xref: /openbmc/linux/net/core/dev.c (revision dfc66bef)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "net-sysfs.h"
155 
156 #define MAX_GRO_SKBS 8
157 
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160 
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;	/* Taps */
165 static struct list_head offload_base __read_mostly;
166 
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169 					 struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171 					   struct net_device *dev,
172 					   struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174 
175 /*
176  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177  * semaphore.
178  *
179  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180  *
181  * Writers must hold the rtnl semaphore while they loop through the
182  * dev_base_head list, and hold dev_base_lock for writing when they do the
183  * actual updates.  This allows pure readers to access the list even
184  * while a writer is preparing to update it.
185  *
186  * To put it another way, dev_base_lock is held for writing only to
187  * protect against pure readers; the rtnl semaphore provides the
188  * protection against other writers.
189  *
190  * See, for example usages, register_netdevice() and
191  * unregister_netdevice(), which must be called with the rtnl
192  * semaphore held.
193  */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196 
197 static DEFINE_MUTEX(ifalias_mutex);
198 
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201 
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204 
205 static DECLARE_RWSEM(devnet_rename_sem);
206 
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209 	while (++net->dev_base_seq == 0)
210 		;
211 }
212 
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216 
217 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219 
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224 
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228 	spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231 
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235 	spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238 
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240 						       const char *name)
241 {
242 	struct netdev_name_node *name_node;
243 
244 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245 	if (!name_node)
246 		return NULL;
247 	INIT_HLIST_NODE(&name_node->hlist);
248 	name_node->dev = dev;
249 	name_node->name = name;
250 	return name_node;
251 }
252 
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256 	struct netdev_name_node *name_node;
257 
258 	name_node = netdev_name_node_alloc(dev, dev->name);
259 	if (!name_node)
260 		return NULL;
261 	INIT_LIST_HEAD(&name_node->list);
262 	return name_node;
263 }
264 
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267 	kfree(name_node);
268 }
269 
270 static void netdev_name_node_add(struct net *net,
271 				 struct netdev_name_node *name_node)
272 {
273 	hlist_add_head_rcu(&name_node->hlist,
274 			   dev_name_hash(net, name_node->name));
275 }
276 
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279 	hlist_del_rcu(&name_node->hlist);
280 }
281 
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283 							const char *name)
284 {
285 	struct hlist_head *head = dev_name_hash(net, name);
286 	struct netdev_name_node *name_node;
287 
288 	hlist_for_each_entry(name_node, head, hlist)
289 		if (!strcmp(name_node->name, name))
290 			return name_node;
291 	return NULL;
292 }
293 
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295 							    const char *name)
296 {
297 	struct hlist_head *head = dev_name_hash(net, name);
298 	struct netdev_name_node *name_node;
299 
300 	hlist_for_each_entry_rcu(name_node, head, hlist)
301 		if (!strcmp(name_node->name, name))
302 			return name_node;
303 	return NULL;
304 }
305 
306 bool netdev_name_in_use(struct net *net, const char *name)
307 {
308 	return netdev_name_node_lookup(net, name);
309 }
310 EXPORT_SYMBOL(netdev_name_in_use);
311 
312 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
313 {
314 	struct netdev_name_node *name_node;
315 	struct net *net = dev_net(dev);
316 
317 	name_node = netdev_name_node_lookup(net, name);
318 	if (name_node)
319 		return -EEXIST;
320 	name_node = netdev_name_node_alloc(dev, name);
321 	if (!name_node)
322 		return -ENOMEM;
323 	netdev_name_node_add(net, name_node);
324 	/* The node that holds dev->name acts as a head of per-device list. */
325 	list_add_tail(&name_node->list, &dev->name_node->list);
326 
327 	return 0;
328 }
329 EXPORT_SYMBOL(netdev_name_node_alt_create);
330 
331 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
332 {
333 	list_del(&name_node->list);
334 	netdev_name_node_del(name_node);
335 	kfree(name_node->name);
336 	netdev_name_node_free(name_node);
337 }
338 
339 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
340 {
341 	struct netdev_name_node *name_node;
342 	struct net *net = dev_net(dev);
343 
344 	name_node = netdev_name_node_lookup(net, name);
345 	if (!name_node)
346 		return -ENOENT;
347 	/* lookup might have found our primary name or a name belonging
348 	 * to another device.
349 	 */
350 	if (name_node == dev->name_node || name_node->dev != dev)
351 		return -EINVAL;
352 
353 	__netdev_name_node_alt_destroy(name_node);
354 
355 	return 0;
356 }
357 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
358 
359 static void netdev_name_node_alt_flush(struct net_device *dev)
360 {
361 	struct netdev_name_node *name_node, *tmp;
362 
363 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
364 		__netdev_name_node_alt_destroy(name_node);
365 }
366 
367 /* Device list insertion */
368 static void list_netdevice(struct net_device *dev)
369 {
370 	struct net *net = dev_net(dev);
371 
372 	ASSERT_RTNL();
373 
374 	write_lock_bh(&dev_base_lock);
375 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
376 	netdev_name_node_add(net, dev->name_node);
377 	hlist_add_head_rcu(&dev->index_hlist,
378 			   dev_index_hash(net, dev->ifindex));
379 	write_unlock_bh(&dev_base_lock);
380 
381 	dev_base_seq_inc(net);
382 }
383 
384 /* Device list removal
385  * caller must respect a RCU grace period before freeing/reusing dev
386  */
387 static void unlist_netdevice(struct net_device *dev)
388 {
389 	ASSERT_RTNL();
390 
391 	/* Unlink dev from the device chain */
392 	write_lock_bh(&dev_base_lock);
393 	list_del_rcu(&dev->dev_list);
394 	netdev_name_node_del(dev->name_node);
395 	hlist_del_rcu(&dev->index_hlist);
396 	write_unlock_bh(&dev_base_lock);
397 
398 	dev_base_seq_inc(dev_net(dev));
399 }
400 
401 /*
402  *	Our notifier list
403  */
404 
405 static RAW_NOTIFIER_HEAD(netdev_chain);
406 
407 /*
408  *	Device drivers call our routines to queue packets here. We empty the
409  *	queue in the local softnet handler.
410  */
411 
412 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
413 EXPORT_PER_CPU_SYMBOL(softnet_data);
414 
415 #ifdef CONFIG_LOCKDEP
416 /*
417  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
418  * according to dev->type
419  */
420 static const unsigned short netdev_lock_type[] = {
421 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
422 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
423 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
424 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
425 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
426 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
427 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
428 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
429 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
430 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
431 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
432 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
433 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
434 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
435 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
436 
437 static const char *const netdev_lock_name[] = {
438 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
439 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
440 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
441 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
442 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
443 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
444 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
445 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
446 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
447 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
448 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
449 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
450 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
451 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
452 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
453 
454 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
455 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
456 
457 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
458 {
459 	int i;
460 
461 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
462 		if (netdev_lock_type[i] == dev_type)
463 			return i;
464 	/* the last key is used by default */
465 	return ARRAY_SIZE(netdev_lock_type) - 1;
466 }
467 
468 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
469 						 unsigned short dev_type)
470 {
471 	int i;
472 
473 	i = netdev_lock_pos(dev_type);
474 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
475 				   netdev_lock_name[i]);
476 }
477 
478 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
479 {
480 	int i;
481 
482 	i = netdev_lock_pos(dev->type);
483 	lockdep_set_class_and_name(&dev->addr_list_lock,
484 				   &netdev_addr_lock_key[i],
485 				   netdev_lock_name[i]);
486 }
487 #else
488 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
489 						 unsigned short dev_type)
490 {
491 }
492 
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495 }
496 #endif
497 
498 /*******************************************************************************
499  *
500  *		Protocol management and registration routines
501  *
502  *******************************************************************************/
503 
504 
505 /*
506  *	Add a protocol ID to the list. Now that the input handler is
507  *	smarter we can dispense with all the messy stuff that used to be
508  *	here.
509  *
510  *	BEWARE!!! Protocol handlers, mangling input packets,
511  *	MUST BE last in hash buckets and checking protocol handlers
512  *	MUST start from promiscuous ptype_all chain in net_bh.
513  *	It is true now, do not change it.
514  *	Explanation follows: if protocol handler, mangling packet, will
515  *	be the first on list, it is not able to sense, that packet
516  *	is cloned and should be copied-on-write, so that it will
517  *	change it and subsequent readers will get broken packet.
518  *							--ANK (980803)
519  */
520 
521 static inline struct list_head *ptype_head(const struct packet_type *pt)
522 {
523 	if (pt->type == htons(ETH_P_ALL))
524 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
525 	else
526 		return pt->dev ? &pt->dev->ptype_specific :
527 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
528 }
529 
530 /**
531  *	dev_add_pack - add packet handler
532  *	@pt: packet type declaration
533  *
534  *	Add a protocol handler to the networking stack. The passed &packet_type
535  *	is linked into kernel lists and may not be freed until it has been
536  *	removed from the kernel lists.
537  *
538  *	This call does not sleep therefore it can not
539  *	guarantee all CPU's that are in middle of receiving packets
540  *	will see the new packet type (until the next received packet).
541  */
542 
543 void dev_add_pack(struct packet_type *pt)
544 {
545 	struct list_head *head = ptype_head(pt);
546 
547 	spin_lock(&ptype_lock);
548 	list_add_rcu(&pt->list, head);
549 	spin_unlock(&ptype_lock);
550 }
551 EXPORT_SYMBOL(dev_add_pack);
552 
553 /**
554  *	__dev_remove_pack	 - remove packet handler
555  *	@pt: packet type declaration
556  *
557  *	Remove a protocol handler that was previously added to the kernel
558  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
559  *	from the kernel lists and can be freed or reused once this function
560  *	returns.
561  *
562  *      The packet type might still be in use by receivers
563  *	and must not be freed until after all the CPU's have gone
564  *	through a quiescent state.
565  */
566 void __dev_remove_pack(struct packet_type *pt)
567 {
568 	struct list_head *head = ptype_head(pt);
569 	struct packet_type *pt1;
570 
571 	spin_lock(&ptype_lock);
572 
573 	list_for_each_entry(pt1, head, list) {
574 		if (pt == pt1) {
575 			list_del_rcu(&pt->list);
576 			goto out;
577 		}
578 	}
579 
580 	pr_warn("dev_remove_pack: %p not found\n", pt);
581 out:
582 	spin_unlock(&ptype_lock);
583 }
584 EXPORT_SYMBOL(__dev_remove_pack);
585 
586 /**
587  *	dev_remove_pack	 - remove packet handler
588  *	@pt: packet type declaration
589  *
590  *	Remove a protocol handler that was previously added to the kernel
591  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
592  *	from the kernel lists and can be freed or reused once this function
593  *	returns.
594  *
595  *	This call sleeps to guarantee that no CPU is looking at the packet
596  *	type after return.
597  */
598 void dev_remove_pack(struct packet_type *pt)
599 {
600 	__dev_remove_pack(pt);
601 
602 	synchronize_net();
603 }
604 EXPORT_SYMBOL(dev_remove_pack);
605 
606 
607 /**
608  *	dev_add_offload - register offload handlers
609  *	@po: protocol offload declaration
610  *
611  *	Add protocol offload handlers to the networking stack. The passed
612  *	&proto_offload is linked into kernel lists and may not be freed until
613  *	it has been removed from the kernel lists.
614  *
615  *	This call does not sleep therefore it can not
616  *	guarantee all CPU's that are in middle of receiving packets
617  *	will see the new offload handlers (until the next received packet).
618  */
619 void dev_add_offload(struct packet_offload *po)
620 {
621 	struct packet_offload *elem;
622 
623 	spin_lock(&offload_lock);
624 	list_for_each_entry(elem, &offload_base, list) {
625 		if (po->priority < elem->priority)
626 			break;
627 	}
628 	list_add_rcu(&po->list, elem->list.prev);
629 	spin_unlock(&offload_lock);
630 }
631 EXPORT_SYMBOL(dev_add_offload);
632 
633 /**
634  *	__dev_remove_offload	 - remove offload handler
635  *	@po: packet offload declaration
636  *
637  *	Remove a protocol offload handler that was previously added to the
638  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
639  *	is removed from the kernel lists and can be freed or reused once this
640  *	function returns.
641  *
642  *      The packet type might still be in use by receivers
643  *	and must not be freed until after all the CPU's have gone
644  *	through a quiescent state.
645  */
646 static void __dev_remove_offload(struct packet_offload *po)
647 {
648 	struct list_head *head = &offload_base;
649 	struct packet_offload *po1;
650 
651 	spin_lock(&offload_lock);
652 
653 	list_for_each_entry(po1, head, list) {
654 		if (po == po1) {
655 			list_del_rcu(&po->list);
656 			goto out;
657 		}
658 	}
659 
660 	pr_warn("dev_remove_offload: %p not found\n", po);
661 out:
662 	spin_unlock(&offload_lock);
663 }
664 
665 /**
666  *	dev_remove_offload	 - remove packet offload handler
667  *	@po: packet offload declaration
668  *
669  *	Remove a packet offload handler that was previously added to the kernel
670  *	offload handlers by dev_add_offload(). The passed &offload_type is
671  *	removed from the kernel lists and can be freed or reused once this
672  *	function returns.
673  *
674  *	This call sleeps to guarantee that no CPU is looking at the packet
675  *	type after return.
676  */
677 void dev_remove_offload(struct packet_offload *po)
678 {
679 	__dev_remove_offload(po);
680 
681 	synchronize_net();
682 }
683 EXPORT_SYMBOL(dev_remove_offload);
684 
685 /*******************************************************************************
686  *
687  *			    Device Interface Subroutines
688  *
689  *******************************************************************************/
690 
691 /**
692  *	dev_get_iflink	- get 'iflink' value of a interface
693  *	@dev: targeted interface
694  *
695  *	Indicates the ifindex the interface is linked to.
696  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
697  */
698 
699 int dev_get_iflink(const struct net_device *dev)
700 {
701 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
702 		return dev->netdev_ops->ndo_get_iflink(dev);
703 
704 	return dev->ifindex;
705 }
706 EXPORT_SYMBOL(dev_get_iflink);
707 
708 /**
709  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
710  *	@dev: targeted interface
711  *	@skb: The packet.
712  *
713  *	For better visibility of tunnel traffic OVS needs to retrieve
714  *	egress tunnel information for a packet. Following API allows
715  *	user to get this info.
716  */
717 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
718 {
719 	struct ip_tunnel_info *info;
720 
721 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
722 		return -EINVAL;
723 
724 	info = skb_tunnel_info_unclone(skb);
725 	if (!info)
726 		return -ENOMEM;
727 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
728 		return -EINVAL;
729 
730 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
731 }
732 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
733 
734 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
735 {
736 	int k = stack->num_paths++;
737 
738 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
739 		return NULL;
740 
741 	return &stack->path[k];
742 }
743 
744 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
745 			  struct net_device_path_stack *stack)
746 {
747 	const struct net_device *last_dev;
748 	struct net_device_path_ctx ctx = {
749 		.dev	= dev,
750 		.daddr	= daddr,
751 	};
752 	struct net_device_path *path;
753 	int ret = 0;
754 
755 	stack->num_paths = 0;
756 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
757 		last_dev = ctx.dev;
758 		path = dev_fwd_path(stack);
759 		if (!path)
760 			return -1;
761 
762 		memset(path, 0, sizeof(struct net_device_path));
763 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
764 		if (ret < 0)
765 			return -1;
766 
767 		if (WARN_ON_ONCE(last_dev == ctx.dev))
768 			return -1;
769 	}
770 	path = dev_fwd_path(stack);
771 	if (!path)
772 		return -1;
773 	path->type = DEV_PATH_ETHERNET;
774 	path->dev = ctx.dev;
775 
776 	return ret;
777 }
778 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
779 
780 /**
781  *	__dev_get_by_name	- find a device by its name
782  *	@net: the applicable net namespace
783  *	@name: name to find
784  *
785  *	Find an interface by name. Must be called under RTNL semaphore
786  *	or @dev_base_lock. If the name is found a pointer to the device
787  *	is returned. If the name is not found then %NULL is returned. The
788  *	reference counters are not incremented so the caller must be
789  *	careful with locks.
790  */
791 
792 struct net_device *__dev_get_by_name(struct net *net, const char *name)
793 {
794 	struct netdev_name_node *node_name;
795 
796 	node_name = netdev_name_node_lookup(net, name);
797 	return node_name ? node_name->dev : NULL;
798 }
799 EXPORT_SYMBOL(__dev_get_by_name);
800 
801 /**
802  * dev_get_by_name_rcu	- find a device by its name
803  * @net: the applicable net namespace
804  * @name: name to find
805  *
806  * Find an interface by name.
807  * If the name is found a pointer to the device is returned.
808  * If the name is not found then %NULL is returned.
809  * The reference counters are not incremented so the caller must be
810  * careful with locks. The caller must hold RCU lock.
811  */
812 
813 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
814 {
815 	struct netdev_name_node *node_name;
816 
817 	node_name = netdev_name_node_lookup_rcu(net, name);
818 	return node_name ? node_name->dev : NULL;
819 }
820 EXPORT_SYMBOL(dev_get_by_name_rcu);
821 
822 /**
823  *	dev_get_by_name		- find a device by its name
824  *	@net: the applicable net namespace
825  *	@name: name to find
826  *
827  *	Find an interface by name. This can be called from any
828  *	context and does its own locking. The returned handle has
829  *	the usage count incremented and the caller must use dev_put() to
830  *	release it when it is no longer needed. %NULL is returned if no
831  *	matching device is found.
832  */
833 
834 struct net_device *dev_get_by_name(struct net *net, const char *name)
835 {
836 	struct net_device *dev;
837 
838 	rcu_read_lock();
839 	dev = dev_get_by_name_rcu(net, name);
840 	dev_hold(dev);
841 	rcu_read_unlock();
842 	return dev;
843 }
844 EXPORT_SYMBOL(dev_get_by_name);
845 
846 /**
847  *	__dev_get_by_index - find a device by its ifindex
848  *	@net: the applicable net namespace
849  *	@ifindex: index of device
850  *
851  *	Search for an interface by index. Returns %NULL if the device
852  *	is not found or a pointer to the device. The device has not
853  *	had its reference counter increased so the caller must be careful
854  *	about locking. The caller must hold either the RTNL semaphore
855  *	or @dev_base_lock.
856  */
857 
858 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
859 {
860 	struct net_device *dev;
861 	struct hlist_head *head = dev_index_hash(net, ifindex);
862 
863 	hlist_for_each_entry(dev, head, index_hlist)
864 		if (dev->ifindex == ifindex)
865 			return dev;
866 
867 	return NULL;
868 }
869 EXPORT_SYMBOL(__dev_get_by_index);
870 
871 /**
872  *	dev_get_by_index_rcu - find a device by its ifindex
873  *	@net: the applicable net namespace
874  *	@ifindex: index of device
875  *
876  *	Search for an interface by index. Returns %NULL if the device
877  *	is not found or a pointer to the device. The device has not
878  *	had its reference counter increased so the caller must be careful
879  *	about locking. The caller must hold RCU lock.
880  */
881 
882 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
883 {
884 	struct net_device *dev;
885 	struct hlist_head *head = dev_index_hash(net, ifindex);
886 
887 	hlist_for_each_entry_rcu(dev, head, index_hlist)
888 		if (dev->ifindex == ifindex)
889 			return dev;
890 
891 	return NULL;
892 }
893 EXPORT_SYMBOL(dev_get_by_index_rcu);
894 
895 
896 /**
897  *	dev_get_by_index - find a device by its ifindex
898  *	@net: the applicable net namespace
899  *	@ifindex: index of device
900  *
901  *	Search for an interface by index. Returns NULL if the device
902  *	is not found or a pointer to the device. The device returned has
903  *	had a reference added and the pointer is safe until the user calls
904  *	dev_put to indicate they have finished with it.
905  */
906 
907 struct net_device *dev_get_by_index(struct net *net, int ifindex)
908 {
909 	struct net_device *dev;
910 
911 	rcu_read_lock();
912 	dev = dev_get_by_index_rcu(net, ifindex);
913 	dev_hold(dev);
914 	rcu_read_unlock();
915 	return dev;
916 }
917 EXPORT_SYMBOL(dev_get_by_index);
918 
919 /**
920  *	dev_get_by_napi_id - find a device by napi_id
921  *	@napi_id: ID of the NAPI struct
922  *
923  *	Search for an interface by NAPI ID. Returns %NULL if the device
924  *	is not found or a pointer to the device. The device has not had
925  *	its reference counter increased so the caller must be careful
926  *	about locking. The caller must hold RCU lock.
927  */
928 
929 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
930 {
931 	struct napi_struct *napi;
932 
933 	WARN_ON_ONCE(!rcu_read_lock_held());
934 
935 	if (napi_id < MIN_NAPI_ID)
936 		return NULL;
937 
938 	napi = napi_by_id(napi_id);
939 
940 	return napi ? napi->dev : NULL;
941 }
942 EXPORT_SYMBOL(dev_get_by_napi_id);
943 
944 /**
945  *	netdev_get_name - get a netdevice name, knowing its ifindex.
946  *	@net: network namespace
947  *	@name: a pointer to the buffer where the name will be stored.
948  *	@ifindex: the ifindex of the interface to get the name from.
949  */
950 int netdev_get_name(struct net *net, char *name, int ifindex)
951 {
952 	struct net_device *dev;
953 	int ret;
954 
955 	down_read(&devnet_rename_sem);
956 	rcu_read_lock();
957 
958 	dev = dev_get_by_index_rcu(net, ifindex);
959 	if (!dev) {
960 		ret = -ENODEV;
961 		goto out;
962 	}
963 
964 	strcpy(name, dev->name);
965 
966 	ret = 0;
967 out:
968 	rcu_read_unlock();
969 	up_read(&devnet_rename_sem);
970 	return ret;
971 }
972 
973 /**
974  *	dev_getbyhwaddr_rcu - find a device by its hardware address
975  *	@net: the applicable net namespace
976  *	@type: media type of device
977  *	@ha: hardware address
978  *
979  *	Search for an interface by MAC address. Returns NULL if the device
980  *	is not found or a pointer to the device.
981  *	The caller must hold RCU or RTNL.
982  *	The returned device has not had its ref count increased
983  *	and the caller must therefore be careful about locking
984  *
985  */
986 
987 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
988 				       const char *ha)
989 {
990 	struct net_device *dev;
991 
992 	for_each_netdev_rcu(net, dev)
993 		if (dev->type == type &&
994 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
995 			return dev;
996 
997 	return NULL;
998 }
999 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1000 
1001 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1002 {
1003 	struct net_device *dev, *ret = NULL;
1004 
1005 	rcu_read_lock();
1006 	for_each_netdev_rcu(net, dev)
1007 		if (dev->type == type) {
1008 			dev_hold(dev);
1009 			ret = dev;
1010 			break;
1011 		}
1012 	rcu_read_unlock();
1013 	return ret;
1014 }
1015 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1016 
1017 /**
1018  *	__dev_get_by_flags - find any device with given flags
1019  *	@net: the applicable net namespace
1020  *	@if_flags: IFF_* values
1021  *	@mask: bitmask of bits in if_flags to check
1022  *
1023  *	Search for any interface with the given flags. Returns NULL if a device
1024  *	is not found or a pointer to the device. Must be called inside
1025  *	rtnl_lock(), and result refcount is unchanged.
1026  */
1027 
1028 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1029 				      unsigned short mask)
1030 {
1031 	struct net_device *dev, *ret;
1032 
1033 	ASSERT_RTNL();
1034 
1035 	ret = NULL;
1036 	for_each_netdev(net, dev) {
1037 		if (((dev->flags ^ if_flags) & mask) == 0) {
1038 			ret = dev;
1039 			break;
1040 		}
1041 	}
1042 	return ret;
1043 }
1044 EXPORT_SYMBOL(__dev_get_by_flags);
1045 
1046 /**
1047  *	dev_valid_name - check if name is okay for network device
1048  *	@name: name string
1049  *
1050  *	Network device names need to be valid file names to
1051  *	allow sysfs to work.  We also disallow any kind of
1052  *	whitespace.
1053  */
1054 bool dev_valid_name(const char *name)
1055 {
1056 	if (*name == '\0')
1057 		return false;
1058 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1059 		return false;
1060 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1061 		return false;
1062 
1063 	while (*name) {
1064 		if (*name == '/' || *name == ':' || isspace(*name))
1065 			return false;
1066 		name++;
1067 	}
1068 	return true;
1069 }
1070 EXPORT_SYMBOL(dev_valid_name);
1071 
1072 /**
1073  *	__dev_alloc_name - allocate a name for a device
1074  *	@net: network namespace to allocate the device name in
1075  *	@name: name format string
1076  *	@buf:  scratch buffer and result name string
1077  *
1078  *	Passed a format string - eg "lt%d" it will try and find a suitable
1079  *	id. It scans list of devices to build up a free map, then chooses
1080  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1081  *	while allocating the name and adding the device in order to avoid
1082  *	duplicates.
1083  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1084  *	Returns the number of the unit assigned or a negative errno code.
1085  */
1086 
1087 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1088 {
1089 	int i = 0;
1090 	const char *p;
1091 	const int max_netdevices = 8*PAGE_SIZE;
1092 	unsigned long *inuse;
1093 	struct net_device *d;
1094 
1095 	if (!dev_valid_name(name))
1096 		return -EINVAL;
1097 
1098 	p = strchr(name, '%');
1099 	if (p) {
1100 		/*
1101 		 * Verify the string as this thing may have come from
1102 		 * the user.  There must be either one "%d" and no other "%"
1103 		 * characters.
1104 		 */
1105 		if (p[1] != 'd' || strchr(p + 2, '%'))
1106 			return -EINVAL;
1107 
1108 		/* Use one page as a bit array of possible slots */
1109 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1110 		if (!inuse)
1111 			return -ENOMEM;
1112 
1113 		for_each_netdev(net, d) {
1114 			struct netdev_name_node *name_node;
1115 			list_for_each_entry(name_node, &d->name_node->list, list) {
1116 				if (!sscanf(name_node->name, name, &i))
1117 					continue;
1118 				if (i < 0 || i >= max_netdevices)
1119 					continue;
1120 
1121 				/*  avoid cases where sscanf is not exact inverse of printf */
1122 				snprintf(buf, IFNAMSIZ, name, i);
1123 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1124 					set_bit(i, inuse);
1125 			}
1126 			if (!sscanf(d->name, name, &i))
1127 				continue;
1128 			if (i < 0 || i >= max_netdevices)
1129 				continue;
1130 
1131 			/*  avoid cases where sscanf is not exact inverse of printf */
1132 			snprintf(buf, IFNAMSIZ, name, i);
1133 			if (!strncmp(buf, d->name, IFNAMSIZ))
1134 				set_bit(i, inuse);
1135 		}
1136 
1137 		i = find_first_zero_bit(inuse, max_netdevices);
1138 		free_page((unsigned long) inuse);
1139 	}
1140 
1141 	snprintf(buf, IFNAMSIZ, name, i);
1142 	if (!netdev_name_in_use(net, buf))
1143 		return i;
1144 
1145 	/* It is possible to run out of possible slots
1146 	 * when the name is long and there isn't enough space left
1147 	 * for the digits, or if all bits are used.
1148 	 */
1149 	return -ENFILE;
1150 }
1151 
1152 static int dev_alloc_name_ns(struct net *net,
1153 			     struct net_device *dev,
1154 			     const char *name)
1155 {
1156 	char buf[IFNAMSIZ];
1157 	int ret;
1158 
1159 	BUG_ON(!net);
1160 	ret = __dev_alloc_name(net, name, buf);
1161 	if (ret >= 0)
1162 		strlcpy(dev->name, buf, IFNAMSIZ);
1163 	return ret;
1164 }
1165 
1166 /**
1167  *	dev_alloc_name - allocate a name for a device
1168  *	@dev: device
1169  *	@name: name format string
1170  *
1171  *	Passed a format string - eg "lt%d" it will try and find a suitable
1172  *	id. It scans list of devices to build up a free map, then chooses
1173  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1174  *	while allocating the name and adding the device in order to avoid
1175  *	duplicates.
1176  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1177  *	Returns the number of the unit assigned or a negative errno code.
1178  */
1179 
1180 int dev_alloc_name(struct net_device *dev, const char *name)
1181 {
1182 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1183 }
1184 EXPORT_SYMBOL(dev_alloc_name);
1185 
1186 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1187 			      const char *name)
1188 {
1189 	BUG_ON(!net);
1190 
1191 	if (!dev_valid_name(name))
1192 		return -EINVAL;
1193 
1194 	if (strchr(name, '%'))
1195 		return dev_alloc_name_ns(net, dev, name);
1196 	else if (netdev_name_in_use(net, name))
1197 		return -EEXIST;
1198 	else if (dev->name != name)
1199 		strlcpy(dev->name, name, IFNAMSIZ);
1200 
1201 	return 0;
1202 }
1203 
1204 /**
1205  *	dev_change_name - change name of a device
1206  *	@dev: device
1207  *	@newname: name (or format string) must be at least IFNAMSIZ
1208  *
1209  *	Change name of a device, can pass format strings "eth%d".
1210  *	for wildcarding.
1211  */
1212 int dev_change_name(struct net_device *dev, const char *newname)
1213 {
1214 	unsigned char old_assign_type;
1215 	char oldname[IFNAMSIZ];
1216 	int err = 0;
1217 	int ret;
1218 	struct net *net;
1219 
1220 	ASSERT_RTNL();
1221 	BUG_ON(!dev_net(dev));
1222 
1223 	net = dev_net(dev);
1224 
1225 	/* Some auto-enslaved devices e.g. failover slaves are
1226 	 * special, as userspace might rename the device after
1227 	 * the interface had been brought up and running since
1228 	 * the point kernel initiated auto-enslavement. Allow
1229 	 * live name change even when these slave devices are
1230 	 * up and running.
1231 	 *
1232 	 * Typically, users of these auto-enslaving devices
1233 	 * don't actually care about slave name change, as
1234 	 * they are supposed to operate on master interface
1235 	 * directly.
1236 	 */
1237 	if (dev->flags & IFF_UP &&
1238 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1239 		return -EBUSY;
1240 
1241 	down_write(&devnet_rename_sem);
1242 
1243 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1244 		up_write(&devnet_rename_sem);
1245 		return 0;
1246 	}
1247 
1248 	memcpy(oldname, dev->name, IFNAMSIZ);
1249 
1250 	err = dev_get_valid_name(net, dev, newname);
1251 	if (err < 0) {
1252 		up_write(&devnet_rename_sem);
1253 		return err;
1254 	}
1255 
1256 	if (oldname[0] && !strchr(oldname, '%'))
1257 		netdev_info(dev, "renamed from %s\n", oldname);
1258 
1259 	old_assign_type = dev->name_assign_type;
1260 	dev->name_assign_type = NET_NAME_RENAMED;
1261 
1262 rollback:
1263 	ret = device_rename(&dev->dev, dev->name);
1264 	if (ret) {
1265 		memcpy(dev->name, oldname, IFNAMSIZ);
1266 		dev->name_assign_type = old_assign_type;
1267 		up_write(&devnet_rename_sem);
1268 		return ret;
1269 	}
1270 
1271 	up_write(&devnet_rename_sem);
1272 
1273 	netdev_adjacent_rename_links(dev, oldname);
1274 
1275 	write_lock_bh(&dev_base_lock);
1276 	netdev_name_node_del(dev->name_node);
1277 	write_unlock_bh(&dev_base_lock);
1278 
1279 	synchronize_rcu();
1280 
1281 	write_lock_bh(&dev_base_lock);
1282 	netdev_name_node_add(net, dev->name_node);
1283 	write_unlock_bh(&dev_base_lock);
1284 
1285 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1286 	ret = notifier_to_errno(ret);
1287 
1288 	if (ret) {
1289 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1290 		if (err >= 0) {
1291 			err = ret;
1292 			down_write(&devnet_rename_sem);
1293 			memcpy(dev->name, oldname, IFNAMSIZ);
1294 			memcpy(oldname, newname, IFNAMSIZ);
1295 			dev->name_assign_type = old_assign_type;
1296 			old_assign_type = NET_NAME_RENAMED;
1297 			goto rollback;
1298 		} else {
1299 			netdev_err(dev, "name change rollback failed: %d\n",
1300 				   ret);
1301 		}
1302 	}
1303 
1304 	return err;
1305 }
1306 
1307 /**
1308  *	dev_set_alias - change ifalias of a device
1309  *	@dev: device
1310  *	@alias: name up to IFALIASZ
1311  *	@len: limit of bytes to copy from info
1312  *
1313  *	Set ifalias for a device,
1314  */
1315 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1316 {
1317 	struct dev_ifalias *new_alias = NULL;
1318 
1319 	if (len >= IFALIASZ)
1320 		return -EINVAL;
1321 
1322 	if (len) {
1323 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1324 		if (!new_alias)
1325 			return -ENOMEM;
1326 
1327 		memcpy(new_alias->ifalias, alias, len);
1328 		new_alias->ifalias[len] = 0;
1329 	}
1330 
1331 	mutex_lock(&ifalias_mutex);
1332 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1333 					mutex_is_locked(&ifalias_mutex));
1334 	mutex_unlock(&ifalias_mutex);
1335 
1336 	if (new_alias)
1337 		kfree_rcu(new_alias, rcuhead);
1338 
1339 	return len;
1340 }
1341 EXPORT_SYMBOL(dev_set_alias);
1342 
1343 /**
1344  *	dev_get_alias - get ifalias of a device
1345  *	@dev: device
1346  *	@name: buffer to store name of ifalias
1347  *	@len: size of buffer
1348  *
1349  *	get ifalias for a device.  Caller must make sure dev cannot go
1350  *	away,  e.g. rcu read lock or own a reference count to device.
1351  */
1352 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1353 {
1354 	const struct dev_ifalias *alias;
1355 	int ret = 0;
1356 
1357 	rcu_read_lock();
1358 	alias = rcu_dereference(dev->ifalias);
1359 	if (alias)
1360 		ret = snprintf(name, len, "%s", alias->ifalias);
1361 	rcu_read_unlock();
1362 
1363 	return ret;
1364 }
1365 
1366 /**
1367  *	netdev_features_change - device changes features
1368  *	@dev: device to cause notification
1369  *
1370  *	Called to indicate a device has changed features.
1371  */
1372 void netdev_features_change(struct net_device *dev)
1373 {
1374 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1375 }
1376 EXPORT_SYMBOL(netdev_features_change);
1377 
1378 /**
1379  *	netdev_state_change - device changes state
1380  *	@dev: device to cause notification
1381  *
1382  *	Called to indicate a device has changed state. This function calls
1383  *	the notifier chains for netdev_chain and sends a NEWLINK message
1384  *	to the routing socket.
1385  */
1386 void netdev_state_change(struct net_device *dev)
1387 {
1388 	if (dev->flags & IFF_UP) {
1389 		struct netdev_notifier_change_info change_info = {
1390 			.info.dev = dev,
1391 		};
1392 
1393 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1394 					      &change_info.info);
1395 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1396 	}
1397 }
1398 EXPORT_SYMBOL(netdev_state_change);
1399 
1400 /**
1401  * __netdev_notify_peers - notify network peers about existence of @dev,
1402  * to be called when rtnl lock is already held.
1403  * @dev: network device
1404  *
1405  * Generate traffic such that interested network peers are aware of
1406  * @dev, such as by generating a gratuitous ARP. This may be used when
1407  * a device wants to inform the rest of the network about some sort of
1408  * reconfiguration such as a failover event or virtual machine
1409  * migration.
1410  */
1411 void __netdev_notify_peers(struct net_device *dev)
1412 {
1413 	ASSERT_RTNL();
1414 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1415 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1416 }
1417 EXPORT_SYMBOL(__netdev_notify_peers);
1418 
1419 /**
1420  * netdev_notify_peers - notify network peers about existence of @dev
1421  * @dev: network device
1422  *
1423  * Generate traffic such that interested network peers are aware of
1424  * @dev, such as by generating a gratuitous ARP. This may be used when
1425  * a device wants to inform the rest of the network about some sort of
1426  * reconfiguration such as a failover event or virtual machine
1427  * migration.
1428  */
1429 void netdev_notify_peers(struct net_device *dev)
1430 {
1431 	rtnl_lock();
1432 	__netdev_notify_peers(dev);
1433 	rtnl_unlock();
1434 }
1435 EXPORT_SYMBOL(netdev_notify_peers);
1436 
1437 static int napi_threaded_poll(void *data);
1438 
1439 static int napi_kthread_create(struct napi_struct *n)
1440 {
1441 	int err = 0;
1442 
1443 	/* Create and wake up the kthread once to put it in
1444 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1445 	 * warning and work with loadavg.
1446 	 */
1447 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1448 				n->dev->name, n->napi_id);
1449 	if (IS_ERR(n->thread)) {
1450 		err = PTR_ERR(n->thread);
1451 		pr_err("kthread_run failed with err %d\n", err);
1452 		n->thread = NULL;
1453 	}
1454 
1455 	return err;
1456 }
1457 
1458 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1459 {
1460 	const struct net_device_ops *ops = dev->netdev_ops;
1461 	int ret;
1462 
1463 	ASSERT_RTNL();
1464 
1465 	if (!netif_device_present(dev)) {
1466 		/* may be detached because parent is runtime-suspended */
1467 		if (dev->dev.parent)
1468 			pm_runtime_resume(dev->dev.parent);
1469 		if (!netif_device_present(dev))
1470 			return -ENODEV;
1471 	}
1472 
1473 	/* Block netpoll from trying to do any rx path servicing.
1474 	 * If we don't do this there is a chance ndo_poll_controller
1475 	 * or ndo_poll may be running while we open the device
1476 	 */
1477 	netpoll_poll_disable(dev);
1478 
1479 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1480 	ret = notifier_to_errno(ret);
1481 	if (ret)
1482 		return ret;
1483 
1484 	set_bit(__LINK_STATE_START, &dev->state);
1485 
1486 	if (ops->ndo_validate_addr)
1487 		ret = ops->ndo_validate_addr(dev);
1488 
1489 	if (!ret && ops->ndo_open)
1490 		ret = ops->ndo_open(dev);
1491 
1492 	netpoll_poll_enable(dev);
1493 
1494 	if (ret)
1495 		clear_bit(__LINK_STATE_START, &dev->state);
1496 	else {
1497 		dev->flags |= IFF_UP;
1498 		dev_set_rx_mode(dev);
1499 		dev_activate(dev);
1500 		add_device_randomness(dev->dev_addr, dev->addr_len);
1501 	}
1502 
1503 	return ret;
1504 }
1505 
1506 /**
1507  *	dev_open	- prepare an interface for use.
1508  *	@dev: device to open
1509  *	@extack: netlink extended ack
1510  *
1511  *	Takes a device from down to up state. The device's private open
1512  *	function is invoked and then the multicast lists are loaded. Finally
1513  *	the device is moved into the up state and a %NETDEV_UP message is
1514  *	sent to the netdev notifier chain.
1515  *
1516  *	Calling this function on an active interface is a nop. On a failure
1517  *	a negative errno code is returned.
1518  */
1519 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1520 {
1521 	int ret;
1522 
1523 	if (dev->flags & IFF_UP)
1524 		return 0;
1525 
1526 	ret = __dev_open(dev, extack);
1527 	if (ret < 0)
1528 		return ret;
1529 
1530 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1531 	call_netdevice_notifiers(NETDEV_UP, dev);
1532 
1533 	return ret;
1534 }
1535 EXPORT_SYMBOL(dev_open);
1536 
1537 static void __dev_close_many(struct list_head *head)
1538 {
1539 	struct net_device *dev;
1540 
1541 	ASSERT_RTNL();
1542 	might_sleep();
1543 
1544 	list_for_each_entry(dev, head, close_list) {
1545 		/* Temporarily disable netpoll until the interface is down */
1546 		netpoll_poll_disable(dev);
1547 
1548 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1549 
1550 		clear_bit(__LINK_STATE_START, &dev->state);
1551 
1552 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1553 		 * can be even on different cpu. So just clear netif_running().
1554 		 *
1555 		 * dev->stop() will invoke napi_disable() on all of it's
1556 		 * napi_struct instances on this device.
1557 		 */
1558 		smp_mb__after_atomic(); /* Commit netif_running(). */
1559 	}
1560 
1561 	dev_deactivate_many(head);
1562 
1563 	list_for_each_entry(dev, head, close_list) {
1564 		const struct net_device_ops *ops = dev->netdev_ops;
1565 
1566 		/*
1567 		 *	Call the device specific close. This cannot fail.
1568 		 *	Only if device is UP
1569 		 *
1570 		 *	We allow it to be called even after a DETACH hot-plug
1571 		 *	event.
1572 		 */
1573 		if (ops->ndo_stop)
1574 			ops->ndo_stop(dev);
1575 
1576 		dev->flags &= ~IFF_UP;
1577 		netpoll_poll_enable(dev);
1578 	}
1579 }
1580 
1581 static void __dev_close(struct net_device *dev)
1582 {
1583 	LIST_HEAD(single);
1584 
1585 	list_add(&dev->close_list, &single);
1586 	__dev_close_many(&single);
1587 	list_del(&single);
1588 }
1589 
1590 void dev_close_many(struct list_head *head, bool unlink)
1591 {
1592 	struct net_device *dev, *tmp;
1593 
1594 	/* Remove the devices that don't need to be closed */
1595 	list_for_each_entry_safe(dev, tmp, head, close_list)
1596 		if (!(dev->flags & IFF_UP))
1597 			list_del_init(&dev->close_list);
1598 
1599 	__dev_close_many(head);
1600 
1601 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1602 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1603 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1604 		if (unlink)
1605 			list_del_init(&dev->close_list);
1606 	}
1607 }
1608 EXPORT_SYMBOL(dev_close_many);
1609 
1610 /**
1611  *	dev_close - shutdown an interface.
1612  *	@dev: device to shutdown
1613  *
1614  *	This function moves an active device into down state. A
1615  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1616  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1617  *	chain.
1618  */
1619 void dev_close(struct net_device *dev)
1620 {
1621 	if (dev->flags & IFF_UP) {
1622 		LIST_HEAD(single);
1623 
1624 		list_add(&dev->close_list, &single);
1625 		dev_close_many(&single, true);
1626 		list_del(&single);
1627 	}
1628 }
1629 EXPORT_SYMBOL(dev_close);
1630 
1631 
1632 /**
1633  *	dev_disable_lro - disable Large Receive Offload on a device
1634  *	@dev: device
1635  *
1636  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1637  *	called under RTNL.  This is needed if received packets may be
1638  *	forwarded to another interface.
1639  */
1640 void dev_disable_lro(struct net_device *dev)
1641 {
1642 	struct net_device *lower_dev;
1643 	struct list_head *iter;
1644 
1645 	dev->wanted_features &= ~NETIF_F_LRO;
1646 	netdev_update_features(dev);
1647 
1648 	if (unlikely(dev->features & NETIF_F_LRO))
1649 		netdev_WARN(dev, "failed to disable LRO!\n");
1650 
1651 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1652 		dev_disable_lro(lower_dev);
1653 }
1654 EXPORT_SYMBOL(dev_disable_lro);
1655 
1656 /**
1657  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1658  *	@dev: device
1659  *
1660  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1661  *	called under RTNL.  This is needed if Generic XDP is installed on
1662  *	the device.
1663  */
1664 static void dev_disable_gro_hw(struct net_device *dev)
1665 {
1666 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1667 	netdev_update_features(dev);
1668 
1669 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1670 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1671 }
1672 
1673 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1674 {
1675 #define N(val) 						\
1676 	case NETDEV_##val:				\
1677 		return "NETDEV_" __stringify(val);
1678 	switch (cmd) {
1679 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1680 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1681 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1682 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1683 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1684 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1685 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1686 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1687 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1688 	N(PRE_CHANGEADDR)
1689 	}
1690 #undef N
1691 	return "UNKNOWN_NETDEV_EVENT";
1692 }
1693 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1694 
1695 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1696 				   struct net_device *dev)
1697 {
1698 	struct netdev_notifier_info info = {
1699 		.dev = dev,
1700 	};
1701 
1702 	return nb->notifier_call(nb, val, &info);
1703 }
1704 
1705 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1706 					     struct net_device *dev)
1707 {
1708 	int err;
1709 
1710 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1711 	err = notifier_to_errno(err);
1712 	if (err)
1713 		return err;
1714 
1715 	if (!(dev->flags & IFF_UP))
1716 		return 0;
1717 
1718 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1719 	return 0;
1720 }
1721 
1722 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1723 						struct net_device *dev)
1724 {
1725 	if (dev->flags & IFF_UP) {
1726 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1727 					dev);
1728 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1729 	}
1730 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1731 }
1732 
1733 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1734 						 struct net *net)
1735 {
1736 	struct net_device *dev;
1737 	int err;
1738 
1739 	for_each_netdev(net, dev) {
1740 		err = call_netdevice_register_notifiers(nb, dev);
1741 		if (err)
1742 			goto rollback;
1743 	}
1744 	return 0;
1745 
1746 rollback:
1747 	for_each_netdev_continue_reverse(net, dev)
1748 		call_netdevice_unregister_notifiers(nb, dev);
1749 	return err;
1750 }
1751 
1752 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1753 						    struct net *net)
1754 {
1755 	struct net_device *dev;
1756 
1757 	for_each_netdev(net, dev)
1758 		call_netdevice_unregister_notifiers(nb, dev);
1759 }
1760 
1761 static int dev_boot_phase = 1;
1762 
1763 /**
1764  * register_netdevice_notifier - register a network notifier block
1765  * @nb: notifier
1766  *
1767  * Register a notifier to be called when network device events occur.
1768  * The notifier passed is linked into the kernel structures and must
1769  * not be reused until it has been unregistered. A negative errno code
1770  * is returned on a failure.
1771  *
1772  * When registered all registration and up events are replayed
1773  * to the new notifier to allow device to have a race free
1774  * view of the network device list.
1775  */
1776 
1777 int register_netdevice_notifier(struct notifier_block *nb)
1778 {
1779 	struct net *net;
1780 	int err;
1781 
1782 	/* Close race with setup_net() and cleanup_net() */
1783 	down_write(&pernet_ops_rwsem);
1784 	rtnl_lock();
1785 	err = raw_notifier_chain_register(&netdev_chain, nb);
1786 	if (err)
1787 		goto unlock;
1788 	if (dev_boot_phase)
1789 		goto unlock;
1790 	for_each_net(net) {
1791 		err = call_netdevice_register_net_notifiers(nb, net);
1792 		if (err)
1793 			goto rollback;
1794 	}
1795 
1796 unlock:
1797 	rtnl_unlock();
1798 	up_write(&pernet_ops_rwsem);
1799 	return err;
1800 
1801 rollback:
1802 	for_each_net_continue_reverse(net)
1803 		call_netdevice_unregister_net_notifiers(nb, net);
1804 
1805 	raw_notifier_chain_unregister(&netdev_chain, nb);
1806 	goto unlock;
1807 }
1808 EXPORT_SYMBOL(register_netdevice_notifier);
1809 
1810 /**
1811  * unregister_netdevice_notifier - unregister a network notifier block
1812  * @nb: notifier
1813  *
1814  * Unregister a notifier previously registered by
1815  * register_netdevice_notifier(). The notifier is unlinked into the
1816  * kernel structures and may then be reused. A negative errno code
1817  * is returned on a failure.
1818  *
1819  * After unregistering unregister and down device events are synthesized
1820  * for all devices on the device list to the removed notifier to remove
1821  * the need for special case cleanup code.
1822  */
1823 
1824 int unregister_netdevice_notifier(struct notifier_block *nb)
1825 {
1826 	struct net *net;
1827 	int err;
1828 
1829 	/* Close race with setup_net() and cleanup_net() */
1830 	down_write(&pernet_ops_rwsem);
1831 	rtnl_lock();
1832 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1833 	if (err)
1834 		goto unlock;
1835 
1836 	for_each_net(net)
1837 		call_netdevice_unregister_net_notifiers(nb, net);
1838 
1839 unlock:
1840 	rtnl_unlock();
1841 	up_write(&pernet_ops_rwsem);
1842 	return err;
1843 }
1844 EXPORT_SYMBOL(unregister_netdevice_notifier);
1845 
1846 static int __register_netdevice_notifier_net(struct net *net,
1847 					     struct notifier_block *nb,
1848 					     bool ignore_call_fail)
1849 {
1850 	int err;
1851 
1852 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1853 	if (err)
1854 		return err;
1855 	if (dev_boot_phase)
1856 		return 0;
1857 
1858 	err = call_netdevice_register_net_notifiers(nb, net);
1859 	if (err && !ignore_call_fail)
1860 		goto chain_unregister;
1861 
1862 	return 0;
1863 
1864 chain_unregister:
1865 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1866 	return err;
1867 }
1868 
1869 static int __unregister_netdevice_notifier_net(struct net *net,
1870 					       struct notifier_block *nb)
1871 {
1872 	int err;
1873 
1874 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1875 	if (err)
1876 		return err;
1877 
1878 	call_netdevice_unregister_net_notifiers(nb, net);
1879 	return 0;
1880 }
1881 
1882 /**
1883  * register_netdevice_notifier_net - register a per-netns network notifier block
1884  * @net: network namespace
1885  * @nb: notifier
1886  *
1887  * Register a notifier to be called when network device events occur.
1888  * The notifier passed is linked into the kernel structures and must
1889  * not be reused until it has been unregistered. A negative errno code
1890  * is returned on a failure.
1891  *
1892  * When registered all registration and up events are replayed
1893  * to the new notifier to allow device to have a race free
1894  * view of the network device list.
1895  */
1896 
1897 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1898 {
1899 	int err;
1900 
1901 	rtnl_lock();
1902 	err = __register_netdevice_notifier_net(net, nb, false);
1903 	rtnl_unlock();
1904 	return err;
1905 }
1906 EXPORT_SYMBOL(register_netdevice_notifier_net);
1907 
1908 /**
1909  * unregister_netdevice_notifier_net - unregister a per-netns
1910  *                                     network notifier block
1911  * @net: network namespace
1912  * @nb: notifier
1913  *
1914  * Unregister a notifier previously registered by
1915  * register_netdevice_notifier(). The notifier is unlinked into the
1916  * kernel structures and may then be reused. A negative errno code
1917  * is returned on a failure.
1918  *
1919  * After unregistering unregister and down device events are synthesized
1920  * for all devices on the device list to the removed notifier to remove
1921  * the need for special case cleanup code.
1922  */
1923 
1924 int unregister_netdevice_notifier_net(struct net *net,
1925 				      struct notifier_block *nb)
1926 {
1927 	int err;
1928 
1929 	rtnl_lock();
1930 	err = __unregister_netdevice_notifier_net(net, nb);
1931 	rtnl_unlock();
1932 	return err;
1933 }
1934 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1935 
1936 int register_netdevice_notifier_dev_net(struct net_device *dev,
1937 					struct notifier_block *nb,
1938 					struct netdev_net_notifier *nn)
1939 {
1940 	int err;
1941 
1942 	rtnl_lock();
1943 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1944 	if (!err) {
1945 		nn->nb = nb;
1946 		list_add(&nn->list, &dev->net_notifier_list);
1947 	}
1948 	rtnl_unlock();
1949 	return err;
1950 }
1951 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1952 
1953 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1954 					  struct notifier_block *nb,
1955 					  struct netdev_net_notifier *nn)
1956 {
1957 	int err;
1958 
1959 	rtnl_lock();
1960 	list_del(&nn->list);
1961 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1962 	rtnl_unlock();
1963 	return err;
1964 }
1965 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1966 
1967 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1968 					     struct net *net)
1969 {
1970 	struct netdev_net_notifier *nn;
1971 
1972 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1973 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1974 		__register_netdevice_notifier_net(net, nn->nb, true);
1975 	}
1976 }
1977 
1978 /**
1979  *	call_netdevice_notifiers_info - call all network notifier blocks
1980  *	@val: value passed unmodified to notifier function
1981  *	@info: notifier information data
1982  *
1983  *	Call all network notifier blocks.  Parameters and return value
1984  *	are as for raw_notifier_call_chain().
1985  */
1986 
1987 static int call_netdevice_notifiers_info(unsigned long val,
1988 					 struct netdev_notifier_info *info)
1989 {
1990 	struct net *net = dev_net(info->dev);
1991 	int ret;
1992 
1993 	ASSERT_RTNL();
1994 
1995 	/* Run per-netns notifier block chain first, then run the global one.
1996 	 * Hopefully, one day, the global one is going to be removed after
1997 	 * all notifier block registrators get converted to be per-netns.
1998 	 */
1999 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2000 	if (ret & NOTIFY_STOP_MASK)
2001 		return ret;
2002 	return raw_notifier_call_chain(&netdev_chain, val, info);
2003 }
2004 
2005 static int call_netdevice_notifiers_extack(unsigned long val,
2006 					   struct net_device *dev,
2007 					   struct netlink_ext_ack *extack)
2008 {
2009 	struct netdev_notifier_info info = {
2010 		.dev = dev,
2011 		.extack = extack,
2012 	};
2013 
2014 	return call_netdevice_notifiers_info(val, &info);
2015 }
2016 
2017 /**
2018  *	call_netdevice_notifiers - call all network notifier blocks
2019  *      @val: value passed unmodified to notifier function
2020  *      @dev: net_device pointer passed unmodified to notifier function
2021  *
2022  *	Call all network notifier blocks.  Parameters and return value
2023  *	are as for raw_notifier_call_chain().
2024  */
2025 
2026 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2027 {
2028 	return call_netdevice_notifiers_extack(val, dev, NULL);
2029 }
2030 EXPORT_SYMBOL(call_netdevice_notifiers);
2031 
2032 /**
2033  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2034  *	@val: value passed unmodified to notifier function
2035  *	@dev: net_device pointer passed unmodified to notifier function
2036  *	@arg: additional u32 argument passed to the notifier function
2037  *
2038  *	Call all network notifier blocks.  Parameters and return value
2039  *	are as for raw_notifier_call_chain().
2040  */
2041 static int call_netdevice_notifiers_mtu(unsigned long val,
2042 					struct net_device *dev, u32 arg)
2043 {
2044 	struct netdev_notifier_info_ext info = {
2045 		.info.dev = dev,
2046 		.ext.mtu = arg,
2047 	};
2048 
2049 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2050 
2051 	return call_netdevice_notifiers_info(val, &info.info);
2052 }
2053 
2054 #ifdef CONFIG_NET_INGRESS
2055 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2056 
2057 void net_inc_ingress_queue(void)
2058 {
2059 	static_branch_inc(&ingress_needed_key);
2060 }
2061 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2062 
2063 void net_dec_ingress_queue(void)
2064 {
2065 	static_branch_dec(&ingress_needed_key);
2066 }
2067 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2068 #endif
2069 
2070 #ifdef CONFIG_NET_EGRESS
2071 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2072 
2073 void net_inc_egress_queue(void)
2074 {
2075 	static_branch_inc(&egress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2078 
2079 void net_dec_egress_queue(void)
2080 {
2081 	static_branch_dec(&egress_needed_key);
2082 }
2083 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2084 #endif
2085 
2086 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2087 #ifdef CONFIG_JUMP_LABEL
2088 static atomic_t netstamp_needed_deferred;
2089 static atomic_t netstamp_wanted;
2090 static void netstamp_clear(struct work_struct *work)
2091 {
2092 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2093 	int wanted;
2094 
2095 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2096 	if (wanted > 0)
2097 		static_branch_enable(&netstamp_needed_key);
2098 	else
2099 		static_branch_disable(&netstamp_needed_key);
2100 }
2101 static DECLARE_WORK(netstamp_work, netstamp_clear);
2102 #endif
2103 
2104 void net_enable_timestamp(void)
2105 {
2106 #ifdef CONFIG_JUMP_LABEL
2107 	int wanted;
2108 
2109 	while (1) {
2110 		wanted = atomic_read(&netstamp_wanted);
2111 		if (wanted <= 0)
2112 			break;
2113 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2114 			return;
2115 	}
2116 	atomic_inc(&netstamp_needed_deferred);
2117 	schedule_work(&netstamp_work);
2118 #else
2119 	static_branch_inc(&netstamp_needed_key);
2120 #endif
2121 }
2122 EXPORT_SYMBOL(net_enable_timestamp);
2123 
2124 void net_disable_timestamp(void)
2125 {
2126 #ifdef CONFIG_JUMP_LABEL
2127 	int wanted;
2128 
2129 	while (1) {
2130 		wanted = atomic_read(&netstamp_wanted);
2131 		if (wanted <= 1)
2132 			break;
2133 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2134 			return;
2135 	}
2136 	atomic_dec(&netstamp_needed_deferred);
2137 	schedule_work(&netstamp_work);
2138 #else
2139 	static_branch_dec(&netstamp_needed_key);
2140 #endif
2141 }
2142 EXPORT_SYMBOL(net_disable_timestamp);
2143 
2144 static inline void net_timestamp_set(struct sk_buff *skb)
2145 {
2146 	skb->tstamp = 0;
2147 	if (static_branch_unlikely(&netstamp_needed_key))
2148 		__net_timestamp(skb);
2149 }
2150 
2151 #define net_timestamp_check(COND, SKB)				\
2152 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2153 		if ((COND) && !(SKB)->tstamp)			\
2154 			__net_timestamp(SKB);			\
2155 	}							\
2156 
2157 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2158 {
2159 	return __is_skb_forwardable(dev, skb, true);
2160 }
2161 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2162 
2163 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2164 			      bool check_mtu)
2165 {
2166 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2167 
2168 	if (likely(!ret)) {
2169 		skb->protocol = eth_type_trans(skb, dev);
2170 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2171 	}
2172 
2173 	return ret;
2174 }
2175 
2176 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2177 {
2178 	return __dev_forward_skb2(dev, skb, true);
2179 }
2180 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2181 
2182 /**
2183  * dev_forward_skb - loopback an skb to another netif
2184  *
2185  * @dev: destination network device
2186  * @skb: buffer to forward
2187  *
2188  * return values:
2189  *	NET_RX_SUCCESS	(no congestion)
2190  *	NET_RX_DROP     (packet was dropped, but freed)
2191  *
2192  * dev_forward_skb can be used for injecting an skb from the
2193  * start_xmit function of one device into the receive queue
2194  * of another device.
2195  *
2196  * The receiving device may be in another namespace, so
2197  * we have to clear all information in the skb that could
2198  * impact namespace isolation.
2199  */
2200 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2201 {
2202 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2203 }
2204 EXPORT_SYMBOL_GPL(dev_forward_skb);
2205 
2206 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2207 {
2208 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2209 }
2210 
2211 static inline int deliver_skb(struct sk_buff *skb,
2212 			      struct packet_type *pt_prev,
2213 			      struct net_device *orig_dev)
2214 {
2215 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2216 		return -ENOMEM;
2217 	refcount_inc(&skb->users);
2218 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2219 }
2220 
2221 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2222 					  struct packet_type **pt,
2223 					  struct net_device *orig_dev,
2224 					  __be16 type,
2225 					  struct list_head *ptype_list)
2226 {
2227 	struct packet_type *ptype, *pt_prev = *pt;
2228 
2229 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2230 		if (ptype->type != type)
2231 			continue;
2232 		if (pt_prev)
2233 			deliver_skb(skb, pt_prev, orig_dev);
2234 		pt_prev = ptype;
2235 	}
2236 	*pt = pt_prev;
2237 }
2238 
2239 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2240 {
2241 	if (!ptype->af_packet_priv || !skb->sk)
2242 		return false;
2243 
2244 	if (ptype->id_match)
2245 		return ptype->id_match(ptype, skb->sk);
2246 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2247 		return true;
2248 
2249 	return false;
2250 }
2251 
2252 /**
2253  * dev_nit_active - return true if any network interface taps are in use
2254  *
2255  * @dev: network device to check for the presence of taps
2256  */
2257 bool dev_nit_active(struct net_device *dev)
2258 {
2259 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2260 }
2261 EXPORT_SYMBOL_GPL(dev_nit_active);
2262 
2263 /*
2264  *	Support routine. Sends outgoing frames to any network
2265  *	taps currently in use.
2266  */
2267 
2268 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2269 {
2270 	struct packet_type *ptype;
2271 	struct sk_buff *skb2 = NULL;
2272 	struct packet_type *pt_prev = NULL;
2273 	struct list_head *ptype_list = &ptype_all;
2274 
2275 	rcu_read_lock();
2276 again:
2277 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2278 		if (ptype->ignore_outgoing)
2279 			continue;
2280 
2281 		/* Never send packets back to the socket
2282 		 * they originated from - MvS (miquels@drinkel.ow.org)
2283 		 */
2284 		if (skb_loop_sk(ptype, skb))
2285 			continue;
2286 
2287 		if (pt_prev) {
2288 			deliver_skb(skb2, pt_prev, skb->dev);
2289 			pt_prev = ptype;
2290 			continue;
2291 		}
2292 
2293 		/* need to clone skb, done only once */
2294 		skb2 = skb_clone(skb, GFP_ATOMIC);
2295 		if (!skb2)
2296 			goto out_unlock;
2297 
2298 		net_timestamp_set(skb2);
2299 
2300 		/* skb->nh should be correctly
2301 		 * set by sender, so that the second statement is
2302 		 * just protection against buggy protocols.
2303 		 */
2304 		skb_reset_mac_header(skb2);
2305 
2306 		if (skb_network_header(skb2) < skb2->data ||
2307 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2308 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2309 					     ntohs(skb2->protocol),
2310 					     dev->name);
2311 			skb_reset_network_header(skb2);
2312 		}
2313 
2314 		skb2->transport_header = skb2->network_header;
2315 		skb2->pkt_type = PACKET_OUTGOING;
2316 		pt_prev = ptype;
2317 	}
2318 
2319 	if (ptype_list == &ptype_all) {
2320 		ptype_list = &dev->ptype_all;
2321 		goto again;
2322 	}
2323 out_unlock:
2324 	if (pt_prev) {
2325 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2326 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2327 		else
2328 			kfree_skb(skb2);
2329 	}
2330 	rcu_read_unlock();
2331 }
2332 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2333 
2334 /**
2335  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2336  * @dev: Network device
2337  * @txq: number of queues available
2338  *
2339  * If real_num_tx_queues is changed the tc mappings may no longer be
2340  * valid. To resolve this verify the tc mapping remains valid and if
2341  * not NULL the mapping. With no priorities mapping to this
2342  * offset/count pair it will no longer be used. In the worst case TC0
2343  * is invalid nothing can be done so disable priority mappings. If is
2344  * expected that drivers will fix this mapping if they can before
2345  * calling netif_set_real_num_tx_queues.
2346  */
2347 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2348 {
2349 	int i;
2350 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2351 
2352 	/* If TC0 is invalidated disable TC mapping */
2353 	if (tc->offset + tc->count > txq) {
2354 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2355 		dev->num_tc = 0;
2356 		return;
2357 	}
2358 
2359 	/* Invalidated prio to tc mappings set to TC0 */
2360 	for (i = 1; i < TC_BITMASK + 1; i++) {
2361 		int q = netdev_get_prio_tc_map(dev, i);
2362 
2363 		tc = &dev->tc_to_txq[q];
2364 		if (tc->offset + tc->count > txq) {
2365 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2366 				    i, q);
2367 			netdev_set_prio_tc_map(dev, i, 0);
2368 		}
2369 	}
2370 }
2371 
2372 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2373 {
2374 	if (dev->num_tc) {
2375 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2376 		int i;
2377 
2378 		/* walk through the TCs and see if it falls into any of them */
2379 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2380 			if ((txq - tc->offset) < tc->count)
2381 				return i;
2382 		}
2383 
2384 		/* didn't find it, just return -1 to indicate no match */
2385 		return -1;
2386 	}
2387 
2388 	return 0;
2389 }
2390 EXPORT_SYMBOL(netdev_txq_to_tc);
2391 
2392 #ifdef CONFIG_XPS
2393 static struct static_key xps_needed __read_mostly;
2394 static struct static_key xps_rxqs_needed __read_mostly;
2395 static DEFINE_MUTEX(xps_map_mutex);
2396 #define xmap_dereference(P)		\
2397 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2398 
2399 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2400 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2401 {
2402 	struct xps_map *map = NULL;
2403 	int pos;
2404 
2405 	if (dev_maps)
2406 		map = xmap_dereference(dev_maps->attr_map[tci]);
2407 	if (!map)
2408 		return false;
2409 
2410 	for (pos = map->len; pos--;) {
2411 		if (map->queues[pos] != index)
2412 			continue;
2413 
2414 		if (map->len > 1) {
2415 			map->queues[pos] = map->queues[--map->len];
2416 			break;
2417 		}
2418 
2419 		if (old_maps)
2420 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2421 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2422 		kfree_rcu(map, rcu);
2423 		return false;
2424 	}
2425 
2426 	return true;
2427 }
2428 
2429 static bool remove_xps_queue_cpu(struct net_device *dev,
2430 				 struct xps_dev_maps *dev_maps,
2431 				 int cpu, u16 offset, u16 count)
2432 {
2433 	int num_tc = dev_maps->num_tc;
2434 	bool active = false;
2435 	int tci;
2436 
2437 	for (tci = cpu * num_tc; num_tc--; tci++) {
2438 		int i, j;
2439 
2440 		for (i = count, j = offset; i--; j++) {
2441 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2442 				break;
2443 		}
2444 
2445 		active |= i < 0;
2446 	}
2447 
2448 	return active;
2449 }
2450 
2451 static void reset_xps_maps(struct net_device *dev,
2452 			   struct xps_dev_maps *dev_maps,
2453 			   enum xps_map_type type)
2454 {
2455 	static_key_slow_dec_cpuslocked(&xps_needed);
2456 	if (type == XPS_RXQS)
2457 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2458 
2459 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2460 
2461 	kfree_rcu(dev_maps, rcu);
2462 }
2463 
2464 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2465 			   u16 offset, u16 count)
2466 {
2467 	struct xps_dev_maps *dev_maps;
2468 	bool active = false;
2469 	int i, j;
2470 
2471 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2472 	if (!dev_maps)
2473 		return;
2474 
2475 	for (j = 0; j < dev_maps->nr_ids; j++)
2476 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2477 	if (!active)
2478 		reset_xps_maps(dev, dev_maps, type);
2479 
2480 	if (type == XPS_CPUS) {
2481 		for (i = offset + (count - 1); count--; i--)
2482 			netdev_queue_numa_node_write(
2483 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2484 	}
2485 }
2486 
2487 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2488 				   u16 count)
2489 {
2490 	if (!static_key_false(&xps_needed))
2491 		return;
2492 
2493 	cpus_read_lock();
2494 	mutex_lock(&xps_map_mutex);
2495 
2496 	if (static_key_false(&xps_rxqs_needed))
2497 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2498 
2499 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2500 
2501 	mutex_unlock(&xps_map_mutex);
2502 	cpus_read_unlock();
2503 }
2504 
2505 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2506 {
2507 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2508 }
2509 
2510 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2511 				      u16 index, bool is_rxqs_map)
2512 {
2513 	struct xps_map *new_map;
2514 	int alloc_len = XPS_MIN_MAP_ALLOC;
2515 	int i, pos;
2516 
2517 	for (pos = 0; map && pos < map->len; pos++) {
2518 		if (map->queues[pos] != index)
2519 			continue;
2520 		return map;
2521 	}
2522 
2523 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2524 	if (map) {
2525 		if (pos < map->alloc_len)
2526 			return map;
2527 
2528 		alloc_len = map->alloc_len * 2;
2529 	}
2530 
2531 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2532 	 *  map
2533 	 */
2534 	if (is_rxqs_map)
2535 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2536 	else
2537 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2538 				       cpu_to_node(attr_index));
2539 	if (!new_map)
2540 		return NULL;
2541 
2542 	for (i = 0; i < pos; i++)
2543 		new_map->queues[i] = map->queues[i];
2544 	new_map->alloc_len = alloc_len;
2545 	new_map->len = pos;
2546 
2547 	return new_map;
2548 }
2549 
2550 /* Copy xps maps at a given index */
2551 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2552 			      struct xps_dev_maps *new_dev_maps, int index,
2553 			      int tc, bool skip_tc)
2554 {
2555 	int i, tci = index * dev_maps->num_tc;
2556 	struct xps_map *map;
2557 
2558 	/* copy maps belonging to foreign traffic classes */
2559 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2560 		if (i == tc && skip_tc)
2561 			continue;
2562 
2563 		/* fill in the new device map from the old device map */
2564 		map = xmap_dereference(dev_maps->attr_map[tci]);
2565 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2566 	}
2567 }
2568 
2569 /* Must be called under cpus_read_lock */
2570 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2571 			  u16 index, enum xps_map_type type)
2572 {
2573 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2574 	const unsigned long *online_mask = NULL;
2575 	bool active = false, copy = false;
2576 	int i, j, tci, numa_node_id = -2;
2577 	int maps_sz, num_tc = 1, tc = 0;
2578 	struct xps_map *map, *new_map;
2579 	unsigned int nr_ids;
2580 
2581 	if (dev->num_tc) {
2582 		/* Do not allow XPS on subordinate device directly */
2583 		num_tc = dev->num_tc;
2584 		if (num_tc < 0)
2585 			return -EINVAL;
2586 
2587 		/* If queue belongs to subordinate dev use its map */
2588 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2589 
2590 		tc = netdev_txq_to_tc(dev, index);
2591 		if (tc < 0)
2592 			return -EINVAL;
2593 	}
2594 
2595 	mutex_lock(&xps_map_mutex);
2596 
2597 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2598 	if (type == XPS_RXQS) {
2599 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2600 		nr_ids = dev->num_rx_queues;
2601 	} else {
2602 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2603 		if (num_possible_cpus() > 1)
2604 			online_mask = cpumask_bits(cpu_online_mask);
2605 		nr_ids = nr_cpu_ids;
2606 	}
2607 
2608 	if (maps_sz < L1_CACHE_BYTES)
2609 		maps_sz = L1_CACHE_BYTES;
2610 
2611 	/* The old dev_maps could be larger or smaller than the one we're
2612 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2613 	 * between. We could try to be smart, but let's be safe instead and only
2614 	 * copy foreign traffic classes if the two map sizes match.
2615 	 */
2616 	if (dev_maps &&
2617 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2618 		copy = true;
2619 
2620 	/* allocate memory for queue storage */
2621 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2622 	     j < nr_ids;) {
2623 		if (!new_dev_maps) {
2624 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2625 			if (!new_dev_maps) {
2626 				mutex_unlock(&xps_map_mutex);
2627 				return -ENOMEM;
2628 			}
2629 
2630 			new_dev_maps->nr_ids = nr_ids;
2631 			new_dev_maps->num_tc = num_tc;
2632 		}
2633 
2634 		tci = j * num_tc + tc;
2635 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2636 
2637 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2638 		if (!map)
2639 			goto error;
2640 
2641 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2642 	}
2643 
2644 	if (!new_dev_maps)
2645 		goto out_no_new_maps;
2646 
2647 	if (!dev_maps) {
2648 		/* Increment static keys at most once per type */
2649 		static_key_slow_inc_cpuslocked(&xps_needed);
2650 		if (type == XPS_RXQS)
2651 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2652 	}
2653 
2654 	for (j = 0; j < nr_ids; j++) {
2655 		bool skip_tc = false;
2656 
2657 		tci = j * num_tc + tc;
2658 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2659 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2660 			/* add tx-queue to CPU/rx-queue maps */
2661 			int pos = 0;
2662 
2663 			skip_tc = true;
2664 
2665 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2666 			while ((pos < map->len) && (map->queues[pos] != index))
2667 				pos++;
2668 
2669 			if (pos == map->len)
2670 				map->queues[map->len++] = index;
2671 #ifdef CONFIG_NUMA
2672 			if (type == XPS_CPUS) {
2673 				if (numa_node_id == -2)
2674 					numa_node_id = cpu_to_node(j);
2675 				else if (numa_node_id != cpu_to_node(j))
2676 					numa_node_id = -1;
2677 			}
2678 #endif
2679 		}
2680 
2681 		if (copy)
2682 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2683 					  skip_tc);
2684 	}
2685 
2686 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2687 
2688 	/* Cleanup old maps */
2689 	if (!dev_maps)
2690 		goto out_no_old_maps;
2691 
2692 	for (j = 0; j < dev_maps->nr_ids; j++) {
2693 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2694 			map = xmap_dereference(dev_maps->attr_map[tci]);
2695 			if (!map)
2696 				continue;
2697 
2698 			if (copy) {
2699 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2700 				if (map == new_map)
2701 					continue;
2702 			}
2703 
2704 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2705 			kfree_rcu(map, rcu);
2706 		}
2707 	}
2708 
2709 	old_dev_maps = dev_maps;
2710 
2711 out_no_old_maps:
2712 	dev_maps = new_dev_maps;
2713 	active = true;
2714 
2715 out_no_new_maps:
2716 	if (type == XPS_CPUS)
2717 		/* update Tx queue numa node */
2718 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2719 					     (numa_node_id >= 0) ?
2720 					     numa_node_id : NUMA_NO_NODE);
2721 
2722 	if (!dev_maps)
2723 		goto out_no_maps;
2724 
2725 	/* removes tx-queue from unused CPUs/rx-queues */
2726 	for (j = 0; j < dev_maps->nr_ids; j++) {
2727 		tci = j * dev_maps->num_tc;
2728 
2729 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2730 			if (i == tc &&
2731 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2732 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2733 				continue;
2734 
2735 			active |= remove_xps_queue(dev_maps,
2736 						   copy ? old_dev_maps : NULL,
2737 						   tci, index);
2738 		}
2739 	}
2740 
2741 	if (old_dev_maps)
2742 		kfree_rcu(old_dev_maps, rcu);
2743 
2744 	/* free map if not active */
2745 	if (!active)
2746 		reset_xps_maps(dev, dev_maps, type);
2747 
2748 out_no_maps:
2749 	mutex_unlock(&xps_map_mutex);
2750 
2751 	return 0;
2752 error:
2753 	/* remove any maps that we added */
2754 	for (j = 0; j < nr_ids; j++) {
2755 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2756 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2757 			map = copy ?
2758 			      xmap_dereference(dev_maps->attr_map[tci]) :
2759 			      NULL;
2760 			if (new_map && new_map != map)
2761 				kfree(new_map);
2762 		}
2763 	}
2764 
2765 	mutex_unlock(&xps_map_mutex);
2766 
2767 	kfree(new_dev_maps);
2768 	return -ENOMEM;
2769 }
2770 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2771 
2772 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2773 			u16 index)
2774 {
2775 	int ret;
2776 
2777 	cpus_read_lock();
2778 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2779 	cpus_read_unlock();
2780 
2781 	return ret;
2782 }
2783 EXPORT_SYMBOL(netif_set_xps_queue);
2784 
2785 #endif
2786 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2787 {
2788 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2789 
2790 	/* Unbind any subordinate channels */
2791 	while (txq-- != &dev->_tx[0]) {
2792 		if (txq->sb_dev)
2793 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2794 	}
2795 }
2796 
2797 void netdev_reset_tc(struct net_device *dev)
2798 {
2799 #ifdef CONFIG_XPS
2800 	netif_reset_xps_queues_gt(dev, 0);
2801 #endif
2802 	netdev_unbind_all_sb_channels(dev);
2803 
2804 	/* Reset TC configuration of device */
2805 	dev->num_tc = 0;
2806 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2807 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2808 }
2809 EXPORT_SYMBOL(netdev_reset_tc);
2810 
2811 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2812 {
2813 	if (tc >= dev->num_tc)
2814 		return -EINVAL;
2815 
2816 #ifdef CONFIG_XPS
2817 	netif_reset_xps_queues(dev, offset, count);
2818 #endif
2819 	dev->tc_to_txq[tc].count = count;
2820 	dev->tc_to_txq[tc].offset = offset;
2821 	return 0;
2822 }
2823 EXPORT_SYMBOL(netdev_set_tc_queue);
2824 
2825 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2826 {
2827 	if (num_tc > TC_MAX_QUEUE)
2828 		return -EINVAL;
2829 
2830 #ifdef CONFIG_XPS
2831 	netif_reset_xps_queues_gt(dev, 0);
2832 #endif
2833 	netdev_unbind_all_sb_channels(dev);
2834 
2835 	dev->num_tc = num_tc;
2836 	return 0;
2837 }
2838 EXPORT_SYMBOL(netdev_set_num_tc);
2839 
2840 void netdev_unbind_sb_channel(struct net_device *dev,
2841 			      struct net_device *sb_dev)
2842 {
2843 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2844 
2845 #ifdef CONFIG_XPS
2846 	netif_reset_xps_queues_gt(sb_dev, 0);
2847 #endif
2848 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2849 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2850 
2851 	while (txq-- != &dev->_tx[0]) {
2852 		if (txq->sb_dev == sb_dev)
2853 			txq->sb_dev = NULL;
2854 	}
2855 }
2856 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2857 
2858 int netdev_bind_sb_channel_queue(struct net_device *dev,
2859 				 struct net_device *sb_dev,
2860 				 u8 tc, u16 count, u16 offset)
2861 {
2862 	/* Make certain the sb_dev and dev are already configured */
2863 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2864 		return -EINVAL;
2865 
2866 	/* We cannot hand out queues we don't have */
2867 	if ((offset + count) > dev->real_num_tx_queues)
2868 		return -EINVAL;
2869 
2870 	/* Record the mapping */
2871 	sb_dev->tc_to_txq[tc].count = count;
2872 	sb_dev->tc_to_txq[tc].offset = offset;
2873 
2874 	/* Provide a way for Tx queue to find the tc_to_txq map or
2875 	 * XPS map for itself.
2876 	 */
2877 	while (count--)
2878 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2879 
2880 	return 0;
2881 }
2882 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2883 
2884 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2885 {
2886 	/* Do not use a multiqueue device to represent a subordinate channel */
2887 	if (netif_is_multiqueue(dev))
2888 		return -ENODEV;
2889 
2890 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2891 	 * Channel 0 is meant to be "native" mode and used only to represent
2892 	 * the main root device. We allow writing 0 to reset the device back
2893 	 * to normal mode after being used as a subordinate channel.
2894 	 */
2895 	if (channel > S16_MAX)
2896 		return -EINVAL;
2897 
2898 	dev->num_tc = -channel;
2899 
2900 	return 0;
2901 }
2902 EXPORT_SYMBOL(netdev_set_sb_channel);
2903 
2904 /*
2905  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2906  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2907  */
2908 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2909 {
2910 	bool disabling;
2911 	int rc;
2912 
2913 	disabling = txq < dev->real_num_tx_queues;
2914 
2915 	if (txq < 1 || txq > dev->num_tx_queues)
2916 		return -EINVAL;
2917 
2918 	if (dev->reg_state == NETREG_REGISTERED ||
2919 	    dev->reg_state == NETREG_UNREGISTERING) {
2920 		ASSERT_RTNL();
2921 
2922 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2923 						  txq);
2924 		if (rc)
2925 			return rc;
2926 
2927 		if (dev->num_tc)
2928 			netif_setup_tc(dev, txq);
2929 
2930 		dev_qdisc_change_real_num_tx(dev, txq);
2931 
2932 		dev->real_num_tx_queues = txq;
2933 
2934 		if (disabling) {
2935 			synchronize_net();
2936 			qdisc_reset_all_tx_gt(dev, txq);
2937 #ifdef CONFIG_XPS
2938 			netif_reset_xps_queues_gt(dev, txq);
2939 #endif
2940 		}
2941 	} else {
2942 		dev->real_num_tx_queues = txq;
2943 	}
2944 
2945 	return 0;
2946 }
2947 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2948 
2949 #ifdef CONFIG_SYSFS
2950 /**
2951  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2952  *	@dev: Network device
2953  *	@rxq: Actual number of RX queues
2954  *
2955  *	This must be called either with the rtnl_lock held or before
2956  *	registration of the net device.  Returns 0 on success, or a
2957  *	negative error code.  If called before registration, it always
2958  *	succeeds.
2959  */
2960 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2961 {
2962 	int rc;
2963 
2964 	if (rxq < 1 || rxq > dev->num_rx_queues)
2965 		return -EINVAL;
2966 
2967 	if (dev->reg_state == NETREG_REGISTERED) {
2968 		ASSERT_RTNL();
2969 
2970 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2971 						  rxq);
2972 		if (rc)
2973 			return rc;
2974 	}
2975 
2976 	dev->real_num_rx_queues = rxq;
2977 	return 0;
2978 }
2979 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2980 #endif
2981 
2982 /**
2983  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2984  *	@dev: Network device
2985  *	@txq: Actual number of TX queues
2986  *	@rxq: Actual number of RX queues
2987  *
2988  *	Set the real number of both TX and RX queues.
2989  *	Does nothing if the number of queues is already correct.
2990  */
2991 int netif_set_real_num_queues(struct net_device *dev,
2992 			      unsigned int txq, unsigned int rxq)
2993 {
2994 	unsigned int old_rxq = dev->real_num_rx_queues;
2995 	int err;
2996 
2997 	if (txq < 1 || txq > dev->num_tx_queues ||
2998 	    rxq < 1 || rxq > dev->num_rx_queues)
2999 		return -EINVAL;
3000 
3001 	/* Start from increases, so the error path only does decreases -
3002 	 * decreases can't fail.
3003 	 */
3004 	if (rxq > dev->real_num_rx_queues) {
3005 		err = netif_set_real_num_rx_queues(dev, rxq);
3006 		if (err)
3007 			return err;
3008 	}
3009 	if (txq > dev->real_num_tx_queues) {
3010 		err = netif_set_real_num_tx_queues(dev, txq);
3011 		if (err)
3012 			goto undo_rx;
3013 	}
3014 	if (rxq < dev->real_num_rx_queues)
3015 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3016 	if (txq < dev->real_num_tx_queues)
3017 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3018 
3019 	return 0;
3020 undo_rx:
3021 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3022 	return err;
3023 }
3024 EXPORT_SYMBOL(netif_set_real_num_queues);
3025 
3026 /**
3027  * netif_get_num_default_rss_queues - default number of RSS queues
3028  *
3029  * This routine should set an upper limit on the number of RSS queues
3030  * used by default by multiqueue devices.
3031  */
3032 int netif_get_num_default_rss_queues(void)
3033 {
3034 	return is_kdump_kernel() ?
3035 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3036 }
3037 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3038 
3039 static void __netif_reschedule(struct Qdisc *q)
3040 {
3041 	struct softnet_data *sd;
3042 	unsigned long flags;
3043 
3044 	local_irq_save(flags);
3045 	sd = this_cpu_ptr(&softnet_data);
3046 	q->next_sched = NULL;
3047 	*sd->output_queue_tailp = q;
3048 	sd->output_queue_tailp = &q->next_sched;
3049 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3050 	local_irq_restore(flags);
3051 }
3052 
3053 void __netif_schedule(struct Qdisc *q)
3054 {
3055 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3056 		__netif_reschedule(q);
3057 }
3058 EXPORT_SYMBOL(__netif_schedule);
3059 
3060 struct dev_kfree_skb_cb {
3061 	enum skb_free_reason reason;
3062 };
3063 
3064 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3065 {
3066 	return (struct dev_kfree_skb_cb *)skb->cb;
3067 }
3068 
3069 void netif_schedule_queue(struct netdev_queue *txq)
3070 {
3071 	rcu_read_lock();
3072 	if (!netif_xmit_stopped(txq)) {
3073 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3074 
3075 		__netif_schedule(q);
3076 	}
3077 	rcu_read_unlock();
3078 }
3079 EXPORT_SYMBOL(netif_schedule_queue);
3080 
3081 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3082 {
3083 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3084 		struct Qdisc *q;
3085 
3086 		rcu_read_lock();
3087 		q = rcu_dereference(dev_queue->qdisc);
3088 		__netif_schedule(q);
3089 		rcu_read_unlock();
3090 	}
3091 }
3092 EXPORT_SYMBOL(netif_tx_wake_queue);
3093 
3094 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3095 {
3096 	unsigned long flags;
3097 
3098 	if (unlikely(!skb))
3099 		return;
3100 
3101 	if (likely(refcount_read(&skb->users) == 1)) {
3102 		smp_rmb();
3103 		refcount_set(&skb->users, 0);
3104 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3105 		return;
3106 	}
3107 	get_kfree_skb_cb(skb)->reason = reason;
3108 	local_irq_save(flags);
3109 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3110 	__this_cpu_write(softnet_data.completion_queue, skb);
3111 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3112 	local_irq_restore(flags);
3113 }
3114 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3115 
3116 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3117 {
3118 	if (in_hardirq() || irqs_disabled())
3119 		__dev_kfree_skb_irq(skb, reason);
3120 	else
3121 		dev_kfree_skb(skb);
3122 }
3123 EXPORT_SYMBOL(__dev_kfree_skb_any);
3124 
3125 
3126 /**
3127  * netif_device_detach - mark device as removed
3128  * @dev: network device
3129  *
3130  * Mark device as removed from system and therefore no longer available.
3131  */
3132 void netif_device_detach(struct net_device *dev)
3133 {
3134 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3135 	    netif_running(dev)) {
3136 		netif_tx_stop_all_queues(dev);
3137 	}
3138 }
3139 EXPORT_SYMBOL(netif_device_detach);
3140 
3141 /**
3142  * netif_device_attach - mark device as attached
3143  * @dev: network device
3144  *
3145  * Mark device as attached from system and restart if needed.
3146  */
3147 void netif_device_attach(struct net_device *dev)
3148 {
3149 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3150 	    netif_running(dev)) {
3151 		netif_tx_wake_all_queues(dev);
3152 		__netdev_watchdog_up(dev);
3153 	}
3154 }
3155 EXPORT_SYMBOL(netif_device_attach);
3156 
3157 /*
3158  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3159  * to be used as a distribution range.
3160  */
3161 static u16 skb_tx_hash(const struct net_device *dev,
3162 		       const struct net_device *sb_dev,
3163 		       struct sk_buff *skb)
3164 {
3165 	u32 hash;
3166 	u16 qoffset = 0;
3167 	u16 qcount = dev->real_num_tx_queues;
3168 
3169 	if (dev->num_tc) {
3170 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3171 
3172 		qoffset = sb_dev->tc_to_txq[tc].offset;
3173 		qcount = sb_dev->tc_to_txq[tc].count;
3174 		if (unlikely(!qcount)) {
3175 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3176 					     sb_dev->name, qoffset, tc);
3177 			qoffset = 0;
3178 			qcount = dev->real_num_tx_queues;
3179 		}
3180 	}
3181 
3182 	if (skb_rx_queue_recorded(skb)) {
3183 		hash = skb_get_rx_queue(skb);
3184 		if (hash >= qoffset)
3185 			hash -= qoffset;
3186 		while (unlikely(hash >= qcount))
3187 			hash -= qcount;
3188 		return hash + qoffset;
3189 	}
3190 
3191 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3192 }
3193 
3194 static void skb_warn_bad_offload(const struct sk_buff *skb)
3195 {
3196 	static const netdev_features_t null_features;
3197 	struct net_device *dev = skb->dev;
3198 	const char *name = "";
3199 
3200 	if (!net_ratelimit())
3201 		return;
3202 
3203 	if (dev) {
3204 		if (dev->dev.parent)
3205 			name = dev_driver_string(dev->dev.parent);
3206 		else
3207 			name = netdev_name(dev);
3208 	}
3209 	skb_dump(KERN_WARNING, skb, false);
3210 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3211 	     name, dev ? &dev->features : &null_features,
3212 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3213 }
3214 
3215 /*
3216  * Invalidate hardware checksum when packet is to be mangled, and
3217  * complete checksum manually on outgoing path.
3218  */
3219 int skb_checksum_help(struct sk_buff *skb)
3220 {
3221 	__wsum csum;
3222 	int ret = 0, offset;
3223 
3224 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3225 		goto out_set_summed;
3226 
3227 	if (unlikely(skb_is_gso(skb))) {
3228 		skb_warn_bad_offload(skb);
3229 		return -EINVAL;
3230 	}
3231 
3232 	/* Before computing a checksum, we should make sure no frag could
3233 	 * be modified by an external entity : checksum could be wrong.
3234 	 */
3235 	if (skb_has_shared_frag(skb)) {
3236 		ret = __skb_linearize(skb);
3237 		if (ret)
3238 			goto out;
3239 	}
3240 
3241 	offset = skb_checksum_start_offset(skb);
3242 	BUG_ON(offset >= skb_headlen(skb));
3243 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3244 
3245 	offset += skb->csum_offset;
3246 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3247 
3248 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3249 	if (ret)
3250 		goto out;
3251 
3252 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3253 out_set_summed:
3254 	skb->ip_summed = CHECKSUM_NONE;
3255 out:
3256 	return ret;
3257 }
3258 EXPORT_SYMBOL(skb_checksum_help);
3259 
3260 int skb_crc32c_csum_help(struct sk_buff *skb)
3261 {
3262 	__le32 crc32c_csum;
3263 	int ret = 0, offset, start;
3264 
3265 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3266 		goto out;
3267 
3268 	if (unlikely(skb_is_gso(skb)))
3269 		goto out;
3270 
3271 	/* Before computing a checksum, we should make sure no frag could
3272 	 * be modified by an external entity : checksum could be wrong.
3273 	 */
3274 	if (unlikely(skb_has_shared_frag(skb))) {
3275 		ret = __skb_linearize(skb);
3276 		if (ret)
3277 			goto out;
3278 	}
3279 	start = skb_checksum_start_offset(skb);
3280 	offset = start + offsetof(struct sctphdr, checksum);
3281 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3282 		ret = -EINVAL;
3283 		goto out;
3284 	}
3285 
3286 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3287 	if (ret)
3288 		goto out;
3289 
3290 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3291 						  skb->len - start, ~(__u32)0,
3292 						  crc32c_csum_stub));
3293 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3294 	skb->ip_summed = CHECKSUM_NONE;
3295 	skb->csum_not_inet = 0;
3296 out:
3297 	return ret;
3298 }
3299 
3300 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3301 {
3302 	__be16 type = skb->protocol;
3303 
3304 	/* Tunnel gso handlers can set protocol to ethernet. */
3305 	if (type == htons(ETH_P_TEB)) {
3306 		struct ethhdr *eth;
3307 
3308 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3309 			return 0;
3310 
3311 		eth = (struct ethhdr *)skb->data;
3312 		type = eth->h_proto;
3313 	}
3314 
3315 	return __vlan_get_protocol(skb, type, depth);
3316 }
3317 
3318 /**
3319  *	skb_mac_gso_segment - mac layer segmentation handler.
3320  *	@skb: buffer to segment
3321  *	@features: features for the output path (see dev->features)
3322  */
3323 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3324 				    netdev_features_t features)
3325 {
3326 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3327 	struct packet_offload *ptype;
3328 	int vlan_depth = skb->mac_len;
3329 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3330 
3331 	if (unlikely(!type))
3332 		return ERR_PTR(-EINVAL);
3333 
3334 	__skb_pull(skb, vlan_depth);
3335 
3336 	rcu_read_lock();
3337 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3338 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3339 			segs = ptype->callbacks.gso_segment(skb, features);
3340 			break;
3341 		}
3342 	}
3343 	rcu_read_unlock();
3344 
3345 	__skb_push(skb, skb->data - skb_mac_header(skb));
3346 
3347 	return segs;
3348 }
3349 EXPORT_SYMBOL(skb_mac_gso_segment);
3350 
3351 
3352 /* openvswitch calls this on rx path, so we need a different check.
3353  */
3354 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3355 {
3356 	if (tx_path)
3357 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3358 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3359 
3360 	return skb->ip_summed == CHECKSUM_NONE;
3361 }
3362 
3363 /**
3364  *	__skb_gso_segment - Perform segmentation on skb.
3365  *	@skb: buffer to segment
3366  *	@features: features for the output path (see dev->features)
3367  *	@tx_path: whether it is called in TX path
3368  *
3369  *	This function segments the given skb and returns a list of segments.
3370  *
3371  *	It may return NULL if the skb requires no segmentation.  This is
3372  *	only possible when GSO is used for verifying header integrity.
3373  *
3374  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3375  */
3376 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3377 				  netdev_features_t features, bool tx_path)
3378 {
3379 	struct sk_buff *segs;
3380 
3381 	if (unlikely(skb_needs_check(skb, tx_path))) {
3382 		int err;
3383 
3384 		/* We're going to init ->check field in TCP or UDP header */
3385 		err = skb_cow_head(skb, 0);
3386 		if (err < 0)
3387 			return ERR_PTR(err);
3388 	}
3389 
3390 	/* Only report GSO partial support if it will enable us to
3391 	 * support segmentation on this frame without needing additional
3392 	 * work.
3393 	 */
3394 	if (features & NETIF_F_GSO_PARTIAL) {
3395 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3396 		struct net_device *dev = skb->dev;
3397 
3398 		partial_features |= dev->features & dev->gso_partial_features;
3399 		if (!skb_gso_ok(skb, features | partial_features))
3400 			features &= ~NETIF_F_GSO_PARTIAL;
3401 	}
3402 
3403 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3404 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3405 
3406 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3407 	SKB_GSO_CB(skb)->encap_level = 0;
3408 
3409 	skb_reset_mac_header(skb);
3410 	skb_reset_mac_len(skb);
3411 
3412 	segs = skb_mac_gso_segment(skb, features);
3413 
3414 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3415 		skb_warn_bad_offload(skb);
3416 
3417 	return segs;
3418 }
3419 EXPORT_SYMBOL(__skb_gso_segment);
3420 
3421 /* Take action when hardware reception checksum errors are detected. */
3422 #ifdef CONFIG_BUG
3423 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3424 {
3425 	netdev_err(dev, "hw csum failure\n");
3426 	skb_dump(KERN_ERR, skb, true);
3427 	dump_stack();
3428 }
3429 
3430 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3431 {
3432 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3433 }
3434 EXPORT_SYMBOL(netdev_rx_csum_fault);
3435 #endif
3436 
3437 /* XXX: check that highmem exists at all on the given machine. */
3438 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3439 {
3440 #ifdef CONFIG_HIGHMEM
3441 	int i;
3442 
3443 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3444 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3445 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3446 
3447 			if (PageHighMem(skb_frag_page(frag)))
3448 				return 1;
3449 		}
3450 	}
3451 #endif
3452 	return 0;
3453 }
3454 
3455 /* If MPLS offload request, verify we are testing hardware MPLS features
3456  * instead of standard features for the netdev.
3457  */
3458 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3459 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3460 					   netdev_features_t features,
3461 					   __be16 type)
3462 {
3463 	if (eth_p_mpls(type))
3464 		features &= skb->dev->mpls_features;
3465 
3466 	return features;
3467 }
3468 #else
3469 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3470 					   netdev_features_t features,
3471 					   __be16 type)
3472 {
3473 	return features;
3474 }
3475 #endif
3476 
3477 static netdev_features_t harmonize_features(struct sk_buff *skb,
3478 	netdev_features_t features)
3479 {
3480 	__be16 type;
3481 
3482 	type = skb_network_protocol(skb, NULL);
3483 	features = net_mpls_features(skb, features, type);
3484 
3485 	if (skb->ip_summed != CHECKSUM_NONE &&
3486 	    !can_checksum_protocol(features, type)) {
3487 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3488 	}
3489 	if (illegal_highdma(skb->dev, skb))
3490 		features &= ~NETIF_F_SG;
3491 
3492 	return features;
3493 }
3494 
3495 netdev_features_t passthru_features_check(struct sk_buff *skb,
3496 					  struct net_device *dev,
3497 					  netdev_features_t features)
3498 {
3499 	return features;
3500 }
3501 EXPORT_SYMBOL(passthru_features_check);
3502 
3503 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3504 					     struct net_device *dev,
3505 					     netdev_features_t features)
3506 {
3507 	return vlan_features_check(skb, features);
3508 }
3509 
3510 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3511 					    struct net_device *dev,
3512 					    netdev_features_t features)
3513 {
3514 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3515 
3516 	if (gso_segs > dev->gso_max_segs)
3517 		return features & ~NETIF_F_GSO_MASK;
3518 
3519 	if (!skb_shinfo(skb)->gso_type) {
3520 		skb_warn_bad_offload(skb);
3521 		return features & ~NETIF_F_GSO_MASK;
3522 	}
3523 
3524 	/* Support for GSO partial features requires software
3525 	 * intervention before we can actually process the packets
3526 	 * so we need to strip support for any partial features now
3527 	 * and we can pull them back in after we have partially
3528 	 * segmented the frame.
3529 	 */
3530 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3531 		features &= ~dev->gso_partial_features;
3532 
3533 	/* Make sure to clear the IPv4 ID mangling feature if the
3534 	 * IPv4 header has the potential to be fragmented.
3535 	 */
3536 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3537 		struct iphdr *iph = skb->encapsulation ?
3538 				    inner_ip_hdr(skb) : ip_hdr(skb);
3539 
3540 		if (!(iph->frag_off & htons(IP_DF)))
3541 			features &= ~NETIF_F_TSO_MANGLEID;
3542 	}
3543 
3544 	return features;
3545 }
3546 
3547 netdev_features_t netif_skb_features(struct sk_buff *skb)
3548 {
3549 	struct net_device *dev = skb->dev;
3550 	netdev_features_t features = dev->features;
3551 
3552 	if (skb_is_gso(skb))
3553 		features = gso_features_check(skb, dev, features);
3554 
3555 	/* If encapsulation offload request, verify we are testing
3556 	 * hardware encapsulation features instead of standard
3557 	 * features for the netdev
3558 	 */
3559 	if (skb->encapsulation)
3560 		features &= dev->hw_enc_features;
3561 
3562 	if (skb_vlan_tagged(skb))
3563 		features = netdev_intersect_features(features,
3564 						     dev->vlan_features |
3565 						     NETIF_F_HW_VLAN_CTAG_TX |
3566 						     NETIF_F_HW_VLAN_STAG_TX);
3567 
3568 	if (dev->netdev_ops->ndo_features_check)
3569 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3570 								features);
3571 	else
3572 		features &= dflt_features_check(skb, dev, features);
3573 
3574 	return harmonize_features(skb, features);
3575 }
3576 EXPORT_SYMBOL(netif_skb_features);
3577 
3578 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3579 		    struct netdev_queue *txq, bool more)
3580 {
3581 	unsigned int len;
3582 	int rc;
3583 
3584 	if (dev_nit_active(dev))
3585 		dev_queue_xmit_nit(skb, dev);
3586 
3587 	len = skb->len;
3588 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3589 	trace_net_dev_start_xmit(skb, dev);
3590 	rc = netdev_start_xmit(skb, dev, txq, more);
3591 	trace_net_dev_xmit(skb, rc, dev, len);
3592 
3593 	return rc;
3594 }
3595 
3596 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597 				    struct netdev_queue *txq, int *ret)
3598 {
3599 	struct sk_buff *skb = first;
3600 	int rc = NETDEV_TX_OK;
3601 
3602 	while (skb) {
3603 		struct sk_buff *next = skb->next;
3604 
3605 		skb_mark_not_on_list(skb);
3606 		rc = xmit_one(skb, dev, txq, next != NULL);
3607 		if (unlikely(!dev_xmit_complete(rc))) {
3608 			skb->next = next;
3609 			goto out;
3610 		}
3611 
3612 		skb = next;
3613 		if (netif_tx_queue_stopped(txq) && skb) {
3614 			rc = NETDEV_TX_BUSY;
3615 			break;
3616 		}
3617 	}
3618 
3619 out:
3620 	*ret = rc;
3621 	return skb;
3622 }
3623 
3624 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625 					  netdev_features_t features)
3626 {
3627 	if (skb_vlan_tag_present(skb) &&
3628 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3629 		skb = __vlan_hwaccel_push_inside(skb);
3630 	return skb;
3631 }
3632 
3633 int skb_csum_hwoffload_help(struct sk_buff *skb,
3634 			    const netdev_features_t features)
3635 {
3636 	if (unlikely(skb_csum_is_sctp(skb)))
3637 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638 			skb_crc32c_csum_help(skb);
3639 
3640 	if (features & NETIF_F_HW_CSUM)
3641 		return 0;
3642 
3643 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644 		switch (skb->csum_offset) {
3645 		case offsetof(struct tcphdr, check):
3646 		case offsetof(struct udphdr, check):
3647 			return 0;
3648 		}
3649 	}
3650 
3651 	return skb_checksum_help(skb);
3652 }
3653 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3654 
3655 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3656 {
3657 	netdev_features_t features;
3658 
3659 	features = netif_skb_features(skb);
3660 	skb = validate_xmit_vlan(skb, features);
3661 	if (unlikely(!skb))
3662 		goto out_null;
3663 
3664 	skb = sk_validate_xmit_skb(skb, dev);
3665 	if (unlikely(!skb))
3666 		goto out_null;
3667 
3668 	if (netif_needs_gso(skb, features)) {
3669 		struct sk_buff *segs;
3670 
3671 		segs = skb_gso_segment(skb, features);
3672 		if (IS_ERR(segs)) {
3673 			goto out_kfree_skb;
3674 		} else if (segs) {
3675 			consume_skb(skb);
3676 			skb = segs;
3677 		}
3678 	} else {
3679 		if (skb_needs_linearize(skb, features) &&
3680 		    __skb_linearize(skb))
3681 			goto out_kfree_skb;
3682 
3683 		/* If packet is not checksummed and device does not
3684 		 * support checksumming for this protocol, complete
3685 		 * checksumming here.
3686 		 */
3687 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3688 			if (skb->encapsulation)
3689 				skb_set_inner_transport_header(skb,
3690 							       skb_checksum_start_offset(skb));
3691 			else
3692 				skb_set_transport_header(skb,
3693 							 skb_checksum_start_offset(skb));
3694 			if (skb_csum_hwoffload_help(skb, features))
3695 				goto out_kfree_skb;
3696 		}
3697 	}
3698 
3699 	skb = validate_xmit_xfrm(skb, features, again);
3700 
3701 	return skb;
3702 
3703 out_kfree_skb:
3704 	kfree_skb(skb);
3705 out_null:
3706 	atomic_long_inc(&dev->tx_dropped);
3707 	return NULL;
3708 }
3709 
3710 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3711 {
3712 	struct sk_buff *next, *head = NULL, *tail;
3713 
3714 	for (; skb != NULL; skb = next) {
3715 		next = skb->next;
3716 		skb_mark_not_on_list(skb);
3717 
3718 		/* in case skb wont be segmented, point to itself */
3719 		skb->prev = skb;
3720 
3721 		skb = validate_xmit_skb(skb, dev, again);
3722 		if (!skb)
3723 			continue;
3724 
3725 		if (!head)
3726 			head = skb;
3727 		else
3728 			tail->next = skb;
3729 		/* If skb was segmented, skb->prev points to
3730 		 * the last segment. If not, it still contains skb.
3731 		 */
3732 		tail = skb->prev;
3733 	}
3734 	return head;
3735 }
3736 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3737 
3738 static void qdisc_pkt_len_init(struct sk_buff *skb)
3739 {
3740 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3741 
3742 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3743 
3744 	/* To get more precise estimation of bytes sent on wire,
3745 	 * we add to pkt_len the headers size of all segments
3746 	 */
3747 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3748 		unsigned int hdr_len;
3749 		u16 gso_segs = shinfo->gso_segs;
3750 
3751 		/* mac layer + network layer */
3752 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3753 
3754 		/* + transport layer */
3755 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3756 			const struct tcphdr *th;
3757 			struct tcphdr _tcphdr;
3758 
3759 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3760 						sizeof(_tcphdr), &_tcphdr);
3761 			if (likely(th))
3762 				hdr_len += __tcp_hdrlen(th);
3763 		} else {
3764 			struct udphdr _udphdr;
3765 
3766 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3767 					       sizeof(_udphdr), &_udphdr))
3768 				hdr_len += sizeof(struct udphdr);
3769 		}
3770 
3771 		if (shinfo->gso_type & SKB_GSO_DODGY)
3772 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3773 						shinfo->gso_size);
3774 
3775 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3776 	}
3777 }
3778 
3779 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3780 			     struct sk_buff **to_free,
3781 			     struct netdev_queue *txq)
3782 {
3783 	int rc;
3784 
3785 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3786 	if (rc == NET_XMIT_SUCCESS)
3787 		trace_qdisc_enqueue(q, txq, skb);
3788 	return rc;
3789 }
3790 
3791 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3792 				 struct net_device *dev,
3793 				 struct netdev_queue *txq)
3794 {
3795 	spinlock_t *root_lock = qdisc_lock(q);
3796 	struct sk_buff *to_free = NULL;
3797 	bool contended;
3798 	int rc;
3799 
3800 	qdisc_calculate_pkt_len(skb, q);
3801 
3802 	if (q->flags & TCQ_F_NOLOCK) {
3803 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3804 		    qdisc_run_begin(q)) {
3805 			/* Retest nolock_qdisc_is_empty() within the protection
3806 			 * of q->seqlock to protect from racing with requeuing.
3807 			 */
3808 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3809 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3810 				__qdisc_run(q);
3811 				qdisc_run_end(q);
3812 
3813 				goto no_lock_out;
3814 			}
3815 
3816 			qdisc_bstats_cpu_update(q, skb);
3817 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3818 			    !nolock_qdisc_is_empty(q))
3819 				__qdisc_run(q);
3820 
3821 			qdisc_run_end(q);
3822 			return NET_XMIT_SUCCESS;
3823 		}
3824 
3825 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3826 		qdisc_run(q);
3827 
3828 no_lock_out:
3829 		if (unlikely(to_free))
3830 			kfree_skb_list(to_free);
3831 		return rc;
3832 	}
3833 
3834 	/*
3835 	 * Heuristic to force contended enqueues to serialize on a
3836 	 * separate lock before trying to get qdisc main lock.
3837 	 * This permits qdisc->running owner to get the lock more
3838 	 * often and dequeue packets faster.
3839 	 */
3840 	contended = qdisc_is_running(q);
3841 	if (unlikely(contended))
3842 		spin_lock(&q->busylock);
3843 
3844 	spin_lock(root_lock);
3845 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3846 		__qdisc_drop(skb, &to_free);
3847 		rc = NET_XMIT_DROP;
3848 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3849 		   qdisc_run_begin(q)) {
3850 		/*
3851 		 * This is a work-conserving queue; there are no old skbs
3852 		 * waiting to be sent out; and the qdisc is not running -
3853 		 * xmit the skb directly.
3854 		 */
3855 
3856 		qdisc_bstats_update(q, skb);
3857 
3858 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3859 			if (unlikely(contended)) {
3860 				spin_unlock(&q->busylock);
3861 				contended = false;
3862 			}
3863 			__qdisc_run(q);
3864 		}
3865 
3866 		qdisc_run_end(q);
3867 		rc = NET_XMIT_SUCCESS;
3868 	} else {
3869 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3870 		if (qdisc_run_begin(q)) {
3871 			if (unlikely(contended)) {
3872 				spin_unlock(&q->busylock);
3873 				contended = false;
3874 			}
3875 			__qdisc_run(q);
3876 			qdisc_run_end(q);
3877 		}
3878 	}
3879 	spin_unlock(root_lock);
3880 	if (unlikely(to_free))
3881 		kfree_skb_list(to_free);
3882 	if (unlikely(contended))
3883 		spin_unlock(&q->busylock);
3884 	return rc;
3885 }
3886 
3887 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3888 static void skb_update_prio(struct sk_buff *skb)
3889 {
3890 	const struct netprio_map *map;
3891 	const struct sock *sk;
3892 	unsigned int prioidx;
3893 
3894 	if (skb->priority)
3895 		return;
3896 	map = rcu_dereference_bh(skb->dev->priomap);
3897 	if (!map)
3898 		return;
3899 	sk = skb_to_full_sk(skb);
3900 	if (!sk)
3901 		return;
3902 
3903 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3904 
3905 	if (prioidx < map->priomap_len)
3906 		skb->priority = map->priomap[prioidx];
3907 }
3908 #else
3909 #define skb_update_prio(skb)
3910 #endif
3911 
3912 /**
3913  *	dev_loopback_xmit - loop back @skb
3914  *	@net: network namespace this loopback is happening in
3915  *	@sk:  sk needed to be a netfilter okfn
3916  *	@skb: buffer to transmit
3917  */
3918 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3919 {
3920 	skb_reset_mac_header(skb);
3921 	__skb_pull(skb, skb_network_offset(skb));
3922 	skb->pkt_type = PACKET_LOOPBACK;
3923 	if (skb->ip_summed == CHECKSUM_NONE)
3924 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3925 	WARN_ON(!skb_dst(skb));
3926 	skb_dst_force(skb);
3927 	netif_rx_ni(skb);
3928 	return 0;
3929 }
3930 EXPORT_SYMBOL(dev_loopback_xmit);
3931 
3932 #ifdef CONFIG_NET_EGRESS
3933 static struct sk_buff *
3934 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3935 {
3936 #ifdef CONFIG_NET_CLS_ACT
3937 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3938 	struct tcf_result cl_res;
3939 
3940 	if (!miniq)
3941 		return skb;
3942 
3943 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3944 	tc_skb_cb(skb)->mru = 0;
3945 	tc_skb_cb(skb)->post_ct = false;
3946 	mini_qdisc_bstats_cpu_update(miniq, skb);
3947 
3948 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3949 	case TC_ACT_OK:
3950 	case TC_ACT_RECLASSIFY:
3951 		skb->tc_index = TC_H_MIN(cl_res.classid);
3952 		break;
3953 	case TC_ACT_SHOT:
3954 		mini_qdisc_qstats_cpu_drop(miniq);
3955 		*ret = NET_XMIT_DROP;
3956 		kfree_skb(skb);
3957 		return NULL;
3958 	case TC_ACT_STOLEN:
3959 	case TC_ACT_QUEUED:
3960 	case TC_ACT_TRAP:
3961 		*ret = NET_XMIT_SUCCESS;
3962 		consume_skb(skb);
3963 		return NULL;
3964 	case TC_ACT_REDIRECT:
3965 		/* No need to push/pop skb's mac_header here on egress! */
3966 		skb_do_redirect(skb);
3967 		*ret = NET_XMIT_SUCCESS;
3968 		return NULL;
3969 	default:
3970 		break;
3971 	}
3972 #endif /* CONFIG_NET_CLS_ACT */
3973 
3974 	return skb;
3975 }
3976 #endif /* CONFIG_NET_EGRESS */
3977 
3978 #ifdef CONFIG_XPS
3979 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3980 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3981 {
3982 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
3983 	struct xps_map *map;
3984 	int queue_index = -1;
3985 
3986 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3987 		return queue_index;
3988 
3989 	tci *= dev_maps->num_tc;
3990 	tci += tc;
3991 
3992 	map = rcu_dereference(dev_maps->attr_map[tci]);
3993 	if (map) {
3994 		if (map->len == 1)
3995 			queue_index = map->queues[0];
3996 		else
3997 			queue_index = map->queues[reciprocal_scale(
3998 						skb_get_hash(skb), map->len)];
3999 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4000 			queue_index = -1;
4001 	}
4002 	return queue_index;
4003 }
4004 #endif
4005 
4006 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4007 			 struct sk_buff *skb)
4008 {
4009 #ifdef CONFIG_XPS
4010 	struct xps_dev_maps *dev_maps;
4011 	struct sock *sk = skb->sk;
4012 	int queue_index = -1;
4013 
4014 	if (!static_key_false(&xps_needed))
4015 		return -1;
4016 
4017 	rcu_read_lock();
4018 	if (!static_key_false(&xps_rxqs_needed))
4019 		goto get_cpus_map;
4020 
4021 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4022 	if (dev_maps) {
4023 		int tci = sk_rx_queue_get(sk);
4024 
4025 		if (tci >= 0)
4026 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4027 							  tci);
4028 	}
4029 
4030 get_cpus_map:
4031 	if (queue_index < 0) {
4032 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4033 		if (dev_maps) {
4034 			unsigned int tci = skb->sender_cpu - 1;
4035 
4036 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4037 							  tci);
4038 		}
4039 	}
4040 	rcu_read_unlock();
4041 
4042 	return queue_index;
4043 #else
4044 	return -1;
4045 #endif
4046 }
4047 
4048 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4049 		     struct net_device *sb_dev)
4050 {
4051 	return 0;
4052 }
4053 EXPORT_SYMBOL(dev_pick_tx_zero);
4054 
4055 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4056 		       struct net_device *sb_dev)
4057 {
4058 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4059 }
4060 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4061 
4062 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4063 		     struct net_device *sb_dev)
4064 {
4065 	struct sock *sk = skb->sk;
4066 	int queue_index = sk_tx_queue_get(sk);
4067 
4068 	sb_dev = sb_dev ? : dev;
4069 
4070 	if (queue_index < 0 || skb->ooo_okay ||
4071 	    queue_index >= dev->real_num_tx_queues) {
4072 		int new_index = get_xps_queue(dev, sb_dev, skb);
4073 
4074 		if (new_index < 0)
4075 			new_index = skb_tx_hash(dev, sb_dev, skb);
4076 
4077 		if (queue_index != new_index && sk &&
4078 		    sk_fullsock(sk) &&
4079 		    rcu_access_pointer(sk->sk_dst_cache))
4080 			sk_tx_queue_set(sk, new_index);
4081 
4082 		queue_index = new_index;
4083 	}
4084 
4085 	return queue_index;
4086 }
4087 EXPORT_SYMBOL(netdev_pick_tx);
4088 
4089 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4090 					 struct sk_buff *skb,
4091 					 struct net_device *sb_dev)
4092 {
4093 	int queue_index = 0;
4094 
4095 #ifdef CONFIG_XPS
4096 	u32 sender_cpu = skb->sender_cpu - 1;
4097 
4098 	if (sender_cpu >= (u32)NR_CPUS)
4099 		skb->sender_cpu = raw_smp_processor_id() + 1;
4100 #endif
4101 
4102 	if (dev->real_num_tx_queues != 1) {
4103 		const struct net_device_ops *ops = dev->netdev_ops;
4104 
4105 		if (ops->ndo_select_queue)
4106 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4107 		else
4108 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4109 
4110 		queue_index = netdev_cap_txqueue(dev, queue_index);
4111 	}
4112 
4113 	skb_set_queue_mapping(skb, queue_index);
4114 	return netdev_get_tx_queue(dev, queue_index);
4115 }
4116 
4117 /**
4118  *	__dev_queue_xmit - transmit a buffer
4119  *	@skb: buffer to transmit
4120  *	@sb_dev: suboordinate device used for L2 forwarding offload
4121  *
4122  *	Queue a buffer for transmission to a network device. The caller must
4123  *	have set the device and priority and built the buffer before calling
4124  *	this function. The function can be called from an interrupt.
4125  *
4126  *	A negative errno code is returned on a failure. A success does not
4127  *	guarantee the frame will be transmitted as it may be dropped due
4128  *	to congestion or traffic shaping.
4129  *
4130  * -----------------------------------------------------------------------------------
4131  *      I notice this method can also return errors from the queue disciplines,
4132  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4133  *      be positive.
4134  *
4135  *      Regardless of the return value, the skb is consumed, so it is currently
4136  *      difficult to retry a send to this method.  (You can bump the ref count
4137  *      before sending to hold a reference for retry if you are careful.)
4138  *
4139  *      When calling this method, interrupts MUST be enabled.  This is because
4140  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4141  *          --BLG
4142  */
4143 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4144 {
4145 	struct net_device *dev = skb->dev;
4146 	struct netdev_queue *txq;
4147 	struct Qdisc *q;
4148 	int rc = -ENOMEM;
4149 	bool again = false;
4150 
4151 	skb_reset_mac_header(skb);
4152 
4153 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4154 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4155 
4156 	/* Disable soft irqs for various locks below. Also
4157 	 * stops preemption for RCU.
4158 	 */
4159 	rcu_read_lock_bh();
4160 
4161 	skb_update_prio(skb);
4162 
4163 	qdisc_pkt_len_init(skb);
4164 #ifdef CONFIG_NET_CLS_ACT
4165 	skb->tc_at_ingress = 0;
4166 #endif
4167 #ifdef CONFIG_NET_EGRESS
4168 	if (static_branch_unlikely(&egress_needed_key)) {
4169 		if (nf_hook_egress_active()) {
4170 			skb = nf_hook_egress(skb, &rc, dev);
4171 			if (!skb)
4172 				goto out;
4173 		}
4174 		nf_skip_egress(skb, true);
4175 		skb = sch_handle_egress(skb, &rc, dev);
4176 		if (!skb)
4177 			goto out;
4178 		nf_skip_egress(skb, false);
4179 	}
4180 #endif
4181 	/* If device/qdisc don't need skb->dst, release it right now while
4182 	 * its hot in this cpu cache.
4183 	 */
4184 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4185 		skb_dst_drop(skb);
4186 	else
4187 		skb_dst_force(skb);
4188 
4189 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4190 	q = rcu_dereference_bh(txq->qdisc);
4191 
4192 	trace_net_dev_queue(skb);
4193 	if (q->enqueue) {
4194 		rc = __dev_xmit_skb(skb, q, dev, txq);
4195 		goto out;
4196 	}
4197 
4198 	/* The device has no queue. Common case for software devices:
4199 	 * loopback, all the sorts of tunnels...
4200 
4201 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4202 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4203 	 * counters.)
4204 	 * However, it is possible, that they rely on protection
4205 	 * made by us here.
4206 
4207 	 * Check this and shot the lock. It is not prone from deadlocks.
4208 	 *Either shot noqueue qdisc, it is even simpler 8)
4209 	 */
4210 	if (dev->flags & IFF_UP) {
4211 		int cpu = smp_processor_id(); /* ok because BHs are off */
4212 
4213 		/* Other cpus might concurrently change txq->xmit_lock_owner
4214 		 * to -1 or to their cpu id, but not to our id.
4215 		 */
4216 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4217 			if (dev_xmit_recursion())
4218 				goto recursion_alert;
4219 
4220 			skb = validate_xmit_skb(skb, dev, &again);
4221 			if (!skb)
4222 				goto out;
4223 
4224 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4225 			HARD_TX_LOCK(dev, txq, cpu);
4226 
4227 			if (!netif_xmit_stopped(txq)) {
4228 				dev_xmit_recursion_inc();
4229 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4230 				dev_xmit_recursion_dec();
4231 				if (dev_xmit_complete(rc)) {
4232 					HARD_TX_UNLOCK(dev, txq);
4233 					goto out;
4234 				}
4235 			}
4236 			HARD_TX_UNLOCK(dev, txq);
4237 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4238 					     dev->name);
4239 		} else {
4240 			/* Recursion is detected! It is possible,
4241 			 * unfortunately
4242 			 */
4243 recursion_alert:
4244 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4245 					     dev->name);
4246 		}
4247 	}
4248 
4249 	rc = -ENETDOWN;
4250 	rcu_read_unlock_bh();
4251 
4252 	atomic_long_inc(&dev->tx_dropped);
4253 	kfree_skb_list(skb);
4254 	return rc;
4255 out:
4256 	rcu_read_unlock_bh();
4257 	return rc;
4258 }
4259 
4260 int dev_queue_xmit(struct sk_buff *skb)
4261 {
4262 	return __dev_queue_xmit(skb, NULL);
4263 }
4264 EXPORT_SYMBOL(dev_queue_xmit);
4265 
4266 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4267 {
4268 	return __dev_queue_xmit(skb, sb_dev);
4269 }
4270 EXPORT_SYMBOL(dev_queue_xmit_accel);
4271 
4272 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4273 {
4274 	struct net_device *dev = skb->dev;
4275 	struct sk_buff *orig_skb = skb;
4276 	struct netdev_queue *txq;
4277 	int ret = NETDEV_TX_BUSY;
4278 	bool again = false;
4279 
4280 	if (unlikely(!netif_running(dev) ||
4281 		     !netif_carrier_ok(dev)))
4282 		goto drop;
4283 
4284 	skb = validate_xmit_skb_list(skb, dev, &again);
4285 	if (skb != orig_skb)
4286 		goto drop;
4287 
4288 	skb_set_queue_mapping(skb, queue_id);
4289 	txq = skb_get_tx_queue(dev, skb);
4290 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4291 
4292 	local_bh_disable();
4293 
4294 	dev_xmit_recursion_inc();
4295 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4296 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4297 		ret = netdev_start_xmit(skb, dev, txq, false);
4298 	HARD_TX_UNLOCK(dev, txq);
4299 	dev_xmit_recursion_dec();
4300 
4301 	local_bh_enable();
4302 	return ret;
4303 drop:
4304 	atomic_long_inc(&dev->tx_dropped);
4305 	kfree_skb_list(skb);
4306 	return NET_XMIT_DROP;
4307 }
4308 EXPORT_SYMBOL(__dev_direct_xmit);
4309 
4310 /*************************************************************************
4311  *			Receiver routines
4312  *************************************************************************/
4313 
4314 int netdev_max_backlog __read_mostly = 1000;
4315 EXPORT_SYMBOL(netdev_max_backlog);
4316 
4317 int netdev_tstamp_prequeue __read_mostly = 1;
4318 int netdev_budget __read_mostly = 300;
4319 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4320 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4321 int weight_p __read_mostly = 64;           /* old backlog weight */
4322 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4323 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4324 int dev_rx_weight __read_mostly = 64;
4325 int dev_tx_weight __read_mostly = 64;
4326 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4327 int gro_normal_batch __read_mostly = 8;
4328 
4329 /* Called with irq disabled */
4330 static inline void ____napi_schedule(struct softnet_data *sd,
4331 				     struct napi_struct *napi)
4332 {
4333 	struct task_struct *thread;
4334 
4335 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4336 		/* Paired with smp_mb__before_atomic() in
4337 		 * napi_enable()/dev_set_threaded().
4338 		 * Use READ_ONCE() to guarantee a complete
4339 		 * read on napi->thread. Only call
4340 		 * wake_up_process() when it's not NULL.
4341 		 */
4342 		thread = READ_ONCE(napi->thread);
4343 		if (thread) {
4344 			/* Avoid doing set_bit() if the thread is in
4345 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4346 			 * makes sure to proceed with napi polling
4347 			 * if the thread is explicitly woken from here.
4348 			 */
4349 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4350 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4351 			wake_up_process(thread);
4352 			return;
4353 		}
4354 	}
4355 
4356 	list_add_tail(&napi->poll_list, &sd->poll_list);
4357 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4358 }
4359 
4360 #ifdef CONFIG_RPS
4361 
4362 /* One global table that all flow-based protocols share. */
4363 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4364 EXPORT_SYMBOL(rps_sock_flow_table);
4365 u32 rps_cpu_mask __read_mostly;
4366 EXPORT_SYMBOL(rps_cpu_mask);
4367 
4368 struct static_key_false rps_needed __read_mostly;
4369 EXPORT_SYMBOL(rps_needed);
4370 struct static_key_false rfs_needed __read_mostly;
4371 EXPORT_SYMBOL(rfs_needed);
4372 
4373 static struct rps_dev_flow *
4374 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4375 	    struct rps_dev_flow *rflow, u16 next_cpu)
4376 {
4377 	if (next_cpu < nr_cpu_ids) {
4378 #ifdef CONFIG_RFS_ACCEL
4379 		struct netdev_rx_queue *rxqueue;
4380 		struct rps_dev_flow_table *flow_table;
4381 		struct rps_dev_flow *old_rflow;
4382 		u32 flow_id;
4383 		u16 rxq_index;
4384 		int rc;
4385 
4386 		/* Should we steer this flow to a different hardware queue? */
4387 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4388 		    !(dev->features & NETIF_F_NTUPLE))
4389 			goto out;
4390 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4391 		if (rxq_index == skb_get_rx_queue(skb))
4392 			goto out;
4393 
4394 		rxqueue = dev->_rx + rxq_index;
4395 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4396 		if (!flow_table)
4397 			goto out;
4398 		flow_id = skb_get_hash(skb) & flow_table->mask;
4399 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4400 							rxq_index, flow_id);
4401 		if (rc < 0)
4402 			goto out;
4403 		old_rflow = rflow;
4404 		rflow = &flow_table->flows[flow_id];
4405 		rflow->filter = rc;
4406 		if (old_rflow->filter == rflow->filter)
4407 			old_rflow->filter = RPS_NO_FILTER;
4408 	out:
4409 #endif
4410 		rflow->last_qtail =
4411 			per_cpu(softnet_data, next_cpu).input_queue_head;
4412 	}
4413 
4414 	rflow->cpu = next_cpu;
4415 	return rflow;
4416 }
4417 
4418 /*
4419  * get_rps_cpu is called from netif_receive_skb and returns the target
4420  * CPU from the RPS map of the receiving queue for a given skb.
4421  * rcu_read_lock must be held on entry.
4422  */
4423 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4424 		       struct rps_dev_flow **rflowp)
4425 {
4426 	const struct rps_sock_flow_table *sock_flow_table;
4427 	struct netdev_rx_queue *rxqueue = dev->_rx;
4428 	struct rps_dev_flow_table *flow_table;
4429 	struct rps_map *map;
4430 	int cpu = -1;
4431 	u32 tcpu;
4432 	u32 hash;
4433 
4434 	if (skb_rx_queue_recorded(skb)) {
4435 		u16 index = skb_get_rx_queue(skb);
4436 
4437 		if (unlikely(index >= dev->real_num_rx_queues)) {
4438 			WARN_ONCE(dev->real_num_rx_queues > 1,
4439 				  "%s received packet on queue %u, but number "
4440 				  "of RX queues is %u\n",
4441 				  dev->name, index, dev->real_num_rx_queues);
4442 			goto done;
4443 		}
4444 		rxqueue += index;
4445 	}
4446 
4447 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4448 
4449 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4450 	map = rcu_dereference(rxqueue->rps_map);
4451 	if (!flow_table && !map)
4452 		goto done;
4453 
4454 	skb_reset_network_header(skb);
4455 	hash = skb_get_hash(skb);
4456 	if (!hash)
4457 		goto done;
4458 
4459 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4460 	if (flow_table && sock_flow_table) {
4461 		struct rps_dev_flow *rflow;
4462 		u32 next_cpu;
4463 		u32 ident;
4464 
4465 		/* First check into global flow table if there is a match */
4466 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4467 		if ((ident ^ hash) & ~rps_cpu_mask)
4468 			goto try_rps;
4469 
4470 		next_cpu = ident & rps_cpu_mask;
4471 
4472 		/* OK, now we know there is a match,
4473 		 * we can look at the local (per receive queue) flow table
4474 		 */
4475 		rflow = &flow_table->flows[hash & flow_table->mask];
4476 		tcpu = rflow->cpu;
4477 
4478 		/*
4479 		 * If the desired CPU (where last recvmsg was done) is
4480 		 * different from current CPU (one in the rx-queue flow
4481 		 * table entry), switch if one of the following holds:
4482 		 *   - Current CPU is unset (>= nr_cpu_ids).
4483 		 *   - Current CPU is offline.
4484 		 *   - The current CPU's queue tail has advanced beyond the
4485 		 *     last packet that was enqueued using this table entry.
4486 		 *     This guarantees that all previous packets for the flow
4487 		 *     have been dequeued, thus preserving in order delivery.
4488 		 */
4489 		if (unlikely(tcpu != next_cpu) &&
4490 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4491 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4492 		      rflow->last_qtail)) >= 0)) {
4493 			tcpu = next_cpu;
4494 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4495 		}
4496 
4497 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4498 			*rflowp = rflow;
4499 			cpu = tcpu;
4500 			goto done;
4501 		}
4502 	}
4503 
4504 try_rps:
4505 
4506 	if (map) {
4507 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4508 		if (cpu_online(tcpu)) {
4509 			cpu = tcpu;
4510 			goto done;
4511 		}
4512 	}
4513 
4514 done:
4515 	return cpu;
4516 }
4517 
4518 #ifdef CONFIG_RFS_ACCEL
4519 
4520 /**
4521  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4522  * @dev: Device on which the filter was set
4523  * @rxq_index: RX queue index
4524  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4525  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4526  *
4527  * Drivers that implement ndo_rx_flow_steer() should periodically call
4528  * this function for each installed filter and remove the filters for
4529  * which it returns %true.
4530  */
4531 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4532 			 u32 flow_id, u16 filter_id)
4533 {
4534 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4535 	struct rps_dev_flow_table *flow_table;
4536 	struct rps_dev_flow *rflow;
4537 	bool expire = true;
4538 	unsigned int cpu;
4539 
4540 	rcu_read_lock();
4541 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4542 	if (flow_table && flow_id <= flow_table->mask) {
4543 		rflow = &flow_table->flows[flow_id];
4544 		cpu = READ_ONCE(rflow->cpu);
4545 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4546 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4547 			   rflow->last_qtail) <
4548 		     (int)(10 * flow_table->mask)))
4549 			expire = false;
4550 	}
4551 	rcu_read_unlock();
4552 	return expire;
4553 }
4554 EXPORT_SYMBOL(rps_may_expire_flow);
4555 
4556 #endif /* CONFIG_RFS_ACCEL */
4557 
4558 /* Called from hardirq (IPI) context */
4559 static void rps_trigger_softirq(void *data)
4560 {
4561 	struct softnet_data *sd = data;
4562 
4563 	____napi_schedule(sd, &sd->backlog);
4564 	sd->received_rps++;
4565 }
4566 
4567 #endif /* CONFIG_RPS */
4568 
4569 /*
4570  * Check if this softnet_data structure is another cpu one
4571  * If yes, queue it to our IPI list and return 1
4572  * If no, return 0
4573  */
4574 static int rps_ipi_queued(struct softnet_data *sd)
4575 {
4576 #ifdef CONFIG_RPS
4577 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4578 
4579 	if (sd != mysd) {
4580 		sd->rps_ipi_next = mysd->rps_ipi_list;
4581 		mysd->rps_ipi_list = sd;
4582 
4583 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4584 		return 1;
4585 	}
4586 #endif /* CONFIG_RPS */
4587 	return 0;
4588 }
4589 
4590 #ifdef CONFIG_NET_FLOW_LIMIT
4591 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4592 #endif
4593 
4594 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4595 {
4596 #ifdef CONFIG_NET_FLOW_LIMIT
4597 	struct sd_flow_limit *fl;
4598 	struct softnet_data *sd;
4599 	unsigned int old_flow, new_flow;
4600 
4601 	if (qlen < (netdev_max_backlog >> 1))
4602 		return false;
4603 
4604 	sd = this_cpu_ptr(&softnet_data);
4605 
4606 	rcu_read_lock();
4607 	fl = rcu_dereference(sd->flow_limit);
4608 	if (fl) {
4609 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4610 		old_flow = fl->history[fl->history_head];
4611 		fl->history[fl->history_head] = new_flow;
4612 
4613 		fl->history_head++;
4614 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4615 
4616 		if (likely(fl->buckets[old_flow]))
4617 			fl->buckets[old_flow]--;
4618 
4619 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4620 			fl->count++;
4621 			rcu_read_unlock();
4622 			return true;
4623 		}
4624 	}
4625 	rcu_read_unlock();
4626 #endif
4627 	return false;
4628 }
4629 
4630 /*
4631  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4632  * queue (may be a remote CPU queue).
4633  */
4634 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4635 			      unsigned int *qtail)
4636 {
4637 	struct softnet_data *sd;
4638 	unsigned long flags;
4639 	unsigned int qlen;
4640 
4641 	sd = &per_cpu(softnet_data, cpu);
4642 
4643 	local_irq_save(flags);
4644 
4645 	rps_lock(sd);
4646 	if (!netif_running(skb->dev))
4647 		goto drop;
4648 	qlen = skb_queue_len(&sd->input_pkt_queue);
4649 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4650 		if (qlen) {
4651 enqueue:
4652 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4653 			input_queue_tail_incr_save(sd, qtail);
4654 			rps_unlock(sd);
4655 			local_irq_restore(flags);
4656 			return NET_RX_SUCCESS;
4657 		}
4658 
4659 		/* Schedule NAPI for backlog device
4660 		 * We can use non atomic operation since we own the queue lock
4661 		 */
4662 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4663 			if (!rps_ipi_queued(sd))
4664 				____napi_schedule(sd, &sd->backlog);
4665 		}
4666 		goto enqueue;
4667 	}
4668 
4669 drop:
4670 	sd->dropped++;
4671 	rps_unlock(sd);
4672 
4673 	local_irq_restore(flags);
4674 
4675 	atomic_long_inc(&skb->dev->rx_dropped);
4676 	kfree_skb(skb);
4677 	return NET_RX_DROP;
4678 }
4679 
4680 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4681 {
4682 	struct net_device *dev = skb->dev;
4683 	struct netdev_rx_queue *rxqueue;
4684 
4685 	rxqueue = dev->_rx;
4686 
4687 	if (skb_rx_queue_recorded(skb)) {
4688 		u16 index = skb_get_rx_queue(skb);
4689 
4690 		if (unlikely(index >= dev->real_num_rx_queues)) {
4691 			WARN_ONCE(dev->real_num_rx_queues > 1,
4692 				  "%s received packet on queue %u, but number "
4693 				  "of RX queues is %u\n",
4694 				  dev->name, index, dev->real_num_rx_queues);
4695 
4696 			return rxqueue; /* Return first rxqueue */
4697 		}
4698 		rxqueue += index;
4699 	}
4700 	return rxqueue;
4701 }
4702 
4703 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4704 			     struct bpf_prog *xdp_prog)
4705 {
4706 	void *orig_data, *orig_data_end, *hard_start;
4707 	struct netdev_rx_queue *rxqueue;
4708 	bool orig_bcast, orig_host;
4709 	u32 mac_len, frame_sz;
4710 	__be16 orig_eth_type;
4711 	struct ethhdr *eth;
4712 	u32 metalen, act;
4713 	int off;
4714 
4715 	/* The XDP program wants to see the packet starting at the MAC
4716 	 * header.
4717 	 */
4718 	mac_len = skb->data - skb_mac_header(skb);
4719 	hard_start = skb->data - skb_headroom(skb);
4720 
4721 	/* SKB "head" area always have tailroom for skb_shared_info */
4722 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4723 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4724 
4725 	rxqueue = netif_get_rxqueue(skb);
4726 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4727 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4728 			 skb_headlen(skb) + mac_len, true);
4729 
4730 	orig_data_end = xdp->data_end;
4731 	orig_data = xdp->data;
4732 	eth = (struct ethhdr *)xdp->data;
4733 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4734 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4735 	orig_eth_type = eth->h_proto;
4736 
4737 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4738 
4739 	/* check if bpf_xdp_adjust_head was used */
4740 	off = xdp->data - orig_data;
4741 	if (off) {
4742 		if (off > 0)
4743 			__skb_pull(skb, off);
4744 		else if (off < 0)
4745 			__skb_push(skb, -off);
4746 
4747 		skb->mac_header += off;
4748 		skb_reset_network_header(skb);
4749 	}
4750 
4751 	/* check if bpf_xdp_adjust_tail was used */
4752 	off = xdp->data_end - orig_data_end;
4753 	if (off != 0) {
4754 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4755 		skb->len += off; /* positive on grow, negative on shrink */
4756 	}
4757 
4758 	/* check if XDP changed eth hdr such SKB needs update */
4759 	eth = (struct ethhdr *)xdp->data;
4760 	if ((orig_eth_type != eth->h_proto) ||
4761 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4762 						  skb->dev->dev_addr)) ||
4763 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4764 		__skb_push(skb, ETH_HLEN);
4765 		skb->pkt_type = PACKET_HOST;
4766 		skb->protocol = eth_type_trans(skb, skb->dev);
4767 	}
4768 
4769 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4770 	 * before calling us again on redirect path. We do not call do_redirect
4771 	 * as we leave that up to the caller.
4772 	 *
4773 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4774 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4775 	 */
4776 	switch (act) {
4777 	case XDP_REDIRECT:
4778 	case XDP_TX:
4779 		__skb_push(skb, mac_len);
4780 		break;
4781 	case XDP_PASS:
4782 		metalen = xdp->data - xdp->data_meta;
4783 		if (metalen)
4784 			skb_metadata_set(skb, metalen);
4785 		break;
4786 	}
4787 
4788 	return act;
4789 }
4790 
4791 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4792 				     struct xdp_buff *xdp,
4793 				     struct bpf_prog *xdp_prog)
4794 {
4795 	u32 act = XDP_DROP;
4796 
4797 	/* Reinjected packets coming from act_mirred or similar should
4798 	 * not get XDP generic processing.
4799 	 */
4800 	if (skb_is_redirected(skb))
4801 		return XDP_PASS;
4802 
4803 	/* XDP packets must be linear and must have sufficient headroom
4804 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4805 	 * native XDP provides, thus we need to do it here as well.
4806 	 */
4807 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4808 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4809 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4810 		int troom = skb->tail + skb->data_len - skb->end;
4811 
4812 		/* In case we have to go down the path and also linearize,
4813 		 * then lets do the pskb_expand_head() work just once here.
4814 		 */
4815 		if (pskb_expand_head(skb,
4816 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4817 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4818 			goto do_drop;
4819 		if (skb_linearize(skb))
4820 			goto do_drop;
4821 	}
4822 
4823 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4824 	switch (act) {
4825 	case XDP_REDIRECT:
4826 	case XDP_TX:
4827 	case XDP_PASS:
4828 		break;
4829 	default:
4830 		bpf_warn_invalid_xdp_action(act);
4831 		fallthrough;
4832 	case XDP_ABORTED:
4833 		trace_xdp_exception(skb->dev, xdp_prog, act);
4834 		fallthrough;
4835 	case XDP_DROP:
4836 	do_drop:
4837 		kfree_skb(skb);
4838 		break;
4839 	}
4840 
4841 	return act;
4842 }
4843 
4844 /* When doing generic XDP we have to bypass the qdisc layer and the
4845  * network taps in order to match in-driver-XDP behavior.
4846  */
4847 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4848 {
4849 	struct net_device *dev = skb->dev;
4850 	struct netdev_queue *txq;
4851 	bool free_skb = true;
4852 	int cpu, rc;
4853 
4854 	txq = netdev_core_pick_tx(dev, skb, NULL);
4855 	cpu = smp_processor_id();
4856 	HARD_TX_LOCK(dev, txq, cpu);
4857 	if (!netif_xmit_stopped(txq)) {
4858 		rc = netdev_start_xmit(skb, dev, txq, 0);
4859 		if (dev_xmit_complete(rc))
4860 			free_skb = false;
4861 	}
4862 	HARD_TX_UNLOCK(dev, txq);
4863 	if (free_skb) {
4864 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4865 		kfree_skb(skb);
4866 	}
4867 }
4868 
4869 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4870 
4871 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4872 {
4873 	if (xdp_prog) {
4874 		struct xdp_buff xdp;
4875 		u32 act;
4876 		int err;
4877 
4878 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4879 		if (act != XDP_PASS) {
4880 			switch (act) {
4881 			case XDP_REDIRECT:
4882 				err = xdp_do_generic_redirect(skb->dev, skb,
4883 							      &xdp, xdp_prog);
4884 				if (err)
4885 					goto out_redir;
4886 				break;
4887 			case XDP_TX:
4888 				generic_xdp_tx(skb, xdp_prog);
4889 				break;
4890 			}
4891 			return XDP_DROP;
4892 		}
4893 	}
4894 	return XDP_PASS;
4895 out_redir:
4896 	kfree_skb(skb);
4897 	return XDP_DROP;
4898 }
4899 EXPORT_SYMBOL_GPL(do_xdp_generic);
4900 
4901 static int netif_rx_internal(struct sk_buff *skb)
4902 {
4903 	int ret;
4904 
4905 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4906 
4907 	trace_netif_rx(skb);
4908 
4909 #ifdef CONFIG_RPS
4910 	if (static_branch_unlikely(&rps_needed)) {
4911 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4912 		int cpu;
4913 
4914 		preempt_disable();
4915 		rcu_read_lock();
4916 
4917 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4918 		if (cpu < 0)
4919 			cpu = smp_processor_id();
4920 
4921 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4922 
4923 		rcu_read_unlock();
4924 		preempt_enable();
4925 	} else
4926 #endif
4927 	{
4928 		unsigned int qtail;
4929 
4930 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4931 		put_cpu();
4932 	}
4933 	return ret;
4934 }
4935 
4936 /**
4937  *	netif_rx	-	post buffer to the network code
4938  *	@skb: buffer to post
4939  *
4940  *	This function receives a packet from a device driver and queues it for
4941  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4942  *	may be dropped during processing for congestion control or by the
4943  *	protocol layers.
4944  *
4945  *	return values:
4946  *	NET_RX_SUCCESS	(no congestion)
4947  *	NET_RX_DROP     (packet was dropped)
4948  *
4949  */
4950 
4951 int netif_rx(struct sk_buff *skb)
4952 {
4953 	int ret;
4954 
4955 	trace_netif_rx_entry(skb);
4956 
4957 	ret = netif_rx_internal(skb);
4958 	trace_netif_rx_exit(ret);
4959 
4960 	return ret;
4961 }
4962 EXPORT_SYMBOL(netif_rx);
4963 
4964 int netif_rx_ni(struct sk_buff *skb)
4965 {
4966 	int err;
4967 
4968 	trace_netif_rx_ni_entry(skb);
4969 
4970 	preempt_disable();
4971 	err = netif_rx_internal(skb);
4972 	if (local_softirq_pending())
4973 		do_softirq();
4974 	preempt_enable();
4975 	trace_netif_rx_ni_exit(err);
4976 
4977 	return err;
4978 }
4979 EXPORT_SYMBOL(netif_rx_ni);
4980 
4981 int netif_rx_any_context(struct sk_buff *skb)
4982 {
4983 	/*
4984 	 * If invoked from contexts which do not invoke bottom half
4985 	 * processing either at return from interrupt or when softrqs are
4986 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4987 	 * directly.
4988 	 */
4989 	if (in_interrupt())
4990 		return netif_rx(skb);
4991 	else
4992 		return netif_rx_ni(skb);
4993 }
4994 EXPORT_SYMBOL(netif_rx_any_context);
4995 
4996 static __latent_entropy void net_tx_action(struct softirq_action *h)
4997 {
4998 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4999 
5000 	if (sd->completion_queue) {
5001 		struct sk_buff *clist;
5002 
5003 		local_irq_disable();
5004 		clist = sd->completion_queue;
5005 		sd->completion_queue = NULL;
5006 		local_irq_enable();
5007 
5008 		while (clist) {
5009 			struct sk_buff *skb = clist;
5010 
5011 			clist = clist->next;
5012 
5013 			WARN_ON(refcount_read(&skb->users));
5014 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5015 				trace_consume_skb(skb);
5016 			else
5017 				trace_kfree_skb(skb, net_tx_action);
5018 
5019 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5020 				__kfree_skb(skb);
5021 			else
5022 				__kfree_skb_defer(skb);
5023 		}
5024 	}
5025 
5026 	if (sd->output_queue) {
5027 		struct Qdisc *head;
5028 
5029 		local_irq_disable();
5030 		head = sd->output_queue;
5031 		sd->output_queue = NULL;
5032 		sd->output_queue_tailp = &sd->output_queue;
5033 		local_irq_enable();
5034 
5035 		rcu_read_lock();
5036 
5037 		while (head) {
5038 			struct Qdisc *q = head;
5039 			spinlock_t *root_lock = NULL;
5040 
5041 			head = head->next_sched;
5042 
5043 			/* We need to make sure head->next_sched is read
5044 			 * before clearing __QDISC_STATE_SCHED
5045 			 */
5046 			smp_mb__before_atomic();
5047 
5048 			if (!(q->flags & TCQ_F_NOLOCK)) {
5049 				root_lock = qdisc_lock(q);
5050 				spin_lock(root_lock);
5051 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5052 						     &q->state))) {
5053 				/* There is a synchronize_net() between
5054 				 * STATE_DEACTIVATED flag being set and
5055 				 * qdisc_reset()/some_qdisc_is_busy() in
5056 				 * dev_deactivate(), so we can safely bail out
5057 				 * early here to avoid data race between
5058 				 * qdisc_deactivate() and some_qdisc_is_busy()
5059 				 * for lockless qdisc.
5060 				 */
5061 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5062 				continue;
5063 			}
5064 
5065 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5066 			qdisc_run(q);
5067 			if (root_lock)
5068 				spin_unlock(root_lock);
5069 		}
5070 
5071 		rcu_read_unlock();
5072 	}
5073 
5074 	xfrm_dev_backlog(sd);
5075 }
5076 
5077 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5078 /* This hook is defined here for ATM LANE */
5079 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5080 			     unsigned char *addr) __read_mostly;
5081 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5082 #endif
5083 
5084 static inline struct sk_buff *
5085 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5086 		   struct net_device *orig_dev, bool *another)
5087 {
5088 #ifdef CONFIG_NET_CLS_ACT
5089 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5090 	struct tcf_result cl_res;
5091 
5092 	/* If there's at least one ingress present somewhere (so
5093 	 * we get here via enabled static key), remaining devices
5094 	 * that are not configured with an ingress qdisc will bail
5095 	 * out here.
5096 	 */
5097 	if (!miniq)
5098 		return skb;
5099 
5100 	if (*pt_prev) {
5101 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5102 		*pt_prev = NULL;
5103 	}
5104 
5105 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5106 	tc_skb_cb(skb)->mru = 0;
5107 	tc_skb_cb(skb)->post_ct = false;
5108 	skb->tc_at_ingress = 1;
5109 	mini_qdisc_bstats_cpu_update(miniq, skb);
5110 
5111 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5112 	case TC_ACT_OK:
5113 	case TC_ACT_RECLASSIFY:
5114 		skb->tc_index = TC_H_MIN(cl_res.classid);
5115 		break;
5116 	case TC_ACT_SHOT:
5117 		mini_qdisc_qstats_cpu_drop(miniq);
5118 		kfree_skb(skb);
5119 		return NULL;
5120 	case TC_ACT_STOLEN:
5121 	case TC_ACT_QUEUED:
5122 	case TC_ACT_TRAP:
5123 		consume_skb(skb);
5124 		return NULL;
5125 	case TC_ACT_REDIRECT:
5126 		/* skb_mac_header check was done by cls/act_bpf, so
5127 		 * we can safely push the L2 header back before
5128 		 * redirecting to another netdev
5129 		 */
5130 		__skb_push(skb, skb->mac_len);
5131 		if (skb_do_redirect(skb) == -EAGAIN) {
5132 			__skb_pull(skb, skb->mac_len);
5133 			*another = true;
5134 			break;
5135 		}
5136 		return NULL;
5137 	case TC_ACT_CONSUMED:
5138 		return NULL;
5139 	default:
5140 		break;
5141 	}
5142 #endif /* CONFIG_NET_CLS_ACT */
5143 	return skb;
5144 }
5145 
5146 /**
5147  *	netdev_is_rx_handler_busy - check if receive handler is registered
5148  *	@dev: device to check
5149  *
5150  *	Check if a receive handler is already registered for a given device.
5151  *	Return true if there one.
5152  *
5153  *	The caller must hold the rtnl_mutex.
5154  */
5155 bool netdev_is_rx_handler_busy(struct net_device *dev)
5156 {
5157 	ASSERT_RTNL();
5158 	return dev && rtnl_dereference(dev->rx_handler);
5159 }
5160 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5161 
5162 /**
5163  *	netdev_rx_handler_register - register receive handler
5164  *	@dev: device to register a handler for
5165  *	@rx_handler: receive handler to register
5166  *	@rx_handler_data: data pointer that is used by rx handler
5167  *
5168  *	Register a receive handler for a device. This handler will then be
5169  *	called from __netif_receive_skb. A negative errno code is returned
5170  *	on a failure.
5171  *
5172  *	The caller must hold the rtnl_mutex.
5173  *
5174  *	For a general description of rx_handler, see enum rx_handler_result.
5175  */
5176 int netdev_rx_handler_register(struct net_device *dev,
5177 			       rx_handler_func_t *rx_handler,
5178 			       void *rx_handler_data)
5179 {
5180 	if (netdev_is_rx_handler_busy(dev))
5181 		return -EBUSY;
5182 
5183 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5184 		return -EINVAL;
5185 
5186 	/* Note: rx_handler_data must be set before rx_handler */
5187 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5188 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5189 
5190 	return 0;
5191 }
5192 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5193 
5194 /**
5195  *	netdev_rx_handler_unregister - unregister receive handler
5196  *	@dev: device to unregister a handler from
5197  *
5198  *	Unregister a receive handler from a device.
5199  *
5200  *	The caller must hold the rtnl_mutex.
5201  */
5202 void netdev_rx_handler_unregister(struct net_device *dev)
5203 {
5204 
5205 	ASSERT_RTNL();
5206 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5207 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5208 	 * section has a guarantee to see a non NULL rx_handler_data
5209 	 * as well.
5210 	 */
5211 	synchronize_net();
5212 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5213 }
5214 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5215 
5216 /*
5217  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5218  * the special handling of PFMEMALLOC skbs.
5219  */
5220 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5221 {
5222 	switch (skb->protocol) {
5223 	case htons(ETH_P_ARP):
5224 	case htons(ETH_P_IP):
5225 	case htons(ETH_P_IPV6):
5226 	case htons(ETH_P_8021Q):
5227 	case htons(ETH_P_8021AD):
5228 		return true;
5229 	default:
5230 		return false;
5231 	}
5232 }
5233 
5234 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5235 			     int *ret, struct net_device *orig_dev)
5236 {
5237 	if (nf_hook_ingress_active(skb)) {
5238 		int ingress_retval;
5239 
5240 		if (*pt_prev) {
5241 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5242 			*pt_prev = NULL;
5243 		}
5244 
5245 		rcu_read_lock();
5246 		ingress_retval = nf_hook_ingress(skb);
5247 		rcu_read_unlock();
5248 		return ingress_retval;
5249 	}
5250 	return 0;
5251 }
5252 
5253 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5254 				    struct packet_type **ppt_prev)
5255 {
5256 	struct packet_type *ptype, *pt_prev;
5257 	rx_handler_func_t *rx_handler;
5258 	struct sk_buff *skb = *pskb;
5259 	struct net_device *orig_dev;
5260 	bool deliver_exact = false;
5261 	int ret = NET_RX_DROP;
5262 	__be16 type;
5263 
5264 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5265 
5266 	trace_netif_receive_skb(skb);
5267 
5268 	orig_dev = skb->dev;
5269 
5270 	skb_reset_network_header(skb);
5271 	if (!skb_transport_header_was_set(skb))
5272 		skb_reset_transport_header(skb);
5273 	skb_reset_mac_len(skb);
5274 
5275 	pt_prev = NULL;
5276 
5277 another_round:
5278 	skb->skb_iif = skb->dev->ifindex;
5279 
5280 	__this_cpu_inc(softnet_data.processed);
5281 
5282 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5283 		int ret2;
5284 
5285 		migrate_disable();
5286 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5287 		migrate_enable();
5288 
5289 		if (ret2 != XDP_PASS) {
5290 			ret = NET_RX_DROP;
5291 			goto out;
5292 		}
5293 	}
5294 
5295 	if (eth_type_vlan(skb->protocol)) {
5296 		skb = skb_vlan_untag(skb);
5297 		if (unlikely(!skb))
5298 			goto out;
5299 	}
5300 
5301 	if (skb_skip_tc_classify(skb))
5302 		goto skip_classify;
5303 
5304 	if (pfmemalloc)
5305 		goto skip_taps;
5306 
5307 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5308 		if (pt_prev)
5309 			ret = deliver_skb(skb, pt_prev, orig_dev);
5310 		pt_prev = ptype;
5311 	}
5312 
5313 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5314 		if (pt_prev)
5315 			ret = deliver_skb(skb, pt_prev, orig_dev);
5316 		pt_prev = ptype;
5317 	}
5318 
5319 skip_taps:
5320 #ifdef CONFIG_NET_INGRESS
5321 	if (static_branch_unlikely(&ingress_needed_key)) {
5322 		bool another = false;
5323 
5324 		nf_skip_egress(skb, true);
5325 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5326 					 &another);
5327 		if (another)
5328 			goto another_round;
5329 		if (!skb)
5330 			goto out;
5331 
5332 		nf_skip_egress(skb, false);
5333 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5334 			goto out;
5335 	}
5336 #endif
5337 	skb_reset_redirect(skb);
5338 skip_classify:
5339 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5340 		goto drop;
5341 
5342 	if (skb_vlan_tag_present(skb)) {
5343 		if (pt_prev) {
5344 			ret = deliver_skb(skb, pt_prev, orig_dev);
5345 			pt_prev = NULL;
5346 		}
5347 		if (vlan_do_receive(&skb))
5348 			goto another_round;
5349 		else if (unlikely(!skb))
5350 			goto out;
5351 	}
5352 
5353 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5354 	if (rx_handler) {
5355 		if (pt_prev) {
5356 			ret = deliver_skb(skb, pt_prev, orig_dev);
5357 			pt_prev = NULL;
5358 		}
5359 		switch (rx_handler(&skb)) {
5360 		case RX_HANDLER_CONSUMED:
5361 			ret = NET_RX_SUCCESS;
5362 			goto out;
5363 		case RX_HANDLER_ANOTHER:
5364 			goto another_round;
5365 		case RX_HANDLER_EXACT:
5366 			deliver_exact = true;
5367 			break;
5368 		case RX_HANDLER_PASS:
5369 			break;
5370 		default:
5371 			BUG();
5372 		}
5373 	}
5374 
5375 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5376 check_vlan_id:
5377 		if (skb_vlan_tag_get_id(skb)) {
5378 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5379 			 * find vlan device.
5380 			 */
5381 			skb->pkt_type = PACKET_OTHERHOST;
5382 		} else if (eth_type_vlan(skb->protocol)) {
5383 			/* Outer header is 802.1P with vlan 0, inner header is
5384 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5385 			 * not find vlan dev for vlan id 0.
5386 			 */
5387 			__vlan_hwaccel_clear_tag(skb);
5388 			skb = skb_vlan_untag(skb);
5389 			if (unlikely(!skb))
5390 				goto out;
5391 			if (vlan_do_receive(&skb))
5392 				/* After stripping off 802.1P header with vlan 0
5393 				 * vlan dev is found for inner header.
5394 				 */
5395 				goto another_round;
5396 			else if (unlikely(!skb))
5397 				goto out;
5398 			else
5399 				/* We have stripped outer 802.1P vlan 0 header.
5400 				 * But could not find vlan dev.
5401 				 * check again for vlan id to set OTHERHOST.
5402 				 */
5403 				goto check_vlan_id;
5404 		}
5405 		/* Note: we might in the future use prio bits
5406 		 * and set skb->priority like in vlan_do_receive()
5407 		 * For the time being, just ignore Priority Code Point
5408 		 */
5409 		__vlan_hwaccel_clear_tag(skb);
5410 	}
5411 
5412 	type = skb->protocol;
5413 
5414 	/* deliver only exact match when indicated */
5415 	if (likely(!deliver_exact)) {
5416 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5417 				       &ptype_base[ntohs(type) &
5418 						   PTYPE_HASH_MASK]);
5419 	}
5420 
5421 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5422 			       &orig_dev->ptype_specific);
5423 
5424 	if (unlikely(skb->dev != orig_dev)) {
5425 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5426 				       &skb->dev->ptype_specific);
5427 	}
5428 
5429 	if (pt_prev) {
5430 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5431 			goto drop;
5432 		*ppt_prev = pt_prev;
5433 	} else {
5434 drop:
5435 		if (!deliver_exact)
5436 			atomic_long_inc(&skb->dev->rx_dropped);
5437 		else
5438 			atomic_long_inc(&skb->dev->rx_nohandler);
5439 		kfree_skb(skb);
5440 		/* Jamal, now you will not able to escape explaining
5441 		 * me how you were going to use this. :-)
5442 		 */
5443 		ret = NET_RX_DROP;
5444 	}
5445 
5446 out:
5447 	/* The invariant here is that if *ppt_prev is not NULL
5448 	 * then skb should also be non-NULL.
5449 	 *
5450 	 * Apparently *ppt_prev assignment above holds this invariant due to
5451 	 * skb dereferencing near it.
5452 	 */
5453 	*pskb = skb;
5454 	return ret;
5455 }
5456 
5457 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5458 {
5459 	struct net_device *orig_dev = skb->dev;
5460 	struct packet_type *pt_prev = NULL;
5461 	int ret;
5462 
5463 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5464 	if (pt_prev)
5465 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5466 					 skb->dev, pt_prev, orig_dev);
5467 	return ret;
5468 }
5469 
5470 /**
5471  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5472  *	@skb: buffer to process
5473  *
5474  *	More direct receive version of netif_receive_skb().  It should
5475  *	only be used by callers that have a need to skip RPS and Generic XDP.
5476  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5477  *
5478  *	This function may only be called from softirq context and interrupts
5479  *	should be enabled.
5480  *
5481  *	Return values (usually ignored):
5482  *	NET_RX_SUCCESS: no congestion
5483  *	NET_RX_DROP: packet was dropped
5484  */
5485 int netif_receive_skb_core(struct sk_buff *skb)
5486 {
5487 	int ret;
5488 
5489 	rcu_read_lock();
5490 	ret = __netif_receive_skb_one_core(skb, false);
5491 	rcu_read_unlock();
5492 
5493 	return ret;
5494 }
5495 EXPORT_SYMBOL(netif_receive_skb_core);
5496 
5497 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5498 						  struct packet_type *pt_prev,
5499 						  struct net_device *orig_dev)
5500 {
5501 	struct sk_buff *skb, *next;
5502 
5503 	if (!pt_prev)
5504 		return;
5505 	if (list_empty(head))
5506 		return;
5507 	if (pt_prev->list_func != NULL)
5508 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5509 				   ip_list_rcv, head, pt_prev, orig_dev);
5510 	else
5511 		list_for_each_entry_safe(skb, next, head, list) {
5512 			skb_list_del_init(skb);
5513 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5514 		}
5515 }
5516 
5517 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5518 {
5519 	/* Fast-path assumptions:
5520 	 * - There is no RX handler.
5521 	 * - Only one packet_type matches.
5522 	 * If either of these fails, we will end up doing some per-packet
5523 	 * processing in-line, then handling the 'last ptype' for the whole
5524 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5525 	 * because the 'last ptype' must be constant across the sublist, and all
5526 	 * other ptypes are handled per-packet.
5527 	 */
5528 	/* Current (common) ptype of sublist */
5529 	struct packet_type *pt_curr = NULL;
5530 	/* Current (common) orig_dev of sublist */
5531 	struct net_device *od_curr = NULL;
5532 	struct list_head sublist;
5533 	struct sk_buff *skb, *next;
5534 
5535 	INIT_LIST_HEAD(&sublist);
5536 	list_for_each_entry_safe(skb, next, head, list) {
5537 		struct net_device *orig_dev = skb->dev;
5538 		struct packet_type *pt_prev = NULL;
5539 
5540 		skb_list_del_init(skb);
5541 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5542 		if (!pt_prev)
5543 			continue;
5544 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5545 			/* dispatch old sublist */
5546 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5547 			/* start new sublist */
5548 			INIT_LIST_HEAD(&sublist);
5549 			pt_curr = pt_prev;
5550 			od_curr = orig_dev;
5551 		}
5552 		list_add_tail(&skb->list, &sublist);
5553 	}
5554 
5555 	/* dispatch final sublist */
5556 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5557 }
5558 
5559 static int __netif_receive_skb(struct sk_buff *skb)
5560 {
5561 	int ret;
5562 
5563 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5564 		unsigned int noreclaim_flag;
5565 
5566 		/*
5567 		 * PFMEMALLOC skbs are special, they should
5568 		 * - be delivered to SOCK_MEMALLOC sockets only
5569 		 * - stay away from userspace
5570 		 * - have bounded memory usage
5571 		 *
5572 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5573 		 * context down to all allocation sites.
5574 		 */
5575 		noreclaim_flag = memalloc_noreclaim_save();
5576 		ret = __netif_receive_skb_one_core(skb, true);
5577 		memalloc_noreclaim_restore(noreclaim_flag);
5578 	} else
5579 		ret = __netif_receive_skb_one_core(skb, false);
5580 
5581 	return ret;
5582 }
5583 
5584 static void __netif_receive_skb_list(struct list_head *head)
5585 {
5586 	unsigned long noreclaim_flag = 0;
5587 	struct sk_buff *skb, *next;
5588 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5589 
5590 	list_for_each_entry_safe(skb, next, head, list) {
5591 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5592 			struct list_head sublist;
5593 
5594 			/* Handle the previous sublist */
5595 			list_cut_before(&sublist, head, &skb->list);
5596 			if (!list_empty(&sublist))
5597 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5598 			pfmemalloc = !pfmemalloc;
5599 			/* See comments in __netif_receive_skb */
5600 			if (pfmemalloc)
5601 				noreclaim_flag = memalloc_noreclaim_save();
5602 			else
5603 				memalloc_noreclaim_restore(noreclaim_flag);
5604 		}
5605 	}
5606 	/* Handle the remaining sublist */
5607 	if (!list_empty(head))
5608 		__netif_receive_skb_list_core(head, pfmemalloc);
5609 	/* Restore pflags */
5610 	if (pfmemalloc)
5611 		memalloc_noreclaim_restore(noreclaim_flag);
5612 }
5613 
5614 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5615 {
5616 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5617 	struct bpf_prog *new = xdp->prog;
5618 	int ret = 0;
5619 
5620 	switch (xdp->command) {
5621 	case XDP_SETUP_PROG:
5622 		rcu_assign_pointer(dev->xdp_prog, new);
5623 		if (old)
5624 			bpf_prog_put(old);
5625 
5626 		if (old && !new) {
5627 			static_branch_dec(&generic_xdp_needed_key);
5628 		} else if (new && !old) {
5629 			static_branch_inc(&generic_xdp_needed_key);
5630 			dev_disable_lro(dev);
5631 			dev_disable_gro_hw(dev);
5632 		}
5633 		break;
5634 
5635 	default:
5636 		ret = -EINVAL;
5637 		break;
5638 	}
5639 
5640 	return ret;
5641 }
5642 
5643 static int netif_receive_skb_internal(struct sk_buff *skb)
5644 {
5645 	int ret;
5646 
5647 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5648 
5649 	if (skb_defer_rx_timestamp(skb))
5650 		return NET_RX_SUCCESS;
5651 
5652 	rcu_read_lock();
5653 #ifdef CONFIG_RPS
5654 	if (static_branch_unlikely(&rps_needed)) {
5655 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5656 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5657 
5658 		if (cpu >= 0) {
5659 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5660 			rcu_read_unlock();
5661 			return ret;
5662 		}
5663 	}
5664 #endif
5665 	ret = __netif_receive_skb(skb);
5666 	rcu_read_unlock();
5667 	return ret;
5668 }
5669 
5670 static void netif_receive_skb_list_internal(struct list_head *head)
5671 {
5672 	struct sk_buff *skb, *next;
5673 	struct list_head sublist;
5674 
5675 	INIT_LIST_HEAD(&sublist);
5676 	list_for_each_entry_safe(skb, next, head, list) {
5677 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5678 		skb_list_del_init(skb);
5679 		if (!skb_defer_rx_timestamp(skb))
5680 			list_add_tail(&skb->list, &sublist);
5681 	}
5682 	list_splice_init(&sublist, head);
5683 
5684 	rcu_read_lock();
5685 #ifdef CONFIG_RPS
5686 	if (static_branch_unlikely(&rps_needed)) {
5687 		list_for_each_entry_safe(skb, next, head, list) {
5688 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5689 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5690 
5691 			if (cpu >= 0) {
5692 				/* Will be handled, remove from list */
5693 				skb_list_del_init(skb);
5694 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5695 			}
5696 		}
5697 	}
5698 #endif
5699 	__netif_receive_skb_list(head);
5700 	rcu_read_unlock();
5701 }
5702 
5703 /**
5704  *	netif_receive_skb - process receive buffer from network
5705  *	@skb: buffer to process
5706  *
5707  *	netif_receive_skb() is the main receive data processing function.
5708  *	It always succeeds. The buffer may be dropped during processing
5709  *	for congestion control or by the protocol layers.
5710  *
5711  *	This function may only be called from softirq context and interrupts
5712  *	should be enabled.
5713  *
5714  *	Return values (usually ignored):
5715  *	NET_RX_SUCCESS: no congestion
5716  *	NET_RX_DROP: packet was dropped
5717  */
5718 int netif_receive_skb(struct sk_buff *skb)
5719 {
5720 	int ret;
5721 
5722 	trace_netif_receive_skb_entry(skb);
5723 
5724 	ret = netif_receive_skb_internal(skb);
5725 	trace_netif_receive_skb_exit(ret);
5726 
5727 	return ret;
5728 }
5729 EXPORT_SYMBOL(netif_receive_skb);
5730 
5731 /**
5732  *	netif_receive_skb_list - process many receive buffers from network
5733  *	@head: list of skbs to process.
5734  *
5735  *	Since return value of netif_receive_skb() is normally ignored, and
5736  *	wouldn't be meaningful for a list, this function returns void.
5737  *
5738  *	This function may only be called from softirq context and interrupts
5739  *	should be enabled.
5740  */
5741 void netif_receive_skb_list(struct list_head *head)
5742 {
5743 	struct sk_buff *skb;
5744 
5745 	if (list_empty(head))
5746 		return;
5747 	if (trace_netif_receive_skb_list_entry_enabled()) {
5748 		list_for_each_entry(skb, head, list)
5749 			trace_netif_receive_skb_list_entry(skb);
5750 	}
5751 	netif_receive_skb_list_internal(head);
5752 	trace_netif_receive_skb_list_exit(0);
5753 }
5754 EXPORT_SYMBOL(netif_receive_skb_list);
5755 
5756 static DEFINE_PER_CPU(struct work_struct, flush_works);
5757 
5758 /* Network device is going away, flush any packets still pending */
5759 static void flush_backlog(struct work_struct *work)
5760 {
5761 	struct sk_buff *skb, *tmp;
5762 	struct softnet_data *sd;
5763 
5764 	local_bh_disable();
5765 	sd = this_cpu_ptr(&softnet_data);
5766 
5767 	local_irq_disable();
5768 	rps_lock(sd);
5769 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5770 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5771 			__skb_unlink(skb, &sd->input_pkt_queue);
5772 			dev_kfree_skb_irq(skb);
5773 			input_queue_head_incr(sd);
5774 		}
5775 	}
5776 	rps_unlock(sd);
5777 	local_irq_enable();
5778 
5779 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5780 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5781 			__skb_unlink(skb, &sd->process_queue);
5782 			kfree_skb(skb);
5783 			input_queue_head_incr(sd);
5784 		}
5785 	}
5786 	local_bh_enable();
5787 }
5788 
5789 static bool flush_required(int cpu)
5790 {
5791 #if IS_ENABLED(CONFIG_RPS)
5792 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5793 	bool do_flush;
5794 
5795 	local_irq_disable();
5796 	rps_lock(sd);
5797 
5798 	/* as insertion into process_queue happens with the rps lock held,
5799 	 * process_queue access may race only with dequeue
5800 	 */
5801 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5802 		   !skb_queue_empty_lockless(&sd->process_queue);
5803 	rps_unlock(sd);
5804 	local_irq_enable();
5805 
5806 	return do_flush;
5807 #endif
5808 	/* without RPS we can't safely check input_pkt_queue: during a
5809 	 * concurrent remote skb_queue_splice() we can detect as empty both
5810 	 * input_pkt_queue and process_queue even if the latter could end-up
5811 	 * containing a lot of packets.
5812 	 */
5813 	return true;
5814 }
5815 
5816 static void flush_all_backlogs(void)
5817 {
5818 	static cpumask_t flush_cpus;
5819 	unsigned int cpu;
5820 
5821 	/* since we are under rtnl lock protection we can use static data
5822 	 * for the cpumask and avoid allocating on stack the possibly
5823 	 * large mask
5824 	 */
5825 	ASSERT_RTNL();
5826 
5827 	cpus_read_lock();
5828 
5829 	cpumask_clear(&flush_cpus);
5830 	for_each_online_cpu(cpu) {
5831 		if (flush_required(cpu)) {
5832 			queue_work_on(cpu, system_highpri_wq,
5833 				      per_cpu_ptr(&flush_works, cpu));
5834 			cpumask_set_cpu(cpu, &flush_cpus);
5835 		}
5836 	}
5837 
5838 	/* we can have in flight packet[s] on the cpus we are not flushing,
5839 	 * synchronize_net() in unregister_netdevice_many() will take care of
5840 	 * them
5841 	 */
5842 	for_each_cpu(cpu, &flush_cpus)
5843 		flush_work(per_cpu_ptr(&flush_works, cpu));
5844 
5845 	cpus_read_unlock();
5846 }
5847 
5848 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5849 static void gro_normal_list(struct napi_struct *napi)
5850 {
5851 	if (!napi->rx_count)
5852 		return;
5853 	netif_receive_skb_list_internal(&napi->rx_list);
5854 	INIT_LIST_HEAD(&napi->rx_list);
5855 	napi->rx_count = 0;
5856 }
5857 
5858 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5859  * pass the whole batch up to the stack.
5860  */
5861 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5862 {
5863 	list_add_tail(&skb->list, &napi->rx_list);
5864 	napi->rx_count += segs;
5865 	if (napi->rx_count >= gro_normal_batch)
5866 		gro_normal_list(napi);
5867 }
5868 
5869 static void napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5870 {
5871 	struct packet_offload *ptype;
5872 	__be16 type = skb->protocol;
5873 	struct list_head *head = &offload_base;
5874 	int err = -ENOENT;
5875 
5876 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5877 
5878 	if (NAPI_GRO_CB(skb)->count == 1) {
5879 		skb_shinfo(skb)->gso_size = 0;
5880 		goto out;
5881 	}
5882 
5883 	rcu_read_lock();
5884 	list_for_each_entry_rcu(ptype, head, list) {
5885 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5886 			continue;
5887 
5888 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5889 					 ipv6_gro_complete, inet_gro_complete,
5890 					 skb, 0);
5891 		break;
5892 	}
5893 	rcu_read_unlock();
5894 
5895 	if (err) {
5896 		WARN_ON(&ptype->list == head);
5897 		kfree_skb(skb);
5898 		return;
5899 	}
5900 
5901 out:
5902 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5903 }
5904 
5905 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5906 				   bool flush_old)
5907 {
5908 	struct list_head *head = &napi->gro_hash[index].list;
5909 	struct sk_buff *skb, *p;
5910 
5911 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5912 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5913 			return;
5914 		skb_list_del_init(skb);
5915 		napi_gro_complete(napi, skb);
5916 		napi->gro_hash[index].count--;
5917 	}
5918 
5919 	if (!napi->gro_hash[index].count)
5920 		__clear_bit(index, &napi->gro_bitmask);
5921 }
5922 
5923 /* napi->gro_hash[].list contains packets ordered by age.
5924  * youngest packets at the head of it.
5925  * Complete skbs in reverse order to reduce latencies.
5926  */
5927 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5928 {
5929 	unsigned long bitmask = napi->gro_bitmask;
5930 	unsigned int i, base = ~0U;
5931 
5932 	while ((i = ffs(bitmask)) != 0) {
5933 		bitmask >>= i;
5934 		base += i;
5935 		__napi_gro_flush_chain(napi, base, flush_old);
5936 	}
5937 }
5938 EXPORT_SYMBOL(napi_gro_flush);
5939 
5940 static void gro_list_prepare(const struct list_head *head,
5941 			     const struct sk_buff *skb)
5942 {
5943 	unsigned int maclen = skb->dev->hard_header_len;
5944 	u32 hash = skb_get_hash_raw(skb);
5945 	struct sk_buff *p;
5946 
5947 	list_for_each_entry(p, head, list) {
5948 		unsigned long diffs;
5949 
5950 		NAPI_GRO_CB(p)->flush = 0;
5951 
5952 		if (hash != skb_get_hash_raw(p)) {
5953 			NAPI_GRO_CB(p)->same_flow = 0;
5954 			continue;
5955 		}
5956 
5957 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5958 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5959 		if (skb_vlan_tag_present(p))
5960 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5961 		diffs |= skb_metadata_differs(p, skb);
5962 		if (maclen == ETH_HLEN)
5963 			diffs |= compare_ether_header(skb_mac_header(p),
5964 						      skb_mac_header(skb));
5965 		else if (!diffs)
5966 			diffs = memcmp(skb_mac_header(p),
5967 				       skb_mac_header(skb),
5968 				       maclen);
5969 
5970 		/* in most common scenarions 'slow_gro' is 0
5971 		 * otherwise we are already on some slower paths
5972 		 * either skip all the infrequent tests altogether or
5973 		 * avoid trying too hard to skip each of them individually
5974 		 */
5975 		if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5976 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5977 			struct tc_skb_ext *skb_ext;
5978 			struct tc_skb_ext *p_ext;
5979 #endif
5980 
5981 			diffs |= p->sk != skb->sk;
5982 			diffs |= skb_metadata_dst_cmp(p, skb);
5983 			diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5984 
5985 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5986 			skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5987 			p_ext = skb_ext_find(p, TC_SKB_EXT);
5988 
5989 			diffs |= (!!p_ext) ^ (!!skb_ext);
5990 			if (!diffs && unlikely(skb_ext))
5991 				diffs |= p_ext->chain ^ skb_ext->chain;
5992 #endif
5993 		}
5994 
5995 		NAPI_GRO_CB(p)->same_flow = !diffs;
5996 	}
5997 }
5998 
5999 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
6000 {
6001 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
6002 	const skb_frag_t *frag0 = &pinfo->frags[0];
6003 
6004 	NAPI_GRO_CB(skb)->data_offset = 0;
6005 	NAPI_GRO_CB(skb)->frag0 = NULL;
6006 	NAPI_GRO_CB(skb)->frag0_len = 0;
6007 
6008 	if (!skb_headlen(skb) && pinfo->nr_frags &&
6009 	    !PageHighMem(skb_frag_page(frag0)) &&
6010 	    (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6011 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6012 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6013 						    skb_frag_size(frag0),
6014 						    skb->end - skb->tail);
6015 	}
6016 }
6017 
6018 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6019 {
6020 	struct skb_shared_info *pinfo = skb_shinfo(skb);
6021 
6022 	BUG_ON(skb->end - skb->tail < grow);
6023 
6024 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6025 
6026 	skb->data_len -= grow;
6027 	skb->tail += grow;
6028 
6029 	skb_frag_off_add(&pinfo->frags[0], grow);
6030 	skb_frag_size_sub(&pinfo->frags[0], grow);
6031 
6032 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6033 		skb_frag_unref(skb, 0);
6034 		memmove(pinfo->frags, pinfo->frags + 1,
6035 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
6036 	}
6037 }
6038 
6039 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6040 {
6041 	struct sk_buff *oldest;
6042 
6043 	oldest = list_last_entry(head, struct sk_buff, list);
6044 
6045 	/* We are called with head length >= MAX_GRO_SKBS, so this is
6046 	 * impossible.
6047 	 */
6048 	if (WARN_ON_ONCE(!oldest))
6049 		return;
6050 
6051 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
6052 	 * SKB to the chain.
6053 	 */
6054 	skb_list_del_init(oldest);
6055 	napi_gro_complete(napi, oldest);
6056 }
6057 
6058 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6059 {
6060 	u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6061 	struct gro_list *gro_list = &napi->gro_hash[bucket];
6062 	struct list_head *head = &offload_base;
6063 	struct packet_offload *ptype;
6064 	__be16 type = skb->protocol;
6065 	struct sk_buff *pp = NULL;
6066 	enum gro_result ret;
6067 	int same_flow;
6068 	int grow;
6069 
6070 	if (netif_elide_gro(skb->dev))
6071 		goto normal;
6072 
6073 	gro_list_prepare(&gro_list->list, skb);
6074 
6075 	rcu_read_lock();
6076 	list_for_each_entry_rcu(ptype, head, list) {
6077 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6078 			continue;
6079 
6080 		skb_set_network_header(skb, skb_gro_offset(skb));
6081 		skb_reset_mac_len(skb);
6082 		NAPI_GRO_CB(skb)->same_flow = 0;
6083 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6084 		NAPI_GRO_CB(skb)->free = 0;
6085 		NAPI_GRO_CB(skb)->encap_mark = 0;
6086 		NAPI_GRO_CB(skb)->recursion_counter = 0;
6087 		NAPI_GRO_CB(skb)->is_fou = 0;
6088 		NAPI_GRO_CB(skb)->is_atomic = 1;
6089 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6090 
6091 		/* Setup for GRO checksum validation */
6092 		switch (skb->ip_summed) {
6093 		case CHECKSUM_COMPLETE:
6094 			NAPI_GRO_CB(skb)->csum = skb->csum;
6095 			NAPI_GRO_CB(skb)->csum_valid = 1;
6096 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6097 			break;
6098 		case CHECKSUM_UNNECESSARY:
6099 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6100 			NAPI_GRO_CB(skb)->csum_valid = 0;
6101 			break;
6102 		default:
6103 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6104 			NAPI_GRO_CB(skb)->csum_valid = 0;
6105 		}
6106 
6107 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6108 					ipv6_gro_receive, inet_gro_receive,
6109 					&gro_list->list, skb);
6110 		break;
6111 	}
6112 	rcu_read_unlock();
6113 
6114 	if (&ptype->list == head)
6115 		goto normal;
6116 
6117 	if (PTR_ERR(pp) == -EINPROGRESS) {
6118 		ret = GRO_CONSUMED;
6119 		goto ok;
6120 	}
6121 
6122 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6123 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6124 
6125 	if (pp) {
6126 		skb_list_del_init(pp);
6127 		napi_gro_complete(napi, pp);
6128 		gro_list->count--;
6129 	}
6130 
6131 	if (same_flow)
6132 		goto ok;
6133 
6134 	if (NAPI_GRO_CB(skb)->flush)
6135 		goto normal;
6136 
6137 	if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6138 		gro_flush_oldest(napi, &gro_list->list);
6139 	else
6140 		gro_list->count++;
6141 
6142 	NAPI_GRO_CB(skb)->count = 1;
6143 	NAPI_GRO_CB(skb)->age = jiffies;
6144 	NAPI_GRO_CB(skb)->last = skb;
6145 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6146 	list_add(&skb->list, &gro_list->list);
6147 	ret = GRO_HELD;
6148 
6149 pull:
6150 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6151 	if (grow > 0)
6152 		gro_pull_from_frag0(skb, grow);
6153 ok:
6154 	if (gro_list->count) {
6155 		if (!test_bit(bucket, &napi->gro_bitmask))
6156 			__set_bit(bucket, &napi->gro_bitmask);
6157 	} else if (test_bit(bucket, &napi->gro_bitmask)) {
6158 		__clear_bit(bucket, &napi->gro_bitmask);
6159 	}
6160 
6161 	return ret;
6162 
6163 normal:
6164 	ret = GRO_NORMAL;
6165 	goto pull;
6166 }
6167 
6168 struct packet_offload *gro_find_receive_by_type(__be16 type)
6169 {
6170 	struct list_head *offload_head = &offload_base;
6171 	struct packet_offload *ptype;
6172 
6173 	list_for_each_entry_rcu(ptype, offload_head, list) {
6174 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6175 			continue;
6176 		return ptype;
6177 	}
6178 	return NULL;
6179 }
6180 EXPORT_SYMBOL(gro_find_receive_by_type);
6181 
6182 struct packet_offload *gro_find_complete_by_type(__be16 type)
6183 {
6184 	struct list_head *offload_head = &offload_base;
6185 	struct packet_offload *ptype;
6186 
6187 	list_for_each_entry_rcu(ptype, offload_head, list) {
6188 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6189 			continue;
6190 		return ptype;
6191 	}
6192 	return NULL;
6193 }
6194 EXPORT_SYMBOL(gro_find_complete_by_type);
6195 
6196 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6197 				    struct sk_buff *skb,
6198 				    gro_result_t ret)
6199 {
6200 	switch (ret) {
6201 	case GRO_NORMAL:
6202 		gro_normal_one(napi, skb, 1);
6203 		break;
6204 
6205 	case GRO_MERGED_FREE:
6206 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6207 			napi_skb_free_stolen_head(skb);
6208 		else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6209 			__kfree_skb(skb);
6210 		else
6211 			__kfree_skb_defer(skb);
6212 		break;
6213 
6214 	case GRO_HELD:
6215 	case GRO_MERGED:
6216 	case GRO_CONSUMED:
6217 		break;
6218 	}
6219 
6220 	return ret;
6221 }
6222 
6223 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6224 {
6225 	gro_result_t ret;
6226 
6227 	skb_mark_napi_id(skb, napi);
6228 	trace_napi_gro_receive_entry(skb);
6229 
6230 	skb_gro_reset_offset(skb, 0);
6231 
6232 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6233 	trace_napi_gro_receive_exit(ret);
6234 
6235 	return ret;
6236 }
6237 EXPORT_SYMBOL(napi_gro_receive);
6238 
6239 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6240 {
6241 	if (unlikely(skb->pfmemalloc)) {
6242 		consume_skb(skb);
6243 		return;
6244 	}
6245 	__skb_pull(skb, skb_headlen(skb));
6246 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6247 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6248 	__vlan_hwaccel_clear_tag(skb);
6249 	skb->dev = napi->dev;
6250 	skb->skb_iif = 0;
6251 
6252 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6253 	skb->pkt_type = PACKET_HOST;
6254 
6255 	skb->encapsulation = 0;
6256 	skb_shinfo(skb)->gso_type = 0;
6257 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6258 	if (unlikely(skb->slow_gro)) {
6259 		skb_orphan(skb);
6260 		skb_ext_reset(skb);
6261 		nf_reset_ct(skb);
6262 		skb->slow_gro = 0;
6263 	}
6264 
6265 	napi->skb = skb;
6266 }
6267 
6268 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6269 {
6270 	struct sk_buff *skb = napi->skb;
6271 
6272 	if (!skb) {
6273 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6274 		if (skb) {
6275 			napi->skb = skb;
6276 			skb_mark_napi_id(skb, napi);
6277 		}
6278 	}
6279 	return skb;
6280 }
6281 EXPORT_SYMBOL(napi_get_frags);
6282 
6283 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6284 				      struct sk_buff *skb,
6285 				      gro_result_t ret)
6286 {
6287 	switch (ret) {
6288 	case GRO_NORMAL:
6289 	case GRO_HELD:
6290 		__skb_push(skb, ETH_HLEN);
6291 		skb->protocol = eth_type_trans(skb, skb->dev);
6292 		if (ret == GRO_NORMAL)
6293 			gro_normal_one(napi, skb, 1);
6294 		break;
6295 
6296 	case GRO_MERGED_FREE:
6297 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6298 			napi_skb_free_stolen_head(skb);
6299 		else
6300 			napi_reuse_skb(napi, skb);
6301 		break;
6302 
6303 	case GRO_MERGED:
6304 	case GRO_CONSUMED:
6305 		break;
6306 	}
6307 
6308 	return ret;
6309 }
6310 
6311 /* Upper GRO stack assumes network header starts at gro_offset=0
6312  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6313  * We copy ethernet header into skb->data to have a common layout.
6314  */
6315 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6316 {
6317 	struct sk_buff *skb = napi->skb;
6318 	const struct ethhdr *eth;
6319 	unsigned int hlen = sizeof(*eth);
6320 
6321 	napi->skb = NULL;
6322 
6323 	skb_reset_mac_header(skb);
6324 	skb_gro_reset_offset(skb, hlen);
6325 
6326 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6327 		eth = skb_gro_header_slow(skb, hlen, 0);
6328 		if (unlikely(!eth)) {
6329 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6330 					     __func__, napi->dev->name);
6331 			napi_reuse_skb(napi, skb);
6332 			return NULL;
6333 		}
6334 	} else {
6335 		eth = (const struct ethhdr *)skb->data;
6336 		gro_pull_from_frag0(skb, hlen);
6337 		NAPI_GRO_CB(skb)->frag0 += hlen;
6338 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6339 	}
6340 	__skb_pull(skb, hlen);
6341 
6342 	/*
6343 	 * This works because the only protocols we care about don't require
6344 	 * special handling.
6345 	 * We'll fix it up properly in napi_frags_finish()
6346 	 */
6347 	skb->protocol = eth->h_proto;
6348 
6349 	return skb;
6350 }
6351 
6352 gro_result_t napi_gro_frags(struct napi_struct *napi)
6353 {
6354 	gro_result_t ret;
6355 	struct sk_buff *skb = napi_frags_skb(napi);
6356 
6357 	trace_napi_gro_frags_entry(skb);
6358 
6359 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6360 	trace_napi_gro_frags_exit(ret);
6361 
6362 	return ret;
6363 }
6364 EXPORT_SYMBOL(napi_gro_frags);
6365 
6366 /* Compute the checksum from gro_offset and return the folded value
6367  * after adding in any pseudo checksum.
6368  */
6369 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6370 {
6371 	__wsum wsum;
6372 	__sum16 sum;
6373 
6374 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6375 
6376 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6377 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6378 	/* See comments in __skb_checksum_complete(). */
6379 	if (likely(!sum)) {
6380 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6381 		    !skb->csum_complete_sw)
6382 			netdev_rx_csum_fault(skb->dev, skb);
6383 	}
6384 
6385 	NAPI_GRO_CB(skb)->csum = wsum;
6386 	NAPI_GRO_CB(skb)->csum_valid = 1;
6387 
6388 	return sum;
6389 }
6390 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6391 
6392 static void net_rps_send_ipi(struct softnet_data *remsd)
6393 {
6394 #ifdef CONFIG_RPS
6395 	while (remsd) {
6396 		struct softnet_data *next = remsd->rps_ipi_next;
6397 
6398 		if (cpu_online(remsd->cpu))
6399 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6400 		remsd = next;
6401 	}
6402 #endif
6403 }
6404 
6405 /*
6406  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6407  * Note: called with local irq disabled, but exits with local irq enabled.
6408  */
6409 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6410 {
6411 #ifdef CONFIG_RPS
6412 	struct softnet_data *remsd = sd->rps_ipi_list;
6413 
6414 	if (remsd) {
6415 		sd->rps_ipi_list = NULL;
6416 
6417 		local_irq_enable();
6418 
6419 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6420 		net_rps_send_ipi(remsd);
6421 	} else
6422 #endif
6423 		local_irq_enable();
6424 }
6425 
6426 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6427 {
6428 #ifdef CONFIG_RPS
6429 	return sd->rps_ipi_list != NULL;
6430 #else
6431 	return false;
6432 #endif
6433 }
6434 
6435 static int process_backlog(struct napi_struct *napi, int quota)
6436 {
6437 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6438 	bool again = true;
6439 	int work = 0;
6440 
6441 	/* Check if we have pending ipi, its better to send them now,
6442 	 * not waiting net_rx_action() end.
6443 	 */
6444 	if (sd_has_rps_ipi_waiting(sd)) {
6445 		local_irq_disable();
6446 		net_rps_action_and_irq_enable(sd);
6447 	}
6448 
6449 	napi->weight = dev_rx_weight;
6450 	while (again) {
6451 		struct sk_buff *skb;
6452 
6453 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6454 			rcu_read_lock();
6455 			__netif_receive_skb(skb);
6456 			rcu_read_unlock();
6457 			input_queue_head_incr(sd);
6458 			if (++work >= quota)
6459 				return work;
6460 
6461 		}
6462 
6463 		local_irq_disable();
6464 		rps_lock(sd);
6465 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6466 			/*
6467 			 * Inline a custom version of __napi_complete().
6468 			 * only current cpu owns and manipulates this napi,
6469 			 * and NAPI_STATE_SCHED is the only possible flag set
6470 			 * on backlog.
6471 			 * We can use a plain write instead of clear_bit(),
6472 			 * and we dont need an smp_mb() memory barrier.
6473 			 */
6474 			napi->state = 0;
6475 			again = false;
6476 		} else {
6477 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6478 						   &sd->process_queue);
6479 		}
6480 		rps_unlock(sd);
6481 		local_irq_enable();
6482 	}
6483 
6484 	return work;
6485 }
6486 
6487 /**
6488  * __napi_schedule - schedule for receive
6489  * @n: entry to schedule
6490  *
6491  * The entry's receive function will be scheduled to run.
6492  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6493  */
6494 void __napi_schedule(struct napi_struct *n)
6495 {
6496 	unsigned long flags;
6497 
6498 	local_irq_save(flags);
6499 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6500 	local_irq_restore(flags);
6501 }
6502 EXPORT_SYMBOL(__napi_schedule);
6503 
6504 /**
6505  *	napi_schedule_prep - check if napi can be scheduled
6506  *	@n: napi context
6507  *
6508  * Test if NAPI routine is already running, and if not mark
6509  * it as running.  This is used as a condition variable to
6510  * insure only one NAPI poll instance runs.  We also make
6511  * sure there is no pending NAPI disable.
6512  */
6513 bool napi_schedule_prep(struct napi_struct *n)
6514 {
6515 	unsigned long val, new;
6516 
6517 	do {
6518 		val = READ_ONCE(n->state);
6519 		if (unlikely(val & NAPIF_STATE_DISABLE))
6520 			return false;
6521 		new = val | NAPIF_STATE_SCHED;
6522 
6523 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6524 		 * This was suggested by Alexander Duyck, as compiler
6525 		 * emits better code than :
6526 		 * if (val & NAPIF_STATE_SCHED)
6527 		 *     new |= NAPIF_STATE_MISSED;
6528 		 */
6529 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6530 						   NAPIF_STATE_MISSED;
6531 	} while (cmpxchg(&n->state, val, new) != val);
6532 
6533 	return !(val & NAPIF_STATE_SCHED);
6534 }
6535 EXPORT_SYMBOL(napi_schedule_prep);
6536 
6537 /**
6538  * __napi_schedule_irqoff - schedule for receive
6539  * @n: entry to schedule
6540  *
6541  * Variant of __napi_schedule() assuming hard irqs are masked.
6542  *
6543  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6544  * because the interrupt disabled assumption might not be true
6545  * due to force-threaded interrupts and spinlock substitution.
6546  */
6547 void __napi_schedule_irqoff(struct napi_struct *n)
6548 {
6549 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6550 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6551 	else
6552 		__napi_schedule(n);
6553 }
6554 EXPORT_SYMBOL(__napi_schedule_irqoff);
6555 
6556 bool napi_complete_done(struct napi_struct *n, int work_done)
6557 {
6558 	unsigned long flags, val, new, timeout = 0;
6559 	bool ret = true;
6560 
6561 	/*
6562 	 * 1) Don't let napi dequeue from the cpu poll list
6563 	 *    just in case its running on a different cpu.
6564 	 * 2) If we are busy polling, do nothing here, we have
6565 	 *    the guarantee we will be called later.
6566 	 */
6567 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6568 				 NAPIF_STATE_IN_BUSY_POLL)))
6569 		return false;
6570 
6571 	if (work_done) {
6572 		if (n->gro_bitmask)
6573 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6574 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6575 	}
6576 	if (n->defer_hard_irqs_count > 0) {
6577 		n->defer_hard_irqs_count--;
6578 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6579 		if (timeout)
6580 			ret = false;
6581 	}
6582 	if (n->gro_bitmask) {
6583 		/* When the NAPI instance uses a timeout and keeps postponing
6584 		 * it, we need to bound somehow the time packets are kept in
6585 		 * the GRO layer
6586 		 */
6587 		napi_gro_flush(n, !!timeout);
6588 	}
6589 
6590 	gro_normal_list(n);
6591 
6592 	if (unlikely(!list_empty(&n->poll_list))) {
6593 		/* If n->poll_list is not empty, we need to mask irqs */
6594 		local_irq_save(flags);
6595 		list_del_init(&n->poll_list);
6596 		local_irq_restore(flags);
6597 	}
6598 
6599 	do {
6600 		val = READ_ONCE(n->state);
6601 
6602 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6603 
6604 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6605 			      NAPIF_STATE_SCHED_THREADED |
6606 			      NAPIF_STATE_PREFER_BUSY_POLL);
6607 
6608 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6609 		 * because we will call napi->poll() one more time.
6610 		 * This C code was suggested by Alexander Duyck to help gcc.
6611 		 */
6612 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6613 						    NAPIF_STATE_SCHED;
6614 	} while (cmpxchg(&n->state, val, new) != val);
6615 
6616 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6617 		__napi_schedule(n);
6618 		return false;
6619 	}
6620 
6621 	if (timeout)
6622 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6623 			      HRTIMER_MODE_REL_PINNED);
6624 	return ret;
6625 }
6626 EXPORT_SYMBOL(napi_complete_done);
6627 
6628 /* must be called under rcu_read_lock(), as we dont take a reference */
6629 static struct napi_struct *napi_by_id(unsigned int napi_id)
6630 {
6631 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6632 	struct napi_struct *napi;
6633 
6634 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6635 		if (napi->napi_id == napi_id)
6636 			return napi;
6637 
6638 	return NULL;
6639 }
6640 
6641 #if defined(CONFIG_NET_RX_BUSY_POLL)
6642 
6643 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6644 {
6645 	if (!skip_schedule) {
6646 		gro_normal_list(napi);
6647 		__napi_schedule(napi);
6648 		return;
6649 	}
6650 
6651 	if (napi->gro_bitmask) {
6652 		/* flush too old packets
6653 		 * If HZ < 1000, flush all packets.
6654 		 */
6655 		napi_gro_flush(napi, HZ >= 1000);
6656 	}
6657 
6658 	gro_normal_list(napi);
6659 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6660 }
6661 
6662 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6663 			   u16 budget)
6664 {
6665 	bool skip_schedule = false;
6666 	unsigned long timeout;
6667 	int rc;
6668 
6669 	/* Busy polling means there is a high chance device driver hard irq
6670 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6671 	 * set in napi_schedule_prep().
6672 	 * Since we are about to call napi->poll() once more, we can safely
6673 	 * clear NAPI_STATE_MISSED.
6674 	 *
6675 	 * Note: x86 could use a single "lock and ..." instruction
6676 	 * to perform these two clear_bit()
6677 	 */
6678 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6679 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6680 
6681 	local_bh_disable();
6682 
6683 	if (prefer_busy_poll) {
6684 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6685 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6686 		if (napi->defer_hard_irqs_count && timeout) {
6687 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6688 			skip_schedule = true;
6689 		}
6690 	}
6691 
6692 	/* All we really want here is to re-enable device interrupts.
6693 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6694 	 */
6695 	rc = napi->poll(napi, budget);
6696 	/* We can't gro_normal_list() here, because napi->poll() might have
6697 	 * rearmed the napi (napi_complete_done()) in which case it could
6698 	 * already be running on another CPU.
6699 	 */
6700 	trace_napi_poll(napi, rc, budget);
6701 	netpoll_poll_unlock(have_poll_lock);
6702 	if (rc == budget)
6703 		__busy_poll_stop(napi, skip_schedule);
6704 	local_bh_enable();
6705 }
6706 
6707 void napi_busy_loop(unsigned int napi_id,
6708 		    bool (*loop_end)(void *, unsigned long),
6709 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6710 {
6711 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6712 	int (*napi_poll)(struct napi_struct *napi, int budget);
6713 	void *have_poll_lock = NULL;
6714 	struct napi_struct *napi;
6715 
6716 restart:
6717 	napi_poll = NULL;
6718 
6719 	rcu_read_lock();
6720 
6721 	napi = napi_by_id(napi_id);
6722 	if (!napi)
6723 		goto out;
6724 
6725 	preempt_disable();
6726 	for (;;) {
6727 		int work = 0;
6728 
6729 		local_bh_disable();
6730 		if (!napi_poll) {
6731 			unsigned long val = READ_ONCE(napi->state);
6732 
6733 			/* If multiple threads are competing for this napi,
6734 			 * we avoid dirtying napi->state as much as we can.
6735 			 */
6736 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6737 				   NAPIF_STATE_IN_BUSY_POLL)) {
6738 				if (prefer_busy_poll)
6739 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6740 				goto count;
6741 			}
6742 			if (cmpxchg(&napi->state, val,
6743 				    val | NAPIF_STATE_IN_BUSY_POLL |
6744 					  NAPIF_STATE_SCHED) != val) {
6745 				if (prefer_busy_poll)
6746 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6747 				goto count;
6748 			}
6749 			have_poll_lock = netpoll_poll_lock(napi);
6750 			napi_poll = napi->poll;
6751 		}
6752 		work = napi_poll(napi, budget);
6753 		trace_napi_poll(napi, work, budget);
6754 		gro_normal_list(napi);
6755 count:
6756 		if (work > 0)
6757 			__NET_ADD_STATS(dev_net(napi->dev),
6758 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6759 		local_bh_enable();
6760 
6761 		if (!loop_end || loop_end(loop_end_arg, start_time))
6762 			break;
6763 
6764 		if (unlikely(need_resched())) {
6765 			if (napi_poll)
6766 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6767 			preempt_enable();
6768 			rcu_read_unlock();
6769 			cond_resched();
6770 			if (loop_end(loop_end_arg, start_time))
6771 				return;
6772 			goto restart;
6773 		}
6774 		cpu_relax();
6775 	}
6776 	if (napi_poll)
6777 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6778 	preempt_enable();
6779 out:
6780 	rcu_read_unlock();
6781 }
6782 EXPORT_SYMBOL(napi_busy_loop);
6783 
6784 #endif /* CONFIG_NET_RX_BUSY_POLL */
6785 
6786 static void napi_hash_add(struct napi_struct *napi)
6787 {
6788 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6789 		return;
6790 
6791 	spin_lock(&napi_hash_lock);
6792 
6793 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6794 	do {
6795 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6796 			napi_gen_id = MIN_NAPI_ID;
6797 	} while (napi_by_id(napi_gen_id));
6798 	napi->napi_id = napi_gen_id;
6799 
6800 	hlist_add_head_rcu(&napi->napi_hash_node,
6801 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6802 
6803 	spin_unlock(&napi_hash_lock);
6804 }
6805 
6806 /* Warning : caller is responsible to make sure rcu grace period
6807  * is respected before freeing memory containing @napi
6808  */
6809 static void napi_hash_del(struct napi_struct *napi)
6810 {
6811 	spin_lock(&napi_hash_lock);
6812 
6813 	hlist_del_init_rcu(&napi->napi_hash_node);
6814 
6815 	spin_unlock(&napi_hash_lock);
6816 }
6817 
6818 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6819 {
6820 	struct napi_struct *napi;
6821 
6822 	napi = container_of(timer, struct napi_struct, timer);
6823 
6824 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6825 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6826 	 */
6827 	if (!napi_disable_pending(napi) &&
6828 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6829 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6830 		__napi_schedule_irqoff(napi);
6831 	}
6832 
6833 	return HRTIMER_NORESTART;
6834 }
6835 
6836 static void init_gro_hash(struct napi_struct *napi)
6837 {
6838 	int i;
6839 
6840 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6841 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6842 		napi->gro_hash[i].count = 0;
6843 	}
6844 	napi->gro_bitmask = 0;
6845 }
6846 
6847 int dev_set_threaded(struct net_device *dev, bool threaded)
6848 {
6849 	struct napi_struct *napi;
6850 	int err = 0;
6851 
6852 	if (dev->threaded == threaded)
6853 		return 0;
6854 
6855 	if (threaded) {
6856 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6857 			if (!napi->thread) {
6858 				err = napi_kthread_create(napi);
6859 				if (err) {
6860 					threaded = false;
6861 					break;
6862 				}
6863 			}
6864 		}
6865 	}
6866 
6867 	dev->threaded = threaded;
6868 
6869 	/* Make sure kthread is created before THREADED bit
6870 	 * is set.
6871 	 */
6872 	smp_mb__before_atomic();
6873 
6874 	/* Setting/unsetting threaded mode on a napi might not immediately
6875 	 * take effect, if the current napi instance is actively being
6876 	 * polled. In this case, the switch between threaded mode and
6877 	 * softirq mode will happen in the next round of napi_schedule().
6878 	 * This should not cause hiccups/stalls to the live traffic.
6879 	 */
6880 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6881 		if (threaded)
6882 			set_bit(NAPI_STATE_THREADED, &napi->state);
6883 		else
6884 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6885 	}
6886 
6887 	return err;
6888 }
6889 EXPORT_SYMBOL(dev_set_threaded);
6890 
6891 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6892 		    int (*poll)(struct napi_struct *, int), int weight)
6893 {
6894 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6895 		return;
6896 
6897 	INIT_LIST_HEAD(&napi->poll_list);
6898 	INIT_HLIST_NODE(&napi->napi_hash_node);
6899 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6900 	napi->timer.function = napi_watchdog;
6901 	init_gro_hash(napi);
6902 	napi->skb = NULL;
6903 	INIT_LIST_HEAD(&napi->rx_list);
6904 	napi->rx_count = 0;
6905 	napi->poll = poll;
6906 	if (weight > NAPI_POLL_WEIGHT)
6907 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6908 				weight);
6909 	napi->weight = weight;
6910 	napi->dev = dev;
6911 #ifdef CONFIG_NETPOLL
6912 	napi->poll_owner = -1;
6913 #endif
6914 	set_bit(NAPI_STATE_SCHED, &napi->state);
6915 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6916 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6917 	napi_hash_add(napi);
6918 	/* Create kthread for this napi if dev->threaded is set.
6919 	 * Clear dev->threaded if kthread creation failed so that
6920 	 * threaded mode will not be enabled in napi_enable().
6921 	 */
6922 	if (dev->threaded && napi_kthread_create(napi))
6923 		dev->threaded = 0;
6924 }
6925 EXPORT_SYMBOL(netif_napi_add);
6926 
6927 void napi_disable(struct napi_struct *n)
6928 {
6929 	unsigned long val, new;
6930 
6931 	might_sleep();
6932 	set_bit(NAPI_STATE_DISABLE, &n->state);
6933 
6934 	for ( ; ; ) {
6935 		val = READ_ONCE(n->state);
6936 		if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6937 			usleep_range(20, 200);
6938 			continue;
6939 		}
6940 
6941 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6942 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6943 
6944 		if (cmpxchg(&n->state, val, new) == val)
6945 			break;
6946 	}
6947 
6948 	hrtimer_cancel(&n->timer);
6949 
6950 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6951 }
6952 EXPORT_SYMBOL(napi_disable);
6953 
6954 /**
6955  *	napi_enable - enable NAPI scheduling
6956  *	@n: NAPI context
6957  *
6958  * Resume NAPI from being scheduled on this context.
6959  * Must be paired with napi_disable.
6960  */
6961 void napi_enable(struct napi_struct *n)
6962 {
6963 	unsigned long val, new;
6964 
6965 	do {
6966 		val = READ_ONCE(n->state);
6967 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6968 
6969 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6970 		if (n->dev->threaded && n->thread)
6971 			new |= NAPIF_STATE_THREADED;
6972 	} while (cmpxchg(&n->state, val, new) != val);
6973 }
6974 EXPORT_SYMBOL(napi_enable);
6975 
6976 static void flush_gro_hash(struct napi_struct *napi)
6977 {
6978 	int i;
6979 
6980 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6981 		struct sk_buff *skb, *n;
6982 
6983 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6984 			kfree_skb(skb);
6985 		napi->gro_hash[i].count = 0;
6986 	}
6987 }
6988 
6989 /* Must be called in process context */
6990 void __netif_napi_del(struct napi_struct *napi)
6991 {
6992 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6993 		return;
6994 
6995 	napi_hash_del(napi);
6996 	list_del_rcu(&napi->dev_list);
6997 	napi_free_frags(napi);
6998 
6999 	flush_gro_hash(napi);
7000 	napi->gro_bitmask = 0;
7001 
7002 	if (napi->thread) {
7003 		kthread_stop(napi->thread);
7004 		napi->thread = NULL;
7005 	}
7006 }
7007 EXPORT_SYMBOL(__netif_napi_del);
7008 
7009 static int __napi_poll(struct napi_struct *n, bool *repoll)
7010 {
7011 	int work, weight;
7012 
7013 	weight = n->weight;
7014 
7015 	/* This NAPI_STATE_SCHED test is for avoiding a race
7016 	 * with netpoll's poll_napi().  Only the entity which
7017 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7018 	 * actually make the ->poll() call.  Therefore we avoid
7019 	 * accidentally calling ->poll() when NAPI is not scheduled.
7020 	 */
7021 	work = 0;
7022 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7023 		work = n->poll(n, weight);
7024 		trace_napi_poll(n, work, weight);
7025 	}
7026 
7027 	if (unlikely(work > weight))
7028 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7029 				n->poll, work, weight);
7030 
7031 	if (likely(work < weight))
7032 		return work;
7033 
7034 	/* Drivers must not modify the NAPI state if they
7035 	 * consume the entire weight.  In such cases this code
7036 	 * still "owns" the NAPI instance and therefore can
7037 	 * move the instance around on the list at-will.
7038 	 */
7039 	if (unlikely(napi_disable_pending(n))) {
7040 		napi_complete(n);
7041 		return work;
7042 	}
7043 
7044 	/* The NAPI context has more processing work, but busy-polling
7045 	 * is preferred. Exit early.
7046 	 */
7047 	if (napi_prefer_busy_poll(n)) {
7048 		if (napi_complete_done(n, work)) {
7049 			/* If timeout is not set, we need to make sure
7050 			 * that the NAPI is re-scheduled.
7051 			 */
7052 			napi_schedule(n);
7053 		}
7054 		return work;
7055 	}
7056 
7057 	if (n->gro_bitmask) {
7058 		/* flush too old packets
7059 		 * If HZ < 1000, flush all packets.
7060 		 */
7061 		napi_gro_flush(n, HZ >= 1000);
7062 	}
7063 
7064 	gro_normal_list(n);
7065 
7066 	/* Some drivers may have called napi_schedule
7067 	 * prior to exhausting their budget.
7068 	 */
7069 	if (unlikely(!list_empty(&n->poll_list))) {
7070 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7071 			     n->dev ? n->dev->name : "backlog");
7072 		return work;
7073 	}
7074 
7075 	*repoll = true;
7076 
7077 	return work;
7078 }
7079 
7080 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7081 {
7082 	bool do_repoll = false;
7083 	void *have;
7084 	int work;
7085 
7086 	list_del_init(&n->poll_list);
7087 
7088 	have = netpoll_poll_lock(n);
7089 
7090 	work = __napi_poll(n, &do_repoll);
7091 
7092 	if (do_repoll)
7093 		list_add_tail(&n->poll_list, repoll);
7094 
7095 	netpoll_poll_unlock(have);
7096 
7097 	return work;
7098 }
7099 
7100 static int napi_thread_wait(struct napi_struct *napi)
7101 {
7102 	bool woken = false;
7103 
7104 	set_current_state(TASK_INTERRUPTIBLE);
7105 
7106 	while (!kthread_should_stop()) {
7107 		/* Testing SCHED_THREADED bit here to make sure the current
7108 		 * kthread owns this napi and could poll on this napi.
7109 		 * Testing SCHED bit is not enough because SCHED bit might be
7110 		 * set by some other busy poll thread or by napi_disable().
7111 		 */
7112 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7113 			WARN_ON(!list_empty(&napi->poll_list));
7114 			__set_current_state(TASK_RUNNING);
7115 			return 0;
7116 		}
7117 
7118 		schedule();
7119 		/* woken being true indicates this thread owns this napi. */
7120 		woken = true;
7121 		set_current_state(TASK_INTERRUPTIBLE);
7122 	}
7123 	__set_current_state(TASK_RUNNING);
7124 
7125 	return -1;
7126 }
7127 
7128 static int napi_threaded_poll(void *data)
7129 {
7130 	struct napi_struct *napi = data;
7131 	void *have;
7132 
7133 	while (!napi_thread_wait(napi)) {
7134 		for (;;) {
7135 			bool repoll = false;
7136 
7137 			local_bh_disable();
7138 
7139 			have = netpoll_poll_lock(napi);
7140 			__napi_poll(napi, &repoll);
7141 			netpoll_poll_unlock(have);
7142 
7143 			local_bh_enable();
7144 
7145 			if (!repoll)
7146 				break;
7147 
7148 			cond_resched();
7149 		}
7150 	}
7151 	return 0;
7152 }
7153 
7154 static __latent_entropy void net_rx_action(struct softirq_action *h)
7155 {
7156 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7157 	unsigned long time_limit = jiffies +
7158 		usecs_to_jiffies(netdev_budget_usecs);
7159 	int budget = netdev_budget;
7160 	LIST_HEAD(list);
7161 	LIST_HEAD(repoll);
7162 
7163 	local_irq_disable();
7164 	list_splice_init(&sd->poll_list, &list);
7165 	local_irq_enable();
7166 
7167 	for (;;) {
7168 		struct napi_struct *n;
7169 
7170 		if (list_empty(&list)) {
7171 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7172 				return;
7173 			break;
7174 		}
7175 
7176 		n = list_first_entry(&list, struct napi_struct, poll_list);
7177 		budget -= napi_poll(n, &repoll);
7178 
7179 		/* If softirq window is exhausted then punt.
7180 		 * Allow this to run for 2 jiffies since which will allow
7181 		 * an average latency of 1.5/HZ.
7182 		 */
7183 		if (unlikely(budget <= 0 ||
7184 			     time_after_eq(jiffies, time_limit))) {
7185 			sd->time_squeeze++;
7186 			break;
7187 		}
7188 	}
7189 
7190 	local_irq_disable();
7191 
7192 	list_splice_tail_init(&sd->poll_list, &list);
7193 	list_splice_tail(&repoll, &list);
7194 	list_splice(&list, &sd->poll_list);
7195 	if (!list_empty(&sd->poll_list))
7196 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7197 
7198 	net_rps_action_and_irq_enable(sd);
7199 }
7200 
7201 struct netdev_adjacent {
7202 	struct net_device *dev;
7203 
7204 	/* upper master flag, there can only be one master device per list */
7205 	bool master;
7206 
7207 	/* lookup ignore flag */
7208 	bool ignore;
7209 
7210 	/* counter for the number of times this device was added to us */
7211 	u16 ref_nr;
7212 
7213 	/* private field for the users */
7214 	void *private;
7215 
7216 	struct list_head list;
7217 	struct rcu_head rcu;
7218 };
7219 
7220 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7221 						 struct list_head *adj_list)
7222 {
7223 	struct netdev_adjacent *adj;
7224 
7225 	list_for_each_entry(adj, adj_list, list) {
7226 		if (adj->dev == adj_dev)
7227 			return adj;
7228 	}
7229 	return NULL;
7230 }
7231 
7232 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7233 				    struct netdev_nested_priv *priv)
7234 {
7235 	struct net_device *dev = (struct net_device *)priv->data;
7236 
7237 	return upper_dev == dev;
7238 }
7239 
7240 /**
7241  * netdev_has_upper_dev - Check if device is linked to an upper device
7242  * @dev: device
7243  * @upper_dev: upper device to check
7244  *
7245  * Find out if a device is linked to specified upper device and return true
7246  * in case it is. Note that this checks only immediate upper device,
7247  * not through a complete stack of devices. The caller must hold the RTNL lock.
7248  */
7249 bool netdev_has_upper_dev(struct net_device *dev,
7250 			  struct net_device *upper_dev)
7251 {
7252 	struct netdev_nested_priv priv = {
7253 		.data = (void *)upper_dev,
7254 	};
7255 
7256 	ASSERT_RTNL();
7257 
7258 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7259 					     &priv);
7260 }
7261 EXPORT_SYMBOL(netdev_has_upper_dev);
7262 
7263 /**
7264  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7265  * @dev: device
7266  * @upper_dev: upper device to check
7267  *
7268  * Find out if a device is linked to specified upper device and return true
7269  * in case it is. Note that this checks the entire upper device chain.
7270  * The caller must hold rcu lock.
7271  */
7272 
7273 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7274 				  struct net_device *upper_dev)
7275 {
7276 	struct netdev_nested_priv priv = {
7277 		.data = (void *)upper_dev,
7278 	};
7279 
7280 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7281 					       &priv);
7282 }
7283 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7284 
7285 /**
7286  * netdev_has_any_upper_dev - Check if device is linked to some device
7287  * @dev: device
7288  *
7289  * Find out if a device is linked to an upper device and return true in case
7290  * it is. The caller must hold the RTNL lock.
7291  */
7292 bool netdev_has_any_upper_dev(struct net_device *dev)
7293 {
7294 	ASSERT_RTNL();
7295 
7296 	return !list_empty(&dev->adj_list.upper);
7297 }
7298 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7299 
7300 /**
7301  * netdev_master_upper_dev_get - Get master upper device
7302  * @dev: device
7303  *
7304  * Find a master upper device and return pointer to it or NULL in case
7305  * it's not there. The caller must hold the RTNL lock.
7306  */
7307 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7308 {
7309 	struct netdev_adjacent *upper;
7310 
7311 	ASSERT_RTNL();
7312 
7313 	if (list_empty(&dev->adj_list.upper))
7314 		return NULL;
7315 
7316 	upper = list_first_entry(&dev->adj_list.upper,
7317 				 struct netdev_adjacent, list);
7318 	if (likely(upper->master))
7319 		return upper->dev;
7320 	return NULL;
7321 }
7322 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7323 
7324 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7325 {
7326 	struct netdev_adjacent *upper;
7327 
7328 	ASSERT_RTNL();
7329 
7330 	if (list_empty(&dev->adj_list.upper))
7331 		return NULL;
7332 
7333 	upper = list_first_entry(&dev->adj_list.upper,
7334 				 struct netdev_adjacent, list);
7335 	if (likely(upper->master) && !upper->ignore)
7336 		return upper->dev;
7337 	return NULL;
7338 }
7339 
7340 /**
7341  * netdev_has_any_lower_dev - Check if device is linked to some device
7342  * @dev: device
7343  *
7344  * Find out if a device is linked to a lower device and return true in case
7345  * it is. The caller must hold the RTNL lock.
7346  */
7347 static bool netdev_has_any_lower_dev(struct net_device *dev)
7348 {
7349 	ASSERT_RTNL();
7350 
7351 	return !list_empty(&dev->adj_list.lower);
7352 }
7353 
7354 void *netdev_adjacent_get_private(struct list_head *adj_list)
7355 {
7356 	struct netdev_adjacent *adj;
7357 
7358 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7359 
7360 	return adj->private;
7361 }
7362 EXPORT_SYMBOL(netdev_adjacent_get_private);
7363 
7364 /**
7365  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7366  * @dev: device
7367  * @iter: list_head ** of the current position
7368  *
7369  * Gets the next device from the dev's upper list, starting from iter
7370  * position. The caller must hold RCU read lock.
7371  */
7372 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7373 						 struct list_head **iter)
7374 {
7375 	struct netdev_adjacent *upper;
7376 
7377 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7378 
7379 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7380 
7381 	if (&upper->list == &dev->adj_list.upper)
7382 		return NULL;
7383 
7384 	*iter = &upper->list;
7385 
7386 	return upper->dev;
7387 }
7388 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7389 
7390 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7391 						  struct list_head **iter,
7392 						  bool *ignore)
7393 {
7394 	struct netdev_adjacent *upper;
7395 
7396 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7397 
7398 	if (&upper->list == &dev->adj_list.upper)
7399 		return NULL;
7400 
7401 	*iter = &upper->list;
7402 	*ignore = upper->ignore;
7403 
7404 	return upper->dev;
7405 }
7406 
7407 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7408 						    struct list_head **iter)
7409 {
7410 	struct netdev_adjacent *upper;
7411 
7412 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7413 
7414 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7415 
7416 	if (&upper->list == &dev->adj_list.upper)
7417 		return NULL;
7418 
7419 	*iter = &upper->list;
7420 
7421 	return upper->dev;
7422 }
7423 
7424 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7425 				       int (*fn)(struct net_device *dev,
7426 					 struct netdev_nested_priv *priv),
7427 				       struct netdev_nested_priv *priv)
7428 {
7429 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7430 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7431 	int ret, cur = 0;
7432 	bool ignore;
7433 
7434 	now = dev;
7435 	iter = &dev->adj_list.upper;
7436 
7437 	while (1) {
7438 		if (now != dev) {
7439 			ret = fn(now, priv);
7440 			if (ret)
7441 				return ret;
7442 		}
7443 
7444 		next = NULL;
7445 		while (1) {
7446 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7447 			if (!udev)
7448 				break;
7449 			if (ignore)
7450 				continue;
7451 
7452 			next = udev;
7453 			niter = &udev->adj_list.upper;
7454 			dev_stack[cur] = now;
7455 			iter_stack[cur++] = iter;
7456 			break;
7457 		}
7458 
7459 		if (!next) {
7460 			if (!cur)
7461 				return 0;
7462 			next = dev_stack[--cur];
7463 			niter = iter_stack[cur];
7464 		}
7465 
7466 		now = next;
7467 		iter = niter;
7468 	}
7469 
7470 	return 0;
7471 }
7472 
7473 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7474 				  int (*fn)(struct net_device *dev,
7475 					    struct netdev_nested_priv *priv),
7476 				  struct netdev_nested_priv *priv)
7477 {
7478 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7479 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7480 	int ret, cur = 0;
7481 
7482 	now = dev;
7483 	iter = &dev->adj_list.upper;
7484 
7485 	while (1) {
7486 		if (now != dev) {
7487 			ret = fn(now, priv);
7488 			if (ret)
7489 				return ret;
7490 		}
7491 
7492 		next = NULL;
7493 		while (1) {
7494 			udev = netdev_next_upper_dev_rcu(now, &iter);
7495 			if (!udev)
7496 				break;
7497 
7498 			next = udev;
7499 			niter = &udev->adj_list.upper;
7500 			dev_stack[cur] = now;
7501 			iter_stack[cur++] = iter;
7502 			break;
7503 		}
7504 
7505 		if (!next) {
7506 			if (!cur)
7507 				return 0;
7508 			next = dev_stack[--cur];
7509 			niter = iter_stack[cur];
7510 		}
7511 
7512 		now = next;
7513 		iter = niter;
7514 	}
7515 
7516 	return 0;
7517 }
7518 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7519 
7520 static bool __netdev_has_upper_dev(struct net_device *dev,
7521 				   struct net_device *upper_dev)
7522 {
7523 	struct netdev_nested_priv priv = {
7524 		.flags = 0,
7525 		.data = (void *)upper_dev,
7526 	};
7527 
7528 	ASSERT_RTNL();
7529 
7530 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7531 					   &priv);
7532 }
7533 
7534 /**
7535  * netdev_lower_get_next_private - Get the next ->private from the
7536  *				   lower neighbour list
7537  * @dev: device
7538  * @iter: list_head ** of the current position
7539  *
7540  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7541  * list, starting from iter position. The caller must hold either hold the
7542  * RTNL lock or its own locking that guarantees that the neighbour lower
7543  * list will remain unchanged.
7544  */
7545 void *netdev_lower_get_next_private(struct net_device *dev,
7546 				    struct list_head **iter)
7547 {
7548 	struct netdev_adjacent *lower;
7549 
7550 	lower = list_entry(*iter, struct netdev_adjacent, list);
7551 
7552 	if (&lower->list == &dev->adj_list.lower)
7553 		return NULL;
7554 
7555 	*iter = lower->list.next;
7556 
7557 	return lower->private;
7558 }
7559 EXPORT_SYMBOL(netdev_lower_get_next_private);
7560 
7561 /**
7562  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7563  *				       lower neighbour list, RCU
7564  *				       variant
7565  * @dev: device
7566  * @iter: list_head ** of the current position
7567  *
7568  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7569  * list, starting from iter position. The caller must hold RCU read lock.
7570  */
7571 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7572 					struct list_head **iter)
7573 {
7574 	struct netdev_adjacent *lower;
7575 
7576 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7577 
7578 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7579 
7580 	if (&lower->list == &dev->adj_list.lower)
7581 		return NULL;
7582 
7583 	*iter = &lower->list;
7584 
7585 	return lower->private;
7586 }
7587 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7588 
7589 /**
7590  * netdev_lower_get_next - Get the next device from the lower neighbour
7591  *                         list
7592  * @dev: device
7593  * @iter: list_head ** of the current position
7594  *
7595  * Gets the next netdev_adjacent from the dev's lower neighbour
7596  * list, starting from iter position. The caller must hold RTNL lock or
7597  * its own locking that guarantees that the neighbour lower
7598  * list will remain unchanged.
7599  */
7600 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7601 {
7602 	struct netdev_adjacent *lower;
7603 
7604 	lower = list_entry(*iter, struct netdev_adjacent, list);
7605 
7606 	if (&lower->list == &dev->adj_list.lower)
7607 		return NULL;
7608 
7609 	*iter = lower->list.next;
7610 
7611 	return lower->dev;
7612 }
7613 EXPORT_SYMBOL(netdev_lower_get_next);
7614 
7615 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7616 						struct list_head **iter)
7617 {
7618 	struct netdev_adjacent *lower;
7619 
7620 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7621 
7622 	if (&lower->list == &dev->adj_list.lower)
7623 		return NULL;
7624 
7625 	*iter = &lower->list;
7626 
7627 	return lower->dev;
7628 }
7629 
7630 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7631 						  struct list_head **iter,
7632 						  bool *ignore)
7633 {
7634 	struct netdev_adjacent *lower;
7635 
7636 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7637 
7638 	if (&lower->list == &dev->adj_list.lower)
7639 		return NULL;
7640 
7641 	*iter = &lower->list;
7642 	*ignore = lower->ignore;
7643 
7644 	return lower->dev;
7645 }
7646 
7647 int netdev_walk_all_lower_dev(struct net_device *dev,
7648 			      int (*fn)(struct net_device *dev,
7649 					struct netdev_nested_priv *priv),
7650 			      struct netdev_nested_priv *priv)
7651 {
7652 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7653 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7654 	int ret, cur = 0;
7655 
7656 	now = dev;
7657 	iter = &dev->adj_list.lower;
7658 
7659 	while (1) {
7660 		if (now != dev) {
7661 			ret = fn(now, priv);
7662 			if (ret)
7663 				return ret;
7664 		}
7665 
7666 		next = NULL;
7667 		while (1) {
7668 			ldev = netdev_next_lower_dev(now, &iter);
7669 			if (!ldev)
7670 				break;
7671 
7672 			next = ldev;
7673 			niter = &ldev->adj_list.lower;
7674 			dev_stack[cur] = now;
7675 			iter_stack[cur++] = iter;
7676 			break;
7677 		}
7678 
7679 		if (!next) {
7680 			if (!cur)
7681 				return 0;
7682 			next = dev_stack[--cur];
7683 			niter = iter_stack[cur];
7684 		}
7685 
7686 		now = next;
7687 		iter = niter;
7688 	}
7689 
7690 	return 0;
7691 }
7692 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7693 
7694 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7695 				       int (*fn)(struct net_device *dev,
7696 					 struct netdev_nested_priv *priv),
7697 				       struct netdev_nested_priv *priv)
7698 {
7699 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7700 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7701 	int ret, cur = 0;
7702 	bool ignore;
7703 
7704 	now = dev;
7705 	iter = &dev->adj_list.lower;
7706 
7707 	while (1) {
7708 		if (now != dev) {
7709 			ret = fn(now, priv);
7710 			if (ret)
7711 				return ret;
7712 		}
7713 
7714 		next = NULL;
7715 		while (1) {
7716 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7717 			if (!ldev)
7718 				break;
7719 			if (ignore)
7720 				continue;
7721 
7722 			next = ldev;
7723 			niter = &ldev->adj_list.lower;
7724 			dev_stack[cur] = now;
7725 			iter_stack[cur++] = iter;
7726 			break;
7727 		}
7728 
7729 		if (!next) {
7730 			if (!cur)
7731 				return 0;
7732 			next = dev_stack[--cur];
7733 			niter = iter_stack[cur];
7734 		}
7735 
7736 		now = next;
7737 		iter = niter;
7738 	}
7739 
7740 	return 0;
7741 }
7742 
7743 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7744 					     struct list_head **iter)
7745 {
7746 	struct netdev_adjacent *lower;
7747 
7748 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7749 	if (&lower->list == &dev->adj_list.lower)
7750 		return NULL;
7751 
7752 	*iter = &lower->list;
7753 
7754 	return lower->dev;
7755 }
7756 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7757 
7758 static u8 __netdev_upper_depth(struct net_device *dev)
7759 {
7760 	struct net_device *udev;
7761 	struct list_head *iter;
7762 	u8 max_depth = 0;
7763 	bool ignore;
7764 
7765 	for (iter = &dev->adj_list.upper,
7766 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7767 	     udev;
7768 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7769 		if (ignore)
7770 			continue;
7771 		if (max_depth < udev->upper_level)
7772 			max_depth = udev->upper_level;
7773 	}
7774 
7775 	return max_depth;
7776 }
7777 
7778 static u8 __netdev_lower_depth(struct net_device *dev)
7779 {
7780 	struct net_device *ldev;
7781 	struct list_head *iter;
7782 	u8 max_depth = 0;
7783 	bool ignore;
7784 
7785 	for (iter = &dev->adj_list.lower,
7786 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7787 	     ldev;
7788 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7789 		if (ignore)
7790 			continue;
7791 		if (max_depth < ldev->lower_level)
7792 			max_depth = ldev->lower_level;
7793 	}
7794 
7795 	return max_depth;
7796 }
7797 
7798 static int __netdev_update_upper_level(struct net_device *dev,
7799 				       struct netdev_nested_priv *__unused)
7800 {
7801 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7802 	return 0;
7803 }
7804 
7805 static int __netdev_update_lower_level(struct net_device *dev,
7806 				       struct netdev_nested_priv *priv)
7807 {
7808 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7809 
7810 #ifdef CONFIG_LOCKDEP
7811 	if (!priv)
7812 		return 0;
7813 
7814 	if (priv->flags & NESTED_SYNC_IMM)
7815 		dev->nested_level = dev->lower_level - 1;
7816 	if (priv->flags & NESTED_SYNC_TODO)
7817 		net_unlink_todo(dev);
7818 #endif
7819 	return 0;
7820 }
7821 
7822 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7823 				  int (*fn)(struct net_device *dev,
7824 					    struct netdev_nested_priv *priv),
7825 				  struct netdev_nested_priv *priv)
7826 {
7827 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7828 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7829 	int ret, cur = 0;
7830 
7831 	now = dev;
7832 	iter = &dev->adj_list.lower;
7833 
7834 	while (1) {
7835 		if (now != dev) {
7836 			ret = fn(now, priv);
7837 			if (ret)
7838 				return ret;
7839 		}
7840 
7841 		next = NULL;
7842 		while (1) {
7843 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7844 			if (!ldev)
7845 				break;
7846 
7847 			next = ldev;
7848 			niter = &ldev->adj_list.lower;
7849 			dev_stack[cur] = now;
7850 			iter_stack[cur++] = iter;
7851 			break;
7852 		}
7853 
7854 		if (!next) {
7855 			if (!cur)
7856 				return 0;
7857 			next = dev_stack[--cur];
7858 			niter = iter_stack[cur];
7859 		}
7860 
7861 		now = next;
7862 		iter = niter;
7863 	}
7864 
7865 	return 0;
7866 }
7867 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7868 
7869 /**
7870  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7871  *				       lower neighbour list, RCU
7872  *				       variant
7873  * @dev: device
7874  *
7875  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7876  * list. The caller must hold RCU read lock.
7877  */
7878 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7879 {
7880 	struct netdev_adjacent *lower;
7881 
7882 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7883 			struct netdev_adjacent, list);
7884 	if (lower)
7885 		return lower->private;
7886 	return NULL;
7887 }
7888 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7889 
7890 /**
7891  * netdev_master_upper_dev_get_rcu - Get master upper device
7892  * @dev: device
7893  *
7894  * Find a master upper device and return pointer to it or NULL in case
7895  * it's not there. The caller must hold the RCU read lock.
7896  */
7897 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7898 {
7899 	struct netdev_adjacent *upper;
7900 
7901 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7902 				       struct netdev_adjacent, list);
7903 	if (upper && likely(upper->master))
7904 		return upper->dev;
7905 	return NULL;
7906 }
7907 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7908 
7909 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7910 			      struct net_device *adj_dev,
7911 			      struct list_head *dev_list)
7912 {
7913 	char linkname[IFNAMSIZ+7];
7914 
7915 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7916 		"upper_%s" : "lower_%s", adj_dev->name);
7917 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7918 				 linkname);
7919 }
7920 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7921 			       char *name,
7922 			       struct list_head *dev_list)
7923 {
7924 	char linkname[IFNAMSIZ+7];
7925 
7926 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7927 		"upper_%s" : "lower_%s", name);
7928 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7929 }
7930 
7931 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7932 						 struct net_device *adj_dev,
7933 						 struct list_head *dev_list)
7934 {
7935 	return (dev_list == &dev->adj_list.upper ||
7936 		dev_list == &dev->adj_list.lower) &&
7937 		net_eq(dev_net(dev), dev_net(adj_dev));
7938 }
7939 
7940 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7941 					struct net_device *adj_dev,
7942 					struct list_head *dev_list,
7943 					void *private, bool master)
7944 {
7945 	struct netdev_adjacent *adj;
7946 	int ret;
7947 
7948 	adj = __netdev_find_adj(adj_dev, dev_list);
7949 
7950 	if (adj) {
7951 		adj->ref_nr += 1;
7952 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7953 			 dev->name, adj_dev->name, adj->ref_nr);
7954 
7955 		return 0;
7956 	}
7957 
7958 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7959 	if (!adj)
7960 		return -ENOMEM;
7961 
7962 	adj->dev = adj_dev;
7963 	adj->master = master;
7964 	adj->ref_nr = 1;
7965 	adj->private = private;
7966 	adj->ignore = false;
7967 	dev_hold(adj_dev);
7968 
7969 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7970 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7971 
7972 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7973 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7974 		if (ret)
7975 			goto free_adj;
7976 	}
7977 
7978 	/* Ensure that master link is always the first item in list. */
7979 	if (master) {
7980 		ret = sysfs_create_link(&(dev->dev.kobj),
7981 					&(adj_dev->dev.kobj), "master");
7982 		if (ret)
7983 			goto remove_symlinks;
7984 
7985 		list_add_rcu(&adj->list, dev_list);
7986 	} else {
7987 		list_add_tail_rcu(&adj->list, dev_list);
7988 	}
7989 
7990 	return 0;
7991 
7992 remove_symlinks:
7993 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7994 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7995 free_adj:
7996 	kfree(adj);
7997 	dev_put(adj_dev);
7998 
7999 	return ret;
8000 }
8001 
8002 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8003 					 struct net_device *adj_dev,
8004 					 u16 ref_nr,
8005 					 struct list_head *dev_list)
8006 {
8007 	struct netdev_adjacent *adj;
8008 
8009 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8010 		 dev->name, adj_dev->name, ref_nr);
8011 
8012 	adj = __netdev_find_adj(adj_dev, dev_list);
8013 
8014 	if (!adj) {
8015 		pr_err("Adjacency does not exist for device %s from %s\n",
8016 		       dev->name, adj_dev->name);
8017 		WARN_ON(1);
8018 		return;
8019 	}
8020 
8021 	if (adj->ref_nr > ref_nr) {
8022 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8023 			 dev->name, adj_dev->name, ref_nr,
8024 			 adj->ref_nr - ref_nr);
8025 		adj->ref_nr -= ref_nr;
8026 		return;
8027 	}
8028 
8029 	if (adj->master)
8030 		sysfs_remove_link(&(dev->dev.kobj), "master");
8031 
8032 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8033 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8034 
8035 	list_del_rcu(&adj->list);
8036 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8037 		 adj_dev->name, dev->name, adj_dev->name);
8038 	dev_put(adj_dev);
8039 	kfree_rcu(adj, rcu);
8040 }
8041 
8042 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8043 					    struct net_device *upper_dev,
8044 					    struct list_head *up_list,
8045 					    struct list_head *down_list,
8046 					    void *private, bool master)
8047 {
8048 	int ret;
8049 
8050 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8051 					   private, master);
8052 	if (ret)
8053 		return ret;
8054 
8055 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8056 					   private, false);
8057 	if (ret) {
8058 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8059 		return ret;
8060 	}
8061 
8062 	return 0;
8063 }
8064 
8065 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8066 					       struct net_device *upper_dev,
8067 					       u16 ref_nr,
8068 					       struct list_head *up_list,
8069 					       struct list_head *down_list)
8070 {
8071 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8072 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8073 }
8074 
8075 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8076 						struct net_device *upper_dev,
8077 						void *private, bool master)
8078 {
8079 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8080 						&dev->adj_list.upper,
8081 						&upper_dev->adj_list.lower,
8082 						private, master);
8083 }
8084 
8085 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8086 						   struct net_device *upper_dev)
8087 {
8088 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8089 					   &dev->adj_list.upper,
8090 					   &upper_dev->adj_list.lower);
8091 }
8092 
8093 static int __netdev_upper_dev_link(struct net_device *dev,
8094 				   struct net_device *upper_dev, bool master,
8095 				   void *upper_priv, void *upper_info,
8096 				   struct netdev_nested_priv *priv,
8097 				   struct netlink_ext_ack *extack)
8098 {
8099 	struct netdev_notifier_changeupper_info changeupper_info = {
8100 		.info = {
8101 			.dev = dev,
8102 			.extack = extack,
8103 		},
8104 		.upper_dev = upper_dev,
8105 		.master = master,
8106 		.linking = true,
8107 		.upper_info = upper_info,
8108 	};
8109 	struct net_device *master_dev;
8110 	int ret = 0;
8111 
8112 	ASSERT_RTNL();
8113 
8114 	if (dev == upper_dev)
8115 		return -EBUSY;
8116 
8117 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8118 	if (__netdev_has_upper_dev(upper_dev, dev))
8119 		return -EBUSY;
8120 
8121 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8122 		return -EMLINK;
8123 
8124 	if (!master) {
8125 		if (__netdev_has_upper_dev(dev, upper_dev))
8126 			return -EEXIST;
8127 	} else {
8128 		master_dev = __netdev_master_upper_dev_get(dev);
8129 		if (master_dev)
8130 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8131 	}
8132 
8133 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8134 					    &changeupper_info.info);
8135 	ret = notifier_to_errno(ret);
8136 	if (ret)
8137 		return ret;
8138 
8139 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8140 						   master);
8141 	if (ret)
8142 		return ret;
8143 
8144 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8145 					    &changeupper_info.info);
8146 	ret = notifier_to_errno(ret);
8147 	if (ret)
8148 		goto rollback;
8149 
8150 	__netdev_update_upper_level(dev, NULL);
8151 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8152 
8153 	__netdev_update_lower_level(upper_dev, priv);
8154 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8155 				    priv);
8156 
8157 	return 0;
8158 
8159 rollback:
8160 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8161 
8162 	return ret;
8163 }
8164 
8165 /**
8166  * netdev_upper_dev_link - Add a link to the upper device
8167  * @dev: device
8168  * @upper_dev: new upper device
8169  * @extack: netlink extended ack
8170  *
8171  * Adds a link to device which is upper to this one. The caller must hold
8172  * the RTNL lock. On a failure a negative errno code is returned.
8173  * On success the reference counts are adjusted and the function
8174  * returns zero.
8175  */
8176 int netdev_upper_dev_link(struct net_device *dev,
8177 			  struct net_device *upper_dev,
8178 			  struct netlink_ext_ack *extack)
8179 {
8180 	struct netdev_nested_priv priv = {
8181 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8182 		.data = NULL,
8183 	};
8184 
8185 	return __netdev_upper_dev_link(dev, upper_dev, false,
8186 				       NULL, NULL, &priv, extack);
8187 }
8188 EXPORT_SYMBOL(netdev_upper_dev_link);
8189 
8190 /**
8191  * netdev_master_upper_dev_link - Add a master link to the upper device
8192  * @dev: device
8193  * @upper_dev: new upper device
8194  * @upper_priv: upper device private
8195  * @upper_info: upper info to be passed down via notifier
8196  * @extack: netlink extended ack
8197  *
8198  * Adds a link to device which is upper to this one. In this case, only
8199  * one master upper device can be linked, although other non-master devices
8200  * might be linked as well. The caller must hold the RTNL lock.
8201  * On a failure a negative errno code is returned. On success the reference
8202  * counts are adjusted and the function returns zero.
8203  */
8204 int netdev_master_upper_dev_link(struct net_device *dev,
8205 				 struct net_device *upper_dev,
8206 				 void *upper_priv, void *upper_info,
8207 				 struct netlink_ext_ack *extack)
8208 {
8209 	struct netdev_nested_priv priv = {
8210 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8211 		.data = NULL,
8212 	};
8213 
8214 	return __netdev_upper_dev_link(dev, upper_dev, true,
8215 				       upper_priv, upper_info, &priv, extack);
8216 }
8217 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8218 
8219 static void __netdev_upper_dev_unlink(struct net_device *dev,
8220 				      struct net_device *upper_dev,
8221 				      struct netdev_nested_priv *priv)
8222 {
8223 	struct netdev_notifier_changeupper_info changeupper_info = {
8224 		.info = {
8225 			.dev = dev,
8226 		},
8227 		.upper_dev = upper_dev,
8228 		.linking = false,
8229 	};
8230 
8231 	ASSERT_RTNL();
8232 
8233 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8234 
8235 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8236 				      &changeupper_info.info);
8237 
8238 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8239 
8240 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8241 				      &changeupper_info.info);
8242 
8243 	__netdev_update_upper_level(dev, NULL);
8244 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8245 
8246 	__netdev_update_lower_level(upper_dev, priv);
8247 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8248 				    priv);
8249 }
8250 
8251 /**
8252  * netdev_upper_dev_unlink - Removes a link to upper device
8253  * @dev: device
8254  * @upper_dev: new upper device
8255  *
8256  * Removes a link to device which is upper to this one. The caller must hold
8257  * the RTNL lock.
8258  */
8259 void netdev_upper_dev_unlink(struct net_device *dev,
8260 			     struct net_device *upper_dev)
8261 {
8262 	struct netdev_nested_priv priv = {
8263 		.flags = NESTED_SYNC_TODO,
8264 		.data = NULL,
8265 	};
8266 
8267 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8268 }
8269 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8270 
8271 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8272 				      struct net_device *lower_dev,
8273 				      bool val)
8274 {
8275 	struct netdev_adjacent *adj;
8276 
8277 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8278 	if (adj)
8279 		adj->ignore = val;
8280 
8281 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8282 	if (adj)
8283 		adj->ignore = val;
8284 }
8285 
8286 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8287 					struct net_device *lower_dev)
8288 {
8289 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8290 }
8291 
8292 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8293 				       struct net_device *lower_dev)
8294 {
8295 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8296 }
8297 
8298 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8299 				   struct net_device *new_dev,
8300 				   struct net_device *dev,
8301 				   struct netlink_ext_ack *extack)
8302 {
8303 	struct netdev_nested_priv priv = {
8304 		.flags = 0,
8305 		.data = NULL,
8306 	};
8307 	int err;
8308 
8309 	if (!new_dev)
8310 		return 0;
8311 
8312 	if (old_dev && new_dev != old_dev)
8313 		netdev_adjacent_dev_disable(dev, old_dev);
8314 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8315 				      extack);
8316 	if (err) {
8317 		if (old_dev && new_dev != old_dev)
8318 			netdev_adjacent_dev_enable(dev, old_dev);
8319 		return err;
8320 	}
8321 
8322 	return 0;
8323 }
8324 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8325 
8326 void netdev_adjacent_change_commit(struct net_device *old_dev,
8327 				   struct net_device *new_dev,
8328 				   struct net_device *dev)
8329 {
8330 	struct netdev_nested_priv priv = {
8331 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8332 		.data = NULL,
8333 	};
8334 
8335 	if (!new_dev || !old_dev)
8336 		return;
8337 
8338 	if (new_dev == old_dev)
8339 		return;
8340 
8341 	netdev_adjacent_dev_enable(dev, old_dev);
8342 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8343 }
8344 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8345 
8346 void netdev_adjacent_change_abort(struct net_device *old_dev,
8347 				  struct net_device *new_dev,
8348 				  struct net_device *dev)
8349 {
8350 	struct netdev_nested_priv priv = {
8351 		.flags = 0,
8352 		.data = NULL,
8353 	};
8354 
8355 	if (!new_dev)
8356 		return;
8357 
8358 	if (old_dev && new_dev != old_dev)
8359 		netdev_adjacent_dev_enable(dev, old_dev);
8360 
8361 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8362 }
8363 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8364 
8365 /**
8366  * netdev_bonding_info_change - Dispatch event about slave change
8367  * @dev: device
8368  * @bonding_info: info to dispatch
8369  *
8370  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8371  * The caller must hold the RTNL lock.
8372  */
8373 void netdev_bonding_info_change(struct net_device *dev,
8374 				struct netdev_bonding_info *bonding_info)
8375 {
8376 	struct netdev_notifier_bonding_info info = {
8377 		.info.dev = dev,
8378 	};
8379 
8380 	memcpy(&info.bonding_info, bonding_info,
8381 	       sizeof(struct netdev_bonding_info));
8382 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8383 				      &info.info);
8384 }
8385 EXPORT_SYMBOL(netdev_bonding_info_change);
8386 
8387 /**
8388  * netdev_get_xmit_slave - Get the xmit slave of master device
8389  * @dev: device
8390  * @skb: The packet
8391  * @all_slaves: assume all the slaves are active
8392  *
8393  * The reference counters are not incremented so the caller must be
8394  * careful with locks. The caller must hold RCU lock.
8395  * %NULL is returned if no slave is found.
8396  */
8397 
8398 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8399 					 struct sk_buff *skb,
8400 					 bool all_slaves)
8401 {
8402 	const struct net_device_ops *ops = dev->netdev_ops;
8403 
8404 	if (!ops->ndo_get_xmit_slave)
8405 		return NULL;
8406 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8407 }
8408 EXPORT_SYMBOL(netdev_get_xmit_slave);
8409 
8410 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8411 						  struct sock *sk)
8412 {
8413 	const struct net_device_ops *ops = dev->netdev_ops;
8414 
8415 	if (!ops->ndo_sk_get_lower_dev)
8416 		return NULL;
8417 	return ops->ndo_sk_get_lower_dev(dev, sk);
8418 }
8419 
8420 /**
8421  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8422  * @dev: device
8423  * @sk: the socket
8424  *
8425  * %NULL is returned if no lower device is found.
8426  */
8427 
8428 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8429 					    struct sock *sk)
8430 {
8431 	struct net_device *lower;
8432 
8433 	lower = netdev_sk_get_lower_dev(dev, sk);
8434 	while (lower) {
8435 		dev = lower;
8436 		lower = netdev_sk_get_lower_dev(dev, sk);
8437 	}
8438 
8439 	return dev;
8440 }
8441 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8442 
8443 static void netdev_adjacent_add_links(struct net_device *dev)
8444 {
8445 	struct netdev_adjacent *iter;
8446 
8447 	struct net *net = dev_net(dev);
8448 
8449 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8450 		if (!net_eq(net, dev_net(iter->dev)))
8451 			continue;
8452 		netdev_adjacent_sysfs_add(iter->dev, dev,
8453 					  &iter->dev->adj_list.lower);
8454 		netdev_adjacent_sysfs_add(dev, iter->dev,
8455 					  &dev->adj_list.upper);
8456 	}
8457 
8458 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8459 		if (!net_eq(net, dev_net(iter->dev)))
8460 			continue;
8461 		netdev_adjacent_sysfs_add(iter->dev, dev,
8462 					  &iter->dev->adj_list.upper);
8463 		netdev_adjacent_sysfs_add(dev, iter->dev,
8464 					  &dev->adj_list.lower);
8465 	}
8466 }
8467 
8468 static void netdev_adjacent_del_links(struct net_device *dev)
8469 {
8470 	struct netdev_adjacent *iter;
8471 
8472 	struct net *net = dev_net(dev);
8473 
8474 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8475 		if (!net_eq(net, dev_net(iter->dev)))
8476 			continue;
8477 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8478 					  &iter->dev->adj_list.lower);
8479 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8480 					  &dev->adj_list.upper);
8481 	}
8482 
8483 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8484 		if (!net_eq(net, dev_net(iter->dev)))
8485 			continue;
8486 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8487 					  &iter->dev->adj_list.upper);
8488 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8489 					  &dev->adj_list.lower);
8490 	}
8491 }
8492 
8493 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8494 {
8495 	struct netdev_adjacent *iter;
8496 
8497 	struct net *net = dev_net(dev);
8498 
8499 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8500 		if (!net_eq(net, dev_net(iter->dev)))
8501 			continue;
8502 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8503 					  &iter->dev->adj_list.lower);
8504 		netdev_adjacent_sysfs_add(iter->dev, dev,
8505 					  &iter->dev->adj_list.lower);
8506 	}
8507 
8508 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8509 		if (!net_eq(net, dev_net(iter->dev)))
8510 			continue;
8511 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8512 					  &iter->dev->adj_list.upper);
8513 		netdev_adjacent_sysfs_add(iter->dev, dev,
8514 					  &iter->dev->adj_list.upper);
8515 	}
8516 }
8517 
8518 void *netdev_lower_dev_get_private(struct net_device *dev,
8519 				   struct net_device *lower_dev)
8520 {
8521 	struct netdev_adjacent *lower;
8522 
8523 	if (!lower_dev)
8524 		return NULL;
8525 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8526 	if (!lower)
8527 		return NULL;
8528 
8529 	return lower->private;
8530 }
8531 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8532 
8533 
8534 /**
8535  * netdev_lower_state_changed - Dispatch event about lower device state change
8536  * @lower_dev: device
8537  * @lower_state_info: state to dispatch
8538  *
8539  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8540  * The caller must hold the RTNL lock.
8541  */
8542 void netdev_lower_state_changed(struct net_device *lower_dev,
8543 				void *lower_state_info)
8544 {
8545 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8546 		.info.dev = lower_dev,
8547 	};
8548 
8549 	ASSERT_RTNL();
8550 	changelowerstate_info.lower_state_info = lower_state_info;
8551 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8552 				      &changelowerstate_info.info);
8553 }
8554 EXPORT_SYMBOL(netdev_lower_state_changed);
8555 
8556 static void dev_change_rx_flags(struct net_device *dev, int flags)
8557 {
8558 	const struct net_device_ops *ops = dev->netdev_ops;
8559 
8560 	if (ops->ndo_change_rx_flags)
8561 		ops->ndo_change_rx_flags(dev, flags);
8562 }
8563 
8564 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8565 {
8566 	unsigned int old_flags = dev->flags;
8567 	kuid_t uid;
8568 	kgid_t gid;
8569 
8570 	ASSERT_RTNL();
8571 
8572 	dev->flags |= IFF_PROMISC;
8573 	dev->promiscuity += inc;
8574 	if (dev->promiscuity == 0) {
8575 		/*
8576 		 * Avoid overflow.
8577 		 * If inc causes overflow, untouch promisc and return error.
8578 		 */
8579 		if (inc < 0)
8580 			dev->flags &= ~IFF_PROMISC;
8581 		else {
8582 			dev->promiscuity -= inc;
8583 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8584 			return -EOVERFLOW;
8585 		}
8586 	}
8587 	if (dev->flags != old_flags) {
8588 		pr_info("device %s %s promiscuous mode\n",
8589 			dev->name,
8590 			dev->flags & IFF_PROMISC ? "entered" : "left");
8591 		if (audit_enabled) {
8592 			current_uid_gid(&uid, &gid);
8593 			audit_log(audit_context(), GFP_ATOMIC,
8594 				  AUDIT_ANOM_PROMISCUOUS,
8595 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8596 				  dev->name, (dev->flags & IFF_PROMISC),
8597 				  (old_flags & IFF_PROMISC),
8598 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8599 				  from_kuid(&init_user_ns, uid),
8600 				  from_kgid(&init_user_ns, gid),
8601 				  audit_get_sessionid(current));
8602 		}
8603 
8604 		dev_change_rx_flags(dev, IFF_PROMISC);
8605 	}
8606 	if (notify)
8607 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8608 	return 0;
8609 }
8610 
8611 /**
8612  *	dev_set_promiscuity	- update promiscuity count on a device
8613  *	@dev: device
8614  *	@inc: modifier
8615  *
8616  *	Add or remove promiscuity from a device. While the count in the device
8617  *	remains above zero the interface remains promiscuous. Once it hits zero
8618  *	the device reverts back to normal filtering operation. A negative inc
8619  *	value is used to drop promiscuity on the device.
8620  *	Return 0 if successful or a negative errno code on error.
8621  */
8622 int dev_set_promiscuity(struct net_device *dev, int inc)
8623 {
8624 	unsigned int old_flags = dev->flags;
8625 	int err;
8626 
8627 	err = __dev_set_promiscuity(dev, inc, true);
8628 	if (err < 0)
8629 		return err;
8630 	if (dev->flags != old_flags)
8631 		dev_set_rx_mode(dev);
8632 	return err;
8633 }
8634 EXPORT_SYMBOL(dev_set_promiscuity);
8635 
8636 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8637 {
8638 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8639 
8640 	ASSERT_RTNL();
8641 
8642 	dev->flags |= IFF_ALLMULTI;
8643 	dev->allmulti += inc;
8644 	if (dev->allmulti == 0) {
8645 		/*
8646 		 * Avoid overflow.
8647 		 * If inc causes overflow, untouch allmulti and return error.
8648 		 */
8649 		if (inc < 0)
8650 			dev->flags &= ~IFF_ALLMULTI;
8651 		else {
8652 			dev->allmulti -= inc;
8653 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8654 			return -EOVERFLOW;
8655 		}
8656 	}
8657 	if (dev->flags ^ old_flags) {
8658 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8659 		dev_set_rx_mode(dev);
8660 		if (notify)
8661 			__dev_notify_flags(dev, old_flags,
8662 					   dev->gflags ^ old_gflags);
8663 	}
8664 	return 0;
8665 }
8666 
8667 /**
8668  *	dev_set_allmulti	- update allmulti count on a device
8669  *	@dev: device
8670  *	@inc: modifier
8671  *
8672  *	Add or remove reception of all multicast frames to a device. While the
8673  *	count in the device remains above zero the interface remains listening
8674  *	to all interfaces. Once it hits zero the device reverts back to normal
8675  *	filtering operation. A negative @inc value is used to drop the counter
8676  *	when releasing a resource needing all multicasts.
8677  *	Return 0 if successful or a negative errno code on error.
8678  */
8679 
8680 int dev_set_allmulti(struct net_device *dev, int inc)
8681 {
8682 	return __dev_set_allmulti(dev, inc, true);
8683 }
8684 EXPORT_SYMBOL(dev_set_allmulti);
8685 
8686 /*
8687  *	Upload unicast and multicast address lists to device and
8688  *	configure RX filtering. When the device doesn't support unicast
8689  *	filtering it is put in promiscuous mode while unicast addresses
8690  *	are present.
8691  */
8692 void __dev_set_rx_mode(struct net_device *dev)
8693 {
8694 	const struct net_device_ops *ops = dev->netdev_ops;
8695 
8696 	/* dev_open will call this function so the list will stay sane. */
8697 	if (!(dev->flags&IFF_UP))
8698 		return;
8699 
8700 	if (!netif_device_present(dev))
8701 		return;
8702 
8703 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8704 		/* Unicast addresses changes may only happen under the rtnl,
8705 		 * therefore calling __dev_set_promiscuity here is safe.
8706 		 */
8707 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8708 			__dev_set_promiscuity(dev, 1, false);
8709 			dev->uc_promisc = true;
8710 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8711 			__dev_set_promiscuity(dev, -1, false);
8712 			dev->uc_promisc = false;
8713 		}
8714 	}
8715 
8716 	if (ops->ndo_set_rx_mode)
8717 		ops->ndo_set_rx_mode(dev);
8718 }
8719 
8720 void dev_set_rx_mode(struct net_device *dev)
8721 {
8722 	netif_addr_lock_bh(dev);
8723 	__dev_set_rx_mode(dev);
8724 	netif_addr_unlock_bh(dev);
8725 }
8726 
8727 /**
8728  *	dev_get_flags - get flags reported to userspace
8729  *	@dev: device
8730  *
8731  *	Get the combination of flag bits exported through APIs to userspace.
8732  */
8733 unsigned int dev_get_flags(const struct net_device *dev)
8734 {
8735 	unsigned int flags;
8736 
8737 	flags = (dev->flags & ~(IFF_PROMISC |
8738 				IFF_ALLMULTI |
8739 				IFF_RUNNING |
8740 				IFF_LOWER_UP |
8741 				IFF_DORMANT)) |
8742 		(dev->gflags & (IFF_PROMISC |
8743 				IFF_ALLMULTI));
8744 
8745 	if (netif_running(dev)) {
8746 		if (netif_oper_up(dev))
8747 			flags |= IFF_RUNNING;
8748 		if (netif_carrier_ok(dev))
8749 			flags |= IFF_LOWER_UP;
8750 		if (netif_dormant(dev))
8751 			flags |= IFF_DORMANT;
8752 	}
8753 
8754 	return flags;
8755 }
8756 EXPORT_SYMBOL(dev_get_flags);
8757 
8758 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8759 		       struct netlink_ext_ack *extack)
8760 {
8761 	unsigned int old_flags = dev->flags;
8762 	int ret;
8763 
8764 	ASSERT_RTNL();
8765 
8766 	/*
8767 	 *	Set the flags on our device.
8768 	 */
8769 
8770 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8771 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8772 			       IFF_AUTOMEDIA)) |
8773 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8774 				    IFF_ALLMULTI));
8775 
8776 	/*
8777 	 *	Load in the correct multicast list now the flags have changed.
8778 	 */
8779 
8780 	if ((old_flags ^ flags) & IFF_MULTICAST)
8781 		dev_change_rx_flags(dev, IFF_MULTICAST);
8782 
8783 	dev_set_rx_mode(dev);
8784 
8785 	/*
8786 	 *	Have we downed the interface. We handle IFF_UP ourselves
8787 	 *	according to user attempts to set it, rather than blindly
8788 	 *	setting it.
8789 	 */
8790 
8791 	ret = 0;
8792 	if ((old_flags ^ flags) & IFF_UP) {
8793 		if (old_flags & IFF_UP)
8794 			__dev_close(dev);
8795 		else
8796 			ret = __dev_open(dev, extack);
8797 	}
8798 
8799 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8800 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8801 		unsigned int old_flags = dev->flags;
8802 
8803 		dev->gflags ^= IFF_PROMISC;
8804 
8805 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8806 			if (dev->flags != old_flags)
8807 				dev_set_rx_mode(dev);
8808 	}
8809 
8810 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8811 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8812 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8813 	 */
8814 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8815 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8816 
8817 		dev->gflags ^= IFF_ALLMULTI;
8818 		__dev_set_allmulti(dev, inc, false);
8819 	}
8820 
8821 	return ret;
8822 }
8823 
8824 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8825 			unsigned int gchanges)
8826 {
8827 	unsigned int changes = dev->flags ^ old_flags;
8828 
8829 	if (gchanges)
8830 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8831 
8832 	if (changes & IFF_UP) {
8833 		if (dev->flags & IFF_UP)
8834 			call_netdevice_notifiers(NETDEV_UP, dev);
8835 		else
8836 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8837 	}
8838 
8839 	if (dev->flags & IFF_UP &&
8840 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8841 		struct netdev_notifier_change_info change_info = {
8842 			.info = {
8843 				.dev = dev,
8844 			},
8845 			.flags_changed = changes,
8846 		};
8847 
8848 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8849 	}
8850 }
8851 
8852 /**
8853  *	dev_change_flags - change device settings
8854  *	@dev: device
8855  *	@flags: device state flags
8856  *	@extack: netlink extended ack
8857  *
8858  *	Change settings on device based state flags. The flags are
8859  *	in the userspace exported format.
8860  */
8861 int dev_change_flags(struct net_device *dev, unsigned int flags,
8862 		     struct netlink_ext_ack *extack)
8863 {
8864 	int ret;
8865 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8866 
8867 	ret = __dev_change_flags(dev, flags, extack);
8868 	if (ret < 0)
8869 		return ret;
8870 
8871 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8872 	__dev_notify_flags(dev, old_flags, changes);
8873 	return ret;
8874 }
8875 EXPORT_SYMBOL(dev_change_flags);
8876 
8877 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8878 {
8879 	const struct net_device_ops *ops = dev->netdev_ops;
8880 
8881 	if (ops->ndo_change_mtu)
8882 		return ops->ndo_change_mtu(dev, new_mtu);
8883 
8884 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8885 	WRITE_ONCE(dev->mtu, new_mtu);
8886 	return 0;
8887 }
8888 EXPORT_SYMBOL(__dev_set_mtu);
8889 
8890 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8891 		     struct netlink_ext_ack *extack)
8892 {
8893 	/* MTU must be positive, and in range */
8894 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8895 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8896 		return -EINVAL;
8897 	}
8898 
8899 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8900 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8901 		return -EINVAL;
8902 	}
8903 	return 0;
8904 }
8905 
8906 /**
8907  *	dev_set_mtu_ext - Change maximum transfer unit
8908  *	@dev: device
8909  *	@new_mtu: new transfer unit
8910  *	@extack: netlink extended ack
8911  *
8912  *	Change the maximum transfer size of the network device.
8913  */
8914 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8915 		    struct netlink_ext_ack *extack)
8916 {
8917 	int err, orig_mtu;
8918 
8919 	if (new_mtu == dev->mtu)
8920 		return 0;
8921 
8922 	err = dev_validate_mtu(dev, new_mtu, extack);
8923 	if (err)
8924 		return err;
8925 
8926 	if (!netif_device_present(dev))
8927 		return -ENODEV;
8928 
8929 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8930 	err = notifier_to_errno(err);
8931 	if (err)
8932 		return err;
8933 
8934 	orig_mtu = dev->mtu;
8935 	err = __dev_set_mtu(dev, new_mtu);
8936 
8937 	if (!err) {
8938 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8939 						   orig_mtu);
8940 		err = notifier_to_errno(err);
8941 		if (err) {
8942 			/* setting mtu back and notifying everyone again,
8943 			 * so that they have a chance to revert changes.
8944 			 */
8945 			__dev_set_mtu(dev, orig_mtu);
8946 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8947 						     new_mtu);
8948 		}
8949 	}
8950 	return err;
8951 }
8952 
8953 int dev_set_mtu(struct net_device *dev, int new_mtu)
8954 {
8955 	struct netlink_ext_ack extack;
8956 	int err;
8957 
8958 	memset(&extack, 0, sizeof(extack));
8959 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8960 	if (err && extack._msg)
8961 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8962 	return err;
8963 }
8964 EXPORT_SYMBOL(dev_set_mtu);
8965 
8966 /**
8967  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8968  *	@dev: device
8969  *	@new_len: new tx queue length
8970  */
8971 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8972 {
8973 	unsigned int orig_len = dev->tx_queue_len;
8974 	int res;
8975 
8976 	if (new_len != (unsigned int)new_len)
8977 		return -ERANGE;
8978 
8979 	if (new_len != orig_len) {
8980 		dev->tx_queue_len = new_len;
8981 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8982 		res = notifier_to_errno(res);
8983 		if (res)
8984 			goto err_rollback;
8985 		res = dev_qdisc_change_tx_queue_len(dev);
8986 		if (res)
8987 			goto err_rollback;
8988 	}
8989 
8990 	return 0;
8991 
8992 err_rollback:
8993 	netdev_err(dev, "refused to change device tx_queue_len\n");
8994 	dev->tx_queue_len = orig_len;
8995 	return res;
8996 }
8997 
8998 /**
8999  *	dev_set_group - Change group this device belongs to
9000  *	@dev: device
9001  *	@new_group: group this device should belong to
9002  */
9003 void dev_set_group(struct net_device *dev, int new_group)
9004 {
9005 	dev->group = new_group;
9006 }
9007 EXPORT_SYMBOL(dev_set_group);
9008 
9009 /**
9010  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9011  *	@dev: device
9012  *	@addr: new address
9013  *	@extack: netlink extended ack
9014  */
9015 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9016 			      struct netlink_ext_ack *extack)
9017 {
9018 	struct netdev_notifier_pre_changeaddr_info info = {
9019 		.info.dev = dev,
9020 		.info.extack = extack,
9021 		.dev_addr = addr,
9022 	};
9023 	int rc;
9024 
9025 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9026 	return notifier_to_errno(rc);
9027 }
9028 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9029 
9030 /**
9031  *	dev_set_mac_address - Change Media Access Control Address
9032  *	@dev: device
9033  *	@sa: new address
9034  *	@extack: netlink extended ack
9035  *
9036  *	Change the hardware (MAC) address of the device
9037  */
9038 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9039 			struct netlink_ext_ack *extack)
9040 {
9041 	const struct net_device_ops *ops = dev->netdev_ops;
9042 	int err;
9043 
9044 	if (!ops->ndo_set_mac_address)
9045 		return -EOPNOTSUPP;
9046 	if (sa->sa_family != dev->type)
9047 		return -EINVAL;
9048 	if (!netif_device_present(dev))
9049 		return -ENODEV;
9050 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9051 	if (err)
9052 		return err;
9053 	err = ops->ndo_set_mac_address(dev, sa);
9054 	if (err)
9055 		return err;
9056 	dev->addr_assign_type = NET_ADDR_SET;
9057 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9058 	add_device_randomness(dev->dev_addr, dev->addr_len);
9059 	return 0;
9060 }
9061 EXPORT_SYMBOL(dev_set_mac_address);
9062 
9063 static DECLARE_RWSEM(dev_addr_sem);
9064 
9065 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9066 			     struct netlink_ext_ack *extack)
9067 {
9068 	int ret;
9069 
9070 	down_write(&dev_addr_sem);
9071 	ret = dev_set_mac_address(dev, sa, extack);
9072 	up_write(&dev_addr_sem);
9073 	return ret;
9074 }
9075 EXPORT_SYMBOL(dev_set_mac_address_user);
9076 
9077 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9078 {
9079 	size_t size = sizeof(sa->sa_data);
9080 	struct net_device *dev;
9081 	int ret = 0;
9082 
9083 	down_read(&dev_addr_sem);
9084 	rcu_read_lock();
9085 
9086 	dev = dev_get_by_name_rcu(net, dev_name);
9087 	if (!dev) {
9088 		ret = -ENODEV;
9089 		goto unlock;
9090 	}
9091 	if (!dev->addr_len)
9092 		memset(sa->sa_data, 0, size);
9093 	else
9094 		memcpy(sa->sa_data, dev->dev_addr,
9095 		       min_t(size_t, size, dev->addr_len));
9096 	sa->sa_family = dev->type;
9097 
9098 unlock:
9099 	rcu_read_unlock();
9100 	up_read(&dev_addr_sem);
9101 	return ret;
9102 }
9103 EXPORT_SYMBOL(dev_get_mac_address);
9104 
9105 /**
9106  *	dev_change_carrier - Change device carrier
9107  *	@dev: device
9108  *	@new_carrier: new value
9109  *
9110  *	Change device carrier
9111  */
9112 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9113 {
9114 	const struct net_device_ops *ops = dev->netdev_ops;
9115 
9116 	if (!ops->ndo_change_carrier)
9117 		return -EOPNOTSUPP;
9118 	if (!netif_device_present(dev))
9119 		return -ENODEV;
9120 	return ops->ndo_change_carrier(dev, new_carrier);
9121 }
9122 EXPORT_SYMBOL(dev_change_carrier);
9123 
9124 /**
9125  *	dev_get_phys_port_id - Get device physical port ID
9126  *	@dev: device
9127  *	@ppid: port ID
9128  *
9129  *	Get device physical port ID
9130  */
9131 int dev_get_phys_port_id(struct net_device *dev,
9132 			 struct netdev_phys_item_id *ppid)
9133 {
9134 	const struct net_device_ops *ops = dev->netdev_ops;
9135 
9136 	if (!ops->ndo_get_phys_port_id)
9137 		return -EOPNOTSUPP;
9138 	return ops->ndo_get_phys_port_id(dev, ppid);
9139 }
9140 EXPORT_SYMBOL(dev_get_phys_port_id);
9141 
9142 /**
9143  *	dev_get_phys_port_name - Get device physical port name
9144  *	@dev: device
9145  *	@name: port name
9146  *	@len: limit of bytes to copy to name
9147  *
9148  *	Get device physical port name
9149  */
9150 int dev_get_phys_port_name(struct net_device *dev,
9151 			   char *name, size_t len)
9152 {
9153 	const struct net_device_ops *ops = dev->netdev_ops;
9154 	int err;
9155 
9156 	if (ops->ndo_get_phys_port_name) {
9157 		err = ops->ndo_get_phys_port_name(dev, name, len);
9158 		if (err != -EOPNOTSUPP)
9159 			return err;
9160 	}
9161 	return devlink_compat_phys_port_name_get(dev, name, len);
9162 }
9163 EXPORT_SYMBOL(dev_get_phys_port_name);
9164 
9165 /**
9166  *	dev_get_port_parent_id - Get the device's port parent identifier
9167  *	@dev: network device
9168  *	@ppid: pointer to a storage for the port's parent identifier
9169  *	@recurse: allow/disallow recursion to lower devices
9170  *
9171  *	Get the devices's port parent identifier
9172  */
9173 int dev_get_port_parent_id(struct net_device *dev,
9174 			   struct netdev_phys_item_id *ppid,
9175 			   bool recurse)
9176 {
9177 	const struct net_device_ops *ops = dev->netdev_ops;
9178 	struct netdev_phys_item_id first = { };
9179 	struct net_device *lower_dev;
9180 	struct list_head *iter;
9181 	int err;
9182 
9183 	if (ops->ndo_get_port_parent_id) {
9184 		err = ops->ndo_get_port_parent_id(dev, ppid);
9185 		if (err != -EOPNOTSUPP)
9186 			return err;
9187 	}
9188 
9189 	err = devlink_compat_switch_id_get(dev, ppid);
9190 	if (!recurse || err != -EOPNOTSUPP)
9191 		return err;
9192 
9193 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9194 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9195 		if (err)
9196 			break;
9197 		if (!first.id_len)
9198 			first = *ppid;
9199 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9200 			return -EOPNOTSUPP;
9201 	}
9202 
9203 	return err;
9204 }
9205 EXPORT_SYMBOL(dev_get_port_parent_id);
9206 
9207 /**
9208  *	netdev_port_same_parent_id - Indicate if two network devices have
9209  *	the same port parent identifier
9210  *	@a: first network device
9211  *	@b: second network device
9212  */
9213 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9214 {
9215 	struct netdev_phys_item_id a_id = { };
9216 	struct netdev_phys_item_id b_id = { };
9217 
9218 	if (dev_get_port_parent_id(a, &a_id, true) ||
9219 	    dev_get_port_parent_id(b, &b_id, true))
9220 		return false;
9221 
9222 	return netdev_phys_item_id_same(&a_id, &b_id);
9223 }
9224 EXPORT_SYMBOL(netdev_port_same_parent_id);
9225 
9226 /**
9227  *	dev_change_proto_down - update protocol port state information
9228  *	@dev: device
9229  *	@proto_down: new value
9230  *
9231  *	This info can be used by switch drivers to set the phys state of the
9232  *	port.
9233  */
9234 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9235 {
9236 	const struct net_device_ops *ops = dev->netdev_ops;
9237 
9238 	if (!ops->ndo_change_proto_down)
9239 		return -EOPNOTSUPP;
9240 	if (!netif_device_present(dev))
9241 		return -ENODEV;
9242 	return ops->ndo_change_proto_down(dev, proto_down);
9243 }
9244 EXPORT_SYMBOL(dev_change_proto_down);
9245 
9246 /**
9247  *	dev_change_proto_down_generic - generic implementation for
9248  * 	ndo_change_proto_down that sets carrier according to
9249  * 	proto_down.
9250  *
9251  *	@dev: device
9252  *	@proto_down: new value
9253  */
9254 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9255 {
9256 	if (proto_down)
9257 		netif_carrier_off(dev);
9258 	else
9259 		netif_carrier_on(dev);
9260 	dev->proto_down = proto_down;
9261 	return 0;
9262 }
9263 EXPORT_SYMBOL(dev_change_proto_down_generic);
9264 
9265 /**
9266  *	dev_change_proto_down_reason - proto down reason
9267  *
9268  *	@dev: device
9269  *	@mask: proto down mask
9270  *	@value: proto down value
9271  */
9272 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9273 				  u32 value)
9274 {
9275 	int b;
9276 
9277 	if (!mask) {
9278 		dev->proto_down_reason = value;
9279 	} else {
9280 		for_each_set_bit(b, &mask, 32) {
9281 			if (value & (1 << b))
9282 				dev->proto_down_reason |= BIT(b);
9283 			else
9284 				dev->proto_down_reason &= ~BIT(b);
9285 		}
9286 	}
9287 }
9288 EXPORT_SYMBOL(dev_change_proto_down_reason);
9289 
9290 struct bpf_xdp_link {
9291 	struct bpf_link link;
9292 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9293 	int flags;
9294 };
9295 
9296 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9297 {
9298 	if (flags & XDP_FLAGS_HW_MODE)
9299 		return XDP_MODE_HW;
9300 	if (flags & XDP_FLAGS_DRV_MODE)
9301 		return XDP_MODE_DRV;
9302 	if (flags & XDP_FLAGS_SKB_MODE)
9303 		return XDP_MODE_SKB;
9304 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9305 }
9306 
9307 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9308 {
9309 	switch (mode) {
9310 	case XDP_MODE_SKB:
9311 		return generic_xdp_install;
9312 	case XDP_MODE_DRV:
9313 	case XDP_MODE_HW:
9314 		return dev->netdev_ops->ndo_bpf;
9315 	default:
9316 		return NULL;
9317 	}
9318 }
9319 
9320 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9321 					 enum bpf_xdp_mode mode)
9322 {
9323 	return dev->xdp_state[mode].link;
9324 }
9325 
9326 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9327 				     enum bpf_xdp_mode mode)
9328 {
9329 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9330 
9331 	if (link)
9332 		return link->link.prog;
9333 	return dev->xdp_state[mode].prog;
9334 }
9335 
9336 u8 dev_xdp_prog_count(struct net_device *dev)
9337 {
9338 	u8 count = 0;
9339 	int i;
9340 
9341 	for (i = 0; i < __MAX_XDP_MODE; i++)
9342 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9343 			count++;
9344 	return count;
9345 }
9346 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9347 
9348 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9349 {
9350 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9351 
9352 	return prog ? prog->aux->id : 0;
9353 }
9354 
9355 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9356 			     struct bpf_xdp_link *link)
9357 {
9358 	dev->xdp_state[mode].link = link;
9359 	dev->xdp_state[mode].prog = NULL;
9360 }
9361 
9362 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9363 			     struct bpf_prog *prog)
9364 {
9365 	dev->xdp_state[mode].link = NULL;
9366 	dev->xdp_state[mode].prog = prog;
9367 }
9368 
9369 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9370 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9371 			   u32 flags, struct bpf_prog *prog)
9372 {
9373 	struct netdev_bpf xdp;
9374 	int err;
9375 
9376 	memset(&xdp, 0, sizeof(xdp));
9377 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9378 	xdp.extack = extack;
9379 	xdp.flags = flags;
9380 	xdp.prog = prog;
9381 
9382 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9383 	 * "moved" into driver), so they don't increment it on their own, but
9384 	 * they do decrement refcnt when program is detached or replaced.
9385 	 * Given net_device also owns link/prog, we need to bump refcnt here
9386 	 * to prevent drivers from underflowing it.
9387 	 */
9388 	if (prog)
9389 		bpf_prog_inc(prog);
9390 	err = bpf_op(dev, &xdp);
9391 	if (err) {
9392 		if (prog)
9393 			bpf_prog_put(prog);
9394 		return err;
9395 	}
9396 
9397 	if (mode != XDP_MODE_HW)
9398 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9399 
9400 	return 0;
9401 }
9402 
9403 static void dev_xdp_uninstall(struct net_device *dev)
9404 {
9405 	struct bpf_xdp_link *link;
9406 	struct bpf_prog *prog;
9407 	enum bpf_xdp_mode mode;
9408 	bpf_op_t bpf_op;
9409 
9410 	ASSERT_RTNL();
9411 
9412 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9413 		prog = dev_xdp_prog(dev, mode);
9414 		if (!prog)
9415 			continue;
9416 
9417 		bpf_op = dev_xdp_bpf_op(dev, mode);
9418 		if (!bpf_op)
9419 			continue;
9420 
9421 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9422 
9423 		/* auto-detach link from net device */
9424 		link = dev_xdp_link(dev, mode);
9425 		if (link)
9426 			link->dev = NULL;
9427 		else
9428 			bpf_prog_put(prog);
9429 
9430 		dev_xdp_set_link(dev, mode, NULL);
9431 	}
9432 }
9433 
9434 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9435 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9436 			  struct bpf_prog *old_prog, u32 flags)
9437 {
9438 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9439 	struct bpf_prog *cur_prog;
9440 	struct net_device *upper;
9441 	struct list_head *iter;
9442 	enum bpf_xdp_mode mode;
9443 	bpf_op_t bpf_op;
9444 	int err;
9445 
9446 	ASSERT_RTNL();
9447 
9448 	/* either link or prog attachment, never both */
9449 	if (link && (new_prog || old_prog))
9450 		return -EINVAL;
9451 	/* link supports only XDP mode flags */
9452 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9453 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9454 		return -EINVAL;
9455 	}
9456 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9457 	if (num_modes > 1) {
9458 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9459 		return -EINVAL;
9460 	}
9461 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9462 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9463 		NL_SET_ERR_MSG(extack,
9464 			       "More than one program loaded, unset mode is ambiguous");
9465 		return -EINVAL;
9466 	}
9467 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9468 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9469 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9470 		return -EINVAL;
9471 	}
9472 
9473 	mode = dev_xdp_mode(dev, flags);
9474 	/* can't replace attached link */
9475 	if (dev_xdp_link(dev, mode)) {
9476 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9477 		return -EBUSY;
9478 	}
9479 
9480 	/* don't allow if an upper device already has a program */
9481 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9482 		if (dev_xdp_prog_count(upper) > 0) {
9483 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9484 			return -EEXIST;
9485 		}
9486 	}
9487 
9488 	cur_prog = dev_xdp_prog(dev, mode);
9489 	/* can't replace attached prog with link */
9490 	if (link && cur_prog) {
9491 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9492 		return -EBUSY;
9493 	}
9494 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9495 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9496 		return -EEXIST;
9497 	}
9498 
9499 	/* put effective new program into new_prog */
9500 	if (link)
9501 		new_prog = link->link.prog;
9502 
9503 	if (new_prog) {
9504 		bool offload = mode == XDP_MODE_HW;
9505 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9506 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9507 
9508 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9509 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9510 			return -EBUSY;
9511 		}
9512 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9513 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9514 			return -EEXIST;
9515 		}
9516 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9517 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9518 			return -EINVAL;
9519 		}
9520 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9521 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9522 			return -EINVAL;
9523 		}
9524 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9525 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9526 			return -EINVAL;
9527 		}
9528 	}
9529 
9530 	/* don't call drivers if the effective program didn't change */
9531 	if (new_prog != cur_prog) {
9532 		bpf_op = dev_xdp_bpf_op(dev, mode);
9533 		if (!bpf_op) {
9534 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9535 			return -EOPNOTSUPP;
9536 		}
9537 
9538 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9539 		if (err)
9540 			return err;
9541 	}
9542 
9543 	if (link)
9544 		dev_xdp_set_link(dev, mode, link);
9545 	else
9546 		dev_xdp_set_prog(dev, mode, new_prog);
9547 	if (cur_prog)
9548 		bpf_prog_put(cur_prog);
9549 
9550 	return 0;
9551 }
9552 
9553 static int dev_xdp_attach_link(struct net_device *dev,
9554 			       struct netlink_ext_ack *extack,
9555 			       struct bpf_xdp_link *link)
9556 {
9557 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9558 }
9559 
9560 static int dev_xdp_detach_link(struct net_device *dev,
9561 			       struct netlink_ext_ack *extack,
9562 			       struct bpf_xdp_link *link)
9563 {
9564 	enum bpf_xdp_mode mode;
9565 	bpf_op_t bpf_op;
9566 
9567 	ASSERT_RTNL();
9568 
9569 	mode = dev_xdp_mode(dev, link->flags);
9570 	if (dev_xdp_link(dev, mode) != link)
9571 		return -EINVAL;
9572 
9573 	bpf_op = dev_xdp_bpf_op(dev, mode);
9574 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9575 	dev_xdp_set_link(dev, mode, NULL);
9576 	return 0;
9577 }
9578 
9579 static void bpf_xdp_link_release(struct bpf_link *link)
9580 {
9581 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9582 
9583 	rtnl_lock();
9584 
9585 	/* if racing with net_device's tear down, xdp_link->dev might be
9586 	 * already NULL, in which case link was already auto-detached
9587 	 */
9588 	if (xdp_link->dev) {
9589 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9590 		xdp_link->dev = NULL;
9591 	}
9592 
9593 	rtnl_unlock();
9594 }
9595 
9596 static int bpf_xdp_link_detach(struct bpf_link *link)
9597 {
9598 	bpf_xdp_link_release(link);
9599 	return 0;
9600 }
9601 
9602 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9603 {
9604 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9605 
9606 	kfree(xdp_link);
9607 }
9608 
9609 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9610 				     struct seq_file *seq)
9611 {
9612 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9613 	u32 ifindex = 0;
9614 
9615 	rtnl_lock();
9616 	if (xdp_link->dev)
9617 		ifindex = xdp_link->dev->ifindex;
9618 	rtnl_unlock();
9619 
9620 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9621 }
9622 
9623 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9624 				       struct bpf_link_info *info)
9625 {
9626 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9627 	u32 ifindex = 0;
9628 
9629 	rtnl_lock();
9630 	if (xdp_link->dev)
9631 		ifindex = xdp_link->dev->ifindex;
9632 	rtnl_unlock();
9633 
9634 	info->xdp.ifindex = ifindex;
9635 	return 0;
9636 }
9637 
9638 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9639 			       struct bpf_prog *old_prog)
9640 {
9641 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9642 	enum bpf_xdp_mode mode;
9643 	bpf_op_t bpf_op;
9644 	int err = 0;
9645 
9646 	rtnl_lock();
9647 
9648 	/* link might have been auto-released already, so fail */
9649 	if (!xdp_link->dev) {
9650 		err = -ENOLINK;
9651 		goto out_unlock;
9652 	}
9653 
9654 	if (old_prog && link->prog != old_prog) {
9655 		err = -EPERM;
9656 		goto out_unlock;
9657 	}
9658 	old_prog = link->prog;
9659 	if (old_prog == new_prog) {
9660 		/* no-op, don't disturb drivers */
9661 		bpf_prog_put(new_prog);
9662 		goto out_unlock;
9663 	}
9664 
9665 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9666 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9667 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9668 			      xdp_link->flags, new_prog);
9669 	if (err)
9670 		goto out_unlock;
9671 
9672 	old_prog = xchg(&link->prog, new_prog);
9673 	bpf_prog_put(old_prog);
9674 
9675 out_unlock:
9676 	rtnl_unlock();
9677 	return err;
9678 }
9679 
9680 static const struct bpf_link_ops bpf_xdp_link_lops = {
9681 	.release = bpf_xdp_link_release,
9682 	.dealloc = bpf_xdp_link_dealloc,
9683 	.detach = bpf_xdp_link_detach,
9684 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9685 	.fill_link_info = bpf_xdp_link_fill_link_info,
9686 	.update_prog = bpf_xdp_link_update,
9687 };
9688 
9689 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9690 {
9691 	struct net *net = current->nsproxy->net_ns;
9692 	struct bpf_link_primer link_primer;
9693 	struct bpf_xdp_link *link;
9694 	struct net_device *dev;
9695 	int err, fd;
9696 
9697 	rtnl_lock();
9698 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9699 	if (!dev) {
9700 		rtnl_unlock();
9701 		return -EINVAL;
9702 	}
9703 
9704 	link = kzalloc(sizeof(*link), GFP_USER);
9705 	if (!link) {
9706 		err = -ENOMEM;
9707 		goto unlock;
9708 	}
9709 
9710 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9711 	link->dev = dev;
9712 	link->flags = attr->link_create.flags;
9713 
9714 	err = bpf_link_prime(&link->link, &link_primer);
9715 	if (err) {
9716 		kfree(link);
9717 		goto unlock;
9718 	}
9719 
9720 	err = dev_xdp_attach_link(dev, NULL, link);
9721 	rtnl_unlock();
9722 
9723 	if (err) {
9724 		link->dev = NULL;
9725 		bpf_link_cleanup(&link_primer);
9726 		goto out_put_dev;
9727 	}
9728 
9729 	fd = bpf_link_settle(&link_primer);
9730 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9731 	dev_put(dev);
9732 	return fd;
9733 
9734 unlock:
9735 	rtnl_unlock();
9736 
9737 out_put_dev:
9738 	dev_put(dev);
9739 	return err;
9740 }
9741 
9742 /**
9743  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9744  *	@dev: device
9745  *	@extack: netlink extended ack
9746  *	@fd: new program fd or negative value to clear
9747  *	@expected_fd: old program fd that userspace expects to replace or clear
9748  *	@flags: xdp-related flags
9749  *
9750  *	Set or clear a bpf program for a device
9751  */
9752 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9753 		      int fd, int expected_fd, u32 flags)
9754 {
9755 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9756 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9757 	int err;
9758 
9759 	ASSERT_RTNL();
9760 
9761 	if (fd >= 0) {
9762 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9763 						 mode != XDP_MODE_SKB);
9764 		if (IS_ERR(new_prog))
9765 			return PTR_ERR(new_prog);
9766 	}
9767 
9768 	if (expected_fd >= 0) {
9769 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9770 						 mode != XDP_MODE_SKB);
9771 		if (IS_ERR(old_prog)) {
9772 			err = PTR_ERR(old_prog);
9773 			old_prog = NULL;
9774 			goto err_out;
9775 		}
9776 	}
9777 
9778 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9779 
9780 err_out:
9781 	if (err && new_prog)
9782 		bpf_prog_put(new_prog);
9783 	if (old_prog)
9784 		bpf_prog_put(old_prog);
9785 	return err;
9786 }
9787 
9788 /**
9789  *	dev_new_index	-	allocate an ifindex
9790  *	@net: the applicable net namespace
9791  *
9792  *	Returns a suitable unique value for a new device interface
9793  *	number.  The caller must hold the rtnl semaphore or the
9794  *	dev_base_lock to be sure it remains unique.
9795  */
9796 static int dev_new_index(struct net *net)
9797 {
9798 	int ifindex = net->ifindex;
9799 
9800 	for (;;) {
9801 		if (++ifindex <= 0)
9802 			ifindex = 1;
9803 		if (!__dev_get_by_index(net, ifindex))
9804 			return net->ifindex = ifindex;
9805 	}
9806 }
9807 
9808 /* Delayed registration/unregisteration */
9809 static LIST_HEAD(net_todo_list);
9810 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9811 
9812 static void net_set_todo(struct net_device *dev)
9813 {
9814 	list_add_tail(&dev->todo_list, &net_todo_list);
9815 	dev_net(dev)->dev_unreg_count++;
9816 }
9817 
9818 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9819 	struct net_device *upper, netdev_features_t features)
9820 {
9821 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9822 	netdev_features_t feature;
9823 	int feature_bit;
9824 
9825 	for_each_netdev_feature(upper_disables, feature_bit) {
9826 		feature = __NETIF_F_BIT(feature_bit);
9827 		if (!(upper->wanted_features & feature)
9828 		    && (features & feature)) {
9829 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9830 				   &feature, upper->name);
9831 			features &= ~feature;
9832 		}
9833 	}
9834 
9835 	return features;
9836 }
9837 
9838 static void netdev_sync_lower_features(struct net_device *upper,
9839 	struct net_device *lower, netdev_features_t features)
9840 {
9841 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9842 	netdev_features_t feature;
9843 	int feature_bit;
9844 
9845 	for_each_netdev_feature(upper_disables, feature_bit) {
9846 		feature = __NETIF_F_BIT(feature_bit);
9847 		if (!(features & feature) && (lower->features & feature)) {
9848 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9849 				   &feature, lower->name);
9850 			lower->wanted_features &= ~feature;
9851 			__netdev_update_features(lower);
9852 
9853 			if (unlikely(lower->features & feature))
9854 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9855 					    &feature, lower->name);
9856 			else
9857 				netdev_features_change(lower);
9858 		}
9859 	}
9860 }
9861 
9862 static netdev_features_t netdev_fix_features(struct net_device *dev,
9863 	netdev_features_t features)
9864 {
9865 	/* Fix illegal checksum combinations */
9866 	if ((features & NETIF_F_HW_CSUM) &&
9867 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9868 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9869 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9870 	}
9871 
9872 	/* TSO requires that SG is present as well. */
9873 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9874 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9875 		features &= ~NETIF_F_ALL_TSO;
9876 	}
9877 
9878 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9879 					!(features & NETIF_F_IP_CSUM)) {
9880 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9881 		features &= ~NETIF_F_TSO;
9882 		features &= ~NETIF_F_TSO_ECN;
9883 	}
9884 
9885 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9886 					 !(features & NETIF_F_IPV6_CSUM)) {
9887 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9888 		features &= ~NETIF_F_TSO6;
9889 	}
9890 
9891 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9892 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9893 		features &= ~NETIF_F_TSO_MANGLEID;
9894 
9895 	/* TSO ECN requires that TSO is present as well. */
9896 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9897 		features &= ~NETIF_F_TSO_ECN;
9898 
9899 	/* Software GSO depends on SG. */
9900 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9901 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9902 		features &= ~NETIF_F_GSO;
9903 	}
9904 
9905 	/* GSO partial features require GSO partial be set */
9906 	if ((features & dev->gso_partial_features) &&
9907 	    !(features & NETIF_F_GSO_PARTIAL)) {
9908 		netdev_dbg(dev,
9909 			   "Dropping partially supported GSO features since no GSO partial.\n");
9910 		features &= ~dev->gso_partial_features;
9911 	}
9912 
9913 	if (!(features & NETIF_F_RXCSUM)) {
9914 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9915 		 * successfully merged by hardware must also have the
9916 		 * checksum verified by hardware.  If the user does not
9917 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9918 		 */
9919 		if (features & NETIF_F_GRO_HW) {
9920 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9921 			features &= ~NETIF_F_GRO_HW;
9922 		}
9923 	}
9924 
9925 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9926 	if (features & NETIF_F_RXFCS) {
9927 		if (features & NETIF_F_LRO) {
9928 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9929 			features &= ~NETIF_F_LRO;
9930 		}
9931 
9932 		if (features & NETIF_F_GRO_HW) {
9933 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9934 			features &= ~NETIF_F_GRO_HW;
9935 		}
9936 	}
9937 
9938 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9939 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9940 		features &= ~NETIF_F_LRO;
9941 	}
9942 
9943 	if (features & NETIF_F_HW_TLS_TX) {
9944 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9945 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9946 		bool hw_csum = features & NETIF_F_HW_CSUM;
9947 
9948 		if (!ip_csum && !hw_csum) {
9949 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9950 			features &= ~NETIF_F_HW_TLS_TX;
9951 		}
9952 	}
9953 
9954 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9955 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9956 		features &= ~NETIF_F_HW_TLS_RX;
9957 	}
9958 
9959 	return features;
9960 }
9961 
9962 int __netdev_update_features(struct net_device *dev)
9963 {
9964 	struct net_device *upper, *lower;
9965 	netdev_features_t features;
9966 	struct list_head *iter;
9967 	int err = -1;
9968 
9969 	ASSERT_RTNL();
9970 
9971 	features = netdev_get_wanted_features(dev);
9972 
9973 	if (dev->netdev_ops->ndo_fix_features)
9974 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9975 
9976 	/* driver might be less strict about feature dependencies */
9977 	features = netdev_fix_features(dev, features);
9978 
9979 	/* some features can't be enabled if they're off on an upper device */
9980 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9981 		features = netdev_sync_upper_features(dev, upper, features);
9982 
9983 	if (dev->features == features)
9984 		goto sync_lower;
9985 
9986 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9987 		&dev->features, &features);
9988 
9989 	if (dev->netdev_ops->ndo_set_features)
9990 		err = dev->netdev_ops->ndo_set_features(dev, features);
9991 	else
9992 		err = 0;
9993 
9994 	if (unlikely(err < 0)) {
9995 		netdev_err(dev,
9996 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9997 			err, &features, &dev->features);
9998 		/* return non-0 since some features might have changed and
9999 		 * it's better to fire a spurious notification than miss it
10000 		 */
10001 		return -1;
10002 	}
10003 
10004 sync_lower:
10005 	/* some features must be disabled on lower devices when disabled
10006 	 * on an upper device (think: bonding master or bridge)
10007 	 */
10008 	netdev_for_each_lower_dev(dev, lower, iter)
10009 		netdev_sync_lower_features(dev, lower, features);
10010 
10011 	if (!err) {
10012 		netdev_features_t diff = features ^ dev->features;
10013 
10014 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10015 			/* udp_tunnel_{get,drop}_rx_info both need
10016 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10017 			 * device, or they won't do anything.
10018 			 * Thus we need to update dev->features
10019 			 * *before* calling udp_tunnel_get_rx_info,
10020 			 * but *after* calling udp_tunnel_drop_rx_info.
10021 			 */
10022 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10023 				dev->features = features;
10024 				udp_tunnel_get_rx_info(dev);
10025 			} else {
10026 				udp_tunnel_drop_rx_info(dev);
10027 			}
10028 		}
10029 
10030 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10031 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10032 				dev->features = features;
10033 				err |= vlan_get_rx_ctag_filter_info(dev);
10034 			} else {
10035 				vlan_drop_rx_ctag_filter_info(dev);
10036 			}
10037 		}
10038 
10039 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10040 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10041 				dev->features = features;
10042 				err |= vlan_get_rx_stag_filter_info(dev);
10043 			} else {
10044 				vlan_drop_rx_stag_filter_info(dev);
10045 			}
10046 		}
10047 
10048 		dev->features = features;
10049 	}
10050 
10051 	return err < 0 ? 0 : 1;
10052 }
10053 
10054 /**
10055  *	netdev_update_features - recalculate device features
10056  *	@dev: the device to check
10057  *
10058  *	Recalculate dev->features set and send notifications if it
10059  *	has changed. Should be called after driver or hardware dependent
10060  *	conditions might have changed that influence the features.
10061  */
10062 void netdev_update_features(struct net_device *dev)
10063 {
10064 	if (__netdev_update_features(dev))
10065 		netdev_features_change(dev);
10066 }
10067 EXPORT_SYMBOL(netdev_update_features);
10068 
10069 /**
10070  *	netdev_change_features - recalculate device features
10071  *	@dev: the device to check
10072  *
10073  *	Recalculate dev->features set and send notifications even
10074  *	if they have not changed. Should be called instead of
10075  *	netdev_update_features() if also dev->vlan_features might
10076  *	have changed to allow the changes to be propagated to stacked
10077  *	VLAN devices.
10078  */
10079 void netdev_change_features(struct net_device *dev)
10080 {
10081 	__netdev_update_features(dev);
10082 	netdev_features_change(dev);
10083 }
10084 EXPORT_SYMBOL(netdev_change_features);
10085 
10086 /**
10087  *	netif_stacked_transfer_operstate -	transfer operstate
10088  *	@rootdev: the root or lower level device to transfer state from
10089  *	@dev: the device to transfer operstate to
10090  *
10091  *	Transfer operational state from root to device. This is normally
10092  *	called when a stacking relationship exists between the root
10093  *	device and the device(a leaf device).
10094  */
10095 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10096 					struct net_device *dev)
10097 {
10098 	if (rootdev->operstate == IF_OPER_DORMANT)
10099 		netif_dormant_on(dev);
10100 	else
10101 		netif_dormant_off(dev);
10102 
10103 	if (rootdev->operstate == IF_OPER_TESTING)
10104 		netif_testing_on(dev);
10105 	else
10106 		netif_testing_off(dev);
10107 
10108 	if (netif_carrier_ok(rootdev))
10109 		netif_carrier_on(dev);
10110 	else
10111 		netif_carrier_off(dev);
10112 }
10113 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10114 
10115 static int netif_alloc_rx_queues(struct net_device *dev)
10116 {
10117 	unsigned int i, count = dev->num_rx_queues;
10118 	struct netdev_rx_queue *rx;
10119 	size_t sz = count * sizeof(*rx);
10120 	int err = 0;
10121 
10122 	BUG_ON(count < 1);
10123 
10124 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10125 	if (!rx)
10126 		return -ENOMEM;
10127 
10128 	dev->_rx = rx;
10129 
10130 	for (i = 0; i < count; i++) {
10131 		rx[i].dev = dev;
10132 
10133 		/* XDP RX-queue setup */
10134 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10135 		if (err < 0)
10136 			goto err_rxq_info;
10137 	}
10138 	return 0;
10139 
10140 err_rxq_info:
10141 	/* Rollback successful reg's and free other resources */
10142 	while (i--)
10143 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10144 	kvfree(dev->_rx);
10145 	dev->_rx = NULL;
10146 	return err;
10147 }
10148 
10149 static void netif_free_rx_queues(struct net_device *dev)
10150 {
10151 	unsigned int i, count = dev->num_rx_queues;
10152 
10153 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10154 	if (!dev->_rx)
10155 		return;
10156 
10157 	for (i = 0; i < count; i++)
10158 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10159 
10160 	kvfree(dev->_rx);
10161 }
10162 
10163 static void netdev_init_one_queue(struct net_device *dev,
10164 				  struct netdev_queue *queue, void *_unused)
10165 {
10166 	/* Initialize queue lock */
10167 	spin_lock_init(&queue->_xmit_lock);
10168 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10169 	queue->xmit_lock_owner = -1;
10170 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10171 	queue->dev = dev;
10172 #ifdef CONFIG_BQL
10173 	dql_init(&queue->dql, HZ);
10174 #endif
10175 }
10176 
10177 static void netif_free_tx_queues(struct net_device *dev)
10178 {
10179 	kvfree(dev->_tx);
10180 }
10181 
10182 static int netif_alloc_netdev_queues(struct net_device *dev)
10183 {
10184 	unsigned int count = dev->num_tx_queues;
10185 	struct netdev_queue *tx;
10186 	size_t sz = count * sizeof(*tx);
10187 
10188 	if (count < 1 || count > 0xffff)
10189 		return -EINVAL;
10190 
10191 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10192 	if (!tx)
10193 		return -ENOMEM;
10194 
10195 	dev->_tx = tx;
10196 
10197 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10198 	spin_lock_init(&dev->tx_global_lock);
10199 
10200 	return 0;
10201 }
10202 
10203 void netif_tx_stop_all_queues(struct net_device *dev)
10204 {
10205 	unsigned int i;
10206 
10207 	for (i = 0; i < dev->num_tx_queues; i++) {
10208 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10209 
10210 		netif_tx_stop_queue(txq);
10211 	}
10212 }
10213 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10214 
10215 /**
10216  *	register_netdevice	- register a network device
10217  *	@dev: device to register
10218  *
10219  *	Take a completed network device structure and add it to the kernel
10220  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10221  *	chain. 0 is returned on success. A negative errno code is returned
10222  *	on a failure to set up the device, or if the name is a duplicate.
10223  *
10224  *	Callers must hold the rtnl semaphore. You may want
10225  *	register_netdev() instead of this.
10226  *
10227  *	BUGS:
10228  *	The locking appears insufficient to guarantee two parallel registers
10229  *	will not get the same name.
10230  */
10231 
10232 int register_netdevice(struct net_device *dev)
10233 {
10234 	int ret;
10235 	struct net *net = dev_net(dev);
10236 
10237 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10238 		     NETDEV_FEATURE_COUNT);
10239 	BUG_ON(dev_boot_phase);
10240 	ASSERT_RTNL();
10241 
10242 	might_sleep();
10243 
10244 	/* When net_device's are persistent, this will be fatal. */
10245 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10246 	BUG_ON(!net);
10247 
10248 	ret = ethtool_check_ops(dev->ethtool_ops);
10249 	if (ret)
10250 		return ret;
10251 
10252 	spin_lock_init(&dev->addr_list_lock);
10253 	netdev_set_addr_lockdep_class(dev);
10254 
10255 	ret = dev_get_valid_name(net, dev, dev->name);
10256 	if (ret < 0)
10257 		goto out;
10258 
10259 	ret = -ENOMEM;
10260 	dev->name_node = netdev_name_node_head_alloc(dev);
10261 	if (!dev->name_node)
10262 		goto out;
10263 
10264 	/* Init, if this function is available */
10265 	if (dev->netdev_ops->ndo_init) {
10266 		ret = dev->netdev_ops->ndo_init(dev);
10267 		if (ret) {
10268 			if (ret > 0)
10269 				ret = -EIO;
10270 			goto err_free_name;
10271 		}
10272 	}
10273 
10274 	if (((dev->hw_features | dev->features) &
10275 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10276 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10277 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10278 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10279 		ret = -EINVAL;
10280 		goto err_uninit;
10281 	}
10282 
10283 	ret = -EBUSY;
10284 	if (!dev->ifindex)
10285 		dev->ifindex = dev_new_index(net);
10286 	else if (__dev_get_by_index(net, dev->ifindex))
10287 		goto err_uninit;
10288 
10289 	/* Transfer changeable features to wanted_features and enable
10290 	 * software offloads (GSO and GRO).
10291 	 */
10292 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10293 	dev->features |= NETIF_F_SOFT_FEATURES;
10294 
10295 	if (dev->udp_tunnel_nic_info) {
10296 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10297 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10298 	}
10299 
10300 	dev->wanted_features = dev->features & dev->hw_features;
10301 
10302 	if (!(dev->flags & IFF_LOOPBACK))
10303 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10304 
10305 	/* If IPv4 TCP segmentation offload is supported we should also
10306 	 * allow the device to enable segmenting the frame with the option
10307 	 * of ignoring a static IP ID value.  This doesn't enable the
10308 	 * feature itself but allows the user to enable it later.
10309 	 */
10310 	if (dev->hw_features & NETIF_F_TSO)
10311 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10312 	if (dev->vlan_features & NETIF_F_TSO)
10313 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10314 	if (dev->mpls_features & NETIF_F_TSO)
10315 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10316 	if (dev->hw_enc_features & NETIF_F_TSO)
10317 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10318 
10319 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10320 	 */
10321 	dev->vlan_features |= NETIF_F_HIGHDMA;
10322 
10323 	/* Make NETIF_F_SG inheritable to tunnel devices.
10324 	 */
10325 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10326 
10327 	/* Make NETIF_F_SG inheritable to MPLS.
10328 	 */
10329 	dev->mpls_features |= NETIF_F_SG;
10330 
10331 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10332 	ret = notifier_to_errno(ret);
10333 	if (ret)
10334 		goto err_uninit;
10335 
10336 	ret = netdev_register_kobject(dev);
10337 	if (ret) {
10338 		dev->reg_state = NETREG_UNREGISTERED;
10339 		goto err_uninit;
10340 	}
10341 	dev->reg_state = NETREG_REGISTERED;
10342 
10343 	__netdev_update_features(dev);
10344 
10345 	/*
10346 	 *	Default initial state at registry is that the
10347 	 *	device is present.
10348 	 */
10349 
10350 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10351 
10352 	linkwatch_init_dev(dev);
10353 
10354 	dev_init_scheduler(dev);
10355 	dev_hold(dev);
10356 	list_netdevice(dev);
10357 	add_device_randomness(dev->dev_addr, dev->addr_len);
10358 
10359 	/* If the device has permanent device address, driver should
10360 	 * set dev_addr and also addr_assign_type should be set to
10361 	 * NET_ADDR_PERM (default value).
10362 	 */
10363 	if (dev->addr_assign_type == NET_ADDR_PERM)
10364 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10365 
10366 	/* Notify protocols, that a new device appeared. */
10367 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10368 	ret = notifier_to_errno(ret);
10369 	if (ret) {
10370 		/* Expect explicit free_netdev() on failure */
10371 		dev->needs_free_netdev = false;
10372 		unregister_netdevice_queue(dev, NULL);
10373 		goto out;
10374 	}
10375 	/*
10376 	 *	Prevent userspace races by waiting until the network
10377 	 *	device is fully setup before sending notifications.
10378 	 */
10379 	if (!dev->rtnl_link_ops ||
10380 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10381 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10382 
10383 out:
10384 	return ret;
10385 
10386 err_uninit:
10387 	if (dev->netdev_ops->ndo_uninit)
10388 		dev->netdev_ops->ndo_uninit(dev);
10389 	if (dev->priv_destructor)
10390 		dev->priv_destructor(dev);
10391 err_free_name:
10392 	netdev_name_node_free(dev->name_node);
10393 	goto out;
10394 }
10395 EXPORT_SYMBOL(register_netdevice);
10396 
10397 /**
10398  *	init_dummy_netdev	- init a dummy network device for NAPI
10399  *	@dev: device to init
10400  *
10401  *	This takes a network device structure and initialize the minimum
10402  *	amount of fields so it can be used to schedule NAPI polls without
10403  *	registering a full blown interface. This is to be used by drivers
10404  *	that need to tie several hardware interfaces to a single NAPI
10405  *	poll scheduler due to HW limitations.
10406  */
10407 int init_dummy_netdev(struct net_device *dev)
10408 {
10409 	/* Clear everything. Note we don't initialize spinlocks
10410 	 * are they aren't supposed to be taken by any of the
10411 	 * NAPI code and this dummy netdev is supposed to be
10412 	 * only ever used for NAPI polls
10413 	 */
10414 	memset(dev, 0, sizeof(struct net_device));
10415 
10416 	/* make sure we BUG if trying to hit standard
10417 	 * register/unregister code path
10418 	 */
10419 	dev->reg_state = NETREG_DUMMY;
10420 
10421 	/* NAPI wants this */
10422 	INIT_LIST_HEAD(&dev->napi_list);
10423 
10424 	/* a dummy interface is started by default */
10425 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10426 	set_bit(__LINK_STATE_START, &dev->state);
10427 
10428 	/* napi_busy_loop stats accounting wants this */
10429 	dev_net_set(dev, &init_net);
10430 
10431 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10432 	 * because users of this 'device' dont need to change
10433 	 * its refcount.
10434 	 */
10435 
10436 	return 0;
10437 }
10438 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10439 
10440 
10441 /**
10442  *	register_netdev	- register a network device
10443  *	@dev: device to register
10444  *
10445  *	Take a completed network device structure and add it to the kernel
10446  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10447  *	chain. 0 is returned on success. A negative errno code is returned
10448  *	on a failure to set up the device, or if the name is a duplicate.
10449  *
10450  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10451  *	and expands the device name if you passed a format string to
10452  *	alloc_netdev.
10453  */
10454 int register_netdev(struct net_device *dev)
10455 {
10456 	int err;
10457 
10458 	if (rtnl_lock_killable())
10459 		return -EINTR;
10460 	err = register_netdevice(dev);
10461 	rtnl_unlock();
10462 	return err;
10463 }
10464 EXPORT_SYMBOL(register_netdev);
10465 
10466 int netdev_refcnt_read(const struct net_device *dev)
10467 {
10468 #ifdef CONFIG_PCPU_DEV_REFCNT
10469 	int i, refcnt = 0;
10470 
10471 	for_each_possible_cpu(i)
10472 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10473 	return refcnt;
10474 #else
10475 	return refcount_read(&dev->dev_refcnt);
10476 #endif
10477 }
10478 EXPORT_SYMBOL(netdev_refcnt_read);
10479 
10480 int netdev_unregister_timeout_secs __read_mostly = 10;
10481 
10482 #define WAIT_REFS_MIN_MSECS 1
10483 #define WAIT_REFS_MAX_MSECS 250
10484 /**
10485  * netdev_wait_allrefs - wait until all references are gone.
10486  * @dev: target net_device
10487  *
10488  * This is called when unregistering network devices.
10489  *
10490  * Any protocol or device that holds a reference should register
10491  * for netdevice notification, and cleanup and put back the
10492  * reference if they receive an UNREGISTER event.
10493  * We can get stuck here if buggy protocols don't correctly
10494  * call dev_put.
10495  */
10496 static void netdev_wait_allrefs(struct net_device *dev)
10497 {
10498 	unsigned long rebroadcast_time, warning_time;
10499 	int wait = 0, refcnt;
10500 
10501 	linkwatch_forget_dev(dev);
10502 
10503 	rebroadcast_time = warning_time = jiffies;
10504 	refcnt = netdev_refcnt_read(dev);
10505 
10506 	while (refcnt != 1) {
10507 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10508 			rtnl_lock();
10509 
10510 			/* Rebroadcast unregister notification */
10511 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10512 
10513 			__rtnl_unlock();
10514 			rcu_barrier();
10515 			rtnl_lock();
10516 
10517 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10518 				     &dev->state)) {
10519 				/* We must not have linkwatch events
10520 				 * pending on unregister. If this
10521 				 * happens, we simply run the queue
10522 				 * unscheduled, resulting in a noop
10523 				 * for this device.
10524 				 */
10525 				linkwatch_run_queue();
10526 			}
10527 
10528 			__rtnl_unlock();
10529 
10530 			rebroadcast_time = jiffies;
10531 		}
10532 
10533 		if (!wait) {
10534 			rcu_barrier();
10535 			wait = WAIT_REFS_MIN_MSECS;
10536 		} else {
10537 			msleep(wait);
10538 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10539 		}
10540 
10541 		refcnt = netdev_refcnt_read(dev);
10542 
10543 		if (refcnt != 1 &&
10544 		    time_after(jiffies, warning_time +
10545 			       netdev_unregister_timeout_secs * HZ)) {
10546 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10547 				 dev->name, refcnt);
10548 			warning_time = jiffies;
10549 		}
10550 	}
10551 }
10552 
10553 /* The sequence is:
10554  *
10555  *	rtnl_lock();
10556  *	...
10557  *	register_netdevice(x1);
10558  *	register_netdevice(x2);
10559  *	...
10560  *	unregister_netdevice(y1);
10561  *	unregister_netdevice(y2);
10562  *      ...
10563  *	rtnl_unlock();
10564  *	free_netdev(y1);
10565  *	free_netdev(y2);
10566  *
10567  * We are invoked by rtnl_unlock().
10568  * This allows us to deal with problems:
10569  * 1) We can delete sysfs objects which invoke hotplug
10570  *    without deadlocking with linkwatch via keventd.
10571  * 2) Since we run with the RTNL semaphore not held, we can sleep
10572  *    safely in order to wait for the netdev refcnt to drop to zero.
10573  *
10574  * We must not return until all unregister events added during
10575  * the interval the lock was held have been completed.
10576  */
10577 void netdev_run_todo(void)
10578 {
10579 	struct list_head list;
10580 #ifdef CONFIG_LOCKDEP
10581 	struct list_head unlink_list;
10582 
10583 	list_replace_init(&net_unlink_list, &unlink_list);
10584 
10585 	while (!list_empty(&unlink_list)) {
10586 		struct net_device *dev = list_first_entry(&unlink_list,
10587 							  struct net_device,
10588 							  unlink_list);
10589 		list_del_init(&dev->unlink_list);
10590 		dev->nested_level = dev->lower_level - 1;
10591 	}
10592 #endif
10593 
10594 	/* Snapshot list, allow later requests */
10595 	list_replace_init(&net_todo_list, &list);
10596 
10597 	__rtnl_unlock();
10598 
10599 
10600 	/* Wait for rcu callbacks to finish before next phase */
10601 	if (!list_empty(&list))
10602 		rcu_barrier();
10603 
10604 	while (!list_empty(&list)) {
10605 		struct net_device *dev
10606 			= list_first_entry(&list, struct net_device, todo_list);
10607 		list_del(&dev->todo_list);
10608 
10609 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10610 			pr_err("network todo '%s' but state %d\n",
10611 			       dev->name, dev->reg_state);
10612 			dump_stack();
10613 			continue;
10614 		}
10615 
10616 		dev->reg_state = NETREG_UNREGISTERED;
10617 
10618 		netdev_wait_allrefs(dev);
10619 
10620 		/* paranoia */
10621 		BUG_ON(netdev_refcnt_read(dev) != 1);
10622 		BUG_ON(!list_empty(&dev->ptype_all));
10623 		BUG_ON(!list_empty(&dev->ptype_specific));
10624 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10625 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10626 #if IS_ENABLED(CONFIG_DECNET)
10627 		WARN_ON(dev->dn_ptr);
10628 #endif
10629 		if (dev->priv_destructor)
10630 			dev->priv_destructor(dev);
10631 		if (dev->needs_free_netdev)
10632 			free_netdev(dev);
10633 
10634 		/* Report a network device has been unregistered */
10635 		rtnl_lock();
10636 		dev_net(dev)->dev_unreg_count--;
10637 		__rtnl_unlock();
10638 		wake_up(&netdev_unregistering_wq);
10639 
10640 		/* Free network device */
10641 		kobject_put(&dev->dev.kobj);
10642 	}
10643 }
10644 
10645 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10646  * all the same fields in the same order as net_device_stats, with only
10647  * the type differing, but rtnl_link_stats64 may have additional fields
10648  * at the end for newer counters.
10649  */
10650 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10651 			     const struct net_device_stats *netdev_stats)
10652 {
10653 #if BITS_PER_LONG == 64
10654 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10655 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10656 	/* zero out counters that only exist in rtnl_link_stats64 */
10657 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10658 	       sizeof(*stats64) - sizeof(*netdev_stats));
10659 #else
10660 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10661 	const unsigned long *src = (const unsigned long *)netdev_stats;
10662 	u64 *dst = (u64 *)stats64;
10663 
10664 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10665 	for (i = 0; i < n; i++)
10666 		dst[i] = src[i];
10667 	/* zero out counters that only exist in rtnl_link_stats64 */
10668 	memset((char *)stats64 + n * sizeof(u64), 0,
10669 	       sizeof(*stats64) - n * sizeof(u64));
10670 #endif
10671 }
10672 EXPORT_SYMBOL(netdev_stats_to_stats64);
10673 
10674 /**
10675  *	dev_get_stats	- get network device statistics
10676  *	@dev: device to get statistics from
10677  *	@storage: place to store stats
10678  *
10679  *	Get network statistics from device. Return @storage.
10680  *	The device driver may provide its own method by setting
10681  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10682  *	otherwise the internal statistics structure is used.
10683  */
10684 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10685 					struct rtnl_link_stats64 *storage)
10686 {
10687 	const struct net_device_ops *ops = dev->netdev_ops;
10688 
10689 	if (ops->ndo_get_stats64) {
10690 		memset(storage, 0, sizeof(*storage));
10691 		ops->ndo_get_stats64(dev, storage);
10692 	} else if (ops->ndo_get_stats) {
10693 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10694 	} else {
10695 		netdev_stats_to_stats64(storage, &dev->stats);
10696 	}
10697 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10698 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10699 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10700 	return storage;
10701 }
10702 EXPORT_SYMBOL(dev_get_stats);
10703 
10704 /**
10705  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10706  *	@s: place to store stats
10707  *	@netstats: per-cpu network stats to read from
10708  *
10709  *	Read per-cpu network statistics and populate the related fields in @s.
10710  */
10711 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10712 			   const struct pcpu_sw_netstats __percpu *netstats)
10713 {
10714 	int cpu;
10715 
10716 	for_each_possible_cpu(cpu) {
10717 		const struct pcpu_sw_netstats *stats;
10718 		struct pcpu_sw_netstats tmp;
10719 		unsigned int start;
10720 
10721 		stats = per_cpu_ptr(netstats, cpu);
10722 		do {
10723 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10724 			tmp.rx_packets = stats->rx_packets;
10725 			tmp.rx_bytes   = stats->rx_bytes;
10726 			tmp.tx_packets = stats->tx_packets;
10727 			tmp.tx_bytes   = stats->tx_bytes;
10728 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10729 
10730 		s->rx_packets += tmp.rx_packets;
10731 		s->rx_bytes   += tmp.rx_bytes;
10732 		s->tx_packets += tmp.tx_packets;
10733 		s->tx_bytes   += tmp.tx_bytes;
10734 	}
10735 }
10736 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10737 
10738 /**
10739  *	dev_get_tstats64 - ndo_get_stats64 implementation
10740  *	@dev: device to get statistics from
10741  *	@s: place to store stats
10742  *
10743  *	Populate @s from dev->stats and dev->tstats. Can be used as
10744  *	ndo_get_stats64() callback.
10745  */
10746 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10747 {
10748 	netdev_stats_to_stats64(s, &dev->stats);
10749 	dev_fetch_sw_netstats(s, dev->tstats);
10750 }
10751 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10752 
10753 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10754 {
10755 	struct netdev_queue *queue = dev_ingress_queue(dev);
10756 
10757 #ifdef CONFIG_NET_CLS_ACT
10758 	if (queue)
10759 		return queue;
10760 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10761 	if (!queue)
10762 		return NULL;
10763 	netdev_init_one_queue(dev, queue, NULL);
10764 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10765 	queue->qdisc_sleeping = &noop_qdisc;
10766 	rcu_assign_pointer(dev->ingress_queue, queue);
10767 #endif
10768 	return queue;
10769 }
10770 
10771 static const struct ethtool_ops default_ethtool_ops;
10772 
10773 void netdev_set_default_ethtool_ops(struct net_device *dev,
10774 				    const struct ethtool_ops *ops)
10775 {
10776 	if (dev->ethtool_ops == &default_ethtool_ops)
10777 		dev->ethtool_ops = ops;
10778 }
10779 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10780 
10781 void netdev_freemem(struct net_device *dev)
10782 {
10783 	char *addr = (char *)dev - dev->padded;
10784 
10785 	kvfree(addr);
10786 }
10787 
10788 /**
10789  * alloc_netdev_mqs - allocate network device
10790  * @sizeof_priv: size of private data to allocate space for
10791  * @name: device name format string
10792  * @name_assign_type: origin of device name
10793  * @setup: callback to initialize device
10794  * @txqs: the number of TX subqueues to allocate
10795  * @rxqs: the number of RX subqueues to allocate
10796  *
10797  * Allocates a struct net_device with private data area for driver use
10798  * and performs basic initialization.  Also allocates subqueue structs
10799  * for each queue on the device.
10800  */
10801 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10802 		unsigned char name_assign_type,
10803 		void (*setup)(struct net_device *),
10804 		unsigned int txqs, unsigned int rxqs)
10805 {
10806 	struct net_device *dev;
10807 	unsigned int alloc_size;
10808 	struct net_device *p;
10809 
10810 	BUG_ON(strlen(name) >= sizeof(dev->name));
10811 
10812 	if (txqs < 1) {
10813 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10814 		return NULL;
10815 	}
10816 
10817 	if (rxqs < 1) {
10818 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10819 		return NULL;
10820 	}
10821 
10822 	alloc_size = sizeof(struct net_device);
10823 	if (sizeof_priv) {
10824 		/* ensure 32-byte alignment of private area */
10825 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10826 		alloc_size += sizeof_priv;
10827 	}
10828 	/* ensure 32-byte alignment of whole construct */
10829 	alloc_size += NETDEV_ALIGN - 1;
10830 
10831 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10832 	if (!p)
10833 		return NULL;
10834 
10835 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10836 	dev->padded = (char *)dev - (char *)p;
10837 
10838 #ifdef CONFIG_PCPU_DEV_REFCNT
10839 	dev->pcpu_refcnt = alloc_percpu(int);
10840 	if (!dev->pcpu_refcnt)
10841 		goto free_dev;
10842 	dev_hold(dev);
10843 #else
10844 	refcount_set(&dev->dev_refcnt, 1);
10845 #endif
10846 
10847 	if (dev_addr_init(dev))
10848 		goto free_pcpu;
10849 
10850 	dev_mc_init(dev);
10851 	dev_uc_init(dev);
10852 
10853 	dev_net_set(dev, &init_net);
10854 
10855 	dev->gso_max_size = GSO_MAX_SIZE;
10856 	dev->gso_max_segs = GSO_MAX_SEGS;
10857 	dev->upper_level = 1;
10858 	dev->lower_level = 1;
10859 #ifdef CONFIG_LOCKDEP
10860 	dev->nested_level = 0;
10861 	INIT_LIST_HEAD(&dev->unlink_list);
10862 #endif
10863 
10864 	INIT_LIST_HEAD(&dev->napi_list);
10865 	INIT_LIST_HEAD(&dev->unreg_list);
10866 	INIT_LIST_HEAD(&dev->close_list);
10867 	INIT_LIST_HEAD(&dev->link_watch_list);
10868 	INIT_LIST_HEAD(&dev->adj_list.upper);
10869 	INIT_LIST_HEAD(&dev->adj_list.lower);
10870 	INIT_LIST_HEAD(&dev->ptype_all);
10871 	INIT_LIST_HEAD(&dev->ptype_specific);
10872 	INIT_LIST_HEAD(&dev->net_notifier_list);
10873 #ifdef CONFIG_NET_SCHED
10874 	hash_init(dev->qdisc_hash);
10875 #endif
10876 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10877 	setup(dev);
10878 
10879 	if (!dev->tx_queue_len) {
10880 		dev->priv_flags |= IFF_NO_QUEUE;
10881 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10882 	}
10883 
10884 	dev->num_tx_queues = txqs;
10885 	dev->real_num_tx_queues = txqs;
10886 	if (netif_alloc_netdev_queues(dev))
10887 		goto free_all;
10888 
10889 	dev->num_rx_queues = rxqs;
10890 	dev->real_num_rx_queues = rxqs;
10891 	if (netif_alloc_rx_queues(dev))
10892 		goto free_all;
10893 
10894 	strcpy(dev->name, name);
10895 	dev->name_assign_type = name_assign_type;
10896 	dev->group = INIT_NETDEV_GROUP;
10897 	if (!dev->ethtool_ops)
10898 		dev->ethtool_ops = &default_ethtool_ops;
10899 
10900 	nf_hook_netdev_init(dev);
10901 
10902 	return dev;
10903 
10904 free_all:
10905 	free_netdev(dev);
10906 	return NULL;
10907 
10908 free_pcpu:
10909 #ifdef CONFIG_PCPU_DEV_REFCNT
10910 	free_percpu(dev->pcpu_refcnt);
10911 free_dev:
10912 #endif
10913 	netdev_freemem(dev);
10914 	return NULL;
10915 }
10916 EXPORT_SYMBOL(alloc_netdev_mqs);
10917 
10918 /**
10919  * free_netdev - free network device
10920  * @dev: device
10921  *
10922  * This function does the last stage of destroying an allocated device
10923  * interface. The reference to the device object is released. If this
10924  * is the last reference then it will be freed.Must be called in process
10925  * context.
10926  */
10927 void free_netdev(struct net_device *dev)
10928 {
10929 	struct napi_struct *p, *n;
10930 
10931 	might_sleep();
10932 
10933 	/* When called immediately after register_netdevice() failed the unwind
10934 	 * handling may still be dismantling the device. Handle that case by
10935 	 * deferring the free.
10936 	 */
10937 	if (dev->reg_state == NETREG_UNREGISTERING) {
10938 		ASSERT_RTNL();
10939 		dev->needs_free_netdev = true;
10940 		return;
10941 	}
10942 
10943 	netif_free_tx_queues(dev);
10944 	netif_free_rx_queues(dev);
10945 
10946 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10947 
10948 	/* Flush device addresses */
10949 	dev_addr_flush(dev);
10950 
10951 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10952 		netif_napi_del(p);
10953 
10954 #ifdef CONFIG_PCPU_DEV_REFCNT
10955 	free_percpu(dev->pcpu_refcnt);
10956 	dev->pcpu_refcnt = NULL;
10957 #endif
10958 	free_percpu(dev->xdp_bulkq);
10959 	dev->xdp_bulkq = NULL;
10960 
10961 	/*  Compatibility with error handling in drivers */
10962 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10963 		netdev_freemem(dev);
10964 		return;
10965 	}
10966 
10967 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10968 	dev->reg_state = NETREG_RELEASED;
10969 
10970 	/* will free via device release */
10971 	put_device(&dev->dev);
10972 }
10973 EXPORT_SYMBOL(free_netdev);
10974 
10975 /**
10976  *	synchronize_net -  Synchronize with packet receive processing
10977  *
10978  *	Wait for packets currently being received to be done.
10979  *	Does not block later packets from starting.
10980  */
10981 void synchronize_net(void)
10982 {
10983 	might_sleep();
10984 	if (rtnl_is_locked())
10985 		synchronize_rcu_expedited();
10986 	else
10987 		synchronize_rcu();
10988 }
10989 EXPORT_SYMBOL(synchronize_net);
10990 
10991 /**
10992  *	unregister_netdevice_queue - remove device from the kernel
10993  *	@dev: device
10994  *	@head: list
10995  *
10996  *	This function shuts down a device interface and removes it
10997  *	from the kernel tables.
10998  *	If head not NULL, device is queued to be unregistered later.
10999  *
11000  *	Callers must hold the rtnl semaphore.  You may want
11001  *	unregister_netdev() instead of this.
11002  */
11003 
11004 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11005 {
11006 	ASSERT_RTNL();
11007 
11008 	if (head) {
11009 		list_move_tail(&dev->unreg_list, head);
11010 	} else {
11011 		LIST_HEAD(single);
11012 
11013 		list_add(&dev->unreg_list, &single);
11014 		unregister_netdevice_many(&single);
11015 	}
11016 }
11017 EXPORT_SYMBOL(unregister_netdevice_queue);
11018 
11019 /**
11020  *	unregister_netdevice_many - unregister many devices
11021  *	@head: list of devices
11022  *
11023  *  Note: As most callers use a stack allocated list_head,
11024  *  we force a list_del() to make sure stack wont be corrupted later.
11025  */
11026 void unregister_netdevice_many(struct list_head *head)
11027 {
11028 	struct net_device *dev, *tmp;
11029 	LIST_HEAD(close_head);
11030 
11031 	BUG_ON(dev_boot_phase);
11032 	ASSERT_RTNL();
11033 
11034 	if (list_empty(head))
11035 		return;
11036 
11037 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11038 		/* Some devices call without registering
11039 		 * for initialization unwind. Remove those
11040 		 * devices and proceed with the remaining.
11041 		 */
11042 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11043 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11044 				 dev->name, dev);
11045 
11046 			WARN_ON(1);
11047 			list_del(&dev->unreg_list);
11048 			continue;
11049 		}
11050 		dev->dismantle = true;
11051 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11052 	}
11053 
11054 	/* If device is running, close it first. */
11055 	list_for_each_entry(dev, head, unreg_list)
11056 		list_add_tail(&dev->close_list, &close_head);
11057 	dev_close_many(&close_head, true);
11058 
11059 	list_for_each_entry(dev, head, unreg_list) {
11060 		/* And unlink it from device chain. */
11061 		unlist_netdevice(dev);
11062 
11063 		dev->reg_state = NETREG_UNREGISTERING;
11064 	}
11065 	flush_all_backlogs();
11066 
11067 	synchronize_net();
11068 
11069 	list_for_each_entry(dev, head, unreg_list) {
11070 		struct sk_buff *skb = NULL;
11071 
11072 		/* Shutdown queueing discipline. */
11073 		dev_shutdown(dev);
11074 
11075 		dev_xdp_uninstall(dev);
11076 
11077 		/* Notify protocols, that we are about to destroy
11078 		 * this device. They should clean all the things.
11079 		 */
11080 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11081 
11082 		if (!dev->rtnl_link_ops ||
11083 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11084 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11085 						     GFP_KERNEL, NULL, 0);
11086 
11087 		/*
11088 		 *	Flush the unicast and multicast chains
11089 		 */
11090 		dev_uc_flush(dev);
11091 		dev_mc_flush(dev);
11092 
11093 		netdev_name_node_alt_flush(dev);
11094 		netdev_name_node_free(dev->name_node);
11095 
11096 		if (dev->netdev_ops->ndo_uninit)
11097 			dev->netdev_ops->ndo_uninit(dev);
11098 
11099 		if (skb)
11100 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11101 
11102 		/* Notifier chain MUST detach us all upper devices. */
11103 		WARN_ON(netdev_has_any_upper_dev(dev));
11104 		WARN_ON(netdev_has_any_lower_dev(dev));
11105 
11106 		/* Remove entries from kobject tree */
11107 		netdev_unregister_kobject(dev);
11108 #ifdef CONFIG_XPS
11109 		/* Remove XPS queueing entries */
11110 		netif_reset_xps_queues_gt(dev, 0);
11111 #endif
11112 	}
11113 
11114 	synchronize_net();
11115 
11116 	list_for_each_entry(dev, head, unreg_list) {
11117 		dev_put(dev);
11118 		net_set_todo(dev);
11119 	}
11120 
11121 	list_del(head);
11122 }
11123 EXPORT_SYMBOL(unregister_netdevice_many);
11124 
11125 /**
11126  *	unregister_netdev - remove device from the kernel
11127  *	@dev: device
11128  *
11129  *	This function shuts down a device interface and removes it
11130  *	from the kernel tables.
11131  *
11132  *	This is just a wrapper for unregister_netdevice that takes
11133  *	the rtnl semaphore.  In general you want to use this and not
11134  *	unregister_netdevice.
11135  */
11136 void unregister_netdev(struct net_device *dev)
11137 {
11138 	rtnl_lock();
11139 	unregister_netdevice(dev);
11140 	rtnl_unlock();
11141 }
11142 EXPORT_SYMBOL(unregister_netdev);
11143 
11144 /**
11145  *	__dev_change_net_namespace - move device to different nethost namespace
11146  *	@dev: device
11147  *	@net: network namespace
11148  *	@pat: If not NULL name pattern to try if the current device name
11149  *	      is already taken in the destination network namespace.
11150  *	@new_ifindex: If not zero, specifies device index in the target
11151  *	              namespace.
11152  *
11153  *	This function shuts down a device interface and moves it
11154  *	to a new network namespace. On success 0 is returned, on
11155  *	a failure a netagive errno code is returned.
11156  *
11157  *	Callers must hold the rtnl semaphore.
11158  */
11159 
11160 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11161 			       const char *pat, int new_ifindex)
11162 {
11163 	struct net *net_old = dev_net(dev);
11164 	int err, new_nsid;
11165 
11166 	ASSERT_RTNL();
11167 
11168 	/* Don't allow namespace local devices to be moved. */
11169 	err = -EINVAL;
11170 	if (dev->features & NETIF_F_NETNS_LOCAL)
11171 		goto out;
11172 
11173 	/* Ensure the device has been registrered */
11174 	if (dev->reg_state != NETREG_REGISTERED)
11175 		goto out;
11176 
11177 	/* Get out if there is nothing todo */
11178 	err = 0;
11179 	if (net_eq(net_old, net))
11180 		goto out;
11181 
11182 	/* Pick the destination device name, and ensure
11183 	 * we can use it in the destination network namespace.
11184 	 */
11185 	err = -EEXIST;
11186 	if (netdev_name_in_use(net, dev->name)) {
11187 		/* We get here if we can't use the current device name */
11188 		if (!pat)
11189 			goto out;
11190 		err = dev_get_valid_name(net, dev, pat);
11191 		if (err < 0)
11192 			goto out;
11193 	}
11194 
11195 	/* Check that new_ifindex isn't used yet. */
11196 	err = -EBUSY;
11197 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11198 		goto out;
11199 
11200 	/*
11201 	 * And now a mini version of register_netdevice unregister_netdevice.
11202 	 */
11203 
11204 	/* If device is running close it first. */
11205 	dev_close(dev);
11206 
11207 	/* And unlink it from device chain */
11208 	unlist_netdevice(dev);
11209 
11210 	synchronize_net();
11211 
11212 	/* Shutdown queueing discipline. */
11213 	dev_shutdown(dev);
11214 
11215 	/* Notify protocols, that we are about to destroy
11216 	 * this device. They should clean all the things.
11217 	 *
11218 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11219 	 * This is wanted because this way 8021q and macvlan know
11220 	 * the device is just moving and can keep their slaves up.
11221 	 */
11222 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11223 	rcu_barrier();
11224 
11225 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11226 	/* If there is an ifindex conflict assign a new one */
11227 	if (!new_ifindex) {
11228 		if (__dev_get_by_index(net, dev->ifindex))
11229 			new_ifindex = dev_new_index(net);
11230 		else
11231 			new_ifindex = dev->ifindex;
11232 	}
11233 
11234 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11235 			    new_ifindex);
11236 
11237 	/*
11238 	 *	Flush the unicast and multicast chains
11239 	 */
11240 	dev_uc_flush(dev);
11241 	dev_mc_flush(dev);
11242 
11243 	/* Send a netdev-removed uevent to the old namespace */
11244 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11245 	netdev_adjacent_del_links(dev);
11246 
11247 	/* Move per-net netdevice notifiers that are following the netdevice */
11248 	move_netdevice_notifiers_dev_net(dev, net);
11249 
11250 	/* Actually switch the network namespace */
11251 	dev_net_set(dev, net);
11252 	dev->ifindex = new_ifindex;
11253 
11254 	/* Send a netdev-add uevent to the new namespace */
11255 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11256 	netdev_adjacent_add_links(dev);
11257 
11258 	/* Fixup kobjects */
11259 	err = device_rename(&dev->dev, dev->name);
11260 	WARN_ON(err);
11261 
11262 	/* Adapt owner in case owning user namespace of target network
11263 	 * namespace is different from the original one.
11264 	 */
11265 	err = netdev_change_owner(dev, net_old, net);
11266 	WARN_ON(err);
11267 
11268 	/* Add the device back in the hashes */
11269 	list_netdevice(dev);
11270 
11271 	/* Notify protocols, that a new device appeared. */
11272 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11273 
11274 	/*
11275 	 *	Prevent userspace races by waiting until the network
11276 	 *	device is fully setup before sending notifications.
11277 	 */
11278 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11279 
11280 	synchronize_net();
11281 	err = 0;
11282 out:
11283 	return err;
11284 }
11285 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11286 
11287 static int dev_cpu_dead(unsigned int oldcpu)
11288 {
11289 	struct sk_buff **list_skb;
11290 	struct sk_buff *skb;
11291 	unsigned int cpu;
11292 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11293 
11294 	local_irq_disable();
11295 	cpu = smp_processor_id();
11296 	sd = &per_cpu(softnet_data, cpu);
11297 	oldsd = &per_cpu(softnet_data, oldcpu);
11298 
11299 	/* Find end of our completion_queue. */
11300 	list_skb = &sd->completion_queue;
11301 	while (*list_skb)
11302 		list_skb = &(*list_skb)->next;
11303 	/* Append completion queue from offline CPU. */
11304 	*list_skb = oldsd->completion_queue;
11305 	oldsd->completion_queue = NULL;
11306 
11307 	/* Append output queue from offline CPU. */
11308 	if (oldsd->output_queue) {
11309 		*sd->output_queue_tailp = oldsd->output_queue;
11310 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11311 		oldsd->output_queue = NULL;
11312 		oldsd->output_queue_tailp = &oldsd->output_queue;
11313 	}
11314 	/* Append NAPI poll list from offline CPU, with one exception :
11315 	 * process_backlog() must be called by cpu owning percpu backlog.
11316 	 * We properly handle process_queue & input_pkt_queue later.
11317 	 */
11318 	while (!list_empty(&oldsd->poll_list)) {
11319 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11320 							    struct napi_struct,
11321 							    poll_list);
11322 
11323 		list_del_init(&napi->poll_list);
11324 		if (napi->poll == process_backlog)
11325 			napi->state = 0;
11326 		else
11327 			____napi_schedule(sd, napi);
11328 	}
11329 
11330 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11331 	local_irq_enable();
11332 
11333 #ifdef CONFIG_RPS
11334 	remsd = oldsd->rps_ipi_list;
11335 	oldsd->rps_ipi_list = NULL;
11336 #endif
11337 	/* send out pending IPI's on offline CPU */
11338 	net_rps_send_ipi(remsd);
11339 
11340 	/* Process offline CPU's input_pkt_queue */
11341 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11342 		netif_rx_ni(skb);
11343 		input_queue_head_incr(oldsd);
11344 	}
11345 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11346 		netif_rx_ni(skb);
11347 		input_queue_head_incr(oldsd);
11348 	}
11349 
11350 	return 0;
11351 }
11352 
11353 /**
11354  *	netdev_increment_features - increment feature set by one
11355  *	@all: current feature set
11356  *	@one: new feature set
11357  *	@mask: mask feature set
11358  *
11359  *	Computes a new feature set after adding a device with feature set
11360  *	@one to the master device with current feature set @all.  Will not
11361  *	enable anything that is off in @mask. Returns the new feature set.
11362  */
11363 netdev_features_t netdev_increment_features(netdev_features_t all,
11364 	netdev_features_t one, netdev_features_t mask)
11365 {
11366 	if (mask & NETIF_F_HW_CSUM)
11367 		mask |= NETIF_F_CSUM_MASK;
11368 	mask |= NETIF_F_VLAN_CHALLENGED;
11369 
11370 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11371 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11372 
11373 	/* If one device supports hw checksumming, set for all. */
11374 	if (all & NETIF_F_HW_CSUM)
11375 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11376 
11377 	return all;
11378 }
11379 EXPORT_SYMBOL(netdev_increment_features);
11380 
11381 static struct hlist_head * __net_init netdev_create_hash(void)
11382 {
11383 	int i;
11384 	struct hlist_head *hash;
11385 
11386 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11387 	if (hash != NULL)
11388 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11389 			INIT_HLIST_HEAD(&hash[i]);
11390 
11391 	return hash;
11392 }
11393 
11394 /* Initialize per network namespace state */
11395 static int __net_init netdev_init(struct net *net)
11396 {
11397 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11398 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11399 
11400 	if (net != &init_net)
11401 		INIT_LIST_HEAD(&net->dev_base_head);
11402 
11403 	net->dev_name_head = netdev_create_hash();
11404 	if (net->dev_name_head == NULL)
11405 		goto err_name;
11406 
11407 	net->dev_index_head = netdev_create_hash();
11408 	if (net->dev_index_head == NULL)
11409 		goto err_idx;
11410 
11411 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11412 
11413 	return 0;
11414 
11415 err_idx:
11416 	kfree(net->dev_name_head);
11417 err_name:
11418 	return -ENOMEM;
11419 }
11420 
11421 /**
11422  *	netdev_drivername - network driver for the device
11423  *	@dev: network device
11424  *
11425  *	Determine network driver for device.
11426  */
11427 const char *netdev_drivername(const struct net_device *dev)
11428 {
11429 	const struct device_driver *driver;
11430 	const struct device *parent;
11431 	const char *empty = "";
11432 
11433 	parent = dev->dev.parent;
11434 	if (!parent)
11435 		return empty;
11436 
11437 	driver = parent->driver;
11438 	if (driver && driver->name)
11439 		return driver->name;
11440 	return empty;
11441 }
11442 
11443 static void __netdev_printk(const char *level, const struct net_device *dev,
11444 			    struct va_format *vaf)
11445 {
11446 	if (dev && dev->dev.parent) {
11447 		dev_printk_emit(level[1] - '0',
11448 				dev->dev.parent,
11449 				"%s %s %s%s: %pV",
11450 				dev_driver_string(dev->dev.parent),
11451 				dev_name(dev->dev.parent),
11452 				netdev_name(dev), netdev_reg_state(dev),
11453 				vaf);
11454 	} else if (dev) {
11455 		printk("%s%s%s: %pV",
11456 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11457 	} else {
11458 		printk("%s(NULL net_device): %pV", level, vaf);
11459 	}
11460 }
11461 
11462 void netdev_printk(const char *level, const struct net_device *dev,
11463 		   const char *format, ...)
11464 {
11465 	struct va_format vaf;
11466 	va_list args;
11467 
11468 	va_start(args, format);
11469 
11470 	vaf.fmt = format;
11471 	vaf.va = &args;
11472 
11473 	__netdev_printk(level, dev, &vaf);
11474 
11475 	va_end(args);
11476 }
11477 EXPORT_SYMBOL(netdev_printk);
11478 
11479 #define define_netdev_printk_level(func, level)			\
11480 void func(const struct net_device *dev, const char *fmt, ...)	\
11481 {								\
11482 	struct va_format vaf;					\
11483 	va_list args;						\
11484 								\
11485 	va_start(args, fmt);					\
11486 								\
11487 	vaf.fmt = fmt;						\
11488 	vaf.va = &args;						\
11489 								\
11490 	__netdev_printk(level, dev, &vaf);			\
11491 								\
11492 	va_end(args);						\
11493 }								\
11494 EXPORT_SYMBOL(func);
11495 
11496 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11497 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11498 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11499 define_netdev_printk_level(netdev_err, KERN_ERR);
11500 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11501 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11502 define_netdev_printk_level(netdev_info, KERN_INFO);
11503 
11504 static void __net_exit netdev_exit(struct net *net)
11505 {
11506 	kfree(net->dev_name_head);
11507 	kfree(net->dev_index_head);
11508 	if (net != &init_net)
11509 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11510 }
11511 
11512 static struct pernet_operations __net_initdata netdev_net_ops = {
11513 	.init = netdev_init,
11514 	.exit = netdev_exit,
11515 };
11516 
11517 static void __net_exit default_device_exit(struct net *net)
11518 {
11519 	struct net_device *dev, *aux;
11520 	/*
11521 	 * Push all migratable network devices back to the
11522 	 * initial network namespace
11523 	 */
11524 	rtnl_lock();
11525 	for_each_netdev_safe(net, dev, aux) {
11526 		int err;
11527 		char fb_name[IFNAMSIZ];
11528 
11529 		/* Ignore unmoveable devices (i.e. loopback) */
11530 		if (dev->features & NETIF_F_NETNS_LOCAL)
11531 			continue;
11532 
11533 		/* Leave virtual devices for the generic cleanup */
11534 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11535 			continue;
11536 
11537 		/* Push remaining network devices to init_net */
11538 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11539 		if (netdev_name_in_use(&init_net, fb_name))
11540 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11541 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11542 		if (err) {
11543 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11544 				 __func__, dev->name, err);
11545 			BUG();
11546 		}
11547 	}
11548 	rtnl_unlock();
11549 }
11550 
11551 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11552 {
11553 	/* Return with the rtnl_lock held when there are no network
11554 	 * devices unregistering in any network namespace in net_list.
11555 	 */
11556 	struct net *net;
11557 	bool unregistering;
11558 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11559 
11560 	add_wait_queue(&netdev_unregistering_wq, &wait);
11561 	for (;;) {
11562 		unregistering = false;
11563 		rtnl_lock();
11564 		list_for_each_entry(net, net_list, exit_list) {
11565 			if (net->dev_unreg_count > 0) {
11566 				unregistering = true;
11567 				break;
11568 			}
11569 		}
11570 		if (!unregistering)
11571 			break;
11572 		__rtnl_unlock();
11573 
11574 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11575 	}
11576 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11577 }
11578 
11579 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11580 {
11581 	/* At exit all network devices most be removed from a network
11582 	 * namespace.  Do this in the reverse order of registration.
11583 	 * Do this across as many network namespaces as possible to
11584 	 * improve batching efficiency.
11585 	 */
11586 	struct net_device *dev;
11587 	struct net *net;
11588 	LIST_HEAD(dev_kill_list);
11589 
11590 	/* To prevent network device cleanup code from dereferencing
11591 	 * loopback devices or network devices that have been freed
11592 	 * wait here for all pending unregistrations to complete,
11593 	 * before unregistring the loopback device and allowing the
11594 	 * network namespace be freed.
11595 	 *
11596 	 * The netdev todo list containing all network devices
11597 	 * unregistrations that happen in default_device_exit_batch
11598 	 * will run in the rtnl_unlock() at the end of
11599 	 * default_device_exit_batch.
11600 	 */
11601 	rtnl_lock_unregistering(net_list);
11602 	list_for_each_entry(net, net_list, exit_list) {
11603 		for_each_netdev_reverse(net, dev) {
11604 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11605 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11606 			else
11607 				unregister_netdevice_queue(dev, &dev_kill_list);
11608 		}
11609 	}
11610 	unregister_netdevice_many(&dev_kill_list);
11611 	rtnl_unlock();
11612 }
11613 
11614 static struct pernet_operations __net_initdata default_device_ops = {
11615 	.exit = default_device_exit,
11616 	.exit_batch = default_device_exit_batch,
11617 };
11618 
11619 /*
11620  *	Initialize the DEV module. At boot time this walks the device list and
11621  *	unhooks any devices that fail to initialise (normally hardware not
11622  *	present) and leaves us with a valid list of present and active devices.
11623  *
11624  */
11625 
11626 /*
11627  *       This is called single threaded during boot, so no need
11628  *       to take the rtnl semaphore.
11629  */
11630 static int __init net_dev_init(void)
11631 {
11632 	int i, rc = -ENOMEM;
11633 
11634 	BUG_ON(!dev_boot_phase);
11635 
11636 	if (dev_proc_init())
11637 		goto out;
11638 
11639 	if (netdev_kobject_init())
11640 		goto out;
11641 
11642 	INIT_LIST_HEAD(&ptype_all);
11643 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11644 		INIT_LIST_HEAD(&ptype_base[i]);
11645 
11646 	INIT_LIST_HEAD(&offload_base);
11647 
11648 	if (register_pernet_subsys(&netdev_net_ops))
11649 		goto out;
11650 
11651 	/*
11652 	 *	Initialise the packet receive queues.
11653 	 */
11654 
11655 	for_each_possible_cpu(i) {
11656 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11657 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11658 
11659 		INIT_WORK(flush, flush_backlog);
11660 
11661 		skb_queue_head_init(&sd->input_pkt_queue);
11662 		skb_queue_head_init(&sd->process_queue);
11663 #ifdef CONFIG_XFRM_OFFLOAD
11664 		skb_queue_head_init(&sd->xfrm_backlog);
11665 #endif
11666 		INIT_LIST_HEAD(&sd->poll_list);
11667 		sd->output_queue_tailp = &sd->output_queue;
11668 #ifdef CONFIG_RPS
11669 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11670 		sd->cpu = i;
11671 #endif
11672 
11673 		init_gro_hash(&sd->backlog);
11674 		sd->backlog.poll = process_backlog;
11675 		sd->backlog.weight = weight_p;
11676 	}
11677 
11678 	dev_boot_phase = 0;
11679 
11680 	/* The loopback device is special if any other network devices
11681 	 * is present in a network namespace the loopback device must
11682 	 * be present. Since we now dynamically allocate and free the
11683 	 * loopback device ensure this invariant is maintained by
11684 	 * keeping the loopback device as the first device on the
11685 	 * list of network devices.  Ensuring the loopback devices
11686 	 * is the first device that appears and the last network device
11687 	 * that disappears.
11688 	 */
11689 	if (register_pernet_device(&loopback_net_ops))
11690 		goto out;
11691 
11692 	if (register_pernet_device(&default_device_ops))
11693 		goto out;
11694 
11695 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11696 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11697 
11698 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11699 				       NULL, dev_cpu_dead);
11700 	WARN_ON(rc < 0);
11701 	rc = 0;
11702 out:
11703 	return rc;
11704 }
11705 
11706 subsys_initcall(net_dev_init);
11707