xref: /openbmc/linux/net/core/dev.c (revision de8c12110a130337c8e7e7b8250de0580e644dee)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151 
152 #include "net-sysfs.h"
153 
154 #define MAX_GRO_SKBS 8
155 
156 /* This should be increased if a protocol with a bigger head is added. */
157 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158 
159 static DEFINE_SPINLOCK(ptype_lock);
160 static DEFINE_SPINLOCK(offload_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;	/* Taps */
163 static struct list_head offload_base __read_mostly;
164 
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_info(unsigned long val,
167 					 struct netdev_notifier_info *info);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169 					   struct net_device *dev,
170 					   struct netlink_ext_ack *extack);
171 static struct napi_struct *napi_by_id(unsigned int napi_id);
172 
173 /*
174  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175  * semaphore.
176  *
177  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178  *
179  * Writers must hold the rtnl semaphore while they loop through the
180  * dev_base_head list, and hold dev_base_lock for writing when they do the
181  * actual updates.  This allows pure readers to access the list even
182  * while a writer is preparing to update it.
183  *
184  * To put it another way, dev_base_lock is held for writing only to
185  * protect against pure readers; the rtnl semaphore provides the
186  * protection against other writers.
187  *
188  * See, for example usages, register_netdevice() and
189  * unregister_netdevice(), which must be called with the rtnl
190  * semaphore held.
191  */
192 DEFINE_RWLOCK(dev_base_lock);
193 EXPORT_SYMBOL(dev_base_lock);
194 
195 static DEFINE_MUTEX(ifalias_mutex);
196 
197 /* protects napi_hash addition/deletion and napi_gen_id */
198 static DEFINE_SPINLOCK(napi_hash_lock);
199 
200 static unsigned int napi_gen_id = NR_CPUS;
201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202 
203 static DECLARE_RWSEM(devnet_rename_sem);
204 
205 static inline void dev_base_seq_inc(struct net *net)
206 {
207 	while (++net->dev_base_seq == 0)
208 		;
209 }
210 
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212 {
213 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214 
215 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 }
217 
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 }
222 
223 static inline void rps_lock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226 	spin_lock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229 
230 static inline void rps_unlock(struct softnet_data *sd)
231 {
232 #ifdef CONFIG_RPS
233 	spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
235 }
236 
237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238 						       const char *name)
239 {
240 	struct netdev_name_node *name_node;
241 
242 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243 	if (!name_node)
244 		return NULL;
245 	INIT_HLIST_NODE(&name_node->hlist);
246 	name_node->dev = dev;
247 	name_node->name = name;
248 	return name_node;
249 }
250 
251 static struct netdev_name_node *
252 netdev_name_node_head_alloc(struct net_device *dev)
253 {
254 	struct netdev_name_node *name_node;
255 
256 	name_node = netdev_name_node_alloc(dev, dev->name);
257 	if (!name_node)
258 		return NULL;
259 	INIT_LIST_HEAD(&name_node->list);
260 	return name_node;
261 }
262 
263 static void netdev_name_node_free(struct netdev_name_node *name_node)
264 {
265 	kfree(name_node);
266 }
267 
268 static void netdev_name_node_add(struct net *net,
269 				 struct netdev_name_node *name_node)
270 {
271 	hlist_add_head_rcu(&name_node->hlist,
272 			   dev_name_hash(net, name_node->name));
273 }
274 
275 static void netdev_name_node_del(struct netdev_name_node *name_node)
276 {
277 	hlist_del_rcu(&name_node->hlist);
278 }
279 
280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281 							const char *name)
282 {
283 	struct hlist_head *head = dev_name_hash(net, name);
284 	struct netdev_name_node *name_node;
285 
286 	hlist_for_each_entry(name_node, head, hlist)
287 		if (!strcmp(name_node->name, name))
288 			return name_node;
289 	return NULL;
290 }
291 
292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293 							    const char *name)
294 {
295 	struct hlist_head *head = dev_name_hash(net, name);
296 	struct netdev_name_node *name_node;
297 
298 	hlist_for_each_entry_rcu(name_node, head, hlist)
299 		if (!strcmp(name_node->name, name))
300 			return name_node;
301 	return NULL;
302 }
303 
304 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305 {
306 	struct netdev_name_node *name_node;
307 	struct net *net = dev_net(dev);
308 
309 	name_node = netdev_name_node_lookup(net, name);
310 	if (name_node)
311 		return -EEXIST;
312 	name_node = netdev_name_node_alloc(dev, name);
313 	if (!name_node)
314 		return -ENOMEM;
315 	netdev_name_node_add(net, name_node);
316 	/* The node that holds dev->name acts as a head of per-device list. */
317 	list_add_tail(&name_node->list, &dev->name_node->list);
318 
319 	return 0;
320 }
321 EXPORT_SYMBOL(netdev_name_node_alt_create);
322 
323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324 {
325 	list_del(&name_node->list);
326 	netdev_name_node_del(name_node);
327 	kfree(name_node->name);
328 	netdev_name_node_free(name_node);
329 }
330 
331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332 {
333 	struct netdev_name_node *name_node;
334 	struct net *net = dev_net(dev);
335 
336 	name_node = netdev_name_node_lookup(net, name);
337 	if (!name_node)
338 		return -ENOENT;
339 	/* lookup might have found our primary name or a name belonging
340 	 * to another device.
341 	 */
342 	if (name_node == dev->name_node || name_node->dev != dev)
343 		return -EINVAL;
344 
345 	__netdev_name_node_alt_destroy(name_node);
346 
347 	return 0;
348 }
349 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350 
351 static void netdev_name_node_alt_flush(struct net_device *dev)
352 {
353 	struct netdev_name_node *name_node, *tmp;
354 
355 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356 		__netdev_name_node_alt_destroy(name_node);
357 }
358 
359 /* Device list insertion */
360 static void list_netdevice(struct net_device *dev)
361 {
362 	struct net *net = dev_net(dev);
363 
364 	ASSERT_RTNL();
365 
366 	write_lock_bh(&dev_base_lock);
367 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368 	netdev_name_node_add(net, dev->name_node);
369 	hlist_add_head_rcu(&dev->index_hlist,
370 			   dev_index_hash(net, dev->ifindex));
371 	write_unlock_bh(&dev_base_lock);
372 
373 	dev_base_seq_inc(net);
374 }
375 
376 /* Device list removal
377  * caller must respect a RCU grace period before freeing/reusing dev
378  */
379 static void unlist_netdevice(struct net_device *dev)
380 {
381 	ASSERT_RTNL();
382 
383 	/* Unlink dev from the device chain */
384 	write_lock_bh(&dev_base_lock);
385 	list_del_rcu(&dev->dev_list);
386 	netdev_name_node_del(dev->name_node);
387 	hlist_del_rcu(&dev->index_hlist);
388 	write_unlock_bh(&dev_base_lock);
389 
390 	dev_base_seq_inc(dev_net(dev));
391 }
392 
393 /*
394  *	Our notifier list
395  */
396 
397 static RAW_NOTIFIER_HEAD(netdev_chain);
398 
399 /*
400  *	Device drivers call our routines to queue packets here. We empty the
401  *	queue in the local softnet handler.
402  */
403 
404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405 EXPORT_PER_CPU_SYMBOL(softnet_data);
406 
407 #ifdef CONFIG_LOCKDEP
408 /*
409  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410  * according to dev->type
411  */
412 static const unsigned short netdev_lock_type[] = {
413 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428 
429 static const char *const netdev_lock_name[] = {
430 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445 
446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448 
449 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450 {
451 	int i;
452 
453 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454 		if (netdev_lock_type[i] == dev_type)
455 			return i;
456 	/* the last key is used by default */
457 	return ARRAY_SIZE(netdev_lock_type) - 1;
458 }
459 
460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461 						 unsigned short dev_type)
462 {
463 	int i;
464 
465 	i = netdev_lock_pos(dev_type);
466 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467 				   netdev_lock_name[i]);
468 }
469 
470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471 {
472 	int i;
473 
474 	i = netdev_lock_pos(dev->type);
475 	lockdep_set_class_and_name(&dev->addr_list_lock,
476 				   &netdev_addr_lock_key[i],
477 				   netdev_lock_name[i]);
478 }
479 #else
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 						 unsigned short dev_type)
482 {
483 }
484 
485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486 {
487 }
488 #endif
489 
490 /*******************************************************************************
491  *
492  *		Protocol management and registration routines
493  *
494  *******************************************************************************/
495 
496 
497 /*
498  *	Add a protocol ID to the list. Now that the input handler is
499  *	smarter we can dispense with all the messy stuff that used to be
500  *	here.
501  *
502  *	BEWARE!!! Protocol handlers, mangling input packets,
503  *	MUST BE last in hash buckets and checking protocol handlers
504  *	MUST start from promiscuous ptype_all chain in net_bh.
505  *	It is true now, do not change it.
506  *	Explanation follows: if protocol handler, mangling packet, will
507  *	be the first on list, it is not able to sense, that packet
508  *	is cloned and should be copied-on-write, so that it will
509  *	change it and subsequent readers will get broken packet.
510  *							--ANK (980803)
511  */
512 
513 static inline struct list_head *ptype_head(const struct packet_type *pt)
514 {
515 	if (pt->type == htons(ETH_P_ALL))
516 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517 	else
518 		return pt->dev ? &pt->dev->ptype_specific :
519 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520 }
521 
522 /**
523  *	dev_add_pack - add packet handler
524  *	@pt: packet type declaration
525  *
526  *	Add a protocol handler to the networking stack. The passed &packet_type
527  *	is linked into kernel lists and may not be freed until it has been
528  *	removed from the kernel lists.
529  *
530  *	This call does not sleep therefore it can not
531  *	guarantee all CPU's that are in middle of receiving packets
532  *	will see the new packet type (until the next received packet).
533  */
534 
535 void dev_add_pack(struct packet_type *pt)
536 {
537 	struct list_head *head = ptype_head(pt);
538 
539 	spin_lock(&ptype_lock);
540 	list_add_rcu(&pt->list, head);
541 	spin_unlock(&ptype_lock);
542 }
543 EXPORT_SYMBOL(dev_add_pack);
544 
545 /**
546  *	__dev_remove_pack	 - remove packet handler
547  *	@pt: packet type declaration
548  *
549  *	Remove a protocol handler that was previously added to the kernel
550  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
551  *	from the kernel lists and can be freed or reused once this function
552  *	returns.
553  *
554  *      The packet type might still be in use by receivers
555  *	and must not be freed until after all the CPU's have gone
556  *	through a quiescent state.
557  */
558 void __dev_remove_pack(struct packet_type *pt)
559 {
560 	struct list_head *head = ptype_head(pt);
561 	struct packet_type *pt1;
562 
563 	spin_lock(&ptype_lock);
564 
565 	list_for_each_entry(pt1, head, list) {
566 		if (pt == pt1) {
567 			list_del_rcu(&pt->list);
568 			goto out;
569 		}
570 	}
571 
572 	pr_warn("dev_remove_pack: %p not found\n", pt);
573 out:
574 	spin_unlock(&ptype_lock);
575 }
576 EXPORT_SYMBOL(__dev_remove_pack);
577 
578 /**
579  *	dev_remove_pack	 - remove packet handler
580  *	@pt: packet type declaration
581  *
582  *	Remove a protocol handler that was previously added to the kernel
583  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
584  *	from the kernel lists and can be freed or reused once this function
585  *	returns.
586  *
587  *	This call sleeps to guarantee that no CPU is looking at the packet
588  *	type after return.
589  */
590 void dev_remove_pack(struct packet_type *pt)
591 {
592 	__dev_remove_pack(pt);
593 
594 	synchronize_net();
595 }
596 EXPORT_SYMBOL(dev_remove_pack);
597 
598 
599 /**
600  *	dev_add_offload - register offload handlers
601  *	@po: protocol offload declaration
602  *
603  *	Add protocol offload handlers to the networking stack. The passed
604  *	&proto_offload is linked into kernel lists and may not be freed until
605  *	it has been removed from the kernel lists.
606  *
607  *	This call does not sleep therefore it can not
608  *	guarantee all CPU's that are in middle of receiving packets
609  *	will see the new offload handlers (until the next received packet).
610  */
611 void dev_add_offload(struct packet_offload *po)
612 {
613 	struct packet_offload *elem;
614 
615 	spin_lock(&offload_lock);
616 	list_for_each_entry(elem, &offload_base, list) {
617 		if (po->priority < elem->priority)
618 			break;
619 	}
620 	list_add_rcu(&po->list, elem->list.prev);
621 	spin_unlock(&offload_lock);
622 }
623 EXPORT_SYMBOL(dev_add_offload);
624 
625 /**
626  *	__dev_remove_offload	 - remove offload handler
627  *	@po: packet offload declaration
628  *
629  *	Remove a protocol offload handler that was previously added to the
630  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
631  *	is removed from the kernel lists and can be freed or reused once this
632  *	function returns.
633  *
634  *      The packet type might still be in use by receivers
635  *	and must not be freed until after all the CPU's have gone
636  *	through a quiescent state.
637  */
638 static void __dev_remove_offload(struct packet_offload *po)
639 {
640 	struct list_head *head = &offload_base;
641 	struct packet_offload *po1;
642 
643 	spin_lock(&offload_lock);
644 
645 	list_for_each_entry(po1, head, list) {
646 		if (po == po1) {
647 			list_del_rcu(&po->list);
648 			goto out;
649 		}
650 	}
651 
652 	pr_warn("dev_remove_offload: %p not found\n", po);
653 out:
654 	spin_unlock(&offload_lock);
655 }
656 
657 /**
658  *	dev_remove_offload	 - remove packet offload handler
659  *	@po: packet offload declaration
660  *
661  *	Remove a packet offload handler that was previously added to the kernel
662  *	offload handlers by dev_add_offload(). The passed &offload_type is
663  *	removed from the kernel lists and can be freed or reused once this
664  *	function returns.
665  *
666  *	This call sleeps to guarantee that no CPU is looking at the packet
667  *	type after return.
668  */
669 void dev_remove_offload(struct packet_offload *po)
670 {
671 	__dev_remove_offload(po);
672 
673 	synchronize_net();
674 }
675 EXPORT_SYMBOL(dev_remove_offload);
676 
677 /******************************************************************************
678  *
679  *		      Device Boot-time Settings Routines
680  *
681  ******************************************************************************/
682 
683 /* Boot time configuration table */
684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685 
686 /**
687  *	netdev_boot_setup_add	- add new setup entry
688  *	@name: name of the device
689  *	@map: configured settings for the device
690  *
691  *	Adds new setup entry to the dev_boot_setup list.  The function
692  *	returns 0 on error and 1 on success.  This is a generic routine to
693  *	all netdevices.
694  */
695 static int netdev_boot_setup_add(char *name, struct ifmap *map)
696 {
697 	struct netdev_boot_setup *s;
698 	int i;
699 
700 	s = dev_boot_setup;
701 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703 			memset(s[i].name, 0, sizeof(s[i].name));
704 			strlcpy(s[i].name, name, IFNAMSIZ);
705 			memcpy(&s[i].map, map, sizeof(s[i].map));
706 			break;
707 		}
708 	}
709 
710 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711 }
712 
713 /**
714  * netdev_boot_setup_check	- check boot time settings
715  * @dev: the netdevice
716  *
717  * Check boot time settings for the device.
718  * The found settings are set for the device to be used
719  * later in the device probing.
720  * Returns 0 if no settings found, 1 if they are.
721  */
722 int netdev_boot_setup_check(struct net_device *dev)
723 {
724 	struct netdev_boot_setup *s = dev_boot_setup;
725 	int i;
726 
727 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729 		    !strcmp(dev->name, s[i].name)) {
730 			dev->irq = s[i].map.irq;
731 			dev->base_addr = s[i].map.base_addr;
732 			dev->mem_start = s[i].map.mem_start;
733 			dev->mem_end = s[i].map.mem_end;
734 			return 1;
735 		}
736 	}
737 	return 0;
738 }
739 EXPORT_SYMBOL(netdev_boot_setup_check);
740 
741 
742 /**
743  * netdev_boot_base	- get address from boot time settings
744  * @prefix: prefix for network device
745  * @unit: id for network device
746  *
747  * Check boot time settings for the base address of device.
748  * The found settings are set for the device to be used
749  * later in the device probing.
750  * Returns 0 if no settings found.
751  */
752 unsigned long netdev_boot_base(const char *prefix, int unit)
753 {
754 	const struct netdev_boot_setup *s = dev_boot_setup;
755 	char name[IFNAMSIZ];
756 	int i;
757 
758 	sprintf(name, "%s%d", prefix, unit);
759 
760 	/*
761 	 * If device already registered then return base of 1
762 	 * to indicate not to probe for this interface
763 	 */
764 	if (__dev_get_by_name(&init_net, name))
765 		return 1;
766 
767 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768 		if (!strcmp(name, s[i].name))
769 			return s[i].map.base_addr;
770 	return 0;
771 }
772 
773 /*
774  * Saves at boot time configured settings for any netdevice.
775  */
776 int __init netdev_boot_setup(char *str)
777 {
778 	int ints[5];
779 	struct ifmap map;
780 
781 	str = get_options(str, ARRAY_SIZE(ints), ints);
782 	if (!str || !*str)
783 		return 0;
784 
785 	/* Save settings */
786 	memset(&map, 0, sizeof(map));
787 	if (ints[0] > 0)
788 		map.irq = ints[1];
789 	if (ints[0] > 1)
790 		map.base_addr = ints[2];
791 	if (ints[0] > 2)
792 		map.mem_start = ints[3];
793 	if (ints[0] > 3)
794 		map.mem_end = ints[4];
795 
796 	/* Add new entry to the list */
797 	return netdev_boot_setup_add(str, &map);
798 }
799 
800 __setup("netdev=", netdev_boot_setup);
801 
802 /*******************************************************************************
803  *
804  *			    Device Interface Subroutines
805  *
806  *******************************************************************************/
807 
808 /**
809  *	dev_get_iflink	- get 'iflink' value of a interface
810  *	@dev: targeted interface
811  *
812  *	Indicates the ifindex the interface is linked to.
813  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
814  */
815 
816 int dev_get_iflink(const struct net_device *dev)
817 {
818 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819 		return dev->netdev_ops->ndo_get_iflink(dev);
820 
821 	return dev->ifindex;
822 }
823 EXPORT_SYMBOL(dev_get_iflink);
824 
825 /**
826  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
827  *	@dev: targeted interface
828  *	@skb: The packet.
829  *
830  *	For better visibility of tunnel traffic OVS needs to retrieve
831  *	egress tunnel information for a packet. Following API allows
832  *	user to get this info.
833  */
834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835 {
836 	struct ip_tunnel_info *info;
837 
838 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
839 		return -EINVAL;
840 
841 	info = skb_tunnel_info_unclone(skb);
842 	if (!info)
843 		return -ENOMEM;
844 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845 		return -EINVAL;
846 
847 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848 }
849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850 
851 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
852 {
853 	int k = stack->num_paths++;
854 
855 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
856 		return NULL;
857 
858 	return &stack->path[k];
859 }
860 
861 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
862 			  struct net_device_path_stack *stack)
863 {
864 	const struct net_device *last_dev;
865 	struct net_device_path_ctx ctx = {
866 		.dev	= dev,
867 		.daddr	= daddr,
868 	};
869 	struct net_device_path *path;
870 	int ret = 0;
871 
872 	stack->num_paths = 0;
873 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
874 		last_dev = ctx.dev;
875 		path = dev_fwd_path(stack);
876 		if (!path)
877 			return -1;
878 
879 		memset(path, 0, sizeof(struct net_device_path));
880 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
881 		if (ret < 0)
882 			return -1;
883 
884 		if (WARN_ON_ONCE(last_dev == ctx.dev))
885 			return -1;
886 	}
887 	path = dev_fwd_path(stack);
888 	if (!path)
889 		return -1;
890 	path->type = DEV_PATH_ETHERNET;
891 	path->dev = ctx.dev;
892 
893 	return ret;
894 }
895 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
896 
897 /**
898  *	__dev_get_by_name	- find a device by its name
899  *	@net: the applicable net namespace
900  *	@name: name to find
901  *
902  *	Find an interface by name. Must be called under RTNL semaphore
903  *	or @dev_base_lock. If the name is found a pointer to the device
904  *	is returned. If the name is not found then %NULL is returned. The
905  *	reference counters are not incremented so the caller must be
906  *	careful with locks.
907  */
908 
909 struct net_device *__dev_get_by_name(struct net *net, const char *name)
910 {
911 	struct netdev_name_node *node_name;
912 
913 	node_name = netdev_name_node_lookup(net, name);
914 	return node_name ? node_name->dev : NULL;
915 }
916 EXPORT_SYMBOL(__dev_get_by_name);
917 
918 /**
919  * dev_get_by_name_rcu	- find a device by its name
920  * @net: the applicable net namespace
921  * @name: name to find
922  *
923  * Find an interface by name.
924  * If the name is found a pointer to the device is returned.
925  * If the name is not found then %NULL is returned.
926  * The reference counters are not incremented so the caller must be
927  * careful with locks. The caller must hold RCU lock.
928  */
929 
930 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
931 {
932 	struct netdev_name_node *node_name;
933 
934 	node_name = netdev_name_node_lookup_rcu(net, name);
935 	return node_name ? node_name->dev : NULL;
936 }
937 EXPORT_SYMBOL(dev_get_by_name_rcu);
938 
939 /**
940  *	dev_get_by_name		- find a device by its name
941  *	@net: the applicable net namespace
942  *	@name: name to find
943  *
944  *	Find an interface by name. This can be called from any
945  *	context and does its own locking. The returned handle has
946  *	the usage count incremented and the caller must use dev_put() to
947  *	release it when it is no longer needed. %NULL is returned if no
948  *	matching device is found.
949  */
950 
951 struct net_device *dev_get_by_name(struct net *net, const char *name)
952 {
953 	struct net_device *dev;
954 
955 	rcu_read_lock();
956 	dev = dev_get_by_name_rcu(net, name);
957 	if (dev)
958 		dev_hold(dev);
959 	rcu_read_unlock();
960 	return dev;
961 }
962 EXPORT_SYMBOL(dev_get_by_name);
963 
964 /**
965  *	__dev_get_by_index - find a device by its ifindex
966  *	@net: the applicable net namespace
967  *	@ifindex: index of device
968  *
969  *	Search for an interface by index. Returns %NULL if the device
970  *	is not found or a pointer to the device. The device has not
971  *	had its reference counter increased so the caller must be careful
972  *	about locking. The caller must hold either the RTNL semaphore
973  *	or @dev_base_lock.
974  */
975 
976 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
977 {
978 	struct net_device *dev;
979 	struct hlist_head *head = dev_index_hash(net, ifindex);
980 
981 	hlist_for_each_entry(dev, head, index_hlist)
982 		if (dev->ifindex == ifindex)
983 			return dev;
984 
985 	return NULL;
986 }
987 EXPORT_SYMBOL(__dev_get_by_index);
988 
989 /**
990  *	dev_get_by_index_rcu - find a device by its ifindex
991  *	@net: the applicable net namespace
992  *	@ifindex: index of device
993  *
994  *	Search for an interface by index. Returns %NULL if the device
995  *	is not found or a pointer to the device. The device has not
996  *	had its reference counter increased so the caller must be careful
997  *	about locking. The caller must hold RCU lock.
998  */
999 
1000 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1001 {
1002 	struct net_device *dev;
1003 	struct hlist_head *head = dev_index_hash(net, ifindex);
1004 
1005 	hlist_for_each_entry_rcu(dev, head, index_hlist)
1006 		if (dev->ifindex == ifindex)
1007 			return dev;
1008 
1009 	return NULL;
1010 }
1011 EXPORT_SYMBOL(dev_get_by_index_rcu);
1012 
1013 
1014 /**
1015  *	dev_get_by_index - find a device by its ifindex
1016  *	@net: the applicable net namespace
1017  *	@ifindex: index of device
1018  *
1019  *	Search for an interface by index. Returns NULL if the device
1020  *	is not found or a pointer to the device. The device returned has
1021  *	had a reference added and the pointer is safe until the user calls
1022  *	dev_put to indicate they have finished with it.
1023  */
1024 
1025 struct net_device *dev_get_by_index(struct net *net, int ifindex)
1026 {
1027 	struct net_device *dev;
1028 
1029 	rcu_read_lock();
1030 	dev = dev_get_by_index_rcu(net, ifindex);
1031 	if (dev)
1032 		dev_hold(dev);
1033 	rcu_read_unlock();
1034 	return dev;
1035 }
1036 EXPORT_SYMBOL(dev_get_by_index);
1037 
1038 /**
1039  *	dev_get_by_napi_id - find a device by napi_id
1040  *	@napi_id: ID of the NAPI struct
1041  *
1042  *	Search for an interface by NAPI ID. Returns %NULL if the device
1043  *	is not found or a pointer to the device. The device has not had
1044  *	its reference counter increased so the caller must be careful
1045  *	about locking. The caller must hold RCU lock.
1046  */
1047 
1048 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1049 {
1050 	struct napi_struct *napi;
1051 
1052 	WARN_ON_ONCE(!rcu_read_lock_held());
1053 
1054 	if (napi_id < MIN_NAPI_ID)
1055 		return NULL;
1056 
1057 	napi = napi_by_id(napi_id);
1058 
1059 	return napi ? napi->dev : NULL;
1060 }
1061 EXPORT_SYMBOL(dev_get_by_napi_id);
1062 
1063 /**
1064  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1065  *	@net: network namespace
1066  *	@name: a pointer to the buffer where the name will be stored.
1067  *	@ifindex: the ifindex of the interface to get the name from.
1068  */
1069 int netdev_get_name(struct net *net, char *name, int ifindex)
1070 {
1071 	struct net_device *dev;
1072 	int ret;
1073 
1074 	down_read(&devnet_rename_sem);
1075 	rcu_read_lock();
1076 
1077 	dev = dev_get_by_index_rcu(net, ifindex);
1078 	if (!dev) {
1079 		ret = -ENODEV;
1080 		goto out;
1081 	}
1082 
1083 	strcpy(name, dev->name);
1084 
1085 	ret = 0;
1086 out:
1087 	rcu_read_unlock();
1088 	up_read(&devnet_rename_sem);
1089 	return ret;
1090 }
1091 
1092 /**
1093  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1094  *	@net: the applicable net namespace
1095  *	@type: media type of device
1096  *	@ha: hardware address
1097  *
1098  *	Search for an interface by MAC address. Returns NULL if the device
1099  *	is not found or a pointer to the device.
1100  *	The caller must hold RCU or RTNL.
1101  *	The returned device has not had its ref count increased
1102  *	and the caller must therefore be careful about locking
1103  *
1104  */
1105 
1106 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1107 				       const char *ha)
1108 {
1109 	struct net_device *dev;
1110 
1111 	for_each_netdev_rcu(net, dev)
1112 		if (dev->type == type &&
1113 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1114 			return dev;
1115 
1116 	return NULL;
1117 }
1118 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1119 
1120 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1121 {
1122 	struct net_device *dev, *ret = NULL;
1123 
1124 	rcu_read_lock();
1125 	for_each_netdev_rcu(net, dev)
1126 		if (dev->type == type) {
1127 			dev_hold(dev);
1128 			ret = dev;
1129 			break;
1130 		}
1131 	rcu_read_unlock();
1132 	return ret;
1133 }
1134 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1135 
1136 /**
1137  *	__dev_get_by_flags - find any device with given flags
1138  *	@net: the applicable net namespace
1139  *	@if_flags: IFF_* values
1140  *	@mask: bitmask of bits in if_flags to check
1141  *
1142  *	Search for any interface with the given flags. Returns NULL if a device
1143  *	is not found or a pointer to the device. Must be called inside
1144  *	rtnl_lock(), and result refcount is unchanged.
1145  */
1146 
1147 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1148 				      unsigned short mask)
1149 {
1150 	struct net_device *dev, *ret;
1151 
1152 	ASSERT_RTNL();
1153 
1154 	ret = NULL;
1155 	for_each_netdev(net, dev) {
1156 		if (((dev->flags ^ if_flags) & mask) == 0) {
1157 			ret = dev;
1158 			break;
1159 		}
1160 	}
1161 	return ret;
1162 }
1163 EXPORT_SYMBOL(__dev_get_by_flags);
1164 
1165 /**
1166  *	dev_valid_name - check if name is okay for network device
1167  *	@name: name string
1168  *
1169  *	Network device names need to be valid file names to
1170  *	allow sysfs to work.  We also disallow any kind of
1171  *	whitespace.
1172  */
1173 bool dev_valid_name(const char *name)
1174 {
1175 	if (*name == '\0')
1176 		return false;
1177 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1178 		return false;
1179 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1180 		return false;
1181 
1182 	while (*name) {
1183 		if (*name == '/' || *name == ':' || isspace(*name))
1184 			return false;
1185 		name++;
1186 	}
1187 	return true;
1188 }
1189 EXPORT_SYMBOL(dev_valid_name);
1190 
1191 /**
1192  *	__dev_alloc_name - allocate a name for a device
1193  *	@net: network namespace to allocate the device name in
1194  *	@name: name format string
1195  *	@buf:  scratch buffer and result name string
1196  *
1197  *	Passed a format string - eg "lt%d" it will try and find a suitable
1198  *	id. It scans list of devices to build up a free map, then chooses
1199  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1200  *	while allocating the name and adding the device in order to avoid
1201  *	duplicates.
1202  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1203  *	Returns the number of the unit assigned or a negative errno code.
1204  */
1205 
1206 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1207 {
1208 	int i = 0;
1209 	const char *p;
1210 	const int max_netdevices = 8*PAGE_SIZE;
1211 	unsigned long *inuse;
1212 	struct net_device *d;
1213 
1214 	if (!dev_valid_name(name))
1215 		return -EINVAL;
1216 
1217 	p = strchr(name, '%');
1218 	if (p) {
1219 		/*
1220 		 * Verify the string as this thing may have come from
1221 		 * the user.  There must be either one "%d" and no other "%"
1222 		 * characters.
1223 		 */
1224 		if (p[1] != 'd' || strchr(p + 2, '%'))
1225 			return -EINVAL;
1226 
1227 		/* Use one page as a bit array of possible slots */
1228 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1229 		if (!inuse)
1230 			return -ENOMEM;
1231 
1232 		for_each_netdev(net, d) {
1233 			struct netdev_name_node *name_node;
1234 			list_for_each_entry(name_node, &d->name_node->list, list) {
1235 				if (!sscanf(name_node->name, name, &i))
1236 					continue;
1237 				if (i < 0 || i >= max_netdevices)
1238 					continue;
1239 
1240 				/*  avoid cases where sscanf is not exact inverse of printf */
1241 				snprintf(buf, IFNAMSIZ, name, i);
1242 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1243 					set_bit(i, inuse);
1244 			}
1245 			if (!sscanf(d->name, name, &i))
1246 				continue;
1247 			if (i < 0 || i >= max_netdevices)
1248 				continue;
1249 
1250 			/*  avoid cases where sscanf is not exact inverse of printf */
1251 			snprintf(buf, IFNAMSIZ, name, i);
1252 			if (!strncmp(buf, d->name, IFNAMSIZ))
1253 				set_bit(i, inuse);
1254 		}
1255 
1256 		i = find_first_zero_bit(inuse, max_netdevices);
1257 		free_page((unsigned long) inuse);
1258 	}
1259 
1260 	snprintf(buf, IFNAMSIZ, name, i);
1261 	if (!__dev_get_by_name(net, buf))
1262 		return i;
1263 
1264 	/* It is possible to run out of possible slots
1265 	 * when the name is long and there isn't enough space left
1266 	 * for the digits, or if all bits are used.
1267 	 */
1268 	return -ENFILE;
1269 }
1270 
1271 static int dev_alloc_name_ns(struct net *net,
1272 			     struct net_device *dev,
1273 			     const char *name)
1274 {
1275 	char buf[IFNAMSIZ];
1276 	int ret;
1277 
1278 	BUG_ON(!net);
1279 	ret = __dev_alloc_name(net, name, buf);
1280 	if (ret >= 0)
1281 		strlcpy(dev->name, buf, IFNAMSIZ);
1282 	return ret;
1283 }
1284 
1285 /**
1286  *	dev_alloc_name - allocate a name for a device
1287  *	@dev: device
1288  *	@name: name format string
1289  *
1290  *	Passed a format string - eg "lt%d" it will try and find a suitable
1291  *	id. It scans list of devices to build up a free map, then chooses
1292  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1293  *	while allocating the name and adding the device in order to avoid
1294  *	duplicates.
1295  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1296  *	Returns the number of the unit assigned or a negative errno code.
1297  */
1298 
1299 int dev_alloc_name(struct net_device *dev, const char *name)
1300 {
1301 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1302 }
1303 EXPORT_SYMBOL(dev_alloc_name);
1304 
1305 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1306 			      const char *name)
1307 {
1308 	BUG_ON(!net);
1309 
1310 	if (!dev_valid_name(name))
1311 		return -EINVAL;
1312 
1313 	if (strchr(name, '%'))
1314 		return dev_alloc_name_ns(net, dev, name);
1315 	else if (__dev_get_by_name(net, name))
1316 		return -EEXIST;
1317 	else if (dev->name != name)
1318 		strlcpy(dev->name, name, IFNAMSIZ);
1319 
1320 	return 0;
1321 }
1322 
1323 /**
1324  *	dev_change_name - change name of a device
1325  *	@dev: device
1326  *	@newname: name (or format string) must be at least IFNAMSIZ
1327  *
1328  *	Change name of a device, can pass format strings "eth%d".
1329  *	for wildcarding.
1330  */
1331 int dev_change_name(struct net_device *dev, const char *newname)
1332 {
1333 	unsigned char old_assign_type;
1334 	char oldname[IFNAMSIZ];
1335 	int err = 0;
1336 	int ret;
1337 	struct net *net;
1338 
1339 	ASSERT_RTNL();
1340 	BUG_ON(!dev_net(dev));
1341 
1342 	net = dev_net(dev);
1343 
1344 	/* Some auto-enslaved devices e.g. failover slaves are
1345 	 * special, as userspace might rename the device after
1346 	 * the interface had been brought up and running since
1347 	 * the point kernel initiated auto-enslavement. Allow
1348 	 * live name change even when these slave devices are
1349 	 * up and running.
1350 	 *
1351 	 * Typically, users of these auto-enslaving devices
1352 	 * don't actually care about slave name change, as
1353 	 * they are supposed to operate on master interface
1354 	 * directly.
1355 	 */
1356 	if (dev->flags & IFF_UP &&
1357 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1358 		return -EBUSY;
1359 
1360 	down_write(&devnet_rename_sem);
1361 
1362 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1363 		up_write(&devnet_rename_sem);
1364 		return 0;
1365 	}
1366 
1367 	memcpy(oldname, dev->name, IFNAMSIZ);
1368 
1369 	err = dev_get_valid_name(net, dev, newname);
1370 	if (err < 0) {
1371 		up_write(&devnet_rename_sem);
1372 		return err;
1373 	}
1374 
1375 	if (oldname[0] && !strchr(oldname, '%'))
1376 		netdev_info(dev, "renamed from %s\n", oldname);
1377 
1378 	old_assign_type = dev->name_assign_type;
1379 	dev->name_assign_type = NET_NAME_RENAMED;
1380 
1381 rollback:
1382 	ret = device_rename(&dev->dev, dev->name);
1383 	if (ret) {
1384 		memcpy(dev->name, oldname, IFNAMSIZ);
1385 		dev->name_assign_type = old_assign_type;
1386 		up_write(&devnet_rename_sem);
1387 		return ret;
1388 	}
1389 
1390 	up_write(&devnet_rename_sem);
1391 
1392 	netdev_adjacent_rename_links(dev, oldname);
1393 
1394 	write_lock_bh(&dev_base_lock);
1395 	netdev_name_node_del(dev->name_node);
1396 	write_unlock_bh(&dev_base_lock);
1397 
1398 	synchronize_rcu();
1399 
1400 	write_lock_bh(&dev_base_lock);
1401 	netdev_name_node_add(net, dev->name_node);
1402 	write_unlock_bh(&dev_base_lock);
1403 
1404 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1405 	ret = notifier_to_errno(ret);
1406 
1407 	if (ret) {
1408 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1409 		if (err >= 0) {
1410 			err = ret;
1411 			down_write(&devnet_rename_sem);
1412 			memcpy(dev->name, oldname, IFNAMSIZ);
1413 			memcpy(oldname, newname, IFNAMSIZ);
1414 			dev->name_assign_type = old_assign_type;
1415 			old_assign_type = NET_NAME_RENAMED;
1416 			goto rollback;
1417 		} else {
1418 			pr_err("%s: name change rollback failed: %d\n",
1419 			       dev->name, ret);
1420 		}
1421 	}
1422 
1423 	return err;
1424 }
1425 
1426 /**
1427  *	dev_set_alias - change ifalias of a device
1428  *	@dev: device
1429  *	@alias: name up to IFALIASZ
1430  *	@len: limit of bytes to copy from info
1431  *
1432  *	Set ifalias for a device,
1433  */
1434 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1435 {
1436 	struct dev_ifalias *new_alias = NULL;
1437 
1438 	if (len >= IFALIASZ)
1439 		return -EINVAL;
1440 
1441 	if (len) {
1442 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1443 		if (!new_alias)
1444 			return -ENOMEM;
1445 
1446 		memcpy(new_alias->ifalias, alias, len);
1447 		new_alias->ifalias[len] = 0;
1448 	}
1449 
1450 	mutex_lock(&ifalias_mutex);
1451 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1452 					mutex_is_locked(&ifalias_mutex));
1453 	mutex_unlock(&ifalias_mutex);
1454 
1455 	if (new_alias)
1456 		kfree_rcu(new_alias, rcuhead);
1457 
1458 	return len;
1459 }
1460 EXPORT_SYMBOL(dev_set_alias);
1461 
1462 /**
1463  *	dev_get_alias - get ifalias of a device
1464  *	@dev: device
1465  *	@name: buffer to store name of ifalias
1466  *	@len: size of buffer
1467  *
1468  *	get ifalias for a device.  Caller must make sure dev cannot go
1469  *	away,  e.g. rcu read lock or own a reference count to device.
1470  */
1471 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1472 {
1473 	const struct dev_ifalias *alias;
1474 	int ret = 0;
1475 
1476 	rcu_read_lock();
1477 	alias = rcu_dereference(dev->ifalias);
1478 	if (alias)
1479 		ret = snprintf(name, len, "%s", alias->ifalias);
1480 	rcu_read_unlock();
1481 
1482 	return ret;
1483 }
1484 
1485 /**
1486  *	netdev_features_change - device changes features
1487  *	@dev: device to cause notification
1488  *
1489  *	Called to indicate a device has changed features.
1490  */
1491 void netdev_features_change(struct net_device *dev)
1492 {
1493 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1494 }
1495 EXPORT_SYMBOL(netdev_features_change);
1496 
1497 /**
1498  *	netdev_state_change - device changes state
1499  *	@dev: device to cause notification
1500  *
1501  *	Called to indicate a device has changed state. This function calls
1502  *	the notifier chains for netdev_chain and sends a NEWLINK message
1503  *	to the routing socket.
1504  */
1505 void netdev_state_change(struct net_device *dev)
1506 {
1507 	if (dev->flags & IFF_UP) {
1508 		struct netdev_notifier_change_info change_info = {
1509 			.info.dev = dev,
1510 		};
1511 
1512 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1513 					      &change_info.info);
1514 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1515 	}
1516 }
1517 EXPORT_SYMBOL(netdev_state_change);
1518 
1519 /**
1520  * __netdev_notify_peers - notify network peers about existence of @dev,
1521  * to be called when rtnl lock is already held.
1522  * @dev: network device
1523  *
1524  * Generate traffic such that interested network peers are aware of
1525  * @dev, such as by generating a gratuitous ARP. This may be used when
1526  * a device wants to inform the rest of the network about some sort of
1527  * reconfiguration such as a failover event or virtual machine
1528  * migration.
1529  */
1530 void __netdev_notify_peers(struct net_device *dev)
1531 {
1532 	ASSERT_RTNL();
1533 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1534 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1535 }
1536 EXPORT_SYMBOL(__netdev_notify_peers);
1537 
1538 /**
1539  * netdev_notify_peers - notify network peers about existence of @dev
1540  * @dev: network device
1541  *
1542  * Generate traffic such that interested network peers are aware of
1543  * @dev, such as by generating a gratuitous ARP. This may be used when
1544  * a device wants to inform the rest of the network about some sort of
1545  * reconfiguration such as a failover event or virtual machine
1546  * migration.
1547  */
1548 void netdev_notify_peers(struct net_device *dev)
1549 {
1550 	rtnl_lock();
1551 	__netdev_notify_peers(dev);
1552 	rtnl_unlock();
1553 }
1554 EXPORT_SYMBOL(netdev_notify_peers);
1555 
1556 static int napi_threaded_poll(void *data);
1557 
1558 static int napi_kthread_create(struct napi_struct *n)
1559 {
1560 	int err = 0;
1561 
1562 	/* Create and wake up the kthread once to put it in
1563 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1564 	 * warning and work with loadavg.
1565 	 */
1566 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1567 				n->dev->name, n->napi_id);
1568 	if (IS_ERR(n->thread)) {
1569 		err = PTR_ERR(n->thread);
1570 		pr_err("kthread_run failed with err %d\n", err);
1571 		n->thread = NULL;
1572 	}
1573 
1574 	return err;
1575 }
1576 
1577 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1578 {
1579 	const struct net_device_ops *ops = dev->netdev_ops;
1580 	int ret;
1581 
1582 	ASSERT_RTNL();
1583 
1584 	if (!netif_device_present(dev)) {
1585 		/* may be detached because parent is runtime-suspended */
1586 		if (dev->dev.parent)
1587 			pm_runtime_resume(dev->dev.parent);
1588 		if (!netif_device_present(dev))
1589 			return -ENODEV;
1590 	}
1591 
1592 	/* Block netpoll from trying to do any rx path servicing.
1593 	 * If we don't do this there is a chance ndo_poll_controller
1594 	 * or ndo_poll may be running while we open the device
1595 	 */
1596 	netpoll_poll_disable(dev);
1597 
1598 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1599 	ret = notifier_to_errno(ret);
1600 	if (ret)
1601 		return ret;
1602 
1603 	set_bit(__LINK_STATE_START, &dev->state);
1604 
1605 	if (ops->ndo_validate_addr)
1606 		ret = ops->ndo_validate_addr(dev);
1607 
1608 	if (!ret && ops->ndo_open)
1609 		ret = ops->ndo_open(dev);
1610 
1611 	netpoll_poll_enable(dev);
1612 
1613 	if (ret)
1614 		clear_bit(__LINK_STATE_START, &dev->state);
1615 	else {
1616 		dev->flags |= IFF_UP;
1617 		dev_set_rx_mode(dev);
1618 		dev_activate(dev);
1619 		add_device_randomness(dev->dev_addr, dev->addr_len);
1620 	}
1621 
1622 	return ret;
1623 }
1624 
1625 /**
1626  *	dev_open	- prepare an interface for use.
1627  *	@dev: device to open
1628  *	@extack: netlink extended ack
1629  *
1630  *	Takes a device from down to up state. The device's private open
1631  *	function is invoked and then the multicast lists are loaded. Finally
1632  *	the device is moved into the up state and a %NETDEV_UP message is
1633  *	sent to the netdev notifier chain.
1634  *
1635  *	Calling this function on an active interface is a nop. On a failure
1636  *	a negative errno code is returned.
1637  */
1638 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1639 {
1640 	int ret;
1641 
1642 	if (dev->flags & IFF_UP)
1643 		return 0;
1644 
1645 	ret = __dev_open(dev, extack);
1646 	if (ret < 0)
1647 		return ret;
1648 
1649 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1650 	call_netdevice_notifiers(NETDEV_UP, dev);
1651 
1652 	return ret;
1653 }
1654 EXPORT_SYMBOL(dev_open);
1655 
1656 static void __dev_close_many(struct list_head *head)
1657 {
1658 	struct net_device *dev;
1659 
1660 	ASSERT_RTNL();
1661 	might_sleep();
1662 
1663 	list_for_each_entry(dev, head, close_list) {
1664 		/* Temporarily disable netpoll until the interface is down */
1665 		netpoll_poll_disable(dev);
1666 
1667 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1668 
1669 		clear_bit(__LINK_STATE_START, &dev->state);
1670 
1671 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1672 		 * can be even on different cpu. So just clear netif_running().
1673 		 *
1674 		 * dev->stop() will invoke napi_disable() on all of it's
1675 		 * napi_struct instances on this device.
1676 		 */
1677 		smp_mb__after_atomic(); /* Commit netif_running(). */
1678 	}
1679 
1680 	dev_deactivate_many(head);
1681 
1682 	list_for_each_entry(dev, head, close_list) {
1683 		const struct net_device_ops *ops = dev->netdev_ops;
1684 
1685 		/*
1686 		 *	Call the device specific close. This cannot fail.
1687 		 *	Only if device is UP
1688 		 *
1689 		 *	We allow it to be called even after a DETACH hot-plug
1690 		 *	event.
1691 		 */
1692 		if (ops->ndo_stop)
1693 			ops->ndo_stop(dev);
1694 
1695 		dev->flags &= ~IFF_UP;
1696 		netpoll_poll_enable(dev);
1697 	}
1698 }
1699 
1700 static void __dev_close(struct net_device *dev)
1701 {
1702 	LIST_HEAD(single);
1703 
1704 	list_add(&dev->close_list, &single);
1705 	__dev_close_many(&single);
1706 	list_del(&single);
1707 }
1708 
1709 void dev_close_many(struct list_head *head, bool unlink)
1710 {
1711 	struct net_device *dev, *tmp;
1712 
1713 	/* Remove the devices that don't need to be closed */
1714 	list_for_each_entry_safe(dev, tmp, head, close_list)
1715 		if (!(dev->flags & IFF_UP))
1716 			list_del_init(&dev->close_list);
1717 
1718 	__dev_close_many(head);
1719 
1720 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1721 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1722 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1723 		if (unlink)
1724 			list_del_init(&dev->close_list);
1725 	}
1726 }
1727 EXPORT_SYMBOL(dev_close_many);
1728 
1729 /**
1730  *	dev_close - shutdown an interface.
1731  *	@dev: device to shutdown
1732  *
1733  *	This function moves an active device into down state. A
1734  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1735  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1736  *	chain.
1737  */
1738 void dev_close(struct net_device *dev)
1739 {
1740 	if (dev->flags & IFF_UP) {
1741 		LIST_HEAD(single);
1742 
1743 		list_add(&dev->close_list, &single);
1744 		dev_close_many(&single, true);
1745 		list_del(&single);
1746 	}
1747 }
1748 EXPORT_SYMBOL(dev_close);
1749 
1750 
1751 /**
1752  *	dev_disable_lro - disable Large Receive Offload on a device
1753  *	@dev: device
1754  *
1755  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1756  *	called under RTNL.  This is needed if received packets may be
1757  *	forwarded to another interface.
1758  */
1759 void dev_disable_lro(struct net_device *dev)
1760 {
1761 	struct net_device *lower_dev;
1762 	struct list_head *iter;
1763 
1764 	dev->wanted_features &= ~NETIF_F_LRO;
1765 	netdev_update_features(dev);
1766 
1767 	if (unlikely(dev->features & NETIF_F_LRO))
1768 		netdev_WARN(dev, "failed to disable LRO!\n");
1769 
1770 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1771 		dev_disable_lro(lower_dev);
1772 }
1773 EXPORT_SYMBOL(dev_disable_lro);
1774 
1775 /**
1776  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1777  *	@dev: device
1778  *
1779  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1780  *	called under RTNL.  This is needed if Generic XDP is installed on
1781  *	the device.
1782  */
1783 static void dev_disable_gro_hw(struct net_device *dev)
1784 {
1785 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1786 	netdev_update_features(dev);
1787 
1788 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1789 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1790 }
1791 
1792 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1793 {
1794 #define N(val) 						\
1795 	case NETDEV_##val:				\
1796 		return "NETDEV_" __stringify(val);
1797 	switch (cmd) {
1798 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1799 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1800 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1801 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1802 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1803 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1804 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1805 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1806 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1807 	N(PRE_CHANGEADDR)
1808 	}
1809 #undef N
1810 	return "UNKNOWN_NETDEV_EVENT";
1811 }
1812 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1813 
1814 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1815 				   struct net_device *dev)
1816 {
1817 	struct netdev_notifier_info info = {
1818 		.dev = dev,
1819 	};
1820 
1821 	return nb->notifier_call(nb, val, &info);
1822 }
1823 
1824 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1825 					     struct net_device *dev)
1826 {
1827 	int err;
1828 
1829 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1830 	err = notifier_to_errno(err);
1831 	if (err)
1832 		return err;
1833 
1834 	if (!(dev->flags & IFF_UP))
1835 		return 0;
1836 
1837 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1838 	return 0;
1839 }
1840 
1841 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1842 						struct net_device *dev)
1843 {
1844 	if (dev->flags & IFF_UP) {
1845 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1846 					dev);
1847 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1848 	}
1849 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1850 }
1851 
1852 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1853 						 struct net *net)
1854 {
1855 	struct net_device *dev;
1856 	int err;
1857 
1858 	for_each_netdev(net, dev) {
1859 		err = call_netdevice_register_notifiers(nb, dev);
1860 		if (err)
1861 			goto rollback;
1862 	}
1863 	return 0;
1864 
1865 rollback:
1866 	for_each_netdev_continue_reverse(net, dev)
1867 		call_netdevice_unregister_notifiers(nb, dev);
1868 	return err;
1869 }
1870 
1871 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1872 						    struct net *net)
1873 {
1874 	struct net_device *dev;
1875 
1876 	for_each_netdev(net, dev)
1877 		call_netdevice_unregister_notifiers(nb, dev);
1878 }
1879 
1880 static int dev_boot_phase = 1;
1881 
1882 /**
1883  * register_netdevice_notifier - register a network notifier block
1884  * @nb: notifier
1885  *
1886  * Register a notifier to be called when network device events occur.
1887  * The notifier passed is linked into the kernel structures and must
1888  * not be reused until it has been unregistered. A negative errno code
1889  * is returned on a failure.
1890  *
1891  * When registered all registration and up events are replayed
1892  * to the new notifier to allow device to have a race free
1893  * view of the network device list.
1894  */
1895 
1896 int register_netdevice_notifier(struct notifier_block *nb)
1897 {
1898 	struct net *net;
1899 	int err;
1900 
1901 	/* Close race with setup_net() and cleanup_net() */
1902 	down_write(&pernet_ops_rwsem);
1903 	rtnl_lock();
1904 	err = raw_notifier_chain_register(&netdev_chain, nb);
1905 	if (err)
1906 		goto unlock;
1907 	if (dev_boot_phase)
1908 		goto unlock;
1909 	for_each_net(net) {
1910 		err = call_netdevice_register_net_notifiers(nb, net);
1911 		if (err)
1912 			goto rollback;
1913 	}
1914 
1915 unlock:
1916 	rtnl_unlock();
1917 	up_write(&pernet_ops_rwsem);
1918 	return err;
1919 
1920 rollback:
1921 	for_each_net_continue_reverse(net)
1922 		call_netdevice_unregister_net_notifiers(nb, net);
1923 
1924 	raw_notifier_chain_unregister(&netdev_chain, nb);
1925 	goto unlock;
1926 }
1927 EXPORT_SYMBOL(register_netdevice_notifier);
1928 
1929 /**
1930  * unregister_netdevice_notifier - unregister a network notifier block
1931  * @nb: notifier
1932  *
1933  * Unregister a notifier previously registered by
1934  * register_netdevice_notifier(). The notifier is unlinked into the
1935  * kernel structures and may then be reused. A negative errno code
1936  * is returned on a failure.
1937  *
1938  * After unregistering unregister and down device events are synthesized
1939  * for all devices on the device list to the removed notifier to remove
1940  * the need for special case cleanup code.
1941  */
1942 
1943 int unregister_netdevice_notifier(struct notifier_block *nb)
1944 {
1945 	struct net *net;
1946 	int err;
1947 
1948 	/* Close race with setup_net() and cleanup_net() */
1949 	down_write(&pernet_ops_rwsem);
1950 	rtnl_lock();
1951 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1952 	if (err)
1953 		goto unlock;
1954 
1955 	for_each_net(net)
1956 		call_netdevice_unregister_net_notifiers(nb, net);
1957 
1958 unlock:
1959 	rtnl_unlock();
1960 	up_write(&pernet_ops_rwsem);
1961 	return err;
1962 }
1963 EXPORT_SYMBOL(unregister_netdevice_notifier);
1964 
1965 static int __register_netdevice_notifier_net(struct net *net,
1966 					     struct notifier_block *nb,
1967 					     bool ignore_call_fail)
1968 {
1969 	int err;
1970 
1971 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1972 	if (err)
1973 		return err;
1974 	if (dev_boot_phase)
1975 		return 0;
1976 
1977 	err = call_netdevice_register_net_notifiers(nb, net);
1978 	if (err && !ignore_call_fail)
1979 		goto chain_unregister;
1980 
1981 	return 0;
1982 
1983 chain_unregister:
1984 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1985 	return err;
1986 }
1987 
1988 static int __unregister_netdevice_notifier_net(struct net *net,
1989 					       struct notifier_block *nb)
1990 {
1991 	int err;
1992 
1993 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1994 	if (err)
1995 		return err;
1996 
1997 	call_netdevice_unregister_net_notifiers(nb, net);
1998 	return 0;
1999 }
2000 
2001 /**
2002  * register_netdevice_notifier_net - register a per-netns network notifier block
2003  * @net: network namespace
2004  * @nb: notifier
2005  *
2006  * Register a notifier to be called when network device events occur.
2007  * The notifier passed is linked into the kernel structures and must
2008  * not be reused until it has been unregistered. A negative errno code
2009  * is returned on a failure.
2010  *
2011  * When registered all registration and up events are replayed
2012  * to the new notifier to allow device to have a race free
2013  * view of the network device list.
2014  */
2015 
2016 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2017 {
2018 	int err;
2019 
2020 	rtnl_lock();
2021 	err = __register_netdevice_notifier_net(net, nb, false);
2022 	rtnl_unlock();
2023 	return err;
2024 }
2025 EXPORT_SYMBOL(register_netdevice_notifier_net);
2026 
2027 /**
2028  * unregister_netdevice_notifier_net - unregister a per-netns
2029  *                                     network notifier block
2030  * @net: network namespace
2031  * @nb: notifier
2032  *
2033  * Unregister a notifier previously registered by
2034  * register_netdevice_notifier(). The notifier is unlinked into the
2035  * kernel structures and may then be reused. A negative errno code
2036  * is returned on a failure.
2037  *
2038  * After unregistering unregister and down device events are synthesized
2039  * for all devices on the device list to the removed notifier to remove
2040  * the need for special case cleanup code.
2041  */
2042 
2043 int unregister_netdevice_notifier_net(struct net *net,
2044 				      struct notifier_block *nb)
2045 {
2046 	int err;
2047 
2048 	rtnl_lock();
2049 	err = __unregister_netdevice_notifier_net(net, nb);
2050 	rtnl_unlock();
2051 	return err;
2052 }
2053 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2054 
2055 int register_netdevice_notifier_dev_net(struct net_device *dev,
2056 					struct notifier_block *nb,
2057 					struct netdev_net_notifier *nn)
2058 {
2059 	int err;
2060 
2061 	rtnl_lock();
2062 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2063 	if (!err) {
2064 		nn->nb = nb;
2065 		list_add(&nn->list, &dev->net_notifier_list);
2066 	}
2067 	rtnl_unlock();
2068 	return err;
2069 }
2070 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2071 
2072 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2073 					  struct notifier_block *nb,
2074 					  struct netdev_net_notifier *nn)
2075 {
2076 	int err;
2077 
2078 	rtnl_lock();
2079 	list_del(&nn->list);
2080 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2081 	rtnl_unlock();
2082 	return err;
2083 }
2084 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2085 
2086 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2087 					     struct net *net)
2088 {
2089 	struct netdev_net_notifier *nn;
2090 
2091 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2092 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2093 		__register_netdevice_notifier_net(net, nn->nb, true);
2094 	}
2095 }
2096 
2097 /**
2098  *	call_netdevice_notifiers_info - call all network notifier blocks
2099  *	@val: value passed unmodified to notifier function
2100  *	@info: notifier information data
2101  *
2102  *	Call all network notifier blocks.  Parameters and return value
2103  *	are as for raw_notifier_call_chain().
2104  */
2105 
2106 static int call_netdevice_notifiers_info(unsigned long val,
2107 					 struct netdev_notifier_info *info)
2108 {
2109 	struct net *net = dev_net(info->dev);
2110 	int ret;
2111 
2112 	ASSERT_RTNL();
2113 
2114 	/* Run per-netns notifier block chain first, then run the global one.
2115 	 * Hopefully, one day, the global one is going to be removed after
2116 	 * all notifier block registrators get converted to be per-netns.
2117 	 */
2118 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2119 	if (ret & NOTIFY_STOP_MASK)
2120 		return ret;
2121 	return raw_notifier_call_chain(&netdev_chain, val, info);
2122 }
2123 
2124 static int call_netdevice_notifiers_extack(unsigned long val,
2125 					   struct net_device *dev,
2126 					   struct netlink_ext_ack *extack)
2127 {
2128 	struct netdev_notifier_info info = {
2129 		.dev = dev,
2130 		.extack = extack,
2131 	};
2132 
2133 	return call_netdevice_notifiers_info(val, &info);
2134 }
2135 
2136 /**
2137  *	call_netdevice_notifiers - call all network notifier blocks
2138  *      @val: value passed unmodified to notifier function
2139  *      @dev: net_device pointer passed unmodified to notifier function
2140  *
2141  *	Call all network notifier blocks.  Parameters and return value
2142  *	are as for raw_notifier_call_chain().
2143  */
2144 
2145 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2146 {
2147 	return call_netdevice_notifiers_extack(val, dev, NULL);
2148 }
2149 EXPORT_SYMBOL(call_netdevice_notifiers);
2150 
2151 /**
2152  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2153  *	@val: value passed unmodified to notifier function
2154  *	@dev: net_device pointer passed unmodified to notifier function
2155  *	@arg: additional u32 argument passed to the notifier function
2156  *
2157  *	Call all network notifier blocks.  Parameters and return value
2158  *	are as for raw_notifier_call_chain().
2159  */
2160 static int call_netdevice_notifiers_mtu(unsigned long val,
2161 					struct net_device *dev, u32 arg)
2162 {
2163 	struct netdev_notifier_info_ext info = {
2164 		.info.dev = dev,
2165 		.ext.mtu = arg,
2166 	};
2167 
2168 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2169 
2170 	return call_netdevice_notifiers_info(val, &info.info);
2171 }
2172 
2173 #ifdef CONFIG_NET_INGRESS
2174 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2175 
2176 void net_inc_ingress_queue(void)
2177 {
2178 	static_branch_inc(&ingress_needed_key);
2179 }
2180 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2181 
2182 void net_dec_ingress_queue(void)
2183 {
2184 	static_branch_dec(&ingress_needed_key);
2185 }
2186 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2187 #endif
2188 
2189 #ifdef CONFIG_NET_EGRESS
2190 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2191 
2192 void net_inc_egress_queue(void)
2193 {
2194 	static_branch_inc(&egress_needed_key);
2195 }
2196 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2197 
2198 void net_dec_egress_queue(void)
2199 {
2200 	static_branch_dec(&egress_needed_key);
2201 }
2202 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2203 #endif
2204 
2205 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2206 #ifdef CONFIG_JUMP_LABEL
2207 static atomic_t netstamp_needed_deferred;
2208 static atomic_t netstamp_wanted;
2209 static void netstamp_clear(struct work_struct *work)
2210 {
2211 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2212 	int wanted;
2213 
2214 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2215 	if (wanted > 0)
2216 		static_branch_enable(&netstamp_needed_key);
2217 	else
2218 		static_branch_disable(&netstamp_needed_key);
2219 }
2220 static DECLARE_WORK(netstamp_work, netstamp_clear);
2221 #endif
2222 
2223 void net_enable_timestamp(void)
2224 {
2225 #ifdef CONFIG_JUMP_LABEL
2226 	int wanted;
2227 
2228 	while (1) {
2229 		wanted = atomic_read(&netstamp_wanted);
2230 		if (wanted <= 0)
2231 			break;
2232 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2233 			return;
2234 	}
2235 	atomic_inc(&netstamp_needed_deferred);
2236 	schedule_work(&netstamp_work);
2237 #else
2238 	static_branch_inc(&netstamp_needed_key);
2239 #endif
2240 }
2241 EXPORT_SYMBOL(net_enable_timestamp);
2242 
2243 void net_disable_timestamp(void)
2244 {
2245 #ifdef CONFIG_JUMP_LABEL
2246 	int wanted;
2247 
2248 	while (1) {
2249 		wanted = atomic_read(&netstamp_wanted);
2250 		if (wanted <= 1)
2251 			break;
2252 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2253 			return;
2254 	}
2255 	atomic_dec(&netstamp_needed_deferred);
2256 	schedule_work(&netstamp_work);
2257 #else
2258 	static_branch_dec(&netstamp_needed_key);
2259 #endif
2260 }
2261 EXPORT_SYMBOL(net_disable_timestamp);
2262 
2263 static inline void net_timestamp_set(struct sk_buff *skb)
2264 {
2265 	skb->tstamp = 0;
2266 	if (static_branch_unlikely(&netstamp_needed_key))
2267 		__net_timestamp(skb);
2268 }
2269 
2270 #define net_timestamp_check(COND, SKB)				\
2271 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2272 		if ((COND) && !(SKB)->tstamp)			\
2273 			__net_timestamp(SKB);			\
2274 	}							\
2275 
2276 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2277 {
2278 	return __is_skb_forwardable(dev, skb, true);
2279 }
2280 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2281 
2282 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2283 			      bool check_mtu)
2284 {
2285 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2286 
2287 	if (likely(!ret)) {
2288 		skb->protocol = eth_type_trans(skb, dev);
2289 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2290 	}
2291 
2292 	return ret;
2293 }
2294 
2295 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2296 {
2297 	return __dev_forward_skb2(dev, skb, true);
2298 }
2299 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2300 
2301 /**
2302  * dev_forward_skb - loopback an skb to another netif
2303  *
2304  * @dev: destination network device
2305  * @skb: buffer to forward
2306  *
2307  * return values:
2308  *	NET_RX_SUCCESS	(no congestion)
2309  *	NET_RX_DROP     (packet was dropped, but freed)
2310  *
2311  * dev_forward_skb can be used for injecting an skb from the
2312  * start_xmit function of one device into the receive queue
2313  * of another device.
2314  *
2315  * The receiving device may be in another namespace, so
2316  * we have to clear all information in the skb that could
2317  * impact namespace isolation.
2318  */
2319 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2320 {
2321 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2322 }
2323 EXPORT_SYMBOL_GPL(dev_forward_skb);
2324 
2325 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2326 {
2327 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2328 }
2329 
2330 static inline int deliver_skb(struct sk_buff *skb,
2331 			      struct packet_type *pt_prev,
2332 			      struct net_device *orig_dev)
2333 {
2334 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2335 		return -ENOMEM;
2336 	refcount_inc(&skb->users);
2337 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2338 }
2339 
2340 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2341 					  struct packet_type **pt,
2342 					  struct net_device *orig_dev,
2343 					  __be16 type,
2344 					  struct list_head *ptype_list)
2345 {
2346 	struct packet_type *ptype, *pt_prev = *pt;
2347 
2348 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2349 		if (ptype->type != type)
2350 			continue;
2351 		if (pt_prev)
2352 			deliver_skb(skb, pt_prev, orig_dev);
2353 		pt_prev = ptype;
2354 	}
2355 	*pt = pt_prev;
2356 }
2357 
2358 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2359 {
2360 	if (!ptype->af_packet_priv || !skb->sk)
2361 		return false;
2362 
2363 	if (ptype->id_match)
2364 		return ptype->id_match(ptype, skb->sk);
2365 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2366 		return true;
2367 
2368 	return false;
2369 }
2370 
2371 /**
2372  * dev_nit_active - return true if any network interface taps are in use
2373  *
2374  * @dev: network device to check for the presence of taps
2375  */
2376 bool dev_nit_active(struct net_device *dev)
2377 {
2378 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2379 }
2380 EXPORT_SYMBOL_GPL(dev_nit_active);
2381 
2382 /*
2383  *	Support routine. Sends outgoing frames to any network
2384  *	taps currently in use.
2385  */
2386 
2387 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2388 {
2389 	struct packet_type *ptype;
2390 	struct sk_buff *skb2 = NULL;
2391 	struct packet_type *pt_prev = NULL;
2392 	struct list_head *ptype_list = &ptype_all;
2393 
2394 	rcu_read_lock();
2395 again:
2396 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2397 		if (ptype->ignore_outgoing)
2398 			continue;
2399 
2400 		/* Never send packets back to the socket
2401 		 * they originated from - MvS (miquels@drinkel.ow.org)
2402 		 */
2403 		if (skb_loop_sk(ptype, skb))
2404 			continue;
2405 
2406 		if (pt_prev) {
2407 			deliver_skb(skb2, pt_prev, skb->dev);
2408 			pt_prev = ptype;
2409 			continue;
2410 		}
2411 
2412 		/* need to clone skb, done only once */
2413 		skb2 = skb_clone(skb, GFP_ATOMIC);
2414 		if (!skb2)
2415 			goto out_unlock;
2416 
2417 		net_timestamp_set(skb2);
2418 
2419 		/* skb->nh should be correctly
2420 		 * set by sender, so that the second statement is
2421 		 * just protection against buggy protocols.
2422 		 */
2423 		skb_reset_mac_header(skb2);
2424 
2425 		if (skb_network_header(skb2) < skb2->data ||
2426 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2427 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2428 					     ntohs(skb2->protocol),
2429 					     dev->name);
2430 			skb_reset_network_header(skb2);
2431 		}
2432 
2433 		skb2->transport_header = skb2->network_header;
2434 		skb2->pkt_type = PACKET_OUTGOING;
2435 		pt_prev = ptype;
2436 	}
2437 
2438 	if (ptype_list == &ptype_all) {
2439 		ptype_list = &dev->ptype_all;
2440 		goto again;
2441 	}
2442 out_unlock:
2443 	if (pt_prev) {
2444 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2445 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2446 		else
2447 			kfree_skb(skb2);
2448 	}
2449 	rcu_read_unlock();
2450 }
2451 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2452 
2453 /**
2454  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2455  * @dev: Network device
2456  * @txq: number of queues available
2457  *
2458  * If real_num_tx_queues is changed the tc mappings may no longer be
2459  * valid. To resolve this verify the tc mapping remains valid and if
2460  * not NULL the mapping. With no priorities mapping to this
2461  * offset/count pair it will no longer be used. In the worst case TC0
2462  * is invalid nothing can be done so disable priority mappings. If is
2463  * expected that drivers will fix this mapping if they can before
2464  * calling netif_set_real_num_tx_queues.
2465  */
2466 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2467 {
2468 	int i;
2469 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2470 
2471 	/* If TC0 is invalidated disable TC mapping */
2472 	if (tc->offset + tc->count > txq) {
2473 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2474 		dev->num_tc = 0;
2475 		return;
2476 	}
2477 
2478 	/* Invalidated prio to tc mappings set to TC0 */
2479 	for (i = 1; i < TC_BITMASK + 1; i++) {
2480 		int q = netdev_get_prio_tc_map(dev, i);
2481 
2482 		tc = &dev->tc_to_txq[q];
2483 		if (tc->offset + tc->count > txq) {
2484 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2485 				i, q);
2486 			netdev_set_prio_tc_map(dev, i, 0);
2487 		}
2488 	}
2489 }
2490 
2491 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2492 {
2493 	if (dev->num_tc) {
2494 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2495 		int i;
2496 
2497 		/* walk through the TCs and see if it falls into any of them */
2498 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2499 			if ((txq - tc->offset) < tc->count)
2500 				return i;
2501 		}
2502 
2503 		/* didn't find it, just return -1 to indicate no match */
2504 		return -1;
2505 	}
2506 
2507 	return 0;
2508 }
2509 EXPORT_SYMBOL(netdev_txq_to_tc);
2510 
2511 #ifdef CONFIG_XPS
2512 static struct static_key xps_needed __read_mostly;
2513 static struct static_key xps_rxqs_needed __read_mostly;
2514 static DEFINE_MUTEX(xps_map_mutex);
2515 #define xmap_dereference(P)		\
2516 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2517 
2518 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2519 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2520 {
2521 	struct xps_map *map = NULL;
2522 	int pos;
2523 
2524 	if (dev_maps)
2525 		map = xmap_dereference(dev_maps->attr_map[tci]);
2526 	if (!map)
2527 		return false;
2528 
2529 	for (pos = map->len; pos--;) {
2530 		if (map->queues[pos] != index)
2531 			continue;
2532 
2533 		if (map->len > 1) {
2534 			map->queues[pos] = map->queues[--map->len];
2535 			break;
2536 		}
2537 
2538 		if (old_maps)
2539 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2540 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2541 		kfree_rcu(map, rcu);
2542 		return false;
2543 	}
2544 
2545 	return true;
2546 }
2547 
2548 static bool remove_xps_queue_cpu(struct net_device *dev,
2549 				 struct xps_dev_maps *dev_maps,
2550 				 int cpu, u16 offset, u16 count)
2551 {
2552 	int num_tc = dev_maps->num_tc;
2553 	bool active = false;
2554 	int tci;
2555 
2556 	for (tci = cpu * num_tc; num_tc--; tci++) {
2557 		int i, j;
2558 
2559 		for (i = count, j = offset; i--; j++) {
2560 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2561 				break;
2562 		}
2563 
2564 		active |= i < 0;
2565 	}
2566 
2567 	return active;
2568 }
2569 
2570 static void reset_xps_maps(struct net_device *dev,
2571 			   struct xps_dev_maps *dev_maps,
2572 			   enum xps_map_type type)
2573 {
2574 	static_key_slow_dec_cpuslocked(&xps_needed);
2575 	if (type == XPS_RXQS)
2576 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2577 
2578 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2579 
2580 	kfree_rcu(dev_maps, rcu);
2581 }
2582 
2583 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2584 			   u16 offset, u16 count)
2585 {
2586 	struct xps_dev_maps *dev_maps;
2587 	bool active = false;
2588 	int i, j;
2589 
2590 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2591 	if (!dev_maps)
2592 		return;
2593 
2594 	for (j = 0; j < dev_maps->nr_ids; j++)
2595 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2596 	if (!active)
2597 		reset_xps_maps(dev, dev_maps, type);
2598 
2599 	if (type == XPS_CPUS) {
2600 		for (i = offset + (count - 1); count--; i--)
2601 			netdev_queue_numa_node_write(
2602 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2603 	}
2604 }
2605 
2606 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2607 				   u16 count)
2608 {
2609 	if (!static_key_false(&xps_needed))
2610 		return;
2611 
2612 	cpus_read_lock();
2613 	mutex_lock(&xps_map_mutex);
2614 
2615 	if (static_key_false(&xps_rxqs_needed))
2616 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2617 
2618 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2619 
2620 	mutex_unlock(&xps_map_mutex);
2621 	cpus_read_unlock();
2622 }
2623 
2624 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2625 {
2626 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2627 }
2628 
2629 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2630 				      u16 index, bool is_rxqs_map)
2631 {
2632 	struct xps_map *new_map;
2633 	int alloc_len = XPS_MIN_MAP_ALLOC;
2634 	int i, pos;
2635 
2636 	for (pos = 0; map && pos < map->len; pos++) {
2637 		if (map->queues[pos] != index)
2638 			continue;
2639 		return map;
2640 	}
2641 
2642 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2643 	if (map) {
2644 		if (pos < map->alloc_len)
2645 			return map;
2646 
2647 		alloc_len = map->alloc_len * 2;
2648 	}
2649 
2650 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2651 	 *  map
2652 	 */
2653 	if (is_rxqs_map)
2654 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2655 	else
2656 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2657 				       cpu_to_node(attr_index));
2658 	if (!new_map)
2659 		return NULL;
2660 
2661 	for (i = 0; i < pos; i++)
2662 		new_map->queues[i] = map->queues[i];
2663 	new_map->alloc_len = alloc_len;
2664 	new_map->len = pos;
2665 
2666 	return new_map;
2667 }
2668 
2669 /* Copy xps maps at a given index */
2670 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2671 			      struct xps_dev_maps *new_dev_maps, int index,
2672 			      int tc, bool skip_tc)
2673 {
2674 	int i, tci = index * dev_maps->num_tc;
2675 	struct xps_map *map;
2676 
2677 	/* copy maps belonging to foreign traffic classes */
2678 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2679 		if (i == tc && skip_tc)
2680 			continue;
2681 
2682 		/* fill in the new device map from the old device map */
2683 		map = xmap_dereference(dev_maps->attr_map[tci]);
2684 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2685 	}
2686 }
2687 
2688 /* Must be called under cpus_read_lock */
2689 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2690 			  u16 index, enum xps_map_type type)
2691 {
2692 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2693 	const unsigned long *online_mask = NULL;
2694 	bool active = false, copy = false;
2695 	int i, j, tci, numa_node_id = -2;
2696 	int maps_sz, num_tc = 1, tc = 0;
2697 	struct xps_map *map, *new_map;
2698 	unsigned int nr_ids;
2699 
2700 	if (dev->num_tc) {
2701 		/* Do not allow XPS on subordinate device directly */
2702 		num_tc = dev->num_tc;
2703 		if (num_tc < 0)
2704 			return -EINVAL;
2705 
2706 		/* If queue belongs to subordinate dev use its map */
2707 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2708 
2709 		tc = netdev_txq_to_tc(dev, index);
2710 		if (tc < 0)
2711 			return -EINVAL;
2712 	}
2713 
2714 	mutex_lock(&xps_map_mutex);
2715 
2716 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2717 	if (type == XPS_RXQS) {
2718 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2719 		nr_ids = dev->num_rx_queues;
2720 	} else {
2721 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2722 		if (num_possible_cpus() > 1)
2723 			online_mask = cpumask_bits(cpu_online_mask);
2724 		nr_ids = nr_cpu_ids;
2725 	}
2726 
2727 	if (maps_sz < L1_CACHE_BYTES)
2728 		maps_sz = L1_CACHE_BYTES;
2729 
2730 	/* The old dev_maps could be larger or smaller than the one we're
2731 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2732 	 * between. We could try to be smart, but let's be safe instead and only
2733 	 * copy foreign traffic classes if the two map sizes match.
2734 	 */
2735 	if (dev_maps &&
2736 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2737 		copy = true;
2738 
2739 	/* allocate memory for queue storage */
2740 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2741 	     j < nr_ids;) {
2742 		if (!new_dev_maps) {
2743 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2744 			if (!new_dev_maps) {
2745 				mutex_unlock(&xps_map_mutex);
2746 				return -ENOMEM;
2747 			}
2748 
2749 			new_dev_maps->nr_ids = nr_ids;
2750 			new_dev_maps->num_tc = num_tc;
2751 		}
2752 
2753 		tci = j * num_tc + tc;
2754 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2755 
2756 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2757 		if (!map)
2758 			goto error;
2759 
2760 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2761 	}
2762 
2763 	if (!new_dev_maps)
2764 		goto out_no_new_maps;
2765 
2766 	if (!dev_maps) {
2767 		/* Increment static keys at most once per type */
2768 		static_key_slow_inc_cpuslocked(&xps_needed);
2769 		if (type == XPS_RXQS)
2770 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2771 	}
2772 
2773 	for (j = 0; j < nr_ids; j++) {
2774 		bool skip_tc = false;
2775 
2776 		tci = j * num_tc + tc;
2777 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2778 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2779 			/* add tx-queue to CPU/rx-queue maps */
2780 			int pos = 0;
2781 
2782 			skip_tc = true;
2783 
2784 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2785 			while ((pos < map->len) && (map->queues[pos] != index))
2786 				pos++;
2787 
2788 			if (pos == map->len)
2789 				map->queues[map->len++] = index;
2790 #ifdef CONFIG_NUMA
2791 			if (type == XPS_CPUS) {
2792 				if (numa_node_id == -2)
2793 					numa_node_id = cpu_to_node(j);
2794 				else if (numa_node_id != cpu_to_node(j))
2795 					numa_node_id = -1;
2796 			}
2797 #endif
2798 		}
2799 
2800 		if (copy)
2801 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2802 					  skip_tc);
2803 	}
2804 
2805 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2806 
2807 	/* Cleanup old maps */
2808 	if (!dev_maps)
2809 		goto out_no_old_maps;
2810 
2811 	for (j = 0; j < dev_maps->nr_ids; j++) {
2812 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2813 			map = xmap_dereference(dev_maps->attr_map[tci]);
2814 			if (!map)
2815 				continue;
2816 
2817 			if (copy) {
2818 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2819 				if (map == new_map)
2820 					continue;
2821 			}
2822 
2823 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2824 			kfree_rcu(map, rcu);
2825 		}
2826 	}
2827 
2828 	old_dev_maps = dev_maps;
2829 
2830 out_no_old_maps:
2831 	dev_maps = new_dev_maps;
2832 	active = true;
2833 
2834 out_no_new_maps:
2835 	if (type == XPS_CPUS)
2836 		/* update Tx queue numa node */
2837 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2838 					     (numa_node_id >= 0) ?
2839 					     numa_node_id : NUMA_NO_NODE);
2840 
2841 	if (!dev_maps)
2842 		goto out_no_maps;
2843 
2844 	/* removes tx-queue from unused CPUs/rx-queues */
2845 	for (j = 0; j < dev_maps->nr_ids; j++) {
2846 		tci = j * dev_maps->num_tc;
2847 
2848 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2849 			if (i == tc &&
2850 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2851 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2852 				continue;
2853 
2854 			active |= remove_xps_queue(dev_maps,
2855 						   copy ? old_dev_maps : NULL,
2856 						   tci, index);
2857 		}
2858 	}
2859 
2860 	if (old_dev_maps)
2861 		kfree_rcu(old_dev_maps, rcu);
2862 
2863 	/* free map if not active */
2864 	if (!active)
2865 		reset_xps_maps(dev, dev_maps, type);
2866 
2867 out_no_maps:
2868 	mutex_unlock(&xps_map_mutex);
2869 
2870 	return 0;
2871 error:
2872 	/* remove any maps that we added */
2873 	for (j = 0; j < nr_ids; j++) {
2874 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2875 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2876 			map = copy ?
2877 			      xmap_dereference(dev_maps->attr_map[tci]) :
2878 			      NULL;
2879 			if (new_map && new_map != map)
2880 				kfree(new_map);
2881 		}
2882 	}
2883 
2884 	mutex_unlock(&xps_map_mutex);
2885 
2886 	kfree(new_dev_maps);
2887 	return -ENOMEM;
2888 }
2889 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2890 
2891 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2892 			u16 index)
2893 {
2894 	int ret;
2895 
2896 	cpus_read_lock();
2897 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2898 	cpus_read_unlock();
2899 
2900 	return ret;
2901 }
2902 EXPORT_SYMBOL(netif_set_xps_queue);
2903 
2904 #endif
2905 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2906 {
2907 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2908 
2909 	/* Unbind any subordinate channels */
2910 	while (txq-- != &dev->_tx[0]) {
2911 		if (txq->sb_dev)
2912 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2913 	}
2914 }
2915 
2916 void netdev_reset_tc(struct net_device *dev)
2917 {
2918 #ifdef CONFIG_XPS
2919 	netif_reset_xps_queues_gt(dev, 0);
2920 #endif
2921 	netdev_unbind_all_sb_channels(dev);
2922 
2923 	/* Reset TC configuration of device */
2924 	dev->num_tc = 0;
2925 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2926 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2927 }
2928 EXPORT_SYMBOL(netdev_reset_tc);
2929 
2930 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2931 {
2932 	if (tc >= dev->num_tc)
2933 		return -EINVAL;
2934 
2935 #ifdef CONFIG_XPS
2936 	netif_reset_xps_queues(dev, offset, count);
2937 #endif
2938 	dev->tc_to_txq[tc].count = count;
2939 	dev->tc_to_txq[tc].offset = offset;
2940 	return 0;
2941 }
2942 EXPORT_SYMBOL(netdev_set_tc_queue);
2943 
2944 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2945 {
2946 	if (num_tc > TC_MAX_QUEUE)
2947 		return -EINVAL;
2948 
2949 #ifdef CONFIG_XPS
2950 	netif_reset_xps_queues_gt(dev, 0);
2951 #endif
2952 	netdev_unbind_all_sb_channels(dev);
2953 
2954 	dev->num_tc = num_tc;
2955 	return 0;
2956 }
2957 EXPORT_SYMBOL(netdev_set_num_tc);
2958 
2959 void netdev_unbind_sb_channel(struct net_device *dev,
2960 			      struct net_device *sb_dev)
2961 {
2962 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2963 
2964 #ifdef CONFIG_XPS
2965 	netif_reset_xps_queues_gt(sb_dev, 0);
2966 #endif
2967 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2968 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2969 
2970 	while (txq-- != &dev->_tx[0]) {
2971 		if (txq->sb_dev == sb_dev)
2972 			txq->sb_dev = NULL;
2973 	}
2974 }
2975 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2976 
2977 int netdev_bind_sb_channel_queue(struct net_device *dev,
2978 				 struct net_device *sb_dev,
2979 				 u8 tc, u16 count, u16 offset)
2980 {
2981 	/* Make certain the sb_dev and dev are already configured */
2982 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2983 		return -EINVAL;
2984 
2985 	/* We cannot hand out queues we don't have */
2986 	if ((offset + count) > dev->real_num_tx_queues)
2987 		return -EINVAL;
2988 
2989 	/* Record the mapping */
2990 	sb_dev->tc_to_txq[tc].count = count;
2991 	sb_dev->tc_to_txq[tc].offset = offset;
2992 
2993 	/* Provide a way for Tx queue to find the tc_to_txq map or
2994 	 * XPS map for itself.
2995 	 */
2996 	while (count--)
2997 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2998 
2999 	return 0;
3000 }
3001 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3002 
3003 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3004 {
3005 	/* Do not use a multiqueue device to represent a subordinate channel */
3006 	if (netif_is_multiqueue(dev))
3007 		return -ENODEV;
3008 
3009 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3010 	 * Channel 0 is meant to be "native" mode and used only to represent
3011 	 * the main root device. We allow writing 0 to reset the device back
3012 	 * to normal mode after being used as a subordinate channel.
3013 	 */
3014 	if (channel > S16_MAX)
3015 		return -EINVAL;
3016 
3017 	dev->num_tc = -channel;
3018 
3019 	return 0;
3020 }
3021 EXPORT_SYMBOL(netdev_set_sb_channel);
3022 
3023 /*
3024  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3025  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3026  */
3027 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3028 {
3029 	bool disabling;
3030 	int rc;
3031 
3032 	disabling = txq < dev->real_num_tx_queues;
3033 
3034 	if (txq < 1 || txq > dev->num_tx_queues)
3035 		return -EINVAL;
3036 
3037 	if (dev->reg_state == NETREG_REGISTERED ||
3038 	    dev->reg_state == NETREG_UNREGISTERING) {
3039 		ASSERT_RTNL();
3040 
3041 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3042 						  txq);
3043 		if (rc)
3044 			return rc;
3045 
3046 		if (dev->num_tc)
3047 			netif_setup_tc(dev, txq);
3048 
3049 		dev->real_num_tx_queues = txq;
3050 
3051 		if (disabling) {
3052 			synchronize_net();
3053 			qdisc_reset_all_tx_gt(dev, txq);
3054 #ifdef CONFIG_XPS
3055 			netif_reset_xps_queues_gt(dev, txq);
3056 #endif
3057 		}
3058 	} else {
3059 		dev->real_num_tx_queues = txq;
3060 	}
3061 
3062 	return 0;
3063 }
3064 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3065 
3066 #ifdef CONFIG_SYSFS
3067 /**
3068  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3069  *	@dev: Network device
3070  *	@rxq: Actual number of RX queues
3071  *
3072  *	This must be called either with the rtnl_lock held or before
3073  *	registration of the net device.  Returns 0 on success, or a
3074  *	negative error code.  If called before registration, it always
3075  *	succeeds.
3076  */
3077 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3078 {
3079 	int rc;
3080 
3081 	if (rxq < 1 || rxq > dev->num_rx_queues)
3082 		return -EINVAL;
3083 
3084 	if (dev->reg_state == NETREG_REGISTERED) {
3085 		ASSERT_RTNL();
3086 
3087 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3088 						  rxq);
3089 		if (rc)
3090 			return rc;
3091 	}
3092 
3093 	dev->real_num_rx_queues = rxq;
3094 	return 0;
3095 }
3096 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3097 #endif
3098 
3099 /**
3100  * netif_get_num_default_rss_queues - default number of RSS queues
3101  *
3102  * This routine should set an upper limit on the number of RSS queues
3103  * used by default by multiqueue devices.
3104  */
3105 int netif_get_num_default_rss_queues(void)
3106 {
3107 	return is_kdump_kernel() ?
3108 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3109 }
3110 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3111 
3112 static void __netif_reschedule(struct Qdisc *q)
3113 {
3114 	struct softnet_data *sd;
3115 	unsigned long flags;
3116 
3117 	local_irq_save(flags);
3118 	sd = this_cpu_ptr(&softnet_data);
3119 	q->next_sched = NULL;
3120 	*sd->output_queue_tailp = q;
3121 	sd->output_queue_tailp = &q->next_sched;
3122 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3123 	local_irq_restore(flags);
3124 }
3125 
3126 void __netif_schedule(struct Qdisc *q)
3127 {
3128 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3129 		__netif_reschedule(q);
3130 }
3131 EXPORT_SYMBOL(__netif_schedule);
3132 
3133 struct dev_kfree_skb_cb {
3134 	enum skb_free_reason reason;
3135 };
3136 
3137 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3138 {
3139 	return (struct dev_kfree_skb_cb *)skb->cb;
3140 }
3141 
3142 void netif_schedule_queue(struct netdev_queue *txq)
3143 {
3144 	rcu_read_lock();
3145 	if (!netif_xmit_stopped(txq)) {
3146 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3147 
3148 		__netif_schedule(q);
3149 	}
3150 	rcu_read_unlock();
3151 }
3152 EXPORT_SYMBOL(netif_schedule_queue);
3153 
3154 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3155 {
3156 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3157 		struct Qdisc *q;
3158 
3159 		rcu_read_lock();
3160 		q = rcu_dereference(dev_queue->qdisc);
3161 		__netif_schedule(q);
3162 		rcu_read_unlock();
3163 	}
3164 }
3165 EXPORT_SYMBOL(netif_tx_wake_queue);
3166 
3167 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3168 {
3169 	unsigned long flags;
3170 
3171 	if (unlikely(!skb))
3172 		return;
3173 
3174 	if (likely(refcount_read(&skb->users) == 1)) {
3175 		smp_rmb();
3176 		refcount_set(&skb->users, 0);
3177 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3178 		return;
3179 	}
3180 	get_kfree_skb_cb(skb)->reason = reason;
3181 	local_irq_save(flags);
3182 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3183 	__this_cpu_write(softnet_data.completion_queue, skb);
3184 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3185 	local_irq_restore(flags);
3186 }
3187 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3188 
3189 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3190 {
3191 	if (in_irq() || irqs_disabled())
3192 		__dev_kfree_skb_irq(skb, reason);
3193 	else
3194 		dev_kfree_skb(skb);
3195 }
3196 EXPORT_SYMBOL(__dev_kfree_skb_any);
3197 
3198 
3199 /**
3200  * netif_device_detach - mark device as removed
3201  * @dev: network device
3202  *
3203  * Mark device as removed from system and therefore no longer available.
3204  */
3205 void netif_device_detach(struct net_device *dev)
3206 {
3207 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3208 	    netif_running(dev)) {
3209 		netif_tx_stop_all_queues(dev);
3210 	}
3211 }
3212 EXPORT_SYMBOL(netif_device_detach);
3213 
3214 /**
3215  * netif_device_attach - mark device as attached
3216  * @dev: network device
3217  *
3218  * Mark device as attached from system and restart if needed.
3219  */
3220 void netif_device_attach(struct net_device *dev)
3221 {
3222 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3223 	    netif_running(dev)) {
3224 		netif_tx_wake_all_queues(dev);
3225 		__netdev_watchdog_up(dev);
3226 	}
3227 }
3228 EXPORT_SYMBOL(netif_device_attach);
3229 
3230 /*
3231  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3232  * to be used as a distribution range.
3233  */
3234 static u16 skb_tx_hash(const struct net_device *dev,
3235 		       const struct net_device *sb_dev,
3236 		       struct sk_buff *skb)
3237 {
3238 	u32 hash;
3239 	u16 qoffset = 0;
3240 	u16 qcount = dev->real_num_tx_queues;
3241 
3242 	if (dev->num_tc) {
3243 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3244 
3245 		qoffset = sb_dev->tc_to_txq[tc].offset;
3246 		qcount = sb_dev->tc_to_txq[tc].count;
3247 	}
3248 
3249 	if (skb_rx_queue_recorded(skb)) {
3250 		hash = skb_get_rx_queue(skb);
3251 		if (hash >= qoffset)
3252 			hash -= qoffset;
3253 		while (unlikely(hash >= qcount))
3254 			hash -= qcount;
3255 		return hash + qoffset;
3256 	}
3257 
3258 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3259 }
3260 
3261 static void skb_warn_bad_offload(const struct sk_buff *skb)
3262 {
3263 	static const netdev_features_t null_features;
3264 	struct net_device *dev = skb->dev;
3265 	const char *name = "";
3266 
3267 	if (!net_ratelimit())
3268 		return;
3269 
3270 	if (dev) {
3271 		if (dev->dev.parent)
3272 			name = dev_driver_string(dev->dev.parent);
3273 		else
3274 			name = netdev_name(dev);
3275 	}
3276 	skb_dump(KERN_WARNING, skb, false);
3277 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3278 	     name, dev ? &dev->features : &null_features,
3279 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3280 }
3281 
3282 /*
3283  * Invalidate hardware checksum when packet is to be mangled, and
3284  * complete checksum manually on outgoing path.
3285  */
3286 int skb_checksum_help(struct sk_buff *skb)
3287 {
3288 	__wsum csum;
3289 	int ret = 0, offset;
3290 
3291 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3292 		goto out_set_summed;
3293 
3294 	if (unlikely(skb_is_gso(skb))) {
3295 		skb_warn_bad_offload(skb);
3296 		return -EINVAL;
3297 	}
3298 
3299 	/* Before computing a checksum, we should make sure no frag could
3300 	 * be modified by an external entity : checksum could be wrong.
3301 	 */
3302 	if (skb_has_shared_frag(skb)) {
3303 		ret = __skb_linearize(skb);
3304 		if (ret)
3305 			goto out;
3306 	}
3307 
3308 	offset = skb_checksum_start_offset(skb);
3309 	BUG_ON(offset >= skb_headlen(skb));
3310 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3311 
3312 	offset += skb->csum_offset;
3313 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3314 
3315 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3316 	if (ret)
3317 		goto out;
3318 
3319 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3320 out_set_summed:
3321 	skb->ip_summed = CHECKSUM_NONE;
3322 out:
3323 	return ret;
3324 }
3325 EXPORT_SYMBOL(skb_checksum_help);
3326 
3327 int skb_crc32c_csum_help(struct sk_buff *skb)
3328 {
3329 	__le32 crc32c_csum;
3330 	int ret = 0, offset, start;
3331 
3332 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3333 		goto out;
3334 
3335 	if (unlikely(skb_is_gso(skb)))
3336 		goto out;
3337 
3338 	/* Before computing a checksum, we should make sure no frag could
3339 	 * be modified by an external entity : checksum could be wrong.
3340 	 */
3341 	if (unlikely(skb_has_shared_frag(skb))) {
3342 		ret = __skb_linearize(skb);
3343 		if (ret)
3344 			goto out;
3345 	}
3346 	start = skb_checksum_start_offset(skb);
3347 	offset = start + offsetof(struct sctphdr, checksum);
3348 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3349 		ret = -EINVAL;
3350 		goto out;
3351 	}
3352 
3353 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3354 	if (ret)
3355 		goto out;
3356 
3357 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3358 						  skb->len - start, ~(__u32)0,
3359 						  crc32c_csum_stub));
3360 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3361 	skb->ip_summed = CHECKSUM_NONE;
3362 	skb->csum_not_inet = 0;
3363 out:
3364 	return ret;
3365 }
3366 
3367 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3368 {
3369 	__be16 type = skb->protocol;
3370 
3371 	/* Tunnel gso handlers can set protocol to ethernet. */
3372 	if (type == htons(ETH_P_TEB)) {
3373 		struct ethhdr *eth;
3374 
3375 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3376 			return 0;
3377 
3378 		eth = (struct ethhdr *)skb->data;
3379 		type = eth->h_proto;
3380 	}
3381 
3382 	return __vlan_get_protocol(skb, type, depth);
3383 }
3384 
3385 /**
3386  *	skb_mac_gso_segment - mac layer segmentation handler.
3387  *	@skb: buffer to segment
3388  *	@features: features for the output path (see dev->features)
3389  */
3390 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3391 				    netdev_features_t features)
3392 {
3393 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3394 	struct packet_offload *ptype;
3395 	int vlan_depth = skb->mac_len;
3396 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3397 
3398 	if (unlikely(!type))
3399 		return ERR_PTR(-EINVAL);
3400 
3401 	__skb_pull(skb, vlan_depth);
3402 
3403 	rcu_read_lock();
3404 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3405 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3406 			segs = ptype->callbacks.gso_segment(skb, features);
3407 			break;
3408 		}
3409 	}
3410 	rcu_read_unlock();
3411 
3412 	__skb_push(skb, skb->data - skb_mac_header(skb));
3413 
3414 	return segs;
3415 }
3416 EXPORT_SYMBOL(skb_mac_gso_segment);
3417 
3418 
3419 /* openvswitch calls this on rx path, so we need a different check.
3420  */
3421 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3422 {
3423 	if (tx_path)
3424 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3425 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3426 
3427 	return skb->ip_summed == CHECKSUM_NONE;
3428 }
3429 
3430 /**
3431  *	__skb_gso_segment - Perform segmentation on skb.
3432  *	@skb: buffer to segment
3433  *	@features: features for the output path (see dev->features)
3434  *	@tx_path: whether it is called in TX path
3435  *
3436  *	This function segments the given skb and returns a list of segments.
3437  *
3438  *	It may return NULL if the skb requires no segmentation.  This is
3439  *	only possible when GSO is used for verifying header integrity.
3440  *
3441  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3442  */
3443 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3444 				  netdev_features_t features, bool tx_path)
3445 {
3446 	struct sk_buff *segs;
3447 
3448 	if (unlikely(skb_needs_check(skb, tx_path))) {
3449 		int err;
3450 
3451 		/* We're going to init ->check field in TCP or UDP header */
3452 		err = skb_cow_head(skb, 0);
3453 		if (err < 0)
3454 			return ERR_PTR(err);
3455 	}
3456 
3457 	/* Only report GSO partial support if it will enable us to
3458 	 * support segmentation on this frame without needing additional
3459 	 * work.
3460 	 */
3461 	if (features & NETIF_F_GSO_PARTIAL) {
3462 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3463 		struct net_device *dev = skb->dev;
3464 
3465 		partial_features |= dev->features & dev->gso_partial_features;
3466 		if (!skb_gso_ok(skb, features | partial_features))
3467 			features &= ~NETIF_F_GSO_PARTIAL;
3468 	}
3469 
3470 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3471 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3472 
3473 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3474 	SKB_GSO_CB(skb)->encap_level = 0;
3475 
3476 	skb_reset_mac_header(skb);
3477 	skb_reset_mac_len(skb);
3478 
3479 	segs = skb_mac_gso_segment(skb, features);
3480 
3481 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3482 		skb_warn_bad_offload(skb);
3483 
3484 	return segs;
3485 }
3486 EXPORT_SYMBOL(__skb_gso_segment);
3487 
3488 /* Take action when hardware reception checksum errors are detected. */
3489 #ifdef CONFIG_BUG
3490 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3491 {
3492 	if (net_ratelimit()) {
3493 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3494 		skb_dump(KERN_ERR, skb, true);
3495 		dump_stack();
3496 	}
3497 }
3498 EXPORT_SYMBOL(netdev_rx_csum_fault);
3499 #endif
3500 
3501 /* XXX: check that highmem exists at all on the given machine. */
3502 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3503 {
3504 #ifdef CONFIG_HIGHMEM
3505 	int i;
3506 
3507 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3508 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3509 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3510 
3511 			if (PageHighMem(skb_frag_page(frag)))
3512 				return 1;
3513 		}
3514 	}
3515 #endif
3516 	return 0;
3517 }
3518 
3519 /* If MPLS offload request, verify we are testing hardware MPLS features
3520  * instead of standard features for the netdev.
3521  */
3522 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3523 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3524 					   netdev_features_t features,
3525 					   __be16 type)
3526 {
3527 	if (eth_p_mpls(type))
3528 		features &= skb->dev->mpls_features;
3529 
3530 	return features;
3531 }
3532 #else
3533 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3534 					   netdev_features_t features,
3535 					   __be16 type)
3536 {
3537 	return features;
3538 }
3539 #endif
3540 
3541 static netdev_features_t harmonize_features(struct sk_buff *skb,
3542 	netdev_features_t features)
3543 {
3544 	__be16 type;
3545 
3546 	type = skb_network_protocol(skb, NULL);
3547 	features = net_mpls_features(skb, features, type);
3548 
3549 	if (skb->ip_summed != CHECKSUM_NONE &&
3550 	    !can_checksum_protocol(features, type)) {
3551 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3552 	}
3553 	if (illegal_highdma(skb->dev, skb))
3554 		features &= ~NETIF_F_SG;
3555 
3556 	return features;
3557 }
3558 
3559 netdev_features_t passthru_features_check(struct sk_buff *skb,
3560 					  struct net_device *dev,
3561 					  netdev_features_t features)
3562 {
3563 	return features;
3564 }
3565 EXPORT_SYMBOL(passthru_features_check);
3566 
3567 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3568 					     struct net_device *dev,
3569 					     netdev_features_t features)
3570 {
3571 	return vlan_features_check(skb, features);
3572 }
3573 
3574 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3575 					    struct net_device *dev,
3576 					    netdev_features_t features)
3577 {
3578 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3579 
3580 	if (gso_segs > dev->gso_max_segs)
3581 		return features & ~NETIF_F_GSO_MASK;
3582 
3583 	if (!skb_shinfo(skb)->gso_type) {
3584 		skb_warn_bad_offload(skb);
3585 		return features & ~NETIF_F_GSO_MASK;
3586 	}
3587 
3588 	/* Support for GSO partial features requires software
3589 	 * intervention before we can actually process the packets
3590 	 * so we need to strip support for any partial features now
3591 	 * and we can pull them back in after we have partially
3592 	 * segmented the frame.
3593 	 */
3594 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3595 		features &= ~dev->gso_partial_features;
3596 
3597 	/* Make sure to clear the IPv4 ID mangling feature if the
3598 	 * IPv4 header has the potential to be fragmented.
3599 	 */
3600 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3601 		struct iphdr *iph = skb->encapsulation ?
3602 				    inner_ip_hdr(skb) : ip_hdr(skb);
3603 
3604 		if (!(iph->frag_off & htons(IP_DF)))
3605 			features &= ~NETIF_F_TSO_MANGLEID;
3606 	}
3607 
3608 	return features;
3609 }
3610 
3611 netdev_features_t netif_skb_features(struct sk_buff *skb)
3612 {
3613 	struct net_device *dev = skb->dev;
3614 	netdev_features_t features = dev->features;
3615 
3616 	if (skb_is_gso(skb))
3617 		features = gso_features_check(skb, dev, features);
3618 
3619 	/* If encapsulation offload request, verify we are testing
3620 	 * hardware encapsulation features instead of standard
3621 	 * features for the netdev
3622 	 */
3623 	if (skb->encapsulation)
3624 		features &= dev->hw_enc_features;
3625 
3626 	if (skb_vlan_tagged(skb))
3627 		features = netdev_intersect_features(features,
3628 						     dev->vlan_features |
3629 						     NETIF_F_HW_VLAN_CTAG_TX |
3630 						     NETIF_F_HW_VLAN_STAG_TX);
3631 
3632 	if (dev->netdev_ops->ndo_features_check)
3633 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3634 								features);
3635 	else
3636 		features &= dflt_features_check(skb, dev, features);
3637 
3638 	return harmonize_features(skb, features);
3639 }
3640 EXPORT_SYMBOL(netif_skb_features);
3641 
3642 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3643 		    struct netdev_queue *txq, bool more)
3644 {
3645 	unsigned int len;
3646 	int rc;
3647 
3648 	if (dev_nit_active(dev))
3649 		dev_queue_xmit_nit(skb, dev);
3650 
3651 	len = skb->len;
3652 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3653 	trace_net_dev_start_xmit(skb, dev);
3654 	rc = netdev_start_xmit(skb, dev, txq, more);
3655 	trace_net_dev_xmit(skb, rc, dev, len);
3656 
3657 	return rc;
3658 }
3659 
3660 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3661 				    struct netdev_queue *txq, int *ret)
3662 {
3663 	struct sk_buff *skb = first;
3664 	int rc = NETDEV_TX_OK;
3665 
3666 	while (skb) {
3667 		struct sk_buff *next = skb->next;
3668 
3669 		skb_mark_not_on_list(skb);
3670 		rc = xmit_one(skb, dev, txq, next != NULL);
3671 		if (unlikely(!dev_xmit_complete(rc))) {
3672 			skb->next = next;
3673 			goto out;
3674 		}
3675 
3676 		skb = next;
3677 		if (netif_tx_queue_stopped(txq) && skb) {
3678 			rc = NETDEV_TX_BUSY;
3679 			break;
3680 		}
3681 	}
3682 
3683 out:
3684 	*ret = rc;
3685 	return skb;
3686 }
3687 
3688 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3689 					  netdev_features_t features)
3690 {
3691 	if (skb_vlan_tag_present(skb) &&
3692 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3693 		skb = __vlan_hwaccel_push_inside(skb);
3694 	return skb;
3695 }
3696 
3697 int skb_csum_hwoffload_help(struct sk_buff *skb,
3698 			    const netdev_features_t features)
3699 {
3700 	if (unlikely(skb_csum_is_sctp(skb)))
3701 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3702 			skb_crc32c_csum_help(skb);
3703 
3704 	if (features & NETIF_F_HW_CSUM)
3705 		return 0;
3706 
3707 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3708 		switch (skb->csum_offset) {
3709 		case offsetof(struct tcphdr, check):
3710 		case offsetof(struct udphdr, check):
3711 			return 0;
3712 		}
3713 	}
3714 
3715 	return skb_checksum_help(skb);
3716 }
3717 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3718 
3719 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3720 {
3721 	netdev_features_t features;
3722 
3723 	features = netif_skb_features(skb);
3724 	skb = validate_xmit_vlan(skb, features);
3725 	if (unlikely(!skb))
3726 		goto out_null;
3727 
3728 	skb = sk_validate_xmit_skb(skb, dev);
3729 	if (unlikely(!skb))
3730 		goto out_null;
3731 
3732 	if (netif_needs_gso(skb, features)) {
3733 		struct sk_buff *segs;
3734 
3735 		segs = skb_gso_segment(skb, features);
3736 		if (IS_ERR(segs)) {
3737 			goto out_kfree_skb;
3738 		} else if (segs) {
3739 			consume_skb(skb);
3740 			skb = segs;
3741 		}
3742 	} else {
3743 		if (skb_needs_linearize(skb, features) &&
3744 		    __skb_linearize(skb))
3745 			goto out_kfree_skb;
3746 
3747 		/* If packet is not checksummed and device does not
3748 		 * support checksumming for this protocol, complete
3749 		 * checksumming here.
3750 		 */
3751 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3752 			if (skb->encapsulation)
3753 				skb_set_inner_transport_header(skb,
3754 							       skb_checksum_start_offset(skb));
3755 			else
3756 				skb_set_transport_header(skb,
3757 							 skb_checksum_start_offset(skb));
3758 			if (skb_csum_hwoffload_help(skb, features))
3759 				goto out_kfree_skb;
3760 		}
3761 	}
3762 
3763 	skb = validate_xmit_xfrm(skb, features, again);
3764 
3765 	return skb;
3766 
3767 out_kfree_skb:
3768 	kfree_skb(skb);
3769 out_null:
3770 	atomic_long_inc(&dev->tx_dropped);
3771 	return NULL;
3772 }
3773 
3774 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3775 {
3776 	struct sk_buff *next, *head = NULL, *tail;
3777 
3778 	for (; skb != NULL; skb = next) {
3779 		next = skb->next;
3780 		skb_mark_not_on_list(skb);
3781 
3782 		/* in case skb wont be segmented, point to itself */
3783 		skb->prev = skb;
3784 
3785 		skb = validate_xmit_skb(skb, dev, again);
3786 		if (!skb)
3787 			continue;
3788 
3789 		if (!head)
3790 			head = skb;
3791 		else
3792 			tail->next = skb;
3793 		/* If skb was segmented, skb->prev points to
3794 		 * the last segment. If not, it still contains skb.
3795 		 */
3796 		tail = skb->prev;
3797 	}
3798 	return head;
3799 }
3800 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3801 
3802 static void qdisc_pkt_len_init(struct sk_buff *skb)
3803 {
3804 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3805 
3806 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3807 
3808 	/* To get more precise estimation of bytes sent on wire,
3809 	 * we add to pkt_len the headers size of all segments
3810 	 */
3811 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3812 		unsigned int hdr_len;
3813 		u16 gso_segs = shinfo->gso_segs;
3814 
3815 		/* mac layer + network layer */
3816 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3817 
3818 		/* + transport layer */
3819 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3820 			const struct tcphdr *th;
3821 			struct tcphdr _tcphdr;
3822 
3823 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3824 						sizeof(_tcphdr), &_tcphdr);
3825 			if (likely(th))
3826 				hdr_len += __tcp_hdrlen(th);
3827 		} else {
3828 			struct udphdr _udphdr;
3829 
3830 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3831 					       sizeof(_udphdr), &_udphdr))
3832 				hdr_len += sizeof(struct udphdr);
3833 		}
3834 
3835 		if (shinfo->gso_type & SKB_GSO_DODGY)
3836 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3837 						shinfo->gso_size);
3838 
3839 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3840 	}
3841 }
3842 
3843 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3844 				 struct net_device *dev,
3845 				 struct netdev_queue *txq)
3846 {
3847 	spinlock_t *root_lock = qdisc_lock(q);
3848 	struct sk_buff *to_free = NULL;
3849 	bool contended;
3850 	int rc;
3851 
3852 	qdisc_calculate_pkt_len(skb, q);
3853 
3854 	if (q->flags & TCQ_F_NOLOCK) {
3855 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3856 		qdisc_run(q);
3857 
3858 		if (unlikely(to_free))
3859 			kfree_skb_list(to_free);
3860 		return rc;
3861 	}
3862 
3863 	/*
3864 	 * Heuristic to force contended enqueues to serialize on a
3865 	 * separate lock before trying to get qdisc main lock.
3866 	 * This permits qdisc->running owner to get the lock more
3867 	 * often and dequeue packets faster.
3868 	 */
3869 	contended = qdisc_is_running(q);
3870 	if (unlikely(contended))
3871 		spin_lock(&q->busylock);
3872 
3873 	spin_lock(root_lock);
3874 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3875 		__qdisc_drop(skb, &to_free);
3876 		rc = NET_XMIT_DROP;
3877 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3878 		   qdisc_run_begin(q)) {
3879 		/*
3880 		 * This is a work-conserving queue; there are no old skbs
3881 		 * waiting to be sent out; and the qdisc is not running -
3882 		 * xmit the skb directly.
3883 		 */
3884 
3885 		qdisc_bstats_update(q, skb);
3886 
3887 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3888 			if (unlikely(contended)) {
3889 				spin_unlock(&q->busylock);
3890 				contended = false;
3891 			}
3892 			__qdisc_run(q);
3893 		}
3894 
3895 		qdisc_run_end(q);
3896 		rc = NET_XMIT_SUCCESS;
3897 	} else {
3898 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3899 		if (qdisc_run_begin(q)) {
3900 			if (unlikely(contended)) {
3901 				spin_unlock(&q->busylock);
3902 				contended = false;
3903 			}
3904 			__qdisc_run(q);
3905 			qdisc_run_end(q);
3906 		}
3907 	}
3908 	spin_unlock(root_lock);
3909 	if (unlikely(to_free))
3910 		kfree_skb_list(to_free);
3911 	if (unlikely(contended))
3912 		spin_unlock(&q->busylock);
3913 	return rc;
3914 }
3915 
3916 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3917 static void skb_update_prio(struct sk_buff *skb)
3918 {
3919 	const struct netprio_map *map;
3920 	const struct sock *sk;
3921 	unsigned int prioidx;
3922 
3923 	if (skb->priority)
3924 		return;
3925 	map = rcu_dereference_bh(skb->dev->priomap);
3926 	if (!map)
3927 		return;
3928 	sk = skb_to_full_sk(skb);
3929 	if (!sk)
3930 		return;
3931 
3932 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3933 
3934 	if (prioidx < map->priomap_len)
3935 		skb->priority = map->priomap[prioidx];
3936 }
3937 #else
3938 #define skb_update_prio(skb)
3939 #endif
3940 
3941 /**
3942  *	dev_loopback_xmit - loop back @skb
3943  *	@net: network namespace this loopback is happening in
3944  *	@sk:  sk needed to be a netfilter okfn
3945  *	@skb: buffer to transmit
3946  */
3947 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3948 {
3949 	skb_reset_mac_header(skb);
3950 	__skb_pull(skb, skb_network_offset(skb));
3951 	skb->pkt_type = PACKET_LOOPBACK;
3952 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3953 	WARN_ON(!skb_dst(skb));
3954 	skb_dst_force(skb);
3955 	netif_rx_ni(skb);
3956 	return 0;
3957 }
3958 EXPORT_SYMBOL(dev_loopback_xmit);
3959 
3960 #ifdef CONFIG_NET_EGRESS
3961 static struct sk_buff *
3962 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3963 {
3964 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3965 	struct tcf_result cl_res;
3966 
3967 	if (!miniq)
3968 		return skb;
3969 
3970 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3971 	qdisc_skb_cb(skb)->mru = 0;
3972 	qdisc_skb_cb(skb)->post_ct = false;
3973 	mini_qdisc_bstats_cpu_update(miniq, skb);
3974 
3975 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3976 	case TC_ACT_OK:
3977 	case TC_ACT_RECLASSIFY:
3978 		skb->tc_index = TC_H_MIN(cl_res.classid);
3979 		break;
3980 	case TC_ACT_SHOT:
3981 		mini_qdisc_qstats_cpu_drop(miniq);
3982 		*ret = NET_XMIT_DROP;
3983 		kfree_skb(skb);
3984 		return NULL;
3985 	case TC_ACT_STOLEN:
3986 	case TC_ACT_QUEUED:
3987 	case TC_ACT_TRAP:
3988 		*ret = NET_XMIT_SUCCESS;
3989 		consume_skb(skb);
3990 		return NULL;
3991 	case TC_ACT_REDIRECT:
3992 		/* No need to push/pop skb's mac_header here on egress! */
3993 		skb_do_redirect(skb);
3994 		*ret = NET_XMIT_SUCCESS;
3995 		return NULL;
3996 	default:
3997 		break;
3998 	}
3999 
4000 	return skb;
4001 }
4002 #endif /* CONFIG_NET_EGRESS */
4003 
4004 #ifdef CONFIG_XPS
4005 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4006 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4007 {
4008 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4009 	struct xps_map *map;
4010 	int queue_index = -1;
4011 
4012 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4013 		return queue_index;
4014 
4015 	tci *= dev_maps->num_tc;
4016 	tci += tc;
4017 
4018 	map = rcu_dereference(dev_maps->attr_map[tci]);
4019 	if (map) {
4020 		if (map->len == 1)
4021 			queue_index = map->queues[0];
4022 		else
4023 			queue_index = map->queues[reciprocal_scale(
4024 						skb_get_hash(skb), map->len)];
4025 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4026 			queue_index = -1;
4027 	}
4028 	return queue_index;
4029 }
4030 #endif
4031 
4032 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4033 			 struct sk_buff *skb)
4034 {
4035 #ifdef CONFIG_XPS
4036 	struct xps_dev_maps *dev_maps;
4037 	struct sock *sk = skb->sk;
4038 	int queue_index = -1;
4039 
4040 	if (!static_key_false(&xps_needed))
4041 		return -1;
4042 
4043 	rcu_read_lock();
4044 	if (!static_key_false(&xps_rxqs_needed))
4045 		goto get_cpus_map;
4046 
4047 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4048 	if (dev_maps) {
4049 		int tci = sk_rx_queue_get(sk);
4050 
4051 		if (tci >= 0)
4052 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4053 							  tci);
4054 	}
4055 
4056 get_cpus_map:
4057 	if (queue_index < 0) {
4058 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4059 		if (dev_maps) {
4060 			unsigned int tci = skb->sender_cpu - 1;
4061 
4062 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4063 							  tci);
4064 		}
4065 	}
4066 	rcu_read_unlock();
4067 
4068 	return queue_index;
4069 #else
4070 	return -1;
4071 #endif
4072 }
4073 
4074 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4075 		     struct net_device *sb_dev)
4076 {
4077 	return 0;
4078 }
4079 EXPORT_SYMBOL(dev_pick_tx_zero);
4080 
4081 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4082 		       struct net_device *sb_dev)
4083 {
4084 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4085 }
4086 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4087 
4088 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4089 		     struct net_device *sb_dev)
4090 {
4091 	struct sock *sk = skb->sk;
4092 	int queue_index = sk_tx_queue_get(sk);
4093 
4094 	sb_dev = sb_dev ? : dev;
4095 
4096 	if (queue_index < 0 || skb->ooo_okay ||
4097 	    queue_index >= dev->real_num_tx_queues) {
4098 		int new_index = get_xps_queue(dev, sb_dev, skb);
4099 
4100 		if (new_index < 0)
4101 			new_index = skb_tx_hash(dev, sb_dev, skb);
4102 
4103 		if (queue_index != new_index && sk &&
4104 		    sk_fullsock(sk) &&
4105 		    rcu_access_pointer(sk->sk_dst_cache))
4106 			sk_tx_queue_set(sk, new_index);
4107 
4108 		queue_index = new_index;
4109 	}
4110 
4111 	return queue_index;
4112 }
4113 EXPORT_SYMBOL(netdev_pick_tx);
4114 
4115 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4116 					 struct sk_buff *skb,
4117 					 struct net_device *sb_dev)
4118 {
4119 	int queue_index = 0;
4120 
4121 #ifdef CONFIG_XPS
4122 	u32 sender_cpu = skb->sender_cpu - 1;
4123 
4124 	if (sender_cpu >= (u32)NR_CPUS)
4125 		skb->sender_cpu = raw_smp_processor_id() + 1;
4126 #endif
4127 
4128 	if (dev->real_num_tx_queues != 1) {
4129 		const struct net_device_ops *ops = dev->netdev_ops;
4130 
4131 		if (ops->ndo_select_queue)
4132 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4133 		else
4134 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4135 
4136 		queue_index = netdev_cap_txqueue(dev, queue_index);
4137 	}
4138 
4139 	skb_set_queue_mapping(skb, queue_index);
4140 	return netdev_get_tx_queue(dev, queue_index);
4141 }
4142 
4143 /**
4144  *	__dev_queue_xmit - transmit a buffer
4145  *	@skb: buffer to transmit
4146  *	@sb_dev: suboordinate device used for L2 forwarding offload
4147  *
4148  *	Queue a buffer for transmission to a network device. The caller must
4149  *	have set the device and priority and built the buffer before calling
4150  *	this function. The function can be called from an interrupt.
4151  *
4152  *	A negative errno code is returned on a failure. A success does not
4153  *	guarantee the frame will be transmitted as it may be dropped due
4154  *	to congestion or traffic shaping.
4155  *
4156  * -----------------------------------------------------------------------------------
4157  *      I notice this method can also return errors from the queue disciplines,
4158  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4159  *      be positive.
4160  *
4161  *      Regardless of the return value, the skb is consumed, so it is currently
4162  *      difficult to retry a send to this method.  (You can bump the ref count
4163  *      before sending to hold a reference for retry if you are careful.)
4164  *
4165  *      When calling this method, interrupts MUST be enabled.  This is because
4166  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4167  *          --BLG
4168  */
4169 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4170 {
4171 	struct net_device *dev = skb->dev;
4172 	struct netdev_queue *txq;
4173 	struct Qdisc *q;
4174 	int rc = -ENOMEM;
4175 	bool again = false;
4176 
4177 	skb_reset_mac_header(skb);
4178 
4179 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4180 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4181 
4182 	/* Disable soft irqs for various locks below. Also
4183 	 * stops preemption for RCU.
4184 	 */
4185 	rcu_read_lock_bh();
4186 
4187 	skb_update_prio(skb);
4188 
4189 	qdisc_pkt_len_init(skb);
4190 #ifdef CONFIG_NET_CLS_ACT
4191 	skb->tc_at_ingress = 0;
4192 # ifdef CONFIG_NET_EGRESS
4193 	if (static_branch_unlikely(&egress_needed_key)) {
4194 		skb = sch_handle_egress(skb, &rc, dev);
4195 		if (!skb)
4196 			goto out;
4197 	}
4198 # endif
4199 #endif
4200 	/* If device/qdisc don't need skb->dst, release it right now while
4201 	 * its hot in this cpu cache.
4202 	 */
4203 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4204 		skb_dst_drop(skb);
4205 	else
4206 		skb_dst_force(skb);
4207 
4208 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4209 	q = rcu_dereference_bh(txq->qdisc);
4210 
4211 	trace_net_dev_queue(skb);
4212 	if (q->enqueue) {
4213 		rc = __dev_xmit_skb(skb, q, dev, txq);
4214 		goto out;
4215 	}
4216 
4217 	/* The device has no queue. Common case for software devices:
4218 	 * loopback, all the sorts of tunnels...
4219 
4220 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4221 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4222 	 * counters.)
4223 	 * However, it is possible, that they rely on protection
4224 	 * made by us here.
4225 
4226 	 * Check this and shot the lock. It is not prone from deadlocks.
4227 	 *Either shot noqueue qdisc, it is even simpler 8)
4228 	 */
4229 	if (dev->flags & IFF_UP) {
4230 		int cpu = smp_processor_id(); /* ok because BHs are off */
4231 
4232 		if (txq->xmit_lock_owner != cpu) {
4233 			if (dev_xmit_recursion())
4234 				goto recursion_alert;
4235 
4236 			skb = validate_xmit_skb(skb, dev, &again);
4237 			if (!skb)
4238 				goto out;
4239 
4240 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4241 			HARD_TX_LOCK(dev, txq, cpu);
4242 
4243 			if (!netif_xmit_stopped(txq)) {
4244 				dev_xmit_recursion_inc();
4245 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4246 				dev_xmit_recursion_dec();
4247 				if (dev_xmit_complete(rc)) {
4248 					HARD_TX_UNLOCK(dev, txq);
4249 					goto out;
4250 				}
4251 			}
4252 			HARD_TX_UNLOCK(dev, txq);
4253 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4254 					     dev->name);
4255 		} else {
4256 			/* Recursion is detected! It is possible,
4257 			 * unfortunately
4258 			 */
4259 recursion_alert:
4260 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4261 					     dev->name);
4262 		}
4263 	}
4264 
4265 	rc = -ENETDOWN;
4266 	rcu_read_unlock_bh();
4267 
4268 	atomic_long_inc(&dev->tx_dropped);
4269 	kfree_skb_list(skb);
4270 	return rc;
4271 out:
4272 	rcu_read_unlock_bh();
4273 	return rc;
4274 }
4275 
4276 int dev_queue_xmit(struct sk_buff *skb)
4277 {
4278 	return __dev_queue_xmit(skb, NULL);
4279 }
4280 EXPORT_SYMBOL(dev_queue_xmit);
4281 
4282 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4283 {
4284 	return __dev_queue_xmit(skb, sb_dev);
4285 }
4286 EXPORT_SYMBOL(dev_queue_xmit_accel);
4287 
4288 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4289 {
4290 	struct net_device *dev = skb->dev;
4291 	struct sk_buff *orig_skb = skb;
4292 	struct netdev_queue *txq;
4293 	int ret = NETDEV_TX_BUSY;
4294 	bool again = false;
4295 
4296 	if (unlikely(!netif_running(dev) ||
4297 		     !netif_carrier_ok(dev)))
4298 		goto drop;
4299 
4300 	skb = validate_xmit_skb_list(skb, dev, &again);
4301 	if (skb != orig_skb)
4302 		goto drop;
4303 
4304 	skb_set_queue_mapping(skb, queue_id);
4305 	txq = skb_get_tx_queue(dev, skb);
4306 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4307 
4308 	local_bh_disable();
4309 
4310 	dev_xmit_recursion_inc();
4311 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4312 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4313 		ret = netdev_start_xmit(skb, dev, txq, false);
4314 	HARD_TX_UNLOCK(dev, txq);
4315 	dev_xmit_recursion_dec();
4316 
4317 	local_bh_enable();
4318 	return ret;
4319 drop:
4320 	atomic_long_inc(&dev->tx_dropped);
4321 	kfree_skb_list(skb);
4322 	return NET_XMIT_DROP;
4323 }
4324 EXPORT_SYMBOL(__dev_direct_xmit);
4325 
4326 /*************************************************************************
4327  *			Receiver routines
4328  *************************************************************************/
4329 
4330 int netdev_max_backlog __read_mostly = 1000;
4331 EXPORT_SYMBOL(netdev_max_backlog);
4332 
4333 int netdev_tstamp_prequeue __read_mostly = 1;
4334 int netdev_budget __read_mostly = 300;
4335 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4336 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4337 int weight_p __read_mostly = 64;           /* old backlog weight */
4338 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4339 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4340 int dev_rx_weight __read_mostly = 64;
4341 int dev_tx_weight __read_mostly = 64;
4342 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4343 int gro_normal_batch __read_mostly = 8;
4344 
4345 /* Called with irq disabled */
4346 static inline void ____napi_schedule(struct softnet_data *sd,
4347 				     struct napi_struct *napi)
4348 {
4349 	struct task_struct *thread;
4350 
4351 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4352 		/* Paired with smp_mb__before_atomic() in
4353 		 * napi_enable()/dev_set_threaded().
4354 		 * Use READ_ONCE() to guarantee a complete
4355 		 * read on napi->thread. Only call
4356 		 * wake_up_process() when it's not NULL.
4357 		 */
4358 		thread = READ_ONCE(napi->thread);
4359 		if (thread) {
4360 			/* Avoid doing set_bit() if the thread is in
4361 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4362 			 * makes sure to proceed with napi polling
4363 			 * if the thread is explicitly woken from here.
4364 			 */
4365 			if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE)
4366 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4367 			wake_up_process(thread);
4368 			return;
4369 		}
4370 	}
4371 
4372 	list_add_tail(&napi->poll_list, &sd->poll_list);
4373 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4374 }
4375 
4376 #ifdef CONFIG_RPS
4377 
4378 /* One global table that all flow-based protocols share. */
4379 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4380 EXPORT_SYMBOL(rps_sock_flow_table);
4381 u32 rps_cpu_mask __read_mostly;
4382 EXPORT_SYMBOL(rps_cpu_mask);
4383 
4384 struct static_key_false rps_needed __read_mostly;
4385 EXPORT_SYMBOL(rps_needed);
4386 struct static_key_false rfs_needed __read_mostly;
4387 EXPORT_SYMBOL(rfs_needed);
4388 
4389 static struct rps_dev_flow *
4390 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4391 	    struct rps_dev_flow *rflow, u16 next_cpu)
4392 {
4393 	if (next_cpu < nr_cpu_ids) {
4394 #ifdef CONFIG_RFS_ACCEL
4395 		struct netdev_rx_queue *rxqueue;
4396 		struct rps_dev_flow_table *flow_table;
4397 		struct rps_dev_flow *old_rflow;
4398 		u32 flow_id;
4399 		u16 rxq_index;
4400 		int rc;
4401 
4402 		/* Should we steer this flow to a different hardware queue? */
4403 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4404 		    !(dev->features & NETIF_F_NTUPLE))
4405 			goto out;
4406 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4407 		if (rxq_index == skb_get_rx_queue(skb))
4408 			goto out;
4409 
4410 		rxqueue = dev->_rx + rxq_index;
4411 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4412 		if (!flow_table)
4413 			goto out;
4414 		flow_id = skb_get_hash(skb) & flow_table->mask;
4415 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4416 							rxq_index, flow_id);
4417 		if (rc < 0)
4418 			goto out;
4419 		old_rflow = rflow;
4420 		rflow = &flow_table->flows[flow_id];
4421 		rflow->filter = rc;
4422 		if (old_rflow->filter == rflow->filter)
4423 			old_rflow->filter = RPS_NO_FILTER;
4424 	out:
4425 #endif
4426 		rflow->last_qtail =
4427 			per_cpu(softnet_data, next_cpu).input_queue_head;
4428 	}
4429 
4430 	rflow->cpu = next_cpu;
4431 	return rflow;
4432 }
4433 
4434 /*
4435  * get_rps_cpu is called from netif_receive_skb and returns the target
4436  * CPU from the RPS map of the receiving queue for a given skb.
4437  * rcu_read_lock must be held on entry.
4438  */
4439 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4440 		       struct rps_dev_flow **rflowp)
4441 {
4442 	const struct rps_sock_flow_table *sock_flow_table;
4443 	struct netdev_rx_queue *rxqueue = dev->_rx;
4444 	struct rps_dev_flow_table *flow_table;
4445 	struct rps_map *map;
4446 	int cpu = -1;
4447 	u32 tcpu;
4448 	u32 hash;
4449 
4450 	if (skb_rx_queue_recorded(skb)) {
4451 		u16 index = skb_get_rx_queue(skb);
4452 
4453 		if (unlikely(index >= dev->real_num_rx_queues)) {
4454 			WARN_ONCE(dev->real_num_rx_queues > 1,
4455 				  "%s received packet on queue %u, but number "
4456 				  "of RX queues is %u\n",
4457 				  dev->name, index, dev->real_num_rx_queues);
4458 			goto done;
4459 		}
4460 		rxqueue += index;
4461 	}
4462 
4463 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4464 
4465 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4466 	map = rcu_dereference(rxqueue->rps_map);
4467 	if (!flow_table && !map)
4468 		goto done;
4469 
4470 	skb_reset_network_header(skb);
4471 	hash = skb_get_hash(skb);
4472 	if (!hash)
4473 		goto done;
4474 
4475 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4476 	if (flow_table && sock_flow_table) {
4477 		struct rps_dev_flow *rflow;
4478 		u32 next_cpu;
4479 		u32 ident;
4480 
4481 		/* First check into global flow table if there is a match */
4482 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4483 		if ((ident ^ hash) & ~rps_cpu_mask)
4484 			goto try_rps;
4485 
4486 		next_cpu = ident & rps_cpu_mask;
4487 
4488 		/* OK, now we know there is a match,
4489 		 * we can look at the local (per receive queue) flow table
4490 		 */
4491 		rflow = &flow_table->flows[hash & flow_table->mask];
4492 		tcpu = rflow->cpu;
4493 
4494 		/*
4495 		 * If the desired CPU (where last recvmsg was done) is
4496 		 * different from current CPU (one in the rx-queue flow
4497 		 * table entry), switch if one of the following holds:
4498 		 *   - Current CPU is unset (>= nr_cpu_ids).
4499 		 *   - Current CPU is offline.
4500 		 *   - The current CPU's queue tail has advanced beyond the
4501 		 *     last packet that was enqueued using this table entry.
4502 		 *     This guarantees that all previous packets for the flow
4503 		 *     have been dequeued, thus preserving in order delivery.
4504 		 */
4505 		if (unlikely(tcpu != next_cpu) &&
4506 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4507 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4508 		      rflow->last_qtail)) >= 0)) {
4509 			tcpu = next_cpu;
4510 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4511 		}
4512 
4513 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4514 			*rflowp = rflow;
4515 			cpu = tcpu;
4516 			goto done;
4517 		}
4518 	}
4519 
4520 try_rps:
4521 
4522 	if (map) {
4523 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4524 		if (cpu_online(tcpu)) {
4525 			cpu = tcpu;
4526 			goto done;
4527 		}
4528 	}
4529 
4530 done:
4531 	return cpu;
4532 }
4533 
4534 #ifdef CONFIG_RFS_ACCEL
4535 
4536 /**
4537  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4538  * @dev: Device on which the filter was set
4539  * @rxq_index: RX queue index
4540  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4541  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4542  *
4543  * Drivers that implement ndo_rx_flow_steer() should periodically call
4544  * this function for each installed filter and remove the filters for
4545  * which it returns %true.
4546  */
4547 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4548 			 u32 flow_id, u16 filter_id)
4549 {
4550 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4551 	struct rps_dev_flow_table *flow_table;
4552 	struct rps_dev_flow *rflow;
4553 	bool expire = true;
4554 	unsigned int cpu;
4555 
4556 	rcu_read_lock();
4557 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4558 	if (flow_table && flow_id <= flow_table->mask) {
4559 		rflow = &flow_table->flows[flow_id];
4560 		cpu = READ_ONCE(rflow->cpu);
4561 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4562 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4563 			   rflow->last_qtail) <
4564 		     (int)(10 * flow_table->mask)))
4565 			expire = false;
4566 	}
4567 	rcu_read_unlock();
4568 	return expire;
4569 }
4570 EXPORT_SYMBOL(rps_may_expire_flow);
4571 
4572 #endif /* CONFIG_RFS_ACCEL */
4573 
4574 /* Called from hardirq (IPI) context */
4575 static void rps_trigger_softirq(void *data)
4576 {
4577 	struct softnet_data *sd = data;
4578 
4579 	____napi_schedule(sd, &sd->backlog);
4580 	sd->received_rps++;
4581 }
4582 
4583 #endif /* CONFIG_RPS */
4584 
4585 /*
4586  * Check if this softnet_data structure is another cpu one
4587  * If yes, queue it to our IPI list and return 1
4588  * If no, return 0
4589  */
4590 static int rps_ipi_queued(struct softnet_data *sd)
4591 {
4592 #ifdef CONFIG_RPS
4593 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4594 
4595 	if (sd != mysd) {
4596 		sd->rps_ipi_next = mysd->rps_ipi_list;
4597 		mysd->rps_ipi_list = sd;
4598 
4599 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4600 		return 1;
4601 	}
4602 #endif /* CONFIG_RPS */
4603 	return 0;
4604 }
4605 
4606 #ifdef CONFIG_NET_FLOW_LIMIT
4607 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4608 #endif
4609 
4610 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4611 {
4612 #ifdef CONFIG_NET_FLOW_LIMIT
4613 	struct sd_flow_limit *fl;
4614 	struct softnet_data *sd;
4615 	unsigned int old_flow, new_flow;
4616 
4617 	if (qlen < (netdev_max_backlog >> 1))
4618 		return false;
4619 
4620 	sd = this_cpu_ptr(&softnet_data);
4621 
4622 	rcu_read_lock();
4623 	fl = rcu_dereference(sd->flow_limit);
4624 	if (fl) {
4625 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4626 		old_flow = fl->history[fl->history_head];
4627 		fl->history[fl->history_head] = new_flow;
4628 
4629 		fl->history_head++;
4630 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4631 
4632 		if (likely(fl->buckets[old_flow]))
4633 			fl->buckets[old_flow]--;
4634 
4635 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4636 			fl->count++;
4637 			rcu_read_unlock();
4638 			return true;
4639 		}
4640 	}
4641 	rcu_read_unlock();
4642 #endif
4643 	return false;
4644 }
4645 
4646 /*
4647  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4648  * queue (may be a remote CPU queue).
4649  */
4650 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4651 			      unsigned int *qtail)
4652 {
4653 	struct softnet_data *sd;
4654 	unsigned long flags;
4655 	unsigned int qlen;
4656 
4657 	sd = &per_cpu(softnet_data, cpu);
4658 
4659 	local_irq_save(flags);
4660 
4661 	rps_lock(sd);
4662 	if (!netif_running(skb->dev))
4663 		goto drop;
4664 	qlen = skb_queue_len(&sd->input_pkt_queue);
4665 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4666 		if (qlen) {
4667 enqueue:
4668 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4669 			input_queue_tail_incr_save(sd, qtail);
4670 			rps_unlock(sd);
4671 			local_irq_restore(flags);
4672 			return NET_RX_SUCCESS;
4673 		}
4674 
4675 		/* Schedule NAPI for backlog device
4676 		 * We can use non atomic operation since we own the queue lock
4677 		 */
4678 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4679 			if (!rps_ipi_queued(sd))
4680 				____napi_schedule(sd, &sd->backlog);
4681 		}
4682 		goto enqueue;
4683 	}
4684 
4685 drop:
4686 	sd->dropped++;
4687 	rps_unlock(sd);
4688 
4689 	local_irq_restore(flags);
4690 
4691 	atomic_long_inc(&skb->dev->rx_dropped);
4692 	kfree_skb(skb);
4693 	return NET_RX_DROP;
4694 }
4695 
4696 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4697 {
4698 	struct net_device *dev = skb->dev;
4699 	struct netdev_rx_queue *rxqueue;
4700 
4701 	rxqueue = dev->_rx;
4702 
4703 	if (skb_rx_queue_recorded(skb)) {
4704 		u16 index = skb_get_rx_queue(skb);
4705 
4706 		if (unlikely(index >= dev->real_num_rx_queues)) {
4707 			WARN_ONCE(dev->real_num_rx_queues > 1,
4708 				  "%s received packet on queue %u, but number "
4709 				  "of RX queues is %u\n",
4710 				  dev->name, index, dev->real_num_rx_queues);
4711 
4712 			return rxqueue; /* Return first rxqueue */
4713 		}
4714 		rxqueue += index;
4715 	}
4716 	return rxqueue;
4717 }
4718 
4719 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4720 				     struct xdp_buff *xdp,
4721 				     struct bpf_prog *xdp_prog)
4722 {
4723 	void *orig_data, *orig_data_end, *hard_start;
4724 	struct netdev_rx_queue *rxqueue;
4725 	u32 metalen, act = XDP_DROP;
4726 	u32 mac_len, frame_sz;
4727 	__be16 orig_eth_type;
4728 	struct ethhdr *eth;
4729 	bool orig_bcast;
4730 	int off;
4731 
4732 	/* Reinjected packets coming from act_mirred or similar should
4733 	 * not get XDP generic processing.
4734 	 */
4735 	if (skb_is_redirected(skb))
4736 		return XDP_PASS;
4737 
4738 	/* XDP packets must be linear and must have sufficient headroom
4739 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4740 	 * native XDP provides, thus we need to do it here as well.
4741 	 */
4742 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4743 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4744 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4745 		int troom = skb->tail + skb->data_len - skb->end;
4746 
4747 		/* In case we have to go down the path and also linearize,
4748 		 * then lets do the pskb_expand_head() work just once here.
4749 		 */
4750 		if (pskb_expand_head(skb,
4751 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4752 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4753 			goto do_drop;
4754 		if (skb_linearize(skb))
4755 			goto do_drop;
4756 	}
4757 
4758 	/* The XDP program wants to see the packet starting at the MAC
4759 	 * header.
4760 	 */
4761 	mac_len = skb->data - skb_mac_header(skb);
4762 	hard_start = skb->data - skb_headroom(skb);
4763 
4764 	/* SKB "head" area always have tailroom for skb_shared_info */
4765 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4766 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4767 
4768 	rxqueue = netif_get_rxqueue(skb);
4769 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4770 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4771 			 skb_headlen(skb) + mac_len, true);
4772 
4773 	orig_data_end = xdp->data_end;
4774 	orig_data = xdp->data;
4775 	eth = (struct ethhdr *)xdp->data;
4776 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4777 	orig_eth_type = eth->h_proto;
4778 
4779 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4780 
4781 	/* check if bpf_xdp_adjust_head was used */
4782 	off = xdp->data - orig_data;
4783 	if (off) {
4784 		if (off > 0)
4785 			__skb_pull(skb, off);
4786 		else if (off < 0)
4787 			__skb_push(skb, -off);
4788 
4789 		skb->mac_header += off;
4790 		skb_reset_network_header(skb);
4791 	}
4792 
4793 	/* check if bpf_xdp_adjust_tail was used */
4794 	off = xdp->data_end - orig_data_end;
4795 	if (off != 0) {
4796 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4797 		skb->len += off; /* positive on grow, negative on shrink */
4798 	}
4799 
4800 	/* check if XDP changed eth hdr such SKB needs update */
4801 	eth = (struct ethhdr *)xdp->data;
4802 	if ((orig_eth_type != eth->h_proto) ||
4803 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4804 		__skb_push(skb, ETH_HLEN);
4805 		skb->protocol = eth_type_trans(skb, skb->dev);
4806 	}
4807 
4808 	switch (act) {
4809 	case XDP_REDIRECT:
4810 	case XDP_TX:
4811 		__skb_push(skb, mac_len);
4812 		break;
4813 	case XDP_PASS:
4814 		metalen = xdp->data - xdp->data_meta;
4815 		if (metalen)
4816 			skb_metadata_set(skb, metalen);
4817 		break;
4818 	default:
4819 		bpf_warn_invalid_xdp_action(act);
4820 		fallthrough;
4821 	case XDP_ABORTED:
4822 		trace_xdp_exception(skb->dev, xdp_prog, act);
4823 		fallthrough;
4824 	case XDP_DROP:
4825 	do_drop:
4826 		kfree_skb(skb);
4827 		break;
4828 	}
4829 
4830 	return act;
4831 }
4832 
4833 /* When doing generic XDP we have to bypass the qdisc layer and the
4834  * network taps in order to match in-driver-XDP behavior.
4835  */
4836 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4837 {
4838 	struct net_device *dev = skb->dev;
4839 	struct netdev_queue *txq;
4840 	bool free_skb = true;
4841 	int cpu, rc;
4842 
4843 	txq = netdev_core_pick_tx(dev, skb, NULL);
4844 	cpu = smp_processor_id();
4845 	HARD_TX_LOCK(dev, txq, cpu);
4846 	if (!netif_xmit_stopped(txq)) {
4847 		rc = netdev_start_xmit(skb, dev, txq, 0);
4848 		if (dev_xmit_complete(rc))
4849 			free_skb = false;
4850 	}
4851 	HARD_TX_UNLOCK(dev, txq);
4852 	if (free_skb) {
4853 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4854 		kfree_skb(skb);
4855 	}
4856 }
4857 
4858 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4859 
4860 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4861 {
4862 	if (xdp_prog) {
4863 		struct xdp_buff xdp;
4864 		u32 act;
4865 		int err;
4866 
4867 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4868 		if (act != XDP_PASS) {
4869 			switch (act) {
4870 			case XDP_REDIRECT:
4871 				err = xdp_do_generic_redirect(skb->dev, skb,
4872 							      &xdp, xdp_prog);
4873 				if (err)
4874 					goto out_redir;
4875 				break;
4876 			case XDP_TX:
4877 				generic_xdp_tx(skb, xdp_prog);
4878 				break;
4879 			}
4880 			return XDP_DROP;
4881 		}
4882 	}
4883 	return XDP_PASS;
4884 out_redir:
4885 	kfree_skb(skb);
4886 	return XDP_DROP;
4887 }
4888 EXPORT_SYMBOL_GPL(do_xdp_generic);
4889 
4890 static int netif_rx_internal(struct sk_buff *skb)
4891 {
4892 	int ret;
4893 
4894 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4895 
4896 	trace_netif_rx(skb);
4897 
4898 #ifdef CONFIG_RPS
4899 	if (static_branch_unlikely(&rps_needed)) {
4900 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4901 		int cpu;
4902 
4903 		preempt_disable();
4904 		rcu_read_lock();
4905 
4906 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4907 		if (cpu < 0)
4908 			cpu = smp_processor_id();
4909 
4910 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4911 
4912 		rcu_read_unlock();
4913 		preempt_enable();
4914 	} else
4915 #endif
4916 	{
4917 		unsigned int qtail;
4918 
4919 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4920 		put_cpu();
4921 	}
4922 	return ret;
4923 }
4924 
4925 /**
4926  *	netif_rx	-	post buffer to the network code
4927  *	@skb: buffer to post
4928  *
4929  *	This function receives a packet from a device driver and queues it for
4930  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4931  *	may be dropped during processing for congestion control or by the
4932  *	protocol layers.
4933  *
4934  *	return values:
4935  *	NET_RX_SUCCESS	(no congestion)
4936  *	NET_RX_DROP     (packet was dropped)
4937  *
4938  */
4939 
4940 int netif_rx(struct sk_buff *skb)
4941 {
4942 	int ret;
4943 
4944 	trace_netif_rx_entry(skb);
4945 
4946 	ret = netif_rx_internal(skb);
4947 	trace_netif_rx_exit(ret);
4948 
4949 	return ret;
4950 }
4951 EXPORT_SYMBOL(netif_rx);
4952 
4953 int netif_rx_ni(struct sk_buff *skb)
4954 {
4955 	int err;
4956 
4957 	trace_netif_rx_ni_entry(skb);
4958 
4959 	preempt_disable();
4960 	err = netif_rx_internal(skb);
4961 	if (local_softirq_pending())
4962 		do_softirq();
4963 	preempt_enable();
4964 	trace_netif_rx_ni_exit(err);
4965 
4966 	return err;
4967 }
4968 EXPORT_SYMBOL(netif_rx_ni);
4969 
4970 int netif_rx_any_context(struct sk_buff *skb)
4971 {
4972 	/*
4973 	 * If invoked from contexts which do not invoke bottom half
4974 	 * processing either at return from interrupt or when softrqs are
4975 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4976 	 * directly.
4977 	 */
4978 	if (in_interrupt())
4979 		return netif_rx(skb);
4980 	else
4981 		return netif_rx_ni(skb);
4982 }
4983 EXPORT_SYMBOL(netif_rx_any_context);
4984 
4985 static __latent_entropy void net_tx_action(struct softirq_action *h)
4986 {
4987 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4988 
4989 	if (sd->completion_queue) {
4990 		struct sk_buff *clist;
4991 
4992 		local_irq_disable();
4993 		clist = sd->completion_queue;
4994 		sd->completion_queue = NULL;
4995 		local_irq_enable();
4996 
4997 		while (clist) {
4998 			struct sk_buff *skb = clist;
4999 
5000 			clist = clist->next;
5001 
5002 			WARN_ON(refcount_read(&skb->users));
5003 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5004 				trace_consume_skb(skb);
5005 			else
5006 				trace_kfree_skb(skb, net_tx_action);
5007 
5008 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5009 				__kfree_skb(skb);
5010 			else
5011 				__kfree_skb_defer(skb);
5012 		}
5013 	}
5014 
5015 	if (sd->output_queue) {
5016 		struct Qdisc *head;
5017 
5018 		local_irq_disable();
5019 		head = sd->output_queue;
5020 		sd->output_queue = NULL;
5021 		sd->output_queue_tailp = &sd->output_queue;
5022 		local_irq_enable();
5023 
5024 		while (head) {
5025 			struct Qdisc *q = head;
5026 			spinlock_t *root_lock = NULL;
5027 
5028 			head = head->next_sched;
5029 
5030 			if (!(q->flags & TCQ_F_NOLOCK)) {
5031 				root_lock = qdisc_lock(q);
5032 				spin_lock(root_lock);
5033 			}
5034 			/* We need to make sure head->next_sched is read
5035 			 * before clearing __QDISC_STATE_SCHED
5036 			 */
5037 			smp_mb__before_atomic();
5038 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5039 			qdisc_run(q);
5040 			if (root_lock)
5041 				spin_unlock(root_lock);
5042 		}
5043 	}
5044 
5045 	xfrm_dev_backlog(sd);
5046 }
5047 
5048 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5049 /* This hook is defined here for ATM LANE */
5050 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5051 			     unsigned char *addr) __read_mostly;
5052 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5053 #endif
5054 
5055 static inline struct sk_buff *
5056 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5057 		   struct net_device *orig_dev, bool *another)
5058 {
5059 #ifdef CONFIG_NET_CLS_ACT
5060 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5061 	struct tcf_result cl_res;
5062 
5063 	/* If there's at least one ingress present somewhere (so
5064 	 * we get here via enabled static key), remaining devices
5065 	 * that are not configured with an ingress qdisc will bail
5066 	 * out here.
5067 	 */
5068 	if (!miniq)
5069 		return skb;
5070 
5071 	if (*pt_prev) {
5072 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5073 		*pt_prev = NULL;
5074 	}
5075 
5076 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5077 	qdisc_skb_cb(skb)->mru = 0;
5078 	qdisc_skb_cb(skb)->post_ct = false;
5079 	skb->tc_at_ingress = 1;
5080 	mini_qdisc_bstats_cpu_update(miniq, skb);
5081 
5082 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5083 				     &cl_res, false)) {
5084 	case TC_ACT_OK:
5085 	case TC_ACT_RECLASSIFY:
5086 		skb->tc_index = TC_H_MIN(cl_res.classid);
5087 		break;
5088 	case TC_ACT_SHOT:
5089 		mini_qdisc_qstats_cpu_drop(miniq);
5090 		kfree_skb(skb);
5091 		return NULL;
5092 	case TC_ACT_STOLEN:
5093 	case TC_ACT_QUEUED:
5094 	case TC_ACT_TRAP:
5095 		consume_skb(skb);
5096 		return NULL;
5097 	case TC_ACT_REDIRECT:
5098 		/* skb_mac_header check was done by cls/act_bpf, so
5099 		 * we can safely push the L2 header back before
5100 		 * redirecting to another netdev
5101 		 */
5102 		__skb_push(skb, skb->mac_len);
5103 		if (skb_do_redirect(skb) == -EAGAIN) {
5104 			__skb_pull(skb, skb->mac_len);
5105 			*another = true;
5106 			break;
5107 		}
5108 		return NULL;
5109 	case TC_ACT_CONSUMED:
5110 		return NULL;
5111 	default:
5112 		break;
5113 	}
5114 #endif /* CONFIG_NET_CLS_ACT */
5115 	return skb;
5116 }
5117 
5118 /**
5119  *	netdev_is_rx_handler_busy - check if receive handler is registered
5120  *	@dev: device to check
5121  *
5122  *	Check if a receive handler is already registered for a given device.
5123  *	Return true if there one.
5124  *
5125  *	The caller must hold the rtnl_mutex.
5126  */
5127 bool netdev_is_rx_handler_busy(struct net_device *dev)
5128 {
5129 	ASSERT_RTNL();
5130 	return dev && rtnl_dereference(dev->rx_handler);
5131 }
5132 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5133 
5134 /**
5135  *	netdev_rx_handler_register - register receive handler
5136  *	@dev: device to register a handler for
5137  *	@rx_handler: receive handler to register
5138  *	@rx_handler_data: data pointer that is used by rx handler
5139  *
5140  *	Register a receive handler for a device. This handler will then be
5141  *	called from __netif_receive_skb. A negative errno code is returned
5142  *	on a failure.
5143  *
5144  *	The caller must hold the rtnl_mutex.
5145  *
5146  *	For a general description of rx_handler, see enum rx_handler_result.
5147  */
5148 int netdev_rx_handler_register(struct net_device *dev,
5149 			       rx_handler_func_t *rx_handler,
5150 			       void *rx_handler_data)
5151 {
5152 	if (netdev_is_rx_handler_busy(dev))
5153 		return -EBUSY;
5154 
5155 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5156 		return -EINVAL;
5157 
5158 	/* Note: rx_handler_data must be set before rx_handler */
5159 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5160 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5161 
5162 	return 0;
5163 }
5164 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5165 
5166 /**
5167  *	netdev_rx_handler_unregister - unregister receive handler
5168  *	@dev: device to unregister a handler from
5169  *
5170  *	Unregister a receive handler from a device.
5171  *
5172  *	The caller must hold the rtnl_mutex.
5173  */
5174 void netdev_rx_handler_unregister(struct net_device *dev)
5175 {
5176 
5177 	ASSERT_RTNL();
5178 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5179 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5180 	 * section has a guarantee to see a non NULL rx_handler_data
5181 	 * as well.
5182 	 */
5183 	synchronize_net();
5184 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5185 }
5186 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5187 
5188 /*
5189  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5190  * the special handling of PFMEMALLOC skbs.
5191  */
5192 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5193 {
5194 	switch (skb->protocol) {
5195 	case htons(ETH_P_ARP):
5196 	case htons(ETH_P_IP):
5197 	case htons(ETH_P_IPV6):
5198 	case htons(ETH_P_8021Q):
5199 	case htons(ETH_P_8021AD):
5200 		return true;
5201 	default:
5202 		return false;
5203 	}
5204 }
5205 
5206 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5207 			     int *ret, struct net_device *orig_dev)
5208 {
5209 	if (nf_hook_ingress_active(skb)) {
5210 		int ingress_retval;
5211 
5212 		if (*pt_prev) {
5213 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5214 			*pt_prev = NULL;
5215 		}
5216 
5217 		rcu_read_lock();
5218 		ingress_retval = nf_hook_ingress(skb);
5219 		rcu_read_unlock();
5220 		return ingress_retval;
5221 	}
5222 	return 0;
5223 }
5224 
5225 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5226 				    struct packet_type **ppt_prev)
5227 {
5228 	struct packet_type *ptype, *pt_prev;
5229 	rx_handler_func_t *rx_handler;
5230 	struct sk_buff *skb = *pskb;
5231 	struct net_device *orig_dev;
5232 	bool deliver_exact = false;
5233 	int ret = NET_RX_DROP;
5234 	__be16 type;
5235 
5236 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5237 
5238 	trace_netif_receive_skb(skb);
5239 
5240 	orig_dev = skb->dev;
5241 
5242 	skb_reset_network_header(skb);
5243 	if (!skb_transport_header_was_set(skb))
5244 		skb_reset_transport_header(skb);
5245 	skb_reset_mac_len(skb);
5246 
5247 	pt_prev = NULL;
5248 
5249 another_round:
5250 	skb->skb_iif = skb->dev->ifindex;
5251 
5252 	__this_cpu_inc(softnet_data.processed);
5253 
5254 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5255 		int ret2;
5256 
5257 		preempt_disable();
5258 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5259 		preempt_enable();
5260 
5261 		if (ret2 != XDP_PASS) {
5262 			ret = NET_RX_DROP;
5263 			goto out;
5264 		}
5265 		skb_reset_mac_len(skb);
5266 	}
5267 
5268 	if (eth_type_vlan(skb->protocol)) {
5269 		skb = skb_vlan_untag(skb);
5270 		if (unlikely(!skb))
5271 			goto out;
5272 	}
5273 
5274 	if (skb_skip_tc_classify(skb))
5275 		goto skip_classify;
5276 
5277 	if (pfmemalloc)
5278 		goto skip_taps;
5279 
5280 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5281 		if (pt_prev)
5282 			ret = deliver_skb(skb, pt_prev, orig_dev);
5283 		pt_prev = ptype;
5284 	}
5285 
5286 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5287 		if (pt_prev)
5288 			ret = deliver_skb(skb, pt_prev, orig_dev);
5289 		pt_prev = ptype;
5290 	}
5291 
5292 skip_taps:
5293 #ifdef CONFIG_NET_INGRESS
5294 	if (static_branch_unlikely(&ingress_needed_key)) {
5295 		bool another = false;
5296 
5297 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5298 					 &another);
5299 		if (another)
5300 			goto another_round;
5301 		if (!skb)
5302 			goto out;
5303 
5304 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5305 			goto out;
5306 	}
5307 #endif
5308 	skb_reset_redirect(skb);
5309 skip_classify:
5310 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5311 		goto drop;
5312 
5313 	if (skb_vlan_tag_present(skb)) {
5314 		if (pt_prev) {
5315 			ret = deliver_skb(skb, pt_prev, orig_dev);
5316 			pt_prev = NULL;
5317 		}
5318 		if (vlan_do_receive(&skb))
5319 			goto another_round;
5320 		else if (unlikely(!skb))
5321 			goto out;
5322 	}
5323 
5324 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5325 	if (rx_handler) {
5326 		if (pt_prev) {
5327 			ret = deliver_skb(skb, pt_prev, orig_dev);
5328 			pt_prev = NULL;
5329 		}
5330 		switch (rx_handler(&skb)) {
5331 		case RX_HANDLER_CONSUMED:
5332 			ret = NET_RX_SUCCESS;
5333 			goto out;
5334 		case RX_HANDLER_ANOTHER:
5335 			goto another_round;
5336 		case RX_HANDLER_EXACT:
5337 			deliver_exact = true;
5338 			break;
5339 		case RX_HANDLER_PASS:
5340 			break;
5341 		default:
5342 			BUG();
5343 		}
5344 	}
5345 
5346 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5347 check_vlan_id:
5348 		if (skb_vlan_tag_get_id(skb)) {
5349 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5350 			 * find vlan device.
5351 			 */
5352 			skb->pkt_type = PACKET_OTHERHOST;
5353 		} else if (eth_type_vlan(skb->protocol)) {
5354 			/* Outer header is 802.1P with vlan 0, inner header is
5355 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5356 			 * not find vlan dev for vlan id 0.
5357 			 */
5358 			__vlan_hwaccel_clear_tag(skb);
5359 			skb = skb_vlan_untag(skb);
5360 			if (unlikely(!skb))
5361 				goto out;
5362 			if (vlan_do_receive(&skb))
5363 				/* After stripping off 802.1P header with vlan 0
5364 				 * vlan dev is found for inner header.
5365 				 */
5366 				goto another_round;
5367 			else if (unlikely(!skb))
5368 				goto out;
5369 			else
5370 				/* We have stripped outer 802.1P vlan 0 header.
5371 				 * But could not find vlan dev.
5372 				 * check again for vlan id to set OTHERHOST.
5373 				 */
5374 				goto check_vlan_id;
5375 		}
5376 		/* Note: we might in the future use prio bits
5377 		 * and set skb->priority like in vlan_do_receive()
5378 		 * For the time being, just ignore Priority Code Point
5379 		 */
5380 		__vlan_hwaccel_clear_tag(skb);
5381 	}
5382 
5383 	type = skb->protocol;
5384 
5385 	/* deliver only exact match when indicated */
5386 	if (likely(!deliver_exact)) {
5387 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5388 				       &ptype_base[ntohs(type) &
5389 						   PTYPE_HASH_MASK]);
5390 	}
5391 
5392 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5393 			       &orig_dev->ptype_specific);
5394 
5395 	if (unlikely(skb->dev != orig_dev)) {
5396 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5397 				       &skb->dev->ptype_specific);
5398 	}
5399 
5400 	if (pt_prev) {
5401 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5402 			goto drop;
5403 		*ppt_prev = pt_prev;
5404 	} else {
5405 drop:
5406 		if (!deliver_exact)
5407 			atomic_long_inc(&skb->dev->rx_dropped);
5408 		else
5409 			atomic_long_inc(&skb->dev->rx_nohandler);
5410 		kfree_skb(skb);
5411 		/* Jamal, now you will not able to escape explaining
5412 		 * me how you were going to use this. :-)
5413 		 */
5414 		ret = NET_RX_DROP;
5415 	}
5416 
5417 out:
5418 	/* The invariant here is that if *ppt_prev is not NULL
5419 	 * then skb should also be non-NULL.
5420 	 *
5421 	 * Apparently *ppt_prev assignment above holds this invariant due to
5422 	 * skb dereferencing near it.
5423 	 */
5424 	*pskb = skb;
5425 	return ret;
5426 }
5427 
5428 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5429 {
5430 	struct net_device *orig_dev = skb->dev;
5431 	struct packet_type *pt_prev = NULL;
5432 	int ret;
5433 
5434 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5435 	if (pt_prev)
5436 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5437 					 skb->dev, pt_prev, orig_dev);
5438 	return ret;
5439 }
5440 
5441 /**
5442  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5443  *	@skb: buffer to process
5444  *
5445  *	More direct receive version of netif_receive_skb().  It should
5446  *	only be used by callers that have a need to skip RPS and Generic XDP.
5447  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5448  *
5449  *	This function may only be called from softirq context and interrupts
5450  *	should be enabled.
5451  *
5452  *	Return values (usually ignored):
5453  *	NET_RX_SUCCESS: no congestion
5454  *	NET_RX_DROP: packet was dropped
5455  */
5456 int netif_receive_skb_core(struct sk_buff *skb)
5457 {
5458 	int ret;
5459 
5460 	rcu_read_lock();
5461 	ret = __netif_receive_skb_one_core(skb, false);
5462 	rcu_read_unlock();
5463 
5464 	return ret;
5465 }
5466 EXPORT_SYMBOL(netif_receive_skb_core);
5467 
5468 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5469 						  struct packet_type *pt_prev,
5470 						  struct net_device *orig_dev)
5471 {
5472 	struct sk_buff *skb, *next;
5473 
5474 	if (!pt_prev)
5475 		return;
5476 	if (list_empty(head))
5477 		return;
5478 	if (pt_prev->list_func != NULL)
5479 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5480 				   ip_list_rcv, head, pt_prev, orig_dev);
5481 	else
5482 		list_for_each_entry_safe(skb, next, head, list) {
5483 			skb_list_del_init(skb);
5484 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5485 		}
5486 }
5487 
5488 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5489 {
5490 	/* Fast-path assumptions:
5491 	 * - There is no RX handler.
5492 	 * - Only one packet_type matches.
5493 	 * If either of these fails, we will end up doing some per-packet
5494 	 * processing in-line, then handling the 'last ptype' for the whole
5495 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5496 	 * because the 'last ptype' must be constant across the sublist, and all
5497 	 * other ptypes are handled per-packet.
5498 	 */
5499 	/* Current (common) ptype of sublist */
5500 	struct packet_type *pt_curr = NULL;
5501 	/* Current (common) orig_dev of sublist */
5502 	struct net_device *od_curr = NULL;
5503 	struct list_head sublist;
5504 	struct sk_buff *skb, *next;
5505 
5506 	INIT_LIST_HEAD(&sublist);
5507 	list_for_each_entry_safe(skb, next, head, list) {
5508 		struct net_device *orig_dev = skb->dev;
5509 		struct packet_type *pt_prev = NULL;
5510 
5511 		skb_list_del_init(skb);
5512 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5513 		if (!pt_prev)
5514 			continue;
5515 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5516 			/* dispatch old sublist */
5517 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5518 			/* start new sublist */
5519 			INIT_LIST_HEAD(&sublist);
5520 			pt_curr = pt_prev;
5521 			od_curr = orig_dev;
5522 		}
5523 		list_add_tail(&skb->list, &sublist);
5524 	}
5525 
5526 	/* dispatch final sublist */
5527 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5528 }
5529 
5530 static int __netif_receive_skb(struct sk_buff *skb)
5531 {
5532 	int ret;
5533 
5534 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5535 		unsigned int noreclaim_flag;
5536 
5537 		/*
5538 		 * PFMEMALLOC skbs are special, they should
5539 		 * - be delivered to SOCK_MEMALLOC sockets only
5540 		 * - stay away from userspace
5541 		 * - have bounded memory usage
5542 		 *
5543 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5544 		 * context down to all allocation sites.
5545 		 */
5546 		noreclaim_flag = memalloc_noreclaim_save();
5547 		ret = __netif_receive_skb_one_core(skb, true);
5548 		memalloc_noreclaim_restore(noreclaim_flag);
5549 	} else
5550 		ret = __netif_receive_skb_one_core(skb, false);
5551 
5552 	return ret;
5553 }
5554 
5555 static void __netif_receive_skb_list(struct list_head *head)
5556 {
5557 	unsigned long noreclaim_flag = 0;
5558 	struct sk_buff *skb, *next;
5559 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5560 
5561 	list_for_each_entry_safe(skb, next, head, list) {
5562 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5563 			struct list_head sublist;
5564 
5565 			/* Handle the previous sublist */
5566 			list_cut_before(&sublist, head, &skb->list);
5567 			if (!list_empty(&sublist))
5568 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5569 			pfmemalloc = !pfmemalloc;
5570 			/* See comments in __netif_receive_skb */
5571 			if (pfmemalloc)
5572 				noreclaim_flag = memalloc_noreclaim_save();
5573 			else
5574 				memalloc_noreclaim_restore(noreclaim_flag);
5575 		}
5576 	}
5577 	/* Handle the remaining sublist */
5578 	if (!list_empty(head))
5579 		__netif_receive_skb_list_core(head, pfmemalloc);
5580 	/* Restore pflags */
5581 	if (pfmemalloc)
5582 		memalloc_noreclaim_restore(noreclaim_flag);
5583 }
5584 
5585 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5586 {
5587 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5588 	struct bpf_prog *new = xdp->prog;
5589 	int ret = 0;
5590 
5591 	if (new) {
5592 		u32 i;
5593 
5594 		mutex_lock(&new->aux->used_maps_mutex);
5595 
5596 		/* generic XDP does not work with DEVMAPs that can
5597 		 * have a bpf_prog installed on an entry
5598 		 */
5599 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5600 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5601 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5602 				mutex_unlock(&new->aux->used_maps_mutex);
5603 				return -EINVAL;
5604 			}
5605 		}
5606 
5607 		mutex_unlock(&new->aux->used_maps_mutex);
5608 	}
5609 
5610 	switch (xdp->command) {
5611 	case XDP_SETUP_PROG:
5612 		rcu_assign_pointer(dev->xdp_prog, new);
5613 		if (old)
5614 			bpf_prog_put(old);
5615 
5616 		if (old && !new) {
5617 			static_branch_dec(&generic_xdp_needed_key);
5618 		} else if (new && !old) {
5619 			static_branch_inc(&generic_xdp_needed_key);
5620 			dev_disable_lro(dev);
5621 			dev_disable_gro_hw(dev);
5622 		}
5623 		break;
5624 
5625 	default:
5626 		ret = -EINVAL;
5627 		break;
5628 	}
5629 
5630 	return ret;
5631 }
5632 
5633 static int netif_receive_skb_internal(struct sk_buff *skb)
5634 {
5635 	int ret;
5636 
5637 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5638 
5639 	if (skb_defer_rx_timestamp(skb))
5640 		return NET_RX_SUCCESS;
5641 
5642 	rcu_read_lock();
5643 #ifdef CONFIG_RPS
5644 	if (static_branch_unlikely(&rps_needed)) {
5645 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5646 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5647 
5648 		if (cpu >= 0) {
5649 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5650 			rcu_read_unlock();
5651 			return ret;
5652 		}
5653 	}
5654 #endif
5655 	ret = __netif_receive_skb(skb);
5656 	rcu_read_unlock();
5657 	return ret;
5658 }
5659 
5660 static void netif_receive_skb_list_internal(struct list_head *head)
5661 {
5662 	struct sk_buff *skb, *next;
5663 	struct list_head sublist;
5664 
5665 	INIT_LIST_HEAD(&sublist);
5666 	list_for_each_entry_safe(skb, next, head, list) {
5667 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5668 		skb_list_del_init(skb);
5669 		if (!skb_defer_rx_timestamp(skb))
5670 			list_add_tail(&skb->list, &sublist);
5671 	}
5672 	list_splice_init(&sublist, head);
5673 
5674 	rcu_read_lock();
5675 #ifdef CONFIG_RPS
5676 	if (static_branch_unlikely(&rps_needed)) {
5677 		list_for_each_entry_safe(skb, next, head, list) {
5678 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5679 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5680 
5681 			if (cpu >= 0) {
5682 				/* Will be handled, remove from list */
5683 				skb_list_del_init(skb);
5684 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5685 			}
5686 		}
5687 	}
5688 #endif
5689 	__netif_receive_skb_list(head);
5690 	rcu_read_unlock();
5691 }
5692 
5693 /**
5694  *	netif_receive_skb - process receive buffer from network
5695  *	@skb: buffer to process
5696  *
5697  *	netif_receive_skb() is the main receive data processing function.
5698  *	It always succeeds. The buffer may be dropped during processing
5699  *	for congestion control or by the protocol layers.
5700  *
5701  *	This function may only be called from softirq context and interrupts
5702  *	should be enabled.
5703  *
5704  *	Return values (usually ignored):
5705  *	NET_RX_SUCCESS: no congestion
5706  *	NET_RX_DROP: packet was dropped
5707  */
5708 int netif_receive_skb(struct sk_buff *skb)
5709 {
5710 	int ret;
5711 
5712 	trace_netif_receive_skb_entry(skb);
5713 
5714 	ret = netif_receive_skb_internal(skb);
5715 	trace_netif_receive_skb_exit(ret);
5716 
5717 	return ret;
5718 }
5719 EXPORT_SYMBOL(netif_receive_skb);
5720 
5721 /**
5722  *	netif_receive_skb_list - process many receive buffers from network
5723  *	@head: list of skbs to process.
5724  *
5725  *	Since return value of netif_receive_skb() is normally ignored, and
5726  *	wouldn't be meaningful for a list, this function returns void.
5727  *
5728  *	This function may only be called from softirq context and interrupts
5729  *	should be enabled.
5730  */
5731 void netif_receive_skb_list(struct list_head *head)
5732 {
5733 	struct sk_buff *skb;
5734 
5735 	if (list_empty(head))
5736 		return;
5737 	if (trace_netif_receive_skb_list_entry_enabled()) {
5738 		list_for_each_entry(skb, head, list)
5739 			trace_netif_receive_skb_list_entry(skb);
5740 	}
5741 	netif_receive_skb_list_internal(head);
5742 	trace_netif_receive_skb_list_exit(0);
5743 }
5744 EXPORT_SYMBOL(netif_receive_skb_list);
5745 
5746 static DEFINE_PER_CPU(struct work_struct, flush_works);
5747 
5748 /* Network device is going away, flush any packets still pending */
5749 static void flush_backlog(struct work_struct *work)
5750 {
5751 	struct sk_buff *skb, *tmp;
5752 	struct softnet_data *sd;
5753 
5754 	local_bh_disable();
5755 	sd = this_cpu_ptr(&softnet_data);
5756 
5757 	local_irq_disable();
5758 	rps_lock(sd);
5759 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5760 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5761 			__skb_unlink(skb, &sd->input_pkt_queue);
5762 			dev_kfree_skb_irq(skb);
5763 			input_queue_head_incr(sd);
5764 		}
5765 	}
5766 	rps_unlock(sd);
5767 	local_irq_enable();
5768 
5769 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5770 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5771 			__skb_unlink(skb, &sd->process_queue);
5772 			kfree_skb(skb);
5773 			input_queue_head_incr(sd);
5774 		}
5775 	}
5776 	local_bh_enable();
5777 }
5778 
5779 static bool flush_required(int cpu)
5780 {
5781 #if IS_ENABLED(CONFIG_RPS)
5782 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5783 	bool do_flush;
5784 
5785 	local_irq_disable();
5786 	rps_lock(sd);
5787 
5788 	/* as insertion into process_queue happens with the rps lock held,
5789 	 * process_queue access may race only with dequeue
5790 	 */
5791 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5792 		   !skb_queue_empty_lockless(&sd->process_queue);
5793 	rps_unlock(sd);
5794 	local_irq_enable();
5795 
5796 	return do_flush;
5797 #endif
5798 	/* without RPS we can't safely check input_pkt_queue: during a
5799 	 * concurrent remote skb_queue_splice() we can detect as empty both
5800 	 * input_pkt_queue and process_queue even if the latter could end-up
5801 	 * containing a lot of packets.
5802 	 */
5803 	return true;
5804 }
5805 
5806 static void flush_all_backlogs(void)
5807 {
5808 	static cpumask_t flush_cpus;
5809 	unsigned int cpu;
5810 
5811 	/* since we are under rtnl lock protection we can use static data
5812 	 * for the cpumask and avoid allocating on stack the possibly
5813 	 * large mask
5814 	 */
5815 	ASSERT_RTNL();
5816 
5817 	get_online_cpus();
5818 
5819 	cpumask_clear(&flush_cpus);
5820 	for_each_online_cpu(cpu) {
5821 		if (flush_required(cpu)) {
5822 			queue_work_on(cpu, system_highpri_wq,
5823 				      per_cpu_ptr(&flush_works, cpu));
5824 			cpumask_set_cpu(cpu, &flush_cpus);
5825 		}
5826 	}
5827 
5828 	/* we can have in flight packet[s] on the cpus we are not flushing,
5829 	 * synchronize_net() in unregister_netdevice_many() will take care of
5830 	 * them
5831 	 */
5832 	for_each_cpu(cpu, &flush_cpus)
5833 		flush_work(per_cpu_ptr(&flush_works, cpu));
5834 
5835 	put_online_cpus();
5836 }
5837 
5838 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5839 static void gro_normal_list(struct napi_struct *napi)
5840 {
5841 	if (!napi->rx_count)
5842 		return;
5843 	netif_receive_skb_list_internal(&napi->rx_list);
5844 	INIT_LIST_HEAD(&napi->rx_list);
5845 	napi->rx_count = 0;
5846 }
5847 
5848 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5849  * pass the whole batch up to the stack.
5850  */
5851 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5852 {
5853 	list_add_tail(&skb->list, &napi->rx_list);
5854 	napi->rx_count += segs;
5855 	if (napi->rx_count >= gro_normal_batch)
5856 		gro_normal_list(napi);
5857 }
5858 
5859 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5860 {
5861 	struct packet_offload *ptype;
5862 	__be16 type = skb->protocol;
5863 	struct list_head *head = &offload_base;
5864 	int err = -ENOENT;
5865 
5866 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5867 
5868 	if (NAPI_GRO_CB(skb)->count == 1) {
5869 		skb_shinfo(skb)->gso_size = 0;
5870 		goto out;
5871 	}
5872 
5873 	rcu_read_lock();
5874 	list_for_each_entry_rcu(ptype, head, list) {
5875 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5876 			continue;
5877 
5878 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5879 					 ipv6_gro_complete, inet_gro_complete,
5880 					 skb, 0);
5881 		break;
5882 	}
5883 	rcu_read_unlock();
5884 
5885 	if (err) {
5886 		WARN_ON(&ptype->list == head);
5887 		kfree_skb(skb);
5888 		return NET_RX_SUCCESS;
5889 	}
5890 
5891 out:
5892 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5893 	return NET_RX_SUCCESS;
5894 }
5895 
5896 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5897 				   bool flush_old)
5898 {
5899 	struct list_head *head = &napi->gro_hash[index].list;
5900 	struct sk_buff *skb, *p;
5901 
5902 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5903 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5904 			return;
5905 		skb_list_del_init(skb);
5906 		napi_gro_complete(napi, skb);
5907 		napi->gro_hash[index].count--;
5908 	}
5909 
5910 	if (!napi->gro_hash[index].count)
5911 		__clear_bit(index, &napi->gro_bitmask);
5912 }
5913 
5914 /* napi->gro_hash[].list contains packets ordered by age.
5915  * youngest packets at the head of it.
5916  * Complete skbs in reverse order to reduce latencies.
5917  */
5918 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5919 {
5920 	unsigned long bitmask = napi->gro_bitmask;
5921 	unsigned int i, base = ~0U;
5922 
5923 	while ((i = ffs(bitmask)) != 0) {
5924 		bitmask >>= i;
5925 		base += i;
5926 		__napi_gro_flush_chain(napi, base, flush_old);
5927 	}
5928 }
5929 EXPORT_SYMBOL(napi_gro_flush);
5930 
5931 static void gro_list_prepare(const struct list_head *head,
5932 			     const struct sk_buff *skb)
5933 {
5934 	unsigned int maclen = skb->dev->hard_header_len;
5935 	u32 hash = skb_get_hash_raw(skb);
5936 	struct sk_buff *p;
5937 
5938 	list_for_each_entry(p, head, list) {
5939 		unsigned long diffs;
5940 
5941 		NAPI_GRO_CB(p)->flush = 0;
5942 
5943 		if (hash != skb_get_hash_raw(p)) {
5944 			NAPI_GRO_CB(p)->same_flow = 0;
5945 			continue;
5946 		}
5947 
5948 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5949 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5950 		if (skb_vlan_tag_present(p))
5951 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5952 		diffs |= skb_metadata_dst_cmp(p, skb);
5953 		diffs |= skb_metadata_differs(p, skb);
5954 		if (maclen == ETH_HLEN)
5955 			diffs |= compare_ether_header(skb_mac_header(p),
5956 						      skb_mac_header(skb));
5957 		else if (!diffs)
5958 			diffs = memcmp(skb_mac_header(p),
5959 				       skb_mac_header(skb),
5960 				       maclen);
5961 		NAPI_GRO_CB(p)->same_flow = !diffs;
5962 	}
5963 }
5964 
5965 static void skb_gro_reset_offset(struct sk_buff *skb)
5966 {
5967 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5968 	const skb_frag_t *frag0 = &pinfo->frags[0];
5969 
5970 	NAPI_GRO_CB(skb)->data_offset = 0;
5971 	NAPI_GRO_CB(skb)->frag0 = NULL;
5972 	NAPI_GRO_CB(skb)->frag0_len = 0;
5973 
5974 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5975 	    !PageHighMem(skb_frag_page(frag0)) &&
5976 	    (!NET_IP_ALIGN || !(skb_frag_off(frag0) & 3))) {
5977 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5978 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5979 						    skb_frag_size(frag0),
5980 						    skb->end - skb->tail);
5981 	}
5982 }
5983 
5984 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5985 {
5986 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5987 
5988 	BUG_ON(skb->end - skb->tail < grow);
5989 
5990 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5991 
5992 	skb->data_len -= grow;
5993 	skb->tail += grow;
5994 
5995 	skb_frag_off_add(&pinfo->frags[0], grow);
5996 	skb_frag_size_sub(&pinfo->frags[0], grow);
5997 
5998 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5999 		skb_frag_unref(skb, 0);
6000 		memmove(pinfo->frags, pinfo->frags + 1,
6001 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
6002 	}
6003 }
6004 
6005 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6006 {
6007 	struct sk_buff *oldest;
6008 
6009 	oldest = list_last_entry(head, struct sk_buff, list);
6010 
6011 	/* We are called with head length >= MAX_GRO_SKBS, so this is
6012 	 * impossible.
6013 	 */
6014 	if (WARN_ON_ONCE(!oldest))
6015 		return;
6016 
6017 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
6018 	 * SKB to the chain.
6019 	 */
6020 	skb_list_del_init(oldest);
6021 	napi_gro_complete(napi, oldest);
6022 }
6023 
6024 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6025 {
6026 	u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6027 	struct gro_list *gro_list = &napi->gro_hash[bucket];
6028 	struct list_head *head = &offload_base;
6029 	struct packet_offload *ptype;
6030 	__be16 type = skb->protocol;
6031 	struct sk_buff *pp = NULL;
6032 	enum gro_result ret;
6033 	int same_flow;
6034 	int grow;
6035 
6036 	if (netif_elide_gro(skb->dev))
6037 		goto normal;
6038 
6039 	gro_list_prepare(&gro_list->list, skb);
6040 
6041 	rcu_read_lock();
6042 	list_for_each_entry_rcu(ptype, head, list) {
6043 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6044 			continue;
6045 
6046 		skb_set_network_header(skb, skb_gro_offset(skb));
6047 		skb_reset_mac_len(skb);
6048 		NAPI_GRO_CB(skb)->same_flow = 0;
6049 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6050 		NAPI_GRO_CB(skb)->free = 0;
6051 		NAPI_GRO_CB(skb)->encap_mark = 0;
6052 		NAPI_GRO_CB(skb)->recursion_counter = 0;
6053 		NAPI_GRO_CB(skb)->is_fou = 0;
6054 		NAPI_GRO_CB(skb)->is_atomic = 1;
6055 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6056 
6057 		/* Setup for GRO checksum validation */
6058 		switch (skb->ip_summed) {
6059 		case CHECKSUM_COMPLETE:
6060 			NAPI_GRO_CB(skb)->csum = skb->csum;
6061 			NAPI_GRO_CB(skb)->csum_valid = 1;
6062 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6063 			break;
6064 		case CHECKSUM_UNNECESSARY:
6065 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6066 			NAPI_GRO_CB(skb)->csum_valid = 0;
6067 			break;
6068 		default:
6069 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6070 			NAPI_GRO_CB(skb)->csum_valid = 0;
6071 		}
6072 
6073 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6074 					ipv6_gro_receive, inet_gro_receive,
6075 					&gro_list->list, skb);
6076 		break;
6077 	}
6078 	rcu_read_unlock();
6079 
6080 	if (&ptype->list == head)
6081 		goto normal;
6082 
6083 	if (PTR_ERR(pp) == -EINPROGRESS) {
6084 		ret = GRO_CONSUMED;
6085 		goto ok;
6086 	}
6087 
6088 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6089 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6090 
6091 	if (pp) {
6092 		skb_list_del_init(pp);
6093 		napi_gro_complete(napi, pp);
6094 		gro_list->count--;
6095 	}
6096 
6097 	if (same_flow)
6098 		goto ok;
6099 
6100 	if (NAPI_GRO_CB(skb)->flush)
6101 		goto normal;
6102 
6103 	if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6104 		gro_flush_oldest(napi, &gro_list->list);
6105 	else
6106 		gro_list->count++;
6107 
6108 	NAPI_GRO_CB(skb)->count = 1;
6109 	NAPI_GRO_CB(skb)->age = jiffies;
6110 	NAPI_GRO_CB(skb)->last = skb;
6111 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6112 	list_add(&skb->list, &gro_list->list);
6113 	ret = GRO_HELD;
6114 
6115 pull:
6116 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6117 	if (grow > 0)
6118 		gro_pull_from_frag0(skb, grow);
6119 ok:
6120 	if (gro_list->count) {
6121 		if (!test_bit(bucket, &napi->gro_bitmask))
6122 			__set_bit(bucket, &napi->gro_bitmask);
6123 	} else if (test_bit(bucket, &napi->gro_bitmask)) {
6124 		__clear_bit(bucket, &napi->gro_bitmask);
6125 	}
6126 
6127 	return ret;
6128 
6129 normal:
6130 	ret = GRO_NORMAL;
6131 	goto pull;
6132 }
6133 
6134 struct packet_offload *gro_find_receive_by_type(__be16 type)
6135 {
6136 	struct list_head *offload_head = &offload_base;
6137 	struct packet_offload *ptype;
6138 
6139 	list_for_each_entry_rcu(ptype, offload_head, list) {
6140 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6141 			continue;
6142 		return ptype;
6143 	}
6144 	return NULL;
6145 }
6146 EXPORT_SYMBOL(gro_find_receive_by_type);
6147 
6148 struct packet_offload *gro_find_complete_by_type(__be16 type)
6149 {
6150 	struct list_head *offload_head = &offload_base;
6151 	struct packet_offload *ptype;
6152 
6153 	list_for_each_entry_rcu(ptype, offload_head, list) {
6154 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6155 			continue;
6156 		return ptype;
6157 	}
6158 	return NULL;
6159 }
6160 EXPORT_SYMBOL(gro_find_complete_by_type);
6161 
6162 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6163 				    struct sk_buff *skb,
6164 				    gro_result_t ret)
6165 {
6166 	switch (ret) {
6167 	case GRO_NORMAL:
6168 		gro_normal_one(napi, skb, 1);
6169 		break;
6170 
6171 	case GRO_MERGED_FREE:
6172 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6173 			napi_skb_free_stolen_head(skb);
6174 		else
6175 			__kfree_skb_defer(skb);
6176 		break;
6177 
6178 	case GRO_HELD:
6179 	case GRO_MERGED:
6180 	case GRO_CONSUMED:
6181 		break;
6182 	}
6183 
6184 	return ret;
6185 }
6186 
6187 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6188 {
6189 	gro_result_t ret;
6190 
6191 	skb_mark_napi_id(skb, napi);
6192 	trace_napi_gro_receive_entry(skb);
6193 
6194 	skb_gro_reset_offset(skb);
6195 
6196 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6197 	trace_napi_gro_receive_exit(ret);
6198 
6199 	return ret;
6200 }
6201 EXPORT_SYMBOL(napi_gro_receive);
6202 
6203 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6204 {
6205 	if (unlikely(skb->pfmemalloc)) {
6206 		consume_skb(skb);
6207 		return;
6208 	}
6209 	__skb_pull(skb, skb_headlen(skb));
6210 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6211 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6212 	__vlan_hwaccel_clear_tag(skb);
6213 	skb->dev = napi->dev;
6214 	skb->skb_iif = 0;
6215 
6216 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6217 	skb->pkt_type = PACKET_HOST;
6218 
6219 	skb->encapsulation = 0;
6220 	skb_shinfo(skb)->gso_type = 0;
6221 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6222 	skb_ext_reset(skb);
6223 
6224 	napi->skb = skb;
6225 }
6226 
6227 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6228 {
6229 	struct sk_buff *skb = napi->skb;
6230 
6231 	if (!skb) {
6232 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6233 		if (skb) {
6234 			napi->skb = skb;
6235 			skb_mark_napi_id(skb, napi);
6236 		}
6237 	}
6238 	return skb;
6239 }
6240 EXPORT_SYMBOL(napi_get_frags);
6241 
6242 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6243 				      struct sk_buff *skb,
6244 				      gro_result_t ret)
6245 {
6246 	switch (ret) {
6247 	case GRO_NORMAL:
6248 	case GRO_HELD:
6249 		__skb_push(skb, ETH_HLEN);
6250 		skb->protocol = eth_type_trans(skb, skb->dev);
6251 		if (ret == GRO_NORMAL)
6252 			gro_normal_one(napi, skb, 1);
6253 		break;
6254 
6255 	case GRO_MERGED_FREE:
6256 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6257 			napi_skb_free_stolen_head(skb);
6258 		else
6259 			napi_reuse_skb(napi, skb);
6260 		break;
6261 
6262 	case GRO_MERGED:
6263 	case GRO_CONSUMED:
6264 		break;
6265 	}
6266 
6267 	return ret;
6268 }
6269 
6270 /* Upper GRO stack assumes network header starts at gro_offset=0
6271  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6272  * We copy ethernet header into skb->data to have a common layout.
6273  */
6274 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6275 {
6276 	struct sk_buff *skb = napi->skb;
6277 	const struct ethhdr *eth;
6278 	unsigned int hlen = sizeof(*eth);
6279 
6280 	napi->skb = NULL;
6281 
6282 	skb_reset_mac_header(skb);
6283 	skb_gro_reset_offset(skb);
6284 
6285 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6286 		eth = skb_gro_header_slow(skb, hlen, 0);
6287 		if (unlikely(!eth)) {
6288 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6289 					     __func__, napi->dev->name);
6290 			napi_reuse_skb(napi, skb);
6291 			return NULL;
6292 		}
6293 	} else {
6294 		eth = (const struct ethhdr *)skb->data;
6295 		gro_pull_from_frag0(skb, hlen);
6296 		NAPI_GRO_CB(skb)->frag0 += hlen;
6297 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6298 	}
6299 	__skb_pull(skb, hlen);
6300 
6301 	/*
6302 	 * This works because the only protocols we care about don't require
6303 	 * special handling.
6304 	 * We'll fix it up properly in napi_frags_finish()
6305 	 */
6306 	skb->protocol = eth->h_proto;
6307 
6308 	return skb;
6309 }
6310 
6311 gro_result_t napi_gro_frags(struct napi_struct *napi)
6312 {
6313 	gro_result_t ret;
6314 	struct sk_buff *skb = napi_frags_skb(napi);
6315 
6316 	trace_napi_gro_frags_entry(skb);
6317 
6318 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6319 	trace_napi_gro_frags_exit(ret);
6320 
6321 	return ret;
6322 }
6323 EXPORT_SYMBOL(napi_gro_frags);
6324 
6325 /* Compute the checksum from gro_offset and return the folded value
6326  * after adding in any pseudo checksum.
6327  */
6328 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6329 {
6330 	__wsum wsum;
6331 	__sum16 sum;
6332 
6333 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6334 
6335 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6336 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6337 	/* See comments in __skb_checksum_complete(). */
6338 	if (likely(!sum)) {
6339 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6340 		    !skb->csum_complete_sw)
6341 			netdev_rx_csum_fault(skb->dev, skb);
6342 	}
6343 
6344 	NAPI_GRO_CB(skb)->csum = wsum;
6345 	NAPI_GRO_CB(skb)->csum_valid = 1;
6346 
6347 	return sum;
6348 }
6349 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6350 
6351 static void net_rps_send_ipi(struct softnet_data *remsd)
6352 {
6353 #ifdef CONFIG_RPS
6354 	while (remsd) {
6355 		struct softnet_data *next = remsd->rps_ipi_next;
6356 
6357 		if (cpu_online(remsd->cpu))
6358 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6359 		remsd = next;
6360 	}
6361 #endif
6362 }
6363 
6364 /*
6365  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6366  * Note: called with local irq disabled, but exits with local irq enabled.
6367  */
6368 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6369 {
6370 #ifdef CONFIG_RPS
6371 	struct softnet_data *remsd = sd->rps_ipi_list;
6372 
6373 	if (remsd) {
6374 		sd->rps_ipi_list = NULL;
6375 
6376 		local_irq_enable();
6377 
6378 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6379 		net_rps_send_ipi(remsd);
6380 	} else
6381 #endif
6382 		local_irq_enable();
6383 }
6384 
6385 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6386 {
6387 #ifdef CONFIG_RPS
6388 	return sd->rps_ipi_list != NULL;
6389 #else
6390 	return false;
6391 #endif
6392 }
6393 
6394 static int process_backlog(struct napi_struct *napi, int quota)
6395 {
6396 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6397 	bool again = true;
6398 	int work = 0;
6399 
6400 	/* Check if we have pending ipi, its better to send them now,
6401 	 * not waiting net_rx_action() end.
6402 	 */
6403 	if (sd_has_rps_ipi_waiting(sd)) {
6404 		local_irq_disable();
6405 		net_rps_action_and_irq_enable(sd);
6406 	}
6407 
6408 	napi->weight = dev_rx_weight;
6409 	while (again) {
6410 		struct sk_buff *skb;
6411 
6412 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6413 			rcu_read_lock();
6414 			__netif_receive_skb(skb);
6415 			rcu_read_unlock();
6416 			input_queue_head_incr(sd);
6417 			if (++work >= quota)
6418 				return work;
6419 
6420 		}
6421 
6422 		local_irq_disable();
6423 		rps_lock(sd);
6424 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6425 			/*
6426 			 * Inline a custom version of __napi_complete().
6427 			 * only current cpu owns and manipulates this napi,
6428 			 * and NAPI_STATE_SCHED is the only possible flag set
6429 			 * on backlog.
6430 			 * We can use a plain write instead of clear_bit(),
6431 			 * and we dont need an smp_mb() memory barrier.
6432 			 */
6433 			napi->state = 0;
6434 			again = false;
6435 		} else {
6436 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6437 						   &sd->process_queue);
6438 		}
6439 		rps_unlock(sd);
6440 		local_irq_enable();
6441 	}
6442 
6443 	return work;
6444 }
6445 
6446 /**
6447  * __napi_schedule - schedule for receive
6448  * @n: entry to schedule
6449  *
6450  * The entry's receive function will be scheduled to run.
6451  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6452  */
6453 void __napi_schedule(struct napi_struct *n)
6454 {
6455 	unsigned long flags;
6456 
6457 	local_irq_save(flags);
6458 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6459 	local_irq_restore(flags);
6460 }
6461 EXPORT_SYMBOL(__napi_schedule);
6462 
6463 /**
6464  *	napi_schedule_prep - check if napi can be scheduled
6465  *	@n: napi context
6466  *
6467  * Test if NAPI routine is already running, and if not mark
6468  * it as running.  This is used as a condition variable to
6469  * insure only one NAPI poll instance runs.  We also make
6470  * sure there is no pending NAPI disable.
6471  */
6472 bool napi_schedule_prep(struct napi_struct *n)
6473 {
6474 	unsigned long val, new;
6475 
6476 	do {
6477 		val = READ_ONCE(n->state);
6478 		if (unlikely(val & NAPIF_STATE_DISABLE))
6479 			return false;
6480 		new = val | NAPIF_STATE_SCHED;
6481 
6482 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6483 		 * This was suggested by Alexander Duyck, as compiler
6484 		 * emits better code than :
6485 		 * if (val & NAPIF_STATE_SCHED)
6486 		 *     new |= NAPIF_STATE_MISSED;
6487 		 */
6488 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6489 						   NAPIF_STATE_MISSED;
6490 	} while (cmpxchg(&n->state, val, new) != val);
6491 
6492 	return !(val & NAPIF_STATE_SCHED);
6493 }
6494 EXPORT_SYMBOL(napi_schedule_prep);
6495 
6496 /**
6497  * __napi_schedule_irqoff - schedule for receive
6498  * @n: entry to schedule
6499  *
6500  * Variant of __napi_schedule() assuming hard irqs are masked
6501  */
6502 void __napi_schedule_irqoff(struct napi_struct *n)
6503 {
6504 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6505 }
6506 EXPORT_SYMBOL(__napi_schedule_irqoff);
6507 
6508 bool napi_complete_done(struct napi_struct *n, int work_done)
6509 {
6510 	unsigned long flags, val, new, timeout = 0;
6511 	bool ret = true;
6512 
6513 	/*
6514 	 * 1) Don't let napi dequeue from the cpu poll list
6515 	 *    just in case its running on a different cpu.
6516 	 * 2) If we are busy polling, do nothing here, we have
6517 	 *    the guarantee we will be called later.
6518 	 */
6519 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6520 				 NAPIF_STATE_IN_BUSY_POLL)))
6521 		return false;
6522 
6523 	if (work_done) {
6524 		if (n->gro_bitmask)
6525 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6526 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6527 	}
6528 	if (n->defer_hard_irqs_count > 0) {
6529 		n->defer_hard_irqs_count--;
6530 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6531 		if (timeout)
6532 			ret = false;
6533 	}
6534 	if (n->gro_bitmask) {
6535 		/* When the NAPI instance uses a timeout and keeps postponing
6536 		 * it, we need to bound somehow the time packets are kept in
6537 		 * the GRO layer
6538 		 */
6539 		napi_gro_flush(n, !!timeout);
6540 	}
6541 
6542 	gro_normal_list(n);
6543 
6544 	if (unlikely(!list_empty(&n->poll_list))) {
6545 		/* If n->poll_list is not empty, we need to mask irqs */
6546 		local_irq_save(flags);
6547 		list_del_init(&n->poll_list);
6548 		local_irq_restore(flags);
6549 	}
6550 
6551 	do {
6552 		val = READ_ONCE(n->state);
6553 
6554 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6555 
6556 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6557 			      NAPIF_STATE_SCHED_THREADED |
6558 			      NAPIF_STATE_PREFER_BUSY_POLL);
6559 
6560 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6561 		 * because we will call napi->poll() one more time.
6562 		 * This C code was suggested by Alexander Duyck to help gcc.
6563 		 */
6564 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6565 						    NAPIF_STATE_SCHED;
6566 	} while (cmpxchg(&n->state, val, new) != val);
6567 
6568 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6569 		__napi_schedule(n);
6570 		return false;
6571 	}
6572 
6573 	if (timeout)
6574 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6575 			      HRTIMER_MODE_REL_PINNED);
6576 	return ret;
6577 }
6578 EXPORT_SYMBOL(napi_complete_done);
6579 
6580 /* must be called under rcu_read_lock(), as we dont take a reference */
6581 static struct napi_struct *napi_by_id(unsigned int napi_id)
6582 {
6583 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6584 	struct napi_struct *napi;
6585 
6586 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6587 		if (napi->napi_id == napi_id)
6588 			return napi;
6589 
6590 	return NULL;
6591 }
6592 
6593 #if defined(CONFIG_NET_RX_BUSY_POLL)
6594 
6595 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6596 {
6597 	if (!skip_schedule) {
6598 		gro_normal_list(napi);
6599 		__napi_schedule(napi);
6600 		return;
6601 	}
6602 
6603 	if (napi->gro_bitmask) {
6604 		/* flush too old packets
6605 		 * If HZ < 1000, flush all packets.
6606 		 */
6607 		napi_gro_flush(napi, HZ >= 1000);
6608 	}
6609 
6610 	gro_normal_list(napi);
6611 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6612 }
6613 
6614 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6615 			   u16 budget)
6616 {
6617 	bool skip_schedule = false;
6618 	unsigned long timeout;
6619 	int rc;
6620 
6621 	/* Busy polling means there is a high chance device driver hard irq
6622 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6623 	 * set in napi_schedule_prep().
6624 	 * Since we are about to call napi->poll() once more, we can safely
6625 	 * clear NAPI_STATE_MISSED.
6626 	 *
6627 	 * Note: x86 could use a single "lock and ..." instruction
6628 	 * to perform these two clear_bit()
6629 	 */
6630 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6631 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6632 
6633 	local_bh_disable();
6634 
6635 	if (prefer_busy_poll) {
6636 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6637 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6638 		if (napi->defer_hard_irqs_count && timeout) {
6639 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6640 			skip_schedule = true;
6641 		}
6642 	}
6643 
6644 	/* All we really want here is to re-enable device interrupts.
6645 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6646 	 */
6647 	rc = napi->poll(napi, budget);
6648 	/* We can't gro_normal_list() here, because napi->poll() might have
6649 	 * rearmed the napi (napi_complete_done()) in which case it could
6650 	 * already be running on another CPU.
6651 	 */
6652 	trace_napi_poll(napi, rc, budget);
6653 	netpoll_poll_unlock(have_poll_lock);
6654 	if (rc == budget)
6655 		__busy_poll_stop(napi, skip_schedule);
6656 	local_bh_enable();
6657 }
6658 
6659 void napi_busy_loop(unsigned int napi_id,
6660 		    bool (*loop_end)(void *, unsigned long),
6661 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6662 {
6663 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6664 	int (*napi_poll)(struct napi_struct *napi, int budget);
6665 	void *have_poll_lock = NULL;
6666 	struct napi_struct *napi;
6667 
6668 restart:
6669 	napi_poll = NULL;
6670 
6671 	rcu_read_lock();
6672 
6673 	napi = napi_by_id(napi_id);
6674 	if (!napi)
6675 		goto out;
6676 
6677 	preempt_disable();
6678 	for (;;) {
6679 		int work = 0;
6680 
6681 		local_bh_disable();
6682 		if (!napi_poll) {
6683 			unsigned long val = READ_ONCE(napi->state);
6684 
6685 			/* If multiple threads are competing for this napi,
6686 			 * we avoid dirtying napi->state as much as we can.
6687 			 */
6688 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6689 				   NAPIF_STATE_IN_BUSY_POLL)) {
6690 				if (prefer_busy_poll)
6691 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6692 				goto count;
6693 			}
6694 			if (cmpxchg(&napi->state, val,
6695 				    val | NAPIF_STATE_IN_BUSY_POLL |
6696 					  NAPIF_STATE_SCHED) != val) {
6697 				if (prefer_busy_poll)
6698 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6699 				goto count;
6700 			}
6701 			have_poll_lock = netpoll_poll_lock(napi);
6702 			napi_poll = napi->poll;
6703 		}
6704 		work = napi_poll(napi, budget);
6705 		trace_napi_poll(napi, work, budget);
6706 		gro_normal_list(napi);
6707 count:
6708 		if (work > 0)
6709 			__NET_ADD_STATS(dev_net(napi->dev),
6710 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6711 		local_bh_enable();
6712 
6713 		if (!loop_end || loop_end(loop_end_arg, start_time))
6714 			break;
6715 
6716 		if (unlikely(need_resched())) {
6717 			if (napi_poll)
6718 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6719 			preempt_enable();
6720 			rcu_read_unlock();
6721 			cond_resched();
6722 			if (loop_end(loop_end_arg, start_time))
6723 				return;
6724 			goto restart;
6725 		}
6726 		cpu_relax();
6727 	}
6728 	if (napi_poll)
6729 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6730 	preempt_enable();
6731 out:
6732 	rcu_read_unlock();
6733 }
6734 EXPORT_SYMBOL(napi_busy_loop);
6735 
6736 #endif /* CONFIG_NET_RX_BUSY_POLL */
6737 
6738 static void napi_hash_add(struct napi_struct *napi)
6739 {
6740 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6741 		return;
6742 
6743 	spin_lock(&napi_hash_lock);
6744 
6745 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6746 	do {
6747 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6748 			napi_gen_id = MIN_NAPI_ID;
6749 	} while (napi_by_id(napi_gen_id));
6750 	napi->napi_id = napi_gen_id;
6751 
6752 	hlist_add_head_rcu(&napi->napi_hash_node,
6753 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6754 
6755 	spin_unlock(&napi_hash_lock);
6756 }
6757 
6758 /* Warning : caller is responsible to make sure rcu grace period
6759  * is respected before freeing memory containing @napi
6760  */
6761 static void napi_hash_del(struct napi_struct *napi)
6762 {
6763 	spin_lock(&napi_hash_lock);
6764 
6765 	hlist_del_init_rcu(&napi->napi_hash_node);
6766 
6767 	spin_unlock(&napi_hash_lock);
6768 }
6769 
6770 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6771 {
6772 	struct napi_struct *napi;
6773 
6774 	napi = container_of(timer, struct napi_struct, timer);
6775 
6776 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6777 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6778 	 */
6779 	if (!napi_disable_pending(napi) &&
6780 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6781 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6782 		__napi_schedule_irqoff(napi);
6783 	}
6784 
6785 	return HRTIMER_NORESTART;
6786 }
6787 
6788 static void init_gro_hash(struct napi_struct *napi)
6789 {
6790 	int i;
6791 
6792 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6793 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6794 		napi->gro_hash[i].count = 0;
6795 	}
6796 	napi->gro_bitmask = 0;
6797 }
6798 
6799 int dev_set_threaded(struct net_device *dev, bool threaded)
6800 {
6801 	struct napi_struct *napi;
6802 	int err = 0;
6803 
6804 	if (dev->threaded == threaded)
6805 		return 0;
6806 
6807 	if (threaded) {
6808 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6809 			if (!napi->thread) {
6810 				err = napi_kthread_create(napi);
6811 				if (err) {
6812 					threaded = false;
6813 					break;
6814 				}
6815 			}
6816 		}
6817 	}
6818 
6819 	dev->threaded = threaded;
6820 
6821 	/* Make sure kthread is created before THREADED bit
6822 	 * is set.
6823 	 */
6824 	smp_mb__before_atomic();
6825 
6826 	/* Setting/unsetting threaded mode on a napi might not immediately
6827 	 * take effect, if the current napi instance is actively being
6828 	 * polled. In this case, the switch between threaded mode and
6829 	 * softirq mode will happen in the next round of napi_schedule().
6830 	 * This should not cause hiccups/stalls to the live traffic.
6831 	 */
6832 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6833 		if (threaded)
6834 			set_bit(NAPI_STATE_THREADED, &napi->state);
6835 		else
6836 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6837 	}
6838 
6839 	return err;
6840 }
6841 EXPORT_SYMBOL(dev_set_threaded);
6842 
6843 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6844 		    int (*poll)(struct napi_struct *, int), int weight)
6845 {
6846 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6847 		return;
6848 
6849 	INIT_LIST_HEAD(&napi->poll_list);
6850 	INIT_HLIST_NODE(&napi->napi_hash_node);
6851 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6852 	napi->timer.function = napi_watchdog;
6853 	init_gro_hash(napi);
6854 	napi->skb = NULL;
6855 	INIT_LIST_HEAD(&napi->rx_list);
6856 	napi->rx_count = 0;
6857 	napi->poll = poll;
6858 	if (weight > NAPI_POLL_WEIGHT)
6859 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6860 				weight);
6861 	napi->weight = weight;
6862 	napi->dev = dev;
6863 #ifdef CONFIG_NETPOLL
6864 	napi->poll_owner = -1;
6865 #endif
6866 	set_bit(NAPI_STATE_SCHED, &napi->state);
6867 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6868 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6869 	napi_hash_add(napi);
6870 	/* Create kthread for this napi if dev->threaded is set.
6871 	 * Clear dev->threaded if kthread creation failed so that
6872 	 * threaded mode will not be enabled in napi_enable().
6873 	 */
6874 	if (dev->threaded && napi_kthread_create(napi))
6875 		dev->threaded = 0;
6876 }
6877 EXPORT_SYMBOL(netif_napi_add);
6878 
6879 void napi_disable(struct napi_struct *n)
6880 {
6881 	might_sleep();
6882 	set_bit(NAPI_STATE_DISABLE, &n->state);
6883 
6884 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6885 		msleep(1);
6886 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6887 		msleep(1);
6888 
6889 	hrtimer_cancel(&n->timer);
6890 
6891 	clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6892 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6893 	clear_bit(NAPI_STATE_THREADED, &n->state);
6894 }
6895 EXPORT_SYMBOL(napi_disable);
6896 
6897 /**
6898  *	napi_enable - enable NAPI scheduling
6899  *	@n: NAPI context
6900  *
6901  * Resume NAPI from being scheduled on this context.
6902  * Must be paired with napi_disable.
6903  */
6904 void napi_enable(struct napi_struct *n)
6905 {
6906 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6907 	smp_mb__before_atomic();
6908 	clear_bit(NAPI_STATE_SCHED, &n->state);
6909 	clear_bit(NAPI_STATE_NPSVC, &n->state);
6910 	if (n->dev->threaded && n->thread)
6911 		set_bit(NAPI_STATE_THREADED, &n->state);
6912 }
6913 EXPORT_SYMBOL(napi_enable);
6914 
6915 static void flush_gro_hash(struct napi_struct *napi)
6916 {
6917 	int i;
6918 
6919 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6920 		struct sk_buff *skb, *n;
6921 
6922 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6923 			kfree_skb(skb);
6924 		napi->gro_hash[i].count = 0;
6925 	}
6926 }
6927 
6928 /* Must be called in process context */
6929 void __netif_napi_del(struct napi_struct *napi)
6930 {
6931 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6932 		return;
6933 
6934 	napi_hash_del(napi);
6935 	list_del_rcu(&napi->dev_list);
6936 	napi_free_frags(napi);
6937 
6938 	flush_gro_hash(napi);
6939 	napi->gro_bitmask = 0;
6940 
6941 	if (napi->thread) {
6942 		kthread_stop(napi->thread);
6943 		napi->thread = NULL;
6944 	}
6945 }
6946 EXPORT_SYMBOL(__netif_napi_del);
6947 
6948 static int __napi_poll(struct napi_struct *n, bool *repoll)
6949 {
6950 	int work, weight;
6951 
6952 	weight = n->weight;
6953 
6954 	/* This NAPI_STATE_SCHED test is for avoiding a race
6955 	 * with netpoll's poll_napi().  Only the entity which
6956 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6957 	 * actually make the ->poll() call.  Therefore we avoid
6958 	 * accidentally calling ->poll() when NAPI is not scheduled.
6959 	 */
6960 	work = 0;
6961 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6962 		work = n->poll(n, weight);
6963 		trace_napi_poll(n, work, weight);
6964 	}
6965 
6966 	if (unlikely(work > weight))
6967 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6968 			    n->poll, work, weight);
6969 
6970 	if (likely(work < weight))
6971 		return work;
6972 
6973 	/* Drivers must not modify the NAPI state if they
6974 	 * consume the entire weight.  In such cases this code
6975 	 * still "owns" the NAPI instance and therefore can
6976 	 * move the instance around on the list at-will.
6977 	 */
6978 	if (unlikely(napi_disable_pending(n))) {
6979 		napi_complete(n);
6980 		return work;
6981 	}
6982 
6983 	/* The NAPI context has more processing work, but busy-polling
6984 	 * is preferred. Exit early.
6985 	 */
6986 	if (napi_prefer_busy_poll(n)) {
6987 		if (napi_complete_done(n, work)) {
6988 			/* If timeout is not set, we need to make sure
6989 			 * that the NAPI is re-scheduled.
6990 			 */
6991 			napi_schedule(n);
6992 		}
6993 		return work;
6994 	}
6995 
6996 	if (n->gro_bitmask) {
6997 		/* flush too old packets
6998 		 * If HZ < 1000, flush all packets.
6999 		 */
7000 		napi_gro_flush(n, HZ >= 1000);
7001 	}
7002 
7003 	gro_normal_list(n);
7004 
7005 	/* Some drivers may have called napi_schedule
7006 	 * prior to exhausting their budget.
7007 	 */
7008 	if (unlikely(!list_empty(&n->poll_list))) {
7009 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7010 			     n->dev ? n->dev->name : "backlog");
7011 		return work;
7012 	}
7013 
7014 	*repoll = true;
7015 
7016 	return work;
7017 }
7018 
7019 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7020 {
7021 	bool do_repoll = false;
7022 	void *have;
7023 	int work;
7024 
7025 	list_del_init(&n->poll_list);
7026 
7027 	have = netpoll_poll_lock(n);
7028 
7029 	work = __napi_poll(n, &do_repoll);
7030 
7031 	if (do_repoll)
7032 		list_add_tail(&n->poll_list, repoll);
7033 
7034 	netpoll_poll_unlock(have);
7035 
7036 	return work;
7037 }
7038 
7039 static int napi_thread_wait(struct napi_struct *napi)
7040 {
7041 	bool woken = false;
7042 
7043 	set_current_state(TASK_INTERRUPTIBLE);
7044 
7045 	while (!kthread_should_stop()) {
7046 		/* Testing SCHED_THREADED bit here to make sure the current
7047 		 * kthread owns this napi and could poll on this napi.
7048 		 * Testing SCHED bit is not enough because SCHED bit might be
7049 		 * set by some other busy poll thread or by napi_disable().
7050 		 */
7051 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7052 			WARN_ON(!list_empty(&napi->poll_list));
7053 			__set_current_state(TASK_RUNNING);
7054 			return 0;
7055 		}
7056 
7057 		schedule();
7058 		/* woken being true indicates this thread owns this napi. */
7059 		woken = true;
7060 		set_current_state(TASK_INTERRUPTIBLE);
7061 	}
7062 	__set_current_state(TASK_RUNNING);
7063 
7064 	return -1;
7065 }
7066 
7067 static int napi_threaded_poll(void *data)
7068 {
7069 	struct napi_struct *napi = data;
7070 	void *have;
7071 
7072 	while (!napi_thread_wait(napi)) {
7073 		for (;;) {
7074 			bool repoll = false;
7075 
7076 			local_bh_disable();
7077 
7078 			have = netpoll_poll_lock(napi);
7079 			__napi_poll(napi, &repoll);
7080 			netpoll_poll_unlock(have);
7081 
7082 			local_bh_enable();
7083 
7084 			if (!repoll)
7085 				break;
7086 
7087 			cond_resched();
7088 		}
7089 	}
7090 	return 0;
7091 }
7092 
7093 static __latent_entropy void net_rx_action(struct softirq_action *h)
7094 {
7095 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7096 	unsigned long time_limit = jiffies +
7097 		usecs_to_jiffies(netdev_budget_usecs);
7098 	int budget = netdev_budget;
7099 	LIST_HEAD(list);
7100 	LIST_HEAD(repoll);
7101 
7102 	local_irq_disable();
7103 	list_splice_init(&sd->poll_list, &list);
7104 	local_irq_enable();
7105 
7106 	for (;;) {
7107 		struct napi_struct *n;
7108 
7109 		if (list_empty(&list)) {
7110 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7111 				return;
7112 			break;
7113 		}
7114 
7115 		n = list_first_entry(&list, struct napi_struct, poll_list);
7116 		budget -= napi_poll(n, &repoll);
7117 
7118 		/* If softirq window is exhausted then punt.
7119 		 * Allow this to run for 2 jiffies since which will allow
7120 		 * an average latency of 1.5/HZ.
7121 		 */
7122 		if (unlikely(budget <= 0 ||
7123 			     time_after_eq(jiffies, time_limit))) {
7124 			sd->time_squeeze++;
7125 			break;
7126 		}
7127 	}
7128 
7129 	local_irq_disable();
7130 
7131 	list_splice_tail_init(&sd->poll_list, &list);
7132 	list_splice_tail(&repoll, &list);
7133 	list_splice(&list, &sd->poll_list);
7134 	if (!list_empty(&sd->poll_list))
7135 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7136 
7137 	net_rps_action_and_irq_enable(sd);
7138 }
7139 
7140 struct netdev_adjacent {
7141 	struct net_device *dev;
7142 
7143 	/* upper master flag, there can only be one master device per list */
7144 	bool master;
7145 
7146 	/* lookup ignore flag */
7147 	bool ignore;
7148 
7149 	/* counter for the number of times this device was added to us */
7150 	u16 ref_nr;
7151 
7152 	/* private field for the users */
7153 	void *private;
7154 
7155 	struct list_head list;
7156 	struct rcu_head rcu;
7157 };
7158 
7159 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7160 						 struct list_head *adj_list)
7161 {
7162 	struct netdev_adjacent *adj;
7163 
7164 	list_for_each_entry(adj, adj_list, list) {
7165 		if (adj->dev == adj_dev)
7166 			return adj;
7167 	}
7168 	return NULL;
7169 }
7170 
7171 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7172 				    struct netdev_nested_priv *priv)
7173 {
7174 	struct net_device *dev = (struct net_device *)priv->data;
7175 
7176 	return upper_dev == dev;
7177 }
7178 
7179 /**
7180  * netdev_has_upper_dev - Check if device is linked to an upper device
7181  * @dev: device
7182  * @upper_dev: upper device to check
7183  *
7184  * Find out if a device is linked to specified upper device and return true
7185  * in case it is. Note that this checks only immediate upper device,
7186  * not through a complete stack of devices. The caller must hold the RTNL lock.
7187  */
7188 bool netdev_has_upper_dev(struct net_device *dev,
7189 			  struct net_device *upper_dev)
7190 {
7191 	struct netdev_nested_priv priv = {
7192 		.data = (void *)upper_dev,
7193 	};
7194 
7195 	ASSERT_RTNL();
7196 
7197 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7198 					     &priv);
7199 }
7200 EXPORT_SYMBOL(netdev_has_upper_dev);
7201 
7202 /**
7203  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7204  * @dev: device
7205  * @upper_dev: upper device to check
7206  *
7207  * Find out if a device is linked to specified upper device and return true
7208  * in case it is. Note that this checks the entire upper device chain.
7209  * The caller must hold rcu lock.
7210  */
7211 
7212 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7213 				  struct net_device *upper_dev)
7214 {
7215 	struct netdev_nested_priv priv = {
7216 		.data = (void *)upper_dev,
7217 	};
7218 
7219 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7220 					       &priv);
7221 }
7222 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7223 
7224 /**
7225  * netdev_has_any_upper_dev - Check if device is linked to some device
7226  * @dev: device
7227  *
7228  * Find out if a device is linked to an upper device and return true in case
7229  * it is. The caller must hold the RTNL lock.
7230  */
7231 bool netdev_has_any_upper_dev(struct net_device *dev)
7232 {
7233 	ASSERT_RTNL();
7234 
7235 	return !list_empty(&dev->adj_list.upper);
7236 }
7237 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7238 
7239 /**
7240  * netdev_master_upper_dev_get - Get master upper device
7241  * @dev: device
7242  *
7243  * Find a master upper device and return pointer to it or NULL in case
7244  * it's not there. The caller must hold the RTNL lock.
7245  */
7246 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7247 {
7248 	struct netdev_adjacent *upper;
7249 
7250 	ASSERT_RTNL();
7251 
7252 	if (list_empty(&dev->adj_list.upper))
7253 		return NULL;
7254 
7255 	upper = list_first_entry(&dev->adj_list.upper,
7256 				 struct netdev_adjacent, list);
7257 	if (likely(upper->master))
7258 		return upper->dev;
7259 	return NULL;
7260 }
7261 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7262 
7263 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7264 {
7265 	struct netdev_adjacent *upper;
7266 
7267 	ASSERT_RTNL();
7268 
7269 	if (list_empty(&dev->adj_list.upper))
7270 		return NULL;
7271 
7272 	upper = list_first_entry(&dev->adj_list.upper,
7273 				 struct netdev_adjacent, list);
7274 	if (likely(upper->master) && !upper->ignore)
7275 		return upper->dev;
7276 	return NULL;
7277 }
7278 
7279 /**
7280  * netdev_has_any_lower_dev - Check if device is linked to some device
7281  * @dev: device
7282  *
7283  * Find out if a device is linked to a lower device and return true in case
7284  * it is. The caller must hold the RTNL lock.
7285  */
7286 static bool netdev_has_any_lower_dev(struct net_device *dev)
7287 {
7288 	ASSERT_RTNL();
7289 
7290 	return !list_empty(&dev->adj_list.lower);
7291 }
7292 
7293 void *netdev_adjacent_get_private(struct list_head *adj_list)
7294 {
7295 	struct netdev_adjacent *adj;
7296 
7297 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7298 
7299 	return adj->private;
7300 }
7301 EXPORT_SYMBOL(netdev_adjacent_get_private);
7302 
7303 /**
7304  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7305  * @dev: device
7306  * @iter: list_head ** of the current position
7307  *
7308  * Gets the next device from the dev's upper list, starting from iter
7309  * position. The caller must hold RCU read lock.
7310  */
7311 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7312 						 struct list_head **iter)
7313 {
7314 	struct netdev_adjacent *upper;
7315 
7316 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7317 
7318 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7319 
7320 	if (&upper->list == &dev->adj_list.upper)
7321 		return NULL;
7322 
7323 	*iter = &upper->list;
7324 
7325 	return upper->dev;
7326 }
7327 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7328 
7329 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7330 						  struct list_head **iter,
7331 						  bool *ignore)
7332 {
7333 	struct netdev_adjacent *upper;
7334 
7335 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7336 
7337 	if (&upper->list == &dev->adj_list.upper)
7338 		return NULL;
7339 
7340 	*iter = &upper->list;
7341 	*ignore = upper->ignore;
7342 
7343 	return upper->dev;
7344 }
7345 
7346 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7347 						    struct list_head **iter)
7348 {
7349 	struct netdev_adjacent *upper;
7350 
7351 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7352 
7353 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7354 
7355 	if (&upper->list == &dev->adj_list.upper)
7356 		return NULL;
7357 
7358 	*iter = &upper->list;
7359 
7360 	return upper->dev;
7361 }
7362 
7363 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7364 				       int (*fn)(struct net_device *dev,
7365 					 struct netdev_nested_priv *priv),
7366 				       struct netdev_nested_priv *priv)
7367 {
7368 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7369 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7370 	int ret, cur = 0;
7371 	bool ignore;
7372 
7373 	now = dev;
7374 	iter = &dev->adj_list.upper;
7375 
7376 	while (1) {
7377 		if (now != dev) {
7378 			ret = fn(now, priv);
7379 			if (ret)
7380 				return ret;
7381 		}
7382 
7383 		next = NULL;
7384 		while (1) {
7385 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7386 			if (!udev)
7387 				break;
7388 			if (ignore)
7389 				continue;
7390 
7391 			next = udev;
7392 			niter = &udev->adj_list.upper;
7393 			dev_stack[cur] = now;
7394 			iter_stack[cur++] = iter;
7395 			break;
7396 		}
7397 
7398 		if (!next) {
7399 			if (!cur)
7400 				return 0;
7401 			next = dev_stack[--cur];
7402 			niter = iter_stack[cur];
7403 		}
7404 
7405 		now = next;
7406 		iter = niter;
7407 	}
7408 
7409 	return 0;
7410 }
7411 
7412 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7413 				  int (*fn)(struct net_device *dev,
7414 					    struct netdev_nested_priv *priv),
7415 				  struct netdev_nested_priv *priv)
7416 {
7417 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7418 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7419 	int ret, cur = 0;
7420 
7421 	now = dev;
7422 	iter = &dev->adj_list.upper;
7423 
7424 	while (1) {
7425 		if (now != dev) {
7426 			ret = fn(now, priv);
7427 			if (ret)
7428 				return ret;
7429 		}
7430 
7431 		next = NULL;
7432 		while (1) {
7433 			udev = netdev_next_upper_dev_rcu(now, &iter);
7434 			if (!udev)
7435 				break;
7436 
7437 			next = udev;
7438 			niter = &udev->adj_list.upper;
7439 			dev_stack[cur] = now;
7440 			iter_stack[cur++] = iter;
7441 			break;
7442 		}
7443 
7444 		if (!next) {
7445 			if (!cur)
7446 				return 0;
7447 			next = dev_stack[--cur];
7448 			niter = iter_stack[cur];
7449 		}
7450 
7451 		now = next;
7452 		iter = niter;
7453 	}
7454 
7455 	return 0;
7456 }
7457 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7458 
7459 static bool __netdev_has_upper_dev(struct net_device *dev,
7460 				   struct net_device *upper_dev)
7461 {
7462 	struct netdev_nested_priv priv = {
7463 		.flags = 0,
7464 		.data = (void *)upper_dev,
7465 	};
7466 
7467 	ASSERT_RTNL();
7468 
7469 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7470 					   &priv);
7471 }
7472 
7473 /**
7474  * netdev_lower_get_next_private - Get the next ->private from the
7475  *				   lower neighbour list
7476  * @dev: device
7477  * @iter: list_head ** of the current position
7478  *
7479  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7480  * list, starting from iter position. The caller must hold either hold the
7481  * RTNL lock or its own locking that guarantees that the neighbour lower
7482  * list will remain unchanged.
7483  */
7484 void *netdev_lower_get_next_private(struct net_device *dev,
7485 				    struct list_head **iter)
7486 {
7487 	struct netdev_adjacent *lower;
7488 
7489 	lower = list_entry(*iter, struct netdev_adjacent, list);
7490 
7491 	if (&lower->list == &dev->adj_list.lower)
7492 		return NULL;
7493 
7494 	*iter = lower->list.next;
7495 
7496 	return lower->private;
7497 }
7498 EXPORT_SYMBOL(netdev_lower_get_next_private);
7499 
7500 /**
7501  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7502  *				       lower neighbour list, RCU
7503  *				       variant
7504  * @dev: device
7505  * @iter: list_head ** of the current position
7506  *
7507  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7508  * list, starting from iter position. The caller must hold RCU read lock.
7509  */
7510 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7511 					struct list_head **iter)
7512 {
7513 	struct netdev_adjacent *lower;
7514 
7515 	WARN_ON_ONCE(!rcu_read_lock_held());
7516 
7517 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7518 
7519 	if (&lower->list == &dev->adj_list.lower)
7520 		return NULL;
7521 
7522 	*iter = &lower->list;
7523 
7524 	return lower->private;
7525 }
7526 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7527 
7528 /**
7529  * netdev_lower_get_next - Get the next device from the lower neighbour
7530  *                         list
7531  * @dev: device
7532  * @iter: list_head ** of the current position
7533  *
7534  * Gets the next netdev_adjacent from the dev's lower neighbour
7535  * list, starting from iter position. The caller must hold RTNL lock or
7536  * its own locking that guarantees that the neighbour lower
7537  * list will remain unchanged.
7538  */
7539 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7540 {
7541 	struct netdev_adjacent *lower;
7542 
7543 	lower = list_entry(*iter, struct netdev_adjacent, list);
7544 
7545 	if (&lower->list == &dev->adj_list.lower)
7546 		return NULL;
7547 
7548 	*iter = lower->list.next;
7549 
7550 	return lower->dev;
7551 }
7552 EXPORT_SYMBOL(netdev_lower_get_next);
7553 
7554 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7555 						struct list_head **iter)
7556 {
7557 	struct netdev_adjacent *lower;
7558 
7559 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7560 
7561 	if (&lower->list == &dev->adj_list.lower)
7562 		return NULL;
7563 
7564 	*iter = &lower->list;
7565 
7566 	return lower->dev;
7567 }
7568 
7569 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7570 						  struct list_head **iter,
7571 						  bool *ignore)
7572 {
7573 	struct netdev_adjacent *lower;
7574 
7575 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7576 
7577 	if (&lower->list == &dev->adj_list.lower)
7578 		return NULL;
7579 
7580 	*iter = &lower->list;
7581 	*ignore = lower->ignore;
7582 
7583 	return lower->dev;
7584 }
7585 
7586 int netdev_walk_all_lower_dev(struct net_device *dev,
7587 			      int (*fn)(struct net_device *dev,
7588 					struct netdev_nested_priv *priv),
7589 			      struct netdev_nested_priv *priv)
7590 {
7591 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7592 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7593 	int ret, cur = 0;
7594 
7595 	now = dev;
7596 	iter = &dev->adj_list.lower;
7597 
7598 	while (1) {
7599 		if (now != dev) {
7600 			ret = fn(now, priv);
7601 			if (ret)
7602 				return ret;
7603 		}
7604 
7605 		next = NULL;
7606 		while (1) {
7607 			ldev = netdev_next_lower_dev(now, &iter);
7608 			if (!ldev)
7609 				break;
7610 
7611 			next = ldev;
7612 			niter = &ldev->adj_list.lower;
7613 			dev_stack[cur] = now;
7614 			iter_stack[cur++] = iter;
7615 			break;
7616 		}
7617 
7618 		if (!next) {
7619 			if (!cur)
7620 				return 0;
7621 			next = dev_stack[--cur];
7622 			niter = iter_stack[cur];
7623 		}
7624 
7625 		now = next;
7626 		iter = niter;
7627 	}
7628 
7629 	return 0;
7630 }
7631 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7632 
7633 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7634 				       int (*fn)(struct net_device *dev,
7635 					 struct netdev_nested_priv *priv),
7636 				       struct netdev_nested_priv *priv)
7637 {
7638 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7639 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7640 	int ret, cur = 0;
7641 	bool ignore;
7642 
7643 	now = dev;
7644 	iter = &dev->adj_list.lower;
7645 
7646 	while (1) {
7647 		if (now != dev) {
7648 			ret = fn(now, priv);
7649 			if (ret)
7650 				return ret;
7651 		}
7652 
7653 		next = NULL;
7654 		while (1) {
7655 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7656 			if (!ldev)
7657 				break;
7658 			if (ignore)
7659 				continue;
7660 
7661 			next = ldev;
7662 			niter = &ldev->adj_list.lower;
7663 			dev_stack[cur] = now;
7664 			iter_stack[cur++] = iter;
7665 			break;
7666 		}
7667 
7668 		if (!next) {
7669 			if (!cur)
7670 				return 0;
7671 			next = dev_stack[--cur];
7672 			niter = iter_stack[cur];
7673 		}
7674 
7675 		now = next;
7676 		iter = niter;
7677 	}
7678 
7679 	return 0;
7680 }
7681 
7682 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7683 					     struct list_head **iter)
7684 {
7685 	struct netdev_adjacent *lower;
7686 
7687 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7688 	if (&lower->list == &dev->adj_list.lower)
7689 		return NULL;
7690 
7691 	*iter = &lower->list;
7692 
7693 	return lower->dev;
7694 }
7695 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7696 
7697 static u8 __netdev_upper_depth(struct net_device *dev)
7698 {
7699 	struct net_device *udev;
7700 	struct list_head *iter;
7701 	u8 max_depth = 0;
7702 	bool ignore;
7703 
7704 	for (iter = &dev->adj_list.upper,
7705 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7706 	     udev;
7707 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7708 		if (ignore)
7709 			continue;
7710 		if (max_depth < udev->upper_level)
7711 			max_depth = udev->upper_level;
7712 	}
7713 
7714 	return max_depth;
7715 }
7716 
7717 static u8 __netdev_lower_depth(struct net_device *dev)
7718 {
7719 	struct net_device *ldev;
7720 	struct list_head *iter;
7721 	u8 max_depth = 0;
7722 	bool ignore;
7723 
7724 	for (iter = &dev->adj_list.lower,
7725 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7726 	     ldev;
7727 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7728 		if (ignore)
7729 			continue;
7730 		if (max_depth < ldev->lower_level)
7731 			max_depth = ldev->lower_level;
7732 	}
7733 
7734 	return max_depth;
7735 }
7736 
7737 static int __netdev_update_upper_level(struct net_device *dev,
7738 				       struct netdev_nested_priv *__unused)
7739 {
7740 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7741 	return 0;
7742 }
7743 
7744 static int __netdev_update_lower_level(struct net_device *dev,
7745 				       struct netdev_nested_priv *priv)
7746 {
7747 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7748 
7749 #ifdef CONFIG_LOCKDEP
7750 	if (!priv)
7751 		return 0;
7752 
7753 	if (priv->flags & NESTED_SYNC_IMM)
7754 		dev->nested_level = dev->lower_level - 1;
7755 	if (priv->flags & NESTED_SYNC_TODO)
7756 		net_unlink_todo(dev);
7757 #endif
7758 	return 0;
7759 }
7760 
7761 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7762 				  int (*fn)(struct net_device *dev,
7763 					    struct netdev_nested_priv *priv),
7764 				  struct netdev_nested_priv *priv)
7765 {
7766 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7767 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7768 	int ret, cur = 0;
7769 
7770 	now = dev;
7771 	iter = &dev->adj_list.lower;
7772 
7773 	while (1) {
7774 		if (now != dev) {
7775 			ret = fn(now, priv);
7776 			if (ret)
7777 				return ret;
7778 		}
7779 
7780 		next = NULL;
7781 		while (1) {
7782 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7783 			if (!ldev)
7784 				break;
7785 
7786 			next = ldev;
7787 			niter = &ldev->adj_list.lower;
7788 			dev_stack[cur] = now;
7789 			iter_stack[cur++] = iter;
7790 			break;
7791 		}
7792 
7793 		if (!next) {
7794 			if (!cur)
7795 				return 0;
7796 			next = dev_stack[--cur];
7797 			niter = iter_stack[cur];
7798 		}
7799 
7800 		now = next;
7801 		iter = niter;
7802 	}
7803 
7804 	return 0;
7805 }
7806 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7807 
7808 /**
7809  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7810  *				       lower neighbour list, RCU
7811  *				       variant
7812  * @dev: device
7813  *
7814  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7815  * list. The caller must hold RCU read lock.
7816  */
7817 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7818 {
7819 	struct netdev_adjacent *lower;
7820 
7821 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7822 			struct netdev_adjacent, list);
7823 	if (lower)
7824 		return lower->private;
7825 	return NULL;
7826 }
7827 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7828 
7829 /**
7830  * netdev_master_upper_dev_get_rcu - Get master upper device
7831  * @dev: device
7832  *
7833  * Find a master upper device and return pointer to it or NULL in case
7834  * it's not there. The caller must hold the RCU read lock.
7835  */
7836 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7837 {
7838 	struct netdev_adjacent *upper;
7839 
7840 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7841 				       struct netdev_adjacent, list);
7842 	if (upper && likely(upper->master))
7843 		return upper->dev;
7844 	return NULL;
7845 }
7846 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7847 
7848 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7849 			      struct net_device *adj_dev,
7850 			      struct list_head *dev_list)
7851 {
7852 	char linkname[IFNAMSIZ+7];
7853 
7854 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7855 		"upper_%s" : "lower_%s", adj_dev->name);
7856 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7857 				 linkname);
7858 }
7859 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7860 			       char *name,
7861 			       struct list_head *dev_list)
7862 {
7863 	char linkname[IFNAMSIZ+7];
7864 
7865 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7866 		"upper_%s" : "lower_%s", name);
7867 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7868 }
7869 
7870 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7871 						 struct net_device *adj_dev,
7872 						 struct list_head *dev_list)
7873 {
7874 	return (dev_list == &dev->adj_list.upper ||
7875 		dev_list == &dev->adj_list.lower) &&
7876 		net_eq(dev_net(dev), dev_net(adj_dev));
7877 }
7878 
7879 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7880 					struct net_device *adj_dev,
7881 					struct list_head *dev_list,
7882 					void *private, bool master)
7883 {
7884 	struct netdev_adjacent *adj;
7885 	int ret;
7886 
7887 	adj = __netdev_find_adj(adj_dev, dev_list);
7888 
7889 	if (adj) {
7890 		adj->ref_nr += 1;
7891 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7892 			 dev->name, adj_dev->name, adj->ref_nr);
7893 
7894 		return 0;
7895 	}
7896 
7897 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7898 	if (!adj)
7899 		return -ENOMEM;
7900 
7901 	adj->dev = adj_dev;
7902 	adj->master = master;
7903 	adj->ref_nr = 1;
7904 	adj->private = private;
7905 	adj->ignore = false;
7906 	dev_hold(adj_dev);
7907 
7908 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7909 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7910 
7911 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7912 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7913 		if (ret)
7914 			goto free_adj;
7915 	}
7916 
7917 	/* Ensure that master link is always the first item in list. */
7918 	if (master) {
7919 		ret = sysfs_create_link(&(dev->dev.kobj),
7920 					&(adj_dev->dev.kobj), "master");
7921 		if (ret)
7922 			goto remove_symlinks;
7923 
7924 		list_add_rcu(&adj->list, dev_list);
7925 	} else {
7926 		list_add_tail_rcu(&adj->list, dev_list);
7927 	}
7928 
7929 	return 0;
7930 
7931 remove_symlinks:
7932 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7933 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7934 free_adj:
7935 	kfree(adj);
7936 	dev_put(adj_dev);
7937 
7938 	return ret;
7939 }
7940 
7941 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7942 					 struct net_device *adj_dev,
7943 					 u16 ref_nr,
7944 					 struct list_head *dev_list)
7945 {
7946 	struct netdev_adjacent *adj;
7947 
7948 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7949 		 dev->name, adj_dev->name, ref_nr);
7950 
7951 	adj = __netdev_find_adj(adj_dev, dev_list);
7952 
7953 	if (!adj) {
7954 		pr_err("Adjacency does not exist for device %s from %s\n",
7955 		       dev->name, adj_dev->name);
7956 		WARN_ON(1);
7957 		return;
7958 	}
7959 
7960 	if (adj->ref_nr > ref_nr) {
7961 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7962 			 dev->name, adj_dev->name, ref_nr,
7963 			 adj->ref_nr - ref_nr);
7964 		adj->ref_nr -= ref_nr;
7965 		return;
7966 	}
7967 
7968 	if (adj->master)
7969 		sysfs_remove_link(&(dev->dev.kobj), "master");
7970 
7971 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7972 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7973 
7974 	list_del_rcu(&adj->list);
7975 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7976 		 adj_dev->name, dev->name, adj_dev->name);
7977 	dev_put(adj_dev);
7978 	kfree_rcu(adj, rcu);
7979 }
7980 
7981 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7982 					    struct net_device *upper_dev,
7983 					    struct list_head *up_list,
7984 					    struct list_head *down_list,
7985 					    void *private, bool master)
7986 {
7987 	int ret;
7988 
7989 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7990 					   private, master);
7991 	if (ret)
7992 		return ret;
7993 
7994 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7995 					   private, false);
7996 	if (ret) {
7997 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7998 		return ret;
7999 	}
8000 
8001 	return 0;
8002 }
8003 
8004 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8005 					       struct net_device *upper_dev,
8006 					       u16 ref_nr,
8007 					       struct list_head *up_list,
8008 					       struct list_head *down_list)
8009 {
8010 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8011 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8012 }
8013 
8014 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8015 						struct net_device *upper_dev,
8016 						void *private, bool master)
8017 {
8018 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8019 						&dev->adj_list.upper,
8020 						&upper_dev->adj_list.lower,
8021 						private, master);
8022 }
8023 
8024 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8025 						   struct net_device *upper_dev)
8026 {
8027 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8028 					   &dev->adj_list.upper,
8029 					   &upper_dev->adj_list.lower);
8030 }
8031 
8032 static int __netdev_upper_dev_link(struct net_device *dev,
8033 				   struct net_device *upper_dev, bool master,
8034 				   void *upper_priv, void *upper_info,
8035 				   struct netdev_nested_priv *priv,
8036 				   struct netlink_ext_ack *extack)
8037 {
8038 	struct netdev_notifier_changeupper_info changeupper_info = {
8039 		.info = {
8040 			.dev = dev,
8041 			.extack = extack,
8042 		},
8043 		.upper_dev = upper_dev,
8044 		.master = master,
8045 		.linking = true,
8046 		.upper_info = upper_info,
8047 	};
8048 	struct net_device *master_dev;
8049 	int ret = 0;
8050 
8051 	ASSERT_RTNL();
8052 
8053 	if (dev == upper_dev)
8054 		return -EBUSY;
8055 
8056 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8057 	if (__netdev_has_upper_dev(upper_dev, dev))
8058 		return -EBUSY;
8059 
8060 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8061 		return -EMLINK;
8062 
8063 	if (!master) {
8064 		if (__netdev_has_upper_dev(dev, upper_dev))
8065 			return -EEXIST;
8066 	} else {
8067 		master_dev = __netdev_master_upper_dev_get(dev);
8068 		if (master_dev)
8069 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8070 	}
8071 
8072 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8073 					    &changeupper_info.info);
8074 	ret = notifier_to_errno(ret);
8075 	if (ret)
8076 		return ret;
8077 
8078 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8079 						   master);
8080 	if (ret)
8081 		return ret;
8082 
8083 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8084 					    &changeupper_info.info);
8085 	ret = notifier_to_errno(ret);
8086 	if (ret)
8087 		goto rollback;
8088 
8089 	__netdev_update_upper_level(dev, NULL);
8090 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8091 
8092 	__netdev_update_lower_level(upper_dev, priv);
8093 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8094 				    priv);
8095 
8096 	return 0;
8097 
8098 rollback:
8099 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8100 
8101 	return ret;
8102 }
8103 
8104 /**
8105  * netdev_upper_dev_link - Add a link to the upper device
8106  * @dev: device
8107  * @upper_dev: new upper device
8108  * @extack: netlink extended ack
8109  *
8110  * Adds a link to device which is upper to this one. The caller must hold
8111  * the RTNL lock. On a failure a negative errno code is returned.
8112  * On success the reference counts are adjusted and the function
8113  * returns zero.
8114  */
8115 int netdev_upper_dev_link(struct net_device *dev,
8116 			  struct net_device *upper_dev,
8117 			  struct netlink_ext_ack *extack)
8118 {
8119 	struct netdev_nested_priv priv = {
8120 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8121 		.data = NULL,
8122 	};
8123 
8124 	return __netdev_upper_dev_link(dev, upper_dev, false,
8125 				       NULL, NULL, &priv, extack);
8126 }
8127 EXPORT_SYMBOL(netdev_upper_dev_link);
8128 
8129 /**
8130  * netdev_master_upper_dev_link - Add a master link to the upper device
8131  * @dev: device
8132  * @upper_dev: new upper device
8133  * @upper_priv: upper device private
8134  * @upper_info: upper info to be passed down via notifier
8135  * @extack: netlink extended ack
8136  *
8137  * Adds a link to device which is upper to this one. In this case, only
8138  * one master upper device can be linked, although other non-master devices
8139  * might be linked as well. The caller must hold the RTNL lock.
8140  * On a failure a negative errno code is returned. On success the reference
8141  * counts are adjusted and the function returns zero.
8142  */
8143 int netdev_master_upper_dev_link(struct net_device *dev,
8144 				 struct net_device *upper_dev,
8145 				 void *upper_priv, void *upper_info,
8146 				 struct netlink_ext_ack *extack)
8147 {
8148 	struct netdev_nested_priv priv = {
8149 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8150 		.data = NULL,
8151 	};
8152 
8153 	return __netdev_upper_dev_link(dev, upper_dev, true,
8154 				       upper_priv, upper_info, &priv, extack);
8155 }
8156 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8157 
8158 static void __netdev_upper_dev_unlink(struct net_device *dev,
8159 				      struct net_device *upper_dev,
8160 				      struct netdev_nested_priv *priv)
8161 {
8162 	struct netdev_notifier_changeupper_info changeupper_info = {
8163 		.info = {
8164 			.dev = dev,
8165 		},
8166 		.upper_dev = upper_dev,
8167 		.linking = false,
8168 	};
8169 
8170 	ASSERT_RTNL();
8171 
8172 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8173 
8174 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8175 				      &changeupper_info.info);
8176 
8177 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8178 
8179 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8180 				      &changeupper_info.info);
8181 
8182 	__netdev_update_upper_level(dev, NULL);
8183 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8184 
8185 	__netdev_update_lower_level(upper_dev, priv);
8186 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8187 				    priv);
8188 }
8189 
8190 /**
8191  * netdev_upper_dev_unlink - Removes a link to upper device
8192  * @dev: device
8193  * @upper_dev: new upper device
8194  *
8195  * Removes a link to device which is upper to this one. The caller must hold
8196  * the RTNL lock.
8197  */
8198 void netdev_upper_dev_unlink(struct net_device *dev,
8199 			     struct net_device *upper_dev)
8200 {
8201 	struct netdev_nested_priv priv = {
8202 		.flags = NESTED_SYNC_TODO,
8203 		.data = NULL,
8204 	};
8205 
8206 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8207 }
8208 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8209 
8210 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8211 				      struct net_device *lower_dev,
8212 				      bool val)
8213 {
8214 	struct netdev_adjacent *adj;
8215 
8216 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8217 	if (adj)
8218 		adj->ignore = val;
8219 
8220 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8221 	if (adj)
8222 		adj->ignore = val;
8223 }
8224 
8225 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8226 					struct net_device *lower_dev)
8227 {
8228 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8229 }
8230 
8231 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8232 				       struct net_device *lower_dev)
8233 {
8234 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8235 }
8236 
8237 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8238 				   struct net_device *new_dev,
8239 				   struct net_device *dev,
8240 				   struct netlink_ext_ack *extack)
8241 {
8242 	struct netdev_nested_priv priv = {
8243 		.flags = 0,
8244 		.data = NULL,
8245 	};
8246 	int err;
8247 
8248 	if (!new_dev)
8249 		return 0;
8250 
8251 	if (old_dev && new_dev != old_dev)
8252 		netdev_adjacent_dev_disable(dev, old_dev);
8253 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8254 				      extack);
8255 	if (err) {
8256 		if (old_dev && new_dev != old_dev)
8257 			netdev_adjacent_dev_enable(dev, old_dev);
8258 		return err;
8259 	}
8260 
8261 	return 0;
8262 }
8263 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8264 
8265 void netdev_adjacent_change_commit(struct net_device *old_dev,
8266 				   struct net_device *new_dev,
8267 				   struct net_device *dev)
8268 {
8269 	struct netdev_nested_priv priv = {
8270 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8271 		.data = NULL,
8272 	};
8273 
8274 	if (!new_dev || !old_dev)
8275 		return;
8276 
8277 	if (new_dev == old_dev)
8278 		return;
8279 
8280 	netdev_adjacent_dev_enable(dev, old_dev);
8281 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8282 }
8283 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8284 
8285 void netdev_adjacent_change_abort(struct net_device *old_dev,
8286 				  struct net_device *new_dev,
8287 				  struct net_device *dev)
8288 {
8289 	struct netdev_nested_priv priv = {
8290 		.flags = 0,
8291 		.data = NULL,
8292 	};
8293 
8294 	if (!new_dev)
8295 		return;
8296 
8297 	if (old_dev && new_dev != old_dev)
8298 		netdev_adjacent_dev_enable(dev, old_dev);
8299 
8300 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8301 }
8302 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8303 
8304 /**
8305  * netdev_bonding_info_change - Dispatch event about slave change
8306  * @dev: device
8307  * @bonding_info: info to dispatch
8308  *
8309  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8310  * The caller must hold the RTNL lock.
8311  */
8312 void netdev_bonding_info_change(struct net_device *dev,
8313 				struct netdev_bonding_info *bonding_info)
8314 {
8315 	struct netdev_notifier_bonding_info info = {
8316 		.info.dev = dev,
8317 	};
8318 
8319 	memcpy(&info.bonding_info, bonding_info,
8320 	       sizeof(struct netdev_bonding_info));
8321 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8322 				      &info.info);
8323 }
8324 EXPORT_SYMBOL(netdev_bonding_info_change);
8325 
8326 /**
8327  * netdev_get_xmit_slave - Get the xmit slave of master device
8328  * @dev: device
8329  * @skb: The packet
8330  * @all_slaves: assume all the slaves are active
8331  *
8332  * The reference counters are not incremented so the caller must be
8333  * careful with locks. The caller must hold RCU lock.
8334  * %NULL is returned if no slave is found.
8335  */
8336 
8337 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8338 					 struct sk_buff *skb,
8339 					 bool all_slaves)
8340 {
8341 	const struct net_device_ops *ops = dev->netdev_ops;
8342 
8343 	if (!ops->ndo_get_xmit_slave)
8344 		return NULL;
8345 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8346 }
8347 EXPORT_SYMBOL(netdev_get_xmit_slave);
8348 
8349 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8350 						  struct sock *sk)
8351 {
8352 	const struct net_device_ops *ops = dev->netdev_ops;
8353 
8354 	if (!ops->ndo_sk_get_lower_dev)
8355 		return NULL;
8356 	return ops->ndo_sk_get_lower_dev(dev, sk);
8357 }
8358 
8359 /**
8360  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8361  * @dev: device
8362  * @sk: the socket
8363  *
8364  * %NULL is returned if no lower device is found.
8365  */
8366 
8367 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8368 					    struct sock *sk)
8369 {
8370 	struct net_device *lower;
8371 
8372 	lower = netdev_sk_get_lower_dev(dev, sk);
8373 	while (lower) {
8374 		dev = lower;
8375 		lower = netdev_sk_get_lower_dev(dev, sk);
8376 	}
8377 
8378 	return dev;
8379 }
8380 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8381 
8382 static void netdev_adjacent_add_links(struct net_device *dev)
8383 {
8384 	struct netdev_adjacent *iter;
8385 
8386 	struct net *net = dev_net(dev);
8387 
8388 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8389 		if (!net_eq(net, dev_net(iter->dev)))
8390 			continue;
8391 		netdev_adjacent_sysfs_add(iter->dev, dev,
8392 					  &iter->dev->adj_list.lower);
8393 		netdev_adjacent_sysfs_add(dev, iter->dev,
8394 					  &dev->adj_list.upper);
8395 	}
8396 
8397 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8398 		if (!net_eq(net, dev_net(iter->dev)))
8399 			continue;
8400 		netdev_adjacent_sysfs_add(iter->dev, dev,
8401 					  &iter->dev->adj_list.upper);
8402 		netdev_adjacent_sysfs_add(dev, iter->dev,
8403 					  &dev->adj_list.lower);
8404 	}
8405 }
8406 
8407 static void netdev_adjacent_del_links(struct net_device *dev)
8408 {
8409 	struct netdev_adjacent *iter;
8410 
8411 	struct net *net = dev_net(dev);
8412 
8413 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8414 		if (!net_eq(net, dev_net(iter->dev)))
8415 			continue;
8416 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8417 					  &iter->dev->adj_list.lower);
8418 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8419 					  &dev->adj_list.upper);
8420 	}
8421 
8422 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8423 		if (!net_eq(net, dev_net(iter->dev)))
8424 			continue;
8425 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8426 					  &iter->dev->adj_list.upper);
8427 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8428 					  &dev->adj_list.lower);
8429 	}
8430 }
8431 
8432 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8433 {
8434 	struct netdev_adjacent *iter;
8435 
8436 	struct net *net = dev_net(dev);
8437 
8438 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8439 		if (!net_eq(net, dev_net(iter->dev)))
8440 			continue;
8441 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8442 					  &iter->dev->adj_list.lower);
8443 		netdev_adjacent_sysfs_add(iter->dev, dev,
8444 					  &iter->dev->adj_list.lower);
8445 	}
8446 
8447 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8448 		if (!net_eq(net, dev_net(iter->dev)))
8449 			continue;
8450 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8451 					  &iter->dev->adj_list.upper);
8452 		netdev_adjacent_sysfs_add(iter->dev, dev,
8453 					  &iter->dev->adj_list.upper);
8454 	}
8455 }
8456 
8457 void *netdev_lower_dev_get_private(struct net_device *dev,
8458 				   struct net_device *lower_dev)
8459 {
8460 	struct netdev_adjacent *lower;
8461 
8462 	if (!lower_dev)
8463 		return NULL;
8464 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8465 	if (!lower)
8466 		return NULL;
8467 
8468 	return lower->private;
8469 }
8470 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8471 
8472 
8473 /**
8474  * netdev_lower_state_changed - Dispatch event about lower device state change
8475  * @lower_dev: device
8476  * @lower_state_info: state to dispatch
8477  *
8478  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8479  * The caller must hold the RTNL lock.
8480  */
8481 void netdev_lower_state_changed(struct net_device *lower_dev,
8482 				void *lower_state_info)
8483 {
8484 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8485 		.info.dev = lower_dev,
8486 	};
8487 
8488 	ASSERT_RTNL();
8489 	changelowerstate_info.lower_state_info = lower_state_info;
8490 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8491 				      &changelowerstate_info.info);
8492 }
8493 EXPORT_SYMBOL(netdev_lower_state_changed);
8494 
8495 static void dev_change_rx_flags(struct net_device *dev, int flags)
8496 {
8497 	const struct net_device_ops *ops = dev->netdev_ops;
8498 
8499 	if (ops->ndo_change_rx_flags)
8500 		ops->ndo_change_rx_flags(dev, flags);
8501 }
8502 
8503 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8504 {
8505 	unsigned int old_flags = dev->flags;
8506 	kuid_t uid;
8507 	kgid_t gid;
8508 
8509 	ASSERT_RTNL();
8510 
8511 	dev->flags |= IFF_PROMISC;
8512 	dev->promiscuity += inc;
8513 	if (dev->promiscuity == 0) {
8514 		/*
8515 		 * Avoid overflow.
8516 		 * If inc causes overflow, untouch promisc and return error.
8517 		 */
8518 		if (inc < 0)
8519 			dev->flags &= ~IFF_PROMISC;
8520 		else {
8521 			dev->promiscuity -= inc;
8522 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8523 				dev->name);
8524 			return -EOVERFLOW;
8525 		}
8526 	}
8527 	if (dev->flags != old_flags) {
8528 		pr_info("device %s %s promiscuous mode\n",
8529 			dev->name,
8530 			dev->flags & IFF_PROMISC ? "entered" : "left");
8531 		if (audit_enabled) {
8532 			current_uid_gid(&uid, &gid);
8533 			audit_log(audit_context(), GFP_ATOMIC,
8534 				  AUDIT_ANOM_PROMISCUOUS,
8535 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8536 				  dev->name, (dev->flags & IFF_PROMISC),
8537 				  (old_flags & IFF_PROMISC),
8538 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8539 				  from_kuid(&init_user_ns, uid),
8540 				  from_kgid(&init_user_ns, gid),
8541 				  audit_get_sessionid(current));
8542 		}
8543 
8544 		dev_change_rx_flags(dev, IFF_PROMISC);
8545 	}
8546 	if (notify)
8547 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8548 	return 0;
8549 }
8550 
8551 /**
8552  *	dev_set_promiscuity	- update promiscuity count on a device
8553  *	@dev: device
8554  *	@inc: modifier
8555  *
8556  *	Add or remove promiscuity from a device. While the count in the device
8557  *	remains above zero the interface remains promiscuous. Once it hits zero
8558  *	the device reverts back to normal filtering operation. A negative inc
8559  *	value is used to drop promiscuity on the device.
8560  *	Return 0 if successful or a negative errno code on error.
8561  */
8562 int dev_set_promiscuity(struct net_device *dev, int inc)
8563 {
8564 	unsigned int old_flags = dev->flags;
8565 	int err;
8566 
8567 	err = __dev_set_promiscuity(dev, inc, true);
8568 	if (err < 0)
8569 		return err;
8570 	if (dev->flags != old_flags)
8571 		dev_set_rx_mode(dev);
8572 	return err;
8573 }
8574 EXPORT_SYMBOL(dev_set_promiscuity);
8575 
8576 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8577 {
8578 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8579 
8580 	ASSERT_RTNL();
8581 
8582 	dev->flags |= IFF_ALLMULTI;
8583 	dev->allmulti += inc;
8584 	if (dev->allmulti == 0) {
8585 		/*
8586 		 * Avoid overflow.
8587 		 * If inc causes overflow, untouch allmulti and return error.
8588 		 */
8589 		if (inc < 0)
8590 			dev->flags &= ~IFF_ALLMULTI;
8591 		else {
8592 			dev->allmulti -= inc;
8593 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8594 				dev->name);
8595 			return -EOVERFLOW;
8596 		}
8597 	}
8598 	if (dev->flags ^ old_flags) {
8599 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8600 		dev_set_rx_mode(dev);
8601 		if (notify)
8602 			__dev_notify_flags(dev, old_flags,
8603 					   dev->gflags ^ old_gflags);
8604 	}
8605 	return 0;
8606 }
8607 
8608 /**
8609  *	dev_set_allmulti	- update allmulti count on a device
8610  *	@dev: device
8611  *	@inc: modifier
8612  *
8613  *	Add or remove reception of all multicast frames to a device. While the
8614  *	count in the device remains above zero the interface remains listening
8615  *	to all interfaces. Once it hits zero the device reverts back to normal
8616  *	filtering operation. A negative @inc value is used to drop the counter
8617  *	when releasing a resource needing all multicasts.
8618  *	Return 0 if successful or a negative errno code on error.
8619  */
8620 
8621 int dev_set_allmulti(struct net_device *dev, int inc)
8622 {
8623 	return __dev_set_allmulti(dev, inc, true);
8624 }
8625 EXPORT_SYMBOL(dev_set_allmulti);
8626 
8627 /*
8628  *	Upload unicast and multicast address lists to device and
8629  *	configure RX filtering. When the device doesn't support unicast
8630  *	filtering it is put in promiscuous mode while unicast addresses
8631  *	are present.
8632  */
8633 void __dev_set_rx_mode(struct net_device *dev)
8634 {
8635 	const struct net_device_ops *ops = dev->netdev_ops;
8636 
8637 	/* dev_open will call this function so the list will stay sane. */
8638 	if (!(dev->flags&IFF_UP))
8639 		return;
8640 
8641 	if (!netif_device_present(dev))
8642 		return;
8643 
8644 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8645 		/* Unicast addresses changes may only happen under the rtnl,
8646 		 * therefore calling __dev_set_promiscuity here is safe.
8647 		 */
8648 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8649 			__dev_set_promiscuity(dev, 1, false);
8650 			dev->uc_promisc = true;
8651 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8652 			__dev_set_promiscuity(dev, -1, false);
8653 			dev->uc_promisc = false;
8654 		}
8655 	}
8656 
8657 	if (ops->ndo_set_rx_mode)
8658 		ops->ndo_set_rx_mode(dev);
8659 }
8660 
8661 void dev_set_rx_mode(struct net_device *dev)
8662 {
8663 	netif_addr_lock_bh(dev);
8664 	__dev_set_rx_mode(dev);
8665 	netif_addr_unlock_bh(dev);
8666 }
8667 
8668 /**
8669  *	dev_get_flags - get flags reported to userspace
8670  *	@dev: device
8671  *
8672  *	Get the combination of flag bits exported through APIs to userspace.
8673  */
8674 unsigned int dev_get_flags(const struct net_device *dev)
8675 {
8676 	unsigned int flags;
8677 
8678 	flags = (dev->flags & ~(IFF_PROMISC |
8679 				IFF_ALLMULTI |
8680 				IFF_RUNNING |
8681 				IFF_LOWER_UP |
8682 				IFF_DORMANT)) |
8683 		(dev->gflags & (IFF_PROMISC |
8684 				IFF_ALLMULTI));
8685 
8686 	if (netif_running(dev)) {
8687 		if (netif_oper_up(dev))
8688 			flags |= IFF_RUNNING;
8689 		if (netif_carrier_ok(dev))
8690 			flags |= IFF_LOWER_UP;
8691 		if (netif_dormant(dev))
8692 			flags |= IFF_DORMANT;
8693 	}
8694 
8695 	return flags;
8696 }
8697 EXPORT_SYMBOL(dev_get_flags);
8698 
8699 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8700 		       struct netlink_ext_ack *extack)
8701 {
8702 	unsigned int old_flags = dev->flags;
8703 	int ret;
8704 
8705 	ASSERT_RTNL();
8706 
8707 	/*
8708 	 *	Set the flags on our device.
8709 	 */
8710 
8711 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8712 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8713 			       IFF_AUTOMEDIA)) |
8714 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8715 				    IFF_ALLMULTI));
8716 
8717 	/*
8718 	 *	Load in the correct multicast list now the flags have changed.
8719 	 */
8720 
8721 	if ((old_flags ^ flags) & IFF_MULTICAST)
8722 		dev_change_rx_flags(dev, IFF_MULTICAST);
8723 
8724 	dev_set_rx_mode(dev);
8725 
8726 	/*
8727 	 *	Have we downed the interface. We handle IFF_UP ourselves
8728 	 *	according to user attempts to set it, rather than blindly
8729 	 *	setting it.
8730 	 */
8731 
8732 	ret = 0;
8733 	if ((old_flags ^ flags) & IFF_UP) {
8734 		if (old_flags & IFF_UP)
8735 			__dev_close(dev);
8736 		else
8737 			ret = __dev_open(dev, extack);
8738 	}
8739 
8740 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8741 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8742 		unsigned int old_flags = dev->flags;
8743 
8744 		dev->gflags ^= IFF_PROMISC;
8745 
8746 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8747 			if (dev->flags != old_flags)
8748 				dev_set_rx_mode(dev);
8749 	}
8750 
8751 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8752 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8753 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8754 	 */
8755 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8756 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8757 
8758 		dev->gflags ^= IFF_ALLMULTI;
8759 		__dev_set_allmulti(dev, inc, false);
8760 	}
8761 
8762 	return ret;
8763 }
8764 
8765 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8766 			unsigned int gchanges)
8767 {
8768 	unsigned int changes = dev->flags ^ old_flags;
8769 
8770 	if (gchanges)
8771 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8772 
8773 	if (changes & IFF_UP) {
8774 		if (dev->flags & IFF_UP)
8775 			call_netdevice_notifiers(NETDEV_UP, dev);
8776 		else
8777 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8778 	}
8779 
8780 	if (dev->flags & IFF_UP &&
8781 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8782 		struct netdev_notifier_change_info change_info = {
8783 			.info = {
8784 				.dev = dev,
8785 			},
8786 			.flags_changed = changes,
8787 		};
8788 
8789 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8790 	}
8791 }
8792 
8793 /**
8794  *	dev_change_flags - change device settings
8795  *	@dev: device
8796  *	@flags: device state flags
8797  *	@extack: netlink extended ack
8798  *
8799  *	Change settings on device based state flags. The flags are
8800  *	in the userspace exported format.
8801  */
8802 int dev_change_flags(struct net_device *dev, unsigned int flags,
8803 		     struct netlink_ext_ack *extack)
8804 {
8805 	int ret;
8806 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8807 
8808 	ret = __dev_change_flags(dev, flags, extack);
8809 	if (ret < 0)
8810 		return ret;
8811 
8812 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8813 	__dev_notify_flags(dev, old_flags, changes);
8814 	return ret;
8815 }
8816 EXPORT_SYMBOL(dev_change_flags);
8817 
8818 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8819 {
8820 	const struct net_device_ops *ops = dev->netdev_ops;
8821 
8822 	if (ops->ndo_change_mtu)
8823 		return ops->ndo_change_mtu(dev, new_mtu);
8824 
8825 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8826 	WRITE_ONCE(dev->mtu, new_mtu);
8827 	return 0;
8828 }
8829 EXPORT_SYMBOL(__dev_set_mtu);
8830 
8831 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8832 		     struct netlink_ext_ack *extack)
8833 {
8834 	/* MTU must be positive, and in range */
8835 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8836 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8837 		return -EINVAL;
8838 	}
8839 
8840 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8841 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8842 		return -EINVAL;
8843 	}
8844 	return 0;
8845 }
8846 
8847 /**
8848  *	dev_set_mtu_ext - Change maximum transfer unit
8849  *	@dev: device
8850  *	@new_mtu: new transfer unit
8851  *	@extack: netlink extended ack
8852  *
8853  *	Change the maximum transfer size of the network device.
8854  */
8855 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8856 		    struct netlink_ext_ack *extack)
8857 {
8858 	int err, orig_mtu;
8859 
8860 	if (new_mtu == dev->mtu)
8861 		return 0;
8862 
8863 	err = dev_validate_mtu(dev, new_mtu, extack);
8864 	if (err)
8865 		return err;
8866 
8867 	if (!netif_device_present(dev))
8868 		return -ENODEV;
8869 
8870 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8871 	err = notifier_to_errno(err);
8872 	if (err)
8873 		return err;
8874 
8875 	orig_mtu = dev->mtu;
8876 	err = __dev_set_mtu(dev, new_mtu);
8877 
8878 	if (!err) {
8879 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8880 						   orig_mtu);
8881 		err = notifier_to_errno(err);
8882 		if (err) {
8883 			/* setting mtu back and notifying everyone again,
8884 			 * so that they have a chance to revert changes.
8885 			 */
8886 			__dev_set_mtu(dev, orig_mtu);
8887 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8888 						     new_mtu);
8889 		}
8890 	}
8891 	return err;
8892 }
8893 
8894 int dev_set_mtu(struct net_device *dev, int new_mtu)
8895 {
8896 	struct netlink_ext_ack extack;
8897 	int err;
8898 
8899 	memset(&extack, 0, sizeof(extack));
8900 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8901 	if (err && extack._msg)
8902 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8903 	return err;
8904 }
8905 EXPORT_SYMBOL(dev_set_mtu);
8906 
8907 /**
8908  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8909  *	@dev: device
8910  *	@new_len: new tx queue length
8911  */
8912 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8913 {
8914 	unsigned int orig_len = dev->tx_queue_len;
8915 	int res;
8916 
8917 	if (new_len != (unsigned int)new_len)
8918 		return -ERANGE;
8919 
8920 	if (new_len != orig_len) {
8921 		dev->tx_queue_len = new_len;
8922 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8923 		res = notifier_to_errno(res);
8924 		if (res)
8925 			goto err_rollback;
8926 		res = dev_qdisc_change_tx_queue_len(dev);
8927 		if (res)
8928 			goto err_rollback;
8929 	}
8930 
8931 	return 0;
8932 
8933 err_rollback:
8934 	netdev_err(dev, "refused to change device tx_queue_len\n");
8935 	dev->tx_queue_len = orig_len;
8936 	return res;
8937 }
8938 
8939 /**
8940  *	dev_set_group - Change group this device belongs to
8941  *	@dev: device
8942  *	@new_group: group this device should belong to
8943  */
8944 void dev_set_group(struct net_device *dev, int new_group)
8945 {
8946 	dev->group = new_group;
8947 }
8948 EXPORT_SYMBOL(dev_set_group);
8949 
8950 /**
8951  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8952  *	@dev: device
8953  *	@addr: new address
8954  *	@extack: netlink extended ack
8955  */
8956 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8957 			      struct netlink_ext_ack *extack)
8958 {
8959 	struct netdev_notifier_pre_changeaddr_info info = {
8960 		.info.dev = dev,
8961 		.info.extack = extack,
8962 		.dev_addr = addr,
8963 	};
8964 	int rc;
8965 
8966 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8967 	return notifier_to_errno(rc);
8968 }
8969 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8970 
8971 /**
8972  *	dev_set_mac_address - Change Media Access Control Address
8973  *	@dev: device
8974  *	@sa: new address
8975  *	@extack: netlink extended ack
8976  *
8977  *	Change the hardware (MAC) address of the device
8978  */
8979 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8980 			struct netlink_ext_ack *extack)
8981 {
8982 	const struct net_device_ops *ops = dev->netdev_ops;
8983 	int err;
8984 
8985 	if (!ops->ndo_set_mac_address)
8986 		return -EOPNOTSUPP;
8987 	if (sa->sa_family != dev->type)
8988 		return -EINVAL;
8989 	if (!netif_device_present(dev))
8990 		return -ENODEV;
8991 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8992 	if (err)
8993 		return err;
8994 	err = ops->ndo_set_mac_address(dev, sa);
8995 	if (err)
8996 		return err;
8997 	dev->addr_assign_type = NET_ADDR_SET;
8998 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8999 	add_device_randomness(dev->dev_addr, dev->addr_len);
9000 	return 0;
9001 }
9002 EXPORT_SYMBOL(dev_set_mac_address);
9003 
9004 static DECLARE_RWSEM(dev_addr_sem);
9005 
9006 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9007 			     struct netlink_ext_ack *extack)
9008 {
9009 	int ret;
9010 
9011 	down_write(&dev_addr_sem);
9012 	ret = dev_set_mac_address(dev, sa, extack);
9013 	up_write(&dev_addr_sem);
9014 	return ret;
9015 }
9016 EXPORT_SYMBOL(dev_set_mac_address_user);
9017 
9018 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9019 {
9020 	size_t size = sizeof(sa->sa_data);
9021 	struct net_device *dev;
9022 	int ret = 0;
9023 
9024 	down_read(&dev_addr_sem);
9025 	rcu_read_lock();
9026 
9027 	dev = dev_get_by_name_rcu(net, dev_name);
9028 	if (!dev) {
9029 		ret = -ENODEV;
9030 		goto unlock;
9031 	}
9032 	if (!dev->addr_len)
9033 		memset(sa->sa_data, 0, size);
9034 	else
9035 		memcpy(sa->sa_data, dev->dev_addr,
9036 		       min_t(size_t, size, dev->addr_len));
9037 	sa->sa_family = dev->type;
9038 
9039 unlock:
9040 	rcu_read_unlock();
9041 	up_read(&dev_addr_sem);
9042 	return ret;
9043 }
9044 EXPORT_SYMBOL(dev_get_mac_address);
9045 
9046 /**
9047  *	dev_change_carrier - Change device carrier
9048  *	@dev: device
9049  *	@new_carrier: new value
9050  *
9051  *	Change device carrier
9052  */
9053 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9054 {
9055 	const struct net_device_ops *ops = dev->netdev_ops;
9056 
9057 	if (!ops->ndo_change_carrier)
9058 		return -EOPNOTSUPP;
9059 	if (!netif_device_present(dev))
9060 		return -ENODEV;
9061 	return ops->ndo_change_carrier(dev, new_carrier);
9062 }
9063 EXPORT_SYMBOL(dev_change_carrier);
9064 
9065 /**
9066  *	dev_get_phys_port_id - Get device physical port ID
9067  *	@dev: device
9068  *	@ppid: port ID
9069  *
9070  *	Get device physical port ID
9071  */
9072 int dev_get_phys_port_id(struct net_device *dev,
9073 			 struct netdev_phys_item_id *ppid)
9074 {
9075 	const struct net_device_ops *ops = dev->netdev_ops;
9076 
9077 	if (!ops->ndo_get_phys_port_id)
9078 		return -EOPNOTSUPP;
9079 	return ops->ndo_get_phys_port_id(dev, ppid);
9080 }
9081 EXPORT_SYMBOL(dev_get_phys_port_id);
9082 
9083 /**
9084  *	dev_get_phys_port_name - Get device physical port name
9085  *	@dev: device
9086  *	@name: port name
9087  *	@len: limit of bytes to copy to name
9088  *
9089  *	Get device physical port name
9090  */
9091 int dev_get_phys_port_name(struct net_device *dev,
9092 			   char *name, size_t len)
9093 {
9094 	const struct net_device_ops *ops = dev->netdev_ops;
9095 	int err;
9096 
9097 	if (ops->ndo_get_phys_port_name) {
9098 		err = ops->ndo_get_phys_port_name(dev, name, len);
9099 		if (err != -EOPNOTSUPP)
9100 			return err;
9101 	}
9102 	return devlink_compat_phys_port_name_get(dev, name, len);
9103 }
9104 EXPORT_SYMBOL(dev_get_phys_port_name);
9105 
9106 /**
9107  *	dev_get_port_parent_id - Get the device's port parent identifier
9108  *	@dev: network device
9109  *	@ppid: pointer to a storage for the port's parent identifier
9110  *	@recurse: allow/disallow recursion to lower devices
9111  *
9112  *	Get the devices's port parent identifier
9113  */
9114 int dev_get_port_parent_id(struct net_device *dev,
9115 			   struct netdev_phys_item_id *ppid,
9116 			   bool recurse)
9117 {
9118 	const struct net_device_ops *ops = dev->netdev_ops;
9119 	struct netdev_phys_item_id first = { };
9120 	struct net_device *lower_dev;
9121 	struct list_head *iter;
9122 	int err;
9123 
9124 	if (ops->ndo_get_port_parent_id) {
9125 		err = ops->ndo_get_port_parent_id(dev, ppid);
9126 		if (err != -EOPNOTSUPP)
9127 			return err;
9128 	}
9129 
9130 	err = devlink_compat_switch_id_get(dev, ppid);
9131 	if (!err || err != -EOPNOTSUPP)
9132 		return err;
9133 
9134 	if (!recurse)
9135 		return -EOPNOTSUPP;
9136 
9137 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9138 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9139 		if (err)
9140 			break;
9141 		if (!first.id_len)
9142 			first = *ppid;
9143 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9144 			return -EOPNOTSUPP;
9145 	}
9146 
9147 	return err;
9148 }
9149 EXPORT_SYMBOL(dev_get_port_parent_id);
9150 
9151 /**
9152  *	netdev_port_same_parent_id - Indicate if two network devices have
9153  *	the same port parent identifier
9154  *	@a: first network device
9155  *	@b: second network device
9156  */
9157 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9158 {
9159 	struct netdev_phys_item_id a_id = { };
9160 	struct netdev_phys_item_id b_id = { };
9161 
9162 	if (dev_get_port_parent_id(a, &a_id, true) ||
9163 	    dev_get_port_parent_id(b, &b_id, true))
9164 		return false;
9165 
9166 	return netdev_phys_item_id_same(&a_id, &b_id);
9167 }
9168 EXPORT_SYMBOL(netdev_port_same_parent_id);
9169 
9170 /**
9171  *	dev_change_proto_down - update protocol port state information
9172  *	@dev: device
9173  *	@proto_down: new value
9174  *
9175  *	This info can be used by switch drivers to set the phys state of the
9176  *	port.
9177  */
9178 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9179 {
9180 	const struct net_device_ops *ops = dev->netdev_ops;
9181 
9182 	if (!ops->ndo_change_proto_down)
9183 		return -EOPNOTSUPP;
9184 	if (!netif_device_present(dev))
9185 		return -ENODEV;
9186 	return ops->ndo_change_proto_down(dev, proto_down);
9187 }
9188 EXPORT_SYMBOL(dev_change_proto_down);
9189 
9190 /**
9191  *	dev_change_proto_down_generic - generic implementation for
9192  * 	ndo_change_proto_down that sets carrier according to
9193  * 	proto_down.
9194  *
9195  *	@dev: device
9196  *	@proto_down: new value
9197  */
9198 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9199 {
9200 	if (proto_down)
9201 		netif_carrier_off(dev);
9202 	else
9203 		netif_carrier_on(dev);
9204 	dev->proto_down = proto_down;
9205 	return 0;
9206 }
9207 EXPORT_SYMBOL(dev_change_proto_down_generic);
9208 
9209 /**
9210  *	dev_change_proto_down_reason - proto down reason
9211  *
9212  *	@dev: device
9213  *	@mask: proto down mask
9214  *	@value: proto down value
9215  */
9216 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9217 				  u32 value)
9218 {
9219 	int b;
9220 
9221 	if (!mask) {
9222 		dev->proto_down_reason = value;
9223 	} else {
9224 		for_each_set_bit(b, &mask, 32) {
9225 			if (value & (1 << b))
9226 				dev->proto_down_reason |= BIT(b);
9227 			else
9228 				dev->proto_down_reason &= ~BIT(b);
9229 		}
9230 	}
9231 }
9232 EXPORT_SYMBOL(dev_change_proto_down_reason);
9233 
9234 struct bpf_xdp_link {
9235 	struct bpf_link link;
9236 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9237 	int flags;
9238 };
9239 
9240 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9241 {
9242 	if (flags & XDP_FLAGS_HW_MODE)
9243 		return XDP_MODE_HW;
9244 	if (flags & XDP_FLAGS_DRV_MODE)
9245 		return XDP_MODE_DRV;
9246 	if (flags & XDP_FLAGS_SKB_MODE)
9247 		return XDP_MODE_SKB;
9248 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9249 }
9250 
9251 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9252 {
9253 	switch (mode) {
9254 	case XDP_MODE_SKB:
9255 		return generic_xdp_install;
9256 	case XDP_MODE_DRV:
9257 	case XDP_MODE_HW:
9258 		return dev->netdev_ops->ndo_bpf;
9259 	default:
9260 		return NULL;
9261 	}
9262 }
9263 
9264 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9265 					 enum bpf_xdp_mode mode)
9266 {
9267 	return dev->xdp_state[mode].link;
9268 }
9269 
9270 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9271 				     enum bpf_xdp_mode mode)
9272 {
9273 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9274 
9275 	if (link)
9276 		return link->link.prog;
9277 	return dev->xdp_state[mode].prog;
9278 }
9279 
9280 static u8 dev_xdp_prog_count(struct net_device *dev)
9281 {
9282 	u8 count = 0;
9283 	int i;
9284 
9285 	for (i = 0; i < __MAX_XDP_MODE; i++)
9286 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9287 			count++;
9288 	return count;
9289 }
9290 
9291 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9292 {
9293 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9294 
9295 	return prog ? prog->aux->id : 0;
9296 }
9297 
9298 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9299 			     struct bpf_xdp_link *link)
9300 {
9301 	dev->xdp_state[mode].link = link;
9302 	dev->xdp_state[mode].prog = NULL;
9303 }
9304 
9305 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9306 			     struct bpf_prog *prog)
9307 {
9308 	dev->xdp_state[mode].link = NULL;
9309 	dev->xdp_state[mode].prog = prog;
9310 }
9311 
9312 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9313 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9314 			   u32 flags, struct bpf_prog *prog)
9315 {
9316 	struct netdev_bpf xdp;
9317 	int err;
9318 
9319 	memset(&xdp, 0, sizeof(xdp));
9320 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9321 	xdp.extack = extack;
9322 	xdp.flags = flags;
9323 	xdp.prog = prog;
9324 
9325 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9326 	 * "moved" into driver), so they don't increment it on their own, but
9327 	 * they do decrement refcnt when program is detached or replaced.
9328 	 * Given net_device also owns link/prog, we need to bump refcnt here
9329 	 * to prevent drivers from underflowing it.
9330 	 */
9331 	if (prog)
9332 		bpf_prog_inc(prog);
9333 	err = bpf_op(dev, &xdp);
9334 	if (err) {
9335 		if (prog)
9336 			bpf_prog_put(prog);
9337 		return err;
9338 	}
9339 
9340 	if (mode != XDP_MODE_HW)
9341 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9342 
9343 	return 0;
9344 }
9345 
9346 static void dev_xdp_uninstall(struct net_device *dev)
9347 {
9348 	struct bpf_xdp_link *link;
9349 	struct bpf_prog *prog;
9350 	enum bpf_xdp_mode mode;
9351 	bpf_op_t bpf_op;
9352 
9353 	ASSERT_RTNL();
9354 
9355 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9356 		prog = dev_xdp_prog(dev, mode);
9357 		if (!prog)
9358 			continue;
9359 
9360 		bpf_op = dev_xdp_bpf_op(dev, mode);
9361 		if (!bpf_op)
9362 			continue;
9363 
9364 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9365 
9366 		/* auto-detach link from net device */
9367 		link = dev_xdp_link(dev, mode);
9368 		if (link)
9369 			link->dev = NULL;
9370 		else
9371 			bpf_prog_put(prog);
9372 
9373 		dev_xdp_set_link(dev, mode, NULL);
9374 	}
9375 }
9376 
9377 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9378 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9379 			  struct bpf_prog *old_prog, u32 flags)
9380 {
9381 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9382 	struct bpf_prog *cur_prog;
9383 	enum bpf_xdp_mode mode;
9384 	bpf_op_t bpf_op;
9385 	int err;
9386 
9387 	ASSERT_RTNL();
9388 
9389 	/* either link or prog attachment, never both */
9390 	if (link && (new_prog || old_prog))
9391 		return -EINVAL;
9392 	/* link supports only XDP mode flags */
9393 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9394 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9395 		return -EINVAL;
9396 	}
9397 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9398 	if (num_modes > 1) {
9399 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9400 		return -EINVAL;
9401 	}
9402 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9403 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9404 		NL_SET_ERR_MSG(extack,
9405 			       "More than one program loaded, unset mode is ambiguous");
9406 		return -EINVAL;
9407 	}
9408 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9409 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9410 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9411 		return -EINVAL;
9412 	}
9413 
9414 	mode = dev_xdp_mode(dev, flags);
9415 	/* can't replace attached link */
9416 	if (dev_xdp_link(dev, mode)) {
9417 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9418 		return -EBUSY;
9419 	}
9420 
9421 	cur_prog = dev_xdp_prog(dev, mode);
9422 	/* can't replace attached prog with link */
9423 	if (link && cur_prog) {
9424 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9425 		return -EBUSY;
9426 	}
9427 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9428 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9429 		return -EEXIST;
9430 	}
9431 
9432 	/* put effective new program into new_prog */
9433 	if (link)
9434 		new_prog = link->link.prog;
9435 
9436 	if (new_prog) {
9437 		bool offload = mode == XDP_MODE_HW;
9438 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9439 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9440 
9441 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9442 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9443 			return -EBUSY;
9444 		}
9445 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9446 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9447 			return -EEXIST;
9448 		}
9449 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9450 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9451 			return -EINVAL;
9452 		}
9453 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9454 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9455 			return -EINVAL;
9456 		}
9457 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9458 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9459 			return -EINVAL;
9460 		}
9461 	}
9462 
9463 	/* don't call drivers if the effective program didn't change */
9464 	if (new_prog != cur_prog) {
9465 		bpf_op = dev_xdp_bpf_op(dev, mode);
9466 		if (!bpf_op) {
9467 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9468 			return -EOPNOTSUPP;
9469 		}
9470 
9471 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9472 		if (err)
9473 			return err;
9474 	}
9475 
9476 	if (link)
9477 		dev_xdp_set_link(dev, mode, link);
9478 	else
9479 		dev_xdp_set_prog(dev, mode, new_prog);
9480 	if (cur_prog)
9481 		bpf_prog_put(cur_prog);
9482 
9483 	return 0;
9484 }
9485 
9486 static int dev_xdp_attach_link(struct net_device *dev,
9487 			       struct netlink_ext_ack *extack,
9488 			       struct bpf_xdp_link *link)
9489 {
9490 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9491 }
9492 
9493 static int dev_xdp_detach_link(struct net_device *dev,
9494 			       struct netlink_ext_ack *extack,
9495 			       struct bpf_xdp_link *link)
9496 {
9497 	enum bpf_xdp_mode mode;
9498 	bpf_op_t bpf_op;
9499 
9500 	ASSERT_RTNL();
9501 
9502 	mode = dev_xdp_mode(dev, link->flags);
9503 	if (dev_xdp_link(dev, mode) != link)
9504 		return -EINVAL;
9505 
9506 	bpf_op = dev_xdp_bpf_op(dev, mode);
9507 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9508 	dev_xdp_set_link(dev, mode, NULL);
9509 	return 0;
9510 }
9511 
9512 static void bpf_xdp_link_release(struct bpf_link *link)
9513 {
9514 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9515 
9516 	rtnl_lock();
9517 
9518 	/* if racing with net_device's tear down, xdp_link->dev might be
9519 	 * already NULL, in which case link was already auto-detached
9520 	 */
9521 	if (xdp_link->dev) {
9522 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9523 		xdp_link->dev = NULL;
9524 	}
9525 
9526 	rtnl_unlock();
9527 }
9528 
9529 static int bpf_xdp_link_detach(struct bpf_link *link)
9530 {
9531 	bpf_xdp_link_release(link);
9532 	return 0;
9533 }
9534 
9535 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9536 {
9537 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9538 
9539 	kfree(xdp_link);
9540 }
9541 
9542 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9543 				     struct seq_file *seq)
9544 {
9545 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9546 	u32 ifindex = 0;
9547 
9548 	rtnl_lock();
9549 	if (xdp_link->dev)
9550 		ifindex = xdp_link->dev->ifindex;
9551 	rtnl_unlock();
9552 
9553 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9554 }
9555 
9556 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9557 				       struct bpf_link_info *info)
9558 {
9559 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9560 	u32 ifindex = 0;
9561 
9562 	rtnl_lock();
9563 	if (xdp_link->dev)
9564 		ifindex = xdp_link->dev->ifindex;
9565 	rtnl_unlock();
9566 
9567 	info->xdp.ifindex = ifindex;
9568 	return 0;
9569 }
9570 
9571 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9572 			       struct bpf_prog *old_prog)
9573 {
9574 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9575 	enum bpf_xdp_mode mode;
9576 	bpf_op_t bpf_op;
9577 	int err = 0;
9578 
9579 	rtnl_lock();
9580 
9581 	/* link might have been auto-released already, so fail */
9582 	if (!xdp_link->dev) {
9583 		err = -ENOLINK;
9584 		goto out_unlock;
9585 	}
9586 
9587 	if (old_prog && link->prog != old_prog) {
9588 		err = -EPERM;
9589 		goto out_unlock;
9590 	}
9591 	old_prog = link->prog;
9592 	if (old_prog == new_prog) {
9593 		/* no-op, don't disturb drivers */
9594 		bpf_prog_put(new_prog);
9595 		goto out_unlock;
9596 	}
9597 
9598 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9599 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9600 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9601 			      xdp_link->flags, new_prog);
9602 	if (err)
9603 		goto out_unlock;
9604 
9605 	old_prog = xchg(&link->prog, new_prog);
9606 	bpf_prog_put(old_prog);
9607 
9608 out_unlock:
9609 	rtnl_unlock();
9610 	return err;
9611 }
9612 
9613 static const struct bpf_link_ops bpf_xdp_link_lops = {
9614 	.release = bpf_xdp_link_release,
9615 	.dealloc = bpf_xdp_link_dealloc,
9616 	.detach = bpf_xdp_link_detach,
9617 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9618 	.fill_link_info = bpf_xdp_link_fill_link_info,
9619 	.update_prog = bpf_xdp_link_update,
9620 };
9621 
9622 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9623 {
9624 	struct net *net = current->nsproxy->net_ns;
9625 	struct bpf_link_primer link_primer;
9626 	struct bpf_xdp_link *link;
9627 	struct net_device *dev;
9628 	int err, fd;
9629 
9630 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9631 	if (!dev)
9632 		return -EINVAL;
9633 
9634 	link = kzalloc(sizeof(*link), GFP_USER);
9635 	if (!link) {
9636 		err = -ENOMEM;
9637 		goto out_put_dev;
9638 	}
9639 
9640 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9641 	link->dev = dev;
9642 	link->flags = attr->link_create.flags;
9643 
9644 	err = bpf_link_prime(&link->link, &link_primer);
9645 	if (err) {
9646 		kfree(link);
9647 		goto out_put_dev;
9648 	}
9649 
9650 	rtnl_lock();
9651 	err = dev_xdp_attach_link(dev, NULL, link);
9652 	rtnl_unlock();
9653 
9654 	if (err) {
9655 		bpf_link_cleanup(&link_primer);
9656 		goto out_put_dev;
9657 	}
9658 
9659 	fd = bpf_link_settle(&link_primer);
9660 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9661 	dev_put(dev);
9662 	return fd;
9663 
9664 out_put_dev:
9665 	dev_put(dev);
9666 	return err;
9667 }
9668 
9669 /**
9670  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9671  *	@dev: device
9672  *	@extack: netlink extended ack
9673  *	@fd: new program fd or negative value to clear
9674  *	@expected_fd: old program fd that userspace expects to replace or clear
9675  *	@flags: xdp-related flags
9676  *
9677  *	Set or clear a bpf program for a device
9678  */
9679 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9680 		      int fd, int expected_fd, u32 flags)
9681 {
9682 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9683 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9684 	int err;
9685 
9686 	ASSERT_RTNL();
9687 
9688 	if (fd >= 0) {
9689 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9690 						 mode != XDP_MODE_SKB);
9691 		if (IS_ERR(new_prog))
9692 			return PTR_ERR(new_prog);
9693 	}
9694 
9695 	if (expected_fd >= 0) {
9696 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9697 						 mode != XDP_MODE_SKB);
9698 		if (IS_ERR(old_prog)) {
9699 			err = PTR_ERR(old_prog);
9700 			old_prog = NULL;
9701 			goto err_out;
9702 		}
9703 	}
9704 
9705 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9706 
9707 err_out:
9708 	if (err && new_prog)
9709 		bpf_prog_put(new_prog);
9710 	if (old_prog)
9711 		bpf_prog_put(old_prog);
9712 	return err;
9713 }
9714 
9715 /**
9716  *	dev_new_index	-	allocate an ifindex
9717  *	@net: the applicable net namespace
9718  *
9719  *	Returns a suitable unique value for a new device interface
9720  *	number.  The caller must hold the rtnl semaphore or the
9721  *	dev_base_lock to be sure it remains unique.
9722  */
9723 static int dev_new_index(struct net *net)
9724 {
9725 	int ifindex = net->ifindex;
9726 
9727 	for (;;) {
9728 		if (++ifindex <= 0)
9729 			ifindex = 1;
9730 		if (!__dev_get_by_index(net, ifindex))
9731 			return net->ifindex = ifindex;
9732 	}
9733 }
9734 
9735 /* Delayed registration/unregisteration */
9736 static LIST_HEAD(net_todo_list);
9737 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9738 
9739 static void net_set_todo(struct net_device *dev)
9740 {
9741 	list_add_tail(&dev->todo_list, &net_todo_list);
9742 	dev_net(dev)->dev_unreg_count++;
9743 }
9744 
9745 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9746 	struct net_device *upper, netdev_features_t features)
9747 {
9748 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9749 	netdev_features_t feature;
9750 	int feature_bit;
9751 
9752 	for_each_netdev_feature(upper_disables, feature_bit) {
9753 		feature = __NETIF_F_BIT(feature_bit);
9754 		if (!(upper->wanted_features & feature)
9755 		    && (features & feature)) {
9756 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9757 				   &feature, upper->name);
9758 			features &= ~feature;
9759 		}
9760 	}
9761 
9762 	return features;
9763 }
9764 
9765 static void netdev_sync_lower_features(struct net_device *upper,
9766 	struct net_device *lower, netdev_features_t features)
9767 {
9768 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9769 	netdev_features_t feature;
9770 	int feature_bit;
9771 
9772 	for_each_netdev_feature(upper_disables, feature_bit) {
9773 		feature = __NETIF_F_BIT(feature_bit);
9774 		if (!(features & feature) && (lower->features & feature)) {
9775 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9776 				   &feature, lower->name);
9777 			lower->wanted_features &= ~feature;
9778 			__netdev_update_features(lower);
9779 
9780 			if (unlikely(lower->features & feature))
9781 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9782 					    &feature, lower->name);
9783 			else
9784 				netdev_features_change(lower);
9785 		}
9786 	}
9787 }
9788 
9789 static netdev_features_t netdev_fix_features(struct net_device *dev,
9790 	netdev_features_t features)
9791 {
9792 	/* Fix illegal checksum combinations */
9793 	if ((features & NETIF_F_HW_CSUM) &&
9794 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9795 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9796 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9797 	}
9798 
9799 	/* TSO requires that SG is present as well. */
9800 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9801 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9802 		features &= ~NETIF_F_ALL_TSO;
9803 	}
9804 
9805 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9806 					!(features & NETIF_F_IP_CSUM)) {
9807 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9808 		features &= ~NETIF_F_TSO;
9809 		features &= ~NETIF_F_TSO_ECN;
9810 	}
9811 
9812 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9813 					 !(features & NETIF_F_IPV6_CSUM)) {
9814 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9815 		features &= ~NETIF_F_TSO6;
9816 	}
9817 
9818 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9819 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9820 		features &= ~NETIF_F_TSO_MANGLEID;
9821 
9822 	/* TSO ECN requires that TSO is present as well. */
9823 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9824 		features &= ~NETIF_F_TSO_ECN;
9825 
9826 	/* Software GSO depends on SG. */
9827 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9828 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9829 		features &= ~NETIF_F_GSO;
9830 	}
9831 
9832 	/* GSO partial features require GSO partial be set */
9833 	if ((features & dev->gso_partial_features) &&
9834 	    !(features & NETIF_F_GSO_PARTIAL)) {
9835 		netdev_dbg(dev,
9836 			   "Dropping partially supported GSO features since no GSO partial.\n");
9837 		features &= ~dev->gso_partial_features;
9838 	}
9839 
9840 	if (!(features & NETIF_F_RXCSUM)) {
9841 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9842 		 * successfully merged by hardware must also have the
9843 		 * checksum verified by hardware.  If the user does not
9844 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9845 		 */
9846 		if (features & NETIF_F_GRO_HW) {
9847 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9848 			features &= ~NETIF_F_GRO_HW;
9849 		}
9850 	}
9851 
9852 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9853 	if (features & NETIF_F_RXFCS) {
9854 		if (features & NETIF_F_LRO) {
9855 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9856 			features &= ~NETIF_F_LRO;
9857 		}
9858 
9859 		if (features & NETIF_F_GRO_HW) {
9860 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9861 			features &= ~NETIF_F_GRO_HW;
9862 		}
9863 	}
9864 
9865 	if (features & NETIF_F_HW_TLS_TX) {
9866 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9867 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9868 		bool hw_csum = features & NETIF_F_HW_CSUM;
9869 
9870 		if (!ip_csum && !hw_csum) {
9871 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9872 			features &= ~NETIF_F_HW_TLS_TX;
9873 		}
9874 	}
9875 
9876 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9877 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9878 		features &= ~NETIF_F_HW_TLS_RX;
9879 	}
9880 
9881 	return features;
9882 }
9883 
9884 int __netdev_update_features(struct net_device *dev)
9885 {
9886 	struct net_device *upper, *lower;
9887 	netdev_features_t features;
9888 	struct list_head *iter;
9889 	int err = -1;
9890 
9891 	ASSERT_RTNL();
9892 
9893 	features = netdev_get_wanted_features(dev);
9894 
9895 	if (dev->netdev_ops->ndo_fix_features)
9896 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9897 
9898 	/* driver might be less strict about feature dependencies */
9899 	features = netdev_fix_features(dev, features);
9900 
9901 	/* some features can't be enabled if they're off on an upper device */
9902 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9903 		features = netdev_sync_upper_features(dev, upper, features);
9904 
9905 	if (dev->features == features)
9906 		goto sync_lower;
9907 
9908 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9909 		&dev->features, &features);
9910 
9911 	if (dev->netdev_ops->ndo_set_features)
9912 		err = dev->netdev_ops->ndo_set_features(dev, features);
9913 	else
9914 		err = 0;
9915 
9916 	if (unlikely(err < 0)) {
9917 		netdev_err(dev,
9918 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9919 			err, &features, &dev->features);
9920 		/* return non-0 since some features might have changed and
9921 		 * it's better to fire a spurious notification than miss it
9922 		 */
9923 		return -1;
9924 	}
9925 
9926 sync_lower:
9927 	/* some features must be disabled on lower devices when disabled
9928 	 * on an upper device (think: bonding master or bridge)
9929 	 */
9930 	netdev_for_each_lower_dev(dev, lower, iter)
9931 		netdev_sync_lower_features(dev, lower, features);
9932 
9933 	if (!err) {
9934 		netdev_features_t diff = features ^ dev->features;
9935 
9936 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9937 			/* udp_tunnel_{get,drop}_rx_info both need
9938 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9939 			 * device, or they won't do anything.
9940 			 * Thus we need to update dev->features
9941 			 * *before* calling udp_tunnel_get_rx_info,
9942 			 * but *after* calling udp_tunnel_drop_rx_info.
9943 			 */
9944 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9945 				dev->features = features;
9946 				udp_tunnel_get_rx_info(dev);
9947 			} else {
9948 				udp_tunnel_drop_rx_info(dev);
9949 			}
9950 		}
9951 
9952 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9953 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9954 				dev->features = features;
9955 				err |= vlan_get_rx_ctag_filter_info(dev);
9956 			} else {
9957 				vlan_drop_rx_ctag_filter_info(dev);
9958 			}
9959 		}
9960 
9961 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9962 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9963 				dev->features = features;
9964 				err |= vlan_get_rx_stag_filter_info(dev);
9965 			} else {
9966 				vlan_drop_rx_stag_filter_info(dev);
9967 			}
9968 		}
9969 
9970 		dev->features = features;
9971 	}
9972 
9973 	return err < 0 ? 0 : 1;
9974 }
9975 
9976 /**
9977  *	netdev_update_features - recalculate device features
9978  *	@dev: the device to check
9979  *
9980  *	Recalculate dev->features set and send notifications if it
9981  *	has changed. Should be called after driver or hardware dependent
9982  *	conditions might have changed that influence the features.
9983  */
9984 void netdev_update_features(struct net_device *dev)
9985 {
9986 	if (__netdev_update_features(dev))
9987 		netdev_features_change(dev);
9988 }
9989 EXPORT_SYMBOL(netdev_update_features);
9990 
9991 /**
9992  *	netdev_change_features - recalculate device features
9993  *	@dev: the device to check
9994  *
9995  *	Recalculate dev->features set and send notifications even
9996  *	if they have not changed. Should be called instead of
9997  *	netdev_update_features() if also dev->vlan_features might
9998  *	have changed to allow the changes to be propagated to stacked
9999  *	VLAN devices.
10000  */
10001 void netdev_change_features(struct net_device *dev)
10002 {
10003 	__netdev_update_features(dev);
10004 	netdev_features_change(dev);
10005 }
10006 EXPORT_SYMBOL(netdev_change_features);
10007 
10008 /**
10009  *	netif_stacked_transfer_operstate -	transfer operstate
10010  *	@rootdev: the root or lower level device to transfer state from
10011  *	@dev: the device to transfer operstate to
10012  *
10013  *	Transfer operational state from root to device. This is normally
10014  *	called when a stacking relationship exists between the root
10015  *	device and the device(a leaf device).
10016  */
10017 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10018 					struct net_device *dev)
10019 {
10020 	if (rootdev->operstate == IF_OPER_DORMANT)
10021 		netif_dormant_on(dev);
10022 	else
10023 		netif_dormant_off(dev);
10024 
10025 	if (rootdev->operstate == IF_OPER_TESTING)
10026 		netif_testing_on(dev);
10027 	else
10028 		netif_testing_off(dev);
10029 
10030 	if (netif_carrier_ok(rootdev))
10031 		netif_carrier_on(dev);
10032 	else
10033 		netif_carrier_off(dev);
10034 }
10035 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10036 
10037 static int netif_alloc_rx_queues(struct net_device *dev)
10038 {
10039 	unsigned int i, count = dev->num_rx_queues;
10040 	struct netdev_rx_queue *rx;
10041 	size_t sz = count * sizeof(*rx);
10042 	int err = 0;
10043 
10044 	BUG_ON(count < 1);
10045 
10046 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10047 	if (!rx)
10048 		return -ENOMEM;
10049 
10050 	dev->_rx = rx;
10051 
10052 	for (i = 0; i < count; i++) {
10053 		rx[i].dev = dev;
10054 
10055 		/* XDP RX-queue setup */
10056 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10057 		if (err < 0)
10058 			goto err_rxq_info;
10059 	}
10060 	return 0;
10061 
10062 err_rxq_info:
10063 	/* Rollback successful reg's and free other resources */
10064 	while (i--)
10065 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10066 	kvfree(dev->_rx);
10067 	dev->_rx = NULL;
10068 	return err;
10069 }
10070 
10071 static void netif_free_rx_queues(struct net_device *dev)
10072 {
10073 	unsigned int i, count = dev->num_rx_queues;
10074 
10075 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10076 	if (!dev->_rx)
10077 		return;
10078 
10079 	for (i = 0; i < count; i++)
10080 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10081 
10082 	kvfree(dev->_rx);
10083 }
10084 
10085 static void netdev_init_one_queue(struct net_device *dev,
10086 				  struct netdev_queue *queue, void *_unused)
10087 {
10088 	/* Initialize queue lock */
10089 	spin_lock_init(&queue->_xmit_lock);
10090 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10091 	queue->xmit_lock_owner = -1;
10092 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10093 	queue->dev = dev;
10094 #ifdef CONFIG_BQL
10095 	dql_init(&queue->dql, HZ);
10096 #endif
10097 }
10098 
10099 static void netif_free_tx_queues(struct net_device *dev)
10100 {
10101 	kvfree(dev->_tx);
10102 }
10103 
10104 static int netif_alloc_netdev_queues(struct net_device *dev)
10105 {
10106 	unsigned int count = dev->num_tx_queues;
10107 	struct netdev_queue *tx;
10108 	size_t sz = count * sizeof(*tx);
10109 
10110 	if (count < 1 || count > 0xffff)
10111 		return -EINVAL;
10112 
10113 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10114 	if (!tx)
10115 		return -ENOMEM;
10116 
10117 	dev->_tx = tx;
10118 
10119 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10120 	spin_lock_init(&dev->tx_global_lock);
10121 
10122 	return 0;
10123 }
10124 
10125 void netif_tx_stop_all_queues(struct net_device *dev)
10126 {
10127 	unsigned int i;
10128 
10129 	for (i = 0; i < dev->num_tx_queues; i++) {
10130 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10131 
10132 		netif_tx_stop_queue(txq);
10133 	}
10134 }
10135 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10136 
10137 /**
10138  *	register_netdevice	- register a network device
10139  *	@dev: device to register
10140  *
10141  *	Take a completed network device structure and add it to the kernel
10142  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10143  *	chain. 0 is returned on success. A negative errno code is returned
10144  *	on a failure to set up the device, or if the name is a duplicate.
10145  *
10146  *	Callers must hold the rtnl semaphore. You may want
10147  *	register_netdev() instead of this.
10148  *
10149  *	BUGS:
10150  *	The locking appears insufficient to guarantee two parallel registers
10151  *	will not get the same name.
10152  */
10153 
10154 int register_netdevice(struct net_device *dev)
10155 {
10156 	int ret;
10157 	struct net *net = dev_net(dev);
10158 
10159 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10160 		     NETDEV_FEATURE_COUNT);
10161 	BUG_ON(dev_boot_phase);
10162 	ASSERT_RTNL();
10163 
10164 	might_sleep();
10165 
10166 	/* When net_device's are persistent, this will be fatal. */
10167 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10168 	BUG_ON(!net);
10169 
10170 	ret = ethtool_check_ops(dev->ethtool_ops);
10171 	if (ret)
10172 		return ret;
10173 
10174 	spin_lock_init(&dev->addr_list_lock);
10175 	netdev_set_addr_lockdep_class(dev);
10176 
10177 	ret = dev_get_valid_name(net, dev, dev->name);
10178 	if (ret < 0)
10179 		goto out;
10180 
10181 	ret = -ENOMEM;
10182 	dev->name_node = netdev_name_node_head_alloc(dev);
10183 	if (!dev->name_node)
10184 		goto out;
10185 
10186 	/* Init, if this function is available */
10187 	if (dev->netdev_ops->ndo_init) {
10188 		ret = dev->netdev_ops->ndo_init(dev);
10189 		if (ret) {
10190 			if (ret > 0)
10191 				ret = -EIO;
10192 			goto err_free_name;
10193 		}
10194 	}
10195 
10196 	if (((dev->hw_features | dev->features) &
10197 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10198 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10199 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10200 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10201 		ret = -EINVAL;
10202 		goto err_uninit;
10203 	}
10204 
10205 	ret = -EBUSY;
10206 	if (!dev->ifindex)
10207 		dev->ifindex = dev_new_index(net);
10208 	else if (__dev_get_by_index(net, dev->ifindex))
10209 		goto err_uninit;
10210 
10211 	/* Transfer changeable features to wanted_features and enable
10212 	 * software offloads (GSO and GRO).
10213 	 */
10214 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10215 	dev->features |= NETIF_F_SOFT_FEATURES;
10216 
10217 	if (dev->udp_tunnel_nic_info) {
10218 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10219 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10220 	}
10221 
10222 	dev->wanted_features = dev->features & dev->hw_features;
10223 
10224 	if (!(dev->flags & IFF_LOOPBACK))
10225 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10226 
10227 	/* If IPv4 TCP segmentation offload is supported we should also
10228 	 * allow the device to enable segmenting the frame with the option
10229 	 * of ignoring a static IP ID value.  This doesn't enable the
10230 	 * feature itself but allows the user to enable it later.
10231 	 */
10232 	if (dev->hw_features & NETIF_F_TSO)
10233 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10234 	if (dev->vlan_features & NETIF_F_TSO)
10235 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10236 	if (dev->mpls_features & NETIF_F_TSO)
10237 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10238 	if (dev->hw_enc_features & NETIF_F_TSO)
10239 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10240 
10241 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10242 	 */
10243 	dev->vlan_features |= NETIF_F_HIGHDMA;
10244 
10245 	/* Make NETIF_F_SG inheritable to tunnel devices.
10246 	 */
10247 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10248 
10249 	/* Make NETIF_F_SG inheritable to MPLS.
10250 	 */
10251 	dev->mpls_features |= NETIF_F_SG;
10252 
10253 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10254 	ret = notifier_to_errno(ret);
10255 	if (ret)
10256 		goto err_uninit;
10257 
10258 	ret = netdev_register_kobject(dev);
10259 	if (ret) {
10260 		dev->reg_state = NETREG_UNREGISTERED;
10261 		goto err_uninit;
10262 	}
10263 	dev->reg_state = NETREG_REGISTERED;
10264 
10265 	__netdev_update_features(dev);
10266 
10267 	/*
10268 	 *	Default initial state at registry is that the
10269 	 *	device is present.
10270 	 */
10271 
10272 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10273 
10274 	linkwatch_init_dev(dev);
10275 
10276 	dev_init_scheduler(dev);
10277 	dev_hold(dev);
10278 	list_netdevice(dev);
10279 	add_device_randomness(dev->dev_addr, dev->addr_len);
10280 
10281 	/* If the device has permanent device address, driver should
10282 	 * set dev_addr and also addr_assign_type should be set to
10283 	 * NET_ADDR_PERM (default value).
10284 	 */
10285 	if (dev->addr_assign_type == NET_ADDR_PERM)
10286 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10287 
10288 	/* Notify protocols, that a new device appeared. */
10289 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10290 	ret = notifier_to_errno(ret);
10291 	if (ret) {
10292 		/* Expect explicit free_netdev() on failure */
10293 		dev->needs_free_netdev = false;
10294 		unregister_netdevice_queue(dev, NULL);
10295 		goto out;
10296 	}
10297 	/*
10298 	 *	Prevent userspace races by waiting until the network
10299 	 *	device is fully setup before sending notifications.
10300 	 */
10301 	if (!dev->rtnl_link_ops ||
10302 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10303 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10304 
10305 out:
10306 	return ret;
10307 
10308 err_uninit:
10309 	if (dev->netdev_ops->ndo_uninit)
10310 		dev->netdev_ops->ndo_uninit(dev);
10311 	if (dev->priv_destructor)
10312 		dev->priv_destructor(dev);
10313 err_free_name:
10314 	netdev_name_node_free(dev->name_node);
10315 	goto out;
10316 }
10317 EXPORT_SYMBOL(register_netdevice);
10318 
10319 /**
10320  *	init_dummy_netdev	- init a dummy network device for NAPI
10321  *	@dev: device to init
10322  *
10323  *	This takes a network device structure and initialize the minimum
10324  *	amount of fields so it can be used to schedule NAPI polls without
10325  *	registering a full blown interface. This is to be used by drivers
10326  *	that need to tie several hardware interfaces to a single NAPI
10327  *	poll scheduler due to HW limitations.
10328  */
10329 int init_dummy_netdev(struct net_device *dev)
10330 {
10331 	/* Clear everything. Note we don't initialize spinlocks
10332 	 * are they aren't supposed to be taken by any of the
10333 	 * NAPI code and this dummy netdev is supposed to be
10334 	 * only ever used for NAPI polls
10335 	 */
10336 	memset(dev, 0, sizeof(struct net_device));
10337 
10338 	/* make sure we BUG if trying to hit standard
10339 	 * register/unregister code path
10340 	 */
10341 	dev->reg_state = NETREG_DUMMY;
10342 
10343 	/* NAPI wants this */
10344 	INIT_LIST_HEAD(&dev->napi_list);
10345 
10346 	/* a dummy interface is started by default */
10347 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10348 	set_bit(__LINK_STATE_START, &dev->state);
10349 
10350 	/* napi_busy_loop stats accounting wants this */
10351 	dev_net_set(dev, &init_net);
10352 
10353 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10354 	 * because users of this 'device' dont need to change
10355 	 * its refcount.
10356 	 */
10357 
10358 	return 0;
10359 }
10360 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10361 
10362 
10363 /**
10364  *	register_netdev	- register a network device
10365  *	@dev: device to register
10366  *
10367  *	Take a completed network device structure and add it to the kernel
10368  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10369  *	chain. 0 is returned on success. A negative errno code is returned
10370  *	on a failure to set up the device, or if the name is a duplicate.
10371  *
10372  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10373  *	and expands the device name if you passed a format string to
10374  *	alloc_netdev.
10375  */
10376 int register_netdev(struct net_device *dev)
10377 {
10378 	int err;
10379 
10380 	if (rtnl_lock_killable())
10381 		return -EINTR;
10382 	err = register_netdevice(dev);
10383 	rtnl_unlock();
10384 	return err;
10385 }
10386 EXPORT_SYMBOL(register_netdev);
10387 
10388 int netdev_refcnt_read(const struct net_device *dev)
10389 {
10390 #ifdef CONFIG_PCPU_DEV_REFCNT
10391 	int i, refcnt = 0;
10392 
10393 	for_each_possible_cpu(i)
10394 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10395 	return refcnt;
10396 #else
10397 	return refcount_read(&dev->dev_refcnt);
10398 #endif
10399 }
10400 EXPORT_SYMBOL(netdev_refcnt_read);
10401 
10402 int netdev_unregister_timeout_secs __read_mostly = 10;
10403 
10404 #define WAIT_REFS_MIN_MSECS 1
10405 #define WAIT_REFS_MAX_MSECS 250
10406 /**
10407  * netdev_wait_allrefs - wait until all references are gone.
10408  * @dev: target net_device
10409  *
10410  * This is called when unregistering network devices.
10411  *
10412  * Any protocol or device that holds a reference should register
10413  * for netdevice notification, and cleanup and put back the
10414  * reference if they receive an UNREGISTER event.
10415  * We can get stuck here if buggy protocols don't correctly
10416  * call dev_put.
10417  */
10418 static void netdev_wait_allrefs(struct net_device *dev)
10419 {
10420 	unsigned long rebroadcast_time, warning_time;
10421 	int wait = 0, refcnt;
10422 
10423 	linkwatch_forget_dev(dev);
10424 
10425 	rebroadcast_time = warning_time = jiffies;
10426 	refcnt = netdev_refcnt_read(dev);
10427 
10428 	while (refcnt != 1) {
10429 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10430 			rtnl_lock();
10431 
10432 			/* Rebroadcast unregister notification */
10433 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10434 
10435 			__rtnl_unlock();
10436 			rcu_barrier();
10437 			rtnl_lock();
10438 
10439 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10440 				     &dev->state)) {
10441 				/* We must not have linkwatch events
10442 				 * pending on unregister. If this
10443 				 * happens, we simply run the queue
10444 				 * unscheduled, resulting in a noop
10445 				 * for this device.
10446 				 */
10447 				linkwatch_run_queue();
10448 			}
10449 
10450 			__rtnl_unlock();
10451 
10452 			rebroadcast_time = jiffies;
10453 		}
10454 
10455 		if (!wait) {
10456 			rcu_barrier();
10457 			wait = WAIT_REFS_MIN_MSECS;
10458 		} else {
10459 			msleep(wait);
10460 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10461 		}
10462 
10463 		refcnt = netdev_refcnt_read(dev);
10464 
10465 		if (refcnt != 1 &&
10466 		    time_after(jiffies, warning_time +
10467 			       netdev_unregister_timeout_secs * HZ)) {
10468 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10469 				 dev->name, refcnt);
10470 			warning_time = jiffies;
10471 		}
10472 	}
10473 }
10474 
10475 /* The sequence is:
10476  *
10477  *	rtnl_lock();
10478  *	...
10479  *	register_netdevice(x1);
10480  *	register_netdevice(x2);
10481  *	...
10482  *	unregister_netdevice(y1);
10483  *	unregister_netdevice(y2);
10484  *      ...
10485  *	rtnl_unlock();
10486  *	free_netdev(y1);
10487  *	free_netdev(y2);
10488  *
10489  * We are invoked by rtnl_unlock().
10490  * This allows us to deal with problems:
10491  * 1) We can delete sysfs objects which invoke hotplug
10492  *    without deadlocking with linkwatch via keventd.
10493  * 2) Since we run with the RTNL semaphore not held, we can sleep
10494  *    safely in order to wait for the netdev refcnt to drop to zero.
10495  *
10496  * We must not return until all unregister events added during
10497  * the interval the lock was held have been completed.
10498  */
10499 void netdev_run_todo(void)
10500 {
10501 	struct list_head list;
10502 #ifdef CONFIG_LOCKDEP
10503 	struct list_head unlink_list;
10504 
10505 	list_replace_init(&net_unlink_list, &unlink_list);
10506 
10507 	while (!list_empty(&unlink_list)) {
10508 		struct net_device *dev = list_first_entry(&unlink_list,
10509 							  struct net_device,
10510 							  unlink_list);
10511 		list_del_init(&dev->unlink_list);
10512 		dev->nested_level = dev->lower_level - 1;
10513 	}
10514 #endif
10515 
10516 	/* Snapshot list, allow later requests */
10517 	list_replace_init(&net_todo_list, &list);
10518 
10519 	__rtnl_unlock();
10520 
10521 
10522 	/* Wait for rcu callbacks to finish before next phase */
10523 	if (!list_empty(&list))
10524 		rcu_barrier();
10525 
10526 	while (!list_empty(&list)) {
10527 		struct net_device *dev
10528 			= list_first_entry(&list, struct net_device, todo_list);
10529 		list_del(&dev->todo_list);
10530 
10531 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10532 			pr_err("network todo '%s' but state %d\n",
10533 			       dev->name, dev->reg_state);
10534 			dump_stack();
10535 			continue;
10536 		}
10537 
10538 		dev->reg_state = NETREG_UNREGISTERED;
10539 
10540 		netdev_wait_allrefs(dev);
10541 
10542 		/* paranoia */
10543 		BUG_ON(netdev_refcnt_read(dev) != 1);
10544 		BUG_ON(!list_empty(&dev->ptype_all));
10545 		BUG_ON(!list_empty(&dev->ptype_specific));
10546 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10547 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10548 #if IS_ENABLED(CONFIG_DECNET)
10549 		WARN_ON(dev->dn_ptr);
10550 #endif
10551 		if (dev->priv_destructor)
10552 			dev->priv_destructor(dev);
10553 		if (dev->needs_free_netdev)
10554 			free_netdev(dev);
10555 
10556 		/* Report a network device has been unregistered */
10557 		rtnl_lock();
10558 		dev_net(dev)->dev_unreg_count--;
10559 		__rtnl_unlock();
10560 		wake_up(&netdev_unregistering_wq);
10561 
10562 		/* Free network device */
10563 		kobject_put(&dev->dev.kobj);
10564 	}
10565 }
10566 
10567 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10568  * all the same fields in the same order as net_device_stats, with only
10569  * the type differing, but rtnl_link_stats64 may have additional fields
10570  * at the end for newer counters.
10571  */
10572 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10573 			     const struct net_device_stats *netdev_stats)
10574 {
10575 #if BITS_PER_LONG == 64
10576 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10577 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10578 	/* zero out counters that only exist in rtnl_link_stats64 */
10579 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10580 	       sizeof(*stats64) - sizeof(*netdev_stats));
10581 #else
10582 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10583 	const unsigned long *src = (const unsigned long *)netdev_stats;
10584 	u64 *dst = (u64 *)stats64;
10585 
10586 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10587 	for (i = 0; i < n; i++)
10588 		dst[i] = src[i];
10589 	/* zero out counters that only exist in rtnl_link_stats64 */
10590 	memset((char *)stats64 + n * sizeof(u64), 0,
10591 	       sizeof(*stats64) - n * sizeof(u64));
10592 #endif
10593 }
10594 EXPORT_SYMBOL(netdev_stats_to_stats64);
10595 
10596 /**
10597  *	dev_get_stats	- get network device statistics
10598  *	@dev: device to get statistics from
10599  *	@storage: place to store stats
10600  *
10601  *	Get network statistics from device. Return @storage.
10602  *	The device driver may provide its own method by setting
10603  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10604  *	otherwise the internal statistics structure is used.
10605  */
10606 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10607 					struct rtnl_link_stats64 *storage)
10608 {
10609 	const struct net_device_ops *ops = dev->netdev_ops;
10610 
10611 	if (ops->ndo_get_stats64) {
10612 		memset(storage, 0, sizeof(*storage));
10613 		ops->ndo_get_stats64(dev, storage);
10614 	} else if (ops->ndo_get_stats) {
10615 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10616 	} else {
10617 		netdev_stats_to_stats64(storage, &dev->stats);
10618 	}
10619 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10620 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10621 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10622 	return storage;
10623 }
10624 EXPORT_SYMBOL(dev_get_stats);
10625 
10626 /**
10627  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10628  *	@s: place to store stats
10629  *	@netstats: per-cpu network stats to read from
10630  *
10631  *	Read per-cpu network statistics and populate the related fields in @s.
10632  */
10633 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10634 			   const struct pcpu_sw_netstats __percpu *netstats)
10635 {
10636 	int cpu;
10637 
10638 	for_each_possible_cpu(cpu) {
10639 		const struct pcpu_sw_netstats *stats;
10640 		struct pcpu_sw_netstats tmp;
10641 		unsigned int start;
10642 
10643 		stats = per_cpu_ptr(netstats, cpu);
10644 		do {
10645 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10646 			tmp.rx_packets = stats->rx_packets;
10647 			tmp.rx_bytes   = stats->rx_bytes;
10648 			tmp.tx_packets = stats->tx_packets;
10649 			tmp.tx_bytes   = stats->tx_bytes;
10650 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10651 
10652 		s->rx_packets += tmp.rx_packets;
10653 		s->rx_bytes   += tmp.rx_bytes;
10654 		s->tx_packets += tmp.tx_packets;
10655 		s->tx_bytes   += tmp.tx_bytes;
10656 	}
10657 }
10658 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10659 
10660 /**
10661  *	dev_get_tstats64 - ndo_get_stats64 implementation
10662  *	@dev: device to get statistics from
10663  *	@s: place to store stats
10664  *
10665  *	Populate @s from dev->stats and dev->tstats. Can be used as
10666  *	ndo_get_stats64() callback.
10667  */
10668 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10669 {
10670 	netdev_stats_to_stats64(s, &dev->stats);
10671 	dev_fetch_sw_netstats(s, dev->tstats);
10672 }
10673 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10674 
10675 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10676 {
10677 	struct netdev_queue *queue = dev_ingress_queue(dev);
10678 
10679 #ifdef CONFIG_NET_CLS_ACT
10680 	if (queue)
10681 		return queue;
10682 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10683 	if (!queue)
10684 		return NULL;
10685 	netdev_init_one_queue(dev, queue, NULL);
10686 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10687 	queue->qdisc_sleeping = &noop_qdisc;
10688 	rcu_assign_pointer(dev->ingress_queue, queue);
10689 #endif
10690 	return queue;
10691 }
10692 
10693 static const struct ethtool_ops default_ethtool_ops;
10694 
10695 void netdev_set_default_ethtool_ops(struct net_device *dev,
10696 				    const struct ethtool_ops *ops)
10697 {
10698 	if (dev->ethtool_ops == &default_ethtool_ops)
10699 		dev->ethtool_ops = ops;
10700 }
10701 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10702 
10703 void netdev_freemem(struct net_device *dev)
10704 {
10705 	char *addr = (char *)dev - dev->padded;
10706 
10707 	kvfree(addr);
10708 }
10709 
10710 /**
10711  * alloc_netdev_mqs - allocate network device
10712  * @sizeof_priv: size of private data to allocate space for
10713  * @name: device name format string
10714  * @name_assign_type: origin of device name
10715  * @setup: callback to initialize device
10716  * @txqs: the number of TX subqueues to allocate
10717  * @rxqs: the number of RX subqueues to allocate
10718  *
10719  * Allocates a struct net_device with private data area for driver use
10720  * and performs basic initialization.  Also allocates subqueue structs
10721  * for each queue on the device.
10722  */
10723 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10724 		unsigned char name_assign_type,
10725 		void (*setup)(struct net_device *),
10726 		unsigned int txqs, unsigned int rxqs)
10727 {
10728 	struct net_device *dev;
10729 	unsigned int alloc_size;
10730 	struct net_device *p;
10731 
10732 	BUG_ON(strlen(name) >= sizeof(dev->name));
10733 
10734 	if (txqs < 1) {
10735 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10736 		return NULL;
10737 	}
10738 
10739 	if (rxqs < 1) {
10740 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10741 		return NULL;
10742 	}
10743 
10744 	alloc_size = sizeof(struct net_device);
10745 	if (sizeof_priv) {
10746 		/* ensure 32-byte alignment of private area */
10747 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10748 		alloc_size += sizeof_priv;
10749 	}
10750 	/* ensure 32-byte alignment of whole construct */
10751 	alloc_size += NETDEV_ALIGN - 1;
10752 
10753 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10754 	if (!p)
10755 		return NULL;
10756 
10757 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10758 	dev->padded = (char *)dev - (char *)p;
10759 
10760 #ifdef CONFIG_PCPU_DEV_REFCNT
10761 	dev->pcpu_refcnt = alloc_percpu(int);
10762 	if (!dev->pcpu_refcnt)
10763 		goto free_dev;
10764 	dev_hold(dev);
10765 #else
10766 	refcount_set(&dev->dev_refcnt, 1);
10767 #endif
10768 
10769 	if (dev_addr_init(dev))
10770 		goto free_pcpu;
10771 
10772 	dev_mc_init(dev);
10773 	dev_uc_init(dev);
10774 
10775 	dev_net_set(dev, &init_net);
10776 
10777 	dev->gso_max_size = GSO_MAX_SIZE;
10778 	dev->gso_max_segs = GSO_MAX_SEGS;
10779 	dev->upper_level = 1;
10780 	dev->lower_level = 1;
10781 #ifdef CONFIG_LOCKDEP
10782 	dev->nested_level = 0;
10783 	INIT_LIST_HEAD(&dev->unlink_list);
10784 #endif
10785 
10786 	INIT_LIST_HEAD(&dev->napi_list);
10787 	INIT_LIST_HEAD(&dev->unreg_list);
10788 	INIT_LIST_HEAD(&dev->close_list);
10789 	INIT_LIST_HEAD(&dev->link_watch_list);
10790 	INIT_LIST_HEAD(&dev->adj_list.upper);
10791 	INIT_LIST_HEAD(&dev->adj_list.lower);
10792 	INIT_LIST_HEAD(&dev->ptype_all);
10793 	INIT_LIST_HEAD(&dev->ptype_specific);
10794 	INIT_LIST_HEAD(&dev->net_notifier_list);
10795 #ifdef CONFIG_NET_SCHED
10796 	hash_init(dev->qdisc_hash);
10797 #endif
10798 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10799 	setup(dev);
10800 
10801 	if (!dev->tx_queue_len) {
10802 		dev->priv_flags |= IFF_NO_QUEUE;
10803 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10804 	}
10805 
10806 	dev->num_tx_queues = txqs;
10807 	dev->real_num_tx_queues = txqs;
10808 	if (netif_alloc_netdev_queues(dev))
10809 		goto free_all;
10810 
10811 	dev->num_rx_queues = rxqs;
10812 	dev->real_num_rx_queues = rxqs;
10813 	if (netif_alloc_rx_queues(dev))
10814 		goto free_all;
10815 
10816 	strcpy(dev->name, name);
10817 	dev->name_assign_type = name_assign_type;
10818 	dev->group = INIT_NETDEV_GROUP;
10819 	if (!dev->ethtool_ops)
10820 		dev->ethtool_ops = &default_ethtool_ops;
10821 
10822 	nf_hook_ingress_init(dev);
10823 
10824 	return dev;
10825 
10826 free_all:
10827 	free_netdev(dev);
10828 	return NULL;
10829 
10830 free_pcpu:
10831 #ifdef CONFIG_PCPU_DEV_REFCNT
10832 	free_percpu(dev->pcpu_refcnt);
10833 free_dev:
10834 #endif
10835 	netdev_freemem(dev);
10836 	return NULL;
10837 }
10838 EXPORT_SYMBOL(alloc_netdev_mqs);
10839 
10840 /**
10841  * free_netdev - free network device
10842  * @dev: device
10843  *
10844  * This function does the last stage of destroying an allocated device
10845  * interface. The reference to the device object is released. If this
10846  * is the last reference then it will be freed.Must be called in process
10847  * context.
10848  */
10849 void free_netdev(struct net_device *dev)
10850 {
10851 	struct napi_struct *p, *n;
10852 
10853 	might_sleep();
10854 
10855 	/* When called immediately after register_netdevice() failed the unwind
10856 	 * handling may still be dismantling the device. Handle that case by
10857 	 * deferring the free.
10858 	 */
10859 	if (dev->reg_state == NETREG_UNREGISTERING) {
10860 		ASSERT_RTNL();
10861 		dev->needs_free_netdev = true;
10862 		return;
10863 	}
10864 
10865 	netif_free_tx_queues(dev);
10866 	netif_free_rx_queues(dev);
10867 
10868 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10869 
10870 	/* Flush device addresses */
10871 	dev_addr_flush(dev);
10872 
10873 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10874 		netif_napi_del(p);
10875 
10876 #ifdef CONFIG_PCPU_DEV_REFCNT
10877 	free_percpu(dev->pcpu_refcnt);
10878 	dev->pcpu_refcnt = NULL;
10879 #endif
10880 	free_percpu(dev->xdp_bulkq);
10881 	dev->xdp_bulkq = NULL;
10882 
10883 	/*  Compatibility with error handling in drivers */
10884 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10885 		netdev_freemem(dev);
10886 		return;
10887 	}
10888 
10889 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10890 	dev->reg_state = NETREG_RELEASED;
10891 
10892 	/* will free via device release */
10893 	put_device(&dev->dev);
10894 }
10895 EXPORT_SYMBOL(free_netdev);
10896 
10897 /**
10898  *	synchronize_net -  Synchronize with packet receive processing
10899  *
10900  *	Wait for packets currently being received to be done.
10901  *	Does not block later packets from starting.
10902  */
10903 void synchronize_net(void)
10904 {
10905 	might_sleep();
10906 	if (rtnl_is_locked())
10907 		synchronize_rcu_expedited();
10908 	else
10909 		synchronize_rcu();
10910 }
10911 EXPORT_SYMBOL(synchronize_net);
10912 
10913 /**
10914  *	unregister_netdevice_queue - remove device from the kernel
10915  *	@dev: device
10916  *	@head: list
10917  *
10918  *	This function shuts down a device interface and removes it
10919  *	from the kernel tables.
10920  *	If head not NULL, device is queued to be unregistered later.
10921  *
10922  *	Callers must hold the rtnl semaphore.  You may want
10923  *	unregister_netdev() instead of this.
10924  */
10925 
10926 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10927 {
10928 	ASSERT_RTNL();
10929 
10930 	if (head) {
10931 		list_move_tail(&dev->unreg_list, head);
10932 	} else {
10933 		LIST_HEAD(single);
10934 
10935 		list_add(&dev->unreg_list, &single);
10936 		unregister_netdevice_many(&single);
10937 	}
10938 }
10939 EXPORT_SYMBOL(unregister_netdevice_queue);
10940 
10941 /**
10942  *	unregister_netdevice_many - unregister many devices
10943  *	@head: list of devices
10944  *
10945  *  Note: As most callers use a stack allocated list_head,
10946  *  we force a list_del() to make sure stack wont be corrupted later.
10947  */
10948 void unregister_netdevice_many(struct list_head *head)
10949 {
10950 	struct net_device *dev, *tmp;
10951 	LIST_HEAD(close_head);
10952 
10953 	BUG_ON(dev_boot_phase);
10954 	ASSERT_RTNL();
10955 
10956 	if (list_empty(head))
10957 		return;
10958 
10959 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10960 		/* Some devices call without registering
10961 		 * for initialization unwind. Remove those
10962 		 * devices and proceed with the remaining.
10963 		 */
10964 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10965 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10966 				 dev->name, dev);
10967 
10968 			WARN_ON(1);
10969 			list_del(&dev->unreg_list);
10970 			continue;
10971 		}
10972 		dev->dismantle = true;
10973 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10974 	}
10975 
10976 	/* If device is running, close it first. */
10977 	list_for_each_entry(dev, head, unreg_list)
10978 		list_add_tail(&dev->close_list, &close_head);
10979 	dev_close_many(&close_head, true);
10980 
10981 	list_for_each_entry(dev, head, unreg_list) {
10982 		/* And unlink it from device chain. */
10983 		unlist_netdevice(dev);
10984 
10985 		dev->reg_state = NETREG_UNREGISTERING;
10986 	}
10987 	flush_all_backlogs();
10988 
10989 	synchronize_net();
10990 
10991 	list_for_each_entry(dev, head, unreg_list) {
10992 		struct sk_buff *skb = NULL;
10993 
10994 		/* Shutdown queueing discipline. */
10995 		dev_shutdown(dev);
10996 
10997 		dev_xdp_uninstall(dev);
10998 
10999 		/* Notify protocols, that we are about to destroy
11000 		 * this device. They should clean all the things.
11001 		 */
11002 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11003 
11004 		if (!dev->rtnl_link_ops ||
11005 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11006 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11007 						     GFP_KERNEL, NULL, 0);
11008 
11009 		/*
11010 		 *	Flush the unicast and multicast chains
11011 		 */
11012 		dev_uc_flush(dev);
11013 		dev_mc_flush(dev);
11014 
11015 		netdev_name_node_alt_flush(dev);
11016 		netdev_name_node_free(dev->name_node);
11017 
11018 		if (dev->netdev_ops->ndo_uninit)
11019 			dev->netdev_ops->ndo_uninit(dev);
11020 
11021 		if (skb)
11022 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11023 
11024 		/* Notifier chain MUST detach us all upper devices. */
11025 		WARN_ON(netdev_has_any_upper_dev(dev));
11026 		WARN_ON(netdev_has_any_lower_dev(dev));
11027 
11028 		/* Remove entries from kobject tree */
11029 		netdev_unregister_kobject(dev);
11030 #ifdef CONFIG_XPS
11031 		/* Remove XPS queueing entries */
11032 		netif_reset_xps_queues_gt(dev, 0);
11033 #endif
11034 	}
11035 
11036 	synchronize_net();
11037 
11038 	list_for_each_entry(dev, head, unreg_list) {
11039 		dev_put(dev);
11040 		net_set_todo(dev);
11041 	}
11042 
11043 	list_del(head);
11044 }
11045 EXPORT_SYMBOL(unregister_netdevice_many);
11046 
11047 /**
11048  *	unregister_netdev - remove device from the kernel
11049  *	@dev: device
11050  *
11051  *	This function shuts down a device interface and removes it
11052  *	from the kernel tables.
11053  *
11054  *	This is just a wrapper for unregister_netdevice that takes
11055  *	the rtnl semaphore.  In general you want to use this and not
11056  *	unregister_netdevice.
11057  */
11058 void unregister_netdev(struct net_device *dev)
11059 {
11060 	rtnl_lock();
11061 	unregister_netdevice(dev);
11062 	rtnl_unlock();
11063 }
11064 EXPORT_SYMBOL(unregister_netdev);
11065 
11066 /**
11067  *	__dev_change_net_namespace - move device to different nethost namespace
11068  *	@dev: device
11069  *	@net: network namespace
11070  *	@pat: If not NULL name pattern to try if the current device name
11071  *	      is already taken in the destination network namespace.
11072  *	@new_ifindex: If not zero, specifies device index in the target
11073  *	              namespace.
11074  *
11075  *	This function shuts down a device interface and moves it
11076  *	to a new network namespace. On success 0 is returned, on
11077  *	a failure a netagive errno code is returned.
11078  *
11079  *	Callers must hold the rtnl semaphore.
11080  */
11081 
11082 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11083 			       const char *pat, int new_ifindex)
11084 {
11085 	struct net *net_old = dev_net(dev);
11086 	int err, new_nsid;
11087 
11088 	ASSERT_RTNL();
11089 
11090 	/* Don't allow namespace local devices to be moved. */
11091 	err = -EINVAL;
11092 	if (dev->features & NETIF_F_NETNS_LOCAL)
11093 		goto out;
11094 
11095 	/* Ensure the device has been registrered */
11096 	if (dev->reg_state != NETREG_REGISTERED)
11097 		goto out;
11098 
11099 	/* Get out if there is nothing todo */
11100 	err = 0;
11101 	if (net_eq(net_old, net))
11102 		goto out;
11103 
11104 	/* Pick the destination device name, and ensure
11105 	 * we can use it in the destination network namespace.
11106 	 */
11107 	err = -EEXIST;
11108 	if (__dev_get_by_name(net, dev->name)) {
11109 		/* We get here if we can't use the current device name */
11110 		if (!pat)
11111 			goto out;
11112 		err = dev_get_valid_name(net, dev, pat);
11113 		if (err < 0)
11114 			goto out;
11115 	}
11116 
11117 	/* Check that new_ifindex isn't used yet. */
11118 	err = -EBUSY;
11119 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11120 		goto out;
11121 
11122 	/*
11123 	 * And now a mini version of register_netdevice unregister_netdevice.
11124 	 */
11125 
11126 	/* If device is running close it first. */
11127 	dev_close(dev);
11128 
11129 	/* And unlink it from device chain */
11130 	unlist_netdevice(dev);
11131 
11132 	synchronize_net();
11133 
11134 	/* Shutdown queueing discipline. */
11135 	dev_shutdown(dev);
11136 
11137 	/* Notify protocols, that we are about to destroy
11138 	 * this device. They should clean all the things.
11139 	 *
11140 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11141 	 * This is wanted because this way 8021q and macvlan know
11142 	 * the device is just moving and can keep their slaves up.
11143 	 */
11144 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11145 	rcu_barrier();
11146 
11147 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11148 	/* If there is an ifindex conflict assign a new one */
11149 	if (!new_ifindex) {
11150 		if (__dev_get_by_index(net, dev->ifindex))
11151 			new_ifindex = dev_new_index(net);
11152 		else
11153 			new_ifindex = dev->ifindex;
11154 	}
11155 
11156 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11157 			    new_ifindex);
11158 
11159 	/*
11160 	 *	Flush the unicast and multicast chains
11161 	 */
11162 	dev_uc_flush(dev);
11163 	dev_mc_flush(dev);
11164 
11165 	/* Send a netdev-removed uevent to the old namespace */
11166 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11167 	netdev_adjacent_del_links(dev);
11168 
11169 	/* Move per-net netdevice notifiers that are following the netdevice */
11170 	move_netdevice_notifiers_dev_net(dev, net);
11171 
11172 	/* Actually switch the network namespace */
11173 	dev_net_set(dev, net);
11174 	dev->ifindex = new_ifindex;
11175 
11176 	/* Send a netdev-add uevent to the new namespace */
11177 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11178 	netdev_adjacent_add_links(dev);
11179 
11180 	/* Fixup kobjects */
11181 	err = device_rename(&dev->dev, dev->name);
11182 	WARN_ON(err);
11183 
11184 	/* Adapt owner in case owning user namespace of target network
11185 	 * namespace is different from the original one.
11186 	 */
11187 	err = netdev_change_owner(dev, net_old, net);
11188 	WARN_ON(err);
11189 
11190 	/* Add the device back in the hashes */
11191 	list_netdevice(dev);
11192 
11193 	/* Notify protocols, that a new device appeared. */
11194 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11195 
11196 	/*
11197 	 *	Prevent userspace races by waiting until the network
11198 	 *	device is fully setup before sending notifications.
11199 	 */
11200 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11201 
11202 	synchronize_net();
11203 	err = 0;
11204 out:
11205 	return err;
11206 }
11207 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11208 
11209 static int dev_cpu_dead(unsigned int oldcpu)
11210 {
11211 	struct sk_buff **list_skb;
11212 	struct sk_buff *skb;
11213 	unsigned int cpu;
11214 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11215 
11216 	local_irq_disable();
11217 	cpu = smp_processor_id();
11218 	sd = &per_cpu(softnet_data, cpu);
11219 	oldsd = &per_cpu(softnet_data, oldcpu);
11220 
11221 	/* Find end of our completion_queue. */
11222 	list_skb = &sd->completion_queue;
11223 	while (*list_skb)
11224 		list_skb = &(*list_skb)->next;
11225 	/* Append completion queue from offline CPU. */
11226 	*list_skb = oldsd->completion_queue;
11227 	oldsd->completion_queue = NULL;
11228 
11229 	/* Append output queue from offline CPU. */
11230 	if (oldsd->output_queue) {
11231 		*sd->output_queue_tailp = oldsd->output_queue;
11232 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11233 		oldsd->output_queue = NULL;
11234 		oldsd->output_queue_tailp = &oldsd->output_queue;
11235 	}
11236 	/* Append NAPI poll list from offline CPU, with one exception :
11237 	 * process_backlog() must be called by cpu owning percpu backlog.
11238 	 * We properly handle process_queue & input_pkt_queue later.
11239 	 */
11240 	while (!list_empty(&oldsd->poll_list)) {
11241 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11242 							    struct napi_struct,
11243 							    poll_list);
11244 
11245 		list_del_init(&napi->poll_list);
11246 		if (napi->poll == process_backlog)
11247 			napi->state = 0;
11248 		else
11249 			____napi_schedule(sd, napi);
11250 	}
11251 
11252 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11253 	local_irq_enable();
11254 
11255 #ifdef CONFIG_RPS
11256 	remsd = oldsd->rps_ipi_list;
11257 	oldsd->rps_ipi_list = NULL;
11258 #endif
11259 	/* send out pending IPI's on offline CPU */
11260 	net_rps_send_ipi(remsd);
11261 
11262 	/* Process offline CPU's input_pkt_queue */
11263 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11264 		netif_rx_ni(skb);
11265 		input_queue_head_incr(oldsd);
11266 	}
11267 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11268 		netif_rx_ni(skb);
11269 		input_queue_head_incr(oldsd);
11270 	}
11271 
11272 	return 0;
11273 }
11274 
11275 /**
11276  *	netdev_increment_features - increment feature set by one
11277  *	@all: current feature set
11278  *	@one: new feature set
11279  *	@mask: mask feature set
11280  *
11281  *	Computes a new feature set after adding a device with feature set
11282  *	@one to the master device with current feature set @all.  Will not
11283  *	enable anything that is off in @mask. Returns the new feature set.
11284  */
11285 netdev_features_t netdev_increment_features(netdev_features_t all,
11286 	netdev_features_t one, netdev_features_t mask)
11287 {
11288 	if (mask & NETIF_F_HW_CSUM)
11289 		mask |= NETIF_F_CSUM_MASK;
11290 	mask |= NETIF_F_VLAN_CHALLENGED;
11291 
11292 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11293 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11294 
11295 	/* If one device supports hw checksumming, set for all. */
11296 	if (all & NETIF_F_HW_CSUM)
11297 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11298 
11299 	return all;
11300 }
11301 EXPORT_SYMBOL(netdev_increment_features);
11302 
11303 static struct hlist_head * __net_init netdev_create_hash(void)
11304 {
11305 	int i;
11306 	struct hlist_head *hash;
11307 
11308 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11309 	if (hash != NULL)
11310 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11311 			INIT_HLIST_HEAD(&hash[i]);
11312 
11313 	return hash;
11314 }
11315 
11316 /* Initialize per network namespace state */
11317 static int __net_init netdev_init(struct net *net)
11318 {
11319 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11320 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11321 
11322 	if (net != &init_net)
11323 		INIT_LIST_HEAD(&net->dev_base_head);
11324 
11325 	net->dev_name_head = netdev_create_hash();
11326 	if (net->dev_name_head == NULL)
11327 		goto err_name;
11328 
11329 	net->dev_index_head = netdev_create_hash();
11330 	if (net->dev_index_head == NULL)
11331 		goto err_idx;
11332 
11333 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11334 
11335 	return 0;
11336 
11337 err_idx:
11338 	kfree(net->dev_name_head);
11339 err_name:
11340 	return -ENOMEM;
11341 }
11342 
11343 /**
11344  *	netdev_drivername - network driver for the device
11345  *	@dev: network device
11346  *
11347  *	Determine network driver for device.
11348  */
11349 const char *netdev_drivername(const struct net_device *dev)
11350 {
11351 	const struct device_driver *driver;
11352 	const struct device *parent;
11353 	const char *empty = "";
11354 
11355 	parent = dev->dev.parent;
11356 	if (!parent)
11357 		return empty;
11358 
11359 	driver = parent->driver;
11360 	if (driver && driver->name)
11361 		return driver->name;
11362 	return empty;
11363 }
11364 
11365 static void __netdev_printk(const char *level, const struct net_device *dev,
11366 			    struct va_format *vaf)
11367 {
11368 	if (dev && dev->dev.parent) {
11369 		dev_printk_emit(level[1] - '0',
11370 				dev->dev.parent,
11371 				"%s %s %s%s: %pV",
11372 				dev_driver_string(dev->dev.parent),
11373 				dev_name(dev->dev.parent),
11374 				netdev_name(dev), netdev_reg_state(dev),
11375 				vaf);
11376 	} else if (dev) {
11377 		printk("%s%s%s: %pV",
11378 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11379 	} else {
11380 		printk("%s(NULL net_device): %pV", level, vaf);
11381 	}
11382 }
11383 
11384 void netdev_printk(const char *level, const struct net_device *dev,
11385 		   const char *format, ...)
11386 {
11387 	struct va_format vaf;
11388 	va_list args;
11389 
11390 	va_start(args, format);
11391 
11392 	vaf.fmt = format;
11393 	vaf.va = &args;
11394 
11395 	__netdev_printk(level, dev, &vaf);
11396 
11397 	va_end(args);
11398 }
11399 EXPORT_SYMBOL(netdev_printk);
11400 
11401 #define define_netdev_printk_level(func, level)			\
11402 void func(const struct net_device *dev, const char *fmt, ...)	\
11403 {								\
11404 	struct va_format vaf;					\
11405 	va_list args;						\
11406 								\
11407 	va_start(args, fmt);					\
11408 								\
11409 	vaf.fmt = fmt;						\
11410 	vaf.va = &args;						\
11411 								\
11412 	__netdev_printk(level, dev, &vaf);			\
11413 								\
11414 	va_end(args);						\
11415 }								\
11416 EXPORT_SYMBOL(func);
11417 
11418 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11419 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11420 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11421 define_netdev_printk_level(netdev_err, KERN_ERR);
11422 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11423 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11424 define_netdev_printk_level(netdev_info, KERN_INFO);
11425 
11426 static void __net_exit netdev_exit(struct net *net)
11427 {
11428 	kfree(net->dev_name_head);
11429 	kfree(net->dev_index_head);
11430 	if (net != &init_net)
11431 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11432 }
11433 
11434 static struct pernet_operations __net_initdata netdev_net_ops = {
11435 	.init = netdev_init,
11436 	.exit = netdev_exit,
11437 };
11438 
11439 static void __net_exit default_device_exit(struct net *net)
11440 {
11441 	struct net_device *dev, *aux;
11442 	/*
11443 	 * Push all migratable network devices back to the
11444 	 * initial network namespace
11445 	 */
11446 	rtnl_lock();
11447 	for_each_netdev_safe(net, dev, aux) {
11448 		int err;
11449 		char fb_name[IFNAMSIZ];
11450 
11451 		/* Ignore unmoveable devices (i.e. loopback) */
11452 		if (dev->features & NETIF_F_NETNS_LOCAL)
11453 			continue;
11454 
11455 		/* Leave virtual devices for the generic cleanup */
11456 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11457 			continue;
11458 
11459 		/* Push remaining network devices to init_net */
11460 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11461 		if (__dev_get_by_name(&init_net, fb_name))
11462 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11463 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11464 		if (err) {
11465 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11466 				 __func__, dev->name, err);
11467 			BUG();
11468 		}
11469 	}
11470 	rtnl_unlock();
11471 }
11472 
11473 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11474 {
11475 	/* Return with the rtnl_lock held when there are no network
11476 	 * devices unregistering in any network namespace in net_list.
11477 	 */
11478 	struct net *net;
11479 	bool unregistering;
11480 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11481 
11482 	add_wait_queue(&netdev_unregistering_wq, &wait);
11483 	for (;;) {
11484 		unregistering = false;
11485 		rtnl_lock();
11486 		list_for_each_entry(net, net_list, exit_list) {
11487 			if (net->dev_unreg_count > 0) {
11488 				unregistering = true;
11489 				break;
11490 			}
11491 		}
11492 		if (!unregistering)
11493 			break;
11494 		__rtnl_unlock();
11495 
11496 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11497 	}
11498 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11499 }
11500 
11501 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11502 {
11503 	/* At exit all network devices most be removed from a network
11504 	 * namespace.  Do this in the reverse order of registration.
11505 	 * Do this across as many network namespaces as possible to
11506 	 * improve batching efficiency.
11507 	 */
11508 	struct net_device *dev;
11509 	struct net *net;
11510 	LIST_HEAD(dev_kill_list);
11511 
11512 	/* To prevent network device cleanup code from dereferencing
11513 	 * loopback devices or network devices that have been freed
11514 	 * wait here for all pending unregistrations to complete,
11515 	 * before unregistring the loopback device and allowing the
11516 	 * network namespace be freed.
11517 	 *
11518 	 * The netdev todo list containing all network devices
11519 	 * unregistrations that happen in default_device_exit_batch
11520 	 * will run in the rtnl_unlock() at the end of
11521 	 * default_device_exit_batch.
11522 	 */
11523 	rtnl_lock_unregistering(net_list);
11524 	list_for_each_entry(net, net_list, exit_list) {
11525 		for_each_netdev_reverse(net, dev) {
11526 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11527 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11528 			else
11529 				unregister_netdevice_queue(dev, &dev_kill_list);
11530 		}
11531 	}
11532 	unregister_netdevice_many(&dev_kill_list);
11533 	rtnl_unlock();
11534 }
11535 
11536 static struct pernet_operations __net_initdata default_device_ops = {
11537 	.exit = default_device_exit,
11538 	.exit_batch = default_device_exit_batch,
11539 };
11540 
11541 /*
11542  *	Initialize the DEV module. At boot time this walks the device list and
11543  *	unhooks any devices that fail to initialise (normally hardware not
11544  *	present) and leaves us with a valid list of present and active devices.
11545  *
11546  */
11547 
11548 /*
11549  *       This is called single threaded during boot, so no need
11550  *       to take the rtnl semaphore.
11551  */
11552 static int __init net_dev_init(void)
11553 {
11554 	int i, rc = -ENOMEM;
11555 
11556 	BUG_ON(!dev_boot_phase);
11557 
11558 	if (dev_proc_init())
11559 		goto out;
11560 
11561 	if (netdev_kobject_init())
11562 		goto out;
11563 
11564 	INIT_LIST_HEAD(&ptype_all);
11565 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11566 		INIT_LIST_HEAD(&ptype_base[i]);
11567 
11568 	INIT_LIST_HEAD(&offload_base);
11569 
11570 	if (register_pernet_subsys(&netdev_net_ops))
11571 		goto out;
11572 
11573 	/*
11574 	 *	Initialise the packet receive queues.
11575 	 */
11576 
11577 	for_each_possible_cpu(i) {
11578 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11579 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11580 
11581 		INIT_WORK(flush, flush_backlog);
11582 
11583 		skb_queue_head_init(&sd->input_pkt_queue);
11584 		skb_queue_head_init(&sd->process_queue);
11585 #ifdef CONFIG_XFRM_OFFLOAD
11586 		skb_queue_head_init(&sd->xfrm_backlog);
11587 #endif
11588 		INIT_LIST_HEAD(&sd->poll_list);
11589 		sd->output_queue_tailp = &sd->output_queue;
11590 #ifdef CONFIG_RPS
11591 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11592 		sd->cpu = i;
11593 #endif
11594 
11595 		init_gro_hash(&sd->backlog);
11596 		sd->backlog.poll = process_backlog;
11597 		sd->backlog.weight = weight_p;
11598 	}
11599 
11600 	dev_boot_phase = 0;
11601 
11602 	/* The loopback device is special if any other network devices
11603 	 * is present in a network namespace the loopback device must
11604 	 * be present. Since we now dynamically allocate and free the
11605 	 * loopback device ensure this invariant is maintained by
11606 	 * keeping the loopback device as the first device on the
11607 	 * list of network devices.  Ensuring the loopback devices
11608 	 * is the first device that appears and the last network device
11609 	 * that disappears.
11610 	 */
11611 	if (register_pernet_device(&loopback_net_ops))
11612 		goto out;
11613 
11614 	if (register_pernet_device(&default_device_ops))
11615 		goto out;
11616 
11617 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11618 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11619 
11620 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11621 				       NULL, dev_cpu_dead);
11622 	WARN_ON(rc < 0);
11623 	rc = 0;
11624 out:
11625 	return rc;
11626 }
11627 
11628 subsys_initcall(net_dev_init);
11629