1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/skbuff.h> 97 #include <linux/bpf.h> 98 #include <linux/bpf_trace.h> 99 #include <net/net_namespace.h> 100 #include <net/sock.h> 101 #include <net/busy_poll.h> 102 #include <linux/rtnetlink.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/dst_metadata.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <linux/pci.h> 135 #include <linux/inetdevice.h> 136 #include <linux/cpu_rmap.h> 137 #include <linux/static_key.h> 138 #include <linux/hashtable.h> 139 #include <linux/vmalloc.h> 140 #include <linux/if_macvlan.h> 141 #include <linux/errqueue.h> 142 #include <linux/hrtimer.h> 143 #include <linux/netfilter_ingress.h> 144 #include <linux/crash_dump.h> 145 #include <linux/sctp.h> 146 #include <net/udp_tunnel.h> 147 #include <linux/net_namespace.h> 148 149 #include "net-sysfs.h" 150 151 #define MAX_GRO_SKBS 8 152 153 /* This should be increased if a protocol with a bigger head is added. */ 154 #define GRO_MAX_HEAD (MAX_HEADER + 128) 155 156 static DEFINE_SPINLOCK(ptype_lock); 157 static DEFINE_SPINLOCK(offload_lock); 158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 159 struct list_head ptype_all __read_mostly; /* Taps */ 160 static struct list_head offload_base __read_mostly; 161 162 static int netif_rx_internal(struct sk_buff *skb); 163 static int call_netdevice_notifiers_info(unsigned long val, 164 struct netdev_notifier_info *info); 165 static struct napi_struct *napi_by_id(unsigned int napi_id); 166 167 /* 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 169 * semaphore. 170 * 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 172 * 173 * Writers must hold the rtnl semaphore while they loop through the 174 * dev_base_head list, and hold dev_base_lock for writing when they do the 175 * actual updates. This allows pure readers to access the list even 176 * while a writer is preparing to update it. 177 * 178 * To put it another way, dev_base_lock is held for writing only to 179 * protect against pure readers; the rtnl semaphore provides the 180 * protection against other writers. 181 * 182 * See, for example usages, register_netdevice() and 183 * unregister_netdevice(), which must be called with the rtnl 184 * semaphore held. 185 */ 186 DEFINE_RWLOCK(dev_base_lock); 187 EXPORT_SYMBOL(dev_base_lock); 188 189 static DEFINE_MUTEX(ifalias_mutex); 190 191 /* protects napi_hash addition/deletion and napi_gen_id */ 192 static DEFINE_SPINLOCK(napi_hash_lock); 193 194 static unsigned int napi_gen_id = NR_CPUS; 195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 196 197 static seqcount_t devnet_rename_seq; 198 199 static inline void dev_base_seq_inc(struct net *net) 200 { 201 while (++net->dev_base_seq == 0) 202 ; 203 } 204 205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 206 { 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 208 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 210 } 211 212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 213 { 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 215 } 216 217 static inline void rps_lock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_lock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 static inline void rps_unlock(struct softnet_data *sd) 225 { 226 #ifdef CONFIG_RPS 227 spin_unlock(&sd->input_pkt_queue.lock); 228 #endif 229 } 230 231 /* Device list insertion */ 232 static void list_netdevice(struct net_device *dev) 233 { 234 struct net *net = dev_net(dev); 235 236 ASSERT_RTNL(); 237 238 write_lock_bh(&dev_base_lock); 239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 241 hlist_add_head_rcu(&dev->index_hlist, 242 dev_index_hash(net, dev->ifindex)); 243 write_unlock_bh(&dev_base_lock); 244 245 dev_base_seq_inc(net); 246 } 247 248 /* Device list removal 249 * caller must respect a RCU grace period before freeing/reusing dev 250 */ 251 static void unlist_netdevice(struct net_device *dev) 252 { 253 ASSERT_RTNL(); 254 255 /* Unlink dev from the device chain */ 256 write_lock_bh(&dev_base_lock); 257 list_del_rcu(&dev->dev_list); 258 hlist_del_rcu(&dev->name_hlist); 259 hlist_del_rcu(&dev->index_hlist); 260 write_unlock_bh(&dev_base_lock); 261 262 dev_base_seq_inc(dev_net(dev)); 263 } 264 265 /* 266 * Our notifier list 267 */ 268 269 static RAW_NOTIFIER_HEAD(netdev_chain); 270 271 /* 272 * Device drivers call our routines to queue packets here. We empty the 273 * queue in the local softnet handler. 274 */ 275 276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 277 EXPORT_PER_CPU_SYMBOL(softnet_data); 278 279 #ifdef CONFIG_LOCKDEP 280 /* 281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 282 * according to dev->type 283 */ 284 static const unsigned short netdev_lock_type[] = { 285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 300 301 static const char *const netdev_lock_name[] = { 302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 317 318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 320 321 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 322 { 323 int i; 324 325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 326 if (netdev_lock_type[i] == dev_type) 327 return i; 328 /* the last key is used by default */ 329 return ARRAY_SIZE(netdev_lock_type) - 1; 330 } 331 332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 333 unsigned short dev_type) 334 { 335 int i; 336 337 i = netdev_lock_pos(dev_type); 338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 339 netdev_lock_name[i]); 340 } 341 342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 343 { 344 int i; 345 346 i = netdev_lock_pos(dev->type); 347 lockdep_set_class_and_name(&dev->addr_list_lock, 348 &netdev_addr_lock_key[i], 349 netdev_lock_name[i]); 350 } 351 #else 352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 353 unsigned short dev_type) 354 { 355 } 356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 357 { 358 } 359 #endif 360 361 /******************************************************************************* 362 * 363 * Protocol management and registration routines 364 * 365 *******************************************************************************/ 366 367 368 /* 369 * Add a protocol ID to the list. Now that the input handler is 370 * smarter we can dispense with all the messy stuff that used to be 371 * here. 372 * 373 * BEWARE!!! Protocol handlers, mangling input packets, 374 * MUST BE last in hash buckets and checking protocol handlers 375 * MUST start from promiscuous ptype_all chain in net_bh. 376 * It is true now, do not change it. 377 * Explanation follows: if protocol handler, mangling packet, will 378 * be the first on list, it is not able to sense, that packet 379 * is cloned and should be copied-on-write, so that it will 380 * change it and subsequent readers will get broken packet. 381 * --ANK (980803) 382 */ 383 384 static inline struct list_head *ptype_head(const struct packet_type *pt) 385 { 386 if (pt->type == htons(ETH_P_ALL)) 387 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 388 else 389 return pt->dev ? &pt->dev->ptype_specific : 390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 391 } 392 393 /** 394 * dev_add_pack - add packet handler 395 * @pt: packet type declaration 396 * 397 * Add a protocol handler to the networking stack. The passed &packet_type 398 * is linked into kernel lists and may not be freed until it has been 399 * removed from the kernel lists. 400 * 401 * This call does not sleep therefore it can not 402 * guarantee all CPU's that are in middle of receiving packets 403 * will see the new packet type (until the next received packet). 404 */ 405 406 void dev_add_pack(struct packet_type *pt) 407 { 408 struct list_head *head = ptype_head(pt); 409 410 spin_lock(&ptype_lock); 411 list_add_rcu(&pt->list, head); 412 spin_unlock(&ptype_lock); 413 } 414 EXPORT_SYMBOL(dev_add_pack); 415 416 /** 417 * __dev_remove_pack - remove packet handler 418 * @pt: packet type declaration 419 * 420 * Remove a protocol handler that was previously added to the kernel 421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 422 * from the kernel lists and can be freed or reused once this function 423 * returns. 424 * 425 * The packet type might still be in use by receivers 426 * and must not be freed until after all the CPU's have gone 427 * through a quiescent state. 428 */ 429 void __dev_remove_pack(struct packet_type *pt) 430 { 431 struct list_head *head = ptype_head(pt); 432 struct packet_type *pt1; 433 434 spin_lock(&ptype_lock); 435 436 list_for_each_entry(pt1, head, list) { 437 if (pt == pt1) { 438 list_del_rcu(&pt->list); 439 goto out; 440 } 441 } 442 443 pr_warn("dev_remove_pack: %p not found\n", pt); 444 out: 445 spin_unlock(&ptype_lock); 446 } 447 EXPORT_SYMBOL(__dev_remove_pack); 448 449 /** 450 * dev_remove_pack - remove packet handler 451 * @pt: packet type declaration 452 * 453 * Remove a protocol handler that was previously added to the kernel 454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 455 * from the kernel lists and can be freed or reused once this function 456 * returns. 457 * 458 * This call sleeps to guarantee that no CPU is looking at the packet 459 * type after return. 460 */ 461 void dev_remove_pack(struct packet_type *pt) 462 { 463 __dev_remove_pack(pt); 464 465 synchronize_net(); 466 } 467 EXPORT_SYMBOL(dev_remove_pack); 468 469 470 /** 471 * dev_add_offload - register offload handlers 472 * @po: protocol offload declaration 473 * 474 * Add protocol offload handlers to the networking stack. The passed 475 * &proto_offload is linked into kernel lists and may not be freed until 476 * it has been removed from the kernel lists. 477 * 478 * This call does not sleep therefore it can not 479 * guarantee all CPU's that are in middle of receiving packets 480 * will see the new offload handlers (until the next received packet). 481 */ 482 void dev_add_offload(struct packet_offload *po) 483 { 484 struct packet_offload *elem; 485 486 spin_lock(&offload_lock); 487 list_for_each_entry(elem, &offload_base, list) { 488 if (po->priority < elem->priority) 489 break; 490 } 491 list_add_rcu(&po->list, elem->list.prev); 492 spin_unlock(&offload_lock); 493 } 494 EXPORT_SYMBOL(dev_add_offload); 495 496 /** 497 * __dev_remove_offload - remove offload handler 498 * @po: packet offload declaration 499 * 500 * Remove a protocol offload handler that was previously added to the 501 * kernel offload handlers by dev_add_offload(). The passed &offload_type 502 * is removed from the kernel lists and can be freed or reused once this 503 * function returns. 504 * 505 * The packet type might still be in use by receivers 506 * and must not be freed until after all the CPU's have gone 507 * through a quiescent state. 508 */ 509 static void __dev_remove_offload(struct packet_offload *po) 510 { 511 struct list_head *head = &offload_base; 512 struct packet_offload *po1; 513 514 spin_lock(&offload_lock); 515 516 list_for_each_entry(po1, head, list) { 517 if (po == po1) { 518 list_del_rcu(&po->list); 519 goto out; 520 } 521 } 522 523 pr_warn("dev_remove_offload: %p not found\n", po); 524 out: 525 spin_unlock(&offload_lock); 526 } 527 528 /** 529 * dev_remove_offload - remove packet offload handler 530 * @po: packet offload declaration 531 * 532 * Remove a packet offload handler that was previously added to the kernel 533 * offload handlers by dev_add_offload(). The passed &offload_type is 534 * removed from the kernel lists and can be freed or reused once this 535 * function returns. 536 * 537 * This call sleeps to guarantee that no CPU is looking at the packet 538 * type after return. 539 */ 540 void dev_remove_offload(struct packet_offload *po) 541 { 542 __dev_remove_offload(po); 543 544 synchronize_net(); 545 } 546 EXPORT_SYMBOL(dev_remove_offload); 547 548 /****************************************************************************** 549 * 550 * Device Boot-time Settings Routines 551 * 552 ******************************************************************************/ 553 554 /* Boot time configuration table */ 555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 556 557 /** 558 * netdev_boot_setup_add - add new setup entry 559 * @name: name of the device 560 * @map: configured settings for the device 561 * 562 * Adds new setup entry to the dev_boot_setup list. The function 563 * returns 0 on error and 1 on success. This is a generic routine to 564 * all netdevices. 565 */ 566 static int netdev_boot_setup_add(char *name, struct ifmap *map) 567 { 568 struct netdev_boot_setup *s; 569 int i; 570 571 s = dev_boot_setup; 572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 574 memset(s[i].name, 0, sizeof(s[i].name)); 575 strlcpy(s[i].name, name, IFNAMSIZ); 576 memcpy(&s[i].map, map, sizeof(s[i].map)); 577 break; 578 } 579 } 580 581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 582 } 583 584 /** 585 * netdev_boot_setup_check - check boot time settings 586 * @dev: the netdevice 587 * 588 * Check boot time settings for the device. 589 * The found settings are set for the device to be used 590 * later in the device probing. 591 * Returns 0 if no settings found, 1 if they are. 592 */ 593 int netdev_boot_setup_check(struct net_device *dev) 594 { 595 struct netdev_boot_setup *s = dev_boot_setup; 596 int i; 597 598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 600 !strcmp(dev->name, s[i].name)) { 601 dev->irq = s[i].map.irq; 602 dev->base_addr = s[i].map.base_addr; 603 dev->mem_start = s[i].map.mem_start; 604 dev->mem_end = s[i].map.mem_end; 605 return 1; 606 } 607 } 608 return 0; 609 } 610 EXPORT_SYMBOL(netdev_boot_setup_check); 611 612 613 /** 614 * netdev_boot_base - get address from boot time settings 615 * @prefix: prefix for network device 616 * @unit: id for network device 617 * 618 * Check boot time settings for the base address of device. 619 * The found settings are set for the device to be used 620 * later in the device probing. 621 * Returns 0 if no settings found. 622 */ 623 unsigned long netdev_boot_base(const char *prefix, int unit) 624 { 625 const struct netdev_boot_setup *s = dev_boot_setup; 626 char name[IFNAMSIZ]; 627 int i; 628 629 sprintf(name, "%s%d", prefix, unit); 630 631 /* 632 * If device already registered then return base of 1 633 * to indicate not to probe for this interface 634 */ 635 if (__dev_get_by_name(&init_net, name)) 636 return 1; 637 638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 639 if (!strcmp(name, s[i].name)) 640 return s[i].map.base_addr; 641 return 0; 642 } 643 644 /* 645 * Saves at boot time configured settings for any netdevice. 646 */ 647 int __init netdev_boot_setup(char *str) 648 { 649 int ints[5]; 650 struct ifmap map; 651 652 str = get_options(str, ARRAY_SIZE(ints), ints); 653 if (!str || !*str) 654 return 0; 655 656 /* Save settings */ 657 memset(&map, 0, sizeof(map)); 658 if (ints[0] > 0) 659 map.irq = ints[1]; 660 if (ints[0] > 1) 661 map.base_addr = ints[2]; 662 if (ints[0] > 2) 663 map.mem_start = ints[3]; 664 if (ints[0] > 3) 665 map.mem_end = ints[4]; 666 667 /* Add new entry to the list */ 668 return netdev_boot_setup_add(str, &map); 669 } 670 671 __setup("netdev=", netdev_boot_setup); 672 673 /******************************************************************************* 674 * 675 * Device Interface Subroutines 676 * 677 *******************************************************************************/ 678 679 /** 680 * dev_get_iflink - get 'iflink' value of a interface 681 * @dev: targeted interface 682 * 683 * Indicates the ifindex the interface is linked to. 684 * Physical interfaces have the same 'ifindex' and 'iflink' values. 685 */ 686 687 int dev_get_iflink(const struct net_device *dev) 688 { 689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 690 return dev->netdev_ops->ndo_get_iflink(dev); 691 692 return dev->ifindex; 693 } 694 EXPORT_SYMBOL(dev_get_iflink); 695 696 /** 697 * dev_fill_metadata_dst - Retrieve tunnel egress information. 698 * @dev: targeted interface 699 * @skb: The packet. 700 * 701 * For better visibility of tunnel traffic OVS needs to retrieve 702 * egress tunnel information for a packet. Following API allows 703 * user to get this info. 704 */ 705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 706 { 707 struct ip_tunnel_info *info; 708 709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 710 return -EINVAL; 711 712 info = skb_tunnel_info_unclone(skb); 713 if (!info) 714 return -ENOMEM; 715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 716 return -EINVAL; 717 718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 719 } 720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 721 722 /** 723 * __dev_get_by_name - find a device by its name 724 * @net: the applicable net namespace 725 * @name: name to find 726 * 727 * Find an interface by name. Must be called under RTNL semaphore 728 * or @dev_base_lock. If the name is found a pointer to the device 729 * is returned. If the name is not found then %NULL is returned. The 730 * reference counters are not incremented so the caller must be 731 * careful with locks. 732 */ 733 734 struct net_device *__dev_get_by_name(struct net *net, const char *name) 735 { 736 struct net_device *dev; 737 struct hlist_head *head = dev_name_hash(net, name); 738 739 hlist_for_each_entry(dev, head, name_hlist) 740 if (!strncmp(dev->name, name, IFNAMSIZ)) 741 return dev; 742 743 return NULL; 744 } 745 EXPORT_SYMBOL(__dev_get_by_name); 746 747 /** 748 * dev_get_by_name_rcu - find a device by its name 749 * @net: the applicable net namespace 750 * @name: name to find 751 * 752 * Find an interface by name. 753 * If the name is found a pointer to the device is returned. 754 * If the name is not found then %NULL is returned. 755 * The reference counters are not incremented so the caller must be 756 * careful with locks. The caller must hold RCU lock. 757 */ 758 759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 760 { 761 struct net_device *dev; 762 struct hlist_head *head = dev_name_hash(net, name); 763 764 hlist_for_each_entry_rcu(dev, head, name_hlist) 765 if (!strncmp(dev->name, name, IFNAMSIZ)) 766 return dev; 767 768 return NULL; 769 } 770 EXPORT_SYMBOL(dev_get_by_name_rcu); 771 772 /** 773 * dev_get_by_name - find a device by its name 774 * @net: the applicable net namespace 775 * @name: name to find 776 * 777 * Find an interface by name. This can be called from any 778 * context and does its own locking. The returned handle has 779 * the usage count incremented and the caller must use dev_put() to 780 * release it when it is no longer needed. %NULL is returned if no 781 * matching device is found. 782 */ 783 784 struct net_device *dev_get_by_name(struct net *net, const char *name) 785 { 786 struct net_device *dev; 787 788 rcu_read_lock(); 789 dev = dev_get_by_name_rcu(net, name); 790 if (dev) 791 dev_hold(dev); 792 rcu_read_unlock(); 793 return dev; 794 } 795 EXPORT_SYMBOL(dev_get_by_name); 796 797 /** 798 * __dev_get_by_index - find a device by its ifindex 799 * @net: the applicable net namespace 800 * @ifindex: index of device 801 * 802 * Search for an interface by index. Returns %NULL if the device 803 * is not found or a pointer to the device. The device has not 804 * had its reference counter increased so the caller must be careful 805 * about locking. The caller must hold either the RTNL semaphore 806 * or @dev_base_lock. 807 */ 808 809 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 810 { 811 struct net_device *dev; 812 struct hlist_head *head = dev_index_hash(net, ifindex); 813 814 hlist_for_each_entry(dev, head, index_hlist) 815 if (dev->ifindex == ifindex) 816 return dev; 817 818 return NULL; 819 } 820 EXPORT_SYMBOL(__dev_get_by_index); 821 822 /** 823 * dev_get_by_index_rcu - find a device by its ifindex 824 * @net: the applicable net namespace 825 * @ifindex: index of device 826 * 827 * Search for an interface by index. Returns %NULL if the device 828 * is not found or a pointer to the device. The device has not 829 * had its reference counter increased so the caller must be careful 830 * about locking. The caller must hold RCU lock. 831 */ 832 833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 834 { 835 struct net_device *dev; 836 struct hlist_head *head = dev_index_hash(net, ifindex); 837 838 hlist_for_each_entry_rcu(dev, head, index_hlist) 839 if (dev->ifindex == ifindex) 840 return dev; 841 842 return NULL; 843 } 844 EXPORT_SYMBOL(dev_get_by_index_rcu); 845 846 847 /** 848 * dev_get_by_index - find a device by its ifindex 849 * @net: the applicable net namespace 850 * @ifindex: index of device 851 * 852 * Search for an interface by index. Returns NULL if the device 853 * is not found or a pointer to the device. The device returned has 854 * had a reference added and the pointer is safe until the user calls 855 * dev_put to indicate they have finished with it. 856 */ 857 858 struct net_device *dev_get_by_index(struct net *net, int ifindex) 859 { 860 struct net_device *dev; 861 862 rcu_read_lock(); 863 dev = dev_get_by_index_rcu(net, ifindex); 864 if (dev) 865 dev_hold(dev); 866 rcu_read_unlock(); 867 return dev; 868 } 869 EXPORT_SYMBOL(dev_get_by_index); 870 871 /** 872 * dev_get_by_napi_id - find a device by napi_id 873 * @napi_id: ID of the NAPI struct 874 * 875 * Search for an interface by NAPI ID. Returns %NULL if the device 876 * is not found or a pointer to the device. The device has not had 877 * its reference counter increased so the caller must be careful 878 * about locking. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 882 { 883 struct napi_struct *napi; 884 885 WARN_ON_ONCE(!rcu_read_lock_held()); 886 887 if (napi_id < MIN_NAPI_ID) 888 return NULL; 889 890 napi = napi_by_id(napi_id); 891 892 return napi ? napi->dev : NULL; 893 } 894 EXPORT_SYMBOL(dev_get_by_napi_id); 895 896 /** 897 * netdev_get_name - get a netdevice name, knowing its ifindex. 898 * @net: network namespace 899 * @name: a pointer to the buffer where the name will be stored. 900 * @ifindex: the ifindex of the interface to get the name from. 901 * 902 * The use of raw_seqcount_begin() and cond_resched() before 903 * retrying is required as we want to give the writers a chance 904 * to complete when CONFIG_PREEMPT is not set. 905 */ 906 int netdev_get_name(struct net *net, char *name, int ifindex) 907 { 908 struct net_device *dev; 909 unsigned int seq; 910 911 retry: 912 seq = raw_seqcount_begin(&devnet_rename_seq); 913 rcu_read_lock(); 914 dev = dev_get_by_index_rcu(net, ifindex); 915 if (!dev) { 916 rcu_read_unlock(); 917 return -ENODEV; 918 } 919 920 strcpy(name, dev->name); 921 rcu_read_unlock(); 922 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 923 cond_resched(); 924 goto retry; 925 } 926 927 return 0; 928 } 929 930 /** 931 * dev_getbyhwaddr_rcu - find a device by its hardware address 932 * @net: the applicable net namespace 933 * @type: media type of device 934 * @ha: hardware address 935 * 936 * Search for an interface by MAC address. Returns NULL if the device 937 * is not found or a pointer to the device. 938 * The caller must hold RCU or RTNL. 939 * The returned device has not had its ref count increased 940 * and the caller must therefore be careful about locking 941 * 942 */ 943 944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 945 const char *ha) 946 { 947 struct net_device *dev; 948 949 for_each_netdev_rcu(net, dev) 950 if (dev->type == type && 951 !memcmp(dev->dev_addr, ha, dev->addr_len)) 952 return dev; 953 954 return NULL; 955 } 956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 957 958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 959 { 960 struct net_device *dev; 961 962 ASSERT_RTNL(); 963 for_each_netdev(net, dev) 964 if (dev->type == type) 965 return dev; 966 967 return NULL; 968 } 969 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 970 971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 972 { 973 struct net_device *dev, *ret = NULL; 974 975 rcu_read_lock(); 976 for_each_netdev_rcu(net, dev) 977 if (dev->type == type) { 978 dev_hold(dev); 979 ret = dev; 980 break; 981 } 982 rcu_read_unlock(); 983 return ret; 984 } 985 EXPORT_SYMBOL(dev_getfirstbyhwtype); 986 987 /** 988 * __dev_get_by_flags - find any device with given flags 989 * @net: the applicable net namespace 990 * @if_flags: IFF_* values 991 * @mask: bitmask of bits in if_flags to check 992 * 993 * Search for any interface with the given flags. Returns NULL if a device 994 * is not found or a pointer to the device. Must be called inside 995 * rtnl_lock(), and result refcount is unchanged. 996 */ 997 998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 999 unsigned short mask) 1000 { 1001 struct net_device *dev, *ret; 1002 1003 ASSERT_RTNL(); 1004 1005 ret = NULL; 1006 for_each_netdev(net, dev) { 1007 if (((dev->flags ^ if_flags) & mask) == 0) { 1008 ret = dev; 1009 break; 1010 } 1011 } 1012 return ret; 1013 } 1014 EXPORT_SYMBOL(__dev_get_by_flags); 1015 1016 /** 1017 * dev_valid_name - check if name is okay for network device 1018 * @name: name string 1019 * 1020 * Network device names need to be valid file names to 1021 * to allow sysfs to work. We also disallow any kind of 1022 * whitespace. 1023 */ 1024 bool dev_valid_name(const char *name) 1025 { 1026 if (*name == '\0') 1027 return false; 1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1029 return false; 1030 if (!strcmp(name, ".") || !strcmp(name, "..")) 1031 return false; 1032 1033 while (*name) { 1034 if (*name == '/' || *name == ':' || isspace(*name)) 1035 return false; 1036 name++; 1037 } 1038 return true; 1039 } 1040 EXPORT_SYMBOL(dev_valid_name); 1041 1042 /** 1043 * __dev_alloc_name - allocate a name for a device 1044 * @net: network namespace to allocate the device name in 1045 * @name: name format string 1046 * @buf: scratch buffer and result name string 1047 * 1048 * Passed a format string - eg "lt%d" it will try and find a suitable 1049 * id. It scans list of devices to build up a free map, then chooses 1050 * the first empty slot. The caller must hold the dev_base or rtnl lock 1051 * while allocating the name and adding the device in order to avoid 1052 * duplicates. 1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1054 * Returns the number of the unit assigned or a negative errno code. 1055 */ 1056 1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1058 { 1059 int i = 0; 1060 const char *p; 1061 const int max_netdevices = 8*PAGE_SIZE; 1062 unsigned long *inuse; 1063 struct net_device *d; 1064 1065 if (!dev_valid_name(name)) 1066 return -EINVAL; 1067 1068 p = strchr(name, '%'); 1069 if (p) { 1070 /* 1071 * Verify the string as this thing may have come from 1072 * the user. There must be either one "%d" and no other "%" 1073 * characters. 1074 */ 1075 if (p[1] != 'd' || strchr(p + 2, '%')) 1076 return -EINVAL; 1077 1078 /* Use one page as a bit array of possible slots */ 1079 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1080 if (!inuse) 1081 return -ENOMEM; 1082 1083 for_each_netdev(net, d) { 1084 if (!sscanf(d->name, name, &i)) 1085 continue; 1086 if (i < 0 || i >= max_netdevices) 1087 continue; 1088 1089 /* avoid cases where sscanf is not exact inverse of printf */ 1090 snprintf(buf, IFNAMSIZ, name, i); 1091 if (!strncmp(buf, d->name, IFNAMSIZ)) 1092 set_bit(i, inuse); 1093 } 1094 1095 i = find_first_zero_bit(inuse, max_netdevices); 1096 free_page((unsigned long) inuse); 1097 } 1098 1099 snprintf(buf, IFNAMSIZ, name, i); 1100 if (!__dev_get_by_name(net, buf)) 1101 return i; 1102 1103 /* It is possible to run out of possible slots 1104 * when the name is long and there isn't enough space left 1105 * for the digits, or if all bits are used. 1106 */ 1107 return -ENFILE; 1108 } 1109 1110 static int dev_alloc_name_ns(struct net *net, 1111 struct net_device *dev, 1112 const char *name) 1113 { 1114 char buf[IFNAMSIZ]; 1115 int ret; 1116 1117 BUG_ON(!net); 1118 ret = __dev_alloc_name(net, name, buf); 1119 if (ret >= 0) 1120 strlcpy(dev->name, buf, IFNAMSIZ); 1121 return ret; 1122 } 1123 1124 /** 1125 * dev_alloc_name - allocate a name for a device 1126 * @dev: device 1127 * @name: name format string 1128 * 1129 * Passed a format string - eg "lt%d" it will try and find a suitable 1130 * id. It scans list of devices to build up a free map, then chooses 1131 * the first empty slot. The caller must hold the dev_base or rtnl lock 1132 * while allocating the name and adding the device in order to avoid 1133 * duplicates. 1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1135 * Returns the number of the unit assigned or a negative errno code. 1136 */ 1137 1138 int dev_alloc_name(struct net_device *dev, const char *name) 1139 { 1140 return dev_alloc_name_ns(dev_net(dev), dev, name); 1141 } 1142 EXPORT_SYMBOL(dev_alloc_name); 1143 1144 int dev_get_valid_name(struct net *net, struct net_device *dev, 1145 const char *name) 1146 { 1147 BUG_ON(!net); 1148 1149 if (!dev_valid_name(name)) 1150 return -EINVAL; 1151 1152 if (strchr(name, '%')) 1153 return dev_alloc_name_ns(net, dev, name); 1154 else if (__dev_get_by_name(net, name)) 1155 return -EEXIST; 1156 else if (dev->name != name) 1157 strlcpy(dev->name, name, IFNAMSIZ); 1158 1159 return 0; 1160 } 1161 EXPORT_SYMBOL(dev_get_valid_name); 1162 1163 /** 1164 * dev_change_name - change name of a device 1165 * @dev: device 1166 * @newname: name (or format string) must be at least IFNAMSIZ 1167 * 1168 * Change name of a device, can pass format strings "eth%d". 1169 * for wildcarding. 1170 */ 1171 int dev_change_name(struct net_device *dev, const char *newname) 1172 { 1173 unsigned char old_assign_type; 1174 char oldname[IFNAMSIZ]; 1175 int err = 0; 1176 int ret; 1177 struct net *net; 1178 1179 ASSERT_RTNL(); 1180 BUG_ON(!dev_net(dev)); 1181 1182 net = dev_net(dev); 1183 if (dev->flags & IFF_UP) 1184 return -EBUSY; 1185 1186 write_seqcount_begin(&devnet_rename_seq); 1187 1188 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1189 write_seqcount_end(&devnet_rename_seq); 1190 return 0; 1191 } 1192 1193 memcpy(oldname, dev->name, IFNAMSIZ); 1194 1195 err = dev_get_valid_name(net, dev, newname); 1196 if (err < 0) { 1197 write_seqcount_end(&devnet_rename_seq); 1198 return err; 1199 } 1200 1201 if (oldname[0] && !strchr(oldname, '%')) 1202 netdev_info(dev, "renamed from %s\n", oldname); 1203 1204 old_assign_type = dev->name_assign_type; 1205 dev->name_assign_type = NET_NAME_RENAMED; 1206 1207 rollback: 1208 ret = device_rename(&dev->dev, dev->name); 1209 if (ret) { 1210 memcpy(dev->name, oldname, IFNAMSIZ); 1211 dev->name_assign_type = old_assign_type; 1212 write_seqcount_end(&devnet_rename_seq); 1213 return ret; 1214 } 1215 1216 write_seqcount_end(&devnet_rename_seq); 1217 1218 netdev_adjacent_rename_links(dev, oldname); 1219 1220 write_lock_bh(&dev_base_lock); 1221 hlist_del_rcu(&dev->name_hlist); 1222 write_unlock_bh(&dev_base_lock); 1223 1224 synchronize_rcu(); 1225 1226 write_lock_bh(&dev_base_lock); 1227 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1228 write_unlock_bh(&dev_base_lock); 1229 1230 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1231 ret = notifier_to_errno(ret); 1232 1233 if (ret) { 1234 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1235 if (err >= 0) { 1236 err = ret; 1237 write_seqcount_begin(&devnet_rename_seq); 1238 memcpy(dev->name, oldname, IFNAMSIZ); 1239 memcpy(oldname, newname, IFNAMSIZ); 1240 dev->name_assign_type = old_assign_type; 1241 old_assign_type = NET_NAME_RENAMED; 1242 goto rollback; 1243 } else { 1244 pr_err("%s: name change rollback failed: %d\n", 1245 dev->name, ret); 1246 } 1247 } 1248 1249 return err; 1250 } 1251 1252 /** 1253 * dev_set_alias - change ifalias of a device 1254 * @dev: device 1255 * @alias: name up to IFALIASZ 1256 * @len: limit of bytes to copy from info 1257 * 1258 * Set ifalias for a device, 1259 */ 1260 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1261 { 1262 struct dev_ifalias *new_alias = NULL; 1263 1264 if (len >= IFALIASZ) 1265 return -EINVAL; 1266 1267 if (len) { 1268 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1269 if (!new_alias) 1270 return -ENOMEM; 1271 1272 memcpy(new_alias->ifalias, alias, len); 1273 new_alias->ifalias[len] = 0; 1274 } 1275 1276 mutex_lock(&ifalias_mutex); 1277 rcu_swap_protected(dev->ifalias, new_alias, 1278 mutex_is_locked(&ifalias_mutex)); 1279 mutex_unlock(&ifalias_mutex); 1280 1281 if (new_alias) 1282 kfree_rcu(new_alias, rcuhead); 1283 1284 return len; 1285 } 1286 EXPORT_SYMBOL(dev_set_alias); 1287 1288 /** 1289 * dev_get_alias - get ifalias of a device 1290 * @dev: device 1291 * @name: buffer to store name of ifalias 1292 * @len: size of buffer 1293 * 1294 * get ifalias for a device. Caller must make sure dev cannot go 1295 * away, e.g. rcu read lock or own a reference count to device. 1296 */ 1297 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1298 { 1299 const struct dev_ifalias *alias; 1300 int ret = 0; 1301 1302 rcu_read_lock(); 1303 alias = rcu_dereference(dev->ifalias); 1304 if (alias) 1305 ret = snprintf(name, len, "%s", alias->ifalias); 1306 rcu_read_unlock(); 1307 1308 return ret; 1309 } 1310 1311 /** 1312 * netdev_features_change - device changes features 1313 * @dev: device to cause notification 1314 * 1315 * Called to indicate a device has changed features. 1316 */ 1317 void netdev_features_change(struct net_device *dev) 1318 { 1319 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1320 } 1321 EXPORT_SYMBOL(netdev_features_change); 1322 1323 /** 1324 * netdev_state_change - device changes state 1325 * @dev: device to cause notification 1326 * 1327 * Called to indicate a device has changed state. This function calls 1328 * the notifier chains for netdev_chain and sends a NEWLINK message 1329 * to the routing socket. 1330 */ 1331 void netdev_state_change(struct net_device *dev) 1332 { 1333 if (dev->flags & IFF_UP) { 1334 struct netdev_notifier_change_info change_info = { 1335 .info.dev = dev, 1336 }; 1337 1338 call_netdevice_notifiers_info(NETDEV_CHANGE, 1339 &change_info.info); 1340 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1341 } 1342 } 1343 EXPORT_SYMBOL(netdev_state_change); 1344 1345 /** 1346 * netdev_notify_peers - notify network peers about existence of @dev 1347 * @dev: network device 1348 * 1349 * Generate traffic such that interested network peers are aware of 1350 * @dev, such as by generating a gratuitous ARP. This may be used when 1351 * a device wants to inform the rest of the network about some sort of 1352 * reconfiguration such as a failover event or virtual machine 1353 * migration. 1354 */ 1355 void netdev_notify_peers(struct net_device *dev) 1356 { 1357 rtnl_lock(); 1358 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1359 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1360 rtnl_unlock(); 1361 } 1362 EXPORT_SYMBOL(netdev_notify_peers); 1363 1364 static int __dev_open(struct net_device *dev) 1365 { 1366 const struct net_device_ops *ops = dev->netdev_ops; 1367 int ret; 1368 1369 ASSERT_RTNL(); 1370 1371 if (!netif_device_present(dev)) 1372 return -ENODEV; 1373 1374 /* Block netpoll from trying to do any rx path servicing. 1375 * If we don't do this there is a chance ndo_poll_controller 1376 * or ndo_poll may be running while we open the device 1377 */ 1378 netpoll_poll_disable(dev); 1379 1380 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1381 ret = notifier_to_errno(ret); 1382 if (ret) 1383 return ret; 1384 1385 set_bit(__LINK_STATE_START, &dev->state); 1386 1387 if (ops->ndo_validate_addr) 1388 ret = ops->ndo_validate_addr(dev); 1389 1390 if (!ret && ops->ndo_open) 1391 ret = ops->ndo_open(dev); 1392 1393 netpoll_poll_enable(dev); 1394 1395 if (ret) 1396 clear_bit(__LINK_STATE_START, &dev->state); 1397 else { 1398 dev->flags |= IFF_UP; 1399 dev_set_rx_mode(dev); 1400 dev_activate(dev); 1401 add_device_randomness(dev->dev_addr, dev->addr_len); 1402 } 1403 1404 return ret; 1405 } 1406 1407 /** 1408 * dev_open - prepare an interface for use. 1409 * @dev: device to open 1410 * 1411 * Takes a device from down to up state. The device's private open 1412 * function is invoked and then the multicast lists are loaded. Finally 1413 * the device is moved into the up state and a %NETDEV_UP message is 1414 * sent to the netdev notifier chain. 1415 * 1416 * Calling this function on an active interface is a nop. On a failure 1417 * a negative errno code is returned. 1418 */ 1419 int dev_open(struct net_device *dev) 1420 { 1421 int ret; 1422 1423 if (dev->flags & IFF_UP) 1424 return 0; 1425 1426 ret = __dev_open(dev); 1427 if (ret < 0) 1428 return ret; 1429 1430 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1431 call_netdevice_notifiers(NETDEV_UP, dev); 1432 1433 return ret; 1434 } 1435 EXPORT_SYMBOL(dev_open); 1436 1437 static void __dev_close_many(struct list_head *head) 1438 { 1439 struct net_device *dev; 1440 1441 ASSERT_RTNL(); 1442 might_sleep(); 1443 1444 list_for_each_entry(dev, head, close_list) { 1445 /* Temporarily disable netpoll until the interface is down */ 1446 netpoll_poll_disable(dev); 1447 1448 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1449 1450 clear_bit(__LINK_STATE_START, &dev->state); 1451 1452 /* Synchronize to scheduled poll. We cannot touch poll list, it 1453 * can be even on different cpu. So just clear netif_running(). 1454 * 1455 * dev->stop() will invoke napi_disable() on all of it's 1456 * napi_struct instances on this device. 1457 */ 1458 smp_mb__after_atomic(); /* Commit netif_running(). */ 1459 } 1460 1461 dev_deactivate_many(head); 1462 1463 list_for_each_entry(dev, head, close_list) { 1464 const struct net_device_ops *ops = dev->netdev_ops; 1465 1466 /* 1467 * Call the device specific close. This cannot fail. 1468 * Only if device is UP 1469 * 1470 * We allow it to be called even after a DETACH hot-plug 1471 * event. 1472 */ 1473 if (ops->ndo_stop) 1474 ops->ndo_stop(dev); 1475 1476 dev->flags &= ~IFF_UP; 1477 netpoll_poll_enable(dev); 1478 } 1479 } 1480 1481 static void __dev_close(struct net_device *dev) 1482 { 1483 LIST_HEAD(single); 1484 1485 list_add(&dev->close_list, &single); 1486 __dev_close_many(&single); 1487 list_del(&single); 1488 } 1489 1490 void dev_close_many(struct list_head *head, bool unlink) 1491 { 1492 struct net_device *dev, *tmp; 1493 1494 /* Remove the devices that don't need to be closed */ 1495 list_for_each_entry_safe(dev, tmp, head, close_list) 1496 if (!(dev->flags & IFF_UP)) 1497 list_del_init(&dev->close_list); 1498 1499 __dev_close_many(head); 1500 1501 list_for_each_entry_safe(dev, tmp, head, close_list) { 1502 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1503 call_netdevice_notifiers(NETDEV_DOWN, dev); 1504 if (unlink) 1505 list_del_init(&dev->close_list); 1506 } 1507 } 1508 EXPORT_SYMBOL(dev_close_many); 1509 1510 /** 1511 * dev_close - shutdown an interface. 1512 * @dev: device to shutdown 1513 * 1514 * This function moves an active device into down state. A 1515 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1516 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1517 * chain. 1518 */ 1519 void dev_close(struct net_device *dev) 1520 { 1521 if (dev->flags & IFF_UP) { 1522 LIST_HEAD(single); 1523 1524 list_add(&dev->close_list, &single); 1525 dev_close_many(&single, true); 1526 list_del(&single); 1527 } 1528 } 1529 EXPORT_SYMBOL(dev_close); 1530 1531 1532 /** 1533 * dev_disable_lro - disable Large Receive Offload on a device 1534 * @dev: device 1535 * 1536 * Disable Large Receive Offload (LRO) on a net device. Must be 1537 * called under RTNL. This is needed if received packets may be 1538 * forwarded to another interface. 1539 */ 1540 void dev_disable_lro(struct net_device *dev) 1541 { 1542 struct net_device *lower_dev; 1543 struct list_head *iter; 1544 1545 dev->wanted_features &= ~NETIF_F_LRO; 1546 netdev_update_features(dev); 1547 1548 if (unlikely(dev->features & NETIF_F_LRO)) 1549 netdev_WARN(dev, "failed to disable LRO!\n"); 1550 1551 netdev_for_each_lower_dev(dev, lower_dev, iter) 1552 dev_disable_lro(lower_dev); 1553 } 1554 EXPORT_SYMBOL(dev_disable_lro); 1555 1556 /** 1557 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1558 * @dev: device 1559 * 1560 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1561 * called under RTNL. This is needed if Generic XDP is installed on 1562 * the device. 1563 */ 1564 static void dev_disable_gro_hw(struct net_device *dev) 1565 { 1566 dev->wanted_features &= ~NETIF_F_GRO_HW; 1567 netdev_update_features(dev); 1568 1569 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1570 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1571 } 1572 1573 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1574 { 1575 #define N(val) \ 1576 case NETDEV_##val: \ 1577 return "NETDEV_" __stringify(val); 1578 switch (cmd) { 1579 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1580 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1581 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1582 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1583 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1584 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1585 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1586 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1587 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1588 } 1589 #undef N 1590 return "UNKNOWN_NETDEV_EVENT"; 1591 } 1592 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1593 1594 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1595 struct net_device *dev) 1596 { 1597 struct netdev_notifier_info info = { 1598 .dev = dev, 1599 }; 1600 1601 return nb->notifier_call(nb, val, &info); 1602 } 1603 1604 static int dev_boot_phase = 1; 1605 1606 /** 1607 * register_netdevice_notifier - register a network notifier block 1608 * @nb: notifier 1609 * 1610 * Register a notifier to be called when network device events occur. 1611 * The notifier passed is linked into the kernel structures and must 1612 * not be reused until it has been unregistered. A negative errno code 1613 * is returned on a failure. 1614 * 1615 * When registered all registration and up events are replayed 1616 * to the new notifier to allow device to have a race free 1617 * view of the network device list. 1618 */ 1619 1620 int register_netdevice_notifier(struct notifier_block *nb) 1621 { 1622 struct net_device *dev; 1623 struct net_device *last; 1624 struct net *net; 1625 int err; 1626 1627 /* Close race with setup_net() and cleanup_net() */ 1628 down_write(&pernet_ops_rwsem); 1629 rtnl_lock(); 1630 err = raw_notifier_chain_register(&netdev_chain, nb); 1631 if (err) 1632 goto unlock; 1633 if (dev_boot_phase) 1634 goto unlock; 1635 for_each_net(net) { 1636 for_each_netdev(net, dev) { 1637 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1638 err = notifier_to_errno(err); 1639 if (err) 1640 goto rollback; 1641 1642 if (!(dev->flags & IFF_UP)) 1643 continue; 1644 1645 call_netdevice_notifier(nb, NETDEV_UP, dev); 1646 } 1647 } 1648 1649 unlock: 1650 rtnl_unlock(); 1651 up_write(&pernet_ops_rwsem); 1652 return err; 1653 1654 rollback: 1655 last = dev; 1656 for_each_net(net) { 1657 for_each_netdev(net, dev) { 1658 if (dev == last) 1659 goto outroll; 1660 1661 if (dev->flags & IFF_UP) { 1662 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1663 dev); 1664 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1665 } 1666 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1667 } 1668 } 1669 1670 outroll: 1671 raw_notifier_chain_unregister(&netdev_chain, nb); 1672 goto unlock; 1673 } 1674 EXPORT_SYMBOL(register_netdevice_notifier); 1675 1676 /** 1677 * unregister_netdevice_notifier - unregister a network notifier block 1678 * @nb: notifier 1679 * 1680 * Unregister a notifier previously registered by 1681 * register_netdevice_notifier(). The notifier is unlinked into the 1682 * kernel structures and may then be reused. A negative errno code 1683 * is returned on a failure. 1684 * 1685 * After unregistering unregister and down device events are synthesized 1686 * for all devices on the device list to the removed notifier to remove 1687 * the need for special case cleanup code. 1688 */ 1689 1690 int unregister_netdevice_notifier(struct notifier_block *nb) 1691 { 1692 struct net_device *dev; 1693 struct net *net; 1694 int err; 1695 1696 /* Close race with setup_net() and cleanup_net() */ 1697 down_write(&pernet_ops_rwsem); 1698 rtnl_lock(); 1699 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1700 if (err) 1701 goto unlock; 1702 1703 for_each_net(net) { 1704 for_each_netdev(net, dev) { 1705 if (dev->flags & IFF_UP) { 1706 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1707 dev); 1708 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1709 } 1710 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1711 } 1712 } 1713 unlock: 1714 rtnl_unlock(); 1715 up_write(&pernet_ops_rwsem); 1716 return err; 1717 } 1718 EXPORT_SYMBOL(unregister_netdevice_notifier); 1719 1720 /** 1721 * call_netdevice_notifiers_info - call all network notifier blocks 1722 * @val: value passed unmodified to notifier function 1723 * @info: notifier information data 1724 * 1725 * Call all network notifier blocks. Parameters and return value 1726 * are as for raw_notifier_call_chain(). 1727 */ 1728 1729 static int call_netdevice_notifiers_info(unsigned long val, 1730 struct netdev_notifier_info *info) 1731 { 1732 ASSERT_RTNL(); 1733 return raw_notifier_call_chain(&netdev_chain, val, info); 1734 } 1735 1736 /** 1737 * call_netdevice_notifiers - call all network notifier blocks 1738 * @val: value passed unmodified to notifier function 1739 * @dev: net_device pointer passed unmodified to notifier function 1740 * 1741 * Call all network notifier blocks. Parameters and return value 1742 * are as for raw_notifier_call_chain(). 1743 */ 1744 1745 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1746 { 1747 struct netdev_notifier_info info = { 1748 .dev = dev, 1749 }; 1750 1751 return call_netdevice_notifiers_info(val, &info); 1752 } 1753 EXPORT_SYMBOL(call_netdevice_notifiers); 1754 1755 /** 1756 * call_netdevice_notifiers_mtu - call all network notifier blocks 1757 * @val: value passed unmodified to notifier function 1758 * @dev: net_device pointer passed unmodified to notifier function 1759 * @arg: additional u32 argument passed to the notifier function 1760 * 1761 * Call all network notifier blocks. Parameters and return value 1762 * are as for raw_notifier_call_chain(). 1763 */ 1764 static int call_netdevice_notifiers_mtu(unsigned long val, 1765 struct net_device *dev, u32 arg) 1766 { 1767 struct netdev_notifier_info_ext info = { 1768 .info.dev = dev, 1769 .ext.mtu = arg, 1770 }; 1771 1772 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 1773 1774 return call_netdevice_notifiers_info(val, &info.info); 1775 } 1776 1777 #ifdef CONFIG_NET_INGRESS 1778 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1779 1780 void net_inc_ingress_queue(void) 1781 { 1782 static_branch_inc(&ingress_needed_key); 1783 } 1784 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1785 1786 void net_dec_ingress_queue(void) 1787 { 1788 static_branch_dec(&ingress_needed_key); 1789 } 1790 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1791 #endif 1792 1793 #ifdef CONFIG_NET_EGRESS 1794 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 1795 1796 void net_inc_egress_queue(void) 1797 { 1798 static_branch_inc(&egress_needed_key); 1799 } 1800 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1801 1802 void net_dec_egress_queue(void) 1803 { 1804 static_branch_dec(&egress_needed_key); 1805 } 1806 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1807 #endif 1808 1809 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 1810 #ifdef HAVE_JUMP_LABEL 1811 static atomic_t netstamp_needed_deferred; 1812 static atomic_t netstamp_wanted; 1813 static void netstamp_clear(struct work_struct *work) 1814 { 1815 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1816 int wanted; 1817 1818 wanted = atomic_add_return(deferred, &netstamp_wanted); 1819 if (wanted > 0) 1820 static_branch_enable(&netstamp_needed_key); 1821 else 1822 static_branch_disable(&netstamp_needed_key); 1823 } 1824 static DECLARE_WORK(netstamp_work, netstamp_clear); 1825 #endif 1826 1827 void net_enable_timestamp(void) 1828 { 1829 #ifdef HAVE_JUMP_LABEL 1830 int wanted; 1831 1832 while (1) { 1833 wanted = atomic_read(&netstamp_wanted); 1834 if (wanted <= 0) 1835 break; 1836 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1837 return; 1838 } 1839 atomic_inc(&netstamp_needed_deferred); 1840 schedule_work(&netstamp_work); 1841 #else 1842 static_branch_inc(&netstamp_needed_key); 1843 #endif 1844 } 1845 EXPORT_SYMBOL(net_enable_timestamp); 1846 1847 void net_disable_timestamp(void) 1848 { 1849 #ifdef HAVE_JUMP_LABEL 1850 int wanted; 1851 1852 while (1) { 1853 wanted = atomic_read(&netstamp_wanted); 1854 if (wanted <= 1) 1855 break; 1856 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1857 return; 1858 } 1859 atomic_dec(&netstamp_needed_deferred); 1860 schedule_work(&netstamp_work); 1861 #else 1862 static_branch_dec(&netstamp_needed_key); 1863 #endif 1864 } 1865 EXPORT_SYMBOL(net_disable_timestamp); 1866 1867 static inline void net_timestamp_set(struct sk_buff *skb) 1868 { 1869 skb->tstamp = 0; 1870 if (static_branch_unlikely(&netstamp_needed_key)) 1871 __net_timestamp(skb); 1872 } 1873 1874 #define net_timestamp_check(COND, SKB) \ 1875 if (static_branch_unlikely(&netstamp_needed_key)) { \ 1876 if ((COND) && !(SKB)->tstamp) \ 1877 __net_timestamp(SKB); \ 1878 } \ 1879 1880 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1881 { 1882 unsigned int len; 1883 1884 if (!(dev->flags & IFF_UP)) 1885 return false; 1886 1887 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1888 if (skb->len <= len) 1889 return true; 1890 1891 /* if TSO is enabled, we don't care about the length as the packet 1892 * could be forwarded without being segmented before 1893 */ 1894 if (skb_is_gso(skb)) 1895 return true; 1896 1897 return false; 1898 } 1899 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1900 1901 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1902 { 1903 int ret = ____dev_forward_skb(dev, skb); 1904 1905 if (likely(!ret)) { 1906 skb->protocol = eth_type_trans(skb, dev); 1907 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1908 } 1909 1910 return ret; 1911 } 1912 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1913 1914 /** 1915 * dev_forward_skb - loopback an skb to another netif 1916 * 1917 * @dev: destination network device 1918 * @skb: buffer to forward 1919 * 1920 * return values: 1921 * NET_RX_SUCCESS (no congestion) 1922 * NET_RX_DROP (packet was dropped, but freed) 1923 * 1924 * dev_forward_skb can be used for injecting an skb from the 1925 * start_xmit function of one device into the receive queue 1926 * of another device. 1927 * 1928 * The receiving device may be in another namespace, so 1929 * we have to clear all information in the skb that could 1930 * impact namespace isolation. 1931 */ 1932 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1933 { 1934 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1935 } 1936 EXPORT_SYMBOL_GPL(dev_forward_skb); 1937 1938 static inline int deliver_skb(struct sk_buff *skb, 1939 struct packet_type *pt_prev, 1940 struct net_device *orig_dev) 1941 { 1942 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1943 return -ENOMEM; 1944 refcount_inc(&skb->users); 1945 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1946 } 1947 1948 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1949 struct packet_type **pt, 1950 struct net_device *orig_dev, 1951 __be16 type, 1952 struct list_head *ptype_list) 1953 { 1954 struct packet_type *ptype, *pt_prev = *pt; 1955 1956 list_for_each_entry_rcu(ptype, ptype_list, list) { 1957 if (ptype->type != type) 1958 continue; 1959 if (pt_prev) 1960 deliver_skb(skb, pt_prev, orig_dev); 1961 pt_prev = ptype; 1962 } 1963 *pt = pt_prev; 1964 } 1965 1966 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1967 { 1968 if (!ptype->af_packet_priv || !skb->sk) 1969 return false; 1970 1971 if (ptype->id_match) 1972 return ptype->id_match(ptype, skb->sk); 1973 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1974 return true; 1975 1976 return false; 1977 } 1978 1979 /** 1980 * dev_nit_active - return true if any network interface taps are in use 1981 * 1982 * @dev: network device to check for the presence of taps 1983 */ 1984 bool dev_nit_active(struct net_device *dev) 1985 { 1986 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 1987 } 1988 EXPORT_SYMBOL_GPL(dev_nit_active); 1989 1990 /* 1991 * Support routine. Sends outgoing frames to any network 1992 * taps currently in use. 1993 */ 1994 1995 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1996 { 1997 struct packet_type *ptype; 1998 struct sk_buff *skb2 = NULL; 1999 struct packet_type *pt_prev = NULL; 2000 struct list_head *ptype_list = &ptype_all; 2001 2002 rcu_read_lock(); 2003 again: 2004 list_for_each_entry_rcu(ptype, ptype_list, list) { 2005 if (ptype->ignore_outgoing) 2006 continue; 2007 2008 /* Never send packets back to the socket 2009 * they originated from - MvS (miquels@drinkel.ow.org) 2010 */ 2011 if (skb_loop_sk(ptype, skb)) 2012 continue; 2013 2014 if (pt_prev) { 2015 deliver_skb(skb2, pt_prev, skb->dev); 2016 pt_prev = ptype; 2017 continue; 2018 } 2019 2020 /* need to clone skb, done only once */ 2021 skb2 = skb_clone(skb, GFP_ATOMIC); 2022 if (!skb2) 2023 goto out_unlock; 2024 2025 net_timestamp_set(skb2); 2026 2027 /* skb->nh should be correctly 2028 * set by sender, so that the second statement is 2029 * just protection against buggy protocols. 2030 */ 2031 skb_reset_mac_header(skb2); 2032 2033 if (skb_network_header(skb2) < skb2->data || 2034 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2035 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2036 ntohs(skb2->protocol), 2037 dev->name); 2038 skb_reset_network_header(skb2); 2039 } 2040 2041 skb2->transport_header = skb2->network_header; 2042 skb2->pkt_type = PACKET_OUTGOING; 2043 pt_prev = ptype; 2044 } 2045 2046 if (ptype_list == &ptype_all) { 2047 ptype_list = &dev->ptype_all; 2048 goto again; 2049 } 2050 out_unlock: 2051 if (pt_prev) { 2052 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2053 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2054 else 2055 kfree_skb(skb2); 2056 } 2057 rcu_read_unlock(); 2058 } 2059 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2060 2061 /** 2062 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2063 * @dev: Network device 2064 * @txq: number of queues available 2065 * 2066 * If real_num_tx_queues is changed the tc mappings may no longer be 2067 * valid. To resolve this verify the tc mapping remains valid and if 2068 * not NULL the mapping. With no priorities mapping to this 2069 * offset/count pair it will no longer be used. In the worst case TC0 2070 * is invalid nothing can be done so disable priority mappings. If is 2071 * expected that drivers will fix this mapping if they can before 2072 * calling netif_set_real_num_tx_queues. 2073 */ 2074 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2075 { 2076 int i; 2077 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2078 2079 /* If TC0 is invalidated disable TC mapping */ 2080 if (tc->offset + tc->count > txq) { 2081 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2082 dev->num_tc = 0; 2083 return; 2084 } 2085 2086 /* Invalidated prio to tc mappings set to TC0 */ 2087 for (i = 1; i < TC_BITMASK + 1; i++) { 2088 int q = netdev_get_prio_tc_map(dev, i); 2089 2090 tc = &dev->tc_to_txq[q]; 2091 if (tc->offset + tc->count > txq) { 2092 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2093 i, q); 2094 netdev_set_prio_tc_map(dev, i, 0); 2095 } 2096 } 2097 } 2098 2099 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2100 { 2101 if (dev->num_tc) { 2102 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2103 int i; 2104 2105 /* walk through the TCs and see if it falls into any of them */ 2106 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2107 if ((txq - tc->offset) < tc->count) 2108 return i; 2109 } 2110 2111 /* didn't find it, just return -1 to indicate no match */ 2112 return -1; 2113 } 2114 2115 return 0; 2116 } 2117 EXPORT_SYMBOL(netdev_txq_to_tc); 2118 2119 #ifdef CONFIG_XPS 2120 struct static_key xps_needed __read_mostly; 2121 EXPORT_SYMBOL(xps_needed); 2122 struct static_key xps_rxqs_needed __read_mostly; 2123 EXPORT_SYMBOL(xps_rxqs_needed); 2124 static DEFINE_MUTEX(xps_map_mutex); 2125 #define xmap_dereference(P) \ 2126 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2127 2128 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2129 int tci, u16 index) 2130 { 2131 struct xps_map *map = NULL; 2132 int pos; 2133 2134 if (dev_maps) 2135 map = xmap_dereference(dev_maps->attr_map[tci]); 2136 if (!map) 2137 return false; 2138 2139 for (pos = map->len; pos--;) { 2140 if (map->queues[pos] != index) 2141 continue; 2142 2143 if (map->len > 1) { 2144 map->queues[pos] = map->queues[--map->len]; 2145 break; 2146 } 2147 2148 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2149 kfree_rcu(map, rcu); 2150 return false; 2151 } 2152 2153 return true; 2154 } 2155 2156 static bool remove_xps_queue_cpu(struct net_device *dev, 2157 struct xps_dev_maps *dev_maps, 2158 int cpu, u16 offset, u16 count) 2159 { 2160 int num_tc = dev->num_tc ? : 1; 2161 bool active = false; 2162 int tci; 2163 2164 for (tci = cpu * num_tc; num_tc--; tci++) { 2165 int i, j; 2166 2167 for (i = count, j = offset; i--; j++) { 2168 if (!remove_xps_queue(dev_maps, tci, j)) 2169 break; 2170 } 2171 2172 active |= i < 0; 2173 } 2174 2175 return active; 2176 } 2177 2178 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2179 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2180 u16 offset, u16 count, bool is_rxqs_map) 2181 { 2182 bool active = false; 2183 int i, j; 2184 2185 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2186 j < nr_ids;) 2187 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2188 count); 2189 if (!active) { 2190 if (is_rxqs_map) { 2191 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2192 } else { 2193 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2194 2195 for (i = offset + (count - 1); count--; i--) 2196 netdev_queue_numa_node_write( 2197 netdev_get_tx_queue(dev, i), 2198 NUMA_NO_NODE); 2199 } 2200 kfree_rcu(dev_maps, rcu); 2201 } 2202 } 2203 2204 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2205 u16 count) 2206 { 2207 const unsigned long *possible_mask = NULL; 2208 struct xps_dev_maps *dev_maps; 2209 unsigned int nr_ids; 2210 2211 if (!static_key_false(&xps_needed)) 2212 return; 2213 2214 cpus_read_lock(); 2215 mutex_lock(&xps_map_mutex); 2216 2217 if (static_key_false(&xps_rxqs_needed)) { 2218 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2219 if (dev_maps) { 2220 nr_ids = dev->num_rx_queues; 2221 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2222 offset, count, true); 2223 } 2224 } 2225 2226 dev_maps = xmap_dereference(dev->xps_cpus_map); 2227 if (!dev_maps) 2228 goto out_no_maps; 2229 2230 if (num_possible_cpus() > 1) 2231 possible_mask = cpumask_bits(cpu_possible_mask); 2232 nr_ids = nr_cpu_ids; 2233 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2234 false); 2235 2236 out_no_maps: 2237 if (static_key_enabled(&xps_rxqs_needed)) 2238 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2239 2240 static_key_slow_dec_cpuslocked(&xps_needed); 2241 mutex_unlock(&xps_map_mutex); 2242 cpus_read_unlock(); 2243 } 2244 2245 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2246 { 2247 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2248 } 2249 2250 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2251 u16 index, bool is_rxqs_map) 2252 { 2253 struct xps_map *new_map; 2254 int alloc_len = XPS_MIN_MAP_ALLOC; 2255 int i, pos; 2256 2257 for (pos = 0; map && pos < map->len; pos++) { 2258 if (map->queues[pos] != index) 2259 continue; 2260 return map; 2261 } 2262 2263 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2264 if (map) { 2265 if (pos < map->alloc_len) 2266 return map; 2267 2268 alloc_len = map->alloc_len * 2; 2269 } 2270 2271 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2272 * map 2273 */ 2274 if (is_rxqs_map) 2275 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2276 else 2277 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2278 cpu_to_node(attr_index)); 2279 if (!new_map) 2280 return NULL; 2281 2282 for (i = 0; i < pos; i++) 2283 new_map->queues[i] = map->queues[i]; 2284 new_map->alloc_len = alloc_len; 2285 new_map->len = pos; 2286 2287 return new_map; 2288 } 2289 2290 /* Must be called under cpus_read_lock */ 2291 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2292 u16 index, bool is_rxqs_map) 2293 { 2294 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2295 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2296 int i, j, tci, numa_node_id = -2; 2297 int maps_sz, num_tc = 1, tc = 0; 2298 struct xps_map *map, *new_map; 2299 bool active = false; 2300 unsigned int nr_ids; 2301 2302 if (dev->num_tc) { 2303 /* Do not allow XPS on subordinate device directly */ 2304 num_tc = dev->num_tc; 2305 if (num_tc < 0) 2306 return -EINVAL; 2307 2308 /* If queue belongs to subordinate dev use its map */ 2309 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2310 2311 tc = netdev_txq_to_tc(dev, index); 2312 if (tc < 0) 2313 return -EINVAL; 2314 } 2315 2316 mutex_lock(&xps_map_mutex); 2317 if (is_rxqs_map) { 2318 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2319 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2320 nr_ids = dev->num_rx_queues; 2321 } else { 2322 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2323 if (num_possible_cpus() > 1) { 2324 online_mask = cpumask_bits(cpu_online_mask); 2325 possible_mask = cpumask_bits(cpu_possible_mask); 2326 } 2327 dev_maps = xmap_dereference(dev->xps_cpus_map); 2328 nr_ids = nr_cpu_ids; 2329 } 2330 2331 if (maps_sz < L1_CACHE_BYTES) 2332 maps_sz = L1_CACHE_BYTES; 2333 2334 /* allocate memory for queue storage */ 2335 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2336 j < nr_ids;) { 2337 if (!new_dev_maps) 2338 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2339 if (!new_dev_maps) { 2340 mutex_unlock(&xps_map_mutex); 2341 return -ENOMEM; 2342 } 2343 2344 tci = j * num_tc + tc; 2345 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2346 NULL; 2347 2348 map = expand_xps_map(map, j, index, is_rxqs_map); 2349 if (!map) 2350 goto error; 2351 2352 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2353 } 2354 2355 if (!new_dev_maps) 2356 goto out_no_new_maps; 2357 2358 static_key_slow_inc_cpuslocked(&xps_needed); 2359 if (is_rxqs_map) 2360 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2361 2362 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2363 j < nr_ids;) { 2364 /* copy maps belonging to foreign traffic classes */ 2365 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2366 /* fill in the new device map from the old device map */ 2367 map = xmap_dereference(dev_maps->attr_map[tci]); 2368 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2369 } 2370 2371 /* We need to explicitly update tci as prevous loop 2372 * could break out early if dev_maps is NULL. 2373 */ 2374 tci = j * num_tc + tc; 2375 2376 if (netif_attr_test_mask(j, mask, nr_ids) && 2377 netif_attr_test_online(j, online_mask, nr_ids)) { 2378 /* add tx-queue to CPU/rx-queue maps */ 2379 int pos = 0; 2380 2381 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2382 while ((pos < map->len) && (map->queues[pos] != index)) 2383 pos++; 2384 2385 if (pos == map->len) 2386 map->queues[map->len++] = index; 2387 #ifdef CONFIG_NUMA 2388 if (!is_rxqs_map) { 2389 if (numa_node_id == -2) 2390 numa_node_id = cpu_to_node(j); 2391 else if (numa_node_id != cpu_to_node(j)) 2392 numa_node_id = -1; 2393 } 2394 #endif 2395 } else if (dev_maps) { 2396 /* fill in the new device map from the old device map */ 2397 map = xmap_dereference(dev_maps->attr_map[tci]); 2398 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2399 } 2400 2401 /* copy maps belonging to foreign traffic classes */ 2402 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2403 /* fill in the new device map from the old device map */ 2404 map = xmap_dereference(dev_maps->attr_map[tci]); 2405 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2406 } 2407 } 2408 2409 if (is_rxqs_map) 2410 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2411 else 2412 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2413 2414 /* Cleanup old maps */ 2415 if (!dev_maps) 2416 goto out_no_old_maps; 2417 2418 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2419 j < nr_ids;) { 2420 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2421 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2422 map = xmap_dereference(dev_maps->attr_map[tci]); 2423 if (map && map != new_map) 2424 kfree_rcu(map, rcu); 2425 } 2426 } 2427 2428 kfree_rcu(dev_maps, rcu); 2429 2430 out_no_old_maps: 2431 dev_maps = new_dev_maps; 2432 active = true; 2433 2434 out_no_new_maps: 2435 if (!is_rxqs_map) { 2436 /* update Tx queue numa node */ 2437 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2438 (numa_node_id >= 0) ? 2439 numa_node_id : NUMA_NO_NODE); 2440 } 2441 2442 if (!dev_maps) 2443 goto out_no_maps; 2444 2445 /* removes tx-queue from unused CPUs/rx-queues */ 2446 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2447 j < nr_ids;) { 2448 for (i = tc, tci = j * num_tc; i--; tci++) 2449 active |= remove_xps_queue(dev_maps, tci, index); 2450 if (!netif_attr_test_mask(j, mask, nr_ids) || 2451 !netif_attr_test_online(j, online_mask, nr_ids)) 2452 active |= remove_xps_queue(dev_maps, tci, index); 2453 for (i = num_tc - tc, tci++; --i; tci++) 2454 active |= remove_xps_queue(dev_maps, tci, index); 2455 } 2456 2457 /* free map if not active */ 2458 if (!active) { 2459 if (is_rxqs_map) 2460 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2461 else 2462 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2463 kfree_rcu(dev_maps, rcu); 2464 } 2465 2466 out_no_maps: 2467 mutex_unlock(&xps_map_mutex); 2468 2469 return 0; 2470 error: 2471 /* remove any maps that we added */ 2472 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2473 j < nr_ids;) { 2474 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2475 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2476 map = dev_maps ? 2477 xmap_dereference(dev_maps->attr_map[tci]) : 2478 NULL; 2479 if (new_map && new_map != map) 2480 kfree(new_map); 2481 } 2482 } 2483 2484 mutex_unlock(&xps_map_mutex); 2485 2486 kfree(new_dev_maps); 2487 return -ENOMEM; 2488 } 2489 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2490 2491 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2492 u16 index) 2493 { 2494 int ret; 2495 2496 cpus_read_lock(); 2497 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2498 cpus_read_unlock(); 2499 2500 return ret; 2501 } 2502 EXPORT_SYMBOL(netif_set_xps_queue); 2503 2504 #endif 2505 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2506 { 2507 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2508 2509 /* Unbind any subordinate channels */ 2510 while (txq-- != &dev->_tx[0]) { 2511 if (txq->sb_dev) 2512 netdev_unbind_sb_channel(dev, txq->sb_dev); 2513 } 2514 } 2515 2516 void netdev_reset_tc(struct net_device *dev) 2517 { 2518 #ifdef CONFIG_XPS 2519 netif_reset_xps_queues_gt(dev, 0); 2520 #endif 2521 netdev_unbind_all_sb_channels(dev); 2522 2523 /* Reset TC configuration of device */ 2524 dev->num_tc = 0; 2525 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2526 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2527 } 2528 EXPORT_SYMBOL(netdev_reset_tc); 2529 2530 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2531 { 2532 if (tc >= dev->num_tc) 2533 return -EINVAL; 2534 2535 #ifdef CONFIG_XPS 2536 netif_reset_xps_queues(dev, offset, count); 2537 #endif 2538 dev->tc_to_txq[tc].count = count; 2539 dev->tc_to_txq[tc].offset = offset; 2540 return 0; 2541 } 2542 EXPORT_SYMBOL(netdev_set_tc_queue); 2543 2544 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2545 { 2546 if (num_tc > TC_MAX_QUEUE) 2547 return -EINVAL; 2548 2549 #ifdef CONFIG_XPS 2550 netif_reset_xps_queues_gt(dev, 0); 2551 #endif 2552 netdev_unbind_all_sb_channels(dev); 2553 2554 dev->num_tc = num_tc; 2555 return 0; 2556 } 2557 EXPORT_SYMBOL(netdev_set_num_tc); 2558 2559 void netdev_unbind_sb_channel(struct net_device *dev, 2560 struct net_device *sb_dev) 2561 { 2562 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2563 2564 #ifdef CONFIG_XPS 2565 netif_reset_xps_queues_gt(sb_dev, 0); 2566 #endif 2567 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2568 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2569 2570 while (txq-- != &dev->_tx[0]) { 2571 if (txq->sb_dev == sb_dev) 2572 txq->sb_dev = NULL; 2573 } 2574 } 2575 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2576 2577 int netdev_bind_sb_channel_queue(struct net_device *dev, 2578 struct net_device *sb_dev, 2579 u8 tc, u16 count, u16 offset) 2580 { 2581 /* Make certain the sb_dev and dev are already configured */ 2582 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2583 return -EINVAL; 2584 2585 /* We cannot hand out queues we don't have */ 2586 if ((offset + count) > dev->real_num_tx_queues) 2587 return -EINVAL; 2588 2589 /* Record the mapping */ 2590 sb_dev->tc_to_txq[tc].count = count; 2591 sb_dev->tc_to_txq[tc].offset = offset; 2592 2593 /* Provide a way for Tx queue to find the tc_to_txq map or 2594 * XPS map for itself. 2595 */ 2596 while (count--) 2597 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2598 2599 return 0; 2600 } 2601 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2602 2603 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2604 { 2605 /* Do not use a multiqueue device to represent a subordinate channel */ 2606 if (netif_is_multiqueue(dev)) 2607 return -ENODEV; 2608 2609 /* We allow channels 1 - 32767 to be used for subordinate channels. 2610 * Channel 0 is meant to be "native" mode and used only to represent 2611 * the main root device. We allow writing 0 to reset the device back 2612 * to normal mode after being used as a subordinate channel. 2613 */ 2614 if (channel > S16_MAX) 2615 return -EINVAL; 2616 2617 dev->num_tc = -channel; 2618 2619 return 0; 2620 } 2621 EXPORT_SYMBOL(netdev_set_sb_channel); 2622 2623 /* 2624 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2625 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2626 */ 2627 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2628 { 2629 bool disabling; 2630 int rc; 2631 2632 disabling = txq < dev->real_num_tx_queues; 2633 2634 if (txq < 1 || txq > dev->num_tx_queues) 2635 return -EINVAL; 2636 2637 if (dev->reg_state == NETREG_REGISTERED || 2638 dev->reg_state == NETREG_UNREGISTERING) { 2639 ASSERT_RTNL(); 2640 2641 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2642 txq); 2643 if (rc) 2644 return rc; 2645 2646 if (dev->num_tc) 2647 netif_setup_tc(dev, txq); 2648 2649 dev->real_num_tx_queues = txq; 2650 2651 if (disabling) { 2652 synchronize_net(); 2653 qdisc_reset_all_tx_gt(dev, txq); 2654 #ifdef CONFIG_XPS 2655 netif_reset_xps_queues_gt(dev, txq); 2656 #endif 2657 } 2658 } else { 2659 dev->real_num_tx_queues = txq; 2660 } 2661 2662 return 0; 2663 } 2664 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2665 2666 #ifdef CONFIG_SYSFS 2667 /** 2668 * netif_set_real_num_rx_queues - set actual number of RX queues used 2669 * @dev: Network device 2670 * @rxq: Actual number of RX queues 2671 * 2672 * This must be called either with the rtnl_lock held or before 2673 * registration of the net device. Returns 0 on success, or a 2674 * negative error code. If called before registration, it always 2675 * succeeds. 2676 */ 2677 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2678 { 2679 int rc; 2680 2681 if (rxq < 1 || rxq > dev->num_rx_queues) 2682 return -EINVAL; 2683 2684 if (dev->reg_state == NETREG_REGISTERED) { 2685 ASSERT_RTNL(); 2686 2687 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2688 rxq); 2689 if (rc) 2690 return rc; 2691 } 2692 2693 dev->real_num_rx_queues = rxq; 2694 return 0; 2695 } 2696 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2697 #endif 2698 2699 /** 2700 * netif_get_num_default_rss_queues - default number of RSS queues 2701 * 2702 * This routine should set an upper limit on the number of RSS queues 2703 * used by default by multiqueue devices. 2704 */ 2705 int netif_get_num_default_rss_queues(void) 2706 { 2707 return is_kdump_kernel() ? 2708 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2709 } 2710 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2711 2712 static void __netif_reschedule(struct Qdisc *q) 2713 { 2714 struct softnet_data *sd; 2715 unsigned long flags; 2716 2717 local_irq_save(flags); 2718 sd = this_cpu_ptr(&softnet_data); 2719 q->next_sched = NULL; 2720 *sd->output_queue_tailp = q; 2721 sd->output_queue_tailp = &q->next_sched; 2722 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2723 local_irq_restore(flags); 2724 } 2725 2726 void __netif_schedule(struct Qdisc *q) 2727 { 2728 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2729 __netif_reschedule(q); 2730 } 2731 EXPORT_SYMBOL(__netif_schedule); 2732 2733 struct dev_kfree_skb_cb { 2734 enum skb_free_reason reason; 2735 }; 2736 2737 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2738 { 2739 return (struct dev_kfree_skb_cb *)skb->cb; 2740 } 2741 2742 void netif_schedule_queue(struct netdev_queue *txq) 2743 { 2744 rcu_read_lock(); 2745 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2746 struct Qdisc *q = rcu_dereference(txq->qdisc); 2747 2748 __netif_schedule(q); 2749 } 2750 rcu_read_unlock(); 2751 } 2752 EXPORT_SYMBOL(netif_schedule_queue); 2753 2754 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2755 { 2756 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2757 struct Qdisc *q; 2758 2759 rcu_read_lock(); 2760 q = rcu_dereference(dev_queue->qdisc); 2761 __netif_schedule(q); 2762 rcu_read_unlock(); 2763 } 2764 } 2765 EXPORT_SYMBOL(netif_tx_wake_queue); 2766 2767 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2768 { 2769 unsigned long flags; 2770 2771 if (unlikely(!skb)) 2772 return; 2773 2774 if (likely(refcount_read(&skb->users) == 1)) { 2775 smp_rmb(); 2776 refcount_set(&skb->users, 0); 2777 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2778 return; 2779 } 2780 get_kfree_skb_cb(skb)->reason = reason; 2781 local_irq_save(flags); 2782 skb->next = __this_cpu_read(softnet_data.completion_queue); 2783 __this_cpu_write(softnet_data.completion_queue, skb); 2784 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2785 local_irq_restore(flags); 2786 } 2787 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2788 2789 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2790 { 2791 if (in_irq() || irqs_disabled()) 2792 __dev_kfree_skb_irq(skb, reason); 2793 else 2794 dev_kfree_skb(skb); 2795 } 2796 EXPORT_SYMBOL(__dev_kfree_skb_any); 2797 2798 2799 /** 2800 * netif_device_detach - mark device as removed 2801 * @dev: network device 2802 * 2803 * Mark device as removed from system and therefore no longer available. 2804 */ 2805 void netif_device_detach(struct net_device *dev) 2806 { 2807 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2808 netif_running(dev)) { 2809 netif_tx_stop_all_queues(dev); 2810 } 2811 } 2812 EXPORT_SYMBOL(netif_device_detach); 2813 2814 /** 2815 * netif_device_attach - mark device as attached 2816 * @dev: network device 2817 * 2818 * Mark device as attached from system and restart if needed. 2819 */ 2820 void netif_device_attach(struct net_device *dev) 2821 { 2822 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2823 netif_running(dev)) { 2824 netif_tx_wake_all_queues(dev); 2825 __netdev_watchdog_up(dev); 2826 } 2827 } 2828 EXPORT_SYMBOL(netif_device_attach); 2829 2830 /* 2831 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2832 * to be used as a distribution range. 2833 */ 2834 static u16 skb_tx_hash(const struct net_device *dev, 2835 const struct net_device *sb_dev, 2836 struct sk_buff *skb) 2837 { 2838 u32 hash; 2839 u16 qoffset = 0; 2840 u16 qcount = dev->real_num_tx_queues; 2841 2842 if (dev->num_tc) { 2843 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2844 2845 qoffset = sb_dev->tc_to_txq[tc].offset; 2846 qcount = sb_dev->tc_to_txq[tc].count; 2847 } 2848 2849 if (skb_rx_queue_recorded(skb)) { 2850 hash = skb_get_rx_queue(skb); 2851 while (unlikely(hash >= qcount)) 2852 hash -= qcount; 2853 return hash + qoffset; 2854 } 2855 2856 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2857 } 2858 2859 static void skb_warn_bad_offload(const struct sk_buff *skb) 2860 { 2861 static const netdev_features_t null_features; 2862 struct net_device *dev = skb->dev; 2863 const char *name = ""; 2864 2865 if (!net_ratelimit()) 2866 return; 2867 2868 if (dev) { 2869 if (dev->dev.parent) 2870 name = dev_driver_string(dev->dev.parent); 2871 else 2872 name = netdev_name(dev); 2873 } 2874 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2875 "gso_type=%d ip_summed=%d\n", 2876 name, dev ? &dev->features : &null_features, 2877 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2878 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2879 skb_shinfo(skb)->gso_type, skb->ip_summed); 2880 } 2881 2882 /* 2883 * Invalidate hardware checksum when packet is to be mangled, and 2884 * complete checksum manually on outgoing path. 2885 */ 2886 int skb_checksum_help(struct sk_buff *skb) 2887 { 2888 __wsum csum; 2889 int ret = 0, offset; 2890 2891 if (skb->ip_summed == CHECKSUM_COMPLETE) 2892 goto out_set_summed; 2893 2894 if (unlikely(skb_shinfo(skb)->gso_size)) { 2895 skb_warn_bad_offload(skb); 2896 return -EINVAL; 2897 } 2898 2899 /* Before computing a checksum, we should make sure no frag could 2900 * be modified by an external entity : checksum could be wrong. 2901 */ 2902 if (skb_has_shared_frag(skb)) { 2903 ret = __skb_linearize(skb); 2904 if (ret) 2905 goto out; 2906 } 2907 2908 offset = skb_checksum_start_offset(skb); 2909 BUG_ON(offset >= skb_headlen(skb)); 2910 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2911 2912 offset += skb->csum_offset; 2913 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2914 2915 if (skb_cloned(skb) && 2916 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2917 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2918 if (ret) 2919 goto out; 2920 } 2921 2922 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2923 out_set_summed: 2924 skb->ip_summed = CHECKSUM_NONE; 2925 out: 2926 return ret; 2927 } 2928 EXPORT_SYMBOL(skb_checksum_help); 2929 2930 int skb_crc32c_csum_help(struct sk_buff *skb) 2931 { 2932 __le32 crc32c_csum; 2933 int ret = 0, offset, start; 2934 2935 if (skb->ip_summed != CHECKSUM_PARTIAL) 2936 goto out; 2937 2938 if (unlikely(skb_is_gso(skb))) 2939 goto out; 2940 2941 /* Before computing a checksum, we should make sure no frag could 2942 * be modified by an external entity : checksum could be wrong. 2943 */ 2944 if (unlikely(skb_has_shared_frag(skb))) { 2945 ret = __skb_linearize(skb); 2946 if (ret) 2947 goto out; 2948 } 2949 start = skb_checksum_start_offset(skb); 2950 offset = start + offsetof(struct sctphdr, checksum); 2951 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2952 ret = -EINVAL; 2953 goto out; 2954 } 2955 if (skb_cloned(skb) && 2956 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2957 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2958 if (ret) 2959 goto out; 2960 } 2961 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2962 skb->len - start, ~(__u32)0, 2963 crc32c_csum_stub)); 2964 *(__le32 *)(skb->data + offset) = crc32c_csum; 2965 skb->ip_summed = CHECKSUM_NONE; 2966 skb->csum_not_inet = 0; 2967 out: 2968 return ret; 2969 } 2970 2971 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2972 { 2973 __be16 type = skb->protocol; 2974 2975 /* Tunnel gso handlers can set protocol to ethernet. */ 2976 if (type == htons(ETH_P_TEB)) { 2977 struct ethhdr *eth; 2978 2979 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2980 return 0; 2981 2982 eth = (struct ethhdr *)skb->data; 2983 type = eth->h_proto; 2984 } 2985 2986 return __vlan_get_protocol(skb, type, depth); 2987 } 2988 2989 /** 2990 * skb_mac_gso_segment - mac layer segmentation handler. 2991 * @skb: buffer to segment 2992 * @features: features for the output path (see dev->features) 2993 */ 2994 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2995 netdev_features_t features) 2996 { 2997 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2998 struct packet_offload *ptype; 2999 int vlan_depth = skb->mac_len; 3000 __be16 type = skb_network_protocol(skb, &vlan_depth); 3001 3002 if (unlikely(!type)) 3003 return ERR_PTR(-EINVAL); 3004 3005 __skb_pull(skb, vlan_depth); 3006 3007 rcu_read_lock(); 3008 list_for_each_entry_rcu(ptype, &offload_base, list) { 3009 if (ptype->type == type && ptype->callbacks.gso_segment) { 3010 segs = ptype->callbacks.gso_segment(skb, features); 3011 break; 3012 } 3013 } 3014 rcu_read_unlock(); 3015 3016 __skb_push(skb, skb->data - skb_mac_header(skb)); 3017 3018 return segs; 3019 } 3020 EXPORT_SYMBOL(skb_mac_gso_segment); 3021 3022 3023 /* openvswitch calls this on rx path, so we need a different check. 3024 */ 3025 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3026 { 3027 if (tx_path) 3028 return skb->ip_summed != CHECKSUM_PARTIAL && 3029 skb->ip_summed != CHECKSUM_UNNECESSARY; 3030 3031 return skb->ip_summed == CHECKSUM_NONE; 3032 } 3033 3034 /** 3035 * __skb_gso_segment - Perform segmentation on skb. 3036 * @skb: buffer to segment 3037 * @features: features for the output path (see dev->features) 3038 * @tx_path: whether it is called in TX path 3039 * 3040 * This function segments the given skb and returns a list of segments. 3041 * 3042 * It may return NULL if the skb requires no segmentation. This is 3043 * only possible when GSO is used for verifying header integrity. 3044 * 3045 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 3046 */ 3047 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3048 netdev_features_t features, bool tx_path) 3049 { 3050 struct sk_buff *segs; 3051 3052 if (unlikely(skb_needs_check(skb, tx_path))) { 3053 int err; 3054 3055 /* We're going to init ->check field in TCP or UDP header */ 3056 err = skb_cow_head(skb, 0); 3057 if (err < 0) 3058 return ERR_PTR(err); 3059 } 3060 3061 /* Only report GSO partial support if it will enable us to 3062 * support segmentation on this frame without needing additional 3063 * work. 3064 */ 3065 if (features & NETIF_F_GSO_PARTIAL) { 3066 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3067 struct net_device *dev = skb->dev; 3068 3069 partial_features |= dev->features & dev->gso_partial_features; 3070 if (!skb_gso_ok(skb, features | partial_features)) 3071 features &= ~NETIF_F_GSO_PARTIAL; 3072 } 3073 3074 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 3075 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3076 3077 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3078 SKB_GSO_CB(skb)->encap_level = 0; 3079 3080 skb_reset_mac_header(skb); 3081 skb_reset_mac_len(skb); 3082 3083 segs = skb_mac_gso_segment(skb, features); 3084 3085 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3086 skb_warn_bad_offload(skb); 3087 3088 return segs; 3089 } 3090 EXPORT_SYMBOL(__skb_gso_segment); 3091 3092 /* Take action when hardware reception checksum errors are detected. */ 3093 #ifdef CONFIG_BUG 3094 void netdev_rx_csum_fault(struct net_device *dev) 3095 { 3096 if (net_ratelimit()) { 3097 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3098 dump_stack(); 3099 } 3100 } 3101 EXPORT_SYMBOL(netdev_rx_csum_fault); 3102 #endif 3103 3104 /* XXX: check that highmem exists at all on the given machine. */ 3105 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3106 { 3107 #ifdef CONFIG_HIGHMEM 3108 int i; 3109 3110 if (!(dev->features & NETIF_F_HIGHDMA)) { 3111 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3112 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3113 3114 if (PageHighMem(skb_frag_page(frag))) 3115 return 1; 3116 } 3117 } 3118 #endif 3119 return 0; 3120 } 3121 3122 /* If MPLS offload request, verify we are testing hardware MPLS features 3123 * instead of standard features for the netdev. 3124 */ 3125 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3126 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3127 netdev_features_t features, 3128 __be16 type) 3129 { 3130 if (eth_p_mpls(type)) 3131 features &= skb->dev->mpls_features; 3132 3133 return features; 3134 } 3135 #else 3136 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3137 netdev_features_t features, 3138 __be16 type) 3139 { 3140 return features; 3141 } 3142 #endif 3143 3144 static netdev_features_t harmonize_features(struct sk_buff *skb, 3145 netdev_features_t features) 3146 { 3147 int tmp; 3148 __be16 type; 3149 3150 type = skb_network_protocol(skb, &tmp); 3151 features = net_mpls_features(skb, features, type); 3152 3153 if (skb->ip_summed != CHECKSUM_NONE && 3154 !can_checksum_protocol(features, type)) { 3155 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3156 } 3157 if (illegal_highdma(skb->dev, skb)) 3158 features &= ~NETIF_F_SG; 3159 3160 return features; 3161 } 3162 3163 netdev_features_t passthru_features_check(struct sk_buff *skb, 3164 struct net_device *dev, 3165 netdev_features_t features) 3166 { 3167 return features; 3168 } 3169 EXPORT_SYMBOL(passthru_features_check); 3170 3171 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3172 struct net_device *dev, 3173 netdev_features_t features) 3174 { 3175 return vlan_features_check(skb, features); 3176 } 3177 3178 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3179 struct net_device *dev, 3180 netdev_features_t features) 3181 { 3182 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3183 3184 if (gso_segs > dev->gso_max_segs) 3185 return features & ~NETIF_F_GSO_MASK; 3186 3187 /* Support for GSO partial features requires software 3188 * intervention before we can actually process the packets 3189 * so we need to strip support for any partial features now 3190 * and we can pull them back in after we have partially 3191 * segmented the frame. 3192 */ 3193 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3194 features &= ~dev->gso_partial_features; 3195 3196 /* Make sure to clear the IPv4 ID mangling feature if the 3197 * IPv4 header has the potential to be fragmented. 3198 */ 3199 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3200 struct iphdr *iph = skb->encapsulation ? 3201 inner_ip_hdr(skb) : ip_hdr(skb); 3202 3203 if (!(iph->frag_off & htons(IP_DF))) 3204 features &= ~NETIF_F_TSO_MANGLEID; 3205 } 3206 3207 return features; 3208 } 3209 3210 netdev_features_t netif_skb_features(struct sk_buff *skb) 3211 { 3212 struct net_device *dev = skb->dev; 3213 netdev_features_t features = dev->features; 3214 3215 if (skb_is_gso(skb)) 3216 features = gso_features_check(skb, dev, features); 3217 3218 /* If encapsulation offload request, verify we are testing 3219 * hardware encapsulation features instead of standard 3220 * features for the netdev 3221 */ 3222 if (skb->encapsulation) 3223 features &= dev->hw_enc_features; 3224 3225 if (skb_vlan_tagged(skb)) 3226 features = netdev_intersect_features(features, 3227 dev->vlan_features | 3228 NETIF_F_HW_VLAN_CTAG_TX | 3229 NETIF_F_HW_VLAN_STAG_TX); 3230 3231 if (dev->netdev_ops->ndo_features_check) 3232 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3233 features); 3234 else 3235 features &= dflt_features_check(skb, dev, features); 3236 3237 return harmonize_features(skb, features); 3238 } 3239 EXPORT_SYMBOL(netif_skb_features); 3240 3241 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3242 struct netdev_queue *txq, bool more) 3243 { 3244 unsigned int len; 3245 int rc; 3246 3247 if (dev_nit_active(dev)) 3248 dev_queue_xmit_nit(skb, dev); 3249 3250 len = skb->len; 3251 trace_net_dev_start_xmit(skb, dev); 3252 rc = netdev_start_xmit(skb, dev, txq, more); 3253 trace_net_dev_xmit(skb, rc, dev, len); 3254 3255 return rc; 3256 } 3257 3258 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3259 struct netdev_queue *txq, int *ret) 3260 { 3261 struct sk_buff *skb = first; 3262 int rc = NETDEV_TX_OK; 3263 3264 while (skb) { 3265 struct sk_buff *next = skb->next; 3266 3267 skb_mark_not_on_list(skb); 3268 rc = xmit_one(skb, dev, txq, next != NULL); 3269 if (unlikely(!dev_xmit_complete(rc))) { 3270 skb->next = next; 3271 goto out; 3272 } 3273 3274 skb = next; 3275 if (netif_tx_queue_stopped(txq) && skb) { 3276 rc = NETDEV_TX_BUSY; 3277 break; 3278 } 3279 } 3280 3281 out: 3282 *ret = rc; 3283 return skb; 3284 } 3285 3286 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3287 netdev_features_t features) 3288 { 3289 if (skb_vlan_tag_present(skb) && 3290 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3291 skb = __vlan_hwaccel_push_inside(skb); 3292 return skb; 3293 } 3294 3295 int skb_csum_hwoffload_help(struct sk_buff *skb, 3296 const netdev_features_t features) 3297 { 3298 if (unlikely(skb->csum_not_inet)) 3299 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3300 skb_crc32c_csum_help(skb); 3301 3302 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3303 } 3304 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3305 3306 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3307 { 3308 netdev_features_t features; 3309 3310 features = netif_skb_features(skb); 3311 skb = validate_xmit_vlan(skb, features); 3312 if (unlikely(!skb)) 3313 goto out_null; 3314 3315 skb = sk_validate_xmit_skb(skb, dev); 3316 if (unlikely(!skb)) 3317 goto out_null; 3318 3319 if (netif_needs_gso(skb, features)) { 3320 struct sk_buff *segs; 3321 3322 segs = skb_gso_segment(skb, features); 3323 if (IS_ERR(segs)) { 3324 goto out_kfree_skb; 3325 } else if (segs) { 3326 consume_skb(skb); 3327 skb = segs; 3328 } 3329 } else { 3330 if (skb_needs_linearize(skb, features) && 3331 __skb_linearize(skb)) 3332 goto out_kfree_skb; 3333 3334 /* If packet is not checksummed and device does not 3335 * support checksumming for this protocol, complete 3336 * checksumming here. 3337 */ 3338 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3339 if (skb->encapsulation) 3340 skb_set_inner_transport_header(skb, 3341 skb_checksum_start_offset(skb)); 3342 else 3343 skb_set_transport_header(skb, 3344 skb_checksum_start_offset(skb)); 3345 if (skb_csum_hwoffload_help(skb, features)) 3346 goto out_kfree_skb; 3347 } 3348 } 3349 3350 skb = validate_xmit_xfrm(skb, features, again); 3351 3352 return skb; 3353 3354 out_kfree_skb: 3355 kfree_skb(skb); 3356 out_null: 3357 atomic_long_inc(&dev->tx_dropped); 3358 return NULL; 3359 } 3360 3361 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3362 { 3363 struct sk_buff *next, *head = NULL, *tail; 3364 3365 for (; skb != NULL; skb = next) { 3366 next = skb->next; 3367 skb_mark_not_on_list(skb); 3368 3369 /* in case skb wont be segmented, point to itself */ 3370 skb->prev = skb; 3371 3372 skb = validate_xmit_skb(skb, dev, again); 3373 if (!skb) 3374 continue; 3375 3376 if (!head) 3377 head = skb; 3378 else 3379 tail->next = skb; 3380 /* If skb was segmented, skb->prev points to 3381 * the last segment. If not, it still contains skb. 3382 */ 3383 tail = skb->prev; 3384 } 3385 return head; 3386 } 3387 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3388 3389 static void qdisc_pkt_len_init(struct sk_buff *skb) 3390 { 3391 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3392 3393 qdisc_skb_cb(skb)->pkt_len = skb->len; 3394 3395 /* To get more precise estimation of bytes sent on wire, 3396 * we add to pkt_len the headers size of all segments 3397 */ 3398 if (shinfo->gso_size) { 3399 unsigned int hdr_len; 3400 u16 gso_segs = shinfo->gso_segs; 3401 3402 /* mac layer + network layer */ 3403 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3404 3405 /* + transport layer */ 3406 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3407 const struct tcphdr *th; 3408 struct tcphdr _tcphdr; 3409 3410 th = skb_header_pointer(skb, skb_transport_offset(skb), 3411 sizeof(_tcphdr), &_tcphdr); 3412 if (likely(th)) 3413 hdr_len += __tcp_hdrlen(th); 3414 } else { 3415 struct udphdr _udphdr; 3416 3417 if (skb_header_pointer(skb, skb_transport_offset(skb), 3418 sizeof(_udphdr), &_udphdr)) 3419 hdr_len += sizeof(struct udphdr); 3420 } 3421 3422 if (shinfo->gso_type & SKB_GSO_DODGY) 3423 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3424 shinfo->gso_size); 3425 3426 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3427 } 3428 } 3429 3430 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3431 struct net_device *dev, 3432 struct netdev_queue *txq) 3433 { 3434 spinlock_t *root_lock = qdisc_lock(q); 3435 struct sk_buff *to_free = NULL; 3436 bool contended; 3437 int rc; 3438 3439 qdisc_calculate_pkt_len(skb, q); 3440 3441 if (q->flags & TCQ_F_NOLOCK) { 3442 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3443 __qdisc_drop(skb, &to_free); 3444 rc = NET_XMIT_DROP; 3445 } else { 3446 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3447 qdisc_run(q); 3448 } 3449 3450 if (unlikely(to_free)) 3451 kfree_skb_list(to_free); 3452 return rc; 3453 } 3454 3455 /* 3456 * Heuristic to force contended enqueues to serialize on a 3457 * separate lock before trying to get qdisc main lock. 3458 * This permits qdisc->running owner to get the lock more 3459 * often and dequeue packets faster. 3460 */ 3461 contended = qdisc_is_running(q); 3462 if (unlikely(contended)) 3463 spin_lock(&q->busylock); 3464 3465 spin_lock(root_lock); 3466 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3467 __qdisc_drop(skb, &to_free); 3468 rc = NET_XMIT_DROP; 3469 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3470 qdisc_run_begin(q)) { 3471 /* 3472 * This is a work-conserving queue; there are no old skbs 3473 * waiting to be sent out; and the qdisc is not running - 3474 * xmit the skb directly. 3475 */ 3476 3477 qdisc_bstats_update(q, skb); 3478 3479 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3480 if (unlikely(contended)) { 3481 spin_unlock(&q->busylock); 3482 contended = false; 3483 } 3484 __qdisc_run(q); 3485 } 3486 3487 qdisc_run_end(q); 3488 rc = NET_XMIT_SUCCESS; 3489 } else { 3490 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3491 if (qdisc_run_begin(q)) { 3492 if (unlikely(contended)) { 3493 spin_unlock(&q->busylock); 3494 contended = false; 3495 } 3496 __qdisc_run(q); 3497 qdisc_run_end(q); 3498 } 3499 } 3500 spin_unlock(root_lock); 3501 if (unlikely(to_free)) 3502 kfree_skb_list(to_free); 3503 if (unlikely(contended)) 3504 spin_unlock(&q->busylock); 3505 return rc; 3506 } 3507 3508 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3509 static void skb_update_prio(struct sk_buff *skb) 3510 { 3511 const struct netprio_map *map; 3512 const struct sock *sk; 3513 unsigned int prioidx; 3514 3515 if (skb->priority) 3516 return; 3517 map = rcu_dereference_bh(skb->dev->priomap); 3518 if (!map) 3519 return; 3520 sk = skb_to_full_sk(skb); 3521 if (!sk) 3522 return; 3523 3524 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3525 3526 if (prioidx < map->priomap_len) 3527 skb->priority = map->priomap[prioidx]; 3528 } 3529 #else 3530 #define skb_update_prio(skb) 3531 #endif 3532 3533 DEFINE_PER_CPU(int, xmit_recursion); 3534 EXPORT_SYMBOL(xmit_recursion); 3535 3536 /** 3537 * dev_loopback_xmit - loop back @skb 3538 * @net: network namespace this loopback is happening in 3539 * @sk: sk needed to be a netfilter okfn 3540 * @skb: buffer to transmit 3541 */ 3542 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3543 { 3544 skb_reset_mac_header(skb); 3545 __skb_pull(skb, skb_network_offset(skb)); 3546 skb->pkt_type = PACKET_LOOPBACK; 3547 skb->ip_summed = CHECKSUM_UNNECESSARY; 3548 WARN_ON(!skb_dst(skb)); 3549 skb_dst_force(skb); 3550 netif_rx_ni(skb); 3551 return 0; 3552 } 3553 EXPORT_SYMBOL(dev_loopback_xmit); 3554 3555 #ifdef CONFIG_NET_EGRESS 3556 static struct sk_buff * 3557 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3558 { 3559 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3560 struct tcf_result cl_res; 3561 3562 if (!miniq) 3563 return skb; 3564 3565 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3566 mini_qdisc_bstats_cpu_update(miniq, skb); 3567 3568 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3569 case TC_ACT_OK: 3570 case TC_ACT_RECLASSIFY: 3571 skb->tc_index = TC_H_MIN(cl_res.classid); 3572 break; 3573 case TC_ACT_SHOT: 3574 mini_qdisc_qstats_cpu_drop(miniq); 3575 *ret = NET_XMIT_DROP; 3576 kfree_skb(skb); 3577 return NULL; 3578 case TC_ACT_STOLEN: 3579 case TC_ACT_QUEUED: 3580 case TC_ACT_TRAP: 3581 *ret = NET_XMIT_SUCCESS; 3582 consume_skb(skb); 3583 return NULL; 3584 case TC_ACT_REDIRECT: 3585 /* No need to push/pop skb's mac_header here on egress! */ 3586 skb_do_redirect(skb); 3587 *ret = NET_XMIT_SUCCESS; 3588 return NULL; 3589 default: 3590 break; 3591 } 3592 3593 return skb; 3594 } 3595 #endif /* CONFIG_NET_EGRESS */ 3596 3597 #ifdef CONFIG_XPS 3598 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3599 struct xps_dev_maps *dev_maps, unsigned int tci) 3600 { 3601 struct xps_map *map; 3602 int queue_index = -1; 3603 3604 if (dev->num_tc) { 3605 tci *= dev->num_tc; 3606 tci += netdev_get_prio_tc_map(dev, skb->priority); 3607 } 3608 3609 map = rcu_dereference(dev_maps->attr_map[tci]); 3610 if (map) { 3611 if (map->len == 1) 3612 queue_index = map->queues[0]; 3613 else 3614 queue_index = map->queues[reciprocal_scale( 3615 skb_get_hash(skb), map->len)]; 3616 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3617 queue_index = -1; 3618 } 3619 return queue_index; 3620 } 3621 #endif 3622 3623 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3624 struct sk_buff *skb) 3625 { 3626 #ifdef CONFIG_XPS 3627 struct xps_dev_maps *dev_maps; 3628 struct sock *sk = skb->sk; 3629 int queue_index = -1; 3630 3631 if (!static_key_false(&xps_needed)) 3632 return -1; 3633 3634 rcu_read_lock(); 3635 if (!static_key_false(&xps_rxqs_needed)) 3636 goto get_cpus_map; 3637 3638 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3639 if (dev_maps) { 3640 int tci = sk_rx_queue_get(sk); 3641 3642 if (tci >= 0 && tci < dev->num_rx_queues) 3643 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3644 tci); 3645 } 3646 3647 get_cpus_map: 3648 if (queue_index < 0) { 3649 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3650 if (dev_maps) { 3651 unsigned int tci = skb->sender_cpu - 1; 3652 3653 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3654 tci); 3655 } 3656 } 3657 rcu_read_unlock(); 3658 3659 return queue_index; 3660 #else 3661 return -1; 3662 #endif 3663 } 3664 3665 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3666 struct net_device *sb_dev, 3667 select_queue_fallback_t fallback) 3668 { 3669 return 0; 3670 } 3671 EXPORT_SYMBOL(dev_pick_tx_zero); 3672 3673 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3674 struct net_device *sb_dev, 3675 select_queue_fallback_t fallback) 3676 { 3677 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3678 } 3679 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3680 3681 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3682 struct net_device *sb_dev) 3683 { 3684 struct sock *sk = skb->sk; 3685 int queue_index = sk_tx_queue_get(sk); 3686 3687 sb_dev = sb_dev ? : dev; 3688 3689 if (queue_index < 0 || skb->ooo_okay || 3690 queue_index >= dev->real_num_tx_queues) { 3691 int new_index = get_xps_queue(dev, sb_dev, skb); 3692 3693 if (new_index < 0) 3694 new_index = skb_tx_hash(dev, sb_dev, skb); 3695 3696 if (queue_index != new_index && sk && 3697 sk_fullsock(sk) && 3698 rcu_access_pointer(sk->sk_dst_cache)) 3699 sk_tx_queue_set(sk, new_index); 3700 3701 queue_index = new_index; 3702 } 3703 3704 return queue_index; 3705 } 3706 3707 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3708 struct sk_buff *skb, 3709 struct net_device *sb_dev) 3710 { 3711 int queue_index = 0; 3712 3713 #ifdef CONFIG_XPS 3714 u32 sender_cpu = skb->sender_cpu - 1; 3715 3716 if (sender_cpu >= (u32)NR_CPUS) 3717 skb->sender_cpu = raw_smp_processor_id() + 1; 3718 #endif 3719 3720 if (dev->real_num_tx_queues != 1) { 3721 const struct net_device_ops *ops = dev->netdev_ops; 3722 3723 if (ops->ndo_select_queue) 3724 queue_index = ops->ndo_select_queue(dev, skb, sb_dev, 3725 __netdev_pick_tx); 3726 else 3727 queue_index = __netdev_pick_tx(dev, skb, sb_dev); 3728 3729 queue_index = netdev_cap_txqueue(dev, queue_index); 3730 } 3731 3732 skb_set_queue_mapping(skb, queue_index); 3733 return netdev_get_tx_queue(dev, queue_index); 3734 } 3735 3736 /** 3737 * __dev_queue_xmit - transmit a buffer 3738 * @skb: buffer to transmit 3739 * @sb_dev: suboordinate device used for L2 forwarding offload 3740 * 3741 * Queue a buffer for transmission to a network device. The caller must 3742 * have set the device and priority and built the buffer before calling 3743 * this function. The function can be called from an interrupt. 3744 * 3745 * A negative errno code is returned on a failure. A success does not 3746 * guarantee the frame will be transmitted as it may be dropped due 3747 * to congestion or traffic shaping. 3748 * 3749 * ----------------------------------------------------------------------------------- 3750 * I notice this method can also return errors from the queue disciplines, 3751 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3752 * be positive. 3753 * 3754 * Regardless of the return value, the skb is consumed, so it is currently 3755 * difficult to retry a send to this method. (You can bump the ref count 3756 * before sending to hold a reference for retry if you are careful.) 3757 * 3758 * When calling this method, interrupts MUST be enabled. This is because 3759 * the BH enable code must have IRQs enabled so that it will not deadlock. 3760 * --BLG 3761 */ 3762 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 3763 { 3764 struct net_device *dev = skb->dev; 3765 struct netdev_queue *txq; 3766 struct Qdisc *q; 3767 int rc = -ENOMEM; 3768 bool again = false; 3769 3770 skb_reset_mac_header(skb); 3771 3772 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3773 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3774 3775 /* Disable soft irqs for various locks below. Also 3776 * stops preemption for RCU. 3777 */ 3778 rcu_read_lock_bh(); 3779 3780 skb_update_prio(skb); 3781 3782 qdisc_pkt_len_init(skb); 3783 #ifdef CONFIG_NET_CLS_ACT 3784 skb->tc_at_ingress = 0; 3785 # ifdef CONFIG_NET_EGRESS 3786 if (static_branch_unlikely(&egress_needed_key)) { 3787 skb = sch_handle_egress(skb, &rc, dev); 3788 if (!skb) 3789 goto out; 3790 } 3791 # endif 3792 #endif 3793 /* If device/qdisc don't need skb->dst, release it right now while 3794 * its hot in this cpu cache. 3795 */ 3796 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3797 skb_dst_drop(skb); 3798 else 3799 skb_dst_force(skb); 3800 3801 txq = netdev_pick_tx(dev, skb, sb_dev); 3802 q = rcu_dereference_bh(txq->qdisc); 3803 3804 trace_net_dev_queue(skb); 3805 if (q->enqueue) { 3806 rc = __dev_xmit_skb(skb, q, dev, txq); 3807 goto out; 3808 } 3809 3810 /* The device has no queue. Common case for software devices: 3811 * loopback, all the sorts of tunnels... 3812 3813 * Really, it is unlikely that netif_tx_lock protection is necessary 3814 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3815 * counters.) 3816 * However, it is possible, that they rely on protection 3817 * made by us here. 3818 3819 * Check this and shot the lock. It is not prone from deadlocks. 3820 *Either shot noqueue qdisc, it is even simpler 8) 3821 */ 3822 if (dev->flags & IFF_UP) { 3823 int cpu = smp_processor_id(); /* ok because BHs are off */ 3824 3825 if (txq->xmit_lock_owner != cpu) { 3826 if (unlikely(__this_cpu_read(xmit_recursion) > 3827 XMIT_RECURSION_LIMIT)) 3828 goto recursion_alert; 3829 3830 skb = validate_xmit_skb(skb, dev, &again); 3831 if (!skb) 3832 goto out; 3833 3834 HARD_TX_LOCK(dev, txq, cpu); 3835 3836 if (!netif_xmit_stopped(txq)) { 3837 __this_cpu_inc(xmit_recursion); 3838 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3839 __this_cpu_dec(xmit_recursion); 3840 if (dev_xmit_complete(rc)) { 3841 HARD_TX_UNLOCK(dev, txq); 3842 goto out; 3843 } 3844 } 3845 HARD_TX_UNLOCK(dev, txq); 3846 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3847 dev->name); 3848 } else { 3849 /* Recursion is detected! It is possible, 3850 * unfortunately 3851 */ 3852 recursion_alert: 3853 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3854 dev->name); 3855 } 3856 } 3857 3858 rc = -ENETDOWN; 3859 rcu_read_unlock_bh(); 3860 3861 atomic_long_inc(&dev->tx_dropped); 3862 kfree_skb_list(skb); 3863 return rc; 3864 out: 3865 rcu_read_unlock_bh(); 3866 return rc; 3867 } 3868 3869 int dev_queue_xmit(struct sk_buff *skb) 3870 { 3871 return __dev_queue_xmit(skb, NULL); 3872 } 3873 EXPORT_SYMBOL(dev_queue_xmit); 3874 3875 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 3876 { 3877 return __dev_queue_xmit(skb, sb_dev); 3878 } 3879 EXPORT_SYMBOL(dev_queue_xmit_accel); 3880 3881 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3882 { 3883 struct net_device *dev = skb->dev; 3884 struct sk_buff *orig_skb = skb; 3885 struct netdev_queue *txq; 3886 int ret = NETDEV_TX_BUSY; 3887 bool again = false; 3888 3889 if (unlikely(!netif_running(dev) || 3890 !netif_carrier_ok(dev))) 3891 goto drop; 3892 3893 skb = validate_xmit_skb_list(skb, dev, &again); 3894 if (skb != orig_skb) 3895 goto drop; 3896 3897 skb_set_queue_mapping(skb, queue_id); 3898 txq = skb_get_tx_queue(dev, skb); 3899 3900 local_bh_disable(); 3901 3902 HARD_TX_LOCK(dev, txq, smp_processor_id()); 3903 if (!netif_xmit_frozen_or_drv_stopped(txq)) 3904 ret = netdev_start_xmit(skb, dev, txq, false); 3905 HARD_TX_UNLOCK(dev, txq); 3906 3907 local_bh_enable(); 3908 3909 if (!dev_xmit_complete(ret)) 3910 kfree_skb(skb); 3911 3912 return ret; 3913 drop: 3914 atomic_long_inc(&dev->tx_dropped); 3915 kfree_skb_list(skb); 3916 return NET_XMIT_DROP; 3917 } 3918 EXPORT_SYMBOL(dev_direct_xmit); 3919 3920 /************************************************************************* 3921 * Receiver routines 3922 *************************************************************************/ 3923 3924 int netdev_max_backlog __read_mostly = 1000; 3925 EXPORT_SYMBOL(netdev_max_backlog); 3926 3927 int netdev_tstamp_prequeue __read_mostly = 1; 3928 int netdev_budget __read_mostly = 300; 3929 unsigned int __read_mostly netdev_budget_usecs = 2000; 3930 int weight_p __read_mostly = 64; /* old backlog weight */ 3931 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3932 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3933 int dev_rx_weight __read_mostly = 64; 3934 int dev_tx_weight __read_mostly = 64; 3935 3936 /* Called with irq disabled */ 3937 static inline void ____napi_schedule(struct softnet_data *sd, 3938 struct napi_struct *napi) 3939 { 3940 list_add_tail(&napi->poll_list, &sd->poll_list); 3941 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3942 } 3943 3944 #ifdef CONFIG_RPS 3945 3946 /* One global table that all flow-based protocols share. */ 3947 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3948 EXPORT_SYMBOL(rps_sock_flow_table); 3949 u32 rps_cpu_mask __read_mostly; 3950 EXPORT_SYMBOL(rps_cpu_mask); 3951 3952 struct static_key rps_needed __read_mostly; 3953 EXPORT_SYMBOL(rps_needed); 3954 struct static_key rfs_needed __read_mostly; 3955 EXPORT_SYMBOL(rfs_needed); 3956 3957 static struct rps_dev_flow * 3958 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3959 struct rps_dev_flow *rflow, u16 next_cpu) 3960 { 3961 if (next_cpu < nr_cpu_ids) { 3962 #ifdef CONFIG_RFS_ACCEL 3963 struct netdev_rx_queue *rxqueue; 3964 struct rps_dev_flow_table *flow_table; 3965 struct rps_dev_flow *old_rflow; 3966 u32 flow_id; 3967 u16 rxq_index; 3968 int rc; 3969 3970 /* Should we steer this flow to a different hardware queue? */ 3971 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3972 !(dev->features & NETIF_F_NTUPLE)) 3973 goto out; 3974 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3975 if (rxq_index == skb_get_rx_queue(skb)) 3976 goto out; 3977 3978 rxqueue = dev->_rx + rxq_index; 3979 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3980 if (!flow_table) 3981 goto out; 3982 flow_id = skb_get_hash(skb) & flow_table->mask; 3983 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3984 rxq_index, flow_id); 3985 if (rc < 0) 3986 goto out; 3987 old_rflow = rflow; 3988 rflow = &flow_table->flows[flow_id]; 3989 rflow->filter = rc; 3990 if (old_rflow->filter == rflow->filter) 3991 old_rflow->filter = RPS_NO_FILTER; 3992 out: 3993 #endif 3994 rflow->last_qtail = 3995 per_cpu(softnet_data, next_cpu).input_queue_head; 3996 } 3997 3998 rflow->cpu = next_cpu; 3999 return rflow; 4000 } 4001 4002 /* 4003 * get_rps_cpu is called from netif_receive_skb and returns the target 4004 * CPU from the RPS map of the receiving queue for a given skb. 4005 * rcu_read_lock must be held on entry. 4006 */ 4007 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4008 struct rps_dev_flow **rflowp) 4009 { 4010 const struct rps_sock_flow_table *sock_flow_table; 4011 struct netdev_rx_queue *rxqueue = dev->_rx; 4012 struct rps_dev_flow_table *flow_table; 4013 struct rps_map *map; 4014 int cpu = -1; 4015 u32 tcpu; 4016 u32 hash; 4017 4018 if (skb_rx_queue_recorded(skb)) { 4019 u16 index = skb_get_rx_queue(skb); 4020 4021 if (unlikely(index >= dev->real_num_rx_queues)) { 4022 WARN_ONCE(dev->real_num_rx_queues > 1, 4023 "%s received packet on queue %u, but number " 4024 "of RX queues is %u\n", 4025 dev->name, index, dev->real_num_rx_queues); 4026 goto done; 4027 } 4028 rxqueue += index; 4029 } 4030 4031 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4032 4033 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4034 map = rcu_dereference(rxqueue->rps_map); 4035 if (!flow_table && !map) 4036 goto done; 4037 4038 skb_reset_network_header(skb); 4039 hash = skb_get_hash(skb); 4040 if (!hash) 4041 goto done; 4042 4043 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4044 if (flow_table && sock_flow_table) { 4045 struct rps_dev_flow *rflow; 4046 u32 next_cpu; 4047 u32 ident; 4048 4049 /* First check into global flow table if there is a match */ 4050 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4051 if ((ident ^ hash) & ~rps_cpu_mask) 4052 goto try_rps; 4053 4054 next_cpu = ident & rps_cpu_mask; 4055 4056 /* OK, now we know there is a match, 4057 * we can look at the local (per receive queue) flow table 4058 */ 4059 rflow = &flow_table->flows[hash & flow_table->mask]; 4060 tcpu = rflow->cpu; 4061 4062 /* 4063 * If the desired CPU (where last recvmsg was done) is 4064 * different from current CPU (one in the rx-queue flow 4065 * table entry), switch if one of the following holds: 4066 * - Current CPU is unset (>= nr_cpu_ids). 4067 * - Current CPU is offline. 4068 * - The current CPU's queue tail has advanced beyond the 4069 * last packet that was enqueued using this table entry. 4070 * This guarantees that all previous packets for the flow 4071 * have been dequeued, thus preserving in order delivery. 4072 */ 4073 if (unlikely(tcpu != next_cpu) && 4074 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4075 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4076 rflow->last_qtail)) >= 0)) { 4077 tcpu = next_cpu; 4078 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4079 } 4080 4081 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4082 *rflowp = rflow; 4083 cpu = tcpu; 4084 goto done; 4085 } 4086 } 4087 4088 try_rps: 4089 4090 if (map) { 4091 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4092 if (cpu_online(tcpu)) { 4093 cpu = tcpu; 4094 goto done; 4095 } 4096 } 4097 4098 done: 4099 return cpu; 4100 } 4101 4102 #ifdef CONFIG_RFS_ACCEL 4103 4104 /** 4105 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4106 * @dev: Device on which the filter was set 4107 * @rxq_index: RX queue index 4108 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4109 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4110 * 4111 * Drivers that implement ndo_rx_flow_steer() should periodically call 4112 * this function for each installed filter and remove the filters for 4113 * which it returns %true. 4114 */ 4115 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4116 u32 flow_id, u16 filter_id) 4117 { 4118 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4119 struct rps_dev_flow_table *flow_table; 4120 struct rps_dev_flow *rflow; 4121 bool expire = true; 4122 unsigned int cpu; 4123 4124 rcu_read_lock(); 4125 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4126 if (flow_table && flow_id <= flow_table->mask) { 4127 rflow = &flow_table->flows[flow_id]; 4128 cpu = READ_ONCE(rflow->cpu); 4129 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4130 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4131 rflow->last_qtail) < 4132 (int)(10 * flow_table->mask))) 4133 expire = false; 4134 } 4135 rcu_read_unlock(); 4136 return expire; 4137 } 4138 EXPORT_SYMBOL(rps_may_expire_flow); 4139 4140 #endif /* CONFIG_RFS_ACCEL */ 4141 4142 /* Called from hardirq (IPI) context */ 4143 static void rps_trigger_softirq(void *data) 4144 { 4145 struct softnet_data *sd = data; 4146 4147 ____napi_schedule(sd, &sd->backlog); 4148 sd->received_rps++; 4149 } 4150 4151 #endif /* CONFIG_RPS */ 4152 4153 /* 4154 * Check if this softnet_data structure is another cpu one 4155 * If yes, queue it to our IPI list and return 1 4156 * If no, return 0 4157 */ 4158 static int rps_ipi_queued(struct softnet_data *sd) 4159 { 4160 #ifdef CONFIG_RPS 4161 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4162 4163 if (sd != mysd) { 4164 sd->rps_ipi_next = mysd->rps_ipi_list; 4165 mysd->rps_ipi_list = sd; 4166 4167 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4168 return 1; 4169 } 4170 #endif /* CONFIG_RPS */ 4171 return 0; 4172 } 4173 4174 #ifdef CONFIG_NET_FLOW_LIMIT 4175 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4176 #endif 4177 4178 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4179 { 4180 #ifdef CONFIG_NET_FLOW_LIMIT 4181 struct sd_flow_limit *fl; 4182 struct softnet_data *sd; 4183 unsigned int old_flow, new_flow; 4184 4185 if (qlen < (netdev_max_backlog >> 1)) 4186 return false; 4187 4188 sd = this_cpu_ptr(&softnet_data); 4189 4190 rcu_read_lock(); 4191 fl = rcu_dereference(sd->flow_limit); 4192 if (fl) { 4193 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4194 old_flow = fl->history[fl->history_head]; 4195 fl->history[fl->history_head] = new_flow; 4196 4197 fl->history_head++; 4198 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4199 4200 if (likely(fl->buckets[old_flow])) 4201 fl->buckets[old_flow]--; 4202 4203 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4204 fl->count++; 4205 rcu_read_unlock(); 4206 return true; 4207 } 4208 } 4209 rcu_read_unlock(); 4210 #endif 4211 return false; 4212 } 4213 4214 /* 4215 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4216 * queue (may be a remote CPU queue). 4217 */ 4218 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4219 unsigned int *qtail) 4220 { 4221 struct softnet_data *sd; 4222 unsigned long flags; 4223 unsigned int qlen; 4224 4225 sd = &per_cpu(softnet_data, cpu); 4226 4227 local_irq_save(flags); 4228 4229 rps_lock(sd); 4230 if (!netif_running(skb->dev)) 4231 goto drop; 4232 qlen = skb_queue_len(&sd->input_pkt_queue); 4233 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4234 if (qlen) { 4235 enqueue: 4236 __skb_queue_tail(&sd->input_pkt_queue, skb); 4237 input_queue_tail_incr_save(sd, qtail); 4238 rps_unlock(sd); 4239 local_irq_restore(flags); 4240 return NET_RX_SUCCESS; 4241 } 4242 4243 /* Schedule NAPI for backlog device 4244 * We can use non atomic operation since we own the queue lock 4245 */ 4246 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4247 if (!rps_ipi_queued(sd)) 4248 ____napi_schedule(sd, &sd->backlog); 4249 } 4250 goto enqueue; 4251 } 4252 4253 drop: 4254 sd->dropped++; 4255 rps_unlock(sd); 4256 4257 local_irq_restore(flags); 4258 4259 atomic_long_inc(&skb->dev->rx_dropped); 4260 kfree_skb(skb); 4261 return NET_RX_DROP; 4262 } 4263 4264 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4265 { 4266 struct net_device *dev = skb->dev; 4267 struct netdev_rx_queue *rxqueue; 4268 4269 rxqueue = dev->_rx; 4270 4271 if (skb_rx_queue_recorded(skb)) { 4272 u16 index = skb_get_rx_queue(skb); 4273 4274 if (unlikely(index >= dev->real_num_rx_queues)) { 4275 WARN_ONCE(dev->real_num_rx_queues > 1, 4276 "%s received packet on queue %u, but number " 4277 "of RX queues is %u\n", 4278 dev->name, index, dev->real_num_rx_queues); 4279 4280 return rxqueue; /* Return first rxqueue */ 4281 } 4282 rxqueue += index; 4283 } 4284 return rxqueue; 4285 } 4286 4287 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4288 struct xdp_buff *xdp, 4289 struct bpf_prog *xdp_prog) 4290 { 4291 struct netdev_rx_queue *rxqueue; 4292 void *orig_data, *orig_data_end; 4293 u32 metalen, act = XDP_DROP; 4294 __be16 orig_eth_type; 4295 struct ethhdr *eth; 4296 bool orig_bcast; 4297 int hlen, off; 4298 u32 mac_len; 4299 4300 /* Reinjected packets coming from act_mirred or similar should 4301 * not get XDP generic processing. 4302 */ 4303 if (skb_cloned(skb) || skb_is_tc_redirected(skb)) 4304 return XDP_PASS; 4305 4306 /* XDP packets must be linear and must have sufficient headroom 4307 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4308 * native XDP provides, thus we need to do it here as well. 4309 */ 4310 if (skb_is_nonlinear(skb) || 4311 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4312 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4313 int troom = skb->tail + skb->data_len - skb->end; 4314 4315 /* In case we have to go down the path and also linearize, 4316 * then lets do the pskb_expand_head() work just once here. 4317 */ 4318 if (pskb_expand_head(skb, 4319 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4320 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4321 goto do_drop; 4322 if (skb_linearize(skb)) 4323 goto do_drop; 4324 } 4325 4326 /* The XDP program wants to see the packet starting at the MAC 4327 * header. 4328 */ 4329 mac_len = skb->data - skb_mac_header(skb); 4330 hlen = skb_headlen(skb) + mac_len; 4331 xdp->data = skb->data - mac_len; 4332 xdp->data_meta = xdp->data; 4333 xdp->data_end = xdp->data + hlen; 4334 xdp->data_hard_start = skb->data - skb_headroom(skb); 4335 orig_data_end = xdp->data_end; 4336 orig_data = xdp->data; 4337 eth = (struct ethhdr *)xdp->data; 4338 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4339 orig_eth_type = eth->h_proto; 4340 4341 rxqueue = netif_get_rxqueue(skb); 4342 xdp->rxq = &rxqueue->xdp_rxq; 4343 4344 act = bpf_prog_run_xdp(xdp_prog, xdp); 4345 4346 off = xdp->data - orig_data; 4347 if (off > 0) 4348 __skb_pull(skb, off); 4349 else if (off < 0) 4350 __skb_push(skb, -off); 4351 skb->mac_header += off; 4352 4353 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4354 * pckt. 4355 */ 4356 off = orig_data_end - xdp->data_end; 4357 if (off != 0) { 4358 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4359 skb->len -= off; 4360 4361 } 4362 4363 /* check if XDP changed eth hdr such SKB needs update */ 4364 eth = (struct ethhdr *)xdp->data; 4365 if ((orig_eth_type != eth->h_proto) || 4366 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4367 __skb_push(skb, ETH_HLEN); 4368 skb->protocol = eth_type_trans(skb, skb->dev); 4369 } 4370 4371 switch (act) { 4372 case XDP_REDIRECT: 4373 case XDP_TX: 4374 __skb_push(skb, mac_len); 4375 break; 4376 case XDP_PASS: 4377 metalen = xdp->data - xdp->data_meta; 4378 if (metalen) 4379 skb_metadata_set(skb, metalen); 4380 break; 4381 default: 4382 bpf_warn_invalid_xdp_action(act); 4383 /* fall through */ 4384 case XDP_ABORTED: 4385 trace_xdp_exception(skb->dev, xdp_prog, act); 4386 /* fall through */ 4387 case XDP_DROP: 4388 do_drop: 4389 kfree_skb(skb); 4390 break; 4391 } 4392 4393 return act; 4394 } 4395 4396 /* When doing generic XDP we have to bypass the qdisc layer and the 4397 * network taps in order to match in-driver-XDP behavior. 4398 */ 4399 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4400 { 4401 struct net_device *dev = skb->dev; 4402 struct netdev_queue *txq; 4403 bool free_skb = true; 4404 int cpu, rc; 4405 4406 txq = netdev_pick_tx(dev, skb, NULL); 4407 cpu = smp_processor_id(); 4408 HARD_TX_LOCK(dev, txq, cpu); 4409 if (!netif_xmit_stopped(txq)) { 4410 rc = netdev_start_xmit(skb, dev, txq, 0); 4411 if (dev_xmit_complete(rc)) 4412 free_skb = false; 4413 } 4414 HARD_TX_UNLOCK(dev, txq); 4415 if (free_skb) { 4416 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4417 kfree_skb(skb); 4418 } 4419 } 4420 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4421 4422 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4423 4424 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4425 { 4426 if (xdp_prog) { 4427 struct xdp_buff xdp; 4428 u32 act; 4429 int err; 4430 4431 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4432 if (act != XDP_PASS) { 4433 switch (act) { 4434 case XDP_REDIRECT: 4435 err = xdp_do_generic_redirect(skb->dev, skb, 4436 &xdp, xdp_prog); 4437 if (err) 4438 goto out_redir; 4439 break; 4440 case XDP_TX: 4441 generic_xdp_tx(skb, xdp_prog); 4442 break; 4443 } 4444 return XDP_DROP; 4445 } 4446 } 4447 return XDP_PASS; 4448 out_redir: 4449 kfree_skb(skb); 4450 return XDP_DROP; 4451 } 4452 EXPORT_SYMBOL_GPL(do_xdp_generic); 4453 4454 static int netif_rx_internal(struct sk_buff *skb) 4455 { 4456 int ret; 4457 4458 net_timestamp_check(netdev_tstamp_prequeue, skb); 4459 4460 trace_netif_rx(skb); 4461 4462 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4463 int ret; 4464 4465 preempt_disable(); 4466 rcu_read_lock(); 4467 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4468 rcu_read_unlock(); 4469 preempt_enable(); 4470 4471 /* Consider XDP consuming the packet a success from 4472 * the netdev point of view we do not want to count 4473 * this as an error. 4474 */ 4475 if (ret != XDP_PASS) 4476 return NET_RX_SUCCESS; 4477 } 4478 4479 #ifdef CONFIG_RPS 4480 if (static_key_false(&rps_needed)) { 4481 struct rps_dev_flow voidflow, *rflow = &voidflow; 4482 int cpu; 4483 4484 preempt_disable(); 4485 rcu_read_lock(); 4486 4487 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4488 if (cpu < 0) 4489 cpu = smp_processor_id(); 4490 4491 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4492 4493 rcu_read_unlock(); 4494 preempt_enable(); 4495 } else 4496 #endif 4497 { 4498 unsigned int qtail; 4499 4500 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4501 put_cpu(); 4502 } 4503 return ret; 4504 } 4505 4506 /** 4507 * netif_rx - post buffer to the network code 4508 * @skb: buffer to post 4509 * 4510 * This function receives a packet from a device driver and queues it for 4511 * the upper (protocol) levels to process. It always succeeds. The buffer 4512 * may be dropped during processing for congestion control or by the 4513 * protocol layers. 4514 * 4515 * return values: 4516 * NET_RX_SUCCESS (no congestion) 4517 * NET_RX_DROP (packet was dropped) 4518 * 4519 */ 4520 4521 int netif_rx(struct sk_buff *skb) 4522 { 4523 trace_netif_rx_entry(skb); 4524 4525 return netif_rx_internal(skb); 4526 } 4527 EXPORT_SYMBOL(netif_rx); 4528 4529 int netif_rx_ni(struct sk_buff *skb) 4530 { 4531 int err; 4532 4533 trace_netif_rx_ni_entry(skb); 4534 4535 preempt_disable(); 4536 err = netif_rx_internal(skb); 4537 if (local_softirq_pending()) 4538 do_softirq(); 4539 preempt_enable(); 4540 4541 return err; 4542 } 4543 EXPORT_SYMBOL(netif_rx_ni); 4544 4545 static __latent_entropy void net_tx_action(struct softirq_action *h) 4546 { 4547 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4548 4549 if (sd->completion_queue) { 4550 struct sk_buff *clist; 4551 4552 local_irq_disable(); 4553 clist = sd->completion_queue; 4554 sd->completion_queue = NULL; 4555 local_irq_enable(); 4556 4557 while (clist) { 4558 struct sk_buff *skb = clist; 4559 4560 clist = clist->next; 4561 4562 WARN_ON(refcount_read(&skb->users)); 4563 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4564 trace_consume_skb(skb); 4565 else 4566 trace_kfree_skb(skb, net_tx_action); 4567 4568 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4569 __kfree_skb(skb); 4570 else 4571 __kfree_skb_defer(skb); 4572 } 4573 4574 __kfree_skb_flush(); 4575 } 4576 4577 if (sd->output_queue) { 4578 struct Qdisc *head; 4579 4580 local_irq_disable(); 4581 head = sd->output_queue; 4582 sd->output_queue = NULL; 4583 sd->output_queue_tailp = &sd->output_queue; 4584 local_irq_enable(); 4585 4586 while (head) { 4587 struct Qdisc *q = head; 4588 spinlock_t *root_lock = NULL; 4589 4590 head = head->next_sched; 4591 4592 if (!(q->flags & TCQ_F_NOLOCK)) { 4593 root_lock = qdisc_lock(q); 4594 spin_lock(root_lock); 4595 } 4596 /* We need to make sure head->next_sched is read 4597 * before clearing __QDISC_STATE_SCHED 4598 */ 4599 smp_mb__before_atomic(); 4600 clear_bit(__QDISC_STATE_SCHED, &q->state); 4601 qdisc_run(q); 4602 if (root_lock) 4603 spin_unlock(root_lock); 4604 } 4605 } 4606 4607 xfrm_dev_backlog(sd); 4608 } 4609 4610 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4611 /* This hook is defined here for ATM LANE */ 4612 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4613 unsigned char *addr) __read_mostly; 4614 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4615 #endif 4616 4617 static inline struct sk_buff * 4618 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4619 struct net_device *orig_dev) 4620 { 4621 #ifdef CONFIG_NET_CLS_ACT 4622 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4623 struct tcf_result cl_res; 4624 4625 /* If there's at least one ingress present somewhere (so 4626 * we get here via enabled static key), remaining devices 4627 * that are not configured with an ingress qdisc will bail 4628 * out here. 4629 */ 4630 if (!miniq) 4631 return skb; 4632 4633 if (*pt_prev) { 4634 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4635 *pt_prev = NULL; 4636 } 4637 4638 qdisc_skb_cb(skb)->pkt_len = skb->len; 4639 skb->tc_at_ingress = 1; 4640 mini_qdisc_bstats_cpu_update(miniq, skb); 4641 4642 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4643 case TC_ACT_OK: 4644 case TC_ACT_RECLASSIFY: 4645 skb->tc_index = TC_H_MIN(cl_res.classid); 4646 break; 4647 case TC_ACT_SHOT: 4648 mini_qdisc_qstats_cpu_drop(miniq); 4649 kfree_skb(skb); 4650 return NULL; 4651 case TC_ACT_STOLEN: 4652 case TC_ACT_QUEUED: 4653 case TC_ACT_TRAP: 4654 consume_skb(skb); 4655 return NULL; 4656 case TC_ACT_REDIRECT: 4657 /* skb_mac_header check was done by cls/act_bpf, so 4658 * we can safely push the L2 header back before 4659 * redirecting to another netdev 4660 */ 4661 __skb_push(skb, skb->mac_len); 4662 skb_do_redirect(skb); 4663 return NULL; 4664 case TC_ACT_REINSERT: 4665 /* this does not scrub the packet, and updates stats on error */ 4666 skb_tc_reinsert(skb, &cl_res); 4667 return NULL; 4668 default: 4669 break; 4670 } 4671 #endif /* CONFIG_NET_CLS_ACT */ 4672 return skb; 4673 } 4674 4675 /** 4676 * netdev_is_rx_handler_busy - check if receive handler is registered 4677 * @dev: device to check 4678 * 4679 * Check if a receive handler is already registered for a given device. 4680 * Return true if there one. 4681 * 4682 * The caller must hold the rtnl_mutex. 4683 */ 4684 bool netdev_is_rx_handler_busy(struct net_device *dev) 4685 { 4686 ASSERT_RTNL(); 4687 return dev && rtnl_dereference(dev->rx_handler); 4688 } 4689 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4690 4691 /** 4692 * netdev_rx_handler_register - register receive handler 4693 * @dev: device to register a handler for 4694 * @rx_handler: receive handler to register 4695 * @rx_handler_data: data pointer that is used by rx handler 4696 * 4697 * Register a receive handler for a device. This handler will then be 4698 * called from __netif_receive_skb. A negative errno code is returned 4699 * on a failure. 4700 * 4701 * The caller must hold the rtnl_mutex. 4702 * 4703 * For a general description of rx_handler, see enum rx_handler_result. 4704 */ 4705 int netdev_rx_handler_register(struct net_device *dev, 4706 rx_handler_func_t *rx_handler, 4707 void *rx_handler_data) 4708 { 4709 if (netdev_is_rx_handler_busy(dev)) 4710 return -EBUSY; 4711 4712 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4713 return -EINVAL; 4714 4715 /* Note: rx_handler_data must be set before rx_handler */ 4716 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4717 rcu_assign_pointer(dev->rx_handler, rx_handler); 4718 4719 return 0; 4720 } 4721 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4722 4723 /** 4724 * netdev_rx_handler_unregister - unregister receive handler 4725 * @dev: device to unregister a handler from 4726 * 4727 * Unregister a receive handler from a device. 4728 * 4729 * The caller must hold the rtnl_mutex. 4730 */ 4731 void netdev_rx_handler_unregister(struct net_device *dev) 4732 { 4733 4734 ASSERT_RTNL(); 4735 RCU_INIT_POINTER(dev->rx_handler, NULL); 4736 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4737 * section has a guarantee to see a non NULL rx_handler_data 4738 * as well. 4739 */ 4740 synchronize_net(); 4741 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4742 } 4743 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4744 4745 /* 4746 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4747 * the special handling of PFMEMALLOC skbs. 4748 */ 4749 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4750 { 4751 switch (skb->protocol) { 4752 case htons(ETH_P_ARP): 4753 case htons(ETH_P_IP): 4754 case htons(ETH_P_IPV6): 4755 case htons(ETH_P_8021Q): 4756 case htons(ETH_P_8021AD): 4757 return true; 4758 default: 4759 return false; 4760 } 4761 } 4762 4763 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4764 int *ret, struct net_device *orig_dev) 4765 { 4766 #ifdef CONFIG_NETFILTER_INGRESS 4767 if (nf_hook_ingress_active(skb)) { 4768 int ingress_retval; 4769 4770 if (*pt_prev) { 4771 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4772 *pt_prev = NULL; 4773 } 4774 4775 rcu_read_lock(); 4776 ingress_retval = nf_hook_ingress(skb); 4777 rcu_read_unlock(); 4778 return ingress_retval; 4779 } 4780 #endif /* CONFIG_NETFILTER_INGRESS */ 4781 return 0; 4782 } 4783 4784 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 4785 struct packet_type **ppt_prev) 4786 { 4787 struct packet_type *ptype, *pt_prev; 4788 rx_handler_func_t *rx_handler; 4789 struct net_device *orig_dev; 4790 bool deliver_exact = false; 4791 int ret = NET_RX_DROP; 4792 __be16 type; 4793 4794 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4795 4796 trace_netif_receive_skb(skb); 4797 4798 orig_dev = skb->dev; 4799 4800 skb_reset_network_header(skb); 4801 if (!skb_transport_header_was_set(skb)) 4802 skb_reset_transport_header(skb); 4803 skb_reset_mac_len(skb); 4804 4805 pt_prev = NULL; 4806 4807 another_round: 4808 skb->skb_iif = skb->dev->ifindex; 4809 4810 __this_cpu_inc(softnet_data.processed); 4811 4812 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4813 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4814 skb = skb_vlan_untag(skb); 4815 if (unlikely(!skb)) 4816 goto out; 4817 } 4818 4819 if (skb_skip_tc_classify(skb)) 4820 goto skip_classify; 4821 4822 if (pfmemalloc) 4823 goto skip_taps; 4824 4825 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4826 if (pt_prev) 4827 ret = deliver_skb(skb, pt_prev, orig_dev); 4828 pt_prev = ptype; 4829 } 4830 4831 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4832 if (pt_prev) 4833 ret = deliver_skb(skb, pt_prev, orig_dev); 4834 pt_prev = ptype; 4835 } 4836 4837 skip_taps: 4838 #ifdef CONFIG_NET_INGRESS 4839 if (static_branch_unlikely(&ingress_needed_key)) { 4840 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4841 if (!skb) 4842 goto out; 4843 4844 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4845 goto out; 4846 } 4847 #endif 4848 skb_reset_tc(skb); 4849 skip_classify: 4850 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4851 goto drop; 4852 4853 if (skb_vlan_tag_present(skb)) { 4854 if (pt_prev) { 4855 ret = deliver_skb(skb, pt_prev, orig_dev); 4856 pt_prev = NULL; 4857 } 4858 if (vlan_do_receive(&skb)) 4859 goto another_round; 4860 else if (unlikely(!skb)) 4861 goto out; 4862 } 4863 4864 rx_handler = rcu_dereference(skb->dev->rx_handler); 4865 if (rx_handler) { 4866 if (pt_prev) { 4867 ret = deliver_skb(skb, pt_prev, orig_dev); 4868 pt_prev = NULL; 4869 } 4870 switch (rx_handler(&skb)) { 4871 case RX_HANDLER_CONSUMED: 4872 ret = NET_RX_SUCCESS; 4873 goto out; 4874 case RX_HANDLER_ANOTHER: 4875 goto another_round; 4876 case RX_HANDLER_EXACT: 4877 deliver_exact = true; 4878 case RX_HANDLER_PASS: 4879 break; 4880 default: 4881 BUG(); 4882 } 4883 } 4884 4885 if (unlikely(skb_vlan_tag_present(skb))) { 4886 if (skb_vlan_tag_get_id(skb)) 4887 skb->pkt_type = PACKET_OTHERHOST; 4888 /* Note: we might in the future use prio bits 4889 * and set skb->priority like in vlan_do_receive() 4890 * For the time being, just ignore Priority Code Point 4891 */ 4892 skb->vlan_tci = 0; 4893 } 4894 4895 type = skb->protocol; 4896 4897 /* deliver only exact match when indicated */ 4898 if (likely(!deliver_exact)) { 4899 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4900 &ptype_base[ntohs(type) & 4901 PTYPE_HASH_MASK]); 4902 } 4903 4904 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4905 &orig_dev->ptype_specific); 4906 4907 if (unlikely(skb->dev != orig_dev)) { 4908 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4909 &skb->dev->ptype_specific); 4910 } 4911 4912 if (pt_prev) { 4913 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4914 goto drop; 4915 *ppt_prev = pt_prev; 4916 } else { 4917 drop: 4918 if (!deliver_exact) 4919 atomic_long_inc(&skb->dev->rx_dropped); 4920 else 4921 atomic_long_inc(&skb->dev->rx_nohandler); 4922 kfree_skb(skb); 4923 /* Jamal, now you will not able to escape explaining 4924 * me how you were going to use this. :-) 4925 */ 4926 ret = NET_RX_DROP; 4927 } 4928 4929 out: 4930 return ret; 4931 } 4932 4933 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 4934 { 4935 struct net_device *orig_dev = skb->dev; 4936 struct packet_type *pt_prev = NULL; 4937 int ret; 4938 4939 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 4940 if (pt_prev) 4941 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4942 return ret; 4943 } 4944 4945 /** 4946 * netif_receive_skb_core - special purpose version of netif_receive_skb 4947 * @skb: buffer to process 4948 * 4949 * More direct receive version of netif_receive_skb(). It should 4950 * only be used by callers that have a need to skip RPS and Generic XDP. 4951 * Caller must also take care of handling if (page_is_)pfmemalloc. 4952 * 4953 * This function may only be called from softirq context and interrupts 4954 * should be enabled. 4955 * 4956 * Return values (usually ignored): 4957 * NET_RX_SUCCESS: no congestion 4958 * NET_RX_DROP: packet was dropped 4959 */ 4960 int netif_receive_skb_core(struct sk_buff *skb) 4961 { 4962 int ret; 4963 4964 rcu_read_lock(); 4965 ret = __netif_receive_skb_one_core(skb, false); 4966 rcu_read_unlock(); 4967 4968 return ret; 4969 } 4970 EXPORT_SYMBOL(netif_receive_skb_core); 4971 4972 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 4973 struct packet_type *pt_prev, 4974 struct net_device *orig_dev) 4975 { 4976 struct sk_buff *skb, *next; 4977 4978 if (!pt_prev) 4979 return; 4980 if (list_empty(head)) 4981 return; 4982 if (pt_prev->list_func != NULL) 4983 pt_prev->list_func(head, pt_prev, orig_dev); 4984 else 4985 list_for_each_entry_safe(skb, next, head, list) 4986 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4987 } 4988 4989 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 4990 { 4991 /* Fast-path assumptions: 4992 * - There is no RX handler. 4993 * - Only one packet_type matches. 4994 * If either of these fails, we will end up doing some per-packet 4995 * processing in-line, then handling the 'last ptype' for the whole 4996 * sublist. This can't cause out-of-order delivery to any single ptype, 4997 * because the 'last ptype' must be constant across the sublist, and all 4998 * other ptypes are handled per-packet. 4999 */ 5000 /* Current (common) ptype of sublist */ 5001 struct packet_type *pt_curr = NULL; 5002 /* Current (common) orig_dev of sublist */ 5003 struct net_device *od_curr = NULL; 5004 struct list_head sublist; 5005 struct sk_buff *skb, *next; 5006 5007 INIT_LIST_HEAD(&sublist); 5008 list_for_each_entry_safe(skb, next, head, list) { 5009 struct net_device *orig_dev = skb->dev; 5010 struct packet_type *pt_prev = NULL; 5011 5012 list_del(&skb->list); 5013 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5014 if (!pt_prev) 5015 continue; 5016 if (pt_curr != pt_prev || od_curr != orig_dev) { 5017 /* dispatch old sublist */ 5018 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5019 /* start new sublist */ 5020 INIT_LIST_HEAD(&sublist); 5021 pt_curr = pt_prev; 5022 od_curr = orig_dev; 5023 } 5024 list_add_tail(&skb->list, &sublist); 5025 } 5026 5027 /* dispatch final sublist */ 5028 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5029 } 5030 5031 static int __netif_receive_skb(struct sk_buff *skb) 5032 { 5033 int ret; 5034 5035 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5036 unsigned int noreclaim_flag; 5037 5038 /* 5039 * PFMEMALLOC skbs are special, they should 5040 * - be delivered to SOCK_MEMALLOC sockets only 5041 * - stay away from userspace 5042 * - have bounded memory usage 5043 * 5044 * Use PF_MEMALLOC as this saves us from propagating the allocation 5045 * context down to all allocation sites. 5046 */ 5047 noreclaim_flag = memalloc_noreclaim_save(); 5048 ret = __netif_receive_skb_one_core(skb, true); 5049 memalloc_noreclaim_restore(noreclaim_flag); 5050 } else 5051 ret = __netif_receive_skb_one_core(skb, false); 5052 5053 return ret; 5054 } 5055 5056 static void __netif_receive_skb_list(struct list_head *head) 5057 { 5058 unsigned long noreclaim_flag = 0; 5059 struct sk_buff *skb, *next; 5060 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5061 5062 list_for_each_entry_safe(skb, next, head, list) { 5063 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5064 struct list_head sublist; 5065 5066 /* Handle the previous sublist */ 5067 list_cut_before(&sublist, head, &skb->list); 5068 if (!list_empty(&sublist)) 5069 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5070 pfmemalloc = !pfmemalloc; 5071 /* See comments in __netif_receive_skb */ 5072 if (pfmemalloc) 5073 noreclaim_flag = memalloc_noreclaim_save(); 5074 else 5075 memalloc_noreclaim_restore(noreclaim_flag); 5076 } 5077 } 5078 /* Handle the remaining sublist */ 5079 if (!list_empty(head)) 5080 __netif_receive_skb_list_core(head, pfmemalloc); 5081 /* Restore pflags */ 5082 if (pfmemalloc) 5083 memalloc_noreclaim_restore(noreclaim_flag); 5084 } 5085 5086 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5087 { 5088 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5089 struct bpf_prog *new = xdp->prog; 5090 int ret = 0; 5091 5092 switch (xdp->command) { 5093 case XDP_SETUP_PROG: 5094 rcu_assign_pointer(dev->xdp_prog, new); 5095 if (old) 5096 bpf_prog_put(old); 5097 5098 if (old && !new) { 5099 static_branch_dec(&generic_xdp_needed_key); 5100 } else if (new && !old) { 5101 static_branch_inc(&generic_xdp_needed_key); 5102 dev_disable_lro(dev); 5103 dev_disable_gro_hw(dev); 5104 } 5105 break; 5106 5107 case XDP_QUERY_PROG: 5108 xdp->prog_id = old ? old->aux->id : 0; 5109 break; 5110 5111 default: 5112 ret = -EINVAL; 5113 break; 5114 } 5115 5116 return ret; 5117 } 5118 5119 static int netif_receive_skb_internal(struct sk_buff *skb) 5120 { 5121 int ret; 5122 5123 net_timestamp_check(netdev_tstamp_prequeue, skb); 5124 5125 if (skb_defer_rx_timestamp(skb)) 5126 return NET_RX_SUCCESS; 5127 5128 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5129 int ret; 5130 5131 preempt_disable(); 5132 rcu_read_lock(); 5133 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5134 rcu_read_unlock(); 5135 preempt_enable(); 5136 5137 if (ret != XDP_PASS) 5138 return NET_RX_DROP; 5139 } 5140 5141 rcu_read_lock(); 5142 #ifdef CONFIG_RPS 5143 if (static_key_false(&rps_needed)) { 5144 struct rps_dev_flow voidflow, *rflow = &voidflow; 5145 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5146 5147 if (cpu >= 0) { 5148 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5149 rcu_read_unlock(); 5150 return ret; 5151 } 5152 } 5153 #endif 5154 ret = __netif_receive_skb(skb); 5155 rcu_read_unlock(); 5156 return ret; 5157 } 5158 5159 static void netif_receive_skb_list_internal(struct list_head *head) 5160 { 5161 struct bpf_prog *xdp_prog = NULL; 5162 struct sk_buff *skb, *next; 5163 struct list_head sublist; 5164 5165 INIT_LIST_HEAD(&sublist); 5166 list_for_each_entry_safe(skb, next, head, list) { 5167 net_timestamp_check(netdev_tstamp_prequeue, skb); 5168 list_del(&skb->list); 5169 if (!skb_defer_rx_timestamp(skb)) 5170 list_add_tail(&skb->list, &sublist); 5171 } 5172 list_splice_init(&sublist, head); 5173 5174 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5175 preempt_disable(); 5176 rcu_read_lock(); 5177 list_for_each_entry_safe(skb, next, head, list) { 5178 xdp_prog = rcu_dereference(skb->dev->xdp_prog); 5179 list_del(&skb->list); 5180 if (do_xdp_generic(xdp_prog, skb) == XDP_PASS) 5181 list_add_tail(&skb->list, &sublist); 5182 } 5183 rcu_read_unlock(); 5184 preempt_enable(); 5185 /* Put passed packets back on main list */ 5186 list_splice_init(&sublist, head); 5187 } 5188 5189 rcu_read_lock(); 5190 #ifdef CONFIG_RPS 5191 if (static_key_false(&rps_needed)) { 5192 list_for_each_entry_safe(skb, next, head, list) { 5193 struct rps_dev_flow voidflow, *rflow = &voidflow; 5194 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5195 5196 if (cpu >= 0) { 5197 /* Will be handled, remove from list */ 5198 list_del(&skb->list); 5199 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5200 } 5201 } 5202 } 5203 #endif 5204 __netif_receive_skb_list(head); 5205 rcu_read_unlock(); 5206 } 5207 5208 /** 5209 * netif_receive_skb - process receive buffer from network 5210 * @skb: buffer to process 5211 * 5212 * netif_receive_skb() is the main receive data processing function. 5213 * It always succeeds. The buffer may be dropped during processing 5214 * for congestion control or by the protocol layers. 5215 * 5216 * This function may only be called from softirq context and interrupts 5217 * should be enabled. 5218 * 5219 * Return values (usually ignored): 5220 * NET_RX_SUCCESS: no congestion 5221 * NET_RX_DROP: packet was dropped 5222 */ 5223 int netif_receive_skb(struct sk_buff *skb) 5224 { 5225 trace_netif_receive_skb_entry(skb); 5226 5227 return netif_receive_skb_internal(skb); 5228 } 5229 EXPORT_SYMBOL(netif_receive_skb); 5230 5231 /** 5232 * netif_receive_skb_list - process many receive buffers from network 5233 * @head: list of skbs to process. 5234 * 5235 * Since return value of netif_receive_skb() is normally ignored, and 5236 * wouldn't be meaningful for a list, this function returns void. 5237 * 5238 * This function may only be called from softirq context and interrupts 5239 * should be enabled. 5240 */ 5241 void netif_receive_skb_list(struct list_head *head) 5242 { 5243 struct sk_buff *skb; 5244 5245 if (list_empty(head)) 5246 return; 5247 list_for_each_entry(skb, head, list) 5248 trace_netif_receive_skb_list_entry(skb); 5249 netif_receive_skb_list_internal(head); 5250 } 5251 EXPORT_SYMBOL(netif_receive_skb_list); 5252 5253 DEFINE_PER_CPU(struct work_struct, flush_works); 5254 5255 /* Network device is going away, flush any packets still pending */ 5256 static void flush_backlog(struct work_struct *work) 5257 { 5258 struct sk_buff *skb, *tmp; 5259 struct softnet_data *sd; 5260 5261 local_bh_disable(); 5262 sd = this_cpu_ptr(&softnet_data); 5263 5264 local_irq_disable(); 5265 rps_lock(sd); 5266 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5267 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5268 __skb_unlink(skb, &sd->input_pkt_queue); 5269 kfree_skb(skb); 5270 input_queue_head_incr(sd); 5271 } 5272 } 5273 rps_unlock(sd); 5274 local_irq_enable(); 5275 5276 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5277 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5278 __skb_unlink(skb, &sd->process_queue); 5279 kfree_skb(skb); 5280 input_queue_head_incr(sd); 5281 } 5282 } 5283 local_bh_enable(); 5284 } 5285 5286 static void flush_all_backlogs(void) 5287 { 5288 unsigned int cpu; 5289 5290 get_online_cpus(); 5291 5292 for_each_online_cpu(cpu) 5293 queue_work_on(cpu, system_highpri_wq, 5294 per_cpu_ptr(&flush_works, cpu)); 5295 5296 for_each_online_cpu(cpu) 5297 flush_work(per_cpu_ptr(&flush_works, cpu)); 5298 5299 put_online_cpus(); 5300 } 5301 5302 static int napi_gro_complete(struct sk_buff *skb) 5303 { 5304 struct packet_offload *ptype; 5305 __be16 type = skb->protocol; 5306 struct list_head *head = &offload_base; 5307 int err = -ENOENT; 5308 5309 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5310 5311 if (NAPI_GRO_CB(skb)->count == 1) { 5312 skb_shinfo(skb)->gso_size = 0; 5313 goto out; 5314 } 5315 5316 rcu_read_lock(); 5317 list_for_each_entry_rcu(ptype, head, list) { 5318 if (ptype->type != type || !ptype->callbacks.gro_complete) 5319 continue; 5320 5321 err = ptype->callbacks.gro_complete(skb, 0); 5322 break; 5323 } 5324 rcu_read_unlock(); 5325 5326 if (err) { 5327 WARN_ON(&ptype->list == head); 5328 kfree_skb(skb); 5329 return NET_RX_SUCCESS; 5330 } 5331 5332 out: 5333 return netif_receive_skb_internal(skb); 5334 } 5335 5336 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5337 bool flush_old) 5338 { 5339 struct list_head *head = &napi->gro_hash[index].list; 5340 struct sk_buff *skb, *p; 5341 5342 list_for_each_entry_safe_reverse(skb, p, head, list) { 5343 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5344 return; 5345 skb_list_del_init(skb); 5346 napi_gro_complete(skb); 5347 napi->gro_hash[index].count--; 5348 } 5349 5350 if (!napi->gro_hash[index].count) 5351 __clear_bit(index, &napi->gro_bitmask); 5352 } 5353 5354 /* napi->gro_hash[].list contains packets ordered by age. 5355 * youngest packets at the head of it. 5356 * Complete skbs in reverse order to reduce latencies. 5357 */ 5358 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5359 { 5360 u32 i; 5361 5362 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 5363 if (test_bit(i, &napi->gro_bitmask)) 5364 __napi_gro_flush_chain(napi, i, flush_old); 5365 } 5366 } 5367 EXPORT_SYMBOL(napi_gro_flush); 5368 5369 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5370 struct sk_buff *skb) 5371 { 5372 unsigned int maclen = skb->dev->hard_header_len; 5373 u32 hash = skb_get_hash_raw(skb); 5374 struct list_head *head; 5375 struct sk_buff *p; 5376 5377 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5378 list_for_each_entry(p, head, list) { 5379 unsigned long diffs; 5380 5381 NAPI_GRO_CB(p)->flush = 0; 5382 5383 if (hash != skb_get_hash_raw(p)) { 5384 NAPI_GRO_CB(p)->same_flow = 0; 5385 continue; 5386 } 5387 5388 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5389 diffs |= p->vlan_tci ^ skb->vlan_tci; 5390 diffs |= skb_metadata_dst_cmp(p, skb); 5391 diffs |= skb_metadata_differs(p, skb); 5392 if (maclen == ETH_HLEN) 5393 diffs |= compare_ether_header(skb_mac_header(p), 5394 skb_mac_header(skb)); 5395 else if (!diffs) 5396 diffs = memcmp(skb_mac_header(p), 5397 skb_mac_header(skb), 5398 maclen); 5399 NAPI_GRO_CB(p)->same_flow = !diffs; 5400 } 5401 5402 return head; 5403 } 5404 5405 static void skb_gro_reset_offset(struct sk_buff *skb) 5406 { 5407 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5408 const skb_frag_t *frag0 = &pinfo->frags[0]; 5409 5410 NAPI_GRO_CB(skb)->data_offset = 0; 5411 NAPI_GRO_CB(skb)->frag0 = NULL; 5412 NAPI_GRO_CB(skb)->frag0_len = 0; 5413 5414 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 5415 pinfo->nr_frags && 5416 !PageHighMem(skb_frag_page(frag0))) { 5417 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5418 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5419 skb_frag_size(frag0), 5420 skb->end - skb->tail); 5421 } 5422 } 5423 5424 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5425 { 5426 struct skb_shared_info *pinfo = skb_shinfo(skb); 5427 5428 BUG_ON(skb->end - skb->tail < grow); 5429 5430 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5431 5432 skb->data_len -= grow; 5433 skb->tail += grow; 5434 5435 pinfo->frags[0].page_offset += grow; 5436 skb_frag_size_sub(&pinfo->frags[0], grow); 5437 5438 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5439 skb_frag_unref(skb, 0); 5440 memmove(pinfo->frags, pinfo->frags + 1, 5441 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5442 } 5443 } 5444 5445 static void gro_flush_oldest(struct list_head *head) 5446 { 5447 struct sk_buff *oldest; 5448 5449 oldest = list_last_entry(head, struct sk_buff, list); 5450 5451 /* We are called with head length >= MAX_GRO_SKBS, so this is 5452 * impossible. 5453 */ 5454 if (WARN_ON_ONCE(!oldest)) 5455 return; 5456 5457 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5458 * SKB to the chain. 5459 */ 5460 skb_list_del_init(oldest); 5461 napi_gro_complete(oldest); 5462 } 5463 5464 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5465 { 5466 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5467 struct list_head *head = &offload_base; 5468 struct packet_offload *ptype; 5469 __be16 type = skb->protocol; 5470 struct list_head *gro_head; 5471 struct sk_buff *pp = NULL; 5472 enum gro_result ret; 5473 int same_flow; 5474 int grow; 5475 5476 if (netif_elide_gro(skb->dev)) 5477 goto normal; 5478 5479 gro_head = gro_list_prepare(napi, skb); 5480 5481 rcu_read_lock(); 5482 list_for_each_entry_rcu(ptype, head, list) { 5483 if (ptype->type != type || !ptype->callbacks.gro_receive) 5484 continue; 5485 5486 skb_set_network_header(skb, skb_gro_offset(skb)); 5487 skb_reset_mac_len(skb); 5488 NAPI_GRO_CB(skb)->same_flow = 0; 5489 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5490 NAPI_GRO_CB(skb)->free = 0; 5491 NAPI_GRO_CB(skb)->encap_mark = 0; 5492 NAPI_GRO_CB(skb)->recursion_counter = 0; 5493 NAPI_GRO_CB(skb)->is_fou = 0; 5494 NAPI_GRO_CB(skb)->is_atomic = 1; 5495 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5496 5497 /* Setup for GRO checksum validation */ 5498 switch (skb->ip_summed) { 5499 case CHECKSUM_COMPLETE: 5500 NAPI_GRO_CB(skb)->csum = skb->csum; 5501 NAPI_GRO_CB(skb)->csum_valid = 1; 5502 NAPI_GRO_CB(skb)->csum_cnt = 0; 5503 break; 5504 case CHECKSUM_UNNECESSARY: 5505 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5506 NAPI_GRO_CB(skb)->csum_valid = 0; 5507 break; 5508 default: 5509 NAPI_GRO_CB(skb)->csum_cnt = 0; 5510 NAPI_GRO_CB(skb)->csum_valid = 0; 5511 } 5512 5513 pp = ptype->callbacks.gro_receive(gro_head, skb); 5514 break; 5515 } 5516 rcu_read_unlock(); 5517 5518 if (&ptype->list == head) 5519 goto normal; 5520 5521 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5522 ret = GRO_CONSUMED; 5523 goto ok; 5524 } 5525 5526 same_flow = NAPI_GRO_CB(skb)->same_flow; 5527 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5528 5529 if (pp) { 5530 skb_list_del_init(pp); 5531 napi_gro_complete(pp); 5532 napi->gro_hash[hash].count--; 5533 } 5534 5535 if (same_flow) 5536 goto ok; 5537 5538 if (NAPI_GRO_CB(skb)->flush) 5539 goto normal; 5540 5541 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5542 gro_flush_oldest(gro_head); 5543 } else { 5544 napi->gro_hash[hash].count++; 5545 } 5546 NAPI_GRO_CB(skb)->count = 1; 5547 NAPI_GRO_CB(skb)->age = jiffies; 5548 NAPI_GRO_CB(skb)->last = skb; 5549 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5550 list_add(&skb->list, gro_head); 5551 ret = GRO_HELD; 5552 5553 pull: 5554 grow = skb_gro_offset(skb) - skb_headlen(skb); 5555 if (grow > 0) 5556 gro_pull_from_frag0(skb, grow); 5557 ok: 5558 if (napi->gro_hash[hash].count) { 5559 if (!test_bit(hash, &napi->gro_bitmask)) 5560 __set_bit(hash, &napi->gro_bitmask); 5561 } else if (test_bit(hash, &napi->gro_bitmask)) { 5562 __clear_bit(hash, &napi->gro_bitmask); 5563 } 5564 5565 return ret; 5566 5567 normal: 5568 ret = GRO_NORMAL; 5569 goto pull; 5570 } 5571 5572 struct packet_offload *gro_find_receive_by_type(__be16 type) 5573 { 5574 struct list_head *offload_head = &offload_base; 5575 struct packet_offload *ptype; 5576 5577 list_for_each_entry_rcu(ptype, offload_head, list) { 5578 if (ptype->type != type || !ptype->callbacks.gro_receive) 5579 continue; 5580 return ptype; 5581 } 5582 return NULL; 5583 } 5584 EXPORT_SYMBOL(gro_find_receive_by_type); 5585 5586 struct packet_offload *gro_find_complete_by_type(__be16 type) 5587 { 5588 struct list_head *offload_head = &offload_base; 5589 struct packet_offload *ptype; 5590 5591 list_for_each_entry_rcu(ptype, offload_head, list) { 5592 if (ptype->type != type || !ptype->callbacks.gro_complete) 5593 continue; 5594 return ptype; 5595 } 5596 return NULL; 5597 } 5598 EXPORT_SYMBOL(gro_find_complete_by_type); 5599 5600 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5601 { 5602 skb_dst_drop(skb); 5603 secpath_reset(skb); 5604 kmem_cache_free(skbuff_head_cache, skb); 5605 } 5606 5607 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5608 { 5609 switch (ret) { 5610 case GRO_NORMAL: 5611 if (netif_receive_skb_internal(skb)) 5612 ret = GRO_DROP; 5613 break; 5614 5615 case GRO_DROP: 5616 kfree_skb(skb); 5617 break; 5618 5619 case GRO_MERGED_FREE: 5620 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5621 napi_skb_free_stolen_head(skb); 5622 else 5623 __kfree_skb(skb); 5624 break; 5625 5626 case GRO_HELD: 5627 case GRO_MERGED: 5628 case GRO_CONSUMED: 5629 break; 5630 } 5631 5632 return ret; 5633 } 5634 5635 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5636 { 5637 skb_mark_napi_id(skb, napi); 5638 trace_napi_gro_receive_entry(skb); 5639 5640 skb_gro_reset_offset(skb); 5641 5642 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 5643 } 5644 EXPORT_SYMBOL(napi_gro_receive); 5645 5646 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5647 { 5648 if (unlikely(skb->pfmemalloc)) { 5649 consume_skb(skb); 5650 return; 5651 } 5652 __skb_pull(skb, skb_headlen(skb)); 5653 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5654 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5655 skb->vlan_tci = 0; 5656 skb->dev = napi->dev; 5657 skb->skb_iif = 0; 5658 skb->encapsulation = 0; 5659 skb_shinfo(skb)->gso_type = 0; 5660 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5661 secpath_reset(skb); 5662 5663 napi->skb = skb; 5664 } 5665 5666 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5667 { 5668 struct sk_buff *skb = napi->skb; 5669 5670 if (!skb) { 5671 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5672 if (skb) { 5673 napi->skb = skb; 5674 skb_mark_napi_id(skb, napi); 5675 } 5676 } 5677 return skb; 5678 } 5679 EXPORT_SYMBOL(napi_get_frags); 5680 5681 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5682 struct sk_buff *skb, 5683 gro_result_t ret) 5684 { 5685 switch (ret) { 5686 case GRO_NORMAL: 5687 case GRO_HELD: 5688 __skb_push(skb, ETH_HLEN); 5689 skb->protocol = eth_type_trans(skb, skb->dev); 5690 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5691 ret = GRO_DROP; 5692 break; 5693 5694 case GRO_DROP: 5695 napi_reuse_skb(napi, skb); 5696 break; 5697 5698 case GRO_MERGED_FREE: 5699 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5700 napi_skb_free_stolen_head(skb); 5701 else 5702 napi_reuse_skb(napi, skb); 5703 break; 5704 5705 case GRO_MERGED: 5706 case GRO_CONSUMED: 5707 break; 5708 } 5709 5710 return ret; 5711 } 5712 5713 /* Upper GRO stack assumes network header starts at gro_offset=0 5714 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5715 * We copy ethernet header into skb->data to have a common layout. 5716 */ 5717 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5718 { 5719 struct sk_buff *skb = napi->skb; 5720 const struct ethhdr *eth; 5721 unsigned int hlen = sizeof(*eth); 5722 5723 napi->skb = NULL; 5724 5725 skb_reset_mac_header(skb); 5726 skb_gro_reset_offset(skb); 5727 5728 eth = skb_gro_header_fast(skb, 0); 5729 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5730 eth = skb_gro_header_slow(skb, hlen, 0); 5731 if (unlikely(!eth)) { 5732 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5733 __func__, napi->dev->name); 5734 napi_reuse_skb(napi, skb); 5735 return NULL; 5736 } 5737 } else { 5738 gro_pull_from_frag0(skb, hlen); 5739 NAPI_GRO_CB(skb)->frag0 += hlen; 5740 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5741 } 5742 __skb_pull(skb, hlen); 5743 5744 /* 5745 * This works because the only protocols we care about don't require 5746 * special handling. 5747 * We'll fix it up properly in napi_frags_finish() 5748 */ 5749 skb->protocol = eth->h_proto; 5750 5751 return skb; 5752 } 5753 5754 gro_result_t napi_gro_frags(struct napi_struct *napi) 5755 { 5756 struct sk_buff *skb = napi_frags_skb(napi); 5757 5758 if (!skb) 5759 return GRO_DROP; 5760 5761 trace_napi_gro_frags_entry(skb); 5762 5763 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5764 } 5765 EXPORT_SYMBOL(napi_gro_frags); 5766 5767 /* Compute the checksum from gro_offset and return the folded value 5768 * after adding in any pseudo checksum. 5769 */ 5770 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5771 { 5772 __wsum wsum; 5773 __sum16 sum; 5774 5775 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5776 5777 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5778 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5779 if (likely(!sum)) { 5780 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5781 !skb->csum_complete_sw) 5782 netdev_rx_csum_fault(skb->dev); 5783 } 5784 5785 NAPI_GRO_CB(skb)->csum = wsum; 5786 NAPI_GRO_CB(skb)->csum_valid = 1; 5787 5788 return sum; 5789 } 5790 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5791 5792 static void net_rps_send_ipi(struct softnet_data *remsd) 5793 { 5794 #ifdef CONFIG_RPS 5795 while (remsd) { 5796 struct softnet_data *next = remsd->rps_ipi_next; 5797 5798 if (cpu_online(remsd->cpu)) 5799 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5800 remsd = next; 5801 } 5802 #endif 5803 } 5804 5805 /* 5806 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5807 * Note: called with local irq disabled, but exits with local irq enabled. 5808 */ 5809 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5810 { 5811 #ifdef CONFIG_RPS 5812 struct softnet_data *remsd = sd->rps_ipi_list; 5813 5814 if (remsd) { 5815 sd->rps_ipi_list = NULL; 5816 5817 local_irq_enable(); 5818 5819 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5820 net_rps_send_ipi(remsd); 5821 } else 5822 #endif 5823 local_irq_enable(); 5824 } 5825 5826 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5827 { 5828 #ifdef CONFIG_RPS 5829 return sd->rps_ipi_list != NULL; 5830 #else 5831 return false; 5832 #endif 5833 } 5834 5835 static int process_backlog(struct napi_struct *napi, int quota) 5836 { 5837 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5838 bool again = true; 5839 int work = 0; 5840 5841 /* Check if we have pending ipi, its better to send them now, 5842 * not waiting net_rx_action() end. 5843 */ 5844 if (sd_has_rps_ipi_waiting(sd)) { 5845 local_irq_disable(); 5846 net_rps_action_and_irq_enable(sd); 5847 } 5848 5849 napi->weight = dev_rx_weight; 5850 while (again) { 5851 struct sk_buff *skb; 5852 5853 while ((skb = __skb_dequeue(&sd->process_queue))) { 5854 rcu_read_lock(); 5855 __netif_receive_skb(skb); 5856 rcu_read_unlock(); 5857 input_queue_head_incr(sd); 5858 if (++work >= quota) 5859 return work; 5860 5861 } 5862 5863 local_irq_disable(); 5864 rps_lock(sd); 5865 if (skb_queue_empty(&sd->input_pkt_queue)) { 5866 /* 5867 * Inline a custom version of __napi_complete(). 5868 * only current cpu owns and manipulates this napi, 5869 * and NAPI_STATE_SCHED is the only possible flag set 5870 * on backlog. 5871 * We can use a plain write instead of clear_bit(), 5872 * and we dont need an smp_mb() memory barrier. 5873 */ 5874 napi->state = 0; 5875 again = false; 5876 } else { 5877 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5878 &sd->process_queue); 5879 } 5880 rps_unlock(sd); 5881 local_irq_enable(); 5882 } 5883 5884 return work; 5885 } 5886 5887 /** 5888 * __napi_schedule - schedule for receive 5889 * @n: entry to schedule 5890 * 5891 * The entry's receive function will be scheduled to run. 5892 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5893 */ 5894 void __napi_schedule(struct napi_struct *n) 5895 { 5896 unsigned long flags; 5897 5898 local_irq_save(flags); 5899 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5900 local_irq_restore(flags); 5901 } 5902 EXPORT_SYMBOL(__napi_schedule); 5903 5904 /** 5905 * napi_schedule_prep - check if napi can be scheduled 5906 * @n: napi context 5907 * 5908 * Test if NAPI routine is already running, and if not mark 5909 * it as running. This is used as a condition variable 5910 * insure only one NAPI poll instance runs. We also make 5911 * sure there is no pending NAPI disable. 5912 */ 5913 bool napi_schedule_prep(struct napi_struct *n) 5914 { 5915 unsigned long val, new; 5916 5917 do { 5918 val = READ_ONCE(n->state); 5919 if (unlikely(val & NAPIF_STATE_DISABLE)) 5920 return false; 5921 new = val | NAPIF_STATE_SCHED; 5922 5923 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5924 * This was suggested by Alexander Duyck, as compiler 5925 * emits better code than : 5926 * if (val & NAPIF_STATE_SCHED) 5927 * new |= NAPIF_STATE_MISSED; 5928 */ 5929 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5930 NAPIF_STATE_MISSED; 5931 } while (cmpxchg(&n->state, val, new) != val); 5932 5933 return !(val & NAPIF_STATE_SCHED); 5934 } 5935 EXPORT_SYMBOL(napi_schedule_prep); 5936 5937 /** 5938 * __napi_schedule_irqoff - schedule for receive 5939 * @n: entry to schedule 5940 * 5941 * Variant of __napi_schedule() assuming hard irqs are masked 5942 */ 5943 void __napi_schedule_irqoff(struct napi_struct *n) 5944 { 5945 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5946 } 5947 EXPORT_SYMBOL(__napi_schedule_irqoff); 5948 5949 bool napi_complete_done(struct napi_struct *n, int work_done) 5950 { 5951 unsigned long flags, val, new; 5952 5953 /* 5954 * 1) Don't let napi dequeue from the cpu poll list 5955 * just in case its running on a different cpu. 5956 * 2) If we are busy polling, do nothing here, we have 5957 * the guarantee we will be called later. 5958 */ 5959 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5960 NAPIF_STATE_IN_BUSY_POLL))) 5961 return false; 5962 5963 if (n->gro_bitmask) { 5964 unsigned long timeout = 0; 5965 5966 if (work_done) 5967 timeout = n->dev->gro_flush_timeout; 5968 5969 if (timeout) 5970 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5971 HRTIMER_MODE_REL_PINNED); 5972 else 5973 napi_gro_flush(n, false); 5974 } 5975 if (unlikely(!list_empty(&n->poll_list))) { 5976 /* If n->poll_list is not empty, we need to mask irqs */ 5977 local_irq_save(flags); 5978 list_del_init(&n->poll_list); 5979 local_irq_restore(flags); 5980 } 5981 5982 do { 5983 val = READ_ONCE(n->state); 5984 5985 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5986 5987 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5988 5989 /* If STATE_MISSED was set, leave STATE_SCHED set, 5990 * because we will call napi->poll() one more time. 5991 * This C code was suggested by Alexander Duyck to help gcc. 5992 */ 5993 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5994 NAPIF_STATE_SCHED; 5995 } while (cmpxchg(&n->state, val, new) != val); 5996 5997 if (unlikely(val & NAPIF_STATE_MISSED)) { 5998 __napi_schedule(n); 5999 return false; 6000 } 6001 6002 return true; 6003 } 6004 EXPORT_SYMBOL(napi_complete_done); 6005 6006 /* must be called under rcu_read_lock(), as we dont take a reference */ 6007 static struct napi_struct *napi_by_id(unsigned int napi_id) 6008 { 6009 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6010 struct napi_struct *napi; 6011 6012 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6013 if (napi->napi_id == napi_id) 6014 return napi; 6015 6016 return NULL; 6017 } 6018 6019 #if defined(CONFIG_NET_RX_BUSY_POLL) 6020 6021 #define BUSY_POLL_BUDGET 8 6022 6023 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6024 { 6025 int rc; 6026 6027 /* Busy polling means there is a high chance device driver hard irq 6028 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6029 * set in napi_schedule_prep(). 6030 * Since we are about to call napi->poll() once more, we can safely 6031 * clear NAPI_STATE_MISSED. 6032 * 6033 * Note: x86 could use a single "lock and ..." instruction 6034 * to perform these two clear_bit() 6035 */ 6036 clear_bit(NAPI_STATE_MISSED, &napi->state); 6037 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6038 6039 local_bh_disable(); 6040 6041 /* All we really want here is to re-enable device interrupts. 6042 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6043 */ 6044 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6045 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6046 netpoll_poll_unlock(have_poll_lock); 6047 if (rc == BUSY_POLL_BUDGET) 6048 __napi_schedule(napi); 6049 local_bh_enable(); 6050 } 6051 6052 void napi_busy_loop(unsigned int napi_id, 6053 bool (*loop_end)(void *, unsigned long), 6054 void *loop_end_arg) 6055 { 6056 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6057 int (*napi_poll)(struct napi_struct *napi, int budget); 6058 void *have_poll_lock = NULL; 6059 struct napi_struct *napi; 6060 6061 restart: 6062 napi_poll = NULL; 6063 6064 rcu_read_lock(); 6065 6066 napi = napi_by_id(napi_id); 6067 if (!napi) 6068 goto out; 6069 6070 preempt_disable(); 6071 for (;;) { 6072 int work = 0; 6073 6074 local_bh_disable(); 6075 if (!napi_poll) { 6076 unsigned long val = READ_ONCE(napi->state); 6077 6078 /* If multiple threads are competing for this napi, 6079 * we avoid dirtying napi->state as much as we can. 6080 */ 6081 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6082 NAPIF_STATE_IN_BUSY_POLL)) 6083 goto count; 6084 if (cmpxchg(&napi->state, val, 6085 val | NAPIF_STATE_IN_BUSY_POLL | 6086 NAPIF_STATE_SCHED) != val) 6087 goto count; 6088 have_poll_lock = netpoll_poll_lock(napi); 6089 napi_poll = napi->poll; 6090 } 6091 work = napi_poll(napi, BUSY_POLL_BUDGET); 6092 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6093 count: 6094 if (work > 0) 6095 __NET_ADD_STATS(dev_net(napi->dev), 6096 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6097 local_bh_enable(); 6098 6099 if (!loop_end || loop_end(loop_end_arg, start_time)) 6100 break; 6101 6102 if (unlikely(need_resched())) { 6103 if (napi_poll) 6104 busy_poll_stop(napi, have_poll_lock); 6105 preempt_enable(); 6106 rcu_read_unlock(); 6107 cond_resched(); 6108 if (loop_end(loop_end_arg, start_time)) 6109 return; 6110 goto restart; 6111 } 6112 cpu_relax(); 6113 } 6114 if (napi_poll) 6115 busy_poll_stop(napi, have_poll_lock); 6116 preempt_enable(); 6117 out: 6118 rcu_read_unlock(); 6119 } 6120 EXPORT_SYMBOL(napi_busy_loop); 6121 6122 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6123 6124 static void napi_hash_add(struct napi_struct *napi) 6125 { 6126 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6127 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6128 return; 6129 6130 spin_lock(&napi_hash_lock); 6131 6132 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6133 do { 6134 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6135 napi_gen_id = MIN_NAPI_ID; 6136 } while (napi_by_id(napi_gen_id)); 6137 napi->napi_id = napi_gen_id; 6138 6139 hlist_add_head_rcu(&napi->napi_hash_node, 6140 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6141 6142 spin_unlock(&napi_hash_lock); 6143 } 6144 6145 /* Warning : caller is responsible to make sure rcu grace period 6146 * is respected before freeing memory containing @napi 6147 */ 6148 bool napi_hash_del(struct napi_struct *napi) 6149 { 6150 bool rcu_sync_needed = false; 6151 6152 spin_lock(&napi_hash_lock); 6153 6154 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6155 rcu_sync_needed = true; 6156 hlist_del_rcu(&napi->napi_hash_node); 6157 } 6158 spin_unlock(&napi_hash_lock); 6159 return rcu_sync_needed; 6160 } 6161 EXPORT_SYMBOL_GPL(napi_hash_del); 6162 6163 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6164 { 6165 struct napi_struct *napi; 6166 6167 napi = container_of(timer, struct napi_struct, timer); 6168 6169 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6170 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6171 */ 6172 if (napi->gro_bitmask && !napi_disable_pending(napi) && 6173 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6174 __napi_schedule_irqoff(napi); 6175 6176 return HRTIMER_NORESTART; 6177 } 6178 6179 static void init_gro_hash(struct napi_struct *napi) 6180 { 6181 int i; 6182 6183 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6184 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6185 napi->gro_hash[i].count = 0; 6186 } 6187 napi->gro_bitmask = 0; 6188 } 6189 6190 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6191 int (*poll)(struct napi_struct *, int), int weight) 6192 { 6193 INIT_LIST_HEAD(&napi->poll_list); 6194 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6195 napi->timer.function = napi_watchdog; 6196 init_gro_hash(napi); 6197 napi->skb = NULL; 6198 napi->poll = poll; 6199 if (weight > NAPI_POLL_WEIGHT) 6200 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 6201 weight, dev->name); 6202 napi->weight = weight; 6203 list_add(&napi->dev_list, &dev->napi_list); 6204 napi->dev = dev; 6205 #ifdef CONFIG_NETPOLL 6206 napi->poll_owner = -1; 6207 #endif 6208 set_bit(NAPI_STATE_SCHED, &napi->state); 6209 napi_hash_add(napi); 6210 } 6211 EXPORT_SYMBOL(netif_napi_add); 6212 6213 void napi_disable(struct napi_struct *n) 6214 { 6215 might_sleep(); 6216 set_bit(NAPI_STATE_DISABLE, &n->state); 6217 6218 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6219 msleep(1); 6220 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6221 msleep(1); 6222 6223 hrtimer_cancel(&n->timer); 6224 6225 clear_bit(NAPI_STATE_DISABLE, &n->state); 6226 } 6227 EXPORT_SYMBOL(napi_disable); 6228 6229 static void flush_gro_hash(struct napi_struct *napi) 6230 { 6231 int i; 6232 6233 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6234 struct sk_buff *skb, *n; 6235 6236 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6237 kfree_skb(skb); 6238 napi->gro_hash[i].count = 0; 6239 } 6240 } 6241 6242 /* Must be called in process context */ 6243 void netif_napi_del(struct napi_struct *napi) 6244 { 6245 might_sleep(); 6246 if (napi_hash_del(napi)) 6247 synchronize_net(); 6248 list_del_init(&napi->dev_list); 6249 napi_free_frags(napi); 6250 6251 flush_gro_hash(napi); 6252 napi->gro_bitmask = 0; 6253 } 6254 EXPORT_SYMBOL(netif_napi_del); 6255 6256 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6257 { 6258 void *have; 6259 int work, weight; 6260 6261 list_del_init(&n->poll_list); 6262 6263 have = netpoll_poll_lock(n); 6264 6265 weight = n->weight; 6266 6267 /* This NAPI_STATE_SCHED test is for avoiding a race 6268 * with netpoll's poll_napi(). Only the entity which 6269 * obtains the lock and sees NAPI_STATE_SCHED set will 6270 * actually make the ->poll() call. Therefore we avoid 6271 * accidentally calling ->poll() when NAPI is not scheduled. 6272 */ 6273 work = 0; 6274 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6275 work = n->poll(n, weight); 6276 trace_napi_poll(n, work, weight); 6277 } 6278 6279 WARN_ON_ONCE(work > weight); 6280 6281 if (likely(work < weight)) 6282 goto out_unlock; 6283 6284 /* Drivers must not modify the NAPI state if they 6285 * consume the entire weight. In such cases this code 6286 * still "owns" the NAPI instance and therefore can 6287 * move the instance around on the list at-will. 6288 */ 6289 if (unlikely(napi_disable_pending(n))) { 6290 napi_complete(n); 6291 goto out_unlock; 6292 } 6293 6294 if (n->gro_bitmask) { 6295 /* flush too old packets 6296 * If HZ < 1000, flush all packets. 6297 */ 6298 napi_gro_flush(n, HZ >= 1000); 6299 } 6300 6301 /* Some drivers may have called napi_schedule 6302 * prior to exhausting their budget. 6303 */ 6304 if (unlikely(!list_empty(&n->poll_list))) { 6305 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6306 n->dev ? n->dev->name : "backlog"); 6307 goto out_unlock; 6308 } 6309 6310 list_add_tail(&n->poll_list, repoll); 6311 6312 out_unlock: 6313 netpoll_poll_unlock(have); 6314 6315 return work; 6316 } 6317 6318 static __latent_entropy void net_rx_action(struct softirq_action *h) 6319 { 6320 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6321 unsigned long time_limit = jiffies + 6322 usecs_to_jiffies(netdev_budget_usecs); 6323 int budget = netdev_budget; 6324 LIST_HEAD(list); 6325 LIST_HEAD(repoll); 6326 6327 local_irq_disable(); 6328 list_splice_init(&sd->poll_list, &list); 6329 local_irq_enable(); 6330 6331 for (;;) { 6332 struct napi_struct *n; 6333 6334 if (list_empty(&list)) { 6335 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6336 goto out; 6337 break; 6338 } 6339 6340 n = list_first_entry(&list, struct napi_struct, poll_list); 6341 budget -= napi_poll(n, &repoll); 6342 6343 /* If softirq window is exhausted then punt. 6344 * Allow this to run for 2 jiffies since which will allow 6345 * an average latency of 1.5/HZ. 6346 */ 6347 if (unlikely(budget <= 0 || 6348 time_after_eq(jiffies, time_limit))) { 6349 sd->time_squeeze++; 6350 break; 6351 } 6352 } 6353 6354 local_irq_disable(); 6355 6356 list_splice_tail_init(&sd->poll_list, &list); 6357 list_splice_tail(&repoll, &list); 6358 list_splice(&list, &sd->poll_list); 6359 if (!list_empty(&sd->poll_list)) 6360 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6361 6362 net_rps_action_and_irq_enable(sd); 6363 out: 6364 __kfree_skb_flush(); 6365 } 6366 6367 struct netdev_adjacent { 6368 struct net_device *dev; 6369 6370 /* upper master flag, there can only be one master device per list */ 6371 bool master; 6372 6373 /* counter for the number of times this device was added to us */ 6374 u16 ref_nr; 6375 6376 /* private field for the users */ 6377 void *private; 6378 6379 struct list_head list; 6380 struct rcu_head rcu; 6381 }; 6382 6383 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6384 struct list_head *adj_list) 6385 { 6386 struct netdev_adjacent *adj; 6387 6388 list_for_each_entry(adj, adj_list, list) { 6389 if (adj->dev == adj_dev) 6390 return adj; 6391 } 6392 return NULL; 6393 } 6394 6395 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6396 { 6397 struct net_device *dev = data; 6398 6399 return upper_dev == dev; 6400 } 6401 6402 /** 6403 * netdev_has_upper_dev - Check if device is linked to an upper device 6404 * @dev: device 6405 * @upper_dev: upper device to check 6406 * 6407 * Find out if a device is linked to specified upper device and return true 6408 * in case it is. Note that this checks only immediate upper device, 6409 * not through a complete stack of devices. The caller must hold the RTNL lock. 6410 */ 6411 bool netdev_has_upper_dev(struct net_device *dev, 6412 struct net_device *upper_dev) 6413 { 6414 ASSERT_RTNL(); 6415 6416 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6417 upper_dev); 6418 } 6419 EXPORT_SYMBOL(netdev_has_upper_dev); 6420 6421 /** 6422 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6423 * @dev: device 6424 * @upper_dev: upper device to check 6425 * 6426 * Find out if a device is linked to specified upper device and return true 6427 * in case it is. Note that this checks the entire upper device chain. 6428 * The caller must hold rcu lock. 6429 */ 6430 6431 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6432 struct net_device *upper_dev) 6433 { 6434 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6435 upper_dev); 6436 } 6437 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6438 6439 /** 6440 * netdev_has_any_upper_dev - Check if device is linked to some device 6441 * @dev: device 6442 * 6443 * Find out if a device is linked to an upper device and return true in case 6444 * it is. The caller must hold the RTNL lock. 6445 */ 6446 bool netdev_has_any_upper_dev(struct net_device *dev) 6447 { 6448 ASSERT_RTNL(); 6449 6450 return !list_empty(&dev->adj_list.upper); 6451 } 6452 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6453 6454 /** 6455 * netdev_master_upper_dev_get - Get master upper device 6456 * @dev: device 6457 * 6458 * Find a master upper device and return pointer to it or NULL in case 6459 * it's not there. The caller must hold the RTNL lock. 6460 */ 6461 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6462 { 6463 struct netdev_adjacent *upper; 6464 6465 ASSERT_RTNL(); 6466 6467 if (list_empty(&dev->adj_list.upper)) 6468 return NULL; 6469 6470 upper = list_first_entry(&dev->adj_list.upper, 6471 struct netdev_adjacent, list); 6472 if (likely(upper->master)) 6473 return upper->dev; 6474 return NULL; 6475 } 6476 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6477 6478 /** 6479 * netdev_has_any_lower_dev - Check if device is linked to some device 6480 * @dev: device 6481 * 6482 * Find out if a device is linked to a lower device and return true in case 6483 * it is. The caller must hold the RTNL lock. 6484 */ 6485 static bool netdev_has_any_lower_dev(struct net_device *dev) 6486 { 6487 ASSERT_RTNL(); 6488 6489 return !list_empty(&dev->adj_list.lower); 6490 } 6491 6492 void *netdev_adjacent_get_private(struct list_head *adj_list) 6493 { 6494 struct netdev_adjacent *adj; 6495 6496 adj = list_entry(adj_list, struct netdev_adjacent, list); 6497 6498 return adj->private; 6499 } 6500 EXPORT_SYMBOL(netdev_adjacent_get_private); 6501 6502 /** 6503 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6504 * @dev: device 6505 * @iter: list_head ** of the current position 6506 * 6507 * Gets the next device from the dev's upper list, starting from iter 6508 * position. The caller must hold RCU read lock. 6509 */ 6510 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6511 struct list_head **iter) 6512 { 6513 struct netdev_adjacent *upper; 6514 6515 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6516 6517 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6518 6519 if (&upper->list == &dev->adj_list.upper) 6520 return NULL; 6521 6522 *iter = &upper->list; 6523 6524 return upper->dev; 6525 } 6526 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6527 6528 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6529 struct list_head **iter) 6530 { 6531 struct netdev_adjacent *upper; 6532 6533 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6534 6535 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6536 6537 if (&upper->list == &dev->adj_list.upper) 6538 return NULL; 6539 6540 *iter = &upper->list; 6541 6542 return upper->dev; 6543 } 6544 6545 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6546 int (*fn)(struct net_device *dev, 6547 void *data), 6548 void *data) 6549 { 6550 struct net_device *udev; 6551 struct list_head *iter; 6552 int ret; 6553 6554 for (iter = &dev->adj_list.upper, 6555 udev = netdev_next_upper_dev_rcu(dev, &iter); 6556 udev; 6557 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 6558 /* first is the upper device itself */ 6559 ret = fn(udev, data); 6560 if (ret) 6561 return ret; 6562 6563 /* then look at all of its upper devices */ 6564 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 6565 if (ret) 6566 return ret; 6567 } 6568 6569 return 0; 6570 } 6571 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6572 6573 /** 6574 * netdev_lower_get_next_private - Get the next ->private from the 6575 * lower neighbour list 6576 * @dev: device 6577 * @iter: list_head ** of the current position 6578 * 6579 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6580 * list, starting from iter position. The caller must hold either hold the 6581 * RTNL lock or its own locking that guarantees that the neighbour lower 6582 * list will remain unchanged. 6583 */ 6584 void *netdev_lower_get_next_private(struct net_device *dev, 6585 struct list_head **iter) 6586 { 6587 struct netdev_adjacent *lower; 6588 6589 lower = list_entry(*iter, struct netdev_adjacent, list); 6590 6591 if (&lower->list == &dev->adj_list.lower) 6592 return NULL; 6593 6594 *iter = lower->list.next; 6595 6596 return lower->private; 6597 } 6598 EXPORT_SYMBOL(netdev_lower_get_next_private); 6599 6600 /** 6601 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6602 * lower neighbour list, RCU 6603 * variant 6604 * @dev: device 6605 * @iter: list_head ** of the current position 6606 * 6607 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6608 * list, starting from iter position. The caller must hold RCU read lock. 6609 */ 6610 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6611 struct list_head **iter) 6612 { 6613 struct netdev_adjacent *lower; 6614 6615 WARN_ON_ONCE(!rcu_read_lock_held()); 6616 6617 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6618 6619 if (&lower->list == &dev->adj_list.lower) 6620 return NULL; 6621 6622 *iter = &lower->list; 6623 6624 return lower->private; 6625 } 6626 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6627 6628 /** 6629 * netdev_lower_get_next - Get the next device from the lower neighbour 6630 * list 6631 * @dev: device 6632 * @iter: list_head ** of the current position 6633 * 6634 * Gets the next netdev_adjacent from the dev's lower neighbour 6635 * list, starting from iter position. The caller must hold RTNL lock or 6636 * its own locking that guarantees that the neighbour lower 6637 * list will remain unchanged. 6638 */ 6639 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6640 { 6641 struct netdev_adjacent *lower; 6642 6643 lower = list_entry(*iter, struct netdev_adjacent, list); 6644 6645 if (&lower->list == &dev->adj_list.lower) 6646 return NULL; 6647 6648 *iter = lower->list.next; 6649 6650 return lower->dev; 6651 } 6652 EXPORT_SYMBOL(netdev_lower_get_next); 6653 6654 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6655 struct list_head **iter) 6656 { 6657 struct netdev_adjacent *lower; 6658 6659 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6660 6661 if (&lower->list == &dev->adj_list.lower) 6662 return NULL; 6663 6664 *iter = &lower->list; 6665 6666 return lower->dev; 6667 } 6668 6669 int netdev_walk_all_lower_dev(struct net_device *dev, 6670 int (*fn)(struct net_device *dev, 6671 void *data), 6672 void *data) 6673 { 6674 struct net_device *ldev; 6675 struct list_head *iter; 6676 int ret; 6677 6678 for (iter = &dev->adj_list.lower, 6679 ldev = netdev_next_lower_dev(dev, &iter); 6680 ldev; 6681 ldev = netdev_next_lower_dev(dev, &iter)) { 6682 /* first is the lower device itself */ 6683 ret = fn(ldev, data); 6684 if (ret) 6685 return ret; 6686 6687 /* then look at all of its lower devices */ 6688 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6689 if (ret) 6690 return ret; 6691 } 6692 6693 return 0; 6694 } 6695 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6696 6697 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6698 struct list_head **iter) 6699 { 6700 struct netdev_adjacent *lower; 6701 6702 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6703 if (&lower->list == &dev->adj_list.lower) 6704 return NULL; 6705 6706 *iter = &lower->list; 6707 6708 return lower->dev; 6709 } 6710 6711 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6712 int (*fn)(struct net_device *dev, 6713 void *data), 6714 void *data) 6715 { 6716 struct net_device *ldev; 6717 struct list_head *iter; 6718 int ret; 6719 6720 for (iter = &dev->adj_list.lower, 6721 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6722 ldev; 6723 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6724 /* first is the lower device itself */ 6725 ret = fn(ldev, data); 6726 if (ret) 6727 return ret; 6728 6729 /* then look at all of its lower devices */ 6730 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6731 if (ret) 6732 return ret; 6733 } 6734 6735 return 0; 6736 } 6737 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6738 6739 /** 6740 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6741 * lower neighbour list, RCU 6742 * variant 6743 * @dev: device 6744 * 6745 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6746 * list. The caller must hold RCU read lock. 6747 */ 6748 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6749 { 6750 struct netdev_adjacent *lower; 6751 6752 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6753 struct netdev_adjacent, list); 6754 if (lower) 6755 return lower->private; 6756 return NULL; 6757 } 6758 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6759 6760 /** 6761 * netdev_master_upper_dev_get_rcu - Get master upper device 6762 * @dev: device 6763 * 6764 * Find a master upper device and return pointer to it or NULL in case 6765 * it's not there. The caller must hold the RCU read lock. 6766 */ 6767 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6768 { 6769 struct netdev_adjacent *upper; 6770 6771 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6772 struct netdev_adjacent, list); 6773 if (upper && likely(upper->master)) 6774 return upper->dev; 6775 return NULL; 6776 } 6777 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6778 6779 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6780 struct net_device *adj_dev, 6781 struct list_head *dev_list) 6782 { 6783 char linkname[IFNAMSIZ+7]; 6784 6785 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6786 "upper_%s" : "lower_%s", adj_dev->name); 6787 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6788 linkname); 6789 } 6790 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6791 char *name, 6792 struct list_head *dev_list) 6793 { 6794 char linkname[IFNAMSIZ+7]; 6795 6796 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6797 "upper_%s" : "lower_%s", name); 6798 sysfs_remove_link(&(dev->dev.kobj), linkname); 6799 } 6800 6801 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6802 struct net_device *adj_dev, 6803 struct list_head *dev_list) 6804 { 6805 return (dev_list == &dev->adj_list.upper || 6806 dev_list == &dev->adj_list.lower) && 6807 net_eq(dev_net(dev), dev_net(adj_dev)); 6808 } 6809 6810 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6811 struct net_device *adj_dev, 6812 struct list_head *dev_list, 6813 void *private, bool master) 6814 { 6815 struct netdev_adjacent *adj; 6816 int ret; 6817 6818 adj = __netdev_find_adj(adj_dev, dev_list); 6819 6820 if (adj) { 6821 adj->ref_nr += 1; 6822 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6823 dev->name, adj_dev->name, adj->ref_nr); 6824 6825 return 0; 6826 } 6827 6828 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6829 if (!adj) 6830 return -ENOMEM; 6831 6832 adj->dev = adj_dev; 6833 adj->master = master; 6834 adj->ref_nr = 1; 6835 adj->private = private; 6836 dev_hold(adj_dev); 6837 6838 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6839 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6840 6841 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6842 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6843 if (ret) 6844 goto free_adj; 6845 } 6846 6847 /* Ensure that master link is always the first item in list. */ 6848 if (master) { 6849 ret = sysfs_create_link(&(dev->dev.kobj), 6850 &(adj_dev->dev.kobj), "master"); 6851 if (ret) 6852 goto remove_symlinks; 6853 6854 list_add_rcu(&adj->list, dev_list); 6855 } else { 6856 list_add_tail_rcu(&adj->list, dev_list); 6857 } 6858 6859 return 0; 6860 6861 remove_symlinks: 6862 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6863 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6864 free_adj: 6865 kfree(adj); 6866 dev_put(adj_dev); 6867 6868 return ret; 6869 } 6870 6871 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6872 struct net_device *adj_dev, 6873 u16 ref_nr, 6874 struct list_head *dev_list) 6875 { 6876 struct netdev_adjacent *adj; 6877 6878 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6879 dev->name, adj_dev->name, ref_nr); 6880 6881 adj = __netdev_find_adj(adj_dev, dev_list); 6882 6883 if (!adj) { 6884 pr_err("Adjacency does not exist for device %s from %s\n", 6885 dev->name, adj_dev->name); 6886 WARN_ON(1); 6887 return; 6888 } 6889 6890 if (adj->ref_nr > ref_nr) { 6891 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6892 dev->name, adj_dev->name, ref_nr, 6893 adj->ref_nr - ref_nr); 6894 adj->ref_nr -= ref_nr; 6895 return; 6896 } 6897 6898 if (adj->master) 6899 sysfs_remove_link(&(dev->dev.kobj), "master"); 6900 6901 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6902 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6903 6904 list_del_rcu(&adj->list); 6905 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6906 adj_dev->name, dev->name, adj_dev->name); 6907 dev_put(adj_dev); 6908 kfree_rcu(adj, rcu); 6909 } 6910 6911 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6912 struct net_device *upper_dev, 6913 struct list_head *up_list, 6914 struct list_head *down_list, 6915 void *private, bool master) 6916 { 6917 int ret; 6918 6919 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6920 private, master); 6921 if (ret) 6922 return ret; 6923 6924 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6925 private, false); 6926 if (ret) { 6927 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6928 return ret; 6929 } 6930 6931 return 0; 6932 } 6933 6934 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6935 struct net_device *upper_dev, 6936 u16 ref_nr, 6937 struct list_head *up_list, 6938 struct list_head *down_list) 6939 { 6940 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6941 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6942 } 6943 6944 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6945 struct net_device *upper_dev, 6946 void *private, bool master) 6947 { 6948 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6949 &dev->adj_list.upper, 6950 &upper_dev->adj_list.lower, 6951 private, master); 6952 } 6953 6954 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6955 struct net_device *upper_dev) 6956 { 6957 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6958 &dev->adj_list.upper, 6959 &upper_dev->adj_list.lower); 6960 } 6961 6962 static int __netdev_upper_dev_link(struct net_device *dev, 6963 struct net_device *upper_dev, bool master, 6964 void *upper_priv, void *upper_info, 6965 struct netlink_ext_ack *extack) 6966 { 6967 struct netdev_notifier_changeupper_info changeupper_info = { 6968 .info = { 6969 .dev = dev, 6970 .extack = extack, 6971 }, 6972 .upper_dev = upper_dev, 6973 .master = master, 6974 .linking = true, 6975 .upper_info = upper_info, 6976 }; 6977 struct net_device *master_dev; 6978 int ret = 0; 6979 6980 ASSERT_RTNL(); 6981 6982 if (dev == upper_dev) 6983 return -EBUSY; 6984 6985 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6986 if (netdev_has_upper_dev(upper_dev, dev)) 6987 return -EBUSY; 6988 6989 if (!master) { 6990 if (netdev_has_upper_dev(dev, upper_dev)) 6991 return -EEXIST; 6992 } else { 6993 master_dev = netdev_master_upper_dev_get(dev); 6994 if (master_dev) 6995 return master_dev == upper_dev ? -EEXIST : -EBUSY; 6996 } 6997 6998 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6999 &changeupper_info.info); 7000 ret = notifier_to_errno(ret); 7001 if (ret) 7002 return ret; 7003 7004 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7005 master); 7006 if (ret) 7007 return ret; 7008 7009 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7010 &changeupper_info.info); 7011 ret = notifier_to_errno(ret); 7012 if (ret) 7013 goto rollback; 7014 7015 return 0; 7016 7017 rollback: 7018 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7019 7020 return ret; 7021 } 7022 7023 /** 7024 * netdev_upper_dev_link - Add a link to the upper device 7025 * @dev: device 7026 * @upper_dev: new upper device 7027 * @extack: netlink extended ack 7028 * 7029 * Adds a link to device which is upper to this one. The caller must hold 7030 * the RTNL lock. On a failure a negative errno code is returned. 7031 * On success the reference counts are adjusted and the function 7032 * returns zero. 7033 */ 7034 int netdev_upper_dev_link(struct net_device *dev, 7035 struct net_device *upper_dev, 7036 struct netlink_ext_ack *extack) 7037 { 7038 return __netdev_upper_dev_link(dev, upper_dev, false, 7039 NULL, NULL, extack); 7040 } 7041 EXPORT_SYMBOL(netdev_upper_dev_link); 7042 7043 /** 7044 * netdev_master_upper_dev_link - Add a master link to the upper device 7045 * @dev: device 7046 * @upper_dev: new upper device 7047 * @upper_priv: upper device private 7048 * @upper_info: upper info to be passed down via notifier 7049 * @extack: netlink extended ack 7050 * 7051 * Adds a link to device which is upper to this one. In this case, only 7052 * one master upper device can be linked, although other non-master devices 7053 * might be linked as well. The caller must hold the RTNL lock. 7054 * On a failure a negative errno code is returned. On success the reference 7055 * counts are adjusted and the function returns zero. 7056 */ 7057 int netdev_master_upper_dev_link(struct net_device *dev, 7058 struct net_device *upper_dev, 7059 void *upper_priv, void *upper_info, 7060 struct netlink_ext_ack *extack) 7061 { 7062 return __netdev_upper_dev_link(dev, upper_dev, true, 7063 upper_priv, upper_info, extack); 7064 } 7065 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7066 7067 /** 7068 * netdev_upper_dev_unlink - Removes a link to upper device 7069 * @dev: device 7070 * @upper_dev: new upper device 7071 * 7072 * Removes a link to device which is upper to this one. The caller must hold 7073 * the RTNL lock. 7074 */ 7075 void netdev_upper_dev_unlink(struct net_device *dev, 7076 struct net_device *upper_dev) 7077 { 7078 struct netdev_notifier_changeupper_info changeupper_info = { 7079 .info = { 7080 .dev = dev, 7081 }, 7082 .upper_dev = upper_dev, 7083 .linking = false, 7084 }; 7085 7086 ASSERT_RTNL(); 7087 7088 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7089 7090 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7091 &changeupper_info.info); 7092 7093 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7094 7095 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7096 &changeupper_info.info); 7097 } 7098 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7099 7100 /** 7101 * netdev_bonding_info_change - Dispatch event about slave change 7102 * @dev: device 7103 * @bonding_info: info to dispatch 7104 * 7105 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7106 * The caller must hold the RTNL lock. 7107 */ 7108 void netdev_bonding_info_change(struct net_device *dev, 7109 struct netdev_bonding_info *bonding_info) 7110 { 7111 struct netdev_notifier_bonding_info info = { 7112 .info.dev = dev, 7113 }; 7114 7115 memcpy(&info.bonding_info, bonding_info, 7116 sizeof(struct netdev_bonding_info)); 7117 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7118 &info.info); 7119 } 7120 EXPORT_SYMBOL(netdev_bonding_info_change); 7121 7122 static void netdev_adjacent_add_links(struct net_device *dev) 7123 { 7124 struct netdev_adjacent *iter; 7125 7126 struct net *net = dev_net(dev); 7127 7128 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7129 if (!net_eq(net, dev_net(iter->dev))) 7130 continue; 7131 netdev_adjacent_sysfs_add(iter->dev, dev, 7132 &iter->dev->adj_list.lower); 7133 netdev_adjacent_sysfs_add(dev, iter->dev, 7134 &dev->adj_list.upper); 7135 } 7136 7137 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7138 if (!net_eq(net, dev_net(iter->dev))) 7139 continue; 7140 netdev_adjacent_sysfs_add(iter->dev, dev, 7141 &iter->dev->adj_list.upper); 7142 netdev_adjacent_sysfs_add(dev, iter->dev, 7143 &dev->adj_list.lower); 7144 } 7145 } 7146 7147 static void netdev_adjacent_del_links(struct net_device *dev) 7148 { 7149 struct netdev_adjacent *iter; 7150 7151 struct net *net = dev_net(dev); 7152 7153 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7154 if (!net_eq(net, dev_net(iter->dev))) 7155 continue; 7156 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7157 &iter->dev->adj_list.lower); 7158 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7159 &dev->adj_list.upper); 7160 } 7161 7162 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7163 if (!net_eq(net, dev_net(iter->dev))) 7164 continue; 7165 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7166 &iter->dev->adj_list.upper); 7167 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7168 &dev->adj_list.lower); 7169 } 7170 } 7171 7172 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7173 { 7174 struct netdev_adjacent *iter; 7175 7176 struct net *net = dev_net(dev); 7177 7178 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7179 if (!net_eq(net, dev_net(iter->dev))) 7180 continue; 7181 netdev_adjacent_sysfs_del(iter->dev, oldname, 7182 &iter->dev->adj_list.lower); 7183 netdev_adjacent_sysfs_add(iter->dev, dev, 7184 &iter->dev->adj_list.lower); 7185 } 7186 7187 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7188 if (!net_eq(net, dev_net(iter->dev))) 7189 continue; 7190 netdev_adjacent_sysfs_del(iter->dev, oldname, 7191 &iter->dev->adj_list.upper); 7192 netdev_adjacent_sysfs_add(iter->dev, dev, 7193 &iter->dev->adj_list.upper); 7194 } 7195 } 7196 7197 void *netdev_lower_dev_get_private(struct net_device *dev, 7198 struct net_device *lower_dev) 7199 { 7200 struct netdev_adjacent *lower; 7201 7202 if (!lower_dev) 7203 return NULL; 7204 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7205 if (!lower) 7206 return NULL; 7207 7208 return lower->private; 7209 } 7210 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7211 7212 7213 int dev_get_nest_level(struct net_device *dev) 7214 { 7215 struct net_device *lower = NULL; 7216 struct list_head *iter; 7217 int max_nest = -1; 7218 int nest; 7219 7220 ASSERT_RTNL(); 7221 7222 netdev_for_each_lower_dev(dev, lower, iter) { 7223 nest = dev_get_nest_level(lower); 7224 if (max_nest < nest) 7225 max_nest = nest; 7226 } 7227 7228 return max_nest + 1; 7229 } 7230 EXPORT_SYMBOL(dev_get_nest_level); 7231 7232 /** 7233 * netdev_lower_change - Dispatch event about lower device state change 7234 * @lower_dev: device 7235 * @lower_state_info: state to dispatch 7236 * 7237 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7238 * The caller must hold the RTNL lock. 7239 */ 7240 void netdev_lower_state_changed(struct net_device *lower_dev, 7241 void *lower_state_info) 7242 { 7243 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7244 .info.dev = lower_dev, 7245 }; 7246 7247 ASSERT_RTNL(); 7248 changelowerstate_info.lower_state_info = lower_state_info; 7249 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7250 &changelowerstate_info.info); 7251 } 7252 EXPORT_SYMBOL(netdev_lower_state_changed); 7253 7254 static void dev_change_rx_flags(struct net_device *dev, int flags) 7255 { 7256 const struct net_device_ops *ops = dev->netdev_ops; 7257 7258 if (ops->ndo_change_rx_flags) 7259 ops->ndo_change_rx_flags(dev, flags); 7260 } 7261 7262 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7263 { 7264 unsigned int old_flags = dev->flags; 7265 kuid_t uid; 7266 kgid_t gid; 7267 7268 ASSERT_RTNL(); 7269 7270 dev->flags |= IFF_PROMISC; 7271 dev->promiscuity += inc; 7272 if (dev->promiscuity == 0) { 7273 /* 7274 * Avoid overflow. 7275 * If inc causes overflow, untouch promisc and return error. 7276 */ 7277 if (inc < 0) 7278 dev->flags &= ~IFF_PROMISC; 7279 else { 7280 dev->promiscuity -= inc; 7281 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7282 dev->name); 7283 return -EOVERFLOW; 7284 } 7285 } 7286 if (dev->flags != old_flags) { 7287 pr_info("device %s %s promiscuous mode\n", 7288 dev->name, 7289 dev->flags & IFF_PROMISC ? "entered" : "left"); 7290 if (audit_enabled) { 7291 current_uid_gid(&uid, &gid); 7292 audit_log(audit_context(), GFP_ATOMIC, 7293 AUDIT_ANOM_PROMISCUOUS, 7294 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7295 dev->name, (dev->flags & IFF_PROMISC), 7296 (old_flags & IFF_PROMISC), 7297 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7298 from_kuid(&init_user_ns, uid), 7299 from_kgid(&init_user_ns, gid), 7300 audit_get_sessionid(current)); 7301 } 7302 7303 dev_change_rx_flags(dev, IFF_PROMISC); 7304 } 7305 if (notify) 7306 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7307 return 0; 7308 } 7309 7310 /** 7311 * dev_set_promiscuity - update promiscuity count on a device 7312 * @dev: device 7313 * @inc: modifier 7314 * 7315 * Add or remove promiscuity from a device. While the count in the device 7316 * remains above zero the interface remains promiscuous. Once it hits zero 7317 * the device reverts back to normal filtering operation. A negative inc 7318 * value is used to drop promiscuity on the device. 7319 * Return 0 if successful or a negative errno code on error. 7320 */ 7321 int dev_set_promiscuity(struct net_device *dev, int inc) 7322 { 7323 unsigned int old_flags = dev->flags; 7324 int err; 7325 7326 err = __dev_set_promiscuity(dev, inc, true); 7327 if (err < 0) 7328 return err; 7329 if (dev->flags != old_flags) 7330 dev_set_rx_mode(dev); 7331 return err; 7332 } 7333 EXPORT_SYMBOL(dev_set_promiscuity); 7334 7335 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7336 { 7337 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7338 7339 ASSERT_RTNL(); 7340 7341 dev->flags |= IFF_ALLMULTI; 7342 dev->allmulti += inc; 7343 if (dev->allmulti == 0) { 7344 /* 7345 * Avoid overflow. 7346 * If inc causes overflow, untouch allmulti and return error. 7347 */ 7348 if (inc < 0) 7349 dev->flags &= ~IFF_ALLMULTI; 7350 else { 7351 dev->allmulti -= inc; 7352 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 7353 dev->name); 7354 return -EOVERFLOW; 7355 } 7356 } 7357 if (dev->flags ^ old_flags) { 7358 dev_change_rx_flags(dev, IFF_ALLMULTI); 7359 dev_set_rx_mode(dev); 7360 if (notify) 7361 __dev_notify_flags(dev, old_flags, 7362 dev->gflags ^ old_gflags); 7363 } 7364 return 0; 7365 } 7366 7367 /** 7368 * dev_set_allmulti - update allmulti count on a device 7369 * @dev: device 7370 * @inc: modifier 7371 * 7372 * Add or remove reception of all multicast frames to a device. While the 7373 * count in the device remains above zero the interface remains listening 7374 * to all interfaces. Once it hits zero the device reverts back to normal 7375 * filtering operation. A negative @inc value is used to drop the counter 7376 * when releasing a resource needing all multicasts. 7377 * Return 0 if successful or a negative errno code on error. 7378 */ 7379 7380 int dev_set_allmulti(struct net_device *dev, int inc) 7381 { 7382 return __dev_set_allmulti(dev, inc, true); 7383 } 7384 EXPORT_SYMBOL(dev_set_allmulti); 7385 7386 /* 7387 * Upload unicast and multicast address lists to device and 7388 * configure RX filtering. When the device doesn't support unicast 7389 * filtering it is put in promiscuous mode while unicast addresses 7390 * are present. 7391 */ 7392 void __dev_set_rx_mode(struct net_device *dev) 7393 { 7394 const struct net_device_ops *ops = dev->netdev_ops; 7395 7396 /* dev_open will call this function so the list will stay sane. */ 7397 if (!(dev->flags&IFF_UP)) 7398 return; 7399 7400 if (!netif_device_present(dev)) 7401 return; 7402 7403 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 7404 /* Unicast addresses changes may only happen under the rtnl, 7405 * therefore calling __dev_set_promiscuity here is safe. 7406 */ 7407 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 7408 __dev_set_promiscuity(dev, 1, false); 7409 dev->uc_promisc = true; 7410 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 7411 __dev_set_promiscuity(dev, -1, false); 7412 dev->uc_promisc = false; 7413 } 7414 } 7415 7416 if (ops->ndo_set_rx_mode) 7417 ops->ndo_set_rx_mode(dev); 7418 } 7419 7420 void dev_set_rx_mode(struct net_device *dev) 7421 { 7422 netif_addr_lock_bh(dev); 7423 __dev_set_rx_mode(dev); 7424 netif_addr_unlock_bh(dev); 7425 } 7426 7427 /** 7428 * dev_get_flags - get flags reported to userspace 7429 * @dev: device 7430 * 7431 * Get the combination of flag bits exported through APIs to userspace. 7432 */ 7433 unsigned int dev_get_flags(const struct net_device *dev) 7434 { 7435 unsigned int flags; 7436 7437 flags = (dev->flags & ~(IFF_PROMISC | 7438 IFF_ALLMULTI | 7439 IFF_RUNNING | 7440 IFF_LOWER_UP | 7441 IFF_DORMANT)) | 7442 (dev->gflags & (IFF_PROMISC | 7443 IFF_ALLMULTI)); 7444 7445 if (netif_running(dev)) { 7446 if (netif_oper_up(dev)) 7447 flags |= IFF_RUNNING; 7448 if (netif_carrier_ok(dev)) 7449 flags |= IFF_LOWER_UP; 7450 if (netif_dormant(dev)) 7451 flags |= IFF_DORMANT; 7452 } 7453 7454 return flags; 7455 } 7456 EXPORT_SYMBOL(dev_get_flags); 7457 7458 int __dev_change_flags(struct net_device *dev, unsigned int flags) 7459 { 7460 unsigned int old_flags = dev->flags; 7461 int ret; 7462 7463 ASSERT_RTNL(); 7464 7465 /* 7466 * Set the flags on our device. 7467 */ 7468 7469 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 7470 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 7471 IFF_AUTOMEDIA)) | 7472 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 7473 IFF_ALLMULTI)); 7474 7475 /* 7476 * Load in the correct multicast list now the flags have changed. 7477 */ 7478 7479 if ((old_flags ^ flags) & IFF_MULTICAST) 7480 dev_change_rx_flags(dev, IFF_MULTICAST); 7481 7482 dev_set_rx_mode(dev); 7483 7484 /* 7485 * Have we downed the interface. We handle IFF_UP ourselves 7486 * according to user attempts to set it, rather than blindly 7487 * setting it. 7488 */ 7489 7490 ret = 0; 7491 if ((old_flags ^ flags) & IFF_UP) { 7492 if (old_flags & IFF_UP) 7493 __dev_close(dev); 7494 else 7495 ret = __dev_open(dev); 7496 } 7497 7498 if ((flags ^ dev->gflags) & IFF_PROMISC) { 7499 int inc = (flags & IFF_PROMISC) ? 1 : -1; 7500 unsigned int old_flags = dev->flags; 7501 7502 dev->gflags ^= IFF_PROMISC; 7503 7504 if (__dev_set_promiscuity(dev, inc, false) >= 0) 7505 if (dev->flags != old_flags) 7506 dev_set_rx_mode(dev); 7507 } 7508 7509 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 7510 * is important. Some (broken) drivers set IFF_PROMISC, when 7511 * IFF_ALLMULTI is requested not asking us and not reporting. 7512 */ 7513 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 7514 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 7515 7516 dev->gflags ^= IFF_ALLMULTI; 7517 __dev_set_allmulti(dev, inc, false); 7518 } 7519 7520 return ret; 7521 } 7522 7523 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 7524 unsigned int gchanges) 7525 { 7526 unsigned int changes = dev->flags ^ old_flags; 7527 7528 if (gchanges) 7529 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 7530 7531 if (changes & IFF_UP) { 7532 if (dev->flags & IFF_UP) 7533 call_netdevice_notifiers(NETDEV_UP, dev); 7534 else 7535 call_netdevice_notifiers(NETDEV_DOWN, dev); 7536 } 7537 7538 if (dev->flags & IFF_UP && 7539 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 7540 struct netdev_notifier_change_info change_info = { 7541 .info = { 7542 .dev = dev, 7543 }, 7544 .flags_changed = changes, 7545 }; 7546 7547 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7548 } 7549 } 7550 7551 /** 7552 * dev_change_flags - change device settings 7553 * @dev: device 7554 * @flags: device state flags 7555 * 7556 * Change settings on device based state flags. The flags are 7557 * in the userspace exported format. 7558 */ 7559 int dev_change_flags(struct net_device *dev, unsigned int flags) 7560 { 7561 int ret; 7562 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7563 7564 ret = __dev_change_flags(dev, flags); 7565 if (ret < 0) 7566 return ret; 7567 7568 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7569 __dev_notify_flags(dev, old_flags, changes); 7570 return ret; 7571 } 7572 EXPORT_SYMBOL(dev_change_flags); 7573 7574 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7575 { 7576 const struct net_device_ops *ops = dev->netdev_ops; 7577 7578 if (ops->ndo_change_mtu) 7579 return ops->ndo_change_mtu(dev, new_mtu); 7580 7581 dev->mtu = new_mtu; 7582 return 0; 7583 } 7584 EXPORT_SYMBOL(__dev_set_mtu); 7585 7586 /** 7587 * dev_set_mtu_ext - Change maximum transfer unit 7588 * @dev: device 7589 * @new_mtu: new transfer unit 7590 * @extack: netlink extended ack 7591 * 7592 * Change the maximum transfer size of the network device. 7593 */ 7594 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 7595 struct netlink_ext_ack *extack) 7596 { 7597 int err, orig_mtu; 7598 7599 if (new_mtu == dev->mtu) 7600 return 0; 7601 7602 /* MTU must be positive, and in range */ 7603 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7604 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 7605 return -EINVAL; 7606 } 7607 7608 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7609 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 7610 return -EINVAL; 7611 } 7612 7613 if (!netif_device_present(dev)) 7614 return -ENODEV; 7615 7616 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7617 err = notifier_to_errno(err); 7618 if (err) 7619 return err; 7620 7621 orig_mtu = dev->mtu; 7622 err = __dev_set_mtu(dev, new_mtu); 7623 7624 if (!err) { 7625 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7626 orig_mtu); 7627 err = notifier_to_errno(err); 7628 if (err) { 7629 /* setting mtu back and notifying everyone again, 7630 * so that they have a chance to revert changes. 7631 */ 7632 __dev_set_mtu(dev, orig_mtu); 7633 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7634 new_mtu); 7635 } 7636 } 7637 return err; 7638 } 7639 7640 int dev_set_mtu(struct net_device *dev, int new_mtu) 7641 { 7642 struct netlink_ext_ack extack; 7643 int err; 7644 7645 memset(&extack, 0, sizeof(extack)); 7646 err = dev_set_mtu_ext(dev, new_mtu, &extack); 7647 if (err && extack._msg) 7648 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 7649 return err; 7650 } 7651 EXPORT_SYMBOL(dev_set_mtu); 7652 7653 /** 7654 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7655 * @dev: device 7656 * @new_len: new tx queue length 7657 */ 7658 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7659 { 7660 unsigned int orig_len = dev->tx_queue_len; 7661 int res; 7662 7663 if (new_len != (unsigned int)new_len) 7664 return -ERANGE; 7665 7666 if (new_len != orig_len) { 7667 dev->tx_queue_len = new_len; 7668 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7669 res = notifier_to_errno(res); 7670 if (res) 7671 goto err_rollback; 7672 res = dev_qdisc_change_tx_queue_len(dev); 7673 if (res) 7674 goto err_rollback; 7675 } 7676 7677 return 0; 7678 7679 err_rollback: 7680 netdev_err(dev, "refused to change device tx_queue_len\n"); 7681 dev->tx_queue_len = orig_len; 7682 return res; 7683 } 7684 7685 /** 7686 * dev_set_group - Change group this device belongs to 7687 * @dev: device 7688 * @new_group: group this device should belong to 7689 */ 7690 void dev_set_group(struct net_device *dev, int new_group) 7691 { 7692 dev->group = new_group; 7693 } 7694 EXPORT_SYMBOL(dev_set_group); 7695 7696 /** 7697 * dev_set_mac_address - Change Media Access Control Address 7698 * @dev: device 7699 * @sa: new address 7700 * 7701 * Change the hardware (MAC) address of the device 7702 */ 7703 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 7704 { 7705 const struct net_device_ops *ops = dev->netdev_ops; 7706 int err; 7707 7708 if (!ops->ndo_set_mac_address) 7709 return -EOPNOTSUPP; 7710 if (sa->sa_family != dev->type) 7711 return -EINVAL; 7712 if (!netif_device_present(dev)) 7713 return -ENODEV; 7714 err = ops->ndo_set_mac_address(dev, sa); 7715 if (err) 7716 return err; 7717 dev->addr_assign_type = NET_ADDR_SET; 7718 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7719 add_device_randomness(dev->dev_addr, dev->addr_len); 7720 return 0; 7721 } 7722 EXPORT_SYMBOL(dev_set_mac_address); 7723 7724 /** 7725 * dev_change_carrier - Change device carrier 7726 * @dev: device 7727 * @new_carrier: new value 7728 * 7729 * Change device carrier 7730 */ 7731 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7732 { 7733 const struct net_device_ops *ops = dev->netdev_ops; 7734 7735 if (!ops->ndo_change_carrier) 7736 return -EOPNOTSUPP; 7737 if (!netif_device_present(dev)) 7738 return -ENODEV; 7739 return ops->ndo_change_carrier(dev, new_carrier); 7740 } 7741 EXPORT_SYMBOL(dev_change_carrier); 7742 7743 /** 7744 * dev_get_phys_port_id - Get device physical port ID 7745 * @dev: device 7746 * @ppid: port ID 7747 * 7748 * Get device physical port ID 7749 */ 7750 int dev_get_phys_port_id(struct net_device *dev, 7751 struct netdev_phys_item_id *ppid) 7752 { 7753 const struct net_device_ops *ops = dev->netdev_ops; 7754 7755 if (!ops->ndo_get_phys_port_id) 7756 return -EOPNOTSUPP; 7757 return ops->ndo_get_phys_port_id(dev, ppid); 7758 } 7759 EXPORT_SYMBOL(dev_get_phys_port_id); 7760 7761 /** 7762 * dev_get_phys_port_name - Get device physical port name 7763 * @dev: device 7764 * @name: port name 7765 * @len: limit of bytes to copy to name 7766 * 7767 * Get device physical port name 7768 */ 7769 int dev_get_phys_port_name(struct net_device *dev, 7770 char *name, size_t len) 7771 { 7772 const struct net_device_ops *ops = dev->netdev_ops; 7773 7774 if (!ops->ndo_get_phys_port_name) 7775 return -EOPNOTSUPP; 7776 return ops->ndo_get_phys_port_name(dev, name, len); 7777 } 7778 EXPORT_SYMBOL(dev_get_phys_port_name); 7779 7780 /** 7781 * dev_change_proto_down - update protocol port state information 7782 * @dev: device 7783 * @proto_down: new value 7784 * 7785 * This info can be used by switch drivers to set the phys state of the 7786 * port. 7787 */ 7788 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7789 { 7790 const struct net_device_ops *ops = dev->netdev_ops; 7791 7792 if (!ops->ndo_change_proto_down) 7793 return -EOPNOTSUPP; 7794 if (!netif_device_present(dev)) 7795 return -ENODEV; 7796 return ops->ndo_change_proto_down(dev, proto_down); 7797 } 7798 EXPORT_SYMBOL(dev_change_proto_down); 7799 7800 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7801 enum bpf_netdev_command cmd) 7802 { 7803 struct netdev_bpf xdp; 7804 7805 if (!bpf_op) 7806 return 0; 7807 7808 memset(&xdp, 0, sizeof(xdp)); 7809 xdp.command = cmd; 7810 7811 /* Query must always succeed. */ 7812 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 7813 7814 return xdp.prog_id; 7815 } 7816 7817 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7818 struct netlink_ext_ack *extack, u32 flags, 7819 struct bpf_prog *prog) 7820 { 7821 struct netdev_bpf xdp; 7822 7823 memset(&xdp, 0, sizeof(xdp)); 7824 if (flags & XDP_FLAGS_HW_MODE) 7825 xdp.command = XDP_SETUP_PROG_HW; 7826 else 7827 xdp.command = XDP_SETUP_PROG; 7828 xdp.extack = extack; 7829 xdp.flags = flags; 7830 xdp.prog = prog; 7831 7832 return bpf_op(dev, &xdp); 7833 } 7834 7835 static void dev_xdp_uninstall(struct net_device *dev) 7836 { 7837 struct netdev_bpf xdp; 7838 bpf_op_t ndo_bpf; 7839 7840 /* Remove generic XDP */ 7841 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 7842 7843 /* Remove from the driver */ 7844 ndo_bpf = dev->netdev_ops->ndo_bpf; 7845 if (!ndo_bpf) 7846 return; 7847 7848 memset(&xdp, 0, sizeof(xdp)); 7849 xdp.command = XDP_QUERY_PROG; 7850 WARN_ON(ndo_bpf(dev, &xdp)); 7851 if (xdp.prog_id) 7852 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 7853 NULL)); 7854 7855 /* Remove HW offload */ 7856 memset(&xdp, 0, sizeof(xdp)); 7857 xdp.command = XDP_QUERY_PROG_HW; 7858 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 7859 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 7860 NULL)); 7861 } 7862 7863 /** 7864 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7865 * @dev: device 7866 * @extack: netlink extended ack 7867 * @fd: new program fd or negative value to clear 7868 * @flags: xdp-related flags 7869 * 7870 * Set or clear a bpf program for a device 7871 */ 7872 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7873 int fd, u32 flags) 7874 { 7875 const struct net_device_ops *ops = dev->netdev_ops; 7876 enum bpf_netdev_command query; 7877 struct bpf_prog *prog = NULL; 7878 bpf_op_t bpf_op, bpf_chk; 7879 int err; 7880 7881 ASSERT_RTNL(); 7882 7883 query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 7884 7885 bpf_op = bpf_chk = ops->ndo_bpf; 7886 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7887 return -EOPNOTSUPP; 7888 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 7889 bpf_op = generic_xdp_install; 7890 if (bpf_op == bpf_chk) 7891 bpf_chk = generic_xdp_install; 7892 7893 if (fd >= 0) { 7894 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) || 7895 __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW)) 7896 return -EEXIST; 7897 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7898 __dev_xdp_query(dev, bpf_op, query)) 7899 return -EBUSY; 7900 7901 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 7902 bpf_op == ops->ndo_bpf); 7903 if (IS_ERR(prog)) 7904 return PTR_ERR(prog); 7905 7906 if (!(flags & XDP_FLAGS_HW_MODE) && 7907 bpf_prog_is_dev_bound(prog->aux)) { 7908 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 7909 bpf_prog_put(prog); 7910 return -EINVAL; 7911 } 7912 } 7913 7914 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 7915 if (err < 0 && prog) 7916 bpf_prog_put(prog); 7917 7918 return err; 7919 } 7920 7921 /** 7922 * dev_new_index - allocate an ifindex 7923 * @net: the applicable net namespace 7924 * 7925 * Returns a suitable unique value for a new device interface 7926 * number. The caller must hold the rtnl semaphore or the 7927 * dev_base_lock to be sure it remains unique. 7928 */ 7929 static int dev_new_index(struct net *net) 7930 { 7931 int ifindex = net->ifindex; 7932 7933 for (;;) { 7934 if (++ifindex <= 0) 7935 ifindex = 1; 7936 if (!__dev_get_by_index(net, ifindex)) 7937 return net->ifindex = ifindex; 7938 } 7939 } 7940 7941 /* Delayed registration/unregisteration */ 7942 static LIST_HEAD(net_todo_list); 7943 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7944 7945 static void net_set_todo(struct net_device *dev) 7946 { 7947 list_add_tail(&dev->todo_list, &net_todo_list); 7948 dev_net(dev)->dev_unreg_count++; 7949 } 7950 7951 static void rollback_registered_many(struct list_head *head) 7952 { 7953 struct net_device *dev, *tmp; 7954 LIST_HEAD(close_head); 7955 7956 BUG_ON(dev_boot_phase); 7957 ASSERT_RTNL(); 7958 7959 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7960 /* Some devices call without registering 7961 * for initialization unwind. Remove those 7962 * devices and proceed with the remaining. 7963 */ 7964 if (dev->reg_state == NETREG_UNINITIALIZED) { 7965 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7966 dev->name, dev); 7967 7968 WARN_ON(1); 7969 list_del(&dev->unreg_list); 7970 continue; 7971 } 7972 dev->dismantle = true; 7973 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7974 } 7975 7976 /* If device is running, close it first. */ 7977 list_for_each_entry(dev, head, unreg_list) 7978 list_add_tail(&dev->close_list, &close_head); 7979 dev_close_many(&close_head, true); 7980 7981 list_for_each_entry(dev, head, unreg_list) { 7982 /* And unlink it from device chain. */ 7983 unlist_netdevice(dev); 7984 7985 dev->reg_state = NETREG_UNREGISTERING; 7986 } 7987 flush_all_backlogs(); 7988 7989 synchronize_net(); 7990 7991 list_for_each_entry(dev, head, unreg_list) { 7992 struct sk_buff *skb = NULL; 7993 7994 /* Shutdown queueing discipline. */ 7995 dev_shutdown(dev); 7996 7997 dev_xdp_uninstall(dev); 7998 7999 /* Notify protocols, that we are about to destroy 8000 * this device. They should clean all the things. 8001 */ 8002 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8003 8004 if (!dev->rtnl_link_ops || 8005 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8006 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8007 GFP_KERNEL, NULL, 0); 8008 8009 /* 8010 * Flush the unicast and multicast chains 8011 */ 8012 dev_uc_flush(dev); 8013 dev_mc_flush(dev); 8014 8015 if (dev->netdev_ops->ndo_uninit) 8016 dev->netdev_ops->ndo_uninit(dev); 8017 8018 if (skb) 8019 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8020 8021 /* Notifier chain MUST detach us all upper devices. */ 8022 WARN_ON(netdev_has_any_upper_dev(dev)); 8023 WARN_ON(netdev_has_any_lower_dev(dev)); 8024 8025 /* Remove entries from kobject tree */ 8026 netdev_unregister_kobject(dev); 8027 #ifdef CONFIG_XPS 8028 /* Remove XPS queueing entries */ 8029 netif_reset_xps_queues_gt(dev, 0); 8030 #endif 8031 } 8032 8033 synchronize_net(); 8034 8035 list_for_each_entry(dev, head, unreg_list) 8036 dev_put(dev); 8037 } 8038 8039 static void rollback_registered(struct net_device *dev) 8040 { 8041 LIST_HEAD(single); 8042 8043 list_add(&dev->unreg_list, &single); 8044 rollback_registered_many(&single); 8045 list_del(&single); 8046 } 8047 8048 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8049 struct net_device *upper, netdev_features_t features) 8050 { 8051 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8052 netdev_features_t feature; 8053 int feature_bit; 8054 8055 for_each_netdev_feature(&upper_disables, feature_bit) { 8056 feature = __NETIF_F_BIT(feature_bit); 8057 if (!(upper->wanted_features & feature) 8058 && (features & feature)) { 8059 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8060 &feature, upper->name); 8061 features &= ~feature; 8062 } 8063 } 8064 8065 return features; 8066 } 8067 8068 static void netdev_sync_lower_features(struct net_device *upper, 8069 struct net_device *lower, netdev_features_t features) 8070 { 8071 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8072 netdev_features_t feature; 8073 int feature_bit; 8074 8075 for_each_netdev_feature(&upper_disables, feature_bit) { 8076 feature = __NETIF_F_BIT(feature_bit); 8077 if (!(features & feature) && (lower->features & feature)) { 8078 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8079 &feature, lower->name); 8080 lower->wanted_features &= ~feature; 8081 netdev_update_features(lower); 8082 8083 if (unlikely(lower->features & feature)) 8084 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8085 &feature, lower->name); 8086 } 8087 } 8088 } 8089 8090 static netdev_features_t netdev_fix_features(struct net_device *dev, 8091 netdev_features_t features) 8092 { 8093 /* Fix illegal checksum combinations */ 8094 if ((features & NETIF_F_HW_CSUM) && 8095 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 8096 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 8097 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 8098 } 8099 8100 /* TSO requires that SG is present as well. */ 8101 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 8102 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 8103 features &= ~NETIF_F_ALL_TSO; 8104 } 8105 8106 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 8107 !(features & NETIF_F_IP_CSUM)) { 8108 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 8109 features &= ~NETIF_F_TSO; 8110 features &= ~NETIF_F_TSO_ECN; 8111 } 8112 8113 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 8114 !(features & NETIF_F_IPV6_CSUM)) { 8115 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 8116 features &= ~NETIF_F_TSO6; 8117 } 8118 8119 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 8120 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 8121 features &= ~NETIF_F_TSO_MANGLEID; 8122 8123 /* TSO ECN requires that TSO is present as well. */ 8124 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 8125 features &= ~NETIF_F_TSO_ECN; 8126 8127 /* Software GSO depends on SG. */ 8128 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 8129 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 8130 features &= ~NETIF_F_GSO; 8131 } 8132 8133 /* GSO partial features require GSO partial be set */ 8134 if ((features & dev->gso_partial_features) && 8135 !(features & NETIF_F_GSO_PARTIAL)) { 8136 netdev_dbg(dev, 8137 "Dropping partially supported GSO features since no GSO partial.\n"); 8138 features &= ~dev->gso_partial_features; 8139 } 8140 8141 if (!(features & NETIF_F_RXCSUM)) { 8142 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 8143 * successfully merged by hardware must also have the 8144 * checksum verified by hardware. If the user does not 8145 * want to enable RXCSUM, logically, we should disable GRO_HW. 8146 */ 8147 if (features & NETIF_F_GRO_HW) { 8148 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 8149 features &= ~NETIF_F_GRO_HW; 8150 } 8151 } 8152 8153 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 8154 if (features & NETIF_F_RXFCS) { 8155 if (features & NETIF_F_LRO) { 8156 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 8157 features &= ~NETIF_F_LRO; 8158 } 8159 8160 if (features & NETIF_F_GRO_HW) { 8161 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 8162 features &= ~NETIF_F_GRO_HW; 8163 } 8164 } 8165 8166 return features; 8167 } 8168 8169 int __netdev_update_features(struct net_device *dev) 8170 { 8171 struct net_device *upper, *lower; 8172 netdev_features_t features; 8173 struct list_head *iter; 8174 int err = -1; 8175 8176 ASSERT_RTNL(); 8177 8178 features = netdev_get_wanted_features(dev); 8179 8180 if (dev->netdev_ops->ndo_fix_features) 8181 features = dev->netdev_ops->ndo_fix_features(dev, features); 8182 8183 /* driver might be less strict about feature dependencies */ 8184 features = netdev_fix_features(dev, features); 8185 8186 /* some features can't be enabled if they're off an an upper device */ 8187 netdev_for_each_upper_dev_rcu(dev, upper, iter) 8188 features = netdev_sync_upper_features(dev, upper, features); 8189 8190 if (dev->features == features) 8191 goto sync_lower; 8192 8193 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 8194 &dev->features, &features); 8195 8196 if (dev->netdev_ops->ndo_set_features) 8197 err = dev->netdev_ops->ndo_set_features(dev, features); 8198 else 8199 err = 0; 8200 8201 if (unlikely(err < 0)) { 8202 netdev_err(dev, 8203 "set_features() failed (%d); wanted %pNF, left %pNF\n", 8204 err, &features, &dev->features); 8205 /* return non-0 since some features might have changed and 8206 * it's better to fire a spurious notification than miss it 8207 */ 8208 return -1; 8209 } 8210 8211 sync_lower: 8212 /* some features must be disabled on lower devices when disabled 8213 * on an upper device (think: bonding master or bridge) 8214 */ 8215 netdev_for_each_lower_dev(dev, lower, iter) 8216 netdev_sync_lower_features(dev, lower, features); 8217 8218 if (!err) { 8219 netdev_features_t diff = features ^ dev->features; 8220 8221 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 8222 /* udp_tunnel_{get,drop}_rx_info both need 8223 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 8224 * device, or they won't do anything. 8225 * Thus we need to update dev->features 8226 * *before* calling udp_tunnel_get_rx_info, 8227 * but *after* calling udp_tunnel_drop_rx_info. 8228 */ 8229 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 8230 dev->features = features; 8231 udp_tunnel_get_rx_info(dev); 8232 } else { 8233 udp_tunnel_drop_rx_info(dev); 8234 } 8235 } 8236 8237 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 8238 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 8239 dev->features = features; 8240 err |= vlan_get_rx_ctag_filter_info(dev); 8241 } else { 8242 vlan_drop_rx_ctag_filter_info(dev); 8243 } 8244 } 8245 8246 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 8247 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 8248 dev->features = features; 8249 err |= vlan_get_rx_stag_filter_info(dev); 8250 } else { 8251 vlan_drop_rx_stag_filter_info(dev); 8252 } 8253 } 8254 8255 dev->features = features; 8256 } 8257 8258 return err < 0 ? 0 : 1; 8259 } 8260 8261 /** 8262 * netdev_update_features - recalculate device features 8263 * @dev: the device to check 8264 * 8265 * Recalculate dev->features set and send notifications if it 8266 * has changed. Should be called after driver or hardware dependent 8267 * conditions might have changed that influence the features. 8268 */ 8269 void netdev_update_features(struct net_device *dev) 8270 { 8271 if (__netdev_update_features(dev)) 8272 netdev_features_change(dev); 8273 } 8274 EXPORT_SYMBOL(netdev_update_features); 8275 8276 /** 8277 * netdev_change_features - recalculate device features 8278 * @dev: the device to check 8279 * 8280 * Recalculate dev->features set and send notifications even 8281 * if they have not changed. Should be called instead of 8282 * netdev_update_features() if also dev->vlan_features might 8283 * have changed to allow the changes to be propagated to stacked 8284 * VLAN devices. 8285 */ 8286 void netdev_change_features(struct net_device *dev) 8287 { 8288 __netdev_update_features(dev); 8289 netdev_features_change(dev); 8290 } 8291 EXPORT_SYMBOL(netdev_change_features); 8292 8293 /** 8294 * netif_stacked_transfer_operstate - transfer operstate 8295 * @rootdev: the root or lower level device to transfer state from 8296 * @dev: the device to transfer operstate to 8297 * 8298 * Transfer operational state from root to device. This is normally 8299 * called when a stacking relationship exists between the root 8300 * device and the device(a leaf device). 8301 */ 8302 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 8303 struct net_device *dev) 8304 { 8305 if (rootdev->operstate == IF_OPER_DORMANT) 8306 netif_dormant_on(dev); 8307 else 8308 netif_dormant_off(dev); 8309 8310 if (netif_carrier_ok(rootdev)) 8311 netif_carrier_on(dev); 8312 else 8313 netif_carrier_off(dev); 8314 } 8315 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 8316 8317 static int netif_alloc_rx_queues(struct net_device *dev) 8318 { 8319 unsigned int i, count = dev->num_rx_queues; 8320 struct netdev_rx_queue *rx; 8321 size_t sz = count * sizeof(*rx); 8322 int err = 0; 8323 8324 BUG_ON(count < 1); 8325 8326 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8327 if (!rx) 8328 return -ENOMEM; 8329 8330 dev->_rx = rx; 8331 8332 for (i = 0; i < count; i++) { 8333 rx[i].dev = dev; 8334 8335 /* XDP RX-queue setup */ 8336 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 8337 if (err < 0) 8338 goto err_rxq_info; 8339 } 8340 return 0; 8341 8342 err_rxq_info: 8343 /* Rollback successful reg's and free other resources */ 8344 while (i--) 8345 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 8346 kvfree(dev->_rx); 8347 dev->_rx = NULL; 8348 return err; 8349 } 8350 8351 static void netif_free_rx_queues(struct net_device *dev) 8352 { 8353 unsigned int i, count = dev->num_rx_queues; 8354 8355 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 8356 if (!dev->_rx) 8357 return; 8358 8359 for (i = 0; i < count; i++) 8360 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 8361 8362 kvfree(dev->_rx); 8363 } 8364 8365 static void netdev_init_one_queue(struct net_device *dev, 8366 struct netdev_queue *queue, void *_unused) 8367 { 8368 /* Initialize queue lock */ 8369 spin_lock_init(&queue->_xmit_lock); 8370 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 8371 queue->xmit_lock_owner = -1; 8372 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 8373 queue->dev = dev; 8374 #ifdef CONFIG_BQL 8375 dql_init(&queue->dql, HZ); 8376 #endif 8377 } 8378 8379 static void netif_free_tx_queues(struct net_device *dev) 8380 { 8381 kvfree(dev->_tx); 8382 } 8383 8384 static int netif_alloc_netdev_queues(struct net_device *dev) 8385 { 8386 unsigned int count = dev->num_tx_queues; 8387 struct netdev_queue *tx; 8388 size_t sz = count * sizeof(*tx); 8389 8390 if (count < 1 || count > 0xffff) 8391 return -EINVAL; 8392 8393 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8394 if (!tx) 8395 return -ENOMEM; 8396 8397 dev->_tx = tx; 8398 8399 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 8400 spin_lock_init(&dev->tx_global_lock); 8401 8402 return 0; 8403 } 8404 8405 void netif_tx_stop_all_queues(struct net_device *dev) 8406 { 8407 unsigned int i; 8408 8409 for (i = 0; i < dev->num_tx_queues; i++) { 8410 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 8411 8412 netif_tx_stop_queue(txq); 8413 } 8414 } 8415 EXPORT_SYMBOL(netif_tx_stop_all_queues); 8416 8417 /** 8418 * register_netdevice - register a network device 8419 * @dev: device to register 8420 * 8421 * Take a completed network device structure and add it to the kernel 8422 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8423 * chain. 0 is returned on success. A negative errno code is returned 8424 * on a failure to set up the device, or if the name is a duplicate. 8425 * 8426 * Callers must hold the rtnl semaphore. You may want 8427 * register_netdev() instead of this. 8428 * 8429 * BUGS: 8430 * The locking appears insufficient to guarantee two parallel registers 8431 * will not get the same name. 8432 */ 8433 8434 int register_netdevice(struct net_device *dev) 8435 { 8436 int ret; 8437 struct net *net = dev_net(dev); 8438 8439 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 8440 NETDEV_FEATURE_COUNT); 8441 BUG_ON(dev_boot_phase); 8442 ASSERT_RTNL(); 8443 8444 might_sleep(); 8445 8446 /* When net_device's are persistent, this will be fatal. */ 8447 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 8448 BUG_ON(!net); 8449 8450 spin_lock_init(&dev->addr_list_lock); 8451 netdev_set_addr_lockdep_class(dev); 8452 8453 ret = dev_get_valid_name(net, dev, dev->name); 8454 if (ret < 0) 8455 goto out; 8456 8457 /* Init, if this function is available */ 8458 if (dev->netdev_ops->ndo_init) { 8459 ret = dev->netdev_ops->ndo_init(dev); 8460 if (ret) { 8461 if (ret > 0) 8462 ret = -EIO; 8463 goto out; 8464 } 8465 } 8466 8467 if (((dev->hw_features | dev->features) & 8468 NETIF_F_HW_VLAN_CTAG_FILTER) && 8469 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 8470 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 8471 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 8472 ret = -EINVAL; 8473 goto err_uninit; 8474 } 8475 8476 ret = -EBUSY; 8477 if (!dev->ifindex) 8478 dev->ifindex = dev_new_index(net); 8479 else if (__dev_get_by_index(net, dev->ifindex)) 8480 goto err_uninit; 8481 8482 /* Transfer changeable features to wanted_features and enable 8483 * software offloads (GSO and GRO). 8484 */ 8485 dev->hw_features |= NETIF_F_SOFT_FEATURES; 8486 dev->features |= NETIF_F_SOFT_FEATURES; 8487 8488 if (dev->netdev_ops->ndo_udp_tunnel_add) { 8489 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8490 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8491 } 8492 8493 dev->wanted_features = dev->features & dev->hw_features; 8494 8495 if (!(dev->flags & IFF_LOOPBACK)) 8496 dev->hw_features |= NETIF_F_NOCACHE_COPY; 8497 8498 /* If IPv4 TCP segmentation offload is supported we should also 8499 * allow the device to enable segmenting the frame with the option 8500 * of ignoring a static IP ID value. This doesn't enable the 8501 * feature itself but allows the user to enable it later. 8502 */ 8503 if (dev->hw_features & NETIF_F_TSO) 8504 dev->hw_features |= NETIF_F_TSO_MANGLEID; 8505 if (dev->vlan_features & NETIF_F_TSO) 8506 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 8507 if (dev->mpls_features & NETIF_F_TSO) 8508 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 8509 if (dev->hw_enc_features & NETIF_F_TSO) 8510 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 8511 8512 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 8513 */ 8514 dev->vlan_features |= NETIF_F_HIGHDMA; 8515 8516 /* Make NETIF_F_SG inheritable to tunnel devices. 8517 */ 8518 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 8519 8520 /* Make NETIF_F_SG inheritable to MPLS. 8521 */ 8522 dev->mpls_features |= NETIF_F_SG; 8523 8524 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 8525 ret = notifier_to_errno(ret); 8526 if (ret) 8527 goto err_uninit; 8528 8529 ret = netdev_register_kobject(dev); 8530 if (ret) 8531 goto err_uninit; 8532 dev->reg_state = NETREG_REGISTERED; 8533 8534 __netdev_update_features(dev); 8535 8536 /* 8537 * Default initial state at registry is that the 8538 * device is present. 8539 */ 8540 8541 set_bit(__LINK_STATE_PRESENT, &dev->state); 8542 8543 linkwatch_init_dev(dev); 8544 8545 dev_init_scheduler(dev); 8546 dev_hold(dev); 8547 list_netdevice(dev); 8548 add_device_randomness(dev->dev_addr, dev->addr_len); 8549 8550 /* If the device has permanent device address, driver should 8551 * set dev_addr and also addr_assign_type should be set to 8552 * NET_ADDR_PERM (default value). 8553 */ 8554 if (dev->addr_assign_type == NET_ADDR_PERM) 8555 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 8556 8557 /* Notify protocols, that a new device appeared. */ 8558 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 8559 ret = notifier_to_errno(ret); 8560 if (ret) { 8561 rollback_registered(dev); 8562 dev->reg_state = NETREG_UNREGISTERED; 8563 } 8564 /* 8565 * Prevent userspace races by waiting until the network 8566 * device is fully setup before sending notifications. 8567 */ 8568 if (!dev->rtnl_link_ops || 8569 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8570 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8571 8572 out: 8573 return ret; 8574 8575 err_uninit: 8576 if (dev->netdev_ops->ndo_uninit) 8577 dev->netdev_ops->ndo_uninit(dev); 8578 if (dev->priv_destructor) 8579 dev->priv_destructor(dev); 8580 goto out; 8581 } 8582 EXPORT_SYMBOL(register_netdevice); 8583 8584 /** 8585 * init_dummy_netdev - init a dummy network device for NAPI 8586 * @dev: device to init 8587 * 8588 * This takes a network device structure and initialize the minimum 8589 * amount of fields so it can be used to schedule NAPI polls without 8590 * registering a full blown interface. This is to be used by drivers 8591 * that need to tie several hardware interfaces to a single NAPI 8592 * poll scheduler due to HW limitations. 8593 */ 8594 int init_dummy_netdev(struct net_device *dev) 8595 { 8596 /* Clear everything. Note we don't initialize spinlocks 8597 * are they aren't supposed to be taken by any of the 8598 * NAPI code and this dummy netdev is supposed to be 8599 * only ever used for NAPI polls 8600 */ 8601 memset(dev, 0, sizeof(struct net_device)); 8602 8603 /* make sure we BUG if trying to hit standard 8604 * register/unregister code path 8605 */ 8606 dev->reg_state = NETREG_DUMMY; 8607 8608 /* NAPI wants this */ 8609 INIT_LIST_HEAD(&dev->napi_list); 8610 8611 /* a dummy interface is started by default */ 8612 set_bit(__LINK_STATE_PRESENT, &dev->state); 8613 set_bit(__LINK_STATE_START, &dev->state); 8614 8615 /* Note : We dont allocate pcpu_refcnt for dummy devices, 8616 * because users of this 'device' dont need to change 8617 * its refcount. 8618 */ 8619 8620 return 0; 8621 } 8622 EXPORT_SYMBOL_GPL(init_dummy_netdev); 8623 8624 8625 /** 8626 * register_netdev - register a network device 8627 * @dev: device to register 8628 * 8629 * Take a completed network device structure and add it to the kernel 8630 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8631 * chain. 0 is returned on success. A negative errno code is returned 8632 * on a failure to set up the device, or if the name is a duplicate. 8633 * 8634 * This is a wrapper around register_netdevice that takes the rtnl semaphore 8635 * and expands the device name if you passed a format string to 8636 * alloc_netdev. 8637 */ 8638 int register_netdev(struct net_device *dev) 8639 { 8640 int err; 8641 8642 if (rtnl_lock_killable()) 8643 return -EINTR; 8644 err = register_netdevice(dev); 8645 rtnl_unlock(); 8646 return err; 8647 } 8648 EXPORT_SYMBOL(register_netdev); 8649 8650 int netdev_refcnt_read(const struct net_device *dev) 8651 { 8652 int i, refcnt = 0; 8653 8654 for_each_possible_cpu(i) 8655 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8656 return refcnt; 8657 } 8658 EXPORT_SYMBOL(netdev_refcnt_read); 8659 8660 /** 8661 * netdev_wait_allrefs - wait until all references are gone. 8662 * @dev: target net_device 8663 * 8664 * This is called when unregistering network devices. 8665 * 8666 * Any protocol or device that holds a reference should register 8667 * for netdevice notification, and cleanup and put back the 8668 * reference if they receive an UNREGISTER event. 8669 * We can get stuck here if buggy protocols don't correctly 8670 * call dev_put. 8671 */ 8672 static void netdev_wait_allrefs(struct net_device *dev) 8673 { 8674 unsigned long rebroadcast_time, warning_time; 8675 int refcnt; 8676 8677 linkwatch_forget_dev(dev); 8678 8679 rebroadcast_time = warning_time = jiffies; 8680 refcnt = netdev_refcnt_read(dev); 8681 8682 while (refcnt != 0) { 8683 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8684 rtnl_lock(); 8685 8686 /* Rebroadcast unregister notification */ 8687 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8688 8689 __rtnl_unlock(); 8690 rcu_barrier(); 8691 rtnl_lock(); 8692 8693 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8694 &dev->state)) { 8695 /* We must not have linkwatch events 8696 * pending on unregister. If this 8697 * happens, we simply run the queue 8698 * unscheduled, resulting in a noop 8699 * for this device. 8700 */ 8701 linkwatch_run_queue(); 8702 } 8703 8704 __rtnl_unlock(); 8705 8706 rebroadcast_time = jiffies; 8707 } 8708 8709 msleep(250); 8710 8711 refcnt = netdev_refcnt_read(dev); 8712 8713 if (time_after(jiffies, warning_time + 10 * HZ)) { 8714 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8715 dev->name, refcnt); 8716 warning_time = jiffies; 8717 } 8718 } 8719 } 8720 8721 /* The sequence is: 8722 * 8723 * rtnl_lock(); 8724 * ... 8725 * register_netdevice(x1); 8726 * register_netdevice(x2); 8727 * ... 8728 * unregister_netdevice(y1); 8729 * unregister_netdevice(y2); 8730 * ... 8731 * rtnl_unlock(); 8732 * free_netdev(y1); 8733 * free_netdev(y2); 8734 * 8735 * We are invoked by rtnl_unlock(). 8736 * This allows us to deal with problems: 8737 * 1) We can delete sysfs objects which invoke hotplug 8738 * without deadlocking with linkwatch via keventd. 8739 * 2) Since we run with the RTNL semaphore not held, we can sleep 8740 * safely in order to wait for the netdev refcnt to drop to zero. 8741 * 8742 * We must not return until all unregister events added during 8743 * the interval the lock was held have been completed. 8744 */ 8745 void netdev_run_todo(void) 8746 { 8747 struct list_head list; 8748 8749 /* Snapshot list, allow later requests */ 8750 list_replace_init(&net_todo_list, &list); 8751 8752 __rtnl_unlock(); 8753 8754 8755 /* Wait for rcu callbacks to finish before next phase */ 8756 if (!list_empty(&list)) 8757 rcu_barrier(); 8758 8759 while (!list_empty(&list)) { 8760 struct net_device *dev 8761 = list_first_entry(&list, struct net_device, todo_list); 8762 list_del(&dev->todo_list); 8763 8764 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8765 pr_err("network todo '%s' but state %d\n", 8766 dev->name, dev->reg_state); 8767 dump_stack(); 8768 continue; 8769 } 8770 8771 dev->reg_state = NETREG_UNREGISTERED; 8772 8773 netdev_wait_allrefs(dev); 8774 8775 /* paranoia */ 8776 BUG_ON(netdev_refcnt_read(dev)); 8777 BUG_ON(!list_empty(&dev->ptype_all)); 8778 BUG_ON(!list_empty(&dev->ptype_specific)); 8779 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8780 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8781 #if IS_ENABLED(CONFIG_DECNET) 8782 WARN_ON(dev->dn_ptr); 8783 #endif 8784 if (dev->priv_destructor) 8785 dev->priv_destructor(dev); 8786 if (dev->needs_free_netdev) 8787 free_netdev(dev); 8788 8789 /* Report a network device has been unregistered */ 8790 rtnl_lock(); 8791 dev_net(dev)->dev_unreg_count--; 8792 __rtnl_unlock(); 8793 wake_up(&netdev_unregistering_wq); 8794 8795 /* Free network device */ 8796 kobject_put(&dev->dev.kobj); 8797 } 8798 } 8799 8800 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 8801 * all the same fields in the same order as net_device_stats, with only 8802 * the type differing, but rtnl_link_stats64 may have additional fields 8803 * at the end for newer counters. 8804 */ 8805 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 8806 const struct net_device_stats *netdev_stats) 8807 { 8808 #if BITS_PER_LONG == 64 8809 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 8810 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 8811 /* zero out counters that only exist in rtnl_link_stats64 */ 8812 memset((char *)stats64 + sizeof(*netdev_stats), 0, 8813 sizeof(*stats64) - sizeof(*netdev_stats)); 8814 #else 8815 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8816 const unsigned long *src = (const unsigned long *)netdev_stats; 8817 u64 *dst = (u64 *)stats64; 8818 8819 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 8820 for (i = 0; i < n; i++) 8821 dst[i] = src[i]; 8822 /* zero out counters that only exist in rtnl_link_stats64 */ 8823 memset((char *)stats64 + n * sizeof(u64), 0, 8824 sizeof(*stats64) - n * sizeof(u64)); 8825 #endif 8826 } 8827 EXPORT_SYMBOL(netdev_stats_to_stats64); 8828 8829 /** 8830 * dev_get_stats - get network device statistics 8831 * @dev: device to get statistics from 8832 * @storage: place to store stats 8833 * 8834 * Get network statistics from device. Return @storage. 8835 * The device driver may provide its own method by setting 8836 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 8837 * otherwise the internal statistics structure is used. 8838 */ 8839 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 8840 struct rtnl_link_stats64 *storage) 8841 { 8842 const struct net_device_ops *ops = dev->netdev_ops; 8843 8844 if (ops->ndo_get_stats64) { 8845 memset(storage, 0, sizeof(*storage)); 8846 ops->ndo_get_stats64(dev, storage); 8847 } else if (ops->ndo_get_stats) { 8848 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8849 } else { 8850 netdev_stats_to_stats64(storage, &dev->stats); 8851 } 8852 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8853 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8854 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8855 return storage; 8856 } 8857 EXPORT_SYMBOL(dev_get_stats); 8858 8859 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8860 { 8861 struct netdev_queue *queue = dev_ingress_queue(dev); 8862 8863 #ifdef CONFIG_NET_CLS_ACT 8864 if (queue) 8865 return queue; 8866 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8867 if (!queue) 8868 return NULL; 8869 netdev_init_one_queue(dev, queue, NULL); 8870 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8871 queue->qdisc_sleeping = &noop_qdisc; 8872 rcu_assign_pointer(dev->ingress_queue, queue); 8873 #endif 8874 return queue; 8875 } 8876 8877 static const struct ethtool_ops default_ethtool_ops; 8878 8879 void netdev_set_default_ethtool_ops(struct net_device *dev, 8880 const struct ethtool_ops *ops) 8881 { 8882 if (dev->ethtool_ops == &default_ethtool_ops) 8883 dev->ethtool_ops = ops; 8884 } 8885 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8886 8887 void netdev_freemem(struct net_device *dev) 8888 { 8889 char *addr = (char *)dev - dev->padded; 8890 8891 kvfree(addr); 8892 } 8893 8894 /** 8895 * alloc_netdev_mqs - allocate network device 8896 * @sizeof_priv: size of private data to allocate space for 8897 * @name: device name format string 8898 * @name_assign_type: origin of device name 8899 * @setup: callback to initialize device 8900 * @txqs: the number of TX subqueues to allocate 8901 * @rxqs: the number of RX subqueues to allocate 8902 * 8903 * Allocates a struct net_device with private data area for driver use 8904 * and performs basic initialization. Also allocates subqueue structs 8905 * for each queue on the device. 8906 */ 8907 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8908 unsigned char name_assign_type, 8909 void (*setup)(struct net_device *), 8910 unsigned int txqs, unsigned int rxqs) 8911 { 8912 struct net_device *dev; 8913 unsigned int alloc_size; 8914 struct net_device *p; 8915 8916 BUG_ON(strlen(name) >= sizeof(dev->name)); 8917 8918 if (txqs < 1) { 8919 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8920 return NULL; 8921 } 8922 8923 if (rxqs < 1) { 8924 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8925 return NULL; 8926 } 8927 8928 alloc_size = sizeof(struct net_device); 8929 if (sizeof_priv) { 8930 /* ensure 32-byte alignment of private area */ 8931 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8932 alloc_size += sizeof_priv; 8933 } 8934 /* ensure 32-byte alignment of whole construct */ 8935 alloc_size += NETDEV_ALIGN - 1; 8936 8937 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8938 if (!p) 8939 return NULL; 8940 8941 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8942 dev->padded = (char *)dev - (char *)p; 8943 8944 dev->pcpu_refcnt = alloc_percpu(int); 8945 if (!dev->pcpu_refcnt) 8946 goto free_dev; 8947 8948 if (dev_addr_init(dev)) 8949 goto free_pcpu; 8950 8951 dev_mc_init(dev); 8952 dev_uc_init(dev); 8953 8954 dev_net_set(dev, &init_net); 8955 8956 dev->gso_max_size = GSO_MAX_SIZE; 8957 dev->gso_max_segs = GSO_MAX_SEGS; 8958 8959 INIT_LIST_HEAD(&dev->napi_list); 8960 INIT_LIST_HEAD(&dev->unreg_list); 8961 INIT_LIST_HEAD(&dev->close_list); 8962 INIT_LIST_HEAD(&dev->link_watch_list); 8963 INIT_LIST_HEAD(&dev->adj_list.upper); 8964 INIT_LIST_HEAD(&dev->adj_list.lower); 8965 INIT_LIST_HEAD(&dev->ptype_all); 8966 INIT_LIST_HEAD(&dev->ptype_specific); 8967 #ifdef CONFIG_NET_SCHED 8968 hash_init(dev->qdisc_hash); 8969 #endif 8970 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8971 setup(dev); 8972 8973 if (!dev->tx_queue_len) { 8974 dev->priv_flags |= IFF_NO_QUEUE; 8975 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8976 } 8977 8978 dev->num_tx_queues = txqs; 8979 dev->real_num_tx_queues = txqs; 8980 if (netif_alloc_netdev_queues(dev)) 8981 goto free_all; 8982 8983 dev->num_rx_queues = rxqs; 8984 dev->real_num_rx_queues = rxqs; 8985 if (netif_alloc_rx_queues(dev)) 8986 goto free_all; 8987 8988 strcpy(dev->name, name); 8989 dev->name_assign_type = name_assign_type; 8990 dev->group = INIT_NETDEV_GROUP; 8991 if (!dev->ethtool_ops) 8992 dev->ethtool_ops = &default_ethtool_ops; 8993 8994 nf_hook_ingress_init(dev); 8995 8996 return dev; 8997 8998 free_all: 8999 free_netdev(dev); 9000 return NULL; 9001 9002 free_pcpu: 9003 free_percpu(dev->pcpu_refcnt); 9004 free_dev: 9005 netdev_freemem(dev); 9006 return NULL; 9007 } 9008 EXPORT_SYMBOL(alloc_netdev_mqs); 9009 9010 /** 9011 * free_netdev - free network device 9012 * @dev: device 9013 * 9014 * This function does the last stage of destroying an allocated device 9015 * interface. The reference to the device object is released. If this 9016 * is the last reference then it will be freed.Must be called in process 9017 * context. 9018 */ 9019 void free_netdev(struct net_device *dev) 9020 { 9021 struct napi_struct *p, *n; 9022 9023 might_sleep(); 9024 netif_free_tx_queues(dev); 9025 netif_free_rx_queues(dev); 9026 9027 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9028 9029 /* Flush device addresses */ 9030 dev_addr_flush(dev); 9031 9032 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 9033 netif_napi_del(p); 9034 9035 free_percpu(dev->pcpu_refcnt); 9036 dev->pcpu_refcnt = NULL; 9037 9038 /* Compatibility with error handling in drivers */ 9039 if (dev->reg_state == NETREG_UNINITIALIZED) { 9040 netdev_freemem(dev); 9041 return; 9042 } 9043 9044 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 9045 dev->reg_state = NETREG_RELEASED; 9046 9047 /* will free via device release */ 9048 put_device(&dev->dev); 9049 } 9050 EXPORT_SYMBOL(free_netdev); 9051 9052 /** 9053 * synchronize_net - Synchronize with packet receive processing 9054 * 9055 * Wait for packets currently being received to be done. 9056 * Does not block later packets from starting. 9057 */ 9058 void synchronize_net(void) 9059 { 9060 might_sleep(); 9061 if (rtnl_is_locked()) 9062 synchronize_rcu_expedited(); 9063 else 9064 synchronize_rcu(); 9065 } 9066 EXPORT_SYMBOL(synchronize_net); 9067 9068 /** 9069 * unregister_netdevice_queue - remove device from the kernel 9070 * @dev: device 9071 * @head: list 9072 * 9073 * This function shuts down a device interface and removes it 9074 * from the kernel tables. 9075 * If head not NULL, device is queued to be unregistered later. 9076 * 9077 * Callers must hold the rtnl semaphore. You may want 9078 * unregister_netdev() instead of this. 9079 */ 9080 9081 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 9082 { 9083 ASSERT_RTNL(); 9084 9085 if (head) { 9086 list_move_tail(&dev->unreg_list, head); 9087 } else { 9088 rollback_registered(dev); 9089 /* Finish processing unregister after unlock */ 9090 net_set_todo(dev); 9091 } 9092 } 9093 EXPORT_SYMBOL(unregister_netdevice_queue); 9094 9095 /** 9096 * unregister_netdevice_many - unregister many devices 9097 * @head: list of devices 9098 * 9099 * Note: As most callers use a stack allocated list_head, 9100 * we force a list_del() to make sure stack wont be corrupted later. 9101 */ 9102 void unregister_netdevice_many(struct list_head *head) 9103 { 9104 struct net_device *dev; 9105 9106 if (!list_empty(head)) { 9107 rollback_registered_many(head); 9108 list_for_each_entry(dev, head, unreg_list) 9109 net_set_todo(dev); 9110 list_del(head); 9111 } 9112 } 9113 EXPORT_SYMBOL(unregister_netdevice_many); 9114 9115 /** 9116 * unregister_netdev - remove device from the kernel 9117 * @dev: device 9118 * 9119 * This function shuts down a device interface and removes it 9120 * from the kernel tables. 9121 * 9122 * This is just a wrapper for unregister_netdevice that takes 9123 * the rtnl semaphore. In general you want to use this and not 9124 * unregister_netdevice. 9125 */ 9126 void unregister_netdev(struct net_device *dev) 9127 { 9128 rtnl_lock(); 9129 unregister_netdevice(dev); 9130 rtnl_unlock(); 9131 } 9132 EXPORT_SYMBOL(unregister_netdev); 9133 9134 /** 9135 * dev_change_net_namespace - move device to different nethost namespace 9136 * @dev: device 9137 * @net: network namespace 9138 * @pat: If not NULL name pattern to try if the current device name 9139 * is already taken in the destination network namespace. 9140 * 9141 * This function shuts down a device interface and moves it 9142 * to a new network namespace. On success 0 is returned, on 9143 * a failure a netagive errno code is returned. 9144 * 9145 * Callers must hold the rtnl semaphore. 9146 */ 9147 9148 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 9149 { 9150 int err, new_nsid, new_ifindex; 9151 9152 ASSERT_RTNL(); 9153 9154 /* Don't allow namespace local devices to be moved. */ 9155 err = -EINVAL; 9156 if (dev->features & NETIF_F_NETNS_LOCAL) 9157 goto out; 9158 9159 /* Ensure the device has been registrered */ 9160 if (dev->reg_state != NETREG_REGISTERED) 9161 goto out; 9162 9163 /* Get out if there is nothing todo */ 9164 err = 0; 9165 if (net_eq(dev_net(dev), net)) 9166 goto out; 9167 9168 /* Pick the destination device name, and ensure 9169 * we can use it in the destination network namespace. 9170 */ 9171 err = -EEXIST; 9172 if (__dev_get_by_name(net, dev->name)) { 9173 /* We get here if we can't use the current device name */ 9174 if (!pat) 9175 goto out; 9176 err = dev_get_valid_name(net, dev, pat); 9177 if (err < 0) 9178 goto out; 9179 } 9180 9181 /* 9182 * And now a mini version of register_netdevice unregister_netdevice. 9183 */ 9184 9185 /* If device is running close it first. */ 9186 dev_close(dev); 9187 9188 /* And unlink it from device chain */ 9189 unlist_netdevice(dev); 9190 9191 synchronize_net(); 9192 9193 /* Shutdown queueing discipline. */ 9194 dev_shutdown(dev); 9195 9196 /* Notify protocols, that we are about to destroy 9197 * this device. They should clean all the things. 9198 * 9199 * Note that dev->reg_state stays at NETREG_REGISTERED. 9200 * This is wanted because this way 8021q and macvlan know 9201 * the device is just moving and can keep their slaves up. 9202 */ 9203 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9204 rcu_barrier(); 9205 9206 new_nsid = peernet2id_alloc(dev_net(dev), net); 9207 /* If there is an ifindex conflict assign a new one */ 9208 if (__dev_get_by_index(net, dev->ifindex)) 9209 new_ifindex = dev_new_index(net); 9210 else 9211 new_ifindex = dev->ifindex; 9212 9213 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 9214 new_ifindex); 9215 9216 /* 9217 * Flush the unicast and multicast chains 9218 */ 9219 dev_uc_flush(dev); 9220 dev_mc_flush(dev); 9221 9222 /* Send a netdev-removed uevent to the old namespace */ 9223 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 9224 netdev_adjacent_del_links(dev); 9225 9226 /* Actually switch the network namespace */ 9227 dev_net_set(dev, net); 9228 dev->ifindex = new_ifindex; 9229 9230 /* Send a netdev-add uevent to the new namespace */ 9231 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 9232 netdev_adjacent_add_links(dev); 9233 9234 /* Fixup kobjects */ 9235 err = device_rename(&dev->dev, dev->name); 9236 WARN_ON(err); 9237 9238 /* Add the device back in the hashes */ 9239 list_netdevice(dev); 9240 9241 /* Notify protocols, that a new device appeared. */ 9242 call_netdevice_notifiers(NETDEV_REGISTER, dev); 9243 9244 /* 9245 * Prevent userspace races by waiting until the network 9246 * device is fully setup before sending notifications. 9247 */ 9248 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9249 9250 synchronize_net(); 9251 err = 0; 9252 out: 9253 return err; 9254 } 9255 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 9256 9257 static int dev_cpu_dead(unsigned int oldcpu) 9258 { 9259 struct sk_buff **list_skb; 9260 struct sk_buff *skb; 9261 unsigned int cpu; 9262 struct softnet_data *sd, *oldsd, *remsd = NULL; 9263 9264 local_irq_disable(); 9265 cpu = smp_processor_id(); 9266 sd = &per_cpu(softnet_data, cpu); 9267 oldsd = &per_cpu(softnet_data, oldcpu); 9268 9269 /* Find end of our completion_queue. */ 9270 list_skb = &sd->completion_queue; 9271 while (*list_skb) 9272 list_skb = &(*list_skb)->next; 9273 /* Append completion queue from offline CPU. */ 9274 *list_skb = oldsd->completion_queue; 9275 oldsd->completion_queue = NULL; 9276 9277 /* Append output queue from offline CPU. */ 9278 if (oldsd->output_queue) { 9279 *sd->output_queue_tailp = oldsd->output_queue; 9280 sd->output_queue_tailp = oldsd->output_queue_tailp; 9281 oldsd->output_queue = NULL; 9282 oldsd->output_queue_tailp = &oldsd->output_queue; 9283 } 9284 /* Append NAPI poll list from offline CPU, with one exception : 9285 * process_backlog() must be called by cpu owning percpu backlog. 9286 * We properly handle process_queue & input_pkt_queue later. 9287 */ 9288 while (!list_empty(&oldsd->poll_list)) { 9289 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 9290 struct napi_struct, 9291 poll_list); 9292 9293 list_del_init(&napi->poll_list); 9294 if (napi->poll == process_backlog) 9295 napi->state = 0; 9296 else 9297 ____napi_schedule(sd, napi); 9298 } 9299 9300 raise_softirq_irqoff(NET_TX_SOFTIRQ); 9301 local_irq_enable(); 9302 9303 #ifdef CONFIG_RPS 9304 remsd = oldsd->rps_ipi_list; 9305 oldsd->rps_ipi_list = NULL; 9306 #endif 9307 /* send out pending IPI's on offline CPU */ 9308 net_rps_send_ipi(remsd); 9309 9310 /* Process offline CPU's input_pkt_queue */ 9311 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 9312 netif_rx_ni(skb); 9313 input_queue_head_incr(oldsd); 9314 } 9315 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 9316 netif_rx_ni(skb); 9317 input_queue_head_incr(oldsd); 9318 } 9319 9320 return 0; 9321 } 9322 9323 /** 9324 * netdev_increment_features - increment feature set by one 9325 * @all: current feature set 9326 * @one: new feature set 9327 * @mask: mask feature set 9328 * 9329 * Computes a new feature set after adding a device with feature set 9330 * @one to the master device with current feature set @all. Will not 9331 * enable anything that is off in @mask. Returns the new feature set. 9332 */ 9333 netdev_features_t netdev_increment_features(netdev_features_t all, 9334 netdev_features_t one, netdev_features_t mask) 9335 { 9336 if (mask & NETIF_F_HW_CSUM) 9337 mask |= NETIF_F_CSUM_MASK; 9338 mask |= NETIF_F_VLAN_CHALLENGED; 9339 9340 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 9341 all &= one | ~NETIF_F_ALL_FOR_ALL; 9342 9343 /* If one device supports hw checksumming, set for all. */ 9344 if (all & NETIF_F_HW_CSUM) 9345 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 9346 9347 return all; 9348 } 9349 EXPORT_SYMBOL(netdev_increment_features); 9350 9351 static struct hlist_head * __net_init netdev_create_hash(void) 9352 { 9353 int i; 9354 struct hlist_head *hash; 9355 9356 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 9357 if (hash != NULL) 9358 for (i = 0; i < NETDEV_HASHENTRIES; i++) 9359 INIT_HLIST_HEAD(&hash[i]); 9360 9361 return hash; 9362 } 9363 9364 /* Initialize per network namespace state */ 9365 static int __net_init netdev_init(struct net *net) 9366 { 9367 BUILD_BUG_ON(GRO_HASH_BUCKETS > 9368 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask)); 9369 9370 if (net != &init_net) 9371 INIT_LIST_HEAD(&net->dev_base_head); 9372 9373 net->dev_name_head = netdev_create_hash(); 9374 if (net->dev_name_head == NULL) 9375 goto err_name; 9376 9377 net->dev_index_head = netdev_create_hash(); 9378 if (net->dev_index_head == NULL) 9379 goto err_idx; 9380 9381 return 0; 9382 9383 err_idx: 9384 kfree(net->dev_name_head); 9385 err_name: 9386 return -ENOMEM; 9387 } 9388 9389 /** 9390 * netdev_drivername - network driver for the device 9391 * @dev: network device 9392 * 9393 * Determine network driver for device. 9394 */ 9395 const char *netdev_drivername(const struct net_device *dev) 9396 { 9397 const struct device_driver *driver; 9398 const struct device *parent; 9399 const char *empty = ""; 9400 9401 parent = dev->dev.parent; 9402 if (!parent) 9403 return empty; 9404 9405 driver = parent->driver; 9406 if (driver && driver->name) 9407 return driver->name; 9408 return empty; 9409 } 9410 9411 static void __netdev_printk(const char *level, const struct net_device *dev, 9412 struct va_format *vaf) 9413 { 9414 if (dev && dev->dev.parent) { 9415 dev_printk_emit(level[1] - '0', 9416 dev->dev.parent, 9417 "%s %s %s%s: %pV", 9418 dev_driver_string(dev->dev.parent), 9419 dev_name(dev->dev.parent), 9420 netdev_name(dev), netdev_reg_state(dev), 9421 vaf); 9422 } else if (dev) { 9423 printk("%s%s%s: %pV", 9424 level, netdev_name(dev), netdev_reg_state(dev), vaf); 9425 } else { 9426 printk("%s(NULL net_device): %pV", level, vaf); 9427 } 9428 } 9429 9430 void netdev_printk(const char *level, const struct net_device *dev, 9431 const char *format, ...) 9432 { 9433 struct va_format vaf; 9434 va_list args; 9435 9436 va_start(args, format); 9437 9438 vaf.fmt = format; 9439 vaf.va = &args; 9440 9441 __netdev_printk(level, dev, &vaf); 9442 9443 va_end(args); 9444 } 9445 EXPORT_SYMBOL(netdev_printk); 9446 9447 #define define_netdev_printk_level(func, level) \ 9448 void func(const struct net_device *dev, const char *fmt, ...) \ 9449 { \ 9450 struct va_format vaf; \ 9451 va_list args; \ 9452 \ 9453 va_start(args, fmt); \ 9454 \ 9455 vaf.fmt = fmt; \ 9456 vaf.va = &args; \ 9457 \ 9458 __netdev_printk(level, dev, &vaf); \ 9459 \ 9460 va_end(args); \ 9461 } \ 9462 EXPORT_SYMBOL(func); 9463 9464 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 9465 define_netdev_printk_level(netdev_alert, KERN_ALERT); 9466 define_netdev_printk_level(netdev_crit, KERN_CRIT); 9467 define_netdev_printk_level(netdev_err, KERN_ERR); 9468 define_netdev_printk_level(netdev_warn, KERN_WARNING); 9469 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 9470 define_netdev_printk_level(netdev_info, KERN_INFO); 9471 9472 static void __net_exit netdev_exit(struct net *net) 9473 { 9474 kfree(net->dev_name_head); 9475 kfree(net->dev_index_head); 9476 if (net != &init_net) 9477 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 9478 } 9479 9480 static struct pernet_operations __net_initdata netdev_net_ops = { 9481 .init = netdev_init, 9482 .exit = netdev_exit, 9483 }; 9484 9485 static void __net_exit default_device_exit(struct net *net) 9486 { 9487 struct net_device *dev, *aux; 9488 /* 9489 * Push all migratable network devices back to the 9490 * initial network namespace 9491 */ 9492 rtnl_lock(); 9493 for_each_netdev_safe(net, dev, aux) { 9494 int err; 9495 char fb_name[IFNAMSIZ]; 9496 9497 /* Ignore unmoveable devices (i.e. loopback) */ 9498 if (dev->features & NETIF_F_NETNS_LOCAL) 9499 continue; 9500 9501 /* Leave virtual devices for the generic cleanup */ 9502 if (dev->rtnl_link_ops) 9503 continue; 9504 9505 /* Push remaining network devices to init_net */ 9506 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 9507 err = dev_change_net_namespace(dev, &init_net, fb_name); 9508 if (err) { 9509 pr_emerg("%s: failed to move %s to init_net: %d\n", 9510 __func__, dev->name, err); 9511 BUG(); 9512 } 9513 } 9514 rtnl_unlock(); 9515 } 9516 9517 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 9518 { 9519 /* Return with the rtnl_lock held when there are no network 9520 * devices unregistering in any network namespace in net_list. 9521 */ 9522 struct net *net; 9523 bool unregistering; 9524 DEFINE_WAIT_FUNC(wait, woken_wake_function); 9525 9526 add_wait_queue(&netdev_unregistering_wq, &wait); 9527 for (;;) { 9528 unregistering = false; 9529 rtnl_lock(); 9530 list_for_each_entry(net, net_list, exit_list) { 9531 if (net->dev_unreg_count > 0) { 9532 unregistering = true; 9533 break; 9534 } 9535 } 9536 if (!unregistering) 9537 break; 9538 __rtnl_unlock(); 9539 9540 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 9541 } 9542 remove_wait_queue(&netdev_unregistering_wq, &wait); 9543 } 9544 9545 static void __net_exit default_device_exit_batch(struct list_head *net_list) 9546 { 9547 /* At exit all network devices most be removed from a network 9548 * namespace. Do this in the reverse order of registration. 9549 * Do this across as many network namespaces as possible to 9550 * improve batching efficiency. 9551 */ 9552 struct net_device *dev; 9553 struct net *net; 9554 LIST_HEAD(dev_kill_list); 9555 9556 /* To prevent network device cleanup code from dereferencing 9557 * loopback devices or network devices that have been freed 9558 * wait here for all pending unregistrations to complete, 9559 * before unregistring the loopback device and allowing the 9560 * network namespace be freed. 9561 * 9562 * The netdev todo list containing all network devices 9563 * unregistrations that happen in default_device_exit_batch 9564 * will run in the rtnl_unlock() at the end of 9565 * default_device_exit_batch. 9566 */ 9567 rtnl_lock_unregistering(net_list); 9568 list_for_each_entry(net, net_list, exit_list) { 9569 for_each_netdev_reverse(net, dev) { 9570 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 9571 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 9572 else 9573 unregister_netdevice_queue(dev, &dev_kill_list); 9574 } 9575 } 9576 unregister_netdevice_many(&dev_kill_list); 9577 rtnl_unlock(); 9578 } 9579 9580 static struct pernet_operations __net_initdata default_device_ops = { 9581 .exit = default_device_exit, 9582 .exit_batch = default_device_exit_batch, 9583 }; 9584 9585 /* 9586 * Initialize the DEV module. At boot time this walks the device list and 9587 * unhooks any devices that fail to initialise (normally hardware not 9588 * present) and leaves us with a valid list of present and active devices. 9589 * 9590 */ 9591 9592 /* 9593 * This is called single threaded during boot, so no need 9594 * to take the rtnl semaphore. 9595 */ 9596 static int __init net_dev_init(void) 9597 { 9598 int i, rc = -ENOMEM; 9599 9600 BUG_ON(!dev_boot_phase); 9601 9602 if (dev_proc_init()) 9603 goto out; 9604 9605 if (netdev_kobject_init()) 9606 goto out; 9607 9608 INIT_LIST_HEAD(&ptype_all); 9609 for (i = 0; i < PTYPE_HASH_SIZE; i++) 9610 INIT_LIST_HEAD(&ptype_base[i]); 9611 9612 INIT_LIST_HEAD(&offload_base); 9613 9614 if (register_pernet_subsys(&netdev_net_ops)) 9615 goto out; 9616 9617 /* 9618 * Initialise the packet receive queues. 9619 */ 9620 9621 for_each_possible_cpu(i) { 9622 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 9623 struct softnet_data *sd = &per_cpu(softnet_data, i); 9624 9625 INIT_WORK(flush, flush_backlog); 9626 9627 skb_queue_head_init(&sd->input_pkt_queue); 9628 skb_queue_head_init(&sd->process_queue); 9629 #ifdef CONFIG_XFRM_OFFLOAD 9630 skb_queue_head_init(&sd->xfrm_backlog); 9631 #endif 9632 INIT_LIST_HEAD(&sd->poll_list); 9633 sd->output_queue_tailp = &sd->output_queue; 9634 #ifdef CONFIG_RPS 9635 sd->csd.func = rps_trigger_softirq; 9636 sd->csd.info = sd; 9637 sd->cpu = i; 9638 #endif 9639 9640 init_gro_hash(&sd->backlog); 9641 sd->backlog.poll = process_backlog; 9642 sd->backlog.weight = weight_p; 9643 } 9644 9645 dev_boot_phase = 0; 9646 9647 /* The loopback device is special if any other network devices 9648 * is present in a network namespace the loopback device must 9649 * be present. Since we now dynamically allocate and free the 9650 * loopback device ensure this invariant is maintained by 9651 * keeping the loopback device as the first device on the 9652 * list of network devices. Ensuring the loopback devices 9653 * is the first device that appears and the last network device 9654 * that disappears. 9655 */ 9656 if (register_pernet_device(&loopback_net_ops)) 9657 goto out; 9658 9659 if (register_pernet_device(&default_device_ops)) 9660 goto out; 9661 9662 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9663 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9664 9665 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9666 NULL, dev_cpu_dead); 9667 WARN_ON(rc < 0); 9668 rc = 0; 9669 out: 9670 return rc; 9671 } 9672 9673 subsys_initcall(net_dev_init); 9674