1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/hash.h> 83 #include <linux/slab.h> 84 #include <linux/sched.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/proc_fs.h> 102 #include <linux/seq_file.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/kmod.h> 111 #include <linux/module.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <linux/ipv6.h> 127 #include <linux/in.h> 128 #include <linux/jhash.h> 129 #include <linux/random.h> 130 #include <trace/events/napi.h> 131 #include <trace/events/net.h> 132 #include <trace/events/skb.h> 133 #include <linux/pci.h> 134 #include <linux/inetdevice.h> 135 136 #include "net-sysfs.h" 137 138 /* Instead of increasing this, you should create a hash table. */ 139 #define MAX_GRO_SKBS 8 140 141 /* This should be increased if a protocol with a bigger head is added. */ 142 #define GRO_MAX_HEAD (MAX_HEADER + 128) 143 144 /* 145 * The list of packet types we will receive (as opposed to discard) 146 * and the routines to invoke. 147 * 148 * Why 16. Because with 16 the only overlap we get on a hash of the 149 * low nibble of the protocol value is RARP/SNAP/X.25. 150 * 151 * NOTE: That is no longer true with the addition of VLAN tags. Not 152 * sure which should go first, but I bet it won't make much 153 * difference if we are running VLANs. The good news is that 154 * this protocol won't be in the list unless compiled in, so 155 * the average user (w/out VLANs) will not be adversely affected. 156 * --BLG 157 * 158 * 0800 IP 159 * 8100 802.1Q VLAN 160 * 0001 802.3 161 * 0002 AX.25 162 * 0004 802.2 163 * 8035 RARP 164 * 0005 SNAP 165 * 0805 X.25 166 * 0806 ARP 167 * 8137 IPX 168 * 0009 Localtalk 169 * 86DD IPv6 170 */ 171 172 #define PTYPE_HASH_SIZE (16) 173 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 174 175 static DEFINE_SPINLOCK(ptype_lock); 176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 177 static struct list_head ptype_all __read_mostly; /* Taps */ 178 179 /* 180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 181 * semaphore. 182 * 183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 184 * 185 * Writers must hold the rtnl semaphore while they loop through the 186 * dev_base_head list, and hold dev_base_lock for writing when they do the 187 * actual updates. This allows pure readers to access the list even 188 * while a writer is preparing to update it. 189 * 190 * To put it another way, dev_base_lock is held for writing only to 191 * protect against pure readers; the rtnl semaphore provides the 192 * protection against other writers. 193 * 194 * See, for example usages, register_netdevice() and 195 * unregister_netdevice(), which must be called with the rtnl 196 * semaphore held. 197 */ 198 DEFINE_RWLOCK(dev_base_lock); 199 EXPORT_SYMBOL(dev_base_lock); 200 201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 202 { 203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 205 } 206 207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 208 { 209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 210 } 211 212 static inline void rps_lock(struct softnet_data *sd) 213 { 214 #ifdef CONFIG_RPS 215 spin_lock(&sd->input_pkt_queue.lock); 216 #endif 217 } 218 219 static inline void rps_unlock(struct softnet_data *sd) 220 { 221 #ifdef CONFIG_RPS 222 spin_unlock(&sd->input_pkt_queue.lock); 223 #endif 224 } 225 226 /* Device list insertion */ 227 static int list_netdevice(struct net_device *dev) 228 { 229 struct net *net = dev_net(dev); 230 231 ASSERT_RTNL(); 232 233 write_lock_bh(&dev_base_lock); 234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 236 hlist_add_head_rcu(&dev->index_hlist, 237 dev_index_hash(net, dev->ifindex)); 238 write_unlock_bh(&dev_base_lock); 239 return 0; 240 } 241 242 /* Device list removal 243 * caller must respect a RCU grace period before freeing/reusing dev 244 */ 245 static void unlist_netdevice(struct net_device *dev) 246 { 247 ASSERT_RTNL(); 248 249 /* Unlink dev from the device chain */ 250 write_lock_bh(&dev_base_lock); 251 list_del_rcu(&dev->dev_list); 252 hlist_del_rcu(&dev->name_hlist); 253 hlist_del_rcu(&dev->index_hlist); 254 write_unlock_bh(&dev_base_lock); 255 } 256 257 /* 258 * Our notifier list 259 */ 260 261 static RAW_NOTIFIER_HEAD(netdev_chain); 262 263 /* 264 * Device drivers call our routines to queue packets here. We empty the 265 * queue in the local softnet handler. 266 */ 267 268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 269 EXPORT_PER_CPU_SYMBOL(softnet_data); 270 271 #ifdef CONFIG_LOCKDEP 272 /* 273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 274 * according to dev->type 275 */ 276 static const unsigned short netdev_lock_type[] = 277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 292 ARPHRD_VOID, ARPHRD_NONE}; 293 294 static const char *const netdev_lock_name[] = 295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 310 "_xmit_VOID", "_xmit_NONE"}; 311 312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 314 315 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 316 { 317 int i; 318 319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 320 if (netdev_lock_type[i] == dev_type) 321 return i; 322 /* the last key is used by default */ 323 return ARRAY_SIZE(netdev_lock_type) - 1; 324 } 325 326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 327 unsigned short dev_type) 328 { 329 int i; 330 331 i = netdev_lock_pos(dev_type); 332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 333 netdev_lock_name[i]); 334 } 335 336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 337 { 338 int i; 339 340 i = netdev_lock_pos(dev->type); 341 lockdep_set_class_and_name(&dev->addr_list_lock, 342 &netdev_addr_lock_key[i], 343 netdev_lock_name[i]); 344 } 345 #else 346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 347 unsigned short dev_type) 348 { 349 } 350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 351 { 352 } 353 #endif 354 355 /******************************************************************************* 356 357 Protocol management and registration routines 358 359 *******************************************************************************/ 360 361 /* 362 * Add a protocol ID to the list. Now that the input handler is 363 * smarter we can dispense with all the messy stuff that used to be 364 * here. 365 * 366 * BEWARE!!! Protocol handlers, mangling input packets, 367 * MUST BE last in hash buckets and checking protocol handlers 368 * MUST start from promiscuous ptype_all chain in net_bh. 369 * It is true now, do not change it. 370 * Explanation follows: if protocol handler, mangling packet, will 371 * be the first on list, it is not able to sense, that packet 372 * is cloned and should be copied-on-write, so that it will 373 * change it and subsequent readers will get broken packet. 374 * --ANK (980803) 375 */ 376 377 static inline struct list_head *ptype_head(const struct packet_type *pt) 378 { 379 if (pt->type == htons(ETH_P_ALL)) 380 return &ptype_all; 381 else 382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 383 } 384 385 /** 386 * dev_add_pack - add packet handler 387 * @pt: packet type declaration 388 * 389 * Add a protocol handler to the networking stack. The passed &packet_type 390 * is linked into kernel lists and may not be freed until it has been 391 * removed from the kernel lists. 392 * 393 * This call does not sleep therefore it can not 394 * guarantee all CPU's that are in middle of receiving packets 395 * will see the new packet type (until the next received packet). 396 */ 397 398 void dev_add_pack(struct packet_type *pt) 399 { 400 struct list_head *head = ptype_head(pt); 401 402 spin_lock(&ptype_lock); 403 list_add_rcu(&pt->list, head); 404 spin_unlock(&ptype_lock); 405 } 406 EXPORT_SYMBOL(dev_add_pack); 407 408 /** 409 * __dev_remove_pack - remove packet handler 410 * @pt: packet type declaration 411 * 412 * Remove a protocol handler that was previously added to the kernel 413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 414 * from the kernel lists and can be freed or reused once this function 415 * returns. 416 * 417 * The packet type might still be in use by receivers 418 * and must not be freed until after all the CPU's have gone 419 * through a quiescent state. 420 */ 421 void __dev_remove_pack(struct packet_type *pt) 422 { 423 struct list_head *head = ptype_head(pt); 424 struct packet_type *pt1; 425 426 spin_lock(&ptype_lock); 427 428 list_for_each_entry(pt1, head, list) { 429 if (pt == pt1) { 430 list_del_rcu(&pt->list); 431 goto out; 432 } 433 } 434 435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 436 out: 437 spin_unlock(&ptype_lock); 438 } 439 EXPORT_SYMBOL(__dev_remove_pack); 440 441 /** 442 * dev_remove_pack - remove packet handler 443 * @pt: packet type declaration 444 * 445 * Remove a protocol handler that was previously added to the kernel 446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 447 * from the kernel lists and can be freed or reused once this function 448 * returns. 449 * 450 * This call sleeps to guarantee that no CPU is looking at the packet 451 * type after return. 452 */ 453 void dev_remove_pack(struct packet_type *pt) 454 { 455 __dev_remove_pack(pt); 456 457 synchronize_net(); 458 } 459 EXPORT_SYMBOL(dev_remove_pack); 460 461 /****************************************************************************** 462 463 Device Boot-time Settings Routines 464 465 *******************************************************************************/ 466 467 /* Boot time configuration table */ 468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 469 470 /** 471 * netdev_boot_setup_add - add new setup entry 472 * @name: name of the device 473 * @map: configured settings for the device 474 * 475 * Adds new setup entry to the dev_boot_setup list. The function 476 * returns 0 on error and 1 on success. This is a generic routine to 477 * all netdevices. 478 */ 479 static int netdev_boot_setup_add(char *name, struct ifmap *map) 480 { 481 struct netdev_boot_setup *s; 482 int i; 483 484 s = dev_boot_setup; 485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 487 memset(s[i].name, 0, sizeof(s[i].name)); 488 strlcpy(s[i].name, name, IFNAMSIZ); 489 memcpy(&s[i].map, map, sizeof(s[i].map)); 490 break; 491 } 492 } 493 494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 495 } 496 497 /** 498 * netdev_boot_setup_check - check boot time settings 499 * @dev: the netdevice 500 * 501 * Check boot time settings for the device. 502 * The found settings are set for the device to be used 503 * later in the device probing. 504 * Returns 0 if no settings found, 1 if they are. 505 */ 506 int netdev_boot_setup_check(struct net_device *dev) 507 { 508 struct netdev_boot_setup *s = dev_boot_setup; 509 int i; 510 511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 513 !strcmp(dev->name, s[i].name)) { 514 dev->irq = s[i].map.irq; 515 dev->base_addr = s[i].map.base_addr; 516 dev->mem_start = s[i].map.mem_start; 517 dev->mem_end = s[i].map.mem_end; 518 return 1; 519 } 520 } 521 return 0; 522 } 523 EXPORT_SYMBOL(netdev_boot_setup_check); 524 525 526 /** 527 * netdev_boot_base - get address from boot time settings 528 * @prefix: prefix for network device 529 * @unit: id for network device 530 * 531 * Check boot time settings for the base address of device. 532 * The found settings are set for the device to be used 533 * later in the device probing. 534 * Returns 0 if no settings found. 535 */ 536 unsigned long netdev_boot_base(const char *prefix, int unit) 537 { 538 const struct netdev_boot_setup *s = dev_boot_setup; 539 char name[IFNAMSIZ]; 540 int i; 541 542 sprintf(name, "%s%d", prefix, unit); 543 544 /* 545 * If device already registered then return base of 1 546 * to indicate not to probe for this interface 547 */ 548 if (__dev_get_by_name(&init_net, name)) 549 return 1; 550 551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 552 if (!strcmp(name, s[i].name)) 553 return s[i].map.base_addr; 554 return 0; 555 } 556 557 /* 558 * Saves at boot time configured settings for any netdevice. 559 */ 560 int __init netdev_boot_setup(char *str) 561 { 562 int ints[5]; 563 struct ifmap map; 564 565 str = get_options(str, ARRAY_SIZE(ints), ints); 566 if (!str || !*str) 567 return 0; 568 569 /* Save settings */ 570 memset(&map, 0, sizeof(map)); 571 if (ints[0] > 0) 572 map.irq = ints[1]; 573 if (ints[0] > 1) 574 map.base_addr = ints[2]; 575 if (ints[0] > 2) 576 map.mem_start = ints[3]; 577 if (ints[0] > 3) 578 map.mem_end = ints[4]; 579 580 /* Add new entry to the list */ 581 return netdev_boot_setup_add(str, &map); 582 } 583 584 __setup("netdev=", netdev_boot_setup); 585 586 /******************************************************************************* 587 588 Device Interface Subroutines 589 590 *******************************************************************************/ 591 592 /** 593 * __dev_get_by_name - find a device by its name 594 * @net: the applicable net namespace 595 * @name: name to find 596 * 597 * Find an interface by name. Must be called under RTNL semaphore 598 * or @dev_base_lock. If the name is found a pointer to the device 599 * is returned. If the name is not found then %NULL is returned. The 600 * reference counters are not incremented so the caller must be 601 * careful with locks. 602 */ 603 604 struct net_device *__dev_get_by_name(struct net *net, const char *name) 605 { 606 struct hlist_node *p; 607 struct net_device *dev; 608 struct hlist_head *head = dev_name_hash(net, name); 609 610 hlist_for_each_entry(dev, p, head, name_hlist) 611 if (!strncmp(dev->name, name, IFNAMSIZ)) 612 return dev; 613 614 return NULL; 615 } 616 EXPORT_SYMBOL(__dev_get_by_name); 617 618 /** 619 * dev_get_by_name_rcu - find a device by its name 620 * @net: the applicable net namespace 621 * @name: name to find 622 * 623 * Find an interface by name. 624 * If the name is found a pointer to the device is returned. 625 * If the name is not found then %NULL is returned. 626 * The reference counters are not incremented so the caller must be 627 * careful with locks. The caller must hold RCU lock. 628 */ 629 630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 631 { 632 struct hlist_node *p; 633 struct net_device *dev; 634 struct hlist_head *head = dev_name_hash(net, name); 635 636 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 637 if (!strncmp(dev->name, name, IFNAMSIZ)) 638 return dev; 639 640 return NULL; 641 } 642 EXPORT_SYMBOL(dev_get_by_name_rcu); 643 644 /** 645 * dev_get_by_name - find a device by its name 646 * @net: the applicable net namespace 647 * @name: name to find 648 * 649 * Find an interface by name. This can be called from any 650 * context and does its own locking. The returned handle has 651 * the usage count incremented and the caller must use dev_put() to 652 * release it when it is no longer needed. %NULL is returned if no 653 * matching device is found. 654 */ 655 656 struct net_device *dev_get_by_name(struct net *net, const char *name) 657 { 658 struct net_device *dev; 659 660 rcu_read_lock(); 661 dev = dev_get_by_name_rcu(net, name); 662 if (dev) 663 dev_hold(dev); 664 rcu_read_unlock(); 665 return dev; 666 } 667 EXPORT_SYMBOL(dev_get_by_name); 668 669 /** 670 * __dev_get_by_index - find a device by its ifindex 671 * @net: the applicable net namespace 672 * @ifindex: index of device 673 * 674 * Search for an interface by index. Returns %NULL if the device 675 * is not found or a pointer to the device. The device has not 676 * had its reference counter increased so the caller must be careful 677 * about locking. The caller must hold either the RTNL semaphore 678 * or @dev_base_lock. 679 */ 680 681 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 682 { 683 struct hlist_node *p; 684 struct net_device *dev; 685 struct hlist_head *head = dev_index_hash(net, ifindex); 686 687 hlist_for_each_entry(dev, p, head, index_hlist) 688 if (dev->ifindex == ifindex) 689 return dev; 690 691 return NULL; 692 } 693 EXPORT_SYMBOL(__dev_get_by_index); 694 695 /** 696 * dev_get_by_index_rcu - find a device by its ifindex 697 * @net: the applicable net namespace 698 * @ifindex: index of device 699 * 700 * Search for an interface by index. Returns %NULL if the device 701 * is not found or a pointer to the device. The device has not 702 * had its reference counter increased so the caller must be careful 703 * about locking. The caller must hold RCU lock. 704 */ 705 706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 707 { 708 struct hlist_node *p; 709 struct net_device *dev; 710 struct hlist_head *head = dev_index_hash(net, ifindex); 711 712 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 713 if (dev->ifindex == ifindex) 714 return dev; 715 716 return NULL; 717 } 718 EXPORT_SYMBOL(dev_get_by_index_rcu); 719 720 721 /** 722 * dev_get_by_index - find a device by its ifindex 723 * @net: the applicable net namespace 724 * @ifindex: index of device 725 * 726 * Search for an interface by index. Returns NULL if the device 727 * is not found or a pointer to the device. The device returned has 728 * had a reference added and the pointer is safe until the user calls 729 * dev_put to indicate they have finished with it. 730 */ 731 732 struct net_device *dev_get_by_index(struct net *net, int ifindex) 733 { 734 struct net_device *dev; 735 736 rcu_read_lock(); 737 dev = dev_get_by_index_rcu(net, ifindex); 738 if (dev) 739 dev_hold(dev); 740 rcu_read_unlock(); 741 return dev; 742 } 743 EXPORT_SYMBOL(dev_get_by_index); 744 745 /** 746 * dev_getbyhwaddr_rcu - find a device by its hardware address 747 * @net: the applicable net namespace 748 * @type: media type of device 749 * @ha: hardware address 750 * 751 * Search for an interface by MAC address. Returns NULL if the device 752 * is not found or a pointer to the device. 753 * The caller must hold RCU or RTNL. 754 * The returned device has not had its ref count increased 755 * and the caller must therefore be careful about locking 756 * 757 */ 758 759 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 760 const char *ha) 761 { 762 struct net_device *dev; 763 764 for_each_netdev_rcu(net, dev) 765 if (dev->type == type && 766 !memcmp(dev->dev_addr, ha, dev->addr_len)) 767 return dev; 768 769 return NULL; 770 } 771 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 772 773 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 774 { 775 struct net_device *dev; 776 777 ASSERT_RTNL(); 778 for_each_netdev(net, dev) 779 if (dev->type == type) 780 return dev; 781 782 return NULL; 783 } 784 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 785 786 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 787 { 788 struct net_device *dev, *ret = NULL; 789 790 rcu_read_lock(); 791 for_each_netdev_rcu(net, dev) 792 if (dev->type == type) { 793 dev_hold(dev); 794 ret = dev; 795 break; 796 } 797 rcu_read_unlock(); 798 return ret; 799 } 800 EXPORT_SYMBOL(dev_getfirstbyhwtype); 801 802 /** 803 * dev_get_by_flags_rcu - find any device with given flags 804 * @net: the applicable net namespace 805 * @if_flags: IFF_* values 806 * @mask: bitmask of bits in if_flags to check 807 * 808 * Search for any interface with the given flags. Returns NULL if a device 809 * is not found or a pointer to the device. Must be called inside 810 * rcu_read_lock(), and result refcount is unchanged. 811 */ 812 813 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 814 unsigned short mask) 815 { 816 struct net_device *dev, *ret; 817 818 ret = NULL; 819 for_each_netdev_rcu(net, dev) { 820 if (((dev->flags ^ if_flags) & mask) == 0) { 821 ret = dev; 822 break; 823 } 824 } 825 return ret; 826 } 827 EXPORT_SYMBOL(dev_get_by_flags_rcu); 828 829 /** 830 * dev_valid_name - check if name is okay for network device 831 * @name: name string 832 * 833 * Network device names need to be valid file names to 834 * to allow sysfs to work. We also disallow any kind of 835 * whitespace. 836 */ 837 int dev_valid_name(const char *name) 838 { 839 if (*name == '\0') 840 return 0; 841 if (strlen(name) >= IFNAMSIZ) 842 return 0; 843 if (!strcmp(name, ".") || !strcmp(name, "..")) 844 return 0; 845 846 while (*name) { 847 if (*name == '/' || isspace(*name)) 848 return 0; 849 name++; 850 } 851 return 1; 852 } 853 EXPORT_SYMBOL(dev_valid_name); 854 855 /** 856 * __dev_alloc_name - allocate a name for a device 857 * @net: network namespace to allocate the device name in 858 * @name: name format string 859 * @buf: scratch buffer and result name string 860 * 861 * Passed a format string - eg "lt%d" it will try and find a suitable 862 * id. It scans list of devices to build up a free map, then chooses 863 * the first empty slot. The caller must hold the dev_base or rtnl lock 864 * while allocating the name and adding the device in order to avoid 865 * duplicates. 866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 867 * Returns the number of the unit assigned or a negative errno code. 868 */ 869 870 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 871 { 872 int i = 0; 873 const char *p; 874 const int max_netdevices = 8*PAGE_SIZE; 875 unsigned long *inuse; 876 struct net_device *d; 877 878 p = strnchr(name, IFNAMSIZ-1, '%'); 879 if (p) { 880 /* 881 * Verify the string as this thing may have come from 882 * the user. There must be either one "%d" and no other "%" 883 * characters. 884 */ 885 if (p[1] != 'd' || strchr(p + 2, '%')) 886 return -EINVAL; 887 888 /* Use one page as a bit array of possible slots */ 889 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 890 if (!inuse) 891 return -ENOMEM; 892 893 for_each_netdev(net, d) { 894 if (!sscanf(d->name, name, &i)) 895 continue; 896 if (i < 0 || i >= max_netdevices) 897 continue; 898 899 /* avoid cases where sscanf is not exact inverse of printf */ 900 snprintf(buf, IFNAMSIZ, name, i); 901 if (!strncmp(buf, d->name, IFNAMSIZ)) 902 set_bit(i, inuse); 903 } 904 905 i = find_first_zero_bit(inuse, max_netdevices); 906 free_page((unsigned long) inuse); 907 } 908 909 if (buf != name) 910 snprintf(buf, IFNAMSIZ, name, i); 911 if (!__dev_get_by_name(net, buf)) 912 return i; 913 914 /* It is possible to run out of possible slots 915 * when the name is long and there isn't enough space left 916 * for the digits, or if all bits are used. 917 */ 918 return -ENFILE; 919 } 920 921 /** 922 * dev_alloc_name - allocate a name for a device 923 * @dev: device 924 * @name: name format string 925 * 926 * Passed a format string - eg "lt%d" it will try and find a suitable 927 * id. It scans list of devices to build up a free map, then chooses 928 * the first empty slot. The caller must hold the dev_base or rtnl lock 929 * while allocating the name and adding the device in order to avoid 930 * duplicates. 931 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 932 * Returns the number of the unit assigned or a negative errno code. 933 */ 934 935 int dev_alloc_name(struct net_device *dev, const char *name) 936 { 937 char buf[IFNAMSIZ]; 938 struct net *net; 939 int ret; 940 941 BUG_ON(!dev_net(dev)); 942 net = dev_net(dev); 943 ret = __dev_alloc_name(net, name, buf); 944 if (ret >= 0) 945 strlcpy(dev->name, buf, IFNAMSIZ); 946 return ret; 947 } 948 EXPORT_SYMBOL(dev_alloc_name); 949 950 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt) 951 { 952 struct net *net; 953 954 BUG_ON(!dev_net(dev)); 955 net = dev_net(dev); 956 957 if (!dev_valid_name(name)) 958 return -EINVAL; 959 960 if (fmt && strchr(name, '%')) 961 return dev_alloc_name(dev, name); 962 else if (__dev_get_by_name(net, name)) 963 return -EEXIST; 964 else if (dev->name != name) 965 strlcpy(dev->name, name, IFNAMSIZ); 966 967 return 0; 968 } 969 970 /** 971 * dev_change_name - change name of a device 972 * @dev: device 973 * @newname: name (or format string) must be at least IFNAMSIZ 974 * 975 * Change name of a device, can pass format strings "eth%d". 976 * for wildcarding. 977 */ 978 int dev_change_name(struct net_device *dev, const char *newname) 979 { 980 char oldname[IFNAMSIZ]; 981 int err = 0; 982 int ret; 983 struct net *net; 984 985 ASSERT_RTNL(); 986 BUG_ON(!dev_net(dev)); 987 988 net = dev_net(dev); 989 if (dev->flags & IFF_UP) 990 return -EBUSY; 991 992 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 993 return 0; 994 995 memcpy(oldname, dev->name, IFNAMSIZ); 996 997 err = dev_get_valid_name(dev, newname, 1); 998 if (err < 0) 999 return err; 1000 1001 rollback: 1002 ret = device_rename(&dev->dev, dev->name); 1003 if (ret) { 1004 memcpy(dev->name, oldname, IFNAMSIZ); 1005 return ret; 1006 } 1007 1008 write_lock_bh(&dev_base_lock); 1009 hlist_del(&dev->name_hlist); 1010 write_unlock_bh(&dev_base_lock); 1011 1012 synchronize_rcu(); 1013 1014 write_lock_bh(&dev_base_lock); 1015 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1016 write_unlock_bh(&dev_base_lock); 1017 1018 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1019 ret = notifier_to_errno(ret); 1020 1021 if (ret) { 1022 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1023 if (err >= 0) { 1024 err = ret; 1025 memcpy(dev->name, oldname, IFNAMSIZ); 1026 goto rollback; 1027 } else { 1028 printk(KERN_ERR 1029 "%s: name change rollback failed: %d.\n", 1030 dev->name, ret); 1031 } 1032 } 1033 1034 return err; 1035 } 1036 1037 /** 1038 * dev_set_alias - change ifalias of a device 1039 * @dev: device 1040 * @alias: name up to IFALIASZ 1041 * @len: limit of bytes to copy from info 1042 * 1043 * Set ifalias for a device, 1044 */ 1045 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1046 { 1047 ASSERT_RTNL(); 1048 1049 if (len >= IFALIASZ) 1050 return -EINVAL; 1051 1052 if (!len) { 1053 if (dev->ifalias) { 1054 kfree(dev->ifalias); 1055 dev->ifalias = NULL; 1056 } 1057 return 0; 1058 } 1059 1060 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1061 if (!dev->ifalias) 1062 return -ENOMEM; 1063 1064 strlcpy(dev->ifalias, alias, len+1); 1065 return len; 1066 } 1067 1068 1069 /** 1070 * netdev_features_change - device changes features 1071 * @dev: device to cause notification 1072 * 1073 * Called to indicate a device has changed features. 1074 */ 1075 void netdev_features_change(struct net_device *dev) 1076 { 1077 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1078 } 1079 EXPORT_SYMBOL(netdev_features_change); 1080 1081 /** 1082 * netdev_state_change - device changes state 1083 * @dev: device to cause notification 1084 * 1085 * Called to indicate a device has changed state. This function calls 1086 * the notifier chains for netdev_chain and sends a NEWLINK message 1087 * to the routing socket. 1088 */ 1089 void netdev_state_change(struct net_device *dev) 1090 { 1091 if (dev->flags & IFF_UP) { 1092 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1093 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1094 } 1095 } 1096 EXPORT_SYMBOL(netdev_state_change); 1097 1098 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1099 { 1100 return call_netdevice_notifiers(event, dev); 1101 } 1102 EXPORT_SYMBOL(netdev_bonding_change); 1103 1104 /** 1105 * dev_load - load a network module 1106 * @net: the applicable net namespace 1107 * @name: name of interface 1108 * 1109 * If a network interface is not present and the process has suitable 1110 * privileges this function loads the module. If module loading is not 1111 * available in this kernel then it becomes a nop. 1112 */ 1113 1114 void dev_load(struct net *net, const char *name) 1115 { 1116 struct net_device *dev; 1117 1118 rcu_read_lock(); 1119 dev = dev_get_by_name_rcu(net, name); 1120 rcu_read_unlock(); 1121 1122 if (!dev && capable(CAP_NET_ADMIN)) 1123 request_module("%s", name); 1124 } 1125 EXPORT_SYMBOL(dev_load); 1126 1127 static int __dev_open(struct net_device *dev) 1128 { 1129 const struct net_device_ops *ops = dev->netdev_ops; 1130 int ret; 1131 1132 ASSERT_RTNL(); 1133 1134 /* 1135 * Is it even present? 1136 */ 1137 if (!netif_device_present(dev)) 1138 return -ENODEV; 1139 1140 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1141 ret = notifier_to_errno(ret); 1142 if (ret) 1143 return ret; 1144 1145 /* 1146 * Call device private open method 1147 */ 1148 set_bit(__LINK_STATE_START, &dev->state); 1149 1150 if (ops->ndo_validate_addr) 1151 ret = ops->ndo_validate_addr(dev); 1152 1153 if (!ret && ops->ndo_open) 1154 ret = ops->ndo_open(dev); 1155 1156 /* 1157 * If it went open OK then: 1158 */ 1159 1160 if (ret) 1161 clear_bit(__LINK_STATE_START, &dev->state); 1162 else { 1163 /* 1164 * Set the flags. 1165 */ 1166 dev->flags |= IFF_UP; 1167 1168 /* 1169 * Enable NET_DMA 1170 */ 1171 net_dmaengine_get(); 1172 1173 /* 1174 * Initialize multicasting status 1175 */ 1176 dev_set_rx_mode(dev); 1177 1178 /* 1179 * Wakeup transmit queue engine 1180 */ 1181 dev_activate(dev); 1182 } 1183 1184 return ret; 1185 } 1186 1187 /** 1188 * dev_open - prepare an interface for use. 1189 * @dev: device to open 1190 * 1191 * Takes a device from down to up state. The device's private open 1192 * function is invoked and then the multicast lists are loaded. Finally 1193 * the device is moved into the up state and a %NETDEV_UP message is 1194 * sent to the netdev notifier chain. 1195 * 1196 * Calling this function on an active interface is a nop. On a failure 1197 * a negative errno code is returned. 1198 */ 1199 int dev_open(struct net_device *dev) 1200 { 1201 int ret; 1202 1203 /* 1204 * Is it already up? 1205 */ 1206 if (dev->flags & IFF_UP) 1207 return 0; 1208 1209 /* 1210 * Open device 1211 */ 1212 ret = __dev_open(dev); 1213 if (ret < 0) 1214 return ret; 1215 1216 /* 1217 * ... and announce new interface. 1218 */ 1219 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1220 call_netdevice_notifiers(NETDEV_UP, dev); 1221 1222 return ret; 1223 } 1224 EXPORT_SYMBOL(dev_open); 1225 1226 static int __dev_close_many(struct list_head *head) 1227 { 1228 struct net_device *dev; 1229 1230 ASSERT_RTNL(); 1231 might_sleep(); 1232 1233 list_for_each_entry(dev, head, unreg_list) { 1234 /* 1235 * Tell people we are going down, so that they can 1236 * prepare to death, when device is still operating. 1237 */ 1238 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1239 1240 clear_bit(__LINK_STATE_START, &dev->state); 1241 1242 /* Synchronize to scheduled poll. We cannot touch poll list, it 1243 * can be even on different cpu. So just clear netif_running(). 1244 * 1245 * dev->stop() will invoke napi_disable() on all of it's 1246 * napi_struct instances on this device. 1247 */ 1248 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1249 } 1250 1251 dev_deactivate_many(head); 1252 1253 list_for_each_entry(dev, head, unreg_list) { 1254 const struct net_device_ops *ops = dev->netdev_ops; 1255 1256 /* 1257 * Call the device specific close. This cannot fail. 1258 * Only if device is UP 1259 * 1260 * We allow it to be called even after a DETACH hot-plug 1261 * event. 1262 */ 1263 if (ops->ndo_stop) 1264 ops->ndo_stop(dev); 1265 1266 /* 1267 * Device is now down. 1268 */ 1269 1270 dev->flags &= ~IFF_UP; 1271 1272 /* 1273 * Shutdown NET_DMA 1274 */ 1275 net_dmaengine_put(); 1276 } 1277 1278 return 0; 1279 } 1280 1281 static int __dev_close(struct net_device *dev) 1282 { 1283 int retval; 1284 LIST_HEAD(single); 1285 1286 list_add(&dev->unreg_list, &single); 1287 retval = __dev_close_many(&single); 1288 list_del(&single); 1289 return retval; 1290 } 1291 1292 int dev_close_many(struct list_head *head) 1293 { 1294 struct net_device *dev, *tmp; 1295 LIST_HEAD(tmp_list); 1296 1297 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1298 if (!(dev->flags & IFF_UP)) 1299 list_move(&dev->unreg_list, &tmp_list); 1300 1301 __dev_close_many(head); 1302 1303 /* 1304 * Tell people we are down 1305 */ 1306 list_for_each_entry(dev, head, unreg_list) { 1307 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1308 call_netdevice_notifiers(NETDEV_DOWN, dev); 1309 } 1310 1311 /* rollback_registered_many needs the complete original list */ 1312 list_splice(&tmp_list, head); 1313 return 0; 1314 } 1315 1316 /** 1317 * dev_close - shutdown an interface. 1318 * @dev: device to shutdown 1319 * 1320 * This function moves an active device into down state. A 1321 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1322 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1323 * chain. 1324 */ 1325 int dev_close(struct net_device *dev) 1326 { 1327 LIST_HEAD(single); 1328 1329 list_add(&dev->unreg_list, &single); 1330 dev_close_many(&single); 1331 list_del(&single); 1332 return 0; 1333 } 1334 EXPORT_SYMBOL(dev_close); 1335 1336 1337 /** 1338 * dev_disable_lro - disable Large Receive Offload on a device 1339 * @dev: device 1340 * 1341 * Disable Large Receive Offload (LRO) on a net device. Must be 1342 * called under RTNL. This is needed if received packets may be 1343 * forwarded to another interface. 1344 */ 1345 void dev_disable_lro(struct net_device *dev) 1346 { 1347 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1348 dev->ethtool_ops->set_flags) { 1349 u32 flags = dev->ethtool_ops->get_flags(dev); 1350 if (flags & ETH_FLAG_LRO) { 1351 flags &= ~ETH_FLAG_LRO; 1352 dev->ethtool_ops->set_flags(dev, flags); 1353 } 1354 } 1355 WARN_ON(dev->features & NETIF_F_LRO); 1356 } 1357 EXPORT_SYMBOL(dev_disable_lro); 1358 1359 1360 static int dev_boot_phase = 1; 1361 1362 /* 1363 * Device change register/unregister. These are not inline or static 1364 * as we export them to the world. 1365 */ 1366 1367 /** 1368 * register_netdevice_notifier - register a network notifier block 1369 * @nb: notifier 1370 * 1371 * Register a notifier to be called when network device events occur. 1372 * The notifier passed is linked into the kernel structures and must 1373 * not be reused until it has been unregistered. A negative errno code 1374 * is returned on a failure. 1375 * 1376 * When registered all registration and up events are replayed 1377 * to the new notifier to allow device to have a race free 1378 * view of the network device list. 1379 */ 1380 1381 int register_netdevice_notifier(struct notifier_block *nb) 1382 { 1383 struct net_device *dev; 1384 struct net_device *last; 1385 struct net *net; 1386 int err; 1387 1388 rtnl_lock(); 1389 err = raw_notifier_chain_register(&netdev_chain, nb); 1390 if (err) 1391 goto unlock; 1392 if (dev_boot_phase) 1393 goto unlock; 1394 for_each_net(net) { 1395 for_each_netdev(net, dev) { 1396 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1397 err = notifier_to_errno(err); 1398 if (err) 1399 goto rollback; 1400 1401 if (!(dev->flags & IFF_UP)) 1402 continue; 1403 1404 nb->notifier_call(nb, NETDEV_UP, dev); 1405 } 1406 } 1407 1408 unlock: 1409 rtnl_unlock(); 1410 return err; 1411 1412 rollback: 1413 last = dev; 1414 for_each_net(net) { 1415 for_each_netdev(net, dev) { 1416 if (dev == last) 1417 break; 1418 1419 if (dev->flags & IFF_UP) { 1420 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1421 nb->notifier_call(nb, NETDEV_DOWN, dev); 1422 } 1423 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1424 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1425 } 1426 } 1427 1428 raw_notifier_chain_unregister(&netdev_chain, nb); 1429 goto unlock; 1430 } 1431 EXPORT_SYMBOL(register_netdevice_notifier); 1432 1433 /** 1434 * unregister_netdevice_notifier - unregister a network notifier block 1435 * @nb: notifier 1436 * 1437 * Unregister a notifier previously registered by 1438 * register_netdevice_notifier(). The notifier is unlinked into the 1439 * kernel structures and may then be reused. A negative errno code 1440 * is returned on a failure. 1441 */ 1442 1443 int unregister_netdevice_notifier(struct notifier_block *nb) 1444 { 1445 int err; 1446 1447 rtnl_lock(); 1448 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1449 rtnl_unlock(); 1450 return err; 1451 } 1452 EXPORT_SYMBOL(unregister_netdevice_notifier); 1453 1454 /** 1455 * call_netdevice_notifiers - call all network notifier blocks 1456 * @val: value passed unmodified to notifier function 1457 * @dev: net_device pointer passed unmodified to notifier function 1458 * 1459 * Call all network notifier blocks. Parameters and return value 1460 * are as for raw_notifier_call_chain(). 1461 */ 1462 1463 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1464 { 1465 ASSERT_RTNL(); 1466 return raw_notifier_call_chain(&netdev_chain, val, dev); 1467 } 1468 1469 /* When > 0 there are consumers of rx skb time stamps */ 1470 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1471 1472 void net_enable_timestamp(void) 1473 { 1474 atomic_inc(&netstamp_needed); 1475 } 1476 EXPORT_SYMBOL(net_enable_timestamp); 1477 1478 void net_disable_timestamp(void) 1479 { 1480 atomic_dec(&netstamp_needed); 1481 } 1482 EXPORT_SYMBOL(net_disable_timestamp); 1483 1484 static inline void net_timestamp_set(struct sk_buff *skb) 1485 { 1486 if (atomic_read(&netstamp_needed)) 1487 __net_timestamp(skb); 1488 else 1489 skb->tstamp.tv64 = 0; 1490 } 1491 1492 static inline void net_timestamp_check(struct sk_buff *skb) 1493 { 1494 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed)) 1495 __net_timestamp(skb); 1496 } 1497 1498 /** 1499 * dev_forward_skb - loopback an skb to another netif 1500 * 1501 * @dev: destination network device 1502 * @skb: buffer to forward 1503 * 1504 * return values: 1505 * NET_RX_SUCCESS (no congestion) 1506 * NET_RX_DROP (packet was dropped, but freed) 1507 * 1508 * dev_forward_skb can be used for injecting an skb from the 1509 * start_xmit function of one device into the receive queue 1510 * of another device. 1511 * 1512 * The receiving device may be in another namespace, so 1513 * we have to clear all information in the skb that could 1514 * impact namespace isolation. 1515 */ 1516 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1517 { 1518 skb_orphan(skb); 1519 nf_reset(skb); 1520 1521 if (unlikely(!(dev->flags & IFF_UP) || 1522 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) { 1523 atomic_long_inc(&dev->rx_dropped); 1524 kfree_skb(skb); 1525 return NET_RX_DROP; 1526 } 1527 skb_set_dev(skb, dev); 1528 skb->tstamp.tv64 = 0; 1529 skb->pkt_type = PACKET_HOST; 1530 skb->protocol = eth_type_trans(skb, dev); 1531 return netif_rx(skb); 1532 } 1533 EXPORT_SYMBOL_GPL(dev_forward_skb); 1534 1535 static inline int deliver_skb(struct sk_buff *skb, 1536 struct packet_type *pt_prev, 1537 struct net_device *orig_dev) 1538 { 1539 atomic_inc(&skb->users); 1540 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1541 } 1542 1543 /* 1544 * Support routine. Sends outgoing frames to any network 1545 * taps currently in use. 1546 */ 1547 1548 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1549 { 1550 struct packet_type *ptype; 1551 struct sk_buff *skb2 = NULL; 1552 struct packet_type *pt_prev = NULL; 1553 1554 rcu_read_lock(); 1555 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1556 /* Never send packets back to the socket 1557 * they originated from - MvS (miquels@drinkel.ow.org) 1558 */ 1559 if ((ptype->dev == dev || !ptype->dev) && 1560 (ptype->af_packet_priv == NULL || 1561 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1562 if (pt_prev) { 1563 deliver_skb(skb2, pt_prev, skb->dev); 1564 pt_prev = ptype; 1565 continue; 1566 } 1567 1568 skb2 = skb_clone(skb, GFP_ATOMIC); 1569 if (!skb2) 1570 break; 1571 1572 net_timestamp_set(skb2); 1573 1574 /* skb->nh should be correctly 1575 set by sender, so that the second statement is 1576 just protection against buggy protocols. 1577 */ 1578 skb_reset_mac_header(skb2); 1579 1580 if (skb_network_header(skb2) < skb2->data || 1581 skb2->network_header > skb2->tail) { 1582 if (net_ratelimit()) 1583 printk(KERN_CRIT "protocol %04x is " 1584 "buggy, dev %s\n", 1585 ntohs(skb2->protocol), 1586 dev->name); 1587 skb_reset_network_header(skb2); 1588 } 1589 1590 skb2->transport_header = skb2->network_header; 1591 skb2->pkt_type = PACKET_OUTGOING; 1592 pt_prev = ptype; 1593 } 1594 } 1595 if (pt_prev) 1596 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1597 rcu_read_unlock(); 1598 } 1599 1600 /* 1601 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1602 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1603 */ 1604 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1605 { 1606 int rc; 1607 1608 if (txq < 1 || txq > dev->num_tx_queues) 1609 return -EINVAL; 1610 1611 if (dev->reg_state == NETREG_REGISTERED) { 1612 ASSERT_RTNL(); 1613 1614 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1615 txq); 1616 if (rc) 1617 return rc; 1618 1619 if (txq < dev->real_num_tx_queues) 1620 qdisc_reset_all_tx_gt(dev, txq); 1621 } 1622 1623 dev->real_num_tx_queues = txq; 1624 return 0; 1625 } 1626 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1627 1628 #ifdef CONFIG_RPS 1629 /** 1630 * netif_set_real_num_rx_queues - set actual number of RX queues used 1631 * @dev: Network device 1632 * @rxq: Actual number of RX queues 1633 * 1634 * This must be called either with the rtnl_lock held or before 1635 * registration of the net device. Returns 0 on success, or a 1636 * negative error code. If called before registration, it always 1637 * succeeds. 1638 */ 1639 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1640 { 1641 int rc; 1642 1643 if (rxq < 1 || rxq > dev->num_rx_queues) 1644 return -EINVAL; 1645 1646 if (dev->reg_state == NETREG_REGISTERED) { 1647 ASSERT_RTNL(); 1648 1649 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1650 rxq); 1651 if (rc) 1652 return rc; 1653 } 1654 1655 dev->real_num_rx_queues = rxq; 1656 return 0; 1657 } 1658 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1659 #endif 1660 1661 static inline void __netif_reschedule(struct Qdisc *q) 1662 { 1663 struct softnet_data *sd; 1664 unsigned long flags; 1665 1666 local_irq_save(flags); 1667 sd = &__get_cpu_var(softnet_data); 1668 q->next_sched = NULL; 1669 *sd->output_queue_tailp = q; 1670 sd->output_queue_tailp = &q->next_sched; 1671 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1672 local_irq_restore(flags); 1673 } 1674 1675 void __netif_schedule(struct Qdisc *q) 1676 { 1677 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1678 __netif_reschedule(q); 1679 } 1680 EXPORT_SYMBOL(__netif_schedule); 1681 1682 void dev_kfree_skb_irq(struct sk_buff *skb) 1683 { 1684 if (atomic_dec_and_test(&skb->users)) { 1685 struct softnet_data *sd; 1686 unsigned long flags; 1687 1688 local_irq_save(flags); 1689 sd = &__get_cpu_var(softnet_data); 1690 skb->next = sd->completion_queue; 1691 sd->completion_queue = skb; 1692 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1693 local_irq_restore(flags); 1694 } 1695 } 1696 EXPORT_SYMBOL(dev_kfree_skb_irq); 1697 1698 void dev_kfree_skb_any(struct sk_buff *skb) 1699 { 1700 if (in_irq() || irqs_disabled()) 1701 dev_kfree_skb_irq(skb); 1702 else 1703 dev_kfree_skb(skb); 1704 } 1705 EXPORT_SYMBOL(dev_kfree_skb_any); 1706 1707 1708 /** 1709 * netif_device_detach - mark device as removed 1710 * @dev: network device 1711 * 1712 * Mark device as removed from system and therefore no longer available. 1713 */ 1714 void netif_device_detach(struct net_device *dev) 1715 { 1716 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1717 netif_running(dev)) { 1718 netif_tx_stop_all_queues(dev); 1719 } 1720 } 1721 EXPORT_SYMBOL(netif_device_detach); 1722 1723 /** 1724 * netif_device_attach - mark device as attached 1725 * @dev: network device 1726 * 1727 * Mark device as attached from system and restart if needed. 1728 */ 1729 void netif_device_attach(struct net_device *dev) 1730 { 1731 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1732 netif_running(dev)) { 1733 netif_tx_wake_all_queues(dev); 1734 __netdev_watchdog_up(dev); 1735 } 1736 } 1737 EXPORT_SYMBOL(netif_device_attach); 1738 1739 /** 1740 * skb_dev_set -- assign a new device to a buffer 1741 * @skb: buffer for the new device 1742 * @dev: network device 1743 * 1744 * If an skb is owned by a device already, we have to reset 1745 * all data private to the namespace a device belongs to 1746 * before assigning it a new device. 1747 */ 1748 #ifdef CONFIG_NET_NS 1749 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1750 { 1751 skb_dst_drop(skb); 1752 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1753 secpath_reset(skb); 1754 nf_reset(skb); 1755 skb_init_secmark(skb); 1756 skb->mark = 0; 1757 skb->priority = 0; 1758 skb->nf_trace = 0; 1759 skb->ipvs_property = 0; 1760 #ifdef CONFIG_NET_SCHED 1761 skb->tc_index = 0; 1762 #endif 1763 } 1764 skb->dev = dev; 1765 } 1766 EXPORT_SYMBOL(skb_set_dev); 1767 #endif /* CONFIG_NET_NS */ 1768 1769 /* 1770 * Invalidate hardware checksum when packet is to be mangled, and 1771 * complete checksum manually on outgoing path. 1772 */ 1773 int skb_checksum_help(struct sk_buff *skb) 1774 { 1775 __wsum csum; 1776 int ret = 0, offset; 1777 1778 if (skb->ip_summed == CHECKSUM_COMPLETE) 1779 goto out_set_summed; 1780 1781 if (unlikely(skb_shinfo(skb)->gso_size)) { 1782 /* Let GSO fix up the checksum. */ 1783 goto out_set_summed; 1784 } 1785 1786 offset = skb_checksum_start_offset(skb); 1787 BUG_ON(offset >= skb_headlen(skb)); 1788 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1789 1790 offset += skb->csum_offset; 1791 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1792 1793 if (skb_cloned(skb) && 1794 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1795 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1796 if (ret) 1797 goto out; 1798 } 1799 1800 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1801 out_set_summed: 1802 skb->ip_summed = CHECKSUM_NONE; 1803 out: 1804 return ret; 1805 } 1806 EXPORT_SYMBOL(skb_checksum_help); 1807 1808 /** 1809 * skb_gso_segment - Perform segmentation on skb. 1810 * @skb: buffer to segment 1811 * @features: features for the output path (see dev->features) 1812 * 1813 * This function segments the given skb and returns a list of segments. 1814 * 1815 * It may return NULL if the skb requires no segmentation. This is 1816 * only possible when GSO is used for verifying header integrity. 1817 */ 1818 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1819 { 1820 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1821 struct packet_type *ptype; 1822 __be16 type = skb->protocol; 1823 int vlan_depth = ETH_HLEN; 1824 int err; 1825 1826 while (type == htons(ETH_P_8021Q)) { 1827 struct vlan_hdr *vh; 1828 1829 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1830 return ERR_PTR(-EINVAL); 1831 1832 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1833 type = vh->h_vlan_encapsulated_proto; 1834 vlan_depth += VLAN_HLEN; 1835 } 1836 1837 skb_reset_mac_header(skb); 1838 skb->mac_len = skb->network_header - skb->mac_header; 1839 __skb_pull(skb, skb->mac_len); 1840 1841 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1842 struct net_device *dev = skb->dev; 1843 struct ethtool_drvinfo info = {}; 1844 1845 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1846 dev->ethtool_ops->get_drvinfo(dev, &info); 1847 1848 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n", 1849 info.driver, dev ? dev->features : 0L, 1850 skb->sk ? skb->sk->sk_route_caps : 0L, 1851 skb->len, skb->data_len, skb->ip_summed); 1852 1853 if (skb_header_cloned(skb) && 1854 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1855 return ERR_PTR(err); 1856 } 1857 1858 rcu_read_lock(); 1859 list_for_each_entry_rcu(ptype, 1860 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1861 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1862 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1863 err = ptype->gso_send_check(skb); 1864 segs = ERR_PTR(err); 1865 if (err || skb_gso_ok(skb, features)) 1866 break; 1867 __skb_push(skb, (skb->data - 1868 skb_network_header(skb))); 1869 } 1870 segs = ptype->gso_segment(skb, features); 1871 break; 1872 } 1873 } 1874 rcu_read_unlock(); 1875 1876 __skb_push(skb, skb->data - skb_mac_header(skb)); 1877 1878 return segs; 1879 } 1880 EXPORT_SYMBOL(skb_gso_segment); 1881 1882 /* Take action when hardware reception checksum errors are detected. */ 1883 #ifdef CONFIG_BUG 1884 void netdev_rx_csum_fault(struct net_device *dev) 1885 { 1886 if (net_ratelimit()) { 1887 printk(KERN_ERR "%s: hw csum failure.\n", 1888 dev ? dev->name : "<unknown>"); 1889 dump_stack(); 1890 } 1891 } 1892 EXPORT_SYMBOL(netdev_rx_csum_fault); 1893 #endif 1894 1895 /* Actually, we should eliminate this check as soon as we know, that: 1896 * 1. IOMMU is present and allows to map all the memory. 1897 * 2. No high memory really exists on this machine. 1898 */ 1899 1900 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1901 { 1902 #ifdef CONFIG_HIGHMEM 1903 int i; 1904 if (!(dev->features & NETIF_F_HIGHDMA)) { 1905 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1906 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1907 return 1; 1908 } 1909 1910 if (PCI_DMA_BUS_IS_PHYS) { 1911 struct device *pdev = dev->dev.parent; 1912 1913 if (!pdev) 1914 return 0; 1915 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1916 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page); 1917 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 1918 return 1; 1919 } 1920 } 1921 #endif 1922 return 0; 1923 } 1924 1925 struct dev_gso_cb { 1926 void (*destructor)(struct sk_buff *skb); 1927 }; 1928 1929 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1930 1931 static void dev_gso_skb_destructor(struct sk_buff *skb) 1932 { 1933 struct dev_gso_cb *cb; 1934 1935 do { 1936 struct sk_buff *nskb = skb->next; 1937 1938 skb->next = nskb->next; 1939 nskb->next = NULL; 1940 kfree_skb(nskb); 1941 } while (skb->next); 1942 1943 cb = DEV_GSO_CB(skb); 1944 if (cb->destructor) 1945 cb->destructor(skb); 1946 } 1947 1948 /** 1949 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1950 * @skb: buffer to segment 1951 * @features: device features as applicable to this skb 1952 * 1953 * This function segments the given skb and stores the list of segments 1954 * in skb->next. 1955 */ 1956 static int dev_gso_segment(struct sk_buff *skb, int features) 1957 { 1958 struct sk_buff *segs; 1959 1960 segs = skb_gso_segment(skb, features); 1961 1962 /* Verifying header integrity only. */ 1963 if (!segs) 1964 return 0; 1965 1966 if (IS_ERR(segs)) 1967 return PTR_ERR(segs); 1968 1969 skb->next = segs; 1970 DEV_GSO_CB(skb)->destructor = skb->destructor; 1971 skb->destructor = dev_gso_skb_destructor; 1972 1973 return 0; 1974 } 1975 1976 /* 1977 * Try to orphan skb early, right before transmission by the device. 1978 * We cannot orphan skb if tx timestamp is requested or the sk-reference 1979 * is needed on driver level for other reasons, e.g. see net/can/raw.c 1980 */ 1981 static inline void skb_orphan_try(struct sk_buff *skb) 1982 { 1983 struct sock *sk = skb->sk; 1984 1985 if (sk && !skb_shinfo(skb)->tx_flags) { 1986 /* skb_tx_hash() wont be able to get sk. 1987 * We copy sk_hash into skb->rxhash 1988 */ 1989 if (!skb->rxhash) 1990 skb->rxhash = sk->sk_hash; 1991 skb_orphan(skb); 1992 } 1993 } 1994 1995 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1996 { 1997 return ((features & NETIF_F_GEN_CSUM) || 1998 ((features & NETIF_F_V4_CSUM) && 1999 protocol == htons(ETH_P_IP)) || 2000 ((features & NETIF_F_V6_CSUM) && 2001 protocol == htons(ETH_P_IPV6)) || 2002 ((features & NETIF_F_FCOE_CRC) && 2003 protocol == htons(ETH_P_FCOE))); 2004 } 2005 2006 static int harmonize_features(struct sk_buff *skb, __be16 protocol, int features) 2007 { 2008 if (!can_checksum_protocol(features, protocol)) { 2009 features &= ~NETIF_F_ALL_CSUM; 2010 features &= ~NETIF_F_SG; 2011 } else if (illegal_highdma(skb->dev, skb)) { 2012 features &= ~NETIF_F_SG; 2013 } 2014 2015 return features; 2016 } 2017 2018 int netif_skb_features(struct sk_buff *skb) 2019 { 2020 __be16 protocol = skb->protocol; 2021 int features = skb->dev->features; 2022 2023 if (protocol == htons(ETH_P_8021Q)) { 2024 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2025 protocol = veh->h_vlan_encapsulated_proto; 2026 } else if (!vlan_tx_tag_present(skb)) { 2027 return harmonize_features(skb, protocol, features); 2028 } 2029 2030 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2031 2032 if (protocol != htons(ETH_P_8021Q)) { 2033 return harmonize_features(skb, protocol, features); 2034 } else { 2035 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2036 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2037 return harmonize_features(skb, protocol, features); 2038 } 2039 } 2040 EXPORT_SYMBOL(netif_skb_features); 2041 2042 /* 2043 * Returns true if either: 2044 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2045 * 2. skb is fragmented and the device does not support SG, or if 2046 * at least one of fragments is in highmem and device does not 2047 * support DMA from it. 2048 */ 2049 static inline int skb_needs_linearize(struct sk_buff *skb, 2050 int features) 2051 { 2052 return skb_is_nonlinear(skb) && 2053 ((skb_has_frag_list(skb) && 2054 !(features & NETIF_F_FRAGLIST)) || 2055 (skb_shinfo(skb)->nr_frags && 2056 !(features & NETIF_F_SG))); 2057 } 2058 2059 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2060 struct netdev_queue *txq) 2061 { 2062 const struct net_device_ops *ops = dev->netdev_ops; 2063 int rc = NETDEV_TX_OK; 2064 2065 if (likely(!skb->next)) { 2066 int features; 2067 2068 /* 2069 * If device doesnt need skb->dst, release it right now while 2070 * its hot in this cpu cache 2071 */ 2072 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2073 skb_dst_drop(skb); 2074 2075 if (!list_empty(&ptype_all)) 2076 dev_queue_xmit_nit(skb, dev); 2077 2078 skb_orphan_try(skb); 2079 2080 features = netif_skb_features(skb); 2081 2082 if (vlan_tx_tag_present(skb) && 2083 !(features & NETIF_F_HW_VLAN_TX)) { 2084 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2085 if (unlikely(!skb)) 2086 goto out; 2087 2088 skb->vlan_tci = 0; 2089 } 2090 2091 if (netif_needs_gso(skb, features)) { 2092 if (unlikely(dev_gso_segment(skb, features))) 2093 goto out_kfree_skb; 2094 if (skb->next) 2095 goto gso; 2096 } else { 2097 if (skb_needs_linearize(skb, features) && 2098 __skb_linearize(skb)) 2099 goto out_kfree_skb; 2100 2101 /* If packet is not checksummed and device does not 2102 * support checksumming for this protocol, complete 2103 * checksumming here. 2104 */ 2105 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2106 skb_set_transport_header(skb, 2107 skb_checksum_start_offset(skb)); 2108 if (!(features & NETIF_F_ALL_CSUM) && 2109 skb_checksum_help(skb)) 2110 goto out_kfree_skb; 2111 } 2112 } 2113 2114 rc = ops->ndo_start_xmit(skb, dev); 2115 trace_net_dev_xmit(skb, rc); 2116 if (rc == NETDEV_TX_OK) 2117 txq_trans_update(txq); 2118 return rc; 2119 } 2120 2121 gso: 2122 do { 2123 struct sk_buff *nskb = skb->next; 2124 2125 skb->next = nskb->next; 2126 nskb->next = NULL; 2127 2128 /* 2129 * If device doesnt need nskb->dst, release it right now while 2130 * its hot in this cpu cache 2131 */ 2132 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2133 skb_dst_drop(nskb); 2134 2135 rc = ops->ndo_start_xmit(nskb, dev); 2136 trace_net_dev_xmit(nskb, rc); 2137 if (unlikely(rc != NETDEV_TX_OK)) { 2138 if (rc & ~NETDEV_TX_MASK) 2139 goto out_kfree_gso_skb; 2140 nskb->next = skb->next; 2141 skb->next = nskb; 2142 return rc; 2143 } 2144 txq_trans_update(txq); 2145 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 2146 return NETDEV_TX_BUSY; 2147 } while (skb->next); 2148 2149 out_kfree_gso_skb: 2150 if (likely(skb->next == NULL)) 2151 skb->destructor = DEV_GSO_CB(skb)->destructor; 2152 out_kfree_skb: 2153 kfree_skb(skb); 2154 out: 2155 return rc; 2156 } 2157 2158 static u32 hashrnd __read_mostly; 2159 2160 /* 2161 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2162 * to be used as a distribution range. 2163 */ 2164 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2165 unsigned int num_tx_queues) 2166 { 2167 u32 hash; 2168 2169 if (skb_rx_queue_recorded(skb)) { 2170 hash = skb_get_rx_queue(skb); 2171 while (unlikely(hash >= num_tx_queues)) 2172 hash -= num_tx_queues; 2173 return hash; 2174 } 2175 2176 if (skb->sk && skb->sk->sk_hash) 2177 hash = skb->sk->sk_hash; 2178 else 2179 hash = (__force u16) skb->protocol ^ skb->rxhash; 2180 hash = jhash_1word(hash, hashrnd); 2181 2182 return (u16) (((u64) hash * num_tx_queues) >> 32); 2183 } 2184 EXPORT_SYMBOL(__skb_tx_hash); 2185 2186 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2187 { 2188 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2189 if (net_ratelimit()) { 2190 pr_warning("%s selects TX queue %d, but " 2191 "real number of TX queues is %d\n", 2192 dev->name, queue_index, dev->real_num_tx_queues); 2193 } 2194 return 0; 2195 } 2196 return queue_index; 2197 } 2198 2199 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2200 { 2201 #ifdef CONFIG_XPS 2202 struct xps_dev_maps *dev_maps; 2203 struct xps_map *map; 2204 int queue_index = -1; 2205 2206 rcu_read_lock(); 2207 dev_maps = rcu_dereference(dev->xps_maps); 2208 if (dev_maps) { 2209 map = rcu_dereference( 2210 dev_maps->cpu_map[raw_smp_processor_id()]); 2211 if (map) { 2212 if (map->len == 1) 2213 queue_index = map->queues[0]; 2214 else { 2215 u32 hash; 2216 if (skb->sk && skb->sk->sk_hash) 2217 hash = skb->sk->sk_hash; 2218 else 2219 hash = (__force u16) skb->protocol ^ 2220 skb->rxhash; 2221 hash = jhash_1word(hash, hashrnd); 2222 queue_index = map->queues[ 2223 ((u64)hash * map->len) >> 32]; 2224 } 2225 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2226 queue_index = -1; 2227 } 2228 } 2229 rcu_read_unlock(); 2230 2231 return queue_index; 2232 #else 2233 return -1; 2234 #endif 2235 } 2236 2237 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2238 struct sk_buff *skb) 2239 { 2240 int queue_index; 2241 const struct net_device_ops *ops = dev->netdev_ops; 2242 2243 if (dev->real_num_tx_queues == 1) 2244 queue_index = 0; 2245 else if (ops->ndo_select_queue) { 2246 queue_index = ops->ndo_select_queue(dev, skb); 2247 queue_index = dev_cap_txqueue(dev, queue_index); 2248 } else { 2249 struct sock *sk = skb->sk; 2250 queue_index = sk_tx_queue_get(sk); 2251 2252 if (queue_index < 0 || skb->ooo_okay || 2253 queue_index >= dev->real_num_tx_queues) { 2254 int old_index = queue_index; 2255 2256 queue_index = get_xps_queue(dev, skb); 2257 if (queue_index < 0) 2258 queue_index = skb_tx_hash(dev, skb); 2259 2260 if (queue_index != old_index && sk) { 2261 struct dst_entry *dst = 2262 rcu_dereference_check(sk->sk_dst_cache, 1); 2263 2264 if (dst && skb_dst(skb) == dst) 2265 sk_tx_queue_set(sk, queue_index); 2266 } 2267 } 2268 } 2269 2270 skb_set_queue_mapping(skb, queue_index); 2271 return netdev_get_tx_queue(dev, queue_index); 2272 } 2273 2274 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2275 struct net_device *dev, 2276 struct netdev_queue *txq) 2277 { 2278 spinlock_t *root_lock = qdisc_lock(q); 2279 bool contended = qdisc_is_running(q); 2280 int rc; 2281 2282 /* 2283 * Heuristic to force contended enqueues to serialize on a 2284 * separate lock before trying to get qdisc main lock. 2285 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2286 * and dequeue packets faster. 2287 */ 2288 if (unlikely(contended)) 2289 spin_lock(&q->busylock); 2290 2291 spin_lock(root_lock); 2292 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2293 kfree_skb(skb); 2294 rc = NET_XMIT_DROP; 2295 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2296 qdisc_run_begin(q)) { 2297 /* 2298 * This is a work-conserving queue; there are no old skbs 2299 * waiting to be sent out; and the qdisc is not running - 2300 * xmit the skb directly. 2301 */ 2302 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2303 skb_dst_force(skb); 2304 2305 qdisc_skb_cb(skb)->pkt_len = skb->len; 2306 qdisc_bstats_update(q, skb); 2307 2308 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2309 if (unlikely(contended)) { 2310 spin_unlock(&q->busylock); 2311 contended = false; 2312 } 2313 __qdisc_run(q); 2314 } else 2315 qdisc_run_end(q); 2316 2317 rc = NET_XMIT_SUCCESS; 2318 } else { 2319 skb_dst_force(skb); 2320 rc = qdisc_enqueue_root(skb, q); 2321 if (qdisc_run_begin(q)) { 2322 if (unlikely(contended)) { 2323 spin_unlock(&q->busylock); 2324 contended = false; 2325 } 2326 __qdisc_run(q); 2327 } 2328 } 2329 spin_unlock(root_lock); 2330 if (unlikely(contended)) 2331 spin_unlock(&q->busylock); 2332 return rc; 2333 } 2334 2335 static DEFINE_PER_CPU(int, xmit_recursion); 2336 #define RECURSION_LIMIT 10 2337 2338 /** 2339 * dev_queue_xmit - transmit a buffer 2340 * @skb: buffer to transmit 2341 * 2342 * Queue a buffer for transmission to a network device. The caller must 2343 * have set the device and priority and built the buffer before calling 2344 * this function. The function can be called from an interrupt. 2345 * 2346 * A negative errno code is returned on a failure. A success does not 2347 * guarantee the frame will be transmitted as it may be dropped due 2348 * to congestion or traffic shaping. 2349 * 2350 * ----------------------------------------------------------------------------------- 2351 * I notice this method can also return errors from the queue disciplines, 2352 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2353 * be positive. 2354 * 2355 * Regardless of the return value, the skb is consumed, so it is currently 2356 * difficult to retry a send to this method. (You can bump the ref count 2357 * before sending to hold a reference for retry if you are careful.) 2358 * 2359 * When calling this method, interrupts MUST be enabled. This is because 2360 * the BH enable code must have IRQs enabled so that it will not deadlock. 2361 * --BLG 2362 */ 2363 int dev_queue_xmit(struct sk_buff *skb) 2364 { 2365 struct net_device *dev = skb->dev; 2366 struct netdev_queue *txq; 2367 struct Qdisc *q; 2368 int rc = -ENOMEM; 2369 2370 /* Disable soft irqs for various locks below. Also 2371 * stops preemption for RCU. 2372 */ 2373 rcu_read_lock_bh(); 2374 2375 txq = dev_pick_tx(dev, skb); 2376 q = rcu_dereference_bh(txq->qdisc); 2377 2378 #ifdef CONFIG_NET_CLS_ACT 2379 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2380 #endif 2381 trace_net_dev_queue(skb); 2382 if (q->enqueue) { 2383 rc = __dev_xmit_skb(skb, q, dev, txq); 2384 goto out; 2385 } 2386 2387 /* The device has no queue. Common case for software devices: 2388 loopback, all the sorts of tunnels... 2389 2390 Really, it is unlikely that netif_tx_lock protection is necessary 2391 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2392 counters.) 2393 However, it is possible, that they rely on protection 2394 made by us here. 2395 2396 Check this and shot the lock. It is not prone from deadlocks. 2397 Either shot noqueue qdisc, it is even simpler 8) 2398 */ 2399 if (dev->flags & IFF_UP) { 2400 int cpu = smp_processor_id(); /* ok because BHs are off */ 2401 2402 if (txq->xmit_lock_owner != cpu) { 2403 2404 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2405 goto recursion_alert; 2406 2407 HARD_TX_LOCK(dev, txq, cpu); 2408 2409 if (!netif_tx_queue_stopped(txq)) { 2410 __this_cpu_inc(xmit_recursion); 2411 rc = dev_hard_start_xmit(skb, dev, txq); 2412 __this_cpu_dec(xmit_recursion); 2413 if (dev_xmit_complete(rc)) { 2414 HARD_TX_UNLOCK(dev, txq); 2415 goto out; 2416 } 2417 } 2418 HARD_TX_UNLOCK(dev, txq); 2419 if (net_ratelimit()) 2420 printk(KERN_CRIT "Virtual device %s asks to " 2421 "queue packet!\n", dev->name); 2422 } else { 2423 /* Recursion is detected! It is possible, 2424 * unfortunately 2425 */ 2426 recursion_alert: 2427 if (net_ratelimit()) 2428 printk(KERN_CRIT "Dead loop on virtual device " 2429 "%s, fix it urgently!\n", dev->name); 2430 } 2431 } 2432 2433 rc = -ENETDOWN; 2434 rcu_read_unlock_bh(); 2435 2436 kfree_skb(skb); 2437 return rc; 2438 out: 2439 rcu_read_unlock_bh(); 2440 return rc; 2441 } 2442 EXPORT_SYMBOL(dev_queue_xmit); 2443 2444 2445 /*======================================================================= 2446 Receiver routines 2447 =======================================================================*/ 2448 2449 int netdev_max_backlog __read_mostly = 1000; 2450 int netdev_tstamp_prequeue __read_mostly = 1; 2451 int netdev_budget __read_mostly = 300; 2452 int weight_p __read_mostly = 64; /* old backlog weight */ 2453 2454 /* Called with irq disabled */ 2455 static inline void ____napi_schedule(struct softnet_data *sd, 2456 struct napi_struct *napi) 2457 { 2458 list_add_tail(&napi->poll_list, &sd->poll_list); 2459 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2460 } 2461 2462 /* 2463 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2464 * and src/dst port numbers. Returns a non-zero hash number on success 2465 * and 0 on failure. 2466 */ 2467 __u32 __skb_get_rxhash(struct sk_buff *skb) 2468 { 2469 int nhoff, hash = 0, poff; 2470 struct ipv6hdr *ip6; 2471 struct iphdr *ip; 2472 u8 ip_proto; 2473 u32 addr1, addr2, ihl; 2474 union { 2475 u32 v32; 2476 u16 v16[2]; 2477 } ports; 2478 2479 nhoff = skb_network_offset(skb); 2480 2481 switch (skb->protocol) { 2482 case __constant_htons(ETH_P_IP): 2483 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff)) 2484 goto done; 2485 2486 ip = (struct iphdr *) (skb->data + nhoff); 2487 if (ip->frag_off & htons(IP_MF | IP_OFFSET)) 2488 ip_proto = 0; 2489 else 2490 ip_proto = ip->protocol; 2491 addr1 = (__force u32) ip->saddr; 2492 addr2 = (__force u32) ip->daddr; 2493 ihl = ip->ihl; 2494 break; 2495 case __constant_htons(ETH_P_IPV6): 2496 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff)) 2497 goto done; 2498 2499 ip6 = (struct ipv6hdr *) (skb->data + nhoff); 2500 ip_proto = ip6->nexthdr; 2501 addr1 = (__force u32) ip6->saddr.s6_addr32[3]; 2502 addr2 = (__force u32) ip6->daddr.s6_addr32[3]; 2503 ihl = (40 >> 2); 2504 break; 2505 default: 2506 goto done; 2507 } 2508 2509 ports.v32 = 0; 2510 poff = proto_ports_offset(ip_proto); 2511 if (poff >= 0) { 2512 nhoff += ihl * 4 + poff; 2513 if (pskb_may_pull(skb, nhoff + 4)) { 2514 ports.v32 = * (__force u32 *) (skb->data + nhoff); 2515 if (ports.v16[1] < ports.v16[0]) 2516 swap(ports.v16[0], ports.v16[1]); 2517 } 2518 } 2519 2520 /* get a consistent hash (same value on both flow directions) */ 2521 if (addr2 < addr1) 2522 swap(addr1, addr2); 2523 2524 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd); 2525 if (!hash) 2526 hash = 1; 2527 2528 done: 2529 return hash; 2530 } 2531 EXPORT_SYMBOL(__skb_get_rxhash); 2532 2533 #ifdef CONFIG_RPS 2534 2535 /* One global table that all flow-based protocols share. */ 2536 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2537 EXPORT_SYMBOL(rps_sock_flow_table); 2538 2539 /* 2540 * get_rps_cpu is called from netif_receive_skb and returns the target 2541 * CPU from the RPS map of the receiving queue for a given skb. 2542 * rcu_read_lock must be held on entry. 2543 */ 2544 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2545 struct rps_dev_flow **rflowp) 2546 { 2547 struct netdev_rx_queue *rxqueue; 2548 struct rps_map *map; 2549 struct rps_dev_flow_table *flow_table; 2550 struct rps_sock_flow_table *sock_flow_table; 2551 int cpu = -1; 2552 u16 tcpu; 2553 2554 if (skb_rx_queue_recorded(skb)) { 2555 u16 index = skb_get_rx_queue(skb); 2556 if (unlikely(index >= dev->real_num_rx_queues)) { 2557 WARN_ONCE(dev->real_num_rx_queues > 1, 2558 "%s received packet on queue %u, but number " 2559 "of RX queues is %u\n", 2560 dev->name, index, dev->real_num_rx_queues); 2561 goto done; 2562 } 2563 rxqueue = dev->_rx + index; 2564 } else 2565 rxqueue = dev->_rx; 2566 2567 map = rcu_dereference(rxqueue->rps_map); 2568 if (map) { 2569 if (map->len == 1 && 2570 !rcu_dereference_raw(rxqueue->rps_flow_table)) { 2571 tcpu = map->cpus[0]; 2572 if (cpu_online(tcpu)) 2573 cpu = tcpu; 2574 goto done; 2575 } 2576 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) { 2577 goto done; 2578 } 2579 2580 skb_reset_network_header(skb); 2581 if (!skb_get_rxhash(skb)) 2582 goto done; 2583 2584 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2585 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2586 if (flow_table && sock_flow_table) { 2587 u16 next_cpu; 2588 struct rps_dev_flow *rflow; 2589 2590 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2591 tcpu = rflow->cpu; 2592 2593 next_cpu = sock_flow_table->ents[skb->rxhash & 2594 sock_flow_table->mask]; 2595 2596 /* 2597 * If the desired CPU (where last recvmsg was done) is 2598 * different from current CPU (one in the rx-queue flow 2599 * table entry), switch if one of the following holds: 2600 * - Current CPU is unset (equal to RPS_NO_CPU). 2601 * - Current CPU is offline. 2602 * - The current CPU's queue tail has advanced beyond the 2603 * last packet that was enqueued using this table entry. 2604 * This guarantees that all previous packets for the flow 2605 * have been dequeued, thus preserving in order delivery. 2606 */ 2607 if (unlikely(tcpu != next_cpu) && 2608 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2609 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2610 rflow->last_qtail)) >= 0)) { 2611 tcpu = rflow->cpu = next_cpu; 2612 if (tcpu != RPS_NO_CPU) 2613 rflow->last_qtail = per_cpu(softnet_data, 2614 tcpu).input_queue_head; 2615 } 2616 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2617 *rflowp = rflow; 2618 cpu = tcpu; 2619 goto done; 2620 } 2621 } 2622 2623 if (map) { 2624 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2625 2626 if (cpu_online(tcpu)) { 2627 cpu = tcpu; 2628 goto done; 2629 } 2630 } 2631 2632 done: 2633 return cpu; 2634 } 2635 2636 /* Called from hardirq (IPI) context */ 2637 static void rps_trigger_softirq(void *data) 2638 { 2639 struct softnet_data *sd = data; 2640 2641 ____napi_schedule(sd, &sd->backlog); 2642 sd->received_rps++; 2643 } 2644 2645 #endif /* CONFIG_RPS */ 2646 2647 /* 2648 * Check if this softnet_data structure is another cpu one 2649 * If yes, queue it to our IPI list and return 1 2650 * If no, return 0 2651 */ 2652 static int rps_ipi_queued(struct softnet_data *sd) 2653 { 2654 #ifdef CONFIG_RPS 2655 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2656 2657 if (sd != mysd) { 2658 sd->rps_ipi_next = mysd->rps_ipi_list; 2659 mysd->rps_ipi_list = sd; 2660 2661 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2662 return 1; 2663 } 2664 #endif /* CONFIG_RPS */ 2665 return 0; 2666 } 2667 2668 /* 2669 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2670 * queue (may be a remote CPU queue). 2671 */ 2672 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2673 unsigned int *qtail) 2674 { 2675 struct softnet_data *sd; 2676 unsigned long flags; 2677 2678 sd = &per_cpu(softnet_data, cpu); 2679 2680 local_irq_save(flags); 2681 2682 rps_lock(sd); 2683 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2684 if (skb_queue_len(&sd->input_pkt_queue)) { 2685 enqueue: 2686 __skb_queue_tail(&sd->input_pkt_queue, skb); 2687 input_queue_tail_incr_save(sd, qtail); 2688 rps_unlock(sd); 2689 local_irq_restore(flags); 2690 return NET_RX_SUCCESS; 2691 } 2692 2693 /* Schedule NAPI for backlog device 2694 * We can use non atomic operation since we own the queue lock 2695 */ 2696 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2697 if (!rps_ipi_queued(sd)) 2698 ____napi_schedule(sd, &sd->backlog); 2699 } 2700 goto enqueue; 2701 } 2702 2703 sd->dropped++; 2704 rps_unlock(sd); 2705 2706 local_irq_restore(flags); 2707 2708 atomic_long_inc(&skb->dev->rx_dropped); 2709 kfree_skb(skb); 2710 return NET_RX_DROP; 2711 } 2712 2713 /** 2714 * netif_rx - post buffer to the network code 2715 * @skb: buffer to post 2716 * 2717 * This function receives a packet from a device driver and queues it for 2718 * the upper (protocol) levels to process. It always succeeds. The buffer 2719 * may be dropped during processing for congestion control or by the 2720 * protocol layers. 2721 * 2722 * return values: 2723 * NET_RX_SUCCESS (no congestion) 2724 * NET_RX_DROP (packet was dropped) 2725 * 2726 */ 2727 2728 int netif_rx(struct sk_buff *skb) 2729 { 2730 int ret; 2731 2732 /* if netpoll wants it, pretend we never saw it */ 2733 if (netpoll_rx(skb)) 2734 return NET_RX_DROP; 2735 2736 if (netdev_tstamp_prequeue) 2737 net_timestamp_check(skb); 2738 2739 trace_netif_rx(skb); 2740 #ifdef CONFIG_RPS 2741 { 2742 struct rps_dev_flow voidflow, *rflow = &voidflow; 2743 int cpu; 2744 2745 preempt_disable(); 2746 rcu_read_lock(); 2747 2748 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2749 if (cpu < 0) 2750 cpu = smp_processor_id(); 2751 2752 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2753 2754 rcu_read_unlock(); 2755 preempt_enable(); 2756 } 2757 #else 2758 { 2759 unsigned int qtail; 2760 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2761 put_cpu(); 2762 } 2763 #endif 2764 return ret; 2765 } 2766 EXPORT_SYMBOL(netif_rx); 2767 2768 int netif_rx_ni(struct sk_buff *skb) 2769 { 2770 int err; 2771 2772 preempt_disable(); 2773 err = netif_rx(skb); 2774 if (local_softirq_pending()) 2775 do_softirq(); 2776 preempt_enable(); 2777 2778 return err; 2779 } 2780 EXPORT_SYMBOL(netif_rx_ni); 2781 2782 static void net_tx_action(struct softirq_action *h) 2783 { 2784 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2785 2786 if (sd->completion_queue) { 2787 struct sk_buff *clist; 2788 2789 local_irq_disable(); 2790 clist = sd->completion_queue; 2791 sd->completion_queue = NULL; 2792 local_irq_enable(); 2793 2794 while (clist) { 2795 struct sk_buff *skb = clist; 2796 clist = clist->next; 2797 2798 WARN_ON(atomic_read(&skb->users)); 2799 trace_kfree_skb(skb, net_tx_action); 2800 __kfree_skb(skb); 2801 } 2802 } 2803 2804 if (sd->output_queue) { 2805 struct Qdisc *head; 2806 2807 local_irq_disable(); 2808 head = sd->output_queue; 2809 sd->output_queue = NULL; 2810 sd->output_queue_tailp = &sd->output_queue; 2811 local_irq_enable(); 2812 2813 while (head) { 2814 struct Qdisc *q = head; 2815 spinlock_t *root_lock; 2816 2817 head = head->next_sched; 2818 2819 root_lock = qdisc_lock(q); 2820 if (spin_trylock(root_lock)) { 2821 smp_mb__before_clear_bit(); 2822 clear_bit(__QDISC_STATE_SCHED, 2823 &q->state); 2824 qdisc_run(q); 2825 spin_unlock(root_lock); 2826 } else { 2827 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2828 &q->state)) { 2829 __netif_reschedule(q); 2830 } else { 2831 smp_mb__before_clear_bit(); 2832 clear_bit(__QDISC_STATE_SCHED, 2833 &q->state); 2834 } 2835 } 2836 } 2837 } 2838 } 2839 2840 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 2841 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 2842 /* This hook is defined here for ATM LANE */ 2843 int (*br_fdb_test_addr_hook)(struct net_device *dev, 2844 unsigned char *addr) __read_mostly; 2845 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2846 #endif 2847 2848 #ifdef CONFIG_NET_CLS_ACT 2849 /* TODO: Maybe we should just force sch_ingress to be compiled in 2850 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2851 * a compare and 2 stores extra right now if we dont have it on 2852 * but have CONFIG_NET_CLS_ACT 2853 * NOTE: This doesnt stop any functionality; if you dont have 2854 * the ingress scheduler, you just cant add policies on ingress. 2855 * 2856 */ 2857 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 2858 { 2859 struct net_device *dev = skb->dev; 2860 u32 ttl = G_TC_RTTL(skb->tc_verd); 2861 int result = TC_ACT_OK; 2862 struct Qdisc *q; 2863 2864 if (unlikely(MAX_RED_LOOP < ttl++)) { 2865 if (net_ratelimit()) 2866 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n", 2867 skb->skb_iif, dev->ifindex); 2868 return TC_ACT_SHOT; 2869 } 2870 2871 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2872 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2873 2874 q = rxq->qdisc; 2875 if (q != &noop_qdisc) { 2876 spin_lock(qdisc_lock(q)); 2877 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2878 result = qdisc_enqueue_root(skb, q); 2879 spin_unlock(qdisc_lock(q)); 2880 } 2881 2882 return result; 2883 } 2884 2885 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2886 struct packet_type **pt_prev, 2887 int *ret, struct net_device *orig_dev) 2888 { 2889 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 2890 2891 if (!rxq || rxq->qdisc == &noop_qdisc) 2892 goto out; 2893 2894 if (*pt_prev) { 2895 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2896 *pt_prev = NULL; 2897 } 2898 2899 switch (ing_filter(skb, rxq)) { 2900 case TC_ACT_SHOT: 2901 case TC_ACT_STOLEN: 2902 kfree_skb(skb); 2903 return NULL; 2904 } 2905 2906 out: 2907 skb->tc_verd = 0; 2908 return skb; 2909 } 2910 #endif 2911 2912 /** 2913 * netdev_rx_handler_register - register receive handler 2914 * @dev: device to register a handler for 2915 * @rx_handler: receive handler to register 2916 * @rx_handler_data: data pointer that is used by rx handler 2917 * 2918 * Register a receive hander for a device. This handler will then be 2919 * called from __netif_receive_skb. A negative errno code is returned 2920 * on a failure. 2921 * 2922 * The caller must hold the rtnl_mutex. 2923 */ 2924 int netdev_rx_handler_register(struct net_device *dev, 2925 rx_handler_func_t *rx_handler, 2926 void *rx_handler_data) 2927 { 2928 ASSERT_RTNL(); 2929 2930 if (dev->rx_handler) 2931 return -EBUSY; 2932 2933 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 2934 rcu_assign_pointer(dev->rx_handler, rx_handler); 2935 2936 return 0; 2937 } 2938 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 2939 2940 /** 2941 * netdev_rx_handler_unregister - unregister receive handler 2942 * @dev: device to unregister a handler from 2943 * 2944 * Unregister a receive hander from a device. 2945 * 2946 * The caller must hold the rtnl_mutex. 2947 */ 2948 void netdev_rx_handler_unregister(struct net_device *dev) 2949 { 2950 2951 ASSERT_RTNL(); 2952 rcu_assign_pointer(dev->rx_handler, NULL); 2953 rcu_assign_pointer(dev->rx_handler_data, NULL); 2954 } 2955 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 2956 2957 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb, 2958 struct net_device *master) 2959 { 2960 if (skb->pkt_type == PACKET_HOST) { 2961 u16 *dest = (u16 *) eth_hdr(skb)->h_dest; 2962 2963 memcpy(dest, master->dev_addr, ETH_ALEN); 2964 } 2965 } 2966 2967 /* On bonding slaves other than the currently active slave, suppress 2968 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and 2969 * ARP on active-backup slaves with arp_validate enabled. 2970 */ 2971 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master) 2972 { 2973 struct net_device *dev = skb->dev; 2974 2975 if (master->priv_flags & IFF_MASTER_ARPMON) 2976 dev->last_rx = jiffies; 2977 2978 if ((master->priv_flags & IFF_MASTER_ALB) && 2979 (master->priv_flags & IFF_BRIDGE_PORT)) { 2980 /* Do address unmangle. The local destination address 2981 * will be always the one master has. Provides the right 2982 * functionality in a bridge. 2983 */ 2984 skb_bond_set_mac_by_master(skb, master); 2985 } 2986 2987 if (dev->priv_flags & IFF_SLAVE_INACTIVE) { 2988 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) && 2989 skb->protocol == __cpu_to_be16(ETH_P_ARP)) 2990 return 0; 2991 2992 if (master->priv_flags & IFF_MASTER_ALB) { 2993 if (skb->pkt_type != PACKET_BROADCAST && 2994 skb->pkt_type != PACKET_MULTICAST) 2995 return 0; 2996 } 2997 if (master->priv_flags & IFF_MASTER_8023AD && 2998 skb->protocol == __cpu_to_be16(ETH_P_SLOW)) 2999 return 0; 3000 3001 return 1; 3002 } 3003 return 0; 3004 } 3005 EXPORT_SYMBOL(__skb_bond_should_drop); 3006 3007 static int __netif_receive_skb(struct sk_buff *skb) 3008 { 3009 struct packet_type *ptype, *pt_prev; 3010 rx_handler_func_t *rx_handler; 3011 struct net_device *orig_dev; 3012 struct net_device *master; 3013 struct net_device *null_or_orig; 3014 struct net_device *orig_or_bond; 3015 int ret = NET_RX_DROP; 3016 __be16 type; 3017 3018 if (!netdev_tstamp_prequeue) 3019 net_timestamp_check(skb); 3020 3021 trace_netif_receive_skb(skb); 3022 3023 /* if we've gotten here through NAPI, check netpoll */ 3024 if (netpoll_receive_skb(skb)) 3025 return NET_RX_DROP; 3026 3027 if (!skb->skb_iif) 3028 skb->skb_iif = skb->dev->ifindex; 3029 3030 /* 3031 * bonding note: skbs received on inactive slaves should only 3032 * be delivered to pkt handlers that are exact matches. Also 3033 * the deliver_no_wcard flag will be set. If packet handlers 3034 * are sensitive to duplicate packets these skbs will need to 3035 * be dropped at the handler. 3036 */ 3037 null_or_orig = NULL; 3038 orig_dev = skb->dev; 3039 master = ACCESS_ONCE(orig_dev->master); 3040 if (skb->deliver_no_wcard) 3041 null_or_orig = orig_dev; 3042 else if (master) { 3043 if (skb_bond_should_drop(skb, master)) { 3044 skb->deliver_no_wcard = 1; 3045 null_or_orig = orig_dev; /* deliver only exact match */ 3046 } else 3047 skb->dev = master; 3048 } 3049 3050 __this_cpu_inc(softnet_data.processed); 3051 skb_reset_network_header(skb); 3052 skb_reset_transport_header(skb); 3053 skb->mac_len = skb->network_header - skb->mac_header; 3054 3055 pt_prev = NULL; 3056 3057 rcu_read_lock(); 3058 3059 #ifdef CONFIG_NET_CLS_ACT 3060 if (skb->tc_verd & TC_NCLS) { 3061 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3062 goto ncls; 3063 } 3064 #endif 3065 3066 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3067 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 3068 ptype->dev == orig_dev) { 3069 if (pt_prev) 3070 ret = deliver_skb(skb, pt_prev, orig_dev); 3071 pt_prev = ptype; 3072 } 3073 } 3074 3075 #ifdef CONFIG_NET_CLS_ACT 3076 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3077 if (!skb) 3078 goto out; 3079 ncls: 3080 #endif 3081 3082 /* Handle special case of bridge or macvlan */ 3083 rx_handler = rcu_dereference(skb->dev->rx_handler); 3084 if (rx_handler) { 3085 if (pt_prev) { 3086 ret = deliver_skb(skb, pt_prev, orig_dev); 3087 pt_prev = NULL; 3088 } 3089 skb = rx_handler(skb); 3090 if (!skb) 3091 goto out; 3092 } 3093 3094 if (vlan_tx_tag_present(skb)) { 3095 if (pt_prev) { 3096 ret = deliver_skb(skb, pt_prev, orig_dev); 3097 pt_prev = NULL; 3098 } 3099 if (vlan_hwaccel_do_receive(&skb)) { 3100 ret = __netif_receive_skb(skb); 3101 goto out; 3102 } else if (unlikely(!skb)) 3103 goto out; 3104 } 3105 3106 /* 3107 * Make sure frames received on VLAN interfaces stacked on 3108 * bonding interfaces still make their way to any base bonding 3109 * device that may have registered for a specific ptype. The 3110 * handler may have to adjust skb->dev and orig_dev. 3111 */ 3112 orig_or_bond = orig_dev; 3113 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) && 3114 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) { 3115 orig_or_bond = vlan_dev_real_dev(skb->dev); 3116 } 3117 3118 type = skb->protocol; 3119 list_for_each_entry_rcu(ptype, 3120 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3121 if (ptype->type == type && (ptype->dev == null_or_orig || 3122 ptype->dev == skb->dev || ptype->dev == orig_dev || 3123 ptype->dev == orig_or_bond)) { 3124 if (pt_prev) 3125 ret = deliver_skb(skb, pt_prev, orig_dev); 3126 pt_prev = ptype; 3127 } 3128 } 3129 3130 if (pt_prev) { 3131 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3132 } else { 3133 atomic_long_inc(&skb->dev->rx_dropped); 3134 kfree_skb(skb); 3135 /* Jamal, now you will not able to escape explaining 3136 * me how you were going to use this. :-) 3137 */ 3138 ret = NET_RX_DROP; 3139 } 3140 3141 out: 3142 rcu_read_unlock(); 3143 return ret; 3144 } 3145 3146 /** 3147 * netif_receive_skb - process receive buffer from network 3148 * @skb: buffer to process 3149 * 3150 * netif_receive_skb() is the main receive data processing function. 3151 * It always succeeds. The buffer may be dropped during processing 3152 * for congestion control or by the protocol layers. 3153 * 3154 * This function may only be called from softirq context and interrupts 3155 * should be enabled. 3156 * 3157 * Return values (usually ignored): 3158 * NET_RX_SUCCESS: no congestion 3159 * NET_RX_DROP: packet was dropped 3160 */ 3161 int netif_receive_skb(struct sk_buff *skb) 3162 { 3163 if (netdev_tstamp_prequeue) 3164 net_timestamp_check(skb); 3165 3166 if (skb_defer_rx_timestamp(skb)) 3167 return NET_RX_SUCCESS; 3168 3169 #ifdef CONFIG_RPS 3170 { 3171 struct rps_dev_flow voidflow, *rflow = &voidflow; 3172 int cpu, ret; 3173 3174 rcu_read_lock(); 3175 3176 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3177 3178 if (cpu >= 0) { 3179 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3180 rcu_read_unlock(); 3181 } else { 3182 rcu_read_unlock(); 3183 ret = __netif_receive_skb(skb); 3184 } 3185 3186 return ret; 3187 } 3188 #else 3189 return __netif_receive_skb(skb); 3190 #endif 3191 } 3192 EXPORT_SYMBOL(netif_receive_skb); 3193 3194 /* Network device is going away, flush any packets still pending 3195 * Called with irqs disabled. 3196 */ 3197 static void flush_backlog(void *arg) 3198 { 3199 struct net_device *dev = arg; 3200 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3201 struct sk_buff *skb, *tmp; 3202 3203 rps_lock(sd); 3204 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3205 if (skb->dev == dev) { 3206 __skb_unlink(skb, &sd->input_pkt_queue); 3207 kfree_skb(skb); 3208 input_queue_head_incr(sd); 3209 } 3210 } 3211 rps_unlock(sd); 3212 3213 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3214 if (skb->dev == dev) { 3215 __skb_unlink(skb, &sd->process_queue); 3216 kfree_skb(skb); 3217 input_queue_head_incr(sd); 3218 } 3219 } 3220 } 3221 3222 static int napi_gro_complete(struct sk_buff *skb) 3223 { 3224 struct packet_type *ptype; 3225 __be16 type = skb->protocol; 3226 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3227 int err = -ENOENT; 3228 3229 if (NAPI_GRO_CB(skb)->count == 1) { 3230 skb_shinfo(skb)->gso_size = 0; 3231 goto out; 3232 } 3233 3234 rcu_read_lock(); 3235 list_for_each_entry_rcu(ptype, head, list) { 3236 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3237 continue; 3238 3239 err = ptype->gro_complete(skb); 3240 break; 3241 } 3242 rcu_read_unlock(); 3243 3244 if (err) { 3245 WARN_ON(&ptype->list == head); 3246 kfree_skb(skb); 3247 return NET_RX_SUCCESS; 3248 } 3249 3250 out: 3251 return netif_receive_skb(skb); 3252 } 3253 3254 inline void napi_gro_flush(struct napi_struct *napi) 3255 { 3256 struct sk_buff *skb, *next; 3257 3258 for (skb = napi->gro_list; skb; skb = next) { 3259 next = skb->next; 3260 skb->next = NULL; 3261 napi_gro_complete(skb); 3262 } 3263 3264 napi->gro_count = 0; 3265 napi->gro_list = NULL; 3266 } 3267 EXPORT_SYMBOL(napi_gro_flush); 3268 3269 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3270 { 3271 struct sk_buff **pp = NULL; 3272 struct packet_type *ptype; 3273 __be16 type = skb->protocol; 3274 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3275 int same_flow; 3276 int mac_len; 3277 enum gro_result ret; 3278 3279 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3280 goto normal; 3281 3282 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3283 goto normal; 3284 3285 rcu_read_lock(); 3286 list_for_each_entry_rcu(ptype, head, list) { 3287 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3288 continue; 3289 3290 skb_set_network_header(skb, skb_gro_offset(skb)); 3291 mac_len = skb->network_header - skb->mac_header; 3292 skb->mac_len = mac_len; 3293 NAPI_GRO_CB(skb)->same_flow = 0; 3294 NAPI_GRO_CB(skb)->flush = 0; 3295 NAPI_GRO_CB(skb)->free = 0; 3296 3297 pp = ptype->gro_receive(&napi->gro_list, skb); 3298 break; 3299 } 3300 rcu_read_unlock(); 3301 3302 if (&ptype->list == head) 3303 goto normal; 3304 3305 same_flow = NAPI_GRO_CB(skb)->same_flow; 3306 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3307 3308 if (pp) { 3309 struct sk_buff *nskb = *pp; 3310 3311 *pp = nskb->next; 3312 nskb->next = NULL; 3313 napi_gro_complete(nskb); 3314 napi->gro_count--; 3315 } 3316 3317 if (same_flow) 3318 goto ok; 3319 3320 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3321 goto normal; 3322 3323 napi->gro_count++; 3324 NAPI_GRO_CB(skb)->count = 1; 3325 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3326 skb->next = napi->gro_list; 3327 napi->gro_list = skb; 3328 ret = GRO_HELD; 3329 3330 pull: 3331 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3332 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3333 3334 BUG_ON(skb->end - skb->tail < grow); 3335 3336 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3337 3338 skb->tail += grow; 3339 skb->data_len -= grow; 3340 3341 skb_shinfo(skb)->frags[0].page_offset += grow; 3342 skb_shinfo(skb)->frags[0].size -= grow; 3343 3344 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 3345 put_page(skb_shinfo(skb)->frags[0].page); 3346 memmove(skb_shinfo(skb)->frags, 3347 skb_shinfo(skb)->frags + 1, 3348 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3349 } 3350 } 3351 3352 ok: 3353 return ret; 3354 3355 normal: 3356 ret = GRO_NORMAL; 3357 goto pull; 3358 } 3359 EXPORT_SYMBOL(dev_gro_receive); 3360 3361 static inline gro_result_t 3362 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3363 { 3364 struct sk_buff *p; 3365 3366 for (p = napi->gro_list; p; p = p->next) { 3367 unsigned long diffs; 3368 3369 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3370 diffs |= p->vlan_tci ^ skb->vlan_tci; 3371 diffs |= compare_ether_header(skb_mac_header(p), 3372 skb_gro_mac_header(skb)); 3373 NAPI_GRO_CB(p)->same_flow = !diffs; 3374 NAPI_GRO_CB(p)->flush = 0; 3375 } 3376 3377 return dev_gro_receive(napi, skb); 3378 } 3379 3380 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3381 { 3382 switch (ret) { 3383 case GRO_NORMAL: 3384 if (netif_receive_skb(skb)) 3385 ret = GRO_DROP; 3386 break; 3387 3388 case GRO_DROP: 3389 case GRO_MERGED_FREE: 3390 kfree_skb(skb); 3391 break; 3392 3393 case GRO_HELD: 3394 case GRO_MERGED: 3395 break; 3396 } 3397 3398 return ret; 3399 } 3400 EXPORT_SYMBOL(napi_skb_finish); 3401 3402 void skb_gro_reset_offset(struct sk_buff *skb) 3403 { 3404 NAPI_GRO_CB(skb)->data_offset = 0; 3405 NAPI_GRO_CB(skb)->frag0 = NULL; 3406 NAPI_GRO_CB(skb)->frag0_len = 0; 3407 3408 if (skb->mac_header == skb->tail && 3409 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 3410 NAPI_GRO_CB(skb)->frag0 = 3411 page_address(skb_shinfo(skb)->frags[0].page) + 3412 skb_shinfo(skb)->frags[0].page_offset; 3413 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 3414 } 3415 } 3416 EXPORT_SYMBOL(skb_gro_reset_offset); 3417 3418 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3419 { 3420 skb_gro_reset_offset(skb); 3421 3422 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3423 } 3424 EXPORT_SYMBOL(napi_gro_receive); 3425 3426 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3427 { 3428 __skb_pull(skb, skb_headlen(skb)); 3429 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3430 skb->vlan_tci = 0; 3431 skb->dev = napi->dev; 3432 skb->skb_iif = 0; 3433 3434 napi->skb = skb; 3435 } 3436 3437 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3438 { 3439 struct sk_buff *skb = napi->skb; 3440 3441 if (!skb) { 3442 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3443 if (skb) 3444 napi->skb = skb; 3445 } 3446 return skb; 3447 } 3448 EXPORT_SYMBOL(napi_get_frags); 3449 3450 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3451 gro_result_t ret) 3452 { 3453 switch (ret) { 3454 case GRO_NORMAL: 3455 case GRO_HELD: 3456 skb->protocol = eth_type_trans(skb, skb->dev); 3457 3458 if (ret == GRO_HELD) 3459 skb_gro_pull(skb, -ETH_HLEN); 3460 else if (netif_receive_skb(skb)) 3461 ret = GRO_DROP; 3462 break; 3463 3464 case GRO_DROP: 3465 case GRO_MERGED_FREE: 3466 napi_reuse_skb(napi, skb); 3467 break; 3468 3469 case GRO_MERGED: 3470 break; 3471 } 3472 3473 return ret; 3474 } 3475 EXPORT_SYMBOL(napi_frags_finish); 3476 3477 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3478 { 3479 struct sk_buff *skb = napi->skb; 3480 struct ethhdr *eth; 3481 unsigned int hlen; 3482 unsigned int off; 3483 3484 napi->skb = NULL; 3485 3486 skb_reset_mac_header(skb); 3487 skb_gro_reset_offset(skb); 3488 3489 off = skb_gro_offset(skb); 3490 hlen = off + sizeof(*eth); 3491 eth = skb_gro_header_fast(skb, off); 3492 if (skb_gro_header_hard(skb, hlen)) { 3493 eth = skb_gro_header_slow(skb, hlen, off); 3494 if (unlikely(!eth)) { 3495 napi_reuse_skb(napi, skb); 3496 skb = NULL; 3497 goto out; 3498 } 3499 } 3500 3501 skb_gro_pull(skb, sizeof(*eth)); 3502 3503 /* 3504 * This works because the only protocols we care about don't require 3505 * special handling. We'll fix it up properly at the end. 3506 */ 3507 skb->protocol = eth->h_proto; 3508 3509 out: 3510 return skb; 3511 } 3512 EXPORT_SYMBOL(napi_frags_skb); 3513 3514 gro_result_t napi_gro_frags(struct napi_struct *napi) 3515 { 3516 struct sk_buff *skb = napi_frags_skb(napi); 3517 3518 if (!skb) 3519 return GRO_DROP; 3520 3521 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3522 } 3523 EXPORT_SYMBOL(napi_gro_frags); 3524 3525 /* 3526 * net_rps_action sends any pending IPI's for rps. 3527 * Note: called with local irq disabled, but exits with local irq enabled. 3528 */ 3529 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3530 { 3531 #ifdef CONFIG_RPS 3532 struct softnet_data *remsd = sd->rps_ipi_list; 3533 3534 if (remsd) { 3535 sd->rps_ipi_list = NULL; 3536 3537 local_irq_enable(); 3538 3539 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3540 while (remsd) { 3541 struct softnet_data *next = remsd->rps_ipi_next; 3542 3543 if (cpu_online(remsd->cpu)) 3544 __smp_call_function_single(remsd->cpu, 3545 &remsd->csd, 0); 3546 remsd = next; 3547 } 3548 } else 3549 #endif 3550 local_irq_enable(); 3551 } 3552 3553 static int process_backlog(struct napi_struct *napi, int quota) 3554 { 3555 int work = 0; 3556 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3557 3558 #ifdef CONFIG_RPS 3559 /* Check if we have pending ipi, its better to send them now, 3560 * not waiting net_rx_action() end. 3561 */ 3562 if (sd->rps_ipi_list) { 3563 local_irq_disable(); 3564 net_rps_action_and_irq_enable(sd); 3565 } 3566 #endif 3567 napi->weight = weight_p; 3568 local_irq_disable(); 3569 while (work < quota) { 3570 struct sk_buff *skb; 3571 unsigned int qlen; 3572 3573 while ((skb = __skb_dequeue(&sd->process_queue))) { 3574 local_irq_enable(); 3575 __netif_receive_skb(skb); 3576 local_irq_disable(); 3577 input_queue_head_incr(sd); 3578 if (++work >= quota) { 3579 local_irq_enable(); 3580 return work; 3581 } 3582 } 3583 3584 rps_lock(sd); 3585 qlen = skb_queue_len(&sd->input_pkt_queue); 3586 if (qlen) 3587 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3588 &sd->process_queue); 3589 3590 if (qlen < quota - work) { 3591 /* 3592 * Inline a custom version of __napi_complete(). 3593 * only current cpu owns and manipulates this napi, 3594 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3595 * we can use a plain write instead of clear_bit(), 3596 * and we dont need an smp_mb() memory barrier. 3597 */ 3598 list_del(&napi->poll_list); 3599 napi->state = 0; 3600 3601 quota = work + qlen; 3602 } 3603 rps_unlock(sd); 3604 } 3605 local_irq_enable(); 3606 3607 return work; 3608 } 3609 3610 /** 3611 * __napi_schedule - schedule for receive 3612 * @n: entry to schedule 3613 * 3614 * The entry's receive function will be scheduled to run 3615 */ 3616 void __napi_schedule(struct napi_struct *n) 3617 { 3618 unsigned long flags; 3619 3620 local_irq_save(flags); 3621 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3622 local_irq_restore(flags); 3623 } 3624 EXPORT_SYMBOL(__napi_schedule); 3625 3626 void __napi_complete(struct napi_struct *n) 3627 { 3628 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3629 BUG_ON(n->gro_list); 3630 3631 list_del(&n->poll_list); 3632 smp_mb__before_clear_bit(); 3633 clear_bit(NAPI_STATE_SCHED, &n->state); 3634 } 3635 EXPORT_SYMBOL(__napi_complete); 3636 3637 void napi_complete(struct napi_struct *n) 3638 { 3639 unsigned long flags; 3640 3641 /* 3642 * don't let napi dequeue from the cpu poll list 3643 * just in case its running on a different cpu 3644 */ 3645 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3646 return; 3647 3648 napi_gro_flush(n); 3649 local_irq_save(flags); 3650 __napi_complete(n); 3651 local_irq_restore(flags); 3652 } 3653 EXPORT_SYMBOL(napi_complete); 3654 3655 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3656 int (*poll)(struct napi_struct *, int), int weight) 3657 { 3658 INIT_LIST_HEAD(&napi->poll_list); 3659 napi->gro_count = 0; 3660 napi->gro_list = NULL; 3661 napi->skb = NULL; 3662 napi->poll = poll; 3663 napi->weight = weight; 3664 list_add(&napi->dev_list, &dev->napi_list); 3665 napi->dev = dev; 3666 #ifdef CONFIG_NETPOLL 3667 spin_lock_init(&napi->poll_lock); 3668 napi->poll_owner = -1; 3669 #endif 3670 set_bit(NAPI_STATE_SCHED, &napi->state); 3671 } 3672 EXPORT_SYMBOL(netif_napi_add); 3673 3674 void netif_napi_del(struct napi_struct *napi) 3675 { 3676 struct sk_buff *skb, *next; 3677 3678 list_del_init(&napi->dev_list); 3679 napi_free_frags(napi); 3680 3681 for (skb = napi->gro_list; skb; skb = next) { 3682 next = skb->next; 3683 skb->next = NULL; 3684 kfree_skb(skb); 3685 } 3686 3687 napi->gro_list = NULL; 3688 napi->gro_count = 0; 3689 } 3690 EXPORT_SYMBOL(netif_napi_del); 3691 3692 static void net_rx_action(struct softirq_action *h) 3693 { 3694 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3695 unsigned long time_limit = jiffies + 2; 3696 int budget = netdev_budget; 3697 void *have; 3698 3699 local_irq_disable(); 3700 3701 while (!list_empty(&sd->poll_list)) { 3702 struct napi_struct *n; 3703 int work, weight; 3704 3705 /* If softirq window is exhuasted then punt. 3706 * Allow this to run for 2 jiffies since which will allow 3707 * an average latency of 1.5/HZ. 3708 */ 3709 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3710 goto softnet_break; 3711 3712 local_irq_enable(); 3713 3714 /* Even though interrupts have been re-enabled, this 3715 * access is safe because interrupts can only add new 3716 * entries to the tail of this list, and only ->poll() 3717 * calls can remove this head entry from the list. 3718 */ 3719 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3720 3721 have = netpoll_poll_lock(n); 3722 3723 weight = n->weight; 3724 3725 /* This NAPI_STATE_SCHED test is for avoiding a race 3726 * with netpoll's poll_napi(). Only the entity which 3727 * obtains the lock and sees NAPI_STATE_SCHED set will 3728 * actually make the ->poll() call. Therefore we avoid 3729 * accidently calling ->poll() when NAPI is not scheduled. 3730 */ 3731 work = 0; 3732 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3733 work = n->poll(n, weight); 3734 trace_napi_poll(n); 3735 } 3736 3737 WARN_ON_ONCE(work > weight); 3738 3739 budget -= work; 3740 3741 local_irq_disable(); 3742 3743 /* Drivers must not modify the NAPI state if they 3744 * consume the entire weight. In such cases this code 3745 * still "owns" the NAPI instance and therefore can 3746 * move the instance around on the list at-will. 3747 */ 3748 if (unlikely(work == weight)) { 3749 if (unlikely(napi_disable_pending(n))) { 3750 local_irq_enable(); 3751 napi_complete(n); 3752 local_irq_disable(); 3753 } else 3754 list_move_tail(&n->poll_list, &sd->poll_list); 3755 } 3756 3757 netpoll_poll_unlock(have); 3758 } 3759 out: 3760 net_rps_action_and_irq_enable(sd); 3761 3762 #ifdef CONFIG_NET_DMA 3763 /* 3764 * There may not be any more sk_buffs coming right now, so push 3765 * any pending DMA copies to hardware 3766 */ 3767 dma_issue_pending_all(); 3768 #endif 3769 3770 return; 3771 3772 softnet_break: 3773 sd->time_squeeze++; 3774 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3775 goto out; 3776 } 3777 3778 static gifconf_func_t *gifconf_list[NPROTO]; 3779 3780 /** 3781 * register_gifconf - register a SIOCGIF handler 3782 * @family: Address family 3783 * @gifconf: Function handler 3784 * 3785 * Register protocol dependent address dumping routines. The handler 3786 * that is passed must not be freed or reused until it has been replaced 3787 * by another handler. 3788 */ 3789 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3790 { 3791 if (family >= NPROTO) 3792 return -EINVAL; 3793 gifconf_list[family] = gifconf; 3794 return 0; 3795 } 3796 EXPORT_SYMBOL(register_gifconf); 3797 3798 3799 /* 3800 * Map an interface index to its name (SIOCGIFNAME) 3801 */ 3802 3803 /* 3804 * We need this ioctl for efficient implementation of the 3805 * if_indextoname() function required by the IPv6 API. Without 3806 * it, we would have to search all the interfaces to find a 3807 * match. --pb 3808 */ 3809 3810 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3811 { 3812 struct net_device *dev; 3813 struct ifreq ifr; 3814 3815 /* 3816 * Fetch the caller's info block. 3817 */ 3818 3819 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3820 return -EFAULT; 3821 3822 rcu_read_lock(); 3823 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3824 if (!dev) { 3825 rcu_read_unlock(); 3826 return -ENODEV; 3827 } 3828 3829 strcpy(ifr.ifr_name, dev->name); 3830 rcu_read_unlock(); 3831 3832 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3833 return -EFAULT; 3834 return 0; 3835 } 3836 3837 /* 3838 * Perform a SIOCGIFCONF call. This structure will change 3839 * size eventually, and there is nothing I can do about it. 3840 * Thus we will need a 'compatibility mode'. 3841 */ 3842 3843 static int dev_ifconf(struct net *net, char __user *arg) 3844 { 3845 struct ifconf ifc; 3846 struct net_device *dev; 3847 char __user *pos; 3848 int len; 3849 int total; 3850 int i; 3851 3852 /* 3853 * Fetch the caller's info block. 3854 */ 3855 3856 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3857 return -EFAULT; 3858 3859 pos = ifc.ifc_buf; 3860 len = ifc.ifc_len; 3861 3862 /* 3863 * Loop over the interfaces, and write an info block for each. 3864 */ 3865 3866 total = 0; 3867 for_each_netdev(net, dev) { 3868 for (i = 0; i < NPROTO; i++) { 3869 if (gifconf_list[i]) { 3870 int done; 3871 if (!pos) 3872 done = gifconf_list[i](dev, NULL, 0); 3873 else 3874 done = gifconf_list[i](dev, pos + total, 3875 len - total); 3876 if (done < 0) 3877 return -EFAULT; 3878 total += done; 3879 } 3880 } 3881 } 3882 3883 /* 3884 * All done. Write the updated control block back to the caller. 3885 */ 3886 ifc.ifc_len = total; 3887 3888 /* 3889 * Both BSD and Solaris return 0 here, so we do too. 3890 */ 3891 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3892 } 3893 3894 #ifdef CONFIG_PROC_FS 3895 /* 3896 * This is invoked by the /proc filesystem handler to display a device 3897 * in detail. 3898 */ 3899 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3900 __acquires(RCU) 3901 { 3902 struct net *net = seq_file_net(seq); 3903 loff_t off; 3904 struct net_device *dev; 3905 3906 rcu_read_lock(); 3907 if (!*pos) 3908 return SEQ_START_TOKEN; 3909 3910 off = 1; 3911 for_each_netdev_rcu(net, dev) 3912 if (off++ == *pos) 3913 return dev; 3914 3915 return NULL; 3916 } 3917 3918 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3919 { 3920 struct net_device *dev = (v == SEQ_START_TOKEN) ? 3921 first_net_device(seq_file_net(seq)) : 3922 next_net_device((struct net_device *)v); 3923 3924 ++*pos; 3925 return rcu_dereference(dev); 3926 } 3927 3928 void dev_seq_stop(struct seq_file *seq, void *v) 3929 __releases(RCU) 3930 { 3931 rcu_read_unlock(); 3932 } 3933 3934 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 3935 { 3936 struct rtnl_link_stats64 temp; 3937 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 3938 3939 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 3940 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 3941 dev->name, stats->rx_bytes, stats->rx_packets, 3942 stats->rx_errors, 3943 stats->rx_dropped + stats->rx_missed_errors, 3944 stats->rx_fifo_errors, 3945 stats->rx_length_errors + stats->rx_over_errors + 3946 stats->rx_crc_errors + stats->rx_frame_errors, 3947 stats->rx_compressed, stats->multicast, 3948 stats->tx_bytes, stats->tx_packets, 3949 stats->tx_errors, stats->tx_dropped, 3950 stats->tx_fifo_errors, stats->collisions, 3951 stats->tx_carrier_errors + 3952 stats->tx_aborted_errors + 3953 stats->tx_window_errors + 3954 stats->tx_heartbeat_errors, 3955 stats->tx_compressed); 3956 } 3957 3958 /* 3959 * Called from the PROCfs module. This now uses the new arbitrary sized 3960 * /proc/net interface to create /proc/net/dev 3961 */ 3962 static int dev_seq_show(struct seq_file *seq, void *v) 3963 { 3964 if (v == SEQ_START_TOKEN) 3965 seq_puts(seq, "Inter-| Receive " 3966 " | Transmit\n" 3967 " face |bytes packets errs drop fifo frame " 3968 "compressed multicast|bytes packets errs " 3969 "drop fifo colls carrier compressed\n"); 3970 else 3971 dev_seq_printf_stats(seq, v); 3972 return 0; 3973 } 3974 3975 static struct softnet_data *softnet_get_online(loff_t *pos) 3976 { 3977 struct softnet_data *sd = NULL; 3978 3979 while (*pos < nr_cpu_ids) 3980 if (cpu_online(*pos)) { 3981 sd = &per_cpu(softnet_data, *pos); 3982 break; 3983 } else 3984 ++*pos; 3985 return sd; 3986 } 3987 3988 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3989 { 3990 return softnet_get_online(pos); 3991 } 3992 3993 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3994 { 3995 ++*pos; 3996 return softnet_get_online(pos); 3997 } 3998 3999 static void softnet_seq_stop(struct seq_file *seq, void *v) 4000 { 4001 } 4002 4003 static int softnet_seq_show(struct seq_file *seq, void *v) 4004 { 4005 struct softnet_data *sd = v; 4006 4007 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4008 sd->processed, sd->dropped, sd->time_squeeze, 0, 4009 0, 0, 0, 0, /* was fastroute */ 4010 sd->cpu_collision, sd->received_rps); 4011 return 0; 4012 } 4013 4014 static const struct seq_operations dev_seq_ops = { 4015 .start = dev_seq_start, 4016 .next = dev_seq_next, 4017 .stop = dev_seq_stop, 4018 .show = dev_seq_show, 4019 }; 4020 4021 static int dev_seq_open(struct inode *inode, struct file *file) 4022 { 4023 return seq_open_net(inode, file, &dev_seq_ops, 4024 sizeof(struct seq_net_private)); 4025 } 4026 4027 static const struct file_operations dev_seq_fops = { 4028 .owner = THIS_MODULE, 4029 .open = dev_seq_open, 4030 .read = seq_read, 4031 .llseek = seq_lseek, 4032 .release = seq_release_net, 4033 }; 4034 4035 static const struct seq_operations softnet_seq_ops = { 4036 .start = softnet_seq_start, 4037 .next = softnet_seq_next, 4038 .stop = softnet_seq_stop, 4039 .show = softnet_seq_show, 4040 }; 4041 4042 static int softnet_seq_open(struct inode *inode, struct file *file) 4043 { 4044 return seq_open(file, &softnet_seq_ops); 4045 } 4046 4047 static const struct file_operations softnet_seq_fops = { 4048 .owner = THIS_MODULE, 4049 .open = softnet_seq_open, 4050 .read = seq_read, 4051 .llseek = seq_lseek, 4052 .release = seq_release, 4053 }; 4054 4055 static void *ptype_get_idx(loff_t pos) 4056 { 4057 struct packet_type *pt = NULL; 4058 loff_t i = 0; 4059 int t; 4060 4061 list_for_each_entry_rcu(pt, &ptype_all, list) { 4062 if (i == pos) 4063 return pt; 4064 ++i; 4065 } 4066 4067 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4068 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4069 if (i == pos) 4070 return pt; 4071 ++i; 4072 } 4073 } 4074 return NULL; 4075 } 4076 4077 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4078 __acquires(RCU) 4079 { 4080 rcu_read_lock(); 4081 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4082 } 4083 4084 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4085 { 4086 struct packet_type *pt; 4087 struct list_head *nxt; 4088 int hash; 4089 4090 ++*pos; 4091 if (v == SEQ_START_TOKEN) 4092 return ptype_get_idx(0); 4093 4094 pt = v; 4095 nxt = pt->list.next; 4096 if (pt->type == htons(ETH_P_ALL)) { 4097 if (nxt != &ptype_all) 4098 goto found; 4099 hash = 0; 4100 nxt = ptype_base[0].next; 4101 } else 4102 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4103 4104 while (nxt == &ptype_base[hash]) { 4105 if (++hash >= PTYPE_HASH_SIZE) 4106 return NULL; 4107 nxt = ptype_base[hash].next; 4108 } 4109 found: 4110 return list_entry(nxt, struct packet_type, list); 4111 } 4112 4113 static void ptype_seq_stop(struct seq_file *seq, void *v) 4114 __releases(RCU) 4115 { 4116 rcu_read_unlock(); 4117 } 4118 4119 static int ptype_seq_show(struct seq_file *seq, void *v) 4120 { 4121 struct packet_type *pt = v; 4122 4123 if (v == SEQ_START_TOKEN) 4124 seq_puts(seq, "Type Device Function\n"); 4125 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4126 if (pt->type == htons(ETH_P_ALL)) 4127 seq_puts(seq, "ALL "); 4128 else 4129 seq_printf(seq, "%04x", ntohs(pt->type)); 4130 4131 seq_printf(seq, " %-8s %pF\n", 4132 pt->dev ? pt->dev->name : "", pt->func); 4133 } 4134 4135 return 0; 4136 } 4137 4138 static const struct seq_operations ptype_seq_ops = { 4139 .start = ptype_seq_start, 4140 .next = ptype_seq_next, 4141 .stop = ptype_seq_stop, 4142 .show = ptype_seq_show, 4143 }; 4144 4145 static int ptype_seq_open(struct inode *inode, struct file *file) 4146 { 4147 return seq_open_net(inode, file, &ptype_seq_ops, 4148 sizeof(struct seq_net_private)); 4149 } 4150 4151 static const struct file_operations ptype_seq_fops = { 4152 .owner = THIS_MODULE, 4153 .open = ptype_seq_open, 4154 .read = seq_read, 4155 .llseek = seq_lseek, 4156 .release = seq_release_net, 4157 }; 4158 4159 4160 static int __net_init dev_proc_net_init(struct net *net) 4161 { 4162 int rc = -ENOMEM; 4163 4164 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4165 goto out; 4166 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4167 goto out_dev; 4168 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4169 goto out_softnet; 4170 4171 if (wext_proc_init(net)) 4172 goto out_ptype; 4173 rc = 0; 4174 out: 4175 return rc; 4176 out_ptype: 4177 proc_net_remove(net, "ptype"); 4178 out_softnet: 4179 proc_net_remove(net, "softnet_stat"); 4180 out_dev: 4181 proc_net_remove(net, "dev"); 4182 goto out; 4183 } 4184 4185 static void __net_exit dev_proc_net_exit(struct net *net) 4186 { 4187 wext_proc_exit(net); 4188 4189 proc_net_remove(net, "ptype"); 4190 proc_net_remove(net, "softnet_stat"); 4191 proc_net_remove(net, "dev"); 4192 } 4193 4194 static struct pernet_operations __net_initdata dev_proc_ops = { 4195 .init = dev_proc_net_init, 4196 .exit = dev_proc_net_exit, 4197 }; 4198 4199 static int __init dev_proc_init(void) 4200 { 4201 return register_pernet_subsys(&dev_proc_ops); 4202 } 4203 #else 4204 #define dev_proc_init() 0 4205 #endif /* CONFIG_PROC_FS */ 4206 4207 4208 /** 4209 * netdev_set_master - set up master/slave pair 4210 * @slave: slave device 4211 * @master: new master device 4212 * 4213 * Changes the master device of the slave. Pass %NULL to break the 4214 * bonding. The caller must hold the RTNL semaphore. On a failure 4215 * a negative errno code is returned. On success the reference counts 4216 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 4217 * function returns zero. 4218 */ 4219 int netdev_set_master(struct net_device *slave, struct net_device *master) 4220 { 4221 struct net_device *old = slave->master; 4222 4223 ASSERT_RTNL(); 4224 4225 if (master) { 4226 if (old) 4227 return -EBUSY; 4228 dev_hold(master); 4229 } 4230 4231 slave->master = master; 4232 4233 if (old) { 4234 synchronize_net(); 4235 dev_put(old); 4236 } 4237 if (master) 4238 slave->flags |= IFF_SLAVE; 4239 else 4240 slave->flags &= ~IFF_SLAVE; 4241 4242 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4243 return 0; 4244 } 4245 EXPORT_SYMBOL(netdev_set_master); 4246 4247 static void dev_change_rx_flags(struct net_device *dev, int flags) 4248 { 4249 const struct net_device_ops *ops = dev->netdev_ops; 4250 4251 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4252 ops->ndo_change_rx_flags(dev, flags); 4253 } 4254 4255 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4256 { 4257 unsigned short old_flags = dev->flags; 4258 uid_t uid; 4259 gid_t gid; 4260 4261 ASSERT_RTNL(); 4262 4263 dev->flags |= IFF_PROMISC; 4264 dev->promiscuity += inc; 4265 if (dev->promiscuity == 0) { 4266 /* 4267 * Avoid overflow. 4268 * If inc causes overflow, untouch promisc and return error. 4269 */ 4270 if (inc < 0) 4271 dev->flags &= ~IFF_PROMISC; 4272 else { 4273 dev->promiscuity -= inc; 4274 printk(KERN_WARNING "%s: promiscuity touches roof, " 4275 "set promiscuity failed, promiscuity feature " 4276 "of device might be broken.\n", dev->name); 4277 return -EOVERFLOW; 4278 } 4279 } 4280 if (dev->flags != old_flags) { 4281 printk(KERN_INFO "device %s %s promiscuous mode\n", 4282 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4283 "left"); 4284 if (audit_enabled) { 4285 current_uid_gid(&uid, &gid); 4286 audit_log(current->audit_context, GFP_ATOMIC, 4287 AUDIT_ANOM_PROMISCUOUS, 4288 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4289 dev->name, (dev->flags & IFF_PROMISC), 4290 (old_flags & IFF_PROMISC), 4291 audit_get_loginuid(current), 4292 uid, gid, 4293 audit_get_sessionid(current)); 4294 } 4295 4296 dev_change_rx_flags(dev, IFF_PROMISC); 4297 } 4298 return 0; 4299 } 4300 4301 /** 4302 * dev_set_promiscuity - update promiscuity count on a device 4303 * @dev: device 4304 * @inc: modifier 4305 * 4306 * Add or remove promiscuity from a device. While the count in the device 4307 * remains above zero the interface remains promiscuous. Once it hits zero 4308 * the device reverts back to normal filtering operation. A negative inc 4309 * value is used to drop promiscuity on the device. 4310 * Return 0 if successful or a negative errno code on error. 4311 */ 4312 int dev_set_promiscuity(struct net_device *dev, int inc) 4313 { 4314 unsigned short old_flags = dev->flags; 4315 int err; 4316 4317 err = __dev_set_promiscuity(dev, inc); 4318 if (err < 0) 4319 return err; 4320 if (dev->flags != old_flags) 4321 dev_set_rx_mode(dev); 4322 return err; 4323 } 4324 EXPORT_SYMBOL(dev_set_promiscuity); 4325 4326 /** 4327 * dev_set_allmulti - update allmulti count on a device 4328 * @dev: device 4329 * @inc: modifier 4330 * 4331 * Add or remove reception of all multicast frames to a device. While the 4332 * count in the device remains above zero the interface remains listening 4333 * to all interfaces. Once it hits zero the device reverts back to normal 4334 * filtering operation. A negative @inc value is used to drop the counter 4335 * when releasing a resource needing all multicasts. 4336 * Return 0 if successful or a negative errno code on error. 4337 */ 4338 4339 int dev_set_allmulti(struct net_device *dev, int inc) 4340 { 4341 unsigned short old_flags = dev->flags; 4342 4343 ASSERT_RTNL(); 4344 4345 dev->flags |= IFF_ALLMULTI; 4346 dev->allmulti += inc; 4347 if (dev->allmulti == 0) { 4348 /* 4349 * Avoid overflow. 4350 * If inc causes overflow, untouch allmulti and return error. 4351 */ 4352 if (inc < 0) 4353 dev->flags &= ~IFF_ALLMULTI; 4354 else { 4355 dev->allmulti -= inc; 4356 printk(KERN_WARNING "%s: allmulti touches roof, " 4357 "set allmulti failed, allmulti feature of " 4358 "device might be broken.\n", dev->name); 4359 return -EOVERFLOW; 4360 } 4361 } 4362 if (dev->flags ^ old_flags) { 4363 dev_change_rx_flags(dev, IFF_ALLMULTI); 4364 dev_set_rx_mode(dev); 4365 } 4366 return 0; 4367 } 4368 EXPORT_SYMBOL(dev_set_allmulti); 4369 4370 /* 4371 * Upload unicast and multicast address lists to device and 4372 * configure RX filtering. When the device doesn't support unicast 4373 * filtering it is put in promiscuous mode while unicast addresses 4374 * are present. 4375 */ 4376 void __dev_set_rx_mode(struct net_device *dev) 4377 { 4378 const struct net_device_ops *ops = dev->netdev_ops; 4379 4380 /* dev_open will call this function so the list will stay sane. */ 4381 if (!(dev->flags&IFF_UP)) 4382 return; 4383 4384 if (!netif_device_present(dev)) 4385 return; 4386 4387 if (ops->ndo_set_rx_mode) 4388 ops->ndo_set_rx_mode(dev); 4389 else { 4390 /* Unicast addresses changes may only happen under the rtnl, 4391 * therefore calling __dev_set_promiscuity here is safe. 4392 */ 4393 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4394 __dev_set_promiscuity(dev, 1); 4395 dev->uc_promisc = 1; 4396 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4397 __dev_set_promiscuity(dev, -1); 4398 dev->uc_promisc = 0; 4399 } 4400 4401 if (ops->ndo_set_multicast_list) 4402 ops->ndo_set_multicast_list(dev); 4403 } 4404 } 4405 4406 void dev_set_rx_mode(struct net_device *dev) 4407 { 4408 netif_addr_lock_bh(dev); 4409 __dev_set_rx_mode(dev); 4410 netif_addr_unlock_bh(dev); 4411 } 4412 4413 /** 4414 * dev_get_flags - get flags reported to userspace 4415 * @dev: device 4416 * 4417 * Get the combination of flag bits exported through APIs to userspace. 4418 */ 4419 unsigned dev_get_flags(const struct net_device *dev) 4420 { 4421 unsigned flags; 4422 4423 flags = (dev->flags & ~(IFF_PROMISC | 4424 IFF_ALLMULTI | 4425 IFF_RUNNING | 4426 IFF_LOWER_UP | 4427 IFF_DORMANT)) | 4428 (dev->gflags & (IFF_PROMISC | 4429 IFF_ALLMULTI)); 4430 4431 if (netif_running(dev)) { 4432 if (netif_oper_up(dev)) 4433 flags |= IFF_RUNNING; 4434 if (netif_carrier_ok(dev)) 4435 flags |= IFF_LOWER_UP; 4436 if (netif_dormant(dev)) 4437 flags |= IFF_DORMANT; 4438 } 4439 4440 return flags; 4441 } 4442 EXPORT_SYMBOL(dev_get_flags); 4443 4444 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4445 { 4446 int old_flags = dev->flags; 4447 int ret; 4448 4449 ASSERT_RTNL(); 4450 4451 /* 4452 * Set the flags on our device. 4453 */ 4454 4455 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4456 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4457 IFF_AUTOMEDIA)) | 4458 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4459 IFF_ALLMULTI)); 4460 4461 /* 4462 * Load in the correct multicast list now the flags have changed. 4463 */ 4464 4465 if ((old_flags ^ flags) & IFF_MULTICAST) 4466 dev_change_rx_flags(dev, IFF_MULTICAST); 4467 4468 dev_set_rx_mode(dev); 4469 4470 /* 4471 * Have we downed the interface. We handle IFF_UP ourselves 4472 * according to user attempts to set it, rather than blindly 4473 * setting it. 4474 */ 4475 4476 ret = 0; 4477 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4478 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4479 4480 if (!ret) 4481 dev_set_rx_mode(dev); 4482 } 4483 4484 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4485 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4486 4487 dev->gflags ^= IFF_PROMISC; 4488 dev_set_promiscuity(dev, inc); 4489 } 4490 4491 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4492 is important. Some (broken) drivers set IFF_PROMISC, when 4493 IFF_ALLMULTI is requested not asking us and not reporting. 4494 */ 4495 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4496 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4497 4498 dev->gflags ^= IFF_ALLMULTI; 4499 dev_set_allmulti(dev, inc); 4500 } 4501 4502 return ret; 4503 } 4504 4505 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4506 { 4507 unsigned int changes = dev->flags ^ old_flags; 4508 4509 if (changes & IFF_UP) { 4510 if (dev->flags & IFF_UP) 4511 call_netdevice_notifiers(NETDEV_UP, dev); 4512 else 4513 call_netdevice_notifiers(NETDEV_DOWN, dev); 4514 } 4515 4516 if (dev->flags & IFF_UP && 4517 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4518 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4519 } 4520 4521 /** 4522 * dev_change_flags - change device settings 4523 * @dev: device 4524 * @flags: device state flags 4525 * 4526 * Change settings on device based state flags. The flags are 4527 * in the userspace exported format. 4528 */ 4529 int dev_change_flags(struct net_device *dev, unsigned flags) 4530 { 4531 int ret, changes; 4532 int old_flags = dev->flags; 4533 4534 ret = __dev_change_flags(dev, flags); 4535 if (ret < 0) 4536 return ret; 4537 4538 changes = old_flags ^ dev->flags; 4539 if (changes) 4540 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4541 4542 __dev_notify_flags(dev, old_flags); 4543 return ret; 4544 } 4545 EXPORT_SYMBOL(dev_change_flags); 4546 4547 /** 4548 * dev_set_mtu - Change maximum transfer unit 4549 * @dev: device 4550 * @new_mtu: new transfer unit 4551 * 4552 * Change the maximum transfer size of the network device. 4553 */ 4554 int dev_set_mtu(struct net_device *dev, int new_mtu) 4555 { 4556 const struct net_device_ops *ops = dev->netdev_ops; 4557 int err; 4558 4559 if (new_mtu == dev->mtu) 4560 return 0; 4561 4562 /* MTU must be positive. */ 4563 if (new_mtu < 0) 4564 return -EINVAL; 4565 4566 if (!netif_device_present(dev)) 4567 return -ENODEV; 4568 4569 err = 0; 4570 if (ops->ndo_change_mtu) 4571 err = ops->ndo_change_mtu(dev, new_mtu); 4572 else 4573 dev->mtu = new_mtu; 4574 4575 if (!err && dev->flags & IFF_UP) 4576 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4577 return err; 4578 } 4579 EXPORT_SYMBOL(dev_set_mtu); 4580 4581 /** 4582 * dev_set_mac_address - Change Media Access Control Address 4583 * @dev: device 4584 * @sa: new address 4585 * 4586 * Change the hardware (MAC) address of the device 4587 */ 4588 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4589 { 4590 const struct net_device_ops *ops = dev->netdev_ops; 4591 int err; 4592 4593 if (!ops->ndo_set_mac_address) 4594 return -EOPNOTSUPP; 4595 if (sa->sa_family != dev->type) 4596 return -EINVAL; 4597 if (!netif_device_present(dev)) 4598 return -ENODEV; 4599 err = ops->ndo_set_mac_address(dev, sa); 4600 if (!err) 4601 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4602 return err; 4603 } 4604 EXPORT_SYMBOL(dev_set_mac_address); 4605 4606 /* 4607 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4608 */ 4609 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4610 { 4611 int err; 4612 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4613 4614 if (!dev) 4615 return -ENODEV; 4616 4617 switch (cmd) { 4618 case SIOCGIFFLAGS: /* Get interface flags */ 4619 ifr->ifr_flags = (short) dev_get_flags(dev); 4620 return 0; 4621 4622 case SIOCGIFMETRIC: /* Get the metric on the interface 4623 (currently unused) */ 4624 ifr->ifr_metric = 0; 4625 return 0; 4626 4627 case SIOCGIFMTU: /* Get the MTU of a device */ 4628 ifr->ifr_mtu = dev->mtu; 4629 return 0; 4630 4631 case SIOCGIFHWADDR: 4632 if (!dev->addr_len) 4633 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4634 else 4635 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4636 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4637 ifr->ifr_hwaddr.sa_family = dev->type; 4638 return 0; 4639 4640 case SIOCGIFSLAVE: 4641 err = -EINVAL; 4642 break; 4643 4644 case SIOCGIFMAP: 4645 ifr->ifr_map.mem_start = dev->mem_start; 4646 ifr->ifr_map.mem_end = dev->mem_end; 4647 ifr->ifr_map.base_addr = dev->base_addr; 4648 ifr->ifr_map.irq = dev->irq; 4649 ifr->ifr_map.dma = dev->dma; 4650 ifr->ifr_map.port = dev->if_port; 4651 return 0; 4652 4653 case SIOCGIFINDEX: 4654 ifr->ifr_ifindex = dev->ifindex; 4655 return 0; 4656 4657 case SIOCGIFTXQLEN: 4658 ifr->ifr_qlen = dev->tx_queue_len; 4659 return 0; 4660 4661 default: 4662 /* dev_ioctl() should ensure this case 4663 * is never reached 4664 */ 4665 WARN_ON(1); 4666 err = -EINVAL; 4667 break; 4668 4669 } 4670 return err; 4671 } 4672 4673 /* 4674 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4675 */ 4676 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4677 { 4678 int err; 4679 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4680 const struct net_device_ops *ops; 4681 4682 if (!dev) 4683 return -ENODEV; 4684 4685 ops = dev->netdev_ops; 4686 4687 switch (cmd) { 4688 case SIOCSIFFLAGS: /* Set interface flags */ 4689 return dev_change_flags(dev, ifr->ifr_flags); 4690 4691 case SIOCSIFMETRIC: /* Set the metric on the interface 4692 (currently unused) */ 4693 return -EOPNOTSUPP; 4694 4695 case SIOCSIFMTU: /* Set the MTU of a device */ 4696 return dev_set_mtu(dev, ifr->ifr_mtu); 4697 4698 case SIOCSIFHWADDR: 4699 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4700 4701 case SIOCSIFHWBROADCAST: 4702 if (ifr->ifr_hwaddr.sa_family != dev->type) 4703 return -EINVAL; 4704 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4705 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4706 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4707 return 0; 4708 4709 case SIOCSIFMAP: 4710 if (ops->ndo_set_config) { 4711 if (!netif_device_present(dev)) 4712 return -ENODEV; 4713 return ops->ndo_set_config(dev, &ifr->ifr_map); 4714 } 4715 return -EOPNOTSUPP; 4716 4717 case SIOCADDMULTI: 4718 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4719 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4720 return -EINVAL; 4721 if (!netif_device_present(dev)) 4722 return -ENODEV; 4723 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4724 4725 case SIOCDELMULTI: 4726 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4727 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4728 return -EINVAL; 4729 if (!netif_device_present(dev)) 4730 return -ENODEV; 4731 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4732 4733 case SIOCSIFTXQLEN: 4734 if (ifr->ifr_qlen < 0) 4735 return -EINVAL; 4736 dev->tx_queue_len = ifr->ifr_qlen; 4737 return 0; 4738 4739 case SIOCSIFNAME: 4740 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4741 return dev_change_name(dev, ifr->ifr_newname); 4742 4743 /* 4744 * Unknown or private ioctl 4745 */ 4746 default: 4747 if ((cmd >= SIOCDEVPRIVATE && 4748 cmd <= SIOCDEVPRIVATE + 15) || 4749 cmd == SIOCBONDENSLAVE || 4750 cmd == SIOCBONDRELEASE || 4751 cmd == SIOCBONDSETHWADDR || 4752 cmd == SIOCBONDSLAVEINFOQUERY || 4753 cmd == SIOCBONDINFOQUERY || 4754 cmd == SIOCBONDCHANGEACTIVE || 4755 cmd == SIOCGMIIPHY || 4756 cmd == SIOCGMIIREG || 4757 cmd == SIOCSMIIREG || 4758 cmd == SIOCBRADDIF || 4759 cmd == SIOCBRDELIF || 4760 cmd == SIOCSHWTSTAMP || 4761 cmd == SIOCWANDEV) { 4762 err = -EOPNOTSUPP; 4763 if (ops->ndo_do_ioctl) { 4764 if (netif_device_present(dev)) 4765 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4766 else 4767 err = -ENODEV; 4768 } 4769 } else 4770 err = -EINVAL; 4771 4772 } 4773 return err; 4774 } 4775 4776 /* 4777 * This function handles all "interface"-type I/O control requests. The actual 4778 * 'doing' part of this is dev_ifsioc above. 4779 */ 4780 4781 /** 4782 * dev_ioctl - network device ioctl 4783 * @net: the applicable net namespace 4784 * @cmd: command to issue 4785 * @arg: pointer to a struct ifreq in user space 4786 * 4787 * Issue ioctl functions to devices. This is normally called by the 4788 * user space syscall interfaces but can sometimes be useful for 4789 * other purposes. The return value is the return from the syscall if 4790 * positive or a negative errno code on error. 4791 */ 4792 4793 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4794 { 4795 struct ifreq ifr; 4796 int ret; 4797 char *colon; 4798 4799 /* One special case: SIOCGIFCONF takes ifconf argument 4800 and requires shared lock, because it sleeps writing 4801 to user space. 4802 */ 4803 4804 if (cmd == SIOCGIFCONF) { 4805 rtnl_lock(); 4806 ret = dev_ifconf(net, (char __user *) arg); 4807 rtnl_unlock(); 4808 return ret; 4809 } 4810 if (cmd == SIOCGIFNAME) 4811 return dev_ifname(net, (struct ifreq __user *)arg); 4812 4813 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4814 return -EFAULT; 4815 4816 ifr.ifr_name[IFNAMSIZ-1] = 0; 4817 4818 colon = strchr(ifr.ifr_name, ':'); 4819 if (colon) 4820 *colon = 0; 4821 4822 /* 4823 * See which interface the caller is talking about. 4824 */ 4825 4826 switch (cmd) { 4827 /* 4828 * These ioctl calls: 4829 * - can be done by all. 4830 * - atomic and do not require locking. 4831 * - return a value 4832 */ 4833 case SIOCGIFFLAGS: 4834 case SIOCGIFMETRIC: 4835 case SIOCGIFMTU: 4836 case SIOCGIFHWADDR: 4837 case SIOCGIFSLAVE: 4838 case SIOCGIFMAP: 4839 case SIOCGIFINDEX: 4840 case SIOCGIFTXQLEN: 4841 dev_load(net, ifr.ifr_name); 4842 rcu_read_lock(); 4843 ret = dev_ifsioc_locked(net, &ifr, cmd); 4844 rcu_read_unlock(); 4845 if (!ret) { 4846 if (colon) 4847 *colon = ':'; 4848 if (copy_to_user(arg, &ifr, 4849 sizeof(struct ifreq))) 4850 ret = -EFAULT; 4851 } 4852 return ret; 4853 4854 case SIOCETHTOOL: 4855 dev_load(net, ifr.ifr_name); 4856 rtnl_lock(); 4857 ret = dev_ethtool(net, &ifr); 4858 rtnl_unlock(); 4859 if (!ret) { 4860 if (colon) 4861 *colon = ':'; 4862 if (copy_to_user(arg, &ifr, 4863 sizeof(struct ifreq))) 4864 ret = -EFAULT; 4865 } 4866 return ret; 4867 4868 /* 4869 * These ioctl calls: 4870 * - require superuser power. 4871 * - require strict serialization. 4872 * - return a value 4873 */ 4874 case SIOCGMIIPHY: 4875 case SIOCGMIIREG: 4876 case SIOCSIFNAME: 4877 if (!capable(CAP_NET_ADMIN)) 4878 return -EPERM; 4879 dev_load(net, ifr.ifr_name); 4880 rtnl_lock(); 4881 ret = dev_ifsioc(net, &ifr, cmd); 4882 rtnl_unlock(); 4883 if (!ret) { 4884 if (colon) 4885 *colon = ':'; 4886 if (copy_to_user(arg, &ifr, 4887 sizeof(struct ifreq))) 4888 ret = -EFAULT; 4889 } 4890 return ret; 4891 4892 /* 4893 * These ioctl calls: 4894 * - require superuser power. 4895 * - require strict serialization. 4896 * - do not return a value 4897 */ 4898 case SIOCSIFFLAGS: 4899 case SIOCSIFMETRIC: 4900 case SIOCSIFMTU: 4901 case SIOCSIFMAP: 4902 case SIOCSIFHWADDR: 4903 case SIOCSIFSLAVE: 4904 case SIOCADDMULTI: 4905 case SIOCDELMULTI: 4906 case SIOCSIFHWBROADCAST: 4907 case SIOCSIFTXQLEN: 4908 case SIOCSMIIREG: 4909 case SIOCBONDENSLAVE: 4910 case SIOCBONDRELEASE: 4911 case SIOCBONDSETHWADDR: 4912 case SIOCBONDCHANGEACTIVE: 4913 case SIOCBRADDIF: 4914 case SIOCBRDELIF: 4915 case SIOCSHWTSTAMP: 4916 if (!capable(CAP_NET_ADMIN)) 4917 return -EPERM; 4918 /* fall through */ 4919 case SIOCBONDSLAVEINFOQUERY: 4920 case SIOCBONDINFOQUERY: 4921 dev_load(net, ifr.ifr_name); 4922 rtnl_lock(); 4923 ret = dev_ifsioc(net, &ifr, cmd); 4924 rtnl_unlock(); 4925 return ret; 4926 4927 case SIOCGIFMEM: 4928 /* Get the per device memory space. We can add this but 4929 * currently do not support it */ 4930 case SIOCSIFMEM: 4931 /* Set the per device memory buffer space. 4932 * Not applicable in our case */ 4933 case SIOCSIFLINK: 4934 return -EINVAL; 4935 4936 /* 4937 * Unknown or private ioctl. 4938 */ 4939 default: 4940 if (cmd == SIOCWANDEV || 4941 (cmd >= SIOCDEVPRIVATE && 4942 cmd <= SIOCDEVPRIVATE + 15)) { 4943 dev_load(net, ifr.ifr_name); 4944 rtnl_lock(); 4945 ret = dev_ifsioc(net, &ifr, cmd); 4946 rtnl_unlock(); 4947 if (!ret && copy_to_user(arg, &ifr, 4948 sizeof(struct ifreq))) 4949 ret = -EFAULT; 4950 return ret; 4951 } 4952 /* Take care of Wireless Extensions */ 4953 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4954 return wext_handle_ioctl(net, &ifr, cmd, arg); 4955 return -EINVAL; 4956 } 4957 } 4958 4959 4960 /** 4961 * dev_new_index - allocate an ifindex 4962 * @net: the applicable net namespace 4963 * 4964 * Returns a suitable unique value for a new device interface 4965 * number. The caller must hold the rtnl semaphore or the 4966 * dev_base_lock to be sure it remains unique. 4967 */ 4968 static int dev_new_index(struct net *net) 4969 { 4970 static int ifindex; 4971 for (;;) { 4972 if (++ifindex <= 0) 4973 ifindex = 1; 4974 if (!__dev_get_by_index(net, ifindex)) 4975 return ifindex; 4976 } 4977 } 4978 4979 /* Delayed registration/unregisteration */ 4980 static LIST_HEAD(net_todo_list); 4981 4982 static void net_set_todo(struct net_device *dev) 4983 { 4984 list_add_tail(&dev->todo_list, &net_todo_list); 4985 } 4986 4987 static void rollback_registered_many(struct list_head *head) 4988 { 4989 struct net_device *dev, *tmp; 4990 4991 BUG_ON(dev_boot_phase); 4992 ASSERT_RTNL(); 4993 4994 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 4995 /* Some devices call without registering 4996 * for initialization unwind. Remove those 4997 * devices and proceed with the remaining. 4998 */ 4999 if (dev->reg_state == NETREG_UNINITIALIZED) { 5000 pr_debug("unregister_netdevice: device %s/%p never " 5001 "was registered\n", dev->name, dev); 5002 5003 WARN_ON(1); 5004 list_del(&dev->unreg_list); 5005 continue; 5006 } 5007 5008 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5009 } 5010 5011 /* If device is running, close it first. */ 5012 dev_close_many(head); 5013 5014 list_for_each_entry(dev, head, unreg_list) { 5015 /* And unlink it from device chain. */ 5016 unlist_netdevice(dev); 5017 5018 dev->reg_state = NETREG_UNREGISTERING; 5019 } 5020 5021 synchronize_net(); 5022 5023 list_for_each_entry(dev, head, unreg_list) { 5024 /* Shutdown queueing discipline. */ 5025 dev_shutdown(dev); 5026 5027 5028 /* Notify protocols, that we are about to destroy 5029 this device. They should clean all the things. 5030 */ 5031 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5032 5033 if (!dev->rtnl_link_ops || 5034 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5035 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5036 5037 /* 5038 * Flush the unicast and multicast chains 5039 */ 5040 dev_uc_flush(dev); 5041 dev_mc_flush(dev); 5042 5043 if (dev->netdev_ops->ndo_uninit) 5044 dev->netdev_ops->ndo_uninit(dev); 5045 5046 /* Notifier chain MUST detach us from master device. */ 5047 WARN_ON(dev->master); 5048 5049 /* Remove entries from kobject tree */ 5050 netdev_unregister_kobject(dev); 5051 } 5052 5053 /* Process any work delayed until the end of the batch */ 5054 dev = list_first_entry(head, struct net_device, unreg_list); 5055 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5056 5057 rcu_barrier(); 5058 5059 list_for_each_entry(dev, head, unreg_list) 5060 dev_put(dev); 5061 } 5062 5063 static void rollback_registered(struct net_device *dev) 5064 { 5065 LIST_HEAD(single); 5066 5067 list_add(&dev->unreg_list, &single); 5068 rollback_registered_many(&single); 5069 list_del(&single); 5070 } 5071 5072 unsigned long netdev_fix_features(unsigned long features, const char *name) 5073 { 5074 /* Fix illegal SG+CSUM combinations. */ 5075 if ((features & NETIF_F_SG) && 5076 !(features & NETIF_F_ALL_CSUM)) { 5077 if (name) 5078 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 5079 "checksum feature.\n", name); 5080 features &= ~NETIF_F_SG; 5081 } 5082 5083 /* TSO requires that SG is present as well. */ 5084 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 5085 if (name) 5086 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 5087 "SG feature.\n", name); 5088 features &= ~NETIF_F_TSO; 5089 } 5090 5091 if (features & NETIF_F_UFO) { 5092 /* maybe split UFO into V4 and V6? */ 5093 if (!((features & NETIF_F_GEN_CSUM) || 5094 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5095 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5096 if (name) 5097 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 5098 "since no checksum offload features.\n", 5099 name); 5100 features &= ~NETIF_F_UFO; 5101 } 5102 5103 if (!(features & NETIF_F_SG)) { 5104 if (name) 5105 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 5106 "since no NETIF_F_SG feature.\n", name); 5107 features &= ~NETIF_F_UFO; 5108 } 5109 } 5110 5111 return features; 5112 } 5113 EXPORT_SYMBOL(netdev_fix_features); 5114 5115 /** 5116 * netif_stacked_transfer_operstate - transfer operstate 5117 * @rootdev: the root or lower level device to transfer state from 5118 * @dev: the device to transfer operstate to 5119 * 5120 * Transfer operational state from root to device. This is normally 5121 * called when a stacking relationship exists between the root 5122 * device and the device(a leaf device). 5123 */ 5124 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5125 struct net_device *dev) 5126 { 5127 if (rootdev->operstate == IF_OPER_DORMANT) 5128 netif_dormant_on(dev); 5129 else 5130 netif_dormant_off(dev); 5131 5132 if (netif_carrier_ok(rootdev)) { 5133 if (!netif_carrier_ok(dev)) 5134 netif_carrier_on(dev); 5135 } else { 5136 if (netif_carrier_ok(dev)) 5137 netif_carrier_off(dev); 5138 } 5139 } 5140 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5141 5142 #ifdef CONFIG_RPS 5143 static int netif_alloc_rx_queues(struct net_device *dev) 5144 { 5145 unsigned int i, count = dev->num_rx_queues; 5146 struct netdev_rx_queue *rx; 5147 5148 BUG_ON(count < 1); 5149 5150 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5151 if (!rx) { 5152 pr_err("netdev: Unable to allocate %u rx queues.\n", count); 5153 return -ENOMEM; 5154 } 5155 dev->_rx = rx; 5156 5157 for (i = 0; i < count; i++) 5158 rx[i].dev = dev; 5159 return 0; 5160 } 5161 #endif 5162 5163 static void netdev_init_one_queue(struct net_device *dev, 5164 struct netdev_queue *queue, void *_unused) 5165 { 5166 /* Initialize queue lock */ 5167 spin_lock_init(&queue->_xmit_lock); 5168 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5169 queue->xmit_lock_owner = -1; 5170 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5171 queue->dev = dev; 5172 } 5173 5174 static int netif_alloc_netdev_queues(struct net_device *dev) 5175 { 5176 unsigned int count = dev->num_tx_queues; 5177 struct netdev_queue *tx; 5178 5179 BUG_ON(count < 1); 5180 5181 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5182 if (!tx) { 5183 pr_err("netdev: Unable to allocate %u tx queues.\n", 5184 count); 5185 return -ENOMEM; 5186 } 5187 dev->_tx = tx; 5188 5189 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5190 spin_lock_init(&dev->tx_global_lock); 5191 5192 return 0; 5193 } 5194 5195 /** 5196 * register_netdevice - register a network device 5197 * @dev: device to register 5198 * 5199 * Take a completed network device structure and add it to the kernel 5200 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5201 * chain. 0 is returned on success. A negative errno code is returned 5202 * on a failure to set up the device, or if the name is a duplicate. 5203 * 5204 * Callers must hold the rtnl semaphore. You may want 5205 * register_netdev() instead of this. 5206 * 5207 * BUGS: 5208 * The locking appears insufficient to guarantee two parallel registers 5209 * will not get the same name. 5210 */ 5211 5212 int register_netdevice(struct net_device *dev) 5213 { 5214 int ret; 5215 struct net *net = dev_net(dev); 5216 5217 BUG_ON(dev_boot_phase); 5218 ASSERT_RTNL(); 5219 5220 might_sleep(); 5221 5222 /* When net_device's are persistent, this will be fatal. */ 5223 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5224 BUG_ON(!net); 5225 5226 spin_lock_init(&dev->addr_list_lock); 5227 netdev_set_addr_lockdep_class(dev); 5228 5229 dev->iflink = -1; 5230 5231 /* Init, if this function is available */ 5232 if (dev->netdev_ops->ndo_init) { 5233 ret = dev->netdev_ops->ndo_init(dev); 5234 if (ret) { 5235 if (ret > 0) 5236 ret = -EIO; 5237 goto out; 5238 } 5239 } 5240 5241 ret = dev_get_valid_name(dev, dev->name, 0); 5242 if (ret) 5243 goto err_uninit; 5244 5245 dev->ifindex = dev_new_index(net); 5246 if (dev->iflink == -1) 5247 dev->iflink = dev->ifindex; 5248 5249 /* Fix illegal checksum combinations */ 5250 if ((dev->features & NETIF_F_HW_CSUM) && 5251 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5252 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 5253 dev->name); 5254 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5255 } 5256 5257 if ((dev->features & NETIF_F_NO_CSUM) && 5258 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5259 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 5260 dev->name); 5261 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5262 } 5263 5264 dev->features = netdev_fix_features(dev->features, dev->name); 5265 5266 /* Enable software GSO if SG is supported. */ 5267 if (dev->features & NETIF_F_SG) 5268 dev->features |= NETIF_F_GSO; 5269 5270 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default, 5271 * vlan_dev_init() will do the dev->features check, so these features 5272 * are enabled only if supported by underlying device. 5273 */ 5274 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA); 5275 5276 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5277 ret = notifier_to_errno(ret); 5278 if (ret) 5279 goto err_uninit; 5280 5281 ret = netdev_register_kobject(dev); 5282 if (ret) 5283 goto err_uninit; 5284 dev->reg_state = NETREG_REGISTERED; 5285 5286 /* 5287 * Default initial state at registry is that the 5288 * device is present. 5289 */ 5290 5291 set_bit(__LINK_STATE_PRESENT, &dev->state); 5292 5293 dev_init_scheduler(dev); 5294 dev_hold(dev); 5295 list_netdevice(dev); 5296 5297 /* Notify protocols, that a new device appeared. */ 5298 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5299 ret = notifier_to_errno(ret); 5300 if (ret) { 5301 rollback_registered(dev); 5302 dev->reg_state = NETREG_UNREGISTERED; 5303 } 5304 /* 5305 * Prevent userspace races by waiting until the network 5306 * device is fully setup before sending notifications. 5307 */ 5308 if (!dev->rtnl_link_ops || 5309 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5310 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5311 5312 out: 5313 return ret; 5314 5315 err_uninit: 5316 if (dev->netdev_ops->ndo_uninit) 5317 dev->netdev_ops->ndo_uninit(dev); 5318 goto out; 5319 } 5320 EXPORT_SYMBOL(register_netdevice); 5321 5322 /** 5323 * init_dummy_netdev - init a dummy network device for NAPI 5324 * @dev: device to init 5325 * 5326 * This takes a network device structure and initialize the minimum 5327 * amount of fields so it can be used to schedule NAPI polls without 5328 * registering a full blown interface. This is to be used by drivers 5329 * that need to tie several hardware interfaces to a single NAPI 5330 * poll scheduler due to HW limitations. 5331 */ 5332 int init_dummy_netdev(struct net_device *dev) 5333 { 5334 /* Clear everything. Note we don't initialize spinlocks 5335 * are they aren't supposed to be taken by any of the 5336 * NAPI code and this dummy netdev is supposed to be 5337 * only ever used for NAPI polls 5338 */ 5339 memset(dev, 0, sizeof(struct net_device)); 5340 5341 /* make sure we BUG if trying to hit standard 5342 * register/unregister code path 5343 */ 5344 dev->reg_state = NETREG_DUMMY; 5345 5346 /* NAPI wants this */ 5347 INIT_LIST_HEAD(&dev->napi_list); 5348 5349 /* a dummy interface is started by default */ 5350 set_bit(__LINK_STATE_PRESENT, &dev->state); 5351 set_bit(__LINK_STATE_START, &dev->state); 5352 5353 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5354 * because users of this 'device' dont need to change 5355 * its refcount. 5356 */ 5357 5358 return 0; 5359 } 5360 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5361 5362 5363 /** 5364 * register_netdev - register a network device 5365 * @dev: device to register 5366 * 5367 * Take a completed network device structure and add it to the kernel 5368 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5369 * chain. 0 is returned on success. A negative errno code is returned 5370 * on a failure to set up the device, or if the name is a duplicate. 5371 * 5372 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5373 * and expands the device name if you passed a format string to 5374 * alloc_netdev. 5375 */ 5376 int register_netdev(struct net_device *dev) 5377 { 5378 int err; 5379 5380 rtnl_lock(); 5381 5382 /* 5383 * If the name is a format string the caller wants us to do a 5384 * name allocation. 5385 */ 5386 if (strchr(dev->name, '%')) { 5387 err = dev_alloc_name(dev, dev->name); 5388 if (err < 0) 5389 goto out; 5390 } 5391 5392 err = register_netdevice(dev); 5393 out: 5394 rtnl_unlock(); 5395 return err; 5396 } 5397 EXPORT_SYMBOL(register_netdev); 5398 5399 int netdev_refcnt_read(const struct net_device *dev) 5400 { 5401 int i, refcnt = 0; 5402 5403 for_each_possible_cpu(i) 5404 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5405 return refcnt; 5406 } 5407 EXPORT_SYMBOL(netdev_refcnt_read); 5408 5409 /* 5410 * netdev_wait_allrefs - wait until all references are gone. 5411 * 5412 * This is called when unregistering network devices. 5413 * 5414 * Any protocol or device that holds a reference should register 5415 * for netdevice notification, and cleanup and put back the 5416 * reference if they receive an UNREGISTER event. 5417 * We can get stuck here if buggy protocols don't correctly 5418 * call dev_put. 5419 */ 5420 static void netdev_wait_allrefs(struct net_device *dev) 5421 { 5422 unsigned long rebroadcast_time, warning_time; 5423 int refcnt; 5424 5425 linkwatch_forget_dev(dev); 5426 5427 rebroadcast_time = warning_time = jiffies; 5428 refcnt = netdev_refcnt_read(dev); 5429 5430 while (refcnt != 0) { 5431 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5432 rtnl_lock(); 5433 5434 /* Rebroadcast unregister notification */ 5435 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5436 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5437 * should have already handle it the first time */ 5438 5439 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5440 &dev->state)) { 5441 /* We must not have linkwatch events 5442 * pending on unregister. If this 5443 * happens, we simply run the queue 5444 * unscheduled, resulting in a noop 5445 * for this device. 5446 */ 5447 linkwatch_run_queue(); 5448 } 5449 5450 __rtnl_unlock(); 5451 5452 rebroadcast_time = jiffies; 5453 } 5454 5455 msleep(250); 5456 5457 refcnt = netdev_refcnt_read(dev); 5458 5459 if (time_after(jiffies, warning_time + 10 * HZ)) { 5460 printk(KERN_EMERG "unregister_netdevice: " 5461 "waiting for %s to become free. Usage " 5462 "count = %d\n", 5463 dev->name, refcnt); 5464 warning_time = jiffies; 5465 } 5466 } 5467 } 5468 5469 /* The sequence is: 5470 * 5471 * rtnl_lock(); 5472 * ... 5473 * register_netdevice(x1); 5474 * register_netdevice(x2); 5475 * ... 5476 * unregister_netdevice(y1); 5477 * unregister_netdevice(y2); 5478 * ... 5479 * rtnl_unlock(); 5480 * free_netdev(y1); 5481 * free_netdev(y2); 5482 * 5483 * We are invoked by rtnl_unlock(). 5484 * This allows us to deal with problems: 5485 * 1) We can delete sysfs objects which invoke hotplug 5486 * without deadlocking with linkwatch via keventd. 5487 * 2) Since we run with the RTNL semaphore not held, we can sleep 5488 * safely in order to wait for the netdev refcnt to drop to zero. 5489 * 5490 * We must not return until all unregister events added during 5491 * the interval the lock was held have been completed. 5492 */ 5493 void netdev_run_todo(void) 5494 { 5495 struct list_head list; 5496 5497 /* Snapshot list, allow later requests */ 5498 list_replace_init(&net_todo_list, &list); 5499 5500 __rtnl_unlock(); 5501 5502 while (!list_empty(&list)) { 5503 struct net_device *dev 5504 = list_first_entry(&list, struct net_device, todo_list); 5505 list_del(&dev->todo_list); 5506 5507 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5508 printk(KERN_ERR "network todo '%s' but state %d\n", 5509 dev->name, dev->reg_state); 5510 dump_stack(); 5511 continue; 5512 } 5513 5514 dev->reg_state = NETREG_UNREGISTERED; 5515 5516 on_each_cpu(flush_backlog, dev, 1); 5517 5518 netdev_wait_allrefs(dev); 5519 5520 /* paranoia */ 5521 BUG_ON(netdev_refcnt_read(dev)); 5522 WARN_ON(rcu_dereference_raw(dev->ip_ptr)); 5523 WARN_ON(rcu_dereference_raw(dev->ip6_ptr)); 5524 WARN_ON(dev->dn_ptr); 5525 5526 if (dev->destructor) 5527 dev->destructor(dev); 5528 5529 /* Free network device */ 5530 kobject_put(&dev->dev.kobj); 5531 } 5532 } 5533 5534 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5535 * fields in the same order, with only the type differing. 5536 */ 5537 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5538 const struct net_device_stats *netdev_stats) 5539 { 5540 #if BITS_PER_LONG == 64 5541 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5542 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5543 #else 5544 size_t i, n = sizeof(*stats64) / sizeof(u64); 5545 const unsigned long *src = (const unsigned long *)netdev_stats; 5546 u64 *dst = (u64 *)stats64; 5547 5548 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5549 sizeof(*stats64) / sizeof(u64)); 5550 for (i = 0; i < n; i++) 5551 dst[i] = src[i]; 5552 #endif 5553 } 5554 5555 /** 5556 * dev_get_stats - get network device statistics 5557 * @dev: device to get statistics from 5558 * @storage: place to store stats 5559 * 5560 * Get network statistics from device. Return @storage. 5561 * The device driver may provide its own method by setting 5562 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5563 * otherwise the internal statistics structure is used. 5564 */ 5565 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5566 struct rtnl_link_stats64 *storage) 5567 { 5568 const struct net_device_ops *ops = dev->netdev_ops; 5569 5570 if (ops->ndo_get_stats64) { 5571 memset(storage, 0, sizeof(*storage)); 5572 ops->ndo_get_stats64(dev, storage); 5573 } else if (ops->ndo_get_stats) { 5574 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5575 } else { 5576 netdev_stats_to_stats64(storage, &dev->stats); 5577 } 5578 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5579 return storage; 5580 } 5581 EXPORT_SYMBOL(dev_get_stats); 5582 5583 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5584 { 5585 struct netdev_queue *queue = dev_ingress_queue(dev); 5586 5587 #ifdef CONFIG_NET_CLS_ACT 5588 if (queue) 5589 return queue; 5590 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5591 if (!queue) 5592 return NULL; 5593 netdev_init_one_queue(dev, queue, NULL); 5594 queue->qdisc = &noop_qdisc; 5595 queue->qdisc_sleeping = &noop_qdisc; 5596 rcu_assign_pointer(dev->ingress_queue, queue); 5597 #endif 5598 return queue; 5599 } 5600 5601 /** 5602 * alloc_netdev_mqs - allocate network device 5603 * @sizeof_priv: size of private data to allocate space for 5604 * @name: device name format string 5605 * @setup: callback to initialize device 5606 * @txqs: the number of TX subqueues to allocate 5607 * @rxqs: the number of RX subqueues to allocate 5608 * 5609 * Allocates a struct net_device with private data area for driver use 5610 * and performs basic initialization. Also allocates subquue structs 5611 * for each queue on the device. 5612 */ 5613 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5614 void (*setup)(struct net_device *), 5615 unsigned int txqs, unsigned int rxqs) 5616 { 5617 struct net_device *dev; 5618 size_t alloc_size; 5619 struct net_device *p; 5620 5621 BUG_ON(strlen(name) >= sizeof(dev->name)); 5622 5623 if (txqs < 1) { 5624 pr_err("alloc_netdev: Unable to allocate device " 5625 "with zero queues.\n"); 5626 return NULL; 5627 } 5628 5629 #ifdef CONFIG_RPS 5630 if (rxqs < 1) { 5631 pr_err("alloc_netdev: Unable to allocate device " 5632 "with zero RX queues.\n"); 5633 return NULL; 5634 } 5635 #endif 5636 5637 alloc_size = sizeof(struct net_device); 5638 if (sizeof_priv) { 5639 /* ensure 32-byte alignment of private area */ 5640 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5641 alloc_size += sizeof_priv; 5642 } 5643 /* ensure 32-byte alignment of whole construct */ 5644 alloc_size += NETDEV_ALIGN - 1; 5645 5646 p = kzalloc(alloc_size, GFP_KERNEL); 5647 if (!p) { 5648 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5649 return NULL; 5650 } 5651 5652 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5653 dev->padded = (char *)dev - (char *)p; 5654 5655 dev->pcpu_refcnt = alloc_percpu(int); 5656 if (!dev->pcpu_refcnt) 5657 goto free_p; 5658 5659 if (dev_addr_init(dev)) 5660 goto free_pcpu; 5661 5662 dev_mc_init(dev); 5663 dev_uc_init(dev); 5664 5665 dev_net_set(dev, &init_net); 5666 5667 dev->gso_max_size = GSO_MAX_SIZE; 5668 5669 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list); 5670 dev->ethtool_ntuple_list.count = 0; 5671 INIT_LIST_HEAD(&dev->napi_list); 5672 INIT_LIST_HEAD(&dev->unreg_list); 5673 INIT_LIST_HEAD(&dev->link_watch_list); 5674 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5675 setup(dev); 5676 5677 dev->num_tx_queues = txqs; 5678 dev->real_num_tx_queues = txqs; 5679 if (netif_alloc_netdev_queues(dev)) 5680 goto free_all; 5681 5682 #ifdef CONFIG_RPS 5683 dev->num_rx_queues = rxqs; 5684 dev->real_num_rx_queues = rxqs; 5685 if (netif_alloc_rx_queues(dev)) 5686 goto free_all; 5687 #endif 5688 5689 strcpy(dev->name, name); 5690 return dev; 5691 5692 free_all: 5693 free_netdev(dev); 5694 return NULL; 5695 5696 free_pcpu: 5697 free_percpu(dev->pcpu_refcnt); 5698 kfree(dev->_tx); 5699 #ifdef CONFIG_RPS 5700 kfree(dev->_rx); 5701 #endif 5702 5703 free_p: 5704 kfree(p); 5705 return NULL; 5706 } 5707 EXPORT_SYMBOL(alloc_netdev_mqs); 5708 5709 /** 5710 * free_netdev - free network device 5711 * @dev: device 5712 * 5713 * This function does the last stage of destroying an allocated device 5714 * interface. The reference to the device object is released. 5715 * If this is the last reference then it will be freed. 5716 */ 5717 void free_netdev(struct net_device *dev) 5718 { 5719 struct napi_struct *p, *n; 5720 5721 release_net(dev_net(dev)); 5722 5723 kfree(dev->_tx); 5724 #ifdef CONFIG_RPS 5725 kfree(dev->_rx); 5726 #endif 5727 5728 kfree(rcu_dereference_raw(dev->ingress_queue)); 5729 5730 /* Flush device addresses */ 5731 dev_addr_flush(dev); 5732 5733 /* Clear ethtool n-tuple list */ 5734 ethtool_ntuple_flush(dev); 5735 5736 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5737 netif_napi_del(p); 5738 5739 free_percpu(dev->pcpu_refcnt); 5740 dev->pcpu_refcnt = NULL; 5741 5742 /* Compatibility with error handling in drivers */ 5743 if (dev->reg_state == NETREG_UNINITIALIZED) { 5744 kfree((char *)dev - dev->padded); 5745 return; 5746 } 5747 5748 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5749 dev->reg_state = NETREG_RELEASED; 5750 5751 /* will free via device release */ 5752 put_device(&dev->dev); 5753 } 5754 EXPORT_SYMBOL(free_netdev); 5755 5756 /** 5757 * synchronize_net - Synchronize with packet receive processing 5758 * 5759 * Wait for packets currently being received to be done. 5760 * Does not block later packets from starting. 5761 */ 5762 void synchronize_net(void) 5763 { 5764 might_sleep(); 5765 synchronize_rcu(); 5766 } 5767 EXPORT_SYMBOL(synchronize_net); 5768 5769 /** 5770 * unregister_netdevice_queue - remove device from the kernel 5771 * @dev: device 5772 * @head: list 5773 * 5774 * This function shuts down a device interface and removes it 5775 * from the kernel tables. 5776 * If head not NULL, device is queued to be unregistered later. 5777 * 5778 * Callers must hold the rtnl semaphore. You may want 5779 * unregister_netdev() instead of this. 5780 */ 5781 5782 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5783 { 5784 ASSERT_RTNL(); 5785 5786 if (head) { 5787 list_move_tail(&dev->unreg_list, head); 5788 } else { 5789 rollback_registered(dev); 5790 /* Finish processing unregister after unlock */ 5791 net_set_todo(dev); 5792 } 5793 } 5794 EXPORT_SYMBOL(unregister_netdevice_queue); 5795 5796 /** 5797 * unregister_netdevice_many - unregister many devices 5798 * @head: list of devices 5799 */ 5800 void unregister_netdevice_many(struct list_head *head) 5801 { 5802 struct net_device *dev; 5803 5804 if (!list_empty(head)) { 5805 rollback_registered_many(head); 5806 list_for_each_entry(dev, head, unreg_list) 5807 net_set_todo(dev); 5808 } 5809 } 5810 EXPORT_SYMBOL(unregister_netdevice_many); 5811 5812 /** 5813 * unregister_netdev - remove device from the kernel 5814 * @dev: device 5815 * 5816 * This function shuts down a device interface and removes it 5817 * from the kernel tables. 5818 * 5819 * This is just a wrapper for unregister_netdevice that takes 5820 * the rtnl semaphore. In general you want to use this and not 5821 * unregister_netdevice. 5822 */ 5823 void unregister_netdev(struct net_device *dev) 5824 { 5825 rtnl_lock(); 5826 unregister_netdevice(dev); 5827 rtnl_unlock(); 5828 } 5829 EXPORT_SYMBOL(unregister_netdev); 5830 5831 /** 5832 * dev_change_net_namespace - move device to different nethost namespace 5833 * @dev: device 5834 * @net: network namespace 5835 * @pat: If not NULL name pattern to try if the current device name 5836 * is already taken in the destination network namespace. 5837 * 5838 * This function shuts down a device interface and moves it 5839 * to a new network namespace. On success 0 is returned, on 5840 * a failure a netagive errno code is returned. 5841 * 5842 * Callers must hold the rtnl semaphore. 5843 */ 5844 5845 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5846 { 5847 int err; 5848 5849 ASSERT_RTNL(); 5850 5851 /* Don't allow namespace local devices to be moved. */ 5852 err = -EINVAL; 5853 if (dev->features & NETIF_F_NETNS_LOCAL) 5854 goto out; 5855 5856 /* Ensure the device has been registrered */ 5857 err = -EINVAL; 5858 if (dev->reg_state != NETREG_REGISTERED) 5859 goto out; 5860 5861 /* Get out if there is nothing todo */ 5862 err = 0; 5863 if (net_eq(dev_net(dev), net)) 5864 goto out; 5865 5866 /* Pick the destination device name, and ensure 5867 * we can use it in the destination network namespace. 5868 */ 5869 err = -EEXIST; 5870 if (__dev_get_by_name(net, dev->name)) { 5871 /* We get here if we can't use the current device name */ 5872 if (!pat) 5873 goto out; 5874 if (dev_get_valid_name(dev, pat, 1)) 5875 goto out; 5876 } 5877 5878 /* 5879 * And now a mini version of register_netdevice unregister_netdevice. 5880 */ 5881 5882 /* If device is running close it first. */ 5883 dev_close(dev); 5884 5885 /* And unlink it from device chain */ 5886 err = -ENODEV; 5887 unlist_netdevice(dev); 5888 5889 synchronize_net(); 5890 5891 /* Shutdown queueing discipline. */ 5892 dev_shutdown(dev); 5893 5894 /* Notify protocols, that we are about to destroy 5895 this device. They should clean all the things. 5896 5897 Note that dev->reg_state stays at NETREG_REGISTERED. 5898 This is wanted because this way 8021q and macvlan know 5899 the device is just moving and can keep their slaves up. 5900 */ 5901 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5902 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5903 5904 /* 5905 * Flush the unicast and multicast chains 5906 */ 5907 dev_uc_flush(dev); 5908 dev_mc_flush(dev); 5909 5910 /* Actually switch the network namespace */ 5911 dev_net_set(dev, net); 5912 5913 /* If there is an ifindex conflict assign a new one */ 5914 if (__dev_get_by_index(net, dev->ifindex)) { 5915 int iflink = (dev->iflink == dev->ifindex); 5916 dev->ifindex = dev_new_index(net); 5917 if (iflink) 5918 dev->iflink = dev->ifindex; 5919 } 5920 5921 /* Fixup kobjects */ 5922 err = device_rename(&dev->dev, dev->name); 5923 WARN_ON(err); 5924 5925 /* Add the device back in the hashes */ 5926 list_netdevice(dev); 5927 5928 /* Notify protocols, that a new device appeared. */ 5929 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5930 5931 /* 5932 * Prevent userspace races by waiting until the network 5933 * device is fully setup before sending notifications. 5934 */ 5935 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5936 5937 synchronize_net(); 5938 err = 0; 5939 out: 5940 return err; 5941 } 5942 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5943 5944 static int dev_cpu_callback(struct notifier_block *nfb, 5945 unsigned long action, 5946 void *ocpu) 5947 { 5948 struct sk_buff **list_skb; 5949 struct sk_buff *skb; 5950 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5951 struct softnet_data *sd, *oldsd; 5952 5953 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5954 return NOTIFY_OK; 5955 5956 local_irq_disable(); 5957 cpu = smp_processor_id(); 5958 sd = &per_cpu(softnet_data, cpu); 5959 oldsd = &per_cpu(softnet_data, oldcpu); 5960 5961 /* Find end of our completion_queue. */ 5962 list_skb = &sd->completion_queue; 5963 while (*list_skb) 5964 list_skb = &(*list_skb)->next; 5965 /* Append completion queue from offline CPU. */ 5966 *list_skb = oldsd->completion_queue; 5967 oldsd->completion_queue = NULL; 5968 5969 /* Append output queue from offline CPU. */ 5970 if (oldsd->output_queue) { 5971 *sd->output_queue_tailp = oldsd->output_queue; 5972 sd->output_queue_tailp = oldsd->output_queue_tailp; 5973 oldsd->output_queue = NULL; 5974 oldsd->output_queue_tailp = &oldsd->output_queue; 5975 } 5976 5977 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5978 local_irq_enable(); 5979 5980 /* Process offline CPU's input_pkt_queue */ 5981 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 5982 netif_rx(skb); 5983 input_queue_head_incr(oldsd); 5984 } 5985 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 5986 netif_rx(skb); 5987 input_queue_head_incr(oldsd); 5988 } 5989 5990 return NOTIFY_OK; 5991 } 5992 5993 5994 /** 5995 * netdev_increment_features - increment feature set by one 5996 * @all: current feature set 5997 * @one: new feature set 5998 * @mask: mask feature set 5999 * 6000 * Computes a new feature set after adding a device with feature set 6001 * @one to the master device with current feature set @all. Will not 6002 * enable anything that is off in @mask. Returns the new feature set. 6003 */ 6004 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 6005 unsigned long mask) 6006 { 6007 /* If device needs checksumming, downgrade to it. */ 6008 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 6009 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 6010 else if (mask & NETIF_F_ALL_CSUM) { 6011 /* If one device supports v4/v6 checksumming, set for all. */ 6012 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 6013 !(all & NETIF_F_GEN_CSUM)) { 6014 all &= ~NETIF_F_ALL_CSUM; 6015 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 6016 } 6017 6018 /* If one device supports hw checksumming, set for all. */ 6019 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 6020 all &= ~NETIF_F_ALL_CSUM; 6021 all |= NETIF_F_HW_CSUM; 6022 } 6023 } 6024 6025 one |= NETIF_F_ALL_CSUM; 6026 6027 one |= all & NETIF_F_ONE_FOR_ALL; 6028 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO; 6029 all |= one & mask & NETIF_F_ONE_FOR_ALL; 6030 6031 return all; 6032 } 6033 EXPORT_SYMBOL(netdev_increment_features); 6034 6035 static struct hlist_head *netdev_create_hash(void) 6036 { 6037 int i; 6038 struct hlist_head *hash; 6039 6040 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6041 if (hash != NULL) 6042 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6043 INIT_HLIST_HEAD(&hash[i]); 6044 6045 return hash; 6046 } 6047 6048 /* Initialize per network namespace state */ 6049 static int __net_init netdev_init(struct net *net) 6050 { 6051 INIT_LIST_HEAD(&net->dev_base_head); 6052 6053 net->dev_name_head = netdev_create_hash(); 6054 if (net->dev_name_head == NULL) 6055 goto err_name; 6056 6057 net->dev_index_head = netdev_create_hash(); 6058 if (net->dev_index_head == NULL) 6059 goto err_idx; 6060 6061 return 0; 6062 6063 err_idx: 6064 kfree(net->dev_name_head); 6065 err_name: 6066 return -ENOMEM; 6067 } 6068 6069 /** 6070 * netdev_drivername - network driver for the device 6071 * @dev: network device 6072 * @buffer: buffer for resulting name 6073 * @len: size of buffer 6074 * 6075 * Determine network driver for device. 6076 */ 6077 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 6078 { 6079 const struct device_driver *driver; 6080 const struct device *parent; 6081 6082 if (len <= 0 || !buffer) 6083 return buffer; 6084 buffer[0] = 0; 6085 6086 parent = dev->dev.parent; 6087 6088 if (!parent) 6089 return buffer; 6090 6091 driver = parent->driver; 6092 if (driver && driver->name) 6093 strlcpy(buffer, driver->name, len); 6094 return buffer; 6095 } 6096 6097 static int __netdev_printk(const char *level, const struct net_device *dev, 6098 struct va_format *vaf) 6099 { 6100 int r; 6101 6102 if (dev && dev->dev.parent) 6103 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6104 netdev_name(dev), vaf); 6105 else if (dev) 6106 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6107 else 6108 r = printk("%s(NULL net_device): %pV", level, vaf); 6109 6110 return r; 6111 } 6112 6113 int netdev_printk(const char *level, const struct net_device *dev, 6114 const char *format, ...) 6115 { 6116 struct va_format vaf; 6117 va_list args; 6118 int r; 6119 6120 va_start(args, format); 6121 6122 vaf.fmt = format; 6123 vaf.va = &args; 6124 6125 r = __netdev_printk(level, dev, &vaf); 6126 va_end(args); 6127 6128 return r; 6129 } 6130 EXPORT_SYMBOL(netdev_printk); 6131 6132 #define define_netdev_printk_level(func, level) \ 6133 int func(const struct net_device *dev, const char *fmt, ...) \ 6134 { \ 6135 int r; \ 6136 struct va_format vaf; \ 6137 va_list args; \ 6138 \ 6139 va_start(args, fmt); \ 6140 \ 6141 vaf.fmt = fmt; \ 6142 vaf.va = &args; \ 6143 \ 6144 r = __netdev_printk(level, dev, &vaf); \ 6145 va_end(args); \ 6146 \ 6147 return r; \ 6148 } \ 6149 EXPORT_SYMBOL(func); 6150 6151 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6152 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6153 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6154 define_netdev_printk_level(netdev_err, KERN_ERR); 6155 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6156 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6157 define_netdev_printk_level(netdev_info, KERN_INFO); 6158 6159 static void __net_exit netdev_exit(struct net *net) 6160 { 6161 kfree(net->dev_name_head); 6162 kfree(net->dev_index_head); 6163 } 6164 6165 static struct pernet_operations __net_initdata netdev_net_ops = { 6166 .init = netdev_init, 6167 .exit = netdev_exit, 6168 }; 6169 6170 static void __net_exit default_device_exit(struct net *net) 6171 { 6172 struct net_device *dev, *aux; 6173 /* 6174 * Push all migratable network devices back to the 6175 * initial network namespace 6176 */ 6177 rtnl_lock(); 6178 for_each_netdev_safe(net, dev, aux) { 6179 int err; 6180 char fb_name[IFNAMSIZ]; 6181 6182 /* Ignore unmoveable devices (i.e. loopback) */ 6183 if (dev->features & NETIF_F_NETNS_LOCAL) 6184 continue; 6185 6186 /* Leave virtual devices for the generic cleanup */ 6187 if (dev->rtnl_link_ops) 6188 continue; 6189 6190 /* Push remaing network devices to init_net */ 6191 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6192 err = dev_change_net_namespace(dev, &init_net, fb_name); 6193 if (err) { 6194 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 6195 __func__, dev->name, err); 6196 BUG(); 6197 } 6198 } 6199 rtnl_unlock(); 6200 } 6201 6202 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6203 { 6204 /* At exit all network devices most be removed from a network 6205 * namespace. Do this in the reverse order of registration. 6206 * Do this across as many network namespaces as possible to 6207 * improve batching efficiency. 6208 */ 6209 struct net_device *dev; 6210 struct net *net; 6211 LIST_HEAD(dev_kill_list); 6212 6213 rtnl_lock(); 6214 list_for_each_entry(net, net_list, exit_list) { 6215 for_each_netdev_reverse(net, dev) { 6216 if (dev->rtnl_link_ops) 6217 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6218 else 6219 unregister_netdevice_queue(dev, &dev_kill_list); 6220 } 6221 } 6222 unregister_netdevice_many(&dev_kill_list); 6223 list_del(&dev_kill_list); 6224 rtnl_unlock(); 6225 } 6226 6227 static struct pernet_operations __net_initdata default_device_ops = { 6228 .exit = default_device_exit, 6229 .exit_batch = default_device_exit_batch, 6230 }; 6231 6232 /* 6233 * Initialize the DEV module. At boot time this walks the device list and 6234 * unhooks any devices that fail to initialise (normally hardware not 6235 * present) and leaves us with a valid list of present and active devices. 6236 * 6237 */ 6238 6239 /* 6240 * This is called single threaded during boot, so no need 6241 * to take the rtnl semaphore. 6242 */ 6243 static int __init net_dev_init(void) 6244 { 6245 int i, rc = -ENOMEM; 6246 6247 BUG_ON(!dev_boot_phase); 6248 6249 if (dev_proc_init()) 6250 goto out; 6251 6252 if (netdev_kobject_init()) 6253 goto out; 6254 6255 INIT_LIST_HEAD(&ptype_all); 6256 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6257 INIT_LIST_HEAD(&ptype_base[i]); 6258 6259 if (register_pernet_subsys(&netdev_net_ops)) 6260 goto out; 6261 6262 /* 6263 * Initialise the packet receive queues. 6264 */ 6265 6266 for_each_possible_cpu(i) { 6267 struct softnet_data *sd = &per_cpu(softnet_data, i); 6268 6269 memset(sd, 0, sizeof(*sd)); 6270 skb_queue_head_init(&sd->input_pkt_queue); 6271 skb_queue_head_init(&sd->process_queue); 6272 sd->completion_queue = NULL; 6273 INIT_LIST_HEAD(&sd->poll_list); 6274 sd->output_queue = NULL; 6275 sd->output_queue_tailp = &sd->output_queue; 6276 #ifdef CONFIG_RPS 6277 sd->csd.func = rps_trigger_softirq; 6278 sd->csd.info = sd; 6279 sd->csd.flags = 0; 6280 sd->cpu = i; 6281 #endif 6282 6283 sd->backlog.poll = process_backlog; 6284 sd->backlog.weight = weight_p; 6285 sd->backlog.gro_list = NULL; 6286 sd->backlog.gro_count = 0; 6287 } 6288 6289 dev_boot_phase = 0; 6290 6291 /* The loopback device is special if any other network devices 6292 * is present in a network namespace the loopback device must 6293 * be present. Since we now dynamically allocate and free the 6294 * loopback device ensure this invariant is maintained by 6295 * keeping the loopback device as the first device on the 6296 * list of network devices. Ensuring the loopback devices 6297 * is the first device that appears and the last network device 6298 * that disappears. 6299 */ 6300 if (register_pernet_device(&loopback_net_ops)) 6301 goto out; 6302 6303 if (register_pernet_device(&default_device_ops)) 6304 goto out; 6305 6306 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6307 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6308 6309 hotcpu_notifier(dev_cpu_callback, 0); 6310 dst_init(); 6311 dev_mcast_init(); 6312 rc = 0; 6313 out: 6314 return rc; 6315 } 6316 6317 subsys_initcall(net_dev_init); 6318 6319 static int __init initialize_hashrnd(void) 6320 { 6321 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6322 return 0; 6323 } 6324 6325 late_initcall_sync(initialize_hashrnd); 6326 6327