xref: /openbmc/linux/net/core/dev.c (revision e0bf6c5c)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 
139 #include "net-sysfs.h"
140 
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143 
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly;	/* Taps */
151 static struct list_head offload_base __read_mostly;
152 
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155 					 struct net_device *dev,
156 					 struct netdev_notifier_info *info);
157 
158 /*
159  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160  * semaphore.
161  *
162  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163  *
164  * Writers must hold the rtnl semaphore while they loop through the
165  * dev_base_head list, and hold dev_base_lock for writing when they do the
166  * actual updates.  This allows pure readers to access the list even
167  * while a writer is preparing to update it.
168  *
169  * To put it another way, dev_base_lock is held for writing only to
170  * protect against pure readers; the rtnl semaphore provides the
171  * protection against other writers.
172  *
173  * See, for example usages, register_netdevice() and
174  * unregister_netdevice(), which must be called with the rtnl
175  * semaphore held.
176  */
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
179 
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182 
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
185 
186 static seqcount_t devnet_rename_seq;
187 
188 static inline void dev_base_seq_inc(struct net *net)
189 {
190 	while (++net->dev_base_seq == 0);
191 }
192 
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196 
197 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199 
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204 
205 static inline void rps_lock(struct softnet_data *sd)
206 {
207 #ifdef CONFIG_RPS
208 	spin_lock(&sd->input_pkt_queue.lock);
209 #endif
210 }
211 
212 static inline void rps_unlock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 	spin_unlock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218 
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
221 {
222 	struct net *net = dev_net(dev);
223 
224 	ASSERT_RTNL();
225 
226 	write_lock_bh(&dev_base_lock);
227 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 	hlist_add_head_rcu(&dev->index_hlist,
230 			   dev_index_hash(net, dev->ifindex));
231 	write_unlock_bh(&dev_base_lock);
232 
233 	dev_base_seq_inc(net);
234 }
235 
236 /* Device list removal
237  * caller must respect a RCU grace period before freeing/reusing dev
238  */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 	ASSERT_RTNL();
242 
243 	/* Unlink dev from the device chain */
244 	write_lock_bh(&dev_base_lock);
245 	list_del_rcu(&dev->dev_list);
246 	hlist_del_rcu(&dev->name_hlist);
247 	hlist_del_rcu(&dev->index_hlist);
248 	write_unlock_bh(&dev_base_lock);
249 
250 	dev_base_seq_inc(dev_net(dev));
251 }
252 
253 /*
254  *	Our notifier list
255  */
256 
257 static RAW_NOTIFIER_HEAD(netdev_chain);
258 
259 /*
260  *	Device drivers call our routines to queue packets here. We empty the
261  *	queue in the local softnet handler.
262  */
263 
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
266 
267 #ifdef CONFIG_LOCKDEP
268 /*
269  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270  * according to dev->type
271  */
272 static const unsigned short netdev_lock_type[] =
273 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288 
289 static const char *const netdev_lock_name[] =
290 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305 
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311 	int i;
312 
313 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 		if (netdev_lock_type[i] == dev_type)
315 			return i;
316 	/* the last key is used by default */
317 	return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319 
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 						 unsigned short dev_type)
322 {
323 	int i;
324 
325 	i = netdev_lock_pos(dev_type);
326 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 				   netdev_lock_name[i]);
328 }
329 
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332 	int i;
333 
334 	i = netdev_lock_pos(dev->type);
335 	lockdep_set_class_and_name(&dev->addr_list_lock,
336 				   &netdev_addr_lock_key[i],
337 				   netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 						 unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348 
349 /*******************************************************************************
350 
351 		Protocol management and registration routines
352 
353 *******************************************************************************/
354 
355 /*
356  *	Add a protocol ID to the list. Now that the input handler is
357  *	smarter we can dispense with all the messy stuff that used to be
358  *	here.
359  *
360  *	BEWARE!!! Protocol handlers, mangling input packets,
361  *	MUST BE last in hash buckets and checking protocol handlers
362  *	MUST start from promiscuous ptype_all chain in net_bh.
363  *	It is true now, do not change it.
364  *	Explanation follows: if protocol handler, mangling packet, will
365  *	be the first on list, it is not able to sense, that packet
366  *	is cloned and should be copied-on-write, so that it will
367  *	change it and subsequent readers will get broken packet.
368  *							--ANK (980803)
369  */
370 
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
372 {
373 	if (pt->type == htons(ETH_P_ALL))
374 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
375 	else
376 		return pt->dev ? &pt->dev->ptype_specific :
377 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
378 }
379 
380 /**
381  *	dev_add_pack - add packet handler
382  *	@pt: packet type declaration
383  *
384  *	Add a protocol handler to the networking stack. The passed &packet_type
385  *	is linked into kernel lists and may not be freed until it has been
386  *	removed from the kernel lists.
387  *
388  *	This call does not sleep therefore it can not
389  *	guarantee all CPU's that are in middle of receiving packets
390  *	will see the new packet type (until the next received packet).
391  */
392 
393 void dev_add_pack(struct packet_type *pt)
394 {
395 	struct list_head *head = ptype_head(pt);
396 
397 	spin_lock(&ptype_lock);
398 	list_add_rcu(&pt->list, head);
399 	spin_unlock(&ptype_lock);
400 }
401 EXPORT_SYMBOL(dev_add_pack);
402 
403 /**
404  *	__dev_remove_pack	 - remove packet handler
405  *	@pt: packet type declaration
406  *
407  *	Remove a protocol handler that was previously added to the kernel
408  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
409  *	from the kernel lists and can be freed or reused once this function
410  *	returns.
411  *
412  *      The packet type might still be in use by receivers
413  *	and must not be freed until after all the CPU's have gone
414  *	through a quiescent state.
415  */
416 void __dev_remove_pack(struct packet_type *pt)
417 {
418 	struct list_head *head = ptype_head(pt);
419 	struct packet_type *pt1;
420 
421 	spin_lock(&ptype_lock);
422 
423 	list_for_each_entry(pt1, head, list) {
424 		if (pt == pt1) {
425 			list_del_rcu(&pt->list);
426 			goto out;
427 		}
428 	}
429 
430 	pr_warn("dev_remove_pack: %p not found\n", pt);
431 out:
432 	spin_unlock(&ptype_lock);
433 }
434 EXPORT_SYMBOL(__dev_remove_pack);
435 
436 /**
437  *	dev_remove_pack	 - remove packet handler
438  *	@pt: packet type declaration
439  *
440  *	Remove a protocol handler that was previously added to the kernel
441  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
442  *	from the kernel lists and can be freed or reused once this function
443  *	returns.
444  *
445  *	This call sleeps to guarantee that no CPU is looking at the packet
446  *	type after return.
447  */
448 void dev_remove_pack(struct packet_type *pt)
449 {
450 	__dev_remove_pack(pt);
451 
452 	synchronize_net();
453 }
454 EXPORT_SYMBOL(dev_remove_pack);
455 
456 
457 /**
458  *	dev_add_offload - register offload handlers
459  *	@po: protocol offload declaration
460  *
461  *	Add protocol offload handlers to the networking stack. The passed
462  *	&proto_offload is linked into kernel lists and may not be freed until
463  *	it has been removed from the kernel lists.
464  *
465  *	This call does not sleep therefore it can not
466  *	guarantee all CPU's that are in middle of receiving packets
467  *	will see the new offload handlers (until the next received packet).
468  */
469 void dev_add_offload(struct packet_offload *po)
470 {
471 	struct list_head *head = &offload_base;
472 
473 	spin_lock(&offload_lock);
474 	list_add_rcu(&po->list, head);
475 	spin_unlock(&offload_lock);
476 }
477 EXPORT_SYMBOL(dev_add_offload);
478 
479 /**
480  *	__dev_remove_offload	 - remove offload handler
481  *	@po: packet offload declaration
482  *
483  *	Remove a protocol offload handler that was previously added to the
484  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
485  *	is removed from the kernel lists and can be freed or reused once this
486  *	function returns.
487  *
488  *      The packet type might still be in use by receivers
489  *	and must not be freed until after all the CPU's have gone
490  *	through a quiescent state.
491  */
492 static void __dev_remove_offload(struct packet_offload *po)
493 {
494 	struct list_head *head = &offload_base;
495 	struct packet_offload *po1;
496 
497 	spin_lock(&offload_lock);
498 
499 	list_for_each_entry(po1, head, list) {
500 		if (po == po1) {
501 			list_del_rcu(&po->list);
502 			goto out;
503 		}
504 	}
505 
506 	pr_warn("dev_remove_offload: %p not found\n", po);
507 out:
508 	spin_unlock(&offload_lock);
509 }
510 
511 /**
512  *	dev_remove_offload	 - remove packet offload handler
513  *	@po: packet offload declaration
514  *
515  *	Remove a packet offload handler that was previously added to the kernel
516  *	offload handlers by dev_add_offload(). The passed &offload_type is
517  *	removed from the kernel lists and can be freed or reused once this
518  *	function returns.
519  *
520  *	This call sleeps to guarantee that no CPU is looking at the packet
521  *	type after return.
522  */
523 void dev_remove_offload(struct packet_offload *po)
524 {
525 	__dev_remove_offload(po);
526 
527 	synchronize_net();
528 }
529 EXPORT_SYMBOL(dev_remove_offload);
530 
531 /******************************************************************************
532 
533 		      Device Boot-time Settings Routines
534 
535 *******************************************************************************/
536 
537 /* Boot time configuration table */
538 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539 
540 /**
541  *	netdev_boot_setup_add	- add new setup entry
542  *	@name: name of the device
543  *	@map: configured settings for the device
544  *
545  *	Adds new setup entry to the dev_boot_setup list.  The function
546  *	returns 0 on error and 1 on success.  This is a generic routine to
547  *	all netdevices.
548  */
549 static int netdev_boot_setup_add(char *name, struct ifmap *map)
550 {
551 	struct netdev_boot_setup *s;
552 	int i;
553 
554 	s = dev_boot_setup;
555 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 			memset(s[i].name, 0, sizeof(s[i].name));
558 			strlcpy(s[i].name, name, IFNAMSIZ);
559 			memcpy(&s[i].map, map, sizeof(s[i].map));
560 			break;
561 		}
562 	}
563 
564 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565 }
566 
567 /**
568  *	netdev_boot_setup_check	- check boot time settings
569  *	@dev: the netdevice
570  *
571  * 	Check boot time settings for the device.
572  *	The found settings are set for the device to be used
573  *	later in the device probing.
574  *	Returns 0 if no settings found, 1 if they are.
575  */
576 int netdev_boot_setup_check(struct net_device *dev)
577 {
578 	struct netdev_boot_setup *s = dev_boot_setup;
579 	int i;
580 
581 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
583 		    !strcmp(dev->name, s[i].name)) {
584 			dev->irq 	= s[i].map.irq;
585 			dev->base_addr 	= s[i].map.base_addr;
586 			dev->mem_start 	= s[i].map.mem_start;
587 			dev->mem_end 	= s[i].map.mem_end;
588 			return 1;
589 		}
590 	}
591 	return 0;
592 }
593 EXPORT_SYMBOL(netdev_boot_setup_check);
594 
595 
596 /**
597  *	netdev_boot_base	- get address from boot time settings
598  *	@prefix: prefix for network device
599  *	@unit: id for network device
600  *
601  * 	Check boot time settings for the base address of device.
602  *	The found settings are set for the device to be used
603  *	later in the device probing.
604  *	Returns 0 if no settings found.
605  */
606 unsigned long netdev_boot_base(const char *prefix, int unit)
607 {
608 	const struct netdev_boot_setup *s = dev_boot_setup;
609 	char name[IFNAMSIZ];
610 	int i;
611 
612 	sprintf(name, "%s%d", prefix, unit);
613 
614 	/*
615 	 * If device already registered then return base of 1
616 	 * to indicate not to probe for this interface
617 	 */
618 	if (__dev_get_by_name(&init_net, name))
619 		return 1;
620 
621 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 		if (!strcmp(name, s[i].name))
623 			return s[i].map.base_addr;
624 	return 0;
625 }
626 
627 /*
628  * Saves at boot time configured settings for any netdevice.
629  */
630 int __init netdev_boot_setup(char *str)
631 {
632 	int ints[5];
633 	struct ifmap map;
634 
635 	str = get_options(str, ARRAY_SIZE(ints), ints);
636 	if (!str || !*str)
637 		return 0;
638 
639 	/* Save settings */
640 	memset(&map, 0, sizeof(map));
641 	if (ints[0] > 0)
642 		map.irq = ints[1];
643 	if (ints[0] > 1)
644 		map.base_addr = ints[2];
645 	if (ints[0] > 2)
646 		map.mem_start = ints[3];
647 	if (ints[0] > 3)
648 		map.mem_end = ints[4];
649 
650 	/* Add new entry to the list */
651 	return netdev_boot_setup_add(str, &map);
652 }
653 
654 __setup("netdev=", netdev_boot_setup);
655 
656 /*******************************************************************************
657 
658 			    Device Interface Subroutines
659 
660 *******************************************************************************/
661 
662 /**
663  *	__dev_get_by_name	- find a device by its name
664  *	@net: the applicable net namespace
665  *	@name: name to find
666  *
667  *	Find an interface by name. Must be called under RTNL semaphore
668  *	or @dev_base_lock. If the name is found a pointer to the device
669  *	is returned. If the name is not found then %NULL is returned. The
670  *	reference counters are not incremented so the caller must be
671  *	careful with locks.
672  */
673 
674 struct net_device *__dev_get_by_name(struct net *net, const char *name)
675 {
676 	struct net_device *dev;
677 	struct hlist_head *head = dev_name_hash(net, name);
678 
679 	hlist_for_each_entry(dev, head, name_hlist)
680 		if (!strncmp(dev->name, name, IFNAMSIZ))
681 			return dev;
682 
683 	return NULL;
684 }
685 EXPORT_SYMBOL(__dev_get_by_name);
686 
687 /**
688  *	dev_get_by_name_rcu	- find a device by its name
689  *	@net: the applicable net namespace
690  *	@name: name to find
691  *
692  *	Find an interface by name.
693  *	If the name is found a pointer to the device is returned.
694  * 	If the name is not found then %NULL is returned.
695  *	The reference counters are not incremented so the caller must be
696  *	careful with locks. The caller must hold RCU lock.
697  */
698 
699 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
700 {
701 	struct net_device *dev;
702 	struct hlist_head *head = dev_name_hash(net, name);
703 
704 	hlist_for_each_entry_rcu(dev, head, name_hlist)
705 		if (!strncmp(dev->name, name, IFNAMSIZ))
706 			return dev;
707 
708 	return NULL;
709 }
710 EXPORT_SYMBOL(dev_get_by_name_rcu);
711 
712 /**
713  *	dev_get_by_name		- find a device by its name
714  *	@net: the applicable net namespace
715  *	@name: name to find
716  *
717  *	Find an interface by name. This can be called from any
718  *	context and does its own locking. The returned handle has
719  *	the usage count incremented and the caller must use dev_put() to
720  *	release it when it is no longer needed. %NULL is returned if no
721  *	matching device is found.
722  */
723 
724 struct net_device *dev_get_by_name(struct net *net, const char *name)
725 {
726 	struct net_device *dev;
727 
728 	rcu_read_lock();
729 	dev = dev_get_by_name_rcu(net, name);
730 	if (dev)
731 		dev_hold(dev);
732 	rcu_read_unlock();
733 	return dev;
734 }
735 EXPORT_SYMBOL(dev_get_by_name);
736 
737 /**
738  *	__dev_get_by_index - find a device by its ifindex
739  *	@net: the applicable net namespace
740  *	@ifindex: index of device
741  *
742  *	Search for an interface by index. Returns %NULL if the device
743  *	is not found or a pointer to the device. The device has not
744  *	had its reference counter increased so the caller must be careful
745  *	about locking. The caller must hold either the RTNL semaphore
746  *	or @dev_base_lock.
747  */
748 
749 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
750 {
751 	struct net_device *dev;
752 	struct hlist_head *head = dev_index_hash(net, ifindex);
753 
754 	hlist_for_each_entry(dev, head, index_hlist)
755 		if (dev->ifindex == ifindex)
756 			return dev;
757 
758 	return NULL;
759 }
760 EXPORT_SYMBOL(__dev_get_by_index);
761 
762 /**
763  *	dev_get_by_index_rcu - find a device by its ifindex
764  *	@net: the applicable net namespace
765  *	@ifindex: index of device
766  *
767  *	Search for an interface by index. Returns %NULL if the device
768  *	is not found or a pointer to the device. The device has not
769  *	had its reference counter increased so the caller must be careful
770  *	about locking. The caller must hold RCU lock.
771  */
772 
773 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
774 {
775 	struct net_device *dev;
776 	struct hlist_head *head = dev_index_hash(net, ifindex);
777 
778 	hlist_for_each_entry_rcu(dev, head, index_hlist)
779 		if (dev->ifindex == ifindex)
780 			return dev;
781 
782 	return NULL;
783 }
784 EXPORT_SYMBOL(dev_get_by_index_rcu);
785 
786 
787 /**
788  *	dev_get_by_index - find a device by its ifindex
789  *	@net: the applicable net namespace
790  *	@ifindex: index of device
791  *
792  *	Search for an interface by index. Returns NULL if the device
793  *	is not found or a pointer to the device. The device returned has
794  *	had a reference added and the pointer is safe until the user calls
795  *	dev_put to indicate they have finished with it.
796  */
797 
798 struct net_device *dev_get_by_index(struct net *net, int ifindex)
799 {
800 	struct net_device *dev;
801 
802 	rcu_read_lock();
803 	dev = dev_get_by_index_rcu(net, ifindex);
804 	if (dev)
805 		dev_hold(dev);
806 	rcu_read_unlock();
807 	return dev;
808 }
809 EXPORT_SYMBOL(dev_get_by_index);
810 
811 /**
812  *	netdev_get_name - get a netdevice name, knowing its ifindex.
813  *	@net: network namespace
814  *	@name: a pointer to the buffer where the name will be stored.
815  *	@ifindex: the ifindex of the interface to get the name from.
816  *
817  *	The use of raw_seqcount_begin() and cond_resched() before
818  *	retrying is required as we want to give the writers a chance
819  *	to complete when CONFIG_PREEMPT is not set.
820  */
821 int netdev_get_name(struct net *net, char *name, int ifindex)
822 {
823 	struct net_device *dev;
824 	unsigned int seq;
825 
826 retry:
827 	seq = raw_seqcount_begin(&devnet_rename_seq);
828 	rcu_read_lock();
829 	dev = dev_get_by_index_rcu(net, ifindex);
830 	if (!dev) {
831 		rcu_read_unlock();
832 		return -ENODEV;
833 	}
834 
835 	strcpy(name, dev->name);
836 	rcu_read_unlock();
837 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
838 		cond_resched();
839 		goto retry;
840 	}
841 
842 	return 0;
843 }
844 
845 /**
846  *	dev_getbyhwaddr_rcu - find a device by its hardware address
847  *	@net: the applicable net namespace
848  *	@type: media type of device
849  *	@ha: hardware address
850  *
851  *	Search for an interface by MAC address. Returns NULL if the device
852  *	is not found or a pointer to the device.
853  *	The caller must hold RCU or RTNL.
854  *	The returned device has not had its ref count increased
855  *	and the caller must therefore be careful about locking
856  *
857  */
858 
859 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
860 				       const char *ha)
861 {
862 	struct net_device *dev;
863 
864 	for_each_netdev_rcu(net, dev)
865 		if (dev->type == type &&
866 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
867 			return dev;
868 
869 	return NULL;
870 }
871 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
872 
873 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
874 {
875 	struct net_device *dev;
876 
877 	ASSERT_RTNL();
878 	for_each_netdev(net, dev)
879 		if (dev->type == type)
880 			return dev;
881 
882 	return NULL;
883 }
884 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
885 
886 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
887 {
888 	struct net_device *dev, *ret = NULL;
889 
890 	rcu_read_lock();
891 	for_each_netdev_rcu(net, dev)
892 		if (dev->type == type) {
893 			dev_hold(dev);
894 			ret = dev;
895 			break;
896 		}
897 	rcu_read_unlock();
898 	return ret;
899 }
900 EXPORT_SYMBOL(dev_getfirstbyhwtype);
901 
902 /**
903  *	__dev_get_by_flags - find any device with given flags
904  *	@net: the applicable net namespace
905  *	@if_flags: IFF_* values
906  *	@mask: bitmask of bits in if_flags to check
907  *
908  *	Search for any interface with the given flags. Returns NULL if a device
909  *	is not found or a pointer to the device. Must be called inside
910  *	rtnl_lock(), and result refcount is unchanged.
911  */
912 
913 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
914 				      unsigned short mask)
915 {
916 	struct net_device *dev, *ret;
917 
918 	ASSERT_RTNL();
919 
920 	ret = NULL;
921 	for_each_netdev(net, dev) {
922 		if (((dev->flags ^ if_flags) & mask) == 0) {
923 			ret = dev;
924 			break;
925 		}
926 	}
927 	return ret;
928 }
929 EXPORT_SYMBOL(__dev_get_by_flags);
930 
931 /**
932  *	dev_valid_name - check if name is okay for network device
933  *	@name: name string
934  *
935  *	Network device names need to be valid file names to
936  *	to allow sysfs to work.  We also disallow any kind of
937  *	whitespace.
938  */
939 bool dev_valid_name(const char *name)
940 {
941 	if (*name == '\0')
942 		return false;
943 	if (strlen(name) >= IFNAMSIZ)
944 		return false;
945 	if (!strcmp(name, ".") || !strcmp(name, ".."))
946 		return false;
947 
948 	while (*name) {
949 		if (*name == '/' || *name == ':' || isspace(*name))
950 			return false;
951 		name++;
952 	}
953 	return true;
954 }
955 EXPORT_SYMBOL(dev_valid_name);
956 
957 /**
958  *	__dev_alloc_name - allocate a name for a device
959  *	@net: network namespace to allocate the device name in
960  *	@name: name format string
961  *	@buf:  scratch buffer and result name string
962  *
963  *	Passed a format string - eg "lt%d" it will try and find a suitable
964  *	id. It scans list of devices to build up a free map, then chooses
965  *	the first empty slot. The caller must hold the dev_base or rtnl lock
966  *	while allocating the name and adding the device in order to avoid
967  *	duplicates.
968  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
969  *	Returns the number of the unit assigned or a negative errno code.
970  */
971 
972 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
973 {
974 	int i = 0;
975 	const char *p;
976 	const int max_netdevices = 8*PAGE_SIZE;
977 	unsigned long *inuse;
978 	struct net_device *d;
979 
980 	p = strnchr(name, IFNAMSIZ-1, '%');
981 	if (p) {
982 		/*
983 		 * Verify the string as this thing may have come from
984 		 * the user.  There must be either one "%d" and no other "%"
985 		 * characters.
986 		 */
987 		if (p[1] != 'd' || strchr(p + 2, '%'))
988 			return -EINVAL;
989 
990 		/* Use one page as a bit array of possible slots */
991 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
992 		if (!inuse)
993 			return -ENOMEM;
994 
995 		for_each_netdev(net, d) {
996 			if (!sscanf(d->name, name, &i))
997 				continue;
998 			if (i < 0 || i >= max_netdevices)
999 				continue;
1000 
1001 			/*  avoid cases where sscanf is not exact inverse of printf */
1002 			snprintf(buf, IFNAMSIZ, name, i);
1003 			if (!strncmp(buf, d->name, IFNAMSIZ))
1004 				set_bit(i, inuse);
1005 		}
1006 
1007 		i = find_first_zero_bit(inuse, max_netdevices);
1008 		free_page((unsigned long) inuse);
1009 	}
1010 
1011 	if (buf != name)
1012 		snprintf(buf, IFNAMSIZ, name, i);
1013 	if (!__dev_get_by_name(net, buf))
1014 		return i;
1015 
1016 	/* It is possible to run out of possible slots
1017 	 * when the name is long and there isn't enough space left
1018 	 * for the digits, or if all bits are used.
1019 	 */
1020 	return -ENFILE;
1021 }
1022 
1023 /**
1024  *	dev_alloc_name - allocate a name for a device
1025  *	@dev: device
1026  *	@name: name format string
1027  *
1028  *	Passed a format string - eg "lt%d" it will try and find a suitable
1029  *	id. It scans list of devices to build up a free map, then chooses
1030  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1031  *	while allocating the name and adding the device in order to avoid
1032  *	duplicates.
1033  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1034  *	Returns the number of the unit assigned or a negative errno code.
1035  */
1036 
1037 int dev_alloc_name(struct net_device *dev, const char *name)
1038 {
1039 	char buf[IFNAMSIZ];
1040 	struct net *net;
1041 	int ret;
1042 
1043 	BUG_ON(!dev_net(dev));
1044 	net = dev_net(dev);
1045 	ret = __dev_alloc_name(net, name, buf);
1046 	if (ret >= 0)
1047 		strlcpy(dev->name, buf, IFNAMSIZ);
1048 	return ret;
1049 }
1050 EXPORT_SYMBOL(dev_alloc_name);
1051 
1052 static int dev_alloc_name_ns(struct net *net,
1053 			     struct net_device *dev,
1054 			     const char *name)
1055 {
1056 	char buf[IFNAMSIZ];
1057 	int ret;
1058 
1059 	ret = __dev_alloc_name(net, name, buf);
1060 	if (ret >= 0)
1061 		strlcpy(dev->name, buf, IFNAMSIZ);
1062 	return ret;
1063 }
1064 
1065 static int dev_get_valid_name(struct net *net,
1066 			      struct net_device *dev,
1067 			      const char *name)
1068 {
1069 	BUG_ON(!net);
1070 
1071 	if (!dev_valid_name(name))
1072 		return -EINVAL;
1073 
1074 	if (strchr(name, '%'))
1075 		return dev_alloc_name_ns(net, dev, name);
1076 	else if (__dev_get_by_name(net, name))
1077 		return -EEXIST;
1078 	else if (dev->name != name)
1079 		strlcpy(dev->name, name, IFNAMSIZ);
1080 
1081 	return 0;
1082 }
1083 
1084 /**
1085  *	dev_change_name - change name of a device
1086  *	@dev: device
1087  *	@newname: name (or format string) must be at least IFNAMSIZ
1088  *
1089  *	Change name of a device, can pass format strings "eth%d".
1090  *	for wildcarding.
1091  */
1092 int dev_change_name(struct net_device *dev, const char *newname)
1093 {
1094 	unsigned char old_assign_type;
1095 	char oldname[IFNAMSIZ];
1096 	int err = 0;
1097 	int ret;
1098 	struct net *net;
1099 
1100 	ASSERT_RTNL();
1101 	BUG_ON(!dev_net(dev));
1102 
1103 	net = dev_net(dev);
1104 	if (dev->flags & IFF_UP)
1105 		return -EBUSY;
1106 
1107 	write_seqcount_begin(&devnet_rename_seq);
1108 
1109 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1110 		write_seqcount_end(&devnet_rename_seq);
1111 		return 0;
1112 	}
1113 
1114 	memcpy(oldname, dev->name, IFNAMSIZ);
1115 
1116 	err = dev_get_valid_name(net, dev, newname);
1117 	if (err < 0) {
1118 		write_seqcount_end(&devnet_rename_seq);
1119 		return err;
1120 	}
1121 
1122 	if (oldname[0] && !strchr(oldname, '%'))
1123 		netdev_info(dev, "renamed from %s\n", oldname);
1124 
1125 	old_assign_type = dev->name_assign_type;
1126 	dev->name_assign_type = NET_NAME_RENAMED;
1127 
1128 rollback:
1129 	ret = device_rename(&dev->dev, dev->name);
1130 	if (ret) {
1131 		memcpy(dev->name, oldname, IFNAMSIZ);
1132 		dev->name_assign_type = old_assign_type;
1133 		write_seqcount_end(&devnet_rename_seq);
1134 		return ret;
1135 	}
1136 
1137 	write_seqcount_end(&devnet_rename_seq);
1138 
1139 	netdev_adjacent_rename_links(dev, oldname);
1140 
1141 	write_lock_bh(&dev_base_lock);
1142 	hlist_del_rcu(&dev->name_hlist);
1143 	write_unlock_bh(&dev_base_lock);
1144 
1145 	synchronize_rcu();
1146 
1147 	write_lock_bh(&dev_base_lock);
1148 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1149 	write_unlock_bh(&dev_base_lock);
1150 
1151 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1152 	ret = notifier_to_errno(ret);
1153 
1154 	if (ret) {
1155 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1156 		if (err >= 0) {
1157 			err = ret;
1158 			write_seqcount_begin(&devnet_rename_seq);
1159 			memcpy(dev->name, oldname, IFNAMSIZ);
1160 			memcpy(oldname, newname, IFNAMSIZ);
1161 			dev->name_assign_type = old_assign_type;
1162 			old_assign_type = NET_NAME_RENAMED;
1163 			goto rollback;
1164 		} else {
1165 			pr_err("%s: name change rollback failed: %d\n",
1166 			       dev->name, ret);
1167 		}
1168 	}
1169 
1170 	return err;
1171 }
1172 
1173 /**
1174  *	dev_set_alias - change ifalias of a device
1175  *	@dev: device
1176  *	@alias: name up to IFALIASZ
1177  *	@len: limit of bytes to copy from info
1178  *
1179  *	Set ifalias for a device,
1180  */
1181 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1182 {
1183 	char *new_ifalias;
1184 
1185 	ASSERT_RTNL();
1186 
1187 	if (len >= IFALIASZ)
1188 		return -EINVAL;
1189 
1190 	if (!len) {
1191 		kfree(dev->ifalias);
1192 		dev->ifalias = NULL;
1193 		return 0;
1194 	}
1195 
1196 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1197 	if (!new_ifalias)
1198 		return -ENOMEM;
1199 	dev->ifalias = new_ifalias;
1200 
1201 	strlcpy(dev->ifalias, alias, len+1);
1202 	return len;
1203 }
1204 
1205 
1206 /**
1207  *	netdev_features_change - device changes features
1208  *	@dev: device to cause notification
1209  *
1210  *	Called to indicate a device has changed features.
1211  */
1212 void netdev_features_change(struct net_device *dev)
1213 {
1214 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1215 }
1216 EXPORT_SYMBOL(netdev_features_change);
1217 
1218 /**
1219  *	netdev_state_change - device changes state
1220  *	@dev: device to cause notification
1221  *
1222  *	Called to indicate a device has changed state. This function calls
1223  *	the notifier chains for netdev_chain and sends a NEWLINK message
1224  *	to the routing socket.
1225  */
1226 void netdev_state_change(struct net_device *dev)
1227 {
1228 	if (dev->flags & IFF_UP) {
1229 		struct netdev_notifier_change_info change_info;
1230 
1231 		change_info.flags_changed = 0;
1232 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1233 					      &change_info.info);
1234 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1235 	}
1236 }
1237 EXPORT_SYMBOL(netdev_state_change);
1238 
1239 /**
1240  * 	netdev_notify_peers - notify network peers about existence of @dev
1241  * 	@dev: network device
1242  *
1243  * Generate traffic such that interested network peers are aware of
1244  * @dev, such as by generating a gratuitous ARP. This may be used when
1245  * a device wants to inform the rest of the network about some sort of
1246  * reconfiguration such as a failover event or virtual machine
1247  * migration.
1248  */
1249 void netdev_notify_peers(struct net_device *dev)
1250 {
1251 	rtnl_lock();
1252 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1253 	rtnl_unlock();
1254 }
1255 EXPORT_SYMBOL(netdev_notify_peers);
1256 
1257 static int __dev_open(struct net_device *dev)
1258 {
1259 	const struct net_device_ops *ops = dev->netdev_ops;
1260 	int ret;
1261 
1262 	ASSERT_RTNL();
1263 
1264 	if (!netif_device_present(dev))
1265 		return -ENODEV;
1266 
1267 	/* Block netpoll from trying to do any rx path servicing.
1268 	 * If we don't do this there is a chance ndo_poll_controller
1269 	 * or ndo_poll may be running while we open the device
1270 	 */
1271 	netpoll_poll_disable(dev);
1272 
1273 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1274 	ret = notifier_to_errno(ret);
1275 	if (ret)
1276 		return ret;
1277 
1278 	set_bit(__LINK_STATE_START, &dev->state);
1279 
1280 	if (ops->ndo_validate_addr)
1281 		ret = ops->ndo_validate_addr(dev);
1282 
1283 	if (!ret && ops->ndo_open)
1284 		ret = ops->ndo_open(dev);
1285 
1286 	netpoll_poll_enable(dev);
1287 
1288 	if (ret)
1289 		clear_bit(__LINK_STATE_START, &dev->state);
1290 	else {
1291 		dev->flags |= IFF_UP;
1292 		dev_set_rx_mode(dev);
1293 		dev_activate(dev);
1294 		add_device_randomness(dev->dev_addr, dev->addr_len);
1295 	}
1296 
1297 	return ret;
1298 }
1299 
1300 /**
1301  *	dev_open	- prepare an interface for use.
1302  *	@dev:	device to open
1303  *
1304  *	Takes a device from down to up state. The device's private open
1305  *	function is invoked and then the multicast lists are loaded. Finally
1306  *	the device is moved into the up state and a %NETDEV_UP message is
1307  *	sent to the netdev notifier chain.
1308  *
1309  *	Calling this function on an active interface is a nop. On a failure
1310  *	a negative errno code is returned.
1311  */
1312 int dev_open(struct net_device *dev)
1313 {
1314 	int ret;
1315 
1316 	if (dev->flags & IFF_UP)
1317 		return 0;
1318 
1319 	ret = __dev_open(dev);
1320 	if (ret < 0)
1321 		return ret;
1322 
1323 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1324 	call_netdevice_notifiers(NETDEV_UP, dev);
1325 
1326 	return ret;
1327 }
1328 EXPORT_SYMBOL(dev_open);
1329 
1330 static int __dev_close_many(struct list_head *head)
1331 {
1332 	struct net_device *dev;
1333 
1334 	ASSERT_RTNL();
1335 	might_sleep();
1336 
1337 	list_for_each_entry(dev, head, close_list) {
1338 		/* Temporarily disable netpoll until the interface is down */
1339 		netpoll_poll_disable(dev);
1340 
1341 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1342 
1343 		clear_bit(__LINK_STATE_START, &dev->state);
1344 
1345 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1346 		 * can be even on different cpu. So just clear netif_running().
1347 		 *
1348 		 * dev->stop() will invoke napi_disable() on all of it's
1349 		 * napi_struct instances on this device.
1350 		 */
1351 		smp_mb__after_atomic(); /* Commit netif_running(). */
1352 	}
1353 
1354 	dev_deactivate_many(head);
1355 
1356 	list_for_each_entry(dev, head, close_list) {
1357 		const struct net_device_ops *ops = dev->netdev_ops;
1358 
1359 		/*
1360 		 *	Call the device specific close. This cannot fail.
1361 		 *	Only if device is UP
1362 		 *
1363 		 *	We allow it to be called even after a DETACH hot-plug
1364 		 *	event.
1365 		 */
1366 		if (ops->ndo_stop)
1367 			ops->ndo_stop(dev);
1368 
1369 		dev->flags &= ~IFF_UP;
1370 		netpoll_poll_enable(dev);
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 static int __dev_close(struct net_device *dev)
1377 {
1378 	int retval;
1379 	LIST_HEAD(single);
1380 
1381 	list_add(&dev->close_list, &single);
1382 	retval = __dev_close_many(&single);
1383 	list_del(&single);
1384 
1385 	return retval;
1386 }
1387 
1388 static int dev_close_many(struct list_head *head)
1389 {
1390 	struct net_device *dev, *tmp;
1391 
1392 	/* Remove the devices that don't need to be closed */
1393 	list_for_each_entry_safe(dev, tmp, head, close_list)
1394 		if (!(dev->flags & IFF_UP))
1395 			list_del_init(&dev->close_list);
1396 
1397 	__dev_close_many(head);
1398 
1399 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1400 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1401 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1402 		list_del_init(&dev->close_list);
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 /**
1409  *	dev_close - shutdown an interface.
1410  *	@dev: device to shutdown
1411  *
1412  *	This function moves an active device into down state. A
1413  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1414  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1415  *	chain.
1416  */
1417 int dev_close(struct net_device *dev)
1418 {
1419 	if (dev->flags & IFF_UP) {
1420 		LIST_HEAD(single);
1421 
1422 		list_add(&dev->close_list, &single);
1423 		dev_close_many(&single);
1424 		list_del(&single);
1425 	}
1426 	return 0;
1427 }
1428 EXPORT_SYMBOL(dev_close);
1429 
1430 
1431 /**
1432  *	dev_disable_lro - disable Large Receive Offload on a device
1433  *	@dev: device
1434  *
1435  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1436  *	called under RTNL.  This is needed if received packets may be
1437  *	forwarded to another interface.
1438  */
1439 void dev_disable_lro(struct net_device *dev)
1440 {
1441 	struct net_device *lower_dev;
1442 	struct list_head *iter;
1443 
1444 	dev->wanted_features &= ~NETIF_F_LRO;
1445 	netdev_update_features(dev);
1446 
1447 	if (unlikely(dev->features & NETIF_F_LRO))
1448 		netdev_WARN(dev, "failed to disable LRO!\n");
1449 
1450 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1451 		dev_disable_lro(lower_dev);
1452 }
1453 EXPORT_SYMBOL(dev_disable_lro);
1454 
1455 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1456 				   struct net_device *dev)
1457 {
1458 	struct netdev_notifier_info info;
1459 
1460 	netdev_notifier_info_init(&info, dev);
1461 	return nb->notifier_call(nb, val, &info);
1462 }
1463 
1464 static int dev_boot_phase = 1;
1465 
1466 /**
1467  *	register_netdevice_notifier - register a network notifier block
1468  *	@nb: notifier
1469  *
1470  *	Register a notifier to be called when network device events occur.
1471  *	The notifier passed is linked into the kernel structures and must
1472  *	not be reused until it has been unregistered. A negative errno code
1473  *	is returned on a failure.
1474  *
1475  * 	When registered all registration and up events are replayed
1476  *	to the new notifier to allow device to have a race free
1477  *	view of the network device list.
1478  */
1479 
1480 int register_netdevice_notifier(struct notifier_block *nb)
1481 {
1482 	struct net_device *dev;
1483 	struct net_device *last;
1484 	struct net *net;
1485 	int err;
1486 
1487 	rtnl_lock();
1488 	err = raw_notifier_chain_register(&netdev_chain, nb);
1489 	if (err)
1490 		goto unlock;
1491 	if (dev_boot_phase)
1492 		goto unlock;
1493 	for_each_net(net) {
1494 		for_each_netdev(net, dev) {
1495 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1496 			err = notifier_to_errno(err);
1497 			if (err)
1498 				goto rollback;
1499 
1500 			if (!(dev->flags & IFF_UP))
1501 				continue;
1502 
1503 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1504 		}
1505 	}
1506 
1507 unlock:
1508 	rtnl_unlock();
1509 	return err;
1510 
1511 rollback:
1512 	last = dev;
1513 	for_each_net(net) {
1514 		for_each_netdev(net, dev) {
1515 			if (dev == last)
1516 				goto outroll;
1517 
1518 			if (dev->flags & IFF_UP) {
1519 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1520 							dev);
1521 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1522 			}
1523 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1524 		}
1525 	}
1526 
1527 outroll:
1528 	raw_notifier_chain_unregister(&netdev_chain, nb);
1529 	goto unlock;
1530 }
1531 EXPORT_SYMBOL(register_netdevice_notifier);
1532 
1533 /**
1534  *	unregister_netdevice_notifier - unregister a network notifier block
1535  *	@nb: notifier
1536  *
1537  *	Unregister a notifier previously registered by
1538  *	register_netdevice_notifier(). The notifier is unlinked into the
1539  *	kernel structures and may then be reused. A negative errno code
1540  *	is returned on a failure.
1541  *
1542  * 	After unregistering unregister and down device events are synthesized
1543  *	for all devices on the device list to the removed notifier to remove
1544  *	the need for special case cleanup code.
1545  */
1546 
1547 int unregister_netdevice_notifier(struct notifier_block *nb)
1548 {
1549 	struct net_device *dev;
1550 	struct net *net;
1551 	int err;
1552 
1553 	rtnl_lock();
1554 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1555 	if (err)
1556 		goto unlock;
1557 
1558 	for_each_net(net) {
1559 		for_each_netdev(net, dev) {
1560 			if (dev->flags & IFF_UP) {
1561 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1562 							dev);
1563 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1564 			}
1565 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1566 		}
1567 	}
1568 unlock:
1569 	rtnl_unlock();
1570 	return err;
1571 }
1572 EXPORT_SYMBOL(unregister_netdevice_notifier);
1573 
1574 /**
1575  *	call_netdevice_notifiers_info - call all network notifier blocks
1576  *	@val: value passed unmodified to notifier function
1577  *	@dev: net_device pointer passed unmodified to notifier function
1578  *	@info: notifier information data
1579  *
1580  *	Call all network notifier blocks.  Parameters and return value
1581  *	are as for raw_notifier_call_chain().
1582  */
1583 
1584 static int call_netdevice_notifiers_info(unsigned long val,
1585 					 struct net_device *dev,
1586 					 struct netdev_notifier_info *info)
1587 {
1588 	ASSERT_RTNL();
1589 	netdev_notifier_info_init(info, dev);
1590 	return raw_notifier_call_chain(&netdev_chain, val, info);
1591 }
1592 
1593 /**
1594  *	call_netdevice_notifiers - call all network notifier blocks
1595  *      @val: value passed unmodified to notifier function
1596  *      @dev: net_device pointer passed unmodified to notifier function
1597  *
1598  *	Call all network notifier blocks.  Parameters and return value
1599  *	are as for raw_notifier_call_chain().
1600  */
1601 
1602 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1603 {
1604 	struct netdev_notifier_info info;
1605 
1606 	return call_netdevice_notifiers_info(val, dev, &info);
1607 }
1608 EXPORT_SYMBOL(call_netdevice_notifiers);
1609 
1610 static struct static_key netstamp_needed __read_mostly;
1611 #ifdef HAVE_JUMP_LABEL
1612 /* We are not allowed to call static_key_slow_dec() from irq context
1613  * If net_disable_timestamp() is called from irq context, defer the
1614  * static_key_slow_dec() calls.
1615  */
1616 static atomic_t netstamp_needed_deferred;
1617 #endif
1618 
1619 void net_enable_timestamp(void)
1620 {
1621 #ifdef HAVE_JUMP_LABEL
1622 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1623 
1624 	if (deferred) {
1625 		while (--deferred)
1626 			static_key_slow_dec(&netstamp_needed);
1627 		return;
1628 	}
1629 #endif
1630 	static_key_slow_inc(&netstamp_needed);
1631 }
1632 EXPORT_SYMBOL(net_enable_timestamp);
1633 
1634 void net_disable_timestamp(void)
1635 {
1636 #ifdef HAVE_JUMP_LABEL
1637 	if (in_interrupt()) {
1638 		atomic_inc(&netstamp_needed_deferred);
1639 		return;
1640 	}
1641 #endif
1642 	static_key_slow_dec(&netstamp_needed);
1643 }
1644 EXPORT_SYMBOL(net_disable_timestamp);
1645 
1646 static inline void net_timestamp_set(struct sk_buff *skb)
1647 {
1648 	skb->tstamp.tv64 = 0;
1649 	if (static_key_false(&netstamp_needed))
1650 		__net_timestamp(skb);
1651 }
1652 
1653 #define net_timestamp_check(COND, SKB)			\
1654 	if (static_key_false(&netstamp_needed)) {		\
1655 		if ((COND) && !(SKB)->tstamp.tv64)	\
1656 			__net_timestamp(SKB);		\
1657 	}						\
1658 
1659 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1660 {
1661 	unsigned int len;
1662 
1663 	if (!(dev->flags & IFF_UP))
1664 		return false;
1665 
1666 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1667 	if (skb->len <= len)
1668 		return true;
1669 
1670 	/* if TSO is enabled, we don't care about the length as the packet
1671 	 * could be forwarded without being segmented before
1672 	 */
1673 	if (skb_is_gso(skb))
1674 		return true;
1675 
1676 	return false;
1677 }
1678 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1679 
1680 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1681 {
1682 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1683 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1684 			atomic_long_inc(&dev->rx_dropped);
1685 			kfree_skb(skb);
1686 			return NET_RX_DROP;
1687 		}
1688 	}
1689 
1690 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1691 		atomic_long_inc(&dev->rx_dropped);
1692 		kfree_skb(skb);
1693 		return NET_RX_DROP;
1694 	}
1695 
1696 	skb_scrub_packet(skb, true);
1697 	skb->protocol = eth_type_trans(skb, dev);
1698 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1699 
1700 	return 0;
1701 }
1702 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1703 
1704 /**
1705  * dev_forward_skb - loopback an skb to another netif
1706  *
1707  * @dev: destination network device
1708  * @skb: buffer to forward
1709  *
1710  * return values:
1711  *	NET_RX_SUCCESS	(no congestion)
1712  *	NET_RX_DROP     (packet was dropped, but freed)
1713  *
1714  * dev_forward_skb can be used for injecting an skb from the
1715  * start_xmit function of one device into the receive queue
1716  * of another device.
1717  *
1718  * The receiving device may be in another namespace, so
1719  * we have to clear all information in the skb that could
1720  * impact namespace isolation.
1721  */
1722 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1723 {
1724 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1725 }
1726 EXPORT_SYMBOL_GPL(dev_forward_skb);
1727 
1728 static inline int deliver_skb(struct sk_buff *skb,
1729 			      struct packet_type *pt_prev,
1730 			      struct net_device *orig_dev)
1731 {
1732 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1733 		return -ENOMEM;
1734 	atomic_inc(&skb->users);
1735 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1736 }
1737 
1738 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1739 					  struct packet_type **pt,
1740 					  struct net_device *dev, __be16 type,
1741 					  struct list_head *ptype_list)
1742 {
1743 	struct packet_type *ptype, *pt_prev = *pt;
1744 
1745 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1746 		if (ptype->type != type)
1747 			continue;
1748 		if (pt_prev)
1749 			deliver_skb(skb, pt_prev, dev);
1750 		pt_prev = ptype;
1751 	}
1752 	*pt = pt_prev;
1753 }
1754 
1755 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1756 {
1757 	if (!ptype->af_packet_priv || !skb->sk)
1758 		return false;
1759 
1760 	if (ptype->id_match)
1761 		return ptype->id_match(ptype, skb->sk);
1762 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1763 		return true;
1764 
1765 	return false;
1766 }
1767 
1768 /*
1769  *	Support routine. Sends outgoing frames to any network
1770  *	taps currently in use.
1771  */
1772 
1773 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1774 {
1775 	struct packet_type *ptype;
1776 	struct sk_buff *skb2 = NULL;
1777 	struct packet_type *pt_prev = NULL;
1778 	struct list_head *ptype_list = &ptype_all;
1779 
1780 	rcu_read_lock();
1781 again:
1782 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1783 		/* Never send packets back to the socket
1784 		 * they originated from - MvS (miquels@drinkel.ow.org)
1785 		 */
1786 		if (skb_loop_sk(ptype, skb))
1787 			continue;
1788 
1789 		if (pt_prev) {
1790 			deliver_skb(skb2, pt_prev, skb->dev);
1791 			pt_prev = ptype;
1792 			continue;
1793 		}
1794 
1795 		/* need to clone skb, done only once */
1796 		skb2 = skb_clone(skb, GFP_ATOMIC);
1797 		if (!skb2)
1798 			goto out_unlock;
1799 
1800 		net_timestamp_set(skb2);
1801 
1802 		/* skb->nh should be correctly
1803 		 * set by sender, so that the second statement is
1804 		 * just protection against buggy protocols.
1805 		 */
1806 		skb_reset_mac_header(skb2);
1807 
1808 		if (skb_network_header(skb2) < skb2->data ||
1809 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1810 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1811 					     ntohs(skb2->protocol),
1812 					     dev->name);
1813 			skb_reset_network_header(skb2);
1814 		}
1815 
1816 		skb2->transport_header = skb2->network_header;
1817 		skb2->pkt_type = PACKET_OUTGOING;
1818 		pt_prev = ptype;
1819 	}
1820 
1821 	if (ptype_list == &ptype_all) {
1822 		ptype_list = &dev->ptype_all;
1823 		goto again;
1824 	}
1825 out_unlock:
1826 	if (pt_prev)
1827 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1828 	rcu_read_unlock();
1829 }
1830 
1831 /**
1832  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1833  * @dev: Network device
1834  * @txq: number of queues available
1835  *
1836  * If real_num_tx_queues is changed the tc mappings may no longer be
1837  * valid. To resolve this verify the tc mapping remains valid and if
1838  * not NULL the mapping. With no priorities mapping to this
1839  * offset/count pair it will no longer be used. In the worst case TC0
1840  * is invalid nothing can be done so disable priority mappings. If is
1841  * expected that drivers will fix this mapping if they can before
1842  * calling netif_set_real_num_tx_queues.
1843  */
1844 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1845 {
1846 	int i;
1847 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1848 
1849 	/* If TC0 is invalidated disable TC mapping */
1850 	if (tc->offset + tc->count > txq) {
1851 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1852 		dev->num_tc = 0;
1853 		return;
1854 	}
1855 
1856 	/* Invalidated prio to tc mappings set to TC0 */
1857 	for (i = 1; i < TC_BITMASK + 1; i++) {
1858 		int q = netdev_get_prio_tc_map(dev, i);
1859 
1860 		tc = &dev->tc_to_txq[q];
1861 		if (tc->offset + tc->count > txq) {
1862 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1863 				i, q);
1864 			netdev_set_prio_tc_map(dev, i, 0);
1865 		}
1866 	}
1867 }
1868 
1869 #ifdef CONFIG_XPS
1870 static DEFINE_MUTEX(xps_map_mutex);
1871 #define xmap_dereference(P)		\
1872 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1873 
1874 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1875 					int cpu, u16 index)
1876 {
1877 	struct xps_map *map = NULL;
1878 	int pos;
1879 
1880 	if (dev_maps)
1881 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1882 
1883 	for (pos = 0; map && pos < map->len; pos++) {
1884 		if (map->queues[pos] == index) {
1885 			if (map->len > 1) {
1886 				map->queues[pos] = map->queues[--map->len];
1887 			} else {
1888 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1889 				kfree_rcu(map, rcu);
1890 				map = NULL;
1891 			}
1892 			break;
1893 		}
1894 	}
1895 
1896 	return map;
1897 }
1898 
1899 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1900 {
1901 	struct xps_dev_maps *dev_maps;
1902 	int cpu, i;
1903 	bool active = false;
1904 
1905 	mutex_lock(&xps_map_mutex);
1906 	dev_maps = xmap_dereference(dev->xps_maps);
1907 
1908 	if (!dev_maps)
1909 		goto out_no_maps;
1910 
1911 	for_each_possible_cpu(cpu) {
1912 		for (i = index; i < dev->num_tx_queues; i++) {
1913 			if (!remove_xps_queue(dev_maps, cpu, i))
1914 				break;
1915 		}
1916 		if (i == dev->num_tx_queues)
1917 			active = true;
1918 	}
1919 
1920 	if (!active) {
1921 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1922 		kfree_rcu(dev_maps, rcu);
1923 	}
1924 
1925 	for (i = index; i < dev->num_tx_queues; i++)
1926 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1927 					     NUMA_NO_NODE);
1928 
1929 out_no_maps:
1930 	mutex_unlock(&xps_map_mutex);
1931 }
1932 
1933 static struct xps_map *expand_xps_map(struct xps_map *map,
1934 				      int cpu, u16 index)
1935 {
1936 	struct xps_map *new_map;
1937 	int alloc_len = XPS_MIN_MAP_ALLOC;
1938 	int i, pos;
1939 
1940 	for (pos = 0; map && pos < map->len; pos++) {
1941 		if (map->queues[pos] != index)
1942 			continue;
1943 		return map;
1944 	}
1945 
1946 	/* Need to add queue to this CPU's existing map */
1947 	if (map) {
1948 		if (pos < map->alloc_len)
1949 			return map;
1950 
1951 		alloc_len = map->alloc_len * 2;
1952 	}
1953 
1954 	/* Need to allocate new map to store queue on this CPU's map */
1955 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1956 			       cpu_to_node(cpu));
1957 	if (!new_map)
1958 		return NULL;
1959 
1960 	for (i = 0; i < pos; i++)
1961 		new_map->queues[i] = map->queues[i];
1962 	new_map->alloc_len = alloc_len;
1963 	new_map->len = pos;
1964 
1965 	return new_map;
1966 }
1967 
1968 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1969 			u16 index)
1970 {
1971 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1972 	struct xps_map *map, *new_map;
1973 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1974 	int cpu, numa_node_id = -2;
1975 	bool active = false;
1976 
1977 	mutex_lock(&xps_map_mutex);
1978 
1979 	dev_maps = xmap_dereference(dev->xps_maps);
1980 
1981 	/* allocate memory for queue storage */
1982 	for_each_online_cpu(cpu) {
1983 		if (!cpumask_test_cpu(cpu, mask))
1984 			continue;
1985 
1986 		if (!new_dev_maps)
1987 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1988 		if (!new_dev_maps) {
1989 			mutex_unlock(&xps_map_mutex);
1990 			return -ENOMEM;
1991 		}
1992 
1993 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1994 				 NULL;
1995 
1996 		map = expand_xps_map(map, cpu, index);
1997 		if (!map)
1998 			goto error;
1999 
2000 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2001 	}
2002 
2003 	if (!new_dev_maps)
2004 		goto out_no_new_maps;
2005 
2006 	for_each_possible_cpu(cpu) {
2007 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2008 			/* add queue to CPU maps */
2009 			int pos = 0;
2010 
2011 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012 			while ((pos < map->len) && (map->queues[pos] != index))
2013 				pos++;
2014 
2015 			if (pos == map->len)
2016 				map->queues[map->len++] = index;
2017 #ifdef CONFIG_NUMA
2018 			if (numa_node_id == -2)
2019 				numa_node_id = cpu_to_node(cpu);
2020 			else if (numa_node_id != cpu_to_node(cpu))
2021 				numa_node_id = -1;
2022 #endif
2023 		} else if (dev_maps) {
2024 			/* fill in the new device map from the old device map */
2025 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2026 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2027 		}
2028 
2029 	}
2030 
2031 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2032 
2033 	/* Cleanup old maps */
2034 	if (dev_maps) {
2035 		for_each_possible_cpu(cpu) {
2036 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2037 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2038 			if (map && map != new_map)
2039 				kfree_rcu(map, rcu);
2040 		}
2041 
2042 		kfree_rcu(dev_maps, rcu);
2043 	}
2044 
2045 	dev_maps = new_dev_maps;
2046 	active = true;
2047 
2048 out_no_new_maps:
2049 	/* update Tx queue numa node */
2050 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2051 				     (numa_node_id >= 0) ? numa_node_id :
2052 				     NUMA_NO_NODE);
2053 
2054 	if (!dev_maps)
2055 		goto out_no_maps;
2056 
2057 	/* removes queue from unused CPUs */
2058 	for_each_possible_cpu(cpu) {
2059 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2060 			continue;
2061 
2062 		if (remove_xps_queue(dev_maps, cpu, index))
2063 			active = true;
2064 	}
2065 
2066 	/* free map if not active */
2067 	if (!active) {
2068 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2069 		kfree_rcu(dev_maps, rcu);
2070 	}
2071 
2072 out_no_maps:
2073 	mutex_unlock(&xps_map_mutex);
2074 
2075 	return 0;
2076 error:
2077 	/* remove any maps that we added */
2078 	for_each_possible_cpu(cpu) {
2079 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2080 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2081 				 NULL;
2082 		if (new_map && new_map != map)
2083 			kfree(new_map);
2084 	}
2085 
2086 	mutex_unlock(&xps_map_mutex);
2087 
2088 	kfree(new_dev_maps);
2089 	return -ENOMEM;
2090 }
2091 EXPORT_SYMBOL(netif_set_xps_queue);
2092 
2093 #endif
2094 /*
2095  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2096  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2097  */
2098 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2099 {
2100 	int rc;
2101 
2102 	if (txq < 1 || txq > dev->num_tx_queues)
2103 		return -EINVAL;
2104 
2105 	if (dev->reg_state == NETREG_REGISTERED ||
2106 	    dev->reg_state == NETREG_UNREGISTERING) {
2107 		ASSERT_RTNL();
2108 
2109 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2110 						  txq);
2111 		if (rc)
2112 			return rc;
2113 
2114 		if (dev->num_tc)
2115 			netif_setup_tc(dev, txq);
2116 
2117 		if (txq < dev->real_num_tx_queues) {
2118 			qdisc_reset_all_tx_gt(dev, txq);
2119 #ifdef CONFIG_XPS
2120 			netif_reset_xps_queues_gt(dev, txq);
2121 #endif
2122 		}
2123 	}
2124 
2125 	dev->real_num_tx_queues = txq;
2126 	return 0;
2127 }
2128 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2129 
2130 #ifdef CONFIG_SYSFS
2131 /**
2132  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2133  *	@dev: Network device
2134  *	@rxq: Actual number of RX queues
2135  *
2136  *	This must be called either with the rtnl_lock held or before
2137  *	registration of the net device.  Returns 0 on success, or a
2138  *	negative error code.  If called before registration, it always
2139  *	succeeds.
2140  */
2141 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2142 {
2143 	int rc;
2144 
2145 	if (rxq < 1 || rxq > dev->num_rx_queues)
2146 		return -EINVAL;
2147 
2148 	if (dev->reg_state == NETREG_REGISTERED) {
2149 		ASSERT_RTNL();
2150 
2151 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2152 						  rxq);
2153 		if (rc)
2154 			return rc;
2155 	}
2156 
2157 	dev->real_num_rx_queues = rxq;
2158 	return 0;
2159 }
2160 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2161 #endif
2162 
2163 /**
2164  * netif_get_num_default_rss_queues - default number of RSS queues
2165  *
2166  * This routine should set an upper limit on the number of RSS queues
2167  * used by default by multiqueue devices.
2168  */
2169 int netif_get_num_default_rss_queues(void)
2170 {
2171 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2172 }
2173 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2174 
2175 static inline void __netif_reschedule(struct Qdisc *q)
2176 {
2177 	struct softnet_data *sd;
2178 	unsigned long flags;
2179 
2180 	local_irq_save(flags);
2181 	sd = this_cpu_ptr(&softnet_data);
2182 	q->next_sched = NULL;
2183 	*sd->output_queue_tailp = q;
2184 	sd->output_queue_tailp = &q->next_sched;
2185 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2186 	local_irq_restore(flags);
2187 }
2188 
2189 void __netif_schedule(struct Qdisc *q)
2190 {
2191 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2192 		__netif_reschedule(q);
2193 }
2194 EXPORT_SYMBOL(__netif_schedule);
2195 
2196 struct dev_kfree_skb_cb {
2197 	enum skb_free_reason reason;
2198 };
2199 
2200 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2201 {
2202 	return (struct dev_kfree_skb_cb *)skb->cb;
2203 }
2204 
2205 void netif_schedule_queue(struct netdev_queue *txq)
2206 {
2207 	rcu_read_lock();
2208 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2209 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2210 
2211 		__netif_schedule(q);
2212 	}
2213 	rcu_read_unlock();
2214 }
2215 EXPORT_SYMBOL(netif_schedule_queue);
2216 
2217 /**
2218  *	netif_wake_subqueue - allow sending packets on subqueue
2219  *	@dev: network device
2220  *	@queue_index: sub queue index
2221  *
2222  * Resume individual transmit queue of a device with multiple transmit queues.
2223  */
2224 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2225 {
2226 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2227 
2228 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2229 		struct Qdisc *q;
2230 
2231 		rcu_read_lock();
2232 		q = rcu_dereference(txq->qdisc);
2233 		__netif_schedule(q);
2234 		rcu_read_unlock();
2235 	}
2236 }
2237 EXPORT_SYMBOL(netif_wake_subqueue);
2238 
2239 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2240 {
2241 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2242 		struct Qdisc *q;
2243 
2244 		rcu_read_lock();
2245 		q = rcu_dereference(dev_queue->qdisc);
2246 		__netif_schedule(q);
2247 		rcu_read_unlock();
2248 	}
2249 }
2250 EXPORT_SYMBOL(netif_tx_wake_queue);
2251 
2252 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2253 {
2254 	unsigned long flags;
2255 
2256 	if (likely(atomic_read(&skb->users) == 1)) {
2257 		smp_rmb();
2258 		atomic_set(&skb->users, 0);
2259 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2260 		return;
2261 	}
2262 	get_kfree_skb_cb(skb)->reason = reason;
2263 	local_irq_save(flags);
2264 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2265 	__this_cpu_write(softnet_data.completion_queue, skb);
2266 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2267 	local_irq_restore(flags);
2268 }
2269 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2270 
2271 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2272 {
2273 	if (in_irq() || irqs_disabled())
2274 		__dev_kfree_skb_irq(skb, reason);
2275 	else
2276 		dev_kfree_skb(skb);
2277 }
2278 EXPORT_SYMBOL(__dev_kfree_skb_any);
2279 
2280 
2281 /**
2282  * netif_device_detach - mark device as removed
2283  * @dev: network device
2284  *
2285  * Mark device as removed from system and therefore no longer available.
2286  */
2287 void netif_device_detach(struct net_device *dev)
2288 {
2289 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2290 	    netif_running(dev)) {
2291 		netif_tx_stop_all_queues(dev);
2292 	}
2293 }
2294 EXPORT_SYMBOL(netif_device_detach);
2295 
2296 /**
2297  * netif_device_attach - mark device as attached
2298  * @dev: network device
2299  *
2300  * Mark device as attached from system and restart if needed.
2301  */
2302 void netif_device_attach(struct net_device *dev)
2303 {
2304 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2305 	    netif_running(dev)) {
2306 		netif_tx_wake_all_queues(dev);
2307 		__netdev_watchdog_up(dev);
2308 	}
2309 }
2310 EXPORT_SYMBOL(netif_device_attach);
2311 
2312 static void skb_warn_bad_offload(const struct sk_buff *skb)
2313 {
2314 	static const netdev_features_t null_features = 0;
2315 	struct net_device *dev = skb->dev;
2316 	const char *driver = "";
2317 
2318 	if (!net_ratelimit())
2319 		return;
2320 
2321 	if (dev && dev->dev.parent)
2322 		driver = dev_driver_string(dev->dev.parent);
2323 
2324 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2325 	     "gso_type=%d ip_summed=%d\n",
2326 	     driver, dev ? &dev->features : &null_features,
2327 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2328 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2329 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2330 }
2331 
2332 /*
2333  * Invalidate hardware checksum when packet is to be mangled, and
2334  * complete checksum manually on outgoing path.
2335  */
2336 int skb_checksum_help(struct sk_buff *skb)
2337 {
2338 	__wsum csum;
2339 	int ret = 0, offset;
2340 
2341 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2342 		goto out_set_summed;
2343 
2344 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2345 		skb_warn_bad_offload(skb);
2346 		return -EINVAL;
2347 	}
2348 
2349 	/* Before computing a checksum, we should make sure no frag could
2350 	 * be modified by an external entity : checksum could be wrong.
2351 	 */
2352 	if (skb_has_shared_frag(skb)) {
2353 		ret = __skb_linearize(skb);
2354 		if (ret)
2355 			goto out;
2356 	}
2357 
2358 	offset = skb_checksum_start_offset(skb);
2359 	BUG_ON(offset >= skb_headlen(skb));
2360 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2361 
2362 	offset += skb->csum_offset;
2363 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2364 
2365 	if (skb_cloned(skb) &&
2366 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2367 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2368 		if (ret)
2369 			goto out;
2370 	}
2371 
2372 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2373 out_set_summed:
2374 	skb->ip_summed = CHECKSUM_NONE;
2375 out:
2376 	return ret;
2377 }
2378 EXPORT_SYMBOL(skb_checksum_help);
2379 
2380 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2381 {
2382 	__be16 type = skb->protocol;
2383 
2384 	/* Tunnel gso handlers can set protocol to ethernet. */
2385 	if (type == htons(ETH_P_TEB)) {
2386 		struct ethhdr *eth;
2387 
2388 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2389 			return 0;
2390 
2391 		eth = (struct ethhdr *)skb_mac_header(skb);
2392 		type = eth->h_proto;
2393 	}
2394 
2395 	return __vlan_get_protocol(skb, type, depth);
2396 }
2397 
2398 /**
2399  *	skb_mac_gso_segment - mac layer segmentation handler.
2400  *	@skb: buffer to segment
2401  *	@features: features for the output path (see dev->features)
2402  */
2403 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2404 				    netdev_features_t features)
2405 {
2406 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2407 	struct packet_offload *ptype;
2408 	int vlan_depth = skb->mac_len;
2409 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2410 
2411 	if (unlikely(!type))
2412 		return ERR_PTR(-EINVAL);
2413 
2414 	__skb_pull(skb, vlan_depth);
2415 
2416 	rcu_read_lock();
2417 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2418 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2419 			segs = ptype->callbacks.gso_segment(skb, features);
2420 			break;
2421 		}
2422 	}
2423 	rcu_read_unlock();
2424 
2425 	__skb_push(skb, skb->data - skb_mac_header(skb));
2426 
2427 	return segs;
2428 }
2429 EXPORT_SYMBOL(skb_mac_gso_segment);
2430 
2431 
2432 /* openvswitch calls this on rx path, so we need a different check.
2433  */
2434 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2435 {
2436 	if (tx_path)
2437 		return skb->ip_summed != CHECKSUM_PARTIAL;
2438 	else
2439 		return skb->ip_summed == CHECKSUM_NONE;
2440 }
2441 
2442 /**
2443  *	__skb_gso_segment - Perform segmentation on skb.
2444  *	@skb: buffer to segment
2445  *	@features: features for the output path (see dev->features)
2446  *	@tx_path: whether it is called in TX path
2447  *
2448  *	This function segments the given skb and returns a list of segments.
2449  *
2450  *	It may return NULL if the skb requires no segmentation.  This is
2451  *	only possible when GSO is used for verifying header integrity.
2452  */
2453 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2454 				  netdev_features_t features, bool tx_path)
2455 {
2456 	if (unlikely(skb_needs_check(skb, tx_path))) {
2457 		int err;
2458 
2459 		skb_warn_bad_offload(skb);
2460 
2461 		err = skb_cow_head(skb, 0);
2462 		if (err < 0)
2463 			return ERR_PTR(err);
2464 	}
2465 
2466 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2467 	SKB_GSO_CB(skb)->encap_level = 0;
2468 
2469 	skb_reset_mac_header(skb);
2470 	skb_reset_mac_len(skb);
2471 
2472 	return skb_mac_gso_segment(skb, features);
2473 }
2474 EXPORT_SYMBOL(__skb_gso_segment);
2475 
2476 /* Take action when hardware reception checksum errors are detected. */
2477 #ifdef CONFIG_BUG
2478 void netdev_rx_csum_fault(struct net_device *dev)
2479 {
2480 	if (net_ratelimit()) {
2481 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2482 		dump_stack();
2483 	}
2484 }
2485 EXPORT_SYMBOL(netdev_rx_csum_fault);
2486 #endif
2487 
2488 /* Actually, we should eliminate this check as soon as we know, that:
2489  * 1. IOMMU is present and allows to map all the memory.
2490  * 2. No high memory really exists on this machine.
2491  */
2492 
2493 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2494 {
2495 #ifdef CONFIG_HIGHMEM
2496 	int i;
2497 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2498 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2499 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2500 			if (PageHighMem(skb_frag_page(frag)))
2501 				return 1;
2502 		}
2503 	}
2504 
2505 	if (PCI_DMA_BUS_IS_PHYS) {
2506 		struct device *pdev = dev->dev.parent;
2507 
2508 		if (!pdev)
2509 			return 0;
2510 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2511 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2512 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2513 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2514 				return 1;
2515 		}
2516 	}
2517 #endif
2518 	return 0;
2519 }
2520 
2521 /* If MPLS offload request, verify we are testing hardware MPLS features
2522  * instead of standard features for the netdev.
2523  */
2524 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2525 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2526 					   netdev_features_t features,
2527 					   __be16 type)
2528 {
2529 	if (eth_p_mpls(type))
2530 		features &= skb->dev->mpls_features;
2531 
2532 	return features;
2533 }
2534 #else
2535 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2536 					   netdev_features_t features,
2537 					   __be16 type)
2538 {
2539 	return features;
2540 }
2541 #endif
2542 
2543 static netdev_features_t harmonize_features(struct sk_buff *skb,
2544 	netdev_features_t features)
2545 {
2546 	int tmp;
2547 	__be16 type;
2548 
2549 	type = skb_network_protocol(skb, &tmp);
2550 	features = net_mpls_features(skb, features, type);
2551 
2552 	if (skb->ip_summed != CHECKSUM_NONE &&
2553 	    !can_checksum_protocol(features, type)) {
2554 		features &= ~NETIF_F_ALL_CSUM;
2555 	} else if (illegal_highdma(skb->dev, skb)) {
2556 		features &= ~NETIF_F_SG;
2557 	}
2558 
2559 	return features;
2560 }
2561 
2562 netdev_features_t netif_skb_features(struct sk_buff *skb)
2563 {
2564 	struct net_device *dev = skb->dev;
2565 	netdev_features_t features = dev->features;
2566 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2567 	__be16 protocol = skb->protocol;
2568 
2569 	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2570 		features &= ~NETIF_F_GSO_MASK;
2571 
2572 	/* If encapsulation offload request, verify we are testing
2573 	 * hardware encapsulation features instead of standard
2574 	 * features for the netdev
2575 	 */
2576 	if (skb->encapsulation)
2577 		features &= dev->hw_enc_features;
2578 
2579 	if (!skb_vlan_tag_present(skb)) {
2580 		if (unlikely(protocol == htons(ETH_P_8021Q) ||
2581 			     protocol == htons(ETH_P_8021AD))) {
2582 			struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2583 			protocol = veh->h_vlan_encapsulated_proto;
2584 		} else {
2585 			goto finalize;
2586 		}
2587 	}
2588 
2589 	features = netdev_intersect_features(features,
2590 					     dev->vlan_features |
2591 					     NETIF_F_HW_VLAN_CTAG_TX |
2592 					     NETIF_F_HW_VLAN_STAG_TX);
2593 
2594 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2595 		features = netdev_intersect_features(features,
2596 						     NETIF_F_SG |
2597 						     NETIF_F_HIGHDMA |
2598 						     NETIF_F_FRAGLIST |
2599 						     NETIF_F_GEN_CSUM |
2600 						     NETIF_F_HW_VLAN_CTAG_TX |
2601 						     NETIF_F_HW_VLAN_STAG_TX);
2602 
2603 finalize:
2604 	if (dev->netdev_ops->ndo_features_check)
2605 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2606 								features);
2607 
2608 	return harmonize_features(skb, features);
2609 }
2610 EXPORT_SYMBOL(netif_skb_features);
2611 
2612 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2613 		    struct netdev_queue *txq, bool more)
2614 {
2615 	unsigned int len;
2616 	int rc;
2617 
2618 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2619 		dev_queue_xmit_nit(skb, dev);
2620 
2621 	len = skb->len;
2622 	trace_net_dev_start_xmit(skb, dev);
2623 	rc = netdev_start_xmit(skb, dev, txq, more);
2624 	trace_net_dev_xmit(skb, rc, dev, len);
2625 
2626 	return rc;
2627 }
2628 
2629 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2630 				    struct netdev_queue *txq, int *ret)
2631 {
2632 	struct sk_buff *skb = first;
2633 	int rc = NETDEV_TX_OK;
2634 
2635 	while (skb) {
2636 		struct sk_buff *next = skb->next;
2637 
2638 		skb->next = NULL;
2639 		rc = xmit_one(skb, dev, txq, next != NULL);
2640 		if (unlikely(!dev_xmit_complete(rc))) {
2641 			skb->next = next;
2642 			goto out;
2643 		}
2644 
2645 		skb = next;
2646 		if (netif_xmit_stopped(txq) && skb) {
2647 			rc = NETDEV_TX_BUSY;
2648 			break;
2649 		}
2650 	}
2651 
2652 out:
2653 	*ret = rc;
2654 	return skb;
2655 }
2656 
2657 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2658 					  netdev_features_t features)
2659 {
2660 	if (skb_vlan_tag_present(skb) &&
2661 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2662 		skb = __vlan_hwaccel_push_inside(skb);
2663 	return skb;
2664 }
2665 
2666 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2667 {
2668 	netdev_features_t features;
2669 
2670 	if (skb->next)
2671 		return skb;
2672 
2673 	features = netif_skb_features(skb);
2674 	skb = validate_xmit_vlan(skb, features);
2675 	if (unlikely(!skb))
2676 		goto out_null;
2677 
2678 	if (netif_needs_gso(dev, skb, features)) {
2679 		struct sk_buff *segs;
2680 
2681 		segs = skb_gso_segment(skb, features);
2682 		if (IS_ERR(segs)) {
2683 			goto out_kfree_skb;
2684 		} else if (segs) {
2685 			consume_skb(skb);
2686 			skb = segs;
2687 		}
2688 	} else {
2689 		if (skb_needs_linearize(skb, features) &&
2690 		    __skb_linearize(skb))
2691 			goto out_kfree_skb;
2692 
2693 		/* If packet is not checksummed and device does not
2694 		 * support checksumming for this protocol, complete
2695 		 * checksumming here.
2696 		 */
2697 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2698 			if (skb->encapsulation)
2699 				skb_set_inner_transport_header(skb,
2700 							       skb_checksum_start_offset(skb));
2701 			else
2702 				skb_set_transport_header(skb,
2703 							 skb_checksum_start_offset(skb));
2704 			if (!(features & NETIF_F_ALL_CSUM) &&
2705 			    skb_checksum_help(skb))
2706 				goto out_kfree_skb;
2707 		}
2708 	}
2709 
2710 	return skb;
2711 
2712 out_kfree_skb:
2713 	kfree_skb(skb);
2714 out_null:
2715 	return NULL;
2716 }
2717 
2718 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2719 {
2720 	struct sk_buff *next, *head = NULL, *tail;
2721 
2722 	for (; skb != NULL; skb = next) {
2723 		next = skb->next;
2724 		skb->next = NULL;
2725 
2726 		/* in case skb wont be segmented, point to itself */
2727 		skb->prev = skb;
2728 
2729 		skb = validate_xmit_skb(skb, dev);
2730 		if (!skb)
2731 			continue;
2732 
2733 		if (!head)
2734 			head = skb;
2735 		else
2736 			tail->next = skb;
2737 		/* If skb was segmented, skb->prev points to
2738 		 * the last segment. If not, it still contains skb.
2739 		 */
2740 		tail = skb->prev;
2741 	}
2742 	return head;
2743 }
2744 
2745 static void qdisc_pkt_len_init(struct sk_buff *skb)
2746 {
2747 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2748 
2749 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2750 
2751 	/* To get more precise estimation of bytes sent on wire,
2752 	 * we add to pkt_len the headers size of all segments
2753 	 */
2754 	if (shinfo->gso_size)  {
2755 		unsigned int hdr_len;
2756 		u16 gso_segs = shinfo->gso_segs;
2757 
2758 		/* mac layer + network layer */
2759 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2760 
2761 		/* + transport layer */
2762 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2763 			hdr_len += tcp_hdrlen(skb);
2764 		else
2765 			hdr_len += sizeof(struct udphdr);
2766 
2767 		if (shinfo->gso_type & SKB_GSO_DODGY)
2768 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2769 						shinfo->gso_size);
2770 
2771 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2772 	}
2773 }
2774 
2775 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2776 				 struct net_device *dev,
2777 				 struct netdev_queue *txq)
2778 {
2779 	spinlock_t *root_lock = qdisc_lock(q);
2780 	bool contended;
2781 	int rc;
2782 
2783 	qdisc_pkt_len_init(skb);
2784 	qdisc_calculate_pkt_len(skb, q);
2785 	/*
2786 	 * Heuristic to force contended enqueues to serialize on a
2787 	 * separate lock before trying to get qdisc main lock.
2788 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2789 	 * often and dequeue packets faster.
2790 	 */
2791 	contended = qdisc_is_running(q);
2792 	if (unlikely(contended))
2793 		spin_lock(&q->busylock);
2794 
2795 	spin_lock(root_lock);
2796 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2797 		kfree_skb(skb);
2798 		rc = NET_XMIT_DROP;
2799 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2800 		   qdisc_run_begin(q)) {
2801 		/*
2802 		 * This is a work-conserving queue; there are no old skbs
2803 		 * waiting to be sent out; and the qdisc is not running -
2804 		 * xmit the skb directly.
2805 		 */
2806 
2807 		qdisc_bstats_update(q, skb);
2808 
2809 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2810 			if (unlikely(contended)) {
2811 				spin_unlock(&q->busylock);
2812 				contended = false;
2813 			}
2814 			__qdisc_run(q);
2815 		} else
2816 			qdisc_run_end(q);
2817 
2818 		rc = NET_XMIT_SUCCESS;
2819 	} else {
2820 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2821 		if (qdisc_run_begin(q)) {
2822 			if (unlikely(contended)) {
2823 				spin_unlock(&q->busylock);
2824 				contended = false;
2825 			}
2826 			__qdisc_run(q);
2827 		}
2828 	}
2829 	spin_unlock(root_lock);
2830 	if (unlikely(contended))
2831 		spin_unlock(&q->busylock);
2832 	return rc;
2833 }
2834 
2835 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2836 static void skb_update_prio(struct sk_buff *skb)
2837 {
2838 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2839 
2840 	if (!skb->priority && skb->sk && map) {
2841 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2842 
2843 		if (prioidx < map->priomap_len)
2844 			skb->priority = map->priomap[prioidx];
2845 	}
2846 }
2847 #else
2848 #define skb_update_prio(skb)
2849 #endif
2850 
2851 DEFINE_PER_CPU(int, xmit_recursion);
2852 EXPORT_SYMBOL(xmit_recursion);
2853 
2854 #define RECURSION_LIMIT 10
2855 
2856 /**
2857  *	dev_loopback_xmit - loop back @skb
2858  *	@skb: buffer to transmit
2859  */
2860 int dev_loopback_xmit(struct sk_buff *skb)
2861 {
2862 	skb_reset_mac_header(skb);
2863 	__skb_pull(skb, skb_network_offset(skb));
2864 	skb->pkt_type = PACKET_LOOPBACK;
2865 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2866 	WARN_ON(!skb_dst(skb));
2867 	skb_dst_force(skb);
2868 	netif_rx_ni(skb);
2869 	return 0;
2870 }
2871 EXPORT_SYMBOL(dev_loopback_xmit);
2872 
2873 /**
2874  *	__dev_queue_xmit - transmit a buffer
2875  *	@skb: buffer to transmit
2876  *	@accel_priv: private data used for L2 forwarding offload
2877  *
2878  *	Queue a buffer for transmission to a network device. The caller must
2879  *	have set the device and priority and built the buffer before calling
2880  *	this function. The function can be called from an interrupt.
2881  *
2882  *	A negative errno code is returned on a failure. A success does not
2883  *	guarantee the frame will be transmitted as it may be dropped due
2884  *	to congestion or traffic shaping.
2885  *
2886  * -----------------------------------------------------------------------------------
2887  *      I notice this method can also return errors from the queue disciplines,
2888  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2889  *      be positive.
2890  *
2891  *      Regardless of the return value, the skb is consumed, so it is currently
2892  *      difficult to retry a send to this method.  (You can bump the ref count
2893  *      before sending to hold a reference for retry if you are careful.)
2894  *
2895  *      When calling this method, interrupts MUST be enabled.  This is because
2896  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2897  *          --BLG
2898  */
2899 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2900 {
2901 	struct net_device *dev = skb->dev;
2902 	struct netdev_queue *txq;
2903 	struct Qdisc *q;
2904 	int rc = -ENOMEM;
2905 
2906 	skb_reset_mac_header(skb);
2907 
2908 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2909 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2910 
2911 	/* Disable soft irqs for various locks below. Also
2912 	 * stops preemption for RCU.
2913 	 */
2914 	rcu_read_lock_bh();
2915 
2916 	skb_update_prio(skb);
2917 
2918 	/* If device/qdisc don't need skb->dst, release it right now while
2919 	 * its hot in this cpu cache.
2920 	 */
2921 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2922 		skb_dst_drop(skb);
2923 	else
2924 		skb_dst_force(skb);
2925 
2926 	txq = netdev_pick_tx(dev, skb, accel_priv);
2927 	q = rcu_dereference_bh(txq->qdisc);
2928 
2929 #ifdef CONFIG_NET_CLS_ACT
2930 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2931 #endif
2932 	trace_net_dev_queue(skb);
2933 	if (q->enqueue) {
2934 		rc = __dev_xmit_skb(skb, q, dev, txq);
2935 		goto out;
2936 	}
2937 
2938 	/* The device has no queue. Common case for software devices:
2939 	   loopback, all the sorts of tunnels...
2940 
2941 	   Really, it is unlikely that netif_tx_lock protection is necessary
2942 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2943 	   counters.)
2944 	   However, it is possible, that they rely on protection
2945 	   made by us here.
2946 
2947 	   Check this and shot the lock. It is not prone from deadlocks.
2948 	   Either shot noqueue qdisc, it is even simpler 8)
2949 	 */
2950 	if (dev->flags & IFF_UP) {
2951 		int cpu = smp_processor_id(); /* ok because BHs are off */
2952 
2953 		if (txq->xmit_lock_owner != cpu) {
2954 
2955 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2956 				goto recursion_alert;
2957 
2958 			skb = validate_xmit_skb(skb, dev);
2959 			if (!skb)
2960 				goto drop;
2961 
2962 			HARD_TX_LOCK(dev, txq, cpu);
2963 
2964 			if (!netif_xmit_stopped(txq)) {
2965 				__this_cpu_inc(xmit_recursion);
2966 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2967 				__this_cpu_dec(xmit_recursion);
2968 				if (dev_xmit_complete(rc)) {
2969 					HARD_TX_UNLOCK(dev, txq);
2970 					goto out;
2971 				}
2972 			}
2973 			HARD_TX_UNLOCK(dev, txq);
2974 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2975 					     dev->name);
2976 		} else {
2977 			/* Recursion is detected! It is possible,
2978 			 * unfortunately
2979 			 */
2980 recursion_alert:
2981 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2982 					     dev->name);
2983 		}
2984 	}
2985 
2986 	rc = -ENETDOWN;
2987 drop:
2988 	rcu_read_unlock_bh();
2989 
2990 	atomic_long_inc(&dev->tx_dropped);
2991 	kfree_skb_list(skb);
2992 	return rc;
2993 out:
2994 	rcu_read_unlock_bh();
2995 	return rc;
2996 }
2997 
2998 int dev_queue_xmit(struct sk_buff *skb)
2999 {
3000 	return __dev_queue_xmit(skb, NULL);
3001 }
3002 EXPORT_SYMBOL(dev_queue_xmit);
3003 
3004 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3005 {
3006 	return __dev_queue_xmit(skb, accel_priv);
3007 }
3008 EXPORT_SYMBOL(dev_queue_xmit_accel);
3009 
3010 
3011 /*=======================================================================
3012 			Receiver routines
3013   =======================================================================*/
3014 
3015 int netdev_max_backlog __read_mostly = 1000;
3016 EXPORT_SYMBOL(netdev_max_backlog);
3017 
3018 int netdev_tstamp_prequeue __read_mostly = 1;
3019 int netdev_budget __read_mostly = 300;
3020 int weight_p __read_mostly = 64;            /* old backlog weight */
3021 
3022 /* Called with irq disabled */
3023 static inline void ____napi_schedule(struct softnet_data *sd,
3024 				     struct napi_struct *napi)
3025 {
3026 	list_add_tail(&napi->poll_list, &sd->poll_list);
3027 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3028 }
3029 
3030 #ifdef CONFIG_RPS
3031 
3032 /* One global table that all flow-based protocols share. */
3033 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3034 EXPORT_SYMBOL(rps_sock_flow_table);
3035 u32 rps_cpu_mask __read_mostly;
3036 EXPORT_SYMBOL(rps_cpu_mask);
3037 
3038 struct static_key rps_needed __read_mostly;
3039 
3040 static struct rps_dev_flow *
3041 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3042 	    struct rps_dev_flow *rflow, u16 next_cpu)
3043 {
3044 	if (next_cpu != RPS_NO_CPU) {
3045 #ifdef CONFIG_RFS_ACCEL
3046 		struct netdev_rx_queue *rxqueue;
3047 		struct rps_dev_flow_table *flow_table;
3048 		struct rps_dev_flow *old_rflow;
3049 		u32 flow_id;
3050 		u16 rxq_index;
3051 		int rc;
3052 
3053 		/* Should we steer this flow to a different hardware queue? */
3054 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3055 		    !(dev->features & NETIF_F_NTUPLE))
3056 			goto out;
3057 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3058 		if (rxq_index == skb_get_rx_queue(skb))
3059 			goto out;
3060 
3061 		rxqueue = dev->_rx + rxq_index;
3062 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3063 		if (!flow_table)
3064 			goto out;
3065 		flow_id = skb_get_hash(skb) & flow_table->mask;
3066 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3067 							rxq_index, flow_id);
3068 		if (rc < 0)
3069 			goto out;
3070 		old_rflow = rflow;
3071 		rflow = &flow_table->flows[flow_id];
3072 		rflow->filter = rc;
3073 		if (old_rflow->filter == rflow->filter)
3074 			old_rflow->filter = RPS_NO_FILTER;
3075 	out:
3076 #endif
3077 		rflow->last_qtail =
3078 			per_cpu(softnet_data, next_cpu).input_queue_head;
3079 	}
3080 
3081 	rflow->cpu = next_cpu;
3082 	return rflow;
3083 }
3084 
3085 /*
3086  * get_rps_cpu is called from netif_receive_skb and returns the target
3087  * CPU from the RPS map of the receiving queue for a given skb.
3088  * rcu_read_lock must be held on entry.
3089  */
3090 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3091 		       struct rps_dev_flow **rflowp)
3092 {
3093 	const struct rps_sock_flow_table *sock_flow_table;
3094 	struct netdev_rx_queue *rxqueue = dev->_rx;
3095 	struct rps_dev_flow_table *flow_table;
3096 	struct rps_map *map;
3097 	int cpu = -1;
3098 	u32 tcpu;
3099 	u32 hash;
3100 
3101 	if (skb_rx_queue_recorded(skb)) {
3102 		u16 index = skb_get_rx_queue(skb);
3103 
3104 		if (unlikely(index >= dev->real_num_rx_queues)) {
3105 			WARN_ONCE(dev->real_num_rx_queues > 1,
3106 				  "%s received packet on queue %u, but number "
3107 				  "of RX queues is %u\n",
3108 				  dev->name, index, dev->real_num_rx_queues);
3109 			goto done;
3110 		}
3111 		rxqueue += index;
3112 	}
3113 
3114 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3115 
3116 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3117 	map = rcu_dereference(rxqueue->rps_map);
3118 	if (!flow_table && !map)
3119 		goto done;
3120 
3121 	skb_reset_network_header(skb);
3122 	hash = skb_get_hash(skb);
3123 	if (!hash)
3124 		goto done;
3125 
3126 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3127 	if (flow_table && sock_flow_table) {
3128 		struct rps_dev_flow *rflow;
3129 		u32 next_cpu;
3130 		u32 ident;
3131 
3132 		/* First check into global flow table if there is a match */
3133 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3134 		if ((ident ^ hash) & ~rps_cpu_mask)
3135 			goto try_rps;
3136 
3137 		next_cpu = ident & rps_cpu_mask;
3138 
3139 		/* OK, now we know there is a match,
3140 		 * we can look at the local (per receive queue) flow table
3141 		 */
3142 		rflow = &flow_table->flows[hash & flow_table->mask];
3143 		tcpu = rflow->cpu;
3144 
3145 		/*
3146 		 * If the desired CPU (where last recvmsg was done) is
3147 		 * different from current CPU (one in the rx-queue flow
3148 		 * table entry), switch if one of the following holds:
3149 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3150 		 *   - Current CPU is offline.
3151 		 *   - The current CPU's queue tail has advanced beyond the
3152 		 *     last packet that was enqueued using this table entry.
3153 		 *     This guarantees that all previous packets for the flow
3154 		 *     have been dequeued, thus preserving in order delivery.
3155 		 */
3156 		if (unlikely(tcpu != next_cpu) &&
3157 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3158 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3159 		      rflow->last_qtail)) >= 0)) {
3160 			tcpu = next_cpu;
3161 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3162 		}
3163 
3164 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3165 			*rflowp = rflow;
3166 			cpu = tcpu;
3167 			goto done;
3168 		}
3169 	}
3170 
3171 try_rps:
3172 
3173 	if (map) {
3174 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3175 		if (cpu_online(tcpu)) {
3176 			cpu = tcpu;
3177 			goto done;
3178 		}
3179 	}
3180 
3181 done:
3182 	return cpu;
3183 }
3184 
3185 #ifdef CONFIG_RFS_ACCEL
3186 
3187 /**
3188  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3189  * @dev: Device on which the filter was set
3190  * @rxq_index: RX queue index
3191  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3192  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3193  *
3194  * Drivers that implement ndo_rx_flow_steer() should periodically call
3195  * this function for each installed filter and remove the filters for
3196  * which it returns %true.
3197  */
3198 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3199 			 u32 flow_id, u16 filter_id)
3200 {
3201 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3202 	struct rps_dev_flow_table *flow_table;
3203 	struct rps_dev_flow *rflow;
3204 	bool expire = true;
3205 	int cpu;
3206 
3207 	rcu_read_lock();
3208 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3209 	if (flow_table && flow_id <= flow_table->mask) {
3210 		rflow = &flow_table->flows[flow_id];
3211 		cpu = ACCESS_ONCE(rflow->cpu);
3212 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3213 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3214 			   rflow->last_qtail) <
3215 		     (int)(10 * flow_table->mask)))
3216 			expire = false;
3217 	}
3218 	rcu_read_unlock();
3219 	return expire;
3220 }
3221 EXPORT_SYMBOL(rps_may_expire_flow);
3222 
3223 #endif /* CONFIG_RFS_ACCEL */
3224 
3225 /* Called from hardirq (IPI) context */
3226 static void rps_trigger_softirq(void *data)
3227 {
3228 	struct softnet_data *sd = data;
3229 
3230 	____napi_schedule(sd, &sd->backlog);
3231 	sd->received_rps++;
3232 }
3233 
3234 #endif /* CONFIG_RPS */
3235 
3236 /*
3237  * Check if this softnet_data structure is another cpu one
3238  * If yes, queue it to our IPI list and return 1
3239  * If no, return 0
3240  */
3241 static int rps_ipi_queued(struct softnet_data *sd)
3242 {
3243 #ifdef CONFIG_RPS
3244 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3245 
3246 	if (sd != mysd) {
3247 		sd->rps_ipi_next = mysd->rps_ipi_list;
3248 		mysd->rps_ipi_list = sd;
3249 
3250 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3251 		return 1;
3252 	}
3253 #endif /* CONFIG_RPS */
3254 	return 0;
3255 }
3256 
3257 #ifdef CONFIG_NET_FLOW_LIMIT
3258 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3259 #endif
3260 
3261 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3262 {
3263 #ifdef CONFIG_NET_FLOW_LIMIT
3264 	struct sd_flow_limit *fl;
3265 	struct softnet_data *sd;
3266 	unsigned int old_flow, new_flow;
3267 
3268 	if (qlen < (netdev_max_backlog >> 1))
3269 		return false;
3270 
3271 	sd = this_cpu_ptr(&softnet_data);
3272 
3273 	rcu_read_lock();
3274 	fl = rcu_dereference(sd->flow_limit);
3275 	if (fl) {
3276 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3277 		old_flow = fl->history[fl->history_head];
3278 		fl->history[fl->history_head] = new_flow;
3279 
3280 		fl->history_head++;
3281 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3282 
3283 		if (likely(fl->buckets[old_flow]))
3284 			fl->buckets[old_flow]--;
3285 
3286 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3287 			fl->count++;
3288 			rcu_read_unlock();
3289 			return true;
3290 		}
3291 	}
3292 	rcu_read_unlock();
3293 #endif
3294 	return false;
3295 }
3296 
3297 /*
3298  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3299  * queue (may be a remote CPU queue).
3300  */
3301 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3302 			      unsigned int *qtail)
3303 {
3304 	struct softnet_data *sd;
3305 	unsigned long flags;
3306 	unsigned int qlen;
3307 
3308 	sd = &per_cpu(softnet_data, cpu);
3309 
3310 	local_irq_save(flags);
3311 
3312 	rps_lock(sd);
3313 	qlen = skb_queue_len(&sd->input_pkt_queue);
3314 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3315 		if (qlen) {
3316 enqueue:
3317 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3318 			input_queue_tail_incr_save(sd, qtail);
3319 			rps_unlock(sd);
3320 			local_irq_restore(flags);
3321 			return NET_RX_SUCCESS;
3322 		}
3323 
3324 		/* Schedule NAPI for backlog device
3325 		 * We can use non atomic operation since we own the queue lock
3326 		 */
3327 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3328 			if (!rps_ipi_queued(sd))
3329 				____napi_schedule(sd, &sd->backlog);
3330 		}
3331 		goto enqueue;
3332 	}
3333 
3334 	sd->dropped++;
3335 	rps_unlock(sd);
3336 
3337 	local_irq_restore(flags);
3338 
3339 	atomic_long_inc(&skb->dev->rx_dropped);
3340 	kfree_skb(skb);
3341 	return NET_RX_DROP;
3342 }
3343 
3344 static int netif_rx_internal(struct sk_buff *skb)
3345 {
3346 	int ret;
3347 
3348 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3349 
3350 	trace_netif_rx(skb);
3351 #ifdef CONFIG_RPS
3352 	if (static_key_false(&rps_needed)) {
3353 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3354 		int cpu;
3355 
3356 		preempt_disable();
3357 		rcu_read_lock();
3358 
3359 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3360 		if (cpu < 0)
3361 			cpu = smp_processor_id();
3362 
3363 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3364 
3365 		rcu_read_unlock();
3366 		preempt_enable();
3367 	} else
3368 #endif
3369 	{
3370 		unsigned int qtail;
3371 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3372 		put_cpu();
3373 	}
3374 	return ret;
3375 }
3376 
3377 /**
3378  *	netif_rx	-	post buffer to the network code
3379  *	@skb: buffer to post
3380  *
3381  *	This function receives a packet from a device driver and queues it for
3382  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3383  *	may be dropped during processing for congestion control or by the
3384  *	protocol layers.
3385  *
3386  *	return values:
3387  *	NET_RX_SUCCESS	(no congestion)
3388  *	NET_RX_DROP     (packet was dropped)
3389  *
3390  */
3391 
3392 int netif_rx(struct sk_buff *skb)
3393 {
3394 	trace_netif_rx_entry(skb);
3395 
3396 	return netif_rx_internal(skb);
3397 }
3398 EXPORT_SYMBOL(netif_rx);
3399 
3400 int netif_rx_ni(struct sk_buff *skb)
3401 {
3402 	int err;
3403 
3404 	trace_netif_rx_ni_entry(skb);
3405 
3406 	preempt_disable();
3407 	err = netif_rx_internal(skb);
3408 	if (local_softirq_pending())
3409 		do_softirq();
3410 	preempt_enable();
3411 
3412 	return err;
3413 }
3414 EXPORT_SYMBOL(netif_rx_ni);
3415 
3416 static void net_tx_action(struct softirq_action *h)
3417 {
3418 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3419 
3420 	if (sd->completion_queue) {
3421 		struct sk_buff *clist;
3422 
3423 		local_irq_disable();
3424 		clist = sd->completion_queue;
3425 		sd->completion_queue = NULL;
3426 		local_irq_enable();
3427 
3428 		while (clist) {
3429 			struct sk_buff *skb = clist;
3430 			clist = clist->next;
3431 
3432 			WARN_ON(atomic_read(&skb->users));
3433 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3434 				trace_consume_skb(skb);
3435 			else
3436 				trace_kfree_skb(skb, net_tx_action);
3437 			__kfree_skb(skb);
3438 		}
3439 	}
3440 
3441 	if (sd->output_queue) {
3442 		struct Qdisc *head;
3443 
3444 		local_irq_disable();
3445 		head = sd->output_queue;
3446 		sd->output_queue = NULL;
3447 		sd->output_queue_tailp = &sd->output_queue;
3448 		local_irq_enable();
3449 
3450 		while (head) {
3451 			struct Qdisc *q = head;
3452 			spinlock_t *root_lock;
3453 
3454 			head = head->next_sched;
3455 
3456 			root_lock = qdisc_lock(q);
3457 			if (spin_trylock(root_lock)) {
3458 				smp_mb__before_atomic();
3459 				clear_bit(__QDISC_STATE_SCHED,
3460 					  &q->state);
3461 				qdisc_run(q);
3462 				spin_unlock(root_lock);
3463 			} else {
3464 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3465 					      &q->state)) {
3466 					__netif_reschedule(q);
3467 				} else {
3468 					smp_mb__before_atomic();
3469 					clear_bit(__QDISC_STATE_SCHED,
3470 						  &q->state);
3471 				}
3472 			}
3473 		}
3474 	}
3475 }
3476 
3477 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3478     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3479 /* This hook is defined here for ATM LANE */
3480 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3481 			     unsigned char *addr) __read_mostly;
3482 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3483 #endif
3484 
3485 #ifdef CONFIG_NET_CLS_ACT
3486 /* TODO: Maybe we should just force sch_ingress to be compiled in
3487  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3488  * a compare and 2 stores extra right now if we dont have it on
3489  * but have CONFIG_NET_CLS_ACT
3490  * NOTE: This doesn't stop any functionality; if you dont have
3491  * the ingress scheduler, you just can't add policies on ingress.
3492  *
3493  */
3494 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3495 {
3496 	struct net_device *dev = skb->dev;
3497 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3498 	int result = TC_ACT_OK;
3499 	struct Qdisc *q;
3500 
3501 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3502 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3503 				     skb->skb_iif, dev->ifindex);
3504 		return TC_ACT_SHOT;
3505 	}
3506 
3507 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3508 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3509 
3510 	q = rcu_dereference(rxq->qdisc);
3511 	if (q != &noop_qdisc) {
3512 		spin_lock(qdisc_lock(q));
3513 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3514 			result = qdisc_enqueue_root(skb, q);
3515 		spin_unlock(qdisc_lock(q));
3516 	}
3517 
3518 	return result;
3519 }
3520 
3521 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3522 					 struct packet_type **pt_prev,
3523 					 int *ret, struct net_device *orig_dev)
3524 {
3525 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3526 
3527 	if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3528 		goto out;
3529 
3530 	if (*pt_prev) {
3531 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3532 		*pt_prev = NULL;
3533 	}
3534 
3535 	switch (ing_filter(skb, rxq)) {
3536 	case TC_ACT_SHOT:
3537 	case TC_ACT_STOLEN:
3538 		kfree_skb(skb);
3539 		return NULL;
3540 	}
3541 
3542 out:
3543 	skb->tc_verd = 0;
3544 	return skb;
3545 }
3546 #endif
3547 
3548 /**
3549  *	netdev_rx_handler_register - register receive handler
3550  *	@dev: device to register a handler for
3551  *	@rx_handler: receive handler to register
3552  *	@rx_handler_data: data pointer that is used by rx handler
3553  *
3554  *	Register a receive handler for a device. This handler will then be
3555  *	called from __netif_receive_skb. A negative errno code is returned
3556  *	on a failure.
3557  *
3558  *	The caller must hold the rtnl_mutex.
3559  *
3560  *	For a general description of rx_handler, see enum rx_handler_result.
3561  */
3562 int netdev_rx_handler_register(struct net_device *dev,
3563 			       rx_handler_func_t *rx_handler,
3564 			       void *rx_handler_data)
3565 {
3566 	ASSERT_RTNL();
3567 
3568 	if (dev->rx_handler)
3569 		return -EBUSY;
3570 
3571 	/* Note: rx_handler_data must be set before rx_handler */
3572 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3573 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3574 
3575 	return 0;
3576 }
3577 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3578 
3579 /**
3580  *	netdev_rx_handler_unregister - unregister receive handler
3581  *	@dev: device to unregister a handler from
3582  *
3583  *	Unregister a receive handler from a device.
3584  *
3585  *	The caller must hold the rtnl_mutex.
3586  */
3587 void netdev_rx_handler_unregister(struct net_device *dev)
3588 {
3589 
3590 	ASSERT_RTNL();
3591 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3592 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3593 	 * section has a guarantee to see a non NULL rx_handler_data
3594 	 * as well.
3595 	 */
3596 	synchronize_net();
3597 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3598 }
3599 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3600 
3601 /*
3602  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3603  * the special handling of PFMEMALLOC skbs.
3604  */
3605 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3606 {
3607 	switch (skb->protocol) {
3608 	case htons(ETH_P_ARP):
3609 	case htons(ETH_P_IP):
3610 	case htons(ETH_P_IPV6):
3611 	case htons(ETH_P_8021Q):
3612 	case htons(ETH_P_8021AD):
3613 		return true;
3614 	default:
3615 		return false;
3616 	}
3617 }
3618 
3619 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3620 {
3621 	struct packet_type *ptype, *pt_prev;
3622 	rx_handler_func_t *rx_handler;
3623 	struct net_device *orig_dev;
3624 	bool deliver_exact = false;
3625 	int ret = NET_RX_DROP;
3626 	__be16 type;
3627 
3628 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3629 
3630 	trace_netif_receive_skb(skb);
3631 
3632 	orig_dev = skb->dev;
3633 
3634 	skb_reset_network_header(skb);
3635 	if (!skb_transport_header_was_set(skb))
3636 		skb_reset_transport_header(skb);
3637 	skb_reset_mac_len(skb);
3638 
3639 	pt_prev = NULL;
3640 
3641 	rcu_read_lock();
3642 
3643 another_round:
3644 	skb->skb_iif = skb->dev->ifindex;
3645 
3646 	__this_cpu_inc(softnet_data.processed);
3647 
3648 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3649 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3650 		skb = skb_vlan_untag(skb);
3651 		if (unlikely(!skb))
3652 			goto unlock;
3653 	}
3654 
3655 #ifdef CONFIG_NET_CLS_ACT
3656 	if (skb->tc_verd & TC_NCLS) {
3657 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3658 		goto ncls;
3659 	}
3660 #endif
3661 
3662 	if (pfmemalloc)
3663 		goto skip_taps;
3664 
3665 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3666 		if (pt_prev)
3667 			ret = deliver_skb(skb, pt_prev, orig_dev);
3668 		pt_prev = ptype;
3669 	}
3670 
3671 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3672 		if (pt_prev)
3673 			ret = deliver_skb(skb, pt_prev, orig_dev);
3674 		pt_prev = ptype;
3675 	}
3676 
3677 skip_taps:
3678 #ifdef CONFIG_NET_CLS_ACT
3679 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3680 	if (!skb)
3681 		goto unlock;
3682 ncls:
3683 #endif
3684 
3685 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3686 		goto drop;
3687 
3688 	if (skb_vlan_tag_present(skb)) {
3689 		if (pt_prev) {
3690 			ret = deliver_skb(skb, pt_prev, orig_dev);
3691 			pt_prev = NULL;
3692 		}
3693 		if (vlan_do_receive(&skb))
3694 			goto another_round;
3695 		else if (unlikely(!skb))
3696 			goto unlock;
3697 	}
3698 
3699 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3700 	if (rx_handler) {
3701 		if (pt_prev) {
3702 			ret = deliver_skb(skb, pt_prev, orig_dev);
3703 			pt_prev = NULL;
3704 		}
3705 		switch (rx_handler(&skb)) {
3706 		case RX_HANDLER_CONSUMED:
3707 			ret = NET_RX_SUCCESS;
3708 			goto unlock;
3709 		case RX_HANDLER_ANOTHER:
3710 			goto another_round;
3711 		case RX_HANDLER_EXACT:
3712 			deliver_exact = true;
3713 		case RX_HANDLER_PASS:
3714 			break;
3715 		default:
3716 			BUG();
3717 		}
3718 	}
3719 
3720 	if (unlikely(skb_vlan_tag_present(skb))) {
3721 		if (skb_vlan_tag_get_id(skb))
3722 			skb->pkt_type = PACKET_OTHERHOST;
3723 		/* Note: we might in the future use prio bits
3724 		 * and set skb->priority like in vlan_do_receive()
3725 		 * For the time being, just ignore Priority Code Point
3726 		 */
3727 		skb->vlan_tci = 0;
3728 	}
3729 
3730 	type = skb->protocol;
3731 
3732 	/* deliver only exact match when indicated */
3733 	if (likely(!deliver_exact)) {
3734 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3735 				       &ptype_base[ntohs(type) &
3736 						   PTYPE_HASH_MASK]);
3737 	}
3738 
3739 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3740 			       &orig_dev->ptype_specific);
3741 
3742 	if (unlikely(skb->dev != orig_dev)) {
3743 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3744 				       &skb->dev->ptype_specific);
3745 	}
3746 
3747 	if (pt_prev) {
3748 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3749 			goto drop;
3750 		else
3751 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3752 	} else {
3753 drop:
3754 		atomic_long_inc(&skb->dev->rx_dropped);
3755 		kfree_skb(skb);
3756 		/* Jamal, now you will not able to escape explaining
3757 		 * me how you were going to use this. :-)
3758 		 */
3759 		ret = NET_RX_DROP;
3760 	}
3761 
3762 unlock:
3763 	rcu_read_unlock();
3764 	return ret;
3765 }
3766 
3767 static int __netif_receive_skb(struct sk_buff *skb)
3768 {
3769 	int ret;
3770 
3771 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3772 		unsigned long pflags = current->flags;
3773 
3774 		/*
3775 		 * PFMEMALLOC skbs are special, they should
3776 		 * - be delivered to SOCK_MEMALLOC sockets only
3777 		 * - stay away from userspace
3778 		 * - have bounded memory usage
3779 		 *
3780 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3781 		 * context down to all allocation sites.
3782 		 */
3783 		current->flags |= PF_MEMALLOC;
3784 		ret = __netif_receive_skb_core(skb, true);
3785 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3786 	} else
3787 		ret = __netif_receive_skb_core(skb, false);
3788 
3789 	return ret;
3790 }
3791 
3792 static int netif_receive_skb_internal(struct sk_buff *skb)
3793 {
3794 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3795 
3796 	if (skb_defer_rx_timestamp(skb))
3797 		return NET_RX_SUCCESS;
3798 
3799 #ifdef CONFIG_RPS
3800 	if (static_key_false(&rps_needed)) {
3801 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3802 		int cpu, ret;
3803 
3804 		rcu_read_lock();
3805 
3806 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3807 
3808 		if (cpu >= 0) {
3809 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3810 			rcu_read_unlock();
3811 			return ret;
3812 		}
3813 		rcu_read_unlock();
3814 	}
3815 #endif
3816 	return __netif_receive_skb(skb);
3817 }
3818 
3819 /**
3820  *	netif_receive_skb - process receive buffer from network
3821  *	@skb: buffer to process
3822  *
3823  *	netif_receive_skb() is the main receive data processing function.
3824  *	It always succeeds. The buffer may be dropped during processing
3825  *	for congestion control or by the protocol layers.
3826  *
3827  *	This function may only be called from softirq context and interrupts
3828  *	should be enabled.
3829  *
3830  *	Return values (usually ignored):
3831  *	NET_RX_SUCCESS: no congestion
3832  *	NET_RX_DROP: packet was dropped
3833  */
3834 int netif_receive_skb(struct sk_buff *skb)
3835 {
3836 	trace_netif_receive_skb_entry(skb);
3837 
3838 	return netif_receive_skb_internal(skb);
3839 }
3840 EXPORT_SYMBOL(netif_receive_skb);
3841 
3842 /* Network device is going away, flush any packets still pending
3843  * Called with irqs disabled.
3844  */
3845 static void flush_backlog(void *arg)
3846 {
3847 	struct net_device *dev = arg;
3848 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3849 	struct sk_buff *skb, *tmp;
3850 
3851 	rps_lock(sd);
3852 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3853 		if (skb->dev == dev) {
3854 			__skb_unlink(skb, &sd->input_pkt_queue);
3855 			kfree_skb(skb);
3856 			input_queue_head_incr(sd);
3857 		}
3858 	}
3859 	rps_unlock(sd);
3860 
3861 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3862 		if (skb->dev == dev) {
3863 			__skb_unlink(skb, &sd->process_queue);
3864 			kfree_skb(skb);
3865 			input_queue_head_incr(sd);
3866 		}
3867 	}
3868 }
3869 
3870 static int napi_gro_complete(struct sk_buff *skb)
3871 {
3872 	struct packet_offload *ptype;
3873 	__be16 type = skb->protocol;
3874 	struct list_head *head = &offload_base;
3875 	int err = -ENOENT;
3876 
3877 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3878 
3879 	if (NAPI_GRO_CB(skb)->count == 1) {
3880 		skb_shinfo(skb)->gso_size = 0;
3881 		goto out;
3882 	}
3883 
3884 	rcu_read_lock();
3885 	list_for_each_entry_rcu(ptype, head, list) {
3886 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3887 			continue;
3888 
3889 		err = ptype->callbacks.gro_complete(skb, 0);
3890 		break;
3891 	}
3892 	rcu_read_unlock();
3893 
3894 	if (err) {
3895 		WARN_ON(&ptype->list == head);
3896 		kfree_skb(skb);
3897 		return NET_RX_SUCCESS;
3898 	}
3899 
3900 out:
3901 	return netif_receive_skb_internal(skb);
3902 }
3903 
3904 /* napi->gro_list contains packets ordered by age.
3905  * youngest packets at the head of it.
3906  * Complete skbs in reverse order to reduce latencies.
3907  */
3908 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3909 {
3910 	struct sk_buff *skb, *prev = NULL;
3911 
3912 	/* scan list and build reverse chain */
3913 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3914 		skb->prev = prev;
3915 		prev = skb;
3916 	}
3917 
3918 	for (skb = prev; skb; skb = prev) {
3919 		skb->next = NULL;
3920 
3921 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3922 			return;
3923 
3924 		prev = skb->prev;
3925 		napi_gro_complete(skb);
3926 		napi->gro_count--;
3927 	}
3928 
3929 	napi->gro_list = NULL;
3930 }
3931 EXPORT_SYMBOL(napi_gro_flush);
3932 
3933 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3934 {
3935 	struct sk_buff *p;
3936 	unsigned int maclen = skb->dev->hard_header_len;
3937 	u32 hash = skb_get_hash_raw(skb);
3938 
3939 	for (p = napi->gro_list; p; p = p->next) {
3940 		unsigned long diffs;
3941 
3942 		NAPI_GRO_CB(p)->flush = 0;
3943 
3944 		if (hash != skb_get_hash_raw(p)) {
3945 			NAPI_GRO_CB(p)->same_flow = 0;
3946 			continue;
3947 		}
3948 
3949 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3950 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3951 		if (maclen == ETH_HLEN)
3952 			diffs |= compare_ether_header(skb_mac_header(p),
3953 						      skb_mac_header(skb));
3954 		else if (!diffs)
3955 			diffs = memcmp(skb_mac_header(p),
3956 				       skb_mac_header(skb),
3957 				       maclen);
3958 		NAPI_GRO_CB(p)->same_flow = !diffs;
3959 	}
3960 }
3961 
3962 static void skb_gro_reset_offset(struct sk_buff *skb)
3963 {
3964 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3965 	const skb_frag_t *frag0 = &pinfo->frags[0];
3966 
3967 	NAPI_GRO_CB(skb)->data_offset = 0;
3968 	NAPI_GRO_CB(skb)->frag0 = NULL;
3969 	NAPI_GRO_CB(skb)->frag0_len = 0;
3970 
3971 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3972 	    pinfo->nr_frags &&
3973 	    !PageHighMem(skb_frag_page(frag0))) {
3974 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3975 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3976 	}
3977 }
3978 
3979 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3980 {
3981 	struct skb_shared_info *pinfo = skb_shinfo(skb);
3982 
3983 	BUG_ON(skb->end - skb->tail < grow);
3984 
3985 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3986 
3987 	skb->data_len -= grow;
3988 	skb->tail += grow;
3989 
3990 	pinfo->frags[0].page_offset += grow;
3991 	skb_frag_size_sub(&pinfo->frags[0], grow);
3992 
3993 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3994 		skb_frag_unref(skb, 0);
3995 		memmove(pinfo->frags, pinfo->frags + 1,
3996 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
3997 	}
3998 }
3999 
4000 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4001 {
4002 	struct sk_buff **pp = NULL;
4003 	struct packet_offload *ptype;
4004 	__be16 type = skb->protocol;
4005 	struct list_head *head = &offload_base;
4006 	int same_flow;
4007 	enum gro_result ret;
4008 	int grow;
4009 
4010 	if (!(skb->dev->features & NETIF_F_GRO))
4011 		goto normal;
4012 
4013 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4014 		goto normal;
4015 
4016 	gro_list_prepare(napi, skb);
4017 
4018 	rcu_read_lock();
4019 	list_for_each_entry_rcu(ptype, head, list) {
4020 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4021 			continue;
4022 
4023 		skb_set_network_header(skb, skb_gro_offset(skb));
4024 		skb_reset_mac_len(skb);
4025 		NAPI_GRO_CB(skb)->same_flow = 0;
4026 		NAPI_GRO_CB(skb)->flush = 0;
4027 		NAPI_GRO_CB(skb)->free = 0;
4028 		NAPI_GRO_CB(skb)->udp_mark = 0;
4029 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4030 
4031 		/* Setup for GRO checksum validation */
4032 		switch (skb->ip_summed) {
4033 		case CHECKSUM_COMPLETE:
4034 			NAPI_GRO_CB(skb)->csum = skb->csum;
4035 			NAPI_GRO_CB(skb)->csum_valid = 1;
4036 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4037 			break;
4038 		case CHECKSUM_UNNECESSARY:
4039 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4040 			NAPI_GRO_CB(skb)->csum_valid = 0;
4041 			break;
4042 		default:
4043 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4044 			NAPI_GRO_CB(skb)->csum_valid = 0;
4045 		}
4046 
4047 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4048 		break;
4049 	}
4050 	rcu_read_unlock();
4051 
4052 	if (&ptype->list == head)
4053 		goto normal;
4054 
4055 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4056 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4057 
4058 	if (pp) {
4059 		struct sk_buff *nskb = *pp;
4060 
4061 		*pp = nskb->next;
4062 		nskb->next = NULL;
4063 		napi_gro_complete(nskb);
4064 		napi->gro_count--;
4065 	}
4066 
4067 	if (same_flow)
4068 		goto ok;
4069 
4070 	if (NAPI_GRO_CB(skb)->flush)
4071 		goto normal;
4072 
4073 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4074 		struct sk_buff *nskb = napi->gro_list;
4075 
4076 		/* locate the end of the list to select the 'oldest' flow */
4077 		while (nskb->next) {
4078 			pp = &nskb->next;
4079 			nskb = *pp;
4080 		}
4081 		*pp = NULL;
4082 		nskb->next = NULL;
4083 		napi_gro_complete(nskb);
4084 	} else {
4085 		napi->gro_count++;
4086 	}
4087 	NAPI_GRO_CB(skb)->count = 1;
4088 	NAPI_GRO_CB(skb)->age = jiffies;
4089 	NAPI_GRO_CB(skb)->last = skb;
4090 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4091 	skb->next = napi->gro_list;
4092 	napi->gro_list = skb;
4093 	ret = GRO_HELD;
4094 
4095 pull:
4096 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4097 	if (grow > 0)
4098 		gro_pull_from_frag0(skb, grow);
4099 ok:
4100 	return ret;
4101 
4102 normal:
4103 	ret = GRO_NORMAL;
4104 	goto pull;
4105 }
4106 
4107 struct packet_offload *gro_find_receive_by_type(__be16 type)
4108 {
4109 	struct list_head *offload_head = &offload_base;
4110 	struct packet_offload *ptype;
4111 
4112 	list_for_each_entry_rcu(ptype, offload_head, list) {
4113 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4114 			continue;
4115 		return ptype;
4116 	}
4117 	return NULL;
4118 }
4119 EXPORT_SYMBOL(gro_find_receive_by_type);
4120 
4121 struct packet_offload *gro_find_complete_by_type(__be16 type)
4122 {
4123 	struct list_head *offload_head = &offload_base;
4124 	struct packet_offload *ptype;
4125 
4126 	list_for_each_entry_rcu(ptype, offload_head, list) {
4127 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4128 			continue;
4129 		return ptype;
4130 	}
4131 	return NULL;
4132 }
4133 EXPORT_SYMBOL(gro_find_complete_by_type);
4134 
4135 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4136 {
4137 	switch (ret) {
4138 	case GRO_NORMAL:
4139 		if (netif_receive_skb_internal(skb))
4140 			ret = GRO_DROP;
4141 		break;
4142 
4143 	case GRO_DROP:
4144 		kfree_skb(skb);
4145 		break;
4146 
4147 	case GRO_MERGED_FREE:
4148 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4149 			kmem_cache_free(skbuff_head_cache, skb);
4150 		else
4151 			__kfree_skb(skb);
4152 		break;
4153 
4154 	case GRO_HELD:
4155 	case GRO_MERGED:
4156 		break;
4157 	}
4158 
4159 	return ret;
4160 }
4161 
4162 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4163 {
4164 	trace_napi_gro_receive_entry(skb);
4165 
4166 	skb_gro_reset_offset(skb);
4167 
4168 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4169 }
4170 EXPORT_SYMBOL(napi_gro_receive);
4171 
4172 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4173 {
4174 	if (unlikely(skb->pfmemalloc)) {
4175 		consume_skb(skb);
4176 		return;
4177 	}
4178 	__skb_pull(skb, skb_headlen(skb));
4179 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4180 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4181 	skb->vlan_tci = 0;
4182 	skb->dev = napi->dev;
4183 	skb->skb_iif = 0;
4184 	skb->encapsulation = 0;
4185 	skb_shinfo(skb)->gso_type = 0;
4186 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4187 
4188 	napi->skb = skb;
4189 }
4190 
4191 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4192 {
4193 	struct sk_buff *skb = napi->skb;
4194 
4195 	if (!skb) {
4196 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4197 		napi->skb = skb;
4198 	}
4199 	return skb;
4200 }
4201 EXPORT_SYMBOL(napi_get_frags);
4202 
4203 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4204 				      struct sk_buff *skb,
4205 				      gro_result_t ret)
4206 {
4207 	switch (ret) {
4208 	case GRO_NORMAL:
4209 	case GRO_HELD:
4210 		__skb_push(skb, ETH_HLEN);
4211 		skb->protocol = eth_type_trans(skb, skb->dev);
4212 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4213 			ret = GRO_DROP;
4214 		break;
4215 
4216 	case GRO_DROP:
4217 	case GRO_MERGED_FREE:
4218 		napi_reuse_skb(napi, skb);
4219 		break;
4220 
4221 	case GRO_MERGED:
4222 		break;
4223 	}
4224 
4225 	return ret;
4226 }
4227 
4228 /* Upper GRO stack assumes network header starts at gro_offset=0
4229  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4230  * We copy ethernet header into skb->data to have a common layout.
4231  */
4232 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4233 {
4234 	struct sk_buff *skb = napi->skb;
4235 	const struct ethhdr *eth;
4236 	unsigned int hlen = sizeof(*eth);
4237 
4238 	napi->skb = NULL;
4239 
4240 	skb_reset_mac_header(skb);
4241 	skb_gro_reset_offset(skb);
4242 
4243 	eth = skb_gro_header_fast(skb, 0);
4244 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4245 		eth = skb_gro_header_slow(skb, hlen, 0);
4246 		if (unlikely(!eth)) {
4247 			napi_reuse_skb(napi, skb);
4248 			return NULL;
4249 		}
4250 	} else {
4251 		gro_pull_from_frag0(skb, hlen);
4252 		NAPI_GRO_CB(skb)->frag0 += hlen;
4253 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4254 	}
4255 	__skb_pull(skb, hlen);
4256 
4257 	/*
4258 	 * This works because the only protocols we care about don't require
4259 	 * special handling.
4260 	 * We'll fix it up properly in napi_frags_finish()
4261 	 */
4262 	skb->protocol = eth->h_proto;
4263 
4264 	return skb;
4265 }
4266 
4267 gro_result_t napi_gro_frags(struct napi_struct *napi)
4268 {
4269 	struct sk_buff *skb = napi_frags_skb(napi);
4270 
4271 	if (!skb)
4272 		return GRO_DROP;
4273 
4274 	trace_napi_gro_frags_entry(skb);
4275 
4276 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4277 }
4278 EXPORT_SYMBOL(napi_gro_frags);
4279 
4280 /* Compute the checksum from gro_offset and return the folded value
4281  * after adding in any pseudo checksum.
4282  */
4283 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4284 {
4285 	__wsum wsum;
4286 	__sum16 sum;
4287 
4288 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4289 
4290 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4291 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4292 	if (likely(!sum)) {
4293 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4294 		    !skb->csum_complete_sw)
4295 			netdev_rx_csum_fault(skb->dev);
4296 	}
4297 
4298 	NAPI_GRO_CB(skb)->csum = wsum;
4299 	NAPI_GRO_CB(skb)->csum_valid = 1;
4300 
4301 	return sum;
4302 }
4303 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4304 
4305 /*
4306  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4307  * Note: called with local irq disabled, but exits with local irq enabled.
4308  */
4309 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4310 {
4311 #ifdef CONFIG_RPS
4312 	struct softnet_data *remsd = sd->rps_ipi_list;
4313 
4314 	if (remsd) {
4315 		sd->rps_ipi_list = NULL;
4316 
4317 		local_irq_enable();
4318 
4319 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4320 		while (remsd) {
4321 			struct softnet_data *next = remsd->rps_ipi_next;
4322 
4323 			if (cpu_online(remsd->cpu))
4324 				smp_call_function_single_async(remsd->cpu,
4325 							   &remsd->csd);
4326 			remsd = next;
4327 		}
4328 	} else
4329 #endif
4330 		local_irq_enable();
4331 }
4332 
4333 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4334 {
4335 #ifdef CONFIG_RPS
4336 	return sd->rps_ipi_list != NULL;
4337 #else
4338 	return false;
4339 #endif
4340 }
4341 
4342 static int process_backlog(struct napi_struct *napi, int quota)
4343 {
4344 	int work = 0;
4345 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4346 
4347 	/* Check if we have pending ipi, its better to send them now,
4348 	 * not waiting net_rx_action() end.
4349 	 */
4350 	if (sd_has_rps_ipi_waiting(sd)) {
4351 		local_irq_disable();
4352 		net_rps_action_and_irq_enable(sd);
4353 	}
4354 
4355 	napi->weight = weight_p;
4356 	local_irq_disable();
4357 	while (1) {
4358 		struct sk_buff *skb;
4359 
4360 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4361 			local_irq_enable();
4362 			__netif_receive_skb(skb);
4363 			local_irq_disable();
4364 			input_queue_head_incr(sd);
4365 			if (++work >= quota) {
4366 				local_irq_enable();
4367 				return work;
4368 			}
4369 		}
4370 
4371 		rps_lock(sd);
4372 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4373 			/*
4374 			 * Inline a custom version of __napi_complete().
4375 			 * only current cpu owns and manipulates this napi,
4376 			 * and NAPI_STATE_SCHED is the only possible flag set
4377 			 * on backlog.
4378 			 * We can use a plain write instead of clear_bit(),
4379 			 * and we dont need an smp_mb() memory barrier.
4380 			 */
4381 			napi->state = 0;
4382 			rps_unlock(sd);
4383 
4384 			break;
4385 		}
4386 
4387 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4388 					   &sd->process_queue);
4389 		rps_unlock(sd);
4390 	}
4391 	local_irq_enable();
4392 
4393 	return work;
4394 }
4395 
4396 /**
4397  * __napi_schedule - schedule for receive
4398  * @n: entry to schedule
4399  *
4400  * The entry's receive function will be scheduled to run.
4401  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4402  */
4403 void __napi_schedule(struct napi_struct *n)
4404 {
4405 	unsigned long flags;
4406 
4407 	local_irq_save(flags);
4408 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4409 	local_irq_restore(flags);
4410 }
4411 EXPORT_SYMBOL(__napi_schedule);
4412 
4413 /**
4414  * __napi_schedule_irqoff - schedule for receive
4415  * @n: entry to schedule
4416  *
4417  * Variant of __napi_schedule() assuming hard irqs are masked
4418  */
4419 void __napi_schedule_irqoff(struct napi_struct *n)
4420 {
4421 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4422 }
4423 EXPORT_SYMBOL(__napi_schedule_irqoff);
4424 
4425 void __napi_complete(struct napi_struct *n)
4426 {
4427 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4428 
4429 	list_del_init(&n->poll_list);
4430 	smp_mb__before_atomic();
4431 	clear_bit(NAPI_STATE_SCHED, &n->state);
4432 }
4433 EXPORT_SYMBOL(__napi_complete);
4434 
4435 void napi_complete_done(struct napi_struct *n, int work_done)
4436 {
4437 	unsigned long flags;
4438 
4439 	/*
4440 	 * don't let napi dequeue from the cpu poll list
4441 	 * just in case its running on a different cpu
4442 	 */
4443 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4444 		return;
4445 
4446 	if (n->gro_list) {
4447 		unsigned long timeout = 0;
4448 
4449 		if (work_done)
4450 			timeout = n->dev->gro_flush_timeout;
4451 
4452 		if (timeout)
4453 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4454 				      HRTIMER_MODE_REL_PINNED);
4455 		else
4456 			napi_gro_flush(n, false);
4457 	}
4458 	if (likely(list_empty(&n->poll_list))) {
4459 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4460 	} else {
4461 		/* If n->poll_list is not empty, we need to mask irqs */
4462 		local_irq_save(flags);
4463 		__napi_complete(n);
4464 		local_irq_restore(flags);
4465 	}
4466 }
4467 EXPORT_SYMBOL(napi_complete_done);
4468 
4469 /* must be called under rcu_read_lock(), as we dont take a reference */
4470 struct napi_struct *napi_by_id(unsigned int napi_id)
4471 {
4472 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4473 	struct napi_struct *napi;
4474 
4475 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4476 		if (napi->napi_id == napi_id)
4477 			return napi;
4478 
4479 	return NULL;
4480 }
4481 EXPORT_SYMBOL_GPL(napi_by_id);
4482 
4483 void napi_hash_add(struct napi_struct *napi)
4484 {
4485 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4486 
4487 		spin_lock(&napi_hash_lock);
4488 
4489 		/* 0 is not a valid id, we also skip an id that is taken
4490 		 * we expect both events to be extremely rare
4491 		 */
4492 		napi->napi_id = 0;
4493 		while (!napi->napi_id) {
4494 			napi->napi_id = ++napi_gen_id;
4495 			if (napi_by_id(napi->napi_id))
4496 				napi->napi_id = 0;
4497 		}
4498 
4499 		hlist_add_head_rcu(&napi->napi_hash_node,
4500 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4501 
4502 		spin_unlock(&napi_hash_lock);
4503 	}
4504 }
4505 EXPORT_SYMBOL_GPL(napi_hash_add);
4506 
4507 /* Warning : caller is responsible to make sure rcu grace period
4508  * is respected before freeing memory containing @napi
4509  */
4510 void napi_hash_del(struct napi_struct *napi)
4511 {
4512 	spin_lock(&napi_hash_lock);
4513 
4514 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4515 		hlist_del_rcu(&napi->napi_hash_node);
4516 
4517 	spin_unlock(&napi_hash_lock);
4518 }
4519 EXPORT_SYMBOL_GPL(napi_hash_del);
4520 
4521 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4522 {
4523 	struct napi_struct *napi;
4524 
4525 	napi = container_of(timer, struct napi_struct, timer);
4526 	if (napi->gro_list)
4527 		napi_schedule(napi);
4528 
4529 	return HRTIMER_NORESTART;
4530 }
4531 
4532 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4533 		    int (*poll)(struct napi_struct *, int), int weight)
4534 {
4535 	INIT_LIST_HEAD(&napi->poll_list);
4536 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4537 	napi->timer.function = napi_watchdog;
4538 	napi->gro_count = 0;
4539 	napi->gro_list = NULL;
4540 	napi->skb = NULL;
4541 	napi->poll = poll;
4542 	if (weight > NAPI_POLL_WEIGHT)
4543 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4544 			    weight, dev->name);
4545 	napi->weight = weight;
4546 	list_add(&napi->dev_list, &dev->napi_list);
4547 	napi->dev = dev;
4548 #ifdef CONFIG_NETPOLL
4549 	spin_lock_init(&napi->poll_lock);
4550 	napi->poll_owner = -1;
4551 #endif
4552 	set_bit(NAPI_STATE_SCHED, &napi->state);
4553 }
4554 EXPORT_SYMBOL(netif_napi_add);
4555 
4556 void napi_disable(struct napi_struct *n)
4557 {
4558 	might_sleep();
4559 	set_bit(NAPI_STATE_DISABLE, &n->state);
4560 
4561 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4562 		msleep(1);
4563 
4564 	hrtimer_cancel(&n->timer);
4565 
4566 	clear_bit(NAPI_STATE_DISABLE, &n->state);
4567 }
4568 EXPORT_SYMBOL(napi_disable);
4569 
4570 void netif_napi_del(struct napi_struct *napi)
4571 {
4572 	list_del_init(&napi->dev_list);
4573 	napi_free_frags(napi);
4574 
4575 	kfree_skb_list(napi->gro_list);
4576 	napi->gro_list = NULL;
4577 	napi->gro_count = 0;
4578 }
4579 EXPORT_SYMBOL(netif_napi_del);
4580 
4581 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4582 {
4583 	void *have;
4584 	int work, weight;
4585 
4586 	list_del_init(&n->poll_list);
4587 
4588 	have = netpoll_poll_lock(n);
4589 
4590 	weight = n->weight;
4591 
4592 	/* This NAPI_STATE_SCHED test is for avoiding a race
4593 	 * with netpoll's poll_napi().  Only the entity which
4594 	 * obtains the lock and sees NAPI_STATE_SCHED set will
4595 	 * actually make the ->poll() call.  Therefore we avoid
4596 	 * accidentally calling ->poll() when NAPI is not scheduled.
4597 	 */
4598 	work = 0;
4599 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4600 		work = n->poll(n, weight);
4601 		trace_napi_poll(n);
4602 	}
4603 
4604 	WARN_ON_ONCE(work > weight);
4605 
4606 	if (likely(work < weight))
4607 		goto out_unlock;
4608 
4609 	/* Drivers must not modify the NAPI state if they
4610 	 * consume the entire weight.  In such cases this code
4611 	 * still "owns" the NAPI instance and therefore can
4612 	 * move the instance around on the list at-will.
4613 	 */
4614 	if (unlikely(napi_disable_pending(n))) {
4615 		napi_complete(n);
4616 		goto out_unlock;
4617 	}
4618 
4619 	if (n->gro_list) {
4620 		/* flush too old packets
4621 		 * If HZ < 1000, flush all packets.
4622 		 */
4623 		napi_gro_flush(n, HZ >= 1000);
4624 	}
4625 
4626 	/* Some drivers may have called napi_schedule
4627 	 * prior to exhausting their budget.
4628 	 */
4629 	if (unlikely(!list_empty(&n->poll_list))) {
4630 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4631 			     n->dev ? n->dev->name : "backlog");
4632 		goto out_unlock;
4633 	}
4634 
4635 	list_add_tail(&n->poll_list, repoll);
4636 
4637 out_unlock:
4638 	netpoll_poll_unlock(have);
4639 
4640 	return work;
4641 }
4642 
4643 static void net_rx_action(struct softirq_action *h)
4644 {
4645 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4646 	unsigned long time_limit = jiffies + 2;
4647 	int budget = netdev_budget;
4648 	LIST_HEAD(list);
4649 	LIST_HEAD(repoll);
4650 
4651 	local_irq_disable();
4652 	list_splice_init(&sd->poll_list, &list);
4653 	local_irq_enable();
4654 
4655 	for (;;) {
4656 		struct napi_struct *n;
4657 
4658 		if (list_empty(&list)) {
4659 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4660 				return;
4661 			break;
4662 		}
4663 
4664 		n = list_first_entry(&list, struct napi_struct, poll_list);
4665 		budget -= napi_poll(n, &repoll);
4666 
4667 		/* If softirq window is exhausted then punt.
4668 		 * Allow this to run for 2 jiffies since which will allow
4669 		 * an average latency of 1.5/HZ.
4670 		 */
4671 		if (unlikely(budget <= 0 ||
4672 			     time_after_eq(jiffies, time_limit))) {
4673 			sd->time_squeeze++;
4674 			break;
4675 		}
4676 	}
4677 
4678 	local_irq_disable();
4679 
4680 	list_splice_tail_init(&sd->poll_list, &list);
4681 	list_splice_tail(&repoll, &list);
4682 	list_splice(&list, &sd->poll_list);
4683 	if (!list_empty(&sd->poll_list))
4684 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4685 
4686 	net_rps_action_and_irq_enable(sd);
4687 }
4688 
4689 struct netdev_adjacent {
4690 	struct net_device *dev;
4691 
4692 	/* upper master flag, there can only be one master device per list */
4693 	bool master;
4694 
4695 	/* counter for the number of times this device was added to us */
4696 	u16 ref_nr;
4697 
4698 	/* private field for the users */
4699 	void *private;
4700 
4701 	struct list_head list;
4702 	struct rcu_head rcu;
4703 };
4704 
4705 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4706 						 struct net_device *adj_dev,
4707 						 struct list_head *adj_list)
4708 {
4709 	struct netdev_adjacent *adj;
4710 
4711 	list_for_each_entry(adj, adj_list, list) {
4712 		if (adj->dev == adj_dev)
4713 			return adj;
4714 	}
4715 	return NULL;
4716 }
4717 
4718 /**
4719  * netdev_has_upper_dev - Check if device is linked to an upper device
4720  * @dev: device
4721  * @upper_dev: upper device to check
4722  *
4723  * Find out if a device is linked to specified upper device and return true
4724  * in case it is. Note that this checks only immediate upper device,
4725  * not through a complete stack of devices. The caller must hold the RTNL lock.
4726  */
4727 bool netdev_has_upper_dev(struct net_device *dev,
4728 			  struct net_device *upper_dev)
4729 {
4730 	ASSERT_RTNL();
4731 
4732 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4733 }
4734 EXPORT_SYMBOL(netdev_has_upper_dev);
4735 
4736 /**
4737  * netdev_has_any_upper_dev - Check if device is linked to some device
4738  * @dev: device
4739  *
4740  * Find out if a device is linked to an upper device and return true in case
4741  * it is. The caller must hold the RTNL lock.
4742  */
4743 static bool netdev_has_any_upper_dev(struct net_device *dev)
4744 {
4745 	ASSERT_RTNL();
4746 
4747 	return !list_empty(&dev->all_adj_list.upper);
4748 }
4749 
4750 /**
4751  * netdev_master_upper_dev_get - Get master upper device
4752  * @dev: device
4753  *
4754  * Find a master upper device and return pointer to it or NULL in case
4755  * it's not there. The caller must hold the RTNL lock.
4756  */
4757 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4758 {
4759 	struct netdev_adjacent *upper;
4760 
4761 	ASSERT_RTNL();
4762 
4763 	if (list_empty(&dev->adj_list.upper))
4764 		return NULL;
4765 
4766 	upper = list_first_entry(&dev->adj_list.upper,
4767 				 struct netdev_adjacent, list);
4768 	if (likely(upper->master))
4769 		return upper->dev;
4770 	return NULL;
4771 }
4772 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4773 
4774 void *netdev_adjacent_get_private(struct list_head *adj_list)
4775 {
4776 	struct netdev_adjacent *adj;
4777 
4778 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4779 
4780 	return adj->private;
4781 }
4782 EXPORT_SYMBOL(netdev_adjacent_get_private);
4783 
4784 /**
4785  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4786  * @dev: device
4787  * @iter: list_head ** of the current position
4788  *
4789  * Gets the next device from the dev's upper list, starting from iter
4790  * position. The caller must hold RCU read lock.
4791  */
4792 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4793 						 struct list_head **iter)
4794 {
4795 	struct netdev_adjacent *upper;
4796 
4797 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4798 
4799 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4800 
4801 	if (&upper->list == &dev->adj_list.upper)
4802 		return NULL;
4803 
4804 	*iter = &upper->list;
4805 
4806 	return upper->dev;
4807 }
4808 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4809 
4810 /**
4811  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4812  * @dev: device
4813  * @iter: list_head ** of the current position
4814  *
4815  * Gets the next device from the dev's upper list, starting from iter
4816  * position. The caller must hold RCU read lock.
4817  */
4818 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4819 						     struct list_head **iter)
4820 {
4821 	struct netdev_adjacent *upper;
4822 
4823 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4824 
4825 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4826 
4827 	if (&upper->list == &dev->all_adj_list.upper)
4828 		return NULL;
4829 
4830 	*iter = &upper->list;
4831 
4832 	return upper->dev;
4833 }
4834 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4835 
4836 /**
4837  * netdev_lower_get_next_private - Get the next ->private from the
4838  *				   lower neighbour list
4839  * @dev: device
4840  * @iter: list_head ** of the current position
4841  *
4842  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4843  * list, starting from iter position. The caller must hold either hold the
4844  * RTNL lock or its own locking that guarantees that the neighbour lower
4845  * list will remain unchainged.
4846  */
4847 void *netdev_lower_get_next_private(struct net_device *dev,
4848 				    struct list_head **iter)
4849 {
4850 	struct netdev_adjacent *lower;
4851 
4852 	lower = list_entry(*iter, struct netdev_adjacent, list);
4853 
4854 	if (&lower->list == &dev->adj_list.lower)
4855 		return NULL;
4856 
4857 	*iter = lower->list.next;
4858 
4859 	return lower->private;
4860 }
4861 EXPORT_SYMBOL(netdev_lower_get_next_private);
4862 
4863 /**
4864  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4865  *				       lower neighbour list, RCU
4866  *				       variant
4867  * @dev: device
4868  * @iter: list_head ** of the current position
4869  *
4870  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4871  * list, starting from iter position. The caller must hold RCU read lock.
4872  */
4873 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4874 					struct list_head **iter)
4875 {
4876 	struct netdev_adjacent *lower;
4877 
4878 	WARN_ON_ONCE(!rcu_read_lock_held());
4879 
4880 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4881 
4882 	if (&lower->list == &dev->adj_list.lower)
4883 		return NULL;
4884 
4885 	*iter = &lower->list;
4886 
4887 	return lower->private;
4888 }
4889 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4890 
4891 /**
4892  * netdev_lower_get_next - Get the next device from the lower neighbour
4893  *                         list
4894  * @dev: device
4895  * @iter: list_head ** of the current position
4896  *
4897  * Gets the next netdev_adjacent from the dev's lower neighbour
4898  * list, starting from iter position. The caller must hold RTNL lock or
4899  * its own locking that guarantees that the neighbour lower
4900  * list will remain unchainged.
4901  */
4902 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4903 {
4904 	struct netdev_adjacent *lower;
4905 
4906 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4907 
4908 	if (&lower->list == &dev->adj_list.lower)
4909 		return NULL;
4910 
4911 	*iter = &lower->list;
4912 
4913 	return lower->dev;
4914 }
4915 EXPORT_SYMBOL(netdev_lower_get_next);
4916 
4917 /**
4918  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4919  *				       lower neighbour list, RCU
4920  *				       variant
4921  * @dev: device
4922  *
4923  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4924  * list. The caller must hold RCU read lock.
4925  */
4926 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4927 {
4928 	struct netdev_adjacent *lower;
4929 
4930 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
4931 			struct netdev_adjacent, list);
4932 	if (lower)
4933 		return lower->private;
4934 	return NULL;
4935 }
4936 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4937 
4938 /**
4939  * netdev_master_upper_dev_get_rcu - Get master upper device
4940  * @dev: device
4941  *
4942  * Find a master upper device and return pointer to it or NULL in case
4943  * it's not there. The caller must hold the RCU read lock.
4944  */
4945 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4946 {
4947 	struct netdev_adjacent *upper;
4948 
4949 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4950 				       struct netdev_adjacent, list);
4951 	if (upper && likely(upper->master))
4952 		return upper->dev;
4953 	return NULL;
4954 }
4955 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4956 
4957 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4958 			      struct net_device *adj_dev,
4959 			      struct list_head *dev_list)
4960 {
4961 	char linkname[IFNAMSIZ+7];
4962 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4963 		"upper_%s" : "lower_%s", adj_dev->name);
4964 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4965 				 linkname);
4966 }
4967 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4968 			       char *name,
4969 			       struct list_head *dev_list)
4970 {
4971 	char linkname[IFNAMSIZ+7];
4972 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4973 		"upper_%s" : "lower_%s", name);
4974 	sysfs_remove_link(&(dev->dev.kobj), linkname);
4975 }
4976 
4977 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4978 						 struct net_device *adj_dev,
4979 						 struct list_head *dev_list)
4980 {
4981 	return (dev_list == &dev->adj_list.upper ||
4982 		dev_list == &dev->adj_list.lower) &&
4983 		net_eq(dev_net(dev), dev_net(adj_dev));
4984 }
4985 
4986 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4987 					struct net_device *adj_dev,
4988 					struct list_head *dev_list,
4989 					void *private, bool master)
4990 {
4991 	struct netdev_adjacent *adj;
4992 	int ret;
4993 
4994 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4995 
4996 	if (adj) {
4997 		adj->ref_nr++;
4998 		return 0;
4999 	}
5000 
5001 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5002 	if (!adj)
5003 		return -ENOMEM;
5004 
5005 	adj->dev = adj_dev;
5006 	adj->master = master;
5007 	adj->ref_nr = 1;
5008 	adj->private = private;
5009 	dev_hold(adj_dev);
5010 
5011 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5012 		 adj_dev->name, dev->name, adj_dev->name);
5013 
5014 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5015 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5016 		if (ret)
5017 			goto free_adj;
5018 	}
5019 
5020 	/* Ensure that master link is always the first item in list. */
5021 	if (master) {
5022 		ret = sysfs_create_link(&(dev->dev.kobj),
5023 					&(adj_dev->dev.kobj), "master");
5024 		if (ret)
5025 			goto remove_symlinks;
5026 
5027 		list_add_rcu(&adj->list, dev_list);
5028 	} else {
5029 		list_add_tail_rcu(&adj->list, dev_list);
5030 	}
5031 
5032 	return 0;
5033 
5034 remove_symlinks:
5035 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5036 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5037 free_adj:
5038 	kfree(adj);
5039 	dev_put(adj_dev);
5040 
5041 	return ret;
5042 }
5043 
5044 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5045 					 struct net_device *adj_dev,
5046 					 struct list_head *dev_list)
5047 {
5048 	struct netdev_adjacent *adj;
5049 
5050 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
5051 
5052 	if (!adj) {
5053 		pr_err("tried to remove device %s from %s\n",
5054 		       dev->name, adj_dev->name);
5055 		BUG();
5056 	}
5057 
5058 	if (adj->ref_nr > 1) {
5059 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5060 			 adj->ref_nr-1);
5061 		adj->ref_nr--;
5062 		return;
5063 	}
5064 
5065 	if (adj->master)
5066 		sysfs_remove_link(&(dev->dev.kobj), "master");
5067 
5068 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5069 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5070 
5071 	list_del_rcu(&adj->list);
5072 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5073 		 adj_dev->name, dev->name, adj_dev->name);
5074 	dev_put(adj_dev);
5075 	kfree_rcu(adj, rcu);
5076 }
5077 
5078 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5079 					    struct net_device *upper_dev,
5080 					    struct list_head *up_list,
5081 					    struct list_head *down_list,
5082 					    void *private, bool master)
5083 {
5084 	int ret;
5085 
5086 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5087 					   master);
5088 	if (ret)
5089 		return ret;
5090 
5091 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5092 					   false);
5093 	if (ret) {
5094 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5095 		return ret;
5096 	}
5097 
5098 	return 0;
5099 }
5100 
5101 static int __netdev_adjacent_dev_link(struct net_device *dev,
5102 				      struct net_device *upper_dev)
5103 {
5104 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5105 						&dev->all_adj_list.upper,
5106 						&upper_dev->all_adj_list.lower,
5107 						NULL, false);
5108 }
5109 
5110 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5111 					       struct net_device *upper_dev,
5112 					       struct list_head *up_list,
5113 					       struct list_head *down_list)
5114 {
5115 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5116 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5117 }
5118 
5119 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5120 					 struct net_device *upper_dev)
5121 {
5122 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5123 					   &dev->all_adj_list.upper,
5124 					   &upper_dev->all_adj_list.lower);
5125 }
5126 
5127 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5128 						struct net_device *upper_dev,
5129 						void *private, bool master)
5130 {
5131 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5132 
5133 	if (ret)
5134 		return ret;
5135 
5136 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5137 					       &dev->adj_list.upper,
5138 					       &upper_dev->adj_list.lower,
5139 					       private, master);
5140 	if (ret) {
5141 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5142 		return ret;
5143 	}
5144 
5145 	return 0;
5146 }
5147 
5148 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5149 						   struct net_device *upper_dev)
5150 {
5151 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5152 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5153 					   &dev->adj_list.upper,
5154 					   &upper_dev->adj_list.lower);
5155 }
5156 
5157 static int __netdev_upper_dev_link(struct net_device *dev,
5158 				   struct net_device *upper_dev, bool master,
5159 				   void *private)
5160 {
5161 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5162 	int ret = 0;
5163 
5164 	ASSERT_RTNL();
5165 
5166 	if (dev == upper_dev)
5167 		return -EBUSY;
5168 
5169 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5170 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5171 		return -EBUSY;
5172 
5173 	if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5174 		return -EEXIST;
5175 
5176 	if (master && netdev_master_upper_dev_get(dev))
5177 		return -EBUSY;
5178 
5179 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5180 						   master);
5181 	if (ret)
5182 		return ret;
5183 
5184 	/* Now that we linked these devs, make all the upper_dev's
5185 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5186 	 * versa, and don't forget the devices itself. All of these
5187 	 * links are non-neighbours.
5188 	 */
5189 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5190 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5191 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5192 				 i->dev->name, j->dev->name);
5193 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5194 			if (ret)
5195 				goto rollback_mesh;
5196 		}
5197 	}
5198 
5199 	/* add dev to every upper_dev's upper device */
5200 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5201 		pr_debug("linking %s's upper device %s with %s\n",
5202 			 upper_dev->name, i->dev->name, dev->name);
5203 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5204 		if (ret)
5205 			goto rollback_upper_mesh;
5206 	}
5207 
5208 	/* add upper_dev to every dev's lower device */
5209 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5210 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5211 			 i->dev->name, upper_dev->name);
5212 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5213 		if (ret)
5214 			goto rollback_lower_mesh;
5215 	}
5216 
5217 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5218 	return 0;
5219 
5220 rollback_lower_mesh:
5221 	to_i = i;
5222 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5223 		if (i == to_i)
5224 			break;
5225 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5226 	}
5227 
5228 	i = NULL;
5229 
5230 rollback_upper_mesh:
5231 	to_i = i;
5232 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5233 		if (i == to_i)
5234 			break;
5235 		__netdev_adjacent_dev_unlink(dev, i->dev);
5236 	}
5237 
5238 	i = j = NULL;
5239 
5240 rollback_mesh:
5241 	to_i = i;
5242 	to_j = j;
5243 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5244 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5245 			if (i == to_i && j == to_j)
5246 				break;
5247 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5248 		}
5249 		if (i == to_i)
5250 			break;
5251 	}
5252 
5253 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5254 
5255 	return ret;
5256 }
5257 
5258 /**
5259  * netdev_upper_dev_link - Add a link to the upper device
5260  * @dev: device
5261  * @upper_dev: new upper device
5262  *
5263  * Adds a link to device which is upper to this one. The caller must hold
5264  * the RTNL lock. On a failure a negative errno code is returned.
5265  * On success the reference counts are adjusted and the function
5266  * returns zero.
5267  */
5268 int netdev_upper_dev_link(struct net_device *dev,
5269 			  struct net_device *upper_dev)
5270 {
5271 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5272 }
5273 EXPORT_SYMBOL(netdev_upper_dev_link);
5274 
5275 /**
5276  * netdev_master_upper_dev_link - Add a master link to the upper device
5277  * @dev: device
5278  * @upper_dev: new upper device
5279  *
5280  * Adds a link to device which is upper to this one. In this case, only
5281  * one master upper device can be linked, although other non-master devices
5282  * might be linked as well. The caller must hold the RTNL lock.
5283  * On a failure a negative errno code is returned. On success the reference
5284  * counts are adjusted and the function returns zero.
5285  */
5286 int netdev_master_upper_dev_link(struct net_device *dev,
5287 				 struct net_device *upper_dev)
5288 {
5289 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5290 }
5291 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5292 
5293 int netdev_master_upper_dev_link_private(struct net_device *dev,
5294 					 struct net_device *upper_dev,
5295 					 void *private)
5296 {
5297 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5298 }
5299 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5300 
5301 /**
5302  * netdev_upper_dev_unlink - Removes a link to upper device
5303  * @dev: device
5304  * @upper_dev: new upper device
5305  *
5306  * Removes a link to device which is upper to this one. The caller must hold
5307  * the RTNL lock.
5308  */
5309 void netdev_upper_dev_unlink(struct net_device *dev,
5310 			     struct net_device *upper_dev)
5311 {
5312 	struct netdev_adjacent *i, *j;
5313 	ASSERT_RTNL();
5314 
5315 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5316 
5317 	/* Here is the tricky part. We must remove all dev's lower
5318 	 * devices from all upper_dev's upper devices and vice
5319 	 * versa, to maintain the graph relationship.
5320 	 */
5321 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5322 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5323 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5324 
5325 	/* remove also the devices itself from lower/upper device
5326 	 * list
5327 	 */
5328 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5329 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5330 
5331 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5332 		__netdev_adjacent_dev_unlink(dev, i->dev);
5333 
5334 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5335 }
5336 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5337 
5338 /**
5339  * netdev_bonding_info_change - Dispatch event about slave change
5340  * @dev: device
5341  * @bonding_info: info to dispatch
5342  *
5343  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5344  * The caller must hold the RTNL lock.
5345  */
5346 void netdev_bonding_info_change(struct net_device *dev,
5347 				struct netdev_bonding_info *bonding_info)
5348 {
5349 	struct netdev_notifier_bonding_info	info;
5350 
5351 	memcpy(&info.bonding_info, bonding_info,
5352 	       sizeof(struct netdev_bonding_info));
5353 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5354 				      &info.info);
5355 }
5356 EXPORT_SYMBOL(netdev_bonding_info_change);
5357 
5358 static void netdev_adjacent_add_links(struct net_device *dev)
5359 {
5360 	struct netdev_adjacent *iter;
5361 
5362 	struct net *net = dev_net(dev);
5363 
5364 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5365 		if (!net_eq(net,dev_net(iter->dev)))
5366 			continue;
5367 		netdev_adjacent_sysfs_add(iter->dev, dev,
5368 					  &iter->dev->adj_list.lower);
5369 		netdev_adjacent_sysfs_add(dev, iter->dev,
5370 					  &dev->adj_list.upper);
5371 	}
5372 
5373 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5374 		if (!net_eq(net,dev_net(iter->dev)))
5375 			continue;
5376 		netdev_adjacent_sysfs_add(iter->dev, dev,
5377 					  &iter->dev->adj_list.upper);
5378 		netdev_adjacent_sysfs_add(dev, iter->dev,
5379 					  &dev->adj_list.lower);
5380 	}
5381 }
5382 
5383 static void netdev_adjacent_del_links(struct net_device *dev)
5384 {
5385 	struct netdev_adjacent *iter;
5386 
5387 	struct net *net = dev_net(dev);
5388 
5389 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5390 		if (!net_eq(net,dev_net(iter->dev)))
5391 			continue;
5392 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5393 					  &iter->dev->adj_list.lower);
5394 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5395 					  &dev->adj_list.upper);
5396 	}
5397 
5398 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5399 		if (!net_eq(net,dev_net(iter->dev)))
5400 			continue;
5401 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5402 					  &iter->dev->adj_list.upper);
5403 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5404 					  &dev->adj_list.lower);
5405 	}
5406 }
5407 
5408 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5409 {
5410 	struct netdev_adjacent *iter;
5411 
5412 	struct net *net = dev_net(dev);
5413 
5414 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5415 		if (!net_eq(net,dev_net(iter->dev)))
5416 			continue;
5417 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5418 					  &iter->dev->adj_list.lower);
5419 		netdev_adjacent_sysfs_add(iter->dev, dev,
5420 					  &iter->dev->adj_list.lower);
5421 	}
5422 
5423 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5424 		if (!net_eq(net,dev_net(iter->dev)))
5425 			continue;
5426 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5427 					  &iter->dev->adj_list.upper);
5428 		netdev_adjacent_sysfs_add(iter->dev, dev,
5429 					  &iter->dev->adj_list.upper);
5430 	}
5431 }
5432 
5433 void *netdev_lower_dev_get_private(struct net_device *dev,
5434 				   struct net_device *lower_dev)
5435 {
5436 	struct netdev_adjacent *lower;
5437 
5438 	if (!lower_dev)
5439 		return NULL;
5440 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5441 	if (!lower)
5442 		return NULL;
5443 
5444 	return lower->private;
5445 }
5446 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5447 
5448 
5449 int dev_get_nest_level(struct net_device *dev,
5450 		       bool (*type_check)(struct net_device *dev))
5451 {
5452 	struct net_device *lower = NULL;
5453 	struct list_head *iter;
5454 	int max_nest = -1;
5455 	int nest;
5456 
5457 	ASSERT_RTNL();
5458 
5459 	netdev_for_each_lower_dev(dev, lower, iter) {
5460 		nest = dev_get_nest_level(lower, type_check);
5461 		if (max_nest < nest)
5462 			max_nest = nest;
5463 	}
5464 
5465 	if (type_check(dev))
5466 		max_nest++;
5467 
5468 	return max_nest;
5469 }
5470 EXPORT_SYMBOL(dev_get_nest_level);
5471 
5472 static void dev_change_rx_flags(struct net_device *dev, int flags)
5473 {
5474 	const struct net_device_ops *ops = dev->netdev_ops;
5475 
5476 	if (ops->ndo_change_rx_flags)
5477 		ops->ndo_change_rx_flags(dev, flags);
5478 }
5479 
5480 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5481 {
5482 	unsigned int old_flags = dev->flags;
5483 	kuid_t uid;
5484 	kgid_t gid;
5485 
5486 	ASSERT_RTNL();
5487 
5488 	dev->flags |= IFF_PROMISC;
5489 	dev->promiscuity += inc;
5490 	if (dev->promiscuity == 0) {
5491 		/*
5492 		 * Avoid overflow.
5493 		 * If inc causes overflow, untouch promisc and return error.
5494 		 */
5495 		if (inc < 0)
5496 			dev->flags &= ~IFF_PROMISC;
5497 		else {
5498 			dev->promiscuity -= inc;
5499 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5500 				dev->name);
5501 			return -EOVERFLOW;
5502 		}
5503 	}
5504 	if (dev->flags != old_flags) {
5505 		pr_info("device %s %s promiscuous mode\n",
5506 			dev->name,
5507 			dev->flags & IFF_PROMISC ? "entered" : "left");
5508 		if (audit_enabled) {
5509 			current_uid_gid(&uid, &gid);
5510 			audit_log(current->audit_context, GFP_ATOMIC,
5511 				AUDIT_ANOM_PROMISCUOUS,
5512 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5513 				dev->name, (dev->flags & IFF_PROMISC),
5514 				(old_flags & IFF_PROMISC),
5515 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5516 				from_kuid(&init_user_ns, uid),
5517 				from_kgid(&init_user_ns, gid),
5518 				audit_get_sessionid(current));
5519 		}
5520 
5521 		dev_change_rx_flags(dev, IFF_PROMISC);
5522 	}
5523 	if (notify)
5524 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5525 	return 0;
5526 }
5527 
5528 /**
5529  *	dev_set_promiscuity	- update promiscuity count on a device
5530  *	@dev: device
5531  *	@inc: modifier
5532  *
5533  *	Add or remove promiscuity from a device. While the count in the device
5534  *	remains above zero the interface remains promiscuous. Once it hits zero
5535  *	the device reverts back to normal filtering operation. A negative inc
5536  *	value is used to drop promiscuity on the device.
5537  *	Return 0 if successful or a negative errno code on error.
5538  */
5539 int dev_set_promiscuity(struct net_device *dev, int inc)
5540 {
5541 	unsigned int old_flags = dev->flags;
5542 	int err;
5543 
5544 	err = __dev_set_promiscuity(dev, inc, true);
5545 	if (err < 0)
5546 		return err;
5547 	if (dev->flags != old_flags)
5548 		dev_set_rx_mode(dev);
5549 	return err;
5550 }
5551 EXPORT_SYMBOL(dev_set_promiscuity);
5552 
5553 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5554 {
5555 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5556 
5557 	ASSERT_RTNL();
5558 
5559 	dev->flags |= IFF_ALLMULTI;
5560 	dev->allmulti += inc;
5561 	if (dev->allmulti == 0) {
5562 		/*
5563 		 * Avoid overflow.
5564 		 * If inc causes overflow, untouch allmulti and return error.
5565 		 */
5566 		if (inc < 0)
5567 			dev->flags &= ~IFF_ALLMULTI;
5568 		else {
5569 			dev->allmulti -= inc;
5570 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5571 				dev->name);
5572 			return -EOVERFLOW;
5573 		}
5574 	}
5575 	if (dev->flags ^ old_flags) {
5576 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5577 		dev_set_rx_mode(dev);
5578 		if (notify)
5579 			__dev_notify_flags(dev, old_flags,
5580 					   dev->gflags ^ old_gflags);
5581 	}
5582 	return 0;
5583 }
5584 
5585 /**
5586  *	dev_set_allmulti	- update allmulti count on a device
5587  *	@dev: device
5588  *	@inc: modifier
5589  *
5590  *	Add or remove reception of all multicast frames to a device. While the
5591  *	count in the device remains above zero the interface remains listening
5592  *	to all interfaces. Once it hits zero the device reverts back to normal
5593  *	filtering operation. A negative @inc value is used to drop the counter
5594  *	when releasing a resource needing all multicasts.
5595  *	Return 0 if successful or a negative errno code on error.
5596  */
5597 
5598 int dev_set_allmulti(struct net_device *dev, int inc)
5599 {
5600 	return __dev_set_allmulti(dev, inc, true);
5601 }
5602 EXPORT_SYMBOL(dev_set_allmulti);
5603 
5604 /*
5605  *	Upload unicast and multicast address lists to device and
5606  *	configure RX filtering. When the device doesn't support unicast
5607  *	filtering it is put in promiscuous mode while unicast addresses
5608  *	are present.
5609  */
5610 void __dev_set_rx_mode(struct net_device *dev)
5611 {
5612 	const struct net_device_ops *ops = dev->netdev_ops;
5613 
5614 	/* dev_open will call this function so the list will stay sane. */
5615 	if (!(dev->flags&IFF_UP))
5616 		return;
5617 
5618 	if (!netif_device_present(dev))
5619 		return;
5620 
5621 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5622 		/* Unicast addresses changes may only happen under the rtnl,
5623 		 * therefore calling __dev_set_promiscuity here is safe.
5624 		 */
5625 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5626 			__dev_set_promiscuity(dev, 1, false);
5627 			dev->uc_promisc = true;
5628 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5629 			__dev_set_promiscuity(dev, -1, false);
5630 			dev->uc_promisc = false;
5631 		}
5632 	}
5633 
5634 	if (ops->ndo_set_rx_mode)
5635 		ops->ndo_set_rx_mode(dev);
5636 }
5637 
5638 void dev_set_rx_mode(struct net_device *dev)
5639 {
5640 	netif_addr_lock_bh(dev);
5641 	__dev_set_rx_mode(dev);
5642 	netif_addr_unlock_bh(dev);
5643 }
5644 
5645 /**
5646  *	dev_get_flags - get flags reported to userspace
5647  *	@dev: device
5648  *
5649  *	Get the combination of flag bits exported through APIs to userspace.
5650  */
5651 unsigned int dev_get_flags(const struct net_device *dev)
5652 {
5653 	unsigned int flags;
5654 
5655 	flags = (dev->flags & ~(IFF_PROMISC |
5656 				IFF_ALLMULTI |
5657 				IFF_RUNNING |
5658 				IFF_LOWER_UP |
5659 				IFF_DORMANT)) |
5660 		(dev->gflags & (IFF_PROMISC |
5661 				IFF_ALLMULTI));
5662 
5663 	if (netif_running(dev)) {
5664 		if (netif_oper_up(dev))
5665 			flags |= IFF_RUNNING;
5666 		if (netif_carrier_ok(dev))
5667 			flags |= IFF_LOWER_UP;
5668 		if (netif_dormant(dev))
5669 			flags |= IFF_DORMANT;
5670 	}
5671 
5672 	return flags;
5673 }
5674 EXPORT_SYMBOL(dev_get_flags);
5675 
5676 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5677 {
5678 	unsigned int old_flags = dev->flags;
5679 	int ret;
5680 
5681 	ASSERT_RTNL();
5682 
5683 	/*
5684 	 *	Set the flags on our device.
5685 	 */
5686 
5687 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5688 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5689 			       IFF_AUTOMEDIA)) |
5690 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5691 				    IFF_ALLMULTI));
5692 
5693 	/*
5694 	 *	Load in the correct multicast list now the flags have changed.
5695 	 */
5696 
5697 	if ((old_flags ^ flags) & IFF_MULTICAST)
5698 		dev_change_rx_flags(dev, IFF_MULTICAST);
5699 
5700 	dev_set_rx_mode(dev);
5701 
5702 	/*
5703 	 *	Have we downed the interface. We handle IFF_UP ourselves
5704 	 *	according to user attempts to set it, rather than blindly
5705 	 *	setting it.
5706 	 */
5707 
5708 	ret = 0;
5709 	if ((old_flags ^ flags) & IFF_UP)
5710 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5711 
5712 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5713 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5714 		unsigned int old_flags = dev->flags;
5715 
5716 		dev->gflags ^= IFF_PROMISC;
5717 
5718 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5719 			if (dev->flags != old_flags)
5720 				dev_set_rx_mode(dev);
5721 	}
5722 
5723 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5724 	   is important. Some (broken) drivers set IFF_PROMISC, when
5725 	   IFF_ALLMULTI is requested not asking us and not reporting.
5726 	 */
5727 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5728 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5729 
5730 		dev->gflags ^= IFF_ALLMULTI;
5731 		__dev_set_allmulti(dev, inc, false);
5732 	}
5733 
5734 	return ret;
5735 }
5736 
5737 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5738 			unsigned int gchanges)
5739 {
5740 	unsigned int changes = dev->flags ^ old_flags;
5741 
5742 	if (gchanges)
5743 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5744 
5745 	if (changes & IFF_UP) {
5746 		if (dev->flags & IFF_UP)
5747 			call_netdevice_notifiers(NETDEV_UP, dev);
5748 		else
5749 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5750 	}
5751 
5752 	if (dev->flags & IFF_UP &&
5753 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5754 		struct netdev_notifier_change_info change_info;
5755 
5756 		change_info.flags_changed = changes;
5757 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5758 					      &change_info.info);
5759 	}
5760 }
5761 
5762 /**
5763  *	dev_change_flags - change device settings
5764  *	@dev: device
5765  *	@flags: device state flags
5766  *
5767  *	Change settings on device based state flags. The flags are
5768  *	in the userspace exported format.
5769  */
5770 int dev_change_flags(struct net_device *dev, unsigned int flags)
5771 {
5772 	int ret;
5773 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5774 
5775 	ret = __dev_change_flags(dev, flags);
5776 	if (ret < 0)
5777 		return ret;
5778 
5779 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5780 	__dev_notify_flags(dev, old_flags, changes);
5781 	return ret;
5782 }
5783 EXPORT_SYMBOL(dev_change_flags);
5784 
5785 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5786 {
5787 	const struct net_device_ops *ops = dev->netdev_ops;
5788 
5789 	if (ops->ndo_change_mtu)
5790 		return ops->ndo_change_mtu(dev, new_mtu);
5791 
5792 	dev->mtu = new_mtu;
5793 	return 0;
5794 }
5795 
5796 /**
5797  *	dev_set_mtu - Change maximum transfer unit
5798  *	@dev: device
5799  *	@new_mtu: new transfer unit
5800  *
5801  *	Change the maximum transfer size of the network device.
5802  */
5803 int dev_set_mtu(struct net_device *dev, int new_mtu)
5804 {
5805 	int err, orig_mtu;
5806 
5807 	if (new_mtu == dev->mtu)
5808 		return 0;
5809 
5810 	/*	MTU must be positive.	 */
5811 	if (new_mtu < 0)
5812 		return -EINVAL;
5813 
5814 	if (!netif_device_present(dev))
5815 		return -ENODEV;
5816 
5817 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5818 	err = notifier_to_errno(err);
5819 	if (err)
5820 		return err;
5821 
5822 	orig_mtu = dev->mtu;
5823 	err = __dev_set_mtu(dev, new_mtu);
5824 
5825 	if (!err) {
5826 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5827 		err = notifier_to_errno(err);
5828 		if (err) {
5829 			/* setting mtu back and notifying everyone again,
5830 			 * so that they have a chance to revert changes.
5831 			 */
5832 			__dev_set_mtu(dev, orig_mtu);
5833 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5834 		}
5835 	}
5836 	return err;
5837 }
5838 EXPORT_SYMBOL(dev_set_mtu);
5839 
5840 /**
5841  *	dev_set_group - Change group this device belongs to
5842  *	@dev: device
5843  *	@new_group: group this device should belong to
5844  */
5845 void dev_set_group(struct net_device *dev, int new_group)
5846 {
5847 	dev->group = new_group;
5848 }
5849 EXPORT_SYMBOL(dev_set_group);
5850 
5851 /**
5852  *	dev_set_mac_address - Change Media Access Control Address
5853  *	@dev: device
5854  *	@sa: new address
5855  *
5856  *	Change the hardware (MAC) address of the device
5857  */
5858 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5859 {
5860 	const struct net_device_ops *ops = dev->netdev_ops;
5861 	int err;
5862 
5863 	if (!ops->ndo_set_mac_address)
5864 		return -EOPNOTSUPP;
5865 	if (sa->sa_family != dev->type)
5866 		return -EINVAL;
5867 	if (!netif_device_present(dev))
5868 		return -ENODEV;
5869 	err = ops->ndo_set_mac_address(dev, sa);
5870 	if (err)
5871 		return err;
5872 	dev->addr_assign_type = NET_ADDR_SET;
5873 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5874 	add_device_randomness(dev->dev_addr, dev->addr_len);
5875 	return 0;
5876 }
5877 EXPORT_SYMBOL(dev_set_mac_address);
5878 
5879 /**
5880  *	dev_change_carrier - Change device carrier
5881  *	@dev: device
5882  *	@new_carrier: new value
5883  *
5884  *	Change device carrier
5885  */
5886 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5887 {
5888 	const struct net_device_ops *ops = dev->netdev_ops;
5889 
5890 	if (!ops->ndo_change_carrier)
5891 		return -EOPNOTSUPP;
5892 	if (!netif_device_present(dev))
5893 		return -ENODEV;
5894 	return ops->ndo_change_carrier(dev, new_carrier);
5895 }
5896 EXPORT_SYMBOL(dev_change_carrier);
5897 
5898 /**
5899  *	dev_get_phys_port_id - Get device physical port ID
5900  *	@dev: device
5901  *	@ppid: port ID
5902  *
5903  *	Get device physical port ID
5904  */
5905 int dev_get_phys_port_id(struct net_device *dev,
5906 			 struct netdev_phys_item_id *ppid)
5907 {
5908 	const struct net_device_ops *ops = dev->netdev_ops;
5909 
5910 	if (!ops->ndo_get_phys_port_id)
5911 		return -EOPNOTSUPP;
5912 	return ops->ndo_get_phys_port_id(dev, ppid);
5913 }
5914 EXPORT_SYMBOL(dev_get_phys_port_id);
5915 
5916 /**
5917  *	dev_new_index	-	allocate an ifindex
5918  *	@net: the applicable net namespace
5919  *
5920  *	Returns a suitable unique value for a new device interface
5921  *	number.  The caller must hold the rtnl semaphore or the
5922  *	dev_base_lock to be sure it remains unique.
5923  */
5924 static int dev_new_index(struct net *net)
5925 {
5926 	int ifindex = net->ifindex;
5927 	for (;;) {
5928 		if (++ifindex <= 0)
5929 			ifindex = 1;
5930 		if (!__dev_get_by_index(net, ifindex))
5931 			return net->ifindex = ifindex;
5932 	}
5933 }
5934 
5935 /* Delayed registration/unregisteration */
5936 static LIST_HEAD(net_todo_list);
5937 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5938 
5939 static void net_set_todo(struct net_device *dev)
5940 {
5941 	list_add_tail(&dev->todo_list, &net_todo_list);
5942 	dev_net(dev)->dev_unreg_count++;
5943 }
5944 
5945 static void rollback_registered_many(struct list_head *head)
5946 {
5947 	struct net_device *dev, *tmp;
5948 	LIST_HEAD(close_head);
5949 
5950 	BUG_ON(dev_boot_phase);
5951 	ASSERT_RTNL();
5952 
5953 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5954 		/* Some devices call without registering
5955 		 * for initialization unwind. Remove those
5956 		 * devices and proceed with the remaining.
5957 		 */
5958 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5959 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5960 				 dev->name, dev);
5961 
5962 			WARN_ON(1);
5963 			list_del(&dev->unreg_list);
5964 			continue;
5965 		}
5966 		dev->dismantle = true;
5967 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5968 	}
5969 
5970 	/* If device is running, close it first. */
5971 	list_for_each_entry(dev, head, unreg_list)
5972 		list_add_tail(&dev->close_list, &close_head);
5973 	dev_close_many(&close_head);
5974 
5975 	list_for_each_entry(dev, head, unreg_list) {
5976 		/* And unlink it from device chain. */
5977 		unlist_netdevice(dev);
5978 
5979 		dev->reg_state = NETREG_UNREGISTERING;
5980 	}
5981 
5982 	synchronize_net();
5983 
5984 	list_for_each_entry(dev, head, unreg_list) {
5985 		struct sk_buff *skb = NULL;
5986 
5987 		/* Shutdown queueing discipline. */
5988 		dev_shutdown(dev);
5989 
5990 
5991 		/* Notify protocols, that we are about to destroy
5992 		   this device. They should clean all the things.
5993 		*/
5994 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5995 
5996 		if (!dev->rtnl_link_ops ||
5997 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5998 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
5999 						     GFP_KERNEL);
6000 
6001 		/*
6002 		 *	Flush the unicast and multicast chains
6003 		 */
6004 		dev_uc_flush(dev);
6005 		dev_mc_flush(dev);
6006 
6007 		if (dev->netdev_ops->ndo_uninit)
6008 			dev->netdev_ops->ndo_uninit(dev);
6009 
6010 		if (skb)
6011 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6012 
6013 		/* Notifier chain MUST detach us all upper devices. */
6014 		WARN_ON(netdev_has_any_upper_dev(dev));
6015 
6016 		/* Remove entries from kobject tree */
6017 		netdev_unregister_kobject(dev);
6018 #ifdef CONFIG_XPS
6019 		/* Remove XPS queueing entries */
6020 		netif_reset_xps_queues_gt(dev, 0);
6021 #endif
6022 	}
6023 
6024 	synchronize_net();
6025 
6026 	list_for_each_entry(dev, head, unreg_list)
6027 		dev_put(dev);
6028 }
6029 
6030 static void rollback_registered(struct net_device *dev)
6031 {
6032 	LIST_HEAD(single);
6033 
6034 	list_add(&dev->unreg_list, &single);
6035 	rollback_registered_many(&single);
6036 	list_del(&single);
6037 }
6038 
6039 static netdev_features_t netdev_fix_features(struct net_device *dev,
6040 	netdev_features_t features)
6041 {
6042 	/* Fix illegal checksum combinations */
6043 	if ((features & NETIF_F_HW_CSUM) &&
6044 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6045 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6046 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6047 	}
6048 
6049 	/* TSO requires that SG is present as well. */
6050 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6051 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6052 		features &= ~NETIF_F_ALL_TSO;
6053 	}
6054 
6055 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6056 					!(features & NETIF_F_IP_CSUM)) {
6057 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6058 		features &= ~NETIF_F_TSO;
6059 		features &= ~NETIF_F_TSO_ECN;
6060 	}
6061 
6062 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6063 					 !(features & NETIF_F_IPV6_CSUM)) {
6064 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6065 		features &= ~NETIF_F_TSO6;
6066 	}
6067 
6068 	/* TSO ECN requires that TSO is present as well. */
6069 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6070 		features &= ~NETIF_F_TSO_ECN;
6071 
6072 	/* Software GSO depends on SG. */
6073 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6074 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6075 		features &= ~NETIF_F_GSO;
6076 	}
6077 
6078 	/* UFO needs SG and checksumming */
6079 	if (features & NETIF_F_UFO) {
6080 		/* maybe split UFO into V4 and V6? */
6081 		if (!((features & NETIF_F_GEN_CSUM) ||
6082 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6083 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6084 			netdev_dbg(dev,
6085 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6086 			features &= ~NETIF_F_UFO;
6087 		}
6088 
6089 		if (!(features & NETIF_F_SG)) {
6090 			netdev_dbg(dev,
6091 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6092 			features &= ~NETIF_F_UFO;
6093 		}
6094 	}
6095 
6096 #ifdef CONFIG_NET_RX_BUSY_POLL
6097 	if (dev->netdev_ops->ndo_busy_poll)
6098 		features |= NETIF_F_BUSY_POLL;
6099 	else
6100 #endif
6101 		features &= ~NETIF_F_BUSY_POLL;
6102 
6103 	return features;
6104 }
6105 
6106 int __netdev_update_features(struct net_device *dev)
6107 {
6108 	netdev_features_t features;
6109 	int err = 0;
6110 
6111 	ASSERT_RTNL();
6112 
6113 	features = netdev_get_wanted_features(dev);
6114 
6115 	if (dev->netdev_ops->ndo_fix_features)
6116 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6117 
6118 	/* driver might be less strict about feature dependencies */
6119 	features = netdev_fix_features(dev, features);
6120 
6121 	if (dev->features == features)
6122 		return 0;
6123 
6124 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6125 		&dev->features, &features);
6126 
6127 	if (dev->netdev_ops->ndo_set_features)
6128 		err = dev->netdev_ops->ndo_set_features(dev, features);
6129 
6130 	if (unlikely(err < 0)) {
6131 		netdev_err(dev,
6132 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6133 			err, &features, &dev->features);
6134 		return -1;
6135 	}
6136 
6137 	if (!err)
6138 		dev->features = features;
6139 
6140 	return 1;
6141 }
6142 
6143 /**
6144  *	netdev_update_features - recalculate device features
6145  *	@dev: the device to check
6146  *
6147  *	Recalculate dev->features set and send notifications if it
6148  *	has changed. Should be called after driver or hardware dependent
6149  *	conditions might have changed that influence the features.
6150  */
6151 void netdev_update_features(struct net_device *dev)
6152 {
6153 	if (__netdev_update_features(dev))
6154 		netdev_features_change(dev);
6155 }
6156 EXPORT_SYMBOL(netdev_update_features);
6157 
6158 /**
6159  *	netdev_change_features - recalculate device features
6160  *	@dev: the device to check
6161  *
6162  *	Recalculate dev->features set and send notifications even
6163  *	if they have not changed. Should be called instead of
6164  *	netdev_update_features() if also dev->vlan_features might
6165  *	have changed to allow the changes to be propagated to stacked
6166  *	VLAN devices.
6167  */
6168 void netdev_change_features(struct net_device *dev)
6169 {
6170 	__netdev_update_features(dev);
6171 	netdev_features_change(dev);
6172 }
6173 EXPORT_SYMBOL(netdev_change_features);
6174 
6175 /**
6176  *	netif_stacked_transfer_operstate -	transfer operstate
6177  *	@rootdev: the root or lower level device to transfer state from
6178  *	@dev: the device to transfer operstate to
6179  *
6180  *	Transfer operational state from root to device. This is normally
6181  *	called when a stacking relationship exists between the root
6182  *	device and the device(a leaf device).
6183  */
6184 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6185 					struct net_device *dev)
6186 {
6187 	if (rootdev->operstate == IF_OPER_DORMANT)
6188 		netif_dormant_on(dev);
6189 	else
6190 		netif_dormant_off(dev);
6191 
6192 	if (netif_carrier_ok(rootdev)) {
6193 		if (!netif_carrier_ok(dev))
6194 			netif_carrier_on(dev);
6195 	} else {
6196 		if (netif_carrier_ok(dev))
6197 			netif_carrier_off(dev);
6198 	}
6199 }
6200 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6201 
6202 #ifdef CONFIG_SYSFS
6203 static int netif_alloc_rx_queues(struct net_device *dev)
6204 {
6205 	unsigned int i, count = dev->num_rx_queues;
6206 	struct netdev_rx_queue *rx;
6207 	size_t sz = count * sizeof(*rx);
6208 
6209 	BUG_ON(count < 1);
6210 
6211 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6212 	if (!rx) {
6213 		rx = vzalloc(sz);
6214 		if (!rx)
6215 			return -ENOMEM;
6216 	}
6217 	dev->_rx = rx;
6218 
6219 	for (i = 0; i < count; i++)
6220 		rx[i].dev = dev;
6221 	return 0;
6222 }
6223 #endif
6224 
6225 static void netdev_init_one_queue(struct net_device *dev,
6226 				  struct netdev_queue *queue, void *_unused)
6227 {
6228 	/* Initialize queue lock */
6229 	spin_lock_init(&queue->_xmit_lock);
6230 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6231 	queue->xmit_lock_owner = -1;
6232 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6233 	queue->dev = dev;
6234 #ifdef CONFIG_BQL
6235 	dql_init(&queue->dql, HZ);
6236 #endif
6237 }
6238 
6239 static void netif_free_tx_queues(struct net_device *dev)
6240 {
6241 	kvfree(dev->_tx);
6242 }
6243 
6244 static int netif_alloc_netdev_queues(struct net_device *dev)
6245 {
6246 	unsigned int count = dev->num_tx_queues;
6247 	struct netdev_queue *tx;
6248 	size_t sz = count * sizeof(*tx);
6249 
6250 	BUG_ON(count < 1 || count > 0xffff);
6251 
6252 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6253 	if (!tx) {
6254 		tx = vzalloc(sz);
6255 		if (!tx)
6256 			return -ENOMEM;
6257 	}
6258 	dev->_tx = tx;
6259 
6260 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6261 	spin_lock_init(&dev->tx_global_lock);
6262 
6263 	return 0;
6264 }
6265 
6266 /**
6267  *	register_netdevice	- register a network device
6268  *	@dev: device to register
6269  *
6270  *	Take a completed network device structure and add it to the kernel
6271  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6272  *	chain. 0 is returned on success. A negative errno code is returned
6273  *	on a failure to set up the device, or if the name is a duplicate.
6274  *
6275  *	Callers must hold the rtnl semaphore. You may want
6276  *	register_netdev() instead of this.
6277  *
6278  *	BUGS:
6279  *	The locking appears insufficient to guarantee two parallel registers
6280  *	will not get the same name.
6281  */
6282 
6283 int register_netdevice(struct net_device *dev)
6284 {
6285 	int ret;
6286 	struct net *net = dev_net(dev);
6287 
6288 	BUG_ON(dev_boot_phase);
6289 	ASSERT_RTNL();
6290 
6291 	might_sleep();
6292 
6293 	/* When net_device's are persistent, this will be fatal. */
6294 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6295 	BUG_ON(!net);
6296 
6297 	spin_lock_init(&dev->addr_list_lock);
6298 	netdev_set_addr_lockdep_class(dev);
6299 
6300 	dev->iflink = -1;
6301 
6302 	ret = dev_get_valid_name(net, dev, dev->name);
6303 	if (ret < 0)
6304 		goto out;
6305 
6306 	/* Init, if this function is available */
6307 	if (dev->netdev_ops->ndo_init) {
6308 		ret = dev->netdev_ops->ndo_init(dev);
6309 		if (ret) {
6310 			if (ret > 0)
6311 				ret = -EIO;
6312 			goto out;
6313 		}
6314 	}
6315 
6316 	if (((dev->hw_features | dev->features) &
6317 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6318 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6319 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6320 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6321 		ret = -EINVAL;
6322 		goto err_uninit;
6323 	}
6324 
6325 	ret = -EBUSY;
6326 	if (!dev->ifindex)
6327 		dev->ifindex = dev_new_index(net);
6328 	else if (__dev_get_by_index(net, dev->ifindex))
6329 		goto err_uninit;
6330 
6331 	if (dev->iflink == -1)
6332 		dev->iflink = dev->ifindex;
6333 
6334 	/* Transfer changeable features to wanted_features and enable
6335 	 * software offloads (GSO and GRO).
6336 	 */
6337 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6338 	dev->features |= NETIF_F_SOFT_FEATURES;
6339 	dev->wanted_features = dev->features & dev->hw_features;
6340 
6341 	if (!(dev->flags & IFF_LOOPBACK)) {
6342 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6343 	}
6344 
6345 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6346 	 */
6347 	dev->vlan_features |= NETIF_F_HIGHDMA;
6348 
6349 	/* Make NETIF_F_SG inheritable to tunnel devices.
6350 	 */
6351 	dev->hw_enc_features |= NETIF_F_SG;
6352 
6353 	/* Make NETIF_F_SG inheritable to MPLS.
6354 	 */
6355 	dev->mpls_features |= NETIF_F_SG;
6356 
6357 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6358 	ret = notifier_to_errno(ret);
6359 	if (ret)
6360 		goto err_uninit;
6361 
6362 	ret = netdev_register_kobject(dev);
6363 	if (ret)
6364 		goto err_uninit;
6365 	dev->reg_state = NETREG_REGISTERED;
6366 
6367 	__netdev_update_features(dev);
6368 
6369 	/*
6370 	 *	Default initial state at registry is that the
6371 	 *	device is present.
6372 	 */
6373 
6374 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6375 
6376 	linkwatch_init_dev(dev);
6377 
6378 	dev_init_scheduler(dev);
6379 	dev_hold(dev);
6380 	list_netdevice(dev);
6381 	add_device_randomness(dev->dev_addr, dev->addr_len);
6382 
6383 	/* If the device has permanent device address, driver should
6384 	 * set dev_addr and also addr_assign_type should be set to
6385 	 * NET_ADDR_PERM (default value).
6386 	 */
6387 	if (dev->addr_assign_type == NET_ADDR_PERM)
6388 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6389 
6390 	/* Notify protocols, that a new device appeared. */
6391 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6392 	ret = notifier_to_errno(ret);
6393 	if (ret) {
6394 		rollback_registered(dev);
6395 		dev->reg_state = NETREG_UNREGISTERED;
6396 	}
6397 	/*
6398 	 *	Prevent userspace races by waiting until the network
6399 	 *	device is fully setup before sending notifications.
6400 	 */
6401 	if (!dev->rtnl_link_ops ||
6402 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6403 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6404 
6405 out:
6406 	return ret;
6407 
6408 err_uninit:
6409 	if (dev->netdev_ops->ndo_uninit)
6410 		dev->netdev_ops->ndo_uninit(dev);
6411 	goto out;
6412 }
6413 EXPORT_SYMBOL(register_netdevice);
6414 
6415 /**
6416  *	init_dummy_netdev	- init a dummy network device for NAPI
6417  *	@dev: device to init
6418  *
6419  *	This takes a network device structure and initialize the minimum
6420  *	amount of fields so it can be used to schedule NAPI polls without
6421  *	registering a full blown interface. This is to be used by drivers
6422  *	that need to tie several hardware interfaces to a single NAPI
6423  *	poll scheduler due to HW limitations.
6424  */
6425 int init_dummy_netdev(struct net_device *dev)
6426 {
6427 	/* Clear everything. Note we don't initialize spinlocks
6428 	 * are they aren't supposed to be taken by any of the
6429 	 * NAPI code and this dummy netdev is supposed to be
6430 	 * only ever used for NAPI polls
6431 	 */
6432 	memset(dev, 0, sizeof(struct net_device));
6433 
6434 	/* make sure we BUG if trying to hit standard
6435 	 * register/unregister code path
6436 	 */
6437 	dev->reg_state = NETREG_DUMMY;
6438 
6439 	/* NAPI wants this */
6440 	INIT_LIST_HEAD(&dev->napi_list);
6441 
6442 	/* a dummy interface is started by default */
6443 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6444 	set_bit(__LINK_STATE_START, &dev->state);
6445 
6446 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6447 	 * because users of this 'device' dont need to change
6448 	 * its refcount.
6449 	 */
6450 
6451 	return 0;
6452 }
6453 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6454 
6455 
6456 /**
6457  *	register_netdev	- register a network device
6458  *	@dev: device to register
6459  *
6460  *	Take a completed network device structure and add it to the kernel
6461  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6462  *	chain. 0 is returned on success. A negative errno code is returned
6463  *	on a failure to set up the device, or if the name is a duplicate.
6464  *
6465  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6466  *	and expands the device name if you passed a format string to
6467  *	alloc_netdev.
6468  */
6469 int register_netdev(struct net_device *dev)
6470 {
6471 	int err;
6472 
6473 	rtnl_lock();
6474 	err = register_netdevice(dev);
6475 	rtnl_unlock();
6476 	return err;
6477 }
6478 EXPORT_SYMBOL(register_netdev);
6479 
6480 int netdev_refcnt_read(const struct net_device *dev)
6481 {
6482 	int i, refcnt = 0;
6483 
6484 	for_each_possible_cpu(i)
6485 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6486 	return refcnt;
6487 }
6488 EXPORT_SYMBOL(netdev_refcnt_read);
6489 
6490 /**
6491  * netdev_wait_allrefs - wait until all references are gone.
6492  * @dev: target net_device
6493  *
6494  * This is called when unregistering network devices.
6495  *
6496  * Any protocol or device that holds a reference should register
6497  * for netdevice notification, and cleanup and put back the
6498  * reference if they receive an UNREGISTER event.
6499  * We can get stuck here if buggy protocols don't correctly
6500  * call dev_put.
6501  */
6502 static void netdev_wait_allrefs(struct net_device *dev)
6503 {
6504 	unsigned long rebroadcast_time, warning_time;
6505 	int refcnt;
6506 
6507 	linkwatch_forget_dev(dev);
6508 
6509 	rebroadcast_time = warning_time = jiffies;
6510 	refcnt = netdev_refcnt_read(dev);
6511 
6512 	while (refcnt != 0) {
6513 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6514 			rtnl_lock();
6515 
6516 			/* Rebroadcast unregister notification */
6517 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6518 
6519 			__rtnl_unlock();
6520 			rcu_barrier();
6521 			rtnl_lock();
6522 
6523 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6524 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6525 				     &dev->state)) {
6526 				/* We must not have linkwatch events
6527 				 * pending on unregister. If this
6528 				 * happens, we simply run the queue
6529 				 * unscheduled, resulting in a noop
6530 				 * for this device.
6531 				 */
6532 				linkwatch_run_queue();
6533 			}
6534 
6535 			__rtnl_unlock();
6536 
6537 			rebroadcast_time = jiffies;
6538 		}
6539 
6540 		msleep(250);
6541 
6542 		refcnt = netdev_refcnt_read(dev);
6543 
6544 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6545 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6546 				 dev->name, refcnt);
6547 			warning_time = jiffies;
6548 		}
6549 	}
6550 }
6551 
6552 /* The sequence is:
6553  *
6554  *	rtnl_lock();
6555  *	...
6556  *	register_netdevice(x1);
6557  *	register_netdevice(x2);
6558  *	...
6559  *	unregister_netdevice(y1);
6560  *	unregister_netdevice(y2);
6561  *      ...
6562  *	rtnl_unlock();
6563  *	free_netdev(y1);
6564  *	free_netdev(y2);
6565  *
6566  * We are invoked by rtnl_unlock().
6567  * This allows us to deal with problems:
6568  * 1) We can delete sysfs objects which invoke hotplug
6569  *    without deadlocking with linkwatch via keventd.
6570  * 2) Since we run with the RTNL semaphore not held, we can sleep
6571  *    safely in order to wait for the netdev refcnt to drop to zero.
6572  *
6573  * We must not return until all unregister events added during
6574  * the interval the lock was held have been completed.
6575  */
6576 void netdev_run_todo(void)
6577 {
6578 	struct list_head list;
6579 
6580 	/* Snapshot list, allow later requests */
6581 	list_replace_init(&net_todo_list, &list);
6582 
6583 	__rtnl_unlock();
6584 
6585 
6586 	/* Wait for rcu callbacks to finish before next phase */
6587 	if (!list_empty(&list))
6588 		rcu_barrier();
6589 
6590 	while (!list_empty(&list)) {
6591 		struct net_device *dev
6592 			= list_first_entry(&list, struct net_device, todo_list);
6593 		list_del(&dev->todo_list);
6594 
6595 		rtnl_lock();
6596 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6597 		__rtnl_unlock();
6598 
6599 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6600 			pr_err("network todo '%s' but state %d\n",
6601 			       dev->name, dev->reg_state);
6602 			dump_stack();
6603 			continue;
6604 		}
6605 
6606 		dev->reg_state = NETREG_UNREGISTERED;
6607 
6608 		on_each_cpu(flush_backlog, dev, 1);
6609 
6610 		netdev_wait_allrefs(dev);
6611 
6612 		/* paranoia */
6613 		BUG_ON(netdev_refcnt_read(dev));
6614 		BUG_ON(!list_empty(&dev->ptype_all));
6615 		BUG_ON(!list_empty(&dev->ptype_specific));
6616 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6617 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6618 		WARN_ON(dev->dn_ptr);
6619 
6620 		if (dev->destructor)
6621 			dev->destructor(dev);
6622 
6623 		/* Report a network device has been unregistered */
6624 		rtnl_lock();
6625 		dev_net(dev)->dev_unreg_count--;
6626 		__rtnl_unlock();
6627 		wake_up(&netdev_unregistering_wq);
6628 
6629 		/* Free network device */
6630 		kobject_put(&dev->dev.kobj);
6631 	}
6632 }
6633 
6634 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6635  * fields in the same order, with only the type differing.
6636  */
6637 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6638 			     const struct net_device_stats *netdev_stats)
6639 {
6640 #if BITS_PER_LONG == 64
6641 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6642 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6643 #else
6644 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6645 	const unsigned long *src = (const unsigned long *)netdev_stats;
6646 	u64 *dst = (u64 *)stats64;
6647 
6648 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6649 		     sizeof(*stats64) / sizeof(u64));
6650 	for (i = 0; i < n; i++)
6651 		dst[i] = src[i];
6652 #endif
6653 }
6654 EXPORT_SYMBOL(netdev_stats_to_stats64);
6655 
6656 /**
6657  *	dev_get_stats	- get network device statistics
6658  *	@dev: device to get statistics from
6659  *	@storage: place to store stats
6660  *
6661  *	Get network statistics from device. Return @storage.
6662  *	The device driver may provide its own method by setting
6663  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6664  *	otherwise the internal statistics structure is used.
6665  */
6666 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6667 					struct rtnl_link_stats64 *storage)
6668 {
6669 	const struct net_device_ops *ops = dev->netdev_ops;
6670 
6671 	if (ops->ndo_get_stats64) {
6672 		memset(storage, 0, sizeof(*storage));
6673 		ops->ndo_get_stats64(dev, storage);
6674 	} else if (ops->ndo_get_stats) {
6675 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6676 	} else {
6677 		netdev_stats_to_stats64(storage, &dev->stats);
6678 	}
6679 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6680 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6681 	return storage;
6682 }
6683 EXPORT_SYMBOL(dev_get_stats);
6684 
6685 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6686 {
6687 	struct netdev_queue *queue = dev_ingress_queue(dev);
6688 
6689 #ifdef CONFIG_NET_CLS_ACT
6690 	if (queue)
6691 		return queue;
6692 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6693 	if (!queue)
6694 		return NULL;
6695 	netdev_init_one_queue(dev, queue, NULL);
6696 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6697 	queue->qdisc_sleeping = &noop_qdisc;
6698 	rcu_assign_pointer(dev->ingress_queue, queue);
6699 #endif
6700 	return queue;
6701 }
6702 
6703 static const struct ethtool_ops default_ethtool_ops;
6704 
6705 void netdev_set_default_ethtool_ops(struct net_device *dev,
6706 				    const struct ethtool_ops *ops)
6707 {
6708 	if (dev->ethtool_ops == &default_ethtool_ops)
6709 		dev->ethtool_ops = ops;
6710 }
6711 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6712 
6713 void netdev_freemem(struct net_device *dev)
6714 {
6715 	char *addr = (char *)dev - dev->padded;
6716 
6717 	kvfree(addr);
6718 }
6719 
6720 /**
6721  *	alloc_netdev_mqs - allocate network device
6722  *	@sizeof_priv:		size of private data to allocate space for
6723  *	@name:			device name format string
6724  *	@name_assign_type: 	origin of device name
6725  *	@setup:			callback to initialize device
6726  *	@txqs:			the number of TX subqueues to allocate
6727  *	@rxqs:			the number of RX subqueues to allocate
6728  *
6729  *	Allocates a struct net_device with private data area for driver use
6730  *	and performs basic initialization.  Also allocates subqueue structs
6731  *	for each queue on the device.
6732  */
6733 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6734 		unsigned char name_assign_type,
6735 		void (*setup)(struct net_device *),
6736 		unsigned int txqs, unsigned int rxqs)
6737 {
6738 	struct net_device *dev;
6739 	size_t alloc_size;
6740 	struct net_device *p;
6741 
6742 	BUG_ON(strlen(name) >= sizeof(dev->name));
6743 
6744 	if (txqs < 1) {
6745 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6746 		return NULL;
6747 	}
6748 
6749 #ifdef CONFIG_SYSFS
6750 	if (rxqs < 1) {
6751 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6752 		return NULL;
6753 	}
6754 #endif
6755 
6756 	alloc_size = sizeof(struct net_device);
6757 	if (sizeof_priv) {
6758 		/* ensure 32-byte alignment of private area */
6759 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6760 		alloc_size += sizeof_priv;
6761 	}
6762 	/* ensure 32-byte alignment of whole construct */
6763 	alloc_size += NETDEV_ALIGN - 1;
6764 
6765 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6766 	if (!p)
6767 		p = vzalloc(alloc_size);
6768 	if (!p)
6769 		return NULL;
6770 
6771 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6772 	dev->padded = (char *)dev - (char *)p;
6773 
6774 	dev->pcpu_refcnt = alloc_percpu(int);
6775 	if (!dev->pcpu_refcnt)
6776 		goto free_dev;
6777 
6778 	if (dev_addr_init(dev))
6779 		goto free_pcpu;
6780 
6781 	dev_mc_init(dev);
6782 	dev_uc_init(dev);
6783 
6784 	dev_net_set(dev, &init_net);
6785 
6786 	dev->gso_max_size = GSO_MAX_SIZE;
6787 	dev->gso_max_segs = GSO_MAX_SEGS;
6788 	dev->gso_min_segs = 0;
6789 
6790 	INIT_LIST_HEAD(&dev->napi_list);
6791 	INIT_LIST_HEAD(&dev->unreg_list);
6792 	INIT_LIST_HEAD(&dev->close_list);
6793 	INIT_LIST_HEAD(&dev->link_watch_list);
6794 	INIT_LIST_HEAD(&dev->adj_list.upper);
6795 	INIT_LIST_HEAD(&dev->adj_list.lower);
6796 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6797 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6798 	INIT_LIST_HEAD(&dev->ptype_all);
6799 	INIT_LIST_HEAD(&dev->ptype_specific);
6800 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6801 	setup(dev);
6802 
6803 	dev->num_tx_queues = txqs;
6804 	dev->real_num_tx_queues = txqs;
6805 	if (netif_alloc_netdev_queues(dev))
6806 		goto free_all;
6807 
6808 #ifdef CONFIG_SYSFS
6809 	dev->num_rx_queues = rxqs;
6810 	dev->real_num_rx_queues = rxqs;
6811 	if (netif_alloc_rx_queues(dev))
6812 		goto free_all;
6813 #endif
6814 
6815 	strcpy(dev->name, name);
6816 	dev->name_assign_type = name_assign_type;
6817 	dev->group = INIT_NETDEV_GROUP;
6818 	if (!dev->ethtool_ops)
6819 		dev->ethtool_ops = &default_ethtool_ops;
6820 	return dev;
6821 
6822 free_all:
6823 	free_netdev(dev);
6824 	return NULL;
6825 
6826 free_pcpu:
6827 	free_percpu(dev->pcpu_refcnt);
6828 free_dev:
6829 	netdev_freemem(dev);
6830 	return NULL;
6831 }
6832 EXPORT_SYMBOL(alloc_netdev_mqs);
6833 
6834 /**
6835  *	free_netdev - free network device
6836  *	@dev: device
6837  *
6838  *	This function does the last stage of destroying an allocated device
6839  * 	interface. The reference to the device object is released.
6840  *	If this is the last reference then it will be freed.
6841  */
6842 void free_netdev(struct net_device *dev)
6843 {
6844 	struct napi_struct *p, *n;
6845 
6846 	release_net(dev_net(dev));
6847 
6848 	netif_free_tx_queues(dev);
6849 #ifdef CONFIG_SYSFS
6850 	kvfree(dev->_rx);
6851 #endif
6852 
6853 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6854 
6855 	/* Flush device addresses */
6856 	dev_addr_flush(dev);
6857 
6858 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6859 		netif_napi_del(p);
6860 
6861 	free_percpu(dev->pcpu_refcnt);
6862 	dev->pcpu_refcnt = NULL;
6863 
6864 	/*  Compatibility with error handling in drivers */
6865 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6866 		netdev_freemem(dev);
6867 		return;
6868 	}
6869 
6870 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6871 	dev->reg_state = NETREG_RELEASED;
6872 
6873 	/* will free via device release */
6874 	put_device(&dev->dev);
6875 }
6876 EXPORT_SYMBOL(free_netdev);
6877 
6878 /**
6879  *	synchronize_net -  Synchronize with packet receive processing
6880  *
6881  *	Wait for packets currently being received to be done.
6882  *	Does not block later packets from starting.
6883  */
6884 void synchronize_net(void)
6885 {
6886 	might_sleep();
6887 	if (rtnl_is_locked())
6888 		synchronize_rcu_expedited();
6889 	else
6890 		synchronize_rcu();
6891 }
6892 EXPORT_SYMBOL(synchronize_net);
6893 
6894 /**
6895  *	unregister_netdevice_queue - remove device from the kernel
6896  *	@dev: device
6897  *	@head: list
6898  *
6899  *	This function shuts down a device interface and removes it
6900  *	from the kernel tables.
6901  *	If head not NULL, device is queued to be unregistered later.
6902  *
6903  *	Callers must hold the rtnl semaphore.  You may want
6904  *	unregister_netdev() instead of this.
6905  */
6906 
6907 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6908 {
6909 	ASSERT_RTNL();
6910 
6911 	if (head) {
6912 		list_move_tail(&dev->unreg_list, head);
6913 	} else {
6914 		rollback_registered(dev);
6915 		/* Finish processing unregister after unlock */
6916 		net_set_todo(dev);
6917 	}
6918 }
6919 EXPORT_SYMBOL(unregister_netdevice_queue);
6920 
6921 /**
6922  *	unregister_netdevice_many - unregister many devices
6923  *	@head: list of devices
6924  *
6925  *  Note: As most callers use a stack allocated list_head,
6926  *  we force a list_del() to make sure stack wont be corrupted later.
6927  */
6928 void unregister_netdevice_many(struct list_head *head)
6929 {
6930 	struct net_device *dev;
6931 
6932 	if (!list_empty(head)) {
6933 		rollback_registered_many(head);
6934 		list_for_each_entry(dev, head, unreg_list)
6935 			net_set_todo(dev);
6936 		list_del(head);
6937 	}
6938 }
6939 EXPORT_SYMBOL(unregister_netdevice_many);
6940 
6941 /**
6942  *	unregister_netdev - remove device from the kernel
6943  *	@dev: device
6944  *
6945  *	This function shuts down a device interface and removes it
6946  *	from the kernel tables.
6947  *
6948  *	This is just a wrapper for unregister_netdevice that takes
6949  *	the rtnl semaphore.  In general you want to use this and not
6950  *	unregister_netdevice.
6951  */
6952 void unregister_netdev(struct net_device *dev)
6953 {
6954 	rtnl_lock();
6955 	unregister_netdevice(dev);
6956 	rtnl_unlock();
6957 }
6958 EXPORT_SYMBOL(unregister_netdev);
6959 
6960 /**
6961  *	dev_change_net_namespace - move device to different nethost namespace
6962  *	@dev: device
6963  *	@net: network namespace
6964  *	@pat: If not NULL name pattern to try if the current device name
6965  *	      is already taken in the destination network namespace.
6966  *
6967  *	This function shuts down a device interface and moves it
6968  *	to a new network namespace. On success 0 is returned, on
6969  *	a failure a netagive errno code is returned.
6970  *
6971  *	Callers must hold the rtnl semaphore.
6972  */
6973 
6974 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6975 {
6976 	int err;
6977 
6978 	ASSERT_RTNL();
6979 
6980 	/* Don't allow namespace local devices to be moved. */
6981 	err = -EINVAL;
6982 	if (dev->features & NETIF_F_NETNS_LOCAL)
6983 		goto out;
6984 
6985 	/* Ensure the device has been registrered */
6986 	if (dev->reg_state != NETREG_REGISTERED)
6987 		goto out;
6988 
6989 	/* Get out if there is nothing todo */
6990 	err = 0;
6991 	if (net_eq(dev_net(dev), net))
6992 		goto out;
6993 
6994 	/* Pick the destination device name, and ensure
6995 	 * we can use it in the destination network namespace.
6996 	 */
6997 	err = -EEXIST;
6998 	if (__dev_get_by_name(net, dev->name)) {
6999 		/* We get here if we can't use the current device name */
7000 		if (!pat)
7001 			goto out;
7002 		if (dev_get_valid_name(net, dev, pat) < 0)
7003 			goto out;
7004 	}
7005 
7006 	/*
7007 	 * And now a mini version of register_netdevice unregister_netdevice.
7008 	 */
7009 
7010 	/* If device is running close it first. */
7011 	dev_close(dev);
7012 
7013 	/* And unlink it from device chain */
7014 	err = -ENODEV;
7015 	unlist_netdevice(dev);
7016 
7017 	synchronize_net();
7018 
7019 	/* Shutdown queueing discipline. */
7020 	dev_shutdown(dev);
7021 
7022 	/* Notify protocols, that we are about to destroy
7023 	   this device. They should clean all the things.
7024 
7025 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7026 	   This is wanted because this way 8021q and macvlan know
7027 	   the device is just moving and can keep their slaves up.
7028 	*/
7029 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7030 	rcu_barrier();
7031 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7032 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7033 
7034 	/*
7035 	 *	Flush the unicast and multicast chains
7036 	 */
7037 	dev_uc_flush(dev);
7038 	dev_mc_flush(dev);
7039 
7040 	/* Send a netdev-removed uevent to the old namespace */
7041 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7042 	netdev_adjacent_del_links(dev);
7043 
7044 	/* Actually switch the network namespace */
7045 	dev_net_set(dev, net);
7046 
7047 	/* If there is an ifindex conflict assign a new one */
7048 	if (__dev_get_by_index(net, dev->ifindex)) {
7049 		int iflink = (dev->iflink == dev->ifindex);
7050 		dev->ifindex = dev_new_index(net);
7051 		if (iflink)
7052 			dev->iflink = dev->ifindex;
7053 	}
7054 
7055 	/* Send a netdev-add uevent to the new namespace */
7056 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7057 	netdev_adjacent_add_links(dev);
7058 
7059 	/* Fixup kobjects */
7060 	err = device_rename(&dev->dev, dev->name);
7061 	WARN_ON(err);
7062 
7063 	/* Add the device back in the hashes */
7064 	list_netdevice(dev);
7065 
7066 	/* Notify protocols, that a new device appeared. */
7067 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7068 
7069 	/*
7070 	 *	Prevent userspace races by waiting until the network
7071 	 *	device is fully setup before sending notifications.
7072 	 */
7073 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7074 
7075 	synchronize_net();
7076 	err = 0;
7077 out:
7078 	return err;
7079 }
7080 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7081 
7082 static int dev_cpu_callback(struct notifier_block *nfb,
7083 			    unsigned long action,
7084 			    void *ocpu)
7085 {
7086 	struct sk_buff **list_skb;
7087 	struct sk_buff *skb;
7088 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7089 	struct softnet_data *sd, *oldsd;
7090 
7091 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7092 		return NOTIFY_OK;
7093 
7094 	local_irq_disable();
7095 	cpu = smp_processor_id();
7096 	sd = &per_cpu(softnet_data, cpu);
7097 	oldsd = &per_cpu(softnet_data, oldcpu);
7098 
7099 	/* Find end of our completion_queue. */
7100 	list_skb = &sd->completion_queue;
7101 	while (*list_skb)
7102 		list_skb = &(*list_skb)->next;
7103 	/* Append completion queue from offline CPU. */
7104 	*list_skb = oldsd->completion_queue;
7105 	oldsd->completion_queue = NULL;
7106 
7107 	/* Append output queue from offline CPU. */
7108 	if (oldsd->output_queue) {
7109 		*sd->output_queue_tailp = oldsd->output_queue;
7110 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7111 		oldsd->output_queue = NULL;
7112 		oldsd->output_queue_tailp = &oldsd->output_queue;
7113 	}
7114 	/* Append NAPI poll list from offline CPU, with one exception :
7115 	 * process_backlog() must be called by cpu owning percpu backlog.
7116 	 * We properly handle process_queue & input_pkt_queue later.
7117 	 */
7118 	while (!list_empty(&oldsd->poll_list)) {
7119 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7120 							    struct napi_struct,
7121 							    poll_list);
7122 
7123 		list_del_init(&napi->poll_list);
7124 		if (napi->poll == process_backlog)
7125 			napi->state = 0;
7126 		else
7127 			____napi_schedule(sd, napi);
7128 	}
7129 
7130 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7131 	local_irq_enable();
7132 
7133 	/* Process offline CPU's input_pkt_queue */
7134 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7135 		netif_rx_ni(skb);
7136 		input_queue_head_incr(oldsd);
7137 	}
7138 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7139 		netif_rx_ni(skb);
7140 		input_queue_head_incr(oldsd);
7141 	}
7142 
7143 	return NOTIFY_OK;
7144 }
7145 
7146 
7147 /**
7148  *	netdev_increment_features - increment feature set by one
7149  *	@all: current feature set
7150  *	@one: new feature set
7151  *	@mask: mask feature set
7152  *
7153  *	Computes a new feature set after adding a device with feature set
7154  *	@one to the master device with current feature set @all.  Will not
7155  *	enable anything that is off in @mask. Returns the new feature set.
7156  */
7157 netdev_features_t netdev_increment_features(netdev_features_t all,
7158 	netdev_features_t one, netdev_features_t mask)
7159 {
7160 	if (mask & NETIF_F_GEN_CSUM)
7161 		mask |= NETIF_F_ALL_CSUM;
7162 	mask |= NETIF_F_VLAN_CHALLENGED;
7163 
7164 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7165 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7166 
7167 	/* If one device supports hw checksumming, set for all. */
7168 	if (all & NETIF_F_GEN_CSUM)
7169 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7170 
7171 	return all;
7172 }
7173 EXPORT_SYMBOL(netdev_increment_features);
7174 
7175 static struct hlist_head * __net_init netdev_create_hash(void)
7176 {
7177 	int i;
7178 	struct hlist_head *hash;
7179 
7180 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7181 	if (hash != NULL)
7182 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7183 			INIT_HLIST_HEAD(&hash[i]);
7184 
7185 	return hash;
7186 }
7187 
7188 /* Initialize per network namespace state */
7189 static int __net_init netdev_init(struct net *net)
7190 {
7191 	if (net != &init_net)
7192 		INIT_LIST_HEAD(&net->dev_base_head);
7193 
7194 	net->dev_name_head = netdev_create_hash();
7195 	if (net->dev_name_head == NULL)
7196 		goto err_name;
7197 
7198 	net->dev_index_head = netdev_create_hash();
7199 	if (net->dev_index_head == NULL)
7200 		goto err_idx;
7201 
7202 	return 0;
7203 
7204 err_idx:
7205 	kfree(net->dev_name_head);
7206 err_name:
7207 	return -ENOMEM;
7208 }
7209 
7210 /**
7211  *	netdev_drivername - network driver for the device
7212  *	@dev: network device
7213  *
7214  *	Determine network driver for device.
7215  */
7216 const char *netdev_drivername(const struct net_device *dev)
7217 {
7218 	const struct device_driver *driver;
7219 	const struct device *parent;
7220 	const char *empty = "";
7221 
7222 	parent = dev->dev.parent;
7223 	if (!parent)
7224 		return empty;
7225 
7226 	driver = parent->driver;
7227 	if (driver && driver->name)
7228 		return driver->name;
7229 	return empty;
7230 }
7231 
7232 static void __netdev_printk(const char *level, const struct net_device *dev,
7233 			    struct va_format *vaf)
7234 {
7235 	if (dev && dev->dev.parent) {
7236 		dev_printk_emit(level[1] - '0',
7237 				dev->dev.parent,
7238 				"%s %s %s%s: %pV",
7239 				dev_driver_string(dev->dev.parent),
7240 				dev_name(dev->dev.parent),
7241 				netdev_name(dev), netdev_reg_state(dev),
7242 				vaf);
7243 	} else if (dev) {
7244 		printk("%s%s%s: %pV",
7245 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7246 	} else {
7247 		printk("%s(NULL net_device): %pV", level, vaf);
7248 	}
7249 }
7250 
7251 void netdev_printk(const char *level, const struct net_device *dev,
7252 		   const char *format, ...)
7253 {
7254 	struct va_format vaf;
7255 	va_list args;
7256 
7257 	va_start(args, format);
7258 
7259 	vaf.fmt = format;
7260 	vaf.va = &args;
7261 
7262 	__netdev_printk(level, dev, &vaf);
7263 
7264 	va_end(args);
7265 }
7266 EXPORT_SYMBOL(netdev_printk);
7267 
7268 #define define_netdev_printk_level(func, level)			\
7269 void func(const struct net_device *dev, const char *fmt, ...)	\
7270 {								\
7271 	struct va_format vaf;					\
7272 	va_list args;						\
7273 								\
7274 	va_start(args, fmt);					\
7275 								\
7276 	vaf.fmt = fmt;						\
7277 	vaf.va = &args;						\
7278 								\
7279 	__netdev_printk(level, dev, &vaf);			\
7280 								\
7281 	va_end(args);						\
7282 }								\
7283 EXPORT_SYMBOL(func);
7284 
7285 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7286 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7287 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7288 define_netdev_printk_level(netdev_err, KERN_ERR);
7289 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7290 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7291 define_netdev_printk_level(netdev_info, KERN_INFO);
7292 
7293 static void __net_exit netdev_exit(struct net *net)
7294 {
7295 	kfree(net->dev_name_head);
7296 	kfree(net->dev_index_head);
7297 }
7298 
7299 static struct pernet_operations __net_initdata netdev_net_ops = {
7300 	.init = netdev_init,
7301 	.exit = netdev_exit,
7302 };
7303 
7304 static void __net_exit default_device_exit(struct net *net)
7305 {
7306 	struct net_device *dev, *aux;
7307 	/*
7308 	 * Push all migratable network devices back to the
7309 	 * initial network namespace
7310 	 */
7311 	rtnl_lock();
7312 	for_each_netdev_safe(net, dev, aux) {
7313 		int err;
7314 		char fb_name[IFNAMSIZ];
7315 
7316 		/* Ignore unmoveable devices (i.e. loopback) */
7317 		if (dev->features & NETIF_F_NETNS_LOCAL)
7318 			continue;
7319 
7320 		/* Leave virtual devices for the generic cleanup */
7321 		if (dev->rtnl_link_ops)
7322 			continue;
7323 
7324 		/* Push remaining network devices to init_net */
7325 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7326 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7327 		if (err) {
7328 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7329 				 __func__, dev->name, err);
7330 			BUG();
7331 		}
7332 	}
7333 	rtnl_unlock();
7334 }
7335 
7336 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7337 {
7338 	/* Return with the rtnl_lock held when there are no network
7339 	 * devices unregistering in any network namespace in net_list.
7340 	 */
7341 	struct net *net;
7342 	bool unregistering;
7343 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
7344 
7345 	add_wait_queue(&netdev_unregistering_wq, &wait);
7346 	for (;;) {
7347 		unregistering = false;
7348 		rtnl_lock();
7349 		list_for_each_entry(net, net_list, exit_list) {
7350 			if (net->dev_unreg_count > 0) {
7351 				unregistering = true;
7352 				break;
7353 			}
7354 		}
7355 		if (!unregistering)
7356 			break;
7357 		__rtnl_unlock();
7358 
7359 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7360 	}
7361 	remove_wait_queue(&netdev_unregistering_wq, &wait);
7362 }
7363 
7364 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7365 {
7366 	/* At exit all network devices most be removed from a network
7367 	 * namespace.  Do this in the reverse order of registration.
7368 	 * Do this across as many network namespaces as possible to
7369 	 * improve batching efficiency.
7370 	 */
7371 	struct net_device *dev;
7372 	struct net *net;
7373 	LIST_HEAD(dev_kill_list);
7374 
7375 	/* To prevent network device cleanup code from dereferencing
7376 	 * loopback devices or network devices that have been freed
7377 	 * wait here for all pending unregistrations to complete,
7378 	 * before unregistring the loopback device and allowing the
7379 	 * network namespace be freed.
7380 	 *
7381 	 * The netdev todo list containing all network devices
7382 	 * unregistrations that happen in default_device_exit_batch
7383 	 * will run in the rtnl_unlock() at the end of
7384 	 * default_device_exit_batch.
7385 	 */
7386 	rtnl_lock_unregistering(net_list);
7387 	list_for_each_entry(net, net_list, exit_list) {
7388 		for_each_netdev_reverse(net, dev) {
7389 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7390 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7391 			else
7392 				unregister_netdevice_queue(dev, &dev_kill_list);
7393 		}
7394 	}
7395 	unregister_netdevice_many(&dev_kill_list);
7396 	rtnl_unlock();
7397 }
7398 
7399 static struct pernet_operations __net_initdata default_device_ops = {
7400 	.exit = default_device_exit,
7401 	.exit_batch = default_device_exit_batch,
7402 };
7403 
7404 /*
7405  *	Initialize the DEV module. At boot time this walks the device list and
7406  *	unhooks any devices that fail to initialise (normally hardware not
7407  *	present) and leaves us with a valid list of present and active devices.
7408  *
7409  */
7410 
7411 /*
7412  *       This is called single threaded during boot, so no need
7413  *       to take the rtnl semaphore.
7414  */
7415 static int __init net_dev_init(void)
7416 {
7417 	int i, rc = -ENOMEM;
7418 
7419 	BUG_ON(!dev_boot_phase);
7420 
7421 	if (dev_proc_init())
7422 		goto out;
7423 
7424 	if (netdev_kobject_init())
7425 		goto out;
7426 
7427 	INIT_LIST_HEAD(&ptype_all);
7428 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7429 		INIT_LIST_HEAD(&ptype_base[i]);
7430 
7431 	INIT_LIST_HEAD(&offload_base);
7432 
7433 	if (register_pernet_subsys(&netdev_net_ops))
7434 		goto out;
7435 
7436 	/*
7437 	 *	Initialise the packet receive queues.
7438 	 */
7439 
7440 	for_each_possible_cpu(i) {
7441 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7442 
7443 		skb_queue_head_init(&sd->input_pkt_queue);
7444 		skb_queue_head_init(&sd->process_queue);
7445 		INIT_LIST_HEAD(&sd->poll_list);
7446 		sd->output_queue_tailp = &sd->output_queue;
7447 #ifdef CONFIG_RPS
7448 		sd->csd.func = rps_trigger_softirq;
7449 		sd->csd.info = sd;
7450 		sd->cpu = i;
7451 #endif
7452 
7453 		sd->backlog.poll = process_backlog;
7454 		sd->backlog.weight = weight_p;
7455 	}
7456 
7457 	dev_boot_phase = 0;
7458 
7459 	/* The loopback device is special if any other network devices
7460 	 * is present in a network namespace the loopback device must
7461 	 * be present. Since we now dynamically allocate and free the
7462 	 * loopback device ensure this invariant is maintained by
7463 	 * keeping the loopback device as the first device on the
7464 	 * list of network devices.  Ensuring the loopback devices
7465 	 * is the first device that appears and the last network device
7466 	 * that disappears.
7467 	 */
7468 	if (register_pernet_device(&loopback_net_ops))
7469 		goto out;
7470 
7471 	if (register_pernet_device(&default_device_ops))
7472 		goto out;
7473 
7474 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7475 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7476 
7477 	hotcpu_notifier(dev_cpu_callback, 0);
7478 	dst_init();
7479 	rc = 0;
7480 out:
7481 	return rc;
7482 }
7483 
7484 subsys_initcall(net_dev_init);
7485