return rc;
3105 }
3106 
3107 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3108 static void skb_update_prio(struct sk_buff *skb)
3109 {
3110 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3111 
3112 	if (!skb->priority && skb->sk && map) {
3113 		unsigned int prioidx =
3114 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3115 
3116 		if (prioidx < map->priomap_len)
3117 			skb->priority = map->priomap[prioidx];
3118 	}
3119 }
3120 #else
3121 #define skb_update_prio(skb)
3122 #endif
3123 
3124 DEFINE_PER_CPU(int, xmit_recursion);
3125 EXPORT_SYMBOL(xmit_recursion);
3126 
3127 /**
3128  *	dev_loopback_xmit - loop back @skb
3129  *	@net: network namespace this loopback is happening in
3130  *	@sk:  sk needed to be a netfilter okfn
3131  *	@skb: buffer to transmit
3132  */
3133 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3134 {
3135 	skb_reset_mac_header(skb);
3136 	__skb_pull(skb, skb_network_offset(skb));
3137 	skb->pkt_type = PACKET_LOOPBACK;
3138 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3139 	WARN_ON(!skb_dst(skb));
3140 	skb_dst_force(skb);
3141 	netif_rx_ni(skb);
3142 	return 0;
3143 }
3144 EXPORT_SYMBOL(dev_loopback_xmit);
3145 
3146 #ifdef CONFIG_NET_EGRESS
3147 static struct sk_buff *
3148 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3149 {
3150 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3151 	struct tcf_result cl_res;
3152 
3153 	if (!cl)
3154 		return skb;
3155 
3156 	/* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3157 	 * earlier by the caller.
3158 	 */
3159 	qdisc_bstats_cpu_update(cl->q, skb);
3160 
3161 	switch (tc_classify(skb, cl, &cl_res, false)) {
3162 	case TC_ACT_OK:
3163 	case TC_ACT_RECLASSIFY:
3164 		skb->tc_index = TC_H_MIN(cl_res.classid);
3165 		break;
3166 	case TC_ACT_SHOT:
3167 		qdisc_qstats_cpu_drop(cl->q);
3168 		*ret = NET_XMIT_DROP;
3169 		kfree_skb(skb);
3170 		return NULL;
3171 	case TC_ACT_STOLEN:
3172 	case TC_ACT_QUEUED:
3173 		*ret = NET_XMIT_SUCCESS;
3174 		consume_skb(skb);
3175 		return NULL;
3176 	case TC_ACT_REDIRECT:
3177 		/* No need to push/pop skb's mac_header here on egress! */
3178 		skb_do_redirect(skb);
3179 		*ret = NET_XMIT_SUCCESS;
3180 		return NULL;
3181 	default:
3182 		break;
3183 	}
3184 
3185 	return skb;
3186 }
3187 #endif /* CONFIG_NET_EGRESS */
3188 
3189 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3190 {
3191 #ifdef CONFIG_XPS
3192 	struct xps_dev_maps *dev_maps;
3193 	struct xps_map *map;
3194 	int queue_index = -1;
3195 
3196 	rcu_read_lock();
3197 	dev_maps = rcu_dereference(dev->xps_maps);
3198 	if (dev_maps) {
3199 		unsigned int tci = skb->sender_cpu - 1;
3200 
3201 		if (dev->num_tc) {
3202 			tci *= dev->num_tc;
3203 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3204 		}
3205 
3206 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3207 		if (map) {
3208 			if (map->len == 1)
3209 				queue_index = map->queues[0];
3210 			else
3211 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3212 									   map->len)];
3213 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3214 				queue_index = -1;
3215 		}
3216 	}
3217 	rcu_read_unlock();
3218 
3219 	return queue_index;
3220 #else
3221 	return -1;
3222 #endif
3223 }
3224 
3225 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3226 {
3227 	struct sock *sk = skb->sk;
3228 	int queue_index = sk_tx_queue_get(sk);
3229 
3230 	if (queue_index < 0 || skb->ooo_okay ||
3231 	    queue_index >= dev->real_num_tx_queues) {
3232 		int new_index = get_xps_queue(dev, skb);
3233 		if (new_index < 0)
3234 			new_index = skb_tx_hash(dev, skb);
3235 
3236 		if (queue_index != new_index && sk &&
3237 		    sk_fullsock(sk) &&
3238 		    rcu_access_pointer(sk->sk_dst_cache))
3239 			sk_tx_queue_set(sk, new_index);
3240 
3241 		queue_index = new_index;
3242 	}
3243 
3244 	return queue_index;
3245 }
3246 
3247 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3248 				    struct sk_buff *skb,
3249 				    void *accel_priv)
3250 {
3251 	int queue_index = 0;
3252 
3253 #ifdef CONFIG_XPS
3254 	u32 sender_cpu = skb->sender_cpu - 1;
3255 
3256 	if (sender_cpu >= (u32)NR_CPUS)
3257 		skb->sender_cpu = raw_smp_processor_id() + 1;
3258 #endif
3259 
3260 	if (dev->real_num_tx_queues != 1) {
3261 		const struct net_device_ops *ops = dev->netdev_ops;
3262 		if (ops->ndo_select_queue)
3263 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3264 							    __netdev_pick_tx);
3265 		else
3266 			queue_index = __netdev_pick_tx(dev, skb);
3267 
3268 		if (!accel_priv)
3269 			queue_index = netdev_cap_txqueue(dev, queue_index);
3270 	}
3271 
3272 	skb_set_queue_mapping(skb, queue_index);
3273 	return netdev_get_tx_queue(dev, queue_index);
3274 }
3275 
3276 /**
3277  *	__dev_queue_xmit - transmit a buffer
3278  *	@skb: buffer to transmit
3279  *	@accel_priv: private data used for L2 forwarding offload
3280  *
3281  *	Queue a buffer for transmission to a network device. The caller must
3282  *	have set the device and priority and built the buffer before calling
3283  *	this function. The function can be called from an interrupt.
3284  *
3285  *	A negative errno code is returned on a failure. A success does not
3286  *	guarantee the frame will be transmitted as it may be dropped due
3287  *	to congestion or traffic shaping.
3288  *
3289  * -----------------------------------------------------------------------------------
3290  *      I notice this method can also return errors from the queue disciplines,
3291  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3292  *      be positive.
3293  *
3294  *      Regardless of the return value, the skb is consumed, so it is currently
3295  *      difficult to retry a send to this method.  (You can bump the ref count
3296  *      before sending to hold a reference for retry if you are careful.)
3297  *
3298  *      When calling this method, interrupts MUST be enabled.  This is because
3299  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3300  *          --BLG
3301  */
3302 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3303 {
3304 	struct net_device *dev = skb->dev;
3305 	struct netdev_queue *txq;
3306 	struct Qdisc *q;
3307 	int rc = -ENOMEM;
3308 
3309 	skb_reset_mac_header(skb);
3310 
3311 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3312 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3313 
3314 	/* Disable soft irqs for various locks below. Also
3315 	 * stops preemption for RCU.
3316 	 */
3317 	rcu_read_lock_bh();
3318 
3319 	skb_update_prio(skb);
3320 
3321 	qdisc_pkt_len_init(skb);
3322 #ifdef CONFIG_NET_CLS_ACT
3323 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3324 # ifdef CONFIG_NET_EGRESS
3325 	if (static_key_false(&egress_needed)) {
3326 		skb = sch_handle_egress(skb, &rc, dev);
3327 		if (!skb)
3328 			goto out;
3329 	}
3330 # endif
3331 #endif
3332 	/* If device/qdisc don't need skb->dst, release it right now while
3333 	 * its hot in this cpu cache.
3334 	 */
3335 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3336 		skb_dst_drop(skb);
3337 	else
3338 		skb_dst_force(skb);
3339 
3340 	txq = netdev_pick_tx(dev, skb, accel_priv);
3341 	q = rcu_dereference_bh(txq->qdisc);
3342 
3343 	trace_net_dev_queue(skb);
3344 	if (q->enqueue) {
3345 		rc = __dev_xmit_skb(skb, q, dev, txq);
3346 		goto out;
3347 	}
3348 
3349 	/* The device has no queue. Common case for software devices:
3350 	   loopback, all the sorts of tunnels...
3351 
3352 	   Really, it is unlikely that netif_tx_lock protection is necessary
3353 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3354 	   counters.)
3355 	   However, it is possible, that they rely on protection
3356 	   made by us here.
3357 
3358 	   Check this and shot the lock. It is not prone from deadlocks.
3359 	   Either shot noqueue qdisc, it is even simpler 8)
3360 	 */
3361 	if (dev->flags & IFF_UP) {
3362 		int cpu = smp_processor_id(); /* ok because BHs are off */
3363 
3364 		if (txq->xmit_lock_owner != cpu) {
3365 			if (unlikely(__this_cpu_read(xmit_recursion) >
3366 				     XMIT_RECURSION_LIMIT))
3367 				goto recursion_alert;
3368 
3369 			skb = validate_xmit_skb(skb, dev);
3370 			if (!skb)
3371 				goto out;
3372 
3373 			HARD_TX_LOCK(dev, txq, cpu);
3374 
3375 			if (!netif_xmit_stopped(txq)) {
3376 				__this_cpu_inc(xmit_recursion);
3377 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3378 				__this_cpu_dec(xmit_recursion);
3379 				if (dev_xmit_complete(rc)) {
3380 					HARD_TX_UNLOCK(dev, txq);
3381 					goto out;
3382 				}
3383 			}
3384 			HARD_TX_UNLOCK(dev, txq);
3385 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3386 					     dev->name);
3387 		} else {
3388 			/* Recursion is detected! It is possible,
3389 			 * unfortunately
3390 			 */
3391 recursion_alert:
3392 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3393 					     dev->name);
3394 		}
3395 	}
3396 
3397 	rc = -ENETDOWN;
3398 	rcu_read_unlock_bh();
3399 
3400 	atomic_long_inc(&dev->tx_dropped);
3401 	kfree_skb_list(skb);
3402 	return rc;
3403 out:
3404 	rcu_read_unlock_bh();
3405 	return rc;
3406 }
3407 
3408 int dev_queue_xmit(struct sk_buff *skb)
3409 {
3410 	return __dev_queue_xmit(skb, NULL);
3411 }
3412 EXPORT_SYMBOL(dev_queue_xmit);
3413 
3414 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3415 {
3416 	return __dev_queue_xmit(skb, accel_priv);
3417 }
3418 EXPORT_SYMBOL(dev_queue_xmit_accel);
3419 
3420 
3421 /*=======================================================================
3422 			Receiver routines
3423   =======================================================================*/
3424 
3425 int netdev_max_backlog __read_mostly = 1000;
3426 EXPORT_SYMBOL(netdev_max_backlog);
3427 
3428 int netdev_tstamp_prequeue __read_mostly = 1;
3429 int netdev_budget __read_mostly = 300;
3430 int weight_p __read_mostly = 64;           /* old backlog weight */
3431 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3432 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3433 int dev_rx_weight __read_mostly = 64;
3434 int dev_tx_weight __read_mostly = 64;
3435 
3436 /* Called with irq disabled */
3437 static inline void ____napi_schedule(struct softnet_data *sd,
3438 				     struct napi_struct *napi)
3439 {
3440 	list_add_tail(&napi->poll_list, &sd->poll_list);
3441 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3442 }
3443 
3444 #ifdef CONFIG_RPS
3445 
3446 /* One global table that all flow-based protocols share. */
3447 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3448 EXPORT_SYMBOL(rps_sock_flow_table);
3449 u32 rps_cpu_mask __read_mostly;
3450 EXPORT_SYMBOL(rps_cpu_mask);
3451 
3452 struct static_key rps_needed __read_mostly;
3453 EXPORT_SYMBOL(rps_needed);
3454 struct static_key rfs_needed __read_mostly;
3455 EXPORT_SYMBOL(rfs_needed);
3456 
3457 static struct rps_dev_flow *
3458 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3459 	    struct rps_dev_flow *rflow, u16 next_cpu)
3460 {
3461 	if (next_cpu < nr_cpu_ids) {
3462 #ifdef CONFIG_RFS_ACCEL
3463 		struct netdev_rx_queue *rxqueue;
3464 		struct rps_dev_flow_table *flow_table;
3465 		struct rps_dev_flow *old_rflow;
3466 		u32 flow_id;
3467 		u16 rxq_index;
3468 		int rc;
3469 
3470 		/* Should we steer this flow to a different hardware queue? */
3471 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3472 		    !(dev->features & NETIF_F_NTUPLE))
3473 			goto out;
3474 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3475 		if (rxq_index == skb_get_rx_queue(skb))
3476 			goto out;
3477 
3478 		rxqueue = dev->_rx + rxq_index;
3479 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3480 		if (!flow_table)
3481 			goto out;
3482 		flow_id = skb_get_hash(skb) & flow_table->mask;
3483 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3484 							rxq_index, flow_id);
3485 		if (rc < 0)
3486 			goto out;
3487 		old_rflow = rflow;
3488 		rflow = &flow_table->flows[flow_id];
3489 		rflow->filter = rc;
3490 		if (old_rflow->filter == rflow->filter)
3491 			old_rflow->filter = RPS_NO_FILTER;
3492 	out:
3493 #endif
3494 		rflow->last_qtail =
3495 			per_cpu(softnet_data, next_cpu).input_queue_head;
3496 	}
3497 
3498 	rflow->cpu = next_cpu;
3499 	return rflow;
3500 }
3501 
3502 /*
3503  * get_rps_cpu is called from netif_receive_skb and returns the target
3504  * CPU from the RPS map of the receiving queue for a given skb.
3505  * rcu_read_lock must be held on entry.
3506  */
3507 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3508 		       struct rps_dev_flow **rflowp)
3509 {
3510 	const struct rps_sock_flow_table *sock_flow_table;
3511 	struct netdev_rx_queue *rxqueue = dev->_rx;
3512 	struct rps_dev_flow_table *flow_table;
3513 	struct rps_map *map;
3514 	int cpu = -1;
3515 	u32 tcpu;
3516 	u32 hash;
3517 
3518 	if (skb_rx_queue_recorded(skb)) {
3519 		u16 index = skb_get_rx_queue(skb);
3520 
3521 		if (unlikely(index >= dev->real_num_rx_queues)) {
3522 			WARN_ONCE(dev->real_num_rx_queues > 1,
3523 				  "%s received packet on queue %u, but number "
3524 				  "of RX queues is %u\n",
3525 				  dev->name, index, dev->real_num_rx_queues);
3526 			goto done;
3527 		}
3528 		rxqueue += index;
3529 	}
3530 
3531 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3532 
3533 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3534 	map = rcu_dereference(rxqueue->rps_map);
3535 	if (!flow_table && !map)
3536 		goto done;
3537 
3538 	skb_reset_network_header(skb);
3539 	hash = skb_get_hash(skb);
3540 	if (!hash)
3541 		goto done;
3542 
3543 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3544 	if (flow_table && sock_flow_table) {
3545 		struct rps_dev_flow *rflow;
3546 		u32 next_cpu;
3547 		u32 ident;
3548 
3549 		/* First check into global flow table if there is a match */
3550 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3551 		if ((ident ^ hash) & ~rps_cpu_mask)
3552 			goto try_rps;
3553 
3554 		next_cpu = ident & rps_cpu_mask;
3555 
3556 		/* OK, now we know there is a match,
3557 		 * we can look at the local (per receive queue) flow table
3558 		 */
3559 		rflow = &flow_table->flows[hash & flow_table->mask];
3560 		tcpu = rflow->cpu;
3561 
3562 		/*
3563 		 * If the desired CPU (where last recvmsg was done) is
3564 		 * different from current CPU (one in the rx-queue flow
3565 		 * table entry), switch if one of the following holds:
3566 		 *   - Current CPU is unset (>= nr_cpu_ids).
3567 		 *   - Current CPU is offline.
3568 		 *   - The current CPU's queue tail has advanced beyond the
3569 		 *     last packet that was enqueued using this table entry.
3570 		 *     This guarantees that all previous packets for the flow
3571 		 *     have been dequeued, thus preserving in order delivery.
3572 		 */
3573 		if (unlikely(tcpu != next_cpu) &&
3574 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3575 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3576 		      rflow->last_qtail)) >= 0)) {
3577 			tcpu = next_cpu;
3578 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3579 		}
3580 
3581 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3582 			*rflowp = rflow;
3583 			cpu = tcpu;
3584 			goto done;
3585 		}
3586 	}
3587 
3588 try_rps:
3589 
3590 	if (map) {
3591 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3592 		if (cpu_online(tcpu)) {
3593 			cpu = tcpu;
3594 			goto done;
3595 		}
3596 	}
3597 
3598 done:
3599 	return cpu;
3600 }
3601 
3602 #ifdef CONFIG_RFS_ACCEL
3603 
3604 /**
3605  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3606  * @dev: Device on which the filter was set
3607  * @rxq_index: RX queue index
3608  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3609  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3610  *
3611  * Drivers that implement ndo_rx_flow_steer() should periodically call
3612  * this function for each installed filter and remove the filters for
3613  * which it returns %true.
3614  */
3615 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3616 			 u32 flow_id, u16 filter_id)
3617 {
3618 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3619 	struct rps_dev_flow_table *flow_table;
3620 	struct rps_dev_flow *rflow;
3621 	bool expire = true;
3622 	unsigned int cpu;
3623 
3624 	rcu_read_lock();
3625 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3626 	if (flow_table && flow_id <= flow_table->mask) {
3627 		rflow = &flow_table->flows[flow_id];
3628 		cpu = ACCESS_ONCE(rflow->cpu);
3629 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3630 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3631 			   rflow->last_qtail) <
3632 		     (int)(10 * flow_table->mask)))
3633 			expire = false;
3634 	}
3635 	rcu_read_unlock();
3636 	return expire;
3637 }
3638 EXPORT_SYMBOL(rps_may_expire_flow);
3639 
3640 #endif /* CONFIG_RFS_ACCEL */
3641 
3642 /* Called from hardirq (IPI) context */
3643 static void rps_trigger_softirq(void *data)
3644 {
3645 	struct softnet_data *sd = data;
3646 
3647 	____napi_schedule(sd, &sd->backlog);
3648 	sd->received_rps++;
3649 }
3650 
3651 #endif /* CONFIG_RPS */
3652 
3653 /*
3654  * Check if this softnet_data structure is another cpu one
3655  * If yes, queue it to our IPI list and return 1
3656  * If no, return 0
3657  */
3658 static int rps_ipi_queued(struct softnet_data *sd)
3659 {
3660 #ifdef CONFIG_RPS
3661 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3662 
3663 	if (sd != mysd) {
3664 		sd->rps_ipi_next = mysd->rps_ipi_list;
3665 		mysd->rps_ipi_list = sd;
3666 
3667 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3668 		return 1;
3669 	}
3670 #endif /* CONFIG_RPS */
3671 	return 0;
3672 }
3673 
3674 #ifdef CONFIG_NET_FLOW_LIMIT
3675 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3676 #endif
3677 
3678 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3679 {
3680 #ifdef CONFIG_NET_FLOW_LIMIT
3681 	struct sd_flow_limit *fl;
3682 	struct softnet_data *sd;
3683 	unsigned int old_flow, new_flow;
3684 
3685 	if (qlen < (netdev_max_backlog >> 1))
3686 		return false;
3687 
3688 	sd = this_cpu_ptr(&softnet_data);
3689 
3690 	rcu_read_lock();
3691 	fl = rcu_dereference(sd->flow_limit);
3692 	if (fl) {
3693 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3694 		old_flow = fl->history[fl->history_head];
3695 		fl->history[fl->history_head] = new_flow;
3696 
3697 		fl->history_head++;
3698 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3699 
3700 		if (likely(fl->buckets[old_flow]))
3701 			fl->buckets[old_flow]--;
3702 
3703 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3704 			fl->count++;
3705 			rcu_read_unlock();
3706 			return true;
3707 		}
3708 	}
3709 	rcu_read_unlock();
3710 #endif
3711 	return false;
3712 }
3713 
3714 /*
3715  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3716  * queue (may be a remote CPU queue).
3717  */
3718 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3719 			      unsigned int *qtail)
3720 {
3721 	struct softnet_data *sd;
3722 	unsigned long flags;
3723 	unsigned int qlen;
3724 
3725 	sd = &per_cpu(softnet_data, cpu);
3726 
3727 	local_irq_save(flags);
3728 
3729 	rps_lock(sd);
3730 	if (!netif_running(skb->dev))
3731 		goto drop;
3732 	qlen = skb_queue_len(&sd->input_pkt_queue);
3733 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3734 		if (qlen) {
3735 enqueue:
3736 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3737 			input_queue_tail_incr_save(sd, qtail);
3738 			rps_unlock(sd);
3739 			local_irq_restore(flags);
3740 			return NET_RX_SUCCESS;
3741 		}
3742 
3743 		/* Schedule NAPI for backlog device
3744 		 * We can use non atomic operation since we own the queue lock
3745 		 */
3746 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3747 			if (!rps_ipi_queued(sd))
3748 				____napi_schedule(sd, &sd->backlog);
3749 		}
3750 		goto enqueue;
3751 	}
3752 
3753 drop:
3754 	sd->dropped++;
3755 	rps_unlock(sd);
3756 
3757 	local_irq_restore(flags);
3758 
3759 	atomic_long_inc(&skb->dev->rx_dropped);
3760 	kfree_skb(skb);
3761 	return NET_RX_DROP;
3762 }
3763 
3764 static int netif_rx_internal(struct sk_buff *skb)
3765 {
3766 	int ret;
3767 
3768 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3769 
3770 	trace_netif_rx(skb);
3771 #ifdef CONFIG_RPS
3772 	if (static_key_false(&rps_needed)) {
3773 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3774 		int cpu;
3775 
3776 		preempt_disable();
3777 		rcu_read_lock();
3778 
3779 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3780 		if (cpu < 0)
3781 			cpu = smp_processor_id();
3782 
3783 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3784 
3785 		rcu_read_unlock();
3786 		preempt_enable();
3787 	} else
3788 #endif
3789 	{
3790 		unsigned int qtail;
3791 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3792 		put_cpu();
3793 	}
3794 	return ret;
3795 }
3796 
3797 /**
3798  *	netif_rx	-	post buffer to the network code
3799  *	@skb: buffer to post
3800  *
3801  *	This function receives a packet from a device driver and queues it for
3802  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3803  *	may be dropped during processing for congestion control or by the
3804  *	protocol layers.
3805  *
3806  *	return values:
3807  *	NET_RX_SUCCESS	(no congestion)
3808  *	NET_RX_DROP     (packet was dropped)
3809  *
3810  */
3811 
3812 int netif_rx(struct sk_buff *skb)
3813 {
3814 	trace_netif_rx_entry(skb);
3815 
3816 	return netif_rx_internal(skb);
3817 }
3818 EXPORT_SYMBOL(netif_rx);
3819 
3820 int netif_rx_ni(struct sk_buff *skb)
3821 {
3822 	int err;
3823 
3824 	trace_netif_rx_ni_entry(skb);
3825 
3826 	preempt_disable();
3827 	err = netif_rx_internal(skb);
3828 	if (local_softirq_pending())
3829 		do_softirq();
3830 	preempt_enable();
3831 
3832 	return err;
3833 }
3834 EXPORT_SYMBOL(netif_rx_ni);
3835 
3836 static __latent_entropy void net_tx_action(struct softirq_action *h)
3837 {
3838 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3839 
3840 	if (sd->completion_queue) {
3841 		struct sk_buff *clist;
3842 
3843 		local_irq_disable();
3844 		clist = sd->completion_queue;
3845 		sd->completion_queue = NULL;
3846 		local_irq_enable();
3847 
3848 		while (clist) {
3849 			struct sk_buff *skb = clist;
3850 			clist = clist->next;
3851 
3852 			WARN_ON(atomic_read(&skb->users));
3853 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3854 				trace_consume_skb(skb);
3855 			else
3856 				trace_kfree_skb(skb, net_tx_action);
3857 
3858 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3859 				__kfree_skb(skb);
3860 			else
3861 				__kfree_skb_defer(skb);
3862 		}
3863 
3864 		__kfree_skb_flush();
3865 	}
3866 
3867 	if (sd->output_queue) {
3868 		struct Qdisc *head;
3869 
3870 		local_irq_disable();
3871 		head = sd->output_queue;
3872 		sd->output_queue = NULL;
3873 		sd->output_queue_tailp = &sd->output_queue;
3874 		local_irq_enable();
3875 
3876 		while (head) {
3877 			struct Qdisc *q = head;
3878 			spinlock_t *root_lock;
3879 
3880 			head = head->next_sched;
3881 
3882 			root_lock = qdisc_lock(q);
3883 			spin_lock(root_lock);
3884 			/* We need to make sure head->next_sched is read
3885 			 * before clearing __QDISC_STATE_SCHED
3886 			 */
3887 			smp_mb__before_atomic();
3888 			clear_bit(__QDISC_STATE_SCHED, &q->state);
3889 			qdisc_run(q);
3890 			spin_unlock(root_lock);
3891 		}
3892 	}
3893 }
3894 
3895 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3896 /* This hook is defined here for ATM LANE */
3897 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3898 			     unsigned char *addr) __read_mostly;
3899 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3900 #endif
3901 
3902 static inline struct sk_buff *
3903 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3904 		   struct net_device *orig_dev)
3905 {
3906 #ifdef CONFIG_NET_CLS_ACT
3907 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3908 	struct tcf_result cl_res;
3909 
3910 	/* If there's at least one ingress present somewhere (so
3911 	 * we get here via enabled static key), remaining devices
3912 	 * that are not configured with an ingress qdisc will bail
3913 	 * out here.
3914 	 */
3915 	if (!cl)
3916 		return skb;
3917 	if (*pt_prev) {
3918 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3919 		*pt_prev = NULL;
3920 	}
3921 
3922 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3923 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3924 	qdisc_bstats_cpu_update(cl->q, skb);
3925 
3926 	switch (tc_classify(skb, cl, &cl_res, false)) {
3927 	case TC_ACT_OK:
3928 	case TC_ACT_RECLASSIFY:
3929 		skb->tc_index = TC_H_MIN(cl_res.classid);
3930 		break;
3931 	case TC_ACT_SHOT:
3932 		qdisc_qstats_cpu_drop(cl->q);
3933 		kfree_skb(skb);
3934 		return NULL;
3935 	case TC_ACT_STOLEN:
3936 	case TC_ACT_QUEUED:
3937 		consume_skb(skb);
3938 		return NULL;
3939 	case TC_ACT_REDIRECT:
3940 		/* skb_mac_header check was done by cls/act_bpf, so
3941 		 * we can safely push the L2 header back before
3942 		 * redirecting to another netdev
3943 		 */
3944 		__skb_push(skb, skb->mac_len);
3945 		skb_do_redirect(skb);
3946 		return NULL;
3947 	default:
3948 		break;
3949 	}
3950 #endif /* CONFIG_NET_CLS_ACT */
3951 	return skb;
3952 }
3953 
3954 /**
3955  *	netdev_is_rx_handler_busy - check if receive handler is registered
3956  *	@dev: device to check
3957  *
3958  *	Check if a receive handler is already registered for a given device.
3959  *	Return true if there one.
3960  *
3961  *	The caller must hold the rtnl_mutex.
3962  */
3963 bool netdev_is_rx_handler_busy(struct net_device *dev)
3964 {
3965 	ASSERT_RTNL();
3966 	return dev && rtnl_dereference(dev->rx_handler);
3967 }
3968 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3969 
3970 /**
3971  *	netdev_rx_handler_register - register receive handler
3972  *	@dev: device to register a handler for
3973  *	@rx_handler: receive handler to register
3974  *	@rx_handler_data: data pointer that is used by rx handler
3975  *
3976  *	Register a receive handler for a device. This handler will then be
3977  *	called from __netif_receive_skb. A negative errno code is returned
3978  *	on a failure.
3979  *
3980  *	The caller must hold the rtnl_mutex.
3981  *
3982  *	For a general description of rx_handler, see enum rx_handler_result.
3983  */
3984 int netdev_rx_handler_register(struct net_device *dev,
3985 			       rx_handler_func_t *rx_handler,
3986 			       void *rx_handler_data)
3987 {
3988 	ASSERT_RTNL();
3989 
3990 	if (dev->rx_handler)
3991 		return -EBUSY;
3992 
3993 	/* Note: rx_handler_data must be set before rx_handler */
3994 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3995 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3996 
3997 	return 0;
3998 }
3999 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4000 
4001 /**
4002  *	netdev_rx_handler_unregister - unregister receive handler
4003  *	@dev: device to unregister a handler from
4004  *
4005  *	Unregister a receive handler from a device.
4006  *
4007  *	The caller must hold the rtnl_mutex.
4008  */
4009 void netdev_rx_handler_unregister(struct net_device *dev)
4010 {
4011 
4012 	ASSERT_RTNL();
4013 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4014 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4015 	 * section has a guarantee to see a non NULL rx_handler_data
4016 	 * as well.
4017 	 */
4018 	synchronize_net();
4019 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4020 }
4021 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4022 
4023 /*
4024  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4025  * the special handling of PFMEMALLOC skbs.
4026  */
4027 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4028 {
4029 	switch (skb->protocol) {
4030 	case htons(ETH_P_ARP):
4031 	case htons(ETH_P_IP):
4032 	case htons(ETH_P_IPV6):
4033 	case htons(ETH_P_8021Q):
4034 	case htons(ETH_P_8021AD):
4035 		return true;
4036 	default:
4037 		return false;
4038 	}
4039 }
4040 
4041 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4042 			     int *ret, struct net_device *orig_dev)
4043 {
4044 #ifdef CONFIG_NETFILTER_INGRESS
4045 	if (nf_hook_ingress_active(skb)) {
4046 		int ingress_retval;
4047 
4048 		if (*pt_prev) {
4049 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4050 			*pt_prev = NULL;
4051 		}
4052 
4053 		rcu_read_lock();
4054 		ingress_retval = nf_hook_ingress(skb);
4055 		rcu_read_unlock();
4056 		return ingress_retval;
4057 	}
4058 #endif /* CONFIG_NETFILTER_INGRESS */
4059 	return 0;
4060 }
4061 
4062 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4063 {
4064 	struct packet_type *ptype, *pt_prev;
4065 	rx_handler_func_t *rx_handler;
4066 	struct net_device *orig_dev;
4067 	bool deliver_exact = false;
4068 	int ret = NET_RX_DROP;
4069 	__be16 type;
4070 
4071 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4072 
4073 	trace_netif_receive_skb(skb);
4074 
4075 	orig_dev = skb->dev;
4076 
4077 	skb_reset_network_header(skb);
4078 	if (!skb_transport_header_was_set(skb))
4079 		skb_reset_transport_header(skb);
4080 	skb_reset_mac_len(skb);
4081 
4082 	pt_prev = NULL;
4083 
4084 another_round:
4085 	skb->skb_iif = skb->dev->ifindex;
4086 
4087 	__this_cpu_inc(softnet_data.processed);
4088 
4089 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4090 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4091 		skb = skb_vlan_untag(skb);
4092 		if (unlikely(!skb))
4093 			goto out;
4094 	}
4095 
4096 #ifdef CONFIG_NET_CLS_ACT
4097 	if (skb->tc_verd & TC_NCLS) {
4098 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4099 		goto ncls;
4100 	}
4101 #endif
4102 
4103 	if (pfmemalloc)
4104 		goto skip_taps;
4105 
4106 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4107 		if (pt_prev)
4108 			ret = deliver_skb(skb, pt_prev, orig_dev);
4109 		pt_prev = ptype;
4110 	}
4111 
4112 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4113 		if (pt_prev)
4114 			ret = deliver_skb(skb, pt_prev, orig_dev);
4115 		pt_prev = ptype;
4116 	}
4117 
4118 skip_taps:
4119 #ifdef CONFIG_NET_INGRESS
4120 	if (static_key_false(&ingress_needed)) {
4121 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4122 		if (!skb)
4123 			goto out;
4124 
4125 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4126 			goto out;
4127 	}
4128 #endif
4129 #ifdef CONFIG_NET_CLS_ACT
4130 	skb->tc_verd = 0;
4131 ncls:
4132 #endif
4133 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4134 		goto drop;
4135 
4136 	if (skb_vlan_tag_present(skb)) {
4137 		if (pt_prev) {
4138 			ret = deliver_skb(skb, pt_prev, orig_dev);
4139 			pt_prev = NULL;
4140 		}
4141 		if (vlan_do_receive(&skb))
4142 			goto another_round;
4143 		else if (unlikely(!skb))
4144 			goto out;
4145 	}
4146 
4147 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4148 	if (rx_handler) {
4149 		if (pt_prev) {
4150 			ret = deliver_skb(skb, pt_prev, orig_dev);
4151 			pt_prev = NULL;
4152 		}
4153 		switch (rx_handler(&skb)) {
4154 		case RX_HANDLER_CONSUMED:
4155 			ret = NET_RX_SUCCESS;
4156 			goto out;
4157 		case RX_HANDLER_ANOTHER:
4158 			goto another_round;
4159 		case RX_HANDLER_EXACT:
4160 			deliver_exact = true;
4161 		case RX_HANDLER_PASS:
4162 			break;
4163 		default:
4164 			BUG();
4165 		}
4166 	}
4167 
4168 	if (unlikely(skb_vlan_tag_present(skb))) {
4169 		if (skb_vlan_tag_get_id(skb))
4170 			skb->pkt_type = PACKET_OTHERHOST;
4171 		/* Note: we might in the future use prio bits
4172 		 * and set skb->priority like in vlan_do_receive()
4173 		 * For the time being, just ignore Priority Code Point
4174 		 */
4175 		skb->vlan_tci = 0;
4176 	}
4177 
4178 	type = skb->protocol;
4179 
4180 	/* deliver only exact match when indicated */
4181 	if (likely(!deliver_exact)) {
4182 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4183 				       &ptype_base[ntohs(type) &
4184 						   PTYPE_HASH_MASK]);
4185 	}
4186 
4187 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4188 			       &orig_dev->ptype_specific);
4189 
4190 	if (unlikely(skb->dev != orig_dev)) {
4191 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4192 				       &skb->dev->ptype_specific);
4193 	}
4194 
4195 	if (pt_prev) {
4196 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4197 			goto drop;
4198 		else
4199 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4200 	} else {
4201 drop:
4202 		if (!deliver_exact)
4203 			atomic_long_inc(&skb->dev->rx_dropped);
4204 		else
4205 			atomic_long_inc(&skb->dev->rx_nohandler);
4206 		kfree_skb(skb);
4207 		/* Jamal, now you will not able to escape explaining
4208 		 * me how you were going to use this. :-)
4209 		 */
4210 		ret = NET_RX_DROP;
4211 	}
4212 
4213 out:
4214 	return ret;
4215 }
4216 
4217 static int __netif_receive_skb(struct sk_buff *skb)
4218 {
4219 	int ret;
4220 
4221 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4222 		unsigned long pflags = current->flags;
4223 
4224 		/*
4225 		 * PFMEMALLOC skbs are special, they should
4226 		 * - be delivered to SOCK_MEMALLOC sockets only
4227 		 * - stay away from userspace
4228 		 * - have bounded memory usage
4229 		 *
4230 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4231 		 * context down to all allocation sites.
4232 		 */
4233 		current->flags |= PF_MEMALLOC;
4234 		ret = __netif_receive_skb_core(skb, true);
4235 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
4236 	} else
4237 		ret = __netif_receive_skb_core(skb, false);
4238 
4239 	return ret;
4240 }
4241 
4242 static int netif_receive_skb_internal(struct sk_buff *skb)
4243 {
4244 	int ret;
4245 
4246 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4247 
4248 	if (skb_defer_rx_timestamp(skb))
4249 		return NET_RX_SUCCESS;
4250 
4251 	rcu_read_lock();
4252 
4253 #ifdef CONFIG_RPS
4254 	if (static_key_false(&rps_needed)) {
4255 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4256 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4257 
4258 		if (cpu >= 0) {
4259 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4260 			rcu_read_unlock();
4261 			return ret;
4262 		}
4263 	}
4264 #endif
4265 	ret = __netif_receive_skb(skb);
4266 	rcu_read_unlock();
4267 	return ret;
4268 }
4269 
4270 /**
4271  *	netif_receive_skb - process receive buffer from network
4272  *	@skb: buffer to process
4273  *
4274  *	netif_receive_skb() is the main receive data processing function.
4275  *	It always succeeds. The buffer may be dropped during processing
4276  *	for congestion control or by the protocol layers.
4277  *
4278  *	This function may only be called from softirq context and interrupts
4279  *	should be enabled.
4280  *
4281  *	Return values (usually ignored):
4282  *	NET_RX_SUCCESS: no congestion
4283  *	NET_RX_DROP: packet was dropped
4284  */
4285 int netif_receive_skb(struct sk_buff *skb)
4286 {
4287 	trace_netif_receive_skb_entry(skb);
4288 
4289 	return netif_receive_skb_internal(skb);
4290 }
4291 EXPORT_SYMBOL(netif_receive_skb);
4292 
4293 DEFINE_PER_CPU(struct work_struct, flush_works);
4294 
4295 /* Network device is going away, flush any packets still pending */
4296 static void flush_backlog(struct work_struct *work)
4297 {
4298 	struct sk_buff *skb, *tmp;
4299 	struct softnet_data *sd;
4300 
4301 	local_bh_disable();
4302 	sd = this_cpu_ptr(&softnet_data);
4303 
4304 	local_irq_disable();
4305 	rps_lock(sd);
4306 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4307 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4308 			__skb_unlink(skb, &sd->input_pkt_queue);
4309 			kfree_skb(skb);
4310 			input_queue_head_incr(sd);
4311 		}
4312 	}
4313 	rps_unlock(sd);
4314 	local_irq_enable();
4315 
4316 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4317 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4318 			__skb_unlink(skb, &sd->process_queue);
4319 			kfree_skb(skb);
4320 			input_queue_head_incr(sd);
4321 		}
4322 	}
4323 	local_bh_enable();
4324 }
4325 
4326 static void flush_all_backlogs(void)
4327 {
4328 	unsigned int cpu;
4329 
4330 	get_online_cpus();
4331 
4332 	for_each_online_cpu(cpu)
4333 		queue_work_on(cpu, system_highpri_wq,
4334 			      per_cpu_ptr(&flush_works, cpu));
4335 
4336 	for_each_online_cpu(cpu)
4337 		flush_work(per_cpu_ptr(&flush_works, cpu));
4338 
4339 	put_online_cpus();
4340 }
4341 
4342 static int napi_gro_complete(struct sk_buff *skb)
4343 {
4344 	struct packet_offload *ptype;
4345 	__be16 type = skb->protocol;
4346 	struct list_head *head = &offload_base;
4347 	int err = -ENOENT;
4348 
4349 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4350 
4351 	if (NAPI_GRO_CB(skb)->count == 1) {
4352 		skb_shinfo(skb)->gso_size = 0;
4353 		goto out;
4354 	}
4355 
4356 	rcu_read_lock();
4357 	list_for_each_entry_rcu(ptype, head, list) {
4358 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4359 			continue;
4360 
4361 		err = ptype->callbacks.gro_complete(skb, 0);
4362 		break;
4363 	}
4364 	rcu_read_unlock();
4365 
4366 	if (err) {
4367 		WARN_ON(&ptype->list == head);
4368 		kfree_skb(skb);
4369 		return NET_RX_SUCCESS;
4370 	}
4371 
4372 out:
4373 	return netif_receive_skb_internal(skb);
4374 }
4375 
4376 /* napi->gro_list contains packets ordered by age.
4377  * youngest packets at the head of it.
4378  * Complete skbs in reverse order to reduce latencies.
4379  */
4380 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4381 {
4382 	struct sk_buff *skb, *prev = NULL;
4383 
4384 	/* scan list and build reverse chain */
4385 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4386 		skb->prev = prev;
4387 		prev = skb;
4388 	}
4389 
4390 	for (skb = prev; skb; skb = prev) {
4391 		skb->next = NULL;
4392 
4393 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4394 			return;
4395 
4396 		prev = skb->prev;
4397 		napi_gro_complete(skb);
4398 		napi->gro_count--;
4399 	}
4400 
4401 	napi->gro_list = NULL;
4402 }
4403 EXPORT_SYMBOL(napi_gro_flush);
4404 
4405 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4406 {
4407 	struct sk_buff *p;
4408 	unsigned int maclen = skb->dev->hard_header_len;
4409 	u32 hash = skb_get_hash_raw(skb);
4410 
4411 	for (p = napi->gro_list; p; p = p->next) {
4412 		unsigned long diffs;
4413 
4414 		NAPI_GRO_CB(p)->flush = 0;
4415 
4416 		if (hash != skb_get_hash_raw(p)) {
4417 			NAPI_GRO_CB(p)->same_flow = 0;
4418 			continue;
4419 		}
4420 
4421 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4422 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4423 		diffs |= skb_metadata_dst_cmp(p, skb);
4424 		if (maclen == ETH_HLEN)
4425 			diffs |= compare_ether_header(skb_mac_header(p),
4426 						      skb_mac_header(skb));
4427 		else if (!diffs)
4428 			diffs = memcmp(skb_mac_header(p),
4429 				       skb_mac_header(skb),
4430 				       maclen);
4431 		NAPI_GRO_CB(p)->same_flow = !diffs;
4432 	}
4433 }
4434 
4435 static void skb_gro_reset_offset(struct sk_buff *skb)
4436 {
4437 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4438 	const skb_frag_t *frag0 = &pinfo->frags[0];
4439 
4440 	NAPI_GRO_CB(skb)->data_offset = 0;
4441 	NAPI_GRO_CB(skb)->frag0 = NULL;
4442 	NAPI_GRO_CB(skb)->frag0_len = 0;
4443 
4444 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4445 	    pinfo->nr_frags &&
4446 	    !PageHighMem(skb_frag_page(frag0))) {
4447 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4448 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4449 	}
4450 }
4451 
4452 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4453 {
4454 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4455 
4456 	BUG_ON(skb->end - skb->tail < grow);
4457 
4458 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4459 
4460 	skb->data_len -= grow;
4461 	skb->tail += grow;
4462 
4463 	pinfo->frags[0].page_offset += grow;
4464 	skb_frag_size_sub(&pinfo->frags[0], grow);
4465 
4466 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4467 		skb_frag_unref(skb, 0);
4468 		memmove(pinfo->frags, pinfo->frags + 1,
4469 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4470 	}
4471 }
4472 
4473 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4474 {
4475 	struct sk_buff **pp = NULL;
4476 	struct packet_offload *ptype;
4477 	__be16 type = skb->protocol;
4478 	struct list_head *head = &offload_base;
4479 	int same_flow;
4480 	enum gro_result ret;
4481 	int grow;
4482 
4483 	if (!(skb->dev->features & NETIF_F_GRO))
4484 		goto normal;
4485 
4486 	if (skb->csum_bad)
4487 		goto normal;
4488 
4489 	gro_list_prepare(napi, skb);
4490 
4491 	rcu_read_lock();
4492 	list_for_each_entry_rcu(ptype, head, list) {
4493 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4494 			continue;
4495 
4496 		skb_set_network_header(skb, skb_gro_offset(skb));
4497 		skb_reset_mac_len(skb);
4498 		NAPI_GRO_CB(skb)->same_flow = 0;
4499 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4500 		NAPI_GRO_CB(skb)->free = 0;
4501 		NAPI_GRO_CB(skb)->encap_mark = 0;
4502 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4503 		NAPI_GRO_CB(skb)->is_fou = 0;
4504 		NAPI_GRO_CB(skb)->is_atomic = 1;
4505 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4506 
4507 		/* Setup for GRO checksum validation */
4508 		switch (skb->ip_summed) {
4509 		case CHECKSUM_COMPLETE:
4510 			NAPI_GRO_CB(skb)->csum = skb->csum;
4511 			NAPI_GRO_CB(skb)->csum_valid = 1;
4512 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4513 			break;
4514 		case CHECKSUM_UNNECESSARY:
4515 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4516 			NAPI_GRO_CB(skb)->csum_valid = 0;
4517 			break;
4518 		default:
4519 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4520 			NAPI_GRO_CB(skb)->csum_valid = 0;
4521 		}
4522 
4523 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4524 		break;
4525 	}
4526 	rcu_read_unlock();
4527 
4528 	if (&ptype->list == head)
4529 		goto normal;
4530 
4531 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4532 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4533 
4534 	if (pp) {
4535 		struct sk_buff *nskb = *pp;
4536 
4537 		*pp = nskb->next;
4538 		nskb->next = NULL;
4539 		napi_gro_complete(nskb);
4540 		napi->gro_count--;
4541 	}
4542 
4543 	if (same_flow)
4544 		goto ok;
4545 
4546 	if (NAPI_GRO_CB(skb)->flush)
4547 		goto normal;
4548 
4549 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4550 		struct sk_buff *nskb = napi->gro_list;
4551 
4552 		/* locate the end of the list to select the 'oldest' flow */
4553 		while (nskb->next) {
4554 			pp = &nskb->next;
4555 			nskb = *pp;
4556 		}
4557 		*pp = NULL;
4558 		nskb->next = NULL;
4559 		napi_gro_complete(nskb);
4560 	} else {
4561 		napi->gro_count++;
4562 	}
4563 	NAPI_GRO_CB(skb)->count = 1;
4564 	NAPI_GRO_CB(skb)->age = jiffies;
4565 	NAPI_GRO_CB(skb)->last = skb;
4566 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4567 	skb->next = napi->gro_list;
4568 	napi->gro_list = skb;
4569 	ret = GRO_HELD;
4570 
4571 pull:
4572 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4573 	if (grow > 0)
4574 		gro_pull_from_frag0(skb, grow);
4575 ok:
4576 	return ret;
4577 
4578 normal:
4579 	ret = GRO_NORMAL;
4580 	goto pull;
4581 }
4582 
4583 struct packet_offload *gro_find_receive_by_type(__be16 type)
4584 {
4585 	struct list_head *offload_head = &offload_base;
4586 	struct packet_offload *ptype;
4587 
4588 	list_for_each_entry_rcu(ptype, offload_head, list) {
4589 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4590 			continue;
4591 		return ptype;
4592 	}
4593 	return NULL;
4594 }
4595 EXPORT_SYMBOL(gro_find_receive_by_type);
4596 
4597 struct packet_offload *gro_find_complete_by_type(__be16 type)
4598 {
4599 	struct list_head *offload_head = &offload_base;
4600 	struct packet_offload *ptype;
4601 
4602 	list_for_each_entry_rcu(ptype, offload_head, list) {
4603 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4604 			continue;
4605 		return ptype;
4606 	}
4607 	return NULL;
4608 }
4609 EXPORT_SYMBOL(gro_find_complete_by_type);
4610 
4611 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4612 {
4613 	switch (ret) {
4614 	case GRO_NORMAL:
4615 		if (netif_receive_skb_internal(skb))
4616 			ret = GRO_DROP;
4617 		break;
4618 
4619 	case GRO_DROP:
4620 		kfree_skb(skb);
4621 		break;
4622 
4623 	case GRO_MERGED_FREE:
4624 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4625 			skb_dst_drop(skb);
4626 			kmem_cache_free(skbuff_head_cache, skb);
4627 		} else {
4628 			__kfree_skb(skb);
4629 		}
4630 		break;
4631 
4632 	case GRO_HELD:
4633 	case GRO_MERGED:
4634 		break;
4635 	}
4636 
4637 	return ret;
4638 }
4639 
4640 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4641 {
4642 	skb_mark_napi_id(skb, napi);
4643 	trace_napi_gro_receive_entry(skb);
4644 
4645 	skb_gro_reset_offset(skb);
4646 
4647 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4648 }
4649 EXPORT_SYMBOL(napi_gro_receive);
4650 
4651 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4652 {
4653 	if (unlikely(skb->pfmemalloc)) {
4654 		consume_skb(skb);
4655 		return;
4656 	}
4657 	__skb_pull(skb, skb_headlen(skb));
4658 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4659 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4660 	skb->vlan_tci = 0;
4661 	skb->dev = napi->dev;
4662 	skb->skb_iif = 0;
4663 	skb->encapsulation = 0;
4664 	skb_shinfo(skb)->gso_type = 0;
4665 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4666 
4667 	napi->skb = skb;
4668 }
4669 
4670 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4671 {
4672 	struct sk_buff *skb = napi->skb;
4673 
4674 	if (!skb) {
4675 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4676 		if (skb) {
4677 			napi->skb = skb;
4678 			skb_mark_napi_id(skb, napi);
4679 		}
4680 	}
4681 	return skb;
4682 }
4683 EXPORT_SYMBOL(napi_get_frags);
4684 
4685 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4686 				      struct sk_buff *skb,
4687 				      gro_result_t ret)
4688 {
4689 	switch (ret) {
4690 	case GRO_NORMAL:
4691 	case GRO_HELD:
4692 		__skb_push(skb, ETH_HLEN);
4693 		skb->protocol = eth_type_trans(skb, skb->dev);
4694 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4695 			ret = GRO_DROP;
4696 		break;
4697 
4698 	case GRO_DROP:
4699 	case GRO_MERGED_FREE:
4700 		napi_reuse_skb(napi, skb);
4701 		break;
4702 
4703 	case GRO_MERGED:
4704 		break;
4705 	}
4706 
4707 	return ret;
4708 }
4709 
4710 /* Upper GRO stack assumes network header starts at gro_offset=0
4711  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4712  * We copy ethernet header into skb->data to have a common layout.
4713  */
4714 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4715 {
4716 	struct sk_buff *skb = napi->skb;
4717 	const struct ethhdr *eth;
4718 	unsigned int hlen = sizeof(*eth);
4719 
4720 	napi->skb = NULL;
4721 
4722 	skb_reset_mac_header(skb);
4723 	skb_gro_reset_offset(skb);
4724 
4725 	eth = skb_gro_header_fast(skb, 0);
4726 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4727 		eth = skb_gro_header_slow(skb, hlen, 0);
4728 		if (unlikely(!eth)) {
4729 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4730 					     __func__, napi->dev->name);
4731 			napi_reuse_skb(napi, skb);
4732 			return NULL;
4733 		}
4734 	} else {
4735 		gro_pull_from_frag0(skb, hlen);
4736 		NAPI_GRO_CB(skb)->frag0 += hlen;
4737 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4738 	}
4739 	__skb_pull(skb, hlen);
4740 
4741 	/*
4742 	 * This works because the only protocols we care about don't require
4743 	 * special handling.
4744 	 * We'll fix it up properly in napi_frags_finish()
4745 	 */
4746 	skb->protocol = eth->h_proto;
4747 
4748 	return skb;
4749 }
4750 
4751 gro_result_t napi_gro_frags(struct napi_struct *napi)
4752 {
4753 	struct sk_buff *skb = napi_frags_skb(napi);
4754 
4755 	if (!skb)
4756 		return GRO_DROP;
4757 
4758 	trace_napi_gro_frags_entry(skb);
4759 
4760 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4761 }
4762 EXPORT_SYMBOL(napi_gro_frags);
4763 
4764 /* Compute the checksum from gro_offset and return the folded value
4765  * after adding in any pseudo checksum.
4766  */
4767 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4768 {
4769 	__wsum wsum;
4770 	__sum16 sum;
4771 
4772 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4773 
4774 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4775 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4776 	if (likely(!sum)) {
4777 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4778 		    !skb->csum_complete_sw)
4779 			netdev_rx_csum_fault(skb->dev);
4780 	}
4781 
4782 	NAPI_GRO_CB(skb)->csum = wsum;
4783 	NAPI_GRO_CB(skb)->csum_valid = 1;
4784 
4785 	return sum;
4786 }
4787 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4788 
4789 /*
4790  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4791  * Note: called with local irq disabled, but exits with local irq enabled.
4792  */
4793 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4794 {
4795 #ifdef CONFIG_RPS
4796 	struct softnet_data *remsd = sd->rps_ipi_list;
4797 
4798 	if (remsd) {
4799 		sd->rps_ipi_list = NULL;
4800 
4801 		local_irq_enable();
4802 
4803 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4804 		while (remsd) {
4805 			struct softnet_data *next = remsd->rps_ipi_next;
4806 
4807 			if (cpu_online(remsd->cpu))
4808 				smp_call_function_single_async(remsd->cpu,
4809 							   &remsd->csd);
4810 			remsd = next;
4811 		}
4812 	} else
4813 #endif
4814 		local_irq_enable();
4815 }
4816 
4817 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4818 {
4819 #ifdef CONFIG_RPS
4820 	return sd->rps_ipi_list != NULL;
4821 #else
4822 	return false;
4823 #endif
4824 }
4825 
4826 static int process_backlog(struct napi_struct *napi, int quota)
4827 {
4828 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4829 	bool again = true;
4830 	int work = 0;
4831 
4832 	/* Check if we have pending ipi, its better to send them now,
4833 	 * not waiting net_rx_action() end.
4834 	 */
4835 	if (sd_has_rps_ipi_waiting(sd)) {
4836 		local_irq_disable();
4837 		net_rps_action_and_irq_enable(sd);
4838 	}
4839 
4840 	napi->weight = dev_rx_weight;
4841 	while (again) {
4842 		struct sk_buff *skb;
4843 
4844 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4845 			rcu_read_lock();
4846 			__netif_receive_skb(skb);
4847 			rcu_read_unlock();
4848 			input_queue_head_incr(sd);
4849 			if (++work >= quota)
4850 				return work;
4851 
4852 		}
4853 
4854 		local_irq_disable();
4855 		rps_lock(sd);
4856 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4857 			/*
4858 			 * Inline a custom version of __napi_complete().
4859 			 * only current cpu owns and manipulates this napi,
4860 			 * and NAPI_STATE_SCHED is the only possible flag set
4861 			 * on backlog.
4862 			 * We can use a plain write instead of clear_bit(),
4863 			 * and we dont need an smp_mb() memory barrier.
4864 			 */
4865 			napi->state = 0;
4866 			again = false;
4867 		} else {
4868 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4869 						   &sd->process_queue);
4870 		}
4871 		rps_unlock(sd);
4872 		local_irq_enable();
4873 	}
4874 
4875 	return work;
4876 }
4877 
4878 /**
4879  * __napi_schedule - schedule for receive
4880  * @n: entry to schedule
4881  *
4882  * The entry's receive function will be scheduled to run.
4883  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4884  */
4885 void __napi_schedule(struct napi_struct *n)
4886 {
4887 	unsigned long flags;
4888 
4889 	local_irq_save(flags);
4890 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4891 	local_irq_restore(flags);
4892 }
4893 EXPORT_SYMBOL(__napi_schedule);
4894 
4895 /**
4896  * __napi_schedule_irqoff - schedule for receive
4897  * @n: entry to schedule
4898  *
4899  * Variant of __napi_schedule() assuming hard irqs are masked
4900  */
4901 void __napi_schedule_irqoff(struct napi_struct *n)
4902 {
4903 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4904 }
4905 EXPORT_SYMBOL(__napi_schedule_irqoff);
4906 
4907 bool __napi_complete(struct napi_struct *n)
4908 {
4909 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4910 
4911 	/* Some drivers call us directly, instead of calling
4912 	 * napi_complete_done().
4913 	 */
4914 	if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state)))
4915 		return false;
4916 
4917 	list_del_init(&n->poll_list);
4918 	smp_mb__before_atomic();
4919 	clear_bit(NAPI_STATE_SCHED, &n->state);
4920 	return true;
4921 }
4922 EXPORT_SYMBOL(__napi_complete);
4923 
4924 bool napi_complete_done(struct napi_struct *n, int work_done)
4925 {
4926 	unsigned long flags;
4927 
4928 	/*
4929 	 * 1) Don't let napi dequeue from the cpu poll list
4930 	 *    just in case its running on a different cpu.
4931 	 * 2) If we are busy polling, do nothing here, we have
4932 	 *    the guarantee we will be called later.
4933 	 */
4934 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4935 				 NAPIF_STATE_IN_BUSY_POLL)))
4936 		return false;
4937 
4938 	if (n->gro_list) {
4939 		unsigned long timeout = 0;
4940 
4941 		if (work_done)
4942 			timeout = n->dev->gro_flush_timeout;
4943 
4944 		if (timeout)
4945 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4946 				      HRTIMER_MODE_REL_PINNED);
4947 		else
4948 			napi_gro_flush(n, false);
4949 	}
4950 	if (likely(list_empty(&n->poll_list))) {
4951 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4952 	} else {
4953 		/* If n->poll_list is not empty, we need to mask irqs */
4954 		local_irq_save(flags);
4955 		__napi_complete(n);
4956 		local_irq_restore(flags);
4957 	}
4958 	return true;
4959 }
4960 EXPORT_SYMBOL(napi_complete_done);
4961 
4962 /* must be called under rcu_read_lock(), as we dont take a reference */
4963 static struct napi_struct *napi_by_id(unsigned int napi_id)
4964 {
4965 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4966 	struct napi_struct *napi;
4967 
4968 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4969 		if (napi->napi_id == napi_id)
4970 			return napi;
4971 
4972 	return NULL;
4973 }
4974 
4975 #if defined(CONFIG_NET_RX_BUSY_POLL)
4976 
4977 #define BUSY_POLL_BUDGET 8
4978 
4979 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4980 {
4981 	int rc;
4982 
4983 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4984 
4985 	local_bh_disable();
4986 
4987 	/* All we really want here is to re-enable device interrupts.
4988 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4989 	 */
4990 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
4991 	netpoll_poll_unlock(have_poll_lock);
4992 	if (rc == BUSY_POLL_BUDGET)
4993 		__napi_schedule(napi);
4994 	local_bh_enable();
4995 	if (local_softirq_pending())
4996 		do_softirq();
4997 }
4998 
4999 bool sk_busy_loop(struct sock *sk, int nonblock)
5000 {
5001 	unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
5002 	int (*napi_poll)(struct napi_struct *napi, int budget);
5003 	int (*busy_poll)(struct napi_struct *dev);
5004 	void *have_poll_lock = NULL;
5005 	struct napi_struct *napi;
5006 	int rc;
5007 
5008 restart:
5009 	rc = false;
5010 	napi_poll = NULL;
5011 
5012 	rcu_read_lock();
5013 
5014 	napi = napi_by_id(sk->sk_napi_id);
5015 	if (!napi)
5016 		goto out;
5017 
5018 	/* Note: ndo_busy_poll method is optional in linux-4.5 */
5019 	busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
5020 
5021 	preempt_disable();
5022 	for (;;) {
5023 		rc = 0;
5024 		local_bh_disable();
5025 		if (busy_poll) {
5026 			rc = busy_poll(napi);
5027 			goto count;
5028 		}
5029 		if (!napi_poll) {
5030 			unsigned long val = READ_ONCE(napi->state);
5031 
5032 			/* If multiple threads are competing for this napi,
5033 			 * we avoid dirtying napi->state as much as we can.
5034 			 */
5035 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5036 				   NAPIF_STATE_IN_BUSY_POLL))
5037 				goto count;
5038 			if (cmpxchg(&napi->state, val,
5039 				    val | NAPIF_STATE_IN_BUSY_POLL |
5040 					  NAPIF_STATE_SCHED) != val)
5041 				goto count;
5042 			have_poll_lock = netpoll_poll_lock(napi);
5043 			napi_poll = napi->poll;
5044 		}
5045 		rc = napi_poll(napi, BUSY_POLL_BUDGET);
5046 		trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5047 count:
5048 		if (rc > 0)
5049 			__NET_ADD_STATS(sock_net(sk),
5050 					LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5051 		local_bh_enable();
5052 
5053 		if (rc == LL_FLUSH_FAILED)
5054 			break; /* permanent failure */
5055 
5056 		if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5057 		    busy_loop_timeout(end_time))
5058 			break;
5059 
5060 		if (unlikely(need_resched())) {
5061 			if (napi_poll)
5062 				busy_poll_stop(napi, have_poll_lock);
5063 			preempt_enable();
5064 			rcu_read_unlock();
5065 			cond_resched();
5066 			rc = !skb_queue_empty(&sk->sk_receive_queue);
5067 			if (rc || busy_loop_timeout(end_time))
5068 				return rc;
5069 			goto restart;
5070 		}
5071 		cpu_relax();
5072 	}
5073 	if (napi_poll)
5074 		busy_poll_stop(napi, have_poll_lock);
5075 	preempt_enable();
5076 	rc = !skb_queue_empty(&sk->sk_receive_queue);
5077 out:
5078 	rcu_read_unlock();
5079 	return rc;
5080 }
5081 EXPORT_SYMBOL(sk_busy_loop);
5082 
5083 #endif /* CONFIG_NET_RX_BUSY_POLL */
5084 
5085 static void napi_hash_add(struct napi_struct *napi)
5086 {
5087 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5088 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5089 		return;
5090 
5091 	spin_lock(&napi_hash_lock);
5092 
5093 	/* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5094 	do {
5095 		if (unlikely(++napi_gen_id < NR_CPUS + 1))
5096 			napi_gen_id = NR_CPUS + 1;
5097 	} while (napi_by_id(napi_gen_id));
5098 	napi->napi_id = napi_gen_id;
5099 
5100 	hlist_add_head_rcu(&napi->napi_hash_node,
5101 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5102 
5103 	spin_unlock(&napi_hash_lock);
5104 }
5105 
5106 /* Warning : caller is responsible to make sure rcu grace period
5107  * is respected before freeing memory containing @napi
5108  */
5109 bool napi_hash_del(struct napi_struct *napi)
5110 {
5111 	bool rcu_sync_needed = false;
5112 
5113 	spin_lock(&napi_hash_lock);
5114 
5115 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5116 		rcu_sync_needed = true;
5117 		hlist_del_rcu(&napi->napi_hash_node);
5118 	}
5119 	spin_unlock(&napi_hash_lock);
5120 	return rcu_sync_needed;
5121 }
5122 EXPORT_SYMBOL_GPL(napi_hash_del);
5123 
5124 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5125 {
5126 	struct napi_struct *napi;
5127 
5128 	napi = container_of(timer, struct napi_struct, timer);
5129 	if (napi->gro_list)
5130 		napi_schedule(napi);
5131 
5132 	return HRTIMER_NORESTART;
5133 }
5134 
5135 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5136 		    int (*poll)(struct napi_struct *, int), int weight)
5137 {
5138 	INIT_LIST_HEAD(&napi->poll_list);
5139 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5140 	napi->timer.function = napi_watchdog;
5141 	napi->gro_count = 0;
5142 	napi->gro_list = NULL;
5143 	napi->skb = NULL;
5144 	napi->poll = poll;
5145 	if (weight > NAPI_POLL_WEIGHT)
5146 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5147 			    weight, dev->name);
5148 	napi->weight = weight;
5149 	list_add(&napi->dev_list, &dev->napi_list);
5150 	napi->dev = dev;
5151 #ifdef CONFIG_NETPOLL
5152 	napi->poll_owner = -1;
5153 #endif
5154 	set_bit(NAPI_STATE_SCHED, &napi->state);
5155 	napi_hash_add(napi);
5156 }
5157 EXPORT_SYMBOL(netif_napi_add);
5158 
5159 void napi_disable(struct napi_struct *n)
5160 {
5161 	might_sleep();
5162 	set_bit(NAPI_STATE_DISABLE, &n->state);
5163 
5164 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5165 		msleep(1);
5166 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5167 		msleep(1);
5168 
5169 	hrtimer_cancel(&n->timer);
5170 
5171 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5172 }
5173 EXPORT_SYMBOL(napi_disable);
5174 
5175 /* Must be called in process context */
5176 void netif_napi_del(struct napi_struct *napi)
5177 {
5178 	might_sleep();
5179 	if (napi_hash_del(napi))
5180 		synchronize_net();
5181 	list_del_init(&napi->dev_list);
5182 	napi_free_frags(napi);
5183 
5184 	kfree_skb_list(napi->gro_list);
5185 	napi->gro_list = NULL;
5186 	napi->gro_count = 0;
5187 }
5188 EXPORT_SYMBOL(netif_napi_del);
5189 
5190 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5191 {
5192 	void *have;
5193 	int work, weight;
5194 
5195 	list_del_init(&n->poll_list);
5196 
5197 	have = netpoll_poll_lock(n);
5198 
5199 	weight = n->weight;
5200 
5201 	/* This NAPI_STATE_SCHED test is for avoiding a race
5202 	 * with netpoll's poll_napi().  Only the entity which
5203 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5204 	 * actually make the ->poll() call.  Therefore we avoid
5205 	 * accidentally calling ->poll() when NAPI is not scheduled.
5206 	 */
5207 	work = 0;
5208 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5209 		work = n->poll(n, weight);
5210 		trace_napi_poll(n, work, weight);
5211 	}
5212 
5213 	WARN_ON_ONCE(work > weight);
5214 
5215 	if (likely(work < weight))
5216 		goto out_unlock;
5217 
5218 	/* Drivers must not modify the NAPI state if they
5219 	 * consume the entire weight.  In such cases this code
5220 	 * still "owns" the NAPI instance and therefore can
5221 	 * move the instance around on the list at-will.
5222 	 */
5223 	if (unlikely(napi_disable_pending(n))) {
5224 		napi_complete(n);
5225 		goto out_unlock;
5226 	}
5227 
5228 	if (n->gro_list) {
5229 		/* flush too old packets
5230 		 * If HZ < 1000, flush all packets.
5231 		 */
5232 		napi_gro_flush(n, HZ >= 1000);
5233 	}
5234 
5235 	/* Some drivers may have called napi_schedule
5236 	 * prior to exhausting their budget.
5237 	 */
5238 	if (unlikely(!list_empty(&n->poll_list))) {
5239 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5240 			     n->dev ? n->dev->name : "backlog");
5241 		goto out_unlock;
5242 	}
5243 
5244 	list_add_tail(&n->poll_list, repoll);
5245 
5246 out_unlock:
5247 	netpoll_poll_unlock(have);
5248 
5249 	return work;
5250 }
5251 
5252 static __latent_entropy void net_rx_action(struct softirq_action *h)
5253 {
5254 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5255 	unsigned long time_limit = jiffies + 2;
5256 	int budget = netdev_budget;
5257 	LIST_HEAD(list);
5258 	LIST_HEAD(repoll);
5259 
5260 	local_irq_disable();
5261 	list_splice_init(&sd->poll_list, &list);
5262 	local_irq_enable();
5263 
5264 	for (;;) {
5265 		struct napi_struct *n;
5266 
5267 		if (list_empty(&list)) {
5268 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5269 				goto out;
5270 			break;
5271 		}
5272 
5273 		n = list_first_entry(&list, struct napi_struct, poll_list);
5274 		budget -= napi_poll(n, &repoll);
5275 
5276 		/* If softirq window is exhausted then punt.
5277 		 * Allow this to run for 2 jiffies since which will allow
5278 		 * an average latency of 1.5/HZ.
5279 		 */
5280 		if (unlikely(budget <= 0 ||
5281 			     time_after_eq(jiffies, time_limit))) {
5282 			sd->time_squeeze++;
5283 			break;
5284 		}
5285 	}
5286 
5287 	local_irq_disable();
5288 
5289 	list_splice_tail_init(&sd->poll_list, &list);
5290 	list_splice_tail(&repoll, &list);
5291 	list_splice(&list, &sd->poll_list);
5292 	if (!list_empty(&sd->poll_list))
5293 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5294 
5295 	net_rps_action_and_irq_enable(sd);
5296 out:
5297 	__kfree_skb_flush();
5298 }
5299 
5300 struct netdev_adjacent {
5301 	struct net_device *dev;
5302 
5303 	/* upper master flag, there can only be one master device per list */
5304 	bool master;
5305 
5306 	/* counter for the number of times this device was added to us */
5307 	u16 ref_nr;
5308 
5309 	/* private field for the users */
5310 	void *private;
5311 
5312 	struct list_head list;
5313 	struct rcu_head rcu;
5314 };
5315 
5316 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5317 						 struct list_head *adj_list)
5318 {
5319 	struct netdev_adjacent *adj;
5320 
5321 	list_for_each_entry(adj, adj_list, list) {
5322 		if (adj->dev == adj_dev)
5323 			return adj;
5324 	}
5325 	return NULL;
5326 }
5327 
5328 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5329 {
5330 	struct net_device *dev = data;
5331 
5332 	return upper_dev == dev;
5333 }
5334 
5335 /**
5336  * netdev_has_upper_dev - Check if device is linked to an upper device
5337  * @dev: device
5338  * @upper_dev: upper device to check
5339  *
5340  * Find out if a device is linked to specified upper device and return true
5341  * in case it is. Note that this checks only immediate upper device,
5342  * not through a complete stack of devices. The caller must hold the RTNL lock.
5343  */
5344 bool netdev_has_upper_dev(struct net_device *dev,
5345 			  struct net_device *upper_dev)
5346 {
5347 	ASSERT_RTNL();
5348 
5349 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5350 					     upper_dev);
5351 }
5352 EXPORT_SYMBOL(netdev_has_upper_dev);
5353 
5354 /**
5355  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5356  * @dev: device
5357  * @upper_dev: upper device to check
5358  *
5359  * Find out if a device is linked to specified upper device and return true
5360  * in case it is. Note that this checks the entire upper device chain.
5361  * The caller must hold rcu lock.
5362  */
5363 
5364 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5365 				  struct net_device *upper_dev)
5366 {
5367 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5368 					       upper_dev);
5369 }
5370 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5371 
5372 /**
5373  * netdev_has_any_upper_dev - Check if device is linked to some device
5374  * @dev: device
5375  *
5376  * Find out if a device is linked to an upper device and return true in case
5377  * it is. The caller must hold the RTNL lock.
5378  */
5379 static bool netdev_has_any_upper_dev(struct net_device *dev)
5380 {
5381 	ASSERT_RTNL();
5382 
5383 	return !list_empty(&dev->adj_list.upper);
5384 }
5385 
5386 /**
5387  * netdev_master_upper_dev_get - Get master upper device
5388  * @dev: device
5389  *
5390  * Find a master upper device and return pointer to it or NULL in case
5391  * it's not there. The caller must hold the RTNL lock.
5392  */
5393 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5394 {
5395 	struct netdev_adjacent *upper;
5396 
5397 	ASSERT_RTNL();
5398 
5399 	if (list_empty(&dev->adj_list.upper))
5400 		return NULL;
5401 
5402 	upper = list_first_entry(&dev->adj_list.upper,
5403 				 struct netdev_adjacent, list);
5404 	if (likely(upper->master))
5405 		return upper->dev;
5406 	return NULL;
5407 }
5408 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5409 
5410 /**
5411  * netdev_has_any_lower_dev - Check if device is linked to some device
5412  * @dev: device
5413  *
5414  * Find out if a device is linked to a lower device and return true in case
5415  * it is. The caller must hold the RTNL lock.
5416  */
5417 static bool netdev_has_any_lower_dev(struct net_device *dev)
5418 {
5419 	ASSERT_RTNL();
5420 
5421 	return !list_empty(&dev->adj_list.lower);
5422 }
5423 
5424 void *netdev_adjacent_get_private(struct list_head *adj_list)
5425 {
5426 	struct netdev_adjacent *adj;
5427 
5428 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5429 
5430 	return adj->private;
5431 }
5432 EXPORT_SYMBOL(netdev_adjacent_get_private);
5433 
5434 /**
5435  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5436  * @dev: device
5437  * @iter: list_head ** of the current position
5438  *
5439  * Gets the next device from the dev's upper list, starting from iter
5440  * position. The caller must hold RCU read lock.
5441  */
5442 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5443 						 struct list_head **iter)
5444 {
5445 	struct netdev_adjacent *upper;
5446 
5447 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5448 
5449 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5450 
5451 	if (&upper->list == &dev->adj_list.upper)
5452 		return NULL;
5453 
5454 	*iter = &upper->list;
5455 
5456 	return upper->dev;
5457 }
5458 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5459 
5460 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5461 						    struct list_head **iter)
5462 {
5463 	struct netdev_adjacent *upper;
5464 
5465 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5466 
5467 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5468 
5469 	if (&upper->list == &dev->adj_list.upper)
5470 		return NULL;
5471 
5472 	*iter = &upper->list;
5473 
5474 	return upper->dev;
5475 }
5476 
5477 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5478 				  int (*fn)(struct net_device *dev,
5479 					    void *data),
5480 				  void *data)
5481 {
5482 	struct net_device *udev;
5483 	struct list_head *iter;
5484 	int ret;
5485 
5486 	for (iter = &dev->adj_list.upper,
5487 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5488 	     udev;
5489 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5490 		/* first is the upper device itself */
5491 		ret = fn(udev, data);
5492 		if (ret)
5493 			return ret;
5494 
5495 		/* then look at all of its upper devices */
5496 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5497 		if (ret)
5498 			return ret;
5499 	}
5500 
5501 	return 0;
5502 }
5503 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5504 
5505 /**
5506  * netdev_lower_get_next_private - Get the next ->private from the
5507  *				   lower neighbour list
5508  * @dev: device
5509  * @iter: list_head ** of the current position
5510  *
5511  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5512  * list, starting from iter position. The caller must hold either hold the
5513  * RTNL lock or its own locking that guarantees that the neighbour lower
5514  * list will remain unchanged.
5515  */
5516 void *netdev_lower_get_next_private(struct net_device *dev,
5517 				    struct list_head **iter)
5518 {
5519 	struct netdev_adjacent *lower;
5520 
5521 	lower = list_entry(*iter, struct netdev_adjacent, list);
5522 
5523 	if (&lower->list == &dev->adj_list.lower)
5524 		return NULL;
5525 
5526 	*iter = lower->list.next;
5527 
5528 	return lower->private;
5529 }
5530 EXPORT_SYMBOL(netdev_lower_get_next_private);
5531 
5532 /**
5533  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5534  *				       lower neighbour list, RCU
5535  *				       variant
5536  * @dev: device
5537  * @iter: list_head ** of the current position
5538  *
5539  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5540  * list, starting from iter position. The caller must hold RCU read lock.
5541  */
5542 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5543 					struct list_head **iter)
5544 {
5545 	struct netdev_adjacent *lower;
5546 
5547 	WARN_ON_ONCE(!rcu_read_lock_held());
5548 
5549 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5550 
5551 	if (&lower->list == &dev->adj_list.lower)
5552 		return NULL;
5553 
5554 	*iter = &lower->list;
5555 
5556 	return lower->private;
5557 }
5558 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5559 
5560 /**
5561  * netdev_lower_get_next - Get the next device from the lower neighbour
5562  *                         list
5563  * @dev: device
5564  * @iter: list_head ** of the current position
5565  *
5566  * Gets the next netdev_adjacent from the dev's lower neighbour
5567  * list, starting from iter position. The caller must hold RTNL lock or
5568  * its own locking that guarantees that the neighbour lower
5569  * list will remain unchanged.
5570  */
5571 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5572 {
5573 	struct netdev_adjacent *lower;
5574 
5575 	lower = list_entry(*iter, struct netdev_adjacent, list);
5576 
5577 	if (&lower->list == &dev->adj_list.lower)
5578 		return NULL;
5579 
5580 	*iter = lower->list.next;
5581 
5582 	return lower->dev;
5583 }
5584 EXPORT_SYMBOL(netdev_lower_get_next);
5585 
5586 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5587 						struct list_head **iter)
5588 {
5589 	struct netdev_adjacent *lower;
5590 
5591 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5592 
5593 	if (&lower->list == &dev->adj_list.lower)
5594 		return NULL;
5595 
5596 	*iter = &lower->list;
5597 
5598 	return lower->dev;
5599 }
5600 
5601 int netdev_walk_all_lower_dev(struct net_device *dev,
5602 			      int (*fn)(struct net_device *dev,
5603 					void *data),
5604 			      void *data)
5605 {
5606 	struct net_device *ldev;
5607 	struct list_head *iter;
5608 	int ret;
5609 
5610 	for (iter = &dev->adj_list.lower,
5611 	     ldev = netdev_next_lower_dev(dev, &iter);
5612 	     ldev;
5613 	     ldev = netdev_next_lower_dev(dev, &iter)) {
5614 		/* first is the lower device itself */
5615 		ret = fn(ldev, data);
5616 		if (ret)
5617 			return ret;
5618 
5619 		/* then look at all of its lower devices */
5620 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
5621 		if (ret)
5622 			return ret;
5623 	}
5624 
5625 	return 0;
5626 }
5627 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5628 
5629 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5630 						    struct list_head **iter)
5631 {
5632 	struct netdev_adjacent *lower;
5633 
5634 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5635 	if (&lower->list == &dev->adj_list.lower)
5636 		return NULL;
5637 
5638 	*iter = &lower->list;
5639 
5640 	return lower->dev;
5641 }
5642 
5643 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5644 				  int (*fn)(struct net_device *dev,
5645 					    void *data),
5646 				  void *data)
5647 {
5648 	struct net_device *ldev;
5649 	struct list_head *iter;
5650 	int ret;
5651 
5652 	for (iter = &dev->adj_list.lower,
5653 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
5654 	     ldev;
5655 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5656 		/* first is the lower device itself */
5657 		ret = fn(ldev, data);
5658 		if (ret)
5659 			return ret;
5660 
5661 		/* then look at all of its lower devices */
5662 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5663 		if (ret)
5664 			return ret;
5665 	}
5666 
5667 	return 0;
5668 }
5669 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5670 
5671 /**
5672  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5673  *				       lower neighbour list, RCU
5674  *				       variant
5675  * @dev: device
5676  *
5677  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5678  * list. The caller must hold RCU read lock.
5679  */
5680 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5681 {
5682 	struct netdev_adjacent *lower;
5683 
5684 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5685 			struct netdev_adjacent, list);
5686 	if (lower)
5687 		return lower->private;
5688 	return NULL;
5689 }
5690 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5691 
5692 /**
5693  * netdev_master_upper_dev_get_rcu - Get master upper device
5694  * @dev: device
5695  *
5696  * Find a master upper device and return pointer to it or NULL in case
5697  * it's not there. The caller must hold the RCU read lock.
5698  */
5699 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5700 {
5701 	struct netdev_adjacent *upper;
5702 
5703 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5704 				       struct netdev_adjacent, list);
5705 	if (upper && likely(upper->master))
5706 		return upper->dev;
5707 	return NULL;
5708 }
5709 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5710 
5711 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5712 			      struct net_device *adj_dev,
5713 			      struct list_head *dev_list)
5714 {
5715 	char linkname[IFNAMSIZ+7];
5716 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5717 		"upper_%s" : "lower_%s", adj_dev->name);
5718 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5719 				 linkname);
5720 }
5721 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5722 			       char *name,
5723 			       struct list_head *dev_list)
5724 {
5725 	char linkname[IFNAMSIZ+7];
5726 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5727 		"upper_%s" : "lower_%s", name);
5728 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5729 }
5730 
5731 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5732 						 struct net_device *adj_dev,
5733 						 struct list_head *dev_list)
5734 {
5735 	return (dev_list == &dev->adj_list.upper ||
5736 		dev_list == &dev->adj_list.lower) &&
5737 		net_eq(dev_net(dev), dev_net(adj_dev));
5738 }
5739 
5740 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5741 					struct net_device *adj_dev,
5742 					struct list_head *dev_list,
5743 					void *private, bool master)
5744 {
5745 	struct netdev_adjacent *adj;
5746 	int ret;
5747 
5748 	adj = __netdev_find_adj(adj_dev, dev_list);
5749 
5750 	if (adj) {
5751 		adj->ref_nr += 1;
5752 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5753 			 dev->name, adj_dev->name, adj->ref_nr);
5754 
5755 		return 0;
5756 	}
5757 
5758 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5759 	if (!adj)
5760 		return -ENOMEM;
5761 
5762 	adj->dev = adj_dev;
5763 	adj->master = master;
5764 	adj->ref_nr = 1;
5765 	adj->private = private;
5766 	dev_hold(adj_dev);
5767 
5768 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5769 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5770 
5771 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5772 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5773 		if (ret)
5774 			goto free_adj;
5775 	}
5776 
5777 	/* Ensure that master link is always the first item in list. */
5778 	if (master) {
5779 		ret = sysfs_create_link(&(dev->dev.kobj),
5780 					&(adj_dev->dev.kobj), "master");
5781 		if (ret)
5782 			goto remove_symlinks;
5783 
5784 		list_add_rcu(&adj->list, dev_list);
5785 	} else {
5786 		list_add_tail_rcu(&adj->list, dev_list);
5787 	}
5788 
5789 	return 0;
5790 
5791 remove_symlinks:
5792 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5793 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5794 free_adj:
5795 	kfree(adj);
5796 	dev_put(adj_dev);
5797 
5798 	return ret;
5799 }
5800 
5801 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5802 					 struct net_device *adj_dev,
5803 					 u16 ref_nr,
5804 					 struct list_head *dev_list)
5805 {
5806 	struct netdev_adjacent *adj;
5807 
5808 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5809 		 dev->name, adj_dev->name, ref_nr);
5810 
5811 	adj = __netdev_find_adj(adj_dev, dev_list);
5812 
5813 	if (!adj) {
5814 		pr_err("Adjacency does not exist for device %s from %s\n",
5815 		       dev->name, adj_dev->name);
5816 		WARN_ON(1);
5817 		return;
5818 	}
5819 
5820 	if (adj->ref_nr > ref_nr) {
5821 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5822 			 dev->name, adj_dev->name, ref_nr,
5823 			 adj->ref_nr - ref_nr);
5824 		adj->ref_nr -= ref_nr;
5825 		return;
5826 	}
5827 
5828 	if (adj->master)
5829 		sysfs_remove_link(&(dev->dev.kobj), "master");
5830 
5831 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5832 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5833 
5834 	list_del_rcu(&adj->list);
5835 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5836 		 adj_dev->name, dev->name, adj_dev->name);
5837 	dev_put(adj_dev);
5838 	kfree_rcu(adj, rcu);
5839 }
5840 
5841 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5842 					    struct net_device *upper_dev,
5843 					    struct list_head *up_list,
5844 					    struct list_head *down_list,
5845 					    void *private, bool master)
5846 {
5847 	int ret;
5848 
5849 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5850 					   private, master);
5851 	if (ret)
5852 		return ret;
5853 
5854 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5855 					   private, false);
5856 	if (ret) {
5857 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5858 		return ret;
5859 	}
5860 
5861 	return 0;
5862 }
5863 
5864 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5865 					       struct net_device *upper_dev,
5866 					       u16 ref_nr,
5867 					       struct list_head *up_list,
5868 					       struct list_head *down_list)
5869 {
5870 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5871 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5872 }
5873 
5874 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5875 						struct net_device *upper_dev,
5876 						void *private, bool master)
5877 {
5878 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5879 						&dev->adj_list.upper,
5880 						&upper_dev->adj_list.lower,
5881 						private, master);
5882 }
5883 
5884 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5885 						   struct net_device *upper_dev)
5886 {
5887 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5888 					   &dev->adj_list.upper,
5889 					   &upper_dev->adj_list.lower);
5890 }
5891 
5892 static int __netdev_upper_dev_link(struct net_device *dev,
5893 				   struct net_device *upper_dev, bool master,
5894 				   void *upper_priv, void *upper_info)
5895 {
5896 	struct netdev_notifier_changeupper_info changeupper_info;
5897 	int ret = 0;
5898 
5899 	ASSERT_RTNL();
5900 
5901 	if (dev == upper_dev)
5902 		return -EBUSY;
5903 
5904 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5905 	if (netdev_has_upper_dev(upper_dev, dev))
5906 		return -EBUSY;
5907 
5908 	if (netdev_has_upper_dev(dev, upper_dev))
5909 		return -EEXIST;
5910 
5911 	if (master && netdev_master_upper_dev_get(dev))
5912 		return -EBUSY;
5913 
5914 	changeupper_info.upper_dev = upper_dev;
5915 	changeupper_info.master = master;
5916 	changeupper_info.linking = true;
5917 	changeupper_info.upper_info = upper_info;
5918 
5919 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5920 					    &changeupper_info.info);
5921 	ret = notifier_to_errno(ret);
5922 	if (ret)
5923 		return ret;
5924 
5925 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5926 						   master);
5927 	if (ret)
5928 		return ret;
5929 
5930 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5931 					    &changeupper_info.info);
5932 	ret = notifier_to_errno(ret);
5933 	if (ret)
5934 		goto rollback;
5935 
5936 	return 0;
5937 
5938 rollback:
5939 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5940 
5941 	return ret;
5942 }
5943 
5944 /**
5945  * netdev_upper_dev_link - Add a link to the upper device
5946  * @dev: device
5947  * @upper_dev: new upper device
5948  *
5949  * Adds a link to device which is upper to this one. The caller must hold
5950  * the RTNL lock. On a failure a negative errno code is returned.
5951  * On success the reference counts are adjusted and the function
5952  * returns zero.
5953  */
5954 int netdev_upper_dev_link(struct net_device *dev,
5955 			  struct net_device *upper_dev)
5956 {
5957 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5958 }
5959 EXPORT_SYMBOL(netdev_upper_dev_link);
5960 
5961 /**
5962  * netdev_master_upper_dev_link - Add a master link to the upper device
5963  * @dev: device
5964  * @upper_dev: new upper device
5965  * @upper_priv: upper device private
5966  * @upper_info: upper info to be passed down via notifier
5967  *
5968  * Adds a link to device which is upper to this one. In this case, only
5969  * one master upper device can be linked, although other non-master devices
5970  * might be linked as well. The caller must hold the RTNL lock.
5971  * On a failure a negative errno code is returned. On success the reference
5972  * counts are adjusted and the function returns zero.
5973  */
5974 int netdev_master_upper_dev_link(struct net_device *dev,
5975 				 struct net_device *upper_dev,
5976 				 void *upper_priv, void *upper_info)
5977 {
5978 	return __netdev_upper_dev_link(dev, upper_dev, true,
5979 				       upper_priv, upper_info);
5980 }
5981 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5982 
5983 /**
5984  * netdev_upper_dev_unlink - Removes a link to upper device
5985  * @dev: device
5986  * @upper_dev: new upper device
5987  *
5988  * Removes a link to device which is upper to this one. The caller must hold
5989  * the RTNL lock.
5990  */
5991 void netdev_upper_dev_unlink(struct net_device *dev,
5992 			     struct net_device *upper_dev)
5993 {
5994 	struct netdev_notifier_changeupper_info changeupper_info;
5995 	ASSERT_RTNL();
5996 
5997 	changeupper_info.upper_dev = upper_dev;
5998 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5999 	changeupper_info.linking = false;
6000 
6001 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6002 				      &changeupper_info.info);
6003 
6004 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6005 
6006 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6007 				      &changeupper_info.info);
6008 }
6009 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6010 
6011 /**
6012  * netdev_bonding_info_change - Dispatch event about slave change
6013  * @dev: device
6014  * @bonding_info: info to dispatch
6015  *
6016  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6017  * The caller must hold the RTNL lock.
6018  */
6019 void netdev_bonding_info_change(struct net_device *dev,
6020 				struct netdev_bonding_info *bonding_info)
6021 {
6022 	struct netdev_notifier_bonding_info	info;
6023 
6024 	memcpy(&info.bonding_info, bonding_info,
6025 	       sizeof(struct netdev_bonding_info));
6026 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6027 				      &info.info);
6028 }
6029 EXPORT_SYMBOL(netdev_bonding_info_change);
6030 
6031 static void netdev_adjacent_add_links(struct net_device *dev)
6032 {
6033 	struct netdev_adjacent *iter;
6034 
6035 	struct net *net = dev_net(dev);
6036 
6037 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6038 		if (!net_eq(net, dev_net(iter->dev)))
6039 			continue;
6040 		netdev_adjacent_sysfs_add(iter->dev, dev,
6041 					  &iter->dev->adj_list.lower);
6042 		netdev_adjacent_sysfs_add(dev, iter->dev,
6043 					  &dev->adj_list.upper);
6044 	}
6045 
6046 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6047 		if (!net_eq(net, dev_net(iter->dev)))
6048 			continue;
6049 		netdev_adjacent_sysfs_add(iter->dev, dev,
6050 					  &iter->dev->adj_list.upper);
6051 		netdev_adjacent_sysfs_add(dev, iter->dev,
6052 					  &dev->adj_list.lower);
6053 	}
6054 }
6055 
6056 static void netdev_adjacent_del_links(struct net_device *dev)
6057 {
6058 	struct netdev_adjacent *iter;
6059 
6060 	struct net *net = dev_net(dev);
6061 
6062 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6063 		if (!net_eq(net, dev_net(iter->dev)))
6064 			continue;
6065 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6066 					  &iter->dev->adj_list.lower);
6067 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6068 					  &dev->adj_list.upper);
6069 	}
6070 
6071 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6072 		if (!net_eq(net, dev_net(iter->dev)))
6073 			continue;
6074 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6075 					  &iter->dev->adj_list.upper);
6076 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6077 					  &dev->adj_list.lower);
6078 	}
6079 }
6080 
6081 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6082 {
6083 	struct netdev_adjacent *iter;
6084 
6085 	struct net *net = dev_net(dev);
6086 
6087 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6088 		if (!net_eq(net, dev_net(iter->dev)))
6089 			continue;
6090 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6091 					  &iter->dev->adj_list.lower);
6092 		netdev_adjacent_sysfs_add(iter->dev, dev,
6093 					  &iter->dev->adj_list.lower);
6094 	}
6095 
6096 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6097 		if (!net_eq(net, dev_net(iter->dev)))
6098 			continue;
6099 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6100 					  &iter->dev->adj_list.upper);
6101 		netdev_adjacent_sysfs_add(iter->dev, dev,
6102 					  &iter->dev->adj_list.upper);
6103 	}
6104 }
6105 
6106 void *netdev_lower_dev_get_private(struct net_device *dev,
6107 				   struct net_device *lower_dev)
6108 {
6109 	struct netdev_adjacent *lower;
6110 
6111 	if (!lower_dev)
6112 		return NULL;
6113 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6114 	if (!lower)
6115 		return NULL;
6116 
6117 	return lower->private;
6118 }
6119 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6120 
6121 
6122 int dev_get_nest_level(struct net_device *dev)
6123 {
6124 	struct net_device *lower = NULL;
6125 	struct list_head *iter;
6126 	int max_nest = -1;
6127 	int nest;
6128 
6129 	ASSERT_RTNL();
6130 
6131 	netdev_for_each_lower_dev(dev, lower, iter) {
6132 		nest = dev_get_nest_level(lower);
6133 		if (max_nest < nest)
6134 			max_nest = nest;
6135 	}
6136 
6137 	return max_nest + 1;
6138 }
6139 EXPORT_SYMBOL(dev_get_nest_level);
6140 
6141 /**
6142  * netdev_lower_change - Dispatch event about lower device state change
6143  * @lower_dev: device
6144  * @lower_state_info: state to dispatch
6145  *
6146  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6147  * The caller must hold the RTNL lock.
6148  */
6149 void netdev_lower_state_changed(struct net_device *lower_dev,
6150 				void *lower_state_info)
6151 {
6152 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6153 
6154 	ASSERT_RTNL();
6155 	changelowerstate_info.lower_state_info = lower_state_info;
6156 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6157 				      &changelowerstate_info.info);
6158 }
6159 EXPORT_SYMBOL(netdev_lower_state_changed);
6160 
6161 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6162 					   struct neighbour *n)
6163 {
6164 	struct net_device *lower_dev, *stop_dev;
6165 	struct list_head *iter;
6166 	int err;
6167 
6168 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6169 		if (!lower_dev->netdev_ops->ndo_neigh_construct)
6170 			continue;
6171 		err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6172 		if (err) {
6173 			stop_dev = lower_dev;
6174 			goto rollback;
6175 		}
6176 	}
6177 	return 0;
6178 
6179 rollback:
6180 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6181 		if (lower_dev == stop_dev)
6182 			break;
6183 		if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6184 			continue;
6185 		lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6186 	}
6187 	return err;
6188 }
6189 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6190 
6191 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6192 					  struct neighbour *n)
6193 {
6194 	struct net_device *lower_dev;
6195 	struct list_head *iter;
6196 
6197 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6198 		if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6199 			continue;
6200 		lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6201 	}
6202 }
6203 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6204 
6205 static void dev_change_rx_flags(struct net_device *dev, int flags)
6206 {
6207 	const struct net_device_ops *ops = dev->netdev_ops;
6208 
6209 	if (ops->ndo_change_rx_flags)
6210 		ops->ndo_change_rx_flags(dev, flags);
6211 }
6212 
6213 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6214 {
6215 	unsigned int old_flags = dev->flags;
6216 	kuid_t uid;
6217 	kgid_t gid;
6218 
6219 	ASSERT_RTNL();
6220 
6221 	dev->flags |= IFF_PROMISC;
6222 	dev->promiscuity += inc;
6223 	if (dev->promiscuity == 0) {
6224 		/*
6225 		 * Avoid overflow.
6226 		 * If inc causes overflow, untouch promisc and return error.
6227 		 */
6228 		if (inc < 0)
6229 			dev->flags &= ~IFF_PROMISC;
6230 		else {
6231 			dev->promiscuity -= inc;
6232 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6233 				dev->name);
6234 			return -EOVERFLOW;
6235 		}
6236 	}
6237 	if (dev->flags != old_flags) {
6238 		pr_info("device %s %s promiscuous mode\n",
6239 			dev->name,
6240 			dev->flags & IFF_PROMISC ? "entered" : "left");
6241 		if (audit_enabled) {
6242 			current_uid_gid(&uid, &gid);
6243 			audit_log(current->audit_context, GFP_ATOMIC,
6244 				AUDIT_ANOM_PROMISCUOUS,
6245 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6246 				dev->name, (dev->flags & IFF_PROMISC),
6247 				(old_flags & IFF_PROMISC),
6248 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6249 				from_kuid(&init_user_ns, uid),
6250 				from_kgid(&init_user_ns, gid),
6251 				audit_get_sessionid(current));
6252 		}
6253 
6254 		dev_change_rx_flags(dev, IFF_PROMISC);
6255 	}
6256 	if (notify)
6257 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6258 	return 0;
6259 }
6260 
6261 /**
6262  *	dev_set_promiscuity	- update promiscuity count on a device
6263  *	@dev: device
6264  *	@inc: modifier
6265  *
6266  *	Add or remove promiscuity from a device. While the count in the device
6267  *	remains above zero the interface remains promiscuous. Once it hits zero
6268  *	the device reverts back to normal filtering operation. A negative inc
6269  *	value is used to drop promiscuity on the device.
6270  *	Return 0 if successful or a negative errno code on error.
6271  */
6272 int dev_set_promiscuity(struct net_device *dev, int inc)
6273 {
6274 	unsigned int old_flags = dev->flags;
6275 	int err;
6276 
6277 	err = __dev_set_promiscuity(dev, inc, true);
6278 	if (err < 0)
6279 		return err;
6280 	if (dev->flags != old_flags)
6281 		dev_set_rx_mode(dev);
6282 	return err;
6283 }
6284 EXPORT_SYMBOL(dev_set_promiscuity);
6285 
6286 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6287 {
6288 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6289 
6290 	ASSERT_RTNL();
6291 
6292 	dev->flags |= IFF_ALLMULTI;
6293 	dev->allmulti += inc;
6294 	if (dev->allmulti == 0) {
6295 		/*
6296 		 * Avoid overflow.
6297 		 * If inc causes overflow, untouch allmulti and return error.
6298 		 */
6299 		if (inc < 0)
6300 			dev->flags &= ~IFF_ALLMULTI;
6301 		else {
6302 			dev->allmulti -= inc;
6303 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6304 				dev->name);
6305 			return -EOVERFLOW;
6306 		}
6307 	}
6308 	if (dev->flags ^ old_flags) {
6309 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6310 		dev_set_rx_mode(dev);
6311 		if (notify)
6312 			__dev_notify_flags(dev, old_flags,
6313 					   dev->gflags ^ old_gflags);
6314 	}
6315 	return 0;
6316 }
6317 
6318 /**
6319  *	dev_set_allmulti	- update allmulti count on a device
6320  *	@dev: device
6321  *	@inc: modifier
6322  *
6323  *	Add or remove reception of all multicast frames to a device. While the
6324  *	count in the device remains above zero the interface remains listening
6325  *	to all interfaces. Once it hits zero the device reverts back to normal
6326  *	filtering operation. A negative @inc value is used to drop the counter
6327  *	when releasing a resource needing all multicasts.
6328  *	Return 0 if successful or a negative errno code on error.
6329  */
6330 
6331 int dev_set_allmulti(struct net_device *dev, int inc)
6332 {
6333 	return __dev_set_allmulti(dev, inc, true);
6334 }
6335 EXPORT_SYMBOL(dev_set_allmulti);
6336 
6337 /*
6338  *	Upload unicast and multicast address lists to device and
6339  *	configure RX filtering. When the device doesn't support unicast
6340  *	filtering it is put in promiscuous mode while unicast addresses
6341  *	are present.
6342  */
6343 void __dev_set_rx_mode(struct net_device *dev)
6344 {
6345 	const struct net_device_ops *ops = dev->netdev_ops;
6346 
6347 	/* dev_open will call this function so the list will stay sane. */
6348 	if (!(dev->flags&IFF_UP))
6349 		return;
6350 
6351 	if (!netif_device_present(dev))
6352 		return;
6353 
6354 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6355 		/* Unicast addresses changes may only happen under the rtnl,
6356 		 * therefore calling __dev_set_promiscuity here is safe.
6357 		 */
6358 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6359 			__dev_set_promiscuity(dev, 1, false);
6360 			dev->uc_promisc = true;
6361 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6362 			__dev_set_promiscuity(dev, -1, false);
6363 			dev->uc_promisc = false;
6364 		}
6365 	}
6366 
6367 	if (ops->ndo_set_rx_mode)
6368 		ops->ndo_set_rx_mode(dev);
6369 }
6370 
6371 void dev_set_rx_mode(struct net_device *dev)
6372 {
6373 	netif_addr_lock_bh(dev);
6374 	__dev_set_rx_mode(dev);
6375 	netif_addr_unlock_bh(dev);
6376 }
6377 
6378 /**
6379  *	dev_get_flags - get flags reported to userspace
6380  *	@dev: device
6381  *
6382  *	Get the combination of flag bits exported through APIs to userspace.
6383  */
6384 unsigned int dev_get_flags(const struct net_device *dev)
6385 {
6386 	unsigned int flags;
6387 
6388 	flags = (dev->flags & ~(IFF_PROMISC |
6389 				IFF_ALLMULTI |
6390 				IFF_RUNNING |
6391 				IFF_LOWER_UP |
6392 				IFF_DORMANT)) |
6393 		(dev->gflags & (IFF_PROMISC |
6394 				IFF_ALLMULTI));
6395 
6396 	if (netif_running(dev)) {
6397 		if (netif_oper_up(dev))
6398 			flags |= IFF_RUNNING;
6399 		if (netif_carrier_ok(dev))
6400 			flags |= IFF_LOWER_UP;
6401 		if (netif_dormant(dev))
6402 			flags |= IFF_DORMANT;
6403 	}
6404 
6405 	return flags;
6406 }
6407 EXPORT_SYMBOL(dev_get_flags);
6408 
6409 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6410 {
6411 	unsigned int old_flags = dev->flags;
6412 	int ret;
6413 
6414 	ASSERT_RTNL();
6415 
6416 	/*
6417 	 *	Set the flags on our device.
6418 	 */
6419 
6420 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6421 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6422 			       IFF_AUTOMEDIA)) |
6423 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6424 				    IFF_ALLMULTI));
6425 
6426 	/*
6427 	 *	Load in the correct multicast list now the flags have changed.
6428 	 */
6429 
6430 	if ((old_flags ^ flags) & IFF_MULTICAST)
6431 		dev_change_rx_flags(dev, IFF_MULTICAST);
6432 
6433 	dev_set_rx_mode(dev);
6434 
6435 	/*
6436 	 *	Have we downed the interface. We handle IFF_UP ourselves
6437 	 *	according to user attempts to set it, rather than blindly
6438 	 *	setting it.
6439 	 */
6440 
6441 	ret = 0;
6442 	if ((old_flags ^ flags) & IFF_UP)
6443 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6444 
6445 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6446 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6447 		unsigned int old_flags = dev->flags;
6448 
6449 		dev->gflags ^= IFF_PROMISC;
6450 
6451 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6452 			if (dev->flags != old_flags)
6453 				dev_set_rx_mode(dev);
6454 	}
6455 
6456 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6457 	   is important. Some (broken) drivers set IFF_PROMISC, when
6458 	   IFF_ALLMULTI is requested not asking us and not reporting.
6459 	 */
6460 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6461 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6462 
6463 		dev->gflags ^= IFF_ALLMULTI;
6464 		__dev_set_allmulti(dev, inc, false);
6465 	}
6466 
6467 	return ret;
6468 }
6469 
6470 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6471 			unsigned int gchanges)
6472 {
6473 	unsigned int changes = dev->flags ^ old_flags;
6474 
6475 	if (gchanges)
6476 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6477 
6478 	if (changes & IFF_UP) {
6479 		if (dev->flags & IFF_UP)
6480 			call_netdevice_notifiers(NETDEV_UP, dev);
6481 		else
6482 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6483 	}
6484 
6485 	if (dev->flags & IFF_UP &&
6486 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6487 		struct netdev_notifier_change_info change_info;
6488 
6489 		change_info.flags_changed = changes;
6490 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6491 					      &change_info.info);
6492 	}
6493 }
6494 
6495 /**
6496  *	dev_change_flags - change device settings
6497  *	@dev: device
6498  *	@flags: device state flags
6499  *
6500  *	Change settings on device based state flags. The flags are
6501  *	in the userspace exported format.
6502  */
6503 int dev_change_flags(struct net_device *dev, unsigned int flags)
6504 {
6505 	int ret;
6506 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6507 
6508 	ret = __dev_change_flags(dev, flags);
6509 	if (ret < 0)
6510 		return ret;
6511 
6512 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6513 	__dev_notify_flags(dev, old_flags, changes);
6514 	return ret;
6515 }
6516 EXPORT_SYMBOL(dev_change_flags);
6517 
6518 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6519 {
6520 	const struct net_device_ops *ops = dev->netdev_ops;
6521 
6522 	if (ops->ndo_change_mtu)
6523 		return ops->ndo_change_mtu(dev, new_mtu);
6524 
6525 	dev->mtu = new_mtu;
6526 	return 0;
6527 }
6528 
6529 /**
6530  *	dev_set_mtu - Change maximum transfer unit
6531  *	@dev: device
6532  *	@new_mtu: new transfer unit
6533  *
6534  *	Change the maximum transfer size of the network device.
6535  */
6536 int dev_set_mtu(struct net_device *dev, int new_mtu)
6537 {
6538 	int err, orig_mtu;
6539 
6540 	if (new_mtu == dev->mtu)
6541 		return 0;
6542 
6543 	/* MTU must be positive, and in range */
6544 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6545 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6546 				    dev->name, new_mtu, dev->min_mtu);
6547 		return -EINVAL;
6548 	}
6549 
6550 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6551 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6552 				    dev->name, new_mtu, dev->max_mtu);
6553 		return -EINVAL;
6554 	}
6555 
6556 	if (!netif_device_present(dev))
6557 		return -ENODEV;
6558 
6559 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6560 	err = notifier_to_errno(err);
6561 	if (err)
6562 		return err;
6563 
6564 	orig_mtu = dev->mtu;
6565 	err = __dev_set_mtu(dev, new_mtu);
6566 
6567 	if (!err) {
6568 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6569 		err = notifier_to_errno(err);
6570 		if (err) {
6571 			/* setting mtu back and notifying everyone again,
6572 			 * so that they have a chance to revert changes.
6573 			 */
6574 			__dev_set_mtu(dev, orig_mtu);
6575 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6576 		}
6577 	}
6578 	return err;
6579 }
6580 EXPORT_SYMBOL(dev_set_mtu);
6581 
6582 /**
6583  *	dev_set_group - Change group this device belongs to
6584  *	@dev: device
6585  *	@new_group: group this device should belong to
6586  */
6587 void dev_set_group(struct net_device *dev, int new_group)
6588 {
6589 	dev->group = new_group;
6590 }
6591 EXPORT_SYMBOL(dev_set_group);
6592 
6593 /**
6594  *	dev_set_mac_address - Change Media Access Control Address
6595  *	@dev: device
6596  *	@sa: new address
6597  *
6598  *	Change the hardware (MAC) address of the device
6599  */
6600 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6601 {
6602 	const struct net_device_ops *ops = dev->netdev_ops;
6603 	int err;
6604 
6605 	if (!ops->ndo_set_mac_address)
6606 		return -EOPNOTSUPP;
6607 	if (sa->sa_family != dev->type)
6608 		return -EINVAL;
6609 	if (!netif_device_present(dev))
6610 		return -ENODEV;
6611 	err = ops->ndo_set_mac_address(dev, sa);
6612 	if (err)
6613 		return err;
6614 	dev->addr_assign_type = NET_ADDR_SET;
6615 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6616 	add_device_randomness(dev->dev_addr, dev->addr_len);
6617 	return 0;
6618 }
6619 EXPORT_SYMBOL(dev_set_mac_address);
6620 
6621 /**
6622  *	dev_change_carrier - Change device carrier
6623  *	@dev: device
6624  *	@new_carrier: new value
6625  *
6626  *	Change device carrier
6627  */
6628 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6629 {
6630 	const struct net_device_ops *ops = dev->netdev_ops;
6631 
6632 	if (!ops->ndo_change_carrier)
6633 		return -EOPNOTSUPP;
6634 	if (!netif_device_present(dev))
6635 		return -ENODEV;
6636 	return ops->ndo_change_carrier(dev, new_carrier);
6637 }
6638 EXPORT_SYMBOL(dev_change_carrier);
6639 
6640 /**
6641  *	dev_get_phys_port_id - Get device physical port ID
6642  *	@dev: device
6643  *	@ppid: port ID
6644  *
6645  *	Get device physical port ID
6646  */
6647 int dev_get_phys_port_id(struct net_device *dev,
6648 			 struct netdev_phys_item_id *ppid)
6649 {
6650 	const struct net_device_ops *ops = dev->netdev_ops;
6651 
6652 	if (!ops->ndo_get_phys_port_id)
6653 		return -EOPNOTSUPP;
6654 	return ops->ndo_get_phys_port_id(dev, ppid);
6655 }
6656 EXPORT_SYMBOL(dev_get_phys_port_id);
6657 
6658 /**
6659  *	dev_get_phys_port_name - Get device physical port name
6660  *	@dev: device
6661  *	@name: port name
6662  *	@len: limit of bytes to copy to name
6663  *
6664  *	Get device physical port name
6665  */
6666 int dev_get_phys_port_name(struct net_device *dev,
6667 			   char *name, size_t len)
6668 {
6669 	const struct net_device_ops *ops = dev->netdev_ops;
6670 
6671 	if (!ops->ndo_get_phys_port_name)
6672 		return -EOPNOTSUPP;
6673 	return ops->ndo_get_phys_port_name(dev, name, len);
6674 }
6675 EXPORT_SYMBOL(dev_get_phys_port_name);
6676 
6677 /**
6678  *	dev_change_proto_down - update protocol port state information
6679  *	@dev: device
6680  *	@proto_down: new value
6681  *
6682  *	This info can be used by switch drivers to set the phys state of the
6683  *	port.
6684  */
6685 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6686 {
6687 	const struct net_device_ops *ops = dev->netdev_ops;
6688 
6689 	if (!ops->ndo_change_proto_down)
6690 		return -EOPNOTSUPP;
6691 	if (!netif_device_present(dev))
6692 		return -ENODEV;
6693 	return ops->ndo_change_proto_down(dev, proto_down);
6694 }
6695 EXPORT_SYMBOL(dev_change_proto_down);
6696 
6697 /**
6698  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
6699  *	@dev: device
6700  *	@fd: new program fd or negative value to clear
6701  *	@flags: xdp-related flags
6702  *
6703  *	Set or clear a bpf program for a device
6704  */
6705 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6706 {
6707 	const struct net_device_ops *ops = dev->netdev_ops;
6708 	struct bpf_prog *prog = NULL;
6709 	struct netdev_xdp xdp;
6710 	int err;
6711 
6712 	ASSERT_RTNL();
6713 
6714 	if (!ops->ndo_xdp)
6715 		return -EOPNOTSUPP;
6716 	if (fd >= 0) {
6717 		if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6718 			memset(&xdp, 0, sizeof(xdp));
6719 			xdp.command = XDP_QUERY_PROG;
6720 
6721 			err = ops->ndo_xdp(dev, &xdp);
6722 			if (err < 0)
6723 				return err;
6724 			if (xdp.prog_attached)
6725 				return -EBUSY;
6726 		}
6727 
6728 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6729 		if (IS_ERR(prog))
6730 			return PTR_ERR(prog);
6731 	}
6732 
6733 	memset(&xdp, 0, sizeof(xdp));
6734 	xdp.command = XDP_SETUP_PROG;
6735 	xdp.prog = prog;
6736 
6737 	err = ops->ndo_xdp(dev, &xdp);
6738 	if (err < 0 && prog)
6739 		bpf_prog_put(prog);
6740 
6741 	return err;
6742 }
6743 EXPORT_SYMBOL(dev_change_xdp_fd);
6744 
6745 /**
6746  *	dev_new_index	-	allocate an ifindex
6747  *	@net: the applicable net namespace
6748  *
6749  *	Returns a suitable unique value for a new device interface
6750  *	number.  The caller must hold the rtnl semaphore or the
6751  *	dev_base_lock to be sure it remains unique.
6752  */
6753 static int dev_new_index(struct net *net)
6754 {
6755 	int ifindex = net->ifindex;
6756 	for (;;) {
6757 		if (++ifindex <= 0)
6758 			ifindex = 1;
6759 		if (!__dev_get_by_index(net, ifindex))
6760 			return net->ifindex = ifindex;
6761 	}
6762 }
6763 
6764 /* Delayed registration/unregisteration */
6765 static LIST_HEAD(net_todo_list);
6766 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6767 
6768 static void net_set_todo(struct net_device *dev)
6769 {
6770 	list_add_tail(&dev->todo_list, &net_todo_list);
6771 	dev_net(dev)->dev_unreg_count++;
6772 }
6773 
6774 static void rollback_registered_many(struct list_head *head)
6775 {
6776 	struct net_device *dev, *tmp;
6777 	LIST_HEAD(close_head);
6778 
6779 	BUG_ON(dev_boot_phase);
6780 	ASSERT_RTNL();
6781 
6782 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6783 		/* Some devices call without registering
6784 		 * for initialization unwind. Remove those
6785 		 * devices and proceed with the remaining.
6786 		 */
6787 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6788 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6789 				 dev->name, dev);
6790 
6791 			WARN_ON(1);
6792 			list_del(&dev->unreg_list);
6793 			continue;
6794 		}
6795 		dev->dismantle = true;
6796 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6797 	}
6798 
6799 	/* If device is running, close it first. */
6800 	list_for_each_entry(dev, head, unreg_list)
6801 		list_add_tail(&dev->close_list, &close_head);
6802 	dev_close_many(&close_head, true);
6803 
6804 	list_for_each_entry(dev, head, unreg_list) {
6805 		/* And unlink it from device chain. */
6806 		unlist_netdevice(dev);
6807 
6808 		dev->reg_state = NETREG_UNREGISTERING;
6809 	}
6810 	flush_all_backlogs();
6811 
6812 	synchronize_net();
6813 
6814 	list_for_each_entry(dev, head, unreg_list) {
6815 		struct sk_buff *skb = NULL;
6816 
6817 		/* Shutdown queueing discipline. */
6818 		dev_shutdown(dev);
6819 
6820 
6821 		/* Notify protocols, that we are about to destroy
6822 		   this device. They should clean all the things.
6823 		*/
6824 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6825 
6826 		if (!dev->rtnl_link_ops ||
6827 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6828 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6829 						     GFP_KERNEL);
6830 
6831 		/*
6832 		 *	Flush the unicast and multicast chains
6833 		 */
6834 		dev_uc_flush(dev);
6835 		dev_mc_flush(dev);
6836 
6837 		if (dev->netdev_ops->ndo_uninit)
6838 			dev->netdev_ops->ndo_uninit(dev);
6839 
6840 		if (skb)
6841 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6842 
6843 		/* Notifier chain MUST detach us all upper devices. */
6844 		WARN_ON(netdev_has_any_upper_dev(dev));
6845 		WARN_ON(netdev_has_any_lower_dev(dev));
6846 
6847 		/* Remove entries from kobject tree */
6848 		netdev_unregister_kobject(dev);
6849 #ifdef CONFIG_XPS
6850 		/* Remove XPS queueing entries */
6851 		netif_reset_xps_queues_gt(dev, 0);
6852 #endif
6853 	}
6854 
6855 	synchronize_net();
6856 
6857 	list_for_each_entry(dev, head, unreg_list)
6858 		dev_put(dev);
6859 }
6860 
6861 static void rollback_registered(struct net_device *dev)
6862 {
6863 	LIST_HEAD(single);
6864 
6865 	list_add(&dev->unreg_list, &single);
6866 	rollback_registered_many(&single);
6867 	list_del(&single);
6868 }
6869 
6870 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6871 	struct net_device *upper, netdev_features_t features)
6872 {
6873 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6874 	netdev_features_t feature;
6875 	int feature_bit;
6876 
6877 	for_each_netdev_feature(&upper_disables, feature_bit) {
6878 		feature = __NETIF_F_BIT(feature_bit);
6879 		if (!(upper->wanted_features & feature)
6880 		    && (features & feature)) {
6881 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6882 				   &feature, upper->name);
6883 			features &= ~feature;
6884 		}
6885 	}
6886 
6887 	return features;
6888 }
6889 
6890 static void netdev_sync_lower_features(struct net_device *upper,
6891 	struct net_device *lower, netdev_features_t features)
6892 {
6893 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6894 	netdev_features_t feature;
6895 	int feature_bit;
6896 
6897 	for_each_netdev_feature(&upper_disables, feature_bit) {
6898 		feature = __NETIF_F_BIT(feature_bit);
6899 		if (!(features & feature) && (lower->features & feature)) {
6900 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6901 				   &feature, lower->name);
6902 			lower->wanted_features &= ~feature;
6903 			netdev_update_features(lower);
6904 
6905 			if (unlikely(lower->features & feature))
6906 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6907 					    &feature, lower->name);
6908 		}
6909 	}
6910 }
6911 
6912 static netdev_features_t netdev_fix_features(struct net_device *dev,
6913 	netdev_features_t features)
6914 {
6915 	/* Fix illegal checksum combinations */
6916 	if ((features & NETIF_F_HW_CSUM) &&
6917 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6918 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6919 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6920 	}
6921 
6922 	/* TSO requires that SG is present as well. */
6923 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6924 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6925 		features &= ~NETIF_F_ALL_TSO;
6926 	}
6927 
6928 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6929 					!(features & NETIF_F_IP_CSUM)) {
6930 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6931 		features &= ~NETIF_F_TSO;
6932 		features &= ~NETIF_F_TSO_ECN;
6933 	}
6934 
6935 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6936 					 !(features & NETIF_F_IPV6_CSUM)) {
6937 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6938 		features &= ~NETIF_F_TSO6;
6939 	}
6940 
6941 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6942 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6943 		features &= ~NETIF_F_TSO_MANGLEID;
6944 
6945 	/* TSO ECN requires that TSO is present as well. */
6946 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6947 		features &= ~NETIF_F_TSO_ECN;
6948 
6949 	/* Software GSO depends on SG. */
6950 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6951 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6952 		features &= ~NETIF_F_GSO;
6953 	}
6954 
6955 	/* UFO needs SG and checksumming */
6956 	if (features & NETIF_F_UFO) {
6957 		/* maybe split UFO into V4 and V6? */
6958 		if (!(features & NETIF_F_HW_CSUM) &&
6959 		    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6960 		     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6961 			netdev_dbg(dev,
6962 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6963 			features &= ~NETIF_F_UFO;
6964 		}
6965 
6966 		if (!(features & NETIF_F_SG)) {
6967 			netdev_dbg(dev,
6968 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6969 			features &= ~NETIF_F_UFO;
6970 		}
6971 	}
6972 
6973 	/* GSO partial features require GSO partial be set */
6974 	if ((features & dev->gso_partial_features) &&
6975 	    !(features & NETIF_F_GSO_PARTIAL)) {
6976 		netdev_dbg(dev,
6977 			   "Dropping partially supported GSO features since no GSO partial.\n");
6978 		features &= ~dev->gso_partial_features;
6979 	}
6980 
6981 #ifdef CONFIG_NET_RX_BUSY_POLL
6982 	if (dev->netdev_ops->ndo_busy_poll)
6983 		features |= NETIF_F_BUSY_POLL;
6984 	else
6985 #endif
6986 		features &= ~NETIF_F_BUSY_POLL;
6987 
6988 	return features;
6989 }
6990 
6991 int __netdev_update_features(struct net_device *dev)
6992 {
6993 	struct net_device *upper, *lower;
6994 	netdev_features_t features;
6995 	struct list_head *iter;
6996 	int err = -1;
6997 
6998 	ASSERT_RTNL();
6999 
7000 	features = netdev_get_wanted_features(dev);
7001 
7002 	if (dev->netdev_ops->ndo_fix_features)
7003 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7004 
7005 	/* driver might be less strict about feature dependencies */
7006 	features = netdev_fix_features(dev, features);
7007 
7008 	/* some features can't be enabled if they're off an an upper device */
7009 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7010 		features = netdev_sync_upper_features(dev, upper, features);
7011 
7012 	if (dev->features == features)
7013 		goto sync_lower;
7014 
7015 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7016 		&dev->features, &features);
7017 
7018 	if (dev->netdev_ops->ndo_set_features)
7019 		err = dev->netdev_ops->ndo_set_features(dev, features);
7020 	else
7021 		err = 0;
7022 
7023 	if (unlikely(err < 0)) {
7024 		netdev_err(dev,
7025 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7026 			err, &features, &dev->features);
7027 		/* return non-0 since some features might have changed and
7028 		 * it's better to fire a spurious notification than miss it
7029 		 */
7030 		return -1;
7031 	}
7032 
7033 sync_lower:
7034 	/* some features must be disabled on lower devices when disabled
7035 	 * on an upper device (think: bonding master or bridge)
7036 	 */
7037 	netdev_for_each_lower_dev(dev, lower, iter)
7038 		netdev_sync_lower_features(dev, lower, features);
7039 
7040 	if (!err)
7041 		dev->features = features;
7042 
7043 	return err < 0 ? 0 : 1;
7044 }
7045 
7046 /**
7047  *	netdev_update_features - recalculate device features
7048  *	@dev: the device to check
7049  *
7050  *	Recalculate dev->features set and send notifications if it
7051  *	has changed. Should be called after driver or hardware dependent
7052  *	conditions might have changed that influence the features.
7053  */
7054 void netdev_update_features(struct net_device *dev)
7055 {
7056 	if (__netdev_update_features(dev))
7057 		netdev_features_change(dev);
7058 }
7059 EXPORT_SYMBOL(netdev_update_features);
7060 
7061 /**
7062  *	netdev_change_features - recalculate device features
7063  *	@dev: the device to check
7064  *
7065  *	Recalculate dev->features set and send notifications even
7066  *	if they have not changed. Should be called instead of
7067  *	netdev_update_features() if also dev->vlan_features might
7068  *	have changed to allow the changes to be propagated to stacked
7069  *	VLAN devices.
7070  */
7071 void netdev_change_features(struct net_device *dev)
7072 {
7073 	__netdev_update_features(dev);
7074 	netdev_features_change(dev);
7075 }
7076 EXPORT_SYMBOL(netdev_change_features);
7077 
7078 /**
7079  *	netif_stacked_transfer_operstate -	transfer operstate
7080  *	@rootdev: the root or lower level device to transfer state from
7081  *	@dev: the device to transfer operstate to
7082  *
7083  *	Transfer operational state from root to device. This is normally
7084  *	called when a stacking relationship exists between the root
7085  *	device and the device(a leaf device).
7086  */
7087 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7088 					struct net_device *dev)
7089 {
7090 	if (rootdev->operstate == IF_OPER_DORMANT)
7091 		netif_dormant_on(dev);
7092 	else
7093 		netif_dormant_off(dev);
7094 
7095 	if (netif_carrier_ok(rootdev)) {
7096 		if (!netif_carrier_ok(dev))
7097 			netif_carrier_on(dev);
7098 	} else {
7099 		if (netif_carrier_ok(dev))
7100 			netif_carrier_off(dev);
7101 	}
7102 }
7103 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7104 
7105 #ifdef CONFIG_SYSFS
7106 static int netif_alloc_rx_queues(struct net_device *dev)
7107 {
7108 	unsigned int i, count = dev->num_rx_queues;
7109 	struct netdev_rx_queue *rx;
7110 	size_t sz = count * sizeof(*rx);
7111 
7112 	BUG_ON(count < 1);
7113 
7114 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7115 	if (!rx) {
7116 		rx = vzalloc(sz);
7117 		if (!rx)
7118 			return -ENOMEM;
7119 	}
7120 	dev->_rx = rx;
7121 
7122 	for (i = 0; i < count; i++)
7123 		rx[i].dev = dev;
7124 	return 0;
7125 }
7126 #endif
7127 
7128 static void netdev_init_one_queue(struct net_device *dev,
7129 				  struct netdev_queue *queue, void *_unused)
7130 {
7131 	/* Initialize queue lock */
7132 	spin_lock_init(&queue->_xmit_lock);
7133 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7134 	queue->xmit_lock_owner = -1;
7135 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7136 	queue->dev = dev;
7137 #ifdef CONFIG_BQL
7138 	dql_init(&queue->dql, HZ);
7139 #endif
7140 }
7141 
7142 static void netif_free_tx_queues(struct net_device *dev)
7143 {
7144 	kvfree(dev->_tx);
7145 }
7146 
7147 static int netif_alloc_netdev_queues(struct net_device *dev)
7148 {
7149 	unsigned int count = dev->num_tx_queues;
7150 	struct netdev_queue *tx;
7151 	size_t sz = count * sizeof(*tx);
7152 
7153 	if (count < 1 || count > 0xffff)
7154 		return -EINVAL;
7155 
7156 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7157 	if (!tx) {
7158 		tx = vzalloc(sz);
7159 		if (!tx)
7160 			return -ENOMEM;
7161 	}
7162 	dev->_tx = tx;
7163 
7164 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7165 	spin_lock_init(&dev->tx_global_lock);
7166 
7167 	return 0;
7168 }
7169 
7170 void netif_tx_stop_all_queues(struct net_device *dev)
7171 {
7172 	unsigned int i;
7173 
7174 	for (i = 0; i < dev->num_tx_queues; i++) {
7175 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7176 		netif_tx_stop_queue(txq);
7177 	}
7178 }
7179 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7180 
7181 /**
7182  *	register_netdevice	- register a network device
7183  *	@dev: device to register
7184  *
7185  *	Take a completed network device structure and add it to the kernel
7186  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7187  *	chain. 0 is returned on success. A negative errno code is returned
7188  *	on a failure to set up the device, or if the name is a duplicate.
7189  *
7190  *	Callers must hold the rtnl semaphore. You may want
7191  *	register_netdev() instead of this.
7192  *
7193  *	BUGS:
7194  *	The locking appears insufficient to guarantee two parallel registers
7195  *	will not get the same name.
7196  */
7197 
7198 int register_netdevice(struct net_device *dev)
7199 {
7200 	int ret;
7201 	struct net *net = dev_net(dev);
7202 
7203 	BUG_ON(dev_boot_phase);
7204 	ASSERT_RTNL();
7205 
7206 	might_sleep();
7207 
7208 	/* When net_device's are persistent, this will be fatal. */
7209 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7210 	BUG_ON(!net);
7211 
7212 	spin_lock_init(&dev->addr_list_lock);
7213 	netdev_set_addr_lockdep_class(dev);
7214 
7215 	ret = dev_get_valid_name(net, dev, dev->name);
7216 	if (ret < 0)
7217 		goto out;
7218 
7219 	/* Init, if this function is available */
7220 	if (dev->netdev_ops->ndo_init) {
7221 		ret = dev->netdev_ops->ndo_init(dev);
7222 		if (ret) {
7223 			if (ret > 0)
7224 				ret = -EIO;
7225 			goto out;
7226 		}
7227 	}
7228 
7229 	if (((dev->hw_features | dev->features) &
7230 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7231 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7232 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7233 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7234 		ret = -EINVAL;
7235 		goto err_uninit;
7236 	}
7237 
7238 	ret = -EBUSY;
7239 	if (!dev->ifindex)
7240 		dev->ifindex = dev_new_index(net);
7241 	else if (__dev_get_by_index(net, dev->ifindex))
7242 		goto err_uninit;
7243 
7244 	/* Transfer changeable features to wanted_features and enable
7245 	 * software offloads (GSO and GRO).
7246 	 */
7247 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7248 	dev->features |= NETIF_F_SOFT_FEATURES;
7249 	dev->wanted_features = dev->features & dev->hw_features;
7250 
7251 	if (!(dev->flags & IFF_LOOPBACK))
7252 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7253 
7254 	/* If IPv4 TCP segmentation offload is supported we should also
7255 	 * allow the device to enable segmenting the frame with the option
7256 	 * of ignoring a static IP ID value.  This doesn't enable the
7257 	 * feature itself but allows the user to enable it later.
7258 	 */
7259 	if (dev->hw_features & NETIF_F_TSO)
7260 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7261 	if (dev->vlan_features & NETIF_F_TSO)
7262 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7263 	if (dev->mpls_features & NETIF_F_TSO)
7264 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7265 	if (dev->hw_enc_features & NETIF_F_TSO)
7266 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7267 
7268 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7269 	 */
7270 	dev->vlan_features |= NETIF_F_HIGHDMA;
7271 
7272 	/* Make NETIF_F_SG inheritable to tunnel devices.
7273 	 */
7274 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7275 
7276 	/* Make NETIF_F_SG inheritable to MPLS.
7277 	 */
7278 	dev->mpls_features |= NETIF_F_SG;
7279 
7280 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7281 	ret = notifier_to_errno(ret);
7282 	if (ret)
7283 		goto err_uninit;
7284 
7285 	ret = netdev_register_kobject(dev);
7286 	if (ret)
7287 		goto err_uninit;
7288 	dev->reg_state = NETREG_REGISTERED;
7289 
7290 	__netdev_update_features(dev);
7291 
7292 	/*
7293 	 *	Default initial state at registry is that the
7294 	 *	device is present.
7295 	 */
7296 
7297 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7298 
7299 	linkwatch_init_dev(dev);
7300 
7301 	dev_init_scheduler(dev);
7302 	dev_hold(dev);
7303 	list_netdevice(dev);
7304 	add_device_randomness(dev->dev_addr, dev->addr_len);
7305 
7306 	/* If the device has permanent device address, driver should
7307 	 * set dev_addr and also addr_assign_type should be set to
7308 	 * NET_ADDR_PERM (default value).
7309 	 */
7310 	if (dev->addr_assign_type == NET_ADDR_PERM)
7311 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7312 
7313 	/* Notify protocols, that a new device appeared. */
7314 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7315 	ret = notifier_to_errno(ret);
7316 	if (ret) {
7317 		rollback_registered(dev);
7318 		dev->reg_state = NETREG_UNREGISTERED;
7319 	}
7320 	/*
7321 	 *	Prevent userspace races by waiting until the network
7322 	 *	device is fully setup before sending notifications.
7323 	 */
7324 	if (!dev->rtnl_link_ops ||
7325 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7326 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7327 
7328 out:
7329 	return ret;
7330 
7331 err_uninit:
7332 	if (dev->netdev_ops->ndo_uninit)
7333 		dev->netdev_ops->ndo_uninit(dev);
7334 	goto out;
7335 }
7336 EXPORT_SYMBOL(register_netdevice);
7337 
7338 /**
7339  *	init_dummy_netdev	- init a dummy network device for NAPI
7340  *	@dev: device to init
7341  *
7342  *	This takes a network device structure and initialize the minimum
7343  *	amount of fields so it can be used to schedule NAPI polls without
7344  *	registering a full blown interface. This is to be used by drivers
7345  *	that need to tie several hardware interfaces to a single NAPI
7346  *	poll scheduler due to HW limitations.
7347  */
7348 int init_dummy_netdev(struct net_device *dev)
7349 {
7350 	/* Clear everything. Note we don't initialize spinlocks
7351 	 * are they aren't supposed to be taken by any of the
7352 	 * NAPI code and this dummy netdev is supposed to be
7353 	 * only ever used for NAPI polls
7354 	 */
7355 	memset(dev, 0, sizeof(struct net_device));
7356 
7357 	/* make sure we BUG if trying to hit standard
7358 	 * register/unregister code path
7359 	 */
7360 	dev->reg_state = NETREG_DUMMY;
7361 
7362 	/* NAPI wants this */
7363 	INIT_LIST_HEAD(&dev->napi_list);
7364 
7365 	/* a dummy interface is started by default */
7366 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7367 	set_bit(__LINK_STATE_START, &dev->state);
7368 
7369 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7370 	 * because users of this 'device' dont need to change
7371 	 * its refcount.
7372 	 */
7373 
7374 	return 0;
7375 }
7376 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7377 
7378 
7379 /**
7380  *	register_netdev	- register a network device
7381  *	@dev: device to register
7382  *
7383  *	Take a completed network device structure and add it to the kernel
7384  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7385  *	chain. 0 is returned on success. A negative errno code is returned
7386  *	on a failure to set up the device, or if the name is a duplicate.
7387  *
7388  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7389  *	and expands the device name if you passed a format string to
7390  *	alloc_netdev.
7391  */
7392 int register_netdev(struct net_device *dev)
7393 {
7394 	int err;
7395 
7396 	rtnl_lock();
7397 	err = register_netdevice(dev);
7398 	rtnl_unlock();
7399 	return err;
7400 }
7401 EXPORT_SYMBOL(register_netdev);
7402 
7403 int netdev_refcnt_read(const struct net_device *dev)
7404 {
7405 	int i, refcnt = 0;
7406 
7407 	for_each_possible_cpu(i)
7408 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7409 	return refcnt;
7410 }
7411 EXPORT_SYMBOL(netdev_refcnt_read);
7412 
7413 /**
7414  * netdev_wait_allrefs - wait until all references are gone.
7415  * @dev: target net_device
7416  *
7417  * This is called when unregistering network devices.
7418  *
7419  * Any protocol or device that holds a reference should register
7420  * for netdevice notification, and cleanup and put back the
7421  * reference if they receive an UNREGISTER event.
7422  * We can get stuck here if buggy protocols don't correctly
7423  * call dev_put.
7424  */
7425 static void netdev_wait_allrefs(struct net_device *dev)
7426 {
7427 	unsigned long rebroadcast_time, warning_time;
7428 	int refcnt;
7429 
7430 	linkwatch_forget_dev(dev);
7431 
7432 	rebroadcast_time = warning_time = jiffies;
7433 	refcnt = netdev_refcnt_read(dev);
7434 
7435 	while (refcnt != 0) {
7436 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7437 			rtnl_lock();
7438 
7439 			/* Rebroadcast unregister notification */
7440 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7441 
7442 			__rtnl_unlock();
7443 			rcu_barrier();
7444 			rtnl_lock();
7445 
7446 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7447 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7448 				     &dev->state)) {
7449 				/* We must not have linkwatch events
7450 				 * pending on unregister. If this
7451 				 * happens, we simply run the queue
7452 				 * unscheduled, resulting in a noop
7453 				 * for this device.
7454 				 */
7455 				linkwatch_run_queue();
7456 			}
7457 
7458 			__rtnl_unlock();
7459 
7460 			rebroadcast_time = jiffies;
7461 		}
7462 
7463 		msleep(250);
7464 
7465 		refcnt = netdev_refcnt_read(dev);
7466 
7467 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7468 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7469 				 dev->name, refcnt);
7470 			warning_time = jiffies;
7471 		}
7472 	}
7473 }
7474 
7475 /* The sequence is:
7476  *
7477  *	rtnl_lock();
7478  *	...
7479  *	register_netdevice(x1);
7480  *	register_netdevice(x2);
7481  *	...
7482  *	unregister_netdevice(y1);
7483  *	unregister_netdevice(y2);
7484  *      ...
7485  *	rtnl_unlock();
7486  *	free_netdev(y1);
7487  *	free_netdev(y2);
7488  *
7489  * We are invoked by rtnl_unlock().
7490  * This allows us to deal with problems:
7491  * 1) We can delete sysfs objects which invoke hotplug
7492  *    without deadlocking with linkwatch via keventd.
7493  * 2) Since we run with the RTNL semaphore not held, we can sleep
7494  *    safely in order to wait for the netdev refcnt to drop to zero.
7495  *
7496  * We must not return until all unregister events added during
7497  * the interval the lock was held have been completed.
7498  */
7499 void netdev_run_todo(void)
7500 {
7501 	struct list_head list;
7502 
7503 	/* Snapshot list, allow later requests */
7504 	list_replace_init(&net_todo_list, &list);
7505 
7506 	__rtnl_unlock();
7507 
7508 
7509 	/* Wait for rcu callbacks to finish before next phase */
7510 	if (!list_empty(&list))
7511 		rcu_barrier();
7512 
7513 	while (!list_empty(&list)) {
7514 		struct net_device *dev
7515 			= list_first_entry(&list, struct net_device, todo_list);
7516 		list_del(&dev->todo_list);
7517 
7518 		rtnl_lock();
7519 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7520 		__rtnl_unlock();
7521 
7522 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7523 			pr_err("network todo '%s' but state %d\n",
7524 			       dev->name, dev->reg_state);
7525 			dump_stack();
7526 			continue;
7527 		}
7528 
7529 		dev->reg_state = NETREG_UNREGISTERED;
7530 
7531 		netdev_wait_allrefs(dev);
7532 
7533 		/* paranoia */
7534 		BUG_ON(netdev_refcnt_read(dev));
7535 		BUG_ON(!list_empty(&dev->ptype_all));
7536 		BUG_ON(!list_empty(&dev->ptype_specific));
7537 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7538 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7539 		WARN_ON(dev->dn_ptr);
7540 
7541 		if (dev->destructor)
7542 			dev->destructor(dev);
7543 
7544 		/* Report a network device has been unregistered */
7545 		rtnl_lock();
7546 		dev_net(dev)->dev_unreg_count--;
7547 		__rtnl_unlock();
7548 		wake_up(&netdev_unregistering_wq);
7549 
7550 		/* Free network device */
7551 		kobject_put(&dev->dev.kobj);
7552 	}
7553 }
7554 
7555 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7556  * all the same fields in the same order as net_device_stats, with only
7557  * the type differing, but rtnl_link_stats64 may have additional fields
7558  * at the end for newer counters.
7559  */
7560 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7561 			     const struct net_device_stats *netdev_stats)
7562 {
7563 #if BITS_PER_LONG == 64
7564 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7565 	memcpy(stats64, netdev_stats, sizeof(*stats64));
7566 	/* zero out counters that only exist in rtnl_link_stats64 */
7567 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7568 	       sizeof(*stats64) - sizeof(*netdev_stats));
7569 #else
7570 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7571 	const unsigned long *src = (const unsigned long *)netdev_stats;
7572 	u64 *dst = (u64 *)stats64;
7573 
7574 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7575 	for (i = 0; i < n; i++)
7576 		dst[i] = src[i];
7577 	/* zero out counters that only exist in rtnl_link_stats64 */
7578 	memset((char *)stats64 + n * sizeof(u64), 0,
7579 	       sizeof(*stats64) - n * sizeof(u64));
7580 #endif
7581 }
7582 EXPORT_SYMBOL(netdev_stats_to_stats64);
7583 
7584 /**
7585  *	dev_get_stats	- get network device statistics
7586  *	@dev: device to get statistics from
7587  *	@storage: place to store stats
7588  *
7589  *	Get network statistics from device. Return @storage.
7590  *	The device driver may provide its own method by setting
7591  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7592  *	otherwise the internal statistics structure is used.
7593  */
7594 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7595 					struct rtnl_link_stats64 *storage)
7596 {
7597 	const struct net_device_ops *ops = dev->netdev_ops;
7598 
7599 	if (ops->ndo_get_stats64) {
7600 		memset(storage, 0, sizeof(*storage));
7601 		ops->ndo_get_stats64(dev, storage);
7602 	} else if (ops->ndo_get_stats) {
7603 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7604 	} else {
7605 		netdev_stats_to_stats64(storage, &dev->stats);
7606 	}
7607 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7608 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7609 	storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7610 	return storage;
7611 }
7612 EXPORT_SYMBOL(dev_get_stats);
7613 
7614 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7615 {
7616 	struct netdev_queue *queue = dev_ingress_queue(dev);
7617 
7618 #ifdef CONFIG_NET_CLS_ACT
7619 	if (queue)
7620 		return queue;
7621 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7622 	if (!queue)
7623 		return NULL;
7624 	netdev_init_one_queue(dev, queue, NULL);
7625 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7626 	queue->qdisc_sleeping = &noop_qdisc;
7627 	rcu_assign_pointer(dev->ingress_queue, queue);
7628 #endif
7629 	return queue;
7630 }
7631 
7632 static const struct ethtool_ops default_ethtool_ops;
7633 
7634 void netdev_set_default_ethtool_ops(struct net_device *dev,
7635 				    const struct ethtool_ops *ops)
7636 {
7637 	if (dev->ethtool_ops == &default_ethtool_ops)
7638 		dev->ethtool_ops = ops;
7639 }
7640 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7641 
7642 void netdev_freemem(struct net_device *dev)
7643 {
7644 	char *addr = (char *)dev - dev->padded;
7645 
7646 	kvfree(addr);
7647 }
7648 
7649 /**
7650  *	alloc_netdev_mqs - allocate network device
7651  *	@sizeof_priv:		size of private data to allocate space for
7652  *	@name:			device name format string
7653  *	@name_assign_type: 	origin of device name
7654  *	@setup:			callback to initialize device
7655  *	@txqs:			the number of TX subqueues to allocate
7656  *	@rxqs:			the number of RX subqueues to allocate
7657  *
7658  *	Allocates a struct net_device with private data area for driver use
7659  *	and performs basic initialization.  Also allocates subqueue structs
7660  *	for each queue on the device.
7661  */
7662 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7663 		unsigned char name_assign_type,
7664 		void (*setup)(struct net_device *),
7665 		unsigned int txqs, unsigned int rxqs)
7666 {
7667 	struct net_device *dev;
7668 	size_t alloc_size;
7669 	struct net_device *p;
7670 
7671 	BUG_ON(strlen(name) >= sizeof(dev->name));
7672 
7673 	if (txqs < 1) {
7674 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7675 		return NULL;
7676 	}
7677 
7678 #ifdef CONFIG_SYSFS
7679 	if (rxqs < 1) {
7680 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7681 		return NULL;
7682 	}
7683 #endif
7684 
7685 	alloc_size = sizeof(struct net_device);
7686 	if (sizeof_priv) {
7687 		/* ensure 32-byte alignment of private area */
7688 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7689 		alloc_size += sizeof_priv;
7690 	}
7691 	/* ensure 32-byte alignment of whole construct */
7692 	alloc_size += NETDEV_ALIGN - 1;
7693 
7694 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7695 	if (!p)
7696 		p = vzalloc(alloc_size);
7697 	if (!p)
7698 		return NULL;
7699 
7700 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7701 	dev->padded = (char *)dev - (char *)p;
7702 
7703 	dev->pcpu_refcnt = alloc_percpu(int);
7704 	if (!dev->pcpu_refcnt)
7705 		goto free_dev;
7706 
7707 	if (dev_addr_init(dev))
7708 		goto free_pcpu;
7709 
7710 	dev_mc_init(dev);
7711 	dev_uc_init(dev);
7712 
7713 	dev_net_set(dev, &init_net);
7714 
7715 	dev->gso_max_size = GSO_MAX_SIZE;
7716 	dev->gso_max_segs = GSO_MAX_SEGS;
7717 
7718 	INIT_LIST_HEAD(&dev->napi_list);
7719 	INIT_LIST_HEAD(&dev->unreg_list);
7720 	INIT_LIST_HEAD(&dev->close_list);
7721 	INIT_LIST_HEAD(&dev->link_watch_list);
7722 	INIT_LIST_HEAD(&dev->adj_list.upper);
7723 	INIT_LIST_HEAD(&dev->adj_list.lower);
7724 	INIT_LIST_HEAD(&dev->ptype_all);
7725 	INIT_LIST_HEAD(&dev->ptype_specific);
7726 #ifdef CONFIG_NET_SCHED
7727 	hash_init(dev->qdisc_hash);
7728 #endif
7729 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7730 	setup(dev);
7731 
7732 	if (!dev->tx_queue_len) {
7733 		dev->priv_flags |= IFF_NO_QUEUE;
7734 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7735 	}
7736 
7737 	dev->num_tx_queues = txqs;
7738 	dev->real_num_tx_queues = txqs;
7739 	if (netif_alloc_netdev_queues(dev))
7740 		goto free_all;
7741 
7742 #ifdef CONFIG_SYSFS
7743 	dev->num_rx_queues = rxqs;
7744 	dev->real_num_rx_queues = rxqs;
7745 	if (netif_alloc_rx_queues(dev))
7746 		goto free_all;
7747 #endif
7748 
7749 	strcpy(dev->name, name);
7750 	dev->name_assign_type = name_assign_type;
7751 	dev->group = INIT_NETDEV_GROUP;
7752 	if (!dev->ethtool_ops)
7753 		dev->ethtool_ops = &default_ethtool_ops;
7754 
7755 	nf_hook_ingress_init(dev);
7756 
7757 	return dev;
7758 
7759 free_all:
7760 	free_netdev(dev);
7761 	return NULL;
7762 
7763 free_pcpu:
7764 	free_percpu(dev->pcpu_refcnt);
7765 free_dev:
7766 	netdev_freemem(dev);
7767 	return NULL;
7768 }
7769 EXPORT_SYMBOL(alloc_netdev_mqs);
7770 
7771 /**
7772  *	free_netdev - free network device
7773  *	@dev: device
7774  *
7775  *	This function does the last stage of destroying an allocated device
7776  * 	interface. The reference to the device object is released.
7777  *	If this is the last reference then it will be freed.
7778  *	Must be called in process context.
7779  */
7780 void free_netdev(struct net_device *dev)
7781 {
7782 	struct napi_struct *p, *n;
7783 
7784 	might_sleep();
7785 	netif_free_tx_queues(dev);
7786 #ifdef CONFIG_SYSFS
7787 	kvfree(dev->_rx);
7788 #endif
7789 
7790 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7791 
7792 	/* Flush device addresses */
7793 	dev_addr_flush(dev);
7794 
7795 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7796 		netif_napi_del(p);
7797 
7798 	free_percpu(dev->pcpu_refcnt);
7799 	dev->pcpu_refcnt = NULL;
7800 
7801 	/*  Compatibility with error handling in drivers */
7802 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7803 		netdev_freemem(dev);
7804 		return;
7805 	}
7806 
7807 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7808 	dev->reg_state = NETREG_RELEASED;
7809 
7810 	/* will free via device release */
7811 	put_device(&dev->dev);
7812 }
7813 EXPORT_SYMBOL(free_netdev);
7814 
7815 /**
7816  *	synchronize_net -  Synchronize with packet receive processing
7817  *
7818  *	Wait for packets currently being received to be done.
7819  *	Does not block later packets from starting.
7820  */
7821 void synchronize_net(void)
7822 {
7823 	might_sleep();
7824 	if (rtnl_is_locked())
7825 		synchronize_rcu_expedited();
7826 	else
7827 		synchronize_rcu();
7828 }
7829 EXPORT_SYMBOL(synchronize_net);
7830 
7831 /**
7832  *	unregister_netdevice_queue - remove device from the kernel
7833  *	@dev: device
7834  *	@head: list
7835  *
7836  *	This function shuts down a device interface and removes it
7837  *	from the kernel tables.
7838  *	If head not NULL, device is queued to be unregistered later.
7839  *
7840  *	Callers must hold the rtnl semaphore.  You may want
7841  *	unregister_netdev() instead of this.
7842  */
7843 
7844 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7845 {
7846 	ASSERT_RTNL();
7847 
7848 	if (head) {
7849 		list_move_tail(&dev->unreg_list, head);
7850 	} else {
7851 		rollback_registered(dev);
7852 		/* Finish processing unregister after unlock */
7853 		net_set_todo(dev);
7854 	}
7855 }
7856 EXPORT_SYMBOL(unregister_netdevice_queue);
7857 
7858 /**
7859  *	unregister_netdevice_many - unregister many devices
7860  *	@head: list of devices
7861  *
7862  *  Note: As most callers use a stack allocated list_head,
7863  *  we force a list_del() to make sure stack wont be corrupted later.
7864  */
7865 void unregister_netdevice_many(struct list_head *head)
7866 {
7867 	struct net_device *dev;
7868 
7869 	if (!list_empty(head)) {
7870 		rollback_registered_many(head);
7871 		list_for_each_entry(dev, head, unreg_list)
7872 			net_set_todo(dev);
7873 		list_del(head);
7874 	}
7875 }
7876 EXPORT_SYMBOL(unregister_netdevice_many);
7877 
7878 /**
7879  *	unregister_netdev - remove device from the kernel
7880  *	@dev: device
7881  *
7882  *	This function shuts down a device interface and removes it
7883  *	from the kernel tables.
7884  *
7885  *	This is just a wrapper for unregister_netdevice that takes
7886  *	the rtnl semaphore.  In general you want to use this and not
7887  *	unregister_netdevice.
7888  */
7889 void unregister_netdev(struct net_device *dev)
7890 {
7891 	rtnl_lock();
7892 	unregister_netdevice(dev);
7893 	rtnl_unlock();
7894 }
7895 EXPORT_SYMBOL(unregister_netdev);
7896 
7897 /**
7898  *	dev_change_net_namespace - move device to different nethost namespace
7899  *	@dev: device
7900  *	@net: network namespace
7901  *	@pat: If not NULL name pattern to try if the current device name
7902  *	      is already taken in the destination network namespace.
7903  *
7904  *	This function shuts down a device interface and moves it
7905  *	to a new network namespace. On success 0 is returned, on
7906  *	a failure a netagive errno code is returned.
7907  *
7908  *	Callers must hold the rtnl semaphore.
7909  */
7910 
7911 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7912 {
7913 	int err;
7914 
7915 	ASSERT_RTNL();
7916 
7917 	/* Don't allow namespace local devices to be moved. */
7918 	err = -EINVAL;
7919 	if (dev->features & NETIF_F_NETNS_LOCAL)
7920 		goto out;
7921 
7922 	/* Ensure the device has been registrered */
7923 	if (dev->reg_state != NETREG_REGISTERED)
7924 		goto out;
7925 
7926 	/* Get out if there is nothing todo */
7927 	err = 0;
7928 	if (net_eq(dev_net(dev), net))
7929 		goto out;
7930 
7931 	/* Pick the destination device name, and ensure
7932 	 * we can use it in the destination network namespace.
7933 	 */
7934 	err = -EEXIST;
7935 	if (__dev_get_by_name(net, dev->name)) {
7936 		/* We get here if we can't use the current device name */
7937 		if (!pat)
7938 			goto out;
7939 		if (dev_get_valid_name(net, dev, pat) < 0)
7940 			goto out;
7941 	}
7942 
7943 	/*
7944 	 * And now a mini version of register_netdevice unregister_netdevice.
7945 	 */
7946 
7947 	/* If device is running close it first. */
7948 	dev_close(dev);
7949 
7950 	/* And unlink it from device chain */
7951 	err = -ENODEV;
7952 	unlist_netdevice(dev);
7953 
7954 	synchronize_net();
7955 
7956 	/* Shutdown queueing discipline. */
7957 	dev_shutdown(dev);
7958 
7959 	/* Notify protocols, that we are about to destroy
7960 	   this device. They should clean all the things.
7961 
7962 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7963 	   This is wanted because this way 8021q and macvlan know
7964 	   the device is just moving and can keep their slaves up.
7965 	*/
7966 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7967 	rcu_barrier();
7968 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7969 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7970 
7971 	/*
7972 	 *	Flush the unicast and multicast chains
7973 	 */
7974 	dev_uc_flush(dev);
7975 	dev_mc_flush(dev);
7976 
7977 	/* Send a netdev-removed uevent to the old namespace */
7978 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7979 	netdev_adjacent_del_links(dev);
7980 
7981 	/* Actually switch the network namespace */
7982 	dev_net_set(dev, net);
7983 
7984 	/* If there is an ifindex conflict assign a new one */
7985 	if (__dev_get_by_index(net, dev->ifindex))
7986 		dev->ifindex = dev_new_index(net);
7987 
7988 	/* Send a netdev-add uevent to the new namespace */
7989 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7990 	netdev_adjacent_add_links(dev);
7991 
7992 	/* Fixup kobjects */
7993 	err = device_rename(&dev->dev, dev->name);
7994 	WARN_ON(err);
7995 
7996 	/* Add the device back in the hashes */
7997 	list_netdevice(dev);
7998 
7999 	/* Notify protocols, that a new device appeared. */
8000 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8001 
8002 	/*
8003 	 *	Prevent userspace races by waiting until the network
8004 	 *	device is fully setup before sending notifications.
8005 	 */
8006 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8007 
8008 	synchronize_net();
8009 	err = 0;
8010 out:
8011 	return err;
8012 }
8013 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8014 
8015 static int dev_cpu_dead(unsigned int oldcpu)
8016 {
8017 	struct sk_buff **list_skb;
8018 	struct sk_buff *skb;
8019 	unsigned int cpu;
8020 	struct softnet_data *sd, *oldsd;
8021 
8022 	local_irq_disable();
8023 	cpu = smp_processor_id();
8024 	sd = &per_cpu(softnet_data, cpu);
8025 	oldsd = &per_cpu(softnet_data, oldcpu);
8026 
8027 	/* Find end of our completion_queue. */
8028 	list_skb = &sd->completion_queue;
8029 	while (*list_skb)
8030 		list_skb = &(*list_skb)->next;
8031 	/* Append completion queue from offline CPU. */
8032 	*list_skb = oldsd->completion_queue;
8033 	oldsd->completion_queue = NULL;
8034 
8035 	/* Append output queue from offline CPU. */
8036 	if (oldsd->output_queue) {
8037 		*sd->output_queue_tailp = oldsd->output_queue;
8038 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8039 		oldsd->output_queue = NULL;
8040 		oldsd->output_queue_tailp = &oldsd->output_queue;
8041 	}
8042 	/* Append NAPI poll list from offline CPU, with one exception :
8043 	 * process_backlog() must be called by cpu owning percpu backlog.
8044 	 * We properly handle process_queue & input_pkt_queue later.
8045 	 */
8046 	while (!list_empty(&oldsd->poll_list)) {
8047 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8048 							    struct napi_struct,
8049 							    poll_list);
8050 
8051 		list_del_init(&napi->poll_list);
8052 		if (napi->poll == process_backlog)
8053 			napi->state = 0;
8054 		else
8055 			____napi_schedule(sd, napi);
8056 	}
8057 
8058 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8059 	local_irq_enable();
8060 
8061 	/* Process offline CPU's input_pkt_queue */
8062 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8063 		netif_rx_ni(skb);
8064 		input_queue_head_incr(oldsd);
8065 	}
8066 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8067 		netif_rx_ni(skb);
8068 		input_queue_head_incr(oldsd);
8069 	}
8070 
8071 	return 0;
8072 }
8073 
8074 /**
8075  *	netdev_increment_features - increment feature set by one
8076  *	@all: current feature set
8077  *	@one: new feature set
8078  *	@mask: mask feature set
8079  *
8080  *	Computes a new feature set after adding a device with feature set
8081  *	@one to the master device with current feature set @all.  Will not
8082  *	enable anything that is off in @mask. Returns the new feature set.
8083  */
8084 netdev_features_t netdev_increment_features(netdev_features_t all,
8085 	netdev_features_t one, netdev_features_t mask)
8086 {
8087 	if (mask & NETIF_F_HW_CSUM)
8088 		mask |= NETIF_F_CSUM_MASK;
8089 	mask |= NETIF_F_VLAN_CHALLENGED;
8090 
8091 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8092 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8093 
8094 	/* If one device supports hw checksumming, set for all. */
8095 	if (all & NETIF_F_HW_CSUM)
8096 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8097 
8098 	return all;
8099 }
8100 EXPORT_SYMBOL(netdev_increment_features);
8101 
8102 static struct hlist_head * __net_init netdev_create_hash(void)
8103 {
8104 	int i;
8105 	struct hlist_head *hash;
8106 
8107 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8108 	if (hash != NULL)
8109 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8110 			INIT_HLIST_HEAD(&hash[i]);
8111 
8112 	return hash;
8113 }
8114 
8115 /* Initialize per network namespace state */
8116 static int __net_init netdev_init(struct net *net)
8117 {
8118 	if (net != &init_net)
8119 		INIT_LIST_HEAD(&net->dev_base_head);
8120 
8121 	net->dev_name_head = netdev_create_hash();
8122 	if (net->dev_name_head == NULL)
8123 		goto err_name;
8124 
8125 	net->dev_index_head = netdev_create_hash();
8126 	if (net->dev_index_head == NULL)
8127 		goto err_idx;
8128 
8129 	return 0;
8130 
8131 err_idx:
8132 	kfree(net->dev_name_head);
8133 err_name:
8134 	return -ENOMEM;
8135 }
8136 
8137 /**
8138  *	netdev_drivername - network driver for the device
8139  *	@dev: network device
8140  *
8141  *	Determine network driver for device.
8142  */
8143 const char *netdev_drivername(const struct net_device *dev)
8144 {
8145 	const struct device_driver *driver;
8146 	const struct device *parent;
8147 	const char *empty = "";
8148 
8149 	parent = dev->dev.parent;
8150 	if (!parent)
8151 		return empty;
8152 
8153 	driver = parent->driver;
8154 	if (driver && driver->name)
8155 		return driver->name;
8156 	return empty;
8157 }
8158 
8159 static void __netdev_printk(const char *level, const struct net_device *dev,
8160 			    struct va_format *vaf)
8161 {
8162 	if (dev && dev->dev.parent) {
8163 		dev_printk_emit(level[1] - '0',
8164 				dev->dev.parent,
8165 				"%s %s %s%s: %pV",
8166 				dev_driver_string(dev->dev.parent),
8167 				dev_name(dev->dev.parent),
8168 				netdev_name(dev), netdev_reg_state(dev),
8169 				vaf);
8170 	} else if (dev) {
8171 		printk("%s%s%s: %pV",
8172 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8173 	} else {
8174 		printk("%s(NULL net_device): %pV", level, vaf);
8175 	}
8176 }
8177 
8178 void netdev_printk(const char *level, const struct net_device *dev,
8179 		   const char *format, ...)
8180 {
8181 	struct va_format vaf;
8182 	va_list args;
8183 
8184 	va_start(args, format);
8185 
8186 	vaf.fmt = format;
8187 	vaf.va = &args;
8188 
8189 	__netdev_printk(level, dev, &vaf);
8190 
8191 	va_end(args);
8192 }
8193 EXPORT_SYMBOL(netdev_printk);
8194 
8195 #define define_netdev_printk_level(func, level)			\
8196 void func(const struct net_device *dev, const char *fmt, ...)	\
8197 {								\
8198 	struct va_format vaf;					\
8199 	va_list args;						\
8200 								\
8201 	va_start(args, fmt);					\
8202 								\
8203 	vaf.fmt = fmt;						\
8204 	vaf.va = &args;						\
8205 								\
8206 	__netdev_printk(level, dev, &vaf);			\
8207 								\
8208 	va_end(args);						\
8209 }								\
8210 EXPORT_SYMBOL(func);
8211 
8212 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8213 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8214 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8215 define_netdev_printk_level(netdev_err, KERN_ERR);
8216 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8217 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8218 define_netdev_printk_level(netdev_info, KERN_INFO);
8219 
8220 static void __net_exit netdev_exit(struct net *net)
8221 {
8222 	kfree(net->dev_name_head);
8223 	kfree(net->dev_index_head);
8224 }
8225 
8226 static struct pernet_operations __net_initdata netdev_net_ops = {
8227 	.init = netdev_init,
8228 	.exit = netdev_exit,
8229 };
8230 
8231 static void __net_exit default_device_exit(struct net *net)
8232 {
8233 	struct net_device *dev, *aux;
8234 	/*
8235 	 * Push all migratable network devices back to the
8236 	 * initial network namespace
8237 	 */
8238 	rtnl_lock();
8239 	for_each_netdev_safe(net, dev, aux) {
8240 		int err;
8241 		char fb_name[IFNAMSIZ];
8242 
8243 		/* Ignore unmoveable devices (i.e. loopback) */
8244 		if (dev->features & NETIF_F_NETNS_LOCAL)
8245 			continue;
8246 
8247 		/* Leave virtual devices for the generic cleanup */
8248 		if (dev->rtnl_link_ops)
8249 			continue;
8250 
8251 		/* Push remaining network devices to init_net */
8252 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8253 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8254 		if (err) {
8255 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8256 				 __func__, dev->name, err);
8257 			BUG();
8258 		}
8259 	}
8260 	rtnl_unlock();
8261 }
8262 
8263 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8264 {
8265 	/* Return with the rtnl_lock held when there are no network
8266 	 * devices unregistering in any network namespace in net_list.
8267 	 */
8268 	struct net *net;
8269 	bool unregistering;
8270 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8271 
8272 	add_wait_queue(&netdev_unregistering_wq, &wait);
8273 	for (;;) {
8274 		unregistering = false;
8275 		rtnl_lock();
8276 		list_for_each_entry(net, net_list, exit_list) {
8277 			if (net->dev_unreg_count > 0) {
8278 				unregistering = true;
8279 				break;
8280 			}
8281 		}
8282 		if (!unregistering)
8283 			break;
8284 		__rtnl_unlock();
8285 
8286 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8287 	}
8288 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8289 }
8290 
8291 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8292 {
8293 	/* At exit all network devices most be removed from a network
8294 	 * namespace.  Do this in the reverse order of registration.
8295 	 * Do this across as many network namespaces as possible to
8296 	 * improve batching efficiency.
8297 	 */
8298 	struct net_device *dev;
8299 	struct net *net;
8300 	LIST_HEAD(dev_kill_list);
8301 
8302 	/* To prevent network device cleanup code from dereferencing
8303 	 * loopback devices or network devices that have been freed
8304 	 * wait here for all pending unregistrations to complete,
8305 	 * before unregistring the loopback device and allowing the
8306 	 * network namespace be freed.
8307 	 *
8308 	 * The netdev todo list containing all network devices
8309 	 * unregistrations that happen in default_device_exit_batch
8310 	 * will run in the rtnl_unlock() at the end of
8311 	 * default_device_exit_batch.
8312 	 */
8313 	rtnl_lock_unregistering(net_list);
8314 	list_for_each_entry(net, net_list, exit_list) {
8315 		for_each_netdev_reverse(net, dev) {
8316 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8317 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8318 			else
8319 				unregister_netdevice_queue(dev, &dev_kill_list);
8320 		}
8321 	}
8322 	unregister_netdevice_many(&dev_kill_list);
8323 	rtnl_unlock();
8324 }
8325 
8326 static struct pernet_operations __net_initdata default_device_ops = {
8327 	.exit = default_device_exit,
8328 	.exit_batch = default_device_exit_batch,
8329 };
8330 
8331 /*
8332  *	Initialize the DEV module. At boot time this walks the device list and
8333  *	unhooks any devices that fail to initialise (normally hardware not
8334  *	present) and leaves us with a valid list of present and active devices.
8335  *
8336  */
8337 
8338 /*
8339  *       This is called single threaded during boot, so no need
8340  *       to take the rtnl semaphore.
8341  */
8342 static int __init net_dev_init(void)
8343 {
8344 	int i, rc = -ENOMEM;
8345 
8346 	BUG_ON(!dev_boot_phase);
8347 
8348 	if (dev_proc_init())
8349 		goto out;
8350 
8351 	if (netdev_kobject_init())
8352 		goto out;
8353 
8354 	INIT_LIST_HEAD(&ptype_all);
8355 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8356 		INIT_LIST_HEAD(&ptype_base[i]);
8357 
8358 	INIT_LIST_HEAD(&offload_base);
8359 
8360 	if (register_pernet_subsys(&netdev_net_ops))
8361 		goto out;
8362 
8363 	/*
8364 	 *	Initialise the packet receive queues.
8365 	 */
8366 
8367 	for_each_possible_cpu(i) {
8368 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8369 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8370 
8371 		INIT_WORK(flush, flush_backlog);
8372 
8373 		skb_queue_head_init(&sd->input_pkt_queue);
8374 		skb_queue_head_init(&sd->process_queue);
8375 		INIT_LIST_HEAD(&sd->poll_list);
8376 		sd->output_queue_tailp = &sd->output_queue;
8377 #ifdef CONFIG_RPS
8378 		sd->csd.func = rps_trigger_softirq;
8379 		sd->csd.info = sd;
8380 		sd->cpu = i;
8381 #endif
8382 
8383 		sd->backlog.poll = process_backlog;
8384 		sd->backlog.weight = weight_p;
8385 	}
8386 
8387 	dev_boot_phase = 0;
8388 
8389 	/* The loopback device is special if any other network devices
8390 	 * is present in a network namespace the loopback device must
8391 	 * be present. Since we now dynamically allocate and free the
8392 	 * loopback device ensure this invariant is maintained by
8393 	 * keeping the loopback device as the first device on the
8394 	 * list of network devices.  Ensuring the loopback devices
8395 	 * is the first device that appears and the last network device
8396 	 * that disappears.
8397 	 */
8398 	if (register_pernet_device(&loopback_net_ops))
8399 		goto out;
8400 
8401 	if (register_pernet_device(&default_device_ops))
8402 		goto out;
8403 
8404 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8405 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8406 
8407 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8408 				       NULL, dev_cpu_dead);
8409 	WARN_ON(rc < 0);
8410 	dst_subsys_init();
8411 	rc = 0;
8412 out:
8413 	return rc;
8414 }
8415 
8416 subsys_initcall(net_dev_init);
8417