xref: /openbmc/linux/net/core/dev.c (revision e0f6d1a5)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 
150 #include "net-sysfs.h"
151 
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154 
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;	/* Taps */
162 static struct list_head offload_base __read_mostly;
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 					 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static seqcount_t devnet_rename_seq;
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236 	struct net *net = dev_net(dev);
237 
238 	ASSERT_RTNL();
239 
240 	write_lock_bh(&dev_base_lock);
241 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 	hlist_add_head_rcu(&dev->index_hlist,
244 			   dev_index_hash(net, dev->ifindex));
245 	write_unlock_bh(&dev_base_lock);
246 
247 	dev_base_seq_inc(net);
248 }
249 
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255 	ASSERT_RTNL();
256 
257 	/* Unlink dev from the device chain */
258 	write_lock_bh(&dev_base_lock);
259 	list_del_rcu(&dev->dev_list);
260 	hlist_del_rcu(&dev->name_hlist);
261 	hlist_del_rcu(&dev->index_hlist);
262 	write_unlock_bh(&dev_base_lock);
263 
264 	dev_base_seq_inc(dev_net(dev));
265 }
266 
267 /*
268  *	Our notifier list
269  */
270 
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272 
273 /*
274  *	Device drivers call our routines to queue packets here. We empty the
275  *	queue in the local softnet handler.
276  */
277 
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280 
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302 
303 static const char *const netdev_lock_name[] = {
304 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319 
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322 
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 	int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 		if (netdev_lock_type[i] == dev_type)
329 			return i;
330 	/* the last key is used by default */
331 	return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333 
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev_type);
340 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 				   netdev_lock_name[i]);
342 }
343 
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 	int i;
347 
348 	i = netdev_lock_pos(dev->type);
349 	lockdep_set_class_and_name(&dev->addr_list_lock,
350 				   &netdev_addr_lock_key[i],
351 				   netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 						 unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362 
363 /*******************************************************************************
364  *
365  *		Protocol management and registration routines
366  *
367  *******************************************************************************/
368 
369 
370 /*
371  *	Add a protocol ID to the list. Now that the input handler is
372  *	smarter we can dispense with all the messy stuff that used to be
373  *	here.
374  *
375  *	BEWARE!!! Protocol handlers, mangling input packets,
376  *	MUST BE last in hash buckets and checking protocol handlers
377  *	MUST start from promiscuous ptype_all chain in net_bh.
378  *	It is true now, do not change it.
379  *	Explanation follows: if protocol handler, mangling packet, will
380  *	be the first on list, it is not able to sense, that packet
381  *	is cloned and should be copied-on-write, so that it will
382  *	change it and subsequent readers will get broken packet.
383  *							--ANK (980803)
384  */
385 
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 	if (pt->type == htons(ETH_P_ALL))
389 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 	else
391 		return pt->dev ? &pt->dev->ptype_specific :
392 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394 
395 /**
396  *	dev_add_pack - add packet handler
397  *	@pt: packet type declaration
398  *
399  *	Add a protocol handler to the networking stack. The passed &packet_type
400  *	is linked into kernel lists and may not be freed until it has been
401  *	removed from the kernel lists.
402  *
403  *	This call does not sleep therefore it can not
404  *	guarantee all CPU's that are in middle of receiving packets
405  *	will see the new packet type (until the next received packet).
406  */
407 
408 void dev_add_pack(struct packet_type *pt)
409 {
410 	struct list_head *head = ptype_head(pt);
411 
412 	spin_lock(&ptype_lock);
413 	list_add_rcu(&pt->list, head);
414 	spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417 
418 /**
419  *	__dev_remove_pack	 - remove packet handler
420  *	@pt: packet type declaration
421  *
422  *	Remove a protocol handler that was previously added to the kernel
423  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *	from the kernel lists and can be freed or reused once this function
425  *	returns.
426  *
427  *      The packet type might still be in use by receivers
428  *	and must not be freed until after all the CPU's have gone
429  *	through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 	struct list_head *head = ptype_head(pt);
434 	struct packet_type *pt1;
435 
436 	spin_lock(&ptype_lock);
437 
438 	list_for_each_entry(pt1, head, list) {
439 		if (pt == pt1) {
440 			list_del_rcu(&pt->list);
441 			goto out;
442 		}
443 	}
444 
445 	pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 	spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450 
451 /**
452  *	dev_remove_pack	 - remove packet handler
453  *	@pt: packet type declaration
454  *
455  *	Remove a protocol handler that was previously added to the kernel
456  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *	from the kernel lists and can be freed or reused once this function
458  *	returns.
459  *
460  *	This call sleeps to guarantee that no CPU is looking at the packet
461  *	type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465 	__dev_remove_pack(pt);
466 
467 	synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470 
471 
472 /**
473  *	dev_add_offload - register offload handlers
474  *	@po: protocol offload declaration
475  *
476  *	Add protocol offload handlers to the networking stack. The passed
477  *	&proto_offload is linked into kernel lists and may not be freed until
478  *	it has been removed from the kernel lists.
479  *
480  *	This call does not sleep therefore it can not
481  *	guarantee all CPU's that are in middle of receiving packets
482  *	will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486 	struct packet_offload *elem;
487 
488 	spin_lock(&offload_lock);
489 	list_for_each_entry(elem, &offload_base, list) {
490 		if (po->priority < elem->priority)
491 			break;
492 	}
493 	list_add_rcu(&po->list, elem->list.prev);
494 	spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497 
498 /**
499  *	__dev_remove_offload	 - remove offload handler
500  *	@po: packet offload declaration
501  *
502  *	Remove a protocol offload handler that was previously added to the
503  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *	is removed from the kernel lists and can be freed or reused once this
505  *	function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *	and must not be freed until after all the CPU's have gone
509  *	through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 	struct list_head *head = &offload_base;
514 	struct packet_offload *po1;
515 
516 	spin_lock(&offload_lock);
517 
518 	list_for_each_entry(po1, head, list) {
519 		if (po == po1) {
520 			list_del_rcu(&po->list);
521 			goto out;
522 		}
523 	}
524 
525 	pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 	spin_unlock(&offload_lock);
528 }
529 
530 /**
531  *	dev_remove_offload	 - remove packet offload handler
532  *	@po: packet offload declaration
533  *
534  *	Remove a packet offload handler that was previously added to the kernel
535  *	offload handlers by dev_add_offload(). The passed &offload_type is
536  *	removed from the kernel lists and can be freed or reused once this
537  *	function returns.
538  *
539  *	This call sleeps to guarantee that no CPU is looking at the packet
540  *	type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544 	__dev_remove_offload(po);
545 
546 	synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549 
550 /******************************************************************************
551  *
552  *		      Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555 
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558 
559 /**
560  *	netdev_boot_setup_add	- add new setup entry
561  *	@name: name of the device
562  *	@map: configured settings for the device
563  *
564  *	Adds new setup entry to the dev_boot_setup list.  The function
565  *	returns 0 on error and 1 on success.  This is a generic routine to
566  *	all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 	struct netdev_boot_setup *s;
571 	int i;
572 
573 	s = dev_boot_setup;
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 			memset(s[i].name, 0, sizeof(s[i].name));
577 			strlcpy(s[i].name, name, IFNAMSIZ);
578 			memcpy(&s[i].map, map, sizeof(s[i].map));
579 			break;
580 		}
581 	}
582 
583 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585 
586 /**
587  * netdev_boot_setup_check	- check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 	struct netdev_boot_setup *s = dev_boot_setup;
598 	int i;
599 
600 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 		    !strcmp(dev->name, s[i].name)) {
603 			dev->irq = s[i].map.irq;
604 			dev->base_addr = s[i].map.base_addr;
605 			dev->mem_start = s[i].map.mem_start;
606 			dev->mem_end = s[i].map.mem_end;
607 			return 1;
608 		}
609 	}
610 	return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613 
614 
615 /**
616  * netdev_boot_base	- get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 	const struct netdev_boot_setup *s = dev_boot_setup;
628 	char name[IFNAMSIZ];
629 	int i;
630 
631 	sprintf(name, "%s%d", prefix, unit);
632 
633 	/*
634 	 * If device already registered then return base of 1
635 	 * to indicate not to probe for this interface
636 	 */
637 	if (__dev_get_by_name(&init_net, name))
638 		return 1;
639 
640 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 		if (!strcmp(name, s[i].name))
642 			return s[i].map.base_addr;
643 	return 0;
644 }
645 
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651 	int ints[5];
652 	struct ifmap map;
653 
654 	str = get_options(str, ARRAY_SIZE(ints), ints);
655 	if (!str || !*str)
656 		return 0;
657 
658 	/* Save settings */
659 	memset(&map, 0, sizeof(map));
660 	if (ints[0] > 0)
661 		map.irq = ints[1];
662 	if (ints[0] > 1)
663 		map.base_addr = ints[2];
664 	if (ints[0] > 2)
665 		map.mem_start = ints[3];
666 	if (ints[0] > 3)
667 		map.mem_end = ints[4];
668 
669 	/* Add new entry to the list */
670 	return netdev_boot_setup_add(str, &map);
671 }
672 
673 __setup("netdev=", netdev_boot_setup);
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 /**
725  *	__dev_get_by_name	- find a device by its name
726  *	@net: the applicable net namespace
727  *	@name: name to find
728  *
729  *	Find an interface by name. Must be called under RTNL semaphore
730  *	or @dev_base_lock. If the name is found a pointer to the device
731  *	is returned. If the name is not found then %NULL is returned. The
732  *	reference counters are not incremented so the caller must be
733  *	careful with locks.
734  */
735 
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 	struct net_device *dev;
739 	struct hlist_head *head = dev_name_hash(net, name);
740 
741 	hlist_for_each_entry(dev, head, name_hlist)
742 		if (!strncmp(dev->name, name, IFNAMSIZ))
743 			return dev;
744 
745 	return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748 
749 /**
750  * dev_get_by_name_rcu	- find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760 
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 	struct net_device *dev;
764 	struct hlist_head *head = dev_name_hash(net, name);
765 
766 	hlist_for_each_entry_rcu(dev, head, name_hlist)
767 		if (!strncmp(dev->name, name, IFNAMSIZ))
768 			return dev;
769 
770 	return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773 
774 /**
775  *	dev_get_by_name		- find a device by its name
776  *	@net: the applicable net namespace
777  *	@name: name to find
778  *
779  *	Find an interface by name. This can be called from any
780  *	context and does its own locking. The returned handle has
781  *	the usage count incremented and the caller must use dev_put() to
782  *	release it when it is no longer needed. %NULL is returned if no
783  *	matching device is found.
784  */
785 
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 	struct net_device *dev;
789 
790 	rcu_read_lock();
791 	dev = dev_get_by_name_rcu(net, name);
792 	if (dev)
793 		dev_hold(dev);
794 	rcu_read_unlock();
795 	return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798 
799 /**
800  *	__dev_get_by_index - find a device by its ifindex
801  *	@net: the applicable net namespace
802  *	@ifindex: index of device
803  *
804  *	Search for an interface by index. Returns %NULL if the device
805  *	is not found or a pointer to the device. The device has not
806  *	had its reference counter increased so the caller must be careful
807  *	about locking. The caller must hold either the RTNL semaphore
808  *	or @dev_base_lock.
809  */
810 
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 	struct net_device *dev;
814 	struct hlist_head *head = dev_index_hash(net, ifindex);
815 
816 	hlist_for_each_entry(dev, head, index_hlist)
817 		if (dev->ifindex == ifindex)
818 			return dev;
819 
820 	return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823 
824 /**
825  *	dev_get_by_index_rcu - find a device by its ifindex
826  *	@net: the applicable net namespace
827  *	@ifindex: index of device
828  *
829  *	Search for an interface by index. Returns %NULL if the device
830  *	is not found or a pointer to the device. The device has not
831  *	had its reference counter increased so the caller must be careful
832  *	about locking. The caller must hold RCU lock.
833  */
834 
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 	struct net_device *dev;
838 	struct hlist_head *head = dev_index_hash(net, ifindex);
839 
840 	hlist_for_each_entry_rcu(dev, head, index_hlist)
841 		if (dev->ifindex == ifindex)
842 			return dev;
843 
844 	return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847 
848 
849 /**
850  *	dev_get_by_index - find a device by its ifindex
851  *	@net: the applicable net namespace
852  *	@ifindex: index of device
853  *
854  *	Search for an interface by index. Returns NULL if the device
855  *	is not found or a pointer to the device. The device returned has
856  *	had a reference added and the pointer is safe until the user calls
857  *	dev_put to indicate they have finished with it.
858  */
859 
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 	struct net_device *dev;
863 
864 	rcu_read_lock();
865 	dev = dev_get_by_index_rcu(net, ifindex);
866 	if (dev)
867 		dev_hold(dev);
868 	rcu_read_unlock();
869 	return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872 
873 /**
874  *	dev_get_by_napi_id - find a device by napi_id
875  *	@napi_id: ID of the NAPI struct
876  *
877  *	Search for an interface by NAPI ID. Returns %NULL if the device
878  *	is not found or a pointer to the device. The device has not had
879  *	its reference counter increased so the caller must be careful
880  *	about locking. The caller must hold RCU lock.
881  */
882 
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 	struct napi_struct *napi;
886 
887 	WARN_ON_ONCE(!rcu_read_lock_held());
888 
889 	if (napi_id < MIN_NAPI_ID)
890 		return NULL;
891 
892 	napi = napi_by_id(napi_id);
893 
894 	return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897 
898 /**
899  *	netdev_get_name - get a netdevice name, knowing its ifindex.
900  *	@net: network namespace
901  *	@name: a pointer to the buffer where the name will be stored.
902  *	@ifindex: the ifindex of the interface to get the name from.
903  *
904  *	The use of raw_seqcount_begin() and cond_resched() before
905  *	retrying is required as we want to give the writers a chance
906  *	to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910 	struct net_device *dev;
911 	unsigned int seq;
912 
913 retry:
914 	seq = raw_seqcount_begin(&devnet_rename_seq);
915 	rcu_read_lock();
916 	dev = dev_get_by_index_rcu(net, ifindex);
917 	if (!dev) {
918 		rcu_read_unlock();
919 		return -ENODEV;
920 	}
921 
922 	strcpy(name, dev->name);
923 	rcu_read_unlock();
924 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 		cond_resched();
926 		goto retry;
927 	}
928 
929 	return 0;
930 }
931 
932 /**
933  *	dev_getbyhwaddr_rcu - find a device by its hardware address
934  *	@net: the applicable net namespace
935  *	@type: media type of device
936  *	@ha: hardware address
937  *
938  *	Search for an interface by MAC address. Returns NULL if the device
939  *	is not found or a pointer to the device.
940  *	The caller must hold RCU or RTNL.
941  *	The returned device has not had its ref count increased
942  *	and the caller must therefore be careful about locking
943  *
944  */
945 
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 				       const char *ha)
948 {
949 	struct net_device *dev;
950 
951 	for_each_netdev_rcu(net, dev)
952 		if (dev->type == type &&
953 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
954 			return dev;
955 
956 	return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959 
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962 	struct net_device *dev;
963 
964 	ASSERT_RTNL();
965 	for_each_netdev(net, dev)
966 		if (dev->type == type)
967 			return dev;
968 
969 	return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972 
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975 	struct net_device *dev, *ret = NULL;
976 
977 	rcu_read_lock();
978 	for_each_netdev_rcu(net, dev)
979 		if (dev->type == type) {
980 			dev_hold(dev);
981 			ret = dev;
982 			break;
983 		}
984 	rcu_read_unlock();
985 	return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988 
989 /**
990  *	__dev_get_by_flags - find any device with given flags
991  *	@net: the applicable net namespace
992  *	@if_flags: IFF_* values
993  *	@mask: bitmask of bits in if_flags to check
994  *
995  *	Search for any interface with the given flags. Returns NULL if a device
996  *	is not found or a pointer to the device. Must be called inside
997  *	rtnl_lock(), and result refcount is unchanged.
998  */
999 
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 				      unsigned short mask)
1002 {
1003 	struct net_device *dev, *ret;
1004 
1005 	ASSERT_RTNL();
1006 
1007 	ret = NULL;
1008 	for_each_netdev(net, dev) {
1009 		if (((dev->flags ^ if_flags) & mask) == 0) {
1010 			ret = dev;
1011 			break;
1012 		}
1013 	}
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017 
1018 /**
1019  *	dev_valid_name - check if name is okay for network device
1020  *	@name: name string
1021  *
1022  *	Network device names need to be valid file names to
1023  *	to allow sysfs to work.  We also disallow any kind of
1024  *	whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028 	if (*name == '\0')
1029 		return false;
1030 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1031 		return false;
1032 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 		return false;
1034 
1035 	while (*name) {
1036 		if (*name == '/' || *name == ':' || isspace(*name))
1037 			return false;
1038 		name++;
1039 	}
1040 	return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043 
1044 /**
1045  *	__dev_alloc_name - allocate a name for a device
1046  *	@net: network namespace to allocate the device name in
1047  *	@name: name format string
1048  *	@buf:  scratch buffer and result name string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061 	int i = 0;
1062 	const char *p;
1063 	const int max_netdevices = 8*PAGE_SIZE;
1064 	unsigned long *inuse;
1065 	struct net_device *d;
1066 
1067 	if (!dev_valid_name(name))
1068 		return -EINVAL;
1069 
1070 	p = strchr(name, '%');
1071 	if (p) {
1072 		/*
1073 		 * Verify the string as this thing may have come from
1074 		 * the user.  There must be either one "%d" and no other "%"
1075 		 * characters.
1076 		 */
1077 		if (p[1] != 'd' || strchr(p + 2, '%'))
1078 			return -EINVAL;
1079 
1080 		/* Use one page as a bit array of possible slots */
1081 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 		if (!inuse)
1083 			return -ENOMEM;
1084 
1085 		for_each_netdev(net, d) {
1086 			if (!sscanf(d->name, name, &i))
1087 				continue;
1088 			if (i < 0 || i >= max_netdevices)
1089 				continue;
1090 
1091 			/*  avoid cases where sscanf is not exact inverse of printf */
1092 			snprintf(buf, IFNAMSIZ, name, i);
1093 			if (!strncmp(buf, d->name, IFNAMSIZ))
1094 				set_bit(i, inuse);
1095 		}
1096 
1097 		i = find_first_zero_bit(inuse, max_netdevices);
1098 		free_page((unsigned long) inuse);
1099 	}
1100 
1101 	snprintf(buf, IFNAMSIZ, name, i);
1102 	if (!__dev_get_by_name(net, buf))
1103 		return i;
1104 
1105 	/* It is possible to run out of possible slots
1106 	 * when the name is long and there isn't enough space left
1107 	 * for the digits, or if all bits are used.
1108 	 */
1109 	return -ENFILE;
1110 }
1111 
1112 static int dev_alloc_name_ns(struct net *net,
1113 			     struct net_device *dev,
1114 			     const char *name)
1115 {
1116 	char buf[IFNAMSIZ];
1117 	int ret;
1118 
1119 	BUG_ON(!net);
1120 	ret = __dev_alloc_name(net, name, buf);
1121 	if (ret >= 0)
1122 		strlcpy(dev->name, buf, IFNAMSIZ);
1123 	return ret;
1124 }
1125 
1126 /**
1127  *	dev_alloc_name - allocate a name for a device
1128  *	@dev: device
1129  *	@name: name format string
1130  *
1131  *	Passed a format string - eg "lt%d" it will try and find a suitable
1132  *	id. It scans list of devices to build up a free map, then chooses
1133  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1134  *	while allocating the name and adding the device in order to avoid
1135  *	duplicates.
1136  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137  *	Returns the number of the unit assigned or a negative errno code.
1138  */
1139 
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145 
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 		       const char *name)
1148 {
1149 	BUG_ON(!net);
1150 
1151 	if (!dev_valid_name(name))
1152 		return -EINVAL;
1153 
1154 	if (strchr(name, '%'))
1155 		return dev_alloc_name_ns(net, dev, name);
1156 	else if (__dev_get_by_name(net, name))
1157 		return -EEXIST;
1158 	else if (dev->name != name)
1159 		strlcpy(dev->name, name, IFNAMSIZ);
1160 
1161 	return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164 
1165 /**
1166  *	dev_change_name - change name of a device
1167  *	@dev: device
1168  *	@newname: name (or format string) must be at least IFNAMSIZ
1169  *
1170  *	Change name of a device, can pass format strings "eth%d".
1171  *	for wildcarding.
1172  */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175 	unsigned char old_assign_type;
1176 	char oldname[IFNAMSIZ];
1177 	int err = 0;
1178 	int ret;
1179 	struct net *net;
1180 
1181 	ASSERT_RTNL();
1182 	BUG_ON(!dev_net(dev));
1183 
1184 	net = dev_net(dev);
1185 	if (dev->flags & IFF_UP)
1186 		return -EBUSY;
1187 
1188 	write_seqcount_begin(&devnet_rename_seq);
1189 
1190 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191 		write_seqcount_end(&devnet_rename_seq);
1192 		return 0;
1193 	}
1194 
1195 	memcpy(oldname, dev->name, IFNAMSIZ);
1196 
1197 	err = dev_get_valid_name(net, dev, newname);
1198 	if (err < 0) {
1199 		write_seqcount_end(&devnet_rename_seq);
1200 		return err;
1201 	}
1202 
1203 	if (oldname[0] && !strchr(oldname, '%'))
1204 		netdev_info(dev, "renamed from %s\n", oldname);
1205 
1206 	old_assign_type = dev->name_assign_type;
1207 	dev->name_assign_type = NET_NAME_RENAMED;
1208 
1209 rollback:
1210 	ret = device_rename(&dev->dev, dev->name);
1211 	if (ret) {
1212 		memcpy(dev->name, oldname, IFNAMSIZ);
1213 		dev->name_assign_type = old_assign_type;
1214 		write_seqcount_end(&devnet_rename_seq);
1215 		return ret;
1216 	}
1217 
1218 	write_seqcount_end(&devnet_rename_seq);
1219 
1220 	netdev_adjacent_rename_links(dev, oldname);
1221 
1222 	write_lock_bh(&dev_base_lock);
1223 	hlist_del_rcu(&dev->name_hlist);
1224 	write_unlock_bh(&dev_base_lock);
1225 
1226 	synchronize_rcu();
1227 
1228 	write_lock_bh(&dev_base_lock);
1229 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230 	write_unlock_bh(&dev_base_lock);
1231 
1232 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233 	ret = notifier_to_errno(ret);
1234 
1235 	if (ret) {
1236 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1237 		if (err >= 0) {
1238 			err = ret;
1239 			write_seqcount_begin(&devnet_rename_seq);
1240 			memcpy(dev->name, oldname, IFNAMSIZ);
1241 			memcpy(oldname, newname, IFNAMSIZ);
1242 			dev->name_assign_type = old_assign_type;
1243 			old_assign_type = NET_NAME_RENAMED;
1244 			goto rollback;
1245 		} else {
1246 			pr_err("%s: name change rollback failed: %d\n",
1247 			       dev->name, ret);
1248 		}
1249 	}
1250 
1251 	return err;
1252 }
1253 
1254 /**
1255  *	dev_set_alias - change ifalias of a device
1256  *	@dev: device
1257  *	@alias: name up to IFALIASZ
1258  *	@len: limit of bytes to copy from info
1259  *
1260  *	Set ifalias for a device,
1261  */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264 	struct dev_ifalias *new_alias = NULL;
1265 
1266 	if (len >= IFALIASZ)
1267 		return -EINVAL;
1268 
1269 	if (len) {
1270 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 		if (!new_alias)
1272 			return -ENOMEM;
1273 
1274 		memcpy(new_alias->ifalias, alias, len);
1275 		new_alias->ifalias[len] = 0;
1276 	}
1277 
1278 	mutex_lock(&ifalias_mutex);
1279 	rcu_swap_protected(dev->ifalias, new_alias,
1280 			   mutex_is_locked(&ifalias_mutex));
1281 	mutex_unlock(&ifalias_mutex);
1282 
1283 	if (new_alias)
1284 		kfree_rcu(new_alias, rcuhead);
1285 
1286 	return len;
1287 }
1288 
1289 /**
1290  *	dev_get_alias - get ifalias of a device
1291  *	@dev: device
1292  *	@name: buffer to store name of ifalias
1293  *	@len: size of buffer
1294  *
1295  *	get ifalias for a device.  Caller must make sure dev cannot go
1296  *	away,  e.g. rcu read lock or own a reference count to device.
1297  */
1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299 {
1300 	const struct dev_ifalias *alias;
1301 	int ret = 0;
1302 
1303 	rcu_read_lock();
1304 	alias = rcu_dereference(dev->ifalias);
1305 	if (alias)
1306 		ret = snprintf(name, len, "%s", alias->ifalias);
1307 	rcu_read_unlock();
1308 
1309 	return ret;
1310 }
1311 
1312 /**
1313  *	netdev_features_change - device changes features
1314  *	@dev: device to cause notification
1315  *
1316  *	Called to indicate a device has changed features.
1317  */
1318 void netdev_features_change(struct net_device *dev)
1319 {
1320 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321 }
1322 EXPORT_SYMBOL(netdev_features_change);
1323 
1324 /**
1325  *	netdev_state_change - device changes state
1326  *	@dev: device to cause notification
1327  *
1328  *	Called to indicate a device has changed state. This function calls
1329  *	the notifier chains for netdev_chain and sends a NEWLINK message
1330  *	to the routing socket.
1331  */
1332 void netdev_state_change(struct net_device *dev)
1333 {
1334 	if (dev->flags & IFF_UP) {
1335 		struct netdev_notifier_change_info change_info = {
1336 			.info.dev = dev,
1337 		};
1338 
1339 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1340 					      &change_info.info);
1341 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342 	}
1343 }
1344 EXPORT_SYMBOL(netdev_state_change);
1345 
1346 /**
1347  * netdev_notify_peers - notify network peers about existence of @dev
1348  * @dev: network device
1349  *
1350  * Generate traffic such that interested network peers are aware of
1351  * @dev, such as by generating a gratuitous ARP. This may be used when
1352  * a device wants to inform the rest of the network about some sort of
1353  * reconfiguration such as a failover event or virtual machine
1354  * migration.
1355  */
1356 void netdev_notify_peers(struct net_device *dev)
1357 {
1358 	rtnl_lock();
1359 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361 	rtnl_unlock();
1362 }
1363 EXPORT_SYMBOL(netdev_notify_peers);
1364 
1365 static int __dev_open(struct net_device *dev)
1366 {
1367 	const struct net_device_ops *ops = dev->netdev_ops;
1368 	int ret;
1369 
1370 	ASSERT_RTNL();
1371 
1372 	if (!netif_device_present(dev))
1373 		return -ENODEV;
1374 
1375 	/* Block netpoll from trying to do any rx path servicing.
1376 	 * If we don't do this there is a chance ndo_poll_controller
1377 	 * or ndo_poll may be running while we open the device
1378 	 */
1379 	netpoll_poll_disable(dev);
1380 
1381 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 	ret = notifier_to_errno(ret);
1383 	if (ret)
1384 		return ret;
1385 
1386 	set_bit(__LINK_STATE_START, &dev->state);
1387 
1388 	if (ops->ndo_validate_addr)
1389 		ret = ops->ndo_validate_addr(dev);
1390 
1391 	if (!ret && ops->ndo_open)
1392 		ret = ops->ndo_open(dev);
1393 
1394 	netpoll_poll_enable(dev);
1395 
1396 	if (ret)
1397 		clear_bit(__LINK_STATE_START, &dev->state);
1398 	else {
1399 		dev->flags |= IFF_UP;
1400 		dev_set_rx_mode(dev);
1401 		dev_activate(dev);
1402 		add_device_randomness(dev->dev_addr, dev->addr_len);
1403 	}
1404 
1405 	return ret;
1406 }
1407 
1408 /**
1409  *	dev_open	- prepare an interface for use.
1410  *	@dev:	device to open
1411  *
1412  *	Takes a device from down to up state. The device's private open
1413  *	function is invoked and then the multicast lists are loaded. Finally
1414  *	the device is moved into the up state and a %NETDEV_UP message is
1415  *	sent to the netdev notifier chain.
1416  *
1417  *	Calling this function on an active interface is a nop. On a failure
1418  *	a negative errno code is returned.
1419  */
1420 int dev_open(struct net_device *dev)
1421 {
1422 	int ret;
1423 
1424 	if (dev->flags & IFF_UP)
1425 		return 0;
1426 
1427 	ret = __dev_open(dev);
1428 	if (ret < 0)
1429 		return ret;
1430 
1431 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432 	call_netdevice_notifiers(NETDEV_UP, dev);
1433 
1434 	return ret;
1435 }
1436 EXPORT_SYMBOL(dev_open);
1437 
1438 static void __dev_close_many(struct list_head *head)
1439 {
1440 	struct net_device *dev;
1441 
1442 	ASSERT_RTNL();
1443 	might_sleep();
1444 
1445 	list_for_each_entry(dev, head, close_list) {
1446 		/* Temporarily disable netpoll until the interface is down */
1447 		netpoll_poll_disable(dev);
1448 
1449 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450 
1451 		clear_bit(__LINK_STATE_START, &dev->state);
1452 
1453 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1454 		 * can be even on different cpu. So just clear netif_running().
1455 		 *
1456 		 * dev->stop() will invoke napi_disable() on all of it's
1457 		 * napi_struct instances on this device.
1458 		 */
1459 		smp_mb__after_atomic(); /* Commit netif_running(). */
1460 	}
1461 
1462 	dev_deactivate_many(head);
1463 
1464 	list_for_each_entry(dev, head, close_list) {
1465 		const struct net_device_ops *ops = dev->netdev_ops;
1466 
1467 		/*
1468 		 *	Call the device specific close. This cannot fail.
1469 		 *	Only if device is UP
1470 		 *
1471 		 *	We allow it to be called even after a DETACH hot-plug
1472 		 *	event.
1473 		 */
1474 		if (ops->ndo_stop)
1475 			ops->ndo_stop(dev);
1476 
1477 		dev->flags &= ~IFF_UP;
1478 		netpoll_poll_enable(dev);
1479 	}
1480 }
1481 
1482 static void __dev_close(struct net_device *dev)
1483 {
1484 	LIST_HEAD(single);
1485 
1486 	list_add(&dev->close_list, &single);
1487 	__dev_close_many(&single);
1488 	list_del(&single);
1489 }
1490 
1491 void dev_close_many(struct list_head *head, bool unlink)
1492 {
1493 	struct net_device *dev, *tmp;
1494 
1495 	/* Remove the devices that don't need to be closed */
1496 	list_for_each_entry_safe(dev, tmp, head, close_list)
1497 		if (!(dev->flags & IFF_UP))
1498 			list_del_init(&dev->close_list);
1499 
1500 	__dev_close_many(head);
1501 
1502 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1503 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1505 		if (unlink)
1506 			list_del_init(&dev->close_list);
1507 	}
1508 }
1509 EXPORT_SYMBOL(dev_close_many);
1510 
1511 /**
1512  *	dev_close - shutdown an interface.
1513  *	@dev: device to shutdown
1514  *
1515  *	This function moves an active device into down state. A
1516  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518  *	chain.
1519  */
1520 void dev_close(struct net_device *dev)
1521 {
1522 	if (dev->flags & IFF_UP) {
1523 		LIST_HEAD(single);
1524 
1525 		list_add(&dev->close_list, &single);
1526 		dev_close_many(&single, true);
1527 		list_del(&single);
1528 	}
1529 }
1530 EXPORT_SYMBOL(dev_close);
1531 
1532 
1533 /**
1534  *	dev_disable_lro - disable Large Receive Offload on a device
1535  *	@dev: device
1536  *
1537  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1538  *	called under RTNL.  This is needed if received packets may be
1539  *	forwarded to another interface.
1540  */
1541 void dev_disable_lro(struct net_device *dev)
1542 {
1543 	struct net_device *lower_dev;
1544 	struct list_head *iter;
1545 
1546 	dev->wanted_features &= ~NETIF_F_LRO;
1547 	netdev_update_features(dev);
1548 
1549 	if (unlikely(dev->features & NETIF_F_LRO))
1550 		netdev_WARN(dev, "failed to disable LRO!\n");
1551 
1552 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 		dev_disable_lro(lower_dev);
1554 }
1555 EXPORT_SYMBOL(dev_disable_lro);
1556 
1557 /**
1558  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559  *	@dev: device
1560  *
1561  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1562  *	called under RTNL.  This is needed if Generic XDP is installed on
1563  *	the device.
1564  */
1565 static void dev_disable_gro_hw(struct net_device *dev)
1566 {
1567 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1568 	netdev_update_features(dev);
1569 
1570 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1571 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572 }
1573 
1574 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1575 {
1576 #define N(val) 						\
1577 	case NETDEV_##val:				\
1578 		return "NETDEV_" __stringify(val);
1579 	switch (cmd) {
1580 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1581 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1582 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1583 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1584 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1585 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1586 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1587 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1588 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1589 	};
1590 #undef N
1591 	return "UNKNOWN_NETDEV_EVENT";
1592 }
1593 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1594 
1595 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1596 				   struct net_device *dev)
1597 {
1598 	struct netdev_notifier_info info = {
1599 		.dev = dev,
1600 	};
1601 
1602 	return nb->notifier_call(nb, val, &info);
1603 }
1604 
1605 static int dev_boot_phase = 1;
1606 
1607 /**
1608  * register_netdevice_notifier - register a network notifier block
1609  * @nb: notifier
1610  *
1611  * Register a notifier to be called when network device events occur.
1612  * The notifier passed is linked into the kernel structures and must
1613  * not be reused until it has been unregistered. A negative errno code
1614  * is returned on a failure.
1615  *
1616  * When registered all registration and up events are replayed
1617  * to the new notifier to allow device to have a race free
1618  * view of the network device list.
1619  */
1620 
1621 int register_netdevice_notifier(struct notifier_block *nb)
1622 {
1623 	struct net_device *dev;
1624 	struct net_device *last;
1625 	struct net *net;
1626 	int err;
1627 
1628 	/* Close race with setup_net() and cleanup_net() */
1629 	down_write(&pernet_ops_rwsem);
1630 	rtnl_lock();
1631 	err = raw_notifier_chain_register(&netdev_chain, nb);
1632 	if (err)
1633 		goto unlock;
1634 	if (dev_boot_phase)
1635 		goto unlock;
1636 	for_each_net(net) {
1637 		for_each_netdev(net, dev) {
1638 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1639 			err = notifier_to_errno(err);
1640 			if (err)
1641 				goto rollback;
1642 
1643 			if (!(dev->flags & IFF_UP))
1644 				continue;
1645 
1646 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1647 		}
1648 	}
1649 
1650 unlock:
1651 	rtnl_unlock();
1652 	up_write(&pernet_ops_rwsem);
1653 	return err;
1654 
1655 rollback:
1656 	last = dev;
1657 	for_each_net(net) {
1658 		for_each_netdev(net, dev) {
1659 			if (dev == last)
1660 				goto outroll;
1661 
1662 			if (dev->flags & IFF_UP) {
1663 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1664 							dev);
1665 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1666 			}
1667 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1668 		}
1669 	}
1670 
1671 outroll:
1672 	raw_notifier_chain_unregister(&netdev_chain, nb);
1673 	goto unlock;
1674 }
1675 EXPORT_SYMBOL(register_netdevice_notifier);
1676 
1677 /**
1678  * unregister_netdevice_notifier - unregister a network notifier block
1679  * @nb: notifier
1680  *
1681  * Unregister a notifier previously registered by
1682  * register_netdevice_notifier(). The notifier is unlinked into the
1683  * kernel structures and may then be reused. A negative errno code
1684  * is returned on a failure.
1685  *
1686  * After unregistering unregister and down device events are synthesized
1687  * for all devices on the device list to the removed notifier to remove
1688  * the need for special case cleanup code.
1689  */
1690 
1691 int unregister_netdevice_notifier(struct notifier_block *nb)
1692 {
1693 	struct net_device *dev;
1694 	struct net *net;
1695 	int err;
1696 
1697 	/* Close race with setup_net() and cleanup_net() */
1698 	down_write(&pernet_ops_rwsem);
1699 	rtnl_lock();
1700 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1701 	if (err)
1702 		goto unlock;
1703 
1704 	for_each_net(net) {
1705 		for_each_netdev(net, dev) {
1706 			if (dev->flags & IFF_UP) {
1707 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1708 							dev);
1709 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1710 			}
1711 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1712 		}
1713 	}
1714 unlock:
1715 	rtnl_unlock();
1716 	up_write(&pernet_ops_rwsem);
1717 	return err;
1718 }
1719 EXPORT_SYMBOL(unregister_netdevice_notifier);
1720 
1721 /**
1722  *	call_netdevice_notifiers_info - call all network notifier blocks
1723  *	@val: value passed unmodified to notifier function
1724  *	@info: notifier information data
1725  *
1726  *	Call all network notifier blocks.  Parameters and return value
1727  *	are as for raw_notifier_call_chain().
1728  */
1729 
1730 static int call_netdevice_notifiers_info(unsigned long val,
1731 					 struct netdev_notifier_info *info)
1732 {
1733 	ASSERT_RTNL();
1734 	return raw_notifier_call_chain(&netdev_chain, val, info);
1735 }
1736 
1737 /**
1738  *	call_netdevice_notifiers - call all network notifier blocks
1739  *      @val: value passed unmodified to notifier function
1740  *      @dev: net_device pointer passed unmodified to notifier function
1741  *
1742  *	Call all network notifier blocks.  Parameters and return value
1743  *	are as for raw_notifier_call_chain().
1744  */
1745 
1746 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1747 {
1748 	struct netdev_notifier_info info = {
1749 		.dev = dev,
1750 	};
1751 
1752 	return call_netdevice_notifiers_info(val, &info);
1753 }
1754 EXPORT_SYMBOL(call_netdevice_notifiers);
1755 
1756 #ifdef CONFIG_NET_INGRESS
1757 static struct static_key ingress_needed __read_mostly;
1758 
1759 void net_inc_ingress_queue(void)
1760 {
1761 	static_key_slow_inc(&ingress_needed);
1762 }
1763 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1764 
1765 void net_dec_ingress_queue(void)
1766 {
1767 	static_key_slow_dec(&ingress_needed);
1768 }
1769 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1770 #endif
1771 
1772 #ifdef CONFIG_NET_EGRESS
1773 static struct static_key egress_needed __read_mostly;
1774 
1775 void net_inc_egress_queue(void)
1776 {
1777 	static_key_slow_inc(&egress_needed);
1778 }
1779 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1780 
1781 void net_dec_egress_queue(void)
1782 {
1783 	static_key_slow_dec(&egress_needed);
1784 }
1785 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1786 #endif
1787 
1788 static struct static_key netstamp_needed __read_mostly;
1789 #ifdef HAVE_JUMP_LABEL
1790 static atomic_t netstamp_needed_deferred;
1791 static atomic_t netstamp_wanted;
1792 static void netstamp_clear(struct work_struct *work)
1793 {
1794 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1795 	int wanted;
1796 
1797 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1798 	if (wanted > 0)
1799 		static_key_enable(&netstamp_needed);
1800 	else
1801 		static_key_disable(&netstamp_needed);
1802 }
1803 static DECLARE_WORK(netstamp_work, netstamp_clear);
1804 #endif
1805 
1806 void net_enable_timestamp(void)
1807 {
1808 #ifdef HAVE_JUMP_LABEL
1809 	int wanted;
1810 
1811 	while (1) {
1812 		wanted = atomic_read(&netstamp_wanted);
1813 		if (wanted <= 0)
1814 			break;
1815 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1816 			return;
1817 	}
1818 	atomic_inc(&netstamp_needed_deferred);
1819 	schedule_work(&netstamp_work);
1820 #else
1821 	static_key_slow_inc(&netstamp_needed);
1822 #endif
1823 }
1824 EXPORT_SYMBOL(net_enable_timestamp);
1825 
1826 void net_disable_timestamp(void)
1827 {
1828 #ifdef HAVE_JUMP_LABEL
1829 	int wanted;
1830 
1831 	while (1) {
1832 		wanted = atomic_read(&netstamp_wanted);
1833 		if (wanted <= 1)
1834 			break;
1835 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1836 			return;
1837 	}
1838 	atomic_dec(&netstamp_needed_deferred);
1839 	schedule_work(&netstamp_work);
1840 #else
1841 	static_key_slow_dec(&netstamp_needed);
1842 #endif
1843 }
1844 EXPORT_SYMBOL(net_disable_timestamp);
1845 
1846 static inline void net_timestamp_set(struct sk_buff *skb)
1847 {
1848 	skb->tstamp = 0;
1849 	if (static_key_false(&netstamp_needed))
1850 		__net_timestamp(skb);
1851 }
1852 
1853 #define net_timestamp_check(COND, SKB)			\
1854 	if (static_key_false(&netstamp_needed)) {		\
1855 		if ((COND) && !(SKB)->tstamp)	\
1856 			__net_timestamp(SKB);		\
1857 	}						\
1858 
1859 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1860 {
1861 	unsigned int len;
1862 
1863 	if (!(dev->flags & IFF_UP))
1864 		return false;
1865 
1866 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1867 	if (skb->len <= len)
1868 		return true;
1869 
1870 	/* if TSO is enabled, we don't care about the length as the packet
1871 	 * could be forwarded without being segmented before
1872 	 */
1873 	if (skb_is_gso(skb))
1874 		return true;
1875 
1876 	return false;
1877 }
1878 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1879 
1880 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1881 {
1882 	int ret = ____dev_forward_skb(dev, skb);
1883 
1884 	if (likely(!ret)) {
1885 		skb->protocol = eth_type_trans(skb, dev);
1886 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1887 	}
1888 
1889 	return ret;
1890 }
1891 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1892 
1893 /**
1894  * dev_forward_skb - loopback an skb to another netif
1895  *
1896  * @dev: destination network device
1897  * @skb: buffer to forward
1898  *
1899  * return values:
1900  *	NET_RX_SUCCESS	(no congestion)
1901  *	NET_RX_DROP     (packet was dropped, but freed)
1902  *
1903  * dev_forward_skb can be used for injecting an skb from the
1904  * start_xmit function of one device into the receive queue
1905  * of another device.
1906  *
1907  * The receiving device may be in another namespace, so
1908  * we have to clear all information in the skb that could
1909  * impact namespace isolation.
1910  */
1911 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1912 {
1913 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1914 }
1915 EXPORT_SYMBOL_GPL(dev_forward_skb);
1916 
1917 static inline int deliver_skb(struct sk_buff *skb,
1918 			      struct packet_type *pt_prev,
1919 			      struct net_device *orig_dev)
1920 {
1921 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1922 		return -ENOMEM;
1923 	refcount_inc(&skb->users);
1924 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1925 }
1926 
1927 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1928 					  struct packet_type **pt,
1929 					  struct net_device *orig_dev,
1930 					  __be16 type,
1931 					  struct list_head *ptype_list)
1932 {
1933 	struct packet_type *ptype, *pt_prev = *pt;
1934 
1935 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1936 		if (ptype->type != type)
1937 			continue;
1938 		if (pt_prev)
1939 			deliver_skb(skb, pt_prev, orig_dev);
1940 		pt_prev = ptype;
1941 	}
1942 	*pt = pt_prev;
1943 }
1944 
1945 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1946 {
1947 	if (!ptype->af_packet_priv || !skb->sk)
1948 		return false;
1949 
1950 	if (ptype->id_match)
1951 		return ptype->id_match(ptype, skb->sk);
1952 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1953 		return true;
1954 
1955 	return false;
1956 }
1957 
1958 /*
1959  *	Support routine. Sends outgoing frames to any network
1960  *	taps currently in use.
1961  */
1962 
1963 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1964 {
1965 	struct packet_type *ptype;
1966 	struct sk_buff *skb2 = NULL;
1967 	struct packet_type *pt_prev = NULL;
1968 	struct list_head *ptype_list = &ptype_all;
1969 
1970 	rcu_read_lock();
1971 again:
1972 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1973 		/* Never send packets back to the socket
1974 		 * they originated from - MvS (miquels@drinkel.ow.org)
1975 		 */
1976 		if (skb_loop_sk(ptype, skb))
1977 			continue;
1978 
1979 		if (pt_prev) {
1980 			deliver_skb(skb2, pt_prev, skb->dev);
1981 			pt_prev = ptype;
1982 			continue;
1983 		}
1984 
1985 		/* need to clone skb, done only once */
1986 		skb2 = skb_clone(skb, GFP_ATOMIC);
1987 		if (!skb2)
1988 			goto out_unlock;
1989 
1990 		net_timestamp_set(skb2);
1991 
1992 		/* skb->nh should be correctly
1993 		 * set by sender, so that the second statement is
1994 		 * just protection against buggy protocols.
1995 		 */
1996 		skb_reset_mac_header(skb2);
1997 
1998 		if (skb_network_header(skb2) < skb2->data ||
1999 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2000 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2001 					     ntohs(skb2->protocol),
2002 					     dev->name);
2003 			skb_reset_network_header(skb2);
2004 		}
2005 
2006 		skb2->transport_header = skb2->network_header;
2007 		skb2->pkt_type = PACKET_OUTGOING;
2008 		pt_prev = ptype;
2009 	}
2010 
2011 	if (ptype_list == &ptype_all) {
2012 		ptype_list = &dev->ptype_all;
2013 		goto again;
2014 	}
2015 out_unlock:
2016 	if (pt_prev) {
2017 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2018 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2019 		else
2020 			kfree_skb(skb2);
2021 	}
2022 	rcu_read_unlock();
2023 }
2024 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2025 
2026 /**
2027  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2028  * @dev: Network device
2029  * @txq: number of queues available
2030  *
2031  * If real_num_tx_queues is changed the tc mappings may no longer be
2032  * valid. To resolve this verify the tc mapping remains valid and if
2033  * not NULL the mapping. With no priorities mapping to this
2034  * offset/count pair it will no longer be used. In the worst case TC0
2035  * is invalid nothing can be done so disable priority mappings. If is
2036  * expected that drivers will fix this mapping if they can before
2037  * calling netif_set_real_num_tx_queues.
2038  */
2039 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2040 {
2041 	int i;
2042 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2043 
2044 	/* If TC0 is invalidated disable TC mapping */
2045 	if (tc->offset + tc->count > txq) {
2046 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2047 		dev->num_tc = 0;
2048 		return;
2049 	}
2050 
2051 	/* Invalidated prio to tc mappings set to TC0 */
2052 	for (i = 1; i < TC_BITMASK + 1; i++) {
2053 		int q = netdev_get_prio_tc_map(dev, i);
2054 
2055 		tc = &dev->tc_to_txq[q];
2056 		if (tc->offset + tc->count > txq) {
2057 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2058 				i, q);
2059 			netdev_set_prio_tc_map(dev, i, 0);
2060 		}
2061 	}
2062 }
2063 
2064 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2065 {
2066 	if (dev->num_tc) {
2067 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2068 		int i;
2069 
2070 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2071 			if ((txq - tc->offset) < tc->count)
2072 				return i;
2073 		}
2074 
2075 		return -1;
2076 	}
2077 
2078 	return 0;
2079 }
2080 EXPORT_SYMBOL(netdev_txq_to_tc);
2081 
2082 #ifdef CONFIG_XPS
2083 static DEFINE_MUTEX(xps_map_mutex);
2084 #define xmap_dereference(P)		\
2085 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2086 
2087 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2088 			     int tci, u16 index)
2089 {
2090 	struct xps_map *map = NULL;
2091 	int pos;
2092 
2093 	if (dev_maps)
2094 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2095 	if (!map)
2096 		return false;
2097 
2098 	for (pos = map->len; pos--;) {
2099 		if (map->queues[pos] != index)
2100 			continue;
2101 
2102 		if (map->len > 1) {
2103 			map->queues[pos] = map->queues[--map->len];
2104 			break;
2105 		}
2106 
2107 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2108 		kfree_rcu(map, rcu);
2109 		return false;
2110 	}
2111 
2112 	return true;
2113 }
2114 
2115 static bool remove_xps_queue_cpu(struct net_device *dev,
2116 				 struct xps_dev_maps *dev_maps,
2117 				 int cpu, u16 offset, u16 count)
2118 {
2119 	int num_tc = dev->num_tc ? : 1;
2120 	bool active = false;
2121 	int tci;
2122 
2123 	for (tci = cpu * num_tc; num_tc--; tci++) {
2124 		int i, j;
2125 
2126 		for (i = count, j = offset; i--; j++) {
2127 			if (!remove_xps_queue(dev_maps, cpu, j))
2128 				break;
2129 		}
2130 
2131 		active |= i < 0;
2132 	}
2133 
2134 	return active;
2135 }
2136 
2137 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2138 				   u16 count)
2139 {
2140 	struct xps_dev_maps *dev_maps;
2141 	int cpu, i;
2142 	bool active = false;
2143 
2144 	mutex_lock(&xps_map_mutex);
2145 	dev_maps = xmap_dereference(dev->xps_maps);
2146 
2147 	if (!dev_maps)
2148 		goto out_no_maps;
2149 
2150 	for_each_possible_cpu(cpu)
2151 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2152 					       offset, count);
2153 
2154 	if (!active) {
2155 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2156 		kfree_rcu(dev_maps, rcu);
2157 	}
2158 
2159 	for (i = offset + (count - 1); count--; i--)
2160 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2161 					     NUMA_NO_NODE);
2162 
2163 out_no_maps:
2164 	mutex_unlock(&xps_map_mutex);
2165 }
2166 
2167 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2168 {
2169 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2170 }
2171 
2172 static struct xps_map *expand_xps_map(struct xps_map *map,
2173 				      int cpu, u16 index)
2174 {
2175 	struct xps_map *new_map;
2176 	int alloc_len = XPS_MIN_MAP_ALLOC;
2177 	int i, pos;
2178 
2179 	for (pos = 0; map && pos < map->len; pos++) {
2180 		if (map->queues[pos] != index)
2181 			continue;
2182 		return map;
2183 	}
2184 
2185 	/* Need to add queue to this CPU's existing map */
2186 	if (map) {
2187 		if (pos < map->alloc_len)
2188 			return map;
2189 
2190 		alloc_len = map->alloc_len * 2;
2191 	}
2192 
2193 	/* Need to allocate new map to store queue on this CPU's map */
2194 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2195 			       cpu_to_node(cpu));
2196 	if (!new_map)
2197 		return NULL;
2198 
2199 	for (i = 0; i < pos; i++)
2200 		new_map->queues[i] = map->queues[i];
2201 	new_map->alloc_len = alloc_len;
2202 	new_map->len = pos;
2203 
2204 	return new_map;
2205 }
2206 
2207 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2208 			u16 index)
2209 {
2210 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2211 	int i, cpu, tci, numa_node_id = -2;
2212 	int maps_sz, num_tc = 1, tc = 0;
2213 	struct xps_map *map, *new_map;
2214 	bool active = false;
2215 
2216 	if (dev->num_tc) {
2217 		num_tc = dev->num_tc;
2218 		tc = netdev_txq_to_tc(dev, index);
2219 		if (tc < 0)
2220 			return -EINVAL;
2221 	}
2222 
2223 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2224 	if (maps_sz < L1_CACHE_BYTES)
2225 		maps_sz = L1_CACHE_BYTES;
2226 
2227 	mutex_lock(&xps_map_mutex);
2228 
2229 	dev_maps = xmap_dereference(dev->xps_maps);
2230 
2231 	/* allocate memory for queue storage */
2232 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2233 		if (!new_dev_maps)
2234 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2235 		if (!new_dev_maps) {
2236 			mutex_unlock(&xps_map_mutex);
2237 			return -ENOMEM;
2238 		}
2239 
2240 		tci = cpu * num_tc + tc;
2241 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2242 				 NULL;
2243 
2244 		map = expand_xps_map(map, cpu, index);
2245 		if (!map)
2246 			goto error;
2247 
2248 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2249 	}
2250 
2251 	if (!new_dev_maps)
2252 		goto out_no_new_maps;
2253 
2254 	for_each_possible_cpu(cpu) {
2255 		/* copy maps belonging to foreign traffic classes */
2256 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2257 			/* fill in the new device map from the old device map */
2258 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2259 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2260 		}
2261 
2262 		/* We need to explicitly update tci as prevous loop
2263 		 * could break out early if dev_maps is NULL.
2264 		 */
2265 		tci = cpu * num_tc + tc;
2266 
2267 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2268 			/* add queue to CPU maps */
2269 			int pos = 0;
2270 
2271 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2272 			while ((pos < map->len) && (map->queues[pos] != index))
2273 				pos++;
2274 
2275 			if (pos == map->len)
2276 				map->queues[map->len++] = index;
2277 #ifdef CONFIG_NUMA
2278 			if (numa_node_id == -2)
2279 				numa_node_id = cpu_to_node(cpu);
2280 			else if (numa_node_id != cpu_to_node(cpu))
2281 				numa_node_id = -1;
2282 #endif
2283 		} else if (dev_maps) {
2284 			/* fill in the new device map from the old device map */
2285 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2286 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2287 		}
2288 
2289 		/* copy maps belonging to foreign traffic classes */
2290 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2291 			/* fill in the new device map from the old device map */
2292 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2293 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2294 		}
2295 	}
2296 
2297 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2298 
2299 	/* Cleanup old maps */
2300 	if (!dev_maps)
2301 		goto out_no_old_maps;
2302 
2303 	for_each_possible_cpu(cpu) {
2304 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2305 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2306 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2307 			if (map && map != new_map)
2308 				kfree_rcu(map, rcu);
2309 		}
2310 	}
2311 
2312 	kfree_rcu(dev_maps, rcu);
2313 
2314 out_no_old_maps:
2315 	dev_maps = new_dev_maps;
2316 	active = true;
2317 
2318 out_no_new_maps:
2319 	/* update Tx queue numa node */
2320 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2321 				     (numa_node_id >= 0) ? numa_node_id :
2322 				     NUMA_NO_NODE);
2323 
2324 	if (!dev_maps)
2325 		goto out_no_maps;
2326 
2327 	/* removes queue from unused CPUs */
2328 	for_each_possible_cpu(cpu) {
2329 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2330 			active |= remove_xps_queue(dev_maps, tci, index);
2331 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2332 			active |= remove_xps_queue(dev_maps, tci, index);
2333 		for (i = num_tc - tc, tci++; --i; tci++)
2334 			active |= remove_xps_queue(dev_maps, tci, index);
2335 	}
2336 
2337 	/* free map if not active */
2338 	if (!active) {
2339 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2340 		kfree_rcu(dev_maps, rcu);
2341 	}
2342 
2343 out_no_maps:
2344 	mutex_unlock(&xps_map_mutex);
2345 
2346 	return 0;
2347 error:
2348 	/* remove any maps that we added */
2349 	for_each_possible_cpu(cpu) {
2350 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2351 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2352 			map = dev_maps ?
2353 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2354 			      NULL;
2355 			if (new_map && new_map != map)
2356 				kfree(new_map);
2357 		}
2358 	}
2359 
2360 	mutex_unlock(&xps_map_mutex);
2361 
2362 	kfree(new_dev_maps);
2363 	return -ENOMEM;
2364 }
2365 EXPORT_SYMBOL(netif_set_xps_queue);
2366 
2367 #endif
2368 void netdev_reset_tc(struct net_device *dev)
2369 {
2370 #ifdef CONFIG_XPS
2371 	netif_reset_xps_queues_gt(dev, 0);
2372 #endif
2373 	dev->num_tc = 0;
2374 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2375 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2376 }
2377 EXPORT_SYMBOL(netdev_reset_tc);
2378 
2379 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2380 {
2381 	if (tc >= dev->num_tc)
2382 		return -EINVAL;
2383 
2384 #ifdef CONFIG_XPS
2385 	netif_reset_xps_queues(dev, offset, count);
2386 #endif
2387 	dev->tc_to_txq[tc].count = count;
2388 	dev->tc_to_txq[tc].offset = offset;
2389 	return 0;
2390 }
2391 EXPORT_SYMBOL(netdev_set_tc_queue);
2392 
2393 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2394 {
2395 	if (num_tc > TC_MAX_QUEUE)
2396 		return -EINVAL;
2397 
2398 #ifdef CONFIG_XPS
2399 	netif_reset_xps_queues_gt(dev, 0);
2400 #endif
2401 	dev->num_tc = num_tc;
2402 	return 0;
2403 }
2404 EXPORT_SYMBOL(netdev_set_num_tc);
2405 
2406 /*
2407  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2408  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2409  */
2410 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2411 {
2412 	bool disabling;
2413 	int rc;
2414 
2415 	disabling = txq < dev->real_num_tx_queues;
2416 
2417 	if (txq < 1 || txq > dev->num_tx_queues)
2418 		return -EINVAL;
2419 
2420 	if (dev->reg_state == NETREG_REGISTERED ||
2421 	    dev->reg_state == NETREG_UNREGISTERING) {
2422 		ASSERT_RTNL();
2423 
2424 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2425 						  txq);
2426 		if (rc)
2427 			return rc;
2428 
2429 		if (dev->num_tc)
2430 			netif_setup_tc(dev, txq);
2431 
2432 		dev->real_num_tx_queues = txq;
2433 
2434 		if (disabling) {
2435 			synchronize_net();
2436 			qdisc_reset_all_tx_gt(dev, txq);
2437 #ifdef CONFIG_XPS
2438 			netif_reset_xps_queues_gt(dev, txq);
2439 #endif
2440 		}
2441 	} else {
2442 		dev->real_num_tx_queues = txq;
2443 	}
2444 
2445 	return 0;
2446 }
2447 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2448 
2449 #ifdef CONFIG_SYSFS
2450 /**
2451  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2452  *	@dev: Network device
2453  *	@rxq: Actual number of RX queues
2454  *
2455  *	This must be called either with the rtnl_lock held or before
2456  *	registration of the net device.  Returns 0 on success, or a
2457  *	negative error code.  If called before registration, it always
2458  *	succeeds.
2459  */
2460 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2461 {
2462 	int rc;
2463 
2464 	if (rxq < 1 || rxq > dev->num_rx_queues)
2465 		return -EINVAL;
2466 
2467 	if (dev->reg_state == NETREG_REGISTERED) {
2468 		ASSERT_RTNL();
2469 
2470 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2471 						  rxq);
2472 		if (rc)
2473 			return rc;
2474 	}
2475 
2476 	dev->real_num_rx_queues = rxq;
2477 	return 0;
2478 }
2479 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2480 #endif
2481 
2482 /**
2483  * netif_get_num_default_rss_queues - default number of RSS queues
2484  *
2485  * This routine should set an upper limit on the number of RSS queues
2486  * used by default by multiqueue devices.
2487  */
2488 int netif_get_num_default_rss_queues(void)
2489 {
2490 	return is_kdump_kernel() ?
2491 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2492 }
2493 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2494 
2495 static void __netif_reschedule(struct Qdisc *q)
2496 {
2497 	struct softnet_data *sd;
2498 	unsigned long flags;
2499 
2500 	local_irq_save(flags);
2501 	sd = this_cpu_ptr(&softnet_data);
2502 	q->next_sched = NULL;
2503 	*sd->output_queue_tailp = q;
2504 	sd->output_queue_tailp = &q->next_sched;
2505 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2506 	local_irq_restore(flags);
2507 }
2508 
2509 void __netif_schedule(struct Qdisc *q)
2510 {
2511 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2512 		__netif_reschedule(q);
2513 }
2514 EXPORT_SYMBOL(__netif_schedule);
2515 
2516 struct dev_kfree_skb_cb {
2517 	enum skb_free_reason reason;
2518 };
2519 
2520 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2521 {
2522 	return (struct dev_kfree_skb_cb *)skb->cb;
2523 }
2524 
2525 void netif_schedule_queue(struct netdev_queue *txq)
2526 {
2527 	rcu_read_lock();
2528 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2529 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2530 
2531 		__netif_schedule(q);
2532 	}
2533 	rcu_read_unlock();
2534 }
2535 EXPORT_SYMBOL(netif_schedule_queue);
2536 
2537 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2538 {
2539 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2540 		struct Qdisc *q;
2541 
2542 		rcu_read_lock();
2543 		q = rcu_dereference(dev_queue->qdisc);
2544 		__netif_schedule(q);
2545 		rcu_read_unlock();
2546 	}
2547 }
2548 EXPORT_SYMBOL(netif_tx_wake_queue);
2549 
2550 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2551 {
2552 	unsigned long flags;
2553 
2554 	if (unlikely(!skb))
2555 		return;
2556 
2557 	if (likely(refcount_read(&skb->users) == 1)) {
2558 		smp_rmb();
2559 		refcount_set(&skb->users, 0);
2560 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2561 		return;
2562 	}
2563 	get_kfree_skb_cb(skb)->reason = reason;
2564 	local_irq_save(flags);
2565 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2566 	__this_cpu_write(softnet_data.completion_queue, skb);
2567 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2568 	local_irq_restore(flags);
2569 }
2570 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2571 
2572 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2573 {
2574 	if (in_irq() || irqs_disabled())
2575 		__dev_kfree_skb_irq(skb, reason);
2576 	else
2577 		dev_kfree_skb(skb);
2578 }
2579 EXPORT_SYMBOL(__dev_kfree_skb_any);
2580 
2581 
2582 /**
2583  * netif_device_detach - mark device as removed
2584  * @dev: network device
2585  *
2586  * Mark device as removed from system and therefore no longer available.
2587  */
2588 void netif_device_detach(struct net_device *dev)
2589 {
2590 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2591 	    netif_running(dev)) {
2592 		netif_tx_stop_all_queues(dev);
2593 	}
2594 }
2595 EXPORT_SYMBOL(netif_device_detach);
2596 
2597 /**
2598  * netif_device_attach - mark device as attached
2599  * @dev: network device
2600  *
2601  * Mark device as attached from system and restart if needed.
2602  */
2603 void netif_device_attach(struct net_device *dev)
2604 {
2605 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2606 	    netif_running(dev)) {
2607 		netif_tx_wake_all_queues(dev);
2608 		__netdev_watchdog_up(dev);
2609 	}
2610 }
2611 EXPORT_SYMBOL(netif_device_attach);
2612 
2613 /*
2614  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2615  * to be used as a distribution range.
2616  */
2617 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2618 		  unsigned int num_tx_queues)
2619 {
2620 	u32 hash;
2621 	u16 qoffset = 0;
2622 	u16 qcount = num_tx_queues;
2623 
2624 	if (skb_rx_queue_recorded(skb)) {
2625 		hash = skb_get_rx_queue(skb);
2626 		while (unlikely(hash >= num_tx_queues))
2627 			hash -= num_tx_queues;
2628 		return hash;
2629 	}
2630 
2631 	if (dev->num_tc) {
2632 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2633 
2634 		qoffset = dev->tc_to_txq[tc].offset;
2635 		qcount = dev->tc_to_txq[tc].count;
2636 	}
2637 
2638 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2639 }
2640 EXPORT_SYMBOL(__skb_tx_hash);
2641 
2642 static void skb_warn_bad_offload(const struct sk_buff *skb)
2643 {
2644 	static const netdev_features_t null_features;
2645 	struct net_device *dev = skb->dev;
2646 	const char *name = "";
2647 
2648 	if (!net_ratelimit())
2649 		return;
2650 
2651 	if (dev) {
2652 		if (dev->dev.parent)
2653 			name = dev_driver_string(dev->dev.parent);
2654 		else
2655 			name = netdev_name(dev);
2656 	}
2657 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2658 	     "gso_type=%d ip_summed=%d\n",
2659 	     name, dev ? &dev->features : &null_features,
2660 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2661 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2662 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2663 }
2664 
2665 /*
2666  * Invalidate hardware checksum when packet is to be mangled, and
2667  * complete checksum manually on outgoing path.
2668  */
2669 int skb_checksum_help(struct sk_buff *skb)
2670 {
2671 	__wsum csum;
2672 	int ret = 0, offset;
2673 
2674 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2675 		goto out_set_summed;
2676 
2677 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2678 		skb_warn_bad_offload(skb);
2679 		return -EINVAL;
2680 	}
2681 
2682 	/* Before computing a checksum, we should make sure no frag could
2683 	 * be modified by an external entity : checksum could be wrong.
2684 	 */
2685 	if (skb_has_shared_frag(skb)) {
2686 		ret = __skb_linearize(skb);
2687 		if (ret)
2688 			goto out;
2689 	}
2690 
2691 	offset = skb_checksum_start_offset(skb);
2692 	BUG_ON(offset >= skb_headlen(skb));
2693 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2694 
2695 	offset += skb->csum_offset;
2696 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2697 
2698 	if (skb_cloned(skb) &&
2699 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2700 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2701 		if (ret)
2702 			goto out;
2703 	}
2704 
2705 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2706 out_set_summed:
2707 	skb->ip_summed = CHECKSUM_NONE;
2708 out:
2709 	return ret;
2710 }
2711 EXPORT_SYMBOL(skb_checksum_help);
2712 
2713 int skb_crc32c_csum_help(struct sk_buff *skb)
2714 {
2715 	__le32 crc32c_csum;
2716 	int ret = 0, offset, start;
2717 
2718 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2719 		goto out;
2720 
2721 	if (unlikely(skb_is_gso(skb)))
2722 		goto out;
2723 
2724 	/* Before computing a checksum, we should make sure no frag could
2725 	 * be modified by an external entity : checksum could be wrong.
2726 	 */
2727 	if (unlikely(skb_has_shared_frag(skb))) {
2728 		ret = __skb_linearize(skb);
2729 		if (ret)
2730 			goto out;
2731 	}
2732 	start = skb_checksum_start_offset(skb);
2733 	offset = start + offsetof(struct sctphdr, checksum);
2734 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2735 		ret = -EINVAL;
2736 		goto out;
2737 	}
2738 	if (skb_cloned(skb) &&
2739 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2740 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2741 		if (ret)
2742 			goto out;
2743 	}
2744 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2745 						  skb->len - start, ~(__u32)0,
2746 						  crc32c_csum_stub));
2747 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2748 	skb->ip_summed = CHECKSUM_NONE;
2749 	skb->csum_not_inet = 0;
2750 out:
2751 	return ret;
2752 }
2753 
2754 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2755 {
2756 	__be16 type = skb->protocol;
2757 
2758 	/* Tunnel gso handlers can set protocol to ethernet. */
2759 	if (type == htons(ETH_P_TEB)) {
2760 		struct ethhdr *eth;
2761 
2762 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2763 			return 0;
2764 
2765 		eth = (struct ethhdr *)skb->data;
2766 		type = eth->h_proto;
2767 	}
2768 
2769 	return __vlan_get_protocol(skb, type, depth);
2770 }
2771 
2772 /**
2773  *	skb_mac_gso_segment - mac layer segmentation handler.
2774  *	@skb: buffer to segment
2775  *	@features: features for the output path (see dev->features)
2776  */
2777 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2778 				    netdev_features_t features)
2779 {
2780 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2781 	struct packet_offload *ptype;
2782 	int vlan_depth = skb->mac_len;
2783 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2784 
2785 	if (unlikely(!type))
2786 		return ERR_PTR(-EINVAL);
2787 
2788 	__skb_pull(skb, vlan_depth);
2789 
2790 	rcu_read_lock();
2791 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2792 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2793 			segs = ptype->callbacks.gso_segment(skb, features);
2794 			break;
2795 		}
2796 	}
2797 	rcu_read_unlock();
2798 
2799 	__skb_push(skb, skb->data - skb_mac_header(skb));
2800 
2801 	return segs;
2802 }
2803 EXPORT_SYMBOL(skb_mac_gso_segment);
2804 
2805 
2806 /* openvswitch calls this on rx path, so we need a different check.
2807  */
2808 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2809 {
2810 	if (tx_path)
2811 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2812 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2813 
2814 	return skb->ip_summed == CHECKSUM_NONE;
2815 }
2816 
2817 /**
2818  *	__skb_gso_segment - Perform segmentation on skb.
2819  *	@skb: buffer to segment
2820  *	@features: features for the output path (see dev->features)
2821  *	@tx_path: whether it is called in TX path
2822  *
2823  *	This function segments the given skb and returns a list of segments.
2824  *
2825  *	It may return NULL if the skb requires no segmentation.  This is
2826  *	only possible when GSO is used for verifying header integrity.
2827  *
2828  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2829  */
2830 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2831 				  netdev_features_t features, bool tx_path)
2832 {
2833 	struct sk_buff *segs;
2834 
2835 	if (unlikely(skb_needs_check(skb, tx_path))) {
2836 		int err;
2837 
2838 		/* We're going to init ->check field in TCP or UDP header */
2839 		err = skb_cow_head(skb, 0);
2840 		if (err < 0)
2841 			return ERR_PTR(err);
2842 	}
2843 
2844 	/* Only report GSO partial support if it will enable us to
2845 	 * support segmentation on this frame without needing additional
2846 	 * work.
2847 	 */
2848 	if (features & NETIF_F_GSO_PARTIAL) {
2849 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2850 		struct net_device *dev = skb->dev;
2851 
2852 		partial_features |= dev->features & dev->gso_partial_features;
2853 		if (!skb_gso_ok(skb, features | partial_features))
2854 			features &= ~NETIF_F_GSO_PARTIAL;
2855 	}
2856 
2857 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2858 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2859 
2860 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2861 	SKB_GSO_CB(skb)->encap_level = 0;
2862 
2863 	skb_reset_mac_header(skb);
2864 	skb_reset_mac_len(skb);
2865 
2866 	segs = skb_mac_gso_segment(skb, features);
2867 
2868 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2869 		skb_warn_bad_offload(skb);
2870 
2871 	return segs;
2872 }
2873 EXPORT_SYMBOL(__skb_gso_segment);
2874 
2875 /* Take action when hardware reception checksum errors are detected. */
2876 #ifdef CONFIG_BUG
2877 void netdev_rx_csum_fault(struct net_device *dev)
2878 {
2879 	if (net_ratelimit()) {
2880 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2881 		dump_stack();
2882 	}
2883 }
2884 EXPORT_SYMBOL(netdev_rx_csum_fault);
2885 #endif
2886 
2887 /* Actually, we should eliminate this check as soon as we know, that:
2888  * 1. IOMMU is present and allows to map all the memory.
2889  * 2. No high memory really exists on this machine.
2890  */
2891 
2892 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2893 {
2894 #ifdef CONFIG_HIGHMEM
2895 	int i;
2896 
2897 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2898 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2899 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2900 
2901 			if (PageHighMem(skb_frag_page(frag)))
2902 				return 1;
2903 		}
2904 	}
2905 
2906 	if (PCI_DMA_BUS_IS_PHYS) {
2907 		struct device *pdev = dev->dev.parent;
2908 
2909 		if (!pdev)
2910 			return 0;
2911 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2912 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2913 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2914 
2915 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2916 				return 1;
2917 		}
2918 	}
2919 #endif
2920 	return 0;
2921 }
2922 
2923 /* If MPLS offload request, verify we are testing hardware MPLS features
2924  * instead of standard features for the netdev.
2925  */
2926 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2927 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2928 					   netdev_features_t features,
2929 					   __be16 type)
2930 {
2931 	if (eth_p_mpls(type))
2932 		features &= skb->dev->mpls_features;
2933 
2934 	return features;
2935 }
2936 #else
2937 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2938 					   netdev_features_t features,
2939 					   __be16 type)
2940 {
2941 	return features;
2942 }
2943 #endif
2944 
2945 static netdev_features_t harmonize_features(struct sk_buff *skb,
2946 	netdev_features_t features)
2947 {
2948 	int tmp;
2949 	__be16 type;
2950 
2951 	type = skb_network_protocol(skb, &tmp);
2952 	features = net_mpls_features(skb, features, type);
2953 
2954 	if (skb->ip_summed != CHECKSUM_NONE &&
2955 	    !can_checksum_protocol(features, type)) {
2956 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2957 	}
2958 	if (illegal_highdma(skb->dev, skb))
2959 		features &= ~NETIF_F_SG;
2960 
2961 	return features;
2962 }
2963 
2964 netdev_features_t passthru_features_check(struct sk_buff *skb,
2965 					  struct net_device *dev,
2966 					  netdev_features_t features)
2967 {
2968 	return features;
2969 }
2970 EXPORT_SYMBOL(passthru_features_check);
2971 
2972 static netdev_features_t dflt_features_check(struct sk_buff *skb,
2973 					     struct net_device *dev,
2974 					     netdev_features_t features)
2975 {
2976 	return vlan_features_check(skb, features);
2977 }
2978 
2979 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2980 					    struct net_device *dev,
2981 					    netdev_features_t features)
2982 {
2983 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2984 
2985 	if (gso_segs > dev->gso_max_segs)
2986 		return features & ~NETIF_F_GSO_MASK;
2987 
2988 	/* Support for GSO partial features requires software
2989 	 * intervention before we can actually process the packets
2990 	 * so we need to strip support for any partial features now
2991 	 * and we can pull them back in after we have partially
2992 	 * segmented the frame.
2993 	 */
2994 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2995 		features &= ~dev->gso_partial_features;
2996 
2997 	/* Make sure to clear the IPv4 ID mangling feature if the
2998 	 * IPv4 header has the potential to be fragmented.
2999 	 */
3000 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3001 		struct iphdr *iph = skb->encapsulation ?
3002 				    inner_ip_hdr(skb) : ip_hdr(skb);
3003 
3004 		if (!(iph->frag_off & htons(IP_DF)))
3005 			features &= ~NETIF_F_TSO_MANGLEID;
3006 	}
3007 
3008 	return features;
3009 }
3010 
3011 netdev_features_t netif_skb_features(struct sk_buff *skb)
3012 {
3013 	struct net_device *dev = skb->dev;
3014 	netdev_features_t features = dev->features;
3015 
3016 	if (skb_is_gso(skb))
3017 		features = gso_features_check(skb, dev, features);
3018 
3019 	/* If encapsulation offload request, verify we are testing
3020 	 * hardware encapsulation features instead of standard
3021 	 * features for the netdev
3022 	 */
3023 	if (skb->encapsulation)
3024 		features &= dev->hw_enc_features;
3025 
3026 	if (skb_vlan_tagged(skb))
3027 		features = netdev_intersect_features(features,
3028 						     dev->vlan_features |
3029 						     NETIF_F_HW_VLAN_CTAG_TX |
3030 						     NETIF_F_HW_VLAN_STAG_TX);
3031 
3032 	if (dev->netdev_ops->ndo_features_check)
3033 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3034 								features);
3035 	else
3036 		features &= dflt_features_check(skb, dev, features);
3037 
3038 	return harmonize_features(skb, features);
3039 }
3040 EXPORT_SYMBOL(netif_skb_features);
3041 
3042 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3043 		    struct netdev_queue *txq, bool more)
3044 {
3045 	unsigned int len;
3046 	int rc;
3047 
3048 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3049 		dev_queue_xmit_nit(skb, dev);
3050 
3051 	len = skb->len;
3052 	trace_net_dev_start_xmit(skb, dev);
3053 	rc = netdev_start_xmit(skb, dev, txq, more);
3054 	trace_net_dev_xmit(skb, rc, dev, len);
3055 
3056 	return rc;
3057 }
3058 
3059 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3060 				    struct netdev_queue *txq, int *ret)
3061 {
3062 	struct sk_buff *skb = first;
3063 	int rc = NETDEV_TX_OK;
3064 
3065 	while (skb) {
3066 		struct sk_buff *next = skb->next;
3067 
3068 		skb->next = NULL;
3069 		rc = xmit_one(skb, dev, txq, next != NULL);
3070 		if (unlikely(!dev_xmit_complete(rc))) {
3071 			skb->next = next;
3072 			goto out;
3073 		}
3074 
3075 		skb = next;
3076 		if (netif_xmit_stopped(txq) && skb) {
3077 			rc = NETDEV_TX_BUSY;
3078 			break;
3079 		}
3080 	}
3081 
3082 out:
3083 	*ret = rc;
3084 	return skb;
3085 }
3086 
3087 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3088 					  netdev_features_t features)
3089 {
3090 	if (skb_vlan_tag_present(skb) &&
3091 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3092 		skb = __vlan_hwaccel_push_inside(skb);
3093 	return skb;
3094 }
3095 
3096 int skb_csum_hwoffload_help(struct sk_buff *skb,
3097 			    const netdev_features_t features)
3098 {
3099 	if (unlikely(skb->csum_not_inet))
3100 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3101 			skb_crc32c_csum_help(skb);
3102 
3103 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3104 }
3105 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3106 
3107 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3108 {
3109 	netdev_features_t features;
3110 
3111 	features = netif_skb_features(skb);
3112 	skb = validate_xmit_vlan(skb, features);
3113 	if (unlikely(!skb))
3114 		goto out_null;
3115 
3116 	if (netif_needs_gso(skb, features)) {
3117 		struct sk_buff *segs;
3118 
3119 		segs = skb_gso_segment(skb, features);
3120 		if (IS_ERR(segs)) {
3121 			goto out_kfree_skb;
3122 		} else if (segs) {
3123 			consume_skb(skb);
3124 			skb = segs;
3125 		}
3126 	} else {
3127 		if (skb_needs_linearize(skb, features) &&
3128 		    __skb_linearize(skb))
3129 			goto out_kfree_skb;
3130 
3131 		/* If packet is not checksummed and device does not
3132 		 * support checksumming for this protocol, complete
3133 		 * checksumming here.
3134 		 */
3135 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3136 			if (skb->encapsulation)
3137 				skb_set_inner_transport_header(skb,
3138 							       skb_checksum_start_offset(skb));
3139 			else
3140 				skb_set_transport_header(skb,
3141 							 skb_checksum_start_offset(skb));
3142 			if (skb_csum_hwoffload_help(skb, features))
3143 				goto out_kfree_skb;
3144 		}
3145 	}
3146 
3147 	skb = validate_xmit_xfrm(skb, features, again);
3148 
3149 	return skb;
3150 
3151 out_kfree_skb:
3152 	kfree_skb(skb);
3153 out_null:
3154 	atomic_long_inc(&dev->tx_dropped);
3155 	return NULL;
3156 }
3157 
3158 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3159 {
3160 	struct sk_buff *next, *head = NULL, *tail;
3161 
3162 	for (; skb != NULL; skb = next) {
3163 		next = skb->next;
3164 		skb->next = NULL;
3165 
3166 		/* in case skb wont be segmented, point to itself */
3167 		skb->prev = skb;
3168 
3169 		skb = validate_xmit_skb(skb, dev, again);
3170 		if (!skb)
3171 			continue;
3172 
3173 		if (!head)
3174 			head = skb;
3175 		else
3176 			tail->next = skb;
3177 		/* If skb was segmented, skb->prev points to
3178 		 * the last segment. If not, it still contains skb.
3179 		 */
3180 		tail = skb->prev;
3181 	}
3182 	return head;
3183 }
3184 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3185 
3186 static void qdisc_pkt_len_init(struct sk_buff *skb)
3187 {
3188 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3189 
3190 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3191 
3192 	/* To get more precise estimation of bytes sent on wire,
3193 	 * we add to pkt_len the headers size of all segments
3194 	 */
3195 	if (shinfo->gso_size)  {
3196 		unsigned int hdr_len;
3197 		u16 gso_segs = shinfo->gso_segs;
3198 
3199 		/* mac layer + network layer */
3200 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3201 
3202 		/* + transport layer */
3203 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3204 			const struct tcphdr *th;
3205 			struct tcphdr _tcphdr;
3206 
3207 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3208 						sizeof(_tcphdr), &_tcphdr);
3209 			if (likely(th))
3210 				hdr_len += __tcp_hdrlen(th);
3211 		} else {
3212 			struct udphdr _udphdr;
3213 
3214 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3215 					       sizeof(_udphdr), &_udphdr))
3216 				hdr_len += sizeof(struct udphdr);
3217 		}
3218 
3219 		if (shinfo->gso_type & SKB_GSO_DODGY)
3220 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3221 						shinfo->gso_size);
3222 
3223 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3224 	}
3225 }
3226 
3227 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3228 				 struct net_device *dev,
3229 				 struct netdev_queue *txq)
3230 {
3231 	spinlock_t *root_lock = qdisc_lock(q);
3232 	struct sk_buff *to_free = NULL;
3233 	bool contended;
3234 	int rc;
3235 
3236 	qdisc_calculate_pkt_len(skb, q);
3237 
3238 	if (q->flags & TCQ_F_NOLOCK) {
3239 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3240 			__qdisc_drop(skb, &to_free);
3241 			rc = NET_XMIT_DROP;
3242 		} else {
3243 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3244 			__qdisc_run(q);
3245 		}
3246 
3247 		if (unlikely(to_free))
3248 			kfree_skb_list(to_free);
3249 		return rc;
3250 	}
3251 
3252 	/*
3253 	 * Heuristic to force contended enqueues to serialize on a
3254 	 * separate lock before trying to get qdisc main lock.
3255 	 * This permits qdisc->running owner to get the lock more
3256 	 * often and dequeue packets faster.
3257 	 */
3258 	contended = qdisc_is_running(q);
3259 	if (unlikely(contended))
3260 		spin_lock(&q->busylock);
3261 
3262 	spin_lock(root_lock);
3263 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3264 		__qdisc_drop(skb, &to_free);
3265 		rc = NET_XMIT_DROP;
3266 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3267 		   qdisc_run_begin(q)) {
3268 		/*
3269 		 * This is a work-conserving queue; there are no old skbs
3270 		 * waiting to be sent out; and the qdisc is not running -
3271 		 * xmit the skb directly.
3272 		 */
3273 
3274 		qdisc_bstats_update(q, skb);
3275 
3276 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3277 			if (unlikely(contended)) {
3278 				spin_unlock(&q->busylock);
3279 				contended = false;
3280 			}
3281 			__qdisc_run(q);
3282 		}
3283 
3284 		qdisc_run_end(q);
3285 		rc = NET_XMIT_SUCCESS;
3286 	} else {
3287 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3288 		if (qdisc_run_begin(q)) {
3289 			if (unlikely(contended)) {
3290 				spin_unlock(&q->busylock);
3291 				contended = false;
3292 			}
3293 			__qdisc_run(q);
3294 			qdisc_run_end(q);
3295 		}
3296 	}
3297 	spin_unlock(root_lock);
3298 	if (unlikely(to_free))
3299 		kfree_skb_list(to_free);
3300 	if (unlikely(contended))
3301 		spin_unlock(&q->busylock);
3302 	return rc;
3303 }
3304 
3305 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3306 static void skb_update_prio(struct sk_buff *skb)
3307 {
3308 	const struct netprio_map *map;
3309 	const struct sock *sk;
3310 	unsigned int prioidx;
3311 
3312 	if (skb->priority)
3313 		return;
3314 	map = rcu_dereference_bh(skb->dev->priomap);
3315 	if (!map)
3316 		return;
3317 	sk = skb_to_full_sk(skb);
3318 	if (!sk)
3319 		return;
3320 
3321 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3322 
3323 	if (prioidx < map->priomap_len)
3324 		skb->priority = map->priomap[prioidx];
3325 }
3326 #else
3327 #define skb_update_prio(skb)
3328 #endif
3329 
3330 DEFINE_PER_CPU(int, xmit_recursion);
3331 EXPORT_SYMBOL(xmit_recursion);
3332 
3333 /**
3334  *	dev_loopback_xmit - loop back @skb
3335  *	@net: network namespace this loopback is happening in
3336  *	@sk:  sk needed to be a netfilter okfn
3337  *	@skb: buffer to transmit
3338  */
3339 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3340 {
3341 	skb_reset_mac_header(skb);
3342 	__skb_pull(skb, skb_network_offset(skb));
3343 	skb->pkt_type = PACKET_LOOPBACK;
3344 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3345 	WARN_ON(!skb_dst(skb));
3346 	skb_dst_force(skb);
3347 	netif_rx_ni(skb);
3348 	return 0;
3349 }
3350 EXPORT_SYMBOL(dev_loopback_xmit);
3351 
3352 #ifdef CONFIG_NET_EGRESS
3353 static struct sk_buff *
3354 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3355 {
3356 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3357 	struct tcf_result cl_res;
3358 
3359 	if (!miniq)
3360 		return skb;
3361 
3362 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3363 	mini_qdisc_bstats_cpu_update(miniq, skb);
3364 
3365 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3366 	case TC_ACT_OK:
3367 	case TC_ACT_RECLASSIFY:
3368 		skb->tc_index = TC_H_MIN(cl_res.classid);
3369 		break;
3370 	case TC_ACT_SHOT:
3371 		mini_qdisc_qstats_cpu_drop(miniq);
3372 		*ret = NET_XMIT_DROP;
3373 		kfree_skb(skb);
3374 		return NULL;
3375 	case TC_ACT_STOLEN:
3376 	case TC_ACT_QUEUED:
3377 	case TC_ACT_TRAP:
3378 		*ret = NET_XMIT_SUCCESS;
3379 		consume_skb(skb);
3380 		return NULL;
3381 	case TC_ACT_REDIRECT:
3382 		/* No need to push/pop skb's mac_header here on egress! */
3383 		skb_do_redirect(skb);
3384 		*ret = NET_XMIT_SUCCESS;
3385 		return NULL;
3386 	default:
3387 		break;
3388 	}
3389 
3390 	return skb;
3391 }
3392 #endif /* CONFIG_NET_EGRESS */
3393 
3394 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3395 {
3396 #ifdef CONFIG_XPS
3397 	struct xps_dev_maps *dev_maps;
3398 	struct xps_map *map;
3399 	int queue_index = -1;
3400 
3401 	rcu_read_lock();
3402 	dev_maps = rcu_dereference(dev->xps_maps);
3403 	if (dev_maps) {
3404 		unsigned int tci = skb->sender_cpu - 1;
3405 
3406 		if (dev->num_tc) {
3407 			tci *= dev->num_tc;
3408 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3409 		}
3410 
3411 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3412 		if (map) {
3413 			if (map->len == 1)
3414 				queue_index = map->queues[0];
3415 			else
3416 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3417 									   map->len)];
3418 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3419 				queue_index = -1;
3420 		}
3421 	}
3422 	rcu_read_unlock();
3423 
3424 	return queue_index;
3425 #else
3426 	return -1;
3427 #endif
3428 }
3429 
3430 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3431 {
3432 	struct sock *sk = skb->sk;
3433 	int queue_index = sk_tx_queue_get(sk);
3434 
3435 	if (queue_index < 0 || skb->ooo_okay ||
3436 	    queue_index >= dev->real_num_tx_queues) {
3437 		int new_index = get_xps_queue(dev, skb);
3438 
3439 		if (new_index < 0)
3440 			new_index = skb_tx_hash(dev, skb);
3441 
3442 		if (queue_index != new_index && sk &&
3443 		    sk_fullsock(sk) &&
3444 		    rcu_access_pointer(sk->sk_dst_cache))
3445 			sk_tx_queue_set(sk, new_index);
3446 
3447 		queue_index = new_index;
3448 	}
3449 
3450 	return queue_index;
3451 }
3452 
3453 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3454 				    struct sk_buff *skb,
3455 				    void *accel_priv)
3456 {
3457 	int queue_index = 0;
3458 
3459 #ifdef CONFIG_XPS
3460 	u32 sender_cpu = skb->sender_cpu - 1;
3461 
3462 	if (sender_cpu >= (u32)NR_CPUS)
3463 		skb->sender_cpu = raw_smp_processor_id() + 1;
3464 #endif
3465 
3466 	if (dev->real_num_tx_queues != 1) {
3467 		const struct net_device_ops *ops = dev->netdev_ops;
3468 
3469 		if (ops->ndo_select_queue)
3470 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3471 							    __netdev_pick_tx);
3472 		else
3473 			queue_index = __netdev_pick_tx(dev, skb);
3474 
3475 		queue_index = netdev_cap_txqueue(dev, queue_index);
3476 	}
3477 
3478 	skb_set_queue_mapping(skb, queue_index);
3479 	return netdev_get_tx_queue(dev, queue_index);
3480 }
3481 
3482 /**
3483  *	__dev_queue_xmit - transmit a buffer
3484  *	@skb: buffer to transmit
3485  *	@accel_priv: private data used for L2 forwarding offload
3486  *
3487  *	Queue a buffer for transmission to a network device. The caller must
3488  *	have set the device and priority and built the buffer before calling
3489  *	this function. The function can be called from an interrupt.
3490  *
3491  *	A negative errno code is returned on a failure. A success does not
3492  *	guarantee the frame will be transmitted as it may be dropped due
3493  *	to congestion or traffic shaping.
3494  *
3495  * -----------------------------------------------------------------------------------
3496  *      I notice this method can also return errors from the queue disciplines,
3497  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3498  *      be positive.
3499  *
3500  *      Regardless of the return value, the skb is consumed, so it is currently
3501  *      difficult to retry a send to this method.  (You can bump the ref count
3502  *      before sending to hold a reference for retry if you are careful.)
3503  *
3504  *      When calling this method, interrupts MUST be enabled.  This is because
3505  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3506  *          --BLG
3507  */
3508 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3509 {
3510 	struct net_device *dev = skb->dev;
3511 	struct netdev_queue *txq;
3512 	struct Qdisc *q;
3513 	int rc = -ENOMEM;
3514 	bool again = false;
3515 
3516 	skb_reset_mac_header(skb);
3517 
3518 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3519 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3520 
3521 	/* Disable soft irqs for various locks below. Also
3522 	 * stops preemption for RCU.
3523 	 */
3524 	rcu_read_lock_bh();
3525 
3526 	skb_update_prio(skb);
3527 
3528 	qdisc_pkt_len_init(skb);
3529 #ifdef CONFIG_NET_CLS_ACT
3530 	skb->tc_at_ingress = 0;
3531 # ifdef CONFIG_NET_EGRESS
3532 	if (static_key_false(&egress_needed)) {
3533 		skb = sch_handle_egress(skb, &rc, dev);
3534 		if (!skb)
3535 			goto out;
3536 	}
3537 # endif
3538 #endif
3539 	/* If device/qdisc don't need skb->dst, release it right now while
3540 	 * its hot in this cpu cache.
3541 	 */
3542 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3543 		skb_dst_drop(skb);
3544 	else
3545 		skb_dst_force(skb);
3546 
3547 	txq = netdev_pick_tx(dev, skb, accel_priv);
3548 	q = rcu_dereference_bh(txq->qdisc);
3549 
3550 	trace_net_dev_queue(skb);
3551 	if (q->enqueue) {
3552 		rc = __dev_xmit_skb(skb, q, dev, txq);
3553 		goto out;
3554 	}
3555 
3556 	/* The device has no queue. Common case for software devices:
3557 	 * loopback, all the sorts of tunnels...
3558 
3559 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3560 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3561 	 * counters.)
3562 	 * However, it is possible, that they rely on protection
3563 	 * made by us here.
3564 
3565 	 * Check this and shot the lock. It is not prone from deadlocks.
3566 	 *Either shot noqueue qdisc, it is even simpler 8)
3567 	 */
3568 	if (dev->flags & IFF_UP) {
3569 		int cpu = smp_processor_id(); /* ok because BHs are off */
3570 
3571 		if (txq->xmit_lock_owner != cpu) {
3572 			if (unlikely(__this_cpu_read(xmit_recursion) >
3573 				     XMIT_RECURSION_LIMIT))
3574 				goto recursion_alert;
3575 
3576 			skb = validate_xmit_skb(skb, dev, &again);
3577 			if (!skb)
3578 				goto out;
3579 
3580 			HARD_TX_LOCK(dev, txq, cpu);
3581 
3582 			if (!netif_xmit_stopped(txq)) {
3583 				__this_cpu_inc(xmit_recursion);
3584 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3585 				__this_cpu_dec(xmit_recursion);
3586 				if (dev_xmit_complete(rc)) {
3587 					HARD_TX_UNLOCK(dev, txq);
3588 					goto out;
3589 				}
3590 			}
3591 			HARD_TX_UNLOCK(dev, txq);
3592 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3593 					     dev->name);
3594 		} else {
3595 			/* Recursion is detected! It is possible,
3596 			 * unfortunately
3597 			 */
3598 recursion_alert:
3599 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3600 					     dev->name);
3601 		}
3602 	}
3603 
3604 	rc = -ENETDOWN;
3605 	rcu_read_unlock_bh();
3606 
3607 	atomic_long_inc(&dev->tx_dropped);
3608 	kfree_skb_list(skb);
3609 	return rc;
3610 out:
3611 	rcu_read_unlock_bh();
3612 	return rc;
3613 }
3614 
3615 int dev_queue_xmit(struct sk_buff *skb)
3616 {
3617 	return __dev_queue_xmit(skb, NULL);
3618 }
3619 EXPORT_SYMBOL(dev_queue_xmit);
3620 
3621 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3622 {
3623 	return __dev_queue_xmit(skb, accel_priv);
3624 }
3625 EXPORT_SYMBOL(dev_queue_xmit_accel);
3626 
3627 
3628 /*************************************************************************
3629  *			Receiver routines
3630  *************************************************************************/
3631 
3632 int netdev_max_backlog __read_mostly = 1000;
3633 EXPORT_SYMBOL(netdev_max_backlog);
3634 
3635 int netdev_tstamp_prequeue __read_mostly = 1;
3636 int netdev_budget __read_mostly = 300;
3637 unsigned int __read_mostly netdev_budget_usecs = 2000;
3638 int weight_p __read_mostly = 64;           /* old backlog weight */
3639 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3640 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3641 int dev_rx_weight __read_mostly = 64;
3642 int dev_tx_weight __read_mostly = 64;
3643 
3644 /* Called with irq disabled */
3645 static inline void ____napi_schedule(struct softnet_data *sd,
3646 				     struct napi_struct *napi)
3647 {
3648 	list_add_tail(&napi->poll_list, &sd->poll_list);
3649 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3650 }
3651 
3652 #ifdef CONFIG_RPS
3653 
3654 /* One global table that all flow-based protocols share. */
3655 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3656 EXPORT_SYMBOL(rps_sock_flow_table);
3657 u32 rps_cpu_mask __read_mostly;
3658 EXPORT_SYMBOL(rps_cpu_mask);
3659 
3660 struct static_key rps_needed __read_mostly;
3661 EXPORT_SYMBOL(rps_needed);
3662 struct static_key rfs_needed __read_mostly;
3663 EXPORT_SYMBOL(rfs_needed);
3664 
3665 static struct rps_dev_flow *
3666 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3667 	    struct rps_dev_flow *rflow, u16 next_cpu)
3668 {
3669 	if (next_cpu < nr_cpu_ids) {
3670 #ifdef CONFIG_RFS_ACCEL
3671 		struct netdev_rx_queue *rxqueue;
3672 		struct rps_dev_flow_table *flow_table;
3673 		struct rps_dev_flow *old_rflow;
3674 		u32 flow_id;
3675 		u16 rxq_index;
3676 		int rc;
3677 
3678 		/* Should we steer this flow to a different hardware queue? */
3679 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3680 		    !(dev->features & NETIF_F_NTUPLE))
3681 			goto out;
3682 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3683 		if (rxq_index == skb_get_rx_queue(skb))
3684 			goto out;
3685 
3686 		rxqueue = dev->_rx + rxq_index;
3687 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3688 		if (!flow_table)
3689 			goto out;
3690 		flow_id = skb_get_hash(skb) & flow_table->mask;
3691 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3692 							rxq_index, flow_id);
3693 		if (rc < 0)
3694 			goto out;
3695 		old_rflow = rflow;
3696 		rflow = &flow_table->flows[flow_id];
3697 		rflow->filter = rc;
3698 		if (old_rflow->filter == rflow->filter)
3699 			old_rflow->filter = RPS_NO_FILTER;
3700 	out:
3701 #endif
3702 		rflow->last_qtail =
3703 			per_cpu(softnet_data, next_cpu).input_queue_head;
3704 	}
3705 
3706 	rflow->cpu = next_cpu;
3707 	return rflow;
3708 }
3709 
3710 /*
3711  * get_rps_cpu is called from netif_receive_skb and returns the target
3712  * CPU from the RPS map of the receiving queue for a given skb.
3713  * rcu_read_lock must be held on entry.
3714  */
3715 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3716 		       struct rps_dev_flow **rflowp)
3717 {
3718 	const struct rps_sock_flow_table *sock_flow_table;
3719 	struct netdev_rx_queue *rxqueue = dev->_rx;
3720 	struct rps_dev_flow_table *flow_table;
3721 	struct rps_map *map;
3722 	int cpu = -1;
3723 	u32 tcpu;
3724 	u32 hash;
3725 
3726 	if (skb_rx_queue_recorded(skb)) {
3727 		u16 index = skb_get_rx_queue(skb);
3728 
3729 		if (unlikely(index >= dev->real_num_rx_queues)) {
3730 			WARN_ONCE(dev->real_num_rx_queues > 1,
3731 				  "%s received packet on queue %u, but number "
3732 				  "of RX queues is %u\n",
3733 				  dev->name, index, dev->real_num_rx_queues);
3734 			goto done;
3735 		}
3736 		rxqueue += index;
3737 	}
3738 
3739 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3740 
3741 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3742 	map = rcu_dereference(rxqueue->rps_map);
3743 	if (!flow_table && !map)
3744 		goto done;
3745 
3746 	skb_reset_network_header(skb);
3747 	hash = skb_get_hash(skb);
3748 	if (!hash)
3749 		goto done;
3750 
3751 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3752 	if (flow_table && sock_flow_table) {
3753 		struct rps_dev_flow *rflow;
3754 		u32 next_cpu;
3755 		u32 ident;
3756 
3757 		/* First check into global flow table if there is a match */
3758 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3759 		if ((ident ^ hash) & ~rps_cpu_mask)
3760 			goto try_rps;
3761 
3762 		next_cpu = ident & rps_cpu_mask;
3763 
3764 		/* OK, now we know there is a match,
3765 		 * we can look at the local (per receive queue) flow table
3766 		 */
3767 		rflow = &flow_table->flows[hash & flow_table->mask];
3768 		tcpu = rflow->cpu;
3769 
3770 		/*
3771 		 * If the desired CPU (where last recvmsg was done) is
3772 		 * different from current CPU (one in the rx-queue flow
3773 		 * table entry), switch if one of the following holds:
3774 		 *   - Current CPU is unset (>= nr_cpu_ids).
3775 		 *   - Current CPU is offline.
3776 		 *   - The current CPU's queue tail has advanced beyond the
3777 		 *     last packet that was enqueued using this table entry.
3778 		 *     This guarantees that all previous packets for the flow
3779 		 *     have been dequeued, thus preserving in order delivery.
3780 		 */
3781 		if (unlikely(tcpu != next_cpu) &&
3782 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3783 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3784 		      rflow->last_qtail)) >= 0)) {
3785 			tcpu = next_cpu;
3786 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3787 		}
3788 
3789 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3790 			*rflowp = rflow;
3791 			cpu = tcpu;
3792 			goto done;
3793 		}
3794 	}
3795 
3796 try_rps:
3797 
3798 	if (map) {
3799 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3800 		if (cpu_online(tcpu)) {
3801 			cpu = tcpu;
3802 			goto done;
3803 		}
3804 	}
3805 
3806 done:
3807 	return cpu;
3808 }
3809 
3810 #ifdef CONFIG_RFS_ACCEL
3811 
3812 /**
3813  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3814  * @dev: Device on which the filter was set
3815  * @rxq_index: RX queue index
3816  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3817  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3818  *
3819  * Drivers that implement ndo_rx_flow_steer() should periodically call
3820  * this function for each installed filter and remove the filters for
3821  * which it returns %true.
3822  */
3823 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3824 			 u32 flow_id, u16 filter_id)
3825 {
3826 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3827 	struct rps_dev_flow_table *flow_table;
3828 	struct rps_dev_flow *rflow;
3829 	bool expire = true;
3830 	unsigned int cpu;
3831 
3832 	rcu_read_lock();
3833 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3834 	if (flow_table && flow_id <= flow_table->mask) {
3835 		rflow = &flow_table->flows[flow_id];
3836 		cpu = READ_ONCE(rflow->cpu);
3837 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3838 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3839 			   rflow->last_qtail) <
3840 		     (int)(10 * flow_table->mask)))
3841 			expire = false;
3842 	}
3843 	rcu_read_unlock();
3844 	return expire;
3845 }
3846 EXPORT_SYMBOL(rps_may_expire_flow);
3847 
3848 #endif /* CONFIG_RFS_ACCEL */
3849 
3850 /* Called from hardirq (IPI) context */
3851 static void rps_trigger_softirq(void *data)
3852 {
3853 	struct softnet_data *sd = data;
3854 
3855 	____napi_schedule(sd, &sd->backlog);
3856 	sd->received_rps++;
3857 }
3858 
3859 #endif /* CONFIG_RPS */
3860 
3861 /*
3862  * Check if this softnet_data structure is another cpu one
3863  * If yes, queue it to our IPI list and return 1
3864  * If no, return 0
3865  */
3866 static int rps_ipi_queued(struct softnet_data *sd)
3867 {
3868 #ifdef CONFIG_RPS
3869 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3870 
3871 	if (sd != mysd) {
3872 		sd->rps_ipi_next = mysd->rps_ipi_list;
3873 		mysd->rps_ipi_list = sd;
3874 
3875 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3876 		return 1;
3877 	}
3878 #endif /* CONFIG_RPS */
3879 	return 0;
3880 }
3881 
3882 #ifdef CONFIG_NET_FLOW_LIMIT
3883 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3884 #endif
3885 
3886 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3887 {
3888 #ifdef CONFIG_NET_FLOW_LIMIT
3889 	struct sd_flow_limit *fl;
3890 	struct softnet_data *sd;
3891 	unsigned int old_flow, new_flow;
3892 
3893 	if (qlen < (netdev_max_backlog >> 1))
3894 		return false;
3895 
3896 	sd = this_cpu_ptr(&softnet_data);
3897 
3898 	rcu_read_lock();
3899 	fl = rcu_dereference(sd->flow_limit);
3900 	if (fl) {
3901 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3902 		old_flow = fl->history[fl->history_head];
3903 		fl->history[fl->history_head] = new_flow;
3904 
3905 		fl->history_head++;
3906 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3907 
3908 		if (likely(fl->buckets[old_flow]))
3909 			fl->buckets[old_flow]--;
3910 
3911 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3912 			fl->count++;
3913 			rcu_read_unlock();
3914 			return true;
3915 		}
3916 	}
3917 	rcu_read_unlock();
3918 #endif
3919 	return false;
3920 }
3921 
3922 /*
3923  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3924  * queue (may be a remote CPU queue).
3925  */
3926 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3927 			      unsigned int *qtail)
3928 {
3929 	struct softnet_data *sd;
3930 	unsigned long flags;
3931 	unsigned int qlen;
3932 
3933 	sd = &per_cpu(softnet_data, cpu);
3934 
3935 	local_irq_save(flags);
3936 
3937 	rps_lock(sd);
3938 	if (!netif_running(skb->dev))
3939 		goto drop;
3940 	qlen = skb_queue_len(&sd->input_pkt_queue);
3941 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3942 		if (qlen) {
3943 enqueue:
3944 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3945 			input_queue_tail_incr_save(sd, qtail);
3946 			rps_unlock(sd);
3947 			local_irq_restore(flags);
3948 			return NET_RX_SUCCESS;
3949 		}
3950 
3951 		/* Schedule NAPI for backlog device
3952 		 * We can use non atomic operation since we own the queue lock
3953 		 */
3954 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3955 			if (!rps_ipi_queued(sd))
3956 				____napi_schedule(sd, &sd->backlog);
3957 		}
3958 		goto enqueue;
3959 	}
3960 
3961 drop:
3962 	sd->dropped++;
3963 	rps_unlock(sd);
3964 
3965 	local_irq_restore(flags);
3966 
3967 	atomic_long_inc(&skb->dev->rx_dropped);
3968 	kfree_skb(skb);
3969 	return NET_RX_DROP;
3970 }
3971 
3972 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3973 {
3974 	struct net_device *dev = skb->dev;
3975 	struct netdev_rx_queue *rxqueue;
3976 
3977 	rxqueue = dev->_rx;
3978 
3979 	if (skb_rx_queue_recorded(skb)) {
3980 		u16 index = skb_get_rx_queue(skb);
3981 
3982 		if (unlikely(index >= dev->real_num_rx_queues)) {
3983 			WARN_ONCE(dev->real_num_rx_queues > 1,
3984 				  "%s received packet on queue %u, but number "
3985 				  "of RX queues is %u\n",
3986 				  dev->name, index, dev->real_num_rx_queues);
3987 
3988 			return rxqueue; /* Return first rxqueue */
3989 		}
3990 		rxqueue += index;
3991 	}
3992 	return rxqueue;
3993 }
3994 
3995 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3996 				     struct bpf_prog *xdp_prog)
3997 {
3998 	struct netdev_rx_queue *rxqueue;
3999 	u32 metalen, act = XDP_DROP;
4000 	struct xdp_buff xdp;
4001 	void *orig_data;
4002 	int hlen, off;
4003 	u32 mac_len;
4004 
4005 	/* Reinjected packets coming from act_mirred or similar should
4006 	 * not get XDP generic processing.
4007 	 */
4008 	if (skb_cloned(skb))
4009 		return XDP_PASS;
4010 
4011 	/* XDP packets must be linear and must have sufficient headroom
4012 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4013 	 * native XDP provides, thus we need to do it here as well.
4014 	 */
4015 	if (skb_is_nonlinear(skb) ||
4016 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4017 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4018 		int troom = skb->tail + skb->data_len - skb->end;
4019 
4020 		/* In case we have to go down the path and also linearize,
4021 		 * then lets do the pskb_expand_head() work just once here.
4022 		 */
4023 		if (pskb_expand_head(skb,
4024 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4025 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4026 			goto do_drop;
4027 		if (skb_linearize(skb))
4028 			goto do_drop;
4029 	}
4030 
4031 	/* The XDP program wants to see the packet starting at the MAC
4032 	 * header.
4033 	 */
4034 	mac_len = skb->data - skb_mac_header(skb);
4035 	hlen = skb_headlen(skb) + mac_len;
4036 	xdp.data = skb->data - mac_len;
4037 	xdp.data_meta = xdp.data;
4038 	xdp.data_end = xdp.data + hlen;
4039 	xdp.data_hard_start = skb->data - skb_headroom(skb);
4040 	orig_data = xdp.data;
4041 
4042 	rxqueue = netif_get_rxqueue(skb);
4043 	xdp.rxq = &rxqueue->xdp_rxq;
4044 
4045 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
4046 
4047 	off = xdp.data - orig_data;
4048 	if (off > 0)
4049 		__skb_pull(skb, off);
4050 	else if (off < 0)
4051 		__skb_push(skb, -off);
4052 	skb->mac_header += off;
4053 
4054 	switch (act) {
4055 	case XDP_REDIRECT:
4056 	case XDP_TX:
4057 		__skb_push(skb, mac_len);
4058 		break;
4059 	case XDP_PASS:
4060 		metalen = xdp.data - xdp.data_meta;
4061 		if (metalen)
4062 			skb_metadata_set(skb, metalen);
4063 		break;
4064 	default:
4065 		bpf_warn_invalid_xdp_action(act);
4066 		/* fall through */
4067 	case XDP_ABORTED:
4068 		trace_xdp_exception(skb->dev, xdp_prog, act);
4069 		/* fall through */
4070 	case XDP_DROP:
4071 	do_drop:
4072 		kfree_skb(skb);
4073 		break;
4074 	}
4075 
4076 	return act;
4077 }
4078 
4079 /* When doing generic XDP we have to bypass the qdisc layer and the
4080  * network taps in order to match in-driver-XDP behavior.
4081  */
4082 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4083 {
4084 	struct net_device *dev = skb->dev;
4085 	struct netdev_queue *txq;
4086 	bool free_skb = true;
4087 	int cpu, rc;
4088 
4089 	txq = netdev_pick_tx(dev, skb, NULL);
4090 	cpu = smp_processor_id();
4091 	HARD_TX_LOCK(dev, txq, cpu);
4092 	if (!netif_xmit_stopped(txq)) {
4093 		rc = netdev_start_xmit(skb, dev, txq, 0);
4094 		if (dev_xmit_complete(rc))
4095 			free_skb = false;
4096 	}
4097 	HARD_TX_UNLOCK(dev, txq);
4098 	if (free_skb) {
4099 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4100 		kfree_skb(skb);
4101 	}
4102 }
4103 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4104 
4105 static struct static_key generic_xdp_needed __read_mostly;
4106 
4107 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4108 {
4109 	if (xdp_prog) {
4110 		u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4111 		int err;
4112 
4113 		if (act != XDP_PASS) {
4114 			switch (act) {
4115 			case XDP_REDIRECT:
4116 				err = xdp_do_generic_redirect(skb->dev, skb,
4117 							      xdp_prog);
4118 				if (err)
4119 					goto out_redir;
4120 			/* fallthru to submit skb */
4121 			case XDP_TX:
4122 				generic_xdp_tx(skb, xdp_prog);
4123 				break;
4124 			}
4125 			return XDP_DROP;
4126 		}
4127 	}
4128 	return XDP_PASS;
4129 out_redir:
4130 	kfree_skb(skb);
4131 	return XDP_DROP;
4132 }
4133 EXPORT_SYMBOL_GPL(do_xdp_generic);
4134 
4135 static int netif_rx_internal(struct sk_buff *skb)
4136 {
4137 	int ret;
4138 
4139 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4140 
4141 	trace_netif_rx(skb);
4142 
4143 	if (static_key_false(&generic_xdp_needed)) {
4144 		int ret;
4145 
4146 		preempt_disable();
4147 		rcu_read_lock();
4148 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4149 		rcu_read_unlock();
4150 		preempt_enable();
4151 
4152 		/* Consider XDP consuming the packet a success from
4153 		 * the netdev point of view we do not want to count
4154 		 * this as an error.
4155 		 */
4156 		if (ret != XDP_PASS)
4157 			return NET_RX_SUCCESS;
4158 	}
4159 
4160 #ifdef CONFIG_RPS
4161 	if (static_key_false(&rps_needed)) {
4162 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4163 		int cpu;
4164 
4165 		preempt_disable();
4166 		rcu_read_lock();
4167 
4168 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4169 		if (cpu < 0)
4170 			cpu = smp_processor_id();
4171 
4172 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4173 
4174 		rcu_read_unlock();
4175 		preempt_enable();
4176 	} else
4177 #endif
4178 	{
4179 		unsigned int qtail;
4180 
4181 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4182 		put_cpu();
4183 	}
4184 	return ret;
4185 }
4186 
4187 /**
4188  *	netif_rx	-	post buffer to the network code
4189  *	@skb: buffer to post
4190  *
4191  *	This function receives a packet from a device driver and queues it for
4192  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4193  *	may be dropped during processing for congestion control or by the
4194  *	protocol layers.
4195  *
4196  *	return values:
4197  *	NET_RX_SUCCESS	(no congestion)
4198  *	NET_RX_DROP     (packet was dropped)
4199  *
4200  */
4201 
4202 int netif_rx(struct sk_buff *skb)
4203 {
4204 	trace_netif_rx_entry(skb);
4205 
4206 	return netif_rx_internal(skb);
4207 }
4208 EXPORT_SYMBOL(netif_rx);
4209 
4210 int netif_rx_ni(struct sk_buff *skb)
4211 {
4212 	int err;
4213 
4214 	trace_netif_rx_ni_entry(skb);
4215 
4216 	preempt_disable();
4217 	err = netif_rx_internal(skb);
4218 	if (local_softirq_pending())
4219 		do_softirq();
4220 	preempt_enable();
4221 
4222 	return err;
4223 }
4224 EXPORT_SYMBOL(netif_rx_ni);
4225 
4226 static __latent_entropy void net_tx_action(struct softirq_action *h)
4227 {
4228 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4229 
4230 	if (sd->completion_queue) {
4231 		struct sk_buff *clist;
4232 
4233 		local_irq_disable();
4234 		clist = sd->completion_queue;
4235 		sd->completion_queue = NULL;
4236 		local_irq_enable();
4237 
4238 		while (clist) {
4239 			struct sk_buff *skb = clist;
4240 
4241 			clist = clist->next;
4242 
4243 			WARN_ON(refcount_read(&skb->users));
4244 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4245 				trace_consume_skb(skb);
4246 			else
4247 				trace_kfree_skb(skb, net_tx_action);
4248 
4249 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4250 				__kfree_skb(skb);
4251 			else
4252 				__kfree_skb_defer(skb);
4253 		}
4254 
4255 		__kfree_skb_flush();
4256 	}
4257 
4258 	if (sd->output_queue) {
4259 		struct Qdisc *head;
4260 
4261 		local_irq_disable();
4262 		head = sd->output_queue;
4263 		sd->output_queue = NULL;
4264 		sd->output_queue_tailp = &sd->output_queue;
4265 		local_irq_enable();
4266 
4267 		while (head) {
4268 			struct Qdisc *q = head;
4269 			spinlock_t *root_lock = NULL;
4270 
4271 			head = head->next_sched;
4272 
4273 			if (!(q->flags & TCQ_F_NOLOCK)) {
4274 				root_lock = qdisc_lock(q);
4275 				spin_lock(root_lock);
4276 			}
4277 			/* We need to make sure head->next_sched is read
4278 			 * before clearing __QDISC_STATE_SCHED
4279 			 */
4280 			smp_mb__before_atomic();
4281 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4282 			qdisc_run(q);
4283 			if (root_lock)
4284 				spin_unlock(root_lock);
4285 		}
4286 	}
4287 
4288 	xfrm_dev_backlog(sd);
4289 }
4290 
4291 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4292 /* This hook is defined here for ATM LANE */
4293 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4294 			     unsigned char *addr) __read_mostly;
4295 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4296 #endif
4297 
4298 static inline struct sk_buff *
4299 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4300 		   struct net_device *orig_dev)
4301 {
4302 #ifdef CONFIG_NET_CLS_ACT
4303 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4304 	struct tcf_result cl_res;
4305 
4306 	/* If there's at least one ingress present somewhere (so
4307 	 * we get here via enabled static key), remaining devices
4308 	 * that are not configured with an ingress qdisc will bail
4309 	 * out here.
4310 	 */
4311 	if (!miniq)
4312 		return skb;
4313 
4314 	if (*pt_prev) {
4315 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4316 		*pt_prev = NULL;
4317 	}
4318 
4319 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4320 	skb->tc_at_ingress = 1;
4321 	mini_qdisc_bstats_cpu_update(miniq, skb);
4322 
4323 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4324 	case TC_ACT_OK:
4325 	case TC_ACT_RECLASSIFY:
4326 		skb->tc_index = TC_H_MIN(cl_res.classid);
4327 		break;
4328 	case TC_ACT_SHOT:
4329 		mini_qdisc_qstats_cpu_drop(miniq);
4330 		kfree_skb(skb);
4331 		return NULL;
4332 	case TC_ACT_STOLEN:
4333 	case TC_ACT_QUEUED:
4334 	case TC_ACT_TRAP:
4335 		consume_skb(skb);
4336 		return NULL;
4337 	case TC_ACT_REDIRECT:
4338 		/* skb_mac_header check was done by cls/act_bpf, so
4339 		 * we can safely push the L2 header back before
4340 		 * redirecting to another netdev
4341 		 */
4342 		__skb_push(skb, skb->mac_len);
4343 		skb_do_redirect(skb);
4344 		return NULL;
4345 	default:
4346 		break;
4347 	}
4348 #endif /* CONFIG_NET_CLS_ACT */
4349 	return skb;
4350 }
4351 
4352 /**
4353  *	netdev_is_rx_handler_busy - check if receive handler is registered
4354  *	@dev: device to check
4355  *
4356  *	Check if a receive handler is already registered for a given device.
4357  *	Return true if there one.
4358  *
4359  *	The caller must hold the rtnl_mutex.
4360  */
4361 bool netdev_is_rx_handler_busy(struct net_device *dev)
4362 {
4363 	ASSERT_RTNL();
4364 	return dev && rtnl_dereference(dev->rx_handler);
4365 }
4366 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4367 
4368 /**
4369  *	netdev_rx_handler_register - register receive handler
4370  *	@dev: device to register a handler for
4371  *	@rx_handler: receive handler to register
4372  *	@rx_handler_data: data pointer that is used by rx handler
4373  *
4374  *	Register a receive handler for a device. This handler will then be
4375  *	called from __netif_receive_skb. A negative errno code is returned
4376  *	on a failure.
4377  *
4378  *	The caller must hold the rtnl_mutex.
4379  *
4380  *	For a general description of rx_handler, see enum rx_handler_result.
4381  */
4382 int netdev_rx_handler_register(struct net_device *dev,
4383 			       rx_handler_func_t *rx_handler,
4384 			       void *rx_handler_data)
4385 {
4386 	if (netdev_is_rx_handler_busy(dev))
4387 		return -EBUSY;
4388 
4389 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4390 		return -EINVAL;
4391 
4392 	/* Note: rx_handler_data must be set before rx_handler */
4393 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4394 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4395 
4396 	return 0;
4397 }
4398 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4399 
4400 /**
4401  *	netdev_rx_handler_unregister - unregister receive handler
4402  *	@dev: device to unregister a handler from
4403  *
4404  *	Unregister a receive handler from a device.
4405  *
4406  *	The caller must hold the rtnl_mutex.
4407  */
4408 void netdev_rx_handler_unregister(struct net_device *dev)
4409 {
4410 
4411 	ASSERT_RTNL();
4412 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4413 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4414 	 * section has a guarantee to see a non NULL rx_handler_data
4415 	 * as well.
4416 	 */
4417 	synchronize_net();
4418 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4419 }
4420 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4421 
4422 /*
4423  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4424  * the special handling of PFMEMALLOC skbs.
4425  */
4426 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4427 {
4428 	switch (skb->protocol) {
4429 	case htons(ETH_P_ARP):
4430 	case htons(ETH_P_IP):
4431 	case htons(ETH_P_IPV6):
4432 	case htons(ETH_P_8021Q):
4433 	case htons(ETH_P_8021AD):
4434 		return true;
4435 	default:
4436 		return false;
4437 	}
4438 }
4439 
4440 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4441 			     int *ret, struct net_device *orig_dev)
4442 {
4443 #ifdef CONFIG_NETFILTER_INGRESS
4444 	if (nf_hook_ingress_active(skb)) {
4445 		int ingress_retval;
4446 
4447 		if (*pt_prev) {
4448 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4449 			*pt_prev = NULL;
4450 		}
4451 
4452 		rcu_read_lock();
4453 		ingress_retval = nf_hook_ingress(skb);
4454 		rcu_read_unlock();
4455 		return ingress_retval;
4456 	}
4457 #endif /* CONFIG_NETFILTER_INGRESS */
4458 	return 0;
4459 }
4460 
4461 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4462 {
4463 	struct packet_type *ptype, *pt_prev;
4464 	rx_handler_func_t *rx_handler;
4465 	struct net_device *orig_dev;
4466 	bool deliver_exact = false;
4467 	int ret = NET_RX_DROP;
4468 	__be16 type;
4469 
4470 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4471 
4472 	trace_netif_receive_skb(skb);
4473 
4474 	orig_dev = skb->dev;
4475 
4476 	skb_reset_network_header(skb);
4477 	if (!skb_transport_header_was_set(skb))
4478 		skb_reset_transport_header(skb);
4479 	skb_reset_mac_len(skb);
4480 
4481 	pt_prev = NULL;
4482 
4483 another_round:
4484 	skb->skb_iif = skb->dev->ifindex;
4485 
4486 	__this_cpu_inc(softnet_data.processed);
4487 
4488 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4489 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4490 		skb = skb_vlan_untag(skb);
4491 		if (unlikely(!skb))
4492 			goto out;
4493 	}
4494 
4495 	if (skb_skip_tc_classify(skb))
4496 		goto skip_classify;
4497 
4498 	if (pfmemalloc)
4499 		goto skip_taps;
4500 
4501 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4502 		if (pt_prev)
4503 			ret = deliver_skb(skb, pt_prev, orig_dev);
4504 		pt_prev = ptype;
4505 	}
4506 
4507 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4508 		if (pt_prev)
4509 			ret = deliver_skb(skb, pt_prev, orig_dev);
4510 		pt_prev = ptype;
4511 	}
4512 
4513 skip_taps:
4514 #ifdef CONFIG_NET_INGRESS
4515 	if (static_key_false(&ingress_needed)) {
4516 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4517 		if (!skb)
4518 			goto out;
4519 
4520 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4521 			goto out;
4522 	}
4523 #endif
4524 	skb_reset_tc(skb);
4525 skip_classify:
4526 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4527 		goto drop;
4528 
4529 	if (skb_vlan_tag_present(skb)) {
4530 		if (pt_prev) {
4531 			ret = deliver_skb(skb, pt_prev, orig_dev);
4532 			pt_prev = NULL;
4533 		}
4534 		if (vlan_do_receive(&skb))
4535 			goto another_round;
4536 		else if (unlikely(!skb))
4537 			goto out;
4538 	}
4539 
4540 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4541 	if (rx_handler) {
4542 		if (pt_prev) {
4543 			ret = deliver_skb(skb, pt_prev, orig_dev);
4544 			pt_prev = NULL;
4545 		}
4546 		switch (rx_handler(&skb)) {
4547 		case RX_HANDLER_CONSUMED:
4548 			ret = NET_RX_SUCCESS;
4549 			goto out;
4550 		case RX_HANDLER_ANOTHER:
4551 			goto another_round;
4552 		case RX_HANDLER_EXACT:
4553 			deliver_exact = true;
4554 		case RX_HANDLER_PASS:
4555 			break;
4556 		default:
4557 			BUG();
4558 		}
4559 	}
4560 
4561 	if (unlikely(skb_vlan_tag_present(skb))) {
4562 		if (skb_vlan_tag_get_id(skb))
4563 			skb->pkt_type = PACKET_OTHERHOST;
4564 		/* Note: we might in the future use prio bits
4565 		 * and set skb->priority like in vlan_do_receive()
4566 		 * For the time being, just ignore Priority Code Point
4567 		 */
4568 		skb->vlan_tci = 0;
4569 	}
4570 
4571 	type = skb->protocol;
4572 
4573 	/* deliver only exact match when indicated */
4574 	if (likely(!deliver_exact)) {
4575 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4576 				       &ptype_base[ntohs(type) &
4577 						   PTYPE_HASH_MASK]);
4578 	}
4579 
4580 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4581 			       &orig_dev->ptype_specific);
4582 
4583 	if (unlikely(skb->dev != orig_dev)) {
4584 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4585 				       &skb->dev->ptype_specific);
4586 	}
4587 
4588 	if (pt_prev) {
4589 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4590 			goto drop;
4591 		else
4592 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4593 	} else {
4594 drop:
4595 		if (!deliver_exact)
4596 			atomic_long_inc(&skb->dev->rx_dropped);
4597 		else
4598 			atomic_long_inc(&skb->dev->rx_nohandler);
4599 		kfree_skb(skb);
4600 		/* Jamal, now you will not able to escape explaining
4601 		 * me how you were going to use this. :-)
4602 		 */
4603 		ret = NET_RX_DROP;
4604 	}
4605 
4606 out:
4607 	return ret;
4608 }
4609 
4610 /**
4611  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4612  *	@skb: buffer to process
4613  *
4614  *	More direct receive version of netif_receive_skb().  It should
4615  *	only be used by callers that have a need to skip RPS and Generic XDP.
4616  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4617  *
4618  *	This function may only be called from softirq context and interrupts
4619  *	should be enabled.
4620  *
4621  *	Return values (usually ignored):
4622  *	NET_RX_SUCCESS: no congestion
4623  *	NET_RX_DROP: packet was dropped
4624  */
4625 int netif_receive_skb_core(struct sk_buff *skb)
4626 {
4627 	int ret;
4628 
4629 	rcu_read_lock();
4630 	ret = __netif_receive_skb_core(skb, false);
4631 	rcu_read_unlock();
4632 
4633 	return ret;
4634 }
4635 EXPORT_SYMBOL(netif_receive_skb_core);
4636 
4637 static int __netif_receive_skb(struct sk_buff *skb)
4638 {
4639 	int ret;
4640 
4641 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4642 		unsigned int noreclaim_flag;
4643 
4644 		/*
4645 		 * PFMEMALLOC skbs are special, they should
4646 		 * - be delivered to SOCK_MEMALLOC sockets only
4647 		 * - stay away from userspace
4648 		 * - have bounded memory usage
4649 		 *
4650 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4651 		 * context down to all allocation sites.
4652 		 */
4653 		noreclaim_flag = memalloc_noreclaim_save();
4654 		ret = __netif_receive_skb_core(skb, true);
4655 		memalloc_noreclaim_restore(noreclaim_flag);
4656 	} else
4657 		ret = __netif_receive_skb_core(skb, false);
4658 
4659 	return ret;
4660 }
4661 
4662 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4663 {
4664 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4665 	struct bpf_prog *new = xdp->prog;
4666 	int ret = 0;
4667 
4668 	switch (xdp->command) {
4669 	case XDP_SETUP_PROG:
4670 		rcu_assign_pointer(dev->xdp_prog, new);
4671 		if (old)
4672 			bpf_prog_put(old);
4673 
4674 		if (old && !new) {
4675 			static_key_slow_dec(&generic_xdp_needed);
4676 		} else if (new && !old) {
4677 			static_key_slow_inc(&generic_xdp_needed);
4678 			dev_disable_lro(dev);
4679 			dev_disable_gro_hw(dev);
4680 		}
4681 		break;
4682 
4683 	case XDP_QUERY_PROG:
4684 		xdp->prog_attached = !!old;
4685 		xdp->prog_id = old ? old->aux->id : 0;
4686 		break;
4687 
4688 	default:
4689 		ret = -EINVAL;
4690 		break;
4691 	}
4692 
4693 	return ret;
4694 }
4695 
4696 static int netif_receive_skb_internal(struct sk_buff *skb)
4697 {
4698 	int ret;
4699 
4700 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4701 
4702 	if (skb_defer_rx_timestamp(skb))
4703 		return NET_RX_SUCCESS;
4704 
4705 	if (static_key_false(&generic_xdp_needed)) {
4706 		int ret;
4707 
4708 		preempt_disable();
4709 		rcu_read_lock();
4710 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4711 		rcu_read_unlock();
4712 		preempt_enable();
4713 
4714 		if (ret != XDP_PASS)
4715 			return NET_RX_DROP;
4716 	}
4717 
4718 	rcu_read_lock();
4719 #ifdef CONFIG_RPS
4720 	if (static_key_false(&rps_needed)) {
4721 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4722 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4723 
4724 		if (cpu >= 0) {
4725 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4726 			rcu_read_unlock();
4727 			return ret;
4728 		}
4729 	}
4730 #endif
4731 	ret = __netif_receive_skb(skb);
4732 	rcu_read_unlock();
4733 	return ret;
4734 }
4735 
4736 /**
4737  *	netif_receive_skb - process receive buffer from network
4738  *	@skb: buffer to process
4739  *
4740  *	netif_receive_skb() is the main receive data processing function.
4741  *	It always succeeds. The buffer may be dropped during processing
4742  *	for congestion control or by the protocol layers.
4743  *
4744  *	This function may only be called from softirq context and interrupts
4745  *	should be enabled.
4746  *
4747  *	Return values (usually ignored):
4748  *	NET_RX_SUCCESS: no congestion
4749  *	NET_RX_DROP: packet was dropped
4750  */
4751 int netif_receive_skb(struct sk_buff *skb)
4752 {
4753 	trace_netif_receive_skb_entry(skb);
4754 
4755 	return netif_receive_skb_internal(skb);
4756 }
4757 EXPORT_SYMBOL(netif_receive_skb);
4758 
4759 DEFINE_PER_CPU(struct work_struct, flush_works);
4760 
4761 /* Network device is going away, flush any packets still pending */
4762 static void flush_backlog(struct work_struct *work)
4763 {
4764 	struct sk_buff *skb, *tmp;
4765 	struct softnet_data *sd;
4766 
4767 	local_bh_disable();
4768 	sd = this_cpu_ptr(&softnet_data);
4769 
4770 	local_irq_disable();
4771 	rps_lock(sd);
4772 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4773 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4774 			__skb_unlink(skb, &sd->input_pkt_queue);
4775 			kfree_skb(skb);
4776 			input_queue_head_incr(sd);
4777 		}
4778 	}
4779 	rps_unlock(sd);
4780 	local_irq_enable();
4781 
4782 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4783 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4784 			__skb_unlink(skb, &sd->process_queue);
4785 			kfree_skb(skb);
4786 			input_queue_head_incr(sd);
4787 		}
4788 	}
4789 	local_bh_enable();
4790 }
4791 
4792 static void flush_all_backlogs(void)
4793 {
4794 	unsigned int cpu;
4795 
4796 	get_online_cpus();
4797 
4798 	for_each_online_cpu(cpu)
4799 		queue_work_on(cpu, system_highpri_wq,
4800 			      per_cpu_ptr(&flush_works, cpu));
4801 
4802 	for_each_online_cpu(cpu)
4803 		flush_work(per_cpu_ptr(&flush_works, cpu));
4804 
4805 	put_online_cpus();
4806 }
4807 
4808 static int napi_gro_complete(struct sk_buff *skb)
4809 {
4810 	struct packet_offload *ptype;
4811 	__be16 type = skb->protocol;
4812 	struct list_head *head = &offload_base;
4813 	int err = -ENOENT;
4814 
4815 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4816 
4817 	if (NAPI_GRO_CB(skb)->count == 1) {
4818 		skb_shinfo(skb)->gso_size = 0;
4819 		goto out;
4820 	}
4821 
4822 	rcu_read_lock();
4823 	list_for_each_entry_rcu(ptype, head, list) {
4824 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4825 			continue;
4826 
4827 		err = ptype->callbacks.gro_complete(skb, 0);
4828 		break;
4829 	}
4830 	rcu_read_unlock();
4831 
4832 	if (err) {
4833 		WARN_ON(&ptype->list == head);
4834 		kfree_skb(skb);
4835 		return NET_RX_SUCCESS;
4836 	}
4837 
4838 out:
4839 	return netif_receive_skb_internal(skb);
4840 }
4841 
4842 /* napi->gro_list contains packets ordered by age.
4843  * youngest packets at the head of it.
4844  * Complete skbs in reverse order to reduce latencies.
4845  */
4846 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4847 {
4848 	struct sk_buff *skb, *prev = NULL;
4849 
4850 	/* scan list and build reverse chain */
4851 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4852 		skb->prev = prev;
4853 		prev = skb;
4854 	}
4855 
4856 	for (skb = prev; skb; skb = prev) {
4857 		skb->next = NULL;
4858 
4859 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4860 			return;
4861 
4862 		prev = skb->prev;
4863 		napi_gro_complete(skb);
4864 		napi->gro_count--;
4865 	}
4866 
4867 	napi->gro_list = NULL;
4868 }
4869 EXPORT_SYMBOL(napi_gro_flush);
4870 
4871 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4872 {
4873 	struct sk_buff *p;
4874 	unsigned int maclen = skb->dev->hard_header_len;
4875 	u32 hash = skb_get_hash_raw(skb);
4876 
4877 	for (p = napi->gro_list; p; p = p->next) {
4878 		unsigned long diffs;
4879 
4880 		NAPI_GRO_CB(p)->flush = 0;
4881 
4882 		if (hash != skb_get_hash_raw(p)) {
4883 			NAPI_GRO_CB(p)->same_flow = 0;
4884 			continue;
4885 		}
4886 
4887 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4888 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4889 		diffs |= skb_metadata_dst_cmp(p, skb);
4890 		diffs |= skb_metadata_differs(p, skb);
4891 		if (maclen == ETH_HLEN)
4892 			diffs |= compare_ether_header(skb_mac_header(p),
4893 						      skb_mac_header(skb));
4894 		else if (!diffs)
4895 			diffs = memcmp(skb_mac_header(p),
4896 				       skb_mac_header(skb),
4897 				       maclen);
4898 		NAPI_GRO_CB(p)->same_flow = !diffs;
4899 	}
4900 }
4901 
4902 static void skb_gro_reset_offset(struct sk_buff *skb)
4903 {
4904 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4905 	const skb_frag_t *frag0 = &pinfo->frags[0];
4906 
4907 	NAPI_GRO_CB(skb)->data_offset = 0;
4908 	NAPI_GRO_CB(skb)->frag0 = NULL;
4909 	NAPI_GRO_CB(skb)->frag0_len = 0;
4910 
4911 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4912 	    pinfo->nr_frags &&
4913 	    !PageHighMem(skb_frag_page(frag0))) {
4914 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4915 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4916 						    skb_frag_size(frag0),
4917 						    skb->end - skb->tail);
4918 	}
4919 }
4920 
4921 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4922 {
4923 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4924 
4925 	BUG_ON(skb->end - skb->tail < grow);
4926 
4927 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4928 
4929 	skb->data_len -= grow;
4930 	skb->tail += grow;
4931 
4932 	pinfo->frags[0].page_offset += grow;
4933 	skb_frag_size_sub(&pinfo->frags[0], grow);
4934 
4935 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4936 		skb_frag_unref(skb, 0);
4937 		memmove(pinfo->frags, pinfo->frags + 1,
4938 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4939 	}
4940 }
4941 
4942 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4943 {
4944 	struct sk_buff **pp = NULL;
4945 	struct packet_offload *ptype;
4946 	__be16 type = skb->protocol;
4947 	struct list_head *head = &offload_base;
4948 	int same_flow;
4949 	enum gro_result ret;
4950 	int grow;
4951 
4952 	if (netif_elide_gro(skb->dev))
4953 		goto normal;
4954 
4955 	gro_list_prepare(napi, skb);
4956 
4957 	rcu_read_lock();
4958 	list_for_each_entry_rcu(ptype, head, list) {
4959 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4960 			continue;
4961 
4962 		skb_set_network_header(skb, skb_gro_offset(skb));
4963 		skb_reset_mac_len(skb);
4964 		NAPI_GRO_CB(skb)->same_flow = 0;
4965 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4966 		NAPI_GRO_CB(skb)->free = 0;
4967 		NAPI_GRO_CB(skb)->encap_mark = 0;
4968 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4969 		NAPI_GRO_CB(skb)->is_fou = 0;
4970 		NAPI_GRO_CB(skb)->is_atomic = 1;
4971 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4972 
4973 		/* Setup for GRO checksum validation */
4974 		switch (skb->ip_summed) {
4975 		case CHECKSUM_COMPLETE:
4976 			NAPI_GRO_CB(skb)->csum = skb->csum;
4977 			NAPI_GRO_CB(skb)->csum_valid = 1;
4978 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4979 			break;
4980 		case CHECKSUM_UNNECESSARY:
4981 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4982 			NAPI_GRO_CB(skb)->csum_valid = 0;
4983 			break;
4984 		default:
4985 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4986 			NAPI_GRO_CB(skb)->csum_valid = 0;
4987 		}
4988 
4989 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4990 		break;
4991 	}
4992 	rcu_read_unlock();
4993 
4994 	if (&ptype->list == head)
4995 		goto normal;
4996 
4997 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4998 		ret = GRO_CONSUMED;
4999 		goto ok;
5000 	}
5001 
5002 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5003 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5004 
5005 	if (pp) {
5006 		struct sk_buff *nskb = *pp;
5007 
5008 		*pp = nskb->next;
5009 		nskb->next = NULL;
5010 		napi_gro_complete(nskb);
5011 		napi->gro_count--;
5012 	}
5013 
5014 	if (same_flow)
5015 		goto ok;
5016 
5017 	if (NAPI_GRO_CB(skb)->flush)
5018 		goto normal;
5019 
5020 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
5021 		struct sk_buff *nskb = napi->gro_list;
5022 
5023 		/* locate the end of the list to select the 'oldest' flow */
5024 		while (nskb->next) {
5025 			pp = &nskb->next;
5026 			nskb = *pp;
5027 		}
5028 		*pp = NULL;
5029 		nskb->next = NULL;
5030 		napi_gro_complete(nskb);
5031 	} else {
5032 		napi->gro_count++;
5033 	}
5034 	NAPI_GRO_CB(skb)->count = 1;
5035 	NAPI_GRO_CB(skb)->age = jiffies;
5036 	NAPI_GRO_CB(skb)->last = skb;
5037 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5038 	skb->next = napi->gro_list;
5039 	napi->gro_list = skb;
5040 	ret = GRO_HELD;
5041 
5042 pull:
5043 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5044 	if (grow > 0)
5045 		gro_pull_from_frag0(skb, grow);
5046 ok:
5047 	return ret;
5048 
5049 normal:
5050 	ret = GRO_NORMAL;
5051 	goto pull;
5052 }
5053 
5054 struct packet_offload *gro_find_receive_by_type(__be16 type)
5055 {
5056 	struct list_head *offload_head = &offload_base;
5057 	struct packet_offload *ptype;
5058 
5059 	list_for_each_entry_rcu(ptype, offload_head, list) {
5060 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5061 			continue;
5062 		return ptype;
5063 	}
5064 	return NULL;
5065 }
5066 EXPORT_SYMBOL(gro_find_receive_by_type);
5067 
5068 struct packet_offload *gro_find_complete_by_type(__be16 type)
5069 {
5070 	struct list_head *offload_head = &offload_base;
5071 	struct packet_offload *ptype;
5072 
5073 	list_for_each_entry_rcu(ptype, offload_head, list) {
5074 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5075 			continue;
5076 		return ptype;
5077 	}
5078 	return NULL;
5079 }
5080 EXPORT_SYMBOL(gro_find_complete_by_type);
5081 
5082 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5083 {
5084 	skb_dst_drop(skb);
5085 	secpath_reset(skb);
5086 	kmem_cache_free(skbuff_head_cache, skb);
5087 }
5088 
5089 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5090 {
5091 	switch (ret) {
5092 	case GRO_NORMAL:
5093 		if (netif_receive_skb_internal(skb))
5094 			ret = GRO_DROP;
5095 		break;
5096 
5097 	case GRO_DROP:
5098 		kfree_skb(skb);
5099 		break;
5100 
5101 	case GRO_MERGED_FREE:
5102 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5103 			napi_skb_free_stolen_head(skb);
5104 		else
5105 			__kfree_skb(skb);
5106 		break;
5107 
5108 	case GRO_HELD:
5109 	case GRO_MERGED:
5110 	case GRO_CONSUMED:
5111 		break;
5112 	}
5113 
5114 	return ret;
5115 }
5116 
5117 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5118 {
5119 	skb_mark_napi_id(skb, napi);
5120 	trace_napi_gro_receive_entry(skb);
5121 
5122 	skb_gro_reset_offset(skb);
5123 
5124 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5125 }
5126 EXPORT_SYMBOL(napi_gro_receive);
5127 
5128 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5129 {
5130 	if (unlikely(skb->pfmemalloc)) {
5131 		consume_skb(skb);
5132 		return;
5133 	}
5134 	__skb_pull(skb, skb_headlen(skb));
5135 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5136 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5137 	skb->vlan_tci = 0;
5138 	skb->dev = napi->dev;
5139 	skb->skb_iif = 0;
5140 	skb->encapsulation = 0;
5141 	skb_shinfo(skb)->gso_type = 0;
5142 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5143 	secpath_reset(skb);
5144 
5145 	napi->skb = skb;
5146 }
5147 
5148 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5149 {
5150 	struct sk_buff *skb = napi->skb;
5151 
5152 	if (!skb) {
5153 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5154 		if (skb) {
5155 			napi->skb = skb;
5156 			skb_mark_napi_id(skb, napi);
5157 		}
5158 	}
5159 	return skb;
5160 }
5161 EXPORT_SYMBOL(napi_get_frags);
5162 
5163 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5164 				      struct sk_buff *skb,
5165 				      gro_result_t ret)
5166 {
5167 	switch (ret) {
5168 	case GRO_NORMAL:
5169 	case GRO_HELD:
5170 		__skb_push(skb, ETH_HLEN);
5171 		skb->protocol = eth_type_trans(skb, skb->dev);
5172 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5173 			ret = GRO_DROP;
5174 		break;
5175 
5176 	case GRO_DROP:
5177 		napi_reuse_skb(napi, skb);
5178 		break;
5179 
5180 	case GRO_MERGED_FREE:
5181 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5182 			napi_skb_free_stolen_head(skb);
5183 		else
5184 			napi_reuse_skb(napi, skb);
5185 		break;
5186 
5187 	case GRO_MERGED:
5188 	case GRO_CONSUMED:
5189 		break;
5190 	}
5191 
5192 	return ret;
5193 }
5194 
5195 /* Upper GRO stack assumes network header starts at gro_offset=0
5196  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5197  * We copy ethernet header into skb->data to have a common layout.
5198  */
5199 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5200 {
5201 	struct sk_buff *skb = napi->skb;
5202 	const struct ethhdr *eth;
5203 	unsigned int hlen = sizeof(*eth);
5204 
5205 	napi->skb = NULL;
5206 
5207 	skb_reset_mac_header(skb);
5208 	skb_gro_reset_offset(skb);
5209 
5210 	eth = skb_gro_header_fast(skb, 0);
5211 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5212 		eth = skb_gro_header_slow(skb, hlen, 0);
5213 		if (unlikely(!eth)) {
5214 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5215 					     __func__, napi->dev->name);
5216 			napi_reuse_skb(napi, skb);
5217 			return NULL;
5218 		}
5219 	} else {
5220 		gro_pull_from_frag0(skb, hlen);
5221 		NAPI_GRO_CB(skb)->frag0 += hlen;
5222 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5223 	}
5224 	__skb_pull(skb, hlen);
5225 
5226 	/*
5227 	 * This works because the only protocols we care about don't require
5228 	 * special handling.
5229 	 * We'll fix it up properly in napi_frags_finish()
5230 	 */
5231 	skb->protocol = eth->h_proto;
5232 
5233 	return skb;
5234 }
5235 
5236 gro_result_t napi_gro_frags(struct napi_struct *napi)
5237 {
5238 	struct sk_buff *skb = napi_frags_skb(napi);
5239 
5240 	if (!skb)
5241 		return GRO_DROP;
5242 
5243 	trace_napi_gro_frags_entry(skb);
5244 
5245 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5246 }
5247 EXPORT_SYMBOL(napi_gro_frags);
5248 
5249 /* Compute the checksum from gro_offset and return the folded value
5250  * after adding in any pseudo checksum.
5251  */
5252 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5253 {
5254 	__wsum wsum;
5255 	__sum16 sum;
5256 
5257 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5258 
5259 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5260 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5261 	if (likely(!sum)) {
5262 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5263 		    !skb->csum_complete_sw)
5264 			netdev_rx_csum_fault(skb->dev);
5265 	}
5266 
5267 	NAPI_GRO_CB(skb)->csum = wsum;
5268 	NAPI_GRO_CB(skb)->csum_valid = 1;
5269 
5270 	return sum;
5271 }
5272 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5273 
5274 static void net_rps_send_ipi(struct softnet_data *remsd)
5275 {
5276 #ifdef CONFIG_RPS
5277 	while (remsd) {
5278 		struct softnet_data *next = remsd->rps_ipi_next;
5279 
5280 		if (cpu_online(remsd->cpu))
5281 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5282 		remsd = next;
5283 	}
5284 #endif
5285 }
5286 
5287 /*
5288  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5289  * Note: called with local irq disabled, but exits with local irq enabled.
5290  */
5291 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5292 {
5293 #ifdef CONFIG_RPS
5294 	struct softnet_data *remsd = sd->rps_ipi_list;
5295 
5296 	if (remsd) {
5297 		sd->rps_ipi_list = NULL;
5298 
5299 		local_irq_enable();
5300 
5301 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5302 		net_rps_send_ipi(remsd);
5303 	} else
5304 #endif
5305 		local_irq_enable();
5306 }
5307 
5308 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5309 {
5310 #ifdef CONFIG_RPS
5311 	return sd->rps_ipi_list != NULL;
5312 #else
5313 	return false;
5314 #endif
5315 }
5316 
5317 static int process_backlog(struct napi_struct *napi, int quota)
5318 {
5319 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5320 	bool again = true;
5321 	int work = 0;
5322 
5323 	/* Check if we have pending ipi, its better to send them now,
5324 	 * not waiting net_rx_action() end.
5325 	 */
5326 	if (sd_has_rps_ipi_waiting(sd)) {
5327 		local_irq_disable();
5328 		net_rps_action_and_irq_enable(sd);
5329 	}
5330 
5331 	napi->weight = dev_rx_weight;
5332 	while (again) {
5333 		struct sk_buff *skb;
5334 
5335 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5336 			rcu_read_lock();
5337 			__netif_receive_skb(skb);
5338 			rcu_read_unlock();
5339 			input_queue_head_incr(sd);
5340 			if (++work >= quota)
5341 				return work;
5342 
5343 		}
5344 
5345 		local_irq_disable();
5346 		rps_lock(sd);
5347 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5348 			/*
5349 			 * Inline a custom version of __napi_complete().
5350 			 * only current cpu owns and manipulates this napi,
5351 			 * and NAPI_STATE_SCHED is the only possible flag set
5352 			 * on backlog.
5353 			 * We can use a plain write instead of clear_bit(),
5354 			 * and we dont need an smp_mb() memory barrier.
5355 			 */
5356 			napi->state = 0;
5357 			again = false;
5358 		} else {
5359 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5360 						   &sd->process_queue);
5361 		}
5362 		rps_unlock(sd);
5363 		local_irq_enable();
5364 	}
5365 
5366 	return work;
5367 }
5368 
5369 /**
5370  * __napi_schedule - schedule for receive
5371  * @n: entry to schedule
5372  *
5373  * The entry's receive function will be scheduled to run.
5374  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5375  */
5376 void __napi_schedule(struct napi_struct *n)
5377 {
5378 	unsigned long flags;
5379 
5380 	local_irq_save(flags);
5381 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5382 	local_irq_restore(flags);
5383 }
5384 EXPORT_SYMBOL(__napi_schedule);
5385 
5386 /**
5387  *	napi_schedule_prep - check if napi can be scheduled
5388  *	@n: napi context
5389  *
5390  * Test if NAPI routine is already running, and if not mark
5391  * it as running.  This is used as a condition variable
5392  * insure only one NAPI poll instance runs.  We also make
5393  * sure there is no pending NAPI disable.
5394  */
5395 bool napi_schedule_prep(struct napi_struct *n)
5396 {
5397 	unsigned long val, new;
5398 
5399 	do {
5400 		val = READ_ONCE(n->state);
5401 		if (unlikely(val & NAPIF_STATE_DISABLE))
5402 			return false;
5403 		new = val | NAPIF_STATE_SCHED;
5404 
5405 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5406 		 * This was suggested by Alexander Duyck, as compiler
5407 		 * emits better code than :
5408 		 * if (val & NAPIF_STATE_SCHED)
5409 		 *     new |= NAPIF_STATE_MISSED;
5410 		 */
5411 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5412 						   NAPIF_STATE_MISSED;
5413 	} while (cmpxchg(&n->state, val, new) != val);
5414 
5415 	return !(val & NAPIF_STATE_SCHED);
5416 }
5417 EXPORT_SYMBOL(napi_schedule_prep);
5418 
5419 /**
5420  * __napi_schedule_irqoff - schedule for receive
5421  * @n: entry to schedule
5422  *
5423  * Variant of __napi_schedule() assuming hard irqs are masked
5424  */
5425 void __napi_schedule_irqoff(struct napi_struct *n)
5426 {
5427 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5428 }
5429 EXPORT_SYMBOL(__napi_schedule_irqoff);
5430 
5431 bool napi_complete_done(struct napi_struct *n, int work_done)
5432 {
5433 	unsigned long flags, val, new;
5434 
5435 	/*
5436 	 * 1) Don't let napi dequeue from the cpu poll list
5437 	 *    just in case its running on a different cpu.
5438 	 * 2) If we are busy polling, do nothing here, we have
5439 	 *    the guarantee we will be called later.
5440 	 */
5441 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5442 				 NAPIF_STATE_IN_BUSY_POLL)))
5443 		return false;
5444 
5445 	if (n->gro_list) {
5446 		unsigned long timeout = 0;
5447 
5448 		if (work_done)
5449 			timeout = n->dev->gro_flush_timeout;
5450 
5451 		if (timeout)
5452 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5453 				      HRTIMER_MODE_REL_PINNED);
5454 		else
5455 			napi_gro_flush(n, false);
5456 	}
5457 	if (unlikely(!list_empty(&n->poll_list))) {
5458 		/* If n->poll_list is not empty, we need to mask irqs */
5459 		local_irq_save(flags);
5460 		list_del_init(&n->poll_list);
5461 		local_irq_restore(flags);
5462 	}
5463 
5464 	do {
5465 		val = READ_ONCE(n->state);
5466 
5467 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5468 
5469 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5470 
5471 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5472 		 * because we will call napi->poll() one more time.
5473 		 * This C code was suggested by Alexander Duyck to help gcc.
5474 		 */
5475 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5476 						    NAPIF_STATE_SCHED;
5477 	} while (cmpxchg(&n->state, val, new) != val);
5478 
5479 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5480 		__napi_schedule(n);
5481 		return false;
5482 	}
5483 
5484 	return true;
5485 }
5486 EXPORT_SYMBOL(napi_complete_done);
5487 
5488 /* must be called under rcu_read_lock(), as we dont take a reference */
5489 static struct napi_struct *napi_by_id(unsigned int napi_id)
5490 {
5491 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5492 	struct napi_struct *napi;
5493 
5494 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5495 		if (napi->napi_id == napi_id)
5496 			return napi;
5497 
5498 	return NULL;
5499 }
5500 
5501 #if defined(CONFIG_NET_RX_BUSY_POLL)
5502 
5503 #define BUSY_POLL_BUDGET 8
5504 
5505 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5506 {
5507 	int rc;
5508 
5509 	/* Busy polling means there is a high chance device driver hard irq
5510 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5511 	 * set in napi_schedule_prep().
5512 	 * Since we are about to call napi->poll() once more, we can safely
5513 	 * clear NAPI_STATE_MISSED.
5514 	 *
5515 	 * Note: x86 could use a single "lock and ..." instruction
5516 	 * to perform these two clear_bit()
5517 	 */
5518 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5519 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5520 
5521 	local_bh_disable();
5522 
5523 	/* All we really want here is to re-enable device interrupts.
5524 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5525 	 */
5526 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5527 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5528 	netpoll_poll_unlock(have_poll_lock);
5529 	if (rc == BUSY_POLL_BUDGET)
5530 		__napi_schedule(napi);
5531 	local_bh_enable();
5532 }
5533 
5534 void napi_busy_loop(unsigned int napi_id,
5535 		    bool (*loop_end)(void *, unsigned long),
5536 		    void *loop_end_arg)
5537 {
5538 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5539 	int (*napi_poll)(struct napi_struct *napi, int budget);
5540 	void *have_poll_lock = NULL;
5541 	struct napi_struct *napi;
5542 
5543 restart:
5544 	napi_poll = NULL;
5545 
5546 	rcu_read_lock();
5547 
5548 	napi = napi_by_id(napi_id);
5549 	if (!napi)
5550 		goto out;
5551 
5552 	preempt_disable();
5553 	for (;;) {
5554 		int work = 0;
5555 
5556 		local_bh_disable();
5557 		if (!napi_poll) {
5558 			unsigned long val = READ_ONCE(napi->state);
5559 
5560 			/* If multiple threads are competing for this napi,
5561 			 * we avoid dirtying napi->state as much as we can.
5562 			 */
5563 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5564 				   NAPIF_STATE_IN_BUSY_POLL))
5565 				goto count;
5566 			if (cmpxchg(&napi->state, val,
5567 				    val | NAPIF_STATE_IN_BUSY_POLL |
5568 					  NAPIF_STATE_SCHED) != val)
5569 				goto count;
5570 			have_poll_lock = netpoll_poll_lock(napi);
5571 			napi_poll = napi->poll;
5572 		}
5573 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5574 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5575 count:
5576 		if (work > 0)
5577 			__NET_ADD_STATS(dev_net(napi->dev),
5578 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5579 		local_bh_enable();
5580 
5581 		if (!loop_end || loop_end(loop_end_arg, start_time))
5582 			break;
5583 
5584 		if (unlikely(need_resched())) {
5585 			if (napi_poll)
5586 				busy_poll_stop(napi, have_poll_lock);
5587 			preempt_enable();
5588 			rcu_read_unlock();
5589 			cond_resched();
5590 			if (loop_end(loop_end_arg, start_time))
5591 				return;
5592 			goto restart;
5593 		}
5594 		cpu_relax();
5595 	}
5596 	if (napi_poll)
5597 		busy_poll_stop(napi, have_poll_lock);
5598 	preempt_enable();
5599 out:
5600 	rcu_read_unlock();
5601 }
5602 EXPORT_SYMBOL(napi_busy_loop);
5603 
5604 #endif /* CONFIG_NET_RX_BUSY_POLL */
5605 
5606 static void napi_hash_add(struct napi_struct *napi)
5607 {
5608 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5609 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5610 		return;
5611 
5612 	spin_lock(&napi_hash_lock);
5613 
5614 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5615 	do {
5616 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5617 			napi_gen_id = MIN_NAPI_ID;
5618 	} while (napi_by_id(napi_gen_id));
5619 	napi->napi_id = napi_gen_id;
5620 
5621 	hlist_add_head_rcu(&napi->napi_hash_node,
5622 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5623 
5624 	spin_unlock(&napi_hash_lock);
5625 }
5626 
5627 /* Warning : caller is responsible to make sure rcu grace period
5628  * is respected before freeing memory containing @napi
5629  */
5630 bool napi_hash_del(struct napi_struct *napi)
5631 {
5632 	bool rcu_sync_needed = false;
5633 
5634 	spin_lock(&napi_hash_lock);
5635 
5636 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5637 		rcu_sync_needed = true;
5638 		hlist_del_rcu(&napi->napi_hash_node);
5639 	}
5640 	spin_unlock(&napi_hash_lock);
5641 	return rcu_sync_needed;
5642 }
5643 EXPORT_SYMBOL_GPL(napi_hash_del);
5644 
5645 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5646 {
5647 	struct napi_struct *napi;
5648 
5649 	napi = container_of(timer, struct napi_struct, timer);
5650 
5651 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5652 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5653 	 */
5654 	if (napi->gro_list && !napi_disable_pending(napi) &&
5655 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5656 		__napi_schedule_irqoff(napi);
5657 
5658 	return HRTIMER_NORESTART;
5659 }
5660 
5661 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5662 		    int (*poll)(struct napi_struct *, int), int weight)
5663 {
5664 	INIT_LIST_HEAD(&napi->poll_list);
5665 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5666 	napi->timer.function = napi_watchdog;
5667 	napi->gro_count = 0;
5668 	napi->gro_list = NULL;
5669 	napi->skb = NULL;
5670 	napi->poll = poll;
5671 	if (weight > NAPI_POLL_WEIGHT)
5672 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5673 			    weight, dev->name);
5674 	napi->weight = weight;
5675 	list_add(&napi->dev_list, &dev->napi_list);
5676 	napi->dev = dev;
5677 #ifdef CONFIG_NETPOLL
5678 	napi->poll_owner = -1;
5679 #endif
5680 	set_bit(NAPI_STATE_SCHED, &napi->state);
5681 	napi_hash_add(napi);
5682 }
5683 EXPORT_SYMBOL(netif_napi_add);
5684 
5685 void napi_disable(struct napi_struct *n)
5686 {
5687 	might_sleep();
5688 	set_bit(NAPI_STATE_DISABLE, &n->state);
5689 
5690 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5691 		msleep(1);
5692 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5693 		msleep(1);
5694 
5695 	hrtimer_cancel(&n->timer);
5696 
5697 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5698 }
5699 EXPORT_SYMBOL(napi_disable);
5700 
5701 /* Must be called in process context */
5702 void netif_napi_del(struct napi_struct *napi)
5703 {
5704 	might_sleep();
5705 	if (napi_hash_del(napi))
5706 		synchronize_net();
5707 	list_del_init(&napi->dev_list);
5708 	napi_free_frags(napi);
5709 
5710 	kfree_skb_list(napi->gro_list);
5711 	napi->gro_list = NULL;
5712 	napi->gro_count = 0;
5713 }
5714 EXPORT_SYMBOL(netif_napi_del);
5715 
5716 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5717 {
5718 	void *have;
5719 	int work, weight;
5720 
5721 	list_del_init(&n->poll_list);
5722 
5723 	have = netpoll_poll_lock(n);
5724 
5725 	weight = n->weight;
5726 
5727 	/* This NAPI_STATE_SCHED test is for avoiding a race
5728 	 * with netpoll's poll_napi().  Only the entity which
5729 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5730 	 * actually make the ->poll() call.  Therefore we avoid
5731 	 * accidentally calling ->poll() when NAPI is not scheduled.
5732 	 */
5733 	work = 0;
5734 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5735 		work = n->poll(n, weight);
5736 		trace_napi_poll(n, work, weight);
5737 	}
5738 
5739 	WARN_ON_ONCE(work > weight);
5740 
5741 	if (likely(work < weight))
5742 		goto out_unlock;
5743 
5744 	/* Drivers must not modify the NAPI state if they
5745 	 * consume the entire weight.  In such cases this code
5746 	 * still "owns" the NAPI instance and therefore can
5747 	 * move the instance around on the list at-will.
5748 	 */
5749 	if (unlikely(napi_disable_pending(n))) {
5750 		napi_complete(n);
5751 		goto out_unlock;
5752 	}
5753 
5754 	if (n->gro_list) {
5755 		/* flush too old packets
5756 		 * If HZ < 1000, flush all packets.
5757 		 */
5758 		napi_gro_flush(n, HZ >= 1000);
5759 	}
5760 
5761 	/* Some drivers may have called napi_schedule
5762 	 * prior to exhausting their budget.
5763 	 */
5764 	if (unlikely(!list_empty(&n->poll_list))) {
5765 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5766 			     n->dev ? n->dev->name : "backlog");
5767 		goto out_unlock;
5768 	}
5769 
5770 	list_add_tail(&n->poll_list, repoll);
5771 
5772 out_unlock:
5773 	netpoll_poll_unlock(have);
5774 
5775 	return work;
5776 }
5777 
5778 static __latent_entropy void net_rx_action(struct softirq_action *h)
5779 {
5780 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5781 	unsigned long time_limit = jiffies +
5782 		usecs_to_jiffies(netdev_budget_usecs);
5783 	int budget = netdev_budget;
5784 	LIST_HEAD(list);
5785 	LIST_HEAD(repoll);
5786 
5787 	local_irq_disable();
5788 	list_splice_init(&sd->poll_list, &list);
5789 	local_irq_enable();
5790 
5791 	for (;;) {
5792 		struct napi_struct *n;
5793 
5794 		if (list_empty(&list)) {
5795 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5796 				goto out;
5797 			break;
5798 		}
5799 
5800 		n = list_first_entry(&list, struct napi_struct, poll_list);
5801 		budget -= napi_poll(n, &repoll);
5802 
5803 		/* If softirq window is exhausted then punt.
5804 		 * Allow this to run for 2 jiffies since which will allow
5805 		 * an average latency of 1.5/HZ.
5806 		 */
5807 		if (unlikely(budget <= 0 ||
5808 			     time_after_eq(jiffies, time_limit))) {
5809 			sd->time_squeeze++;
5810 			break;
5811 		}
5812 	}
5813 
5814 	local_irq_disable();
5815 
5816 	list_splice_tail_init(&sd->poll_list, &list);
5817 	list_splice_tail(&repoll, &list);
5818 	list_splice(&list, &sd->poll_list);
5819 	if (!list_empty(&sd->poll_list))
5820 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5821 
5822 	net_rps_action_and_irq_enable(sd);
5823 out:
5824 	__kfree_skb_flush();
5825 }
5826 
5827 struct netdev_adjacent {
5828 	struct net_device *dev;
5829 
5830 	/* upper master flag, there can only be one master device per list */
5831 	bool master;
5832 
5833 	/* counter for the number of times this device was added to us */
5834 	u16 ref_nr;
5835 
5836 	/* private field for the users */
5837 	void *private;
5838 
5839 	struct list_head list;
5840 	struct rcu_head rcu;
5841 };
5842 
5843 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5844 						 struct list_head *adj_list)
5845 {
5846 	struct netdev_adjacent *adj;
5847 
5848 	list_for_each_entry(adj, adj_list, list) {
5849 		if (adj->dev == adj_dev)
5850 			return adj;
5851 	}
5852 	return NULL;
5853 }
5854 
5855 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5856 {
5857 	struct net_device *dev = data;
5858 
5859 	return upper_dev == dev;
5860 }
5861 
5862 /**
5863  * netdev_has_upper_dev - Check if device is linked to an upper device
5864  * @dev: device
5865  * @upper_dev: upper device to check
5866  *
5867  * Find out if a device is linked to specified upper device and return true
5868  * in case it is. Note that this checks only immediate upper device,
5869  * not through a complete stack of devices. The caller must hold the RTNL lock.
5870  */
5871 bool netdev_has_upper_dev(struct net_device *dev,
5872 			  struct net_device *upper_dev)
5873 {
5874 	ASSERT_RTNL();
5875 
5876 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5877 					     upper_dev);
5878 }
5879 EXPORT_SYMBOL(netdev_has_upper_dev);
5880 
5881 /**
5882  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5883  * @dev: device
5884  * @upper_dev: upper device to check
5885  *
5886  * Find out if a device is linked to specified upper device and return true
5887  * in case it is. Note that this checks the entire upper device chain.
5888  * The caller must hold rcu lock.
5889  */
5890 
5891 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5892 				  struct net_device *upper_dev)
5893 {
5894 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5895 					       upper_dev);
5896 }
5897 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5898 
5899 /**
5900  * netdev_has_any_upper_dev - Check if device is linked to some device
5901  * @dev: device
5902  *
5903  * Find out if a device is linked to an upper device and return true in case
5904  * it is. The caller must hold the RTNL lock.
5905  */
5906 bool netdev_has_any_upper_dev(struct net_device *dev)
5907 {
5908 	ASSERT_RTNL();
5909 
5910 	return !list_empty(&dev->adj_list.upper);
5911 }
5912 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5913 
5914 /**
5915  * netdev_master_upper_dev_get - Get master upper device
5916  * @dev: device
5917  *
5918  * Find a master upper device and return pointer to it or NULL in case
5919  * it's not there. The caller must hold the RTNL lock.
5920  */
5921 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5922 {
5923 	struct netdev_adjacent *upper;
5924 
5925 	ASSERT_RTNL();
5926 
5927 	if (list_empty(&dev->adj_list.upper))
5928 		return NULL;
5929 
5930 	upper = list_first_entry(&dev->adj_list.upper,
5931 				 struct netdev_adjacent, list);
5932 	if (likely(upper->master))
5933 		return upper->dev;
5934 	return NULL;
5935 }
5936 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5937 
5938 /**
5939  * netdev_has_any_lower_dev - Check if device is linked to some device
5940  * @dev: device
5941  *
5942  * Find out if a device is linked to a lower device and return true in case
5943  * it is. The caller must hold the RTNL lock.
5944  */
5945 static bool netdev_has_any_lower_dev(struct net_device *dev)
5946 {
5947 	ASSERT_RTNL();
5948 
5949 	return !list_empty(&dev->adj_list.lower);
5950 }
5951 
5952 void *netdev_adjacent_get_private(struct list_head *adj_list)
5953 {
5954 	struct netdev_adjacent *adj;
5955 
5956 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5957 
5958 	return adj->private;
5959 }
5960 EXPORT_SYMBOL(netdev_adjacent_get_private);
5961 
5962 /**
5963  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5964  * @dev: device
5965  * @iter: list_head ** of the current position
5966  *
5967  * Gets the next device from the dev's upper list, starting from iter
5968  * position. The caller must hold RCU read lock.
5969  */
5970 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5971 						 struct list_head **iter)
5972 {
5973 	struct netdev_adjacent *upper;
5974 
5975 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5976 
5977 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5978 
5979 	if (&upper->list == &dev->adj_list.upper)
5980 		return NULL;
5981 
5982 	*iter = &upper->list;
5983 
5984 	return upper->dev;
5985 }
5986 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5987 
5988 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5989 						    struct list_head **iter)
5990 {
5991 	struct netdev_adjacent *upper;
5992 
5993 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5994 
5995 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5996 
5997 	if (&upper->list == &dev->adj_list.upper)
5998 		return NULL;
5999 
6000 	*iter = &upper->list;
6001 
6002 	return upper->dev;
6003 }
6004 
6005 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6006 				  int (*fn)(struct net_device *dev,
6007 					    void *data),
6008 				  void *data)
6009 {
6010 	struct net_device *udev;
6011 	struct list_head *iter;
6012 	int ret;
6013 
6014 	for (iter = &dev->adj_list.upper,
6015 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6016 	     udev;
6017 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6018 		/* first is the upper device itself */
6019 		ret = fn(udev, data);
6020 		if (ret)
6021 			return ret;
6022 
6023 		/* then look at all of its upper devices */
6024 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6025 		if (ret)
6026 			return ret;
6027 	}
6028 
6029 	return 0;
6030 }
6031 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6032 
6033 /**
6034  * netdev_lower_get_next_private - Get the next ->private from the
6035  *				   lower neighbour list
6036  * @dev: device
6037  * @iter: list_head ** of the current position
6038  *
6039  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6040  * list, starting from iter position. The caller must hold either hold the
6041  * RTNL lock or its own locking that guarantees that the neighbour lower
6042  * list will remain unchanged.
6043  */
6044 void *netdev_lower_get_next_private(struct net_device *dev,
6045 				    struct list_head **iter)
6046 {
6047 	struct netdev_adjacent *lower;
6048 
6049 	lower = list_entry(*iter, struct netdev_adjacent, list);
6050 
6051 	if (&lower->list == &dev->adj_list.lower)
6052 		return NULL;
6053 
6054 	*iter = lower->list.next;
6055 
6056 	return lower->private;
6057 }
6058 EXPORT_SYMBOL(netdev_lower_get_next_private);
6059 
6060 /**
6061  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6062  *				       lower neighbour list, RCU
6063  *				       variant
6064  * @dev: device
6065  * @iter: list_head ** of the current position
6066  *
6067  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6068  * list, starting from iter position. The caller must hold RCU read lock.
6069  */
6070 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6071 					struct list_head **iter)
6072 {
6073 	struct netdev_adjacent *lower;
6074 
6075 	WARN_ON_ONCE(!rcu_read_lock_held());
6076 
6077 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6078 
6079 	if (&lower->list == &dev->adj_list.lower)
6080 		return NULL;
6081 
6082 	*iter = &lower->list;
6083 
6084 	return lower->private;
6085 }
6086 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6087 
6088 /**
6089  * netdev_lower_get_next - Get the next device from the lower neighbour
6090  *                         list
6091  * @dev: device
6092  * @iter: list_head ** of the current position
6093  *
6094  * Gets the next netdev_adjacent from the dev's lower neighbour
6095  * list, starting from iter position. The caller must hold RTNL lock or
6096  * its own locking that guarantees that the neighbour lower
6097  * list will remain unchanged.
6098  */
6099 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6100 {
6101 	struct netdev_adjacent *lower;
6102 
6103 	lower = list_entry(*iter, struct netdev_adjacent, list);
6104 
6105 	if (&lower->list == &dev->adj_list.lower)
6106 		return NULL;
6107 
6108 	*iter = lower->list.next;
6109 
6110 	return lower->dev;
6111 }
6112 EXPORT_SYMBOL(netdev_lower_get_next);
6113 
6114 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6115 						struct list_head **iter)
6116 {
6117 	struct netdev_adjacent *lower;
6118 
6119 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6120 
6121 	if (&lower->list == &dev->adj_list.lower)
6122 		return NULL;
6123 
6124 	*iter = &lower->list;
6125 
6126 	return lower->dev;
6127 }
6128 
6129 int netdev_walk_all_lower_dev(struct net_device *dev,
6130 			      int (*fn)(struct net_device *dev,
6131 					void *data),
6132 			      void *data)
6133 {
6134 	struct net_device *ldev;
6135 	struct list_head *iter;
6136 	int ret;
6137 
6138 	for (iter = &dev->adj_list.lower,
6139 	     ldev = netdev_next_lower_dev(dev, &iter);
6140 	     ldev;
6141 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6142 		/* first is the lower device itself */
6143 		ret = fn(ldev, data);
6144 		if (ret)
6145 			return ret;
6146 
6147 		/* then look at all of its lower devices */
6148 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6149 		if (ret)
6150 			return ret;
6151 	}
6152 
6153 	return 0;
6154 }
6155 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6156 
6157 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6158 						    struct list_head **iter)
6159 {
6160 	struct netdev_adjacent *lower;
6161 
6162 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6163 	if (&lower->list == &dev->adj_list.lower)
6164 		return NULL;
6165 
6166 	*iter = &lower->list;
6167 
6168 	return lower->dev;
6169 }
6170 
6171 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6172 				  int (*fn)(struct net_device *dev,
6173 					    void *data),
6174 				  void *data)
6175 {
6176 	struct net_device *ldev;
6177 	struct list_head *iter;
6178 	int ret;
6179 
6180 	for (iter = &dev->adj_list.lower,
6181 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6182 	     ldev;
6183 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6184 		/* first is the lower device itself */
6185 		ret = fn(ldev, data);
6186 		if (ret)
6187 			return ret;
6188 
6189 		/* then look at all of its lower devices */
6190 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6191 		if (ret)
6192 			return ret;
6193 	}
6194 
6195 	return 0;
6196 }
6197 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6198 
6199 /**
6200  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6201  *				       lower neighbour list, RCU
6202  *				       variant
6203  * @dev: device
6204  *
6205  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6206  * list. The caller must hold RCU read lock.
6207  */
6208 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6209 {
6210 	struct netdev_adjacent *lower;
6211 
6212 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6213 			struct netdev_adjacent, list);
6214 	if (lower)
6215 		return lower->private;
6216 	return NULL;
6217 }
6218 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6219 
6220 /**
6221  * netdev_master_upper_dev_get_rcu - Get master upper device
6222  * @dev: device
6223  *
6224  * Find a master upper device and return pointer to it or NULL in case
6225  * it's not there. The caller must hold the RCU read lock.
6226  */
6227 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6228 {
6229 	struct netdev_adjacent *upper;
6230 
6231 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6232 				       struct netdev_adjacent, list);
6233 	if (upper && likely(upper->master))
6234 		return upper->dev;
6235 	return NULL;
6236 }
6237 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6238 
6239 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6240 			      struct net_device *adj_dev,
6241 			      struct list_head *dev_list)
6242 {
6243 	char linkname[IFNAMSIZ+7];
6244 
6245 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6246 		"upper_%s" : "lower_%s", adj_dev->name);
6247 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6248 				 linkname);
6249 }
6250 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6251 			       char *name,
6252 			       struct list_head *dev_list)
6253 {
6254 	char linkname[IFNAMSIZ+7];
6255 
6256 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6257 		"upper_%s" : "lower_%s", name);
6258 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6259 }
6260 
6261 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6262 						 struct net_device *adj_dev,
6263 						 struct list_head *dev_list)
6264 {
6265 	return (dev_list == &dev->adj_list.upper ||
6266 		dev_list == &dev->adj_list.lower) &&
6267 		net_eq(dev_net(dev), dev_net(adj_dev));
6268 }
6269 
6270 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6271 					struct net_device *adj_dev,
6272 					struct list_head *dev_list,
6273 					void *private, bool master)
6274 {
6275 	struct netdev_adjacent *adj;
6276 	int ret;
6277 
6278 	adj = __netdev_find_adj(adj_dev, dev_list);
6279 
6280 	if (adj) {
6281 		adj->ref_nr += 1;
6282 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6283 			 dev->name, adj_dev->name, adj->ref_nr);
6284 
6285 		return 0;
6286 	}
6287 
6288 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6289 	if (!adj)
6290 		return -ENOMEM;
6291 
6292 	adj->dev = adj_dev;
6293 	adj->master = master;
6294 	adj->ref_nr = 1;
6295 	adj->private = private;
6296 	dev_hold(adj_dev);
6297 
6298 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6299 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6300 
6301 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6302 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6303 		if (ret)
6304 			goto free_adj;
6305 	}
6306 
6307 	/* Ensure that master link is always the first item in list. */
6308 	if (master) {
6309 		ret = sysfs_create_link(&(dev->dev.kobj),
6310 					&(adj_dev->dev.kobj), "master");
6311 		if (ret)
6312 			goto remove_symlinks;
6313 
6314 		list_add_rcu(&adj->list, dev_list);
6315 	} else {
6316 		list_add_tail_rcu(&adj->list, dev_list);
6317 	}
6318 
6319 	return 0;
6320 
6321 remove_symlinks:
6322 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6323 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6324 free_adj:
6325 	kfree(adj);
6326 	dev_put(adj_dev);
6327 
6328 	return ret;
6329 }
6330 
6331 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6332 					 struct net_device *adj_dev,
6333 					 u16 ref_nr,
6334 					 struct list_head *dev_list)
6335 {
6336 	struct netdev_adjacent *adj;
6337 
6338 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6339 		 dev->name, adj_dev->name, ref_nr);
6340 
6341 	adj = __netdev_find_adj(adj_dev, dev_list);
6342 
6343 	if (!adj) {
6344 		pr_err("Adjacency does not exist for device %s from %s\n",
6345 		       dev->name, adj_dev->name);
6346 		WARN_ON(1);
6347 		return;
6348 	}
6349 
6350 	if (adj->ref_nr > ref_nr) {
6351 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6352 			 dev->name, adj_dev->name, ref_nr,
6353 			 adj->ref_nr - ref_nr);
6354 		adj->ref_nr -= ref_nr;
6355 		return;
6356 	}
6357 
6358 	if (adj->master)
6359 		sysfs_remove_link(&(dev->dev.kobj), "master");
6360 
6361 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6362 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6363 
6364 	list_del_rcu(&adj->list);
6365 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6366 		 adj_dev->name, dev->name, adj_dev->name);
6367 	dev_put(adj_dev);
6368 	kfree_rcu(adj, rcu);
6369 }
6370 
6371 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6372 					    struct net_device *upper_dev,
6373 					    struct list_head *up_list,
6374 					    struct list_head *down_list,
6375 					    void *private, bool master)
6376 {
6377 	int ret;
6378 
6379 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6380 					   private, master);
6381 	if (ret)
6382 		return ret;
6383 
6384 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6385 					   private, false);
6386 	if (ret) {
6387 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6388 		return ret;
6389 	}
6390 
6391 	return 0;
6392 }
6393 
6394 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6395 					       struct net_device *upper_dev,
6396 					       u16 ref_nr,
6397 					       struct list_head *up_list,
6398 					       struct list_head *down_list)
6399 {
6400 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6401 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6402 }
6403 
6404 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6405 						struct net_device *upper_dev,
6406 						void *private, bool master)
6407 {
6408 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6409 						&dev->adj_list.upper,
6410 						&upper_dev->adj_list.lower,
6411 						private, master);
6412 }
6413 
6414 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6415 						   struct net_device *upper_dev)
6416 {
6417 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6418 					   &dev->adj_list.upper,
6419 					   &upper_dev->adj_list.lower);
6420 }
6421 
6422 static int __netdev_upper_dev_link(struct net_device *dev,
6423 				   struct net_device *upper_dev, bool master,
6424 				   void *upper_priv, void *upper_info,
6425 				   struct netlink_ext_ack *extack)
6426 {
6427 	struct netdev_notifier_changeupper_info changeupper_info = {
6428 		.info = {
6429 			.dev = dev,
6430 			.extack = extack,
6431 		},
6432 		.upper_dev = upper_dev,
6433 		.master = master,
6434 		.linking = true,
6435 		.upper_info = upper_info,
6436 	};
6437 	struct net_device *master_dev;
6438 	int ret = 0;
6439 
6440 	ASSERT_RTNL();
6441 
6442 	if (dev == upper_dev)
6443 		return -EBUSY;
6444 
6445 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6446 	if (netdev_has_upper_dev(upper_dev, dev))
6447 		return -EBUSY;
6448 
6449 	if (!master) {
6450 		if (netdev_has_upper_dev(dev, upper_dev))
6451 			return -EEXIST;
6452 	} else {
6453 		master_dev = netdev_master_upper_dev_get(dev);
6454 		if (master_dev)
6455 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
6456 	}
6457 
6458 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6459 					    &changeupper_info.info);
6460 	ret = notifier_to_errno(ret);
6461 	if (ret)
6462 		return ret;
6463 
6464 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6465 						   master);
6466 	if (ret)
6467 		return ret;
6468 
6469 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6470 					    &changeupper_info.info);
6471 	ret = notifier_to_errno(ret);
6472 	if (ret)
6473 		goto rollback;
6474 
6475 	return 0;
6476 
6477 rollback:
6478 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6479 
6480 	return ret;
6481 }
6482 
6483 /**
6484  * netdev_upper_dev_link - Add a link to the upper device
6485  * @dev: device
6486  * @upper_dev: new upper device
6487  * @extack: netlink extended ack
6488  *
6489  * Adds a link to device which is upper to this one. The caller must hold
6490  * the RTNL lock. On a failure a negative errno code is returned.
6491  * On success the reference counts are adjusted and the function
6492  * returns zero.
6493  */
6494 int netdev_upper_dev_link(struct net_device *dev,
6495 			  struct net_device *upper_dev,
6496 			  struct netlink_ext_ack *extack)
6497 {
6498 	return __netdev_upper_dev_link(dev, upper_dev, false,
6499 				       NULL, NULL, extack);
6500 }
6501 EXPORT_SYMBOL(netdev_upper_dev_link);
6502 
6503 /**
6504  * netdev_master_upper_dev_link - Add a master link to the upper device
6505  * @dev: device
6506  * @upper_dev: new upper device
6507  * @upper_priv: upper device private
6508  * @upper_info: upper info to be passed down via notifier
6509  * @extack: netlink extended ack
6510  *
6511  * Adds a link to device which is upper to this one. In this case, only
6512  * one master upper device can be linked, although other non-master devices
6513  * might be linked as well. The caller must hold the RTNL lock.
6514  * On a failure a negative errno code is returned. On success the reference
6515  * counts are adjusted and the function returns zero.
6516  */
6517 int netdev_master_upper_dev_link(struct net_device *dev,
6518 				 struct net_device *upper_dev,
6519 				 void *upper_priv, void *upper_info,
6520 				 struct netlink_ext_ack *extack)
6521 {
6522 	return __netdev_upper_dev_link(dev, upper_dev, true,
6523 				       upper_priv, upper_info, extack);
6524 }
6525 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6526 
6527 /**
6528  * netdev_upper_dev_unlink - Removes a link to upper device
6529  * @dev: device
6530  * @upper_dev: new upper device
6531  *
6532  * Removes a link to device which is upper to this one. The caller must hold
6533  * the RTNL lock.
6534  */
6535 void netdev_upper_dev_unlink(struct net_device *dev,
6536 			     struct net_device *upper_dev)
6537 {
6538 	struct netdev_notifier_changeupper_info changeupper_info = {
6539 		.info = {
6540 			.dev = dev,
6541 		},
6542 		.upper_dev = upper_dev,
6543 		.linking = false,
6544 	};
6545 
6546 	ASSERT_RTNL();
6547 
6548 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6549 
6550 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6551 				      &changeupper_info.info);
6552 
6553 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6554 
6555 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6556 				      &changeupper_info.info);
6557 }
6558 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6559 
6560 /**
6561  * netdev_bonding_info_change - Dispatch event about slave change
6562  * @dev: device
6563  * @bonding_info: info to dispatch
6564  *
6565  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6566  * The caller must hold the RTNL lock.
6567  */
6568 void netdev_bonding_info_change(struct net_device *dev,
6569 				struct netdev_bonding_info *bonding_info)
6570 {
6571 	struct netdev_notifier_bonding_info info = {
6572 		.info.dev = dev,
6573 	};
6574 
6575 	memcpy(&info.bonding_info, bonding_info,
6576 	       sizeof(struct netdev_bonding_info));
6577 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6578 				      &info.info);
6579 }
6580 EXPORT_SYMBOL(netdev_bonding_info_change);
6581 
6582 static void netdev_adjacent_add_links(struct net_device *dev)
6583 {
6584 	struct netdev_adjacent *iter;
6585 
6586 	struct net *net = dev_net(dev);
6587 
6588 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6589 		if (!net_eq(net, dev_net(iter->dev)))
6590 			continue;
6591 		netdev_adjacent_sysfs_add(iter->dev, dev,
6592 					  &iter->dev->adj_list.lower);
6593 		netdev_adjacent_sysfs_add(dev, iter->dev,
6594 					  &dev->adj_list.upper);
6595 	}
6596 
6597 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6598 		if (!net_eq(net, dev_net(iter->dev)))
6599 			continue;
6600 		netdev_adjacent_sysfs_add(iter->dev, dev,
6601 					  &iter->dev->adj_list.upper);
6602 		netdev_adjacent_sysfs_add(dev, iter->dev,
6603 					  &dev->adj_list.lower);
6604 	}
6605 }
6606 
6607 static void netdev_adjacent_del_links(struct net_device *dev)
6608 {
6609 	struct netdev_adjacent *iter;
6610 
6611 	struct net *net = dev_net(dev);
6612 
6613 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6614 		if (!net_eq(net, dev_net(iter->dev)))
6615 			continue;
6616 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6617 					  &iter->dev->adj_list.lower);
6618 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6619 					  &dev->adj_list.upper);
6620 	}
6621 
6622 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6623 		if (!net_eq(net, dev_net(iter->dev)))
6624 			continue;
6625 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6626 					  &iter->dev->adj_list.upper);
6627 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6628 					  &dev->adj_list.lower);
6629 	}
6630 }
6631 
6632 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6633 {
6634 	struct netdev_adjacent *iter;
6635 
6636 	struct net *net = dev_net(dev);
6637 
6638 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6639 		if (!net_eq(net, dev_net(iter->dev)))
6640 			continue;
6641 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6642 					  &iter->dev->adj_list.lower);
6643 		netdev_adjacent_sysfs_add(iter->dev, dev,
6644 					  &iter->dev->adj_list.lower);
6645 	}
6646 
6647 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6648 		if (!net_eq(net, dev_net(iter->dev)))
6649 			continue;
6650 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6651 					  &iter->dev->adj_list.upper);
6652 		netdev_adjacent_sysfs_add(iter->dev, dev,
6653 					  &iter->dev->adj_list.upper);
6654 	}
6655 }
6656 
6657 void *netdev_lower_dev_get_private(struct net_device *dev,
6658 				   struct net_device *lower_dev)
6659 {
6660 	struct netdev_adjacent *lower;
6661 
6662 	if (!lower_dev)
6663 		return NULL;
6664 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6665 	if (!lower)
6666 		return NULL;
6667 
6668 	return lower->private;
6669 }
6670 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6671 
6672 
6673 int dev_get_nest_level(struct net_device *dev)
6674 {
6675 	struct net_device *lower = NULL;
6676 	struct list_head *iter;
6677 	int max_nest = -1;
6678 	int nest;
6679 
6680 	ASSERT_RTNL();
6681 
6682 	netdev_for_each_lower_dev(dev, lower, iter) {
6683 		nest = dev_get_nest_level(lower);
6684 		if (max_nest < nest)
6685 			max_nest = nest;
6686 	}
6687 
6688 	return max_nest + 1;
6689 }
6690 EXPORT_SYMBOL(dev_get_nest_level);
6691 
6692 /**
6693  * netdev_lower_change - Dispatch event about lower device state change
6694  * @lower_dev: device
6695  * @lower_state_info: state to dispatch
6696  *
6697  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6698  * The caller must hold the RTNL lock.
6699  */
6700 void netdev_lower_state_changed(struct net_device *lower_dev,
6701 				void *lower_state_info)
6702 {
6703 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6704 		.info.dev = lower_dev,
6705 	};
6706 
6707 	ASSERT_RTNL();
6708 	changelowerstate_info.lower_state_info = lower_state_info;
6709 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6710 				      &changelowerstate_info.info);
6711 }
6712 EXPORT_SYMBOL(netdev_lower_state_changed);
6713 
6714 static void dev_change_rx_flags(struct net_device *dev, int flags)
6715 {
6716 	const struct net_device_ops *ops = dev->netdev_ops;
6717 
6718 	if (ops->ndo_change_rx_flags)
6719 		ops->ndo_change_rx_flags(dev, flags);
6720 }
6721 
6722 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6723 {
6724 	unsigned int old_flags = dev->flags;
6725 	kuid_t uid;
6726 	kgid_t gid;
6727 
6728 	ASSERT_RTNL();
6729 
6730 	dev->flags |= IFF_PROMISC;
6731 	dev->promiscuity += inc;
6732 	if (dev->promiscuity == 0) {
6733 		/*
6734 		 * Avoid overflow.
6735 		 * If inc causes overflow, untouch promisc and return error.
6736 		 */
6737 		if (inc < 0)
6738 			dev->flags &= ~IFF_PROMISC;
6739 		else {
6740 			dev->promiscuity -= inc;
6741 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6742 				dev->name);
6743 			return -EOVERFLOW;
6744 		}
6745 	}
6746 	if (dev->flags != old_flags) {
6747 		pr_info("device %s %s promiscuous mode\n",
6748 			dev->name,
6749 			dev->flags & IFF_PROMISC ? "entered" : "left");
6750 		if (audit_enabled) {
6751 			current_uid_gid(&uid, &gid);
6752 			audit_log(current->audit_context, GFP_ATOMIC,
6753 				AUDIT_ANOM_PROMISCUOUS,
6754 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6755 				dev->name, (dev->flags & IFF_PROMISC),
6756 				(old_flags & IFF_PROMISC),
6757 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6758 				from_kuid(&init_user_ns, uid),
6759 				from_kgid(&init_user_ns, gid),
6760 				audit_get_sessionid(current));
6761 		}
6762 
6763 		dev_change_rx_flags(dev, IFF_PROMISC);
6764 	}
6765 	if (notify)
6766 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6767 	return 0;
6768 }
6769 
6770 /**
6771  *	dev_set_promiscuity	- update promiscuity count on a device
6772  *	@dev: device
6773  *	@inc: modifier
6774  *
6775  *	Add or remove promiscuity from a device. While the count in the device
6776  *	remains above zero the interface remains promiscuous. Once it hits zero
6777  *	the device reverts back to normal filtering operation. A negative inc
6778  *	value is used to drop promiscuity on the device.
6779  *	Return 0 if successful or a negative errno code on error.
6780  */
6781 int dev_set_promiscuity(struct net_device *dev, int inc)
6782 {
6783 	unsigned int old_flags = dev->flags;
6784 	int err;
6785 
6786 	err = __dev_set_promiscuity(dev, inc, true);
6787 	if (err < 0)
6788 		return err;
6789 	if (dev->flags != old_flags)
6790 		dev_set_rx_mode(dev);
6791 	return err;
6792 }
6793 EXPORT_SYMBOL(dev_set_promiscuity);
6794 
6795 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6796 {
6797 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6798 
6799 	ASSERT_RTNL();
6800 
6801 	dev->flags |= IFF_ALLMULTI;
6802 	dev->allmulti += inc;
6803 	if (dev->allmulti == 0) {
6804 		/*
6805 		 * Avoid overflow.
6806 		 * If inc causes overflow, untouch allmulti and return error.
6807 		 */
6808 		if (inc < 0)
6809 			dev->flags &= ~IFF_ALLMULTI;
6810 		else {
6811 			dev->allmulti -= inc;
6812 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6813 				dev->name);
6814 			return -EOVERFLOW;
6815 		}
6816 	}
6817 	if (dev->flags ^ old_flags) {
6818 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6819 		dev_set_rx_mode(dev);
6820 		if (notify)
6821 			__dev_notify_flags(dev, old_flags,
6822 					   dev->gflags ^ old_gflags);
6823 	}
6824 	return 0;
6825 }
6826 
6827 /**
6828  *	dev_set_allmulti	- update allmulti count on a device
6829  *	@dev: device
6830  *	@inc: modifier
6831  *
6832  *	Add or remove reception of all multicast frames to a device. While the
6833  *	count in the device remains above zero the interface remains listening
6834  *	to all interfaces. Once it hits zero the device reverts back to normal
6835  *	filtering operation. A negative @inc value is used to drop the counter
6836  *	when releasing a resource needing all multicasts.
6837  *	Return 0 if successful or a negative errno code on error.
6838  */
6839 
6840 int dev_set_allmulti(struct net_device *dev, int inc)
6841 {
6842 	return __dev_set_allmulti(dev, inc, true);
6843 }
6844 EXPORT_SYMBOL(dev_set_allmulti);
6845 
6846 /*
6847  *	Upload unicast and multicast address lists to device and
6848  *	configure RX filtering. When the device doesn't support unicast
6849  *	filtering it is put in promiscuous mode while unicast addresses
6850  *	are present.
6851  */
6852 void __dev_set_rx_mode(struct net_device *dev)
6853 {
6854 	const struct net_device_ops *ops = dev->netdev_ops;
6855 
6856 	/* dev_open will call this function so the list will stay sane. */
6857 	if (!(dev->flags&IFF_UP))
6858 		return;
6859 
6860 	if (!netif_device_present(dev))
6861 		return;
6862 
6863 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6864 		/* Unicast addresses changes may only happen under the rtnl,
6865 		 * therefore calling __dev_set_promiscuity here is safe.
6866 		 */
6867 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6868 			__dev_set_promiscuity(dev, 1, false);
6869 			dev->uc_promisc = true;
6870 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6871 			__dev_set_promiscuity(dev, -1, false);
6872 			dev->uc_promisc = false;
6873 		}
6874 	}
6875 
6876 	if (ops->ndo_set_rx_mode)
6877 		ops->ndo_set_rx_mode(dev);
6878 }
6879 
6880 void dev_set_rx_mode(struct net_device *dev)
6881 {
6882 	netif_addr_lock_bh(dev);
6883 	__dev_set_rx_mode(dev);
6884 	netif_addr_unlock_bh(dev);
6885 }
6886 
6887 /**
6888  *	dev_get_flags - get flags reported to userspace
6889  *	@dev: device
6890  *
6891  *	Get the combination of flag bits exported through APIs to userspace.
6892  */
6893 unsigned int dev_get_flags(const struct net_device *dev)
6894 {
6895 	unsigned int flags;
6896 
6897 	flags = (dev->flags & ~(IFF_PROMISC |
6898 				IFF_ALLMULTI |
6899 				IFF_RUNNING |
6900 				IFF_LOWER_UP |
6901 				IFF_DORMANT)) |
6902 		(dev->gflags & (IFF_PROMISC |
6903 				IFF_ALLMULTI));
6904 
6905 	if (netif_running(dev)) {
6906 		if (netif_oper_up(dev))
6907 			flags |= IFF_RUNNING;
6908 		if (netif_carrier_ok(dev))
6909 			flags |= IFF_LOWER_UP;
6910 		if (netif_dormant(dev))
6911 			flags |= IFF_DORMANT;
6912 	}
6913 
6914 	return flags;
6915 }
6916 EXPORT_SYMBOL(dev_get_flags);
6917 
6918 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6919 {
6920 	unsigned int old_flags = dev->flags;
6921 	int ret;
6922 
6923 	ASSERT_RTNL();
6924 
6925 	/*
6926 	 *	Set the flags on our device.
6927 	 */
6928 
6929 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6930 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6931 			       IFF_AUTOMEDIA)) |
6932 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6933 				    IFF_ALLMULTI));
6934 
6935 	/*
6936 	 *	Load in the correct multicast list now the flags have changed.
6937 	 */
6938 
6939 	if ((old_flags ^ flags) & IFF_MULTICAST)
6940 		dev_change_rx_flags(dev, IFF_MULTICAST);
6941 
6942 	dev_set_rx_mode(dev);
6943 
6944 	/*
6945 	 *	Have we downed the interface. We handle IFF_UP ourselves
6946 	 *	according to user attempts to set it, rather than blindly
6947 	 *	setting it.
6948 	 */
6949 
6950 	ret = 0;
6951 	if ((old_flags ^ flags) & IFF_UP) {
6952 		if (old_flags & IFF_UP)
6953 			__dev_close(dev);
6954 		else
6955 			ret = __dev_open(dev);
6956 	}
6957 
6958 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6959 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6960 		unsigned int old_flags = dev->flags;
6961 
6962 		dev->gflags ^= IFF_PROMISC;
6963 
6964 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6965 			if (dev->flags != old_flags)
6966 				dev_set_rx_mode(dev);
6967 	}
6968 
6969 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6970 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6971 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6972 	 */
6973 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6974 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6975 
6976 		dev->gflags ^= IFF_ALLMULTI;
6977 		__dev_set_allmulti(dev, inc, false);
6978 	}
6979 
6980 	return ret;
6981 }
6982 
6983 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6984 			unsigned int gchanges)
6985 {
6986 	unsigned int changes = dev->flags ^ old_flags;
6987 
6988 	if (gchanges)
6989 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6990 
6991 	if (changes & IFF_UP) {
6992 		if (dev->flags & IFF_UP)
6993 			call_netdevice_notifiers(NETDEV_UP, dev);
6994 		else
6995 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6996 	}
6997 
6998 	if (dev->flags & IFF_UP &&
6999 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7000 		struct netdev_notifier_change_info change_info = {
7001 			.info = {
7002 				.dev = dev,
7003 			},
7004 			.flags_changed = changes,
7005 		};
7006 
7007 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7008 	}
7009 }
7010 
7011 /**
7012  *	dev_change_flags - change device settings
7013  *	@dev: device
7014  *	@flags: device state flags
7015  *
7016  *	Change settings on device based state flags. The flags are
7017  *	in the userspace exported format.
7018  */
7019 int dev_change_flags(struct net_device *dev, unsigned int flags)
7020 {
7021 	int ret;
7022 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7023 
7024 	ret = __dev_change_flags(dev, flags);
7025 	if (ret < 0)
7026 		return ret;
7027 
7028 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7029 	__dev_notify_flags(dev, old_flags, changes);
7030 	return ret;
7031 }
7032 EXPORT_SYMBOL(dev_change_flags);
7033 
7034 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7035 {
7036 	const struct net_device_ops *ops = dev->netdev_ops;
7037 
7038 	if (ops->ndo_change_mtu)
7039 		return ops->ndo_change_mtu(dev, new_mtu);
7040 
7041 	dev->mtu = new_mtu;
7042 	return 0;
7043 }
7044 EXPORT_SYMBOL(__dev_set_mtu);
7045 
7046 /**
7047  *	dev_set_mtu - Change maximum transfer unit
7048  *	@dev: device
7049  *	@new_mtu: new transfer unit
7050  *
7051  *	Change the maximum transfer size of the network device.
7052  */
7053 int dev_set_mtu(struct net_device *dev, int new_mtu)
7054 {
7055 	int err, orig_mtu;
7056 
7057 	if (new_mtu == dev->mtu)
7058 		return 0;
7059 
7060 	/* MTU must be positive, and in range */
7061 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7062 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7063 				    dev->name, new_mtu, dev->min_mtu);
7064 		return -EINVAL;
7065 	}
7066 
7067 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7068 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7069 				    dev->name, new_mtu, dev->max_mtu);
7070 		return -EINVAL;
7071 	}
7072 
7073 	if (!netif_device_present(dev))
7074 		return -ENODEV;
7075 
7076 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7077 	err = notifier_to_errno(err);
7078 	if (err)
7079 		return err;
7080 
7081 	orig_mtu = dev->mtu;
7082 	err = __dev_set_mtu(dev, new_mtu);
7083 
7084 	if (!err) {
7085 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7086 		err = notifier_to_errno(err);
7087 		if (err) {
7088 			/* setting mtu back and notifying everyone again,
7089 			 * so that they have a chance to revert changes.
7090 			 */
7091 			__dev_set_mtu(dev, orig_mtu);
7092 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7093 		}
7094 	}
7095 	return err;
7096 }
7097 EXPORT_SYMBOL(dev_set_mtu);
7098 
7099 /**
7100  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7101  *	@dev: device
7102  *	@new_len: new tx queue length
7103  */
7104 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7105 {
7106 	unsigned int orig_len = dev->tx_queue_len;
7107 	int res;
7108 
7109 	if (new_len != (unsigned int)new_len)
7110 		return -ERANGE;
7111 
7112 	if (new_len != orig_len) {
7113 		dev->tx_queue_len = new_len;
7114 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7115 		res = notifier_to_errno(res);
7116 		if (res) {
7117 			netdev_err(dev,
7118 				   "refused to change device tx_queue_len\n");
7119 			dev->tx_queue_len = orig_len;
7120 			return res;
7121 		}
7122 		return dev_qdisc_change_tx_queue_len(dev);
7123 	}
7124 
7125 	return 0;
7126 }
7127 
7128 /**
7129  *	dev_set_group - Change group this device belongs to
7130  *	@dev: device
7131  *	@new_group: group this device should belong to
7132  */
7133 void dev_set_group(struct net_device *dev, int new_group)
7134 {
7135 	dev->group = new_group;
7136 }
7137 EXPORT_SYMBOL(dev_set_group);
7138 
7139 /**
7140  *	dev_set_mac_address - Change Media Access Control Address
7141  *	@dev: device
7142  *	@sa: new address
7143  *
7144  *	Change the hardware (MAC) address of the device
7145  */
7146 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7147 {
7148 	const struct net_device_ops *ops = dev->netdev_ops;
7149 	int err;
7150 
7151 	if (!ops->ndo_set_mac_address)
7152 		return -EOPNOTSUPP;
7153 	if (sa->sa_family != dev->type)
7154 		return -EINVAL;
7155 	if (!netif_device_present(dev))
7156 		return -ENODEV;
7157 	err = ops->ndo_set_mac_address(dev, sa);
7158 	if (err)
7159 		return err;
7160 	dev->addr_assign_type = NET_ADDR_SET;
7161 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7162 	add_device_randomness(dev->dev_addr, dev->addr_len);
7163 	return 0;
7164 }
7165 EXPORT_SYMBOL(dev_set_mac_address);
7166 
7167 /**
7168  *	dev_change_carrier - Change device carrier
7169  *	@dev: device
7170  *	@new_carrier: new value
7171  *
7172  *	Change device carrier
7173  */
7174 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7175 {
7176 	const struct net_device_ops *ops = dev->netdev_ops;
7177 
7178 	if (!ops->ndo_change_carrier)
7179 		return -EOPNOTSUPP;
7180 	if (!netif_device_present(dev))
7181 		return -ENODEV;
7182 	return ops->ndo_change_carrier(dev, new_carrier);
7183 }
7184 EXPORT_SYMBOL(dev_change_carrier);
7185 
7186 /**
7187  *	dev_get_phys_port_id - Get device physical port ID
7188  *	@dev: device
7189  *	@ppid: port ID
7190  *
7191  *	Get device physical port ID
7192  */
7193 int dev_get_phys_port_id(struct net_device *dev,
7194 			 struct netdev_phys_item_id *ppid)
7195 {
7196 	const struct net_device_ops *ops = dev->netdev_ops;
7197 
7198 	if (!ops->ndo_get_phys_port_id)
7199 		return -EOPNOTSUPP;
7200 	return ops->ndo_get_phys_port_id(dev, ppid);
7201 }
7202 EXPORT_SYMBOL(dev_get_phys_port_id);
7203 
7204 /**
7205  *	dev_get_phys_port_name - Get device physical port name
7206  *	@dev: device
7207  *	@name: port name
7208  *	@len: limit of bytes to copy to name
7209  *
7210  *	Get device physical port name
7211  */
7212 int dev_get_phys_port_name(struct net_device *dev,
7213 			   char *name, size_t len)
7214 {
7215 	const struct net_device_ops *ops = dev->netdev_ops;
7216 
7217 	if (!ops->ndo_get_phys_port_name)
7218 		return -EOPNOTSUPP;
7219 	return ops->ndo_get_phys_port_name(dev, name, len);
7220 }
7221 EXPORT_SYMBOL(dev_get_phys_port_name);
7222 
7223 /**
7224  *	dev_change_proto_down - update protocol port state information
7225  *	@dev: device
7226  *	@proto_down: new value
7227  *
7228  *	This info can be used by switch drivers to set the phys state of the
7229  *	port.
7230  */
7231 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7232 {
7233 	const struct net_device_ops *ops = dev->netdev_ops;
7234 
7235 	if (!ops->ndo_change_proto_down)
7236 		return -EOPNOTSUPP;
7237 	if (!netif_device_present(dev))
7238 		return -ENODEV;
7239 	return ops->ndo_change_proto_down(dev, proto_down);
7240 }
7241 EXPORT_SYMBOL(dev_change_proto_down);
7242 
7243 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7244 		     struct netdev_bpf *xdp)
7245 {
7246 	memset(xdp, 0, sizeof(*xdp));
7247 	xdp->command = XDP_QUERY_PROG;
7248 
7249 	/* Query must always succeed. */
7250 	WARN_ON(bpf_op(dev, xdp) < 0);
7251 }
7252 
7253 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7254 {
7255 	struct netdev_bpf xdp;
7256 
7257 	__dev_xdp_query(dev, bpf_op, &xdp);
7258 
7259 	return xdp.prog_attached;
7260 }
7261 
7262 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7263 			   struct netlink_ext_ack *extack, u32 flags,
7264 			   struct bpf_prog *prog)
7265 {
7266 	struct netdev_bpf xdp;
7267 
7268 	memset(&xdp, 0, sizeof(xdp));
7269 	if (flags & XDP_FLAGS_HW_MODE)
7270 		xdp.command = XDP_SETUP_PROG_HW;
7271 	else
7272 		xdp.command = XDP_SETUP_PROG;
7273 	xdp.extack = extack;
7274 	xdp.flags = flags;
7275 	xdp.prog = prog;
7276 
7277 	return bpf_op(dev, &xdp);
7278 }
7279 
7280 static void dev_xdp_uninstall(struct net_device *dev)
7281 {
7282 	struct netdev_bpf xdp;
7283 	bpf_op_t ndo_bpf;
7284 
7285 	/* Remove generic XDP */
7286 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7287 
7288 	/* Remove from the driver */
7289 	ndo_bpf = dev->netdev_ops->ndo_bpf;
7290 	if (!ndo_bpf)
7291 		return;
7292 
7293 	__dev_xdp_query(dev, ndo_bpf, &xdp);
7294 	if (xdp.prog_attached == XDP_ATTACHED_NONE)
7295 		return;
7296 
7297 	/* Program removal should always succeed */
7298 	WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7299 }
7300 
7301 /**
7302  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7303  *	@dev: device
7304  *	@extack: netlink extended ack
7305  *	@fd: new program fd or negative value to clear
7306  *	@flags: xdp-related flags
7307  *
7308  *	Set or clear a bpf program for a device
7309  */
7310 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7311 		      int fd, u32 flags)
7312 {
7313 	const struct net_device_ops *ops = dev->netdev_ops;
7314 	struct bpf_prog *prog = NULL;
7315 	bpf_op_t bpf_op, bpf_chk;
7316 	int err;
7317 
7318 	ASSERT_RTNL();
7319 
7320 	bpf_op = bpf_chk = ops->ndo_bpf;
7321 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7322 		return -EOPNOTSUPP;
7323 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7324 		bpf_op = generic_xdp_install;
7325 	if (bpf_op == bpf_chk)
7326 		bpf_chk = generic_xdp_install;
7327 
7328 	if (fd >= 0) {
7329 		if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7330 			return -EEXIST;
7331 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7332 		    __dev_xdp_attached(dev, bpf_op))
7333 			return -EBUSY;
7334 
7335 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7336 					     bpf_op == ops->ndo_bpf);
7337 		if (IS_ERR(prog))
7338 			return PTR_ERR(prog);
7339 
7340 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7341 		    bpf_prog_is_dev_bound(prog->aux)) {
7342 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7343 			bpf_prog_put(prog);
7344 			return -EINVAL;
7345 		}
7346 	}
7347 
7348 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7349 	if (err < 0 && prog)
7350 		bpf_prog_put(prog);
7351 
7352 	return err;
7353 }
7354 
7355 /**
7356  *	dev_new_index	-	allocate an ifindex
7357  *	@net: the applicable net namespace
7358  *
7359  *	Returns a suitable unique value for a new device interface
7360  *	number.  The caller must hold the rtnl semaphore or the
7361  *	dev_base_lock to be sure it remains unique.
7362  */
7363 static int dev_new_index(struct net *net)
7364 {
7365 	int ifindex = net->ifindex;
7366 
7367 	for (;;) {
7368 		if (++ifindex <= 0)
7369 			ifindex = 1;
7370 		if (!__dev_get_by_index(net, ifindex))
7371 			return net->ifindex = ifindex;
7372 	}
7373 }
7374 
7375 /* Delayed registration/unregisteration */
7376 static LIST_HEAD(net_todo_list);
7377 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7378 
7379 static void net_set_todo(struct net_device *dev)
7380 {
7381 	list_add_tail(&dev->todo_list, &net_todo_list);
7382 	dev_net(dev)->dev_unreg_count++;
7383 }
7384 
7385 static void rollback_registered_many(struct list_head *head)
7386 {
7387 	struct net_device *dev, *tmp;
7388 	LIST_HEAD(close_head);
7389 
7390 	BUG_ON(dev_boot_phase);
7391 	ASSERT_RTNL();
7392 
7393 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7394 		/* Some devices call without registering
7395 		 * for initialization unwind. Remove those
7396 		 * devices and proceed with the remaining.
7397 		 */
7398 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7399 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7400 				 dev->name, dev);
7401 
7402 			WARN_ON(1);
7403 			list_del(&dev->unreg_list);
7404 			continue;
7405 		}
7406 		dev->dismantle = true;
7407 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7408 	}
7409 
7410 	/* If device is running, close it first. */
7411 	list_for_each_entry(dev, head, unreg_list)
7412 		list_add_tail(&dev->close_list, &close_head);
7413 	dev_close_many(&close_head, true);
7414 
7415 	list_for_each_entry(dev, head, unreg_list) {
7416 		/* And unlink it from device chain. */
7417 		unlist_netdevice(dev);
7418 
7419 		dev->reg_state = NETREG_UNREGISTERING;
7420 	}
7421 	flush_all_backlogs();
7422 
7423 	synchronize_net();
7424 
7425 	list_for_each_entry(dev, head, unreg_list) {
7426 		struct sk_buff *skb = NULL;
7427 
7428 		/* Shutdown queueing discipline. */
7429 		dev_shutdown(dev);
7430 
7431 		dev_xdp_uninstall(dev);
7432 
7433 		/* Notify protocols, that we are about to destroy
7434 		 * this device. They should clean all the things.
7435 		 */
7436 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7437 
7438 		if (!dev->rtnl_link_ops ||
7439 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7440 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7441 						     GFP_KERNEL, NULL, 0);
7442 
7443 		/*
7444 		 *	Flush the unicast and multicast chains
7445 		 */
7446 		dev_uc_flush(dev);
7447 		dev_mc_flush(dev);
7448 
7449 		if (dev->netdev_ops->ndo_uninit)
7450 			dev->netdev_ops->ndo_uninit(dev);
7451 
7452 		if (skb)
7453 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7454 
7455 		/* Notifier chain MUST detach us all upper devices. */
7456 		WARN_ON(netdev_has_any_upper_dev(dev));
7457 		WARN_ON(netdev_has_any_lower_dev(dev));
7458 
7459 		/* Remove entries from kobject tree */
7460 		netdev_unregister_kobject(dev);
7461 #ifdef CONFIG_XPS
7462 		/* Remove XPS queueing entries */
7463 		netif_reset_xps_queues_gt(dev, 0);
7464 #endif
7465 	}
7466 
7467 	synchronize_net();
7468 
7469 	list_for_each_entry(dev, head, unreg_list)
7470 		dev_put(dev);
7471 }
7472 
7473 static void rollback_registered(struct net_device *dev)
7474 {
7475 	LIST_HEAD(single);
7476 
7477 	list_add(&dev->unreg_list, &single);
7478 	rollback_registered_many(&single);
7479 	list_del(&single);
7480 }
7481 
7482 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7483 	struct net_device *upper, netdev_features_t features)
7484 {
7485 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7486 	netdev_features_t feature;
7487 	int feature_bit;
7488 
7489 	for_each_netdev_feature(&upper_disables, feature_bit) {
7490 		feature = __NETIF_F_BIT(feature_bit);
7491 		if (!(upper->wanted_features & feature)
7492 		    && (features & feature)) {
7493 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7494 				   &feature, upper->name);
7495 			features &= ~feature;
7496 		}
7497 	}
7498 
7499 	return features;
7500 }
7501 
7502 static void netdev_sync_lower_features(struct net_device *upper,
7503 	struct net_device *lower, netdev_features_t features)
7504 {
7505 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7506 	netdev_features_t feature;
7507 	int feature_bit;
7508 
7509 	for_each_netdev_feature(&upper_disables, feature_bit) {
7510 		feature = __NETIF_F_BIT(feature_bit);
7511 		if (!(features & feature) && (lower->features & feature)) {
7512 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7513 				   &feature, lower->name);
7514 			lower->wanted_features &= ~feature;
7515 			netdev_update_features(lower);
7516 
7517 			if (unlikely(lower->features & feature))
7518 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7519 					    &feature, lower->name);
7520 		}
7521 	}
7522 }
7523 
7524 static netdev_features_t netdev_fix_features(struct net_device *dev,
7525 	netdev_features_t features)
7526 {
7527 	/* Fix illegal checksum combinations */
7528 	if ((features & NETIF_F_HW_CSUM) &&
7529 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7530 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7531 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7532 	}
7533 
7534 	/* TSO requires that SG is present as well. */
7535 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7536 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7537 		features &= ~NETIF_F_ALL_TSO;
7538 	}
7539 
7540 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7541 					!(features & NETIF_F_IP_CSUM)) {
7542 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7543 		features &= ~NETIF_F_TSO;
7544 		features &= ~NETIF_F_TSO_ECN;
7545 	}
7546 
7547 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7548 					 !(features & NETIF_F_IPV6_CSUM)) {
7549 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7550 		features &= ~NETIF_F_TSO6;
7551 	}
7552 
7553 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7554 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7555 		features &= ~NETIF_F_TSO_MANGLEID;
7556 
7557 	/* TSO ECN requires that TSO is present as well. */
7558 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7559 		features &= ~NETIF_F_TSO_ECN;
7560 
7561 	/* Software GSO depends on SG. */
7562 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7563 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7564 		features &= ~NETIF_F_GSO;
7565 	}
7566 
7567 	/* GSO partial features require GSO partial be set */
7568 	if ((features & dev->gso_partial_features) &&
7569 	    !(features & NETIF_F_GSO_PARTIAL)) {
7570 		netdev_dbg(dev,
7571 			   "Dropping partially supported GSO features since no GSO partial.\n");
7572 		features &= ~dev->gso_partial_features;
7573 	}
7574 
7575 	if (!(features & NETIF_F_RXCSUM)) {
7576 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7577 		 * successfully merged by hardware must also have the
7578 		 * checksum verified by hardware.  If the user does not
7579 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
7580 		 */
7581 		if (features & NETIF_F_GRO_HW) {
7582 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7583 			features &= ~NETIF_F_GRO_HW;
7584 		}
7585 	}
7586 
7587 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
7588 	if (features & NETIF_F_RXFCS) {
7589 		if (features & NETIF_F_LRO) {
7590 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
7591 			features &= ~NETIF_F_LRO;
7592 		}
7593 
7594 		if (features & NETIF_F_GRO_HW) {
7595 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
7596 			features &= ~NETIF_F_GRO_HW;
7597 		}
7598 	}
7599 
7600 	return features;
7601 }
7602 
7603 int __netdev_update_features(struct net_device *dev)
7604 {
7605 	struct net_device *upper, *lower;
7606 	netdev_features_t features;
7607 	struct list_head *iter;
7608 	int err = -1;
7609 
7610 	ASSERT_RTNL();
7611 
7612 	features = netdev_get_wanted_features(dev);
7613 
7614 	if (dev->netdev_ops->ndo_fix_features)
7615 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7616 
7617 	/* driver might be less strict about feature dependencies */
7618 	features = netdev_fix_features(dev, features);
7619 
7620 	/* some features can't be enabled if they're off an an upper device */
7621 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7622 		features = netdev_sync_upper_features(dev, upper, features);
7623 
7624 	if (dev->features == features)
7625 		goto sync_lower;
7626 
7627 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7628 		&dev->features, &features);
7629 
7630 	if (dev->netdev_ops->ndo_set_features)
7631 		err = dev->netdev_ops->ndo_set_features(dev, features);
7632 	else
7633 		err = 0;
7634 
7635 	if (unlikely(err < 0)) {
7636 		netdev_err(dev,
7637 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7638 			err, &features, &dev->features);
7639 		/* return non-0 since some features might have changed and
7640 		 * it's better to fire a spurious notification than miss it
7641 		 */
7642 		return -1;
7643 	}
7644 
7645 sync_lower:
7646 	/* some features must be disabled on lower devices when disabled
7647 	 * on an upper device (think: bonding master or bridge)
7648 	 */
7649 	netdev_for_each_lower_dev(dev, lower, iter)
7650 		netdev_sync_lower_features(dev, lower, features);
7651 
7652 	if (!err) {
7653 		netdev_features_t diff = features ^ dev->features;
7654 
7655 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7656 			/* udp_tunnel_{get,drop}_rx_info both need
7657 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7658 			 * device, or they won't do anything.
7659 			 * Thus we need to update dev->features
7660 			 * *before* calling udp_tunnel_get_rx_info,
7661 			 * but *after* calling udp_tunnel_drop_rx_info.
7662 			 */
7663 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7664 				dev->features = features;
7665 				udp_tunnel_get_rx_info(dev);
7666 			} else {
7667 				udp_tunnel_drop_rx_info(dev);
7668 			}
7669 		}
7670 
7671 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
7672 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
7673 				dev->features = features;
7674 				err |= vlan_get_rx_ctag_filter_info(dev);
7675 			} else {
7676 				vlan_drop_rx_ctag_filter_info(dev);
7677 			}
7678 		}
7679 
7680 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
7681 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
7682 				dev->features = features;
7683 				err |= vlan_get_rx_stag_filter_info(dev);
7684 			} else {
7685 				vlan_drop_rx_stag_filter_info(dev);
7686 			}
7687 		}
7688 
7689 		dev->features = features;
7690 	}
7691 
7692 	return err < 0 ? 0 : 1;
7693 }
7694 
7695 /**
7696  *	netdev_update_features - recalculate device features
7697  *	@dev: the device to check
7698  *
7699  *	Recalculate dev->features set and send notifications if it
7700  *	has changed. Should be called after driver or hardware dependent
7701  *	conditions might have changed that influence the features.
7702  */
7703 void netdev_update_features(struct net_device *dev)
7704 {
7705 	if (__netdev_update_features(dev))
7706 		netdev_features_change(dev);
7707 }
7708 EXPORT_SYMBOL(netdev_update_features);
7709 
7710 /**
7711  *	netdev_change_features - recalculate device features
7712  *	@dev: the device to check
7713  *
7714  *	Recalculate dev->features set and send notifications even
7715  *	if they have not changed. Should be called instead of
7716  *	netdev_update_features() if also dev->vlan_features might
7717  *	have changed to allow the changes to be propagated to stacked
7718  *	VLAN devices.
7719  */
7720 void netdev_change_features(struct net_device *dev)
7721 {
7722 	__netdev_update_features(dev);
7723 	netdev_features_change(dev);
7724 }
7725 EXPORT_SYMBOL(netdev_change_features);
7726 
7727 /**
7728  *	netif_stacked_transfer_operstate -	transfer operstate
7729  *	@rootdev: the root or lower level device to transfer state from
7730  *	@dev: the device to transfer operstate to
7731  *
7732  *	Transfer operational state from root to device. This is normally
7733  *	called when a stacking relationship exists between the root
7734  *	device and the device(a leaf device).
7735  */
7736 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7737 					struct net_device *dev)
7738 {
7739 	if (rootdev->operstate == IF_OPER_DORMANT)
7740 		netif_dormant_on(dev);
7741 	else
7742 		netif_dormant_off(dev);
7743 
7744 	if (netif_carrier_ok(rootdev))
7745 		netif_carrier_on(dev);
7746 	else
7747 		netif_carrier_off(dev);
7748 }
7749 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7750 
7751 static int netif_alloc_rx_queues(struct net_device *dev)
7752 {
7753 	unsigned int i, count = dev->num_rx_queues;
7754 	struct netdev_rx_queue *rx;
7755 	size_t sz = count * sizeof(*rx);
7756 	int err = 0;
7757 
7758 	BUG_ON(count < 1);
7759 
7760 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7761 	if (!rx)
7762 		return -ENOMEM;
7763 
7764 	dev->_rx = rx;
7765 
7766 	for (i = 0; i < count; i++) {
7767 		rx[i].dev = dev;
7768 
7769 		/* XDP RX-queue setup */
7770 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7771 		if (err < 0)
7772 			goto err_rxq_info;
7773 	}
7774 	return 0;
7775 
7776 err_rxq_info:
7777 	/* Rollback successful reg's and free other resources */
7778 	while (i--)
7779 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7780 	kvfree(dev->_rx);
7781 	dev->_rx = NULL;
7782 	return err;
7783 }
7784 
7785 static void netif_free_rx_queues(struct net_device *dev)
7786 {
7787 	unsigned int i, count = dev->num_rx_queues;
7788 
7789 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7790 	if (!dev->_rx)
7791 		return;
7792 
7793 	for (i = 0; i < count; i++)
7794 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7795 
7796 	kvfree(dev->_rx);
7797 }
7798 
7799 static void netdev_init_one_queue(struct net_device *dev,
7800 				  struct netdev_queue *queue, void *_unused)
7801 {
7802 	/* Initialize queue lock */
7803 	spin_lock_init(&queue->_xmit_lock);
7804 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7805 	queue->xmit_lock_owner = -1;
7806 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7807 	queue->dev = dev;
7808 #ifdef CONFIG_BQL
7809 	dql_init(&queue->dql, HZ);
7810 #endif
7811 }
7812 
7813 static void netif_free_tx_queues(struct net_device *dev)
7814 {
7815 	kvfree(dev->_tx);
7816 }
7817 
7818 static int netif_alloc_netdev_queues(struct net_device *dev)
7819 {
7820 	unsigned int count = dev->num_tx_queues;
7821 	struct netdev_queue *tx;
7822 	size_t sz = count * sizeof(*tx);
7823 
7824 	if (count < 1 || count > 0xffff)
7825 		return -EINVAL;
7826 
7827 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7828 	if (!tx)
7829 		return -ENOMEM;
7830 
7831 	dev->_tx = tx;
7832 
7833 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7834 	spin_lock_init(&dev->tx_global_lock);
7835 
7836 	return 0;
7837 }
7838 
7839 void netif_tx_stop_all_queues(struct net_device *dev)
7840 {
7841 	unsigned int i;
7842 
7843 	for (i = 0; i < dev->num_tx_queues; i++) {
7844 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7845 
7846 		netif_tx_stop_queue(txq);
7847 	}
7848 }
7849 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7850 
7851 /**
7852  *	register_netdevice	- register a network device
7853  *	@dev: device to register
7854  *
7855  *	Take a completed network device structure and add it to the kernel
7856  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7857  *	chain. 0 is returned on success. A negative errno code is returned
7858  *	on a failure to set up the device, or if the name is a duplicate.
7859  *
7860  *	Callers must hold the rtnl semaphore. You may want
7861  *	register_netdev() instead of this.
7862  *
7863  *	BUGS:
7864  *	The locking appears insufficient to guarantee two parallel registers
7865  *	will not get the same name.
7866  */
7867 
7868 int register_netdevice(struct net_device *dev)
7869 {
7870 	int ret;
7871 	struct net *net = dev_net(dev);
7872 
7873 	BUG_ON(dev_boot_phase);
7874 	ASSERT_RTNL();
7875 
7876 	might_sleep();
7877 
7878 	/* When net_device's are persistent, this will be fatal. */
7879 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7880 	BUG_ON(!net);
7881 
7882 	spin_lock_init(&dev->addr_list_lock);
7883 	netdev_set_addr_lockdep_class(dev);
7884 
7885 	ret = dev_get_valid_name(net, dev, dev->name);
7886 	if (ret < 0)
7887 		goto out;
7888 
7889 	/* Init, if this function is available */
7890 	if (dev->netdev_ops->ndo_init) {
7891 		ret = dev->netdev_ops->ndo_init(dev);
7892 		if (ret) {
7893 			if (ret > 0)
7894 				ret = -EIO;
7895 			goto out;
7896 		}
7897 	}
7898 
7899 	if (((dev->hw_features | dev->features) &
7900 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7901 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7902 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7903 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7904 		ret = -EINVAL;
7905 		goto err_uninit;
7906 	}
7907 
7908 	ret = -EBUSY;
7909 	if (!dev->ifindex)
7910 		dev->ifindex = dev_new_index(net);
7911 	else if (__dev_get_by_index(net, dev->ifindex))
7912 		goto err_uninit;
7913 
7914 	/* Transfer changeable features to wanted_features and enable
7915 	 * software offloads (GSO and GRO).
7916 	 */
7917 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7918 	dev->features |= NETIF_F_SOFT_FEATURES;
7919 
7920 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
7921 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7922 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7923 	}
7924 
7925 	dev->wanted_features = dev->features & dev->hw_features;
7926 
7927 	if (!(dev->flags & IFF_LOOPBACK))
7928 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7929 
7930 	/* If IPv4 TCP segmentation offload is supported we should also
7931 	 * allow the device to enable segmenting the frame with the option
7932 	 * of ignoring a static IP ID value.  This doesn't enable the
7933 	 * feature itself but allows the user to enable it later.
7934 	 */
7935 	if (dev->hw_features & NETIF_F_TSO)
7936 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7937 	if (dev->vlan_features & NETIF_F_TSO)
7938 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7939 	if (dev->mpls_features & NETIF_F_TSO)
7940 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7941 	if (dev->hw_enc_features & NETIF_F_TSO)
7942 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7943 
7944 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7945 	 */
7946 	dev->vlan_features |= NETIF_F_HIGHDMA;
7947 
7948 	/* Make NETIF_F_SG inheritable to tunnel devices.
7949 	 */
7950 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7951 
7952 	/* Make NETIF_F_SG inheritable to MPLS.
7953 	 */
7954 	dev->mpls_features |= NETIF_F_SG;
7955 
7956 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7957 	ret = notifier_to_errno(ret);
7958 	if (ret)
7959 		goto err_uninit;
7960 
7961 	ret = netdev_register_kobject(dev);
7962 	if (ret)
7963 		goto err_uninit;
7964 	dev->reg_state = NETREG_REGISTERED;
7965 
7966 	__netdev_update_features(dev);
7967 
7968 	/*
7969 	 *	Default initial state at registry is that the
7970 	 *	device is present.
7971 	 */
7972 
7973 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7974 
7975 	linkwatch_init_dev(dev);
7976 
7977 	dev_init_scheduler(dev);
7978 	dev_hold(dev);
7979 	list_netdevice(dev);
7980 	add_device_randomness(dev->dev_addr, dev->addr_len);
7981 
7982 	/* If the device has permanent device address, driver should
7983 	 * set dev_addr and also addr_assign_type should be set to
7984 	 * NET_ADDR_PERM (default value).
7985 	 */
7986 	if (dev->addr_assign_type == NET_ADDR_PERM)
7987 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7988 
7989 	/* Notify protocols, that a new device appeared. */
7990 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7991 	ret = notifier_to_errno(ret);
7992 	if (ret) {
7993 		rollback_registered(dev);
7994 		dev->reg_state = NETREG_UNREGISTERED;
7995 	}
7996 	/*
7997 	 *	Prevent userspace races by waiting until the network
7998 	 *	device is fully setup before sending notifications.
7999 	 */
8000 	if (!dev->rtnl_link_ops ||
8001 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8002 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8003 
8004 out:
8005 	return ret;
8006 
8007 err_uninit:
8008 	if (dev->netdev_ops->ndo_uninit)
8009 		dev->netdev_ops->ndo_uninit(dev);
8010 	if (dev->priv_destructor)
8011 		dev->priv_destructor(dev);
8012 	goto out;
8013 }
8014 EXPORT_SYMBOL(register_netdevice);
8015 
8016 /**
8017  *	init_dummy_netdev	- init a dummy network device for NAPI
8018  *	@dev: device to init
8019  *
8020  *	This takes a network device structure and initialize the minimum
8021  *	amount of fields so it can be used to schedule NAPI polls without
8022  *	registering a full blown interface. This is to be used by drivers
8023  *	that need to tie several hardware interfaces to a single NAPI
8024  *	poll scheduler due to HW limitations.
8025  */
8026 int init_dummy_netdev(struct net_device *dev)
8027 {
8028 	/* Clear everything. Note we don't initialize spinlocks
8029 	 * are they aren't supposed to be taken by any of the
8030 	 * NAPI code and this dummy netdev is supposed to be
8031 	 * only ever used for NAPI polls
8032 	 */
8033 	memset(dev, 0, sizeof(struct net_device));
8034 
8035 	/* make sure we BUG if trying to hit standard
8036 	 * register/unregister code path
8037 	 */
8038 	dev->reg_state = NETREG_DUMMY;
8039 
8040 	/* NAPI wants this */
8041 	INIT_LIST_HEAD(&dev->napi_list);
8042 
8043 	/* a dummy interface is started by default */
8044 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8045 	set_bit(__LINK_STATE_START, &dev->state);
8046 
8047 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8048 	 * because users of this 'device' dont need to change
8049 	 * its refcount.
8050 	 */
8051 
8052 	return 0;
8053 }
8054 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8055 
8056 
8057 /**
8058  *	register_netdev	- register a network device
8059  *	@dev: device to register
8060  *
8061  *	Take a completed network device structure and add it to the kernel
8062  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8063  *	chain. 0 is returned on success. A negative errno code is returned
8064  *	on a failure to set up the device, or if the name is a duplicate.
8065  *
8066  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8067  *	and expands the device name if you passed a format string to
8068  *	alloc_netdev.
8069  */
8070 int register_netdev(struct net_device *dev)
8071 {
8072 	int err;
8073 
8074 	if (rtnl_lock_killable())
8075 		return -EINTR;
8076 	err = register_netdevice(dev);
8077 	rtnl_unlock();
8078 	return err;
8079 }
8080 EXPORT_SYMBOL(register_netdev);
8081 
8082 int netdev_refcnt_read(const struct net_device *dev)
8083 {
8084 	int i, refcnt = 0;
8085 
8086 	for_each_possible_cpu(i)
8087 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8088 	return refcnt;
8089 }
8090 EXPORT_SYMBOL(netdev_refcnt_read);
8091 
8092 /**
8093  * netdev_wait_allrefs - wait until all references are gone.
8094  * @dev: target net_device
8095  *
8096  * This is called when unregistering network devices.
8097  *
8098  * Any protocol or device that holds a reference should register
8099  * for netdevice notification, and cleanup and put back the
8100  * reference if they receive an UNREGISTER event.
8101  * We can get stuck here if buggy protocols don't correctly
8102  * call dev_put.
8103  */
8104 static void netdev_wait_allrefs(struct net_device *dev)
8105 {
8106 	unsigned long rebroadcast_time, warning_time;
8107 	int refcnt;
8108 
8109 	linkwatch_forget_dev(dev);
8110 
8111 	rebroadcast_time = warning_time = jiffies;
8112 	refcnt = netdev_refcnt_read(dev);
8113 
8114 	while (refcnt != 0) {
8115 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8116 			rtnl_lock();
8117 
8118 			/* Rebroadcast unregister notification */
8119 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8120 
8121 			__rtnl_unlock();
8122 			rcu_barrier();
8123 			rtnl_lock();
8124 
8125 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8126 				     &dev->state)) {
8127 				/* We must not have linkwatch events
8128 				 * pending on unregister. If this
8129 				 * happens, we simply run the queue
8130 				 * unscheduled, resulting in a noop
8131 				 * for this device.
8132 				 */
8133 				linkwatch_run_queue();
8134 			}
8135 
8136 			__rtnl_unlock();
8137 
8138 			rebroadcast_time = jiffies;
8139 		}
8140 
8141 		msleep(250);
8142 
8143 		refcnt = netdev_refcnt_read(dev);
8144 
8145 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8146 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8147 				 dev->name, refcnt);
8148 			warning_time = jiffies;
8149 		}
8150 	}
8151 }
8152 
8153 /* The sequence is:
8154  *
8155  *	rtnl_lock();
8156  *	...
8157  *	register_netdevice(x1);
8158  *	register_netdevice(x2);
8159  *	...
8160  *	unregister_netdevice(y1);
8161  *	unregister_netdevice(y2);
8162  *      ...
8163  *	rtnl_unlock();
8164  *	free_netdev(y1);
8165  *	free_netdev(y2);
8166  *
8167  * We are invoked by rtnl_unlock().
8168  * This allows us to deal with problems:
8169  * 1) We can delete sysfs objects which invoke hotplug
8170  *    without deadlocking with linkwatch via keventd.
8171  * 2) Since we run with the RTNL semaphore not held, we can sleep
8172  *    safely in order to wait for the netdev refcnt to drop to zero.
8173  *
8174  * We must not return until all unregister events added during
8175  * the interval the lock was held have been completed.
8176  */
8177 void netdev_run_todo(void)
8178 {
8179 	struct list_head list;
8180 
8181 	/* Snapshot list, allow later requests */
8182 	list_replace_init(&net_todo_list, &list);
8183 
8184 	__rtnl_unlock();
8185 
8186 
8187 	/* Wait for rcu callbacks to finish before next phase */
8188 	if (!list_empty(&list))
8189 		rcu_barrier();
8190 
8191 	while (!list_empty(&list)) {
8192 		struct net_device *dev
8193 			= list_first_entry(&list, struct net_device, todo_list);
8194 		list_del(&dev->todo_list);
8195 
8196 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8197 			pr_err("network todo '%s' but state %d\n",
8198 			       dev->name, dev->reg_state);
8199 			dump_stack();
8200 			continue;
8201 		}
8202 
8203 		dev->reg_state = NETREG_UNREGISTERED;
8204 
8205 		netdev_wait_allrefs(dev);
8206 
8207 		/* paranoia */
8208 		BUG_ON(netdev_refcnt_read(dev));
8209 		BUG_ON(!list_empty(&dev->ptype_all));
8210 		BUG_ON(!list_empty(&dev->ptype_specific));
8211 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8212 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8213 #if IS_ENABLED(CONFIG_DECNET)
8214 		WARN_ON(dev->dn_ptr);
8215 #endif
8216 		if (dev->priv_destructor)
8217 			dev->priv_destructor(dev);
8218 		if (dev->needs_free_netdev)
8219 			free_netdev(dev);
8220 
8221 		/* Report a network device has been unregistered */
8222 		rtnl_lock();
8223 		dev_net(dev)->dev_unreg_count--;
8224 		__rtnl_unlock();
8225 		wake_up(&netdev_unregistering_wq);
8226 
8227 		/* Free network device */
8228 		kobject_put(&dev->dev.kobj);
8229 	}
8230 }
8231 
8232 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8233  * all the same fields in the same order as net_device_stats, with only
8234  * the type differing, but rtnl_link_stats64 may have additional fields
8235  * at the end for newer counters.
8236  */
8237 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8238 			     const struct net_device_stats *netdev_stats)
8239 {
8240 #if BITS_PER_LONG == 64
8241 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8242 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8243 	/* zero out counters that only exist in rtnl_link_stats64 */
8244 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8245 	       sizeof(*stats64) - sizeof(*netdev_stats));
8246 #else
8247 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8248 	const unsigned long *src = (const unsigned long *)netdev_stats;
8249 	u64 *dst = (u64 *)stats64;
8250 
8251 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8252 	for (i = 0; i < n; i++)
8253 		dst[i] = src[i];
8254 	/* zero out counters that only exist in rtnl_link_stats64 */
8255 	memset((char *)stats64 + n * sizeof(u64), 0,
8256 	       sizeof(*stats64) - n * sizeof(u64));
8257 #endif
8258 }
8259 EXPORT_SYMBOL(netdev_stats_to_stats64);
8260 
8261 /**
8262  *	dev_get_stats	- get network device statistics
8263  *	@dev: device to get statistics from
8264  *	@storage: place to store stats
8265  *
8266  *	Get network statistics from device. Return @storage.
8267  *	The device driver may provide its own method by setting
8268  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8269  *	otherwise the internal statistics structure is used.
8270  */
8271 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8272 					struct rtnl_link_stats64 *storage)
8273 {
8274 	const struct net_device_ops *ops = dev->netdev_ops;
8275 
8276 	if (ops->ndo_get_stats64) {
8277 		memset(storage, 0, sizeof(*storage));
8278 		ops->ndo_get_stats64(dev, storage);
8279 	} else if (ops->ndo_get_stats) {
8280 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8281 	} else {
8282 		netdev_stats_to_stats64(storage, &dev->stats);
8283 	}
8284 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8285 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8286 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8287 	return storage;
8288 }
8289 EXPORT_SYMBOL(dev_get_stats);
8290 
8291 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8292 {
8293 	struct netdev_queue *queue = dev_ingress_queue(dev);
8294 
8295 #ifdef CONFIG_NET_CLS_ACT
8296 	if (queue)
8297 		return queue;
8298 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8299 	if (!queue)
8300 		return NULL;
8301 	netdev_init_one_queue(dev, queue, NULL);
8302 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8303 	queue->qdisc_sleeping = &noop_qdisc;
8304 	rcu_assign_pointer(dev->ingress_queue, queue);
8305 #endif
8306 	return queue;
8307 }
8308 
8309 static const struct ethtool_ops default_ethtool_ops;
8310 
8311 void netdev_set_default_ethtool_ops(struct net_device *dev,
8312 				    const struct ethtool_ops *ops)
8313 {
8314 	if (dev->ethtool_ops == &default_ethtool_ops)
8315 		dev->ethtool_ops = ops;
8316 }
8317 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8318 
8319 void netdev_freemem(struct net_device *dev)
8320 {
8321 	char *addr = (char *)dev - dev->padded;
8322 
8323 	kvfree(addr);
8324 }
8325 
8326 /**
8327  * alloc_netdev_mqs - allocate network device
8328  * @sizeof_priv: size of private data to allocate space for
8329  * @name: device name format string
8330  * @name_assign_type: origin of device name
8331  * @setup: callback to initialize device
8332  * @txqs: the number of TX subqueues to allocate
8333  * @rxqs: the number of RX subqueues to allocate
8334  *
8335  * Allocates a struct net_device with private data area for driver use
8336  * and performs basic initialization.  Also allocates subqueue structs
8337  * for each queue on the device.
8338  */
8339 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8340 		unsigned char name_assign_type,
8341 		void (*setup)(struct net_device *),
8342 		unsigned int txqs, unsigned int rxqs)
8343 {
8344 	struct net_device *dev;
8345 	unsigned int alloc_size;
8346 	struct net_device *p;
8347 
8348 	BUG_ON(strlen(name) >= sizeof(dev->name));
8349 
8350 	if (txqs < 1) {
8351 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8352 		return NULL;
8353 	}
8354 
8355 	if (rxqs < 1) {
8356 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8357 		return NULL;
8358 	}
8359 
8360 	alloc_size = sizeof(struct net_device);
8361 	if (sizeof_priv) {
8362 		/* ensure 32-byte alignment of private area */
8363 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8364 		alloc_size += sizeof_priv;
8365 	}
8366 	/* ensure 32-byte alignment of whole construct */
8367 	alloc_size += NETDEV_ALIGN - 1;
8368 
8369 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8370 	if (!p)
8371 		return NULL;
8372 
8373 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8374 	dev->padded = (char *)dev - (char *)p;
8375 
8376 	dev->pcpu_refcnt = alloc_percpu(int);
8377 	if (!dev->pcpu_refcnt)
8378 		goto free_dev;
8379 
8380 	if (dev_addr_init(dev))
8381 		goto free_pcpu;
8382 
8383 	dev_mc_init(dev);
8384 	dev_uc_init(dev);
8385 
8386 	dev_net_set(dev, &init_net);
8387 
8388 	dev->gso_max_size = GSO_MAX_SIZE;
8389 	dev->gso_max_segs = GSO_MAX_SEGS;
8390 
8391 	INIT_LIST_HEAD(&dev->napi_list);
8392 	INIT_LIST_HEAD(&dev->unreg_list);
8393 	INIT_LIST_HEAD(&dev->close_list);
8394 	INIT_LIST_HEAD(&dev->link_watch_list);
8395 	INIT_LIST_HEAD(&dev->adj_list.upper);
8396 	INIT_LIST_HEAD(&dev->adj_list.lower);
8397 	INIT_LIST_HEAD(&dev->ptype_all);
8398 	INIT_LIST_HEAD(&dev->ptype_specific);
8399 #ifdef CONFIG_NET_SCHED
8400 	hash_init(dev->qdisc_hash);
8401 #endif
8402 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8403 	setup(dev);
8404 
8405 	if (!dev->tx_queue_len) {
8406 		dev->priv_flags |= IFF_NO_QUEUE;
8407 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8408 	}
8409 
8410 	dev->num_tx_queues = txqs;
8411 	dev->real_num_tx_queues = txqs;
8412 	if (netif_alloc_netdev_queues(dev))
8413 		goto free_all;
8414 
8415 	dev->num_rx_queues = rxqs;
8416 	dev->real_num_rx_queues = rxqs;
8417 	if (netif_alloc_rx_queues(dev))
8418 		goto free_all;
8419 
8420 	strcpy(dev->name, name);
8421 	dev->name_assign_type = name_assign_type;
8422 	dev->group = INIT_NETDEV_GROUP;
8423 	if (!dev->ethtool_ops)
8424 		dev->ethtool_ops = &default_ethtool_ops;
8425 
8426 	nf_hook_ingress_init(dev);
8427 
8428 	return dev;
8429 
8430 free_all:
8431 	free_netdev(dev);
8432 	return NULL;
8433 
8434 free_pcpu:
8435 	free_percpu(dev->pcpu_refcnt);
8436 free_dev:
8437 	netdev_freemem(dev);
8438 	return NULL;
8439 }
8440 EXPORT_SYMBOL(alloc_netdev_mqs);
8441 
8442 /**
8443  * free_netdev - free network device
8444  * @dev: device
8445  *
8446  * This function does the last stage of destroying an allocated device
8447  * interface. The reference to the device object is released. If this
8448  * is the last reference then it will be freed.Must be called in process
8449  * context.
8450  */
8451 void free_netdev(struct net_device *dev)
8452 {
8453 	struct napi_struct *p, *n;
8454 
8455 	might_sleep();
8456 	netif_free_tx_queues(dev);
8457 	netif_free_rx_queues(dev);
8458 
8459 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8460 
8461 	/* Flush device addresses */
8462 	dev_addr_flush(dev);
8463 
8464 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8465 		netif_napi_del(p);
8466 
8467 	free_percpu(dev->pcpu_refcnt);
8468 	dev->pcpu_refcnt = NULL;
8469 
8470 	/*  Compatibility with error handling in drivers */
8471 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8472 		netdev_freemem(dev);
8473 		return;
8474 	}
8475 
8476 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8477 	dev->reg_state = NETREG_RELEASED;
8478 
8479 	/* will free via device release */
8480 	put_device(&dev->dev);
8481 }
8482 EXPORT_SYMBOL(free_netdev);
8483 
8484 /**
8485  *	synchronize_net -  Synchronize with packet receive processing
8486  *
8487  *	Wait for packets currently being received to be done.
8488  *	Does not block later packets from starting.
8489  */
8490 void synchronize_net(void)
8491 {
8492 	might_sleep();
8493 	if (rtnl_is_locked())
8494 		synchronize_rcu_expedited();
8495 	else
8496 		synchronize_rcu();
8497 }
8498 EXPORT_SYMBOL(synchronize_net);
8499 
8500 /**
8501  *	unregister_netdevice_queue - remove device from the kernel
8502  *	@dev: device
8503  *	@head: list
8504  *
8505  *	This function shuts down a device interface and removes it
8506  *	from the kernel tables.
8507  *	If head not NULL, device is queued to be unregistered later.
8508  *
8509  *	Callers must hold the rtnl semaphore.  You may want
8510  *	unregister_netdev() instead of this.
8511  */
8512 
8513 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8514 {
8515 	ASSERT_RTNL();
8516 
8517 	if (head) {
8518 		list_move_tail(&dev->unreg_list, head);
8519 	} else {
8520 		rollback_registered(dev);
8521 		/* Finish processing unregister after unlock */
8522 		net_set_todo(dev);
8523 	}
8524 }
8525 EXPORT_SYMBOL(unregister_netdevice_queue);
8526 
8527 /**
8528  *	unregister_netdevice_many - unregister many devices
8529  *	@head: list of devices
8530  *
8531  *  Note: As most callers use a stack allocated list_head,
8532  *  we force a list_del() to make sure stack wont be corrupted later.
8533  */
8534 void unregister_netdevice_many(struct list_head *head)
8535 {
8536 	struct net_device *dev;
8537 
8538 	if (!list_empty(head)) {
8539 		rollback_registered_many(head);
8540 		list_for_each_entry(dev, head, unreg_list)
8541 			net_set_todo(dev);
8542 		list_del(head);
8543 	}
8544 }
8545 EXPORT_SYMBOL(unregister_netdevice_many);
8546 
8547 /**
8548  *	unregister_netdev - remove device from the kernel
8549  *	@dev: device
8550  *
8551  *	This function shuts down a device interface and removes it
8552  *	from the kernel tables.
8553  *
8554  *	This is just a wrapper for unregister_netdevice that takes
8555  *	the rtnl semaphore.  In general you want to use this and not
8556  *	unregister_netdevice.
8557  */
8558 void unregister_netdev(struct net_device *dev)
8559 {
8560 	rtnl_lock();
8561 	unregister_netdevice(dev);
8562 	rtnl_unlock();
8563 }
8564 EXPORT_SYMBOL(unregister_netdev);
8565 
8566 /**
8567  *	dev_change_net_namespace - move device to different nethost namespace
8568  *	@dev: device
8569  *	@net: network namespace
8570  *	@pat: If not NULL name pattern to try if the current device name
8571  *	      is already taken in the destination network namespace.
8572  *
8573  *	This function shuts down a device interface and moves it
8574  *	to a new network namespace. On success 0 is returned, on
8575  *	a failure a netagive errno code is returned.
8576  *
8577  *	Callers must hold the rtnl semaphore.
8578  */
8579 
8580 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8581 {
8582 	int err, new_nsid, new_ifindex;
8583 
8584 	ASSERT_RTNL();
8585 
8586 	/* Don't allow namespace local devices to be moved. */
8587 	err = -EINVAL;
8588 	if (dev->features & NETIF_F_NETNS_LOCAL)
8589 		goto out;
8590 
8591 	/* Ensure the device has been registrered */
8592 	if (dev->reg_state != NETREG_REGISTERED)
8593 		goto out;
8594 
8595 	/* Get out if there is nothing todo */
8596 	err = 0;
8597 	if (net_eq(dev_net(dev), net))
8598 		goto out;
8599 
8600 	/* Pick the destination device name, and ensure
8601 	 * we can use it in the destination network namespace.
8602 	 */
8603 	err = -EEXIST;
8604 	if (__dev_get_by_name(net, dev->name)) {
8605 		/* We get here if we can't use the current device name */
8606 		if (!pat)
8607 			goto out;
8608 		if (dev_get_valid_name(net, dev, pat) < 0)
8609 			goto out;
8610 	}
8611 
8612 	/*
8613 	 * And now a mini version of register_netdevice unregister_netdevice.
8614 	 */
8615 
8616 	/* If device is running close it first. */
8617 	dev_close(dev);
8618 
8619 	/* And unlink it from device chain */
8620 	err = -ENODEV;
8621 	unlist_netdevice(dev);
8622 
8623 	synchronize_net();
8624 
8625 	/* Shutdown queueing discipline. */
8626 	dev_shutdown(dev);
8627 
8628 	/* Notify protocols, that we are about to destroy
8629 	 * this device. They should clean all the things.
8630 	 *
8631 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8632 	 * This is wanted because this way 8021q and macvlan know
8633 	 * the device is just moving and can keep their slaves up.
8634 	 */
8635 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8636 	rcu_barrier();
8637 
8638 	new_nsid = peernet2id_alloc(dev_net(dev), net);
8639 	/* If there is an ifindex conflict assign a new one */
8640 	if (__dev_get_by_index(net, dev->ifindex))
8641 		new_ifindex = dev_new_index(net);
8642 	else
8643 		new_ifindex = dev->ifindex;
8644 
8645 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8646 			    new_ifindex);
8647 
8648 	/*
8649 	 *	Flush the unicast and multicast chains
8650 	 */
8651 	dev_uc_flush(dev);
8652 	dev_mc_flush(dev);
8653 
8654 	/* Send a netdev-removed uevent to the old namespace */
8655 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8656 	netdev_adjacent_del_links(dev);
8657 
8658 	/* Actually switch the network namespace */
8659 	dev_net_set(dev, net);
8660 	dev->ifindex = new_ifindex;
8661 
8662 	/* Send a netdev-add uevent to the new namespace */
8663 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8664 	netdev_adjacent_add_links(dev);
8665 
8666 	/* Fixup kobjects */
8667 	err = device_rename(&dev->dev, dev->name);
8668 	WARN_ON(err);
8669 
8670 	/* Add the device back in the hashes */
8671 	list_netdevice(dev);
8672 
8673 	/* Notify protocols, that a new device appeared. */
8674 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8675 
8676 	/*
8677 	 *	Prevent userspace races by waiting until the network
8678 	 *	device is fully setup before sending notifications.
8679 	 */
8680 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8681 
8682 	synchronize_net();
8683 	err = 0;
8684 out:
8685 	return err;
8686 }
8687 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8688 
8689 static int dev_cpu_dead(unsigned int oldcpu)
8690 {
8691 	struct sk_buff **list_skb;
8692 	struct sk_buff *skb;
8693 	unsigned int cpu;
8694 	struct softnet_data *sd, *oldsd, *remsd = NULL;
8695 
8696 	local_irq_disable();
8697 	cpu = smp_processor_id();
8698 	sd = &per_cpu(softnet_data, cpu);
8699 	oldsd = &per_cpu(softnet_data, oldcpu);
8700 
8701 	/* Find end of our completion_queue. */
8702 	list_skb = &sd->completion_queue;
8703 	while (*list_skb)
8704 		list_skb = &(*list_skb)->next;
8705 	/* Append completion queue from offline CPU. */
8706 	*list_skb = oldsd->completion_queue;
8707 	oldsd->completion_queue = NULL;
8708 
8709 	/* Append output queue from offline CPU. */
8710 	if (oldsd->output_queue) {
8711 		*sd->output_queue_tailp = oldsd->output_queue;
8712 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8713 		oldsd->output_queue = NULL;
8714 		oldsd->output_queue_tailp = &oldsd->output_queue;
8715 	}
8716 	/* Append NAPI poll list from offline CPU, with one exception :
8717 	 * process_backlog() must be called by cpu owning percpu backlog.
8718 	 * We properly handle process_queue & input_pkt_queue later.
8719 	 */
8720 	while (!list_empty(&oldsd->poll_list)) {
8721 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8722 							    struct napi_struct,
8723 							    poll_list);
8724 
8725 		list_del_init(&napi->poll_list);
8726 		if (napi->poll == process_backlog)
8727 			napi->state = 0;
8728 		else
8729 			____napi_schedule(sd, napi);
8730 	}
8731 
8732 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8733 	local_irq_enable();
8734 
8735 #ifdef CONFIG_RPS
8736 	remsd = oldsd->rps_ipi_list;
8737 	oldsd->rps_ipi_list = NULL;
8738 #endif
8739 	/* send out pending IPI's on offline CPU */
8740 	net_rps_send_ipi(remsd);
8741 
8742 	/* Process offline CPU's input_pkt_queue */
8743 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8744 		netif_rx_ni(skb);
8745 		input_queue_head_incr(oldsd);
8746 	}
8747 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8748 		netif_rx_ni(skb);
8749 		input_queue_head_incr(oldsd);
8750 	}
8751 
8752 	return 0;
8753 }
8754 
8755 /**
8756  *	netdev_increment_features - increment feature set by one
8757  *	@all: current feature set
8758  *	@one: new feature set
8759  *	@mask: mask feature set
8760  *
8761  *	Computes a new feature set after adding a device with feature set
8762  *	@one to the master device with current feature set @all.  Will not
8763  *	enable anything that is off in @mask. Returns the new feature set.
8764  */
8765 netdev_features_t netdev_increment_features(netdev_features_t all,
8766 	netdev_features_t one, netdev_features_t mask)
8767 {
8768 	if (mask & NETIF_F_HW_CSUM)
8769 		mask |= NETIF_F_CSUM_MASK;
8770 	mask |= NETIF_F_VLAN_CHALLENGED;
8771 
8772 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8773 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8774 
8775 	/* If one device supports hw checksumming, set for all. */
8776 	if (all & NETIF_F_HW_CSUM)
8777 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8778 
8779 	return all;
8780 }
8781 EXPORT_SYMBOL(netdev_increment_features);
8782 
8783 static struct hlist_head * __net_init netdev_create_hash(void)
8784 {
8785 	int i;
8786 	struct hlist_head *hash;
8787 
8788 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8789 	if (hash != NULL)
8790 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8791 			INIT_HLIST_HEAD(&hash[i]);
8792 
8793 	return hash;
8794 }
8795 
8796 /* Initialize per network namespace state */
8797 static int __net_init netdev_init(struct net *net)
8798 {
8799 	if (net != &init_net)
8800 		INIT_LIST_HEAD(&net->dev_base_head);
8801 
8802 	net->dev_name_head = netdev_create_hash();
8803 	if (net->dev_name_head == NULL)
8804 		goto err_name;
8805 
8806 	net->dev_index_head = netdev_create_hash();
8807 	if (net->dev_index_head == NULL)
8808 		goto err_idx;
8809 
8810 	return 0;
8811 
8812 err_idx:
8813 	kfree(net->dev_name_head);
8814 err_name:
8815 	return -ENOMEM;
8816 }
8817 
8818 /**
8819  *	netdev_drivername - network driver for the device
8820  *	@dev: network device
8821  *
8822  *	Determine network driver for device.
8823  */
8824 const char *netdev_drivername(const struct net_device *dev)
8825 {
8826 	const struct device_driver *driver;
8827 	const struct device *parent;
8828 	const char *empty = "";
8829 
8830 	parent = dev->dev.parent;
8831 	if (!parent)
8832 		return empty;
8833 
8834 	driver = parent->driver;
8835 	if (driver && driver->name)
8836 		return driver->name;
8837 	return empty;
8838 }
8839 
8840 static void __netdev_printk(const char *level, const struct net_device *dev,
8841 			    struct va_format *vaf)
8842 {
8843 	if (dev && dev->dev.parent) {
8844 		dev_printk_emit(level[1] - '0',
8845 				dev->dev.parent,
8846 				"%s %s %s%s: %pV",
8847 				dev_driver_string(dev->dev.parent),
8848 				dev_name(dev->dev.parent),
8849 				netdev_name(dev), netdev_reg_state(dev),
8850 				vaf);
8851 	} else if (dev) {
8852 		printk("%s%s%s: %pV",
8853 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8854 	} else {
8855 		printk("%s(NULL net_device): %pV", level, vaf);
8856 	}
8857 }
8858 
8859 void netdev_printk(const char *level, const struct net_device *dev,
8860 		   const char *format, ...)
8861 {
8862 	struct va_format vaf;
8863 	va_list args;
8864 
8865 	va_start(args, format);
8866 
8867 	vaf.fmt = format;
8868 	vaf.va = &args;
8869 
8870 	__netdev_printk(level, dev, &vaf);
8871 
8872 	va_end(args);
8873 }
8874 EXPORT_SYMBOL(netdev_printk);
8875 
8876 #define define_netdev_printk_level(func, level)			\
8877 void func(const struct net_device *dev, const char *fmt, ...)	\
8878 {								\
8879 	struct va_format vaf;					\
8880 	va_list args;						\
8881 								\
8882 	va_start(args, fmt);					\
8883 								\
8884 	vaf.fmt = fmt;						\
8885 	vaf.va = &args;						\
8886 								\
8887 	__netdev_printk(level, dev, &vaf);			\
8888 								\
8889 	va_end(args);						\
8890 }								\
8891 EXPORT_SYMBOL(func);
8892 
8893 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8894 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8895 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8896 define_netdev_printk_level(netdev_err, KERN_ERR);
8897 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8898 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8899 define_netdev_printk_level(netdev_info, KERN_INFO);
8900 
8901 static void __net_exit netdev_exit(struct net *net)
8902 {
8903 	kfree(net->dev_name_head);
8904 	kfree(net->dev_index_head);
8905 	if (net != &init_net)
8906 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8907 }
8908 
8909 static struct pernet_operations __net_initdata netdev_net_ops = {
8910 	.init = netdev_init,
8911 	.exit = netdev_exit,
8912 };
8913 
8914 static void __net_exit default_device_exit(struct net *net)
8915 {
8916 	struct net_device *dev, *aux;
8917 	/*
8918 	 * Push all migratable network devices back to the
8919 	 * initial network namespace
8920 	 */
8921 	rtnl_lock();
8922 	for_each_netdev_safe(net, dev, aux) {
8923 		int err;
8924 		char fb_name[IFNAMSIZ];
8925 
8926 		/* Ignore unmoveable devices (i.e. loopback) */
8927 		if (dev->features & NETIF_F_NETNS_LOCAL)
8928 			continue;
8929 
8930 		/* Leave virtual devices for the generic cleanup */
8931 		if (dev->rtnl_link_ops)
8932 			continue;
8933 
8934 		/* Push remaining network devices to init_net */
8935 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8936 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8937 		if (err) {
8938 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8939 				 __func__, dev->name, err);
8940 			BUG();
8941 		}
8942 	}
8943 	rtnl_unlock();
8944 }
8945 
8946 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8947 {
8948 	/* Return with the rtnl_lock held when there are no network
8949 	 * devices unregistering in any network namespace in net_list.
8950 	 */
8951 	struct net *net;
8952 	bool unregistering;
8953 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8954 
8955 	add_wait_queue(&netdev_unregistering_wq, &wait);
8956 	for (;;) {
8957 		unregistering = false;
8958 		rtnl_lock();
8959 		list_for_each_entry(net, net_list, exit_list) {
8960 			if (net->dev_unreg_count > 0) {
8961 				unregistering = true;
8962 				break;
8963 			}
8964 		}
8965 		if (!unregistering)
8966 			break;
8967 		__rtnl_unlock();
8968 
8969 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8970 	}
8971 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8972 }
8973 
8974 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8975 {
8976 	/* At exit all network devices most be removed from a network
8977 	 * namespace.  Do this in the reverse order of registration.
8978 	 * Do this across as many network namespaces as possible to
8979 	 * improve batching efficiency.
8980 	 */
8981 	struct net_device *dev;
8982 	struct net *net;
8983 	LIST_HEAD(dev_kill_list);
8984 
8985 	/* To prevent network device cleanup code from dereferencing
8986 	 * loopback devices or network devices that have been freed
8987 	 * wait here for all pending unregistrations to complete,
8988 	 * before unregistring the loopback device and allowing the
8989 	 * network namespace be freed.
8990 	 *
8991 	 * The netdev todo list containing all network devices
8992 	 * unregistrations that happen in default_device_exit_batch
8993 	 * will run in the rtnl_unlock() at the end of
8994 	 * default_device_exit_batch.
8995 	 */
8996 	rtnl_lock_unregistering(net_list);
8997 	list_for_each_entry(net, net_list, exit_list) {
8998 		for_each_netdev_reverse(net, dev) {
8999 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9000 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9001 			else
9002 				unregister_netdevice_queue(dev, &dev_kill_list);
9003 		}
9004 	}
9005 	unregister_netdevice_many(&dev_kill_list);
9006 	rtnl_unlock();
9007 }
9008 
9009 static struct pernet_operations __net_initdata default_device_ops = {
9010 	.exit = default_device_exit,
9011 	.exit_batch = default_device_exit_batch,
9012 };
9013 
9014 /*
9015  *	Initialize the DEV module. At boot time this walks the device list and
9016  *	unhooks any devices that fail to initialise (normally hardware not
9017  *	present) and leaves us with a valid list of present and active devices.
9018  *
9019  */
9020 
9021 /*
9022  *       This is called single threaded during boot, so no need
9023  *       to take the rtnl semaphore.
9024  */
9025 static int __init net_dev_init(void)
9026 {
9027 	int i, rc = -ENOMEM;
9028 
9029 	BUG_ON(!dev_boot_phase);
9030 
9031 	if (dev_proc_init())
9032 		goto out;
9033 
9034 	if (netdev_kobject_init())
9035 		goto out;
9036 
9037 	INIT_LIST_HEAD(&ptype_all);
9038 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9039 		INIT_LIST_HEAD(&ptype_base[i]);
9040 
9041 	INIT_LIST_HEAD(&offload_base);
9042 
9043 	if (register_pernet_subsys(&netdev_net_ops))
9044 		goto out;
9045 
9046 	/*
9047 	 *	Initialise the packet receive queues.
9048 	 */
9049 
9050 	for_each_possible_cpu(i) {
9051 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9052 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9053 
9054 		INIT_WORK(flush, flush_backlog);
9055 
9056 		skb_queue_head_init(&sd->input_pkt_queue);
9057 		skb_queue_head_init(&sd->process_queue);
9058 #ifdef CONFIG_XFRM_OFFLOAD
9059 		skb_queue_head_init(&sd->xfrm_backlog);
9060 #endif
9061 		INIT_LIST_HEAD(&sd->poll_list);
9062 		sd->output_queue_tailp = &sd->output_queue;
9063 #ifdef CONFIG_RPS
9064 		sd->csd.func = rps_trigger_softirq;
9065 		sd->csd.info = sd;
9066 		sd->cpu = i;
9067 #endif
9068 
9069 		sd->backlog.poll = process_backlog;
9070 		sd->backlog.weight = weight_p;
9071 	}
9072 
9073 	dev_boot_phase = 0;
9074 
9075 	/* The loopback device is special if any other network devices
9076 	 * is present in a network namespace the loopback device must
9077 	 * be present. Since we now dynamically allocate and free the
9078 	 * loopback device ensure this invariant is maintained by
9079 	 * keeping the loopback device as the first device on the
9080 	 * list of network devices.  Ensuring the loopback devices
9081 	 * is the first device that appears and the last network device
9082 	 * that disappears.
9083 	 */
9084 	if (register_pernet_device(&loopback_net_ops))
9085 		goto out;
9086 
9087 	if (register_pernet_device(&default_device_ops))
9088 		goto out;
9089 
9090 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9091 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9092 
9093 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9094 				       NULL, dev_cpu_dead);
9095 	WARN_ON(rc < 0);
9096 	rc = 0;
9097 out:
9098 	return rc;
9099 }
9100 
9101 subsys_initcall(net_dev_init);
9102