xref: /openbmc/linux/net/core/dev.c (revision e1e38ea1)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 
150 #include "net-sysfs.h"
151 
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct netdev_notifier_info *info);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167 
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189 
190 static DEFINE_MUTEX(ifalias_mutex);
191 
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194 
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197 
198 static seqcount_t devnet_rename_seq;
199 
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202 	while (++net->dev_base_seq == 0)
203 		;
204 }
205 
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209 
210 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212 
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217 
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 	spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224 
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228 	spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231 
232 /* Device list insertion */
233 static void list_netdevice(struct net_device *dev)
234 {
235 	struct net *net = dev_net(dev);
236 
237 	ASSERT_RTNL();
238 
239 	write_lock_bh(&dev_base_lock);
240 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
241 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
242 	hlist_add_head_rcu(&dev->index_hlist,
243 			   dev_index_hash(net, dev->ifindex));
244 	write_unlock_bh(&dev_base_lock);
245 
246 	dev_base_seq_inc(net);
247 }
248 
249 /* Device list removal
250  * caller must respect a RCU grace period before freeing/reusing dev
251  */
252 static void unlist_netdevice(struct net_device *dev)
253 {
254 	ASSERT_RTNL();
255 
256 	/* Unlink dev from the device chain */
257 	write_lock_bh(&dev_base_lock);
258 	list_del_rcu(&dev->dev_list);
259 	hlist_del_rcu(&dev->name_hlist);
260 	hlist_del_rcu(&dev->index_hlist);
261 	write_unlock_bh(&dev_base_lock);
262 
263 	dev_base_seq_inc(dev_net(dev));
264 }
265 
266 /*
267  *	Our notifier list
268  */
269 
270 static RAW_NOTIFIER_HEAD(netdev_chain);
271 
272 /*
273  *	Device drivers call our routines to queue packets here. We empty the
274  *	queue in the local softnet handler.
275  */
276 
277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
278 EXPORT_PER_CPU_SYMBOL(softnet_data);
279 
280 #ifdef CONFIG_LOCKDEP
281 /*
282  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
283  * according to dev->type
284  */
285 static const unsigned short netdev_lock_type[] = {
286 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
287 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
288 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
289 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
290 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
291 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
292 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
293 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
294 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
295 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
296 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
297 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
298 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
299 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
300 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
301 
302 static const char *const netdev_lock_name[] = {
303 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
304 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
305 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
306 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
307 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
308 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
309 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
310 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
311 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
312 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
313 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
314 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
315 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
316 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
317 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
318 
319 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 
322 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
323 {
324 	int i;
325 
326 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
327 		if (netdev_lock_type[i] == dev_type)
328 			return i;
329 	/* the last key is used by default */
330 	return ARRAY_SIZE(netdev_lock_type) - 1;
331 }
332 
333 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
334 						 unsigned short dev_type)
335 {
336 	int i;
337 
338 	i = netdev_lock_pos(dev_type);
339 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
340 				   netdev_lock_name[i]);
341 }
342 
343 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
344 {
345 	int i;
346 
347 	i = netdev_lock_pos(dev->type);
348 	lockdep_set_class_and_name(&dev->addr_list_lock,
349 				   &netdev_addr_lock_key[i],
350 				   netdev_lock_name[i]);
351 }
352 #else
353 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
354 						 unsigned short dev_type)
355 {
356 }
357 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
358 {
359 }
360 #endif
361 
362 /*******************************************************************************
363  *
364  *		Protocol management and registration routines
365  *
366  *******************************************************************************/
367 
368 
369 /*
370  *	Add a protocol ID to the list. Now that the input handler is
371  *	smarter we can dispense with all the messy stuff that used to be
372  *	here.
373  *
374  *	BEWARE!!! Protocol handlers, mangling input packets,
375  *	MUST BE last in hash buckets and checking protocol handlers
376  *	MUST start from promiscuous ptype_all chain in net_bh.
377  *	It is true now, do not change it.
378  *	Explanation follows: if protocol handler, mangling packet, will
379  *	be the first on list, it is not able to sense, that packet
380  *	is cloned and should be copied-on-write, so that it will
381  *	change it and subsequent readers will get broken packet.
382  *							--ANK (980803)
383  */
384 
385 static inline struct list_head *ptype_head(const struct packet_type *pt)
386 {
387 	if (pt->type == htons(ETH_P_ALL))
388 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
389 	else
390 		return pt->dev ? &pt->dev->ptype_specific :
391 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
392 }
393 
394 /**
395  *	dev_add_pack - add packet handler
396  *	@pt: packet type declaration
397  *
398  *	Add a protocol handler to the networking stack. The passed &packet_type
399  *	is linked into kernel lists and may not be freed until it has been
400  *	removed from the kernel lists.
401  *
402  *	This call does not sleep therefore it can not
403  *	guarantee all CPU's that are in middle of receiving packets
404  *	will see the new packet type (until the next received packet).
405  */
406 
407 void dev_add_pack(struct packet_type *pt)
408 {
409 	struct list_head *head = ptype_head(pt);
410 
411 	spin_lock(&ptype_lock);
412 	list_add_rcu(&pt->list, head);
413 	spin_unlock(&ptype_lock);
414 }
415 EXPORT_SYMBOL(dev_add_pack);
416 
417 /**
418  *	__dev_remove_pack	 - remove packet handler
419  *	@pt: packet type declaration
420  *
421  *	Remove a protocol handler that was previously added to the kernel
422  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
423  *	from the kernel lists and can be freed or reused once this function
424  *	returns.
425  *
426  *      The packet type might still be in use by receivers
427  *	and must not be freed until after all the CPU's have gone
428  *	through a quiescent state.
429  */
430 void __dev_remove_pack(struct packet_type *pt)
431 {
432 	struct list_head *head = ptype_head(pt);
433 	struct packet_type *pt1;
434 
435 	spin_lock(&ptype_lock);
436 
437 	list_for_each_entry(pt1, head, list) {
438 		if (pt == pt1) {
439 			list_del_rcu(&pt->list);
440 			goto out;
441 		}
442 	}
443 
444 	pr_warn("dev_remove_pack: %p not found\n", pt);
445 out:
446 	spin_unlock(&ptype_lock);
447 }
448 EXPORT_SYMBOL(__dev_remove_pack);
449 
450 /**
451  *	dev_remove_pack	 - remove packet handler
452  *	@pt: packet type declaration
453  *
454  *	Remove a protocol handler that was previously added to the kernel
455  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
456  *	from the kernel lists and can be freed or reused once this function
457  *	returns.
458  *
459  *	This call sleeps to guarantee that no CPU is looking at the packet
460  *	type after return.
461  */
462 void dev_remove_pack(struct packet_type *pt)
463 {
464 	__dev_remove_pack(pt);
465 
466 	synchronize_net();
467 }
468 EXPORT_SYMBOL(dev_remove_pack);
469 
470 
471 /**
472  *	dev_add_offload - register offload handlers
473  *	@po: protocol offload declaration
474  *
475  *	Add protocol offload handlers to the networking stack. The passed
476  *	&proto_offload is linked into kernel lists and may not be freed until
477  *	it has been removed from the kernel lists.
478  *
479  *	This call does not sleep therefore it can not
480  *	guarantee all CPU's that are in middle of receiving packets
481  *	will see the new offload handlers (until the next received packet).
482  */
483 void dev_add_offload(struct packet_offload *po)
484 {
485 	struct packet_offload *elem;
486 
487 	spin_lock(&offload_lock);
488 	list_for_each_entry(elem, &offload_base, list) {
489 		if (po->priority < elem->priority)
490 			break;
491 	}
492 	list_add_rcu(&po->list, elem->list.prev);
493 	spin_unlock(&offload_lock);
494 }
495 EXPORT_SYMBOL(dev_add_offload);
496 
497 /**
498  *	__dev_remove_offload	 - remove offload handler
499  *	@po: packet offload declaration
500  *
501  *	Remove a protocol offload handler that was previously added to the
502  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
503  *	is removed from the kernel lists and can be freed or reused once this
504  *	function returns.
505  *
506  *      The packet type might still be in use by receivers
507  *	and must not be freed until after all the CPU's have gone
508  *	through a quiescent state.
509  */
510 static void __dev_remove_offload(struct packet_offload *po)
511 {
512 	struct list_head *head = &offload_base;
513 	struct packet_offload *po1;
514 
515 	spin_lock(&offload_lock);
516 
517 	list_for_each_entry(po1, head, list) {
518 		if (po == po1) {
519 			list_del_rcu(&po->list);
520 			goto out;
521 		}
522 	}
523 
524 	pr_warn("dev_remove_offload: %p not found\n", po);
525 out:
526 	spin_unlock(&offload_lock);
527 }
528 
529 /**
530  *	dev_remove_offload	 - remove packet offload handler
531  *	@po: packet offload declaration
532  *
533  *	Remove a packet offload handler that was previously added to the kernel
534  *	offload handlers by dev_add_offload(). The passed &offload_type is
535  *	removed from the kernel lists and can be freed or reused once this
536  *	function returns.
537  *
538  *	This call sleeps to guarantee that no CPU is looking at the packet
539  *	type after return.
540  */
541 void dev_remove_offload(struct packet_offload *po)
542 {
543 	__dev_remove_offload(po);
544 
545 	synchronize_net();
546 }
547 EXPORT_SYMBOL(dev_remove_offload);
548 
549 /******************************************************************************
550  *
551  *		      Device Boot-time Settings Routines
552  *
553  ******************************************************************************/
554 
555 /* Boot time configuration table */
556 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
557 
558 /**
559  *	netdev_boot_setup_add	- add new setup entry
560  *	@name: name of the device
561  *	@map: configured settings for the device
562  *
563  *	Adds new setup entry to the dev_boot_setup list.  The function
564  *	returns 0 on error and 1 on success.  This is a generic routine to
565  *	all netdevices.
566  */
567 static int netdev_boot_setup_add(char *name, struct ifmap *map)
568 {
569 	struct netdev_boot_setup *s;
570 	int i;
571 
572 	s = dev_boot_setup;
573 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
574 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
575 			memset(s[i].name, 0, sizeof(s[i].name));
576 			strlcpy(s[i].name, name, IFNAMSIZ);
577 			memcpy(&s[i].map, map, sizeof(s[i].map));
578 			break;
579 		}
580 	}
581 
582 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
583 }
584 
585 /**
586  * netdev_boot_setup_check	- check boot time settings
587  * @dev: the netdevice
588  *
589  * Check boot time settings for the device.
590  * The found settings are set for the device to be used
591  * later in the device probing.
592  * Returns 0 if no settings found, 1 if they are.
593  */
594 int netdev_boot_setup_check(struct net_device *dev)
595 {
596 	struct netdev_boot_setup *s = dev_boot_setup;
597 	int i;
598 
599 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
600 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
601 		    !strcmp(dev->name, s[i].name)) {
602 			dev->irq = s[i].map.irq;
603 			dev->base_addr = s[i].map.base_addr;
604 			dev->mem_start = s[i].map.mem_start;
605 			dev->mem_end = s[i].map.mem_end;
606 			return 1;
607 		}
608 	}
609 	return 0;
610 }
611 EXPORT_SYMBOL(netdev_boot_setup_check);
612 
613 
614 /**
615  * netdev_boot_base	- get address from boot time settings
616  * @prefix: prefix for network device
617  * @unit: id for network device
618  *
619  * Check boot time settings for the base address of device.
620  * The found settings are set for the device to be used
621  * later in the device probing.
622  * Returns 0 if no settings found.
623  */
624 unsigned long netdev_boot_base(const char *prefix, int unit)
625 {
626 	const struct netdev_boot_setup *s = dev_boot_setup;
627 	char name[IFNAMSIZ];
628 	int i;
629 
630 	sprintf(name, "%s%d", prefix, unit);
631 
632 	/*
633 	 * If device already registered then return base of 1
634 	 * to indicate not to probe for this interface
635 	 */
636 	if (__dev_get_by_name(&init_net, name))
637 		return 1;
638 
639 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
640 		if (!strcmp(name, s[i].name))
641 			return s[i].map.base_addr;
642 	return 0;
643 }
644 
645 /*
646  * Saves at boot time configured settings for any netdevice.
647  */
648 int __init netdev_boot_setup(char *str)
649 {
650 	int ints[5];
651 	struct ifmap map;
652 
653 	str = get_options(str, ARRAY_SIZE(ints), ints);
654 	if (!str || !*str)
655 		return 0;
656 
657 	/* Save settings */
658 	memset(&map, 0, sizeof(map));
659 	if (ints[0] > 0)
660 		map.irq = ints[1];
661 	if (ints[0] > 1)
662 		map.base_addr = ints[2];
663 	if (ints[0] > 2)
664 		map.mem_start = ints[3];
665 	if (ints[0] > 3)
666 		map.mem_end = ints[4];
667 
668 	/* Add new entry to the list */
669 	return netdev_boot_setup_add(str, &map);
670 }
671 
672 __setup("netdev=", netdev_boot_setup);
673 
674 /*******************************************************************************
675  *
676  *			    Device Interface Subroutines
677  *
678  *******************************************************************************/
679 
680 /**
681  *	dev_get_iflink	- get 'iflink' value of a interface
682  *	@dev: targeted interface
683  *
684  *	Indicates the ifindex the interface is linked to.
685  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
686  */
687 
688 int dev_get_iflink(const struct net_device *dev)
689 {
690 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
691 		return dev->netdev_ops->ndo_get_iflink(dev);
692 
693 	return dev->ifindex;
694 }
695 EXPORT_SYMBOL(dev_get_iflink);
696 
697 /**
698  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
699  *	@dev: targeted interface
700  *	@skb: The packet.
701  *
702  *	For better visibility of tunnel traffic OVS needs to retrieve
703  *	egress tunnel information for a packet. Following API allows
704  *	user to get this info.
705  */
706 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
707 {
708 	struct ip_tunnel_info *info;
709 
710 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
711 		return -EINVAL;
712 
713 	info = skb_tunnel_info_unclone(skb);
714 	if (!info)
715 		return -ENOMEM;
716 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
717 		return -EINVAL;
718 
719 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
720 }
721 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
722 
723 /**
724  *	__dev_get_by_name	- find a device by its name
725  *	@net: the applicable net namespace
726  *	@name: name to find
727  *
728  *	Find an interface by name. Must be called under RTNL semaphore
729  *	or @dev_base_lock. If the name is found a pointer to the device
730  *	is returned. If the name is not found then %NULL is returned. The
731  *	reference counters are not incremented so the caller must be
732  *	careful with locks.
733  */
734 
735 struct net_device *__dev_get_by_name(struct net *net, const char *name)
736 {
737 	struct net_device *dev;
738 	struct hlist_head *head = dev_name_hash(net, name);
739 
740 	hlist_for_each_entry(dev, head, name_hlist)
741 		if (!strncmp(dev->name, name, IFNAMSIZ))
742 			return dev;
743 
744 	return NULL;
745 }
746 EXPORT_SYMBOL(__dev_get_by_name);
747 
748 /**
749  * dev_get_by_name_rcu	- find a device by its name
750  * @net: the applicable net namespace
751  * @name: name to find
752  *
753  * Find an interface by name.
754  * If the name is found a pointer to the device is returned.
755  * If the name is not found then %NULL is returned.
756  * The reference counters are not incremented so the caller must be
757  * careful with locks. The caller must hold RCU lock.
758  */
759 
760 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761 {
762 	struct net_device *dev;
763 	struct hlist_head *head = dev_name_hash(net, name);
764 
765 	hlist_for_each_entry_rcu(dev, head, name_hlist)
766 		if (!strncmp(dev->name, name, IFNAMSIZ))
767 			return dev;
768 
769 	return NULL;
770 }
771 EXPORT_SYMBOL(dev_get_by_name_rcu);
772 
773 /**
774  *	dev_get_by_name		- find a device by its name
775  *	@net: the applicable net namespace
776  *	@name: name to find
777  *
778  *	Find an interface by name. This can be called from any
779  *	context and does its own locking. The returned handle has
780  *	the usage count incremented and the caller must use dev_put() to
781  *	release it when it is no longer needed. %NULL is returned if no
782  *	matching device is found.
783  */
784 
785 struct net_device *dev_get_by_name(struct net *net, const char *name)
786 {
787 	struct net_device *dev;
788 
789 	rcu_read_lock();
790 	dev = dev_get_by_name_rcu(net, name);
791 	if (dev)
792 		dev_hold(dev);
793 	rcu_read_unlock();
794 	return dev;
795 }
796 EXPORT_SYMBOL(dev_get_by_name);
797 
798 /**
799  *	__dev_get_by_index - find a device by its ifindex
800  *	@net: the applicable net namespace
801  *	@ifindex: index of device
802  *
803  *	Search for an interface by index. Returns %NULL if the device
804  *	is not found or a pointer to the device. The device has not
805  *	had its reference counter increased so the caller must be careful
806  *	about locking. The caller must hold either the RTNL semaphore
807  *	or @dev_base_lock.
808  */
809 
810 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
811 {
812 	struct net_device *dev;
813 	struct hlist_head *head = dev_index_hash(net, ifindex);
814 
815 	hlist_for_each_entry(dev, head, index_hlist)
816 		if (dev->ifindex == ifindex)
817 			return dev;
818 
819 	return NULL;
820 }
821 EXPORT_SYMBOL(__dev_get_by_index);
822 
823 /**
824  *	dev_get_by_index_rcu - find a device by its ifindex
825  *	@net: the applicable net namespace
826  *	@ifindex: index of device
827  *
828  *	Search for an interface by index. Returns %NULL if the device
829  *	is not found or a pointer to the device. The device has not
830  *	had its reference counter increased so the caller must be careful
831  *	about locking. The caller must hold RCU lock.
832  */
833 
834 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
835 {
836 	struct net_device *dev;
837 	struct hlist_head *head = dev_index_hash(net, ifindex);
838 
839 	hlist_for_each_entry_rcu(dev, head, index_hlist)
840 		if (dev->ifindex == ifindex)
841 			return dev;
842 
843 	return NULL;
844 }
845 EXPORT_SYMBOL(dev_get_by_index_rcu);
846 
847 
848 /**
849  *	dev_get_by_index - find a device by its ifindex
850  *	@net: the applicable net namespace
851  *	@ifindex: index of device
852  *
853  *	Search for an interface by index. Returns NULL if the device
854  *	is not found or a pointer to the device. The device returned has
855  *	had a reference added and the pointer is safe until the user calls
856  *	dev_put to indicate they have finished with it.
857  */
858 
859 struct net_device *dev_get_by_index(struct net *net, int ifindex)
860 {
861 	struct net_device *dev;
862 
863 	rcu_read_lock();
864 	dev = dev_get_by_index_rcu(net, ifindex);
865 	if (dev)
866 		dev_hold(dev);
867 	rcu_read_unlock();
868 	return dev;
869 }
870 EXPORT_SYMBOL(dev_get_by_index);
871 
872 /**
873  *	dev_get_by_napi_id - find a device by napi_id
874  *	@napi_id: ID of the NAPI struct
875  *
876  *	Search for an interface by NAPI ID. Returns %NULL if the device
877  *	is not found or a pointer to the device. The device has not had
878  *	its reference counter increased so the caller must be careful
879  *	about locking. The caller must hold RCU lock.
880  */
881 
882 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
883 {
884 	struct napi_struct *napi;
885 
886 	WARN_ON_ONCE(!rcu_read_lock_held());
887 
888 	if (napi_id < MIN_NAPI_ID)
889 		return NULL;
890 
891 	napi = napi_by_id(napi_id);
892 
893 	return napi ? napi->dev : NULL;
894 }
895 EXPORT_SYMBOL(dev_get_by_napi_id);
896 
897 /**
898  *	netdev_get_name - get a netdevice name, knowing its ifindex.
899  *	@net: network namespace
900  *	@name: a pointer to the buffer where the name will be stored.
901  *	@ifindex: the ifindex of the interface to get the name from.
902  *
903  *	The use of raw_seqcount_begin() and cond_resched() before
904  *	retrying is required as we want to give the writers a chance
905  *	to complete when CONFIG_PREEMPT is not set.
906  */
907 int netdev_get_name(struct net *net, char *name, int ifindex)
908 {
909 	struct net_device *dev;
910 	unsigned int seq;
911 
912 retry:
913 	seq = raw_seqcount_begin(&devnet_rename_seq);
914 	rcu_read_lock();
915 	dev = dev_get_by_index_rcu(net, ifindex);
916 	if (!dev) {
917 		rcu_read_unlock();
918 		return -ENODEV;
919 	}
920 
921 	strcpy(name, dev->name);
922 	rcu_read_unlock();
923 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
924 		cond_resched();
925 		goto retry;
926 	}
927 
928 	return 0;
929 }
930 
931 /**
932  *	dev_getbyhwaddr_rcu - find a device by its hardware address
933  *	@net: the applicable net namespace
934  *	@type: media type of device
935  *	@ha: hardware address
936  *
937  *	Search for an interface by MAC address. Returns NULL if the device
938  *	is not found or a pointer to the device.
939  *	The caller must hold RCU or RTNL.
940  *	The returned device has not had its ref count increased
941  *	and the caller must therefore be careful about locking
942  *
943  */
944 
945 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
946 				       const char *ha)
947 {
948 	struct net_device *dev;
949 
950 	for_each_netdev_rcu(net, dev)
951 		if (dev->type == type &&
952 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
953 			return dev;
954 
955 	return NULL;
956 }
957 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
958 
959 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
960 {
961 	struct net_device *dev;
962 
963 	ASSERT_RTNL();
964 	for_each_netdev(net, dev)
965 		if (dev->type == type)
966 			return dev;
967 
968 	return NULL;
969 }
970 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
971 
972 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
973 {
974 	struct net_device *dev, *ret = NULL;
975 
976 	rcu_read_lock();
977 	for_each_netdev_rcu(net, dev)
978 		if (dev->type == type) {
979 			dev_hold(dev);
980 			ret = dev;
981 			break;
982 		}
983 	rcu_read_unlock();
984 	return ret;
985 }
986 EXPORT_SYMBOL(dev_getfirstbyhwtype);
987 
988 /**
989  *	__dev_get_by_flags - find any device with given flags
990  *	@net: the applicable net namespace
991  *	@if_flags: IFF_* values
992  *	@mask: bitmask of bits in if_flags to check
993  *
994  *	Search for any interface with the given flags. Returns NULL if a device
995  *	is not found or a pointer to the device. Must be called inside
996  *	rtnl_lock(), and result refcount is unchanged.
997  */
998 
999 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1000 				      unsigned short mask)
1001 {
1002 	struct net_device *dev, *ret;
1003 
1004 	ASSERT_RTNL();
1005 
1006 	ret = NULL;
1007 	for_each_netdev(net, dev) {
1008 		if (((dev->flags ^ if_flags) & mask) == 0) {
1009 			ret = dev;
1010 			break;
1011 		}
1012 	}
1013 	return ret;
1014 }
1015 EXPORT_SYMBOL(__dev_get_by_flags);
1016 
1017 /**
1018  *	dev_valid_name - check if name is okay for network device
1019  *	@name: name string
1020  *
1021  *	Network device names need to be valid file names to
1022  *	to allow sysfs to work.  We also disallow any kind of
1023  *	whitespace.
1024  */
1025 bool dev_valid_name(const char *name)
1026 {
1027 	if (*name == '\0')
1028 		return false;
1029 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1030 		return false;
1031 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1032 		return false;
1033 
1034 	while (*name) {
1035 		if (*name == '/' || *name == ':' || isspace(*name))
1036 			return false;
1037 		name++;
1038 	}
1039 	return true;
1040 }
1041 EXPORT_SYMBOL(dev_valid_name);
1042 
1043 /**
1044  *	__dev_alloc_name - allocate a name for a device
1045  *	@net: network namespace to allocate the device name in
1046  *	@name: name format string
1047  *	@buf:  scratch buffer and result name string
1048  *
1049  *	Passed a format string - eg "lt%d" it will try and find a suitable
1050  *	id. It scans list of devices to build up a free map, then chooses
1051  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1052  *	while allocating the name and adding the device in order to avoid
1053  *	duplicates.
1054  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055  *	Returns the number of the unit assigned or a negative errno code.
1056  */
1057 
1058 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1059 {
1060 	int i = 0;
1061 	const char *p;
1062 	const int max_netdevices = 8*PAGE_SIZE;
1063 	unsigned long *inuse;
1064 	struct net_device *d;
1065 
1066 	if (!dev_valid_name(name))
1067 		return -EINVAL;
1068 
1069 	p = strchr(name, '%');
1070 	if (p) {
1071 		/*
1072 		 * Verify the string as this thing may have come from
1073 		 * the user.  There must be either one "%d" and no other "%"
1074 		 * characters.
1075 		 */
1076 		if (p[1] != 'd' || strchr(p + 2, '%'))
1077 			return -EINVAL;
1078 
1079 		/* Use one page as a bit array of possible slots */
1080 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1081 		if (!inuse)
1082 			return -ENOMEM;
1083 
1084 		for_each_netdev(net, d) {
1085 			if (!sscanf(d->name, name, &i))
1086 				continue;
1087 			if (i < 0 || i >= max_netdevices)
1088 				continue;
1089 
1090 			/*  avoid cases where sscanf is not exact inverse of printf */
1091 			snprintf(buf, IFNAMSIZ, name, i);
1092 			if (!strncmp(buf, d->name, IFNAMSIZ))
1093 				set_bit(i, inuse);
1094 		}
1095 
1096 		i = find_first_zero_bit(inuse, max_netdevices);
1097 		free_page((unsigned long) inuse);
1098 	}
1099 
1100 	snprintf(buf, IFNAMSIZ, name, i);
1101 	if (!__dev_get_by_name(net, buf))
1102 		return i;
1103 
1104 	/* It is possible to run out of possible slots
1105 	 * when the name is long and there isn't enough space left
1106 	 * for the digits, or if all bits are used.
1107 	 */
1108 	return -ENFILE;
1109 }
1110 
1111 static int dev_alloc_name_ns(struct net *net,
1112 			     struct net_device *dev,
1113 			     const char *name)
1114 {
1115 	char buf[IFNAMSIZ];
1116 	int ret;
1117 
1118 	BUG_ON(!net);
1119 	ret = __dev_alloc_name(net, name, buf);
1120 	if (ret >= 0)
1121 		strlcpy(dev->name, buf, IFNAMSIZ);
1122 	return ret;
1123 }
1124 
1125 /**
1126  *	dev_alloc_name - allocate a name for a device
1127  *	@dev: device
1128  *	@name: name format string
1129  *
1130  *	Passed a format string - eg "lt%d" it will try and find a suitable
1131  *	id. It scans list of devices to build up a free map, then chooses
1132  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1133  *	while allocating the name and adding the device in order to avoid
1134  *	duplicates.
1135  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1136  *	Returns the number of the unit assigned or a negative errno code.
1137  */
1138 
1139 int dev_alloc_name(struct net_device *dev, const char *name)
1140 {
1141 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1142 }
1143 EXPORT_SYMBOL(dev_alloc_name);
1144 
1145 int dev_get_valid_name(struct net *net, struct net_device *dev,
1146 		       const char *name)
1147 {
1148 	BUG_ON(!net);
1149 
1150 	if (!dev_valid_name(name))
1151 		return -EINVAL;
1152 
1153 	if (strchr(name, '%'))
1154 		return dev_alloc_name_ns(net, dev, name);
1155 	else if (__dev_get_by_name(net, name))
1156 		return -EEXIST;
1157 	else if (dev->name != name)
1158 		strlcpy(dev->name, name, IFNAMSIZ);
1159 
1160 	return 0;
1161 }
1162 EXPORT_SYMBOL(dev_get_valid_name);
1163 
1164 /**
1165  *	dev_change_name - change name of a device
1166  *	@dev: device
1167  *	@newname: name (or format string) must be at least IFNAMSIZ
1168  *
1169  *	Change name of a device, can pass format strings "eth%d".
1170  *	for wildcarding.
1171  */
1172 int dev_change_name(struct net_device *dev, const char *newname)
1173 {
1174 	unsigned char old_assign_type;
1175 	char oldname[IFNAMSIZ];
1176 	int err = 0;
1177 	int ret;
1178 	struct net *net;
1179 
1180 	ASSERT_RTNL();
1181 	BUG_ON(!dev_net(dev));
1182 
1183 	net = dev_net(dev);
1184 	if (dev->flags & IFF_UP)
1185 		return -EBUSY;
1186 
1187 	write_seqcount_begin(&devnet_rename_seq);
1188 
1189 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1190 		write_seqcount_end(&devnet_rename_seq);
1191 		return 0;
1192 	}
1193 
1194 	memcpy(oldname, dev->name, IFNAMSIZ);
1195 
1196 	err = dev_get_valid_name(net, dev, newname);
1197 	if (err < 0) {
1198 		write_seqcount_end(&devnet_rename_seq);
1199 		return err;
1200 	}
1201 
1202 	if (oldname[0] && !strchr(oldname, '%'))
1203 		netdev_info(dev, "renamed from %s\n", oldname);
1204 
1205 	old_assign_type = dev->name_assign_type;
1206 	dev->name_assign_type = NET_NAME_RENAMED;
1207 
1208 rollback:
1209 	ret = device_rename(&dev->dev, dev->name);
1210 	if (ret) {
1211 		memcpy(dev->name, oldname, IFNAMSIZ);
1212 		dev->name_assign_type = old_assign_type;
1213 		write_seqcount_end(&devnet_rename_seq);
1214 		return ret;
1215 	}
1216 
1217 	write_seqcount_end(&devnet_rename_seq);
1218 
1219 	netdev_adjacent_rename_links(dev, oldname);
1220 
1221 	write_lock_bh(&dev_base_lock);
1222 	hlist_del_rcu(&dev->name_hlist);
1223 	write_unlock_bh(&dev_base_lock);
1224 
1225 	synchronize_rcu();
1226 
1227 	write_lock_bh(&dev_base_lock);
1228 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1229 	write_unlock_bh(&dev_base_lock);
1230 
1231 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1232 	ret = notifier_to_errno(ret);
1233 
1234 	if (ret) {
1235 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1236 		if (err >= 0) {
1237 			err = ret;
1238 			write_seqcount_begin(&devnet_rename_seq);
1239 			memcpy(dev->name, oldname, IFNAMSIZ);
1240 			memcpy(oldname, newname, IFNAMSIZ);
1241 			dev->name_assign_type = old_assign_type;
1242 			old_assign_type = NET_NAME_RENAMED;
1243 			goto rollback;
1244 		} else {
1245 			pr_err("%s: name change rollback failed: %d\n",
1246 			       dev->name, ret);
1247 		}
1248 	}
1249 
1250 	return err;
1251 }
1252 
1253 /**
1254  *	dev_set_alias - change ifalias of a device
1255  *	@dev: device
1256  *	@alias: name up to IFALIASZ
1257  *	@len: limit of bytes to copy from info
1258  *
1259  *	Set ifalias for a device,
1260  */
1261 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1262 {
1263 	struct dev_ifalias *new_alias = NULL;
1264 
1265 	if (len >= IFALIASZ)
1266 		return -EINVAL;
1267 
1268 	if (len) {
1269 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1270 		if (!new_alias)
1271 			return -ENOMEM;
1272 
1273 		memcpy(new_alias->ifalias, alias, len);
1274 		new_alias->ifalias[len] = 0;
1275 	}
1276 
1277 	mutex_lock(&ifalias_mutex);
1278 	rcu_swap_protected(dev->ifalias, new_alias,
1279 			   mutex_is_locked(&ifalias_mutex));
1280 	mutex_unlock(&ifalias_mutex);
1281 
1282 	if (new_alias)
1283 		kfree_rcu(new_alias, rcuhead);
1284 
1285 	return len;
1286 }
1287 EXPORT_SYMBOL(dev_set_alias);
1288 
1289 /**
1290  *	dev_get_alias - get ifalias of a device
1291  *	@dev: device
1292  *	@name: buffer to store name of ifalias
1293  *	@len: size of buffer
1294  *
1295  *	get ifalias for a device.  Caller must make sure dev cannot go
1296  *	away,  e.g. rcu read lock or own a reference count to device.
1297  */
1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299 {
1300 	const struct dev_ifalias *alias;
1301 	int ret = 0;
1302 
1303 	rcu_read_lock();
1304 	alias = rcu_dereference(dev->ifalias);
1305 	if (alias)
1306 		ret = snprintf(name, len, "%s", alias->ifalias);
1307 	rcu_read_unlock();
1308 
1309 	return ret;
1310 }
1311 
1312 /**
1313  *	netdev_features_change - device changes features
1314  *	@dev: device to cause notification
1315  *
1316  *	Called to indicate a device has changed features.
1317  */
1318 void netdev_features_change(struct net_device *dev)
1319 {
1320 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321 }
1322 EXPORT_SYMBOL(netdev_features_change);
1323 
1324 /**
1325  *	netdev_state_change - device changes state
1326  *	@dev: device to cause notification
1327  *
1328  *	Called to indicate a device has changed state. This function calls
1329  *	the notifier chains for netdev_chain and sends a NEWLINK message
1330  *	to the routing socket.
1331  */
1332 void netdev_state_change(struct net_device *dev)
1333 {
1334 	if (dev->flags & IFF_UP) {
1335 		struct netdev_notifier_change_info change_info = {
1336 			.info.dev = dev,
1337 		};
1338 
1339 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1340 					      &change_info.info);
1341 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342 	}
1343 }
1344 EXPORT_SYMBOL(netdev_state_change);
1345 
1346 /**
1347  * netdev_notify_peers - notify network peers about existence of @dev
1348  * @dev: network device
1349  *
1350  * Generate traffic such that interested network peers are aware of
1351  * @dev, such as by generating a gratuitous ARP. This may be used when
1352  * a device wants to inform the rest of the network about some sort of
1353  * reconfiguration such as a failover event or virtual machine
1354  * migration.
1355  */
1356 void netdev_notify_peers(struct net_device *dev)
1357 {
1358 	rtnl_lock();
1359 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361 	rtnl_unlock();
1362 }
1363 EXPORT_SYMBOL(netdev_notify_peers);
1364 
1365 static int __dev_open(struct net_device *dev)
1366 {
1367 	const struct net_device_ops *ops = dev->netdev_ops;
1368 	int ret;
1369 
1370 	ASSERT_RTNL();
1371 
1372 	if (!netif_device_present(dev))
1373 		return -ENODEV;
1374 
1375 	/* Block netpoll from trying to do any rx path servicing.
1376 	 * If we don't do this there is a chance ndo_poll_controller
1377 	 * or ndo_poll may be running while we open the device
1378 	 */
1379 	netpoll_poll_disable(dev);
1380 
1381 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 	ret = notifier_to_errno(ret);
1383 	if (ret)
1384 		return ret;
1385 
1386 	set_bit(__LINK_STATE_START, &dev->state);
1387 
1388 	if (ops->ndo_validate_addr)
1389 		ret = ops->ndo_validate_addr(dev);
1390 
1391 	if (!ret && ops->ndo_open)
1392 		ret = ops->ndo_open(dev);
1393 
1394 	netpoll_poll_enable(dev);
1395 
1396 	if (ret)
1397 		clear_bit(__LINK_STATE_START, &dev->state);
1398 	else {
1399 		dev->flags |= IFF_UP;
1400 		dev_set_rx_mode(dev);
1401 		dev_activate(dev);
1402 		add_device_randomness(dev->dev_addr, dev->addr_len);
1403 	}
1404 
1405 	return ret;
1406 }
1407 
1408 /**
1409  *	dev_open	- prepare an interface for use.
1410  *	@dev:	device to open
1411  *
1412  *	Takes a device from down to up state. The device's private open
1413  *	function is invoked and then the multicast lists are loaded. Finally
1414  *	the device is moved into the up state and a %NETDEV_UP message is
1415  *	sent to the netdev notifier chain.
1416  *
1417  *	Calling this function on an active interface is a nop. On a failure
1418  *	a negative errno code is returned.
1419  */
1420 int dev_open(struct net_device *dev)
1421 {
1422 	int ret;
1423 
1424 	if (dev->flags & IFF_UP)
1425 		return 0;
1426 
1427 	ret = __dev_open(dev);
1428 	if (ret < 0)
1429 		return ret;
1430 
1431 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432 	call_netdevice_notifiers(NETDEV_UP, dev);
1433 
1434 	return ret;
1435 }
1436 EXPORT_SYMBOL(dev_open);
1437 
1438 static void __dev_close_many(struct list_head *head)
1439 {
1440 	struct net_device *dev;
1441 
1442 	ASSERT_RTNL();
1443 	might_sleep();
1444 
1445 	list_for_each_entry(dev, head, close_list) {
1446 		/* Temporarily disable netpoll until the interface is down */
1447 		netpoll_poll_disable(dev);
1448 
1449 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450 
1451 		clear_bit(__LINK_STATE_START, &dev->state);
1452 
1453 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1454 		 * can be even on different cpu. So just clear netif_running().
1455 		 *
1456 		 * dev->stop() will invoke napi_disable() on all of it's
1457 		 * napi_struct instances on this device.
1458 		 */
1459 		smp_mb__after_atomic(); /* Commit netif_running(). */
1460 	}
1461 
1462 	dev_deactivate_many(head);
1463 
1464 	list_for_each_entry(dev, head, close_list) {
1465 		const struct net_device_ops *ops = dev->netdev_ops;
1466 
1467 		/*
1468 		 *	Call the device specific close. This cannot fail.
1469 		 *	Only if device is UP
1470 		 *
1471 		 *	We allow it to be called even after a DETACH hot-plug
1472 		 *	event.
1473 		 */
1474 		if (ops->ndo_stop)
1475 			ops->ndo_stop(dev);
1476 
1477 		dev->flags &= ~IFF_UP;
1478 		netpoll_poll_enable(dev);
1479 	}
1480 }
1481 
1482 static void __dev_close(struct net_device *dev)
1483 {
1484 	LIST_HEAD(single);
1485 
1486 	list_add(&dev->close_list, &single);
1487 	__dev_close_many(&single);
1488 	list_del(&single);
1489 }
1490 
1491 void dev_close_many(struct list_head *head, bool unlink)
1492 {
1493 	struct net_device *dev, *tmp;
1494 
1495 	/* Remove the devices that don't need to be closed */
1496 	list_for_each_entry_safe(dev, tmp, head, close_list)
1497 		if (!(dev->flags & IFF_UP))
1498 			list_del_init(&dev->close_list);
1499 
1500 	__dev_close_many(head);
1501 
1502 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1503 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1505 		if (unlink)
1506 			list_del_init(&dev->close_list);
1507 	}
1508 }
1509 EXPORT_SYMBOL(dev_close_many);
1510 
1511 /**
1512  *	dev_close - shutdown an interface.
1513  *	@dev: device to shutdown
1514  *
1515  *	This function moves an active device into down state. A
1516  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518  *	chain.
1519  */
1520 void dev_close(struct net_device *dev)
1521 {
1522 	if (dev->flags & IFF_UP) {
1523 		LIST_HEAD(single);
1524 
1525 		list_add(&dev->close_list, &single);
1526 		dev_close_many(&single, true);
1527 		list_del(&single);
1528 	}
1529 }
1530 EXPORT_SYMBOL(dev_close);
1531 
1532 
1533 /**
1534  *	dev_disable_lro - disable Large Receive Offload on a device
1535  *	@dev: device
1536  *
1537  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1538  *	called under RTNL.  This is needed if received packets may be
1539  *	forwarded to another interface.
1540  */
1541 void dev_disable_lro(struct net_device *dev)
1542 {
1543 	struct net_device *lower_dev;
1544 	struct list_head *iter;
1545 
1546 	dev->wanted_features &= ~NETIF_F_LRO;
1547 	netdev_update_features(dev);
1548 
1549 	if (unlikely(dev->features & NETIF_F_LRO))
1550 		netdev_WARN(dev, "failed to disable LRO!\n");
1551 
1552 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 		dev_disable_lro(lower_dev);
1554 }
1555 EXPORT_SYMBOL(dev_disable_lro);
1556 
1557 /**
1558  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559  *	@dev: device
1560  *
1561  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1562  *	called under RTNL.  This is needed if Generic XDP is installed on
1563  *	the device.
1564  */
1565 static void dev_disable_gro_hw(struct net_device *dev)
1566 {
1567 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1568 	netdev_update_features(dev);
1569 
1570 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1571 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572 }
1573 
1574 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1575 {
1576 #define N(val) 						\
1577 	case NETDEV_##val:				\
1578 		return "NETDEV_" __stringify(val);
1579 	switch (cmd) {
1580 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1581 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1582 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1583 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1584 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1585 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1586 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1587 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1588 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1589 	}
1590 #undef N
1591 	return "UNKNOWN_NETDEV_EVENT";
1592 }
1593 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1594 
1595 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1596 				   struct net_device *dev)
1597 {
1598 	struct netdev_notifier_info info = {
1599 		.dev = dev,
1600 	};
1601 
1602 	return nb->notifier_call(nb, val, &info);
1603 }
1604 
1605 static int dev_boot_phase = 1;
1606 
1607 /**
1608  * register_netdevice_notifier - register a network notifier block
1609  * @nb: notifier
1610  *
1611  * Register a notifier to be called when network device events occur.
1612  * The notifier passed is linked into the kernel structures and must
1613  * not be reused until it has been unregistered. A negative errno code
1614  * is returned on a failure.
1615  *
1616  * When registered all registration and up events are replayed
1617  * to the new notifier to allow device to have a race free
1618  * view of the network device list.
1619  */
1620 
1621 int register_netdevice_notifier(struct notifier_block *nb)
1622 {
1623 	struct net_device *dev;
1624 	struct net_device *last;
1625 	struct net *net;
1626 	int err;
1627 
1628 	/* Close race with setup_net() and cleanup_net() */
1629 	down_write(&pernet_ops_rwsem);
1630 	rtnl_lock();
1631 	err = raw_notifier_chain_register(&netdev_chain, nb);
1632 	if (err)
1633 		goto unlock;
1634 	if (dev_boot_phase)
1635 		goto unlock;
1636 	for_each_net(net) {
1637 		for_each_netdev(net, dev) {
1638 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1639 			err = notifier_to_errno(err);
1640 			if (err)
1641 				goto rollback;
1642 
1643 			if (!(dev->flags & IFF_UP))
1644 				continue;
1645 
1646 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1647 		}
1648 	}
1649 
1650 unlock:
1651 	rtnl_unlock();
1652 	up_write(&pernet_ops_rwsem);
1653 	return err;
1654 
1655 rollback:
1656 	last = dev;
1657 	for_each_net(net) {
1658 		for_each_netdev(net, dev) {
1659 			if (dev == last)
1660 				goto outroll;
1661 
1662 			if (dev->flags & IFF_UP) {
1663 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1664 							dev);
1665 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1666 			}
1667 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1668 		}
1669 	}
1670 
1671 outroll:
1672 	raw_notifier_chain_unregister(&netdev_chain, nb);
1673 	goto unlock;
1674 }
1675 EXPORT_SYMBOL(register_netdevice_notifier);
1676 
1677 /**
1678  * unregister_netdevice_notifier - unregister a network notifier block
1679  * @nb: notifier
1680  *
1681  * Unregister a notifier previously registered by
1682  * register_netdevice_notifier(). The notifier is unlinked into the
1683  * kernel structures and may then be reused. A negative errno code
1684  * is returned on a failure.
1685  *
1686  * After unregistering unregister and down device events are synthesized
1687  * for all devices on the device list to the removed notifier to remove
1688  * the need for special case cleanup code.
1689  */
1690 
1691 int unregister_netdevice_notifier(struct notifier_block *nb)
1692 {
1693 	struct net_device *dev;
1694 	struct net *net;
1695 	int err;
1696 
1697 	/* Close race with setup_net() and cleanup_net() */
1698 	down_write(&pernet_ops_rwsem);
1699 	rtnl_lock();
1700 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1701 	if (err)
1702 		goto unlock;
1703 
1704 	for_each_net(net) {
1705 		for_each_netdev(net, dev) {
1706 			if (dev->flags & IFF_UP) {
1707 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1708 							dev);
1709 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1710 			}
1711 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1712 		}
1713 	}
1714 unlock:
1715 	rtnl_unlock();
1716 	up_write(&pernet_ops_rwsem);
1717 	return err;
1718 }
1719 EXPORT_SYMBOL(unregister_netdevice_notifier);
1720 
1721 /**
1722  *	call_netdevice_notifiers_info - call all network notifier blocks
1723  *	@val: value passed unmodified to notifier function
1724  *	@info: notifier information data
1725  *
1726  *	Call all network notifier blocks.  Parameters and return value
1727  *	are as for raw_notifier_call_chain().
1728  */
1729 
1730 static int call_netdevice_notifiers_info(unsigned long val,
1731 					 struct netdev_notifier_info *info)
1732 {
1733 	ASSERT_RTNL();
1734 	return raw_notifier_call_chain(&netdev_chain, val, info);
1735 }
1736 
1737 /**
1738  *	call_netdevice_notifiers - call all network notifier blocks
1739  *      @val: value passed unmodified to notifier function
1740  *      @dev: net_device pointer passed unmodified to notifier function
1741  *
1742  *	Call all network notifier blocks.  Parameters and return value
1743  *	are as for raw_notifier_call_chain().
1744  */
1745 
1746 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1747 {
1748 	struct netdev_notifier_info info = {
1749 		.dev = dev,
1750 	};
1751 
1752 	return call_netdevice_notifiers_info(val, &info);
1753 }
1754 EXPORT_SYMBOL(call_netdevice_notifiers);
1755 
1756 #ifdef CONFIG_NET_INGRESS
1757 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1758 
1759 void net_inc_ingress_queue(void)
1760 {
1761 	static_branch_inc(&ingress_needed_key);
1762 }
1763 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1764 
1765 void net_dec_ingress_queue(void)
1766 {
1767 	static_branch_dec(&ingress_needed_key);
1768 }
1769 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1770 #endif
1771 
1772 #ifdef CONFIG_NET_EGRESS
1773 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1774 
1775 void net_inc_egress_queue(void)
1776 {
1777 	static_branch_inc(&egress_needed_key);
1778 }
1779 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1780 
1781 void net_dec_egress_queue(void)
1782 {
1783 	static_branch_dec(&egress_needed_key);
1784 }
1785 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1786 #endif
1787 
1788 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1789 #ifdef HAVE_JUMP_LABEL
1790 static atomic_t netstamp_needed_deferred;
1791 static atomic_t netstamp_wanted;
1792 static void netstamp_clear(struct work_struct *work)
1793 {
1794 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1795 	int wanted;
1796 
1797 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1798 	if (wanted > 0)
1799 		static_branch_enable(&netstamp_needed_key);
1800 	else
1801 		static_branch_disable(&netstamp_needed_key);
1802 }
1803 static DECLARE_WORK(netstamp_work, netstamp_clear);
1804 #endif
1805 
1806 void net_enable_timestamp(void)
1807 {
1808 #ifdef HAVE_JUMP_LABEL
1809 	int wanted;
1810 
1811 	while (1) {
1812 		wanted = atomic_read(&netstamp_wanted);
1813 		if (wanted <= 0)
1814 			break;
1815 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1816 			return;
1817 	}
1818 	atomic_inc(&netstamp_needed_deferred);
1819 	schedule_work(&netstamp_work);
1820 #else
1821 	static_branch_inc(&netstamp_needed_key);
1822 #endif
1823 }
1824 EXPORT_SYMBOL(net_enable_timestamp);
1825 
1826 void net_disable_timestamp(void)
1827 {
1828 #ifdef HAVE_JUMP_LABEL
1829 	int wanted;
1830 
1831 	while (1) {
1832 		wanted = atomic_read(&netstamp_wanted);
1833 		if (wanted <= 1)
1834 			break;
1835 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1836 			return;
1837 	}
1838 	atomic_dec(&netstamp_needed_deferred);
1839 	schedule_work(&netstamp_work);
1840 #else
1841 	static_branch_dec(&netstamp_needed_key);
1842 #endif
1843 }
1844 EXPORT_SYMBOL(net_disable_timestamp);
1845 
1846 static inline void net_timestamp_set(struct sk_buff *skb)
1847 {
1848 	skb->tstamp = 0;
1849 	if (static_branch_unlikely(&netstamp_needed_key))
1850 		__net_timestamp(skb);
1851 }
1852 
1853 #define net_timestamp_check(COND, SKB)				\
1854 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1855 		if ((COND) && !(SKB)->tstamp)			\
1856 			__net_timestamp(SKB);			\
1857 	}							\
1858 
1859 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1860 {
1861 	unsigned int len;
1862 
1863 	if (!(dev->flags & IFF_UP))
1864 		return false;
1865 
1866 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1867 	if (skb->len <= len)
1868 		return true;
1869 
1870 	/* if TSO is enabled, we don't care about the length as the packet
1871 	 * could be forwarded without being segmented before
1872 	 */
1873 	if (skb_is_gso(skb))
1874 		return true;
1875 
1876 	return false;
1877 }
1878 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1879 
1880 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1881 {
1882 	int ret = ____dev_forward_skb(dev, skb);
1883 
1884 	if (likely(!ret)) {
1885 		skb->protocol = eth_type_trans(skb, dev);
1886 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1887 	}
1888 
1889 	return ret;
1890 }
1891 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1892 
1893 /**
1894  * dev_forward_skb - loopback an skb to another netif
1895  *
1896  * @dev: destination network device
1897  * @skb: buffer to forward
1898  *
1899  * return values:
1900  *	NET_RX_SUCCESS	(no congestion)
1901  *	NET_RX_DROP     (packet was dropped, but freed)
1902  *
1903  * dev_forward_skb can be used for injecting an skb from the
1904  * start_xmit function of one device into the receive queue
1905  * of another device.
1906  *
1907  * The receiving device may be in another namespace, so
1908  * we have to clear all information in the skb that could
1909  * impact namespace isolation.
1910  */
1911 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1912 {
1913 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1914 }
1915 EXPORT_SYMBOL_GPL(dev_forward_skb);
1916 
1917 static inline int deliver_skb(struct sk_buff *skb,
1918 			      struct packet_type *pt_prev,
1919 			      struct net_device *orig_dev)
1920 {
1921 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1922 		return -ENOMEM;
1923 	refcount_inc(&skb->users);
1924 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1925 }
1926 
1927 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1928 					  struct packet_type **pt,
1929 					  struct net_device *orig_dev,
1930 					  __be16 type,
1931 					  struct list_head *ptype_list)
1932 {
1933 	struct packet_type *ptype, *pt_prev = *pt;
1934 
1935 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1936 		if (ptype->type != type)
1937 			continue;
1938 		if (pt_prev)
1939 			deliver_skb(skb, pt_prev, orig_dev);
1940 		pt_prev = ptype;
1941 	}
1942 	*pt = pt_prev;
1943 }
1944 
1945 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1946 {
1947 	if (!ptype->af_packet_priv || !skb->sk)
1948 		return false;
1949 
1950 	if (ptype->id_match)
1951 		return ptype->id_match(ptype, skb->sk);
1952 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1953 		return true;
1954 
1955 	return false;
1956 }
1957 
1958 /*
1959  *	Support routine. Sends outgoing frames to any network
1960  *	taps currently in use.
1961  */
1962 
1963 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1964 {
1965 	struct packet_type *ptype;
1966 	struct sk_buff *skb2 = NULL;
1967 	struct packet_type *pt_prev = NULL;
1968 	struct list_head *ptype_list = &ptype_all;
1969 
1970 	rcu_read_lock();
1971 again:
1972 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1973 		/* Never send packets back to the socket
1974 		 * they originated from - MvS (miquels@drinkel.ow.org)
1975 		 */
1976 		if (skb_loop_sk(ptype, skb))
1977 			continue;
1978 
1979 		if (pt_prev) {
1980 			deliver_skb(skb2, pt_prev, skb->dev);
1981 			pt_prev = ptype;
1982 			continue;
1983 		}
1984 
1985 		/* need to clone skb, done only once */
1986 		skb2 = skb_clone(skb, GFP_ATOMIC);
1987 		if (!skb2)
1988 			goto out_unlock;
1989 
1990 		net_timestamp_set(skb2);
1991 
1992 		/* skb->nh should be correctly
1993 		 * set by sender, so that the second statement is
1994 		 * just protection against buggy protocols.
1995 		 */
1996 		skb_reset_mac_header(skb2);
1997 
1998 		if (skb_network_header(skb2) < skb2->data ||
1999 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2000 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2001 					     ntohs(skb2->protocol),
2002 					     dev->name);
2003 			skb_reset_network_header(skb2);
2004 		}
2005 
2006 		skb2->transport_header = skb2->network_header;
2007 		skb2->pkt_type = PACKET_OUTGOING;
2008 		pt_prev = ptype;
2009 	}
2010 
2011 	if (ptype_list == &ptype_all) {
2012 		ptype_list = &dev->ptype_all;
2013 		goto again;
2014 	}
2015 out_unlock:
2016 	if (pt_prev) {
2017 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2018 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2019 		else
2020 			kfree_skb(skb2);
2021 	}
2022 	rcu_read_unlock();
2023 }
2024 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2025 
2026 /**
2027  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2028  * @dev: Network device
2029  * @txq: number of queues available
2030  *
2031  * If real_num_tx_queues is changed the tc mappings may no longer be
2032  * valid. To resolve this verify the tc mapping remains valid and if
2033  * not NULL the mapping. With no priorities mapping to this
2034  * offset/count pair it will no longer be used. In the worst case TC0
2035  * is invalid nothing can be done so disable priority mappings. If is
2036  * expected that drivers will fix this mapping if they can before
2037  * calling netif_set_real_num_tx_queues.
2038  */
2039 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2040 {
2041 	int i;
2042 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2043 
2044 	/* If TC0 is invalidated disable TC mapping */
2045 	if (tc->offset + tc->count > txq) {
2046 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2047 		dev->num_tc = 0;
2048 		return;
2049 	}
2050 
2051 	/* Invalidated prio to tc mappings set to TC0 */
2052 	for (i = 1; i < TC_BITMASK + 1; i++) {
2053 		int q = netdev_get_prio_tc_map(dev, i);
2054 
2055 		tc = &dev->tc_to_txq[q];
2056 		if (tc->offset + tc->count > txq) {
2057 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2058 				i, q);
2059 			netdev_set_prio_tc_map(dev, i, 0);
2060 		}
2061 	}
2062 }
2063 
2064 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2065 {
2066 	if (dev->num_tc) {
2067 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2068 		int i;
2069 
2070 		/* walk through the TCs and see if it falls into any of them */
2071 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2072 			if ((txq - tc->offset) < tc->count)
2073 				return i;
2074 		}
2075 
2076 		/* didn't find it, just return -1 to indicate no match */
2077 		return -1;
2078 	}
2079 
2080 	return 0;
2081 }
2082 EXPORT_SYMBOL(netdev_txq_to_tc);
2083 
2084 #ifdef CONFIG_XPS
2085 struct static_key xps_needed __read_mostly;
2086 EXPORT_SYMBOL(xps_needed);
2087 struct static_key xps_rxqs_needed __read_mostly;
2088 EXPORT_SYMBOL(xps_rxqs_needed);
2089 static DEFINE_MUTEX(xps_map_mutex);
2090 #define xmap_dereference(P)		\
2091 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2092 
2093 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2094 			     int tci, u16 index)
2095 {
2096 	struct xps_map *map = NULL;
2097 	int pos;
2098 
2099 	if (dev_maps)
2100 		map = xmap_dereference(dev_maps->attr_map[tci]);
2101 	if (!map)
2102 		return false;
2103 
2104 	for (pos = map->len; pos--;) {
2105 		if (map->queues[pos] != index)
2106 			continue;
2107 
2108 		if (map->len > 1) {
2109 			map->queues[pos] = map->queues[--map->len];
2110 			break;
2111 		}
2112 
2113 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2114 		kfree_rcu(map, rcu);
2115 		return false;
2116 	}
2117 
2118 	return true;
2119 }
2120 
2121 static bool remove_xps_queue_cpu(struct net_device *dev,
2122 				 struct xps_dev_maps *dev_maps,
2123 				 int cpu, u16 offset, u16 count)
2124 {
2125 	int num_tc = dev->num_tc ? : 1;
2126 	bool active = false;
2127 	int tci;
2128 
2129 	for (tci = cpu * num_tc; num_tc--; tci++) {
2130 		int i, j;
2131 
2132 		for (i = count, j = offset; i--; j++) {
2133 			if (!remove_xps_queue(dev_maps, tci, j))
2134 				break;
2135 		}
2136 
2137 		active |= i < 0;
2138 	}
2139 
2140 	return active;
2141 }
2142 
2143 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2144 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2145 			   u16 offset, u16 count, bool is_rxqs_map)
2146 {
2147 	bool active = false;
2148 	int i, j;
2149 
2150 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2151 	     j < nr_ids;)
2152 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2153 					       count);
2154 	if (!active) {
2155 		if (is_rxqs_map) {
2156 			RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2157 		} else {
2158 			RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2159 
2160 			for (i = offset + (count - 1); count--; i--)
2161 				netdev_queue_numa_node_write(
2162 					netdev_get_tx_queue(dev, i),
2163 							NUMA_NO_NODE);
2164 		}
2165 		kfree_rcu(dev_maps, rcu);
2166 	}
2167 }
2168 
2169 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2170 				   u16 count)
2171 {
2172 	const unsigned long *possible_mask = NULL;
2173 	struct xps_dev_maps *dev_maps;
2174 	unsigned int nr_ids;
2175 
2176 	if (!static_key_false(&xps_needed))
2177 		return;
2178 
2179 	cpus_read_lock();
2180 	mutex_lock(&xps_map_mutex);
2181 
2182 	if (static_key_false(&xps_rxqs_needed)) {
2183 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2184 		if (dev_maps) {
2185 			nr_ids = dev->num_rx_queues;
2186 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2187 				       offset, count, true);
2188 		}
2189 	}
2190 
2191 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2192 	if (!dev_maps)
2193 		goto out_no_maps;
2194 
2195 	if (num_possible_cpus() > 1)
2196 		possible_mask = cpumask_bits(cpu_possible_mask);
2197 	nr_ids = nr_cpu_ids;
2198 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2199 		       false);
2200 
2201 out_no_maps:
2202 	if (static_key_enabled(&xps_rxqs_needed))
2203 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2204 
2205 	static_key_slow_dec_cpuslocked(&xps_needed);
2206 	mutex_unlock(&xps_map_mutex);
2207 	cpus_read_unlock();
2208 }
2209 
2210 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2211 {
2212 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2213 }
2214 
2215 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2216 				      u16 index, bool is_rxqs_map)
2217 {
2218 	struct xps_map *new_map;
2219 	int alloc_len = XPS_MIN_MAP_ALLOC;
2220 	int i, pos;
2221 
2222 	for (pos = 0; map && pos < map->len; pos++) {
2223 		if (map->queues[pos] != index)
2224 			continue;
2225 		return map;
2226 	}
2227 
2228 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2229 	if (map) {
2230 		if (pos < map->alloc_len)
2231 			return map;
2232 
2233 		alloc_len = map->alloc_len * 2;
2234 	}
2235 
2236 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2237 	 *  map
2238 	 */
2239 	if (is_rxqs_map)
2240 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2241 	else
2242 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2243 				       cpu_to_node(attr_index));
2244 	if (!new_map)
2245 		return NULL;
2246 
2247 	for (i = 0; i < pos; i++)
2248 		new_map->queues[i] = map->queues[i];
2249 	new_map->alloc_len = alloc_len;
2250 	new_map->len = pos;
2251 
2252 	return new_map;
2253 }
2254 
2255 /* Must be called under cpus_read_lock */
2256 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2257 			  u16 index, bool is_rxqs_map)
2258 {
2259 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2260 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2261 	int i, j, tci, numa_node_id = -2;
2262 	int maps_sz, num_tc = 1, tc = 0;
2263 	struct xps_map *map, *new_map;
2264 	bool active = false;
2265 	unsigned int nr_ids;
2266 
2267 	if (dev->num_tc) {
2268 		/* Do not allow XPS on subordinate device directly */
2269 		num_tc = dev->num_tc;
2270 		if (num_tc < 0)
2271 			return -EINVAL;
2272 
2273 		/* If queue belongs to subordinate dev use its map */
2274 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2275 
2276 		tc = netdev_txq_to_tc(dev, index);
2277 		if (tc < 0)
2278 			return -EINVAL;
2279 	}
2280 
2281 	mutex_lock(&xps_map_mutex);
2282 	if (is_rxqs_map) {
2283 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2284 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2285 		nr_ids = dev->num_rx_queues;
2286 	} else {
2287 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2288 		if (num_possible_cpus() > 1) {
2289 			online_mask = cpumask_bits(cpu_online_mask);
2290 			possible_mask = cpumask_bits(cpu_possible_mask);
2291 		}
2292 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2293 		nr_ids = nr_cpu_ids;
2294 	}
2295 
2296 	if (maps_sz < L1_CACHE_BYTES)
2297 		maps_sz = L1_CACHE_BYTES;
2298 
2299 	/* allocate memory for queue storage */
2300 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2301 	     j < nr_ids;) {
2302 		if (!new_dev_maps)
2303 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2304 		if (!new_dev_maps) {
2305 			mutex_unlock(&xps_map_mutex);
2306 			return -ENOMEM;
2307 		}
2308 
2309 		tci = j * num_tc + tc;
2310 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2311 				 NULL;
2312 
2313 		map = expand_xps_map(map, j, index, is_rxqs_map);
2314 		if (!map)
2315 			goto error;
2316 
2317 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2318 	}
2319 
2320 	if (!new_dev_maps)
2321 		goto out_no_new_maps;
2322 
2323 	static_key_slow_inc_cpuslocked(&xps_needed);
2324 	if (is_rxqs_map)
2325 		static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2326 
2327 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2328 	     j < nr_ids;) {
2329 		/* copy maps belonging to foreign traffic classes */
2330 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2331 			/* fill in the new device map from the old device map */
2332 			map = xmap_dereference(dev_maps->attr_map[tci]);
2333 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2334 		}
2335 
2336 		/* We need to explicitly update tci as prevous loop
2337 		 * could break out early if dev_maps is NULL.
2338 		 */
2339 		tci = j * num_tc + tc;
2340 
2341 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2342 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2343 			/* add tx-queue to CPU/rx-queue maps */
2344 			int pos = 0;
2345 
2346 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2347 			while ((pos < map->len) && (map->queues[pos] != index))
2348 				pos++;
2349 
2350 			if (pos == map->len)
2351 				map->queues[map->len++] = index;
2352 #ifdef CONFIG_NUMA
2353 			if (!is_rxqs_map) {
2354 				if (numa_node_id == -2)
2355 					numa_node_id = cpu_to_node(j);
2356 				else if (numa_node_id != cpu_to_node(j))
2357 					numa_node_id = -1;
2358 			}
2359 #endif
2360 		} else if (dev_maps) {
2361 			/* fill in the new device map from the old device map */
2362 			map = xmap_dereference(dev_maps->attr_map[tci]);
2363 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2364 		}
2365 
2366 		/* copy maps belonging to foreign traffic classes */
2367 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2368 			/* fill in the new device map from the old device map */
2369 			map = xmap_dereference(dev_maps->attr_map[tci]);
2370 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2371 		}
2372 	}
2373 
2374 	if (is_rxqs_map)
2375 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2376 	else
2377 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2378 
2379 	/* Cleanup old maps */
2380 	if (!dev_maps)
2381 		goto out_no_old_maps;
2382 
2383 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2384 	     j < nr_ids;) {
2385 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2386 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2387 			map = xmap_dereference(dev_maps->attr_map[tci]);
2388 			if (map && map != new_map)
2389 				kfree_rcu(map, rcu);
2390 		}
2391 	}
2392 
2393 	kfree_rcu(dev_maps, rcu);
2394 
2395 out_no_old_maps:
2396 	dev_maps = new_dev_maps;
2397 	active = true;
2398 
2399 out_no_new_maps:
2400 	if (!is_rxqs_map) {
2401 		/* update Tx queue numa node */
2402 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2403 					     (numa_node_id >= 0) ?
2404 					     numa_node_id : NUMA_NO_NODE);
2405 	}
2406 
2407 	if (!dev_maps)
2408 		goto out_no_maps;
2409 
2410 	/* removes tx-queue from unused CPUs/rx-queues */
2411 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2412 	     j < nr_ids;) {
2413 		for (i = tc, tci = j * num_tc; i--; tci++)
2414 			active |= remove_xps_queue(dev_maps, tci, index);
2415 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2416 		    !netif_attr_test_online(j, online_mask, nr_ids))
2417 			active |= remove_xps_queue(dev_maps, tci, index);
2418 		for (i = num_tc - tc, tci++; --i; tci++)
2419 			active |= remove_xps_queue(dev_maps, tci, index);
2420 	}
2421 
2422 	/* free map if not active */
2423 	if (!active) {
2424 		if (is_rxqs_map)
2425 			RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2426 		else
2427 			RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2428 		kfree_rcu(dev_maps, rcu);
2429 	}
2430 
2431 out_no_maps:
2432 	mutex_unlock(&xps_map_mutex);
2433 
2434 	return 0;
2435 error:
2436 	/* remove any maps that we added */
2437 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2438 	     j < nr_ids;) {
2439 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2440 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2441 			map = dev_maps ?
2442 			      xmap_dereference(dev_maps->attr_map[tci]) :
2443 			      NULL;
2444 			if (new_map && new_map != map)
2445 				kfree(new_map);
2446 		}
2447 	}
2448 
2449 	mutex_unlock(&xps_map_mutex);
2450 
2451 	kfree(new_dev_maps);
2452 	return -ENOMEM;
2453 }
2454 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2455 
2456 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2457 			u16 index)
2458 {
2459 	int ret;
2460 
2461 	cpus_read_lock();
2462 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2463 	cpus_read_unlock();
2464 
2465 	return ret;
2466 }
2467 EXPORT_SYMBOL(netif_set_xps_queue);
2468 
2469 #endif
2470 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2471 {
2472 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2473 
2474 	/* Unbind any subordinate channels */
2475 	while (txq-- != &dev->_tx[0]) {
2476 		if (txq->sb_dev)
2477 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2478 	}
2479 }
2480 
2481 void netdev_reset_tc(struct net_device *dev)
2482 {
2483 #ifdef CONFIG_XPS
2484 	netif_reset_xps_queues_gt(dev, 0);
2485 #endif
2486 	netdev_unbind_all_sb_channels(dev);
2487 
2488 	/* Reset TC configuration of device */
2489 	dev->num_tc = 0;
2490 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2491 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2492 }
2493 EXPORT_SYMBOL(netdev_reset_tc);
2494 
2495 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2496 {
2497 	if (tc >= dev->num_tc)
2498 		return -EINVAL;
2499 
2500 #ifdef CONFIG_XPS
2501 	netif_reset_xps_queues(dev, offset, count);
2502 #endif
2503 	dev->tc_to_txq[tc].count = count;
2504 	dev->tc_to_txq[tc].offset = offset;
2505 	return 0;
2506 }
2507 EXPORT_SYMBOL(netdev_set_tc_queue);
2508 
2509 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2510 {
2511 	if (num_tc > TC_MAX_QUEUE)
2512 		return -EINVAL;
2513 
2514 #ifdef CONFIG_XPS
2515 	netif_reset_xps_queues_gt(dev, 0);
2516 #endif
2517 	netdev_unbind_all_sb_channels(dev);
2518 
2519 	dev->num_tc = num_tc;
2520 	return 0;
2521 }
2522 EXPORT_SYMBOL(netdev_set_num_tc);
2523 
2524 void netdev_unbind_sb_channel(struct net_device *dev,
2525 			      struct net_device *sb_dev)
2526 {
2527 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2528 
2529 #ifdef CONFIG_XPS
2530 	netif_reset_xps_queues_gt(sb_dev, 0);
2531 #endif
2532 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2533 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2534 
2535 	while (txq-- != &dev->_tx[0]) {
2536 		if (txq->sb_dev == sb_dev)
2537 			txq->sb_dev = NULL;
2538 	}
2539 }
2540 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2541 
2542 int netdev_bind_sb_channel_queue(struct net_device *dev,
2543 				 struct net_device *sb_dev,
2544 				 u8 tc, u16 count, u16 offset)
2545 {
2546 	/* Make certain the sb_dev and dev are already configured */
2547 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2548 		return -EINVAL;
2549 
2550 	/* We cannot hand out queues we don't have */
2551 	if ((offset + count) > dev->real_num_tx_queues)
2552 		return -EINVAL;
2553 
2554 	/* Record the mapping */
2555 	sb_dev->tc_to_txq[tc].count = count;
2556 	sb_dev->tc_to_txq[tc].offset = offset;
2557 
2558 	/* Provide a way for Tx queue to find the tc_to_txq map or
2559 	 * XPS map for itself.
2560 	 */
2561 	while (count--)
2562 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2563 
2564 	return 0;
2565 }
2566 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2567 
2568 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2569 {
2570 	/* Do not use a multiqueue device to represent a subordinate channel */
2571 	if (netif_is_multiqueue(dev))
2572 		return -ENODEV;
2573 
2574 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2575 	 * Channel 0 is meant to be "native" mode and used only to represent
2576 	 * the main root device. We allow writing 0 to reset the device back
2577 	 * to normal mode after being used as a subordinate channel.
2578 	 */
2579 	if (channel > S16_MAX)
2580 		return -EINVAL;
2581 
2582 	dev->num_tc = -channel;
2583 
2584 	return 0;
2585 }
2586 EXPORT_SYMBOL(netdev_set_sb_channel);
2587 
2588 /*
2589  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2590  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2591  */
2592 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2593 {
2594 	bool disabling;
2595 	int rc;
2596 
2597 	disabling = txq < dev->real_num_tx_queues;
2598 
2599 	if (txq < 1 || txq > dev->num_tx_queues)
2600 		return -EINVAL;
2601 
2602 	if (dev->reg_state == NETREG_REGISTERED ||
2603 	    dev->reg_state == NETREG_UNREGISTERING) {
2604 		ASSERT_RTNL();
2605 
2606 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2607 						  txq);
2608 		if (rc)
2609 			return rc;
2610 
2611 		if (dev->num_tc)
2612 			netif_setup_tc(dev, txq);
2613 
2614 		dev->real_num_tx_queues = txq;
2615 
2616 		if (disabling) {
2617 			synchronize_net();
2618 			qdisc_reset_all_tx_gt(dev, txq);
2619 #ifdef CONFIG_XPS
2620 			netif_reset_xps_queues_gt(dev, txq);
2621 #endif
2622 		}
2623 	} else {
2624 		dev->real_num_tx_queues = txq;
2625 	}
2626 
2627 	return 0;
2628 }
2629 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2630 
2631 #ifdef CONFIG_SYSFS
2632 /**
2633  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2634  *	@dev: Network device
2635  *	@rxq: Actual number of RX queues
2636  *
2637  *	This must be called either with the rtnl_lock held or before
2638  *	registration of the net device.  Returns 0 on success, or a
2639  *	negative error code.  If called before registration, it always
2640  *	succeeds.
2641  */
2642 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2643 {
2644 	int rc;
2645 
2646 	if (rxq < 1 || rxq > dev->num_rx_queues)
2647 		return -EINVAL;
2648 
2649 	if (dev->reg_state == NETREG_REGISTERED) {
2650 		ASSERT_RTNL();
2651 
2652 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2653 						  rxq);
2654 		if (rc)
2655 			return rc;
2656 	}
2657 
2658 	dev->real_num_rx_queues = rxq;
2659 	return 0;
2660 }
2661 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2662 #endif
2663 
2664 /**
2665  * netif_get_num_default_rss_queues - default number of RSS queues
2666  *
2667  * This routine should set an upper limit on the number of RSS queues
2668  * used by default by multiqueue devices.
2669  */
2670 int netif_get_num_default_rss_queues(void)
2671 {
2672 	return is_kdump_kernel() ?
2673 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2674 }
2675 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2676 
2677 static void __netif_reschedule(struct Qdisc *q)
2678 {
2679 	struct softnet_data *sd;
2680 	unsigned long flags;
2681 
2682 	local_irq_save(flags);
2683 	sd = this_cpu_ptr(&softnet_data);
2684 	q->next_sched = NULL;
2685 	*sd->output_queue_tailp = q;
2686 	sd->output_queue_tailp = &q->next_sched;
2687 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2688 	local_irq_restore(flags);
2689 }
2690 
2691 void __netif_schedule(struct Qdisc *q)
2692 {
2693 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2694 		__netif_reschedule(q);
2695 }
2696 EXPORT_SYMBOL(__netif_schedule);
2697 
2698 struct dev_kfree_skb_cb {
2699 	enum skb_free_reason reason;
2700 };
2701 
2702 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2703 {
2704 	return (struct dev_kfree_skb_cb *)skb->cb;
2705 }
2706 
2707 void netif_schedule_queue(struct netdev_queue *txq)
2708 {
2709 	rcu_read_lock();
2710 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2711 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2712 
2713 		__netif_schedule(q);
2714 	}
2715 	rcu_read_unlock();
2716 }
2717 EXPORT_SYMBOL(netif_schedule_queue);
2718 
2719 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2720 {
2721 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2722 		struct Qdisc *q;
2723 
2724 		rcu_read_lock();
2725 		q = rcu_dereference(dev_queue->qdisc);
2726 		__netif_schedule(q);
2727 		rcu_read_unlock();
2728 	}
2729 }
2730 EXPORT_SYMBOL(netif_tx_wake_queue);
2731 
2732 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2733 {
2734 	unsigned long flags;
2735 
2736 	if (unlikely(!skb))
2737 		return;
2738 
2739 	if (likely(refcount_read(&skb->users) == 1)) {
2740 		smp_rmb();
2741 		refcount_set(&skb->users, 0);
2742 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2743 		return;
2744 	}
2745 	get_kfree_skb_cb(skb)->reason = reason;
2746 	local_irq_save(flags);
2747 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2748 	__this_cpu_write(softnet_data.completion_queue, skb);
2749 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2750 	local_irq_restore(flags);
2751 }
2752 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2753 
2754 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2755 {
2756 	if (in_irq() || irqs_disabled())
2757 		__dev_kfree_skb_irq(skb, reason);
2758 	else
2759 		dev_kfree_skb(skb);
2760 }
2761 EXPORT_SYMBOL(__dev_kfree_skb_any);
2762 
2763 
2764 /**
2765  * netif_device_detach - mark device as removed
2766  * @dev: network device
2767  *
2768  * Mark device as removed from system and therefore no longer available.
2769  */
2770 void netif_device_detach(struct net_device *dev)
2771 {
2772 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2773 	    netif_running(dev)) {
2774 		netif_tx_stop_all_queues(dev);
2775 	}
2776 }
2777 EXPORT_SYMBOL(netif_device_detach);
2778 
2779 /**
2780  * netif_device_attach - mark device as attached
2781  * @dev: network device
2782  *
2783  * Mark device as attached from system and restart if needed.
2784  */
2785 void netif_device_attach(struct net_device *dev)
2786 {
2787 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2788 	    netif_running(dev)) {
2789 		netif_tx_wake_all_queues(dev);
2790 		__netdev_watchdog_up(dev);
2791 	}
2792 }
2793 EXPORT_SYMBOL(netif_device_attach);
2794 
2795 /*
2796  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2797  * to be used as a distribution range.
2798  */
2799 static u16 skb_tx_hash(const struct net_device *dev,
2800 		       const struct net_device *sb_dev,
2801 		       struct sk_buff *skb)
2802 {
2803 	u32 hash;
2804 	u16 qoffset = 0;
2805 	u16 qcount = dev->real_num_tx_queues;
2806 
2807 	if (dev->num_tc) {
2808 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2809 
2810 		qoffset = sb_dev->tc_to_txq[tc].offset;
2811 		qcount = sb_dev->tc_to_txq[tc].count;
2812 	}
2813 
2814 	if (skb_rx_queue_recorded(skb)) {
2815 		hash = skb_get_rx_queue(skb);
2816 		while (unlikely(hash >= qcount))
2817 			hash -= qcount;
2818 		return hash + qoffset;
2819 	}
2820 
2821 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2822 }
2823 
2824 static void skb_warn_bad_offload(const struct sk_buff *skb)
2825 {
2826 	static const netdev_features_t null_features;
2827 	struct net_device *dev = skb->dev;
2828 	const char *name = "";
2829 
2830 	if (!net_ratelimit())
2831 		return;
2832 
2833 	if (dev) {
2834 		if (dev->dev.parent)
2835 			name = dev_driver_string(dev->dev.parent);
2836 		else
2837 			name = netdev_name(dev);
2838 	}
2839 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2840 	     "gso_type=%d ip_summed=%d\n",
2841 	     name, dev ? &dev->features : &null_features,
2842 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2843 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2844 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2845 }
2846 
2847 /*
2848  * Invalidate hardware checksum when packet is to be mangled, and
2849  * complete checksum manually on outgoing path.
2850  */
2851 int skb_checksum_help(struct sk_buff *skb)
2852 {
2853 	__wsum csum;
2854 	int ret = 0, offset;
2855 
2856 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2857 		goto out_set_summed;
2858 
2859 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2860 		skb_warn_bad_offload(skb);
2861 		return -EINVAL;
2862 	}
2863 
2864 	/* Before computing a checksum, we should make sure no frag could
2865 	 * be modified by an external entity : checksum could be wrong.
2866 	 */
2867 	if (skb_has_shared_frag(skb)) {
2868 		ret = __skb_linearize(skb);
2869 		if (ret)
2870 			goto out;
2871 	}
2872 
2873 	offset = skb_checksum_start_offset(skb);
2874 	BUG_ON(offset >= skb_headlen(skb));
2875 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2876 
2877 	offset += skb->csum_offset;
2878 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2879 
2880 	if (skb_cloned(skb) &&
2881 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2882 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2883 		if (ret)
2884 			goto out;
2885 	}
2886 
2887 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2888 out_set_summed:
2889 	skb->ip_summed = CHECKSUM_NONE;
2890 out:
2891 	return ret;
2892 }
2893 EXPORT_SYMBOL(skb_checksum_help);
2894 
2895 int skb_crc32c_csum_help(struct sk_buff *skb)
2896 {
2897 	__le32 crc32c_csum;
2898 	int ret = 0, offset, start;
2899 
2900 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2901 		goto out;
2902 
2903 	if (unlikely(skb_is_gso(skb)))
2904 		goto out;
2905 
2906 	/* Before computing a checksum, we should make sure no frag could
2907 	 * be modified by an external entity : checksum could be wrong.
2908 	 */
2909 	if (unlikely(skb_has_shared_frag(skb))) {
2910 		ret = __skb_linearize(skb);
2911 		if (ret)
2912 			goto out;
2913 	}
2914 	start = skb_checksum_start_offset(skb);
2915 	offset = start + offsetof(struct sctphdr, checksum);
2916 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2917 		ret = -EINVAL;
2918 		goto out;
2919 	}
2920 	if (skb_cloned(skb) &&
2921 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2922 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2923 		if (ret)
2924 			goto out;
2925 	}
2926 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2927 						  skb->len - start, ~(__u32)0,
2928 						  crc32c_csum_stub));
2929 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2930 	skb->ip_summed = CHECKSUM_NONE;
2931 	skb->csum_not_inet = 0;
2932 out:
2933 	return ret;
2934 }
2935 
2936 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2937 {
2938 	__be16 type = skb->protocol;
2939 
2940 	/* Tunnel gso handlers can set protocol to ethernet. */
2941 	if (type == htons(ETH_P_TEB)) {
2942 		struct ethhdr *eth;
2943 
2944 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2945 			return 0;
2946 
2947 		eth = (struct ethhdr *)skb->data;
2948 		type = eth->h_proto;
2949 	}
2950 
2951 	return __vlan_get_protocol(skb, type, depth);
2952 }
2953 
2954 /**
2955  *	skb_mac_gso_segment - mac layer segmentation handler.
2956  *	@skb: buffer to segment
2957  *	@features: features for the output path (see dev->features)
2958  */
2959 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2960 				    netdev_features_t features)
2961 {
2962 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2963 	struct packet_offload *ptype;
2964 	int vlan_depth = skb->mac_len;
2965 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2966 
2967 	if (unlikely(!type))
2968 		return ERR_PTR(-EINVAL);
2969 
2970 	__skb_pull(skb, vlan_depth);
2971 
2972 	rcu_read_lock();
2973 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2974 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2975 			segs = ptype->callbacks.gso_segment(skb, features);
2976 			break;
2977 		}
2978 	}
2979 	rcu_read_unlock();
2980 
2981 	__skb_push(skb, skb->data - skb_mac_header(skb));
2982 
2983 	return segs;
2984 }
2985 EXPORT_SYMBOL(skb_mac_gso_segment);
2986 
2987 
2988 /* openvswitch calls this on rx path, so we need a different check.
2989  */
2990 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2991 {
2992 	if (tx_path)
2993 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2994 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2995 
2996 	return skb->ip_summed == CHECKSUM_NONE;
2997 }
2998 
2999 /**
3000  *	__skb_gso_segment - Perform segmentation on skb.
3001  *	@skb: buffer to segment
3002  *	@features: features for the output path (see dev->features)
3003  *	@tx_path: whether it is called in TX path
3004  *
3005  *	This function segments the given skb and returns a list of segments.
3006  *
3007  *	It may return NULL if the skb requires no segmentation.  This is
3008  *	only possible when GSO is used for verifying header integrity.
3009  *
3010  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3011  */
3012 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3013 				  netdev_features_t features, bool tx_path)
3014 {
3015 	struct sk_buff *segs;
3016 
3017 	if (unlikely(skb_needs_check(skb, tx_path))) {
3018 		int err;
3019 
3020 		/* We're going to init ->check field in TCP or UDP header */
3021 		err = skb_cow_head(skb, 0);
3022 		if (err < 0)
3023 			return ERR_PTR(err);
3024 	}
3025 
3026 	/* Only report GSO partial support if it will enable us to
3027 	 * support segmentation on this frame without needing additional
3028 	 * work.
3029 	 */
3030 	if (features & NETIF_F_GSO_PARTIAL) {
3031 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3032 		struct net_device *dev = skb->dev;
3033 
3034 		partial_features |= dev->features & dev->gso_partial_features;
3035 		if (!skb_gso_ok(skb, features | partial_features))
3036 			features &= ~NETIF_F_GSO_PARTIAL;
3037 	}
3038 
3039 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3040 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3041 
3042 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3043 	SKB_GSO_CB(skb)->encap_level = 0;
3044 
3045 	skb_reset_mac_header(skb);
3046 	skb_reset_mac_len(skb);
3047 
3048 	segs = skb_mac_gso_segment(skb, features);
3049 
3050 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3051 		skb_warn_bad_offload(skb);
3052 
3053 	return segs;
3054 }
3055 EXPORT_SYMBOL(__skb_gso_segment);
3056 
3057 /* Take action when hardware reception checksum errors are detected. */
3058 #ifdef CONFIG_BUG
3059 void netdev_rx_csum_fault(struct net_device *dev)
3060 {
3061 	if (net_ratelimit()) {
3062 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3063 		dump_stack();
3064 	}
3065 }
3066 EXPORT_SYMBOL(netdev_rx_csum_fault);
3067 #endif
3068 
3069 /* XXX: check that highmem exists at all on the given machine. */
3070 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3071 {
3072 #ifdef CONFIG_HIGHMEM
3073 	int i;
3074 
3075 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3076 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3077 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3078 
3079 			if (PageHighMem(skb_frag_page(frag)))
3080 				return 1;
3081 		}
3082 	}
3083 #endif
3084 	return 0;
3085 }
3086 
3087 /* If MPLS offload request, verify we are testing hardware MPLS features
3088  * instead of standard features for the netdev.
3089  */
3090 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3091 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3092 					   netdev_features_t features,
3093 					   __be16 type)
3094 {
3095 	if (eth_p_mpls(type))
3096 		features &= skb->dev->mpls_features;
3097 
3098 	return features;
3099 }
3100 #else
3101 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3102 					   netdev_features_t features,
3103 					   __be16 type)
3104 {
3105 	return features;
3106 }
3107 #endif
3108 
3109 static netdev_features_t harmonize_features(struct sk_buff *skb,
3110 	netdev_features_t features)
3111 {
3112 	int tmp;
3113 	__be16 type;
3114 
3115 	type = skb_network_protocol(skb, &tmp);
3116 	features = net_mpls_features(skb, features, type);
3117 
3118 	if (skb->ip_summed != CHECKSUM_NONE &&
3119 	    !can_checksum_protocol(features, type)) {
3120 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3121 	}
3122 	if (illegal_highdma(skb->dev, skb))
3123 		features &= ~NETIF_F_SG;
3124 
3125 	return features;
3126 }
3127 
3128 netdev_features_t passthru_features_check(struct sk_buff *skb,
3129 					  struct net_device *dev,
3130 					  netdev_features_t features)
3131 {
3132 	return features;
3133 }
3134 EXPORT_SYMBOL(passthru_features_check);
3135 
3136 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3137 					     struct net_device *dev,
3138 					     netdev_features_t features)
3139 {
3140 	return vlan_features_check(skb, features);
3141 }
3142 
3143 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3144 					    struct net_device *dev,
3145 					    netdev_features_t features)
3146 {
3147 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3148 
3149 	if (gso_segs > dev->gso_max_segs)
3150 		return features & ~NETIF_F_GSO_MASK;
3151 
3152 	/* Support for GSO partial features requires software
3153 	 * intervention before we can actually process the packets
3154 	 * so we need to strip support for any partial features now
3155 	 * and we can pull them back in after we have partially
3156 	 * segmented the frame.
3157 	 */
3158 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3159 		features &= ~dev->gso_partial_features;
3160 
3161 	/* Make sure to clear the IPv4 ID mangling feature if the
3162 	 * IPv4 header has the potential to be fragmented.
3163 	 */
3164 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3165 		struct iphdr *iph = skb->encapsulation ?
3166 				    inner_ip_hdr(skb) : ip_hdr(skb);
3167 
3168 		if (!(iph->frag_off & htons(IP_DF)))
3169 			features &= ~NETIF_F_TSO_MANGLEID;
3170 	}
3171 
3172 	return features;
3173 }
3174 
3175 netdev_features_t netif_skb_features(struct sk_buff *skb)
3176 {
3177 	struct net_device *dev = skb->dev;
3178 	netdev_features_t features = dev->features;
3179 
3180 	if (skb_is_gso(skb))
3181 		features = gso_features_check(skb, dev, features);
3182 
3183 	/* If encapsulation offload request, verify we are testing
3184 	 * hardware encapsulation features instead of standard
3185 	 * features for the netdev
3186 	 */
3187 	if (skb->encapsulation)
3188 		features &= dev->hw_enc_features;
3189 
3190 	if (skb_vlan_tagged(skb))
3191 		features = netdev_intersect_features(features,
3192 						     dev->vlan_features |
3193 						     NETIF_F_HW_VLAN_CTAG_TX |
3194 						     NETIF_F_HW_VLAN_STAG_TX);
3195 
3196 	if (dev->netdev_ops->ndo_features_check)
3197 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3198 								features);
3199 	else
3200 		features &= dflt_features_check(skb, dev, features);
3201 
3202 	return harmonize_features(skb, features);
3203 }
3204 EXPORT_SYMBOL(netif_skb_features);
3205 
3206 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3207 		    struct netdev_queue *txq, bool more)
3208 {
3209 	unsigned int len;
3210 	int rc;
3211 
3212 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3213 		dev_queue_xmit_nit(skb, dev);
3214 
3215 	len = skb->len;
3216 	trace_net_dev_start_xmit(skb, dev);
3217 	rc = netdev_start_xmit(skb, dev, txq, more);
3218 	trace_net_dev_xmit(skb, rc, dev, len);
3219 
3220 	return rc;
3221 }
3222 
3223 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3224 				    struct netdev_queue *txq, int *ret)
3225 {
3226 	struct sk_buff *skb = first;
3227 	int rc = NETDEV_TX_OK;
3228 
3229 	while (skb) {
3230 		struct sk_buff *next = skb->next;
3231 
3232 		skb->next = NULL;
3233 		rc = xmit_one(skb, dev, txq, next != NULL);
3234 		if (unlikely(!dev_xmit_complete(rc))) {
3235 			skb->next = next;
3236 			goto out;
3237 		}
3238 
3239 		skb = next;
3240 		if (netif_xmit_stopped(txq) && skb) {
3241 			rc = NETDEV_TX_BUSY;
3242 			break;
3243 		}
3244 	}
3245 
3246 out:
3247 	*ret = rc;
3248 	return skb;
3249 }
3250 
3251 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3252 					  netdev_features_t features)
3253 {
3254 	if (skb_vlan_tag_present(skb) &&
3255 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3256 		skb = __vlan_hwaccel_push_inside(skb);
3257 	return skb;
3258 }
3259 
3260 int skb_csum_hwoffload_help(struct sk_buff *skb,
3261 			    const netdev_features_t features)
3262 {
3263 	if (unlikely(skb->csum_not_inet))
3264 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3265 			skb_crc32c_csum_help(skb);
3266 
3267 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3268 }
3269 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3270 
3271 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3272 {
3273 	netdev_features_t features;
3274 
3275 	features = netif_skb_features(skb);
3276 	skb = validate_xmit_vlan(skb, features);
3277 	if (unlikely(!skb))
3278 		goto out_null;
3279 
3280 	skb = sk_validate_xmit_skb(skb, dev);
3281 	if (unlikely(!skb))
3282 		goto out_null;
3283 
3284 	if (netif_needs_gso(skb, features)) {
3285 		struct sk_buff *segs;
3286 
3287 		segs = skb_gso_segment(skb, features);
3288 		if (IS_ERR(segs)) {
3289 			goto out_kfree_skb;
3290 		} else if (segs) {
3291 			consume_skb(skb);
3292 			skb = segs;
3293 		}
3294 	} else {
3295 		if (skb_needs_linearize(skb, features) &&
3296 		    __skb_linearize(skb))
3297 			goto out_kfree_skb;
3298 
3299 		/* If packet is not checksummed and device does not
3300 		 * support checksumming for this protocol, complete
3301 		 * checksumming here.
3302 		 */
3303 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3304 			if (skb->encapsulation)
3305 				skb_set_inner_transport_header(skb,
3306 							       skb_checksum_start_offset(skb));
3307 			else
3308 				skb_set_transport_header(skb,
3309 							 skb_checksum_start_offset(skb));
3310 			if (skb_csum_hwoffload_help(skb, features))
3311 				goto out_kfree_skb;
3312 		}
3313 	}
3314 
3315 	skb = validate_xmit_xfrm(skb, features, again);
3316 
3317 	return skb;
3318 
3319 out_kfree_skb:
3320 	kfree_skb(skb);
3321 out_null:
3322 	atomic_long_inc(&dev->tx_dropped);
3323 	return NULL;
3324 }
3325 
3326 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3327 {
3328 	struct sk_buff *next, *head = NULL, *tail;
3329 
3330 	for (; skb != NULL; skb = next) {
3331 		next = skb->next;
3332 		skb->next = NULL;
3333 
3334 		/* in case skb wont be segmented, point to itself */
3335 		skb->prev = skb;
3336 
3337 		skb = validate_xmit_skb(skb, dev, again);
3338 		if (!skb)
3339 			continue;
3340 
3341 		if (!head)
3342 			head = skb;
3343 		else
3344 			tail->next = skb;
3345 		/* If skb was segmented, skb->prev points to
3346 		 * the last segment. If not, it still contains skb.
3347 		 */
3348 		tail = skb->prev;
3349 	}
3350 	return head;
3351 }
3352 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3353 
3354 static void qdisc_pkt_len_init(struct sk_buff *skb)
3355 {
3356 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3357 
3358 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3359 
3360 	/* To get more precise estimation of bytes sent on wire,
3361 	 * we add to pkt_len the headers size of all segments
3362 	 */
3363 	if (shinfo->gso_size)  {
3364 		unsigned int hdr_len;
3365 		u16 gso_segs = shinfo->gso_segs;
3366 
3367 		/* mac layer + network layer */
3368 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3369 
3370 		/* + transport layer */
3371 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3372 			const struct tcphdr *th;
3373 			struct tcphdr _tcphdr;
3374 
3375 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3376 						sizeof(_tcphdr), &_tcphdr);
3377 			if (likely(th))
3378 				hdr_len += __tcp_hdrlen(th);
3379 		} else {
3380 			struct udphdr _udphdr;
3381 
3382 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3383 					       sizeof(_udphdr), &_udphdr))
3384 				hdr_len += sizeof(struct udphdr);
3385 		}
3386 
3387 		if (shinfo->gso_type & SKB_GSO_DODGY)
3388 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3389 						shinfo->gso_size);
3390 
3391 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3392 	}
3393 }
3394 
3395 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3396 				 struct net_device *dev,
3397 				 struct netdev_queue *txq)
3398 {
3399 	spinlock_t *root_lock = qdisc_lock(q);
3400 	struct sk_buff *to_free = NULL;
3401 	bool contended;
3402 	int rc;
3403 
3404 	qdisc_calculate_pkt_len(skb, q);
3405 
3406 	if (q->flags & TCQ_F_NOLOCK) {
3407 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3408 			__qdisc_drop(skb, &to_free);
3409 			rc = NET_XMIT_DROP;
3410 		} else {
3411 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3412 			qdisc_run(q);
3413 		}
3414 
3415 		if (unlikely(to_free))
3416 			kfree_skb_list(to_free);
3417 		return rc;
3418 	}
3419 
3420 	/*
3421 	 * Heuristic to force contended enqueues to serialize on a
3422 	 * separate lock before trying to get qdisc main lock.
3423 	 * This permits qdisc->running owner to get the lock more
3424 	 * often and dequeue packets faster.
3425 	 */
3426 	contended = qdisc_is_running(q);
3427 	if (unlikely(contended))
3428 		spin_lock(&q->busylock);
3429 
3430 	spin_lock(root_lock);
3431 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3432 		__qdisc_drop(skb, &to_free);
3433 		rc = NET_XMIT_DROP;
3434 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3435 		   qdisc_run_begin(q)) {
3436 		/*
3437 		 * This is a work-conserving queue; there are no old skbs
3438 		 * waiting to be sent out; and the qdisc is not running -
3439 		 * xmit the skb directly.
3440 		 */
3441 
3442 		qdisc_bstats_update(q, skb);
3443 
3444 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3445 			if (unlikely(contended)) {
3446 				spin_unlock(&q->busylock);
3447 				contended = false;
3448 			}
3449 			__qdisc_run(q);
3450 		}
3451 
3452 		qdisc_run_end(q);
3453 		rc = NET_XMIT_SUCCESS;
3454 	} else {
3455 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3456 		if (qdisc_run_begin(q)) {
3457 			if (unlikely(contended)) {
3458 				spin_unlock(&q->busylock);
3459 				contended = false;
3460 			}
3461 			__qdisc_run(q);
3462 			qdisc_run_end(q);
3463 		}
3464 	}
3465 	spin_unlock(root_lock);
3466 	if (unlikely(to_free))
3467 		kfree_skb_list(to_free);
3468 	if (unlikely(contended))
3469 		spin_unlock(&q->busylock);
3470 	return rc;
3471 }
3472 
3473 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3474 static void skb_update_prio(struct sk_buff *skb)
3475 {
3476 	const struct netprio_map *map;
3477 	const struct sock *sk;
3478 	unsigned int prioidx;
3479 
3480 	if (skb->priority)
3481 		return;
3482 	map = rcu_dereference_bh(skb->dev->priomap);
3483 	if (!map)
3484 		return;
3485 	sk = skb_to_full_sk(skb);
3486 	if (!sk)
3487 		return;
3488 
3489 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3490 
3491 	if (prioidx < map->priomap_len)
3492 		skb->priority = map->priomap[prioidx];
3493 }
3494 #else
3495 #define skb_update_prio(skb)
3496 #endif
3497 
3498 DEFINE_PER_CPU(int, xmit_recursion);
3499 EXPORT_SYMBOL(xmit_recursion);
3500 
3501 /**
3502  *	dev_loopback_xmit - loop back @skb
3503  *	@net: network namespace this loopback is happening in
3504  *	@sk:  sk needed to be a netfilter okfn
3505  *	@skb: buffer to transmit
3506  */
3507 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3508 {
3509 	skb_reset_mac_header(skb);
3510 	__skb_pull(skb, skb_network_offset(skb));
3511 	skb->pkt_type = PACKET_LOOPBACK;
3512 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3513 	WARN_ON(!skb_dst(skb));
3514 	skb_dst_force(skb);
3515 	netif_rx_ni(skb);
3516 	return 0;
3517 }
3518 EXPORT_SYMBOL(dev_loopback_xmit);
3519 
3520 #ifdef CONFIG_NET_EGRESS
3521 static struct sk_buff *
3522 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3523 {
3524 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3525 	struct tcf_result cl_res;
3526 
3527 	if (!miniq)
3528 		return skb;
3529 
3530 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3531 	mini_qdisc_bstats_cpu_update(miniq, skb);
3532 
3533 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3534 	case TC_ACT_OK:
3535 	case TC_ACT_RECLASSIFY:
3536 		skb->tc_index = TC_H_MIN(cl_res.classid);
3537 		break;
3538 	case TC_ACT_SHOT:
3539 		mini_qdisc_qstats_cpu_drop(miniq);
3540 		*ret = NET_XMIT_DROP;
3541 		kfree_skb(skb);
3542 		return NULL;
3543 	case TC_ACT_STOLEN:
3544 	case TC_ACT_QUEUED:
3545 	case TC_ACT_TRAP:
3546 		*ret = NET_XMIT_SUCCESS;
3547 		consume_skb(skb);
3548 		return NULL;
3549 	case TC_ACT_REDIRECT:
3550 		/* No need to push/pop skb's mac_header here on egress! */
3551 		skb_do_redirect(skb);
3552 		*ret = NET_XMIT_SUCCESS;
3553 		return NULL;
3554 	default:
3555 		break;
3556 	}
3557 
3558 	return skb;
3559 }
3560 #endif /* CONFIG_NET_EGRESS */
3561 
3562 #ifdef CONFIG_XPS
3563 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3564 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3565 {
3566 	struct xps_map *map;
3567 	int queue_index = -1;
3568 
3569 	if (dev->num_tc) {
3570 		tci *= dev->num_tc;
3571 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3572 	}
3573 
3574 	map = rcu_dereference(dev_maps->attr_map[tci]);
3575 	if (map) {
3576 		if (map->len == 1)
3577 			queue_index = map->queues[0];
3578 		else
3579 			queue_index = map->queues[reciprocal_scale(
3580 						skb_get_hash(skb), map->len)];
3581 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3582 			queue_index = -1;
3583 	}
3584 	return queue_index;
3585 }
3586 #endif
3587 
3588 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3589 			 struct sk_buff *skb)
3590 {
3591 #ifdef CONFIG_XPS
3592 	struct xps_dev_maps *dev_maps;
3593 	struct sock *sk = skb->sk;
3594 	int queue_index = -1;
3595 
3596 	if (!static_key_false(&xps_needed))
3597 		return -1;
3598 
3599 	rcu_read_lock();
3600 	if (!static_key_false(&xps_rxqs_needed))
3601 		goto get_cpus_map;
3602 
3603 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3604 	if (dev_maps) {
3605 		int tci = sk_rx_queue_get(sk);
3606 
3607 		if (tci >= 0 && tci < dev->num_rx_queues)
3608 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3609 							  tci);
3610 	}
3611 
3612 get_cpus_map:
3613 	if (queue_index < 0) {
3614 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3615 		if (dev_maps) {
3616 			unsigned int tci = skb->sender_cpu - 1;
3617 
3618 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3619 							  tci);
3620 		}
3621 	}
3622 	rcu_read_unlock();
3623 
3624 	return queue_index;
3625 #else
3626 	return -1;
3627 #endif
3628 }
3629 
3630 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3631 		     struct net_device *sb_dev,
3632 		     select_queue_fallback_t fallback)
3633 {
3634 	return 0;
3635 }
3636 EXPORT_SYMBOL(dev_pick_tx_zero);
3637 
3638 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3639 		       struct net_device *sb_dev,
3640 		       select_queue_fallback_t fallback)
3641 {
3642 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3643 }
3644 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3645 
3646 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3647 			    struct net_device *sb_dev)
3648 {
3649 	struct sock *sk = skb->sk;
3650 	int queue_index = sk_tx_queue_get(sk);
3651 
3652 	sb_dev = sb_dev ? : dev;
3653 
3654 	if (queue_index < 0 || skb->ooo_okay ||
3655 	    queue_index >= dev->real_num_tx_queues) {
3656 		int new_index = get_xps_queue(dev, sb_dev, skb);
3657 
3658 		if (new_index < 0)
3659 			new_index = skb_tx_hash(dev, sb_dev, skb);
3660 
3661 		if (queue_index != new_index && sk &&
3662 		    sk_fullsock(sk) &&
3663 		    rcu_access_pointer(sk->sk_dst_cache))
3664 			sk_tx_queue_set(sk, new_index);
3665 
3666 		queue_index = new_index;
3667 	}
3668 
3669 	return queue_index;
3670 }
3671 
3672 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3673 				    struct sk_buff *skb,
3674 				    struct net_device *sb_dev)
3675 {
3676 	int queue_index = 0;
3677 
3678 #ifdef CONFIG_XPS
3679 	u32 sender_cpu = skb->sender_cpu - 1;
3680 
3681 	if (sender_cpu >= (u32)NR_CPUS)
3682 		skb->sender_cpu = raw_smp_processor_id() + 1;
3683 #endif
3684 
3685 	if (dev->real_num_tx_queues != 1) {
3686 		const struct net_device_ops *ops = dev->netdev_ops;
3687 
3688 		if (ops->ndo_select_queue)
3689 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3690 							    __netdev_pick_tx);
3691 		else
3692 			queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3693 
3694 		queue_index = netdev_cap_txqueue(dev, queue_index);
3695 	}
3696 
3697 	skb_set_queue_mapping(skb, queue_index);
3698 	return netdev_get_tx_queue(dev, queue_index);
3699 }
3700 
3701 /**
3702  *	__dev_queue_xmit - transmit a buffer
3703  *	@skb: buffer to transmit
3704  *	@sb_dev: suboordinate device used for L2 forwarding offload
3705  *
3706  *	Queue a buffer for transmission to a network device. The caller must
3707  *	have set the device and priority and built the buffer before calling
3708  *	this function. The function can be called from an interrupt.
3709  *
3710  *	A negative errno code is returned on a failure. A success does not
3711  *	guarantee the frame will be transmitted as it may be dropped due
3712  *	to congestion or traffic shaping.
3713  *
3714  * -----------------------------------------------------------------------------------
3715  *      I notice this method can also return errors from the queue disciplines,
3716  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3717  *      be positive.
3718  *
3719  *      Regardless of the return value, the skb is consumed, so it is currently
3720  *      difficult to retry a send to this method.  (You can bump the ref count
3721  *      before sending to hold a reference for retry if you are careful.)
3722  *
3723  *      When calling this method, interrupts MUST be enabled.  This is because
3724  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3725  *          --BLG
3726  */
3727 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3728 {
3729 	struct net_device *dev = skb->dev;
3730 	struct netdev_queue *txq;
3731 	struct Qdisc *q;
3732 	int rc = -ENOMEM;
3733 	bool again = false;
3734 
3735 	skb_reset_mac_header(skb);
3736 
3737 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3738 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3739 
3740 	/* Disable soft irqs for various locks below. Also
3741 	 * stops preemption for RCU.
3742 	 */
3743 	rcu_read_lock_bh();
3744 
3745 	skb_update_prio(skb);
3746 
3747 	qdisc_pkt_len_init(skb);
3748 #ifdef CONFIG_NET_CLS_ACT
3749 	skb->tc_at_ingress = 0;
3750 # ifdef CONFIG_NET_EGRESS
3751 	if (static_branch_unlikely(&egress_needed_key)) {
3752 		skb = sch_handle_egress(skb, &rc, dev);
3753 		if (!skb)
3754 			goto out;
3755 	}
3756 # endif
3757 #endif
3758 	/* If device/qdisc don't need skb->dst, release it right now while
3759 	 * its hot in this cpu cache.
3760 	 */
3761 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3762 		skb_dst_drop(skb);
3763 	else
3764 		skb_dst_force(skb);
3765 
3766 	txq = netdev_pick_tx(dev, skb, sb_dev);
3767 	q = rcu_dereference_bh(txq->qdisc);
3768 
3769 	trace_net_dev_queue(skb);
3770 	if (q->enqueue) {
3771 		rc = __dev_xmit_skb(skb, q, dev, txq);
3772 		goto out;
3773 	}
3774 
3775 	/* The device has no queue. Common case for software devices:
3776 	 * loopback, all the sorts of tunnels...
3777 
3778 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3779 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3780 	 * counters.)
3781 	 * However, it is possible, that they rely on protection
3782 	 * made by us here.
3783 
3784 	 * Check this and shot the lock. It is not prone from deadlocks.
3785 	 *Either shot noqueue qdisc, it is even simpler 8)
3786 	 */
3787 	if (dev->flags & IFF_UP) {
3788 		int cpu = smp_processor_id(); /* ok because BHs are off */
3789 
3790 		if (txq->xmit_lock_owner != cpu) {
3791 			if (unlikely(__this_cpu_read(xmit_recursion) >
3792 				     XMIT_RECURSION_LIMIT))
3793 				goto recursion_alert;
3794 
3795 			skb = validate_xmit_skb(skb, dev, &again);
3796 			if (!skb)
3797 				goto out;
3798 
3799 			HARD_TX_LOCK(dev, txq, cpu);
3800 
3801 			if (!netif_xmit_stopped(txq)) {
3802 				__this_cpu_inc(xmit_recursion);
3803 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3804 				__this_cpu_dec(xmit_recursion);
3805 				if (dev_xmit_complete(rc)) {
3806 					HARD_TX_UNLOCK(dev, txq);
3807 					goto out;
3808 				}
3809 			}
3810 			HARD_TX_UNLOCK(dev, txq);
3811 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3812 					     dev->name);
3813 		} else {
3814 			/* Recursion is detected! It is possible,
3815 			 * unfortunately
3816 			 */
3817 recursion_alert:
3818 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3819 					     dev->name);
3820 		}
3821 	}
3822 
3823 	rc = -ENETDOWN;
3824 	rcu_read_unlock_bh();
3825 
3826 	atomic_long_inc(&dev->tx_dropped);
3827 	kfree_skb_list(skb);
3828 	return rc;
3829 out:
3830 	rcu_read_unlock_bh();
3831 	return rc;
3832 }
3833 
3834 int dev_queue_xmit(struct sk_buff *skb)
3835 {
3836 	return __dev_queue_xmit(skb, NULL);
3837 }
3838 EXPORT_SYMBOL(dev_queue_xmit);
3839 
3840 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3841 {
3842 	return __dev_queue_xmit(skb, sb_dev);
3843 }
3844 EXPORT_SYMBOL(dev_queue_xmit_accel);
3845 
3846 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3847 {
3848 	struct net_device *dev = skb->dev;
3849 	struct sk_buff *orig_skb = skb;
3850 	struct netdev_queue *txq;
3851 	int ret = NETDEV_TX_BUSY;
3852 	bool again = false;
3853 
3854 	if (unlikely(!netif_running(dev) ||
3855 		     !netif_carrier_ok(dev)))
3856 		goto drop;
3857 
3858 	skb = validate_xmit_skb_list(skb, dev, &again);
3859 	if (skb != orig_skb)
3860 		goto drop;
3861 
3862 	skb_set_queue_mapping(skb, queue_id);
3863 	txq = skb_get_tx_queue(dev, skb);
3864 
3865 	local_bh_disable();
3866 
3867 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3868 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3869 		ret = netdev_start_xmit(skb, dev, txq, false);
3870 	HARD_TX_UNLOCK(dev, txq);
3871 
3872 	local_bh_enable();
3873 
3874 	if (!dev_xmit_complete(ret))
3875 		kfree_skb(skb);
3876 
3877 	return ret;
3878 drop:
3879 	atomic_long_inc(&dev->tx_dropped);
3880 	kfree_skb_list(skb);
3881 	return NET_XMIT_DROP;
3882 }
3883 EXPORT_SYMBOL(dev_direct_xmit);
3884 
3885 /*************************************************************************
3886  *			Receiver routines
3887  *************************************************************************/
3888 
3889 int netdev_max_backlog __read_mostly = 1000;
3890 EXPORT_SYMBOL(netdev_max_backlog);
3891 
3892 int netdev_tstamp_prequeue __read_mostly = 1;
3893 int netdev_budget __read_mostly = 300;
3894 unsigned int __read_mostly netdev_budget_usecs = 2000;
3895 int weight_p __read_mostly = 64;           /* old backlog weight */
3896 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3897 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3898 int dev_rx_weight __read_mostly = 64;
3899 int dev_tx_weight __read_mostly = 64;
3900 
3901 /* Called with irq disabled */
3902 static inline void ____napi_schedule(struct softnet_data *sd,
3903 				     struct napi_struct *napi)
3904 {
3905 	list_add_tail(&napi->poll_list, &sd->poll_list);
3906 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3907 }
3908 
3909 #ifdef CONFIG_RPS
3910 
3911 /* One global table that all flow-based protocols share. */
3912 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3913 EXPORT_SYMBOL(rps_sock_flow_table);
3914 u32 rps_cpu_mask __read_mostly;
3915 EXPORT_SYMBOL(rps_cpu_mask);
3916 
3917 struct static_key rps_needed __read_mostly;
3918 EXPORT_SYMBOL(rps_needed);
3919 struct static_key rfs_needed __read_mostly;
3920 EXPORT_SYMBOL(rfs_needed);
3921 
3922 static struct rps_dev_flow *
3923 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3924 	    struct rps_dev_flow *rflow, u16 next_cpu)
3925 {
3926 	if (next_cpu < nr_cpu_ids) {
3927 #ifdef CONFIG_RFS_ACCEL
3928 		struct netdev_rx_queue *rxqueue;
3929 		struct rps_dev_flow_table *flow_table;
3930 		struct rps_dev_flow *old_rflow;
3931 		u32 flow_id;
3932 		u16 rxq_index;
3933 		int rc;
3934 
3935 		/* Should we steer this flow to a different hardware queue? */
3936 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3937 		    !(dev->features & NETIF_F_NTUPLE))
3938 			goto out;
3939 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3940 		if (rxq_index == skb_get_rx_queue(skb))
3941 			goto out;
3942 
3943 		rxqueue = dev->_rx + rxq_index;
3944 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3945 		if (!flow_table)
3946 			goto out;
3947 		flow_id = skb_get_hash(skb) & flow_table->mask;
3948 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3949 							rxq_index, flow_id);
3950 		if (rc < 0)
3951 			goto out;
3952 		old_rflow = rflow;
3953 		rflow = &flow_table->flows[flow_id];
3954 		rflow->filter = rc;
3955 		if (old_rflow->filter == rflow->filter)
3956 			old_rflow->filter = RPS_NO_FILTER;
3957 	out:
3958 #endif
3959 		rflow->last_qtail =
3960 			per_cpu(softnet_data, next_cpu).input_queue_head;
3961 	}
3962 
3963 	rflow->cpu = next_cpu;
3964 	return rflow;
3965 }
3966 
3967 /*
3968  * get_rps_cpu is called from netif_receive_skb and returns the target
3969  * CPU from the RPS map of the receiving queue for a given skb.
3970  * rcu_read_lock must be held on entry.
3971  */
3972 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3973 		       struct rps_dev_flow **rflowp)
3974 {
3975 	const struct rps_sock_flow_table *sock_flow_table;
3976 	struct netdev_rx_queue *rxqueue = dev->_rx;
3977 	struct rps_dev_flow_table *flow_table;
3978 	struct rps_map *map;
3979 	int cpu = -1;
3980 	u32 tcpu;
3981 	u32 hash;
3982 
3983 	if (skb_rx_queue_recorded(skb)) {
3984 		u16 index = skb_get_rx_queue(skb);
3985 
3986 		if (unlikely(index >= dev->real_num_rx_queues)) {
3987 			WARN_ONCE(dev->real_num_rx_queues > 1,
3988 				  "%s received packet on queue %u, but number "
3989 				  "of RX queues is %u\n",
3990 				  dev->name, index, dev->real_num_rx_queues);
3991 			goto done;
3992 		}
3993 		rxqueue += index;
3994 	}
3995 
3996 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3997 
3998 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3999 	map = rcu_dereference(rxqueue->rps_map);
4000 	if (!flow_table && !map)
4001 		goto done;
4002 
4003 	skb_reset_network_header(skb);
4004 	hash = skb_get_hash(skb);
4005 	if (!hash)
4006 		goto done;
4007 
4008 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4009 	if (flow_table && sock_flow_table) {
4010 		struct rps_dev_flow *rflow;
4011 		u32 next_cpu;
4012 		u32 ident;
4013 
4014 		/* First check into global flow table if there is a match */
4015 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4016 		if ((ident ^ hash) & ~rps_cpu_mask)
4017 			goto try_rps;
4018 
4019 		next_cpu = ident & rps_cpu_mask;
4020 
4021 		/* OK, now we know there is a match,
4022 		 * we can look at the local (per receive queue) flow table
4023 		 */
4024 		rflow = &flow_table->flows[hash & flow_table->mask];
4025 		tcpu = rflow->cpu;
4026 
4027 		/*
4028 		 * If the desired CPU (where last recvmsg was done) is
4029 		 * different from current CPU (one in the rx-queue flow
4030 		 * table entry), switch if one of the following holds:
4031 		 *   - Current CPU is unset (>= nr_cpu_ids).
4032 		 *   - Current CPU is offline.
4033 		 *   - The current CPU's queue tail has advanced beyond the
4034 		 *     last packet that was enqueued using this table entry.
4035 		 *     This guarantees that all previous packets for the flow
4036 		 *     have been dequeued, thus preserving in order delivery.
4037 		 */
4038 		if (unlikely(tcpu != next_cpu) &&
4039 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4040 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4041 		      rflow->last_qtail)) >= 0)) {
4042 			tcpu = next_cpu;
4043 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4044 		}
4045 
4046 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4047 			*rflowp = rflow;
4048 			cpu = tcpu;
4049 			goto done;
4050 		}
4051 	}
4052 
4053 try_rps:
4054 
4055 	if (map) {
4056 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4057 		if (cpu_online(tcpu)) {
4058 			cpu = tcpu;
4059 			goto done;
4060 		}
4061 	}
4062 
4063 done:
4064 	return cpu;
4065 }
4066 
4067 #ifdef CONFIG_RFS_ACCEL
4068 
4069 /**
4070  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4071  * @dev: Device on which the filter was set
4072  * @rxq_index: RX queue index
4073  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4074  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4075  *
4076  * Drivers that implement ndo_rx_flow_steer() should periodically call
4077  * this function for each installed filter and remove the filters for
4078  * which it returns %true.
4079  */
4080 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4081 			 u32 flow_id, u16 filter_id)
4082 {
4083 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4084 	struct rps_dev_flow_table *flow_table;
4085 	struct rps_dev_flow *rflow;
4086 	bool expire = true;
4087 	unsigned int cpu;
4088 
4089 	rcu_read_lock();
4090 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4091 	if (flow_table && flow_id <= flow_table->mask) {
4092 		rflow = &flow_table->flows[flow_id];
4093 		cpu = READ_ONCE(rflow->cpu);
4094 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4095 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4096 			   rflow->last_qtail) <
4097 		     (int)(10 * flow_table->mask)))
4098 			expire = false;
4099 	}
4100 	rcu_read_unlock();
4101 	return expire;
4102 }
4103 EXPORT_SYMBOL(rps_may_expire_flow);
4104 
4105 #endif /* CONFIG_RFS_ACCEL */
4106 
4107 /* Called from hardirq (IPI) context */
4108 static void rps_trigger_softirq(void *data)
4109 {
4110 	struct softnet_data *sd = data;
4111 
4112 	____napi_schedule(sd, &sd->backlog);
4113 	sd->received_rps++;
4114 }
4115 
4116 #endif /* CONFIG_RPS */
4117 
4118 /*
4119  * Check if this softnet_data structure is another cpu one
4120  * If yes, queue it to our IPI list and return 1
4121  * If no, return 0
4122  */
4123 static int rps_ipi_queued(struct softnet_data *sd)
4124 {
4125 #ifdef CONFIG_RPS
4126 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4127 
4128 	if (sd != mysd) {
4129 		sd->rps_ipi_next = mysd->rps_ipi_list;
4130 		mysd->rps_ipi_list = sd;
4131 
4132 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4133 		return 1;
4134 	}
4135 #endif /* CONFIG_RPS */
4136 	return 0;
4137 }
4138 
4139 #ifdef CONFIG_NET_FLOW_LIMIT
4140 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4141 #endif
4142 
4143 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4144 {
4145 #ifdef CONFIG_NET_FLOW_LIMIT
4146 	struct sd_flow_limit *fl;
4147 	struct softnet_data *sd;
4148 	unsigned int old_flow, new_flow;
4149 
4150 	if (qlen < (netdev_max_backlog >> 1))
4151 		return false;
4152 
4153 	sd = this_cpu_ptr(&softnet_data);
4154 
4155 	rcu_read_lock();
4156 	fl = rcu_dereference(sd->flow_limit);
4157 	if (fl) {
4158 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4159 		old_flow = fl->history[fl->history_head];
4160 		fl->history[fl->history_head] = new_flow;
4161 
4162 		fl->history_head++;
4163 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4164 
4165 		if (likely(fl->buckets[old_flow]))
4166 			fl->buckets[old_flow]--;
4167 
4168 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4169 			fl->count++;
4170 			rcu_read_unlock();
4171 			return true;
4172 		}
4173 	}
4174 	rcu_read_unlock();
4175 #endif
4176 	return false;
4177 }
4178 
4179 /*
4180  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4181  * queue (may be a remote CPU queue).
4182  */
4183 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4184 			      unsigned int *qtail)
4185 {
4186 	struct softnet_data *sd;
4187 	unsigned long flags;
4188 	unsigned int qlen;
4189 
4190 	sd = &per_cpu(softnet_data, cpu);
4191 
4192 	local_irq_save(flags);
4193 
4194 	rps_lock(sd);
4195 	if (!netif_running(skb->dev))
4196 		goto drop;
4197 	qlen = skb_queue_len(&sd->input_pkt_queue);
4198 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4199 		if (qlen) {
4200 enqueue:
4201 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4202 			input_queue_tail_incr_save(sd, qtail);
4203 			rps_unlock(sd);
4204 			local_irq_restore(flags);
4205 			return NET_RX_SUCCESS;
4206 		}
4207 
4208 		/* Schedule NAPI for backlog device
4209 		 * We can use non atomic operation since we own the queue lock
4210 		 */
4211 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4212 			if (!rps_ipi_queued(sd))
4213 				____napi_schedule(sd, &sd->backlog);
4214 		}
4215 		goto enqueue;
4216 	}
4217 
4218 drop:
4219 	sd->dropped++;
4220 	rps_unlock(sd);
4221 
4222 	local_irq_restore(flags);
4223 
4224 	atomic_long_inc(&skb->dev->rx_dropped);
4225 	kfree_skb(skb);
4226 	return NET_RX_DROP;
4227 }
4228 
4229 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4230 {
4231 	struct net_device *dev = skb->dev;
4232 	struct netdev_rx_queue *rxqueue;
4233 
4234 	rxqueue = dev->_rx;
4235 
4236 	if (skb_rx_queue_recorded(skb)) {
4237 		u16 index = skb_get_rx_queue(skb);
4238 
4239 		if (unlikely(index >= dev->real_num_rx_queues)) {
4240 			WARN_ONCE(dev->real_num_rx_queues > 1,
4241 				  "%s received packet on queue %u, but number "
4242 				  "of RX queues is %u\n",
4243 				  dev->name, index, dev->real_num_rx_queues);
4244 
4245 			return rxqueue; /* Return first rxqueue */
4246 		}
4247 		rxqueue += index;
4248 	}
4249 	return rxqueue;
4250 }
4251 
4252 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4253 				     struct xdp_buff *xdp,
4254 				     struct bpf_prog *xdp_prog)
4255 {
4256 	struct netdev_rx_queue *rxqueue;
4257 	void *orig_data, *orig_data_end;
4258 	u32 metalen, act = XDP_DROP;
4259 	int hlen, off;
4260 	u32 mac_len;
4261 
4262 	/* Reinjected packets coming from act_mirred or similar should
4263 	 * not get XDP generic processing.
4264 	 */
4265 	if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4266 		return XDP_PASS;
4267 
4268 	/* XDP packets must be linear and must have sufficient headroom
4269 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4270 	 * native XDP provides, thus we need to do it here as well.
4271 	 */
4272 	if (skb_is_nonlinear(skb) ||
4273 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4274 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4275 		int troom = skb->tail + skb->data_len - skb->end;
4276 
4277 		/* In case we have to go down the path and also linearize,
4278 		 * then lets do the pskb_expand_head() work just once here.
4279 		 */
4280 		if (pskb_expand_head(skb,
4281 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4282 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4283 			goto do_drop;
4284 		if (skb_linearize(skb))
4285 			goto do_drop;
4286 	}
4287 
4288 	/* The XDP program wants to see the packet starting at the MAC
4289 	 * header.
4290 	 */
4291 	mac_len = skb->data - skb_mac_header(skb);
4292 	hlen = skb_headlen(skb) + mac_len;
4293 	xdp->data = skb->data - mac_len;
4294 	xdp->data_meta = xdp->data;
4295 	xdp->data_end = xdp->data + hlen;
4296 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4297 	orig_data_end = xdp->data_end;
4298 	orig_data = xdp->data;
4299 
4300 	rxqueue = netif_get_rxqueue(skb);
4301 	xdp->rxq = &rxqueue->xdp_rxq;
4302 
4303 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4304 
4305 	off = xdp->data - orig_data;
4306 	if (off > 0)
4307 		__skb_pull(skb, off);
4308 	else if (off < 0)
4309 		__skb_push(skb, -off);
4310 	skb->mac_header += off;
4311 
4312 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4313 	 * pckt.
4314 	 */
4315 	off = orig_data_end - xdp->data_end;
4316 	if (off != 0) {
4317 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4318 		skb->len -= off;
4319 
4320 	}
4321 
4322 	switch (act) {
4323 	case XDP_REDIRECT:
4324 	case XDP_TX:
4325 		__skb_push(skb, mac_len);
4326 		break;
4327 	case XDP_PASS:
4328 		metalen = xdp->data - xdp->data_meta;
4329 		if (metalen)
4330 			skb_metadata_set(skb, metalen);
4331 		break;
4332 	default:
4333 		bpf_warn_invalid_xdp_action(act);
4334 		/* fall through */
4335 	case XDP_ABORTED:
4336 		trace_xdp_exception(skb->dev, xdp_prog, act);
4337 		/* fall through */
4338 	case XDP_DROP:
4339 	do_drop:
4340 		kfree_skb(skb);
4341 		break;
4342 	}
4343 
4344 	return act;
4345 }
4346 
4347 /* When doing generic XDP we have to bypass the qdisc layer and the
4348  * network taps in order to match in-driver-XDP behavior.
4349  */
4350 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4351 {
4352 	struct net_device *dev = skb->dev;
4353 	struct netdev_queue *txq;
4354 	bool free_skb = true;
4355 	int cpu, rc;
4356 
4357 	txq = netdev_pick_tx(dev, skb, NULL);
4358 	cpu = smp_processor_id();
4359 	HARD_TX_LOCK(dev, txq, cpu);
4360 	if (!netif_xmit_stopped(txq)) {
4361 		rc = netdev_start_xmit(skb, dev, txq, 0);
4362 		if (dev_xmit_complete(rc))
4363 			free_skb = false;
4364 	}
4365 	HARD_TX_UNLOCK(dev, txq);
4366 	if (free_skb) {
4367 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4368 		kfree_skb(skb);
4369 	}
4370 }
4371 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4372 
4373 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4374 
4375 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4376 {
4377 	if (xdp_prog) {
4378 		struct xdp_buff xdp;
4379 		u32 act;
4380 		int err;
4381 
4382 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4383 		if (act != XDP_PASS) {
4384 			switch (act) {
4385 			case XDP_REDIRECT:
4386 				err = xdp_do_generic_redirect(skb->dev, skb,
4387 							      &xdp, xdp_prog);
4388 				if (err)
4389 					goto out_redir;
4390 				break;
4391 			case XDP_TX:
4392 				generic_xdp_tx(skb, xdp_prog);
4393 				break;
4394 			}
4395 			return XDP_DROP;
4396 		}
4397 	}
4398 	return XDP_PASS;
4399 out_redir:
4400 	kfree_skb(skb);
4401 	return XDP_DROP;
4402 }
4403 EXPORT_SYMBOL_GPL(do_xdp_generic);
4404 
4405 static int netif_rx_internal(struct sk_buff *skb)
4406 {
4407 	int ret;
4408 
4409 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4410 
4411 	trace_netif_rx(skb);
4412 
4413 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4414 		int ret;
4415 
4416 		preempt_disable();
4417 		rcu_read_lock();
4418 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4419 		rcu_read_unlock();
4420 		preempt_enable();
4421 
4422 		/* Consider XDP consuming the packet a success from
4423 		 * the netdev point of view we do not want to count
4424 		 * this as an error.
4425 		 */
4426 		if (ret != XDP_PASS)
4427 			return NET_RX_SUCCESS;
4428 	}
4429 
4430 #ifdef CONFIG_RPS
4431 	if (static_key_false(&rps_needed)) {
4432 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4433 		int cpu;
4434 
4435 		preempt_disable();
4436 		rcu_read_lock();
4437 
4438 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4439 		if (cpu < 0)
4440 			cpu = smp_processor_id();
4441 
4442 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4443 
4444 		rcu_read_unlock();
4445 		preempt_enable();
4446 	} else
4447 #endif
4448 	{
4449 		unsigned int qtail;
4450 
4451 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4452 		put_cpu();
4453 	}
4454 	return ret;
4455 }
4456 
4457 /**
4458  *	netif_rx	-	post buffer to the network code
4459  *	@skb: buffer to post
4460  *
4461  *	This function receives a packet from a device driver and queues it for
4462  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4463  *	may be dropped during processing for congestion control or by the
4464  *	protocol layers.
4465  *
4466  *	return values:
4467  *	NET_RX_SUCCESS	(no congestion)
4468  *	NET_RX_DROP     (packet was dropped)
4469  *
4470  */
4471 
4472 int netif_rx(struct sk_buff *skb)
4473 {
4474 	trace_netif_rx_entry(skb);
4475 
4476 	return netif_rx_internal(skb);
4477 }
4478 EXPORT_SYMBOL(netif_rx);
4479 
4480 int netif_rx_ni(struct sk_buff *skb)
4481 {
4482 	int err;
4483 
4484 	trace_netif_rx_ni_entry(skb);
4485 
4486 	preempt_disable();
4487 	err = netif_rx_internal(skb);
4488 	if (local_softirq_pending())
4489 		do_softirq();
4490 	preempt_enable();
4491 
4492 	return err;
4493 }
4494 EXPORT_SYMBOL(netif_rx_ni);
4495 
4496 static __latent_entropy void net_tx_action(struct softirq_action *h)
4497 {
4498 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4499 
4500 	if (sd->completion_queue) {
4501 		struct sk_buff *clist;
4502 
4503 		local_irq_disable();
4504 		clist = sd->completion_queue;
4505 		sd->completion_queue = NULL;
4506 		local_irq_enable();
4507 
4508 		while (clist) {
4509 			struct sk_buff *skb = clist;
4510 
4511 			clist = clist->next;
4512 
4513 			WARN_ON(refcount_read(&skb->users));
4514 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4515 				trace_consume_skb(skb);
4516 			else
4517 				trace_kfree_skb(skb, net_tx_action);
4518 
4519 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4520 				__kfree_skb(skb);
4521 			else
4522 				__kfree_skb_defer(skb);
4523 		}
4524 
4525 		__kfree_skb_flush();
4526 	}
4527 
4528 	if (sd->output_queue) {
4529 		struct Qdisc *head;
4530 
4531 		local_irq_disable();
4532 		head = sd->output_queue;
4533 		sd->output_queue = NULL;
4534 		sd->output_queue_tailp = &sd->output_queue;
4535 		local_irq_enable();
4536 
4537 		while (head) {
4538 			struct Qdisc *q = head;
4539 			spinlock_t *root_lock = NULL;
4540 
4541 			head = head->next_sched;
4542 
4543 			if (!(q->flags & TCQ_F_NOLOCK)) {
4544 				root_lock = qdisc_lock(q);
4545 				spin_lock(root_lock);
4546 			}
4547 			/* We need to make sure head->next_sched is read
4548 			 * before clearing __QDISC_STATE_SCHED
4549 			 */
4550 			smp_mb__before_atomic();
4551 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4552 			qdisc_run(q);
4553 			if (root_lock)
4554 				spin_unlock(root_lock);
4555 		}
4556 	}
4557 
4558 	xfrm_dev_backlog(sd);
4559 }
4560 
4561 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4562 /* This hook is defined here for ATM LANE */
4563 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4564 			     unsigned char *addr) __read_mostly;
4565 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4566 #endif
4567 
4568 static inline struct sk_buff *
4569 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4570 		   struct net_device *orig_dev)
4571 {
4572 #ifdef CONFIG_NET_CLS_ACT
4573 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4574 	struct tcf_result cl_res;
4575 
4576 	/* If there's at least one ingress present somewhere (so
4577 	 * we get here via enabled static key), remaining devices
4578 	 * that are not configured with an ingress qdisc will bail
4579 	 * out here.
4580 	 */
4581 	if (!miniq)
4582 		return skb;
4583 
4584 	if (*pt_prev) {
4585 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4586 		*pt_prev = NULL;
4587 	}
4588 
4589 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4590 	skb->tc_at_ingress = 1;
4591 	mini_qdisc_bstats_cpu_update(miniq, skb);
4592 
4593 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4594 	case TC_ACT_OK:
4595 	case TC_ACT_RECLASSIFY:
4596 		skb->tc_index = TC_H_MIN(cl_res.classid);
4597 		break;
4598 	case TC_ACT_SHOT:
4599 		mini_qdisc_qstats_cpu_drop(miniq);
4600 		kfree_skb(skb);
4601 		return NULL;
4602 	case TC_ACT_STOLEN:
4603 	case TC_ACT_QUEUED:
4604 	case TC_ACT_TRAP:
4605 		consume_skb(skb);
4606 		return NULL;
4607 	case TC_ACT_REDIRECT:
4608 		/* skb_mac_header check was done by cls/act_bpf, so
4609 		 * we can safely push the L2 header back before
4610 		 * redirecting to another netdev
4611 		 */
4612 		__skb_push(skb, skb->mac_len);
4613 		skb_do_redirect(skb);
4614 		return NULL;
4615 	case TC_ACT_REINSERT:
4616 		/* this does not scrub the packet, and updates stats on error */
4617 		skb_tc_reinsert(skb, &cl_res);
4618 		return NULL;
4619 	default:
4620 		break;
4621 	}
4622 #endif /* CONFIG_NET_CLS_ACT */
4623 	return skb;
4624 }
4625 
4626 /**
4627  *	netdev_is_rx_handler_busy - check if receive handler is registered
4628  *	@dev: device to check
4629  *
4630  *	Check if a receive handler is already registered for a given device.
4631  *	Return true if there one.
4632  *
4633  *	The caller must hold the rtnl_mutex.
4634  */
4635 bool netdev_is_rx_handler_busy(struct net_device *dev)
4636 {
4637 	ASSERT_RTNL();
4638 	return dev && rtnl_dereference(dev->rx_handler);
4639 }
4640 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4641 
4642 /**
4643  *	netdev_rx_handler_register - register receive handler
4644  *	@dev: device to register a handler for
4645  *	@rx_handler: receive handler to register
4646  *	@rx_handler_data: data pointer that is used by rx handler
4647  *
4648  *	Register a receive handler for a device. This handler will then be
4649  *	called from __netif_receive_skb. A negative errno code is returned
4650  *	on a failure.
4651  *
4652  *	The caller must hold the rtnl_mutex.
4653  *
4654  *	For a general description of rx_handler, see enum rx_handler_result.
4655  */
4656 int netdev_rx_handler_register(struct net_device *dev,
4657 			       rx_handler_func_t *rx_handler,
4658 			       void *rx_handler_data)
4659 {
4660 	if (netdev_is_rx_handler_busy(dev))
4661 		return -EBUSY;
4662 
4663 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4664 		return -EINVAL;
4665 
4666 	/* Note: rx_handler_data must be set before rx_handler */
4667 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4668 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4669 
4670 	return 0;
4671 }
4672 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4673 
4674 /**
4675  *	netdev_rx_handler_unregister - unregister receive handler
4676  *	@dev: device to unregister a handler from
4677  *
4678  *	Unregister a receive handler from a device.
4679  *
4680  *	The caller must hold the rtnl_mutex.
4681  */
4682 void netdev_rx_handler_unregister(struct net_device *dev)
4683 {
4684 
4685 	ASSERT_RTNL();
4686 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4687 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4688 	 * section has a guarantee to see a non NULL rx_handler_data
4689 	 * as well.
4690 	 */
4691 	synchronize_net();
4692 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4693 }
4694 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4695 
4696 /*
4697  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4698  * the special handling of PFMEMALLOC skbs.
4699  */
4700 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4701 {
4702 	switch (skb->protocol) {
4703 	case htons(ETH_P_ARP):
4704 	case htons(ETH_P_IP):
4705 	case htons(ETH_P_IPV6):
4706 	case htons(ETH_P_8021Q):
4707 	case htons(ETH_P_8021AD):
4708 		return true;
4709 	default:
4710 		return false;
4711 	}
4712 }
4713 
4714 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4715 			     int *ret, struct net_device *orig_dev)
4716 {
4717 #ifdef CONFIG_NETFILTER_INGRESS
4718 	if (nf_hook_ingress_active(skb)) {
4719 		int ingress_retval;
4720 
4721 		if (*pt_prev) {
4722 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4723 			*pt_prev = NULL;
4724 		}
4725 
4726 		rcu_read_lock();
4727 		ingress_retval = nf_hook_ingress(skb);
4728 		rcu_read_unlock();
4729 		return ingress_retval;
4730 	}
4731 #endif /* CONFIG_NETFILTER_INGRESS */
4732 	return 0;
4733 }
4734 
4735 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4736 				    struct packet_type **ppt_prev)
4737 {
4738 	struct packet_type *ptype, *pt_prev;
4739 	rx_handler_func_t *rx_handler;
4740 	struct net_device *orig_dev;
4741 	bool deliver_exact = false;
4742 	int ret = NET_RX_DROP;
4743 	__be16 type;
4744 
4745 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4746 
4747 	trace_netif_receive_skb(skb);
4748 
4749 	orig_dev = skb->dev;
4750 
4751 	skb_reset_network_header(skb);
4752 	if (!skb_transport_header_was_set(skb))
4753 		skb_reset_transport_header(skb);
4754 	skb_reset_mac_len(skb);
4755 
4756 	pt_prev = NULL;
4757 
4758 another_round:
4759 	skb->skb_iif = skb->dev->ifindex;
4760 
4761 	__this_cpu_inc(softnet_data.processed);
4762 
4763 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4764 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4765 		skb = skb_vlan_untag(skb);
4766 		if (unlikely(!skb))
4767 			goto out;
4768 	}
4769 
4770 	if (skb_skip_tc_classify(skb))
4771 		goto skip_classify;
4772 
4773 	if (pfmemalloc)
4774 		goto skip_taps;
4775 
4776 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4777 		if (pt_prev)
4778 			ret = deliver_skb(skb, pt_prev, orig_dev);
4779 		pt_prev = ptype;
4780 	}
4781 
4782 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4783 		if (pt_prev)
4784 			ret = deliver_skb(skb, pt_prev, orig_dev);
4785 		pt_prev = ptype;
4786 	}
4787 
4788 skip_taps:
4789 #ifdef CONFIG_NET_INGRESS
4790 	if (static_branch_unlikely(&ingress_needed_key)) {
4791 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4792 		if (!skb)
4793 			goto out;
4794 
4795 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4796 			goto out;
4797 	}
4798 #endif
4799 	skb_reset_tc(skb);
4800 skip_classify:
4801 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4802 		goto drop;
4803 
4804 	if (skb_vlan_tag_present(skb)) {
4805 		if (pt_prev) {
4806 			ret = deliver_skb(skb, pt_prev, orig_dev);
4807 			pt_prev = NULL;
4808 		}
4809 		if (vlan_do_receive(&skb))
4810 			goto another_round;
4811 		else if (unlikely(!skb))
4812 			goto out;
4813 	}
4814 
4815 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4816 	if (rx_handler) {
4817 		if (pt_prev) {
4818 			ret = deliver_skb(skb, pt_prev, orig_dev);
4819 			pt_prev = NULL;
4820 		}
4821 		switch (rx_handler(&skb)) {
4822 		case RX_HANDLER_CONSUMED:
4823 			ret = NET_RX_SUCCESS;
4824 			goto out;
4825 		case RX_HANDLER_ANOTHER:
4826 			goto another_round;
4827 		case RX_HANDLER_EXACT:
4828 			deliver_exact = true;
4829 		case RX_HANDLER_PASS:
4830 			break;
4831 		default:
4832 			BUG();
4833 		}
4834 	}
4835 
4836 	if (unlikely(skb_vlan_tag_present(skb))) {
4837 		if (skb_vlan_tag_get_id(skb))
4838 			skb->pkt_type = PACKET_OTHERHOST;
4839 		/* Note: we might in the future use prio bits
4840 		 * and set skb->priority like in vlan_do_receive()
4841 		 * For the time being, just ignore Priority Code Point
4842 		 */
4843 		skb->vlan_tci = 0;
4844 	}
4845 
4846 	type = skb->protocol;
4847 
4848 	/* deliver only exact match when indicated */
4849 	if (likely(!deliver_exact)) {
4850 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4851 				       &ptype_base[ntohs(type) &
4852 						   PTYPE_HASH_MASK]);
4853 	}
4854 
4855 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4856 			       &orig_dev->ptype_specific);
4857 
4858 	if (unlikely(skb->dev != orig_dev)) {
4859 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4860 				       &skb->dev->ptype_specific);
4861 	}
4862 
4863 	if (pt_prev) {
4864 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4865 			goto drop;
4866 		*ppt_prev = pt_prev;
4867 	} else {
4868 drop:
4869 		if (!deliver_exact)
4870 			atomic_long_inc(&skb->dev->rx_dropped);
4871 		else
4872 			atomic_long_inc(&skb->dev->rx_nohandler);
4873 		kfree_skb(skb);
4874 		/* Jamal, now you will not able to escape explaining
4875 		 * me how you were going to use this. :-)
4876 		 */
4877 		ret = NET_RX_DROP;
4878 	}
4879 
4880 out:
4881 	return ret;
4882 }
4883 
4884 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4885 {
4886 	struct net_device *orig_dev = skb->dev;
4887 	struct packet_type *pt_prev = NULL;
4888 	int ret;
4889 
4890 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4891 	if (pt_prev)
4892 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4893 	return ret;
4894 }
4895 
4896 /**
4897  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4898  *	@skb: buffer to process
4899  *
4900  *	More direct receive version of netif_receive_skb().  It should
4901  *	only be used by callers that have a need to skip RPS and Generic XDP.
4902  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4903  *
4904  *	This function may only be called from softirq context and interrupts
4905  *	should be enabled.
4906  *
4907  *	Return values (usually ignored):
4908  *	NET_RX_SUCCESS: no congestion
4909  *	NET_RX_DROP: packet was dropped
4910  */
4911 int netif_receive_skb_core(struct sk_buff *skb)
4912 {
4913 	int ret;
4914 
4915 	rcu_read_lock();
4916 	ret = __netif_receive_skb_one_core(skb, false);
4917 	rcu_read_unlock();
4918 
4919 	return ret;
4920 }
4921 EXPORT_SYMBOL(netif_receive_skb_core);
4922 
4923 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4924 						  struct packet_type *pt_prev,
4925 						  struct net_device *orig_dev)
4926 {
4927 	struct sk_buff *skb, *next;
4928 
4929 	if (!pt_prev)
4930 		return;
4931 	if (list_empty(head))
4932 		return;
4933 	if (pt_prev->list_func != NULL)
4934 		pt_prev->list_func(head, pt_prev, orig_dev);
4935 	else
4936 		list_for_each_entry_safe(skb, next, head, list)
4937 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4938 }
4939 
4940 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4941 {
4942 	/* Fast-path assumptions:
4943 	 * - There is no RX handler.
4944 	 * - Only one packet_type matches.
4945 	 * If either of these fails, we will end up doing some per-packet
4946 	 * processing in-line, then handling the 'last ptype' for the whole
4947 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
4948 	 * because the 'last ptype' must be constant across the sublist, and all
4949 	 * other ptypes are handled per-packet.
4950 	 */
4951 	/* Current (common) ptype of sublist */
4952 	struct packet_type *pt_curr = NULL;
4953 	/* Current (common) orig_dev of sublist */
4954 	struct net_device *od_curr = NULL;
4955 	struct list_head sublist;
4956 	struct sk_buff *skb, *next;
4957 
4958 	INIT_LIST_HEAD(&sublist);
4959 	list_for_each_entry_safe(skb, next, head, list) {
4960 		struct net_device *orig_dev = skb->dev;
4961 		struct packet_type *pt_prev = NULL;
4962 
4963 		list_del(&skb->list);
4964 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4965 		if (!pt_prev)
4966 			continue;
4967 		if (pt_curr != pt_prev || od_curr != orig_dev) {
4968 			/* dispatch old sublist */
4969 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4970 			/* start new sublist */
4971 			INIT_LIST_HEAD(&sublist);
4972 			pt_curr = pt_prev;
4973 			od_curr = orig_dev;
4974 		}
4975 		list_add_tail(&skb->list, &sublist);
4976 	}
4977 
4978 	/* dispatch final sublist */
4979 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4980 }
4981 
4982 static int __netif_receive_skb(struct sk_buff *skb)
4983 {
4984 	int ret;
4985 
4986 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4987 		unsigned int noreclaim_flag;
4988 
4989 		/*
4990 		 * PFMEMALLOC skbs are special, they should
4991 		 * - be delivered to SOCK_MEMALLOC sockets only
4992 		 * - stay away from userspace
4993 		 * - have bounded memory usage
4994 		 *
4995 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4996 		 * context down to all allocation sites.
4997 		 */
4998 		noreclaim_flag = memalloc_noreclaim_save();
4999 		ret = __netif_receive_skb_one_core(skb, true);
5000 		memalloc_noreclaim_restore(noreclaim_flag);
5001 	} else
5002 		ret = __netif_receive_skb_one_core(skb, false);
5003 
5004 	return ret;
5005 }
5006 
5007 static void __netif_receive_skb_list(struct list_head *head)
5008 {
5009 	unsigned long noreclaim_flag = 0;
5010 	struct sk_buff *skb, *next;
5011 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5012 
5013 	list_for_each_entry_safe(skb, next, head, list) {
5014 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5015 			struct list_head sublist;
5016 
5017 			/* Handle the previous sublist */
5018 			list_cut_before(&sublist, head, &skb->list);
5019 			if (!list_empty(&sublist))
5020 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5021 			pfmemalloc = !pfmemalloc;
5022 			/* See comments in __netif_receive_skb */
5023 			if (pfmemalloc)
5024 				noreclaim_flag = memalloc_noreclaim_save();
5025 			else
5026 				memalloc_noreclaim_restore(noreclaim_flag);
5027 		}
5028 	}
5029 	/* Handle the remaining sublist */
5030 	if (!list_empty(head))
5031 		__netif_receive_skb_list_core(head, pfmemalloc);
5032 	/* Restore pflags */
5033 	if (pfmemalloc)
5034 		memalloc_noreclaim_restore(noreclaim_flag);
5035 }
5036 
5037 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5038 {
5039 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5040 	struct bpf_prog *new = xdp->prog;
5041 	int ret = 0;
5042 
5043 	switch (xdp->command) {
5044 	case XDP_SETUP_PROG:
5045 		rcu_assign_pointer(dev->xdp_prog, new);
5046 		if (old)
5047 			bpf_prog_put(old);
5048 
5049 		if (old && !new) {
5050 			static_branch_dec(&generic_xdp_needed_key);
5051 		} else if (new && !old) {
5052 			static_branch_inc(&generic_xdp_needed_key);
5053 			dev_disable_lro(dev);
5054 			dev_disable_gro_hw(dev);
5055 		}
5056 		break;
5057 
5058 	case XDP_QUERY_PROG:
5059 		xdp->prog_id = old ? old->aux->id : 0;
5060 		break;
5061 
5062 	default:
5063 		ret = -EINVAL;
5064 		break;
5065 	}
5066 
5067 	return ret;
5068 }
5069 
5070 static int netif_receive_skb_internal(struct sk_buff *skb)
5071 {
5072 	int ret;
5073 
5074 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5075 
5076 	if (skb_defer_rx_timestamp(skb))
5077 		return NET_RX_SUCCESS;
5078 
5079 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5080 		int ret;
5081 
5082 		preempt_disable();
5083 		rcu_read_lock();
5084 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5085 		rcu_read_unlock();
5086 		preempt_enable();
5087 
5088 		if (ret != XDP_PASS)
5089 			return NET_RX_DROP;
5090 	}
5091 
5092 	rcu_read_lock();
5093 #ifdef CONFIG_RPS
5094 	if (static_key_false(&rps_needed)) {
5095 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5096 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5097 
5098 		if (cpu >= 0) {
5099 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5100 			rcu_read_unlock();
5101 			return ret;
5102 		}
5103 	}
5104 #endif
5105 	ret = __netif_receive_skb(skb);
5106 	rcu_read_unlock();
5107 	return ret;
5108 }
5109 
5110 static void netif_receive_skb_list_internal(struct list_head *head)
5111 {
5112 	struct bpf_prog *xdp_prog = NULL;
5113 	struct sk_buff *skb, *next;
5114 	struct list_head sublist;
5115 
5116 	INIT_LIST_HEAD(&sublist);
5117 	list_for_each_entry_safe(skb, next, head, list) {
5118 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5119 		list_del(&skb->list);
5120 		if (!skb_defer_rx_timestamp(skb))
5121 			list_add_tail(&skb->list, &sublist);
5122 	}
5123 	list_splice_init(&sublist, head);
5124 
5125 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5126 		preempt_disable();
5127 		rcu_read_lock();
5128 		list_for_each_entry_safe(skb, next, head, list) {
5129 			xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5130 			list_del(&skb->list);
5131 			if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5132 				list_add_tail(&skb->list, &sublist);
5133 		}
5134 		rcu_read_unlock();
5135 		preempt_enable();
5136 		/* Put passed packets back on main list */
5137 		list_splice_init(&sublist, head);
5138 	}
5139 
5140 	rcu_read_lock();
5141 #ifdef CONFIG_RPS
5142 	if (static_key_false(&rps_needed)) {
5143 		list_for_each_entry_safe(skb, next, head, list) {
5144 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5145 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5146 
5147 			if (cpu >= 0) {
5148 				/* Will be handled, remove from list */
5149 				list_del(&skb->list);
5150 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5151 			}
5152 		}
5153 	}
5154 #endif
5155 	__netif_receive_skb_list(head);
5156 	rcu_read_unlock();
5157 }
5158 
5159 /**
5160  *	netif_receive_skb - process receive buffer from network
5161  *	@skb: buffer to process
5162  *
5163  *	netif_receive_skb() is the main receive data processing function.
5164  *	It always succeeds. The buffer may be dropped during processing
5165  *	for congestion control or by the protocol layers.
5166  *
5167  *	This function may only be called from softirq context and interrupts
5168  *	should be enabled.
5169  *
5170  *	Return values (usually ignored):
5171  *	NET_RX_SUCCESS: no congestion
5172  *	NET_RX_DROP: packet was dropped
5173  */
5174 int netif_receive_skb(struct sk_buff *skb)
5175 {
5176 	trace_netif_receive_skb_entry(skb);
5177 
5178 	return netif_receive_skb_internal(skb);
5179 }
5180 EXPORT_SYMBOL(netif_receive_skb);
5181 
5182 /**
5183  *	netif_receive_skb_list - process many receive buffers from network
5184  *	@head: list of skbs to process.
5185  *
5186  *	Since return value of netif_receive_skb() is normally ignored, and
5187  *	wouldn't be meaningful for a list, this function returns void.
5188  *
5189  *	This function may only be called from softirq context and interrupts
5190  *	should be enabled.
5191  */
5192 void netif_receive_skb_list(struct list_head *head)
5193 {
5194 	struct sk_buff *skb;
5195 
5196 	if (list_empty(head))
5197 		return;
5198 	list_for_each_entry(skb, head, list)
5199 		trace_netif_receive_skb_list_entry(skb);
5200 	netif_receive_skb_list_internal(head);
5201 }
5202 EXPORT_SYMBOL(netif_receive_skb_list);
5203 
5204 DEFINE_PER_CPU(struct work_struct, flush_works);
5205 
5206 /* Network device is going away, flush any packets still pending */
5207 static void flush_backlog(struct work_struct *work)
5208 {
5209 	struct sk_buff *skb, *tmp;
5210 	struct softnet_data *sd;
5211 
5212 	local_bh_disable();
5213 	sd = this_cpu_ptr(&softnet_data);
5214 
5215 	local_irq_disable();
5216 	rps_lock(sd);
5217 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5218 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5219 			__skb_unlink(skb, &sd->input_pkt_queue);
5220 			kfree_skb(skb);
5221 			input_queue_head_incr(sd);
5222 		}
5223 	}
5224 	rps_unlock(sd);
5225 	local_irq_enable();
5226 
5227 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5228 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5229 			__skb_unlink(skb, &sd->process_queue);
5230 			kfree_skb(skb);
5231 			input_queue_head_incr(sd);
5232 		}
5233 	}
5234 	local_bh_enable();
5235 }
5236 
5237 static void flush_all_backlogs(void)
5238 {
5239 	unsigned int cpu;
5240 
5241 	get_online_cpus();
5242 
5243 	for_each_online_cpu(cpu)
5244 		queue_work_on(cpu, system_highpri_wq,
5245 			      per_cpu_ptr(&flush_works, cpu));
5246 
5247 	for_each_online_cpu(cpu)
5248 		flush_work(per_cpu_ptr(&flush_works, cpu));
5249 
5250 	put_online_cpus();
5251 }
5252 
5253 static int napi_gro_complete(struct sk_buff *skb)
5254 {
5255 	struct packet_offload *ptype;
5256 	__be16 type = skb->protocol;
5257 	struct list_head *head = &offload_base;
5258 	int err = -ENOENT;
5259 
5260 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5261 
5262 	if (NAPI_GRO_CB(skb)->count == 1) {
5263 		skb_shinfo(skb)->gso_size = 0;
5264 		goto out;
5265 	}
5266 
5267 	rcu_read_lock();
5268 	list_for_each_entry_rcu(ptype, head, list) {
5269 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5270 			continue;
5271 
5272 		err = ptype->callbacks.gro_complete(skb, 0);
5273 		break;
5274 	}
5275 	rcu_read_unlock();
5276 
5277 	if (err) {
5278 		WARN_ON(&ptype->list == head);
5279 		kfree_skb(skb);
5280 		return NET_RX_SUCCESS;
5281 	}
5282 
5283 out:
5284 	return netif_receive_skb_internal(skb);
5285 }
5286 
5287 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5288 				   bool flush_old)
5289 {
5290 	struct list_head *head = &napi->gro_hash[index].list;
5291 	struct sk_buff *skb, *p;
5292 
5293 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5294 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5295 			return;
5296 		list_del(&skb->list);
5297 		skb->next = NULL;
5298 		napi_gro_complete(skb);
5299 		napi->gro_hash[index].count--;
5300 	}
5301 
5302 	if (!napi->gro_hash[index].count)
5303 		__clear_bit(index, &napi->gro_bitmask);
5304 }
5305 
5306 /* napi->gro_hash[].list contains packets ordered by age.
5307  * youngest packets at the head of it.
5308  * Complete skbs in reverse order to reduce latencies.
5309  */
5310 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5311 {
5312 	u32 i;
5313 
5314 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5315 		if (test_bit(i, &napi->gro_bitmask))
5316 			__napi_gro_flush_chain(napi, i, flush_old);
5317 	}
5318 }
5319 EXPORT_SYMBOL(napi_gro_flush);
5320 
5321 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5322 					  struct sk_buff *skb)
5323 {
5324 	unsigned int maclen = skb->dev->hard_header_len;
5325 	u32 hash = skb_get_hash_raw(skb);
5326 	struct list_head *head;
5327 	struct sk_buff *p;
5328 
5329 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5330 	list_for_each_entry(p, head, list) {
5331 		unsigned long diffs;
5332 
5333 		NAPI_GRO_CB(p)->flush = 0;
5334 
5335 		if (hash != skb_get_hash_raw(p)) {
5336 			NAPI_GRO_CB(p)->same_flow = 0;
5337 			continue;
5338 		}
5339 
5340 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5341 		diffs |= p->vlan_tci ^ skb->vlan_tci;
5342 		diffs |= skb_metadata_dst_cmp(p, skb);
5343 		diffs |= skb_metadata_differs(p, skb);
5344 		if (maclen == ETH_HLEN)
5345 			diffs |= compare_ether_header(skb_mac_header(p),
5346 						      skb_mac_header(skb));
5347 		else if (!diffs)
5348 			diffs = memcmp(skb_mac_header(p),
5349 				       skb_mac_header(skb),
5350 				       maclen);
5351 		NAPI_GRO_CB(p)->same_flow = !diffs;
5352 	}
5353 
5354 	return head;
5355 }
5356 
5357 static void skb_gro_reset_offset(struct sk_buff *skb)
5358 {
5359 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5360 	const skb_frag_t *frag0 = &pinfo->frags[0];
5361 
5362 	NAPI_GRO_CB(skb)->data_offset = 0;
5363 	NAPI_GRO_CB(skb)->frag0 = NULL;
5364 	NAPI_GRO_CB(skb)->frag0_len = 0;
5365 
5366 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5367 	    pinfo->nr_frags &&
5368 	    !PageHighMem(skb_frag_page(frag0))) {
5369 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5370 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5371 						    skb_frag_size(frag0),
5372 						    skb->end - skb->tail);
5373 	}
5374 }
5375 
5376 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5377 {
5378 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5379 
5380 	BUG_ON(skb->end - skb->tail < grow);
5381 
5382 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5383 
5384 	skb->data_len -= grow;
5385 	skb->tail += grow;
5386 
5387 	pinfo->frags[0].page_offset += grow;
5388 	skb_frag_size_sub(&pinfo->frags[0], grow);
5389 
5390 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5391 		skb_frag_unref(skb, 0);
5392 		memmove(pinfo->frags, pinfo->frags + 1,
5393 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5394 	}
5395 }
5396 
5397 static void gro_flush_oldest(struct list_head *head)
5398 {
5399 	struct sk_buff *oldest;
5400 
5401 	oldest = list_last_entry(head, struct sk_buff, list);
5402 
5403 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5404 	 * impossible.
5405 	 */
5406 	if (WARN_ON_ONCE(!oldest))
5407 		return;
5408 
5409 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5410 	 * SKB to the chain.
5411 	 */
5412 	list_del(&oldest->list);
5413 	napi_gro_complete(oldest);
5414 }
5415 
5416 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5417 {
5418 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5419 	struct list_head *head = &offload_base;
5420 	struct packet_offload *ptype;
5421 	__be16 type = skb->protocol;
5422 	struct list_head *gro_head;
5423 	struct sk_buff *pp = NULL;
5424 	enum gro_result ret;
5425 	int same_flow;
5426 	int grow;
5427 
5428 	if (netif_elide_gro(skb->dev))
5429 		goto normal;
5430 
5431 	gro_head = gro_list_prepare(napi, skb);
5432 
5433 	rcu_read_lock();
5434 	list_for_each_entry_rcu(ptype, head, list) {
5435 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5436 			continue;
5437 
5438 		skb_set_network_header(skb, skb_gro_offset(skb));
5439 		skb_reset_mac_len(skb);
5440 		NAPI_GRO_CB(skb)->same_flow = 0;
5441 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5442 		NAPI_GRO_CB(skb)->free = 0;
5443 		NAPI_GRO_CB(skb)->encap_mark = 0;
5444 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5445 		NAPI_GRO_CB(skb)->is_fou = 0;
5446 		NAPI_GRO_CB(skb)->is_atomic = 1;
5447 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5448 
5449 		/* Setup for GRO checksum validation */
5450 		switch (skb->ip_summed) {
5451 		case CHECKSUM_COMPLETE:
5452 			NAPI_GRO_CB(skb)->csum = skb->csum;
5453 			NAPI_GRO_CB(skb)->csum_valid = 1;
5454 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5455 			break;
5456 		case CHECKSUM_UNNECESSARY:
5457 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5458 			NAPI_GRO_CB(skb)->csum_valid = 0;
5459 			break;
5460 		default:
5461 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5462 			NAPI_GRO_CB(skb)->csum_valid = 0;
5463 		}
5464 
5465 		pp = ptype->callbacks.gro_receive(gro_head, skb);
5466 		break;
5467 	}
5468 	rcu_read_unlock();
5469 
5470 	if (&ptype->list == head)
5471 		goto normal;
5472 
5473 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5474 		ret = GRO_CONSUMED;
5475 		goto ok;
5476 	}
5477 
5478 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5479 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5480 
5481 	if (pp) {
5482 		list_del(&pp->list);
5483 		pp->next = NULL;
5484 		napi_gro_complete(pp);
5485 		napi->gro_hash[hash].count--;
5486 	}
5487 
5488 	if (same_flow)
5489 		goto ok;
5490 
5491 	if (NAPI_GRO_CB(skb)->flush)
5492 		goto normal;
5493 
5494 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5495 		gro_flush_oldest(gro_head);
5496 	} else {
5497 		napi->gro_hash[hash].count++;
5498 	}
5499 	NAPI_GRO_CB(skb)->count = 1;
5500 	NAPI_GRO_CB(skb)->age = jiffies;
5501 	NAPI_GRO_CB(skb)->last = skb;
5502 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5503 	list_add(&skb->list, gro_head);
5504 	ret = GRO_HELD;
5505 
5506 pull:
5507 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5508 	if (grow > 0)
5509 		gro_pull_from_frag0(skb, grow);
5510 ok:
5511 	if (napi->gro_hash[hash].count) {
5512 		if (!test_bit(hash, &napi->gro_bitmask))
5513 			__set_bit(hash, &napi->gro_bitmask);
5514 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5515 		__clear_bit(hash, &napi->gro_bitmask);
5516 	}
5517 
5518 	return ret;
5519 
5520 normal:
5521 	ret = GRO_NORMAL;
5522 	goto pull;
5523 }
5524 
5525 struct packet_offload *gro_find_receive_by_type(__be16 type)
5526 {
5527 	struct list_head *offload_head = &offload_base;
5528 	struct packet_offload *ptype;
5529 
5530 	list_for_each_entry_rcu(ptype, offload_head, list) {
5531 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5532 			continue;
5533 		return ptype;
5534 	}
5535 	return NULL;
5536 }
5537 EXPORT_SYMBOL(gro_find_receive_by_type);
5538 
5539 struct packet_offload *gro_find_complete_by_type(__be16 type)
5540 {
5541 	struct list_head *offload_head = &offload_base;
5542 	struct packet_offload *ptype;
5543 
5544 	list_for_each_entry_rcu(ptype, offload_head, list) {
5545 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5546 			continue;
5547 		return ptype;
5548 	}
5549 	return NULL;
5550 }
5551 EXPORT_SYMBOL(gro_find_complete_by_type);
5552 
5553 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5554 {
5555 	skb_dst_drop(skb);
5556 	secpath_reset(skb);
5557 	kmem_cache_free(skbuff_head_cache, skb);
5558 }
5559 
5560 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5561 {
5562 	switch (ret) {
5563 	case GRO_NORMAL:
5564 		if (netif_receive_skb_internal(skb))
5565 			ret = GRO_DROP;
5566 		break;
5567 
5568 	case GRO_DROP:
5569 		kfree_skb(skb);
5570 		break;
5571 
5572 	case GRO_MERGED_FREE:
5573 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5574 			napi_skb_free_stolen_head(skb);
5575 		else
5576 			__kfree_skb(skb);
5577 		break;
5578 
5579 	case GRO_HELD:
5580 	case GRO_MERGED:
5581 	case GRO_CONSUMED:
5582 		break;
5583 	}
5584 
5585 	return ret;
5586 }
5587 
5588 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5589 {
5590 	skb_mark_napi_id(skb, napi);
5591 	trace_napi_gro_receive_entry(skb);
5592 
5593 	skb_gro_reset_offset(skb);
5594 
5595 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5596 }
5597 EXPORT_SYMBOL(napi_gro_receive);
5598 
5599 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5600 {
5601 	if (unlikely(skb->pfmemalloc)) {
5602 		consume_skb(skb);
5603 		return;
5604 	}
5605 	__skb_pull(skb, skb_headlen(skb));
5606 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5607 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5608 	skb->vlan_tci = 0;
5609 	skb->dev = napi->dev;
5610 	skb->skb_iif = 0;
5611 	skb->encapsulation = 0;
5612 	skb_shinfo(skb)->gso_type = 0;
5613 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5614 	secpath_reset(skb);
5615 
5616 	napi->skb = skb;
5617 }
5618 
5619 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5620 {
5621 	struct sk_buff *skb = napi->skb;
5622 
5623 	if (!skb) {
5624 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5625 		if (skb) {
5626 			napi->skb = skb;
5627 			skb_mark_napi_id(skb, napi);
5628 		}
5629 	}
5630 	return skb;
5631 }
5632 EXPORT_SYMBOL(napi_get_frags);
5633 
5634 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5635 				      struct sk_buff *skb,
5636 				      gro_result_t ret)
5637 {
5638 	switch (ret) {
5639 	case GRO_NORMAL:
5640 	case GRO_HELD:
5641 		__skb_push(skb, ETH_HLEN);
5642 		skb->protocol = eth_type_trans(skb, skb->dev);
5643 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5644 			ret = GRO_DROP;
5645 		break;
5646 
5647 	case GRO_DROP:
5648 		napi_reuse_skb(napi, skb);
5649 		break;
5650 
5651 	case GRO_MERGED_FREE:
5652 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5653 			napi_skb_free_stolen_head(skb);
5654 		else
5655 			napi_reuse_skb(napi, skb);
5656 		break;
5657 
5658 	case GRO_MERGED:
5659 	case GRO_CONSUMED:
5660 		break;
5661 	}
5662 
5663 	return ret;
5664 }
5665 
5666 /* Upper GRO stack assumes network header starts at gro_offset=0
5667  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5668  * We copy ethernet header into skb->data to have a common layout.
5669  */
5670 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5671 {
5672 	struct sk_buff *skb = napi->skb;
5673 	const struct ethhdr *eth;
5674 	unsigned int hlen = sizeof(*eth);
5675 
5676 	napi->skb = NULL;
5677 
5678 	skb_reset_mac_header(skb);
5679 	skb_gro_reset_offset(skb);
5680 
5681 	eth = skb_gro_header_fast(skb, 0);
5682 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5683 		eth = skb_gro_header_slow(skb, hlen, 0);
5684 		if (unlikely(!eth)) {
5685 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5686 					     __func__, napi->dev->name);
5687 			napi_reuse_skb(napi, skb);
5688 			return NULL;
5689 		}
5690 	} else {
5691 		gro_pull_from_frag0(skb, hlen);
5692 		NAPI_GRO_CB(skb)->frag0 += hlen;
5693 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5694 	}
5695 	__skb_pull(skb, hlen);
5696 
5697 	/*
5698 	 * This works because the only protocols we care about don't require
5699 	 * special handling.
5700 	 * We'll fix it up properly in napi_frags_finish()
5701 	 */
5702 	skb->protocol = eth->h_proto;
5703 
5704 	return skb;
5705 }
5706 
5707 gro_result_t napi_gro_frags(struct napi_struct *napi)
5708 {
5709 	struct sk_buff *skb = napi_frags_skb(napi);
5710 
5711 	if (!skb)
5712 		return GRO_DROP;
5713 
5714 	trace_napi_gro_frags_entry(skb);
5715 
5716 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5717 }
5718 EXPORT_SYMBOL(napi_gro_frags);
5719 
5720 /* Compute the checksum from gro_offset and return the folded value
5721  * after adding in any pseudo checksum.
5722  */
5723 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5724 {
5725 	__wsum wsum;
5726 	__sum16 sum;
5727 
5728 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5729 
5730 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5731 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5732 	if (likely(!sum)) {
5733 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5734 		    !skb->csum_complete_sw)
5735 			netdev_rx_csum_fault(skb->dev);
5736 	}
5737 
5738 	NAPI_GRO_CB(skb)->csum = wsum;
5739 	NAPI_GRO_CB(skb)->csum_valid = 1;
5740 
5741 	return sum;
5742 }
5743 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5744 
5745 static void net_rps_send_ipi(struct softnet_data *remsd)
5746 {
5747 #ifdef CONFIG_RPS
5748 	while (remsd) {
5749 		struct softnet_data *next = remsd->rps_ipi_next;
5750 
5751 		if (cpu_online(remsd->cpu))
5752 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5753 		remsd = next;
5754 	}
5755 #endif
5756 }
5757 
5758 /*
5759  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5760  * Note: called with local irq disabled, but exits with local irq enabled.
5761  */
5762 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5763 {
5764 #ifdef CONFIG_RPS
5765 	struct softnet_data *remsd = sd->rps_ipi_list;
5766 
5767 	if (remsd) {
5768 		sd->rps_ipi_list = NULL;
5769 
5770 		local_irq_enable();
5771 
5772 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5773 		net_rps_send_ipi(remsd);
5774 	} else
5775 #endif
5776 		local_irq_enable();
5777 }
5778 
5779 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5780 {
5781 #ifdef CONFIG_RPS
5782 	return sd->rps_ipi_list != NULL;
5783 #else
5784 	return false;
5785 #endif
5786 }
5787 
5788 static int process_backlog(struct napi_struct *napi, int quota)
5789 {
5790 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5791 	bool again = true;
5792 	int work = 0;
5793 
5794 	/* Check if we have pending ipi, its better to send them now,
5795 	 * not waiting net_rx_action() end.
5796 	 */
5797 	if (sd_has_rps_ipi_waiting(sd)) {
5798 		local_irq_disable();
5799 		net_rps_action_and_irq_enable(sd);
5800 	}
5801 
5802 	napi->weight = dev_rx_weight;
5803 	while (again) {
5804 		struct sk_buff *skb;
5805 
5806 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5807 			rcu_read_lock();
5808 			__netif_receive_skb(skb);
5809 			rcu_read_unlock();
5810 			input_queue_head_incr(sd);
5811 			if (++work >= quota)
5812 				return work;
5813 
5814 		}
5815 
5816 		local_irq_disable();
5817 		rps_lock(sd);
5818 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5819 			/*
5820 			 * Inline a custom version of __napi_complete().
5821 			 * only current cpu owns and manipulates this napi,
5822 			 * and NAPI_STATE_SCHED is the only possible flag set
5823 			 * on backlog.
5824 			 * We can use a plain write instead of clear_bit(),
5825 			 * and we dont need an smp_mb() memory barrier.
5826 			 */
5827 			napi->state = 0;
5828 			again = false;
5829 		} else {
5830 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5831 						   &sd->process_queue);
5832 		}
5833 		rps_unlock(sd);
5834 		local_irq_enable();
5835 	}
5836 
5837 	return work;
5838 }
5839 
5840 /**
5841  * __napi_schedule - schedule for receive
5842  * @n: entry to schedule
5843  *
5844  * The entry's receive function will be scheduled to run.
5845  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5846  */
5847 void __napi_schedule(struct napi_struct *n)
5848 {
5849 	unsigned long flags;
5850 
5851 	local_irq_save(flags);
5852 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5853 	local_irq_restore(flags);
5854 }
5855 EXPORT_SYMBOL(__napi_schedule);
5856 
5857 /**
5858  *	napi_schedule_prep - check if napi can be scheduled
5859  *	@n: napi context
5860  *
5861  * Test if NAPI routine is already running, and if not mark
5862  * it as running.  This is used as a condition variable
5863  * insure only one NAPI poll instance runs.  We also make
5864  * sure there is no pending NAPI disable.
5865  */
5866 bool napi_schedule_prep(struct napi_struct *n)
5867 {
5868 	unsigned long val, new;
5869 
5870 	do {
5871 		val = READ_ONCE(n->state);
5872 		if (unlikely(val & NAPIF_STATE_DISABLE))
5873 			return false;
5874 		new = val | NAPIF_STATE_SCHED;
5875 
5876 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5877 		 * This was suggested by Alexander Duyck, as compiler
5878 		 * emits better code than :
5879 		 * if (val & NAPIF_STATE_SCHED)
5880 		 *     new |= NAPIF_STATE_MISSED;
5881 		 */
5882 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5883 						   NAPIF_STATE_MISSED;
5884 	} while (cmpxchg(&n->state, val, new) != val);
5885 
5886 	return !(val & NAPIF_STATE_SCHED);
5887 }
5888 EXPORT_SYMBOL(napi_schedule_prep);
5889 
5890 /**
5891  * __napi_schedule_irqoff - schedule for receive
5892  * @n: entry to schedule
5893  *
5894  * Variant of __napi_schedule() assuming hard irqs are masked
5895  */
5896 void __napi_schedule_irqoff(struct napi_struct *n)
5897 {
5898 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5899 }
5900 EXPORT_SYMBOL(__napi_schedule_irqoff);
5901 
5902 bool napi_complete_done(struct napi_struct *n, int work_done)
5903 {
5904 	unsigned long flags, val, new;
5905 
5906 	/*
5907 	 * 1) Don't let napi dequeue from the cpu poll list
5908 	 *    just in case its running on a different cpu.
5909 	 * 2) If we are busy polling, do nothing here, we have
5910 	 *    the guarantee we will be called later.
5911 	 */
5912 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5913 				 NAPIF_STATE_IN_BUSY_POLL)))
5914 		return false;
5915 
5916 	if (n->gro_bitmask) {
5917 		unsigned long timeout = 0;
5918 
5919 		if (work_done)
5920 			timeout = n->dev->gro_flush_timeout;
5921 
5922 		if (timeout)
5923 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5924 				      HRTIMER_MODE_REL_PINNED);
5925 		else
5926 			napi_gro_flush(n, false);
5927 	}
5928 	if (unlikely(!list_empty(&n->poll_list))) {
5929 		/* If n->poll_list is not empty, we need to mask irqs */
5930 		local_irq_save(flags);
5931 		list_del_init(&n->poll_list);
5932 		local_irq_restore(flags);
5933 	}
5934 
5935 	do {
5936 		val = READ_ONCE(n->state);
5937 
5938 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5939 
5940 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5941 
5942 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5943 		 * because we will call napi->poll() one more time.
5944 		 * This C code was suggested by Alexander Duyck to help gcc.
5945 		 */
5946 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5947 						    NAPIF_STATE_SCHED;
5948 	} while (cmpxchg(&n->state, val, new) != val);
5949 
5950 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5951 		__napi_schedule(n);
5952 		return false;
5953 	}
5954 
5955 	return true;
5956 }
5957 EXPORT_SYMBOL(napi_complete_done);
5958 
5959 /* must be called under rcu_read_lock(), as we dont take a reference */
5960 static struct napi_struct *napi_by_id(unsigned int napi_id)
5961 {
5962 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5963 	struct napi_struct *napi;
5964 
5965 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5966 		if (napi->napi_id == napi_id)
5967 			return napi;
5968 
5969 	return NULL;
5970 }
5971 
5972 #if defined(CONFIG_NET_RX_BUSY_POLL)
5973 
5974 #define BUSY_POLL_BUDGET 8
5975 
5976 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5977 {
5978 	int rc;
5979 
5980 	/* Busy polling means there is a high chance device driver hard irq
5981 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5982 	 * set in napi_schedule_prep().
5983 	 * Since we are about to call napi->poll() once more, we can safely
5984 	 * clear NAPI_STATE_MISSED.
5985 	 *
5986 	 * Note: x86 could use a single "lock and ..." instruction
5987 	 * to perform these two clear_bit()
5988 	 */
5989 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5990 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5991 
5992 	local_bh_disable();
5993 
5994 	/* All we really want here is to re-enable device interrupts.
5995 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5996 	 */
5997 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5998 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5999 	netpoll_poll_unlock(have_poll_lock);
6000 	if (rc == BUSY_POLL_BUDGET)
6001 		__napi_schedule(napi);
6002 	local_bh_enable();
6003 }
6004 
6005 void napi_busy_loop(unsigned int napi_id,
6006 		    bool (*loop_end)(void *, unsigned long),
6007 		    void *loop_end_arg)
6008 {
6009 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6010 	int (*napi_poll)(struct napi_struct *napi, int budget);
6011 	void *have_poll_lock = NULL;
6012 	struct napi_struct *napi;
6013 
6014 restart:
6015 	napi_poll = NULL;
6016 
6017 	rcu_read_lock();
6018 
6019 	napi = napi_by_id(napi_id);
6020 	if (!napi)
6021 		goto out;
6022 
6023 	preempt_disable();
6024 	for (;;) {
6025 		int work = 0;
6026 
6027 		local_bh_disable();
6028 		if (!napi_poll) {
6029 			unsigned long val = READ_ONCE(napi->state);
6030 
6031 			/* If multiple threads are competing for this napi,
6032 			 * we avoid dirtying napi->state as much as we can.
6033 			 */
6034 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6035 				   NAPIF_STATE_IN_BUSY_POLL))
6036 				goto count;
6037 			if (cmpxchg(&napi->state, val,
6038 				    val | NAPIF_STATE_IN_BUSY_POLL |
6039 					  NAPIF_STATE_SCHED) != val)
6040 				goto count;
6041 			have_poll_lock = netpoll_poll_lock(napi);
6042 			napi_poll = napi->poll;
6043 		}
6044 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6045 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6046 count:
6047 		if (work > 0)
6048 			__NET_ADD_STATS(dev_net(napi->dev),
6049 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6050 		local_bh_enable();
6051 
6052 		if (!loop_end || loop_end(loop_end_arg, start_time))
6053 			break;
6054 
6055 		if (unlikely(need_resched())) {
6056 			if (napi_poll)
6057 				busy_poll_stop(napi, have_poll_lock);
6058 			preempt_enable();
6059 			rcu_read_unlock();
6060 			cond_resched();
6061 			if (loop_end(loop_end_arg, start_time))
6062 				return;
6063 			goto restart;
6064 		}
6065 		cpu_relax();
6066 	}
6067 	if (napi_poll)
6068 		busy_poll_stop(napi, have_poll_lock);
6069 	preempt_enable();
6070 out:
6071 	rcu_read_unlock();
6072 }
6073 EXPORT_SYMBOL(napi_busy_loop);
6074 
6075 #endif /* CONFIG_NET_RX_BUSY_POLL */
6076 
6077 static void napi_hash_add(struct napi_struct *napi)
6078 {
6079 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6080 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6081 		return;
6082 
6083 	spin_lock(&napi_hash_lock);
6084 
6085 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6086 	do {
6087 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6088 			napi_gen_id = MIN_NAPI_ID;
6089 	} while (napi_by_id(napi_gen_id));
6090 	napi->napi_id = napi_gen_id;
6091 
6092 	hlist_add_head_rcu(&napi->napi_hash_node,
6093 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6094 
6095 	spin_unlock(&napi_hash_lock);
6096 }
6097 
6098 /* Warning : caller is responsible to make sure rcu grace period
6099  * is respected before freeing memory containing @napi
6100  */
6101 bool napi_hash_del(struct napi_struct *napi)
6102 {
6103 	bool rcu_sync_needed = false;
6104 
6105 	spin_lock(&napi_hash_lock);
6106 
6107 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6108 		rcu_sync_needed = true;
6109 		hlist_del_rcu(&napi->napi_hash_node);
6110 	}
6111 	spin_unlock(&napi_hash_lock);
6112 	return rcu_sync_needed;
6113 }
6114 EXPORT_SYMBOL_GPL(napi_hash_del);
6115 
6116 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6117 {
6118 	struct napi_struct *napi;
6119 
6120 	napi = container_of(timer, struct napi_struct, timer);
6121 
6122 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6123 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6124 	 */
6125 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6126 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6127 		__napi_schedule_irqoff(napi);
6128 
6129 	return HRTIMER_NORESTART;
6130 }
6131 
6132 static void init_gro_hash(struct napi_struct *napi)
6133 {
6134 	int i;
6135 
6136 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6137 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6138 		napi->gro_hash[i].count = 0;
6139 	}
6140 	napi->gro_bitmask = 0;
6141 }
6142 
6143 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6144 		    int (*poll)(struct napi_struct *, int), int weight)
6145 {
6146 	INIT_LIST_HEAD(&napi->poll_list);
6147 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6148 	napi->timer.function = napi_watchdog;
6149 	init_gro_hash(napi);
6150 	napi->skb = NULL;
6151 	napi->poll = poll;
6152 	if (weight > NAPI_POLL_WEIGHT)
6153 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6154 			    weight, dev->name);
6155 	napi->weight = weight;
6156 	list_add(&napi->dev_list, &dev->napi_list);
6157 	napi->dev = dev;
6158 #ifdef CONFIG_NETPOLL
6159 	napi->poll_owner = -1;
6160 #endif
6161 	set_bit(NAPI_STATE_SCHED, &napi->state);
6162 	napi_hash_add(napi);
6163 }
6164 EXPORT_SYMBOL(netif_napi_add);
6165 
6166 void napi_disable(struct napi_struct *n)
6167 {
6168 	might_sleep();
6169 	set_bit(NAPI_STATE_DISABLE, &n->state);
6170 
6171 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6172 		msleep(1);
6173 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6174 		msleep(1);
6175 
6176 	hrtimer_cancel(&n->timer);
6177 
6178 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6179 }
6180 EXPORT_SYMBOL(napi_disable);
6181 
6182 static void flush_gro_hash(struct napi_struct *napi)
6183 {
6184 	int i;
6185 
6186 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6187 		struct sk_buff *skb, *n;
6188 
6189 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6190 			kfree_skb(skb);
6191 		napi->gro_hash[i].count = 0;
6192 	}
6193 }
6194 
6195 /* Must be called in process context */
6196 void netif_napi_del(struct napi_struct *napi)
6197 {
6198 	might_sleep();
6199 	if (napi_hash_del(napi))
6200 		synchronize_net();
6201 	list_del_init(&napi->dev_list);
6202 	napi_free_frags(napi);
6203 
6204 	flush_gro_hash(napi);
6205 	napi->gro_bitmask = 0;
6206 }
6207 EXPORT_SYMBOL(netif_napi_del);
6208 
6209 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6210 {
6211 	void *have;
6212 	int work, weight;
6213 
6214 	list_del_init(&n->poll_list);
6215 
6216 	have = netpoll_poll_lock(n);
6217 
6218 	weight = n->weight;
6219 
6220 	/* This NAPI_STATE_SCHED test is for avoiding a race
6221 	 * with netpoll's poll_napi().  Only the entity which
6222 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6223 	 * actually make the ->poll() call.  Therefore we avoid
6224 	 * accidentally calling ->poll() when NAPI is not scheduled.
6225 	 */
6226 	work = 0;
6227 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6228 		work = n->poll(n, weight);
6229 		trace_napi_poll(n, work, weight);
6230 	}
6231 
6232 	WARN_ON_ONCE(work > weight);
6233 
6234 	if (likely(work < weight))
6235 		goto out_unlock;
6236 
6237 	/* Drivers must not modify the NAPI state if they
6238 	 * consume the entire weight.  In such cases this code
6239 	 * still "owns" the NAPI instance and therefore can
6240 	 * move the instance around on the list at-will.
6241 	 */
6242 	if (unlikely(napi_disable_pending(n))) {
6243 		napi_complete(n);
6244 		goto out_unlock;
6245 	}
6246 
6247 	if (n->gro_bitmask) {
6248 		/* flush too old packets
6249 		 * If HZ < 1000, flush all packets.
6250 		 */
6251 		napi_gro_flush(n, HZ >= 1000);
6252 	}
6253 
6254 	/* Some drivers may have called napi_schedule
6255 	 * prior to exhausting their budget.
6256 	 */
6257 	if (unlikely(!list_empty(&n->poll_list))) {
6258 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6259 			     n->dev ? n->dev->name : "backlog");
6260 		goto out_unlock;
6261 	}
6262 
6263 	list_add_tail(&n->poll_list, repoll);
6264 
6265 out_unlock:
6266 	netpoll_poll_unlock(have);
6267 
6268 	return work;
6269 }
6270 
6271 static __latent_entropy void net_rx_action(struct softirq_action *h)
6272 {
6273 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6274 	unsigned long time_limit = jiffies +
6275 		usecs_to_jiffies(netdev_budget_usecs);
6276 	int budget = netdev_budget;
6277 	LIST_HEAD(list);
6278 	LIST_HEAD(repoll);
6279 
6280 	local_irq_disable();
6281 	list_splice_init(&sd->poll_list, &list);
6282 	local_irq_enable();
6283 
6284 	for (;;) {
6285 		struct napi_struct *n;
6286 
6287 		if (list_empty(&list)) {
6288 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6289 				goto out;
6290 			break;
6291 		}
6292 
6293 		n = list_first_entry(&list, struct napi_struct, poll_list);
6294 		budget -= napi_poll(n, &repoll);
6295 
6296 		/* If softirq window is exhausted then punt.
6297 		 * Allow this to run for 2 jiffies since which will allow
6298 		 * an average latency of 1.5/HZ.
6299 		 */
6300 		if (unlikely(budget <= 0 ||
6301 			     time_after_eq(jiffies, time_limit))) {
6302 			sd->time_squeeze++;
6303 			break;
6304 		}
6305 	}
6306 
6307 	local_irq_disable();
6308 
6309 	list_splice_tail_init(&sd->poll_list, &list);
6310 	list_splice_tail(&repoll, &list);
6311 	list_splice(&list, &sd->poll_list);
6312 	if (!list_empty(&sd->poll_list))
6313 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6314 
6315 	net_rps_action_and_irq_enable(sd);
6316 out:
6317 	__kfree_skb_flush();
6318 }
6319 
6320 struct netdev_adjacent {
6321 	struct net_device *dev;
6322 
6323 	/* upper master flag, there can only be one master device per list */
6324 	bool master;
6325 
6326 	/* counter for the number of times this device was added to us */
6327 	u16 ref_nr;
6328 
6329 	/* private field for the users */
6330 	void *private;
6331 
6332 	struct list_head list;
6333 	struct rcu_head rcu;
6334 };
6335 
6336 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6337 						 struct list_head *adj_list)
6338 {
6339 	struct netdev_adjacent *adj;
6340 
6341 	list_for_each_entry(adj, adj_list, list) {
6342 		if (adj->dev == adj_dev)
6343 			return adj;
6344 	}
6345 	return NULL;
6346 }
6347 
6348 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6349 {
6350 	struct net_device *dev = data;
6351 
6352 	return upper_dev == dev;
6353 }
6354 
6355 /**
6356  * netdev_has_upper_dev - Check if device is linked to an upper device
6357  * @dev: device
6358  * @upper_dev: upper device to check
6359  *
6360  * Find out if a device is linked to specified upper device and return true
6361  * in case it is. Note that this checks only immediate upper device,
6362  * not through a complete stack of devices. The caller must hold the RTNL lock.
6363  */
6364 bool netdev_has_upper_dev(struct net_device *dev,
6365 			  struct net_device *upper_dev)
6366 {
6367 	ASSERT_RTNL();
6368 
6369 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6370 					     upper_dev);
6371 }
6372 EXPORT_SYMBOL(netdev_has_upper_dev);
6373 
6374 /**
6375  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6376  * @dev: device
6377  * @upper_dev: upper device to check
6378  *
6379  * Find out if a device is linked to specified upper device and return true
6380  * in case it is. Note that this checks the entire upper device chain.
6381  * The caller must hold rcu lock.
6382  */
6383 
6384 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6385 				  struct net_device *upper_dev)
6386 {
6387 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6388 					       upper_dev);
6389 }
6390 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6391 
6392 /**
6393  * netdev_has_any_upper_dev - Check if device is linked to some device
6394  * @dev: device
6395  *
6396  * Find out if a device is linked to an upper device and return true in case
6397  * it is. The caller must hold the RTNL lock.
6398  */
6399 bool netdev_has_any_upper_dev(struct net_device *dev)
6400 {
6401 	ASSERT_RTNL();
6402 
6403 	return !list_empty(&dev->adj_list.upper);
6404 }
6405 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6406 
6407 /**
6408  * netdev_master_upper_dev_get - Get master upper device
6409  * @dev: device
6410  *
6411  * Find a master upper device and return pointer to it or NULL in case
6412  * it's not there. The caller must hold the RTNL lock.
6413  */
6414 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6415 {
6416 	struct netdev_adjacent *upper;
6417 
6418 	ASSERT_RTNL();
6419 
6420 	if (list_empty(&dev->adj_list.upper))
6421 		return NULL;
6422 
6423 	upper = list_first_entry(&dev->adj_list.upper,
6424 				 struct netdev_adjacent, list);
6425 	if (likely(upper->master))
6426 		return upper->dev;
6427 	return NULL;
6428 }
6429 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6430 
6431 /**
6432  * netdev_has_any_lower_dev - Check if device is linked to some device
6433  * @dev: device
6434  *
6435  * Find out if a device is linked to a lower device and return true in case
6436  * it is. The caller must hold the RTNL lock.
6437  */
6438 static bool netdev_has_any_lower_dev(struct net_device *dev)
6439 {
6440 	ASSERT_RTNL();
6441 
6442 	return !list_empty(&dev->adj_list.lower);
6443 }
6444 
6445 void *netdev_adjacent_get_private(struct list_head *adj_list)
6446 {
6447 	struct netdev_adjacent *adj;
6448 
6449 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6450 
6451 	return adj->private;
6452 }
6453 EXPORT_SYMBOL(netdev_adjacent_get_private);
6454 
6455 /**
6456  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6457  * @dev: device
6458  * @iter: list_head ** of the current position
6459  *
6460  * Gets the next device from the dev's upper list, starting from iter
6461  * position. The caller must hold RCU read lock.
6462  */
6463 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6464 						 struct list_head **iter)
6465 {
6466 	struct netdev_adjacent *upper;
6467 
6468 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6469 
6470 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6471 
6472 	if (&upper->list == &dev->adj_list.upper)
6473 		return NULL;
6474 
6475 	*iter = &upper->list;
6476 
6477 	return upper->dev;
6478 }
6479 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6480 
6481 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6482 						    struct list_head **iter)
6483 {
6484 	struct netdev_adjacent *upper;
6485 
6486 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6487 
6488 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6489 
6490 	if (&upper->list == &dev->adj_list.upper)
6491 		return NULL;
6492 
6493 	*iter = &upper->list;
6494 
6495 	return upper->dev;
6496 }
6497 
6498 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6499 				  int (*fn)(struct net_device *dev,
6500 					    void *data),
6501 				  void *data)
6502 {
6503 	struct net_device *udev;
6504 	struct list_head *iter;
6505 	int ret;
6506 
6507 	for (iter = &dev->adj_list.upper,
6508 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6509 	     udev;
6510 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6511 		/* first is the upper device itself */
6512 		ret = fn(udev, data);
6513 		if (ret)
6514 			return ret;
6515 
6516 		/* then look at all of its upper devices */
6517 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6518 		if (ret)
6519 			return ret;
6520 	}
6521 
6522 	return 0;
6523 }
6524 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6525 
6526 /**
6527  * netdev_lower_get_next_private - Get the next ->private from the
6528  *				   lower neighbour list
6529  * @dev: device
6530  * @iter: list_head ** of the current position
6531  *
6532  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6533  * list, starting from iter position. The caller must hold either hold the
6534  * RTNL lock or its own locking that guarantees that the neighbour lower
6535  * list will remain unchanged.
6536  */
6537 void *netdev_lower_get_next_private(struct net_device *dev,
6538 				    struct list_head **iter)
6539 {
6540 	struct netdev_adjacent *lower;
6541 
6542 	lower = list_entry(*iter, struct netdev_adjacent, list);
6543 
6544 	if (&lower->list == &dev->adj_list.lower)
6545 		return NULL;
6546 
6547 	*iter = lower->list.next;
6548 
6549 	return lower->private;
6550 }
6551 EXPORT_SYMBOL(netdev_lower_get_next_private);
6552 
6553 /**
6554  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6555  *				       lower neighbour list, RCU
6556  *				       variant
6557  * @dev: device
6558  * @iter: list_head ** of the current position
6559  *
6560  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6561  * list, starting from iter position. The caller must hold RCU read lock.
6562  */
6563 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6564 					struct list_head **iter)
6565 {
6566 	struct netdev_adjacent *lower;
6567 
6568 	WARN_ON_ONCE(!rcu_read_lock_held());
6569 
6570 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6571 
6572 	if (&lower->list == &dev->adj_list.lower)
6573 		return NULL;
6574 
6575 	*iter = &lower->list;
6576 
6577 	return lower->private;
6578 }
6579 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6580 
6581 /**
6582  * netdev_lower_get_next - Get the next device from the lower neighbour
6583  *                         list
6584  * @dev: device
6585  * @iter: list_head ** of the current position
6586  *
6587  * Gets the next netdev_adjacent from the dev's lower neighbour
6588  * list, starting from iter position. The caller must hold RTNL lock or
6589  * its own locking that guarantees that the neighbour lower
6590  * list will remain unchanged.
6591  */
6592 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6593 {
6594 	struct netdev_adjacent *lower;
6595 
6596 	lower = list_entry(*iter, struct netdev_adjacent, list);
6597 
6598 	if (&lower->list == &dev->adj_list.lower)
6599 		return NULL;
6600 
6601 	*iter = lower->list.next;
6602 
6603 	return lower->dev;
6604 }
6605 EXPORT_SYMBOL(netdev_lower_get_next);
6606 
6607 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6608 						struct list_head **iter)
6609 {
6610 	struct netdev_adjacent *lower;
6611 
6612 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6613 
6614 	if (&lower->list == &dev->adj_list.lower)
6615 		return NULL;
6616 
6617 	*iter = &lower->list;
6618 
6619 	return lower->dev;
6620 }
6621 
6622 int netdev_walk_all_lower_dev(struct net_device *dev,
6623 			      int (*fn)(struct net_device *dev,
6624 					void *data),
6625 			      void *data)
6626 {
6627 	struct net_device *ldev;
6628 	struct list_head *iter;
6629 	int ret;
6630 
6631 	for (iter = &dev->adj_list.lower,
6632 	     ldev = netdev_next_lower_dev(dev, &iter);
6633 	     ldev;
6634 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6635 		/* first is the lower device itself */
6636 		ret = fn(ldev, data);
6637 		if (ret)
6638 			return ret;
6639 
6640 		/* then look at all of its lower devices */
6641 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6642 		if (ret)
6643 			return ret;
6644 	}
6645 
6646 	return 0;
6647 }
6648 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6649 
6650 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6651 						    struct list_head **iter)
6652 {
6653 	struct netdev_adjacent *lower;
6654 
6655 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6656 	if (&lower->list == &dev->adj_list.lower)
6657 		return NULL;
6658 
6659 	*iter = &lower->list;
6660 
6661 	return lower->dev;
6662 }
6663 
6664 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6665 				  int (*fn)(struct net_device *dev,
6666 					    void *data),
6667 				  void *data)
6668 {
6669 	struct net_device *ldev;
6670 	struct list_head *iter;
6671 	int ret;
6672 
6673 	for (iter = &dev->adj_list.lower,
6674 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6675 	     ldev;
6676 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6677 		/* first is the lower device itself */
6678 		ret = fn(ldev, data);
6679 		if (ret)
6680 			return ret;
6681 
6682 		/* then look at all of its lower devices */
6683 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6684 		if (ret)
6685 			return ret;
6686 	}
6687 
6688 	return 0;
6689 }
6690 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6691 
6692 /**
6693  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6694  *				       lower neighbour list, RCU
6695  *				       variant
6696  * @dev: device
6697  *
6698  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6699  * list. The caller must hold RCU read lock.
6700  */
6701 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6702 {
6703 	struct netdev_adjacent *lower;
6704 
6705 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6706 			struct netdev_adjacent, list);
6707 	if (lower)
6708 		return lower->private;
6709 	return NULL;
6710 }
6711 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6712 
6713 /**
6714  * netdev_master_upper_dev_get_rcu - Get master upper device
6715  * @dev: device
6716  *
6717  * Find a master upper device and return pointer to it or NULL in case
6718  * it's not there. The caller must hold the RCU read lock.
6719  */
6720 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6721 {
6722 	struct netdev_adjacent *upper;
6723 
6724 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6725 				       struct netdev_adjacent, list);
6726 	if (upper && likely(upper->master))
6727 		return upper->dev;
6728 	return NULL;
6729 }
6730 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6731 
6732 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6733 			      struct net_device *adj_dev,
6734 			      struct list_head *dev_list)
6735 {
6736 	char linkname[IFNAMSIZ+7];
6737 
6738 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6739 		"upper_%s" : "lower_%s", adj_dev->name);
6740 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6741 				 linkname);
6742 }
6743 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6744 			       char *name,
6745 			       struct list_head *dev_list)
6746 {
6747 	char linkname[IFNAMSIZ+7];
6748 
6749 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6750 		"upper_%s" : "lower_%s", name);
6751 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6752 }
6753 
6754 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6755 						 struct net_device *adj_dev,
6756 						 struct list_head *dev_list)
6757 {
6758 	return (dev_list == &dev->adj_list.upper ||
6759 		dev_list == &dev->adj_list.lower) &&
6760 		net_eq(dev_net(dev), dev_net(adj_dev));
6761 }
6762 
6763 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6764 					struct net_device *adj_dev,
6765 					struct list_head *dev_list,
6766 					void *private, bool master)
6767 {
6768 	struct netdev_adjacent *adj;
6769 	int ret;
6770 
6771 	adj = __netdev_find_adj(adj_dev, dev_list);
6772 
6773 	if (adj) {
6774 		adj->ref_nr += 1;
6775 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6776 			 dev->name, adj_dev->name, adj->ref_nr);
6777 
6778 		return 0;
6779 	}
6780 
6781 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6782 	if (!adj)
6783 		return -ENOMEM;
6784 
6785 	adj->dev = adj_dev;
6786 	adj->master = master;
6787 	adj->ref_nr = 1;
6788 	adj->private = private;
6789 	dev_hold(adj_dev);
6790 
6791 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6792 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6793 
6794 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6795 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6796 		if (ret)
6797 			goto free_adj;
6798 	}
6799 
6800 	/* Ensure that master link is always the first item in list. */
6801 	if (master) {
6802 		ret = sysfs_create_link(&(dev->dev.kobj),
6803 					&(adj_dev->dev.kobj), "master");
6804 		if (ret)
6805 			goto remove_symlinks;
6806 
6807 		list_add_rcu(&adj->list, dev_list);
6808 	} else {
6809 		list_add_tail_rcu(&adj->list, dev_list);
6810 	}
6811 
6812 	return 0;
6813 
6814 remove_symlinks:
6815 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6816 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6817 free_adj:
6818 	kfree(adj);
6819 	dev_put(adj_dev);
6820 
6821 	return ret;
6822 }
6823 
6824 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6825 					 struct net_device *adj_dev,
6826 					 u16 ref_nr,
6827 					 struct list_head *dev_list)
6828 {
6829 	struct netdev_adjacent *adj;
6830 
6831 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6832 		 dev->name, adj_dev->name, ref_nr);
6833 
6834 	adj = __netdev_find_adj(adj_dev, dev_list);
6835 
6836 	if (!adj) {
6837 		pr_err("Adjacency does not exist for device %s from %s\n",
6838 		       dev->name, adj_dev->name);
6839 		WARN_ON(1);
6840 		return;
6841 	}
6842 
6843 	if (adj->ref_nr > ref_nr) {
6844 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6845 			 dev->name, adj_dev->name, ref_nr,
6846 			 adj->ref_nr - ref_nr);
6847 		adj->ref_nr -= ref_nr;
6848 		return;
6849 	}
6850 
6851 	if (adj->master)
6852 		sysfs_remove_link(&(dev->dev.kobj), "master");
6853 
6854 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6855 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6856 
6857 	list_del_rcu(&adj->list);
6858 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6859 		 adj_dev->name, dev->name, adj_dev->name);
6860 	dev_put(adj_dev);
6861 	kfree_rcu(adj, rcu);
6862 }
6863 
6864 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6865 					    struct net_device *upper_dev,
6866 					    struct list_head *up_list,
6867 					    struct list_head *down_list,
6868 					    void *private, bool master)
6869 {
6870 	int ret;
6871 
6872 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6873 					   private, master);
6874 	if (ret)
6875 		return ret;
6876 
6877 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6878 					   private, false);
6879 	if (ret) {
6880 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6881 		return ret;
6882 	}
6883 
6884 	return 0;
6885 }
6886 
6887 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6888 					       struct net_device *upper_dev,
6889 					       u16 ref_nr,
6890 					       struct list_head *up_list,
6891 					       struct list_head *down_list)
6892 {
6893 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6894 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6895 }
6896 
6897 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6898 						struct net_device *upper_dev,
6899 						void *private, bool master)
6900 {
6901 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6902 						&dev->adj_list.upper,
6903 						&upper_dev->adj_list.lower,
6904 						private, master);
6905 }
6906 
6907 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6908 						   struct net_device *upper_dev)
6909 {
6910 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6911 					   &dev->adj_list.upper,
6912 					   &upper_dev->adj_list.lower);
6913 }
6914 
6915 static int __netdev_upper_dev_link(struct net_device *dev,
6916 				   struct net_device *upper_dev, bool master,
6917 				   void *upper_priv, void *upper_info,
6918 				   struct netlink_ext_ack *extack)
6919 {
6920 	struct netdev_notifier_changeupper_info changeupper_info = {
6921 		.info = {
6922 			.dev = dev,
6923 			.extack = extack,
6924 		},
6925 		.upper_dev = upper_dev,
6926 		.master = master,
6927 		.linking = true,
6928 		.upper_info = upper_info,
6929 	};
6930 	struct net_device *master_dev;
6931 	int ret = 0;
6932 
6933 	ASSERT_RTNL();
6934 
6935 	if (dev == upper_dev)
6936 		return -EBUSY;
6937 
6938 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6939 	if (netdev_has_upper_dev(upper_dev, dev))
6940 		return -EBUSY;
6941 
6942 	if (!master) {
6943 		if (netdev_has_upper_dev(dev, upper_dev))
6944 			return -EEXIST;
6945 	} else {
6946 		master_dev = netdev_master_upper_dev_get(dev);
6947 		if (master_dev)
6948 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
6949 	}
6950 
6951 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6952 					    &changeupper_info.info);
6953 	ret = notifier_to_errno(ret);
6954 	if (ret)
6955 		return ret;
6956 
6957 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6958 						   master);
6959 	if (ret)
6960 		return ret;
6961 
6962 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6963 					    &changeupper_info.info);
6964 	ret = notifier_to_errno(ret);
6965 	if (ret)
6966 		goto rollback;
6967 
6968 	return 0;
6969 
6970 rollback:
6971 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6972 
6973 	return ret;
6974 }
6975 
6976 /**
6977  * netdev_upper_dev_link - Add a link to the upper device
6978  * @dev: device
6979  * @upper_dev: new upper device
6980  * @extack: netlink extended ack
6981  *
6982  * Adds a link to device which is upper to this one. The caller must hold
6983  * the RTNL lock. On a failure a negative errno code is returned.
6984  * On success the reference counts are adjusted and the function
6985  * returns zero.
6986  */
6987 int netdev_upper_dev_link(struct net_device *dev,
6988 			  struct net_device *upper_dev,
6989 			  struct netlink_ext_ack *extack)
6990 {
6991 	return __netdev_upper_dev_link(dev, upper_dev, false,
6992 				       NULL, NULL, extack);
6993 }
6994 EXPORT_SYMBOL(netdev_upper_dev_link);
6995 
6996 /**
6997  * netdev_master_upper_dev_link - Add a master link to the upper device
6998  * @dev: device
6999  * @upper_dev: new upper device
7000  * @upper_priv: upper device private
7001  * @upper_info: upper info to be passed down via notifier
7002  * @extack: netlink extended ack
7003  *
7004  * Adds a link to device which is upper to this one. In this case, only
7005  * one master upper device can be linked, although other non-master devices
7006  * might be linked as well. The caller must hold the RTNL lock.
7007  * On a failure a negative errno code is returned. On success the reference
7008  * counts are adjusted and the function returns zero.
7009  */
7010 int netdev_master_upper_dev_link(struct net_device *dev,
7011 				 struct net_device *upper_dev,
7012 				 void *upper_priv, void *upper_info,
7013 				 struct netlink_ext_ack *extack)
7014 {
7015 	return __netdev_upper_dev_link(dev, upper_dev, true,
7016 				       upper_priv, upper_info, extack);
7017 }
7018 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7019 
7020 /**
7021  * netdev_upper_dev_unlink - Removes a link to upper device
7022  * @dev: device
7023  * @upper_dev: new upper device
7024  *
7025  * Removes a link to device which is upper to this one. The caller must hold
7026  * the RTNL lock.
7027  */
7028 void netdev_upper_dev_unlink(struct net_device *dev,
7029 			     struct net_device *upper_dev)
7030 {
7031 	struct netdev_notifier_changeupper_info changeupper_info = {
7032 		.info = {
7033 			.dev = dev,
7034 		},
7035 		.upper_dev = upper_dev,
7036 		.linking = false,
7037 	};
7038 
7039 	ASSERT_RTNL();
7040 
7041 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7042 
7043 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7044 				      &changeupper_info.info);
7045 
7046 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7047 
7048 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7049 				      &changeupper_info.info);
7050 }
7051 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7052 
7053 /**
7054  * netdev_bonding_info_change - Dispatch event about slave change
7055  * @dev: device
7056  * @bonding_info: info to dispatch
7057  *
7058  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7059  * The caller must hold the RTNL lock.
7060  */
7061 void netdev_bonding_info_change(struct net_device *dev,
7062 				struct netdev_bonding_info *bonding_info)
7063 {
7064 	struct netdev_notifier_bonding_info info = {
7065 		.info.dev = dev,
7066 	};
7067 
7068 	memcpy(&info.bonding_info, bonding_info,
7069 	       sizeof(struct netdev_bonding_info));
7070 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7071 				      &info.info);
7072 }
7073 EXPORT_SYMBOL(netdev_bonding_info_change);
7074 
7075 static void netdev_adjacent_add_links(struct net_device *dev)
7076 {
7077 	struct netdev_adjacent *iter;
7078 
7079 	struct net *net = dev_net(dev);
7080 
7081 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7082 		if (!net_eq(net, dev_net(iter->dev)))
7083 			continue;
7084 		netdev_adjacent_sysfs_add(iter->dev, dev,
7085 					  &iter->dev->adj_list.lower);
7086 		netdev_adjacent_sysfs_add(dev, iter->dev,
7087 					  &dev->adj_list.upper);
7088 	}
7089 
7090 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7091 		if (!net_eq(net, dev_net(iter->dev)))
7092 			continue;
7093 		netdev_adjacent_sysfs_add(iter->dev, dev,
7094 					  &iter->dev->adj_list.upper);
7095 		netdev_adjacent_sysfs_add(dev, iter->dev,
7096 					  &dev->adj_list.lower);
7097 	}
7098 }
7099 
7100 static void netdev_adjacent_del_links(struct net_device *dev)
7101 {
7102 	struct netdev_adjacent *iter;
7103 
7104 	struct net *net = dev_net(dev);
7105 
7106 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7107 		if (!net_eq(net, dev_net(iter->dev)))
7108 			continue;
7109 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7110 					  &iter->dev->adj_list.lower);
7111 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7112 					  &dev->adj_list.upper);
7113 	}
7114 
7115 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7116 		if (!net_eq(net, dev_net(iter->dev)))
7117 			continue;
7118 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7119 					  &iter->dev->adj_list.upper);
7120 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7121 					  &dev->adj_list.lower);
7122 	}
7123 }
7124 
7125 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7126 {
7127 	struct netdev_adjacent *iter;
7128 
7129 	struct net *net = dev_net(dev);
7130 
7131 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7132 		if (!net_eq(net, dev_net(iter->dev)))
7133 			continue;
7134 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7135 					  &iter->dev->adj_list.lower);
7136 		netdev_adjacent_sysfs_add(iter->dev, dev,
7137 					  &iter->dev->adj_list.lower);
7138 	}
7139 
7140 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7141 		if (!net_eq(net, dev_net(iter->dev)))
7142 			continue;
7143 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7144 					  &iter->dev->adj_list.upper);
7145 		netdev_adjacent_sysfs_add(iter->dev, dev,
7146 					  &iter->dev->adj_list.upper);
7147 	}
7148 }
7149 
7150 void *netdev_lower_dev_get_private(struct net_device *dev,
7151 				   struct net_device *lower_dev)
7152 {
7153 	struct netdev_adjacent *lower;
7154 
7155 	if (!lower_dev)
7156 		return NULL;
7157 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7158 	if (!lower)
7159 		return NULL;
7160 
7161 	return lower->private;
7162 }
7163 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7164 
7165 
7166 int dev_get_nest_level(struct net_device *dev)
7167 {
7168 	struct net_device *lower = NULL;
7169 	struct list_head *iter;
7170 	int max_nest = -1;
7171 	int nest;
7172 
7173 	ASSERT_RTNL();
7174 
7175 	netdev_for_each_lower_dev(dev, lower, iter) {
7176 		nest = dev_get_nest_level(lower);
7177 		if (max_nest < nest)
7178 			max_nest = nest;
7179 	}
7180 
7181 	return max_nest + 1;
7182 }
7183 EXPORT_SYMBOL(dev_get_nest_level);
7184 
7185 /**
7186  * netdev_lower_change - Dispatch event about lower device state change
7187  * @lower_dev: device
7188  * @lower_state_info: state to dispatch
7189  *
7190  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7191  * The caller must hold the RTNL lock.
7192  */
7193 void netdev_lower_state_changed(struct net_device *lower_dev,
7194 				void *lower_state_info)
7195 {
7196 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7197 		.info.dev = lower_dev,
7198 	};
7199 
7200 	ASSERT_RTNL();
7201 	changelowerstate_info.lower_state_info = lower_state_info;
7202 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7203 				      &changelowerstate_info.info);
7204 }
7205 EXPORT_SYMBOL(netdev_lower_state_changed);
7206 
7207 static void dev_change_rx_flags(struct net_device *dev, int flags)
7208 {
7209 	const struct net_device_ops *ops = dev->netdev_ops;
7210 
7211 	if (ops->ndo_change_rx_flags)
7212 		ops->ndo_change_rx_flags(dev, flags);
7213 }
7214 
7215 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7216 {
7217 	unsigned int old_flags = dev->flags;
7218 	kuid_t uid;
7219 	kgid_t gid;
7220 
7221 	ASSERT_RTNL();
7222 
7223 	dev->flags |= IFF_PROMISC;
7224 	dev->promiscuity += inc;
7225 	if (dev->promiscuity == 0) {
7226 		/*
7227 		 * Avoid overflow.
7228 		 * If inc causes overflow, untouch promisc and return error.
7229 		 */
7230 		if (inc < 0)
7231 			dev->flags &= ~IFF_PROMISC;
7232 		else {
7233 			dev->promiscuity -= inc;
7234 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7235 				dev->name);
7236 			return -EOVERFLOW;
7237 		}
7238 	}
7239 	if (dev->flags != old_flags) {
7240 		pr_info("device %s %s promiscuous mode\n",
7241 			dev->name,
7242 			dev->flags & IFF_PROMISC ? "entered" : "left");
7243 		if (audit_enabled) {
7244 			current_uid_gid(&uid, &gid);
7245 			audit_log(audit_context(), GFP_ATOMIC,
7246 				  AUDIT_ANOM_PROMISCUOUS,
7247 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7248 				  dev->name, (dev->flags & IFF_PROMISC),
7249 				  (old_flags & IFF_PROMISC),
7250 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7251 				  from_kuid(&init_user_ns, uid),
7252 				  from_kgid(&init_user_ns, gid),
7253 				  audit_get_sessionid(current));
7254 		}
7255 
7256 		dev_change_rx_flags(dev, IFF_PROMISC);
7257 	}
7258 	if (notify)
7259 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7260 	return 0;
7261 }
7262 
7263 /**
7264  *	dev_set_promiscuity	- update promiscuity count on a device
7265  *	@dev: device
7266  *	@inc: modifier
7267  *
7268  *	Add or remove promiscuity from a device. While the count in the device
7269  *	remains above zero the interface remains promiscuous. Once it hits zero
7270  *	the device reverts back to normal filtering operation. A negative inc
7271  *	value is used to drop promiscuity on the device.
7272  *	Return 0 if successful or a negative errno code on error.
7273  */
7274 int dev_set_promiscuity(struct net_device *dev, int inc)
7275 {
7276 	unsigned int old_flags = dev->flags;
7277 	int err;
7278 
7279 	err = __dev_set_promiscuity(dev, inc, true);
7280 	if (err < 0)
7281 		return err;
7282 	if (dev->flags != old_flags)
7283 		dev_set_rx_mode(dev);
7284 	return err;
7285 }
7286 EXPORT_SYMBOL(dev_set_promiscuity);
7287 
7288 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7289 {
7290 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7291 
7292 	ASSERT_RTNL();
7293 
7294 	dev->flags |= IFF_ALLMULTI;
7295 	dev->allmulti += inc;
7296 	if (dev->allmulti == 0) {
7297 		/*
7298 		 * Avoid overflow.
7299 		 * If inc causes overflow, untouch allmulti and return error.
7300 		 */
7301 		if (inc < 0)
7302 			dev->flags &= ~IFF_ALLMULTI;
7303 		else {
7304 			dev->allmulti -= inc;
7305 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7306 				dev->name);
7307 			return -EOVERFLOW;
7308 		}
7309 	}
7310 	if (dev->flags ^ old_flags) {
7311 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7312 		dev_set_rx_mode(dev);
7313 		if (notify)
7314 			__dev_notify_flags(dev, old_flags,
7315 					   dev->gflags ^ old_gflags);
7316 	}
7317 	return 0;
7318 }
7319 
7320 /**
7321  *	dev_set_allmulti	- update allmulti count on a device
7322  *	@dev: device
7323  *	@inc: modifier
7324  *
7325  *	Add or remove reception of all multicast frames to a device. While the
7326  *	count in the device remains above zero the interface remains listening
7327  *	to all interfaces. Once it hits zero the device reverts back to normal
7328  *	filtering operation. A negative @inc value is used to drop the counter
7329  *	when releasing a resource needing all multicasts.
7330  *	Return 0 if successful or a negative errno code on error.
7331  */
7332 
7333 int dev_set_allmulti(struct net_device *dev, int inc)
7334 {
7335 	return __dev_set_allmulti(dev, inc, true);
7336 }
7337 EXPORT_SYMBOL(dev_set_allmulti);
7338 
7339 /*
7340  *	Upload unicast and multicast address lists to device and
7341  *	configure RX filtering. When the device doesn't support unicast
7342  *	filtering it is put in promiscuous mode while unicast addresses
7343  *	are present.
7344  */
7345 void __dev_set_rx_mode(struct net_device *dev)
7346 {
7347 	const struct net_device_ops *ops = dev->netdev_ops;
7348 
7349 	/* dev_open will call this function so the list will stay sane. */
7350 	if (!(dev->flags&IFF_UP))
7351 		return;
7352 
7353 	if (!netif_device_present(dev))
7354 		return;
7355 
7356 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7357 		/* Unicast addresses changes may only happen under the rtnl,
7358 		 * therefore calling __dev_set_promiscuity here is safe.
7359 		 */
7360 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7361 			__dev_set_promiscuity(dev, 1, false);
7362 			dev->uc_promisc = true;
7363 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7364 			__dev_set_promiscuity(dev, -1, false);
7365 			dev->uc_promisc = false;
7366 		}
7367 	}
7368 
7369 	if (ops->ndo_set_rx_mode)
7370 		ops->ndo_set_rx_mode(dev);
7371 }
7372 
7373 void dev_set_rx_mode(struct net_device *dev)
7374 {
7375 	netif_addr_lock_bh(dev);
7376 	__dev_set_rx_mode(dev);
7377 	netif_addr_unlock_bh(dev);
7378 }
7379 
7380 /**
7381  *	dev_get_flags - get flags reported to userspace
7382  *	@dev: device
7383  *
7384  *	Get the combination of flag bits exported through APIs to userspace.
7385  */
7386 unsigned int dev_get_flags(const struct net_device *dev)
7387 {
7388 	unsigned int flags;
7389 
7390 	flags = (dev->flags & ~(IFF_PROMISC |
7391 				IFF_ALLMULTI |
7392 				IFF_RUNNING |
7393 				IFF_LOWER_UP |
7394 				IFF_DORMANT)) |
7395 		(dev->gflags & (IFF_PROMISC |
7396 				IFF_ALLMULTI));
7397 
7398 	if (netif_running(dev)) {
7399 		if (netif_oper_up(dev))
7400 			flags |= IFF_RUNNING;
7401 		if (netif_carrier_ok(dev))
7402 			flags |= IFF_LOWER_UP;
7403 		if (netif_dormant(dev))
7404 			flags |= IFF_DORMANT;
7405 	}
7406 
7407 	return flags;
7408 }
7409 EXPORT_SYMBOL(dev_get_flags);
7410 
7411 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7412 {
7413 	unsigned int old_flags = dev->flags;
7414 	int ret;
7415 
7416 	ASSERT_RTNL();
7417 
7418 	/*
7419 	 *	Set the flags on our device.
7420 	 */
7421 
7422 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7423 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7424 			       IFF_AUTOMEDIA)) |
7425 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7426 				    IFF_ALLMULTI));
7427 
7428 	/*
7429 	 *	Load in the correct multicast list now the flags have changed.
7430 	 */
7431 
7432 	if ((old_flags ^ flags) & IFF_MULTICAST)
7433 		dev_change_rx_flags(dev, IFF_MULTICAST);
7434 
7435 	dev_set_rx_mode(dev);
7436 
7437 	/*
7438 	 *	Have we downed the interface. We handle IFF_UP ourselves
7439 	 *	according to user attempts to set it, rather than blindly
7440 	 *	setting it.
7441 	 */
7442 
7443 	ret = 0;
7444 	if ((old_flags ^ flags) & IFF_UP) {
7445 		if (old_flags & IFF_UP)
7446 			__dev_close(dev);
7447 		else
7448 			ret = __dev_open(dev);
7449 	}
7450 
7451 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7452 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7453 		unsigned int old_flags = dev->flags;
7454 
7455 		dev->gflags ^= IFF_PROMISC;
7456 
7457 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7458 			if (dev->flags != old_flags)
7459 				dev_set_rx_mode(dev);
7460 	}
7461 
7462 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7463 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7464 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7465 	 */
7466 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7467 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7468 
7469 		dev->gflags ^= IFF_ALLMULTI;
7470 		__dev_set_allmulti(dev, inc, false);
7471 	}
7472 
7473 	return ret;
7474 }
7475 
7476 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7477 			unsigned int gchanges)
7478 {
7479 	unsigned int changes = dev->flags ^ old_flags;
7480 
7481 	if (gchanges)
7482 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7483 
7484 	if (changes & IFF_UP) {
7485 		if (dev->flags & IFF_UP)
7486 			call_netdevice_notifiers(NETDEV_UP, dev);
7487 		else
7488 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7489 	}
7490 
7491 	if (dev->flags & IFF_UP &&
7492 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7493 		struct netdev_notifier_change_info change_info = {
7494 			.info = {
7495 				.dev = dev,
7496 			},
7497 			.flags_changed = changes,
7498 		};
7499 
7500 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7501 	}
7502 }
7503 
7504 /**
7505  *	dev_change_flags - change device settings
7506  *	@dev: device
7507  *	@flags: device state flags
7508  *
7509  *	Change settings on device based state flags. The flags are
7510  *	in the userspace exported format.
7511  */
7512 int dev_change_flags(struct net_device *dev, unsigned int flags)
7513 {
7514 	int ret;
7515 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7516 
7517 	ret = __dev_change_flags(dev, flags);
7518 	if (ret < 0)
7519 		return ret;
7520 
7521 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7522 	__dev_notify_flags(dev, old_flags, changes);
7523 	return ret;
7524 }
7525 EXPORT_SYMBOL(dev_change_flags);
7526 
7527 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7528 {
7529 	const struct net_device_ops *ops = dev->netdev_ops;
7530 
7531 	if (ops->ndo_change_mtu)
7532 		return ops->ndo_change_mtu(dev, new_mtu);
7533 
7534 	dev->mtu = new_mtu;
7535 	return 0;
7536 }
7537 EXPORT_SYMBOL(__dev_set_mtu);
7538 
7539 /**
7540  *	dev_set_mtu_ext - Change maximum transfer unit
7541  *	@dev: device
7542  *	@new_mtu: new transfer unit
7543  *	@extack: netlink extended ack
7544  *
7545  *	Change the maximum transfer size of the network device.
7546  */
7547 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7548 		    struct netlink_ext_ack *extack)
7549 {
7550 	int err, orig_mtu;
7551 
7552 	if (new_mtu == dev->mtu)
7553 		return 0;
7554 
7555 	/* MTU must be positive, and in range */
7556 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7557 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7558 		return -EINVAL;
7559 	}
7560 
7561 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7562 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7563 		return -EINVAL;
7564 	}
7565 
7566 	if (!netif_device_present(dev))
7567 		return -ENODEV;
7568 
7569 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7570 	err = notifier_to_errno(err);
7571 	if (err)
7572 		return err;
7573 
7574 	orig_mtu = dev->mtu;
7575 	err = __dev_set_mtu(dev, new_mtu);
7576 
7577 	if (!err) {
7578 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7579 		err = notifier_to_errno(err);
7580 		if (err) {
7581 			/* setting mtu back and notifying everyone again,
7582 			 * so that they have a chance to revert changes.
7583 			 */
7584 			__dev_set_mtu(dev, orig_mtu);
7585 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7586 		}
7587 	}
7588 	return err;
7589 }
7590 
7591 int dev_set_mtu(struct net_device *dev, int new_mtu)
7592 {
7593 	struct netlink_ext_ack extack;
7594 	int err;
7595 
7596 	memset(&extack, 0, sizeof(extack));
7597 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
7598 	if (err && extack._msg)
7599 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7600 	return err;
7601 }
7602 EXPORT_SYMBOL(dev_set_mtu);
7603 
7604 /**
7605  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7606  *	@dev: device
7607  *	@new_len: new tx queue length
7608  */
7609 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7610 {
7611 	unsigned int orig_len = dev->tx_queue_len;
7612 	int res;
7613 
7614 	if (new_len != (unsigned int)new_len)
7615 		return -ERANGE;
7616 
7617 	if (new_len != orig_len) {
7618 		dev->tx_queue_len = new_len;
7619 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7620 		res = notifier_to_errno(res);
7621 		if (res)
7622 			goto err_rollback;
7623 		res = dev_qdisc_change_tx_queue_len(dev);
7624 		if (res)
7625 			goto err_rollback;
7626 	}
7627 
7628 	return 0;
7629 
7630 err_rollback:
7631 	netdev_err(dev, "refused to change device tx_queue_len\n");
7632 	dev->tx_queue_len = orig_len;
7633 	return res;
7634 }
7635 
7636 /**
7637  *	dev_set_group - Change group this device belongs to
7638  *	@dev: device
7639  *	@new_group: group this device should belong to
7640  */
7641 void dev_set_group(struct net_device *dev, int new_group)
7642 {
7643 	dev->group = new_group;
7644 }
7645 EXPORT_SYMBOL(dev_set_group);
7646 
7647 /**
7648  *	dev_set_mac_address - Change Media Access Control Address
7649  *	@dev: device
7650  *	@sa: new address
7651  *
7652  *	Change the hardware (MAC) address of the device
7653  */
7654 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7655 {
7656 	const struct net_device_ops *ops = dev->netdev_ops;
7657 	int err;
7658 
7659 	if (!ops->ndo_set_mac_address)
7660 		return -EOPNOTSUPP;
7661 	if (sa->sa_family != dev->type)
7662 		return -EINVAL;
7663 	if (!netif_device_present(dev))
7664 		return -ENODEV;
7665 	err = ops->ndo_set_mac_address(dev, sa);
7666 	if (err)
7667 		return err;
7668 	dev->addr_assign_type = NET_ADDR_SET;
7669 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7670 	add_device_randomness(dev->dev_addr, dev->addr_len);
7671 	return 0;
7672 }
7673 EXPORT_SYMBOL(dev_set_mac_address);
7674 
7675 /**
7676  *	dev_change_carrier - Change device carrier
7677  *	@dev: device
7678  *	@new_carrier: new value
7679  *
7680  *	Change device carrier
7681  */
7682 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7683 {
7684 	const struct net_device_ops *ops = dev->netdev_ops;
7685 
7686 	if (!ops->ndo_change_carrier)
7687 		return -EOPNOTSUPP;
7688 	if (!netif_device_present(dev))
7689 		return -ENODEV;
7690 	return ops->ndo_change_carrier(dev, new_carrier);
7691 }
7692 EXPORT_SYMBOL(dev_change_carrier);
7693 
7694 /**
7695  *	dev_get_phys_port_id - Get device physical port ID
7696  *	@dev: device
7697  *	@ppid: port ID
7698  *
7699  *	Get device physical port ID
7700  */
7701 int dev_get_phys_port_id(struct net_device *dev,
7702 			 struct netdev_phys_item_id *ppid)
7703 {
7704 	const struct net_device_ops *ops = dev->netdev_ops;
7705 
7706 	if (!ops->ndo_get_phys_port_id)
7707 		return -EOPNOTSUPP;
7708 	return ops->ndo_get_phys_port_id(dev, ppid);
7709 }
7710 EXPORT_SYMBOL(dev_get_phys_port_id);
7711 
7712 /**
7713  *	dev_get_phys_port_name - Get device physical port name
7714  *	@dev: device
7715  *	@name: port name
7716  *	@len: limit of bytes to copy to name
7717  *
7718  *	Get device physical port name
7719  */
7720 int dev_get_phys_port_name(struct net_device *dev,
7721 			   char *name, size_t len)
7722 {
7723 	const struct net_device_ops *ops = dev->netdev_ops;
7724 
7725 	if (!ops->ndo_get_phys_port_name)
7726 		return -EOPNOTSUPP;
7727 	return ops->ndo_get_phys_port_name(dev, name, len);
7728 }
7729 EXPORT_SYMBOL(dev_get_phys_port_name);
7730 
7731 /**
7732  *	dev_change_proto_down - update protocol port state information
7733  *	@dev: device
7734  *	@proto_down: new value
7735  *
7736  *	This info can be used by switch drivers to set the phys state of the
7737  *	port.
7738  */
7739 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7740 {
7741 	const struct net_device_ops *ops = dev->netdev_ops;
7742 
7743 	if (!ops->ndo_change_proto_down)
7744 		return -EOPNOTSUPP;
7745 	if (!netif_device_present(dev))
7746 		return -ENODEV;
7747 	return ops->ndo_change_proto_down(dev, proto_down);
7748 }
7749 EXPORT_SYMBOL(dev_change_proto_down);
7750 
7751 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7752 		    enum bpf_netdev_command cmd)
7753 {
7754 	struct netdev_bpf xdp;
7755 
7756 	if (!bpf_op)
7757 		return 0;
7758 
7759 	memset(&xdp, 0, sizeof(xdp));
7760 	xdp.command = cmd;
7761 
7762 	/* Query must always succeed. */
7763 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7764 
7765 	return xdp.prog_id;
7766 }
7767 
7768 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7769 			   struct netlink_ext_ack *extack, u32 flags,
7770 			   struct bpf_prog *prog)
7771 {
7772 	struct netdev_bpf xdp;
7773 
7774 	memset(&xdp, 0, sizeof(xdp));
7775 	if (flags & XDP_FLAGS_HW_MODE)
7776 		xdp.command = XDP_SETUP_PROG_HW;
7777 	else
7778 		xdp.command = XDP_SETUP_PROG;
7779 	xdp.extack = extack;
7780 	xdp.flags = flags;
7781 	xdp.prog = prog;
7782 
7783 	return bpf_op(dev, &xdp);
7784 }
7785 
7786 static void dev_xdp_uninstall(struct net_device *dev)
7787 {
7788 	struct netdev_bpf xdp;
7789 	bpf_op_t ndo_bpf;
7790 
7791 	/* Remove generic XDP */
7792 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7793 
7794 	/* Remove from the driver */
7795 	ndo_bpf = dev->netdev_ops->ndo_bpf;
7796 	if (!ndo_bpf)
7797 		return;
7798 
7799 	memset(&xdp, 0, sizeof(xdp));
7800 	xdp.command = XDP_QUERY_PROG;
7801 	WARN_ON(ndo_bpf(dev, &xdp));
7802 	if (xdp.prog_id)
7803 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7804 					NULL));
7805 
7806 	/* Remove HW offload */
7807 	memset(&xdp, 0, sizeof(xdp));
7808 	xdp.command = XDP_QUERY_PROG_HW;
7809 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7810 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7811 					NULL));
7812 }
7813 
7814 /**
7815  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7816  *	@dev: device
7817  *	@extack: netlink extended ack
7818  *	@fd: new program fd or negative value to clear
7819  *	@flags: xdp-related flags
7820  *
7821  *	Set or clear a bpf program for a device
7822  */
7823 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7824 		      int fd, u32 flags)
7825 {
7826 	const struct net_device_ops *ops = dev->netdev_ops;
7827 	enum bpf_netdev_command query;
7828 	struct bpf_prog *prog = NULL;
7829 	bpf_op_t bpf_op, bpf_chk;
7830 	int err;
7831 
7832 	ASSERT_RTNL();
7833 
7834 	query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7835 
7836 	bpf_op = bpf_chk = ops->ndo_bpf;
7837 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7838 		return -EOPNOTSUPP;
7839 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7840 		bpf_op = generic_xdp_install;
7841 	if (bpf_op == bpf_chk)
7842 		bpf_chk = generic_xdp_install;
7843 
7844 	if (fd >= 0) {
7845 		if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7846 		    __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7847 			return -EEXIST;
7848 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7849 		    __dev_xdp_query(dev, bpf_op, query))
7850 			return -EBUSY;
7851 
7852 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7853 					     bpf_op == ops->ndo_bpf);
7854 		if (IS_ERR(prog))
7855 			return PTR_ERR(prog);
7856 
7857 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7858 		    bpf_prog_is_dev_bound(prog->aux)) {
7859 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7860 			bpf_prog_put(prog);
7861 			return -EINVAL;
7862 		}
7863 	}
7864 
7865 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7866 	if (err < 0 && prog)
7867 		bpf_prog_put(prog);
7868 
7869 	return err;
7870 }
7871 
7872 /**
7873  *	dev_new_index	-	allocate an ifindex
7874  *	@net: the applicable net namespace
7875  *
7876  *	Returns a suitable unique value for a new device interface
7877  *	number.  The caller must hold the rtnl semaphore or the
7878  *	dev_base_lock to be sure it remains unique.
7879  */
7880 static int dev_new_index(struct net *net)
7881 {
7882 	int ifindex = net->ifindex;
7883 
7884 	for (;;) {
7885 		if (++ifindex <= 0)
7886 			ifindex = 1;
7887 		if (!__dev_get_by_index(net, ifindex))
7888 			return net->ifindex = ifindex;
7889 	}
7890 }
7891 
7892 /* Delayed registration/unregisteration */
7893 static LIST_HEAD(net_todo_list);
7894 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7895 
7896 static void net_set_todo(struct net_device *dev)
7897 {
7898 	list_add_tail(&dev->todo_list, &net_todo_list);
7899 	dev_net(dev)->dev_unreg_count++;
7900 }
7901 
7902 static void rollback_registered_many(struct list_head *head)
7903 {
7904 	struct net_device *dev, *tmp;
7905 	LIST_HEAD(close_head);
7906 
7907 	BUG_ON(dev_boot_phase);
7908 	ASSERT_RTNL();
7909 
7910 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7911 		/* Some devices call without registering
7912 		 * for initialization unwind. Remove those
7913 		 * devices and proceed with the remaining.
7914 		 */
7915 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7916 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7917 				 dev->name, dev);
7918 
7919 			WARN_ON(1);
7920 			list_del(&dev->unreg_list);
7921 			continue;
7922 		}
7923 		dev->dismantle = true;
7924 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7925 	}
7926 
7927 	/* If device is running, close it first. */
7928 	list_for_each_entry(dev, head, unreg_list)
7929 		list_add_tail(&dev->close_list, &close_head);
7930 	dev_close_many(&close_head, true);
7931 
7932 	list_for_each_entry(dev, head, unreg_list) {
7933 		/* And unlink it from device chain. */
7934 		unlist_netdevice(dev);
7935 
7936 		dev->reg_state = NETREG_UNREGISTERING;
7937 	}
7938 	flush_all_backlogs();
7939 
7940 	synchronize_net();
7941 
7942 	list_for_each_entry(dev, head, unreg_list) {
7943 		struct sk_buff *skb = NULL;
7944 
7945 		/* Shutdown queueing discipline. */
7946 		dev_shutdown(dev);
7947 
7948 		dev_xdp_uninstall(dev);
7949 
7950 		/* Notify protocols, that we are about to destroy
7951 		 * this device. They should clean all the things.
7952 		 */
7953 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7954 
7955 		if (!dev->rtnl_link_ops ||
7956 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7957 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7958 						     GFP_KERNEL, NULL, 0);
7959 
7960 		/*
7961 		 *	Flush the unicast and multicast chains
7962 		 */
7963 		dev_uc_flush(dev);
7964 		dev_mc_flush(dev);
7965 
7966 		if (dev->netdev_ops->ndo_uninit)
7967 			dev->netdev_ops->ndo_uninit(dev);
7968 
7969 		if (skb)
7970 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7971 
7972 		/* Notifier chain MUST detach us all upper devices. */
7973 		WARN_ON(netdev_has_any_upper_dev(dev));
7974 		WARN_ON(netdev_has_any_lower_dev(dev));
7975 
7976 		/* Remove entries from kobject tree */
7977 		netdev_unregister_kobject(dev);
7978 #ifdef CONFIG_XPS
7979 		/* Remove XPS queueing entries */
7980 		netif_reset_xps_queues_gt(dev, 0);
7981 #endif
7982 	}
7983 
7984 	synchronize_net();
7985 
7986 	list_for_each_entry(dev, head, unreg_list)
7987 		dev_put(dev);
7988 }
7989 
7990 static void rollback_registered(struct net_device *dev)
7991 {
7992 	LIST_HEAD(single);
7993 
7994 	list_add(&dev->unreg_list, &single);
7995 	rollback_registered_many(&single);
7996 	list_del(&single);
7997 }
7998 
7999 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8000 	struct net_device *upper, netdev_features_t features)
8001 {
8002 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8003 	netdev_features_t feature;
8004 	int feature_bit;
8005 
8006 	for_each_netdev_feature(&upper_disables, feature_bit) {
8007 		feature = __NETIF_F_BIT(feature_bit);
8008 		if (!(upper->wanted_features & feature)
8009 		    && (features & feature)) {
8010 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8011 				   &feature, upper->name);
8012 			features &= ~feature;
8013 		}
8014 	}
8015 
8016 	return features;
8017 }
8018 
8019 static void netdev_sync_lower_features(struct net_device *upper,
8020 	struct net_device *lower, netdev_features_t features)
8021 {
8022 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8023 	netdev_features_t feature;
8024 	int feature_bit;
8025 
8026 	for_each_netdev_feature(&upper_disables, feature_bit) {
8027 		feature = __NETIF_F_BIT(feature_bit);
8028 		if (!(features & feature) && (lower->features & feature)) {
8029 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8030 				   &feature, lower->name);
8031 			lower->wanted_features &= ~feature;
8032 			netdev_update_features(lower);
8033 
8034 			if (unlikely(lower->features & feature))
8035 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8036 					    &feature, lower->name);
8037 		}
8038 	}
8039 }
8040 
8041 static netdev_features_t netdev_fix_features(struct net_device *dev,
8042 	netdev_features_t features)
8043 {
8044 	/* Fix illegal checksum combinations */
8045 	if ((features & NETIF_F_HW_CSUM) &&
8046 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8047 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8048 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8049 	}
8050 
8051 	/* TSO requires that SG is present as well. */
8052 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8053 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8054 		features &= ~NETIF_F_ALL_TSO;
8055 	}
8056 
8057 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8058 					!(features & NETIF_F_IP_CSUM)) {
8059 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8060 		features &= ~NETIF_F_TSO;
8061 		features &= ~NETIF_F_TSO_ECN;
8062 	}
8063 
8064 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8065 					 !(features & NETIF_F_IPV6_CSUM)) {
8066 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8067 		features &= ~NETIF_F_TSO6;
8068 	}
8069 
8070 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8071 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8072 		features &= ~NETIF_F_TSO_MANGLEID;
8073 
8074 	/* TSO ECN requires that TSO is present as well. */
8075 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8076 		features &= ~NETIF_F_TSO_ECN;
8077 
8078 	/* Software GSO depends on SG. */
8079 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8080 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8081 		features &= ~NETIF_F_GSO;
8082 	}
8083 
8084 	/* GSO partial features require GSO partial be set */
8085 	if ((features & dev->gso_partial_features) &&
8086 	    !(features & NETIF_F_GSO_PARTIAL)) {
8087 		netdev_dbg(dev,
8088 			   "Dropping partially supported GSO features since no GSO partial.\n");
8089 		features &= ~dev->gso_partial_features;
8090 	}
8091 
8092 	if (!(features & NETIF_F_RXCSUM)) {
8093 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8094 		 * successfully merged by hardware must also have the
8095 		 * checksum verified by hardware.  If the user does not
8096 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8097 		 */
8098 		if (features & NETIF_F_GRO_HW) {
8099 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8100 			features &= ~NETIF_F_GRO_HW;
8101 		}
8102 	}
8103 
8104 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8105 	if (features & NETIF_F_RXFCS) {
8106 		if (features & NETIF_F_LRO) {
8107 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8108 			features &= ~NETIF_F_LRO;
8109 		}
8110 
8111 		if (features & NETIF_F_GRO_HW) {
8112 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8113 			features &= ~NETIF_F_GRO_HW;
8114 		}
8115 	}
8116 
8117 	return features;
8118 }
8119 
8120 int __netdev_update_features(struct net_device *dev)
8121 {
8122 	struct net_device *upper, *lower;
8123 	netdev_features_t features;
8124 	struct list_head *iter;
8125 	int err = -1;
8126 
8127 	ASSERT_RTNL();
8128 
8129 	features = netdev_get_wanted_features(dev);
8130 
8131 	if (dev->netdev_ops->ndo_fix_features)
8132 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8133 
8134 	/* driver might be less strict about feature dependencies */
8135 	features = netdev_fix_features(dev, features);
8136 
8137 	/* some features can't be enabled if they're off an an upper device */
8138 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8139 		features = netdev_sync_upper_features(dev, upper, features);
8140 
8141 	if (dev->features == features)
8142 		goto sync_lower;
8143 
8144 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8145 		&dev->features, &features);
8146 
8147 	if (dev->netdev_ops->ndo_set_features)
8148 		err = dev->netdev_ops->ndo_set_features(dev, features);
8149 	else
8150 		err = 0;
8151 
8152 	if (unlikely(err < 0)) {
8153 		netdev_err(dev,
8154 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8155 			err, &features, &dev->features);
8156 		/* return non-0 since some features might have changed and
8157 		 * it's better to fire a spurious notification than miss it
8158 		 */
8159 		return -1;
8160 	}
8161 
8162 sync_lower:
8163 	/* some features must be disabled on lower devices when disabled
8164 	 * on an upper device (think: bonding master or bridge)
8165 	 */
8166 	netdev_for_each_lower_dev(dev, lower, iter)
8167 		netdev_sync_lower_features(dev, lower, features);
8168 
8169 	if (!err) {
8170 		netdev_features_t diff = features ^ dev->features;
8171 
8172 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8173 			/* udp_tunnel_{get,drop}_rx_info both need
8174 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8175 			 * device, or they won't do anything.
8176 			 * Thus we need to update dev->features
8177 			 * *before* calling udp_tunnel_get_rx_info,
8178 			 * but *after* calling udp_tunnel_drop_rx_info.
8179 			 */
8180 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8181 				dev->features = features;
8182 				udp_tunnel_get_rx_info(dev);
8183 			} else {
8184 				udp_tunnel_drop_rx_info(dev);
8185 			}
8186 		}
8187 
8188 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8189 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8190 				dev->features = features;
8191 				err |= vlan_get_rx_ctag_filter_info(dev);
8192 			} else {
8193 				vlan_drop_rx_ctag_filter_info(dev);
8194 			}
8195 		}
8196 
8197 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8198 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8199 				dev->features = features;
8200 				err |= vlan_get_rx_stag_filter_info(dev);
8201 			} else {
8202 				vlan_drop_rx_stag_filter_info(dev);
8203 			}
8204 		}
8205 
8206 		dev->features = features;
8207 	}
8208 
8209 	return err < 0 ? 0 : 1;
8210 }
8211 
8212 /**
8213  *	netdev_update_features - recalculate device features
8214  *	@dev: the device to check
8215  *
8216  *	Recalculate dev->features set and send notifications if it
8217  *	has changed. Should be called after driver or hardware dependent
8218  *	conditions might have changed that influence the features.
8219  */
8220 void netdev_update_features(struct net_device *dev)
8221 {
8222 	if (__netdev_update_features(dev))
8223 		netdev_features_change(dev);
8224 }
8225 EXPORT_SYMBOL(netdev_update_features);
8226 
8227 /**
8228  *	netdev_change_features - recalculate device features
8229  *	@dev: the device to check
8230  *
8231  *	Recalculate dev->features set and send notifications even
8232  *	if they have not changed. Should be called instead of
8233  *	netdev_update_features() if also dev->vlan_features might
8234  *	have changed to allow the changes to be propagated to stacked
8235  *	VLAN devices.
8236  */
8237 void netdev_change_features(struct net_device *dev)
8238 {
8239 	__netdev_update_features(dev);
8240 	netdev_features_change(dev);
8241 }
8242 EXPORT_SYMBOL(netdev_change_features);
8243 
8244 /**
8245  *	netif_stacked_transfer_operstate -	transfer operstate
8246  *	@rootdev: the root or lower level device to transfer state from
8247  *	@dev: the device to transfer operstate to
8248  *
8249  *	Transfer operational state from root to device. This is normally
8250  *	called when a stacking relationship exists between the root
8251  *	device and the device(a leaf device).
8252  */
8253 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8254 					struct net_device *dev)
8255 {
8256 	if (rootdev->operstate == IF_OPER_DORMANT)
8257 		netif_dormant_on(dev);
8258 	else
8259 		netif_dormant_off(dev);
8260 
8261 	if (netif_carrier_ok(rootdev))
8262 		netif_carrier_on(dev);
8263 	else
8264 		netif_carrier_off(dev);
8265 }
8266 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8267 
8268 static int netif_alloc_rx_queues(struct net_device *dev)
8269 {
8270 	unsigned int i, count = dev->num_rx_queues;
8271 	struct netdev_rx_queue *rx;
8272 	size_t sz = count * sizeof(*rx);
8273 	int err = 0;
8274 
8275 	BUG_ON(count < 1);
8276 
8277 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8278 	if (!rx)
8279 		return -ENOMEM;
8280 
8281 	dev->_rx = rx;
8282 
8283 	for (i = 0; i < count; i++) {
8284 		rx[i].dev = dev;
8285 
8286 		/* XDP RX-queue setup */
8287 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8288 		if (err < 0)
8289 			goto err_rxq_info;
8290 	}
8291 	return 0;
8292 
8293 err_rxq_info:
8294 	/* Rollback successful reg's and free other resources */
8295 	while (i--)
8296 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8297 	kvfree(dev->_rx);
8298 	dev->_rx = NULL;
8299 	return err;
8300 }
8301 
8302 static void netif_free_rx_queues(struct net_device *dev)
8303 {
8304 	unsigned int i, count = dev->num_rx_queues;
8305 
8306 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8307 	if (!dev->_rx)
8308 		return;
8309 
8310 	for (i = 0; i < count; i++)
8311 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8312 
8313 	kvfree(dev->_rx);
8314 }
8315 
8316 static void netdev_init_one_queue(struct net_device *dev,
8317 				  struct netdev_queue *queue, void *_unused)
8318 {
8319 	/* Initialize queue lock */
8320 	spin_lock_init(&queue->_xmit_lock);
8321 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8322 	queue->xmit_lock_owner = -1;
8323 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8324 	queue->dev = dev;
8325 #ifdef CONFIG_BQL
8326 	dql_init(&queue->dql, HZ);
8327 #endif
8328 }
8329 
8330 static void netif_free_tx_queues(struct net_device *dev)
8331 {
8332 	kvfree(dev->_tx);
8333 }
8334 
8335 static int netif_alloc_netdev_queues(struct net_device *dev)
8336 {
8337 	unsigned int count = dev->num_tx_queues;
8338 	struct netdev_queue *tx;
8339 	size_t sz = count * sizeof(*tx);
8340 
8341 	if (count < 1 || count > 0xffff)
8342 		return -EINVAL;
8343 
8344 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8345 	if (!tx)
8346 		return -ENOMEM;
8347 
8348 	dev->_tx = tx;
8349 
8350 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8351 	spin_lock_init(&dev->tx_global_lock);
8352 
8353 	return 0;
8354 }
8355 
8356 void netif_tx_stop_all_queues(struct net_device *dev)
8357 {
8358 	unsigned int i;
8359 
8360 	for (i = 0; i < dev->num_tx_queues; i++) {
8361 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8362 
8363 		netif_tx_stop_queue(txq);
8364 	}
8365 }
8366 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8367 
8368 /**
8369  *	register_netdevice	- register a network device
8370  *	@dev: device to register
8371  *
8372  *	Take a completed network device structure and add it to the kernel
8373  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8374  *	chain. 0 is returned on success. A negative errno code is returned
8375  *	on a failure to set up the device, or if the name is a duplicate.
8376  *
8377  *	Callers must hold the rtnl semaphore. You may want
8378  *	register_netdev() instead of this.
8379  *
8380  *	BUGS:
8381  *	The locking appears insufficient to guarantee two parallel registers
8382  *	will not get the same name.
8383  */
8384 
8385 int register_netdevice(struct net_device *dev)
8386 {
8387 	int ret;
8388 	struct net *net = dev_net(dev);
8389 
8390 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8391 		     NETDEV_FEATURE_COUNT);
8392 	BUG_ON(dev_boot_phase);
8393 	ASSERT_RTNL();
8394 
8395 	might_sleep();
8396 
8397 	/* When net_device's are persistent, this will be fatal. */
8398 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8399 	BUG_ON(!net);
8400 
8401 	spin_lock_init(&dev->addr_list_lock);
8402 	netdev_set_addr_lockdep_class(dev);
8403 
8404 	ret = dev_get_valid_name(net, dev, dev->name);
8405 	if (ret < 0)
8406 		goto out;
8407 
8408 	/* Init, if this function is available */
8409 	if (dev->netdev_ops->ndo_init) {
8410 		ret = dev->netdev_ops->ndo_init(dev);
8411 		if (ret) {
8412 			if (ret > 0)
8413 				ret = -EIO;
8414 			goto out;
8415 		}
8416 	}
8417 
8418 	if (((dev->hw_features | dev->features) &
8419 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
8420 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8421 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8422 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8423 		ret = -EINVAL;
8424 		goto err_uninit;
8425 	}
8426 
8427 	ret = -EBUSY;
8428 	if (!dev->ifindex)
8429 		dev->ifindex = dev_new_index(net);
8430 	else if (__dev_get_by_index(net, dev->ifindex))
8431 		goto err_uninit;
8432 
8433 	/* Transfer changeable features to wanted_features and enable
8434 	 * software offloads (GSO and GRO).
8435 	 */
8436 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
8437 	dev->features |= NETIF_F_SOFT_FEATURES;
8438 
8439 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8440 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8441 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8442 	}
8443 
8444 	dev->wanted_features = dev->features & dev->hw_features;
8445 
8446 	if (!(dev->flags & IFF_LOOPBACK))
8447 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8448 
8449 	/* If IPv4 TCP segmentation offload is supported we should also
8450 	 * allow the device to enable segmenting the frame with the option
8451 	 * of ignoring a static IP ID value.  This doesn't enable the
8452 	 * feature itself but allows the user to enable it later.
8453 	 */
8454 	if (dev->hw_features & NETIF_F_TSO)
8455 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8456 	if (dev->vlan_features & NETIF_F_TSO)
8457 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8458 	if (dev->mpls_features & NETIF_F_TSO)
8459 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8460 	if (dev->hw_enc_features & NETIF_F_TSO)
8461 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8462 
8463 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8464 	 */
8465 	dev->vlan_features |= NETIF_F_HIGHDMA;
8466 
8467 	/* Make NETIF_F_SG inheritable to tunnel devices.
8468 	 */
8469 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8470 
8471 	/* Make NETIF_F_SG inheritable to MPLS.
8472 	 */
8473 	dev->mpls_features |= NETIF_F_SG;
8474 
8475 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8476 	ret = notifier_to_errno(ret);
8477 	if (ret)
8478 		goto err_uninit;
8479 
8480 	ret = netdev_register_kobject(dev);
8481 	if (ret)
8482 		goto err_uninit;
8483 	dev->reg_state = NETREG_REGISTERED;
8484 
8485 	__netdev_update_features(dev);
8486 
8487 	/*
8488 	 *	Default initial state at registry is that the
8489 	 *	device is present.
8490 	 */
8491 
8492 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8493 
8494 	linkwatch_init_dev(dev);
8495 
8496 	dev_init_scheduler(dev);
8497 	dev_hold(dev);
8498 	list_netdevice(dev);
8499 	add_device_randomness(dev->dev_addr, dev->addr_len);
8500 
8501 	/* If the device has permanent device address, driver should
8502 	 * set dev_addr and also addr_assign_type should be set to
8503 	 * NET_ADDR_PERM (default value).
8504 	 */
8505 	if (dev->addr_assign_type == NET_ADDR_PERM)
8506 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8507 
8508 	/* Notify protocols, that a new device appeared. */
8509 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8510 	ret = notifier_to_errno(ret);
8511 	if (ret) {
8512 		rollback_registered(dev);
8513 		dev->reg_state = NETREG_UNREGISTERED;
8514 	}
8515 	/*
8516 	 *	Prevent userspace races by waiting until the network
8517 	 *	device is fully setup before sending notifications.
8518 	 */
8519 	if (!dev->rtnl_link_ops ||
8520 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8521 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8522 
8523 out:
8524 	return ret;
8525 
8526 err_uninit:
8527 	if (dev->netdev_ops->ndo_uninit)
8528 		dev->netdev_ops->ndo_uninit(dev);
8529 	if (dev->priv_destructor)
8530 		dev->priv_destructor(dev);
8531 	goto out;
8532 }
8533 EXPORT_SYMBOL(register_netdevice);
8534 
8535 /**
8536  *	init_dummy_netdev	- init a dummy network device for NAPI
8537  *	@dev: device to init
8538  *
8539  *	This takes a network device structure and initialize the minimum
8540  *	amount of fields so it can be used to schedule NAPI polls without
8541  *	registering a full blown interface. This is to be used by drivers
8542  *	that need to tie several hardware interfaces to a single NAPI
8543  *	poll scheduler due to HW limitations.
8544  */
8545 int init_dummy_netdev(struct net_device *dev)
8546 {
8547 	/* Clear everything. Note we don't initialize spinlocks
8548 	 * are they aren't supposed to be taken by any of the
8549 	 * NAPI code and this dummy netdev is supposed to be
8550 	 * only ever used for NAPI polls
8551 	 */
8552 	memset(dev, 0, sizeof(struct net_device));
8553 
8554 	/* make sure we BUG if trying to hit standard
8555 	 * register/unregister code path
8556 	 */
8557 	dev->reg_state = NETREG_DUMMY;
8558 
8559 	/* NAPI wants this */
8560 	INIT_LIST_HEAD(&dev->napi_list);
8561 
8562 	/* a dummy interface is started by default */
8563 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8564 	set_bit(__LINK_STATE_START, &dev->state);
8565 
8566 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8567 	 * because users of this 'device' dont need to change
8568 	 * its refcount.
8569 	 */
8570 
8571 	return 0;
8572 }
8573 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8574 
8575 
8576 /**
8577  *	register_netdev	- register a network device
8578  *	@dev: device to register
8579  *
8580  *	Take a completed network device structure and add it to the kernel
8581  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8582  *	chain. 0 is returned on success. A negative errno code is returned
8583  *	on a failure to set up the device, or if the name is a duplicate.
8584  *
8585  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8586  *	and expands the device name if you passed a format string to
8587  *	alloc_netdev.
8588  */
8589 int register_netdev(struct net_device *dev)
8590 {
8591 	int err;
8592 
8593 	if (rtnl_lock_killable())
8594 		return -EINTR;
8595 	err = register_netdevice(dev);
8596 	rtnl_unlock();
8597 	return err;
8598 }
8599 EXPORT_SYMBOL(register_netdev);
8600 
8601 int netdev_refcnt_read(const struct net_device *dev)
8602 {
8603 	int i, refcnt = 0;
8604 
8605 	for_each_possible_cpu(i)
8606 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8607 	return refcnt;
8608 }
8609 EXPORT_SYMBOL(netdev_refcnt_read);
8610 
8611 /**
8612  * netdev_wait_allrefs - wait until all references are gone.
8613  * @dev: target net_device
8614  *
8615  * This is called when unregistering network devices.
8616  *
8617  * Any protocol or device that holds a reference should register
8618  * for netdevice notification, and cleanup and put back the
8619  * reference if they receive an UNREGISTER event.
8620  * We can get stuck here if buggy protocols don't correctly
8621  * call dev_put.
8622  */
8623 static void netdev_wait_allrefs(struct net_device *dev)
8624 {
8625 	unsigned long rebroadcast_time, warning_time;
8626 	int refcnt;
8627 
8628 	linkwatch_forget_dev(dev);
8629 
8630 	rebroadcast_time = warning_time = jiffies;
8631 	refcnt = netdev_refcnt_read(dev);
8632 
8633 	while (refcnt != 0) {
8634 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8635 			rtnl_lock();
8636 
8637 			/* Rebroadcast unregister notification */
8638 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8639 
8640 			__rtnl_unlock();
8641 			rcu_barrier();
8642 			rtnl_lock();
8643 
8644 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8645 				     &dev->state)) {
8646 				/* We must not have linkwatch events
8647 				 * pending on unregister. If this
8648 				 * happens, we simply run the queue
8649 				 * unscheduled, resulting in a noop
8650 				 * for this device.
8651 				 */
8652 				linkwatch_run_queue();
8653 			}
8654 
8655 			__rtnl_unlock();
8656 
8657 			rebroadcast_time = jiffies;
8658 		}
8659 
8660 		msleep(250);
8661 
8662 		refcnt = netdev_refcnt_read(dev);
8663 
8664 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8665 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8666 				 dev->name, refcnt);
8667 			warning_time = jiffies;
8668 		}
8669 	}
8670 }
8671 
8672 /* The sequence is:
8673  *
8674  *	rtnl_lock();
8675  *	...
8676  *	register_netdevice(x1);
8677  *	register_netdevice(x2);
8678  *	...
8679  *	unregister_netdevice(y1);
8680  *	unregister_netdevice(y2);
8681  *      ...
8682  *	rtnl_unlock();
8683  *	free_netdev(y1);
8684  *	free_netdev(y2);
8685  *
8686  * We are invoked by rtnl_unlock().
8687  * This allows us to deal with problems:
8688  * 1) We can delete sysfs objects which invoke hotplug
8689  *    without deadlocking with linkwatch via keventd.
8690  * 2) Since we run with the RTNL semaphore not held, we can sleep
8691  *    safely in order to wait for the netdev refcnt to drop to zero.
8692  *
8693  * We must not return until all unregister events added during
8694  * the interval the lock was held have been completed.
8695  */
8696 void netdev_run_todo(void)
8697 {
8698 	struct list_head list;
8699 
8700 	/* Snapshot list, allow later requests */
8701 	list_replace_init(&net_todo_list, &list);
8702 
8703 	__rtnl_unlock();
8704 
8705 
8706 	/* Wait for rcu callbacks to finish before next phase */
8707 	if (!list_empty(&list))
8708 		rcu_barrier();
8709 
8710 	while (!list_empty(&list)) {
8711 		struct net_device *dev
8712 			= list_first_entry(&list, struct net_device, todo_list);
8713 		list_del(&dev->todo_list);
8714 
8715 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8716 			pr_err("network todo '%s' but state %d\n",
8717 			       dev->name, dev->reg_state);
8718 			dump_stack();
8719 			continue;
8720 		}
8721 
8722 		dev->reg_state = NETREG_UNREGISTERED;
8723 
8724 		netdev_wait_allrefs(dev);
8725 
8726 		/* paranoia */
8727 		BUG_ON(netdev_refcnt_read(dev));
8728 		BUG_ON(!list_empty(&dev->ptype_all));
8729 		BUG_ON(!list_empty(&dev->ptype_specific));
8730 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8731 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8732 #if IS_ENABLED(CONFIG_DECNET)
8733 		WARN_ON(dev->dn_ptr);
8734 #endif
8735 		if (dev->priv_destructor)
8736 			dev->priv_destructor(dev);
8737 		if (dev->needs_free_netdev)
8738 			free_netdev(dev);
8739 
8740 		/* Report a network device has been unregistered */
8741 		rtnl_lock();
8742 		dev_net(dev)->dev_unreg_count--;
8743 		__rtnl_unlock();
8744 		wake_up(&netdev_unregistering_wq);
8745 
8746 		/* Free network device */
8747 		kobject_put(&dev->dev.kobj);
8748 	}
8749 }
8750 
8751 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8752  * all the same fields in the same order as net_device_stats, with only
8753  * the type differing, but rtnl_link_stats64 may have additional fields
8754  * at the end for newer counters.
8755  */
8756 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8757 			     const struct net_device_stats *netdev_stats)
8758 {
8759 #if BITS_PER_LONG == 64
8760 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8761 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8762 	/* zero out counters that only exist in rtnl_link_stats64 */
8763 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8764 	       sizeof(*stats64) - sizeof(*netdev_stats));
8765 #else
8766 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8767 	const unsigned long *src = (const unsigned long *)netdev_stats;
8768 	u64 *dst = (u64 *)stats64;
8769 
8770 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8771 	for (i = 0; i < n; i++)
8772 		dst[i] = src[i];
8773 	/* zero out counters that only exist in rtnl_link_stats64 */
8774 	memset((char *)stats64 + n * sizeof(u64), 0,
8775 	       sizeof(*stats64) - n * sizeof(u64));
8776 #endif
8777 }
8778 EXPORT_SYMBOL(netdev_stats_to_stats64);
8779 
8780 /**
8781  *	dev_get_stats	- get network device statistics
8782  *	@dev: device to get statistics from
8783  *	@storage: place to store stats
8784  *
8785  *	Get network statistics from device. Return @storage.
8786  *	The device driver may provide its own method by setting
8787  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8788  *	otherwise the internal statistics structure is used.
8789  */
8790 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8791 					struct rtnl_link_stats64 *storage)
8792 {
8793 	const struct net_device_ops *ops = dev->netdev_ops;
8794 
8795 	if (ops->ndo_get_stats64) {
8796 		memset(storage, 0, sizeof(*storage));
8797 		ops->ndo_get_stats64(dev, storage);
8798 	} else if (ops->ndo_get_stats) {
8799 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8800 	} else {
8801 		netdev_stats_to_stats64(storage, &dev->stats);
8802 	}
8803 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8804 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8805 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8806 	return storage;
8807 }
8808 EXPORT_SYMBOL(dev_get_stats);
8809 
8810 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8811 {
8812 	struct netdev_queue *queue = dev_ingress_queue(dev);
8813 
8814 #ifdef CONFIG_NET_CLS_ACT
8815 	if (queue)
8816 		return queue;
8817 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8818 	if (!queue)
8819 		return NULL;
8820 	netdev_init_one_queue(dev, queue, NULL);
8821 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8822 	queue->qdisc_sleeping = &noop_qdisc;
8823 	rcu_assign_pointer(dev->ingress_queue, queue);
8824 #endif
8825 	return queue;
8826 }
8827 
8828 static const struct ethtool_ops default_ethtool_ops;
8829 
8830 void netdev_set_default_ethtool_ops(struct net_device *dev,
8831 				    const struct ethtool_ops *ops)
8832 {
8833 	if (dev->ethtool_ops == &default_ethtool_ops)
8834 		dev->ethtool_ops = ops;
8835 }
8836 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8837 
8838 void netdev_freemem(struct net_device *dev)
8839 {
8840 	char *addr = (char *)dev - dev->padded;
8841 
8842 	kvfree(addr);
8843 }
8844 
8845 /**
8846  * alloc_netdev_mqs - allocate network device
8847  * @sizeof_priv: size of private data to allocate space for
8848  * @name: device name format string
8849  * @name_assign_type: origin of device name
8850  * @setup: callback to initialize device
8851  * @txqs: the number of TX subqueues to allocate
8852  * @rxqs: the number of RX subqueues to allocate
8853  *
8854  * Allocates a struct net_device with private data area for driver use
8855  * and performs basic initialization.  Also allocates subqueue structs
8856  * for each queue on the device.
8857  */
8858 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8859 		unsigned char name_assign_type,
8860 		void (*setup)(struct net_device *),
8861 		unsigned int txqs, unsigned int rxqs)
8862 {
8863 	struct net_device *dev;
8864 	unsigned int alloc_size;
8865 	struct net_device *p;
8866 
8867 	BUG_ON(strlen(name) >= sizeof(dev->name));
8868 
8869 	if (txqs < 1) {
8870 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8871 		return NULL;
8872 	}
8873 
8874 	if (rxqs < 1) {
8875 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8876 		return NULL;
8877 	}
8878 
8879 	alloc_size = sizeof(struct net_device);
8880 	if (sizeof_priv) {
8881 		/* ensure 32-byte alignment of private area */
8882 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8883 		alloc_size += sizeof_priv;
8884 	}
8885 	/* ensure 32-byte alignment of whole construct */
8886 	alloc_size += NETDEV_ALIGN - 1;
8887 
8888 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8889 	if (!p)
8890 		return NULL;
8891 
8892 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8893 	dev->padded = (char *)dev - (char *)p;
8894 
8895 	dev->pcpu_refcnt = alloc_percpu(int);
8896 	if (!dev->pcpu_refcnt)
8897 		goto free_dev;
8898 
8899 	if (dev_addr_init(dev))
8900 		goto free_pcpu;
8901 
8902 	dev_mc_init(dev);
8903 	dev_uc_init(dev);
8904 
8905 	dev_net_set(dev, &init_net);
8906 
8907 	dev->gso_max_size = GSO_MAX_SIZE;
8908 	dev->gso_max_segs = GSO_MAX_SEGS;
8909 
8910 	INIT_LIST_HEAD(&dev->napi_list);
8911 	INIT_LIST_HEAD(&dev->unreg_list);
8912 	INIT_LIST_HEAD(&dev->close_list);
8913 	INIT_LIST_HEAD(&dev->link_watch_list);
8914 	INIT_LIST_HEAD(&dev->adj_list.upper);
8915 	INIT_LIST_HEAD(&dev->adj_list.lower);
8916 	INIT_LIST_HEAD(&dev->ptype_all);
8917 	INIT_LIST_HEAD(&dev->ptype_specific);
8918 #ifdef CONFIG_NET_SCHED
8919 	hash_init(dev->qdisc_hash);
8920 #endif
8921 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8922 	setup(dev);
8923 
8924 	if (!dev->tx_queue_len) {
8925 		dev->priv_flags |= IFF_NO_QUEUE;
8926 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8927 	}
8928 
8929 	dev->num_tx_queues = txqs;
8930 	dev->real_num_tx_queues = txqs;
8931 	if (netif_alloc_netdev_queues(dev))
8932 		goto free_all;
8933 
8934 	dev->num_rx_queues = rxqs;
8935 	dev->real_num_rx_queues = rxqs;
8936 	if (netif_alloc_rx_queues(dev))
8937 		goto free_all;
8938 
8939 	strcpy(dev->name, name);
8940 	dev->name_assign_type = name_assign_type;
8941 	dev->group = INIT_NETDEV_GROUP;
8942 	if (!dev->ethtool_ops)
8943 		dev->ethtool_ops = &default_ethtool_ops;
8944 
8945 	nf_hook_ingress_init(dev);
8946 
8947 	return dev;
8948 
8949 free_all:
8950 	free_netdev(dev);
8951 	return NULL;
8952 
8953 free_pcpu:
8954 	free_percpu(dev->pcpu_refcnt);
8955 free_dev:
8956 	netdev_freemem(dev);
8957 	return NULL;
8958 }
8959 EXPORT_SYMBOL(alloc_netdev_mqs);
8960 
8961 /**
8962  * free_netdev - free network device
8963  * @dev: device
8964  *
8965  * This function does the last stage of destroying an allocated device
8966  * interface. The reference to the device object is released. If this
8967  * is the last reference then it will be freed.Must be called in process
8968  * context.
8969  */
8970 void free_netdev(struct net_device *dev)
8971 {
8972 	struct napi_struct *p, *n;
8973 
8974 	might_sleep();
8975 	netif_free_tx_queues(dev);
8976 	netif_free_rx_queues(dev);
8977 
8978 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8979 
8980 	/* Flush device addresses */
8981 	dev_addr_flush(dev);
8982 
8983 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8984 		netif_napi_del(p);
8985 
8986 	free_percpu(dev->pcpu_refcnt);
8987 	dev->pcpu_refcnt = NULL;
8988 
8989 	/*  Compatibility with error handling in drivers */
8990 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8991 		netdev_freemem(dev);
8992 		return;
8993 	}
8994 
8995 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8996 	dev->reg_state = NETREG_RELEASED;
8997 
8998 	/* will free via device release */
8999 	put_device(&dev->dev);
9000 }
9001 EXPORT_SYMBOL(free_netdev);
9002 
9003 /**
9004  *	synchronize_net -  Synchronize with packet receive processing
9005  *
9006  *	Wait for packets currently being received to be done.
9007  *	Does not block later packets from starting.
9008  */
9009 void synchronize_net(void)
9010 {
9011 	might_sleep();
9012 	if (rtnl_is_locked())
9013 		synchronize_rcu_expedited();
9014 	else
9015 		synchronize_rcu();
9016 }
9017 EXPORT_SYMBOL(synchronize_net);
9018 
9019 /**
9020  *	unregister_netdevice_queue - remove device from the kernel
9021  *	@dev: device
9022  *	@head: list
9023  *
9024  *	This function shuts down a device interface and removes it
9025  *	from the kernel tables.
9026  *	If head not NULL, device is queued to be unregistered later.
9027  *
9028  *	Callers must hold the rtnl semaphore.  You may want
9029  *	unregister_netdev() instead of this.
9030  */
9031 
9032 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9033 {
9034 	ASSERT_RTNL();
9035 
9036 	if (head) {
9037 		list_move_tail(&dev->unreg_list, head);
9038 	} else {
9039 		rollback_registered(dev);
9040 		/* Finish processing unregister after unlock */
9041 		net_set_todo(dev);
9042 	}
9043 }
9044 EXPORT_SYMBOL(unregister_netdevice_queue);
9045 
9046 /**
9047  *	unregister_netdevice_many - unregister many devices
9048  *	@head: list of devices
9049  *
9050  *  Note: As most callers use a stack allocated list_head,
9051  *  we force a list_del() to make sure stack wont be corrupted later.
9052  */
9053 void unregister_netdevice_many(struct list_head *head)
9054 {
9055 	struct net_device *dev;
9056 
9057 	if (!list_empty(head)) {
9058 		rollback_registered_many(head);
9059 		list_for_each_entry(dev, head, unreg_list)
9060 			net_set_todo(dev);
9061 		list_del(head);
9062 	}
9063 }
9064 EXPORT_SYMBOL(unregister_netdevice_many);
9065 
9066 /**
9067  *	unregister_netdev - remove device from the kernel
9068  *	@dev: device
9069  *
9070  *	This function shuts down a device interface and removes it
9071  *	from the kernel tables.
9072  *
9073  *	This is just a wrapper for unregister_netdevice that takes
9074  *	the rtnl semaphore.  In general you want to use this and not
9075  *	unregister_netdevice.
9076  */
9077 void unregister_netdev(struct net_device *dev)
9078 {
9079 	rtnl_lock();
9080 	unregister_netdevice(dev);
9081 	rtnl_unlock();
9082 }
9083 EXPORT_SYMBOL(unregister_netdev);
9084 
9085 /**
9086  *	dev_change_net_namespace - move device to different nethost namespace
9087  *	@dev: device
9088  *	@net: network namespace
9089  *	@pat: If not NULL name pattern to try if the current device name
9090  *	      is already taken in the destination network namespace.
9091  *
9092  *	This function shuts down a device interface and moves it
9093  *	to a new network namespace. On success 0 is returned, on
9094  *	a failure a netagive errno code is returned.
9095  *
9096  *	Callers must hold the rtnl semaphore.
9097  */
9098 
9099 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9100 {
9101 	int err, new_nsid, new_ifindex;
9102 
9103 	ASSERT_RTNL();
9104 
9105 	/* Don't allow namespace local devices to be moved. */
9106 	err = -EINVAL;
9107 	if (dev->features & NETIF_F_NETNS_LOCAL)
9108 		goto out;
9109 
9110 	/* Ensure the device has been registrered */
9111 	if (dev->reg_state != NETREG_REGISTERED)
9112 		goto out;
9113 
9114 	/* Get out if there is nothing todo */
9115 	err = 0;
9116 	if (net_eq(dev_net(dev), net))
9117 		goto out;
9118 
9119 	/* Pick the destination device name, and ensure
9120 	 * we can use it in the destination network namespace.
9121 	 */
9122 	err = -EEXIST;
9123 	if (__dev_get_by_name(net, dev->name)) {
9124 		/* We get here if we can't use the current device name */
9125 		if (!pat)
9126 			goto out;
9127 		err = dev_get_valid_name(net, dev, pat);
9128 		if (err < 0)
9129 			goto out;
9130 	}
9131 
9132 	/*
9133 	 * And now a mini version of register_netdevice unregister_netdevice.
9134 	 */
9135 
9136 	/* If device is running close it first. */
9137 	dev_close(dev);
9138 
9139 	/* And unlink it from device chain */
9140 	unlist_netdevice(dev);
9141 
9142 	synchronize_net();
9143 
9144 	/* Shutdown queueing discipline. */
9145 	dev_shutdown(dev);
9146 
9147 	/* Notify protocols, that we are about to destroy
9148 	 * this device. They should clean all the things.
9149 	 *
9150 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
9151 	 * This is wanted because this way 8021q and macvlan know
9152 	 * the device is just moving and can keep their slaves up.
9153 	 */
9154 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9155 	rcu_barrier();
9156 
9157 	new_nsid = peernet2id_alloc(dev_net(dev), net);
9158 	/* If there is an ifindex conflict assign a new one */
9159 	if (__dev_get_by_index(net, dev->ifindex))
9160 		new_ifindex = dev_new_index(net);
9161 	else
9162 		new_ifindex = dev->ifindex;
9163 
9164 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9165 			    new_ifindex);
9166 
9167 	/*
9168 	 *	Flush the unicast and multicast chains
9169 	 */
9170 	dev_uc_flush(dev);
9171 	dev_mc_flush(dev);
9172 
9173 	/* Send a netdev-removed uevent to the old namespace */
9174 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9175 	netdev_adjacent_del_links(dev);
9176 
9177 	/* Actually switch the network namespace */
9178 	dev_net_set(dev, net);
9179 	dev->ifindex = new_ifindex;
9180 
9181 	/* Send a netdev-add uevent to the new namespace */
9182 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9183 	netdev_adjacent_add_links(dev);
9184 
9185 	/* Fixup kobjects */
9186 	err = device_rename(&dev->dev, dev->name);
9187 	WARN_ON(err);
9188 
9189 	/* Add the device back in the hashes */
9190 	list_netdevice(dev);
9191 
9192 	/* Notify protocols, that a new device appeared. */
9193 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9194 
9195 	/*
9196 	 *	Prevent userspace races by waiting until the network
9197 	 *	device is fully setup before sending notifications.
9198 	 */
9199 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9200 
9201 	synchronize_net();
9202 	err = 0;
9203 out:
9204 	return err;
9205 }
9206 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9207 
9208 static int dev_cpu_dead(unsigned int oldcpu)
9209 {
9210 	struct sk_buff **list_skb;
9211 	struct sk_buff *skb;
9212 	unsigned int cpu;
9213 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9214 
9215 	local_irq_disable();
9216 	cpu = smp_processor_id();
9217 	sd = &per_cpu(softnet_data, cpu);
9218 	oldsd = &per_cpu(softnet_data, oldcpu);
9219 
9220 	/* Find end of our completion_queue. */
9221 	list_skb = &sd->completion_queue;
9222 	while (*list_skb)
9223 		list_skb = &(*list_skb)->next;
9224 	/* Append completion queue from offline CPU. */
9225 	*list_skb = oldsd->completion_queue;
9226 	oldsd->completion_queue = NULL;
9227 
9228 	/* Append output queue from offline CPU. */
9229 	if (oldsd->output_queue) {
9230 		*sd->output_queue_tailp = oldsd->output_queue;
9231 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9232 		oldsd->output_queue = NULL;
9233 		oldsd->output_queue_tailp = &oldsd->output_queue;
9234 	}
9235 	/* Append NAPI poll list from offline CPU, with one exception :
9236 	 * process_backlog() must be called by cpu owning percpu backlog.
9237 	 * We properly handle process_queue & input_pkt_queue later.
9238 	 */
9239 	while (!list_empty(&oldsd->poll_list)) {
9240 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9241 							    struct napi_struct,
9242 							    poll_list);
9243 
9244 		list_del_init(&napi->poll_list);
9245 		if (napi->poll == process_backlog)
9246 			napi->state = 0;
9247 		else
9248 			____napi_schedule(sd, napi);
9249 	}
9250 
9251 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9252 	local_irq_enable();
9253 
9254 #ifdef CONFIG_RPS
9255 	remsd = oldsd->rps_ipi_list;
9256 	oldsd->rps_ipi_list = NULL;
9257 #endif
9258 	/* send out pending IPI's on offline CPU */
9259 	net_rps_send_ipi(remsd);
9260 
9261 	/* Process offline CPU's input_pkt_queue */
9262 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9263 		netif_rx_ni(skb);
9264 		input_queue_head_incr(oldsd);
9265 	}
9266 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9267 		netif_rx_ni(skb);
9268 		input_queue_head_incr(oldsd);
9269 	}
9270 
9271 	return 0;
9272 }
9273 
9274 /**
9275  *	netdev_increment_features - increment feature set by one
9276  *	@all: current feature set
9277  *	@one: new feature set
9278  *	@mask: mask feature set
9279  *
9280  *	Computes a new feature set after adding a device with feature set
9281  *	@one to the master device with current feature set @all.  Will not
9282  *	enable anything that is off in @mask. Returns the new feature set.
9283  */
9284 netdev_features_t netdev_increment_features(netdev_features_t all,
9285 	netdev_features_t one, netdev_features_t mask)
9286 {
9287 	if (mask & NETIF_F_HW_CSUM)
9288 		mask |= NETIF_F_CSUM_MASK;
9289 	mask |= NETIF_F_VLAN_CHALLENGED;
9290 
9291 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9292 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9293 
9294 	/* If one device supports hw checksumming, set for all. */
9295 	if (all & NETIF_F_HW_CSUM)
9296 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9297 
9298 	return all;
9299 }
9300 EXPORT_SYMBOL(netdev_increment_features);
9301 
9302 static struct hlist_head * __net_init netdev_create_hash(void)
9303 {
9304 	int i;
9305 	struct hlist_head *hash;
9306 
9307 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9308 	if (hash != NULL)
9309 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9310 			INIT_HLIST_HEAD(&hash[i]);
9311 
9312 	return hash;
9313 }
9314 
9315 /* Initialize per network namespace state */
9316 static int __net_init netdev_init(struct net *net)
9317 {
9318 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
9319 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9320 
9321 	if (net != &init_net)
9322 		INIT_LIST_HEAD(&net->dev_base_head);
9323 
9324 	net->dev_name_head = netdev_create_hash();
9325 	if (net->dev_name_head == NULL)
9326 		goto err_name;
9327 
9328 	net->dev_index_head = netdev_create_hash();
9329 	if (net->dev_index_head == NULL)
9330 		goto err_idx;
9331 
9332 	return 0;
9333 
9334 err_idx:
9335 	kfree(net->dev_name_head);
9336 err_name:
9337 	return -ENOMEM;
9338 }
9339 
9340 /**
9341  *	netdev_drivername - network driver for the device
9342  *	@dev: network device
9343  *
9344  *	Determine network driver for device.
9345  */
9346 const char *netdev_drivername(const struct net_device *dev)
9347 {
9348 	const struct device_driver *driver;
9349 	const struct device *parent;
9350 	const char *empty = "";
9351 
9352 	parent = dev->dev.parent;
9353 	if (!parent)
9354 		return empty;
9355 
9356 	driver = parent->driver;
9357 	if (driver && driver->name)
9358 		return driver->name;
9359 	return empty;
9360 }
9361 
9362 static void __netdev_printk(const char *level, const struct net_device *dev,
9363 			    struct va_format *vaf)
9364 {
9365 	if (dev && dev->dev.parent) {
9366 		dev_printk_emit(level[1] - '0',
9367 				dev->dev.parent,
9368 				"%s %s %s%s: %pV",
9369 				dev_driver_string(dev->dev.parent),
9370 				dev_name(dev->dev.parent),
9371 				netdev_name(dev), netdev_reg_state(dev),
9372 				vaf);
9373 	} else if (dev) {
9374 		printk("%s%s%s: %pV",
9375 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9376 	} else {
9377 		printk("%s(NULL net_device): %pV", level, vaf);
9378 	}
9379 }
9380 
9381 void netdev_printk(const char *level, const struct net_device *dev,
9382 		   const char *format, ...)
9383 {
9384 	struct va_format vaf;
9385 	va_list args;
9386 
9387 	va_start(args, format);
9388 
9389 	vaf.fmt = format;
9390 	vaf.va = &args;
9391 
9392 	__netdev_printk(level, dev, &vaf);
9393 
9394 	va_end(args);
9395 }
9396 EXPORT_SYMBOL(netdev_printk);
9397 
9398 #define define_netdev_printk_level(func, level)			\
9399 void func(const struct net_device *dev, const char *fmt, ...)	\
9400 {								\
9401 	struct va_format vaf;					\
9402 	va_list args;						\
9403 								\
9404 	va_start(args, fmt);					\
9405 								\
9406 	vaf.fmt = fmt;						\
9407 	vaf.va = &args;						\
9408 								\
9409 	__netdev_printk(level, dev, &vaf);			\
9410 								\
9411 	va_end(args);						\
9412 }								\
9413 EXPORT_SYMBOL(func);
9414 
9415 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9416 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9417 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9418 define_netdev_printk_level(netdev_err, KERN_ERR);
9419 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9420 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9421 define_netdev_printk_level(netdev_info, KERN_INFO);
9422 
9423 static void __net_exit netdev_exit(struct net *net)
9424 {
9425 	kfree(net->dev_name_head);
9426 	kfree(net->dev_index_head);
9427 	if (net != &init_net)
9428 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9429 }
9430 
9431 static struct pernet_operations __net_initdata netdev_net_ops = {
9432 	.init = netdev_init,
9433 	.exit = netdev_exit,
9434 };
9435 
9436 static void __net_exit default_device_exit(struct net *net)
9437 {
9438 	struct net_device *dev, *aux;
9439 	/*
9440 	 * Push all migratable network devices back to the
9441 	 * initial network namespace
9442 	 */
9443 	rtnl_lock();
9444 	for_each_netdev_safe(net, dev, aux) {
9445 		int err;
9446 		char fb_name[IFNAMSIZ];
9447 
9448 		/* Ignore unmoveable devices (i.e. loopback) */
9449 		if (dev->features & NETIF_F_NETNS_LOCAL)
9450 			continue;
9451 
9452 		/* Leave virtual devices for the generic cleanup */
9453 		if (dev->rtnl_link_ops)
9454 			continue;
9455 
9456 		/* Push remaining network devices to init_net */
9457 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9458 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9459 		if (err) {
9460 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9461 				 __func__, dev->name, err);
9462 			BUG();
9463 		}
9464 	}
9465 	rtnl_unlock();
9466 }
9467 
9468 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9469 {
9470 	/* Return with the rtnl_lock held when there are no network
9471 	 * devices unregistering in any network namespace in net_list.
9472 	 */
9473 	struct net *net;
9474 	bool unregistering;
9475 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9476 
9477 	add_wait_queue(&netdev_unregistering_wq, &wait);
9478 	for (;;) {
9479 		unregistering = false;
9480 		rtnl_lock();
9481 		list_for_each_entry(net, net_list, exit_list) {
9482 			if (net->dev_unreg_count > 0) {
9483 				unregistering = true;
9484 				break;
9485 			}
9486 		}
9487 		if (!unregistering)
9488 			break;
9489 		__rtnl_unlock();
9490 
9491 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9492 	}
9493 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9494 }
9495 
9496 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9497 {
9498 	/* At exit all network devices most be removed from a network
9499 	 * namespace.  Do this in the reverse order of registration.
9500 	 * Do this across as many network namespaces as possible to
9501 	 * improve batching efficiency.
9502 	 */
9503 	struct net_device *dev;
9504 	struct net *net;
9505 	LIST_HEAD(dev_kill_list);
9506 
9507 	/* To prevent network device cleanup code from dereferencing
9508 	 * loopback devices or network devices that have been freed
9509 	 * wait here for all pending unregistrations to complete,
9510 	 * before unregistring the loopback device and allowing the
9511 	 * network namespace be freed.
9512 	 *
9513 	 * The netdev todo list containing all network devices
9514 	 * unregistrations that happen in default_device_exit_batch
9515 	 * will run in the rtnl_unlock() at the end of
9516 	 * default_device_exit_batch.
9517 	 */
9518 	rtnl_lock_unregistering(net_list);
9519 	list_for_each_entry(net, net_list, exit_list) {
9520 		for_each_netdev_reverse(net, dev) {
9521 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9522 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9523 			else
9524 				unregister_netdevice_queue(dev, &dev_kill_list);
9525 		}
9526 	}
9527 	unregister_netdevice_many(&dev_kill_list);
9528 	rtnl_unlock();
9529 }
9530 
9531 static struct pernet_operations __net_initdata default_device_ops = {
9532 	.exit = default_device_exit,
9533 	.exit_batch = default_device_exit_batch,
9534 };
9535 
9536 /*
9537  *	Initialize the DEV module. At boot time this walks the device list and
9538  *	unhooks any devices that fail to initialise (normally hardware not
9539  *	present) and leaves us with a valid list of present and active devices.
9540  *
9541  */
9542 
9543 /*
9544  *       This is called single threaded during boot, so no need
9545  *       to take the rtnl semaphore.
9546  */
9547 static int __init net_dev_init(void)
9548 {
9549 	int i, rc = -ENOMEM;
9550 
9551 	BUG_ON(!dev_boot_phase);
9552 
9553 	if (dev_proc_init())
9554 		goto out;
9555 
9556 	if (netdev_kobject_init())
9557 		goto out;
9558 
9559 	INIT_LIST_HEAD(&ptype_all);
9560 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9561 		INIT_LIST_HEAD(&ptype_base[i]);
9562 
9563 	INIT_LIST_HEAD(&offload_base);
9564 
9565 	if (register_pernet_subsys(&netdev_net_ops))
9566 		goto out;
9567 
9568 	/*
9569 	 *	Initialise the packet receive queues.
9570 	 */
9571 
9572 	for_each_possible_cpu(i) {
9573 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9574 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9575 
9576 		INIT_WORK(flush, flush_backlog);
9577 
9578 		skb_queue_head_init(&sd->input_pkt_queue);
9579 		skb_queue_head_init(&sd->process_queue);
9580 #ifdef CONFIG_XFRM_OFFLOAD
9581 		skb_queue_head_init(&sd->xfrm_backlog);
9582 #endif
9583 		INIT_LIST_HEAD(&sd->poll_list);
9584 		sd->output_queue_tailp = &sd->output_queue;
9585 #ifdef CONFIG_RPS
9586 		sd->csd.func = rps_trigger_softirq;
9587 		sd->csd.info = sd;
9588 		sd->cpu = i;
9589 #endif
9590 
9591 		init_gro_hash(&sd->backlog);
9592 		sd->backlog.poll = process_backlog;
9593 		sd->backlog.weight = weight_p;
9594 	}
9595 
9596 	dev_boot_phase = 0;
9597 
9598 	/* The loopback device is special if any other network devices
9599 	 * is present in a network namespace the loopback device must
9600 	 * be present. Since we now dynamically allocate and free the
9601 	 * loopback device ensure this invariant is maintained by
9602 	 * keeping the loopback device as the first device on the
9603 	 * list of network devices.  Ensuring the loopback devices
9604 	 * is the first device that appears and the last network device
9605 	 * that disappears.
9606 	 */
9607 	if (register_pernet_device(&loopback_net_ops))
9608 		goto out;
9609 
9610 	if (register_pernet_device(&default_device_ops))
9611 		goto out;
9612 
9613 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9614 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9615 
9616 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9617 				       NULL, dev_cpu_dead);
9618 	WARN_ON(rc < 0);
9619 	rc = 0;
9620 out:
9621 	return rc;
9622 }
9623 
9624 subsys_initcall(net_dev_init);
9625