xref: /openbmc/linux/net/core/dev.c (revision e2f1cf25)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 
140 #include "net-sysfs.h"
141 
142 /* Instead of increasing this, you should create a hash table. */
143 #define MAX_GRO_SKBS 8
144 
145 /* This should be increased if a protocol with a bigger head is added. */
146 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147 
148 static DEFINE_SPINLOCK(ptype_lock);
149 static DEFINE_SPINLOCK(offload_lock);
150 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
151 struct list_head ptype_all __read_mostly;	/* Taps */
152 static struct list_head offload_base __read_mostly;
153 
154 static int netif_rx_internal(struct sk_buff *skb);
155 static int call_netdevice_notifiers_info(unsigned long val,
156 					 struct net_device *dev,
157 					 struct netdev_notifier_info *info);
158 
159 /*
160  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
161  * semaphore.
162  *
163  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
164  *
165  * Writers must hold the rtnl semaphore while they loop through the
166  * dev_base_head list, and hold dev_base_lock for writing when they do the
167  * actual updates.  This allows pure readers to access the list even
168  * while a writer is preparing to update it.
169  *
170  * To put it another way, dev_base_lock is held for writing only to
171  * protect against pure readers; the rtnl semaphore provides the
172  * protection against other writers.
173  *
174  * See, for example usages, register_netdevice() and
175  * unregister_netdevice(), which must be called with the rtnl
176  * semaphore held.
177  */
178 DEFINE_RWLOCK(dev_base_lock);
179 EXPORT_SYMBOL(dev_base_lock);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id;
185 static DEFINE_HASHTABLE(napi_hash, 8);
186 
187 static seqcount_t devnet_rename_seq;
188 
189 static inline void dev_base_seq_inc(struct net *net)
190 {
191 	while (++net->dev_base_seq == 0);
192 }
193 
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 static inline void rps_lock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 	spin_lock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212 
213 static inline void rps_unlock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 	spin_unlock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219 
220 /* Device list insertion */
221 static void list_netdevice(struct net_device *dev)
222 {
223 	struct net *net = dev_net(dev);
224 
225 	ASSERT_RTNL();
226 
227 	write_lock_bh(&dev_base_lock);
228 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
229 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
230 	hlist_add_head_rcu(&dev->index_hlist,
231 			   dev_index_hash(net, dev->ifindex));
232 	write_unlock_bh(&dev_base_lock);
233 
234 	dev_base_seq_inc(net);
235 }
236 
237 /* Device list removal
238  * caller must respect a RCU grace period before freeing/reusing dev
239  */
240 static void unlist_netdevice(struct net_device *dev)
241 {
242 	ASSERT_RTNL();
243 
244 	/* Unlink dev from the device chain */
245 	write_lock_bh(&dev_base_lock);
246 	list_del_rcu(&dev->dev_list);
247 	hlist_del_rcu(&dev->name_hlist);
248 	hlist_del_rcu(&dev->index_hlist);
249 	write_unlock_bh(&dev_base_lock);
250 
251 	dev_base_seq_inc(dev_net(dev));
252 }
253 
254 /*
255  *	Our notifier list
256  */
257 
258 static RAW_NOTIFIER_HEAD(netdev_chain);
259 
260 /*
261  *	Device drivers call our routines to queue packets here. We empty the
262  *	queue in the local softnet handler.
263  */
264 
265 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266 EXPORT_PER_CPU_SYMBOL(softnet_data);
267 
268 #ifdef CONFIG_LOCKDEP
269 /*
270  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271  * according to dev->type
272  */
273 static const unsigned short netdev_lock_type[] =
274 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
287 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
288 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
289 
290 static const char *const netdev_lock_name[] =
291 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
292 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
293 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
294 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
295 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
296 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
297 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
298 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
299 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
300 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
301 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
302 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
303 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
304 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
305 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
306 
307 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 
310 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
311 {
312 	int i;
313 
314 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
315 		if (netdev_lock_type[i] == dev_type)
316 			return i;
317 	/* the last key is used by default */
318 	return ARRAY_SIZE(netdev_lock_type) - 1;
319 }
320 
321 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
322 						 unsigned short dev_type)
323 {
324 	int i;
325 
326 	i = netdev_lock_pos(dev_type);
327 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
328 				   netdev_lock_name[i]);
329 }
330 
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 {
333 	int i;
334 
335 	i = netdev_lock_pos(dev->type);
336 	lockdep_set_class_and_name(&dev->addr_list_lock,
337 				   &netdev_addr_lock_key[i],
338 				   netdev_lock_name[i]);
339 }
340 #else
341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
342 						 unsigned short dev_type)
343 {
344 }
345 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346 {
347 }
348 #endif
349 
350 /*******************************************************************************
351 
352 		Protocol management and registration routines
353 
354 *******************************************************************************/
355 
356 /*
357  *	Add a protocol ID to the list. Now that the input handler is
358  *	smarter we can dispense with all the messy stuff that used to be
359  *	here.
360  *
361  *	BEWARE!!! Protocol handlers, mangling input packets,
362  *	MUST BE last in hash buckets and checking protocol handlers
363  *	MUST start from promiscuous ptype_all chain in net_bh.
364  *	It is true now, do not change it.
365  *	Explanation follows: if protocol handler, mangling packet, will
366  *	be the first on list, it is not able to sense, that packet
367  *	is cloned and should be copied-on-write, so that it will
368  *	change it and subsequent readers will get broken packet.
369  *							--ANK (980803)
370  */
371 
372 static inline struct list_head *ptype_head(const struct packet_type *pt)
373 {
374 	if (pt->type == htons(ETH_P_ALL))
375 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
376 	else
377 		return pt->dev ? &pt->dev->ptype_specific :
378 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
379 }
380 
381 /**
382  *	dev_add_pack - add packet handler
383  *	@pt: packet type declaration
384  *
385  *	Add a protocol handler to the networking stack. The passed &packet_type
386  *	is linked into kernel lists and may not be freed until it has been
387  *	removed from the kernel lists.
388  *
389  *	This call does not sleep therefore it can not
390  *	guarantee all CPU's that are in middle of receiving packets
391  *	will see the new packet type (until the next received packet).
392  */
393 
394 void dev_add_pack(struct packet_type *pt)
395 {
396 	struct list_head *head = ptype_head(pt);
397 
398 	spin_lock(&ptype_lock);
399 	list_add_rcu(&pt->list, head);
400 	spin_unlock(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403 
404 /**
405  *	__dev_remove_pack	 - remove packet handler
406  *	@pt: packet type declaration
407  *
408  *	Remove a protocol handler that was previously added to the kernel
409  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
410  *	from the kernel lists and can be freed or reused once this function
411  *	returns.
412  *
413  *      The packet type might still be in use by receivers
414  *	and must not be freed until after all the CPU's have gone
415  *	through a quiescent state.
416  */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 	struct list_head *head = ptype_head(pt);
420 	struct packet_type *pt1;
421 
422 	spin_lock(&ptype_lock);
423 
424 	list_for_each_entry(pt1, head, list) {
425 		if (pt == pt1) {
426 			list_del_rcu(&pt->list);
427 			goto out;
428 		}
429 	}
430 
431 	pr_warn("dev_remove_pack: %p not found\n", pt);
432 out:
433 	spin_unlock(&ptype_lock);
434 }
435 EXPORT_SYMBOL(__dev_remove_pack);
436 
437 /**
438  *	dev_remove_pack	 - remove packet handler
439  *	@pt: packet type declaration
440  *
441  *	Remove a protocol handler that was previously added to the kernel
442  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
443  *	from the kernel lists and can be freed or reused once this function
444  *	returns.
445  *
446  *	This call sleeps to guarantee that no CPU is looking at the packet
447  *	type after return.
448  */
449 void dev_remove_pack(struct packet_type *pt)
450 {
451 	__dev_remove_pack(pt);
452 
453 	synchronize_net();
454 }
455 EXPORT_SYMBOL(dev_remove_pack);
456 
457 
458 /**
459  *	dev_add_offload - register offload handlers
460  *	@po: protocol offload declaration
461  *
462  *	Add protocol offload handlers to the networking stack. The passed
463  *	&proto_offload is linked into kernel lists and may not be freed until
464  *	it has been removed from the kernel lists.
465  *
466  *	This call does not sleep therefore it can not
467  *	guarantee all CPU's that are in middle of receiving packets
468  *	will see the new offload handlers (until the next received packet).
469  */
470 void dev_add_offload(struct packet_offload *po)
471 {
472 	struct packet_offload *elem;
473 
474 	spin_lock(&offload_lock);
475 	list_for_each_entry(elem, &offload_base, list) {
476 		if (po->priority < elem->priority)
477 			break;
478 	}
479 	list_add_rcu(&po->list, elem->list.prev);
480 	spin_unlock(&offload_lock);
481 }
482 EXPORT_SYMBOL(dev_add_offload);
483 
484 /**
485  *	__dev_remove_offload	 - remove offload handler
486  *	@po: packet offload declaration
487  *
488  *	Remove a protocol offload handler that was previously added to the
489  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
490  *	is removed from the kernel lists and can be freed or reused once this
491  *	function returns.
492  *
493  *      The packet type might still be in use by receivers
494  *	and must not be freed until after all the CPU's have gone
495  *	through a quiescent state.
496  */
497 static void __dev_remove_offload(struct packet_offload *po)
498 {
499 	struct list_head *head = &offload_base;
500 	struct packet_offload *po1;
501 
502 	spin_lock(&offload_lock);
503 
504 	list_for_each_entry(po1, head, list) {
505 		if (po == po1) {
506 			list_del_rcu(&po->list);
507 			goto out;
508 		}
509 	}
510 
511 	pr_warn("dev_remove_offload: %p not found\n", po);
512 out:
513 	spin_unlock(&offload_lock);
514 }
515 
516 /**
517  *	dev_remove_offload	 - remove packet offload handler
518  *	@po: packet offload declaration
519  *
520  *	Remove a packet offload handler that was previously added to the kernel
521  *	offload handlers by dev_add_offload(). The passed &offload_type is
522  *	removed from the kernel lists and can be freed or reused once this
523  *	function returns.
524  *
525  *	This call sleeps to guarantee that no CPU is looking at the packet
526  *	type after return.
527  */
528 void dev_remove_offload(struct packet_offload *po)
529 {
530 	__dev_remove_offload(po);
531 
532 	synchronize_net();
533 }
534 EXPORT_SYMBOL(dev_remove_offload);
535 
536 /******************************************************************************
537 
538 		      Device Boot-time Settings Routines
539 
540 *******************************************************************************/
541 
542 /* Boot time configuration table */
543 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
544 
545 /**
546  *	netdev_boot_setup_add	- add new setup entry
547  *	@name: name of the device
548  *	@map: configured settings for the device
549  *
550  *	Adds new setup entry to the dev_boot_setup list.  The function
551  *	returns 0 on error and 1 on success.  This is a generic routine to
552  *	all netdevices.
553  */
554 static int netdev_boot_setup_add(char *name, struct ifmap *map)
555 {
556 	struct netdev_boot_setup *s;
557 	int i;
558 
559 	s = dev_boot_setup;
560 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
561 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
562 			memset(s[i].name, 0, sizeof(s[i].name));
563 			strlcpy(s[i].name, name, IFNAMSIZ);
564 			memcpy(&s[i].map, map, sizeof(s[i].map));
565 			break;
566 		}
567 	}
568 
569 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
570 }
571 
572 /**
573  *	netdev_boot_setup_check	- check boot time settings
574  *	@dev: the netdevice
575  *
576  * 	Check boot time settings for the device.
577  *	The found settings are set for the device to be used
578  *	later in the device probing.
579  *	Returns 0 if no settings found, 1 if they are.
580  */
581 int netdev_boot_setup_check(struct net_device *dev)
582 {
583 	struct netdev_boot_setup *s = dev_boot_setup;
584 	int i;
585 
586 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
587 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
588 		    !strcmp(dev->name, s[i].name)) {
589 			dev->irq 	= s[i].map.irq;
590 			dev->base_addr 	= s[i].map.base_addr;
591 			dev->mem_start 	= s[i].map.mem_start;
592 			dev->mem_end 	= s[i].map.mem_end;
593 			return 1;
594 		}
595 	}
596 	return 0;
597 }
598 EXPORT_SYMBOL(netdev_boot_setup_check);
599 
600 
601 /**
602  *	netdev_boot_base	- get address from boot time settings
603  *	@prefix: prefix for network device
604  *	@unit: id for network device
605  *
606  * 	Check boot time settings for the base address of device.
607  *	The found settings are set for the device to be used
608  *	later in the device probing.
609  *	Returns 0 if no settings found.
610  */
611 unsigned long netdev_boot_base(const char *prefix, int unit)
612 {
613 	const struct netdev_boot_setup *s = dev_boot_setup;
614 	char name[IFNAMSIZ];
615 	int i;
616 
617 	sprintf(name, "%s%d", prefix, unit);
618 
619 	/*
620 	 * If device already registered then return base of 1
621 	 * to indicate not to probe for this interface
622 	 */
623 	if (__dev_get_by_name(&init_net, name))
624 		return 1;
625 
626 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
627 		if (!strcmp(name, s[i].name))
628 			return s[i].map.base_addr;
629 	return 0;
630 }
631 
632 /*
633  * Saves at boot time configured settings for any netdevice.
634  */
635 int __init netdev_boot_setup(char *str)
636 {
637 	int ints[5];
638 	struct ifmap map;
639 
640 	str = get_options(str, ARRAY_SIZE(ints), ints);
641 	if (!str || !*str)
642 		return 0;
643 
644 	/* Save settings */
645 	memset(&map, 0, sizeof(map));
646 	if (ints[0] > 0)
647 		map.irq = ints[1];
648 	if (ints[0] > 1)
649 		map.base_addr = ints[2];
650 	if (ints[0] > 2)
651 		map.mem_start = ints[3];
652 	if (ints[0] > 3)
653 		map.mem_end = ints[4];
654 
655 	/* Add new entry to the list */
656 	return netdev_boot_setup_add(str, &map);
657 }
658 
659 __setup("netdev=", netdev_boot_setup);
660 
661 /*******************************************************************************
662 
663 			    Device Interface Subroutines
664 
665 *******************************************************************************/
666 
667 /**
668  *	dev_get_iflink	- get 'iflink' value of a interface
669  *	@dev: targeted interface
670  *
671  *	Indicates the ifindex the interface is linked to.
672  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
673  */
674 
675 int dev_get_iflink(const struct net_device *dev)
676 {
677 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
678 		return dev->netdev_ops->ndo_get_iflink(dev);
679 
680 	return dev->ifindex;
681 }
682 EXPORT_SYMBOL(dev_get_iflink);
683 
684 /**
685  *	__dev_get_by_name	- find a device by its name
686  *	@net: the applicable net namespace
687  *	@name: name to find
688  *
689  *	Find an interface by name. Must be called under RTNL semaphore
690  *	or @dev_base_lock. If the name is found a pointer to the device
691  *	is returned. If the name is not found then %NULL is returned. The
692  *	reference counters are not incremented so the caller must be
693  *	careful with locks.
694  */
695 
696 struct net_device *__dev_get_by_name(struct net *net, const char *name)
697 {
698 	struct net_device *dev;
699 	struct hlist_head *head = dev_name_hash(net, name);
700 
701 	hlist_for_each_entry(dev, head, name_hlist)
702 		if (!strncmp(dev->name, name, IFNAMSIZ))
703 			return dev;
704 
705 	return NULL;
706 }
707 EXPORT_SYMBOL(__dev_get_by_name);
708 
709 /**
710  *	dev_get_by_name_rcu	- find a device by its name
711  *	@net: the applicable net namespace
712  *	@name: name to find
713  *
714  *	Find an interface by name.
715  *	If the name is found a pointer to the device is returned.
716  * 	If the name is not found then %NULL is returned.
717  *	The reference counters are not incremented so the caller must be
718  *	careful with locks. The caller must hold RCU lock.
719  */
720 
721 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
722 {
723 	struct net_device *dev;
724 	struct hlist_head *head = dev_name_hash(net, name);
725 
726 	hlist_for_each_entry_rcu(dev, head, name_hlist)
727 		if (!strncmp(dev->name, name, IFNAMSIZ))
728 			return dev;
729 
730 	return NULL;
731 }
732 EXPORT_SYMBOL(dev_get_by_name_rcu);
733 
734 /**
735  *	dev_get_by_name		- find a device by its name
736  *	@net: the applicable net namespace
737  *	@name: name to find
738  *
739  *	Find an interface by name. This can be called from any
740  *	context and does its own locking. The returned handle has
741  *	the usage count incremented and the caller must use dev_put() to
742  *	release it when it is no longer needed. %NULL is returned if no
743  *	matching device is found.
744  */
745 
746 struct net_device *dev_get_by_name(struct net *net, const char *name)
747 {
748 	struct net_device *dev;
749 
750 	rcu_read_lock();
751 	dev = dev_get_by_name_rcu(net, name);
752 	if (dev)
753 		dev_hold(dev);
754 	rcu_read_unlock();
755 	return dev;
756 }
757 EXPORT_SYMBOL(dev_get_by_name);
758 
759 /**
760  *	__dev_get_by_index - find a device by its ifindex
761  *	@net: the applicable net namespace
762  *	@ifindex: index of device
763  *
764  *	Search for an interface by index. Returns %NULL if the device
765  *	is not found or a pointer to the device. The device has not
766  *	had its reference counter increased so the caller must be careful
767  *	about locking. The caller must hold either the RTNL semaphore
768  *	or @dev_base_lock.
769  */
770 
771 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
772 {
773 	struct net_device *dev;
774 	struct hlist_head *head = dev_index_hash(net, ifindex);
775 
776 	hlist_for_each_entry(dev, head, index_hlist)
777 		if (dev->ifindex == ifindex)
778 			return dev;
779 
780 	return NULL;
781 }
782 EXPORT_SYMBOL(__dev_get_by_index);
783 
784 /**
785  *	dev_get_by_index_rcu - find a device by its ifindex
786  *	@net: the applicable net namespace
787  *	@ifindex: index of device
788  *
789  *	Search for an interface by index. Returns %NULL if the device
790  *	is not found or a pointer to the device. The device has not
791  *	had its reference counter increased so the caller must be careful
792  *	about locking. The caller must hold RCU lock.
793  */
794 
795 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
796 {
797 	struct net_device *dev;
798 	struct hlist_head *head = dev_index_hash(net, ifindex);
799 
800 	hlist_for_each_entry_rcu(dev, head, index_hlist)
801 		if (dev->ifindex == ifindex)
802 			return dev;
803 
804 	return NULL;
805 }
806 EXPORT_SYMBOL(dev_get_by_index_rcu);
807 
808 
809 /**
810  *	dev_get_by_index - find a device by its ifindex
811  *	@net: the applicable net namespace
812  *	@ifindex: index of device
813  *
814  *	Search for an interface by index. Returns NULL if the device
815  *	is not found or a pointer to the device. The device returned has
816  *	had a reference added and the pointer is safe until the user calls
817  *	dev_put to indicate they have finished with it.
818  */
819 
820 struct net_device *dev_get_by_index(struct net *net, int ifindex)
821 {
822 	struct net_device *dev;
823 
824 	rcu_read_lock();
825 	dev = dev_get_by_index_rcu(net, ifindex);
826 	if (dev)
827 		dev_hold(dev);
828 	rcu_read_unlock();
829 	return dev;
830 }
831 EXPORT_SYMBOL(dev_get_by_index);
832 
833 /**
834  *	netdev_get_name - get a netdevice name, knowing its ifindex.
835  *	@net: network namespace
836  *	@name: a pointer to the buffer where the name will be stored.
837  *	@ifindex: the ifindex of the interface to get the name from.
838  *
839  *	The use of raw_seqcount_begin() and cond_resched() before
840  *	retrying is required as we want to give the writers a chance
841  *	to complete when CONFIG_PREEMPT is not set.
842  */
843 int netdev_get_name(struct net *net, char *name, int ifindex)
844 {
845 	struct net_device *dev;
846 	unsigned int seq;
847 
848 retry:
849 	seq = raw_seqcount_begin(&devnet_rename_seq);
850 	rcu_read_lock();
851 	dev = dev_get_by_index_rcu(net, ifindex);
852 	if (!dev) {
853 		rcu_read_unlock();
854 		return -ENODEV;
855 	}
856 
857 	strcpy(name, dev->name);
858 	rcu_read_unlock();
859 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
860 		cond_resched();
861 		goto retry;
862 	}
863 
864 	return 0;
865 }
866 
867 /**
868  *	dev_getbyhwaddr_rcu - find a device by its hardware address
869  *	@net: the applicable net namespace
870  *	@type: media type of device
871  *	@ha: hardware address
872  *
873  *	Search for an interface by MAC address. Returns NULL if the device
874  *	is not found or a pointer to the device.
875  *	The caller must hold RCU or RTNL.
876  *	The returned device has not had its ref count increased
877  *	and the caller must therefore be careful about locking
878  *
879  */
880 
881 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
882 				       const char *ha)
883 {
884 	struct net_device *dev;
885 
886 	for_each_netdev_rcu(net, dev)
887 		if (dev->type == type &&
888 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
889 			return dev;
890 
891 	return NULL;
892 }
893 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
894 
895 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
896 {
897 	struct net_device *dev;
898 
899 	ASSERT_RTNL();
900 	for_each_netdev(net, dev)
901 		if (dev->type == type)
902 			return dev;
903 
904 	return NULL;
905 }
906 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
907 
908 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
909 {
910 	struct net_device *dev, *ret = NULL;
911 
912 	rcu_read_lock();
913 	for_each_netdev_rcu(net, dev)
914 		if (dev->type == type) {
915 			dev_hold(dev);
916 			ret = dev;
917 			break;
918 		}
919 	rcu_read_unlock();
920 	return ret;
921 }
922 EXPORT_SYMBOL(dev_getfirstbyhwtype);
923 
924 /**
925  *	__dev_get_by_flags - find any device with given flags
926  *	@net: the applicable net namespace
927  *	@if_flags: IFF_* values
928  *	@mask: bitmask of bits in if_flags to check
929  *
930  *	Search for any interface with the given flags. Returns NULL if a device
931  *	is not found or a pointer to the device. Must be called inside
932  *	rtnl_lock(), and result refcount is unchanged.
933  */
934 
935 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
936 				      unsigned short mask)
937 {
938 	struct net_device *dev, *ret;
939 
940 	ASSERT_RTNL();
941 
942 	ret = NULL;
943 	for_each_netdev(net, dev) {
944 		if (((dev->flags ^ if_flags) & mask) == 0) {
945 			ret = dev;
946 			break;
947 		}
948 	}
949 	return ret;
950 }
951 EXPORT_SYMBOL(__dev_get_by_flags);
952 
953 /**
954  *	dev_valid_name - check if name is okay for network device
955  *	@name: name string
956  *
957  *	Network device names need to be valid file names to
958  *	to allow sysfs to work.  We also disallow any kind of
959  *	whitespace.
960  */
961 bool dev_valid_name(const char *name)
962 {
963 	if (*name == '\0')
964 		return false;
965 	if (strlen(name) >= IFNAMSIZ)
966 		return false;
967 	if (!strcmp(name, ".") || !strcmp(name, ".."))
968 		return false;
969 
970 	while (*name) {
971 		if (*name == '/' || *name == ':' || isspace(*name))
972 			return false;
973 		name++;
974 	}
975 	return true;
976 }
977 EXPORT_SYMBOL(dev_valid_name);
978 
979 /**
980  *	__dev_alloc_name - allocate a name for a device
981  *	@net: network namespace to allocate the device name in
982  *	@name: name format string
983  *	@buf:  scratch buffer and result name string
984  *
985  *	Passed a format string - eg "lt%d" it will try and find a suitable
986  *	id. It scans list of devices to build up a free map, then chooses
987  *	the first empty slot. The caller must hold the dev_base or rtnl lock
988  *	while allocating the name and adding the device in order to avoid
989  *	duplicates.
990  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
991  *	Returns the number of the unit assigned or a negative errno code.
992  */
993 
994 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
995 {
996 	int i = 0;
997 	const char *p;
998 	const int max_netdevices = 8*PAGE_SIZE;
999 	unsigned long *inuse;
1000 	struct net_device *d;
1001 
1002 	p = strnchr(name, IFNAMSIZ-1, '%');
1003 	if (p) {
1004 		/*
1005 		 * Verify the string as this thing may have come from
1006 		 * the user.  There must be either one "%d" and no other "%"
1007 		 * characters.
1008 		 */
1009 		if (p[1] != 'd' || strchr(p + 2, '%'))
1010 			return -EINVAL;
1011 
1012 		/* Use one page as a bit array of possible slots */
1013 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1014 		if (!inuse)
1015 			return -ENOMEM;
1016 
1017 		for_each_netdev(net, d) {
1018 			if (!sscanf(d->name, name, &i))
1019 				continue;
1020 			if (i < 0 || i >= max_netdevices)
1021 				continue;
1022 
1023 			/*  avoid cases where sscanf is not exact inverse of printf */
1024 			snprintf(buf, IFNAMSIZ, name, i);
1025 			if (!strncmp(buf, d->name, IFNAMSIZ))
1026 				set_bit(i, inuse);
1027 		}
1028 
1029 		i = find_first_zero_bit(inuse, max_netdevices);
1030 		free_page((unsigned long) inuse);
1031 	}
1032 
1033 	if (buf != name)
1034 		snprintf(buf, IFNAMSIZ, name, i);
1035 	if (!__dev_get_by_name(net, buf))
1036 		return i;
1037 
1038 	/* It is possible to run out of possible slots
1039 	 * when the name is long and there isn't enough space left
1040 	 * for the digits, or if all bits are used.
1041 	 */
1042 	return -ENFILE;
1043 }
1044 
1045 /**
1046  *	dev_alloc_name - allocate a name for a device
1047  *	@dev: device
1048  *	@name: name format string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 int dev_alloc_name(struct net_device *dev, const char *name)
1060 {
1061 	char buf[IFNAMSIZ];
1062 	struct net *net;
1063 	int ret;
1064 
1065 	BUG_ON(!dev_net(dev));
1066 	net = dev_net(dev);
1067 	ret = __dev_alloc_name(net, name, buf);
1068 	if (ret >= 0)
1069 		strlcpy(dev->name, buf, IFNAMSIZ);
1070 	return ret;
1071 }
1072 EXPORT_SYMBOL(dev_alloc_name);
1073 
1074 static int dev_alloc_name_ns(struct net *net,
1075 			     struct net_device *dev,
1076 			     const char *name)
1077 {
1078 	char buf[IFNAMSIZ];
1079 	int ret;
1080 
1081 	ret = __dev_alloc_name(net, name, buf);
1082 	if (ret >= 0)
1083 		strlcpy(dev->name, buf, IFNAMSIZ);
1084 	return ret;
1085 }
1086 
1087 static int dev_get_valid_name(struct net *net,
1088 			      struct net_device *dev,
1089 			      const char *name)
1090 {
1091 	BUG_ON(!net);
1092 
1093 	if (!dev_valid_name(name))
1094 		return -EINVAL;
1095 
1096 	if (strchr(name, '%'))
1097 		return dev_alloc_name_ns(net, dev, name);
1098 	else if (__dev_get_by_name(net, name))
1099 		return -EEXIST;
1100 	else if (dev->name != name)
1101 		strlcpy(dev->name, name, IFNAMSIZ);
1102 
1103 	return 0;
1104 }
1105 
1106 /**
1107  *	dev_change_name - change name of a device
1108  *	@dev: device
1109  *	@newname: name (or format string) must be at least IFNAMSIZ
1110  *
1111  *	Change name of a device, can pass format strings "eth%d".
1112  *	for wildcarding.
1113  */
1114 int dev_change_name(struct net_device *dev, const char *newname)
1115 {
1116 	unsigned char old_assign_type;
1117 	char oldname[IFNAMSIZ];
1118 	int err = 0;
1119 	int ret;
1120 	struct net *net;
1121 
1122 	ASSERT_RTNL();
1123 	BUG_ON(!dev_net(dev));
1124 
1125 	net = dev_net(dev);
1126 	if (dev->flags & IFF_UP)
1127 		return -EBUSY;
1128 
1129 	write_seqcount_begin(&devnet_rename_seq);
1130 
1131 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1132 		write_seqcount_end(&devnet_rename_seq);
1133 		return 0;
1134 	}
1135 
1136 	memcpy(oldname, dev->name, IFNAMSIZ);
1137 
1138 	err = dev_get_valid_name(net, dev, newname);
1139 	if (err < 0) {
1140 		write_seqcount_end(&devnet_rename_seq);
1141 		return err;
1142 	}
1143 
1144 	if (oldname[0] && !strchr(oldname, '%'))
1145 		netdev_info(dev, "renamed from %s\n", oldname);
1146 
1147 	old_assign_type = dev->name_assign_type;
1148 	dev->name_assign_type = NET_NAME_RENAMED;
1149 
1150 rollback:
1151 	ret = device_rename(&dev->dev, dev->name);
1152 	if (ret) {
1153 		memcpy(dev->name, oldname, IFNAMSIZ);
1154 		dev->name_assign_type = old_assign_type;
1155 		write_seqcount_end(&devnet_rename_seq);
1156 		return ret;
1157 	}
1158 
1159 	write_seqcount_end(&devnet_rename_seq);
1160 
1161 	netdev_adjacent_rename_links(dev, oldname);
1162 
1163 	write_lock_bh(&dev_base_lock);
1164 	hlist_del_rcu(&dev->name_hlist);
1165 	write_unlock_bh(&dev_base_lock);
1166 
1167 	synchronize_rcu();
1168 
1169 	write_lock_bh(&dev_base_lock);
1170 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1171 	write_unlock_bh(&dev_base_lock);
1172 
1173 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1174 	ret = notifier_to_errno(ret);
1175 
1176 	if (ret) {
1177 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1178 		if (err >= 0) {
1179 			err = ret;
1180 			write_seqcount_begin(&devnet_rename_seq);
1181 			memcpy(dev->name, oldname, IFNAMSIZ);
1182 			memcpy(oldname, newname, IFNAMSIZ);
1183 			dev->name_assign_type = old_assign_type;
1184 			old_assign_type = NET_NAME_RENAMED;
1185 			goto rollback;
1186 		} else {
1187 			pr_err("%s: name change rollback failed: %d\n",
1188 			       dev->name, ret);
1189 		}
1190 	}
1191 
1192 	return err;
1193 }
1194 
1195 /**
1196  *	dev_set_alias - change ifalias of a device
1197  *	@dev: device
1198  *	@alias: name up to IFALIASZ
1199  *	@len: limit of bytes to copy from info
1200  *
1201  *	Set ifalias for a device,
1202  */
1203 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1204 {
1205 	char *new_ifalias;
1206 
1207 	ASSERT_RTNL();
1208 
1209 	if (len >= IFALIASZ)
1210 		return -EINVAL;
1211 
1212 	if (!len) {
1213 		kfree(dev->ifalias);
1214 		dev->ifalias = NULL;
1215 		return 0;
1216 	}
1217 
1218 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1219 	if (!new_ifalias)
1220 		return -ENOMEM;
1221 	dev->ifalias = new_ifalias;
1222 
1223 	strlcpy(dev->ifalias, alias, len+1);
1224 	return len;
1225 }
1226 
1227 
1228 /**
1229  *	netdev_features_change - device changes features
1230  *	@dev: device to cause notification
1231  *
1232  *	Called to indicate a device has changed features.
1233  */
1234 void netdev_features_change(struct net_device *dev)
1235 {
1236 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1237 }
1238 EXPORT_SYMBOL(netdev_features_change);
1239 
1240 /**
1241  *	netdev_state_change - device changes state
1242  *	@dev: device to cause notification
1243  *
1244  *	Called to indicate a device has changed state. This function calls
1245  *	the notifier chains for netdev_chain and sends a NEWLINK message
1246  *	to the routing socket.
1247  */
1248 void netdev_state_change(struct net_device *dev)
1249 {
1250 	if (dev->flags & IFF_UP) {
1251 		struct netdev_notifier_change_info change_info;
1252 
1253 		change_info.flags_changed = 0;
1254 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1255 					      &change_info.info);
1256 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1257 	}
1258 }
1259 EXPORT_SYMBOL(netdev_state_change);
1260 
1261 /**
1262  * 	netdev_notify_peers - notify network peers about existence of @dev
1263  * 	@dev: network device
1264  *
1265  * Generate traffic such that interested network peers are aware of
1266  * @dev, such as by generating a gratuitous ARP. This may be used when
1267  * a device wants to inform the rest of the network about some sort of
1268  * reconfiguration such as a failover event or virtual machine
1269  * migration.
1270  */
1271 void netdev_notify_peers(struct net_device *dev)
1272 {
1273 	rtnl_lock();
1274 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1275 	rtnl_unlock();
1276 }
1277 EXPORT_SYMBOL(netdev_notify_peers);
1278 
1279 static int __dev_open(struct net_device *dev)
1280 {
1281 	const struct net_device_ops *ops = dev->netdev_ops;
1282 	int ret;
1283 
1284 	ASSERT_RTNL();
1285 
1286 	if (!netif_device_present(dev))
1287 		return -ENODEV;
1288 
1289 	/* Block netpoll from trying to do any rx path servicing.
1290 	 * If we don't do this there is a chance ndo_poll_controller
1291 	 * or ndo_poll may be running while we open the device
1292 	 */
1293 	netpoll_poll_disable(dev);
1294 
1295 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1296 	ret = notifier_to_errno(ret);
1297 	if (ret)
1298 		return ret;
1299 
1300 	set_bit(__LINK_STATE_START, &dev->state);
1301 
1302 	if (ops->ndo_validate_addr)
1303 		ret = ops->ndo_validate_addr(dev);
1304 
1305 	if (!ret && ops->ndo_open)
1306 		ret = ops->ndo_open(dev);
1307 
1308 	netpoll_poll_enable(dev);
1309 
1310 	if (ret)
1311 		clear_bit(__LINK_STATE_START, &dev->state);
1312 	else {
1313 		dev->flags |= IFF_UP;
1314 		dev_set_rx_mode(dev);
1315 		dev_activate(dev);
1316 		add_device_randomness(dev->dev_addr, dev->addr_len);
1317 	}
1318 
1319 	return ret;
1320 }
1321 
1322 /**
1323  *	dev_open	- prepare an interface for use.
1324  *	@dev:	device to open
1325  *
1326  *	Takes a device from down to up state. The device's private open
1327  *	function is invoked and then the multicast lists are loaded. Finally
1328  *	the device is moved into the up state and a %NETDEV_UP message is
1329  *	sent to the netdev notifier chain.
1330  *
1331  *	Calling this function on an active interface is a nop. On a failure
1332  *	a negative errno code is returned.
1333  */
1334 int dev_open(struct net_device *dev)
1335 {
1336 	int ret;
1337 
1338 	if (dev->flags & IFF_UP)
1339 		return 0;
1340 
1341 	ret = __dev_open(dev);
1342 	if (ret < 0)
1343 		return ret;
1344 
1345 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1346 	call_netdevice_notifiers(NETDEV_UP, dev);
1347 
1348 	return ret;
1349 }
1350 EXPORT_SYMBOL(dev_open);
1351 
1352 static int __dev_close_many(struct list_head *head)
1353 {
1354 	struct net_device *dev;
1355 
1356 	ASSERT_RTNL();
1357 	might_sleep();
1358 
1359 	list_for_each_entry(dev, head, close_list) {
1360 		/* Temporarily disable netpoll until the interface is down */
1361 		netpoll_poll_disable(dev);
1362 
1363 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1364 
1365 		clear_bit(__LINK_STATE_START, &dev->state);
1366 
1367 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1368 		 * can be even on different cpu. So just clear netif_running().
1369 		 *
1370 		 * dev->stop() will invoke napi_disable() on all of it's
1371 		 * napi_struct instances on this device.
1372 		 */
1373 		smp_mb__after_atomic(); /* Commit netif_running(). */
1374 	}
1375 
1376 	dev_deactivate_many(head);
1377 
1378 	list_for_each_entry(dev, head, close_list) {
1379 		const struct net_device_ops *ops = dev->netdev_ops;
1380 
1381 		/*
1382 		 *	Call the device specific close. This cannot fail.
1383 		 *	Only if device is UP
1384 		 *
1385 		 *	We allow it to be called even after a DETACH hot-plug
1386 		 *	event.
1387 		 */
1388 		if (ops->ndo_stop)
1389 			ops->ndo_stop(dev);
1390 
1391 		dev->flags &= ~IFF_UP;
1392 		netpoll_poll_enable(dev);
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 static int __dev_close(struct net_device *dev)
1399 {
1400 	int retval;
1401 	LIST_HEAD(single);
1402 
1403 	list_add(&dev->close_list, &single);
1404 	retval = __dev_close_many(&single);
1405 	list_del(&single);
1406 
1407 	return retval;
1408 }
1409 
1410 int dev_close_many(struct list_head *head, bool unlink)
1411 {
1412 	struct net_device *dev, *tmp;
1413 
1414 	/* Remove the devices that don't need to be closed */
1415 	list_for_each_entry_safe(dev, tmp, head, close_list)
1416 		if (!(dev->flags & IFF_UP))
1417 			list_del_init(&dev->close_list);
1418 
1419 	__dev_close_many(head);
1420 
1421 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1422 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1423 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1424 		if (unlink)
1425 			list_del_init(&dev->close_list);
1426 	}
1427 
1428 	return 0;
1429 }
1430 EXPORT_SYMBOL(dev_close_many);
1431 
1432 /**
1433  *	dev_close - shutdown an interface.
1434  *	@dev: device to shutdown
1435  *
1436  *	This function moves an active device into down state. A
1437  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1438  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1439  *	chain.
1440  */
1441 int dev_close(struct net_device *dev)
1442 {
1443 	if (dev->flags & IFF_UP) {
1444 		LIST_HEAD(single);
1445 
1446 		list_add(&dev->close_list, &single);
1447 		dev_close_many(&single, true);
1448 		list_del(&single);
1449 	}
1450 	return 0;
1451 }
1452 EXPORT_SYMBOL(dev_close);
1453 
1454 
1455 /**
1456  *	dev_disable_lro - disable Large Receive Offload on a device
1457  *	@dev: device
1458  *
1459  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1460  *	called under RTNL.  This is needed if received packets may be
1461  *	forwarded to another interface.
1462  */
1463 void dev_disable_lro(struct net_device *dev)
1464 {
1465 	struct net_device *lower_dev;
1466 	struct list_head *iter;
1467 
1468 	dev->wanted_features &= ~NETIF_F_LRO;
1469 	netdev_update_features(dev);
1470 
1471 	if (unlikely(dev->features & NETIF_F_LRO))
1472 		netdev_WARN(dev, "failed to disable LRO!\n");
1473 
1474 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1475 		dev_disable_lro(lower_dev);
1476 }
1477 EXPORT_SYMBOL(dev_disable_lro);
1478 
1479 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1480 				   struct net_device *dev)
1481 {
1482 	struct netdev_notifier_info info;
1483 
1484 	netdev_notifier_info_init(&info, dev);
1485 	return nb->notifier_call(nb, val, &info);
1486 }
1487 
1488 static int dev_boot_phase = 1;
1489 
1490 /**
1491  *	register_netdevice_notifier - register a network notifier block
1492  *	@nb: notifier
1493  *
1494  *	Register a notifier to be called when network device events occur.
1495  *	The notifier passed is linked into the kernel structures and must
1496  *	not be reused until it has been unregistered. A negative errno code
1497  *	is returned on a failure.
1498  *
1499  * 	When registered all registration and up events are replayed
1500  *	to the new notifier to allow device to have a race free
1501  *	view of the network device list.
1502  */
1503 
1504 int register_netdevice_notifier(struct notifier_block *nb)
1505 {
1506 	struct net_device *dev;
1507 	struct net_device *last;
1508 	struct net *net;
1509 	int err;
1510 
1511 	rtnl_lock();
1512 	err = raw_notifier_chain_register(&netdev_chain, nb);
1513 	if (err)
1514 		goto unlock;
1515 	if (dev_boot_phase)
1516 		goto unlock;
1517 	for_each_net(net) {
1518 		for_each_netdev(net, dev) {
1519 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1520 			err = notifier_to_errno(err);
1521 			if (err)
1522 				goto rollback;
1523 
1524 			if (!(dev->flags & IFF_UP))
1525 				continue;
1526 
1527 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1528 		}
1529 	}
1530 
1531 unlock:
1532 	rtnl_unlock();
1533 	return err;
1534 
1535 rollback:
1536 	last = dev;
1537 	for_each_net(net) {
1538 		for_each_netdev(net, dev) {
1539 			if (dev == last)
1540 				goto outroll;
1541 
1542 			if (dev->flags & IFF_UP) {
1543 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1544 							dev);
1545 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1546 			}
1547 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1548 		}
1549 	}
1550 
1551 outroll:
1552 	raw_notifier_chain_unregister(&netdev_chain, nb);
1553 	goto unlock;
1554 }
1555 EXPORT_SYMBOL(register_netdevice_notifier);
1556 
1557 /**
1558  *	unregister_netdevice_notifier - unregister a network notifier block
1559  *	@nb: notifier
1560  *
1561  *	Unregister a notifier previously registered by
1562  *	register_netdevice_notifier(). The notifier is unlinked into the
1563  *	kernel structures and may then be reused. A negative errno code
1564  *	is returned on a failure.
1565  *
1566  * 	After unregistering unregister and down device events are synthesized
1567  *	for all devices on the device list to the removed notifier to remove
1568  *	the need for special case cleanup code.
1569  */
1570 
1571 int unregister_netdevice_notifier(struct notifier_block *nb)
1572 {
1573 	struct net_device *dev;
1574 	struct net *net;
1575 	int err;
1576 
1577 	rtnl_lock();
1578 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1579 	if (err)
1580 		goto unlock;
1581 
1582 	for_each_net(net) {
1583 		for_each_netdev(net, dev) {
1584 			if (dev->flags & IFF_UP) {
1585 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1586 							dev);
1587 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1588 			}
1589 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1590 		}
1591 	}
1592 unlock:
1593 	rtnl_unlock();
1594 	return err;
1595 }
1596 EXPORT_SYMBOL(unregister_netdevice_notifier);
1597 
1598 /**
1599  *	call_netdevice_notifiers_info - call all network notifier blocks
1600  *	@val: value passed unmodified to notifier function
1601  *	@dev: net_device pointer passed unmodified to notifier function
1602  *	@info: notifier information data
1603  *
1604  *	Call all network notifier blocks.  Parameters and return value
1605  *	are as for raw_notifier_call_chain().
1606  */
1607 
1608 static int call_netdevice_notifiers_info(unsigned long val,
1609 					 struct net_device *dev,
1610 					 struct netdev_notifier_info *info)
1611 {
1612 	ASSERT_RTNL();
1613 	netdev_notifier_info_init(info, dev);
1614 	return raw_notifier_call_chain(&netdev_chain, val, info);
1615 }
1616 
1617 /**
1618  *	call_netdevice_notifiers - call all network notifier blocks
1619  *      @val: value passed unmodified to notifier function
1620  *      @dev: net_device pointer passed unmodified to notifier function
1621  *
1622  *	Call all network notifier blocks.  Parameters and return value
1623  *	are as for raw_notifier_call_chain().
1624  */
1625 
1626 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1627 {
1628 	struct netdev_notifier_info info;
1629 
1630 	return call_netdevice_notifiers_info(val, dev, &info);
1631 }
1632 EXPORT_SYMBOL(call_netdevice_notifiers);
1633 
1634 #ifdef CONFIG_NET_INGRESS
1635 static struct static_key ingress_needed __read_mostly;
1636 
1637 void net_inc_ingress_queue(void)
1638 {
1639 	static_key_slow_inc(&ingress_needed);
1640 }
1641 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1642 
1643 void net_dec_ingress_queue(void)
1644 {
1645 	static_key_slow_dec(&ingress_needed);
1646 }
1647 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1648 #endif
1649 
1650 static struct static_key netstamp_needed __read_mostly;
1651 #ifdef HAVE_JUMP_LABEL
1652 /* We are not allowed to call static_key_slow_dec() from irq context
1653  * If net_disable_timestamp() is called from irq context, defer the
1654  * static_key_slow_dec() calls.
1655  */
1656 static atomic_t netstamp_needed_deferred;
1657 #endif
1658 
1659 void net_enable_timestamp(void)
1660 {
1661 #ifdef HAVE_JUMP_LABEL
1662 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1663 
1664 	if (deferred) {
1665 		while (--deferred)
1666 			static_key_slow_dec(&netstamp_needed);
1667 		return;
1668 	}
1669 #endif
1670 	static_key_slow_inc(&netstamp_needed);
1671 }
1672 EXPORT_SYMBOL(net_enable_timestamp);
1673 
1674 void net_disable_timestamp(void)
1675 {
1676 #ifdef HAVE_JUMP_LABEL
1677 	if (in_interrupt()) {
1678 		atomic_inc(&netstamp_needed_deferred);
1679 		return;
1680 	}
1681 #endif
1682 	static_key_slow_dec(&netstamp_needed);
1683 }
1684 EXPORT_SYMBOL(net_disable_timestamp);
1685 
1686 static inline void net_timestamp_set(struct sk_buff *skb)
1687 {
1688 	skb->tstamp.tv64 = 0;
1689 	if (static_key_false(&netstamp_needed))
1690 		__net_timestamp(skb);
1691 }
1692 
1693 #define net_timestamp_check(COND, SKB)			\
1694 	if (static_key_false(&netstamp_needed)) {		\
1695 		if ((COND) && !(SKB)->tstamp.tv64)	\
1696 			__net_timestamp(SKB);		\
1697 	}						\
1698 
1699 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1700 {
1701 	unsigned int len;
1702 
1703 	if (!(dev->flags & IFF_UP))
1704 		return false;
1705 
1706 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1707 	if (skb->len <= len)
1708 		return true;
1709 
1710 	/* if TSO is enabled, we don't care about the length as the packet
1711 	 * could be forwarded without being segmented before
1712 	 */
1713 	if (skb_is_gso(skb))
1714 		return true;
1715 
1716 	return false;
1717 }
1718 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1719 
1720 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1721 {
1722 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1723 	    unlikely(!is_skb_forwardable(dev, skb))) {
1724 		atomic_long_inc(&dev->rx_dropped);
1725 		kfree_skb(skb);
1726 		return NET_RX_DROP;
1727 	}
1728 
1729 	skb_scrub_packet(skb, true);
1730 	skb->priority = 0;
1731 	skb->protocol = eth_type_trans(skb, dev);
1732 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1733 
1734 	return 0;
1735 }
1736 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1737 
1738 /**
1739  * dev_forward_skb - loopback an skb to another netif
1740  *
1741  * @dev: destination network device
1742  * @skb: buffer to forward
1743  *
1744  * return values:
1745  *	NET_RX_SUCCESS	(no congestion)
1746  *	NET_RX_DROP     (packet was dropped, but freed)
1747  *
1748  * dev_forward_skb can be used for injecting an skb from the
1749  * start_xmit function of one device into the receive queue
1750  * of another device.
1751  *
1752  * The receiving device may be in another namespace, so
1753  * we have to clear all information in the skb that could
1754  * impact namespace isolation.
1755  */
1756 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1757 {
1758 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1759 }
1760 EXPORT_SYMBOL_GPL(dev_forward_skb);
1761 
1762 static inline int deliver_skb(struct sk_buff *skb,
1763 			      struct packet_type *pt_prev,
1764 			      struct net_device *orig_dev)
1765 {
1766 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1767 		return -ENOMEM;
1768 	atomic_inc(&skb->users);
1769 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1770 }
1771 
1772 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1773 					  struct packet_type **pt,
1774 					  struct net_device *orig_dev,
1775 					  __be16 type,
1776 					  struct list_head *ptype_list)
1777 {
1778 	struct packet_type *ptype, *pt_prev = *pt;
1779 
1780 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1781 		if (ptype->type != type)
1782 			continue;
1783 		if (pt_prev)
1784 			deliver_skb(skb, pt_prev, orig_dev);
1785 		pt_prev = ptype;
1786 	}
1787 	*pt = pt_prev;
1788 }
1789 
1790 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1791 {
1792 	if (!ptype->af_packet_priv || !skb->sk)
1793 		return false;
1794 
1795 	if (ptype->id_match)
1796 		return ptype->id_match(ptype, skb->sk);
1797 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1798 		return true;
1799 
1800 	return false;
1801 }
1802 
1803 /*
1804  *	Support routine. Sends outgoing frames to any network
1805  *	taps currently in use.
1806  */
1807 
1808 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1809 {
1810 	struct packet_type *ptype;
1811 	struct sk_buff *skb2 = NULL;
1812 	struct packet_type *pt_prev = NULL;
1813 	struct list_head *ptype_list = &ptype_all;
1814 
1815 	rcu_read_lock();
1816 again:
1817 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1818 		/* Never send packets back to the socket
1819 		 * they originated from - MvS (miquels@drinkel.ow.org)
1820 		 */
1821 		if (skb_loop_sk(ptype, skb))
1822 			continue;
1823 
1824 		if (pt_prev) {
1825 			deliver_skb(skb2, pt_prev, skb->dev);
1826 			pt_prev = ptype;
1827 			continue;
1828 		}
1829 
1830 		/* need to clone skb, done only once */
1831 		skb2 = skb_clone(skb, GFP_ATOMIC);
1832 		if (!skb2)
1833 			goto out_unlock;
1834 
1835 		net_timestamp_set(skb2);
1836 
1837 		/* skb->nh should be correctly
1838 		 * set by sender, so that the second statement is
1839 		 * just protection against buggy protocols.
1840 		 */
1841 		skb_reset_mac_header(skb2);
1842 
1843 		if (skb_network_header(skb2) < skb2->data ||
1844 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1845 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1846 					     ntohs(skb2->protocol),
1847 					     dev->name);
1848 			skb_reset_network_header(skb2);
1849 		}
1850 
1851 		skb2->transport_header = skb2->network_header;
1852 		skb2->pkt_type = PACKET_OUTGOING;
1853 		pt_prev = ptype;
1854 	}
1855 
1856 	if (ptype_list == &ptype_all) {
1857 		ptype_list = &dev->ptype_all;
1858 		goto again;
1859 	}
1860 out_unlock:
1861 	if (pt_prev)
1862 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1863 	rcu_read_unlock();
1864 }
1865 
1866 /**
1867  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1868  * @dev: Network device
1869  * @txq: number of queues available
1870  *
1871  * If real_num_tx_queues is changed the tc mappings may no longer be
1872  * valid. To resolve this verify the tc mapping remains valid and if
1873  * not NULL the mapping. With no priorities mapping to this
1874  * offset/count pair it will no longer be used. In the worst case TC0
1875  * is invalid nothing can be done so disable priority mappings. If is
1876  * expected that drivers will fix this mapping if they can before
1877  * calling netif_set_real_num_tx_queues.
1878  */
1879 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1880 {
1881 	int i;
1882 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1883 
1884 	/* If TC0 is invalidated disable TC mapping */
1885 	if (tc->offset + tc->count > txq) {
1886 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1887 		dev->num_tc = 0;
1888 		return;
1889 	}
1890 
1891 	/* Invalidated prio to tc mappings set to TC0 */
1892 	for (i = 1; i < TC_BITMASK + 1; i++) {
1893 		int q = netdev_get_prio_tc_map(dev, i);
1894 
1895 		tc = &dev->tc_to_txq[q];
1896 		if (tc->offset + tc->count > txq) {
1897 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1898 				i, q);
1899 			netdev_set_prio_tc_map(dev, i, 0);
1900 		}
1901 	}
1902 }
1903 
1904 #ifdef CONFIG_XPS
1905 static DEFINE_MUTEX(xps_map_mutex);
1906 #define xmap_dereference(P)		\
1907 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1908 
1909 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1910 					int cpu, u16 index)
1911 {
1912 	struct xps_map *map = NULL;
1913 	int pos;
1914 
1915 	if (dev_maps)
1916 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1917 
1918 	for (pos = 0; map && pos < map->len; pos++) {
1919 		if (map->queues[pos] == index) {
1920 			if (map->len > 1) {
1921 				map->queues[pos] = map->queues[--map->len];
1922 			} else {
1923 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1924 				kfree_rcu(map, rcu);
1925 				map = NULL;
1926 			}
1927 			break;
1928 		}
1929 	}
1930 
1931 	return map;
1932 }
1933 
1934 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1935 {
1936 	struct xps_dev_maps *dev_maps;
1937 	int cpu, i;
1938 	bool active = false;
1939 
1940 	mutex_lock(&xps_map_mutex);
1941 	dev_maps = xmap_dereference(dev->xps_maps);
1942 
1943 	if (!dev_maps)
1944 		goto out_no_maps;
1945 
1946 	for_each_possible_cpu(cpu) {
1947 		for (i = index; i < dev->num_tx_queues; i++) {
1948 			if (!remove_xps_queue(dev_maps, cpu, i))
1949 				break;
1950 		}
1951 		if (i == dev->num_tx_queues)
1952 			active = true;
1953 	}
1954 
1955 	if (!active) {
1956 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1957 		kfree_rcu(dev_maps, rcu);
1958 	}
1959 
1960 	for (i = index; i < dev->num_tx_queues; i++)
1961 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1962 					     NUMA_NO_NODE);
1963 
1964 out_no_maps:
1965 	mutex_unlock(&xps_map_mutex);
1966 }
1967 
1968 static struct xps_map *expand_xps_map(struct xps_map *map,
1969 				      int cpu, u16 index)
1970 {
1971 	struct xps_map *new_map;
1972 	int alloc_len = XPS_MIN_MAP_ALLOC;
1973 	int i, pos;
1974 
1975 	for (pos = 0; map && pos < map->len; pos++) {
1976 		if (map->queues[pos] != index)
1977 			continue;
1978 		return map;
1979 	}
1980 
1981 	/* Need to add queue to this CPU's existing map */
1982 	if (map) {
1983 		if (pos < map->alloc_len)
1984 			return map;
1985 
1986 		alloc_len = map->alloc_len * 2;
1987 	}
1988 
1989 	/* Need to allocate new map to store queue on this CPU's map */
1990 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1991 			       cpu_to_node(cpu));
1992 	if (!new_map)
1993 		return NULL;
1994 
1995 	for (i = 0; i < pos; i++)
1996 		new_map->queues[i] = map->queues[i];
1997 	new_map->alloc_len = alloc_len;
1998 	new_map->len = pos;
1999 
2000 	return new_map;
2001 }
2002 
2003 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2004 			u16 index)
2005 {
2006 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2007 	struct xps_map *map, *new_map;
2008 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2009 	int cpu, numa_node_id = -2;
2010 	bool active = false;
2011 
2012 	mutex_lock(&xps_map_mutex);
2013 
2014 	dev_maps = xmap_dereference(dev->xps_maps);
2015 
2016 	/* allocate memory for queue storage */
2017 	for_each_online_cpu(cpu) {
2018 		if (!cpumask_test_cpu(cpu, mask))
2019 			continue;
2020 
2021 		if (!new_dev_maps)
2022 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2023 		if (!new_dev_maps) {
2024 			mutex_unlock(&xps_map_mutex);
2025 			return -ENOMEM;
2026 		}
2027 
2028 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2029 				 NULL;
2030 
2031 		map = expand_xps_map(map, cpu, index);
2032 		if (!map)
2033 			goto error;
2034 
2035 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2036 	}
2037 
2038 	if (!new_dev_maps)
2039 		goto out_no_new_maps;
2040 
2041 	for_each_possible_cpu(cpu) {
2042 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2043 			/* add queue to CPU maps */
2044 			int pos = 0;
2045 
2046 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2047 			while ((pos < map->len) && (map->queues[pos] != index))
2048 				pos++;
2049 
2050 			if (pos == map->len)
2051 				map->queues[map->len++] = index;
2052 #ifdef CONFIG_NUMA
2053 			if (numa_node_id == -2)
2054 				numa_node_id = cpu_to_node(cpu);
2055 			else if (numa_node_id != cpu_to_node(cpu))
2056 				numa_node_id = -1;
2057 #endif
2058 		} else if (dev_maps) {
2059 			/* fill in the new device map from the old device map */
2060 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2061 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2062 		}
2063 
2064 	}
2065 
2066 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2067 
2068 	/* Cleanup old maps */
2069 	if (dev_maps) {
2070 		for_each_possible_cpu(cpu) {
2071 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2072 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2073 			if (map && map != new_map)
2074 				kfree_rcu(map, rcu);
2075 		}
2076 
2077 		kfree_rcu(dev_maps, rcu);
2078 	}
2079 
2080 	dev_maps = new_dev_maps;
2081 	active = true;
2082 
2083 out_no_new_maps:
2084 	/* update Tx queue numa node */
2085 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2086 				     (numa_node_id >= 0) ? numa_node_id :
2087 				     NUMA_NO_NODE);
2088 
2089 	if (!dev_maps)
2090 		goto out_no_maps;
2091 
2092 	/* removes queue from unused CPUs */
2093 	for_each_possible_cpu(cpu) {
2094 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2095 			continue;
2096 
2097 		if (remove_xps_queue(dev_maps, cpu, index))
2098 			active = true;
2099 	}
2100 
2101 	/* free map if not active */
2102 	if (!active) {
2103 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2104 		kfree_rcu(dev_maps, rcu);
2105 	}
2106 
2107 out_no_maps:
2108 	mutex_unlock(&xps_map_mutex);
2109 
2110 	return 0;
2111 error:
2112 	/* remove any maps that we added */
2113 	for_each_possible_cpu(cpu) {
2114 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2115 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2116 				 NULL;
2117 		if (new_map && new_map != map)
2118 			kfree(new_map);
2119 	}
2120 
2121 	mutex_unlock(&xps_map_mutex);
2122 
2123 	kfree(new_dev_maps);
2124 	return -ENOMEM;
2125 }
2126 EXPORT_SYMBOL(netif_set_xps_queue);
2127 
2128 #endif
2129 /*
2130  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2131  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2132  */
2133 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2134 {
2135 	int rc;
2136 
2137 	if (txq < 1 || txq > dev->num_tx_queues)
2138 		return -EINVAL;
2139 
2140 	if (dev->reg_state == NETREG_REGISTERED ||
2141 	    dev->reg_state == NETREG_UNREGISTERING) {
2142 		ASSERT_RTNL();
2143 
2144 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2145 						  txq);
2146 		if (rc)
2147 			return rc;
2148 
2149 		if (dev->num_tc)
2150 			netif_setup_tc(dev, txq);
2151 
2152 		if (txq < dev->real_num_tx_queues) {
2153 			qdisc_reset_all_tx_gt(dev, txq);
2154 #ifdef CONFIG_XPS
2155 			netif_reset_xps_queues_gt(dev, txq);
2156 #endif
2157 		}
2158 	}
2159 
2160 	dev->real_num_tx_queues = txq;
2161 	return 0;
2162 }
2163 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2164 
2165 #ifdef CONFIG_SYSFS
2166 /**
2167  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2168  *	@dev: Network device
2169  *	@rxq: Actual number of RX queues
2170  *
2171  *	This must be called either with the rtnl_lock held or before
2172  *	registration of the net device.  Returns 0 on success, or a
2173  *	negative error code.  If called before registration, it always
2174  *	succeeds.
2175  */
2176 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2177 {
2178 	int rc;
2179 
2180 	if (rxq < 1 || rxq > dev->num_rx_queues)
2181 		return -EINVAL;
2182 
2183 	if (dev->reg_state == NETREG_REGISTERED) {
2184 		ASSERT_RTNL();
2185 
2186 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2187 						  rxq);
2188 		if (rc)
2189 			return rc;
2190 	}
2191 
2192 	dev->real_num_rx_queues = rxq;
2193 	return 0;
2194 }
2195 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2196 #endif
2197 
2198 /**
2199  * netif_get_num_default_rss_queues - default number of RSS queues
2200  *
2201  * This routine should set an upper limit on the number of RSS queues
2202  * used by default by multiqueue devices.
2203  */
2204 int netif_get_num_default_rss_queues(void)
2205 {
2206 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2207 }
2208 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2209 
2210 static inline void __netif_reschedule(struct Qdisc *q)
2211 {
2212 	struct softnet_data *sd;
2213 	unsigned long flags;
2214 
2215 	local_irq_save(flags);
2216 	sd = this_cpu_ptr(&softnet_data);
2217 	q->next_sched = NULL;
2218 	*sd->output_queue_tailp = q;
2219 	sd->output_queue_tailp = &q->next_sched;
2220 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2221 	local_irq_restore(flags);
2222 }
2223 
2224 void __netif_schedule(struct Qdisc *q)
2225 {
2226 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2227 		__netif_reschedule(q);
2228 }
2229 EXPORT_SYMBOL(__netif_schedule);
2230 
2231 struct dev_kfree_skb_cb {
2232 	enum skb_free_reason reason;
2233 };
2234 
2235 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2236 {
2237 	return (struct dev_kfree_skb_cb *)skb->cb;
2238 }
2239 
2240 void netif_schedule_queue(struct netdev_queue *txq)
2241 {
2242 	rcu_read_lock();
2243 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2244 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2245 
2246 		__netif_schedule(q);
2247 	}
2248 	rcu_read_unlock();
2249 }
2250 EXPORT_SYMBOL(netif_schedule_queue);
2251 
2252 /**
2253  *	netif_wake_subqueue - allow sending packets on subqueue
2254  *	@dev: network device
2255  *	@queue_index: sub queue index
2256  *
2257  * Resume individual transmit queue of a device with multiple transmit queues.
2258  */
2259 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2260 {
2261 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2262 
2263 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2264 		struct Qdisc *q;
2265 
2266 		rcu_read_lock();
2267 		q = rcu_dereference(txq->qdisc);
2268 		__netif_schedule(q);
2269 		rcu_read_unlock();
2270 	}
2271 }
2272 EXPORT_SYMBOL(netif_wake_subqueue);
2273 
2274 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2275 {
2276 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2277 		struct Qdisc *q;
2278 
2279 		rcu_read_lock();
2280 		q = rcu_dereference(dev_queue->qdisc);
2281 		__netif_schedule(q);
2282 		rcu_read_unlock();
2283 	}
2284 }
2285 EXPORT_SYMBOL(netif_tx_wake_queue);
2286 
2287 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2288 {
2289 	unsigned long flags;
2290 
2291 	if (likely(atomic_read(&skb->users) == 1)) {
2292 		smp_rmb();
2293 		atomic_set(&skb->users, 0);
2294 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2295 		return;
2296 	}
2297 	get_kfree_skb_cb(skb)->reason = reason;
2298 	local_irq_save(flags);
2299 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2300 	__this_cpu_write(softnet_data.completion_queue, skb);
2301 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2302 	local_irq_restore(flags);
2303 }
2304 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2305 
2306 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2307 {
2308 	if (in_irq() || irqs_disabled())
2309 		__dev_kfree_skb_irq(skb, reason);
2310 	else
2311 		dev_kfree_skb(skb);
2312 }
2313 EXPORT_SYMBOL(__dev_kfree_skb_any);
2314 
2315 
2316 /**
2317  * netif_device_detach - mark device as removed
2318  * @dev: network device
2319  *
2320  * Mark device as removed from system and therefore no longer available.
2321  */
2322 void netif_device_detach(struct net_device *dev)
2323 {
2324 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2325 	    netif_running(dev)) {
2326 		netif_tx_stop_all_queues(dev);
2327 	}
2328 }
2329 EXPORT_SYMBOL(netif_device_detach);
2330 
2331 /**
2332  * netif_device_attach - mark device as attached
2333  * @dev: network device
2334  *
2335  * Mark device as attached from system and restart if needed.
2336  */
2337 void netif_device_attach(struct net_device *dev)
2338 {
2339 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2340 	    netif_running(dev)) {
2341 		netif_tx_wake_all_queues(dev);
2342 		__netdev_watchdog_up(dev);
2343 	}
2344 }
2345 EXPORT_SYMBOL(netif_device_attach);
2346 
2347 /*
2348  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2349  * to be used as a distribution range.
2350  */
2351 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2352 		  unsigned int num_tx_queues)
2353 {
2354 	u32 hash;
2355 	u16 qoffset = 0;
2356 	u16 qcount = num_tx_queues;
2357 
2358 	if (skb_rx_queue_recorded(skb)) {
2359 		hash = skb_get_rx_queue(skb);
2360 		while (unlikely(hash >= num_tx_queues))
2361 			hash -= num_tx_queues;
2362 		return hash;
2363 	}
2364 
2365 	if (dev->num_tc) {
2366 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2367 		qoffset = dev->tc_to_txq[tc].offset;
2368 		qcount = dev->tc_to_txq[tc].count;
2369 	}
2370 
2371 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2372 }
2373 EXPORT_SYMBOL(__skb_tx_hash);
2374 
2375 static void skb_warn_bad_offload(const struct sk_buff *skb)
2376 {
2377 	static const netdev_features_t null_features = 0;
2378 	struct net_device *dev = skb->dev;
2379 	const char *driver = "";
2380 
2381 	if (!net_ratelimit())
2382 		return;
2383 
2384 	if (dev && dev->dev.parent)
2385 		driver = dev_driver_string(dev->dev.parent);
2386 
2387 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2388 	     "gso_type=%d ip_summed=%d\n",
2389 	     driver, dev ? &dev->features : &null_features,
2390 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2391 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2392 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2393 }
2394 
2395 /*
2396  * Invalidate hardware checksum when packet is to be mangled, and
2397  * complete checksum manually on outgoing path.
2398  */
2399 int skb_checksum_help(struct sk_buff *skb)
2400 {
2401 	__wsum csum;
2402 	int ret = 0, offset;
2403 
2404 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2405 		goto out_set_summed;
2406 
2407 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2408 		skb_warn_bad_offload(skb);
2409 		return -EINVAL;
2410 	}
2411 
2412 	/* Before computing a checksum, we should make sure no frag could
2413 	 * be modified by an external entity : checksum could be wrong.
2414 	 */
2415 	if (skb_has_shared_frag(skb)) {
2416 		ret = __skb_linearize(skb);
2417 		if (ret)
2418 			goto out;
2419 	}
2420 
2421 	offset = skb_checksum_start_offset(skb);
2422 	BUG_ON(offset >= skb_headlen(skb));
2423 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2424 
2425 	offset += skb->csum_offset;
2426 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2427 
2428 	if (skb_cloned(skb) &&
2429 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2430 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2431 		if (ret)
2432 			goto out;
2433 	}
2434 
2435 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2436 out_set_summed:
2437 	skb->ip_summed = CHECKSUM_NONE;
2438 out:
2439 	return ret;
2440 }
2441 EXPORT_SYMBOL(skb_checksum_help);
2442 
2443 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2444 {
2445 	__be16 type = skb->protocol;
2446 
2447 	/* Tunnel gso handlers can set protocol to ethernet. */
2448 	if (type == htons(ETH_P_TEB)) {
2449 		struct ethhdr *eth;
2450 
2451 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2452 			return 0;
2453 
2454 		eth = (struct ethhdr *)skb_mac_header(skb);
2455 		type = eth->h_proto;
2456 	}
2457 
2458 	return __vlan_get_protocol(skb, type, depth);
2459 }
2460 
2461 /**
2462  *	skb_mac_gso_segment - mac layer segmentation handler.
2463  *	@skb: buffer to segment
2464  *	@features: features for the output path (see dev->features)
2465  */
2466 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2467 				    netdev_features_t features)
2468 {
2469 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2470 	struct packet_offload *ptype;
2471 	int vlan_depth = skb->mac_len;
2472 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2473 
2474 	if (unlikely(!type))
2475 		return ERR_PTR(-EINVAL);
2476 
2477 	__skb_pull(skb, vlan_depth);
2478 
2479 	rcu_read_lock();
2480 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2481 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2482 			segs = ptype->callbacks.gso_segment(skb, features);
2483 			break;
2484 		}
2485 	}
2486 	rcu_read_unlock();
2487 
2488 	__skb_push(skb, skb->data - skb_mac_header(skb));
2489 
2490 	return segs;
2491 }
2492 EXPORT_SYMBOL(skb_mac_gso_segment);
2493 
2494 
2495 /* openvswitch calls this on rx path, so we need a different check.
2496  */
2497 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2498 {
2499 	if (tx_path)
2500 		return skb->ip_summed != CHECKSUM_PARTIAL;
2501 	else
2502 		return skb->ip_summed == CHECKSUM_NONE;
2503 }
2504 
2505 /**
2506  *	__skb_gso_segment - Perform segmentation on skb.
2507  *	@skb: buffer to segment
2508  *	@features: features for the output path (see dev->features)
2509  *	@tx_path: whether it is called in TX path
2510  *
2511  *	This function segments the given skb and returns a list of segments.
2512  *
2513  *	It may return NULL if the skb requires no segmentation.  This is
2514  *	only possible when GSO is used for verifying header integrity.
2515  */
2516 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2517 				  netdev_features_t features, bool tx_path)
2518 {
2519 	if (unlikely(skb_needs_check(skb, tx_path))) {
2520 		int err;
2521 
2522 		skb_warn_bad_offload(skb);
2523 
2524 		err = skb_cow_head(skb, 0);
2525 		if (err < 0)
2526 			return ERR_PTR(err);
2527 	}
2528 
2529 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2530 	SKB_GSO_CB(skb)->encap_level = 0;
2531 
2532 	skb_reset_mac_header(skb);
2533 	skb_reset_mac_len(skb);
2534 
2535 	return skb_mac_gso_segment(skb, features);
2536 }
2537 EXPORT_SYMBOL(__skb_gso_segment);
2538 
2539 /* Take action when hardware reception checksum errors are detected. */
2540 #ifdef CONFIG_BUG
2541 void netdev_rx_csum_fault(struct net_device *dev)
2542 {
2543 	if (net_ratelimit()) {
2544 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2545 		dump_stack();
2546 	}
2547 }
2548 EXPORT_SYMBOL(netdev_rx_csum_fault);
2549 #endif
2550 
2551 /* Actually, we should eliminate this check as soon as we know, that:
2552  * 1. IOMMU is present and allows to map all the memory.
2553  * 2. No high memory really exists on this machine.
2554  */
2555 
2556 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2557 {
2558 #ifdef CONFIG_HIGHMEM
2559 	int i;
2560 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2561 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2562 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2563 			if (PageHighMem(skb_frag_page(frag)))
2564 				return 1;
2565 		}
2566 	}
2567 
2568 	if (PCI_DMA_BUS_IS_PHYS) {
2569 		struct device *pdev = dev->dev.parent;
2570 
2571 		if (!pdev)
2572 			return 0;
2573 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2574 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2575 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2576 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2577 				return 1;
2578 		}
2579 	}
2580 #endif
2581 	return 0;
2582 }
2583 
2584 /* If MPLS offload request, verify we are testing hardware MPLS features
2585  * instead of standard features for the netdev.
2586  */
2587 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2588 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2589 					   netdev_features_t features,
2590 					   __be16 type)
2591 {
2592 	if (eth_p_mpls(type))
2593 		features &= skb->dev->mpls_features;
2594 
2595 	return features;
2596 }
2597 #else
2598 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2599 					   netdev_features_t features,
2600 					   __be16 type)
2601 {
2602 	return features;
2603 }
2604 #endif
2605 
2606 static netdev_features_t harmonize_features(struct sk_buff *skb,
2607 	netdev_features_t features)
2608 {
2609 	int tmp;
2610 	__be16 type;
2611 
2612 	type = skb_network_protocol(skb, &tmp);
2613 	features = net_mpls_features(skb, features, type);
2614 
2615 	if (skb->ip_summed != CHECKSUM_NONE &&
2616 	    !can_checksum_protocol(features, type)) {
2617 		features &= ~NETIF_F_ALL_CSUM;
2618 	} else if (illegal_highdma(skb->dev, skb)) {
2619 		features &= ~NETIF_F_SG;
2620 	}
2621 
2622 	return features;
2623 }
2624 
2625 netdev_features_t passthru_features_check(struct sk_buff *skb,
2626 					  struct net_device *dev,
2627 					  netdev_features_t features)
2628 {
2629 	return features;
2630 }
2631 EXPORT_SYMBOL(passthru_features_check);
2632 
2633 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2634 					     struct net_device *dev,
2635 					     netdev_features_t features)
2636 {
2637 	return vlan_features_check(skb, features);
2638 }
2639 
2640 netdev_features_t netif_skb_features(struct sk_buff *skb)
2641 {
2642 	struct net_device *dev = skb->dev;
2643 	netdev_features_t features = dev->features;
2644 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2645 
2646 	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2647 		features &= ~NETIF_F_GSO_MASK;
2648 
2649 	/* If encapsulation offload request, verify we are testing
2650 	 * hardware encapsulation features instead of standard
2651 	 * features for the netdev
2652 	 */
2653 	if (skb->encapsulation)
2654 		features &= dev->hw_enc_features;
2655 
2656 	if (skb_vlan_tagged(skb))
2657 		features = netdev_intersect_features(features,
2658 						     dev->vlan_features |
2659 						     NETIF_F_HW_VLAN_CTAG_TX |
2660 						     NETIF_F_HW_VLAN_STAG_TX);
2661 
2662 	if (dev->netdev_ops->ndo_features_check)
2663 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2664 								features);
2665 	else
2666 		features &= dflt_features_check(skb, dev, features);
2667 
2668 	return harmonize_features(skb, features);
2669 }
2670 EXPORT_SYMBOL(netif_skb_features);
2671 
2672 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2673 		    struct netdev_queue *txq, bool more)
2674 {
2675 	unsigned int len;
2676 	int rc;
2677 
2678 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2679 		dev_queue_xmit_nit(skb, dev);
2680 
2681 	len = skb->len;
2682 	trace_net_dev_start_xmit(skb, dev);
2683 	rc = netdev_start_xmit(skb, dev, txq, more);
2684 	trace_net_dev_xmit(skb, rc, dev, len);
2685 
2686 	return rc;
2687 }
2688 
2689 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2690 				    struct netdev_queue *txq, int *ret)
2691 {
2692 	struct sk_buff *skb = first;
2693 	int rc = NETDEV_TX_OK;
2694 
2695 	while (skb) {
2696 		struct sk_buff *next = skb->next;
2697 
2698 		skb->next = NULL;
2699 		rc = xmit_one(skb, dev, txq, next != NULL);
2700 		if (unlikely(!dev_xmit_complete(rc))) {
2701 			skb->next = next;
2702 			goto out;
2703 		}
2704 
2705 		skb = next;
2706 		if (netif_xmit_stopped(txq) && skb) {
2707 			rc = NETDEV_TX_BUSY;
2708 			break;
2709 		}
2710 	}
2711 
2712 out:
2713 	*ret = rc;
2714 	return skb;
2715 }
2716 
2717 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2718 					  netdev_features_t features)
2719 {
2720 	if (skb_vlan_tag_present(skb) &&
2721 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2722 		skb = __vlan_hwaccel_push_inside(skb);
2723 	return skb;
2724 }
2725 
2726 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2727 {
2728 	netdev_features_t features;
2729 
2730 	if (skb->next)
2731 		return skb;
2732 
2733 	features = netif_skb_features(skb);
2734 	skb = validate_xmit_vlan(skb, features);
2735 	if (unlikely(!skb))
2736 		goto out_null;
2737 
2738 	if (netif_needs_gso(skb, features)) {
2739 		struct sk_buff *segs;
2740 
2741 		segs = skb_gso_segment(skb, features);
2742 		if (IS_ERR(segs)) {
2743 			goto out_kfree_skb;
2744 		} else if (segs) {
2745 			consume_skb(skb);
2746 			skb = segs;
2747 		}
2748 	} else {
2749 		if (skb_needs_linearize(skb, features) &&
2750 		    __skb_linearize(skb))
2751 			goto out_kfree_skb;
2752 
2753 		/* If packet is not checksummed and device does not
2754 		 * support checksumming for this protocol, complete
2755 		 * checksumming here.
2756 		 */
2757 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2758 			if (skb->encapsulation)
2759 				skb_set_inner_transport_header(skb,
2760 							       skb_checksum_start_offset(skb));
2761 			else
2762 				skb_set_transport_header(skb,
2763 							 skb_checksum_start_offset(skb));
2764 			if (!(features & NETIF_F_ALL_CSUM) &&
2765 			    skb_checksum_help(skb))
2766 				goto out_kfree_skb;
2767 		}
2768 	}
2769 
2770 	return skb;
2771 
2772 out_kfree_skb:
2773 	kfree_skb(skb);
2774 out_null:
2775 	return NULL;
2776 }
2777 
2778 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2779 {
2780 	struct sk_buff *next, *head = NULL, *tail;
2781 
2782 	for (; skb != NULL; skb = next) {
2783 		next = skb->next;
2784 		skb->next = NULL;
2785 
2786 		/* in case skb wont be segmented, point to itself */
2787 		skb->prev = skb;
2788 
2789 		skb = validate_xmit_skb(skb, dev);
2790 		if (!skb)
2791 			continue;
2792 
2793 		if (!head)
2794 			head = skb;
2795 		else
2796 			tail->next = skb;
2797 		/* If skb was segmented, skb->prev points to
2798 		 * the last segment. If not, it still contains skb.
2799 		 */
2800 		tail = skb->prev;
2801 	}
2802 	return head;
2803 }
2804 
2805 static void qdisc_pkt_len_init(struct sk_buff *skb)
2806 {
2807 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2808 
2809 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2810 
2811 	/* To get more precise estimation of bytes sent on wire,
2812 	 * we add to pkt_len the headers size of all segments
2813 	 */
2814 	if (shinfo->gso_size)  {
2815 		unsigned int hdr_len;
2816 		u16 gso_segs = shinfo->gso_segs;
2817 
2818 		/* mac layer + network layer */
2819 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2820 
2821 		/* + transport layer */
2822 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2823 			hdr_len += tcp_hdrlen(skb);
2824 		else
2825 			hdr_len += sizeof(struct udphdr);
2826 
2827 		if (shinfo->gso_type & SKB_GSO_DODGY)
2828 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2829 						shinfo->gso_size);
2830 
2831 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2832 	}
2833 }
2834 
2835 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2836 				 struct net_device *dev,
2837 				 struct netdev_queue *txq)
2838 {
2839 	spinlock_t *root_lock = qdisc_lock(q);
2840 	bool contended;
2841 	int rc;
2842 
2843 	qdisc_pkt_len_init(skb);
2844 	qdisc_calculate_pkt_len(skb, q);
2845 	/*
2846 	 * Heuristic to force contended enqueues to serialize on a
2847 	 * separate lock before trying to get qdisc main lock.
2848 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2849 	 * often and dequeue packets faster.
2850 	 */
2851 	contended = qdisc_is_running(q);
2852 	if (unlikely(contended))
2853 		spin_lock(&q->busylock);
2854 
2855 	spin_lock(root_lock);
2856 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2857 		kfree_skb(skb);
2858 		rc = NET_XMIT_DROP;
2859 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2860 		   qdisc_run_begin(q)) {
2861 		/*
2862 		 * This is a work-conserving queue; there are no old skbs
2863 		 * waiting to be sent out; and the qdisc is not running -
2864 		 * xmit the skb directly.
2865 		 */
2866 
2867 		qdisc_bstats_update(q, skb);
2868 
2869 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2870 			if (unlikely(contended)) {
2871 				spin_unlock(&q->busylock);
2872 				contended = false;
2873 			}
2874 			__qdisc_run(q);
2875 		} else
2876 			qdisc_run_end(q);
2877 
2878 		rc = NET_XMIT_SUCCESS;
2879 	} else {
2880 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2881 		if (qdisc_run_begin(q)) {
2882 			if (unlikely(contended)) {
2883 				spin_unlock(&q->busylock);
2884 				contended = false;
2885 			}
2886 			__qdisc_run(q);
2887 		}
2888 	}
2889 	spin_unlock(root_lock);
2890 	if (unlikely(contended))
2891 		spin_unlock(&q->busylock);
2892 	return rc;
2893 }
2894 
2895 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2896 static void skb_update_prio(struct sk_buff *skb)
2897 {
2898 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2899 
2900 	if (!skb->priority && skb->sk && map) {
2901 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2902 
2903 		if (prioidx < map->priomap_len)
2904 			skb->priority = map->priomap[prioidx];
2905 	}
2906 }
2907 #else
2908 #define skb_update_prio(skb)
2909 #endif
2910 
2911 DEFINE_PER_CPU(int, xmit_recursion);
2912 EXPORT_SYMBOL(xmit_recursion);
2913 
2914 #define RECURSION_LIMIT 10
2915 
2916 /**
2917  *	dev_loopback_xmit - loop back @skb
2918  *	@skb: buffer to transmit
2919  */
2920 int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
2921 {
2922 	skb_reset_mac_header(skb);
2923 	__skb_pull(skb, skb_network_offset(skb));
2924 	skb->pkt_type = PACKET_LOOPBACK;
2925 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2926 	WARN_ON(!skb_dst(skb));
2927 	skb_dst_force(skb);
2928 	netif_rx_ni(skb);
2929 	return 0;
2930 }
2931 EXPORT_SYMBOL(dev_loopback_xmit);
2932 
2933 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2934 {
2935 #ifdef CONFIG_XPS
2936 	struct xps_dev_maps *dev_maps;
2937 	struct xps_map *map;
2938 	int queue_index = -1;
2939 
2940 	rcu_read_lock();
2941 	dev_maps = rcu_dereference(dev->xps_maps);
2942 	if (dev_maps) {
2943 		map = rcu_dereference(
2944 		    dev_maps->cpu_map[skb->sender_cpu - 1]);
2945 		if (map) {
2946 			if (map->len == 1)
2947 				queue_index = map->queues[0];
2948 			else
2949 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2950 									   map->len)];
2951 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2952 				queue_index = -1;
2953 		}
2954 	}
2955 	rcu_read_unlock();
2956 
2957 	return queue_index;
2958 #else
2959 	return -1;
2960 #endif
2961 }
2962 
2963 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2964 {
2965 	struct sock *sk = skb->sk;
2966 	int queue_index = sk_tx_queue_get(sk);
2967 
2968 	if (queue_index < 0 || skb->ooo_okay ||
2969 	    queue_index >= dev->real_num_tx_queues) {
2970 		int new_index = get_xps_queue(dev, skb);
2971 		if (new_index < 0)
2972 			new_index = skb_tx_hash(dev, skb);
2973 
2974 		if (queue_index != new_index && sk &&
2975 		    rcu_access_pointer(sk->sk_dst_cache))
2976 			sk_tx_queue_set(sk, new_index);
2977 
2978 		queue_index = new_index;
2979 	}
2980 
2981 	return queue_index;
2982 }
2983 
2984 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2985 				    struct sk_buff *skb,
2986 				    void *accel_priv)
2987 {
2988 	int queue_index = 0;
2989 
2990 #ifdef CONFIG_XPS
2991 	if (skb->sender_cpu == 0)
2992 		skb->sender_cpu = raw_smp_processor_id() + 1;
2993 #endif
2994 
2995 	if (dev->real_num_tx_queues != 1) {
2996 		const struct net_device_ops *ops = dev->netdev_ops;
2997 		if (ops->ndo_select_queue)
2998 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
2999 							    __netdev_pick_tx);
3000 		else
3001 			queue_index = __netdev_pick_tx(dev, skb);
3002 
3003 		if (!accel_priv)
3004 			queue_index = netdev_cap_txqueue(dev, queue_index);
3005 	}
3006 
3007 	skb_set_queue_mapping(skb, queue_index);
3008 	return netdev_get_tx_queue(dev, queue_index);
3009 }
3010 
3011 /**
3012  *	__dev_queue_xmit - transmit a buffer
3013  *	@skb: buffer to transmit
3014  *	@accel_priv: private data used for L2 forwarding offload
3015  *
3016  *	Queue a buffer for transmission to a network device. The caller must
3017  *	have set the device and priority and built the buffer before calling
3018  *	this function. The function can be called from an interrupt.
3019  *
3020  *	A negative errno code is returned on a failure. A success does not
3021  *	guarantee the frame will be transmitted as it may be dropped due
3022  *	to congestion or traffic shaping.
3023  *
3024  * -----------------------------------------------------------------------------------
3025  *      I notice this method can also return errors from the queue disciplines,
3026  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3027  *      be positive.
3028  *
3029  *      Regardless of the return value, the skb is consumed, so it is currently
3030  *      difficult to retry a send to this method.  (You can bump the ref count
3031  *      before sending to hold a reference for retry if you are careful.)
3032  *
3033  *      When calling this method, interrupts MUST be enabled.  This is because
3034  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3035  *          --BLG
3036  */
3037 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3038 {
3039 	struct net_device *dev = skb->dev;
3040 	struct netdev_queue *txq;
3041 	struct Qdisc *q;
3042 	int rc = -ENOMEM;
3043 
3044 	skb_reset_mac_header(skb);
3045 
3046 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3047 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3048 
3049 	/* Disable soft irqs for various locks below. Also
3050 	 * stops preemption for RCU.
3051 	 */
3052 	rcu_read_lock_bh();
3053 
3054 	skb_update_prio(skb);
3055 
3056 	/* If device/qdisc don't need skb->dst, release it right now while
3057 	 * its hot in this cpu cache.
3058 	 */
3059 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3060 		skb_dst_drop(skb);
3061 	else
3062 		skb_dst_force(skb);
3063 
3064 	txq = netdev_pick_tx(dev, skb, accel_priv);
3065 	q = rcu_dereference_bh(txq->qdisc);
3066 
3067 #ifdef CONFIG_NET_CLS_ACT
3068 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3069 #endif
3070 	trace_net_dev_queue(skb);
3071 	if (q->enqueue) {
3072 		rc = __dev_xmit_skb(skb, q, dev, txq);
3073 		goto out;
3074 	}
3075 
3076 	/* The device has no queue. Common case for software devices:
3077 	   loopback, all the sorts of tunnels...
3078 
3079 	   Really, it is unlikely that netif_tx_lock protection is necessary
3080 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3081 	   counters.)
3082 	   However, it is possible, that they rely on protection
3083 	   made by us here.
3084 
3085 	   Check this and shot the lock. It is not prone from deadlocks.
3086 	   Either shot noqueue qdisc, it is even simpler 8)
3087 	 */
3088 	if (dev->flags & IFF_UP) {
3089 		int cpu = smp_processor_id(); /* ok because BHs are off */
3090 
3091 		if (txq->xmit_lock_owner != cpu) {
3092 
3093 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3094 				goto recursion_alert;
3095 
3096 			skb = validate_xmit_skb(skb, dev);
3097 			if (!skb)
3098 				goto drop;
3099 
3100 			HARD_TX_LOCK(dev, txq, cpu);
3101 
3102 			if (!netif_xmit_stopped(txq)) {
3103 				__this_cpu_inc(xmit_recursion);
3104 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3105 				__this_cpu_dec(xmit_recursion);
3106 				if (dev_xmit_complete(rc)) {
3107 					HARD_TX_UNLOCK(dev, txq);
3108 					goto out;
3109 				}
3110 			}
3111 			HARD_TX_UNLOCK(dev, txq);
3112 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3113 					     dev->name);
3114 		} else {
3115 			/* Recursion is detected! It is possible,
3116 			 * unfortunately
3117 			 */
3118 recursion_alert:
3119 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3120 					     dev->name);
3121 		}
3122 	}
3123 
3124 	rc = -ENETDOWN;
3125 drop:
3126 	rcu_read_unlock_bh();
3127 
3128 	atomic_long_inc(&dev->tx_dropped);
3129 	kfree_skb_list(skb);
3130 	return rc;
3131 out:
3132 	rcu_read_unlock_bh();
3133 	return rc;
3134 }
3135 
3136 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
3137 {
3138 	return __dev_queue_xmit(skb, NULL);
3139 }
3140 EXPORT_SYMBOL(dev_queue_xmit_sk);
3141 
3142 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3143 {
3144 	return __dev_queue_xmit(skb, accel_priv);
3145 }
3146 EXPORT_SYMBOL(dev_queue_xmit_accel);
3147 
3148 
3149 /*=======================================================================
3150 			Receiver routines
3151   =======================================================================*/
3152 
3153 int netdev_max_backlog __read_mostly = 1000;
3154 EXPORT_SYMBOL(netdev_max_backlog);
3155 
3156 int netdev_tstamp_prequeue __read_mostly = 1;
3157 int netdev_budget __read_mostly = 300;
3158 int weight_p __read_mostly = 64;            /* old backlog weight */
3159 
3160 /* Called with irq disabled */
3161 static inline void ____napi_schedule(struct softnet_data *sd,
3162 				     struct napi_struct *napi)
3163 {
3164 	list_add_tail(&napi->poll_list, &sd->poll_list);
3165 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3166 }
3167 
3168 #ifdef CONFIG_RPS
3169 
3170 /* One global table that all flow-based protocols share. */
3171 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3172 EXPORT_SYMBOL(rps_sock_flow_table);
3173 u32 rps_cpu_mask __read_mostly;
3174 EXPORT_SYMBOL(rps_cpu_mask);
3175 
3176 struct static_key rps_needed __read_mostly;
3177 
3178 static struct rps_dev_flow *
3179 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3180 	    struct rps_dev_flow *rflow, u16 next_cpu)
3181 {
3182 	if (next_cpu < nr_cpu_ids) {
3183 #ifdef CONFIG_RFS_ACCEL
3184 		struct netdev_rx_queue *rxqueue;
3185 		struct rps_dev_flow_table *flow_table;
3186 		struct rps_dev_flow *old_rflow;
3187 		u32 flow_id;
3188 		u16 rxq_index;
3189 		int rc;
3190 
3191 		/* Should we steer this flow to a different hardware queue? */
3192 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3193 		    !(dev->features & NETIF_F_NTUPLE))
3194 			goto out;
3195 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3196 		if (rxq_index == skb_get_rx_queue(skb))
3197 			goto out;
3198 
3199 		rxqueue = dev->_rx + rxq_index;
3200 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3201 		if (!flow_table)
3202 			goto out;
3203 		flow_id = skb_get_hash(skb) & flow_table->mask;
3204 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3205 							rxq_index, flow_id);
3206 		if (rc < 0)
3207 			goto out;
3208 		old_rflow = rflow;
3209 		rflow = &flow_table->flows[flow_id];
3210 		rflow->filter = rc;
3211 		if (old_rflow->filter == rflow->filter)
3212 			old_rflow->filter = RPS_NO_FILTER;
3213 	out:
3214 #endif
3215 		rflow->last_qtail =
3216 			per_cpu(softnet_data, next_cpu).input_queue_head;
3217 	}
3218 
3219 	rflow->cpu = next_cpu;
3220 	return rflow;
3221 }
3222 
3223 /*
3224  * get_rps_cpu is called from netif_receive_skb and returns the target
3225  * CPU from the RPS map of the receiving queue for a given skb.
3226  * rcu_read_lock must be held on entry.
3227  */
3228 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3229 		       struct rps_dev_flow **rflowp)
3230 {
3231 	const struct rps_sock_flow_table *sock_flow_table;
3232 	struct netdev_rx_queue *rxqueue = dev->_rx;
3233 	struct rps_dev_flow_table *flow_table;
3234 	struct rps_map *map;
3235 	int cpu = -1;
3236 	u32 tcpu;
3237 	u32 hash;
3238 
3239 	if (skb_rx_queue_recorded(skb)) {
3240 		u16 index = skb_get_rx_queue(skb);
3241 
3242 		if (unlikely(index >= dev->real_num_rx_queues)) {
3243 			WARN_ONCE(dev->real_num_rx_queues > 1,
3244 				  "%s received packet on queue %u, but number "
3245 				  "of RX queues is %u\n",
3246 				  dev->name, index, dev->real_num_rx_queues);
3247 			goto done;
3248 		}
3249 		rxqueue += index;
3250 	}
3251 
3252 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3253 
3254 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3255 	map = rcu_dereference(rxqueue->rps_map);
3256 	if (!flow_table && !map)
3257 		goto done;
3258 
3259 	skb_reset_network_header(skb);
3260 	hash = skb_get_hash(skb);
3261 	if (!hash)
3262 		goto done;
3263 
3264 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3265 	if (flow_table && sock_flow_table) {
3266 		struct rps_dev_flow *rflow;
3267 		u32 next_cpu;
3268 		u32 ident;
3269 
3270 		/* First check into global flow table if there is a match */
3271 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3272 		if ((ident ^ hash) & ~rps_cpu_mask)
3273 			goto try_rps;
3274 
3275 		next_cpu = ident & rps_cpu_mask;
3276 
3277 		/* OK, now we know there is a match,
3278 		 * we can look at the local (per receive queue) flow table
3279 		 */
3280 		rflow = &flow_table->flows[hash & flow_table->mask];
3281 		tcpu = rflow->cpu;
3282 
3283 		/*
3284 		 * If the desired CPU (where last recvmsg was done) is
3285 		 * different from current CPU (one in the rx-queue flow
3286 		 * table entry), switch if one of the following holds:
3287 		 *   - Current CPU is unset (>= nr_cpu_ids).
3288 		 *   - Current CPU is offline.
3289 		 *   - The current CPU's queue tail has advanced beyond the
3290 		 *     last packet that was enqueued using this table entry.
3291 		 *     This guarantees that all previous packets for the flow
3292 		 *     have been dequeued, thus preserving in order delivery.
3293 		 */
3294 		if (unlikely(tcpu != next_cpu) &&
3295 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3296 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3297 		      rflow->last_qtail)) >= 0)) {
3298 			tcpu = next_cpu;
3299 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3300 		}
3301 
3302 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3303 			*rflowp = rflow;
3304 			cpu = tcpu;
3305 			goto done;
3306 		}
3307 	}
3308 
3309 try_rps:
3310 
3311 	if (map) {
3312 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3313 		if (cpu_online(tcpu)) {
3314 			cpu = tcpu;
3315 			goto done;
3316 		}
3317 	}
3318 
3319 done:
3320 	return cpu;
3321 }
3322 
3323 #ifdef CONFIG_RFS_ACCEL
3324 
3325 /**
3326  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3327  * @dev: Device on which the filter was set
3328  * @rxq_index: RX queue index
3329  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3330  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3331  *
3332  * Drivers that implement ndo_rx_flow_steer() should periodically call
3333  * this function for each installed filter and remove the filters for
3334  * which it returns %true.
3335  */
3336 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3337 			 u32 flow_id, u16 filter_id)
3338 {
3339 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3340 	struct rps_dev_flow_table *flow_table;
3341 	struct rps_dev_flow *rflow;
3342 	bool expire = true;
3343 	unsigned int cpu;
3344 
3345 	rcu_read_lock();
3346 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3347 	if (flow_table && flow_id <= flow_table->mask) {
3348 		rflow = &flow_table->flows[flow_id];
3349 		cpu = ACCESS_ONCE(rflow->cpu);
3350 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3351 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3352 			   rflow->last_qtail) <
3353 		     (int)(10 * flow_table->mask)))
3354 			expire = false;
3355 	}
3356 	rcu_read_unlock();
3357 	return expire;
3358 }
3359 EXPORT_SYMBOL(rps_may_expire_flow);
3360 
3361 #endif /* CONFIG_RFS_ACCEL */
3362 
3363 /* Called from hardirq (IPI) context */
3364 static void rps_trigger_softirq(void *data)
3365 {
3366 	struct softnet_data *sd = data;
3367 
3368 	____napi_schedule(sd, &sd->backlog);
3369 	sd->received_rps++;
3370 }
3371 
3372 #endif /* CONFIG_RPS */
3373 
3374 /*
3375  * Check if this softnet_data structure is another cpu one
3376  * If yes, queue it to our IPI list and return 1
3377  * If no, return 0
3378  */
3379 static int rps_ipi_queued(struct softnet_data *sd)
3380 {
3381 #ifdef CONFIG_RPS
3382 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3383 
3384 	if (sd != mysd) {
3385 		sd->rps_ipi_next = mysd->rps_ipi_list;
3386 		mysd->rps_ipi_list = sd;
3387 
3388 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3389 		return 1;
3390 	}
3391 #endif /* CONFIG_RPS */
3392 	return 0;
3393 }
3394 
3395 #ifdef CONFIG_NET_FLOW_LIMIT
3396 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3397 #endif
3398 
3399 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3400 {
3401 #ifdef CONFIG_NET_FLOW_LIMIT
3402 	struct sd_flow_limit *fl;
3403 	struct softnet_data *sd;
3404 	unsigned int old_flow, new_flow;
3405 
3406 	if (qlen < (netdev_max_backlog >> 1))
3407 		return false;
3408 
3409 	sd = this_cpu_ptr(&softnet_data);
3410 
3411 	rcu_read_lock();
3412 	fl = rcu_dereference(sd->flow_limit);
3413 	if (fl) {
3414 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3415 		old_flow = fl->history[fl->history_head];
3416 		fl->history[fl->history_head] = new_flow;
3417 
3418 		fl->history_head++;
3419 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3420 
3421 		if (likely(fl->buckets[old_flow]))
3422 			fl->buckets[old_flow]--;
3423 
3424 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3425 			fl->count++;
3426 			rcu_read_unlock();
3427 			return true;
3428 		}
3429 	}
3430 	rcu_read_unlock();
3431 #endif
3432 	return false;
3433 }
3434 
3435 /*
3436  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3437  * queue (may be a remote CPU queue).
3438  */
3439 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3440 			      unsigned int *qtail)
3441 {
3442 	struct softnet_data *sd;
3443 	unsigned long flags;
3444 	unsigned int qlen;
3445 
3446 	sd = &per_cpu(softnet_data, cpu);
3447 
3448 	local_irq_save(flags);
3449 
3450 	rps_lock(sd);
3451 	if (!netif_running(skb->dev))
3452 		goto drop;
3453 	qlen = skb_queue_len(&sd->input_pkt_queue);
3454 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3455 		if (qlen) {
3456 enqueue:
3457 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3458 			input_queue_tail_incr_save(sd, qtail);
3459 			rps_unlock(sd);
3460 			local_irq_restore(flags);
3461 			return NET_RX_SUCCESS;
3462 		}
3463 
3464 		/* Schedule NAPI for backlog device
3465 		 * We can use non atomic operation since we own the queue lock
3466 		 */
3467 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3468 			if (!rps_ipi_queued(sd))
3469 				____napi_schedule(sd, &sd->backlog);
3470 		}
3471 		goto enqueue;
3472 	}
3473 
3474 drop:
3475 	sd->dropped++;
3476 	rps_unlock(sd);
3477 
3478 	local_irq_restore(flags);
3479 
3480 	atomic_long_inc(&skb->dev->rx_dropped);
3481 	kfree_skb(skb);
3482 	return NET_RX_DROP;
3483 }
3484 
3485 static int netif_rx_internal(struct sk_buff *skb)
3486 {
3487 	int ret;
3488 
3489 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3490 
3491 	trace_netif_rx(skb);
3492 #ifdef CONFIG_RPS
3493 	if (static_key_false(&rps_needed)) {
3494 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3495 		int cpu;
3496 
3497 		preempt_disable();
3498 		rcu_read_lock();
3499 
3500 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3501 		if (cpu < 0)
3502 			cpu = smp_processor_id();
3503 
3504 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3505 
3506 		rcu_read_unlock();
3507 		preempt_enable();
3508 	} else
3509 #endif
3510 	{
3511 		unsigned int qtail;
3512 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3513 		put_cpu();
3514 	}
3515 	return ret;
3516 }
3517 
3518 /**
3519  *	netif_rx	-	post buffer to the network code
3520  *	@skb: buffer to post
3521  *
3522  *	This function receives a packet from a device driver and queues it for
3523  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3524  *	may be dropped during processing for congestion control or by the
3525  *	protocol layers.
3526  *
3527  *	return values:
3528  *	NET_RX_SUCCESS	(no congestion)
3529  *	NET_RX_DROP     (packet was dropped)
3530  *
3531  */
3532 
3533 int netif_rx(struct sk_buff *skb)
3534 {
3535 	trace_netif_rx_entry(skb);
3536 
3537 	return netif_rx_internal(skb);
3538 }
3539 EXPORT_SYMBOL(netif_rx);
3540 
3541 int netif_rx_ni(struct sk_buff *skb)
3542 {
3543 	int err;
3544 
3545 	trace_netif_rx_ni_entry(skb);
3546 
3547 	preempt_disable();
3548 	err = netif_rx_internal(skb);
3549 	if (local_softirq_pending())
3550 		do_softirq();
3551 	preempt_enable();
3552 
3553 	return err;
3554 }
3555 EXPORT_SYMBOL(netif_rx_ni);
3556 
3557 static void net_tx_action(struct softirq_action *h)
3558 {
3559 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3560 
3561 	if (sd->completion_queue) {
3562 		struct sk_buff *clist;
3563 
3564 		local_irq_disable();
3565 		clist = sd->completion_queue;
3566 		sd->completion_queue = NULL;
3567 		local_irq_enable();
3568 
3569 		while (clist) {
3570 			struct sk_buff *skb = clist;
3571 			clist = clist->next;
3572 
3573 			WARN_ON(atomic_read(&skb->users));
3574 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3575 				trace_consume_skb(skb);
3576 			else
3577 				trace_kfree_skb(skb, net_tx_action);
3578 			__kfree_skb(skb);
3579 		}
3580 	}
3581 
3582 	if (sd->output_queue) {
3583 		struct Qdisc *head;
3584 
3585 		local_irq_disable();
3586 		head = sd->output_queue;
3587 		sd->output_queue = NULL;
3588 		sd->output_queue_tailp = &sd->output_queue;
3589 		local_irq_enable();
3590 
3591 		while (head) {
3592 			struct Qdisc *q = head;
3593 			spinlock_t *root_lock;
3594 
3595 			head = head->next_sched;
3596 
3597 			root_lock = qdisc_lock(q);
3598 			if (spin_trylock(root_lock)) {
3599 				smp_mb__before_atomic();
3600 				clear_bit(__QDISC_STATE_SCHED,
3601 					  &q->state);
3602 				qdisc_run(q);
3603 				spin_unlock(root_lock);
3604 			} else {
3605 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3606 					      &q->state)) {
3607 					__netif_reschedule(q);
3608 				} else {
3609 					smp_mb__before_atomic();
3610 					clear_bit(__QDISC_STATE_SCHED,
3611 						  &q->state);
3612 				}
3613 			}
3614 		}
3615 	}
3616 }
3617 
3618 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3619     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3620 /* This hook is defined here for ATM LANE */
3621 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3622 			     unsigned char *addr) __read_mostly;
3623 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3624 #endif
3625 
3626 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3627 					 struct packet_type **pt_prev,
3628 					 int *ret, struct net_device *orig_dev)
3629 {
3630 #ifdef CONFIG_NET_CLS_ACT
3631 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3632 	struct tcf_result cl_res;
3633 
3634 	/* If there's at least one ingress present somewhere (so
3635 	 * we get here via enabled static key), remaining devices
3636 	 * that are not configured with an ingress qdisc will bail
3637 	 * out here.
3638 	 */
3639 	if (!cl)
3640 		return skb;
3641 	if (*pt_prev) {
3642 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3643 		*pt_prev = NULL;
3644 	}
3645 
3646 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3647 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3648 	qdisc_bstats_update_cpu(cl->q, skb);
3649 
3650 	switch (tc_classify(skb, cl, &cl_res)) {
3651 	case TC_ACT_OK:
3652 	case TC_ACT_RECLASSIFY:
3653 		skb->tc_index = TC_H_MIN(cl_res.classid);
3654 		break;
3655 	case TC_ACT_SHOT:
3656 		qdisc_qstats_drop_cpu(cl->q);
3657 	case TC_ACT_STOLEN:
3658 	case TC_ACT_QUEUED:
3659 		kfree_skb(skb);
3660 		return NULL;
3661 	default:
3662 		break;
3663 	}
3664 #endif /* CONFIG_NET_CLS_ACT */
3665 	return skb;
3666 }
3667 
3668 /**
3669  *	netdev_rx_handler_register - register receive handler
3670  *	@dev: device to register a handler for
3671  *	@rx_handler: receive handler to register
3672  *	@rx_handler_data: data pointer that is used by rx handler
3673  *
3674  *	Register a receive handler for a device. This handler will then be
3675  *	called from __netif_receive_skb. A negative errno code is returned
3676  *	on a failure.
3677  *
3678  *	The caller must hold the rtnl_mutex.
3679  *
3680  *	For a general description of rx_handler, see enum rx_handler_result.
3681  */
3682 int netdev_rx_handler_register(struct net_device *dev,
3683 			       rx_handler_func_t *rx_handler,
3684 			       void *rx_handler_data)
3685 {
3686 	ASSERT_RTNL();
3687 
3688 	if (dev->rx_handler)
3689 		return -EBUSY;
3690 
3691 	/* Note: rx_handler_data must be set before rx_handler */
3692 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3693 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3694 
3695 	return 0;
3696 }
3697 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3698 
3699 /**
3700  *	netdev_rx_handler_unregister - unregister receive handler
3701  *	@dev: device to unregister a handler from
3702  *
3703  *	Unregister a receive handler from a device.
3704  *
3705  *	The caller must hold the rtnl_mutex.
3706  */
3707 void netdev_rx_handler_unregister(struct net_device *dev)
3708 {
3709 
3710 	ASSERT_RTNL();
3711 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3712 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3713 	 * section has a guarantee to see a non NULL rx_handler_data
3714 	 * as well.
3715 	 */
3716 	synchronize_net();
3717 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3718 }
3719 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3720 
3721 /*
3722  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3723  * the special handling of PFMEMALLOC skbs.
3724  */
3725 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3726 {
3727 	switch (skb->protocol) {
3728 	case htons(ETH_P_ARP):
3729 	case htons(ETH_P_IP):
3730 	case htons(ETH_P_IPV6):
3731 	case htons(ETH_P_8021Q):
3732 	case htons(ETH_P_8021AD):
3733 		return true;
3734 	default:
3735 		return false;
3736 	}
3737 }
3738 
3739 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3740 			     int *ret, struct net_device *orig_dev)
3741 {
3742 #ifdef CONFIG_NETFILTER_INGRESS
3743 	if (nf_hook_ingress_active(skb)) {
3744 		if (*pt_prev) {
3745 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
3746 			*pt_prev = NULL;
3747 		}
3748 
3749 		return nf_hook_ingress(skb);
3750 	}
3751 #endif /* CONFIG_NETFILTER_INGRESS */
3752 	return 0;
3753 }
3754 
3755 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3756 {
3757 	struct packet_type *ptype, *pt_prev;
3758 	rx_handler_func_t *rx_handler;
3759 	struct net_device *orig_dev;
3760 	bool deliver_exact = false;
3761 	int ret = NET_RX_DROP;
3762 	__be16 type;
3763 
3764 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3765 
3766 	trace_netif_receive_skb(skb);
3767 
3768 	orig_dev = skb->dev;
3769 
3770 	skb_reset_network_header(skb);
3771 	if (!skb_transport_header_was_set(skb))
3772 		skb_reset_transport_header(skb);
3773 	skb_reset_mac_len(skb);
3774 
3775 	pt_prev = NULL;
3776 
3777 another_round:
3778 	skb->skb_iif = skb->dev->ifindex;
3779 
3780 	__this_cpu_inc(softnet_data.processed);
3781 
3782 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3783 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3784 		skb = skb_vlan_untag(skb);
3785 		if (unlikely(!skb))
3786 			goto out;
3787 	}
3788 
3789 #ifdef CONFIG_NET_CLS_ACT
3790 	if (skb->tc_verd & TC_NCLS) {
3791 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3792 		goto ncls;
3793 	}
3794 #endif
3795 
3796 	if (pfmemalloc)
3797 		goto skip_taps;
3798 
3799 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3800 		if (pt_prev)
3801 			ret = deliver_skb(skb, pt_prev, orig_dev);
3802 		pt_prev = ptype;
3803 	}
3804 
3805 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3806 		if (pt_prev)
3807 			ret = deliver_skb(skb, pt_prev, orig_dev);
3808 		pt_prev = ptype;
3809 	}
3810 
3811 skip_taps:
3812 #ifdef CONFIG_NET_INGRESS
3813 	if (static_key_false(&ingress_needed)) {
3814 		skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3815 		if (!skb)
3816 			goto out;
3817 
3818 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3819 			goto out;
3820 	}
3821 #endif
3822 #ifdef CONFIG_NET_CLS_ACT
3823 	skb->tc_verd = 0;
3824 ncls:
3825 #endif
3826 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3827 		goto drop;
3828 
3829 	if (skb_vlan_tag_present(skb)) {
3830 		if (pt_prev) {
3831 			ret = deliver_skb(skb, pt_prev, orig_dev);
3832 			pt_prev = NULL;
3833 		}
3834 		if (vlan_do_receive(&skb))
3835 			goto another_round;
3836 		else if (unlikely(!skb))
3837 			goto out;
3838 	}
3839 
3840 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3841 	if (rx_handler) {
3842 		if (pt_prev) {
3843 			ret = deliver_skb(skb, pt_prev, orig_dev);
3844 			pt_prev = NULL;
3845 		}
3846 		switch (rx_handler(&skb)) {
3847 		case RX_HANDLER_CONSUMED:
3848 			ret = NET_RX_SUCCESS;
3849 			goto out;
3850 		case RX_HANDLER_ANOTHER:
3851 			goto another_round;
3852 		case RX_HANDLER_EXACT:
3853 			deliver_exact = true;
3854 		case RX_HANDLER_PASS:
3855 			break;
3856 		default:
3857 			BUG();
3858 		}
3859 	}
3860 
3861 	if (unlikely(skb_vlan_tag_present(skb))) {
3862 		if (skb_vlan_tag_get_id(skb))
3863 			skb->pkt_type = PACKET_OTHERHOST;
3864 		/* Note: we might in the future use prio bits
3865 		 * and set skb->priority like in vlan_do_receive()
3866 		 * For the time being, just ignore Priority Code Point
3867 		 */
3868 		skb->vlan_tci = 0;
3869 	}
3870 
3871 	type = skb->protocol;
3872 
3873 	/* deliver only exact match when indicated */
3874 	if (likely(!deliver_exact)) {
3875 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3876 				       &ptype_base[ntohs(type) &
3877 						   PTYPE_HASH_MASK]);
3878 	}
3879 
3880 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3881 			       &orig_dev->ptype_specific);
3882 
3883 	if (unlikely(skb->dev != orig_dev)) {
3884 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3885 				       &skb->dev->ptype_specific);
3886 	}
3887 
3888 	if (pt_prev) {
3889 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3890 			goto drop;
3891 		else
3892 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3893 	} else {
3894 drop:
3895 		atomic_long_inc(&skb->dev->rx_dropped);
3896 		kfree_skb(skb);
3897 		/* Jamal, now you will not able to escape explaining
3898 		 * me how you were going to use this. :-)
3899 		 */
3900 		ret = NET_RX_DROP;
3901 	}
3902 
3903 out:
3904 	return ret;
3905 }
3906 
3907 static int __netif_receive_skb(struct sk_buff *skb)
3908 {
3909 	int ret;
3910 
3911 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3912 		unsigned long pflags = current->flags;
3913 
3914 		/*
3915 		 * PFMEMALLOC skbs are special, they should
3916 		 * - be delivered to SOCK_MEMALLOC sockets only
3917 		 * - stay away from userspace
3918 		 * - have bounded memory usage
3919 		 *
3920 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3921 		 * context down to all allocation sites.
3922 		 */
3923 		current->flags |= PF_MEMALLOC;
3924 		ret = __netif_receive_skb_core(skb, true);
3925 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3926 	} else
3927 		ret = __netif_receive_skb_core(skb, false);
3928 
3929 	return ret;
3930 }
3931 
3932 static int netif_receive_skb_internal(struct sk_buff *skb)
3933 {
3934 	int ret;
3935 
3936 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3937 
3938 	if (skb_defer_rx_timestamp(skb))
3939 		return NET_RX_SUCCESS;
3940 
3941 	rcu_read_lock();
3942 
3943 #ifdef CONFIG_RPS
3944 	if (static_key_false(&rps_needed)) {
3945 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3946 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
3947 
3948 		if (cpu >= 0) {
3949 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3950 			rcu_read_unlock();
3951 			return ret;
3952 		}
3953 	}
3954 #endif
3955 	ret = __netif_receive_skb(skb);
3956 	rcu_read_unlock();
3957 	return ret;
3958 }
3959 
3960 /**
3961  *	netif_receive_skb - process receive buffer from network
3962  *	@skb: buffer to process
3963  *
3964  *	netif_receive_skb() is the main receive data processing function.
3965  *	It always succeeds. The buffer may be dropped during processing
3966  *	for congestion control or by the protocol layers.
3967  *
3968  *	This function may only be called from softirq context and interrupts
3969  *	should be enabled.
3970  *
3971  *	Return values (usually ignored):
3972  *	NET_RX_SUCCESS: no congestion
3973  *	NET_RX_DROP: packet was dropped
3974  */
3975 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
3976 {
3977 	trace_netif_receive_skb_entry(skb);
3978 
3979 	return netif_receive_skb_internal(skb);
3980 }
3981 EXPORT_SYMBOL(netif_receive_skb_sk);
3982 
3983 /* Network device is going away, flush any packets still pending
3984  * Called with irqs disabled.
3985  */
3986 static void flush_backlog(void *arg)
3987 {
3988 	struct net_device *dev = arg;
3989 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3990 	struct sk_buff *skb, *tmp;
3991 
3992 	rps_lock(sd);
3993 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3994 		if (skb->dev == dev) {
3995 			__skb_unlink(skb, &sd->input_pkt_queue);
3996 			kfree_skb(skb);
3997 			input_queue_head_incr(sd);
3998 		}
3999 	}
4000 	rps_unlock(sd);
4001 
4002 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4003 		if (skb->dev == dev) {
4004 			__skb_unlink(skb, &sd->process_queue);
4005 			kfree_skb(skb);
4006 			input_queue_head_incr(sd);
4007 		}
4008 	}
4009 }
4010 
4011 static int napi_gro_complete(struct sk_buff *skb)
4012 {
4013 	struct packet_offload *ptype;
4014 	__be16 type = skb->protocol;
4015 	struct list_head *head = &offload_base;
4016 	int err = -ENOENT;
4017 
4018 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4019 
4020 	if (NAPI_GRO_CB(skb)->count == 1) {
4021 		skb_shinfo(skb)->gso_size = 0;
4022 		goto out;
4023 	}
4024 
4025 	rcu_read_lock();
4026 	list_for_each_entry_rcu(ptype, head, list) {
4027 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4028 			continue;
4029 
4030 		err = ptype->callbacks.gro_complete(skb, 0);
4031 		break;
4032 	}
4033 	rcu_read_unlock();
4034 
4035 	if (err) {
4036 		WARN_ON(&ptype->list == head);
4037 		kfree_skb(skb);
4038 		return NET_RX_SUCCESS;
4039 	}
4040 
4041 out:
4042 	return netif_receive_skb_internal(skb);
4043 }
4044 
4045 /* napi->gro_list contains packets ordered by age.
4046  * youngest packets at the head of it.
4047  * Complete skbs in reverse order to reduce latencies.
4048  */
4049 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4050 {
4051 	struct sk_buff *skb, *prev = NULL;
4052 
4053 	/* scan list and build reverse chain */
4054 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4055 		skb->prev = prev;
4056 		prev = skb;
4057 	}
4058 
4059 	for (skb = prev; skb; skb = prev) {
4060 		skb->next = NULL;
4061 
4062 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4063 			return;
4064 
4065 		prev = skb->prev;
4066 		napi_gro_complete(skb);
4067 		napi->gro_count--;
4068 	}
4069 
4070 	napi->gro_list = NULL;
4071 }
4072 EXPORT_SYMBOL(napi_gro_flush);
4073 
4074 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4075 {
4076 	struct sk_buff *p;
4077 	unsigned int maclen = skb->dev->hard_header_len;
4078 	u32 hash = skb_get_hash_raw(skb);
4079 
4080 	for (p = napi->gro_list; p; p = p->next) {
4081 		unsigned long diffs;
4082 
4083 		NAPI_GRO_CB(p)->flush = 0;
4084 
4085 		if (hash != skb_get_hash_raw(p)) {
4086 			NAPI_GRO_CB(p)->same_flow = 0;
4087 			continue;
4088 		}
4089 
4090 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4091 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4092 		if (maclen == ETH_HLEN)
4093 			diffs |= compare_ether_header(skb_mac_header(p),
4094 						      skb_mac_header(skb));
4095 		else if (!diffs)
4096 			diffs = memcmp(skb_mac_header(p),
4097 				       skb_mac_header(skb),
4098 				       maclen);
4099 		NAPI_GRO_CB(p)->same_flow = !diffs;
4100 	}
4101 }
4102 
4103 static void skb_gro_reset_offset(struct sk_buff *skb)
4104 {
4105 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4106 	const skb_frag_t *frag0 = &pinfo->frags[0];
4107 
4108 	NAPI_GRO_CB(skb)->data_offset = 0;
4109 	NAPI_GRO_CB(skb)->frag0 = NULL;
4110 	NAPI_GRO_CB(skb)->frag0_len = 0;
4111 
4112 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4113 	    pinfo->nr_frags &&
4114 	    !PageHighMem(skb_frag_page(frag0))) {
4115 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4116 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4117 	}
4118 }
4119 
4120 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4121 {
4122 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4123 
4124 	BUG_ON(skb->end - skb->tail < grow);
4125 
4126 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4127 
4128 	skb->data_len -= grow;
4129 	skb->tail += grow;
4130 
4131 	pinfo->frags[0].page_offset += grow;
4132 	skb_frag_size_sub(&pinfo->frags[0], grow);
4133 
4134 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4135 		skb_frag_unref(skb, 0);
4136 		memmove(pinfo->frags, pinfo->frags + 1,
4137 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4138 	}
4139 }
4140 
4141 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4142 {
4143 	struct sk_buff **pp = NULL;
4144 	struct packet_offload *ptype;
4145 	__be16 type = skb->protocol;
4146 	struct list_head *head = &offload_base;
4147 	int same_flow;
4148 	enum gro_result ret;
4149 	int grow;
4150 
4151 	if (!(skb->dev->features & NETIF_F_GRO))
4152 		goto normal;
4153 
4154 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4155 		goto normal;
4156 
4157 	gro_list_prepare(napi, skb);
4158 
4159 	rcu_read_lock();
4160 	list_for_each_entry_rcu(ptype, head, list) {
4161 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4162 			continue;
4163 
4164 		skb_set_network_header(skb, skb_gro_offset(skb));
4165 		skb_reset_mac_len(skb);
4166 		NAPI_GRO_CB(skb)->same_flow = 0;
4167 		NAPI_GRO_CB(skb)->flush = 0;
4168 		NAPI_GRO_CB(skb)->free = 0;
4169 		NAPI_GRO_CB(skb)->udp_mark = 0;
4170 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4171 
4172 		/* Setup for GRO checksum validation */
4173 		switch (skb->ip_summed) {
4174 		case CHECKSUM_COMPLETE:
4175 			NAPI_GRO_CB(skb)->csum = skb->csum;
4176 			NAPI_GRO_CB(skb)->csum_valid = 1;
4177 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4178 			break;
4179 		case CHECKSUM_UNNECESSARY:
4180 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4181 			NAPI_GRO_CB(skb)->csum_valid = 0;
4182 			break;
4183 		default:
4184 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4185 			NAPI_GRO_CB(skb)->csum_valid = 0;
4186 		}
4187 
4188 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4189 		break;
4190 	}
4191 	rcu_read_unlock();
4192 
4193 	if (&ptype->list == head)
4194 		goto normal;
4195 
4196 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4197 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4198 
4199 	if (pp) {
4200 		struct sk_buff *nskb = *pp;
4201 
4202 		*pp = nskb->next;
4203 		nskb->next = NULL;
4204 		napi_gro_complete(nskb);
4205 		napi->gro_count--;
4206 	}
4207 
4208 	if (same_flow)
4209 		goto ok;
4210 
4211 	if (NAPI_GRO_CB(skb)->flush)
4212 		goto normal;
4213 
4214 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4215 		struct sk_buff *nskb = napi->gro_list;
4216 
4217 		/* locate the end of the list to select the 'oldest' flow */
4218 		while (nskb->next) {
4219 			pp = &nskb->next;
4220 			nskb = *pp;
4221 		}
4222 		*pp = NULL;
4223 		nskb->next = NULL;
4224 		napi_gro_complete(nskb);
4225 	} else {
4226 		napi->gro_count++;
4227 	}
4228 	NAPI_GRO_CB(skb)->count = 1;
4229 	NAPI_GRO_CB(skb)->age = jiffies;
4230 	NAPI_GRO_CB(skb)->last = skb;
4231 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4232 	skb->next = napi->gro_list;
4233 	napi->gro_list = skb;
4234 	ret = GRO_HELD;
4235 
4236 pull:
4237 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4238 	if (grow > 0)
4239 		gro_pull_from_frag0(skb, grow);
4240 ok:
4241 	return ret;
4242 
4243 normal:
4244 	ret = GRO_NORMAL;
4245 	goto pull;
4246 }
4247 
4248 struct packet_offload *gro_find_receive_by_type(__be16 type)
4249 {
4250 	struct list_head *offload_head = &offload_base;
4251 	struct packet_offload *ptype;
4252 
4253 	list_for_each_entry_rcu(ptype, offload_head, list) {
4254 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4255 			continue;
4256 		return ptype;
4257 	}
4258 	return NULL;
4259 }
4260 EXPORT_SYMBOL(gro_find_receive_by_type);
4261 
4262 struct packet_offload *gro_find_complete_by_type(__be16 type)
4263 {
4264 	struct list_head *offload_head = &offload_base;
4265 	struct packet_offload *ptype;
4266 
4267 	list_for_each_entry_rcu(ptype, offload_head, list) {
4268 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4269 			continue;
4270 		return ptype;
4271 	}
4272 	return NULL;
4273 }
4274 EXPORT_SYMBOL(gro_find_complete_by_type);
4275 
4276 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4277 {
4278 	switch (ret) {
4279 	case GRO_NORMAL:
4280 		if (netif_receive_skb_internal(skb))
4281 			ret = GRO_DROP;
4282 		break;
4283 
4284 	case GRO_DROP:
4285 		kfree_skb(skb);
4286 		break;
4287 
4288 	case GRO_MERGED_FREE:
4289 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4290 			kmem_cache_free(skbuff_head_cache, skb);
4291 		else
4292 			__kfree_skb(skb);
4293 		break;
4294 
4295 	case GRO_HELD:
4296 	case GRO_MERGED:
4297 		break;
4298 	}
4299 
4300 	return ret;
4301 }
4302 
4303 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4304 {
4305 	trace_napi_gro_receive_entry(skb);
4306 
4307 	skb_gro_reset_offset(skb);
4308 
4309 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4310 }
4311 EXPORT_SYMBOL(napi_gro_receive);
4312 
4313 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4314 {
4315 	if (unlikely(skb->pfmemalloc)) {
4316 		consume_skb(skb);
4317 		return;
4318 	}
4319 	__skb_pull(skb, skb_headlen(skb));
4320 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4321 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4322 	skb->vlan_tci = 0;
4323 	skb->dev = napi->dev;
4324 	skb->skb_iif = 0;
4325 	skb->encapsulation = 0;
4326 	skb_shinfo(skb)->gso_type = 0;
4327 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4328 
4329 	napi->skb = skb;
4330 }
4331 
4332 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4333 {
4334 	struct sk_buff *skb = napi->skb;
4335 
4336 	if (!skb) {
4337 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4338 		napi->skb = skb;
4339 	}
4340 	return skb;
4341 }
4342 EXPORT_SYMBOL(napi_get_frags);
4343 
4344 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4345 				      struct sk_buff *skb,
4346 				      gro_result_t ret)
4347 {
4348 	switch (ret) {
4349 	case GRO_NORMAL:
4350 	case GRO_HELD:
4351 		__skb_push(skb, ETH_HLEN);
4352 		skb->protocol = eth_type_trans(skb, skb->dev);
4353 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4354 			ret = GRO_DROP;
4355 		break;
4356 
4357 	case GRO_DROP:
4358 	case GRO_MERGED_FREE:
4359 		napi_reuse_skb(napi, skb);
4360 		break;
4361 
4362 	case GRO_MERGED:
4363 		break;
4364 	}
4365 
4366 	return ret;
4367 }
4368 
4369 /* Upper GRO stack assumes network header starts at gro_offset=0
4370  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4371  * We copy ethernet header into skb->data to have a common layout.
4372  */
4373 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4374 {
4375 	struct sk_buff *skb = napi->skb;
4376 	const struct ethhdr *eth;
4377 	unsigned int hlen = sizeof(*eth);
4378 
4379 	napi->skb = NULL;
4380 
4381 	skb_reset_mac_header(skb);
4382 	skb_gro_reset_offset(skb);
4383 
4384 	eth = skb_gro_header_fast(skb, 0);
4385 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4386 		eth = skb_gro_header_slow(skb, hlen, 0);
4387 		if (unlikely(!eth)) {
4388 			napi_reuse_skb(napi, skb);
4389 			return NULL;
4390 		}
4391 	} else {
4392 		gro_pull_from_frag0(skb, hlen);
4393 		NAPI_GRO_CB(skb)->frag0 += hlen;
4394 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4395 	}
4396 	__skb_pull(skb, hlen);
4397 
4398 	/*
4399 	 * This works because the only protocols we care about don't require
4400 	 * special handling.
4401 	 * We'll fix it up properly in napi_frags_finish()
4402 	 */
4403 	skb->protocol = eth->h_proto;
4404 
4405 	return skb;
4406 }
4407 
4408 gro_result_t napi_gro_frags(struct napi_struct *napi)
4409 {
4410 	struct sk_buff *skb = napi_frags_skb(napi);
4411 
4412 	if (!skb)
4413 		return GRO_DROP;
4414 
4415 	trace_napi_gro_frags_entry(skb);
4416 
4417 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4418 }
4419 EXPORT_SYMBOL(napi_gro_frags);
4420 
4421 /* Compute the checksum from gro_offset and return the folded value
4422  * after adding in any pseudo checksum.
4423  */
4424 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4425 {
4426 	__wsum wsum;
4427 	__sum16 sum;
4428 
4429 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4430 
4431 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4432 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4433 	if (likely(!sum)) {
4434 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4435 		    !skb->csum_complete_sw)
4436 			netdev_rx_csum_fault(skb->dev);
4437 	}
4438 
4439 	NAPI_GRO_CB(skb)->csum = wsum;
4440 	NAPI_GRO_CB(skb)->csum_valid = 1;
4441 
4442 	return sum;
4443 }
4444 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4445 
4446 /*
4447  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4448  * Note: called with local irq disabled, but exits with local irq enabled.
4449  */
4450 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4451 {
4452 #ifdef CONFIG_RPS
4453 	struct softnet_data *remsd = sd->rps_ipi_list;
4454 
4455 	if (remsd) {
4456 		sd->rps_ipi_list = NULL;
4457 
4458 		local_irq_enable();
4459 
4460 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4461 		while (remsd) {
4462 			struct softnet_data *next = remsd->rps_ipi_next;
4463 
4464 			if (cpu_online(remsd->cpu))
4465 				smp_call_function_single_async(remsd->cpu,
4466 							   &remsd->csd);
4467 			remsd = next;
4468 		}
4469 	} else
4470 #endif
4471 		local_irq_enable();
4472 }
4473 
4474 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4475 {
4476 #ifdef CONFIG_RPS
4477 	return sd->rps_ipi_list != NULL;
4478 #else
4479 	return false;
4480 #endif
4481 }
4482 
4483 static int process_backlog(struct napi_struct *napi, int quota)
4484 {
4485 	int work = 0;
4486 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4487 
4488 	/* Check if we have pending ipi, its better to send them now,
4489 	 * not waiting net_rx_action() end.
4490 	 */
4491 	if (sd_has_rps_ipi_waiting(sd)) {
4492 		local_irq_disable();
4493 		net_rps_action_and_irq_enable(sd);
4494 	}
4495 
4496 	napi->weight = weight_p;
4497 	local_irq_disable();
4498 	while (1) {
4499 		struct sk_buff *skb;
4500 
4501 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4502 			rcu_read_lock();
4503 			local_irq_enable();
4504 			__netif_receive_skb(skb);
4505 			rcu_read_unlock();
4506 			local_irq_disable();
4507 			input_queue_head_incr(sd);
4508 			if (++work >= quota) {
4509 				local_irq_enable();
4510 				return work;
4511 			}
4512 		}
4513 
4514 		rps_lock(sd);
4515 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4516 			/*
4517 			 * Inline a custom version of __napi_complete().
4518 			 * only current cpu owns and manipulates this napi,
4519 			 * and NAPI_STATE_SCHED is the only possible flag set
4520 			 * on backlog.
4521 			 * We can use a plain write instead of clear_bit(),
4522 			 * and we dont need an smp_mb() memory barrier.
4523 			 */
4524 			napi->state = 0;
4525 			rps_unlock(sd);
4526 
4527 			break;
4528 		}
4529 
4530 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4531 					   &sd->process_queue);
4532 		rps_unlock(sd);
4533 	}
4534 	local_irq_enable();
4535 
4536 	return work;
4537 }
4538 
4539 /**
4540  * __napi_schedule - schedule for receive
4541  * @n: entry to schedule
4542  *
4543  * The entry's receive function will be scheduled to run.
4544  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4545  */
4546 void __napi_schedule(struct napi_struct *n)
4547 {
4548 	unsigned long flags;
4549 
4550 	local_irq_save(flags);
4551 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4552 	local_irq_restore(flags);
4553 }
4554 EXPORT_SYMBOL(__napi_schedule);
4555 
4556 /**
4557  * __napi_schedule_irqoff - schedule for receive
4558  * @n: entry to schedule
4559  *
4560  * Variant of __napi_schedule() assuming hard irqs are masked
4561  */
4562 void __napi_schedule_irqoff(struct napi_struct *n)
4563 {
4564 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4565 }
4566 EXPORT_SYMBOL(__napi_schedule_irqoff);
4567 
4568 void __napi_complete(struct napi_struct *n)
4569 {
4570 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4571 
4572 	list_del_init(&n->poll_list);
4573 	smp_mb__before_atomic();
4574 	clear_bit(NAPI_STATE_SCHED, &n->state);
4575 }
4576 EXPORT_SYMBOL(__napi_complete);
4577 
4578 void napi_complete_done(struct napi_struct *n, int work_done)
4579 {
4580 	unsigned long flags;
4581 
4582 	/*
4583 	 * don't let napi dequeue from the cpu poll list
4584 	 * just in case its running on a different cpu
4585 	 */
4586 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4587 		return;
4588 
4589 	if (n->gro_list) {
4590 		unsigned long timeout = 0;
4591 
4592 		if (work_done)
4593 			timeout = n->dev->gro_flush_timeout;
4594 
4595 		if (timeout)
4596 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4597 				      HRTIMER_MODE_REL_PINNED);
4598 		else
4599 			napi_gro_flush(n, false);
4600 	}
4601 	if (likely(list_empty(&n->poll_list))) {
4602 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4603 	} else {
4604 		/* If n->poll_list is not empty, we need to mask irqs */
4605 		local_irq_save(flags);
4606 		__napi_complete(n);
4607 		local_irq_restore(flags);
4608 	}
4609 }
4610 EXPORT_SYMBOL(napi_complete_done);
4611 
4612 /* must be called under rcu_read_lock(), as we dont take a reference */
4613 struct napi_struct *napi_by_id(unsigned int napi_id)
4614 {
4615 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4616 	struct napi_struct *napi;
4617 
4618 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4619 		if (napi->napi_id == napi_id)
4620 			return napi;
4621 
4622 	return NULL;
4623 }
4624 EXPORT_SYMBOL_GPL(napi_by_id);
4625 
4626 void napi_hash_add(struct napi_struct *napi)
4627 {
4628 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4629 
4630 		spin_lock(&napi_hash_lock);
4631 
4632 		/* 0 is not a valid id, we also skip an id that is taken
4633 		 * we expect both events to be extremely rare
4634 		 */
4635 		napi->napi_id = 0;
4636 		while (!napi->napi_id) {
4637 			napi->napi_id = ++napi_gen_id;
4638 			if (napi_by_id(napi->napi_id))
4639 				napi->napi_id = 0;
4640 		}
4641 
4642 		hlist_add_head_rcu(&napi->napi_hash_node,
4643 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4644 
4645 		spin_unlock(&napi_hash_lock);
4646 	}
4647 }
4648 EXPORT_SYMBOL_GPL(napi_hash_add);
4649 
4650 /* Warning : caller is responsible to make sure rcu grace period
4651  * is respected before freeing memory containing @napi
4652  */
4653 void napi_hash_del(struct napi_struct *napi)
4654 {
4655 	spin_lock(&napi_hash_lock);
4656 
4657 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4658 		hlist_del_rcu(&napi->napi_hash_node);
4659 
4660 	spin_unlock(&napi_hash_lock);
4661 }
4662 EXPORT_SYMBOL_GPL(napi_hash_del);
4663 
4664 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4665 {
4666 	struct napi_struct *napi;
4667 
4668 	napi = container_of(timer, struct napi_struct, timer);
4669 	if (napi->gro_list)
4670 		napi_schedule(napi);
4671 
4672 	return HRTIMER_NORESTART;
4673 }
4674 
4675 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4676 		    int (*poll)(struct napi_struct *, int), int weight)
4677 {
4678 	INIT_LIST_HEAD(&napi->poll_list);
4679 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4680 	napi->timer.function = napi_watchdog;
4681 	napi->gro_count = 0;
4682 	napi->gro_list = NULL;
4683 	napi->skb = NULL;
4684 	napi->poll = poll;
4685 	if (weight > NAPI_POLL_WEIGHT)
4686 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4687 			    weight, dev->name);
4688 	napi->weight = weight;
4689 	list_add(&napi->dev_list, &dev->napi_list);
4690 	napi->dev = dev;
4691 #ifdef CONFIG_NETPOLL
4692 	spin_lock_init(&napi->poll_lock);
4693 	napi->poll_owner = -1;
4694 #endif
4695 	set_bit(NAPI_STATE_SCHED, &napi->state);
4696 }
4697 EXPORT_SYMBOL(netif_napi_add);
4698 
4699 void napi_disable(struct napi_struct *n)
4700 {
4701 	might_sleep();
4702 	set_bit(NAPI_STATE_DISABLE, &n->state);
4703 
4704 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4705 		msleep(1);
4706 
4707 	hrtimer_cancel(&n->timer);
4708 
4709 	clear_bit(NAPI_STATE_DISABLE, &n->state);
4710 }
4711 EXPORT_SYMBOL(napi_disable);
4712 
4713 void netif_napi_del(struct napi_struct *napi)
4714 {
4715 	list_del_init(&napi->dev_list);
4716 	napi_free_frags(napi);
4717 
4718 	kfree_skb_list(napi->gro_list);
4719 	napi->gro_list = NULL;
4720 	napi->gro_count = 0;
4721 }
4722 EXPORT_SYMBOL(netif_napi_del);
4723 
4724 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4725 {
4726 	void *have;
4727 	int work, weight;
4728 
4729 	list_del_init(&n->poll_list);
4730 
4731 	have = netpoll_poll_lock(n);
4732 
4733 	weight = n->weight;
4734 
4735 	/* This NAPI_STATE_SCHED test is for avoiding a race
4736 	 * with netpoll's poll_napi().  Only the entity which
4737 	 * obtains the lock and sees NAPI_STATE_SCHED set will
4738 	 * actually make the ->poll() call.  Therefore we avoid
4739 	 * accidentally calling ->poll() when NAPI is not scheduled.
4740 	 */
4741 	work = 0;
4742 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4743 		work = n->poll(n, weight);
4744 		trace_napi_poll(n);
4745 	}
4746 
4747 	WARN_ON_ONCE(work > weight);
4748 
4749 	if (likely(work < weight))
4750 		goto out_unlock;
4751 
4752 	/* Drivers must not modify the NAPI state if they
4753 	 * consume the entire weight.  In such cases this code
4754 	 * still "owns" the NAPI instance and therefore can
4755 	 * move the instance around on the list at-will.
4756 	 */
4757 	if (unlikely(napi_disable_pending(n))) {
4758 		napi_complete(n);
4759 		goto out_unlock;
4760 	}
4761 
4762 	if (n->gro_list) {
4763 		/* flush too old packets
4764 		 * If HZ < 1000, flush all packets.
4765 		 */
4766 		napi_gro_flush(n, HZ >= 1000);
4767 	}
4768 
4769 	/* Some drivers may have called napi_schedule
4770 	 * prior to exhausting their budget.
4771 	 */
4772 	if (unlikely(!list_empty(&n->poll_list))) {
4773 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4774 			     n->dev ? n->dev->name : "backlog");
4775 		goto out_unlock;
4776 	}
4777 
4778 	list_add_tail(&n->poll_list, repoll);
4779 
4780 out_unlock:
4781 	netpoll_poll_unlock(have);
4782 
4783 	return work;
4784 }
4785 
4786 static void net_rx_action(struct softirq_action *h)
4787 {
4788 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4789 	unsigned long time_limit = jiffies + 2;
4790 	int budget = netdev_budget;
4791 	LIST_HEAD(list);
4792 	LIST_HEAD(repoll);
4793 
4794 	local_irq_disable();
4795 	list_splice_init(&sd->poll_list, &list);
4796 	local_irq_enable();
4797 
4798 	for (;;) {
4799 		struct napi_struct *n;
4800 
4801 		if (list_empty(&list)) {
4802 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4803 				return;
4804 			break;
4805 		}
4806 
4807 		n = list_first_entry(&list, struct napi_struct, poll_list);
4808 		budget -= napi_poll(n, &repoll);
4809 
4810 		/* If softirq window is exhausted then punt.
4811 		 * Allow this to run for 2 jiffies since which will allow
4812 		 * an average latency of 1.5/HZ.
4813 		 */
4814 		if (unlikely(budget <= 0 ||
4815 			     time_after_eq(jiffies, time_limit))) {
4816 			sd->time_squeeze++;
4817 			break;
4818 		}
4819 	}
4820 
4821 	local_irq_disable();
4822 
4823 	list_splice_tail_init(&sd->poll_list, &list);
4824 	list_splice_tail(&repoll, &list);
4825 	list_splice(&list, &sd->poll_list);
4826 	if (!list_empty(&sd->poll_list))
4827 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4828 
4829 	net_rps_action_and_irq_enable(sd);
4830 }
4831 
4832 struct netdev_adjacent {
4833 	struct net_device *dev;
4834 
4835 	/* upper master flag, there can only be one master device per list */
4836 	bool master;
4837 
4838 	/* counter for the number of times this device was added to us */
4839 	u16 ref_nr;
4840 
4841 	/* private field for the users */
4842 	void *private;
4843 
4844 	struct list_head list;
4845 	struct rcu_head rcu;
4846 };
4847 
4848 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4849 						 struct net_device *adj_dev,
4850 						 struct list_head *adj_list)
4851 {
4852 	struct netdev_adjacent *adj;
4853 
4854 	list_for_each_entry(adj, adj_list, list) {
4855 		if (adj->dev == adj_dev)
4856 			return adj;
4857 	}
4858 	return NULL;
4859 }
4860 
4861 /**
4862  * netdev_has_upper_dev - Check if device is linked to an upper device
4863  * @dev: device
4864  * @upper_dev: upper device to check
4865  *
4866  * Find out if a device is linked to specified upper device and return true
4867  * in case it is. Note that this checks only immediate upper device,
4868  * not through a complete stack of devices. The caller must hold the RTNL lock.
4869  */
4870 bool netdev_has_upper_dev(struct net_device *dev,
4871 			  struct net_device *upper_dev)
4872 {
4873 	ASSERT_RTNL();
4874 
4875 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4876 }
4877 EXPORT_SYMBOL(netdev_has_upper_dev);
4878 
4879 /**
4880  * netdev_has_any_upper_dev - Check if device is linked to some device
4881  * @dev: device
4882  *
4883  * Find out if a device is linked to an upper device and return true in case
4884  * it is. The caller must hold the RTNL lock.
4885  */
4886 static bool netdev_has_any_upper_dev(struct net_device *dev)
4887 {
4888 	ASSERT_RTNL();
4889 
4890 	return !list_empty(&dev->all_adj_list.upper);
4891 }
4892 
4893 /**
4894  * netdev_master_upper_dev_get - Get master upper device
4895  * @dev: device
4896  *
4897  * Find a master upper device and return pointer to it or NULL in case
4898  * it's not there. The caller must hold the RTNL lock.
4899  */
4900 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4901 {
4902 	struct netdev_adjacent *upper;
4903 
4904 	ASSERT_RTNL();
4905 
4906 	if (list_empty(&dev->adj_list.upper))
4907 		return NULL;
4908 
4909 	upper = list_first_entry(&dev->adj_list.upper,
4910 				 struct netdev_adjacent, list);
4911 	if (likely(upper->master))
4912 		return upper->dev;
4913 	return NULL;
4914 }
4915 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4916 
4917 void *netdev_adjacent_get_private(struct list_head *adj_list)
4918 {
4919 	struct netdev_adjacent *adj;
4920 
4921 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4922 
4923 	return adj->private;
4924 }
4925 EXPORT_SYMBOL(netdev_adjacent_get_private);
4926 
4927 /**
4928  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4929  * @dev: device
4930  * @iter: list_head ** of the current position
4931  *
4932  * Gets the next device from the dev's upper list, starting from iter
4933  * position. The caller must hold RCU read lock.
4934  */
4935 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4936 						 struct list_head **iter)
4937 {
4938 	struct netdev_adjacent *upper;
4939 
4940 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4941 
4942 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4943 
4944 	if (&upper->list == &dev->adj_list.upper)
4945 		return NULL;
4946 
4947 	*iter = &upper->list;
4948 
4949 	return upper->dev;
4950 }
4951 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4952 
4953 /**
4954  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4955  * @dev: device
4956  * @iter: list_head ** of the current position
4957  *
4958  * Gets the next device from the dev's upper list, starting from iter
4959  * position. The caller must hold RCU read lock.
4960  */
4961 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4962 						     struct list_head **iter)
4963 {
4964 	struct netdev_adjacent *upper;
4965 
4966 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4967 
4968 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4969 
4970 	if (&upper->list == &dev->all_adj_list.upper)
4971 		return NULL;
4972 
4973 	*iter = &upper->list;
4974 
4975 	return upper->dev;
4976 }
4977 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4978 
4979 /**
4980  * netdev_lower_get_next_private - Get the next ->private from the
4981  *				   lower neighbour list
4982  * @dev: device
4983  * @iter: list_head ** of the current position
4984  *
4985  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4986  * list, starting from iter position. The caller must hold either hold the
4987  * RTNL lock or its own locking that guarantees that the neighbour lower
4988  * list will remain unchainged.
4989  */
4990 void *netdev_lower_get_next_private(struct net_device *dev,
4991 				    struct list_head **iter)
4992 {
4993 	struct netdev_adjacent *lower;
4994 
4995 	lower = list_entry(*iter, struct netdev_adjacent, list);
4996 
4997 	if (&lower->list == &dev->adj_list.lower)
4998 		return NULL;
4999 
5000 	*iter = lower->list.next;
5001 
5002 	return lower->private;
5003 }
5004 EXPORT_SYMBOL(netdev_lower_get_next_private);
5005 
5006 /**
5007  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5008  *				       lower neighbour list, RCU
5009  *				       variant
5010  * @dev: device
5011  * @iter: list_head ** of the current position
5012  *
5013  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5014  * list, starting from iter position. The caller must hold RCU read lock.
5015  */
5016 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5017 					struct list_head **iter)
5018 {
5019 	struct netdev_adjacent *lower;
5020 
5021 	WARN_ON_ONCE(!rcu_read_lock_held());
5022 
5023 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5024 
5025 	if (&lower->list == &dev->adj_list.lower)
5026 		return NULL;
5027 
5028 	*iter = &lower->list;
5029 
5030 	return lower->private;
5031 }
5032 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5033 
5034 /**
5035  * netdev_lower_get_next - Get the next device from the lower neighbour
5036  *                         list
5037  * @dev: device
5038  * @iter: list_head ** of the current position
5039  *
5040  * Gets the next netdev_adjacent from the dev's lower neighbour
5041  * list, starting from iter position. The caller must hold RTNL lock or
5042  * its own locking that guarantees that the neighbour lower
5043  * list will remain unchainged.
5044  */
5045 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5046 {
5047 	struct netdev_adjacent *lower;
5048 
5049 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5050 
5051 	if (&lower->list == &dev->adj_list.lower)
5052 		return NULL;
5053 
5054 	*iter = &lower->list;
5055 
5056 	return lower->dev;
5057 }
5058 EXPORT_SYMBOL(netdev_lower_get_next);
5059 
5060 /**
5061  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5062  *				       lower neighbour list, RCU
5063  *				       variant
5064  * @dev: device
5065  *
5066  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5067  * list. The caller must hold RCU read lock.
5068  */
5069 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5070 {
5071 	struct netdev_adjacent *lower;
5072 
5073 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5074 			struct netdev_adjacent, list);
5075 	if (lower)
5076 		return lower->private;
5077 	return NULL;
5078 }
5079 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5080 
5081 /**
5082  * netdev_master_upper_dev_get_rcu - Get master upper device
5083  * @dev: device
5084  *
5085  * Find a master upper device and return pointer to it or NULL in case
5086  * it's not there. The caller must hold the RCU read lock.
5087  */
5088 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5089 {
5090 	struct netdev_adjacent *upper;
5091 
5092 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5093 				       struct netdev_adjacent, list);
5094 	if (upper && likely(upper->master))
5095 		return upper->dev;
5096 	return NULL;
5097 }
5098 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5099 
5100 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5101 			      struct net_device *adj_dev,
5102 			      struct list_head *dev_list)
5103 {
5104 	char linkname[IFNAMSIZ+7];
5105 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5106 		"upper_%s" : "lower_%s", adj_dev->name);
5107 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5108 				 linkname);
5109 }
5110 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5111 			       char *name,
5112 			       struct list_head *dev_list)
5113 {
5114 	char linkname[IFNAMSIZ+7];
5115 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5116 		"upper_%s" : "lower_%s", name);
5117 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5118 }
5119 
5120 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5121 						 struct net_device *adj_dev,
5122 						 struct list_head *dev_list)
5123 {
5124 	return (dev_list == &dev->adj_list.upper ||
5125 		dev_list == &dev->adj_list.lower) &&
5126 		net_eq(dev_net(dev), dev_net(adj_dev));
5127 }
5128 
5129 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5130 					struct net_device *adj_dev,
5131 					struct list_head *dev_list,
5132 					void *private, bool master)
5133 {
5134 	struct netdev_adjacent *adj;
5135 	int ret;
5136 
5137 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
5138 
5139 	if (adj) {
5140 		adj->ref_nr++;
5141 		return 0;
5142 	}
5143 
5144 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5145 	if (!adj)
5146 		return -ENOMEM;
5147 
5148 	adj->dev = adj_dev;
5149 	adj->master = master;
5150 	adj->ref_nr = 1;
5151 	adj->private = private;
5152 	dev_hold(adj_dev);
5153 
5154 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5155 		 adj_dev->name, dev->name, adj_dev->name);
5156 
5157 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5158 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5159 		if (ret)
5160 			goto free_adj;
5161 	}
5162 
5163 	/* Ensure that master link is always the first item in list. */
5164 	if (master) {
5165 		ret = sysfs_create_link(&(dev->dev.kobj),
5166 					&(adj_dev->dev.kobj), "master");
5167 		if (ret)
5168 			goto remove_symlinks;
5169 
5170 		list_add_rcu(&adj->list, dev_list);
5171 	} else {
5172 		list_add_tail_rcu(&adj->list, dev_list);
5173 	}
5174 
5175 	return 0;
5176 
5177 remove_symlinks:
5178 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5179 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5180 free_adj:
5181 	kfree(adj);
5182 	dev_put(adj_dev);
5183 
5184 	return ret;
5185 }
5186 
5187 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5188 					 struct net_device *adj_dev,
5189 					 struct list_head *dev_list)
5190 {
5191 	struct netdev_adjacent *adj;
5192 
5193 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
5194 
5195 	if (!adj) {
5196 		pr_err("tried to remove device %s from %s\n",
5197 		       dev->name, adj_dev->name);
5198 		BUG();
5199 	}
5200 
5201 	if (adj->ref_nr > 1) {
5202 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5203 			 adj->ref_nr-1);
5204 		adj->ref_nr--;
5205 		return;
5206 	}
5207 
5208 	if (adj->master)
5209 		sysfs_remove_link(&(dev->dev.kobj), "master");
5210 
5211 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5212 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5213 
5214 	list_del_rcu(&adj->list);
5215 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5216 		 adj_dev->name, dev->name, adj_dev->name);
5217 	dev_put(adj_dev);
5218 	kfree_rcu(adj, rcu);
5219 }
5220 
5221 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5222 					    struct net_device *upper_dev,
5223 					    struct list_head *up_list,
5224 					    struct list_head *down_list,
5225 					    void *private, bool master)
5226 {
5227 	int ret;
5228 
5229 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5230 					   master);
5231 	if (ret)
5232 		return ret;
5233 
5234 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5235 					   false);
5236 	if (ret) {
5237 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5238 		return ret;
5239 	}
5240 
5241 	return 0;
5242 }
5243 
5244 static int __netdev_adjacent_dev_link(struct net_device *dev,
5245 				      struct net_device *upper_dev)
5246 {
5247 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5248 						&dev->all_adj_list.upper,
5249 						&upper_dev->all_adj_list.lower,
5250 						NULL, false);
5251 }
5252 
5253 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5254 					       struct net_device *upper_dev,
5255 					       struct list_head *up_list,
5256 					       struct list_head *down_list)
5257 {
5258 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5259 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5260 }
5261 
5262 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5263 					 struct net_device *upper_dev)
5264 {
5265 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5266 					   &dev->all_adj_list.upper,
5267 					   &upper_dev->all_adj_list.lower);
5268 }
5269 
5270 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5271 						struct net_device *upper_dev,
5272 						void *private, bool master)
5273 {
5274 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5275 
5276 	if (ret)
5277 		return ret;
5278 
5279 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5280 					       &dev->adj_list.upper,
5281 					       &upper_dev->adj_list.lower,
5282 					       private, master);
5283 	if (ret) {
5284 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5285 		return ret;
5286 	}
5287 
5288 	return 0;
5289 }
5290 
5291 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5292 						   struct net_device *upper_dev)
5293 {
5294 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5295 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5296 					   &dev->adj_list.upper,
5297 					   &upper_dev->adj_list.lower);
5298 }
5299 
5300 static int __netdev_upper_dev_link(struct net_device *dev,
5301 				   struct net_device *upper_dev, bool master,
5302 				   void *private)
5303 {
5304 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5305 	int ret = 0;
5306 
5307 	ASSERT_RTNL();
5308 
5309 	if (dev == upper_dev)
5310 		return -EBUSY;
5311 
5312 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5313 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5314 		return -EBUSY;
5315 
5316 	if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper))
5317 		return -EEXIST;
5318 
5319 	if (master && netdev_master_upper_dev_get(dev))
5320 		return -EBUSY;
5321 
5322 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5323 						   master);
5324 	if (ret)
5325 		return ret;
5326 
5327 	/* Now that we linked these devs, make all the upper_dev's
5328 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5329 	 * versa, and don't forget the devices itself. All of these
5330 	 * links are non-neighbours.
5331 	 */
5332 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5333 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5334 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5335 				 i->dev->name, j->dev->name);
5336 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5337 			if (ret)
5338 				goto rollback_mesh;
5339 		}
5340 	}
5341 
5342 	/* add dev to every upper_dev's upper device */
5343 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5344 		pr_debug("linking %s's upper device %s with %s\n",
5345 			 upper_dev->name, i->dev->name, dev->name);
5346 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5347 		if (ret)
5348 			goto rollback_upper_mesh;
5349 	}
5350 
5351 	/* add upper_dev to every dev's lower device */
5352 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5353 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5354 			 i->dev->name, upper_dev->name);
5355 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5356 		if (ret)
5357 			goto rollback_lower_mesh;
5358 	}
5359 
5360 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5361 	return 0;
5362 
5363 rollback_lower_mesh:
5364 	to_i = i;
5365 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5366 		if (i == to_i)
5367 			break;
5368 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5369 	}
5370 
5371 	i = NULL;
5372 
5373 rollback_upper_mesh:
5374 	to_i = i;
5375 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5376 		if (i == to_i)
5377 			break;
5378 		__netdev_adjacent_dev_unlink(dev, i->dev);
5379 	}
5380 
5381 	i = j = NULL;
5382 
5383 rollback_mesh:
5384 	to_i = i;
5385 	to_j = j;
5386 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5387 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5388 			if (i == to_i && j == to_j)
5389 				break;
5390 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5391 		}
5392 		if (i == to_i)
5393 			break;
5394 	}
5395 
5396 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5397 
5398 	return ret;
5399 }
5400 
5401 /**
5402  * netdev_upper_dev_link - Add a link to the upper device
5403  * @dev: device
5404  * @upper_dev: new upper device
5405  *
5406  * Adds a link to device which is upper to this one. The caller must hold
5407  * the RTNL lock. On a failure a negative errno code is returned.
5408  * On success the reference counts are adjusted and the function
5409  * returns zero.
5410  */
5411 int netdev_upper_dev_link(struct net_device *dev,
5412 			  struct net_device *upper_dev)
5413 {
5414 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5415 }
5416 EXPORT_SYMBOL(netdev_upper_dev_link);
5417 
5418 /**
5419  * netdev_master_upper_dev_link - Add a master link to the upper device
5420  * @dev: device
5421  * @upper_dev: new upper device
5422  *
5423  * Adds a link to device which is upper to this one. In this case, only
5424  * one master upper device can be linked, although other non-master devices
5425  * might be linked as well. The caller must hold the RTNL lock.
5426  * On a failure a negative errno code is returned. On success the reference
5427  * counts are adjusted and the function returns zero.
5428  */
5429 int netdev_master_upper_dev_link(struct net_device *dev,
5430 				 struct net_device *upper_dev)
5431 {
5432 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5433 }
5434 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5435 
5436 int netdev_master_upper_dev_link_private(struct net_device *dev,
5437 					 struct net_device *upper_dev,
5438 					 void *private)
5439 {
5440 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5441 }
5442 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5443 
5444 /**
5445  * netdev_upper_dev_unlink - Removes a link to upper device
5446  * @dev: device
5447  * @upper_dev: new upper device
5448  *
5449  * Removes a link to device which is upper to this one. The caller must hold
5450  * the RTNL lock.
5451  */
5452 void netdev_upper_dev_unlink(struct net_device *dev,
5453 			     struct net_device *upper_dev)
5454 {
5455 	struct netdev_adjacent *i, *j;
5456 	ASSERT_RTNL();
5457 
5458 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5459 
5460 	/* Here is the tricky part. We must remove all dev's lower
5461 	 * devices from all upper_dev's upper devices and vice
5462 	 * versa, to maintain the graph relationship.
5463 	 */
5464 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5465 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5466 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5467 
5468 	/* remove also the devices itself from lower/upper device
5469 	 * list
5470 	 */
5471 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5472 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5473 
5474 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5475 		__netdev_adjacent_dev_unlink(dev, i->dev);
5476 
5477 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5478 }
5479 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5480 
5481 /**
5482  * netdev_bonding_info_change - Dispatch event about slave change
5483  * @dev: device
5484  * @bonding_info: info to dispatch
5485  *
5486  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5487  * The caller must hold the RTNL lock.
5488  */
5489 void netdev_bonding_info_change(struct net_device *dev,
5490 				struct netdev_bonding_info *bonding_info)
5491 {
5492 	struct netdev_notifier_bonding_info	info;
5493 
5494 	memcpy(&info.bonding_info, bonding_info,
5495 	       sizeof(struct netdev_bonding_info));
5496 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5497 				      &info.info);
5498 }
5499 EXPORT_SYMBOL(netdev_bonding_info_change);
5500 
5501 static void netdev_adjacent_add_links(struct net_device *dev)
5502 {
5503 	struct netdev_adjacent *iter;
5504 
5505 	struct net *net = dev_net(dev);
5506 
5507 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5508 		if (!net_eq(net,dev_net(iter->dev)))
5509 			continue;
5510 		netdev_adjacent_sysfs_add(iter->dev, dev,
5511 					  &iter->dev->adj_list.lower);
5512 		netdev_adjacent_sysfs_add(dev, iter->dev,
5513 					  &dev->adj_list.upper);
5514 	}
5515 
5516 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5517 		if (!net_eq(net,dev_net(iter->dev)))
5518 			continue;
5519 		netdev_adjacent_sysfs_add(iter->dev, dev,
5520 					  &iter->dev->adj_list.upper);
5521 		netdev_adjacent_sysfs_add(dev, iter->dev,
5522 					  &dev->adj_list.lower);
5523 	}
5524 }
5525 
5526 static void netdev_adjacent_del_links(struct net_device *dev)
5527 {
5528 	struct netdev_adjacent *iter;
5529 
5530 	struct net *net = dev_net(dev);
5531 
5532 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5533 		if (!net_eq(net,dev_net(iter->dev)))
5534 			continue;
5535 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5536 					  &iter->dev->adj_list.lower);
5537 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5538 					  &dev->adj_list.upper);
5539 	}
5540 
5541 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5542 		if (!net_eq(net,dev_net(iter->dev)))
5543 			continue;
5544 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5545 					  &iter->dev->adj_list.upper);
5546 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5547 					  &dev->adj_list.lower);
5548 	}
5549 }
5550 
5551 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5552 {
5553 	struct netdev_adjacent *iter;
5554 
5555 	struct net *net = dev_net(dev);
5556 
5557 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5558 		if (!net_eq(net,dev_net(iter->dev)))
5559 			continue;
5560 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5561 					  &iter->dev->adj_list.lower);
5562 		netdev_adjacent_sysfs_add(iter->dev, dev,
5563 					  &iter->dev->adj_list.lower);
5564 	}
5565 
5566 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5567 		if (!net_eq(net,dev_net(iter->dev)))
5568 			continue;
5569 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5570 					  &iter->dev->adj_list.upper);
5571 		netdev_adjacent_sysfs_add(iter->dev, dev,
5572 					  &iter->dev->adj_list.upper);
5573 	}
5574 }
5575 
5576 void *netdev_lower_dev_get_private(struct net_device *dev,
5577 				   struct net_device *lower_dev)
5578 {
5579 	struct netdev_adjacent *lower;
5580 
5581 	if (!lower_dev)
5582 		return NULL;
5583 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5584 	if (!lower)
5585 		return NULL;
5586 
5587 	return lower->private;
5588 }
5589 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5590 
5591 
5592 int dev_get_nest_level(struct net_device *dev,
5593 		       bool (*type_check)(struct net_device *dev))
5594 {
5595 	struct net_device *lower = NULL;
5596 	struct list_head *iter;
5597 	int max_nest = -1;
5598 	int nest;
5599 
5600 	ASSERT_RTNL();
5601 
5602 	netdev_for_each_lower_dev(dev, lower, iter) {
5603 		nest = dev_get_nest_level(lower, type_check);
5604 		if (max_nest < nest)
5605 			max_nest = nest;
5606 	}
5607 
5608 	if (type_check(dev))
5609 		max_nest++;
5610 
5611 	return max_nest;
5612 }
5613 EXPORT_SYMBOL(dev_get_nest_level);
5614 
5615 static void dev_change_rx_flags(struct net_device *dev, int flags)
5616 {
5617 	const struct net_device_ops *ops = dev->netdev_ops;
5618 
5619 	if (ops->ndo_change_rx_flags)
5620 		ops->ndo_change_rx_flags(dev, flags);
5621 }
5622 
5623 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5624 {
5625 	unsigned int old_flags = dev->flags;
5626 	kuid_t uid;
5627 	kgid_t gid;
5628 
5629 	ASSERT_RTNL();
5630 
5631 	dev->flags |= IFF_PROMISC;
5632 	dev->promiscuity += inc;
5633 	if (dev->promiscuity == 0) {
5634 		/*
5635 		 * Avoid overflow.
5636 		 * If inc causes overflow, untouch promisc and return error.
5637 		 */
5638 		if (inc < 0)
5639 			dev->flags &= ~IFF_PROMISC;
5640 		else {
5641 			dev->promiscuity -= inc;
5642 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5643 				dev->name);
5644 			return -EOVERFLOW;
5645 		}
5646 	}
5647 	if (dev->flags != old_flags) {
5648 		pr_info("device %s %s promiscuous mode\n",
5649 			dev->name,
5650 			dev->flags & IFF_PROMISC ? "entered" : "left");
5651 		if (audit_enabled) {
5652 			current_uid_gid(&uid, &gid);
5653 			audit_log(current->audit_context, GFP_ATOMIC,
5654 				AUDIT_ANOM_PROMISCUOUS,
5655 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5656 				dev->name, (dev->flags & IFF_PROMISC),
5657 				(old_flags & IFF_PROMISC),
5658 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5659 				from_kuid(&init_user_ns, uid),
5660 				from_kgid(&init_user_ns, gid),
5661 				audit_get_sessionid(current));
5662 		}
5663 
5664 		dev_change_rx_flags(dev, IFF_PROMISC);
5665 	}
5666 	if (notify)
5667 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5668 	return 0;
5669 }
5670 
5671 /**
5672  *	dev_set_promiscuity	- update promiscuity count on a device
5673  *	@dev: device
5674  *	@inc: modifier
5675  *
5676  *	Add or remove promiscuity from a device. While the count in the device
5677  *	remains above zero the interface remains promiscuous. Once it hits zero
5678  *	the device reverts back to normal filtering operation. A negative inc
5679  *	value is used to drop promiscuity on the device.
5680  *	Return 0 if successful or a negative errno code on error.
5681  */
5682 int dev_set_promiscuity(struct net_device *dev, int inc)
5683 {
5684 	unsigned int old_flags = dev->flags;
5685 	int err;
5686 
5687 	err = __dev_set_promiscuity(dev, inc, true);
5688 	if (err < 0)
5689 		return err;
5690 	if (dev->flags != old_flags)
5691 		dev_set_rx_mode(dev);
5692 	return err;
5693 }
5694 EXPORT_SYMBOL(dev_set_promiscuity);
5695 
5696 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5697 {
5698 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5699 
5700 	ASSERT_RTNL();
5701 
5702 	dev->flags |= IFF_ALLMULTI;
5703 	dev->allmulti += inc;
5704 	if (dev->allmulti == 0) {
5705 		/*
5706 		 * Avoid overflow.
5707 		 * If inc causes overflow, untouch allmulti and return error.
5708 		 */
5709 		if (inc < 0)
5710 			dev->flags &= ~IFF_ALLMULTI;
5711 		else {
5712 			dev->allmulti -= inc;
5713 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5714 				dev->name);
5715 			return -EOVERFLOW;
5716 		}
5717 	}
5718 	if (dev->flags ^ old_flags) {
5719 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5720 		dev_set_rx_mode(dev);
5721 		if (notify)
5722 			__dev_notify_flags(dev, old_flags,
5723 					   dev->gflags ^ old_gflags);
5724 	}
5725 	return 0;
5726 }
5727 
5728 /**
5729  *	dev_set_allmulti	- update allmulti count on a device
5730  *	@dev: device
5731  *	@inc: modifier
5732  *
5733  *	Add or remove reception of all multicast frames to a device. While the
5734  *	count in the device remains above zero the interface remains listening
5735  *	to all interfaces. Once it hits zero the device reverts back to normal
5736  *	filtering operation. A negative @inc value is used to drop the counter
5737  *	when releasing a resource needing all multicasts.
5738  *	Return 0 if successful or a negative errno code on error.
5739  */
5740 
5741 int dev_set_allmulti(struct net_device *dev, int inc)
5742 {
5743 	return __dev_set_allmulti(dev, inc, true);
5744 }
5745 EXPORT_SYMBOL(dev_set_allmulti);
5746 
5747 /*
5748  *	Upload unicast and multicast address lists to device and
5749  *	configure RX filtering. When the device doesn't support unicast
5750  *	filtering it is put in promiscuous mode while unicast addresses
5751  *	are present.
5752  */
5753 void __dev_set_rx_mode(struct net_device *dev)
5754 {
5755 	const struct net_device_ops *ops = dev->netdev_ops;
5756 
5757 	/* dev_open will call this function so the list will stay sane. */
5758 	if (!(dev->flags&IFF_UP))
5759 		return;
5760 
5761 	if (!netif_device_present(dev))
5762 		return;
5763 
5764 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5765 		/* Unicast addresses changes may only happen under the rtnl,
5766 		 * therefore calling __dev_set_promiscuity here is safe.
5767 		 */
5768 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5769 			__dev_set_promiscuity(dev, 1, false);
5770 			dev->uc_promisc = true;
5771 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5772 			__dev_set_promiscuity(dev, -1, false);
5773 			dev->uc_promisc = false;
5774 		}
5775 	}
5776 
5777 	if (ops->ndo_set_rx_mode)
5778 		ops->ndo_set_rx_mode(dev);
5779 }
5780 
5781 void dev_set_rx_mode(struct net_device *dev)
5782 {
5783 	netif_addr_lock_bh(dev);
5784 	__dev_set_rx_mode(dev);
5785 	netif_addr_unlock_bh(dev);
5786 }
5787 
5788 /**
5789  *	dev_get_flags - get flags reported to userspace
5790  *	@dev: device
5791  *
5792  *	Get the combination of flag bits exported through APIs to userspace.
5793  */
5794 unsigned int dev_get_flags(const struct net_device *dev)
5795 {
5796 	unsigned int flags;
5797 
5798 	flags = (dev->flags & ~(IFF_PROMISC |
5799 				IFF_ALLMULTI |
5800 				IFF_RUNNING |
5801 				IFF_LOWER_UP |
5802 				IFF_DORMANT)) |
5803 		(dev->gflags & (IFF_PROMISC |
5804 				IFF_ALLMULTI));
5805 
5806 	if (netif_running(dev)) {
5807 		if (netif_oper_up(dev))
5808 			flags |= IFF_RUNNING;
5809 		if (netif_carrier_ok(dev))
5810 			flags |= IFF_LOWER_UP;
5811 		if (netif_dormant(dev))
5812 			flags |= IFF_DORMANT;
5813 	}
5814 
5815 	return flags;
5816 }
5817 EXPORT_SYMBOL(dev_get_flags);
5818 
5819 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5820 {
5821 	unsigned int old_flags = dev->flags;
5822 	int ret;
5823 
5824 	ASSERT_RTNL();
5825 
5826 	/*
5827 	 *	Set the flags on our device.
5828 	 */
5829 
5830 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5831 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5832 			       IFF_AUTOMEDIA)) |
5833 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5834 				    IFF_ALLMULTI));
5835 
5836 	/*
5837 	 *	Load in the correct multicast list now the flags have changed.
5838 	 */
5839 
5840 	if ((old_flags ^ flags) & IFF_MULTICAST)
5841 		dev_change_rx_flags(dev, IFF_MULTICAST);
5842 
5843 	dev_set_rx_mode(dev);
5844 
5845 	/*
5846 	 *	Have we downed the interface. We handle IFF_UP ourselves
5847 	 *	according to user attempts to set it, rather than blindly
5848 	 *	setting it.
5849 	 */
5850 
5851 	ret = 0;
5852 	if ((old_flags ^ flags) & IFF_UP)
5853 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5854 
5855 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5856 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5857 		unsigned int old_flags = dev->flags;
5858 
5859 		dev->gflags ^= IFF_PROMISC;
5860 
5861 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5862 			if (dev->flags != old_flags)
5863 				dev_set_rx_mode(dev);
5864 	}
5865 
5866 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5867 	   is important. Some (broken) drivers set IFF_PROMISC, when
5868 	   IFF_ALLMULTI is requested not asking us and not reporting.
5869 	 */
5870 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5871 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5872 
5873 		dev->gflags ^= IFF_ALLMULTI;
5874 		__dev_set_allmulti(dev, inc, false);
5875 	}
5876 
5877 	return ret;
5878 }
5879 
5880 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5881 			unsigned int gchanges)
5882 {
5883 	unsigned int changes = dev->flags ^ old_flags;
5884 
5885 	if (gchanges)
5886 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5887 
5888 	if (changes & IFF_UP) {
5889 		if (dev->flags & IFF_UP)
5890 			call_netdevice_notifiers(NETDEV_UP, dev);
5891 		else
5892 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5893 	}
5894 
5895 	if (dev->flags & IFF_UP &&
5896 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5897 		struct netdev_notifier_change_info change_info;
5898 
5899 		change_info.flags_changed = changes;
5900 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5901 					      &change_info.info);
5902 	}
5903 }
5904 
5905 /**
5906  *	dev_change_flags - change device settings
5907  *	@dev: device
5908  *	@flags: device state flags
5909  *
5910  *	Change settings on device based state flags. The flags are
5911  *	in the userspace exported format.
5912  */
5913 int dev_change_flags(struct net_device *dev, unsigned int flags)
5914 {
5915 	int ret;
5916 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5917 
5918 	ret = __dev_change_flags(dev, flags);
5919 	if (ret < 0)
5920 		return ret;
5921 
5922 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5923 	__dev_notify_flags(dev, old_flags, changes);
5924 	return ret;
5925 }
5926 EXPORT_SYMBOL(dev_change_flags);
5927 
5928 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5929 {
5930 	const struct net_device_ops *ops = dev->netdev_ops;
5931 
5932 	if (ops->ndo_change_mtu)
5933 		return ops->ndo_change_mtu(dev, new_mtu);
5934 
5935 	dev->mtu = new_mtu;
5936 	return 0;
5937 }
5938 
5939 /**
5940  *	dev_set_mtu - Change maximum transfer unit
5941  *	@dev: device
5942  *	@new_mtu: new transfer unit
5943  *
5944  *	Change the maximum transfer size of the network device.
5945  */
5946 int dev_set_mtu(struct net_device *dev, int new_mtu)
5947 {
5948 	int err, orig_mtu;
5949 
5950 	if (new_mtu == dev->mtu)
5951 		return 0;
5952 
5953 	/*	MTU must be positive.	 */
5954 	if (new_mtu < 0)
5955 		return -EINVAL;
5956 
5957 	if (!netif_device_present(dev))
5958 		return -ENODEV;
5959 
5960 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5961 	err = notifier_to_errno(err);
5962 	if (err)
5963 		return err;
5964 
5965 	orig_mtu = dev->mtu;
5966 	err = __dev_set_mtu(dev, new_mtu);
5967 
5968 	if (!err) {
5969 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5970 		err = notifier_to_errno(err);
5971 		if (err) {
5972 			/* setting mtu back and notifying everyone again,
5973 			 * so that they have a chance to revert changes.
5974 			 */
5975 			__dev_set_mtu(dev, orig_mtu);
5976 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5977 		}
5978 	}
5979 	return err;
5980 }
5981 EXPORT_SYMBOL(dev_set_mtu);
5982 
5983 /**
5984  *	dev_set_group - Change group this device belongs to
5985  *	@dev: device
5986  *	@new_group: group this device should belong to
5987  */
5988 void dev_set_group(struct net_device *dev, int new_group)
5989 {
5990 	dev->group = new_group;
5991 }
5992 EXPORT_SYMBOL(dev_set_group);
5993 
5994 /**
5995  *	dev_set_mac_address - Change Media Access Control Address
5996  *	@dev: device
5997  *	@sa: new address
5998  *
5999  *	Change the hardware (MAC) address of the device
6000  */
6001 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6002 {
6003 	const struct net_device_ops *ops = dev->netdev_ops;
6004 	int err;
6005 
6006 	if (!ops->ndo_set_mac_address)
6007 		return -EOPNOTSUPP;
6008 	if (sa->sa_family != dev->type)
6009 		return -EINVAL;
6010 	if (!netif_device_present(dev))
6011 		return -ENODEV;
6012 	err = ops->ndo_set_mac_address(dev, sa);
6013 	if (err)
6014 		return err;
6015 	dev->addr_assign_type = NET_ADDR_SET;
6016 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6017 	add_device_randomness(dev->dev_addr, dev->addr_len);
6018 	return 0;
6019 }
6020 EXPORT_SYMBOL(dev_set_mac_address);
6021 
6022 /**
6023  *	dev_change_carrier - Change device carrier
6024  *	@dev: device
6025  *	@new_carrier: new value
6026  *
6027  *	Change device carrier
6028  */
6029 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6030 {
6031 	const struct net_device_ops *ops = dev->netdev_ops;
6032 
6033 	if (!ops->ndo_change_carrier)
6034 		return -EOPNOTSUPP;
6035 	if (!netif_device_present(dev))
6036 		return -ENODEV;
6037 	return ops->ndo_change_carrier(dev, new_carrier);
6038 }
6039 EXPORT_SYMBOL(dev_change_carrier);
6040 
6041 /**
6042  *	dev_get_phys_port_id - Get device physical port ID
6043  *	@dev: device
6044  *	@ppid: port ID
6045  *
6046  *	Get device physical port ID
6047  */
6048 int dev_get_phys_port_id(struct net_device *dev,
6049 			 struct netdev_phys_item_id *ppid)
6050 {
6051 	const struct net_device_ops *ops = dev->netdev_ops;
6052 
6053 	if (!ops->ndo_get_phys_port_id)
6054 		return -EOPNOTSUPP;
6055 	return ops->ndo_get_phys_port_id(dev, ppid);
6056 }
6057 EXPORT_SYMBOL(dev_get_phys_port_id);
6058 
6059 /**
6060  *	dev_get_phys_port_name - Get device physical port name
6061  *	@dev: device
6062  *	@name: port name
6063  *
6064  *	Get device physical port name
6065  */
6066 int dev_get_phys_port_name(struct net_device *dev,
6067 			   char *name, size_t len)
6068 {
6069 	const struct net_device_ops *ops = dev->netdev_ops;
6070 
6071 	if (!ops->ndo_get_phys_port_name)
6072 		return -EOPNOTSUPP;
6073 	return ops->ndo_get_phys_port_name(dev, name, len);
6074 }
6075 EXPORT_SYMBOL(dev_get_phys_port_name);
6076 
6077 /**
6078  *	dev_new_index	-	allocate an ifindex
6079  *	@net: the applicable net namespace
6080  *
6081  *	Returns a suitable unique value for a new device interface
6082  *	number.  The caller must hold the rtnl semaphore or the
6083  *	dev_base_lock to be sure it remains unique.
6084  */
6085 static int dev_new_index(struct net *net)
6086 {
6087 	int ifindex = net->ifindex;
6088 	for (;;) {
6089 		if (++ifindex <= 0)
6090 			ifindex = 1;
6091 		if (!__dev_get_by_index(net, ifindex))
6092 			return net->ifindex = ifindex;
6093 	}
6094 }
6095 
6096 /* Delayed registration/unregisteration */
6097 static LIST_HEAD(net_todo_list);
6098 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6099 
6100 static void net_set_todo(struct net_device *dev)
6101 {
6102 	list_add_tail(&dev->todo_list, &net_todo_list);
6103 	dev_net(dev)->dev_unreg_count++;
6104 }
6105 
6106 static void rollback_registered_many(struct list_head *head)
6107 {
6108 	struct net_device *dev, *tmp;
6109 	LIST_HEAD(close_head);
6110 
6111 	BUG_ON(dev_boot_phase);
6112 	ASSERT_RTNL();
6113 
6114 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6115 		/* Some devices call without registering
6116 		 * for initialization unwind. Remove those
6117 		 * devices and proceed with the remaining.
6118 		 */
6119 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6120 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6121 				 dev->name, dev);
6122 
6123 			WARN_ON(1);
6124 			list_del(&dev->unreg_list);
6125 			continue;
6126 		}
6127 		dev->dismantle = true;
6128 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6129 	}
6130 
6131 	/* If device is running, close it first. */
6132 	list_for_each_entry(dev, head, unreg_list)
6133 		list_add_tail(&dev->close_list, &close_head);
6134 	dev_close_many(&close_head, true);
6135 
6136 	list_for_each_entry(dev, head, unreg_list) {
6137 		/* And unlink it from device chain. */
6138 		unlist_netdevice(dev);
6139 
6140 		dev->reg_state = NETREG_UNREGISTERING;
6141 		on_each_cpu(flush_backlog, dev, 1);
6142 	}
6143 
6144 	synchronize_net();
6145 
6146 	list_for_each_entry(dev, head, unreg_list) {
6147 		struct sk_buff *skb = NULL;
6148 
6149 		/* Shutdown queueing discipline. */
6150 		dev_shutdown(dev);
6151 
6152 
6153 		/* Notify protocols, that we are about to destroy
6154 		   this device. They should clean all the things.
6155 		*/
6156 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6157 
6158 		if (!dev->rtnl_link_ops ||
6159 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6160 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6161 						     GFP_KERNEL);
6162 
6163 		/*
6164 		 *	Flush the unicast and multicast chains
6165 		 */
6166 		dev_uc_flush(dev);
6167 		dev_mc_flush(dev);
6168 
6169 		if (dev->netdev_ops->ndo_uninit)
6170 			dev->netdev_ops->ndo_uninit(dev);
6171 
6172 		if (skb)
6173 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6174 
6175 		/* Notifier chain MUST detach us all upper devices. */
6176 		WARN_ON(netdev_has_any_upper_dev(dev));
6177 
6178 		/* Remove entries from kobject tree */
6179 		netdev_unregister_kobject(dev);
6180 #ifdef CONFIG_XPS
6181 		/* Remove XPS queueing entries */
6182 		netif_reset_xps_queues_gt(dev, 0);
6183 #endif
6184 	}
6185 
6186 	synchronize_net();
6187 
6188 	list_for_each_entry(dev, head, unreg_list)
6189 		dev_put(dev);
6190 }
6191 
6192 static void rollback_registered(struct net_device *dev)
6193 {
6194 	LIST_HEAD(single);
6195 
6196 	list_add(&dev->unreg_list, &single);
6197 	rollback_registered_many(&single);
6198 	list_del(&single);
6199 }
6200 
6201 static netdev_features_t netdev_fix_features(struct net_device *dev,
6202 	netdev_features_t features)
6203 {
6204 	/* Fix illegal checksum combinations */
6205 	if ((features & NETIF_F_HW_CSUM) &&
6206 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6207 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6208 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6209 	}
6210 
6211 	/* TSO requires that SG is present as well. */
6212 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6213 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6214 		features &= ~NETIF_F_ALL_TSO;
6215 	}
6216 
6217 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6218 					!(features & NETIF_F_IP_CSUM)) {
6219 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6220 		features &= ~NETIF_F_TSO;
6221 		features &= ~NETIF_F_TSO_ECN;
6222 	}
6223 
6224 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6225 					 !(features & NETIF_F_IPV6_CSUM)) {
6226 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6227 		features &= ~NETIF_F_TSO6;
6228 	}
6229 
6230 	/* TSO ECN requires that TSO is present as well. */
6231 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6232 		features &= ~NETIF_F_TSO_ECN;
6233 
6234 	/* Software GSO depends on SG. */
6235 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6236 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6237 		features &= ~NETIF_F_GSO;
6238 	}
6239 
6240 	/* UFO needs SG and checksumming */
6241 	if (features & NETIF_F_UFO) {
6242 		/* maybe split UFO into V4 and V6? */
6243 		if (!((features & NETIF_F_GEN_CSUM) ||
6244 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6245 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6246 			netdev_dbg(dev,
6247 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6248 			features &= ~NETIF_F_UFO;
6249 		}
6250 
6251 		if (!(features & NETIF_F_SG)) {
6252 			netdev_dbg(dev,
6253 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6254 			features &= ~NETIF_F_UFO;
6255 		}
6256 	}
6257 
6258 #ifdef CONFIG_NET_RX_BUSY_POLL
6259 	if (dev->netdev_ops->ndo_busy_poll)
6260 		features |= NETIF_F_BUSY_POLL;
6261 	else
6262 #endif
6263 		features &= ~NETIF_F_BUSY_POLL;
6264 
6265 	return features;
6266 }
6267 
6268 int __netdev_update_features(struct net_device *dev)
6269 {
6270 	netdev_features_t features;
6271 	int err = 0;
6272 
6273 	ASSERT_RTNL();
6274 
6275 	features = netdev_get_wanted_features(dev);
6276 
6277 	if (dev->netdev_ops->ndo_fix_features)
6278 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6279 
6280 	/* driver might be less strict about feature dependencies */
6281 	features = netdev_fix_features(dev, features);
6282 
6283 	if (dev->features == features)
6284 		return 0;
6285 
6286 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6287 		&dev->features, &features);
6288 
6289 	if (dev->netdev_ops->ndo_set_features)
6290 		err = dev->netdev_ops->ndo_set_features(dev, features);
6291 
6292 	if (unlikely(err < 0)) {
6293 		netdev_err(dev,
6294 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6295 			err, &features, &dev->features);
6296 		return -1;
6297 	}
6298 
6299 	if (!err)
6300 		dev->features = features;
6301 
6302 	return 1;
6303 }
6304 
6305 /**
6306  *	netdev_update_features - recalculate device features
6307  *	@dev: the device to check
6308  *
6309  *	Recalculate dev->features set and send notifications if it
6310  *	has changed. Should be called after driver or hardware dependent
6311  *	conditions might have changed that influence the features.
6312  */
6313 void netdev_update_features(struct net_device *dev)
6314 {
6315 	if (__netdev_update_features(dev))
6316 		netdev_features_change(dev);
6317 }
6318 EXPORT_SYMBOL(netdev_update_features);
6319 
6320 /**
6321  *	netdev_change_features - recalculate device features
6322  *	@dev: the device to check
6323  *
6324  *	Recalculate dev->features set and send notifications even
6325  *	if they have not changed. Should be called instead of
6326  *	netdev_update_features() if also dev->vlan_features might
6327  *	have changed to allow the changes to be propagated to stacked
6328  *	VLAN devices.
6329  */
6330 void netdev_change_features(struct net_device *dev)
6331 {
6332 	__netdev_update_features(dev);
6333 	netdev_features_change(dev);
6334 }
6335 EXPORT_SYMBOL(netdev_change_features);
6336 
6337 /**
6338  *	netif_stacked_transfer_operstate -	transfer operstate
6339  *	@rootdev: the root or lower level device to transfer state from
6340  *	@dev: the device to transfer operstate to
6341  *
6342  *	Transfer operational state from root to device. This is normally
6343  *	called when a stacking relationship exists between the root
6344  *	device and the device(a leaf device).
6345  */
6346 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6347 					struct net_device *dev)
6348 {
6349 	if (rootdev->operstate == IF_OPER_DORMANT)
6350 		netif_dormant_on(dev);
6351 	else
6352 		netif_dormant_off(dev);
6353 
6354 	if (netif_carrier_ok(rootdev)) {
6355 		if (!netif_carrier_ok(dev))
6356 			netif_carrier_on(dev);
6357 	} else {
6358 		if (netif_carrier_ok(dev))
6359 			netif_carrier_off(dev);
6360 	}
6361 }
6362 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6363 
6364 #ifdef CONFIG_SYSFS
6365 static int netif_alloc_rx_queues(struct net_device *dev)
6366 {
6367 	unsigned int i, count = dev->num_rx_queues;
6368 	struct netdev_rx_queue *rx;
6369 	size_t sz = count * sizeof(*rx);
6370 
6371 	BUG_ON(count < 1);
6372 
6373 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6374 	if (!rx) {
6375 		rx = vzalloc(sz);
6376 		if (!rx)
6377 			return -ENOMEM;
6378 	}
6379 	dev->_rx = rx;
6380 
6381 	for (i = 0; i < count; i++)
6382 		rx[i].dev = dev;
6383 	return 0;
6384 }
6385 #endif
6386 
6387 static void netdev_init_one_queue(struct net_device *dev,
6388 				  struct netdev_queue *queue, void *_unused)
6389 {
6390 	/* Initialize queue lock */
6391 	spin_lock_init(&queue->_xmit_lock);
6392 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6393 	queue->xmit_lock_owner = -1;
6394 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6395 	queue->dev = dev;
6396 #ifdef CONFIG_BQL
6397 	dql_init(&queue->dql, HZ);
6398 #endif
6399 }
6400 
6401 static void netif_free_tx_queues(struct net_device *dev)
6402 {
6403 	kvfree(dev->_tx);
6404 }
6405 
6406 static int netif_alloc_netdev_queues(struct net_device *dev)
6407 {
6408 	unsigned int count = dev->num_tx_queues;
6409 	struct netdev_queue *tx;
6410 	size_t sz = count * sizeof(*tx);
6411 
6412 	if (count < 1 || count > 0xffff)
6413 		return -EINVAL;
6414 
6415 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6416 	if (!tx) {
6417 		tx = vzalloc(sz);
6418 		if (!tx)
6419 			return -ENOMEM;
6420 	}
6421 	dev->_tx = tx;
6422 
6423 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6424 	spin_lock_init(&dev->tx_global_lock);
6425 
6426 	return 0;
6427 }
6428 
6429 void netif_tx_stop_all_queues(struct net_device *dev)
6430 {
6431 	unsigned int i;
6432 
6433 	for (i = 0; i < dev->num_tx_queues; i++) {
6434 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6435 		netif_tx_stop_queue(txq);
6436 	}
6437 }
6438 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6439 
6440 /**
6441  *	register_netdevice	- register a network device
6442  *	@dev: device to register
6443  *
6444  *	Take a completed network device structure and add it to the kernel
6445  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6446  *	chain. 0 is returned on success. A negative errno code is returned
6447  *	on a failure to set up the device, or if the name is a duplicate.
6448  *
6449  *	Callers must hold the rtnl semaphore. You may want
6450  *	register_netdev() instead of this.
6451  *
6452  *	BUGS:
6453  *	The locking appears insufficient to guarantee two parallel registers
6454  *	will not get the same name.
6455  */
6456 
6457 int register_netdevice(struct net_device *dev)
6458 {
6459 	int ret;
6460 	struct net *net = dev_net(dev);
6461 
6462 	BUG_ON(dev_boot_phase);
6463 	ASSERT_RTNL();
6464 
6465 	might_sleep();
6466 
6467 	/* When net_device's are persistent, this will be fatal. */
6468 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6469 	BUG_ON(!net);
6470 
6471 	spin_lock_init(&dev->addr_list_lock);
6472 	netdev_set_addr_lockdep_class(dev);
6473 
6474 	ret = dev_get_valid_name(net, dev, dev->name);
6475 	if (ret < 0)
6476 		goto out;
6477 
6478 	/* Init, if this function is available */
6479 	if (dev->netdev_ops->ndo_init) {
6480 		ret = dev->netdev_ops->ndo_init(dev);
6481 		if (ret) {
6482 			if (ret > 0)
6483 				ret = -EIO;
6484 			goto out;
6485 		}
6486 	}
6487 
6488 	if (((dev->hw_features | dev->features) &
6489 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6490 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6491 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6492 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6493 		ret = -EINVAL;
6494 		goto err_uninit;
6495 	}
6496 
6497 	ret = -EBUSY;
6498 	if (!dev->ifindex)
6499 		dev->ifindex = dev_new_index(net);
6500 	else if (__dev_get_by_index(net, dev->ifindex))
6501 		goto err_uninit;
6502 
6503 	/* Transfer changeable features to wanted_features and enable
6504 	 * software offloads (GSO and GRO).
6505 	 */
6506 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6507 	dev->features |= NETIF_F_SOFT_FEATURES;
6508 	dev->wanted_features = dev->features & dev->hw_features;
6509 
6510 	if (!(dev->flags & IFF_LOOPBACK)) {
6511 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6512 	}
6513 
6514 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6515 	 */
6516 	dev->vlan_features |= NETIF_F_HIGHDMA;
6517 
6518 	/* Make NETIF_F_SG inheritable to tunnel devices.
6519 	 */
6520 	dev->hw_enc_features |= NETIF_F_SG;
6521 
6522 	/* Make NETIF_F_SG inheritable to MPLS.
6523 	 */
6524 	dev->mpls_features |= NETIF_F_SG;
6525 
6526 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6527 	ret = notifier_to_errno(ret);
6528 	if (ret)
6529 		goto err_uninit;
6530 
6531 	ret = netdev_register_kobject(dev);
6532 	if (ret)
6533 		goto err_uninit;
6534 	dev->reg_state = NETREG_REGISTERED;
6535 
6536 	__netdev_update_features(dev);
6537 
6538 	/*
6539 	 *	Default initial state at registry is that the
6540 	 *	device is present.
6541 	 */
6542 
6543 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6544 
6545 	linkwatch_init_dev(dev);
6546 
6547 	dev_init_scheduler(dev);
6548 	dev_hold(dev);
6549 	list_netdevice(dev);
6550 	add_device_randomness(dev->dev_addr, dev->addr_len);
6551 
6552 	/* If the device has permanent device address, driver should
6553 	 * set dev_addr and also addr_assign_type should be set to
6554 	 * NET_ADDR_PERM (default value).
6555 	 */
6556 	if (dev->addr_assign_type == NET_ADDR_PERM)
6557 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6558 
6559 	/* Notify protocols, that a new device appeared. */
6560 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6561 	ret = notifier_to_errno(ret);
6562 	if (ret) {
6563 		rollback_registered(dev);
6564 		dev->reg_state = NETREG_UNREGISTERED;
6565 	}
6566 	/*
6567 	 *	Prevent userspace races by waiting until the network
6568 	 *	device is fully setup before sending notifications.
6569 	 */
6570 	if (!dev->rtnl_link_ops ||
6571 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6572 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6573 
6574 out:
6575 	return ret;
6576 
6577 err_uninit:
6578 	if (dev->netdev_ops->ndo_uninit)
6579 		dev->netdev_ops->ndo_uninit(dev);
6580 	goto out;
6581 }
6582 EXPORT_SYMBOL(register_netdevice);
6583 
6584 /**
6585  *	init_dummy_netdev	- init a dummy network device for NAPI
6586  *	@dev: device to init
6587  *
6588  *	This takes a network device structure and initialize the minimum
6589  *	amount of fields so it can be used to schedule NAPI polls without
6590  *	registering a full blown interface. This is to be used by drivers
6591  *	that need to tie several hardware interfaces to a single NAPI
6592  *	poll scheduler due to HW limitations.
6593  */
6594 int init_dummy_netdev(struct net_device *dev)
6595 {
6596 	/* Clear everything. Note we don't initialize spinlocks
6597 	 * are they aren't supposed to be taken by any of the
6598 	 * NAPI code and this dummy netdev is supposed to be
6599 	 * only ever used for NAPI polls
6600 	 */
6601 	memset(dev, 0, sizeof(struct net_device));
6602 
6603 	/* make sure we BUG if trying to hit standard
6604 	 * register/unregister code path
6605 	 */
6606 	dev->reg_state = NETREG_DUMMY;
6607 
6608 	/* NAPI wants this */
6609 	INIT_LIST_HEAD(&dev->napi_list);
6610 
6611 	/* a dummy interface is started by default */
6612 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6613 	set_bit(__LINK_STATE_START, &dev->state);
6614 
6615 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6616 	 * because users of this 'device' dont need to change
6617 	 * its refcount.
6618 	 */
6619 
6620 	return 0;
6621 }
6622 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6623 
6624 
6625 /**
6626  *	register_netdev	- register a network device
6627  *	@dev: device to register
6628  *
6629  *	Take a completed network device structure and add it to the kernel
6630  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6631  *	chain. 0 is returned on success. A negative errno code is returned
6632  *	on a failure to set up the device, or if the name is a duplicate.
6633  *
6634  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6635  *	and expands the device name if you passed a format string to
6636  *	alloc_netdev.
6637  */
6638 int register_netdev(struct net_device *dev)
6639 {
6640 	int err;
6641 
6642 	rtnl_lock();
6643 	err = register_netdevice(dev);
6644 	rtnl_unlock();
6645 	return err;
6646 }
6647 EXPORT_SYMBOL(register_netdev);
6648 
6649 int netdev_refcnt_read(const struct net_device *dev)
6650 {
6651 	int i, refcnt = 0;
6652 
6653 	for_each_possible_cpu(i)
6654 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6655 	return refcnt;
6656 }
6657 EXPORT_SYMBOL(netdev_refcnt_read);
6658 
6659 /**
6660  * netdev_wait_allrefs - wait until all references are gone.
6661  * @dev: target net_device
6662  *
6663  * This is called when unregistering network devices.
6664  *
6665  * Any protocol or device that holds a reference should register
6666  * for netdevice notification, and cleanup and put back the
6667  * reference if they receive an UNREGISTER event.
6668  * We can get stuck here if buggy protocols don't correctly
6669  * call dev_put.
6670  */
6671 static void netdev_wait_allrefs(struct net_device *dev)
6672 {
6673 	unsigned long rebroadcast_time, warning_time;
6674 	int refcnt;
6675 
6676 	linkwatch_forget_dev(dev);
6677 
6678 	rebroadcast_time = warning_time = jiffies;
6679 	refcnt = netdev_refcnt_read(dev);
6680 
6681 	while (refcnt != 0) {
6682 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6683 			rtnl_lock();
6684 
6685 			/* Rebroadcast unregister notification */
6686 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6687 
6688 			__rtnl_unlock();
6689 			rcu_barrier();
6690 			rtnl_lock();
6691 
6692 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6693 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6694 				     &dev->state)) {
6695 				/* We must not have linkwatch events
6696 				 * pending on unregister. If this
6697 				 * happens, we simply run the queue
6698 				 * unscheduled, resulting in a noop
6699 				 * for this device.
6700 				 */
6701 				linkwatch_run_queue();
6702 			}
6703 
6704 			__rtnl_unlock();
6705 
6706 			rebroadcast_time = jiffies;
6707 		}
6708 
6709 		msleep(250);
6710 
6711 		refcnt = netdev_refcnt_read(dev);
6712 
6713 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6714 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6715 				 dev->name, refcnt);
6716 			warning_time = jiffies;
6717 		}
6718 	}
6719 }
6720 
6721 /* The sequence is:
6722  *
6723  *	rtnl_lock();
6724  *	...
6725  *	register_netdevice(x1);
6726  *	register_netdevice(x2);
6727  *	...
6728  *	unregister_netdevice(y1);
6729  *	unregister_netdevice(y2);
6730  *      ...
6731  *	rtnl_unlock();
6732  *	free_netdev(y1);
6733  *	free_netdev(y2);
6734  *
6735  * We are invoked by rtnl_unlock().
6736  * This allows us to deal with problems:
6737  * 1) We can delete sysfs objects which invoke hotplug
6738  *    without deadlocking with linkwatch via keventd.
6739  * 2) Since we run with the RTNL semaphore not held, we can sleep
6740  *    safely in order to wait for the netdev refcnt to drop to zero.
6741  *
6742  * We must not return until all unregister events added during
6743  * the interval the lock was held have been completed.
6744  */
6745 void netdev_run_todo(void)
6746 {
6747 	struct list_head list;
6748 
6749 	/* Snapshot list, allow later requests */
6750 	list_replace_init(&net_todo_list, &list);
6751 
6752 	__rtnl_unlock();
6753 
6754 
6755 	/* Wait for rcu callbacks to finish before next phase */
6756 	if (!list_empty(&list))
6757 		rcu_barrier();
6758 
6759 	while (!list_empty(&list)) {
6760 		struct net_device *dev
6761 			= list_first_entry(&list, struct net_device, todo_list);
6762 		list_del(&dev->todo_list);
6763 
6764 		rtnl_lock();
6765 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6766 		__rtnl_unlock();
6767 
6768 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6769 			pr_err("network todo '%s' but state %d\n",
6770 			       dev->name, dev->reg_state);
6771 			dump_stack();
6772 			continue;
6773 		}
6774 
6775 		dev->reg_state = NETREG_UNREGISTERED;
6776 
6777 		netdev_wait_allrefs(dev);
6778 
6779 		/* paranoia */
6780 		BUG_ON(netdev_refcnt_read(dev));
6781 		BUG_ON(!list_empty(&dev->ptype_all));
6782 		BUG_ON(!list_empty(&dev->ptype_specific));
6783 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6784 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6785 		WARN_ON(dev->dn_ptr);
6786 
6787 		if (dev->destructor)
6788 			dev->destructor(dev);
6789 
6790 		/* Report a network device has been unregistered */
6791 		rtnl_lock();
6792 		dev_net(dev)->dev_unreg_count--;
6793 		__rtnl_unlock();
6794 		wake_up(&netdev_unregistering_wq);
6795 
6796 		/* Free network device */
6797 		kobject_put(&dev->dev.kobj);
6798 	}
6799 }
6800 
6801 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6802  * fields in the same order, with only the type differing.
6803  */
6804 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6805 			     const struct net_device_stats *netdev_stats)
6806 {
6807 #if BITS_PER_LONG == 64
6808 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6809 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6810 #else
6811 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6812 	const unsigned long *src = (const unsigned long *)netdev_stats;
6813 	u64 *dst = (u64 *)stats64;
6814 
6815 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6816 		     sizeof(*stats64) / sizeof(u64));
6817 	for (i = 0; i < n; i++)
6818 		dst[i] = src[i];
6819 #endif
6820 }
6821 EXPORT_SYMBOL(netdev_stats_to_stats64);
6822 
6823 /**
6824  *	dev_get_stats	- get network device statistics
6825  *	@dev: device to get statistics from
6826  *	@storage: place to store stats
6827  *
6828  *	Get network statistics from device. Return @storage.
6829  *	The device driver may provide its own method by setting
6830  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6831  *	otherwise the internal statistics structure is used.
6832  */
6833 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6834 					struct rtnl_link_stats64 *storage)
6835 {
6836 	const struct net_device_ops *ops = dev->netdev_ops;
6837 
6838 	if (ops->ndo_get_stats64) {
6839 		memset(storage, 0, sizeof(*storage));
6840 		ops->ndo_get_stats64(dev, storage);
6841 	} else if (ops->ndo_get_stats) {
6842 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6843 	} else {
6844 		netdev_stats_to_stats64(storage, &dev->stats);
6845 	}
6846 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6847 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6848 	return storage;
6849 }
6850 EXPORT_SYMBOL(dev_get_stats);
6851 
6852 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6853 {
6854 	struct netdev_queue *queue = dev_ingress_queue(dev);
6855 
6856 #ifdef CONFIG_NET_CLS_ACT
6857 	if (queue)
6858 		return queue;
6859 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6860 	if (!queue)
6861 		return NULL;
6862 	netdev_init_one_queue(dev, queue, NULL);
6863 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6864 	queue->qdisc_sleeping = &noop_qdisc;
6865 	rcu_assign_pointer(dev->ingress_queue, queue);
6866 #endif
6867 	return queue;
6868 }
6869 
6870 static const struct ethtool_ops default_ethtool_ops;
6871 
6872 void netdev_set_default_ethtool_ops(struct net_device *dev,
6873 				    const struct ethtool_ops *ops)
6874 {
6875 	if (dev->ethtool_ops == &default_ethtool_ops)
6876 		dev->ethtool_ops = ops;
6877 }
6878 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6879 
6880 void netdev_freemem(struct net_device *dev)
6881 {
6882 	char *addr = (char *)dev - dev->padded;
6883 
6884 	kvfree(addr);
6885 }
6886 
6887 /**
6888  *	alloc_netdev_mqs - allocate network device
6889  *	@sizeof_priv:		size of private data to allocate space for
6890  *	@name:			device name format string
6891  *	@name_assign_type: 	origin of device name
6892  *	@setup:			callback to initialize device
6893  *	@txqs:			the number of TX subqueues to allocate
6894  *	@rxqs:			the number of RX subqueues to allocate
6895  *
6896  *	Allocates a struct net_device with private data area for driver use
6897  *	and performs basic initialization.  Also allocates subqueue structs
6898  *	for each queue on the device.
6899  */
6900 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6901 		unsigned char name_assign_type,
6902 		void (*setup)(struct net_device *),
6903 		unsigned int txqs, unsigned int rxqs)
6904 {
6905 	struct net_device *dev;
6906 	size_t alloc_size;
6907 	struct net_device *p;
6908 
6909 	BUG_ON(strlen(name) >= sizeof(dev->name));
6910 
6911 	if (txqs < 1) {
6912 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6913 		return NULL;
6914 	}
6915 
6916 #ifdef CONFIG_SYSFS
6917 	if (rxqs < 1) {
6918 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6919 		return NULL;
6920 	}
6921 #endif
6922 
6923 	alloc_size = sizeof(struct net_device);
6924 	if (sizeof_priv) {
6925 		/* ensure 32-byte alignment of private area */
6926 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6927 		alloc_size += sizeof_priv;
6928 	}
6929 	/* ensure 32-byte alignment of whole construct */
6930 	alloc_size += NETDEV_ALIGN - 1;
6931 
6932 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6933 	if (!p)
6934 		p = vzalloc(alloc_size);
6935 	if (!p)
6936 		return NULL;
6937 
6938 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6939 	dev->padded = (char *)dev - (char *)p;
6940 
6941 	dev->pcpu_refcnt = alloc_percpu(int);
6942 	if (!dev->pcpu_refcnt)
6943 		goto free_dev;
6944 
6945 	if (dev_addr_init(dev))
6946 		goto free_pcpu;
6947 
6948 	dev_mc_init(dev);
6949 	dev_uc_init(dev);
6950 
6951 	dev_net_set(dev, &init_net);
6952 
6953 	dev->gso_max_size = GSO_MAX_SIZE;
6954 	dev->gso_max_segs = GSO_MAX_SEGS;
6955 	dev->gso_min_segs = 0;
6956 
6957 	INIT_LIST_HEAD(&dev->napi_list);
6958 	INIT_LIST_HEAD(&dev->unreg_list);
6959 	INIT_LIST_HEAD(&dev->close_list);
6960 	INIT_LIST_HEAD(&dev->link_watch_list);
6961 	INIT_LIST_HEAD(&dev->adj_list.upper);
6962 	INIT_LIST_HEAD(&dev->adj_list.lower);
6963 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6964 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6965 	INIT_LIST_HEAD(&dev->ptype_all);
6966 	INIT_LIST_HEAD(&dev->ptype_specific);
6967 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6968 	setup(dev);
6969 
6970 	dev->num_tx_queues = txqs;
6971 	dev->real_num_tx_queues = txqs;
6972 	if (netif_alloc_netdev_queues(dev))
6973 		goto free_all;
6974 
6975 #ifdef CONFIG_SYSFS
6976 	dev->num_rx_queues = rxqs;
6977 	dev->real_num_rx_queues = rxqs;
6978 	if (netif_alloc_rx_queues(dev))
6979 		goto free_all;
6980 #endif
6981 
6982 	strcpy(dev->name, name);
6983 	dev->name_assign_type = name_assign_type;
6984 	dev->group = INIT_NETDEV_GROUP;
6985 	if (!dev->ethtool_ops)
6986 		dev->ethtool_ops = &default_ethtool_ops;
6987 
6988 	nf_hook_ingress_init(dev);
6989 
6990 	return dev;
6991 
6992 free_all:
6993 	free_netdev(dev);
6994 	return NULL;
6995 
6996 free_pcpu:
6997 	free_percpu(dev->pcpu_refcnt);
6998 free_dev:
6999 	netdev_freemem(dev);
7000 	return NULL;
7001 }
7002 EXPORT_SYMBOL(alloc_netdev_mqs);
7003 
7004 /**
7005  *	free_netdev - free network device
7006  *	@dev: device
7007  *
7008  *	This function does the last stage of destroying an allocated device
7009  * 	interface. The reference to the device object is released.
7010  *	If this is the last reference then it will be freed.
7011  */
7012 void free_netdev(struct net_device *dev)
7013 {
7014 	struct napi_struct *p, *n;
7015 
7016 	netif_free_tx_queues(dev);
7017 #ifdef CONFIG_SYSFS
7018 	kvfree(dev->_rx);
7019 #endif
7020 
7021 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7022 
7023 	/* Flush device addresses */
7024 	dev_addr_flush(dev);
7025 
7026 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7027 		netif_napi_del(p);
7028 
7029 	free_percpu(dev->pcpu_refcnt);
7030 	dev->pcpu_refcnt = NULL;
7031 
7032 	/*  Compatibility with error handling in drivers */
7033 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7034 		netdev_freemem(dev);
7035 		return;
7036 	}
7037 
7038 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7039 	dev->reg_state = NETREG_RELEASED;
7040 
7041 	/* will free via device release */
7042 	put_device(&dev->dev);
7043 }
7044 EXPORT_SYMBOL(free_netdev);
7045 
7046 /**
7047  *	synchronize_net -  Synchronize with packet receive processing
7048  *
7049  *	Wait for packets currently being received to be done.
7050  *	Does not block later packets from starting.
7051  */
7052 void synchronize_net(void)
7053 {
7054 	might_sleep();
7055 	if (rtnl_is_locked())
7056 		synchronize_rcu_expedited();
7057 	else
7058 		synchronize_rcu();
7059 }
7060 EXPORT_SYMBOL(synchronize_net);
7061 
7062 /**
7063  *	unregister_netdevice_queue - remove device from the kernel
7064  *	@dev: device
7065  *	@head: list
7066  *
7067  *	This function shuts down a device interface and removes it
7068  *	from the kernel tables.
7069  *	If head not NULL, device is queued to be unregistered later.
7070  *
7071  *	Callers must hold the rtnl semaphore.  You may want
7072  *	unregister_netdev() instead of this.
7073  */
7074 
7075 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7076 {
7077 	ASSERT_RTNL();
7078 
7079 	if (head) {
7080 		list_move_tail(&dev->unreg_list, head);
7081 	} else {
7082 		rollback_registered(dev);
7083 		/* Finish processing unregister after unlock */
7084 		net_set_todo(dev);
7085 	}
7086 }
7087 EXPORT_SYMBOL(unregister_netdevice_queue);
7088 
7089 /**
7090  *	unregister_netdevice_many - unregister many devices
7091  *	@head: list of devices
7092  *
7093  *  Note: As most callers use a stack allocated list_head,
7094  *  we force a list_del() to make sure stack wont be corrupted later.
7095  */
7096 void unregister_netdevice_many(struct list_head *head)
7097 {
7098 	struct net_device *dev;
7099 
7100 	if (!list_empty(head)) {
7101 		rollback_registered_many(head);
7102 		list_for_each_entry(dev, head, unreg_list)
7103 			net_set_todo(dev);
7104 		list_del(head);
7105 	}
7106 }
7107 EXPORT_SYMBOL(unregister_netdevice_many);
7108 
7109 /**
7110  *	unregister_netdev - remove device from the kernel
7111  *	@dev: device
7112  *
7113  *	This function shuts down a device interface and removes it
7114  *	from the kernel tables.
7115  *
7116  *	This is just a wrapper for unregister_netdevice that takes
7117  *	the rtnl semaphore.  In general you want to use this and not
7118  *	unregister_netdevice.
7119  */
7120 void unregister_netdev(struct net_device *dev)
7121 {
7122 	rtnl_lock();
7123 	unregister_netdevice(dev);
7124 	rtnl_unlock();
7125 }
7126 EXPORT_SYMBOL(unregister_netdev);
7127 
7128 /**
7129  *	dev_change_net_namespace - move device to different nethost namespace
7130  *	@dev: device
7131  *	@net: network namespace
7132  *	@pat: If not NULL name pattern to try if the current device name
7133  *	      is already taken in the destination network namespace.
7134  *
7135  *	This function shuts down a device interface and moves it
7136  *	to a new network namespace. On success 0 is returned, on
7137  *	a failure a netagive errno code is returned.
7138  *
7139  *	Callers must hold the rtnl semaphore.
7140  */
7141 
7142 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7143 {
7144 	int err;
7145 
7146 	ASSERT_RTNL();
7147 
7148 	/* Don't allow namespace local devices to be moved. */
7149 	err = -EINVAL;
7150 	if (dev->features & NETIF_F_NETNS_LOCAL)
7151 		goto out;
7152 
7153 	/* Ensure the device has been registrered */
7154 	if (dev->reg_state != NETREG_REGISTERED)
7155 		goto out;
7156 
7157 	/* Get out if there is nothing todo */
7158 	err = 0;
7159 	if (net_eq(dev_net(dev), net))
7160 		goto out;
7161 
7162 	/* Pick the destination device name, and ensure
7163 	 * we can use it in the destination network namespace.
7164 	 */
7165 	err = -EEXIST;
7166 	if (__dev_get_by_name(net, dev->name)) {
7167 		/* We get here if we can't use the current device name */
7168 		if (!pat)
7169 			goto out;
7170 		if (dev_get_valid_name(net, dev, pat) < 0)
7171 			goto out;
7172 	}
7173 
7174 	/*
7175 	 * And now a mini version of register_netdevice unregister_netdevice.
7176 	 */
7177 
7178 	/* If device is running close it first. */
7179 	dev_close(dev);
7180 
7181 	/* And unlink it from device chain */
7182 	err = -ENODEV;
7183 	unlist_netdevice(dev);
7184 
7185 	synchronize_net();
7186 
7187 	/* Shutdown queueing discipline. */
7188 	dev_shutdown(dev);
7189 
7190 	/* Notify protocols, that we are about to destroy
7191 	   this device. They should clean all the things.
7192 
7193 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7194 	   This is wanted because this way 8021q and macvlan know
7195 	   the device is just moving and can keep their slaves up.
7196 	*/
7197 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7198 	rcu_barrier();
7199 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7200 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7201 
7202 	/*
7203 	 *	Flush the unicast and multicast chains
7204 	 */
7205 	dev_uc_flush(dev);
7206 	dev_mc_flush(dev);
7207 
7208 	/* Send a netdev-removed uevent to the old namespace */
7209 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7210 	netdev_adjacent_del_links(dev);
7211 
7212 	/* Actually switch the network namespace */
7213 	dev_net_set(dev, net);
7214 
7215 	/* If there is an ifindex conflict assign a new one */
7216 	if (__dev_get_by_index(net, dev->ifindex))
7217 		dev->ifindex = dev_new_index(net);
7218 
7219 	/* Send a netdev-add uevent to the new namespace */
7220 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7221 	netdev_adjacent_add_links(dev);
7222 
7223 	/* Fixup kobjects */
7224 	err = device_rename(&dev->dev, dev->name);
7225 	WARN_ON(err);
7226 
7227 	/* Add the device back in the hashes */
7228 	list_netdevice(dev);
7229 
7230 	/* Notify protocols, that a new device appeared. */
7231 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7232 
7233 	/*
7234 	 *	Prevent userspace races by waiting until the network
7235 	 *	device is fully setup before sending notifications.
7236 	 */
7237 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7238 
7239 	synchronize_net();
7240 	err = 0;
7241 out:
7242 	return err;
7243 }
7244 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7245 
7246 static int dev_cpu_callback(struct notifier_block *nfb,
7247 			    unsigned long action,
7248 			    void *ocpu)
7249 {
7250 	struct sk_buff **list_skb;
7251 	struct sk_buff *skb;
7252 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7253 	struct softnet_data *sd, *oldsd;
7254 
7255 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7256 		return NOTIFY_OK;
7257 
7258 	local_irq_disable();
7259 	cpu = smp_processor_id();
7260 	sd = &per_cpu(softnet_data, cpu);
7261 	oldsd = &per_cpu(softnet_data, oldcpu);
7262 
7263 	/* Find end of our completion_queue. */
7264 	list_skb = &sd->completion_queue;
7265 	while (*list_skb)
7266 		list_skb = &(*list_skb)->next;
7267 	/* Append completion queue from offline CPU. */
7268 	*list_skb = oldsd->completion_queue;
7269 	oldsd->completion_queue = NULL;
7270 
7271 	/* Append output queue from offline CPU. */
7272 	if (oldsd->output_queue) {
7273 		*sd->output_queue_tailp = oldsd->output_queue;
7274 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7275 		oldsd->output_queue = NULL;
7276 		oldsd->output_queue_tailp = &oldsd->output_queue;
7277 	}
7278 	/* Append NAPI poll list from offline CPU, with one exception :
7279 	 * process_backlog() must be called by cpu owning percpu backlog.
7280 	 * We properly handle process_queue & input_pkt_queue later.
7281 	 */
7282 	while (!list_empty(&oldsd->poll_list)) {
7283 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7284 							    struct napi_struct,
7285 							    poll_list);
7286 
7287 		list_del_init(&napi->poll_list);
7288 		if (napi->poll == process_backlog)
7289 			napi->state = 0;
7290 		else
7291 			____napi_schedule(sd, napi);
7292 	}
7293 
7294 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7295 	local_irq_enable();
7296 
7297 	/* Process offline CPU's input_pkt_queue */
7298 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7299 		netif_rx_ni(skb);
7300 		input_queue_head_incr(oldsd);
7301 	}
7302 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7303 		netif_rx_ni(skb);
7304 		input_queue_head_incr(oldsd);
7305 	}
7306 
7307 	return NOTIFY_OK;
7308 }
7309 
7310 
7311 /**
7312  *	netdev_increment_features - increment feature set by one
7313  *	@all: current feature set
7314  *	@one: new feature set
7315  *	@mask: mask feature set
7316  *
7317  *	Computes a new feature set after adding a device with feature set
7318  *	@one to the master device with current feature set @all.  Will not
7319  *	enable anything that is off in @mask. Returns the new feature set.
7320  */
7321 netdev_features_t netdev_increment_features(netdev_features_t all,
7322 	netdev_features_t one, netdev_features_t mask)
7323 {
7324 	if (mask & NETIF_F_GEN_CSUM)
7325 		mask |= NETIF_F_ALL_CSUM;
7326 	mask |= NETIF_F_VLAN_CHALLENGED;
7327 
7328 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7329 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7330 
7331 	/* If one device supports hw checksumming, set for all. */
7332 	if (all & NETIF_F_GEN_CSUM)
7333 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7334 
7335 	return all;
7336 }
7337 EXPORT_SYMBOL(netdev_increment_features);
7338 
7339 static struct hlist_head * __net_init netdev_create_hash(void)
7340 {
7341 	int i;
7342 	struct hlist_head *hash;
7343 
7344 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7345 	if (hash != NULL)
7346 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7347 			INIT_HLIST_HEAD(&hash[i]);
7348 
7349 	return hash;
7350 }
7351 
7352 /* Initialize per network namespace state */
7353 static int __net_init netdev_init(struct net *net)
7354 {
7355 	if (net != &init_net)
7356 		INIT_LIST_HEAD(&net->dev_base_head);
7357 
7358 	net->dev_name_head = netdev_create_hash();
7359 	if (net->dev_name_head == NULL)
7360 		goto err_name;
7361 
7362 	net->dev_index_head = netdev_create_hash();
7363 	if (net->dev_index_head == NULL)
7364 		goto err_idx;
7365 
7366 	return 0;
7367 
7368 err_idx:
7369 	kfree(net->dev_name_head);
7370 err_name:
7371 	return -ENOMEM;
7372 }
7373 
7374 /**
7375  *	netdev_drivername - network driver for the device
7376  *	@dev: network device
7377  *
7378  *	Determine network driver for device.
7379  */
7380 const char *netdev_drivername(const struct net_device *dev)
7381 {
7382 	const struct device_driver *driver;
7383 	const struct device *parent;
7384 	const char *empty = "";
7385 
7386 	parent = dev->dev.parent;
7387 	if (!parent)
7388 		return empty;
7389 
7390 	driver = parent->driver;
7391 	if (driver && driver->name)
7392 		return driver->name;
7393 	return empty;
7394 }
7395 
7396 static void __netdev_printk(const char *level, const struct net_device *dev,
7397 			    struct va_format *vaf)
7398 {
7399 	if (dev && dev->dev.parent) {
7400 		dev_printk_emit(level[1] - '0',
7401 				dev->dev.parent,
7402 				"%s %s %s%s: %pV",
7403 				dev_driver_string(dev->dev.parent),
7404 				dev_name(dev->dev.parent),
7405 				netdev_name(dev), netdev_reg_state(dev),
7406 				vaf);
7407 	} else if (dev) {
7408 		printk("%s%s%s: %pV",
7409 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7410 	} else {
7411 		printk("%s(NULL net_device): %pV", level, vaf);
7412 	}
7413 }
7414 
7415 void netdev_printk(const char *level, const struct net_device *dev,
7416 		   const char *format, ...)
7417 {
7418 	struct va_format vaf;
7419 	va_list args;
7420 
7421 	va_start(args, format);
7422 
7423 	vaf.fmt = format;
7424 	vaf.va = &args;
7425 
7426 	__netdev_printk(level, dev, &vaf);
7427 
7428 	va_end(args);
7429 }
7430 EXPORT_SYMBOL(netdev_printk);
7431 
7432 #define define_netdev_printk_level(func, level)			\
7433 void func(const struct net_device *dev, const char *fmt, ...)	\
7434 {								\
7435 	struct va_format vaf;					\
7436 	va_list args;						\
7437 								\
7438 	va_start(args, fmt);					\
7439 								\
7440 	vaf.fmt = fmt;						\
7441 	vaf.va = &args;						\
7442 								\
7443 	__netdev_printk(level, dev, &vaf);			\
7444 								\
7445 	va_end(args);						\
7446 }								\
7447 EXPORT_SYMBOL(func);
7448 
7449 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7450 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7451 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7452 define_netdev_printk_level(netdev_err, KERN_ERR);
7453 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7454 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7455 define_netdev_printk_level(netdev_info, KERN_INFO);
7456 
7457 static void __net_exit netdev_exit(struct net *net)
7458 {
7459 	kfree(net->dev_name_head);
7460 	kfree(net->dev_index_head);
7461 }
7462 
7463 static struct pernet_operations __net_initdata netdev_net_ops = {
7464 	.init = netdev_init,
7465 	.exit = netdev_exit,
7466 };
7467 
7468 static void __net_exit default_device_exit(struct net *net)
7469 {
7470 	struct net_device *dev, *aux;
7471 	/*
7472 	 * Push all migratable network devices back to the
7473 	 * initial network namespace
7474 	 */
7475 	rtnl_lock();
7476 	for_each_netdev_safe(net, dev, aux) {
7477 		int err;
7478 		char fb_name[IFNAMSIZ];
7479 
7480 		/* Ignore unmoveable devices (i.e. loopback) */
7481 		if (dev->features & NETIF_F_NETNS_LOCAL)
7482 			continue;
7483 
7484 		/* Leave virtual devices for the generic cleanup */
7485 		if (dev->rtnl_link_ops)
7486 			continue;
7487 
7488 		/* Push remaining network devices to init_net */
7489 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7490 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7491 		if (err) {
7492 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7493 				 __func__, dev->name, err);
7494 			BUG();
7495 		}
7496 	}
7497 	rtnl_unlock();
7498 }
7499 
7500 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7501 {
7502 	/* Return with the rtnl_lock held when there are no network
7503 	 * devices unregistering in any network namespace in net_list.
7504 	 */
7505 	struct net *net;
7506 	bool unregistering;
7507 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
7508 
7509 	add_wait_queue(&netdev_unregistering_wq, &wait);
7510 	for (;;) {
7511 		unregistering = false;
7512 		rtnl_lock();
7513 		list_for_each_entry(net, net_list, exit_list) {
7514 			if (net->dev_unreg_count > 0) {
7515 				unregistering = true;
7516 				break;
7517 			}
7518 		}
7519 		if (!unregistering)
7520 			break;
7521 		__rtnl_unlock();
7522 
7523 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7524 	}
7525 	remove_wait_queue(&netdev_unregistering_wq, &wait);
7526 }
7527 
7528 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7529 {
7530 	/* At exit all network devices most be removed from a network
7531 	 * namespace.  Do this in the reverse order of registration.
7532 	 * Do this across as many network namespaces as possible to
7533 	 * improve batching efficiency.
7534 	 */
7535 	struct net_device *dev;
7536 	struct net *net;
7537 	LIST_HEAD(dev_kill_list);
7538 
7539 	/* To prevent network device cleanup code from dereferencing
7540 	 * loopback devices or network devices that have been freed
7541 	 * wait here for all pending unregistrations to complete,
7542 	 * before unregistring the loopback device and allowing the
7543 	 * network namespace be freed.
7544 	 *
7545 	 * The netdev todo list containing all network devices
7546 	 * unregistrations that happen in default_device_exit_batch
7547 	 * will run in the rtnl_unlock() at the end of
7548 	 * default_device_exit_batch.
7549 	 */
7550 	rtnl_lock_unregistering(net_list);
7551 	list_for_each_entry(net, net_list, exit_list) {
7552 		for_each_netdev_reverse(net, dev) {
7553 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7554 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7555 			else
7556 				unregister_netdevice_queue(dev, &dev_kill_list);
7557 		}
7558 	}
7559 	unregister_netdevice_many(&dev_kill_list);
7560 	rtnl_unlock();
7561 }
7562 
7563 static struct pernet_operations __net_initdata default_device_ops = {
7564 	.exit = default_device_exit,
7565 	.exit_batch = default_device_exit_batch,
7566 };
7567 
7568 /*
7569  *	Initialize the DEV module. At boot time this walks the device list and
7570  *	unhooks any devices that fail to initialise (normally hardware not
7571  *	present) and leaves us with a valid list of present and active devices.
7572  *
7573  */
7574 
7575 /*
7576  *       This is called single threaded during boot, so no need
7577  *       to take the rtnl semaphore.
7578  */
7579 static int __init net_dev_init(void)
7580 {
7581 	int i, rc = -ENOMEM;
7582 
7583 	BUG_ON(!dev_boot_phase);
7584 
7585 	if (dev_proc_init())
7586 		goto out;
7587 
7588 	if (netdev_kobject_init())
7589 		goto out;
7590 
7591 	INIT_LIST_HEAD(&ptype_all);
7592 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7593 		INIT_LIST_HEAD(&ptype_base[i]);
7594 
7595 	INIT_LIST_HEAD(&offload_base);
7596 
7597 	if (register_pernet_subsys(&netdev_net_ops))
7598 		goto out;
7599 
7600 	/*
7601 	 *	Initialise the packet receive queues.
7602 	 */
7603 
7604 	for_each_possible_cpu(i) {
7605 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7606 
7607 		skb_queue_head_init(&sd->input_pkt_queue);
7608 		skb_queue_head_init(&sd->process_queue);
7609 		INIT_LIST_HEAD(&sd->poll_list);
7610 		sd->output_queue_tailp = &sd->output_queue;
7611 #ifdef CONFIG_RPS
7612 		sd->csd.func = rps_trigger_softirq;
7613 		sd->csd.info = sd;
7614 		sd->cpu = i;
7615 #endif
7616 
7617 		sd->backlog.poll = process_backlog;
7618 		sd->backlog.weight = weight_p;
7619 	}
7620 
7621 	dev_boot_phase = 0;
7622 
7623 	/* The loopback device is special if any other network devices
7624 	 * is present in a network namespace the loopback device must
7625 	 * be present. Since we now dynamically allocate and free the
7626 	 * loopback device ensure this invariant is maintained by
7627 	 * keeping the loopback device as the first device on the
7628 	 * list of network devices.  Ensuring the loopback devices
7629 	 * is the first device that appears and the last network device
7630 	 * that disappears.
7631 	 */
7632 	if (register_pernet_device(&loopback_net_ops))
7633 		goto out;
7634 
7635 	if (register_pernet_device(&default_device_ops))
7636 		goto out;
7637 
7638 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7639 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7640 
7641 	hotcpu_notifier(dev_cpu_callback, 0);
7642 	dst_init();
7643 	rc = 0;
7644 out:
7645 	return rc;
7646 }
7647 
7648 subsys_initcall(net_dev_init);
7649